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Abstract

Genetically engineered artificial proteins are promising candidates for
new biomaterials because their amino acid sequences can be precisely controlled.
This work describes the characterization of crosslinked films of biomimetic
artificial extracellular matrix (aECM) proteins with hybrid functions designed to
meet materials needs in applications such as small diameter vascular grafts and
corneal tissue implants.  Elastin-derived polypeptides give the proteins
flexibility, while RGD and CS5 peptide domains from fibronectin serve to adhere
cells.

Techniques were sought to crosslink aECM proteins in ways that resulted
in tunable mechanical properties. Hexamethylene diisocyanate was used to
crosslink aECM proteins into uniform, transparent, highly-extensible hydrogel
films with low water contents characteristic of native elastin. Their elastic
moduli, 0.1 — 1.1 MPa, depended on crosslinker concentration and aECM protein

length, and spanned the observed range of elastin fibers.
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The suitability of biomaterials implants depends strongly on their
susceptibility to proteolytic degradation in vivo. It was shown that small
sequence changes in the elastin-like portion of aECM proteins were sufficient to
decrease their rate of degradation by elastase sevenfold, illustrating a simple
method to tune the protease sensitivity of designed proteins. The effects were
seen in both soluble proteins and crosslinked films analyzed by measuring their
decrease in elastic modulus during degradation.

An aECM protein was examined for its effectiveness as a corneal onlay, or
permanent contact lens. The protein was crosslinked into transparent, elastic,
water-rich lenses and was implanted into rabbit corneas. The onlays were stable
and well-tolerated, and full re-epithelialization occurred within 4-7 days.
Histological examination revealed normal regenerating epithelial cell
morphology on the anterior surface, good interfaces between the onlay and
surrounding tissue, and only minimal inflammation.

To create substrates for studying the coordinating effects of mechanical
and biological signals on cell behavior, thin films were made from a
photoreactive aECM protein containing the non-canonical amino acid para-
azidophenylalanine. Atomic force microscopy (AFM) nanoindentation was used
to calculate elastic modulus, and the technique was confirmed by bulk tensile
measurements and finite element simulations. Film modulus could be tuned
either by differential irradiation or variable incorporation of para-

azidophenylalanine.
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