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Abstract 

A method is presented for accurately solving the Schrodinger equation for the 

scattering of an electron from a hydrogen atom in three dimensions, which uses 

hyperspherical coordinates. Our motivation for using this new technique is that 

previous methods- coupled channel expansions using target atom eigenfunctions, 1 

polarization functions and pseudostates, 2 and variational methods3 - have all 

proven unsatisfactory. The coupled channel calculations tend to have difficulty 

obtaining convergence with respect to basis set size, and the variational method 

interjects spurious resonances. Previous applications of hyperspherical coordinates4 

have used methods that, while adequate for computing the energy level of the bound 

state of H-, are not appropriate to full scattering calculations. 

We have obtained converged surface functions at a set of discrete values of 

the hyperradius, which acts as a parameter. The surface functions are further 

expanded in a basis set that involves !-dimensional functions of the hyperspherical 

angle, which are obtained by a finite difference method. 

The surface functions have been used to expand the scattering functions. The 

resulting coupled equations are solved numerically. The wavefunctions are obtained 

separately at each energy and are converged with respect to the number of basis 

functions used. Calculations performed so far give converged results for J = 0 

through J = 5 up to the n = 4 threshold. The method is both accurate and 

efficient, and has been implemented on a VAX 11/780 with an FPS164 attached 

processor. 

Both the magnitude and phase of elements of the scattering matrix have 

converged. Integral cross sections have been obtained for energies up to the 

n = 4 threshold of hydrogen. Feshbach resonances have been detected below each 

threshold, and they have been characterized and classified. 
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CHAPTER 1 

BACKGROUND 

The electron-hydrogen atom system has been extensively studied, both theo­

retically and experimentally, for the past two decades, 1 and displays a very rich 

behavior, in terms of resonance structure. It is important to the field of scattering 

because it is the simplest electron-atom system, yet its solutions are not known very 

accurately, due to the strong correlation between the two electrons. Definitive, con­

verged calculations have remained beyond the means of previous methods, and the 

dynamics of two-electron systems is still not completely understood. The purpose 

of this research is to solve the e--H scattering problem accurately, with the use of 

hyperspherical coordinates, at energies below the ionization level. 

1.1 Jacobi-coordinate Calculations 

In the independent electron model, each electron is assumed to move in the 

combined field of the nucleus and the average distribution of the other electron(s). 

The natural coordinates for describing this are r1 and r2, the respective distances 

of the electrons e1 and e2 to the proton. The close-coupling method used by Burke 

et al. uses target atom eigenfunctions to expand the full wavefunction. 2 Integra­

differential scattering equations are obtained, which are solved by an iterative 

method of numerical integration.3 The basis set is thus entirely independent of 

the presence of the second electron, except that it is antisymmetrized due to the 
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identicity of the electrons. It is not entirely surprising therefore that this basis set is 

slowly convergent when used to describe a system where the second electron plays 

an all-important role. Furthermore, the integral equation aspect of the formalism 

makes the use of large basis sets numerically cumbersome. The close-coupling 

method can be modified to include correlation functions 4 and pseudostate functions 5 

in the expansion. The largest close-coupling calculations included six H-atom states; 

fairly converged results were obtained for energies below the n = 3 threshold, but 

there was disagreement with the magnitude, but not the shape of the experimental 

ls -+ 2s cross section. 6 

In the variational method,7 the coupled scattering equations are formulated 

using a pseudostate expansion. The pseudostate basis contains all of the open 

channel exact target atom eigenstates, while the higher bound and continuum states 

are represented by pseudostates chosen to be orthogonal, each of which has an 

associated effective energy level. The inclusion of pseudostates is preferred to having 

atomic eigenfunctions because of the difficulty in describing dipole polarization 

correctly with atomic eigenfunctions. The coefficients of the pseudostates are 

determined by diagonalizing the hamiltonian in the specified basis, and the Kohn 

variational procedure, or one of several other procedures8' 9 (inverse Kohn, optimized 

minimum norm-OMN, optimized anomaly free-OAF), is used for the solutions of 

the integro-differential equations. A major drawback of variational calculations is 

that there is no way to judge which set of variational results is best if the different 

methods give significantly different results. Another problem is the existence of 

non-physical resonances below the pseudostate effective energies. 

Fairly accurate values of the elastic scattering phaseshifts below the inelastic 

threshold for partial waves J ~ 3 have been obtained with the variational method, 

beginning with the work on S-states by Schwartz. 10 and carried on to higher 

partial waves by Armstead, 11 Shimamura, 12 Register and Poe, 13 and Callaway. 14 
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For energies between n = 2 and n = 3, the best calculations , using 14 basis functions 

(6s- 5p- 2d- 1!), were performed by Morgan, McDowell and Callaway, and by 

Callaway. 15 These calculations achieved accuracy of about 1-2% in the total cross 

section for elastic scattering, and of about 5-10% in the total cross section for 

excitation of the n = 2 states . Excitation cross sections between the n = 1, 2 

and 3 levels of hydrogen at energies up to the n = 4 threshold were performed by 

Hata, Morgan and McDowell 16 using 14 to 18 basis functions. These are the only 

calculations of cross sections in this energy range so far. 

1.2 The Hyperspherical Coordinate Method 

The use of hyperspherical coordinates and local surface functions in electron­

atom scattering problems 17 and in 3D reactive scattering problems 18 has been 

suggested for over a decade, but so far converged calculations of differential or 

integral cross sections of inelastic or reactive processes using this methodology 

have not been published. The formalism is conceptually simple and in principle 

very powerful, affording a united treatment of non-reactive and reactive processes 

for molecule-molecule collisions, and of direct and exchange processes for electron­

molecule collisions. It has by now been extensively tested for collinear atom-diatom 

reactive scattering. 19 • 20 

One of the difficulties in applying this approach is the accurate and efficient 

calculation of local hyperspherical surface functions, especially for reactive scatter­

ing processes. In the case of the electron-hydrogen atom system, these difficulties 

are alleviated by the symmetry of the system, the large proton to electron mass 

ratio, and the simple, analytically known form of the potential energy function. As 

a result, this is a very convenient system for the application and testing of this 

methodology. It is also, in some senses, an extreme prototype of light-heavy-light 
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triatomic reactive systems in which the light-light arrangement is either not bound, 

or disallowed for energetic reasons. 

1.3 The Physical Basis for the Hyperspherical Coordinate Approach 

The two electrons in the e--H system do not move independently; indeed they 

each exert influence on the other. This is called correlation, and correlation is the 

reason hyperspherical coordinates are so useful for describing two electron systems. 

Correlation is ignored in the simplest versions of the independent electron model, 2 

but more sophisticated methods attempt to add in short range correlation effects. 4 

The utility of hyperspherical coordinates becomes clear by contrast, because 

a large part of the electron correlation is contained in the corresponding surface 

function basis set. The hyperradius p, defined approximately by 

(1.1) 

simultaneously depends on the distances of both electrons to the proton, and 

is a measure of the "size" of the system. The surface functions are defined as 

eigenfunctions of the system's hamiltonian with frozen hyperradius. The use of 

this variable injects some radial correlation in these functions. The non-physical 

hyperspherical angle w, defined by 

rl 
w = 2arctan-

r2 
(1.2) 

is a function of the relative distances. In converting from coordinates r 1 , r 2 to the 

hyperspherical coordinates p, w one exchanges two infinite range variables for one 

bound and one infinite range variable. This then leads to the quasi-separability of 

the scattering wavefunction. Furthermore, the surface functions also depend on 1, 

the angle between the position vectors r 1 and r 2 of the two electrons with respect to 

the proton, and its use leads to the inclusion of angular correlation. When the latter 
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is expanded in hyperspherical surface functions, this expansion converges rapidly 

because of this quasi-separability and of the large amount of electron correlation 

built into those functions. 

The surface function basis is considered as a family of "channels." In the 

surface function expansion these channels are only weakly coupled to each other and 

this coupling is completely neglected in the adiabatic approximation. 21 Physically 

this approximate decoupling implies a separation of time scales for motion in the 

hyperradial coordinate from motion in all the other angular coordinates, analogous 

to electron motion being much faster than the nuclear motion in polyatomic 

molecules. The angular motion is bounded, by definition, as opposed to the infinite 

range of the hyperradial coordinate. This separation of motion means that in 

slow e--H(ls) collisions certain properties of the whole system (mathematically 

expressed through quantum numbers) are nearly conserved. Resonance energy levels 

can be computed from potential curves corresponding to each channel. In this study, 

we solve the fully coupled channel scattering problem, and make no approximations. 

Since we have only differential equations to solve, not integra-differential equations, 

the method is computationally efficient making it possible to include a larger number 

of states than for other methods. The largest calculation described here included 

49 surface functions, and was done on a relatively small system, a VAX 11/780 

with an attached FPS164 processor. This largest calculation took 95 minutes to 

calculate the full surface functions, and 9 minutes for a scattering calculation. 

The hyperspherical approach was used by Macek in 1968 to study the 

properties of Rydberg series of autoionizing levels of He. 17 Subsequent studies 

on the correlations of two excited electrons have been performed by Lin21 and 

by Fano. 22 The hyperspherical calculations that have been performed so far have 

been limited due to inaccuracies in the evaluation of matrix elements Pp.v (the 

first derivative coupling matrix in the adiabatic representation), and most of the 
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calculations either ignore the coupling or severely restrict the number of states 

included in the expansion (up to four). In the formulation we will present, this 

matrix is not needed, because we use the diabatic representation in which the surface 

functions calculated at discrete rather than continuous values of the hyperradius. 

1.4 The Interpretation of Resonances using Hyperspherical Coordinates 

Hyperspherical coordinates have been found to be useful in analyzing doubly 

excited states, such as the Rydberg series of states of helium observed experimen­

tally by Madden and Codling. 23 which had been unexpected, and were not explained 

by the close-coupling theory. The theory at the time of the discovery was incomplete 

because, even though levels of states could be calculated, there was no interpretation 

for the similarities and series found. Then Macek used hyperspherical coordinates 

and was able to explain the observed behavior .17 

The cross sections we have calculated contain features that are attributed to 

resonances . One explanation for the resonances is the presence of autoionizing states 

of H-. To understand what we mean by "autoionizing states" and "doubly-excited" 

states it is useful to refer to the independent electron model as applied to H-. In 

the independent electron model, each electron is separately given a set of quantum 

numbers, n1l1 and n2l2, leading to a system configuration n1l1n2l2. (The m1 and 

m 8 quantum states for each electron are combined to form total angular momentum 

states J , M1, Sand Ms.) 

The ground state of H- has the configuration 1 S (ls2 ), because both electrons 

are in the lowest orbital. Its energy is -0.52775 hartree. 24 If one electron is excited 

to a continuum level, the configuration is lsEs. The total energy for such a system 

is greater than -0.5 hartree. As it turns out, there are no singly-excited states 

(configuration ls2s, ls3s, etc.) of H-, though such states do exist for the helium 

atom. When the total energy of the H- system is higher than the second threshold, 
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at -0.125 hartree, there are two possible detached configurations- we are limiting 

this discussion to s orbitals- namely 1sEs, as before, and 2sEs, where one electron is 

excited to a 2s orbital and the other is free. But what about doubly-excited states? 

Configurations such as 2s 2 , 2s3s, etc., will exist at certain energies below the n = 2 

threshold- they must be lower, because the second electron does not have enough 

energy to reach the continuum. The coupling between the doubly excited state and 

the continuum configuration 1sEs allows the former to decay away. Such states are 

called "autodetaching" (in the case of helium, autoionizing), have a finite lifetime, 

and lead to the resonances observed in scattering. 

However, in addition to the bound 1 S (1s 2 ) state of H- there is a second 

(barely) bound (i. e., quadratically integrable) state of this system designated 

3 peven, with the configuration 2p2 and energy -0.12538 hartree. 25 •26 There is no 

3 peven channel that asymptotically correlates with the 1s state of hydrogen, because 

the parity of 3peven is ( -1) 1 +1. If LS-coupling is a good approximation, there is 

no lower state to which the 2p2 level may couple, thus the 2p2 state does not decay 

to the ground state nor does it autoionize. There are no other bound excited states 

of H-. 

Recently a new classification scheme for states of 2-electron atoms, based on 

the set of internal correlation quantum numbers K, T, and A has been introduced27 

Supermultiplet structure observed for intrashell states28 may be interpreted, as well 

as predicted, by this scheme. 

1.5 Hydrogen Atom Excitation Energies 

For convenience in reading the rest of this thesis, we list in Table 1 - 1 the 

hydrogen atom threshold energies in hartree, measured from ionization of the 

atom, and in rydbergs, measured from the ground state of the hydrogen atom. 

Furthermore, in order to make a comparison of our scattering calculations with 
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experimental results we must make the appropriate conversion from atomic units 

to the experimental units (usually eV). The conversion factors used depend on the 

type of experiment. 29 When comparing to a scattering experiment, the infinite­

mass rydberg (13.605826 eV) is used. This is due to an effective cancellation of 

reduced-mass and center-of-mass effects. 29 When comparing to a photodetachment 

spectrum, one computes the photon energy using the hydrogen reduced-mass 

rydberg (13.598420 e V), and then adds in the electron affinity for hydrogen, which 

is 0.75422 eV. The energies in electron volts consistent with the two types of 

experiments are also listed in Table 1.1. 

1.6 Overview 

The method of hyperspherical coordinates is presented in this thesis, and the 

results from its application to hydrogen atom electron scattering are reported. In 

Chapter 2 we present the formalism used in the hyperspherical coordinate method, 

and in Chapter 3 we present the asymptotic analysis. Convergence studies and 

computational features are presented in Chapter 4. We study the basis functions, 

the surface functions, and the eigenvalues in Chapter 5. In Chapter 6 we present our 

scattering results, including discussion and analysis. In Appendix A we discuss an 

alternate method of expanding the surface functions in hyperspherical harmonics, 

and an alternative coordinate system, cylindrical coordinates. In Appendix B 

we give perturbation theory derivation of the asymptotic behavior of the surface 

functions. 
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Table 1-1: Energy levels of hydrogen atom. 

En 
n 

hartree Rydbergb eve eVd 

1 -0.50000 0.0 0.0 0.75422 
2 -0.12500 0.75000 10.204 10.95859 
3 -0.05556 0.88889 12.093 12.84829 
4 -0.03125 0.93750 12.755 13.502 
5 -0.02000 0.96000 13.061 13.81581 
6 -0.01333 0.97333 13.242 13.98211 
7 -0.01020 0.97959 13.327 14.08238 

aEnergy, in hartree, with respect to the ionized atom. 

bEnergy, in Rydberg, with respect to the H(1s) state. 

cEnergy, in eV, with respect to the H(1s) state, using the infinite mass Rydberg for 

conversion to eV (1 Ryd=13.605826 eV). 

dEnergy, in eV, with respect to the H- ground 1S state, (H atom electron 

affinity equals 0. 75422 e V) and the reduced mass Rydberg for conversion to e V 

(1 Ryd=13.59842 eV). 
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CHAPTER 2 

FORMULATION OF THE SCATTERING PROBLEM 

For electron-hydrogen atom scattering at low energies (below the ionization 

threshold) there are two arrangement channels, e1 +H (channel 1), and e2 +H 

(channel 2), where e 1 and e2 are the two electrons. A third arrangement, in which 

the electrons are close to each other but distant from the proton, does not need to 

be considered, since it is not a stable one. 

In this chapter we will set up the general Schrodinger equation for a three 

particle system, remove the center of mass motion, and transform to Delves' 

coordinates. Then we will transform to symmetrized hyperspherical coordinates and 

discuss features of the potential energy surface. We will describe the method used 

for solution of the Schrodinger equation, including the surface function expansion, 

calculation of potential matrix elements, and solution of the coupled radial equation. 

2.1 General Three Body Problem 

In this section we present the general theory for treating three body systems 

A+ BC in three dimensions. The Hamiltonian for such a system, with nine degrees 

of freedom, is written 

(2.1) 
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where mA, mB, and me are the masses, PA, PB, and Pc are position vectors from 

the origin of a space-fixed set of cartesian axes, V~, is the Laplacian for particle i, 

and V is the potential energy of the system. The relative coordinates r~, R~, and 

Ra are defined by the relations 

I 
rA=pc-PB 

mBPB + mcpc 
R~ = PA- PGBc = PA- ------­

mB+mc 

RG = mAPA+ mBPB + mcpc 
M 

(2.2) 

where M is the total mass, G BC is the center of mass of BC, and G is the center 

of mass of ABC. Transformation to these relative coordinates gives 

9D n2 
'M2 h

2 
2 ( I I ) n2 

2 H =- vR' ---Vr' +V RA,rA,IA- MVR 
2J.LA,BC A 2J.LBC A 2 G 

where the reduced masses J.LBC and J.LA,BC are defined as 

mBmc 
/1-BC = 

mB+mc 

mA(mB +me) 
J.LA,BC = M 

and 1 A is the angle between the vectors r~ and R~: 

r~ ·R~ 
cos/A= lr~IIR~I' 

(2.3) 

(2.4) 

(2.5) 

The kinetic energy operator for the center of mass is now dropped, because the 

overall translation of the system is not of interest; therefore one is left with a six-

dimensional problem whose Hamiltonian H is given by the first three terms in the 

right hand side of Eq. 2.3. 

One may write the corresponding six dimensional Schrodinger equation in terms 
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of one mass, J.L, which is independent of channel A, by transforming to Delves mass-

scaled coordinates: 1 

RA = ( 1-LA,BC) 1/2 R~ 
J.L 

_ (/-LBC)l/2 1 
rA- -- rA 

J.L 

J.L = ( mAmBmc ) 
1
1

2 

mA +mB +me 

The Hamiltonian H in Delves' coordinates is 

where 

and 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

If one uses laboratory-fixed coordinates,2 by which we mean a system Oxyz 

whose origin 0 is the center of mass and whose axes are parallel to a system of 

laboratory-fixed axes,3 r A is represented by distance r A, azimuth OrA, and polar 

angle 'PrA' while RA is represented by RA, ORA' and 'PRA· The orbital angular 

momentum terms L~ and L~ A are expressible in terms of the angles 0 RA, cp RA, 

and OrA, 'PrA, respectively. More generally, one may rewrite the Hamiltonian using 

(>., v, ~e) to represent a cyclic permutation of (ABC). 

Let us consider the particular case of two electrons and one nucleus of 

charge Ze. The center of mass of the system will be assumed to lie on the 

nucleus. The error introduced by this assumption is negligible compared with the 

desired scattering calculation accuracy, and can be corrected for if desired by an 

appropriate perturbation expansion. The configuration in arrangement channel >. 
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is described by two mass-scaled relative separation vectors, r). = (r)., (},.>.., rp,.>..) and 

R>. = (R).,(}R>..,rpRJ· 

One may also formulate the theory in terms of the "body-fixed" coordinate 

representation. 4 •5 This representation has advantages over the laboratory-fixed 

representation, when certain approximations are made. 6 We will not be making 

these approximations, however, and will use the laboratory-fixed representation2 

throughout, except when considering the potential energy function . In the body­

fixed coordinate representation the angles(},.>.. and rp,.>.. are replaced by/)., the angle 

between the two vectors r >. and R>., and '1/J>.., the "tumbling" angle. By definition 

'1/J>.. is the angle between 1r 1 and 1r2, where 1r 1 is the half-plane defined by R>.. and 

the space-fixed Oz-axis, and 1r2 is the half-plane defined by R>. and r>,.. This so­

called "tumbling" angle ranges from 0 to 27r, and is one of the three Euler angles 

(rp>.., (}>.., 1/;).).7 

When considering atom-diatom reactive scattering, there is an essential 

difference between L>.. and i,.>., because L,.>. refers to the rotation of the diatom, 

while L>. describes the rotation of the atom with respect to the diatom. In the 

present application the two angular momentum operators describe the same thing, 

but for different electrons; therefore it makes sense to relabel them. We will use [1 

for L,.>. ,and f2 for L).. 

2.2 Hyperspherical Coordinates 

We will next change to a system of coordinates in which there is only one 

unbounded coordinate and the rest are angular. This procedure is analogous to 

transformation from cartesian to polar coordinates in the collinear (!-dimensional) 

representation, and, in fact, may be generalized to ann-particle (3n-3)-dimensional 

system. 
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2 .2.1 Coordinate transformation 

It is advantageous to define the hyperspherical coordinates8 p, W). for arrange-

ment channel>. = 1, 2 by: 

W). T). 
tan-=-

2 R>. 

(2 .10) 

The four angular degrees of freedom remain the same. Thus the whole system is 

described with six coordinates, p, w >..,OrA, rprA, (} RA, rp RA. For simplicity, and without 

loss of generality, we set >. = 1 and designate these coordinates as p, w, (} 1, rp 1, 02, 

and rp2, where by convention w = w 1. The quantity p is the hyperradius and the 

five angles are the hyperangles in the six dimensional configuration space of the 

system. 

The coordinates in one channel are related very simply to the coordinates in 

the other channel, due to the symmetry inherent in the system; r 1 is the same as 

R2; R 1 equals r2; PI equals P2 and thus is channel independent, and w =,..- w2. 

The relationships between the four angles are (} R 1 = Or2 , rp R 1 = rpr2 , and conversely, 

and is independent of>.. From now on, we will for simplicity replace r 1 and R 1 by 

r and R, respectively, unless otherwise stated. 

An important property of these coordinates is that the map of V(p,w,1) is 

not distorted when one changes from coordinates >. = 1 to >. = 2; it is only 

rotated. 8 The rotation is by 180° in the current problem. It is to insure this 

property that we have introduced the seemingly superfluous factor of~ in Eq. 2.10. 

These coordinates, without that factor of ~ ' were first used by Macek9 in studying 

properties of autoionizing states of He. The simplicity of the transformation from 

>. = 1 coordinates to >. = 2 coordinates implies that the same coordinate system 

may be used for both channels. There is no need for separate solutions in each 
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channel region, and hence no need to match the solutions 10 at the boundary of the 

region. 

2.2.2 Hamiltonian 

The Schrodinger equation we will proceed to solve is 

Hw(r,R) = Ew(r,R) (2.11) 

where E is the total energy and w(r,R) is the six-dimensional wave function. We 

intend to apply standard partial wave analysis. The total angular momentum 

operator j is the vector sum of z; and z; 

(2.12) 

and is independent of channel >.. Since } 2 , Jz, and H all commute, we expand w 

in terms of their simultaneous eigenfunctions WJM: 

00 +J 
W= L L CJMWJM 

J=OM=-J 

The wavefunctions wJM therefore satisfy the equations 

J2wJM = J(J + 1)h2wJM 

J2 wJM = MhwJM z 

The Hamiltonian H in hyperspherical coordinates is given by 

h
2 

( a2 
5 a ) 12 

H=-- --+-- +-+V(p,w,/) 
2p, Bp2 p Bp 2p,p2 

(2.13) 

(2.14) 

(2.15) 

where the Grand Canonical angular momentum operator 12 (also known as 

Casimir's operator for the 0 6 group) 9 is 

(2.16) 
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and the hyperspherical pseudo-angular momentum operator L~ is 

A 2 2 ( 8
2 a ) Lw = -41i aw 2 + 2cotw aw 

1i2 1 ( 8
2 

) • =-4 -.- --+1 smw 
smw 8w 2 

(2.17) 

The eigenfunctions ~, of A 2 are the analytically known hyperspherical harmonics, 

with eigenvalues 17(17 + 4), where 17 is an integer. 11 However, the potential V does 

not commute with A 2 , so the wavefunction is not factorizable into an angular part 

(involving the five hyperangles) and a p-dependent part. The eigenfunctions of A2 

may be used to expand the wavefunction, however, which we consider in Appendix 

A. 

2.2.3 Potential energy function 

The potential energy function for the system of two electrons and a nucleus of 

charge Z is the sum of the Coulomb interactions of the three particles: 

Z 2 z 2 2 
V(r' R')- __ e_- _e_ e 

' - lr'l IR'I + .,-lr-, --R---.,.'1 (2.18) 

Here the zero of energy is taken to be the energy of the configuration for which the 

three particles are infinitely separated. Since the mass scaling factors are very close 

to unity, we may set r = r' and R = R' without loss of accuracy. In hyperspherical 

coordinates the potential becomes 

V(p w I)=- e2 (-z- + _z_- -;:::.=::;::1===) 
' ' p cos~ sin~ yfl- sinwcos1 

(2.19) 

Note that this potential has a simple 1/ p dependence. We might expect that the 

forces involved will be long range and die off slowly. 

In order to better visualize the properties of the electron-hydrogen atom system, 

we obtained contour plots of V for energies both above and below the ionization 
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potential. This was done by establishing a correspondence between the three-

dimensional internal configuration space spanned by coordinates p, w, and 1 and 

points P in space 0 XYZ. 8 This correspondence is given by the relations 

Z = pcosw 

X= psinw cos1 (2.20) 

Y = psinwsin1 

by which we see that the internal coordinates are being treated as spherical polar 

coordinates in this mapping. The range of 1 is 0 to 1r, and there is a one-to-one 

correspondence between points in the Y ~ 0 half-space of the OXYZ space and 

configurations of the system. For display purposes, we will extend the range of 1 

to 0 to 21r and make all of our plots of the potential energy symmetric about the 

OX Z (I = 0, 1r) plane. 

The potential of the system with the energy origin shifted to the ground state 

of an isolated hydrogen atom will be labeled V0 • Plots of the equipotential for 

Vo = 10.5 e V (V = -3.1 e V) were obtained at constant values of Z ranging from 0 

to 24 bohr, at 2 bohr intervals. These were used to construct a wooden model of the 

surface, which has been helpful in visualizing the scattering processes. We found 

that this equipotential surface resembled a cylindrical pipe with a sharp dimple, or 

puncture, reaching to the cylinder's axis. A photograph of that model is given in 

Figure 2.1. 

The most interesting feature of the potential surface is the part near the origin, 

the dimple. Consider what happens when Z = 0, that is, w = ~: 

. w 
r = psm 2 

w 
R = pcos 2 

(2.21) 
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These configurations correspond to the two electrons being equidistant from the 

proton. The angle between the vectors r and R is 1, as usual. The contour at 

Z = 0 is given by the equation 

(2.22) 

where C 1 and C2 are constants easily obtained from Eq. 2.19. This is approximately 

the equation of a cardioid, provided V (not Vo) is negative. In Figure 2.2 we 

show several contours, from which we see that a cusp forms around 1 = 0, which 

corresponds to Y = 0, X > 0. This is due to the high repulsion between the two 

electrons, which are very close to one another in this region. On the other side, for 

1 = 1r (and X negative), the electrons are separated by the proton and the energy of 

the system is finite. The contours (for Z = 0) extend further and further out as one 

considers higher energies. The limit is reached at V0 = 13.6 eV, which corresponds 

to ionization of the hydrogen atom. The equation of the corresponding contour is 

now 

(2.23) 

The bottom of the heart shape has retreated to infinity, and the top (in three 

dimensions) becomes a cone-shaped potential surface. The points along the axis of 

the cone correspond to 1 = 0 and w = ~. The potential is infinitely positive along 

this positive X axis, corresponding to the two electrons on top of one another and 

the proton elsewhere. 

We show the contours obtained at higher values at Z =constant in Figures 

2.3- 5. One can see from the series of curves that as Z increases, the contours 

become increasing circular. Besides this lack of dependence on 1, the contours 

asymptotically become independent of Z. The potential on the Z azis (for p f. 0) is 

negative infinity, and the corresponding configuration is one electron on top of the 

proton and the other electron elsewhere. 
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By plotting contours obtained at constant Y = 0 in Figure 2.6 we get a view of 

the equipotential surface on a cut perpendicular to that in Figure 2.2. In these plots 

1 equals 0 in the right half of the plane and 71' in the left half. One can see that 

the three-dimensional internal configuration space is divided into two symmetric 

arrangement channels by the Z = 0 (w = ~) plane. 

A scattering experiment can be visualized as follows. One end of the tube 

corresponds to e 1 + pe2. As e1 approaches the atom, the system can either "bounce" 

off the cone, resulting in non-exchange, or the system can undergo exchange, that 

is, it passes through to the other end of the cone, which represents e2 + pe 1. If the 

energy is larger than the ionization potential I of hydrogen, the walls of the vertical 

tube no longer bind the system. Instead the system can penetrate into the V = I 

cone and a larger region of configuration space is energetically accessible. 

2.3 Symmetry Properties 

The Hamiltonian of the system is invariant with respect to exchange of the 

electrons and to inversion of the electrons through the proton (in the infinite 

mass approximation for the proton being adopted in these calculations). As a 

result, solutions to the Schrodinger equation can be found which are simultaneously 

eigenfunctions of the exchange operator P12 and the inversion operator S.. This 

leads to quantum numbers p = ±1 for exchange and ( -1)n' where n = 0,1 for 

inversion for the orbital part of the wavefunction. 

p12 wJMSn( 1) = 'ii!JMSn(2) = p\I!JMSn(1) 

;}'iJ!JMSfl = ( _1)n 'ii!JMSfl 
(2.24) 

The Pauli principle requires that the total wavefunction change sign when 

the coordinates of the two identical fermion particles are exchanged. The total 

wavefunction is the product of the orbital part with the spin part; therefore a 
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function that is anti-symmetric in the spin function, indicating a singlet (S = 0) 

spin state must be spatially symmetric with respect to exchange. Likewise the 

Pauli principle dictates that the triplet (S = 1) spin state, which is symmetric with 

respect to exchange, must go with an anti-symmetric spatial wavefunction. Thus we 

make the following correspondence between exchange and spin quantum numbers: 

p=(-l)s (2.25) 

There is no similar connection between II and S. In the physical wavefunction S 

will still be a good quantum number, but it is necessary to take linear combinations 

of the even and odd parity states. 

2.4 Surface Function Expansion 

Motion in the p coordinate is almost decoupled from the hyperangular 

coordinates. To the extent that this is true, it makes sense to try to separate 

the p-dependence from the angular dependence in the wave function. This being 

the case, we construct basis functions (analogous to vibrational functions) that have 

only parametrical dependence on p. 

The pseudo angle w is a function of the ratio of the distances of the two electrons 

to the proton. The kinetic energy associated with pseudoangular motion is greater 

than that due to radial motion, because the pseudoangular variable is bounded 

whereas the radius is not. 12 This suggests the use of a Born-Oppenheimer type 

expansion, 13 analogous to the expansion of the wavefunction of a atom-diatom 

A + BC system in the vibrational states of BC. In the first approximation, this 

expansion is then truncated to only one term. 9 · 

The surface functions (bJMSII (so called because they are defined on the surface 

of the hypersphere) are defined as the eigenfunctions of the surface Hamiltonian H 
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which is obtained by omitting in the Hamiltonian H the hyperradial kinetic energy 

operator:9 

Therefore 

"'2 - A 
H(p) = - 2 + V(p,w,1) 

2J..Lp 
(2.26) 

(2.27) 

where i is an index here introduced to label these surface functions. We expand 
· I 

"iJ!fMSn in the surface functions with coefficients bJsn: and put in the p- 5/ 2 factor 

to simplify the resulting equations :9 

(2 .28) 

The index i' is introduced to permit consideration of a set of many linearly 

independent solutions of the Schrodinger equation which are needed to obtain the 

appropriate scattering matrices. 

2.4.1 Expansion of surface functions in non-symmetric basis 

The eigenfunctions of ry are spherical harmonics, Yi;m;(Oj,IPj)· Following 

Arthurs and Dalgarno,2 we couple the Yi 1 m 1 and Yt2 m 2 to form orthonormal 

eigenfunctions of the total angular momentum operator J 2 and its projection Jz, 
... 2 ,..2 

a..s well a..s 11 and l2 : 

where the C's are Clebsch-Gordan coefficients in the notation of Rose. 14 

Let us expand the surface functions ~~Msn in these coupled spherical 

harmonics. The expansion coefficients f J s n ;
211 

( w; p) will be called the one-

dimensional surface functions . 

(2.30) 
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This expansion is substituted into the Schrodinger equation for it! 1 M s II, using 

the known relationships satisfied by the Yz:'l:. We multip'ly both sides of the 

resulting equation by Y/f!(82,'P2,8l,cpi) and integrate over the four angles, taking 
2 1 

advantage of the orthonormality of these functions. The following equation results: 

(2.31) 

where the V 1Il~~~J are the surface potential matrix elements 
2 1 

vJII~~~:(w;p) = (Yz~~ I V(p,w,j) I Y/f!) 
2 1 2 1 

(2.32) 

It is simple to show that VJil~~~:(w;p) = VJII~:~nw;p) and that it is a symmetric 
2 1 1 2 

function of w: 

Now we expand j 15rr;2z1 in functions t~1211 (w; p). We have not yet specified 

what form these functions will take; that is discussed below. 

! Jsrri = '\'cJSIIitJl2l1(w·p) 
l2l1 ~ l2l1P p ' (2.33) 

p 

The functions t~1211 (w; p) appearmg m Eq. 2.33 form a complete set which 

can be arbitrarily chosen. The criteria for their choice are that they be easy to 

compute and give fast convergence of the expansion in Eq. 2.33, permitting it to 

be truncated after just a few terms. 

A simple choice for t~1211 (w; p) would be to solve the equation which results 

from Eq. 2.31 if one neglects V entirely. 13 This approach has some good points. The 

solutions 11 then are analytically known functions, the Jacobi polynomials, which 

when multiplied by Yz~'r;, are eigenfunctions of A 2 • Also, that equation is solved 
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independent of p, so the same basis functions can be used to expand the surface 

functions at every value of p, which is a computational advantage. However, this 

basis works well only for a small range of p and converges very slowly for larger 

values of p. 15 •16 We consider this method separately in Appendix A. 

We decided to use solutions to the following differential equation, in which we 

neglect the off-diagonal terms of the potential matrix, such that 

[
_1_ (i} + l!(l1 + 1) + l2(l2 + 1)) +VJI1l2l 1 (w· p)l tJl2l 1 (w· p) 
2J..Lp2 w sin21" cos2-I l2ll ' P ' (2.34) 

= v:I1l2l1 (p) tj/2l1 (w; p) 

where vff111211 (p) are the eigenvalues of the equation. In Eq. 2.34 the only variable 

(upon which the differential operator i~ operates) is w. The quantity p acts as a 

parametric variable. If one makes the change of variable from w to 1r- w, one gets 

the same equation, but with 11 interchanged with 12. This means that 

(2.35) 

except in the special case where 11 = h, where both symmetric and antisymmetric 

solutions are possible, as is discussed below in greater detail. 

This equation is solved numerically using finite difference methods to obtain the 

eigenvalues and eigenfunctions. Section 5.1 is devoted to studying these functions 

in detail and contains figures of them. To make the numerical solution simpler, we 

divide out sinw to remove the first derivative: 

(2.36) 

This forces the boundary condition Tj1211 (w = 0; p) = 0, Tj1211 (w = 1r; p) = 0 in 

order for t~1211 (w; p) to be finite at those values of w. Then the coupled differential 

equation becomes 

(2.37) 
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where the effective potential is 

(2.38) 

The p dependence in yJnl~l~ (w;p) can be factored out according to Eq. 2.19. 

However, since that is a p- 1 dependence while the kinetic energy operators have 

a p- 2 dependence, p cannot be removed entirely from the equations, and the 

eigenfunctions T/ 1211 (w; p) must be computed separately for each value of p. One 

approach is to compute the Tj 1211 (w; p) at a discrete set of values Pi of p such that 

for each Pi, that set is appropriate for a range of values of p (see section 2.6). 

The basis functions T/ 1211 (w; p) (which we will call "primitives" to distinguish 

them from the surface functions, which also are basis functions, after all) are 

determined separately for each [1 211] combination. Basis functions with the same 

[ 1112 ] are orthogonal. These functions are normalized according to 

(2.39) 

If lt equals 12 then the effective potential ve~1211 is symmetric with respect to 

w = ~ (i. e., with respect to exchange between r 1 and r 2). The T/11 functions 

are therefore either symmetric or antisymmetric, and are obtained in separate 

calculations. A function that is symmetric in w does not always correspond to a 5-

dimensional basis function that is symmetric overall (i. e., with respect to exchange 

of the two electrons), however. The symmetry of Yif M is determined by the evenness 

or oddness of J because the parity II is always even when 11 equals 12 • Thus if J 

is even, the singlet basis functions will be symmetric with respect to w = ~, but if 

J is odd, then it is the triplet basis functions that have this symmetry. If J is odd, 

the singlet 5-dimensional basis functions, which are even overall, are antisymmetric 
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with respect to w = ~- We will therefore use the notation Tj}:s and a similar 

notation for tPJll . 
J + S 

Using the primitives defined by Eq. 2.37 and Eq. 2.39, we can transform 

Eq. 2.31 into an algebraic eigenvalue-eigenvector equation in the cf 5 n (p) and 

c~f~~i . Indeed we get, replacing Eq. 2 ~33 into Eq. 2.31, 

L [v; lll:~l1 (p) _ cfsn (p) _ yJ n~~~~ (w; p) J c~t~i t~l:~l1 (w; p) 
p 

(2.40) 

The above equation is multiplied by sin2 w t:,l:~l 1 (w; p) and integrated over dw, which 

results in the following equation after p' and p are interchanged: 

(2.41) 

where 

(2.42) 

This is the desired algebraic eigenvalue-eigenvector problem. We define the 

diagonal matrices 

(2.43) 

( Jll)Si Si JSll( ) 
e S'i' = hs' i'ci P (2.44) 

the interaction matrix V 0
1 n, 

(2.45) 

which is symmetric and only has elements in off-diagonal blocks, and the eigenvector 

matrix c1 n 

(2.46) 
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Stating the eigenvector problem in matrix notation we have 

(2.4 7) 

Thus we have obtained an equation that is decoupled in both J and II, but not 

according to spin, which is included as a column index in cJII as well as the index i. 

In the next section we will obtain a transformed equation which has been decoupled 

in S as well. 

2.4.2 Symmetrized basis 

If the basis functions in which we expand the surface functions ~ f M s II have 

the same property regarding exchange and therefore spin as wJMSII in Eq. 2.24, 

then the matrix equations decouple and much effort is saved. Therefore we require 

that our new primitive basis functions 9JMSII behave as follows: 17 

(2.48) 

The basis functions in which we have expanded ~fMSII so far are decoupled with 

respect to parity, but not exchange. This can be shown as follows. 

To invert the coordinates through the origin, one replaces o,., 'Pi by 1r-O,., 1r+c.pi 

(w is unchanged by inversion). From the definition of Y1~f"{ (Eq. 2.29) and the 

properties of spherical harmonics one obtains 

(2.49) 

from which we can link the parity quantum number to 11 + l2, 

(2.50) 

We have already seen the effect of exchanging coordinates (1) for (2) on 
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t£1211 (w; p) (see Eq. 2.35), but not on Y1~t;. The relationship between Y1~t; and 

Y1~'1; is easily obtained: 10 

y~~t;(o2,<p2,ol,<pi) = (-1)J-I2 -11 Y~~t;(ol,<pl,o2,<p2) 

= (-1)J-n Y1~'l;(OI,<pl,o2,<p2) 
(2.51) 

Thus we see that changing the coordinate system from). = 1 to). = 2 has the effect 

of switching 11 and 12 as well as a possible change of sign in Y1~t;. The effect of P12 

on the entire primitive basis function is 

P12 [Y~~~(82,<p2,ol,<p!)t;1211 (w;p)] = 

( -l)J-n Y1~'1; (82, <p2, 81, <pi) t;1211 (1r-w; p) 
(2.52) 

It is clear that the simple product function Y1~f'; ( 02, <p 2, 01, <pi) t£1211 ( w; p) does not 

possess exchange symmetry. 

To obtain such a property we take linear combinations of two such products 

according to 

(2.53) 

where 

A=S+J-II (2.54) 

and N1 2 11 is a normalization coefficient. Note that only the 5-dimensional function 

has been symmetrized. We do not form symmetric and antisymmetric functions 

of w, nor do we symmetrize the Y1~t; functions, because to do so results in more 

work. 18 However, when 11 = 12 only one term is needed: 

(2.55) 

The basis functions must be linearly independent, of course, and this leads to a 

restriction on the values assumed by 11 and 12 , because E>ltz';~n differs from E>~lz;ffn 
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by, at most, a sign change. We therefore expand over pairs [l1l2], for which, by 

definition, l1 ~ h. 

(2.56) 

The new coefficients a~f~~i(p) are obtained from c~t~i by a linear transformation. 

(2.57) 

where l1 < 12 . This leads to 

(2.58) 

We define the unitary matrix T such that we have 

JII [aJII,S=O 0 l 
c =TX 0 aJII,S=l (2.59) 

The new uncoupled eigenvector-eigenvalue equation is 

(2.60) 

where we define the diagonal matrices 

(2.61) 

and the interaction matrices V 0 J 5 n are obtained by a unitary transformation from 

V JII. 
0 . 

[
VooJn,s=o o ] - JII 

VoJII,S=l = TVo T 

The elements of V 0 J 5 II are found to be, using Eq. 2.45, 

(2.62) 

(2.63) 
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which is also symmetric. It should be remembered that A has been defined by 

Eq. 2.54, and the values of 11 ,12 and 1i, 1~ are restricted by the value of fl according 

to Eq. 2.50. 

If one is considering a case where only 11 = 12 states are allowed (as is the 

case for J = 0 and for J = 1 with even fl), then the elements of u 15 II depend 

on S since, in their determination from Eq. 2.34 they are calculated separately, as 

discussed after Eq. 2.39. In this case the elements of u 1 s II may be rewritten as 

(2.64) 

The eigenvector matrix a 1 s II is orthogonal since it is the eigenvector matrix 

of the real symmetric matrix V 0
15II + u 15II. We describe the method used to 

numerically calculate the potential functions V 1 II ~~~:(w; p) and potential matrix 
2 1 

elements V 1 II :~::PP' in the following section. 
2 1 

2.5. Calculation of Potential Matrix Elements 

In this section we will show how the potential functions V 1II~~~:(w;p) are 
2 1 

calculated 19 as well as the matrix elements V 1 II :~::PP' (p). These numbers are needed 
2 1 

in order to calculate the surface functions. The potential matrix is a function of w 

at a fixed value of p, and was defined as follows in the previous section: 

where the brackets indicate integration over the full range of the variables 81, 'P1, 82, 

and 'P2 (and therefore of 1). 

The potential energy function is most easily expressed using the body-fixed 

angular coordinate 1, as well as the hyperspherical coordinates, p and w. 

Ze 2 
( 1 1 ) e

2 
1 V(p w 1) = -- -- + -- + ----r:==;==== 

' ' p cos~ sin~ p yf1- sinwcos1 
(2.66) 
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The first two terms in the potential, representing electron-nucleus attraction, are 

independent of the integration variables of Eq. 2.65 , and lead to diagonal terms in 

the potential matrix. The off-diagonal elements in those matrices results from the 

third (electron repulsion) term. 

It is convenient, for the evaluation off the potential energy matrix elements, to 

make a change of variables from space-fixed angles to body-fixed angles, and to use 

the orthonormalized functions D A{'! ( (), rp, 1, t/J): 

(2.67) 

These functions are products of Wigner rotation functions 14 Df..m and 

renormalized Legendre polynomials 10 P1? (I), 

pn( ) = plnl (cos ) ( (l1 -lnl)! 211 + 1) 112 
x { ( _1)1n1 

ll I ll I (h + lnl)! 2 1 

The spherical harmonic Yz? is related to P1? ( 1) by 

n >O, 
n ~o (2.68) 

(2.69) 

The functions DAt( are simultaneous eigenfunctions of the total angular 

momentum operator P, its projection along the laboratory-fixed z-axis Jz, as well 

as its projections along a body-fixed axis Jz, and of the square of the orbital angular 

momentum i~: 

(2 .70) 
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The Y1~f'; and the D/l1 are inter-related by the expression 10 

J 

y,~f':(02,~P2,o1,rpi) = L (-1) 11 -nC(Jl1l2;n -no)D/l';(o,v:;,,,t/J) (2.71) 
0=-J 

where 82 = 0 and 1P2 = rp. Substituting for Y1~f': in the potential matrix element 

expression Eq. 2.65, and taking advantage of the orthonormality of DJ!'; gives the 

following: 

1 l' l' ( 1 1 ) --612 --+--
p 1112 cos~ sin~ 

2 2 

(2.72) 

where we have defined a new quantity, v,n,, (w; p), by 
1 1 

(2.73) 

In order to compute this integral, we expand the repulsion energy term in a 

series of Legendre polynomials of cos1.6 A different expansion results for w < ~ 

than for w > ~: 

1 

(1- sinw cos 1)-li = 

00 

1 ~ kw 
--w LPk(cos1)tan -
cos -2 2 

k=O 
00 

1 ~ kw 
~ L Pk(cos 1) cot -
sm-2 2 

k=O 

for 0 ::; w ::; ~ 

(2.74) 

for ~ ::; w ::; 11' 

Using this expansion leads to integrals over products of three associated Legendre 

functions, which can be evaluated analytically. The result 14 involves the product 

of two Clebsch-Gordan coefficients: 

(2. 75) 

The above expression vanishes in certain cases. First of all, the Clebsch-Gordan 

coefficient C(l 1 kl~; 000) is non-zero only if the sum l1 + k + l~ is an even number. 14 
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Secondly, there must be a triangular relation 14 among the integers l 1 ,k,l~ which 

means that the infinite expansions in k of the repulsion are ·effectively truncated 

without approximation. The final exact expression for v,n,, (w; p) is thus found to 
1 1 

be the following: 

where w' is an angle in the 0 to ~ range defined by 

1 { W, w = 
7r- w, 

for 0 ~ w ~ ~ 
for ~ ~ w ~ 1r 

Replacement of Eq. 2. 76 into Eq. 2. 72 gives finally 

1 l' l' ( 1 1 ) --821 --+--
p 1211 cos~ sin~ · 

2 2 

(2.76) 

(2.77) 

(2.78) 

The matrix elements yJn~~~:pP•(P) are obtained from Eq. 2.42 by trapezoidal 
2 1 

rule integration over w. This rule is used because the t~1211 (w; p) functions were 

obtained by a first order finite difference method as described in section 2.4.1. 

2.6 Solution of the Coupled Equations 

Once the surface functions ~JMSll defined by Eq. 2.27 are obtained, the next 

step is to determine the radial function expansion coefficients bJ 5 n introduced in 

Eq. 2.28: 

'I!f,Msn = P-~ L bJsn~' ~fMSn (w, 4 angles; p) 
i 

(2.32) 

In section 2.2 we stated that the Hamiltonian in hyperspherical coordinates was H: 

(2.79) 
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We find it convenient to define a new Hamiltonian here, H: 

(2.80) 

such that 

(2.81) 

There are two useful ways to treat the surface functions: one is to let them be 

continuously variable in p, the other is to let p take on only discrete values from 

We used the second option, which is to say we have adiabatic representation. 

This is in contrast to the work of C. D. Lin, 13•15 and of Klar20 in hyperspherical 

coordinates, who both used the adiabatic representation. In the latter one needs to 

evaluate the derivatives of the surface functions with respect to p. In the diabatic 

representation all these derivatives are automatically equal to zero, because the 

surface functions (as opposed to the scattering wave function) do not depend on 

p. However it also means that each coefficient b15n depends on Pi as well as on 

p, and that there will be potential coupling in the scattering equations, in lieu of 

the coupling which derives from the p dependence of the surface functions in the 

adiabatic representation, as will be seen in Sections 2.6.1 and 2.6.2. 

2.6.1. Diabatic representation 

The equation coupling the expansion coefficients b1 5 n is obtained by substi-

tuting the expansion in Eq. 2.28 into the Schrodinger equation (2.81), multiplying 

by an arbitrary surface function, and integrating over the five angles. The surface 

-functions satisfy Eq. 2.27 with p = p and are orthonormal. The Hamiltonian H of 

Eq. 2.80 is re-expressed in terms of the surface function Hamiltonian H of Eq. 2.26 

as 

- n,2 a2 Ish2 (fi)2_- (fi)2 -
H =- 2J.L ap2 + 8J.LP 2 + P H(p) + V(p,w,1)- P V(p,w,1) (2.82) 
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The substitution just mentioned gives 

~{ [- n
2 

d
2 

+ 15n
2 

+ (~) 2 e 1 srr(i5) _ E]bJsni' if?JMsn 
L...t 2J.L dp 2 8J.Lp2 p ' ' ' 

' 

+ [v(p,w,/)- (~) 2 V(p,w,/)]bJsn;' Cf!/Msn} = 0 

(2 .83) 

One now multiplies by Cf!f,t"fSll• and integrates over the five angles with the volume 

element sin 2 wdw sin 01 d() 1 drp 1 sin ()2d()2d'P2 appropriate for space-fixed hyperspher-

ical coordinates leading to the following coupled equation: 

(2.84) 

There are no dif?fMSn jdp terms in the equation above because, by definition, 

Cf!fMSn is independent of p. If we define 

we get the following matrix equation: 

All the matrices appearing in this equation are square and their dimension equals 

the number of surface functions used in Eq. 2.28. To put this equation in more 

general form we define U 1 s n: 

(2.87) 

which gives 

(2.88) 
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This is the coupled differential equation for the radial coefficients b1 s n using 

the diabatic representation. The rest of this section is devoted to solving this 

equation and to calculating the coupling matrix ~ V 1 s n, which is symmetric, as 

can be seen from Eq. 2.85. 

The p dependence factors out of the matrix elements of~ V 1 s n (p; p). Indeed , 

we may write Eq. 2.19 in the form 

where 

1 
V(p, w, 1) = - C(w, 1) 

p 

C(w I) = -e2 [ z + z - ---r==:=1==] 
' cos 2 1" sin2 1- yf1 -sin w cos 1 

As a result we can write 

- 2 1 -
V(p,w,1)- (~) V(p,w,1) = p [1- (~) J C(w,1) 

(2.89) 

(2.90) 

(2.91) 

We then substitute the expansiOn of the surface functions into the integral 

expression to obtain 

(2.92) 

where we have defined cJsn (p) as the matrix with elements 

(2.93) 

which are independent of p and only have to be evaluated once for each surface 

function. Actually, these coupling matrix elements are very closely related to the 

potential matrix elements needed for diagonalization in the surface function basis 

set. Only the elements in diagonal (l 1L2) subblocks need to be calculated, for the 

others have been obtained already. 
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It should be noted that the aJSII matrix, whose rows are labeled by l 2 l 1p, 

and whose columns are labeled by k (see Eq. 2.34), is not necessarily square. 

Nevertheless, the left hand side of Eq. 2.92 is appropriately square and has the 

dimensions specified after Eq. 2.86. This permits the number of surface functions 

used in Eq. 2.28 to be much smaller than the number of primitive functions used in 

Eq. 2.56 in the determination of these surface functions. This is a very important 

consideration leading to a major saving in computation time. Without such a 

truncation of basis size, one might as well have expanded the wavefunction w1M in 

the primitive functions directly. 

If one integrates using Gordon's method,21 the first and second derivative of 

UJSII with respect top are also needed. The nice thing about Eq. 2.87 is that all 

the p dependence is in analytical form, so we get the derivatives analytically: 

(2.94) 

where 

2.6.1.1. Logarithmic derivative integration 

Instead of solving the matrix differential equation (2.88), one can instead 

change the unknown function bJ 5 II (p; p) to its logarithmic derivative, defined to 

be (dropping the omnipresent J S II superscript) 

y(p;p) = b'(p;p)b- 1 (p;p) (2.95) 

The second order differential equation for b is thus transformed into the first order 

non-linear Ricatti differential equation for y.22 

y'(p;p) +y2 (p;p) + U(p;p) = 0 (2.96) 
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We use an efficient procedure developed by Johnson 23 to numerically integrate 

this equation, using the initial condition y = 1036 I, that is, essentially infinite. 

This corresponds to the initial conditions of b = 0, b' = I at p = p0 , where p0 is a 

value close to zero. These initial conditions are justified by the fact that the final 

results converge with respect to the particular choice of p0 • 

The calculational method consists in integrating b or y out to a large enough p 

for the electron-hydrogen atom interaction to have become negligible. One then 

"projects" the resulting scattering wavefunction W on the asymptotic hydrogen 

atom wavefunctions. The Johnson integration scheme is used to propagate the 

wavefunction from Po until the projection distance is reached. Then, if projecting 

at constant R = Rproj (as explained in Chapter 3), one changes over to the Gordon 

method of integrating, which is described, briefly, below. One then continues 

integrating until p reaches a value large enough to have furnished the wavefunction 

at each projection point (rmin ~ r ~ Tmax at fixed Rproj). If one is instead projecting 

at constant p, the radial integration is complete at this stage and one moves directly 

into the projection phase. 

!!.6.1.!!. Gordon Integration 

The Gordon integrator,21 which obtains both b(p; p) and b'(p; p), approximates 

the potential by a piecewise linear function and solves the equation analytically in 

each linear region using Airy functions. The solutions in each section are joined 

together continuously, and the step size is regulated by an internal check on the size 

of the error, based on the size of the first order perturbation term relative to the 

wavefunction itself. One begins the integration in an area where the wavefunction 

can be presumed to be null, because the potential energy is much greater than the 

total energy. However, in our application, the starting point is the beginning of 

the projection region, and one takes unity for b and the log-derivative y(p; p) for 
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b'. Compared to the Johnson method, much more work is required per integration 

step, although much larger steps may be taken with Gordon's method, especially 

m regions where the potential flattens out. A good deal of the effort required 

m Gordon's method is energy-independent, which means the calculation for the 

first energy is long, but the calculations at subsequent energies are much faster by 

comparison. No such relative improvement is obtained using the Johnson method. 

2.6.2 Adiabatic representation 

In the adiabatic representation the surface functions are considered to change 

continuously as functions of p. Thus we can define and calculate derivatives of the 

surface functions with respect to p. There is no difference, when substituting into 

the full Schrodinger equation, between the value of pat which the surface functions 

are evaluated and the p in the equation. This means that the potential matrix 

term drops out, unlike the diabatic representation, because the surface functions 

are chosen to diagonalize H. The coupling is therefore due to the first derivative 

term, not the potential energy. The corresponding matrix differential equation in 

this representation differs from that of the diabatic one. 

Let us define W (l) (p), the first derivative matrix, and W (l) (p), the second 

derivative: 

w(l)if(P) =( ~i(P) I :P I ~i(P)) 
w(l\i(P) =( ~i I :;2 I ~i) 

(2.97) 

(2.98) 

where the hyperspherical coordinate integration volume element in the integrals is 

the one given after Eq. 2.83. The second order equation obtained from Eq. 2.28 is 

now 

(2.99) 
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All the coupling in this equation comes from the off-diagonal elements of W(l) and 

W(l), whereas the coupling in the diabatic representation Eq. 2.88 comes from the 

off-diagonal terms in the potential matrix Eq. 2.87. The appearance of a db 1 8 II j dp 

term in Eq. 2.99 is a disadvantage of the adiabatic representation. 

It is easy to show that the first derivative matrix is non-Hermitian, but that 

iW(l) is Hermitian,24 as a simple consequence of the orthogonality of the ~i 

basis functions, as we now show.25 The orthonormality of the functions is stated 

mathematically as 

(2 .100) 

where the integration volumen element is, as usual, the one indicated after Eqs. 2.83 

and 2.98. Both sides of this equation are differentiated with respect to p, which 

leaves 

(2.101) 

which directly gives 

(2.102) 

from which it follows that iW(l) is Hermitian. The basis functions ~i have complex 

components due to the Y1~tz'; functions, but one can see that W(l) is real by 

substituting expansion (2.56) into the integrals. Then one obtains 

(2.103) 

where T(l) is a matrix diagonal in 11 and 12 , and skew symmetric, defined by 

(2.104) 

and a 18 II is the eigenvector matrix obtained by diagonalizing the real symmetric 

matrix V o 18 
II + u 18 II . Since we have shown that W (l) is real it follows from 
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Eq. 2.102 that W(l) is skew-symmetric. We use an analogous procedure to 

determine that the second derivative matrix can be written as 

(2.105) 

where T(2 ) is defined just like T(l) but with the second derivative operator replacing 

the first derivative one. We will now investigate the properties of W( 2 ). For reasons 

that will become clear later, we differentiate the equation for W(l), obtaining 

(2.106) 

(2.107) 

The skew-symmetry of W(l) thus leads to 

w<2) .. + w<2) .. = -2/ a4!i I a4!i) 
I] ]I \ Bp Bp (2.108) 

For the diagonal elements of W( 2 ) one obtains 

w<2) .. = _;a4!i I a4!i) 
n \ Bp Bp 

(2.109) 

from which it is apparent that W(2 ) is not skew symmetric. This could also have 

been ascertained from Eq. 2.105. T( 2 ) is also not skew symmetric. Let us now 

calculate the matrix elements of W( 1 )
2

. By definition, 

(2.110) 

We use the fact that W(1 ) is skew symmetric and real to obtain 

(2 .111) 

Since the 4!j form a complete orthonormal set, one uses the completeness relation 

(2.112) 
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to obtain for W (l) 
2 

the following result. 

(2.113) 

Therefore we can express W(l) in terms of W(l) as follows: 

W (l) .. _ .!!:._w(l) .. + (W(ll)2 
1) - dp I] ii (2.114) 

Thus one notices that W(l) has no special symmetry, as it has been decomposed 

into the sum of a skew-symmetric matrix, W(l)', and a symmetric matrix, W( 1 l
2

, 

both of which are non-trivial. 

We decided to proceed using the "diabatic" method, because of the ready 

availability of programs to solve differential equations of the type g" + U g = 0, or 

equivalently of the Ricatti type, y' + y 2 + U = 0. 

2. 7 Continuity and Overlap of Surface Functions 

When we change from one set of surface functions calculated at a value of p = Pi 

to the next set calculated at p = Pi+l, the scattering wavefunction and its derivative 

with respect to p should themselves not change. Therefore, the wavefunctions in 

both representations are set equal to one another, multiplied by a new surface 

function, and integrated, in order to find the new coefficients bJ 5 II. The integral 

generates the "overlap" of the new functions with the old: 

bf s II (p; Pi+d = L bfc s II (p; Pi)\ ~f MS II (Pi+d l~fc M s II (Pi)) 
k 

In matrix notation this is 

The derivative is transformed exactly the same way: 

(2.115) 

(2.116) 

(2.117) 
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The transformation for the logarithmic derivative is just 

( -) 0 Jsn(- -) ( - )o~Jsn(- -) yp;p2 = P2,PIYP;Pl P2,Pl (2.118) 

where we have used the unitarity of OJ s n to replace the inverse of the overlap 

matrix with the transpose. Strictly, the transpose is only equal to the inverse 

in the limit of an infinite set; however we have found that this is a reasonable 

approximation and a large time saver. 

Symmetry is preserved in the Johnson algorithm (as opposed to the computer 

code). But the code is formulated to force retention of symmetry. Using the 

transpose of the overlap matrix instead of the inverse guarantees the preservation 

of this symmetry upon a change of basis set. 

Another way of enforcing symmetry in the wavefunction is to invert the 

overlap matrix and then replace each set of off-diagonal elements in the logarithmic 

derivative with its respective arithmetic mean. There is no reason to prefer this 

approximation , so we have used the one that saves the most computer time. 

The overlap matrix for 5-dimensional surface functions is obtained by plugging 

in the expansion in Eq. 2.56 into the integral form. One finds that OJ s n is related 

by a simple transformation to oJ s n as follows: 

(2.119) 

where oJ n is block diagonal and each block Of31 ~ has matrix elements found by 

calculating the overlap of !-dimensional primitives, tt 1~ 11 (w; p). 

(2.120) 
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2.9 Figure Captions 

FIG. 2.1: Photograph of the potential contour at 10.5 eV. 

FIG. 2.2: Potential contours for the e--H reaction in the OXY Z space having 

spherical coordinates p = (r2 + R 2 ) t, w = 2 arctan r / R and 1 for 1 = 0 and 180 deg 

for Z = 0 bohr. 

FIG. 2.3: Potential contours as in Figure 2.2 for Z = 1 bohr. 

FIG. 2.4: Potential contours as in Figure 2.2 for Z = 2 bohr. 

FIG. 2.5: Potential contours as in Figure 2.2 for Z = 10 bohr. 

FIG. 2.6: Potential contours for the e--H reaction for 1 = 0 degrees. 
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CHAPTER 3 

PROJECTION AND ASYMPTOTIC ANALYSIS 

In this chapter we obtain the asymptotic form of arbitrary solutions of the 

Schrodinger equation. We then obtain expressions for the reactance matrix R 15 rr 

and scattering matrix S 15 rr. These matrices are designated by symmetry type 

(S, II) and not by arrangement channel. We then define reactance and scattering 

solutions and relate them to the physical solution, from which we obtain expressions 

for the scattering amplitudes and cross sections. 1 

3.1 Asymptotic Analysis 

Asymptotically as R --+ oo arbitrary solutions of the 6-dimensional Schrodinger 

equation "iflf,MSJI have the form 

\f!JMSJI ____. ~ }:_UJSJii'(R)~JMJI(r n) 
i' R-+oo L...., R nl 1l2 nl1l2 ' 

nl1l2 

(3 .1) 

where ~~f;,~(r,n) is the product of Yz~t[(02,fP2,0l,fPI) and the hydrogen radial 

function RNl
1 
(r). The general radial functions U15 rr (R) behave asymptotically as 

(3.2) 

In this equation A 15 Il and B 15 Il are square matrices of integration constants, 

whose rows are spanned by the indices nl 1l2, and whose columns are spanned 
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by the general index i' = n'l~l~. I and 0 are diagonal matrices (for which the 

subscripts indicate both row and column indices) representing the incoming and 

outgoing waves and are given by 

for open channels 
for closed channels, and 

(3.3 ) 

Onz 
1 

(R) = { exp[+i(knR -l21r /2)] for open channels (3.4) 
1 2 exp( -lkn IR) for closed channels. 

Additionally, Vn is the velocity hlknl/ Jl, and kn is the wave number given by 

(3.5) 

where En is the energy of a hydrogen atom with principal quantum number n. We 

can rewrite Eq. 3.2 in matrix form as 

(3 .6) 

The scattering matrix for partial wave J, spin S, and parity II is then defined by 

(3 .7) 

An alternative way of expressing Eq. 3.1 is in terms of the reactance matrix, 

such that the exponential terms representing waves are replaced by their non-

imaginary counterparts, the sine and cosine functions. We may write 

(3 .8) 

where cJSll and DJSll are new integration constant matrices and S and C are 

diagonal matrices given by 

for open channels 
for closed channels, and 

(3.9) 
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The reactance matrix is defined by 

for open channels 
for closed channels. 

(3.10) 

(3.11) 

Expressing the wavefunction in terms of sines and cosines, as in Eq. 3.8, is 

good in the far asymptotic region. In the closer asymptotic region uJsii behaves 

as a combination of Riccati-Bessel functions, 

(3.12) 

where the cJ 5 II coeffi.cents are integration constants as defined before, and R J 5 II 

is the reactance matrix for this partial wave and symmetry type. In matrix form 

we have 

(3.13) 

where J and N are diagonal matrices. We will find it convenient to use a "stacked" 

notation in which two equations are written in one line, such that the first equation 

corresponds to using the top element within each set of square brackets, and 

similarly the second equation uses the bottom elements. The open channel elements 

of J and N are given by 

(3.14) 

where jz'l and Yl'l are spherical Bessel functions, 2 Vn is the velocity nlknl/ J.L, and kn 

is the wave number as specified previously. It can be shown, using the asymptotic 

forms of these functions 2 that Eq. 3.13 reduces to Eq. 3.8 in the far asymptotic 

limit. The closed channel elements of J and N are given by 

(3.15) 
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where i1 2 (z) and k1 2 (z) are modified spherical Bessel functions 3 of the first and 

third kinds, and "'n = Jkn J. 

We only obtain the open-open sub-block of the reactance matrix- the symbol 

R~511 will refer to the subblock obtained by keeping only the open columns, but 

all of the rows, and R~! 11 will refer to the open-open subblock. The open-open 

reactance matrix R~! 11 is real and symmetric in an exact calculation. We can 

consider the amount of asymmetry in the actual open-open reactance matrices 

obtained to be a measure of the error in the calculation. However, in our 

calculation we have forced the logarithmic derivative to be symmetric throughout 

the propagation, which increases the computational efficiency but eliminates the use 

of the symmetry of R~! 11 as an accuracy test. The open-open part of the scattering 

matrix S~! 11 is obtained from the reactance matrix using the relationship 4 

I 'RJS11 
SJS11 = +l oo 

00 I- 'RJS11 
l 00 

(3 .16) 

The open-open part of the scattering matrix is both symmetric and unitary, for 

exact solutions of the Schrodinger equation, due to time reversal invariance of the 

Schrodinger equation. 5 

The asymptotic solutions have been defined in terms of distance vectors r 

and R- not in hyperspherical coordinates. We now show how to project from a 

hyperspherical basis set to an asymptotic basis. 

3.2 Projection 

The "projection" is a change of basis from surface functions to asymptotic 

solutions. After we obtain the wavefunction at a large value of p, we assume that 

the interaction between the two electrons is small and that the asymptotic functions 

will form a good basis. 
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The asymptotic wavefunctions are functions of r >., depending on the channel>., 

and on iL, but independent of R,>.. They are related to the radial part of the bound 

states of the hydrogen atom, (as defined after Eq. 3.1) and which are independent of 

the distance of the second electron to the proton. In contrast, the surface functions 

depend on the distances of both electrons to the proton, constrained in such a way 

that p is constant, with the angle w being a variable. 

One could project the hyperspherical surface functions onto the asymptotic 

functions at constant R>.; alternatively, one could project the asymptotic solutions 

in r >., R>. coordinates onto the surface functions at constant p. We studied both of 

these methods and present the resulting equations in the next sections. 

The transformation between (p,w) and (r,R) is (Eq. 2.10) 

. w 
r = psm-

2 
w 

R = pcos-
2 

(3.17) 

Let us look at how this relationship behaves in the asymptotic channels. Asymp­

totically in channel!, where p is large and w ~ 0, one has R ~ p and r ~ -!pw. In 

channel2 pis again large but w approaches 1r. There r ~ p and R ~ tP(11'-w). For 

surface functions whose energy is negative, the larger p is, the smaller the range of 

w in which those functions have amplitudes significantly greater than zero. 

The general scattering wavefunction wf,M 5 IT (where i' stands for a set of indices 

of the nl 1 l2 type) is expanded in surface functions of hyperspherical coordinates as 

·I 

,T, J M SIT ( () () ) - ! "" bJ SIT' ( -) J M SIT ( ) '*'i' p,w, I,fPI, 2,1P2 = P 2 ~ i p;p ~i w,O;p (3.18) 

The surface functions in turn are expanded as (see Eq. 2.28) 

(3.19) 
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where n is the ordered set of angles (02,!p2,01,'PI) and the pairs [1 112] imply that 

11 :::;; 12 (see Eq. 2.56). In the asymptotic region of arrangement channel1, where R 

is very large, this same general scattering wavefunction can be written in terms of 

hydrogen radial wavefunctions Rnl 1 (r) as 

wf,MSII = L y,~:-; (02, 'P2, 01, 'PI) G~~~il (R) Rnll (r) (3.20) 
nl1ll 

where G~~W~ (R) is the U~~~~i~ j R of Eq. 3.1. The angular part of the hydrogen 

wavefunction, Yi 1 m 1 (OI,'PI), is included in the coupled spherical harmonic, Y1~f;. 

The sum over l1 and l2 in the asymptotic expansion is not limited to the 11 :=;; 12 

pairs [l 1l2] as in the surface function expansion Eq. 3.19. This is because the surface 

functions have been symmetrized, as explained in Section 2.4. 

We need to set the two expressions for wf,MSII equal to each other in order 
•I 

to determine the relationship between bJSII~ (p) and G~~~i~ (R). Multiplying 

Eq. 3.18 and Eq. 3.20 by Y{~r, integrating over (0 1 ,!p 1 ,02 ,~P 2 ), using Eq. 3.19 
l 1 

and identifying the results gives the following: 

(3 .21) 

There are two ways to proceed from here. One is to find an expression for G ~~ ~ i
1 

( R) 
·I 

in terms of bJ 5 II~ (p; p), in which case the projection is done at a constant value of 
·I 

R. The other process is just the reverse: express the bJ 5 II~ (p; p) in terms of the 

G~~~i~ (R). This will be called the constant p projection. 

3.2.1 Constant R projection 

In this section we will describe the projection of hyperspherical surface functions 

onto cartesian coordinate (r, R) asymptotic functions. Besides the four angles 
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included in r and R., the only independent variable in the asymptotic functions 

is the distance r, which is the distance of the bound electron from the proton. 

The fixed distance of the other electron to the proton during the projection will be 

designated Rp. The hyperspherical coordinates p and w need to be expressed as 

functions of r and the parameter Rp: 

(3 .22) 
w =w(r; Rp) 

We multiply Eq. 3.21 on both sides by r 2 Rn'l~ (r) and integrate over r from 

zero to infinity. The radial functions are orthonormal in the n index, resulting in 

the expression: 

GJSIIi' (R ) 
n'l' l' P = 

1 :1 

(3.23) 

The above expression can be written in matrix form as the integral of gJSII (r; Rp), 

(3.24) 

where we have defined gJ s II (r; Rp) as the matrix product 

(3.25) 

FJ s II (r; Rp) being a new matrix which is the product of radial hydrogen functions 

and one-dimensional hyperspherical basis functions: 

(3.26) 

In order to compute the reactance matrix we also need the derivative of GJ s II 
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with respect to R (where, in Eq. 3.24, Rp is replaced by R). First we find an 

expression for the partial derivative with respect toR in hyperspherical coordinates: 

(:R) = (:~) r (:P) + (!~) r (:W) 

= ( ~) (:p) - (~~) (:w) 
Taking the derivative of Eq. 3.25 one obtains, after simplifying, 

dgJSJI r2 R ) clbJSJI 
dR (r;Rp) =( p1/: FJSJI(r;Rp) a15 rr(ii) dp (p;p) 

- ~ (~9~: )FJSJI (r; Rp)aJSJI (p)bJSJI (p; ii) 

where we have defined fJSJI (r; Rp), similarly to FJSJI, as 

(3.27) 

(3.28) 

One doesn't really calculate the derivative of t~1211 (w; p) with respect to w, 

however. The surface functions are obtained at the points Wi corresponding to 

projection points ri via spline-fitting. Because the projection points ri are evenly 

spaced, whereas the angular points which correspond are not, it is easier to do the 

spline fit using ri rather than Wi. This means that the derivative obtained in the 

spline fitting routine is with respect to r, not w. We obtain the w derivative using 

the relation 

( aw) (!-.-) tJl2ll(w;p) = (!__) tJl2ll(w;p) 
ar R aw p p ar R p 

(3.30) 

Substituting this into Eq. 3.29 gives the following expression for fJ 5 rr: 

(3.31) 
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When we replace Eq. 3.28 and Eq. 3.31 in the analog of Eq. 3.24 in which the 

derivative dgJSIT(r;Rp)/dR appears in the integrand instead of gJSIT(r;Rp) , we 

get dGJSIT j dR. 

We have thus shown how we calculate the integral matrices GJ 5 rr and 

dGJSIT jdR. We use them to construct zlsrr, the logarithmic derivative of UJsrr 

as follows: From the remark after Eq. 3.20 we have 

(3.32) 

and therefore 

(3.33) 

This gives 

(3.34) 

Thus we have shown how to obtain the logarithmic derivative after projection, which 

is all that is needed to obtain the R-matrix. However, to get zJsrr, we needed to 

have both bJ 5 rr and bJ 5 rr' before the projection at constant R. The method used 

to obtain the R-matrix is presented in the next section. 

3.2.2 Reactance matrix using constant R projection 

There are two equations relating U J 5 rr to the reactance matrix and the 

constants cJsrr of Eq. 3.8. Eq. 3.13 and its derivative with respect to R can be 

considered as a system of two linear matrix equations in the two unknowns c J s rr 

(3.35) 

(3.36) 

Right multiplying Eq. 3.36 by the inverse of Eq. 3.35 cJsrr cancels out and we 

obtain the logarithmic derivative: 

(3.37) 
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This equation is rearranged to obtain the R-matrix. 

(3.38) 

The full reactance matrix may be written out in block form, with the open rows 

and columns displayed separately: 

RJS11] oc 
RJS11 . 

cc 
(3.39) 

Then if we write R 1 s 11 A- 1B, and a= A- 1 , and write Eq. 3.38 in similar 

fashion, we have 

[

RJS11 
00 

RJS11 
co 

RJS11] oc 
RJS11 

cc 
(3.40) 

where 

a= [zlS11N- N'] -1 (3.41) 

and 

(3.42) 

The open-open part R~! 11 of R 1511 is given by 

(3.43) 

From this equation it is obvious that Boc and Bee are not needed for our purposes. 

These are the matrices that contain the closed parts of J and J', as seen from the 

definition of B: 

zls11J ] oc c 
zls11J -J' cc c c 

(3.44) 

The closed channel elements of N are needed, however, because all of A must be 

calculated in order to take the inverse and get a 00 and aoc· When the spherical 
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Bessel function expressions are put in for J and N one obtains the following 

expression for the open columns of the R-matrix: 

where j and j' are open channel diagonal matrices whose elements are Jl
2 
(knR) 

(defined in Eq. 3.14), and the derivative with respect to the argument, respectively, 

and y is a full diagonal matrix whose open channel elements are the Yl
2 
(knR) 

(defined in Eq. 3.14), and whose closed channel elements are the ki 2 (KnR) (defined 

in Eq. 3.15) while y' is the derivative of y with respect to the argument, and k is a 

n 1 11 11 n 111 11 

diagonal matrix with elements kn8nz
1
z

2

2 for the open states and Kn8nz
1
1/ for closed 

states. ko is the open-open part of k. Thus we have found the expression which 

relates the logarithmic derivative zJsii(R) to the reactance matrix R~8 II. 

We have shown above that in order to obtain the logarithmic derivative after 

projection one needs to calculate two matrices, GJ 8 II and dGJ 8 II j dR, the elements 

of which are found by computing integrals over the variable r, from r = 0 to oo. 

In actual practice one chooses a value of rmax as the upper limit of the integrals, 

which are computed using the trapezoidal rule. Truncation of the integral at finite 

Tmax is justified because the hydrogen atom functions die out exponentially with 

r. In order to compute GJSII and dGJSII jdr, one must have bJSII[p(r;Rp);.O] 

and bJSII'[p(r; Rp); .O] at each value of p(ri), where Ti are evenly spaced. These are 

found using the Gordon integrator. 

The range of p from p(r1; Rp) to p(rmaxi Rp) is called the "projection region." 

It is possible for there to be one or several values of Pi in this region (that is, changes 

of surface functions) and one must know for each ri, the value of p as well as the 

range of values of w that correspond to each p. One must also decide the value of 

Rp at which to do the projection. Rp must be large enough for the system no longer 
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to be strongly interacting. In the next section we show how we project at constant 

p, which turns out to be computationally a much simpler procedure. 

3.2.3 Constant p projection 

In this section we describe the alternate method to the one described above, 

that is, we project the hydrogenic radial functions onto the hyperspherical surface 

functions. One rea.son for projecting this way is that the resulting expression for 

the reactance matrix requires only the logarithmic derivative of the wavefunction, 

as opposed to both the wavefunction and its derivative separately, making the 

simple and efficient Johnson integrator usable throughout. This is particularly 

appropriate for implementation on the hypercube architecture concurrent processor 

being developed at the California Institute of Technology. 6 Also, since the projection 

is done at one value of p, there is no need for a "projection region" a.s in section 

3.2.1. This method of matching hyperspherical functions to asymptotic cartesian 

coordinate functions is in the same spirit of that used by Christensen-Dalsgaard. 7 

As for the constant R projection, we write two expressions for the complete 

scattering wavefunction. First the wavefunction is expanded in hyperspherical 
· I 

surface functions with hyperradial coefficients b1811 : (p; p) according to Eq. 3.18. 

·I 

JMSII( () () ) -! ~bJSII' ( -) JMSII( n ) wi' p,w, l,<pl, 2,<p2 = p 2 L- i p;p ~i w,u;p 

The surface functions ~fMSII contain all the symmetry properties of the full 

wavefunction. Secondly the scattering wavefunction is also expanded in asymptotic 

hydrogen atom functions in one channel, according to Eq. 3.1. The wavefunction 

is only being considered in the asymptotic region, 
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where 4>~tz~(r,O) is the product of Yz~l1(02,<p 2 ,0 1 ,<p!) and the hydrogen radial 

function Rnz 1 (r), as before. 

The surface functions are orthonormal in the space defined by the five angles. 

They are also orthogonal, due to their symmetry properties (but not normalized) 

over only half the space, that is, if one restricts the range of w to be from 0 to 

1r /2. Therefore we set the two expressions for Wi' equal to each other, multiply 

by ~fMSII•sinlJ 1 d01d<plsin02dlJ2d<p2sin2 wdw and integrate over the full range 

of the four angles ( 01 , 1P1, 02, IP2), but over w from 0 to 1r /2 only. 

It is important that this integration not be carried over the whole range of 

w. The reason is that the hydrogen atom bound states, Rnz 1 (r) are defined in one 

channel only, which can be considered to be separated from the other channel by 

the w = 1r /2 boundary. 

· I 

The resulting expression for bJSII~ (p; ,o) is: 

(3.46) 

The surface functions are further expanded in primitive basis functions 

e(,l{!PS,II (w, 0; ,o) with the coefficients af,f,Ilpf(,o) as described in Chapter 2: 
2 1 2 1 

JJ..JMSII- L JSili(-)oJMSII( n· -) 
'*-' i - a,, l' p' P 0 l' l' p' w' 'P 

2 1 2 1 
(3.47) 

~~ l~p' 

The coefficients a(, f,IIPf (,o) are independent of the angular coordinates. Therefore 
2 1 

when the above equation is substituted into Eq. 3.46, they may be removed from 

the integral, yielding: 

., . J uJsni'(R) 
-lbJSII' _ 2 L JSila L dO· 2 dwoJMSil.K.JMII nl1l2 

p i - a,, l' p' Sln w o l' l' p' ~ nl 12 R 
2 1 2 1 1 

l~l~p' nl1l2 

(3.48) 

The only functions that depend on the angular variables (02,<p2,01 ,<p!), called 

{} collectively (as an ordered set), are 8{;t{;P and 4>~tz~, because the distance R 
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is expressed as a function only of p and w. Let us then define a new term which 

.11 . h . . 1 n pJsrrnl1l2 ( -) w1 contam t e ent1re mtegra over u, 1, 1, p' r, w; p : 
2 1 

Jsrrnl1l2 I JMSII( -) JMII ( ) d F l'l'p' = 2 e1, 1,P, w,O;p ~nl 1 r,O 0 
21 21 12 

(3.49) 

When this is substituted in we get the following: 

(3.50) 

From Eq. 3.12 we have that the asymptotic behavior of U18Il(R) is 

which is substituted into Eq. 3.50. The matrix C 18 II is constant, so it too can be 

removed from under the integral sign, yielding 

(3.51) 

In matrix notation, the above equation becomes 

(3.52) 

where we have substituted p cos ~ for R. 

The corresponding expression for the derivative of b 1 8 II with respect to p is: 

db Jsrr 3 I aFJsrr . 2 
--- =-bJsrr + p!aJsrr (J- NRJsrr)sm w dwCJsrr 

~ ~ ~ ~~ 

!. -JSII I FJSII (aJ aNRJSII) sin2 w dwcJSII +p2a --- --
Bp ap cos~ 

(3.53) 
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The R-matrix is not a function of w, and so doesn't have to be included in the 

integral. Let us define the following matrices, A{511 , B{511 , A~511 , and B~511 : 

[
A{

511
] = lyJSI1(w r)[J(R)] sin

2
w dw 

B{511 ' N(R) cos~ 
(3.54) 

(3.55) 

where R and rare considered to be functions of p and w according to Eq. 3.17, the 

matrix yJs/1 is defined by Eq. 3.49, and the matrices J and N have been jointly 

defined by Eq. 3.14 and Eq. 3.15. Using this nomenclature, the expressions for 

bJS/1 and bJsrr' are 

bJsrr = p~aJsrr(Afsrr- BisrrRJsrr)cJsrr 

dbJsrr = ~bJsrr + p~aJsrr(AJsrr- BJsrrRJsrr)cJsrr 
dp 2p 2 2 

(3.56) 

3.2.4 Reactance matrix using constant p projection 

We now do a little algebra to extract an expression for the reactance matrix 

from Eq. 3.56. First, we obtain the logarithmic derivative of bJ 511 . This is the 

quantity one obtains computationally from the coupled channel numerical solution 

of the Schrodinger equation. Part of the reason for doing the projection at constant p 

is that the wavefunction is only needed in the form of its logarithmic derivative , and 

so we can propagate the coupled channel equation using the very efficient Johnson 

logarithmic derivative integrator.8 It will be convenient if we define a new matrix, 

XJS/1, which will contain the logarithmic derivative as well as the constant term 

that arises from the way we have defined the radial matrix bJ 511 : 

.n...JS/1 3 
xJsrr = uu bJsrr-I- -1 

dp 2p 
(3 .57) 
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Forming the logarithmic derivative from Eq. 3.56 we eliminate CJ 5 II and solve for 

the R-matrix, using Eq. 3.57 to simplify: 

RJSII = [xJSIIaJSIIBfSII- aJSIIB~SII] -l 

X [xJSIIaJSII AfSII- aJSII A~SII] 
(3 .58) 

Let us summarize what the various terms mean, and how we get them. First, 

the log-derivative of bJ 5 II is obtained from the Johnson integrator. The transpose 

of the coefficient matrix a J 5 II is obtained in the surface function calculation. A f. 5 II, 

B{5 II, A~5 II, and B~SII have been defined in Eq. 3.54 and Eq. 3.55 above, and 

must be calculated after the radial equation propagation. The matrices F J 5 II and 

aFJ 5 II j ap are needed for their computation. From Eq. 3.49, Eq. 2.53 and the 

remark after Eq. 3.1 we have 

(3.59) 

The integral over the four angles is easily done, due to the orthogonality of the Y1~ 1'; 

functions, which leaves the expression 

F Jsiinl112 [ ( ) ] N R () J/211( . )[d2l1 ( 1 )Ad2l1] l'l'p' r w;p ,w;p = l'l' nl1 r tp, w,p u1, 1, + - u1, 1, 21 21 21 12 
(3.60) 

where N1, l' is a normalization factor. Now let's look at the derivative terms. To 
2 1 

take the partial derivative one uses 

(~) =cos w (_!__) +sin w (~) 
ap w 2 aR r 2 ar R 

(3.61) 

Taking the partial derivative of F we obtain 

a pJSIInl1l2 [ ] _ [a R ( )] N J/211 ( . ) [d211 ( )Ad211] -a l'l'p' T,W - -a n/1 T l'l' tp' W,p Ul'l' + -1 Uz'l' p 21 p w 21 21 12 

- . WR' ( )N tJl2l1( . )[d211 + ( 1)Ad211] - Sln - nl r 1' 1' p' W, p u1, I' - u1, I' 2 1 21 21 12 

(3.62) 
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We can define a new matrix fJ 5 rr as follows: 

(3.63) 

If one writes the expressions for A~ 5 rr and B~ 5 rr using this, one gets 

17r/
2 

[ J(R) l . w w = fJSTI sm3 - cos- dw 
0 N(R) 2 2 

17r/2 d [ J(R) l + FJSTI- sin2 w dw 
o dR N(R) 

(3.64) 

The derivatives of the Bessel function terms are found to be 

(3.65) 

for open states. For closed states we replace yz 2 (knR) with kz 2 ("'nR). We define 

the following matrices that will ultimately be what we calculate: 

(3.66) 

.... 3 _ FJsrrnl1l2 Jz2 n k w . 2 d 
[ 

'=' l nl1l2 11rj2 [ ., (k R) l 
'V' - l 1 l1 p' I (k ) n COS -Slll W W 
~ s l' l' p' o 2 1 Yz nR 2 

2 1 2 

Let it be understood in all cases that the closed channel elements are obtained 

by substituting "'n for kn, and kz2 for Yl 2 • From Eq. 3.54, Eq. 3.55, and Eq. 3.62 

through Eq. 3.66 we obtain, after some algebraic effort, 

A~srr = [81 + p(82 + 8s)]k~ 

B~srr = [T1 + p('l"2 + 'l"s)]k~ 

where k was defined in Eq. 3.45. 

(3.67) 
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Using these matrices we can rewrite the expression for the reactance matrix as 

R~511 = k-~ [(pXJ 511 - I)aJ 511T1- paJ511 (T2 + Ts)] -l 

(3.68) 
x [(pXJ 511

- I)aJ51181- paJ511 (82 + Bs)]k~ 

This final expression is used for the calculation of R~; 11 . 

3.3 Reactance and Scattering Matrix Solutions 

In this section we define the reactance matrix and scattering matrix solutions9 

and relate them to the general wavefunction obtained in section 3.1. These solutions 

are defined to have the asymptotic forms 

J M S 11 [ ] ...--..- L 1 J S 11 n' l~ l~ [ ] J M 11 wn'l'l' RorSR ..... oo RU nll RorS(R)~nll (r,!l) 
12 12 12 

nl1l2 
(3 .69) 

where ~~~~(r,n) is the product of Yz~~(02 ,cp 2 ,fh,cpt) and the hydrogen radial 

function Rnz 1 (r), as previously. By definition, the scattering matrix radial functions 

U J s 11 [ S] behave asymptotically as 

(3 .70) 

and the reactance matrix functions as 

(3 .71) 

where the 1, 0, S, and C have been defined in Equations 3.3, 3.4, 3.9, and 3.10. 

The reactance function is obtained from the general function by setting the matrix 

cJ s 11 in Eq. 3.8 equal to the unit matrix. In similar fashion the scattering function 

is obtained by setting the matrix A J s 11 in Eq. 3.6 to unity. 

3.4 Scattering Amplitudes and Integral Cross Sections 

We wish to find particular solutions of the space-fixed Schrodinger equation 

that satisfy the physical asymptotic condition for large R and are eigenfunctions of 



72 

S2 • The axis of quantization form~ is the direction of the initial wave-numbervector 

kn which has been chosen to lie along the space-fixed Oz ax1s. The component of 

R.\ along that axis is Z).. The asymptotic form of the spatial part of the physical 

wavefunction in each channel consists of an incoming plane wave multiplied by an 

open channel hydrogen atom wavefunction, <l>nl ~~ m~ (r), and a sum over all hydrogen 

atom wavefunctions, both those in open and closed channels, each multiplied by an 

outgoing spherical wave and by the scattering amplitude. 

(3.72) 

for>.= 1 and 

(3.73) 

for >. = 2. We take the sum and difference of w( 1) and w( 2) as R goes to infinity 

to form spatial wavefunctions that satisfy the Pauli principle, which introduces the 

quantum number S. 

(3.74) 

Sn1l1 m 1 
...... 

where we have defined the symmetrized scattering amplitudes, fnz
1 
m\ 1 (R), as 

(3.75) 

We treat the incoming plane wave separately from the outgoing scattered wave. 

111 I 5 111 I S 111 I wsn lml[P]- w. n lml +'ll n lml 
R-+oo me scatt (3. 76) 
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The spin part which multiplies this spatial wavefunction is an eigenfunction of S2 

and Bz. 

The spatial physical wavefunction wsn'l~ m~ [P] can be expressed as a linear 

combination of reactance or scattering matrix solutions w1 !"11, 51, 11 [R or S] which are 
n 1 :z 

simultaneous eigenfunctions of the total orbital angular momentum operator and 

its laboratory-fixed z-axis projection. 

(3 .77) 

We need to expand W'inc and W'scatt, first in spherical harmonics Yi:zm:z (:R), and 

secondly in partial waves, to be able to relate the physical solution to the scattering 

solution already determined. It will be useful to know the asymptotic forms of the 

spherical Bessel functions . These are2 

. ( ) ..--- 1 . ( 17r) Jl x x--+oo- sm x--
X 2 

yz(x)x~- .!_ cos(x-
1
7r) 

X 2 

(3 .78) 

Using the above equations, expansion of the plane wave gives 

exp(ikn,z) =exp(ikn'RcosO) 
00 

= L (212 + l)il:z )z2 (kn,R)Pz 2 (cos8) 
l:z=O (3 .79) 

The scattering amplitude is also expanded in spherical harmonics. 

(3.80) 

The sum in Eq. 3.80 is over all values of 12 , and thus is in effect a sum over states 

with different parity II, too, which is why the sum over the index II is indicated 
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explicitly. Substitution of the last two expansions into the wavefunction expression 

Eq. 3.74 leads to 

for the incoming plane wave and 

,T,Sn 1 l~ m~ 
':l' sph (3.82) 

for the outgoing spherical wave. We recall the asymptotic form of the spatial 

scattering matrix wavefunction from Eq. 3.69 and Eq. 3. 71: 

(3.83) 

x ~~t:z~ (r, n) 

where we have substituted Eqs. 3.3 and 3.4 for I and 0, respectively. Identifying 

the coefficients of the open channel incoming waves e-ikn, R in wsn'l~ m~ and the 

wavefunction in Eq. 3. 77 one obtains: 

·l' 
Sn'l~m~ t 2 JMII """ 

cJMl' ~n'l'l' (r,R) 
2 ~ 12 

(3.84) 

If were-express ~J fW1, Ill' in terms of a sum over products of hydrogen atom functions 
n 1 2 

and spherical harmonics we obtain 

(3.85) 
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The expression above is substituted into Eq. 3.84; one multiplies both sides of the 

resulting equation by 4>nz 1 m 1 and integrates over dr, obtaining the following: 

(3.86) 

We then multiply by Yi~m~ (:R) and integrate over dfi, interchanging l~m~ for zq, mq, 

which yields 

Ill I IV .·z;+1. ~v 
"'"" Sn 1 m 1 C(l'l' J 1M) .cm:z ( l' ) • y vn

1 

L-cJMl1 1 2 ;m1m2 = 0 o 2 2 + 111' _ _____.:.__ 
2 kn 1 

JM 

(3.87) 

We multiply Eq. 3.87 by C(l~l~J'; m1m~M') and sum over m 1 and m~. The Clebsh-

Gordan completeness relation 

(3.88) 

is then used to remove all the sums on the left hand side, such that we obtain the 

simple expression 

c8n1 l~ m~ - C(l' l 1 J· m 1 Om') V(2l' + 1)11' i 1;+1 (iSi_) 8m~ 
JMl; - 1 2 ' 1 1 2 k M 

nl 
(3.89) 

Next we set equal the outgoing waves (e+iknR j R). This will give a relationship 

between the scattering matrix and the scattering amplitudes f 8 : 

(3.90) 
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The spherical harmonics form a complete orthonormal set as do the hydrogen 

basis functions. Therefore one removes the sums over nl 1 m 1l2 m 2 by multiplying by 

an arbitrary spherical harmonic and hydrogen basis function, and then integrating 

over the variables r, :ii. The equation that results is 

+ 

= - L cSn'l~m~ i-l2 SJSlln'l~l~C(l l J· m m M) 
J Ml' r.;- nl l 1 2 ' 1 2 

2 y Vn 1 2 
JMl~ 

Sn'l' m' If we replace c J Ml~ 1 with the value calculated in Eq. 3.89, use 
2 

c5~2 o:;:: = L C(l1l2J; m1m2M)C(l1l2J; mi OM) 
JM 

(3.91) 

(3.92) 

to introduce a sum over J and M in the first term of Eq. 3.91, and simplify, we 

Sn 1l1 m 1 

obtain the expression for bllnl
1

1m:l2m 2 in terms of the scattering matrix: 

(3.93) 
1 

X C(lil2J;m1m2M)C(lil~J;miOM)(::) 2 

The form of this expression leads us to define the transition matrix from the open-

open sub-block of the scattering matrix. 

TJsn = 1 _ 8 1srr 
00 (3.94) 

With this new definition the scattering amplitude expansion coefficients are written 

L C(lil~J; miOM) C(l1l2J; m1m2M) T:~~~n'l~l~ 
JM 

(3.95) 
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We may define a newT-matrix, labeled T 5 IT (without a J), which is still square, 

but has extra rows and columns spanned by the indices 12 m 2 ~nd l~m~ respectively, 

as 

(3.96) 

The sum over M may be performed, and the simplified form is 

where the Clebsch-Gordan coefficients imply that m2 = mi - m 1 or else the 

corresponding T 5 IT matrix element is zero. We obtain for the scattering amplitude 

the following: 

(3.98) 

where the PF were defined in Eq. 2.68. 10 

The differential cross section a 8 (with the Pauli principle already having been 

satisfied in Eq. 3. 7 4) is found from the scattering amplitude, and is independent of 

the angle 'P: 

Sn 1 l 1 m 1 

C! 1 I 
nl1 m1 

= ~ IJSn 1 l~ m~ (R) 1

2 

V nl1 m1 
n' 

(3.99) 

Examining the properties of the renormalized associated Legendre functions 

PF at (} = 0 and (} = 1r leads to interesting results for forward and backwards 

scattering. These functions are zero for (} = 0, 1r except if m = 0, which leads to the 

selection rule mi = m 1 for non-zero scattering in those directions. 
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To obtain the integral cross section we integrate over dii: 

=; L V(2l~ + 1)(21~ + 1) i 1~-~~ 
n' n l' l" :z :z 

(3.100) 

where the integration over () was performed explicitly usmg the orthogonality 

relation obeyed by the P,rn. The sums over l~ and l~ lead to the mixing of states of 

different parity. The integral cross section can also be written 

(3.101) 

where we have indicated in square brackets the multiplication of a sub-block of the 

T-matrix with its adjoint. Now we sum over final projection quantum numbers m 1 

and average over initial states m~. 

(3.102) 

The quantity Q~~~·~~ is called the summed and averaged cross section (with respect 

to the magnetic quantum numbers m 1 and m~). 

The total cross section can be expanded in partial wave contributions 

(3 .103) 

SJ n'l' where the Q 1 are the partial cross sections obtained as follows. If the total nl1 
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state-to-state cross section expression is written out in full and rearranged, one 

obtains 

Qsn'l~ = 
1 

""'""' '"' C(l'l' J· m' OM)T1511 n'l~l; · /{21' + 1)7r 
nl1 {21' + 1) L- L- L- 1 2 ' 1 nl1l 2 V 2 

1 m' l l' JM 
1 :1 :1 J'M' 

x ""' · /{21" + 1)1r (il~-~~) C(1'l" J' · m' OM')T1'srrn'l~l~· L- V 2 k2 1 2 ' 1 nl 1 12 

l" n' 
:1 

{3.104) 

Using the completeness of the Clebsch-Gordan coefficients, we can perform the 

sum over m 1 , m2 which gives a of'J!', which leaves the following: 

Q~~~~~ = 21/ 1 (k~ ) L: 2: L: L: V(21~ + 1){21q + 1) i';-~~ 
( 1 + ) n' m' 1~ l' l" J M 

1 • :1 :1 (3.105) 
'l'l' 'l'l" x C(1'1' J· m' OM) T 1511 n 1 2 C(l'l" J· m' OM) T 1511 n 1 2 

• 1 2 ' 1 nl1 l2 1 2 ' 1 nl1l2 

The sum over mi can be performed because the Clebsch-Gordan coefficients are 

zero unless mi = M . Then there is another Clebsch-Gordan simplification due to 

the relation 

""'C(l'l' J· MOM) C(l' l" J· MOM) = 6 1,~ (
2

J + 1) 
~ 1 2 

' 
1 2 

' 12 J(2l~ + 1){2lq + 1) 
(3.106) 

Using this relation, we are left with a simple expression for the integral cross section 

for scattering from state (n'lD to state (nit): 

(3.107) 

Jsn'l' where we have defined the opacity P nz
1

1 by the following: 

(3.108) 
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The above expression leads us to define the partial wave contribution as follows: 

QJ Sn'l~ _ (2J + 1)11" pJ sn'l~ 
nl1 - k2 nl1 

n' 
(3.109) 

From this we can also define a cross section 11 that is directly related to the scattering 

matrix obtained in the space-fixed representation {Jnl 1l2 }: 

(3.110) 

in terms of which 

(3.111) 

The spin weighting has not been included in the above derivation. To do so one just 

averages the S = 0, 1 contributions with weights (2S + 1) /4 in any of the expressions 

(3.99), (3.101), (3.102), (3.103), (3.104), and (3.109) through (3.111). 

Q = ~QS=O + ~QS=l 
4 4 

(3.112) 

3.5 Distinguishable-electron Scattering Amplitudes 

The cross sections we have obtained above have antisymmetrization built right 

m. Now we will obtain expressions for the scattering amplitudes for when we can 

distinguish between the electrons, 12 for example when a polarized beam of electrons 

with spin a are scattered off polarized H-atoms. This procedure is analogous to 

that used by Schatz for H + H 2 , 13 but simpler because there are only two identical 

particles. 

Let us then consider the spm wavefunctions of the separated electron plus 

hydrogen atom system in arrangement channel!. There are four such wavefunctions 

V1 (1, 2) = o:(1)o:(2) 

v2(1, 2) = ,8(1)o:(2) 

v3(1, 2) = o:(1),8(2) 

v4 (1, 2) = ,8(1),8(2) 

(3.113) 
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They are orthonormal eigenfunctions of Sz but v2 and v3 are not eigenfunctions of 

5 2 ; however they are related by the symmetry property 

(3 .114) 

.>.n'l' m' Let wphy 1 1 be a "physical" solution to the Schrodinger equation, which 

behaves asymptotically at large R.>. and Rv as 

+l: (3.115) 

Rewriting this expression with the choice ). 1, such that R.>. R, and 

likewise r .>. = Rv = r, we have 

(3.116) 

We now form the completely antisymmetric wavefunction, including spin, noting 

q,An'l~m~(i) = Wln'l~m~ (1 2)v·(1 2) _ q,ln'l~m~ (2 1)v ·(2 1) 
phy ' ' ' phy ' ' ' 

(3.117) 

The asymptotic behavior of this wavefunction is 
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This has the form of a physical scattering solution . Now were-express it in terms of 

the vi(1,2) spin functions of the separated electron-atom (i = ·1,4). Thus we have 

(3.119) 

(k)n'l' m' . . . . 
where f( .) 1 

1 1 1s the antlsymmetnzed scattermg amplitude for scattering from 
' n 1 ml 

initial state (i)nl1m1 to final state (k)n'l~m~. We can solve {: f(k)n'lim'1 b or (i)nl1 m1 Y 

inspection, or by using the completeness of the orthonormal set of functions. The 

resulting expressions for the scattering amplitudes are found in Table 3-1. The 

state-to-state differential cross sections are 

There are six non-vanishing space-spin cross sections: 

( oo )n'l' m 1 
_ ,. (/3/3) n'li mi a 1 1 v 

(oo)nl1 m, - (/3/3)nl1 m, 

(o.B)n'l' m' (.Bo)n'l' m' a 11-a 11 
(o/3)nl1 m1 - (/3o)nl1 m1 

( o{3)n 1 11 m' _ ,. (/3o) n'l'1 mi a 1 1 v 
(/3o)nl1 m 1 - (o/3)nl 1 m 1 

1 I In' I' m
1 

2n
1
1

1 
m' 1

2 

f 1 1 f I I -k lnl1 m 1 - lnl 1 m 1 
n' 

1 I ln'l' m' 1
2 

kn' ftnll ~~~ 

_1_1- 2n'limi 12 

k f1nl1 m1 
n' 

(3.120) 

(3.121) 

If we sum over the final spin states, we can find the cross section for each initial 

spin state. 

(oo)n'l' m 1 (.B.B)n'l' m 1 

a 11-a 11 
nl 1 m 1 - nl 1 m 1 

1 lln'l'm' 2n'l'm'l
2 

f 1 I f I 1 -k lnl, m 1 - lnl 1 m 1 
n' 

,.(o/3)n'limi (.Bo)n'l'm' 
v -a 1 1 

nl1 m 1 - nl1 m1 
_1 (IJln'limi 1

2 + IJ2n'limi 1

2
) 

k lnl1 m, Inl1 m1 
n' 

Averaging over initial spin states one obtains 

n'l' m 1 

a 1 1 
nl 1 m 1 

(3.122) 

(3.123) 
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From Eq. 3.74 this can be rewritten as 

(3.124) 

n'l'm' 
From the above equation we express an11~/ m terms of the singlet and triplet 

differential cross section as 

1 S=O,n'l~ m~ 3 S=l,n1 1~ m~ -u 1 + -u 4 n 1 m1 4 nl1 m1 
(3 .125) 
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Table 3-1: Antisymmetrized scattering amplitudes !((~)~~~~ m~ 
' n 1 m1 

and their relation 

1 Ill I 2 1 !1 I 

to the distinguishable particle amplitudes / 1: 11 ~~
1 d J n 1m1 a an lnl1 m1 • 

i\k a a (3a a(3 {3(3 

a a !l-fi 0 0 0 

(3a 0 !l -fi 0 

af3 0 p - 2 !l 0 

(3{3 0 0 0 !l-fi 

a The indices nl 1m 1 and n'l~m~ are omitted. 
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CHAPTER 4 

CONVERGENCESTUDffiS 

Although the method we have described in Chapters 2 and 3 contains no 

outright approximations, the calculation still depends on many computational 

parameters which must be carefully chosen to achieve convergence. In this chapter 

we describe how we tested the computation with regards to several of these 

parameters. 

4.1 Step Sizes in the Johnson Integrator 

The Johnson integrator 1 has no error estimation, and therefore has no criteria 

for choosing the next integration step size, two features the Gordon integrator 

does have. 2 Johnson's method also differs from Gordon's in that it is a "function­

following," as opposed to "potential-following" 3 routine. In classically "allowed" 

regions the potential is a much more slowly varying function of the independent 

variable than the wavefunction is. Because of this, one might expect that the step 

sizes needed to achieve the same relative accuracy in such regions would have to be 

smaller in the Johnson integrator. Nevertheless, we used it because it is both faster 

and simpler than the Gordon method. 

We needed to specify the step sizes for the hyperradius pas input parameters. 

Increasingly larger step sizes were used as the integration progressed. Experience 
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gained from using the Gordon integrator on this problem was used as a guide for 

choosing the step sizes. We tested for convergence by making calculations with 

more closely spaced points. For example, we tested the 1 Fodd and 3 Fodd states at 

the energies 0.76 Ryd and 0.90 Ryd, projecting at 30 bohr, and found five decimal 

digit agreement in the scattering matrices obtained using the set of step sizes given 

in Table 4-1, and using steps of 0.05 bohr uniform length. We therefore decided 

upon the step sizes given in Table 4-1 for energies up to 0.96 Ryd (the threshold 

for n = 5 H atom states). 

These steps are only slightly smaller than those that would have been used by 

the Gordon integrator. The Johnson integrator is a fourth order method which uses 

a tw~step algorithm; the potential is evaluated at the half-way point and at the 

end of each step. This amount of numerical work per step in the Johnson integrator 

is significantly less than that in the Gordon, which accounts for the larger efficiency 

of the former. 

4.2 Initial Value of p 

The solution to the coupled differential equation in p is found by choosing a 

value of the wave function and its derivative at the origin and propagating outward 

from the origin. The b 1 5 n (Pip) matrix (Eq. 2.28) must vanish at the origin to keep 

the wavefunction from diverging. We choose fPbJsn (0) =I because the scattering 

matrix is unique and independent of the choice of initial derivative matrix. Since we 

cannot actually compute the potential matrix defined by Eq. 2.87 at p = 0, we must 

choose an initial value of p, Po> 0. The choice of p0 should be close enough to zero 

for the initial conditions to remain essentially valid. Numerically, this means that 

the scattering calculation should be independent of slight variations in the choice 

of Po, provided Po is small enough. 
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The results of the first of our tests for convergence with respect to p0 have been 

listed in Table 4-2. Here we have compared the integral cross sections (Eq. 3.108) 

n' l' l' and phase associated with the sJsn nz/z
2

2 matrix element for J = 0, S = 0, II= 0, 

12 = 11, and 1~ = 1~ for total energies 0.76 and 0.78 Ryd (with respect to the ground 

state of H). From this it was determined that p0 =0.1 a0 was acceptably close to zero. 

(Convergence with respect to the other computational parameters may not have 

been yet achieved in these calculations. We assume that convergence with respect 

to the initial value of p is independent of these other parameters. For this reason 

the cross sections and phases reported in this section should not be assumed to be 

accurate, and may not agree exactly with our accurate cross sections reported in 

Chapter 6.) The projection was done at Rp = 30 bohr, with 6 surface functions and 

15 primitives. In Table 4-3 we list the same quantities for a total energy of 0.76 Ryd 

and 0.90 Ryd, with the calculation using the "constant-p" projection method. The 

similarity of the results at 0. 76 Ryd using these two different projection methods 

suggests that convergence with respect to computational parameters other than p0 

has also been achieved.4 

The 3 S state cross sections (at the energies tested) were not sensitive to the 

value of p0 • This is most likely because of the strong repulsive nature of the potential 

term ( eJ 5 n + ~!Z: I in Eq. 2.87) in the triplet state, as will be seen in Chapter 5. 

For higher angular momentum states, there is a large centrifugal repulsion 

that makes the small p region hard to penetrate. One expects that for higher J 

the minimum values of p and p will be larger than those for S-states. This indeed 

is the case. We did subsequent convergence tests on J = 2 even parity and J = 3 

odd parity states and found that at 0. 76 and o;oo Ryd p0 could be increased from 

0.1 bohr to 0.5 bohr without any significant change in the final scattering matrices. 

Similarly the first set of surface functions may be calculated at 2.5 bohr instead of 

at 0.1 bohr for J ~ 2. 
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4.3 Convergence with respect to projection parameters 

Both projection methods, at constant R and at constant p, are exact for an 

infinite surface function basis set. We must, however, use a truncated basis, which 

will introduce some error. If the calculation is converged with respect to the number 

of surface basis functions required, the two methods should give the same results. 

4 .3.1 Projection at Constant R 

In the constant-R projection, the projection variable is r and the projection 

integral is computed using the trapezoidal rule over the region from 0 to rmax· 

This trapezoidal rule is consistent with the fact that the primitive basis functions 

of Eq. 2.34 were obtained using a first order finite difference method. It is 

possible to truncate the integral at rmax because the H-atom radial functions decay 

exponentially with r . At constant R, w becomes a function of r, the value of Wmax 

corresponding to rmax decreases as Rp increases, and the primitives approach zero 

at Wmax· 

The integrals must be converged with respect to rmax and to the r-integration 

step size tl.r, which is determined by the number of steps into which the r-integration 

region is divided. Convergence with respect to these parameters must be tested. 

One can estimate rmax by considering the average radius of the hydrogen atom 

in its various bound states. After the value of rmax is chosen, the value of each 

asymptotic hydrogen atom function at rmax is compared with its peak value and a 

warning is issued by the computer code if the function has not declined to 1% of 

peak. We used a value of rmax =50 bohr for the calculations done for energies below 

the n = 3 threshold, with a value of Rp for the projection of 50 bohr. Reducing 

rmax to 40 bohr made no significant difference when surface functions through n = 3 

were included. 
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We also used 70 points equally spaced in r along the projection cut, which 

makes step size ~r approximately equal to 0.7 bohr. For these choices of rmax and 

~r the R-matri.x is converged to about five decimal digits. 

4.3.2 Projection at constant p 

For the constant p projection method the projection variable is w and the 

projection points are the same values of Wi at which the !-dimensional surface 

functions are calculated. That one doesn't need a different set of "projection points" 

is one of the advantages of this method. 

Careful consideration must be given to the range of w over which the integrals 

m Eq. 3.46 should be performed. First, the points r(w; Pproj), which appear in 

the hydrogen atom functions, do not extend out to infinity, because w reaches a 

maximum. These H-atom functions still are peaked near w = 0. However the 

Riccati-Bessel functions appearing in the integrals Eq. 3.66 have an exponential 

dependence on R(w; Pproj), requiring the use of large values of w. As mentioned in 

Chapter 3, it is very important that one compute the projection integral only up 

to w = ~. The reason one must limit the integration to the 0 :::; w :::; ~ range is 

that one is projecting on asymptotic functions in one arrangement channel only. It 

is interesting to note that if we were by mistake to extend this integration range to 

0 :::; w :::; 1r, there are terms in the integrand of Eq. 3.46 that increase exponentially 

with R(w; p), making the integrals unphysically large. 

Upon implementation of the code, we found that it was not possible to truncate 

the integrals before w = ~ because of the opposing w dependence of the various 

factors in the integrand. 

4.3.3 Comparison of Projection Methods 

In Figure 4.1 we compare the 18 contribution to the ls --+- 2s cross section 

calculated with the two different projection methods, constant R and constant p. 



91 

Using 15 primitives and six surface functions we projected at 40 bohr. As is evident 

from the figure, the two methods give very close results . The two projection methods 

are therefore indeed equivalent. In most of the calculations presented in this research 

we used the constant p method because, as pointed out in Section 3.2.3, it is the 

most convenient one to use in conjuction with the logarithmic derivative method 

and the Concurrent Processor being developed at Cal tech. 5 

4.4 Frequency of Evaluation of Surface Functions 

The scattering results (e.g., scattering matrices, cross sections) are very 

sensitive to the basis set used, and to the frequency of change of surface functions. 

One would expect that an increase of that frequency would increase the accuracy 

of a calculation of this sort. However it is also possible that an excessive frequency 

of changing surface functions could worsen the accuracy because of the numerical 

errors inherent in their calculation. 

As one would expect, it is necessary to have surface functions closer together 

at small values of 15 where they change rapidly with this variable. At larger values 

of 15, one can use the same surface functions over larger ranges of p. 

In an exact calculation, the overlap matrix QISII between surface functions at 

different 15 is real and of infinite order and is orthogonal. In practice, of course, that 

matrix is truncated to finite order. The difference from orthogonality, measured by 

the matrix gives a first indication of I - 01 s II 0 1 s II, how converged the scattering 

calculation for a given surface function basis set is. If the elements of this matrix 

are close to zero, at least for the lower channels, there is little flux being lost due 

to lack of completeness of the basis. 

We have chosen the values of 15 at which to calculate surface functions such 

that the overlap matrix between neighboring 15 is close to a unit matrix, with most 

diagonal elements greater than 0.9995, most off-diagonal elements less than 0.001 
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and the largest off-diagonal elements of each row or column usually of order 0.01. 

The exception is in the area of an avoided crossing between two ~;sn (p) vs. p curves 

(see Eq. 2.61), where the two states that mix have smaller diagonal elements, and 

the off-diagonal element between the two is relatively large. One must be careful 

to truncate the surface function set properly, so as not to have avoided crossings 

between included and excluded states, at least not when a crossing state is expected 

to be important. If such a crossing happened, it would lead to a very small diagonal 

element of the overlap matrix, but the compensating off-diagonal element would 

have been excluded, thus leading to loss of flux. For our choice of the p, the 

elements of I- (jJsnoJsn for successive pare usually of the order of 10-4 or 

smaller, and the scattering calculations were converged as described below. 

The ranges we found to be adequate were 

p(bohr) ~p(bohr) 
0.1-5.0 0.1 
5.0-20. 0.2 
20.-40. 0.5 
40.-60. 1.0 
60.- 100. 2.0 
over 100. 5.0 

For these ranges it was found that the scattering matrix for J = 0 was converged 

to about ±0.003, the 1S elastic cross section Q(1s ---+- 1s) was converged to 0.3%, 

and all other 1S and 3 S cross sections were converged to better than 0.1%, in the 

test calculations done at energies below the n = 3 threshold. 

As was mentioned in Section 4.2, the small p region for larger J is strongly 

forbidden. We are able to use the first set of surface functions at p = 0.5 bohr 

without any noticeable change in the scattering matrices over using 0.1 bohr instead 

for J > 1, and moving all the way top= 2.0 bohr only made slight changes (about 

the fifth decimal place of the scattering matrix elements). 
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4.5 Projection Distance 

After we have propagated the hyperradial part of the wavefunction out to a 

suitable distance, we project from the hyperspherical surface functions onto the 

hydrogen atom functions. This section discusses how one determines that distance. 

If one projects too soon, one expects convergence problems, because it is only in 

the asymptotic region that the hyperspherical surface functions become similar to 

the bound states. In principle once the asymptotic region is reached the results 

should be independent of the projection distance. However in practice we discovered 

divergent results if the projection is done at too large a distance, and that the correct 

distance is energy dependent. The full nature of this problem is not understood. 

The projection distances used in our calculations were determined by comparing 

the results obtained from different projection distances. Often we had much less 

trouble converging inelastic partial cross sections than the elastic ones, which implies 

that it is the phase of the scattering matrix which is more sensitive to projection 

distance, since the former cross sections are phase-independent whereas the latter 

are not. 

The low energy phaseshifts of the 1 S partial wave were tested for convergence 

with respect to both projection distance and number of surface functions and were 

found to be very sensitive. The very low energy (k 2 = 0.01, 0.04 Ryd) phaseshifts 

obtained by projecting anywhere between 6 bohr and 10 bohr agreed to about 

0.01 rad, and also gave good agreement with the Schwartz calculation. 6 However 

extending the projection distance to 15 or 20 bohr or beyond produced a sharp rise 

in the phase shift. 

In Figure 4.2 we give an example of how the phaseshift depends on the 

projection distance. The figure contains data from the 1S lowest energy range, 

where there is only one open channel. The calculations were performed using 15 
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primitive basis functions and three surface functions . Figure 4.2 shows the phase vs. 

energy for projection distances 8, 10, 12, 15, and 20 bohr, as well as the benchmark 

values obtained by Schwartz. 6 The agreement over most of the energy with Schwartz 

is quite good. 

It is evident from Figure 4.2 that the position of the resonance is shifted to 

lower energy as the projection distance is increased. Since the position of the lowest 

1 S resonance has been calculated fairly accurately, we can use this value as a test for 

the present calculations. The resonance energy is taken as the energy for which the 

corresponding collision lifetime eigenvalue has a maximum (see Chapter 6) which, 

for the present single open channel case, is the same as the energy for which the 

partial phase shift versus energy curve has an inflection point. 

Figure 4.3 shows, fork= 0.1 through 0.8 bohr- 1 , how the phase varies with 

projection distance and number of surface functions, and how our calculations 

compare with Schwartz's, which are given at the left axis. The agreement at 8 bohr 

with 3 surface functions (the triangles in the figure) is good. At the lowest energy 

the results of the Pproj = 20 bohr calculation differ from Schwartz's by 0.45 rad, 

or 25 deg. At the highest energy tabulated by Schwartz, our calculations all agree 

to 0.02 rad. Looking at the k = 0.1 bohr- 1 points, one sees that there is basis set 

convergence at p = 8 bohr. As p is increased, the phaseshift undergoes periods of 

rapid increase and then stability, repeatedly. Although not included in the figure, 

we have found that this happens all the way out to projecting at 100 bohr. The 

effect of adding surface functions is to usually decrease the phase. The phases at 

higher energies ( k = 0.4 - 0.8 bohr- 1 ) are much more converged with respect to 

projection distance. The !-surface function values for the phase at k = 0.7 and 

0.8 bohr- 1 have been omitted from the figure because they are 10 to 20 degrees 

too low. This shows that coupling to closed channels becomes important even at 

energies as low as 0.49 Ryd (6.8 eV). 
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Above 0.65 Ryd closed channels become important , and the inclusion of higher 

states must usually be accompanied by projecting at a larger distance. We found, 

for instance, that the position of the first 18 resonance is converged using basis 3/ 5 

and projecting at 30 bohr. The differences due to basis set are larger than those due 

to projection distance for this resonance. The second 1 S resonance is much closer 

to threshold and requires projection at a distance larger than 30 bohr to even be 

seen. The position of this resonance converges within 0.0005 Ryd. We have also 

calculated the position of the 3 8 resonance, which is ten times narrower than the 

second 1 S resonance. The convergence of these low energy resonances with basis 

size and projection distance is discussed in further detail in Section 6.2. 

At energies above the inelastic threshold, one uses the unitarity of the scattering 

matrix as a test of convergence. (At energies lower than this the scattering matrix 

always has modulus one.) We decided that if a calculation at a particular projection 

distance had poor unitarity of the S-matrix (worse than 1.15, say) then that 

distance was too close and a larger projection distance should be tried. If the 

unitarity improves, this is taken as an indication that the new projection distance 

is more appropriate. The distances we finally chose are 20 bohr for energies up 

to k2 = 0.65 Ryd, 40 bohr for energies larger than this but less than the n = 2 

threshold, 60 bohr for energies between the n = 2 and n = 3 thresholds, 80 bohr 

for energies between n = 3 and n = 4, and 110 bohr for energies above n = 4. 

According to Callaway,7 the region just above threshold is a difficult one for 

calculations, because one must go to rather largevalues of p before the channel wave 

functions assume simple asymptotic forms. Our experience was much the same -

the region just above threshold was very sensitive to the projection distance, whereas 

the resonance region slightly below the opening of a new channel was converged in 

this respect, in most instances. In our calculations, the same projection distance is 

used throughout an energy region (from threshold to threshold). It remains to be 



seen what would happen if instead one projected farther out for energies just above 

threshold than for higher energies. Perhaps doing this would have an effect on the 

many "shape" resonances we have detected (see Chapter 6). 

In Figure 4.4 the phase and squared modulus of the ls - 2s element of the 1 S 

scattering matrix at projection distances of 50 and 60 bohr are plotted for energies 

between the n = 2 and n = 3 thresholds. We used 10 surface functions and 

15 primitives to obtain these points. The agreement is to about 0.07 rad for the 

phase and to within plotting accuracy for the square of the modulus, except at 

0.78 Ryd, which is close to then= 2 threshold and the agreement is to about 0.01. 

4.6 Number of Surface Functions 

The convergence of the scattering calculations with respect to the number of 

surface functions and of primitive basis functions is discussed in Section 5.4. 
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Table 4-1: Step sizes for Johnson integrator. 

range of p step size number of steps 

(bohr) 

0.05-15.0 

15.G-45.0 

45.Q-105. 

(bohr) 

0.05 

0.10 

0.20 

299 

300 

300 
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Table 4-2: 1S cross sections (in 1ra~) and phases (in radians) for varying values 

of starting point Po, projecting at Rp = 30 bohr. 

Po (bohr) 0.20 0.15 0.10 0.05 0.01 

E = 0.76 Ryd 

Q18 (1s-+1s) 0.663 0.670 0.673 0.673 0.674 

Q18 (1s-+2s) 0.0317 0.0317 0.0316 0.0317 0.0316 

Q18 (1s-+2p) 0.0204 0.0204 0.0204 0.0204 0.0204 

q/ 5 (1s0-+ 1s0) 1.664 1.674 1.679 1.680 1.681 

q/ 5 (1s0-+ 2s0) -0.771 -0.765 -0.764 -0.763 -0.763 

q/ 8 (1s0-+ 2p1) -2.584 -2.581 -2.576 -2.578 -2.575 

E = 0.78 Ryd 

Q18 
(1s-+1s) 0.628 0.634 0.637 0.637 0.638 

Q18 (1s-+2s) 0.0492 0.0492 0.0490 0.0491 0.0490 

Q18 (1s-+2p) 0.0237 0.0237 0.0236 0.0236 0.0236 

</>
18 (1s0-+ 1s0) 1.683 1.693 1.698 1.699 1.700 

</> 
18 (1s0 -+ 2s0) -1.827 -1.823 -1.821 -1.820 -1.820 

</> 
18 (!sO -+ 2pl) 2.903 2.908 2.912 2.911 2.913 
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Table 4-3: 1 S cross sections (in 1ra~) and phases (in radians) for varying values of 

starting point Po, projecting at Pproj = 30 bohr. 

Po(bohr) 0.20 0.15 

E = 0.76 Ryd 

Q15 (1s-+1s) 0.661 

Q15 (1s-+2s) 0.0325 

Q15 (1s-+2p) 0.0194 

q/ 5 (1s0-+ 1s0) 1.662 

q/ 5 (1s0-+ 2s0) -0.737 

q/ 5 (1s0-+ 2p1) -2.649 

0.667 

0.0324 

0.0194 

1.672 

-0.732 

-2.644 

E = 0.90 Ryd 

Q15 (1s-+1s) 0.484 0.490 

Q15 (1s-+2s) 0.0383 0.0383 

Q15 (1s-+2p) 0.0196 0.0194 

4/ s (1s0 -+ 1s0) 1.583 1.595 

¢> 
1 
s (1s0 -+ 2s0) -3.001 -2.995 

¢l15 (1s0-+ 2p1) 1.494 1.499 

0.10 

0.670 

0.0324 

0.0194 

1.677 

-0.730 

-2.642 

0.492 

0.0383 

0.0194 

1.600 

-2.992 

1.501 

0.05 

0.671 

0.0324 

0.0194 

1.678 

-0.729 

-2.641 

0.493 

0.0383 

0.0194 

1.601 

-2.992 

1.501 
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4.8 Figure Captions 

FIG. 4.1: Comparison of projection methods. The dots are the values of the 1 S 

(1s -+ 2s) cross section obtained projecting at p = 40 bohr. The crosses are the 

values obtained projecting at a constant value of R = 40 bohr. 

FIG. 4.2: 1S pha.seshift vs . energy for various projection distances: 8 bohr (- --), 

10 bohr(---), 12 bohr(---), 15 bohr(---), and 20 bohr(----). Values 

calculated by Schwartz6 are indicated by ~. 

FIG. 4.3: 1S phase (twice the pha.seshift) vs. projection distance. The results 

of Schwartz5 are given by the lines on the inner side of the ordinate axis. The + 

points were calculated using only one surface function at k=0.1, 0.2, 0.3, 0.4, 0.5, 

and 0.6 bohr- 1 . The other basis sets - ~ for 3 surface functions, o for 6 surface 

functions, and x for 10 surface functions- were used at k=0.1 and 0.8 bohr- 1 in 

addition. 

FIG. 4.4: 1s0- 2s0 element of 18 scattering matrix, for two different projection 

distances, vs. energy, at energies between the n = 2 and n = 3 thresholds. The 

~'s represent projection at 50 bohr, the o's 60 bohr. Top: phase (in rad). Bottom: 

square of modulus. The basis set used was 10 surface functions out of 15 primitives. 
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CHAPTER 5 

SURFACE FUNCTION STUDIES 

In this chapter we will analyze the surface functions used to expand the full 

wavefunction in more detail. We will discuss and provide plots of the primitive 

basis functions, and the potentials of which they are the eigenfunctions. The surface 

eigenvalues will be studied, as well as the nodal structure of the surface functions 

themselves. Finally we will discuss the convergence behavior of several sets of 

surface functions bases. 

5.1 Primitive Basis Set 

As explained in Chapter 2, the wavefunction wJMSII is expanded in surface 

functions ~JMSII which are then expanded in primitive basis functions which are 

appropriately symmetrized or antisymmetrized sums of terms of the form 

Since the Y1~)';'s are analytically known functions and the Tj1~ 11 (w; p) 's are 

obtained numerically, we will concern ourselves with the latter !-dimensional 

primitive basis functions. These functions are the numerically determined solutions 

to the differential equation 

(5.1) 
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where ve-:r1211 is given by Eq. 2.38. 

Each basis function has a corresponding energy eigenvalue vff m,z1 (p), which 

approaches a hydrogen bound state level -1/2n2 hartrees asymptotically. The 

principal quantum number n is related to the index p, but not in a simple way, 

and the two should not be confused. We label the lowest (1 1 , 12 ) eigenfunction 

with p = 1, regardless of whether the lowest eigenvalue correlates asymptotically 

with the n = 1 H atom level. In general the number of basis functions exceeds 

the number of surface functions actually used in the expansion of the scattering 

wave function. This feature is one of the reasons we do a double expansion (i. e., 

the surface function is expanded in primitive basis functions and the scattering 

function is separately expanded in surface functions). Whereas any number of 

functions Tj1211 (w; p), p = 1, 2, ... , Pmax could be included in the primitive basis 

set, for any number of 11,1 2 combinations, we have found that it is most appropriate 

to include those basis functions which correlate asymptotically to an isolated atom 

bound state that has a principal quantum number less than or equal to some given 

nmax· The corresponding number of primitive basis functions depends not only on 

nmax, but also on the total orbital angular momentum J and on the parity fl, to 

which ( -1)ldl, is related according to Eq. 2.50. 

A list of the possible basis functions is presented in Table 5 - 1. For each 

asymptotic energy level given by n we have listed the additional (i. e., those in 

addition to the values for 0,1, ... ,n -1) asymptotic 11 ,1 2 values that are allowed 

for each J and fl. For instance, for n = 3 and J = 0 we have the following (11, 12), p 

values: (0,0), p = 1 for n = 1; (0,0), p = 2 and (1,1), p = 1 for n = 2; (0,0), p = 3, 

(1,1), p = 2, and (2,2), p = 1 for n = 3. The total number of primitive basis 

functions for each J and parity are given in Table 5-2. There are both singlet and 

triplet surface functions for each primitive basis function listed in Table 5 - 1 and 

counted in Table 5-2. Asymptotically we may have both 11 > 12 and 11 < 12 states, 
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which correspond to two separate primitive r;1211 (w; p) eigenfunctions of the same 

[h12] potential (see Eq. 2.37). 

When 11 = 12, as is always the case for J = 0 and J = 1, even parity (due 

to the triangle inequality between 11 , 12 and J), two separate basis functions exist, 

namely T/~1 (w; p), which is symmetric with respect tow = ~' and T/.!_1(w; p), which 

is antisymmetric. The ( +) or (-) distinction depends on the sign of ( -1) 1 
+S, which 

is why we designate these basis functions TPJll • 
J+S 

When 12 =f. 11 , as in the odd J = 1 case, symmetrized surface functions are 

obtained by combining T/ 1211 (w; p) and T/ 1112 (w; p) appropriately as described in 

Section 2.4. Actually, T:Z 112 (w; p) is equal to T/ 1211 (7r-Wj p), so we only calculate 

T:Z 211 (w;p), over the entire range of w, using the two boundary conditions, one 

at w = 0 and one at w = 1r. This is in contrast to the l2 = 11 case, where one 

boundary condition is at w = 0, and the other condition is on either the function or 

its derivative at w = ~; these functions are only calculated over the range 0 ~ w ~ ~ 

and the rest is inferred by symmetry. (See Section 2.4.2.) 

The principal quantum number of the ground state is n = 1. Since 11 can 

take values from 0 to n - 1, we must have 11 = 0. That means the parity of a 

primitive basis function which correlates asymptotically with the 1s H-atom state 

is (-1) 1
\ and the triangle relationship between J, 11 and 12 leads to 12 = J as the 

only possible value for 12 • Thus the parity of then= 1state is (-1) 1
. As a result, 

and as indicated in the n 2:: 1 row of Table 5 - 1, there is one, and only one, state 

that asymptotically approaches the 1s H state for each J and S. This affords us a 

significant saving in computer time if we are only interested in transitions from the 

ground (1s) state, because we need include only the states with the same parity as 
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the 1s state in the calculation, 1 and can omit the other parity.* 

For J = 0 there are no odd parity states allowed. For J = 1 (P states) the 

podd states contribute to transitions from the ground state, but the peven ones do 

not. However, as one can see from the Table 5-2, there are fewer peven functions 

than podd, so the time saving is small, but not insignificant. In a similar manner 

the neven states are needed for transitions from the ground state, but the nodd 

states are not. 

If we look at the podd entries for n 2: 1 and n 2: 2 in Table 5-2, we see that 

for nmax = 2 (0,1), (1,0), and (1,2) states are permitted. Why are both (0,1) and 

(1,0) allowed but only (1,2) and not (2,1)? The reason is that 11 is restricted to 

values 0, ... , n- 1, because 11 is the asymptotic orbital quantum number. On the 

other hand l2 is only restricted to be between I J - h I and I J + 11 1, and so is allowed 

to be greater than n. 

If the number of surface functions equals the number of basis functions, one 

might as well have expanded the total scattering wavefunction in the primitive 

basis set directly. However, one can use a large number of primitive functions 

in order to get a much better, but small number of surface functions. Since the 

computation time for solving the scattering (i. e., propagation) equations increases 

with the cube of the number of surface functions used in the scattering function 

. expansion (regardless of the number of primitive functions used in the expansion 

of the surface functions), the use of larger primitive basis sets for a fixed number 

of surface functions permits us to improve the accuracy of the calculation without 

significantly affecting the propagation time. 

* Some authors2 denote states with parity different from the 1s state as being 

"odd," which may lead to some confusion. These states are alternately labeled 

"parity-disfavored." 
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5.1.1 Choice of grid points for finite difference calculation 

The primitive basis eigenfunction-eigenvalue equation (Eq. 5.1) is solved using 

a first order finite difference method. The potential function which appears in it 

(see Eq. 2.32) has an infinitely deep well at both ends (i . e. , w = 0 and w = rr) . 

When the centrifugal terms are added in we obtain the effective potential Veff, 

This differs from Eq. 2.38 by the inclusion of the 8
15n: term which appears in 

1-'P 

Eqs. 2.80 and 2.86. This is done for subsequent convenience. The potential of 

Eq. 5.2 diverges to +oo at w = 0 and rr for l 1 =j:. 0 and l 2 =j:. 0. If either l 1 = 0 

or l2 = 0, the corresponding centrifugal term vanishes and the effective potential 

has an infinitely deep well at the respective end(s) (w = 0 or rr). To illustrate, the 

effective potential for J = 0, l1 = l2 = 0 has been plotted in Figure 5.1 for several 

values of p, and the counterpart for l 1 = l 2 = 1 has been plotted in Figure 5.2. 

In Figure 5.3 we show an example of a non-symmetric effective potential that has 

one repulsive wall and one infinitely deep well, obtained with J = 1, ! 1 = 0, and 

l2 = 1, and in Figure 5.4 is displayed the J = 1, l 1 = 1, l2 = 2 effective potential, 

which consists of two finite wells of different depths. A noticeable feature of these 

potential curves is that there is a discontinuity in their derivatives at w = rr / 2. The 

potential itself is , however , continuous everywhere, except at w = 0 and rr . 

The finite difference method approximates the eigenfunction with straight 

line segments for the evaluation of first derivatives and this is not a very good 

approximation for classically allowed regions of space in which the potential changes 

rapidly, as is the case for infinitely deep attractive wells. We determined that near 

w = 0 for l 1 = 0 the finite difference grid points need to be spaced 1-2 orders of 

magnitude closer together than in the central region (w ""' ~) where the potential 

flattens out. 
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When l1 f. 0 (or l 2 f. 0), this extra dense grid is not needed, as the wavefunction 

is very small near w = 0 (or w = 1r). Therefore we used two different sets of values 

of w to calculate the !-dimensional basis functions. When l1 = 0, we set up five 

regions of equally spaced grid points in the range 0 to ~. The points for w > ~ were 

arranged symmetrically. When l1 > 0, we collapsed the first region into one point, 

so there were only four regions. Up to a certain p-cutoff, the regions were defined by 

an angular range, independent of p. These regions and grid point positions are listed 

in Table 5-3. After this cutoff (usually 106 bohr) we chose the points according 

to the method described next. 

We found that in the asymptotic region of large p the !-dimensional wave­

function Tjl 2 l1 (w; p) was independent of p if the variable w was scaled by p, i. e., 

that 

(5.3) 

Thus it was appropriate in this large p regime to define thew regions by a length of 

arc, instead of by an angle. This injects an added complication in the computation 

of overlap integrals, because the primitive functions for different p (in this range) 

are obtained at different w grid points. This factor was taken care of by appropriate 

cubic spline fits to the eigenfunctions.3 

The even-parity primitive basis functions with J > 1 have a feature that is 

not present in odd ones or in lower J functions. The basis functions with l 2 = l 1 

will have the normalization constant Nl 2 l 1 = 1, but the h > 11 functions have 

Nl2 l 1 = 1/..;2 because the symmetrized function is the sum or difference of two 

separately normalized non-symmetrized functions of the form given at the beginning 

of Section 5.1. The normalization factors must be taken into account when 

calculating potential matrix elements and projection integrals. The normalization 

factors Nz 2 l 1 cannot be collected, via the distributive property, into one overall 
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normalization factor N for the total wavefunction, as they would be for l ,3 S or 

1,3 podd states, for example. But it is not necessary that the total wavefunction be 

normalized, because any normalization factors will not affect the final scattering 

matrix. 

5.1.2 Basis function plots 

In this section we will describe the primitive eigenfunctions that were obtained 

from the potential functions graphed in Figures 5.1-3. In Figure 5.5 we have plotted 

the lowest three 3 S (i. e., antisymmetric) eigenfunctions corresponding to 11 = 12 = 0 

at the same values of p as in Fig. 5.1. The 3 S eigenfunctions corresponding to 

11 = 12 = 1 are plotted in Figure 5.6. 

The effective potential is symmetric -giving rise to symmetric and antisym­

metric eigensolutions - only if 11 = h, as stated before. If 11 =f. 12 , then the 

potential has the form of a double well, with one well deeper than the other and a 

relative maximum at w = I· (If 11 or 12 = 0, one well is infinitely deep.) The podd 

primitive eigenfunctions with 11 = 0 and 12 = 1 are plotted in Figure 5.7. Note 

that no spin state is indicated for the odd J = 1 primitives, because spin, which is 

used to label surface functions, is not a good quantum number for primitive basis 

functions which are neither symmetric nor antisymmetric around w = ~. 

For 11 =f 0 and 12 =f. 0, and for small values of p, the effective potential looks like 

a single well and its eigenvalues are significantly larger than the well minima. The 

corresponding eigenfunctions are similar to sine waves, spanning the entire range of 

w. Asp is increased, the potential wells become narrower and the eigenvalues drop 

to lower energies. When the eigenvalue drops below the maximum in the potential 

at w = ~ , the shape of the eigenfunction is dramatically affected. The function 

must tunnel through the barrier to get from the w = 0 to the w = 1r side of the 

barrier. For sufficiently large p the barrier is so wide that each eigenfunction is 
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concentrated in either one well or the other or both if the potential is symmetric. 

Their values are very small in the wide classically forbidden region. This behavior 

is clearly seen in Figure 5. 7. This kind of behavior is also displayed by the lowest 

eigenfunctions in Figures 5.5 and 5.6 also even though 11 = 0 for these potentials. 

The reason is that in this case also the width of the barrier becomes large and for 

eigenvalues below the top of the central barrier the eigenfunctions become localized 

in one or the other (or both for 11 = 12 = 0) of the narrow well regions. 

For 11 = 12 , and eigenvalues below the top of the barrier, asymptotically the 

symmetric functions look just like the antisymmetric functions in the 0 to ~ range 

and at the same time, the corresponding eigenvalues become degenerate. 

We have observed numerically that the eigenvalues of a non-symmetric 

potential, except for the lower eigenvalues, come in pairs, which become degenerate 

as p approaches infinity. This is to be expected because the eigenvalues should 

be approaching the hydrogen spectrum in each well separately. The number of 

non-degenerate levels is equal to 11 2 -11 1, and these will correspond to the lowest 

eigenvalues in the deeper well. 

5.2 Surface Function Eigenvalues 

In this section we examine the behavior of the surface eigenvalues ~f 5 II (p) 

as functions of p. These eigenvalues are the major contribution to the diagonal 

elements of the interaction potential uJSII in the radial equation (see Eqs . 2.84 

and 2.87) and are obtained by diagonalizing the potential matrix V 0
15 

II + u 1 5 II 

which appears in Eq. 2.60. Others have made model calculations of the resonance 

energies and the bound state level of H- from such curves. 4 •5 It will be useful 

to examine how features of these eigenvalue adiabatic curves correlate with the 

scattering behavior. As a general rule we find that the adiabatic potentials formed 

by the 1S and 3 podd eigenvalues are much more attractive than those of the 3 S and 
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1 podd curves, respectively. We also find, as expected, that these eigenvalue curves 

become more repulsive as J increases. 

As p goes to zero, the surface functions and primitive basis set become the 

hyperspherical harmonics X1~f':>.., which are given by the analytically known Jacobi 

polynomials y~ 11 (w) multiplied by Y1~f'[ and the corresponding eigenvalues are given 

by >..(>..+4)/2p2 , where>.. is a non-negative integer.6 These eigenvalues are degenerate 

in l1 and l2. The ordering of states at p "' 0 is different from the asymptotic ordering 

(at p "' oo), which is that of the principal quantum number n, and states which are 

nearly degenerate at small p will not necessarily be degenerate at large p. Most of the 

adiabatic curves will cross at small values of p, where the eigenvalues are still large, 

and the surface function coefficient matrix a~f1~i (see Eq. 2.56) is close to diagonal. 

This kind of crossing is different from the "avoided crossing" which usually occurs 

at larger values of p, near or beyond the minimum of the eigenvalue. In Table 5-4 

we have indicated the correlation between the states for small (0.1 bohr) and large 

values of p for the 1 S functions. We will not go into detail here as to how these >.., l 1 , 

and l 2 combinations are determined, 6 but let us mention that for even parity states 

such as 1S, >.. is only allowed positive even values. (We should also notice that the 

asymptotic states are not eigenstates of (1z, the z component of angular momentum 

of the isolated H atom, but are linear combinations of such states having the same 

nand / 1 quantum numbers.) 

Looking at the first entry m the table we see that the lowest eigenvalue 

corresponds to >.. = 0, (1 1 , 12 ) (0, 0), the second lowest state has >.. = 2, 

(1 1 ,1 2 ) = (1,1), and for>..= 4 we have two degenerate states, (l 1 ,l2) (0,0) 

and (2,2). The reason there is no 1 S (0,0) state corresponding to >.. = 2 is that 

the second lowest (0, 0) Jacobi polynomial is antisymmetric, and corresponds to 3 S. 

Corresponding to>..= 6 we have both (1, 1) and (3, 3), and for>..= 8 we have three 

degenerate states, with (1 1 ,1 2 ) equal to (0,0), (2,2), and (4,4). It is fairly easy to 
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assign the p "' 0 functions to their counterpart asymptotic functions. If we do so, 

we see that the small p energy ordering of states is as follows: ls; 2p; 2s and 3d; 

3p and 4/; 3s, 4d, and 5g, etc. We will return to this when we make plots of the 

surface functions and examine their nodal structure, in Section 5.3. 

One of the most interesting features exhibited by the surface eigenvalues is the 

presence of "avoided crossings," at which two states become almost degenerate, and 

"repel" each other. In our calculation we have kept all off-diagonal terms in the 

radial equation coupling matrix, but certain approximate methods, in which such 

coupling are omitted, assume that the surface functions vary slowly with p (i. e., 

display adiabatic behavior) and have to treat these avoided crossing regions in a 

special way, so as to preserve the character of the surface functions across these 

regions. The first such example of an avoided crossing we encountered occurs in 

the 1 podd partial wave, between the second and third lowest states. This avoided 

crossing will be discussed in more detail in Section 5.2.2.2. 

We have labeled the surface functions by the general index k, along with 

total angular momentum J, spin S, and parity II. The index k simply orders 

the eigenvectors according to their eigenvalues, the eigenvector with the lowest 

eigenvalue being labeled k = 1. The index k stands for a set of quantum numbers 

yet to be determined. Each surface function eigenvalue asymptotically approaches 

an H atom energy level n, but l1 and l2 are not good quantum numbers for labeling 

surface functions. 

A scheme has recently been developed which assigns quantum numbers (K, T) 

and A to the surface functions. The values of (K, T) and A are assigned 

phenomenologically after the surface functions and energies have been obtained as a 

function of p. These assignments are based upon features of the angular and radial 

correlations evident from the surface functions 7•8 and result in the eigenvalue curves 
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with similar (K,T) and A, but different J, Sand II, having similar features. The 

quantum numbers which replace 11 and /2 are K and T. The (K, T) classification 

scheme is more suited to the adiabatic decoupling approximation because it assumes 

surface functions whose character does not change with p. 

The potential curves we obtain fall into three broad classes, which have been 

assigned values of A = ±1, 0 by Lin. 8 The A = + 1 curves have deep attractive 

wells, at relatively small values of p. The A= -1 curves are also attractive, but the 

wells are much shallower, broader and therefore reach their minimum value at larger 

values of p. The A = 0 curves are generally repulsive. In Lin's classification scheme 

A = + 1 and A = -1 curves can cross, but the A = 0 curves, which are usually much 

higher than the other curves, aren't allowed to cross. For Lin's adiabatic surface 

functions the quantum numbers (K, T)A are independent of p. Our non-adiabatic 

surface functions, to be classified similarly, would have to be analyzed on the basis of 

the adiabatic characteristics, which would make (K, T)A change across an avoided 

crossing. Lin has shown, for states of the He atom, that as J increases, fewer of 

the states have A = + 1 and more of the states correspond to A = 0. This agrees 

with our general observation that the eigenvalue curves become more repulsive with 

higher angular momentum. 

5.2.1 n=l eigenvalues 

The next series of figures show how the surface function eigenvalues vary with 

p, and how their eigenvalues converge at large p to the hydrogen atom eigenvalues. 

(The energies plotted have had the term ~!~: added to the eigenvalue e{ 5 II (p). 

This term comes from replacing 'Ill with p- ~ \ll to remove the first derivative in 

p term, as indicated in Eqs. 2.81 and 2.82.) The lowest 1•3 S, 1 •3 podd, 1•3 Deven 

and 1•3 Fodd eigenvalue curves that converge to the ground state of H at large p 

are shown in Figure 5.8. Each corresponds to an effective potential seen in the 
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elastic scattering for that particular J, S, and II in the adiabatic decoupling 

approximation. Summarizing the main features we note that only the 1 S curve 

has a significantly deep attractive well (having a depth of 0.26 h with the minimum 

occurring at 1.7 a0 ). The 3 S curve has a very shallow well, only 0.007 h deep, with 

a minimum at 6.8 a0 . Purely repulsive potentials are obtained in the 1 podd, 3 podd, 

and all higher J states. At large values of p, the eigenvalue curves for J and J - 1 

are separated from each other by J / p 2 , which corresponds to the difference in the 

centrifugal potential given by J ( J + 1) j2p2 • The lowest potential curves obtained by 

Lin4 match ours very well. For J 2:: 2, the splitting between the singlet and triplet 

curves is very small, making those curves coincide with the plotting accuracy of 

Fig. 5.8. The reason for this behavior is that the centrifugal term dominates. 

5.2.2 n=2 eigenvalues 

There are two n = 2 eigenvalues each for the 1 S and 3 S surface functions (2s0 

and 2p1), three such states for all higher J states with parity ( -1)J (2sJ, 2pJ- 1, 

and 2pJ + 1), and just one for states with parity ( -1)J- 1 (which is 2pJ). These 

surface functions form a one-to-one correspondence with the same number of n = 2 

level asymptotic states (quantum numbers JSiln/ 112 ). There are three distinct 

types of eigenvalue potential, as can be seen in Figs. 5.9 through 5.13: deep well, 

shallow well, and repulsive wall. We have found that the deeper wells, for all J, 

have minima at around 7.5 bohr, whereas for the shallower wells these minima occur 

at about 15 bohr, which is consistent with the observations of Lin. 8 Considering 

that the second Bohr radius is 4 bohr, and that the average distances (r) from the 

nucleus of the 2s and 2p electrons are 6a0 and 5a0 , respectively, the well minima 

are all larger than these measures of the size of an atom. However, that should 

not come as a surprise, since the hyperradius p depends on the radial coordinate 

of both electrons, p = J r~ + r~. The shorter well distance, 7.5 bohr, is roughly 
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equivalent to the square root of the sum of (r2 3 ) 
2 and (r2p) 2, and the larger distance 

is commensurate with the square root of the sum of (r21 1 )
2 and (r31 1 ')

2. 

It has been mentioned that the 1 S, 3 S and 3 podd, 1 podd eigenvalue curves 

resemble those of the H2 molecule for bonding and anti-bonding states.4 In Hi, 
the repulsive 2 E;!" curve results from the antisymmetric character of the electronic 

wavefunction, with a node midway between the nuclei. Likewise, the 3 S state has 

an extra node, compared to the singlet state, at w = ~. 

There exists a one-to-one correspondence betwe.en parity-disfavored states 

(II= (-1) 1 +1) with quantum numbers J, K, T, and another set of parity-favored 

states which are one energy level lower, characterized by quantum numbers J- 1, 

K -1, T-1 and have different spin quantum numbers (singlet+-+ triplet). 8 This can 

partially be seen from Table 5-2, where only the total number of states for each J 

and parity are listed. Thus, for example, the behavior of 1 peven and 3 peven n = 2 

eigenvalues is expected to mimic the 3 S and 1S n = 1 eigenvalues, respectively. 

Indeed this is exactly what we have found, which will be discussed below. 

5.2.2.1 1S and 3 S eigenvalues 

The two curves of 1S eigenvalues that converge to the n = 2 H level at large p 

are shown in Figure 5.9, along with the three that converge to n = 3 and the four 

that converge to n = 4 levels. Considering just the n = 2 eigenvalue curves, the 

lowest one has a well of 0.068 h, the bottom being placed at 7.6 a0 • The other curve 

is repulsive and has an interesting plateau from 11 a0 to 16 a0 at -0.115 h, which 

is not an avoided crossing. The n = 2 eigenvalue curves for the 3 S states are the 

lowest two curves plotted in Figure 5.10. The well in the lowest is much shallower 

than that for the corresponding singlet, being only 0.012 h deep with a minimum 

at 15.0 a0 • Once again, the other one is repulsive. Both the singlet and the triplet 

J = 0 n = 2 eigenvalue curves become nearly degenerate by 25 a0 • According to 
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the (K, T)A nomenclature, all 1S states have a value ofA equal to +1. Conversely, 

all 3 S states are assigned an A value of -1. 

It is apparent from Figs. 5.8 and 5.9 that the attractive 1S eigenvalue curves 

are much more attractive than the corresponding 3 S ones. The repulsive behavior 

of the 3 S curve comes from the extra node in the 3 S surface functions at w = ~· 

5.2.2.2 1•3 podd and 1•3 Peven eigenvalues 

The eigenvalues of the three 1 podd states and one 3 peven state that asymptot­

ically have principal quantum number n = 2 are plotted in Figure 5.11. The lowest 

1 podd state has a well depth of 0.0217 h at 8.0 bohr; there is also an avoided crossing 

between the two lowest 1 podd curves which gives rise to a maximum at 14.0 bohr 

and another minimum at 15.2 bohr in the lowest of these curves. This avoided cross­

ing also causes the second eigenvalue curve to have a well of 0.0071 h at 13.6 bohr 

and a small barrier, 0.0001 h above the n = 2 hydrogen level, at p = 35 bohr. 

The third 1 podd state is repulsive. It is the barrier in the second eigenvalue curve 

which leads to the 1podd shape resonance at 0.7511 Ryd (see Section 6.3). The 

single 3 peven eigenvalue curve has a well 0.0234 h deep at 8.0 bohr, which has been 

shown to be deep enough to support a true bound state. 4 For values of p smaller 

than 13 bohr the 3 peven eigenvalue curve is close to the lowest 1 podd one, but then 

crosses over to become very close to the second curve. At small values of p, the 

difference is due to the different dominant value of l2 , (l 2 = 1 in the 3 peven state, 

but the lowest n = 2 1 podd surface function contains mixtures of l2 = 0 and l2 = 1 

primitives, primarily) which determines the centrifugal potential. Apparently the 

difference between the two potentials (and the fact that for the 1 podd partial wave 

there is a lower, 1s level with which it may couple), is enough to change a bound 

state into a shape resonance. 

Of the three 1 podd eigenvalue curves that asymptotically approach n = 2 level, 
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the lowest is usually labeled 2sp+, meaning that the independent-electron model 

quantum numbers (11, 12) are primarily (0, 1) and (1, 0), and that the dependence 

of the surface function on w is nearly symmetric about ~.9 Similarly the second is 

given the label 2sp-. This means that there is an extra node in the wavefunction of 

the 2sp- state around w = ~ which prevents both electrons from being close to the 

nucleus at the same time. The pronounced avoided crossing at 13.5 bohr causes the 

lower curve and corresponding eigenfunction to change in character from + to -, 

and vice-versa for the second curve. The higher, repulsive curve is given the label 

pd, meaning (1 1 ,1 2 ) = (1,2). The pd state is not very important in the discussion 

of the 1 podd shape resonance. 

It is interesting to compare how these simple labels correlate with the surface 

function expansion coefficients for the appropriate primitive functions, which are 

the second and third eigenfunctions Tj= 1•11 =0 •12 = 1 (w) and the lowest Ti 12 (w) one. 

From the plots of podd primitives in Fig. 5.7 it is seen that Ti~~(w) has one node, 

and at large values of p the density is concentrated at the w = 1r end, and the 

node becomes negligible. (By saying a node "becomes negligible" we mean that 

the node exists between where the function is vanishingly small but positive, and 

where it is vanishingly small but negative.) This primitive function correlates with 

the 2p function at large p. The next primitive has two nodes, one of which becomes 

negligible for large p, and correlates asymptotically with the 2s function. 

The actual coefficients of the 1 podd n = 2 surface functions, at p = 20 bohr 

are 
TlOl 2 

TlOl 
3 

Tu2 
1 

~2 ("47 -.83 .30) 
~3 .82 .28 -.49 

~4 -.32 -.48 -.81 

From this matrix it is evident that the labels 2sp+, 2sp-, and pd are somewhat 

misleading. It is true that the relative sign of the coefficients of the two' sp' primitive 
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functions is reversed in going from <1?2 to <1?3, and that the 'pd' primitive function 

is the major contributor to <1? 4• But in <1? 3 the 'pd' primitive contributes more than 

the second 'sp' primitive, so its contribution is non-trivial. Each of the surface 

functions has a coefficient greater than 0.8 for one contributing primitive, instead 

of the expected 2sp ± 2ps structure. The coefficients are not much different just 

before the avoided crossing, at p = 12 bohr, but the characters of <1? 2 and <1? 3 are 

interchanged: 
T101 

( 

~85 
.24 
.40 

Tj01 

.12 
-.94 

.31 

r112 

-~47) 
.22 
.83 

The only place where <1?2 and <1?3 have approximately equal contributions (with 

opposite signs) from the two sp primitives is when they are undergoing the 

transformation, in the region of the avoided crossing (the p range 13.4 to 13.6 bohr). 

Comparing these eigenvalues to those reported by Klar and Klar, 10 we find 

that these authors obtain an avoided crossing at about p = 14 bohr, but our 

eigenvalues are about 0.01 hartrees lower. Lin also gave the results for 1 podd 

states, but he used an adiabatic representation which leads to true crossings between 

the corresponding eigenvalue curves. 4a When the curves are allowed to cross, Lin 

obtains for the + state a well 0.019 h deep, located approximately at 8.5 bohr, 

a barrier 0.0024 h high (measured from the asymptotic value of the energy) and 

an asymptotic potential that varies as +2/ p2 • The - state gives a shallower well 

(0.006 h, minimum at about 15 bohr) which behaves as -3.71/ p2 asymptotically. 

Lin's calculation only included [11, 12] = [0, 1] and [1, 2] states, and the diagonal 

term of the second derivative coupling matrix (see Eq. 2.98) has been added 

to the eigenvalue term. Our calculation uses 25 primitive functions as listed in 

Table 5 - 2, and because we have diabatically changing surface functions, there 

is no second derivative coupling term. Using this much larger basis, the potential 
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curves obtained are lower in energy, but the barrier is still present . The shape 

resonance is still clearly seen in our 1 podd scattering results ~ This resonance has 

also been seen by Callaway, 11 and verified experimentally by Hamm., et al. 12 

The 3 podd eigenvalue curves correlating asymptotically to n = 2 H atom 

level are displayed as the three solid curves in Figure 5.12. The lowest of them 

is attractive, having a well 0.055 h deep at about 7 bohr, and the other two are 

repulsive states. The attractive well is much deeper than the corresponding 1 podd 

well in Fig. 5.11, but not quite as deep as that for the corresponding 1S state 

of Fig. 5.9. There is no crossing between these 3 podd n = 2 states, which leads 

Lin to conclude that an n = 2 shape resonance in 3 podd is impossible. 4 This is in 

direct contradiction to the prediction of such a shape resonance on group theoretical 

grounds by Herrick. 13 In our calculation we find evidence of a short-lived shape 

resonance in the 3 podd partial wave. We have found similarly short-lived resonances 

in other partial waves as well, using a collision lifetime matrix eigenvalues analysis. 

The 1 peven eigenvalue curve is almost repulsive, having a very shallow well, much 

like the 3 S n = 1 eigenvalue curve. This occurs for the same reason; the extra node 

about w = ~ in the 1 peven primitive functions which is not present in the 3 peven 

primitives. 

5.2.2.3 Higber J states 

From Figure 5.13 it is seen that the 1 neven n = 2 lowest eigenvalue curve has 

a well 0.027 h deep at 8.4 a0 and the two other ones are repulsive. The 3 Deven 

n = 2 eigenvalue curves are shown in Figure 5.14: the well in the lowest occurs at 

15 a0 and is 0.004 h deep, while the two others are repulsive. The lowest eigenvalue 

curves for the n = 2 1 Dodd and 3 Dodd surface functions (not displayed) are both 

repulsive. All of the n = 2 eigenvalue curves of the J = 3 surface functions are 

repulsive; however one of them has a shallow well if the ~!~: term is not added in. 
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For all higher values of J we expect purely repulsive eigenvalue curves, because of 

the large centrifugal potential. 

5.2.3 n=3 eigenvalues 

The eigenvalue curves for higher energy states (n = 3, 4) display a larger 

number of avoided crossings and barriers . The two lowest 1S n = 3 curves each 

have a well, 0.030 h deep at 18.6 bohr, and 0.010 h deep at 19.4 bohr, respectively 

(see Fig. 5.9). The two lowest 3 S n = 3 curves (see Fig. 5.10) also have wells which 

are not as deep, just as for the corresponding n = 2 curves. These wells are 0.009 h 

deep at 28.5 bohr, and 0.0007 h deep at 34 bohr, respectively. The third state, both 

for the singlet and triplet spin states, is repulsive. 

There are five J = 1 states of odd parity for n = 3 for each spm. 

The corresponding eigenvalue curves are plotted, along with those for n = 4, 

in Figure 5.15 for 1 podd and Figure 5.16 for 3 podd. The five 1 podd curves 

which asymptotically correlate with the n = 3 H atom levels have the following 

characteristics. The lowest curve has a well 0.0200 h deep at 18.8 bohr and an 

avoided crossing with the second curve around 30 bohr. This second curve, which 

has a well 0.0085 h deep at 28.5 bohr, also avoids crossing the third one, at around 

20 bohr. The third eigenvalue curve has a barrier less than 0.0001 h high, due to 

the aforementioned avoided crossing with the second curve. The fourth and fifth 

curves are purely repulsive. The fifth one also exhibits an avoided crossing with an 

n = 4 higher state. 

The lowest 3 podd eigenvalue curve has a well at 18.4 bohr which is 0.0281 h 

deep. The second one, due to an avoided crossing, has a double well, the minima 

of which are at 19.8 bohr (0.0071 h deep) and 29.5 bohr (0.0047 h deep), with a 

relative maximum 0.0027 h high, measured from the bottom of the deeper well. 

The third curve also has a well (0.0035 h deep at 26 bohr), and the fourth one 



124 

is repulsive. The highest curve exhibits an avoided crossing with an n = 4 curve, 

which gives a barrier 0.0004 h high with respect to the bottom of the adjacent well. 

There are six surface functions that asymptotically approach linear combina­

tions of n = 3 H atom states for J > 1. As seen in Fig. 5.13, the three lowest 

1 Deven eigenvalue curves are attractive, with minima at 18.2, 18.8, and 28.0 bohr 

respectively, and corresponding depths of 0.024, 0.008, and 0.003 h. The minimum 

in the third curve is due to an avoided crossing with the second one. The fourth 

curve, due to an avoided crossing with the third, has a minimum at 25.5 bohr and 

a barrier to its right which is 0.0008 h high, measured from that minimum. The 

fifth curve is repulsive, and the sixth one has an avoided crossing with an n = 4 

curve. The lowest three 3 D even n = 3 eigenvalue curves (see Fig. 5.14) are attractive 

with minima at 18.6, 29.5, and 32.5 bohr, with corresponding well depths of 0.018, 

0.003, and 0.0014 h. The fourth and fifth curves are repulsive, and the sixth and 

highest curve has a ledge at about 35.5 bohr caused by an avoided crossing with an 

n = 4 curve. 

The two lowest n = 3 1Fodd eigenvalue curves, as seen in Figure 5.17, have 

an avoided crossing, as a result of which the lowest has a barrier (in addition to 

a well), and the second a well. The next three curves are repulsive, and the last 

one has a sharp avoided crossing with ann= 4 curve at 39 bohr which produces a 

barrier, though the curve is still repulsive. As seen in Figure 5.18the lowest n = 3 

3 Fodd eigenvalue curve has a relatively deep well, followed by three repulsive curves 

which interact relatively little, and two more which have a sharp avoided crossing 

with each other. In addition, the highest curve has a sharp avoided crossing with 

the lowest n = 4 curve. 

5.2.4 n ~ 4 eigenvalues 

The number of surface functions which correlate asymptotically to n = 4 and 
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n = 5 H atom levels increases dramatically, especially for large J. The asymptotic 

energies also become closer as n increases, so the n = 4 curves don't separate from 

n = 5 and n = 6 ones until large values of p, of about 100 bohr are reached. The 

proximity of these eigenvalue curves, out to large p, produces multitudinous avoided 

crossings. As a result, to obtain converged n = 4 level eigenvalues in the interaction 

region (i. e., relatively small p) one needs to include primitive basis functions up to 

n = 6. 

5.3 Surface Function Plots 

In this section we describe a method for making contour plots of the amplitudes 

of surface functions. The nature of electron correlations between two excited 

electrons can be examined in terms of these contour plots. The surface functions 

are actually five-dimensional, but if we use the body-fixed, instead of space-fixed, 

representation, the functions can be expanded in the analytically known Wigner 

rotation functions, D~M(cp,O,t/;). 14 The expansion is 

~fMSII = l:)-1)0(2~1!'~ 1)D~M(cp,0,t/J)F/oSII(w,/;P) (5.4) 
0 

where the range of 0 is from -J to J. The angles cp, 0, and t/J have been defined 

at the end of Section 2.1. For J = 0 this summation reduces to a single term 

and ~?05 II and Fi~s II become proportional to one another since ngo is a constant. 

The two dimensional functions, Fi'hs II (w, lip), are found by equating the expansion 

for ~fMSII above with that made in Chapter 2 in space-fixed coordinates, namely 

Eq. 2.56. Doing so one obtains 

F/o5 II (w, lip) = L a~fl~i (p) [ ( -1) 11 C(Jlll2; n, -n, 0) Pz? (I) t~1211 (w; p) 
l2l1P (5.5) 

+( -l)J+S-II +l2 C( Jl 2l1 ; 0, -0, 0) P1~ (/) t~1211 ( 1r-w; p)] 
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where t~ 1 ~ 11 (w; p) are the !-dimensional primitive basis functions defined by 

Eq. 2.34, a~t~i(p) are elements of the surface function coefficient matrix obtained 

by solving Eq. 2.60, and P1~ (I) is the renormalized Legendre polynomial defined by 

Eq. 2.68. It is easily shown that jFi'bsn(w,I;P)i is independent of the sign of 0. 

From the definition of the renormalized Legendre polynomial one has 

(5.6) 

and from elementary properties of Clebsch-Gordan coefficients one has 

(5.7) 

Combining Eqs. 5.5, 5.6, and 5.7 one obtains for F/~{[ the following result: , 

(5.8) 

The right hand side of this expressions differs from Eq. 5.5 only by the presence 

of the factor (-l)fHJ, and by factors (-1) 11 - 12 contained within the summation. 

However, since the sum is over states all having the same parity, one has 

(5 .9) 

and these terms can be factored outside the sum over 11 and l2. Therefore there 

are J + 1 subfunctions Fi1gr for each set of quantum numbers J S IIi which must 

be calculated. The hyperspherical coordinates p, w, and 1 are related to the 3-

dimensional mathematical space OXYZ (described in Section 2.2.3) which was used 

to obtain a physical model of the potential energy function, and the angles w and 

1 are defined as spherical polar angles in this space. 
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In order to represent the functions Fi~511 (w,1;p) it is convenient to map the 

hemisphere in OXYZ space defined by p = constant, 0 :::; 1 :::; 1r, 0 :::; w :::; 1r onto 

a plane. Such a mapping may be achieved for 0 :::; w :::; ~, corresponding to the 

northern (i.e., top) half of that hemisphere by defining a plane TIN tangent to it at 

the point N for which w = 0 (i.e., the north pole, as displayed in Figure 5.19). We 

define axes NXN and NYN on that tangent plane which are parallel to OX and OY, 

respectively. To a point P(w,,;p) (0:::; w:::; ~) on the northern "quartersphere" 

we associate a point Q on the intersection with the plane defined by OZ and P 

and for which the N to Q distance is equal to pw, i. e., the length of the N P arc 

of circle. For points on the southern quartersphere, we adopt a similar mapping 

onto the plane ITs tangent to that quartersphere at the south pole S. We can now 

display the functions Fi~511 (w,1;p) by contour diagrams on the OXNYN (YN ~ 0) 

or OXs Ys (Ys ~ 0) half planes. 

The cartesian coordinates of the point Q(XN, YN) are related to the hyper­

spherical coordinates of the point P by the following realtions: 

XN = pWCOSI 

(5.10) 
YN = pwsin1 

Lines passing through the origin have equations of the form 1 = constant and circles 

centered on N have equations of the form w = constant, corresponding respectively 

to meridian lines and parallel lines on the hemispherical surface in OXYZ space. 

The J > 0 surface function coefficients Fi~511 (w,1;p) do not have symmetry 

with respect to w = ~, so for them it is necessary to make plots for both 

quarterspheres. Sometimes it is more useful to map onto a plane tangent to the 

hemisphere at the point 1 = 0, w = ~ situated on the OX axis or at the point 

1 = ~, w = ~ situated on the OY axis. The best display involves mapping onto all 

three of these planes. 
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The boundary conditions satisfied by Fi~s II ( w, 1; p) for 1 = 0 and 1 = 1r depend 

on the value of 0; for 0 = 0 the first derivative of this function with respect to 1 

vanishes at the boundaries, whereas for odd values of n the function itself vanishes, 

and for non-zero even values of n both the function and its derivative vanishes. 

These conditions, which are proved below, arise naturally out of the surface function 

expansion Eq. 2.30, which contained spherical harmonics in space-fixed angles, and 

are necessary to insure single valuedness of the ~ f M 5 II. 

The tumbling angle '1/J is undefined wheri 1 = 0 or 1r, because the two vectors 

r 1 and rl are in alignment. The Wigner rotation functions have the form 

In order for the surface function (Eq. 5.4) to be single-valued, one of two conditions 

must hold. Either D~M ( <p, 0, '1/J) is independent of '1/J, or the coefficient Fi~s II (w, 1; p) 

vanishes. If n = 0, the first condition is true, which allows F/ t II to be non-, 

vanishing along the 1 = 0 border. If 0 =f. 0, the coefficient Fi~SII(w,1;p) of the 

Wigner function must vanish at 1 = 0 and 1r: 

Fi~SII(w,I;P)I = 0 for n =f. 0 
'"(=0,71' 

(5.11) 

To obtain the boundary condition on the derivative of Fi~SII(w,1;p) at 1 = 0 and 

1r we examine the values of the Lengendre polynomials and their derivatives with 

respect to 1, since Fi~s II ( w, 1; p) has been expanded in them. An examination 

of these functions reveals that for all J, if n is an even integer the value of the 

derivative at 1 = 0 is zero. The derivative is non-zero when n is an odd integer. 

The hyperradius p is not directly involved with describing the correlation 

between the electrons. Excitation in p corresponds to an increase in the size of 

the system and singly excited states. Lin has used a different scheme15 to plot the 
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"surface charge density" of the surface functions. For values of J greater than 0 he 

averages over the Euler angles, as opposed to our method where we obtain separate 

plots for each value of 101. Although it would be nice to compare our surface 

functions with those obtained by Lin, the differences in representation make this 

somewhat difficult. We have chosen to plot the amplitude functions Fi~811 (w,1;p), 

using the polar coordinates (w,1), whereas Lin has converted w/2 and 1 into 

cartesian coordinates for his plots, and plots the square of the wavefunction times 

the volume element. This difference makes it difficult to comment on the points 

discussed by Lin, though there are some features, namely the nodes, which are 

similar. He has shown that all singly excited states of H- have nodal lines along 

p = constant, and no radial nodal structure in the w coordinate, while doubly 

excited states have nodes in w. 

The plots of Fi~s 11 ( w, lip) are useful in analyzing the nodal structure of the 

surface functions, for demonstrating the quasiadiabatic evolution of the functions 

with p, and for comparing them to hydrogenic functions. We know that hydrogen 

bound states can have both radial (Rnz 1 (r) = 0) and angular (Yi2 m 2 (r) = 0) nodes. 

We define the dependence of the Fi~811 (w,1;p) on was "radial" correlation and on 

1 as "angular" correlation. In the limit of no Coulombic interaction potential the 

surface functions for J = 0 are products of Jacobi polynomials in sin wand Legendre 

polynomials in cos 1.6 The corresponding nodal lines are in this case obtainable from 

the zeroes of these polynomials. The electron-electron interaction term at finite 

values of p makes the Schrodinger equation non-separable and causes the nodes to 

no longer be purely of the "w" -type or of the "1" -type. At small values of p the 

interaction term is relatively unimportant compared to the kinetic energy terms, 

which have a 1/ p2 dependence. 
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5.3.1 J =0 surface functions 

The S states are actually independent of the Euler angles, since they have 

zero total orbital angular momentum. The surface functions in the J = 0 case 

depend only on w and 1 (and parametrically on p). The 1 S surface functions are 

symmetric about w = ~, and the 3 S surface functions have a nodal line there 

and are anti-symmetric. Therefore we need only plot the upper quartersphere for 

S states because the lower part is determined by symmetry. The functions have 

been evaluated at some points that correspond to the lower quartersphere (but 

which show up in our rectangular representation) anyway (by extending the rule 

NQ=length of N P arc to those points), which serves to emphasize the presence of 

a node or antinode along the equator. The points on thew = ~ plane in OXYZ 

space lie along a half-circle of radius ~ p on the 0 X NY N, Y N 2: 0 half-plane. 

The first six p = 1.0 bohr 1S surface functions (in order of increasing eigenen­

ergy) are displayed in Figure 5.20, projected onto the plane TIN (see Fig. 5.19) and 

are labeled ~:s (i=1 through 6) . They are normalized according to Eq. 2.100, using, 

however, the integration volume element sin 2 wdw sin 1d1 sin OdOd<f>d'lj; appropriate 

for body-fixed hyperspherical coordinates. ~ ~ 5 has no nodes, and is fairly large 

everywhere, including along thew = ~ boundary. The contours for small values of 

w are roughly circular. The nodal lines in ~~s and ~~s give an interesting example 

of djfferent types of nodal lines. At p = 1 bohr, ~~s has a nodal line characterized 

by XN = pw cos 1 = constant ~ 0, i. e., 1 ~ ~ which we call an "angular" node . 

On the hemispherical p = 1 bohr surface this is a meridian (constant longitude) 

line. One the other hand, ~;s has a nodal line which is a half circle of constant 

radius pw and therefore has an equation of the type w ~ constant. We call this a 

"radial" node. On the hemisphere this is a parallel (i.e., constant latitude) line. In 

this respect it is similar to the contours of the lowest surface function. 
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We saw in the previous section that at very small p the 1 S surface functions 

corresponded to the following ordering: 1s; 2p; 2s and 3d; 3p and 4/; 3s, 4d, and 

5g, etc. At p = 1.0 bohr we have seen that the first and third functions are very 

similar, except for an added "radial" node in the higher state. This is, indeed, the 

hyperspherical coordinate analog to the nodal pattern found in hydrogen bound 

states, where the 1s function has no nodes, the 2s function has the same angular 

part as the 1s, but has an added node in the radial part (radial node), and the 2p 

function has an angular node and no radial nodes. 

The fourth 1S surface function q,~s for p = 1.0 bohr has two nodal lines, which 

can be classified approximately as "angular," because they tend to be straight with 

1 approximately constant and meet at the origin N, where w = 0. This function is 

large at the top and bottom of the figure (viewed with N at the top), and appears 

symmetric across the 1 = ~ (i. e., XN = 0) lines. The fifth surface function q,~s 

has an interesting contour pattern that is caused by the near crossing of two nodal 

lines, one purely "radial," the other purely "angular." Asymptotically we would 

expect the sixth function q,~s to have only two nodal lines, but since the small p 

ordering places the 4/ function below the 3s in energy, it is not surprising that it 

has instead three "angular" nodes. Asp increases these nodes will become obscured 

and lose their simple designations "radial" or "angular." 

Figure 5.21 shows the q,~s surface function at p = 4, 5, and p = 10 bohr, and 

Figure 5.22 is similar for q,;s. From these graphs it is apparent that as one goes out 

to higher p, the straight line node in q,~s bends around, until it forms a semi-circle 

(for p = 15, which is not shown). The circle is however not centered around N 

and is therefore not truly an w = constant line. Likewise the radial node in q,;s 

becomes less curved asp increases, but the line is not quite straight and not quite of 

the 1 = constant form. As an approximate classification we nevertheless designate 

the nodal line in q,~s at large p as radial, because it spans the entire range of 1 
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but only a small range of w, and the nodal line in ~~s at large pas angular, since 

it spans a small range of I· The ~;s and ~~s surface functions for p 2: 20 bohr 

are not pure 21 1 hydrogenic states; rather ~~s is approximately a 60-40 mixture 

of 2s and 2p, and ~~s a 40-60 mixture of those two states. The reason is that 

the region of configuarion space for which 0 ~ r 1 ~ r 1max (for which the isolated 

H atom wavefunction is non-negligible) and p > > r 1max corresponds to an electron 

at a large distance form an H atom, which as a result splits the 11 degeneracy and 

mixes the 2s and 2p states. 

The surface functions ~~s, ~~s, and ~~s mix and cross with higher functions 

at larger values of p. We display these functions in Figure 5.23, Figure 5.24, and 

Figure 5.25, respectively, for p = 5, 10, 15, and 20 bohr. As the surface functions 

cross, the nodal patterns change. As mentioned above ~~s has three angular nodes 

at p = 1.0, whereas ~~s has two radial nodes. This must mean that a surface 

function correlating with the n = 4 asymptotic state is lower in energy than the 

highest n = 3 state at p = 1.0, even though it has more nodal lines. Since the 1S 

surface functions are symmetric across the w = ~ line, each surface function with 

nrc radial nodes in the quartersphere plotted has additional nrc radial nodes in 

the lower quartersphere; therefore each radial node in the plotted surface function 

counts twice in the figuring of total number of nodes. Each angular node, on the 

other hand, is continuous across thew= ~ division, and so counts as only one node. 

Asymptotically the surface functions are ordered according to number, and type, of 

nodal lines. Radial nodes generally produce lower energy states than angular nodes 

for large values of p which are not quite asymptotic, i. e., values of p for which 

eigenvalues corresponding to the same n have not become degenerate. The state 

~~s with three nodal lines crosses with and becomes ~~s somewhere between 5 and 

10 bohr. The two-radial node state eventually crosses all of these, becoming the 

fourth lowest state. 
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The 1 S surface functions are displayed in their asymptotic form in Figure 5.26, 

for which p = 50 bohr. We find that ~~s is concentrated about N, and is 

independent of /, with no nodes. (The zero value contour (the unlabeled one , 

around the perimeter) is not a real node, but merely a numerical artifact. The 

function is so small in this region that a small error changes the sign.) ~;s and 

~~s each have one nodal line, as discussed above. We find that ~:s has two radial 

nodes, ~~s has the interesting pattern that occurs when one radial and one angular 

node cross, and ~~s has two angular nodes. 

The 3 S surface functions have one extra nodal line, compared to the singlet 

state, located at w = ~· We have seen (see Fig. 5.8, for example) that the singlet 

eigenvalues become degenerate with the triplet at large values of p; the surface 

functions also become identical except for the added node and a change of sign for 

~ ~ w ~ 1r. This is possible because the node is in a region of negligible density. 

Consideration of the potential energy function explains why the surface functions 

tend to concentrate at smaller values of w as p increases. The potential takes on a 

cylindrical shape asymptotically, which implies that the region which is classically 

allowed has constant linear dimensions as p is increased, but the angle subtended 

by this region ( w) decreases as 1/ p. 

5.3.2 J=l surface functions 

The much discussed "avoided crossing" between the second and third 1 podd 

eigenvalues (see Section 5.2.2.2 and Fig. 5.11) leads to a subsequent change in 

the corresponding surface functions. We demonstrate this by plotting contours of 

~ 2 (1 podd) and ~3 (1 podd) on a plane tangent to the OXYZ space p = constant 

hemisphere at a point A on the OX axis (i.e., a plane perpendicular to that axis). 

The axes on that plane are AZA and AYA which are respectively parallel to OZ 

and OY and we are limited to the half plane YA 2: 0 (corresponding to 0 ~ 1 ~ 7l'). 
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This plane is shown in Figure 5.27. In Figure 5.28 the surface functions have been 

computed at p = 12 bohr, and in Figure 5.29 they have been computed at 14 bohr, 

while the crossing occurs at about 13.5 bohr. It is apparent from the two sets of 

figures that the states have crossed, albeit "avoidedly." 

5.4 Basis Size 

It will be useful, in this section, to refer back to Table 1 - 1, which lists the 

hydrogen atom thresholds and the number of n1 1 states that are open within each 

energy range. We will refer to energies between the n = 1 and n = 2 thresholds 

as being in the "first" energy range, where there is one open state. The "second" 

energy range is between then= 2 and n = 3 thresholds, where there are three open 

n1 1 states, 1s, 2s, and 2p, although there are four nlth states of the same parity of 

J for J > 0, as can be seen from Table 5-2. Similarly we will refer to the third 

energy range between the n = 3 and n = 4 threshold, and the term "6-state" refers 

to the asymptotic open nit states 1s- 2s- 2p- 3s- 3p- 3d. There are ten nl 112 

states in this range of the same parity as J for J > 1. The generalization to the 

higher energy ranges is evident. 

5.4.1 J =0 basis 

In the second and third energy ranges, we compared the J = 0 partial wave 

scattering matrix elements obtained using three different surface function sets, as 

shown in Table 5-5. The (1s - 1s) probabilities and phases are converged to 

1% of their value using only 6 surface functions, out of a primitive basis set of 15 

functions. The off-diagonal elements are smaller, and so the relative convergence 

is not as good. Most of the probabilities are converged to 5% of their value with 

six surface functions. Using ten surface functions out of 15 primitives gives better 

than 1% convergence in the probabilities and 0.01 rad in the phases, at energies 

below the n = 3 threshold. At the energies above that threshold the smaller basis is 
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sometimes very good, but at points the probabilities can differ by 10% from the 15-

state calculation. The only troublesome spots are those energies close to resonances, 

like 0.86 Ryd and 0.93 Ryd (see Section 6.2). One can detect the presence of the 

resonance at 0.86 Ryd by the 6-state calculation, but the results are not nearly as 

accurate as with 10 or 15 states. One doesn't expect to get good results with only 

six surface functions (which includes all states up to n = 3) at 0.93 Ryd because 

there is a resonance involving the n = 4 states at this energy and also because the 

cross section is changing so quickly with energy. 

5.4.2 Basis for higher J 

We have studied the convergence of the scattering matrix element phases with 

surface function basis size for J = 2, even parity, singlet spin, and present the 

results in Table 5 - 6 for energies in the range 0. 76 to 0.93 Ryd. The n = 3, 4, and 

5 eigenvalues are not well separated {see Figs. 5.13 and 5.14) and crossings in the 

eigenvalues vs. p curves are frequent, due to the large number of states contained 

in the primitive basis. Therefore we did not use a subset of surface functions as a 

basis- each entry has the same number of surface functions as primitive functions. 

The bases used to test convergence were 10 functions (nmax = 3), 19 functions 

(nmax = 4) and 31 functions (nmax = 5). Convergence to about 0.01-0.04 rad (i.e. , 

,....., 0.6- 2°) has been achieved in most cases. Naturally, the convergence is not as 

good at the highest energies listed in the table. Relative convergence of the diagonal 

element phases is about 2.5%. 

The corresponding elastic cross sections, tabulated in the first and fourth 

colmns of Table 5-7, are very sensitive to the phase values and are converged to 

about 5%. This is because, according to Eq. 3.110, the relative error in the phase 

is doubled in the elastic cross section, since the T -matrix is squared. Our values 

show that the elastic cross sections found by Burke et al., 16 using six target-atom 
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eigenfunctions, are not converged due to too small a basis set. The 6-state close­

coupling values fall somewhere in between our minimum basis (entry 'a,' 4 surface 

functions) and our basis 'b,' which is also a 6-state basis (1s- 2s- 2p- 3s- 3p- 3d) 

involving 10 surface functions, and have been listed as entry (e). We see that the 

results obtained using the 6-state basis with the hyperspherical method are closer 

to the converged result than those obtained with a comparable number of target 

atom (or close-coupling) eigenfunctions. 

Our J = 2 inelastic cross sections are well converged even with only ten 

surface functions, since the integral (as opposed to differential) cross section does 

not depend on the phase for inelastic transitions. The 1 neven inelastic 1s --t 2s and 

1s --t 2p cross sections are also tabulated in Table 5 - 7 in the second and third 

columns. These results will be compared with other calculations in Section 6.3. 

The inelastic partial cross sections we obtained for J =3, 4, and 5, which are 

not listed here, agree very well with the close-coupling (6-state) results published 

by Burke et al. 16 These cross sections are all very small. We found that most of 

our results agreed with the 6-state results of Burke et al. to within 0.0002 1ra6. 
In those cases where the difference was larger than 0.0002, the change was always 

in the same direction as and of smaller magnitude than the difference between the 

3-state and 6-state close-coupling calculations. 

The results for elastic cross sections present a different picture. We have 

tabulated these cross sections for the 1 Fodd and 3 Fodd partial waves in Table 5-8. 

Our cross sections are roughly four times larger than the corresponding quantities 

reported by Burke et al. 16 for J = 3. The explanation for this behavior is 

probably that the Burke results are not converged. Those results definitely show a 

large change (50 to 100%) in going from the 3-state calculation to the 6-state, so 

convergence has not been demonstrated by those authors. Furthermore, we have 
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seen that with the hyperspherical basis the elastic cross sections are not converged 

very well by including only states upton= 2, nor up to n = 3. However, even our 

minimum basis (3 nl 1 states, 4 nl 1 l 2 surface functions) is "better," in the sense that 

it is closer to the converged-basis result, than the 6-state results of Burke et al. 16 It 

is also possible that the aforementioned (Section 4.5) projection distance problem 

has influenced our results. 

5.4.3 Summary 

The final calculations reported in this thesis (see Chapter 6) were performed 

using all the surface functions up to and including those with n = 5 for total energies 

below the the n = 4 threshold. At energies above this threshold, we usually added 

another level of surface functions, up to n = 6. Exceptions will be noted. We did 

not experience any serious difficulty with these basis set sizes. Representative times 

on a VAX 11/78Q-FPS164 system are given in Table 5-9. 
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Table 5-l: Allowed 11 , 12 values for basis functions Tt1211 (w; p), for J = 

0, 1, 2, 3 (S, P, D , F), II= 0,1 (even, odd). 

seven peven podd neven nodd Feven Fodd 

n~1 (0, 0) (0, 1) (0, 2) (0,3) 

n~2 (1, 1) (1, 1) (1, 0) (1, 1) (1, 2) (1,3) (1, 2) 
(1, 2) (1,3) (1, 4) 

n~3 (2, 2) (2, 2) (2, 1) (2, 0) (2, 1) (2, 2) (2, 1) 
(2,3) (2,2) (2, 3) (2,4) (2, 3) 

(2,4) (2, 5) 

n~4 (3,3) (3,3) (3,2) (3,1) (3,2) (3, 1) (3,0) 
(3, 3) (3,4) (3,3) (3,4) (3, 3) (3,2) 

(3,5) (3, 5) (3,4) 
(3, 6) 

n~5 (4, 4) (4, 4) (4,3) (4, 2) (4, 3) (4, 2) (4, 1) 
(4, 5) (4,4) (4, 5) (4,4) (4, 3) 

(4, 6) (4, 6) (4, 5) 
(4, 7) 

n~6 (5, 5) (5, 5) (5, 4) (5, 3) (5,4) (5, 3) (5,2) 
(5, 6) (5, 5) (5, 6) (5, 5) (5, 4) 

(5,7) (5, 7) (5,6) 
(5,8) 
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Table 5-2: Total number of primitive basis functions for each spin by symmetry 

type and corresponding naximum number of surface functions. a 

s p D F G H J Highest nl1 Total 

nmax=1 even 1 0 1 0 1 0 1 
1s 1 

odd 0 1 0 1 0 1 0 

nmax=2 even 3 1 4 1 4 1 4 
2p 3 

odd 0 4 1 4 1 4 1 

nmax=3 even 6 3 10 4 10 4 10 
3d 6 

odd 0 9 4 10 4 10 4 

nmax=4 even 10 6 19 10 20 10 20 
4/ 10 

odd 0 16 9 20 10 20 10 

nmax=5 even 15 10 31 19 35 20 35 
5g 15 

odd 0 25 16 34 20 35 20 

nmax=6 even 21 15 46 31 55 35 56 
6h 21 

odd 0 36 25 52 34 56 35 

nmax=1 even 28 21 64 46 80 55 84 
7i 28 

odd 0 49 36 74 52 83 56 

a A scattering calculation using the maximum number of surface functions given in 

this table is called an i-state calculation where i is the number given in the last 

column. 
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Table 5-3: Grid points used to obtain primitive one-dimensional basis functions . 

When 11 = 0: 

Region Point number from Wmin to Wmax Spacing tlw Extent of region 

(rad) (rad) (rad) (rad) 

1 1 - 50 0.000200 0.010000 2.00E-4 0.0098 

2 50- 80 0.010000 0.028974 6.32E-4 0.0190 

3 80- 110 0.028974 0.128974 3.33E-3 0.100 

4 110- 140 0.128974 0.580796 1.51E-2 0.452 

5 140- 170 0.580796 1.570796 3.24E-2 0.990 

When l 1 =/= 0: 

Region Point number from Wmin to Wmax Spacing tlw Extent of region 

(rad) (rad) (rad) (rad) 

1 1 - 31 0.000954 0.029554 9.54E-4 0.0286 

2 31- 61 0.029554 0.129554 3.33E-3 0.100 

3 61- 91 0.129554 0.581376 1.51E-2 0.452 

4 91- 120 0.581376 1.570796 3.36E-2 0.990 
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Table 5-4: 18 Jacobi polynomial eigenvalues and the asymptotic states to which 

they correlate. 

A(A + 4) 

0 0 

2 12 

4 32 

6 60 

8 96 

10 140 

12 192 

14 252 

16 320 

2p2f. + 151i
2 

8~p2 

p = 0.1 

3.3 

15.4 

35.0 
35.5 

63.2 
63.5 

98.7 
99.2 
99.5 

142.8 
143.2 

194.3 
194.8 

254 .2 

321.0 

(0, 0) 1s 

(1, 1) 2p 

(0, 0) 2s 
(2, 2) 3d 

(1, 1) 3p 
(3, 3) 4/ 

(0,0) 3s 
(2,2) 4d 
(3, 3) 5g 

(1, 1) 4p 
(3,3) 5/ 

(0,0) 4s 
(2, 2) Sd 

(1, 1) 5p 

(0,0) 5s 
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Table 5-5: Convergence of 1 S scattering matrix vs. number of surface functions.a 

E / Ryd JStii2 4>n (rad) IS2II2 c/>21 (rad) IS3II2 4>31 (rad) 

0.76 0.79438 1.6946 0.12391 -0.4395 0.08200 -2.1357 
0.78660 1.7132 0.12759 -0.4972 0.08586 -2.2081 
0.78690 1.7213 0.12640 -0.5122 0.08769 -2.2216 

0.78 0.75952 1.6960 0.15335 -1.5815 0.08667 -3.0749 
0.75725 1.7086 0.15142 -1.5889 0.09233 -3.0867 
0.75684 1.7177 0.15053 -1.5981 0.09242 -3.0948 

0.81 0.72116 1.6621 0.20904 -2.1947 0.07058 2.5241 
0.72134 1.6774 0.20747 -2.1921 0.07240 2.5262 
0.72197 1.6873 0.20788 -2.1910 0.07086 2.5250 

0.83 0.71690 1.6339 0.20478 -2.3958 0.07804 2.5241 
0.71637 1.6500 0.20530 -2.3797 0.07930 2.2088 
0.71635 1.6598 0.20460 -2.3767 0.07881 2.2150 

0.86 0.97546 1. 7275 0.00959 -3.0617 0.01468 -0.8591 
0.92064 1.6423 0.06224 -2.2640 0.01491 3.1386 
0.91313 1.6487 0.06880 -2.2557 0.01747 3.0400 

0.90 0.72296 1.6012 0.13780 -2.9926 0.07000 1.5008 
0.70491 1.6311 0.15032 -2.9634 0.06334 1.4216 
0.70075 1.6375 0.15052 -2.9670 0.07156 1.4610 

0.93 0.66242 1.5614 0.15262 3.0329 0.09831 1.3004 
0.66216 1.6107 0.16222 3.1054 0.08232 1.1280 
0.63749 1.6201 0.15802 3.1128 0.09248 1.3782 

a Projection was done at p=50 bohr. For each energy, the first entry has 6 surface 
functions, the second 10, and the third 15; all calculations used the same 15 primitive 
basis functions. 

b The first index refers to the initial state, the second to the final state. 1, 2, and 
3 refer to 1s, 2s, and 2p, respectively. 
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Table 5-6: Convergence of 1 neven scattering matrix phases vs. number of surface 

functions.a 

E/Ryd </>~ 1 (rad) </>21 (rad) ¢>31 (rad) ¢>41 (rad) 

0.76 0.203 2.869 1.502 0.908 
0.216 2.832 1.474 0.868 
0.222 2.813 1.462 0.846 

0.78 0.213 2.536 0.836 0.978 
0.227 2.517 0.826 0.951 
0.233 2.509 0.823 0.943 

0.81 0.222 2.237 0.360 1.000 
0.237 2.240 0.366 1.002 
0.244 2.240 0.368 1.002 

0.83 0.223 2.162 0.182 1.076 
0.239 2.176 0.196 1.087 
0.246 2.179 0.200 1.092 

0.86 0.210 2.249 0.119 1.404 
0.225 2.321 0.171 1.473 
0.232 2.249 0.178 1.482 

0.90 0.210 2.070 -0.125 1.433 
0.226 2.176 -0.063 1.615 
0.210 2.186 -0.054 1.622 

0.93 0.210 1.959 -0.267 1.435 
0.231 1.976 -0.235 1.498 
0.239 2.017 -0.216 1.525 

a Projection was done at p=50 bohr. For each energy, the first entry has 10 surface 
functions/10 primitive functions, the second 19/19, and the third 31/31. 

b The first index refers to the initial state, the second to the final state. 1, 2, 3, and 
4 refer to the sets of quantum numbers n/ 112= 1s2, 2s2, 2p1, and 2p3, respectively. 
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Table 5-7: lneven and 3 neven contributions to total cross section (units of 1ra6). 

E 1 o· 
Qh-+1.9 

1 o• 
Qh-+28 

1 o· 
Qh-+2p 

a o• 
Ql.s->ls 

0.76 Ryd (a) 0.0468 0.0501 0.0863 0.104 7 
(b) 0.0676 0.0484 0.0894 0.1714 
(c) 0.0762 0.0457 0.0870 0.1964 
(d) 0.0803 0.0451 0.0866 0.2081 
(e) 0.042 0.0540 0.0914 0.097 

0.78 Ryd (a) 0.0457 0.0507 0.1008 0.0992 
(b) 0.0722 0.0491 0.0930 0.1687 
(c) 0.0818 0.0484 0.0934 0.1945 
(d) 0.0863 0.0482 0.0934 0.2066 
(e) 0.050 0.0555 0.0937 0.101 

0.83 Ryd (a) 0.0439 0.0508 0.1396 0.0882 
(b) 0.0766 0.0608 0.1362 0.1646 
(c) 0.0869 0.0599 0.1361 0.1924 
(d) 0.0916 0.0597 0.1359 0.2054 
(e) 0.058 0.0624 0.1430 0.106 

0.86 Ryd (a) 0.0415 0.0484 0.1553 0.0830 
(b) 0.0693 0.0697 0.1704 0.1623 
(c) 0.0777 0.0702 0.1725 0.1910 
(d) 0.0822 0.0700 0.1721 0.2045 
(e) 0.052 0.0810 0.1679 0.106 

0.90 Ryd (b) 0.0660 0.0474 0.1485 0.1569 
(c) 0.0739 0.0395 0.1318 0.1868 
(d) 0.0787 0.0402 0.1330 0.2008 
(e) 0.053 0.0510 0.1481 0.109 

0.93 Ryd (b) 0.0651 0.0415 0.1508 0.1542 
(c) 0.0751 0.0295 0.1203 0.1844 
(d) 0.0793 0.0286 0.1153 0.1994 
(e) 0.051 0.0352 0.1332 0.112 

(a) 4 surface- (and primitive) functions, (b) 10 functions, (c) 19 functions, (d) 
31 functions. Projection done at same distance (50 bohr) for all calculations. (e) 
6-state results from reference no. 16. 
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Table 5-8: 1 Fodd and 3 Fodd contributions to total 1s ---+ 1s cross section. 

1 Fo 
Qh-.1• 

a Fo 
Qh-+h 

E = 0.76 Ryd 
(a) 0.0115 0.0339 
(b) 0.0188 0.0579 
(c) 0.0244 0.0753 
(d) 0.0274 0.0844 
(e) 0.007 0.022 

E = 0.81 Ryd 
(a) 0.0098 0.0287 
(b) 0.0179 0.0546 
(c) 0.0243 0.0742 
(d) 0.0276 0.0842 
(e) 0.008 0.024 

E = 0.83 Ryd 
(a) 0.0090 0.0260 
(b) 0.0173 0.0517 
(c) 0.0239 0.0718 
(d) 0.0273 0.0820 
(e) 0.008 0.025 

E = 0.85 Ryd 
(a) 0.0083 0.0235 
(b) 0.0168 0.0490 
(c) 0.0236 0.0696 
(d) 0.0272 0.0800 
(e) 0.009 0.025 

(a) 3-state calculation (4 surface functions), (b) 6-state calculation (10 functions), 
(c) 10-state calculation (20 functions), (d) 15-state calculation (34 functions) . 
Number of primitive functions equals number of surface functions. Projection done 
at p =50 bohr. 

(e) 6-state close-coupling calculation, ref. 16. 
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Table 5-9: Times for different J. 

#states each E (sec) surf. func. (min) 

Is 
' 

3g 15 20 18 

podd 25 90 19 

1 neven 3neven 
' 31 130 47 

Fodd 34 190 32 

The odd parity states combine one set of spinless basis functions to obtain both 

singlet and triplet, which shortens the amount of time needed to obtain surface 

functions. 
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5.6 Figures and Captions 

FIG. 5.1: Effective potential Ve~1 l 11 vs. w, for p=l (solid line), 5 (dotted line), 

10 (dot-dash line), and 20 bohr (dash line), where J = 0, and 11 = 12 = 0. 

FIG. 5.2: Effective potential Ve~1 l 11 vs. w, for same values of p as in Figure 5.1, 

with J = 0, and 11 = 12 = 1. 

FIG. 5.3: Effective potential Ve~1 l 11 vs. w, for p=5 (dotted line), 10 (dot-dash 

line), 20 (dash line), and 40 bohr (dash-dot-dot line), with J = 1, and 11 = 0, and 

12 = 1. 

FIG. 5.4: Effective potential as in Figure 5.3, for J = 1, and h = 1, and 12 = 2. 

FIG. 5.5: The three lowest antisymmetric 38 !-dimensional eigenfunctions 

Tj!l 11 (w; p) corresponding to the potential in Figure 5.1. The line types are the 

same as in Figure 5.1. Only half the range of w is shown. 

FIG. 5.6: The three lowest antisymmetric 18 !-dimensional eigenfunctions 

T/211 (w; p) corresponding to the potential in Figure 5.2. The line types are the 

same as in Figure 5.2. Only half the range of w is shown. 

FIG. 5. 7: The !-dimensional podd eigenfunctions r;1211 (w; p) corresponding to 

the lowest three eigenvalues of the potential in Figure 5.3. The line types are the 

same as in Figure 5.3, with the addition of the solid line for p = 1 bohr. 

FIG. 5.8: Lowest eigenvalue ~fSII (p) + ~!~: converging to n = 1 level for total 

orbital angular momentum J = 0, 1, 2 and 3 and singlet and triplet spins as a 

function of hyperradius p. The singlet and triplet become undistinguishable for 

J ~ 2, within plotting accuracy. 

FIG. 5.9: 18 surface eigenvalues converging to n=2, 3, and 4 levels versus p, 

obtained with a basis set of 15 primitive functions. 
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FIG. 5.10: 3 S surface eigenvalues converging to n=2, 3, and 4 levels versus p 

obtained with a basis set of 15 primitive functions. 

FIG. 5.11: 1 podd and 3 peven eigenvalue curves converging to the n = 2 

levels asymptotically, obtained with a basis set of 25 and 15 primitive functions, 

respectively. The full curves correspond to 1 podd and the dashed to 3 peven. 

FIG. 5.12: 3 podd and 1 peven eigenvalue curves converging to the n = 2 

levels asymptotically, obtained with a basis set of 25 and 15 primitive functions, 

respectively. The full curves correspond to 3 podd and the dashed to 1 peven. 

FIG. 5.13: 1 neven eigenvalue curves converging to the n = 2 and n = 3 levels 

asymptotically, obtained with a basis set of 31 primitive functions. 

FIG. 5.14: 3 Deven eigenvalue curves converging to the n = 2 and n 3 levels 

asymptotically, obtained with a basis set of 31 primitive functions. 

FIG. 5.15: 1 podd eigenvalue curves converging to the n = 3 and n 4 levels 

asymptotically, obtained with a basis set of 25 primitive functions. 

FIG. 5.16: 3 podd eigenvalue curves converging to the n = 3 and n 4 levels 

asymptotically, obtained with a basis set of 25 primitive functions. 

FIG. 5.17: 1 Fodd eigenvalue curves converging to the n = 3 and n 4 levels 

asymptotically, obtained with a basis set of 34 primitive functions. 

FIG. 5.18: 3 Fodd eigenvalue curves converging to the n = 3 and n 4 levels 

asymptotically, obtained with a basis set of 34 primitive functions. 

FIG. 5.19: Projection plane tangent at north pole. 

FIG. 5.20: Contours of the lowest six 1 S surface functions at p = 1 bohr projected 

onto a plane tangent to the northern quartersphere at a point on the Z-a.xis. (a) 

lg lg d lg ( ) lg lg lg 
~ 1 , ~ 2 , an ~3 • b ~ 4 , ~ 5 , and ~6 . 
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F I G. 5.21: Contours of the second lowest 1S surface function, C!>~ 5 , at p=4, 5, and 

10 bohr on a plane tangent at N. 

FIG. 5.22: Contours of the third lowest 1S surface function, (!)~ 5 , at p=4, 5, and 

10 bohr on a plane tangent at N. 

FIG. 5.23: Contours of the fourth lowest 1S surface function , (!)~ 5 , at p=5 , 10, 15 

and 20 bohr on a plane tangent at N. 

FIG. 5.24: Contours of the second lowest 1S surface function, (!)~ 5 , at p=5, 10, 15 

and 20 bohr on a plane tangent at N. 

FIG. 5.25: Contours of the second lowest 1S surface function, (!)~ 5 , at p=5 , 10, 15 

and 20 bohr on a plane tangent at N. 

FIG. 5.26: Contours of the lowest six 1S surface functions projected onto a at 

p =50 bohr on a plane tangent at N. 

FIG. 5.27: Projection plane perpendicular to OX axis. 

FIG. 5.28: Contours Fi~sn (w, lip) of 1 podd surface functions on the AYAZA plane 

f F . b h r . ( ) 1 podd ( ) 1 podd o 1g. 5.27 at p = 12 o r, 10r t = 2, 3 and 0 = 0, 1: a F20 ; b F30 . 

FIG. 5.29: Contours Fi~sn (w, lip) of 1 podd surface functions on the AYAZA plane 

f . . ( ) 1 podd ( ) 1 podd o F1g. 5.27 at p = 14 bohr, fort= 2,3 and 0 = 0,1: a F20 ; b F30 . 
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CHAPTER 6 

SCATTERING RESULTS 

In this chapter we present the results of our calculation of electron scattering 

off hydrogen atoms using hyperspherical coordinates. The chapter is organized 

as follows: First we discuss the various means of analyzing the scattering data 

obtained. Then we present results for purely elastic scattering, at energies below 

the n = 2 H atom level threshold, and compare our results with those in the 

literature. Next we presen( results for energies between the n = 2 and n = 3 

thresholds. The elastic and inelastic cross sections are both presented. The cross 

sections obtained for energies in higher energy ranges are presented subsequently, 

including some preliminary results at energies above the n = 4 threshold. The 

resonances found are discussed separately in each section. 

6.1 Analysis of Resonances 

Resonances have been observed in a wide variety of scattering processes and 

are known to be associated with the existence of long-lived metastable states. 1 The 

effect of a strong resonance is to drastically alter the value of the cross section 

for some transitions across a relatively narrow range of energies. A similarly rapid 

change in the phase and magnitude of elements of the scattering matrix accompanies 

a resonance. 
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It has been known for some time that infinite sequences of resonances occur 

below the inelastic threshold of electron-hydrogen scattering when the hydrogen 

levels are assumed to be exactly degenerate in 11 . 2 In reality, this number is finite 

because of fine structure effects. 3 We will concentrate on the lower energy resonances 

which are wide enough to be detected with an energy grid of 10-4 Ryd, and analyzed 

by a density to 10-6 Ryd where needed. There are various means of determining 

the position of resonances in the e--H system. Some researchers fit their scattering 

data (such as the eigenphase sum) to a formula, such as the Breit-Wigner formula 

or Fano lineshape,4 to determine the positions and widths. Others compute the 

approximate position of resonances without doing the scattering calculation, by 

finding the eigenvalues of the potential in the radial equation. This method assumes 

that the coupling between channels is small and can be neglected. Physically, this 

means that the motion of the system in one coordinate, the hyperradius p, occurs on 

a different time scale than the motion in the other (hyperangular) coordinates, and 

so can be treated separately. We have found the collision lifetime matrix5 useful 

to determine the position of the resonances and the lifetimes of the metastable 

states. Argand diagrams have been used to study the results of reactive scattering 

calculations,6 and we have found them to be useful in electron scattering. 

We can classify resonances as two basic types: closed channel and open channel. 

The closed channel resonances were first obtained with the Feshbach operator 

formalism, 7 and are usually called "Feshbach" resonances. The Feshbach resonance 

corresponds to the physical process of the particle accessing a level of the system 

that is closed asymptotically, but may be open for low values of p. Therefore one 

would expect to see Feshbach resonances at some energy below the n-th threshold 

whenever the eigenvalue potentials corresponding asymptotically to that same n-th 

level consist of one or more sufficiently deep wells. The Feshbach resonances are 

caused by long-range dipole interaction. 2 
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The second type of resonance is the open-channel, or "shape", resonance. A 

shape resonance may occur as the result of a barrier in the potential (i. e., the 

eigenvalue) which the particle feels, such that the particle remains for a period of 

time within the region of the well, before finally leaking out. Thus shape resonances 

are expected at energies just above threshold. The first encountered example of this 

observed in the e--H system is in the 1 podd state at 0. 751 Ryd. This is a very 

strong resonance, and dominates the cross section at this energy. We find that this 

shape resonance is caused by the barrier in the potential curves of 1 podd, which in 

turn is caused by the short-range attraction and long-range dipole repulsion. 

The (K, T)A nomenclature (see Section 5.2) is especially useful in categorizing 

resonances. 8 Certain features of the resonance structure can be predicted using 

this classification of states. For example, the near degeneracy of resonances in 

1 peven and 3podd states, 1 nodd and 3neven states, etc., is predicted by this 

theory. The similarity in parity-disfavored states, given by quantum numbers (J, 

S, fl = ( -1) J + 1 , and n), where n indicates the energy level, to the lower energy, 

lower J state, given by quantum numbers (J- 1, alternate spin, same parity, and 

n- 1) is also predicted. The 1 nodd collision lifetime eigenvalues at energies between 

the n = 3 and n = 4 threshold are a perfect example of this behavior, because 

qualitatively these collision lifetimes behave similarly to the 3 podd state lifetimes 

in the n = 2 to 3 region. 

6.1.1 Argand diagrams 

The use of "Argand diagrams" has been shown to be a useful tool for analyzing 

the results of scattering calculations.9 - 11 An Argand diagram is a cartesian plot 

in which the real and imaginary parts of an element of the scattering matrix are 

the coordinates of a point, whose position depends on the energy as a parameter. 

This representation allows one to examine both the phase and the modulus of 
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the scattering matrix elements. The direct (i. e., non-resonant) contribution to 

the phase is expected to decrease with increasing energy, whereas the resonant 

contribution increases by 211" across a strong resonance, and the modulus is expected 

to be slowly varying with energy except in the region of a resonance. 

These two factors lead to the following general statement about Argand 

diagrams: in the non-resonant region the representative points approximately 

traverse circles clockwise around the origin of the system of coordinates as the 

energy increases due to the continually decreasing phase. In the region of a pure 

strong resonance (one with no direct contribution), the phase goes through a very 

fast increase (with energy) of 211", leading to a counter-clockwise circle whose initial 

point is the origin and whose center is away from that point, the modulus changing 

therefore very rapidly with energy. In the presence of a direct background, the 

initial point on this circle shifts from the origin to the point representing the direct 

contribution to the scattering matrix element. The distance of the point from 

the center of the resonant circle is proportional to the relative decay width of the 

resonance into that channel. 12 Thus in comparing Argand plots of different S-matrix 

elements (i. e. , channels) for the same angular momentum J and spin S, a single 

resonance may exhibit a large circle for the first element, and yet form a very small 

circle in the next. Furthermore, it is only in the case of strong, isolated resonances 

that the full circle is completed. We have found instances of both isolated and 

interfering resonances in our calculations. 

6.1.2 Collision Lifetime Matrix 

In this section we describe the formalism of the collision-lifetime matrix 

developed by Smith. 5 The results of our collision lifetime matrix analysis will be 

presented in the sections that follow. That matrix, defined by 

Q = ihs~i (6.1) 
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where S is the open part of the scattering matrix, has been used by Kuppermann 

and Kaye 13 for collinear chemical reactions. After computing Q, we obtain its 

eigenvalues qn, which, when large and positive, indicate a resonance whose lifetime 

is equal to that eigenvalue. It has turned out that each resonance is associated wit h 

only one collision lifetime eigenchannel, although not all resonances need be in the 

same eigenchannel. Furthermore, each resonance belongs to a series of resonances 

of a specific eigenchannel that converges on the threshold. 

It is convenient to express the eigenvalues qn in atomic units of time, t 0 = h/ 

1 hartree, which is equal to 2.42 x 10-17 sec, and is the time required for an electron 

in the first Bohr orbit of a hydrogen atom to traverse one radian. 14 

Since S is unitary, Q is hermitian. The energy derivative of the S matrix is 

obtained using a three-point Lagrangian interpolation formula. The resulting Q 

matrix was averaged with its hermitian conjugate to correct for small numerical 

inaccuracies in this differentiation procedure and thereby ensure real eigenvalues. 

Plots of the eigenvalues qn vs. the energy of the system are presented in later sections 

of this chapter. 

6.1.3 Eigenphaseshifts 

Eigenphaseshifts are defined as the arctangents of the eigenvalues of the 

open part of the reactance matrix, or, equivalently, as one half of the phases of 

the eigenvalues of the open part of the scattering matrix. It should be noted 

that these eigenphaseshifts are determined modulo 1r. Furthermore, there is no 

a priori connection between the sets of such eigenphaseshifts calculated at different 

energies. By requiring the corresponding eigenvectors to be continuous functions 

of the energy, and by adding 1r or -1r to the corresponding eigenphaseshifts , it 

is possible to obtain curves of eigenphaseshifts vs. energy which are continuous, 

thereby establishing the missing relationship. 
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The rationale for calculating the eigenphaseshifts is that resonances tend to 

cause a large shift in some, but not all, of them. 9 However this simple picture 

is often complicated by crossings or avoided crossings of eigenphaseshift curves. 

When there are many resonances in a small energy region, we get both avoided 

crossings and straight crossings. This is determined by observing how the elements 

of each eigenvector change with energy, requiring the change to be smooth. At an 

avoided crossing of two eigenvalues, the two eigenvectors will change slowly, first 

into vectors which are mixtures of the original ones, and then into vectors with 

switched characteristics. In a straight crossing the eigenvectors retain the same 

character throughout - there is no mixing of eigenvectors. Crossings such as these 

are usually found at energies near a strong narrow resonance. The eigenphase 

corresponding to the resonant channel experiences a large increase over a short 

range of energy, but the other channels are unaffected if the crossing is not avoided. 

One must have a sufficiently dense grid of energy points in order to determine 

whether or not the eigenvectors mix. If the grid is too sparse, then the avoided 

crossing may take place at energies in between the calculated points, and one would 

not be able to detect the "avoidedness" of the crossing. Because of this problem, and 

the fact that the phases are only found modulo 1r, we found that the eigenphaseshifts 

were not as useful for analyzing the resonances in e--H as the other methods, 

especially at higher energies where there are many open channels. 

Another use of the eigenphaseshifts is to calculate their sum. When all of the 

open states are included in the basis set, this eigenphase sum obeys an upper limit 

principle15 which permits us to compare two different approximate calculations, and 

choose the one with the largest sum as the one giving the better approximation. 

6.2 Low Energy Scattering 

For energies below then= 2 threshold at 0.75 Ryd with respect to e--H (ls), 
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there is only one open asymptotic state, so there can be no transitions from the 1s 

state to higher states. The only process allowed is "elastic scattering" from that 

state, including the possibility of exchange. The cross sections we report are not 

for the direct process solely, i. e., they include both singlet and triplet contributions 

as indicated by Eq. 3.111. We showed in Chapter 3 that the direct and exchange 

scattering amplitudes can be obtained from the sum and difference of the singlet 

and triplet scattering amplitudes, as indicated by the remarks after Eq. 3.118 and 

the formulre of Table 3.1. 

The behavior of the elastic cross section below the n = 2 threshold has 

been accurately calculated for partial waves J ~ 3. 16 - 20 Schwartz used Kohn's 

variational principle to calculate the S-wave phaseshifts, 16 which were found to 

higher precision by Ho, Bhatia, and Temkin, 17 and are generally accepted as exact 

to the number of figures quoted. This method was applied to J = 1 partial waves by 

by Armstead. 18 Register and Poe19 calculated the phaseshifts forD-waves using an 

algebraic variational method. Finally, Callaway20 calculated phaseshifts for J = 3. 

The first close-coupling calculation on e- -H was by Burke and Schey21 who 

used a three state approximation (ls- 2s- 2p) to calculate phase shifts for states 

with J=O, 1, or 2. These calculations were followed by a six-state close-coupling 

calculation, 12 in which higher energies were also considered, and by Burke and 

Taylor's work,22 in which correlation functions were added to the 3-state close­

coupling basis. 

Lin used hyperspherical coordinates to calculate channel potentials23 such as 

thee vs. p functions shown in Chapter 5 (Fig. 5.8-15). Assuming that the coupling 

between channels is so weak that it can be ignored (adiabatic approximation), he 

modeled the ground state of H- as an eigenvalue of the lowest channel potential. 

He also calculated the elastic 1 S phase shift by scattering from this potential. The 
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phase calculated in this manner behaves correctly at threshold, and is closer than 

the 3-state close-coupling phase21 to the exact results, but it becomes rapidly too 

small with increasing energy. That relatively poor results were obtained even at 

fairly low energies indicates the weakness of the adiabatic approximation, even when 

potential crossings (or avoided crossings) are not a factor, as is the case here. 

Improved hyperspherical channels may be obtained by using the post-adiabatic 

approximation,24 which involves calculating potentials dependent on the collision 

energy. This was done by Klar and Klar,25 using up to four "Born-Oppenheimer" 

channels (in which even the diagonal elements of the coupling matrix Pare ignored), 

which are subsequently linearly combined. Their four-channel calculation gave 

excellent agreement with Schwartz over the entire range of energy considered 

( k = 0.1 to 0. 7). Their three-channel results are better than the three-state 

calculation of Burke and Schey; since we intend to include all of the coupling 

terms we expect our results to be even better than this. Recently a combined 

hyperspherical and Jacobi coordinate description has been used 26 by Christensen­

Dalsgaard to obtain the elastic 1 S phase shift. 

6.2.1 Elastic phase shifts 

Using the lowest three or six surface functions and a projection hyperradius 

of 8 bohr (see Section 4.5), we obtained the phase shift for S-wave scattering at 

energies where there is only one open channel. The phase shifts obtained agreed 

with previous results, as shown in Table 6- 1. The agreement between our 3-state 

calculation and Schwartz's is within 0.007 rad and is much better than that of the 

other calculations presented. 

We compare the phase shifts obtained using hyperspherical coordinates for 

partial waves other than 1 S with previous res~lts in Table 6- 2. The 3 S phaseshifts 
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obtained by our method agree with Schwartz to 0.01 rad (......., 6°). The phaseshifts 

for J > 0 are very small except in the region of resonance. The agreement is in the 

0.005-Q.025 rad range. 

6.2.2 Low energy resonances 

The cross section Q(1s -+ 1s) will be affected by resonances lying just below 

the n = 2 threshold of hydrogen. 27 In the dipole representation, 28 the asymptotic 

form of the radial equation is given by 

(6.2) 

where O:ij represents the coupling between the various states. These matrix elements 

are given by (nlll2JMirP,(cosl)in'lil~JM). In the first approximation, only the 

degenerate levels (n = n') are coupled. The matrix given by 12 (1 2 + 1) + O:if is 

diagonalized, giving eigenvalues .X().+ 1). An infinite series of resonances convergent 

on the threshold results for each eigenvalue less than -:l-· There is such an eigenvalue 

for J = 0, 1 and 2 only below the n = 2 threshold. These resonances are due to 

the long range r- 2 interaction arising from the degeneracy the target atom states, 

namely the 2s and 2p states of hydrogen atom. 15•2 

Gailitis and Damburg2 showed that the long-range dipole interaction causes 

resonances below the n = 2 threshold for partial waves with J = 0, 1, and 2. The 

dipole interaction is too weak to produce resonances in the higher partial waves, 

and we saw in Section 5.2 (in particular, Fig. 5.16-17) that the n = 2 eigenvalue 

curves were all repulsive for J > 2. We have calculated resonance positions in 

the 1S, 3S, lpodd, 3podd, and 1Deven partial waves. The positions, lifetimes and 

widths obtained are summarized in Table 6- 3, where we also compare with other 

theoretical predictions and some experimental observations of resonances. 
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to about 20% accuracy. The position of the lowest 1 S resonance is converged using 

10 surface functions by 50 bohr, and has been calculated as 0. 70217 Ryd (9.5536 e V). 

Our lifetime for the 1S resonance is 2300 t0 , and the full width at half-maximum 

is 3.5 mRyd (0.0476 eV). There have been many other calculations which have 

determined the position of this resonance. For example, Shimamura calculated 

its position as 0. 702452 Ryd and its width as 3.4 7 mRyd. 29 Electron transmission 

spectroscopy experiments by Sanche and Burrow30 have indicated a resonance at 

9.558 ± 0.010 eV, which agrees with our result within their experimental error. 

There is a second resonance which is narrower and closer to threshold. We 

have found that in order to observe the narrower resonances, one must integrate 

further out. We have calculated the position of this 18(2) resonance as 0.74787 Ryd 

(10.175 eV), its width as 0.24 mRyd (0.0033 eV), and its lifetime as 3.3 x 104 t 0 

(using 10 surface functions and projecting at 50 bohr). This resonance has not been 

observed experimentally. 

Shimamura also has found a very narrow resonance in the 3 S state at 

10.1489 eV. 29 Klar and Klar31 predict its position at 10.169 eV, Schulz32 observed 

10.150 eV experimentally. Our calculation did not detect a 3 S resonance when the 

integration was stopped at 20 bohr. However integrating out to 40 bohr with six 

surface functions produces an extremely long-lived (2 x 106 t 0 ) narrow resonance at 

0.745389 Ryd (10.1416 eV), with a width ofless than 4 x w- 3 mRyd (0.0005 eV). If 

ten surface functions are used (15 primitives) the resonance position is calculated at 

0.745473 Ryd (10.1428 eV), obtained with a projection distance of 50 bohr. Temkin 

and Sullivan33 also found that resonances very close to then= 2 threshold level do 

not show up in calculations in which the integration does not extend past 30 bohr. 

A very narrow (width 2 x 10-3 mRyd) 1 P Feshbach resonance, separated from 

the shape resonance above then= 2 threshold by about 0.003 Ryd (0.0450 eV) is 
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A very narrow (width 2 x 10-3 mRyd) 1 P Feshbach resonance, separated from 

the shape resonance above then = 2 threshold by about 0.003 Ryd (0.0450 eV) is 

known to exist from photodetachment experiments34 and has also been predicted 

theoretically35 to exist at 0.747901 Ryd. By calculating the eigenvalues of the '-' 

eigenvalue curve (see discussion in Section 5.2), Lin has calculated the positions 

of the first two members of the Feshbach series as 0.74810 Ryd (10.173 eV) 

and 0.74994 Ryd (10.198 eV), using the hyperspherical coordinate adiabatic 

approximation. 23 

We have calculated the position of this 1 podd resonance and the results are 

shown in Table 6- 3. If the projection is done at 20 bohr, we were not able to detect 

a 1 podd resonance with basis '3/5' (surface functions upton= 3, primitives up to 

n = 5). However if one projects farther out, the resonance is obtained. Projecting at 

40 bohr with the same basis set, the resonance position is calculated at 0.747790 Ryd 

(10.1743 eV), with a lifetime of at least 1.9x 106 t 0 , and width of 4x 10-3 mRyd. The 

calculated position is moved somewhat lower, to 0.747329 Ryd (lifetime 1.2 x 106 t0 ), 

with width 5 X 10-3mRyd if the projection is done at p=60 bohr. Whereas Callaway 

calculates the 1S(2) state as lying 0.6 meV lower than the 1podd resonance state, 

the data of Bryant et al.(1983) indicate that the 1S resonance lies above the 1 podd 

one. Our result supports the experimental finding, as the 1 podd resonance, which 

is 2 orders of magnitude narrower than the 1S(2), is found to be 2.2 mev lower. 

The calculated positions of the two lowest 3 podd resonances below the n = 2 are 

tabulated, for different basis sets and different projection distances, in Table 6- 3. 

The largest calculation gave the position of the first as 0.71559 Ryd (9.7362 eV) and 

the width as 0.43 mRyd (0.0059 eV), which is in relatively good agreement with the 

experimental observation of 9.738 ± 0.010 eV and 0.0056 ± 0.0005 eV, respectively. 

The lifetime is found to be 18,600 t 0 • The position and width of this resonance were 

determined by Das and Rudge36 to be 0.715735 Ryd and 0.430 mRyd respectively. 
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Our calculated width is in excellent agreement, though our position is 0.00014 Ryd 

lower. Other calculated positions are also listed in the table. The second 3 podd 

resonance is just below threshold, at 0.74951 Ryd (10.198 eV) with a lifetime of 

190,000 to. 

We have determined the position of the 1 neven resonance as 0. 7 4395 Ry 

(10.122 eV), with lifetime 12,500 t 0 , and width 0.65 mRyd, as compared to Callaway, 

who obtained E=0.744152 Ryd, width=0.64 mRyd, and Register and Poe, 19 

who obtained E=0.743924 Ryd, width=0.66 mRyd using a Hylleraas type basis 

containing up to 84 terms. Sanche and Burrow30 detected the 1 neven resonance at 

10.128±0.010eV and determined the width to be 0.0073±0.002 eV. The presence of 

this state has been observed34b in the photodetachment spectrum of H- in intense 

(greater than 400 kV /em) electric fields. The single-photon transition from the 

ground state of H- (1 S) to 1 neven is forbidden, but the electric field allows mixing 

between the 1 peven and 1 neven states. We did not find any 3 Deven resonance, which 

is not surprising due to the fact that the eigenvalue potential curve is only 0.004 h 

deep. No other calculations have yielded a 3 Deven resonance, either. 

The relatively wide Feshbach resonances calculated in 1S, 3 podd, and 1 neven 

correlate with the fact that these partial waves all have a deep well channel potential 

at the n = 2 level (see Fig. 5-9, 5-12, and 5-13). The corresponding curves of the 

alternate spin (3 S, 1 podd, 3 Deven) are all much less attractive, and as such are either 

not deep enough to produce a Feshbach resonance, or the resonance is extremely 

narrow. 

6.2.3 Total elastic cross section 

The total elastic cross section, obtained from the J = 0, 1, and 2 partial waves 

using ten functions and projecting at 50 bohr, is plotted in Figure 6.1, for energies 

0.69 to 0.75 Ryd (the resonance region). It is estimated that higher partial waves 
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will add about 2% to the cross section. Also plotted in this figure are the total 

singlet and triplet contributions. The grid of energy points that was used was not 

fine enough to show the 3 S resonance, but we used a finer grid in the region of the 

lpodd resonance, which is just as narrow, to distinguish it from the 18(2) resonance, 

which is accidentally degenerate. It may be difficult to see that the structure at 

0.748 Ryd is due to two resonances from this energy scale. 

6.3 Energies above n=2 Threshold and below n=3 Threshold 

We now consider the second energy range, from the opening up of the n = 2 

channels at 0. 75 Ryd to the n = 3 threshold at 0.8889 Ryd. There are three open 

nl1 channels in this region: 1s, 2s, and 2p. There are four open channels with 

quantum numbers nl1h for J > 0 (parity-favored states), but only three for J = 0. 

In parity-disfavored states, i.e., where II= (-1) 1 +1
, there is only one open state, 

that is, 2p (l2 = J). 

The cross sections Q(1s -+ 2s) and Q(1s -+ 2p) will be affected by resonances 

lying just below then= 3 threshold of hydrogen.37 An infinite series of resonances 

convergent on the threshold results for each eigenvalue of Eq. 6.2 less than - ~· 

There are two such eigenvalues for J = 1 and 2 for the n = 3 threshold, and 

just one for J = 0, 3, and 4. These resonances are due to the long range r- 2 

interaction arising from the degeneracy the target atom states. 10•2 We did in fact 

find resonances in the 1•3 S 1•3 podd 1•3 Deven 1•3 Fodd and 1 Geven partial waves a.s 
' ' ' ' 

expected, but no resonances were seen for 3 Geven and none for J = 5. In general, 

resonances will not be present below the nth threshold in partial waves J > 2(n-1). 

Consideration of the allowed intrashell doubly excited states partially explains why. 

For example, for n = 3, the doubly excited state with the highest total angular 

momentum is 2d2 , which is an allowed 1Geven configuration (in the independent 

particle model), but which is not allowed (by the Pauli principle) for 3 Geven. One 
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needn't, however, always have to be able to construct an intrashell doubly excited 

state to see resonances. The 3 S resonances are necessarily related to intershell 

states; in the (K, T)A nomenclature these states all have A = -1. The intrashell 

resonances, on the other hand, all have A= +1, and are much wider. 

Besides the presence of resonances below threshold, Gailitis and Damburg also 

predict that those partial waves which have Feshbach resonances below the n = 2 

threshold (J < 3) will have non-vanishing inelastic cross sections just above that 

threshold. 2 In Section 6.2 we described how resonances are found below the n = 2 

threshold for J = 0, 1 and 2. The inelastic cross sections for these partial waves are 

indeed large at energies close to the n = 2 threshold. The behavior of the higher 

partial wave cross sections (J 2::: 3) is markedly different in that the inelastic cross 

section increases slowly with energy, from being negligible at threshold, to sizeable 

in the resonance region. 

Calculated resonance positions are listed for all the partial waves through J = 4 

in Table 6- 4. We have also listed the computed resonance lifetime and full-width 

of the lifetime at half-maximum, and some resonance positions calculated by other 

authors. The first calculation which was able to observe resonant behavior was the 

6-state close-coupling calculation of Burke. 12 Inclusion of the 3s, 3p, and 3d states 

in the basis gave rise naturally to resonances of the Feshbach type, 7 that were 

impossible to obtain with only a 3-state basis. 21 •38 Ho has used complex rotation to 

predict resonance positions with much success. 8•39 We also compare to the resonance 

positions calculated using Callaway's variational procedures.35 •40 

In Figure 6.2 we have organized the n = 3 Feshbach resonances according 

to the (K, T)A configurations in order to show the supermultiplet structure. The 

resonances obtained have been assigned quantum numbers K, T, and A as described 

by Lin, 71 taking into account the width of each resonance. A striking pattern can 
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be seen for states with different J, S and II but the same ( K, T) and A, if A = ± 1. 

There is a series of relatively wide, lower energy resonances starting with the 1 S 

(2,0)+ state, that continues through apodd, 1Deven, 3 Fodd, and 1Geven. There is a 

similar series of extremely narrow resonances, beginning with the 3 S (2,0)- state, 

and continuing through lpodd, 3 Deven, and lFodd. 

In the tables that follow (Tables 6-5 through 6-14) we will compare our results 

obtained using the nmax = 5 basis set and projecting at 60 bohr to those obtained by 

the following authors: Burke, Ormonde and Whitaker12 (BOW), who performed 6-

state close-coupling calculations; Taylor and Burke38 (TB), who supplemented a 3-

state close-coupling basis with 20 correlation functions; Geltman and Burke41 ( GB), 

who used three pseudo-states along with the (1s, 2s, 2p) functions; and Callaway,42 

who used an algebraic variational approach with 14 basis functions: 6 atomic states 

and 8 pseudostates. In some of these tables we have also listed our (unconverged) 

6-state cross sections, in order to compare methods using the same size basis set. 

6.3.1 S-wave scattering 

The 1 S partial cross sections (1s -+ 1s, 1s -+ 2s, and 1s -+ 2p) are shown 

in Figure 6.3 and listed for a few energies between n = 2 at 0. 75 Ryd and n = 3 

at 0.889 Ryd in Table 6 - 5, where our results are compared with some other 

calculations. The agreement is satisfactory. Our cross section vs. energy curves 

are generally of the same shape as others and resonances are found at about the 

same energies as others (see Table 6- 3). Our results are closest to the 3-state plus 

correlation calculation.38 Comparison with our 6-state and 15-state values shows 

that the 6-state close-coupling12 and 3-state-plus-3-pseudostates41 calculations are 

not fully converged. It also is a demonstration of how correlation is included in 

the hyperspherical surface function basis set. From the table we can see some 

trends: as more correlation is included in the wavefunction, the elastic cross section 
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increases and the inelastic cross sections decrease. Our calculations, which have the 

most correlation, continue the trend. The agreement with Callaway, who used a 

variational approach, is very good. 42 

The 1 S scattering cross section shows three Feshbach resonances just below the 

n = 3 threshold, at 0.8619, 0.8846, and 0.88775 Ryd as listed in Table 6 - 4. The 

positions of these resonances were determined by finding the maxima in the largest 

collision lifetime eigenvalue, as discussed in Section 6.1. These collision lifetime 

eigenvalues are displayed in Figure 6.4. To compare with scattering experiments 

we have converted into electron volts using the infinite mass Rydberg (1 Ryd 

= 13.605 eV, see Section 1.5). Our lowest resonance energy (11.73 eV) agrees 

satisfactorily with the position of dips in the total inelastic cross sections found 

experimentally by Williams,43 who used an electron energy resolution of 12 to 

30 me V to study resonances. Williams found dips in the 1s ---+ 2s and 1s ---+ 2p cross 

sections at 11.73 ± 0.06 eV and 11.75 ± 0.06 eV respectively. Earlier experiments 

by McGowan et al.44 place the 1 S resonance at 11.65 ± 0.03 eV, which is too low. 

The scattering in the 3 S partial wave is almost all due to elastic scattering. The 

cross sections for inelastic scattering are very small, but at the same time they are 

very sensitive to resonances which are almost undetectable in the 3 S elastic cross 

section. These are plotted in Figure 6.5, and compared with other calculations 

in Table 6 - 6. We found one very narrow resonance in this partial wave, at 

0.88201 Ryd, compared with Callaway's 0.88203.35 He also obtains a second even 

narrower resonance at 0.88752 Ryd, which we did not detect. The narrowness of 

our 3 S resonance is due to the weak coupling among channels,2 and is the reason it 

has not been detected experimentally. 

6.3.2 P-wave scattering 

Our results for elastic scattering in J = 1 partial waves are given in Table 6- 7. 
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The inelastic results, cross sections for transition to the 2s and 2p states are given 

in Table 6 - 8 and Table 6 - 9, respectively. The 1 podd partial cross sections are 

plotted in Figure 6.6, and the 3 Podd cross sections are plotted in Figure 6. 7. 

The most dramatic result is the shape resonance found in the 1 podd channel 

just above the opening of the n=2 level. We compute the position of this resonance 

at 0.75108 Rydt and its lifetime as 6200 to (when using the full nmax = 5 set of 

25 surface functions and projecting at 60 bohr). The full width of the collision 

lifetime at half its peak is 1.0 mRyd (0.014 eV). The n = 2 Feshbach resonance 

is only 0.00337 Ryd lower in energy, by our calculation. Using an 11 state basis, 

Callaway35 determined the position of the resonance to be 0. 75121 Ryd and the 

width to be 1.47 Ryd by fitting the eigenphase sum to the formula 

bT(E) + E a E + b + c(E- Eth) + tan- 1 (E r ) (6.3) 
- th 2 - Eth 

This resonance was also seen by Taylor and Burke,38 discussed by Macek and 

Burke,45 and by Lin. 46 

Higher resolution than that used by Koschmieder et al.47 and Oed48 (150 meV) 

is required to resolve resonances in the experimental cross section. Presence of 

the 1 podd resonance was first observed in the 1s - 2p cross section by McGowan 

et al. 44 The measurements of Williams and Willis49 showed the energy of the 1 podd 

resqnance to be 10.210±0.005 eV, and obtained no other oscillations in the 1s - 2p 

cross section between 10.200 and 11.000 eV, in contrast to the earlier result,44 

where a second unexplained maximum had been obtained at 10.45 ± 0.03 eV. The 

width we have obtained is somewhat narrower than that calculated by Callaway; the 

experimentalists had suggested that the previously calculated width of the resonance 

was too wide. 49 

t 10.219 eV, converted with infinite Rydberg, with respect to ground state of 

H atom, 10.968 eV with respect to ground state of H-, using reduced Ryd. 
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The shape resonance, as well as the 1 podd Fesh bach resonance below the n = 2 

threshold, has been detected experimentally in the H- photodetachment cross 

section.34 The estimated width of the shape resonance from these experiments 

is 23 ± 6 me V. Gram et al. 50 studied the effect of an electric field on the 

photodetachment cross section and obtained a shape resonance at a photon energy 

of 10.98 eV, while aligning their observed Feshbach resonance to agree with the 

theoretical resonance energy of Broad and Reinhardt51 (10.930 eV). The theory of 

the photoionization (photodetachment) of H- has also been treated by Macek,52 

and by Hyman et al. 53 and by Wendoloski and Reinhardt54 who used the method of 

complex coordinates to obtain ER = 0.75130 Ryd, r = 1.04 mRyd for the resonance 

position and width. 

As was discussed in Chapter 5, two of the three eigenvalue potentials converging 

to then= 2 threshold exhibit an avoided crossing at about 13.5 bohr (see Fig. 5.11). 

One of these curves forms a shallow well which can support an infinite number of 

resonant states (the number is actually less than infinite due to the fine-structure 

effects).3 The other eigenvalue potential forms a barrier, caused by the long range 

polarization effects between the degenerate 2s and 2p states. This barrier potential 

is the reason for the shape resonance. 

The eigenphaseshifts and eigenphase sum for 1 podd partial wave in the vicinity 

of the shape resonance are plotted as functions of the energy in Figure 6.8. The 

eigenphase sum has been used by others to compute the position of the resonance, 

and also as a relative measure of the correctness of a calculation. 35 The non-resonant 

contribution to the eigenphase sum near the shape resonance is a rapidly decreasing 

function of energy, which complicates the analysis. A comparison of the partial cross 

sections for elastic and excitation processes with those obtained by Callaway35 is 

presented in Figure 6.9. It can be seen that for the 1s --+- 1s, 1s --+- 2s, and 1s --+- 2p 

processes, our cross sections have maxima at 0.7510, 0.7513, and 0.7513 Ryd 
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respectivley, whereas Callaway's occur at 0. 7513, 0. 7515, and 0. 7515 Ryd. These are 

to be compared with the energy of 0. 7511 Ryd we determined from the maxima in 

the collision lifetime eigenvalue curve. The collision lifetime method is more reliable 

and less ambiguous for determining the position of the resonance than choosing the 

extrema in the cross section curves. 

We also get shape resonance behavior in partial waves other than 1 podd. No 

other calculation has found a shape resonance above the n = 2 threshold other than 

in the 1 podd partial wave, and experiments have also been interpreted as having 

only the 1Podd shape resonance.49 We have found that 3podd partial wave has a 

resonance ten times shorter lived than that 1 podd. We have also found that the 

longest lived n = 2 shape resonance occurs in the 3 Deven partial wave, with lifetime 

14,500 t 0 • The lifetimes steadily decrease with J for J > 2: for 1•3Fodd the lifetime 

is 1200 to, for 1 •3 Geven it is only 450 to, and for 1•3 Hodd it is only about 50 t0 • The 

positions of these resonances move out further from threshold as J is increased (for 

J > 2). Only in the J = 0 partial wave (where there is one less state) is there 

definitely no shape resonance, because all three collision lifetime eigenvalues are 

negative right above threshold. 

Full calculations were not performed on the parity-disfavored partial waves 

( 1•3 Feven, 1•3 Dodd, etc.) in then= 2 ton= 3 energy range because the only cross 

section at energies below then = 3 threshold to which these partial waves contribute 

is the 2p ---+ 2p elastic cross section, in which we were not particularly interested. 

However we have calculated resonance energy positions for some of these partial 

waves. A few calculations at energies close to the n = 2 threshold were performed 

on the J = 1 partial wave of even parity. These have shown a positive peak in the 

collision lifetime eigenvalue for 1 peven (720 to at 0. 7506 Ryd), but none in 3 peven. 

Analyzing the eigenvalue potentials (see Figs. 5.11 and 5.12) we can identify the 

cause. The triplet curve is very attractive, with a well 0.0234 h deep, which results~ 
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in a bound state. 55 •56 The curve for 1 peven, on the other hand, has a very shallow 

well and barrier. The barrier height is 0.00024 h from the bottom of the well, which 

is only 0.0001 h less than the asymptotic n = 2 energy level. 

Resonances are sometimes classified as belonging either to '+' or '-' series, 57 

just as we discussed'+' and '-' surface functions in Chapter 5. Of the four 1 podd 

resonances seen converging to the n = 3 threshold, the first and fourth are classified 

as '+,' and the second and third resonances, which are an order of magnitude 

narrower, are classified as '-.'58 The classification is based on a labelling of surface 

function eigenvalue curves, and obtaining the resonance levels by computing the 

bound states supported by those curves. The '+' curves are more attractive at 

small p, and two-electron excitations to such a level is expected to be 1 to 2 orders 

of magnitude more likely than excitation to the less attractive'-' state. 58 

We compare our resonance positions with other authors in Table 6- 4. 

We have detected only two 1Podd Feshbach resonances, at 0.8745 Rydt and 

0.882862 Rydt in our standard calculation, projection at 60 bohr. Other calculations 

have seen higher members of the series, but projecting at 60 bohr we have not 

detected them. In particular, Callaway35 calculated the positions of four 1 podd 

resonances, at 0.87457, 0.88286, 0.88777, and 0.88820 Ryd. Our positions and 

widths agree well with the first two of these. The width of Callaway's 4th resonance 

at 0.88820 Ryd is """' 10 times that calculated for his resonance at 0.88286 Ryd. 

The conclusion drawn from this statement is that lack of energy resolution is 

not the reason resonance #4 goes undetected in our calculation. (Resonance #3 

is extremely narrow, according to Callaway.) Based on our experience with the 

t 11.90 eV with respect to ground state of H atom, 12.646 eV photon energy 

with respect to ground state of H-. 
+ 12.0121 eV with respect to ground state of H atom, 12.7597 eV with respect 

to ground state of H-. 
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n = 2 resonances and observing that the largest 1 podd collision lifetime eigenvalue 

is monotonically increasing above 0.884 Ryd, we suggest that a larger projection 

distance (80 bohr) may be necessary to observe some of the resonances less than 

0.001 Ryd below the n = 3 threshold. 59 

The two relatively broad 1 podd resonances have been seen in measurements 

of the photodetachment of the H- ion, by Hamm et al.60 who obtain resonance 

energies of 12.650 ± 0.004 (width 0.0275 ± 0.0008 eV) and 12.837 ± 0.004 eV (width 

0.0016 ± 0.0003 e V). They interpreted these as the first two members of a Feshbach 

resonance series of the'+' type. The first resonance agrees within their experimental 

error with our result, and the second is the missing one we discussed above. These 

authors also have seen some weak structure near 12.78 eV, which they think may 

be a resonance of the '-'class, and which agrees within 0.02 eV with our second 

resonance position. The lowest energy 1 podd Feshbach resonance has also been 

detected in electron scattering experiments,43 causing dips in the 1s -t· 2s and 

1s-t 2p cross sections at 11.91 ± 0.06 and 11.97 ± 0.06 eV, respectively. 

We have computed the positions of three 3 podd Feshbach resonances, at 

0.8641 Ryd (11.76 eV), 0.8855 Ryd (12.05 eV), and 0.88747 Ryd (12.075 eV). 

Experimentally, the 3 podd resonance is not clearly defined, because the energy 

resolution of the experiments is usually greater than the energy separation of the 

various resonances. Theoretically, the lowest 3 podd n = 3 Feshbach resonance lies 

only 0.03 e V above the 1 S resonance. The relative error in energy determination in 

Williams experiment is 0.02 eV. 43 Williams has tentatively assigned a minimum in 

the 1s-t 2p excitation cross section at 11.75 ± 0.06 eV to the 3 podd resonance. It 

is clear from Fig. 6.5 that the 3 podd resonance at 0.8641 Ryd does indeed cause a 

large dip in the 1s -t 2p cross section, which is significant in the total cross section 

too (see Figure 6.15). 
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6.3.3 D-wave scattering 

The elastic scattering cross sections for J = 2 are compared with the literature 

in Table 6-10. The inelastic scattering cross sections for excitation to the 2s and 2p 

states for J = 2 are given in Table 6- 11 and Table 6- 12, respectively. Our results 

for the inelastic cross sections give only fair agreement with previous calculations , 

and the elastic cross sections are about twice those obtained by Burke et al. 12 . We 

believe that the latter are not converged with respect to basis size. (See Table 4-5 

in Chapter 4 for convergence tests.) 

We have plotted the collision eigenvalues for 1 neven in Figure 6.10. 1 neven 

resonances are obtained at 0.8680 (11.81 eV) and 0.8868 Ryd (12.07 eV), whereas 

Burke et al. 12 obtained only one resonance at 0.8687 Ryd (11.82 eV), with width 

3.62 mRyd (0.049 eV). Callaway also predicts a resonance position of 0.8681 Ryd 

(11.81 eV).35 Williams' detected a resonance attributed to the 1Deven partial wave 

at 11.85 ± 0.080 e V in the 1s -+ 2p cross section, agreeing with theory within 

experimental error. 

It has been shown that the position of the experimentally observed 1 neven 

resonance61 below the n = 2 threshold is not given correctly by the 3-state 

close coupling calculation.62 The position predicted by the 6-state close-coupling 

calculation is shifted down 0.07 eV compared with the McGowan et al. experimental 

result of 11.89 eV.44 McGowan et al. have suggested that the 6-state calculation 

was unconverged and that the resonance position would shift further in a larger 

calculation; however our result is 0.0007 Ryd lower than Burke's and agrees with 

the experiment by Williams. 43 The conclusion is that McGowan et al.'s suggestion 

is probably incorrect. 

We have obtained a series of maxima in the collision lifetime eigenvalue curves 

just above the n = 2 threshold. (See Table 6- 4.) The largest of these is in the 
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3 Deven partial wave, located at 0.75040 Ryd (lifetime 14,500 and width 0.45mRyd). 

The lowest 3 Deven n = 2 eigenvalue curve, as seen in Fig. 5.14, is attractive but not 

enough so to support a Feshbach resonance below threshold. The result apparently 

is a shape resonance just above then= 2 threshold, which nevertheless is surprising, 

because the eigenvalue potential does not have any barrier. Subsequent peaks are 

located at 0.754 Ryd (10.26 eV) and 0.763 (10.38 eV) with corresponding life times 

of 400 to and about 60 t0 . McGowan et a/. 44 also report a second small maxima in 

the cross section at 10.45 ± 0.03 e V (0. 768 Ryd) just after the inelastic threshold. It 

was suggested that this structure may be part of the oscillatory structure predicted 

by Dam burg and Gailitis. 2 

6.3.4 Higher partial wave scattering 

According to Gailitis and Damburg2 the inelastic partial cross sections for 

transition 1s --t 2s and 1s --t 2p will tend toward zero at the n = 2 threshold 

for J 2: 3. The contribution of J = 3 partial waves to the total . cross section is 

much smaller than the lower Jones, but not sufficiently small to conclude that the 

total cross section has converged once the F-wave contributions are included. These 

cross sections are presented in Table 6- 13 (elastic), Table 6- 14 (1s --t 2s), and 

Table 6- 15 (1s--t 2p). 1Fodd cross sections are displayed in Figure 6.11, 3 Fodd 

cross sections in Figure 6.12. They are particularly influenced by the presence of 

two sharp resonances, at 0.8872 Ryd (12.07 eV) for the 1 Fodd and at 0.8769 Ryd 

(11.93 eV) for the 3 Fodd partial wave. The collision lifetime eigenvalues for 1 Fodd 

and 3 Fodd are graphed in Figure 6.13. The 3 Fodd resonance produces a sharp 

increase in the (1s --t 2s) and (ls --t 2p) total cross sections, as seen in Fig. 6.12. 

We suspect that there is a second 3 Fodd resonance that is very narrow and even 

closer to the n = 3 threshold; Callaway predicted its position as 0.8880 Ryd. 35 We 

were not able to detect this resonance, projecting at 60 bohr and using an energy 
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grid of 10-6 Ryd in the neighborhood of 0.888 Ryd. A higher energy resolution was 

not attempted. 

The collision lifetime analysis also indicates a series of shorter-lived resonances 

just above the n = 2 threshold at 0.7545, 0.763, and 0.78 Ryd (10.266, 10.38 and 

10.6 e V, respectively) with lifetimes of 1200, 200, and 80 to, respectively. These 

lifetimes are so small compared to those occurring slightly below the n = 3 threshold 

that one might wonder whether they are not simply numerical artifacts, but these 

resonances produce a noticeable effect on the probablity of transitions for which 

the initial state is not the ground state. All three resonances are seen in the 3 Fodd 

partial elastic 2p ----+ 2p scattering cross section, as seen in Figure 6.14 . 

Some of the Argand diagrams corresponding to the 3 Fodd resonances (Fig­

ure 6.15) are remarkable in that the curves are drawn counter-clockwise through­

out much of the energy range. The resonance at 0.877 produces a large counter­

clockwise circle, as expected, in the plot of each matrix element, but the resonances 

at lower energy give rise to circular arcs not passing through the origin, which are 

most evident in the Argand diagram of the 2p2 ----+ 2p2 and 2p4 ----+ 2p4 elements 

of the scattering matrix, indicating weaker resonances superimposed on the direct 

contribution to these elastic processes. Some of these resonances are very wide 

and short-lived. The largest collision lifetime eigenvalue is however never negative, 

confirming the resonance nature of the features slightly above the n = 2 threshold. 

The 1 Fodd and 3 Fodd partial waves have similar behavior at energies close to 

this threshold. The partial cross sections for the ls ----+ 2s and ls ----+ 2p processes 

from the ground state increase steadily and slowly with energy, starting at negligible 

values near the n = 2 threshold and increasing to values of the order of 0.01 and 

0.057ra6, respectively, as the n = 3 threshold approaches. There is not much 

change in phase over this energy range , as seen from the Argand diagrams for 
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the (1s3 --+ 2s3), (1s3 --+ 2p2), and (1s3 --+ 2p4) matrix elements. By contrast, 

the J = 3 cross sections for transitions from excited states, of which Figure 6.12 is 

an example, are peaked at energies close to the n = 2 threshold, after which they 

decrease by 1 to 2 orders of magnitude. 

6.3.5 Total cross sections 

Comparison of theory and experiment is this energy range is straightforward 

and not complicated by processes that may be present at higher energies, such as 

cascade processes and ionization; however theoretical results have to be "folded" 

with the experimental energy distribution to make a meaningful comparison. 

The major difficulty in electron-hydrogen atom scattering experiments is m 

producing an intense beam of atomic hydrogen. The first high-resolution experiment 

(electron-bream resolution 0.07 eV) of an excitation cross section in H was made 

by McGowan, Williams, and Curley,44 and confirmed the theoretical prediction of 

resonances occurring slightly below the n = 3 threshold. There have been several 

experimental measurements of the total cross sections for impact excitation to the 

2s state.63 Resonances in the 2s channel were measured by Oed,48 and subsequently 

by Koschmieder et al. 47 The latter achieved an energy resolution of 110 meV. 

The experimental results have indicated that 6-state close coupling calculations 

overestimate the cross section by 10% to 15% above 11 eV. More recent experimental 

data are available for the total cross section for the excitation of the 2s and 2p 

states,49 •43 which does not rely on any theoretical calculation for normalization. 

The energy resolution in these experiments was 0.07 eV (0.005 Ryd). Still better 

resolution is required to identify separate resonances that occur close in energy. 

The total elastic cross section of electrons with H(ls) atoms in the energy 

range from then = 2 threshold to the n = 3 threshold is shown in Figure 6.16. We 

have listed the partial wave contributions to the elastic and inelastic cross sections 
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from the ground state and the total cross sections in Table 6 - 16 for a selection 

of energies between the n = 2 and n = 3 thresholds , where we have also compared 

with the theoretical results of Callaway.35 The total cross section for excitation to 

the 2s state is shown in Figure 6.17a, and the total cross section for excitation to 

the 2p state is shown in Fig. 6.15b. The major structural features are due to the 

1 podd shape resonance at 0.7511 Ryd at the low energy end, and to the several wide 

Feshbach resonances below the n = 3 threshold. The 3 Fodd resonance at 0.877 Ryd 

produces a sharp peak in both excitation cross sections. The higher lying resonances 

are very narrow and closely spaced. The agreement with experiment,43 though not 

shown, is very good, given the resolution. 

6.4 Energies between the n=3 and n=4 Thresholds 

In this section we examine the scattering processes accessible at energ1es 

between then= 3 and n = 4 thresholds. We will consider excitation both from the 

ground state to the upper states and from the 2s and 2p states to the n = 3 states , 

as well as elastic scattering of the ground state. Both parities need to be considered 

when calculating transitions from the 2p state. 

The only previous scattering calculations in the n = 3 to n = 4 energy range 

have been those obtained by Hata et al. using variational methods;64 although 

Burke et a/. 12 did some 6-state close coupling calculations at a few select higher 

energies, those calculations did not include the n = 4 states in the basis set, which 

has been shown to be important for convergence.65 

6.4.1 Resonances 

We have computed the positions of over 80 resonances between the n = 3 and 

n = 4 thresholds using the collision lifetime matrix eigenvalues. These generally 

agree with, but are more complete than, the resonance positions and widths 

computed by complex rotation. 8 All the resonances found for J = 0 through 5 
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are listed in Table 6 - 17. The lifetimes are g1ven by the peak values of the 

collision lifetime matrix eigenvalues, taken as functions of the energy, and the widths 

are defined as the full-width at half-maximum of the collision lifetime eigenvalue 

vs. energy curve. The widths are approximately inversely proportional to the 

lifetime, as is expected from the uncertainty principle. We list the widths even 

though they aren't as accurately determined as the lifetimes, in order to make 

comparisons with other calculations in which the width of the resonance, but not 

the lifetime, was computed. 

The resonance energies for states with parity (-1)J+ 1 are closely associated 

with resonances of the other parity, if one switches spin. This is called "T-doubling." 

For example, in the 1 peven partial wave there is one resonance at 0.93403 Ryd, 

whose position and lifetime is comparable to the resonance at 0.93408 Ryd in the 

3 podd state. And for 3 peven we find three resonances, at 0.9255, 0.9358, and 

0 .93707 Ryd, of which the latter two have energies just slightly below those of 

the corresponding 1 podd resonances at 0.9359 and 0.93713 Ryd. This phenomenon 

is seen in the higher partial waves as well. Recently a new classification scheme 

based on the set of internal correlation quantum numbers K, T, and A has been 

introduced, and the "T-doubling" feature is predicted by the scheme.66•67 Resonant 

states with the same values of K, T, and A are obtained as quasi-bound states of 

eigenvalue potential curves (see Chapter 5) which are similar in shape, and hence 

the resonance energies are close together, even though the J , II and S quantum 

numbers may be different. Another consequence is that supermultiplet structure 

observed for intrashell states68 may be interpreted, as well as predicted, by this 

scheme. Approximate selection rules for e- -H scattering have been proposed 

based on this model. 

In Figure 6.18 we have organized the n = 4 Feshbach resonances according to 

the (K, T)A configurations in order to show the /-type supermultiplet structure. 5 8 
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The resonances obtained have been assigned quantum numbers K, T, and A as 

described by Lin,71 taking into account the width of each resonance. We find many 

instances of "T-doubling," two nearly degenerate resonances with the same J, but 

different S and II. A striking pattern can be seen for states with different J, S and 

II but the same (K, T) and A, if A = ±1. There is a series of relatively wide, lower 

energy resonances starting with the 1 S (3, 0) + state, that continues through 3 podd, 

1 neven, 3 Fodd, 1 ceven and 3 Hodd. If we had done J = 6 calculations, there would 

be an 1 1even resonance of this type as well. There is a similar series of extremely 

narrow resonances, beginning with the 3 S (3, 0)- state, and continuing through 

1podd, 3Deven, 1Fodd, 3 Geven, and 1Hodd. This structure is similar to what was 

seen in Figure 6.2. 

6.4.2 S-wave scattering 

Cross sections for J = 0 partial waves were obtained using 15 surface functions 

(nmax = 5) and projecting at 80 bohr. The cross sections are presented graphically 

in Figure 6.19. The 3 S contributions to the 1s -t 31 1 cross sections are found to 

be exceedingly small, all less than 10-4 11' a5, which is neglible compared to the 1 S 

contribution. The same situation held for the energy region between the n = 2 

and n = 3 threshold where most of the scattering from the ground state in the 3 S 

partial wave is elastic in nature, and where the resonances are few, very long-lived 

and narrow. 

Comparison of the J = 0 cross sections of Rata et a/.64 using the full basis 

1s -t 31 1 (6 states plus 8 pseudostates) at E=0.90 Ryd, summed over spins, with 

our own results, and with the 6-state close-coupling results, 12 is made in Table 6-18. 

Our total J = 0 1 -t 3 cross section agrees with Hata et al. to about 5%. The 

individual cross sections are small, and the percent difference between them is large, 

except for the 1s -t 3p contribution, where agreement is quite good. 



212 

The 1S partial wave may perhaps have a resonance right above the n = 3 

threshold; we found the largest lifetime eigenvalue increases to over 104 to as the 

energy decreases to then= 3 threshold, but no maxima is achieved. However there 

appears to be a shoulder in that eigenvalue at a slightly higher energy. Whether 

this shoulder indicates a weak shape resonance we were not able to determine. The 

1 S partial wave contribution to the 1s -----+ 3s cross section definitely indicates the 

presence of a resonance, as a very sharp peak exists just above threshold. The 

resonance is not nearly as pronounced in the other 1S channels, however. Pilot 

hyperspherical calculations by Lin 23 predicted a shape resonance in the 1 S partial 

wave above the n = 3 limit, based on the potential curves obtained. Our 1 S potential 

curves do have crossing, whereas the 3 S ones do not (see Fig. 5.9 and 5.10) and we 

have seen in the 1 podd partial wave (at the n = 2 threshold) that barriers formed by 

states that cross can lead to shape resonances. Lin calculates a barrier of 12.13 eV, 

which is fairly consistent with the experimental resonance energy of 12.16 eV.69 

The Argand diagrams are equally difficult to interpret. Whereas the Argand 

plot gives a clockwise motion from E=0.8889 to 0.895 Ryd for most of the scattering 

matrix elements, there are a few which may be interpreted as giving slightly counter­

clockwise moving curves. The Argand diagram for the 2s -----+3d 1S matrix element 

is shown in Figure 6 .20, and has the most curvature near the n = 3 threshold. The 

curve bends back in the opposite direction at about 0.895 Ryd, forms half of a small 

circle between 0.920 and 0.925 Ryd, which indicates the resonance at 0.921 Ryd, 

and then loops into a much larger oblong shape between 0.930 and 0.935 Ryd, the 

result of two close resonances at 0.93125 and 0.93325 Ryd. 

On the other hand, a shape resonance is indicated by the collision lifetime 

analysis in the 3 S partial wave above the n = 3 threshold, as seen in Figure 6.21. 

We calculate its position at 0.8898 Ryd with lifetime 2200 t0 and width 1.2 mRyd, 

which is fairly short-lived. This is compared to Hata et al.'s result of 0.8907 Ryd 
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with width 4.3 mRyd. 70 The effect of this resonance on the cross sections, however, 

is hard to see. Only in the 2p---+ 3s, 3d and 2s ---+ 3s 3 S partial cross sections is any 

kind of structure seen at the resonance energy (see Fig. 6.19). Hata et al. have found 

a maximum in the 3 S 1s- 3d cross section, where we find only a small bump, not a 

major peak. They further state that the resonance is due to the angular momentum 

barrier in the 3p and 3d channels, caused by short-range repulsive interaction, along 

with strong long-range dipole interaction between the degenerate n = 3 hydrogen 

atom states. 

The Argand diagrams for most of the 3 S scattering matrix elements do not 

indicate a shape resonance, but we have plotted one that does, (2p1 ---+ 3d2), in 

Figure 6.22. This diagram clearly indicates the two Feshbachresonances (see below) 

as well, and also has some complicated structure in the non-resonant energy region 

0.91 to 0.93 Ryd. 

The Feshbach resonances in the 3 S partial wave just below the n = 4 threshold 

are long-lived and narrow, just as was found below the n = 3 threshold. Both of 

them cause sharp variations in all of the state to state partial cross sections , except 

for the 1s --+ 1s elastic process, which is the major contribution to the total elastic 

cross section and insensitive to the resonances. 

6.4.2 P-wave scattering 

Cross sections for J = 1 odd parity partial waves were obtained using 25 surface 

functions (nmax = 5) and projecting at 80 bohr. The cross sections are presented 

graphically in Figure 6.23. We compare resonance positions and widths/lifetimes in 

Table 6 - 17. Our calculations have detected four 1 podd Feshbach resonances below 

the n = 4 threshold of hydrogen, plus a shape resonance above the n = 3 threshold. 

After the opening of the n = 3 channel we have a small maxima in the largest 

collision lifetime eigenvalue ( ,....._ 1200 to) at 0.8906 Ryd, width 1.9 mRyd, which may 
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indicate a weak 1 podd shape resonance there. The widest two Feshbach resonances, 

located at 0.9257 (width=2.0 mRyd) and 0.9359 Ryd (width=0.9 mRyd), were 

also detected by Hata et al.64 who obtained 0.9265 Ryd (width 3.3 mRyd) and 

0.9359 Ryd (width 0.6 mRyd) and by Ho,71 whose results are closer to our own. 

We have found, in addition, two long-lived narrow resonances in 1 podd, at 0.93145 

and 0.93713 Ryd, the second of which had not been previously reported. The 

narrower resonances go undetected in the partial elastic scattering cross section, 

and have only a miniscule effect on the 1s - 21 1 partial cross sections. Their effect 

is much more pronounced in the transitions to 31 1 final states. Figure 6.24 displays 

an Argand diagram for the (1s1) - (2p2) element of the scattering matrix for the 

1 podd partial wave in the energy region between the hydrogen n = 3 and n = 4 

thresholds. The counter-clockwise circles indicate the presence of five resonances, 

two of which are very narrow. The corresponding lifetimes of these five resonances 

(4 Feshbach, 1 shape) are displayed in Figure 6.25. 

We find a much longer lived shape resonance in the 3 podd partial wave at 

0.8903 Ryd, just above then= 3 threshold (lifetime 4900, width 1.3 mRyd). Hata 

et al. 64 were unable to resolve any J = 1 resonances in this energy region. The 

lowest Feshbach resonance in 3 podd is at 0.9213 Ryd. This value agrees will with 

Ho's results0 (0.9214) but the Hata et al. calculation64 gives 0.9220. At slightly 

higher energies we find three interfering resonances. The first two of these, at 

0.9317 and 0.9335 Ryd are of comparable lifetime and width, but are so closely 

spaced that the effect of the resonance at 0.9317 Ryd on the partial cross section 

of the 1s ....... 3s, 2s - 3p, 2p ....... 3s and 2p ....... 3p processes is a shoulder to the 

large dip caused by the 0.9335 Ryd resonance. The 2s ....... 3s cross section is an 

exception to this behavior, since it displays three deep dips corresponding to the 

three wide Feshbach resonances. The fourth resonance is very narrow, and exists 

within the width of the third resonance, as can be seen from the collision lifetimes 
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plotted in Figure 6.26. We calculate its position at 0.9341 Ryd, with a lifetime of 

140,000 atomic units. It is in cases such as this that the collision lifetime matrix is 

very useful, because a narrow resonance in the region of a strong, wider resonance 

would be very hard to detect from the partial cross section data alone. The collision 

lifetime matrix eigenvalues, on the other hand, clearly show a major peak, once the 

energy grid is fine enough. Even with a coarser grid of points, there is indication 

of a resonance because the eigenvalues fluctutate dramatically, as demonstrated in 

Figure 6.27. 

The Hata et al. 64 resonance positions and widths were obtained by fitting 

Fano profiles 71 to the eigenphase sum, assuming that the resonances are isolated. 

From diagonalizing the appropriate J = 1 version of Eq. 6.2, they obtained three 

negative eigenvalues >. ( >. + 1) less than - ·h from which one expects to find three 

series of resonances. To determine if two resonances belong to the same series, 

one may examine the eigenvectors of the collision lifetime matrix which correspond 

to the largest eigenvalue at the resonant energy to see if they correlate with each 

other. We have shown that the three Feshbach resonances at 0.9317, 0.9335, and 

0.9341 Ryd are isolated, but nevertheless there are three of them occurring within 

0.003 Ryd. The other methods for locating resonances are much less precise and 

show the presence of only one. 

There are fewer peven than podd states (see Table 5-2), and as a consequence 

there are fewer peven resonances. As mentioned in Section 6.4.1, the peven 

resonances occur at energies close to podd resonances, as seen in Figure 6.18 and 

Table 6- 17. 

6.4.3 D-wave scattering 

Cross sections for J = 2 even parity partial waves were obtained usmg 

31 surface functions, (nmax = 5) and projecting at 80 bohr. The cross sections 
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are presented in graphical form in Figure 6.28. 

The resonances obtained for J = 2 are listed in Table 6- 17c, along with the 

computed lifetimes and widths. The shorter-lived resonances have the largest effect 

on the cross section, as can be seen from Figure 6.28. The elastic scattering cross 

sections from the ground state for the 1 neven and 3 D even partial waves are very 

different. The latter shows little variation with energy, while in the former the 

two strong, broad resonances are clearly shown. In the 3 Deven wave, the 1s -+ nl 1 

cross sections for n = 2 and 3 are an order of magnitude smaller than their 1 neven 

counterparts. 

There are two very sharp peaks in several of the 3 neven cross sections just 

above the n = 3 threshold, which are most pronounced in transitions to the 3d 

state. This is due to a shape resonance at 0.88918 Ryd which has a lifetime of 

24,000 to. 

The sharp 1 neven resonance at 0.93382 Ryd lies very close to a wider resonance 

at 0.9341 Ryd. The collision lifetime eigenvalue curves corresponding to the 1 neven 

partial wave at this energy are shown in Figure 6.29. We claim that there are two 

resonances here because two of the collision lifetime eigenvalues change rapidly as 

a function of energy in this region, but this point bears more discussion. 

It has been proposed, but not proven, that each resonance causes a peak in just 

one lifetime eigenvalue vs. energy curve. 13 If two lifetime eigenvalues peak at the 

same energy, or at nearly the same energy, does this mean the there is accidental 

degeneracy between two different resonances, or is it possible for a resonance to 

involve two different eigenchannels? The pair of 1 neven resonances is one such 

situation, but we have encountered it in the 3 podd partial wave below the n = 5 

threshold and in 1 podd below n = 6. In both of these cases there was one narrow 

peak in the collision lifetimes nearly, but not quite, centered at the same energy as 
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the peak in a second eigenvalue, which was much broader and lower. 

Let us consider what should happen to the collision lifetime eigenvalues 

associated with two resonances in different lifetime eigenchannels as the energy 

separation (between the resonances) is decreased. For large separations, the 

resonances are isolated and one obtains two separate peaks in the larger eigenvalue, 

with very small values in between. The smaller eigenvalue is negative (or at least 

very small) for the entire range, and we assume the two states cross at some non­

resonant energy. 

Now assume the energy separation is comparable to the average width of the 

resonances. The first eigenvalue will peak at the first resonance energy, and then 

decrease, as expected. Meanwhile, the second eigenvalue begins to increase, until it 

is almost degenerate with the first. At this point the two eigenchannels cross. The 

crossing is evident in the associated eigenvectors as well. The larger eigenvalue will 

refer to the second eigenchannel, and vice-versa, for energies above the crossing. 

We do not reorder the eigenvalues. The upper eigenvalue has a minima, and the 

lower eigenvalue a maxima, at the crossing point. The peak in the lower eigenvalue 

is construed as a crossing only, and is not interpreted as a resonance lifetime, as 

would a peak in the largest eigenvalue. 

Let us suppose that the energy separation of the two resonances is even smaller. 

The two peaks in the eigenvalue will approach each other, until finally there is only 

one peak with a shoulder. The presence of the second resonance will be clear because 

of the peak in the lower curve. One may have to estimate the wider resonance 

position and corresponding collision lifetime if the peak assumedly falls beneath the 

curve for the sharper resonance. 

The odd parity J = 2 2p --+ 3p and 2p --+ 3d cross sections have been plotted 

in Figure 6.30. As expected we find the 1 nodd resonances are very close to those in 
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3 Deven, and 3 Dodd positions correlate with 1 neven energies. 

6.4.4 F-wave scattering 

The cross sections obtained for the 1 Fodd and 3 Fodd partial waves are presented 

in Figure 6.31. The odd parity basis set consisted of 34 surface functions, which 

includes all states up to nmax = 5, inclusive. The cross sections for transitions 

from the 1 Fodd ground state are relatively small, but not negligible . We have 

evidence of two shape resonances just above the n = 3 threshold, after which the 

cross sections smoothly increase with increasing energy until the Feshbachresonance 

region is reached. Similar behavior is seen in the 3 Fodd cross sections, but the strong 

resonances in this partial wave seem to be wider than those in 1 Fodd. 

The lowest n = 4 3 Fodd Feshbach resonance energy is 0.9244 Ryd. The third 

resonance, at 0.9352 Ryd, belongs to the same series, given by (3, o)+ , because 

the same collision lifetime matrix eigenvalue is involved. The second resonance is 

close in energy, at 0.934 75 Ryd, and the peaks formed by the two collision lifetime 

eigenvalues overlap a sizeable amount. We have found one 3 Fodd resonance of 

the '-' type, at 0.93606 Ryd. As we have found for other '-' type resonances, 

the resonance is very long-lived (on the order of 2 x 105 atomic units), and the 

collision lifetime eigenvalue corresponding to this resonance is lower than all the 

other eigenvalues outside the width of the resonance, so it crosses up, peaks, and 

then comes back down to negative values. Calculations were repeated using 90 bohr 

as the projection distance for energies very close to the n = 4 threshold. The second 

(3 , o)+ resonance position shifted with the new projection distance, but the (1 , 2) + 

resonance did not shift, such that the two became accidentally degenerate. The 

narrow resonance also shifted slightly to lower energy. Right below threshold we 

were able to discern one resonance which had not converged in the p = 80 bohr 

calculation. 
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We have plotted the J = 3 even parity 2p -t 3p and 2p -t 3d cross sections in 

Figure 6.32. As expected we find the 1 Feven resonances are very close to those in 

3 Fodd, and 3 Feven positions correlate with 1 Fodd energies. 

6.4.6 Higher partial wave scattering 

The cross sections obtained for the 1 Geven and 3 Geven partial waves are 

presented in Figure 6.33. The figure clearly shows the presence of two strong 1 ceven 

Feshbach resonances, listed in Table 6- 17, and a shape resonance above the n = 3 

threshold. The cross sections are very smooth in the energy region after the shape 

resonance and up to the Feshbach resonance region. 

The longest-lived shape resonance above the n = 3 threshold was found in 

the J = 4, 3 Geven partial wave. The resonance position was calculated to be 

0.88930 Ryd, its collision lifetime 90,000 t0 , and its width 0.09 mRyd. A second, 

smaller peak was found in the collision lifetime curve slightly above this resonance, 

2300 to high at 0.8922 Ryd. In addition, as tabulated, two closely-spaced, narrow 

Feshbach resonances are found at 0.93435 and 0.93468 Ryd with lifetimes of 25,000 

and 127,000 t 0 , and widths of 0.35 and 0.06 mRyd respectively. 

For higher values of J, there isn't much difference between the partial cross 

sections for different spin states. That is, the ratio of triplet partial cross sections to 

the corresponding ones of the singlet is about 3: 1, reflectingjust the spin weighting 

factors. This was true for F-wave states just above the n = 2 threshold, and it is 

also true for H -wave states above the n = 3 threshold. The J = 5 cross sections for 

the energy region between the n = 3 and n = 4 thresholds of hydrogen are pres en ted 

in Figure 6.34. For most of the cross sections, the triplet is about three times the 

corresponding singlet cross section, which is consistent with the spin weighting. 

Both 1 Hodd and 3 Hodd have a weak shape resonance at 0.8914 Ryd, according to 

the collision lifetime matrix. There is a single sharp Feshbach resonance present in 
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the 3 Hodd state. 

6.4. 7 Total elastic and inelastic cross sections from the ground state 

The integral cross sections for transitions from the ground state are listed in 

Table 6 - 19 summed over spin and parity for each partial wave J from 0 through 

5, for seven energies in this region, and the inelastic cross sections are plotted as 

a function of energy in Figure 6.35. These calculations were performed with a 

basis set that consisted of all surface functions up to the n = 5 level (a 15-state 

calculation). The total cross section is also given. The elastic cross section from 

the 1s state seems to be converging slowly with J , but the 1s--+ 2s, 2p, 3s, 3p and 

3d cross sections seem to be already converged to better than 1%. 

We also compare our 1s---t 311 cross sections, for 11 = 0, 1 and 2, summed over 

J and spin, with the 14-state results of Hata et a1. 64 and the 6-state calculation of 

Burke et a1. 12 in Table 6-20. The agreement is generally better than 10% between 

our results and the 14-state calculation, but the 6-state calculation is much worse, 

as is to be expected. There are no published experimental results of either cross 

sections or resonances in this energy range. 

6.4.8 Total inelastic cross sections from 2s and 2p excited states 

At these energies one can obtain excitation cross sections from initial states 

other than the ground state. Transitions from n = 2 states to n = 3 states are used 

in the determination of the populations of excited states in plasmas, and can also 

be used to find collisional population and depopulation rates for individual atomic 

levels. 72 •73 The same resonances are seen in the 21 1 --+ 3li transitions as in those 

from the ground state. In fact, some of the resonances are more clearly seen in 

these cross sections from excited states. There are six different processes involved: 

(2s ---t 3s), (2s --+ 3p), (2s --+ 3d), (2p --+ 3s), (2p --+ 3p), and (2p ---t 3d). Parity 
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disfavored states (such as peven) do have a 2p channel, therefore the (2p---+ 3p) and 

(2p ---+ 3d) cross sections are summed over parity. 

The partial wave contributions to the cross sections for processes where the 

initial state is in the first excited level (2s or 2p) are given in Table 6-21, where they 

are compared with previous calculations at one total energy, 0.90 Ryd (with respect 

toe- -H (1s) as the zero of energy) corresponding to an initial translational energy 

of 0.15 Ryd. The cross sections are plotted as a function of energy in Figure 6.36 

(for initial state 2s) and Figure 6.37 (initial state 2p). All of these results have 

been obtained with 15 nl 1 (parity-favored) states, which corresponds to 15 surface 

functions for J = 0, 25 for J = 1, 31 for J = 2, and 34 for J = 3 and 35 for all 

J > 3. The s-type states are not included in the parity-disfavored basis, which 

leads to 10 functions for J = 1, 16 for J = 2, 19 for J = 3, and 20 for J > 3. In all 

cases, all surface functions up to n = 5 are used in these calculations . Comparison 

is made with the 14-state (6 hydrogen atom states - all states up to n = 3 -

plus 8 pseudostates) variational calculation of Hata et al. 64 and with the 6-state 

close-coupling results of Ormonde et al. 74 

Let us compare some of the partial wave results given in Table 6- 21. The 

6-state results for J = 1 in Table 6 - 21 agree with each other, except for the 

2p ---+ 2p and 2p ---+ 3d cross sections, which have both parities contributing. 

Hata et al. have shown that neglect of exchange couplings between n = 2 and 

n = 3 states by Ormonde et al. has led to large disagreement in the parity­

disfavored contributions between the two sets of 6-state results. Hata et al. 's full 

basis results are, in some cases, very different from their 6-state ones. There seems 

to be a discrepancy between our results and those obtained by Hata et al. The 

hyperspherical coordinates results are very different. Where the J = 1 (2s - 3d) 

cross section was reduced by a factor of about 3 in going from 6-state to 14-state, it 

is now increased by a factor of 5 in going from 14-state to our 15-state hyperspherical 
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result. The J = 1 (2p -+ 3s) cross section had correspondingly increased by a factor 

of 3, and then increased again by a factor of 4. The disagreement in the (2p-+ 3p) 

cross sections is less pronounced. 

The J = 2 cross sections evidently are equally hard to converge. In particular, 

our value for the J = 2 (2s ~ 3s) cross section is about 7 times that calculated by 

Hata et al. in their best basis,64 which itself was about one-third that calculated by 

them with the 6-state basis. The agreement for the other cross sections is better, 

but still not good, the differences between our results and the 14 states ones being 

of the order of 20%. 

These excited state inelastic cross sections are summed over spin and final value 

of 11 in Table 6 - 22, where they are compared with the 6-state result of Ormonde 

et a1. and the 14-state results of Hata et al. Our 2s -+ 31 1 cross sections agree 

satisfactorily with 14-state results for most of the partial waves. The J = 5 results 

disagree, but Hata et al. have warned that these results are not as accurate. Our 

total 2p -+ 31 1 results are, in most cases, larger than the 14-state results and smaller 

than the 6-state results. The percent agreement on average is only 30%. 

Finally, in Table 6-23 we have tabulated the total cross sections for transitions 

from the 2s and 2p states to each n = 3 level state. These calculations include all 

partial waves up to and including J = 5, and are summed over both parities and 

spin. 

While there are no measurements of excited state cross sections, Burgess et al. 

have obtained collisional excitation and de-excitation rates for first excited states 

from observations on laser pumped atomic hydrogen plasmas. 73 A semi-empirical 

formula, due to Johnson,75 is often used to obtain total n-+ n' cross sections. The 

total cross section form n = 2 to n = 3 obtained in this way agrees fairly well 

with the 6-state close-coupling calculation; 12 however, Burgess suggested that the 
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Johnson results must be five times too high. 73 Johnson's total cross sections results 

are generally 20-30 percent higher than ours but those of Rata et al. are lower than 

ours, ranging from 25 percent lower at 0.90 Ryd to 12 percent lower at 0.925 Ryd. 

The two calculations agree to 1% at 0.93 Ryd. Not all of the discrepancies reported 

by Burgess et al. are accounted for. 

6.5 Energies between the n=4 and n=5 Thresholds 

Recent photodetachment experiments have investigated the energy region up 

to the n = 7 hydrogen atom threshold. 76 We have determined to obtain results 

for the 1 podd partial wave at these higher energies in order to compare with the 

experiment. In this section we present our preliminary results for S and P waves at 

energies above the n = 4 threshold. The basis set used at lower energies contained 

all the states up to and including those which correspond asymptotically with n = 5 

hydrogen atom functions. Use of that basis set in the n = 4 ton = 5 energy region 

would give only one level of closed functions, which is insufficient. Furthermore, 

inclusion of the n = 6 primitive functions will give better converged n = 5 (and to 

a lesser extent, n = 4) surface functions, which are very important in this energy 

range. For these reasons, calculations between the n = 4 and n = 5 thresholds 

were performed using all the surface functions obtained from a primitive basis 

with nmax = 6. For S-states, this meant using 21 surface functions; for P-states, 

there were 36 surface functions used. The projection was performed using the 

"constant-p" method, with p taken to be 110 bohr. There have been no scattering 

calculations reported in this energy range that have included all the open states in 

the calculation. 77 

This energy region is rich with resonance structure. Our resonance positions, 

lifetimes, and widths are given in Table 6 - 24, where they are compared with 

the resonance positions found by Ho and Callaway using complex rotation. 8 We 
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note that, for J = 0, only the two wider 1 S resonances were predicted by Ho and 

Callaway, but none of the three narrow 3 5 ones. We also note the presence of some 

relatively short-lived shape resonances in both 1 5 and 3 S. 

In Table 6- 25 we list the 15 and 3 5 contributions to the individual partial 

cross sections at four energies for transitions from the ground state. The ls -t 41 1 

cross sections are all very small. Individual cross sections for transitions from the 

excited 2s and 2p states are listed, for 1 S and 3 5, in Table 6- 26. 

The partial cross sections at four energies between the n = 4 and n = 5 

thresholds for the 1 podd and 3podd partial waves from the ground state are listed 

in Table 6 - 27. The partial inelastic cross sections from the 2s and 2p excited 

states are listed for the 1 podd and 3 podd partial waves in Table 6 - 28. 

Resonances have been clearly seen in all channels. Collision lifetime analysis 

shows that there are six resonances below the n = 5 threshold in the 1 podd partial 

wave. There is apparently also a shape resonance just above the n = 4 threshold, 

at 0.9388 Ryd. The corresponding Argand diagrams for 1 podd in the energy region 

are quite complicated, as would be expected for a region with seven closely-spaced 

(and therefore possibly interfering) resonances. One representative Argand diagram 

for a first row element (lsl -t 4d3) is presented in Figure 6.38. This one consists 

of several partial circles, and two sharp changes in direction, separating the shape 

resonance region from the non-resonant from the Feshbach resonances. 

There is a peak in the 3 podd collision lifetime about 1 mRyd above the n = 4 

threshold; but there is a second maxima at 0.945 Ryd. This peak is very wide 

compared to the others, and also relatively low, having a lifetime of2000 t 0 • We have 

seen, however, in other energy regions and for other partial waves, resonances with 

similar lifetimes that had quite noticeable effects in the cross section. If we consider 

this peak to designate a weak resonance, we find that the entire n = 4 to n = 5 
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energy region is affected by at least one of the several 3 podd resonances. There are 

3 podd Feshbach resonances at 0.9487, 0.9540, 0.95630, 0.95945, and 0.959705 Ryd, 

and another one at 0.95629, which is hard to place exactly because of the sharper 

resonance right near by. 

In the very low energy end of this region, just after the n = 4 threshold, the 

largest 3 podd collision lifetime eigenvalue decreases monotonically as the energy 

increases. Since there is no maximum in this lifetime, perhaps it is the tail of a 

resonance below threshold (see Fig. 6.27), or possibly there is a shape resonance even 

closer to threshold than our calculations. Our closest calculation was at 0.00001 Ryd 

above the 0.9375 Ryd threshold, and the lowest energy point for which the collision 

lifetime matrix was calculated (since we use a 3-point derivative formula) was at 

0.93752 Ryd. 

Because of the recent experimental measurements of resonances in the 1 podd 

partial wave at energies beyond the n 

calculations at higher energies. The J 

5 threshold, we also performed some 

1 basis used contained all the surface 

functions through the n = 7 level, which amounts to 49 functions. The projection 

was done at 110 bohr, just as for the n = 4 to 5 region. Based on experience at 

lower energies, this projection distance is probably adequate, but no tests at larger 

distances were performed. The resonance positions, lifetimes and widths are listed 

in Table 6 - 29. We found six wide 1 podd resonances at 0.9615 (lifetime 4800), 

0.9633 (3300), 0.9661 (4700), 0.9692 (6200), 0.9701 (13000), and 0.9717 Ryd 

(17000 t 0 ) with widths 1.7, 2.4, 1.7, 1.3, 0.6, and 0.5 mRyd, respectively. We 

suspect that there are even more resonances that are very narrow. In particular, a 

very narrow resonance was obtained very close to a wider one. 

We have not yet investigated this energy range for J > 1, but we expect to 

find much structure due to many resonances. 
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6.6 Summary 

We have presented the results obtained using the hyperspherical coordinate 

formulation for e + H elastic and inelastic scattering using local surface functions 

and have shown that they are accurate. We have calculated the state-to-state 

integral cross sections for all partial waves up to and including J = 5 for energies 

between the n = 2 and n = 4 threshold levels of the hydrogen atom, for the S and P 

partial waves for energies up to the n = 5 threshold, and for the 1 podd patial wave 

for energies up to the n = 6 threshold. This method can in principle be extended 

to energies above the range we have considered, indeed, even to energies above the 

ionization threshold by including hyperspherical harmonics in the surface function 

basis set. This approach is very promising and should lead to a very complete 

description of the e + H scattering processes. 
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Table 6-1: 1 S elastic phase shift (in radians) for e-H(1s) scattering at energies 

below the n = 2 threshold of the H atom. 

k(bohr- 1 ) Schwartza Linb PA3c PA4d Burkeetaz.e Present! 

0.1 2.553 2.513 2.636 2.585 2.491 2.548 

0.2 2.067 1.983 2.119 2.093 1.974 2.062 

0.3 1.696 1.568 1.740 1.735 1.596 1.696 

0.4 1.415 1.242 1.423 1.433 1.302 1.420 

0.5 1.202 0.989 1.221 1.209 1.092 1.209 

0.6 1.041 0.784 1.067 1.059 0.93 1.046 

0.7 0.930 0.618 0.927 0.931 0.82 0.933 

0.8 0.887 0.77 0.889 

a: Ref. 16 Schwartz. 

b: Ref. 23 Lin. 

c: Ref. 25 Klar and Klar, post-adiabatic approximation using 3 states. 

d: Ref. 25, using 4 states. 

e: Ref. 12 Burke et al .. 

f: Present calculation, 3 surface functions, projection at 8 bohr. This distance 
was chosen in view of the convergence studies of Section 4.5 and Figures 4.2 
and 4.3. 
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Table 6-2: Elastic phase shifts (in radians) for e- -H 1s scatteringa at energies 

below the n = 2 threshold of the H atom. 

k(bohr- 1) 38 lp 3p lD 3D lp 3p 

0.1 2.9385 0.007 0.0114 0.0012 0.0013 
2.9335 0.0028 0.0070 0.0001 0.0001 0.0000 0.0000 

0.2 2.7174 0.0147 0.0450 0.0052 0.0052 0.0018 0.0019 
2.7234 0.0170 0.0488 0.0022 0.0022 0.0001 0.0001 

0.2 2.4997 0.0170 0.1063 0.0108 0.0114 0.0038 0.0038 
2.5123 0.0340 0.1278 0.0121 0.0120 0.0009 0.0009 

0.4 2.2941 0.0100 0.1872 0.0183 0.0198 0.0066 0.0067 
2.3057 0.0354 0.2138 0.0326 0.0328 0.0045 0.0045 

0.5 2.1046 -0.0007 0.2705 0.0274 0.0304 0.0102 0.0103 
2.1113 0.0179 0.2861 0.0549 0.0562 0.0130 0.0133 

0.6 1.9328 -0.009 0.3412 0.0383 0.0424 0.0145 0.0147 
1.9361 -0.0032 0.3476 0.0677 0.0704 0.0248 0.0260 

0.7 1.7794 -0.013 0.3927 0.0523 0.0559 0.0194 0.0197 
1.7829 -0.0118 0.3992 0.0720 0.0739 0.0350 0.0365 

0.8 1.6438 -0.004 0.427 0.0745 0.0697 0.0259 0.0263 
1.6499 -0.0008 0.435 0.0833 0.0752 0.0404 0.0401 

a The numbers on the first line for each k value were obtained from Callaway, Physics 

Reports, 45, Table 5, p. 134. The second line values are from this calculation, 

projecting at 8 bohr using all surface function which asymptotically go to n = 1 or 

n = 2 and primitive functions which go ton= 1 through n = 5. (See Table 5-2.) 
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Table 6-5a: 1 5 contribution to 1s ~ 1s cross section in 1ra~ at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.69637 0.6627 0.536 0.650 0.555 0.6445 

0.78 0.65454 0.6337 0.502 0.613 0.521 0.6073 

0.81 0.59766 0.5790 0.455 0.560 0.473 0.5554 

0.83 0.56502 0.5493 0.428 0.524 0.446 0.5266 

0.85 0.54144 0.500 0.5036 

0.86 0.60435 0.6638 0.448 

Table 6-5b: 1 S contribution to 1s ~ 2s cross section in 1ra~ at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea 

0.76 0.03624 0.0408 

0.78 0.04456 0.0491 

0.81 0.06255 0.0645 

0.83 0.06198 0.0617 

0.85 0.05414 

0.86 0.01958 0.0028 

a Projection at p = 60 bohr. 

cRef. No. 38. 
eRef. no. 42. 

BOWb TBC 

0.0402 0.0392 

0.0449 0.0432 

0.0625 0.0601 

0.0632 0.0621 

0.0561 

0.0218 

bRef. no. 12. 

dRef. no. 41. 

GBd ce 

0.0395 0.0374 

0.0436 0.0410 

0.0619 0.0592 

0.0638 0.0617 

0.0553 
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Table 6-Sc: 1S contribution to 1s ~ 2p cross section in 1ra6 at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea 

0.76 0.02378 0.0270 

0.78 0.02866 0.0278 

0.81 0.02199 0.0218 

0.83 0.02385 0.0235 

0.85 0.02461 

0.86 0.00540 0.0044 

aProjection at p = 60 bohr. 

cRef. No. 38. 
eRef. no. 42. 

BOWb TBC 

0.0306 0.0286 

0.0373 0.0339 

0.0285 0.0255 

0.0298 0.0247 

0.0245 

0.0120 

bRef. no. 12. 

dRef. no. 41. 

GBd ce 

0.0297 0.0282 

0.0364 0.0347 

0.0277 0.0257 

0.0278 0.0248 

0.0248 

Table 6-6: 3 S contribution to 1s ~ 1s cross section in 1ra6 at energies between the 

n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 3.9450 3.9457 3.944 3.944 3.944 3.9447 

0.78 3.8436 3.8434 3.839 3.840 3.839 3.8406 

0.81 3.6985 3.6967 3.690 3.693 3.690 3.6917 

0.83 3.6062 3.6031 3.595 3.600 3.594 3.5972 

0.85 3.5169 3.507 3.5060 

0.86 3.4734 3.4687 3.459 

a Projection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no. 42. 
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Table 6-7a: 1 podd contribution to 1s -+ 1s cross section in 1ra6 at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.0044 0.0022 0.019 0.002 0.006 0.0016 

0.78 0.0053 0.0024 0.009 0.001 0.003 0.0007 

0.81 0.0067 0.0032 0.006 0.001 0.003 0.0010 

0.83 0.0075 0.0038 0.005 0.001 0.002 0.0014 

0.85 0.0081 0.001 0.0020 

0.86 0.0084 0.0046 0.006 

Table 6-7b: 3 podd contribution to 1s -+ 1s cross section in 1ra6 at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBc 

0.76 

0.78 

0.81 

0.83 

2.340 

2.288 

2.204 

2.138 

0.85 2.076 

0.86 2.049 

a Projection at p = 60 bohr. 

cRef. No. 38. 
eRef. no. 42. 

2.204 

2.155 

2.064 

1.999 

1.912 

1.888 1.927 

1.848 1.884 

1.784 1.823 

1.737 1.780 

1.737 

1.663 

bRef. no. 12. 

dRef. no. 41. 

1.929 2.0865 

1.888 2.0406 

1.821 1.9691 

1.774 1.9194 

1.8676 
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Table 6-8a: 1 podd contribution to 1s ----* 2s cross section in 7!'a6 at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.0077 0.0072 0.0194 0.0076 0.0086 0.0079 

0.78 0.0046 0.0049 0.0048 0.0030 0.0035 0.0032 

0.81 0.0049 0.0054 0.0050 0.0027 0.0036 0.0033 

0.83 0.0064 0.0070 0.0061 0.0033 0.0046 0.0043 

0.85 0.0085 0.0043 0.0059 

0.86 0.0100 0.0108 0.0090 

Table 6-8b: 3 podd contribution to 1s ----* 2s cross section in 7!'a6 at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0 .0382 0.0453 0.0461 0.0384 0.0429 0.0368 

0.78 0.0442 0.0471 0.0567 0.0421 0.0521 0.0454 

0.81 0.0541 0.0572 0.0672 0.0503 0.0614 0.0524 

0.83 0.0579 0.0584 0.0735 0.0563 0.0668 0.0564 

0.85 0.0568 0.0596 0.0563 

0.86 0.0381 0.0315 0.0516 

aProjection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no . 42. 
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Table 6-9a: 1 podd contribution to 1s --t 2p cross section in ?Ta6 at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.0654 0.0655 0.0927 0.0660 0.0702 0.0657 

0.78 0.0473 0.0472 0.0657 0.0458 0.0517 0.0485 

0.81 0.0501 0.0492 0.0544 0.0463 0.0553 0.0519 

0.83 0.0565 0.0560 0.0680 0.0514 0.0617 0.0581 

0.85 0.0643 0.0585 0.0668 

0.86 0.0700 0.0704 0.0872 

Table 6-9b: 3 Podd contribution to 1s --t 2p cross section in ?Ta5 at energies between 

the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.0327 0.0403 0.0478 0.0406 0.0442 0.0377 

0.78 0.0394 0.0413 0.0539 0.0456 0.0502 0.0413 

0.81 0.0446 0.0453 0.0638 0.0498 0.0584 0.0474 

0.83 0.0474 0.0470 0.0674 0.0495 0.0609 0.0488 

0.85 0.0450 0.0491 0.0464 

0.86 0.0311 0.0255 0.0496 

a Projection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no. 42. 
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Table 6-lOa: 1 neven contribution to 1s ~ 1s cross section in 1ra6 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.0854 0.0676 0.042 0.040 0.042 0.0485 

0.78 0.0914 0.0722 0.050 0.046 0.049 0.0560 

0.81 0.0952 0.0762 0.056 0.050 0.055 0.0615 

0.83 0.0965 0.0766 0.058 0.053 0.057 0.0635 

0.85 0.0942 0.0747 0.054 0.0626 

0.86 0.0864 0.0693 0.052 

Table 6-lOb: 3 Deven contribution to 1s ~ 1s cross section in 1ra6 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.2242 0.1714 0.097 0.091 0.100 0.1212 

0.78 0.2230 0.1687 0.101 0.093 0.102 0.1235 

0.81 0.2194 0.1657 0.104 0.095 0.105 0.1266 

0.83 0.2186 0.1646 0.105 0.098 0.106 0.1280 

0.85 0.2183 0.1633 0.100 0.1294 

0.86 0.2176 0.1623 0.106 

aProjection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no. 42.' 
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Table 6-lla: 1 neven contribution to 1s ---t 2s cross section in 1ra5 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.0557 0.0484 0.0540 0.0544 0.0540 0.0538 

0.78 0.0518 0.0491 0.0555 0.0580 0.0556 0.0552 

0.81 0.0546 0.0534 0.0553 0.0647 0.0602 0.0606 

0.83 0.0607 0.0608 0.0624 0.0715 0.0657 0.0663 

0.85 0.0658 0.0649 0.0797 0.0745 

0.86 0.0709 0.0697 0.0810 

Table 6-llb: 3 Deven contribution to 1s ---+ 2s cross section in 1ra5 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 

0.78 0.0009 0.0007 0.0006 0.0002 0.0006 0.0004 

0.81 0.0035 0.0035 0.0036 0.0017 0.0030 0.0026 

0.83 0.0056 0.0056 0.0061 0.0031 0.0049 0.0042 

0.85 0.0077 0.0080 0.0044 0.0055 

0.86 0.0082 0.0087 0.0080 

aProjection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no. 42. 
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Table 6-12a: 1 neven contribution to 1s ----+ 2p cross section in 1ra6 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.76 0.0992 0.0894 0.0914 0.0917 0.0916 0.0900 

0.78 0.0961 0.0930 0.0937 0.0933 0.0934 0.0914 

0.81 0.1140 0.1151 0.1218 0.1090 0.1131 0.1112 

0.83 0.1347 0.1362 0.1430 0.1256 0.1319 0.1298 

0.85 0.1565 0.1571 0.1469 0.1522 

0.86 0.1701 0.1704 0.1679 

Table 6-12b: 3 Deven contribution to 1s ----+ 2p cross section in 1ra6 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 6-statea BOWb TBC GBd ce 

0.78 0.0016 0.0016 0.0016 0.0012 0.0018 0.0017 

0.81 0.0049 0.0049 0.0076 0.0055 0.0066 0.0061 

0.83 0.0080 0.0077 0.0120 0.0088 0.0099 0.0093 

0.85 0.0103 0.0101 0.0120 0.0119 

0.86 0.0111 0.0110 0.0155 

aProjection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no. 42. 
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Table 6-13a: 1 Fodd contribution to 1s ~ 1s cross section in 1ra6 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 10-statea BOWb TBC GBd ce 

0.76 0.0313 0.0280 0.007 0.006 0.007 0.0089 

0.78 0.0311 0.0277 0.007 0.007 0.008 0.0093 

0.81 0.0313 0.0277 0.008 0.008 0.008 0.0100 

0.83 0.0310 0.0273 0.008 0.008 0.008 0.0104 

0.85 0.0305 0.0267 0.007 0.0108 

0.86 0.0304 0.0268 0.009 

Table 6-13b: 3 Fodd contribution to 1s ~ 1s cross section in 1ra6 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 10-statea BOWb TBC GBd ce 

0.76 0.0961 0.0862 0.022 0.019 0.022 0.0279 

0.78 0.0961 0.0857 0.023 0.022 0.024 0.0292 

0.81 0.0954 0.0845 0.024 0.027 0.025 0.0308 

0.83 0.0927 0.0816 0.025 0.023 0.025 0.0311 

0.85 0.0900 0.0787 0.022 0.0315 

0.86 0.0891 0.025 

aProjection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no. 42. 
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Table 6-14a: I Fodd contribution to 1s ---t 2s cross section in 1ra~ at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 10-statea BOWb TBC GBd ce 

0.76 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 

0.78 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 

0.81 0.0009 0.0009 0.0011 0.0009 0.0011 0.0009 

0.83 0.0015 0.0016 0.0016 0.0015 0.0016 0.0016 

0.85 0.0021 0.0021 0.0024 0.0020 

0.86 0.0025 0.0025 0.0028 

Table 6-14b: 3 Fodd contribution to 1s ---t 2s cross section in 1ra~ at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 10-statea BOWb TBC GBd ce 

0.76 0.0006 0.0006 0.0004 0.0004 0.0004 0.0004 

0.78 0.0031 0.0031 0.0037 0.0038 0.0041 0.0036 

0.81 0.0091 0.0091 0.0127 0.0105 0.0131 0.0098 

0.83 0.0091 0.0092 0.0148 0.0123 0.0122 0.0114 

0.85 0.0085 0.0081 0.0124 0.0120 

0.86 0.0082 0.0078 0.0142 

aProjection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no. 42. 
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Table 6-lSa: 1 Fodd contribution to 1s -+ 2p cross section in 1ra6 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-state0 10-statea BOWb TBC GBd ce 

0.76 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001 

0.78 0.0010 0.0010 0.0010 0.0010 0.0008 0.0010 

0.81 0.0031 0.0031 0.0035 0.0033 0.0035 0.0031 

0.83 0.0050 0.0050 0.0054 0.0052 0.0058 0.0050 

0.85 0.0073 0.0073 0.0079 0.0076 

0.86 0.0086 0.0086 0.0090 

Table 6-lSb: 3 Fodd contribution to 1s -+ 2p cross section in 1ra6 at energies 

between the n = 2 and n = 3 thresholds of the H atom. 

Energy 15-statea 10-state0 BOWb TBC GBd ce 

0.76 0.0011 0.0011 0.0012 0.0012 0.0015 0.0011 

0.78 0.0116 0.0115 0.0110 0.0114 0.0118 0.0105 

0.81 0.0324 0.0324 0.0404 0.0342 0.0325 0.0322 

0.83 0.0426 0.0427 0.0517 0.0446 0.0379 0.0417 

0.85 0.0497 0.0502 0.0435 0.0468 

0.86 0.0510 0.0515 0.0603 

0 Projection at p = 60 bohr. bRef. no. 12. 

cRef. No. 38. dRef. no. 41. 
eRef. no. 42. 
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Table 6-17a: 1 •3 8 resonance positions and widths at energies slightly below the 

n = 4 threshold of the hydrogen atom. a 

Energy/Ryd Lifetime/to Width/mRyd Previous results / Ryd 

lg 

0.9209 ± .0001 4,200 1.8 0.9218a, 0.92075b 

0.93125 ± .00005 4,800 1.6 0.930a, 0.93057b 

0.93325 ± .00005 8,500 0.9 0.934a 

as 

0.8898 ± .0001 2,200 1.1 0.8907a 

0.931145 ± .000005 160,000 0.05 0.9320a 

0.936780 ± .000005 260,000 0.03 

aThese calculations were done with a basis set that included all surface functions 
which asymptotically go to n = 1 through 5, and the same number of primitives . 

13The uncertainty indicates the precision of location of the peak in the collision 
lifetime eigenvalue vs. energy curve, rather than an absolute accuracy of t he 
calculation. 

aHata et al., Ref. 64. 

bHo, Ref. 39. 

cHo and Callaway, Ref. 8. 
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Table 6-17b: J = 1 resonance positions and widths at energies between the n = 3 

and n = 4 thresholds of the hydrogen atom. 

Energy/Ryd Lifetime/to Width/mRyd Previous results / Ryd 

1 peven 

0.93403 ± .00001 140,000 0.06 

3peven 

0.9255 ± .0001 3,800 2.0 0.92555c 

0.9358 ± .0001 8,400 1.0 

0.93707 ± .00001 33,000 0.25 

lpodd 

0.8906 ± .0001 1,200 

0.9257 ± .0001 3,900 2.0 0.9265,a 0.9256b 

0.93145 ± .00001 134,000 0.065 

0.9359 ± .0001 8,800 0.9 0.9359a 

0.937130 ± .000005 250,000 0.03 

3podd 

0.8903 ± .0001 4,900 

0.9213 ± .0001 3,900 1.9 0.9220,a 0.9214b 

0.9317 ± .0001 6,600 1.2 0.9314b 

0.9335 ± .0001 7,400 1.1 0.9343a 

0.93408 ± .00001 140,000 0.1 
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Table 6-17c: J = 2 resonance positions and widths at energies between the n = 3 

and n = 4 thresholds of the hydrogen atom. 

Energy/Ryd Lifetime/to Width/mRyd Previous results / Ryd 

lneven 

0.8916 ± .0002 1,500 

0.9225 ± .0001 4,000 2.0 0.922525c 

0.9310 ± .0001 5,100 1.5 0.93102C 

0.93382 ± .00003 17,000 0.34 

0.9341 ± .0001 9,000 0.9 

0.93486 ± .00001 140,000 0.06 

3neven 

0.88918 ± .00001 24,000 

0.9270 ± .0001 3,500 2.1 0.92685c 

0.93212 ± .00001 130,000 0.055 

0.93650 ± .00005 8,400 1.0 

0.936928 ± .000002 268,000 0.03 

1nodd 

0.88912 ± .00002 27,000 0.27 

0.9269 ± .0001 3,300 2.4 0.92696c 

0.9365 ± .0001 7,500 1.1 

0.93691 ± .00001 200,000 0.04 

3D odd 

0.88900 ± .00002 20,000 0.38 

0.9309 ± .0001 5,100 1.6 0.93095c 

0.934 79 ± .00001 150,000 0.05 
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Table 6-17d: J = 3 resonance positions and widths at energies slightly below the 

n = 4 threshold of the hydrogen atom. cr 

Energy/Ryd Lifetime/to Width/mRyd Previous results / Ryd 

1 Feven 

0.8901 ± .0001 7,000 0.85 

0.934 75 ± .00005 13,600 0.6 0.93475c 

0.93598 ± .00001 176,000 0.05 

3Feven 

0.88928 ± .00002 24,000 0.35 

0.9294 ± .0001 4,800 1.7 0.92946c 

0.93707 ± .00001 11,400 0.7 

lFodd 

0.88975 ± .00005 12,000 0.55 

0.9298 ± .0001 6100 1.3 0.92975c 

0.93319 ± .00001 124,000 0.07 

0.9371 ± .0001 14,000 0.3 

3Fodd 

0.8902 ± .0001 4,300 1.0 

0.9244 ± .0001 2,800 2.8 0.9244c 

0.93475 ± .00005 13,300 0.5 0.9347c 

0.9352 ± .0001 5,500 1.6 

0.936056 ± .000002 240,000 0.034 



Table 6-17e: J 

H atom. 

Energy/Ryd 

0.8900 ± .0001 

0.9273 ± .0001 

0.9364 ± .0001 

0.88930 ± .00001 

0.93435 ± .00005 

0.93468 ± .00001 

0.93376 ± .00001 

0.8914 ± .0002 

0.93659 ± .00001 

0.8914 ± .0002 

0.93227 ± .00001 

253 

4 and J = 5 resonances below the n = 4 threshold of the 

Lifetime/to Width/mRyd Previous results/Ryd 

lGeven 

5,100 1.6 

5,400 1.5 0.92725c 

10,000 0.8 

3Geven 

90,000 0.1 

25,000 0.3 0.9343c 

127,000 0.06 

lGodd 

46,000 0.2 0.93378c 

lffodd 

3,900 1.6 

200,000 0.04 

3Hodd 

4,000 1.5 

65,000 0.13 0.93219c 
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Table 6-18: Comparison of ls --+ 31 1 cross sections (in 71"a6) from 3 calculations: 

(a) Hata et al. (ref. 64,65), (b)Burke et al. (ref. 12), and (c) present results. 

J=O 

1s- 3s 
1s- 3p 
1s- 3d 

Total 

(a) (b) (c) 

0.0065 0.0074 0.0098 
0.0085 0.0099 0.0083 
0 .0030 0.0034 0.0012 

n = 1 --+ n = 3 0.0180 0.0207 0.0193 
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Table 6-19a: Q(1s --+ 1s), in 1ra6, summed over spin, for J = 0 through 5 and 

total cross section, for energies between the n = 3 and n = 4 thresholds. 

E\J 0 1 2 3 4 5 Total 

0.900 3.8215 2.0609 0.3427 0.1573 0.0960 0.0821 6.5614 

0.905 3.7936 2.0447 0.3441 0.1566 0.0952 0.0811 6.5153 

0.910 3.7702 2.0325 0.3427 0.1558 0.0946 0.0799 6.4758 

0.915 3.7399 2.0169 0.3449 0.1546 0.0944 0.0785 6.4291 

0.920 3.7044 1.9871 0.3477 0.1524 0.0943 0.0769 6.3628 

0.925 3.6934 1.9987 0.3374 0.1522 0.0943 0.0753 6.3614 

0.930 3.6796 1.9771 0.3448 0.1507 0.0942 0.0738 6.3103 

Table 6-19b: Q(1s --+ 2s), in 1ra6, summed over spin, for J = 0 through 5 and 

total cross section, for energies between the n = 3 and n = 4 thresholds. 

E\J 0 1 2 3 4 5 Total 

0.900 0.0473 0.0514 0.0505 0.0131 0.0022 0.0003 0.1650 

0.905 0.0481 0.0534 0.0507 0.0134 0.0022 0.0004 0.1695 

0.910 0.0467 0.0522 0.0499 0.0132 0.0023 0.0004 0.1646 

0.915 0.0485 0.0559 0.0496 0.0129 0.0023 0.0004 0.1697 

0.920 0.0534 0.0662 0.0613 0.0130 0.0024 0.0004 0.1966 

0.925 0.0422 0.0508 0.0421 0.0121 0.0025 0.0004 0.1502 

0.930 0.0463 0.0562 0.0489 0.0121 0.0026 0.0004 0.1665 
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Table 6-19c: Q(1s ~ 2p), in 1ra6, summed over spin, for J = 0 through 5 and 

total cross section, for energies between the n = 3 and n = 4 thresholds. 

E\J 0 1 2 3 4 5 Total 

0.900 0.0232 0.0925 0.1427 0.0730 0.0135 0.0022 0.3471 

0.905 0.0244 0.0917 0.1482 0.0754 0.0142 0.0024 0.3563 

0.910 0.0244 0.0902 0.1455 0.0771 0.0151 0.0027 0.3550 

0.915 0.0278 0.0899 0.1465 0.0789 0.0159 0.0030 0.3619 

0.920 0.0316 0.0985 0.1725 0.0817 0.0167 0.0033 0.4041 

0.925 0.0236 0.1078 0.1332 0.0818 0.0174 0.0036 0.3672 

0.930 0.0291 0.0842 0.1418 0.0865 0.0192 0.0038 0.3647 

Table 6-19d: Q(1s ~ 3s), in 1ra5, summed over spin, for J = 0 through 5 and 

total cross section, for energies between the n = 3 and n = 4 thresholds. 

E\J 0 1 2 3 4 5 Total a b 

0.900 0.0098 0.0098 0.0145 0.0023 0.0001 0.0000 0.0365 .0321 .032 

0.905 0.0097 0.0094 0.0139 0.0034 0.0001 0.0000 0.0365 .0383 

0.910 0.0110 0.0103 0.0155 0.0032 0.0001 0.0000 0.0401 .0413 

0.915 0.0105 0.0097 0.0161 0.0038 0.0001 0.0000 0.0403 .0377 

0.920 0.0024 0.0043 0.0118 0.0040 0.0001 0.0000 0.0226 .0240 

0.925 0.0149 0.0107 0.0197 0.0011 0.0002 0.0000 0.0465 .0506 

0.930 0.0124 0.0112 0.0175 0.0054 0.0002 0.0000 0.0467 .0495 .055 

a 14-state calculation, Hata et al., ref. 65. 

b 6-state close-coupling calculation, Ref. 12. 
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Table 6-19e: Q(1s ---t 3p), in 1ra6, summed over spin, for J = 0 through 5 and 

total cross section, for energies between the n = 3 and n = 4 thresholds. 

E\J 0 1 2 3 4 5 Total a b 

0.900 0.0083 0.0171 0.0227 0.0061 0.0002 0.0000 0.0545 .0575 .062 

0.905 0.0077 0.0178 0.0227 0.0074 0.0002 0.0000 0.0560 .0625 

0.910 0.0087 0.0199 0.0247 0.0077 0.0003 0.0000 0.0613 .0644 

0.915 0.0078 0.0208 0.0255 0.0101 0.0004 0.0001 0.0647 .0686 

0.920 0.0007 0.0122 0.0188 0.0105 0.0005 0.0001 0.0439 .0474 

0.925 0.0103 0.0157 0.0322 0.0030 0.0006 0.0000 0.0619 .0726 

0.930 0.0078 0.0236 0.0302 0.0139 0.0005 0.0000 0.0760 .0856 .097 

Table 6-19f: Q(1s ---t 3d), in 1ra6, summed over spin, for J = 0 through 5 and 

total cross section, for energies between the n = 3 and n = 4 thresholds. 

E\J 0 1 2 3 4 5 Total a b 

0.900 0.0012 0.0072 0.0117 0.0044 0.0003 0.0000 0.0248 .0331 .034 

0.905 0.0009 0.0079 0.0129 0.0053 0.0004 0.0000 0.0275 .0317 

0.910 0.0009 0.0081 0.0141 0.0052 0.0004 0.0001 0.0297 .0324 

0.915 0.0006 0.0087 0.0153 0.0072 0.0005 0.0001 0.0325 .0330 

0.920 0.0006 0.0076 0.0137 0.0081 0.0007 0.0001 0.0308 .0287 

0.925 0.0005 0.0059 0.0181 0.0023 0.0008 0.0001 0.0276 .0360 

0.930 0.0005 0.0104 0.0177 0.0083 0.0007 0.0001 0.0377 .0415 .056 
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Table 6-20: Total cross sections QIB-31 1 , (l1 = 0, 1, 2) in 7ra6, summed over spin: 

(a) Hata et al., ref. 65. (b) This work, J = 0 to 5. (c) Burke et al., ref. 12. 

E/Ryd (a) (b) (c) 

1s ---t 3s 0.900 0.0321 0.0365 0.032 
0.905 0.0383 0.0365 
0.910 0.0413 0.0401 
0.915 0.0377 0.0403 
0.920 0.0240 0.0226 
0.925 0.0506 0.0465 
0.930 0.0495 0.0467 0.055 

1s ---t 3p 0.900 0.0575 0.0545 0.062 
0.905 0.0625 0.0560 
0.910 0.0644 0.0613 
0.915 0.0686 0.0647 
0.920 0.0474 0.0439 
0.925 0.0726 0.0618 
0.930 0.0856 0.0760 0.097 

1s ---t 3d 0.900 0.0331 0.0248 0.034 
0.905 0.0317 0.0275 
0.910 0.0324 0.0297 
0.915 0.0330 0.0325 
0.920 0.0287 0.0308 
0.925 0.0360 0.0275 
0.930 0.0415 0.0377 0.056 
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Table 6-22: Comparison of 6-state close-coupling,a 14-state variational,b and 

15-state hyperspherical coordinate calculations. Cross sectiohs for all J, summed 

over 11 , and summed over spin and parity, (2s -t n = 3) and (2p -t n = 3). 

I:l::q~;--311 
s 11 

J Bowa HMMb This work 

0 0.520 0.388 0.3860 

1 7.924 6.470 6.7943 

2 4.002 3.740 3.7421 

3 0.774 0.764 0.9896 

4 3.367 2.554 2.3894 

5 0.491 0.199 0.8939 

Total 17.1 14.1 15.2 

I: 2:: Qff:--311 
s,n 11 

J Bow a HMMb This work 

0 0.182 0.192 0.1955 

1 6.499 3.782 5.6878 

2 8.390 4.595 5.6268 

3 6.247 2.370 4.4037 

4 2.169 1.715 1.8234 

5 0.326 0.165 0.7078 

Total 23.8 12.8 18.4 

aRef. 12. bRef. 65. 
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Table 6-23a: Total 2s -t nl1, 2p -t nl1 cross sections, (l 1 = 0, 1, 2) in 1ra5, 

summed over spin and parity. 

ELRyd Q2s--+3s Q2s--+3f!. 

0.900 a) 4.0819 6.7624 
b) 5.009 5.309 
c) 6.93 5.69 

0.905 a) 3.6197 7.3579 
b) 5.461 6.641 

0.910 a) 3.6305 7.8951 
b) 5.347 7.523 

0.915 a) 3.7278 7.8158 
b) 5.117 7.994 

0.920 a) 3.0864 6.3915 
b) 3.722 6.389 

0.925 a) 3.2304 9.1509 
b) 5.025 8.929 

0.930 a) 3.0656 8.0035 
b) 4.430 9.309 
c) 7.82 11.94 

(a) This work. 

(b) Hata et al. best basis. (Ref. 65) 

(c) Burke, et al. (Ref. 12) 

Q2s--+3d Q2f!.--+38 Q2f!.-+3f!_ Q2f!_--+3d 

4.3510 2.2299 6.9910 9.2243 
3.840 1.516 5.215 6.089 
4.47 1.48 8.86 13.30 

4.9947 2.3648 7.6620 9.9461 
3.902 1.816 5.964 7.318 

5.8687 2.6334 8.1256 10.916 
4.517 2.187 6.746 8.577 

6.5453 2.6783 8.3698 12.425 
5.085 2.089 7.441 9.513 

6.0413 2.1525 7.9439 13.948 
5.304 1.819 6.828 10.427 

8.1385 3.2878 6.8947 13.962 
7.000 2.975 6.749 10.467 

8.1814 2.9005 8.1540 12.112 
8.339 2.847 7.681 11.180 
9.58 3.08 10.69 17.26 
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Table 6-23b: Total cross sections from n 

L11 ( ;1-Q2s-+311 + ~Q2p-+31 1 ), in 1ra6. 

2 level to n 3, Q23 

E/Ryd Present Hata et al. Johnson (1972) Burke et al. 

22.1 0.900 17.6 13.1 23.0 

0.905 19.0 15.3 24.1 

0.910 20.6 17.5 25.2 

0.915 22.1 18.8 26.2 

0.920 21.9 18.2 27.2 

0.925 23.2 20.4 28.1 

0.930 22.2 22.4 29.0 30.6 
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Table 6-24: Positions and lifetimes of resonances below the n = 5 threshold. 

E/Ryd Lifetime/to Width/mRyd Comparison Ea 

Is 
0.9487 ± 0.00005 5,000 1.4 0.94845 
0.9541 ± 0.00005 6,300 1.2 0.9530 
0.95618 ± 0.00001 9,400 0.8 
0.95930 ± 0.00003 13,000 0.7 

3S 

0.9384 ± 0.00005 1,500 
0.95466 ± 0.00001 120,000 0.06 
0.95796 ± 0.00001 120,000 0.06 
0.95962 ± 0.00001 190,000 0.04 

lpodd 

0.9388 3,000 
0.9510 4,800 1.7 0.95090 
0.954765 120,000 0.06 
0.95675 7,800 1.0 0.95625 
0.95775 9,000 0.9 
0.958125 120,000 0.07 
0.959685 200,000 0.04 

3podd 

0.9385 3,500 0.9 
0.945 1,000 5.5 
0.9487 5,000 1.5 0.94865 
0.9540 5,500 1.5 0.95345 
0.95629 8,800 0.7 
0.956295 110,000 0.06 
0.95945 12,000 0.8 
0.959703 220,000 0.04 

a Ho and Callaway, complex rotation. 
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Table 6-29: Positions and lifetimes of 1 podd resonances below then= 6 threshold . 

lpodd 

Present results Ho and Callaway, 1983 

E/Ryd Lifetime/to Width/mRyd E/Ryd Width/mRyd 

0.9615 4,800 1.7 

0.9633 3,300 2.4 

0.9661 4,700 1.7 0.96525 1.0 

0.9692 6,200 1.3 0.96820 0.9 

0.9701 13,000 0.6 

0.9717 17,000 0.5 
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6.8 Figures and Captions 

FIG. 6.1: Total elastic cross section from 0.69 Ryd to the n = 2 threshold, solid 

line. Total singlet and triplet contributions are given by the dashed and short-long 

dashed lines, respectively. 

FIG. 6.2: Resonances below then= 3 H atom threshold, plotted according to the 

I-supermultiplet classification of Herrick and Kellman,72 for Top: intrashell states 

(A= +1). Middle: intershell states (A= -1). Bottom: Each resonance represents 

the second resonance of a particular A= +1 series. 

FIG. 6.3: IS partial wave cross sections (in 7ra5) between n = 2 and n = 3 

thresholds. Solid line: 1s ---+ 1s elastic process. Dotted line: 1s ---+ 2s . Dashed line: 

1s ---+ 2p. 

FIG. 6.4: Collision lifetime eigenvalues of Is partial wave for energies below the 

n = 3 threshold, indicating three resonances. 

FIG. 6.5: 3 S partial wave cross sections (in 7ra5) between n 

thresholds. Line types are the same as for Is. 

2 and n 3 

FIG. 6.6: 1 podd partial wave cross sections (in 7ra5) between n = 2 and n = 3 

thresholds. Top: 1s ---+ 1s elastic process. Middle: 1s ---+ 2s. Bottom: 1s ---+ 2p. 

FIG. 6. 7: 3 podd partial wave cross sections (in 7ra5) between n = 2 and n = 3 

thresholds. Top: 1s ---+ 1s elastic process. Middle: 1s ---+ 2s . Bottom: 1s ---+ 2p. 

FIG. 6.8: Eigenphaseshifts and eigenphase sum (solid line) of the I podd partial 

wave of e--H vs. energy, at energies near the shape resonance at 0.751 Ryd. 

FIG. 6. 9: I podd partial wave cross sections at energies just above 0. 75 Ryd ( n = 2 

threshold). The solid line is this calculation, the triangles are from the 11-state 
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variational calculation by Callaway, ref. 35. The cross sections are in units of 1ra6. 
(a) 1s--+ 1s and 1s--+ 2s transitions. (b) 1s--+ 2p. 

FIG. 6.10: Collision lifetime eigenvalues of 1 neven partial wave for energies below 

the n = 3 threshold, indicating two resonances, at 0.8680 and 0.8868 Ryd. 

FIG. 6.11: 1 Fodd cross sections. Top: 1s --+ 1s; middle: 1s --+ 2s; bottom: 

1s--+ 2p. 

FIG. 6.12: 3 Fodd cross sections. Top: 1s --+ 1s; middle: 1s --+ 2s; bottom: 

1s--+ 2p. 

FIG. 6.13: Collision lifetime eigenvalues for the 1 Fodd and 3 Fodd partial waves 

vs. energy, between the n = 2 and n = 3 thresholds. The 1 Fodd resonance at 

0.8872 Ryd has a lifetime of 400,000 t 0 , and the lifetime of the 3 Fodd resonance at 

0.8769 Ryd is 36,000 t0 • 

FIG. 6.14: 3 Fodd partial cross section for the 2p--+ 2p elastic process in the energy 

region between the n = 2 and n = 3 thresholds. 

FIG. 6.15: Argand diagrams of the 3 Fodd scattering matrix elements, indicating 

the Feshbach resonance at 0.8769 Ryd. The energy spanned is 0. 75 Ryd to 

0.889 Ryd. (a) Scattering matrix elements 812, 813, and 814, where the initial 

state label '1' stands for nl 1l 2 = (1s3), and final states 2, 3, and 4 have quantum 

numbers (2s3), (2p2), and (2p4), respectively. The marked points are evenly spaced 

by 0.00005 Ryd from 0.8768 Ryd to 0.8772 Ryd. Each matrix element starts at the 

origin at 0. 75 Ryd. (b) and (c) Diagonal elements of the scattering matrix, 833 and 

844 , respectively. The points marked + are spaced by 0.02 Ryd, while the points 

marked by triangles are the same energies as marked in part (a). 

FIG. 6.16: Total elastic cross section for e--H (1s) collisions, for energies between 

the n = 2 and n = 3 thresholds. The energy is given in Rydbergs, measured from 
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the ground state of the hydrogen atom. The cross section is given in 1ra6. 

FIG. 6.17: (a) Total cross section for the inelastic process from the ground state 

to the 2s state for energies from the n = 2 to the n = 3 hydrogen threshold. 

(b) Expanded energy scale for energies close to the n = 3 hydrogen threshold, with 

resonance positions indicated above. (c) Total cross section for the inelastic process 

from the ground state to the 2p state for energies from the n = 2 to the n = 3 

hydrogen threshold. (d) Expanded energy scale for energies close to the n = 3 

hydrogen threshold, with resonance positions indicated above. 

FIG. 6.18: n = 4 resonances diagrammed according to (K, T)A formalism, to show 

1-supermultiplets, where I = J- T. (a) A = +1 type resonances, which are low 

in energy and relatively wide. (b) A = -1 type resonances, which are 1-2 orders 

of magnitude narrower. (c) The resonances shown here have the same indices as 

the lower resonance positions in (a). Each represents the second resonance of a 

particular series. 

FIG. 6.19: J = 0 partial cross sections in 1ra~ as functions of energy in the energy 

range between then= 3 and n = 4 thresholds 1 S (left) and 3 S (right) partial waves. 

(a) 1s --+ 1s: solid line; 1s --+ 2s: dotted line; 1s --+ 2p: dashed line. (b) 1s --+ 31 1 , 

(c) 2s --+ 31 1 , (d) 2p--+ 31 1 : solid line: 11 = 3s; dotted line: 11 = 3p; dashed line: 

11 = 3d. The origin of energy is the isolated 1s H atom, the second electron being 

removed to infinity. 

FIG. 6.20: Argand diagram for 2s0- 3d2 matrix element of 1 S scattering matrix, 

at energies between the n = 3 and n = 4 thresholds. The '+'s represent the points 

0.890 to 0.935 Ryd, spaced every 0.005 Ryd. The blocks indicate the positions of 

Feshbach resonances. 

FIG. 6.21: (a) Collision lifetime eigenvalues of 3 S partial wave between n = 3 and 

n = 4 thresholds as a function of energy. (b) Expanded energy scale. (The positive 
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and negative fluctuations seen at the resonance energy in some of the eigenvalues 

are due to numerical inaccuracies in taking the difference of close numbers.) 

FIG. 6.22: (a) Argand diagram for 2pl - 3d2 matrix element of 3 S scattering 

matrix, at energies between then= 3 and n = 4 thresholds. The triangles represent 

the points E=0.8889 to 0.8899 Ryd, spaced every 0.0001 Ryd. The '+'s represent 

the points 0.890 to 0.935 Ryd, spaced every 0.005 Ryd. The blocks indicate the 

positions of Feshbach resonances, as 0.931145 and 0.936780 Ryd. (b) Enlargement 

of region within the dotted lines in (a). 

FIG. 6.23: J = 1 partial cross sections in 1ra~ as functions of energy in the energy 

range between the n = 3 and n = 4 thresholds 1 podd (left) and 3 podd (right) 

partial waves. (a) 1s -t 1s: solid line; 1s -t 2s: dotted line; 1s -t 2p: dashed line. 

(b) 1s-t 31 1, (c) 2s -t 31 1 , (d) 2p -t 31 1 : solid line: 11 = 3s; dotted line: 11 = 3p; 

dashed line: 11 = 3d. The origin of energy is the isolated 1s H atom, the second 

electron being removed to infinity. 

FIG. 6.24: Argand diagram for the 1Podd S-matrix element (1s1) -t (2p2). The 

large arrows indicate the direction of increasing energy, from the n = 3 to n = 4 

threshold. The '+'s correspond to energies every 0.010 Ryd, the triangles every 

0.002 Ryd and the dots every 0.0004 Ryd. The origin of energy is the isolated 1s H 

atom, the second electron being removed to infinity. 

FIG. 6.25: Collision lifetime eigenvalues of 1 podd partial wave vs. energy below 

the n = 4 threshold. Resonances (arrows) occur at 0.9257, 0.93145, 0.9359, and 

0.93713 Ryd. 

FIG. 6.26: Collision lifetime eigenvalues of 3 podd partial wave vs. energy between 

the n = 3 and n = 4 thresholds. Resonances occur at 0.8903, 0.9213, 0.9317, 0.9335, 

and 0.9341 Ryd. 
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FIG. 6.27: Collision lifetime eigenvalues of 3 Podd partial wave just below the n = 4 

threshold, using an insufficiently fine grid (D..E = 0.2 mRyd) of energy values. The 

heights of the peaks at 0.9317 and 0.9335 are nearly converged. The large negative 

peak bracketed by two small positive peaks is due to the narrow resonance at 

0.93408 Ryd (width 0.1 mRyd). 

FIG. 6.28: Parity favored J = 2 partial cross sections as functions of energy in 

the energy range between the n = 3 and n = 4 thresholds, for the 1 neven (left) and 

3 Deven (right) partial waves. (a) ls --+ 1s: solid line; 1s --+ 2s: dotted line; 1s --+ 2p: 

dashed line. (b) 1s --+ 3h, (c) 2s --+ 31 1 , (d) 2p --+ 31 1 : solid line: h = 3s; dotted 

line: 11 = 3p; dashed line: 11 = 3d. The origin of energy is the isolated 1s H atom, 

the second electron being removed to infinity. 

FIG. 6.29: Collision lifetime eigenvalues of 1 neven partial wave vs. energy between 

then= 3 and n = 4 thresholds. 

FIG. 6.30: 1 Dodd and 3 Dodd partial cross sections between n 

thresholds in 1ra5. 
3 and n 4 

FIG. 6.31: Parity favored J = 3 partial cross sections as functions of energy in 

the energy range between then= 3 and n = 4 thresholds, for the 1Fodd (left) and 

3 Fodd (right) partial waves. (a) 1s --+ 1s: solid line; 1s --+ 2s: dotted line; 1s --+ 2p: 

dashed line. (b) 1s--+ 31 1 , (c) 2s--+ 31 1 , (d) 2p--+ 31 1 : solid line: l1 = 3s; dotted 

line: l 1 = 3p; dashed line: l 1 =3d. The origin of energy is the isolated 1s H atom, 

the second electron being removed to infinity. 

FIG. 6.32: 1 Feven and 3 Feven partial cross sections between n 

thresholds in 1ra5. 
3 and n 4 

FIG. 6.33: Parity favored J = 4 partial cross sections as functions of energy in 

the energy range between then= 3 and n = 4 thresholds, for the 1Geven (left) and 
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3 Geven (right) partial waves. (a) ls -t ls: solid line; ls -t 2s: dotted line; ls -t 2p: 

dashed line. (b) ls -t 3!1, (c) 2s -t 3!1, (d) 2p -t 3! 1: solid line: /1 = 3s; dotted 

line: !1 = 3p; dashed line: /1 = 3d. The origin of energy is the isolated ls H atom, 

the second electron being removed to infinity. 

FIG. 6.34: Parity favored J = 5 partial cross sections as functions of energy in 

the energy range between the n = 3 and n = 4 thresholds, for the 1 Hodd (left) and 

3 Hodd (right) partial waves. (a) ls -t ls: solid line; ls -t 2s: dotted line; ls -t 2p: 

dashed line. (b) ls -t 3!1, (c) 2s -t 3[1, (d) 2p -t 3! 1: solid line: l 1 = 3s; dotted 

line: l 1 = 3p; dashed line: l 1 = 3d. The origin of energy is the isolated ls H atom, 

the second electron being removed to infinity. 

FIG. 6.35: Total cross sections between n = 3 and n = 4 threshold from the ls 

initial state to n = 1, 2 and 3 states. (a) ls -t ls. (b) Solid line ls -t 2s; dashed 

line ls -t 2p. (c) ls -t 3[1· 

FIG. 6.36: Total cross sections between n = 3 and n = 4 threshold from the 2s 

initial state ton= 3 states. (a) 2s -t 3s; (b) 2s -t 3p; (c) 2s -t 3d. 

FIG. 6.37: Total cross sections between n = 3 and n = 4 threshold from the 2p 

initial state to n = 3 states. Solid line 2p -t 3s; dashed line 2p -t 3p; dotted line 

2p -t 3d. 

FIG. 6.38: Argand diagram for (lsl - 4d3) matrix element of 1 podd scattering 

matrix, at energies between the n = 4 and n = 5 thresholds. The blocks represent 

the energies at which there is a resonance. 
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APPENDIX A 

ALTERNATE METHODS OF SOLUTION 

In this chapter we will describe an attempt to solve the electron-hydrogen atom 

scattering problem using two different methods that were tried but subsequently 

discarded in favor of the formalism described in Chapters 2 and 3. The first method 

involves a different coordinate system. The second involves a different basis set, but 

uses the same hyperspherical coordinates as were used in the final calculation. 

A.l Cylindrical Coordinates - Introduction 

Consider the cylindrical form of hyperspherical coordinates, which we call 

z,8,1, where z = pcosw, 8 = psinw, and p, w, and 1 are the quantities defined 

in Sections 2.1 and 2.2. These coordinates would seem to be suited to the e- + H 

system, because the potential energy function equipotentials approach cylinders far 

enough away from the origin. In these coordinates the potential function becomes 

_ [1 _ 8 cos 1 ] -t] 
V82 + z2 

(A.1) 

In order to better visualize the properties of the system, contour plots of V at 

constant z, and also at constant /, were obtained for energies both below and 

above the ionization potential of hydrogen. The two-dimensional z = constant 
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equipotential curves for V = 10.5 ev, for z varying from 0 to 24 bohr, at 2 bohr 

intervals, were used to construct a three-dimensional wooden model of the surface. 

A photograph of this model, as well as equipotential curves of the cuts of V (p, w, 1) 

by different planes were given in Chapter 2. The asymptotic potential curves (large 

z) are practically circular, that is, independent of/, the radii of these circles being 

essentially independent of z. As z becomes large the V = constant surfaces, for 

potential energies below the ionization potential of the H atom, become as a result 

cylindrical, that is, independent of z. In this asymptotic region the potential is 

approximately that of the isolated hydrogen atom and so depends only on the 

distance r, which in these coordinates is almost proportional to s: 

r 2 = ~Js2 + z2(Js2 + z2- z) 
2 

= ~ ( s 2 + z 2 (1 - (1 + ::) ~)) 
1 ( 2 2 ( s2 ) ~ - s + z 1 - 1 - -) 
2 2z2 

s2 

4 

A.2 Hamiltonian in Cylindrical Coordinates 

(A.2) 

Because the potential function seemed to be naturally represented in cylindrical 

coordinates, we decided to try to solve the body-fixed Schrodinger equation using 

them. As mentioned in Section 2.1, either body-fixed or spaced-fixed angles can be 

used. We decided in these studies to select the former. In this representation, the 

kinetic energy operator is not diagonal and couples different values of the quantum 

number 0. 1 After expanding the wavefunction in Wigner rotation functions of the 

Euler angles, 
J 

w1
M = L D'fvio(¢>01/J)~~ (A.3) 

0=-J 
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the three-dimensional wavefunction coefficients C!l~ satisfy the following non­

diagonal Schrodinger equation: 

(A.4) 

where the diagonal term of the Hamiltonian is given by 

and the off-diagonal Hamiltonians are given by 

1i2 !. a 
H~,n±1 = 

211
r 2 [(J=t=O)(J±O+l)J=" [(n±l)cot,± 

81
] (A.6) 

We make the (r, R) ---+ (s, z) coordinate transformation as follows: 

r2 + R2 = 8 2 + z2 = p2 

arccot( ~) = ~ arccot(~) 

The inverse transformation is 

which leads directly to 

R2 = p(p + z) 
2 

2 p(p- z) r = ;__,:,;,._~ 

2 

(A.7) 

(A.8) 

(A.9) 
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A.2.1 Differentials and derivatives 

The various partial derivatives and differentials are given below. They are 

obtained by differentiating (A.9) to obtain the following expressions for ds and dz: 

ds = (sr/2 + zR) dr + (sr/2- zR) dR 
Hs2 + z2) 

dz = (zr/2- sR) dr + (zR/2 + sr) dR 
~(s2 + z2) 

The partial derivatives are easily seen to be 

(
as) = (sr + 2zR) 
ar (s2 + z2) 

(
as) = (sR- 2zr) 
aR (s2 + z2) 

(
az) = (zr- 2sR) 
ar (s2 + z2) 

( 
az) = (zR + 2sr) 
aR (s2 + z2) 

In terms of s and z these expressions become 

!. 1 !. 1 

(
as) = s(s2 + z2) 4o ( y' s2 + z2 - z) 2 + 2z(s2 + z2) 4o ( y' s2 + z2 + z) 2 

ar J2(s2 + z2) 

(
as) = s(s2 + z2)i-(y's2 + z2 + z)t- 2z(s2 + z2) i-(Js2 + z2- z)t 
aR J2(s2 + z2) 

!. 1 1 

(
az) = z(s2 + z2

)4o (v's2 + z2 - z)2- 2s(s2 + z2)i(v's2 + z2 + z)2 

ar J2(s2 + z2) 

( 
az) = z(s2 + z2)i-(Js2 + z2 + z)t + 2s(s2 + z2) i-(Js2 + z2- z)t 
aR J2(s2 + z2) 

(A.lO) 

(A.ll) 

(A.12) 

From the above equations one obtains the differential operators using the chain rule . 

(!___) = s(v's2 + z2- z)l/2 + 2z(Js2 + z2 + z) 112 (!___) 
ar v'2 (s2 + z2) 3/ 4 as 

+ z(Js2 + z2 - z) 112 - 2s(v's2 + z2 + z)l/2 (~) 
v'2 (s2 + z2)3/4 az 

(A.13) 
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(~) = s(vs2 + z2 + z)l/2 - 2z(vs2 + z2- z) 112 (!___) 
aR y'2 (s2 + z2)3/4 as 

+ z(vs2 + z2 + z)112 + 2s(vs2 + z2 - z)l/2 (!___) 
Y2 (s2 + z2)3/4 az 

(A.l4) 

After simplification this leads to 

(_!__) = (p _ z)3/2 (!___) + (2p _ z)(p + z) I/2 (!___) 
aR y'2 p3/2 as y'2 p3/2 az 

(A.15) 

(A.16) 

Likewise we obtain second derivatives: 

(_!}_) = (p- z)3 ( a2 ) + (4p3 - 3pz2 + z3) ( a 2 ) _ 3s(p- z) (!_) 
aR2 2p3 as2 2p3 az2 2p3 as 

+ (2p- z)(p- z)s (~) _ 3z(p- z) (!_) 
p3 asaz 2p3 az 

(A.l7) 

( 
a

2 
) = (p + z) 3

1
2 

( a
2 

) + (2p + z)
2 
(p- z) ( a

2 
) - 3s(p + z) (!_) 

ar2 2p3 as2 2p3 az2 2p3 as 

_ (2p + z)(p + z)s (~) _ 3z(p + z) (!_) 
p3 asaz 2p3 az 

(A.18) 

A.3 The Schrodinger Equation in Cylindrical Coordinates 

The derivatives in rand R appear only in the diagonal piece of the Hamiltonian, 

H6,rn and therefore the off-diagonal terms H6,o±I are unaffected by the (r, R) --+ 

( s, z) coordinate transformation. The expression for H 5 0 becomes 
' 

(A.19) 

A major disadvandtage of this expression is the appearance of the mixed derivative 

operator a2 1 asaz. 
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The proposed method of solving equation (A.4) is to expand ~~(s,z,1) in 

surface eigenfunctions for constant z. Because the potential at large z is practically 

independent of z and 1, one would expect that hydrogen atom wavefunctions would 

do very well in describing that region, and that few basis functions would be needed 

in the expansion. However, we recognized that many basis functions would be 

needed for small z, in order to take into account the spike in the equipotential 

surfaces, at the origin. 

The surface functions would be eigenfunctions of a well-chosen surface Hamil­

tonian, Href ( s, li z). This Hamiltonian would have no derivatives with respect to 

z, and should be as close as possible to H6 0 (s,z,1). For example, let us choose 
' 

the following reference potential: 

H ref ( -) s
2 + 4z

2 
( a2 

) 3s ( a ) s,-z=- -+ -
' ' s2 + z2 as2 s2 + z2 as 

1[ 1 1 ] 1 (a). (a) -2 R2(z) + r2(z) sin, a, Slll/ a, +V(s,,;z) 

(A.20) 

which simplifies to 

H ref ( -) s
2 + 4z

2 
( a2 

) 3s ( a ) STZ=- -+ -
' ' s2 + z2 as2 s2 + z2 as 

2 1 (a). (a) ---.- - sm1 - + V(s,,;z) 
s2 Slll/ a, a, 

(A.21) 

However one cannot simply delete the z derivative terms from H6 0 as we did 
. ' 

with derivatives in p to obtain the hyperspherical surface Hamiltonian. Consider the 

J = 0 case, in which 0 = 0. The operator obtained by "freezing" z at a constant 

value z is not a Hermitian operator and therefore has complex eigenvalues. We 

consider this unacceptable. All of the reference operators we considered were either 

non-Hermitian, or not very close to the full Hamiltonian. 

But let us say that a suitable reference Hamiltonian which is Hermitian has been 
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found, with eigenfunctions ¢(s,1; z) to be determined, and that <I>~~~ is expanded 

in <Pnz thus: 

<I>8(s, z, I) = L gnz(z)<Pnz(s, /; z) (A.22) 
nl 

(A.23) 

The surface functions are then expanded in Legendre polynomials in cos 1; this 

expansion is replaced in the reference equation (A.23) . By using the orthogonality 

of Legendre polynomials, a system of coupled differential equations in the variable 

s is obtained. After solving these equations one substitutes these <Pnz into (A.22) 

which is then replaced into (A.4) with J = 0 = 0. Writing H8,o as H simply, we 

get 

H = Href + H' (A.24) 

and therefore 

(A.25) 
nl nl 

H' necessarily containes the mixed partial derivative, 8 2 I asaz. No function 

manipulations can be done that will remove it. Also, H' contains the term 

(A.26) 

This means that the differential equation for gnz(z) inevitably has the form: 

A(z)g"(z) + B(z)g'(z) + C(z)g(z) = 0 (A.27) 

where the matrices A(z), B(z), and C(z) are all functions of z, which by left 

multiplication by A -l, can be put in the form 

g"(z) + D(z)g'(z) + F(z)g(z) = 0 (A.28) 
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Current algorithms for the numerical solution of such an equation are not nearly 

as efficient as those for the case in which D = 0, i. e., for which the first derivative 

term is absent. As a result, we decided not to pursue this approach. 

The key to why these were not good coordinates may be that too much attention 

was paid to the potential energy term, and not enough to the kinetic energy one. 

Although the potential energy seems naturally suited to cylindrical coordinates, the 

kinetic energy operator expressed in these coordinates is very complicated, and it 

should be obvious, with hindsight, that the motion is not be quasi-separable. 

A.4 Jacobi Polynomial Expansion 

In this section we consider an alternate selection of basis functions for expansion 

of the surface functions. Instead of finding the one-dimensional solutions to the 

surface function equation that results by keeping only the diagonal elements of the 

potential matrix (Eq. 2.34), we consider the case in which there is no coupling 

at all, i. e., for which we take V = 0. We will go back to the expansion of the 

five-dimensional surface functions to start this derivation. Unlike considerations of 

Section 2.4.2, we will not force symmetry into the basis functions from the beginning. 

Instead we will use a unitary transformation of the basis functions after the rest of 

the analysis has been done. 

The five-dimensional surface functions ~JMSII are expanded in the functions 

~!MSII = "'"""CJSIIi(p-) XJM (w 4 angles·p) ' L.....t 1211'1 1211'1 ' ' (A.29) 
1211p 

These functions x1;f';'1 are chosen so as to satisfy the following differential equation: 

{4(!}__ + 2cotw~) + 1 
(-

1-_!_ sin02_!_ + 1 ..!:..._) 
Bw2 aw cos2 ~ sin02 ao2 ao2 sin2 02 arp~ 

(A.30) 
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The boundary conditions are that X1~f':11 be bound, single valued, continuous, and 

have continuous first derivatives. This equation is separable by the factorization 

(A.31) 

where 

(A.32) 

The equation which results for y~ 11 1s 

(A.33) 

The solutions of (A.33) which are bound, are continuous, and have a continuous 

first derivative can be obtained analytically and result in 

(A.34) 

where 

and L is a non-negative integer. 2 Therefore the one-dimensional basis functions 

y~211 are degenerate in 11 and 12 • They are also independent of the total 

angular momentum quantum numbers, J and M. The functions that satisfy the 

above equation are modified Jacobi polynomials, of the family of hypergeometric 

functions. 3 

(A .35) 

or, in terms of Jacobi polynomials P rh0 
,,8) ( x), 3 

1 1 N' . 1 w 1 w p(l1+!.,l2+!.)( ) 
Y 2 1 = Sln 1 - COS 2 - 2 2 COS W 

'I 2 2 L 
(A.36) 
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where N and N' are constants chosen to make y~ 11 square normalized with the 

volume element sin2 w dw . 

N = (TJ + 2)(L + 11 + 12 + 1)! r(L + 11 + ~) 
[ ]

1/2 

4£! [r(l1 + ~)] 2 
r(£+12 + ~) 

(A.37) 

(A.38) 

We use the X1~{1, defined by (A.30) through (A.37) in (A.29) and replace this 

expansion in Eq. 2.27. Multiplying both sides of the resulting equation by xl~ Ml' I.' 
2 1 '7 

integrating over the five angles and interchanging the primed and unprimed indices 

gives the following set of coupled equations for the c~t 
17 

(ii): 

(A.39) 

To find cJ 8 II and e/ 8 II (p) we must obtain find the eigenvectors and eigenvalues of 

the matrix 

(A.40) 

The ji-dependence of VJ II can be written out explicitly. According to Eq. 2.19, we 

can express the potential function as 

1 
V(p,w,1) = -C(w,1) 

p 

This permits us to write VJ II as 

V J II ( -) - 1i 2 1 1 C J II P ---n+-
2J.L p2 j5 

(A.41) 

(A.42) 
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where 

(A.43) 

which is degenerate in 11 and l2, and 

[C 1 II]~:::~ ' = (X1~~17,1C(w,I)IXI:t17 ) (A.44) 

The firs t step in obtaining the surface functions is the calculation of C 1 II. This 

is done by a method analogous to the one used in Section 2.5 to obtain the matrix 

defined by Eq. 2.32. The basis functions are converted into functions of body-

fixed coordinates, and the repulsion term of the potential is expanded in Legendre 

functions. We treat the attractive and repulsive terms separately, for convenience. 

Since 1 doesn 't enter into the attraction terms, the attraction matrix elements are 

(A.45) 

Another simplifying feature of the attraction integrals is that they depend on 

the total angular momentum quantum number, J, only indirectly, in that l 1 , l 2 , 

and J must satisfy a triangular relationship. Using the properties of the y~211 (w) 

functions, 3 a recursion scheme, with several stages, was developed to calculate the 

attraction integrals. 

The repulsion elements were calculated directly from the series expansion form 

of the functions y~211 (w), which is3 

L 
X "" (-l)m(m + l1 + l2 + L + 1)! 
~0 (L- m)!m!r(m + 11 + ~) 

(A.46) 
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where L = H11 - li -l2 ), and is a non-negative integer. All the matrix element 

integrals take the form 
{1r/4 

Jo cosP asinq ada (A.47) 

where p is a positive or negative odd integer, and q is an even positive integer. 

These matrix elements were calculated by recursion. Macek,4 Lin,5 and Klar6 

derived formulae for these matrix elements by slightly different methods. 

Although a completely general program was developed at first, so many 

simplifications were indicated for the case of J = 0 that this case was treated 

separately. First of all, symmetry with respect to w = 1r /2 is determined by the 

value of 17 for S states: even states have 17 = 0, 4, 8, ... , while the odd states have 

17 = 2, 6, .... The transformation between body-fixed and spaced-fixed coordinates 

is trivial. There are other simplifications due to the li = l 2 restriction; the symmetry 

properties have been discussed in Chapter 2 with respect to the counterpart basis 

functions which were obtained numerically. 

Once assured that the potential matrix elements were being calculated properly, 

we tried to find out how large the basis Xz~£111 needed to be for the surface function 

expansion (A.29) to converge. The size of a basis is determined by 17max, the largest 

allowed value of the index 77; all values of l2 allowed for each 17 were included. 

The surface functions were obtained for various basis sizes at p=l.O bohr, 

4.0 bohr, 7.0 bohr, and 10.0 bohr. Table A-1 lists the Is eigenvalues obtained 

with several basis sets. Table A-2 lists the eigenvalues for 3 S. As p increases, the 

convergence gets slower. We expect the two lowest eigenvalues (one for Is and one 

for 3 S) to converge to -0.5 hartree as p approaches infinity. From the table we 

see that, even at 10 bohr, the electrons are interacting. Using the largest basis the 

lowest eigenvalue for p = 10 bohr is e ~ s = -0.514 hartrees, and still is not converged. 

Neither is the lowest eigenvalue for p = 7.0 bohr converged (e~s = -0.546); at 
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p = 4.0 the lowest eigenvalue seems headed for -0.6985 hartrees; at p 

lowest eigenvalue has converged to -2.3091 hartrees. 

1.0 the 

Looking at the matrix elements and the eigenvector coefficients, it became 

apparent that only the basis functions with l2 = 0 were having a significant effect 

on the lowest (1s) eigenvalue. This is because the contribution of the attraction to 

the potential matrix elements is much larger than that of the repulsion, and only 

exists if l2 = l~. The most important basis functions in the lowest eigenvectors 

are X1~~~·~~~0)' and xgg2, for the lowest 1S and 3 S vectors, respectively. The 

coefficient of each these functions is larger than 0.99, so only those functions 

that have large matrix elements with xggo or xgg2 have any effect on the lowest 

eigenvalue. The selection of basis functions was modified such that only l 2 = 0 and 

l 2 = 1 functions were included, for rJ larger than a certain cut-off (which was chosen 

as 22). This feature enabled us to achieve the same convergence with respect to 

rJmax, but without making the total number of basis functions get out of hand. The 

largest calculation done so far used rJmax = 48. This corresponds to 169 1S basis 

functions, or 55 using the l 2 :S 1 criterion, and 156 3 S functions, truncated to 49. 

Early research with hyperspherical coordinates has depended on these hyper­

spherical harmonics for expansion of the surface functions. 7 The potential curves 

obtained by this method have been used to study the properties of bound states 

of H-, Feshbach resonances, and shape resonances. 8 Previous work has always em­

ployed the adiabatic, or some other, approximation such that coupling between the 

channels (i. e., surface functions) was not included in the calculation. Klar and 

Klar9 reports using values of 17 up to 58, and not getting convergence. Our own 

studies used up to 84 basis functions and still found inadequate convergence. We 

also found it difficult to obtain the matrix elements by this method. 

We have plotted a few of the Jacobi polynomial basis functions in Figures A.1 
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and A.2. The counterpart numerical functions tt1211 (w; p) are plotted on the 

same scale. In the first figure p = 1 bohr, and the Jacobi functions are 

almost indistinguishable from the numerical functions, which shows that the Jacobi 

functions are useful as basis functions for small values of p. In the second figure 

p = 10 bohr. The Jacobi functions are independent of p, of course, and so haven't 

changed, as compared with the previous figure. The numerical functions, on the 

other hand, have started to shift to the ends of the range, w = 0 and w = 1r, from 

the center region, w = ~· The basis functions which adapt to the potential are 

more appropriate to use. 
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A.6 Figures and Captions 

FIG. A.l: Comparison of Jacobi polynomials (solid line) y~0 , ry = 0, 4, and 8, 

from bottom, to numerically determined 1S !-dimensional basis functions (dashed 

line): t~ ~0 , tg~o, and tg~o, from bottom, at p = 1.0 bohr. 

FIG. A.2: Comparison of Jacobi polynomials to numerically determined basis 

functions as in Figure A.l, but for p = 10.0 bohr. 
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