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ABSTRACT

The Coupled Cluster Green’s function method is expanded to periodic systems and
preliminary results of the spectral function for diamond and graphene are shown.

Future improvements and potential applications are discussed.
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Chapter 1

INTRODUCTION

Single-particle Green’s function-based methods have become popular tools in the
field of condensed matter physics and materials science to describe the electronic
structure of solid systems [1]. Knowledge of the Green’s function, which is a
propagator that describes the movement of an electron in a many-body potential,
gives access to important properties including excited states, transition moments,
and response functions. Such properties are imperative to the study of techno-
logically important materials, like those with light-harvesting or superconducting

characteristics.

The Green’s function is typically found through solving the Dyson equation, where
it incorporates the renormalization of single-particle states due to many-body inter-
actions by introducing the concept of self-energy. This quantity can be represented
as a series of perturbation diagrams, and used to evaluate the Dyson equation diagra-
matically. The most commonly used technique to estimate the self-energy involves
expanding it to first order in terms of a screened interaction W, and is known as the

G.W. approximation [2, 3].

The G.W. approximation has been successful in describing the electronic struc-
ture of many crystalline systems [4]. However, because this method is only a first
approximation to the self-energy, which is a complicated function describing the
many-body interaction, it fails when considering problems with strong correlation
or when greater accuracy is needed. For example, it continues to overestimate
total energies and band gaps, and is often unable to detect satellite structures [5].
Modifications to the theory, such as inclusion of vertex corrections, improve its per-
formance somewhat, but many issues still persist [6]. These observations illustrate
the difficulty associated with systematically improving G.W. theory through inclu-
sion of higher-order self-energy terms. Better approximations to the single-particle
Green’s Function of many-body systems are thus needed to improve the accuracy of

electronic structure predictions for solids.

Coupled Cluster (CC) theory has been considered in the past as an avenue towards
this goal. The concept behind a CC approach to approximating the single-particle
Green’s function (CCGF) was first introduced by Nooijen and Bartlett [7, 8], and the
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method was recently implemented by Bhaskaran et al. to estimate the self-energy
associated with molecular systems [9]. Several advantages over the more traditional
approaches to the Green’s function are apparent in the Coupled Cluster framework:
the Dyson equation does not need to be solved unlike in G.W. theory, the exact
many-body wavefunction limit exists through including higher excitations (S, D,
T, etc), and it shares a similar foundation with the EOM Coupled Cluster (EOM-
CC) approach to excited states. Here, we outline a CCGF approach in the spirit
of these two predecessors expanded to periodic systems, which we now abbreviate
as (KCCGF). The leading "K" has been chosen to allude to the momentum-space

wavevector k.

First, a brief introduction to quantum Green’s functions will be given along with
their use as propagators to investigate electronic properties. Next, the guiding
equations of Periodic Coupled Cluster theory will be reviewed as it is implemented
in the quantum chemistry code PySCF [10]. Finally, the KCCGF method will be
described along with its computational details and a proof-of-concept calculation for
the band structure of Diamond. We will conclude with further areas for improvement
of the cost and accuracy of the KCCGF method.



Chapter 2

QUANTUM GREEN’S FUNCTIONS

Before describing the KCCGF method, the basic properties of Green’s functions
will be outlined. This brief review is based on the pedagogical text by Odashima

[11], which can be used as an additional reference if necessary.

We first introduce the single-particle electron Green’s Function through Feynman’s

quantum field propagator:
G5 (1,1') = =i < Tlei(1), €] ()] > 2.1)

Which contains a time-ordering operator 7" that guarantees causality with respect to

time. Note that the superscript ¢ denotes this term as the “causal” Green’s function.
T
J
the ith site at time . A hole is conversely created at the ith site at time 7 < ¢, and

To illustrate, ¢ creates an electron at the jth site at ' < ¢ and ¢; annihilates it at

annihilated at the jth site at time /. The time-ordering operator serves to prevent
instances where an electron or hole is annihilated before it is created. Here, the

creation and annihilation operators are expressed in a discrete particle basis.

This behavior can also be illustrated by the action of the time-ordering operator,

Tlci()e] ()] = 6t = el (1)) = 6" = e ()ei®) (2.2)

Knowing the general structure, it is now time to introduce two flavors of Green’s
functions which have the benefit of being easily analyzed to extract physical quan-

tities. These are known as the retarded and advanced Green’s functions:
GL(t.t) = =if(t = 1') < {c;(), cj.(t')} > (2.3)

Gt 1) =it — 1) < {c] (1), ¢; (1)} > 24)

The retarded Green’s function is non-zero only for times ¢ < ', such that the response
of the system can be calculated after it has been perturbed. The advanced Green’s

function is the adjoint of the retarded Green’s function.

The benefits of writing the Green’s function in the retarded and advanced forms

can be shown for the non-interacting case and then generalized to an interacting
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many-body system. If we consider the second quantized free-particle Hamiltonian,

we find:

H = Z Enc,:cn (2.5
n

In the Heisenberg picture, we can work out that the equations of motion for the

creation/annihilation operators are

dc,

o7 = —i[cy, H] = —i€,cp (2.6)
dey .
o7 = —l[c,:, H] = zenc,: 2.7)

Solving this differential equation, we find how these operators evolve with time.
ca(t) = e, (2.8)

cht) = et (2.9)

With this, we can substitute into the expressions for the retarded and advanced
Green’s functions and evaluate the contents of the expectation value. Thus, for this

free particle Hamiltonian, we find the Green’s functions as:
G (t—1)=—if(t —1)e 5, (2.10)
G (t—1) =i0( — )5, 2.11)

We consider the analytical expression for the step function:

1 00 e—iw(r—t’)
Q(I—t'):—%f dpo— (2.12)

oo w+in’

and substitute this into our expression for the retarded Green’s function (we limit to

just this variant for the rest of this secton).

. , 1 00 e—iw(t—t’)
Gt =1) = o= | do—r (2.13)

o w—€,+1in
Where we made a change of variables
W+e=w (2.14)
If we define the Fourier transform and its inverse as

L
Glfj(t —1) = ﬂf dw et )ij(a)) (2.15)

(o8]
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Gli(w) = f dr €' G (1), (2.16)
we immediately see that the retarded Green’s function in Fourier representation is
- 1
Gn(w) = ————, (2.17)
w—€,—in
and can be written in an orbital basis with a resolution of the identity:
<iln><nl|j >
G’ = 2.18
= e v (2.18)

This form of the retarded Green’s function demonstrates its convenience in obtaining

eigenergies €,, as they occur with the poles of the function.

This structure can be generalized to an interacting system, and the corresponding
interacting Green’s Function can be expressed in the Lehmann representation at zero

temperature.

< nlcilm >< mlc;|n > < micgln >< nlcjlm >

Gji(w) =) + (2.19)

w— (e, —€y) +in w— (€, —€y) +in

nm

The differences in eigenenergies, —(e, — €,,) that arise in this case will be useful
when using our KCCGF method to calculate quasiparticle energies, which are known
as the difference in energy between the ground state and N + 1 or N — 1 electron

excited states.



Chapter 3

COUPLED CLUSTER THEORY

Coupled Cluster theory has gained a reputation as one of the most successful wave-
function based quantum chemistry techniques affordable with modern computational
resources. This is in large part due to its ability to accurately predict ground and
excited state properties while maintaining size consistency and a hierarchial structure
[12, 13]. Building upon a reference determinant obtained from mean-field methods,
Coupled Cluster explicitly incorporates correlation due to many-body electronic
interactions, which plays a key role in most physical systems. Although the method
has a significant computational cost, it offers a clear avenue towards approximating
the exact many-body wavefunction, coming into its own as a desirable compromise

between mean-field and expensive Configuration Interaction methods.

With the numerous benefits of the Coupled Cluster approximation, it is natural to
consider how the method can be applied to periodic systems. Recently, the Chan
group has made this possible through their work expanding Coupled Cluster theory
to solids for both the ground and excited states [14]. Here, we give a brief overview
of Periodic Coupled Cluster as a precursor to our discussion of the KCCGF method.
We start with a general picture before getting into specific practices for periodic

systems.

The basic tenant of Coupled Cluster theory lies in its introduction of a cluster function
which correlates the motion of electrons. The following expression corresponds to

a two-particle cluster function.

FijComs xa) = D 180 Bu(im) () (3.1)
a>b

The cluster coefficients # are determined in the solution to the Schrodinger equation
and ¢ represents general single-particle functions. By inserting this particular
function into a general reference determinant, one obtains an improved wavefunction
which accounts for the correlation of any pair of electrons within the specified
occupied orbitals 7 and j. Note that we limit the following example to a four
electron system represented by the determinant ®g = |¢;(x1)@; (x2)dr (x3)d1(x4) >



to illustrate.
W= Do+ > 110 (1)@ (x2) ik (x3)1 (x4) >
= (3.2)

= | Qg + fij(xXm Xn)Pr(x3)P1(x4) >
The inclusion of the cluster operator in the wavefunction is reflected in the additional
determinant seen above with occupied orbitals i and j replaced with virtual orbitals

a and b.

One can imagine that including additional cluster functions for different numbers of
electrons will further serve this effect, and if every possible grouping of N electrons
were included we would obtain the exact wavefunction for the basis. In second

quantization, we may define general cluster operators as such:

R 1\2 &
T, = (m) Z tf’j}f:‘cgcz..cjci (3.3)
ij..ab..

It can be shown that if we write out the wavefunction of a system that includes all
cluster operators of n orbitals, the resulting expression resembles a power series
that may be succintly represented by an exponential function. We may thus write
a general form of this Coupled Cluster wavefunction in the “exponential ansatz"

known as :
¥ = ol |y > (3.4)

The coefficients of the 7" operator determine the properties of the Coupled Cluster
wavefunction, and thus need to be found if we wish to use it in our subsequent
computation of Green’s Functions. The most common truncation of the 7" operator
comes at the Singles and Doubles level, or T =Ty +T>. Atthis level, the coefficients

may be determined from the following two equations:
0 =< ®f|H|Dy > (3.5)

and
0=< d)f‘jb|H|<Do > (3.6)

which are called the CCSD amplitude equations. These can be derived from the
left projection of singly and doubly excited reference determinants onto the time-
independent electronic Schrodinger equation e TH eT|d30 >= E|®y >, taking into
account that H = e~T el . Note that the above two equations arise from the fact that

singly and doubly excited determinants are orthogonal to that of the ground state.

These equations can be solved iteratively, using either Wick’s theorem or a diagram-

matic method to evaluate the allowed contractions between the Hamiltonian and
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cluster operators. Derivations of the explicit amplitude equations for CCSD and

higher levels can be found in the literature [15, 16].

So far, the Coupled Cluster method as described has been for general many-body
systems represented by the Hamiltonian 4. In our consideration of periodic systems,
we take into account the dependence of the various operators on the momentum-
space wavevector k. This is done because the operators of crystalline systems possess
translation invariance and the orbitals obey Bloch’s theorem, which enforces that

the crystal momentum be conserved if we assume that there are no defects:

Z ko — Z ki =G, (3.7)

where G is a lattice vector in reciprocal space and k, and k; are the relevant virtual

and occupied orbital momenta. We rewrite 7" as:
1 2 ! n
s (L akgbky.. T % o
T = (n,) Z Z Litijk;.. Caky by -CikiCikis (3.8)
’ k,k]kakbl]ab

with the primed sum indicating the conservation of momentum. The amplitude

equations can now be revised, yielding:

0 =< % |0y > (3.9)
and
0 =< O | F|Dy > (3.10)
IKiJKj

Working equations for the above may be found in the literature [17]. For additional
details regarding the implementation of Periodic Coupled Cluster, including integral
generation and construction of the mean-field, see reference [14]. After solving
these equations for the k-dependent 7" amplitudes, we acquire the Coupled Cluster

description of the many-body wavefunction, a pre-requisite for KCCGF.



Chapter 4

PERIODIC COUPLED CLUSTER GREEN’S FUNCTIONS

As stated in previous sections, the guiding idea of KCCGF is to use the Coupled
Cluster approximation of the many-body wavefunction to compute a Green’s func-
tion that yields high accuracy observables for periodic systems. We now describe the
theory behind Periodic Coupled Cluster Green’s Functions, going beyond Nooijen

and Bartlett’s initial theory for molecules [8].

The non-hermiticity of our similarity transformed Hamiltonian, H, indicates that
our right and left ground state determinants are not simple adjoints of one another.

We thus use the “bi-variational" ansatz to represent them:

<y =< ®|(1+A)e T 4.1)
o> = el | >, (4.2)

where the k-dependence of the operators T and A are implicit and we define A, a

de-excitation operator, simply as

N
- ZA” - Z Z /llakk,JZkb Cakg bk --Cjk; Cik; (4.3)

n=1 kikj..kakp..ij..ab..
In this ansatz, we write the expression for the Green’s function as:
Gk, @) = < OI(1+ A)&, (@ + (H ~ Eo) = i)' pi, |0 > (4.4)
+ < O|(1 + A)cp, (w — (H - Ey) + in)_lc'Tk |D > 4.5
qrq
Where we have absorbed the factors of eT into our operators, for instance:
Cpk, = e_TcpkpeT 4.6)

The form of the Green’s function is very similar to that found previously. The
difference is that we are now computing the Green’s function for a periodic, inter-
acting Coupled Cluster Hamiltonian, which subsequently enables the calculation of

excited state properties. To further cement this idea, we can demonstrate that the
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Lehmann representation of the Green’s Function is easily recovered if we introduce

a resolution of the identity over all (N-1) and (N+1) eigenstates:

<DL+ A)ap, [O) ! >< OY*e, |© >

G (w) = “4.7)
pkpakq ~ W — (Eﬁ’” — Ey) +in
<O|(L+A)E, [O) >< BY ey, |0 >
) w— (Eg— ENV) +i @9
iy 0 y m

Where we used:

Q(N+1)I_‘IQ(N+1) _ Z |w/]:]+1 N Eﬁ’“ < w/1:1+1| (4.9)
u

OV QWD = 3 N 5 BN < Y @.10)

and the Q operators represent the projection operators onto the (N+1) and (N-1)
Hilbert spaces. In this familiar form, the ionization potentials and electron affinities
appear in the denominator as poles of our Coupled Cluster Green’s Function. Now
it is apparent why the Coupled Cluster approach is useful: through knowledge of the
excitation operator T, our reference determinants, and other intermediates available
from Coupled Cluster, we can directly evaluate the matrix elements of our Green’s

Function and determine the quasiparticle energies.
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Chapter 5

SPECTRAL FUNCTIONS AND ANGLE-RESOLVED
PHOTOELECTRON SPECTROSCOPY (ARPES)

With the Single-particle Green’s Function, we can compute a term that is directly
measurable via experiment. This is known as the spectral function, which is written

as:

S() = Syl o (@) + S () (5.1)

1
Spipak, (@) = =—Im GL o, (@)

= ) < OI(1+ A)ég, O >< oyl 10> 6(hw — (E)* ~Ej) (5.2)
i

SP 11 G'r
pkpak, w) =—Im qu(‘“)

= Z < O|(1 + A) |c1>1vV—1 >< O ey |10 > §(hw — (E) —ENY™")) (5.3)

Where we used the relation that for = 0%,

I n

Im =
X +in x2 +n?

= —16(x) (5.4)

The signals at the EA and IP energies can be clearly seen in the delta function.
The spectral function’s intensity is given by the overlap between the (N-1) or (N+1)
excited state wavefunctions and the ground state N electron wavefunction. The
diagonal part of the spectral function can be interpreted as the probability of the
electron removal or electron addition process. We can thus probe the band structure
for our given periodic system via computing this term for each point along a Brillouin

zone path.

The spectral function is accessible experimentally through Angle-Resolved Photoe-
mission spectroscopy (ARPES) [18]. This technique probes the spectral function
via its relationship to the intensity I of the measured signal:
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occ

I1(k,w,e,,v) = Z Io(n, k, w, ey, V) f(w)Syir(w) (5.5

Here e, represents the polarization and v the incident photon frequency. Iy gives the

absorption cross section of the incident photons and f is the Fermi Dirac distribution.
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Chapter 6

COMPUTATIONAL APPROACH

We evaluate the Coupled Cluster Green’s function by defining intermediate operators
in the (N-1) and (N+1) space by which to partition the calculation of matrix elements.
In Bhaskaran et al. they are denoted as X, (w) and Y, (w) [9]. For periodic systems,
they can then be defined as:

(w + (H = Eo) — in) Xpi, ()| D >= Cpy, | D > (6.1)
(w — (H - Ep) — in)Yyi, (0)| D >= C_j,kq@ > (6.2)

Which allows us to rewrite equations (4.7) and (4.8) as:
Gk, gk, (W) =< @|[(1 +A)E;qupkp(w)|<D >+ < O[(1+A)Cpi, Yyi, ()| D > (6.3)

We see now that calculation of the matrix elements can be broken down into two
distinct parts - one must compute the coefficients of Xpi,(w) and ¥, (w) and
contract them with the remaining left-side determinants, < ®|(1 + A)E;kq and
< ©[|(1 + A)¢pk,- We will now denote these left-side determinants as e, for
brevity.

Formally, the operators X, (w) and Yy, (w) take the following forms when we
consider CCSD:

ka

Xphy (@) = ) it @l Cit + ) D Xipo (@hpkyely i, (6.4)

ki,i ki,kj,ka i<j,a

ka kabk T

Yo, @) = D V5 @hgrcl + DT D i @), el ehocng  (65)

kg,a ka,kp,ki a<b,i
It is clear that these operators are defined on the (N+1) and (N-1) particle spaces
from the string of electron creation and annihilation operators contained within.
Note that the primed summations again imply the conservation of crystal momenta.
In practice, this allows for summations over three k-point indices to be lowered to

sumations over two indices through equation (3.7), leading to reduced scaling with
k.
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Equations (6.1) and (6.2) can be evaluated diagrammatically through taking advan-
tage of the Campbell-Baker-Hausdorff formula to write the exponentiated creation

and annihilation operators as:

&y =cp+lepT] (6.6)
&b =cf+[c).T] (6.7)

Working equations for the non-periodic form of Cp, [P >, c'z;kqld) > and ey,
vectors have been outlined extensively in the publication by Nooijen and Bartlett.
Furthermore, the operator contractions HX pk, ()| > and H Yok, (w)|P >, which
are necessary to solve equations (6.1) and (6.2), correspond to those found in the
traditional EOM-CC methods [19]. We shall not further discuss them here, except
to mention that the relevant k-indices per Bloch orbital and momentum conservation

must be included and summed over in the periodic case [8].

One special consequence of our analysis is that, for general orbital indices p and ¢
used to express our Green’s function, k, must equal k,. This is due to momentum
conservation with the creation and subsequent annihilation of quasiparticles. Thus,

in practice, G, is calculated for a single k-point index at a time.

In summary, we compute matrix elements of the Coupled Cluster Green’s Function
per k-point by solving equation (6.3). This involves evaluation of the intermediates
Xpk, (w) and Yy (w) through solving the linear equations (6.1) and (6.2). The result
is then contracted with the left-hand determinant e for each general orbital index.
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Chapter 7

PRELIMINARY RESULTS

The Periodic Coupled Cluster Singles-Doubles Green’s Function method (KCCSD-
GF) for restricted spatial orbitals was implemented in PySCF as part of the existing

“PBC" framework.

As a proof of concept, a calculation was performed starting from a Hartree-Fock ref-
erence to obtain the Green’s function for a Diamond lattice with a 2x2x2 Monkhorst-
Pack grid along a Brillouin-zone path of 50 points (Fig 7.1, x axis). The GTH
norm-conserving pseudopotential [20] was used for the core electrons along with
the corresponding single-zeta basis set (gth-SZV). The Green’s function was com-
puted on an energy (w) grid of of 150 evenly spaced points between -1.0 and 1.0
Hartree (Fig 7.1, y axis). The spectral functions were subsequently obtained for
each point along the k-path and the intensity (Fig 7.1, z axis) plotted against the

energy and k-path to obtain the band structure:

Diamond, (omega=150, kshift=50)

- 243

216

- 189

162

135

108

AIsuaju)

81

Energy (Hartree)

w r X w L r
k-path

Figure 7.1: Computed band structure for the Diamond lattice using the gth-SZV
basis set. The behavio rof the electornic bands at the high symmetry behavior is
reproduced at the special points along the x-axis
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The computed band gap at I' was found to be 5.62 €V, which slightly overestimates
the reference value of 5.47 eV [21]. This may be due to the large finite-size effects
associated with the small k-point grid used in the calculation. We expect to achieve
a more accurate description upon extrapolation of the Brillouin-zone sampling to

the thermodynamic limit.

The peaks of the spectral function for each point along the Brillouin zone path
represent excitations with high single-particle character. In the lowest satellite
state between the W and X special points, there is a noticeable smearing in the
intensity of the spectral function. This is theorized to be due to stronger many-body
interactions, and may be better resolved as we include greater correlation effects in

our approximation.

Although we have shown that the KCCSD-GF method can be used to probe the elec-
tronic structure of smaller systems, its high cost (N°) and dependence on w means
that calculations with larger k-point and energy grids quickly become demanding
to compute. Because we wish to eliminate error due to finite-size effects, larger

calculations are necessary to establish proper extrapolation schemes.

Extrapolation to the basis set limit is also important in the determination of accurate
chemical properties. Even CCSD(T), considered the ”gold standard" of computa-
tional methods, requires large basis sets for the best results [22]. One method that we
have explored towards this end is the truncation of the virtual space associated with
larger basis sets to mitigate the sizable cost increase. This has been accomplished in
several ways in the past, including the SCF method and the Frozen Natural Orbitals
(FNO) method [23, 24].

The former method attempts to eliminate the linear dependencies present in corre-
lated calculations through removal of high energy virtual orbitals in the SCF step.
The latter involves obtaining frozen natural orbitals from the virtual-block of the
second-order Moller Plesset density matrix and performing the truncation based on

the resulting occupation numbers:

D@ < cbllij >< l]llca >
B 22 (7.1)

ab ¢! 6
cij ij "ij
Where D represents the MP2 density matrix and the corresponding eigenvectors and

eigenvalues are the natural orbitals and occupancies.

Both methods were implemented into the KCCSD-GF code and compared for vari-

ous truncations of the virtual space. Although the FNO method has been traditionally
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shown to be better than the SCF method for maintaining the ground-state proper-

ties [25], it performed noticeably worse when computing spectral functions. The

following are those computed for a Diamond lattice sampling a 2x1x1 k-point mesh

along I' for computational ease. The x-axis denotes the energy range on which the

function was calculated, and the y-axis denotes the intensity of the function.

200

175 4

150 4

125 4

100 +

75 A

50

254

— ref
59%

|

\ ‘.‘/I \\‘J

T
0.0

T
0.5

T T
1.0 15 2.0

Energy (Hartree)

Figure 7.2: The spectral function computed for a Diamond lattice with 59 percent
of the virtual space as determined from the FNO method. It performs noticeably
worse than that obtained from the SCF method, with differences in not only peak
intensity but also relative peak location, corresponding to inaccurate shifts in the
energy spectrum.

Figure 7.3:
method.

200 1

175 A

150 A
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100 A
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— ref
59%

UL U

T
-1.0

T
-0.5

T
0.0

T
0.5

T T T
1.0 15 2.0

Energy (Hartree)

The spectral function for a Diamond lattice computed from the SCF
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Chapter 8

FUTURE DIRECTIONS

The truncation of the virtual space is a good first step towards reducing the cost of
computing Coupled Cluster Green’s Functions. One area of further effort will most
certainly be towards finding the optimal method which best preserves the values of

the spectral functions, furthering the basic analysis started above.

In this spirit, it is also prudent to consider the linear solver as an area for further
optimization. Currently, the KCCSD-GF implementation uses NumPy’s implemen-
tation of the Generalized Conjugate Residual method (GCROT) to solve the linear
equation for the intermediates Xk, (w) and Yy, (w) [26]. Using a faster implemen-
tation for this step, which is the computational bottleneck for the method, is sure to

achieve considerable speed-up.

Once we are able to apply KCCGF for larger k-point grids and basis sets, we intend
to study the electronic structure of materials of technological interest. One such
material is graphene, which can be layered to control its band gap and resulting
electronic properties [27]. ARPES spectra of monolayer graphene is also available,
which provides a convenient basis for comparison with the KCCGF method [28].
As a first step, we performed a small band-structure calculation on a graphene sheet
with a 3x3 k-grid and SZV basis.

There are a few observations that can be made from this result. First, it is clear
that the band resolution is poor not just at the satellites, but at bands close to
the Fermi-level as well. Several spurious peaks also occur at the beginning and
end of the k-path along with discontinuities in the band structure, possibly due to
errors in the initial mean-field calculation. These issues typically originate from
systems which possess metallic character, and require large k-point grids in order to
properly converge. Our desire to achieve greater accuracy through sampling larger
areas of the Brilluoin zone, in conjunction with these technical issues, motivate the
optimization of the KCCSD-GF method.

We expect to observe linear dispersion near the Dirac-point for an isolated graphene
sheet. Once we are able to scale up the mesh of k-points sampled and achieve efficient
representations of the virtual space for larger basis sets, we may begin a more detailed

analysis of the Fermi velocity renormalization, plasmon satellites, and more [29].
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Figure 8.1: Band structure for Graphene sheet with an energy grid consisting of 105
evenly spaced points between -1 and 1 and a k-path consisting of 50 points.

Our goal is to then perform a comparison with analyses previously conducted with
the G.W. method [30, 31]. These characteristics have been noticeably harder to find
with the EOM-KCCSD method reported in [14], which struggles to converge roots
corresponding to satellite states during the Davidson routine.
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Chapter 9

CONCLUSIONS

In the above, we have outlined the implmentation of a Restricted Coupled Cluster
Singles-Doubles Green’s Function method for periodic systems and outlined an
initial calculation of the band structure of Diamond for a 2x2x2 k-point sampling and
gth-SZV basis set. We intend to optimize the algorithm’s primary bottlenecks, such
as computation of the intermediates X, ,(w) and ¥y, (w), to enable calculations
with larger basis sets and k-point grids in pursuit of accurate extrapolation schemes.
Once we reach a point where extrapolation is achievable, we intend to compute
accurate electronic spectra for solids of interest to the fields of condensed matter

physics and materials science.
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