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ABSTRACT

The egquation of motion for a beam in flexure is solved for
a free-pinned beam excited by two types of point forcing functions.

The two forcing functions, one varying sinusoidally in time and the
other randomly, are expressed in terms of a displacement input at the
pinned end of the beam. The response of the beam is expressed in terms
of strain as a function of location along the length of the beam.

The results of an experiment to evaluate the damping co-
efficient for each of the five lowest bending modes of the beam are
reported. The damping coefficients were calculated from the equation
for the response of the beam to sinusoidal excitation using experimentally
measured values of the displacement at the input end and strain along

the beam,
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L. INTRODUCTION

When a system is driven by an excitation that is random in time,
the phase and periodicity are no longer important since the instantaneous
response ls not predictable. Instead one may atbtempt to determine the
statistical properties of the excitation and define the mean squared
responss of the system, The statistical description and techniaues of
using random variables in analyses are due primarily to Rice (1) and
Weiner (2), In the last decade these concepts have been applied exten—
sively to analyze problems in communication, structural design, fatigue
and earthquakese.

In the field of aircraft and missile structural dynamics,
Liepmann (3) solved the one dimensional problem of buffeting of airfolls
due to air turbulence. Later Miles (4) considered the problem of panel
vibration due to jet noise. 1In these analyses the panel or airfoil was
represented as a single degree-cf-freedom system in which the forcing
function was random in time but spacewise constant. Later Lassiter,

Hess and Hubbard (5) experimentally verified Miles' theory for the mean
square response of thin psnels when excited by jet noise.

Spacial as well as time variations may occur in random ex-
citation of beams and plates. Some of the theoretical work in this field
was done by Thomson and Barton (6), Eringen (7), and Samuels and Eringen
(8). Thomson and Barton outlined a solution for the response of a free~
free beam to random excitation and represented the forcing function by an
acceleration spectral density. Eringen, using a generalized harmonic
analysis developed by Weiner (9), derived expressions for the damped beam

and plate response in terms of cross correlation functions of the



displacements, moments and stresses. Later Samuels and Eringen extended
this method to the Timoshenko beam theory which includes shear deforma-
tion and rotary inertia. More recently Stumpf (10) has summarized and
illustrated many of the basic principles in random vibration analysis
including a discussion of three approaches to sclving random excitation
problems, depending upon the information known about the input.

The calculation of the response of a beam to a random forcing
function is dependent upon knowledge of certain of the beam properties
and parameters. For sinusoidal excitation of a uniform beam, specifi-
cation of the size, material and end constraints is sufficient informa-
tion to calculate the beam response except at resonance, where the
caleulated response is infinite unless a damping term is included in
the equation of motion. When the beam is excited randomly, the response
is expressed in terms of mean squared values of displacement, stress,
etc., and the major contribution to these quantities is from the resonant
and near resonant amplitudes of the beam. Therefore, in deriving the
response equation for a beam excited randomly, it is essential to
approximate or evaluate the damping in the beam and include a damping
term in the equation of motion in order to avoid obtaining an infinite
value for the calculated response.

The motion of a beam when the excitation is random can be
‘expressed analytically by a superposition of normal modes, as in the
case of sinuscidal excitation. However, because the response is made
up of a distribution of normal modes, it generally is necessary to know
the damping in several modes of the beam in order to calculate the

approximate total response. The number of modes for which the damping



must be evaluated is a function of the exsct nature of the random forcing
function and the rapidity of convergence of the response equation with
mode number. Many technigues and methods have been devised for measuring
damping in materials and structures;, and the subject is widely discussed
in the literature. For a comprehensive summary of the more common methoeds
of measuring damping, reference is made to Section 5 of the book
“Structural Damping® edited by J. E. Ruzicka (11).

A convenient method of measuring the damping in several normal
modes of a beam utilizes the response at resonance of each normsl mode
as determined experimentally. Measurement is made of the amplitude of
the sinuscidal excitation and output; then, using derived equations that
include an arbitrary damping term, the damping term is evaluated in the
modes for which data are taken. This method for measuring damping is
similar to the method used with simple oscillators in which the
resonant amplification factor is measured and then related to the
viscous damping coefficient (c/cc), [Reference (llﬂ o The details
of introducing an arbitrary damping term in the equation of motionm
of a beam is discussed in more detail in the text of this thesis.

Therefore, the objectives of the work reported in this thesis
were first, to review the theoretical aspects of the beam problem by
solving the forced motion equation for a free-pinned beam in which there
was included a damping term related to the hysteresis properties of the
beam material. The forcing function acting on the beam was represented
by & lateral displacement of the pinned end, and solutions were derived

for both simusoidal and random time-variations of this forece. The

second objective was to determine experimentally the values of the



b

damping coefficients for the five lowest bending modes of a test beam
that was supported with "free-pinned" end constraints. The damping

coefficients for each mode were calculated from the response of the

beam at its resonances,



II. REVIEW OF BEAM THEORY

Ae _SOLUTION OF THE BERNOULLI-FULER BEAM EQUATION FOR A FREE-PINNED
BEAM EXCITED BY A SINUSOIDAL DISPLACEMBNT AT THE PINNED EAD

Consider a beam with a free end at x = 0 and a pinned end at
x =, driven at the pinned end by a time varying displacement U®)
(Figure I).

// EQUILIBRIUM Axis S x=4

_ X
E: t
Figure I3 Diagrem of the free-pinned beam showing the
rigid body displacement W&) at the pinned end, and
the orientation of the coordinate axes x, y and s with
origin at the free end.
The Bernoulli-Euler beam eguation [Reference (12)} is:
I
+ oA =

We assume that the latersl displacement of the beam at any point along
ite length is the summation of two parts, one part being the rigid bedy
displacement (W,) and the other part being the flexural deformation of
the beam (U, ):

U = u-n' + ue (2)

Substitution of equation 2 into equation 1 results in the following:

EI; 3 - /;A_f% - “f’A Deo Fed (3)

where the substitution was made that W, = D ¥(+) . Because there

is no curvature change (bending) associated with the rigid body motion



of the beam, the rigid body displacement D{x) is of lower than fourth
order in x. Hence, the rigid body displacement contributes only to the
inertia loading on the beam.

The normal function and frequency equation are determined
from the homogeneous part of equation 3, namelys

A aue. _
/%i rytily (4)

ax"

Using separation of variables, a solution to equation 4 is

o

@ {x) et
= W E (5)
Ti= i
The function @h(x) must satisfy the following differential equation:
4o, -
df4 - )6 A S (6)
where
z
4 _ wa‘n
P = ET. (7)

The general solution to eguation 6 is
@\(P“’Q = C,,; ,a«'m.p,‘x + Cz“c:aq,f;,‘x + C%MJLP»\X + C,,‘anpnx (8)
The constants in equation 8 must be defined such that the equation

satisfies the boundary conditions. The boundary conditions are:

P U N

at the free end (x = 0) (9)
d x* Y e (
and
_ AL . _
-0 L-ﬁ;- =0 at the pinned end (x =0 ) (10)

Three of the constants in equation 8 can be defined in terms of the



fourth by application of equations 9 and 10. The result is

@n((;,‘x) = Cm [wq,{s,pumk‘a,oz - (M(&.;X-l- Mkf&ﬂx)] (11)

where

S @l + MP—,‘Q

Xy = (12)

The constant C,, , although it does not appear in the final solution,
is defined such that the value of the orthogonality integral in the
denominator of the generalized forecing function (equation 22) is a
simple maltiple of the beam length. Finally, the frequency equation is
Jcmf;,ﬂ = fanh ol (13)
In order to represent analytically the resonant and near
resonant response of the beam to a forcing function, it is necessary
to include a damping term in the equation of motion. The type of
damping depends upon the mechanism by which the beam dissipates energy;
in general, the particular types of dissipation or damping can be
determined only by experiment. However, for purposes of analysis, the
category of dissipation characteristics can be defined generally. For
example, if the excitation is at relatively low frequencies and at low
amplitudes, damping due to the surrounding air is probably negligible
compared to internal or hysteresis type damping. In addition, if
structural connections are made rigid, damping due to sliding friction
is also unimportant. JIn the following analysis we shall use a
mathematical representétion of damping that relates to the hereditary

stress-strain law of the material (hysteresis type damping).



The effect of damping is introduced into the analysis by
including in the differential equation for the beam, equation 3, an
additional term which includes a stress increment dependent upon the
rate of strain. In effect, such stress increment accounts for the
hysteresis damping. The form of the function is left undefined in
recognition of the fact that the mechanism of hysteresis damping is
not well understood. However, the effect of the damping on the re-
sponse of the beam in each normal mode is described by evaluating
experimentally a frequency dependent coefficient of the damping term
in the differential egquation.

The stress at any point in the beam is assumed to consist of
two parts, one directly proportional to strain and the other dependent

upon the strain rates
ey = E [609 + H'ﬂﬂ‘] (14)

where H is a time differential operator of unknown order, and €y
is the extensional strain which varies with distance y from the neutral
axis of the bar.

The relation between the strain and curvature in a beam under
flexure is derived by Timoshenko [Reference (13)]. For small lateral
displacaments of the beam, the strain-curvature relation is

Jle

R v (15)

The total bending moment acting on a cross-section of the beam is
related to stress as follows Eﬁeference (13ﬂ s
M, = f ry) 4 A (16)
A



Combining equations 14, 15 and 16 and making the substitution that

I, = f y* dA , we find that
A

M = [E[%-‘-'j_”]‘i a;';"; dh = EL(1+H) fiﬁ

The Bernoulli-Fuler beam equation for foreced vibration, equation 3,

may now be written as followss

SACIDEL o e o oA De 0 (an

The preceding eguation is solved by assuming that the displacement of

the beam can be described as a summation of normal mode responses
Uetit) = ) Blpedn® (18)
M=}

where &m(f’«") is the normal function derived from the differential
equation for free vibration of the undamped beam, equation 6. This
function can be used with the equation for a damped beam without
introducing appreciable error because the mode shape of the beam is
not influenced significantly by damping of small magnitude. Substi-
tuting the assumed solution, eguation 18, into equation 17, and using

equation 6, the differential equation becomes

> [EL, ) BT + A B He] =- pAD fay

RN

Dividing through the equation by loA and substituting the relation of

equation 7s

z [@K(g,,x)"v:(w 1 Wa(1+ H)@M((A,x)“’lw } = - Doy ?&) (19)

oD
LYY
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Multiplying both sides of the equation by the integrating factor

4
f @‘”\(me\ dx and making use of the orthogonality relations
o]
we obtain L
. 4 . f Doo +4) Bulpwor dx
+ Wy n o+ Wa = =2
" " Lz 20
1 R 11 [ Bolp A (20)

The parameter H is the differential operator which introduces the de-
pendency on strain rate. Without defining explicitly the nature of
this dependency, we can determine its overall effect experimentally

by writing the left side of equation 20 in the form of the differential

equation of a single degree-of-freedom system with viscous damping:

s

Mo + v\';\w 4+ Wa Na = Qu® (21)

where An is to be determined experimentally. The generalized force

in equation 21 is

2
fu) L Doy §,(ewd dx
T -
4
_[ Bpty da

To evaluate the numerator in equation 22 it is necessary to

(22)

Q& =

define the rigid body displacement, D{x). Assume that the displacement
at the pinned end of the beam varies sinuscidally in time; then

DOL) = Dg, A‘mw‘t (23>
where D, is the displacement amplitude. To produce this displacement
at the pinned end a force is required, say F®)= F, sinwt, where
the magnitude of the force (F,) is undefined. In addition assume the
displacement of the center of mass and the rotation about the center of

mass (Figure II) of the beam are given respectively by the following



expressionss
P Y = Y, i ok
sl
DISPLACED BeaM AXIS
] S
- =) }D(ﬂ)
—— e — e x’
—/ﬁ%
/ Rt
2

Figure I1: Diagram of the free-pinned beam showing
the force F(t) producing the displacement D({) at the
pinned end. Shown also are the coordinate axes x', y!
and 8!, and the independent variables Y and & that
define respectively the translational and rotational
mobtion about the center of mass of the beam.

The eguations of translational and rotational motion are, respectively

Y s0

where M is the mass of the beam and I is the mass moment of inertia of
the beam about the 2z’ axis. Under the assumption of sinusoidal ex-
citation, the functions F(t), Y and 6 have been defined and equations

258 and 25b reduce to

ort
i

MYo 0 (26a)
Ie, w” (260)

Combining equations 26a and 26b by eliminating F,, and making the

i

E-4

2

ML
1z

additional substibtubtion that I =

s we obtain

GY,

S = -3
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The displacement amplitude at any station x' is then

D) = Y+x6, = Y, + 6Y, %;: 27

To evaluate Y, , the boundary condition is imposed that at x' = 2/2,

D(x') = D, as defined by equation 23. Hence from equation 27:
D,
= e
Y 4
Substituting this result into equation 27 and transforming to the
original coordinate system (x = x' + /2, y=y' 8 = &') with

origin at the free end of the beams

Deo = 21+ £(x- )] | (28)

The generalized force Q“(t) dafinid by equation 22 can now be evaluated:

Qu =

For the normal function defined by eguation 11 the following integral

Dl | [+ §x- 1] B
2 T
B, () Az

(29)

relation is obtained (see Appendix B):
]

R
fx Spaydx = & f B, (o) Ax

Thus, the expression for the generallzed force reduces to the following:

D, {@ f Bl dx (30)
f éu(@“x) Ax

In equation 30 the rigid body inertia loading is represented by the

Q“GQ = -

term D, &) which is not space dependent., Hence, the effective
inertia loading caused by the displacement D) Aot applied at the
pioned end of the beam is time dependent and uniform along the beam

length. The integrals in equation 30 when evaluated using equation 11
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result in the followings
4
f@»,‘(@\’() dx = ZTS“' C'm
0 A

(31)
l i
_[éh(Fﬂx\A% = ,Q Cm,
where
Aon gl dimbo pall
bl . b 1 (32)
Thus, equation 30 becomes
Q& = 205 fug (33)
Bl Cim

The response of the free-pinned beam to the generalized force
Q&) defined by equation 33 is to be determined. Kirméin and Biot
[Reference (114,)] derive the integral equation for the response of a
linear system to a generalized foreing function 9,(t) in terms of

the response of the system to a unit impulse ha®)  as follows:
t
ha®) = fum (Y AT (34)
[}

We want the expression for hw(*) when the differential equation for
the system is of second order and of the form of the left side of

equation 21, i.e.

r A 3 :: " =
R+ Dy M) + W a® 2 ) (35)

First let us calculate the solution to equation 35 when the forcing

function B) is a unit step function having the following properties:
Pw =o t <o

Po =1 t vo



1

In addition, the initial conditions are

Ry= O at t=o

N, = O at t=o0

Within the frame work of the above conditions on the force and initial

motion, the solution te' equation 35 is

X
2 ot

R 8 = ‘E.\ [1 —e 7 wVul-grt - = At - QY } (36)
Equation 36 represents the response of a system defined by equation 34
to a unit step forcing function. The derivative of equation 36 with

respect to time is the system response to a unit impulses

%1\
l’\ ) ——— = ‘\/ )w\
d‘k W/ 1 (N\ 'A"M' L { (3?)
Having determined h,(+) and substituting the generalized force for

the free-pinned beam Q.4 for 9n(t) in equation 34, we can write

the integral solution for “’b(—b) as followss

1
w= % ?er) e anmVwi- 02V G-0) &7 (38)
" gm c.\ Vi

In accordance with the rigid body analysis, see equations 23 and 24,
we take §(?) = d4im W T o Then integrating the above eguation and

taking the limit as Lt-»-0 , the steady state response of the beam is

obtaineds
20,5, w® )
S5 P“Q Can(wL- Dn )L-l- >\z..\03
where 9, = fn! A LO
" (M& - wz)

The steady state elastic displacement is obtained by substituting



15

equation 39 into eguation 18, The result is

Ue(x ) =
© Z gxﬁ (40)
e (A W

The outer fiber strain at any station x along the length
of the beam may‘ be determined by substituting equation 4O into equation

15 and letting y = ¢, Hence,

6(x;>=%g§: Bl D0 b (41)
l |

R 4 L4
-l 2 Cim
where ¢ is the half thickness of the beam and the term @K(F’“x\’ denotes

two derivatives of @“(py\x} with respect to (.x . The maximm value

of the outer fiber strain at station x is obtained when Wt-g, = "¢

D, 2 f ?"\' @I:\( PM’Q
€. = 2 lissad
C ’ [) w:i ]Z.+ )\ - C (Lbng)
)

In
'Y\:l

This equation will be used later to evaluate the A, for five flexural
modes of vibration of a test beam in which D, and €.04¢) were measured

at each beam resonance.

B. DERIVATION COF THE RESPONSE EQUATION FCR A FREE-PIKNED BEAM
EXCITED BY A RANDOM DISPLACEMENT AT THE PINNED END

l. Bandwidth of Excitation Freguencies: o<W €oo

In this section, the motion at the driven or pinned end is
considered to be a stationary random process defined by a spectrum of
mean squared acceleration density that is flat between the indicated
limits of frequency. The probability of occurrence of instantaneous
values of acceleration in the excitation and strain in the response

are assumed to be normal or Gaussian [Reference (15)] ¢ 4in contrast
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to the previcus analysis involving sinuscidal excitation, wherein both
the excitation and the response are deterministic, the values of
neither the excitation nor response at a given time can be predicted
when the excitation ié random. However, the probability of occurrence
of such values can be stated, as well as their respective mean squared
values. If the responding system is lightly damped, the response is
in the nature of a random sine wave (narrow band random vibration)
whose amplitude varies slowly with time. A muitiple degree-of-freedom
system responds in this manner in each normal mode, and such responses
may be superimposed. Thus, the preceding analysis involving the
response of the beam to simusoidal excitation becomes applicable to
rendom excitation if the excitation and response are properly defined.
The particular solution for the elastic displacement of the

fres-pinned beam was assumed to be of the form
U, (Xt =Z ERCEN Y (18)
M=\

where the integral solution for “ﬂ“bv) may be written by replacing

N by -»1“(+\ and (M by Q,(t) in equation 3k.
t

e = haG-1) Quer) et (43)

o

First let us consider the mean squared elastic displacement of the beam.

This quantity may be defined directly from equation 18 as follows:

{ uze(x,t) )w =ZZ Q}“(F.\x) @m(ewx) (W(m ) Vv(w(m >M (L)

Nz Mo
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where < Nalt) “V(,,‘m )Q is undefined, but from equation 43 we can write

t -t
M) Nunlt) Yy, = f [ Qe Q,,\m')zv\n,ﬂm) b t-t’) drat’ (45)

Finally, it is necessary tec define the mean squared expression for the
generalized forcing function <Q.(™ Q1)) The generalized forcing

function for the free-pinned beam was derived in the previous section:

33

Q& = A Ly (33)

't LY

Replacing the variable t by T as required in equation 45, the mean

square of QL (™ (equation 33) is

PMFM y\?— C\-\'\C\W\

Assume that the beam is subjected to a stationary random Gaussian
excitation having a constant mean squared acceleration spectral density
over the frequency range from 0 to coe 1In addition, assume the only

correlation in time occurs when T =T’; then we can write
40" { Feny fer o= —%— SC¢r=1) (L7)

where G is a constant that represents the value of the mean sguared
acceleration spectral density of the forcing function, and Ser-17)

is the Dirsc Delta function which has the properties
S¢rr’) =0 T # 17 ‘

/

§r-1') =1 T =T

Substituting equation 47 into equation 46:

< Q“(T) Q'W\CT I)>w = A S‘V\KM G‘

§(r-1')
2P XC,Crm (4e)
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Equation 48 can now be substituted into equatiom 45:

t
DN ) = 2{/i/%ﬁ " Sty o) ko) drar (L9)

The impulse response functions h.(4-T) and haleor’) in equation 49
may be defined using equation 37. Therefore, one integration of

equation 49 results in the following:

t N
e e (7
G 5.8 2 S

2l Gl Vili-C2Y Veol-CaY
Ak - &) poion-C) (£-T)

Upon further reduction of this eguation using trigonometric identities

Ol WOy =

it is found that the integration can be separated into several parts,

each part being of the fom
t t

[CMMBTAT or fﬁa‘mé/l‘d’i‘
o (S

These integrals are listed in standard integral tables [Beference (16i},

Performing the integration, we find for the total response the following:

-a+

() = A é‘fq“ m{ e { il bt -6] = pinflh )¢ - e]}

SL(X»&)m) ( Q)
(W~ WY + K W 4 T WL 4 T (WE A WEY 5
The undefined terms in equation 50 are
a. = il (Xv\"'xw\) (51)

e (52a)

b, = Vwi - Y (52b)
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o = pnt——x_

| [(bm»bmﬁaﬂ v, (53)
‘ (54)
O = =

P
The mean squared steady-state response is obtained when 4. co . Hence,

i

T (N ) = Lt Tt ), =

L-peo

1S G [ Aot Mo, ] (55)
ZF“?M ,QI Cn\(-rm (L\).,f- UD&)‘_‘. (>\y\+>‘m)( >\‘y\ l«)‘ﬁ‘+ >‘v~\ u);‘l)

The steady-state mean squared displacement is obtained by substituting

equation 55 intc equation 44. The result is

O ob g"gm >\\\ 1 )\m 1 é“(?“)() & (ﬁmx)
W)y == [ _ » 6
W, = 3R ) b s o) . Cm

If the natural frequencies of the beam are separated sufficiently there

is negligible cross~coupling and equation 56 reduces to the followings

> G ek 3.6
it = 2 i
<u-e(x ) v l.ﬂl“z‘ w:\)\“?:_\ C:','“ (57)

Finally, the mean squared outer fiber strain at any station x
along the beam can be calculated using equation 15 and letting ¥y = c.

Substituting equation 18 into equation 15, the strain is

€S = c) @l Bl W

. LET
where the term @lﬁ@g@ denotes two derivatives of §LJ¢¢q with respect

to its argument. Therefore, the mean squared outer fiber strain is:

€mo = ) ) e Bl BUEA (0 M ),

Ne ) Wm=)
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or, using equation 50, its steady-state value is:

—————— <0 o ” #
cho = SCV" P S S Oon+-2) .69 B.lpwd) (58)
2 S (o RV R N S RN\ N Cim g

If there is negligible coupling between modes, equation 58 reduces to

the following:

1)

R W)r

€xa = Tl i ch (59)
To test whether this series is convergent, we can make the following
substitution
wh = fn ;ff ™
In addition S. = ‘/5 (see Table I on page 38). From beam tables

[Reference (17)] we know that for a free-pinned beam the values of

L C(,_‘“’] vary from O to 4 and hence may be assumed of order unity.
t
Further,

F’“Q o 1} (an+1) (n>5)

where n is the mode number. The damping coefficient M is generally
proportional to some funmction of the frequency:
My ~ Wi (x> 0)

Making these substitutions into equation 59 and neglecting the constant
parameters, we find that the mean sqguared strain is proportional teo the
following series: -

€ ~ Zﬁzl“:;)‘ (for n large)
This series converges absolut:ly,

2o Bandwidth of Excitation Freguencies: O < «w < ¢

In the previous analysis we considered a flat mean squared
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acceleration spectrum; i.e., the acceleration spectral density was
constant over the frequency range O <wW<W,. Consider now a flat

acceleration spectrum that is clipped at frequency L), (see Figure III).

q

Mean Squared Accel.
Spectral Density

W, W

Frequency (rps)

Figure III: Example of a clipped spectrum of mean squared
acceleration,

One reason for considering this type of spectrum is that a clipped

spectrum is a more accurate representation of the type generated by
electromechanical shake table systems. Generally, the cutoff frequency
of the spectrum is placed below the lowest axial resonant frequency of
the shake table armasture. A4 methed derived by Thomson and Barton
[Reference (6)] will be used to obtain the steady-state mean squared
elastic displacement of the free-pinned beam. In reference (6) the
authors express the mean squared displacement in terms of the impedance
function 'Z,(co) for a beam and the mean sguared acceleration spectral

density D) of the excitation as followss

E = Fw) dw

1Zeolt (60)

where @Lu.s) and Z(w) are related to the correlation funection
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(equation 47) and unit impulse response (equation 37) as follows

[Reference Ql5 )] g

=2 & Tdr = &

S = & [ = (1) Coa w7 = (61)

and
R X il
h(f)e dr 62

zzca» : Bak C, J(- (62)

But from egquation 37 we know that
-G T .
h_“(/l‘) = =3 AJ/VL bhvr

whers

O = Z‘Z—‘.:‘ 5 bn =V w;‘(é‘:‘y

Therefore, integration of equation 62 results in

R N |
—ZIO; _z P“Ly\cm [wf"—w‘+ Cw),\] (63)

The square of the absolute value of equation 63 is then

SaSm & (ﬁﬂ.&-ﬁ(fn’i\ {
Z(w)l zz @x?w&l Crn G Jloteudie Noudflok- o 2o ]™ (64)

Re) W=l
Thomson and Barton (6) derive equation 64 directly from the equation

of motion for a beams Substituting equations 61 and 64 into eguation 60C,
we obtain

We,
E = _G_’_N S5 B Buipn) ds

R A ety (i e

(65)

where the limits of the integration are from zero to W. since the mean
squared acceleration spectral density (G) is zero for @ >w.. The

summation is also modified since only those modes of the beam with
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natural freguencies below W will be excited. This condition can be

expressed as followss

Wy < W
Wy < w

Assume further that cross coupling between modes is negligible; then

equation 65 reduces to
w&"

N 2 Rt
a"z - E gy, Q‘D\(M dw
s pult G | [wn-)e A w]

The integral in this equation is listed in tables [Reference (16)].

The result of integration is

N . :

- _ & S Rox™) A e W&+ 0y b e\ 4w - N5
(- T “ = 2

ZngL w&knfh Com [V W wh ) 4wli- v

+ tm.n l-’-dc;v 4w~ + :Lwc+\/4w%->';] (66)
n

An

In the limit as i o= , equation 64 should reduce to equation 57.

Hence, letting w_-—s o we find that

T~ wa VAL..):-X.';\ 7
S |0 BT L
W - 1 = O
wee | wr Vaeiow -
we w,
= -
Lo | awt 2T /45 tanc! m
= [=e] B2 e
weee L An . Z

Lo | R0V a0k oo = T

1 o d L >‘ "
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Therefore
T -c i N I R R AN A ”
ML Wi B 2LLy w3 S i C "

Equation 67 is identical to the previously derived result, eguation 57.
Hence, in eguation 66 the term in square brackets multiplied by Yy
represents the correction factor due to e¢lipping of the acceleration
spectrum. Denoting this term by R, :

SR AP % 0

AL Ve b+ g - 28\i-v

T -y - EX-ATAES S

where
p
Y = e (69)
P ‘A:)-n
§ = o (70)

In the following discussion we will refer to RC“ as the "Clipping
Correction Factor."

The result obtained in the derivation of equation 67 was that
as W oo, R.— l. Additional values of R, were calculated
from equation 66 for various values of the frequency ratio w‘/wn and
the damping parameter ¥ , and the results are plotted in Figure IV.

In the calculation of the curves in Figure IV an approximation was made
to determine reasonable mumerical values for ¥ . Assuming viscous type
damping, )\“ =2 C/cqu,‘ and

(71)

X= An = (C/c)

40} .
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Figure IV: Plot of the clipping correction factor (R.,)
versus the frequency ratio {“</w,). The clipping correction
factor is defined as the ratic of the value of the nth modal
contribution in the mean squared displacement response for
the clipped flat spectrum to the nth modal contribution in
the mean squared displacement response for the flat spectrum
with bandwidth o <w<eo. The damping parameter ¥ is
equivalent to the square of the fraction of critical

damping ¢/ce (equation 71).

&
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For a lightly damped beam, equivalent values of ¢/c, may vary from 10~k
to 10~2; based upon equation 71, the variation in ¥ would be from 10~8
to 104 respectively. The curves in Figure IV span this range of
values for ¥ .

For a multiple degree-of-freedom system excited by a random
vibration; the major contribution to the mean squared response of the
system is from the area under the response curve near each reschance.
The shape of the response curve of a lightly damped system in the
vicinity of a resonant frequency is defined as being highly peaked
(narrow bandwidth) and approximately symmetric about the resonant
frequency. Hence, if the clipping cutoff fregquency is placed at a
resonant frequency of a system, then approximately one half of the
area of the resonant curve is included in the mean squared response
from that mode, which accounts for R =1/2 when wW. = «wWw (see
Figure 1IV). 1In addition, since the resonant curves are highly pealked,
only a small increase in W. above W, is sufficient to include the major
portion of the area under the resonant curve. This is the reason for
the rapid rise in R, with increase in the frequency ratie w%on in
Figure iV,

Substituting K., in place of Y times the term in brackets

in eguation 66, and expanding the equation we obtaing

7 - i L Tt
Ue = Rc_, ue‘ + R(_Q_ueL + R‘3u93+“ .- Rc,,\u€“+"' (72)

where L—AZ" P CK—E?_ etc. are the modal contributions to the mean squared

displacement (UZ ) when the spectrum is flat over the frequency range
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O<w< e . Assume now that the cutoff frequency is placed at the

resonant frequency of the second mode. Then the mean squared displace-

ment from equation 72 is
U

— —
= Rc ue + R(.,_ u.é-.,

o

where GZ'“ =0 for m>2 since G is gzero for W. > W, . The cutoff
frequency is egual to the resonant frequency of the second mode;
therefora, Rc_z’: 1/2 (Figure IV), However, the cutoff frequency is
well above the first resonant frequency seo Rc. = 1.0. Therefore,
the mean squared response is
Ue = UG + %Ug

If the cutoff frequency is placed between the second and third modes
80 that W.>w, , and &, > W, , then the mean squared response is
W = U + U

Therefore, we conclude that if the cutoff freguency of a
clipped spectrum is different from the natural frequencies of the beam
(by say w%o“ 2 1.1), then all values of the R, are equal to one.
The total mean squared displacement response is then merely a summation
of the modal responses, caleulated using the response equation derived
when the inpub spectrum is flat over the bandwidth 0<wW <0 ;, in which
only those modes whoss natural frequencies are below the cuteff
frequency (W.) are included in the summation.

For a particular beam configuration all of the terms in
equation 59 can be evaluated by specifying the boundary conditions
except G and An. The value of the mean squared acceleration spectral

density (G) can be determined from a spectral analysis of the forcing
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funetion. The value of the damping coefficients ( Au) for each mode
must be determined experimentally using equation 4O or 42. In the
following section a description and the results of a test to evaluate

the damping coesfficients are presented.
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IIT. EAPERIMINTAL DETERMINATION OF DAMPING

Ao AFPPARATUS

The damping in the beam was determined by noting the magnitude
of steady-state vibration of the beam at several of its natural fre-
quencies. The variable frequency excitation was imposed at one end of
the beame. The constraints on the beam, in commonly used terms are
described as "free-pinned¥; i.e., one end of the beam is free or uncon-
strained whereas the other end is constrained by a hinge or pinned joint.
The beam was arranged with its length extending horigzontally and its
pinned end supported by the vibration testing machine used to impose
the vibrating motion. Near the free end, the beam was supported by a
wire positioned so that it would not participate appreciably in vibra-
tion of the beam in the modes being studied. 4 diagram of the test
beam and its supports is shown in Figure V.

The beam was made from cold rolled steel (4ISI 1018) % in. x
2% in. in cross-section and 36 in. long. The vibration testing machine
was an MB Type C-~10 capable of a vector force output of 1200 lbs.
varying sinusoidally from 5 to 2000 cps. The "pinned" joint was
actually a flexure plate having a necked-down central portion (see
Figure V) to minimize bending stiffness and approximste the friction-
less hinge assumed in the analysis. The flexure was silver soldered
to both the beam and the armature of the vibration testing machine to
minimize damping resulting from relative motion at a joint.

With the beam extending horizontally, the pinned end was driven

horizontally in the direction normal to the longitudinal axis of the beam.
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Figure Vs Diagram of the test bar and its supports. The
locations of the strain gage bridges and the accelercmeter
are indicated. All dimensions are in inches, however, the
drawing is not to scals.
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The freguency of the sinusoidally varying driving force was varied be-
tween 20 and 500 cps, encompassing the five lowest natural frequencies
in bending modes. The cross-section of the beam was designed so that
the lowest natural frequency in a bending mode in the vertical plane
was greater than 500 cps, thereby minimizing the possibility of coupling
between vibrations in the horizontal and vertieal planss.

The motion imposed at the pinned end of the beam was measured
by a piezoelectric accelercmster (model 2215, Endevco Corporatieon,
Pasadena, California) mounted 1/8 in. from the pinned end in the center
of the beam width (see Figure V). The response of the beam was
measured by strain gages (SH-L, Type C=6-121) cemented to the beam.

The foil type strain gages were arranged in a Wheatstone bridge
(Figure VI) with adjacent gages mounted on opposite sides of the beam.
This arrangement of gages resulted in measurement of four times the
bending strain resulting from flexure in the horizontal plane and can-
cellation of any extensional or compressional strain in the beam. The
strain gage positions, x/f = 0.2476 and x/9 = C.772, where { is the
beam length and x is the distance from the free end, were selected to
maximize the participation of each strain gage bridge in all five
lowest modes of vibration of the beam. The strain gage leads were made
from very fine insulated copper wire, glued locally to the beam and
looped loosely to a terminal box to minimize their effect on motion

of the beam.

Calibration of the strain gages was achieved by shunting a
calibrating resistor across one of the strain gages, as described in

detail in Appendix A. The accelerometer was calibrated in a separate
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test so that the relation between the self-generated voltage output of
the accelerometer and the input acceleration was known. The signals
from the accelerometer and the two strain gage bridges were recorded
as a function of time on a galvenometer type, multi-channel recording
oscillograph (Model 590, Midwestern Recorder, Midwestern Instruments,
Tulsa, Oklahoma). Figure VII shows a schematic diagram of important

parts of the experimental equipment.

B. TESTING PROCEDURE

In all experiments the acceleration at the driven end of the
beam and the strain at the two strain gage locations were measured
simultaneously. In determining resonant curves for the beam it was the
initial intention to set the excitation at a particular frequency and
te measure the acceleration amplitude at the exciter and the resulting
strain amplitudes at the beam for various levels of excitation. Then
the freguency would be changed and the experiment repeated. Finally,

a cross plotting of the assemblage of curves obtained from this experi-
mental procedure would result in evaluation of resonant curves for
constant strain ocutput and variable displacement input. This wounld
result in evaluation of the damping variation with variation in strain.
This test procedure produced adequate data at frequencies differing
somewhat from the beam natural frequencies; however, in the vicinities
of the resonances, it was found impossible to maintain sufficiently
close control of the shake table system to eliminate frequency drift.
Because of this instability problem, the procedure in determining the

resonant curves for the beam was modified. The strain cutput of the
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beam could be monitored by observing the swing of the galvanometer
trace on the oscillograph. So for various resonant and near resonant
frequencies the excitation amplitude was varied until the strain
amplitude was at its pre-selected value and a recording was made.
Using this procedure, response curves for the three lowest bending
modes were obtained in which the strain was constant; however, the
shape of the response curve in the region of rescnance could not be
attained satisfactorily.

To evaluate the damping at each resonance of the beam, only
the amplitudes of the excitation gnd strain ocutput were needed at the
exact nstural frequency of each mode. To overcome the difficulty of
controlling the frequency, a modified procedure was adopted in which
the frequency was varied slowly and continucusly throughout the
frequency range of interest. The shake table system that was used was
equipped with a feedback servomechanism that maintained the excitation
at a pre-set level while the frequency was varied continuously at a
pre-set sweep rate. The sweep rate was logarithmic, i.e., at 10 cps
the sweep rate was 3 cps per minute, while at 100 cps the sweep rate
was 30 cps per minute ete. Thus, because of the low rate of change of
frequency, the maximum response of the beam was approximately equal to
that resulting from steady-state vibration at resonance. By simul-
taneously recording acceleration and strain, it was possible from the
oscillograms to relate the strain amplitude in the beam to the accelera-
tion amplitude at the driven end during vibration at the respective

normal mode resonances. The acceleration amplitude was divided by the
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square of the angular frequency, and expressed in terms of the dis-
placement amplitude. The results for the several tests are set forth

in Table III on page 43.

C. EVALUATION OF EXPERIMENTAL DATA

The objective of the experimental work was to evaluate the
coefficient A'y\ of the ”Y'ln term in equation 21, 1In the vicinity of
each normal mode frequency W, , the beam responds as a demped single
degree-of-freedom system. Such response is described by equation 42,
giving strain amplitude as a function of the beam parameters and the
excitation. Eguation 42 is evaluated as follows:

(
€. = DCZ £5, ﬁ“Q é W) = DZ }/_‘JI:):«)——“ (42a)

Ws

half thickness of beam (= 0,125 in.)

wherez C

-
@

length of beam (= 36 in.)

pa = beam parameter (in.=1)(equation 7)

D, = amplitude of displacement input (in.)

Y, = beam parameter depending upon beam constraints (equation 31)
A

= beam damping coefficient (sec.~})(equation 21)

excitation frequency (sec.=l)

normal mode frequency of ntR mode (sec.=l)

»94;&:
@

= pormal function (equation 11)

2 CP"Q Sn E (f,o()
A Cim

In equation 428 several of the beam parameters must be

"

VY, = beam parameter

evaluated. The values of @.,\SL mast satisfy the frequency equation
given by equation 13; they are designated the eigenvalues for the free-

pinned beam. The eigenvalues may readily be caleulated by plotting
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the functions tan F"i and tanh F"‘Q‘ verses P,& and noting the values of
F:“Q where the twe curves intersect. These intersecting points satisfy
equation 13, For m>5 the eigenvalues for the free-pinned beam are approx-
imately p,ﬂ = Z@4m+). When the values of the ‘3,‘1 have been determined,
the natural frequencies of the beam may be calculated from equation 7,
provided the size and material properties of the beam (i.z. E, I z 2 /o s

f and A) are known. Hence, A

2 L. )
Wn o= SR '('%4— (73)

Using the eigenvalues F,,Q for the free-pinned beam, the values
of g‘“(@“sz) may be determined by computing for each mode sin F’“Q and
sinh F;..Q s and substituting these values into equation 31. Note, however,
that above the second mode the approximate value of ¥, is:

Vz

S) = )" 2

The normal function ié(_&_&) » or eigenfunction as it is
often specified, defines the shapemef the beam in each bending mode.
Hence, it is a function of x and for the free-pinned beam it is given
by equation 1l. In the present calculations it is necessary to evaluste
%@ﬁ at stations x/t = 0.2476, and x/{ = 0.772, the locations of
the ;train gage bridges.

Hesponse data for the test beam were obtained for the five
lowest horizontal bending modes; thus, it is necessary to know the
values of g0, S(pd)and %L%ﬁ forn=1, 2, 3, 4 and 5. The values
of FWQ and g\_f?:\_"‘_ at the two strain gage locations are listed in
beam tables [Reference (1.7)] for beams with various types of end con-

straints including the free-pinned beam. A swmmary of the beam para-

meters for the five lowest bending modes are listed in Table I, together
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with the values of W, which is defined in equation L2a. Also included

in Table I are the calculated values of the beam natural freguencies

w

[$.-

aly

——3] as computed from equation 73,

The expansion of equation L2a, substituting numerical values

from Table I for the five lowest bending modes at station x/§ = 0.772,

is

equation 74 and Table I are set forth im Table II.

as a function of the normal mode frequency in Figure VIIiL.

G2 x4

4

_ _ IBexiot _ _155x10°
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Values of the damping coefficient >\-,\ as calculated

from

They are plotted

The ex-

perimentally determined values of the beam natural frequencies also

are included in Teble 1Il.

Table II: Average Experimental Values of the Damping Coefficients
for the Five Lowest Beam Bending Modes.
'Fn Wy

Mode (eps) (rad/sec) M@ 1/ = 025761 X, @ x/0 = 0,772
Mumber | Experimental | Experimental

1 273 171 .17 1ol

2 8765 550 2:95 2,91

3 182 1140 8et3 8096

4 310 1950 17.3 1565

5 430 3020 32.9 31.2
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an empirically defined equation that approximates the variation
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Based upon the variation of the damping in the five modes, as
plotted in Figure VIII, and recognizing that )\“ is some function of the
normal mode frequencies, we can define an empirical equation for the
damping in the beam of the form:

A= s (75)
where the values of S and « are determined by fitting a curve to the
experimental data. Using a standard methed of curve fitting in which
by successive iterations the algebraic sum of the differences between
the experimental data points and an assumed curve is minimized [see
Reference (18)] s the following values of M and « were obtained

Je= 2,62 x 103 (762)
« = 1,155 (76b)
This curve is shown by dashed lines in Figure VIII.

It is common practice to define the damping in a single degres-
of-freedom system as the fraction of critical damping, ¢/ce. The same
criterion may be used in a distributed mass system by considering the
response in each normal mode to be analogous to that of a single degree-
of-freedom system. Then the damping coefficient in equation 75 is
related to the fraction of critical damping as follows:

M Wy = Z(C/Cc)h Wn
Solving for (c/c¢), s

(%c)“ = & wa! (77)
Based upon the values Yo 2.62 x 103 and o= 1,155 the fraction of
critical damping c/ce is plotted in Figure IX as a function of the

normal mode frequency ;M In addition the values of ¢/c, were
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caloulated from the experimental values of the ,xy‘listed in Teble IIT
at stations x/) = 0.2476 and x/¢ = 0.772 using the equation

An = 2(%,) Wy
These values are shown in Figure IX{.

The ratio of the outer fiber strain amplitude as measured at
station x/q = 0.772 to the displacement amplitude of the excitation is
plotted in Figures X to XII as a function of the excitation frequency,
for the first three bending modes of the beam. Data points for the
three experimental curves were obtained by maintaining the outer fiber
strain at a constant value of 0.863 x 10~% in./in. while the excitation
frequency and input amplitude were varied (see discussion in Testing
Procedure on page 33). In addition, corresponding curves as calculated
from equation 42 using the values of A\ set forth in Table II are
included in these figures. The calculated and experimental curves are
normalized to the same values of response at resonance, and indicate
the’extent of agreement between theory and experiment at other

frequencies.

D. DISCUSSION OF RESULTS

In the reduction of the experimental data, the damping co-
efficient ( M) was evaluated at each of the five lowest bending modes
of the beam. By empirically fitting a curve to the experimental data
points it was found that An was proportional to the 1.155 power of the
normal mode natural frequencies (Ww). Some properties of the damping
mechanism in the beam can be inferred by noting how M\, varies with W,

For example, if X“ is proportional to the first power of Wy, then the



RATIO: OUTER FIBER STRAIN TO INPUT AMPLITUDE - (X ﬂ(‘)z)

40
LEGEND:
CAL'C. CURVE
s =it EXP CURVE
&5
|
20

I
n

o
(=]
[ S

A
e

1.0
i\
g‘a
\\
\
\
N
R
N
05 LN
\%
/ RS
M
Q £
2 24 26 28 50

FREQUENCY (CPS)
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beam responds in each normal mode in a manner similar to the response
of a single degree-of-freedom system with viscous damping; i.e. the
amplification factor Q has the seme value at esach resonant frequency.
Unfortunately, as discussed by Mindlin, Stubner and Cooper (19), there
is no known method of rigorously deriving a beam equation that includes
a damping term whose coefficient is proportional to 0Jh¢ The case when
the damping coefficient varies with the second power of W, has been
studied by Sezawa (20). He was able to derive the appropriaste damping
coefficient by selecting as the stress-strain law ¢ = E(e + v g%)
icge H = ﬂlgi in equation 1lhke This type of damping is referred to as
strain rate damping and is related to the hysteresis of the material.
Therefore, based upon the experimentally determined power of W, of
1.155 and recognizing that the scatter of data is significant, we
conclude that of the two damping models discussed abeve the low fre-
quency damping mechanism in the fres-pinned beam has characteristics
more like viscous than strain rate damping.

The damping measurements obtained in this experiment are in
agreement with those obtained by other experimenters. Germant (21) and
Coleman (22) experimenting with thin steel tubes and built-up box beams,
respectively, found that in the three lowest bending modes of these
beams the amplification Q in each normal mode was constant. However,
both experimenters obtained large scatter of data. More accurate dats
were obtained by Mindlin, Stubner and Cooper (19) in which they
measured the damping in a simple cantilever beam excited transiently by

a controlled half-sine wave pulse. They compared their experimental
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results to various damping models and concluded that constant "Q®
damping was most suitable in defining the damping in the cantilever
beam during vibration of low fregquency.

Experimentally determined response curves for the three
lowest bending modes of the free-pinned beam were compared to calculated
curves in Figures X to XII. Because the damping coefficients were
caleulated from measurements made at resonance, the calculated and
experimental response curves have the same amplification at the resonant
frequencies. In the immediate vicinity of rescnance, only the cal-
culated curves are shown since the frequency resolution in the experi-
ment (see discussion in Testing Procedure on page 33) was not adeguate
to determine the exact shape of the curves. However, for frequencies
away from resonsnce, general agreement between the two curves was
obtained.

An original objective of this experiment was to determine
the variation of damping in the beam with increase in outer fiber strain,
for values of strain in the elastic region of the beam material. From
the data in Table III it appears that the damping coefficient ( \,) is
unrelated to the strain level in the beam. However, smell variations
between Ny, and the outer fiber strain may have occurred, but due to
inherent inasccuracies of the experiment such variastions eould not be
detected. Results obtained by Lazan (23, 24) indicate that for mild
steel the internal or hysteresis damping of the material is independent
of the stress (or strain) below the fatigume limit of the material
(29,000 psi). Whether this characteristic is true for a continuous

system such as a beam has not been determined accurately.,
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To conelude, having evaluated an empirical relation for the
demping as a function of the beam natural frequencies (equations 75
and 76), this relation can be used directly in the equation for response
of the beam to random excitation {equations 57 and 59). If the value of
the mean squared acceleration spectral density G is known, then the

mean squared response of the beam can be evaluated.
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APPENDIX As CALCULATION OF THE CALIBRATION STRAIN VALUE

4 calibration resistor (Rg) was built into the Wheatstone
bridge circuit for strain gages. This resistor was connected between
terminals 2 and 3 (see Figure XIII)
with an on-cff switch in series with
it, Switching this resistor into
the circuit caused a bridge unbalance
which was measured in terms of a

voltage 4€ . The messured voltage

represents a certain equivalent

v
a

strain which must be calculated,

Figure Xiil: Strain Gage Calibration
Circuit

The total resistance R across terminals 2 and 3 is given by
iy (a-1)
R Re Ry N

Solving for R we obtain

R.K
R = —=22 . (4=2)
Re+R,
The chenge in resistance due to the addition of resistor R, is
k=
AR, = R, -R = R (
T z Rc‘*'zz_ A‘“‘B)
Hence
AR. R. (4=4)
Re Rc+Rz

The basic equation for a four arm bridge is [Reference (25)]:
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A€ R, 8%, K AR, R, bR Y; bR,

v (R +RY T (B r R (R3+R4)" (R +24) (4-5)
With one active gage (Ry), the only resistance chenge is Ok, and
equation A=5 reduces tos
Ade _ RoR. (5=6)
\ (Ri+R*
lLet Ry = Rp. Then
Lo . B (A=7)
v 4R,
Combining equations A=4 and A=7 leads to
de | _ R (4-8)

v 4(RAR,)
The gage factor, which is a function of the strain gage material, is
defined as follows:

2
K= —= (4=9)

€
This equation indicates a constant relation between the change in
resistance due to extension of the gage and the strain (€ ) in the gage.

We can solve equation 4=9 for the strain with the aid of equation A=k

to obtain:

= ._RE___ ( A*‘*l@)

K(R+R,)

2

Or from equation 4~7 we can also write

€=4Ac

A-11
2 KV (4-11)

One calibration resistor that was used had a value of 44,000 ohms., The
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resistance of the foil gages was 120 ohms and the gage factor was

K= 2.01; thus the corresponding calibration strain was

iIzO ;
€ = ——— = 136x1i07° "/ =12
Z 20l (44120) o (4-12)
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£
APPENDIX B: _EVALUATION OF THE INTEGRAL J ¥ & (sx) o

The integral .
T = f X Botd)

is to be evaluated for
§v~(f‘"") = Cin [anﬁ,;x + ankfa,\x - o(,\(M@,\x + MF“X)} (B-1)

and
Cav,fs.\’l + wwkfa,\i

e B+ Simdn 6,8 (B=2)

Xy =

Making the substitution PaX = % the integral equation reduces to

the followings

L
J = E;.;‘;f[ng}+}m’-k3ﬁ‘ % (3 An g + }W})]d} (B=3)

Each of these integrals is listed in standard integral tebles.

Evaluating the integrals at each limit results in the following:

T - 20w [QMP.\QMPA«F palsinh pullem pul - ek MF“Q)] (B=t)
P A Bl + ondh gl
As specified by equation 13, the frequency equation is
{M\—F“n — tande p“Q =0
which may also be written in the form
ponBul ok pul - coapul pinhopal =0 (B~5)
Substitution of equation B-5 into equation B=4 yields
] o Bl _aonplemdugd | 2Cmd 5. (-6)
P Ao Bal 4 sowde Bul Ea

Comparing equations B-6 and 30, we find that
1

2
xf Enlpardx = R f D) A (B-7)

[+
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