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Engineering and application of cGAL, a GAL4 bipartite expression system 

for Caenorhabditis elegans 

ABSTRACT 

The core objectives of genetics are to dissect and understand the function of genes, the 

consequence of their perturbation on an organism, and how their collective action 

influences an organism’s biology. For genetic model organisms, transgenesis is a tool that 

allows researchers to introduce synthetic genetic constructs to determine where a gene acts, 

when it is required, and infer its function. Caenorhabditis elegans is a powerful genetic 

model organism, with a variety of transgenesis methods available to researchers. Each has 

its own advantages in speed, efficiency, control of copy number, and control of integration 

site. However, all methods suffer from issues of reproducibility, reusability, and labor cost. 

Bipartite systems offer solutions to these issues- they separate the promoter element from 

the gene product producing strains in which one sex contains the promoter (‘driver’ strain) 

and the other contains the gene (‘effector’ strain). Crossing driver and effector strains 

reunites promoter and gene in the progeny, which are assayed and analyzed for gene 

function. This separation of drivers from effectors allows for a variety of benefits. Driver 

and effector strains can be combinatorially reused, meaning less time-consuming strain 

construction. Reusing strains allows for more reproducibility and consistency between 

experiments and between laboratories. Additionally, novel genes and promoters can be 

crossed to existing strains for novel transgenic patterns requiring minimal effort. Thus, 

bipartite systems greatly increase the rigor and pace of genetic analysis. This thesis details 

the engineering of cGAL, a GAL4-based bipartite system for C. elegans. It uses a novel 

GAL4 gene from Saccharomyces cerevisiae, a yeast whose optimal growth temperature is 

similar to that of C. elegans. This thesis also describes an intein-based split bipartite system 

that offers more refined spatiotemporal control, by allowing two promoters to dictate gene 

expression instead of one. This split method is used to analyze rhythmic feeding in 

C. elegans. Finally, engineering of cGAL using single copy methodology is detailed, with a 

discussion of future improvements to, and usage of, single copy cGAL. This development 

of a new bipartite system will greatly accelerate genetic analysis for the C. elegans, 

improve reproducibility for the field, and generate a valuable resource for the community. 
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Transgenesis in Caenorhabditis elegans and 
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1.1 INTRODUCTION 

A central goal of biology is to understand how the assortment of genes present in each 

organism dictates its development, growth, cellular and tissue functions, and behavior, and 

to examine how genes evolve over time to give rise to diverse forms of life. Each gene may 

act in different cells, and at different times, for various biological processes. To dissect the 

function of genes, scientists need to study the functional consequences of perturbing genes, 

and thus require tools capable of controlling gene expression at will. This can be the 

introduction of wild-type genes back into certain cells of a null mutant to discover site-of-

action, conditional expression of a gene to discover critical time windows, or the 

introduction of heterologous genes that perform a unique function useful to the researcher. 

This practice of introducing tailored genetic constructs into organisms, transgenesis, is a 

workhorse of genetic research.   

 

Caenorhabditis elegans arose as a genetic model organism with Sydney Brenner’s seminal 

work in 19741, detailing its genetics, molecular and developmental biology, and 

neurobiology. This small soil roundworm is found in temperate climates and raised in 

laboratory conditions on small petri plates containing a lawn of Escherichia coli as its food 

source. It has numerous excellent qualities as a model organism: short generation time, 

large brood size, and optical clarity. The majority of animals are hermaphroditic, allowing 

Mendelian segregation of genotypes without a need for mating. Males are found naturally 

at a small fraction (0.1%), but this fraction can be substantially enlarged under laboratory 

conditions to allow mating. Generated strains can be thawed and recovered later, allowing 

for long term storage. It also has a rich scientific history: it was the first multicellular 
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organism to have its genome sequenced2, to have a full developmental cell lineage map3,4, 

and remains the only organism to have a full connectome of cellular connections 

mapped5,6. Concerning transgenesis, it was one of the first organisms to demonstrate 

expression of green fluorescent protein, sharing that title with E. coli7.  

 

1.2 Transgenesis in C. elegans 

There are a variety of transformation methods available in C. elegans research. The oldest 

and perhaps most popular is the method described by Mello et al. in 19918. Here, DNA 

constructs of interest are injected with carrier DNA into the gonad of the hermaphrodite. 

Transgenic DNA can be in the form of plasmids, cosmids, YACs, or PCR products.  In the 

distal arm of the gonad, the cytoplasm is syncytial, so a single injection of DNA content in 

this region will distribute itself amongst a large number of oocytes and thus a single worm 

can produce several transformed progeny, some of which will become stable transformants 

in following generations (Figure 1.1). 

 

Commonly, plasmids containing genetic markers with visible phenotypes are co-injected 

with the construct of interest, to facilitate the identification of transformants. One strategy 

is to inject mutant C. elegans with plasmids containing rescue genes (e.g. unc-119, pha-1, 

dpy-20, lin-15). Transformants are then identified by wild-type morphology or behavior. 

Alternatively, gene fragments for dominant visible alleles (lin-3, rol-6) have also been used 

as co-injection markers and for injection into wild type hermaphrodites. More novel 

advancements include the advent of fluorescent proteins as well as selectable antibiotic 

resistances9. Each strategy has its own advantages and disadvantages. Genetic markers can 
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often be maintained under a standard dissecting microscope and in some cases do not 

require picking, but the genetic background can be a potential confound. 

Fluorescent/antibiotic markers require more equipment and reagents, but their genetic 

background is closer to that of the reference strain N2. 

 

Once injected into the animal, the DNA forms a semi-stable extrachromosomal array. 

Despite its longstanding use over decades, the exact structure of the array and nature of its 

inheritance have remained somewhat of a mystery. Using restriction enzyme and Southern 

blot analysis, Mello et al. observed that arrays in the stable transformants contained 

multiple copies of the injected fragments, and that co-injected DNA fragments always 

segregated together even when one was present at very low copy number, suggesting that 

the array was a single heritable structure.  

 

Injection of a P0 parent commonly gives several F1 transformed progeny, a fraction of 

which produce F2 transformants and a stable line (Figure 1.1). This is due to arrays being 

mitotically unstable; every cell division risks loss of the array, producing mosaic animals. 

Animals failing to distribute the array to germline progenitors will fail to transmit to future 

generations, and thus transformants appear in a non-Mendelian fashion. This mosaicism is 

also a concern when conducting assays- if the array cannot be visibly tracked, an 

experimenter cannot be sure which cells have received the array and thus which cells are 

responsible for a phenotype, if any. This can introduce a high degree of variability into a 

study.  
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Extrachromosomal array mosaicism can be addressed via chromosomal integration of the 

array10. Double stranded breaks of the genome, via X-ray or ultraviolet irradiation, 

stimulate incorporation of a portion of the array into the site of the break. This alleviates the 

mitotic instability, ensuring faithful inheritance from cell to cell. Thus the variability 

introduced by animal mosaicism can be alleviated.  

 

This workflow is a staple of C. elegans research, and a backbone of genetic analysis in the 

genetic model organism. At the time of writing, there are 11,634 extrachromosomal arrays 

and 11,217 integrated array alleles documented in WormBase (Figure 1.2). However, the 

unknown structure of extrachromosomal and integrated arrays still raises several concerns.  

 

In their study, Mello et al. performed Southern blot analysis of F1 transformed progeny to 

reveal that even siblings of an injected P0 could produce array structures as different as 

non-sibling F1 transformants, but that clonal F2 progeny and their descendants displayed 

essentially identical structure. Because of this, researchers often need to verify the behavior 

of an array across several independent lines to ensure that their results are not an artifact of 

the structure of a particular array, but a genuine finding. Another concern of multiple-copy 

arrays and integrations is whether the behavior of the allele evolves over time; it may be 

subject to rearrangement, silencing, or shortening. 

 

The most we can say about the nature of the integrated array is that it contains multiple 

copies of the original DNA constructs; what relation it has to the array it was generated 

from, whether it undergoes structural rearrangement, and how the local genomic context of 
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the integration site influences expression, are questions the field is unable to answer well. 

Additionally, using extrachromosomal or integrated arrays raises questions about gene 

dosage. Commonly, such constructs are used for genetic rescue experiments, but their 

multi-copy nature may in fact result in overexpression and non-native levels of their gene 

products. 

 

These issues pervade transgenesis in C. elegans. It appears in strains generated by the same 

researchers, and between researchers or laboratories when they attempt to replicate each 

other’s strains and data.  

 

There exist transgenesis methods which alleviate these issues, namely methods for single 

copy transgene insertion (SCI). Several methods have been developed in C. elegans, 

namely Mos transposon-based insertion11–14 and newer CRISPR/Cas9 methods15–18. Both 

work on the principle of creating a single double-stranded break at a defined chromosomal 

location, and then using homology directed DNA repair (HDR) to repair the break with a 

supplied template containing the transgene flanked by neighboring homologous sequences. 

To generate double stranded breaks, the Mos SCI system has developed strains containing 

the Mos transposon present at various chromosomal locations. An inducible transposase 

causes excision of the transposon and a double stranded break at that location. CRISPR 

utilizes the Streptococcus pyogenes Cas9 nuclease and a guide RNA, which targets Cas9 to 

genomic sequence complementary to the guide RNA for cutting. These methods result in a 

single copy insertion at a defined locus, and control for copy number and genomic position. 

They also address issues born from the unknown structures and copy numbers in 
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extrachromosomal array and integrated lines. Furthermore, the single copy transgene can 

be inserted in specific and well-defined genetic loci, making comparisons between 

transgenic strains more reproducible and scientifically rigorous. Generally speaking 

however, single copy transgenes display weaker expression than their extrachromosomal or 

integrated array counterparts, which are multi-copy. 

 

Each set of methods has its appeal to researchers, with its own set of advantages and 

disadvantages. Currently, extrachromosomal and integrated arrays are the most popular 

way of constructing transgenics, likely because extrachromosomal array lines can be 

obtained in under a week, informing the researcher whether an avenue of investigation is 

worthwhile. Single copy methods (Mos and CRISPR/Cas9), however, are gaining 

popularity, considering their more recent development (Figure 1.2).  

 

But even with all these methods, most researchers will run into a series of barriers when 

trying to construct a strain from other researcher’s data. If determining expression pattern, 

they must decide which portion of a promoter to clone in front of their gene. 

Well-documented papers will list the exact primers, while other, older papers may be more 

vague. When reconstructing gene products, genes may have several isoforms and it may 

not be clear which (if any) introns were kept. Other variables on the researcher’s mind 

might include the backbone vector, 3’ UTR, choice of carrier DNA, and injection 

concentrations; variables that are only sometimes reported. If the experimenter is 

                                                 
 Often due to the state of molecular biology at the time, and not under the researcher’s control. 
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constructing extrachromosomal or integrated arrays, such considerations may be pointless 

as the researcher cannot control the structure of their array anyways. These issues can make 

it difficult for laboratories to replicate one another’s results, or to compare results across 

groups. They are compounded when considering the ultimate goal of making such 

transgenic animals: systematic analysis of the >20,000 C. elegans genes in its 959 somatic 

cells. 

 

The number of promoter::gene combinations that need to be investigated to discover 

scientific results is potentially staggering. Even more so considering the ever-growing 

repertoire of useful heterologous genes (e.g. fluorescent reporters19,20, calcium 

indicators21,22, channelrhodopsins23,24, etc.) For a set of m promoters and n gene products, 

the number of transgenes needed is the product m x n. Not only is this a large number of 

constructs, building such a set by conventional extrachromosomal/integrated array methods 

raises concerns. The expectation is that the same promoter or gene sequences will behave 

identically between different combinations, between different arrays, and between different 

integrated lines. But that expectation is a spurious one; we already know that a transformed 

P0 progenitor can generate different arrays, and that integration of arrays can place 

insertions of differing copy number in any location in the genome. If the same promoter is 

used to drive two different gene products, and the two constructs are integrated in different 

genomic locations, it would be difficult to dissect whether differences seen between the two 

constructs is due to the gene products instead of their different positional effects, or perhaps 

the different structures of the integrated arrays. 
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1.3 Bipartite Gene Expression Systems 

The issues of large numbers of promoter::gene combinations and variability can be 

mitigated using bipartite systems. Bipartite systems are gene expression systems that 

decouple the promoter from the gene product. Rather than having the promoter directly 

drive the gene product, they are separated into two components. The promoter drives a 

protein intermediate- this pairing is termed a ‘driver’. The gene product is modified by 

control sequences that are only active when the protein intermediate is present, to generate 

an ‘effector’. Each component is incorporated into separate strains, and they are mated to 

produce progeny with both components. Transgene expression is dependent upon having 

both components active in a cell (Figure 1.3). 

 

At first glance, the use of bipartite systems to control gene expression might appear 

paradoxical: why separate a promoter::gene fusion into two parts, thereby doubling the 

number of constructs and strains necessary to get the same expression pattern? This 

paradoxical view can be resolved, however, taking a systematic view of transgenesis in C. 

elegans. Using the example above, a set of m promoters and n gene products requires 

building only the sum m + n set of driver and effectors strains, which can then be mated 

together to achieve the product m x n set of expression patterns. This is considerably more 

attractive if many of the desired m or n strains already exist for the community.  

 

Perhaps the key benefit of using bipartite systems however, lies in the reusability and 

standardization of driver and effector strains. No matter how the driver or effector strains 

were constructed, whether by extrachromosomal array, integrated array, MosSCI, or 
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CRISPR, the fact that driver and effector constructs can be shared and reused means that 

expression is as faithful and reproducible as possible between different laboratories. 

Researchers are using the exact same alleles between them. As strains become used more 

and more, any idiosyncrasies or unique features about them are continually compiled and 

described, and can be addressed. An analogy can be made to computer packages and code. 

Such packages have many users using and testing them- any bugs found can then be 

documented and addressed. Similar scrutiny of bipartite expression strains would provide 

the same type of revision for researchers, which can be used to answer biological questions. 

Additionally, newly engineered heterologous protein effectors can be incorporated with 

existing drivers with ease, without the need to reconstruct all pairwise driver::effector strain 

combinations from scratch. 

 

1.3.1 GAL4/UAS 

The original bipartite system was introduced by Brand and Perrimon in 199325,26. They 

introduced the Saccharomyces cerevisiae transcription factor GAL4 into Drosophila 

melanogaster, under the control of a Drosophila tissue specific promoter to form a driver. 

GAL4 recognizes and binds a 17-nucleotide DNA recognition sequence, termed an 

upstream activating sequences (UAS)27. In a separate strain, they placed UAS sites 

upstream of a gene product to construct the effector. When these two driver and effector 

parental strains are mated, their progeny drive expression of the effector gene in cells 

where the promoter is active. The GAL4-UAS system has drastically changed the 

landscape of Drosophila research, becoming an integral part of Drosophila transgenesis. It 
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is a standardized platform with which researchers conduct screens, perform tests of 

necessity and sufficiency, and discover site- and time-of-action for Drosophila genes.  

 

Aside from the benefits mentioned above, bipartite systems also have the advantage of 

offering more refined spatiotemporal control through a variety of methods. Bipartite 

systems can incorporate repressive or intersectional strategies.  

 

Often times, a single promoter dictating driver expression may be expressed too widely to 

make conclusive statements about the site of action of a gene. In this case, subsets of 

candidate cells can be eliminated by expressing GAL80, a repressor of GAL4. GAL80 

binds GAL4, and blocks expression of the effector gene product28. Thus cellular subsets in 

which GAL80 repression of the effector does not affect phenotype can be considered 

dispensable for that process. GAL80 also affords a layer of temporal control: a 

temperature-sensitive allele of GAL80 exists whose activity can be controlled by shifting 

between permissive and restrictive temperatures.29 

 

Another strategy to limit expression of the effector is to use split intersectional strategies. 

Studies of GAL4 had shown that the transcription factor could be split into two modular 

domains: one domain is responsible for UAS binding and dimerization, the other recruits 

transcriptional machinery to drive gene expression30–32. These two domains could be 

expressed separately, and each would retain its native activity. This provides the 

opportunity to dictate effector expression using two promoters instead of one. One 

promoter dictates expression of the DNA-binding domain; a second dictates expression of 
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the transcriptional activation domain. If one desires very specific spatial expression, two 

spatial promoters can direct expression of each module. Alternatively, one promoter can 

provide spatial information, which the other can afford a layer of temporal control. A 

functional GAL4 transcriptional activator is formed only in the intersection of time and 

space where both promoters are active and both components are expressed, assuming each 

domain has a method of re-associating with the other. The original description of split 

GAL4 fused leucine zipper domains to each module of the GAL4 domain, which could 

then reconstitute via non-covalent binding of the zippers33.  

 

1.3.2 Other Bipartite Systems 

A number of other bipartite systems have been engineered for genetic model organisms: 

LexA, Q, Tet On/Off, Cre/lox, and FLP/FRT. These systems can largely be classified into 

two classes: transcriptional activator-based systems (encompassing GAL4, LexA, Q, and 

Tet systems) and recombinase-based systems (encompassing Cre/lox and FLP/FRT). 

The LexA34,35 and Q36–38 systems resemble that of GAL4. A promoter directs expression of 

LexA or QF transcriptional activators, respectively. These proteins recognize their cognate 

DNA motifs (LexAop and QUAS sites, respectively) and drive transcription of the 

downstream gene product. The Q system has an added layer of control in that QF is 

repressible, via the QS repressor, much like GAL80 represses GAL4. QS represses the QF 

activator, and this inhibition is removed in the presence of quinic acid. The Tet system has 

two versions, Tet-On39,40 and Tet-Off41. Each has a unique transcriptional regulator, both 

binding the TetO transcriptional operator sequence in different situations. In Tet-On, the 

presence of doxycycline allows the activating transcriptional regulator rtTA to bind TetO 
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sequences and drive transcription of effector genes; removal of doxycycline unbinds 

rtTA from TetO to halt transcription. The functionally opposite Tet-Off system uses the 

tTA activator, which drives transcription at TetO sites in the absence of doxycycline; 

addition of doxycycline dissociates rTA from TetO sequences. 

 

In the case of Cre/lox and FLP/FRT promoters drive expression of the Cre or FLP DNA 

recombinases. These recombinases recognize their cognate target sites (lox and FRT, 

respectively) to generate site-specific DNA excision or inversion between these sites, 

depending on their orientation42,43. The gene product effector is modified with lox or FRT 

sites to ensure Cre- or FLP-dependent activation of the gene product. This can be achieved 

by a variety of methods: insertion of a transcriptional stop cassette flanked by target sites 

upstream of the gene for excision upon recombinase expression, or by creating an inverted 

gene flanked by target sites that the recombinase can then restore to its proper orientation. 

Note that in the case of recombinases, the effector gene must also have its own promoter. 

This second promoter is often a ubiquitously expressed promoter, such that expression is 

then limited solely by the driver. If the expression pattern of the second promoter is more 

limited, the final expression pattern is the intersection of both promoters. 

 

Combining bipartite systems can grant more advanced control of gene expression, much 

like intersectional and repressive strategies can. A common strategy is to combine a 

recombinase-based method with a transcriptional activator-based method. One system is 

driven by a temporal promoter, while the other is controlled by a spatial promoter. The 

transcriptional activator drives expression of the recombinase, and the effector is flanked 
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by the DNA motifs recognized by the recombinase. The final spatiotemporal patterning 

is determined by the intersection of both promoters. 

 

The two differing mechanisms of gene activation between transcriptional activator-based 

and recombinase-based systems have several experimental ramifications, when considering 

C. elegans transgenesis.  

 

Generally, recombinase-based systems must function at the single copy level. Having 

multiple copies of recombinase target sites in extrachromosomal or integrated arrays 

complicates the recombination process. Since such sites work in pairs, it is not possible to 

control or determine which pairs of sites were recombined, or how many final, in-frame 

copies of the effector were produced. As might be expected of single copy transgenes, 

expression is generally weaker, but often is sufficient for assays using genetic rescue or 

bimodal states (i.e. cell death). 

 

Transcriptional activator-based systems are not limited to single copy methodology and can 

support construction via extrachromosomal/integrated arrays. This means their expression 

is often much stronger, which can be desirable when expressing heterologous proteins non-

native to the model organism (i.e. fluorescent reporters, sensors, membrane channel 

proteins, etc.). One major drawback associated with increased expression is increased 

background, however. 
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Understanding copy number, expression strength, and background level help to set the 

sensitivity and specificity of an experimenter’s assay. A variety of options of bipartite 

systems would be of great use to the C. elegans community, each suited for a particular 

design. 

 

1.4 Conclusion 

Bipartite systems have the power to greatly improve and accelerate genetic and cellular 

dissection of biology phenomena in genetic model organisms. Several bipartite systems 

have shown to function in C. elegans, but no GAL4-based system previously existed for C. 

elegans. The following chapters of this thesis describe engineering and application of a 

GAL4-based bipartite gene expression system for C. elegans. Chapter 2 describes the 

construction of cGAL, the base GAL4 system using a novel GAL4 gene from 

Saccharomyces kudriavzevii, demonstrating using its functionality across various tissues 

and gene products. Chapter 3 describes a split intersectional strategy using split intein 

proteins, allowing control of our cGAL system to be dictated by two promoters, providing 

more refined spatiotemporal control. Chapter 4 briefly presents preliminary data on single 

copy cGAL design, as well as future directions for the bipartite system. The development 

of this GAL4 bipartite system will prove to be a valuable resource to the C. elegans 

community, accelerating research for the community and improving reproducibility. 
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1.5 FIGURES 

 

 

Figure 1.1 | C. elegans transformation 

Upper: One arm of the C. elegans gonad. Transgenic constructs are injected into the distal 

arm, which consists of syncytial nuclei which will eventually partition into individual 

oocytes. Injected genetic material is concatenated into a heritable extrachromosomal array. 

Image taken from WormBase, under the terms of the Creative Commons Attribution 

License: 

http://www.wormbook.org/chapters/www_transformationmicroinjection/transformationmic

roinjection.html  

http://www.wormbook.org/chapters/www_transformationmicroinjection/transformationmicroinjection.html
http://www.wormbook.org/chapters/www_transformationmicroinjection/transformationmicroinjection.html
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(continued from Figure 1.1) 

Lower: Standard C. elegans transgenesis protocols. Transgenic constructs of interest are 

combined with visible markers and carrier DNA. Once injected into a P0 animal, the 

resulting generations are screened for transformed animals. 
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Figure 1.2 | Cumulative sum of various transgene types in C. elegans 

Documented transgenes generated by various methods, computationally mined from C. 

elegans literature via Textpresso. Transgenes are grouped by Ex (extrachromosomal array), 

Is (integrated array), Ti and Si (single copy) transgenes. The x-axis is set to the number of 

years since the first publication of the transgenesis method for easier comparison. 

 

Special thanks to: 

Karen Yook, Juancarlos Chan, Hans-Michael Muller  
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Figure 1.3 | Direct fusion and bipartite approaches to transgenesis 

Upper panel: Traditional transgenesis directly couples a promoter element with the gene to 

be produced. Cells where the promoter element is active produce the gene product. 

Lower panel: In the bipartite approach, the promoter and gene are decoupled. A driver 

strain contains a transgene with a promoter driving a protein intermediate. A separate 

effector strain contains a transgene with the gene product downstream of control sequences. 

Mating parents produces progeny containing both driver and effector elements, and the 

gene product is produced where the promoter is active, much as in the direct fusion  
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(continued from Figure 1.3) 

approach. However, drivers and effector strains can be mated combinatorially to produce 

vast arrays of promoter::gene combinations and are more efficient and reproducible. 
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C h a p t e r  2  

Engineering CGAL, a GAL4-based Bipartite 

Gene Expression System for C. elegans 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter can be found published as an article in: 

 

Wang H, Liu J, Gharib S, Chai CM, Schwarz EM, Pokala N, Sternberg PW. cGAL, a  

temperature-robust GAL4-UAS system for Caenorhabditis elegans. Nat Methods. 2017  

Feb;14(2):145-148. doi: 10.1038/nmeth.4109.  
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2.1 ABSTRACT 

Control of gene expression in desired spatiotemporal patterns is a powerful tool for 

studying gene function. We have established cGAL, a bipartite GAL4-UAS system that 

effectively controls gene expression in C. elegans, by systematically optimizing the three 

major components: activation domain, UAS copy number, and DNA-binding domain 

(DBD). Most importantly, the canonical Gal4p DBD from Saccharomyces cerevisiae 

(grown best at 30-34°C) performs poorly across C. elegans cultivation temperatures 

(15-25°C). To overcome this, we use evolutionary analysis to identify a GAL4 homolog 

from Saccharomyces kudriavzevii, whose optimal growth temperature is 23-24°C, and 

show that S. kudriavzevii Gal4p DBD displays temperature robustness across 15-25°C. We 

demonstrate the utility of the cGAL system in enabling reporter expression in multiple 

tissues, site-of-action experiments, and gain-of-function channelrhodopsin experiments. 

We expect that cGAL will not only significantly aid C. elegans research, but also facilitate 

the application of GAL4-UAS systems in other organisms with low growth temperatures. 

 

2.2 INTRODUCTION 

An understanding of genes and their functions is essential for discovering insights about an 

organism’s physiology, development, genetics, and behavior. Spatial and temporal control 

of gene expression, where possible, is a powerful tool for dissection of gene function. In 

genetically tractable organisms, this is often done using direct promoter::gene fusion 

constructs. More sophisticated control has also been achieved with bipartite expression 

systems such as the GAL4-UAS system. 
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The GAL4-UAS system was originally described in the yeast species Saccharomyces 

cerevisiae44. The protein Gal4p consists of two functional domains: a DNA-binding 

domain (DBD), and two transcription activation domains (AD). As a homodimer, Gal4p 

recognizes and binds a 17-nucleotide upstream activating sequence (UAS) in the promoter 

regions of GAL genes in yeast, in order to utilize galactose as a carbon source45. The 

GAL4-UAS system was repurposed as a bipartite system to control transgene expression in 

flies25. Unlike conventional direct promoter::gene fusion constructs, the GAL4-UAS 

system decouples the promoter from the effector gene into two separate constructs (Figure 

2.1). Promoters are placed upstream of Gal4p to generate a ‘driver’ construct, while one or 

more copies of UAS are placed upstream of the gene product to create an ‘effector’ 

construct. Incorporation of these constructs into separate transgenic animals creates 

standardized driver and effector lines, which can then be crossed together to achieve 

desired gene expression patterns in the progeny.  

 

This system offers three major advantages over the promoter-gene fusion approach. First, 

large numbers of strains can be easily generated by crossing different drivers and effectors. 

With ten driver lines and ten effector lines, a hundred gene expression patterns could be 

obtained in animals that would normally require a hundred promoter::gene fusions. Second, 

it takes minimal effort to incorporate novel components into available driver and effector 

libraries. For instance, the development of optogenetic tools and genetically encoded 

calcium indicators moves at a rapid pace46,47. When a new generation of a tool is 

developed, only one effector line with such a tool needs to be generated and it can be used 

by crossing with existing driver lines. Third, once drivers and effectors are tested and 
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validated, they become community reagents that foster experimental consistency and 

reproducibility, and allow comparison of findings across studies.  

 

Indeed, with a large library for GAL4 driver lines and effector lines available, the 

GAL4-UAS system has become the method of choice for controlling gene expression in 

Drosophila48. Furthermore, several improvements of the GAL4-UAS system and its 

combination with other genetic tools, such as the incorporation of Gal80p, the Gal4p 

negative regulator, have allowed researchers to perform sophisticated genetic 

manipulations for the study of many different biological questions in Drosophila48–50. 

Because of the power of this bipartite expression system, the GAL4-UAS system has also 

been adopted in other organisms, such as mice, zebrafish, plants, beetles and mosquitoes51–

55. 

 

However, this system has not previously been successfully adapted for use in C. elegans. 

We therefore modified the components of the GAL4-UAS system for C. elegans. Previous 

efforts to improve the GAL4-UAS system in other organisms have included using more 

powerful activation domains (ADs), and increasing UAS copy number56,57. Furthermore, 

temperature has been implicated to have an impact on the performance of GAL4-UAS in 

vivo. For example, in Drosophila, temporarily shifting animals to 29°C improves 

GAL4-UAS effectiveness, compared to 25°C or 18°C26, suggesting that the normal 

cultivation temperature range of 15-25°C for C. elegans might reduce the system’s 

performance. We hypothesized that using a DBD of the Gal4 protein from a 

colder-growing yeast species might mitigate the effects of low temperature. Taking these 
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considerations together, we systematically compared the effects of altering AD, the UAS 

copy number and DBD to develop an optimized GAL4-UAS system for C. elegans. We 

name the new system cGAL, in reference to its initial development in C. elegans, and to its 

engineered performance at cooler temperatures. We demonstrate its robustness for reporter 

gene expression in multiple tissues, site-specific genetic rescue, and channelrhodopsin 

experiments in C. elegans.  

 

2.3 RESULTS 

2.3.1 The more potent activation domain VP64 significantly improves driver activity 

Previous unpublished attempts at engineering GAL4-UAS in C. elegans suggested that 

transcriptional activity, while present, was relatively low (our unpublished data and 

personal communication from H. Korswagen). These attempts used the S. cerevisiae Gal4p 

DBD (residues 1-147, henceforth termed Gal4
SC

) fused to the VP16 viral protein activation 

domain (VP16) from human herpes virus58 as the driver components. The effector 

component consisted of five copies of UAS upstream of gfp (5xUAS::gfp). Because 

previous attempts in other organisms suggested that stronger activation domains improve 

the performance of the GAL4-UAS system56,57, we hypothesized that a stronger 

transcriptional activation domain might boost the performance of this system in C. elegans. 

A synthetic transcriptional activation domain with four tandem copies of VP16, called 

VP64, has been shown to be more effective than VP1659. We fused the Gal4
SC

 to VP16 and 

VP64 and placed them under the same promoter (the promoter of myo-2 gene, Pmyo-2, a 

regulatory promoter specific for pharyngeal muscles), designating them as 
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Pmyo-2::GAL4SC::VP16 and Pmyo-2::GAL4SC::VP64, respectively. To compare the 

performance of these two drivers, we first generated a transgene strain containing a 

chromosomally integrated array of a 15xUAS::gfp effector (syIs300). We then injected each 

driver construct at equal concentrations into the effector strain. 

 

At room temperatures (22-23°C), we found that the Pmyo-2::GAL4
SC

::VP64 driver caused 

a seven-fold increase of GFP fluorescence in pharyngeal muscles over that seen with the 

Pmyo-2::GAL4SC::VP16 driver (Figure 2.2, p<0.0001), demonstrating that the 

transcription activation domain VP64 greatly outperforms VP16 in C. elegans. The GFP 

fluorescence observed in pharynx is dependent on the presence of both the driver and the 

effector: neither the parental Pmyo-2::GAL4SC::VP64 transgenic strain alone nor the 

parental 15xUAS::gfp effector transgenic strain alone showed GFP fluorescence; only cross 

progeny of these two strains displayed bright GFP fluorescence in pharynx (Figure 2.3). 

We therefore adopted VP64 as our activation domain of choice for further experiments. 

 

2.3.2 Increasing UAS copy number enhances reporter expression 

To further improve the efficacy of the GAL4-UAS system for C. elegans, we compared the 

effects of different UAS copy numbers on the expression of the effector gene. As the Gal4p 

DBD binds to UAS to recruit transcriptional machinery through the transcriptional 

activation domain, we reasoned that increasing UAS copy number upstream of the effector 

gene might enable more Gal4p binding to the promoter region, leading to better expression 

of the downstream effector gene. To test this, we injected effector constructs with 5x, 10x, 
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15x, and 20x copies of the UAS sites upstream of gfp at equal concentrations, into a 

transgenic strain with an integrated Pmyo-2::GAL4SC::VP64 driver (syIs301). Quantitative 

fluorescence microscopy revealed a successive increase in GFP fluorescence up until 15 

copies of UAS (~2.3 fold vs. 5x, p<0.0001; ~1.3 fold vs 10 copies, p<0.01), beyond which 

it appeared to saturate (~1.1 fold vs. 20x, p=0.51, not significant; Figure 2.4). Thus, 

increasing UAS copy number generally improves the expression of the downstream 

effector gene but does eventually saturate; therefore, we adopted 15x copies of UAS for all 

effector lines used in the remainder of our experiments. 

 

2.3.3 The GAL4-UAS system efficacy is heavily dependent upon temperature 

Experimental temperatures for C. elegans growth usually range from 15°C to 25°C. We 

assayed our Pmyo-2::GAL4SC::VP64 driver and 15xUAS::gfp effector combination at 

15°C, 20°C, and 25°C to determine the robustness of the GAL4-UAS system under these 

conditions. We found that the transcriptional efficacy of the GAL4-UAS system was 

heavily dependent on temperature. Our driver/effector combination performed well at 

25°C, but fell precipitously at lower temperatures (Figure 2.5, ~67% drop at 20°C, ~80% 

drop at 15°C, p<0.0001 for both, adjusted). These results were consistent with findings in 

Drosophila: temporarily shifting flies to 29°C instead of the usual 25°C or 18°C increases 

Gal4p-mediated expression of the effector26. Thus, the temperature dependence of the 

GAL4-UAS system may also contribute to its previously weak and unreliable performance 

in C. elegans. 
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2.3.4 The Gal4p DBD from S. kudriavzevii provides robust and increased 

performance at low temperatures 

The GAL4-UAS system from S. cerevisiae displayed improved performance at 

temperatures closer to the optimal growth temperature of S. cerevisiae (around 

30-34°C)26,60. This observation suggests that Gal4p from S. cerevisiae may have evolved to 

be maximally active around this optimal temperature, and may explain its poor 

performance across the 15-20°C range. We reasoned that a Gal4p from more cryophilic 

Saccharomyces yeast species with optimal growth temperature ranges closer to that of 

C. elegans (around 20°C) might provide excellent building blocks for a more robust 

GAL4-UAS system in C. elegans. We chose to test the Gal4p DBD from the Portuguese 

reference strain ZP591 of Saccharomyces kudriavzevii 61 (residues 1-147, henceforth 

termed Gal4SK) for two main reasons. First, S. kudriavzevii has an optimal growth 

temperature (23-24°C) closest to that of C. elegans amongst the Saccharomyces species60. 

Second, the Gal4SK sequence is highly conserved with that of the Gal4SC. In particular, the 

six cysteine residues in the Zn2Cys6 binuclear cluster that are essential for DNA binding 

and two key lysine residues that directly contact the “CGG” nucleotides in the UAS site 

45,62,63 are identical between the two yeast species (Figure 2.6). Thus we hypothesized that 

Gal4SK would still bind to the same UAS site, while the remaining subtle changes in protein 

sequence may confer improved performance at lower temperatures.  

 

To test this, we first generated a new Pmyo-2 driver construct (for pharyngeal muscles) by 

replacing the original Gal4SC with Gal4SK and retaining VP64 as the activation domain. 

Then, we compared its performance across a temperature series by injecting this new driver 
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into the same transgenic strain with the integrated 15xUAS::gfp effector (syIs300), at the 

same concentration as our previous Pmyo-2::GAL4SC::VP64 driver. We noticed a pattern of 

increased GFP fluorescence intensity with the Pmyo-2::GAL4SK::VP64 driver lines over the 

Pmyo-2::GAL4SC::VP64 driver lines; blinded researchers could consistently and with 

perfect accuracy sort each driver by eye through a standard fluorescent dissecting 

microscope. We chose the brightest line from each for quantitation at 15°C, 20°C and 

25°C. Across this temperature series, the Pmyo-2::GAL4SK::VP64 transgenic line 

performed more robustly than Pmyo-2::GAL4SC::VP64. Both have comparable 

fluorescence intensities at 25°C (Figure 2.5). However, Gal4SK exhibited more robustness 

to temperature, experiencing only a ~20% drop at 20°C (p<0.01, adjusted; vs ~67% drop 

for Gal4SC), and a ~40% drop at 15°C (p<0.001, adjusted; vs ~80% drop for Gal4SC). At 

room temperature, we observed ~30% improvement in GFP fluorescence with the new 

driver over Gal4SC (2 lines each, Figure 2.7). We also analyzed strains that were injected 

with a direct Pmyo-2::gfp fusion at the same concentration for comparison, noting that GFP 

fluorescence levels were comparable (Figure 2.5 and Figure 2.7). This led us to adopt the 

Gal4SK domain as our DBD of choice, in conjunction with the VP64 activation domain and 

the 15xUAS effector, to comprise our fully optimized GAL4-UAS system for C. elegans. 

We designate it the cGAL system to denote its original implementation in C. elegans and 

its potential use in other organisms at cooler temperatures. 

 

2.3.5 The cGAL system performs well across multiple tissues 

We further tested whether cGAL would perform in other major tissues, beyond pharyngeal 

muscles. We generated new driver constructs by replacing the pharyngeal muscle specific 
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promoter (Pmyo-2) with other tissue-specific promoters (Pnlp-40 for the intestine; 

Pmyo-3 for the body wall muscles). When injected into a strain with the 15xUAS::gfp 

effector (syIs300), these new drivers produced robust and specific GFP expression in the 

expected tissues (Figure 2.8, top row). 

 

However, we encountered an issue when we attempted to drive GFP expression 

pan-neuronally (Prab-3) and in GABAergic neurons (Punc-47) in C. elegans; we found 

poor and highly mosaic expression in the nervous system along with intense ectopic GFP 

fluorescence in the posterior gut (data not shown). We speculated this issue might have 

been due to the vector (a derivative of the Fire vector pPD49.26) that we used for the driver 

and effector constructs. This vector contains the unc-54 3’UTR, a common 3’UTR used for 

transgene expression in C. elegans. To address this issue, we switched to the pPD117.01 

vector which contains a 5’ decoy (see Methods) and the let-858 3’UTR, which were 

introduced to reduce ectopic expression in the posterior gut and to improve the transgene 

expression in a broad range of tissues (A. Fire, personal communication). We generated 

new Prab-3 and Punc-47 driver constructs as well as a new 15xUAS::gfp::let-858 3’UTR 

effector construct in the pPD117.01 backbone. We found that these two drivers, when 

injected into a transgenic strain with a new 15xUAS::gfp::let-858 3’UTR effector (syIs343), 

not only displayed decreased ectopic GFP fluorescence in posterior gut (data not shown), 

but also dramatically increased GFP expression in the entire nervous system and 

GABAergic neurons, respectively (Figure 2.8, middle row and data not shown). To further 

validate pPD117.01 as the vector of choice for neuronal drivers, we generated two 

additional drivers by cloning in regulatory elements for cholinergic (Punc-17) and 



 

 

31 

glutamatergic (Peat-4) neurons. When the Punc-17 and Peat-4 drivers were injected into 

the transgenic strain carrying the integrated new gfp effector (syIs343), we also observed 

specific and robust expression in the corresponding neurons (Figure 2.8, bottom row). 

Thus, the cGAL system is robust across a variety of tissues in C. elegans and we 

recommend using the pPD117.01 backbone to construct new drivers and effectors. 

 

2.3.6 Using cGAL for tissue-specific rescue 

One of the frequent uses of bipartite expression systems is to facilitate site-of-action 

experiments by rescuing mutant animals via tissue-specific gene expression. We next tested 

whether the cGAL system could be applied for such functional studies in C. elegans by 

examining the defecation motor program (Figure 2.9). In C. elegans, defecation occurs 

approximately every minute and consists of three sequential muscle contractions in the 

following order: a posterior body wall muscle contraction (pBoc), an anterior body wall 

muscle contraction (aBoc), and lastly an enteric muscle contraction causing an expulsion 

event 64,65. For the expulsion step, the intestine releases the mature neuropeptide from 

NLP-40, which binds to its receptor AEX-2 on two GABAergic neurons (AVL and DVB) 

to activate them. Activation of these two neurons causes the release of the neurotransmitter 

GABA, which triggers enteric muscle contraction and expulsion66–68.  

 

In aex-2(sa3) mutant animals, expulsion is nearly eliminated, while pBoc is unaffected 67. 

We applied the cGAL system to test the site-of-action of aex-2 in the GABAergic neurons 

for expulsion. Demonstrating the efficiency of cGAL as a bipartite expression system, we 

re-used drivers that drove 15xUAS::gfp expression in each of the three tissues involved 
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with the expulsion circuit: the Pnlp-40 intestine driver, Punc-47 GABAergic driver, and 

Pmyo-3 body wall muscle driver. We first generated a new transgenic effector line with 

15xUAS::aex-2(+) cDNA (syEx1444) in the aex-2(sa3) background. We then crossed each 

of these three driver lines with the new effector line to generate heterozygous animals with 

aex-2(+) cDNA specifically expressed in the intestine, GABAergic neurons, or muscles in 

the aex-2(sa3) background and assayed if any of them had expulsion rescued. 

 

As expected, wild-type animals displayed expulsion events in nearly every defecation 

cycle, whereas aex-2(sa3) animals displayed almost none (Figure 2.10). In the aex-2(sa3) 

background, neither the GABAergic driver alone, nor the 15xUAS::aex-2(+) cDNA 

effector alone was capable of rescuing expulsion events, demonstrating a lack of leaky 

expression of aex-2 in the effector line alone. We found that only aex-2(sa3) mutants with 

both the GABAergic driver and the 15xUAS::aex-2(+) cDNA effector line displayed 

rescue (Figure 2.10). The incomplete rescue may be due to the mosaic effect of 

extrachromosomal array of the 15xUAS::aex-2(+) cDNA effector transgene. Furthermore, 

ectopic expression of aex-2(+) cDNA in either body wall muscle or intestine, the other two 

tissues in the expulsion circuit, did not rescue, demonstrating a high functional specificity 

using the cGAL system. These results are highly similar to results from a previous study 

that tested the site-of-action of aex-2 for expulsion in the same three tissues using 

conventional promoter-cDNA fusion transgenes67. Thus, we conclude that our cGAL 

system can be used for tissue-specific rescue experiments in C. elegans.  
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2.3.7 Using cGAL for heterologous channelrhodopsin activation 

Next, we tested whether our system could be used to perform gain-of-function experiments 

in C. elegans. Channelrhodopsin is a light-sensitive cation channel; in the presence of 

all-trans retinal and blue light, channelrhodopsin will open and depolarize cells it is 

expressed in69. Activation of GABAergic neurons in C. elegans relaxes the body wall 

muscles and causes the worms to adopt a flaccid, paralyzed state70. We injected the 

GABAergic cGAL driver (Punc-47::GAL4SK::VP64::let-858 3’UTR) into a transgenic 

strain carrying an integrated 15xUAS::hChR2(H134R)::eyfp::let-858 3’UTR effector 

(syIs341) to express channelrhodopsin specifically in GABAergic neurons and tested 

whether we could use blue light to selectively activate these neurons. We found that in the 

presence of the co-factor all-trans retinal, 475 nm blue light excitation caused an 

immediate, limp paralysis only in animals possessing both the driver and the effector, but 

not in animals with just either component alone (Figure 2.11 and data not shown). 

Paralysis phenotypes were reversed immediately upon blue light removal. We exposed 

animals to a three-pulse train, spaced 20 seconds apart, and scored for responses. Most 

animals with both driver and effector constructs showed full and robust responses to blue 

light (20 animals, 60 total pulses, ~83% response) in contrast to a complete lack of 

response in control animals with carrying just the effector (10 animals, 30 total pulses, 0% 

response, p<0.0001; Figure 2.12). These results demonstrate that cGAL confers the ability 

to control the expression of novel exogenous transgenes to dissect neural circuits in 

C. elegans.  
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2.3.8 Construction of an initial, basic cGAL toolkit  

Lastly, we built a basic cGAL driver and effector toolkit (Tables 2.1 & 2.2). For drivers, 

we constructed strains and constructs for major tissues, major neurotransmitter cell types, 

and some individual sensory neurons. For effectors, we have integrated strains for cell 

labeling (GFP, mKate2, GFP-H2B and mCherry-H2B), cell ablation (ICE), calcium 

indicator (GCaMP6s), neuronal activation (ChR2), neuronal inhibition (HisCl1) and 

synaptic inhibition (TeTx). All effectors are integrated and at least one line for each 

integrated effector was confirmed functional (Figure 2.13). 

 

2.3.9 Discussion 

 

The power of the GAL4-UAS system has been demonstrated in organisms such as 

Drosophila48, but this tool has not been successfully implemented in C. elegans, because of 

unreliable and weak expression. We solved this problem by establishing cGAL, an 

optimized GAL4-UAS system for robust control of transgene expression at its preferred 

growth temperatures (15-25°C) and demonstrating that this system can be used for 

functional studies in C. elegans. Transcriptional efficacy of the system was greatly 

enhanced by introducing a more powerful transcriptional activation domain (VP64), in 

conjunction with additional UAS copy numbers (15x). Most importantly, cGAL confers 

robust performance across the entire temperature range relevant for C. elegans, by 

incorporating a Gal4p DBD from a yeast species adapted to grow at a lower preferred 

growth temperature. 
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While the Gal4p DBDs are highly conserved between S. kudriavzevii and S. cerevisiae 

(Figure 2.6), small differences in the Gal4SK DBD sequence afford better transcriptional 

activation of effector expression at lower temperatures. This enhancement might be 

attributed to higher affinity of Gal4SK DBD to the UAS site, more efficient dimerization, 

greater stability of Gal4SK, more favorable folding kinetics, or any combination thereof at 

lower temperatures. This finding suggests that natural selection may have shaped yeast 

Gal4 proteins to maximize their performance at species-specific optimal growth 

temperatures. We predict that this optimized cGAL system and the same engineering 

principles could be useful in other genetically tractable organisms with optimal growth 

temperatures are at or below 25°C; in particular for those that have previously lacked tools 

for genetic analysis but are emerging as new models for developmental biology71.  

 

Our work has established a fully functional GAL4-UAS system for C. elegans research. 

First, the expression level of the GFP reporter with our cGAL4 bipartite system was robust 

and comparable with the direct transcriptional reporter approach. Second, further 

optimization of 3’UTR used in driver and effector constructs enabled robust application of 

cGAL in various somatic tissues and cell types. Third, we have also demonstrated that the 

cGAL system works efficiently for site-of-action experiments and for introducing 

optogenetic tools in C. elegans. Fourth, we have built a basic toolkit with cGAL drivers 

and effectors primarily for the neuroscience field (Table 2.2), but these tools can used for 

studies in major tissues, major neuronal classes, and specific neurons.  
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Another bipartite expression system, the Q system, has been recently described for 

C. elegans, including the demonstration of temporal control with an inhibitory protein and 

small molecule38. However, the Q system has yet to be widely adopted by the C. elegans 

community; this may be due to a lack of sufficient drivers and effectors.  

 

As is the case in Drosophila48–50, the cGAL system could be combined with other binary 

expression systems, including the Q system, Cre/loxP system, and FLP/FRT 

system38,42,72,73, to enable tighter control of transgene expression using intersectional 

strategies for more refined spatial control. Furthermore, having multiple independent 

genetic control systems then enables studies using multiple effectors, each expressed in 

separate and distinct cellular patterns. This is particularly attractive for neuronal studies 

where pre-and post-synaptic neurons often need to be stimulated and then recorded in 

tandem, or for genetic and developmental networks to determine whether genes function 

cell-autonomously or cell-non-autonomously for each of their specific functions. 

 

In its current form, cGAL already provides several new opportunities for C. elegans 

research. Genetic site-of-action experiments will be greatly facilitated by a collection of 

cDNA effectors and cell-specific drivers. The vast majority of site-of-action experiments in 

C. elegans are undercontrolled because of the tedium of constructing transgenes and 

strains. Genome-wide overexpression screens can be performed in a tissue-specific manner 

with the cGAL system, which will potentially reveal novel functions for many genes; in 

particular, for genes with redundant paralogs and genes that have lethal consequences when 

globally over-expressed. These will allow functional dissection of genetic and 
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developmental networks. Neural circuits can be efficiently probed with a growing 

collection of light-sensitive and ligand-activated channels and calcium indicator 

effectors46,47,74, and importantly, as new tools are developed, a single new effector construct 

will enable researchers to incorporate such a new tool with existing drivers. The cGAL 

system will give rise to a continually expanding library of communal resources for the 

C. elegans field, and we expect that the cGAL system will greatly increase the rate and 

rigor of study in C. elegans and potentially in other organisms.  
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2.4 FIGURES 

 

Figure 2.1 | The GAL4-UAS bipartite system 

Schematic of the GAL4-UAS bipartite expression system. In one parent strain, a promoter 

drives the expression of a fusion protein of the DNA binding domain (DBD) of Gal4p and 

a transcriptional activation domain (AD) in the driver construct; in the other parent, an 

upstream activation sequence (UAS) is placed 5’ to a gene effector. Mating the two 

parental stains generates offspring containing both components, triggering expression of 

the effector gene in a pattern dictated by the promoter. Decoupling promoters from 

effectors with the GAL4-UAS system allows efficient combinatorial control of gene 

expression. DBD refers to the first 147 amino acids of Gal4p; a synthetic 17-mer was used 

as the UAS site in all effector constructs (see Methods).  
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Figure 2.2 | VP64 is superior to VP16 as an activation domain 

Left: Representative GFP fluorescence images in the pharynx from an integrated 

15xUAS::gfp effector (syIs300), injected with Pmyo-2::GAL4SC::VP16 driver or 

Pmyo-2::GAL4SC::VP64 driver at the same concentration. Pmyo-2, the myo-2 promoter, is 

specific for expression in pharyngeal muscle. Scale bar is 20 μm.  

Right: Quantitative analysis of GFP fluorescence in the pharynx at room temperature, using 

pharyngeal muscle drivers with VP16 (n = 58) or VP64 (n = 50), coupled with the same 

15xUAS::gfp effector transgene (syIs300). Two independent lines for each driver were used 

for quantification, with n = ~25 for each line. Bars are mean ± SEM. Two-tailed t-test with 

Welch’s correction. a.u., artificial units. 
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Figure 2.3 | Both components of the cGAL system are required for the expression of 

an effector gene  

Neither the parental Pmyo-2::GAL4SC::VP64 driver alone (syIs301, left) nor the parental 

15xUAS::gfp effector alone (syIs302, right) produces expression of GFP in the pharynx. 

Expression of the effector (GFP) is only seen with both components combined. Bars are 

mean ± SEM. Two-tailed t-test with Welch’s correction. a.u., artificial units. 

  



 

 

41 

 

 

Figure 2.4 | Optimization of UAS copy number 

Left: Representative images showing GFP fluorescence in the pharynx of transgenic 

animals with an integrated Pmyo-2::GAL4SC::VP64 driver (syIs301), injected with 5x, 10x, 

15x, and 20x copies of the UAS site upstream of gfp effector constructs at same 

concentration. Scale bar is 20 μm.  

Right: Quantitative analysis of GFP fluorescence the effector lines with different UAS 

copy numbers, coupled with the same pharyngeal driver (syIs301). n = 89, 58, 56, 60, from 

left to right. Two to three independent lines were used to quantified, with n = ~30 for each 

line. Bars are mean ± SEM. ns, not significant. One-way ANOVA with Tukey’s post-test. 

a.u., artificial units. 
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Figure 2.5 | Designing a temperature-robust GAL4 driver via evolutionary analysis 

 

Upper: Representative images showing GFP fluorescence in the pharynx from an 

integrated 15xUAS::gfp effector (syIs300), injected with same concentration of 

Pmyo-2::GAL4SC::VP64 (syEx1434) or Pmyo-2::GAL4SK::VP64::unc-54 3’UTR 

(syEx1436), respectively,  at 15°C, 20°C, and 25°C. Scale bar is 20 μm. 
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(continued from Figure 2.5) 

Lower: Quantitative analysis of GFP expression of Gal4SC and Gal4SK pharyngeal muscle 

drivers, along with a Pmyo-2::gfp transcriptional fusion (syEx1437) across three 

temperatures. We refer to drivers using Gal4SK and VP64 as cGAL drivers for the rest of 

this paper. All three arrays were generated by injecting at the same concentration 

(10 ng/µL). n = ~25 for each condition. Bars are mean ± SEM. All pairwise comparisons 

within each genotype are significant (** p<0.01 or lower), except Gal4SC 15°C vs 20°C, 

and Pmyo-2::gfp 20°C vs 25°C. Two-way ANOVA, Tukey’s multiple comparison test. 

a.u., artificial units. 
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Figure 2.6 | Alignment of S. cerevisiae and S. kudriavzevii GAL4 DNA-binding 

domains 

Alignment of the DNA binding domains (residues 1-147) of Gal4p sequences from 

S. cerevisiae (GAL4SC) and S. kudriavzevii (GAL4SK). Two critical, conserved 

DNA-interacting lysine residues are marked with red arrowheads. Six cysteines forming 

the conserved Zn2Cys6 binuclear cluster are marked with blue arrowheads. Asterisk (*), 

colon (:), and period (.) indicate identical residues, strongly conserved residues and weakly 

conserved residues, respectively. The alignment was done with the software Clustal 

Omega75. 
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Figure 2.7 | Performance of different DBDs from Gal4 proteins at room temperature  

Quantification of GFP fluorescence in the pharynx of transgenic worms with either 

Pmyo-2::GAL4SC::VP64 or Pmyo-2::GAL4SK::VP64 drivers injected into a strain carrying 

an integrated 15xUAS::gfp transgene (syIs300) at room temperature (22-23°C). The drivers 

were both injected at 10 ng/μL. Strains with a direct Pmyo-2::gfp fusion array at 10 ng/μL 

was measured for comparison. Two independent lines were imaged for each genotype. n = 

20 - 30 for each line. Bars are mean ± SEM. * p < 0.05. ns, not significant. One-way 

ANOVA with Tukey’s post-test. a.u., artificial units. DBD, DNA-binding domain. 
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Figure 2.8 | Robust activity of the cGAL system across multiple tissues 

Strong GFP fluorescence was observed in corresponding tissues dictated by the promoters 

used in cGAL drivers, coupled with integrated 15xUAS::gfp lines. Representative images 

are shown for the intestine and body wall muscle (top row), pan-neuronal and GABAergic 

neurons (middle row), cholinergic and glutamatergic neurons (bottom row). Note that in 

intestinal and body way muscle images, both drivers and the effector 

(15xUAS::gfp::unc-54 3’UTR) are built in the pSM vector. In the middle and bottom rows, 

both drivers and the effector (15xUAS::gfp::let-858 3’UTR) are built in the pPD117.01 

vector (see Methods and Supplementary Table 1). Asterisk (*) indicates the canonic ectopic 

GFP fluorescence in the posterior gut. All scale bars are 100 μm. A, anterior; D, dorsal; R, 

right. 
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Figure 2.9 | The C. elegans defecation motor program 

The defecation motor program (DMP) repeats about once per minute and consists of a 

posterior body wall contraction, followed by an anterior body wall contraction and then a 

final expulsion step. Inset: the intestine releases the neuropeptide NLP-40, which acts on its 

receptor AEX-2 in two GABAergic neurons DVB and AVL (AVL not shown), which in 

turn release GABA to activate enteric muscles to trigger expulsion.  
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Figure 2.10 | Tissue-specific rescue of aex-2 for DMP expulsion events 

Quantification of expulsion events per defecation cycle in animals with indicated 

genotypes. Each of the integrated drivers (Pnlp-40::GAL4SK::VP64 for intestine, 

Punc-47::GAL4SK::VP64 for GABAergic neurons and Pmyo-3::GAL4SK::VP64 for 

muscles) was crossed with the same 15xUAS::aex-2(+) cDNA effector line (syEx1444) in 

the aex-2(sa3) mutant background. All constructs contained the unc-54 3’UTR. Bars are 

mean ± SEM. n = 8-10 for each genotype. ns, not significant. One-way ANOVA with 

Tukey’s post-test.  
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Figure 2.11 | Channelrhodopsin activation in GABAergic neurons results in paralysis 

Gain-of-function channelrhodopsin experiment in GABAergic neurons using cGAL. 

Shown in the figure are three images of the same transgenic worm with both a GABAergic 

(Punc-47) driver and a channelrhodopsin (ChR2) effector from a video recording taken 

before, during, and after exposure to blue light. Activation of GABAergic neurons 

produces a limp, paralyzed body posture. Scale bar is 200 μm.  
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Figure 2.12 | Quantification of GABAergic activation-mediated paralysis 

Quantification of light-induced paralysis in worms with the indicated drivers/effectors. 

Each dot represents an individual animal and its mean response to 3 blue light exposures. 

Bars are mean ± SEM. n = 20 and 10 for first column and second column, respectively. 

Mann-Whitney test.  
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Driver/Promoter Strain Genotype Linkage Group

Pharyngeal Muscle driver, Pmyo-2 PS6844 syIs301 LGV

Pharyngeal Muscle driver, Pmyo-2 PS7154 syIs391 LGIV

Intestine driver, Pnlp-40 PS6916 syIs317 LGIII

Intestine driver, Pnlp-40 PS6933 syIs318 syIs302 LGIII

Intestine driver, Pnlp-40 PS6934 syIs319 Not on LGIII

Intestine driver, Pnlp-40 PS6935 syIs320 Not on LGIII

Body muscle driver, Pmyo-3 PS6936 syIs321 Not on LGIII

Pan-neuronal driver, Prab-3 PS6961 syIs334 LGX

Pan-neuronal driver, Prab-3 PS6962 syIs335 LGX

Pan-neuronal driver, Prab-3 PS6963 syIs336 LGX

GABAergic neuron driver, Punc-47 PS7160 syIs393 LGIV

GABAergic neuron driver, Punc-47 PS7166 syIs395 syIs337 LGIII

GABAergic neuron driver, Punc-47 PS7167 syIs396 syIs337 LGIII

Heat shock driver, Phsp16.41 PS7169 syIs398; syIs337

Heat shock driver, Phsp16.41 PS7170 syIs399; syIs337

Heat shock driver, Phsp16.41 PS7171 syIs400; syIs337

Heat shock driver, Phsp16.41 PS7172 syIs401; syIs337

Heat shock driver, Phsp16.41 PS7173 syIs402; syIs337  
 

Table 2.1 | Table of integrated cGAL drivers 

Abbreviated table of integrated cGAL drivers. A full list can be found by searching 

elegans.caltech.edu 
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Effectors Use Strain Genotype

Linkage 

Group

15xUAS::GFP cell labeling PS6843 syIs300 LGV

15xUAS::GFP cell labeling PS6872 syIs302 LGIII

15xUAS::GFP cell labeling PS6974 syIs337 LGIII

15xUAS::GFP cell labeling PS7149 syIs390

15xUAS::GFP cell labeling PS7198 syIs419 LGIV

15xUAS::mKate2 cell labeling PS7110 syIs376

15xUAS::mKate2 cell labeling PS7111 syIs377

15xUAS::mKate2 cell labeling PS7136 syIs378

15xUAS::mKate2 cell labeling PS7137 syIs379

15xUAS::mKate2 cell labeling PS7138 syIs380

15xUAS::GFP::H2B cell labeling PS7185 syIs406 LGIV

15xUAS::GFP::H2B cell labeling PS7186 syIs407

15xUAS::GFP::H2B cell labeling PS7187 syIs408 LGIII

15xUAS::mCherry::H2B cell labeling PS7190 syIs409 LGX

15xUAS::GCaMP6s::SL2::mKate2 calcium indicator PS7203 syIs423 LGV

15xUAS::GCaMP6s::SL2::mKate2 calcium indicator PS7205 syIs424 LGIII

15xUAS::GCaMP6s::SL2::mKate2 calcium indicator PS7206 syIs425 LGV

15xUAS::GCaMP6s::SL2::mKate2 calcium indicator PS7207 syIs426

15xUAS::GCaMP6s::SL2::mKate2 calcium indicator PS7208 syIs427 LG III

15xUAS::hChR2(H134R)::yfp neuronal activation PS7043 syIs340

15xUAS::hChR2(H134R)::yfp neuronal activation PS7044 syIs341

15xUAS::hChR2(H134R)::yfp neuronal activation PS7045 syIs342

15xUAS::HisCl1::SL2::GFP neuronal inhibition PS7199 syIs371

15xUAS::HisCl1::SL2::GFP neuronal inhibition PS7107 syIs373

15xUAS::HisCl1::SL2::GFP neuronal inhibition PS7108 syIs374

15xUAS::TeTx blocking synaptic transmission PS7200 syIs420 LGIV

15xUAS::TeTx blocking synaptic transmission PS7201 syIs421

15xUAS::TeTx blocking synaptic transmission PS7202 syIs422 LGV

15xUAS::ICE cell ablation PS7192 syIs413 LGIV

15xUAS::ICE cell ablation PS7193 syIs414 LGI

15xUAS::ICE cell ablation PS7194 syIs415 LGI

15xUAS::ICE cell ablation PS7195 syIs416 LGII

15xUAS::ICE cell ablation PS7196 syIs417 LGX

 

Table 2.2 | Table of integrated cGAL effectors 

Abbreviated table of integrated cGAL effectors for cell labeling, recording, activation, 

inhibition, and ablation. A full list can be found by searching elegans.caltech.edu 

 



 

 

53 

 



 

 

54 

(continued from previous page) 

Figure 2.13 | Functional verification of integrated effectors 

Expression of integrated drivers (left column) or integrated effectors alone (middle column) 

shows no basal expression Only the combination (right column) show expression of 

cytoplasmic or nuclear-localized reports, or death of appropriate cells. DIC, Differential 

interference contrast. Green, 530 nm green channel. Red, 630 nm red channel. Scale bar is 

20 μm. 
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2.5 METHODS 

Maintenance of C. elegans Strains  

Strains were maintained on NGM plates with E. coli OP50 as the food source at room 

temperature as originally described1, unless noted otherwise. Bristol strain N2 is the 

wild-type reference strain. The full list of strains used in this study is detailed in the 

supplementary information.  

 

Molecular Biology 

Plasmids were constructed by standard molecular cloning techniques with either restriction 

enzyme cleavage and DNA ligation or Gibson assembly using enzymes from New England 

Biolabs (Beverly, MA). The coding region of Gal4SK, residues 1-147 of Gal4p from 

Saccharomyces kudriavzevii (the Portuguese reference strain ZP591, a gift from 

C. T. Hittinger), was PCR amplified from genomic DNA using the primers: 

 Forward: 5’-ggaGCTAGCatgaagctgttgtcttcaatgg-3’  

 Reverse:  5’-cggGAATTCcggcgatacactcaactgactttggc-3’ 

The synthetic ScaI-17mer sequence (CGGAGTACTGTCCTCCG)76 was used for the UAS 

site and was placed upstream of the pes-10 basal promoter in all effector constructs. All 

constructs were built in either the pSM vector, a derivative of pPD49.26, which contains 

the unc-54 3’UTR, or the vector pPD117.01 (a gift from A. Fire), which contains the let-

858 3’UTR and a 5’ decoy minigene upstream of the MCS for promoter insertion. Details 

on plasmids and oligos used in the study are documented in Supplementary Table 1 and 

Supplementary Table 2.  
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Transformation  

Transgenic animals were generated using standard microinjection techniques8. Unless 

noted otherwise, 100 ng/μl total DNA injection samples were prepared, with either the 

pBluescript II KS+ plasmid or 1 kb DNA ladder, from New England Biolabs (Beverly, 

MA), as carrier. Extrachromosomal arrays were integrated into the genome via X-ray 

irradiation. Most of the integrants were outcrossed at least three times with the wild type 

strain N2. Full details about transgenic C. elegans strains in this study are listed in the 

Supplementary Information. 

 

Fluorescence imaging 

Approximately 25 animals were imaged and quantified for the optimization process of the 

cGAL system, using the myo-2 promoter (Pmyo-2). Briefly, L4 or young adults animals 

grown at corresponding temperatures (15°C, 20°C, 25°C or room temperature) were 

selected and imaged with Leica DMI600 inverted microscope equipped with 40x oil 

objective and an Andor iXon Ultra 897 EMCCD camera, using Metamorph software 

(Molecular Devices). Images were captured with the same exposure time (20ms) and the 

average fluorescence in the pharynx for each animal was analyzed. The representative 

fluorescent images in Fig. 4 showing the application of cGAL in different tissues were 

collected with a Zeiss LSM710 confocal microscope with a 20x objective.  

 

Defecation motor program assay 

L4 animals raised at room temperature were picked one day before the assay. During the 

assay, which was performed at 20°C, each individual worm was picked to a new NGM 
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plate seeded with OP50 and a 18x18mm coverslip was placed over the animal for better 

optics. After a two-minute acclimation period, each animal was videotaped for five minutes 

and the number of pBoc and expulsion events were scored. Each pBoc indicated the 

initiation of each defecation cycle. The ratio of expulsions over pBocs was used to quantify 

the expulsion phenotype for each animal (n = 8-10 for each genotype).  

 

Optogenetics  

One day before the assay, L4 animals raised at room temperature from each strain were 

picked individually onto NGM plates, seeded with 100 μL OP50 containing 500 μM all-

trans retinal (Sigma). During the assay, which was performed at 20°C, animals were 

recorded using a Zeiss Stemi SV11 coupled to a Unibrain Fire-i 501b camera. 

Channelrhodopsin was activated using blue light generated from a Lumen Dynamics 

X-Cite series 120 lamp and a standard GFP filter set. Blue 475 nm light intensity was 

measured to be 0.2 mW/mm2. After an initial 10-second acclimation period, three light 

pulses, each 2 seconds in duration, were delivered to each worm at intervals of 20 seconds. 

The researcher doing the assay was blinded to the genotype of the animals. 
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C h a p t e r  3  

An Intersectional Split Strategy using Split 

Inteins for Single Cell-type Genetic Access  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter can be found published as an article in: 

 

Wang H, Liu J, Yuet KP, Hill AJ, Sternberg PW. Split cGAL, an intersectional 

strategy using a split intein for refined spatiotemporal transgene control in 

Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3900-3905.  

doi: 10.1073/pnas.1720063115. 
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3.1 ABSTRACT 

Bipartite expression systems, such as the GAL4-UAS system, allow fine manipulation of 

gene expression and are powerful tools for interrogating gene function. We established 

cGAL, a GAL4-based bipartite expression system for transgene control in C. elegans, 

where a single promoter dictates the expression pattern of a cGAL driver, which then binds 

target UAS sequences to drive expression of a downstream effector gene. In this chapter, 

we report a split strategy for cGAL using the split intein gp41-1 for intersectional control of 

transgene expression. Split inteins are protein domains that associate, self-excise, and 

covalently ligate their flanking peptides together. We split the DNA-binding domain 

(DBD) and transcriptional activation domain (AD) of cGAL and fuse them to the N-

terminal of gp41-1-N-intein and the C-terminal of gp41-1-C-intein, respectively. In cells 

where both halves of cGAL are expressed, a functional cGAL driver is reconstituted via 

intein-mediated protein splicing. This reconstitution allows expression of the driver to be 

dictated by two promoters for refined spatial control or spatiotemporal control of transgene 

expression. We apply the split cGAL system to genetically access the single pair of MC 

neurons (previously inaccessible with a single promoter), and reveal an important role of 

protein kinase A (PKA) in rhythmic pharyngeal pumping in C. elegans. Thus, the split 

cGAL system gives researchers a greater degree of spatiotemporal control over transgene 

expression and will be a valuable genetic tool in C. elegans for dissecting gene function 

with finer cell-specific resolution.  
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3.2 INTRODUCTION  

A fundamental goal of biology is to understand how an organism uses its full complement 

of genes to determine its development, morphology, cellular and tissue functions, and 

behaviors. Each gene may act in different cells and at different times for various biological 

processes. Thus, genetic tools that enable precise control of gene expression both spatially 

and temporally are extremely valuable for dissecting gene function. With its powerful 

genetics and small size, C. elegans is an important genetic model for studying various 

biological processes and has contributed to the understanding of fundamental mechanisms 

underlying biology 77. While a variety of tissue- and cell-specific promoters have long been 

available to the C. elegans community, genetic access for each individual cell type, 

especially each anatomical neuron type, has not yet been achieved. Providing this type of 

access would allow much finer resolution of genetic analysis, accelerating full dissection of 

gene function and understanding of the biology of the worm.  

 

The previous chapter described cGAL, a GAL4-based bipartite expression system, for 

controlling transgene expression in C. elegans78. As with other bipartite expression 

systems, in which a driver specifies the expression pattern of the transgene and an effector 

dictates the nature of the transgenic perturbation, the cGAL system uses the DNA binding 

domain (DBD) from a cryophilic yeast strain Saccharomyces kudriavzevii and the synthetic 

VP64 activation domain (AD) for the driver. The cGAL driver triggers expression of the 

effector gene by binding upstream activation sequence (UAS) sites only in cells in which 

the promoter used in the driver construct is active (Figure 3.1).  
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However, the extent of transgene control with cGAL in C. elegans is limited by available 

promoters, because the expression pattern is dictated by the single promoter used in each 

driver. In particular, the majority of neurons in C. elegans are not genetically accessible 

with single promoters79, which hinders our understanding of the functional importance of 

different genes and neurons for different behaviors. Furthermore, it is generally impossible 

to achieve spatial and temporal regulation of transgene expression at the same time using a 

single promoter in cGAL drivers. Here, we addressed these limitations of the original 

cGAL system by designing an intersectional split cGAL strategy that provides a logical 

‘AND’ gate for refined transgene control using two distinct promoters (Figure 3.1). 

 

Deletion mutant studies in yeast analysis showed that the original Gal4p protein from 

Saccharomyces cerevisiae has two functional modules, the DNA binding domain (DBD) 

and transcription activation domain (AD)32,80. Independently, neither is sufficient to drive 

the expression of the effector gene downstream of UAS sites. Luan et al.33 took advantage 

of this modular independence and designed a split GAL4 system for the Drosophila 

community by fusing the DBD and AD to one half of an antiparallel leucine zipper adapter 

pair, and putting the fusions under the control of two different promoters. With this design, 

only in cells where both promoters are active would both components be expressed, and the 

two antiparallel leucine zipper adapters allow the DBD and AD to associate via non-

covalent interactions to reconstitute a functional GAL4 driver33 (Figure 3.2). This ‘split’ 

system gives spatially restricted expression of GAL4 in cells at the intersection of two 

promoters, and has made split GAL4 a powerful tool for Drosophila researchers to 

precisely control transgene expression, particularly in the nervous system33,81.  
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Since the introduction of the split GAL4 system in Drosophila, new adapter protein 

domains that mediate covalent interactions have been discovered. One example is the 

SpyTag/SpyCatcher system, an adapter system engineered from Streptococcus pyogenes82. 

When proteins are tagged with this adapter pair, SpyTag/SpyCatcher will associate and 

form a covalent isopeptide bond, uniting their protein partners together82.  

 

Another example is a class of protein domains called inteins. The first intein was 

characterized in the yeast VMA1 gene as an internal portion of the protein (the ‘intein’) that 

was capable of simultaneously self-excising and mediating intra-molecular ligation of the 

two flanking sequences (termed ‘exteins’) in cis83–85. Later, sequence analysis in 

cyanobacteria revealed the presence of split inteins, which could mediate protein splicing in 

trans86,87. Here, two separate genes encode two peptide products, each having one extein 

and one half of the split intein. The two peptides associate via their split intein domains and 

undergo inter-molecular protein splicing, excising the two split intein domains and fusing 

the two exteins via a peptide bond83. The split inteins gp41-1 and Npu DnaE are amongst 

the most robust and fastest described in the literature88,89. However, neither 

SpyTag/SpyCatcher nor these split inteins have been tested in assembling a functional 

GAL4 driver from the DBD and AD domains. 

 

With the sole exception of split intein gp41-1, the other three protein adapters described 

above have been reported to successfully associate proteins in C. elegans79,90–93. To 

establish a robust split cGAL system, we systematically compared the efficiency of all four 

adapters in re-associating the DBD and AD domains to reconstitute a functional cGAL 
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driver (Figure 3.2). We determine that the gp41-1 split intein is the best adapter for our 

split cGAL system. We also show that split cGAL allows simultaneous spatiotemporal 

control or refined spatial control of transgene expression in C. elegans with two different 

promoters. Finally, we apply our split cGAL system to reveal a critical role of protein 

kinase A (PKA) in the single pair of cholinergic MC pharyngeal neurons in the feeding 

behavior of C. elegans.  

 

3.3 RESULTS 

3.3.1 Comparing protein adapter domains for reconstitution of the split cGAL driver 

To construct our split system, we first wished to test the ability of different adapters to 

reconstitute a functional cGAL driver from its two modular halves (DBD and AD). We 

separated our cGAL driver into its modular components and appended one of four different 

adapters (anti-parallel leucine zipper, SpyTag/SpyCatcher, Npu DnaE split intein and gp41-

1 split intein, Figure 3.2). One half, the cGAL(DBD)-adapter, contained the DNA binding 

domain from S. kudriavzevii and an adapter domain; the other half, adapter-cGAL(AD), 

contained the cognate adapter domain and the VP64 activation domain (Figure 3.1). After 

placing each gene fusion under the control of a pharyngeal muscle-specific promoter (myo-

2 promoter), we then injected each pair of split cGAL-adapter constructs together at equal 

concentrations into a transgenic strain with an integrated 15xUAS::gfp effector (unc-119 

(ed3); syIs300) and performed quantitative fluorescence imaging to assess GFP levels in 

pharyngeal muscles.   
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To our surprise, we found that neither the anti-parallel leucine zipper nor the 

SpyTag/SpyCatcher could reconstitute the split cGAL(DBD) and cGAL(AD) to drive 

expression of GFP in pharyngeal muscles (Figure 3.3, not statistically significant 

compared to effector only, one-way ANOVA with Tukey’s correction, p > 0.9999), 

although both adapters have been shown to bring together other proteins successfully in C. 

elegans 38,79,90,91. By contrast, both intein adapters restored the transcriptional activity of 

split cGAL (Figure 3.3, statistically significant compared to effector only, one-way 

ANOVA with Tukey’s correction, p < 0.0001). Split cGAL with the DnaE and gp41-1 

adapters achieved 37% and 72% of transcriptional activator activity of the intact cGAL, 

respectively. The gp41-1 intein in particular showed the brightest and most robust 

expression. 

 

To rule out the possibility that the high level of GFP expression observed with gp41-1-

mediated split cGAL is due to recombination of the injected DNA constructs that might 

have generated an intact cGAL driver fragment in the extrachromosomal array, we injected 

and integrated each split cGAL driver transgene separately. When individually crossed to 

the GFP effector (syIs300), neither half produced fluorescence. We only observed GFP 

fluorescence in the cross progeny containing both cGAL halves and the GFP effector 

transgene demonstrating that split drivers are essential for driving the expression of the 

effector (Figure 3.4). 

 

To test whether successful reconstitution of gp41-1-mediated split cGAL is dependent on 

protein splicing, we mutated the first cysteine of gp41-1 N-intein to alanine (referred to as 
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cGAL(DBD)-gp41-1-N-intein (C1A)). The first amino acid (cysteine or serine) of the 

intein is essential for the first step of intein-mediated protein trans-splicing 94. We predicted 

that cGAL(DBD)-gp41-1-N-intein(C1A) would not be able to join cGAL(DBD) and 

cGAL(AD) together when combined with gp41-1-C-intein-cGAL(AD). Indeed, we found 

that unlike wild type Pmyo-2::cGAL(DBD)-gp41-1-N-intein, the mutated version of 

Pmyo-2::cGAL(DBD)-gp41-1-N-intein(C1A) could not drive GFP expression in pharyngeal 

muscles when injected into a strain with both Pmyo-2::gp41-1-C-intein-cGAL(AD) and 

15xUAS::GFP (Figure 3.5). Based on these results, we concluded that the split cGAL 

system with the intein gp41-1 is most effective for reconstituting a functional cGAL in C. 

elegans. From this point onwards, we will refer to cGAL(DBD)-gp41-1-N-intein as cGAL-

N, and to gp41-1-C-intein-cGAL(AD) as cGAL-C, unless stated otherwise. 

 

3.3.2 Spatial and temporal control with split cGAL 

During development, genes are turned on at different times to perform their functions. The 

determination of critical time windows for such genes requires genetic tools that provide 

temporal control of transgene expression. The use of heat shock promoters is a common 

way to impart temporal control but it sacrifices spatial control; conversely, tissue-specific 

promoters in transgenes generally cannot provide temporal control at the same time. We 

explored the possibility that the split cGAL system could simultaneously achieve spatial 

and temporal control of transgene expression. As we reported before, cGAL driver 

constructs in the Fire vector pPD117.01 containing the let-858 3’UTR are more robustly 

expressed than in the Fire vector pPD49.26 with the unc-54 3’UTR78. Thus, we built new 

split cGAL drivers in the backbone with the let-858 3’UTR. We used a heat shock 
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promoter (hsp-16.41 promoter) to drive the expression of cGAL-N, and the constitutive 

pharyngeal muscle promoter (myo-2 promoter) to drive the expression of cGAL-C. In cross 

progeny that were triple heterozygotes for Phsp-16.41::cGAL-N, Pmyo-2::cGAL-C , and 

15xUAS::gfp, no GFP expression in pharyngeal muscles was observed without heat shock 

(Figure 3.6). Starting 4 hours after heat shock treatment (33°C for 1 h), we observed a 

steady increase of GFP expression in pharyngeal muscles all the way up to 16 h after heat 

shock, the last time point that we assayed (Figure 3.6). This induction of GFP effector 

seemed to be relatively slow, comparing to that from a direct heat shock promoter::GFP 

fusion (see discussion).  Furthermore, we also showed that the conditional expression of the 

GFP effector in pharyngeal muscles after heat shock required both Phsp-16.41 and Pmyo-2 

split cGAL drivers (Figure 3.7).  

 

After heat shock, we observed noticeable background GFP expression in the excretory cell 

in animals containing Phsp-16.41::cGAL-N and 15xUAS::gfp, but not in those containing 

Pmyo-2::cGAL-C and 15xUAS::gfp (Figure 3.8, upper). In the presence of the 

15xUAS::gfp effector, this ectopic expression of GFP in the excretory canal cell was also 

observed in worms carrying the cGAL-N split driver under control of the ubiquitous eft-3 

promoter (Figure 3.8, lower) but not those with myo-2 promoter (pharyngeal muscle 

promoter), rab-3 promoter (pan-neuronal promoter), or unc-17 promoter (cholinergic 

neurons), suggesting that the cGAL-N split driver may interact with an unknown 

transcriptional activator that is specifically expressed in the excretory cell and thus can non-

specifically drive the effector gene in this cell. We did not observe Peft-3::cGAL-C alone 

drove ectopic GFP expression in the excretory cell (5 independent lines). Thus, if the 
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ectopic expression in excretory cell of the promoter in the cGAL-N driver is a concern, 

the promoter can be swapped to drive cGAL-C instead. 

 

3.3.3 Refined spatial control with split cGAL 

 C. elegans has 302 neurons in the adult hermaphrodite and 385 neurons in the adult 

male95,96. Despite the relative simplicity of these nervous systems however, many 

anatomical neuron types cannot be genetically approached using single promoters. As the 

expression pattern of many C. elegans genes are well-characterized, it has been suggested 

that most anatomical neuron types in C. elegans can be genetically accessed with the 

intersection of two different promoters79.  

 

We wanted to determine if gp41-1-mediated split cGAL could be used as an ‘AND’ gate to 

spatially restrict transgene expression with two overlapping promoters (Figure 3.1). We 

were interested in the regulation of pharyngeal pumping in C. elegans by the single pair of 

MC neurons. Previous work with laser ablation showed that MC neurons are the major 

excitatory neurons for fast pumping97,98. However, there were no previously described 

single promoters that gave specific access to this neuron type. Thus, we chose to design 

split cGAL drivers to access the MC neurons. We could validate these split cGAL drivers 

by crossing them with our existing neuronal effector strain kit 78 to manipulate the activity 

of MC neurons and examining pumping rate and growth.  

 

The unc-17 and ceh-19b promoters are proposed to specifically overlap in the MC neurons 

(http://www.wormweb.org/neuralnet). We made two split cGAL constructs Punc-
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17::cGAL-N and Pceh-19b::cGAL-C, and injected both together in the integrated HisCl1 

effector line (syIs371, 15xUAS::HisCl1::SL2::gfp). HisCl1 encodes a histamine-gated 

chloride channel, capable of silencing neurons when histamine is applied74. As expected, 

we observed bright green fluorescence in the pair of MC neurons (Figure 3.9), suggesting 

the two split cGAL components successfully reconstituted and drove the expression of both 

HisCl1 and GFP in MC neurons. However, we also found an additional pair of neurons 

with weaker GFP fluorescence, likely to be the sensory ADF neurons, as both unc-17 and 

ceh-19b were also reported to be expressed in ADF 99,100 (Figure 3.10). 

 

To functionally validate the MC split cGAL driver, we silenced MC neurons expressing the 

HisCl1 channel by exposing animals to 10 mM histamine and quantified pharyngeal 

pumping rate. Animals with both the MC split cGAL driver and the HisCl1 effector raised 

on 10 mM histamine from hatching grew up to be thinner and less pigmented than 

counterparts raised in the absence of histamine (Figure 3.11, upper). Those animals treated 

with histamine also pumped much slower (62.3 ± 2.8 pumps/min, mean ± SEM, n = 11), 

compared to the worms of the same genotype but not treated with histamine (217.2 ± 5.3 

pumps/min, mean ± SEM, n = 10, Figure 3.11, lower). We also find that either half split 

cGAL driver for MC was not sufficient to driver the HisCl1 effector to inhibit pumping in 

the presence of histamine (Figure 3.12). This result is consistent with previous 

observations in worms with laser-ablated MC neurons97,98.  

 

3.3.4 Regulation of pharyngeal pumping by protein kinase A in C. elegans 



 

 

69 

Protein kinase A (PKA) is one of the major targets of the second messenger cyclic 

adenosine monophosphate (cAMP)101. The PKA holoenzyme is a tetramer, consisting of 

two catalytic subunits and two regulatory subunits. In absence of cAMP, the kinase activity 

of the catalytic subunits is inhibited by the regulatory subunits. When cAMP levels 

increase, cAMP binds to the regulatory subunit, leading to its dissociation from the 

catalytic subunit and subsequent disinhibition of PKA101 (Figure 3.13). In C. elegans, the 

catalytic and regulatory subunits of PKA are encoded by kin-1 and kin-2, respectively. Null 

mutants for both kin-1 and kin-2 are lethal102,103, preventing detailed genetic analysis of 

PKA signaling in C. elegans.  

 

Genetic studies using partial loss-of-function kin-2 mutants revealed that PKA signaling in 

the nervous system is involved in the regulation of pharyngeal pumping in C. elegans103,104. 

As the MC neurons are the major excitatory motor neurons for pharyngeal pumping97,98, we 

hypothesized that normal PKA activity in the MC neurons is necessary for rapid pumping. 

To test this hypothesis, we used the split cGAL system to block PKA activity specifically 

in MC neurons. We first created an effector strain with an extrachromosomal array of 

15xUAS::kin-2a(G310D)::SL2:::gfp. The G310D mutation in isoform a of the regulatory 

subunit KIN-2 prevents its binding with cAMP, thereby maintaining its inhibitory 

interaction with the catalytic subunit KIN-1 even when cAMP is elevated, and produces a 

dominant negative form of PKA105,106 (Figure 3.13). Neither this effector strain nor the 

split cGAL driver strain for MC neurons showed any defect in pharyngeal pumping rate. 

However, cross progeny from these two parent strains displayed a 33% decrease in 

pharyngeal pumping rate (162.3 ± 9.8 pumps/min vs. 243.6 ± 5.9 and 250.3 ± 2.5 
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pumps/min for driver and effector alone, respectively. Mean ± SEM, Figure 3.14). These 

results support the conclusion that PKA signaling in MC neurons is essential for normal 

fast pharyngeal pumping in C. elegans. 

 

3.3.5 Discussion 

In this study, we describe our development of a novel split cGAL system using the intein 

gp41-1 to mediate protein splicing and produce a transcriptionally competent cGAL driver 

from its split components (DBD and AD). We demonstrate that split cGAL can achieve 

refined spatial and spatiotemporal control of transgene expression in C. elegans using two 

separate promoters. We also build a cell-type specific split cGAL driver to specifically 

manipulate PKA activity in the MC pharyngeal neurons, and discover that inhibiting the 

PKA pathway in MC neurons results in a decrease in pumping rate.  

 

To engineer the split cGAL system, we experimented with four methods of reconstituting 

cGAL DBD and AD and determine that among the four adapters tested, gp41-1 is the most 

effective, recapitulating over 70 percent of the intact cGAL driver’s performance (Figure 

3.3). Several reasons may explain this. First, gp41-1 brings the DBD and AD together with 

a canonical peptide bond. Second, the kinetics of gp41-1-mediated protein splicing are fast, 

about 10 times faster than Npu DnaE88. This may explain why gp41-1 outperformed DnaE. 

Third, similar to DnaE, gp41-1 excises itself and leaves a minimal peptide sequence 

between DBD and AD of the reconstituted cGAL after protein splicing. Reconstitution of 

cGAL using the leucine zipper or SpyTag/SpyCatcher results in larger extraneous protein 

domains between the DBD and AD, likely leading to spatial and steric constraints with 
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negative functional consequences. Compared to the intact cGAL driver, our split 

constructs with the DnaE and gp41-1 inteins have additional 13 and 14 amino acids 

between the cGAL DBD and AD, in contrast to the 80 and 126 amino acids for the leucine 

zipper and SpyTag/SpyCatcher. This, together with other factors, such as weak association 

and/or poor kinetics, may account for the failure of leucine zipper and SpyTag/SpyCatcher 

to successfully reconstitute split cGAL. In support of this explanation, Luan et al.33 

observed a 48% reduction in function of the S. cerevisiae GAL4 transcriptional activator 

when split with the leucine zipper in Drosophila33. Our results suggest that the gp41-1 

intein would be an excellent tool for other aspects of protein engineering for C. elegans 

requiring protein splicing. For example, a similar split Q bipartite system using the same 

leucine zipper pair as we tested was also described in C. elegans38. It would be interesting 

to determine if the gp41-1 intein can boost the performance of the split Q system.   

 

Although gp41-1-mediated protein splicing is fast88, expressing a gene using split cGAL is 

likely to introduce a temporal delay, when compared to a direct heat shock promoter::gene 

fusion. The heat shock promoter must first drive expression of one half of cGAL driver, 

which then must undergo protein splicing with the other cGAL driver half before driving 

the expression of the effector gene. However, this delay comes at the benefit of adding 

spatial control of the heat shock promoter, should the experimenter need conditional 

expression in a restricted subset of cells where the hsp-16.41 promoter is active. The 

gp41-1-mediated protein splicing rate in vivo is likely to be dependent on the concentration 

and stoichiometry of both split cGAL components within the cell, as well as temperature. 

This complexity has unique implications for using the split cGAL system to achieve 
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spatiotemporal control of gene expression. For instance, the temperature and the duration 

of the heat shock protocol to induce transgene expression will influence the timing and the 

expression level of the split cGAL component under the control of the heat shock promoter. 

The cellular environment of different cell types may also influence the time scale of the 

intein-mediated protein splicing. Thus, in studies where timing of gene expression is a 

critical factor, we recommend characterizing the temporal dynamics of a split driver 

combination with GFP or any other fluorescently tagged effector. 

 

Our study on PKA in MC neurons highlights the importance of genetic tools that allow 

highly refined spatial control of gene activity, which ultimately will help in understanding 

the cell-specific roles of genes. PKA has not been reported in forward genetic screens for 

mutants that are defective in pumping, likely due to the fact that the null alleles of kin-1 and 

kin-2 are lethal. When studying lethal or toxic alleles, expression often must be limited to a 

small subset of cells. Precise and systemic expression of these alleles is most efficiently 

achieved with bipartite systems. We used a split cGAL driver and a dominant negative 

PKA effector and showed that PKA activity in MC neurons is necessary for normal 

pumping. This finding is in line with a previous observation that serotonin potentiates 

pumping rate by activating the G protein-coupled receptor SER-7 and Gαs signaling to 

increase cholinergic transmission from MC neurons103. PKA may regulate pumping rate by 

modulating the firing rate of MC neurons or controlling the release of acetylcholine from 

MC neurons.  
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With its precision of transgene control, we expect that split cGAL will be particularly 

useful in providing genetic access to cell types that could not be accessed before, such as 

many of the individual anatomical neuron types in C. elegans. Besides providing highly 

specific genetic targeting, split cGAL can be used to perturb gene activity and cellular 

processes with great efficiency, since split cGAL drivers can be reused in combination with 

UAS effectors by crossing. For example, with our recently published UAS effector toolkit 

that contains effector strains to manipulate and record neuronal activity78, any new split 

cGAL drivers for a neuron type can be crossed with these effector strains to interrogate the 

function of the neuron in a relevant behavior. Similarly, if new UAS effector strains are 

generated (e.g. overexpression/interesting alleles of native C. elegans genes), they can be 

crossed to currently available split cGAL drivers to test gene function in cells of interest. 

As more strains are built, documented, and described, they will contribute to a growing 

repository of tried and true reagents available to the community at large for extensive, 

rigorous, and rapid analysis of neural circuits and gene function in C. elegans.  

Furthermore, split cGAL can also be combined with several other systems that have been 

developed for spatiotemporal control of transgene expression in C. elegans38,42,72,73,107–110 to 

further improve the precision of transgene expression or achieve orthogonal control of 

different transgenes to interrogate gene function. 
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3.4 FIGURES 

 

 

Figure 3.1 | Schematic of cGAL and split cGAL strategies 

Upper: The original cGAL bipartite system, in which a single promoter governs 

expression of the cGAL driver. The driver is composed of the DNA binding domain 

(DBD) from S. kudriavzevii Gal4p, which recognizes upstream activating sequences 

(UAS), and a transcriptional activation domain (AD) which recruits transcriptional 

machinery. The cGAL driver then specifies expression of the effector gene (i.e., GFP), 

under the control of UAS, in cells where the promoter is active.  

Lower: Using split strategies, two promoters can be used, providing an “AND” gate to 

achieve intersectional control of transgene expression. DBD, DNA-binding domain. AD, 

activation domain. 
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Figure 3.2 | Protein domains that can reconstitute split cGAL components 

Splitting the driver components requires a way to reconstitute the split components in 

cells expressing both. Leucine zippers allow for non-covalent reconstitution of the DBD 

and AD. The SpyTag/SpyCatcher domains reconstitute via covalent formation of an 

isopeptide bond. Split intein domains recognize one another and associate, after which 

they covalently ligate the flanking sequences and self-excise. DBD, DNA-binding 

domain. AD, activation domain. 
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Figure 3.3 | The gp41-1 intein is most efficient in reconstituting split cGAL 

components 

Representative images and quantification of animals with intact cGAL driver, GFP effector 

only, or the indicated split cGAL driver pairs. The intact cGAL and effector only serve as 

positive and negative controls. Two independent extrachromosomal transgenic lines were 

assayed for all groups except the effector alone control, which had only one. Bars are mean 

± SEM. From left to right, n = 47, 23, 41, 42, 44, 45. **** p < 0.0001, one-way ANOVA 

and Dunnett’s multiple comparisons test to compare the means to the mean of the effector 

alone. DBD, DNA binding domain. AD, activation domain. D, dorsal. A, anterior. Scale 

bar is 20 μm. 
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Figure 3.4 | Activation of the GFP effector is dependent on both components of the 

split cGAL drivers 

Quantification of fluorescence in the pharynx of animals with indicated genotypes. All 

transgenes are integrated into the genome (syIs431 for Pmyo-2::cGAL-N; syIs433 for 

Pmyo-2::cGAL-C; syIs300 for GFP effector). +, heterozygote for indicated transgene; -, no 

indicated transgene. Bars are mean ± SEM. n = 15 for all three genotypes. **** p < 0.0001. 

ns, not significant. One-way ANOVA with Tukey’s correction for multiple comparisons. 

cGAL-N and cGAL-C represent the two halves of the gp-41-1-mediated split cGAL driver.  
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Figure 3.5 | Successful reconstitution of cGAL requires gp41-1-mediated protein 

splicing 

Quantification of fluorescence in the pharynx of animals with indicated genotypes. 

Mutating the first cysteine of the gp41-1 N-intein to alanine (referred as C1A) disrupts 

gp41-1-mediated protein splicing. The cGAL-C driver and GFP effector are integrated into 

the genome (syIs433 for Pmyo-2::cGAL-C; syIs300 for GFP effector), where Pmyo-

2::cGAL-N (syEx1589) and Pmyo-2::cGAL-N(C1A) (syEx1590) are extrachromosomal 

arrays. Bars are mean ± SEM. For columns from left to right, n = 15, 16, 17. **** p < 

0.0001. One-way ANOVA with Tukey’s correction for multiple comparisons. cGAL-N 

and cGAL-C represent the two halves of the gp-41-1-mediated split cGAL driver. 
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Figure 3.6 | Using split cGAL for spatiotemporal control of gene expression  

Representative fluorescence images and quantification of fluorescence in the pharynx of 

animals that were triple heterozygotes for a conditional cGAL-N driver with the heat shock 

promoter (syIs435), a tissue-specific cGAL-C with the myo-2 promoter (syIs433) and a 

15xUAS::GFP effector (syIs300). Bars are mean ± SEM. Each column is a separate group 

of animals that were imaged at the indicated time point after heat shock, n = 21, 20, 21, 20, 

20, 22, and 15 from left to right. *** p < 0.001 and **** p < 0.0001, One-way ANOVA 

and Dunnett’s multiple comparisons test to compare the means to the mean of no heat-

shock control. cGAL-N and cGAL-C represent the two halves of the gp-41-1-mediated 

split cGAL driver. D, dorsal. A, anterior. Scale bar is 20 μm. 
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Figure 3.7 | The conditional expression of GFP in pharyngeal muscles required both 

hsp-16.41 and myo-2 split cGAL drivers, in addition to heat shock 

Quantification of fluorescence in the pharynx of animals with indicated genotypes, both 

with and without heat shock. All transgenes are integrated into the genome (syIs435 for 

Phsp16.41::cGAL-N; syIs433 for Pmyo-2::cGAL-C; syIs300 for GFP effector). +, 

heterozygote for indicated transgene; -, no indicated transgene. Bars are mean ± SEM. n = 

10, 20, 10, 19, 21, 20 from left to right. **** p < 0.0001. Two-way ANOVA with Sidak’s 

correction for multiple comparisons. cGAL-N and cGAL-C represent the two halves of the 

gp-41-1-mediated split cGAL driver. 
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Figure 3.8 | Non-specific expression of GFP in the excretory canal cell 

Upper: Merged DIC/GFP image of transgenic worms with Phsp-16.41::cGAL-N; 

15xUAS::gfp (syIs435; syIs300), showing GFP expression in the excretory cell 24 hours 

after heat shock treatment.  

Lower: Merged DIC/GFP image of transgenic worms with Peft3::cGAL-N; 15xUAS::gfp 

(syEx1581; syIs300), showing GFP expression in the excretory cell.  

Scale bar is 20 μm. cGAL-N represents the split cGAL half cGAL(DBD)-gp41-1-N-intein. 

DIC, differential interference contrast. 
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Fig. 3.9 | Using split cGAL for cell-specific expression in MC pharyngeal neurons  

Representative images showing specific GFP labeling of bilateral MC motor neurons with 

the combination of two split cGAL driver constructs using unc-17 and ceh-19b promoters. 

As indicated, each promoter drives one of the split cGAL components. Co-injection and 

integration of the components (syIs483) is capable of specifically driving a 

15xUAS::HisCl1::SL2::gfp effector (syIs371) in MC neurons. D, dorsal. A, anterior. DIC, 

differential interference contrast. Scale bar is 20 μm.  
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Figure 3.10 | The split cGAL drivers for MC neurons weakly drive expression in ADF 

Fluorescence imaging showing transgenic worms with Punc-17::cGAL-N, Pceh-

19b::cGAL-C; 15xUAS::HisCl1::SL2::gfp (syIs483; syIs371), had strong GFP expression 

in the MC neurons and weak GFP expression in suspected ADF neurons. Scale bar is 20 

μm. cGAL-N and cGAL-C represent the two halves of the gp-41-1-mediated split cGAL 

driver. 
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Figure 3.11 | Silencing MCs reduces pumping rate and produces thin, underfed 

animals 

Upper: Light microscopy of syIs483; syIs371 animals. In the absence of histamine, MC 

neurons retain their activity and produce pigmented, healthy adults. Raising animals on 10 

mM histamine activates the syIs371 effector to chronically silence the MC neurons, reduces 

pumping, and produces unhealthy animals with decreased size and pigmentation. Scale bar 

is 100 μm.  

Lower: Quantification of pumping rate of syIs483; syIs371 animals with or without 

histamine. Each column represents a separate group of animals with indicated treatments.  
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(continued from Figure 3.11) 

Bars are mean ± SEM. n = 10, 11 from left to right. **** p < 0.0001, unpaired Student’s 

t-test. cGAL-N and cGAL-C represent the two halves of the gp-41-1-mediated split cGAL 

driver.  
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Figure 3.12 | Neither of the MC split cGAL drivers alone is sufficient to reduce 

pumping rate 

Quantification of pumping rate of animals with indicated genotype, treated with or without 

10 mM histamine. Punc-17::cGAL-N (syEx1601 and syEx1602) and Pceh-19b::cGAL-C 

(syEx1603 and syEx1604) are extrachromosomal arrays, and HisCl1 effector is integrated 

line (syIs371). +, presence of indicated transgene; -, absence of indicated transgene. Bars 

are mean ± SEM. n = 20, 20, 20, 20, 10 and 10 for columns from left to right. Results are 

not significant by Two-way ANOVA with Bonferroni’s correction. cGAL-N and cGAL-C 

represent the two halves of the gp-41-1-mediated split cGAL driver.  
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Figure 3.13 | The C. elegans Protein Kinase A pathway 

Top panel: Diagram of protein kinase A signaling. Ligand binding to a G protein-coupled 

receptor (GPCR) activates the Gαs subunit GSA-1. GSA-1 goes on to activate adenylyl 

cyclases (i.e. ACY-1), causing conversion of adenosine monophosphate (AMP) to cyclic 

AMP (cAMP) 

Middle panel: In wild-type signaling, cAMP dissociates the inhibitory KIN-2 subunits from 

the catalytic KIN-1 subunits, leading to the activation of PKA.  

Bottom panel: The G310D dominant negative allele of KIN-2 is essentially insensitive to 

cAMP causing KIN-1 to remain inactive.  
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Figure 3.14 | Dominant negative inhibition of protein kinase A signaling in MC 

neurons reduces pharyngeal pumping rate 

Quantification of pumping rate in animals expressing the dominant negative 

KIN-2a(G310D) in the MC neurons. Here, the 15xUAS::kin-2a(G310D)::SL2::gfp effector 

is an extrachromosomal array, and two independent lines were used (syEx1596 and 

syEx1597). When driven by the syIs483 driver, both lines showed a significant decrease in 

pumping rate. Neither driver alone nor effector alone strains displayed aberrant pumping 

rate. Bars are mean ± SEM. n = 9, 20, 21 from left to right. **** p < 0.0001, One-way 

ANOVA and Tukey’s multiple comparisons test to compare all three means. cGAL-N and 

cGAL-C represent the two halves of the gp-41-1-mediated split cGAL driver. 
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3.5 METHODS 

Strains 

The Caenorhabditis elegans strains were maintained at 20 °C, as previously described 1 All 

the strains used in this study are described in detail in Supporting Information. 

 

Molecular biology 

All plasmids were constructed in the worm expression vectors pPD49.26 or pPD117.01 

from the Fire kit (Addgene). All constructs were generated by standard molecular cloning 

procedures with restriction digest, PCR, and Gibson assembly or T4 ligation. The coding 

sequences in the constructs were verified by Sanger sequencing. The complete list of the 

plasmids and oligos used in this study are listed in Supporting Information (Tables S1-S3). 

 

Transgenic animals  

The standard microinjection procedure for C. elegans was used to generate transgenic 

worms with extrachromsomal arrays, some of which were then integrated into the genome 

using X-ray treatment 111. The concentrations and compositions of DNA constructs in the 

injection mixtures of the transgenic worms are described in Supporting Information.  

 

Fluorescence imaging 

Worms were paralyzed in M9 buffer supplemented with 30 mg/mL of 2, 3-Butanedione 

monoxime (Sigma). All fluorescent images for quantification of GFP fluorescence in the 

pharynx were taken with a Leica DMI6000 inverted microscope equipped with a 40x oil 

objective and an Andor iXon Ultra 897 EMCCD camera, using Metamorph software 
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(Molecular Devices). An ROI outlining the entire pharynx, as well as a background ROI, 

was selected for each image. The background-subtracted mean fluorescence intensity was 

used to quantify the GFP fluorescence in the pharyngeal muscles of each worm.   

 

Pumping analysis 

For the histamine experiments, animals were raised from eggs on regular NGM plates or 

NGM plates with10 mM histamine dihydrochloride (Sigma), seeded with 150 uL of OP50 

bacteria. Gravid animals were bleached, and their eggs were transferred to corresponding 

plates. Animals were assayed 72 hours later.  

 

For the dominant negative kin-2 experiments, L4 animals were picked on regular NGM 

plates seeded with OP50 bacteria. The next day, each adult was transferred to a new NGM 

plate seeded with OP50 and allowed to acclimate for 10 mins before assaying.  

For both experiments, each worm was recorded for 1 min under a Wild Makroskop M420 

dissecting microscope equipped with a Unibrain 501b camera. The pumping rate for each 

worm was determined as total pumping events over the 1-min recording. 

 

Heat shock treatment 

L4 cross progeny were picked one day before onto new NGM plates. The next day, plates 

were sealed with Parafilm and put in a 33 °C water bath for 1 hour with the agar side down. 

After heat shock, worms were recovered at room temperature and imaged at different times 

after heat shock. 
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Statistical Analysis 

All the quantification plots were made using custom written Python scripts in Jupyter 

Notebook 112. Unpaired Student’s t-test and one-way ANOVA with Tukey’s or Dunnett’s 

tests (GraphPad Prism) were applied when appropriate, as indicated in the figure legends.   
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C h a p t e r  4  

Single copy cGAL and Future Directions 

for the cGAL Bipartite System 
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4.1 INTRODUCTION 

The prior chapters of this thesis detail engineering of a bipartite cGAL system, functional 

across multiple tissues using multiple protein effectors. It includes construction of a split 

intersectional system which allows for more complex spatiotemporal control. We expect 

this system to greatly further genetic and cellular analysis in C. elegans. All data shown 

previously, however, has been with transgenes consisting of multi-copy extrachromosomal 

and integrated arrays. While the system in its current form has great utility, multi-copy 

transgenesis methods have restrictions that limit the full potential of a GAL4 bipartite 

expression system. The inability to control copy number and (in the case of integrated 

arrays) inability to control integration site pose challenges to reproducibility during the 

re-use of strains.  

 

As an example, a common practice is to determine driver expression patterns using a 

cellular reporter as an effector, e.g. GFP. However, the final expression of GFP is not only 

dependent upon the activity of the driver, but also the local genomic context of where the 

effector is embedded. In integrated arrays, it is not possible to control where the effector 

transgene is integrated, and therefore the local genomic context might (and likely does) 

differ between different integrated transgenes. If a researcher then crosses that driver to a 

different multi-copy effector strain, they might falsely assume that the expression pattern of 

that driver combined with the second integrated effector would be the same as with the 

GFP effector. If this second effector is not labeled (e.g. with a fluorescent protein) and 

expression pattern differs, the researcher is blind to this new expression pattern and might 

falsely conclude that the first expression pattern is responsible for an effect. Therefore, 
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having cGAL function in single copy form, where genomic context can be controlled, 

would be desirable. 

 

Single copy methods also have benefits with regards to gene dosage. One of the chief uses 

of bipartite systems is for site-of-action genetic analysis. In C. elegans, rescue is commonly 

performed with multi-copy methods, but this raises issues of whether the rescued gene is 

expressed at native levels or over-expressed. Single copy methods would provide 

expression of rescued genes at amounts resembling native levels.  

 

Improvements to single copy cGAL could also help discover novel drivers via development 

of enhancer trap methods116–118. Enhancer traps insert proteins such as GAL4 randomly into 

the genome. When crossed to a cellular reporter effector, they can reveal novel expression 

patterns not known before, and simultaneously serve as driver strains to be analyzed with 

other effectors. Enhancer traps present a strategy to find new and useful expression patterns 

in an agnostic and unbiased manner, and do not rely on previous research or genome 

databases.  

 

Single copy cGAL systems would also allow a method for maximum reusability of split 

drivers. Maintaining pairs of split drivers in a strain presents several challenges. If kept at 

separate loci, generating split strains with an effector would require manipulation of three 

total separate loci. Homozygosing three loci (while not impossible) is generally undesirable 

and presents an obstacle to efficient strain generation using split systems. In addition to 

managing multiple loci, the transformation markers for these loci may interfere with 
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studies. If the marker is fluorescent, a sizable number of cells will have fluorescence that 

might interfere with studies. If the marker uses genetic rescue, variety of genetic 

backgrounds could be a potential confound. Antibiotic resistance markers could be of 

potential use, but are not as convenient to utilize, especially with so many loci. 

 

Split drivers could be all generated at the same locus and maintained as trans-

heterozygotes, but without convenient balancing trans-heterozygosity is unstable. A 

possible strategy would be put two split drivers into a single construct and knock in the pair 

of drivers as a single genetic locus. But if every time a new combination of split drivers 

needed to be inserted into a strain, that would defeat the principle of reusability for bipartite 

systems.  

 

A schema does exist in which only the advantages of all scenarios mentioned above are 

preserved (Figure 4.1). Here, two parental strains contain split drivers that are targeted to 

the same chromosome, but at different positions. A loxP site resides at a chromosomal 

position between the two driver loci, and fluorescent markers are present on the side of the 

chromosome away from its respective driver. Mixing and matching pairs of split drivers 

occurs by mating two of these parental split driver strains together to obtain a heterozygote 

animal containing both split drivers. Induction of Cre recombinase (which can be present in 

either parental strain or both) forces recombination at the loxP sites, simultaneously linking 

the two split drivers and the two fluorescent markers. Progeny resulting from this 

recombination event will give fluorescent double positive animals, and fluorescent double 

negative animals, which are the desired linked pair of split driver species. If these split 
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drivers are also marked by antibiotic resistance, this linked pair can then be crossed to an 

effector strain, containing all three components but distributed amongst two functional loci 

which greatly reduces labor. Recently, a newly discovered antibiotic nourseothricin (NTC) 

was demonstrated to be functionally orthogonal to hygromycin114, and therefore these two 

antibiotic markers could serve as non-fluorescent and non-genetic transformation markers 

for this split driver linkage scheme. Additionally, several suitable knock-in loci have been 

documented which could perform as sites for split driver knock-in115. With all these 

considerations in mind, we transferred our cGAL system to single copy methodology. 

 

4.2 RESULTS 

4.2.1 Single copy drivers drive robust expression with a multi-copy effector 

To determine whether cGAL could function at the single copy level, we cloned our cGAL 

driver under control of the myo-2 promoter into a backbone vector containing homology 

arms for homology directed repair (HDR) onto LG I. For comparison, we also cloned a 

driver using the original S. cerevisiae DNA-binding domain to see if the increased strength 

of the cGAL driver using the S. kudriavzevii DNA-binding domain could be replicated at 

the single copy level. We injected these constructs into the syIs337 multi-copy integrated 

GFP effector. Several lines were obtained, selected for transformation by hygromycin 

selection, and then screened for transgene integration via PCR.  

 

All lines showed substantial expression of the GFP effector, in some cases comparable to 

expression levels in multi-copy driver/effector experiments (Figure 4.2). However, our S. 

kudriavzevii single copy driver strains displayed multiple distributions of expression 
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strength. Due to the linearity of expression levels, we surmise that (despite our best 

efforts) some strains were not truly single copy integrants. Both lines using the S. 

cerevisiae driver appeared to be well behaved, and one line of the cGAL drivers showed 

expression approximately 40% higher than the S. cerevisiae drivers, which is consistent 

with our initial multi-copy driver/effector experiments (Figure 2.5), leading us to believe 

that these were genuine single copy lines. Expression strength of the single copy drivers 

with multi-copy drivers are quite robust, nearly on-par with multi-copy drivers/effectors. 

Thus, single copy drivers might be sufficient to drive expression of the majority of 

effectors necessary for functional studies. 

 

4.2.2 Single copy drivers and single copy effectors  

Next we wanted to assay expression levels of single copy drivers with single copy 

effectors. We cloned the 15xUAS::gfp::let-858 3’UTR effector onto LG IV, using MosSCI. 

As a benchmark, we also inserted a single copy transgene of Pmyo-2::gfp on LG I, in the 

same genomic location as our assayed drivers. Overall expression of the GFP effector was 

much lower (Figure 4.3) by about 10-fold. The single copy Pmyo-2::gfp transgene 

expressed the highest levels, and our single copy cGAL driver/ effector combination at 

approximately 0.41-fold.  

 

4.3 DISCUSSION AND FUTURE DIRECTIONS 

This thesis describes the engineering of cGAL: a complete, robust GAL4-based bipartite 

gene expression system for C. elegans. The system makes use of a GAL4 DNA-binding 

domain from a novel species of yeast, S. kudriavzevii, whose optimal growth temperature is 
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much closer to laboratory conditions of C. elegans. The system demonstrates robust 

activity:  

1) across the experimental range of C. elegans (15-25°C), 

2) across a variety of tissues, 

3) across a variety of functional effector transgenes. 

For more precise intersectional control of effector expression, we have engineered a 

‘split’ system whereby driver expression is dictated by two promoters instead of one. 

This strategy provides refined spatial cellular expression, as well as simultaneous 

spatiotemporal control. Finally, we have demonstrated the feasibility of constructing 

cGAL strains using single copy transgenesis for more precise control of transgene copy 

number and local genomic context. 

 

From here, many directions can be taken to improve upon and expand the capabilities of 

the cGAL system. The limiting factor appears to be on the effector side, given our 

experiments with single and multi-copy driver.  One possible improvement would be 

replace the Δpes-10 basal promoter in our system with a stronger basal promoter, such as 

the super core promoter119. 

 

Recently, a hybrid bipartite system consisting of Tet and Q system components reported 

that the activation domain of QF (QFAD) performed much better than VP16, VP64, and 

even VPR120. Perhaps the combination of S. kudriavzevii GAL4 DNA-binding domain with 

the QFAD might prove to be an even stronger driver component for single copy cGAL. 
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This combination would have the added benefit of temporal control- using QFAD would 

render the transcriptional activator sensitive to QS, which can be temporally controlled by 

supplementation of quinic acid. Other protein domains that could confer temporal control 

include degrons and temperature-sensitive inteins. Degrons are protein domains that control 

the half-life of a protein, and can work through ubiquitin-dependent or ubiquitin-

independent mechanisms. Several degron systems are available, including light-activated121 

and small molecule-activated122 systems. Inteins are protein analogs of DNA introns, 

capable of self-excision from a polypeptide chain without exogenous cofactors or energy 

sources. For protein engineering, the strategy is that when the intein is retained, it disrupts 

protein function; splicing and removal of the intein restores protein function. Recently, a 

series of temperature sensitive inteins have been characterized123, generated via PCR 

mutagenesis of the S. cerevisiae VMA1 intein. This seems a particularly promising option 

for temporal control of our cGAL system for two reasons. First, the mutants were assayed 

for their ability to disrupt and subsequently restore S. cerevisiae GAL4 activity. Second, the 

mutants possess a variety of temperature thresholds for temperature-sensitive splicing, 

many of which encompass 18-25°C, ideal for C. elegans laboratory settings. 
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4.4 FIGURES  

 

Figure 4.1 | Linkage schema for single copy split drivers 

Single copy split drivers have maximum utility when generated as separate strains, but 

once they are crossed together, maintaining them as two loci is cumbersome. This schema 

allows for linkage of two different split drivers (orange and purple). Two split drivers are 

targeted to the same chromosome but at different locations. Each has a loxP site at the same 

location, and a fluorescent marker (red, green) on the side of the chromosome opposite the 

loxP site. Mating of these two strains produces the double split trans-heterozygote. If Cre 

recombinase is then expressed, some fraction of animals will recombine the two strands, 

producing linked split drivers, and linked fluorescent reporters. Linked split driver animals 

can then be selected for by lack of fluorescent markers. 
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Figure 4.2 | Single copy drivers with syIs337 multi-copy GFP effector 

Single copy drivers are capable of robust expression when combined with a multi-copy 

effector. Pharyngeal muscle fluorescence was quantitated from single copy cGAL drivers 

using the S. kudriavzevii DNA-binding domain (DBD) in blue, and single copy drivers 

using the original S. cerevisiae DBD are in red for comparison.  The last column is the 

effector alone. The first two columns are suspected not to be true single copy strains. Single 

lines with n = 20 for all columns. 
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Figure 4.3 | Single copy cGAL driver and effectors 

Fluorescence quantitation of 15xUAS::gfp effector alone, double homozygotes for the myo-

2 cGAL driver and GFP effector in single copy form, and homozygous Pmyo-2::gfp 

animals. The cGAL animals express GFP at about 40% of the direct fusion. Single lines 

with n = 20 for all. 
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4.5 METHODS 

Strains 

The Caenorhabditis elegans strains were maintained at 20 °C, as previously described 1 All 

the strains used in this study are described in detail in Supporting Information. 

 

Transgenic animals  

The standard microinjection procedure for C. elegans was used to generate transgenic 

worms with single copy insertions13. The concentrations and compositions of DNA 

constructs in the injection mixtures of the transgenic worms are described in Supporting 

Information.  

 

Fluorescence imaging 

Worms were paralyzed in M9 buffer supplemented with 30 mg/mL of 2, 3-Butanedione 

monoxime (Sigma). All fluorescent images for quantification of GFP fluorescence in the 

pharynx were taken with a Leica DMI6000 inverted microscope equipped with a 40x oil 

objective and an Andor iXon Ultra 897 EMCCD camera, using Metamorph software 

(Molecular Devices). An ROI outlining the entire pharynx, as well as a background ROI, 

was selected for each image. The background-subtracted mean fluorescence intensity was 

used to quantify the GFP fluorescence in the pharyngeal muscles of each worm.   
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Chapter 2 

 

The co-injection markers used include KP708 (Pttx-3::rfp), KP1369(Pmyo-

2::nls::mCherry), KP1106(Pmyo-2::nls::gfp), unc-119(+) rescue plasmid, Pofm-1::rfp and 

Punc-122::gfp.  

 

All initial descriptions of extrachromosomal arrays (syEx####) and integrants (syIs####) 

are bolded for convenience. All integrants were generated by X-ray irradiation. 

 

syEx1452 [15xUAS::Δpes-10::gfp::unc-54 3'UTR, 25ng/µL; Pttx-3::rfp, 40ng/µL; 

pBlueScript, 35 ng/µL], injected into N2, used to generate syIs300 and syIs302. 

 

syEx1431 and syEx1432 [Pmyo-2::GAL4SC::VP16::unc-54 3’UTR, 10ng/µL; unc-119(+), 

50ng/µL; pBlueScript, 40 ng/µL], injected into the strain unc-119(ed3); syIs300. 

 

syEx1433 and syEx1434 [Pmyo-2::GAL4SC::VP64::unc-54 3’UTR, 10ng/µL; unc-119(+), 

50ng/µL; pBlueScript, 40 ng/µL], injected into the strain unc-119(ed3); syIs300. 

 

syEx1435 and syEx1436 [Pmyo-2::GAL4SK::VP64::unc-54 3’UTR; 10ng/µL, unc-119(+), 

50ng/µL; pBlueScript, 40 ng/µL], injected into the strain unc-119(ed3); syIs300. 

 

syEx1437 and syEx1438 [Pmyo-2::gfp::unc-54 3’UTR, 10ng/µL; unc-119(+), 50ng/µL; 

pBlueScript, 40 ng/µL], injected into the strain unc-119(ed3). 

 

syEx1448 and syEx1449 [Pnlp-40::GAL4SK::VP64::unc-54 3’UTR, 10ng/µL; Pmyo-

2::nls::mCherry, 10ng/µL; pBlueScript, 80ng/µL], injected into syIs302. syEx1449 was 

used to generate syIs318, syIs319 and syIs320,  as intestine drivers. 

 

syEx1450 and syEx1451 [Pmyo-3::GAL4SK::VP64::unc-54 3’UTR, 10ng/µL; Pmyo-

2::nls::mCherry, 10ng/µL; pBlueScript, 80ng/µL], injected into the strain carrying syIs302. 

syEx1451 was used to generate syIs321, as the body wall muscle driver. 

 

syEx1471 [Punc-47::GAL4SK::VP64::unc-54 3’UTR, 60ng/µL; Pofm-1::rfp, 40ng/µL], 

syEx1451 was used to generate syIs322, syIs323, syIs324 and syIs325, as GABAergic 

neuron drivers (These GABAergic drivers were weak, we suggest using drivers built in the 

pPD117.01 backbone with the let-858 3’UTR). 

 

syEx1475, syEx1476, and syEx1477 [5xUAS::Δpes-10::gfp::unc-54 3'UTR, 25ng/µL; unc-

119(+), 50ng/µL; pBlueScript, 25 ng/µL], injected into the strain unc-119(ed3); syIs301. 

 

syEx1478 and syEx1479 [10xUAS::Δpes-10::gfp::unc-54 3'UTR, 25ng/µL; unc-119(+), 

50ng/µL; pBlueScript, 25 ng/µL], injected in to the strain unc-119(ed3); syIs301. 
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syEx1480 and syEx1481 [15xUAS::Δpes-10::gfp::unc-54 3'UTR, 25ng/µL; unc-

119(+), 50ng/µL; pBlueScript, 25 ng/µL ], injected in to the strain unc-119(ed3); syIs301. 

syEx1482 and syEx1483 [20xUAS::Δpes-10::gfp::unc-54 3'UTR, 25ng/µL; unc-119(+), 

50ng/µL; pBlueScript, 25 ng/µL], injected in to the strain unc-119(ed3); syIs301. 

 

syEx1443 and syEx1444 [15xUAS::Δpes-10::aex-2(+) cDNA::unc-54 3'UTR, 25ng/µL; 

Pmyo-2::nls::gfp, 10ng/µL; pBlueScript, 65 ng/µL], injected into the strain aex-2(sa3).  

 

syEx1433 and syEx1447 [Prab-3::GAL4SK::VP64::let-858 3’UTR, 10 ng/µL; Pofm-1::rfp, 

40ng/µL; pBlueScript, 50 ng/µL], injected into N2. syEx1447 was used to generate 

syIs334, syIs335 and syIs336 as pan-neuronal driver lines. 

 

syEx1430[Pmyo-2::GAL4SC::VP64::unc-54 3’UTR; 10ng/µL, Pofm-1::rfp 40ng/µL; 1kb 

DNA ladder(NEB), 150 ng/µL], also used to generate the syIs301 as the pharyngeal muscle 

driver. 

 

syEx1488 [15xUAS::Δpes-10::gfp::let-858 3’UTR, 25 ng/µL; Pttx-3::rfp, 50 ng/µL; 1 kb 

ladder (NEB), 125 ng/µL], injected into N2, used to generate syIs337 and syIs343 for 

15xUAS::gfp::let-858 3’UTR effector lines.  

 

syEx1484 [Punc-17:: GAL4SK::VP64::let-858 3’UTR, 25 ng/µL; Punc-17::mCherry, 25 

ng/µL; unc-119(+), 50 ng/µL], injected into the strain syIs343; unc-119(ed3).  

 

syEx1485 [Punc-47::GAL4SK::VP64::let-858 3’UTR, 25 ng/µL;Punc-47:: mCherry, 25 

ng/µL; unc-119(+), 50 ng/µL], injected into the strain syIs343; unc-119(ed3).  

 

syEx1486 [Peat-4::GAL4SK::VP64::let-858 3’UTR, 25 ng/µL; Peat-4:: mCherry, 25 

ng/µL; unc-119(+), 50 ng/µL], injected into the strain syIs343; unc-119(ed3). 

 

syEx1460 [15xUAS::Δpes-10::hChR2(H134R)::eyfp::let-858 3'UTR, 25ng/µL; Pttx-3::rfp, 

40ng/µL; pBlueScript, 35 ng/µL],  injected into N2, used to generate syIs340, syIs341 and 

syIs342 for 15xUAS::hChR2(H134R)::eyfp::let-858 3’UTR effector lines. 

 

syEx1487 [Punc-47::GAL4SK::VP64::let-858 3’UTR, 25 ng/µL; Pofm-1::rfp, 40 ng/µL; 1 

kb ladder (NEB), 35 ng/µL], injected into the strain syIs341. 

 

Wild type N2 

PS6041 unc-119(ed3) III 

 

Figure 2.1, 2.2 

PS6843 syIs300 V 

PS6932 unc-119(ed3); syIs300 

PS6900 syEx1431; unc-119; syIs300  

PS6901 syEx1432; unc-119(ed3); syIs300  
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PS6902 syEx1433; unc-119(ed3); syIs300  

PS6903 syEx1434; unc-119(ed3); syIs300  

 

Figure 2.3 

PS6872 syIs302 III  

PS6844 syIs301 V  

PS6965 syIs301; syIs302 

 

Figure 2.4 

PS6844 syIs301 V 

PS6964 unc-119(ed3); syIs301 

PS7007 syEx1475; unc-119(ed3); syIs301 

PS7008 syEx1476; unc-119(ed3); syIs301 

PS7009 syEx1477; unc-119(ed3); syIs301 

PS7010 syEx1478; unc-119(ed3); syIs301 

PS7012 syEx1480; unc-119(ed3); syIs301 

PS7013 syEx1481; unc-119(ed3); syIs301 

PS7014 syEx1482; unc-119(ed3); syIs301 

PS7015 syEx1483; unc-119(ed3); syIs301 

 

Figure 2.5, 2.7 

PS6902 syEx1433; unc-119(ed3); syIs300 

PS6903 syEx1434; unc-119(ed3); syIs300 

PS6904 syEx1435; unc-119(ed3); syIs300 

PS6905 syEx1436; unc-119(ed3); syIs300 

PS6906 syEx1437; unc-119(ed3); syIs300 

PS6907 syEx1438; unc-119(ed3)   

 

Figure 2.8 

PS6933 syIs318syIs302 III 

PS7067 syIs321; syIs300 

PS6987 syIs337; syIs334 

PS7026 syIs343 

PS7017 syIs343; unc-119(ed3) 

PS7018 syEx1484; syIs343; unc-119(ed3)  

PS7019 syEx1485; syIs343; unc-119(ed3)  

PS7020 syEx1486; syIs343; unc-119(ed3)  

 

Figure 2.10 

JT3 aex-2(sa3) X 

PS6975 syEx1443; aex-2(sa3) 

PS6976 syEx1444; aex-2(sa3) 

PS6936 syIs321 

PS6935 syIs320 

PS6938 syIs323 
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Figure 2.12 

PS7021 syEx1487; syIs341 

PS7044 syIs341 
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Chapter 3 
 

 

Figures 3.3-3.5 

GFP effector (syIs300): pG4US7(15xUAS::Δpes-10::gfp::unc-54 3'UTR), 25 ng/µL; 

Pttx3::rfp, 40 ng/µL; pBlueScript, 35 ng/µL. 

 

PS6843 syIs300 V                   outcrossed x7 

PS6932 unc-119(ed3) III; syIs300 V 

 

Pmyo-2 intact cGAL driver (syEx1435 and syEx1436): pG4U19, 10 ng/µL; unc-119(+) 

rescue plasmid, 50 ng/µL; pBlueScript, 40 ng/µL. 

 

PS6904 syEx1435; unc-119(ed3); syIs300 

PS6905 syEx1436; unc-119(ed3); syIs300 

 

Pmyo-2 split cGAL driver with DnaE intein (syEx1463 and syEx1464): pHW438, 10 

ng/µL; pHW439, 10 ng/ul; unc-119(+) rescue plasmid, 50 ng/µL; pBlueScript, 30 ng/µL. 

 

PS7034 syEx1463; unc-119(ed3); syIs300 

PS7035 syEx1464; unc-119(ed3); syIs300 

 

Pmyo-2 split cGAL driver with SpyTag/SpyCatcher (syEx1511, syEx1512 and syEx1571): 

pHW375, 10 ng/µL; pHW378, 10 ng/µL; unc-119(+) rescue plasmid, 50 ng/µL; 

pBlueScript, 30 ng/µL. 

 

PS7250 syEx1511; unc-119(ed3); syIs300 

PS7251 syEx1512; unc-119(ed3); syIs300 

PS7252 syEx1571; unc-119(ed3); syIs300 

 

Pmyo-2 split cGAL driver with leucine zipper (syEx1572, syEx1573 and syEx1574): 

pHW508, 10 ng/µL; pHW509, 10 ng/µL; unc-119(+) rescue plasmid, 50 ng/µL; 

pBlueScript, 30 ng/µL. 

 

PS7348 syEx1572; unc-119(ed3); syIs300 

PS7349 syEx1573; unc-119(ed3); syIs300 

PS7350 syEx1574; unc-119(ed3); syIs300 

 

Pmyo-2 split cGAL driver with gp41-1 intein (syEx1575, syEx1576 and syEx1577): 

pHW510, 10 ng/µL; pHW511, 10 ng/µL; unc-119(+) rescue plasmid, 50 ng/µL; 

pBlueScript, 30 ng/µL. 

 

PS7351 syEx1575; unc-119(ed3); syIs300 

PS7352 syEx1576; unc-119(ed3); syIs300 
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PS7353 syEx1577; unc-119(ed3); syIs300 

 

Pmyo-2 split cGAL driver with gp41-1 N-intein wild-type. (syEx1589): pAH35, 5 ng/µL; 

KP1368, 10 ng/µL; pBlueScript, 85 ng/µL. 

 

PS7686 syEx1589; syIs433 IV; syIs300 V 

 

Pmyo-2 split cGAL driver with gp41-1 N-intein C1A mutant. (syEx1590): pHW564, 5 

ng/µL; KP1368, 10 ng/µL; pBlueScript, 85 ng/µL. 

 

PS7738 syEx1590; syIs433 IV; syIs300 V 

 

Figures 3.6-3.8  

Phsp-16.41 split cGAL(DBD)-gp41-1-N-intein driver (syEx1579, syIs435): pAH34, 10 

ng/µL; Pmyo-2::NLS::mCherry, 10 ng/µL; pBlueScript, 80 ng/µL. 

 

PS7422 syEx1579  

PS7406 syIs435 IV  outcrossed x3 

PS7409 syIs435 IV; syIs300 V outcrossed x5 

 

Pmyo-2 split cGAL(DBD)-gp41-1-N-intein driver (syIs430, syIs431, and syIs432): pAH35, 

10 ng/µL; Pmyo-2::NLS::mCherry, 10 ng/µL; pBlueScript, 80 ng/µL. 

 

PS7400 syIs431 III   outcrossed x5 

PS7402 syIs431 III; syIs300 V  outcrossed x3 

PS7403 syIs430 IV  outcrossed x3 

PS7408 syIs432 II; syIs300 V outcrossed x3 

 

Pmyo-2 split gp41-1-C-intein-cGAL(AD): (syEx1580, syIs433, and syIs434): pAH36, 10 

ng/µL; Punc-122::rfp, 10 ng/µL; pBlueScript, 80 ng/µL. 

 

PS7423 syEx1580 

PS7401 syIs433 IV; syIs300 V outcrossed x3 

PS7404 syIs433 IV outcrossed x5 

PS7405 syIs434 II outcrossed x0 

 

Prab-3 split cGAL(DBD)-gp41-1-N-intein driver (syEx1578): pHW530, 10 ng/µL; 

Pmyo-2::NLS::mCherry, 10 ng/µL; pBlueScript, 80 ng/µL. 

 

PS7410 syEx1578; syIs300 V 

 

Peft-3 split cGAL(DBD)-gp41-1N-intein driver (syEx1581 and syEx1582): pHW533, 10 

ng/µL; Pmyo-2::NLS::mCherry, 10 ng/µL; pBlueScript, 80 ng/µL. 

 

PS7424 syEx1581; syIs300 V 
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PS7425 syEx1582; syIs300 V 

 

Peft-3 split gp41-1-C-intein-cGAL(AD) driver  (syEx1586, syEx1587 and syEx1588): 

pHW531, 10 ng/µL; unc-119(+) rescue plasmid, 50 ng/µL; pBlueScript, 40 ng/µL. 

 

PS7683 syEx1586; unc-119(ed3); syIs300 V 

PS7684 syEx1587; unc-119(ed3); syIs300 V 

PS7685 syEx1588; unc-119(ed3); syIs300 V 

 

Figures 3.9-3.12 

Split cGAL drivers for MC neurons (syIs483, syIs484 and syIs485): pJL080, 25 ng/µL; 

pJL081, 25 ng/µL; Punc-122::rfp, 30 ng/µL; 1 kb ladder (NEB), 20 ng/µL.  

 

PS7521 syIs483 X  outcrossed x3 

PS7522 syIs484  outcrossed x0 

PS7523 syIs485  outcrossed x0 

 

Split MC driver (syIs483) > HisCl1 effector (syIs371, 15xUAS::HisCl1::SL2::gfp::let-858 

3’UTR) 

PS7524 syIs371 III; syIs483 X 

PS7199 syIs371 III 

 

Split cGAL-N driver alone for MC neurons (syEx1601 and syEx1602): pJL080, 25 ng/µL; 

Pttx3::rfp, 40 ng/µL; 1kb ladder (NEB), 35 ng/µL. 

 

PS7739 syEx1601; syIs371 III 

PS7740 syEx1602; syIs371 III 

 

Split cGAL-C driver alone for MC neurons (syEx1603 and syEx1604): pJL081, 25 ng/µL; 

Pttx3::rfp, 40 ng/µL; 1kb ladder (NEB), 35 ng/µL. 

 

PS7741 syEx1603; syIs371 III 

PS7742 syEx1604; syIs371 III 

 

Figures 3.13, 3.14 

Dominant PKA effector (syEx1596 and syEx1597): pHW539, 25 ng/µL; Pttx-3::rfp, 40 

ng/µL;  1 kb ladder (NEB) 35 ng/µL. 

 

PS7525 syEx1596 

PS7526 syEx1597 

PS7527 syEx1596; syIs483 X 

PS7528 syEx1597; syIs483 X 

 


