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ABSTRACT

Many random problems of engineering interest can be looked
upon as examples of continuous Markoff processes. Such processes
are completely determined if a certain function, the transition proba-
’bility, is prescribed, It is shown that all of the functions of interest
in random problems can be derived from the transition probability.

Some of the concepts of probability theory and of spectral anal-
ysis are reviewed, and using these results, the Gaussian white noise
function is defined, A new derivation of the Fokker-Planck equation
is given which emphasizes the role of the Gaussian white input in the
analysis of Markoff processes, The transition probability is the fun-
damental solution of this equation.

It is then shown that the autocorrelation is closely related to
the mean motion of a system and can be calculated from the transition
probability. This relation can be used, in principle at least, to de~
termine the autocorrelation of nonlinear systems. The Method of
Equivalent Linearization for random problems and the First Passage
Problem are discussed briefly.

These methods are used to solve a number of problems. A
discussion of linear systems is presented, and by a similar treatment
the solution to a problem in random parametric excitation is given.
Next, the first probability density of a class of nonlinear problems is
discussed., Finally, the power spectra for two nonlinear systems are

calculated,
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PARTI
1.0 INTRODUCTION AND SUMMARY

Although the notion of a random variable is relatively old, it
is only in recent years that its application to engineering problems has
béen exploited, For many purposes, such as telephone loading prob-
lems, the theory of purely random variables is adequate. Frequently,
however, the response of a system to a random input is required, and
the behavior of the system is referred to as a stochastic or random
process, In order to clarify this distinction, a more precise definition
of a system is required., In this thesis, a system will be referred to
as a physical mechanism with an input and an output which can be re-
lated by a differential equation., In fact, the main emphasis will be on
mechanical systems, and the input will then be a force and the output a
displacement or velocity. Another kind of problem arises in electrical
engineering, in which it is frequently necessary to determine the re-
sponse of a nonlinear electrical mechanism, such as a diode, to a ran-
dom input. In this kind of problem, the mechanism will be called a
device. Devices and systems differ in that the output of a device does
not depend on the history of the process, whereas the output of a sys-
tem does depend on the previous values of the variables. More spe-
cifically, it will be seen that the response of systems to a random input
is a Markoff process.

Historically, the study of random processes was initiated by
physicists, particularly in thé field of Brownian motion. The work of
Einstein, Smoluchowski and many others has resulted in a general

theory of random processes which has more recently been taken up by
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mathematicians as well, In electrical engineering a different approach,
which was developed largely by Wiener, has been fruitful. This is the
method of spectral analysis., The connection of the various methods has
only been briefly touched upon in the literature. The distinction be-
tween them is roughly as follows. In physics one is interested prima-
rily in the probability distribution of the variables, and in certain mean
values, which are the moments of the probability distribution. On the
other hand, the emphasis in electrical engineering is on the distribution
in frequency of the variables, which is characterized by the power
spectrum, By means of this method, one of the principal problems of
electrical engineering, that of distinguishing between signal and noise,
can be handled,

In mechanical engineering, and particularly in the field of vibra-
tions and dynamics, both the probability distribution and the power
spectrum are of interest. Also, it seems likely that it is not possible
to characterize the power spectrum of the output of a nonlinear system
without using some notions of probability theory to account for ampli-
tude effects, These considerations have led to this investigation of the
connection between the two methods,

Some of the systems in mechanical engineering which may be
considered to exhibit random behavior are: buildings subject to the
ground motion of earthquakes, airplanes subject to gust loading, land
vehicles on rough terrain, and ships in a heavy sea. The motions of
such systems, whether linear or nonlinear, are examples of continuous
Markoff processes,

Many writers have noted that a Markoff process is completely
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characterized if a certain function, the transition probability, is
known. This is the central idea which will be exploited in this thesis,
although certainly incompletely and with many shortcomings., The
author has tried to arrange the material to show by means of a general
theory, where possible, and by means of several examples, that all of
the functions which characterize a random process can be calculated,
in principle, once the transition probability is known. The moments,
auto-correlation, poWer spectrum, and first passage probability are
the functions most frequently used to describe a random process, and
each of these can be calculated from the transition probability by inte-
gra‘t.ion. In linear problems it is frequently possible to eliminate the
transition probability in the course of the general theory, so that in
actual calculations it may not be necessary to compute this function
explicitly., For nonlinear problems the situation is, of course, much
more complicated,

All of the problems treated in this thesis consist of systems
which have an input with a white power spectrum, and almost always
the input will have a Gaussian character*. This limitation is not as
severe as may appear at first thought, If white noise is passed through
a filter, an output is obtained which does not have a white power spec-
trum., By this means, signals with many kinds of power spectra can

be synthesized if an appropriate filter is found. The filter in con-

sk

In the usual theory, white noise is defined as a signal with a con-
stant power spectrum. The present definition will be more restric-
tive, since the probability distribution of the white noise is taken to be
Gaussian, in a certain sense,
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junction with the system to be analyzed constitutes a new system for
which the input is white, Therefore, the limitation to white inputs is
not very restrictive if a general theory is available.

It will not be practical to give specific reference to all the
original source material in much of what follows, because of the many
modifications to the usual presentations, For that reason, it is appro-
priate to mention here the names of Markoiff, Sm.oluchowski, Einstein,
Wiener, Rice, Kolmbgoroff, Chandrasekhar, Khintchine, Ornstein and
Kramers., The papers of these scientists have proved fundamental to
the theory of stochastic processes, Actﬁally, in most cases the ori-
gins of the basic formulas are obvious from their eponyms. The paper
of Wang and Uhlenbeck (1), and the lectures of Professor T. K.
Caughey (Z). have proved particularly relevant to the material which
will be discussed in both sections of this thesis, A bibliography is
given of the papers which emphasize problems vof interest in mechamnics.

No attempt has been made to utilize the rigorous mathemati-
cal ideas which are the subject of many recent papers and books. On
the other hand, every effort has been made to use the standard meth-
ods and limiting processes of applied mathematics. For example;
the notion of small changes of the type

n
An(z)v = lim dY(Y_Z) T (z, v, At)

At—,—»-vO

At

which is basic to the literature of Brownian motion, has been avoided
and alternative methods for obtaining the results are presented which

use more standard limiting processes, This has resulted in a method



-5-
of deriving the Fokker-Planck equation which is quite different from
the usual one,

Finally, a brief note on terminology is required, The term
"probability density' will be used to describe the distribution of a
vé.riable, and generally will be denoted by a "W'" . The term '"fre-
quency function' is more common in the literature, Wang and Uhlen-
beck use the term ''probability distribution'. The expression ''prob-
ability density" is pérticularly descriptive when one thinks of the dis-
" tribution of probability in the phase space of the variables, and some
analogy with fluid density exists. The transition probability will be
denoted by a "T'" , whereas Wang and Uhlenbeck use "P' ., The
transition probability is called a conditional probability by some
writers. The author prefers to use the adjective '"transition', which
describes the gradual change of a process, and to reserve the term

"conditional probability" for discrete problems.



1.1 PROBABILITY THEORY

In stochastic theory, the concept of probability is closely re-
lated to that of an ensemble, which is a collection of many systems
whose actual time histories are different. However, when the aver-
age behavior of the ensemble is considered, it is possible to describe
the random process in a statistical sense. To visualize this situation,
one may imagine a large number of similar simultaneous experiments
~ in which a time-dependent process is unfolding. In general, the sta-
tistical behavior of the ensemble changes with time, but it may be that
it does not vary, and in that important case, the process is said to be
stationary., The state of any one of these experiments is described by
a number of coordinates, qi(t) » which may be thought of as analogous
to the generalized coordinates of classical dynamics, and the space
of these variables as analogous to phase space, The probability den-
sity of the process is a function which depends on these coordinates,
and perhaps also on the time, t , and it is somewhat analogous to fluid
density, since the integral of the probability is a constant which is al-
ways chosen to be one,

The most general kind of probability describing 'the process is
the joint probability density of order / , which is the probability that

a single experiment of the ensemble has coordinates in the ranges
P S | 1 . .
(qi,qi-!-Aqi) at time t, ; i=1,2,..0,1

2 2 2. ...
(q;» a; +Aq;) at time t,



-7

J

i q{+ Aq/) at time ¢t

i

(a Y,

divided by the volume element in the coordinate space.

The probability density can be defined by considering an en-
semble of M systems simultaneously describing a process. The
‘number of systems, M', which have coordinates in the ranges listed

above is defined to be

' 1 T
M' = m (qf ? tr) ]:[ Aqi
i, r

and is proportional to the element of volume. It is assumed that the

- fraction M' approaches a definite limit as M approaches infinity,

Lm 2= W, (q]) 1I Aq) (1. 1. 0)
M — oo i, r
That is, as the number of experiments becomes sufficiently large,
the fraction of systems in a given state approaches a definite limit
which is a continuous function of the coordinates., This limit, per unit
volume, is the joint probability, W/ , of order / , and is a function
of /n space variables and n time variables, tr . The most general

problem of stochastic theory is to compute this joint probability with-

out actually carrying out experiments,

1. 1.1 Properties of the Probability Density

In this section, some of the properties of the probability den-
sity and methods of calculation will be discussed briefly, Since the
time dependence of the probability is not essential in the following

paragraphs, the superscript, r, on the independent variables, q; »



will be dropped,
From the previous discussion it is obvious that one must have

0o
dvW(qi) = 1 (1. 1. 1)

= QO

as a necessary property of the probability density. dv is the element

of volume in the n-dimensional space of the q; » and is essentially the

r
T ag
i, r

which was used above. Furthermore, the probability W is always

same as

positive. This is obvious from the definition, (1. 1. 0).

When tv&o coordinates, d and q, . are independent, this can
be expressed mathematically by writing that the joint probability can
be factored as sl_lown below,

W(qysd,) = Wi(a;)Woiq,) (1. L. 2)

The independence of n coordinates is expressed in a similar manner,

ViZe

wig) = [[W(q) -
n

One of the most important operations in random theory is that
of computing the ensemble average. For any function, f(qi) , of n
variables, the average is defined by
)

1

fa) W g av = E [fe)] = <fa) > = Ha) (1.1.3)

The ensemble average may be thought of as the average over a large

number of experiments. The symbols { > and 7 will be used
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interchangeably to denote ensemble averages, and are a shorthand for
the integral on the left. The tilda is useful to denote the mean of a
single variable such as y . However, for the average of a complicated

expression, such as
t
e | a(z) he-z)az >
, 0

the ‘bracketvs are obviously more convenient, The integral on the left
of equation (1. 1.3) is frequently referred to in probability theory as
the expected value, E :f(qi) s of the function.in the integrand. The
integral will generally be taken over all values of all the coordinates.
An important relation exists for determining the new probabil-
ity density when the variables are changed., To determine this rela-
tion, consider an n-dimensional space, and an arbitrary element of
volume in this space, AV . The probability that the state of a system

lies in AV is

dv W(q,)
AV
and must remain invariant if the coordinates of the space are changed.

Hence if there is a one-to-one transformation from one set of co-

ordinates; q; » to another, qi' , one must have

1

W(qi) dq1 d(:_[2 ooo dq_n = W'(qi') dql' dqz' 000 dqn

— 1 1
= W'(q,") J(q;) dq; dq,; ... dq_
where J(qi) is the Jacobian of the transformation., If the transfor-

mation is not single valued, the above formula does not hold. How-
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ever, in caséé of physical interest, it is frequently possible to de-
termine easily the appropriate functions to replace the Jacobian. The
central idea is this: suppose that the finite regions 2y and a, in q
space both map into a', in ci' space, as indicated in the sketch, The
probability that a point lies in a' is the probability that it lies in 24

plus the probability that it lies in 2y .

Figure 1.1 Transformation of Coordinates

\

Then in the general case one can write

Prob [qi'é a'] = Prob [qie a1]
+ Prob[qie aZ_J

+ouo

where q; € a;, means g, lies in the point set 2y - It is probably
best to work out special cases as they arise, and it is doubtful whether
a more explicit analytic formula would be of general value,

An important extension of the method can be illustrated by the
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problém of c‘omputing the distribution of the sum, g = d; + d5 s of
two random variables. This method illustrates what is sometimes
called a method of descent, in which a function of n coordinates is
computed from another function depending on n + 1 coordinates. In
the example, the joint probability Wo(ql’ qz) is presumed known, and
if is desired to find W(q) , the distribution of q; t 4, - The proba-~
bility that the sum is in the range (-0, q) is the probability that d4y
and d, lie in the region, A , of the d4; - 4y plane below the line

q1+q2=q°

Figure 1, 2 Geometry for Computing the Distribution
of the Sum 4 + d4,

This fact can be expressed in terms of integrals

q 0 q-ql
W(p)dp = dq, dq, W _(q;,4d5) =/ qu/ dq, W (47, 4d5)
- 00 A -00 ~ Q0

Differentiating both sides of the equation with respect to q,
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(0.0)
W(q) = dq; W _(a;»9-9;) - (1. 1. 4)

- ©
If q and q, are independent, one finds from equation (I, 1. 2) that

W laypa,) = Wil ) Wylg,)

and equation (1. 1. 4) becomes
: oo
W(q) = dq; Wylqy) Wy(q-q,) (1. 1. 5)
-
If a probability involves variables which are not of interest in

a particular computation, one may integrate over the range of the
superfluous variables, and the resulting function is called the marginal
distribution. For example, in the formula below, w, is the marginal
distribution of q; -

00

Wylay,a5) day = Wi(qy)

1.1, 2 The Characteristic Function

An important law of combination exists which depends on the
so-called characteristic function, which is the Fourier transform of

the probability density, Alternatively, one may say that the charac-

teristic function is the expected value of 'Y, Either viewpoint

leads to the formulas below for the characteristic function, ¢(x).

Q0
o(x) = E(*Y = Wx) = ¢4 (q) dq (1. 1.6)
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The bar will be used frequently to denote atransformed function,

The combination law states that if q and q, are independent
and have probability densities Wl(ql) and Wz(qz) and characteristic
functions ¢1(X) and ¢2(x) , then the characteristic function of
q= qq + d, is ¢1(x) ¢2(x) o This may be proved as follows. From

the definition of a characteristic function,

| 2 ® ix({q;+q,)
¢y (o, (x) = dq, dg, W,(q,)W5(a,) e .
= Q0 - 00 ‘

Now it will be shown that this is equal to the characteristic function
of q. The Fourier transform of equation (1. 1.5) is simply
(o) oo

Wix) = ¢(x) = e dq W, (a))W,(a-q,)dq, -
- 00 - 00

 With the change of variables q = q,tv this becomes

OO ® ix(ql-l-r)
$(x) =[ dv dq, e Wilq JW,(v) = ¢, (x)d,(x) (L. 1.7)
- Q0 - 00

In the Fourier transform theory this is the convolution theorem, It
follows immedié,tely that for any number of independent random vari-
ables the sum of the variables has a characteristic function which is

the product of the characteristic functions of the component variables.
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1.2 TIME DEPENDENCE OF PROBABILITIES

Nothing has been said about the time dependence of the joint
distribution, W(qi s, t) , in the above dl.iscp.ssion° However, this sub-
ject is fundamen’cél to the theory of Markoff processes, and will be
téken up in this section. There are two important types of time de-
pendent processes. The first is the purely random process, which is
completely defined if the joint probability of order one is prescribed,
In fhis cé.se, the random variable does not depend on anything which
has happened previously. The result of ﬂipﬁing a coin is an example
of such a process. The second important kind of process is completely
defined if thé joint probability of order two is prescribed, and is
called a Markoff process. Almost all physical systems which are not
purely random are Markoffian, and the behavior of such systems de-
pends on the history of the motion in much the same way that a deter-
ministic process is characterized if the initial values of the variables

are given,

l. 2.1 Purely Random Process

The first case is that of a purely random process* in which
the values of the variable‘s at distinct times are independent, in the
sense of Sesction 1. 1.1 . Consider, for example, a process involving
one coordinate only, q . Itis purely random if the second joint prob-

ability can be factored,

sk

It will be seen in Section 1. 4 that this is the central idea in defining
the very important example of Gaussian white noise, sometimes
called a2 Brownian motion type of process.
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W,lahtpast,) = Woah e )W e t)  (L2.1)
If the probability density function, Wl(q) s does not depend on time,
the process is said to be stationary.

The classical theory of probability deals largely with the

.purely random process, and usually there is no time dependence.
Also in classical probability one generally deals with discrete proba-
bilities, rather than continuous distributions, and that is true of most
of the theory of Markoff chains. It is possible to connect the theory
of continuous and discrete probabilities by using the notion of a delta
fﬁnc‘tion, For example, if a particle can only have two positions;, q

and dy s then one can write, using the delta function, &(q),

W(q) = Wl s(q'ql) + WZ 5((1"012) 2
where Wl is the probability of being at d; » and w, is the proba-
bility of being at g, . With this notion the problems of discrete
variabies are seen to represent, formally, a special case of that of

"continuous' variables., However, this notion does not aid in solving

discrete problems. It is only mentioned to show the connection,

1.2.1.1 The Poisson Process. An important example of a

purely random process is that of the Poisson process, which is usu-
‘ally discussed only for the case where the process is stationary. How-
ever, a more general situation will be taken up in the following analyéis.
An important example of a Poisson process is that Qf the frequency of
failures of a machine, J(t) . J will be a function of time in general,
and the usual treatment where it is constant is a special case. In the

example of the machine, the time dependence of the frequency, 7 (t),
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represents the increasing failure rate due to machine aging,
The probability of a failure in the interval of duration At is
V At. Then the expected number of failures after an elapsed time T

will be

T
w(T) = Y (t) dt (1. 2. 2)

In order to determine the probability that an event (failure)
occurs at least once in time T , one may proceed as follows. First,
consider the case where J is constant, The probability that an event
oécurs in a small time interval, At, is / At . The probability that
‘the event will not occur in the interval is then 1 - Y At. The proba-
bility that the event not occur in n suécessive intervals of duration
At is (1 - )/A‘t)n ; since the events are i.ﬁdependent. The probability

that the event not occur in n intervals, but does occur in the next

one, is

(1-ya)tyat .
Now set At= /n. In the limit of large n, the expression above
becomes

e—yt)’ At .

This is the probability that the event occurs for the first time in the
interval (t, t+At) . Hence, the probability density of the time, t, of

first occurrence is

v, = et | (1. 2:3)

The probability that the event occurs atleast once in time T is then
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W, = e dt = 1-e (1. 2. 4)

and the probability that it does not happen is

1 -W e')’T

- q

1
which is also the probability that the event occursforthe first time in
the interval (T, ) .

Now s'uppose that Y (t) is not constant, Divide the interval T
into subintervals short enough so that the frequency, J , is nearly
constant in each, The probability that the event not occur in any of
the first subintervals, but does occur in the last, is, from equation
(o230 SV(EAE =) (E,)At r(ty)

e

e soe € )/(tn+l)At s

and in the limit of small At this can be written
T
- Y (t)dt
e O y (T)at .

Hence the frequency, /J 1°? of the first occurrence of the event is
T
J (t)dt

Ol\a

)’1(T) = e Y (T) . (1. 2. 5)

The probability that the event occurs at least once in time T is

therefore

(T) = j/ldt= 1-e . (1. 2.6)
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It should be noted that there are two kinds of probabilities as-
sociated with the Poisson process which need to be distinguished.
a) The probability, Wn(T) , that an event occur for the nth
time in the interval (0, T), that is, é.t least n times;
b) The probability, Pn(T) s that an event occur exactly n

times in time T,

One has, of course, the relation connecting the two:

00
W = Z P. . (1. 2.7)
n i
i=n

It is possible to obtain a recursion formula relating P and

P . To do this, one considers the various ways in which an event

n-1
can occur exactly n times in an interval (t, T). Divide the interval
into three parts; (t, ), (Z,Z+At), and (7+ At, T). The interval At
is chosen so that T-t = mAt. An event occurs exactly n+l times in

(t, T) if it does not occur in (t, Z) , it occurs exactly once in

(7, T+ At) and exactly n times in (Z+ At, T).

Time : t T T+ At

T
O, o W L
~7 A4 7 U
~— -
Number of 0 1 n
Occurrences

Figure 1.2, 1 Geometry for the First Occurrence FProblem

Firs‘t, consider the general, non-stationary case, Pn(t, T) is defined
to be the probability that an event occurs exactly n times in (t, T),

and as before, ) l(t)At denotes the probability that the event occur



-19-
for the first time in (t, t+At) . Then the above discussion leads to

the result below:

1

P (tT) =V HADAE P, ) (AL, T)

+

J I(ZAt)At P o1 (2At, T)

+ ) l(mAt)At P31 (mAt, T) .

This sum becomes in the limit as At goes to zero,

T
Pn(ts T} = )/1([) Pn—l(r’ T)dr s (1. 2. 8)

This is the fundamental equation for the Poisson process. Itis an
| integral-difference equation for Pn(t, T) in which V 1(t) is given by
equation (1. 2. 5). Two conditions, which serve a role analogous to
boundary conditions, are required to specify the function Pn(t) com-
pletely, The first is that in any interval an event must occur some

number of times., That is,
o)

Y B =1 . (1. 2.9)

i=0

Furthermore, the expected number of events in the interval (t,t+T) of

duration T is

t+T
Y (t)ydt ,

and this must equal the probability of one occurrence, plus twice the
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probability of two occurrences, etc., in the interval (0, T). This

gives rise to the equation

oo t+T
Z nP_(t,T) = J (1)dr (1. 2. 10)
n=1 t

It appears difficult to solve (1. 2. 8) in general, but if the process is
stationary the calculation is straightforward.

In the case where the process is stationary, Pn(f,‘ T) is a
function only of the time difference T-t. Putting T-t=u and
T-7 = ¢, equation (1. 2. 8) becomes

u
Pn(u) = )/l(t-O') Pn-l (o)d o .
0

Since the integral on the right is of the convolution type, it appears

natural to take the Laplace transform of this equation:

B.(s) = Jy(s)P__4(s) .

This may be regarded as a difference equation, and it has the solu-

tion

- I
P (s) = Ay . (1. 2.11)

Combining this with equation (1. 2, 9) leads to

00
2p,=i=_f}—__,
i s —

i=0 1-)/l

]

With this result the constant , A, can be eliminated, and the ex-

pression for fjn is then



Since ) (t) is constant, equation (1. 2. 10) is readily evaluated.

(o0]

Z nPn(T) = )T .

n=1

Again taking the Laplace transform,

n=1

Now it is easy to prove the identity

fe's)

o
-T2

n=1 (1-x)

Combining these results, the frequency of first occurrences, )/ 10

can be determined.

(1. 2,12)

Then the probability that exactly n events occur in the interval of
duration T and its Laplace transform are given by the formulas

below,

‘ ntl n
Po) = 2 (L) 5 pum = B T (1.2.13)

The second important example of a purely random process is
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that of white noise., However, this topic, which is fundamental to the
subject of stochastic processes, can properly be discussed only after
the notions of autocorrelation and power spectrum have been intro;

duced.

1. 2, 2 The Markoff Process and the Transition Probability

The next most general case of a time-dependent probability is
that of a Markoff process, In this case the process is, by definifion,
completely defined if the second joint probability, Wz(qil, tl; qiz, tz) s
of the process is known. In order to specify the process more pre-
cisely, it is necessary first to define the transition probability,

. o)
I‘(qi, 9 t) . Then n

T(q;, qf, t) __l_[ Adq,

i=0

is the probability that at time t the coordinates of the system lie in
the range (qi, q + Aqi) if initially, that is, at time zero, the co-

ordinates of the system are precisely equal to qio ; that is

T(a; > 0) = 89, - a7) 6lay - ap) e

In this equation, use is made of the fact that if a random variable,
x , is specified to be exactly X then this can be expressed by
writing the probability density of x in terms of the delta function,
é(x-xo) . This technique will be used frequently.

One may think of

T Aql qu oo Aqn

as the probability that the system lies in a rectangular element of
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an n-dimensional space with edges of length Aqi when the system
was initially at a definite state q;) . The geometrical concept is quite
useful,

The transition probability satisfies the requirement of any
probability density that its integral over the entire space of the vari-
ables is unity.

foo)
Tdv = 1 .,
-

Frequently as t — oo the transition probability approaches
a limit independent of time and of the initial conditioﬁs. This limit
is the first probability density of the system, W(qi) , if it exists.,

One writes

m Tl a, ) = Wig) -
t — oo

In this case, the system represented by the transition probability is
said to have reached a stationary state, The transition probability
is frequently called a conditional pfobability in the literature, and in
particular by Wang and Uhlenbeck (1), However, the term 'transi-
tion' is used in this thesis to emphasize that the processes to be dis-
cussed show a continuous transition from one state to another, The
term 'conditional probability' is reserved for the classical kind of
problem in which there may be a dependence of one event on another,
but the time does not appear in the problem explicitly as a continuous

variable.
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The second joint probability is the probability of being in a
volume element of phase space, dv , at time t, and of being in the
element dv°® at time to . The second joint probability Wz(qi, qf, t-‘to)

and the transition probability are related as indicated below,

the probability of the probability of the probability of

| being in the vol- being initially in being in av® at
ume element dv | = |dv® at time ‘to 7| time to and in dv
at time t if in- at time ¢t

itially at qf

O

T(q,a, t-t )dv  x W(al, t_) dv W,(qp a’ t-t_)dv dv®
Witil these preliminaries, one can proceed to define a Markoff pro-
cess, Itis a random process in which the probability density of the
system at time t is completely determined by its state at some
earlier time, to ;s and the determination is complete if the transition
probability is known, One may notice here an analogy with the func-
tion to be determined in an initial value problem in which the history
of the process is specified when the initial values are given, The
probébility density, W0 , at time fco may be given in a problem, or
it may be the transition probability from another, earlier, state.
Thus a knowledge of the transition probability determines a Markoff
process completely. Joint probabilities of order higher than two can
be éomp’uted once the transition probability is known., To illustrate

this, the third joint probability is computed below,
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2 1 o}
Walay > ty595 0 83595 5 8)
o 1 o 2 1
= Wl(q-l’to)T(q-l’qi’tl-to)T(qi’q"l’tZ’tl) o

Such a chaih can be constructed for a joint probability of any order.
The transition probability cannot be arbitrary, but must satisfy
a certain functional equation. This functional equation expresses
analytically that the i)rocess satisfies the requirement of '"consist-
ency', in the terminology of Moyal (3) . This requirement may be
described as follows. One expects that the state of a system is
uniquely determined by the transition probability if the process is to
be physically meaningful, This idea can be expressed mathematically
by the following method. Consider three ordered instants of time,
1:0 s t1 and 1:2 » Now suppose that at time to the state of a system

is given by the 9, that is, the coordinates © are known. Then
g q; : q;

a’é time tZ the probability density of the coordinates is given by

2 o
T(qisqi: tz‘“to) 0

But the state at some intermediate time, tys is given by

T(q_g.: C]_?: tl-to) °

Roughly speaking, one can say that the probability of arriving at a
final state q; in time t2 - to must be given by the probability of
arriving at some intermediate state, q_L1 s in time 'c'1 - to' times the
probability of arriving at the final state, q_lz , from the intermediate

state, qil ; in time ty -ty summed over all intermediate states.
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This statement is ekpressed more concisely by the integral equation
below. The integration is taken over the entire space of the varia-

bles qil .
;2 o0 2 1 1 o 1
T(qie C.I_i.s tz‘to) = T(qi: qi’tzstl)T(qi’ qi’tl_to) dv (1.2, 14)

This is the Smoluchowski equation, and is fundamental to the theory
of continuous Markoff processes. It can be used to derive a certain
partial differential equation, the Fokker-Planck equation, which in
turn can be used to solve for the transition probability. This proce-~
dure is outlined by Wang and Uhlenbeck(1l).

In order to describe a certain process, it may be necessary
to irfroduce independent variables not of direct interest, particularly
additional time derivatives. The number of variables required is the
dimensionality of the Markoff‘process. If one is interested in only a
few of the variables of the process, the behavior of these variables is
called a projection of the Markoff process. This projection is com-
puted by calculating the marginal distribution, mentioned in Section

1. 1, which eliminates the extraneous variables from the problem.
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1.3 POWER SPECTRUM, AUTOCORRELATION AND THE WIENER-

KHINTCHINE RELATION

The Wiener-Khintchine relation shows that the power spectrum

and autocorrelation are the Fourier cosine transforms of one another.

From the present point of view, it is remarkable in that it provides

a useful formula for random theory in which the notion of probability

need never be introduced. Averages are obtained by calculating the

mean over a long period of time.

Suppose that a long record of a signal y(t) is given in

(-T/2, T/2) and it is defined to be zero outside this range. Then

y{t) has a Fourier spectrum given by

T/2
Alw) = o y(t) et at
L 1/2

and y(t) is given by the Fourier inversion formula

‘ Q0
vit) = | Alw)etat

- QO

The complex conjugate of A(w) will be written A*(w).,

real, it follows that

*(w) = A.(""C\)) °
Now define the autocorrelation by

T/2
1

R(7) = y(Ey(#Z) = lim = y(t)y(t+z )dt
T —=— 00 -T/Z

(1. 3. 1)

(1. 3. 2)

Since vy 1is

(1. 3. 3)

(1.3.4)
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It is assumed that the limit exists, which is to be expected for any
reasonable physical process. The bar is used to denote a time aver-
age gnd should be regarded as a shorthand for the expression on the
right. A set of straightforward calculations results in an important
formula fér R(7) . If the expression (l.3. 2) is substituted for v(t)
in the expression above, a triple integral is obtained. It is shown be-
low that by appropriate interchange of the order of integration and
changes of variable, the right hand side can be made to appear in the
form of a Fourier integral. It is assumed that reversing the order of

the various limiting processes indicated below is permissible,

T/2
R(7) = lim / tf \ dwf dw'Alw)A(w!)e W Tw W
T—->-OO -T/2

(e} oe]
lim 1 dew dU”A(w)A*(w”)e_lwnf 2 sin(w-w'")T/2
T ——=n
oo

T —- 00

]

. 2§
. ~i(w - =2 )
= lim dew dg Afw )A%(w - __&_ 2.8in § e T
__E |
T-——>-oo
00 0 i 2 -

o qe 1 drA(w)A*x(w) _~iwz sin§ T
= lim - dw T e < e dg

T —= 0o - 00 - 00

lo's}

_ 1 4 A(w)A%*(ew) i Z”
= lim 7:1"1'- d T
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Now one defines

lim 4 A(%)Aﬂw )

= § () (1. 3. 5)

T —~

where @(w) is the power spectrum of the signal y(t). Itis even in
view of (1.3.3). Hence one can write

co
R(z) = coswz § (w)dew (1.3.6)

Application of the Fourier inversion formula shows that

(ee]

dlw) = R(r)coswz dT (1.3.7)

Al v

These are the Wiener-Khintchine relations. They will be used fre-
quently in the second part of this thesis, A special case is of consid-
erable importance. Putting 7 = 0 in (1.3.6), and recalling the defi-

nition of the autocorrelation, (l.3.4),

: QO
R(o) = ;Z = $ (w) dw ' (1.3.8)

0
This proves the important result that ’thé mean square of a variable
can be obtained by integration if its power spectrum is known.
If the ensemble and timé averages for a stationary, random
process are equal, it is said that the ergodic hypothesis holds, The
proof of its validity'is discussed by Miller (4) and Wiener (5), and

was given originally by Birkhoff (6) for a certain kind of process,
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<V(t+7)ym> = y(t+z)y(t) (1. 3.9)

For many purposes it is sufficient to make use only of time averages,
However, in this thesis, the ensemble average will be more frequently
used, and therefore, the above equation will be fundamental and used
frequently. This subject will be elaborated on in Section 1.6 .

The autocorrelation of a nonstationary process has been in-

vestigated by Lampard (7), but will not be required in these problems.
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1.4 THE GAUSSIAN WHITE NOISE FUNCTION

Purely random processes were discussed in Section 1, 2, 1,
where it was mentioned that one of the most important examples is
that of Gaussian white noise., In this section, a definition of Gaussian
white noise will be given, and some of its properties discussed. It
appears worthwhile to go into this subject at some length, since it
will be of fundamental importance in both parts of this thesis.

White noise can be defined in a variety of ways, From the
point of view of spectral analysis, it is defined as a random function
whose power spectrum is constant, and therefore contains all fre-
quencies, in analogy with white light. Frequently, nothing need be
said about its probability distribution. However, in problems of me-
chanical engineering it is important to be able to say some'thing about
the probability of exceeding large values of a variable, such as the
stress. This would be the case, for example, in designing a building
to resist earthquakes, which may be treated as a random excitation.
In order to say something about the probability density of the output
of a ssrstem, something must be said about the probability density of
the input, which can frequently be taken to have a Gaussian distribu-
tion. Béfore discussing the mathematical properties of Gaussian
white noise, a few comments about the reasons for its importance
seem to be warranted,

First, it must be emphasized that the Gaussian white noise
function is pathological. Alfhough this is unfortunate in the sense
that it makes the ‘function difficult to handle mathematically, it is also

the source of its importance., This will be seen in various examples
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to be trea’cedllater@ One may expect, a priori, that a purely random
~ continuous function should be pathological, for its later values should
not be predictable from or correlated with its earlier values., Alterna-
tively, one may say that it must not be capable of extrapolation. Now,
if one or more of the deriva.‘fives of a function can be specified, some
extrapolation of its value is possible, by the theory of Taylor series,
Therefore, if a function is to be purely random, it should not be
differentiable,

The pathology of the white noise function can be seen from an-
other point of view. From equation (1, 3.8) it can be seen that the
mean square of a random variable is the integral of its spectral den-
sity over all frequencies, Since the spectral density of white noise is
constant, its mean square must be infinite,

Sincie the white noise function is not differentiable and has an
infinite mean square, one must resort to some sort of device to handle
it mathematically. The mathematical problems have been investigated
by Wiener, Doob, Feller and many others, and in fact is the subject
of an extensive literature. References 8 through 10 are a few import-
ant sources and contain many references. Although no attempt is
made to achieve mathematical rigor in this thesis, it is the intention
to make the various results physically plausibleo

It has been stated that the white noise function is pathological.
To circumvent this difficulty, the following approach seems reason-
able. Although white noise itself cannot be handled éonveniently, one
might expect that if a signal representing white noise is passed through

a smoothing filter, the output may be a tractable function. The sim-
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plesf such filter is an integrator, and it turns out that the function
resulting from integrating white noise is, in fact, mathematically
counvenient. It is sometimes called the Brownian motion function,
and it is associated with the random walk problem*, Much of the
present theory was developed in connection with the problem of
Brownian motioﬁ, which is of considerable interest in physics.

The starting point of the theory will be to discuss the behav-

ior of the random function

Z(t) = | N(t) dt (1. 4. 1)

which is the integral of the Gaussian white noise function, N(t) .
Since many phenomena are Gaussian, this choice is frequently use-
ful in applications. Specifically, Z(t) is taken to have the transition

probability

" The Brownian motion consists of sudden random changes in the
velocity of small particles suspended in a fluid medium. It was first
noted in 1827 by the English botanist, Robert Brown, who was ob-
serving pollen suspended in a fluid. It was not until 1905 that a sat-
isfactory theory was advanced, when Einstein published the first of a
series of important papers on the subject, In these papers it was
shown how the motion of the suspended particles can be explained by
Kinetic Theory, which predicts that the molecules of the suspending
fluid are in motion, and that their impact causes the random changes
in velocity which are observed., The diffusion equation for the pro-
cess in the absence of viscosity has as its fundamental solution what
is sometimes called the Brownian motion function, but will be called
the Gaussian white noise function in the present treatment. Gaus-
sian white noise is frequently considered as the limiting case of the
random walk function. This function consists of a series of jumps,

+ a , which are positive or negative with equal probability and occur
periodically, A modified type of random walk is discussed in Appen-
dix 'A. The random walk problem is frequently taken as the starting
point in the theory of Brownian motion, for example, by Chandra-
sekhar (11).
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(z-2,)°
) 4D(t-tlT

w(Z-2,) = © . (1, 4. 1)

\/471'D(t-t1)

Z is Gaussian with mean Z1 and variance ZD(t-tl) . Itis to be

shown that as a consequence of this definition N(t) has a white power

spectrume.

Let Z and Z':l denote the values of [N(t)dt at times t and

t The joint probability WZ(Z’ t; Zl’ tl) can be written in terms of

1 °
the transition probability, w(Z), as indicated in Section 1. 2, 2, if the

process is Markoffian,

W(Z,Zl, t_tl) = W(Z,Zl,t—tl)w(zl, Zo’ t=to) v (1. 4. 3)

Following Section 1.3, the correlation of Z and Z1 is defined by

the integral, or ensembe average,

( Q0
<z z;> = dz dz, W(Z,Z,) Z Z, . (1. 4. 4)
= Q0
But . 5
0o - ED(t—‘t‘lT
dazz & =z, .
o \/411D(t—1s-1,;
Then >
: (2-2 )
oo - ZIDZtlntoT
2 e
<zz > = dz, Z .

1 v
oo -,/4'n'D(t1-to)
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This integral can be evaluated easily, The first result is then that

the correlation can be expressed by

<Z2Z > = 2D(t -t )+ zi t >t (1. 4. 5)

It has been tacitly assumed that t) "cl . If t1> t , an identical cal-

culation shows that
' 2
{zz,> = 2D(t-t ) + Z_ s t) >t (1. 4. 6)

The fact that this function depends on to and Zo is a result of the
nonstationarity of the process. The correlation function expressed by

(1. 4. 5) and (1. 4. 6) can then be written
. 2
<zzl> = 2D min (t,t,) + Z_ - 2D t_ (1.4.7)

where by '"min (x, v)" is meant the minimum of x and y . This
result has been given by Wiener (8) on page 13, using a much more
rigorous method.

The autocorrelation of the White noise signal, N(t), can be
obtained from the autocorrelation of its integral, Z(t) , which was

obtained above, It is to be shown that
 N(E) N(t)) > = 2D s(t-t;) .

Now using the definition (1. 4. 1),

2 \
0
<N(E) N(t,) D = 35T <z z(t)) ) :

It will be convenient to illustrate the calculations graphically, The
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function < Z Zl> expressed by equation (1.4, 7) is sketched below.

<z zZp 2Dt

2Dt

"Figure 1. 4.1 Behavior of the Function < Z Zl>

From the graph one deduces that

0, t>t
0
5% <z(t) Z(t1)> =
2D, t<t,

A second sketch shows the behavior of ;ﬁ- < Z(t) Z(t1)> .

)
5 <ZHZ(E D>

2D - — —

1!

Figure 1l.4. 2 Behavior of the Function '5% <Z(t) Z(t1)>
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One can write, using the Heaviside step function, H(t)
L zmzie,) > = H, -1)
dt 1 1 °

The autocorrelation function for white noise is determined by car-

rying out the differentiation.
R(Z) = < N(t+7 )N (t) > =2D6s(7) (1.4.8)

Here 6(7) is the Dirac delta function,

From this result, the calculation of the power spectrum fol-
lows easily, Substitution into the Wiener-Khintchine relation, equation
(1. 3.7), which is rewritten below,

o

$lw) = % R(7) coswz dz°

-
shows that the power spectrum is constant

Ble) = 22 (1.4.9)

This result may be stated by saying that N(t) has a power spectrum of
2D/m per radian, or 4D per cycle, Writers differ on the choice of
constants., This definition agrees with that of Wang and Uhlenbeck,
(1), and Tsien, (12).
Another important property of white noise is that given below,
{ZN> =D (1. 4. 10)

To see this, evaluate the expression



-38-

(z-2 )
- o
fo'e) 4Dit—‘t )
2 e © 2
(z5> = dz z" .
‘ P -\‘/41TD(t-to)

The integral is standard, and one finds, as before,
2 ' 2
Lz @)y = ZD(t-to) +Z, .
Then the calculation below proves equation (1, 4. 10):

%<Zz(t)> = 2<Z(t) N(t)> = 2D .

It may be that a system is influenced by several independent
random signals, Ni(t) , all of which have white spectra., Since they
are independent, the joint distribution of the integral of these signals
is

wl(Zl) WZ(ZZ) oo wn(Zn) s

where each of the transition probabilities has a probability density

with the form of equation (1. 4. 2) . One finds easily that

N, (t +7) Nj(t) = 2 DiDj 5137 () (1.4.11)

where 61j is the Kronecker delta.

The sum of two Gaussian variables, a4 and d5 has a mean
which is the sum of the means and a variance which is the sum of the
Variancebs. Analogously, one finds that if N is defined by

N = N, +N,

where N1 and N2 are independent, then the spectral density of N

is Dl + D‘2 where D1 and D2 are the spectral densities of N1 and
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' N2 . DBecause Nl and N2 are by definition independent,

KNy Np> =0 .

Any linear combination of white signals is white, and the rules
of adding Gaussian variables apply to white signals, even though the
Vé,riable N does not have a well-behaved probability density.

A property of the random white noise function, N(t) , useful
in calculations, is that it is uncorrelated with any function describing

the proce‘ss, evaluated at any earlier time, t - 7.
< N(t) £(t-z) > =0, Z >0 (1. 4.12)

This follows from the definition that white noise is purely random,
as defined in Section 1.2,1 . If it depended on an earlier property of
the system, it would not be purely random but Markoffian, or some
other type of process. This fact will be used in Section 2.1,

An extremely important property of Gaussian white noise is
given by the theorem below. The theorem in question gives the proba-
bility density of the random variable, v , where

tO+T

¥ (7) N(z)d 7 (1. 4. 13)

<
I

and ¥ (7) is arbitrary. The derivation follows that of Chandrasekhar,
(11). The result is obtained as follows, Divide the interval

(to, to + T) into n subintervals of length At = T/n, short enough
so that W (#) is nearly constant in each. Then one can write, ap-

proximately, using the mean value theorem



n ti+AT n n
y = Z \,U(‘ti) N(z)dz = Zy/(ti)Z(At) = Z Vi s
i=0 t. i=0 i=0
i \
where
t+AtL
Z(At) = N(7)d 7
t

and

y, = VA7) z(ar) = ¥zt .

The distribution of Z 1is obtained from equation (1. 4, 2)

ZZ

e 4DAt

Var D At

Then the distribution of V5 is

w(Z) =

2
Vin
T 4DAt &Vl
e )
4n DAL Sui.

and the variables, y; s are indepeﬁdent. It Was-shown in Section

1, 1. 2 that the characteristic function, which is the Fourier trans-
form of the probability density, can be used to compute the proba-
bility density of a sum. In fact, the characteristic function of a sum
of independent variables is the product of the characteristic functions

of the individual functions. Then if the probability density of the sum,
) o :

y = Vi ?
i=0 ‘
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is called W(y), it is related to the probability density, Wi(x) s of

the individual variables Vs by

W(X) = H Wl(x} B
i=20

where the bar is used to denote the Fourier transform. Now if

Wi(yi) has the Gaussian distribution
2

2
I
Wi(x) = e 2 .
From this one obtains
n
_ XZ ZO—Z
A i
Wi(x) = e i=0 s

but for large n the sum approaches an integral

n n
a—iz - 2D Zvi?‘(t) At £ 2D v 2raz
=0

i=( i=0 t

and W can be written



W(ﬁ) = e .

The distribution of y is the inverse Fourier transform.

4D/y

W(y) = . (1. 4, 14)

\%ﬁD/ 7/ (z)d

Chandrasekhar uses this result to determine the general behavior of

linear systems excited by white noise. This is done by expressing the
coutput of the system in terms of the Duvhamel integral, which has the
form of equation (1. 4. 13). The result can be generaiized for the
case where the joint distribution of several variables is required, and
the details have been carried out by Chandrasekhar in the paper refer-
red above.

The average of white noise can be discussed using the theorem
derived above. The average, n(T), is defined by

t+T
n(T) = = N(Z)dzr . (1. 4, 15)

W(n) = —memeee (1. 4. 16)
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Therefore, n is Gaussian with mean zero and variance 2D/T . As
one expects, the average over a short interval has a large variance,
and conversely, the average over a long interval has a small variance.
This result may be useful in establishing whether a signal is near
white and Gaussian. Oné would measure the average over various
records of length T and make a histogram to determine whether the
distribution is Gaussian. For each choice of T there-can be found a
variance, 7 2'('T) . Fbr each value of T an estimate of the spectral
density can be made using the formula D = TU’Z/Z . This estimated
value can be plotted versus T , and it will be constant if the signal is
white, The range over which it is constant, if such a range exists,

is the range in which the signal is white,
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1.5 THE FOKKER-PLANCK EQUATION

In the discussion of> Section 1, 2, the transition probability
was seen to provide a complete description of a Markoff process,
and some of its properties were discussed, An extremely useful
method of calculating the transition probability is that of solving a
certain partial differential equation, the Fokker-Planck equation,
sometimes called the Kolmogoroff equation. More specifically, the
transition pro‘bability is the fundamental solution to the Fokker-
Planck equatio.n*.

In this chapter a new method of deriving the Fokker-Planck
equation directly from the differential equation of the system is pre-
sented'k*., The method is intended to emphasize the mechanism
which governs the transition of a system from one state to another,

and makes use of certain formulas for the frequency of crossing

planes in the space of the variables, The derivation given is some-

" It is recalled that the fundamental solution to a differential equa-
tion IL(T) = 0, with independent variables, q; » is the solution to

L(T) = 8(q;) 8(ay) ... &(q,) 8(t),

which vanishes at infinity and is regular except at the origin. The

operator, L , is taken to be linear, but will generally have variable
coefficients,

"™ An alternative method is that given by Wang and Uhlenbeck (1).

- Their method emphasizes the connection of the Fokker-Planck equa-
tion with the Smoluchowski equation which was discussed in Section
1. 2.2, and is fundamental in the theory of continuous Markoff pro-
cesses. However, because their method is very general, the coef-
ficients of the Fokker-Planck equation are left to be determined
from the differential equation of the process., This evaluation can
be quite complicated, especially in problems where the system dif-
ferential equation has time-dependent parameters.
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what lengthy. However, the main ideas are illustrated in a similar
procedure, described in the Appendix, which leads to a special case
of the Fokker-Planck equation,

The frequency method is analogous to the Eulerian technique
of formulating the differential equations of fluid mechanics. The
central idea is to consider an element of volume in phase space, and
eciuate the rate of change of density in this volume to the flux through
the entire surface bounding the elemen‘t of volume, In fluid mechan-
ics, the quantity in question is fluid density. In stochastic theory,
the quantity to be investigated is probability density. There is here
a fortunate analogy of terminology.

The starting point of the theory is the ordinary quasi-linear

differential equation of order n :

y‘n)+G[y‘n‘”,y‘n‘,“,m,y} - F[y‘?"”,y‘“'”,m,y]Nm (1.5.1)

in which N(t) denotes the Gaussian white noise function. Since N(t)
is random, the problem represented by the differential equation
(1.5.1) is to find the transition probability of the process. The sys-
tem described by this equation can be treated as a continuous Markoff
process of order n- , and the n coordinates of the phase space
are taken to be q; » the derivatives of q.

9 = — i=1,2,00,n-1 (1.5, 2)
dy

It will be convenient to speak of a point in this phase space as the

state of the system, and of the time history of a particular system as
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a trajectory in phase space, The Fokker-Planck method consists of
finding the differential equation for fhe transition probability, T(qi,. t)s

Consider the frequency with which trajectories cross an ele-
ment of ""surface'l, ASi , in the phase space. ASi is an eleﬁent of a
flat, n -1 dimensional manifold in the phase space, which is perioen-
dicular to the coordinate q; - In a time interval, At , there is a
certain probability that a system trajectory will cross As-i . This
probability is essentially proportional to At if At is sufficiently
small, and one can write that the probability is )’iAt . )’i is the
frequency of crossing, or more accurately, the expected number of
crossings of ASi per unit time.

Now consider two parallel surface elements, ASi and ASi' s
very close together, enclosing a volume element AV . This situa-

tion is sketched in the figure for the case where n= 2.

H
9 ASO ASO‘

Figure 1.5, 1 Typical Phase Plane Trajectory
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With the figure in mind, one can write an important relation con-

necting frequency and probability;

Expected number of time to probability that the
crossings of ASi < cross _ system is in the
per unit time AV element AV of the

phase space

4 x At = TAS, Aq_l ;

but the time to cross, At , can be computed as follows, using equa-
tion (1. 5. 2):
9 + Aq
At = : - °
q; i+1

From these two equations, one obtains the expression for the ex-

pected frequency of crossing of the element ASi )
)/i= TASiqi-l-l (1. 5. 3)
The rate of increase of the probability that the system is in
the state AV is equal to the number of crossings into the volume,

AV , minus the number of crossings out of the volume., Carrying out

the summation over all the surfaces bounding AV , one can write

n-1 n-1
Y Vitapa) -y Y (apq;+aq) = TAV .
i=0 i=0 .

If the second term is expanded in Taylor series, and then equation

(1. 5.3) is used, the above becomes; to the first order,
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5

-1 n-2

’Z‘ O(TAS;q; ) ) .
1 Sqi Bq_n_l 91 -

o).
T AV = -

3.._
C % i=0

o
1

Dividing by AV , one obtains the differential equation

n-2 ,
N oT 9
T = -/,%1 35 79 (1. 5. 4)
. i n-1
i=0
where
/‘Asn-l = yn-l o (1.5.5)

The frequency, #%, of crossing the surface Asn-l requires
special treatment, and for that reason has been separated in the
above equation. A# is then the expected frequency of crossing, per
unit area, of a plane perpendicular to the d4,_1 axis., /ﬂ+ will be
used to denote the frequency of crossing in the positive direction, and
M the frequency of crossing in the negative direction,

Suppose that at some time, t, the system state is above the
hyperplane, H, defined by 4,1 =P and has coordinate p' as in-
dicated in the sketch., The probability that the system trajectory will
have crossed a unit element of H during the interval At will be
computed,

 Integrating equation (1. 5. 1) over the interval At results in

t+AL
z = p(t+At) -p(t) = F N(Z)d7 - GAt . (1. 5. 6)

It is assumed that F and G do not vary much in time At. How-

ever, the white noise term, N(t) , may vary appreciably in any small
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/’J —

Pl—=— T T T T

Figure 1.5, 2 Sketch of the Geometry Used in Computing M

interval. The distribution of Z + GAt is then approximately that
given below, if N(t) is taken to be Gaussian in the sense of Section

]-040

_(z+GAt)

. A4DF°At
w(z + GAt) = = h(z,p) . (1. 5.7)

- /4'erF2At '

G and F may depend on p . Although they depend on the other co-

ordinates as well, they can be considered constant in what follows,
since At is small. The analysis is considerably simplified if F
and G do nbt depend on p , but the general case will be of interest
in \studying certain heteroparametric problems, Section 2. 2 .

The probability that a trajectory dros s a unit element of the

surface, H, in time At in the negative p direction will be denoted
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by r_ . Itis the product of the probability, T(p')JAp', that the state
is in (p', p'+Ap') times the probability

-(p' - p)
h(z, p) dp
-
that the change in state is less than -(p'-p), in time At , integrated
over all p'. The expression for r_ is then
© - (p'-p)
r = | T(p') h(z, p) dz dp' . (1. 5. 8)
P . -
Similarly, the probability that a trajectory cross the same surface,
H, in the positive p direction in time At is
P [o¢)
r, = T(p') h(z,p)dz | dp' . (1. 5.9)
- -(p'-p)
The probability of crossing a unit element of the surface, H, in
small time At in the negative direction might be expected to have
the form /_At . A detailed calculation shows that the frequencies,
/1_[_ and /_ , of crossing in either direction, are infinite. However,

the net frequency of crossing

Sy T p = Hm AT T ((1.5.10)
At — 0

is bounded. The calculation of Nt will occupy the remainder of the

derivation of the Fokker-Planck equation., Put
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p-p'
j h(z,p) dz = Q(p-p') - (1.5.11)

Then

P o0
r -t =f T(p') | 1 - Q(p-p") dp'f T(p') Q(p-p') dp'
- 00 j&

| lo's} b
= -[ T(p')Q(P—p')dp'+f T(p') dp' .
fo0) - 00

Now put

P _
/ T(p') = R(p) . (1.5.12)

Integrating by parts and noting that R vanishes at the lower

limits and Q vanishes at the upper limit, one obtains

(0]
ro-r_ = -[ R(p'") E%%‘.EQ_ dp' + R(p) . (1.5.13)
- oo

Using equations (1. 5.7) and (1, 5. 11), one can evaluate the derivative

of Q.
_l
8Q p p i 2
Tor < - hip-p') - e Q+ —3 h(z)(z+GAt) dz .
2 2F°DAt |

Integrating the last term by parts, one obtains
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°0Q _ : ' P
T - T w(p-p' + GAt) | 1 + (p-p' + GAt)—F— .

Substituting this result into the expression (1.5, 13) for =T s

o'}
F
r,-r_= -] dp' R(p') w(p-p'+ GAt)| 1 + (p-p' + GAt) ffp + R(p) .

o

Now make the change of variable, p-p'+ GAt =-u,

- .
r+=-r_=-f R(u+'p+GAt)W(u)(1-u-ﬁI—))du
0

0
F
—f R(u+p+GAt)w(u}(1«-u-FB}du+R(P)
- 0

@ F F
= -| dul| Ru+p+ GAt)L -u_FE)+ R(-u+p+ GAt)(1+u TE )| w(u)+ R(p)
0

R may be expanded in a Taylor series in u.

(oe] .
, 2 .
r -1 = - du | R(p + GAt) + uR'(p + GAt) + EZ_ R'(p + GAt)
0

2
+ R(p + GAt) - uR'(p + GAL) + 5 RU(p + GAt) + O(u”) | w(u) + R(p)

(o8]
_[ du | 2a®Ri(p + Gat) + O®) 2|
0

but w(u) is Gaussian with mean zero and mean square, ZDFZA‘tm

Theﬁ
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r, - = - R(p+GAt) + R(p) = R"(p+GAt) DF°At +

bl

xr
- -TF-‘ER'(p-FGAt) DFéat + O(at?)

and in the limit of vanishing At one finds, using equation (1.5, 10),

M=~ (G + DFFP)RP—DFZRPP | (1. 5. 14)

The quantity 8 #/0p, after some rearrangement, can be written in

the form
o 0 82 2
IR G-DFF )T | = —5 (DF™T) . 1,5,15
D 5p ( ‘ p) 8p2 ( ) ( )

The Fokker-Planck equation can now be foﬁnd by combining this re-

sult with equation (1. 5. 4) .

n-2

,‘,39

: 2
b2 (G-DFF )T| + -—?-2“ (DFZT)
L=

di+1 aq1 5] . 20,2

i=0
(1.5.16)
It is in this final form that the Fokker-Planck equation is useful,

However, in the usual derivations one obtains

and the coefficients Ai and Bij are to be determined from certain
limiting procésses, These limiting processes may be quite compli-
cated if ¥ or G depends on 4,1 -°

The method of Rice is often used to compute the frequency

with which the trajectories cross the coordinate value, q; s and is
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given in his paper (13). The results of Rice follow directly from the
above analysis. From equation (1.5, 3) it can be seen that the fre-
quency of crossing the hyperplane on which q is constant, i < n-1,
is
©

n
£ = ‘ quI T(q;) ]I dg, (1.5.17)
- 00 k#i :

This is the formula of Rice. The absolute value is taken because the
frequency must always be positive, If i =n-1, the net frequency of
crossing, is given by integrating the expression (1. 5. 14) over the

entire hyperplane on which 4,1 is comstant,

a0}

2 |
£ 4 = (GHDFF )T + DF T dqy - (1.5, 18)

- 00 k#n

The Fokker-Planck equation is sometimes called the forward
Kolmogoroff equation, There is also a backward Kolmogoroff equa-
tion, which is the adjoint of the forward equation., It is not much
used in applications, except in the problem of the frequency of first
crossings, discussed in Section 1,8 . In order to derive this equa-
tion, it is convenient to use the Smoluchowski equation, discussed in

Section 1. 2. 2 .

) 2 1 1 o 1
To0 (995285780 = [ Ty (a5 a5, t5-8) Tyg (g qi’tl—to)]:[dqi .
i

Differentiate both sides with respect to to , and note that this is
equivalent to differentiating the second term in the integral with re-

spect to - ty . Let Ly denote the operator on the right side of the
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Fokker-Planck equation (1. 5. 16) with the variables qi1 as the inde-

pendent variables, Omne obtains the équai:ion

20 2 1 Y L !
Bt - 7| Tar (94 %t tRr  Trolder 40t 7t e -
. i

Integrating by parts,

ne~2
8T 5T 8T
20 . 1 21 21
3t = [t10 "'Zqi-u .- “‘La T <G"DFFqnn1>
| i=0 9 9h-1
97
2 “21 1
" DE JHICERE
aqn_l i

Letting tl approach to s T]_O approaches a delta function and the ql]L

approach q;) . Then this equation becomes

n-2 - 2
oTo1 _ Z o T [o ppr a2 2 T
ot T L1 T q U 7z
2 : 9qg. n-1 Bq_n o
i=0 i -1 8q_nm1

If the subscripts on T are dropped this becomes the backwards

Kolmogoroff equation.

n=2 2
aT _ Z L. 2L _|g-DFF 8T ipr? 2T (1.5.19)
t i+l 5 o -1 | 54° 02.
i=0 4 9n-1 8q, 4

The superscripts ( )O are left explicit to emphasize that this is an
equation in the initial values, q;) . The backwards equation is of less
interest physically than the forward equation, and is rarely used in

the literature.
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Gaussian Character of the Noise

It is not always made clear in deriving the Fokker-Planck
equation that it applies only to white noise functions that are Gaussi-
an, 7To emphasiz.e this point, consider the Fokker-Planck equation
for the system

g = N(t) .
In this case, n=1 s F=1 and G= 0., Then the Fokker-Planck
equation (1. 5. 16) becomes
T =D 33% .

9q
This is the oﬁe—dimensional heat equation, whose fundamentai solu-~
tion is well known to be

2

- Zq]_ﬁn

T =2 — .

N0
This fundamental solution is, except for the notation, the same as
(1. 4. 2), the expression for the transition probability of Gaussian
white noise. Since this transition probability was used in deriving

the Fokker-Planck equation (see equation 1, 5, 7), it is not too sur-

prising that it turns out to be its fundamental solution,
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Lé RELATIONSHIP BETWEEN THE‘CORRELATION AND THE
TRANSITION PROBABILITY

In Section 1.3 the autocorrelation was defined, and by means
of the Wiener~-Khintchine relation its use in connection with the power
spectrum was demonstrated, The autocorrelation was defined there
in terms of a time average, which is the way it is usually introduced,
but it was mentioned that according to the ergodic hypothesis that is
equival‘e.n‘i:' to an ensemble average, That idea will be pursued fur-
ther in this section.

It is‘ not difficult to generalize the autocorrelation somewhat,
and since very little complication is introduced, the more general
correlation func‘*tion will be defined, The correlation function of two
stationary random variables is given by the expression below, where

the brackets are used to indicate an ensemble average.

<qi (tl) qJ. (t2)> = Rij (H’tz) (1. 6. 1)
If the proceés is stationary, the correlation will depend only on the
time difference, ‘tz—tl s, since at all times the process will have the
same statistics. It will be seen that this follows from ‘the~ definition
of an ensemble average.

In Section 1, 1. 1 it was noted that the bracket is a shorthand
for the more explicit process of averaging a function by multiplying
it by its joint probability and integrating over the space of the vari-
abl,eém The above expression for the correlation function can then be

written more explicitly
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o0
_ 0 P,o . o
(tls tZ) = q; qj Wz (q_la qjstos Ll)dqi dqj s (1.6.2)

= Q0

Rij
where qj? is the value of the variable d; at time to s and q_j is the
value of the variable at time t., If the process is an n-dimensional
Markoff process, Wg(q;), qj;‘tog tl) is the appropriate projection of
the Markoff process, in which the extraneous variables are disposed
of by calculating the marginal distribution, that is, by integrating over
the superfluous variables as discussed in Section 1. 1.1 . With this
understanding, equation (1.6, 2) applies quite generally.

One could, as is sometimes done, define more general corre-
lation functions using higher order joint probabilities, but there will
be no need for that here.

Now it is possible to simplify the general equation (1, 6. 2)
somewhat if the process is Markoffian, which most of the processes
of physical interest are. For then, according to equation (1.2.1), the
second joint probability can be factored as follows:

O O (o] .
Wz(qisqj) = W\l(qi,to) T(qi,qj,t—to) . (1.6.3)

o . .is . . o, .,
Wl(qi, to) is the probability density at time t, and T(qi, qJ. s cau,o}
is the transition probability. It is useful to define the quantity
q}(q]:, t) , which has an important physical property. It is the ex-

pected value of the variable qj at time t after the initial values of
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the process, qﬁ , have been specified. It can be computed from the

formula

QG ap,t) = | dvay Tguap.t) (1. 6. 4)
Where the integral is taken over the entire range of the variables of
the process. ?1; (t) may be thought of as describing the mean motion
of the process sta,r'i:ilj.g from given initial conditions., With this defi-
nition one can write the correlation function, as defined by equation
(1. 6. 2), in a simplified form

(0 0]

O O (o] — o]
Rij(tsf) = dv q; W (g, t) qj(qi,‘r) o (1.6.5)
- Q0

This result is quite useful in practical calculations, and will be
utilized in the second part of this thesis in several pi'oblemsc

If the process is stationary, then Wl(qio, t) is independent
of time, and this is the case which is generally of interest. Then
Rij(‘t, 7) is independent of t, and depends only on Z~, which is
- usually assumed to be the case for stationary processes. Then

equation (1. 6. 5) takes the simple form

00
_ o O o, ~ , O
Rij(r) = dv™ q; Wl(qi)qj(qi,ﬂ s (1.6.6)
- 0
and the autocorrelation can be written
fe's}
R(7) = dv® q° W, (a*) T (% 7) . (1.6.7)

= Q0
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The important feature of equation (1. 6. 7) i.s that if one can
obtain the mean motion of a system in any manner whatsoever, then
the integral above provides an expression for the correlation func-
tion. It is not necessary to compute q (77) from the transition
probability. In some cases, it may be possible to obtain an approx-
imate _ex‘pression for q (z), and then an approximate expression
for the autocorrelation can be 'found,, This idea will be used in
Section 2.5 for a nonlinear problem. Another feature in favor of
equation (1. 6. 5) is that it is much easier to obtain the first proba-
bility dénsity, which applies to the stationary case, than to obtain
the transition probability, which depends on time. This subject will
be discussed in Section 2.3, where a general expression for the first
probability densityiwill be given. For linear systems, the mean
displacement, q (qf, 7’),is linear in the initial conditions. Then

one can erite
2 q_ a 2 } 2 a T } © oo ]-c 60 8

The autocorrelation can then be written

2
R(Z) = < (@) >a @)+ <{ada)dayz)tee.  (1.6.9)

The terms < ‘qg q(lj > ,' 4 qz qg > s etc., are zero. To show this,

recall the definition of q‘l) ,

@) = 45 q (®)
1 dt o
t=0

Now < [qz(t)J2> is a constant., Then

H% < qi(t)> =2< q (t) 4_(t) > =2< a(t) a (t)> =0,
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In this manner it can be shown that all the terms an(Z') have coef-
ficients of zero, as expressved in equation (1. 6 9).

Equation (1. 6. 7') for the autocorrelation will be used fre-’
quently in the second part of this thesis. Although this quantity is
not of as direct physical interest as the power spectrum, it is more
convenient to calculate in the problems to be discussed. The power
spectrum can be computed direc‘tly from the autocorrelation by

means of the Wiener-Khintchine relation.
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1.7 METHOD OF EQUIVALENT LINEARIZATION

Frequently it is impossible to calculate exactly the statisti-
cal properties of systems described by the quasi-linear differential
~equation

¥+ £ly,¥) = N(t) (1.7. 1)

where N(t) is the white noise function. An approximate method is
bgiven by Booten (15) and by Professor Caughey (2) and (16). This
method can be used for a variety of problems, and hence will be
outlined in general terms. It may be thought of as a generalization
of th;e method of equivalent linearization which has been used by
many writers in the field of nonlinear mechanics, for example,
Minorsky (17). In the classical method, it is desired to find an
equivalent linear equation by using the idea that the output of the
system is nearly sinu§oidal, which is the classical case in nonlinear
mechanics. The technique to be discussed here is somewhat more
general. It will then be shown that the classical method is a special
case of the oﬁe to be discussed here. Many examples are given by
Professor Caughey in his lecture notes, but no special cases will
be discussed here,

Frequently the differential equation to be investigated is

nearly linear, and one can write
oo ® 2 o .
vy Ry +w y+agly,y) = N(t), , (1.7. 2)

where u is a small parameter, However, it is easiest to use the

first form, equation (1,7.1), in calculating the general relations.
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The method consists of finding equivalent parameters, ﬁe
and ke s> which minimize the expected d;ifference between the non-
linear function £{y, {r) and the linear function (563'7 + key . It will
. be convénient toput v = p in these calculations. One proceeds by
determining the values of these parameters which make the mean
square of the expected "error', £ , where £ = (Bep+key) - iy, p)

a minimum. The expression to be minimized is then

oo s 5
<& 2) =f dY[ dp[ﬁep tky-Hy.p)| Wily,p)  (L.7.3)
- 00 - QO

where Wl(y,p) is the expected distribution of y and p . It may
be taken to be Gaussian, or sometimes a better choice may be pos-
sible, Particula,rly for systems of the type to be discussed in Section
2,3 . In order to determine the minimum value of the expression

in (1. 7. 3), the derivatives with respect to the parameters are set

equal to zero.

2 2
0<E "> 8<E ">
il 0 T - 0. (1. 7. 4)

Carrying out the differentiations, one easily finds

00)

dy dp £y, p) p W, (v, p)

- 0
e - T R (1.7, 5)

2
dy dp p~ W, (y, p)

- Q0

where the fact is used that
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dy dp yp WI(Y:P)' =0 (107"6)
- Q0

which follows because y and p are uncorrelated in a stationary
—~—

process, To see this, note that for a stationary process yZ must
be constant, and then its derivative must be zero. Because averaging
and differentiating are both linear operations, they may be inter-
changed. Then the calculation indicated below can be carried out.
- This proves equation (1. 7.6), which is identical but uses a different

notation.

£ <y > =2 ylepte) > =2<yp> =0 .

The equivalent stiffness, ke s> is found in a similar manner.

(o0}
dy dp £(y,p) y W, (v, P)

k =222 . (1.7.7)
e (0.0)

2
dy dp vy~ W, (v, p)

= Q0

The differential equation (1.7.1) can then be written

Y+ Byt Ry A [f(y) =By - kevJ = N{t) .
The term in brackets is £ , and has been minimized_ in a certain
sense, If that term is dropped, the equivalent linear equation is

obtained.

Y +B.y tky = Nt), - (1.7.8)

This equation and the expressions (1. 7.5) and (1.7.7) for the param-

eters are the main results of this section.,
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It is of interest to calculate the order of magnitude of the
error. To do this, it is noted that the mean square error can be

written

a) .
2 22 22 2
<€ >=[[ dvdp[ﬁep + k¥ +17(y,p)
= QO

- 2B fysp)p - 2 kg f(YsP)Y]Wl(YsP) .

Put
. 00
/7 Z
v :[[ dy dp vy WI(YSP)
: - QO
_ o)
2 2
P :[[ dy dp p WI(Y:P)
‘ - 0
~ o6}
2 2
£ :] dy dp £(y,p) W, (vsp) &
- o0
Then
2 2 "2 .27z
<£>=fnﬁep -k v .

If f(y,p) is nearly linear in the sense that

fly,p) = Bp +afy + #gly, p)

where M is small, then equations (1.7.5) and (1. 7.7) become

0

p gly,p) W, (y,p) dy dp
= Q0

ﬁezﬁ""/a 5
P
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20

y gy, p) W,(y,p) dy dp

e o -~
¥

But, using equations (1.7.5) and (1. 7. ),

(00)

—~

B - pIp* = dy dp gly,p) P W,ly,P)

= QO

2.2
(kg -~ )y = j] dy dp gly;p) v W,(y.p) -
= Q0 .

Then one finds
—~— S~ —~ 2~

AN S S R ER S SUSPULS B

Hence, each of the three terms in the above expression for the mean
—~

square error, £ 2 , is of the order of/A 2 , which is small by hy-

pothesis.

The classical method of equivalent linearization is a special
case of the theory given above., To illustrate this a simple example
will be given, in which the equivalenf frequency of the free oscillations
of a nonlinear oscillator with a cubic spring is computed. The ap;_oro—‘

priate differential equation is

%/'+ky+/uy3 =0 . (1.7.9)

In the usual method, which is discussed by McClachlan (31}, it is as-
sumed that y is of the form

y = Asinw t . (1.7.10)

Substituting this into equation (1. 7. 9) and using the trigonometric



_67-
identity
sin 6 —%sin3 e

sin° 8 = %

one obtains

2 3 2
W = k+ g3 uA” (1. 7. 11)

To use the method of this section, it is necessary to specify

a definite function for the first probability density

Wiy) = W(p,y)dp .

-
Now the wave form of the output is expected to have an approximately
sinusoidal wave form. Then the probability density of the random
variable y can be found by taking t in equation (1,7.10) to be ran-
dom and to have a rectangular distribution., By this it is meant that
the probability density of 6 =wt is taken to be 1/7 inside the range
(-w/2, w/2) and zero outside that range., The ‘distribution of vy can
be found usingb the method of Section 1.1 . One writes

W(y) dy = P(6)de
where W(y) is the probability density of y and P(6) is that of © .

Then it is easily seen that
2 2.~ 12
W(y) = (A~ -v7) ‘ /'IT . (1. 7.12)
The equivalent stiffness is obtained from equation (1.7.7) .

ka=k+/‘y4/y2 o

Carrying out the integrations, the moments are found to be

4
y* = a%/2 ; v o= 3/4A4/8 )
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and upon substituting these results into the above expression, the
equivalent stiffness is determined,

3 2
\ ke - 1\+—47/0(A (1@7@ 13)

The equivalent linear differential equation is then

F+k vy = 0, (1.7.14)
and the frequency of the oscillator is the same as that given by equa-
tion (1.7.11), which was obtained by the classical method.,

This approximate method can be used for a wide variety of
problems., In Section 2,4 the power spectrum of a first order non-
linear system is determined exactly, and the result is compared with
the approximate one obtained by using the method of this section. The
agreement is reasonably good, but is found to depend on the particular
choice of the first probability density. Use of the exact first proba-
bility density results in the best approximation.

In Section 2.5 a second approximation to the best equivalent
linear system is obtained. It is shown that if the first probability den-
sity is chosen to be Gaussian, the correction term vanishes, butif
the exact first probability density is used a small correction term

results.
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1,8 THE FIRST PASSAGE PROBLEM

In the preceding sections the probability distribution, moments;
autocorrelation, and other functions which describe the behavior of a
random variable, y , as a function of time have been discussed. An-
other way of characterizing a random process is to determine the
probability distribution, g{t) , of the random time, t, for a certain
event to occur. The simplest such kind of process is the Poisson
Process, which applies to discrete systems, and was discussed in
Section 1. 2. 1.1 . For continuous systems, the probability distribu-
tion of the time, t, is a function of the nature of the event, For ex-
ample, one might ask for the probability distribution of the random
time, t, for the displacement to attain the value y for the first time
from the initial value Voo Then the probability distribution of the
time also involves y and Vo and it can be written in the form
g(v, Yo t) . The determination of the probability density g(y, Vo t) is
the first passage problem. If that distribution is known, such quan-
tities as '"the mean time for the variable to reach the value y ," 'the
variance of the time, ' etc., can be generated, for they are the mo-
ments of the probability density. If the Laplace transform of g(y, Vo t)s
g (v, Vo s) , is known, then these moments are the coefficients of the
powers of s in the Taylor series of g(y, Vo s) . In this section a
method for implementing these notions will be outlined, The difficulty
of the‘ mathematics precludes the possibility of carrying out the com-
putations except in the simplest cases.,

The methods outlined here are originally due to Siegert (18),

in an article published in 1950, Certain of his ideas go back to an
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article by Schrodinger (19). The subject of first passage problems
has received relatively little attention in the literature, but it is
thought that this is a fertile subject for future research, The princi-
pal papers on the subject are those of Bharucha=-Reid (10), Wasow
(20); and Darling and Siegert (21),

There are two reasons for discussing the subject in this thesis.
The first is to show that the transition probability does in fact provide
a\complefe descriptioﬁ of a random process, as was claimed in Section
1. 2. It will be seen that, in principle, if the transitionrprobability is
known, the first passage problem can be solved. The difficulty is
thereby reduced from a conceptual one to a computational problem by
the methods outlined below.  Secondly, certain properties of Gaussian
white noise can be described, as will be shown in the examples, It is
felt that these results provide some further understanding of this
pathological but important random function.

It appears that the problem of first passages may be important
in design. For example, one might ask, "what is the probability that
the stress in a structure subject to random loads, such as gusts;,
waves, or earthquakes, not exceed the yield strength of the material
in 1000 hours.' The answer to such questions could provide a rational
basis for judging the adequacy of a structure, It appears that this can-
not be done by means of the statistical methods in use at the present
time, at least if the process is more complicated than the one-

e

° o 3 ~
dimensional Markoffian one .

Je

In Section 1. 2. 1,1 it was shown how the Poisson process applies for
discrete first passage problems, and in this section, it will be seen
that the first passage problem can be solved for the Gaussian white
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First, let us discuss the most elementary problem of this type,
following the discussion of Bharucha-Reid (10). It is only necessary
to consider the behavior of a single random vériable, v , in what fol-
lows, This does not restrict the results to only one-dimensional
Mérkoff processes, but the nature of the method is such that variables
other than the one of interest may be considered as parameters,
Consider, then, the transition probabiliﬁy, T(v, Vo t) , of being
in the neigh'borhood of y attime t, if the variable was initially at
Vo ° Three values of the variable are of interest which will be called

Voo V1 and Vo and are indicated in the sketch,

~— 7 —r— - T —

7 o 7', 72

Figure 1.8.1 Arrangement of the Variables Used in
Calculating the First Passage Probability
Now suppose that the variable y is initially at Vo and that it reaches
vy for the first time near time 7z~ . The probability of this occurring

will be called g(yl, Ve 7) » the probability density of the first passage

noise process., Therefore, it appears that the first passage problem
for purely random processes is well in hand, but that for more than
one-dimensional Markoffian processes, in the words of Wang and
Uhlenbeck, ''the actual discussion of the problem has not been
achieved, "
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time, Then bA is a new initial condition at time 7~ . It is then seen

that the transition probability can be written

T(yVet) = glypyve?) Tyepypt-zidz (1.8.1)
0

provided Vo< ¥y < Vo o The range of integration is (0,t) because the
intermediate value , A of vy may be crossed for the first time at
any time, 7 , in that interval.

In order to solve for g(yl, Vo 7 ), it may be noted that the ex-
pression on the right is a convolution integral. Then, taking the La-

place transform of both sides and solving, the solution is found to be

_ T{y, Vs 8)
glypyss) = ———— (1.8.2)
T(y Vs 8)

where the bar denotes the Laplace transform, as indicated below,

e -st
gy v s) = e ™ glyp vy thdt (1.8.3)

0
and a similar transformation holds for the transition probability.
Several conclusions can be drawn immediately from equation (1:8.2).

g must be factorable, which is expressed by

(4

First, it is evident that

the equation

By 7 8) = Eylyas)Eyly s8] . (1.8.4)

Furthermore, the transition probability must be factorable, so one

can write

Ty vges) = 71vs) Dolyges) o (1.8, 5)
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It has been mentioned in Section 1. 5 that '—'f(yzg Ve s) satisfies
the backwards Kolmogoroff equation, when considered as a function of
the initial value, Vo © Inspection of equation (1. 8. 2) then shows that
g(yl, V2 s} must also satisfy the backwards Kolmogoroff equation,
Unfortunately, it is not any easier to solve the backwards equation for
the first passage probability than the forward equation for the transi-
tion probability,

It is worthwhile to consider the significance of the function
g(ylg Y s) . Now gly, Vo t) At is the probability that the variable
reaches the value vy, if initially at Vo2 in the time interval (t, t+At).

!

Then the probability of reaching vy at some time is

oo
Ply;v,) = glypv e thdt = glysy,0) (1.8.6)
0
where use is made of equation (1. 8. 3). In many problems, the proba-
bility that any value of the random variable is attained at some time is
unity, and in fact it can be shown that this is always true if the process
becomes stationary asymptotically, for by the Tauberian theorem of
Laplace transforms
lim  T(y,y_,t) = lim s T(y, Yoo 8) -
t— oo s —>0
But if the process is asymptotically stationary,
lim  T(y, v t) = W({y) .
t —> 0o
Then from equation (1. 8. 2) it follows immediately that g(y, Yo 0)=1,
which was to be shown. If the process does not tend to a stationary

distribution, nothing can be concluded without further analysis,
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In a similar manner, the mean time to cross ¥y t(*yl, yo) s

given the initial value Vg may be found.

Q0

o~ 8 — N
t{yv,) = tglyp v pthdt = === gly;sy s 8) - (1.8.7)
: 0 s=0

As an example of the first passage problem, consider the
Gaussian white noise function discussed in Section 1.4 , for which the
transition probability is

\ 2
<V~VO>
T TEDt

e
Ty, v t) = : ' . (1.8, 8)

JinDt

The Laplace transform of this function is given by Sneddon (22):

- ,Yl"yol =\/ s/D
€
\V4sD )

Substituting this expression into the general equation (1. 8. 2), the La-

T(Vl’yo’s) (1.8.9)

place transform of the first passage probability is obtained,

e—lyl—vol\/;7f;

By sy 8) = (1.8. 10)
The inverse transform is found using the same tables.,
2
VAR - _
1 1 4
gy, v t) = ° e Dt : (1.8, 11)

vV D V 4’n’t3
From (1.8.10) it is seen immediately that 'gT(YI, Yo 0)=1. Then ac-

cording to equation (1.8, 6), the random variable will attain every value

at some time, with probability one., However, the average time to
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reach the value vy is infinity., To see this, use equation (1.8, 7).

Then
~ _ Y17, _|Y1“V0|VS/D
t(y2V,) = ——=—= e
2\/ sD
s =0
which shows that ’1? = 00,

In a similar manner one can compute the probability distribu-
tion of the time of first crossing of Vs of systems initially at Vo e
subject to the condition that y, never be crossed. This function is
denoted by h(yz, ?1, Vo t) , where the bar above vy indicates that
this is an absorbing boundary. V1 must be less than Vo and v,
greater than Ve in order for this problem to be meaningful. The
computation follows an inverse method, similar to the one used above,
The method consists of writing the distribution of first passage times
as the sum of two distributions representing mutually exclusive pos-

sibilities. The geometry used is sketched in figure 1.8.2,

Z A}

L

Q\
} >

71 70 (i‘Z y

Figure 1,8.2 Geometry Used in
First Passage Calculations

If the random variable attains the value Vo from its initial

value, Vo 2 it can do so either by crossing V1 first at some time 7 or
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by never crossing vy at all. This idea can be expressed by the for=-
mula
t
gy Yoo t) = by v s Vst +[ Dy v sV, )&y yy.t-7d7
0

and a symmetrical one for the crossing of AR

t
g(ylﬁ Y t) = h(yls Yossr—ZS t) + h(YZs YO:S’-I: 7) g(Yls Yoo t-7) 47T °
0
Using the Laplace transform method these equations can be reduced
to a pair of simultaneous algebraic equations. Solving these, the La-

place transform of the first passage probability is found.,

gy v )elyvy) - glyysv,)

h(Yls Yos ?2) =

g(yZS Yl) g(}’l: Yz) -1
(1.8, 12)
gy vy 8lyysv,) - gly, v,)

g(YZS Yl) g(yls YZ) -1

-E(VZD ")’09-3’1)

where the parameter s is understood in all these formulas,

Again the Gaussian white noise function provides an interesting
example of these results. In order to simplify the formulas, it is
convenient to choose vy = Vo ==Yy which places the origin midway
between the two boundaries. Then upon substitution from equation
'(1., 8. 10), the expressions for E(*yl,‘yo, ?2) and "H(yz, yo,§l) are ob-

tained,
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sinh {y=yo)-\/ s/D
sinh 2v~/ s/D

sinh (y+yo)-\/ s/D

sinh 2v+/s/D

The Laplace transform of the frequency of crossing out of the region

I

—H(Ys YO’ "—E)

(1.8.13)

E("V? VO’ 3?) =

bounded by v and -y , H{y, Vo t) ; is obtained by adding the two ex-
pressions of equation (1.8.13). After some algebra, the probability

density is found to be

coshy 4/ s/D

ﬁ(ys YO) = E(Vs Yo -y) + E(“Ys Yo y) = o (1. 8. 14)

coshy 1/s/D

The probability of crossing the boundary y at some time is, using

equation (1. 8. 6), (y-—yo)/ZV and that of crossing the boundary -y at
some time is (y-!—yo)/Zy . The probability of crossing one boundary
or the other at some time is the sum of these quantities, which is
unity.

Similarly, the expected time, t, to cross out of the region

(-v,v) is given by equation (1.8.7) . Carrying out the calculation,

one finds
YZ Yz
~ _8H B "o
t - - 5’; "" _2"‘5"’_"’ ° (10 89 15)
s =0

This methéd of calculation has only been briefly exploited in
the literature. Itis the opinion of the author that further extension of
this technique can lead to the solution of a variety of problems. An ex-
ample of the method which does not appear to have been published is

the following.
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It is of interest to compute the probability density of the vari-
able v of systems initially at Vo subject to the condition that if the
system variable reaches the value Vi it does not vary subsequently.
Physically, this is expressed by saying that there is an absorbing bar-
rier at vy The probability density with an absorbing barrier is de-
noted by U(ng 37_13 Vo t) , where the bar above vy indicates that this

is an absorbing boundary.

7

|
4, Y 2 7

Figure 1.8.3 Geometry of
First Passage Calculations

The probability of being near y, at time t is the probability,

U(yz, Vo ﬁ, t) , of being near v, if y; Wwas never crossed, plus the

probability of being near vy if‘ ¥, was crossed at some earlier time,
Expressed mathematically, this is seen to be a generalization of

equation (1.8.1),

T(y'zs Vos t) = U(st V09ﬁ9 t) + g(Vls VO’ T) T(st Yl’ t-7)dz .
0

As before, it is natural to take the Laplace transforfn, and solve for

Ty Vs Yy 8)e
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V>,

Ty v ¥ye8) = Ty ¥, 8) - 8ly» v s) T(yps vyss) (1.8, 16)

v, <Y,

Again, a convenient example is the Gaussian white noise pro-
cess, Substituting for _’f(yz, Ve s) and _g—(yl,yo, s) from equations

(1.8.9) and (1.8, 10) , one obtains:

~(y,-v )V s/D e(‘y2+vo-—2y1) s/D

o — (3
U(y,0V 2Vqs8) = ' (1.8, 17)
2770 71 4 Ds 4 Ds
2 ‘ 2
_ (y,-v,) Ity -2y
: . o 1Dt e 4Dt
U(st Yos Y19 t) = - (1.8.18)

‘\,4:TI'D‘t '\/ 47Dt

The behavior of this function is sketched in figure 1. 8. 4.

U(Fer 4,72,7)

i 2
“’7/‘7’0 7

Figure 1.8.4 Behavior of Gaussian White Noise
Function with an Absorbing Barrier

This result could be obtained by a symmetry argument. One may

imagine an initial distribution of molecules in the region to the left
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of vy subjectto Brownian motion. Now one can construct a distribu-
tion of "antimolecules' to the right of V1 whose behavior is defined
to be the symmetric motion with respect to vy Each molecule to the
left of vy has an "antimolecule' paired with it. These molecules are
considered to annihilate one another at collision, The .effect of the
| "antimolecules''is to create an absorbing barrier at Ve Subtracting
the probé.bility density of the "'antimolecules' is equivalent to putting
an absorbing barrier at vy e and the meaning of U(yz, yo,?_i, t) can
be interpreted to be that there is an absorbing barrier, for it is the
probability density of molecules which have neve\r reached vy Sim-
ilarly,adding a symmetric distribution would be equivalent to putting a
reflecting barrier at vy These notions are somewhat analogous to
the symmetry methods in heat conduétiono

A number of first passage problems have been discussed in
this section. By means of these examples, it has been indicated that,
in principle, one might expect to solve the first passage problems if
the transition probability is known., Although a number of general
formulas are given, for examples other than Gaussian white noise,
the practical difficulties of computing the Laplace transform of the

transition probability make explicit calculations difficult,
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2.1 THE RESPONSE OF LINEAR SYSTEMS TO INPUTS WITH WHITE
POWER SPECTRA

The theory of the response of linear systems to random inputs
is amenable to a fairly general analysis, and fxas been extensively dis-
cussed in the literature., One of the most important results is that the
power spectrum of the input and output are proportional, and their ra-
tio is the square of the modulus of the system frequency response.
This is ‘the' starting point for many papers on the behavior and optimi-
zation of linear systems.

In this section, only a brief discussion of the subject will be
given, and that will be limited to the response of systems to white in-
puts. In this case, certain aspects of the theory are particularly sim-
ple, and a number of methods are available which do not apply in the
more genefal case of inputs with arbitrary power spectra, It is
thought that an investigation v}ith this limited scope makes for a theory
in which the mechanism of random processes can be emphasized
somewhat more than in the general case. Several of the methods pre-
sented are thought to be novel, and will find application in the problems
to be discussed in the remainder of this thesis,

In Section 2. L 3 the response of multi-degree of freedom sys-
tems to white inputs is discussed, using some of the methods developed
in the two preceding sections, A general set of simultaneous equations
is obtained from which the second moments of ﬂp.e system can, in prin-
ciple, be found, -However, for even relatively simple systems, the
solution of these equations would be very tedious. For example, a

two-degree of freedom system requires the solution of seven simul-
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taneous equations. It is thought that for design problems the method
may be useful, however, since only standard algebraic computations
are required., If a digital computer is available, the method should
prove to be quite convenient, since it is not necessary to compute
normal modes,

2, 1,1 Method of Spectral Analysis

Many systems of importance in engineering can be repre-
sented by linear differential equations with constant coefficients. The
behavior of such systems can be analyzed in a variety of ways, of

.which one of the most important is that of Fourier analysis. In that
method, attention is focused on the response of the system to a sinu-
soidal input. After any transients have died out, the system response
is also sinusoidal, and the amplitude and phase of the output are re-
lated to those of the input by the impedance of the system, F(iw),

which is in general a complex quantity. If the input is written Aelwt

the output can be written AF(iw) eiw‘t , and the function F{iw)} is said
to define the frequency response of the system.

The above ideas apply to deterministic problems, but an anal-
ogous method exists for determining the response of a system to ran-
dom inputs. The method was developed largely by Wiener in the United
States and almost simultaneously by Khintchine in Russia,

In the introduction to this thesis it was mentioned that the no-
tion of a transition probability serves as a unifying concept in investi-
gating the resi)onse of systems to random inputs, It is remarkable

that the method of Wiener does not depend at all on probabilistic ideas.

The reason for this is essentially that for a stationary process, time
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averages are equivalent to ensemble averages, according to the ergo-
dic hypothesis. Since the method of spectral analysis is of consider-
able importance, a brief, heuristic, description will be given,

Let yi(t) denote the random imput 1;0 a linear system and yo(t)
the output. These functions will be truncated, that is, are defined
only in the interval (-T, T). Outside this interval they are taken to be
zero., Following Section 1,3, their Fourier transforms are

T
A (w) = iwt y(t) at (2.1.1)

-T

and

T
it
A (w) = ety (t) at (2.1, 2)
-T '

Also, as in Section 1.3, their power spectra are defined by

4

. (@) = lim T A(w)A () (2. 1. 3)
T —
and
$ (w) = lim flTE Ai(w)A;k(u) (2. 1. 4)
T — 00

where the asterisk denotes the complex conjugate. The class of sys-
tems to be considered here can be described by the differential equa-
tion, written symbolically

L [v,® ] = %) | (2. 1.5)
where L is a linear differential operator. Xor a process started at
t= - oo, the solution of this equation can be expressed by means of

the Duhamel integral which is discussed, for example,/ by Karman and
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Biot (23).

yo(t) = hit-7) 'yi(Z') az . (2. 1.6)

« Q0
Here h(t) is the response of the system to a unit impulse. Itis re-
lated to the transfer function of the system, F(iw), by the transform

formula

o)
iwt

Fliw) = hit) e " dt (2.1.7)

and is zero for negative t.

Now the autocorrelation of the output is defined by

R (Z) = T ED (2.1.8)

where the bar signifies a time average. Substituting the expression
for yo(t) from equation (2. 1. 6) and interchanging the order of inte-

gration with the averaging process,

[0%s) [0®) .
Ro( ) =] duf du’ yi(tmu) yi(t+2'-=u') h(u) h{u') .
0 0

Since the process is stationary, the correlation function depends only

on the time difference., Then

yi(t-u) yi(‘t-{—Z‘-u'v) =_yi(t) yi(t+2‘+u-u') = Ri(Z‘+u—u') .

Therefore equation (2. 1. 8) can be written

(69} o© |
Ro(z‘) =[ duj' du' Ri(T—I- u-u') h(u) h(u') R
0 0
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Using the Wiener-Khintchine relation, (l.3.6), and interchanging the
order of integration,

00 (e8] (S0]

° ° ° [
R (7) = —;: dw ele' (W) h{u) elwpdu h{u') e T1Y du' o
s

- 0 0
The last two integrals are essentially Fourier integrals, and can be
eliminated using equation (2. 1. 7). Noting that the integrand is even,
the autocorrelation can be cast into the form
feo)
R (7) = dew coswz () Flio) F(-iw) . (2. 1. 9)
0

This expression relates the autocorrelation of the output to the power
spectrum of the input. If the cosine transform of both sides is taken,

_ the power spectrum of the ‘output is obtained,

2

$ (@) = §.(w) |Fliw) (2. 1.10)

1

This is the important relation mentioned in the beginning of
this section, and it shows that the power spectra of the input and out-
put are proportional. Only information about the amplitude of the out-
put is provided. The phase of the system response does not appear,
since onl*;f the modulus of the frequency response is used, For many
purposes, this information is quite adequate,

The mean square of the éystem output, Ve is a parameter of
partiéular importance, It can be evaluated from the formula below,
which is obtained by putting 7 = 0 in equation (2. 1. 9) and using the

fact that R(o) = yz o
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(00]

— 2
R(o) = y° = da:@iU))‘F%iw)‘ (2.1.11)

= QO

‘The special case where the input to a system has a white power
spectrum has several features which are of interest. One of these is
that the autocorrelation function satisfies the homogeneous differential
equation of the system. This can be seen following the method of
spectral analysis,

Let the value of the constant power spectrum of the input be
2D/w per radian. Substituting this for @i(w) in equation (2. 1. 9), the

autocorrelation of the output can be written

00

R (7) = = Fliw) F-iw) e“Zazr

= Q0

since the integrand is even. The integral may be evaluated using the
theory of residues. For positive 7, the contour is closed by the

large semicircle in the upper half plane, as indicated below,

¢ plane
(o) (¢)
[0} e poles of F(iw)
o © o0 poles of F(-iw)

Figure 2, 1.1 Contour of Integration in Equation (2.1.,12)
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For most systems of physical interest the integral on the contour C'

will approach zero as the radius goes to infinity. Then one can write

R (7) =R F(iw) F(-iw) ei“’rdz— . (2, 1.12)

Since F(iw) is the transfer function of the system, it can be calculated

by the equation

L [eiat] _ 1 (2.1.13)

where L. is the differential operator of equation (2, 1.5), When it is
.made to operate on the above equation for the autocorrelation, the re-

sult is
L [Rﬂ(’[)] = %f}?(_iw) T3 w (2.1, 14)

Now F(iw) has the form

Fiw) = 'ZTi']:JY

where Z(s) is a polynomial in s . The theory of this section applies
ouly to stable systems, since otherwise no stationary output could
exist, But then Z(s) has roots onlyin the left half of the complex
plane, Z(iw) has roots only in the upper half plane, and Z(-iew) has
roots only in the lower half plane, as indicated in Figure 2.1.1 .,
Therefore, the integrand in equation (2.1, 14) has no poles in the up-
per ha;lf plane, and by Cauchy's theorem (24) the integral vanishes.,

Then since

[

L[R(r)] =0 , (2. 1. 15)

the autocorrelation function satisfies the homogeneous differential
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equation of the system.

The method of spectral analysis is very powerful., However,
some additional insight into the physical mechanism of the process can
be obtained by working directly with the differential equation and using
elementary operations. Consider again the linear system with purely

random input which is described by the differential equation

L [Y(t) ] = N(t) .

Evaluate this equation at time t +7.

Lr[yu+Z)] =N({t+7)

where the differential operator now operates with respect to the pa-
rameter, Z . Multiply the equation through by y(t) . Because the
operator, L, , is taken to act on the variable 77, y(t) can be put

inside the bracket. Taking the ensemble average one obtains

L, [<y<t>y(t+z>>] = Kyl N(+2)> .

But since N(t} is purely random, its correlation with any function
evaluated at an earlier time must be zero, as discussed in Section 1.4,

Then

< V&) N(t+7)» =0 .

But since, from equations (l.3.1) and (1.3.9),
<yltyyle+7)> = R(7)

it follows that the autocorrelation function satisfies the homogeneous
differential equation of the system.,

L, R(7) = 0
This is the same as equation (2. 1. 15}, but has been found by a differ-

ent method,
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The discussion above applies to systems with white inputs.
This restriction is not very severe, however, since many problems
can be reduced to the type discussed above. Suppose that it is desired
to find the response of a system to a signal with a known, arbitrary,
spectrum, @i(Z') . Frequently, a signal with the required power
‘spectrum can be obtained by passing white noise through a filter, The

problem then reduces to two problems, as illustrated symbolically in

the sketch below,

3, (w) 3. () ?
o 2o
- S >

Original Problem

1) — 3, (v) o) f— )|
o w w w
?
et Sl s ‘ —_—f S ——
Part A _ Part B

Reduction to a Problem in Two Parts

Figure 2, 1,2 Method of Handling Systems with Non-White Input
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Firét, it is necessary to find a system, S,, whose output has the de-
sired power spectrum Whep the input is white, Then the system, Sl’
can be combined with the system to be investigated, S, to produce a
new system, S'. The problem now is to find the response of the sys-
tém, S', to a white input, and this is the problem that has been dis-

cussed above.

2,1, 2 Method of Ensemble Averaging

| The most common method of investigating random proces-
ses is that of spectral analysis, which was briefly discussed in Section
2,1.1 . However, that method cannot provide a complete description
of random processes, and applies only to systems for which the meth-
od of Fourier analysis is appropriate. In this section, some of the
properties of linear systems will be derived using the method of en-
semble averaging., Conceptually this method is different from that of
spectral analysis, which make‘s use of time averages, The equivalence
of the results of these methods is the assumption of the ergodic hy-
pothesis, and will not be discussed in this thesis,

The analysis will be carried out for the case of the linear
damped oscillator. Although it would bé possible to carry out calcu-
lations for higher order systems, the details become tedious. The
intent here is only to illustrate a method and to show the connection
between the transition probability, the time history of the moments of
the process, and the autocorrelation function,

A general method of solving the Fokker-Planck equation is
given by Wang and Uhlenbeck (1) . Although the method discussed here.

is not so general, it is adequate for many purposes and is thought to
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illustrate the mechanism of the process using somewhat simpler
mathematics, .
The equation of motion for a linear damped oscillator with ex=
ternal excitation is

’Y’+5i+wiy = N(t) . (2. 1. 16)

As usual, N(t) is taken to be white and Gaussian in the sense of section
1,4 ., This equation is a special case of the general ordinary differen-
tial equati*dn. (1.5, 1) for which the associated Fokker-Planck equation
was derived., In order to obtain (2. 1. 16) the appropriate substitutions
are:

2
Gly;p) = Bp tw vy Fly,p)=1 n=2 ,

Then the Fokker~Planck equation, (1.5, 16), becomes
'}‘— - T'+—8— B +w2 )T+ DT (2,1, 17)
TPy T | PR TSV pp s

Multiplying this equation by ympn and integrating over the entire

phase plane, there results the relation

oo oo
d m_n m_n+l
rra y p Tdydp = - v p  Tydydp
= QO = 00
Q0 Q0
m_n+l 9 2 m_n
+ - +w T|dy dp + DT dydp .
VP 5 [(ﬁp oY) } y dp pp? P dvdp
- Q0 - 00

The operation of multiplying a function by the probability density of the
variables and integrating over the range of the variables is essentially
an averaging process., More specifically, it is the process of taking

the ensemble average, expressed in mathematical detail. This sub-
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ject was discussed in Section 1. 1. 1 and several equivalent notations

were introduced. Using these notations one can write

n

<y > =y = y P T y)dpdy . (2. 1. 18)
- ©

The choice of the bracket or tilda notation will depend on the length of
the expression to be averaged. The first integral on the right of the
integrated Fokker-—Plénck equation can be integrated by parts with re-
spect to y . Itis assumed that the integrand vanishes at infinity so
‘that only integral terms remain. Similarly, the second integral on the
right is integrated by parts with respect to p, and the third is inte-
grated twiqe by parts with respect to p . Then the equation can be

written in the form
d m n m-1 n+l
<y p > =m<y p >

-0 (B + woy) Y7 > + Dal-1) <yTp™2> (2.1.19)

All the moments of the process can be found using this equation, which
will be called the moment equation.

The momén‘t equation is homogeneous in a certain sense, If
the restraint is imposed that m+n = Z , then the equation contains
only moments of Qrdel" / , except for the last term which is of order
/- 2. P+ 1 equations can be found which involve the /+1 moments
of order / , so thatin principle, all of the moments of the process
can be determined. The fact that any moment can be found by solving

a f_ihite number of equations depends on the linearity of the governing
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equation, (2.1.16), For nonlinear systems the number of moments
always exceeds the number of equations, and consequently the mo-
ments cannot be determined by solving a finite number of equations.
To find the first moments of the process, put m-+n = 1. Using

the tilda notation for ensemble averages, the two moment equations are

m=1 ) v /;7—: ﬁ
n=20
4 2,1, 20)
=0 s 2~ {
i D= -BP-w,T
Eliminating p;

X 2~ |
yEpy ey =0 (2. 1.21)

This is the equation for free motion of a linear oscillator. Since itis
homogeneous; the mean motion of the system must be independent of
the réndom input.,- If B is positive, the mean displacement and ve-
locity approach zero asymptotically. The solution for the mean motion

can be written in terms of the initial conditions Ve and P,

o LBt Bt
T = -2 e sinw.t+v_e 2(coswt+ B sin w,t)
2y 1 o 1 Zwl 1
(2.1, 22)
_Bt 2 _Bt
P =p_ e (cosc\)*&:m'“3 sin w,t) - v —(:-v)—g-e sin w,t
o 1 Zwl 1 ° wy 1

The second moments of the process are found by putting

m+n = 2, which results in three equations:

m = 2 y° = 25D
n=20

— o~ (2.1, 23)
m =1 o~ 2

- 2 —~ 2
yp = P ~BVP-~w V¥
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p’=-28p°- 20235 + 2D (2.1, 23)

B
o

[e]

(W]

The first of these follows directly from the fact that the operations of
differentiating and averaging are interchangeable because both are

linear. One can then write

2

P

F <> =<2 Y > =2 <ympt)> =278 .

Therefore, the first equation of (2, 1. 23) holds for any process, and
is essentially an identity,

The second two equations of (2. 1. 23) depend on the nature of
the governing differential equation, from which they can be generated
directly., To see this, integrate (2, 1. 16) with respect to time, multi-

ply by N(t) and take the ensemble average.

. t
Ly N(t) > - < ¥(0) N(t) > + { N(t) y)> dr
t
+] < N{t) v{z)>d7 = <N(t) Z(t) > - N(E) Z (0) >
0

where Z(t) is the integral of N(t). In Ssction 1.2 it was s}iown that
< N(t) Z(t} > = D, which is equation (1.4.10) . Since N(t) is purely
random, it is uncorrelated with any function evaluated at an sarlier
time, which meauns that the bracketsin the two integrals are both zero,
Using the fact that N(t) has mean zero, the above equation becomes
simply

V() N(E) > = D . (2.1, 24)
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Now multiply the differential equation (2. 1, 16) by ‘y and take the en-
semble average, The result can be written

da -2 2 2~
T vV tBy +«_ yy = D .

o] =

Rearranging and changing the notation, this is seen to be identical with
the third equation of (2. 1. 23).
The second equation of (2. 1. 23) is easier to derive., Multiply

by y{t) and take the ehsemble average,

o~ -

s — 2 2
yy+Byy+w vy =< Ny> .
Since N and y are uncorrelated, the right hand side vanishes. The
first term can be transformed by using the identity

— 2 — P

d-’ 'h—
a#rgyy:y"‘YY—PY o

The equation then becomes

o~ P

A 72 272
Py -p +BYP teo Yy = 0,

which is identical with the second of (2. 1. 23). The equations for the
second moments can then be found either from the Fokker-Planck
. equation or directly from the system differential equation by using‘
ensemble averaging methods, |

The variance of the variables can be easily found in the station-
ary case by putting the derivatives equal to zero,

2 2 — '
p° = D/p y* = D/pw’ oY = 0 (2. 1. 25)

- The more general problem is to determine how the second moments
depend on time, which amounts to solving the simulteneous differential

equations (2. 1, 23) . A slight change of variables serves to simplify
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the problem somewhat, The behavior of the system may be thought of
as a random variation about a mean motion, which is given by expres-
sing p and y as functions of time, equatiqn (2. 1, 22)s Let the ran-
dom variation about this mean motion be denoted by &y and 6p .
Then

y = ¥+ 6y ) p =P+56p . (2.1, 26)

Squaring, averaging, and noting that by definition 5y =8p =0, one

finds
/-2f ~2 7 /'*Z
vy = y+u u = 8y
p? = B4 v v = sp° (2.1, 27)
— e ~— P
Py = py+w w = 0p &8y

Upon substituting these results into (2, 1. 23), it can be found, using
(2. 1. 21), that the mean values p and y do not appear in the equation.
The advantage of this is that the initial values of the variances u, v,
and w are all zero. The equations to be solved are then

a = 2w

W=V—6an§u (2. 1.28)

°

v o= «-Zﬁv«Zwiw+2D

The initial values of u, v and w are all zero since initially the vari-
ables are specified exactly. This makes the method of Laplace trans-
forms particularly convenient, Taking the Laplace transform of these

equations, we obtain

N
€]

su =
2

<1

SW = V-BW-w _ u (2, 1. 29)
sV = -287-20 “W+2D/s
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Solving for u,

T = 4D (2. 1. 30)

s(s+6)[(s+6)" + 40 ]

where

[z 2
w, _\/wo-@ /4 . (2.1,31)

Using the method of partial fractions, U can be rewritten in the form

2
») 2
Dl IR Rt T b @32)
ﬁwo' Wy 4w1 {s+B) +4w1 (s+8) +4w1

In order to solve for Vv itis convenient to combine the equations

(2. 1. 29), obtaining
(Vmwiﬁ)[(s + 5)2+ 4w‘;‘,J = 2D .

Then v can be written

2

- _DJ| 1, 8 s +B 8

s-Dl1, + , (2. 1.33)
Pl S 4wl (s4p)® + 40]  (s4p)% + 40l

From the first of (2, 1.29) it is seen that w can be obtained by differ-
entiating u. The inversion of u, v and W can now be easily ac-

complished using tables.

-pt 2 Bw
_ D e B 2 B 1 .
u = é;"z‘— 1l - " ) (L\) o "‘T [efe]S] Zwl't-!- 7 Sin Zwlt)
1
| Bt 2 Buw _
D e P 2 B 1. p
V=3 1 - —7 (W, -5 cos 2wt - —— sin Zwlt) (2. 1. 34)
1
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These formulas show how the second moments increase from zero to

their steady state values,
2
u:D/ﬁwO v = D/ w = 0 ,

which were previously given in equation (2. 1. 25).

It is to be expected on physical grounds that the variance of v
should never decrease, This can be verified immediately, for the de-
rivative of u = { (v ~ '37)2 > is w, which is never negative.

For completeness, the general expression for the transition
probability of the linear oscillator is given, which follows immediately
when the first and second moments are known. The form is given, for
example, by Miller (4) .

— —

. 2 ~.2 — = 2
exp | - N;p;—y (e-p)_ _ (-PIy-y) | y-¥)
2 2 2 2 52 -

T(ps y) = Py -by P y .

2w 257 - 57

The time history of the first and second moments of the linear
oscillator has been found. If it is assumed that the process is Gaus-
sian, the transition probability is completely determined by the first
and second moments, In order to complete the description of the pro-
cess, the autocorrelation and the power spectrum are required. To
find the autocorrelation equation (1. 6.7) is particularly useful. With
a change in notation one can write

oo

R{z) = dp dy Wi v ) vy P ) v, - (2.1.35)

= 00

By definition,for a stationary process,the ensemble averages can be
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written in either of the forms below.

o0
VP, =[/ dy_ dp_ v P, Wly.P )
- 00 i
— (0 0]
2 2
Yo = ]] dyo dpo 7o w (YO’ Po)
= Q0

Using equation (2. 1. 22) for the first moment and (2. 1. 25) for the sta-
tionary values of the second moments, the a.utocorrela“cion for the pro-

cess is immediately found.

BT
2
R(7) = A { cos chZ‘ + ZE) sin wlz‘) (2. 1.36)
o

B w 1

From the Wiener-Khintchine relation, (l.3.7), the power spectrum is
known to be the Fourier cosine transform of the autocorrelation. Car-

rying out the integration,

0

$(w) = _71? R(7) coswz AT = —g—s D . (2. 1.37)
(w -wo) + B w

= Q0

2.1,3 The Behavior of Multi-Degree of Freedom Systems

In the first part of this section some of the properties of sys-
tems which can be described by a single linear differential equation of
arbifrary order were discussed, However, many kinds of linear sys-
tems can be ‘descri'bed more conveniently by systems of simultaneous
equations, each of order 2, This is the usual case in the dynamics of

structures and in the analysis of passive electrical networks. Only a



-160-
brief treatment of the subject will be ‘attempted in this section. An
extensive discussion has been given by Stumpf (25) in his doctoral the-
sis, and considerable work in this area has been done recently by Pro-
fessor Caughey. Some of this material has been delivered in his
course in advanced dynamics. |

In problems of this type, the usual method is to uncouple the
set of simultaneous equations, If that can be done, the problem is re-
duced to that of analyzing the single-degree of freedom damped oscil-
lator. Unfortunately, the equations can be uncoupled by classical
methods only if the damping matrix has a certain relation to the other
matrices, a subject which has been treated extensively by Lord Ray-
leigh and others., In a recent paper (26), Professor Caughey has found
the general condition on the damping matrix which permits the equa-
tions to be uncoupled. If the condition is not satisfied, one may use
the method of Foss (27) to uncouple the equations., The application of
Foss' method to random problems was discussed by Stumpf, and an
example given. Unfortunately, even in the two-degree of freedom case
the calculations are tedious.,

In this section it is shown that the second moments of a linear
system with white input can be obtained by solving a certain set of
simultaneous, algebraic equations. The starting point for this analy-
sis will be the set of differential equations

miyi + cij Yj + kij

Vj = fi(t) . (2, 1.38)
Subscript notation is convenient for this kind of problem, and the
FEinstein summation convention is used, in which it is understood that

if a dummy index appears twice in a single term a sum is to be per-
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formed over the range of that index. The range of the indices will al-
ways be,in this analysis; n, the number of degrees of freedom of the
system. If an index is summed it is known as a dummy index, and
otherwise it is called a free index. Occasionally, as in the "i'' of the
first term of (2. 1. 38), an index is repeated although it is ffee. How-
ever, since the remaining terms contain '"i" as a free index, it is un-
derstood that the first "i'' must also be free.

The form of equation (2. 1. 38) is that which arises when a me-
chanical structure is treated as a lumped mass system and there are
no mass coupling terms, In that case, the mass matrix (mij) is said
to be diagonal. The set of terms i(cij) is the damping matrix, and (kij)
is the stiffness matrix,

It will be convenient to eliminate the terms m, from these

equations. To do this, a new set of variables, Xj s is defined, where

= 2 Ll
v Xj/'\/mj (2. 1.39)

and a new set of matrices is introduced,

i (2.1.39)

w
i
=
Comd
1
ey
Tt
=
I

Then the set of equations can be written

xi-(-ﬁij XJ. +n‘ij Xj = hi . (2, 1.41)

The matrices ;313. andﬂij are symmetric. Now a procedure used in
the pfecedi_ng section will be followed, Integrate equation (2., 1.41),

multiply by Nj(t) s, and take the ensemble average.
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t
< :%i(t)hkqtp - <% (0)hy (t)> + By < hk(t):fzj(Z‘)>dZ‘
0

t

L
+Qij<f hk(’c)xj(Z') dt> = ( hk(t)/ h(z)dz >
0 0 '

All the terms hi(t) are defined to have white power spectra, but their
magnitudes may be different. Then, as discussed in Section 1.4, the
terms on the right hand side in the above equation are constant, and

one can write

< by (t) h(z)dz > =a, . (2.1, 42)
0

The random terms hl_(‘t) are assumed to have zero mean, and there-
fore the second term on the left vanishes., Since hk(’c) is purely
random, it is uncorrelated with ij(Z') and xj(Z‘) if 7<t, and

therefore the integrands in the two integrals vanish., The equation then

reduces to

< xi(t) hk(t) > = CHE (2. 1. 43)
A set of equations for the second moments is found by multiplying
(2. 1. 41) by }Ek » taking the ensemble average and combining with the

result above,

os o

<E#HD 8 <F RS +2 b <EES = oay (2.1, 44)
Another éet of equations is obtained by multiplying equation (2. 1, 41)

by X and averaging

CExD> 48 < R +Qij<xixk> = 0. (2. 1. 45)
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The right hand side is zero by the same argument used in deriving
(2.1.43) .

In order to have enough equations to solve for the second mo-
ments, additional conditions must be introduced., To derive these it
is noted that the quantities ¢ %% >, < xiék} and < }Ei}%k > must all be
constant if the process is stationary. Then putting their time deriva-

tives equal to zero,
ar < x> - < > +H<x% > =0 (2. 1. 46)
@ <R = CEFED HxE D> = 0 (2. 1.V47)
é%< %% ) = kx D> +{x¥ D> =0 (2. 1. 48)

The first term of (2. 1. 45) can be eliminated by means of equation

(2, 1. 47) . Then equation (2. 1. 42) is modified by interchanging the
indices i and k and adding the result to the original equation. Terms
which involve the second derivatives will then drop out by comparison

with equation (2, 1. 38) . The result of these operations is given below.

<HF D> = By <E > H{)<x x> (2. 1. 49)

ﬁij <.Xij> + 6kj < iji> +Qij <ijk> +Q kj < X% > = ap; t oA (2.1.50)

(2. 1.49) is a set of n~ simultaneous equations. However, if the in-
dices i and k are interchanged, nothing new results, 'so that set con-
tains only n(n+l)/2 independent equations. The total number of si-

multaneous equations is then (3n2+n)/2 » Now it will be shown that

this is also the number of unknowns, Since the matrix of the < Xin >
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is antisymmetric, in view of (2, 1. 46), and therefore contains n{n-1)/2
terms. The total number of unknown terms is then (3n2+n)/2 s, which
equals the number of equations, The set of equations is inhomogene-
ous and therefore, according to Cramer's rule, it has a unique solu-
tion.

The complexity of this set of equations precludes any general
discussion of the solution. On the other hand, it may be quite useful
in solving design problems where the behavior of a complex system is
to be investigated, This method of calculating the second moments
does not require the calculation of normal modes or eigenvalues of the
systems., For a two-degree of freedom system there are seven si-
multaneous equations, and for a three-degree of freedom system there
are fifteen. Therefore, it is expected that any use of this method will
require a digital computer to handle the numerical calculations.

If i =k the left side of equation (2. 1. 49) is twice the kinetic
energy of the ith mass, and if the sum on i is taken the left side
represents twice the total kinetic energy. The first term on the right
then vanishes because it is the trace of the product of a symmetric

matrix and an antisymmetric matrix, To see this one can write

Bij Wi = Pig gy = Py Wiy T - Py Uy
and in interchanging the indices, it is noted that the i3ij matrix is
symmetric and the u.ij matrix is antisymmetric. If a scalar is equal

to its negative, it must be zero, which was to be shown. Then

L% % > = —;—Qij < x > (2. 1.51)

i 1
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The right hand side is the average potential energy. This proves that
the average total kinetic energy for thié general type of system equals
the average total potential energy. However, no more precise state-

ment about the equipartition of energy appears possible in general.

Noisy Electrical Networks. An important application of equa-

tions of the type (2. 1. 41) occurs in analyzing the behavior of passive
electrical networks in 4Which_the resistors generate thermal noise.
The random voltage generated by this process is discussed by Daven-
port and Root (28) . The problem to be discussed here was treated
originally by Wang and Uhlenbeck (1), but their method is quite
lengthy.

It was originally found by Nyquist (29) that the voltage due to
thermal noise in a resistor, R, has a spectral density of magnitude
2kTR where k is Boltzmann's constant and T is the absolute tem-
perature, It will be assumed that all resistors are at the same tem-
perature, and it is reasonable to expect that the noise voltage across
different resistors is independent. Now any passive electrical network

can be described by a set of equations of the type

L..V.+R..v.+G..v. = E. 2. 1,52
i3 75 T Ry vy Gy; ;5 ;0 (: )

where Ei is the sum around a mesh of the random voltages, Z Eij s

. J
generated in the resistors Rij . It is convenient to define the inverse
of thg matrix Lij by /jk o 1}r1en

P Ly; = 8y . (2. 1. 53)

Now multiply (2. 1. 52) by /ki . An equation similar to (2. 1. 41) is ob»-
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tained except that the matrices Bij and Qij are no longer symmetric,
and hi is now defined by

b = E /. - (2. 1. 54)

The other matrices are given by the expressions

i =715 Rk Qik = 745 G - (2. 1.55)
Now the previous results can be used. The voltages Ei are of the
form
B o= Y By
J
and

K 6j/ Rij Rk/ kKT

{ ;s | By ﬂdz*): 26,
Combining these results it is found that RN defined by equation
(2, 1, 42), can be written

aisz'

im (3km

Then equations (2. 1.49) and (2. 1, 50) become

K E > = By < E D> +Qij< % 5> (2. 1. 56)

By < > + By <Ry > #0 xph> +8d g <> =

=2 e Bim * i Prem (2. 1.57)
Although it would be difficult to solve such a set of equations in gen-
eral, the nature of the random excitation is such that a solution exists
for which equipartition of energy holds. It can be seen that if the sec-

ond moments are chosen in the following manner,
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< =% X > =0

< % %> Ly = KT 6 (2.1, 58)
< X, xj> ij = kT &,

the equations (2. 1.56) and (2. 1, 57) are satisfied. The solution is
unique since the equations are inhomogeneous and linear. The expres-
sions for the second moments can be written conveniently in matrix

notation. Put

(xi xj) = Y (Xi xj) = X (2. 1.59)

(Lij) = L {Gij) = G (2, 1. 60)
Then

Y = kT L7} X = kTG ., (2. 1.61)

This is the result of Wang and Uhlenbeck. It shows that the energy in

every energy storage device is the same, and is equal to kT,

Summary

A number of methods for analyzing linear systems with ran-
dom inputs have been discussed, First, the method of spectral analy-
sis was reviewed, and then it was shown by two methods that if a sys-
tem has an input with a pure white power spectrum its autocorrelation
satisfies the homogeneoﬁs system equation. The feature of the input
which accounts for this result is that the input is purely random.

The method of ensemble averaging can be used to determine the
time history of ’l;he moments of the process, The moments satisfy
certain ordinarﬁr differential equations which can be obtained either by
operating directly on the differential equation of the system or by in-

tegrating the Fokker-Planck equation over the space of the variables,
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These equations can be solved by standard methods with the initial con-
ditions that the initial velocity and displacements are known and the
Variénces are initially zero,

Finally, systems of second order equations were studied, and
it was shown that the method of ensemble averaging, in which the sys-
tem differential equations are operated on directly, leads to a set of
linear simultaneous equations for thé second moments. These equa-
tions can be solved by standard methods, This method is believed to
be original, and has the advantage that it is not nece‘ssary to determine
the normal modes to find the second moments of the process. Wang
and Uhlenbeck have shown that for an arbitrary circuit with thermal
noise in the resistive velements there is equipartition of energy., This
result is proved by the ensémble averaging method without having to
solve the Fokker-Planck equation.

The analysis of linear systems is of considerable importance
in its own right. However, it will be seen that the methods and results
of this section will be useful in the probl__ems to be investigated in the
remainder of this thesis, The method of ensemble averaging using the
Fokker-Planck equation will be ﬁsed in Section 2, 2 to investigate the
behavior of systems with random parametric excitation. The method
will also be used in Section 2.3 to calculate the mean square %relocity
for a one-degree of freedom oscillator with a nonlinear restoring force,
In Section 2. 4 the power spectrum of the linear first order sys"tern will
be required to compare the power spectrum of a nonlinear system with
an approximation based on the method of equivalent linearization.

Finally, in section 2.5 the equations for the behavior of a second order
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linear system will be used in calculating the power spectrum of a

nonlinear systems.
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2, 2 RANDOM HETEROPARAMETRIC EXCITATION OF LINEAR
SYSTEMS '
In this section a discussion will be presented of the behavior

of systems which can be described by differential equations of the types

ye[prN®]y = Ny
and
¥+ [B+ Nl(t)] v+ [w§+ N, (t) ] y = Ni(t)
where Ni(’n:) are random functions with white power spectra and Gaus-
sian distributions. Systems described by such equations will be called
random heteroparametric systems. They are called random because
the coefficients Ni(t) are prescribed statistically, and heteropara-
metric because the system has parameters which depend on time in a
prescribed manner. This term is used by Minorsky, (17).
Mathematically, such problems are distinguished by the fact
‘that they have time-dependent coefficients in the differential equation.
If the coefficients are periodic, the system behavior is given by %:he
Floquet theory. The Ma‘i:ilieu, Mathieu-Hill and Hill-Meissner equa-
tionsv are particular cases which have been thoroughly investigated and
many solutions tabulated. ’The case where the coefficients are random
functions of time has been investigated by Samuels, (30), but his anal-
ysis seems to contain a number of errors, as né’ted by Caughey, (31).
In this section the method of the Fokker-Planck equation will be
used frequently, and in many respects the analysis will parallei that of
Section 2. 1.2 . The first order system will be investigated before the

second order one, since its analysis can be carried somewhat farther,
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However, the second order system is of more direct physical interest,
An application to the theory of the pendulum will be given. The method
may also be of value in the theory of parametric amplifiers.
| This analysis will be limited to the case where the random
terms Ni(t) are white and Gaussian. The derivation of the Fokker-

Planck equation in Section 1.5 will be fundamental to this analysis.

2, 2,1 First Order Systems

The general problem to be investigated here is the behavior of

systems described by the differential equation
v+ [6+N1m] y = N,(t) . (2.2.1)

Nl(t) and NZ(t) are independ-ent random functions with Gaussian dis-
tribution and white power spectra, which are taken to be D1 and D2°
The Fokker-Planck equation associated with equation (2. 2.1) is
a special case of equation (1. 5.16) . The derivation of Section 1.5 was
made sufficiently general to cover the random, heteroparametric case,
The more claésical method, given for example by Wang and Uhlen-
beck, (1), gives the same result, but only after complicated calcula-
tions of the moments, The Fokker-Planck equation associated with
(2. 2. 1) is found by putting n=1, G=pBy , and taking Nl and N2 to be

independent, so that the expression for FZ is Dl'y'z-%-D2 s Then

. 5 8% 2
T = 3y [(ﬁ"Dl)yT] +g;2 [(Dly —:—DZ) T} ‘ (2. 2. 2)

The moments of the process can be found by the same procedure used

in the previous section. Multiply by yn and integrate over all y .,
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After some rearrangement one finds

°
Lt —~—~ 7

yn + n(ﬁ—nDl)y‘n = n(n-1) D2 anz . (2, 2. 3)

The possibility of unstable moments is seen immediately, since the
homogeneous equation has an unbounded solution for large enough ran-
dom heteroparametric excitation, D1 . The first moment is found by

putting n= 1.

S~ B "(ﬁ"Dl)t
v = v, e (2.2.4)

where Ve is the prescribed initial value of y . It can be seen that
the effect of the heteroparametric term is to destabilize the system,
that is, to reduce the time for the initial disturbance to die out. The
stability is unaffected by the external excitation, Nz(t) o

The second moment is given by

-2(-2D,)t D,

= Ae b o,

SO
2
¥ B-2D,

2> . If the initial

The variance of the solution is given by < (y - ¥)
value of y 1is prescribed the initial variance is zero, and this deter-

mines the constant of integration, A . The variance is then given by

)t
)

> , -2(B-2D))t -2D;t D, -2(B-2D

(vy-3) =y e (1-e HE':TT“"e

1

(2. 2.5)
The first nﬁornent is bounded if B > D1 , and the second moment is
bounded if ) ZDl . The general condition for stabiiity of moments
of order n is difficult to compute by this method. Fortunately, the

stationary solution to the Fokker-Planck equation can be found, and
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from this the stability problem can be immediately understood.
The stationary case is characterized by the Fokker-Planck

equation
9 5* 2 |
0= 5y [@-DI)VW} 4—5;7 [ (Dyy +DZ)W] (228

which can be integrated once with the result

The solution of this equation is easily found using ordinary methods.

The only solution with a bounded integral occurs when C vanishes,

W = ! . (2.2.7)

1
D Vz > + §3/2Dl

all + ——
D,

©
In order that the normalization condition on W, f Wdy = 1, be
-

satisfied, the constant a is chosen to be

o
Dyy™ | l/Z-i-ﬁ/ZD]l

D,

(2. 2.8)

= Q0

1+

The well-known solution where the heretoparametric term vanishes

may be determined by letting D‘1 approach zero., One finds easily

2
_ By
e DZ,
lim W= S-—__%2 | (2.2.9)
D, -0 Ve D,

1

If Dl is not zero, it is clear from equation (2. 2. 7) that mo-

ments of order n will be infinite if n>) B/D1 because the integral
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oo
y© o= yo W dy

-
is divergent. If D1 > B, the first moment is seen to be infinite, as
found before by a different method.

The reason that high order moments are infinite is seen to be
the functional nature of the probability density given by equation
(2, 2, 7)s It is not clear what physical significance should be attached
to the fact that the high order moments become infinite, However, it
is not difficult to visualize the meaning of infinite first and second mo-
ments.

A third method for investigating the behavior of random sys-
tems is that of calculating the probability density of first passage |
times, as discussed in Section 1.8 . In order that this method apply
it must be possible to compute the Laplace transform of the transition
probability with respect to time., This can be done for the system de-
scribed by equation (2. 2, 1) in the homogeneous case, that is, for

N, = 0 . The equation to be studied is then

v+ [5+N1(’c)] y = 0. (2. 2. 10)

The appropriate Fokker-Planck equation is

. 9 92 2
T‘ = oy [(ﬁ-Dl)YT} +5§;,7 [Dly T} . (2.2.11)
Put yT = R ., Then it follows that
R = ( %D )y R.+D.y° R
- ﬁ l V 'y- ly .y..y. °



Now put
u =ﬂny/yo+52’ t =7 .
Then
5 _ .98 ., 0 5 _
5t = Pou Yoz Y3y T B
I L
oV 8y2' auz

The Fokker-Planck equation reduces to

RZ‘ = D1 Ruu._

The fundamental solution to this equation is

u

4D1t
e

VAt

and therefore the transition probability is given by

R =

(Jayly, +p)°

_ 4Dlt

T = £ . (2,2.12)

v /At

The transition probability of the process can be found in another way,

independently of the Fokker-Planck equation, The agreement of the
two methods serves as a check on the derivation of the Fokker-Planck
equation in Section 1.5, The second method is to divide equation

(2. 2. 10) by vy and integrate .

Fn ly/yo‘ +Bt+ 2, = 0 (2.2.13)

Since N, is Gaussian and white, the transition probability for Z1 is

1
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2
Zl

ZDlt—.
e

'\/4‘1’1‘Dlt |

Consider the relation between y and Z

W(Zl) =

1 sketched below.

(o}

Figure 2, 2.1 Relationship of y and Zl as Given by
Equation (2. 2. 13)

The probability that y is in a' must equal the probability

that Z is in a . Therefore, one must have

(/n y/yo + ﬁt)z

4Dlt'
T(y) = — y >0
vy -\/41TD11'. ’
(2,2, 14)
= 0 . . V< 0

This result is identical with the previous one, equation (2.2, 12), ex-

cept that the normalization constant, A, is determined without a
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special calculation. It is tacitly assumed that y/yo can only be posi-

tive, It will be seen later why this assumption is made. The Laplace

transform of the transition probability given above is
—Zﬁ;'— ﬂn Y/Y

\/ s-l-BZ /4D,
.HI/n y/‘yo| .
1 . v Py

Ty, v s) = = (2. 2. 15)

T \/s+[32/4D1 \/4D1

Now the method of Section 1,8 can be applied, The probability density

o)

of the time of first crossing, g(v, Vo t) , or rather its Laplace trans-

form, will be calculated. It is related to the transition probability by

the formula below, where y0< y < 7 .
T 7s Yo s)

T(79 Vs 8)

gy, vy s) = . - (2.2.16)

Substituting from equation (2. 2, 15), and making separate calculations

in the cases where y is greater than Vs and v is less than Y, one

finds
V2 Y,
B 2 2
- ( 57 + \/s/D1 + p7/4D, In vy,
—é(ysyoss) = €
y <y
o (2.2.17)

...(t_z.%_l_ ..\/s,/Dl +{32/4D12 ‘)/n ylv,

= €

Now since g(y, Vo t) is the probability density of the time of first

arrival, the probability of crossing y at some time must be given by
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Qo

Ply,y,) = gly» v o t) dt = glys vy 0) » (2.2.18)

Carrying out the substitutions one finds

-@/Dl
Plysy,) = (y/v,) s YDV,
) (2. 2. 19)
= 1 » v< ¥,
" The behavior of this function is sketched below.
Py v,)
1 | ‘Decreasing ﬁ/Dl

1 v/v,

Figure 2.2, 2 The Probability of Reaching y from v,

If a single system of this type were under observation, the probability
that a value of y greater than the initial value, Vo will be crossed

at some time is less than one, As the noise specti'um becomes small-
er, the probability of exceeding the initial value , Vg s of y decreases,
and finally when the noise spectrum vanishes, the pro‘bability of ex-
ceeding the initial value of y vanishes. This checks with the fact that

v must tend uniformly to zero in the deterministic. case. There is no
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indication from this type of analysis that any of the moments of vy can
be unstable. |
The mean time, t, of first arrival at v from v, can be com-

puted from g(y, Yo s) as indicated below, following equation (1.8.7).

00 00
) 0 -st N
u = t g(v, Vo tydt = - 35 e g(vs yo, t) dt
0 0 s =0
I
= - 355 8lysv s 8)

s =0

u would be the mean time to arrive at y 1if the probability of arriving
at y were one, Butif it is not one, the mean time to arrive at y is
‘obtained by dividing u by the probability of arriving at y at some

time, P(y, yo)‘ o

u(y, YO) 2 2 20
Py, YO) (2. 2. 20)
Carrying out the calculations one finds
T = g |avly (2.2.21)
6 O ° ° o

The behavior of the mean time to cross y from Ve is sketched be-
low. The mean time to reach vy is independent of the noise level, Dl .
To summarize the siation, the average time , T, to reach v
from Vo is independent »of the noise level, D1 » if one ignores the
times when y is néver reached, The probability of actually obtaining

~a prescribed value , vy, greater than the initial value, Vo » goes up

with increasing random excitation, and approaches one for very large
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random input. The probability of reaching a value y less than Vo

at some time is always unity, just as in the deterministic case.

S

1 vy,

Figure 2, 2.3 Mean Time to Reach y from Vo

2, 2, 2 Second Order Systems

The behavior of systems described by the differential equation
v+ [5+N1<t)] v +[wi+N (t)] y= Nj{t) (2. 2. 22)
2

will be discussed in what follows. As usual, the random terms Ni(‘t)
are taken to be Gaussian and to have white power spectra, Two cases
will be analyzed. In the first, the Ni(t) are taken to be independent,

and in the second they are taken to be proportionalﬂi

* The method would apply to the more general case where the random
terms are correlated by the equation < Ni(t)N.(t-!-Z‘)} = 2D.. §(t) .
However, the general case leads to real compiications and dbes not

seem to be of any particular physical interest,
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The general Fokker-Planck equation for linear second order
heteroparametric systems is obtained from equation (1. 5. 16) in which

the substitutions G = Pp -!-wiy and n=1 are made.

2 0% 2

. 2 0
= ., @ Pptwy - 3o~ F | T|+— (F°T)
T = 'P‘Tylap o op 8}92

(2. 2, 23)
In the two cases where the Ni(t) are independent or proportional, FZ
is a polynomial of order twoin p and v . * The method used in Sec-
tion 2, 1. 2 for finding the moments of the process is applicable and will

be used here., Upon multiplying equation (2, 2. 23) by pmyn and inte-

grating over the entire phase plane, one obtains the moment equation

d m_n n-1 m+l m-1_n 2 0 2
<Py > =y e D -m{p Y BP0y -z FOD

m-ZVn F2>

+ m(m-1)<p . (2. 2, 24)

This is the basic equation of the analjsiso The feature which makes
the method useful is that if m+n= / , then / +1 linear differential
equations for the / +1 moments of order /Z can be found., These
equations do notinvolve moments of order higher than /, but do con-
tain moments of lower order. The problem of solving these equations
is a standard one.

Second Order Systems with Independent Random Terms.

In the case where the Ni(t) are independent, the differen-

tial equation (2, 2. 23) can be written

afe

In the more general case, mentioned above, the function FZ will be
a rational function of v and p , but its numerator will be of order
eight and the denominator of order six.
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o0 ° 2
v + By + Wy = N3 - Nlp - Nzy = N(t) . (2. 2. 25)
The variance of Z{At), where

t+At
Z(At) = N(7)d7

is

2 2 2 .
F~ = Dy P +D, 7y +Dgy o (2.2, 26)

Following the analysis of Section 1.5, this expression is to be used in
the Fokker-Planck equation (2. 2. 23), and in computing the moments
from equation (2. 2. 24), The first moments are found from the two

equations for which m+4n =1,

m = 1 - 2~ —~
n=0 P = PP-@y+D P
m =0 A
' y =P
n=1
- These equations are equivalent to
y + (B—Dll)y+woy = 0 . (2. 2, 27)

If there is no random coefficient modulating the damping term in the
original differential equation, then D11 = 0, and the mean motion of

the system is given by

In this case, which will be seen later to represent a certain pendulum
problem, the mean displacement of the system does not depend on the

random terms, If the term Dll is not zero, it has the effect of re-
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ducing the system damping, and if the random excitation is great enough
the system will become unstable,

The term "unstable'" is used here to indicate thaﬁ the mean dis-
placement is unbounded., Similarly, it will be seen later that higher
moments may become unstable for large enough excitation. It has been -
noted in many papers on dynamics that it is difficult to give a univer-
sally acceptable definition of stability. The difficulty carries through
to non-deterministic problems, so no attempt will be made at a general
definition of system stability in this thesis. When any moment of the
system becomes infinite, the system will be called unstable, and the
sense of instability will be clear from the context,. However, the limi-
tations of the analysis preclude the pqssibility of stating conclusively
under what conditions the svstem is stable, for there will always be the
possibility that a high order moment will be unstable even if the low
order ones are not. In the first order problem this topic was investi-
gated more thoroughly than in possible for second order systems.,

The second moments are found from the equations for which

m+n = 2
m = /.\' —~ —~ —~ —~
2 2 2 ~ 2 2 2
p =-28p —Zwopy+2Dllp +ZDMP +2D22y +2,D33
n=290
—~ 2 — 272 —
=1 py = P PPy -w v +Dy;vp (2.2.28)
n =1 :
m=90 —~
2 Vaed
y = 2yp
n=2

These equations become algebraic in the stationary case, which
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will be approached asymptotically if the system is stable. In this case

the moments are given by

2 D33
p- = - (2. 2. 29)
B-2Dy, - Dzz/wo
s p° P33
2 2 z

o ‘36‘)0"1322- ZDM(”)O

In order to see How the stationary state is approached, the set

of simultaneous equations (2. 2, 29) must be solved. The method of La-

place transforms results in equation (2. 2, 30) in which the bar notation

for Laplace transforms is used.

©
Z(s) = e St oy at .
0
Then
| 5;:2 ] 4D,,

5 5 (2. 2. 30)
s° + (3p-5D;;)s" + Zs[(ﬁ—ZDll)(ﬁnD”)

2 2
+ 202 |+ 4(8-2D ) Jw? - 4D,
A necessary and sufficient condition that the system be stable is that
the Routh-Hurwitz criterion be satisfied. For the cubic equation
3 42
X +a, A FAA Ay =0,

the criterion is that for the roots to have negative real parts, it is nec-

essary and sufficient that

AP0, ADO, ADO0, ALA, DAL (2.2.31)
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The first condition is equivalent to the one that yz » given by equation
(2. 2. 29), be positive. The Routh-Hurwitz criterion does not lead to
any simple condition in general. However; in the important case where
D11 vaniAsvhes, the last three inequalities follow if § and wi are
positive, and the first is the only one which may not hold, The sta-
bility condition is then simply

B> Dzz/wi . (2. 2.32)

It should be noted that the quantity D33 does not affect the stability,

but does affect the magnitude of the moments.,

Second Order Sirstems with Proportional Random Terms., The

second case of interest is that in which the random terms are com-
pletely correlated, that is, proportional. In this case one can write

N, (t) = yN5(t) N,{t) = aNs(t) . (2. 2.33)
The differential equation (2. 2, 22) can be written

woo.2 . X

v By ey = (1 -yy - 6y) Na(t) (2. 2.34)
and the variance FZ is given by

2

2
F* = (1-vp-6y)"Dyy - (2. 2. 35)

The first moments are found from equation (2, 2, 25):

m = 1 . _ 2 N .
a0 P = -Bp-w v Eylyp+ 8y -1)Dg,
m =0 L~
vy =P
n=1

P can be eliminated, with the result
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= 2 ~ 2 —~
Y+ (B-y D33)y + 0 - y8D55)y = - yDgy - (2. 2.36)
Noting that y2D33 = D“ » it can be seen that the change in the damping
term of the mean motion is the same whether the white noise terms
are independent or proportional. However, in the latter case, a de-

crease in the natural frequency and a bias in the mean displacement

occur., The mean displacement becomes, asymptotically ,

—_ vy D
¥y = - — 33 . (2. 2.37)
Wy = ¥8D33

The mean velocity, of course, tends to zero asymptotically. If the
random term modulating the velocity is absent, y = 0, these effects
are absent,

Putting m + n = 2, one obtains three equations for the second

moments.
m=2) 5 ~ ~
2 2 2 ~ 2 T~
p = -28p - 20 py+2y(yp +8py - p)
n=0
2
+2D33<(yp+6y~1) D
m =1 2 5 —~ 272 — T o~
. PY = P -PBPY - YV +yDy3(ypy + 86y - V) (2,2.38)
n= .
m=0 -~
2 ~
y = 2py
n=2

In the steady state, the variances of p and y are given by

3 2 . 2
> [(Zy D33 -B)y + y6] D33 +wo

2T 2
330w, - \’6D33)]‘ 5" D33

(2. 2,39)

(wg = ¥6D55) [(B-ZY
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o P YZ DZ
2 2 2 33
P = (wo = Y6D33) vy o+ yJ {2.2.39)
“Wo = ¥8D3;

Again it is found that if v = 0 there is a substantial simplification of

the expressions for the variances. In this case one finds

2 DPa3
LA ey
B, - Dyy
: (2. 2. 40)
2 2 2
p° =Wy

The above expressions are identical to those obtained in the case where

the Ni(t) are independent, given by equation (2, 2. 29) with D.. =0,

11

It can be concluded that if N,(t) = 0 the steady state mean square dis-

1
placement and velocity are identical whether the terms NZ(‘t) and
N3(t) are independent or proportional. However, the approach to the
steady state will be different in the two cases. One may also note that
the presence of white noise modulating the damping term complicates
the system behavior considerably. In fact, it may be expec-ted in gen- .
eral that a random term modulating the n -~ 1 derivative in a differen-
tial equation of order n will give rise to many complications, This

may be seen by observing the simplification of the Fokker-Planck

equation, (2,2,23), if FZ does not involve p .

The Power Spectrum. It has been mentioned in Section 1,6 that

if the‘history of the mean displacement as a function of the initial con-
ditions and the steady state value of the second moments are known,
then the autocorrelation,and consequently the power spectrum, can be

found from the relation
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foe)
R(T) = W v ) v,y s Oy, dy dp
- 00
In the first case, where the Ni(t) are independent, y can be calcu-

lated from the differential equation (2, 2, 27) .

1 | 1 1 Zwl

W =\/‘*’§"52/4 .

Substituting this into the expression for the autocorrelation one finds

tr.
v = “Ez- "o sin w.t + 3 (cos w .t + b in W, t)
Vo= € E"—' VO sSin 1

where

7 m%?—
R(T) = y- e (cos w, T + 2‘2 sinw, 7).
1

—

> :
But Ve is given by equation (2., 2, 30) in the stationary case, so that

the autocorrelation is

—'E;— cos wl t—5~—25%’— sin w]L’Z‘
R(T) = Dyje . 1 —. (2.2, 41)
Py = Dy - 2D

The power spectrum of the displacement, y , is obtained by applying
the Wiener-Khintchine relation, (1.3.7) .

2 2
D, /(pw =D,y = 2D, ¢0") ~
Flw) = —2 0 222 1170 . (2.2, 42)

(wz - wi) + ﬁzwz

In the case where the random terms Ni(t) are proportional, the mean

displacement is obtained by solving the differential equation (2,2.26) ,
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It is convenient to define a new damping and frequency,

2 2
Pz = P =Y DBs3 s “z“\/wo“V5D33’

2 2
w3‘=\/w2-@2/4 (2. 2. 43)

Then the history of the mean displacement is given by

. - E; ;32 - % sinw3 t
y = v,¢ (cosw3t+~2~—(3§- sin wg t)-!—poe w;——-—
Bt
Y D33 ~z Bz .

- 1 -e (cosw, t -+ sin ., t)]
2 3 2w 3
W, - y6D33 3

Following the procedure above, and noting that Py = 0, the autocor-

relation is found to have the value given below:

: ﬁ‘t
v D 2 —~ v D A2l -E&F B
R(T) = _,Z_.,.___,,.?‘_*i__ + 'yz - | —wz-wmiimm e 2 {cosw?)t-!-—zr—%— sinw3t)
W - ysD W . yED “3
Yor33 o Y933
where VZ is given by (2. 2. 29) . The power spectrum of the displace-
ment is
2
= | ¥Ps3
2 LA e S
Y D33 “o © ¥8D35
$(w) = 2| | §(w)+ = - (2, 2. 45)
@omV6D33 (w? - w3) + 82w
o]

where the delta function is chosen so tha.t[ 8{w) = % and is associ-

ated with the "bias" or "d-c" term in the digplacement, As with the
other system functions, the expression for the power Spec‘trum is ap-
preciably simplified if v = 0, In this case the autocorrelation and

powér spectrum are identical with those given in eguations (2. 2.31)
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and {2, 2, 32) for the case of independent white noise functions.
It is to be noted that the effect of the random heteroparametric
excitations is to modify the magnitude, but not the shape, of the pow-

er spectrum of linear systems with Gaussian white input,

Application to the Pendulum Problem. In the theory of pen-

dulous instruments, an important problem is to consider the errors
due to vibrations of the pendulum axis, If the vibrations are sinusoid-
al, the problem can be handled by the theory of the Mathieu equation,
or more generally, by the theory of the Mathieu-Hill equation and the
Floquet theory. These topics are treated by Minorsky (17) and Stoker
{32) o If the Vibratibns are random, Gaussian and essentially white,
then the problem can be handled by the theory of this section.

The appropriate equation of motion can be found as follows,
The moment of the inertia forces on a pendulum must equal the mo-
menﬁ about its axis, M . It will be supposed that the reacting moment
on the axis results only from linear damping. The coordinates to be
used in the analysis are indicated in figure 2. 2.4,

The equation of motion is obtained by integrating the inertia
forces over the entire mass of the pendulum and equating this to the

reacting moment, Iﬁ,é o
dm(i&rcos@+.};rsin@) = M = Iﬁé

-where

i
<

X = x_ 4+ rcos b v - rsin® .,
o o}
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-\

EQA x

Figure 2, 2.4 Pendulum Subjected to Accelerations of Its Axis

The pendulum static moment and moment of inertia about its axis are

defined by

5 = [rdm I = [rzdm .
The equation of motion can then be written
§+sé+§ (¥ cos®+¥ sinB) = 0
I o o : ’

To include the effect of gravity, a uniform acceleration can be included

in the vertical acceleration, It is convenient to define

°0 - :. S’. .

Vo = 817y TY1 = Nai®)
. .2 _ Sg S

Wo = T "T% 7 N3l

Making the substitution into the equation of motion and linearizing

on the assumption that 6 is small, one finds the differential equation
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of the problem,
6 +p6 +[wi + Nz(t)} & = N(t) (2. 2. 46)
It has been found in the previous analysis that whether the ran-

dom funétions Nz{t) and N3(t)\ are independent or completely corre-~

lated, the stationary value of the mean square displacement is

~ D
of = 2, (2. 2. 47)
56‘)0 - DZZ

This result is taken from equation (2, 2, 40) .
To interpret this result, it is convenient to write the following
relation between the spectral densities:

D= D,,+D,, . (2. 2. 48)

22 33

If D22 and D33 are independent, this defines D . If they are the
spectral densities of the components of an acceleration at a given
angle, A, to the horizontal (see figure 2, 2. 4), then equation (2. 2, 48)

may be considered as an identity. In either case, one can write

. 2 _ 2
D22 = D sin o D33 = Dcos o« (2. 2, 49)

If the vertical and horizontal accelerations are independent, this de-
fines ¢, It is possible to express the solution in terms of ¢ and a
non-dimensional parameter ¢, where

D

S 2. 2, 50
7 w87 ( )
The mean square displacement can then be written
~ 2
p° = _Tcos X . (2,2, 51)

. 2
1l - ¢sin «
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S~

A sketch of @Z versus o is given below.

o %

o</

v

~/_1

SIN = o
= 2
Figure 2. 2.5 The Mean Square Displacement as a Function

of the Parameter

For low values of the vibration level, 0~ < 1, the mean square dis-
placement is always finite. But as ¢ increases, the right side of
equation (2, 2. 51) becomes infinite and then negative., If it is negative,
the system is unstable in a certain sense.

This may be seen from the Routh-Hurwitz criterion, {2.2.32),
or from a physical argument, as follows. For fixed oC let the vibra-
tion level, 0~, increase from zero, At the critical level, 0 = I/Sinzac 0
th.e mean squére displacement becomes infinite. For larger values of
the vibration level, the system must also be unstable, but because the
'process is non-stationary, the above analysis is inapplicable. The

non-stationary analysis shows that the system has an exponentially in-
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creasing mean square if it is unstable,
I —

Another way of viewing the result is to plot @2 against increas-

ing vibration level, ¢, for various values of ¢ , as shown below,

- . -

/ 2 pe

Figure 2, 2,6 The Mean Square Displacement as a Function

of the Random Input Level

All curves pass through the point (1, 1), and it can be seen that for
high enough vibration levels the pendulum is unstable for any o€, For
o< # w/2 , as the vibration level is gradually increased, the approach
to instability will be observable. The limiting case of o= w/2 is siﬁ=
gular. Since the mean square displacement will be zero for any o <1,
the pendulum will not undergo any observable angular displacement,
However, if ¢ > 1, the system is unstable, Therefore, the approach
to in;stability with increasing vibration level will nct a?pear to be an
increasingly large random oscillation in this case. What will be ob-

served is that as the vibration level is increased the angular displace-
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ment will remain equal to zero, until ¢ =1 . At this level the pendu~
lum will suddenly become unstable in the sense that the ensemble av-

erage of the second moment is unbounded.

Summary

Systems with random parametric excitation cannot be analyzed
using the standard methods of speétral analysis. It is shown that an
appropriate Fokker-—Planck equation can be written if the parametric
excitation has a white power spectrum, and that the method of ensem-
ble averaging can then be used to determine the second moments and
the power spectrum. An application to the problem of a pendulum
whose axis is subject to random accelerations is given, and it is shown
that with sufficiently high parametric excitation the pendulum may be-
come unstable. The effect of parametric excitation is destabilizing in
every case that has been investigated. The conclusion of Samuels (29)
that it may be stabilizing app;ears to be due to some computational

errors,
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2.3 SYSTEMS WITH NONLINEAR RESTORING FORCE

In this section some of fhe properties of single degree of free-
dom systems with Gaussian white excitation will bé investigated, The
systems will be taken to have linear damping, but may have an arbi-
trary nonlinear restoring force*u For this class of systems the sta-
tionary Fokker-Planck equation can be solved exactly for the first
probability density. A number of useful results can be found directly
from this solution. Furthermore, this solution is useful in carrying
out the method of equivalent linearization discussed in Section 1.7,
‘since the exact first probability denéity séems to lead to a better lin-
earization than the more convenient choice of the Gaussian distribution,
This subject will be pursued further in Section 2,5, where an iterative
method for obtaining the power spectrum of a nonlinear oscillator is
introduced. The success of the method depends on the results of this
section.

The special case of a cubic spring will be explored at some
length, since the necessary calculations can be carried out in terms
of known functions. |

The differential equation of the systems to be investigated here
has the form

my + mBy + £{y) = N{t) . (2.3,'1)

It is convenient to refer the damping force to the mass, thatis, to

sk

Of course the restoring force, f(y), must be physically reasonable
for all y . For example, the function £(y)=ky - y3 will be excluded
since the displacement would tend to infinity for large initial values of
¥y, unless u is negative,
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write it in the form mpy . It will be convenient to leave the mass, m,
| explicit ::m this equation since the energy U, where
U = % mpz + F(y) (2.3.2)
will appear repéatedly in the analysis. In the above equation, F{y) is

the potential energy, which is the integral of the spring force, f(y).
F(y) = | i{y)dy : (2,3,3)

The'appropriatel Fokker-Planck equation associated with equa~-
tion (2. 3. 1) is obtained by putting G{p,v) = fp + f{y)/m and Flp,y) =

1/m in the general equation (1. 5. 16) .

. ) f(y) D
T = =pTy+-§§ [ﬁp+-——-—— T t—= TPP
In the stationary case this reduces to
9 £(y) o D ~
- ER e P W |+ W = 0 2.3. 4
PV + 55 {ﬁp t— | z Vop : ( )

where the notation W is used since this is an equation for the first
probability density,

This equation can be solved by considering the symmetry prop-
erties of the solution, W{p,y). One expects that positiv; and negative

values of the velocity, p , should be equally probable=5,, If this is true,

then the probability must be even in p , thatis, W{(-p,y) = W{p,Vv).

" It may be noted that such a hypothesis would be of doubtful validity if
the system involved nonlinear damping. In this case, the wave shapes-
of the displacement are known to lack symmetry, especially in the case
of relaxation oscillations. See, for example, the wave shapes for the
Van der Pol oscillator, given in the book by McClachlan (32). The lack
of symmetry in the oscillations can also be seen from the Lienard con-
struction, which is described by Stoker (33).
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Now from the condition above, it follows that

Wp(m = -WP(-P) pr(p) = pr(~p> .

If the solution, W , of the Fokker-Planck equation satisfies the sym-
metry condition, it must also satisfy the equation which is obtained by
putting -p for p.

9 f(y) D
W+ 5 W)-==2W_+—-—5W__ = 0,
PWy *9p BPW) - = Wp * 2 Wip

Two equations result if this is added to and then subtracted from the

Fokker-Planck equation:

f(v) ] D
W - LW = 0 e W 4 —— W = 0 .,
Py " Tp op (Pr m p>

The first has the general solution

2
W = H [rn%— - F(y)] = H(U) ,
and the second has the first integral

D -
ppW +— W, = gly)

m

where g(y) is an ‘arbitrary function. Substituting the first solution

into the above equation yields the resuit:
D -
PpH + — pH' = gly) .

Since the equation must hold for all p , both sides must vanish for
p=0. Butthen g(y)= 0. Solving for H determines the symmet-

ric solution of the Fokker-Planck equation.
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2
- mE- + F(y)) -2y
W = H_ e 2 = H_ e . (2.3.6)

The constant Ho is evaluated from the normalization condition that

the integral of the probability must be unity.

dp dy W = 1

/= 00

Then carrying out the integrations one finds:

— 1
T (® -Z )
ZﬂD/ﬁmzj e D dy
- OO0 '

It is striking that the solution has the form of the Boltzmann

H

° (2.3.7)

distributiop of kinetic theory. This is the starting point for the analy-
sis of Kramers, (34) . However, in engineering it seems more appro-
priate to st;,rt from the system differential equation and proceed to the
probability density than to atfemp‘t to justify the solution by kinetic
theory. The solution given by equation (2. 3. 6) depends only on the eﬁn
ergy, but to determine the actual distribution of energy requires fur-
ther anal:ysis..— This will be done in a later paragraph.

Some additional insight may be thrown on the problem by con-
sidering directly the differential equation (2.3.1) . Repeating a pro-
cedure used in Section 2. 1. 2 , integrate equation (2. 3. 1), multiply by

N(t) and take the ensemble average.
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t

m {y N(t)> - m <y(o) N(t) > +[ (PBY(7)N(t)> 47

t
| <[y ] Nw>dz = <Nz> =D
0
where the ensemble average on the right is evaluated by using equation
(1.4.10), Then, as in Section 2.1,2 , it is found that
LyN> = D/m .
This result is the same as for the linear problems., The equation be-
low is obtained by multiplying the original differential equation by v,
averaging and using the above result,
du

2
4 tTmBp = D/m

The average energy must be independent of time in the stationary case.

Then it follows from the above equation that
2 2
<p"> = D/m"B .

These results check the solution to the Fokker-Planck equation.

In the remainder of this section some of the consequences of
the solution of the Fokker-Planck equation given by equation (2. 3. 6)
will be investigated. It will be useful in this discussion to refer to the
geometry of the phase plane and to the constant energy trajectories of

the system with the differential equation

my + fly) = 0 .
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A typical trajectory is sketched below,

pA

ah

Figure 2.3.1 Trajectories of Constant Energy

in the Phase Plane

It has been nq‘ted that the solution of the Fokker-Planck equa-
tion can be expressed in terms of the energy alone.
Wip,y) = H(U) .
It is natural to look for new coordinates in the phase plane, one of
which, of (U) , involves only the energy. In order to determine a sec-
ond coordinate, ¢ , it is convenient to prescribe that its probability
density is coﬁstant over a certain range of the variable and zero else-
where., It may be anticipated that ¢ will be a sort of angular coordi-
nate in the phase plane. Then the problem reduces to the following
one. For what ¢(p,y) does the joint probability density, G, of
and ¢ take on the form below?
Gloc, ) = Gl) o= of (U)

It follows directly from the mean value theorem of calculus, discussed
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by Courant (35) , that the probability that the system state is an infini-
tesimal area is independent of the shape of area. In ¢, of coordi-

nates the probability of being in an infinitesimal area of the phase

plane is
9
H(U) - gf“::cﬂ dp dec
where

33 - o
is the Jacobian of the transformation. In order that ¢ and oC be in-
dependent, it is necessary that the product
[ U] 34, «)
be independent of ¢ . This is expressed by the condition that the Ja-

cobian, which can be written in the form

¢ oL
1 PP de - -
-j-— —a*fj-(q)p V'd’y P),
¢ ok
y v

is a function of & ounly, say r{«). The formula above may be re-
garded as a partial differential equation for &¢(p,v), when the deriva-

tives of U, given by equation (2. 3, 2), are evaluated.

()6, -mp o, = r) IH

This first order partial differential equation has the solution

d m'2 .
== , C = 3 +F(y) .

o = o rlek) 1 -
© 7 WAT s ~/C-F(7)
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If r{«) is chosen appropriately , ¢ becomes the time which it would
take the free oscillation to reach the abscissa y of the phase plane
from the p axis on a trajectory with energy C . For this choice of
r{oc) , the coefficient of the integral should be m/\/—Z—, and the various

functions in question become

2
1 . mp
=\ > J = —gx C = —— +F(y)(2.3.8)
[ C- Fm e -

m 57
The probability density of the random variable o« is

mﬁ Ul)

G(of) = mB — . (2.3, 9)

\/Z'n'D/ f dy

If A= Vnax is taken to be the amplitude of oscillation, then

U = F(«)
is the energy of the oscillator. The inverse function can be written

A = (U) ,
and this particular choice of the function £ (U) has important physical
significance. The distribution of the amplitude, A , and the phase, ¢,
as defined above, can serve as statistically independent phase plane
coordinates, Therefore, it has been shown that the amplitude, A ; and
the phase, ¢ , are independent‘variables, in the sense of Section 1.1.1,

Distribution of Energy., The distribution of energy, S{U), is

the marginal distribution obtained by integrating G, $) over the

range of ¢ and putting o (U)=TU .
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- EID'E U
S S “ §m [ . (2.3.10)
y 2wD/B , rm . U - F(?
e
e )

Here the integral is taken over one quarter period and then multiplied
by 4 . This is valid if the potential energy, F(y), is an even function,
which is the case of usual interest, Now,the maximum value of y oc-
curs when p is zero, so that the equation

F(A) = C = U

determines A .when the energy is given., The expression

A
T(U) = v 8m —_— - (2.3, 11)
0 - F(? )
can be recognized as the period of the oscillator, If the system is
linear the.period is independent of U, and otherwise it is not. Then

the distribution of energy is a simple exponential in the linear case

stu) = Bm o D (2.3, 12)

For the case of a linear oscillator, the distribution of energy is
closely related to the Rayleigh distribution. It is frequently pointed
out, for example by Rice (13), article 3,7 , that the envelope of a ran-
dom signal with a narrow band width has a Rayleigh distribution. In
the analysis of Rice he proceeds by finding the distribution of the am-

plitude, R, where
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and the noise current is expressed in the form

1 = chcos (W, t- fn) .

It can be written in terms of the in-phase and out-of-phase compments

I and I where
c s

I =Zc cos{w t-w t-7 )1 =Zc sin(wWt-w_t=-7_)
c n n m n s n n m n
and this allows I to be written in the form
I = 1 cosw t=-1 sinw_ ¢t
c m s m

where ( m is the midband frequency. He then shows that the ampli-

tude R has the Rayleigh distribution

From the point of view of this section, it is natural to define
the amplitude of a linear oscillator in a different way. It is chosen to
be proportional to the square root of the energy., At points of maxi-
mum amplitude the kinetic energy is zero, and the energy, U, and
amplitude, R , are related there by the equation

R =V U/Zk (2.3.13)
But this definition of the amplitude can be used at any instant of time,
since U changes only slightly between maxima. The marginal distri-
bution. of R is easily found from equation (2. 3. 9) to have the form

given by Rice
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R2

R D7

D/mp

. (2.3.14)

In this method there is no need to assume narrow band oscillations as
Rice does, and it appears that the condition of narrow band width has
nothing to do with the fact that the distribution of amplitude is Ray-
leigh. In the case of high damping, that is large B, the band width
will be wide and the arﬁplitude rapidly varying. A record of such a
signal might not appear to have a well defined envelope at all, but ac-'-
cording to the presenﬁ definition,the envelope is defined and still has a
Rayleigh distribution. In fact, it can be shown that if y is Gaussian
and one writes v = A sin w t, then A has a Rayleigh distribution if t
has a rectangular distribution.

The frequency of crossing any vertical line in the phase plane
can be calculated within the scope of the present theory. '"Frequency
of crossing' is a term which is used, as in Section 1.5, to replace the
more accurate, but cumbersome, expression, ''the expected number of
crossings per unit time,'" The shorter expression will be used where
there is no ambiguity. It was shown in the process of deriving the
Fokker-Planck eqﬁé.tion, Section 1.5, that the frequency of crossing a
line element parallel to the p axis of length Ap is TpAp where T
is the transition probability., In the stationary case; this expression
becomes WpAp . The frequency of crossing a line which is a trans-

late of the positive p axis is then
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0
)/+= pW dp .

Substituting the expression for W{(y,p) from equation (2. 3.6) into the
above, and putting y = 0 gives the frequency , s of crossing the
positive p axis,

V D/Z-rrﬁmZ

)/o o o5} Bm
- - 55 Fy)
e D dy

. (2.3, 15)

= Q0

For the linear oscillator this frequency is the natural frequency of the

oscillator.

J_o= 71;- V k/m (2.3, 16)

o
This can be seen by putting F(y) = k'yZ/Z and carrying out the integra-
tion.
The frequency, J 4 of crossing any translate of the positive

P axis can be written in terms of yo o

- 2B ry)
J, =D, e (2.3.17)

. Example: The Cubic Spring, The behavior of a system with a

cubic spring is of interest, and in the deterministic problem of forced
vibration the corresponding problem is that of studying Duffings equa-
tion, ~Which is done, for example, by Stoker (32), The calculation of

the various physical quantities which have been discussed in this sec~

tion will be evaluated for this case., The cubic spring has a restoring
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force
3
-fy) = -ky-my (2.3.18)
and potential energy
Xk 2 4
F(y) = = + 42 . (2.3, 19)

The phase parameter, ¢ , given by equation (2. 3. 8), becomes in this

case
v
o = /%f \/ i:d s (2. 3. 20)
0 CET“—EM
where
2 2 4
_ mp _ky My ‘
C = = L B (2. 3. 21)

¢ can be expressed in terms of an elliptic integral of the first kind by

putting 7 = sin 8/4y 2 and introducing new parameters A, 52 5 ¥ and

6 where
% ) V= cos“}' v/A
\/1 + 4/4(\4/1{
. (2.3.22)
\/4 ZZ(AJL-‘-/MC 8 = cos.a17/A
Then
K(3) - F(S.¥V)
$ = 2 77 {2.3.23)

(A)O(1+4 C/k™)

Here F(S,Y¥) is the incomplete 'elliptic function of the first kind
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'd
F(3,¥) = f d8 (2. 3. 24)
0 \ﬁ= 52 sinz 8

and K(3$) = F(S,w/2) is the complete elliptic integral. 3 is the mod-
ulus of the integral and ¥ is its amplitude,

The total range of the variable, ¢ , is the period, T , of the
oscillator with energy C , and it is four times the value of ¢ obtained

by putting %= 0. Ifthe energy is U, then the period can be written

4K(S)

T(U) (2.3.25)

> 1/4 °
(,Jo(l + 4/4 U/k"™)
This shows that the phase variable, ¢ , is essentially the time for the
free undamped oscillator along a trajectory of constant energy, and it
is expressible in terms of elliptic functions.
In the example of the cubic spring, the integral
o] mfp

VZ V4
"o k7 v
e d

y
- 00
appears as a normalization constant in equation (2. 3. 7). It will be
shown that this integral can be evaluated in terms of the solution to
Hermites equation and Gamma functions. In fact, one can evaluate
by this method the more general integral
| © mp Y y*

/.V ) ED oo g O

_2n 2n D (k 2 ,;./147‘ )

v = T = y e . dy-

= Q0

. (2. 3.26)
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To express this integral in a more useful form it is convenient to in-

troduce new constants of and A, and a new variable of integration, u.

o = g%@i)“‘l' A= KV %3_ u =&y {2.3.27)

Then the integral becomes

I = 7 /¢Zn+1
n n
where
QO
2 4
I_(A) = e~ VZAuT-ut 20 (2. 3. 28)
= Q0

The derivatives of Jn can be written in terms of higher order inte-

grals.

1 — - =
J-n (A) = V 2 Jn—l‘l J-n” 2 Jnr!—Z

Then by means of an integration by parts, a recursion formula can be

found,
© P
4T o7 Z\fE/\Jn+l = du e-ﬁ oo (4u3+2‘\/7/\u)
- 00
= (2n+1)J_ (2.3, 29)

This relation can be converted into a differential equation

no_ Tt - - . 1 )
I NI tha T = 0 a_ (n+ 1) (2. 3. 30)

This is Hermites equation of order a - The solution can be written

in the form

T = T0) ¢ (M) + T (00 ¥ (A, (2.3.31)



-151~
where J'n'(O) and Jn(O) are the initial conditions and the functions

o, and Y o are given by the infinite series

(e°0]
%M) - )\ + Z(g”m (211*3)(2n+7)“o(2*1+4:n1~1) AZm-ﬁ-l (2. 3.32)
o Nyt ™ (2m+1) !
2m
(M) = 14 (-1 (2n+1)(2n+3).,“( 2n+4m-3) X (2.3.33)
£ | Z 2™ (2m) !

These series can be found by the method of Frobenius. The details are
given in the text by Miller (4), where it is shown that the series is ab-
solutely convergent for all A. Lyon (36) has evaluated the integral ‘Tn
but he uses a divergent series.

The coefficients Jn(O) and Jn'(()) of the series can be ex-

pressed in terms of Gamma functions as follows,

fo's) 4 0 2n+1

L |
- - —Z
J (0) = euuZn du-—l— dwe ¥ w *
n 2
- 00 0
' = =
3_'(0) V23, (0
Then
2n+3 1 Zn+l
3 "0) = T”( J0) = 5 T(5=) - (2.3.34)

The integral Ih’ equation (2, 3. 26), can therefore be expressed in
terms of the series f})n{)\) s Wn(),) and the coefficients Jn((}} and
1
‘Tn (0) »
The power spectrum of the system with a cubic spring will be

discussed in Section 2, 5,and the above results will be useful there,
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The frequency of crossing the positive p axis, equation

(2,3, 15), is given by the expression below for the case of a cubic

spring,
_ V D/Z'rrﬁmz _V k/Amm 2 ac
)/0 = of 5 58] = - i (2.3.35)
o 2y 273 (A)

where J'O{,\) is given by equation (2, 3. 30) ,
Sﬁmm&g

The Fokker-Planck equation for systems with nonlinear re-
storing force can be solved in the stationary case by a symmetry ar-
gument, The solution was originally found by Kramers, but he takes
the Boltzmann distribution as his starting point. A number of results
can be derived from the first probability density, which is essentially
the Boltzmann distribution. It is shown that the energy and the time to
follow a free vibration curve in the phase plane are independent coor-
"dinates, in the sense of probability theory. In the linear case, this
amounts to showing that the amplitude and phase are independent. The
amplitude is shown to have a Rayleigh distribution for the linear case,
4I’c is noted that the formula of Rice for the frequency of crossing is ap-
plicable to the class of nonlinear problems discussed in this section.
Finally, several of the integrals which arise in the case of a cubic
s;pring are evaluated., These integrals‘ will be useful in Section 2,5
where the power spectrum of a nonlinear system with a white input is

determined approximately.
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2.4 A NONLINEAR FIRST ORDER SYSTEM

In the preceding section a general class of nonlinear problems
was considered, and some properties of these systems were dis-
cussed, These results are all derivable from the first probability
density and do not depend on the transient behavior of the system.
Howevef, the transient behavior is required if the autocorrelation and
power spectrum of the output are to be determined following the meth-
od of Secﬁon 1.6 . It was shown there that if the mean irnotion of a
system as a function of the initial conditions is known,. then the auto-
correlation can be found using equation (1.6, 7). For nonlinear sys-
tems, the only apparent method of calculating the mean motion is from
the transition probability.

The problem to be considered is the motion of a mass subject
to a Gaussian v}h‘ite external force, N(t) , and an idealized Coulomb
force, -k sgny , where y is the velocity and "sgny'' means the sign

of y. The system differential equation is then
v +ksgny = N(t) . (2.4.1)

This problem was originally proposed by Professor Caughey for the
purpose of exploring the uniqueness of the stationary solution to the
Fokker-Planck equation for a nonlinear problem, which he showed by

considering the behavior of the Laplace transform of the transition

~ probability., These calculations are not yet published., The author

found that this problem leads to an interesting application of the gener-
al equation (1. 6. 7) for the autocorrelation, since the various integrals

can be carried out in terms of elementary functions. No other case
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where the power spectrum for a nonlinear system can be computed
exactly is known to have been published,

The example also serves as a basis for evaluating the accuracy
of the method of equivalent linearization, The approximation is car-
ried out using both the exact and the Gaussian probability densities as
weighting functions. It is shown that the exact distribution results in
the better approximation.

The differentiai equation (2,4, 1) is the equation for a mass sub-
ject to an external force, N(t), and an idealized Coulomb damping
force, - k sgny . If N(t) is whiie and Gaussian, the Fokker-Planck
equation for the system can be found from equation (1.5, 16) by putting
n=1, F=1 and G =k sgny.

T = ksgny T+ DT (2.4, 2)
y vy

Sincethe transition probability is the fundamental solution of equation
(2. 4, 2), the only boundary condition necessary for its solution is the
initial condition

T(y, ¥, 0) = 8(y - y,) (2.4.3)
where 6(v) is the delta function. The condition that the total proba-

bility be one provides a normalization condition
[T(Yos vst)dy = 1, (2. 4 4)

but this condition is automatically satisfied if the initial condition
(2.4.3) is imposéd., However, one musf require that the solution van-
ishes at infinity, which follows from the normalization condition, but
not the initial condition (2, 4. 3) .

The Laplace transform of the transition probability with respect
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to time will turn out to be more useful than the transition probability
itself, This is fortunate, because the method of Laplace transforms °
simplifies the solution of the Fokker-Planck equation considerably.
The notation to be used is indicated by the following formula:
oo
- ~st
Ty, s) = e T{v, t) dt . {2,4,5)
0

Taking the Laplace transform of the Fokker-Planck equation and using

the initial condition (2, 4. 3) one finds

sT - 6(y-v,) = ksgny TT—Y +D Tyy . (2. 4, 6)

The general solution of this ordinary differential equation is easily

~ found to be

Yy 2%+ 4Ds - a) - L (/2% + 4Ds +a)
T = AaeD ¥ ipe 2D (2.4.7)
where

a = ksgny . , (2.4, 8)

The delta function in equation (2. 4. 6) is equivalent to the jump condi-

tion at v = Vo below.

T gt s) - Tyly-s8) = /D . (2.4,9)

Now the probability must approach zero for very large positive or
negative y . Using this condition the solution of the equation (2. 4. 5)

must have the following form on the various segments of the y axis:
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+°(l'y
T = Ae y<0
. d-zy “acly
T = Be + Ce O<y<yo (2.4, 10}
.,a(ly
I' = Ee y>yo
where
2 ‘ 2
o = AtV A%4s o =_/\+\/A +s A= _k (2.4, 11)

1 _\/3 ‘Z \FE 2_\/’3

There are four gquantities, A,B,C,E to be determined, which are
functions of Yo and s, Thg four conditions for their determination
are:

a) the jump condition, (2.4.9);

b) continuity at vy = 0 ;

c) continuity at v = Vo ;-

d) the transformed version of the normalization condition,

(2. 4. 4)

0
Tlypvss)dy = 1/s . (2. 4. 12)
- Q0
The result of solving the four linear simultaneous equations rising

from these conditions is given below

HOCZVO ='OCZYO
A = € B = € —
2 0(2. D Tﬂxﬁxﬁ
A e'“ OCZVO '
C = (2,4, 13)
< [z
2D A +s
RS %1V

e

A +

e
g » _ =
2 yD (ocl+a(2) , D(oc1+o(2)
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Equations (2.4, 10) and (2. 4. 13) together provide the fundamental so-
lution of the equation (2, 4. 6) .

The solution can be inverted with the result given below:

_klyl oo 2

T = __,-li_._._ e D e ™™ du

2D 7o+ V|
2 /Dt

(y—yo-kt)z] |

k
P S e[fﬁ o=yl - = (2.4, 14)
This result will not be useful in what follows, but is presented for ref-
erence as the general solution to the Fokker-Planck equation (2, 4, 2). |
The autocorrelation can be found, using the method of Section
1.6 , from the formula given below, which is equivalent to (1.6, 7) .

0.0]

R(7T) = y

- 00

o W, v )y yst)dy (2.4, 15)
The mean velocity, v, is found by the ensemble averaging process in-
dicated.

oo
y = T (y,v:t) vy dy (2. 4. 16)
- 0o
It appears extremely difficult to carry out the integration explicitly,
but if the Laplace transformed variables are used the integration be-

comes tractable., Hence the problem is to evaluate the in’cégral
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o0
v = T(yevss)ydy . (2.4.17)
- 00
The integrand is given by the expressions (2.4, 10) and (2. 4. 13). A

straightforward but cumbersome calculation gives the result

b

- K v
= k 2
Y(Voss)=—fsg"-;mz(1me

©) (2. 4. 18)

where 0(2 is given by equation (2.4.11) .,
Several remarks about the solution, :}}T{yo, s) , for the trans-

form of the mean velocity are appropriate at this point. One expects;,

on physical grounds, that the mean velocity must be initially Yo and

approach zero asymptotically for large times, These results may be

verified using the Tauberian theorems.

Iim

s >op SYVWes)=7vily,0) = v,

Iim

c oo 8Vlyps)=7vyly,co =0

In the limiting case where the spectral density, D, goes to
zero, the solution to the deterministic initial value problem can be re-

covered,

In the absence of a random force, the velocity decreases linearly to

zero, which is to be expected from elementary mechanics, The effect
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of the random force, N(t), is to make the decrease to zero velocity
asymptotic as the time becomes infinite. This is illustrated in figure
2,4. 1,

y(t) A

Figure 2,4, 1 The Mean Motion of a Mass with a

Random Force and Coulomb Damping

The Laplace transform of the autocorrelation function can be
obtained by transforming equation (2. 4. 15) and substituting the mean

velocity given by (2. 4. 18) into the resulting equation.

Q0
y =% (s)y
Ri(s) = v, W, v )| = - _1?2 (1-e 2 7°) dy (2. 4. 19)

ER
s
-
The first probability density may be obtained in several ways, One can
let t approach infinity in the expression for the transition probability,
(2 4. 14), or use the Tauberian theorem and let s approach zero in
(2,4, 10) . The easiest method is to solve the stationary Fokker-Planck

equation.

k + DT =0
sgny Iy vy
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This eguation can be easily solved using the normalization condition
{2, 4, 4) to determine the constants.
Kyl
W, = %}j e D (2.4, 20)
Substituting into {2, 4. 19) and carrying out the integration, the Laplace
transform of the autocorrelation function is‘found.

2 2
R(s) = ADZ - DZ + 2)\4D (A= )\2+ s ) (2. 4. 21)
2 S 2s s

It may be of interest to verify the limiting values of the autocorrela-

tion, From the Wiener-Khintchine relation it follows that

R(o) = vy . (2. 4. 22)

This can be verified as follows. From the first probability density,

(2. 4. 20), one can compute the mean square velocity

* 2

. 2 2D
yoo= yoW,y)dy = —5
- o k

and from the Tauberian theorem one must have

lim D
sR(s) = R(0) = —=.
s —> 00 2)\-2

Then with the definition of A, {2.4.11), it can be easily verified that
R(o) is the memn square velocity,

| IFrom the general theory of random variables it is known that
the‘ autocorrelation must vanish for large time,‘ It can be shown that
this is the case here by carrying out the.limits indicated in the follow-

ing equations
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R(z) = "™ (R(s) = 0 .
7" —» 00 s—0

Iim

vIt is easy to calculate the power spectrum if the Laplace trans-
form of the autocorrelation is known. To do this, the Wiener-Khint-

chine relation, (l.3.7), is required.

(o 0]

dlew) = % R(7T) coswT 4T

Then by comparison with the Laplace transform formula

oo
R(s) = R(z) e *Far
0
it is readily seen that the relation
- 2 —
p(w) = = Re R(iw) (2, 4, 23)

must hold, where "Re" means 'the real part of,'"" Therefore, the
problem of computing the power spectrum is essentially algebraic if
the Laplace transform of the autocorrelation is knéwn, An ambiguity
in the algebra arises because of the square root appearing in the ex-
pression (2, 4. 21) for the autocorrelation. In computing the real part
of R(iw), the éign of the radical must be chosen so that the power
spectrum is fini’ted at zero frequency., The result of this computation is

given below:

14V 12+w2//\4 2. 4. 20

Blw) = o I
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At zero frequency the above expression is indeterminate, but a limit-
ing proéess shows that the power s?ectrum at zero frequency has the

value

3
$(0) = °D - 2D . (2, 4. 25)

16T /\4 'rrk4

It is convenient to deal with non-dimensional power spectra, In
order to accomplish this, one can define a non-dimensional frequency
| 2
7 =w/A (2. 4, 26)

and a non-dimensional spectrum

2
o(7) = iﬁ’—(—,‘j’-_—_)wL_ . (2, 4. 27)
y

Using again the Wiener-Khintchine relation (1. 3. 8) one can write

(00]
—

plw)dw = y° .

The above expression can be combined with equation (2. 4. 26) and
(2. 4. 27‘): o

CP(2)d7 = 1 . (2. 4. 28)
0

Therefore, with the above normalization the power spectrum curve has
an area of unity, 'The analytic expression for ¢(7) is given below in
termé of the non~-dimensional fx_'equencys 7 o
ol7) = 2L + 8 L AV 7% (2. 4. 29)
T | 72 24 2

The shape of this power spectrum is given by the graph, figure 2. 4. 2,
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FIGURE 2.4.2
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The Equivalent Linear System. One motivation for the analy-

sis of this section is that it provides a means of evaluating the accura-
cy of the method of equivalent linearization, Section 1.7 . This leads
to an approximate, and somewhat simpler, expression for the power
spectrum, Compa’ris'on of the approximate and exact power spectra
shows that the method of equivalent linearization gives a reasonably
good approximation,

Twé different equivalent linear systems can be found, depending
on the choice of the first probability density, Wl(y). * It will be seen
that the better approximation is obtained using the exact value of the
first probability density, but the power spectrum obtained by using a
Gaussian first probability density is not unreasonable,

The method of equivalent linearization allows one to determine
the '"best' value of the equivalent linear damping coefficient, f . Then
one can obtain by standard methods the power spect'r.um of the equiva-
lent linear system

v+ By = N({t) . (2. 4. 30)
To accomplish this, it is noted that the mean square error is given by

the expression

—~ o 2

£° = [y -] W gy

= Q0

and the damping coefficient which minimizes this quantity is

Al
g

This subject is discussed also in Section 2.5,
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o0
/ y iy) W,(y) dy

B =

oo
m L4

2

y W,ly)dy
00
If Wl(y) is the exact probability density given by equation (2. 4. 20),
the corresponding damping coefficient is denoted by ﬁE . After car-

rying out the integration one finds

Bp = 1<2/2D . (2. 4.31)

If Wl(y) is chosen be Gaussian, the corresponding damping coeffi-

cient is given the subscript G, and its value is

Bg = 2x%/7D . (2.4.32)

Following the method of Section 2.1 , the corresponding power spectra
for the equivalent linear system of equation (2. 4. 30) is found toc be, in

the two cases,

1 1
¢ = g'—";‘z';;z"‘ (2. 4.33)
L+l .

1 1 -
6. = = (2. 4. 34)
G T 1 +72/4

The comparison of these two approximate spectra with the exact result
is given in figure 2. 4. 2 . It may be noted that for large 7 the exact
power spectrum and the approximation, ¢E(7) , are both asymptoti-

- cally equal to 4/1?272 , whereas ¢G(7) is asymptotically equal to

8/'r,r272 .
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In this analysis, it is seen that it is better to use the exact dis-
tribution, Wl(y) s as a weighting factor in computing the best equiva-
lent linear system rather than to use the Gaussian distribution. This
conclusion is also found in the analysis of Section 2.5 for a second or-

der systems.
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2,5 HIGHER APPROXIMATION TO THE POWER SPECTRUM OF A
NONLINEAR SYSTEM

The response of linear systems to random inputs can be calcu-
lated using the methods discussed in Section 2,1 . For nonlinear sys=-
tems, however, the only general technique available is an approximate
one, the method of equivalent linearization, which was discussed in
Section 1.7 . In that section the best equivalent linear system is found.
The power spectrum for the equivalent linear system can theﬁ be de-
termined by standard methods.,

An iterative techﬁique suggested by Professor Caughey is intro-
duced in this section which can be used to calculate higher approxima-
tions to the power spectrum of the output of a nonlinear system., The
calculations are carried through for a system with a cubic spring, and
it is found that the first approximation is practically unmodified, ex-
cept for a small increase in power at the third harmonic., The area
under the power spectrum curve is the same in the first and second
approximations.

Thé differential equation of the system to be investigated is

y +BY + fly) = N(t) (2.5, 1)
and the system input, N(t) , is taken to be Gaussian and have a white
power spectrum., In Section 2,3 it was shown that a general expres-
sion for the first probability density, W{(y,p), of the system can be
given, This expression will be required to carry out the required cal-

culations, and is reproduced below.,



g pz
D (—2— + F(y))
W(y,p) = (2. 5. 2)
© -5 ry)
2wD/B e dy
- 00
where
FYy) = £(y) . (2. 5, 3)
In the detailed célcula‘tions, f(y) will be taken to the cubic
: 2 3
(y) =woy+/uy . (2. 5. 4)

Now the method of equivalent linea.rizaj:ion will ber applied to the sys-
tem described by equation (2.5.1), To do this it is necessary to find
the value of K to be used in the analysis of the equivalent linear equa-
tiomn.

v, T By, + Ky, = N(t) (2. 5. 5)

- The mean square of the difference between the linear and the non-

linear restoring force is

,52 = j] W(y, p) [KY - f(w] dy dp (2. 5. 6)
-

and the value of K which minimizes this difference is

00
y f{y) W(y, p) dy dp
K = - z - YJ;(Y) . (2’597)
2
f v° Wy, p) dy dp y
- Q0

It is interesting to note that the mean square displacement of the exact

and the equivalent linear systems are equal, To see this, the numera-
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tor in equation (2, 5. 7) is integrated by parts. One finds, using (2.5.2),

K = —& . (2.5.8)

But in the discussion of linear systems it was found (equation (2, 1. 25),
that the mean square displacement of the linear system described by

equation (2, 5. 5) is, in the stationary case,
—~ .
2
Yo = D/BK .
If the expression for K in (2.5.8) is substituted into the above equa-

tion, it is seen that the mean square displacement of the approximate

system is exact.

/\2‘( —~
o = —pE— = (2.5.9)
8 (L)
v

Now the mean square displacement is known to be the area under the
power spectrum curve, One might then anticipate that the area under
the exact power spectral curve and the various approximations to it
are equal. It will be seen that this can be proved in the case of the
second approximation.

If the nonlinear restoring force is written in the form
2
f(y) =woy+/4h(y) s (2. 5.10)
then the equivalent stiffness, K, is found to be
K = 2 + (2. 5. 11)
- w O / C ‘ 2 o

where
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o0

y h{y) W(y,p) dy dp

- m .
c = = . (2.5, 12)

2
vy W(y,p)dy dp
= Q0

The system differential equation can then be expressed as follows:

¥ +By+ Ky = N(t) + £ (y) (2. 5, 13)
where
£ = Ky -w’y - uhly) = mlcy - h(y)) . (2. 5, 14)

If u is small, then sois & . This is the justification for the itera-
tion procedure which follows. The first order approximation is ob-
tained by neglecting £ , and is the same as equation 2.5.5 . The iter-

ation procedure consists of substituting terms into the right side of

(2. 5. 13) according to the scheme below.
ee ° = _ ! . .
Yn + 5Yn * Kyn (yo +/4Yn_1) ¢ h‘yo +/uyn~l) (Zf 5 15)

In the first iteration, the term V.1 on the right is zero. The ap- .
proximate solution to the original equation, (2.5, 1),is the sum

V= Vot Uy, e (2. 5. 16)
If the iteration process converges, equation (2, 5. 15) becomes in the
limit for large n

Vot BV, Ky, = 7o+ uy)e-hly + uy,) .

Multiplying this by /4,{ and adding to equation (2. 5. 5), it is seen that
y » which is obtained from equation (2. 5. 16), satisfies the original dif-
ferential equation exactly in the limit.

Although the ultimate intent is to calculate the power spectrum,

it will be convenient to start out by determining the autocorrelation of
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the displacement, The general procedure to be followed will be that
described in Section 1.6 and used in the Coulomb damping problem,
Section 2,4, The basic formula of the present method, equation
(2,5,17), is taken from equation (1.6,7) . It will be convenient to use
a different notation in this section, 'S;'ane the subscript n is used to
indicate the order of iteration, the initial conditions of y and y =p
will be denoted by ¥ and p . With that understé.nding, the autocorre-

lation can be written

(e8]
R(7) = 7d49dp T (9, 0,7) W%, p) (2.5.17)

- 00

Since in the present method y is expressed as the sum of two terms,
it will also be convenient to split up the autocorrelation into two terms.
Furthermore, it is more convenient to deal with the Laplace transform
of the autocorrelation than with the function itself. As in previous sec-
tions, the Laplace transform will be indicated by a bar, Then the La-

place transform of the autocorrelation is expressed in the form

R(s) = ﬁo(s)-l-/uﬁl(s) : (2.5.18)
where
o0
'ﬁo(s) = H d4dp 9‘;(7, ps8) W(%, p) (2. 5. 19)
-
and
. oo
Ry(s) = 7d2dpY, (7. p:8) W7, p) (2. 5. 20)
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Because v is the sum of two terms
Yo=Yt MY, (2.5, 21)

there is some freedom in the manner of choosing the initial conditions.

They will be selected as indicated below:

y,(0) = # .00 = p

y,(0) = 0 ¥,(0)

(2. 5, 22)

1
(&)

The expression for y'o is easily found since the mean value of N(t) is
zero, The ensemble average of the differential equation (2, 5. 5) is
taken, and it is noted that the average of the white noise function is
ZEero,

Vot ﬁyo + Kyo = N(t) = 0 (2. 5. 23)

The solution of this equation can be written

o~

Vo = 7 a(t)+pb(t) (2. 5, 24)

where 4 and p are the initial conditions and

- e p P
a = e (coswlL+ o smwlt)

(2. 5. 25)

where
w, = VK-B%/4 . (2.5, 26)

If the nonlinear term h(y) is odd, then W({(p, 7) will be an even func-
tion of p and % . By considerations of symmetry it is then found

‘that o~ —
R (s) = 3(s)7% = 3(s)y" . (2.5, 27)
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In order to obtain the second approximation to the autocorrela-
tion,equation (2. 5, 15) must be solved with the initial conditions given by
equation {Zu‘ 5., 22) . Using the method of Laplace transforrhs, the solu-

tion can be written

’ﬂ: 20 ° . | (2. 5. 28)
s +8s+ K

The mean value of h(yo) must be evaluated as a function of the initial
conditions % and p. In order to accomplish this, the ensemble av-
erage is computed using the transition probability for the equivalent

linear system, which can be expressed in the form T(p—ﬁg, yo-’}\r;, t)e

The mean value of h(yo) is then

0.0]
hiy,) = dy dp, T(p -P_» V-V, t)hiy,) .

)
By a change of variables one finds

o) v
hiy ) = du dv T(u, v) h{u +F) . (2. 5. 29)
- 0
A specific function must be introduced for h(y) in order to carry out

further calculations. For the cubic of equation (2.5.4), h(y) is

3
hiy) = v~ (2. 5. 30)
Then
h{u+yo) = u” + 3u y0+3uyo Ty, e

Substituting this into equation (2. 5. 29) and noting that T is even in u
one obtains

hiy,)) = 3y_ v +tv, . (2.5, 31)
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In the analysis of linear systems, the history of the mean square dis-

placement was found in equation (2. 1. 34), and is reproduced below,

3 D ¢ 2 2
'y‘o = ——z- ]. = e—ﬁ 1 + —ﬁ;'z Sin wlt + '-2“@— Sin Zwlt e
IR 20 1

It is advisable to carry out the integration indicated in equation (2.5.20)
immediately, because a number of terms drop out, Substituting from

equations (2,5, 12), (2.5.24), (2.5.30), (2.5.31) and noting that W(7, p)

is even, one obtains

/~— —~— —~ o~ ——
. 37\/a~ 4a3 372p2ab2
Ry(s) = y , (2. 5.32)
ps + K ’
Where the expression (2.5, 12) for the constant c is ertten
/’7 . (2. 5,33)

A somewhat lengthy series of calculations is required to com-~

pute the Laplace transforms of the various functions listed below.

ESR S8 N (2. 5. 34)
s +Bs+ K

ayzzﬂ s +pB D s+ 9p/4
° " PR Zips+k  pwl| (s 4B ) twl

2

B 3,..38

Ig S - Eﬁ+ZT€] (2. 5. 35)
(s + 25 )%+ 9wt |
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2 3
' 3B 3P
(}.BZ;IZ)S‘{‘éﬁ“—Z—;‘Z
3 3K s+ 28 1 1 1
2’ = K iy g Bz 5 (2. 5. 36)
4w1 (S-f-—z—) +a)l (S+—-Z-) +90~Jl
o . Y ~
abz - 12 s r.)g ‘ _ S+32§ (2. 5. 37)
4e) 38 2 33 2
L s+ ) +W7 (s + =) + 90

The value of the mean square velocity is obtained from the analysis of
linear systems, equation (2, 1, 25),
P

o’ = DIp . : (2. 5.38)

Substituting these results into equation (2. 5. 32), and simplifying, the

autocorrelation can be written

—
_ i 3 3
R, = (y -_l’~KP- NA, --Jé Az--iz Aj) (2. 5. 39)
: 4w 4w

1 1
where

— s +p '
A= —7

(s™ 4+ Bs + K)
A = t2p ! (2. 5., 40)
2 38 % 2 8% 2

(s +37) +w] (s+5) +w]
A - 1 s(K - B%) - 38° + 6B K
> % 1B+ K s%+38s + 9K

There will be no further need to use the symbol 7 to define an initial

value of y , since its moments have been expressed in terms of known
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functions. In what follows, % will be used to denote the frequency
ratio, and 5 the damping factor with respect to the original frequency,
We e The frequency, wo s is chosen as a reference rather than \/ K

because it is independent of the input vibration level, D, The various

functions will be expressed in terms of the nondimensional parameters

. W . _B _ VK ,
D= o 5= ) = o (2.5, 41)

At this point, it is possible to prove that the added increment,
‘I)l(w) s to the first approximation, q;o(w) s to the power spectrum has
a net area of zero., The proof depends on equation (1, 3.8), which is

rewritten below.
R(o) = Plw)dw = vy (2, 5.42)

But by the Tauberian theorem of Laplace transform theory
lim .
R{o) = s R(s) . . (2. 5, 43)
S —> 0O

It can be verified using equations (2. 5. 27), (2. 5.34), and (2. 5. 43) that

R (o) = y° = $o(w) dew
0

and a similar calculation using equations (2. 5. 39),and (2. 5, 43) shows

that
loe)
Rl(-o) = 0 = c}l(w) dw (2. 5, 44)
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With this result, the power spectrum can now be computed directly.
Combining equations (2. 5, 27), (2.5.34) and (2. 5. 41), the first approx-
imation is determined.
2z 4

2

By J |
\ (2. 5, 46)
24 wza7z)z+4jz7z

EREN

o lw) =

Let a, = Re A(iw) . Then from equation (2. 5. 40) it is found that

a g yrogtooastor

2y =) 3 Y 2
[()’2-?2) +4.5272]
4 2e2 2,2 pih
a, = ]4_2% ) ~+8)73" - 163°7% -7 (2.5.47)
K

~ 2 2
| [uzwszm 2%} 4 36 32?2][“'2-72) + 45272}

_ 22 2+ 28% 0% C 24t L 33H PP 2707 - 287

23 K > 5
{(}'2-75 + 45272] [(9)/2-72) ¥ 36‘52?2]

Combining these results with equations (2. 5.39) and (Z. 5, 44), the cor-

rection term, c}l(w) , to the power spectrum is found:

7
YK 7) = «51-35?3 >i§2 F (5 7) (2. 5. 48)
. i
where '
4 2,2 4
4 DT L4t L)y
F.($,7) = -
1(3:7 J [(y2=?2>2+432?2]2
300 2% 4163272 -yt gs¥y° |
y2-5% [ 5esPph)% 4 363% ) (597 + 4307
4 2 2, 4 4 . 4,2 2 .u2..4
+% 2)’ (YE+28%)77" - 24() "-338)7" + 27(¥y"-23")) (2.5.49)

23 [0%rh e asta?][ 005757+ 365777
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These last two equations give the correction term to the power spec-
trum.
Consider the significance of the first factor in the power spec-
trum correc‘s?ion (2. 5; 48)., If the first probability density, Wl(y, Pl
were chosen to be Gaussian, the moments of the distribution would be

related as follows

——r » —~n
v 2 1. 3.5... (2n-1)y% .
If n=2, then
4 2
y =3y .
But from equation (2. 5. 8),
2
y = D/BK .

Consequently, if the first probability W(y,;p) is chosen to be Gaussian
in y , the correction to the power spectrum é‘;l(w) vanishes. Hence
it is necessary to use the exact distribution for W(y,p) given by equa-
tion (2. 5, 2) in order to obtain a non-zero correction term, and the
first factor of (2. 5. 47) may be considered a measure of the difference
between the exact and a Gaussian distribution in vy .

The moments can be evaluated using the results of Section 2. 3,

From egquation (2, 3. 26), replacing k by wi ’

7 _ 1 W = 1 N (2. 5. 50)
U2 WO VS 2 T $
and for a system with unit mass, the parameter of becomes
o= (up/4D)/* . | (2. 5.51)

The equivalent frequency, K , is expressed in equation (2. 5. 11) in
terms of the constant ¢, which in turn can be written in terms of the

moments Jn .



J J
2 V2 "2

K =w + —— =) {1+ == =) (2. 5. 52)
/“oCZJ Ay

Using these results the first factor of (2. 5.48) is

Iy

VZ A+ 23,03, } °

N /“2_‘
y4:__3D"y' _ 1 3 3
PR OCZLJO 272

It is convenient to eliminate T, using equation (2, 3. 29):

A

! N o

JzzzJOﬁl

This results in some simplification of the above formulas., The equiv-

alent frequency, K, can now be written
2

W J
° ° (2. 5. 53)

K = ———e—e— —
2V 2 I

and the parameter, / , which serves as a measure of the nonlinearity,

is
VX J
o
) = = e e (2. 5. 54)
“o 2Vz Ag, :
Then the first factor of equation (2. 5. 48) becomes
I 3 D;? 1 1 3 »
vy - = (1 - —= = —5~— ) - (2. 5. 55)
B K 40C4 yZ 2 /\Z },-Zl:_

—~—

Dividing equation (2. 5. 42) by yz , one can write

Hence a non-dimensional power spectrum, ¢O(7) , can be defined as



-180-~

follows:

$ (7)) = = o 7)

%N?loe

Then, taking advantage of equation (2. 5. 44), it is seen that the non-

dimensional power spectrum is normalized to have an area of unity,

f $,(7)d7 = $(7)d7 = 1
0 | . /0

The first order approximation to the power spectrum can be

written
4 3
CIDO(?) = T2 Fo(-f:?)
where from equation (2. 5. 46)
4
_ Y
Fo(j’ 7) = B

z
w2 - 72) . 4(5272

and the correction to the power spectrum can be handled similaﬂyo

C\)O :
$(7) = = we7)
Y
From equations (2. 5.48), (2.5.50) and (2. 5, 55) the expression for the

correction term, ¢1(7) , can be derived in terms of non-dimensional

parameters,

435 1 3
()=——"~—(l--—§-—-—-—-—)F(3’s)
(l)l? 'n'.VZ Y 2)&)’4- 1 7

The non-dimensional power spectrum in the second approximation is

then
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¢ = gty = jyf'z [Fo(Ss?)-!-(l u71-2- ME%F)FI(S,?)] (.2.,5,5&

‘The formulas needed to compute $(9) are summarized below.

2 g o g

;{:wo 24D 7= PR X

1/ I (A)
22 A5,

I_(A) = T_M0) ¢ () + I (0¥ (1)

n
1,000 = 3 TR 7,(0) = \—[1—-_ ey
(o0
A (2n+3)(22—:7) oo (2ntdm-1) o 2mtl
= (2m+1) !
Yoo 14 i (2n+1)(2.n+5 . {2n+4m-3) AZm
o = (Zm) '
4..
Y
Fo = 2
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4 9t as%9% 4yt

£ B 2 ,2.°% 2,2 1%
[u —7>+4—57]

390 9% 165292 gt gs2y®
z
[()’Z+ 8 32572> + 365272“:(72—72)

2
+45272}

yE L Pr sttt osstrt oyt ash ot

S ) 73 - 72
yo-3 [()2-72> +4>’272H<w2-72) +365272}

Because of the complexity of the correction term, some nu-
merical results are presented below to illustrate the magnitude of the
correction. The values of the Gamma functions are obtained from

Jahnke and Emde, (37).
1 3 5
T(zﬁ = 3.6256 T(z) = 1,2255 [z) = -9064
The fundamental parameter A has no direct physical interpretation,

but it is completely determined by J , the ratio of the equivalent non-

linear frequency to the small amplitude natural frequency, as follows

| EX0N
)’ = \/—-IE = JO(/\) = ,595 _—'9“"- °
“o 2VZ AT, ATy(A)

Therefore, J/ can be selected on the basis of physical judgment and
the corresponding A determined analytically., A table relating these
two parameters is given below, and values of JO(,U' and Jl(,\) are

also given there,
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/\=wz\jz;§-1—j Jo I3 y:%og
.1 1, 7305 . 5530 3,326
.2 1. 6560 . 5010 2, 420
.3 1. 5885 . 4555 2, 045
L4 1. 5269 . 4157 1, 800
.5 1. 4706 . 3806 1, 650
.6 | 1. 4190 . 3495 1, 545
1.0 1, 2496 . 2557 1.316
1, 414 1.1193 .1932 1, 248

The correction to the power spectrum was calculated for the case
where the equivalent frequency, K :)/6«.)0 , 1is 25%0 above the low am-
plitude frequency, W s and for a damping of 5%o of critical. The ap-
propriate parameters are, in this case,

Y= 1.25 =V 2 %= .05
Then the coefficient of the second approximation term in equation
(2. 5. 56) is

1.t L3 - . .048312 .

V2 aafyt

The first order approximation, ¢0 s and the correction term, ¢1 s to
the power spectrum are tabulated below, for the above values of the
parameters, A graph of the power spectrum in the first and second

approximations is given in figure 2,5, 1 .
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TABULATION OF THE FIRST APPROXIMATICON AND THE
CORRECTION TERM FOR THE POWER SPECTRUM

Non- Non-
Dimensional Dimensional
Frequency Frequency  First Order Correction Percent
Referred to Referred to Approximation Term Correction
Natural Equivalent
Frequency Frequency
100
7=wlw w/VE by ¢, g
: 4 ¢O
0 0 . 02043 -, 00031 -1. 5
. 500 . 4006 . 02993 . 00074 2.4
1. 000 .8012 . 15433 . 00386 2.5
1, 246 . 9982 3. 18852(max) -, 04576 -1. 4
1. 273 1. 0200 2, 54883 . 98867(max) 8.3
1. 286 1. 0300 1.94253 . 87054 44, 8(max)
2,000 1. 6023 . 00826 -, 00027 -3.2
2, 500 2,0000 . 0023 ' . 00001 .4
3. 000 2. 4035 . 00089 . 00013 14. 6
3.745 3, 0000 . 00032 . 00159(max)497. 0

4,372 3.5000 . 00016 . 00003 18. 8
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Conclusions on the Behavior of the Nonlinear Oscillator

1. The power spectrum of the equivalent linear system is
corrected by only a few percent in the second approximation, except
in the neighborhood of the fundamental and the third harmonic fre-
quencies of the equivalent linear system. Although the correction is
as high as 45%0 near the equivalent natﬁral frequency, the apparently
large correction can be interpreted as a slight horizontal shift of a

very stéep curve, This can be seen by inspecting the graph, figure

2.5, 1.

2. A resonance type behavior appears at the third har-
monic, but its damping is about-three times that associated with the

first harmonic.

3. The weighting function used in computing the correction
must not be the Gaussian distribution of the equivalent linear system,
or else a zero correction results. This is seen from the fact that .
the leading factor in equation (2. 5. 48) vanishes for a Gaussian dis-
tribution. The exact probability density is used for the weighting fac-

tor in this analysis.

4, The net area under the power spectrum correction
curve, c()l(?) s is zero; and the first approximation, ¢0(7) , has for

its area the exact value of the mean square displacement.



APPENDIX

A DERIVATION OF THE FOKKER-PLANCK EQUATION

The derivation of the Fokker-Planck equation was pursued at
some 1e’ngth because of the complexity of some of the 1imiting pro-
cesses, and with the hope of illustr‘ating in detail the mechanism of
the random process. It may be of value to illustrate the procedure
using a somewhat simpler example in which the output of the R-C net-

work, sketched in figure A-1, is considered,

e R v
C—l . ’e)
@

Figure A-1 R-C Network

The output of this network is v(t), and the input, e(t), is taken to be
a random function which can assume only the discrete values na,
where n is a positive or negative integer and na is some constant,

The network is governed by the differential equation
v+pv o= @& (A1)

where B =1/RC. The random function e(t) is defined as follows.
A change in e(t) occurs whenever a coin is flipped, and it is a for
heads and -a for tails, In contrast to the randorﬁ walk problem,
where the coin is flipped periodically, the time of flipping is taken to

be random, and the probability of being flipped in any interval, At,



-188-
to be the same. The coin flipping can therefore be described by a
Poisson process in which the average frequency of flips is / . The

probability distribution of Ae is then given by
q(Ae) = %(l—e_/uAt)[cS(Ae-l-a) + S(Ae-a)} + e M2 §(ne) . (A2)

The voltage e(t) is a time series of steps, and its derivative, é , is
a sequence of delta functions. The last term in equation (A2) is the
probability of no change in time At.,

Integrating equation (Al) over the interval At one finds
Ay + ByAt = Ae . (A3)

Now the probability .of a change in voltage less than Ae in time At
is
Ae
Q (Le) = dx q(x) , (A4)

and the probability of a change greater than Ae is
Q+(Ae) = 1-0Q (de) .

Let T(v) be the transition probability of the output. The
probability that the voltage crosses through the value v in the posi-

tive direction during the interval At is

v

r, = T(7) Q (v +Bvat -#)d Yy . (A5)

- 00

This is the probability that the voltage is near % , times the proba-
bility that the jump, Av, is greater than v-7% in time At, integrated

over all 7 less than v . The geometry is sketched in figure A-2,
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Figure A-2 Geometry in the Calculation

of the Frequency of Crossing

Similarly, the probability of a negative crossing is
r = T(72)Q (y -7 +pAt) . (A6)

The net number of positive crossings in time At is then

v Q0

T, - r:': T(7) [l - Q_(v-?ﬂ%vAt)] d7 - T(7)Q_(v-7+ﬁAt) d~
=00 . v
(A7)
Now set
y
T(7)d7 = R(y) . (A8)
- 00

Then after appropriate integrations by parts and using the fact that

I

R(-) = Q(- ) = 0, it is found that

H
i
=
1

| o |
I R(V)-j' R(7) a(v-7+Bvat) dy .

(0.0]

The indicated integration can be carried out using equation (A2) with

the result, to the first order in At
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r -1 = At | -4 | R(v+a)- ZR(v) + R(v - a)) - BvR(v) o

——— = = BVR'(V) - 7% R{(v+a) - 2R(v) + R(v—a.)) .

But the rate of decrease of the probability of being to the left of v
mustéqual the net rate of crossings to the right per unit time. Then

one can write

“R = - A

5 R(v + a) - 2R(v) + R(v - a)) - BVRYv) .

The final result is found upon differentiating with respect to v and

using equation (A8):

T = '3?\7 (ﬁVT)'i'J% T(v +a)-2T(v) + T(v - a)) . (A9)

If a goes to zero and u approaches infinity in a manner such that

the Fokker-Planck equation is obtained,
aB
T = -2 (ByT) + DT (A10)
oy vy

Many of the properties of the Fokker-Planck equation are also pos-
sessed by equation (A9). First, it is noted that the ''total probability"

(0.0]
Tdy = 1 (Al1)

- QO

‘must be constant, To see this, integrate (A9):
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o] 00 [8.0]

& T dy = ‘a% (vT) +4 | | T(v+a) - 2T(v) + T(v-2)|dv

- QO - 00 = QO

The first term on the right vanishes upon integration by parts with the
assumption that the probability vanishes fast enough at infinity, By a
change of variables, the second integral is also seen to be zero, which
proves (All), if the constant is chosen to be unity.

To examine the behavior of the first moment, multiply (A9) by
y and integrate, Using the tilda to denote the ensemble average

,-"7 —~

- -p% V= ov e (A12)

In a similar manner one can determine the variance, u, where

—~ 2
u:((v-?;)2>= vz-v2 .

The differential equation for the variance is found to be

'1'1+2,Bu =/ua2

and the initial condition is u(0) = 0, The variance is then

2
u o= M2 (1- e 2Bty . (A13)

and it tends asymptotically to the value
u = u az/ 28 .

The mean voltage and its variance have the same behavior as for the
B .
case where the input is white,

In the case where B = 0, it is possible to compute the exact

solution to the difference equation which results when the Laplace



transform with respect to the time variable is taken, that is

oo
— -st
T(v, s) = e % Tv,t) dt . (A14)
0
The difference equation is
T(v,s8) - &6(v - VO) = ,Ag- T(v+a) - 2T(v) + T(v - a)) (A15)

and its solution can be written, in the case where v =0,
o

1 S + (2.{.1 )_;S_ @ .

1 u V MM E 8(v +pa) + & (v - na)

2 : n
s [ s , S — s / s s

It can be shown that this solution tends to the Brownian motion

. (Al6)

—T_(Vs s) =

function. The transition probability density is a function which is a
sum of delta functions. In order to determine a continuous function
which is the limit of T(v, s), one may determine that function which
has the same area in any small interval. To do this, calculate the

integral

To the first order in Ay it is found that

v _+AV
° 1 -Vs/D v,

1 T T dv = ——— e : .
AV 4sD

Then the average value of T(v, s) in a small interval, which is the



expression on the left, is

T(v, 8) =

The inverse transform is

2
v

e' 4Dt
T(vst) = ——— 3

‘\/4TrD1:

(A17)

which is the fundamental solution to the classical heat equation, which

is obtained by setting f = 0 in equation (AlQ).

T =DT
A

(A18)
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