AN INVESTIGATION OF THE EFFECT OF
THE MUZZLE ON THE MOTION OF THE

PROJECTILE IN A RECOILLESS GUN

Thesis by

Frank Arthur Woodward

In Partial Fulfillment of the Requirements
for the Degree of

Aeronautical Engineer

California Institute of Technology
Pasadena, California

1952



ACKNOWLEDGMENT

The author wishes to express his gratitude to Dr. H. S.
Tsien, Robert H. Goddard Professor of Jet Propulsion, California
Institute of Technology, for suggesting this research; and for his

valuable assistance and criticism while the work was being carried

out.



SUMMARY

Expressions for the position and velocity of a projectile at
any time in a recoilless gun are derived. The one dimensional
wave equation is assumed to be valid in describing the motion of
the gas. The muzzle velocity of the projectile is calculated, and
compared with that obtained for the case in which no waves are
reflected back from the muzzle. It is shown that the effect of the
reflected waves is to increase the muzzle velocity. In the limit-
ing case, when the ratio of the mass of gas initially in the barrel
to the mass of the projectile is infinite, the theoretical muzzle
velocity of the projectile is increased to twice the value that would

be obtained if the effect of the reflected waves was neglected,
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PART I

INTRODUCTION

(1.(2). (3)

In conventional solutions of internal ballistic problems
it is assumed that the barrel of the gun is infinitely long, so that no
wave is reflected back to the projectile from the muzzle. This simpli-
fication is usually justified by the statement that any such reflected
wave would be at most of the second order of magnitude, and that in
view of the lack of knowledge concerning several presumably larger
effects, such as, for example, the magnitude of the friction acting on
the projectile in the barrel, no appreciable err-or will result from its
omission.

In this thesis, an attempt is made to evaluate the magnitude of
this "muzzle effect' on the exit velocity of the projectile. In order to
simplify the analysis, the equations are linearized by restricting the
motion in the gas to waves of small amplitude. In addition, a type of
recoilless gun was chosen such that the boundary condition at the
breech, or nozzle end of the chamber, corresponded to that of a semi-
infinite tube, so that no wave would be reflected forward to the projec-
tile. In this way the effect of the waves reflecting between the projec-
tile and the muzzle on the resulting motion of the projectile can be
clearly seen. In the appendix to this thesis, a more general example
has beeﬁ worked out which includes the effects of having the breech
either completely open, or closed off as in a conventional gun. As
can be seen from these examples, the problem of separating the muz-
zle effect from the complex wave pattern is not so readily handled as

it is in the simple case of the recoilless gun given below.
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PART II

DERIVATION OF THE EQUATIONS

Consider a tube of unit cross-sectional area containing a
non-viscous, non-heat conducting gas of density p and pressure p.
Initially, the gas is everywhere at rest. Let Po and P, denote the
initial constant values of the density and pressure.

The motion of an element of gas contained between para-
1lel planes at distances x and x + dx from some arbitrary origin

!

is to be investigated.

-~ X fa— o X
t=o PO'—"‘ (<8 - 0o
\ \
\\ \\
t=t #ot p O+ = ot p + G A
— X+ E — |.._(|+§c)d7c

At time t = 0 the mass of the element is p _dx. Following
a disturbénce, the density changes to p_ + p' where p' = p'(x,t).
From the principle of conservation of mass
- / d
podx = p (1+£)(1+55)*>
Thus if p'< p
!

£ = - g5 (1)

The forces acting on this element of mass are
! { '
£+ - <«p¢,+,p + 2 (ptp )cbc)

Thus 0 _ _ /
P, Ax dtfz = Jﬁ’x adx
st _ 4 )
Jdt2 Po dr

/

(2)



where p' = p'(x,t).
Now if no heat is gained or lost during the disturbance, the

process must be isentropic, so

! lk
po+ P = K(ptp') )
-¥
where K = 4% Co
¥ = &

po1 g) = a1 5)"

£ = ¥o
'PO po (4)

hp' _ o 2 :
and ;‘%,"%"ao (5)

where ao is, by definition, the velocity of sound in the undisturbed

gas.
So, f (2) 2§=—_L-d ':_—_____’_J,apl‘
o &17- Po 3:7% 2o Zg' I%x
= " Ip'
Po Jx
/ 2
But é)_?ac = — %_;C_E_Z from (1)
2 _ g, I'E (6)
dt* dx*

Similarly, from (1) and (4)

gol - =%
5 - gt
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Thus & , p', p' are seen to satisfy the wave equation under

the restriction that the amplitude of the disturbance is small.
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PART III

THE BOUNDARY CONDITIONS IN THE GUN

The hypothetical recoilless gun considered in this example
is made up of a semi-infinite tube of unit cross-sectional area fitted
with a frictionless piston or projectile of mass M at a distance ,Z,

from the origin. The muzzle is located at X = £, > €,

x =~ 00 x=0 z=£, x=L,
L l | I
<} 7
F_’E_ff’ <t P Y ’
Z > 2 ]
‘_REGION__P REGION REGION
(3) 1) (2)

Gas is added to the tube in a one dimensional fashion through
a plane perpendicular to the axis at the origin. This plane corres-
ponds to the propellant surface in the actual gun, and thus the mass
flow of gas through this plane is to be equal to that given off by the
propellant. This plane is such that it offers no resistance to the flow
of the gas in the tube, nor does it cause a discontinuity in the pres-
sure or density at the origin. It acts only as a surface across which
a change in mass flow occurs.

Thus if g, Up is the mass flow given off by the propellant

at any time, the boundary condition at the origin becomes
2§ _ Jf,) -
P52 - 58) = orr
' :
£ = (8)
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where the subscripts refer to the regions indicated on the diagram.

At the projectile, initially located at x = L 1’ the boundary

conditions are

E =&,
”3—5 = - p (9)
At the muzzle, p,' =0 (10)
(11)

In region (3), &3 0O for x = - 0O

Collecting results, the set of equations to be satisfied are

. 2 .
gL _ g2 & i=1, 2, 3
ot* x?

Atx =0 JE c)&' p
" 2 = ___'_’a = uo
Je _ JE -

£ = Py
or 94 0§ since '= - 2 J¢€ (12)
rEl P=-G% 5

from (1), (4), (5)

I&: -
Atx = »QZ, T)Z ‘O
Atx = -00 &, + 0O

At the piston,

Att=0
) = O
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PART IV

SOLUTION BY MEANS OF THE LAPLACE TRANSFORM(4)

For non-stationary problems such as this, especially when
conditions must be satisfied on moving boundaries, it is convenient
to make use of the operatinnal calculus in obtaining the solution.

In this way the resulting wave motion can be easily visualized, and
the boundary conditions satisfied in a step by step numerical pro-
cess if necessary, in much the same way as the method of charac-

teristics is used in treating the exact hydrodynamical equations.

Define 5(1»5) =/,Q_$t§(7‘-,t) dt = I(ﬁ)

(4}

Operating on the set (12) in this manner the equations be-

come in terms of the variable x and parameter s, where s is in
general complex,

2= Z
T #E o

At X =0

Uo
T st

M

1N
XM

]

At 7(':22_;
2 =

Blm ¥

X

&,

AE;
dx
(@)
o0

At X =-00 ?g#
(13)

At x = £, +5(t)

m
]
el
i
|
)
b
)
N
$L1$L
R lmy
!
sx{?k
X oy
SN—
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It is to be noted that the boundary conditions to be satisfied

at the piston in the transformed problem are in terms of

while the position of the piston is
a function of s.

it is understood

E(x,s)
2, + %’p (f) which is not

For shortness of notation, put Xp = €, , where

2. = £| + Ep('t) .

The solution to the first three ordinary differential equations

in (13) may be written down directly.

_ S x —-:-‘K

E =R e™ + A, e

- s - %

5, = B 2%% + B2 ” (14)
—_ %7(. “g‘,,l

E, = Cie™ + C ¢

where Aj{ ,Bi ’ C¢
ameters 1;, fz,uo,s

Lo [C.rz_

X ~p - 0O

g3

3 x

.. By = Ce™

At A = 22
-— 522
A&, _ [
o= “a B %
- 252,
. B‘ - Bz “Re
- S%
. = B [ 2 %+
At 2 =0 A'g" _ 0&_’3
| dx x

are in general arbitrary functions of the par-

Substituting in values at the boundaries:

+ Cz J # oo
(15)
_st%
- ] =0
(16)

2"‘&":. (222"‘)]



Al - F’z_ =C
- -— Uo
Also E. _ §3= —s—{

SX -
g-:c‘?—%'*'z%:z[f—““ + 2 = (17)
]

At x =k,
5 = 8. = 8p

Also at 3 = 2'

— - oa.'l. o( .
E, = - L& i

Mst - 4% |

8[2’ ot 2® (28 e,)J ='%q”[(ljz.¥«;+“° % ‘«Q]

252

- g %

t _C__.- ar., (22,- 2 ) - 2-2-']
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- 252 - 259, _250 -~ 250
_m_é. [2- q,.+ L—E,',‘] _ 2 a.ol_ P "lo' _ _ e [‘_ -ZSQ:
Po Ao 28s?

Z‘Q; -ZSP

CC o (] o _ e W [ B
"B (- P.ao ¢ (|+ e.ao) 2-5_52[' e -

Equating with (18)

2sé [/}

- _ 254 -23% —Zigl
.____-“z"se' = 2e¢ “° + g—“—i—o [2. ““ e ““]
S (]

bY
Wo = Ms (| + L‘%(”a‘“«))
25t B 2(’0“0
. B=

oQD

- TX 20, -x
é—z____uo 2“"+2,(l) (20)
’ 2
In particular, at x = Q,
— W o (1+ z-gas"'(f“z'))
'559 .
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2, - £,
EP'_‘ Uo do 2, 2 qo(/./—z =0 ))
S*M s+ 226 [ s _e ]
( M ) /+5+Z_6_':_4_£° e aa[lt ')
-%’Q‘l as;(e -8 )
= Mok i (l ) (21)
s2(s+2r) \: < ‘Za‘f (e.-e ):]
’+ S+2Fr £

where = Qo 2°

This is the equation for the displacement of the projectile in terms
of s, where it is remembered that Q, = @, + §p('t) In a similar

manner the velocity of the projectile is given by
s

-~ 323 -
—'-—S— _ Ul 27‘7(\+2%_;(e‘ £)

If the expressions for $p and ép are expanded, and

$+Z}’

each term of the resulting series transformed back to the original

variables by use of the inversion theorem, defined as

where the integral is to be evaluated in the complex plane by means

of the calculus of residues; the transformed expressions become:

g, = & [(t—‘t.) - i“.?(' -i”“'t‘))_] H(t-t,)

2
#[(t-1)(1+ €7 - L |-z"t'T=)] He-t)
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G (CATC SR TS

'Zk(t ) (""-4)'('Zr (t-t )
+ Z(-— [Z (m-1)! (m-4)! (n-m.) ] J (t-th)

(23)

where k¥ = R0l
¥

T et +&Lo (22?_—22, -5, -z,.)

]

tm

and .tl ; €|=O

O

H (t"t"\) = O for t < tm_

:l for t?tw

&p = Bz"{['- 'U(H)]H(f-t.)
[(l 3

21 (t 'tz)) —Zr(t 'tz) izv(t-t;)] 4 (¢ ’tz)

a2
Q\.‘lr('t'tm.) (m- 3)l(z|,) ‘tm) )
¥ Z(_‘) ¢ [ (1) (om- 3)« (-] JH“ T«)}
m=3 m=3 (24)
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Thus the displacement and velocity of the projectile can,
in principle, be determined at any time. The determination of
these quantities from the formulae is not straightforward however.
As each successive wave is reflected back from the muzzle to the
projectile, an additional term must be added to the expansion,
resulting in an infinite series of terms at the time that the pro-
jectile reaches the muzzle. In addition, the time at which each
reflection occurs depends on the time of the previous reflection,
thus the displacement at any time is a function of the displacement
up to that time. This makes it necessary to compute the time and
displacement of each reflection successively before proceeding to
the next. In this particular problem it is necessary to solve a
transcendental equation at each step in the motion. As a conse-
quence, in order to find the time at which the projectile reaches
the muzzle in any particular case, an infinite number of transcen-
dental equations must be solved. Due to this feature of the equa-
tions, further analytical treatment of the equations is not reward-
ing. Fortunately however, the series of terms for the displace-
ment and velocity converge fairly rapidly so that not more than
about ten terms are required in order to calculate a numerical
solution of reasonable accuracy.

For ease in making calculations, the formulae (23) and

(24) are best put in a non-dimensional form.
£
”»‘4 ]

M
k- &

Define X = PeXx

i
i

=
U%‘:‘,)R

xl
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== % [[(T-—T.) -(1- pI(T'T")] H(T-T)
+[(Tm)(1r £ - 201 E(T'Tz))] H(T-T2)

+ [i(ﬁr’){(FTg)+.L(1'-1§)z} -(1- EU’T‘))] H(T-T:)

m ~(TTm) L )™ (ma)! (- w)" A N P
Z( ) [ _ (m\—l).‘(m\-“).'(m m)| lH (T ) (25)

m=4

L)

== —‘9{ [1- %] w )

. [l" -(T-1) (T"Tz.) Q—(T-Tz)] H (T-Tz)

*(T-Tm) ARy
Z(" [ ml]|((r:\ a>‘(m-a.3lJH(“Tm) =)

=3
T = T, +2R(I-kK) — &, .- S ..,
or E*..M:- 2R(1-K) - Em-, - (Tm‘Tm-t) (27)
where T, = kR =,=0

Thus the non-dimensional velocity and displacement are
functioné only of U, the Mach number of the incoming gas, R, the
ratio of the mass of the gas initially in the right-hand section of
the tube to the mass of the projectile, and k, the ratio of the dis-
tance from the initial position of the projectile to the origin, and

the distance to the muzzle.
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PART V

CALCULATIONS

The calculations have been carried out for the case U = 0.2

In figure (lb), the projectile path E (T) is shown for the case
R = 0.2 for various values of k. These calculations were carried
out in order to obtain the time that the projectile reached the muz-
zle, T, . The type of wave motion resulting from a disturbance
of this type in a semi-infinite tube is clearly seen from the figure.

In figure (2), the muzzle velocity of the projectile :_é_j 2
is plotted as a function of R for various values of k.

In figure (3), the fractional difference between the muzzle
velocity given by (26) and that given by the first term of (26)(cor-
responding to the case with £,=00) is shown. This corresponds to

the fractional increase in muzzle velocity when the reflected waves

are considered over that when no wave is reflected.
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PART VI

DISCUSSION

As can be seen from the preceding analysis and the figures,
the muzzle velocity tends to approach asymptotically to the inlet
velocity of the propellant gases, and is limited in attaining this
velocity only by the finite length of the barrel. The most impor-
tant feature that this analysis brings out is the fact that the solu-
tion of the same problem using the assumption of an infinite barrel,
(i.e., no reflected waves') tends to a limiting muzzle velocity of
only half this amount. This effect may bring in serious errors in
predicting the performance of high velocity guns, and indicates
that an investigation into the problem using the exact hydrodynam-
ical equations would be well worth while.

In order to obtain the highest muzzle velocity in a gun with
fixed barrel length and projectile mass, the optimum initial posi-
tion of the projectile is apparently as near as possible to the source
of propellant gases. This gives the longest acceleration time for
the projectile.

The calculations given in this thesis consider only the
simplest case of muzzle reflections. More general examples of
the method are worked out in the appendix, for the case in which
the breech end of the gun is either fully open; or closed, as in a
conventional recoilling gun. Owing to the large number of terms
resulting from a series expansion of the expressions for g and

—
»

€ , a calculation such as carried out above would require an
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almost prohibitive amount of effort.

Further extensions of the method might include the case
where the mass flow into the gun depended on the pressure acting
on the propellant surfaces, as it does in a real gun; and the case
where the initial temperature of the incoming gas is not the same
as the air in the tube. Either of these cases is, in principle,
simply handled by the techniques described above.

The application of a linearized theory to the solution of
problems in internal ballistics should be made with caution. In
actual guns, it is very unlikely that the simplifying assumptions
made in this analysis would be true even in the earliest stages of
the motion. However, in view of the extremely laborious calcu-
lations required to solve similar problems by means of the exact
equations(l)’ (2), (3.), the linearized theory may have some value

in at least showing general trends, with a minimum amount of

effort.
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APPENDIX A
A solution of the equations (12) for two special cases
(a) Conventional gun
(b) Recoilless gun with venting area equal to area of bore.
The breech (or vent) is to be located at x = -£3, so the length

of the chamber is Ql + 1.3, and the overall length of the barrel is

e, +4,.

2. 2 .
.b.._f‘ .—_-:--L a_gi L=142,3.

Atx =0 9& _ 3% _u, +>0

OE, — 0

dx  O%

Atle agz _ :
: 5 =0

(13a)

Atx = -13 Case (a) Eg,f—'

Case (b) %,% =0

At the piston, Ap = Q| +E, (t)

E\ =g,
o v - 1)
O

2*Ep _ _ aop

I°Ep _ 3
: for all 2 .
t=O :55

At
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Carrying out the Laplace transformation, the equations

become:
d?&; st = .
ﬁi“a}€a=0 t=1,2,3
Atx =0, g, ~&; = ?{
4_._%:' - d'g:;
A x dx
Atxzzz,

|
Cll>

At the piston X = Q.('t)

v—

E_.:g, =-€—p

At x = —£3
?3 =0 Case (a)
d€: - o Case (b)

dx -
As in the previous example, the solutions of the first equation

in the three regions may be written

<% -3z
— -—:, aop
En = ql ‘Qq + HZ e

sx Sx

gn
i
Loy
o
8
+
o0
~
o
3

i
]
o
o
8
+
D
©
5
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In region (3), atx = -13

&; = O
. -3¢ 3G
.. O = Cl e R 4 Cz an
— 2543
or Cz’: "C| g Re for Case (a)

d€; _ o = s -35 %
or §3__O__(Cl‘e—ao__czeo

-25¢;
. CZ = + C‘ g G for case (b)
In general, then, Cz = - C. g % the plus and minus signs

corresponding to Cases (b) and (a) respectively.
3x -3 (22,+x%
1 L4 © 3
£, = C,(:'Q A S ( {]

In region (2), at x = /Qz

5 50, _ sty
0= Be® - B¢ =
- 256,
. 8|= BZ [v2 o
g, = B[z"% + 2._‘2_“(29’-7()] (*)

Also =
d{ - g(a%



- 25¢
+C(‘T—2_“°) -—C(lig-z“—zf) = Ye
_ - 25
2R, F 2Ce & = Ye
Sz
_ 2523
Uo “ao
A, =35: * Ce
_. W
1=z T C

. uo
25

UWo
zZs*

A u A Pakr
[zsz+ } +[2§°2‘_‘:Co, °Je

Y. 4
ZSZ(L + e aJ+C[

§ = &
s@, -39
R %o +e, 1+ C[!L Go i—_z,-%;(”h‘e

(l

| + Q_—Z‘S‘f'] + C[| £ g8 (%re)]

B [Q 314

Sx
[+

AL xﬂ

B[ cE o4 z’""‘s"‘(”"ﬂ

LJL
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Also, at x = 21

48, _ d& _ _ Ms* = _ _ S g
dx A2 poat P ra. &
where V¥ = .F/I_E
sk -2s0; ~S&
Uo = Lo =z Ao
5o% + C] 2 —_— S5t + Co J.Q,
s
_ 5[[%(”""‘).. 2_-5?,%_] _ 8[z g (20,- e)]
D e c zs!?;[ C __g_sa_ﬂ_a
ZBsz ' B z65- - ¢
_2520 - SP -—gégz "1_'_?.‘
pared --ET[L Ao + -24 ‘E;g' + 2, o ___ L Ao
S+ o E(0nr0) Uo -z
A ”"‘z"‘sz["‘ 2 =
s‘ - 256, -zsk
- (‘—-—r—) 2 [~ 'Y - ( l+..§- 2 o
‘é.?.gz 2sR, wu _2s4
S P S - an ° o
< _ (-2)e “(H'F')l - ‘“285‘[‘ £ J
B |3 o~ 5 (Q+ Ls)
Equating
250 254, 25'
S —— - e
(-8 e (3) ® -
-23% —2s@ 232
— R --zaas?-l:l*’Ja “]

l t 2'%‘3(2.-}23)



Z§_l 2501
> U -
D EEE Y I
-2 (2 93) s\ -25% -39
= *e (Z"F) -2 '—B"-‘S&z]

Wt - 'z—f-gf 0,-0 25 0.+0. ;.(mp‘
Bs? [l re —(ZH—S) '5+7.k ( ) 2et), ey ,‘)]»
c 2 B

syzr

Uo b ..2503
B = s?(st2 l’) [ o ]
-5 (¢,- L -2
‘ + — S-{»Zr Qag Qz »0|)+ ( 3*9) Py (0 +03]+:Tkz—r£a“(oz+ag)

Substituting in (%), at x = Q

) ™ 02‘0 _— 2;5'83
£ - ) o [‘H’« : )J[i
= [ Q—%‘;(e,-a) po Bl 5 (a,+a)] 2r )

Sty +5r ¢
where the upper sign refers to Case (b) and the lower to Case (a).
The transformation of this expression may be made in the usual way
by expanding the denominator and using the inversion theorem of the
Laplace transform., However, due to the complexity of the expression

a simple formula for § cannot be obtained.
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