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Abstract

A method is presented for accurately solving the Schrédinger equation for the
scattering of an electron from a hydrogen atom in three dimensions, which uses
hyperspherical coordinates. Our motivation for using this new technique is that
previous methods — coupled channel expansions using target atom eigenfunctions,?
polarization functions and pseudostates,? and variational methods® — have all
proven unsatisfactory. The coupled channel calculations tend to have difficulty
obtaining convergence with respect to basis set size, and the variational method
interjects spurious resonances. Previous applications of hyperspherical coordinates

have used methods that, while adequate for computing the energy level of the bound

state of H™, are not appropriate to full scattering calculations.

We have obtained converged surface functions at a set of discrete values of
the hyperradius, which acts as a parameter. The surface functions are further
expanded in a basis set that involves 1-dimensional functions of the hyperspherical

angle, which are obtained by a finite difference method.

The surface functions have been used to expand the scattering functions. The
resulting coupled equations are solved numerically. The wavefunctions are obtained
separately at each energy and are converged with respect to the number of basis
functions used. Calculations performed so far give converged results for J = 0
through J = 5 up to the n = 4 threshold. The method is both accurate and
efficient, and has been implemented on a VAX 11/780 with an FPS164 attached

processor.

Both the magnitude and phase of elements of the scattering matrix have
converged. Integral cross sections have been obtained for energies up to the
n = 4 threshold of hydrogen. Feshbach resonances have been detected below each

threshold, and they have been characterized and classified.
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CHAPTER 1

BACKGROUND

The electron-hydrogen atom system has been extensively studied, both theo-
retically and experimentally, for the past two decades,! and displays a very rich
behavior, in terms of resonance structure. It is important to the field of scattering
because it is the simplest electron-atom system, yet its solutions are not known very
accurately, due to the strong correlation between the two electrons. Definitive, con-
verged calculations have remained beyond the means of previous methods, and the
dynamics of two-electron systems is still not completely understood. The purpose
of this research is to solve the e~ —H scattering problem accurately, with the use of

hyperspherical coordinates, at energies below the ionization level.

1.1 Jacobi-coordinate Calculations

In the independent electron model, each electron is assumed to move in the
combined field of the nucleus and the average distribution of the other electron(s).
The natural coordinates for describing this are r; and r;, the respective distances
of the electrons e; and e; to the proton. The close-coupling method used by Burke
et al. uses target atom eigenfunctions to expand the full wavefunction.? Integro-
differential scattering equations are obtained, which are solved by an iterative
method of numerical integration.® The basis set is thus entirely independent of

the presence of the second electron, except that it is antisymmetrized due to the



identicity of the electrons. It is not entirely surprising therefore that this basis set is
slowly convergent when used to describe a system where the second electron plays
an all-important role. Furthermore, the integral equation aspect of the formalism
makes the use of large basis sets numerically cumbersome. The close-coupling
method can be modified to include correlation functions* and pseudostate functions®
in the expansion. The largest close-coupling calculations included six H-atom states;
fairly converged results were obtained for energies below the n = 3 threshold, but
there was disagreement with the magnitude, but not the shape of the experimental

1s — 2s cross section.®

In the variational method,” the coupled scattering equations are formulated
using a pseudostate expansion. The pseudostate basis contains all of the open
channel exact target atom eigenstates, while the higher bound and continuum states
are represented by pseudostates chosen to be orthogonal, each of which has an
associated effective energy level. The inclusion of pseudostates is preferred to having
atomic eigenfunctions because of the difficulty in describing dipole polarization
correctly with atomic eigenfunctions. The coefficients of the pseudostates are
determined by diagonalizing the hamiltonian in the specified basis, and the Kohn
variational procedure, or one of several other procedures®® (inverse Kohn, optimized
minimum norm-OMN, optimized anomaly free-OAF), is used for the solutions of
the integro-differential equations. A major drawback of variational calculations is
that there is no way to judge which set of variational results is best if the different
methods give significantly different results. Another problem is the existence of

non-physical resonances below the pseudostate effective energies.

Fairly accurate values of the elastic scattering phaseshifts below the inelastic
threshold for partial waves J < 3 have been obtained with the variational method,
beginning with the work on S-states by Schwartz.l? and carried on to higher

partial waves by Armstead,!! Shimamura,!? Register and Poe,!® and Callaway.*



For energies betweenn = 2 and n = 3, the best calculations, using 14 basis functions
(6s — 5p — 2d — 1f), were performed by Morgan, McDowell and Callaway, and by
Callaway.!® These calculations achieved accuracy of about 1-2% in the total cross
section for elastic scattering, and of about 5-10% in the total cross section for
excitation of the n = 2 states. Excitation cross sections between the n = 1,2
and 3 levels of hydrogen at energies up to the n = 4 threshold were performed by
Hata, Morgan and McDowell'® using 14 to 18 basis functions. These are the only

calculations of cross sections in this energy range so far.

1.2 The Hyperspherical Coordinate Method

The use of hyperspherical coordinates and local surface functions in electron-
atom scattering problems!? and in 3D reactive scattering problems!® has been
suggested for over a decade, but so far converged calculations of differential or
integral cross sections of inelastic or reactive processes using this methodology
have not been published. The formalism is conceptually simple and in principle
very powerful, affording a united treatment of non-reactive and reactive processes
for molecule-molecule collisions, and of direct and exchange processes for electron-
molecule collisions. It has by now been extensively tested for collinear atom-diatom

reactive scattering.!9 20

One of the difficulties in applying this approach is the accurate and efficient
calculation of local hyperspherical surface functions, especially for reactive scatter-
ing processes. In the case of the electron-hydrogen atom system, these difficulties
are alleviated by the symmetry of the system, the large proton to electron mass
ratio, and the simple, analytically known form of the potential energy function. As
a result, this is a very convenient system for the application and testing of this

methodology. It is also, in some senses, an extreme prototype of light-heavy-light



triatomic reactive systems in which the light-light arrangement is either not bound,

or disallowed for energetic reasons.

1.3 The Physical Basis for the Hyperspherical Coordinate Approach

The two electrons in the e™ —H system do not move independently; indeed they
each exert influence on the other. This is called correlation, and correlation is the
reason hyperspherical coordinates are so useful for describing two electron systems.
Correlation is ignored in the simplest versions of the independent electron model,?

but more sophisticated methods attempt to add in short range correlation effects.*

The utility of hyperspherical coordinates becomes clear by contrast, because
a large part of the electron correlation is contained in the corresponding surface

function basis set. The hyperradius p, defined approximately by
1
p=(ri+r3) (1.1)

simultaneously depends on the distances of both electrons to the proton, and
is a measure of the “size” of the system. The surface functions are defined as
eigenfunctions of the system’s hamiltonian with frozen hyperradius. The use of
this variable injects some radial correlation in these functions. The non-physical
hyperspherical angle w, defined by

w = 2arctan 1 (1.2)
2

is a function of the relative distances. In converting from coordinates ry,r, to the
hyperspherical coordinates p,w one exchanges two infinite range variables for one
bound and one infinite range variable. This then leads to the quasi-separability of
the scattering wavefunction. Furthermore, the surface functions also depend on ~,
the angle between the position vectors r; and ra of the two electrons with respect to

the proton, and its use leads to the inclusion of angular correlation. When the latter



is expanded in hyperspherical surface functions, this expansion converges rapidly
because of this quasi-separability and of the large amount of electron correlation

built into those functions.

The surface function basis is considered as a family of “channels.” In the
surface function expansion these channels are only weakly coupled to each other and
this coupling is completely neglected in the adiabatic approximation.?! Physically
this approximate decoupling implies a separation of time scales for motion in the
hyperradial coordinate from motion in all the other angular coordinates, analogous
to electron motion being much faster than the nuclear motion in polyatomic
molecules. The angular motion is bounded, by definition, as opposed to the infinite
range of the hyperradial coordinate. This separation of motion means that in
slow e~ —H(1s) collisions certain properties of the whole system (mathematically
expressed through quantum numbers) are nearly conserved. Resonance energy levels
can be computed from potential curves corresponding to each channel. In this study,
we solve the fully coupled channel scattering problem, and make no approximations.
Since we have only differential equations to solve, not integro-differential equations,
the method is computationally efficient making it possible to include a larger number
of states than for other methods. The largest calculation described here included
49 surface functions, and was done on a relatively small system, a VAX 11/780

with an attached FPS164 processor. This largest calculation took 95 minutes to

calculate the full surface functions, and 9 minutes for a scattering calculation.

The hyperspherical approach was used by Macek in 1968 to study the
properties of Rydberg series of autoionizing levels of He.!” Subsequent studies
on the correlations of two excited electrons have been performed by Lin?! and
by Fano.?? The hyperspherical calculations that have been performed so far have
been limited due to inaccuracies in the evaluation of matrix elements P,, (the

first derivative coupling matrix in the adiabatic representation), and most of the
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calculations either ignore the coupling or severely restrict the number of states
included in the expansion (up to four). In the formulation we will present, this
matrix is not needed, because we use the diabatic representation in which the surface

functions calculated at discrete rather than continuous values of the hyperradius.

1.4 The Interpretation of Resonances using Hyperspherical Coordinates

Hyperspherical coordinates have been found to be useful in analyzing doubly
excited states, such as the Rydberg series of states of helium observed experimen-
tally by Madden and Codling.?® which had been unexpected, and were not explained
by the close-coupling theory. The theory at the time of the discovery was incomplete
because, even though levels of states could be calculated, there was no interpretation
for the similarities and series found. Then Macek used hyperspherical coordinates

and was able to explain the observed behavior.l?

The cross sections we have calculated contain features that are attributed to
resonances. One explanation for the resonances is the presence of autoionizing states
of H™. To understand what we mean by “autoionizing states” and “doubly-excited”
states it is useful to refer to the independent electron model as applied to H™. In
the independent electron model, each electron is separately given a set of quantum
numbers, nyl; and njly, leading to a system configuration nylinals. (The m; and

m, quantum states for each electron are combined to form total angular momentum

states J, My, S and Mg.)

The ground state of H™ has the configuration 1S (1s?), because both electrons
are in the lowest orbital. Its energy is —0.52775 hartree.?* If one electron is excited
to a continuum level, the configuration is 1ses. The total energy for such a system
is greater than —0.5 hartree. As it turns out, there are no singly-excited states
(configuration 1s2s, 1s3s, etc.) of H™, though such states do exist for the helium

atom. When the total energy of the H™ system is higher than the second threshold,



at —0.125 hartree, there are two possible detached configurations — we are limiting
this discussion to s orbitals — namely 1ses, as before, and 2ses, where one electron is
excited to a 2s orbital and the other is free. But what about doubly-excited states?
Configurations such as 252, 2s3s, etc., will exist at certain energies below the n = 2
threshold — they must be lower, because the second electron does not have enough
energy to reach the continuum. The coupling between the doubly excited state and
the continuum configuration lses allows the former to decay away. Such states are
called “autodetaching” (in the case of helium, autoionizing), have a finite lifetime,

and lead to the resonances observed in scattering.

However, in addition to the bound S (1s?) state of H™ there is a second
(barely) bound (i. e., quadratically integrable) state of this system designated
3peven with the configuration 2p? and energy —0.12538 hartree.25:26 There is no
3Peven channel that asymptotically correlates with the 1s state of hydrogen, because
the parity of 3Pever is (—1)7+!, If LS-coupling is a good approximation, there is
no lower state to which the 2p? level may couple, thus the 2p? state does not decay
to the ground state nor does it autoionize. There are no other bound excited states
of H™.

Recently a new classification scheme for states of 2-electron atoms, based on
the set of internal correlation quantum numbers K, T, and A has been introduced?’
Supermultiplet structure observed for intrashell states?® may be interpreted, as well

as predicted, by this scheme.

1.5 Hydrogen Atom Excitation Energies

For convenience in reading the rest of this thesis, we list in Table 1 — 1 the
hydrogen atom threshold energies in hartree, measured from ionization of the
atom, and in rydbergs, measured from the ground state of the hydrogen atom.

Furthermore, in order to make a comparison of our scattering calculations with



experimental results we must make the appropriate conversion from atomic units
to the experimental units (usually eV). The conversion factors used depend on the
type of experiment.?? When comparing to a scattering experiment, the infinite-
mass rydberg (13.605826 eV) is used. This is due to an effective cancellation of
reduced-mass and center-of-mass effects.?® When comparing to a photodetachment
spectrum, one computes the photon energy using the hydrogen reduced-mass
rydberg (13.598420 eV), and then adds in the electron affinity for hydrogen, which
is 0.75422 eV. The energies in electron volts consistent with the two types of

experiments are also listed in Table 1.1.

1.6 Overview

The method of hyperspherical coordinates is presented in this thesis, and the
results from its application to hydrogen atom electron scattering are reported. In
Chapter 2 we present the formalism used in the hyperspherical coordinate method,
and in Chapter 3 we present the asymptotic analysis. Convergence studies and
computational features are presented in Chapter 4. We study the basis functions,
the surface functions, and the eigenvalues in Chapter 5. In Chapter 6 we present our
scattering results, including discussion and analysis. In Appendix A we discuss an
alternate method of expanding the surface functions in hyperspherical harmonics,
and an alternative coordinate system, cylindrical coordinates. In Appendix B
we give perturbation theory derivation of the asymptotic behavior of the surface

functions.



Table 1-1: Energy levels of hydrogen atom.

En

n hartree Rydberg® eVe eVd

1 —0.50000 0.0 0.0 0.75422
2 —0.12500 0.75000 10.204 10.95859
3 —0.05556 0.88889 12.093 12.84829
4 —0.03125 0.93750 12.755 13.502

5 —0.02000 0.96000 13.061 13.81581
6 —0.01333 0.97333 13.242 13.98211
7 —0.01020 0.97959 13.327 14.08238

%Energy, in hartree, with respect to the ionized atom.

®Energy, in Rydberg, with respect to the H(1s) state.

¢Energy, in eV, with respect to the H(1ls) state, using the infinite mass Rydberg for

conversion to eV (1 Ryd=13.605826 eV).

dEnergy, in eV, with respect to the H~ ground 1S state, (H atom electron

affinity equals 0.75422 eV) and the reduced mass Rydberg for conversion to eV

(1 Ryd=13.59842 eV).
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CHAPTER 2

FORMULATION OF THE SCATTERING PROBLEM

For electron-hydrogen atom scattering at low energies (below the ionization
threshold) there are two arrangement channels, e;+H (channel 1), and e;+H
(channel 2), where e; and e; are the two electrons. A third arrangement, in which
the electrons are close to each other but distant from the proton, does not need to

be considered, since it is not a stable one.

In this chapter we will set up the general Schrédinger equation for a three
particle system, remove the center of mass motion, and transform to Delves’
coordinates. Then we will transform to symmetrized hyperspherical coordinates and
discuss features of the potential energy surface. We will describe the method used
for solution of the Schrédinger equation, including the surface function expansion,

calculation of potential matrix elements, and solution of the coupled radial equation.

2.1 General Three Body Problem

In this section we present the general theory for treating three body systems
A+ BC in three dimensions. The Hamiltonian for such a system, with nine degrees

of freedom, is written

-—Vv: V2 4V (2.1)
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where m 4, mp, and mc are the masses, p4, PB, and pc are position vectors from
the origin of a space-fixed set of cartesian axes, Vg‘ is the Laplacian for particle 1,
and V is the potential energy of the system. The relative coordinates r’,,R’,, and

R are defined by the relations

l‘f4 = Pc —PB
mppPB + McPc
R’ = _ — —
A PA —PGsc Pa mp + mc (2.2)
maPA + mBPB + McPc
M

R =

where M is the total mass, Gg¢ is the center of mass of BC, and G is the center

of mass of ABC. Transformation to these relative coordinates gives

D - P g + V(R 74) — h2v (2.3)
ZHA’BC RlA 2’IIBC ’ A A”yA 2M .

where the reduced masses ppc and p4 pc are defined as

mpmc
UBc = ————
mp + mc (2 4)
" _ ma(mp + mc) '
A,BC M
and 74 is the angle between the vectors r/, and R/,:
RI
cosSyq = 0<y4 < (2.5)
FALA Al RS’

The kinetic energy operator for the center of mass is now dropped, because the
overall translation of the system is not of interest; therefore one is left with a six-
dimensional problem whose Hamiltonian H is given by the first three terms in the

right hand side of Eq. 2.3.

One may write the corresponding six dimensional Schrédinger equation in terms
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of one mass, u, which is independent of channel A, by transforming to Delves mass-

scaled coordinates:?! "
A,BC
Ry = (—==)2 R/,
u
ﬂBC)l/z rfA

ra=( (2.6)
_ ( mampmc )1/2
ma+mp+ mc
The Hamiltonian H in Delves’ coordinates is
h? 2 2
H:_E;(VRA +VrA)+VA(RA,TA,’7A) (27)
where
8?2 2 [ 8 L?
Vi.=(357) + o= =gt :
R4 (aRg) "R, (6RA) WRZ (2.8)
and
8? 2/ 0 L2
V2 = —e Radl) [ty Pl :
Ea (ari) ¥ TA (67‘,4) h?r2 45

If one uses laboratory-fixed coordinates,? by which we mean a system Ozyz
whose origin O is the center of mass and whose axes are parallel to a system of
laboratory-fixed axes,® r4 is represented by distance r4, azimuth 6,,, and polar
angle p,,, while R4 is represented by R4, 0g,, and wr,. The orbital angular
momentum terms f,i and I:fA are expressible in terms of the angles 0gr,, ¥r,,
and 6,,, ©,,, respectively. More generally, one may rewrite the Hamiltonian using

(A, v, k) to represent a cyclic permutation of (ABC).

Let us consider the particular case of two electrons and one nucleus of
charge Ze. The center of mass of the system will be assumed to lie on the
nucleus. The error introduced by this assumption is negligible compared with the
desired scattering calculation accuracy, and can be corrected for if desired by an

appropriate perturbation expansion. The configuration in arrangement channel A
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is described by two mass-scaled relative separation vectors, ry = (rx,0,,,%r,) and
Ry = (Ra,0r,,¥R,)-

One may also formulate the theory in terms of the “body-fixed” coordinate
representation.?+5 This representation has advantages over the laboratory-fixed
representation, when certain approximations are made.® We will not be making
these approximations, however, and will use the laboratory-fixed representation?
throughout, except when considering the potential energy function. In the body-
fixed coordinate representation the angles 8,, and ¢,, are replaced by ~,, the angle
between the two vectors ry and Ry, and ), the “tumbling” angle. By definition
Yy is the angle between m; and 73, where 7, is the half-plane defined by R and
the space-fixed Oz-axis, and 7, is the half-plane defined by R and r). This so-

called “tumbling” angle ranges from 0 to 27, and is one of the three Euler angles
(SOA)Q/\>¢A)-7

When considering atom-diatom reactive scattering, there is an essential
difference between Ly and L,,, because L,, refers to the rotation of the diatom,
while L) describes the rotation of the atom with respect to the diatom. In the
present application the two angular momentum operators describe the same thing,
but for different electrons; therefore it makes sense to relabel them. We will use ;

for I:,‘\ ,and [, for L.

2.2 Hyperspherical Coordinates

We will next change to a system of coordinates in which there is only one
unbounded coordinate and the rest are angular. This procedure is analogous to
transformation from cartesian to polar coordinates in the collinear (1-dimensional)
representation, and, in fact, may be generalized to an n-particle (3n—3)-dimensional

system.
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2.2.1 Coordinate transformation

It is advantageous to define the hyperspherical coordinates® p,wy for arrange-

ment channel A = 1,2 by:

p® = R} + 13

(95N X (2'10)
tan — = —

2 Ry

The four angular degrees of freedom remain the same. Thus the whole system is
described with six coordinates, p,wx, 0, ,©r,,0R,, PR, . Forsimplicity, and without
loss of generality, we set A = 1 and designate these coordinates as p,w, 6,,¢,0,
and @,, where by convention w = w;. The quantity p is the hyperradius and the
five angles are the hyperangles in the six dimensional configuration space of the

system.

The coordinates in one channel are related very simply to the coordinates in
the other channel, due to the symmetry inherent in the system; r; is the same as
Ry; R, equals r2; p; equals p; and thus is channel independent, and w = 7 — ws.
The relationships between the four angles are g, = 0,,, ¥R, = ©r,, and conversely,
0,, = 0r,, ©r, = p2. The angle « is the angle between r; and R; or rz and R
and is independent of A. From now on, we will for simplicity replace r; and R; by

r and R, respectively, unless otherwise stated.

An important property of these coordinates is that the map of V(p,w,) is
not distorted when one changes from coordinates A = 1 to A = 2; it is only
rotated.® The rotation is by 180° in the current problem. It is to insure this
property that we have introduced the seemingly superfluous factor of % in Eq. 2.10.
These coordinates, without that factor of %, were first used by Macek® in studying
properties of autoionizing states of He. The simplicity of the transformation from
A = 1 coordinates to A = 2 coordinates implies that the same coordinate system

may be used for both channels. There is no need for separate solutions in each
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channel region, and hence no need to match the solutions!® at the boundary of the
region.
2.2.2 Hamiltonian

The Schrédinger equation we will proceed to solve is
HY(r,R) = E¥(r,R) (2.11)

where E is the total energy and ¥(r,R) is the six-dimensional wave function. We
intend to apply standard partial wave analysis. The total angular momentum

operator J is the vector sum of [; and [
J=0+1 (2.12)

and is independent of channel A. Since J2, J,, and H all commute, we expand ¥

in terms of their simultaneous eigenfunctions ¥/M:

oo +J

v=Y" ) Cim¥™ (2.13)
J=0M=-J

The wavefunctions ¥'M therefore satisfy the equations

HYM = Eg'™

J2UM = J(J + 1)R2¢IM (2.14)

J2eM = MREM

The Hamiltonian H in hyperspherical coordinates is given by

R2,02 59 A2
( ) + +V(p,w,") (2.15)

ey ) .+_ s
2u\0p?  pdp/  2up?
where the Grand Canonical angular momentum operator A2 (also known as

Casimir’s operator for the Og group)? is

A=12+——+ = (2.16)
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and the hyperspherical pseudo-angular momentum operator fJ:‘L is

if, = —4h2(8£u; + 2cotw%)
1 a2 )
(m s 1) sinw

(2.17)
—4kK?

sinw
The eigenfunctions &,, of A2 are the analytically known hyperspherical harmonics,
with eigenvalues n(n + 4), where n is an integer.!! However, the potential V does
not commute with f&z, so the wavefunction is not factorizable into an angular part
(involving the five hyperangles) and a p—dependent part. The eigenfunctions of A2

may be used to expand the wavefunction, however, which we consider in Appendix

A.

2.2.3 Potential energy function
The potential energy function for the system of two electrons and a nucleus of
charge Z is the sum of the Coulomb interactions of the three particles:

Ze? Ze? e?

VER) = - T o

(2.18)

Here the zero of energy is taken to be the energy of the configuration for which the
three particles are infinitely separated. Since the mass scaling factors are very close
to unity, we may set r = r’ and R = R’ without loss of accuracy. In hyperspherical

coordinates the potential becomes

V(p,wm):—ﬁ( 2 2 .Zw— = > (2.19)

p \cosy sing 4/1—sinwcosy

Note that this potential has a simple 1/p dependence. We might expect that the

forces involved will be long range and die off slowly.

In order to better visualize the properties of the electron-hydrogen atom system,

we obtained contour plots of V for energies both above and below the ionization
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potential. This was done by establishing a correspondence between the three-
dimensional internal configuration space spanned by coordinates p, w, and ~ and

points P in space OXYZ.® This correspondence is given by the relations
Z = pcosw
X = psinw cos vy (2.20)
Y = psinwsiny

by which we see that the internal coordinates are being treated as spherical polar
coordinates in this mapping. The range of « is 0 to 7, and there is a one-to-one
correspondence between points in the Y > 0 half-space of the OXYZ space and
configurations of the system. For display purposes, we will extend the range of ~

to 0 to 27 and make all of our plots of the potential energy symmetric about the

OXZ (v =0,7) plane.

The potential of the system with the energy origin shifted to the ground state
of an isolated hydrogen atom will be labeled V. Plots of the equipotential for
Vo =10.5 eV (V = —3.1 eV) were obtained at constant values of Z ranging from 0
to 24 bohr, at 2 bohr intervals. These were used to construct a wooden model of the
surface, which has been helpful in visualizing the scattering processes. We found
that this equipotential surface resembled a cylindrical pipe with a sharp dimple, or
puncture, reaching to the cylinder’s axis. A photograph of that model is given in

Figure 2.1.

The most interesting feature of the potential surface is the part near the origin,

the dimple. Consider what happens when Z = 0, that is, w = :

r= psing— = p/\/i

‘ (2.21)
R = pcos o = p/V2
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These configurations correspond to the two electrons being equidistant from the
proton. The angle between the vectors r and R is ~, as usual. The contour at

Z = 0 is given by the equation

Ca
V1 —cos7y

where C; and C; are constants easily obtained from Eq. 2.19. This is approximately

pV =C1 + (2.22)

the equation of a cardioid, provided V (not Vp) is negative. In Figure 2.2 we
show several contours, from which we see that a cusp forms around 4 = 0, which
corresponds to Y = 0, X > 0. This is due to the high repulsion between the two
electrons, which are very close to one another in this region. On the other side, for
~v = 7 (and X negative), the electrons are separated by the proton and the energy of
the system is finite. The contours (for Z = 0) extend further and further out as one
considers higher energies. The limit is reached at Vo = 13.6 eV, which corresponds
to ionization of the hydrogen atom. The equation of the corresponding contour is

now

cosy = Cj3 (2.23)

The bottom of the heart shape has retreated to infinity, and the top (in three
dimensions) becomes a cone-shaped potential surface. The points along the axis of
the cone correspond to vy = 0 and w = 7. The potential is infinitely positive along
this positive X axis, corresponding to the two electrons on top of one another and

the proton elsewhere.

We show the contours obtained at higher values at Z =constant in Figures
2.3— 5. One can see from the series of curves that as Z increases, the contours
become increasing circular. Besides this lack of dependence on ~, the contours
asymptotically become independent of Z. The potential on the Z azis (for p # 0) is
negative infinity, and the corresponding configuration is one electron on top of the

proton and the other electron elsewhere.
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By plotting contours obtained at constant ¥ = 0 in Figure 2.6 we get a view of
the equipotential surface on a cut perpendicular to that in Figure 2.2. In these plots
~ equals O in the right half of the plane and 7 in the left half. One can see that
the three-dimensional internal configuration space is divided into two symmetric

arrangement channels by the Z =0 (w = Z) plane.

A scattering experiment can be visualized as follows. One end of the tube
corresponds to e; +pes. As e; approaches the atom, the system can either “bounce”
off the cone, resulting in non-exchange, or the system can undergo exchange, that
is, it passes through to the other end of the cone, which represents e; + pe;. If the
energy is larger than the ionization potential I of hydrogen, the walls of the vertical
tube no longer bind the system. Instead the system can penetrate into the V =1

cone and a larger region of configuration space is energetically accessible.

2.3 Symmetry Properties

The Hamiltonian of the system is invariant with respect to exchange of the
electrons and to inversion of the electrons through the proton (in the infinite
mass approximation for the proton being adopted in these calculations). As a
result, solutions to the Schrédinger equation can be found which are simultaneously
eigenfunctions of the exchange operator Py, and the inversion operator Q. This
leads to quantum numbers p = +1 for exchange and (—1)", where IT = 0,1 for

inversion for the orbital part of the wavefunction.

f’lg\IlJMs”(l) - \IJJMSH(Z) - p\I/JMSH(l)
(2.24)
S‘}\I,JMSI'I = (_l)H\I,JMSII
The Pauli principle requires that the total wavefunction change sign when

the coordinates of the two identical fermion particles are exchanged. The total

wavefunction is the product of the orbital part with the spin part; therefore a
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function that is anti-symmetric in the spin function, indicating a singlet (S = 0)
spin state must be spatially symmetric with respect to exchange. Likewise the
Pauli principle dictates that the triplet (S = 1) spin state, which is symmetric with
respect to exchange, must go with an anti-symmetric spatial wavefunction. Thus we

make the following correspondence between exchange and spin quantum numbers:
s
p=(-1) (2.25)

There is no similar connection between IT and S. In the physical wavefunction S
will still be a good quantum number, but it is necessary to take linear combinations

of the even and odd parity states.

2.4 Surface Function Expansion

Motion in the p coordinate is almost decoupled from the hyperangular
coordinates. To the extent that this is true, it makes sense to try to separate
the p—dependence from the angular dependence in the wave function. This being
the case, we construct basis functions (analogous to vibrational functions) that have

only parametrical dependence on p.

The pseudoangle w is a function of the ratio of the distances of the two electrons
to the proton. The kinetic energy associated with pseudoangular motion is greater
than that due to radial motion, because the pseudoangular variable is bounded
whereas the radius is not.!? This suggests the use of a Born-Oppenheimer type

13

expansion,’® analogous to the expansion of the wavefunction of a atom-diatom

A + BC system in the vibrational states of BC. In the first approximation, this

expansion is then truncated to only one term.®

The surface functions /M5 (50 called because they are defined on the surface

of the hypersphere) are defined as the eigenfunctions of the surface Hamiltonian H



23

which is obtained by omitting in the Hamiltonian H the hyperradial kinetic energy

operator:®
— A2
H(p) = 20p? +V(p,w,") (2.26)
Therefore
H(p) /M5 (w,4 angles; p) = /57 (p) o/MST (2.27)

where ¢ is an index here introduced to label these surface functions. We expand

WJMSI i the surface functions with coefficients bJSH: and put in the p—5/2 factor

to simplify the resulting equations:®

W iMST - p~3 Zb"SH:- &/MST( 4 angles; p) (2.28)

i
The index ¢’ is introduced to permit consideration of a set of many linearly
independent solutions of the Schrédinger equation which are needed to obtain the

appropriate scattering matrices.

2.4.1 Expansion of surface functions in non-symmetric basis

The eigenfunctions of i? are spherical harmonics, Yi;m;(0;,%;). Following
Arthurs and Dalgarno,? we couple the Y;,;m, and Yj,;m, to form orthonormal
eigenfunctions of the total angular momentum operator J2? and its projection J,

A 2 A 2
as well as /; and [, :
Y (02,02,01,01) = D CllaJ;mimaM)Yiym, (02,02)Yi,m, (01,001) (2-29)
mimga

where the C’s are Clebsch-Gordan coefficients in the notation of Rose.!*

Let us expand the surface functions Q;’Ms" in these coupled spherical
harmonics. The expansion coefficients f757 ;2,1 (w;p) will be called the one-
dimensional surface functions.

SJMST =" Y M (62,02,01,01) f7 5T 1,1, (w3 p) (2.30)
I3l
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This expansion is substituted into the Schrédinger equation for ®/MST ysing
the known relationships satisfled by the y,ﬁ*f We multiply both sides of the
resulting equation by Y,/ (62,%2,01,91) and integrate over the four angles, taking

271

advantage of the orthonormality of these functions. The following equation results:

1 <£2 N (1 +1)R? N 15(14 + 1)R?

Jsm? .
2up? )f s (5]

JIlgly fJSITY .\ _ _JSIT JSm?
+ ZV lZl'if L (Wip) =€;° 7 (o) f '
Il

2w 2w
su17 CcOS D)

(2.31)
where the anf,’f,‘ are the surface potential matrix elements
271
Ial
VIR (wie) = Uil | Vie,w,v) | Yidd) (2.32)

It is simple to show that V”Tf,’g,’ (w;p) = VJH:}f,’ (w; p) and that it is a symmetric
2°1
function of w:

VI (wip) = VI (1 —w; p).

i
Now we expand f757,

,1, in functions t}{lﬁll (w;p). We have not yet specified

what form these functions will take; that is discussed below.
JSIt JSIi Jlgly ¢, .
f Iol, = chzlxpt tP o (w’p) (2'33)
p
The functions t;lzll(w;p) appearing in Eq. 2.33 form a complete set which
can be arbitrarily chosen. The criteria for their choice are that they be easy to

compute and give fast convergence of the expansion in Eq. 2.33, permitting it to

be truncated after just a few terms.

A simple choice for tg"“(w;p) would be to solve the equation which results
from Eq. 2.31 if one neglects V entirely.}® This approach has some good points. The
solutions!! then are analytically known functions, the Jacobi polynomials, which

when multiplied by y,i Il‘f , are eigenfunctions of A2. Also, that equation is solved
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independent of p, so the same basis functions can be used to expand the surface
functions at every value of p, which is a computational advantage. However, this
basis works well only for a small range of p and converges very slowly for larger

values of p.1%'1® We consider this method separately in Appendix A.

We decided to use solutions to the following differential equation, in which we

neglect the off-diagonal terms of the potential matrix, such that

[ 1 (132+l‘(112+ 1) +12(12+1)

w .
2up? sin’ ¥ cos? &

>+V’"f:fi (w; P)} t =" (wi )

(2.34)

where vJ Tzl

e (p) are the eigenvalues of the equation. In Eq. 2.34 the only variable

(upon which the differential operator f,f, operates) is w. The quantity p acts as a
parametric variable. If one makes the change of variable from w to 7 — w, one gets

the same equation, but with /; interchanged with /5. This means that
ty 2 (1 —w; p) = t51'2 (w3 p), (2.35)

except in the special case where [; =[5, where both symmetric and antisymmetric

solutions are possible, as is discussed below in greater detail.

This equation is solved numerically using finite difference methods to obtain the
eigenvalues and eigenfunctions. Section 5.1 is devoted to studying these functions
in detail and contains figures of them. To make the numerical solution simpler, we

divide out sinw to remove the first derivative:
Tp‘”’lx (w; p) =sinw t;"l’ (w;p) (2.36)

This forces the boundary condition T,/'2!'(w=0;p) = 0, T/'sh(w=1m;p) = 0 in
order for t;,’ 'ali (w; p) to be finite at those values of w. Then the coupled differential

equation becomes

2r? d?
_Wd_w—z T;lzh (w’p) ¥ Ve.élnll Tx;”zll (w;p) =3 V};’lell (p) T};”zlx (w, p) (237)
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where the effective potential is

K2 Lz+1) Ll +1)
VJIﬁll —_ — 4 _ _ JI'II;I, . .
- 2up? ( cos® 3 sin” § VI (Wi (2.38)

The p dependence in V‘”Iﬁﬁ (w; p) can be factored out according to Eq. 2.19.

However, since that is a p~! dependence while the kinetic energy operators have
a p~2 dependence, p cannot be removed entirely from the equations, and the
eigenfunctions ij laly (w; p) must be computed separately for each value of p. One
approach is to compute the TPJ Iali (; p) at a discrete set of values p; of p such that

for each p;, that set is appropriate for a range of values of p (see section 2.6).

The basis functions TPJ I2l1 (; p) (which we will call “primitives” to distinguish
them from the surface functions, which also are basis functions, after all) are
determined separately for each [/3/1] combination. Basis functions with the same

[l112] are orthogonal. These functions are normalized according to
" !
/(; T,]'2h (w; p) Tp{ 2l (w;p) dw = 6P, (2.39)

If I, equals l; then the effective potential Ve{r”l‘ is symmetric with respect to
w = 7 (i. e., with respect to exchange between r; and r2). The TPJ U functions
are therefore either symmetric or antisymmetric, and are obtained in separate
calculations. A function that is symmetric in w does not always correspond to a 5-
dimensional basis function that is symmetric overall (i. e., with respect to exchange
of the two electrons), however. The symmetry of Y7 is determined by the evenness
or oddness of J because the parity IT is always even when /; equals l;. Thus if J
is even, the singlet basis functions will be symmetric with respect to w = 7, but if

J is odd, then it is the triplet basis functions that have this symmetry. If J is odd,

the singlet 5-dimensional basis functions, which are even overall, are antisymmetric
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with respect to w = 7. We will therefore use the notation Til}is and a similar

Ju
notation for ¢, .
Using the primitives defined by Eq. 2.37 and Eq. 2.39, we can transform

Eq. 2.31 into an algebraic eigenvalue-eigenvector equation in the /57 (p) and
¢/, 1%, Indeed we get, replacing Eq. 2.33 into Eq. 2.31,

JITl,l Jsm JI 151 JSIi zJlgly (, .
Z[Vp (p)—€;7 (p) -V z:zi(%l’)]cz,l,p't " (w; p)

? (2.40)

+ D el (VIR E N (wip) = 0
l’l

The above equation is multiplied by sin? w t‘""l (w; p) and integrated over dw, which

results in the following equation after p’ and p are interchanged:

lalyp
S{ B3 )=l T8 - VIS Yl

pl
lalap (2.41)
+ZC{SIH‘ nll:=0
i Lip
l' l’
where
Jialahe /[ Jia, . JIl Jil
VvV llzlllpl = <tp 2 l((.t.l,p) \ Vv l,zl,l tp,z A (242)

This is the desired algebraic eigenvalue-eigenvector problem. We define the
diagonal matrices

JI\'3hp _ clalip | TG
(') =825 v 2 (p) (2.43)
Si
(') 5 = 65565 (p) (2.44)
the interaction matrix Vo777,
131 I3l
(Vo' M)iium (p) = (1 = &)V it (2.45)

which is symmetric and only has elements in off-diagonal blocks, and the eigenvector

matrix ¢/

(™), = cil5Ti(p) (2.46)
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Stating the eigenvector problem in matrix notation we have
(Vo! T +u?T) /T = I T (2.47)

Thus we have obtained an equation that is decoupled in both J and IT, but not
according to spin, which is included as a column index in ¢/7 as well as the index .
In the next section we will obtain a transformed equation which has been decoupled

in S as well.

2.4.2 Symmetrized basis

If the basis functions in which we expand the surface functions /M5 have
the same property regarding exchange and therefore spin as ¥/MS1T in Eq. 2.24,
then the matrix equations decouple and much effort is saved. Therefore we require

that our new primitive basis functions @/MS bhehave as follows:!7

OLMSM (w,01,01,02,02;0) = (—1)°OLY ST (1 — w,02,02,01,0150)  (2.48)

The basis functions in which we have expanded ®/M5 5o far are decoupled with

respect to parity, but not exchange. This can be shown as follows.

To invert the coordinates through the origin, one replaces 8;,; by 7—0;, 7+,
(w is unchanged by inversion). From the definition of yd Il‘f (Eq. 2.29) and the

properties of spherical harmonics one obtains

é‘yzj,ﬁl(oz, ©2,01,01) = (—1)"+"y,’,’,‘f(02, ©2,01,01) (2.49)

from which we can link the parity quantum number to {; + I3,

1-— (_1)‘1+12

H=(11+12)mod2= 2

(2.50)

We have already seen the effect of exchanging coordinates (1) for (2) on
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tylati (w;p) (see Eq. 2.35), but not on Y;/M. The relationship between Y/} and

i1 is easily obtained:!°

Y (62,02,01,01) = (-1)7~ Iz—hyj (61,01,02,02)

= ( )J =8 yl 12 (01’9'-71102)902)

Thus we see that changing the coordinate system from A = 1 to A = 2 has the effect

(2.51)

of switching /; and I, as well as a possible change of sign in y,ﬁ‘f The effect of Py,

on the entire primitive basis function is
Py, [yzi]z\,l(%a@z,olﬁm)t,{l"‘ (w;p)] =
(2.52)
{=1 )J Hyz I (92,802,01,901)t,{""(w—w;p)

It is clear that the simple product function y,ﬁ‘f(oz, ©v2,01,01) tg"“ (w; p) does not

possess exchange symmetry.

To obtain such a property we take linear combinations of two such products

according to

QIJ,]K:" N, [V (02, 02,01, 01) t,{l’" (w; p)

+ (=1 Y (02,032,601, 01) £ 1" (m—w; )] (2.53)
where
A=8S+J-1I (2.54)

and Ny, is a normalization coefficient. Note that only the 5-dimensional function
has been symmetrized. We do not form symmetric and antisymmetric functions
of w, nor do we symmetrize the Y; i M functions, because to do so results in more

work.!® However, when l; = I3 only one term is needed:

OIS = YiM(02,02,01,01) thr, (i p) (2.55)

The basis functions must be linearly independent, of course, and this leads to a

restriction on the values assumed by [, and I, because O{x 1}: ST giffers from O{z I}f g i
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by, at most, a sign change. We therefore expand over pairs [l;/3], for which, by

definition, l; < I,.

oMM = 3 | o 35'(e) O (w,4 angles; p) (2.56)

lila]p

JSIIs
lalyp

JSITs

The new coefficients a
lalhp

(p) are obtained from ¢ by a linear transformation.

Jsmi _ 1 IS )

Cialip = _zalzlxp
1 (2.57)
JSITs A _JSIIs
Cilp = ——2(—1) ai,t,p (P)
where [; < l;. This leads to
- 1
JSII JSITs A n
al,llp‘(ﬂ) = \/5( lzlxp‘ +( 1) ci’ip‘> (2'58)
We define the unitary matrix T such that we have
JIT,S=0
a’ ' 0
=Tx [ 0 aJIT,S:l] (2.59)
The new uncoupled eigenvector-eigenvalue equation is
(VOJSH +ulST) g/ ST = xIST ST (2.60)
where we define the diagonal matrices
2% l
( an)pzplp — 511311’15, UJlelx(p)
(2.61)

(e an) = 655 (p)

and the interaction matrices Vo757 are obtained by a unitary transformation from
VOJIT .
Vo /H:5=0 0 -
00 Vo IS=1| = TV’ T (2.62)

The elements of Vo757 are found to be, using Eq. 2.45,

(2.63)

Ialyp lalip A 151
(Vo )2t (p) = (1 = 62 )V /T s + (-1) AV I e
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which is also symmetric. It should be remembered that 4 has been defined by
Eq. 2.54, and the values of l1,l2 and l],l} are restricted by the value of IT according

to Eq. 2.50.

If one is considering a case where only [, = [, states are allowed (as is the
case for J = 0 and for J = 1 with even IT), then the elements of u/57 depend
on S since, in their determination from Eq. 2.34 they are calculated separately, as

discussed after Eq. 2.39. In this case the elements of u/$ may be rewritten as

Lilip l l
(T, = ,,::,u,{ (p) (2.64)

The eigenvector matrix a’/57

is orthogonal since it is the eigenvector matrix

of the real symmetric matrix VoJS” + /ST, We describe the method used to

numerically calculate the potential functions V7 f,’f,‘ (w; p) and potential matrix
2°1

Izhp . ) )
elements VI7,2!P, in the following section.
Litp g

2.5. Calculation of Potential Matrix Elements
In this section we will show how the potential functions V""f?i,‘ (w;p) are
2°1

anlzllp

calculated!® as well as the matrix elements i p

(p). These numbers are needed
in order to calculate the surface functions. The potential matrix is a function of w

at a fixed value of p, and was defined as follows in the previous section:

V'Infzfl: (W)P) = <yl‘£?{(023¢2)011§01) I V(paw,p’) | yliﬁ[(02.)go2,0l’(pl)> (265)

where the brackets indicate integration over the full range of the variables 8,,;, 02,

and ¢, (and therefore of ~).

The potential energy function is most easily expressed using the body-fixed

angular coordinate ~, as well as the hyperspherical coordinates, p and w.

V(p,w,q) = Zez( 1 z 1 )+e2 1
» ¥ p \cos¥ sin¥ p /1 —sinwcos~y

(2.66)
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The first two terms in the potential, representing electron-nucleus attraction, are
independent of the integration variables of Eq. 2.65, and lead to diagonal terms in
the potential matrix. The off-diagonal elements in those matrices results from the

third (electron repulsion) term.

It is convenient, for the evaluation off the potential energy matrix elements, to
make a change of variables from space-fixed angles to body-fixed angles, and to use

the orthonormalized functions Dr‘;’{‘l‘ (8,0,7,%):

2J+1

Do (8,0,7,9) = r? D3a(p,0,9) P2 (v) (2.67)

These functions are products of Wigner rotation functions!4 Dj , and

renormalized Legendre polynomials!® P,'? (),

—te +1\* [ (_pyl
2 - plal ((11 1121)! 24, ) {( n* 1>0, 68
Py () = Br," (cos) L+ 2D 2 11 <0 (2.68)

The spherical harmonic Y,7 is related to A7 (v) by

et2¢

V2r

Y?(v,¢) = A2 (v) x (2.69)

The functions Df{ﬁ'f are simultaneous eigenfunctions of the total angular
momentum operator jz, its projection along the laboratory-fixed z-axis f,, as well
as its projections along a body-fixed axis f,: and of the square of the orbital angular
momentum [?:

DM = J(J + 1)R*DIM
Ji0ah! = MDY

(2.70)
J303M = anpgM

a2
L70gM =1(l + 1)R2D3M
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The Y/} and the DJ]M are inter-related by the expression!®

J
Y Onpntip) = 3 (10U ~0DA () ()

Q=-J

where 0; = 6§ and p; = . Substituting for y,ﬁ*f in the potential matrix element

expression Eq. 2.65, and taking advantage of the orthonormality of DJ}M gives the

following:
1 — l l' . . .
VI =(-1)"h Y C(Jll5;2 —20)C(Jhily; 2 —R0)VT, (w;p)
Q
2.72
_151;13(1+1) (2.72)
p lla cosy  sing
where we have defined a new quantity, V,?,,l (w;p), by
(2.73)

L ™ 0. . —1 .
V,?,,l (w;p) = ;/{; P,? (7)(1 — sinw cos ) "7 A7 (v) sin ydy

In order to compute this integral, we expand the repulsion energy term in a

(SIE]

series of Legendre polynomials of cosv. A different expansion results for w <

than for w > %:

1 LW
1 cos 2 z_:Pk(COS'y)tan 3 for0<w< %
(osinweos) =0 = w (2.74)
sin 2 Z Pi(cos ’7) cot® o for % <w<m
! 7 k=0

Using this expansion leads to integrals over products of three associated Legendre

functions, which can be evaluated analytically. The result!4 involves the product

of two Clebsch-Gordan coefficients:

/ P,f?‘('y)Pk(cos'y)P,?('y)sinfydv=1/g,‘—:—iC(hkl'l;OOO)Cllkl'l;non) (2.75)
o ! 1

The above expression vanishes in certain cases. First of all, the Clebsch-Gordan

coefficient C(I;kl/;000) is non-zero only if the sum l; + k +1} is an even number.!*
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Secondly, there must be a triangular relation!* among the integers Iy, k,!} which

means that the infinite expansions in k of the repulsion are effectively truncated

without approximation. The final exact expression for V,?,, (w;p) is thus found to
1

be the following:

k w!

2l +1 tan

i
2

Vi‘y C(l1kl;000) C(11kl%; 00 2.76
ll(wp) 21/+12’: (1 1 ) (1 1 )COS%’ ( )
where w’ is an angle in the 0 to 7 range defined by
y | w, for0<w< 7
w_{‘;r—w, for T<w<m (2.77)

Replacement of Eq. 2.76 into Eq. 2.72 gives finally

mwl

vl _ 1)1,+z' 2 +1 Z tan
1 o

l ;000
21 p 21’1+1 lm Lt )

wl

x Y C(JIjl5;02 —00) C(Jllz;02 —120) C(Iyml};20102)
Q

Slamn (Lo 1),
p kil cos% sin%

(2.78)

The matrix elements V"”:Z;,iz, (p) are obtained from Eq. 2.42 by trapezoidal

rule integration over w. This rule is used because the tg"ll (w; p) functions were

obtained by a first order finite difference method as described in section 2.4.1.

2.6 Solution of the Coupled Equations
Once the surface functions ®7MST defined by Eq. 2.27 are obtained, the next
step is to determine the radial function expansion coefficients 757 introduced in

Eq. 2.28:
wIMST — p=3 Zb"snz @]MS1 () 4 angles; p) (2.32)

In section 2.2 we stated that the Hamiltonian in hyperspherical coordinates was H:

K (3* 50 A?
H= s s T 2.79
<3p’ M pap) - 2up? Ve w,) (2.79)
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~

We find it convenient to define a new Hamiltonian here, H:

e g x R? 82 15K% A2
H=p2 Hp 3 = —— Vv 2.80
- d 2u 9p? * 8up? * 2pp? M (2.80)

such that

H (p3 W/MST) = g(ps y/MST), (2.81)

There are two useful ways to treat the surface functions: one is to let them be
continuously variable in p, the other is to let p take on only discrete values from
the set {p;}.

We used the second option, which is to say we have a diabatic representation.
This is in contrast to the work of C. D. Lin,!315 and of Klar2?? in hyperspherical
coordinates, who both used the adiabatic representation. In the latter one needs to
evaluate the dérivatives of the surface functions with respect to p. In the diabatic
representation all these derivatives are automatically equal to zero, because the
surface functions (as opposed to the scattering wave function) do not depend on
p. However it also means that each coefficient /577 depends on p; as well as on
p, and that there will be potential coupling in the scattering equationé, in lieu of
the coupling which derives from the p dependence of the surface functions in the

adiabatic representation, as will be seen in Sections 2.6.1 and 2.6.2.

2.6.1. Diabatic representation

The equation coupling the expansion coefficients b75T is obtained by substi-
tuting the expansion in Eq. 2.28 into the Schrédinger equation (2.81), multiplying
by an arbitrary surface function, and integrating over the five angles. The surface
functions satisfy Eq. 2.27 with p = p and are orthonormal. The Hamiltonian H of

Eq. 2.80 is re-expressed in terms of the surface function Hamiltonian H of Eq. 2.26

Bp)+ V(o) - (2) Vo) (@232)

o 1y
2u 0p?  8up?
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The substitution just mentioned gives

K% 42 15k2 P\2 Jsm,- Jsat xIMSI
S| Sn + g+ () 5" B |

p
(2.83)
—. 2 "
+ [Vl = (B) Vipwmorom agmsm) <o
p
One now multiplies by @{,,MSIT‘ and integrates over the five angles with the volume

element sin? wdw sin 0,d6,de; sin §2df,dp, appropriate for space-fixed hyperspher-

ical coordinates leading to the following coupled equation:

h? d? ¢ 1587 52 4
.= prani i [ n (_) /ST (5) - E pIST! (0:7) +

8up? p
- ., (2.84)
1
+ 2 (M| V(o) = (5) V(miwn) | @IMSTY BT, =0
"II

There are no d<I>;-’MS”/dp terms in the equation above because, by definition,

®JMSIT s independent of p. If we define

=\ 2

[Av“”(p;ﬁ)]f = (&/M5T |V (p,0,7) - (§) V(pw,) | @IMSTY  (2.85)

‘II
we get the following matrix equation:

h2 deJSH

e D 2
T s avre st [(2) s (s <0 e
K dp

p 8up?

All the matrices appearing in this equation are square and their dimension equals
the number of surface functions used in Eq. 2.28. To put this equation in more

general form we define U/S1;

24 P\ 2 15h2 )
Jsm _ _ Jsm P\ _Jsnm _
U =-27 <AV + (p) e + (Sup2 E)I (2.87)
which gives
deJSII
+UlSAp/ST — ¢, (2.88)

dp?
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This is the coupled differential equation for the radial coefficients /57 using
the diabatic representation. The rest of this section is devoted to solving this

VJSIT

equation and to calculating the coupling matrix A , which is symmetric, as

can be seen from Eq. 2.85.

The p dependence factors out of the matrix elements of AV77 (p; 5). Indeed,

we may write Eq. 2.19 in the form

1
V(p,w,v) = 5 C(w,7) . (2.89)
where
./ Z !
A B 2.90
(w ’7) € [cosz % sin2 % \/1 — Sin w cos '7} ( )

As a result we can write
—. 2 =

Vo) - (2) V(g = [1- (8)] et (2.91)

We then substitute the expansion of the surface functions into the integral

expression to obtain

AVIST (5 5) = %[1 _ (g)] 5757 (5) C7ST (5) a7 ST () (2.92)

where we have defined C/57(p) as the matrix with elements

Can(_)l’zl'lp’_ @JMsn
p lahyp —

Clw,y) | OZMST)

_ (+,7mlalip Ay JIIg1 (243)

=p (V L p +(-1)"V zZziﬁi)
which are independent of p and only have to be evaluated once for each surface
function. Actually, these coupling matrix elements are very closely related to the
potential matrix elements needed for diagonalization in the surface function basis

set. Only the elements in diagonal (I;/2) subblocks need to be calculated, for the

others have been obtained already.
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It should be noted that the a’$ matrix, whose rows are labeled by I5l;p,
and whose columns are labeled by k (see Eq. 2.34), is not necessarily square.
Nevertheless, the left hand side of Eq. 2.92 is appropriately square and has the
dimensions specified after Eq. 2.86. This permits the number of surface functions
used in Eq. 2.28 to be much smaller than the number of primitive functions used in
Eq. 2.56 in the determination of these surface functions. This is a very important
consideration leading to a major saving in computation time. Without such a
truncation of basis size, one might as well have expanded the wavefunction ¥'™ in
the primitive functions directly.

If one integrates using Gordon’s method,2! the first and second derivative of
u/Jsn

with respect to p are also needed. The nice thing about Eq. 2.87 is that all

the p dependence is in analytical form, so we get the derivatives analytically:

h? d 1582 2p2 1 P\1—JSII
_h G yisn _ _ _4p eI [1_2(/))]0 (%)

2udp dup®  p3 p? P (2.94)
K2 g2 45h% . 652 2 P\1—=JsI '
SR | P g I —eJ"+——[1—3(-—)]C 5
2u dp? 4pp* * pt p3 (?)
where
—=JSsnI

2.6.1.1. Logarithmic derivative integration

Instead of solving the matrix differential equation (2.88), one can instead

bJSH(

change the unknown function p; P) to its logarithmic derivative, defined to

be (dropping the omnipresent JSIT superscript)
y(p; 2) =b'(p; )b~ (p; ) (2.95)

The second order differential equation for b is thus transformed into the first order

non-linear Ricatti differential equation for y.22

Y'(0;5) + ¥ (p;5) + U(p;0) =0 (2.96)
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We use an efficient procedure developed by Johnson?2 to numerically integrate
this equation, using the initial condition y = 1036 I, that is, essentially infinite.
This corresponds to the initial conditions of b =0, b’ =1 at p = pg, where pg is a
value close to zero. These initial conditions are justified by the fact that the final

results converge with respect to the particular choice of pg.

The calculational method consists in integrating b or y out to a large enough p
for the electron-hydrogen atom interaction to have become negligible. One then
“projects” the resulting scattering wavefunction ¥ on the asymptotic hydrogen
atom wavefunctions. The Johnson integration scheme is used to propagate the
wavefunction from pg until the projection distance is reached. Then, if projecting
at constant R = Ry;; (as explained in Chapter 3), one changes over to the Gordon
method of integrating, which is described, briefly, below. One then continues
integrating until p reaches a value large enough to have furnished the wavefunction
at each projection point (rmin < r < rmax at fixed Rpro;). If one is instead projecting
at constant p, the radial integration is complete at this stage and one moves directly

into the projection phase.

2.6.1.2. Gordon Integration

The Gordon integrator,?! which obtains both b(p; 5) and b’(p; p), approximates
the potential by a piecewise linear function and solves the equation analytically in
each linear region using Airy functions. The solutions in each section are joined
together continuously, and the step size is regulated by an internal check on the size
of the error, based on the size of the first order perturbation term relative to the
wavefunction itself. One begins the integration in an area where the wavefunction
can be presumed to be null, because the potential energy is much greater than the
total energy. However, in our application, the starting point is the beginning of

the projection region, and one takes unity for b and the log-derivative y(p; p) for
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b’. Compared to the Johnson method, much more work is required per integration
step, although much larger steps may be taken with Gordon’s method, especially
in regions where the potential flattens out. A good deal of the effort required
in Gordon’s method is energy-independent, which means the calculation for the
first energy is long, but the calculations at subsequent energies are much faster by

comparison. No such relative improvement is obtained using the Johnson method.

2.6.2 Adiabatic representation

In the adiabatic representation the surface functions are considered to change
continuously as functions of p. Thus we can define and calculate derivatives of the
surface functions with respect to p. There is no difference, when substituting into
the full Schrc’idinger equation, between the value of p at which the surface functions
are evaluated and the p in the equation. This means that the potential matrix
term drops out, unlike the diabatic representation, because the surface functions
are chosen to diagonalize H. The coupling is therefore due to the first derivative
term, not the potential energy. The corresponding matrix differential equation in

this representation differs from that of the diabatic one.

Let us define W(2)(p), the first derivative matrix, and W(2)(p), the second

derivative:

W0 =(2:00) | 5 | 2,00)) (2.07)

W@,5(0) =(2s

;%25 | 2) (2.98)

where the hyperspherical coordinate integration volume element in the integrals is
the one given after Eq. 2.83. The second order equation obtained from Eq. 2.28 is

now
2yJSIT Jsm

dp? dp

- (W@ + B1- e())b’5T =0 (299)
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All the coupling in this equation comes from the off-diagonal elements of W (1) and
W (3), whereas the coupling in the diabatic representation Eq. 2.88 comes from the
off-diagonal terms in the potential matrix Eq. 2.87. The appearance of a db75%7 /dp

term in Eq. 2.99 is a disadvantage of the adiabatic representation.

It is easy to show that the first derivative matrix is non-Hermitian, but that
iW (1) is Hermitian,?* as a simple consequence of the orthogonality of the o,

basis functions, as we now show.25 The orthonormality of the functions is stated

(s

where the integration volumen element is, as usual, the one indicated after Eqgs. 2.83

mathematically as

(I)J~> = 04y (2.100)

and 2.98. Both sides of this equation are differentiated with respect to p, which

leaves
< 5 <1>,> + (@‘ W> =1 (2.101)
which directly gives
Wl =-w@),; (2.102)

from which it follows that tW (1) is Hermitian. The basis functions ®; have complex
components due to the ,‘i ?:I functions, but one can see that W(2) is real by

substituting expansion (2.56) into the integrals. Then one obtains

JSI
w@) — g/sno dad— +g7ST p(1) pisH (2.103)
D

where T(1) is a matrix diagonal in !; and l5, and skew symmetric, defined by

sl _ /g, O |, Jni\ Bl
[T( )]l',l’lp' - <tp ? l(“‘)’p) ' a_p l tp,’ l> 61:(: (2.104)
and a’S7 ig the eigenvector matrix obtained by diagonalizing the real symmetric

Jsn

matrix Vo +u’/ST Since we have shown that W(1) is real it follows from
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Eq. 2.102 that W) is skew-symmetric. We use an analogous procedure to
determine that the second derivative matrix can be written as
. d? d
w3 =g/5T 1 —_ 473 4 2T(1)—]a’5” (2.105)
dp? dp
where T(3) is defined just like T(2) but with the second derivative operator replacing
the first derivative one. We will now investigate the properties of W(2). For reasons

that will become clear later, we differentiate the equation for W(2), obtaining

d 0%, 09, 029,
_w(l)'.. — (2= 273 ) 3 '
dn ( ap | @ )+ (@ 352 ) (2.106)
_ [ 92| 9%, (3) .
= 5 W> + W), (2.107)
The skew-symmetry of W (1) thus leads to
0%;| 09,
(3).. (2) .. — _ i| 9%4
W@+ W), = g = = ) (2.108)
For the diagonal elements of W (2) one obtains
0%, | 09,
) S i’ | Bk |
W55 < B | 8o > (2.109)

from which it is apparent that W(3) is not skew symmetric. This could also have
been ascertained from Eq. 2.105. T(?) is also not skew symmetric. Let us now

calculate the matrix elements of W(1)?, By definition,
()2 _ | 92 (a4 oty
(W) ; (a; = )(ex = ) (2.110)
We use the fact that W (1) is skew symmetric and real to obtain

(W2 = — Zk: <‘::;I;" <1>,,><<I>,c ‘%’) (2.111)

Since the @, form a complete orthonormal set, one uses the completeness relation

Z' <I>k><<1>,c l: 1 (2.112)
k
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to obtain for W(1)? the following result.

0®;| 09,
wn? = _ (2= 2.113
(Wy=—{ 52| T (2.113)
Therefore we can express W (2) in terms of W (1) as follows:
w3, = iw(l).. + (W(l))2 (2.114)
1 dp 1) 1) #

Thus one notices that W(2) has no special symmetry, as it has been decomposed
. g 8 3 . 2
into the sum of a skew-symmetric matrix, W(l),, and a symmetric matrix, W(1)°,

both of which are non-trivial.

We decided to proceed using the “diabatic” method, because of the ready
availability of programs to solve differential equations of the type ¢’ + Ug = 0, or

equivalently of the Ricatti type, y' + y%> + U = 0.

2.7 Continuity and Overlap of Surface Functions

When we change from one set of surface functions calculated at a value of p = p;
to the next set calculated at p = pj41, the scattering wavefunction and its derivative
with respect to p should themselves not change. Therefore, the wavefunctions in
both representations are set equal to one another, multiplied by a new surface
function, and integrated, in order to find the new coefficients b’/SI. The integral

generates the “overlap” of the new functions with the old:
6757 (p; pj+1) Zb”” (05 55)( @7 M5 (541) |81 ™57 (55)) (2.115)

In matrix notation this is
b7 (p; pj11) = 075 (541,55)b7 57 (p; ;) (2-116)

The derivative is transformed exactly the same way:

! !
b7 (p; pjv1) = 075 (511, 5;)07 5 (p; 5j) (2.117)
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The transformation for the logarithmic derivative is just

y(p;02) = Ojsn(ﬁz,ﬁx))’(ﬂ;51)61517(;52,51) (2.118)

where we have used the unitarity of O/57 to replace the inverse of the overlap
matrix with the transpose. Strictly, the transpose is only equal to the inverse
in the limit of an infinite set; however we have found that this is a reasonable

approximation and a large time saver.

Symmetry is preserved in the Johnson algorithm (as opposed to the computer
code). But the code is formulated to force retention of symmetry. Using the
transpose of the overlap matrix instead of the inverse guarantees the preservation

of this symmetry upon a change of basis set.

Another way of enforcing symmetry in the wavefunction is to invert the
overlap matrix and then replace each set of off-diagonal elements in the logarithmic
derivative with its respective arithmetic mean. There is no reason to prefer this

approximation, so we have used the one that saves the most computer time.

The overlap matrix for 5-dimensional surface functions is obtained by plugging

in the expansion in Eq. 2.56 into the integral form. One finds that O7ST s related

S

by a simple transformation to 075 as follows:

OJSH :5.]51'1 OJII aJSI'I (2.119)

J

where 077 is block diagonal and each block OiI’l1 has matrix elements found by

calculating the overlap of 1-dimensional primitives, t‘,{"'l (w; p).
[Oi’,ll]p — <t;1211 (w;pj.+1) ‘ t;'lzlx ((J.),ﬁ])> (2120)

p
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2.9 Figure Captions
FIG. 2.1: Photograph of the potential contour at 10.5 eV.

FIG. 2.2: Potential contours for the e”—H reaction in the OXY Z space having

1
)

spherical coordinates p = (r? + R?)3, w = 2arctanr/R and ~y for v = 0 and 180 deg

for Z = 0 bohr.

FIG. 2.3: Potential contours as in Figure 2.2 for Z = 1 bohr.
FIG. 2.4: Potential contours as in Figure 2.2 for Z = 2 bohr.
FIG. 2.5: Potential contours as in Figure 2.2 for Z = 10 bohr.

FIG. 2.6: Potential contours for the e~ —H reaction for v = 0 degrees.
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CHAPTER 3

PROJECTION AND ASYMPTOTIC ANALYSIS

In this chapter we obtain the asymptotic form of arbitrary solutions of the
Schrédinger equation. We then obtain expressions for the reactance matrix R7S7
and scattering matrix S/S7, These matrices are designated by symmetry type
(S, IT) and not by arrangement channel. We then define reactance and scattering
solutions and relate them to the physical solution, from which we obtain expressions

for the scattering amplitudes and cross sections.!

3.1 Asymptotic Analysis

Asymptotically as R — oo arbitrary solutions of the 6-dimensional Schrédinger

equation UJMS! have the form

\I,JMSII —~ Z JSI'I: )QJMH(T,Q) (3.1)

nl 13 nlllz
nl lz

where &7 MIT(r, 1) is the product of Y;]M(02,92,01,¢1) and the hydrogen radial

function Rny, (r). The general radial functions U’ST(R) behave asymptotically as

UL (R) i o0 [Tatata (R)AZEEY = Ontyia(R)BASEY ] (3.2)

nlls nll3

In this equation A7ST and BYST are square matrices of integration constants,

whose rows are spanned by the indices nl;l2, and whose columns are spanned
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by the general index ¢/ = n'l{l}. I and O are diagonal matrices (for which the
subscripts indicate both row and column indices) representing the incoming and

outgoing waves and are given by

_ Jexp[—t(knR — l27m/2)] for open channels
Tniiz (R) = { exp(|kn|R) for closed channels, and (3.8)
_ J exp[+t(knR —l37/2)] for open channels
Ontztz (R) = {exp(—]k,,|R) for closed channels. (3:4)

Additionally, v, is the velocity k|k,|/u, and k, is the wave number given by

kn = h=1\/ZR(E = By)  (35)

where E,, is the energy of a hydrogen atom with principal quantum number n. We

can rewrite Eq. 3.2 in matrix form as
UST(R)pSov™ V2 I(R)AST — O(R)B7ST] (3.6)
The scattering matrix for partial wave J, spin S, and parity IT is then defined by

BJSI'[ — SJSHAJSH (3.7)

An alternative way of expressing Eq. 3.1 is in terms of the reactance matrix,
such that the exponential terms representing waves are replaced by their non-

imaginary counterparts, the sine and cosine functions. We may write
UJSH(R)R’:;OV—-IH[S(R)CJSH+C(R)DJSH] (3.8)
where C’/S and DJST are new integration constant matrices and § and C are

diagonal matrices given by

Sniy1;(R) = {Sin(knR —1ym/2) for open channels

exp(|kn|R) for closed channels, and (8.9)
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_ J cos(knR —l27/2) for open channels
Criyis (R) = { exp(—|kn|R) for closed channels. (3.10)
The reactance matrix is defined by
pJ/ST _ gISOQISH (3.11)

Expressing the wavefunction in terms of sines and cosines, as in Eq. 3.8, is
good in the far asymptotic region. In the closer asymptotic region U7ST behaves
as a combination of Riccati-Bessel functions,

UL ()i Y [JERE(R) - Y NIEB(R)RISTLEE | CISEY (312)

Al i3 Al i
where the C75T coefficents are integration constants as defined before, and R7S1
is the reactance matrix for this partial wave and symmetry type. In matrix form

we have

U'sT 2, [J(R) - N(R)RJS”]cJS” (3.13)

where J and N are diagonal matrices. We will find it convenient to use a “stacked”
notation in which two equations are written in one line, such that the first equation
corresponds to using the top element within each set of square brackets, and
similarly the second equation uses the bottom elements. The open channel elements
of J and N are given by
Ayl .
Ny, - R ] 6

nlyla
where j;, and y;, are spherical Bessel functions,? v, is the velocity |kn|/u, and kn
is the wave number as specified previously. It can be shown, using the asymptotic
forms of these functions? that Eq. 3.13 reduces to Eq. 3.8 in the far asymptotic
limit. The closed channel elements of J and N are given by

] e wn[B] e
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where 11,(2) and ki,(z) are modified spherical Bessel functions® of the first and

third kinds, and k,, = |kn|-

We only obtain the open-open sub-block of the reactance matrix — the symbol
RJ5T will refer to the subblock obtained by keeping only the open columns, but
all of the rows, and RJ57 will refer to the open-open subblock. The open-open
reactance matrix RS is real and symmetric in an exact calculation. We can
consider the amount of asymmetry in the actual open-open reactance matrices
obtained to be a measure of the error in the calculation. However, in our
calculation we have forced the logarithmic derivative to be symmetric throughout
the propagation, which increases the computational efficiency but eliminates the use
of the symmetry of R/ as an accuracy test. The open-open part of the scattering
matrix SJS7 is obtained from the reactance matrix using the relationship*

I+ RIS

BUSH I—% (3.16)
— 5

The open-open part of the scattering matrix is both symmetric and unitary, for

exact solutions of the Schrédinger equation, due to time reversal invariance of the

Schrédinger equation.?

The asymptotic solutions have been defined in terms of distance vectors r
and R — not in hyperspherical coordinates. We now show how to project from a

hyperspherical basis set to an asymptotic basis.

3.2 Projection

The “projection” is a change of basis from surface functions to asymptotic
solutions. After we obtain the wavefunction at a large value of p, we assume that
the interaction between the two electrons is small and that the asymptotic functions

will form a good basis.
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The asymptotic wavefunctions are functions of ry, depending on the channel A,
and on R, but independent of Ry. They are related to the radial part of the bound
states of the hydrogen atom, (as defined after Eq. 3.1) and which are independent of
the distance of the second electron to the proton. In contrast, the surface functions
depend on the distances of both electrons to the proton, constrained in such a way

that p is constant, with the angle w being a variable.

One could project the hyperspherical surface functions onto the asymptotic
functions at constant R); alternatively, one could project the asymptotic solutions
in ry,R) coordinates onto the surface functions at constant p. We studied both of

these methods and present the resulting equations in the next sections.

The transformation between (p,w) and (r, R) is (Eq. 2.10)

. w
r=psing
(3.17)
w
R = pcos 3

Let us look at how this relationship behaves in the asymptotic channels. Asymp-
totically in channel 1, where p is large and w ~ 0, one has R ~ p and r = %pw. In
channel 2 p is again large but w approaches 7. There r ~ p and R = %p(ﬂ' —w). For
surface functions whose energy is negative, the larger p is, the smaller the range of
w in which those functions have amplitudes significantly greater than zero.

\I,;zMSH (

The general scattering wavefunction where 1’ stands for a set of indices

of the nlyl; type) is expanded in surface functions of hyperspherical coordinates as
_5 P
‘I/JMSH(p’ w, ola L1, 02, ¢2) =p 3 Z bJSH: (p, p)Q;'IMsn(W, ﬂ, p) (318)
1

The surface functions in turn are expanded as (see Eq. 2.28)
gJMST Z }:ailj};a )N 1, X
[Lhiz] P (3.19)
YIM (@) 61 (wip) + (~1) Y () 13150 (n—w; )]
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where 1 is the ordered set of angles (82,¢32,01,¢1) and the pairs [I;/2] imply that
l; <13 (see Eq. 2.56). In the asymptotic region of arrangement channel 1, where R
is very large, this same general scattering wavefunction can be written in terms of

hydrogen radial wavefunctions Ry, (r) as

UIMST = N " YIM(605,02,01,01) Gap 11 (R) Ruu, (r) (3.20)

n.l lg

where G,{i{:"(R) is the U,{IS{T"/R of Eq. 3.1. The angular part of the hydrogen
wavefunction, Yj, m, (01,%1), is included in the coupled spherical harmonic, y, T,

The sum over /; and /2 in the asymptotic expansion is not limited to the [; < [,
pairs [I1/3] as in the surface function expansion Eq. 3.19. This is because the surface

functions have been symmetrized, as explained in Section 2.4.

We need to set the two expressions for U M5! equal to each other in order
to determine the relationship between bJS":’(p) and G,{ig" (R). Multiplying
Eq. 3.18 and Eq. 3.20 by y,, D integra.ting over (01,p1,02,02), using Eq. 3.19
and identifying the results gives the following:

)-8 ijsn' Z az’,?,’,f’ n [5:;,::1 t;z,z, (w; p)

(lila]p

11
HEDRE b (r-wie)] = 3 6 G (B) R, ()
nl lz
(3.21)
There are two ways to proceed from here. One is to find an expression for G ,{,5; {Z 3 (R)

in terms of 475 m (p, p), in which case the projection is done at a constant value of

R. The other process is just the reverse: express the b5 I (p, p) in terms of the

JSIy'
Gnl;l,

(R). This will be called the constant p projection.
3.2.1 Constant R projection

In this section we will describe the projection of hyperspherical surface functions

onto cartesian coordinate (r,R) asymptotic functions. Besides the four angles
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included in t and ﬁ, the only independent variable in the asymptotic functions
is the distance r, which is the distance of the bound electron from the proton.
The fixed distance of the other electron to the proton during the projection will be
designated R,. The hyperspherical coordinates p and w need to be expressed as

functions of r and the parameter Ry:

p =p(r; Rp)

w =w(r; Rp)

(3.22)

We multiply Eq. 3.21 on both sides by ran,yl (r) and integrate over r from
zero to infinity. The radial functions are orthonormal in the n index, resulting in

the expression:

3 ‘ 2'1 2°1 . 3¢1 .
G (By) = 3 [ [6s e3ish (win) + (~0) 65 671 (r i ) Mo,

alalp (3.23)

¢! —5
X Z a3 (p) 871 (p; p) Rpy (r)p~2rdr
The above expression can be written in matrix form as the integral of g/57(r; R},),

GIST(R,) = / g’5(r; R,) dr (3.24)

JSH(

where we have defined g r; Ry) as the matrix product

g7 (r; Rp) = F757 (r; Rp) 2”57 () b7 5 [p(r); p] r*p 3 (3.25)

F’/S1(r; R,) being a new matrix which is the product of radial hydrogen functions

and one-dimensional hyperspherical basis functions:

laly 1 aby .
(F/ST) 5ut = Ray (r ) (831 14 (w; p) + (~1)26)31 t1h (r—w;p))  (3.26)

Lia

In order to compute the reactance matrix we also need the derivative of G751
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with respect to R (where, in Eq. 3.24, R} is replaced by R). First we find an

expression for the partial derivative with respect to R in hyperspherical coordinates:

(%) - 8).(5) + G2). ()

3.27
-(BE) - &) .
p/ \dp p%/ \dw
Taking the derivative of Eq. 3.25 one obtains, after simplifying,
dg’ 58 r’R _dbIsm
——dR (f;Rp) :(p_,/;)FJSH(r;RP) aJSH(p)_dp__(p;p)
5(r*Rp\nsst. p \aJSH(AWISI(,. ~
T2 2972 )F (r; Rp)a (p)b (p; P) (3.28)
= (Er_a_)fJSII(r.R )aJSII(—)bJSII( . _)
p9/2 y44p p p;p

where we have defined f/57(r; R}), similarly to F/S7 | as

o 130 (w; p) v Ot (1 —w; p)
159 151 ALl )

One doesn’t really calculate the derivative of ¢]2!1 (w;p) with respect to w,
however. The surface functions are obtained at the points w; corresponding to
projection points r; via spline-fitting. Because the projection points r; are evenly
spaced, whereas the angular points which correspond are not, it is easier to do the
spline fit using r; rather than w;. This means that the derivative obtained in the
spline fitting routine is with respect to r, not w. We obtain the w derivative using
the relation

(&) (2) e = (2) 17" o) (330

Substituting this into Eq. 3.29 gives the following expression for f/5;

laly P2 l'zlll 2 P
(stn):ll'ltl’; ER"'III (r) [51,1, (E>Rt:" " (w;p)
(3.31)

u (0 s
+ (—1)A5zfx, (E)Rt;{l ! (”—W;P)]
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When we replace Eq. 3.28 and Eq. 3.31 in the analog of Eq. 3.24 in which the
derivative dg”’S (r; Ry)/dR appears in the integrand instead of g75™(r; R,), we
get dG'ST/dR.

GgJsn

We have thus shown how we calculate the integral matrices and

dG’5T /dR. We use them to construct Z75% the logarithmic derivative of U/57

as follows: From the remark after Eq. 3.20 we have

U/ST(R) = RG'ST(R) | (3.32)

and therefore
u'’*"(R) = G'ST(R) + RG'T (3.33)
This gives
z/ST(R) =y’ Ty’sn! = %I+G'JS"GJS”—1 (3.34)

Thus we have shown how to obtain the logarithmic derivative after projection, which
is all that is needed to obtain the R-matrix. However, to get Z7ST we needed to
have both b’S7 and b7S7’ before the projection at constant R. The method used

to obtain the R-matrix is presented in the next section.

3.2.2 Reactance matrix using constant R projection

There are two equations relating U/ST to the reactance matrix and the
constants C’/ST of Eq. 3.8. Eq. 3.13 and its derivative with respect to R can be

considered as a system of two linear matrix equations in the two unknowns C751

and R/S1.

U/ST — (3 - NRIST)CIST (3.35)
u’’sT — (3 - N'RIST)CYST (3.36)

Right multiplying Eq. 3.36 by the inverse of Eq. 3.35 C’/ST cancels out and we

obtain the logarithmic derivative:

Z’ST = [J' - N'R’S7] x [J - NR’S7]™! (3.37)
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This equation is rearranged to obtain the R-matrix.
RIST = [27SAN -N'| 7! x [2/573 - J'] (3.38)

The full reactance matrix may be written out in block form, with the open rows

and columns displayed separately:

RJSI'I —

Ry B 529

RJSH RJSH
co cc
Then if we write R/ST = A-!B, and a = A~!, and write Eq. 3.38 in similar

fashion, we have

RIST RIST) _[aw au][Bo B )
Rgosn R‘.:]CSH - aCO aCC BCO BCC .
where
a=[z'S"TN-N"" (3.41)
and
B=[z2/573 -7 (3.42)

The open-open part RJS7 of R/S57ig given by
Rgf” = a,0Boo + aocBeo (3.43)

From this equation it is obvious that B,. and B.. are not needed for our purposes.
These are the matrices that contain the closed parts of J and J’, as seen from the

definition of B:

|:Boo Boc] — I:ZgoanO - J:) ZgCSHJC (3.44)

B.o Bec z/513, z513. -7

c

The closed channel elements of N are needed, however, because all of A must be

calculated in order to take the inverse and get a,, and a,.. When the spherical
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Bessel function expressions are put in for J and IN one obtains the following

expression for the open columns of the R-matrix:

RS =k} [(RZ7ST —T)y - Rky'|  x [(RZ7ST —1)j - RKj|ko?  (3.45)
where j and j' are open channel diagonal matrices whose elements are 7, (k,R)
(defined in Eq. 3.14), and the derivative with respect to the argument, respectively,
and y is a full diagonal matrix whose open channel elements are the y, (k,R)
(defined in Eq. 3.14), and whose closed channel elements are the k;, (k, R) (defined
in Eq. 3.15) while y’ is the derivative of y with respect to the argument, and k is a
diagonal matrix with elements kné::;ll%:’ for the open states and fcnér':l’ly}:; for closed

states. ko, is the open-open part of k. Thus we have found the expression which

relates the logarithmic derivative Z757(R) to the reactance matrix RS,

We have shown above that in order to obtain the logarithmic derivative after
projection one needs to calculate two matrices, GYST and dG/57 /dR, the elements
of which are found by computing integrals over the variable r, from r = 0 to oo.
In actual practice one chooses a value of rp.x as the upper limit of the integrals,
which are computed using the trapezoidal rule. Truncation of the integral at finite
rmax 1s justified because the hydrogen atom functions die out exponentially with
r. In order to compute G757 and dG757 /dr, one must have b757[p(r; Ry); 5
and bJS”'[p(r; Ry); p] at each value of p(r;), where r; are evenly spaced. These are

found using the Gordon integrator.

The range of p from p(r1; Rp) to p(rmax; Rp) is called the “projection region.”
It is possible for there to be one or several values of 5; in this region (that is, changes
of surface functions) and one must know for each r;, the value of 5 as well as the
range of values of w that correspond to each p. One must also decide the value of

Rp at which to do the projection. R, must be large enough for the system no longer
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to be strongly interacting. In the next section we show how we project at constant

p, which turns out to be computationally a much simpler procedure.

3.2.3 Constant p projection

In this section we describe the alternate method to the one described above,
that is, we project the hydrogenic radial functions onto the hyperspherical surface
functions. One reason for projecting this way is that the resulting expression for
the reactance matrix requires only the logarithmic derivative of the wavefunction,
as opposed to both the wavefunction and its derivative separately, making the
simple and efficient Johnson integrator usable throughout. This is particularly
appropriate for implementation on the hypercube architecture concurrent processor
being developed at the California Institute of Technology.® Also, since the projection
is done at one value of p, there is no need for a “projection region” as in section
3.2.1. This method of matching hyperspherical functions to asymptotic cartesian

coordinate functions is in the same spirit of that used by Christensen-Dalsgaard.”

As for the constant R projection, we write two expressions for the complete
scattering wavefunction. First the wavefunction is expanded in hyperspherical
Jsm?
b7 (

surface functions with hyperradial coefficients p; ) according to Eq. 3.18.

UIMST (p,w,01,01,02,02) = p~3 Y _ 6757 (p;5) /M5 (w, 25 p)

R
The surface functions ®/M57 contain all the symmetry properties of the full
wavefunction. Secondly the scattering wavefunction is also expanded in asymptotic

hydrogen atom functions in one channel, according to Eq. 3.1. The wavefunction

is only being considered in the asymptotic region,

_ UJSII:" (R)
yMSI = ——"l‘l;z &, 4 (r, )

nlll,
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JMIT

where ¢n11

(r,£) is the product of y, ik M(8,,02,01,01) and the hydrogen radial

function Ry, (r), as before.

The surface functions are orthonormal in the space defined by the five angles.
They are also orthogonal, due to their symmetry properties (but not normalized)
over only half the space, that is, if one restricts the range of w to be from 0 to
7 /2. Therefore we set the two expressions for ¥; equal to each other, multiply
by @,{Msn'sin 0, db, dp, sinf; df; dpssin® w dw and integrate over the full range

of the four angles (61, ¥1,02,92), but over w from 0 to 7/2 only.

It is important that this integration not be carried over the whole range of
w. The reason is that the hydrogen atom bound states, Ry, (r) are defined in one
channel only, which can be considered to be separated from the other channel by

the w = m/2 boundary.

The resulting expression for 575 m (p, p) is
s, 7SI UL (R)
“3pSTL =2 ) [ dsin® w dw®]MS T (w, Q)8 MT (r r, Q)" (3.46)

nl;lg

The surface functions are further expanded in primitive basis functions
G),, ,, T (w, €3; p) with the coefficients a;{*?," }(p) as described in Chapter 2:
JMSIT _ JSI'I JMSH .=
Q Z: a,, i P" 1/ l’lp’ (w, ﬂ, p) (3.47)
Lup
The coeflicients a;’,z‘f,llgf(ﬁ) are independent of the angular coordinates. Therefore

when the above equation is substituted into Eq. 3.46, they may be removed from

the integral, yielding:

—&,7sm JSITs . 2 IMSII g MIT Ur{lfgi,(R)

1’2 l,l p’ n11 lz

The only functions that depend on the angular variables (82, v2,01,¢1), called

(2 collectively (as an ordered set), are G)i’,z’l‘;f ST and 87MTT because the distance R
1
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is expressed as a function only of p and w. Let us then define a new term which

. ’ e 11 _
will contain the entire integral over 2, FJS",'Z,’;;, (r,w;p):

nlllg

nlyl
FJSHl;l‘,l;I = 2/ 61{211\;1{5,”((4), ﬂ, ﬁ)QJMH (7', ﬂ) (149 (349)
When this is substituted in we get the following:
. 11, UISHE(R)
privren) = 3 agt Y [ posme Danl W gy (350
1 p nlylz
From Eq. 3.12 we have that the asymptotic behavior of U/ST(R) is
JSIi! ~ Al Iz L Jsnalila] ~ysmit
Uniiiy' (R)R= Z [J::l,ll: (R) - Z N:l 12 (R)R m‘il‘:]cm“r,’
alyls ALl

which is substituted into Eq. 3.50. The matrix C’/S is constant, so it too can be

removed from under the integral sign, yielding

—5,75m" _ JSITi Jsmnhla Al l;
p~3b i = Zam' Z E _/F e pt  (w, ":P)R anflf(R)
Liip nlils flL i,

nl l
Z Nl z, Ranm ,’]sm wdw x CIST

nlnlz il ls
Al ls

(3.51)

In matrix notation, the above equation becomes

2
p~ipIST = gJsm /FJS" [3(R) - N(R)RIST| S22 4,cIs0 (3.52)

pcos 3

where we have substituted pcos 5 for R.

The corresponding expression for the derivative of b75 with respect to p is:

db’ST 3 L S FEL /aFJSH(J RJSII)Sm wdwCJS”
dp 2p cos 3
= (3.53)
+p§515n/Fan(aJ ?ERJSH)EMMCJSH
dp Op cos ¥

2
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The R-matrix is not a function of w, and so doesn’t have to be included in the

integral. Let us define the following matrices, A7, BJST AJST and BJS™T:

] = [reren[JR] e s

[gz ] - / { (aFa—I:(w)> [;I((lz%z))]

T oo,

ON(R)/0p |} cos %

(3.55)

where R and r are considered to be functions of p and w according to Eq. 3.17, the
matrix F/ST is defined by Eq. 3.49, and the matrices J and N have been jointly

defined by Eq. 3.14 and Eq. 3.15. Using this nomenclature, the expressions for

14
b7ST and bS5 are

bIST — ,357/ST(AJST _ BJSTRIST)CIST
db7ST 3 yisn 4+ p35/ST(AJST _ BJSHRIST)CIST (856}
dp 2p

3.2.4 Reactance matrix using constant p projection

We now do a little algebra to extract an expression for the reactance matrix
from Eq. 3.56. First, we obtain the logarithmic derivative of b75, This is the
quantity one obtains computationally from the coupled channel numerical solution
of the Schrodinger equation. Part of the reason for doing the projection at constant p
is that the wavefunction is only needed in the form of its logarithmic derivative, and
so we can propagate the coupled channel equation using the very efficient Johnson
logarithmic derivative integrator.® It will be convenient if we define a new matrix,
X /ST which will contain the logarithmic derivative as well as the constant term
that arises from the way we have defined the radial matrix b/S7:

db7ST -1 @
XIS = 2= __pISAT _ 3.57
P 2 (3.57)
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Forming the logarithmic derivative from Eq. 3.56 we eliminate C/5/ and solve for
the R-matrix, using Eq. 3.57 to simplify:

RJSIT [XJSH JSHBJSH ~JSHB;SH]
(3.58)

. [XJSHQJSHA{S” _ 5anA;sn]
Let us summarize what the various terms mean, and how we get them. First,
the log-derivative of b/S is obtained from the Johnson integrator. The transpose

of the coefficient matrix 8757

is obtained in the surface function calculation. A{S%,
B{57, AJ5T and B35 have been defined in Eq. 3.54 and Eq. 3.55 above, and
must be calculated after the radial equation propagation. The matrices F/57 and

OF751 [3p are needed for their computation. From Eq. 3.49, Eq. 2.53 and the

remark after Eq. 3.1 we have

nlyl JiL A Jl !
Fromy =2 [ [UE @ win) + (-1 M ()12 (w30)]

(3.59)
X Ny Rt ()Yl d

The integral over the four angles is easily done, due to the orthogonality of the y,ﬁ“

functions, which leaves the expression
11
FIST o [r(wi0),w3 0] = Nty Ry (1) 12" (w5 ) [5{;’:’;‘ +(-1) 511'211] (3.60)

where Ny is a normalization factor. Now let’s look at the derivative terms. To

take the partial derivative one uses

a w/( 0 w0
O\ _...¥ i 22 3.61
(8p>w COSZ(BR)r+51n2(8r>R i)
Taking the partial derivative of F' we obtain

9
dp
- sin%R;, (F) Nig, t2121 (w3 )[5},:},: (_1)/&5{,:11,,]

a nlyl
JSThata _
F 1 p [r,w] = [

ap Rnll (T)] lelzlll t;,lzlx ( ) [5},211,1 ( 1)A5;,2;,1]
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We can define a new matrix f75 as follows:
1,1 i
fjsnz':z' o = Ry (1) Ny t7/71 (w5 p) 5,1,’, + (-1) 5,‘,1’,1," (3.63)

If one writes the expressions for AJS7 and BJS using this, one gets

JSI m/2
|:A2 } :/ fJS"[J(R)}sinsgcosgdw
. 2 2

B35 N(R)
/2 d [JI(R)
FJSH 2 d
+/(; iR [N(R)]Sm w dw

(3.64)

The derivatives of the Bessel function terms are found to be
d [ J(R) ]ﬁmn L ( [J}' (knR):l [J'z (knR)}>
e §Milap o3 (koR 2 + |72 3.65
iR [N(R) gy niat Cn) | 0 kur)| T L kum)|) G

for open states. For closed states we replace yi, (knR) with ki, (k,R). We define

the following matrices that will ultimately be what we calculate:

S ]
2, nlyl3 _ /”/2 Fanpll’lzl [le (k"R):|31n2wdw
L Talynp  Jo 7 Lua (kn )
- = anll; x/2 11 ! R
2 =/ stn;jl,’[ e )}smﬂsm w dw (3.66)
_Tz_z',z;p' a g (Fu )
. 1 nlyl 2
=, nlyly B o F-’sn"‘x’z 1’2( "R) k,, cos —Sln 2w dw
T - AW (knR)
I 3_['21’1}7’ 0 lz n

Let it be understood in all cases that the closed channel elements are obtained
by substituting «, for k,, and k;, for y;,. From Eq. 3.54, Eq. 3.55, and Eq. 3.62
through Eq. 3.66 we obtain, after some algebraic effort,
AJST = p= k3
BIST = p k3
(3.67)
1
AJST = (8, + p(E; +Bs)]k}
BJST = [X1+p(Y3+ Ts)]k3

where k was defined in Eq. 3.45.
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Using these matrices we can rewrite the expression for the reactance matrix as

RJST =k} [(pX757 — D&’STY; - pa’ ST (03 + Xs)]

(3.68)
X [(prSH _I)aJSHp paJSH( = +Es)]k%

This final expression is used for the calculation of RS /7.

3.3 Reactance and Scattering Matrix Solutions

In this section we define the reactance matrix and scattering matrix solutions®
and relate them to the general wavefunction obtained in section 3.1. These solutions
are defined to have the asymptotic forms

JMSII sl IMII
JMET(R or S]F oo Z —UISTT 2R or 5|(R)®IME (r, 02) (3.69)
nl)_lg

where di;{,M,H( (1) is the product of y,‘iﬁ‘(ﬂg,(pz,ﬂl,gol) and the hydrogen radial

function Ryuy, (r), as previously. By definition, the scattering matrix radial functions

U/ST[S] behave asymptotically as

Jsahla o) ~  —1/2 L IS\l
U nllll: [S]R—'Oovn / [Iﬂlllz (R)é:lli: - Onl, Iz (R) (S )nl,ll:] (3‘70)
and the reactance matrix functions as

n'lly oy~ 1} 1} n'ly 1}
Ujsnnhl: [R]R—’wvn i [sﬂlllz (R)5 y C"llln (R)(RJSH)nhlg :l (371)

nlllz

where the I, O, S, and C have been defined in Equations 3.3, 3.4, 3.9, and 3.10.
The reactance function is obtained from the general function by setting the matrix
C/ST jpn Eq. 3.8 equal to the unit matrix. In similar fashion the scattering function

is obtained by setting the matrix A7S7 in Eq. 3.6 to unity.

3.4 Scattering Amplitudes and Integral Cross Sections

We wish to find particular solutions of the space-fixed Schrédinger equation

that satisfy the physical asymptotic condition for large R and are eigenfunctions of
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S2. The axis of quantization for m/ is the direction of the initial wave-numbervector
k,, which has been chosen to lie along the space-fixed Oz axis. The component of
R, along that axis is z). The asymptotic form of the spatial part of the physical
wavefunction in each channel consists of an incoming plane wave multiplied by an
open channel hydrogen atom wavefunction, 45,,:1:1 m!, (r), and a sum over all hydrogen
atom wavefunctions, both those in opeh and closed channels, each multiplied by an
outgoing spherical wave and by the scattering amplitude.

:kR

" — s () 1 niéim, =
‘I’(l)n llml[P] ek", ¢nllllml Z f((ll))nl:mx ) R ¢nllm1()
nlxml
(l)n'l,m1 eknr
fso0 Z f(z)nllml ) ¢"llm‘(R)
nllml
(3.72)
for A =1 and
'l m! ~ o (3, n'lim} ‘k g
COW I [P) e 2 gy (R) + Y S (£) =ty ma (R)
nllml
(2)nz'm = 6"c R S
Boo Z f(l)nllm.ll ) Pnlym, (I‘)
nllml

for A = 2. We take the sum and difference of ¥(1) and ¥(?) as R goes to infinity
to form spatial wavefunctions that satisfy the Pauli principle, which introduces the
quantum number S.

ik, R

"t ! —~ y S l, ! e
\I,Sn llml[P]R—vooe'k"’z‘ﬁn'l'lm' E : n 1m1

Ilml R ¢nl,m1 (r) (3.74)

nll m;

where we have defined the symmetrized scattering amplitudes, f Sln,ilm‘ (R), as

Tt (B) = S m s (B) + (~1)° (o (3.75)

nllml (1)n11m1 (1)n11m1

We treat the incoming plane wave separately from the outgoing scattered wave.

\I,Sn'lllmx [P] Sn lym} 4 \I,S""llmlx (3.76)

scatt
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The spin part which multiplies this spatial wavefunction is an eigenfunction of S?
and 5,.

The spatial physical wavefunction ¥S™'%1™1[P] can be expressed as a linear
combination of reactance or scattering matrix solutions \I/,JI,I}'Z in [R or S] which are
simultaneous eigenfunctions of the total orbital angular momentum operator and

its laboratory-fixed z-axis projection.

wSEmP] = 3 cShi™ (R or S|UIMET(R or S| (3.77)

IML,
We need to expand Winc and Wqcatt, first in spherical harmonics Y, m, (ﬁ,), and
secondly in partial waves, to be able to relate the physical solution to the scattering
solution already determined. It will be useful to know the asymptotic forms of the

spherical Bessel functions. These are?

(3.78)

Using the above equations, expansion of the plane wave gives
exp(tkn z) =exp(tkn R cos8)

= lijo (262 + 1)3" ji, (kns R) Py, (cos 6) (3.79)

_ o V(2a+1)m (e¥kn R

™ e R = ¢ R Yy, (R)

lg ma

The scattering amplitude is also expanded in spherical harmonics.

fira™@R) = Y Yigm, R30I (3.80)

l;m; nnllmllﬂmﬁ
lemz

The sum in Eq. 3.80 is over all values of /5, and thus is in effect a sum over states

with different parity IT, too, which is why the sum over the index IT is indicated
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explicitly. Substitution of the last two expansions into the wavefunction expression
Eq. 3.74 leads to
"ot 21 + 1) . 4 . ~
\I,:S‘n lym, - 50 ( 2 ) (e‘lk“/R _ e—:kn,Rlﬂg)lemz (R)¢n’l'lm'1 (r) (3.81)

inc m3a l.kan
lamg

for the incoming plane wave and
Sn’l’ ml _ bsn,l'lmll A e!knR
7™ = D D brmiimitymg Yiama (R)—%— éntim, (r) (3.82)

HIzﬂlg nllml

for the outgoing spherical wave. We recall the asymptotic form of the spatial

scattering matrix wavefunction from Eq. 3.69 and Eq. 3.71:

yIMsn Jsmn' il
n’l’ l’ [S R—oo E ylzll T U nllllgg [S] (R) Rnll (r)
nl ln
—sk. R om0 1, $k- R +—2la o JSIIN'U 1 (3.83)
; B ZR\/ﬁ( : Gnlliz’—e nty 2Sn1113 ")

nl lz
x oM (r, Q)
where we have substituted Egs. 3.3 and 3.4 for I and O, respectively. Identifying

. n " o " "ne ot
the coefficients of the open channel incoming waves e~**~'E in ¥Sn'him1 and the

wavefunction in Eq. 3.77 one obtains:

B U

st 2 g ¢ )

i oy
v JMl \/1—); n'lil

;203+1
Z 5"1: / 21’2 + 1) k Yl' m’ ¢n'l’ I( )

n'
I3m;

(3.84)

If we re-express Qi}}'f {,7 in terms of a sum over products of hydrogen atom functions
1°2

and spherical harmonics we obtain

NI R) = Y C(lhT;mimyM) iy my bty me (r) (3.85)

mm,
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The expression above is substituted into Eq. 3.84; one multiplies both sides of the

resulting equation by éni,m, and integrates over dr, obtaining the following:

.l’
Sn Tmy 13 . ~
JMI’ \/U—n' Em':C(I,IIIZJ’mlm,ZM)),V,m', (R)

m! ) §213+1
_25 \/ 212+1)7T k: Yp:ml2

n
Iym;

JMI;
(3.86)

We then multiply by Y (ﬁ.) and integrate over dR, interchanging l,m/, for %, mY),
which yields

; lg+1 ]
SOl T mmyM) = 574/l + e o2 (3a)

IM ks

We multiply Eq. 3.87 by C(l{l4J';mim4,M’) and sum over m; and m%. The Clebsh-
Gordan completeness relation
6_‘]]1,&'4' = Z C(llng;mlmgM)C(lllzJ';mlmgM’) (3.88)
mimga

is then used to remove all the sums on the left hand side, such that we obtain the

simple expression

S = o Timiomt) ot + Yr it ()T (s9)

‘Next we set equal the outgoing waves (eT**~® /R). This will give a relationship

between the scattering matrix and the scattering amplitudes f5:

2 o Yiama (R) gt m 1)

lz"tg
Sn'lim) ’k R
+ 00 Y binitmitams — g Yiams (R) bty m, (5) (3.90)

leﬂlz nl; m;

—la

Snihimy ! JSIn'1; ik, RgIMIT
=- Crmi, Z Ryfo, mhis il (R )
n

JMl nlyla
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The spherical harmonics form a complete orthonormal set as do the hydrogen
basis functions. Therefore one removes the sums over nl;m;lym, by multiplying by
an arbitrary spherical harmonic and hydrogen basis function, and then integrating

over the variables r,ﬁ. The equation that results is

sragntimi V(A2 X T sntimt
0 n11m1 T Hnllmllgmz
sn'lyml 87 _ssmnit (3.:91)
JML, Vin
If we replace cix;lll} ™1 with the value calculated in Eq. 3.89, use
2
0 ¢m) '
89,,6m1 = C(lilaJ;mimaM)C (I112J; m},0M) (3.92)

JM

to introduce a sum over J and M in the first term of Eq. 3.91, and simplify, we

" !
Sn'lim)

obtain the expression for bj7 ;'Y

in terms of the scattering matrix:

'1+l' —12
Sn'lim! 0 JSIn'l}1, 17T
Oimtimitams = 2 Cnihy® = Satuts 1)/ (205 + 1)”(——“,0", )
IMU, (3.93)
1
X C(llng;mlsz)C(l'll'zJ;m’10M)(z;i) ’
n

The form of this expression leads us to define the transition matrix from the open-

open sub-block of the scattering matrix.

T = g (3.94)

With this new definition the scattering amplitude expansion coefficients are written

b mbtms = Syl + mti s ()7 (L)
n Un !

3" C(liyT;mb0M) C (1l T3 mima M) TS T ata
JM

(3.95)
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We may define a new T-matrix, labeled TS (without a J), which is still square,

but has extra rows and columns spanned by the indices l3m2 and I, m), respectively,

as

nlll ml Im/ nl g
TSR aTE = 50, 3 Ol T3 mi0M)C (Lo s myma M)T? ST 02 (3.96)
JM

nlym,lamg

The sum over M may be performed, and the simplified form is

TSH""’xm'xl'zm'z _ 50 C ll ,J' IO ! Cllil,J: / TJSHn,llll; 3.97
nlymilomgy — m’2 ( 1t2v5MMy ml) ( 162 ’mlm?ml) nlyly ( ) )
J

= m{ — m; or else the

where the Clebsch-Gordan coefficients imply that m,

corresponding T matrix element is zero. We obtain for the scattering amplitude

the following:
1 '1+l’ -3 /
Sn'l' m' VUnt\2 /1 2 o 21 +1 ! =
fnl?mlxml = Z (;;) ( Kot )e‘(m’ ml)p\/ _—22 PLTT(0)
Rlaly (3.98)

Z TJISIIZ"’II‘II’C(I'IIQJ; mj0m})C (l1laJ;my my—my m})
J

where the P/ were defined in Eq. 2.68.1°

The differential cross section 05 (with the Pauli principle already having been

satisfied in Eq. 3.74) is found from the scattering amplitude, and is independent of

the angle p:

2
Sn'lim} _ Un | .Sn'lim}| 5
nllml - fnl;mx (R)
Un!
1 J 1, pmh—my ' 1 sn'limiiz0 2 (399)
= gpz| 2 TERTTTO) @k + )T
n

migl,
Examining the properties of the renormalized associated Legendre functions

P™ at 6 = 0 and 6 = 7 leads to interesting results for forward and backwards

scattering. These functions are zero for § = 0, 7 except if m = 0, which leads to the

selection rule m)} = m, for non-zero scattering in those directions.
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To obtain the integral cross section we integrate over dR:

s 'l’ ’ S III ’ ~ ~ S Ill ' 2
in':":lml :/U"lr:":lml( )dR Z l n’:ﬂ::”::hm2|
ngﬂlg
m l” _
=0 2 Ve + ey +1) (3.100)
n i

% § TSH"'I'lmllllzo TSH",I’lmlll'z’o *

nl;m;l,m, nl;m;lgmg
lzﬂlz

where the integration over § was performed explicitly using the orthogonality
relation obeyed by the P/*. The sums over [} and /5 lead to the mixing of states of

different parity. The integral cross section can also be written

Ssn'l’ " _qn
oA - ¥ s

X [(Tsnn,lllm’l)T(TSHnll,lm'l)]

nllmx nllml

(3.101)
10
1o
where we have indicated in square brackets the multiplication of a sub-block of the

T-matrix with its adjoint. Now we sum over final projection quantum numbers m

and average over initial states m/].

S Ill S I‘I ’
in’: (21: +1 ZZQn{:n:xml (3-102)

my m'

The quantity Qi{: 1 is called the summed and averaged cross section (with respect

to the magnetic quantum numbers m; and m/).

The total cross section can be expanded in partial wave contributions
"1 "
+ gt B ZQSJ " (3.103)

where the Q57 :l,i" are the partial cross sections obtained as follows. If the total
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state-to-state cross section expression is written out in full and rearranged, one
obtains

Sn'l} n'ly15
Qar, = 21, D Y)Y c@iihasmioM)TISTR B (21 + 1)

m' ll! JIM

1 3 gipg!

l, lll ,
% Z / (21 + 1) ( ? ) ey, IOMI)TJ SH:llllz (3.104)

lII

X Z C(lllz]; mlsz)C(lllzjl; mlmgM')

mmg

Using the completeness of the Clebsch-Gordan coefficients, we can perform the

sum over my, mg which gives a §7 3 M ' which leaves the following:

CHARL 1) 55 3 3) WY RS ETRE I

mi 1y LI JIM (3.105)
x C(I415J;m}0M) TISTR I C (131 7y mioM) TIST R il

The sum over m] can be performed because the Clebsch-Gordan coefficients are
zero unless m{ = M. Then there is another Clebsch-Gordan simplification due to

the relation

(2J +1)
2/(2l5 +1)(21 + 1)

(3.106)

Y CiisT; MOM) C (1115 J; MOM) = 5,,,
M

Using this relation, we are left with a simple expression for the integral cross section

for scattering from state (n'l}) to state (nl;):

QM = - Z 2J +1)PIS"0 (3.107)

nl;

where we have defined the opacity P75 l‘ by the following:

Jsn'ly an"”
et 21, Z |T7ST0, ‘,,’ (3.108)
m 1
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The above expression leads us to define the partial wave contribution as follows:

QIS (27 + )7 5ysniny

S T nl, (3.109)

From this we can also define a cross section!! that is directly related to the scattering

matrix obtained in the space-fixed representation {Jnl;l5}:

ssan'tity, _ (2T + 1)1 sepn'lily o
Oant = G T | (3.110)
nl
in terms of which
Sn'l JSIn'ly1
Qu, ' = Z Qui, ' ° (3.111)
JMI,l,

The spin weighting has not been included in the above derivation. To do so one just
averages the S = 0,1 contributions with weights (25+1)/4 in any of the expressions

(3.99), (3.101), (3.102), (3.103), (3.104), and (3.109) through (3.111).

Q= i—QS=° + %th (3.112)

3.5 Distinguishable-electron Scattering Amplitudes

The cross sections we have obtained above have antisymmetrization built right
in. Now we will obtain expressions for the scattering amplitudes for when we can
distinguish between the electrons,!? for example when a polarized beam of electrons
with spin « are scattered off polarized H-atoms. This procedure is analogous to
that used by Schatz for H + Hj,!3 but simpler because there are only two identical

particles.

Let us then consider the spin wavefunctions of the separated electron plus

hydrogen atom system in arrangement channel 1. There are four such wavefunctions

11(1,2) = a(1)a(2)
v2(1,2) = B(1)(2)
vs(1,2) = «(1)4(2)
va(1,2) = B(1)5(2)

(3.113)
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They are orthonormal eigenfunctions of S, but v, and v3 are not eigenfunctions of

S?; however they are related by the symmetry property

v2(1,2) = 03(2,1) (3.114)

Let \Il;;:;l"m‘ be a “physical” solution to the Schrédinger equation, which

behaves asymptotically at large R\ and R, as
ymp g
An'llm! ~ 'kA z
Yony ' Ra—oo€" ™™ bt my (r2)
S A
e*Fn B An'lim]

+ —fAnll my (Orys PRy )Pnlym, (T2)

Ry (3.115)

nlym,;

—~ etknRu An'lim!
R, —o0 _R_' Unll:nll (0R,,790R.,)¢n11ml (rV)
nllml S

Rewriting this expression with the choice A = 1, such that Ry = r, = R, and

likewise ry = R, = r, we have

gln'tim (1,2) R’—\';Oeik"’z(bn'l" mt (F)

phy
L LT TP PO
+ T R;PR)Pnl r
R i (3.116)
~ e*n in'lym)
r=+o0 Z r f2nllml (07'7507‘)¢n11m1(R)

nll m;
We now form the completely antisymmetric wavefunction, including spin, noting

that ¥2(1,2) = ¥1(2,1):

PAERO = AT 0, 2u(,2) - AT e u ) (e

The asymptotic behavior of this wavefunction is

\I,An’l’1 m'l (i)R’:;oeik,./ z¢n’l'l m'l (r)v;(l, 2)

ei(k”R) lll ' 'l’ !
+ > = ¢n11m1(r)[ 11:1,1,.","'%'(1,2)—ff:zlin"f‘vi(%l)]

nll m;

(3.118)
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This has the form of a physical scattering solution. Now we re-express it in terms of

the v;(1,2) spin functions of the separated electron-atom (7 =-1,4). Thus we have
lnll/ ml 2 Ill ’ II
flnllxmllv‘.(l’z) _flrrllll;n":l Zf(l nr;lm’:llvk(l’z) (3'119)

where f((k)n'; Imm‘ is the antisymmetrized scattering amplitude for scattering from

initial state (z)nlym; to final state (k)n'lim). We can solve for f((k)n'; l,‘n':“ by
inspection, or by using the completeness of the orthonormal set of functions. The

resulting expressions for the scattering amplitudes are found in Table 3-1. The

state-to-state differential cross sections are

There are six non-vanishing space-spin cross sections:
(aa)n'lym} _ _(BB)n'lim _ 1 | an'tim!  2n'lim!,|?
O(ac)nlym, — 9(BB)nlymy — b Tintymy flnz,
(Bt = ol = |t (3.121)
ofghnrimt = offghitind = = |-simtind|

If we sum over the final spin states, we can find the cross section for each initial

spin state.
(xa)n’limy _  (BB)R'Iim| _ 1 fln'l’,m’, _ f2n'l',m'l .
nllml - nllml - lnllm.l lnlxm.l
. . (3.122)
(ozﬁ)n'l’,m.1 _ (ﬁa)n Iim), _ 1 fln'l',rn'l f2n'l'1m’l
nllml nl;ml - lnllml lnllml
Averaging over initial spin states one obtains
n'l' m} 1n'l\m! 20’1t m, |2 1n'lm?, |2 'l m!, |2
1My f 1y f 1My 1 f 1M 1 f PRUST
nl;ml lnl;ml lnllml lnlxml lnllmx
(3.123)

3 fln'l'lml f2n Iim .
4 |1nlim, Inl,m

2
_ 1n'lim] 2n'lim}
- _[ |f1nllm1 +f1n11m1 +
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From Eq. 3.74 this can be rewritten as

fS=0,n'l'1 m} 2

fS=1,n'l'1m'1
nll m;

niimy _ 1|y
nl.ml k 4 nllm‘
n

2] (3.124)

+3

Al ’

" ™1 in terms of the singlet and triplet

From the above equation we express o, .

differential cross section as

n'lim}] _ 1 S=0,n'lim} 3 S=1,n'l\m}
nllml - Z nllml + Z nllml * (3'125)
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(k)n'lym}
(i)nllrn.x

Table 3-1: Antisymmetrized scattering amplitudes f and their relation

"y I - "y ’
to the distinguishable particle amplitudes f;:,ll;n":‘ and ff:,llin":‘.“

i\k aa Ba  af BB
ac fl—f1 0 0 0
Ba 0 ft -fi 0
a8 0  —f} fi 0
B8 0 o 0 fil-£3

@ The indices nlym; and n'lim] are omitted.
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CHAPTER 4

CONVERGENCE STUDIES

Although the method we have described in Chapters 2 and 3 contains no
outright approximations, the calculation still depends on many computational
parameters which must be carefully chosen to achieve convergence. In this chapter
we describe how we tested the computation with regards to several of these

parameters.

4.1 Step Sizes in the Johnson Integrator

The Johnson integrator! has no error estimation, and therefore has no criteria
for choosing the next integration step size, two features the Gordon integrator
does have.? Johnson’s method also differs from Gordon’s in that it is a “function-
following,” as opposed to “potential-following”2 routine. In classically “allowed”
regions the potential is a much more slowly varying function of the independent
variable than the wavefunction is. Because of this, one might expect that the step
sizes needed to achieve the same relative accuracy in such regions would have to be
smaller in the Johnson integrator. Nevertheless, we used it because it is both faster

and simpler than the Gordon method.

We needed to specify the step sizes for the hyperradius p as input parameters.

Increasingly larger step sizes were used as the integration progressed. Experience
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gained from using the Gordon integrator on this problem was used as a guide for
choosing the step sizes. We tested for convergence by makihg calculations with
more closely spaced points. For example, we tested the !F°dd and 3F°dd gtates at
the energies 0.76 Ryd and 0.90 Ryd, projecting at 30 bohr, and found five decimal
digit agreement in the scattering matrices obtained using the set of step sizes given
in Table 4-1, and using steps of 0.05 i)ohr uniform length. We therefore decided
upon the step sizes given in Table 4-1 for energies up to 0.96 Ryd (the threshold

for n = 5 H atom states).

These steps are only slightly smaller than those that would have been used by
the Gordon integrator. The Johnson integrator is a fourth order method which uses
a two-step algorithm; the potential is evaluated at the half-way point and at the
end of each step. This amount of numerical work per step in the Johnson integrator
is significantly less than that in the Gordon, which accounts for the larger efficiency

of the former.

4.2 Initial Value of p

The solution to the coupled differential equation in p is found by choosing a
value of the wave function and its derivative at the origin and propagating outward
from the origin. The b75%(p; 5) matrix (Eq. 2.28) must vanish at the origin to keep
the wavefunction from diverging. We choose dipb" S11(0) = I because the scattering
matrix is unique and independent of the choice of initial derivative matrix. Since we
cannot actually compute the potential matrix defined by Eq. 2.87 at p = 0, we must
choose an initial value of p, po> 0. The choice of pp should be close enough to zero
for the initial conditions to remain essentially valid. Numerically, this means that
the scattering calculation should be independent of slight variations in the choice

of po, provided po is small enough.
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The results of the first of our tests for convergence with respect to po have been
listed in Table 4-2. Here we have compared the integral cross sections (Eq. 3.108)

Hp
n'lil3

and phase associated with the S"SHM I
142

matrix element for J =0, S =0, IT =0,
I3 =11, and I3 = I} for total energies 0.76 and 0.78 Ryd (with respect to the ground
state of H). From this it was determined that po=0.1 ag was acceptably close to zero.
(Convergence with respect to the other computational parameters may not have
been yet achieved in these calculations. We assume that convergence with respect
to the initial value of p is independent of these other parameters. For this reason
the cross sections and phases reported in this section should not be assumed to be
accurate, and may not agree exactly with our accurate cross sections reported in
Chapter 6.) The projection was done at R, = 30 bohr, with 6 surface functions and
15 primitives. In Table 4-3 we list the same quantities for a total energy of 0.76 Ryd
and 0.90 Ryd, with the calculation using the “constant-p” projection method. The
similarity of the results at 0.76 Ryd using these two different projection methods
guggests that convergence with respect to computational parameters other than pg

has also been achieved.4

The 3S state cross sections (at the energies tested) were not sensitive to the
value of pg. This is most likely because of the strong repulsive nature of the potential

term (e’ST + %I in Eq. 2.87) in the triplet state, as will be seen in Chapter 5.

For higher angular momentum states, there is a large centrifugal repulsion
that makes the small p region hard to penetrate. One expects that for higher J
the minimum values of p and p will be larger than those for S-states. This indeed
is the case. We did subsequent convergence tests on J = 2 even parity and J = 3
odd parity states and found that at 0.76 and 0.90 Ryd po could be increased from
0.1 bohr to 0.5 bohr without any significant change in the final scattering matrices.
Similarly the first set of surface functions may be calculated at 2.5 bohr instead of

at 0.1 bohr for J > 2.
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4.3 Convergence with respect to projection parameters

Both projection methods, at constant R and at constant p, are exact for an
infinite surface function basis set. We must, however, use a truncated basis, which
will introduce some error. If the calculation is converged with respect to the number

of surface basis functions required, the two methods should give the same results.

4.3.1 Projection at Constant R

In the constant-R projection, the projection variable is r and the projection
integral is computed using the trapezoidal rule over the region from 0 to rpax.
This trapezoidal rule is consistent with the fact that the primitive basis functions
of Eq. 2.34 were obtained using a first order finite difference method. It is
possible to truncate the integral at rpax because the H-atom radial functions decay
exponentially with r. At constant R, w becomes a function of r, the value of wpnax
corresponding to rmax decreases as R, increases, and the primitives approach zero

at Wmax-

The integrals must be converged with respect to rmax and to the r-integration
step size Ar, which is determined by the number of steps into which the r-integration

region is divided. Convergence with respect to these parameters must be tested.

One can estimate rpax by considering the average radius of the hydrogen atom
in its various bound states. After the value of rnax is chosen, the value of each
asymptotic hydrogen atom function at rpax i8 compared with its peak value and a
warning is issued by the computer code if the function has not declined to 1% of
peak. We used a value of rnax = 50 bohr for the calculations done for energies below
the n = 3 threshold, with a value of R, for the projection of 50 bohr. Reducing
rmax t0 40 bohr made no significant difference when surface functions throughn = 3

were included.



90

We also used 70 points equally spaced in r along the projection cut, which
makes step size Ar approximately equal to 0.7 bohr. For these choices of rn.x and

Ar the R-matrix is converged to about five decimal digits.

4.3.2 Projection at constant p

For the constant p projection method the projection variable is w and the
projection points are the same values of w; at which the 1-dimensional surface
functions are calculated. That one doesn’t need a different set of “projection points”

is one of the advantages of this method.

Careful consideration must be given to the range of w over which the integrals
in Eq. 3.46 should be performed. First, the points r(w;pproj), Which appear in
the hydrogen atom functions, do not extend out to infinity, because w reaches a
maximum. These H-atom functions still are peaked near w = 0. However the
Riccati-Bessel functions appearing in the integrals Eq. 3.66 have an exponential
dependence on R(w; pproj), requiring the use of large values of w. As mentioned in
Chapter 3, it is very important that one compute the projection integral only up
to w = 7. The reason one must limit the integration to the 0 < w < 7 range is
that one is projecting on asymptotic functions in one arrangement channel only. It
is interesting to note that if we were by mistake to extend this integration range to
0 < w < 7, there are terms in the integrand of Eq. 3.46 that increase exponentially
with R(w;p), making the integrals unphysically large.

Upon implementation of the code, we found that it was not possible to truncate
the integrals before w = 7 because of the opposing w dependence of the various

factors in the integrand.

4.3.3 Comparison of Projection Methods

In Figure 4.1 we compare the 1S contribution to the 1s — 2s cross section

calculated with the two different projection methods, constant R and constant p.
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Using 15 primitives and six surface functions we projected at 40 bohr. As is evident
from the figure, the two methods give very close results. The two projection methods
are therefore indeed equivalent. In most of the calculations presented in this research
we used the constant p method because, as pointed out in Section 3.2.3, it is the
most convenient one to use in conjuction with the logarithmic derivative method

and the Concurrent Processor being developed at Caltech.®

4.4 Frequency of Evaluation of Surface Functions

The scattering results (e.g., scattering matrices, cross sections) are very
sensitive to the basis set used, and to the frequency of change of surface functions.
One would expect that an increase of that frequency would increase the accuracy
of a calculation of this sort. However it is also possible that an excessive frequency
of changing surface functions could worsen the accuracy because of the numerical

errors inherent in their calculation.

As one would expect, it is necessary to have surface functions closer together
at small values of 5 where they change rapidly with this variable. At larger values

of p, one can use the same surface functions over larger ranges of p.

In an exact calculation, the overlap matrix O75T between surface functions at
different p is real and of infinite order and is orthogonal. In practice, of course, that
matrix is truncated to finite order. The difference from orthogonality, measured by
the matrix gives a first indication of I — O/STOYST how converged the scattering
calculation for a given surface function basis set is. If the elements of this matrix
are close to zero, at least for the lower channels, there is little flux being lost due

to lack of completeness of the basis.

We have chosen the values of 5 at which to calculate surface functions such
that the overlap matrix between neighboring p is close to a unit matrix, with most

diagonal elements greater than 0.9995, most off-diagonal elements less than 0.001
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and the largest off-diagonal elements of each row or column usually of order 0.01.
The exception is in the area of an avoided crossing between two e]ST(p) vs. p curves
(see Eq. 2.61), where the two states that mix have smaller diagonal elements, and
the off-diagonal element between the two is relatively large. One must be careful
to truncate the surface function set properly, so as not to have avoided crossings
between included and excluded states, at least not when a crossing state is expected
to be important. If such a crossing happened, it would lead to a very small diagonal
element of the overlap matrix, but the compensating off-diagonal element would
have been excluded, thus leading to loss of flux. For our choice of the p, the

elements of I — O7/STO’ST for successive 5 are usually of the order of 10~* or

smaller, and the scattering calculations were converged as described below.
The ranges we found to be adequate were

p(bohr)  Ap(bohr)

0.1-5.0 0.1
5.0 — 20. 0.2
20. — 40. 0.5
40. — 60. 1.0
60. — 100. 2.0
over 100. 5.0

For these ranges it was found that the scattering matrix for J = 0 was converged
to about +0.003, the S elastic cross section Q(1s — 1s) was converged to 0.3%,
and all other !S and 3S cross sections were converged to better than 0.1%, in the

test calculations done at energies below the n = 3 threshold.

As was mentioned in Section 4.2, the small p region for larger J is strongly
forbidden. We are able to use the first set of surface functions at 5 = 0.5 bohr
without any noticeable change in the scattering matrices over using 0.1 bohr instead
for J > 1, and moving all the way to 5 = 2.0 bohr only made slight changes (about

the fifth decimal place of the scattering matrix elements).
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4.5 Projection Distance

After we have propagated the hyperradial part of the wavefunction out to a
suitable distance, we project from the hyperspherical surface functions onto the
hydrogen atom functions. This section discusses how one determines that distance.
If one projects too soon, one expects convergence problems, because it is only in
the asymptotic region that the hyperspherical surface functions become similar to
the bound states. In principle once the asymptotic region is reached the results
should be independent of the projection distance. However in practice we discovered
divergent results if the projection is done at too large a distance, and that the correct

distance is energy dependent. The full nature of this problem is not understood.

The projection distances used in our calculations were determined by comparing
the results obfained from different projection distances. Often we had much less
trouble converging inelastic partial cross sections than the elastic ones, which implies
that it is the phase of the scattering matrix which is more sensitive to projection
distance, since the former cross sections are phase-independent whereas the latter

are not.

The low energy phaseshifts of the !S partial wave were tested for convergence
with respect to both projection distance and number of surface functions and were
found to be very sensitive. The very low energy (k? = 0.01, 0.04 Ryd) phaseshifts
obtained by projecting anywhere between 6 bohr and 10 bohr agreed to about
0.01 rad, and also gave good agreement with the Schwartz calculation.® However
extending the projection distance to 15 or 20 bohr or beyond produced a sharp rise

in the phase shift.

In Figure 4.2 we give an example of how the phaseshift depends on the
projection distance. The figure contains data from the 1S lowest energy range,

where there is only one open channel. The calculations were performed using 15
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primitive basis functions and three surface functions. Figure 4.2 shows the phase vs.
energy for projection distances 8, 10, 12, 15, and 20 bohr, as well as the benchmark
values obtained by Schwartz.® The agreement over most of the energy with Schwartz
is quite good.

It is evident from Figure 4.2 that the position of the resonance is shifted to
lower energy as the projection distance is increased. Since the position of the lowest
1S resonance has been calculated fairly accurately, we can use this value as a test for
the present calculations. The resonance energy is taken as the energy for which the
corresponding collision lifetime eigenvalue has a maximum (see Chapter 6) which,
for the present single open channel case, is the same as the energy for which the

partial phase shift versus energy curve has an inflection point.

Figure 4.3 shows, for kK = 0.1 through 0.8 bohr~!, how the phase varies with
projection distance and number of surface functions, and how our calculations
compare with Schwartz’s, which are given at the left axis. The agreemeht at 8 bohr
with 3 surface functions (the triangles in the figure) is good. At the lowest energy
the results of the ppro; = 20 bohr calculation differ from Schwartz’s by 0.45 rad,
or 25 deg. At the highest energy tabulated by Schwartz, our calculations all agree
to 0.02 rad. Looking at the k = 0.1 bohr~! points, one sees that there is basis set
convergence at p = 8 bohr. As p is increased, the phaseshift undergoes periods of
rapid increase and then stability, repeatedly. Although not included in the figure,
we have found that this happens all the way out to projecting at 100 bohr. The
effect of adding surface functions is to usually decrease the phase. The phases at
higher energies (k = 0.4 — 0.8 bohr™!) are much more converged with respect to
projection distance. The l-surface function values for the phase at k = 0.7 and
0.8 bohr~—! have been omitted from the figure because they are 10 to 20 degrees
too low. This shows that coupling to closed channels becomes important even at

energies as low as 0.49 Ryd (6.8 eV).
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Above 0.65 Ryd closed channels become important, and the inclusion of higher
states must usually be accompanied by projecting at a larger distance. We found,
for instance, that the position of the first 1S resonance is converged using basis 3/5
and projecting at 30 bohr. The differences due to basis set are larger than those due
to projection distance for this resonance. The second 'S resonance is much closer
to threshold and requires projection at a distance larger than 30 bohr to even be
seen. The position of this resonance converges within 0.0005 Ryd. We have also
calculated the position of the 3S resonance, which is ten times narrower than the
second !S resonance. The convergence of these low energy resonances with basis

size and projection distance is discussed in further detail in Section 6.2.

At energies above the inelastic threshold, one uses the unitarity of the scattering
matrix as a test of convergence. (At energies lower than this the scattering matrix
always has modulus one.) We decided that if a calculation at a particular projection
distance had poor unitarity of the S-matrix (worse than 1.15, say) then that
distance was too close and a larger projection distance should be tried. If the
unitarity improves, this is taken as an indication that the new projection distance
is more appropriate. The distances we finally chose are 20 bohr for energies up
to k2 = 0.65 Ryd, 40 bohr for energies larger than this but less than the n = 2
threshold, 60 bohr for energies between the n = 2 and n = 3 thresholds, 80 bohr

for energies between n = 3 and n = 4, and 110 bohr for energies above n = 4.

According to Callaway,” the region just above threshold is a difficult one for
calculations, because one must go to rather largevalues of p before the channel wave
functions assume simple asymptotic forms. Our experience was much the same —
the region just above threshold was very sensitive to the projection distance, whereas
the resonance region slightly below the opening of a new channel was converged in
this respect, in most instances. In our calculations, the same projection distance is

used throughout an energy region (from threshold to threshold). It remains to be
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seen what would happen if instead one projected farther out for energies just above
threshold than for higher energies. Perhaps doing this would have an effect on the

many “shape” resonances we have detected (see Chapter 6).

In Figure 4.4 the phase and squared modulus of the 1s — 2s element of the 1S
scattering matrix at projection distances of 50 and 60 bohr are plotted for energies
between the n = 2 and n = 3 thresholds. We used 10 surface functions and
15 primitives to obtain these points. The agreement is to about 0.07 rad for the
phase and to within plotting accuracy for the square of the modulus, except at

0.78 Ryd, which is close to the n = 2 threshold and the agreement is to about 0.01.

4.6 Number of Surface Functions

The convergence of the scattering calculations with respect to the number of

surface functions and of primitive basis functions is discussed in Section 5.4.
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Table 4-1: Step sizes for Johnson integrator.

range of p step size number of steps
(bohr) (bohr)

0.05-15.0 0.05 299

15.0-45.0 0.10 300

45.0-105. 0.20 300
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Table 4-2: !S cross sections (in 7a2) and phases (in radians) for varying values

of starting point po, projecting at R, = 30 bohr.

po (bohr) 0.20 0.15 0.10 0.05 0.01
E = 0.76 Ryd
Q'S (1s—1s) 0.663 0.670 0.673 0.673 0.674
Q'S (1s—2s) 0.0317  0.0317  0.0316  0.0317 0.0316
Q'S (1s—2p) 0.0204  0.0204  0.0204  0.0204  0.0204
¢'S (150 — 1s0) 1.664 1.674 1.679 1.680 1.681
¢'5 (150 — 250) -0.771  —0.765 —0.764 —0.763  —0.763
¢'S (180 — 2pl) —2.584 —2.581 —2.576 —2.578  —2.575
E = 0.78 Ryd
Q'S (1s—1s) 0.628 0.634 0.637 0.637 0.638
Q'S (1s—2s) 0.0492  0.0492  0.0490  0.0491  0.0490
Q'S (1s—2p) 0.0237  0.0237  0.0236  0.0236  0.0236
¢'S (150 — 1s0) 1.683 1.693 1.698 1.699 1.700
¢'S (150 — 2s0) ~1.827 -1.823 —1.821 —1.820 —1.820
¢'S(1s0 — 2pl) 2.903 2.908 2.912 2.911 2.913




99

Table 4-3: !S cross sections (in ma) and phases (in radians) for varying values of

starting point pg, projecting at pproj = 30 bohr.

po(bohr)  0.20 0.15 0.10 0.05
E =0.76 Ryd
Q'S (1s—1s) 0.661 0.667 0.670 0.671
Q'S (1s—2s) 0.0325  0.0324  0.0324  0.0324
Q'S (1s—2p) 0.0194  0.0194  0.0194  0.0194
¢'5(1s0 — 1s0) 1.662 1.672 1.677 1.678
¢'S(1s0 — 2s0)  —0.737  —0.732  —0.730  —0.729
¢'S(1s0 — 2pl)  —2.640  —2.644 —2.642 —2.641
E = 0.90 Ryd
Q'S (1s—1s) 0.484 0.490 0.492 0.493
Q'S (1s—2s) 0.0383  0.0383  0.0383  0.0383
Q'S (1s—2p) 0.01906  0.0194  0.0194  0.0194
¢'S (150 — 1s0) 1.583 1.595 1.600 1.601
¢'S(1s0 — 2s0)  —3.001  —2.995 —2.992  —2.992
¢'5(1s0 — 2p1) 1.494 1.499 1.501 1.501
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4.8 Figure Captions

FIG. 4.1: Comparison of projection methods. The dots are the values of the !S
(1s — 2s) cross section obtained projecting at p = 40 bohr. The crosses are the

values obtained projecting at a constant value of R = 40 bohr.

FIG. 4.2: !S phaseshift vs. energy for various projection distances: 8 bohr (- - -),
10 bohr (— - —), 12 bohr (- - -), 15 bohr (— — —), and 20 bohr (- - - -). Values

calculated by Schwartz® are indicated by A.

FIG. 4.3: 1S phase (twice the phaseshift) vs. projection distance. The results
of Schwartz® are given by the lines on the inner side of the ordinate axis. The +
points were calculated using only one surface function at k=0.1, 0.2, 0.3, 0.4, 0.5,
and 0.6 bohr~!. The other basis sets — A for 3 surface functions, o for 6 surface
functions, and x for 10 surface functions — were used at k=0.7 and 0.8 bohr~! in

addition.

FIG. 4.4: 150 — 250 element of 1S scattering matrix, for two different projection
distances, vs. energy, at energies between the n = 2 and n = 3 thresholds. The
A\’s represent projection at 50 bohr, the o’s 60 bohr. Top: phase (in rad). Bottom:

square of modulus. The basis set used was 10 surface functions out of 15 primitives.
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CHAPTER 5

SURFACE FUNCTION STUDIES

In this chapter we will analyze the surface functions used to expand the full
wavefunction in more detail. We will discuss and provide plots of the primitive
basis functions, and the potentials of which they are the eigenfunctions. The surface
eigenvalues will be studied, as well as the nodal structure of the surface functions
themselves. Finally we will discuss the convergence behavior of several sets of

surface functions bases.

5.1 Primitive Basis Set

WIMSIT ig expanded in surface

As explained in Chapter 2, the wavefunction
functions ®/MST which are then expanded in primitive basis functions which are

appropriately symmetrized or antisymmetrized sums of terms of the form

Y (62,02,01,01) T,,;”"1 (w;p)/ sinw.

Since the Y/}M’s are analytically known functions and the T;'sh(w;p)’s are
obtained numerically, we will concern ourselves with the latter 1-dimensional
primitive basis functions. These functions are the numerically determined solutions

to the differential equation

_i4(£ + 1) + Vlell T-”:ll (wp)
2up? \ dw? eff P ’ (5.1)
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where Ve{fl"‘ is given by Eq. 2.38.

Each basis function has a corresponding energy eigenvalue V}',’m’l‘ (p), which
approaches a hydrogen bound state level —1/2n? hartrees asymptotically. The
principal quantum number n is related to the index p, but not in a simple way,
and the two should not be confused. We label the lowest (I1,l2) eigenfunction
with p = 1, regardless of whether the lowest eigenvalue correlates asymptotically
with the n = 1 H atom level. In general the number of basis functions exceeds
the number of surface functions actually used in the expansion of the scattering
wave function. This feature is one of the reasons we do a double expansion (i. e.,
the surface function is expanded in primitive basis functions and the scattering
function is separately expanded in surface functions). Whereas any number of
functions T;'#" (w;p), p = 1,2,...,Pmax could be included in the primitive basis
set, for any number of /;,l2 combinations, we have found that it is most appropriate
to include those basis functions which correlate asymptotically to an isolated atom
bound state that has a principal quantum number less than or equal to some given
Nmax- Lhe corresponding number of primitive basis functions depends not only on
Nmax, but also on the total orbital angular momentum J and on the parity IT, to

which (—1)"%"* is related according to Eq. 2.50.

A list of the possible basis functions is presented in Table 5 — 1. For each
asymptotic energy level given by n we have listed the additional (i. e., those in
addition to the values for 0,1,...,n — 1) asymptotic l;,l2 values that are allowed
for each J and IT. For instance, for n = 3 and J = 0 we have the following (I1,/2),p
values: (0,0), p =1 for n = 1; (0,0), p = 2 and (1,1), p = 1 for n = 2; (0,0), p = 3,
(1,1), p = 2, and (2,2), p = 1 for n = 3. The total number of primitive basis
functions for each J and parity are given in Table 5 — 2. There are both singlet and
triplet surface functions for each primitive basis function listed in Table 5 — 1 and

counted in Table 5 —2. Asymptotically we may have both l; > I3 and I; < I, states,
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which correspond to two separate primitive TPJ"'l (w; p) eigenfunctions of the same
[l112] potential (see Eq. 2.37).

When I, = I3, as is always the case for J = 0 and J = 1, even parity (due
to the triangle inequality between [;, I; and J), two separate basis functions exist,
namely T,;’f_’ (w; p), which is symmetric with respect to w = %, and TPJ_”(w; p), which
is antisymmetric. The (+) or (—) distinction depends on the sign of (—1)” "% which

is why we designate these basis functions T;! _.

When l; # l;, as in the odd J = 1 case, symmetrized surface functions are
obtained by combining ijlzll(w;ﬁ) and Tp”"2 (w; p) appropriately as described in
Section 2.4. Actually, T};””2 (w; p) is equal to Tp”"l (m—wjp), so we only calculate
Tp" fali (w; p), over the entire range of w, using the two boundary conditions, one
at w = 0 and one at w = w. This is in contrast to the l; = I, case, where one
boundary condition is at w = 0, and the other condition is on either the function or
its derivative at w = 7; these functions are only calculated over the range 0 < w < 7

and the rest is inferred by symmetry. (See Section 2.4.2.)

The principal quantum number of the ground state is n = 1. Since /; can
take values from O to n — 1, we must have /; = 0. That means the parity of a
primitive basis function which correlates asymptotically with the 1s H-atom state
is (-—1)", and the triangle relationship between J, l; and l; leads to l; = J as the
only possible value for /3. Thus the parity of the n = 1 state is (—1)". As a result,
and as indicated in the n > 1 row of Table 5 — 1, there is one, and only one, state
that asymptotically approaches the 1s H state for each J and S. This affords us a
gignificant saving in computer time if we are only interested in transitions from the

ground (1s) state, because we need include only the states with the same parity as
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the 1s state in the calculation,! and can omit the other parity.*

For J = 0 there are no odd parity states allowed. For J = 1 (P states) the
P°dd states contribute to transitions from the ground state, but the P¢¥e® ones do
not. However, as one can see from the Table 5 — 2, there are fewer P*V*® functions
than P°94, so the time saving is small, but not insignificant. In a similar manner
the D®Ve® states are needed for transitions from the ground state, but the D°dd

states are not.

If we look at the P°dd entries for n > 1 and n > 2 in Table 5 — 2, we see that
for nmax = 2 (0,1), (1,0), and (1,2) states are permitted. Why are both (0,1) and
(1,0) allowed but only (1,2) and not (2,1)? The reason is that [, is restricted to
values 0,...,n — 1, because [/; is the asymptotic orbital quantum number. On the
other hand /3 is only restricted to be between |J —!;| and |J 41|, and so is allowed

to be greater than n.

If the number of surface functions equals the number of basis functions, one
might as well have expanded the total scattering wavefunction in the primitive
basis set directly. However, one can use a large number of primitive functions
in order to get a much better, but small number of surface functions. Since the
computation time for solving the scattering (i. e., propagation) equations increases
with the cube of the number of surface functions used in the scattering function
expansion (regardless of the number of primitive functions used in the expansion
of the surface functions), the use of larger primitive basis sets for a fixed number
of surface functions permits us to improve the accuracy of the calculation without

significantly affecting the propagation time.

* Some authors? denote states with parity different from the 1s state as being
“odd,” which may lead to some confusion. These states are alternately labeled

“parity-disfavored.”
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5.1.1 Choice of grid points for finite difference calculation

The primitive basis eigenfunction-eigenvalue equation (Eq. 5.1) is solved using
a first order finite difference method. The potential function which appears in it
(see Eq. 2.32) has an infinitely deep well at both ends (i. e., w = 0 and w = ).

When the centrifugal terms are added in we obtain the effective potential Vg,

2 2
h 4_ 12(12 + 1) . 11(11 + 1) n 15%

VJI;I; A VJlell w; _ 5.2
eff 1311( p) 2“p2 COS2 % sin2 % 8#,02 ( )
This differs from Eq. 2.38 by the inclusion of the ;far;: term which appears in

Eqgs. 2.80 and 2.86. This is done for subsequent convenience. The potential of
Eq. 5.2 diverges to 400 at w = 0 and 7 for /; # 0 and I3 # 0. If either [; = 0
or l; = 0, the corresponding centrifugal term vanishes and the effective potential
has an infinitely deep well at the respective end(s) (w = 0 or 7). To illustrate, the
effective potential for J = 0, [; =l = 0 has been plotted in Figure 5.1 for severél
values of p, and the counterpart for /; = l; = 1 has been plotted in Figure 5.2.
In Figure 5.3 we show an example of a non-symmetric effective potential that has
one repulsive wall and one infinitely deep well, obtained with J = 1, [; = 0, and
[, =1, and in Figure 5.4 is displayed the J = 1, [; = 1, l; = 2 effective potential,
which consists of two finite wells of different depths. A noticeable feature of these
potential curves is that there is a discontinuity in their derivatives at w = 7 /2. The

potential itself is, however, continuous everywhere, except at w = 0 and .

The finite difference method approximates the eigenfunction with straight
line segments for the evaluation of first derivatives and this is not a very good
approximation for classically allowed regions of space in which the potential changes
rapidly, as is the case for infinitely deep attractive wells. We determined that near
w = 0 for I; = O the finite difference grid points need to be spaced 1-2 orders of
magnitude closer together than in the central region (w ~ 7) where the potential

flattens out.
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When !} # 0 (or [3 # 0), this extra dense grid is not needed, as the wavefunction
is very small near w = 0 (or w = 7). Therefore we used two different sets of values
of w to calculate the 1-dimensional basis functions. When [; = 0, we set up five
regions of equally spaced grid points in the range 0 to 7. The points for w > 7 were
arranged symmetrically. When /; > 0, we collapsed the first region into one point,
so there were only four regions. Up to a certain p-cutoff, the regions were defined by
an angular range, independent of p. These regions and grid point positions are listed
in Table 5 — 3. After this cutoff (usually 106 bohr) we chose the points according

to the method described next.

We found that in the asymptotic region of large p the 1-dimensional wave-
function Ti,”"l (w; p) was independent of p if the variable w was scaled by p, i. e.,
that

T (w;p2) = T(Z—:w;pl) (5.3)

Thus it was appropriate in this large p regime to define the w regions by a length of
arc, instead of by an angle. This injects an added complication in the computation
of overlap integrals, because the primitive functions for different p (in this range)
are obtained at different w grid points. This factor was taken care of by appropriate

cubic spline fits to the eigenfunctions.3

The even-parity primitive basis functions with J > 1 have a feature that is
not present in odd ones or in lower J functions. The basis functions with I, = [,
will have the normalization constant Ny,;, = 1, but the l; > [, functions have
Ni,1, = 1/4/2 because the symmetrized function is the sum or difference of two
separately normalized non-symmetrized functions of the form given at the beginning
of Section 5.1. The normalization factors must be taken into account when
calculating potential matrix elements and projection integrals. The normalization

factors Ni,i1, cannot be collected, via the distributive property, into one overall
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normalization factor IV for the total wavefunction, as they would be for 1:3S or
1,3podd gtates, for example. But it is not necessary that the total wavefunction be
normalized, because any normalization factors will not affect the final scattering

matrix.

5.1.2 Basis function plots

In this section we will describe the primitive eigenfunctions that were obtained
from the potential functions graphed in Figures 5.1-3. In Figure 5.5 we have plotted
the lowest three 3S (i. e., antisymmetric) eigenfunctions corresponding tol; =l =0
at the same values of p as in Fig. 5.1. The 3S eigenfunctions corresponding to

l; =13 =1 are plotted in Figure 5.6.

The effective potential is symmetric — giving rise to symmetric and antisym-
metric eigensolutions — only if /; = I3, as stated before. If I; # l;, then the
potential has the form of a double well, with one well deeper than the other and a
relative maximum at w = Z. (If /; or l; = 0, one well is infinitely deep.) The podd
primitive eigenfunctions with [; = 0 and [, = 1 are plotted in Figure 5.7. Note
that no spin state is indicated for the odd J = 1 primitives, because spin, which is
used to label surface functions, is not a good quantum number for primitive basis

functions which are neither symmetric nor antisymmetric around w = 7.

Forl; # 0 and I3 # 0, and for small values of p, the effective potential looks like
a single well and its eigenvalues are significantly larger than the well minima. The
corresponding eigenfunctions are similar to sine waves, spanning the entire range of
w. As p is increased, the potential wells become narrower and the eigenvalues drop
to lower energies. When the eigenvalue drops below the maximum in the potential
at w = Z, the shape of the eigenfunction is dramatically affected. The function
must tunnel through the barrier to get from the w = 0 to the w = = side of the

barrier. For sufficiently large p the barrier is so wide that each eigenfunction is
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concentrated in either one well or the other or both if the potential is symmetric.
Their values are very small in the wide classically forbidden region. This behavior
is clearly seen in Figure 5.7. This kind of behavior is also displayed by the lowest
eigenfunctions in Figures 5.5 and 5.6 also even though /; = 0 for these potentials.
The reason is that in this case also the width of the barrier becomes large and for
eigenvalues below the top of the central barrier the eigenfunctions become localized

in one or the other (or both for I; = l; = 0) of the narrow well regions.

For l; = l3, and eigenvalues below the top of the barrier, asymptotically the
symmetric functions look just like the antisymmetric functions in the 0 to 7 range

and at the same time, the corresponding eigenvalues become degenerate.

We have observed numerically that the eigenvalues of a non-symmetric
potential, except for the lower eigenvalues, come in pairs, which become degenerate
as p approaches infinity. This is to be expected because the eigenvalues should
be approaching the hydrogen spectrum in each well separately. The number of
non-degenerate levels is equal to |l; — I;|, and these will correspond to the lowest

eigenvalues in the deeper well.

5.2 Surface Function Eigenvalues

In this section we examine the behavior of the surface eigenvalues /57 (p)
as functions of p. These eigenvalues are the major contribution to the diagonal
elements of the interaction potential U757 in the radial equation (see Egs. 2.84
and 2.87) and are obtained by diagonalizing the potential matrix Vo/57 + u/57
which appears in Eq. 2.60. Others have made model calculations of the resonance
energies and the bound state level of H~ from such curves.#:® It will be useful
to examine how features of these eigenvalue adiabatic curves correlate with the

scattering behavior. As a general rule we find that the adiabatic potentials formed

by the !S and 3P°d4 eigenvalues are much more attractive than those of the 3S and
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1podd cyrves, respectively. We also find, as expected, that these eigenvalue curves

become more repulsive as J increases.

As p goes to zero, the surface functions and primitive basis set become the
hyperspherical harmonics X,Jz?f,\, which are given by the analytically known Jacobi
polynomials ylfll (w) multiplied by y,Jz ﬁ! and the corresponding eigenvalues are given
by A(A+4)/2p?, where ) is a non-negative integer.® These eigenvalues are degenerate
in /; and /3. The ordering of states at p ~ 0 is different from the asymptotic ordering
(at p ~ 00), which is that of the principal quantum number n, and states which are

nearly degenerate at small p will not necessarily be degenerate at large p. Most of the

adiabatic curves will cross at small values of p, where the eigenvalues are still large,

JSITy

and the surface function coefficient matrix Qi,1p

(see Eq. 2.56) is close to diagonal.
This kind of crossing is different from the “avoided crossing” which usually occurs
at larger values of p, near or beyond the minimum of the eigenvalue. In Table 5 — 4
we have indicated the correlation between the states for small (0.1 bohr) and large
values of p for the !S functions. We will not go into detail here as to how these A, {1,
and [, combinations are determined,® but let us mention that for even parity states
such as !S, A is only allowed positive even values. (We should also notice that the
asymptotic states are not eigenstates of 5 2, the z component of angular momentum

of the isolated H atom, but are linear combinations of such states having the same

n and /; quantum numbers.)

Looking at the first entry in the table we see that the lowest eigenvalue
corresponds to A = 0, (I1,l2) = (0,0), the second lowest state has A = 2,
(I1,I12) = (1,1), and for A = 4 we have two degenerate states, (I1,l2) = (0,0)
and (2,2). The reason there is no 'S (0,0) state corresponding to A = 2 is that
the second lowest (0,0) Jacobi polynomial is antisymmetric, and corresponds to 3S.
Corresponding to A = 6 we have both (1,1) and (3,3), and for A = 8 we have three

degenerate states, with (I1,l3) equal to (0,0), (2,2), and (4,4). It is fairly easy to
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assign the p ~ 0 functions to their counterpart asymptotic functions. If we do so,
we see that the small p energy ordering of states is as follows: 1s; 2p; 2s and 3d;
3p and 4f; 3s, 4d, and 5g, etc. We will return to this when we make plots of the

surface functions and examine their nodal structure, in Section 5.3.

One of the most interesting features exhibited by the surface eigenvalues is the
presence of “avoided crossings,” at which two states become almost degenerate, and
“repel” each other. In our calculation we have kept all off-diagonal terms in the
radial equation coupling matrix, but certain approximate methods, in which such
coupling are omitted, assume that the surface functions vary slowly with p (i. e.,
display adiabatic behavior) and have to treat these avoided crossing regions in a
special way, so as to preserve the character of the surface functions across these
regions. The first such example of an avoided crossing we encountered occurs in
the 1P°dd partial wave, between the second and third lowest states. This avoided

crossing will be discussed in more detail in Section 5.2.2.2.

We have labeled the surface functions by the general index k, along with
total angular momentum J, spin S, and parity IT. The index k simply orders
the eigenvectors according to their eigenvalues, the eigenvector with the lowest
eigenvalue being labeled k = 1. The index k stands for a set of quantum numbers
yet to be determined. Each surface function eigenvalue asymptotically approaches
an H atom energy level n, but /; and /5 are not good quantum numbers for labeling

surface functions.

A scheme has recently been developed which assigns quantum numbers (K, T)
and A to the surface functions. The values of (K,T) and A are assigned
phenomenologically after the surface functions and energies have been obtained as a
function of p. These assignments are based upon features of the angular and radial

correlations evident from the surface functions”-® and result in the eigenvalue curves
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with similar (K,T) and A, but different J, S and IT, having similar features. The
quantum numbers which replace /; and l; are K and T. The (K,T) classification
scheme is more suited to the adiabatic decoupling approximation because it assumes

surface functions whose character does not change with p.

The potential curves we obtain fall into three broad classes, which have been
assigned values of A = +1,0 by Lin.® The A = +1 curves have deep attractive
wells, at relatively small values of p. The A = —1 curves are also attractive, but the
wells are much shallower, broader and therefore reach their minimum value at larger
values of p. The A = 0 curves are generally repulsive. In Lin’s classification scheme
A = +1and A = —1 curves can cross, but the A = 0 curves, which are usually much
higher than the other curves, aren’t allowed to cross. For Lin’s adiabatic surface
functions the quantum numbers (K,T)4 are independent of p. Our non-adiabatic
surface functions, to be classified similarly, would have to be analyzed on the basis of
the adiabatic characteristics, which would make (K,T)# change across an avoided
crossing. Lin has shown, for states of the He atom, that as J increases, fewer of
the states have A = +1 and more of the states correspond to A = 0. This agrees
with our general observation that the eigenvalue curves become more repulsive with

higher angular momentum.

5.2.1 n=1 eigenvalues

The next series of figures show how the surface function eigenvalues vary with

p, and how their eigenvalues converge at large p to the hydrogen atom eigenvalues.

The energies plotted have had the term 15": added to the eigenvalue €757 (p).
8up 1

This term comes from replacing ¥ with p~3¥ to remove the first derivative in
p term, as indicated in Egs. 2.81 and 2.82.) The lowest 135, 1,3pedd 1,3Deven
and 1:3F°dd ejgenvalue curves that converge to the ground state of H at large p

are shown in Figure 5.8. Each corresponds to an effective potential seen in the
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elastic scattering for that particular J, S, and IT in the adiabatic decoupling
approximation. Summarizing the main features we note thét only the !S curve
has a significantly deep attractive well (having a depth of 0.26 h with the minimum
occurring at 1.7 ag). The 3S curve has a very shallow well, only 0.007 h deep, with
a minimum at 6.8 ag. Purely repulsive potentials are obtained in the !podd 3podd,
and all higher J states. At large values of p, the eigenvalue curves for J and J — 1
are separated from each other by J/p?, which corresponds to the difference in the
centrifugal potential given by J(J+1)/2p2. The lowest potential curves obtained by
Lin? match ours very well. For J > 2, the splitting between the singlet and triplet
curves is very small, making those curves coincide with the plotting accuracy of

Fig. 5.8. The reason for this behavior is that the centrifugal term dominates.

5.2.2 n=2 eigenvalues

There are two n = 2 eigenvalues each for the 'S and 3S surface functions (2s0
and 2pl), three such states for all higher J states with parity (—1)7 (2sJ, 2pJ — 1,
and 2pJ + 1), and just one for states with parity (—1)7/~! (which is 2pJ). These
surface functions form a one-to-one correspondence with the same number of n = 2
level asymptotic states (quantum numbers JSIInlyl;). There are three distinct
types of eigenvalue potential, as can be seen in Figs. 5.9 through 5.13: deep well,
shallow well, and repulsive wall. We have found that the deeper wells, for all J,
have minima at around 7.5 bohr, whereas for the shallower wells these minima occur
at about 15 bohr, which is consistent with the observations of Lin.®2 Considering
that the second Bohr radius is 4 bohr, and that the average distances (r) from the
nucleus of the 2s and 2p electrons are 6ag and 5ag, respectively, the well minima
are all larger than these measures of the size of an atom. However, that should
not come as a surprise, since the hyperradius p depends on the radial coordinate

of both electrons, p = /r? +r2. The shorter well distance, 7.5 bohr, is roughly
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equivalent to the square root of the sum of (r3,)? and (r3p)?, and the larger distance

is commensurate with the square root of the sum of (ry;,)? and (ra;,)2.

It has been mentioned that the !S, 3S and 3Pp°odd 1podd ejgenvalue curves
resemble those of the H, molecule for bonding and anti-bonding states.* In H,
the repulsive 2T} curve results from the antisymmetric character of the electronic
wavefunction, with a node midway between the nuclei. Likewise, the 3S state has

an extra node, compared to the singlet state, at w =

b}

There exists a one-to-one correspondence between parity-disfavored states
(IT = (—1)7+!) with quantum numbers J, K, T, and another set of parity-favored
states which are one energy level lower, characterized by quantum numbers J — 1,
K —1,T—1 and have different spin quantum numbers (singlet < triplet).® This can
partially be seen from Table 5 — 2, where only the total number of states for each J
and parity are listed. Thus, for example, the behavior of !P¢'*2 and 3P®VeR n = 2
eigenvalues is expected to mimic the 23S and !S n = 1 eigenvalues, respectively.

Indeed this is exactly what we have found, which will be discussed below.

5.2.2.1 1S and 3S eigenvalues

The two curves of S eigenvalues that converge to the n = 2 H level at large p
are shown in Figure 5.9, along with the three that converge to n = 3 and the four
that converge to n = 4 levels. Considering just the n = 2 eigenvalue curves, the
lowest one has a well of 0.068 h, the bottom being placed at 7.6 ag. The other curve
is repulsive and has an interesting plateau from 11 ag to 16 ao at —0.115 h, which
is not an avoided crossing. The n = 2 eigenvalue curves for the 3S states are the
lowest two curves plotted in Figure 5.10. The well in the lowest is much shallower
than that for the corresponding singlet, being only 0.012 h deep with a minimum
at 15.0 ap. Once again, the other one is repulsive. Both the singlet and the triplet

J = 0 n = 2 eigenvalue curves become nearly degenerate by 25 ag. According to
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the (K,T)“ nomenclature, all !S states have a value ofA equal to +1. Conversely,

all 3S states are assigned an A value of —1.

It is apparent from Figs. 5.8 and 5.9 that the attractive 'S eigenvalue curves
are much more attractive than the corresponding 3S ones. The repulsive behavior

of the 3S curve comes from the extra node in the 3S surface functions at w =

SR

5.2.2.2 1,3podd and 1,3peven gigenvalues

The eigenvalues of the three !P°4d states and one 3P€Ve™ state that asymptot-
ically have principal quantum number n = 2 are plotted in Figure 5.11. The lowest
1podd state has a well depth of 0.0217 h at 8.0 bohr; there is also an avoided crossing

between the two lowest !Podd

curves which gives rise to a maximum at 14.0 bohr
and another minimum at 15.2 bohr in the lowest of these curves. This avoided cross-
ing also causes the second eigenvalue curve to have a well of 0.0071 h at 13.6 bohr
and a small barrier, 0.0001 h above the n = 2 hydrogen level, at p = 35 bohr.
The third !P°4d state is repulsive. It is the barrier in the second eigenvalue curve
which leads to the *P°dd shape resonance at 0.7511 Ryd (see Section 6.3). The
single 3PeVen eigenvalue curve has a well 0.0234 h deep at 8.0 bohr, which has been
shown to be deep enough to support a true bound state.* For values of p smaller

1podd gne, but then

than 13 bohr the 3P¢¥eR eigenvalue curve is close to the lowest
crosses over to become very close to the second curve. At small values of p, the
difference is due to the different dominant value of I3, (I = 1 in the 3P®Ve® state,
but the lowest n = 2 1P°9d gurface function contains mixtures of I = 0 and [, = 1
primitives, primarily) which determines the centrifugal potential. Apparently the
difference between the two potentials (and the fact that for the !P°dd partial wave

there is a lower, 1s level with which it may couple), is enough to change a bound

state into a shape resonance.

Of the three 1P°dd eigenvalue curves that asymptotically approach n = 2 level,
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the lowest is usually labeled 2sp+, meaning that the independent-electron model
quantum numbers (/;,l/2) are primarily (0,1) and (1,0), and that the dependence
of the surface function on w is nearly symmetric about %.9 Similarly the second is
given the label 2sp—. This means that there is an extra node in the wavefunction of
the 2sp— state around w = 7 which prevents both electrons from being close to the
nucleus at the same time. The pronounced avoided crossing at 13.5 bohr causes the
lower curve and corresponding eigenfunction to change in character from + to —,
and vice-versa for the second curve. The higher, repulsive curve is given the label
pd, meaning (l;,l2) = (1,2). The pd state is not very important in the discussion

of the 1P°4d shape resonance.

It is interesting to compare how these simple labels correlate with the surface
function expansion coefficients for the appropriate primitive functions, which are
the second and third eigenfunctions T,]=1:1:=0/2=1(,)) and the lowest T;1'2(w) one.
From the plots of P°44 primitives in Fig. 5.7 it is seen that Tp2%(w) has one node,
and at large values of p the density is concentrated at the w = 7 end, and the
node becomes negligible. (By saying a node “becomes negligible” we mean that
the node exists between where the function is vanishingly small but positive, and
where it is vanishingly small but negative.) This primitive function correlates with
the 2p function at large p. The next primitive has two nodes, one of which becomes

negligible for large p, and correlates asymptotically with the 2s function.

The actual coefficients of the 1P°4d n = 2 surface functions, at p = 20 bohr

are
T2101 T3101 T1112
o, .47 -.83 .30
d; .82 28 —.49
d, —-32 —-48 -.81

From this matrix it is evident that the labels 2sp+, 2sp—, and pd are somewhat

misleading. It is true that the relative sign of the coefficients of the two ‘sp’ primitive
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functions is reversed in going from ®; to ®3, and that the ‘pd’ primitive function
is the major contributor to ®4. But in ®3 the ‘pd’ primitive contributes more than
the second ‘sp’ primitive, so its contribution is non-trivial. Each of the surface
functions has a coefficient greater than 0.8 for one contributing primitive, instead
of the expected 2sp *+ 2ps structure. The coefficients are not much different just

before the avoided crossing, at p = 12 bohr, but the characters of ®; and ®; are

interchanged:
T}O1 Tlo1 T2
3, 85 .12 —.47
o3 24 —-94 .22
o, 40 .31 .83

The only place where ®; and ®3 have approximately equal contributions (with
opposite signs) from the two sp primitives is when they are undergoing the

transformation, in the region of the avoided crossing (the p range 13.4 to 13.6 bohr).

Comparing these eigenvalues to those reported by Klar and Klar,!© we find
that these authors obtain an avoided crossing at about p = 14 bohr, but our
eigenvalues are about 0.01 hartrees lower. Lin also gave the results for !Peodd
states, but he used an adiabatic representation which leads to true crossings between
the corresponding eigenvalue curves.*®> When the curves are allowed to cross, Lin
obtains for the + state a well 0.019 h deep, located approximately at 8.5 bohr,
a barrier 0.0024 h high (measured from the asymptotic value of the energy) and
an asymptotic potential that varies as +2/p2. The — state gives a shallower well
(0.006 h, minimum at about 15 bohr) which behaves as —3.71/p? asymptotically.
Lin’s calculation only included [l1,l2] = [0,1] and [1,2] states, and the diagonal
term of the second derivative coupling matrix (see Eq. 2.98) has been added
to the eigenvalue term. Our calculation uses 25 primitive functions as listed in
Table 5 — 2, and because we have diabatically changing surface functions, there

is no second derivative coupling term. Using this much larger basis, the potential
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curves obtained are lower in energy, but the barrier is still present. The shape
resonance is still clearly seen in our 1P°4d scattering results. This resonance has

also been seen by Callaway,!! and verified experimentally by Hamm, et al.12

The 3P°dd eigenvalue curves correlating asymptotically to n = 2 H atom
level are displayed as the three solid curves in Figure 5.12. The lowest of them
is attractive, having a well 0.055 h deep at about 7 bohr, and the other two are
repulsive states. The attractive well is much deeper than the corresponding !P°dd
well in Fig. 5.11, but not quite as deep as that for the corresponding S state
of Fig. 5.9. There is no crossing between these 3P°dd n = 2 states, which leads
Lin to conclude that an n = 2 shape resonance in 3P°4d is impossible.4 This is in
direct contradiction to the prediction of such a shape resonance on group theoretical
grounds by Herrick.!® In our calculation we find evidence of a short-lived shape
resonance in the 3P°d4 partial wave. We have found similarly short-lived resonances
in other partial waves as well, using a collision lifetime matrix eigenvalues analysis.
The !Peve? eigenvalue curve is almost repulsive, having a very shallow well, much
like the 3S n = 1 eigenvalue curve. This occurs for the same reason; the extra node

”

about w = % in the 'P°¥*® primitive functions which is not present in the 3peven

primitives.

5.2.2.3 Higher J states

From Figure 5.13 it is seen that the 1D®'®® n = 2 lowest eigenvalue curve has

a well 0.027 h deep at 8.4 ap and the two other ones are repulsive. The 3Deven

n = 2 eigenvalue curves are shown in Figure 5.14: the well in the lowest occurs at

15 ag and is 0.004 h deep, while the two others are repulsive. The lowest eigenvalue

curves for the n = 2 !D°4d and 3D°4d gurface functions (not displayed) are both

repulsive. All of the n = 2 eigenvalue curves of the J = 3 surface functions are
15K

repulsive; however one of them has a shallow well if the 8pp7 term is not added in.
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For all higher values of J we expect purely repulsive eigenvalue curves, because of

the large centrifugal potential.

5.2.3 n=3 eigenvalues

The eigenvalue curves for higher energy states (n = 3,4) display a larger
number of avoided crossings and barriers. The two lowest 1S n = 3 curves each
have a well, 0.030 h deep at 18.6 bohr, and 0.010 h deep at 19.4 bohr, respectively
(see Fig. 5.9). The two lowest 3S n = 3 curves (see Fig. 5.10) also have wells which
are not as deep, just as for the corresponding n = 2 curves. These wells are 0.009 h
deep at 28.5 bohr, and 0.0007 h deep at 34 bohr, respectively. The third state, both

for the singlet and triplet spin states, is repulsive.

There are five J = 1 states of odd parity for n = 3 for each spin.
The corresponding eigenvalue curves are plotted, along with those for n = 4,
in Figure 5.15 for !P°dd and Figure 5.16 for 3P°dd, The five !P°4d curves
which asymptotically correlate with the n = 3 H atom levels have the following
characteristics. The lowest curve has a well 0.0200 h deep at 18.8 bohr and an
avoided crossing with the second curve around 30 bohr. This second curve, which
has a well 0.0085 h deep at 28.5 bohr, also avoids crossing the third one, at around
20 bohr. The third eigenvalue curve has a barrier less than 0.0001 h high, due to
the aforementioned avoided crossing with the second curve. The fourth and fifth
curves are purely repulsive. The fifth one also exhibits an avoided crossing with an

n = 4 higher state.

The lowest 3P°9d eigenvalue curve has a well at 18.4 bohr which is 0.0281 h
deep. The second one, due to an avoided crossing, has a double well, the minima
of which are at 19.8 bohr (0.0071 h deep) and 29.5 bohr (0.0047 h deep), with a
relative maximum 0.0027 h high, measured from the bottom of the deeper well.

The third curve also has a well (0.0035 h deep at 26 bohr), and the fourth one
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is repulsive. The highest curve exhibits an avoided crossing with an n = 4 curve,

which gives a barrier 0.0004 h high with respect to the bottom of the adjacent well.

There are six surface functions that asymptotically approach linear combina-
tions of n = 3 H atom states for J > 1. As seen in Fig. 5.13, the three lowest
1Deven ejgenvalue curves are attractive, with minima at 18.2, 18.8, and 28.0 bohr
respectively, and corresponding depths of 0.024, 0.008, and 0.003 h. The minimum
in the third curve is due to an avoided crossing with the second one. The fourth
curve, due to an avoided crossing with the third, has a minimum at 25.5 bohr and
a barrier to its right which is 0.0008 h high, measured from that minimum. The
fifth curve is repulsive, and the sixth one has an avoided crossing with an n = 4
curve. The lowest three D¢V n = 3 eigenvalue curves (see Fig. 5.14) are attractive
with minima at 18.6, 29.5, and 32.5 bohr, with corresponding well depths of 0.018,
0.003, and 0.0014 h. The fourth and fifth curves are repulsive, and the sixth and
highest curve has a ledge at about 35.5 bohr caused by an avoided crossing with an

n = 4 curve.

The two lowest n = 3 1F°dd eigenvalue curves, as seen in Figure 5.17, have
an avoided crossing, as a result of which the lowest has a barrier (in addition to
a well), and the second a well. The next three curves are repulsive, and the last
one has a sharp avoided crossing with an n = 4 curve at 39 bohr which produces a
barrier, though the curve is still repulsive. As seen in Figure 5.18the lowest n = 3
8Fodd eigenvalue curve has a relatively deep well, followed by three repulsive curves
which interact relatively little, and two more which have a sharp avoided crossing

with each other. In addition, the highest curve has a sharp avoided crossing with

the lowest n = 4 curve.

5.2.4 n > 4 eigenvalues

The number of surface functions which correlate asymptotically to n = 4 and
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n = 5 H atom levels increases dramatically, especially for large J. The asymptotic
energies also become closer as n increases, so the n = 4 curves don’t separate from
n = 5 and n = 6 ones until large values of p, of about 100 bohr are reached. The
proximity of these eigenvalue curves, out to large b, produces multitudinous avoided
crossings. As a result, to obtain converged n = 4 level eigenvalues in the interaction
region (i. e., relatively small p) one needs to include primitive basis functions up to

n = 6.

5.3 Surface Function Plots

In this section we describe a method for making contour plots of the amplitudes
of surface functions. The nature of electron correlations between two excited
electrons can be examined in terms of these contour plots. The surface functions
are actually five-dimensional, but if we use the body-fixed, instead of space-fixed,
representation, the functions can be expanded in the analytically known Wigner

rotation functions, D{M (p,8,1).14 The expansion is

2J +1
/MM = 37 (-1)% (25 ) DAM (0, 0,9) FE ™ (w, %) (5.4)
Q

where the range of 2 is from —J to J. The angles ¢, 0, and % have been defined
at the end of Section 2.1. For J = 0 this summation reduces to a single term
and ®%°57 and F25 become proportional to one another since D3° is a constant.
The two dimensional functions, F;{ 7 (w,~; p), are found by equating the expansion
for /M5 gbove with that made in Chapter 2 in space-fixed coordinates, namely
Eq. 2.56. Doing so one obtains

FET(w,mp) = Y al (o) [(-1)" €Ik 0,-0,0) A2 (1) £ (w3 p)

lalyp (5.5)
+(=1)7+5-T+aC(J1,01;Q, —0,0) A2 (7) t]1ah (W—w;p)]
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where tglzll (w;p) are the 1-dimensional primitive basis functions defined by
Eq. 2.34, a{zflfgi(p) are elements of the surface function coefficient matrix obtained
by solving Eq. 2.60, and P,n (7) is the renormalized Legendre polynomial defined by
Eq. 2.68. It is easily shown that I FI8 (e fy;p)‘ is independent of the sign of (1.

From the definition of the renormalized Legendre polynomial one has
PR = (-1)7P8() (5.6)
and from elementary properties of Clebsch-Gordan coefficients one has
C(Jlhii;0,-0,0) = (-1)7 1 -hc(J1,1,;-0,0,0) (5.7)
Combining Egs. 5.5, 5.6, and 5.7 one obtains for F,{fg the following result:

FISE = (<17 Y af$I(0) [(~1) 7= C (Talai 0, ~0,0) A8 (1) 252 (w3 )

lzLp
+(=1)7+5-T=h(J1501;0,-0,0) P2 (7) tyth (r—w; p)]
(5.8)

The right hand side of this expressions differs from Eq. 5.5 only by the presence
of the factor (—1)@+7, and by factors (—1)"*~!2 contained within the summation.

However, since the sum is over states all having the same parity, one has
(-1 = (-1)h" (5.9)

and these terms can be factored outside the sum over /1 and /5. Therefore there
are J + 1 subfunctions F{gln for each set of quantum numbers JSIT+ which must
be calculated. The hyperspherical coordinates p, w, and « are related to the 3-
dimensional mathematical space OXYZ (described in Section 2.2.3) which was used
to obtain a physical model of the potential energy function, and the angles w and

~ are defined as spherical polar angles in this space.
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In order to represent the functions F;;° (w,~; p) it is convenient to map the
hemisphere in OXYZ space defined by p = constant, 0 < ~ S 7,0 < w < 7 onto
a plane. Such a mapping may be achieved for 0 < w < %, corresponding to the
northern (i. e., top) half of that hemisphere by defining a plane IIx tangent to it at
the point IV for which w = 0 (i. e., the north pole, as displayed in Figure 5.19). We
define axes NXy and NYy on that taﬁgent plane which are parallel to OX and OY,
respectively. To a point P(w,v;p) (0 € w < %) on the northern “quartersphere”
we associate a point @ on the intersection with the plane defined by OZ and P
and for which the IV to @ distance is equal to pw, i. e., the length of the NP arc
of circle. For points on the southern quartersphere, we adopt a similar mapping
onto the plane IIg tangent to that quartersphere at the south pole S. We can now
display the functions F;; 7 (w,~; p) by contour diagrams on the OXyYx (Y > 0)
or OXsYs (Ys > 0) half planes.

The cartesian coordinates of the point Q(Xy,Yy) are related to the hyper-

spherical coordinates of the point P by the following realtions:

XN = pwcosy
(5.10)
YN = pwsiny

Lines passing through the origin have equations of the form v = constant and circles
centered on N have equations of the form w = constant, corresponding respectively
to meridian lines and parallel lines on the hemispherical surface in OXYZ space.

The J > 0 surface function coefficients F;i T (w,~; p) do not have symmetry

with respect to w = 7, so for them it is necessary to make plots for both

quarterspheres. Sometimes it is more useful to map onto a plane tangent to the

hemisphere at the point v = 0, w = 7 situated on the OX axis or at the point

v = 7, w = 7 situated on the OY axis. The best display involves mapping onto all

three of these planes.
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The boundary conditions satisfied by F;;° 7 (w,~; p) for y = 0 and v = 7 depend

on the value of 1; for ! = O the first derivative of this function with respect to =
vanishes at the boundaries, whereas for odd values of 1 the function itself vanishes,
and for non-zero even values of 1 both the function and its derivative vanishes.
These conditions, which are proved below, arise naturally out of the surface function
expansion Eq. 2.30, which contained spherical harmonics in space-fixed angles, and

are necessary to insure single valuedness of the /M5,

The tumbling angle ¥ is undefined when v = 0 or 7, because the two vectors

ry and ry are in alignment. The Wigner rotation functions have the form
DM (p,0,9) = e™MPd3q(0)e™ ¥

In order for the surface function (Eq. 5.4) to be single-valued, one of two conditions
must hold. Either D{M(p, 6, ) is independent of ¢, or the coefficient FLP R (i, 73 p)
vanishes. If 1 = 0, the first condition is true, which allows Fi{(;g T t6 be non-
vanishing along the v = 0 border. If 1 # 0, the coefficient F;{; T (w,~;p) of the
Wigner function must vanish at v = 0 and =:

F T (w,v;p) o =0 for 1#0 (5.11)

To obtain the boundary condition on the derivative of F;{,S T(w,~;p) at y =0 and

m we examine the values of the Lengendre polynomials and their derivatives with
respect to v, since F;°7(w,~;p) has been expanded in them. An examination

of these functions reveals that for all j, if () is an even integer the value of the

derivative at 4 = O is zero. The derivative is non-zero when (1 is an odd integer.

The hyperradius p is not directly involved with describing the correlation
between the electrons. Excitation in p corresponds to an increase in the size of

the system and singly excited states. Lin has used a different scheme!® to plot the
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“surface charge density” of the surface functions. For values of J greater than O he
averages over the Euler angles, as opposed to our method where we obtain separate
plots for each value of |(|. Although it would be nice to compare our surface
functions with those obtained by Lin, the differences in representation make this
somewhat difficult. We have chosen to plot the amplitude functions F;17 7 (w,~; p),
using the polar coordinates (w,7), whereas Lin has converted w/2 and ~ into
cartesian coordinates for his plots, and plots the square of the wavefunction times
the volume element. This difference makes it difficult to comment on the points
discussed by Lin, though there are some features, namely the nodes, which are
similar. He has shown that all singly excited states of H~ have nodal lines along
p = constant, and no radial nodal structure in the w coordinate, while doubly

excited states have nodes in w.

The plots of F;;°™ (w,~;p) are useful in analyzing the nodal structure of the
surface functions, for demonstrating the quasiadiabatic evolution of the functions
with p, and for comparing them to hydrogenic functions. We know that hydrogen
bound states can have both radial (Rp, (r) = 0) and angular (Yj,m, (£) = 0) nodes.
We define the dependence of the F: 7 (w,~;p) on w as “radial” correlation and on
~ as “angular” correlation. In the limit of no Coulombic interaction potential the
surface functions for J = 0 are products of Jacobi polynomials in sin w and Legendre
polynomials in cos 7.6 The corresponding nodal lines are in this case obtainable from
the zeroes of these polynomials. The electron-electron interaction term at finite
values of p makes the Schrédinger equation non-separable and causes the nodes to
no longer be purely of the “w”-type or of the “y”-type. At small values of p the
interaction term is relatively unimportant compared to the kinetic energy terms,

which have a 1/p? dependence.
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5.3.1 J=0 surface functions

The S states are actually independent of the Euler angles, since they have
zero total orbital angular momentum. The surface functions in the J = 0 case
depend only on w and v (and parametrically on p). The S surface functions are
symmetric about w = 7, and the 3S surface functions have a nodal line there
and are anti-symmetric. Therefore we need only plot the upper quartersphere for
S states because the lower part is determined by symmetry. The functions have
been evaluated at some points that correspond to the lower quartersphere (but
which show up in our rectangular representation) anyway (by extending the rule
NQ=length of NP arc to those points), which serves to emphasize the presence of
a node or antinode along the equator. The points on the w = 7 plane in OXYZ

space lie along a half-circle of radius %p on the OXnNYn, YN > 0 half-plane.

The first six p = 1.0 bohr 'S surface functions (in order of increasing eigenen-
ergy) are displayed in Figure 5.20, projected onto the plane Iy (see Fig. 5.19) and
are labeled (I>:S (=1 through 6). They are normalized according to Eq. 2.100, using,
however, the integration volume element sin? wdw sin yd~ sin 8d8d¢dy appropriate
for body-fixed hyperspherical coordinates. <I>;S has no nodes, and is fairly large
everywhere, including along the w = 7 boundary. The contours for small values of
w are roughly circular. The nodal lines in ®,5 and ®,5 give an interesting example
of different types of nodal lines. At p = 1 bohr, @;S has a nodal line characterized
by Xy = pwcosy = constant ~ 0, i. e., v ~ 7 which we call an “angular” node.
On the hemispherical p = 1 bohr surface this is a meridian (constant longitude)
line. One the other hand, <I>;S has a nodal line which is a half circle of constant
radius pw and therefore has an equation of the type w ~ constant. We call this a

“radial” node. On the hemisphere this is a parallel (i. e., constant latitude) line. In

this respect it is similar to the contours of the lowest surface function.
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We saw in the previous section that at very small p the 'S surface functions
corresponded to the following ordering: 1s; 2p; 2s and 3d; 3p and 4f; 3s, 4d, and
5g, etc. At p = 1.0 bohr we have seen that the first and third functions are very
similar, except for an added “radial” node in the higher state. This is, indeed, the
hyperspherical coordinate analog to the nodal pattern found in hydrogen bound
states, where the 1s function has no nodes, the 2s function has the same angular
part as the 1s, but has an added node in the radial part (radial node), and the 2p

function has an angular node and no radial nodes.

The fourth 1S surface function ®,5 for p = 1.0 bohr has two nodal lines, which
can be classified approximately as “angular,” because they tend to be straight with
~ approximately constant and meet at the origin IV, where w = 0. This function is
large at the top and bottom of the figure (viewed with NV at the top), and appears
symmetric across the v = 7 (i. e., Xy = 0) lines. The fifth surface function oS
has an interesting contour pattern that is caused by the near crossing of two nodal
lines, one purely “radial,” the other purely “angular.” Asymptotically we would
expect the sixth function (I>;S to have only two nodal lines, but since the small p
ordering places the 4f function below the 3s in energy, it is not surprising that it

has instead three “angular” nodes. As p increases these nodes will become obscured

and lose their simple designations “radial” or “angular.”

Figure 5.21 shows the <I>;s surface function at p = 4, 5, and p = 10 bohr, and
Figure 5.22 is similar for @;S. From these graphs it is apparent that as one goes out
to higher p, the straight line node in <I>;S bends around, until it forms a semi-circle
(for p = 15, which is not shown). The circle is however not centered around N
and is therefore not truly an w = constant line. Likewise the radial node in &5
becomes less curved as p increases, but the line is not quite straight and not quite of
the ¥ = constant form. As an approximate classification we nevertheless designate

the nodal line in Q;S at large p as radial, because it spans the entire range of ~
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but only a small range of w, and the nodal line in Q;S at large p as angular, since
it spans a small range of 7. The ®;5 and ®,5 surface functions for p > 20 bohr
are not pure 2/; hydrogenic states; rather @;S is approximately a 60-40 mixture
of 2s and 2p, and Q;s a 40-60 mixture of those two states. The reason is that
the region of configuarion space for which 0 < r; < rymax (for which the isolated
H atom wavefunction is non-negligible) and p >> rjmax corresponds to an electron
at a large distance form an H atom, which as a result splits the /; degeneracy and

mixes the 2s and 2p states.

The surface functions ®,5, ®;5, and ;5 mix and cross with higher functions
at larger values of p. We display these functions in Figure 5.23, Figure 5.24, and
Figure 5.25, respectively, for p = 5, 10, 15, and 20 bohr. As the surface functions
cross, the nodal patterns change. As mentioned above Q;S has three angular nodes
at p = 1.0, whereas <I>:,S has two radial nodes. This must mean that a surface
function correlating with the n = 4 asymptotic state is lower in energy than the
highest n = 3 state at p = 1.0, even though it has more nodal lines. Since the 1S
surface functions are symmetric across the w = 7 line, each surface function with
n,. radial nodes in the quartersphere plotted has additional n,. radial nodes in
the lower quartersphere; therefore each radial node in the plotted surface function
counts twice in the figuring of total number of nodes. Each angular node, on the
other hand, is continuous across the w = 7 division, and so counts as only one node.
Asymptotically the surface functions are ordered according to number, and type, of
nodal lines. Radial nodes generally produce lower energy states than angular nodes
for large values of p which are not quite asymptotic, i. e., values of p for which
eigenvalues corresponding to the same n have not become degenerate. The state
&S with three nodal lines crosses with and becomes &, somewhere between 5 and
10 bohr. The two-radial node state eventually crosses all of these, becoming the

fourth lowest state.
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The !S surface functions are displayed in their asymptotic form in Figure 5.26,
for which p = 50 bohr. We find that Qis is concentrated about N, and is
independent of v, with no nodes. (The zero value contour (the unlabeled one,
around the perimeter) is not a real node, but merely a numerical artifact. The
function is so small in this region that a small error changes the sign.) (I>;S and
®,5 each have one nodal line, as discussed above. We find that ®,5 has two radial
nodes, Q;S has the interesting pattern that occurs when one radial and one angular

1
node cross, and ®¢° has two angular nodes.

The 3S surface functions have one extra nodal line, compared to the singlet
state, located at w = 7. We have seen (see Fig. 5.8, for example) that the singlet
eigenvalues become degenerate with the triplet at large values of p; the surface
functions also Become identical except for the added node and a change of sign for
7 < w < m. This is possible because the node is in a region of negligible density.
Consideration of the potential energy function explains why the surface functions
tend to concentrate at smaller values of w as p increases. The potential takes on a
cylindrical shape asymptotically, which implies that the region which is classically
allowed has constant linear dimensions as p is increased, but the angle subtended

by this region (w) decreases as 1/p.

5.3.2 J=1 surface functions

The much discussed “avoided crossing” between the second and third !Podd

eigenvalues (see Section 5.2.2.2 and Fig. 5.11) leads to a subsequent change in
the corresponding surface functions. We demonstrate this by plotting contours of
®, (P°44) and &3 (1P°99) on a plane tangent to the OXYZ space p = constant
hemisphere at a point 4 on the OX axis (i. e., a plane perpendicular to that axis).
The axes on that plane are AZ4 and AY4 which are respectively parallel to OZ

and OY and we are limited to the half plane Y4 > 0 (corresponding to 0 < v < ).
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This plane is shown in Figure 5.27. In Figure 5.28 the surface functions have been
computed at p = 12 bohr, and in Figure 5.29 they have been computed at 14 bohr,
while the crossing occurs at about 13.5 bohr. It is apparent from the two sets of

figures that the states have crossed, albeit “avoidedly.”

5.4 Basis Size

It will be useful, in this section, to refer back to Table 1 — 1, which lists the
hydrogen atom thresholds and the number of nl; states that are open within each
energy range. We will refer to energies between the n = 1 and n = 2 thresholds
as being in the “first” energy range, where there is one open state. The “second”
energy range is between the n = 2 and n = 3 thresholds, where there are three open
nl, states, 1s, 2s, and 2p, although there are four nl;l; states of the same parity of
J for J > 0, as can be seen from Table 5 — 2. Similarly we will refer to the third
energy range between the n = 3 and n = 4 threshold, and the term “6-state” refers
to the asymptotic open nl; states 1s — 2s — 2p — 3s — 3p — 3d. There are ten nl;l;
states in this range of the same parity as J for J > 1. The generalization to the

higher energy ranges is evident.

5.4.1 J=0 basis

In the second and third energy ranges, we compared the J = 0 partial wave
scattering matrix elements obtained using three different surface function sets, as
shown in Table 5 — 5. The (1s — 1s) probabilities and phases are converged to
1% of their value using only 6 surface functions, out of a primitive basis set of 15
functions. The off-diagonal elements are smaller, and so the relative convergence
is not as good. Most of the probabilities are converged to 5% of their value with
six surface functions. Using ten surface functions out of 15 primitives gives better
than 1% convergence in the probabilities and 0.01 rad in the phases, at energies

below the n = 3 threshold. At the energies above that threshold the smaller basis is
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sometimes very good, but at points the probabilities can differ by 10% from the 15-
state calculation. The only troublesome spots are those energies close to resonances,
like 0.86 Ryd and 0.93 Ryd (see Section 6.2). One can detect the presence of the
resonance at 0.86 Ryd by the 6-state calculation, but the results are not nearly as
accurate as with 10 or 15 states. One doesn’t expect to get good results with only
six surface functions (which includes all states up to n = 3) at 0.93 Ryd because
there is a resonance involving the n = 4 states at this energy and also because the

cross section is changing so quickly with energy.

5.4.2 Basis for higher J

We have studied the convergence of the scattering matrix element phases with
surface function basis size for J = 2, even parity, singlet spin, and present the
results in Table 5 — 6 for energies in the range 0.76 to 0.93 Ryd. The n = 3, 4, and
5 eigenvalues are not well separated (see Figs. 5.13 and 5.14) and crossings in the
eigenvalues vs. p curves are frequent, due to the large number of states contained
in the primitive basis. Therefore we did not use a subset of surface functions as a
basis — each entry has the same number of surface functions as primitive functions.
The bases used to test convergence were 10 functions (nmax = 3), 19 functions
(nmax = 4) and 31 functions (nmax = 5). Convergence to about 0.01-0.04 rad (i. e.,
~ 0.6 — 2°) has been achieved in most cases. Naturally, the convergence is not as
good at the highest energies listed in the table. Relative convergence of the diagonal

element phases is about 2.5%.

The corresponding elastic cross sections, tabulated in the first and fourth
colmns of Table 5 — 7, are very sensitive to the phase values and are converged to
about 5%. This is because, according to Eq. 3.110, the relative error in the phase
is doubled in the elastic cross section, since the T-matrix is squared. Our values

show that the elastic cross sections found by Burke et al.,!® using six target-atom
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eigenfunctions, are not converged due to too small a basis set. The 6-state close-
coupling values fall somewhere in between our minimum basis (entry ‘a,” 4 surface
functions) and our basis ‘b,” which is also a 6-state basis (1s —2s — 2p —3s —3p — 3d)
involving 10 surface functions, and have been listed as entry (e). We see that the
results obtained using the 6-state basis with the hyperspherical method are closer
to the converged result than those obtained with a comparable number of target

atom (or close-coupling) eigenfunctions.

Our J = 2 inelastic cross sections are well converged even with only ten
surface functions, since the integral (as opposed to differential) cross section does
not depend on the phase for inelastic transitions. The !D®Ve? inelastic 1s — 2s and
1ls — 2p cross sections are also tabulated in Table 5 — 7 in the second and third

columns. These results will be compared with other calculations in Section 6.3.

The inelastic partial cross sections we obtained for J=3, 4, and 5, which are
not listed here, agree very well with the close-coupling (6-state) results published
by Burke et al.1® These cross sections are all very small. We found that most of
our results agreed with the 6-state results of Burke et al. to within 0.0002 ma3.
In those cases where the difference was larger than 0.0002, the change was always
in the same direction as and of smaller magnitude than the difference between the

3-state and 6-state close-coupling calculations.

The results for elastic cross sections present a different picture. We have
tabulated these cross sections for the !F°d4d and 3F°dd partial waves in Table 5 — 8.
Our cross sections are roughly four times larger than the corresponding quantities
reported by Burke et al.l® for J = 3. The explanation for this behavior is
probably that the Burke results are not converged. Those results definitely show a
large change (50 to 100%) in going from the 3-state calculation to the 6-state, so

convergence has not been demonstrated by those authors. Furthermore, we have
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seen that with the hyperspherical basis the elastic cross sections are not converged
very well by including only states up ton = 2, nor up ton = 3. However, even our
minimum basis (3 nl; states, 4 nl,l; surface functions) is “better,” in the sense that
it is closer to the converged-basis result, than the 6-state results of Burke et al.1® It
is also possible that the aforementioned (Section 4.5) projection distance problem

has influenced our results.

5.4.3 Summary

The final calculations reported in this thesis (see Chapter 6) were performed
using all the surface functions up to and including those with n = 5 for total energies
below the the n = 4 threshold. At energies above this threshold, we usually added
another level of surface functions, up to n = 6. Exceptions will be noted. We did
not experience any serious difficulty with these basis set sizes. Representative times

on a VAX 11/780-FPS164 system are given in Table 5 — 9.
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Table 5-1:  Allowed l;,l; values for basis functions Tx;”zll(w;p), for J =

0,1,2,3 (S,P,D,F), IT = 0,1 (even, odd).

geven Ppeven Podd Deven Dodd Feven Fodd

n>1 (0,00 - (0,1) (0,2) - - (0,3)
n>2 (1,1) (1,1) (1,00 (1,1) (1,2) (1,3) (1,2)
(1,2) (1,3) (1,4)

n>3 (2,2) (22) (21) (200 (2,1) (2,2) (2,1)
(2,3) (2,2) (2,8) (2,4) (2,3)

(2,4) (2,5)

n>4 (3,3 (3,3 (3,2) (3,1) (3,2) (3,1) (3,0)
(3,3) (3,4) (3,3) (3,4) (3,3) (3,2)

(3,5) (3,5) (3,4)

(3,6)

n>5 (4,4) (4,4 (4,3 (4,2) (4,3 (4,2) (4,1)
(4,5) (4,4) (4,5) (4,49) (4,3)

(4,6) (4,6) (4,5)

(4,7)

n>6 (55 (55 (54 (5,3 (5,4 (53) (5,2)
(5,6) (5,5) (5,6) (5,5) (5,4)

(5,7) (5,7) (5,6)

(5,8)
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Table 5-2: Total number of primitive basis functions for each spin by symmetry

type and corresponding naximum number of surface functions.®

S P D F G H J Highest nl; Total

Nmax—1 even 1 0 1 0 1 0 1

. 1s 1
odd 0 1 0 1 0 1 0
Pmax=2 even 3 1 4 1 4 1 4
2p 3
odd 0 4 1 4 1 4 1
Nmax=3 even 6 3 10 4 10 4 10
3d 6
odd 0 9 4 10 4 10 4
T— even 10 6 19 10 20 10 20
4f 10
odd 0 16 9 20 10 20 10
Rmiax=59 even 15 10 31 19 35 20 35
5¢ 15
odd 0 25 16 34 20 35 20
I—— even 21 15 46 31 55 35 56
6h 21
odd 0 36 25 52 34 56 35
—— even 28 21 64 46 80 55 84
T 28

odd 0O 49 36 74 52 83 56

@A scattering calculation using the maximum number of surface functions given in
this table is called an t—state calculation where ¢ is the number given in the last

column.
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Table 5-3: Grid points used to obtain primitive one-dimensional basis functions.

When [; = 0:

Region Point number from wmnin

2 50 -
3 80 -
4 110-
5 140-
When [; # 0:

Region Point number

1 -

31-

61 -

91 -

50
80
110
140

170

31
61
91

120

(rad)

0.000200
0.010000
0.028974
0.128974

0.580796

from wmin
(rad)
0.000954
0.029554
0.129554

0.581376

t0 Wmax
(rad)
0.010000
0.028974
0.128974

0.580796

1.570796

t0 Wmax
(rad)
0.029554
0.129554
0.581376
1.570796

Spacing Aw
(rad)
2.00E-4
6.32E-4
3.33E-3
1.51E-2
3.24E-2

Spacing Aw
(rad)
9.54E-4
3.33E-3
1.51E-2
3.36E-2

Extent of region
(rad)

0.0098

0.0190

0.100

0.452

0.990

Extent of region
(rad)

0.0286

0.100

0.452

0.990
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Table 5-4: !S Jacobi polynomial eigenvalues and the asymptotic states to which

they correlate.

A AA+4) 2%+ 158 (13,15) nly

8up?
p=0.1
0 0 3.3 (0,0) 1s
2 12 15.4 (1,1) 2p
i - 35.0 (0,0) 2s
35.5 (2,2) 3d
63.2 (1,1) 3p
6 &0 63.5 (3,3) 4f
08.7 (0,0) 3s
8 96 99.2 (2,2) 4d
99.5 (3,3) 5g
0 140 142.8 (1,1) 4p
143.2 (3,3) 5f
194.3 (0,0) 4s
= e 1948  (2,2) 5d
14 252 254.2 (1,1) 5p

16 320 321.0 (0,0) 5s
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Table 5-5: Convergence of !S scattering matrix vs. number of surface functions.®

E/Ryd [S}i*  ¢ui(rad) S2112  ¢21(rad) Sa1|>  ¢a1(rad)
0.76 0.79438 1.6946 0.12391 —-0.4395 0.08200 —-2.1357
0.78660 1.7132 0.12759 —0.4972 0.08586 —2.2081

0.78690 1.7213 0.12640 —-0.5122 0.08769 —2.2216

0.78 0.75952 1.6960 0.15335 —1.5815 0.08667 —3.0749

0.75725 1.7086 0.15142 —1.5889 0.09233 —3.0867
0.75684  1.7177 0.15053 —1.5981 0.09242 —3.0948

0.81 0.72116 1.6621 0.20904 —2.1947 0.07058  2.5241
0.72134 1.6774 0.20747 -—2.1921 0.07240  2.5262
0.72197 1.6873 0.20788 —2.1910 0.07086  2.5250

0.83 0.71690 1.6339 0.20478 —2.3958 0.07804  2.5241
0.71637 1.6500 0.20530 —2.3797 0.07930  2.2088
0.71635 1.6598 0.20460 —2.3767 0.07881  2.2150

0.86 0.97546 1.7275 0.00959 —3.0617 0.01468 —0.8591
0.92064 1.6423 0.06224 —2.2640 0.01491  3.1386
0.91313  1.6487 0.06880 —2.2557 0.01747  3.0400

0.90 0.72296 1.6012 0.13780 —2.9926 0.07000  1.5008
0.70491 1.6311 0.15032 —2.9634 0.06334  1.4216
0.70075 1.6375 0.15052 —2.9670 0.07156  1.4610

0.93 0.66242 1.5614 0.15262  3.0329 0.09831  1.3004
0.66216  1.6107 0.16222  3.1054 0.08232  1.1280
0.63749 1.6201 0.15802  3.1128 0.09248  1.3782

@ Projection was done at p=>50 bohr. For each energy, the first entry has 6 surface
functions, the second 10, and the third 15; all calculations used the same 15 primitive
basis functions.

b The first index refers to the initial state, the second to the final state. 1, 2, and
3 refer to 1s, 2s, and 2p, respectively.
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Table 5-6: Convergence of !D®V®® scattering matrix phases vs. number of surface

functions.®

E/Ryd #%, (rad) $21(rad) #31(rad) $41(rad)

0.76 0.203 2.869 1.502 0.908
0.216 2.832 1.474 0.868
0.222 2.813 1.462 0.846
0.78 0.213 2.536 0.836 0.978
0.227 2.517 0.826 0.951
0.233 2.509 0.823 0.943
0.81 0.222 2.237 0.360 1.000
0.237 2.240 0.366 1.002
0.244 2.240 0.368 1.002
0.83 0.223 2.162 0.182 1.076
0.239 2.176 0.196 1.087
0.246 2.179 0.200 1.092
0.86 0.210 2.249 0.119 1.404
0.225 2.321 0.171 1.473
0.232 2.249 0.178 1.482
0.90 0.210 2.070 —0.125 1.433
0.226 2.176 —0.063 1.615
0.210 2.186 —0.054 1.622
0.93 0.210 1.959 -0.267 1.435
0.231 1.976 —0.235 1.408
0.239 2.017 —0.216 1.525

@ Projection was done at p=50 bohr. For each energy, the first entry has 10 surface
functions/10 primitive functions, the second 19/19, and the third 31/31.

b The first index refers to the initial state, the second to the final state. 1, 2, 3, and
4 refer to the sets of quantum numbers nl;l,= 152, 252, 2pl, and 2p3, respectively.
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Table 5-7: !De®ve® and 3D°®V*® contributions to total cross section (units of ma?).

E ;P;la lIP—.+25 Qi?-:dp :P—:la
0.76 Ryd (a) 0.0468 0.0501 0.0863 0.1047
(d) 0.0676 0.0484 0.0894 0.1714
() 0.0762 0.0457 0.0870 0.1964
(d) 0.0803 0.0451 0.0866 0.2081
(e) 0.042 0.0540 0.0914 0.097
0.78 Ryd (a) 0.0457 0.0507 0.1008 0.0992
(b) 0.0722 0.0491 0.0930 0.1687
(c) 0.0818 0.0484 0.0934 0.1945
(d) 0.0863 0.0482 0.0934 0.2066
() 0.050 0.0555 0.0937 0.101
0.83 Ryd (a) 0.0439 0.0508 0.1396 0.0882
() 0.0766 0.0608 0.1362 0.1646
(c) 0.0869 0.0599 0.1361 0.1924
(d) 0.0916 0.0597 0.1359 0.2054
() 0.058 0.0624 0.1430 0.106
0.86 Ryd (a) 0.0415 0.0484 0.1553 0.0830
(d) 0.0693 0.0697 0.1704 0.1623
(c) 0.0777 0.0702 0.1725 0.1910
(d) 0.0822 0.0700 0.1721 0.2045
() 0.052 0.0810 0.1679 0.106
0.90 Ryd (b) 0.0660 0.0474 0.1485 0.1569
(¢) 0.0739 0.0395 0.1318 0.1868
(d) 0.0787 0.0402 0.1330 0.2008
(e) 0.053 0.0510 0.1481 0.109
0.93 Ryd (d) 0.0651 0.0415 0.1508 0.1542
(c) 0.0751 0.0295 0.1203 0.1844
(d) 0.0793 0.0286 0.1153 0.1994
(e) 0.051 0.0352 0.1332 0.112

(a) 4 surface- (and primitive) functions, (b) 10 functions, (¢) 19 functions, (d)
31 functions. Projection done at same distance (50 bohr) for all calculations. (e)
6-state results from reference no. 16.
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Table 5-8: 1Fodd and 3F°dd contributions to total 1s — 1s cross section.

llf‘—:la ;f—o'la
E =0.76 Ryd
(a) 0.0115 0.0339
(b) 0.0188 0.0579
(¢) 0.0244 0.0753
(d) 0.0274 ' 0.0844
(e) 0.007 0.022
E = 0.81 Ryd
(a) 0.0098 0.0287
(b) 0.0179 0.0546
() 0.0243 0.0742
(d) 0.0276 0.0842
(e) 0.008 0.024
E =0.83 Ryd
(a) 0.0090 0.0260
(b) 0.0173 0.0517
(¢) 0.0239 0.0718
(d) 0.0273 0.0820
(e) 0.008 0.025
E = 0.85 Ryd
(a) 0.0083 0.0235
(b) 0.0168 0.0490
(¢) 0.0236 0.0696
(d) 0.0272 0.0800
(e) 0.009 0.025

(a) 3-state calculation (4 surface functions), (b) 6-state calculation (10 functions),
(c) 10-state calculation (20 functions), (d) 15-state calculation (34 functions).
Number of primitive functions equals number of surface functions. Projection done
at p = 50 bohr.

(e) 6-state close-coupling calculation, ref. 16.
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Table 5-9: Times for different J.

# states each E (sec) surf. func. (min)

18, 3S 15 20 18
podd 25 90 19
1peven 3peven 31 130 47
podd 34 190 32

The odd parity states combine one set of spinless basis functions to obtain both
singlet and triplet, which shortens the amount of time needed to obtain surface

functions.
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5.6 Figures and Captions

FIG. 5.1: Effective potential Vejﬁl’ll vs. w, for p=1 (solid line), 5 (dotted line),

10 (dot-dash line), and 20 bohr (dash line), where J = 0, and [; = I3 = 0.

FIG. 5.2: Effective potential Ve‘,{flzl‘ vs. w, for same values of p as in Figure 5.1,

with J =0,and [} =l = 1.

FIG. 5.3: Effective potential V,5/2'* vs. w, for p=5 (dotted line), 10 (dot-dash
line), 20 (dash line), and 40 bohr (dash-dot-dot line), with J =1, and I; = 0, and

I, =1.
FIG. 5.4: Effective potential as in Figure 5.3, for J = 1,and l; = 1, and l; = 2.

FIG. 5.5: The three lowest antisymmetric 3S 1-dimensional eigenfunctions
TPJ l2hh (w;p) corresponding to the potential in Figure 5.1. The line types are the

same as in Figure 5.1. Only half the range of w is shown.

FIG. 5.6: The three lowest antisymmetric !S 1-dimensional eigenfunctions
TP‘”ﬂ1 (w;p) corresponding to the potential in Figure 5.2. The line types are the

same as in Figure 5.2. Only half the range of w is shown.

FIG. 5.7: The 1-dimensional P°9d eigenfunctions Tx;”’“(w;p) corresponding to
the lowest three eigenvalues of the potential in Figure 5.3. The line types are the

same as in Figure 5.3, with the addition of the solid line for g = 1 bohr.

FIG. 5.8: Lowest eigenvalue /57 (p) + % converging to n = 1 level for total
orbital angular momentum J = 0,1,2 and 3 and singlet and triplet spins as a
function of hyperradius p. The singlet and triplet become undistinguishable for

J > 2, within plotting accuracy.

FIG. 5.9: !S surface eigenvalues converging to n=2, 3, and 4 levels versus p,

obtained with a basis set of 15 primitive functions.
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FIG. 5.10: 3S surface eigenvalues converging to n=2, 3, and 4 levels versus p

obtained with a basis set of 15 primitive functions.

FIG. 5.11: !'P°dd and 3Peven eigenvalue curves converging to the n = 2
levels asymptotically, obtained with a basis set of 25 and 15 primitive functions,

respectively. The full curves correspond to !P°d4 and the dashed to 3Pever,

FIG. 5.12: 3podd gpnd !Peven eigenvalue curves converging to the n = 2
levels asymptotically, obtained with a basis set of 25 and 15 primitive functions,

respectively. The full curves correspond to 3P°44 and the dashed to 1Pever,

FIG. 5.13: 1D®Ve® eigenvalue curves converging to the n = 2 and n = 3 levels

asymptotically, obtained with a basis set of 31 primitive functions.

FIG. 5.14: 3D®ve? eigenvalue curves converging to the n = 2 and n = 3 levels

asymptotically, obtained with a basis set of 31 primitive functions.

FIG. 5.15: 1P°dd eigenvalue curves converging to the n = 3 and n = 4 levels

asymptotically, obtained with a basis set of 25 primitive functions.

FIG. 5.16: 3P°dd eigenvalue curves converging to the n = 3 and n = 4 levels

asymptotically, obtained with a basis set of 25 primitive functions.

FIG. 5.17: 1F°dd ejgenvalue curves converging to the n = 3 and n = 4 levels

asymptotically, obtained with a basis set of 34 primitive functions.

FIG. 5.18: 3F°dd gjgenvalue curves converging to the n = 3 and n = 4 levels

asymptotically, obtained with a basis set of 34 primitive functions.
FIG. 5.19: Projection plane tangent at north pole.

FIG. 5.20: Contours of the lowest six 1S surface functions at p = 1 bohr projected
onto a plane tangent to the northern quartersphere at a point on the Z-axis. (a)

&S, 8,5, and 3;5. (b) 8,5, ®,5, and &,5.
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FIG. 5.21: Contours of the second lowest S surface function, Q;s, at p=4, 5, and

10 bohr on a plane tangent at N.

FIG. 5.22: Contours of the third lowest !S surface function, <I>;s, at p=4, 5, and

10 bohr on a plane tangent at N.

FIG. 5.23: Contours of the fourth lowest 'S surface function, Q;s, at p=5, 10, 15

and 20 bohr on a plane tangent at N.

FIG. 5.24: Contours of the second lowest 'S surface function, Q;S, at p=5, 10, 15

and 20 bohr on a plane tangent at V.

FIG. 5.25: Contours of the second lowest 'S surface function, <I>;S, at p=5, 10, 15

and 20 bohr on a plane tangent at N.

FIG. 5.26: Contours of the lowest six !S surface functions projected onto a at

p = 50 bohr on a plane tangent at V.
FIG. 5.27: Projection plane perpendicular to OX axis.

FIG. 5.28: Contours F;{ 7 (w,~; p) of !P°9d surface functions on the AY4 Z4 plane

of Fig. 5.27 at p = 12 bohr, for 1 = 2,3 and 1 =0,1: (a) F;g“d; (b) F;g“d.

FIG. 5.29: Contours F‘-{zsn(w, 7; p) of 1P°4d surface functions on the AY4Z4 plane

of Fig. 5.27 at p = 14 bohr, for i = 2,3 and 2 =0,1: (a) F;g“d; (b) F;g“d.
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CHAPTER 6

SCATTERING RESULTS

In this chapter we present the results of our calculation of electron scattering
off hydrogen atoms using hyperspherical coordinates. The chapter is organized
as follows: First we discuss the various means of analyzing the scattering data
obtained. Then we present results for purely elastic scattering, at energies below
the n = 2 H atom level threshold, and compare our results with those in the
literature. Next we present/’ results for energies between the n = 2 and n = 3
thresholds. The elastic and inelastic cross sections are both presented. The cross
sections obtained for energies in higher energy ranges are presented subsequently,
including some preliminary results at energies above the n = 4 threshold. The

resonances found are discussed separately in each section.

6.1 Analysis of Resonances

Resonances have been observed in a wide variety of scattering processes and
are known to be associated with the existence of long-lived metastable states.! The
effect of a strong resonance is to drastically alter the value of the cross section
for some transitions across a relatively narrow range of energies. A similarly rapid
change in the phase and magnitude of elements of the scattering matrix accompanies

a resonance.
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It has been known for some time that infinite sequences of resonances occur
below the inelastic threshold of electron-hydrogen scattering when the hydrogen
levels are assumed to be exactly degenerate in ;.2 In reality, this number is finite
because of fine structure effects.®> We will concentrate on the lower energy resonances
which are wide enough to be detected with an energy grid of 10~% Ryd, and analyzed
by a density to 1076 Ryd where needed. There are various means of determining
the position of resonances in the e~ —H system. Some researchers fit their scattering
data (such as the eigenphase sum) to a formula, such as the Breit-Wigner formula
or Fano lineshape,* to determine the positions and widths. Others compute the
approximate position of resonances without doing the scattering calculation, by
finding the eigenvalues of the potential in the radial equation. This method assumes
that the coupling between channels is small and can be neglected. Physically, this
means that the motion of the system in one coordinate, the hyperradius p, occurs on
a different time scale than the motion in the other (hyperangular) coordinates, and
so can be treated separately. We have found the collision lifetime matrix® useful
to determine the position of the resonances and the lifetimes of the metastable
states. Argand diagrams have been used to study the results of reactive scattering

calculations,® and we have found them to be useful in electron scattering.

We can classify resonances as two basic types: closed channel and open channel.
The closed channel resonances were first obtained with the Feshbach operator
formalism,” and are usually called “Feshbach” resonances. The Feshbach resonance
corresponds to the physical process of the particle accessing a level of the system
that is closed asymptotically, but may be open for low values of p. Therefore one
would expect to see Feshbach resonances at some energy below the n-th threshold
whenever the eigenvalue potentials corresponding asymptotically to that same n-th
level consist of one or more sufficiently deep wells. The Feéhbach resonances are

caused by long-range dipole interaction.?
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The second type of resonance is the open-channel, or “shape”, resonance. A
shape resonance may occur as the result of a barrier in the potential (i. e., the
eigenvalue) which the particle feels, such that the particle remains for a period of
time within the region of the well, before finally leaking out. Thus shape resonances
are expected at energies just above threshold. The first encountered example of this
observed in the e~ —H system is in the !P°dd state at 0.751 Ryd. This is a very
strong resonance, and dominates the cross section at this energy. We find that this
shape resonance is caused by the barrier in the potential curves of !P°44, which in

turn is caused by the short-range attraction and long-range dipole repulsion.

The (K, T)“ nomenclature (see Section 5.2) is especially useful in categorizing
resonances.® Certain features of the resonance structure can be predicted using
this classification of states. For example, the near degeneracy of resonances in
1peven and 3P°dd gtates, !D°4d and 3DeveR states, etc., is predicted by this
theory. The similarity in parity-disfavored states, given by quantum numbers (J,
S, IT = (—1)7*!, and n), where n indicates the energy level, to the lower energy,
lower J state, given by quantum numbers (J — 1, alternate spin, same parity, and
n—1) is also predicted. The !D°9¢ collision lifetime eigenvalues at energies between
the n = 3 and n = 4 threshold are a perfect example of this behavior, because
qualitatively these collision lifetimes behave similarly to the 3P°9d state lifetimes

in the n = 2 to 3 region.

6.1.1 Argand diagrams

The use of “Argand diagrams” has been shown to be a useful tool for analyzing

9— 11 An Argand diagram is a cartesian plot

the results of scattering calculations.
in which the real and imaginary parts of an element of the scattering matrix are
the coordinates of a point, whose position depends on the energy as a parameter.

This representation allows one to examine both the phase and the modulus of
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the scattering matrix elements. The direct (i. e., non-resonant) contribution to
the phase is expected to decrease with increasing energy, whereas the resonant
contribution increases by 27 across a strong resonance, and the modulus is expected

to be slowly varying with energy except in the region of a resonance.

These two factors lead to the following general statement about Argand
diagrams: in the non-resonant region the representative points approximately
traverse circles clockwise around the origin of the system of coordinates as the
energy increases due to the continually decreasing phase. In the region of a pure
strong resonance (one with no direct contribution), the phase goes through a very
fast increase (with energy) of 2, leading to a counter-clockwise circle whose initial
point is the origin and whose center is away from that point, the modulus changing
therefore very rapidly with energy. In the presence of a direct background, the
initial point on this circle shifts from the origin to the point representing the direct
contribution to the scattering matrix element. The distance of the point from
the center of the resonant circle is proportional to the relative decay width of the
resonance into that channel.!? Thus in comparing Argand plots of different S-matrix
elements (i. e., channels) for the same angular momentum J and spin S, a single
resonance may exhibit a large circle for the first element, and yet form a very small
circle in the next. Furthermore, it is only in the case of strong, isolated resonances
that the full circle is completed. We have found instances of both isolated and

interfering resonances in our calculations.

6.1.2 Collision Lifetime Matrix

In this section we describe the formalism of the collision-lifetime matrix
developed by Smith.® The results of our collision lifetime matrix analysis will be

presented in the sections that follow. That matrix, defined by

Q-= ihs% (6.1)
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where S is the open part of the scattering matrix, has been used by Kuppermann
and Kaye!2 for collinear chemical reactions. After computing Q, we obtain its
eigenvalues ¢,, which, when large and positive, indicate a resonance whose lifetime
is equal to that eigenvalue. It has turned out that each resonance is associated with
only one collision lifetime eigenchannel, although not all resonances need be in the
same eigenchannel. Furthermore, each resonance belongs to a series of resonances

of a specific eigenchannel that converges on the threshold.

It is convenient to express the eigenvalues g, in atomic units of time, to = k/
1 hartree, which is equal to 2.42 x 10~17 sec, and is the time required for an electron

in the first Bohr orbit of a hydrogen atom to traverse one radian.!4

Since S is unitary, Q is hermitian. The energy derivative of the S matrix is
obtained using a three-point Lagrangian interpolation formula. The resulting Q
matrix was averaged with its hermitian conjugate to correct for small numerical
inaccuracies in this differentiation procedure and thereby ensure real eigenvalues.
Plots of the eigenvalues g,, vs. the energy of the system are presented in later sections

of this chapter.

6.1.3 Eigenphaseshifts

Eigenphaseshifts are defined as the arctangents of the eigenvalues of the
open part of the reactance matrix, or, equivalently, as one half of the phases of
the eigenvalues of the open part of the scattering matrix. It should be noted
that these eigenphaseshifts are determined modulo 7w. Furthermore, there is no
a prior: connection between the sets of such eigenphaseshifts calculated at different
energies. By requiring the corresponding eigenvectors to be continuous functions
of the energy, and by adding # or —7 to the corresponding eigenphaseshifts, it
is possible to obtain curves of eigenphaseshifts vs. energy which are continuous,

thereby establishing the missing relationship.
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The rationale for calculating the eigenphaseshifts is that resonances tend to
cause a large shift in some, but not all, of them.® However this simple picture
is often complicated by crossings or avoided crossings of eigenphaseshift curves.
When there are many resonances in a small energy region, we get both avoided
crossings and straight crossings. This is determined by observing how the elements
of each eigenvector change with energy, requiring the change to be smooth. At an
avoided crossing of two eigenvalues, the two eigenvectors will change slowly, first
into vectors which are mixtures of the original ones, and then into vectors with
switched characteristics. In a straight crossing the eigenvectors retain the same
character throughout — there is no mixing of eigenvectors. Crossings such as these
are usually found at energies near a strong narrow resonance. The eigenphase
corresponding to the resonant channel experiences a large increase over a short

range of energy, but the other channels are unaffected if the crossing is not avoided.

One must have a sufficiently dense grid of energy points in order to determine
whether or not the eigenvectors mix. If the grid is too sparse, then the avoided
crossing may take place at energies in between the calculated points, and one would
not be able to detect the “avoidedness” of the crossing. Because of this problem, and
the fact that the phases are only found modulo 7, we found that the eigenphaseshifts
were not as useful for analyzing the resonances in e”—H as the other methods,

especially at higher energies where there are many open channels.

Another use of the eigenphaseshifts is to calculate their sum. When all of the
open states are included in the basis set, this eigenphase sum obeys an upper limit
principle!® which permits us to compare two different approximate calculations, and

choose the one with the largest sum as the one giving the better approximation.

6.2 Low Energy Scattering

For energies below the n = 2 threshold at 0.75 Ryd with respect to e —H (1s),
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there is only one open asymptotic state, so there can be no transitions from the 1s
state to higher states. The only process allowed is “elastic scattering” from that
state, including the possibility of exchange. The cross sections we report are not
for the direct process solely, i. e., they include both singlet and triplet contributions
as indicated by Eq. 3.111. We showed in Chapter 3 that the direct and exchange
scattering amplitudes can be obtained from the sum and difference of the singlet
and triplet scattering amplitudes, as indicated by the remarks after Eq. 3.118 and
the formula of Table 3.1.

The behavior of the elastic cross section below the m = 2 threshold has
been accurately calculated for partial waves J < 3.16— 20 Schwartz used Kohn'’s
variational principle to calculate the S-wave phaseshifts,!® which were found to
higher precision by Ho, Bhatia, and Temkin,!” and are generally accepted as exact
to the number of figures quoted. This method was applied to J = 1 partial waves by
by Armstead.!® Register and Poe!® calculated the phaseshifts for D-waves using an

algebraic variational method. Finally, Callaway2° calculated phaseshifts for J = 3.

The first close-coupling calculation on e”—H was by Burke and Schey?! who
used a three state approximation (1s — 2s — 2p) to calculate phase shifts for states
with J=0, 1, or 2. These calculations were followed by a six-state close-coupling

12 in which higher energies were also considered, and by Burke and

calculation,
Taylor’s work,?? in which correlation functions were added to the 3-state close-
coupling basis.

Lin used hyperspherical coordinates to calculate channel potentials?3 such as
the € vs. p functions shown in Chapter 5 (Fig. 5.8-15). Assuming that the coupling
between channels is so weak that it can be ignored (adiabatic approximation), he

modeled the ground state of H™ as an eigenvalue of the lowest channel potential.

He also calculated the elastic 'S phase shift by scattering from this potential. The
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phase calculated in this manner behaves correctly at threshold, and is closer than
the 3-state close-coupling phase?! to the exact results, but it becomes rapidly too
small with increasing energy. That relatively poor results were obtained even at
fairly low energies indicates the weakness of the adiabatic approximation, even when

potential crossings (or avoided crossings) are not a factor, as is the case here.

Improved hyperspherical channels may be obtained by using the post-adiabatic
approximation,?4 which involves calculating potentials dependent on the collision
energy. This was done by Klar and Klar,2® using up to four “Born-Oppenheimer”
channels (in which even the diagonal elements of the coupling matrix P are ignored),
which are subsequently linearly combined. Their four-channel calculation gave
excellent agreement with Schwartz over the entire range of energy considered
(k = 0.1 to 0.7). Their three-channel results are better than the three-state
calculation of Burke and Schey; since we intend to include all of the coupling
terms we expect our results to be even better than this. Recently a combined
hyperspherical and Jacobi coordinate description has been used?® by Christensen-

Dalsgaard to obtain the elastic 1S phase shift.

6.2.1 Elastic phase shifts

Using the lowest three or six surface functions and a projection hyperradius
of 8 bohr (see Section 4.5), we obtained the phase shift for S-wave scattering at
energies where there is only one open channel. The phase shifts obtained agreed
with previous results, as shown in Table 6 — 1. The agreement between our 3-state
calculation and Schwartz’s is within 0.007 rad and is much better than that of the

other calculations presented.

We compare the phase shifts obtained using hyperspherical coordinates for

partial waves other than !S with previous results in Table 6 — 2. The 3S phaseshifts
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obtained by our method agree with Schwartz to 0.01 rad (~ 6°). The phaseshifts

for J > 0 are very small except in the region of resonance. The agreement is in the

0.005-0.025 rad range.

6.2.2 Low energy resonances

The cross section Q(1s — 1s) will be affected by resonances lying just below
the n = 2 threshold of hydrogen.?” In the dipole representation,2® the asymptotic

form of the radial equation is given by

( 02 n 12(12 + 1) + agy

33 =3 - kz) F(r)=0 (6.2)

where a;; represents the coupling between the various states. These matrix elements
are given by (nliloJM|rPi(cos~)|n'l{l5JM). In the first approximation, only the
degenerate levels (n = n') are coupled. The matrix given by l3(l2 + 1) + ay; is
diagonalized, giving eigenvalues A(A+1). An infinite series of resonances convergent
on the threshold results for each eigenvalue less than — i . There is such an eigenvalue
for J = 0,1 and 2 only below the n = 2 threshold. These resonances are due to
the long range r—2 interaction arising from the degeneracy the target atom states,

namely the 2s and 2p states of hydrogen atom.!%:?2

Gailitis and Damburg? showed that the long-range dipole interaction causes
resonances below the n = 2 threshold for partial waves with J = 0,1, and 2. The
dipole interaction is too weak to produce resonances in the higher partial waves,
and we saw in Section 5.2 (in particular, Fig. 5.16-17) that the n = 2 eigenvalue
curves were all repulsive for J > 2. We have calculated resonance positions in
the 18, 3S, 1pedd 3podd 554 1peven partial waves. The positions, lifetimes and
widths obtained are summarized in Table 6 — 3, where we also compare with other

theoretical predictions and some experimental observations of resonances.
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to about 20% accuracy. The position of the lowest !S resonance is converged using
10 surface functions by 50 bohr, and has been calculated as 0.70217 Ryd (9.5536 V).
Our lifetime for the !S resonance is 2300 tg, and the full width at half-maximum
is 3.5 mRyd (0.0476 eV). There have been many other calculations which have
determined the position of this resonance. For example, Shimamura calculated
its position as 0.702452 Ryd and its width as 3.47 mRyd.?° Electron transmission
spectroscopy experiments by Sanche and Burrow3? have indicated a resonance at

19.558 £ 0.010 eV, which agrees with our result within their experimental error.

There is a second resonance which is narrower and closer to threshold. We
have found that in order to observe the narrower resonances, one must integrate
further out. We have calculated the position of this 1S(2) resonance as 0.74787 Ryd
(10.175 eV), its width as 0.24 mRyd (0.0033 eV), and its lifetime as 3.3 x 10* tg
(using 10 surface functions and projecting at 50 bohr). This resonance has not been

observed experimentally.

Shimamura also has found a very narrow resonance in the 3S state at
10.1489 eV.2° Klar and Klar3! predict its position at 10.169 eV, Schulz3? observed
10.150 eV experimentally. Our calculation did not detect a S resonance when the
integration was stopped at 20 bohr. However integrating out to 40 bohr with six
surface functions produces an extremely long-lived (2 x 10° ) narrow resonance at
0.745389 Ryd (10.1416 eV), with a width of less than 4 x 102 mRyd (0.0005 V). If
ten surface functions are used (15 primitives) the resonance position is calculated at
0.745473 Ryd (10.1428 V), obtained with a projection distance of 50 bohr. Temkin
and Sullivan3? also found that resonances very close to the n = 2 threshold level do

not show up in calculations in which the integration does not extend past 30 bohr.

A very narrow (width 2 x 1072 mRyd) !P Feshbach resonance, separated from

the shape resonance above the n = 2 threshold by about 0.003 Ryd (0.0450 eV) is
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A very narrow (width 2 X 1072 mRyd) !P Feshbach resonance, separated from
the shape resonance above the n = 2 threshold by about 0.003 Ryd (0.0450 eV) is
known to exist from photodetachment experiments34 and has also been predicted
theoretically3® to exist at 0.747901 Ryd. By calculating the eigenvalues of the ‘—’
eigenvalue curve (see discussion in Section 5.2), Lin has calculated the positions
of the first two members of the Feshbach series as 0.74810 Ryd (10.173 eV)
and 0.74994 Ryd (10.198 eV), using the hyperspherical coordinate adiabatic

approximation.?3

We have calculated the position of this !P°dd resonance and the results are
shown in Table 6 — 3. If the projection is done at 20 bohr, we were not able to detect
a 1P°dd resonance with basis ‘3/5° (surface functions up to n = 3, primitives up to
n = 5). However if one projects farther out, the resonance is obtained. Projecting at
40 bohr with the same basis set, the resonance position is calculated at 0.747790 Ryd
(10.1743 eV), with a lifetime of at least 1.9x10° ¢o, and width of 4x10~3 mRyd. The
calculated position is moved somewhat lower, to 0.747329 Ryd (lifetime 1.2 x 108 ¢o),
with width 5x 10~3mRyd if the projection is done at p=60 bohr. Whereas Callaway
calculates the !S(2) state as lying 0.6 meV lower than the !P°dd resonance state,
the data of Bryant et al.(1983) indicate that the !S resonance lies above the ! Podd

one. Our result supports the experimental finding, as the !P°d4d resonance, which

is 2 orders of magnitude narrower than the 1S(2), is found to be 2.2 mev lower.

The calculated positions of the two lowest 3P°dd resonances below the n = 2 are
tabulated, for different basis sets and different projection distances, in Table 6 — 3.
The largest calculation gave the position of the first as 0.71559 Ryd (9.7362 eV) and
the width as 0.43 mRyd (0.0059 eV), which is in relatively good agreement with the
experimental observation of 9.738 £ 0.010 eV and 0.0056 + 0.0005 eV, respectively.
The lifetime is found to be 18,600 to. The position and width of this resonance were

determined by Das and Rudge3®¢ to be 0.715735 Ryd and 0.430 mRyd respectively.
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Our calculated width is in excellent agreement, though our position is 0.00014 Ryd
lower. Other calculated positions are also listed in the table. The second 3Pp°dd
resonance is just below threshold, at 0.74951 Ryd (10.198 eV) with a lifetime of
190,000 tg.

We have determined the position of the !D®¥e® resonance as 0.74395 Ry
(10.122 V), with lifetime 12,500 to, and width 0.65 mRyd, as compared to Callaway,
who obtained E=0.744152 Ryd, width=0.64 mRyd, and Register and Poe,!°®
who obtained E=0.743924 Ryd, width=0.66 mRyd using a Hylleraas type basis
containing up to 84 terms. Sanche and Burrow3? detected the !D®¥®® resonance at
10.128 £0.010eV and determined the width to be 0.0073+0.002 eV. The presence of
this state has been observed34® in the photodetachment spectrum of H™ in intense
(greater than 400 kV/cm) electric fields. The single-photon transition from the
ground state of H~ (1S) to !D®®? is forbidden, but the electric field allows mixing
between the !P¢Ve® and !D*Ve? states. We did not find any 3D®¥®® resonance, which
is not surprising due to the fact that the eigenvalue potential curve is only 0.004 h

deep. No other calculations have yielded a 3D®¥®™ resonance, either.

The relatively wide Feshbach resonances calculated in 1S, 3P°dd and 1Deven
correlate with the fact that these partial waves all have a deep well channel potential
at the n = 2 level (see Fig. 5-9, 5-12, and 5-13). The corresponding curves of the
alternate spin (3S, 1P°9d, 3Deven) are all much less attractive, and as such are either
not deep enough to produce a Feshbach resonance, or the resonance is extremely

narrow.

6.2.3 Total elastic cross section

The total elastic cross section, obtained from the J = 0, 1, and 2 partial waves
using ten functions and projecting at 50 bohr, is plotted in Figure 6.1, for energies

0.69 to 0.75 Ryd (the resonance region). It is estimated that higher partial waves
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will add about 2% to the cross section. Also plotted in this figure are the total
singlet and triplet contributions. The grid of energy points that was used was not
fine enough to show the 3S resonance, but we used a finer grid in the region of the
1podd resonance, which is just as narrow, to distinguish it from the 1S(2) resonance,
which is accidentally degenerate. It may be difficult to see that the structure at

0.748 Ryd is due to two resonances from this energy scale.

6.3 Energies above n—=2 Threshold and below n=3 Threshold

We now consider the second energy range, from the opening up of the n = 2
channels at 0.75 Ryd to the n = 3 threshold at 0.8889 Ryd. There are three open
nly; channels in this region: 1s, 2s, and 2p. There are four open channels with
quantum numbers nlyl; for J > 0 (parity-favored states), but only three for J = 0.
In parity-disfavored states, i. e., where IT = (—1)J+1, there is only one open state,

that is, 2p (I3 = J).

The cross sections Q(1s — 2s) and Q(1s — 2p) will be affected by resonances
lying just below the n = 3 threshold of hydrogen.3” An infinite series of resonances
convergent on the threshold results for each eigenvalue of Eq. 6.2 less than —%.
There are two such eigenvalues for J = 1 and 2 for the n = 3 threshold, and
just one for J = 0, 3, and 4. These resonances are due to the long range r—2
interaction arising from the degeneracy the target atom states.!%:2 We did in fact
find resonances in the 13§, 1,3podd 1,3peven 1,3podd g4 1Geven partial waves, as
expected, but no resonances were seen for 3G¢¥*® and none for J = 5. In general,
resonances will not be present below the nt® threshold in partial waves J > 2(n—1).
Consideration of the allowed intrashell doubly excited states partially explains why.
For example, for n = 3, the doubly excited state with the highest total angular
momentum is 2d?, which is an allowed !G®V®® configuration (in the independent

particle model), but which is not allowed (by the Pauli principle) for 2GeV*2. One
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needn’t, however, always have to be able to construct an intrashell doubly excited
state to see resonances. The 3S resonances are necessarily related to intershell
states; in the (K,T)4 nomenclature these states all have A = —1. The intrashell

resonances, on the other hand, all have A = +1, and are much wider.

Besides the presence of resonances below threshold, Gailitis and Damburg also
predict that those partial waves which have Feshbach resonances below the n = 2
threshold (J < 3) will have non-vanishing inelastic cross sections just above that
threshold.2 In Section 6.2 we described how resonances are found below the n = 2
threshold for J = 0,1 and 2. The inelastic cross sections for these partial waves are
indeed large at energies close to the n = 2 threshold. The behavior of the higher
partial wave cross sections (J > 3) is markedly different in that the inelastic cross
section increases slowly with energy, from being negligible at threshold, to sizeable

in the resonance region.

Calculated resonance positions are listed for all the partial waves through J =4
in Table 6 — 4. We have also listed the computed resonance lifetime and full-width
of the lifetime at half-maximum, and some resonance positions calculated by other
authors. The first calculation which was able to observe resonant behavior was the
6-state close-coupling calculation of Burke.1? Inclusion of the 3s, 3p, and 3d states
in the basis gave rise naturally to resonances of the Feshbach type,” that were
impossible to obtain with only a 3-state basis.2!:38 Ho has used complex rotation to
predict resonance positions with much success.?:3? We also compare to the resonance

positions calculated using Callaway’s variational procedures.3%:40

In Figure 6.2 we have organized the n = 3 Feshbach resonances according
to the (K,T)4 configurations in order to show the supermultiplet structure. The
resonances obtained have been assigned quantum numbers K, T, and A as described

by Lin,”! taking into account the width of each resonance. A striking pattern can
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be seen for states with different J, S and IT but the same (K,T) and A, if A = £1.
There is a series of relatively wide, lower energy resonances starting with the !S
(2,0)% state, that continues through 3p°dd 1peven 3podd and 1Geven, There is a
similar series of extremely narrow resonances, beginning with the 3S (2,0)~ state,
and continuing through !Pedd 3peven gp4 1fedd

In the tables that follow (Tables 6—5 through 6—14) we will compare our results
obtained using the npmax = 5 basis set and projecting at 60 bohr to those obtained by
the following authors: Burke, Ormonde and Whitaker!? (BOW), who performed 6-
state close-coupling calculations; Taylor and Burke3® (TB), who supplemented a 3-
state close-coupling basis with 20 correlation functions; Geltman and Burke*! (GB),
who used three pseudo-states along with the (1s,2s,2p) functions; and Callaway,*?
who used an aigebraic variational approach with 14 basis functions: 6 atomic states
and 8 pseudostates. In some of these tables we have also listed our (unconverged)

6-state cross sections, in order to compare methods using the same size basis set.

6.3.1 S-wave scattering

The !S partial cross sections (1s — 1s, 1s — 2s, and 1s — 2p) are shown
in Figure 6.3 and listed for a few energies between n = 2 at 0.75 Ryd and n = 3
at 0.889 Ryd in Table 6 — 5, where our results are compared with some other
calculations. The agreement is satisfactory. Our cross section vs. energy curves
are generally of the same shape as others and resonances are found at about the
same energies as others (see Table 6 — 3). Our results are closest to the 3-state plus
correlation calculation.3® Comparison with our 6-state and 15-state values shows
that the 6-state close-coupling!? and 3-state-plus-3-pseudostates*! calculations are
not fully converged. It also is a demonstration of how correlation is included in
the hyperspherical surface function basis set. From the table we can see some

trends: as more correlation is included in the wavefunction, the elastic cross section
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increases and the inelastic cross sections decrease. Our calculations, which have the
most correlation, continue the trend. The agreement with Callaway, who used a

variational approach, is very good.42

The 1S scattering cross section shows three Feshbach resonances just below the
n = 3 threshold, at 0.8619, 0.8846, and 0.88775 Ryd as listed in Table 6 — 4. The
positions of these resonances were determined by finding the maxima in the largest
collision lifetime eigenvalue, as discussed in Section 6.1. These collision lifetime
eigenvalues are displayed in Figure 6.4. To compare with scattering experiments
we have converted into electron volts using the infinite mass Rydberg (1 Ryd
= 13.605 eV, see Section 1.5). Our lowest resonance energy (11.73 eV) agrees
satisfactorily with the position of dips in the total inelastic cross sections found
experimentally by Williams,*3 who used an electron energy resolution of 12 to
30 meV to study resonances. Williams found dips in the 1s — 2s and 1s — 2p cross
sections at 11.73 + 0.06 eV and 11.75 1 0.06 eV respectively. Earlier experiments

by McGowan et al.#4 place the !S resonance at 11.65 + 0.03 eV, which is too low.

The scattering in the 3S partial waveis almost all due to elastic scattering. The
cross sections for inelastic scattering are very small, but at the same time they are
very sensitive to resonances which are almost undetectable in the 3S elastic cross
section. These are plotted in Figure 6.5, and compared with other calculations
in Table 6 — 6. We found one very narrow resonance in this partial wave, at
0.88201 Ryd, compared with Callaway’s 0.88203.25 He also obtains a second even
narrower resonance at 0.88752 Ryd, which we did not detect. The narrowness of
our 3S resonance is due to the weak coupling among channels,? and is the reason it

has not been detected experimentally.

6.3.2 P-wave scattering

Our results for elastic scattering in J = 1 partial waves are given in Table 6 —7.
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The inelastic results, cross sections for transition to the 2s and 2p states are given
in Table 6 — 8 and Table 6 — 9, respectively. The !P°dd partial cross sections are

plotted in Figure 6.6, and the 3P°d9 cross sections are plotted in Figure 6.7.

The most dramatic result is the shape resonance found in the !P°94 channel
just above the opening of the n=2 level. We compute the position of this resonance
at 0.75108 Rydt and its lifetime as 6200 to (when using the full npax = 5 set of
25 surface functions and projecting at 60 bohr). The full width of the collision
lifetime at half its peak is 1.0 mRyd (0.014 eV). The n = 2 Feshbach resonance
is only 0.00337 Ryd lower in energy, by our calculation. Using an 11 state basis,
Callaway3® determined the position of the resonance to be 0.75121 Ryd and the

width to be 1.47 Ryd by fitting the eigenphase sum to the formula

a

ér(E) + E_E,

+b+c(E—E¢h)+ta.n_12 r

———-(E ~Fu) (6.3)

This resonance was also seen by Taylor and Burke,3® discussed by Macek and

Burke,5 and by Lin.46

Higher resolution than that used by Koschmieder et al.*” and Oed*® (150 meV)
is required to resolve resonances in the experimental cross section. Presence of
the 1P°9d resonance was first observed in the 1s — 2p cross section by McGowan
et al.** The measurements of Williams and Willis® showed the energy of the 1Podd
resonance to be 10.210+0.005 eV, and obtained no other oscillations in the 1s — 2p
cross section between 10.200 and 11.000 eV, in contrast to the earlier result,**
where a second unexplained maximum had been obtained at 10.45 + 0.03 eV. The
width we have obtained is somewhat narrower than that calculated by Callaway; the
experimentalists had suggested that the previously calculated width of the resonance

was too wide.4?

t 10.219 eV, converted with infinite Rydberg, with respect to ground state of

H atom, 10.968 eV with respect to ground state of H™, using reduced Ryd.
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The shape resonance, as well as the ! P°4d Feshbach resonance below the n = 2
threshold, has been detected experimentally in the H~ photodetachment cross
section.®¥ The estimated width of the shape resonance from these experiments
is 23 + 6 meV. Gram et al.50 studied the effect of an electric field on the
photodetachment cross section and obtained a shape resonance at a photon energy
of 10.98 eV, while aligning their observed Feshbach resonance to agree with the
theoretical resonance energy of Broad and Reinhardt®! (10.930 eV). The theory of
the photoionization (photodetachment) of H™ has also been treated by Macek,5?
and by Hyman et al.53 and by Wendoloski and Reinhardt®4 who used the method of
complex coordinates to obtain Er = 0.75130 Ryd, I' = 1.04 mRyd for the resonance

position and width.

As was discussed in Chapter 5, two of the three eigenvalue potentials converging
to the n = 2 threshold exhibit an avoided crossing at about 13.5 bohr (see Fig. 5.11).
One of these curves forms a shallow well which can support an infinite number of
resonant states (the number is actually less than infinite due to the fine-structure
effects).® The other eigenvalue potential forms a barrier, caused by the long range
polarization effects between the degenerate 2s and 2p states. This barrier potential

is the reason for the shape resonance.

The eigenphaseshifts and eigenphase sum for ! P°44 partial wave in the vicinity
of the shape resonance are plotted as functions of the energy in Figure 6.8. The
eigenphase sum has been used by others to compute the position of the resonance,
and also as a relative measure of the correctness of a calculation.®® The non-resonant
contribution to the eigenphase sum near the shape resonance is a rapidly decreasing
function of energy, which complicates the analysis. A comparison of the partial cross
sections for elastic and excitation processes with those obtained by Callaway35 is
presented in Figure 6.9. It can be seen that for the 1s — 1s, 1s — 25, and 1s — 2p

processes, our cross sections have maxima at 0.7510, 0.7513, and 0.7513 Ryd
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respectivley, whereas Callaway’s occur at 0.7513, 0.7515, and 0.7515 Ryd. These are
to be compared with the energy of 0.7511 Ryd we determined from the maxima in
the collision lifetime eigenvalue curve. The collision lifetime method is more reliable
and less ambiguous for determining the position of the resonance than choosing the

extrema in the cross section curves.

We also get shape resonance behavior in partial waves other than P44, No
other calculation has found a shape resonance above the n = 2 threshold other than
in the 1P°44 partial wave, and experiments have also been interpreted as having
only the !P°4d ghape resonance.4?® We have found that 3P°dd partial wave has a
resonance ten times shorter lived than that !P°dd, We have also found that the
longest lived n = 2 shape resonance occurs in the 3D®¥e2 partial wave, with lifetime
14,500 to. The lifetimes steadily decrease with J for J > 2: for 1:3F°dd the lifetime
is 1200 to, for 1:3Gever it is only 450 to, and for 1:3H°44 it is only about 50 to. The
positions of these resonances move out further from threshold as J is increased (for
J > 2). Only in the J = 0 partial wave (where there is one less state) is there
definitely no shape resonance, because all three collision lifetime eigenvalues are

negative right above threshold.

Full calculations were not performed on the parity-disfavored partial waves
(L3Feven 1,3podd etc.) in the n = 2 to n = 3 energy range because the only cross
section at energies below the n = 3 threshold to which these partial waves contribute
is the 2p — 2p elastic cross section, in which we were not particularly interested.
However we have calculated resonance energy positions for some of these partial
waves. A few calculations at energies close to the n = 2 threshold were performed
on the J = 1 partial wave of even parity. These have shown a positive peak in the
collision lifetime eigenvalue for 1PeVe™ (720 to at 0.7506 Ryd), but none in 3PeVern,
Analyzing the eigenvalue potentials (see Figs. 5.11 and 5.12) we can identify the

cause. The triplet curve is very attractive, with a well 0.0234 h deep, which results-
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in a bound state.55:56 The curve for 1PV*2, on the other hand, has a very shallow
well and barrier. The barrier height is 0.00024 h from the bottom of the well, which

is only 0.0001 h less than the asymptotic n = 2 energy level.

Resonances are sometimes classified as belonging either to ‘+’ or ‘-’ series,5?”
just as we discussed ‘+’ and ‘-’ surface functions in Chapter 5. Of the four !P°dd
resonances seen converging to the n = 3 threshold, the first and fourth are classified
as ‘+,” and the second and third resonances, which are an order of magnitude
narrower, are classified as ‘—.’5® The classification is based on a labelling of surface
function eigenvalue curves, and obtaining the resonance levels by computing the
bound states supported by those curves. The ‘+’ curves are more attractive at
small p, and two-electron excitations to such a level is expected to be 1 to 2 orders

of magnitude more likely than excitation to the less attractive ‘—’ state.58

We compare our resonance positions with other authors in Table 6 — 4.
We have detected only two !P°dd Feshbach resonances, at 0.8745 Rydt and
0.882862 Ryd1 in our standard calculation, projection at 60 bohr. Other calculations
have seen higher members of the series, but projecting at 60 bohr we have not
detected them. In particular, Callaway3® calculated the positions of four !Podd
resonances, at 0.87457, 0.88286, 0.88777, and 0.88820 Ryd. Our positions and
widths agree well with the first two of these. The width of Callaway’s 4th resonance
at 0.88820 Ryd is ~ 10 times that calculated for his resonance at 0.88286 Ryd.
The conclusion drawn from this statement is that lack of energy resolution is
not the reason resonance #4 goes undetected in our calculation. (Resonance #3

is extremely narrow, according to Callaway.) Based on our experience with the

t 11.90 eV with respect to ground state of H atom, 12.646 ¢V photon energy

with respect to ground state of H™.
1 12.0121 eV with respect to ground state of H atom, 12.7597 eV with respect

to ground state of H™.
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n = 2 resonances and observing that the largest 1P°94 collision lifetime eigenvalue
is monotonically increasing above 0.884 Ryd, we suggest that a larger projection

distance (80 bohr) may be necessary to observe some of the resonances less than

0.001 Ryd below the n = 3 threshold.?®

The two relatively broad 'P°dd resonances have been seen in measurements
of the photodetachment of the H™ ion, by Hamm et al.° who obtain resonance
energies of 12.650 £ 0.004 (width 0.0275 +0.0008 V) and 12.837 £ 0.004 eV (width
0.0016 +0.0003 eV). They interpreted these as the first two members of a Feshbach
resonance series of the ‘+’ type. The first resonance agrees within their experimental
error with our result, and the second is the missing one we discussed above. These
authors also have seen some weak structure near 12.78 eV, which they think may
be a resonance of the ‘-’ class, and which agrees within 0.02 eV with our second
resonance position. The lowest energy !P°4d Feshbach resonance has also been
detected in electron scattering experiments,*® causing dips in the 1s — 2s and

1s — 2p cross sections at 11.91 + 0.06 and 11.97 & 0.06 eV, respectively.

We have computed the positions of three 3P°dd Feshbach resonances, at
0.8641 Ryd (11.76 eV), 0.8855 Ryd (12.05 eV), and 0.88747 Ryd (12.075 eV).
Experimentally, the 3P°dd resonance is not clearly defined, because the energy
resolution of the experiments is usually greater than the energy separation of the
various resonances. Theoretically, the lowest 3P°4d n = 3 Feshbach resonance lies
only 0.03 eV above the !S resonance. The relative error in energy determination in
Williams experiment is 0.02 eV.43 Williams has tentatively assigned a minimum in
the 1s — 2p excitation cross section at 11.75 £ 0.06 eV to the 3P°4d resonance. It
is clear from Fig. 6.5 that the 3P°dd resonance at 0.8641 Ryd does indeed cause a
large dip in the 1s — 2p cross section, which is significant in the total cross section

too (see Figure 6.15).
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6.3.3 D-wave scattering

The elastic scattering cross sections for J = 2 are compared with the literature
in Table 6 —10. The inelastic scattering cross sections for excitation to the 2s and 2p
states for J = 2 are given in Table 6 — 11 and Table 6 — 12, respectively. Our results
for the inelastic cross sections give only fair agreement with previous calculations,
and the elastic cross sections are about twice those obtained by Burke et al.l2. We
believe that the latter are not converged with respect to basis size. (See Table 4-5

in Chapter 4 for convergence tests.)

We have plotted the collision eigenvalues for !D®¥e? in Figure 6.10. lDevenr
resonances are obtained at 0.8680 (11.81 eV) and 0.8868 Ryd (12.07 eV), whereas
Burke et al.}? obtained only one resonance at 0.8687 Ryd (11.82 eV), with width
3.62 mRyd (0.049 eV). Callaway also predicts a resonance position of 0.8681 Ryd
(11.81 eV).3% Williams’ detected a resonance attributed to the !D®Ve™ partial wave
at 11.85 + 0.080 eV in the 1s — 2p cross section, agreeing with theory within

experimental error.

It has been shown that the position of the experimentally observed !Deven
resonance®! below the n = 2 threshold is not given correctly by the 3-state
close coupling calculation.b? The position predicted by the 6-state close-coupling
calculation is shifted down 0.07 eV compared with the McGowan et al. experimental
result of 11.89 eV.4* McGowan et al. have suggested that the 6-state calculation
was unconverged and that the resonance position would shift further in a larger
calculation; however our result is 0.0007 Ryd lower than Burke’s and agrees with
the experiment by Williams.#® The conclusion is that McGowan et al.’s suggestion

is probably incorrect.

We have obtained a series of maxima in the collision lifetime eigenvalue curves

just above the n = 2 threshold. (See Table 6 —4.) The largest of these is in the
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3Deven partial wave, located at 0.75040 Ryd (lifetime 14,500 and width 0.45mRyd).
The lowest 3D®Ve® n = 2 eigenvalue curve, as seen in Fig. 5.14, is attractivé but not
enough so to support a Feshbach resonance below threshold. The result apparently
is a shape resonance just above the n = 2 threshold, which nevertheless is surprising,
because the eigenvalue potential does not have any barrier. Subsequent peaks are
located at 0.754 Ryd (10.26 eV) and 0.763 (10.38 eV) with corresponding lifetimes
of 400 to and about 60 to. McGowan et al.%* also report a second small maxima in
the cross section at 10.45+0.03 eV (0.768 Ryd) just after the inelastic threshold. It
was suggested that this structure may be part of the oscillatory structure predicted

by Damburg and Gailitis.?

6.3.4 Higher partial wave scattering

According to Gailitis and Damburg? the inelastic partial cross sections for
transition 1s — 2s and 1s — 2p will tend toward zero at the n = 2 threshold
for J > 3. The contribution of J = 3 partial waves to the total cross section is
much smaller than the lower J ones, but not sufficiently small to conclude that the
total cross section has converged once the F-wave contributions are included. These
cross sections are presented in Table 6 — 13 (elastic), Table 6 — 14 (1s — 2s), and
Table 6 — 15 (1s — 2p). 'F°4d cross sections are displayed in Figure 6.11, 3F°odd
cross sections in Figure 6.12. They are particularly influenced by the presence of
two sharp resonances, at 0.8872 Ryd (12.07 eV) for the !F°dd and at 0.8769 Ryd
(11.93 eV) for the 3F°9d partial wave. The collision lifetime eigenvalues for !Fodd
and 3F°dd are graphed in Figure 6.13. The 3F°dd resonance produces a sharp
increase in the (1s — 2s) and (1s — 2p) total cross sections, as seen in Fig. 6.12.
We suspect that there is a second 3F°9d resonance that is very narrow and even
closer to the n = 3 threshold; Callaway predicted its position as 0.8880 Ryd.3® We

were not able to detect this resonance, projecting at 60 bohr and using an energy
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grid of 1078 Ryd in the neighborhood of 0.888 Ryd. A higher energy resolution was

not attempted.

The collision lifetime analysis also indicates a series of shorter-lived resonances
just above the n = 2 threshold at 0.7545, 0.763, and 0.78 Ryd (10.266, 10.38 and
10.6 eV, respectively) with lifetimes of 1200, 200, and 80 to, respectively. These
lifetimes are so small compared to those occurring slightly below the n = 3 threshold
that one might wonder whether they are not simply numerical artifacts, but these
resonances produce a noticeable effect on the probablity of transitions for which
the initial state is not the ground state. All three resonances are seen in the 3Fodd

partial elastic 2p — 2p scattering cross section, as seen in Figure 6.14.

Some of the Argand diagrams corresponding to the 3F°dd resonances (Fig-
ure 6.15) are remarkable in that the curves are drawn counter-clockwise through-
out much of the energy range. The resonance at 0.877 produces a large counter-
clockwise circle, as expected, in the plot of each matrix element, but the resonances
at lower energy give rise to circular arcs not passing through the origin, which are
most evident in the Argand diagram of the 2p2 — 2p2 and 2p4 — 2p4 elements
of the scattering matrix, indicating weaker resonances superimposed on the direct
contribution to these elastic processes. Some of these resonances are very wide
and short-lived. The largest collision lifetime eigenvalue is however never negative,

confirming the resonance nature of the features slightly above the n = 2 threshold.

The 1F°9d and 3F°94d partial waves have similar behavior at energies close to
this threshold. The partial cross sections for the 1s — 2s and 1s — 2p processes
from the ground state increase steadily and slowly with energy, starting at negligible
values near the n = 2 threshold and increasing to values of the order of 0.01 and
0.057a3, respectively, as the n = 3 threshold approaches. There is not much

change in phase over this energy range, as seen from the Argand diagrams for
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the (1s3 — 2s3), (1s3 — 2p2), and (1s3 — 2p4) matrix elements. By contrast,
the J = 3 cross sections for transitions from excited states, of which Figure 6.12 is
an example, are peaked at energies close to the n = 2 threshold, after which they

decrease by 1 to 2 orders of magnitude.

6.3.5 Total cross sections

Comparison of theory and experiment is this energy range is straightforward
and not complicated by processes that may be present at higher energies, such as
cascade processes and ionization; however theoretical results have to be “folded”

with the experimental energy distribution to make a meaningful comparison.

The major difficulty in electron-hydrogen atom scattering experiments is in
producing an intense beam of atomic hydrogen. The first high-resolution experiment
(electron-bream resolution 0.07 eV) of an excitation cross section in H was made
by McGowan, Williams, and Curley,*4 and confirmed the theoretical prediction of
resonances occurring slightly below the n = 3 threshold. There have been several
experimental measurements of the total cross sections for impact excitation to the
2s state.3 Resonances in the 2s channel were measured by Oed,*® and subsequently
by Koschmieder et al.#” The latter achieved an energy resolution of 110 meV.
The experimental results have indicated that 6-state close coupling calculations
overestimate the cross section by 10% to 15% above 11 eV. More recent experimental
data are available for the total cross section for the excitation of the 2s and 2p

states, 49,43

which does not rely on any theoretical calculation for normalization.
The energy resolution in these experiments was 0.07 eV (0.005 Ryd). Still better

resolution is required to identify separate resonances that occur close in energy.

The total elastic cross section of electrons with H(1s) atoms in the energy
range from the n = 2 threshold to the n = 3 threshold is shown in Figure 6.16. We

have listed the partial wave contributions to the elastic and inelastic cross sections
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from the ground state and the total cross sections in Table 6 — 16 for a selection
of energies between the n = 2 and n = 3 thresholds, where we have also compared
with the theoretical results of Callaway.2® The total cross section for excitation to
the 2s state is shown in Figure 6.17a, and the total cross section for excitation to
the 2p state is shown in Fig. 6.15b. The major structural features are due to the
1podd shape resonance at 0.7511 Ryd at the low energy end, and to the several wide
Feshbach resonances below the n = 3 threshold. The 3F°dd resonance at 0.877 Ryd
produces a sharp peak in both excitation cross sections. The higher lying resonances

are very narrow and closely spaced. The agreement with experiment,*® though not

shown, is very good, given the resolution.

6.4 Energies between the n=3 and n=4 Thresholds

In this section we examine the scattering processes accessible at energies
between the n = 3 and n = 4 thresholds. We will consider excitation both from the
ground state to the upper states and from the 2s and 2p states to the n = 3 states,
as well as elastic scattering of the ground state. Both parities need to be considered

when calculating transitions from the 2p state.

The only previous scattering calculations in the n = 3 to n = 4 energy range
have been those obtained by Hata et al. using variational methods;®* although
Burke et al.1? did some 6-state close coupling calculations at a few select higher
energies, those calculations did not include the n = 4 states in the basis set, which

has been shown to be important for convergence.®®

6.4.1 Resonances

We have computed the positions of over 80 resonances between the n = 3 and
n = 4 thresholds using the collision lifetime matrix eigenvalues. These generally
agree with, but are more complete than, the resonance positions and widths

computed by complex rotation.® All the resonances found for J = 0 through 5
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are listed in Table 6 — 17. The lifetimes are given by the peak values of the
collision lifetime matrix eigenvalues, taken as functions of the eriergy, and the widths
are defined as the full-width at half-maximum of the collision lifetime eigenvalue
vs. energy curve. The widths are approximately inversely proportional to the
lifetime, as is expected from the uncertainty principle. We list the widths even
though they aren’t as accurately determined as the lifetimes, in order to make
comparisons with other calculations in which the width of the resonance, but not

the lifetime, was computed.

The resonance energies for states with parity (—1)7*! are closely associated
with resonances of the other parity, if one switches spin. This is called “T-doubling.”
For example, in the !P®Ve® partial wave there is one resonance at 0.93403 Ryd,
whose position and lifetime is comparable to the resonance at 0.93408 Ryd in the
3podd gtate. And for 3PeveR we find three resonances, at 0.9255, 0.9358, and
0.93707 Ryd, of which the latter two have energies just slightly below those of
the corresponding !P°94 resonances at 0.9359 and 0.93713 Ryd. This phenomenon
is seen in the higher partial waves as well. Recently a new classification scheme
based on the set of internal correlation quantum numbers K, T, and A has been
introduced, and the “T-doubling” feature is predicted by the scheme.®667 Resonant
states with the same values of K, T, and A are obtained as quasi-bound states of
eigenvalue potential curves (see Chapter 5) which are similar in shape, and hence
the resonance energies are close together, even though the J, IT and S quantum
numbers may be different. Another consequence is that supermultiplet structure
observed for intrashell states®® may be interpreted, as well as predicted, by this
scheme. Approximate selection rules for e“—H scattering have been proposed

based on this model.

In Figure 6.18 we have organized the n = 4 Feshbach resonances according to

the (K,T)4 configurations in order to show the I-type supermultiplet structure.®®
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The resonances obtained have been assigned quantum numbers K, T, and A as
described by Lin,”! taking into account the width of each resonance. We find many
instances of “T-doubling,” two nearly degenerate resonances with the same J, but
different S and IT. A striking pattern can be seen for states with different J, S and
IT but the same (K,T) and A, if A = £1. There is a series of relatively wide, lower
energy resonances starting with the 'S (3,0)* state, that continues through 2p°dd,
Ipeven 3podd 1Geven 554 3Hodd  If we had done J = 6 calculations, there would
be an !I®Ve® resonance of this type as well. There is a similar series of extremely
narrow resonances, beginning with the 3S (3,0)~ state, and continuing through

1podd 3peven 1podd 3Geven ,nq 1Hodd This structure is similar to what was

seen in Figure 6.2.

6.4.2 S-wave scattering

Cross sections for J = 0 partial waves were obtained using 15 surface functions
(nmax = 5) and projecting at 80 bohr. The cross sections are presented graphically
in Figure 6.19. The 23S contributions to the 1s — 3I; cross sections are found to
be exceedingly small, all less than 10=%r a2, which is neglible compared to the !S
contribution. The same situation held for the energy region between the n = 2
and n = 3 threshold where most of the scattering from the ground state in the 3S
partial wave is elastic in nature, and where the resonances are few, very long-lived

and narrow.

Comparison of the J = 0 cross sections of Hata et al.®* using the full basis
1ls — 3l; (6 states plus 8 pseudostates) at E=0.90 Ryd, summed over spins, with
our own results, and with the 6-state close-coupling results,!? is made in Table 6—18.
Our total J = 0 1 — 3 cross section agrees with Hata et al. to about 5%. The
individual cross sections are small, and the percent difference between them is large,

except for the 1s — 3p contribution, where agreement is quite good.
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The 1S partial wave may perhaps have a resonance right above the n = 3
threshold; we found the largest lifetime eigenvalue increases to over 10 tg as the
energy decreases to the n = 3 threshold, but no maxima is achieved. However there
appears to be a shoulder in that eigenvalue at a slightly higher energy. Whether
this shoulder indicates a weak shape resonance we were not able to determine. The
1S partial wave contribution to the 1s — 3s cross section definitely indicates the
presence of a resonance, as a very sharp peak exists just above threshold. The
resonance is not nearly as pronounced in the other !S channels, however. Pilot
hyperspherical calculations by Lin?3 predicted a shape resonance in the !S partial
waveabove the n = 3 limit, based on the potential curves obtained. Our !S potential
curves do have crossing, whereas the 3S ones do not (see Fig. 5.9 and 5.10) and we
have seen in the !P°44 partial wave (at the n = 2 threshold) that barriers formed by
states that cross can lead to shape resonances. Lin calculates a barrier of 12.13 eV,

which is fairly consistent with the experimental resonance energy of 12.16 eV.6°

The Argand diagrams are equally difficult to interpret. Whereas the Argand
plot gives a clockwise motion from E=0.8889 to 0.895 Ryd for most of the scattering
matrix elements , there are a few which may be interpreted as giving slightly counter-
clockwise moving curves. The Argand diagram for the 2s — 3d 'S matrix element
is shown in Figure 6.20, and has the most curvature near the n = 3 threshold. The
curve bends back in the opposite direction at about 0.895 Ryd, forms half of a small
circle between 0.920 and 0.925 Ryd, which indicates the resonance at 0.921 Ryd,
and then loops into a much larger oblong shape between 0.930 and 0.935 Ryd, the

result of two close resonances at 0.93125 and 0.93325 Ryd.

On the other hand, a shape resonance ts indicated by the collision lifetime
analysis in the 3S partial wave above the n = 3 threshold, as seen in Figure 6.21.
We calculate its position at 0.8898 Ryd with lifetime 2200 to and width 1.2 mRyd,

which is fairly short-lived. This is compared to Hata et al.’s result of 0.8907 Ryd
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with width 4.3 mRyd.” The effect of this resonance on the cross sections, however,
is hard to see. Only in the 2p — 3s,3d and 2s — 3s 3S partial cross sections is any
kind of structure seen at the resonance energy (see Fig. 6.19). Hata et al. havefound
a maximum in the 3S 1s — 3d cross section, where we find only a small bump, not a
major peak. They further state that the resonance is due to the angular momentum
barrier in the 3p and 3d channels, caused by short-range repulsive interaction, along

with strong long-range dipole interaction between the degenerate n = 3 hydrogen

atom states.

The Argand diagrams for most of the 3S scattering matrix elements do not
indicate a shape resonance, but we have plotted one that does, (2p1 — 3d2), in
Figure 6.22. This diagram clearly indicates the two Feshbach resonances (see below)

as well, and also has some complicated structure in the non-resonant energy region

0.91 to 0.93 Ryd.

The Feshbach resonances in the 3S partial wave just below the n = 4 threshold
are long-lived and narrow, just as was found below the n = 3 threshold. Both of
them cause sharp variations in all of the state to state partial cross sections, except
for the 1s — 1s elastic process, which is the major contribution to the total elastic

cross section and insensitive to the resonances.

6.4.2 P-wave scattering

| Cross sections for J = 1 odd parity partial waves were obtained using 25 surface
functions (nmax = 5) and projecting at 80 bohr. The cross sections are presented
graphically in Figure 6.23. We compare resonance positions and widths/lifetimes in
Table 6 — 17. Our calculations have detected four ! P°d¢ Feshbach resonances below
the n = 4 threshold of hydrogen, plus a shape resonance above the n = 3 threshold.
After the opening of the n = 3 channel we have a small maxima in the largest

collision lifetime eigenvalue (~ 1200 to) at 0.8906 Ryd, width 1.9 mRyd, which may
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indicate a weak !P°4d shape resonance there. The widest two Feshbach resonances,
located at 0.9257 (width=2.0 mRyd) and 0.9359 Ryd (width=0.9 mRyd), were
also detected by Hata et al.5% who obtained 0.9265 Ryd (width 3.3 mRyd) and
0.9359 Ryd (width 0.6 mRyd) and by Ho,”! whose results are closer to our own.
We have found, in addition, two long-lived narrow resonances in P°4d, at 0.93145
and 0.93713 Ryd, the second of which had not been previously reported. The
narrower resonances go undetected in the partial elastic scattering cross section,
and have only a miniscule effect on the 1s — 2/, partial cross sections. Their effect
is much more pronounced in the transitions to 3/; final states. Figure 6.24 displays
an Argand diagram for the (1s1) — (2p2) element of the scattering matrix for the
1podd partial wave in the energy region between the hydrogen n = 3 and n = 4
thresholds. The counter-clockwise circles indicate the presence of five resonances,

two of which are very narrow. The corresponding lifetimes of these five resonances

(4 Feshbach, 1 shape) are displayed in Figure 6.25.

We find a much longer lived shape resonance in the 3P°dd partial wave at
0.8903 Ryd, just above the n = 3 threshold (lifetime 4900, width 1.3 mRyd). Hata
et al.5* were unable to resolve any J = 1 resonances in this energy region. The
lowest Feshbach resonance in 3P°dd is at 0.9213 Ryd. This value agrees will with
Ho’s results® (0.9214) but the Hata et al. calculation®* gives 0.9220. At slightly
higher energies we find three interfering resonances. The first two of these, at
0.9317 and 0.9335 Ryd are of comparable lifetime and width, but are so closely
spaced that the effect of the resonance at 0.9317 Ryd on the partial cross section
of the 1s — 3s, 2s — 3p, 2p — 3s and 2p — 3p processes is a shoulder to the
large dip caused by the 0.9335 Ryd resonance. The 2s — 3s cross section is an
exception to this behavior, since it displays three deep dips corresponding to the
three wide Feshbach resonances. The fourth resonance is very narrow, and exists

within the width of the third resonance, as can be seen from the collision lifetimes
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plotted in Figure 6.26. We calculate its position at 0.9341 Ryd, with a lifetime of
140,000 atomic units. It is in cases such as this that the collision lifetime matrix is
very useful, because a narrow resonance in the region of a strong, wider resonance
would be very hard to detect from the partial cross section data alone. The collision
lifetime matrix eigenvalues, on the other hand, clearly show a major peak, once the
energy grid is fine enough. Even with a coarser grid of points, there is indication
of a resonance because the eigenvalues fluctutate dramatically, as demonstrated in

Figure 6.27.

The Hata et al.b resonance positions and widths were obtained by fitting
Fano profiles’! to the eigenphase sum, assuming that the resonances are isolated.
From diagonalizing the appropriate J = 1 version of Eq. 6.2, they obtained three
negative eigenvalues A(A + 1) less than —%, from which one expects to find three
series of resonances. To determine if two resonances belong to the same series,
one may examine the eigenvectors of the collision lifetime matrix which correspond
to the largest eigenvalue at the resonant energy to see if they correlate with each
other. We have shown that the three Feshbach resonances at 0.9317, 0.9335, and
0.9341 Ryd are isolated, but nevertheless there are three of them occurring within
0.003 Ryd. The other methods for locating resonances are much less precise and

show the presence of only one.

There are fewer Pe¥e® than P°9d states (see Table 5—2), and as a consequence
there are fewer P®V®™ resonances. As mentioned in Section 6.4.1, the Peven

resonances occur at energies close to P°4d resonances, as seen in Figure 6.18 and
Table 6 — 17.
6.4.3 D-wave scattering

Cross sections for J = 2 even parity partial waves were obtained using

31 surface functions, (nmax = 5) and projecting at 80 bohr. The cross sections
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are presented in graphical form in Figure 6.28.

The resonances obtained for J = 2 are listed in Table 6 — 17¢, along with the
computed lifetimes and widths. The shorter-lived resonances have the largest effect
on the cross section, as can be seen from Figure 6.28. The elastic scattering cross
sections from the ground state for the !D®V®® and 3D*®Ve® partial waves are very
different. The latter shows little variation with energy, while in the former the
two strong, broad resonances are clearly shown. In the 3D®¥*® wave, the 1s — nl;
cross sections for n = 2 and 3 are an order of magnitude smaller than their 1Deven

counterparts.

There are two very sharp peaks in several of the 3D®'*® cross sections just
above the n = 3 threshold, which are most pronounced in transitions to the 3d
state. This is due to a shape resonance at 0.88918 Ryd which has a lifetime of
24,000 to.

The sharp !D®Ve? resonance at 0.93382 Ryd lies very close to a wider resonance
at 0.9341 Ryd. The collision lifetime eigenvalue curves corresponding to the !Devern
partial wave at this energy are shown in Figure 6.29. We claim that there are two
resonances here because two of the collision lifetime eigenvalues change rapidly as

a function of energy in this region, but this point bears more discussion.

It has been proposed, but not proven, that each resonance causes a peak in just
one lifetime eigenvalue vs. energy curve.!? If two lifetime eigenvalues peak at the
same energy, or at nearly the same energy, does this mean the there is accidental
degeneracy between two different resonances, or is it possible for a resonance to
involve two different eigenchannels? The pair of !D®'®® resonances is one such
situation, but we have encountered it in the 3P°4d partial wave below the n = 5
threshold and in !P°9d below n = 6. In both of these cases there was one narrow

peak in the collision lifetimes nearly, but not quite, centered at the same energy as
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the peak in a second eigenvalue, which was much broader and lower.

Let us consider what should happen to the collision lifetime eigenvalues
associated with two resonances in different lifetime eigenchannels as the energy
separation (between the resonances) is decreased. For large separations, the
resonances are isolated and one obtains two separate peaks in the larger eigenvalue,
with very small values in between. The smaller eigenvalue is negative (or at least
very small) for the entire range, and we assume the two states cross at some non-

resonant energy.

Now assume the energy separation is comparable to the average width of the
resonances. The first eigenvalue will peak at the first resonance energy, and then
decrease, as expected. Meanwhile, the second eigenvalue begins to increase, until it
is almost degenerate with the first. At this point the two eigenchannels cross. The
crossing is evident in the associated eigenvectors as well. The larger eigenvalue will
refer to the second eigenchannel, and vice-versa, for energies above the crossing.
We do not reorder the eigenvalues. The upper eigenvalue has a minima, and the
lower eigenvalue a maxima, at the crossing point. The peak in the lower eigenvalue
is construed as a crossing only, and is not interpreted as a resonance lifetime, as

would a peak in the largest eigenvalue.

Let us suppose that the energy separation of the two resonances is even smaller.
The two peaks in the eigenvalue will approach each other, until finally there is only
one peak with a shoulder. The presence of the second resonance will be clear because
of the bea.k in the lower curve. One may have to estimate the wider resonance
position and corresponding collision lifetime if the peak assumedly falls beneath the

curve for the sharper resonance.

The odd parity J = 2 2p — 3p and 2p — 3d cross sections have been plotted

in Figure 6.30. As expected we find the 1D°9d resonances are very close to those in
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3Deven and 3D°dd positions correlate with 1D®Ve® energies.

6.4.4 F-wave scattering

The cross sections obtained for the ! F°dd and 3F°4d partial waves are presented
in Figure 6.31. The odd parity basis set consisted of 34 surface functions, which
includes all states up to nmax = 5, inclusive. The cross sections for transitions

from the 1Fedd

ground state are relatively small, but not negligible. We have
evidence of two shape resonances just above the n = 3 threshold, after which the
cross sections smoothly increase with increasing energy until the Feshbachresonance

3Fodd

region is reached. Similar behavior is seen in the cross sections, but the strong

resonances in this partial wave seem to be wider than those in 1Fodd,

The lowest n = 4 3F°4d Feshbach resonance energy is 0.9244 Ryd. The third
resonance, at 0.9352 Ryd, belongs to the same series, given by (3,0)", because
the same collision lifetime matrix eigenvalue is involved. The second resonance is
close in energy, at 0.93475 Ryd, and the peaks formed by the two collision lifetime
eigenvalues overlap a sizeable amount. We have found one 3F°4d resonance of
the ‘=’ type, at 0.93606 Ryd. As we have found for other ‘-’ type resonances,
the resonance is very long-lived (on the order of 2 x 10° atomic units), and the
collision lifetime eigenvalue corresponding to this resonance is lower than all the
other eigenvalues outside the width of the resonance, so it crosses up, peaks, and
then comes back down to negative values. Calculations were repeated using 90 bohr
as the projection distance for energies very close to the n = 4 threshold. The second
(3,0)T resonance position shifted with the new projection distance, but the (1,2)"
resonance did not shift, such that the two became accidentally degenerate. The
narrow resonance also shifted slightly to lower energy. Right below threshold we
were able to discern one resonance which had not converged in the p = 80 bohr

calculation.
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We have plotted the J = 3 even parity 2p — 3p and 2p — 3d cross sections in
Figure 6.32. As expected we find the !F°V®® resonances are very close to those in

3Fodd and 3Fever positions correlate with 1F°4d energies.

6.4.6 Higher partial wave scattering

The cross sections obtained for the !Ge¥®® and 3Ge'®R partial waves are
presented in Figure 6.33. The figure clearly shows the presence of two strong 1 Gever
Feshbach resonances, listed in Table 6 — 17, and a shape resonance above the n = 3
threshold. The cross sections are very smooth in the energy region after the shape

resonance and up to the Feshbach resonance region.

The longest-lived shape resonance above the n = 3 threshold was found in
the J = 4, 3G®¥eR partial wave. The resonance position was calculated to be
0.88930 Ryd, its collision lifetime 90,000 ¢o, and its width 0.09 mRyd. A second,
smaller peak was found in the collision lifetime curve slightly above this resonance,
2300 tp high at 0.8922 Ryd. In addition, as tabulated, two closely-spaced, narrow
Feshbach resonances are found at 0.93435 and 0.93468 Ryd with lifetimes of 25,000

and 127,000 to, and widths of 0.35 and 0.06 mRyd respectively.

For higher values of J, there isn’t much difference between the partial cross
sections for different spin states. That is, the ratio of triplet partial cross sections to
the corresponding ones of the singlet is about 3 : 1, reflecting just the spin weighting
factors. This was true for F-wave states just above the n = 2 threshold, and it is
also true for H-wave states above the n = 3 threshold. The J = 5 cross sections for
the energy region between the n = 3 and n = 4 thresholds of hydrogen are presented
in Figure 6.34. For most of the cross sections, the triplet is about three times the
corresponding singlet cross section, which is consistent with the spin weighting.
Both 1H°dd and 3H°4d have a weak shape resonance at 0.8914 Ryd, according to

the collision lifetime matrix. There is a single sharp Feshbach resonance present in
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the 3H°dd state.

6.4.7 Total elastic and inelastic cross sections from the ground state

The integral cross sections for transitions from the ground state are listed in
Table 6 — 19 summed over spin and parity for each partial wave J from 0 through
5, for seven energies in this region, and the inelastic cross sections are plotted as
a function of energy in Figure 6.35. These calculations were performed with a
basis set that consisted of all surface functions up to the n = 5 level (a 15-state
calculation). The total cross section is also given. The elastic cross section from
the 1s state seems to be converging slowly with J, but the 1s — 2s, 2p, 3s, 3p and

3d cross sections seem to be already converged to better than 1%.

We also compare our 1s — 3l; cross sections, for [; = 0, 1 and 2, summed over
J and spin, with the 14-state results of Hata et al.6* and the 6-state calculation of
Burke et al.!? in Table 6 —20. The agreement is generally better than 10% between
our results and the 14-state calculation, but the 6-state calculation is much worse,
as is to be expected. There are no published experimental results of either cross

sections or resonances in this energy range.

6.4.8 Total inelastic cross sections from 2s and 2p excited states

At these energies one can obtain excitation cross sections from initial states
other than the ground state. Transitions from n = 2 states to n = 3 states are used
in the determination of the populations of excited states in plasmas, and can also
be used to find collisional population and depopulation rates for individual atomic
levels.”2:73 The same resonances are seen in the 2/; — 3!} transitions as in those
from the ground state. In fact, some of the resonances are more clearly seen in
these cross sections from excited states. There are six different processes involved:

(2s — 3s), (2s — 3p), (2s — 3d), (2p — 3s), (2p — 3p), and (2p — 3d). Parity
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disfavored states (such as P¢¥®2) do have a 2p channel, therefore the (2p — 3p) and

(2p — 3d) cross sections are summed over parity.

The partial wave contributions to the cross sections for processes where the
initial state is in the first excited level (2s or 2p) are given in Table 6 —21, where they
are compared with previous calculations at one total energy, 0.90 Ryd (with respect
to e —H (1s) as the zero of energy) corresponding to an initial translational energy
of 0.15 Ryd. The cross sections are plotted as a function of energy in Figure 6.36
(for initial state 2s) and Figure 6.37 (initial state 2p). All of these results have
been obtained with 15 nl; (parity-favored) states, which corresponds to 15 surface
functions for J = 0, 25 for J = 1, 31 for J = 2, and 34 for J = 3 and 35 for all
J > 3. The s-type states are not included in the parity-disfavored basis, which
leads to 10 funcfions for J =1, 16 for J = 2, 19 for J = 3, and 20 for J > 3. In all
cases, all surface functions up to n = 5 are used in these calculations. Comparison
is made with the 14-state (6 hydrogen atom states — all states up to n = 3 —
plus 8 pseudostates) variational calculation of Hata et al.* and with the 6-state

close-coupling results of Ormonde et al.”4

Let us compare some of the partial wave results given in Table 6 — 21. The
6-state results for J = 1 in Table 6 — 21 agree with each other, except for the
2p — 2p and 2p — 3d cross sections, which have both parities contributing.
Hata et al. have shown that neglect of exchange couplings between n = 2 and
n = 3 states by Ormonde et al. has led to large disagreement in the parity-
disfavored contributions between the two sets of 6-state results. Hata et al.’s full
basis results are, in some cases, very different from their 6-state ones. There seems
to be a discrepancy between our results and those obtained by Hata et al. The
hyperspherical coordinates results are very different. Where the J = 1 (2s — 3d)
cross section was reduced by a factor of about 3 in going from 6-state to 14-state, it

is now increased by a factor of 5 in going from 14-state to our 15-state hyperspherical
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result. The J = 1 (2p — 3s) cross section had correspondingly increased by a factor
of 3, and then increased again by a factor of 4. The disagreement in the (2p — 3p)

cross sections is less pronounced.

The J = 2 cross sections evidently are equally hard to converge. In particular,
our value for the J = 2 (2s — 3s) cross section is about 7 times that calculated by
Hata et al. in their best basis,®4 which itself was about one-third that calculated by
them with the 6-state basis. The agreement for the other cross sections is better,
but still not good, the differences between our results and the 14 states ones being

of the order of 20%.

These excited state inelastic cross sections are summed over spin and final value
of I, in Table 6 — 22, where they are compared with the 6-state result of Ormonde
et al. and the 14-state results of Hata et al. Our 2s — 3!, cross sections agree
satisfactorily with 14-state results for most of the partial waves. The J = 5 results
disagree, but Hata et al. have warned that these results are not as accurate. Our
total 2p — 3l; results are, in most cases, larger than the 14-state results and smaller

than the 6-state results. The percent agreement on average is only 30%.

Finally, in Table 6 —23 we have tabulated the total cross sections for transitions
from the 2s and 2p states to each n = 3 level state. These calculations include all
partial waves up to and including J = 5, and are summed over both parities and
spin.

While there are no measurements of excited state cross sections, Burgess et al.
have obtained collisional excitation and de-excitation rates for first excited states
from observations on laser pumped atomic hydrogen plasmas.”® A semi-empirical

75 is often used to obtain total n — n’ cross sections. The

formula, due to Johnson,
total cross section form n = 2 to n = 3 obtained in this way agrees fairly well

with the 6-state close-coupling calculation;!? however, Burgess suggested that the
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Johnson results must be five times too high.”® Johnson’s total cross sections results
are generally 20-30 percent higher than ours but those of Hata et al. are lower than
ours, ranging from 25 percent lower at 0.90 Ryd to 12 percent lower at 0.925 Ryd.
The two calculations agree to 1% at 0.93 Ryd. Not all of the discrepancies reported

by Burgess et al. are accounted for.

6.5 Energies between the n—4 and n=5 Thresholds

Recent photodetachment experiments have investigated the energy region up
to the n = 7 hydrogen atom threshold.”® We have determined to obtain results
for the 1P°4d partial wave at these higher energies in order to compare with the
experiment. In this section we present our preliminary results for S and P waves at
energies above the n = 4 threshold. The basis set used at lower energies contained
all the states up to and including those which correspond asymptotically withn =5
hydrogen atom functions. Use of that basis set in the n = 4 to n = 5 energy region
would give only one level of closed functions, which is insufficient. Furthermore,
inclusion of the n = 6 primitive functions will give better converged n = 5 (and to
a lesser extent, n = 4) surface functions, which are very important in this energy
range. For these reasons, calculations between the n = 4 and n = 5 thresholds
were performed using all the surface functions obtained from a primitive basis
with nmax = 6. For S-states, this meant using 21 surface functions; for P-states,
theré were 36 surface functions used. The projection was performed using the
“constant-p” method, with p taken to be 110 bohr. There have been no scattering
calculations reported in this energy range that have included all the open states in

the calculation.””

This energy region is rich with resonance structure. Our resonance positions,
lifetimes, and widths are given in Table 6 — 24, where they are compared with

the resonance positions found by Ho and Callaway using complex rotation.® We
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note that, for J = 0, only the two wider 'S resonances were predicted by Ho and
Callaway, but none of the three narrow 2S ones. We also note the presence of some

relatively short-lived shape resonances in both !S and 3S.

In Table 6 — 25 we list the !S and 3S contributions to the individual partial
cross sections at four energies for transitions from the ground state. The 1s — 4l;
cross sections are all very small. Individual cross sections for transitions from the

excited 2s and 2p states are listed, for 1S and 3S, in Table 6 — 26.

The partial cross sections at four energies between the n = 4 and n = 5
thresholds for the 1P°4d and 3P°dd partial waves from the ground state are listed
in Table 6 — 27. The partial inelastic cross sections from the 2s and 2p excited

states are listed for the 1P°4d and 3P°dd partial waves in Table 6 — 28.

Resonances have been clearly seen in all channels. Collision lifetime analysis
shows that there are six resonances below the n = 5 threshold in the !P°4d partial
wave. There is apparently also a shape resonance just above the n = 4 threshold,
at 0.9388 Ryd. The corresponding Argand diagrams for 1P°4d in the energy region
are quite complicated, as would be expected for a region with seven closely-spaced
(and therefore possibly interfering) resonances. One representative Argand diagram
for a first row element (1s1 — 4d3) is presented in Figure 6.38. This one consists
of several partial circles, and two sharp changes in direction, separating the shape
resonance region from the non-resonant from the Feshbach resonances.

There is a peak in the 3podd

collision lifetime about 1 mRyd above the n = 4
threshold; but there is a second maxima at 0.945 Ryd. This peak is very wide
compared to the others, and also relatively low, having a lifetime of 2000 ¢o. We have
seen, however, in other energy regions and for other partial waves, resonances with

similar lifetimes that had quite noticeable effects in the cross section. If we consider

this peak to designate a weak resonance, we find that the entiren = 4ton =5
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energy region is affected by at least one of the several 3P°dd resonances. There are
3podd Feshbach resonances at 0.9487, 0.9540, 0.95630, 0.95945, and 0.959705 Ryd,

and another one at 0.95629, which is hard to place exactly because of the sharper

resonance right near by.

In the very low energy end of this region, just after the n = 4 threshold, the
largest 3P°4¢ collision lifetime eigenvalue decreases monotonically as the energy
increases. Since there is no maximum in this lifetime, perhaps it is the tail of a
resonance below threshold (see Fig. 6.27), or possibly there is a shape resonance even
closer to threshold than our calculations. Our closest calculation was at 0.00001 Ryd
above the 0.9375 Ryd threshold, and the lowest energy point for which the collision

lifetime matrix was calculated (since we use a 3-point derivative formula) was at

0.93752 Ryd.

Because of the recent experimental measurements of resonances in the 1Podd
partial wave at energies beyond the n = 5 threshold, we also performed some
calculations at higher energies. The J = 1 basis used contained all the surface
functions through the n = 7 level, which amounts to 49 functions. The projection
was done at 110 bohr, just as for the n = 4 to 5 region. Based on experience at
lower energies, this projection distance is probably adequate, but no tests at larger
distances were performed. The resonance positions, lifetimes and widths are listed
in Table 6 — 29. We found six wide !P°dd resonances at 0.9615 (lifetime 4800),
0.9633 (3300), 0.9661 (4700), 0.9692 (6200), 0.9701 (13000), and 0.9717 Ryd
(17000 to) with widths 1.7, 2.4, 1.7, 1.3, 0.6, and 0.5 mRyd, respectively. We
suspect that there are even more resonances that are very narrow. In particular, a

very narrow resonance was obtained very close to a wider one.

We have not yet investigated this energy range for J > 1, but we expect to

find much structure due to many resonances.
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6.6 Summary

We have presented the results obtained using the hyperspherical coordinate
formulation for e + H elastic and inelastic scattering using local surface functions
and have shown that they are accurate. We have calculated the state-to-state
integral cross sections for all partial waves up to and including J = 5 for energies
between the n = 2 and n = 4 threshold levels of the hydrogen atom, for the S and P
partial waves for energies up to the n = 5 threshold, and for the !P°4d patial wave
for energies up to the n = 6 threshold. This method can in principle be extended
to energies above the range we have considered, indeed, even to energies above the
ionization threshold by including hyperspherical harmonics in the surface function
basis set. This approach is very promising and should lead to a very complete

description of the e + H scattering processes.
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Table 6-1: 'S elastic phase shift (in radians) for e—H(1s) scattering at energies

below the n = 2 threshold of the H atom.

k(bohr~!) Schwartz® Lin® PA3° PA4?¢ Burke et al.® Present/

0.1 2.553 2.513 2.636 2.585 2.491 2.548
0.2 2.067 1.983 2.119 2.093 1.974 2.062
0.3 1.696 1.568 1.740 1.735 1.596 1.696
0.4 1.415 1.242 1.423 1.433 1.302 1.420
0.5 1.202 0.989 1.221 1.209 1.092 1.209
0.6 1.041 0.784 1.067 1.059 0.93 1.046
0.7 0.930 0.618 0.927 0.931 0.82 0.933
0.8 0.887 = = — 0.77 0.889

Ref. 16 Schwartz.

Ref. 23 Lin.

Ref. 25 Klar and Klar, post-adiabatic approximation using 3 states.
Ref. 25, using 4 states.

Ref. 12 Burke et al..

Present calculation, 3 surface functions, projection at 8 bohr. This distance
was chosen in view of the convergence studies of Section 4.5 and Figures 4.2
and 4.3.

"o o O
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Table 6-2: Elastic phase shifts (in radians) for e”—H 1s scattering® at energies

below the n = 2 threshold of the H atom.

k(bohr—!) 3§ 1p sp lp 3p lF  3F

0.1 2.9385 0.007 0.0114 0.0012 0.0013
2.9335 0.0028 0.0070 0.0001 0.0001 0.0000 0.0000

0.2 2.7174 0.0147 0.0450 0.0052 0.0052 0.0018 0.0019
2.7234 0.0170 0.0488 0.0022 0.0022 0.0001 0.0001

0.2 2.4997 0.0170 0.1063 0.0108 0.0114 0.0038 0.0038
2.5123 0.0340 0.1278 0.0121 0.0120 0.0009 0.0009

0.4 2.2941 0.0100 0.1872 0.0183 0.0198 0.0066 0.0067
2.3057 0.0354 0.2138 0.0326 0.0328 0.0045 0.0045

0.5 2.1046 —0.0007 0.2705 0.0274 0.0304 0.0102 0.0103
2.1113 0.0179 0.2861 0.0549 0.0562 0.0130 0.0133

0.6 1.9328 —0.009 0.3412 0.0383 0.0424 0.0145 0.0147
1.9361 —0.0032 0.3476 0.0677 0.0704 0.0248 0.0260

0.7 1.7794 -0.013 0.3927 0.0523 0.0559 0.0194 0.0197
1.7829 —-0.0118 0.3992 0.0720 0.0739 0.0350 0.0365

0.8 1.6438 —0.004 0.427 0.0745 0.0697 0.0259 0.0263
1.6499 —0.0008 0.435 0.0833 0.0752 0.0404 0.0401

%The numberson the first line for each k value were obtained from Callaway, Physics
Reports, 45, Table 5, p. 134. The second line values are from this calculation,
projecting at 8 bohr using all surface function which asymptotically go to n =1 or

n = 2 and primitive functions which go to n = 1 through n = 5. (See Table 5 — 2.)
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Table 6-5a: !S contribution to 1s — 1s cross section in ma? at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW® TB¢ GB¢ e

0.76 0.69637 0.6627 0.536 0.650 0.555  0.6445
0.78 0.65454 0.6337 0.502 0.613 0.521 0.6073
0.81 0.59766 0.5790 0.455 0.560 0.473  0.5554
0.83 0.56502 0.5493 0.428 0.524 0.446  0.5266
0.85 0.54144 0.500 0.5036

0.86 0.60435 0.6638 0.448

Table 6-5b: !S contribution to 1s — 2s cross section in ma? at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state* BOW? TB¢ GB¢ c*

0.76 0.03624 0.0408 0.0402 0.0392 0.0395 0.0374
0.78 0.04456 0.0491 0.0449 0.0432 0.0436  0.0410
0.81 0.06255 0.0645 0.0625 0.0601  0.0619  0.0592
0.83 0.06198 0.0617 0.0632 0.0621  0.0638  0.0617
0.85 0.05414 0.0561 0.0553
0.86 0.01958 0.0028 0.0218

¢Projection at p = 60 bohr. bRef. no. 12.

°Ref. No. 38. dRef. no. 41.
¢Ref. no. 42.
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Table 6-5c: !S contribution to 1s — 2p cross section in 7ad at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW® TB¢ GB¢ Ce

0.76 0.02378 0.0270 0.0306 0.0286  0.0297  0.0282
0.78 0.02866 0.0278 0.0373 0.0339 0.0364  0.0347
0.81 0.02199 0.0218 0.0285  0.0255  0.0277  0.0257
0.83 0.02385 0.0235 0.0298  0.0247 0.0278  0.0248
0.85 0.02461 0.0245 0.0248
0.86 0.00540 0.0044 0.0120

%Projection at p = 60 bohr. bRef. no. 12.
‘Ref. No. 38. - dRef. no. 41.
¢Ref. no. 42.

Table 6-6: 3S contribution to 1s — 1s cross section in ma? at energies between the

n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB¢ GB¢ Ce

0.76 3.9450 3.9457 3.944 3.944  3.944  3.9447
0.78 3.8436 3.8434 3.839 3.840 3.839  3.8406
0.81 3.6985 3.6967 3.690 3.693 3.6900 3.6917
0.83 3.6062 3.6031 3.595 3.600 3.594  3.5972
0.85 3.5169 3.507 3.5060
0.86 3.4734 3.4687 3.459

%Projection at p = 60 bohr. bRef. no. 12.

¢Ref. No. 38. dRef. no. 41.
¢Ref. no. 42.
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Table 6-7a: !P°dd contribution to 1s — 1s cross section in ma? at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW?® TB¢ GBd ¢

0.76 0.0044 0.0022 0.019 0.002 0.006 0.0016
0.78 0.0053 0.0024 0.009 0.001 0.003 0.0007
0.81 0.0067 0.0032 0.006 0.001 0.003 0.0010
0.83 0.0075 0.0038 0.005 0.001 0.002 0.0014
0.85 0.0081 0.001 0.0020
0.86 0.0084 0.0046 0.006

Table 6-7b: 3P°4d contribution to 1s — 1s cross section in 7a3 at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB° G4 Cce

0.76 2.340 2.204 1.888 1.927 1.929 2.0865
0.78 2.288 2.155 1.848 1.884 1.888 2.0406
0.81 2.204 2.064 1.784 1.823 1.821 1.9691
0.83 2.138 1.999 1.737 1.780 1.774 1.9194
0.85 2.076 1.737 1.8676
0.86 2.049 1.912 1.663

%Projection at p = 60 bohr. bRef. no. 12.

Ref. No. 38. dRef. no. 41.

¢Ref. no. 42.
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Table 8-8a: !P°dd contribution to 1s — 2s cross section in ma2 at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB¢ GB¢ Ce

0.76 0.0077 0.0072 0.0194 0.0076 0.0086 0.0079
0.78 0.0046 0.0049 0.0048 0.0030 0.0035 0.0032
0.81 0.0049 0.0054 0.0050 0.0027 0.0036 0.0033
0.83 0.0064 0.0070 0.0061 0.0033 0.0046 0.0043
0.85 0.0085 0.0043 0.0059
0.86 0.0100 0.0108 0.0090

Table 6-8b: 3P°dd contribution to 1s — 2s cross section in 7a? at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB¢ GB4 Cce

0.76 0.0382 0.0453 0.0461 0.0384 0.0429 0.0368
0.78 0.0442 0.0471 0.0567 0.0421 0.0521 0.0454
0.81 0.0541 0.0572 0.0672 0.0503 0.0614 0.0524
0.83 0.0579 0.0584 0.0735 0.0563 0.0668 0.0564

- 0.85 0.0568 0.0596 0.0563
0.86 0.0381 0.0315 0.0516

2Projection at p = 60 bohr. bRef. no. 12.

¢Ref. No. 38. dRef. no. 41.
°Ref. no. 42.
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Table 6-9a: 1P°dd contribution to 1s — 2p cross section in ma? at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB¢ GB4 [ $ig

0.76 0.0654 0.0655 0.0927 0.0660 0.0702 0.0657
0.78 0.0473 0.0472 0.0657 0.0458 0.0517 0.0485
0.81 0.0501 0.0492 0.0544 0.0463 0.0553 0.0519
0.83 0.0565 0.0560 0.0680 0.0514 0.0617 0.0581
0.85 0.0643 0.0585 0.0668
0.86 0.0700 0.0704 0.0872

Table 6-9b: 3P°4d contribution to 1s — 2p cross section in 7a? at energies between

the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB¢ GB4 Ce

0.76 0.0327 0.0403 0.0478 0.0406 0.0442 0.0377
0.78 0.0394 0.0413 0.0539 0.0456 0.0502 0.0413
0.81 0.0446 0.0453 0.0638 0.0498 0.0584 0.0474
0.83 0.0474 0.0470 0.0674 0.0495 0.0609 0.0488
0.85 0.0450 0.0491 0.0464
0.86 0.0311 0.0255 0.0496

%Projection at p = 60 bohr. bRef. no. 12.

¢Ref. No. 38. dRef. no. 41.
°Ref. no. 42.
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Table 6-10a: !De®Ve® contribution to 1s — 1ls cross section in ma? at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW® TB¢ GB? c-

0.76 0.0854 0.0676 0.042 0.040 0.042 0.0485
0.78 0.0914 0.0722 0.050 0.046 0.049 0.0560
0.81 0.0952 0.0762 0.056 0.050 0.055 0.0615
0.83 0.0965 0.0766 0.058 0.053 0.057 0.0635
0.85 0.0942 0.0747 0.054 0.0626
0.86 0.0864 0.0693 0.052

Table 6-10b: 3De®Ve® contribution to 1s — 1s cross section in ma? at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB¢® GBY (-

0.76 0.2242 0.1714 0.097 0.091 0.100 0.1212
0.78 0.2230 0.1687 0.101 0.093 0.102 0.1235
0.81 0.2194 0.1657 0.104 0.095 0.105 0.1266
0.83 0.2186 0.1646 0.105 0.098 0.106 0.1280
0.85 0.2183 0.1633 0.100 0.1294
0.86 0.2176 0.1623 0.106

%Projection at p = 60 bohr. bRef. no. 12.

¢Ref. No. 38. dRef. no. 41.
¢Ref. no. 42.-
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Table 6-11a: !D®ve® contribution to 1s — 2s cross section in ma? at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state®> BOW® TB¢ GB¢ Ce

0.76 0.0557 0.0484 0.0540 0.0544 0.0540 0.0538
0.78 0.0518 0.0491 0.0555 0.0580 0.0556 0.0552
0.81 0.0546 0.0534 0.0553 0.0647 0.0602 0.0606
0.83 0.0607 0.0608 0.0624 0.0715 0.0657 0.0663
0.85 0.0658 0.0649 0.0797 0.0745
0.86 0.0709 0.0697 0.0810

Table 6-11b: 3D®'e® contribution to 1s — 2s cross section in ma? at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB¢ GB¢ e

0.76 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
0.78 0.0009 0.0007 0.0006 0.0002 0.0006 0.0004
0.81 0.0035 0.0035 0.0036 0.0017 0.0030 0.0026
0.83 0.0056 0.0056 0.0061 0.0031 0.0049 0.0042
0.85 0.0077 0.0080 0.0044 0.0055
0.86 0.0082 0.0087 0.0080

%Projection at p = 60 bohr. bRef. no. 12.

cRef. No. 38. dRef. no. 41.
°Ref. no. 42.
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Table 6-12a: !De'e® contribution to 1s — 2p cross section in ma? at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW® TB¢ GB¢ Cce

0.76 0.0992 0.0894 0.0914 0.0917 0.0916 0.0900
0.78 0.0961 0.0930 0.0937 0.0933 0.0934 0.0914
0.81 0.1140 0.1151 0.1218 0.1090 0.1131 0.1112

0.83 0.1347 0.1362 0.1430 0.1256 0.1319 0.1298
0.85 0.1565 0.1571 0.1469 0.1522
0.86 0.1701 0.1704 0.1679

Table 6-12b: 3De®V*® contribution to 1s — 2p cross section in ma3 at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 6-state® BOW? TB¢ GB¢ Ce

0.78 0.0016 0.0016 0.0016 0.0012 0.0018 0.0017
0.81 0.0049 0.0049 0.0076 0.0055 0.0066 0.0061
0.83 0.0080 0.0077 0.0120 0.0088 0.0099 0.0093
0.85 0.0103 0.0101 0.0120 0.0119

0.86 0.0111 0.0110 0.0155

3Projection at p = 60 bohr. bRef. no. 12.

cRef. No. 38. dRef. no. 41.
¢Ref. no. 42.
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Table 6-13a: !F°dd contribution to 1s — 1s cross section in ma3 at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 10-state® BOW® TBc¢ GB¢ (¢
0.76 0.0313 0.0280 0.007 0.006 0.007 0.0089
0.78 0.0311 0.0277 0.007  0.007 0.008 0.0093
0.81 0.0313 0.0277 0.008 0.008 0.008 0.0100
0.83 0.0310 0.0273 0.008 0.008 0.008 0.0104
0.85 0.0305 0.0267 0.007 0.0108
0.86 0.0304 0.0268 0.009

Table 6-13b: 3F°dd contribution to 1s — 1s cross section in ma? at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 10-state® BOWY TB¢ GB¢ (¢

0.76 0.0961 0.0862 0.022 0.019 0.022 0.0279
0.78 0.0961 0.0857 0.023 0.022 0.024 0.0292
0.81 0.0954 0.0845 0.024 0.027 0.025 0.0308
0.83 0.0927 0.0816 0.025 0.023 0.025 0.0311

0.85 0.0900 0.0787 0.022 0.0315
0.86 0.0891 0.025

%Projection at p = 60 bohr. bRef. no. 12.

°Ref. No. 38. dRef. no. 41.

°Ref. no. 42.
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Table 6-14a: F°dd contribution to 1s — 2s cross section in 7a? at energies

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 10-state®* BOW? TB¢ GB4 Ce
0.76 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000
0.78 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003
0.81 0.0009 0.0009 0.0011 0.0009 0.0011 0.0009
0.83 0.0015 0.0016 0.0016 0.0015 0.0016 0.0016
0.85 0.0021 0.0021 0.0024 0.0020
0.86 0.0025 0.0025 0.0028

Table 6-14b: 3F°dd contribution to 1s — 2s cross section in 7a? at

between the n = 2 and n = 3 thresholds of the H atom.

energies

Energy 15-state® 10-state® BOW? TB° GB¢ Ce
0.76 0.0006 0.0006 0.0004 0.0004 0.0004 0.0004
0.78 0.0031 0.0031 0.0037 0.0038 0.0041 0.0036
0.81 0.0091 0.0091 0.0127 0.0105 0.0131 0.0098
0.83 0.0091 0.0092 0.0148 0.0123 0.0122 0.0114
0.85 0.0085 0.0081 0.0124 0.0120
0.86 0.0082 0.0078 0.0142

3Projection at p = 60 bohr. bRef. no. 12.

‘Ref. No. 38. dRef. no. 41.

°Ref. no. 42.
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2

Table 6-15a: !F°dd contribution to 1s — 2p cross section in ma? at energies
0

between the n = 2 and n = 3 thresholds of the H atom.

Energy 15-state® 10-state® BOW?® TB¢ GB¢ c*
0.76 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001
0.78 0.0010 0.0010 0.0010 0.0010 0.0008 0.0010
0.81 0.0031 0.0031 0.0035 0.0033 0.0035 0.0031
0.83 0.0050 0.0050 0.0054 0.0052 0.0058 0.0050
0.85 0.0073 0.0073 0.0079 0.0076
0.86 0.0086 0.0086 0.0090

Table 6-15b: 3F°dd contribution to 1s — 2p cross section in ma3 at

between the n = 2 and n = 3 thresholds of the H atom.

energies

Energy 15-state® 10-state* BOW? TB¢ GB4 Ce
0.76 0.0011 0.0011 0.0012 0.0012 0.0015 0.0011
0.78 0.0116 0.0115 0.0110 0.0114 0.0118 0.0105
0.81 0.0324 0.0324 0.0404 0.0342 0.0325 0.0322
0.83 0.0426 0.0427 0.0517 0.0446 0.0379 0.0417
0.85 0.0497 0.0502 0.0435 0.0468
0.86 0.0510 0.0515 0.0603

2Projection at p = 60 bohr. bRef. no. 12.

°Ref. No. 38. dRef. no. 41.

°Ref. no. 42.
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Table 6-17a: !:3S resonance positions and widths at energies slightly below the

n = 4 threshold of the hydrogen atom.®

Energy/Ryd

Lifetime/to Width/mRyd

Previous results/Ryd

0.9209 + .0001
0.93125 + .00005
0.93325 £ .00005

0.8898 + .0001
0.931145 + .000005
0.936780 £+ .000005

13
4,200 1.8
4,800 1.6
8,500 0.9
35
2,200 1.1
160,000 0.05
260,000 0.03

0.9218%,0.92075°
0.930%,0.93057°

0.934¢

0.8907¢
0.9320¢

®These calculations were done with a basis set that included all surface functions
which asymptotically go to n = 1 through 5, and the same number of primitives.

BThe uncertainty indicates the precision of location of the peak in the collision
energy curve, rather than an absolute accuracy of the

lifetime eigenvalue vs.
calculation.

%Hata et al., Ref. 64.

®Ho, Ref. 39.

°Ho and Callaway, Ref. 8.
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Table 6-17b: J = 1 resonance positions and widths at energies between the n = 3

and n = 4 thresholds of the hydrogen atom.

Energy/Ryd Lifetime/tg Width/mRyd Previous results/Ryd
1peven
0.93403 £ .00001 140,000 0.06
3peven
0.9255 £ .0001 3,800 2.0 0.92555°¢
0.9358 & .0001 8,400 1.0
0.93707 £ .00001 33,000 0.25
1Podd
0.8906 £ .0001 1,200
0.9257 £+ .0001 3,900 2.0 0.9265,% 0.9256°
0.93145 £ .00001 134,000 0.065
0.9359 £ .0001 8,800 0.9 0.9359¢
0.937130 £ .000005 250,000 0.03
3P0dd
0.8903 £ .0001 4,900
0.9213 £+ .0001 3,900 1.9 0.9220,% 0.9214°
0.9317 £+ .0001 6,600 1.2 0.9314°
0.9335 £ .0001 7,400 1.1 0.9343¢

0.93408 + .00001 140,000 0.1
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Table 6-17c: J = 2 resonance positions and widths at energies between the n = 3

and n = 4 thresholds of the hydrogen atom.

Energy/Ryd

Lifetime/tg Width/mRyd

Previous results /Ryd

0.8916 £ .0002
0.9225 £ .0001
0.9310 =+ .0001
0.93382 £ .00003
0.9341 + .0001
0.93486 + .00001

0.88918 + .00001
0.9270 + .0001
0.93212 £+ .00001
0.93650 + .00005
0.936928 + .000002

0.88912 £ .00002
0.9269 =+ .0001
0.9365 + .0001
0.93691 + .00001

0.88900 + .00002
0.9309 £ .0001
0.93479 + .00001

lDeven

1,500
4,000
5,100
17,000
9,000
140,000
3Deven
24,000
3,500
130,000
8,400
268,000
lDodd
27,000
3,300
7,500
200,000
3Dodd
20,000
5,100

150,000

2.0
1.5
0.34
0.9
0.06

2.1
0.055
1.0

0.03

0.27
2.4
1l
0.04

0.38
1.6
0.05

0.922525°¢

0.93102¢

0.92685°¢

0.92696¢

0.93095¢
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Table 6-17d: J = 3 resonance positions and widths at energies slightly below the

n = 4 threshold of the hydrogen atom.®

Energy/Ryd

Lifetime/to Width/mRyd Previous results/Ryd

0.8901 + .0001
0.93475 £ .00005

0.93598 + .00001

0.88928 £ .00002
0.9294 + .0001
0.93707 + .00001

0.88975 + .00005
0.9298 £ .0001
0.93319 £ .00001
0.9371 £ .0001

0.8902 £ .0001
0.9244 £ .0001
0.93475 + .00005
0.9352 £ .0001
0.936056 =+ .000002

lFeven

7,000
13,600
176,000
3Feven
24,000
4,800
11,400
lFodd
12,000
6100
124,000
14,000
3Fodd
4,300
2,800
13,300
5,500
240,000

0.85
0.6

0.05

0.35
1.7
0.7

0.55
1.3
0.07
0.3

1.0
2.8
0.5
1.6

0.034

0.93475¢

0.92946¢

0.92975¢

0.9244°¢

0.9347°¢
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Table 6-17e: J = 4 and J = 5 resonances below the n = 4 threshold of the

H atom.
Energy/Ryd Lifetime/to Width/mRyd Previous results/Ryd
IGeven
0.8900 £ .0001 5,100 1.6
0.9273 £+ .0001 5,400 1.5 0.92725¢
0.9364 + .0001 10,000 0.8
3Geven
0.88930 + .00001 90,000 0.1
0.93435 + .00005 25,000 0.3 0.9343°¢
0.93468 + .00001 127,000 0.06
IGodd
0.93376 + .00001 46,000 0.2 0.93378¢
lHodd
0.8914 + .0002 3,900 1.6
0.93659 + .00001 200,000 0.04
SHodd
0.8914 + .0002 4,000 1.5

0.93227 £+ .00001 65,000 0.13 0.93219¢
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Table 6-18: Comparison of 1s — 3[; cross sections (in ma3) from 3 calculations:

(a) Hata et al. (ref. 64,65), (b)Burke et al. (ref. 12), and (c) present results.

J=0 (a) (6) (c)

1s — 3s 0.0065 0.0074 0.0098

1s — 3p 0.0085 0.0099 0.0083

1s — 3d 0.0030 0.0034 0.0012
Total

n=1—-n=3 0.0180 0.0207 0.0193
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Table 6-19a: Q(1s — 1ls), in ma3, summed over spin, for J = 0 through 5 and

total cross section, for energies between the n = 3 and n = 4 thresholds.

E\J 0 1 2 3 4 5 Total

0.900 3.8215 2.0609 0.3427 0.1573 0.0960 0.0821 6.5614
0.905 3.7936 2.0447 0.3441 0.1566 0.0952 0.0811 6.5153
0.910 3.7702 2.0325 0.3427 0.1558 0.0946 0.0799 6.4758
0.915 3.7399 2.0169 0.3449 0.1546 0.0944 0.0785 6.4291
0.920 3.7044 1.9871 0.3477 0.1524 0.0943 0.0769 6.3628
0.925 3.6934 1.9987 0.3374 0.1522 0.0943 0.0753 6.3614

0.930 3.6796 1.9771 0.3448 0.1507 0.0942 0.0738 6.3103

Table 6-19b: Q(1s — 2s), in ma3, summed over spin, for J = 0 through 5 and

total cross section, for energies between the n = 3 and n = 4 thresholds.

E\J 0 1 2 3 4 5 Total

0.900 0.0473 0.0514 0.0505 0.0131 0.0022 0.0003 0.1650
0.905 0.0481 0.0534 0.0507 0.0134 0.0022 0.0004 0.1695
0.910 0.0467 0.0522 0.0499 0.0132 0.0023 0.0004 0.1646
0.915 0.0485 0.0559 0.0496 0.0129 0.0023 0.0004 0.1697
0.920 0.0534 0.0662 0.0613 0.0130 0.0024 0.0004 0.1966
0.925 0.0422 0.0508 0.0421 0.0121 0.0025 0.0004 0.1502
0.930 0.0463 0.0562 0.0489 0.0121 0.0026 0.0004 0.1665
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Table 6-19c: Q(1s — 2p), in ma3, summed over spin, for J = 0 through 5 and

total cross section, for energies between the n = 3 and n = 4 thresholds.

E\J 0 1 2 3 4 5 Total

0.900 0.0232 0.0925 0.1427 0.0730 0.0135 0.0022 0.3471
0.905 0.0244 0.0917 0.1482 0.0754 0.0142 0.0024 0.3563
0.910 0.0244 0.0902 0.1455 0.0771 0.0151 0.0027 0.3550
0.915 0.0278 0.0899 0.1465 0.0789 0.0159 0.0030 0.3619
0.920 0.0316 0.0985 0.1725 0.0817 0.0167 0.0033 0.4041
0.925 0.0236 0.1078 0.1332 0.0818 0.0174 0.0036 0.3672

0.930 0.0291 0.0842 0.1418 0.0865 0.0192 0.0038 0.3647

Table 6-19d: Q(1s — 3s), in ma?, summed over spin, for J = 0 through 5 and

total cross section, for energies between the n = 3 and n = 4 thresholds.

E\J 0 1 2 3 4 5 Total a b

0.900 0.0098 0.0098 0.0145 0.0023 0.0001 0.0000 0.0365 .0321 .032
0.905 0.0097 0.0094 0.0139 0.0034 0.0001 0.0000 0.0365 .0383
0.910 0.0110 0.0103 0.0155 0.0032 0.0001 0.0000 0.0401 .0413
0.915 0.0105 0.0097 0.0161 0.0038 0.0001 0.0000 0.0403 .0377
0.920 0.0024 0.0043 0.0118 0.0040 0.0001 0.0000 0.0226 .0240
0.925 0.0149 0.0107 0.0197 0.0011 0.0002 0.0000 0.0465 .0506

0.930 0.0124 0.0112 0.0175 0.0054 0.0002 0.0000 0.0467 .0495 .055

¢ 14-state calculation, Hata et al., ref. 65.

b 6-state close-coupling calculation, Ref. 12.
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Table 6-19e: Q(1s — 3p), in ma?, summed over spin, for J = 0 through 5 and

total cross section, for energies between the n = 3 and n = 4 thresholds.

E\J 0 1 2 3 4 5 Total a b

0.900 0.0083 0.0171 0.0227 0.0061 0.0002 0.0000 0.0545 .0575 .062
0.905 0.0077 0.0178 0.0227 0.0074 0.0002 0.0000 0.0560 .0625
0.910 0.0087 0.0199 0.0247 0.0077 0.0003 0.0000 0.0613 .0644
0.915 0.0078 0.0208 0.0255 0.0101 0.0004 0.0001 0.0647 .0686
0.920 0.0007 0.0122 0.0188 0.0105 0.0005 0.0001 0.0439 .0474
0.925 0.0103 0.0157 0.0322 0.0030 0.0006 0.0000 0.0619 .0726

0.930 0.0078 0.0236 0.0302 0.0139 0.0005 0.0000 0.0760 .0856 .097

Table 6-19f: Q(1s — 3d), in ma3, summed over spin, for J = 0 through 5 and

total cross section, for energies between the n = 3 and n = 4 thresholds.

E\J 0 1 2 3 4 5 Total a b

0.900 0.0012 0.0072 0.0117 0.0044 0.0003 0.0000 0.0248 .0331 .034
0.905 0.0009 0.0079 0.0129 0.0053 0.0004 0.0000 0.0275 .0317
0.910 0.0009 0.0081 0.0141 0.0052 0.0004 0.0001 0.0297 .0324
0.915 0.0006 0.0087 0.0153 0.0072 0.0005 0.0001 0.0325 .0330
0.920 0.0006 0.0076 0.0137 0.0081 0.0007 0.0001 0.0308 .0287
0.925 0.0005 0.0059 0.0181 0.0023 0.0008 0.0001 0.0276 .0360
0.930 0.0005 0.0104 0.0177 0.0083 0.0007 0.0001 0.0377 .0415 .056
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Table 6-20: Total cross sections Q1,—31,, ({1 =0,1,2) in 7ad,

summed over spin:

(a) Hata et al., ref. 65. (b) This work, J = 0 to 5. (c) Burke et al., ref. 12.

E/Ryd (a) () (o)
ls — 3s 0.900 0.0321 0.0365 0.032
0.905 0.0383 0.0365
0.910 0.0413 0.0401
0.915 0.0377 0.0403
0.920 0.0240 0.0226
0.925 0.0506 0.0465
0.930 0.0495 0.0467 0.055
1s — 3p 0.900 0.0575 0.0545 0.062
0.905 0.0625 C(0.0560
0.910 0.0644 0.0613
0.915 0.0686 0.0647
0.920 0.0474 0.0439
0.925 0.0726 0.0618
0.930 0.0856 0.0760 0.097
1s — 3d 0.900 0.0331 0.0248 0.034
0.905 0.0317 0.0275
0.910 0.0324 0.0297
0.915 0.0330 0.0325
0.920 0.0287 0.0308
0.925 0.0360 0.0275
0.930 0.0415 0.0377 0.056
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Table 6-22: Comparison of 6-state close-coupling,® 14-state variational,b and
15-state hyperspherical coordinate calculations. Cross sections for all J, summed
over l;, and summed over spin and parity, (2s — n = 3) and (2p — n = 3).

Z Z Qgss—vBIl

S I
J BOWwWe@ HMM? This work

0 0.520 0.388 0.3860
1 7.924 6.470 6.7943
2 4.002 3.740 3.7421
3 0.774 0.764 0.9896
4 3.367 2.554 2.3894
5 0.491 0.199 0.8939
Total 17.1 14.1 15.2

Z Z Qg:—’:“h

s, I i,

J BOwse HMM? This work
0 0.182 0.192 0.1955
1 6.499 3.782 5.6878
2 8.390 4.595 5.6268
3 6.247 2.370 4.4037
4 2.169 1.715 1.8234
5 0.326 0.165 0.7078
Total 23.8 12.8 18.4

aRef. 12. bRef. 65.
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Total 2s — nly, 2p — nl; cross sections, (I; = 0,1,2) in ma3,

summed over spin and parity.

E/Ryd Q2s—3s Q2s-3p Q2s—3d Q2p3s Q2p3p Q2p.3d
0.900 a) 4.0819 6.7624 4.3510 2.2299 6.9910 9.2243
b) 5.009 5.309 3.840 1.516 5.215 6.089
C) 6.93 5.69 4.47 1.48 8.86 13.30
0.905 a) 3.6197 7.3579 4.0047 2.3648 7.6620 9.0461
b) 5.461 6.641 3.902 1.816 5.964 7.318
0.910 a) 3.6305 7.8951 5.8687 2.6334 8.1256 10.916
b) 5.347 7.523 4.517 2.187 6.746 8.577
0.915 a) 3.7278 7.8158 6.5453 2.6783 8.3698 12.425
b) 5.117 7.994 5.085 2.089 7.441 9.513
0.920 a) 3.0864 6.3915 6.0413 2.1525 7.9439 13.948
b) 3.722 6.389 5.304 1.819 6.828 10.427
0.925 a) 3.2304 9.1509 8.1385 3.2878 6.8947 13.962
b) 5.025 8.929 7.000 2.975 6.749 10.467
0.930 a.) 3.0656 8.0035 8.1814 2.9005 8.1540 12.112
b) 4.430 9.309 8.339 2.847 7.681 11.180
C) 7.82 11.94 9.58 3.08 10.69 17.26

(a) This work.
(b) Hata et al. best basis. (Ref. 65)
(c) Burke, et al. (Ref. 12)
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Table 6-23b: Total cross sections from n = 2 level to n = 3, Qi3

211 (%Q2s—»311 s %sz_ﬂgzl), in ral.

E/Ryd
0.900
0.905
0.910
0.915
0.920
0.925

0.930

Present
17.6
19.0
20.6
22.1
21.9
23.2

22.2

Hata et al.
13.1
15.3
17.5
18.8
18.2
20.4

22.4

Johnson (1972)
23.0
24.1
25.2
26.2
27.2
28.1

29.0

Burke et al.

22.1

30.6
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Table 6-24: Positions and lifetimes of resonances below the n = 5 threshold.

E/Ryd Lifetime/to Width/mRyd Comparison E@
1S
0.9487 + 0.00005 5,000 14 0.94845
0.9541 £+ 0.00005 6,300 1.2 0.9530
0.95618 + 0.00001 9,400 0.8
0.95930 £+ 0.00003 13,000 0.7
58
0.9384 + 0.00005 1,500
0.95466 £+ 0.00001 120,000 0.06
0.95796 + 0.00001 120,000 0.06
0.95962 £+ 0.00001 190,000 0.04
lPodd
0.9388 3,000
0.9510 4,800 1.7 0.95090
0.954765 120,000 0.06
0.95675 7,800 1.0 0.95625
0.95775 9,000 0.9
0.958125 120,000 0.07
0.959685 200,000 0.04
3Podd
0.9385 3,500 0.9
0.945 1,000 5.5
0.9487 5,000 1.5 0.94865
0.9540 5,500 1.5 0.95345
0.95629 8,800 0.7
- 0.956295 110,000 0.06
0.95945 12,000 0.8

0.959703 220,000 0.04

%Ho and Callaway, complex rotation.
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Table 6-29: Positions and lifetimes of ! P°49 resonances below the n = 6 threshold.

1podd

Present results | Ho and Callaway, 1983
E/Ryd Lifetime/to Width/mRyd | E/Ryd  Width/mRyd
0.9615 4,800 14 |
0.9633 3,300 2.4 |
0.9661 4,700 1.4 | 0.96525 1.0
0.9692 6,200 1.3 | 0.96820 0.9
0.9701 13,000 0.6 |

0.9717 17,000 0.5 |
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6.8 Figures and Captions

FIG. 6.1: Total elastic cross section from 0.69 Ryd to the n = 2 threshold, solid
line. Total singlet and triplet contributions are given by the dashed and short-long

dashed lines, respectively.

FIG. 6.2: Resonances below the n = 3 H atom threshold, plotted according to the
I-supermultiplet classification of Herrick and Kellman,’? for Top: intrashell states
(A = +1). Middle: intershell states (4 = —1). Bottom: Each resonance represents

the second resonance of a particular A = +1 series.

FIG. 6.3: 1S partial wave cross sections (in ma2) between n = 2 and n = 3
thresholds. Solid line: 1s — 1s elastic process. Dotted line: 1s — 2s. Dashed line:

1s — 2p.

FIG. 6.4: Collision lifetime eigenvalues of 'S partial wave for energies below the

n = 3 threshold, indicating three resonances.

FIG. 6.5: 3S partial wave cross sections (in ma2) between n = 2 and n = 3

thresholds. Line types are the same as for !S.

FIG. 6.6: 'P°dd partial wave cross sections (in ma2) between n = 2 and n = 3

thresholds. Top: 1s — 1s elastic process. Middle: 1s — 2s. Bottom: 1s — 2p.

FIG. 6.7: 3P°dd partial wave cross sections (in ma3) between n = 2 and n = 3

thresholds. Top: 1s — 1s elastic process. Middle: 1s — 2s. Bottom: 1s — 2p.

FIG. 6.8: Eigenphaseshifts and eigenphase sum (solid line) of the !P°dd partial

wave of e"—H vs. energy, at energies near the shape resonance at 0.751 Ryd.

FIG. 6.9: 1P°dd partial wave cross sections at energies just above 0.75 Ryd (=2

threshold). The solid line is this calculation, the triangles are from the 11-state



281

variational calculation by Callaway, ref. 35. The cross sections are in units of ma3.

(a) 1s — 1s and 1s — 2s transitions. (b) 1s — 2p.

FIG. 6.10: Collision lifetime eigenvalues of 1D®e® partial wave for energies below

the n = 3 threshold, indicating two resonances, at 0.8680 and 0.8868 Ryd.

FIG. 6.11: 1F°9d cross sections. Top: 1ls — 1s; middle: 1s — 2s; bottom:

1ls — 2p.

FIG. 6.12: 3F°4d cross sections. Top: 1s — 1ls; middle: 1s — 2s; bottom:

1ls — 2p.

FIG. 6.13: Collision lifetime eigenvalues for the !F°dd and 3F°dd partial waves
vs. energy, between the n = 2 and n = 3 thresholds. The 'F°9d resonance at
0.8872 Ryd has a lifetime of 400,000 tq, and the lifetime of the 3F°9d resonance at

0.8769 Ryd is 36,000 to.

FIG. 6.14: 3F°dd partial cross section for the 2p — 2p elastic process in the energy

region between the n = 2 and n = 3 thresholds.

FIG. 6.15: Argand diagrams of the 3F°dd gcattering matrix elements, indicating
the Feshbach resonance at 0.8769 Ryd. The energy spanned is 0.75 Ryd to
0.889 Ryd. (a) Scattering matrix elements Si3, Sis, and Si4, where the initial
state label ‘1’ stands for nlyl; = (1s3), and final states 2, 3, and 4 have quantum
numbers (2s3), (2p2), and (2p4), respectively. The marked points are evenly spaced
by 0.00005 Ryd from 0.8768 Ryd to 0.8772 Ryd. Each matrix element starts at the
origin at 0.75 Ryd. (b) and (c) Diagonal elements of the scattering matrix, Ss3 and
S44, respectively. The points marked + are spaced by 0.02 Ryd, while the points

marked by triangles are the same energies as marked in part (a).

FIG. 6.16: Total elastic cross section for e~ —H (1s) collisions, for energies between

the n = 2 and n = 3 thresholds. The energy is given in Rydbergs, measured from
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the ground state of the hydrogen atom. The cross section is given in ma3.

FIG. 6.17: (a) Total cross section for the inelastic process from the ground state
to the 2s state for energies from the n = 2 to the n = 3 hydrogen threshold.
(b) Expanded energy scale for energies close to the n = 3 hydrogen threshold, with
resonance positions indicated above. (c) Total cross section for the inelastic process
from the ground state to the 2p state for energies from the n = 2 to the n = 3
hydrogen threshold. (d) Expanded energy scale for energies close to the n = 3

hydrogen threshold, with resonance positions indicated above.

FIG. 6.18: n = 4 resonances diagrammed according to (K,T)# formalism, to show
I-supermultiplets, where I = J — T. (a) A = +1 type resonances, which are low
in energy andlrelatively wide. (b) A = —1 type resonances, which are 1-2 orders
of magnitude narrower. (c) The resonances shown here have the same indices as
the lower resonance positions in (a). Each represents the second resonance of a

particular series.

FIG. 6.19: J = 0 partial cross sections in 7a2 as functions of energy in the energy
range between the n = 3 and n = 4 thresholds S (left) and 38 (right) partial waves.
(a) 1s — 1s: solid line; 1s — 2s: dotted line; 1s — 2p: dashed line. (b) 1s — 3iy,
(c) 2s — 3ly, (d) 2p — 3l;: solid line: I; = 3s; dotted line: /; = 3p; dashed line:
l; = 3d. The origin of energy is the isolated 1s H atom, the second electron being

removed to infinity.

FIG. 6.20: Argand diagram for 250 — 3d2 matrix element of !S scattering matrix,
at energies between the n = 3 and n = 4 thresholds. The ‘+’s represent the points
0.890 to 0.935 Ryd, spaced every 0.005 Ryd. The blocks indicate the positions of

Feshbach resonances.

FIG. 6.21: (a) Collision lifetime eigenvalues of 3S partial wave between n = 3 and

n = 4 thresholds as a function of energy. (b) Expanded energy scale. (The positive
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and negative fluctuations seen at the resonance energy in some of the eigenvalues

are due to numerical inaccuracies in taking the difference of close numbers.)

FIG. 6.22: (a) Argand diagram for 2pl — 3d2 matrix element of 3S scattering
matrix, at energies between the n = 3 and n = 4 thresholds. The triangles represent
the points E=0.8889 to 0.8899 Ryd, spaced every 0.0001 Ryd. The ‘+’s represent
the points 0.890 to 0.935 Ryd, spaced every 0.005 Ryd. The blocks indicate the
positions of Feshbach resonances, as 0.931145 and 0.936780 Ryd. (b) Enlargement

of region within the dotted lines in (a).

FIG. 6.23: J = 1 partial cross sections in a2 as functions of energy in the energy
range between the n = 3 and n = 4 thresholds !P°44 (left) and 3P°4¢ (right)
partial waves. (a) 1s — 1s: solid line; 1s — 2s: dotted line; 1s — 2p: dashed line.
(b) 1s — 3ly, (c) 2s — 3ly, (d) 2p — 3l;: solid line: I; = 3s; dotted line: [; = 3p;
dashed line: I; = 3d. The origin of energy is the isolated 1s H atom, the second

electron being removed to infinity.

FIG. 6.24: Argand diagram for the !P°4d S-matrix element (1s1) — (2p2). The
large arrows indicate the direction of increasing energy, from the n = 3 ton = 4
threshold. The ‘+’s correspond to energies every 0.010 Ryd, the triangles every
0.002 Ryd and the dots every 0.0004 Ryd. The origin of energy is the isolated 1s H

atom, the second electron being removed to infinity.

FIG. 6.25: Collision lifetime eigenvalues of 1P°dd partial wave vs. energy below
the n = 4 threshold. Resonances (arrows) occur at 0.9257, 0.93145, 0.9359, and

0.93713 Ryd.

FIG. 6.26: Collision lifetime eigenvalues of 3P°4d partial wave vs. energy between
the n = 3 and n = 4 thresholds. Resonances occur at 0.8903, 0.9213, 0.9317, 0.9335,
and 0.9341 Ryd.
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FIG. 6.27: Collision lifetime eigenvalues of 3P°d4 partial wave just below the n = 4
threshold, using an insufficiently fine grid (AE = 0.2 mRyd) ;)f energy values. The
heights of the peaks at 0.9317 and 0.9335 are nearly converged. The large negative
peak bracketed by two small positive peaks is due to the narrow resonance at

0.93408 Ryd (width 0.1 mRyd).

FIG. 6.28: Parity favored J = 2 partial cross sections as functions of energy in
the energy range between the n = 3 and n = 4 thresholds, for the !D®ve® (left) and
3Deven (right) partial waves. (a) 1s — 1s: solid line; 1s — 2s: dotted line; 1s — 2p:
dashed line. (b) 1s — 3l1, (c) 2s — 3!, (d) 2p — 3l;: solid line: I; = 3s; dotted
line: l; = 3p; dashed line: I; = 3d. The origin of energy is the isolated 1s H atom,

the second electron being removed to infinity.

FIG. 6.29: Collision lifetime eigenvalues of ! D®¥®® partial wave vs. energy between

the n = 3 and n = 4 thresholds.

FIG. 6.30: 1D°dd and 3D°dd partial cross sections between n = 3 and n = 4

thresholds in ma3.

FIG. 6.31: Parity favored J = 3 partial cross sections as functions of energy in
the energy range between the n = 3 and n = 4 thresholds, for the !F°9d (left) and
3Fodd (right) partial waves. (a) 1s — 1s: solid line; 1s — 2s: dotted line; 1s — 2p:
dashed line. (b) 1s — 3ly, (¢) 2s — 3l;, (d) 2p — 3!;: solid line: {; = 3s; dotted
line: {; = 3p; dashed line: {; = 3d. The origin of energy is the isolated 1s H atom,

the second electron being removed to infinity.

FIG. 6.32: 'Fevem and 3Fee® partial cross sections between n = 3 and n = 4

thresholds in ra3.

FIG. 6.33: Parity favored J = 4 partial cross sections as functions of energy in

the energy range between the n = 3 and n = 4 thresholds, for the 1G®ve2 (left) and
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3Geven (right) partial waves. (a) 1s — 1s: solid line; 1s — 2s: dotted line; 1s — 2p:
dashed line. (b) 1s — 3ly, (c) 2s — 3ly, (d) 2p — 3l;: solid line: I; = 3s; dotted
line: {; = 3p; dashed line: {; = 3d. The origin of energy is the isolated 1s H atom,

the second electron being removed to infinity.

FIG. 6.34: Parity favored J = 5 partial cross sections as functions of energy in
the energy range between the n = 3 and n = 4 thresholds, for the *H°d4 (left) and
8H°dd (right) partial waves. (a) 1s — 1s: solid line; 1s — 2s: dotted line; 1s — 2p:
dashed line. (b) 1s — 3ly, (c) 2s — 3l1, (d) 2p — 3l;: solid line: {; = 3s; dotted
line: I; = 3p; dashed line: [; = 3d. The origin of energy is the isolated 1s H atom,

the second electron being removed to infinity.

FIG. 6.35: Total cross sections between n = 3 and n = 4 threshold from the 1s
initial state to » = 1,2 and 3 states. (a) 1s — 1s. (b) Solid line 1s — 2s; dashed

line 1s — 2p. (c) 1s — 3l;.

FIG. 6.36: Total cross sections between n = 3 and n = 4 threshold from the 2s

initial state to n = 3 states. (a) 2s — 3s; (b) 25 — 3p; (¢) 2s — 3d.

FIG. 6.37: Total cross sections between n = 3 and n = 4 threshold from the 2p
initial state to n = 3 states. Solid line 2p — 3s; dashed line 2p — 3p; dotted line

2p — 3d.

FIG. 6.38: Argand diagram for (1sl — 4d3) matrix element of !P°dd scattering
matrix, at energies between the n = 4 and n = 5 thresholds. The blocks represent

the energies at which there is a resonance.



286

/ \

(1) odg

02

Figure 6.1



8. 839+

E/Ryd

8. 88

287

lDeven

SPevgn lpodd

lPeven SPodd

SDevcn
lDodd
SFodd
xDeven
SPodd
1=4 I=2 I=3
lFodd
sDeven
lPodd
I=1 I=2 1=3
SFodd
1peven -
Spodd
I1=4 1=2 1=3

Figure 6.2

chven

I

4



288

Figure 6.3



289

v

E

IIIIII1IT]IIII|llllllIllIlllT]]I]l

\®) Q% - @)

u
% 01/ b

Figure 6.4

I N |

0.87 0.88 0.89
E /Ryd

0.86

0.85



290

58°0 80 5.0
— 1 1 1 1 — 1 1 1 1 O
\\\\\ oM |
dg<—S5| \\\\\\ \\\\ nnnnnn ST
JUREC 110000
T T SZ=—5] i
- 20000
I
| ¢000°0
i
i O
- . N
| $000°0
e o
— 1 1 1 1 _ 1 1 1 | m o 2
i
-
S| «— S| 5

Figure 6.5



2
0

Q/ma

291

| podd

x 0.1

| R

Is—=Is

x 0.1

ls—2s

ls—2p

075

kow

0.80
E/Ryd

Figure 6.6

0.85

090



292

3podd

2.4-
23]
2.2—?
2.1

2.0-

Is—=|s

Is— 2s

Is—2p

0.75

—
0.80
E/Ryd

Figure 6.7

0.90



9L 0

85L°0

PAY/3
9GL° 0 ¥GL" 0

¢SL°0

293

ppod |

S14IHS3ISHHANIII 3

(=)
asy

Figure 6.8



294

lpodd

Figure 6.9a

0.753



295

ESL"O

v°0

Figure 6.9b



296

@

N

| ~even
D

111 llllllllllIllllllll]llllllllllllllllIllIlIlllllIllllll

T T T 0 T T

1
0.86 0.87 0.88
E/Ryd

T T T T ] 3 i T

Figure 6.10




297

lFodd
0.035
0.03 +
Q025 L . v o
o © -
o
E 0.005rF
~N L
o
L ls—2s
@] Y | . \ | i . "
0.0l
0 P S ST S S E .
0.75 0.8 0.85 0.9
E/Ryd

Figure 6.11



Q/vroi

298

3Fodd
0.2
0.l £ ls—I|s J/\//
O 1 B | J 1 = 1 b
L
0.2F
0.1 F
C X 10
r ls—=2s
O L —T 1 g I i %
0.4F
0.3F
0.2F
JF
2 r ls—=2p
: xm Il
0.75 0.8 0.85 0.9

E/Ryd

Figure 6.12



qn/|3t0

299

2
| IFodd
g~
IV
T T T T I ¥ T T
0.75 0.8 .85
E /Ryd
2
§ 3Fodd
-
g
Ve
1
T T T T l T T T ]
0.75 0.8 .85
E/Ryd

Figure 6.13




300

6

‘0

Ppo

¢

00h

Figure 6.14



301

Figure 6.15a

B0
=
0.2
. S
! 12 877Ry
0-1 -]
i AL
0 e,
R
- i N \“\};:,877Ry
_ m L\ £ T
E y ’ N \
. “ ‘\\
_O-l = ,' “‘
=) ’:' #
i Siz "'
i ] o
-0-2_' ‘\ I’I
= R _/ L
: Lo =877 Ry
—0'3 1 ] T 1 T i 1 T T 1 1 T 1 g & T I 1
-0. -0.1 0 0.1 0.2




302

Figure 6.15b




o1

o

—

N

w

EoN

a

303

S (2p4-2p4)

1 1 1 i |

0.76 R/\

b
~ O.78Ry
) [O.STTRy
! <_0.88Ry
I I 1 1 [ T T T T ] T T T T I I T 1 T l I I I T I T T T |
0.4 0.5 0.6 0.7 0.8 0.9 !
Re

Figure 6.15¢



304

(up]
o
\D)
n —
c
n
4| ™
o
O
| >
Q-
~
>
] (@)
—
(eb)
_ c
L
[ve}
)
LN
1 1 1 '\
o ©
0 S| S|
DLL
é /'WVJ.O.LO

Figure 6.16



305

n =

n

Figure 6.17a

oyl

o

L

&

o
O
>
5
~
>
o
| -
O
-
Ll

00

©

N

~

©



306

Figure 6.17b

0.87 0.88 0.89
Energy/Ryd

0.86

8.85



307

L\p)
n —>
? C
1111J41111|. +—— ] el
[>e] w < N
© o o ©
d
OD.U./ 2< 5|
c vLiOoL

Figure 6.17¢

2]

o

LN

00

o
©
>
58
~N
>
O
) -
)
c
L

o0

o

L0

~

o



308

M
o(_') e
L - e A
1)
L X J
- ™
—o
& =]
a &
M _
o
m =]
)
o -
Q.
" =
Q
o N
a
M
17
1 1 1 1 1 1 1 l 1 1 1 1 I L 1 1 1 I 1 1 1 1
o w < ~N
) © © ©
op /dZ—SIO
2 VLOL

Figure 6.17d

0.87 B.88 B.89
Energy/Ryd

0.86

8. 85



309

L 1 1 k 1 1
O O O} OV 2102 €210V 2¢
| I | T T 1T 11 [N I I O I |
G=] =] -1 =1 =1 O0=1
= S
oJ,
= -
od, ode
olo_ am_ln 0od,
nwuh._l_ Oh_n —
- & s
oHg
— o9 G
.muﬂ Lo Olhn_lm OM_. —

—_—————— ——— ———— — — e . s ——— —

Q10HS3YHL b -=u

26’0

G26°0

£6°0

Ge6°0

PAY/3

Figure 6.18a



310

1 1 1 1 1 1
0 0 0 L 0| ) O | 2hol e
| 1 B LI L |
G=I v=I e=I 2=1 b=1 0=1
—€6°0
_ od, oS¢
_ oJ
o) — =
— — on_n an__ .
oJ¢ 0, ol —5€6°0
5 w5 @ D76
QTOHSIYHL  p=u

pPAY/3

Figure 6.18b



311

1 1 1 1 1
0] 0] 0] b O | b O}
| | | 1T 1 |
=1 e=1 2=1 b=1 0=1
_ e S,
o0, ode 97|
od¢ _
_ — —  od; edg
88 G
1OHS3YHL P =u

£6°0

GEg60

pAY/3

Figure 6.18c



312

Is 35
0.8 4
06
3_.
044
2-.
0.2
| =
0
4
0.02 %5~
0.014 6 x10-5-
S 0‘, L T L ? T S S L T 4)(]0-5'
R 041
~
e]
03] 2x1075+
0.2 e [0}
£
c
0.1 0.08-
0 r 0.06-
4
0.3
0.04-
0.2
0.02
0.4
0
0 e
088 089 09 Q9 092 093 094 -
E/Ryd ’
002
00!
O+——r
0.88

Figure 6.19



Im S

313

S (2s0-3d2)
8.1

1 0.93125 Ry
-8.1-

: 0.93 Ry
-.2
~Hesr] \ 0.9209 Ry

] 0.93325 Ry
_804 T T I T T ¥ Ti T T T l T T T T I T T T 1

-a. -0.1 B 8.1 8.2

Figure 6.20




314

] 33
1—.
-o—o 7
< 4
\ |
=
1A .
’] |
-1 T T T T ] T T T l T ] T T I T T : § ¢ ] il T T
B.88 B8.89 B.s 8.91 8.92 8.93
E /Ryd
3 i
2-_4
]
-o—c 1
Lr) -
o
~N
T
U —
0 Jk k
| n14
'l llll|IIIIIIIIIITTTIIITIIIII|IIIIII]IIII
0.93 0.931 0.932 0.933 0.934 0.935 0.936 0.937 0.938
E /Ryd

Figure 6.21



315

33 (2p1-3d2)

8.1
8.05—
] 0.93678
% : Ry
E o
T
-8.085—
'B.l | T T T T T | T T T
-0. -8.05 %} 8.85 6.1
Re S

Figure 6.22a



316

>3 (2p1-3d2)

0.89 Ry

-@.061

0.895 \\\\

—B.BZIII?IIIII‘TIIT]"FIII]IIII
-8.05 -0.084 -6.83 -8.02 -8.061 6

Re S

JIIIIJJII

Figure 6.22b



Q/'rra%

317

Ipo@ 3podd
0.0
|
A ! 2] e N
0.08+ I :'5
\ / 'l I
\ ! || ’1:
0.06 N> ds=2p S
~~—__~ \\\_/1 :\ ¥
\I
004+ xI0 Is—>2s .-
0.02 0+ SR
: ' 0015 '
0
0.015
0.010-
0.010-
0005
0.005] e
0
<L
a
0
4_.
0.8
Il
3] ',"\\_// l}
o6 NN ] D i s h‘\.-
N
] 27 i !
Q.4+ ': it tl
Y 1
5 P
0.2- é ﬂj\
\.
O o T L3 T T T T v
2_
06
|_.
04
O TTX R Y ¥ ey e Ty e N IR M
0.2 088 089 090 091 092 093 094
E/Ryd
o)
0.88

Figure 6.23




318

-0.10

=kl 2=

E—O.|4—
—

-0.16 |-

-0.18 ] |
-0.02 O 0,02 0.04 0.06

Re S

Figure 6.24



319

14X0; mm_m.o mm_w.O mm_m..o 260
_, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _||
-t e 0
¥ N S [ o
s ' N7 | 3
| ~
w_m %
; [ o
| § -
| t i
mw |
b -

ppod

Figure 6.25



320

4N

e

Ppo

¢

Figure 6.26



v6°'0 SE6'0 £6°0
1

321

Ppo

¢

Figure 6.27



322

lDlvon 30"'"
r'd F
Is —=Is
0.2 02
/’\\ II"‘
7z \ v
n_Ils—=2p ____,/’ Koo \
| Meagrt e xi0 )
PO 1
0. 0.l H l Is-:?_s_ _______________ S - 5
et
(] (o] . e ; — '
£ ¥
0.03 1
0.004
0.024
0.002 1
0.014
[o]
i ~No '4
o 5 g
{ 'd N
& o
24 24
14 ]
°F 0
1 y
2 g
1+ |_
2p—=3p..
i 1 2T
0 +———r————T 7 — . 0 ) 1 ' — ‘
.88 0.89 0.80 Q9! 0.92 0.93 0.94 0.88 Q.89 030 09I 092 093 094



323

| ~even
D

Figure 6.29

8.9 B.91 8.92 8.93 0.94
E /Ryd

8.89

0.88



324

odd

g.94

o o
O
k 8.5
e
O -
B 1 1 1 1
8.88 0.89 8.9 8.91 8.92 B8.83
E/Ryd
3
i 3~0dd -
- D
% |-
o o -
o =
(S
~ L
@] L
1 —
B 1 1 1 1
B.88 8.89 8.9 8.91 8.92 8.93

E/Ryd

Figure 6.30



325

3
IFodd Fodd
(o153}
‘!
0.04 Is = Is
[ — Is —=is
0.03 s
= A i G |S:§p— __________ P Nl W
N .-
ls—=2p ___—————————" / o
0.01 Vs
L Tt VRS
o1 T S r . : .
! } ¥
00087 / 0.0157
I’I
- /
/ \\ /
m) 4 1 ’I
. Y 0.010-
v i "
// 1 Il
\ e 1
1 - b
Iur\ _ - :’,
NUO 800051 \\\_ ,/’/ Is = 3d 'f N o 0.005 1
o a1l oy
k Al ¥
E 's_:_.}f i {
TS s —=3p o
(] L T T - O"
,‘
Q.6
14
0.4
02
(¢}
& .
2 i
2p—=3d g “l
| ]
| /\ A :“
'] A A 1/ ! R
YA /,// [ \ N ) ]
; il } “' ’I 'II 0.5 2p /39// \__—\\\E
2T Vo ) by
o T LB S T A R S T P § Y T L M 0 v"v., | ?P"?sl ]
Qass8 0.89 080 09I 0392 093 Q.94 0.88 Q.89 0%0 09l Q92 s
E/Ryd .-y

Figure 6.81



326

8.2
i | — even
— F
8.15
AN o :
O —
S L
NELE N
o L
8.85
B A 1 1
Q.88 g.89 8.9 @.91 8.92 8.93
E/Ryd
8
L 3 _even
L =
6 -
oo -
O L
k4
N N
@/ L
2 L
8 1 1 1
0.88 8.89 8.9 B8.91 8.92 8.93

E/Ryd

Figure 6.32



327

IGmn SGwcn
005
oosf -
is—is ==Y
0.04 - g
0.06 e
_-"7x5
0.03 { o
A M “ls=2p
Is —=Is " I\ 0.04
F—H
002 [N
o of .
002 A bmes g
0.01
0 r T : r -
‘P
)
¥ |
b i
0.0014 Is-—3d‘
)
6x10™% ;
'
"
4x10™4 L
NUO Noo
E 2x1074 E 0
E N i!
o
[o] T T T T T 0.8+
P 4
3_.
2—
14
5 |
¢ bd E
] ] |
I+ 14
O T T T T T o T T T T T ‘\
088 Q89 080 Q9 092 0% 094 088 Q89 Q90 09I 092 093 094

E/Ryd

Figure 6.33

E/Ryd



328

Ijqoad 3 odd
008
0.04
Is =Is
0.06 e
0.03
0.04 1
0.02 —_— el
Q.02
LATmes ot
0.014 XIOO e
- 5
o 5 ¢
T T T T T 3,('0-4_
‘F
axi0-%4
21074
3x1075] o -
1107 4 <84 e
~ o 3
2 2x107% .
~ 0 T
e ¥
1x1073] %
L
(<]
¢}
0.43 4+
0.3 2
A
//
/
// o
0.24 // P T
0.14 4
(o} T 31
2
Q.2 2]
0. 1
° il T - T T T T o
088 089 090 0.9l 092 093 094 088

E /Ryd

Figure 6.34



329

Q 1)
—I mo £ —_— n ==
s —_ i c
—___ O —_"
o mU) "’I =
—l e
m o
Y] S——
no = & -
a - .
e s = .
(] o i >
e a o
M -—
—‘L) -
(]
N
no—
- -
e | T ] T Tﬁ Bl T 1 I 1 T i T
(8a) w (¥p] pn
w 5 )
S04/ D

Figure 6.35a

12.4
Energy /eV

12.2

12



330

N3 /ADiduT]

1 1 1 1 1

1ArA FAPA
|

SZ2 =S|

P

S'0

01/ 0)

0
l

Figure 6.35b



331

N3 /Abiou]
a4

1 _ 1 1

80°0

Figure 6.35c¢



332

N3/Abisu7]

1 AA A Z1
1 — 1 1 1 1 — 1 1 @
a -
¢ = [
" -
; -
By
"~ &
PR
1 g
\\\\\ P =—S2 ”." B
____.. T
—8
T
B

0
0L/ D

Figure 6.36a



N3/Abiau]
q*Z1 w._Nﬁ

1 _ 1 1 1 1 1

333

]

‘—-———-—-—————-————-—‘*

—_—

Figure 6.36b

—_——
——




334

N3 /Abisu]
vzt

1 1

DL/

0
7

Figure 6.36¢



335

N3/ Abiou7
921 b2l AFA
|

1 1 _ 1 1 1 1 1 1 1 1 _ 1 1 o | 1

P

~

[ A

ATIR)
\

N
1

n '
LTI \

o !

(4VA

0
ZD.LL/()

Figure 6.37



ImS

336

'podd (151-443)

8.04
i 9567 /,,195477
7 -~ Sy
1 o 1 "y
_ , 95969 %
8.2-| 9425 | .
] ’ ’ ,{95@ :
i "” ] /’ ’:
< J/ \\~\.\_\._,” -
- ‘\,/ 9510 w7
1.9388 9577
-0.02—
.
-8.84 T T T I T T T T T T T T I T T T
-0.04 -0.02 %} 8.02

Figure 6.38



337

THIS PAGE INTENTIONALLY LEFT BLANK.

337



338

THIS PAGE INTENTIONALLY LEFT BLANK.

338



339

APPENDIX A

ALTERNATE METHODS OF SOLUTION

In this chapter we will describe an attempt to solve the electron-hydrogen atom
scattering problem using two different methods that were tried but subsequently
discarded in favor of the formalism described in Chapters 2 and 3. The first method
involves a different coordinate system. The second involves a different basis set, but

uses the same hyperspherical coordinates as were used in the final calculation.

A.1 Cylindrical Coordinates - Introduction

Consider the cylindrical form of hyperspherical coordinates, which we call
z,8,7, where z = pcosw, s = psinw, and p, w, and ~ are the quantities defined
in Sections 2.1 and 2.2. These coordinates would seem to be suited to the e™ + H
system, because the potential energy function equipotentials approach cylinders far

enough away from the origin. In these coordinates the potential function becomes
—e2

Vst 4 23

Vs, 2,9) =

ol —1

\/5([1+—z—] T [1— L] ’)
B [1 _ scosq ]—%

In order to better visualize the properties of the system, contour plots of V at

constant 2z, and also at constant «, were obtained for energies both below and

above the ionization potential of hydrogen. The two-dimensional 2 = constant
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equipotential curves for V = 10.5 ev, for z varying from 0 to 24 bohr, at 2 bohr
intervals, were used to construct a three-dimensional wooden model of the surface.
A photograph of this model, as well as equipotential curves of the cuts of V(p,w, ")
by different planes were given in Chapter 2. The asymptotic potential curves (large
z) are practically circular, that is, independent of v, the radii of these circles being
essentially independent of z. As z becomes large the V = constant surfaces, for
potential energies below the ionization potential of the H atom, become as a result
cylindrical, that is, independent of z. In this asymptotic region the potential is
approximately that of the isolated hydrogen atom and so depends only on the

distance r, which in these coordinates is almost proportional to s:

P = %\/32 +22(Vs2 + 22 — 2)

1
2 2
:%(32+32(1—(1+s—2) )
e (A.2)
~1(s2+22(1—1—i))
T2 222
4

A.2 Hamiltonian in Cylindrical Coordinates

Because the potential function seemed to be naturally represented in cylindrical
coordinates, we decided to try to solve the body-fixed Schrédinger equation using
them. As mentioned in Section 2.1, either body-fixed or spaced-fixed angles can be
used. We decided in these studies to select the former. In this representation, the
kinetic energy operator is not diagonal and couples different values of the quantum
number (2.} After expanding the wavefunction in Wigner rotation functions of the

Euler angles,

J
UM = N~ Dia(¢09)dF (4.3)
Q=-J
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the three-dimensional wavefunction coefficients ®] satisfy the following non-

diagonal Schrédinger equation:
Hiq 191+ H q®8 + HS 01195, = E®} (4.4)

where the diagonal term of the Hamiltonian is given by

P __h2(62+62) hz[liSl a_wz]
9,8 OR2  Or2 2ur? Lsiny 0y 8’7 sin? ~
R? 11 9 ] 02
- — — —J(J +1)+20% - V(R,r,
2uR2 [sm'y ay m’ya’y (J+1)+ sinz'y] +V LBy y)
(A.5)
and the off-diagonal Hamiltonians are given by
B = & ﬂ)(J:tﬂ+1)]%[(ﬂil) trx 2] (a0)
Q,0+1 = 2rs F cot 5; .

We make the (r, R) — (s,2) coordinate transformation as follows:

arccot(E) = %arccot(3> (4.7)

r S

The inverse transformation is

g2 Plot2)
2 (A.8)
2 _ Ple—2)
2
which leads directly to
1 1 7
B= 7(3 + 22)* (V82 + 22 + 2)
12 1 , (4.9)
= 75(3 +22)*(Vs2 + 22 — 2)°
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A.2.1 Differentials and derivatives

The various partial derivatives and differentials are given below. They are

obtained by differentiating (A.9) to obtain the following expressions for ds and dz:

(sr/2 + zR) dr + (sr/2 — 2R) dR

ds =
3(s +#7) (4.10)
Qs — (2r/2 — sR)dr + (2R/2 + sr) dR '
- 3(s? +22)
The partial derivatives are easily seen to be
(%) _ (sr +22R)
ar/) (s +22)
( Os ) _ (sR —22r)
AR/ = (s% + 22
(2 +2%) (4.11)
(%) _ (2r — 2sR)
or (s2 + 22)
(2) _ (2R +2s7)
OR/ — (s%+ 22)
In terms of s and z these expressions become
(@) s(s? 4 22) S (VT T 2% — 2)3 + 22(s? + 22) ¢ (VST + 22 + 2)3
or \/_2-(32 -+ zz)
(Q) s(s? + 22) ¥ (VT £ 22 + 2) 3 — 22(s? + 22) ¥ (VT 1 22 — 2)}
OR V2(s2 + 22) (4.12)
(8z) _2(s? 4+ Z2)%(\/82 +22 —2)7 —2s(s? +22) 1 (V52 + 22 + 2)3
=)=

V2(s? + 22)
(z) _z(s? + zz)'}(\/s2 + 22 + 2)3 + 25(s? +22)%(\/32 + 22— 2)3
OR - \/5(32 +32)

From the above equations one obtains the differential operators using the chain rule.

(i) _ (VT + 22 — 2)V/2 4 22(v/s7 + 22 + 2)V/2 (i)

or/ V2 (s? + 22)%/* ds

2(Vs% + 22 — 2)1/2 — 25(v/s2 + 22 + 2) /2 (i)
V2 (s% + 22)%/4 0z

(4.13)
+




343

( ] ) _ s(\/m-i-z)l/z—Zz(\/m—z)l/z(a)

dR V2 (s2 + 22)%/* ds (414)
+z(\/s2+z2+z)1/2+Zs(\/sz+z2—z)1/2 (_8_) '
V2 (s2 + 22)%/4 0z
After simplification this leads to
d\ (p—2)%2,0 (20— 2)(p+2)/%2 /3
<5E) T V20302 (63) - V2 p3/2 (62) il
d\ (p+2)°%%/0 (4p% — 32%p — 28)1/2 1 9
(E) T V2082 (%) V2 p3/2 (5) b4.18)
Likewise we obtain second derivatives:
82 _ 3 32 4 3 _ 3 2 3 82 3 _ b
(3m) =Y (5) + e (5) - 22 (5)
dR?2 2p8 0s? 2p3 022 2p3 ds (4.17)
+(2p—z)(p—z)s< a? )_3z(p—z)<_3_) '
p3 380z 2p8 0z
92 3/2 1 g2 2 2(p— 02 3 7]
( ) _(p+2) ( )+ (20 +2)%(p z)( ) _3s(p+2) (__)
or? 2p3 0s2 2p3 022 2p3 ds (4.18)
_(2p+z)(l’+z)s( 92 )_3z(p+z)(i) '
p3 050z 2p8 0z

A.3 The Schréodinger Equation in Cylindrical Coordinates

The derivatives in r and R appear only in the diagonal piece of the Hamiltonian,
H (J)’n, and therefore the off-diagonal terms HrJ),n:tl are unaffected by the (r,R) —

(s, z) coordinate transformation. The expression for H, ({,n becomes
2 +42%)\ / 92 3s ] 6sz 0?
Hiqa=1{(2 ~(5—= 5] -
2.4 {<32+z2 (832) s2+z2>(83) (32+z2>(asaz)
N 4s? + 22 ( a? ) 3 3z (i) (A.19)
82 4 22 022 s2+4+ 22 )\9z

— 202 —J(J +1)] + V(s,2,7)

A major disadvandtage of this expression is the appearance of the mixed derivative

operator 8% /8sdz.
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The proposed method of solving equation (4.4) is to expand ®J(s,z2,7) in
surface eigenfunctions for constant z. Because the potential at large z is practically
independent of z and ~, one would expect that hydrogen atom wavefunctions would
do very well in describing that region, and that few basis functions would be needed
in the expansion. However, we recognized that many basis functions would be
needed for small z, in order to take into account the spike in the equipotential

surfaces, at the origin.

The surface functions would be eigenfunctions of a well-chosen surface Hamil-
tonian, H™*!(s,v;2). This Hamiltonian would have no derivatives with respect to
z, and should be as close as possible to H{J)’n(s,z,'y). For example, let us choose

the following reference potential:

Rl (5,43 2) = — 32+422(62 ) 1 3s (%)

82 4+ 22 \9s2 s2 422 (A.20)
_1[ e ] 1 (i)sinv(_a‘)“’(s 73 2) |
2LR?(z)  r*(2))siny \Oy N N
which simplifies to
2 52 / 92
ref o F) = & ez 0 5 i
H (s,’y,z)— 82+22 (682)+s2+§2(as) (A 21)
2 1 /90 |

B 52 sin~y (57_) sinq(%) ¥ i)

However one cannot simply delete the z derivative terms from H, é,n as we did
with derivatives in p to obtain the hyperspherical surface Hamiltonian. Consider the
J = 0 case, in which {1 = 0. The operator obtained by “freezing” z at a constant
value Z is not a Hermitian operator and therefore has complex eigenvalues. We
consider this unacceptable. All of the reference operators we considered were either

non-Hermitian, or not very close to the full Hamiltonian.

But let us say that a suitable reference Hamiltonian which is Hermitian has been
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found, with eigenfunctions ¢(s,v; z) to be determined, and that ®J=9 is expanded

in ¢y, thus:

83(s,2,7) = D _ gni(2)$ni(s,7; 2) (A.22)
nl

H™™ $01(5,7;2) = €ni(2)dn (4.23)

The surface functions are then expanded in Legendre polynomials in cos~y; this
expansion is replaced in the reference equation (A4.23). By using the orthogonality
of Legendre polynomials, a system of coupled differential equations in the variable
s is obtained. After solving these equations one substitutes these ¢,; into (4.22)
which is then replaced into (A4.4) with J = Q = 0. Writing HJ, as H simply, we
get

H=H+H (A4.24)

and therefore
HO =) gni(2)ent(2)éni(5,7:2) + D H'[gni(2)$i (5,73 2)] (4.25)
nl nl

H' necessarily containes the mixed partial derivative, 8%/3s8z. No function

manipulations can be done that will remove it. Also, H' contains the term
453 4 23 7 92
( i ) ( ) (4.26)
§2 + 22 /\ 922

This means that the differential equation for g,i(z) inevitably has the form:

A(2)g"(2) + B(2)g/(2) + C(2)g(2) = 0 (4.27)

where the matrices A(z), B(z), and C(z) are all functions of 2z, which by left

multiplication by A~!, can be put in the form

g"(z) + D(2)g'(2) + F(2)g(z) =0 (A.28)
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Current algorithms for the numerical solution of such an equation are not nearly
as efficient as those for the case in which D = 0, i. e., for which the first derivative

term is absent. As a result, we decided not to pursue this approach.

The key to why these were not good coordinates may be that too much attention
was paid to the potential energy term, and not enough to the kinetic energy one.
Although the potential energy seems naturally suited to cylindrical coordinates, the
kinetic energy operator expressed in these coordinates is very complicated, and it

should be obvious, with hindsight, that the motion is not be quasi-separable.

A.4 Jacobi Polynomial Expansion

In this section we consider an alternate selection of basis functions for expansion
of the surface functions. Instead of finding the one-dimensional solutions to the
surface function equation that results by keeping only the diagonal elements of the
potential matrix (Eq. 2.34), we consider the case in which there is no coupling
at all, i. e., for which we take V' = 0. We will go back to the expansion of the
five-dimensional surface functions to start this derivation. Unlike considerations of
Section 2.4.2, we will not force symmetry into the basis functions from the beginning.
Instead we will use a unitary transformation of the basis functions after the rest of

the analysis has been done.

The five-dimensional surface functions ®/MS are expanded in the functions

X s

OMSI = 3 " e 37 (p) X1, (w, 4 angles; p) (A.29)

lalip

These functions X, 1,y are chosen so as to satisfy the following differential equation:

{4 a—2—|-2cotwi + s L o sin § 2 + L s
Ow? Ow cos? & \ sinf; 96, 280, ' sin? 0, 9p3

1 1 9 a 1 82 (A 30)
i 0 XJM .
+si 2y (Sinﬂl 80, " 1 6, * sin? 8, 8(,0?) } g

= €y Xl‘:ﬁ,{n(w’01,¢lao2a¢2)
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The boundary conditions are that Xlﬁ:{n be bound, single valued, continuous, and

have continuous first derivatives. This equation is separable by the factorization

Xzﬂ‘f,,(W,gl,‘Pl,gzﬂpz) = yf,?f((h,sol,@z,soz) yf,’l‘( ) (A.31)

where

Y61, 01,02,02) = Z C(lilad; mimaM)Yiym, (R) Y1, m, (£) (A.32)

mymz

The equation which results for y 2l g

d? d l (ll + 1) 12(12 =+ 1)
[4(— + 2 cot wa) - To " oog? @ ]yff"(w) = Pppir® (A.33)

2
dw sin” & 5

The solutions of (A.33) which are bound, are continuous, and have a continuous

first derivative can be obtained analytically and result in

en = —n(n+4) (4.34)

where

n=2L+1,+1,

and L is a non-negative integer.? Therefore the one-dimensional basis functions

1234
ynzl

are degenerate in [; and l;. They are also independent of the total
angular momentum quantum numbers, J and M. The functions that satisfy the

above equation are modified Jacobi polynomials, of the family of hypergeometric

functions.®
1
yhal = Nsinh %cos = oFi[-L 2(7] + 11+ 12 +4);1; + 3;sin? g) (A.35)

or, in terms of Jacobi polynomials P(a’ﬁ)( i

g2 = N'gink ‘;) cos’ P(ll+ I’+%)(cos w) (A.36)
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where N and N’ are constants chosen to make yf72ll square normalized with the

volume element sin? w dw.

1/2
m+2) L+l +lL+1)!T(L+11+3) (4.37)
4L [T+ )’ T(L+1+3)
1/2
r_ | _(m+2)(L+h+l+1)! L (4.38)
AT(L+L +3)T(L+12+3) '

We use the X7} defined by (A4.30) through (A4.37) in (A.29) and replace this
expansion in Eq. 2.27. Multiplying both sides of the resulting equation by Xﬁ\’fn"’
integrating over the five angles and interchanging the primed and unprimed indices
gives the following set of coupled equations for the c, A n(ﬁ)'

52

2up?

- (XM VXM e S (5) = |57 (5) -
LU

n(n+4)|e55p)  (439)

To find ¢/57 and /57 (p) we must obtain find the eigenvectors and eigenvalues of

the matrix

—smlahn’ K% 1
lahin = 2/1' ﬁg 77(1] + 4)6 < A l’ n’ |V|Xlzllf) (A'40)

The p-dependence of VJH can be written out explicitly. According to Eq. 2.19, we

can express the potential function as
1
Vip,w,v) = ;C(w,fy) (A.41)

This permits us to write VJH as

2
<JII h n+lcjn

Vo(p) = ma (A.42)
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where

1, II !
[n }121:2 =n(n + 4)51:111:,7 (A.43)
which is degenerate in /; and [5, and

AL
[CJH]IZI:Z <Xuz' AC (w, )X (A.44)

The first step in obtaining the surface functions is the calculation of C/. This
is done by a method analogous to the one used in Section 2.5 to obtain the matrix
defined by Eq. 2.32. The basis functions are converted into functions of body-
fixed coordinates, and the repulsion term of the potential is expanded in Legendre
functions. We treat the attractive and repulsive terms separately, for convenience.
Since v doesn’t enter into the attraction terms, the attraction matrix elements are
diagonal in [; and I5:

g 1 1 1 l
e = f it (—— - )y,, b sin’ w du 627> (4.45)
2

CcOos 2 sin £

Another simplifying feature of the attraction integrals is that they depend on
the total angular momentum quantum number, J, only indirectly, in that I;, 5,
and J must satisfy a triangular relationship. Using the properties of the y’zll( )

3

functions,® a recursion scheme, with several stages, was developed to calculate the

attraction integrals.

The repulsion elements were calculated directly from the series expansion form

of the functions y}2'* (w), which is®

L (y, ):[ (n+2) LT+ L+ 3 1/2

YUn 4(11+12+L+1)!1‘(12+L+§) (4.4
.46

mm+l+ 1+ L+1)! LW . L+2m W

XZ L m)!m!T(m +1; + ) costg sm 2
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where L = %(r] —1; —13), and is a non-negative integer. All the matrix element
integrals take the form

w/4
/ cos? asin? ada (A.47)
0

where p is a positive or negative odd integer, and ¢ is an even positive integer.
These matrix elements were calculated by recursion. Macek,? Lin,> and Klar®

derived formulae for these matrix elements by slightly different methods.

Although a completely general program was developed at first, so many
simplifications were indicated for the case of J = 0 that this case was treated
separately. First of all, symmetry with respect to w = /2 is determined by the
value of n for S states: even states have n = 0,4, 8, ..., while the odd states have
n = 2,6,.... The transformation between body-fixed and spaced-fixed coordinates
is trivial. There are other simplifications due to the /; = [ restriction; the symmetry
properties have been discussed in Chapter 2 with respect to the counterpart basis

functions which were obtained numerically.

Once assured that the potential matrix elements were being calculated properly,
we tried to find out how large the basis X;/]/ needed to be for the surface function
expansion (A4.29) to converge. The size of a basis is determined by nmax, the largest

allowed value of the index n; all values of /3 allowed for each n were included.

The surface functions were obtained for various basis sizes at p=1.0 bohr,

4.0 bohr, 7.0 bohr, and 10.0 bohr. Table A-1 lists the 'S eigenvalues obtained

with several basis sets. Table A-2 lists the eigenvalues for 3S. As p increases, the

convergence gets slower. We expect the two lowest eigenvalues (one for 'S and one

for 3S) to converge to —0.5 hartree as p approaches infinity. From the table we

see that, even at 10 bohr, the electrons are interacting. Using the largest basis the
.

lowest eigenvalue for p = 10 bohr is ell = —0.514 hartrees, and still is not converged.

Neither is the lowest eigenvalue for p = 7.0 bohr converged (ells = —0.546); at
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p = 4.0 the lowest eigenvalue seems headed for —0.6985 hartrees; at p = 1.0 the

lowest eigenvalue has converged to —2.3091 hartrees.

Looking at the matrix elements and the eigenvector coefficients, it became
apparent that only the basis functions with [ = 0 were having a significant effect
on the lowest (1s) eigenvalue. This is because the contribution of the attraction to
the potential matrix elements is much larger than that of the repulsion, and only
exists if I = l5. The most important basis functions in the lowest eigenvectors
are Xélzl%’f((?ooo), and X33, for the lowest !S and 3S vectors, respectively. The
coefficient of each these functions is larger than 0.99, so only those functions
that have large matrix elements with X33, or X930, have any effect on the lowest
eigenvalue. The selection of basis functions was modified such that only [, = 0 and
l; = 1 functions were included, for n larger than a certain cut-off (which was chosen
as 22). This feature enabled us to achieve the same convergence with respect to
Nmax, but without making the total number of basis functions get out of hand. The

largest calculation done so far used nmax = 48. This corresponds to 169 'S basis

functions, or 55 using the I3 < 1 criterion, and 156 3S functions, truncated to 49.

Early research with hyperspherical coordinates has depended on these hyper-
spherical harmonics for expansion of the surface functions.” The potential curves
obtained by this method have been used to study the properties of bound states
of H™, Feshbach resonances, and shape resonances.® Previous work has always em-
ployed the adiabatic, or some other, approximation such that coupling between the
channels (i. e., surface functions) was not included in the calculation. Klar and
Klar® reports using values of n up to 58, and not getting convergence. Our own
studies used up to 84 basis functions and still found inadequate convergence. We

also found it difficult to obtain the matrix elements by this method.

We have plotted a few of the Jacobi polynomial basis functions in Figures A.1
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and A.2. The counterpart numerical functions tglzll(w;p) are plotted on the
same scale. In the first figure p = 1 bohr, and the Jacobi functions are
almost indistinguishable from the numerical functions, which shows that the Jacobi
functions are useful as basis functions for small values of p. In the second figure
p = 10 bohr. The Jacobi functions are independent of p, of course, and so haven’t
changed, as compared with the previous figure. The numerical functions, on the
other hand, have started to shift to the ends of the range, w = 0 and w = 7, from
the center region, w = 7. The basis functions which adapt to the potential are

more appropriate to use.
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A.6 Figures and Captions
FIG. A.1: Comparison of Jacobi polynomials (solid line) 3)9,0, n = 0, 4, and 8,

from bottom, to numerically determined 'S 1-dimensional basis functions (dashed

line): $999, ¢99°, and t39°, from bottom, at p = 1.0 bohr.

FIG. A.2: Comparison of Jacobi polynomials to numerically determined basis

functions as in Figure A.1, but for p = 10.0 bohr.
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