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ABSTRACT 

 

This thesis presents research results from two projects involving molecular sieves. 

These investigations concern their synthesis, characterization and use as heterogeneous 

catalysis 

In part I, the shape selectivity in the methanol-to-olefins (MTO) reaction is studied, 

and a new molecular sieve structure – MTO reaction selectivity relationship is developed. 17 

zeolites and 13 phosphate-based molecular sieves having 14 selected cage-type/small-pore 

topologies (CHA, AFX, SFW, LEV, ERI, DDR, AEI, RTH, ITE, SAV, LTA, RHO, KFI, 

and UFI) are synthesized. The MTO reaction is performed using these catalysts at the same 

reaction conditions.  

The reaction results lead to the conclusion that the molecular sieve cage topology is 

the most important structural factor that primarily determines the olefin product distribution. 

For example, AEI and CHA are synthesized with four different elemental compositions 

(zeolite, SAPO, CoAPO, MgAPO). Regardless of differences in elemental compositions, 

very similar product distribution patterns are observed in each of the isostructural groups of 

molecular sieves. Additionally, other isostructural pairs of SAPOs and zeolites show similar 

product distributions. 

The reaction results from 14 topologies are grouped into four categories. Category I 

consists of CHA, AFX, SFW, and other GME-related topologies. Catalysts having these 

topologies show ethylene-to-propylene ratios close to one. Category II is a group of ERI and 

LEV which generate more ethylene than propylene. Category III is a group of DDR, AEI, 

RTH, ITE, and SAV which shows propylene selectivities higher than those of ethylene. 

Category IV is a group of LTA, RHO, KFI, and UFI which possess LTA-cages. These types 

of catalysts give high butylene selectivities. 
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The concept of cage-defining ring and its size is introduced as a reliable geometric 

indicator on the basis of a hypothetical ellipsoid cage model. The cage-defining ring size can 

be easily calculated from crystallographic information which is available online. A strong 

correlation is found between the cage-defining ring sizes and the four categories of reaction 

behavior.  

In part II, an extra-large-pore germanosilicate molecular sieve CIT-13 with 14- and 

10-ring pores is synthesized using monoquaternary, methylbenzylimidazolium-derivative 

OSDAs, and the synthesis conditions are optimized. Fluoride-free synthetic pathways for 

pure germanosilicate CIT-13 and isomorphous aluminum substitution in synthesis of 

aluminogermanosilicate CIT-13 are also described. The nature of disorder in the arrangement 

within CIT-13 framework is discussed, and its physicochemical properties compared to a 

UTL-type germanosilicate IM-12. 

A comprehensive network of topotactic transformation and postsynthetic 

modification pathways starting from germanosilicate CIT-13 (Ge-CIT-13) is described. The 

moisture-mediated transformation of Ge-CIT-13 into another extra-large-pore CFI-type 

germanosilicate (Ge-CIT-5) is discovered, and the role of sorbed water in the transformation 

kinetics studied. The resultant Ge-CIT-5 is the first germanosilicate molecular sieve having 

a CFI topology, and the corresponding transformation is also the first inter-germanosilicate 

transformation occurring at room temperature. The microporosity of Ge-CIT-5 matched well 

with the reference pure-silica CIT-5 synthesized using the sparteine-type OSDA.  

The acid-delamination processes of Ge-CIT-13 and Ge-CIT-5 are investigated. Ge-

CIT-13 can be transformed into two new frameworks, CIT-14 with 12- and 8-ring pores 

and CIT-15 with 10-ring pores, on the basis of an ADOR-type topotactic transformation. 

The inverse sigma transformation of Ge-CIT-13 directly into CIT-14 is also firstly 

described. The conventional acid-delamination of Ge-CIT-13 does not yield Ge-CIT-5. 

However, the CIT-15-type material is obtained via the base-delamination pathway from 

Ge-CIT-5. The postsynthetic alumination of Ge-CIT-13 and Ge-CIT-5 is also achievable.
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