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ABSTRACT 
 

Curcusone C is a tricyclic diterpenoid natural product possessing potent anti-cancer activities 

as well as a structurally unusual 2,3,7,8-tetrahydroazulene-1,4-dione skeleton. Herein, we report 

our evolving synthetic efforts toward the divergent total syntheses of ent-curcusone C and several 

structural congeners, which commenced with a Suzuki coupling of the peripheral carbon-based 

rings. Whereas the boronate partner was constructed from cyclopentenone, the halide partner could 

be elaborated from (S)-perillaldehyde. The alcohol coupling product was next esterified, then 

subjected to diazo transfer and cyclopropanation to produce a lactone. The resulting vinyl 

cyclopropane moiety was exposed to Kauffmann olefination conditions in order to form a 

divinylcyclopropane, which upon reductive lactone opening smoothly underwent a Cope 

rearrangement to establish the essential tricyclic core embedded in the curcusones.  

Due to ongoing issues of scalability as well as unsatisfactory yields for the key 

cyclopropanation step, this route was ultimately abandoned, and an alternative strategy was 

devised which instead relied on a cross-electrophile coupling to join the peripheral rings. We 

further found that a central ring could be constructed via either Stetter annulation or ring-closing 

metathesis (RCM), accessing the tricyclic core of the curcusones in only 9 steps. Potential end-

game strategies are further described. 

We additionally report our experimental research into the acyl-amination of in situ-generated 

arynes using symmetrical imides. The difunctionalized aryl products could be further derivatized 

to synthetically useful indoles and quinolones via McMurray coupling and Camps cyclization, 

respectively. 
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e.g.   exempli gratia 

equiv   equivalent 

ESI   electrospray ionization 

exp   experimental 

FAB   fast atom bombardment 

FID   flame ionization detector 

g   gram(s) 

GC   gas chromatography 

gCOSY  gradient-selected correlation spectroscopy 

h   hour(s) 

HMDS   1,1,1,3,3,3-hexamethyldisilazane 

HMPA   hexamethylphosphoramide 

HPLC   high-performance liquid chromatography 

HSQC   heteronuclear single quantum coherence 

hv   light 

Hz   hertz 

IBX   2-iodobenzoic acid 

IC50   median inhibition concentration (50%) 



 xviii 

i.e.   id est 

i-Pr   iso-propyl 

IR   infrared (spectroscopy) 

J   coupling constant 

JohnPhos  (2-Biphenyl)di-tert-butylphosphine 

kcal   kilocalorie 

KHMDS  potassium hexamethyldisilazide 

l   wavelength 

L   liter, ligand 

LDA   lithium hexamethyldisilazide 

lit.   literature value 

m   multiplet; milli 

m   meta 

m/z   mass to charge ratio 

M   metal; molar; molecular ion 

m-CPBA  meta-chloroperbenzoic acid 

Me   methyl 

MHz   megahertz 

min   minute(s) 

µ   micro 

MM   mixed method 

mol   mole(s) 

MOM   methoxymethyl 



 xix 

mp   melting point 

Ms   methanesulfonyl (mesyl) 

MS   molecular sieves 

n   nano 

nbd   norbornadiene 

NBS   N-bromosuccinimide 

NMO   N-methylmorpholine N-oxide 

NMR   nuclear magnetic resonance 

NOE   nuclear Overhauser effect 

NOESY  nuclear Overhauser enhancement spectroscopy 

Nu   nucleophile 

o   ortho 

p   para 

PCC   pyridinium chlorochromate 

PDC   pyridinium dichromate 

Ph   phenyl 

pH   hydrogen ion concentration in aqueous solution 

PhH   benzene 

PhMe   toluene 

Pin   pinacol 

pKa   pK for association of an acid 

PMB   p-methoxybenzyl 

ppm   parts per million 



 xx 

PPTS   pyridinium p-toluenesulfonate 

Pr   propyl 

Py   pyridine 

q   quartet 

ref   reference 

R   generic for any atom or functional group 

rt   room temperature 

s   singlet or strong or selectivity factor 

sat.   saturated 

SN2   second-order nucleophilic substitution 

sp.   species 

t   triplet 

TBAF   tetrabutylammonium fluoride 

TBHP   tert-butyl hydroperoxide 

TBS   tert-butyldimethylsilyl 

TBSal   (6Z)-6-[(tert-butylamino)methylidene]cyclohexa-2,4-dien-1-one 

TES   triethylsilyl 

Tf   trifluoromethanesulfonyl (triflyl) 

TFA   trifluoroacetic acid 

THF   tetrahydrofuran 

TIPS   triisopropylsilyl 

TLC   thin-layer chromatography 

TMEDA  N,N,N’,N’-tetramethylethylenediamine 



 xxi 

TMS   trimethylsilyl 

TOF   time-of-flight 

Tol   tolyl 

Ts   p-toluenesulfonyl (tosyl) 

UV   ultraviolet 

v/v   volume to volume 

w   weak 

X   anionic ligand or halide 

Xyl   xylyl 

 


