

CHARACTERIZATION OF CROSSLINKED
ARTIFICIAL PROTEIN FILMS

Thesis by

Paul Nowatzki

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2006

(Defended January 10, 2006)

© 2006

Paul Nowatzki

All Rights Reserved

Acknowledgements

I would foremost like to thank my advisor, Professor David Tirrell, for giving me the opportunity to work in his laboratory, and for his direction and mentorship. His breadth of knowledge, depth of insight, and impeccable character are truly remarkable; I like to think a little of each has rubbed off on me.

Thanks also to the members of my thesis committee, Professors Mark Davis, Julie Kornfield, and G. Ravichandran, for their time, comments, and advice. Ravi has been particularly helpful in focusing our thoughts in the thin film studies.

I am grateful to Christian Franck, whose optimism and persistence on the AFM project was crucial to its success. I also very much appreciate Sarah Heilshorn's spearheading the elastase degradation project.

I want to acknowledge the support of my parents and their dedication to my education. My awesome wife Courtney helped me keep things in perspective. Finally, I thank Tirrell lab members past and present for their help; the positive environment in the group has helped make Caltech a very pleasant place to be.

CHARACTERIZATION OF CROSSLINKED ARTIFICIAL PROTEIN FILMS

January 2006

Paul Nowatzki, B.Ch.E., University of Minnesota—Twin Cities

Ph.D., California Institute of Technology

Supervised by David Tirrell

Abstract

Genetically engineered artificial proteins are promising candidates for new biomaterials because their amino acid sequences can be precisely controlled. This work describes the characterization of crosslinked films of biomimetic artificial extracellular matrix (aECM) proteins with hybrid functions designed to meet materials needs in applications such as small diameter vascular grafts and corneal tissue implants. Elastin-derived polypeptides give the proteins flexibility, while RGD and CS5 peptide domains from fibronectin serve to adhere cells.

Techniques were sought to crosslink aECM proteins in ways that resulted in tunable mechanical properties. Hexamethylene diisocyanate was used to crosslink aECM proteins into uniform, transparent, highly-extensible hydrogel films with low water contents characteristic of native elastin. Their elastic moduli, 0.1 – 1.1 MPa, depended on crosslinker concentration and aECM protein length, and spanned the observed range of elastin fibers.

The suitability of biomaterials implants depends strongly on their susceptibility to proteolytic degradation *in vivo*. It was shown that small sequence changes in the elastin-like portion of aECM proteins were sufficient to decrease their rate of degradation by elastase sevenfold, illustrating a simple method to tune the protease sensitivity of designed proteins. The effects were seen in both soluble proteins and crosslinked films analyzed by measuring their decrease in elastic modulus during degradation.

An aECM protein was examined for its effectiveness as a corneal onlay, or permanent contact lens. The protein was crosslinked into transparent, elastic, water-rich lenses and was implanted into rabbit corneas. The onlays were stable and well-tolerated, and full re-epithelialization occurred within 4-7 days. Histological examination revealed normal regenerating epithelial cell morphology on the anterior surface, good interfaces between the onlay and surrounding tissue, and only minimal inflammation.

To create substrates for studying the coordinating effects of mechanical and biological signals on cell behavior, thin films were made from a photoreactive aECM protein containing the non-canonical amino acid *para*-azidophenylalanine. Atomic force microscopy (AFM) nanoindentation was used to calculate elastic modulus, and the technique was confirmed by bulk tensile measurements and finite element simulations. Film modulus could be tuned either by differential irradiation or variable incorporation of *para*-azidophenylalanine.

Table of Contents

Abstract.....	iv
List of Figures and Tables.....	viii

1 Introduction

1.1 Artificial proteins: definition and background.....	I-1
1.2 Artificial proteins as biomaterials.....	I-2
1.3 Applications.....	I-3
1.4 Design strategy	I-5
1.5 Previous results.	I-8
1.6 Thesis organization and description of contributions.	I-11
1.7 References	I-14

2 Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking

2.1 Abstract.....	II-1
2.2 Introduction	II-2
2.3 Experimental.....	II-5
2.4 Results and discussion	II-8
2.5 Conclusions.....	II-17
2.6 References.	II-18

3 Controlled proteolytic degradation of protein-based biomaterials

3.1 Abstract.....	III-1
3.2 Introduction	III-2
3.3 Experimental.....	III-5
3.4 Results and discussion	III-8
3.5 Conclusions.....	III-19
3.6 References.	III-20

4 Corneal onlays from crosslinked artificial extracellular matrix proteins	
4.1 Abstract.....	IV-1
4.2 Introduction	IV-2
4.3 Experimental.....	IV-7
4.4 Results.....	IV-12
4.5 Discussion	IV-18
4.6 Conclusions.....	IV-20
4.7 References	IV-21
5 Mechanically tunable thin films of photosensitive artificial proteins characterized by AFM nanoindentation	
5.1 Abstract.....	V-1
5.2 Introduction	V-2
5.3 Experimental.....	V-5
5.4 Results and discussion	V-12
5.5 Conclusions.....	V-28
5.6 References.	V-29
6 Conclusions and future work.....	VI-1
Appendix Lithographic patterning of intrinsically photoreactive cell-adhesive proteins	
A.1 Abstract.....	A-1
A.2 Introduction	A-2
A.3 Methods and additional figures.....	A-8
A.4 References.....	A-17

List of Figures and Tables**1 Introduction**

1.1 Amino acid sequences of aECM proteins.....	I-9
--	-----

2 Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking

2.1 Amino acid sequences.....	II-3
<i>Table 2.1</i> Physical properties of aECM films	II-8
2.2 Representative tensile behavior	II-9
2.3 Elastic modulus versus crosslinker ratio	II-12
<i>Table 2.2</i> Amino acid analysis results before and after crosslinking	II-13
2.4 Film length versus temperature.....	II-15
2.5 Temperature-dependent length changes versus crosslinker ratio.....	II-16

3 Controlled proteolytic degradation of protein-based biomaterials

3.1 Amino acid sequences.....	III-4
3.2 Elastase degradation fragments (SDS-PAGE) versus time	III-9
3.3 Degradation rate (number of N-termini) versus time	III-9
<i>Table 3.1</i> N-terminal sequencing of selected proteolytic fragments.	III-10
3.4 Densitometry analysis of degradation rate	III-12
3.5 Chemical analysis of degradation rate.....	III-13
3.6 Elastic moduli of crosslinked films versus degradation time	III-15
<i>Table 3.2</i> Properties and degradation rates of crosslinked films	III-16

4 Corneal onlays from crosslinked artificial extracellular matrix proteins

4.1 Diagrams of the eye and cornea.....	IV-3
4.2 Amino acid sequence.....	IV-6
4.3 Schematic of the corneal pocket and implanted onlay lens.....	IV-11

4.4 SDS-Page and Western blot of aECM protein	IV-13
4.5 Uniaxial tensile properties of a corneal onlay lens	IV-14
4.6 Fluorescein staining of onlay re-epithelialization	IV-16
<i>Table 4.1</i> One week rabbit implantation study results.....	IV-16
4.7 Histological cross-sections of onlays at 7 days post-implantation	IV-17

5 Mechanically tunable thin films of photosensitive artificial proteins characterized by AFM nanoindentation

5.1 Amino acid sequence.....	V-3
5.2 AFM topography scans of a thin aECM film	V-12
5.3 Representative thin-film loading indentation profiles	V-13
5.4 Force profiles and moduli for 1 sec and 1 sec indentations	V-14
5.5 Comparison of models to calculate elastic modulus (E)	V-16
5.6 Fit of model to experimental indentation data	V-17
5.7 Comparison of finite element simulation and experimental data	V-19
5.8 Sample tensile data for bulk films	V-21
<i>Table 5.1</i> Physical properties of bulk aE- <i>p</i> N ₃ Phe films	V-22
5.9 Moduli of thin films with variable aE- <i>p</i> N ₃ Phe incorporation	V-24
5.10 Thin film modulus versus extent of UV irradiation	V-26

Appendix Lithographic patterning of intrinsically photoreactive cell-adhesive proteins

A.1 Amino acid sequence of aE-N ₃ and responses to irradiation	A-3
A.2 Fluorescence microscopy of endothelial cells attached to aE-N ₃	A-6
A.3 HUVEC spreading on aE-N ₃ and sequence-scrambled variant	A-7
A.4 ¹ H NMR spectrum of aE-N ₃ , with and without <i>p</i> N ₃ Phe	A-10
A.5 Incorporation of <i>p</i> N ₃ Phe versus concentration during expression.....	A-10
A.6 Comparative microscopy of photomask and aE-N ₃ patterns	A-12
A.7 AFM image of patterned aE-N ₃	A-13
A.8 Phase contrast microscopy of endothelial cells attached to aE-N ₃	A-16