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ABSTRACT

Optical quantum networks are important for global use of quantum computers,
and secure quantum communication. Those networks require storage devices for
synchronizing or making queues of processing transferred quantum information.
Practical quantum information networks should minimize loss of transmitted data
(photons) and have high efficiency mapping when writing data on memories (solid
state qubits). This requires strong light-matter interaction that is enabled by coupling

qubits to optical cavities.

The first half of the thesis focuses on emerging candidates for promising qubits in
silicon carbide (SiC). The optical and quantum properties of these color centers are
discussed with focus on divacancies in 4H-SiC due to their long spin coherence
time. Optically detected magnetic resonance of divacancies is shown, an essential

technique for reading out the qubit state using the intensity of optical emission.

The second half of the thesis focuses on hybrid photonic devices for coupling to
silicon carbide qubits. Hybrid devices are made of another layer of high refractive
index material other than the qubit hosting material. Evanescent coupling to qubits
close to the surface can be achieved without damaging the host material. Mainly the
silicon (Si) on 4H-SiC hybrid ring resonator architecture is discussed starting from
design, simulation to fabrication. The fabrication includes Si membrane transfer
that is an important step to create a light confining layer on 4H-SiC. The final ring

resonator device shows quality factors as high as 23000.
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