

# On-chip Photonic Devices for Coupling to Color Centers in Silicon Carbide

Thesis by  
Chuting Wang

In Partial Fulfillment of the Requirements for the  
Degree of  
Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY  
Pasadena, California

2020  
Defended December 16, 2019

© 2020

Chuting Wang  
ORCID: 0000-0002-3711-682X

All rights reserved

## ACKNOWLEDGEMENTS

Andrei, thank you so much for the opportunity of joining your lab and working on this research project. I learned a lot that I could not learn in my undergraduate studies. This project effectively pushed my limit to become more independent researcher. I deeply appreciate your patient attitude regarding my research and coursework, allowing myself to have enough time for reflection and planning.

I thank my thesis committee members professor Painter, professor Vahala and professor Minnich for reading my thesis and providing insightful feedback during my defense.

I am very grateful to KNI staff members for maintaining tools to make cutting edge science happen. Many thanks to Guy, Matt, Nathan, Alex, Bert and Melissa for training me to operate various tools safely and efficiently.

Thank you to Faraon group members for inspiring talks and discussions in group meetings. Thank you Ioana for a lot of discussions not only related to work but also to general interests. Thank you for putting up with me when I talked too much. Thank you Evan for your help to catch up with the lab and KNI work in the beginning. Thank you Yu for your help with simulations on servers and fabrication. Thank you Tian Z. and John for asking good questions and help in the lab. Thank you Mahsa and Ehsan for many observations and operational runs in KNI. Thank you Jon for your help with the laser and the single photon detector setup. Thank you Jake for your help with fabrication and communicating with people at Montana Instruments. Thank you Mi for your strong curiosity and for convincing me to go to the gym again. Thanks again to Ioana, Mahsa, Ehsan and Jon for help with coursework.

I am thankful to my previous advisors during my undergraduate studies, professor Kai-Mei Fu and professor Kohei Itoh for introducing me into the world of quantum applications.

I am thankful to my parents for exposing me to different environments when I was kid, and for allowing me to have a good education. Thank you for the support through the years. I am thankful to my grandparents for teaching me the importance of education and how a person should live.

## ABSTRACT

Optical quantum networks are important for global use of quantum computers, and secure quantum communication. Those networks require storage devices for synchronizing or making queues of processing transferred quantum information. Practical quantum information networks should minimize loss of transmitted data (photons) and have high efficiency mapping when writing data on memories (solid state qubits). This requires strong light-matter interaction that is enabled by coupling qubits to optical cavities.

The first half of the thesis focuses on emerging candidates for promising qubits in silicon carbide (SiC). The optical and quantum properties of these color centers are discussed with focus on divacancies in 4H-SiC due to their long spin coherence time. Optically detected magnetic resonance of divacancies is shown, an essential technique for reading out the qubit state using the intensity of optical emission.

The second half of the thesis focuses on hybrid photonic devices for coupling to silicon carbide qubits. Hybrid devices are made of another layer of high refractive index material other than the qubit hosting material. Evanescent coupling to qubits close to the surface can be achieved without damaging the host material. Mainly the silicon (Si) on 4H-SiC hybrid ring resonator architecture is discussed starting from design, simulation to fabrication. The fabrication includes Si membrane transfer that is an important step to create a light confining layer on 4H-SiC. The final ring resonator device shows quality factors as high as 23000.

## PUBLISHED CONTENT AND CONTRIBUTIONS

- [1] Chuting Wang et al. “Hybrid silicon on silicon carbide integrated photonics platform”. In: *Applied Physics Letters* 115.14 (2019), p. 141105.  
DOI:10.1063/1.5116201  
W.C participated in the conception of the project, fabricated and characterized the device, gathered and analyzed the data, and wrote the manuscript with F.A.
- [2] Chuting Wang et al. “Silicon on Silicon Carbide Ring Resonators for Coupling to Color Centers”. In: *2018 Conference on Lasers and Electro-Optics (CLEO)*. IEEE. 2018, pp. 1–2.  
W.C participated in the conception of the project, fabricated and characterized the device, gathered and analyzed the data, and wrote the manuscript with F.A.

## TABLE OF CONTENTS

|                                                                                             |      |
|---------------------------------------------------------------------------------------------|------|
| Acknowledgements . . . . .                                                                  | iii  |
| Abstract . . . . .                                                                          | iv   |
| Published Content and Contributions . . . . .                                               | v    |
| Table of Contents . . . . .                                                                 | vi   |
| List of Illustrations . . . . .                                                             | viii |
| List of Tables . . . . .                                                                    | xii  |
| Chapter I: Introduction . . . . .                                                           | 1    |
| 1.1 Optical defects and their applications in quantum information technologies . . . . .    | 1    |
| 1.2 Silicon Carbide (SiC) material background . . . . .                                     | 4    |
| 1.3 Polyytypes of SiC and 4H-SiC crystal structure . . . . .                                | 4    |
| 1.4 Divacancies ( $V_C V_{Si}$ ) in SiC as promising qubits . . . . .                       | 5    |
| 1.5 Coupling optical defects to cavities . . . . .                                          | 6    |
| Chapter II: Photoluminescence of defects and impurities in SiC . . . . .                    | 9    |
| 2.1 Divacancies in 4H-SiC . . . . .                                                         | 9    |
| 2.2 $Cr^{4+}$ ions in 4H, 6H-SiC . . . . .                                                  | 10   |
| 2.3 Other color centers . . . . .                                                           | 15   |
| Chapter III: Optically detected magnetic resonance of defects in 4H-SiC . . . . .           | 22   |
| 3.1 Principles of ODMR . . . . .                                                            | 22   |
| 3.2 ODMR setup . . . . .                                                                    | 23   |
| 3.3 ODMR results on ensemble divacancies and on Cr ions . . . . .                           | 24   |
| Chapter IV: Design and simulations of photonic resonators . . . . .                         | 29   |
| 4.1 Silicon photonic devices for near IR wavelength . . . . .                               | 29   |
| 4.2 Principles of finite-difference time-domain (FDTD) method . . . . .                     | 30   |
| 4.3 Comparison with other EM simulation method . . . . .                                    | 33   |
| 4.4 MEEP simulation of c-Si on SiC ring resonator devices . . . . .                         | 34   |
| Chapter V: Fabrication of on-chip photonic devices for coupling to defects in SiC . . . . . | 42   |
| 5.1 Qubits generation in 4H-SiC . . . . .                                                   | 42   |
| 5.2 4H-SiC transfer . . . . .                                                               | 43   |
| 5.3 a-Si:H Deposition . . . . .                                                             | 44   |
| 5.4 c-Si Membrane Transfer . . . . .                                                        | 45   |
| 5.5 c-Si on SiC device patterning and fabrication . . . . .                                 | 50   |
| Chapter VI: Photonic device characterization . . . . .                                      | 56   |
| 6.1 Conclusion . . . . .                                                                    | 62   |
| Chapter VII: Concluding Remarks . . . . .                                                   | 63   |
| Bibliography . . . . .                                                                      | 65   |
| Appendix A: GaAs photonic crystals . . . . .                                                | 72   |
| A.1 GaAs photonic crystal fabrication . . . . .                                             | 72   |

|                                     |    |
|-------------------------------------|----|
| Appendix B: Related codes . . . . . | 75 |
| B.1 MEEP codes . . . . .            | 78 |

## LIST OF ILLUSTRATIONS

| <i>Number</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>Page</i> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.1 An optical quantum network consists of three components: Quantum channels (black or green lines), quantum processors (laptop icons) and quantum repeaters (star icons) . . . . .                                                                                                                                                                                                                                                                                               | 3           |
| 1.2 Left: the smallest periodic component of the SiC unit cell. The center black sphere shows a Si (C) atom and the white spheres show C (Si) atom. Right: The SiC ideal tetrahedral component viewed in the plane that is parallel to connected straight line connecting two nearest atoms of same kind (1120 plane). . . . .                                                                                                                                                     | 6           |
| 1.3 2H, 3C, 4H and 6H-SiC stacking structure viewed in the 1120 plane. The gray frame shows the unit cell of each structure. . . . .                                                                                                                                                                                                                                                                                                                                               | 6           |
| 1.4 Left: Local hexagonal (2H-SiC) or cubic (3C-SiC) environment changes crystal field on atoms in bilayers of 4H-SiC. Right: 3D view of 4H-SiC crystal structure with 4 possible divacancy configuration.                                                                                                                                                                                                                                                                         | 7           |
| 1.5 Impression of atoms interacting with light in a Fabry-Perot cavity. . .                                                                                                                                                                                                                                                                                                                                                                                                        | 8           |
| 2.1 4 types of divacancies that occupy different carbon/silicon lattice sites.                                                                                                                                                                                                                                                                                                                                                                                                     | 10          |
| 2.2 Photoluminescence of divacancies in a HPSI 4H-SiC sample excited by 780nm laser at 8.4 K. . . . .                                                                                                                                                                                                                                                                                                                                                                              | 11          |
| 2.3 c-axis and basal divacancy energy level structure in 4H-SiC for $C_{3v}$ and $C_{1h}$ symmetry. Marks next to the red arrows specify the polarization of electric field with respect to c-axis for electric dipole allowed transitions. . . . .                                                                                                                                                                                                                                | 11          |
| 2.4 Photoluminescence of Cr ions and divacancies in a Cr implanted 4H-SiC sample excited by 780nm laser at 8.6 K. . . . .                                                                                                                                                                                                                                                                                                                                                          | 12          |
| 2.5 Photoluminescence of Cr ions in 4H-SiC and 6H-SiC samples in better resolution at liquid nitrogen temperature ( 80 K) . . . . .                                                                                                                                                                                                                                                                                                                                                | 13          |
| 2.6 Cr <sup>4+</sup> energy level structure in 4H and 6H-SiC for $T_d$ and $C_{3v}$ symmetry. ZPL of Cr <sup>4+</sup> is associated with the transition $^1E \rightarrow ^3A_2$ . The number at left on level bars denotes state degeneracy and $\Gamma$ specifies the irreducible representation of corresponding symmetry group. Marks next to the red arrows specify the polarization of electric field with respect to c-axis for electric dipole allowed transitions. . . . . | 14          |

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.7  | Optical lifetime measurement of Cr <sup>4+</sup> ions in doped 6H-SiC at liquid helium temperature. The fitting function is $I_o \exp(-t/\tau)$ and reveals optical lifetime of 144 $\mu$ s. . . . .                                                                                                                                                                                                                                         | 15 |
| 2.8  | Optical lifetime measurement fitting residual shows the goodness of fitting with single exponential $I_o \exp(-t/\tau)$ . . . . .                                                                                                                                                                                                                                                                                                            | 16 |
| 2.9  | Summary of optical lifetime measurements of Cr <sup>4+</sup> ions in implanted 4H-SiC and doped 6H-SiC samples at different temperature. . . . .                                                                                                                                                                                                                                                                                             | 17 |
| 2.10 | Photoluminescence of V ions in semi insulating 4H-SiC sample excited by 780 nm laser at liquid helium temperature. . . . .                                                                                                                                                                                                                                                                                                                   | 18 |
| 2.11 | V <sup>4+</sup> energy level structure in 4H-SiC for $T_d$ and $C_{3v}$ symmetry. ZPL of V <sup>4+</sup> is associated with the transition $^2T_2 \rightarrow ^2E$ . The number at left on level bars denotes state degeneracy and $\Gamma$ specifies irreducible representation of corresponding symmetry group. Marks next to red arrows specify polarization of electric field to c-axis for electric dipole allowed transitions. . . . . | 19 |
| 2.12 | Photoluminescence of Mo <sup>5+</sup> ions in implanted sample (orange) in comparison with PL4 divacancies in a HPSi sample (blue) excited by 780 nm laser at 8.6K . . . . .                                                                                                                                                                                                                                                                 | 19 |
| 2.13 | Photoluminescence of Cu ions in Cu implanted Si excited by 780 nm laser at 8.2K . . . . .                                                                                                                                                                                                                                                                                                                                                    | 20 |
| 2.14 | Photoluminescence of Cu ions in Cu implanted Si excited by 780 nm laser at different temperatures . . . . .                                                                                                                                                                                                                                                                                                                                  | 21 |
| 3.1  | Spin population and ODMR signal change when microwave is on/off . . . . .                                                                                                                                                                                                                                                                                                                                                                    | 23 |
| 3.2  | Schematic of the MW gold line deposited on a 4H-SiC sample. The right figure shows the image taken from CCD camera with 780nm excitation laser on. . . . .                                                                                                                                                                                                                                                                                   | 24 |
| 3.3  | MW setup around samples. Initial setup with a single wire on samples is replaced with more robust method with wire bonding and gold line deposition directly on sample. . . . .                                                                                                                                                                                                                                                              | 24 |
| 3.4  | ODMR signal collection method . . . . .                                                                                                                                                                                                                                                                                                                                                                                                      | 25 |
| 3.5  | Our ODMR signal collected on undoped HPSI 4H-SiC at liquid helium temperature ( $\sim 20$ K) at left side. Right side shows results from Koehl et al. [32] . . . . .                                                                                                                                                                                                                                                                         | 26 |
| 3.6  | ODMR signal collected on undoped HPSI 4H-SiC at liquid helium temperature ( $\sim 20$ K) with wider MW sweep range. . . . .                                                                                                                                                                                                                                                                                                                  | 27 |
| 3.7  | Power broadening of ODMR signal of ensemble divacancies PL2 . .                                                                                                                                                                                                                                                                                                                                                                              | 27 |

|      |                                                                                                                                                                                                                                                                                                       |    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.8  | ODMR signal of PL1 and PL2 divacancies in Cr implanted 4H-SiC under 0.15 T at liquid nitrogen temperature. . . . .                                                                                                                                                                                    | 28 |
| 4.1  | Left: c-Si ring resonator on 4H-SiC for spin-photon interfaces. c-Si is drawn in red, while the transparent part underneath is 4H-SiC. RIght: Cross section showing the ring resonator near color centers in the 4H-SiC underneath it, that can couple to the evanescent field of the cavity. . . . . | 30 |
| 4.2  | Intrinsic quality factor of Si ring resonator surrounded by air at different temperature. . . . .                                                                                                                                                                                                     | 31 |
| 4.3  | Electric and magnetic component positions in Yee algorithm. . . . .                                                                                                                                                                                                                                   | 34 |
| 4.4  | 2D cylindrical ring simulation (a) Refractive index setting (green: SiC/n=2.64, yellow: Si/n=3.55 and blue: air/n=1.00)(b) $\ln E_z $ with colormap(c) Plot of $\ln E_z $ at the ring width center cross section. . . . .                                                                             | 35 |
| 4.5  | 2D cylindrical ring simulation quality factor vs. ring radius with height 360 nm and width 300 nm. . . . .                                                                                                                                                                                            | 36 |
| 4.6  | 3D ring simulation with waveguides. (a)Refractive index setting (color distribution same with figure 4.4) (b) $\ln E_z $ (c)Quality factor vs. waveguide distance . . . . .                                                                                                                           | 37 |
| 4.7  | 2D grating simulation normalization simulation on the left. Main simulation is on the right. Top figures are refractive index configuration and bottom figures are plotting $\ln E $ . . . . .                                                                                                        | 39 |
| 4.8  | 2D grating flux depending on period and duty cycle. . . . .                                                                                                                                                                                                                                           | 39 |
| 4.9  | 2D grating diffraction angle change depending on duty cycle (fixed period) . . . . .                                                                                                                                                                                                                  | 40 |
| 4.10 | 2D grating diffraction angle change depending on period (fixed duty cycle) . . . . .                                                                                                                                                                                                                  | 40 |
| 4.11 | 3D grating simulation configuration. Each figure is at the center plane of the simulated space. . . . .                                                                                                                                                                                               | 41 |
| 5.1  | SEM image of 4H-SiC membrane surface transferred by smart cut method. . . . .                                                                                                                                                                                                                         | 44 |
| 5.2  | SEM images of a-Si roughness. (a) a-Si deposited before any patterning procedure (b) A grating coupler after etching and cleaning. process . . . . .                                                                                                                                                  | 45 |
| 5.3  | AFM images for comparison of roughness. (a) Deposited a-Si. (b) Deposited 20nm alumina then a-Si. (c) Transferred c-Si all on top of 4H-SiC. (d) AFM on the 4H-SiC substrate. . . . .                                                                                                                 | 46 |

|      |                                                                                                                                                                                                                                                                                                                                         |    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5.4  | (a)Design of the photomask (b)Etched SOI chip after photolithography (light gray: Si, dark gray:SiO <sub>2</sub> )                                                                                                                                                                                                                      | 49 |
| 5.5  | Cleaning by transferring a floating membrane to clean water                                                                                                                                                                                                                                                                             | 49 |
| 5.6  | Picking up the membrane, drying and attachment on the substrate.                                                                                                                                                                                                                                                                        | 51 |
| 5.7  | Successful membrane transfer. Most membranes are single but some of them are connected.                                                                                                                                                                                                                                                 | 52 |
| 5.8  | Failed membrane transfer. Water scattered underneath the membrane. Heating on a hot plate caused water to evaporate and made bulges on membranes. Wrinkles in membranes allow water to enter and flush of the entire membrane.                                                                                                          | 52 |
| 5.9  | Residue of ZEP cleaned with O <sub>2</sub> plasma                                                                                                                                                                                                                                                                                       | 54 |
| 5.10 | SEM image of a c-Si on 4H-SiC final ring resonator device                                                                                                                                                                                                                                                                               | 55 |
| 6.1  | The optical confocal microscope setup diagram.                                                                                                                                                                                                                                                                                          | 57 |
| 6.2  | The actual setup (left) viewed from top and (right) viewed from the right.                                                                                                                                                                                                                                                              | 57 |
| 6.3  | The actual Littman configuration in the setup. The red solid lines show the main laser path and the dotted line shows the feedback path.                                                                                                                                                                                                | 58 |
| 6.4  | The internal cavity resonances change due to different diode current (40-60 mA).                                                                                                                                                                                                                                                        | 59 |
| 6.5  | The actual Littman configuration in the setup. The red solid lines show the main laser path and the dotted line shows the feedback path.                                                                                                                                                                                                | 60 |
| 6.6  | The ECDL power drift over 8 hours.                                                                                                                                                                                                                                                                                                      | 61 |
| 6.7  | Main measurements were performed through the drop port.                                                                                                                                                                                                                                                                                 | 61 |
| 6.8  | (a)Coarse measurement through the drop port with supercontinuum laser. (b)Coarse measurement through the thoroughput port. Arrows indicate the locations of resonances. (c) Fine measurement with tunable laser scanning. The Lorentzian fit reveals Q~23000.                                                                           | 62 |
| A.1  | 3D periodic photonic crystal bandgap simulation.                                                                                                                                                                                                                                                                                        | 73 |
| A.2  | 3D photonic crystal simulation with defect at the center                                                                                                                                                                                                                                                                                | 73 |
| A.3  | Transferring a part of devices using a nanomanipulator (a) Cut through between the 2 patterned lines before grating couplers because undercut wasn't enough to detach grating couplers from the substrate (b) The probe at the left side is welded to platinum, deposited around the grating tapered part, and the device is lifted up. | 74 |

## LIST OF TABLES

| <i>Number</i> |                                                                       | <i>Page</i> |
|---------------|-----------------------------------------------------------------------|-------------|
| 5.1           | List of samples with different ion implantation and photoluminescence | 43          |
| 5.2           | a-Si recipe                                                           | 45          |
| 5.3           | c-Si transfer procedure                                               | 47          |
| 5.4           | SOI chip square patterning procedure                                  | 48          |
| 5.5           | E beam writing resist related procedure                               | 53          |
| 5.6           | Si pseudo-bosch etching recipe                                        | 54          |
| A.1           | a-Si recipe                                                           | 74          |