

Measurement and Control of Individual Quanta in Cavity QED

Thesis by
Theresa W. Lynn

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

2003
(Defended May 16, 2003)

© 2003
Theresa W. Lynn
All Rights Reserved

Because we know it, we are not an accident:
chance, redeemed returns to order.
Tied to the earth and to time,
a light and weightless ether,
thought supports the worlds and their weight.

– *Response and Reconciliation*, Octavio Paz

Acknowledgements

Thanks first and foremost to my advisor, Jeff Kimble, and to the members of the Caltech quantum optics group over my entire time here as a graduate student. The things I have learned from all of you range from plumbing to philosophy, and from the absurd to the truly profound. Jeff's fund of scientific knowledge and his continuing thirst for new understanding never cease to amaze me; his perspective and patience stand out as well in his role as an advisor. I have been privileged to work directly on experiments with Kevin Birnbaum, Joseph Buck, Michael Chapman, Christina Hood, Tracy Northup, and Dominik Schrader; in addition, I would like to thank Andrew Doherty for close collaboration on theoretical issues. Special acknowledgement goes to three close co-workers over the years: Christina Hood, who taught me to be an experimentalist, Jun Ye, who sets an example of dedication and wide-ranging scientific enthusiasm, and Kevin Birnbaum, whose inveterate skepticism is beyond price.

Thanks of another sort to my husband, Jon Moore; I could not have asked for a better partner in the delights and woes of the last seven years. To my parents, thanks for the wonderful two years you gave us, helping to make graduate school and young twins not only compatible but enjoyable. And finally, thanks to the many others who have helped maintain my sanity throughout graduate school, particularly the Chamber Singers in early years, the quartet (now quintet) this past academic year, and the many and varied members of the reading group throughout my time at Caltech.

Abstract

Cavity quantum electrodynamics (QED) in the strong-coupling regime provides the opportunity to monitor and control the dynamics of a simple quantum system. A single Cesium atom interacts strongly with single-photon fields in the mode of a high-finesse optical cavity. When the resulting coherent coupling rate dominates dissipation in the system, strong coupling is realized and the system displays distinctively quantum behavior. The coupling between atomic internal states and the quantized cavity field allows for diverse protocols in quantum state preparation, quantum communication, and quantum logic. However, the atom's external or motional state must also be taken into account. My research develops cavity QED in the limit where the coherent atom-field coupling dominates the atomic kinetic energy and thus significantly affects the atomic center-of-mass motion. In this regime, the interaction of the atom with the cavity field provides both a means of controlling atomic motion and a signal for detecting that motion in real time with high signal-to-noise. The sensing capability of the “atom-cavity microscope” is exploited to trap single atoms with single-photon fields and to monitor their orbits in real time as they are bound in the cavity. Such real-time position sensing is the basis for a detailed strategy and ongoing experiment to actively stabilize select aspects of an atom's motion within the cavity. As the cavity-enabled position measurement approaches the standard quantum limit, this work begins to realize a quantum servo for atomic position and to address questions of optimal state estimation and state preparation. In combination with other progress in cavity QED, it furthers the goal of controlled atom-field interactions for quantum information science.

Contents

Acknowledgements	iv
Abstract	v
1 Introduction and Motivation	1
1.1 Introduction	1
1.2 Motivations	2
1.3 Introduction to the Cavity QED System	3
1.4 History of Us	5
1.5 Overview and Outline	7
2 Cavity QED and the Road to Strong Coupling	10
2.1 “I Am Quantum. Hear Me Roar.”	10
2.2 Quantitative Description of the Atom-Cavity System	13
2.2.1 Master Equation in the Presence of Dissipation	15
2.3 Semiclassical Approximation: Optical Bistability	16
2.4 Interacting Single Quanta: The 1-D Atom	18
2.5 Strong Coupling: Vacuum Rabi Splitting, Trapping, and Sensing . . .	19
2.5.1 Real-Time Detection and Trapping with Single Photons . . .	22
2.6 Broader Application of Real-Time Sensing Capabilities	24
2.6.1 More Intuitive Arguments for Optical Information and Critical Parameters	25
2.6.2 What is the Information Good For?	27

3 Experimental Tools and Technical Challenges	29
3.1 Principal Components of the Experiment	29
3.2 Magneto-Optical Trap and Sub-Doppler Polarization Gradient Cooling	30
3.3 Probe Beam and Local Oscillator Generation and Stabilization	32
3.4 The Physics Cavity	34
3.5 Vacuum Chamber	35
3.6 Locking of Laser Frequency and Cavity Length	38
3.7 Heterodyne Detection and Calibration	39
3.8 Data Acquisition	43
4 Strong Coupling for Trapping and Sensing: The Atom-Cavity Microscope	44
4.1 Summary of Experimental Results	44
4.2 Reconstruction Algorithms and Validation	49
4.2.1 Note on Conservative Motion in Gaussian Potentials	58
4.3 Position Sensitivity Estimates	58
4.4 Why Do Reconstructions Work in <i>This</i> Parameter Regime?	61
4.4.1 Quasi-classical Model for Atomic Motion in the Cavity	63
4.4.2 Potentials and Heating Rates for Atomic Motion	65
5 Active Feedback on Atomic Position: Towards a Quantum Servo	71
5.1 The Atom and Cavity as a Control System: Basic Feedback Strategy	72
5.1.1 General Feedback Strategy	74
5.2 Simulations of Feedback Algorithms in Operation	76
5.2.1 Actual Dynamics But No Measurement Noise	77
5.2.2 Adding Measurement Noise Adds Delays	79
5.2.3 Account for Delays by Waiting a Cycle	80
5.2.4 Comparisons with Open Loop Strategies	82
5.2.5 Performance with Axial Motion Suppressed	85
5.3 Outlook for Experimental Implementation	86
5.4 Current Limits and Future Directions	88

6 Farther Up and Farther In	91
6.1 Vacuum and MOTs	93
6.1.1 Chamber Design and Construction	93
6.1.2 Cesium Reservoir and Vapor Cell Loading	96
6.1.3 Differential Pumping	98
6.1.4 Getting Atoms to the Cavity: Upper and Lower MOT's	102
6.2 Probe Beam Generation and Locking Scheme	105
6.3 New Physics Cavity: Improvements and Difficulties	109
6.3.1 Controlling Birefringence	110
6.3.2 Specifically Chosen Cavity Length	112
6.3.3 The Shear Mode PZT's	114
6.3.4 Length Variation with Magnetic Field	116
6.4 Into the Digital Era	119
7 Fabry-Perot Cavities for Fun and Profit	121
7.1 REO/ATF Mirrors at the Current State of the Art	121
7.2 Birefringence Issues	122
7.3 What Cavities Are Good for What?	131
7.3.1 Basic Cavity Geometry and Mode Structure	131
7.3.2 Atoms in the Cavity	132
7.3.3 Light in the Cavity	134
7.3.4 Usefulness for Cavity QED	137
7.4 Signal-to-Noise for Atom Orbits	139
7.4.1 Connection to Position Sensitivity in the ACM	143
7.5 Measuring Lengths of Very Short Cavities	144
8 Outlook and Extensions for Feedback and Short Cavities	146
8.1 Cooling to the Axis by Breaking Cylindrical Symmetry	146
8.2 Axial Motion: Sensing and Cooling	148
8.3 Far-Flung Applications of Very Short Cavities	150
8.4 Comment on Quantum State Estimation and Control	151

A Computer-Experiment Interfacing in the Active Feedback Experiment	153
A.1 Overall Experiment Timing	153
A.1.1 Framegrabber Operation	154
A.2 Data Acquisition	155
A.3 Triggering and Feedback	155
Bibliography	157

List of Figures

1.1	Basic rates in the cavity QED system	4
2.1	Jaynes-Cummings ladder of atom-cavity eigenstates	14
2.2	Semiclassical vs. quantum saturation behavior.	17
2.3	Vacuum Rabi splitting for $(g_0, \kappa, \gamma_{\perp}) = 2\pi(120, 40, 2.6)$ MHz.	20
2.4	Schematic experiment with cold atoms in cavity QED.	21
2.5	Atomic-position-dependent eigenstates and vacuum Rabi splitting for triggered trapping experiments.	23
3.1	Core of experimental setup: cavity, probe, detection, and MOT . . .	30
3.2	Cesium level structure for cooling, trapping, and cavity QED. . . .	32
3.3	Cavity mirrors, spacing, and field mode depicted to scale.	36
3.4	Oxidized Cesium on the surface of a mirror removed from a well-used physics cavity.	38
3.5	Heterodyne operation and factors contributing to detection efficiency. .	40
4.1	Schematic triggered-trapping protocol for the atom-cavity microscope.	45
4.2	Cavity transmission record for a trapped atom moving within the cavity mode.	46
4.3	Period vs. amplitude of transmission oscillations for trapped atoms. .	48
4.4	Experimental transmission trace and reconstructed trajectory for a trapped atom.	49
4.5	Principle of 2-D trajectory reconstructions	51
4.6	Basic ambiguities of reconstructed trajectories	53
4.7	Example trajectory reconstructions from simulated transits.	55

4.8	Example failed trajectory reconstruction for a linear trajectory.	56
4.9	Example reconstructions of nearly circular trajectories.	57
4.10	Sketch of vacuum Rabi splitting as the basis for position sensitivity estimates.	59
4.11	Effective potentials and heating rates for the ACM parameters.	66
4.12	Effecive potentials and heating rates in a less conservative parameter regime.	68
4.13	Heating per motional cycle measures conservative character of the motion.	70
5.1	Block diagram for the atomic position feedback loop, illustrating sources of noise and system nonlinearities.	74
5.2	General feedback strategy for atomic radial coordinate	75
5.3	Simulated feedback example with perfect sensing of $\rho(t)$	78
5.4	Measurement noise leads to filtering and unacceptable loop delay. . . .	80
5.5	Delay is dealt with by tracking ρ turning points and using this information from each cycle to switch the potential at the predicted <i>next</i> turning point.	81
5.6	Figure of merit for feedback in closed- and open-loop cases (full dynamics).	83
5.7	Feedback performance and lifetime enhancement in simulations with no axial motion.	87
6.1	Schematic drawings of the differentially pumped vacuum chamber. . .	94
6.2	Actual upper and lower chambers with MOT coils and optics in place.	95
6.3	Cesium reservoir and loading procedure	97
6.4	Pressure-ratio and MOT-dropping constraints on differential pumping hole length and diameter.	100
6.5	Design and mounting of the differential pumping hole.	101
6.6	Timing diagram for experiment with double MOT.	103
6.7	Schematic of laser and cavity stabilization	106
6.8	Cavity mount piece: detailed design	109

7.1	Setup for measurements of cavity birefringence	125
7.2	Calculated transmission of off-axis linear input light ($\theta_{in} = \pi/4$, or $\frac{1}{\sqrt{2}}(\hat{a} + \hat{b})$) through cavity and output linear polarizer for five different values of cavity birefringence	128
7.3	Calculated transmission of circular input light (σ_+ , or $\frac{1}{\sqrt{2}}(\hat{a} + i\hat{b})$) through cavity and output linear polarizer for five different values of cavity birefringence.	129
7.4	Preservation of input linear or circular polarization through birefringent cavity.	130
7.5	High reflectivity, low-loss mirrors for cavity QED; side view of cylinder-plus-cone substrate shape.	132
7.6	Sensitivity for an atom in the cavity as a function of optical information rate (detunings of Table 7.3).	143

List of Tables

5.1	Exact conditions used for data of the full-simulation histograms.	84
6.1	Upper and lower MOT parameters	104
6.2	Resonant wavelengths for short physics cavities (T95 mirrors).	113
7.1	Geometrical properties of cavities as length and mirror curvature are varied.	134
7.2	Sensitivity for atomic motion in different cavities (detunings chosen for ACM-like trapping).	141
7.3	Sensitivity for atomic motion in different cavities (detunings compatible with trapping but chosen for sensing).	142