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Because we know it, we are not an accident:
chance, redeemed returns to order.

Tied to the earth and to time,

a light and weightless ether,

thought supports the worlds and their weight.

— Response and Reconciliation, Octavio Paz
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Abstract

Cavity quantum electrodynamics (QED) in the strong-coupling regime provides the
opportunity to monitor and control the dynamics of a simple quantum system. A
single Cesium atom interacts strongly with single-photon fields in the mode of a high-
finesse optical cavity. When the resulting coherent coupling rate dominates dissipa-
tion in the system, strong coupling is realized and the system displays distinctively
quantum behavior. The coupling between atomic internal states and the quantized
cavity field allows for diverse protocols in quantum state preparation, quantum com-
munication, and quantum logic. However, the atom’s external or motional state must
also be taken into account. My research develops cavity QED in the limit where the
coherent atom-field coupling dominates the atomic kinetic energy and thus signifi-
cantly affects the atomic center-of-mass motion. In this regime, the interaction of the
atom with the cavity field provides both a means of controlling atomic motion and
a signal for detecting that motion in real time with high signal-to-noise. The sens-
ing capability of the “atom-cavity microscope” is exploited to trap single atoms with
single-photon fields and to monitor their orbits in real time as they are bound in the
cavity. Such real-time position sensing is the basis for a detailed strategy and ongoing
experiment to actively stabilize select aspects of an atom’s motion within the cavity.
As the cavity-enabled position measurement approaches the standard quantum limit,
this work begins to realize a quantum servo for atomic position and to address ques-
tions of optimal state estimation and state preparation. In combination with other
progress in cavity QED, it furthers the goal of controlled atom-field interactions for

quantum information science.
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