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ABSTRACT 

 Natural products have long stood as a rich source of biologically relevant molecules 

bearing highly functionalized and complex architectures. On one hand, they are a focal 

point for the development of new therapeutic agents owing to their inherent biological 

activities. On the other, they serve as an exciting testing ground for existing synthetic 

methodologies and provide opportunities for the development of new reactions. 

Herein, we describe a modular strategy that was employed for the total synthesis of 

the antibiotic (+)-pleuromutilin. Key features of our synthesis include (1) the development 

of a highly stereoselective SmI2-mediated ketyl radical cyclization to establish the central 

eight-membered ring and (2) a modular crotylation reaction to install the eight-membered 

ring’s backbone that permits full control over the stereochemistry at C12 as desired. During 

our synthetic studies, a transannular [1,5]-hydrogen atom transfer reaction that affects a 

stereospecific redox relay to set the C10 stereocenter was serendipitously uncovered. This 

strategy enabled the completion of a concise total synthesis of (+)-pleuromutilin, 

proceeding in 18 steps. To demonstrate the modularity of our synthetic approach, the same 

strategy was readily applied to the synthesis of (+)-12-epi-pleuromutilin with no 

reoptimization, providing a new platform for the preparation of fully synthetic derivatives 

that may hold promise as broad-spectrum antibiotics. 

This report also highlights the work we have conducted in the development of a 

synthetic strategy towards (–)-merrilactone A. We detail our investigation of a Pd-

catalyzed  asymmetric allylic alkylation reaction that rapidly constructs the D ring bearing 

the C5 and C6 vicinal quaternary centers. Potential paths forward to complete the synthesis 

of this neurotropic natural product leveraging this advanced intermediate will also be 

discussed. 
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An Introduction to Pleuromutilin 
 
 
 

1.1 INTRODUCTION 

“One sometimes finds what one is not looking for. When I woke up just after dawn 

on Sept. 28, 1928, I certainly didn’t plan to revolutionize all medicine by discovering the 

world’s first antibiotic, or bacteria killer. But I suppose that was exactly what I did.” In 

1928, Alexander Fleming serendipitously discovered penicillin after finding that a 

staphylococcus culture plate had been contaminated with mold.1 Upon closer examination, 

he realized that the bacteria in close proximity to the mold colonies had stopped 

proliferating. He then isolated the mold and identified it as a member of the Penicillium 

genus, which he found to be effective against all Gram-positive pathogens. He noted that 

it was not the mold itself but rather the mold juice, or penicillin, that possessed antibiotic 

properties. Despite this breakthrough, there were still significant challenges in  



Chapter 1 – An Introduction to Pleuromutilin 

 

2 

implementing these findings for widespread use against bacteria, most notably the isolation 

and purification of penicillin. Fortunately, in 1940, Howard Florey and Ernst Chain 

reported a purification technique, leading to the mass production and distribution of 

penicillin in 1945. 

The discovery of penicillin, as well as Ehrlich’s sulfonamide antibiotics,2 set up the 

paradigms for future drug discovery and small molecule research where a number of new 

antibiotics closely followed. The period between the 1950s and the 1970s is now 

considered the golden age of discovery of novel antibiotics classes; however, few have 

been discovered since then.3 With the rapid emergence of pathogenic antibiotic resistance 

and the decline of discovery rate of new antibiotics, there has been a renaissance in the 

scientific community toward discovering new antibiotics. 

1.2 PLEUROMUTILIN 

In 1951, Kavanagh and coworkers4,5 reported that Pleurotus mutilus and P. 

Passeckerianus of the genus Pleurotus were found to produce substances that inhibit 

Staphylococcus aureus. At the time of isolation, the full structure of (+)-pleuromutilin (1, 

Figure 1) had not yet been elucidated; however, the authors found that its antibiotic 

characteristics were lost by boiling the metabolite in a 0.1 N solution of sodium hydroxide, 

presumably removing the glycolic ester residue. This functionality was later determined to 

be critical for its biological activity. The antibacterial substance was isolated as a 

crystalline solid from culture liquids and named pleuromutilin, whose structure and 

biosynthetic pathway6,7 were elucidated by Birch and Arigoni independently in the 1960s. 
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Figure 1. (+)-Pleuromutilin (1) and mutilin antibiotics. 

1.3 PROPOSED BIOSYNTHESIS 

The biosynthesis of pleuromutilin is suspected to occur through a pathway similar 

to other cyclic terpenes, beginning with pyrophosphate ester 3.6,7 Cyclization of the 

pyrophosphate of all-trans geranylgeraniol (3, Scheme 1) commences with protonation, 

which leads to a cationic polyene cyclization cascade to generate cationic trans-decalin 4. 

A subsequent 1,2-hydride shift, 1,2-methyl shift, and second 1,2-hydride shift migrates the 

positive charge, resulting in a hydride induced ring contraction to afford the hydrindane 

framework 6. Transannular cyclization of the isopropenyl unit in an SN2’ fashion 

eliminates the phosphate moiety with concomitant formation of the C11–C12 bond, forging 

the medium-sized ring in pleuromutilin. Addition of water and simultaneous hydride 

migration installs the C14 hydroxyl. 

Studies done by Oikawa and coworkers8 have shown that 8 is an intermediate in 

the biosynthesis of pleuromutilin. After studying the later oxidation steps of the 

biosynthetic pathway, it was postulated that C11 is first oxidized before introduction of the 

C3 carbonyl to forge mutilin (2). This hypothesis was later confirmed by Foster and 

coworkers,9 who used stepwise heterologous expression to elucidate the full biosynthetic 

pathway. Addition of cytochrome p450 monooxygenase gene pl-p450-1 resulted in C11 

11

12

5

14

H

O

Me
Me

Me
HO

O
Me

OH

O
H

6

9

3

4

15
O

Me
Me O

Me
Me

OH

H

O

OH

H

O

Me
Me

Me
HO

OH
Me H

(+)-pleuromutilin (1) (+)-mutilin (2)



Chapter 1 – An Introduction to Pleuromutilin 

 

4 

oxidation (9). Further addition of pl-p450-1 and pl-p450-2 led to subsequent C3 oxidation 

(10). Addition of dehydrogenase/reductase pl-sdr resulted in formation of the C3 ketone 

(2), where then acetylation of the C14 hydroxyl with acetyl transferase pl-atf and final 

oxidation of C22 with cytochrome P450 monooxygenase pl-p450-3 provided pleuromutilin 

(1). 

 

Scheme 1. Proposed biosynthesis of (+)-pleuromutilin (1). 
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1.4 BIOLOGICAL ACTIVITY 

The ribosome is an organelle comprised of ribosomal proteins and ribosomal rRNA 

that polymerizes amino acids into proteins using information encoded in mRNA. During 

the elongation stage of protein synthesis, amino acid monomers are transported to the 

initiation complex where there are three binding sites for tRNA: the acceptor site (A site), 

peptidyl site (P site), and the exit site (E site). The first peptidyl tRNA binds to the P site, 

and the tRNA carrying the amino acid to be added enters the A site. Within the PTC, the 

peptide bond is formed, and the newly formed protein chain grows in the E site of the 50S 

subunit. The ribosome then moves down the mRNA, freeing the A site, and enabling the 

continuation of this process. Although many characteristics of the ribosome are conserved 

across all organisms, the differences that exist in rRNA sequence allow pleuromutilin 

antibiotics to be selective for bacterial ribosomes. 

Initial studies on pleuromutilin’s mode of action were carried out throughout the 

1970s and 1980s first by Högenauerd10–12 and then Cheney,13 revealing that pleuromutilins 

selectively bind to the PTC within the 50S ribosomal subunit and inhibit bacterial protein 

synthesis.14 Later in 2004,15 the crystal structure of tiamulin (19) complexed with the 50S 

ribosome subunit of Deinococcus radiodurans was solved, providing a detailed picture of 

its interactions with the 23S rRNA and explaining the molecular mechanism of its 

antibiotic activity. The molecule’s tricyclic core is situated in the A site; the peptidyl tRNA 

has already bound to the P site therefore disrupting the correct positioning of the second 

tRNA. This prevents formation of the first peptide bond, and thus protein synthesis cannot 

begin.16 This discovery is further supported by previous findings that tiamulin competes 

with chloramaphenicol, puromycin, and carbomycin A, which also bind to the A site.12  
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 Due to their mode of action in binding to functionally important nucleotides, the 

pleuromutilin class of antibiotics has experienced less cross-resistance than many other 

antibiotics, making it an exciting family of compounds to target for human use. However, 

these molecules suffer from low in vivo efficacy due to poor pharmacokinetics and rapid 

metabolism.17 To combat these issues, many pleuromutilin derivatives have been 

synthesized in academic and industrial labs through modification of the natural product.  

1.5 SYNTHETIC MODIFICATIONS OF PLEUROMUTILIN 

Due to the emergence of multi-drug resistant bacteria, scientists are now focusing 

their research efforts on developing new antibiotics with novel modes of action and activity 

against resistant organisms.18 With this goal in mind, derivatives of (+)-pleuromutilin (1), 

of which several analogs were successfully developed for veterinary medicine, have 

regained interest in the past few years as promising antibiotics with potential for human 

application. Herein, a selection of previously reported synthetic strategies toward accessing 

various derivatives will be discussed. 

1.5.1 Glycolic Ester (C14 and C22) Modifications 

Perhaps the most extensively derivatized position on pleuromutilin is the C22 

hydroxyl due to its ease of functionalization.19–21 Acyloxy derivatives are typically 

prepared through activation of the C22 hydroxyl group as a tosylate 13 or mesylate 12, 

followed by substitution with a thiol, amine, or alcohol to forge the corresponding 

derivatives (Scheme 2). In an effort to rapidly investigate various pleuromutilin nucleoside 

conjugates, Nielsen and coworkers22,23 substituted tosylpleuromutilin 13 with sodium azide 
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and introduced purine rings on the side chain using click chemistry and alkynyl 

nucleotides. However, the in vitro potencies of these compounds against E. coli were only 

modest.  

 

Scheme 2. C22 functionalization of (+)-pleuromutilin (1).  

 While C22-modification of pleuromutilin is facile, selective functionalization of 

the C14 hydroxyl of mutilin has proven to be more challenging due to the more reactive 

C11 hydroxyl group. Berner and coworkers24 demonstrated that stereochemical inversion 

of C4 can be accomplished with a concomitant 1,5-hydride shift from C11 to C3 to forge 

resultant ketone 16 (Scheme 3). Because this compound now has only one hydroxyl 

functionality at C14, it can be selectively functionalized with the desired acid chloride to 

form C14 mutilin derivatives 17. Subsequent treatment with ZnCl2 and HCl restores the 

C4 stereochemistry, and a concomitant 1,5-hydride shift from C3 to C11 reestablishes the 

desired C3 carbonyl and C11 hydroxyl functionalities. Although not discussed herein, 

numerous alternative approaches to access C14 derivatives, specifically carbamates, have 

also been explored.25,26 
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Scheme 3. C14 functionalization of (+)-pleuromutilin (1). 
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of rapid late-stage derivatization, thousands of C14 pleuromutilin derivatives have been 
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have advanced into or beyond Phase I clinical studies (Figure 2).17,19,20  
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On the other hand, the lack of general methods to functionalize the tricyclic core still 

remains an obstacle; as a result, the number of structural and core-modified derivatives 

remains relatively low. 

1.5.2 Structural Modifications 

As shown in the work described earlier by Berner and coworkers,24 as well as that 

of many other groups,24,27–30 the unique molecular structure of pleuromutilin is susceptible 

to alkyl and hydride shifts under forcing conditions. This can lead to stereochemical 

inversion, as well as ring expansion or contraction. Such structural rearrangements are 

often reported as undesired reaction side products.  

One interesting and important finding by Berner and coworkers31 is that the C12 

quaternary center can be epimerized to a 1:1 mixture of C12 epimers through a zinc-

mediated retroallylation-allylation reaction (Scheme 4). This strategy was later employed 

by Herzon and coworkers32 in 2017 for the completion of their total synthesis; the only 

difference in the Herzon system is that C22 hydroxyl group was protected as a trityl ether.  

 

Scheme 4. Berner’s zinc-mediated retroallylation-allylation for C12 epimerization. 
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Birch and coworkers6 reported a ring contraction reaction that generates a novel 5-

6-7 tricyclic skeleton (33) through treatment with PCl5. It is suspected that this shift occurs 

through activation of the C11 hydroxyl as a leaving group, leading to C11–C13 bond 

formation. This finding has industrial relevance: as previously discussed, many 

pleuromutilin derivatives are accessed through activation of C22 through mesylation, 

followed by nucleophilic displacement (vide supra, Scheme 2), and it has been noted that 

if any competing C11-mesylation occurs, this side product readily undergoes ring 

contraction in the manufacturing process.33 

 

Scheme 5. PCl5-medidated ring contraction from Birch and coworkers. 
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Scheme 6. Ring expansion and oxidative cleavage reports from Springer. 
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1.6.1 Gibbons’ Total Synthesis of (±)-Pleuromutilin 

Gibbons’ strategy commences with construction of tricyclic intermediate 41 by a 

double Michael addition of cyclohexenone 39 to cyclopentene 40 (Scheme 7). Elaboration 

of 41 through an eleven-step procedure affords key tetracyclic intermediate 42. The initial 

ring expansion reaction was envisioned to proceed through a retro-aldol fragmentation; 

however, those efforts were unsuccessful. Ultimately, this transformation was 

accomplished through a bromination-induced Grob fragmentation to construct the central 

eight-membered ring (43).  

In five steps, diketone 44 was reduced to the correct oxidation states present in the 

natural product (1) and MOM protection of the C14 hydroxyl, followed by ozonolysis of 

the C12 exocyclic olefin afforded ketone 45. At this stage, elaboration of the ketone to the 

C12 quaternary center was investigated. Gibbons reported that carbanion formation at C12 

resulted in elimination of the C11 hydroxyl group, and methods that relied on a carbocation 

at C12 also proved unsuccessful. Alternatively, a four-step route from ketone 45 to the 

C12-functionalized tricycle 47 was developed. Enal formation, followed by reduction 

afforded allylic alcohol 46, which upon g-alkylation with Murahashi’s conditions45 

afforded 47. Benzyl deprotection of 47, oxidation, and MOM cleavage completed the first 

racemic total synthesis of mutilin (2), which was converted to pleuromutilin (1) through 

bis-glycolic ester formation and hydrolysis.  
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Reagents and conditions: a) LDA, 62%; b) CH2CHLi, 67%; c) PCC, 79%; d) MeLi, 88%; e) MnO2, 88%; f) 
H2, 10% Pd/Al2O3, MgO, 61%; g) K2CO3, 92%; h) POCl3, DMAP, py; i) TFA, 80% (2 steps); j) tBuOOH, 
VO(acac)2, 97%; k) tBuOK, tBuOH; l) KH, MOMCl, 71% (2 steps); m) N-bromoacetamide, NaOAc; n) Zn, 
AcOH, 81% (2 steps); o) DIBAL; p) MsCl, py; q) LiAlH4, 68% (3 steps); r) PCC; s) Na, Na/Hg, 88% (2 steps); 
t) MOMBr, iPr2NEt; u) O3; v) P(OMe)3, 95% (3 steps); w) (Z)-[2-ethoxyvinyl]lithium; x) H2SO4, 50% (2 steps); 
y) DIBAL, 95%; z) CuI, MeLi, [Bu3PN(Me)Ph]+I–, 50%; aa) Li, NH3; bb) PCC; cc) HCl, 80% (3 steps); dd) 
AcOCH2COOH, MsCl, DMAP, py; ee) KOH, MeOH. 
 
Scheme 7. Gibbons’ total synthesis of (±)-pleuromutilin (1).  
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hypotheses that were based on MM2 calculations: 1) all substituents on the eight-

membered rings resided in equatorial-like environments in the most stable conformation. 

2) The few accessible conformations available to the eight-membered ring by the bicyclic 

ring fusion greatly reduce the conformational complexity to only two unique low-energy 

conformations.  

First efforts were focused on construction of vinyl carbinol 52 for investigation of 

the key anion oxy-Cope that would afford tricycle 53 (Scheme 8). Two-step Robinson 

annulation of cyclohexenone 48 and pentanone 49, followed by deprotection and tosylation 

afforded dienone tosylate 50. This intermediate was now primed for their key conjugate 

addition–alkylation sequence to install the C6 methyl substituent. Methyl cuprate addition 

resulted in complete axial selectivity, delivering methylated bicycle 51; however, vinyl 

addition resulted in a 1:1 mixture of diastereomers. Resubjection of the undesired 

diastereomer could be performed to obtain a 70% overall yield of rearrangement precursor 

52 after two cycles of equilibration. Key anionic oxy-Cope rearrangement proceeded 

smoothly to afford tricycle 53.  

Following construction of the carbon skeleton, investigations toward installing the 

functionalities on the eight-membered ring commenced. Formation of functionalized 

tricycle 54 occurred through a four-step procedure that involved epoxidation and 

rearrangement at C3, selective ketalization, C3 ketone reduction, and benzyl protection. 

Subsequent treatment with Py+HBr3– forged the equatorial bromo-ketal and syn-

elimination delivered E-alkene 55. Hydration to install the C14 hydroxyl, ketal hydrolysis, 

and MOM protection afforded methoxymethyl ether 56. Initial attempts at installing the 

C11 hydroxyl were focused on selective silyl enol ether formation; however this strategy 
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always resulted in mixtures that led to a mixture of silyloxy products upon oxidation. 

Fortunately, Rubottom-type oxidation selectively installed the C11 hydroxyl as a single 

epimer, and MOM protection afforded Gibbons’ intermediate 57 (vide supra, Scheme 7). 

 

Reagents and conditions: a) LDA, 61%; b) pyrrolidine; AcOH, NaOH, 98%; c) AcOH; d) pTsCl, DMAP, py, 
74% (2 steps); e) (Me)2CuLi, HMPA, 93%; f) CH2CHMgBr, 43%, minor epimer recycled, PhSCl, MeOH, 
P(OEt)3, 70% after 2 cycles); g) KH, 18-crown-6, 99%; h) mCPBA; i) BF3·OEt2 (CH2OH)2, 89% (2 steps); j) Li, 
NH3; k) KH, BnBr, 69% (2 steps); l) pyH+Br3–; m) tBuOK, DMSO, 67% (2 steps); n) pTsOH, H2O, 67%; o) 
MOMCl, iPr2NEt; p) TMSI, HMDS; q) mCPBA, NaHCO3; r) TBAF, 62% (4 steps); s) MOMCl, iPr2NEt, 90%; t) 
CH2CHMgBr; u) SOCl2; v) MeCuB(Me)3, 50% (3 steps); w) Li, NH3; x) PCC; y) HCl/EtOH, 80% (3 steps); z) 
AcOCH2COOMs, DMAP; aa) KOH, MeOH, 39% (2 steps). 
 
Scheme 8. Boeckman’s total synthesis of (±)-pleuromutilin (1). 
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At this stage, attention was turned towards installing the C12 quaternary center. 

Using a strategy similar to Gibbons’, vinyl addition followed by treatment of the resulting 

mixture of allylic alcohols with thionyl chloride and triethylamine furnished allylic 

chloride 58 (Scheme 8). SN2’ methyl addition afforded the C12 quaternary center as a 5:1 

mixture of diastereomers, favoring the correct stereochemistry, intercepting Gibbons’ 

intermediate 59. Despite constructing differentially protected analogues of 59, Boeckman 

ultimately found Gibbons’ final steps to be the most concise, and therefore both syntheses 

were completed in the same manner. 

1.6.3  Procter’s Total Synthesis of (+)-Pleuromutilin 

Similar to the previous two syntheses discussed, Procter’s strategy towards 

pleuromutilin centers on early construction of the tricyclic core and late stage 

functionalization of the eight-membered ring. At the heart of their approach is a SmI2-

mediated cyclization cascade to construct the tricyclic core in a single step, forming both 

the five- and eight-membered rings and four stereocenters. Their synthesis also features the 

first efficient conversion of mutilin (2) to pleuromutilin (1) in 75% yield over two steps, 

whereas prior unselective methods gave 39% yield. 

Construction of the SmI2-cyclization precursor commenced with synthesis of 

dialdehyde 64 through a nine-step protocol from (+)-trans-dihydrocarvone (60), Scheme 

9).46–48 Oxidative fragmentation of the isopropenyl unit, conjugate addition, and Saegusa–

Ito oxidation49 afforded enone 61. Conjugate addition with silylisopropenyl nucleophile 

installed the C9 quaternary center and proceeded to give an inseparable 2.5:1 mixture of 

diastereomers; subsequent trapping with Comin’s reagent forged the vinyl triflate. 
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Palladium-catalyzed methoxycarbonylation then furnished the a,b-unsaturated ester 62  

that is critical for their cascade. Cyclization precursor 64 was formed through Hosomi–

Sakurai allylation of allyl silane 62 and the corresponding aldehyde to afford homo-allylic 

alcohol 63. Subsequent pivalate protection, bis-desilylation, and bis-oxidation then set the 

stage for the key SmI2-mediated cyclization cascade.  

 

Reagents and conditions: a) O3, MeOH, then FeSO4·7H2O, CuOAc2, 57%; b) TBSO(CH2)3MgBr, 
CuCN·2LiCl, THF, –45 ºC, 20 min; TMSCl, 10 min, 23 ºC; c) Pd(OAc)2 (10 mol %), DMSO, O2, 3 days, 85% 
(2 steps), 95% ee by HPLC; d) CuI, TMSCH2C(MgBr)CH2, THF, –78 ºC to 0 ºC, 10 min; 61, –78 ºC, 1.5 h, 
Comins’ reagent, –78 ºC to 23 ºC, 60 h, 85%, 2.5:1 dr; e) Pd(OAc)2, PPh3, Et3N, MeOH, DMF, CO, 40 ºC, 24 
h, 85%, 2.5:1 dr; f) TBSOO(CH2)2CHO, BF3·OEt2, TBAT, 4 Å MS, –78 ºC, 18 h, –20 ºC, 4 h, 73%, 2.5:2.5:1:1 
dr; g) PivCl, Py., DMAP, CH2Cl2, 18 h; h) HF, Pt. MeCN, 0 ºC to 23 ºC, 16h; i) DMP, CH2Cl2, 3 h, 88% (3 
steps).  
 
Scheme 9. Procter’s synthesis of SmI2-mediated cyclization cascade precursor 64. 
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transition state 68. It is proposed that the high diastereocontrol was achieved due to pre-

coordination of samarium to the carbonyl group and unsaturated ester.52 

 

Scheme 10. Procter’s key SmI2-mediated cyclization cascade. 
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p-methyl benzoate (MBz), 2) conversion of the primary hydroxyl to the thioimidazolide, 

and 3) deoxygenation under radical conditions. 

 

Reagents and conditions: a) Et3N, TBSOTf, CH2Cl2, 0 ºC, 5 min, 23 ºC, 30 min, 76%; b) LiAlH4, Et2O, 30 
min; c) DMP, CH2Cl2, 16 h, 63% (2 steps); d) H2, 10 % Pd/C, EtOH, 12 h, 3:1 dr, 75%; e) 1,2-ethanediol, 
HC(OCH3)3, Amberlyst® 15, PhMe, MeCN, 23 ºC, 40 h, 96%; f) SmI2, pyrrolidine, H2O, THF, 23 ºC, 18 h, 95%; 
g) LDA, –78 ºC, 30 min; MBzCl, THF, –78 ºC, 30 min, 97%; h) TCDI, THF, 60 ºC, 5 days; i) nBu3SnH, AIBN, 
PhMe, 80 ºC, 4 h, 66% (2 steps); j) FeCl3·SiO2, acetone, 23 ºC, 24 h, 99%; k) HMDS, TMSI, CH2Cl2, –20 ºC 
to 10 ºC, 3 h; l) NaHCO3, mCPBA, CH2Cl2, 0 ºC, 10 min; m) TBAF, THF, 23 ºC, 3 min, 94%; n) HF(aq), MeCN, 
23 ºC, 18 h, 78%; o) MOMCl, DIPEA (3 additions), CH2Cl2, 23 ºC, 2 days, 75%; p) EtOCHCHSnBu3, nBuLi, 
THF, –78 ºC, 1 h, 73, THF, –78 ºC, 15 min; q) FeCl3·SiO2, acetone, 23 ºC, 5 min; r) NaBH4, THF/H2O, 23 ºC, 
30 min, 63% (3 steps); s) NCS, DMS, CH2Cl2, 0 ºC, 10 min, –20 ºC to 23 ºC, 16 h, 97%; t) CuCN, DMF, 23 
ºC, 30 min, Me2Zn, –20 ºC, 24 h, 71%; u) LiAlH4, THF, 23 ºC, 90 min; v) DMP, CH2Cl2, 23 ºC, 1 h; w) AcCl, 
EtOH, 23 ºC, 3 h, 69% (3 steps); x) trifluoroacetylimidazole, EtOAc, –45 ºC, 30 min; y) 2-(2,2,2-
trifluoroacetoxy)acetic acid, EDCI, DMAP, CH2Cl2, 23 ºC, 30 min; MeOH, Et3N, 24 h, 75% (2 steps). 
 
Scheme 11. Procter’s completion of (+)-pleuromutilin (1). 
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revealed the C12 ketone and use of Boeckman’s procedure for selective a-hydroxylation 

(vide supra, Scheme 8) followed by desilylation and MOM protection furnished ketone 

intermediate 73. Building off the work of Gibbons and Boeckman, conversion of the C12 

ketone to the desired quaternary center was accomplished through a similar sequence. 

Ketone 73 was treated with a lithiated enol ether. The addition product was hydrolyzed and 

the intermediate enal was reduced and subjected to Corey-Kim chlorination56 conditions to 

give allylic chloride 74. SN2’ displacement of the chloride with Me2Zn and CuCN in DMF 

afforded a single diastereomer at C12. Thus, benzoate deprotection, Dess-Martin oxidation, 

and MOM cleavage furnished (+)-mutilin (2) in 69% overall yield.  

 After identifying that existing methods for the conversion of mutilin to 

pleuromutilin suffered from poor yields and selectivity, Procter and coworkers turned 

towards methods developed in industry57 for the conversion of mutilin to C14 analogues 

of pleuromutilin. Protection of (+)-mutilin (2) as the C10 trifluoroacetate, followed by 

coupling with 2-(2,2,2-trifluoroacetoxy) acetic acid and subsequent deprotection furnished 

(+)-pleuromutilin (1) in 75% overall yield, concluding the first enantiospecific total 

synthesis of 1.  

1.6.4 Herzon’s Total Synthesis of (+)-Pleuromutilin 

Herzon and coworkers developed a modular route to access (+)-pleuromutilin (1) 

and its stereochemical derivatives, specifically at C11 and C12. Proceeding through the 

intermediates that are epimeric at C12, their synthesis was made possible through known 

diastereomer equilibration conditions developed by Berner and coworkers in 1986 (vide 

supra, Scheme 4). 



Chapter 1 – An Introduction to Pleuromutilin 

 

21 

The Herzon synthesis commences with a Cu-catalyzed enantioselective conjugate 

addition-acylation reaction into cyclohexenone 75, followed by methylation that proceeds 

in high enantio- and diastereoselectivity, respectively, to afford b-keto ester 76 (Scheme 

12).58 Deprotonation and trapping of the resultant enolate with N-phenyltriflimide 

furnished vinyl triflate 77, which was then converted to dienone 78 via a Pd-catalyzed 

carbonylative coupling.59 Cu-catalyzed Nazarov cyclization delivered hydrindanone 79 as 

a single olefin isomer. A Nagata hydrocyanation60 was next performed on hydrindanone 

79 to afford the C9 addition product in 3:1 dr; however, because this reaction forged the 

undesired trans-ring junction, subsequent epimerization with sodium hydroxide was 

necessary to access 80. Ketal protection of ketone 80 provided 81.  

 

Reagents and conditions: a) Zn(Me)3, Cu(OTf)2 (0.5 mol %), ligand (1.0 mol %), PhMe, 0 ºC, then MeLi, –
78 ºC, then methylcyanoformate, –78 ºC; b) MeI, NaOtBu, MeOH, 0 ºC, 71%; c) KHMDS, PhNTf2, THF, –78 
ºC, 88%; d) CO, tetravinyltin, LiCl, Pd(PPh3)4 (5 mol %), DMF, 40 ºC e) Cu(OTf)2 (5 mol %), (CH2Cl)2, 70 ºC; 
f) Et2AlCN, THF, 0 ºC, then DIBAL, –78 ºC; g) 0.01 M NaOH, MeOH/H2O (5:1), 0 ºC, 65%; h) TMSOTf, 
(TMSOCH2)2, CH2Cl2, 30 ºC; i) MeLi, PhMe, 0 ºC, then Boc2O, 0 ºC, 80%. 
 
Scheme 12. Synthesis of Herzon’s key enimide intermediate 84. 
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It was reported that selective functionalization of the C9 nitrile was challenging due 

to steric congestion; however, it was ultimately found that treatment with excess 

methyllithium, followed by di-tert-butyl dicarbonate, provided cyclic enimide 84. This 

cascade is likely to occur through methyllithium addition to the nitrile, followed by 

intramolecular cyclization onto the C5 methyl ester and deprotonation to form intermediate 

83. Final N-acylation would forge their key enamide intermediate 84, setting the stage for 

the key two-fold neopentyl fragment coupling.  

In the key sequence to form the eight-membered ring, addition of the organolithium 

derived from iodoether 85 to enimide 84 resulted in addition at C14; in situ hydrolysis of 

the resulting lithioenamine provided methyl ketone 86 (Scheme 13). It was noted that 

electronic activation of the C14 carbonyl group and minimization of nearby nonbonded 

interactions via the cyclic enimide was critical for the success of the reaction.  

 

Reagents and conditions: a) tBuLi, 85, Et2O, –45 ºC, then 84, –45 ºC, then HCl, THF, 0 ºC, 48%; b) KHMDS, 
Comin’s reagent, THF, –78 ºC, 81%; c) DDQ, CH2Cl2, pH 7 buffer, 20 ºC; d) DMP, CH2Cl2, 20 ºC, 83% (2 
steps) 
 
Scheme 13. Herzon’s synthesis of reductive cyclization precursor 88. 

Formal dehydration of methyl ketone 86 through base-induced elimination of a transiently-
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furnished aldehyde 88, setting the stage for an exo-selective reductive cyclization for the 

construction of the central eight-membered ring.  

The authors envisioned that the limited number of rotatable bonds along the nascent 

macrocycle would lower the entropic penalty of ring closure while enhancing regio- and 

stereocontrol. Furthermore, it was proposed that the presence of the sp2-hybridized carbon 

atoms at C10 and C14 of 88 would alleviate transannular nonbonding interactions in the 

eight-membered ring. Using a nickel-based catalyst, a single diastereomer of an allylic silyl 

ether was formed and desilylated to provide tricycle 89 in high diastereo- and 

regioselectivity (Scheme 14). Interestingly, their attempts to perform the Ni-catalyzed 

reductive cyclization on the substrate bearing the correct C12 stereochemistry resulted in 

tetracycle 91 formation. Thus, their strategy for accessing (+)-pleuromutilin (1) with the 

correct stereochemistry in place at C12 was thwarted, forcing them to proceed through the 

12-epi cyclization substrate 89. 

 

Scheme 14. Herzon’s reductive cyclization reaction of 88 (12-epi). 

O
Me

MeO

O
H

O

Me Ni(cod)2 (30 mol %)
IPr (30 mol %), Et3SiH

O
Me

MeO

O
H

OH

Me

60%

14

10
THF, 20 ºC

then TBAF, 20 ºC

O
Me

Me

H
O

Me
12

O
Me

Me

H

Me
12

Me

OTES
O O

Ni(cod)2
NHC ligand

Et3SiH
O

Me

Me

H

OH

Me
O 12

not observed

34% over
3 steps

90
correct C12

stereochemistry

88
12-epi

Precursor with correct stereochemistry leads to unproductive tetracycle

89

91 92



Chapter 1 – An Introduction to Pleuromutilin 

 

24 

Completion of their synthesis required five subsequent transformations. Dess-

Martin oxidation of the C11 alcohol to the enone and conjugate reduction with SmI2 

afforded the C10 methyl with complete site- and stereoselectivity. (+)-12-epi-mutilin (94) 

and (+)-11,12-di-epi-mutilin (95) were then formed as a thermodynamic 3:1 mixture of 

diastereomers upon single-electron reduction with excess sodium; the two mutilin 

diastereomers were brought forward to form several stereochemical pleuromutilin 

derivatives (Scheme 15). 

 

Reagents and conditions: a) DMP, CH2Cl2, 20 ºC; b) SmI2, THF, MeOH, 20 ºC, 98% (2 steps); c) Na, EtOH, 
20 ºC, then HCl, H2O, MeOH, THF, 20 ºC, 52%; d) HCl, H2O, MeOH, THF, 20 ºC, 96% for 94, 81% for 95. 

Scheme 15. Herzon’s synthesis of (+)-12-epi-mutilin (94) and (+)-11,12-di-epi-
mutilin (95).  
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(+)-11,12-di-epi-mutilin (95) for the synthesis of (+)-11,12-di-epi-pleuromutilin. Because 

(+)-12-epi-mutilin (94) is en route to (+)-pleuromutilin (1), their synthesis of the natural 

product was made possible by epimerization conditions developed by Berner and 

coworkers (vide supra, Scheme 4). Trifluoroacetyl protection of C11, followed by trityl-

protected glycolic ester installation and methanolysis furnished trityl-protected (+)-12-epi-

pleuromutilin derivative 97, where treatment with zinc-mediated conditions to effect 

equilibration at C12 via a retro-allylation/allylation sequence afforded (+)-pleuromutilin 

(1) in 33% yield, with the major isomer formed being (+)-12-epi-pleuromutilin (96) in 56% 

yield. They were also able to synthesize (+)-11,12-di-epi-pleuromutilin through a similar 

reaction sequence.  

 

Scheme 16. Completing the synthesis of (+)-pleuromutilin (1). 
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1.7 CONCLUDING REMARKS 

The mutilins are a class of antibiotics that bind to the peptidyl transferase center of 

the bacterial ribosome. To date, the C14 glycolic ester has served as the focal point of 

optimization of the antibacterial activity, with thousands of C14 analogs having been 

prepared through semisynthesis. However, evidence suggests that the tricyclic core has 

potential for further optimization. For example, epimerization of the C12 quaternary center, 

followed by functionalization of the primary olefin can provide extended spectrum 

antibiotics with activity against Gram-negative and drug-resistant pathogens.61 Ultimately, 

these structural derivatives can only been accessed through development of a de novo 

synthesis of (+)-pleuromutilin. In the following chapter, we will discuss our development 

of a modular and enantiospecific route towards (+)-pleuromutilin (1) and (+)-12-epi-

pleuromutilin.  
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Chapter 2 

Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 
 
 
 

2.1 INTRODUCTION 

At the outset of our studies towards developing a synthetic route to access (+)-

pleuromutilin (1) and its derivatives, there had only been three prior syntheses reported: 

those of Gibbons,1 Boeckman,2 and Procter.3,4 While these three prior synthetic routes were 

unique in their construction of the tricyclic core, they shared two common features: 1) early 

construction of the central eight-membered ring led to numerous functional group and 

redox manipulations, and 2) all were linear in fashion. In contrast, we initiated a synthetic 

campaign towards developing a modular and convergent total synthesis of (+)-

pleuromutilin (1) that would feature late-stage construction of the eight-membered ring. 

This chapter will outline the synthetic strategies attempted that ultimately enabled an 18-

step total synthesis of (+)-pleuromutilin and (+)-12-epi-pleuromutilin.  
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2.2 RETROSYNTHETIC ANALYSIS 

In considering a design plan for a synthesis of (+)-pleuromutilin (1), we envisioned 

a modular approach in which a hydrindane fragment (e.g., 2 and 4) would be annulated to 

form the eight-membered ring through two sequential C–C bond-forming steps. This 

proposed annulation could occur through two different approaches: 1) C5–C14 and C10–

C11, or 2) C5–C14 and C11–C12. Either disconnection links vicinal stereogenic centers 

which were identified as strategic points of disconnection. 

 

Scheme 1. Conceptual retrosynthetic analysis. 

With this modular annulation strategy in mind, (+)-pleuromutilin (1) was first 

simplified to 6 via disconnecting the C14 glycolic ester (Scheme 2). Considering that the 

previously reported syntheses construct the tricyclic core at a very early stage, it was 

envisioned that C5–C14 could be forged through a diastereoselective samarium diiodide 

mediated cyclization reaction of aldehyde 7 to construct the eight-membered ring of 

pleuromutilin (1) at a late stage in the synthesis. This strategy would minimize the number 

of redox manipulations upon construction of the core, as well as leverage the constrained 

molecular geometry of the cyclization precursor to dictate the stereoselectivity of the 

cyclization reaction.  
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Scheme 2. Construction of eight-membered ring. 

 Preparation of cyclization precursor was envisioned to arise through a fragment 

coupling reaction between a hydrindanone fragment (e.g., 8 and 10, Scheme 3) with its 

respective coupling partner (e.g., 9 and 11). At the outset of the retrosynthetic design, two 

different disconnections were identified: 1) C10 and C11 could be joined through the use 

of hydrindanone 8 as a nucleophile (e.g. Nozaki-Hiyama-Kishi reaction)5–7 and 2) C11 and 

C12 could be joined through the use of hydrindanone 10 as an electrophile (e.g. crotylation 

reaction)8–10. Both strategies would allow for diversification of the eight-membered 

backbone through variation of the coupling partner. As a means to investigate the 

feasibility of both coupling strategies, both hydrindanones could be prepared from alkyne 

12.  

 

Scheme 3. Two fragment coupling approaches. 

 The oxidation pattern of alkyne 12 (Scheme 4) could be obtained through a methyl 

addition and oxidative transposition sequence from 13. Hydrindenone 13 was then 
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envisioned to arise through a conjugate alkynylation and aldol cyclization from 

cyclohexenone 14, which, in turn, would be accessible from chiral methyl cyclohexenone 

15. 

 

Scheme 4. Hydrindenone alkyne 12 retrosynthesis. 

2.3 CYCLOOCTANE FORMATION 

Medium-ring construction is a centerpiece of prior art towards (+)-pleuromutilin, 

perhaps best exemplified by the highly stereoselective anionic oxy-Cope rearrangement 

employed by Boeckman and the chelation-controlled aldol cyclization key to Proctor’s Sm-

ketyl radical cyclization cascade (16, Figure 1).3,4 Both strategies employ minimally-

functionalized cyclization substrates and subsequently leverage the resulting tricyclic 

architecture to install remaining stereocenters in laborious 18 to 25-step sequences. An 

important difference, however, lies in the constrained nature of Boeckman’s vinyl carbinol 

precursor, critical for dictating the stereochemical outcome of the key anionic oxy-Cope 

cyclization. Proctor’s cyclization substrate lacks this rigidity and instead relies on chelation 

control to dictate cyclization. We envisioned a hybrid, convergent strategy leveraging both 

the innate functionality of a highly decorated, geometrically constrained cyclization 

precursor to guide medium-ring formation as well as the propensity of ketyl radicals 

towards conjugate addition at a sterically-congested β-terminus.  
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In accordance with this logic, SmI2 cyclization of 17 was expected to provide 

tricycle 6 with C3, C14, and C15 in the correct oxidation states for advancement to 1. 

 

Figure 1. Comparison of SmI2 approaches to pleuromutilin (1) framework.  

2.4 FORWARD SYNTHETIC EFFORTS 
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Synthetic efforts towards (+)-pleuromutilin (1) commenced with preparation of 

hydrindanone alkyne 12. Recognizing that (+)-dihydrocarvone (18) may serve to provide 

the C6 methyl stereocenter present in (+)-pleuromutilin (1), this material was subjected to 

a one-pot ozonolysis-oxidation procedure developed by Schreiber and coworkers.11,12 

Ozonolysis of the terminal alkene in methanol generated methoxy hydroperoxide 19 

(Scheme 5). Single-electron transfer of an electron from iron(II) sulfate to the peroxide 

produced oxy radical 20. Collapse of this tetrahedral intermediate led to formation of a 

carbon radical that undergoes radical combination with copper(II) acetate to yield alkyl 

copper intermediate 21. Oxidative elimination from this intermediate affords a 3:1 mixture 

of 15 and 22, in favor of the desired a,b-unsaturated enone. 
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Scheme 5. Chiral enone 15 from fragmentation of (+)-trans-dihydrocarvone 18. 

 With enone 15 in hand, investigations toward setting the C9 quaternary center 

commenced. Conjugate addition of the cuprate derived from 23 followed by Pd-catalyzed 

Saegusa-Ito oxidation furnished the trisubstituted enone 14, setting the stage for installation 

of the C9 quaternary center through conjugate addition (Scheme 6).  
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24 and were able to perform conjugate additions into a,b-enones; subsequent treatment 
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water-soluble phosphine, such as hexamethylphosphorus triamide. Pressing forward with 

vinyl stannane 25, treatment with lead(IV) tetraacetate afforded alkyne 26 in 88% yield. 

 

Scheme 6. Installation of the C9 quaternary center. 

 Alkyne 26 was elaborated to bicycle 13 through an acid-promoted intramolecular 

aldol condensation (Scheme 7). Treatment with 6 N HCl led to epimerization of the C6 

stereocenter, giving rise to a 4:1 mixture of inseparable methyl diastereomers that were 

separated at the vinyl iodide (8) stage in the synthesis. Advancing 13 as a diastereomeric 

mixture, cerium-promoted 1,2-methyl addition15 followed by Dauben oxidative 

transposition16 afforded key hydrindanone alkyne 12. Thus, fragment coupling 

investigations began. 

 

Scheme 7. Synthesis of hydrindanone alkyne 12.  

O
Me

15 23

MgBr

O O

1. CuCN·2LiCl, TMSCl
    THF, –45 ºC, then 15

O
MeO O2. Pd(OAc)2 (10 mol %)

    DMSO, O2, 23 ºC
14

91% over 
2 steps

SnBu3
Cu nPr
Li+ (1.9 equiv)

HMPT (5 equiv), THF
–78 ºC → –40 ºC, 3 h

O
MeO O

24SnBu3

58%
2.6:1 dr

O
MeO O

Pb(OAc)4 (3 equiv)

MeCN, 23 ºC
88%

9

2526

O
Me

1. CeCl3·2LiCl
    MeMgCl
    THF, 0 ºC
2. PCC, CH2Cl2 Me

MeO64% over
2 steps

13 12

O
MeO O

26

HCl (3 equiv)

THF, 70 ºC, 1 h
73%, 4:1 dr
inseparable

6

5
3



Chapter 2 – Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 42 

2.4.2 Fragment Coupling Investigations 

Hydrindanone alkyne 12 was identified as an intermediate that would enable access 

to both vinyl iodide 8 and enal 10 for fragment coupling investigations. Iodoboration17,18 

followed by proto-deboration afforded vinyl iodide 8 in 94% yield. Subsequent palladium-

catalyzed reductive carbonylation afforded hydrindanone enal 10 (Scheme 8). With 

hydrindanone coupling partners 8 and 10 in hand, the first of two key C–C bond 

construction required to form the bridging eight-membered ring was investigated.  

 

Scheme 8. Hydrindanone alkyne 12 derivatization for fragment coupling. 

 Preliminary Nozaki-Hiyama-Kishi reaction investigations with pentanal 27 

produced none of the coupled product; instead, hydrodehalogenation 28, homocoupled 

hydrindanone 29, and starting material 8 were observed (Table 1). It appeared that vinyl 

iodide 8 was not amenable to NHK coupling, and investigations into this disconnection 

were halted. 
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Table 1. Nozaki-Hiyama-Kishi addition investigations.  

 Precedent from Szabó and coworkers19 suggested that crotylation would be a 

reliable method for forming congested vicinal stereocenters. As such, attention was turned 

towards synthesis of crotylation fragment 35 (Scheme 9). Trityl protection of butynol 30 

afforded 31 in reasonable yield. Deprotonation and nucleophilic addition into ethyl 

chloroformate furnished ynoate 32, which upon conjugate addition with methyl cuprate 

and reduction with DIBAL-H provided allylic alcohol 34. Treatment with palladium- 

catalyzed conditions for allylicboronic acid synthesis20 afforded Z-allylic boronic acid 35, 

the crotylation fragment.  

O Me
Me

I

O

H
Me

CrCl2, NiCl2

solvent, 23 ºC
O Me

Me

O Me
Me

OMe
Me

Entry
CrCl2

(equiv)
NiCl2

(equiv)
Ligand
(equiv) Solvent % SM

% Yield
(alkene)

% Yield
(dimer) % Yield

1 4 0.2 – DMF (0.05 M) – 42% 42% –

2 4 0.02 – DMF (0.05 M) – 37% 35% –

3 9 1 – THF/DMF/4-tBuPy
(6:3:1, 0.05 M)

– 28% 30% –

4 3.4 0.2 3.4 THF (0.1 M)/
Et3N (3.4 equiv)

52% 23% – –

5 3 1 3 THF (0.05 M)/
Et3N (3 equiv)

91% 6% – –

8 27 28 29

NHSO2Me

O

N

Me
Me Fujisawa/Kishi

ligand
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Scheme 9. Crotylation fragment 35 prepapration. 

 With enal 10 and Z-allylic boronic acid 35 in hand, use of conditions developed by 

Szabó and coworkers provided a mixture of separable diastereomers 36 and 37 (Scheme 

10).  

 

Scheme 10. Crotylation reaction and rationale for poor facial selectivity. 
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While the reaction proceeded with excellent selectivity for syn crotylation–consistent with 

a closed transition state, the catalyst did not discriminate between the faces of the aldehyde 

during the nucleophilic attack (Scheme 10). A brief investigation of alternative catalytic 

asymmetric crotylation conditions proved unfruitful (Table 2, Entries 2–4), and thus 

prompted further catalyst investigations. An initial survey of chiral phosphoric acids and 

PyBOX ligands yielded no product, and thus our efforts were focused on BINOL ligands. 

Use of the S catalyst (Table 2, Entry 5) provided a 1:1.4 mixture of 36 and 37. It was 

ultimately determined that 3,3’-(CF3)2-(R)-BINOL (Table 2, entry 7) provided a yield 

comparable to that of 3,3’-Br2-(R)-BINOL with slightly improved diastereoselectivity. 

 
Table 2. Crotylation investigations. 
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 In the first generation retrosynthesis, the initial motive for targeting hydrindanone 

alkyne 12 was to access both vinyl iodide 8 and enal 10. Therefore, the route was optimized 

for hydrindanone alkyne 12, not the desired coupling partner 10. After determining that the 

key fragment coupling to forge the C11–C12 bond would proceed through a crotylation 

reaction between boronic acid 35 and enal 10, attention was turned towards the 

development of a streamlined second generation synthesis of enal 10.  The reasons  the 

first generation route needed to be redesigned were three-fold: 1) Conjugate addition using 

mixed cuprate 24 proceeded in poor 2:1 dr and necessitated the use of toxic tin reagents 

that were not amenable to large-scale material throughput (Scheme 11). 2) Acid-promoted 

aldol cyclization of 26 furnished 13 in reasonable yield; however, the reaction conditions 

also resulted in C6 epimerization to a mixture of inseparable diastereomers. 3) The reagent 

used for iodoboration (B-I-9-BBN) was not reliably available for purchase and attempts to 

freshly prepare the reagent led to irreproducible results. With these targeted issues in mind, 

attention was shifted toward developing a new route towards hydrindanone enal 10. 
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Scheme 11. Reasons for route redesign. 

2.4.3 Second Generation Approach Towards Hydrindanone 
Fragment 

After evaluating the first generation ten-step route towards hydrindanone enal 10, 

it was realized that many of the issues stemmed from installation of an alkyne at C9. In the 

initial substrate design, it was envisioned that targeting hydrindanone alkyne 12 would give 

access to both vinyl iodide 8 and enal 10 for fragment coupling investigations. However, 

validation of the crotylation reaction with enal 10 led to designing a more efficient 

synthetic route towards hydrindanone enal 10. 

Beginning from trisubstituted enone 14, conjugate addition of in situ generated 
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dr observed from vinylstannane 24 (vide supra, Scheme 12). This diastereoselectivity 

presumably arises from trans-diaxial effects to minimize the twist-boat conformation that 

would arise from formation of the undesired diastereomer. With this significant 

improvement in diastereoselectivity, a two-step procedure to elaborate 41 to alkyne 26 was 

developed, obviating the need to proceed through the previous route. Ozonolytic cleavage 

of the installed olefin furnished aldehyde 42.  

Initial attempts to convert the aldehyde to alkyne 26 resulted in a more rapid 

intramolecular aldol cyclization to forge [2.2.1]-bicycle 43. It was suspected that the high 

concentration of methoxide in solution led to unselective reactivity for a-deprotonation. 

This was further supported by solvent investigations; in exchanging methanol for less 

acidic solvents such as ethanol and isopropanol (Scheme 12, entries 2 and 3), decreased 

formation of aldol product 43 was observed; however, the reaction rate also slowed 

considerably where the use of isopropanol as the solvent led to no formation of the desired 

product. Solvent mixture investigations ultimately proved fruitful, where tetrahydrofuran-

methanol mixtures (Scheme 12, entries 5 and 6) significantly improved yields of the 

desired alkyne 26 while minimizing bicycle 43 formation. 



Chapter 2 – Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 49 

 

Scheme 12. Intercepting alkyne 26 through vinyl conjugate addition. 

 Despite improving the diastereoselectivity of the conjugate addition reaction from 

2:1 to 6:1 and eliminating the use of vinyl stannane 24, the new route was unsatisfactory 

for three reasons: 1) obtaining the alkyne prior to cyclization would still furnish an 

inseparable mixture of diastereomers, 2) proceeding through the alkyne still necessitated 

the use of B-I-9-BBN, whose commercial availability was unreliable, and 3) utilizing the 

new route was one step longer than the first generation route (Scheme 13). Due to these 

shortcomings, additional conjugate addition investigations were pursued.  

 It was later envisioned that addition of an isopropenyl unit would obviate the need 

for homologation at a later stage by incorporating all the carbons present within the enal 

fragment. Initial attempts to add a hydroxyisopropenyl fragment were unfruitful. However, 

addition of an isopropenyl fragment proceeded smoothly in 73% yield and 4.8:1 dr 

(Scheme 13). 
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Scheme 13. Isopropenyl conjugate addition. 

 At this stage, acid-promoted aldol cyclization from conjugate addition product 45 

was attempted but unsuccessfully due to the formation of a halo-Prins product 47 (Scheme 

14). It is hypothesized that the electron-rich nature of the isopropenyl unit was the source 

of this undesired reactivity.  

 

Scheme 14. Undesired halo-Prins cyclization. 
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the allylic position; however, attempts to perform an allylic oxidation yielded starting 

material. Although hydroxyl group installation was unsuccessful, allylic chlorination with 

trichloroisocyanuric acid21 proceeded smoothly, setting the stage for the previously 

unsuccessful acid-promoted aldol cyclization with 45 (Scheme 15). Indeed, installation of 

the allylic electron-withdrawing substituent deactivated the previously electron-rich olefin,  

and halo-Prins product formation was not observed. Incorporation of the chloroisopropenyl 
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unit did not minimize the amount of C6 epimerization or influence the diastereomeric ratio; 

however, the previously inseparable diastereomers were now separable at this stage, 

affording a 52% yield of the desired diastereomer 49. Elaboration to 51 proceeded via 

similar conditions to those established for the first generation route.  

 

Scheme 15. Successful aldol cyclization with allylic chloride 48. 

 Pressing forward, a 1,2-methyl addition assisted by the use of CeCl3·2LiCl15 was 

performed to furnish tertiary allylic alcohol 50, followed by treatment with pyridinium 

chlorochromate to affect a Dauben oxidative transposition16 to reveal the desired 

hydrindanone oxidation pattern 51, setting the stage for investigations of the final key 

oxidation to deliver hydrindanone enal 10 (Scheme 16). 

 

Scheme 16. Synthesis of final hydrindanone enal precursor. 
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salts gave modest yields (Scheme 17). It is suspected that this reaction first undergoes a 

Finkelstein displacement of the allylic chloride with iodide. Subsequent iodide 

displacement by dimethylsulfoxide and deprotonation would unveil dimethylsulfide and 

product. Through these new conditions that were more amenable to scale, the key coupling 

fragment was obtained in 69% yield. This vastly improved nine-step synthesis delivered 

10 in 18% yield from commercial starting materials (compared to our first generation 10 

step, 11% yielding route). 

 

Scheme 17. Modified Kornblum oxidation. 
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Once a streamlined second generation route to access hydrindanone enal 10 was 
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Scheme 18. Synthesis of SmI2-cyclization precursor 56. 

2.4.5 SmI2-mediated Cyclization Investigations 

At this stage, attention was turned towards the second key C5–C14 bond 

construction step: a SmI2-mediated cyclization to forge the central eight-membered ring. It 

was envisioned that this reaction would occur through generation of ketyl radical 57, 

followed by cyclization onto the enone to generate samarium enolate 58, and protonation 

to reveal the tricyclic core of pleuromutilin (Scheme 19).  

 

Scheme 19. SmI2-mediated cyclization mechanism. 
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 Initial attempts in constructing the tricyclic core resulted in ketoacid 61 (Scheme 

20), the structure of which was confirmed by single-crystal X-ray diffraction. We 

hypothesized that this product arose from exposure of the SmIII-enolate to trace oxygen in 

solution, resulting in hydroperoxide 60 formation and subsequent oxidative ring scission 

to deliver the fragmented ketoacid product. Although the ring scission was deleterious, this 

was nonetheless the first indicator that the desired C5–C14 bond formation had occurred 

with high diastereoselectivity.  

 

Scheme 20. C5–C14 bond formation with undesired oxidative ring scission. 

To prevent unwanted formation of ketoacid 61, a variety of conditions were 

evaluated. Initial optimization studies involved rigorously deoxygenating all components 
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additives in SmI2 reactions,28 it is postulated that in this particular case, water reacts with 

trimethylsilyl chloride to generate hydrochloride acid in situ, which can then quench the 

samarium enolate before it can react with residual oxygen in solution. Perhaps this is also 

the reason that upon addition of water, formation of silyl ether 62 was no longer observed. 

It is also possible that the water is necessary for an organized transition state to make this 

reaction highly diastereoselective.  

 

Scheme 21. Successful construction of the tricyclic core. 
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Scheme 22. Envisioned endgame for the synthesis of (+)-pleuromutilin (1). 

 Standard hydrogenation conditions employing cationic transition metal 

complexes29,30 gave rapid and exclusive reduction of the more sterically accessible C19 

olefin. Instead, attention was turned towards hydrogen atom transfer conditions,31,32 

seeking to leverage the thermodynamic preference for formation of a tertiary carbon-

centered radical over formation of a secondary radical if C19 reduction were to occur. 

Using conditions developed by Shenvi and coworkers,33 diastereoselective reduction of the 

C10 olefin (59) was observed; however, this was met with concomitant oxidation of the 

C14 alcohol to the undesired ketone (65) in a redox-relay type process (Scheme 23). Only 

trace products arising from competing C19–C20 vinyl reduction were observed.  

 
Scheme 23. Redox-relay by transannular 1,5-hydrogen atom transfer. 
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To test whether this reaction proceeds through a transannular [1,5]-hydrogen atom 

transfer process, deuterium-labeled tricycle 68 was prepared through a four-step protocol 

(Scheme 24). First, Pinnick oxidation34,35 of aldehyde 56 to the carboxylic acid, followed 

by reduction with lithium aluminum deuteride afforded deuterated reduction product 66. 

Oxidation of the alcohol using conditions developed by Stahl and coworkers26 afforded 

deuterated aldehyde 67, which was smoothly converted to deuterated tricycle 68 using the 

previously optimized SmI2-mediated cyclization conditions. Exposure to the optimized 

1,5-hydrogen atom transfer conditions led to formation of diketone 69 as a single 

diastereomer with complete transfer of the deuterium label. The observation that substrates 

in which the C14 alcohol is protected perform poorly under hydrogen atom transfer 

conditions suggests that cleavage of the O–H bond to form the C14 ketone serves as a 

driving force for this transformation. 

 

Scheme 24. Mechanistic deuterium labelling study for redox-relay process. 

Me
Me

Me
MOMO
H

OH
D

Mn(dpm)3 (13 mol %)
PhSiH3, TBHP

iPrOH, 23 ºC

D

Me
Me

Me
MOMO
H
Me O

OO

1410 1410

O

Me
Me

Me
MOMO
H

O10

56 66

1. NaClO2, KH2PO4
    2-methyl-2-butene
    tBuOH/H2O, 23 ºC

[Cu(MeCN)4]OTf
4-OMebpy
ABNO, NMI

40% over
3 steps

45%
single diastereomer

O

Me
Me

Me
MOMO
H

SmI2, H2O
THF, 0 ºC
then TMSCl
86%, 23:1 dr

2. LiAlD4, Et2O
    0 ºC → 23 ºC

OHD
D MeCN, 23 ºC

O

Me
Me

Me
MOMO
H

O
D

67

6869

mechanistic deuterium labelling study



Chapter 2 – Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 58 

2.4.7 Completing the Synthesis of (+)-Pleuromutilin 

Although reduction of the C10 olefin using hydrogen atom transfer conditions was 

successful, the resulting C14 ketone presented a new set of challenges. Ultimately, 

selective reduction of the C14 ketone in the presence of the C3 ketone proved to be 

untenable due to the more sterically encumbered nature of the C14 ketone. To circumvent 

performing a selective reduction, triisopropylsilyl (TIPS) enol ether 70 was prepared and 

submitted to the previously optimized 1,5-hydrogen atom transfer conditions to obtain 

ketone 71 as a single diastereomer (Scheme 25). To complete the synthesis, 71 was exposed 

to excess lithium in ammonia to furnish alcohol 72 as a separable 14:1 mixture of 

diastereomers. This selectivity arises from the alcohol being placed in the pseudoequatorial 

position upon reduction. Subsequent one-pot acylation with 2-(2,2,2-trifluoroacetoxy)-

acetic acid4 followed by trifluoroacetate methanolysis and acidic hydrolysis affected global 

deprotection to deliver (+)-pleuromutilin (1). 

 
Scheme 25. Completing the synthesis of (+)-pleuromutilin (1). 
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2.5 EFFORTS TOWARD NOVEL ANALOGUES 

A key design aspect of the strategy described was the ability to easily vary the 

stereochemistry of the cyclization substrates at C11 and C12. Given the recent interest in 

derivatives of C12-epi-mutilin as broad spectrum antibiotics,36 it was envisioned that the 

12-epi-mutilin framework could be prepared using our synthetic route. 

When enal 10 was subjected to crotylation with Z-boronic acid 35, diastereomers 

36 and 37 (the 11,12-bis-epi variant) were observed as a 1.2:1 mixture. When enal 10 was 

subjected to crotylation with E-boronic acid 73,  diastereomers 74 (12-epi) and 75 (11-epi) 

were formed in 85% yield and 2:1 dr (Scheme 26).  

 

Scheme 26. Crotylation to access stereochemical analogues. 

Elaboration of 74 (12-epi) to  (+)-12-epi-pleuromutilin 82 was straightforward and 

no further optimization was required. Tricycle 79 formation proceeded in good yield and 
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diastereoselectivity as it did for the natural system and the 1,5-hydrogen atom transfer 

smoothly afforded the reduced product 81 (Scheme 27). Ketone reduction, glycolic ester 

installation, and global deprotection afforded (+)-12-epi-pleuromutilin (82). 

 

Scheme 27. Synthesis of (+)-12-epi-pleuromutilin. 

 However, attempts to cyclize any of the 11-epi-isomers revealed that the C11 

stereochemistry exerts a pronounced effect on the reactivity. Subjection of 37 to the SmI2-

mediated cyclization conditions provided tricycle 83 as the major product in 20% yield 
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84. Subsequent Dowd-Beckwith rearrangement proceeding through cyclopropane 85 

delivers the product bearing a bridgehead olefin. Attempts to cyclize 75 (11-epi) also led 

to an analogous product.  

 

Scheme 28. Cyclization of 7 (11,12-bis-epi). 

2.6 CONCLUDING REMARKS 

Herein, a modular synthesis of (+)-pleuromutilin and (+)-12-epi-pleuromutilin has 

been disclosed and each was completed in 18 steps (longest linear sequence) from (+)-

trans-dihydrocarvone. These syntheses were enabled by a modular approach that employed 

a highly diastereoselective SmI2-mediated radical cyclization to form the eight-membered 
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route will enable the design and synthesis of new fully synthetic variants of mutilin 

antibiotics. 

2.7 EXPERIMENTAL SECTION 

Materials and Methods 

Unless otherwise stated, reactions were performed under an inert atmosphere (Ar) 

with freshly dried solvents utilizing standard Schlenk techniques. Glassware was oven-

dried at 120 °C for a minimum of four hours, or flame-dried utilizing a Bunsen burner 

under high vacuum. Tetrahydrofuran (THF), methylene chloride (CH2Cl2), diethyl ether 

(Et2O), benzene (PhH), and toluene (PhMe) were dried by passing through activated 

alumina columns. Absolute ethanol (200 Proof) was purchased from Koptec. Methanol 

(HPLC grade) was purchased from Fisher Scientific. Anhydrous ammonia (NH3) was 

purchased from Matheson Tri-Gas. N,N-diisopropylethylamine (iPr2NEt), triethylamine 

(Et3N), methanol (MeOH), isopropanol (iPrOH), tert-butanol (tBuOH), and trimethylsilyl 

chloride (TMSCl) were distilled over calcium hydride prior to use. Unless otherwise stated, 

chemicals and reagents were used as received. All reactions were monitored by thin-layer 

chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and 

were visualized by UV (254 nm), p-anisaldehyde, and/or KMnO4 staining. Flash column 

chromatography was performed using silica gel (SiliaFlash® P60, particle size 40-63 

microns [230 to 400 mesh]) purchased from Silicycle. 1H and 13C NMR spectra were 

recorded on a Bruker Avance III HD with Prodigy Cryoprobe (at 400 MHz and 101 MHz, 

respectively) or a Varian Inova 500 (at 500 MHz and 101 MHz respectively) and are 

reported relative to internal CHCl3 (1H, δ = 7.26) and CDCl3 (13C, δ = 77.0). Data for 1H 
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NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling 

constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR 

spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in 

frequency of absorption (cm–1). HRMS were acquired from the Caltech Mass Spectral 

Facility using fast-atom bombardment (FAB), electrospray ionization (ES+-TOF) or 

electron impact (EI). Optical rotations were measured on a Jasco P-2000 polarimeter using 

a 100 mm path-length cell at 589 nm.  

 Reagents were purchased from commercial vendors as follows: 2-(2-bromoethyl)-

1,3-dioxane was purchased from TCI America. Palladium(II) acetate (Pd(OAc)2, >99%), 

copper(I) iodide (CuI, 99.999%), and tetrakis(acetonitrile)palladium(II) tetrafluoroborate 

(Pd(CH3CN)4(BF4)2, >98%) were purchased from Strem Chemicals and stored in a 

nitrogen-filled glovebox. Tetrahydroxydiboron (B2(OH)2, 95%) and copper(I) cyanide 

(CuCN, 99.98%) were purchased from Sigma-Aldrich and stored in a nitrogen-filled 

glovebox. Samarium ingot (99.9% trace rare earth metals basis), tris(2,2,6,6-tetramethyl-

3,5-heptanedionato)manganese(III) (Mn(dpm)3, 97%), phenylsilane (PhSiH3, 97%), 

lithium (wire stored in mineral oil, 99.9% trace metal basis), and tert-butyl hydroperoxide 

(TBHP, 5.5 M in decane over 4 Å MS) were purchased from Sigma-Aldrich. 
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2.7.1 Experimental Procedures 

Preparation of trisubstituted enone (14): 
 

 
 

A flame-dried, 1 L, 3-necked round-bottom flask equipped with a stir bar, reflux 

condenser, addition funnel, and glass stopper was charged with activated magnesium 

turnings (8.02 g, 330.0 mmol, 3 equiv). The atmosphere was exchanged three times with 

argon before addition of THF (40 mL). Added to the rapidly stirred suspension was 1,2-

dibromoethane (3.10 g, 16.5 mmol, 0.15 equiv) dropwise. An exothermic reaction was 

observed, and the suspension became grey. The reaction was cooled to ambient 

temperature, and subsequently, a solution of 2-(2-bromoethyl)-1,3-dioxane (42.9 g, 219.9 

mmol, 2 equiv) in THF (170 mL, 0.64 M) was added dropwise via an addition funnel over 

1 h. Upon completion of addition, the reaction was stirred for an additional 30 min. The 

resulting suspension was filtered via cannula into a flame-dried, 2 L, 2-necked round-

bottom flask equipped with a large stir bar under an atmosphere of argon, and the Grignard 

reagent was diluted with THF (170 mL, 0.64 M). Titration against salicylaldehyde 

phenylhydrazone yielded the concentration of Grignard reagent as 0.38 M. 

The Grignard solution was cooled to –45 °C. Subsequently, a freshly prepared 

solution of CuCN•2LiCl in THF was added via cannula over 20 min. CuCN•2LiCl was 

prepared by dissolving CuCN (9.85 g, 110.0 mmol, 1 equiv) and LiCl (9.32 g, 220.0 mmol, 

O
Me
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MgBr

1.

    CuCN•2LiCl, TMSCl, THF
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2 equiv) in THF (110 mL, 1.0 M w.r.t. CuCN) and vigorously stirred at ambient 

temperature for 1 h. After an additional 20 min, freshly distilled TMSCl (14.3 g, 132.0 

mmol, 1.2 equiv) was added. The reaction became heterogeneous, and stirring was 

difficult. After 10 min, a solution of (R)-enone11,12 15 (12.1 g, 110.0 mmol, 1 equiv) in 

THF (183 mL, 0.6 M) was added via cannula over 30 min. The reaction was stirred for 1 h 

and then quenched with sat. aq. NaHCO3 (10 mL) at –45 °C. After warming to ambient 

temperature, pentane (600 mL) was added, and the suspension was filtered through Celite. 

The volatiles were concentrated under reduced pressure, additional pentane (500 mL) was 

added, and the slurry was filtered through Celite. This process was repeated an additional 

time to afford 38.2 g of a clear oil. 1H NMR (CDCl3) shows desired silyl enol ether along 

with 2-(2-cyanoethyl)-1,3-dioxane. The silyl enol ether was used immediately without 

further purification. 

To a 1 L round-bottom flask equipped with a stir bar was added the silyl enol ether, 

anhydrous DMSO (550 mL, 0.2 M) and Pd(OAc)2 (2.47 g, 11.0 mmol, 10 mol %). The 

mixture was sparged with O2 for 2 h then stirred at ambient temperature for 36 h. At this 

time, 1H NMR analysis showed the ratio of product to remaining silyl enol ether was 11:1. 

Water (700 mL) was added, and the product was extracted into Et2O (4 x 400 mL). The 

combined organic layers were washed with brine (1 x 50 mL), dried over Na2SO4, and 

concentrated under reduced pressure to afford 38.1 g of a viscous, yellow oil.  

Purification was achieved via flash column chromatography on SiO2 [750 g SiO2, 

60 mL fractions, Et2O/hexanes = 40% (1.5 L), 45% (500 mL), 50% (500 mL), 55% (500 

mL), 65% (500 mL), 80% (500 mL)] to afford trisubstituted enone 14 (20.3 g, 90.5 mmol, 

91% yield over 2 steps) as a viscous, clear oil.  
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TLC (25% EtOAc/hexanes): Rf = 0.23 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.84 (s, 1H, C4), 4.53 (t, J = 5.0 Hz, 1H, C3), 4.09 (ddt, J 

= 10.7, 5.1, 1.3 Hz, 2H, OCH2CH2CH2O), 3.75 (m, 2H, OCH2CH2CH2O), 2.31 (m, 5H, 

C1, C2, C6, C8), 2.05 (m, 2H, OCH2CH2, C7), 1.78 (m, 2H, C1, C2), 1.68 (m, 1H, C7), (d 

sept, J = 13.5, 1.4 Hz, 1H, OCH2CH2), 1.12 (d, J = 6.9 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 202.3 (C5=O), 164.5 (C9), 125.1 (C4), 101.2 (C3), 66.9 

(OCH2CH2), 40.8 (C6), 32.3 (C1), 31.9 (C2), 30.8 (C7), 29.3 (C8), 25.7 (OCH2CH2), 15.1 

(C16). 

FTIR (AT-IR): 2857, 2249, 1662, 1375, 1211, 1146, 1079, 1046, 907, 647 cm–1. 

HRMS (FAB+, m/z): calc’d for C13H21O3 [M+H]+ 225.1491, found: 225.1502. 

[𝜶]𝑫𝟐𝟑: +65° (c = 1.055, CHCl3). 

 

Preparation of vinyl stannane 25 

 

A flame-dried, argon-purged, 1 L round-bottom flask equipped with a stir bar was 

charged with trans-1,2-bis(tri-n-butylstannyl)ethylene (61.8 g, 102.0 mmol, 1.9 equiv) and 

THF (270 mL, 0.2 M).  The mixture was cooled to –78 °C, and a 2.42 M solution of n-

BuLi (44.4 mL, 107.4 mmol, 2 equiv) was added dropwise.  The reaction was allowed to 

warm to –40 °C over 30 min. 
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A separate flame-dried, argon-purged, 1 L bottom flask equipped with a stir bar was 

charged with n-propylethynylcopper (13.3 g, 102.0 mmol, 1.9 equiv), 

hexamethylphosphorous triamide (HMPT, 43.8 g, 268.4 mmol, 5 equiv), and THF (67 mL, 

0.8 M).  The mixture was stirred at rt until all of the polymeric n-propylethynylcopper 

dissolved to give a homogeneous solution (approximately 10 min required).  The solution 

was cooled to –40 °C, and the vinyl lithium-stannyl species prepared above was transferred 

to the n-propylethynylcopper solution via cannula over 30 min.  The resulting mixture was 

cooled to –78 °C and stirred for 45 min before a solution of the chiral enone 14 (12.0 g, 

53.7 mmol, 1 equiv) in THF (54 mL, 1.0 M) was added over 15 min.  The reaction was 

stirred for 30 min then warmed to –40 °C over 15 min.  While cold, the reaction was poured 

into ice-cold saturated aqueous (NH4)2SO4 (100 mL), and the layers were separated.  The 

aqueous layer was back-extracted with Et2O (1 x 50 mL), and the combined organic layers 

were washed with 2% (v/v) H2SO4 (2 x 250 mL).  A black/brown precipitate formed, and 

the mixture was filtered through Celite, dried over Na2SO4, and the volatiles were removed 

in vacuo to afford 95.3 g of a dark red/brown viscous oil. 

The crude reaction was purified via flash column chromatography on silica gel [650 

g SiO2, 60 mL fractions, collected 750 mL forerun, Et2O/hexanes = 15% (1.5 L), 20% (1 

L), 30% (1 L), 40% (500 mL), 50% (1 L)] to afford Bu4Sn, vinyltributylstannane, and 

HMPT (fractions 2–15), minor diastereomer (fractions 17–31), and major diastereomer 25 

(fractions 31–53).  The volatiles were removed in vacuo to afford 8.23 g of minor 

diastereomer and 17.93 g of major diastereomer 25.  1H NMR (CDCl3) shows pure 

diasteromers.  Yield: 90%. Rf (minor diastereomer) = 0.45 (Et2O/hexanes = 30%, 
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visualized with KMnO4). Rf (major diastereomer) = 0.35 (Et2O/hexanes = 30%, visualized 

with KMnO4). 

1H NMR (400 MHz, CDCl3): δ 5.84 (d, J = 19.7 Hz, 1H), 5.56 (d, J = 19.7 Hz, 1H), 4.52 

– 4.38 (m, 1H), 4.08 (ddd, J = 11.5, 4.9, 1.4 Hz, 2H), 3.73 (tdd, J = 12.1, 2.6, 1.2 Hz, 2H), 

2.62 (dd, J = 14.1, 2.1 Hz, 1H), 2.27 – 1.98 (m, 3H), 1.84 (ddt, J = 13.0, 6.3, 3.3 Hz, 1H), 

1.78 – 1.64 (m, 2H), 1.55 – 1.37 (m, 9H), 1.37 – 1.20 (m, 7H), 0.96 (d, J = 6.5 Hz, 3H), 

0.92 – 0.78 (m, 13H). 

13C NMR (101 MHz, CDCl3): δ 212.1, 152.5, 129.3, 102.5, 66.9, 48.6, 47.7, 44.7, 36.8, 

36.0, 30.7, 29.5, 29.1, 27.2, 25.8, 14.4, 13.7, 9.4. 

 

Preparation of alkyne 26 

 

A flame-dried, 1 L bottom flask equipped with a stir bar was charged with major 

diastereomer 25 (17.9 g, 33.1 mmol, 1 equiv) and MeCN (330 mL, 0.1 M). Added to the 

homogenous solution was Pb(OAc)4 (44.1 g, 99.4 mmol, 3 equiv), and the reaction was 

stirred at rt for 72 h, at which time 1H NMR analysis showed complete conversion.  The 

yellowish-white heterogeneous suspension was diluted with pentane (600 mL), filtered 

through Celite, and the volatiles were removed in vacuo.  The oil and white solid obtained 

was triturated with 30% Et2O/hexanes (250 mL), filtered through Celite, and the volatiles 

O
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SnBu3
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MeCN, 23 ºC
88%
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were removed in vacuo.  The process was repeated an additional time with 30% 

Et2O/hexanes (100 mL). 

The resulting residue was purified via flash column chromatography on silica gel [450 g 

SiO2, 60 mL fractions, collected 500 mL forerun, Et2O/hexanes = 30% (1 L), 35% (500 

mL), 40% (500 mL), 50% (500 mL), 70% (1 L)] to afford Bu3SnOAc and trace residual 

RSM (fractions 19–31), a faint spot staining in p-anisaldehyde (fractions 35-43), and 

product (fractions 43-68).  The volatiles were removed in vacuo to afford 6.86 g of alkyne 

26 as a viscous, colorless oil.  Yield: 86%.  

 

TLC (50% Et2O/hexanes): Rf = 0.10 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 4.58 (t, J = 4.9 Hz, 1H), 4.13 (ddt, J = 10.4, 5.0, 1.4 Hz, 

2H), 3.87 – 3.71 (m, 3H), 2.52 (dd, J = 13.1, 2.6 Hz, 1H), 2.32 (dtd, J = 12.5, 6.2, 1.2 Hz, 

1H), 2.24 (dd, J = 13.1, 1.2 Hz, 1H), 2.17 – 2.00 (m, 2H), 1.96 (dq, J = 12.9, 3.0 Hz, 1H), 

1.89 – 1.78 (m, 3H), 1.72 – 1.62 (m, 3H), 1.37 (dtt, J = 13.5, 2.7, 1.4 Hz, 1H), 1.07 (d, J 

= 6.5 Hz, 3H).	

13C NMR (101 MHz, CDCl3): δ 210.1, 102.0, 85.8, 73.2, 66.9, 52.4, 44.7, 40.8, 36.6, 

36.4, 31.9, 30.3, 25.7, 14.3.	

HRMS (FAB+, m/z): calc’d for C15H21O3 [M+H]–H2 249.1491, found: 249.1482. 

 [𝜶]𝑫𝟐𝟑: +23.4° (c = 0.92, CHCl3). 
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Preparation of hydrindanone alkyne 13 

 

A flame-dried, 500 mL bottom flask equipped with a stir bar was charged with 

alkyne 26 (6.86 g, 27.4 mmol, 1 equiv) and THF (137 mL, 0.2 M).  To the homogenous 

solution was added aqueous HCl (13.7 mL of a 6 M solution, 3 equiv).  The system was 

equipped with a reflux condenser, and the reaction was heated to 70 °C.  After 90 min, 

TLC analysis showed complete conversion.  The resulting yellow solution was cooled to 

rt and basified via slow addition of saturated aqueous NaHCO3 (100 mL).  The biphasic 

mixture was transferred to a separatory funnel, and the layers were separated.  The aqueous 

layer was extracted with Et2O (3 x 50 mL), and the combined organic layers were washed 

with brine (1 x 50 mL), dried over Na2SO4, and the volatiles were removed in vacuo 

(rotovap only) to afford a yellow oil. 

The resulting residue was purified via flash column chromatography on silica gel 

(175 g SiO2, Et2O/hexanes = 10%) to afford two faint UV-active spots (fractions 7–12) and 

product 13 (fractions 15-35).  The volatiles were removed in vacuo (rotovap only) to afford 

3.49 g of 13 as a pale yellow oil.  1H NMR (CDCl3) shows pure product as a 4.3:1 mixture 

of diastereomers epimeric at the α-methyl group.  Yield: 73%. Rf = 0.35 (Et2O/hexanes = 

10%, visualized with UV and p-anisaldehyde). 
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Preparation of hydrindanone alkyne 12 

 

A flame-dried, 200 mL bottom flask equipped with a stir bar was charged with 

hydrindanone alkyne 13 (2.02 g, 11.6 mmol, 1 equiv).  The atmosphere was exchanged 

with argon three times before adding a solution of CeCl3•2LiCl (0.3 M in THF, 38.6 mL, 

11.6 mmol, 1 equiv).  Upon addition of CeCl3•2LiCl, a bright yellow solution was obtained 

and stirred at rt for 1 h, over which time the reaction became pale yellow.  The mixture was 

then cooled to 0 °C and allowed to equilibrate for 10 min.  Subsequently, a solution of 

methylmagnesium chloride (3.0 M in THF (Aldrich), 7.72 mL, 23.2 mmol, 2 equiv) was 

added dropwise over 10 min, and the reaction was stirred at 0 °C until TLC analysis 

indicated complete consumption of enone 13 (10 min at this scale).  (Note: the separable 

diastereomer has identical polarity to that of starting enone, but while the enone is UV-

active, the separable diastereomer is not; thus TLC analysis may be used to monitor 

reaction progress). 

The resulting dark yellow solution was quenched at 0 °C via slow addition of 1 M 

HCl (25 mL) using a vent needle to relieve excess pressure.  Thereafter, the mixture was 

diluted with H2O (30 mL) and Et2O (50 mL), transferred to a separatory funnel, and the 

layers were separated.  The aqueous layer was extracted with Et2O (3 x 50 mL), the 

combined organic layers were dried over Na2SO4, and the volatiles were removed in vacuo 

(rotovap only) to afford a viscous yellow oil. 

O
Me

1. CeCl3·2LiCl
    MeMgCl
    THF, 0 ºC
2. PCC, CH2Cl2 Me

MeO64% over
2 steps

13 12
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A flame-dried, 250 mL round-bottom flask equipped with a stir bar was charged 

with PCC (7.83 g, 36.3 mmol, 3 equiv) and CH2Cl2 (36 mL, 0.33 M).  To the heterogeneous 

orange suspension was added a solution of crude allylic alcohol (2.30 g, 12.1 mmol, 1 

equiv) in CH2Cl2 (47 mL, 0.25 M) over 3 min.  The suspension was stirred at rt for 12 h, 

at which time TLC analysis indicated complete conversion. 

Thereafter, the tarry mixture was diluted with Et2O (300 mL) and transferred to a 

separatory funnel.  Added to the tar remaining in the reaction flask was Et2O (150 mL) and 

silica gel (25 g), and the mixture was stirred for 1 h before being filtered over Celite.  The 

resulting solution was combined with the initial reaction mixture.  The combined organic 

layers were washed with 5% NaOH (2 x 100 mL), 5% HCl (1 x 100 mL), saturated aqueous 

NaHCO3 (1 x 100 mL), dried over Na2SO4, and the volatiles were removed in vacuo 

(rotovap only) to afford 1.89 g of a viscous yellow oil. 

Purification was achieved via flash column chromatography on silica gel (80 g 

SiO2, Et2O/hexanes = 10%) to afford a faint UV-active spot with Rf = 0.5 (fractions 7–8) 

and product (fractions 9–20).  The volatiles were removed in vacuo (rotovap only) to afford 

1.51 g of the 12 as a clear, viscous oil.  Yield: 64%.  

 

TLC (10% Et2O/hexanes): Rf = 0.4 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 2.63 (ddd, J = 18.0, 13.1, 8.3 Hz, 1H), 2.38 – 2.17 (m, 

3H), 2.17 – 2.07 (m, 5H), 1.89 (ddt, J = 13.4, 6.6, 3.4 Hz, 1H), 1.75 (tdd, J = 13.7, 10.3, 

3.2 Hz, 1H), 1.68 – 1.58 (m, 1H), 1.40 – 1.29 (m, 1H), 1.15 (d, J = 7.1 Hz, 3H).	

13C NMR (101 MHz, CDCl3): δ 206.3, 152.1, 134.1, 88.6, 69.8, 40.5, 37.5, 36.9, 35.8, 

35.5, 29.3, 19.2, 16.8.	
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FTIR (AT-IR): 3285, 2931.24, 2860.32, 2359.59, 1452, 1409, 1370, 1262, 1165, 967, 908 

HRMS (ET+, m/z): calc’ed for C13H16O [M]+ 188.1201, found: 188.1226. 

[𝜶]𝑫𝟐𝟑: –245.4° (c = 0.81, CHCl3). 

 

Preparation of vinyl iodide 8 

 

A flame-dried, 250 mL round-bottom flask equipped with a stir bar was charged 

with the hydrindanone alkyne 8 (645 mg, 3.43 mmol, 1 equiv). The atmosphere was 

exchanged three times with argon and then CH2Cl2 (43 mL, 0.08 M) was added.  The 

homogenous solution was cooled to –20 °C, and a solution of B-I-9-BBN (6.85 mL of a 

1.0 M solution in hexanes, 6.85 mmol, 2 equiv) was added dropwise over 15 min.  The 

yellow solution was stirred for 1 h then warmed to 0 °C and stirred for 1 h. Added to the 

resulting dark red solution was glacial AcOH (2.65 mL, 46.3 mmol, 13.5 equiv) over 2 

min.  The reaction was stirred 30 min at 0 °C then warmed to rt and stirred for 30 min.  

Subsequently, 5% w/w aqueous NaHCO3 (100 mL) was added slowly causing vigorous 

gas evolution, and the biphasic mixture was stirred for 10 min. 

Thereafter, the mixture was transferred to a separatory funnel with CH2Cl2 (50 mL), 

and the layers were separated.  The aqueous layer was extracted with CH2Cl2 (2 x 20 mL), 

and the combined organic layers were washed with 1 M Na2S2O3 (1 x 100 mL), dried over 

Na2SO4, and the volatiles were removed in vacuo to afford a viscous oil. 

Me
MeO

12

B-I-9-BBN

–20 ºC → 0 ºC, 2 h;
then AcOH Me

MeO

8

I

94%
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Purification was achieved via flash column chromatography on silica gel (200 g 

SiO2, Et2O/hexanes = 5%) to afford minor diastereomer and bis-iodinated product 

(fractions 19–24) and major diastereomer 8 (fractions 23–36). The volatiles were removed 

in vacuo to afford 631 mg of the product as a clear, viscous oil.  1H NMR analysis revealed 

a 9:1 mixture of diastereomers.  Yield: 58%. 

 

TLC (15% Et2O/hexanes): Rf = 0.4 (UV). 

 

Preparation of hydrindanone enal 10 from vinyl iodide 8 

 

A flame-dried, 250 mL round-bottom flask equipped with a stir bar was charged 

with the hydrindanone vinyl iodide 8 (405 mg, 1.28 mmol, 1 equiv) and anhydrous PhMe 

(32 mL, 0.04 M).  The homogeneous solution was sparged with CO (g) from a double-

walled balloon for 10 min and was subsequently heated to 60 °C.  Stirring and sparging 

was continued at 60 °C for an additional 10 min before adding a solution of Pd(PPh3)4 (104 

mg, 0.0897 mmol, 7 mol %) in anhydrous PhMe (11 mL, 0.11 M) in one portion.  Upon 

addition, the reaction turned brown/black, and sparging was continued for another 5 min.  

Subsequently, the purge needle was placed just above the reaction mixture, and a solution 

of freshly distilled Bu3SnH (485 mg, 1.67 mmol, 1.3 equiv) in anhydrous PhMe (10 mL, 

0.13 M) was added dropwise over 2 h while the reaction mixture was maintained at 60 °C.  

Me
MeO

8

I

Pd(PPh3)4 (7 mol %)

Bu3SnH, CO, 60 ºC
Me

MeO

H

O
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After approximately 5 mL of the Bu3SnH/PhCH3 solution had been added, the reaction 

turned bright yellow and remained as such until addition was complete. 

The reaction was cooled to rt and sparged with argon for 10 min before PhMe was 

removed by distillation under reduced pressure. 

The resulting viscous brown residue was immediately purified via flash column 

chromatography on silica gel (50 g SiO2, Et2O/hexanes = 15%→25%) to afford residual 

[Sn] (fractions 4–7), a bright yellow band (fractions 29–57), and product (fractions 36–57).  

The volatiles were removed in vacuo to afford 293 mg of 10 contaminated with residual 

Pd(PPh3)4.  Given that Pd(PPh3)4 is insoluble in hexanes and the product is soluble in 

hexanes, the yellow solid was triturated with hexanes, filtered, and the volatiles were 

removed to afford 226 mg of the enal 10 as an off-white solid after standing overnight in 

the refrigerator.  Yield: 80%. 

 

TLC (30% Et2O/hexanes): Rf = 0.3 (UV). 

 

Preparation of trityl protected alcohol 31.  

 

A flame-dried, 250 mL round-bottom flask equipped with a stir bar was charged 

with 3-butyn-1-ol 30 (7.01 g, 100.0 mmol, 7.57 mL, 1 equiv), CH2Cl2 (150 mL, 0.67 M), 

and DMAP (2.44 g, 20.0 mmol, 20 mol %). To the homogeneous solution was added Et3N 

(20.2 g, 200.0 mmol, 27.9 mL, 2 equiv) and trityl chloride (27.8 g, 100.0 mmol, 1 equiv). 

The reaction was stirred at ambient temperature for 18 h and H2O (225 mL) was 

OH TrtCl, NEt3 OTrt

59%
DMAP, CH2Cl2

30 31
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subsequently added. The resultant mixture was extracted with Et2O (3 x 200 mL). The 

combined organic layers were washed with brine (2 x 50 mL), dried over Na2SO4, and 

concentrated under reduced pressure to afford a white solid. 

The solid was dissolved in a minimal volume of CH2Cl2 (30 mL) and purified via 

flash column chromatography on SiO2 (300 g SiO2, Et2O/hexanes = 5%) to afford product 

31 (21.9 g, 70.1 mmol, 70% yield) as a white solid. Spectral data were in complete 

agreement with literature values. 

 

TLC (20% Et2O/hexanes): Rf = 0.73 (UV, KMnO4). 

 

Preparation of ynoate 32 

 

The atmosphere of a flame-dried, 1 L round-bottom flask equipped with a stir bar 

was exchanged three times for nitrogen, then charged with anhydrous THF (180 mL) and 

freshly distilled diisopropylamine (9.58 g, 94.6 mmol, 13.3 mL, 1.35 equiv). The mixture 

was cooled to –78 °C and nBuLi (35.9 mL of a 2.46 M solution, 88.3 mmol, 1.26 equiv) 

was added slowly over 15 min. The solution was stirred at  

–78 °C for 5 min, warmed to 0 °C, stirred 10 min, then cooled back to –78 °C. Thereafter, 

a solution of the trityl-protected substrate 31 (21.9 g, 70.1 mmol, 1 equiv) in anhydrous 

THF (70 mL) was added dropwise over 30 min, and the reaction was stirred for an 

additional 15 min. Ethyl chloroformate (22.8 g, 210.3 mmol, 20.1 mL, 3 equiv) was then 

OTrt

73%

DIPA, nBuLi, THF

then EtOCOCl
–78 ºC → 23 ºC

31

OTrt
EtO

O
32
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added over 15 min, and the reaction was stirred for an additional 10 min before being 

warmed to ambient temperature and stirred for 3 h. 

The reaction was quenched via addition of saturated aq. NH4Cl (150 mL) and 

stirred for 10 min. Thereafter, H2O (150 ml) was added, the reaction was extracted into 

Et2O (2 x 150 mL), the combined organic layers were dried over Na2SO4, and concentrated 

under reduced pressure to afford a pale yellow solid. The crude residue was suspended in 

hexanes (80 mL), heated to a boil, additional hexanes (100 mL) was added, and the 

heterogeneous suspension was filtered while hot to remove residual ammonium salts. The 

mixture was re-heated and slowly cooled overnight to afford product 32 (19.6 g, 51.0 

mmol, 73% yield) as white crystals. 

TLC (20% Et2O/hexanes): Rf = 0.52 (UV). 

1H NMR (400 MHz, CDCl3): δ 7.52–7.42 (m, 6H, Ph3CO), 7.34–7.20 (m, 9H, Ph3CO), 

4.25 (q, J = 7.2 Hz, 2H, OCH2CH3), 3.31 (t, J = 6.9 Hz, 2H, C14), 2.63 (t, J = 6.9 Hz, 2H, 

C13), 1.34 (t, J = 7.1 Hz, 3H, OCH2CH3). 

13C NMR (101 MHz, CDCl3): δ 153.7 (C20=O), 143.7 (Ph3CO), 128.6 (Ph3CO), 127.9 

(Ph3CO), 127.1 (Ph3CO), 86.9 (Ph3CO), 86.5 (C12), 74.0 (C19), 61.9 (OCH2CH3), 61.1 

(C14), 20.3 (C13), 14.1 (OCH2CH3). 

FTIR (AT-IR): 2937, 2882, 2243, 1713, 1471, 1377, 1018 cm–1. 

HRMS (FAB+, m/z): calc’d for C26H24O3 [M]+ 384.1726, found 384.1739. 

Melting point: 89.4–90.0 °C 

 

 

 



Chapter 2 – Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 78 

Preparation of acrylate 33 

 

In a nitrogen-filled glovebox, a flame-dried 2 L flask equipped with a large stir bar 

was charged with CuI (9.68 g, 50.9 mmol, 1 equiv). Anhydrous THF (390 mL) was 

transferred to the flask via cannula, and the heterogeneous suspension was stirred at 0 °C 

for 20 min. Thereafter, MeLi (64.8 mL of a 1.57 M solution in Et2O, 101.7 mmol, 2 equiv) 

was added dropwise over 25 min during which time the reaction went from a heterogeneous 

brown suspension to a nearly colorless, homogeneous solution. After an additional 5 min 

of stirring, the mixture was cooled to –78 °C and stirred for 20 min prior to dropwise 

addition of alkynoate ester 32 (19.6 g, 50.9 mmol, 1 equiv) in anhydrous THF (130 mL) 

via cannula over 20 min. The reaction was stirred at –78 °C for 2 h then quenched with 

H2O (25 mL) at –78 °C.  

After 10 min, the solution was warmed to ambient temperature, filtered through a 

pad of Celite, and the Celite was rinsed with Et2O (3 x 75 mL). The combined organic 

layers were washed with H2O (2 x 50 mL) and brine (1 x 50 mL), dried over Na2SO4, and 

concentrated under reduced pressure to afford acrylate 33 (19.5 g, 48.7 mmol, 96% yield, 

96:4 Z:E) as a viscous, yellow oil. 

 

TLC (10% Et2O/hexanes): Rf = 0.55 (UV). 

1H NMR (400 MHz, CDCl3): δ 7.48–7.41 (m, 6H, Ph3CO), 7.32–7.19 (m, 9H, Ph3CO), 

5.74 (d, J = 1.4 Hz, 1H, C19), 4.13 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.26 (t, J = 6.4 Hz, 2H, 

OTrt
EtO
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CuI, MeLi, 0 ºC
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C14), 2.97 (t, J = 6.4 Hz, 2H, C13), 1.90 (d, J = 1.4 Hz, 3H, C18), 1.26 (t, J = 7.1 Hz, 3H, 

OCH2CH3). 

13C NMR (101 MHz, CDCl3): δ 166.2 (C20=O), 157.9 (C12), 144.2 (Ph3CO), 128.7 

(Ph3CO), 127.7 (Ph3CO), 126.8 (Ph3CO), 117.5 (C19), 86.6 (Ph3CO), 62.4 (C14), 59.5 

(OCH2CH3), 33.7 (C13), 26.1 (C18), 14.3 (OCH2CH3). 

FTIR (AT-IR): 2982, 2915, 2873, 1709, 1652, 1489, 1447, 1265, 1194, 1146, 779 cm–1. 

HRMS (FAB+, m/z): calc’d for C17H27O3[(M+H)–H2]+ 399.1960, found 399.1958. 

 

Preparation of allylic alcohol 34 

 

The atmosphere of a flame-dried, 1 L round-bottom flask equipped with a stir bar 

was exchanged three times for argon then charged with acrylate 33 (19.5 g, 48.7 mmol, 1 

equiv) and anhydrous CH2Cl2 (162 mL) and cooled to –78 °C. Subsequently, a freshly-

prepared solution of DIBAL-H (20.8 g, 146.2 mmol, 26.1 mL) in anhydrous hexanes (122 

mL) was added via cannula over 25 min. The resulting light yellow reaction was stirred at 

–78 °C for 2 h. 

The reaction was quenched at –78 °C via slow addition of H2O (30 mL) followed 

by 2 M NaOH (30 mL), stirred 10 min at –78 °C, and warmed to 0 °C. Additional H2O (30 

mL) was added, and the suspension was transferred to a 1 L Erlenmeyer flask containing a 

large stir bar and cooled to 0 °C. Subsequently, anhydrous MgSO4 (100 g) was added 

slowly, and a strongly exothermic reaction was observed. After stirring vigorously for 20 

EtO

O

Me

OTrt

HO Me

OTrt

92%
33 34
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CH2Cl2, –78 ºC



Chapter 2 – Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 80 

min, the slurry was filtered through Celite, the Celite was washed with Et2O (3 x 100 mL), 

and concentrated under reduced pressure to afford a viscous, pale yellow oil. 

Purification was achieved via flash column chromatography on SiO2 [300 g SiO2, 

Et2O/hexanes = 30% → 50%] to afford allylic alcohol 34 (16.2 g, 45.2 mmol, 92% yield) 

as a viscous, colorless oil. 

 

TLC (30% Et2O/hexanes): Rf = 0.30 (KMnO4). 

1H NMR (400 MHz, CDCl3): δ 7.48–7.41 (m, 6H, Ph3CO), 7.32–7.19 (m, 9H, Ph3CO), 

5.59 (t, J = 7.1 Hz, 1H, C19), 4.14 (d, J = 7.1 Hz, 2H, C20), 3.20 (t, J =6.4 Hz, 2H, C14), 

2.37 (t, J = 6.4 Hz, 2H, C13), 1.66 (s, 3H, C18), 1.50 (br m, 1H, OH). 

13C NMR (101 MHz, CDCl3): δ 144.0 (Ph3CO), 137.5 (C12), 128.7 (Ph3CO), 127.8 

(Ph3CO), 127.0 (Ph3CO), 126.1 (C19), 87.0 (Ph3CO), 61.8 (C14), 58.9 (C20), 32.6 (C13), 

23.7 (C18). 

FTIR (AT-IR): 3361 (br), 3057, 2915, 2875, 1596, 1490, 1448, 1265, 1061, 1001 cm–1. 

HRMS (TOF, ES+): calc’d for C25H26O2Na [M+Na]+ 381.1831, found 381.1843. 

 

Preparation of Z-allylic boronic acid 35 

 

This procedure was adapted from the work of Szabó and coworkers.5 In a nitrogen-filled 

glovebox, a flame-dried, 100 mL round-bottom flask equipped with a stir bar was charged 

with allylic alcohol 34 (2.67 g, 7.45 mmol, 1 equiv) and anhydrous, degassed DMSO (18.6 

HO Me

OTrt

B2(OH)4
Pd(MeCN)4(BF4)2 

(5 mol %)
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mL, 0.4 M). The mixture was stirred until the viscous allylic alcohol dissolved, at which 

time Pd(MeCN)4(BF4)2 (165 mg, 0.373 mmol, 5 mol %) was added, followed by 

tetrahydroxydiboron (801 mg, 8.94 mmol, 1.2 equiv). The reaction was vigorously stirred 

and transformed from a dark orange/red solution to dark green to black within 2 min. After 

stirring for 90 min at ambient temperature, the black mixture was transferred via cannula 

to a 100 mL Schlenk flask, the atmosphere of which had been exchanged with argon three 

times. Degassed PhMe (37.0 mL) was added to the black mixture followed by degassed 

16% aq. NaCl (15 mL). The system was sealed off, shaken, and the layers were separated. 

The organic layer was washed with additional degassed 16% aq. NaCl (3 x 15 mL) to afford 

an organic solution with a black particulate suspension. The suspension was allowed to 

stand for 30 min, during which time the particulates settled. The top solution was 

transferred via cannula to a 100 mL Schlenk tube, the atmosphere of which had been 

exchanged with argon three times, and the tube was pumped into the glovebox where 

naphthalene was added as an internal standard. A 1H NMR sample was prepared in the 

glovebox using dry, degassed CDCl3, and it was determined that [allylicboronic acid] = 

0.18 M. Allylicboronic acid 35 was immediately used in the next reaction. 
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Preparation of crotylation adducts 36 and 7 

 

This procedure was adapted from the work of Szabó and coworkers.10 In a nitrogen-

filled glovebox, a flame-dried, 100 mL Schlenk flask equipped with a stir bar was charged 

with freshly activated 3 Ǻ molecular sieves (pellets) (1.79 g), allylicboronic acid 35 (25.3 

mL of a 0.18 M solution, 4.47 mmol, 1 equiv), 3,3′-Br2-(R)-BINOL (397 mg, 0.894 mmol, 

20 mol %), freshly distilled tBuOH (1.28 mL, 13.4 mmol, 3 equiv), and a solution of the 

enal hydrindanone 10 (976 mg, 4.47 mmol, 1 equiv) in dry, degassed PhMe (4.5 mL). The 

resulting heterogeneous mixture was sealed, removed from the glovebox, cooled to –30 °C 

for 5 min, then placed in a pre-equilibrated 0 °C bath and stirred. 

After 40 h, the reaction was quenched with MeOH (5 mL), stirred for 5 min, 

filtered, and concentrated under reduced pressure to afford a viscous residue. Purification 

was achieved via flash column chromatography on SiO2 [100 g SiO2, Acetone/hexanes = 

4%→15%] to afford remaining enal (fractions 22–31), the desired diastereomer 36 

(fractions 37–70), and 37 and residual 3,3′-Br2-(R)-BINOL (fractions 71–85). The volatiles 

were concentrated under reduced pressure to afford remaining enal (237 mg, 1.09 mmol, 

24% recovered contaminated with ~5% protodeboronated nucleophile), the desired 

diastereomer 36 (1.03 g, 1.84 mmol, 41% yield), and the more polar diastereomer 

37/BINOL mixture respectively. 

10
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The 7/BINOL mixture was subjected to flash column chromatography on SiO2 [100 

g SiO2, Et2O/hexanes = 40%] to afford 3,3′-Br2-(R)-BINOL (fractions 1–3) and the more 

polar diastereomer 37 (fractions 23–38). 3,3′-Br2-(R)-BINOL (343 mg, 0.772 mmol, 86% 

recovered) and the more polar diastereomer 37 (972 mg, 1.73 mmol, 39% yield) were 

obtained. Both diastereomers were isolated as puffy white foams. 

 

Experimental Note: It is critical that all operations be carried out in a rigorously oxygen-

free environment. Failure to do so will result in rapid decomposition of the allylicboronic 

acid. 

 

Preparation of vinyl cyclohexanone 41 

 

A flame-dried, 2 L, 2-necked round-bottom flask equipped with a stir bar was 

evacuated and backfilled with argon three times. The flask was charged with CuI (9.27 g, 

48.7 mmol, 1.5 equiv) and THF (325 mL). The suspension was cooled to –78 ºC and stirred 

for 15 min. vinylmagnesium bromide (1.0 M in THF (Aldrich), 97.4 mL, 97.4 mmol, 3 

equiv) was added dropwise via cannula transfer and the solution was stirred for 5 min. The 

reaction was warmed to –25 ºC and stirred for 30 min. Thereafter, the mixture was cooled 

back down to –78 ºC and stirred for 15 min. Trisubstituted enone 14 (7.29 g, 32.5 mmol, 1 

equiv) was dissolved in THF (325 mL) and added dropwise via cannula transfer. The 

solution was warmed to –50 ºC and stirred until complete by TLC analysis. The reaction 

O
MeO O

MgBr
CuI, THF

–78 ºC → –25 ºC
73%, 6:1 dr O

MeO O

14 41
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mixture was quenched with sat. aq. NH4Cl (400 mL) at –50 ºC and the biphasic solution 

was warmed to ambient temperature. The layers were separated and the aqueous phase was 

extracted with Et2O (3 x 350 mL). The combined organic layers were washed with brine 

(100 mL), dried over MgSO4, and concentrated under reduced pressure to afford a viscous 

oil.  

 Purification was achieved via flash column chromatography on SiO2 [40% 

EtOAc/hexanes → 25% → 50%] to afford vinyl cyclohexenone 41 (4.32 g, 24.4 mmol, 

73% yield) as a clear oil. 

1H NMR (300 MHz, CDCl3): δ 5.47 (ddd, J = 17.7, 11.0, 0.9 Hz, 1H), 5.13 (dd, J = 

11.0, 0.8 Hz, 1H), 4.94 (dd, J = 17.7, 0.8 Hz, 1H), 4.47 (dd, J = 5.0, 3.7 Hz, 1H), 4.11 – 

4.05 (m, 2H), 3.79 – 3.68 (m, 2H), 2.60 – 2.53 (m, 1H), 2.24 (dtd, J = 12.4, 6.1, 1.3 Hz, 

1H), 2.14 (dt, J = 13.9, 1.1 Hz, 1H), 2.14 – 1.97 (m, 2H), 1.87 (ddt, J = 13.0, 6.0, 3.4 Hz, 

1H), 1.72 (ddt, J = 8.7, 3.6, 1.5 Hz, 2H), 1.51 (dt, J = 3.9, 1.3 Hz, 2H), 1.33 (dtt, J = 13.5, 

2.7, 1.4 Hz, 1H), 0.98 (d, J = 6.5 Hz, 3H).	

 

Preparation of aldehyde 42 

 

 A 1 L round-bottom flask equipped with a stir bar was charged with vinyl 

cyclohexanone 41 (7.83 g, 31.0 mmol,  1 equiv), MeOH (62 mL), CH2Cl2 (155 mL), and 

cooled to –78 ºC. The solution was ozonolyzed for 10 min or until complete by TLC 

analysis. Upon completion, the solution turned light blue. The reaction mixture was 

O
MeO O
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then PPh3 O
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sparged with O2 for 20 min, then Ar for 5 min, and quenched with PPh3 (6.24 g, 23.8 mmol. 

1.5 equiv). The suspension was allowed to stir for 3 hours, where it was then concentrated 

under reduced pressure to afford a crude white solid. 

 Purification was achieved via flash column chromatography on SiO2 [40% 

EtOAc/hexanes → 50%] to afford aldehyde 42 (10.6 g, 42.1 mmol, 90% yield). 

1H NMR (400 MHz, CDCl3): δ 9.37 (s, 1H), 4.47 (t, J = 4.8 Hz, 1H), 4.06 (ddt, J = 10.5, 

5.0, 1.4 Hz, 2H), 3.72 (dddt, J = 14.2, 10.4, 2.6, 1.0 Hz, 2H), 2.69 (dd, J = 14.4, 2.5 Hz, 

1H), 2.25 (dddd, J = 12.4, 6.9, 5.9, 1.2 Hz, 1H), 2.15 – 1.89 (m, 4H), 1.84 – 1.38 (m, 6H), 

1.36 – 1.18 (m, 2H), 0.99 (d, J = 6.6 Hz, 3H). 

13C NMR (101 MHz, CDCl3): δ 209.7, 209.7, 204.0, 204.0, 101.2, 101.2, 66.8, 66.8, 

53.9, 44.9, 44.3, 30.8, 30.6, 30.3, 29.2, 25.6, 14.2. 

HRMS (FAB+, m/z): calc’d for C14H23O4 

[𝜶]𝑫𝟐𝟑: +4.06° (c = 1.16, CHCl3). 

 

Preparation of bicycle 43 

 

 To a 1 dram vial equipped with a stir bar was charged aldehyde 42 (10 mg, 0.039 

mmol, 1 equiv) and MeOH (650 µL) at 23 ºC. Ohira-Bestmann reagent was then added in 

MeOH (650 µL) and the reaction was allowed to stir until complete by TLC analysis. The 

reaction mixture was quenched with H2O (500 µL) and the aqueous phase was extracted 
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MeOH
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with Et2O (3 x 1 mL). The combined organic layers were washed with brine (2 mL), dried 

over MgSO4, and concentrated under reduced pressure to afford a clear oil. 

 Purification was achieved via flash column chromatography on SiO2 [70% 

EtOAc/hexanes to afford bicycle 43 (8.3 mg, 0.032 mmol, 83% yield). 

TLC (50% EtOAc/hexanes): Rf = 0.20 (p-anisaldehyde).  

1H NMR (400 MHz, CDCl3): δ 4.60 – 4.52 (m, 1H), 4.11 (ddt, J = 9.6, 4.4, 1.3 Hz, 2H), 

3.83 – 3.71 (m, 2H), 3.48 (d, J = 2.4 Hz, 3H), 2.58 (d, J = 20.6 Hz, 1H), 2.16 – 2.00 (m, 

2H), 1.95 – 1.82 (m, 2H), 1.69 – 1.52 (m, 3H), 1.51 – 1.30 (m, 3H), 1.08 (s, 3H).	

13C NMR (101 MHz, CDCl3): δ 215.6, 102.2, 82.9, 81.3, 67.0, 58.2, 57.2, 50.9, 48.8, 

47.2, 46.9, 45.4, 31.2, 30.8, 29.9, 29.1, 28.5, 27.6, 25.9, 11.3, 11.1.	

 

Preparation of cyclohexanone 44 

 

A flame-dried, 3 L, 2-necked round-bottom flask equipped with a stir bar was 

evacuated and backfilled with argon three times. The flask was charged with CuI (17.6 g, 

92.6 mmol, 1.5 equiv) and THF (617 mL). The suspension was cooled to –78 ºC and stirred 

for 15 min. Isopropenylmagnesium bromide (0.5 M in THF (Aldrich), 371 mL, 185 mmol, 

3 equiv) was added dropwise via cannula transfer and the solution was stirred for 5 min. 

The reaction was warmed to –25 ºC and stirred for 10 min. Thereafter, the mixture was 

cooled back down to –78 ºC and stirred for 15 min. Trisubstituted enone 14 (13.9 g, 61.8 

O
MeO O

MgBr
CuI, THF

–78 ºC → –25 ºC

O
MeO O

Me

14 44

Me

73%, 4.8:1 dr
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mmol, 1 equiv) was dissolved in THF (617 mL) and added dropwise via cannula transfer. 

The solution was warmed to –50 ºC and stirred for 25 min or until complete by TLC 

analysis. The reaction mixture was quenched with sat. aq. NH4Cl (400 mL) at –50 ºC, and 

the biphasic solution was warmed to ambient temperature. The layers were separated and 

the aqueous phase was extracted with Et2O (3 x 350 mL). The combined organic layers 

were washed with brine (100 mL), dried over MgSO4 and concentrated under reduced 

pressure to afford 18.4 g of a viscous oil.  

 Purification was achieved via flash column chromatography on SiO2 [1400 g SiO2, 

20% EtOAc/hexanes] to afford isopropenyl cyclohexenone 44 (11.64 g, 43.7 mmol, 71% 

yield) as a white solid. 

 
 
Major Diastereomer (44) 

TLC (20% EtOAc/hexanes): Rf = 0.16 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 4.93 (br s, 1H, C17), 4.69 (s, 1H, C17), 4.45 (t, J = 4.7 Hz, 

1H, C3), 4.07 (m, 2H, OCH2CH2), 3.72 (m, 2H, OCH2CH2), 2.73 (dd, J = 14.2, 3.0 Hz, 1H, 

C4), 2.20 (app d of septets, J = 6.7, 1.2 Hz, 1H, C6), 2.07 (dd, J = 14.2, 1.0 Hz, 1H, C4), 

2.04 (m, 1H, OCH2CH2), 1.96 (dq, J = 13.8, 3.2 Hz, 1H, C8), 1.83 (m, 1H, C7), 1.65 (m, 

1H, C2), 1.61 (dd, J = 1.2, 0.5 Hz, 3H, C11), 1.59 (m, 1H, C8), 1.46 (m, 1H, C1), 1.41 (m, 

1H, C1), 1.37 (m, 1H, C2), 1.36 (m, 1H, C7), 1.32 (m, 1H, OCH2CH2), 0.97 (d, J = 6.5 Hz, 

3H, C16). 

13C NMR (101 MHz, CDCl3): δ 212.2 (C5=O), 145.7 (C10), 116.0 (C17), 102.3 (C3), 66.9 

(OCH2CH2), 49.8 (C4), 47.7 (C9), 44.8 (C6), 34.8 (C8), 34.5 (C2), 30.4 (C7), 29.5 (C1), 25.7 

(OCH2CH2), 18.9 (C11), 14.5 (C16). 
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FTIR (AT-IR): 2960, 2929, 2853, 1706, 1454, 1239, 1144, 994, 880 cm–1. 

HRMS (FAB+, m/z): calc’d for C16H27O3 [M+H]+ 267.1960, found: 267.1966. 

[𝜶]𝑫
𝟐𝟑: +42° (c = 1.16, CHCl3). 

 

Minor Diastereomer 

TLC (20% EtOAc/hexanes): Rf = 0.27 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 4.86 (pent, J = 1.2 Hz, 1H, C17), 4.70 (m, 1H, C17), 4.42 

(m, 1H, C3), 4.06 (ddt, J = 10.5, 5.0, 1.2 Hz, 2H, OCH2CH2), 3.72 (m, 2H, OCH2CH2), 

2.40 (dd, J = 13.3, 2.0 Hz, 1H, C4), 2.35 (m, 1H, C6), 2.32 (m, 1H, C4), 2.07 (tt, J = 13.3, 

5.2 Hz, 1H, OCH2CH2), 1.98 (m, 1H, C7), 1.88 (m, 1H, C1), 1.76 (td, J = 11.5, 4.1 Hz, 1H, 

C1), 1.68 (dd, J = 1.3, 0.8 Hz, 3H, C11), 1.50 (m, 1H, C7), 1.40 (m, 1H, C2), 1.39 (m, 1H, 

C2), 1.37 (m, 1H, C8), 1.35 (m, 1H, C8), 1.30 (m, 1H, OCH2CH2), 1.05 (d, J = 6.7 Hz, 3H, 

C16). 

13C NMR (101 MHz, CDCl3): δ 213.3 (C5=O), 148.8 (C10), 111.9 (C17), 102.3 (C3), 66.9 

(OCH2CH2), 66.8 (OCH2CH2), 50.0 (C4), 46.7 (C9), 44.3 (C6), 31.9 (C1), 30.2 (C7), 29.5 

(C8), 28.2 (C2), 25.7 (OCH2CH2), 19.0 (C11), 14.9 (C16). 

FTIR (AT-IR): 2961, 2930, 2850, 1708, 1635, 1452, 1377, 1143, 994, 880 cm–1. 

HRMS (FAB+, m/z): calc’d for C16H27O3 [M+H]+ 267.1960, found: 267.1949. 

[𝜶]𝑫𝟐𝟑: +1.9° (c = 0.91, CHCl3). 
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Preparation of allylic chloride 48 

 

This procedure was adapted from the work of Kumar and coworkers.21 A flame-

dried, 2 L, 2-neck round-bottom flask equipped with a stir bar was charged with activated 

4 Å mol sieves and cyclohexanone 44 (12.06 g, 45.28 mmol, 1 equiv). The atmosphere was 

exchanged three times with argon before adding EtOAc (916 mL, 0.05 M) that had been 

degassed with argon. The resulting colorless solution was cooled to 0 ºC and stirred for an 

additional 10 min. Subsequently, finely ground trichloroisocyanuric acid (TCCA) (10.52 

g, 45.28 mmol, 1 equiv) was added in one portion. The reaction was stirred (900 rpm) for 

10 min or until complete by TLC analysis. The reaction mixture was quenched at 0 ºC with 

sat. aq. Na2S2O3 (150 mL). The biphasic solution was warmed to ambient temperature and 

filtered. The aqueous layer was extracted with EtOAc (4 x 100 mL). The combined organic 

layers were washed with H2O (100 mL), dried over MgSO4, filtered, and concentrated 

under reduced pressure to afford a yellow oil.  

Purification was achieved via flash column chromatography on SiO2 [1400 g SiO2, 

15% EtOAc/hexanes → 30%] to afford allylic chloride 48 (10.52 g, 39.5 mmol, 77% yield) 

as a white solid. 

 

TLC (50% EtOAc/hexanes): Rf = 0.5 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.54 (s, 1H, C17), 5.15 (s, 1H, C17), 4.46 (t, J = 4.8 Hz, 

1H, C3), 4.12 – 4.03 (m, 2H, OCH2CH2CH2O), 4.01 (d, J = 1.0 Hz, 2H, C11), 3.73 (td, J = 

O
MeO O

Me

44 O
MeO O

Cl
TCCA

4 Å MS
EtOAc, 0 ºC

77% 48
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12.2, 2.4 Hz, 2H, OCH2CH2CH2O), 2.76 (dd, J = 14.2, 3.0 Hz, 1H, C4), 2.34 – 2.20 (m, 

1H, C6), 2.14 (dd, J = 14.2, 1.1 Hz, 1H, C2), 2.04 (tdd, J = 17.5, 8.7, 4.2 Hz, 2H, C1), 1.89 

(ddt, J = 13.3, 6.6, 3.5 Hz, 1H, C7), 1.80 – 1.65 (m, 2H, C8), 1.55 – 1.28 (m, 4H, C1, C7, 

C2, OCH2CH2CH2O), 0.99 (d, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 211.7 (C5=O), 145.0 (C10), 121.0 (C17), 101.9 (C3), 66.9 (OCH-

2CH2CH2O), 50.2 (C4), 48.1 (C9), 44.9 (C6), 44.0 (C11), 35.0 (C8), 35.0 (C1), 30.6 (C7), 29.5 (C2), 

25.7 (OCH2CH2CH2O), 14.4 (C16). 

FTIR (AT-IR): 2929, 2359, 1707, 1377, 1214, 1143, 1079, 880, 730, 668 cm–1. 

HRMS (FAB+, m/z): calc’d for C16H26O3Cl [M+H]+ 301.1571, found: 301.1564. 

[𝜶]𝑫𝟐𝟑: +49° (c = 0.495, CHCl3). 

 

Preparation of hydrindanone 49 

 

A 250 mL round-bottom flask equipped with a stir bar and reflux condenser was 

charged with allylic chloride 48 (10.8 g, 35.9 mmol, 1 equiv) and THF (125 mL). The 

homogeneous solution was vigorously stirred (960 rpm), and 6 N HCl (17.96 mL, 108 

mmol, 3 equiv) was added dropwise. The reaction was heated to 70 ºC and stirred for 4 h. 

The reaction was quenched with sat. aq. NaHCO3 (45 mL). The layers were separated and 

the aqueous layer was extracted with Et2O (3 x 75 mL). The combined organic layers were 

washed with brine (25 mL) and dried over MgSO4. The suspension was filtered, and 

concentrated under reduced pressure to afford 10.4 g of a viscous yellow oil. 

O
MeO O

Cl

O
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Cl
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 Purification was achieved via flash column chromatography on SiO2 [1400 g SiO2, 

5% Et2O/hexanes → 10%] to afford enone 49 (4.15 g, 18.5 mmol, 52% yield) as a colorless 

solid. 

 

Major Diastereomer (49) 

TLC (50% Et2O/hexanes): Rf = 0.75 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 6.55 (t, J = 2.7 Hz, 1H, C3), 5.39 (s, 1H, C17), 4.96 (s, 1H, C17), 

4.16 – 4.05 (m, 2H, C11), 2.39 – 2.32 (m, 3H, C1, C2), 2.29 – 2.18 (m, 2H, C6, C8), 1.95 – 1.84 (m, 

2H, C7, C8), 1.73 – 1.45 (m, 2H, C1, C7), 1.09 (d, J = 6.7 Hz, 2H, C6). 

13C NMR (101 MHz, CDCl3): δ 202.1 (C5=O), 146.8 (C4), 146.4 (C10), 137.6 (C3), 119.0 (C17), 

57.9 (C9), 45.2 (C6), 44.7 (C11), 39.4 (C8), 35.3 (C1), 30.5 (C7), 30.1 (C2), 14.9 (C16). 

FTIR (AT-IR): 2929, 2860, 1682, 1622, 1454, 1312, 1232, 1012, 927, 757, cm–1. 

HRMS (FAB+, m/z): calc’d for C13H18ClO [M+H]+ 225.1046, found: 225.1061. 

[𝜶]𝑫𝟐𝟑: +58.4° (c = 0.715, CHCl3).  

 

Minor Diastereomer 

TLC (50% Et2O/hexanes): Rf = 0.75 (UV, p-anisaldehyde) 

1H NMR (400 MHz, CDCl3): δ 6.70 (t, J = 2.7 Hz, 1H, C3), 5.3 (s, 1H, C17), 5.00 (s, 1H, C17), 4.21 

– 4.01 (m, 2H, C11), 2.55 – 2.44 (m, 1H, C6), 2.42 – 2.32 (m, 2H, C2), 2.28 (ddt, J = 12.6, 5.4, 2.7 

Hz, 1H, C1), 2.16 (dt, J = 13.8, 4.0 Hz, 1H, C8), 2.04 – 1.83 (m, 2H, C1, C7), 1.74 (td, J = 13.4, 3.9 

Hz, 1H, C8), 1.54 (dq, J = 13.9, 3.9 Hz, 1H, C7), 1.12 (d, J = 7.4 Hz, 3H, C16).  

13C NMR (101 MHz, CDCl3): δ 203.4 (C5=O), 146.7 (C4), 145.3 (C10), 140.1 (C3), 118.2 (C17), 

56.7 (C9), 44.8 (C11), 41.9 (C6), 39.8 (C12), 30.7 (C8), 30.0 (C2), 28.0 (C7), 17.8 (C16). 

FTIR (AT-IR): 2925, 2855, 1687, 1620, 1456, 1376, 1262, 1175, 1098, 924 cm–1. 
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HRMS (EI+, m/z): calc’d for C13H17ClO [M]+224.0968, found: 224.0940. 

[𝜶]𝑫𝟐𝟑: 46.8° (c = 0.115, CHCl3). 

 

Preparation of allylic alcohol 50 

 

A flame-dried, 50 mL round-bottom flask equipped with a stir bar was charged with 

enone 49 (1.101 g, 4.9 mmol, 1 equiv). The atmosphere was exchanged with argon three 

times before adding a solution of CeCl3•2LiCl (0.3 M in THF, 16.3 mL, 1 equiv). Upon 

addition of CeCl3•2LiCl, a bright yellow solution was obtained and stirred for 1 h at 

ambient temperature. The reaction mixture was then cooled to –78 ºC and stirred for 15 

min. The solution then became pale yellow slurry and stirring became difficult. A solution 

of methylmagnesium chloride (3.0 M in THF (Aldrich), 3.3 mL, 9.8 mmol, 2 equiv) was 

added dropwise over 30 min. The slurry was perturbed by hand until magnetic stirring 

resumed. The reaction was stirred at –78 ºC until TLC analysis indicated complete 

consumption of starting material (about 15 min).  

The gray solution was quenched at –78 ºC via slow addition of 1 M HCl (15 mL) 

using a vent needle to relieve excess pressure. Thereafter, the solution was warmed to 

ambient temperature while the slurry slowly quenched. The mixture was then transferred 

to a separatory funnel and diluted with H2O (20 mL) and Et2O (50 mL). The layers 

separated, and the aqueous layer was extracted with Et2O (3 x 20 mL). The combined 

O
Me

Cl CeCl3•2LiCl
MeMgCl

97%
THF, –78 ºC

Me

Cl

HO Me49 50
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organic layers were washed with brine (40 mL) and dried over MgSO4. The suspension 

was filtered and concentrated under reduced pressure to afford a yellow oil.  

Purification was achieved via flash column chromatography on SiO2 [100 g SiO2, 

45 mL fractions, 200 mL forerun, Et2O/hexanes = 15% (1.2 L), 30% (250 mL), 40% (1 L)] 

to afford the less polar diastereomer (fractions 3–10) followed by the more polar 

diastereomer (fractions 17–33). The volatiles were concentrated under reduced pressure to 

afford an inconsequential mixture of diastereomers 50 (1.15 g, 4.78 mmol, 97% combined 

yield). An analytically pure sample of the less polar diastereomer was obtained and a 

representative spectrum of the mixture as used in the next step is also provided.  

 

TLC (20% Et2O/hexanes): Rf = 0.46 and 0.09 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.79 (t, J = 2.4 Hz, 1H, C3), 5.44 – 5.41 (m, 1H, C17), 5.27 (s, 1H, 

C17), 4.24 (dd, J = 13.1, 0.6 Hz, 1H, C11), 4.08 (dd, J = 13.1, 1.0 Hz, 1H, C11), 2.46 – 2.33 (m, 3H, 

C2, C8), 2.05 (ddd, J = 13.4, 7.9, 3.4 Hz, 1H, C1), 1.76 (dt, J = 13.3, 9.0 Hz, 1H, C1), 1.57 (s, 1H, 

OH), 1.46 – 1.38 (m, 3H, C6, C7, C8), 1.37 (s, 3H, C15), 0.92 (d, J = 6.4 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 150.1 (C4), 149.7 (C10), 126.5 (C3), 113.8 (C17), 72.1 (C5), 

54.5 (C9), 45.7 (C11), 43.1 (C6), 41.4 (C1), 38.2 (C8), 30.3 (C2), 28.3 (C7), 24.4 (C15), 14.8 

(C16). 

FTIR (AT-IR): 3315, 2872, 2360, 1596, 1489, 1275, 1031, 1001, 899, 697 cm–1. 

HRMS (FAB+, m/z): calc’d for C14H20ClO [M+H]+–H2 239.1203, found: 239.1176. 

[𝜶]𝑫𝟐𝟑: +27.0° (c = 0.210, CHCl3). 
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Preparation of hydrindenone 51 

 

This procedure was adapted from the work of Dauben and coworkers.16 To a 100 

mL round-bottom flask equipped with a stir bar was added allylic alcohol 50 (1.15 g, 4.78 

mmol, 1 equiv) and CH2Cl2 (32 mL). Pyridinium chlorochromate (3.09 g, 14.24 mmol. 3 

equiv) was added in one portion and the reaction was stirred at ambient temperature for 12 

h or until complete by aliquot NMR.  

Upon complete consumption of starting material, the reaction mixture was 

transferred to a 500 mL separatory funnel. In the reaction flask remained a black resin, 

which was diluted with 20 mL Et2O and 60 mL of 5% NaOH. The biphasic mixture was 

stirred until all the black resin had gone into solution, where it was then transferred into 

the separatory funnel. The organic layer was separated, and the aqueous layer was extracted 

with Et2O (3 x 20 mL). The combined organic layers were then washed with 1 M HCl (2 x 

15 mL) which gave a pale yellow organic layer. The phases were again separated, and 

washed with sat. aq. NaHCO3. The combined organic layers were dried over MgSO4, 

filtered, and concentrated under reduced pressure.  

Purification was achieved via flash column chromatography with SiO2 [50 g SiO2, 

10% Et2O/hexanes] to afford enone 51 (902 mg, 3.78 mmol, 80% yield) as viscous, clear 

oil. 

TLC (20% Et2O/hexanes): Rf = 0.24 (UV, p-anisaldehyde). 

Me

Cl

MeO80%
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HO Me
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1H NMR (400 MHz, CDCl3): δ 5.49 (s, 1H, C17), 4.93 (d, J = 0.8 Hz, 1H, C17), 4.10 (d, J = 0.9 Hz, 

2H, C11), 2.34 – 2.04 (m, 5H, C1, C2, C6, C8, C15), 1.75 – 1.66 (m, 1H, C7), 1.63 – 1.54 (m, 1H, C1), 

1.39 – 1.15 (m, 2H, C7, C8), 1.06 (d, J = 7.1 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 207.4 (C3=O), 152.3 (C4), 147.4 (C5), 135.6 (C10), 121.8 (C17), 

50.6 (C9), 43.9 (C11), 37.7 (C6), 35.6 (C2), 33.2 (C8), 32.5 (C1), 28.2 (C7), 19.1 (C16), 16.9 (C15). 

FTIR (AT-IR): 2932, 1707, 1630, 1444, 1267, 1211, 1077, 926, 801, 754, 622 cm–1. 

HRMS (TOF, ES+): calc’d for C14H19ClONa[M+Na]+ 261.1022, found 261.1006. 

[𝜶]𝑫𝟐𝟑: –252.8° (c = 0.66, CHCl3). 

 

Preparation of enal 10 

 

This procedure was adapted from the work of Kumar and coworkers.2 A 20 mL 

scintillation vial equipped with a stir bar was charged with hydrindenone 51 (250 mg, 1.047 

mmol, 1 equiv), K2HPO4•3H2O (595 mg, 2.62 mmol, 2.5 equiv), NaI (65 mg, 0.419 mmol, 

0.4 equiv) and DMSO (10 mL). The vial was sealed with a teflon cap and the heterogeneous 

mixture was heated to 95 ºC with vigorous stirring (1000 rpm). After 7.5 h, aliquot NMR 

analysis indicated complete consumption of starting material. The heterogeneous mixture 

was allowed to cool to ambient temperature and sat. aq. NaHCO3 (5 mL) was added. The 

layers were separated and the aqueous layer was extracted with Et2O (4 x 15 mL). The 

combined organic layers were washed with H2O (10 mL), and dried over MgSO4. The 

suspension was filtered and concentrated under reduced pressure to afford a yellow oil. 

Me
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 Purification was achieved via flash column chromatography on SiO2 [75 g SiO2, 

Et2O/hexanes = 20%] to afford enal 10 (157 mg, 0.719 mmol, 69% yield) as a white solid. 

 

TLC (30% Et2O/hexanes): Rf = 0.30 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 9.57 (s, 3H, C11), 6.17 (s, 1H, C17), 6.06 (s, 1H, C17), 2.58 

(ddd, J = 12.9, 7.9, 1.2 Hz, 1H, C2), 2.48 (dt, J = 13.1, 3.4 Hz, 1H, C8), 2.17 (m, 1H, C6), 

2.16 (s, 3H, C15), 2.12 (ddd, J = 18.5, 8.6, 1.1 Hz, 1H, C1) 2.06 (ddd, J = 18.5, 12.6, 7.9 

Hz, 1H, C1), 1.70 (m, 1H, C7), 1.64 (dd, J = 12.6, 8.7, Hz, 1H, C2), 1.34 (td, J = 14.0, 2.7 

Hz, 1H, C8), 1.04 (s, 3H, C16), 0.97 (m, 1H, C7). 

13C NMR (101 MHz, CDCl3): δ 207.9 (C3=O), 193.8 (C11=O), 153.5 (C5), 152.8 (C10), 

140.5 (C17), 135.1 (C4), 48.1 (C9), 37.5 (C6), 35.9 (C1), 32.3 (C8), 31.8 (C2), 28.5 (C7), 19.3 

(C16) 17.0 (C15). 

FTIR (AT-IR): 2950, 2931, 1705, 1629, 1080, 907, 878, 764, 702, 647 cm–1. 

HRMS (FAB+, m/z): calc’d for C14H19O2 [M+H]+ 219.1385, found 219.1387. 

[𝜶]𝑫𝟐𝟑: –215° (c = 1.01, CHCl3). 

 

Preparation of MOM protected crotylation adduct 54 

 

A flame-dried, 25 mL round-bottom flask equipped with a stir bar was charged with 

alcohol 36 (300 mg, 0.535 mmol, 1 equiv), CH2Cl2 (8.7 mL), and freshly distilled iPr2NEt 
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(2.42 mL, 13.9 mmol, 26 equiv). To the homogeneous solution was added chloromethyl 

methyl ether (1.02 mL, 7.80 mmol, 25 equiv) dropwise over 10 min, taking care to vent 

HCl fumes formed via the use of a needle. The reaction was stirred at ambient temperature 

for 36 h. The resulting viscous, orange mixture was quenched via addition of sat. aq. 

NaHCO3 (20 mL) and stirred at ambient temperature for 30 min. The aqueous layer was 

extracted with CH2Cl2 (3 x 10 mL). The combined organic layers were washed with H2O 

(1 x 10 mL), brine (1 x 10 mL), dried over Na2SO4, and concentrated via distillation to 

afford a viscous, dark orange residue. 

Purification was achieved via flash column chromatography on SiO2 [35 g SiO2, 

Et2O/hexanes = 16% → 35%] to afford MOM ether 54 (281 mg, 0.465 mmol, 79% yield) 

as a puffy white solid. Starting material 36 was also isolated (38.0 mg, 0.0678 mmol, 13% 

recovered). 

 

TLC (40% Et2O/hexanes): Rf = 0.71 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 7.46–7.38 (m, 6H, Ph3CO), 7.32–7.19 (m, 9H, Ph3CO), 

5.77 (dd, J = 16.9, 9.9 Hz, 1H, C19), 5.42 (d, J = 1.1 Hz, 1H, C17), 4.93 (br m, 1H, C17), 

4.84 (dd, J = 9.9, 2.4 Hz, 1H, C20), 4.80 (dd, J = 16.9, 2.4 Hz, 1H, C20), 4.52 (d, J = 6.7 Hz, 

1H, OCH2OMe), 4.46 (d, J = 6.7 Hz, 1H, OCH2OMe), 3.87 (br s, 1H, C11), 3.37 (s, 3H, 

OCH2OCH3), 3.10 (m, m, 2H, C14), 2.17 (app dt, J = 12.0, 7.9 Hz, 1H, C2), 2.15 (m 1H, 

C1), 2.11 (m, 1H, C6), 2.10 (s, 3H, C15), 2.08 (m, 1H, C8), 1.98 (m, 1H, C13), 1.93 (m, 1H, 

C2), 1.86 (m, 1H, C13), 1.62 (m, 1H, C7), 1.44 (m, 1H, C1), 1.25 (m, 1H, C7), 1.23 (m, 1H, 

C8), 1.05 (d, J = 7.0 Hz, 3H, C16), 0.99 (s, 3H, C18). 
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13C NMR (101 MHz, CDCl3): δ 208.4 (C3=O), 151.1 (C5), 149.7 (C10), 144.4 (Ph3CO), 

142.6 (C19), 136.4 (C4), 128.7 (Ph3CO), 127.7 (Ph3CO), 126.8 (Ph3CO), 122.3 (C17), 113.9 

(C20), 95.1 (OCH2OCH3), 86.7 (Ph3CO), 80.2 (C11), 60.7 (C14), 56.4 (OCH2OCH3), 50.8 

(C9), 45.2 (C12), 38.3 (C13), 37.5 (C6), 35.9 (C2), 33.2 (C8), 32.7 (C1), 28.2 (C7), 19.1 (C16), 

17.9 (C18), 17.0 (C15). 

FTIR (AT-IR): 2930, 1703, 1627, 1448, 1213, 1034, 919, 735 cm–1. 

HRMS (TOF, ES+): calc’d for C41H48O4Na [M+Na]+ 627.3450, found 627.3419. 

[𝜶]𝑫𝟐𝟑: –39° (c = 1.06, CHCl3). 

Melting point: 62.0–63.3 °C 

 

Preparation of alcohol 55 

 

A flame-dried, 250 mL round-bottom flask equipped with a stir bar was charged 

with MOM ether 54 (431 mg, 0.713 mmol, 1 equiv). Thereafter, a freshly prepared solution 

of formic acid (98%, 4.8 mL) and Et2O (4.8 mL) was rapidly added, and within 5 min, the 

reaction was judged to be complete by TLC analysis. We found it critical to stop this 

reaction immediately after full conversion was achieved. Prolonged times afforded copious 

quantities of formate ester product. The reaction was diluted with Et2O (10 mL) and 

quenched via slow addition of NaHCO3 (100 mL). The aqueous layer was extracted with 

Et2O (4 x 25 mL) and washed with H2O (1 x 10 mL). The combined organic layers were 
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washed with brine (1 x 5 mL), dried over Na2SO4, and concentrated under reduced pressure 

to afford a viscous yellow residue. 

Purification was achieved via flash column chromatography on SiO2 [15 g SiO2, 

Et2O/hexanes = 70%] to afford alcohol 55 (225 mg, 0.621 mmol, 88% yield) as a viscous, 

colorless oil. 

 

TLC (70% Et2O/hexanes): Rf = 0.20 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.99 (dd, J = 16.9, 9.9 Hz, 1H, C19), 5.49 (d, J = 1.1 Hz, 

1H, C17), 5.05 (dd, J= 9.9, 2.4 Hz, 1H, C20), 5.01 (br m, 1H, C17), 4.99 (dd, J = 16.9, 2.4 

Hz, 1H, C20), 4.58 (d, J = 6.7 Hz, 1H, OCH2OMe), 4.50 (d, J = 6.7 Hz, 1H, OCH2OMe), 

4.01 (br s, 1H, C11), 3.66 (m, 2H, C14), 3.41 (s, 3H, OCH2OCH3), 2.24 (m, 1H, C2), 2.22 

(m 1H, C1), 2.13 (m, 1H, C6), 2.11 (m, 1H, C8), 2.10 (s, 3H, C15), 1.99 (m, 1H, C2), 1.95 

(m, 1H, C13), 1.88 (m, 1H, C13), 1.63 (m, 1H, C7), 1.50 (m, 1H, C1), 1.27 (m, 1H, C8), 1.25 

(m, 1H, C7), 1.12 (s, 3H, C18), 1.05 (d, J = 7.0 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 208.3 (C3=O), 151.2 (C5), 149.7 (C10), 143.1 (C19), 136.4 

(C4), 122.5 (C17), 114.1 (C20), 95.0 (OCH2OCH3), 80.0 (C11), 59.8 (C14), 56.4 

(OCH2OCH3), 50.7 (C9), 45.3 (C12), 41.5 (C13), 37.5 (C6), 35.9 (C2), 33.2 (C8), 32.8 (C1), 

28.2 (C7), 19.1 (C16), 17.7 (C18), 17.0 (C15). 

FTIR (AT-IR): 3397, 2930, 1701, 1625, 1456, 1371, 1212, 1145, 1035, 917, 734 cm–1. 

HRMS (TOF, ES+): calc’d for C22H34O4Na [M+Na]+ 385.2355, found 385.2371. 

[𝜶]𝑫𝟐𝟑: –53° (c = 0.475, CHCl3). 
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Preparation of aldehyde 56 

 

A flame-dried, 2 dram vial equipped with a stir bar was charged with alcohol 55 

(165 mg, 0.455 mmol, 1 equiv) and MeCN (2.0 mL). Thereafter, added 860 μL of the 

[Cu]/bpy stock solution, 860 μL of the NMI stock solution, and 860 μL of the ABNO stock 

solution, in that order. The orange reaction was stirred at 960 rpm open to the atmosphere 

for 90 min. Subsequently, the resulting light blue solution was diluted with Et2O (10 mL), 

passed through a short pad of SiO2 using Et2O as the eluent and concentrated under reduced 

pressure to afford a pale yellow oil. 

Purification was achieved via flash column chromatography on SiO2 [8 g SiO2, 

Et2O/hexanes = 30%→60%] to afford aldehyde 56 (151 mg, 0.419 mmol, 92% yield) as a 

viscous, colorless oil that solidified to a white solid upon standing in the freezer. 

 

Preparation of stock solutions: [Cu(MeCN)4]OTf (30.0 mg) and 4,4′-dimethoxy-2,2′-

bipyridyl (4-OMebpy) (17.0 mg) were suspended in MeCN (3.0 mL) and stirred for 5 min 

resulting in a homogeneous, green solution. ABNO (2.5 mg) was dissolved in MeCN (3.0 

mL). N-methylimidazole (13.4 mg) was dissolved in MeCN (3.0 mL). 

 

TLC (80% Et2O/hexanes): Rf = 0.65 (UV, p-anisaldehyde). 
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1H NMR (400 MHz, CDCl3): δ 9.74 (t, J = 2.8 Hz, 1H, C14), 6.07 (dd, J = 16.9, 9.9 Hz, 

1H, C19), 5.48 (d, J = 0.7 Hz, 1H, C17), 5.13 (dd, J = 9.9, 2.4 Hz, 1H, C20), 5.09 (dd, J = 

16.9, 2.4 Hz, 1H, C20), 5.05 (br m, 1H, C17), 4.54 (d, J = 6.7 Hz, 1H, OCH2OMe), 4.42 (d, 

J = 6.7 Hz, 1H, OCH2OMe), 4.12 (br s, 1H, C11), 3.36 (s, 3H, OCH2OCH3), 2.56 (m, 2H, 

C13), 2.26 (m, 1H, C1), 2.19 (m, 1H, C8), 2.17 (m, 1H, C2), 2.14 (m 1H, C6), 2.11 (s, 3H, 

C15), 2.00 (dd, J = 17.0, 7.6 Hz, 1H, C2), 1.65 (m, 1H, C7), 1.52 (m, 1H, C1), 1.27 (s, 3H, 

C18), 1.25 (m, 1H, C8), 1.23 (m, 1H, C7), 1.07 (d, J = 7.0 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 208.1 (C3=O), 202.2 (C14=O), 151.4 (C5), 149.0 (C10), 

142.4 (C19), 136.2 (C4), 122.7 (C17), 114.5 (C20), 94.2 (OCH2OCH3), 78.2 (C11), 56.6 

(OCH2OCH3), 52.4 (C13), 50.5 (C9), 45.5 (C12), 37.4 (C6), 35.9 (C2), 33.1 (C8), 32.7 (C1), 

28.2 (C7), 19.1 (C16), 18.9 (C18), 17.0 (C15). 

FTIR (AT-IR): 2931, 1704, 1627, 1456, 1212, 1146, 1032, 919, 708 cm–1. 

HRMS (TOF, ES+): calc’d for C22H32O4[M+Na]+ 383.2198, found 383.2189. 

[𝜶]𝑫𝟐𝟑: –56° (c = 0.475, CHCl3). 

 

Preparation of tricycle 59 

 

A 100 mL Schlenk flask equipped with a stir bar was charged with aldehyde 56 

(108 mg, 0.300 mmol, 1 equiv), deionized H2O (32 μL, 1.80 mmol, 6 equiv), and THF 

(15.0 mL) and submitted to five freeze-pump-thaw cycles. The solution was cooled to 0 °C 

Me
Me

Me
MOMO
H

O

O 56

SmI2 (3 equiv)
H2O (6 equiv)

THF, 0 ºC
then TMSCl (5 equiv)

93%, >20:1 dr
O

Me
Me

Me
MOMO

OH
H

59



Chapter 2 – Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 102 

and stirred at this temperature for 15 min. Thereafter, SmI2/THF (9.0 mL, 0.900 mmol, 3 

equiv) was added dropwise over 8 min. The deep blue color of SmI2 was immediately 

quenched upon addition of each drop. The first drop afforded a yellow solution, fading to 

pale yellow and almost clear by the time 1.6 equiv SmI2 had been added. When 2.2 equiv 

SmI2 had been added, the blue color became increasingly persistent and upon addition of 

2.6 equiv SmI2, the reaction was dark blue/green. After stirring an additional 10 min at 0 

°C, TMSCl/THF (1.5 mL, 1.50 mmol, 5 equiv TMSCl) was added dropwise over 2 min, 

and the reaction was stirred an additional 10 min. Throughout this time, the deep blue color 

was quenched to yellow. Thereafter, the reaction was removed from the ice bath and stirred 

open to the atmosphere for 5 min. 

The resulting pale yellow solution was diluted with Et2O (75 mL), and washed with 

H2O (2 x 15 mL). The aqueous layer was back-extracted with Et2O (2 x 15 mL), and the 

combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced 

pressure to afford a dark orange oil.  

Purification was achieved via flash column chromatography on SiO2 [12 g SiO2, 

Et2O/hexanes = 30%] to afford tricycle 59 (100 mg, 0.276 mmol, 92% yield) as a 

crystalline white solid. 

 

Preparation of SmI2: A 100 mL Schlenk flask containing a stir bar was charged with 

freshly filed Sm metal (650 mg). The system was flame-dried under high vacuum then 

cooled to ambient temperature before adding freshly purified 1,2-diiodoethane (700 mg). 

1,2-diiodoethane (1.6 g) was dissolved in Et2O (50 mL) and washed with sat. aq. Na2S2O3 

(3 x 10 mL) and deionized water (2 x 10 mL), dried over Na2SO4, filtered, and dried to 



Chapter 2 – Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 103 

1.41 g of a white solid. The atmosphere was exchanged three times for argon. 

Subsequently, the flask was charged with anhydrous THF (25 mL) that had been submitted 

to five freeze-pump-thaw cycles. Note: The THF used for the synthesis of SmI2 must 

contain <50 ppm H2O; THF containing greater quantities of water resulted in excessive 

induction times for the synthesis of SmI2. Further, residual oxygen results in formation of 

oxidative fragmentation products in the radical cyclization. The suspension was stirred for 

2 min and the flask was cautiously and briefly (5 s) placed under partial high vacuum, then 

purged with argon. This process was repeated two additional times to remove ethylene gas 

formed from insertion of Sm metal into 1,2-diiodoethane. The resulting heterogeneous 

suspension was rapidly (930 rpm) stirred; after 5 min, the reaction turned dark green, and 

within 10 min, a dark blue color was observed. After stirring under argon for 3 h at ambient 

temperature, the system was cautiously and briefly placed under high vacuum, then purged 

with argon. This process was repeated two additional times, then stirring was halted. The 

mixture was allowed to settle for 15 min prior to use. 

 

Stock solution of TMSCl: TMSCl was freshly distilled from CaH2 (5% w/w) under argon, 

collecting a 15% forerun then taking the middle fraction. A solution of TMSCl (350 μL) 

in THF (5.0 mL) was submitted to five freeze-pump-thaw cycles. 

 

TLC (50% Et2O/hexanes): Rf = 0.55 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 6.35 (dd, J = 17.8, 11.3 Hz, 1H, C19), 5.33 (dd, J = 17.8, 

1.4 Hz, 1H, C20), 5.34 (s, 1H, C17), 5.28 (s, 1H, C17), 5.19 (dd, J = 11.2, 1.4 Hz, 1H, C20), 

4.54 (d, J = 7.1 Hz, 1H, OCH2OMe), 4.40 (d, J = 6.7 Hz, 1H, OCH2OMe), 4.13 (d, J = 5.9 
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Hz, 1H, C14), 3.95 (s, 1H, C11), 3.38 (s, 3H, OCH2OCH3), 2.33 (m, 1H, C2), 2.29 (m, 1H, 

C2), 2.24 (m, 1H, C4), 2.06 (m, 1H, C1), 2.03 (m, 1H, C8), 1.92 (dd, J = 16.1, 6.5 Hz, 1H, 

C13), 1.70 (m, 1H, C6), 1.60 (dt, J = 13.3, 3.4 Hz, 1H, C7), 1.50 (dd, J = 16.1, 0.9 Hz, 1H, 

C13), 1.39 (ddt, J = 13.3, 6.5, 3.4 Hz, 1H, C7), 1.33 (m, 1H, C1), 1.30 (s, 3H, C15), 1.28 (m, 

1H, C8), 1.24 (s, 3H, C18), 0.96 (d, J = 7.0 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 216.8 (C3=O), 148.3 (C10), 139.9 (C19), 114.2 (C20), 112.2 

(C17), 92.1 (OCH2OCH3), 77.2 (C11), 67.2 (C14), 59.6 (C4), 56.0 (OCH2OCH3), 46.5 (C9), 

45.2 (C13), 44.7 (C12), 42.1 (C5), 37.3 (C6), 34.9 (C2), 31.0 (C8), 29.7 (C1), 28.8 (C18), 26.8 

(C7), 18.2 (C16), 13.4 (C15). 

FTIR (AT-IR): 3508 (br), 2926, 1735, 1628, 1458, 1264, 1144, 1093, 1024, 907, 738 cm–

1. 

HRMS (TOF, ES+): calc’d for C22H35O4 [M+H]+ 363.2535, found 363.2536. 

[𝜶]𝑫𝟐𝟑: +155° (c = 0.330, CHCl3). 

Melting point: 142.0–143.4 °C 

 

Preparation of diketone 65 

 

This procedure was adapted from work by Shenvi and coworkers.33 A flame-dried 

1 dram vial was charged with tricycle 59 (30.0 mg, 0.0828 mmol, 1 equiv) and adventitious 

water was removed via azeotropic drying with PhMe (3 x 400 μL) under high vacuum. An 
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oven-dried stir bar was added, and the atmosphere was exchanged three times for argon. 

Thereafter, iPrOH (830 μL), PhSiH3 (13.4 mg, 0.124 mmol, 15.2 μL, 1.5 equiv), and tert-

butyl hydroperoxide (33.1 μL of a 5.0 M solution in nonane, 0.166 mmol, 2 equiv) were 

added. The heterogeneous mixture was sparged with argon for 10 min. Subsequently, 

tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(III) (5.0 mg, 0.00828 mmol, 10 

mol %) was added as a solid, sparging was continued for an additional 20 sec, and the 

reaction was stirred at ambient temperature. After 10 min, the reaction was diluted with 

Et2O/hexanes = 50%, passed through a plug of SiO2 (eluting with Et2O/hexanes = 50%), 

and concentrated under reduced pressure to afford a dark orange oil.  

Purification was achieved via flash column chromatography on SiO2 [15 g SiO2, 

Et2O/hexanes = 20% → 35%] to afford ketone 65 (16.9 mg, 0.047 mmol, 56% yield) as a 

clear residue. Isolated starting material (12.1 mg, 0.033 mmol, 40%). 

 

Experimental Notes: This reaction exhibits a pronounced sensitivity to both residual 

oxygen and water. In addition, we found it critical to perform this reaction at 23 °C, as 

higher temperatures promoted over-reduction and lower temperatures slowed catalysis. 

iPrOH was stored over activated 4 Ǻ molecular sieves (pellets) overnight then was distilled 

from CaH2 (10% w/v) in a flame-dried, argon-filled apparatus immediately prior to use. 

 

TLC (40% Et2O/hexanes): Rf = 0.24 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 6.18 (dd, J = 17.8, 11.3 Hz, 1H, C19), 5.36 (dd, J = 17.8, 

1.5 Hz, 1H, C20), 5.27 (dd, J = 11.2, 1.5 Hz, 1H, C20), 4.67 (ABq, J = 6.8 Hz, 2H, 

OCH2OMe), 3.54 (d, J = 5.2 Hz, 1H, C11), 3.42 (s, 3H, OCH2OCH3), 2.70 (d, J = 12.4 Hz, 
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1H, C13), 2.57 (d, J = 2.3 Hz, 1H, C4), 2.27 (m, 2H, C2), 2.07 (d, J = 12.4 Hz, 1H, C13), 

1.99 (dq, J = 7.2, 5.2 Hz, 1H, C10), 1.83 (dd, J = 12.9, 9.6 Hz, 1H, C1), 1.74 (dq, J = 14.3, 

2.9 Hz, C8), 1.63 (dt, J = 12.9, 3.3 Hz, 1H, C7), 1.56 (m, 1H, C6), 1.53 (m, 1H, C1), 1.46 (s, 

3H, C15), 1.29 (m, 1H, C7), 1.21 (s, 3H, C18), 1.18 (d, J = 6.8 Hz, 3H, C16), 1.17 (m, 1H, 

C8), 0.89 (d, J = 7.2 Hz, 3H, C17). 

13C NMR (101 MHz, CDCl3): δ 216.9 (C3=O), 212.5 (C14=O), 138.5 (C19), 116.1 (C20), 

98.1 (OCH2OCH3), 81.9 (C11), 57.9 (C4), 56.8 (OCH2OCH3), 50.6 (C5), 48.1 (C12), 47.5 

(C13), 45.6 (C9), 36.5 (C6), 35.5 (C10), 34.6 (C2), 31.0 (C8), 27.9 (C18), 26.1 (C7), 24.7 (C1), 

21.0 (C15), 16.2 (C16), 11.1 (C17). 

FTIR (AT-IR): 2957, 1734, 1698, 1455, 1089, 1035, 916 cm–1. 

HRMS (TOF, ES+): calc’d C22H34O4 [(M+H)–H2]+ 361.2379, found 361.2396. 

[𝜶]𝑫𝟐𝟑: +34.0° (c = 0.951, CHCl3). 

 

Preparation of deuterium-labeled aldehyde 67 

 

A 25 mL round-bottom flask equipped with a stir bar was charged with aldehyde 

56 (32.2 mg, 0.0894 mmol, 1 equiv) and tBuOH (4.5 mL) followed by deionized water (3.2 

mL) and 2-methyl-2-butene (163 mg, 2.32 mmol, 246 μL, 26 equiv). Thereafter, a solution 

of KH2PO4 (42.6 mg, 0.313 mmol, 3.5 equiv) in H2O (650 μL) was added followed by a 
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solution of NaClO2 (8.9 mg, 0.0983 mmol, 1.1 equiv) in H2O (650 μL). The mixture was 

rapidly stirred at ambient temperature for 6 h, at which time the reaction was extracted into 

Et2O (4 x 2 mL). The combined organic layers were dried over Na2SO4, filtered, and 

concentrated under reduced pressure to afford 25.8 mg of a clear oil that was used in the 

next step without further purification. 

A flame-dried 2 dram vial equipped with a stir bar was charged with LiAlD4 (11.5 

mg, 0.274 mmol, 4 equiv) and the atmosphere was exchanged three times for argon. 

Subsequently, anhydrous Et2O (1.7 mL) was added followed by dropwise addition of 

carboxylic acid in Et2O (1.7 mL) over 5 min. The resulting light grey suspension was 

rapidly stirred at ambient temperature for 45 min, at which time H2O (1 mL) was cautiously 

added, using a vent needle to aid in expulsion of gas. The slurry was extracted into Et2O (4 

x 2 mL), the combined organic layers were dried over Na2SO4, and concentrated under 

reduced pressure to afford 14.1 mg of a viscous oil that was used in the next step without 

further purification. 

Stahl Oxidation: 

A flame-dried, 2 dram vial equipped with a stir bar was charged with alcohol 66 

and MeCN (100 μL). Thereafter, added 140 μL of the [Cu]/bpy stock solution, 140 μL of 

the NMI stock solution, and 140 μL of the ABNO stock solution, in that order. The orange 

reaction was stirred at 960 rpm open to the atmosphere. Within 15 min, TLC analysis 

(Et2O/hexanes = 70%, UV and anisaldehyde) indicated complete conversion to aldehyde 

67 (Rf = 0.57, stains deep blue), and after 2 h, complete conversion to the desired enone-

aldehyde product (Rf = 0.66, stains brown) was observed. Subsequently, the resulting light 
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blue solution was diluted with Et2O (2 mL), passed through a short pad of SiO2 using Et2O 

as the eluent, and concentrated under reduced pressure to afford a pale yellow oil. 

Purification was achieved via flash column chromatography on SiO2 [1.5 g SiO2, 

Et2O/hexanes = 30%→45%] to afford deuterated aldehyde 67 (9.8 mg, 0.027 mmol, 40% 

yield over 3 steps) as a viscous, colorless oil. It should be noted that this compound was 

isolated as a 9:1 mixture of C6-epimers, separable after the reductive radical cyclization. 

1H NMR indicates 94% deuterium incorporation at C14. 

 

Preparation of stock solutions: See page 101. 

 

TLC (80% Et2O/hexanes): Rf = 0.65 (UV). 

1H NMR (400 MHz, CDCl3): δ 6.07 (dd, J = 16.9, 9.9 Hz, 1H, C19), 5.48 (d, J = 0.7 Hz, 

1H, C17), 5.13 (dd, J = 9.9, 2.4 Hz, 1H, C20), 5.09 (dd, J = 16.9, 2.4 Hz, 1H, C20), 5.05 (br 

m, 1H, C17), 4.54 (d, J = 6.7 Hz, 1H, OCH2OMe), 4.42 (d, J = 6.7 Hz, 1H, OCH2OMe), 

4.12 (br s, 1H, C11), 3.36 (s, 3H, OCH2OCH3), 2.56 (m, 2H, C13), 2.26 (m, 1H, C1), 2.19 

(m, 1H, C8), 2.17 (m, 1H, C2), 2.14 (m 1H, C6), 2.11 (s, 3H, C15), 2.00 (dd, J = 17.0, 7.6 

Hz, 1H, C2), 1.65 (m, 1H, C7), 1.52 (m, 1H, C1), 1.27 (s, 3H, C18), 1.25 (m, 1H, C8), 1.23 

(m, 1H, C7), 1.07 (d, J = 7.0 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 208.1 (C3=O), 202.2 (C14=O) (1:1:1 triplet) (coupling of 

I = ½ 13C nucleus to quadrupolar 2H nucleus also causes T2 broadening), 151.4 (C5), 149.0 

(C10), 142.4 (C19), 136.2 (C4), 122.7 (C17), 114.5 (C20), 94.2 (OCH2OCH3), 78.2 (C11), 56.6 

(OCH2OCH3), 52.4 (C13) (reduced intensity due to 2H coupling), 50.5 (C9), 45.5 (C12), 37.4 

(C6), 35.9 (C2), 33.1 (C8), 32.7 (C1), 28.2 (C7), 19.1 (C16), 18.9 (C18), 17.0 (C15). 
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FTIR (AT-IR): 2931, 2359, 2323, 1704, 1628, 1456, 1212, 1148, 1036, 919 cm–1. 

HRMS (TOF, ES+): calc’d for C22H31DO4Na [M+Na]+ 384.2261, found 384.2270. 

[𝜶]𝑫𝟐𝟑: –43.2° (c = 0.455, CHCl3). 

 

Preparation of deuterium-labeled tricycle 68 

 

A 25 mL Schlenk flask equipped with a stir bar was charged with deuterated 

aldehyde 67 (7.3 mg, 0.0202 mmol, 1 equiv), THF (1.0 mL), and a solution of deionized 

H2O (2.2 μL, 0.121 mmol, 6 equiv) in THF (184 μL) and submitted to five freeze-pump-

thaw cycles. The solution was cooled to 0 °C and stirred at this temperature for 15 min. 

Thereafter, SmI2/THF (606 μL, 0.0606 mmol, 3 equiv) was added dropwise over 8 min. 

After stirring an additional 10 min at 0 °C, TMSCl/THF (195 μL, 0.101 mmol, 5 equiv 

TMSCl) was added dropwise over 2 min, and the reaction was stirred an additional 10 min. 

Throughout this time, the deep blue color was quenched to yellow. Thereafter, the reaction 

was removed from the ice bath and stirred open to the atmosphere for 5 min. The resulting 

pale yellow solution was diluted with Et2O (5 mL), and washed with H2O (2 x 2 mL). The 

aqueous layer was back-extracted with Et2O (2 x 2 mL), and the combined organic layers 

were dried over Na2SO4, filtered, and concentrated under reduced pressure to afford a dark 

orange oil. 
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Purification was achieved via flash column chromatography on SiO2 [1.5 g SiO2, 

Et2O/hexanes = 30% → 40%] to afford deuterated tricycle 68 (6.3 mg, 0.017 mmol, 84% 

yield) as a clear residue. 

 

Preparation of SmI2: See page 103. 

Stock solution of TMSCl: See page 104. 

 

TLC (50% Et2O/hexanes): Rf = 0.55 (p-anisaldehyde, KMnO4). 

1H NMR (400 MHz, CDCl3): δ 6.35 (dd, J = 17.8, 11.3 Hz, 1H, C19), 5.33 (dd, J = 17.8, 

1.4 Hz, 1H, C20), 5.34 (s, 1H, C17), 5.28 (s, 1H, C17), 5.19 (dd, J = 11.2, 1.4 Hz, 1H, C20), 

4.54 (d, J = 7.1 Hz, 1H, OCH2OMe), 4.40 (d, J = 6.7 Hz, 1H, OCH2OMe), 3.95 (s, 1H, 

C11), 3.38 (s, 3H, OCH2OCH3), 2.33 (m, 1H, C2), 2.29 (m, 1H, C2), 2.24 (m, 1H, C4), 2.06 

(m, 1H, C1), 2.03 (m, 1H, C8), 1.92 (dd, J = 16.1, 6.5 Hz, 1H, C13), 1.70 (m, 1H, C6), 1.60 

(dt, J = 13.3, 3.4 Hz, 1H, C7), 1.50 (dd, J = 16.1, 0.9 Hz, 1H, C13), 1.39 (ddt, J = 13.3, 6.5, 

3.4 Hz, 1H, C7), 1.33 (m, 1H, C1), 1.30 (s, 3H, C15), 1.28 (m, 1H, C8), 1.24 (s, 3H, C18), 

0.96 (d, J = 7.0 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 216.8 (C3=O), 148.3 (C10), 139.9 (C19), 114.2 (C20), 112.2 

(C17), 92.1 (OCH2OCH3), 77.2 (C11), 67.2 (C14) (1:1:1 triplet) (coupling of I= ½ 13C nucleus 

to quadrupolar 2H nucleus also causes T2 broadening), 59.6 (C4), 56.0 (OCH2OCH3), 46.5 

(C9), 45.2 (C13) (reduced intensity due to 2H coupling), 44.7 (C12), 42.1 (C5), 37.3 (C6), 

34.9 (C2), 31.0 (C8), 29.7 (C1), 28.8 (C18), 26.8 (C7), 18.2 (C16), 13.4 (C15). 

FTIR (AT-IR): 3508, 2926, 1735, 1628, 1458, 1264, 1144, 1093, 1024, 907, 738 cm–1. 

HRMS (TOF, ES+): calc’d for C22H34DO4 [M+H]+ 364.2598, found 364.2595. 
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[𝜶]𝑫𝟐𝟑: +123.5° (c = 0.235, CHCl3). 

 

Redox relay by transannular 1,5-HAT is confirmed by deuterium-labeling 

 

This procedure was adapted from work by Shenvi and coworkers.33 A flame-dried 

0.5 dram vial was charged with deuterated tricycle 68 (3.0 mg, 0.00825 mmol, 1 equiv) 

and adventitious water was removed via azeotropic drying with PhMe (3 x 200 μL) under 

high vacuum. An oven-dried stir bar was added, and the atmosphere was exchanged three 

times for argon. Thereafter, a stock solution of PhSiH3 (0.89 mg, 0.00825 mmol, 1.0 μL, 

1.5 equiv) and tert-butyl hydroperoxide (2.5 μL of a 5.0 M solution in nonane, 0.0124 

mmol, 2 equiv) in iPrOH (96 μL) were added. Additional iPrOH (100 μL) was added, and 

the mixture was sparged with argon for 10 min. Subsequently, tris(2,2,6,6-tetramethyl-3,5-

heptanedionato)manganese(III) (0.50 mg, 0.000825 mmol, 10 mol %) was added as a solid, 

sparging was continued for an additional 20 sec, and the reaction was stirred at ambient 

temperature. After 10 min, the reaction was diluted with Et2O/hexanes = 50%, passed 

through a plug of SiO2 (eluting with Et2O/hexanes = 50%), and concentrated under reduced 

pressure to afford a dark orange oil. 
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Purification was achieved via flash column chromatography on SiO2 [750 mg SiO2, 

Et2O/hexanes = 20%→30%] to afford ketone 69 (1.4 mg, 0.00385 mmol, 47%) as a clear 

residue. Isolated starting material (1.4 mg, 0.00385 mmol, 47%). 

 

Experimental Notes: This reaction exhibits a pronounced sensitivity to both residual 

oxygen and water. In addition, we found it critical to perform this reaction at 23 °C, as 

higher temperatures promoted over-reduction and lower temperatures slowed catalysis. 

iPrOH was stored over activated 4 Ǻ molecular sieves (pellets) overnight then was distilled 

from CaH2 (10% w/v) in a flame-dried, argon-filled apparatus immediately prior to use.  

 

Preparation of Stock Solutions: A stock solution of PhSiH3 (20 μL) and tert-butyl 

hydroperoxide (50 μL of a 5.0 M solution in nonane) in iPrOH (1.6 mL) was prepared 

under an atmosphere of argon, and 100 μL of this stock solution was added to substrate, as 

described below. 

 

TLC (40% Et2O/hexanes): Rf = 0.24 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 6.18 (dd, J = 17.8, 11.3 Hz, 1H, C19), 5.36 (dd, J = 17.8, 

1.5 Hz, 1H, C20), 5.27 (dd, J = 11.2, 1.5 Hz, 1H, C20), 4.67 (ABq, J = 6.8 Hz, 2H, 

OCH2OMe), 3.54 (d, J = 5.2 Hz, 1H, C11), 3.42 (s, 3H, OCH2OCH3), 2.70 (d, J = 12.4 Hz, 

1H, C13), 2.57 (d, J = 2.3 Hz, 1H, C4), 2.27 (m, 2H, C2), 2.07 (d, J = 12.4 Hz, 1H, C13), 

[1.99 (C10) (dq signal absent)], 1.83 (dd, J = 12.9, 9.6 Hz, 1H, C1), 1.74 (dq, J = 14.3, 2.9 

Hz, C8), 1.63 (dt, J = 12.9, 3.3 Hz, 1H, C7), 1.56 (m, 1H, C6), 1.53 (m, 1H, C1), 1.46 (s, 
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3H, C15), 1.29 (m, 1H, C7), 1.21 (s, 3H, C18), 1.18 (d, J = 6.8 Hz, 3H, C16), 1.17 (m, 1H, 

C8), 0.89 (d, J = 7.2 Hz, 3H, C17). 

13C NMR (101 MHz, CDCl3): δ 216.9 (C3=O), 212.5 (C14=O), 138.5 (C19), 116.1 (C20), 

98.1 (OCH2OCH3), 81.9 (C11) (reduced intensity due to 2H coupling), 57.9 (C4), 56.8 

(OCH2OCH3), 50.6 (C5), 48.1 (C12), 47.5 (C13), 45.6 (C9), 36.5 (C6), 35.5 (C10) (signal 

absent), 34.6 (C2), 31.0 (C8), 27.9 (C18), 26.1 (C7), 24.7 (C1), 21.0 (C15), 16.2 (C16), 11.1 

(C17). 

FTIR (AT-IR): 2930, 1733, 1698, 1455, 1089, 1035 cm–1. 

HRMS (TOF, ES+): calc’d for C22H34DO4 [M+H]+ 364.2598, found 364.2600. 

[𝜶]𝑫𝟐𝟑: +24.3° (c = 0.065, CHCl3). 

 

Preparation of silyl enol ether 70 

 

A flame-dried 25 mL round-bottom flask equipped with a stir bar was charged with 

tricycle 59 (129 mg, 0.356 mmol, 1 equiv) and anhydrous THF (7.1 mL) under an 

atmosphere of argon. The mixture was cooled to –78 °C and stirred for 5 min prior to 

dropwise addition of LiHMDS in THF (1.07 mL of a 1.0 M solution, 1.07 mmol, 3 equiv) 

over 5 min. The resulting yellow solution was stirred at –78 °C for 5 min and was then 

placed in an ice bath and stirred for 5 min. Subsequently, TIPSOTf (191 μL, 0.712 mmol, 

2 equiv) was added rapidly. After 3 min, the reaction was quenched at 0 °C via rapid 
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addition of sat. aq. NaHCO3 (3 mL) and vigorously stirred at 0 °C for 10 min. Thereafter, 

the mixture was extracted into Et2O (3 x 20 mL) and the combined organic layers were 

washed with sat. aq. NaHCO3 (3 x 10 mL) (note: failure to quench residual TIPSOTf in 

this manner resulted in extensive decomposition of product upon concentration). The 

combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced 

pressure to afford a pale yellow oil. 

Purification was achieved via flash column chromatography on SiO2 [15 g SiO2, 

Et2O/hexanes = 8%] to afford silyl enol ether 70 (141 mg, 0.272 mmol, 76% yield) as a 

puffy, viscous, colorless oil that formed a white solid upon standing in the freezer 

overnight. 

 

TLC (15% Et2O/hexanes): Rf = 0.48 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 6.39 (dd, J = 17.8, 11.3 Hz, 1H, C19), 5.28 (dd, J = 17.8, 

1.4 Hz, 1H, C20), 5.17 (dd, J = 11.2, 1.4 Hz, 1H, C20), 5.13 (s, 1H, C17), 5.05 (s, 1H, C17), 

4.68 (d, J = 7.1 Hz, 1H, OCH2OMe), 4.40 (d, J = 6.7 Hz, 1H, OCH2OMe), 4.06 (m, 1H, 

C14), 3.64 (s, 1H, C11), 3.34 (s, 3H, OCH2OCH3), 2.53 (ddd, J = 15.6, 10.2, 7.5 Hz, 1H, 

C2), 2.37 (dd, J = 15.6, 11.0, 3.8 Hz, 1H, C2), 2.32 (dd, J = 10.9, 3.6 Hz, 1H, C8), 2.11 (dd, 

J = 15.0, 6.0 Hz, 1H, C13), 1.78 (ddd, J = 13.9, 10.2, 3.8 Hz, 1H, C1), 1.64 (m, 1H, C7), 

1.51 (m, 1H, C6), 1.46 (ddd, J = 13.9, 6.3, 3.8 Hz, 1H, C1), 1.41 (m, 1H, C13), 1.40 (m, 1H, 

C7), 1.39 (m, 1H, C8), (s, 3H, C15), 1.17 (s, 3H, C18), 1.15 (m, 3H, OSi(CH(CH3)2)3), 1.12 

(m, 18H, OSi(CH(CH3)2)3), 0.97 (d, J = 7.0 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 151.8 (C10), 147.8 (C3), 140.7 (C19), 119.2 (C4), 113.9 

(C20), 108.9 (C17), 92.2 (OCH2OCH3), 79.0 (C11), 67.6 (C14), 55.6 (OCH2OCH3), 51.5 (C9), 
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46.9 (C13), 46.6 (C5), 44.8 (C12), 44.1 (C6), 38.8 (C8), 34.9 (C1), 34.4 (C2), 28.9 (C18), 28.7 

(C7), 18.19 (OSi(CH(CH3)2)3), 18.15 (OSi(CH(CH3)2)3), 18.1 (C16), 16.4 (C15), 13.6 

(OSi(CH(CH3)2)3). 

FTIR (AT-IR): 3495 (br), 2941, 2866, 2359, 2323, 1627, 1462, 1327, 1040, 1002, 882 

cm–1. 

HRMS (TOF, ES+): calc’d for C31H54O4SiNa [M+Na]+ 541.3689, found 541.3711. 

[𝜶]𝑫𝟐𝟑: +42.2° (c = 0.490, CHCl3). 

Melting point: 99.8–101.1°C 

 

Preparation of ketone 71 

 

This procedure was adapted from the work of Shenvi and coworkers.33 A flame-

dried 25 mL Schlenk tube was charged with silyl enol ether 70 (116 mg, 0.224 mmol, 1 

equiv) and adventitious water was removed via azeotropic drying with PhH (3 x 1 mL) 

under high vacuum. An oven-dried stir bar was added, and the atmosphere was exchanged 

three times for argon. Thereafter, iPrOH (3.4 mL), PhSiH3 (36.3 mg, 0.336 mmol, 41.4 μL, 

1.5 equiv), and tert-butyl hydroperoxide (89.5 μL of a 5.0 M solution in nonane, 0.448 

mmol, 2 equiv) were added. The mixture was subjected to three freeze-pump-thaw cycles. 

Another Schlenk tube was charged with tris(2,2,6,6-tetramethyl-3,5-

heptanedionato)manganese(III) (17.5 mg), and the atmosphere was exchanged three times 
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for argon before adding iPrOH (1.4 mL). This solution was subjected to three freeze-pump-

thaw cycles then purged with argon. A portion of this stock solution (1.1 mL, equating to 

13.5 mg Mn(dpm)3, 0.0224 mmol, 10 mol %) was added to the substrate solution, and the 

reaction was stirred at ambient temperature. The reaction began as a dark orange solution 

but became light yellow within 10 min. After 30 min, an additional portion (300 μL) of the 

Mn(dpm)3 stock solution was added. 

After 1 h, the reaction was passed through a plug of SiO2 (eluting with 

Et2O/hexanes = 10%), and concentrated under reduced pressure to afford a dark orange oil 

that was immediately purified via flash column chromatography on SiO2 [15 g SiO2, 

Et2O/hexanes = 7%→11%] to afford ketone 71 (63.9 mg, 0.123 mmol, 55% yield) as a 

viscous, colorless oil.  

In addition, the following were isolated: C19–C20 reduced product (9.9 mg, 0.0190 

mmol, 8% yield) (15% Et2O/hexanes, Rf = 0.70 [p-anisaldehyde, stains green]), fully 

reduced product (4.4 mg, 0.00842 mmol, 4% yield, 1:1 dr) (15% Et2O/hexanes, Rf = 0.53 

[p-anisaldehyde, stains dark blue]), and remaining starting material (26.6 mg, 0.0513 

mmol, 23% recovered). 

Experimental Notes: This reaction exhibits a pronounced sensitivity to both residual 

oxygen and water. In addition, we found it critical to perform this reaction at 23 °C, as 

higher temperatures promoted over-reduction and lower temperatures slowed catalysis. 

iPrOH was stored over activated 4 Ǻ molecular sieves (pellets) overnight then was distilled 

from CaH2 (10% w/v) in a flame-dried, argon-filled apparatus immediately prior to use. 

 

TLC (15% Et2O/hexanes): Rf = 0.60 (p-anisaldehyde). 
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1H NMR (500 MHz, CDCl3): δ 6.15 (dd, J = 17.6, 11.1 Hz, 1H, C19), 5.28 (dd, J = 17.6, 

1.6 Hz, 1H, C20), 5.23 (dd, J = 11.1, 1.6 Hz, 1H, C20), 4.69 (d, J = 7.0 Hz, 1H, OCH2OMe), 

4.62 (d, J = 7.0 Hz, 1H, OCH2OMe), 3.40 (s, 3H, OCH2OCH3), 3.29 (d, J = 4.6 Hz, 1H, 

C11), 2.80 (d, J = 11.4 Hz, 1H, C13), 2.47 (m, 2H, C2), 2.04 (ddd, J = 13.8, 10.2, 5.1 Hz, 

1H, C1), 1.98 (dt, J = 13.1, 3.0 Hz, 1H, C8), 1.95 (d, J = 11.4 Hz, 1H, C13), 1.91 (dq, J = 

7.1, 4.6 Hz, 1H, C10), 1.65 (qd, J = 13.8, 3.4 Hz, 1H, C7), 1.57 (s, 3H, C15), 1.43 (m, 1H, 

C6), 1.34 (m, 1H, C7), 1.31 (m, 1H, C1), 1.26 (m, 1H, C8), 1.24 (d, J = 7.0 Hz, 3H, C16), 

1.18 (m, 3H, OSi(CH(CH3)2)3), 1.13 (m, 18H, OSi(CH(CH3)2)3), 1.10 (s, 3H, C18), 0.83 

(d, J = 7.1 Hz, 3H, C17). 

13C NMR (125 MHz, CDCl3): δ 215.1 (C14=O), 148.2 (C3), 139.0 (C19), 117.8 (C4), 115.5 

(C20), 99.3 (OCH2OCH3), 85.2 (C11), 56.4 (OCH2OCH3), 54.8 (C5), 51.5 (C9), 49.3 (C13), 

48.3 (C12), 43.8 (C6), 39.4 (C8), 37.1 (C10), 34.0 (C2), 27.8 (C7), 27.5 (C1), 27.3 (C18), 22.2 

(C15), 18.15 (OSi(CH(CH3)2)3), 18.11 (OSi(CH(CH3)2)3), 16.5 (C16), 13.6 

(OSi(CH(CH3)2)3), 11.5 (C17). 

FTIR (AT-IR): 2944, 2867, 1698, 1650, 1463, 1331, 1206, 1038, 1004 cm–1. 

HRMS (TOF, ES+): calc’d for C31H54O4SiNa [M+Na]+ 541.3689, found 541.3701. 

[𝜶]𝑫𝟐𝟑: –204.8° (c = 1.48, CHCl3). 
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Preparation of alcohol 72 

 

A 250 mL 3-necked flask equipped with a stir bar was equipped with a cold finger 

connected to a two-way valve, and the entire apparatus was flame-dried under high 

vacuum. After cooling to ambient temperature, the atmosphere was exchanged three times 

for argon, and anhydrous EtOH (13.3 mL) and Et2O (7.3 mL) were added. The mixture 

was cooled to –78 °C, and ammonia (53 mL) was condensed into the vessel. Subsequently, 

a solution of ketone 71 (41.4 mg, 0.0798 mmol, 1 equiv) in Et2O (8.3 mL) was added. After 

allowing the system to equilibrate for 5 min, Li0 wire (124 mg, 17.9 mmol, 224 equiv) that 

had been freshly washed with hexanes and cut into ~5 mg pieces was added. Within 3 min, 

a deep blue color developed, and after 30 min, the reaction was colorless. 

The apparatus was removed from the cooling bath, and ammonia was boiled off 

over 2 h. The resulting slurry was extracted into Et2O (100 mL), washed with sat. aq. 

NaHCO3 (1 x 15 mL), dried over Na2SO4, filtered, and concentrated under reduced 

pressure to afford an oil. Purification was achieved via flash column chromatography on 

SiO2 [3 g SiO2, Et2O/hexanes = 7%] to afford alcohol 72 (25.2 mg, 0.0487 mmol, 61% 

yield) as a viscous, colorless oil. 

 

TLC (15% Et2O/hexanes): Rf = 0.41 (p-anisaldehyde). 
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1H NMR (400 MHz, CDCl3): δ 6.07 (ddd, J = 17.9, 11.2 Hz, 0.7 Hz, 1H, C19), 5.28 (dd, 

J = 17.9, 1.6 Hz, 1H, C20), 5.23 (dd, J = 11.2, 1.6 Hz, 1H, C20), 4.64 (d, J = 6.7 Hz, 1H, 

OCH2OMe), 4.62 (d, J = 6.7 Hz, 1H, OCH2OMe), 4.16 (dd, J = 7.1, 2.6 Hz, 1H, C14), 3.40 

(s, 3H, OCH2OCH3), 3.01 (d, J = 5.6 Hz, 1H, C11), 2.46–2.34 (m, 2H, C2), 2.04 (ddd, J = 

14.9, 7.8, 0.8 Hz, 1H, C13), 1.99 (m, 1H, C10), 1.96 (dt, J = 9.4, 3.4 Hz, 1H, C1), 1.60 (d, J 

= 14.9 Hz, 1H, C13), 1.46 (m, 1H, C7), 1.41 (m, 1H, C6), 1.40 (s, 3H, C15), 1.35 (m, 1H, 

C7), 1.23 (m, 1H, C8), 1.21 (m, 1H, C8), 1.17 (m, 1H, C1), 1.15 (m, 3H, OSi(CH(CH3)2)3), 

1.13 (m, 18H, OSi(CH(CH3)2)3), 1.01 (s, 3H, C18), 0.99 (d, J = 6.3 Hz, 3H, C16), 0.85 (d, J 

= 7.1 Hz, 3H, C17). 

13C NMR (101 MHz, CDCl3): δ 147.0 (C3=O), 141.3 (C19), 120.5 (C4), 114.4 (C20), 99.2 

(OCH2OCH3), 84.6 (C11), 68.6 (C14), 56.5 (OCH2OCH3), 50.7 (C9), 46.5 (C12), 46.1 (C13), 

46.0 (C5), 43.3 (C6), 39.3 (C1), 38.2 (C10), 34.3 (C2), 30.0 (C18), 28.5 (C8), 28.3 (C7), 18.3 

(C15), 18.24 (OSi(CH(CH3)2)3), 18.18 (OSi(CH(CH3)2)3), 17.8 (C16), 13.8 

(OSi(CH(CH3)2)3), 11.8 (C17). 

FTIR (AT-IR): 3493 (br), 2944, 2866, 2359, 2341, 1637, 1461, 1218, 1038, 1002 cm–1. 

HRMS (TOF, ES+): calc’d for C31H55O4Si [(M+H)–H2]+ 519.3870, found 519.3873. 

[𝜶]𝑫𝟐𝟑: –52.3° (c = 0.342, CHCl3). 
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Preparation of (+)-pleuromutilin (1) 

 

This procedure was adapted from the work of Procter and coworkers.4 A flame-

dried 2 dram vial equipped with a stir bar was charged with alcohol 72 (20.2 mg, 0.0388 

mmol, 1 equiv), EDCI•HCl (44.6 mg, 0.233 mmol, 6 equiv), and DMAP (28.4 mg, 0.233 

mmol, 6 equiv), and the atmosphere was exchanged three times for argon. Subsequently, 

the vessel was charged with anhydrous CH2Cl2 (1.9 mL) and 2-(2,2,2-

trifluoroacetoxy)acetic acid (40.0 mg, 0.230 mmol, 6 equiv), and the reaction was stirred 

at ambient temperature. After 10 min, a light yellow color developed, and after 30 min, the 

reaction was complete by TLC analysis (30% Et2O/hexanes, Rf = 0.77 [p-anisaldehyde, 

stains dark blue/purple], Rf (starting material) = 0.70). Thereafter, a solution of anhydrous 

MeOH (31 μL, 0.776 mmol, 20 equiv) in freshly distilled Et3N (107 μL, 0.768 mmol, 20 

equiv) was added, and the reaction immediately turned bright yellow. After 5 min, the 

reaction was judged was complete by TLC analysis (30% Et2O/hexanes, Rf = 0.35 [p-

anisaldehyde, stains dark blue/purple]). A solution of HCl in THF (1.16 mL of a 2.0 M 

solution, 1.92 mmol) was added, and the reaction was heated to 50 °C. After 30 min, an 

additional portion of HCl in THF (500 uL) was added. At this time, hydrolysis of the 

methoxymethyl group was judged complete by TLC analysis (70% Et2O/hexanes, Rf = 0.42 

[p-anisaldehyde, stains dark blue/black]), and after 2 h global hydrolysis was complete. 
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The reaction was cooled to 0 °C and was cautiously quenched with sat. aq. NaHCO3 

(3 mL). After warming to ambient temperature, the crude mixture was extracted into Et2O 

(3 x 5 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford 

an orange oil. Purification was achieved via flash column chromatography on SiO2 [1.5 g 

SiO2, Et2O/hexanes = 50%→70%] to afford (+)-pleuromutilin (1) (11.8 mg, 0.0312 mmol, 

80% yield) as a white solid. 

 

TLC (70% Et2O/hexanes): Rf = 0.22 (p-anisaldehyde). 

1H NMR (500 MHz, CDCl3): δ 6.50 (dd, J = 17.4, 11.0 Hz, 1H, C19), 5.85 (d, J = 8.6 Hz, 

1H, C14), 5.37 (dd, J = 11.0, 1.3 Hz, 1H, C20), 5.22 (dd, J = 17.4, 1.4 Hz, 1H, C20), 4.05 

(qd, J = 17.1, 5.4 Hz, 2H, C22), 3.34 (dd, J = 10.8, 6.6 Hz, 1H, C11), 2.35 (t, J = 5.5 Hz, 1H, 

C22–OH), 2.33 (m, 1H, C10), 2.25 (m, 1H, C2), 2.22 (m, 1H, C2), 2.11 (br s, 1H, C4), 2.10 

(dd, J = 16.0, 8.7 Hz, 1H, C13), 1.79 (dq, J = 14.5, 3.1 Hz, 1H, C8), 1.68 (m, 1H, C6), 1.66 

(m, 1H, C1), 1.55 (dd, J = 13.8, 2.7 Hz, 1H, C7), 1.51 (m, 1H, C1), 1.46 (br m, 1H, C12–

OH), 1.44 (s, 3H, C15), 1.40 (ddd, J = 13.8, 6.0, 2.7 Hz, 1H, C7), 1.33 (d, J = 16.0 Hz, 1H, 

C13), 1.19 (s, 3H, C18), 1.15 (td, J = 14.3, 4.4 Hz, 1H, C8), 0.91 (d, J = 7.1 Hz, 3H, C17), 

0.72 (d, J = 7.1 Hz, 3H, C16). 

13C NMR (126 MHz, CDCl3): δ 216.8 (C3=O), 172.1 (C21=O), 138.8 (C19), 117.4 (C20), 

74.5 (C11), 69.8 (C14), 61.3 (C22), 58.0 (C4), 45.4 (C9), 44.7 (C13), 44.0 (C12), 41.8 (C5), 

36.6 (C6), 36.0 (C10), 34.4 (C2), 30.4 (C8), 26.8 (C7), 26.3 (C18), 24.8 (C1), 16.6 (C16), 14.7 

(C15), 11.5 (C17). 

FTIR (AT-IR): 3437 (br), 2931, 1728, 1454, 1374, 1267, 1215, 1153, 1094, 1015, 915, 

858, 734 cm–1. 
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HRMS (TOF, ES+): calc’d for C22H34O5Na [M+Na]+ 401.2304, found 401.2296. 

[𝜶]𝑫𝟐𝟑: +33.4° (c = 0.252, CHCl3). 
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Comparison of 1H NMR data for (+)-pleuromutilin (1) 

 

*Signals disappeared upon D2O quench 

10
H

9

4
5

6

781

Me
15

Me
16

12

11

14

13

Me
18

19

20
HO

24

H
Me

17 H
O

3
2

O

21
22

O

OH
23

Proton Number 
Natural (+)-Pleuromutilin§ 

1H NMR, 500 MHz, CDCl3 
1H [δ, multi, J (Hz)] 

This Work, 
Synthetic (+)-Pleuromutilin 
1H NMR, 500 MHz, CDCl3 

1H [δ, multi, J (Hz)] 
1α 1.41–1.53 (m) 1.41–1.52 (m) 
1β 1.61–1.73 (m) 1.61–1.73 (m) 
2α 2.16–2.30 (m) 2.16–2.30 (m) 
2β 2.16–2.30 (m) 2.16–2.30 (m) 
3   
4 2.11 (s) 2.11 (s) 
5   
6 1.61–1.73 (m) 1.61–1.73 (m) 

7α 1.55 (dd, J = 13.8, 2.7 Hz) 1.55 (dd, J = 13.8, 2.7 Hz) 
7β 1.40 (ddd, J = 13.8, 6.0, 2.7 Hz) 1.40 (ddd, J = 13.8, 6.0, 2.7 Hz) 
8α 1.79 (dq, J = 14.5, 3.1 Hz) 1.79 (dq, J = 14.5, 3.1 Hz) 
8β 1.15 (td, J = 14.3, 4.4 Hz) 1.15 (td, J = 14.3, 4.4 Hz) 
9   
10 2.29–2.40 (m) 2.29–2.40 (m) 
11 3.34 (dd, J = 10.8, 6.6 Hz) 3.34 (dd, J = 10.8, 6.6 Hz) 
12   

13α 2.10 (dd, J = 16.0, 8.7 Hz) 2.10 (dd, J = 16.0, 8.7 Hz) 
13β 1.33 (d, J = 16.0 Hz) 1.33 (d, J = 16.0 Hz) 
14 5.85 (d, J = 8.6 Hz) 5.85 (d, J = 8.6 Hz) 
15 1.44 (s) 1.44 (s) 
16 0.71 (d, J = 7.1 Hz) 0.71 (d, J = 7.1 Hz) 
17 0.90 (d, J = 7.1 Hz) 0.90 (d, J = 7.1 Hz) 
18 1.18 (s) 1.18 (s) 
19 6.50 (dd, J = 17.4, 11.0 Hz) 6.50 (dd, J = 17.4, 11.0 Hz) 

20α 5.37 (dd, J = 11.0, 1.4 Hz) 5.37 (dd, J = 11.0, 1.3 Hz) 
20β 5.22 (dd, J = 17.4, 1.4 Hz) 5.22 (dd, J = 17.4, 1.4 Hz) 
21   
22 4.05 (qd, J = 17.1, 5.4 Hz) 4.05 (qd, J = 17.1, 5.4 Hz) 
23 2.30–2.40 (br)* 2.30–2.40 (br)* 
24 1.44–1.52 (br)* 1.44–1.52 (br)* 
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§Spectrum acquired using a sample of natural (+)-pleuromutilin purchased from Sigma-
Aldrich (SML0285-5MG, Lot# 032M4709V) 
 
Comparison of 13C NMR data for (+)-pleuromutilin (1) 
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Me
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Me
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Me
18

19

20
HO

24

H
Me

17 H
O

3
2

O

21
22

O

OH
23

Carbon 
Number 

Schulz and Berner Report37, 
Natural (+)-Pleuromutilin 

13C NMR, 90 MHz, CDCl3 
13C (δ) ppm 

This Work, 
Synthetic (+)-
Pleuromutilin 

13C NMR, 126 MHz, 
CDCl3 

13C (δ) ppm 

Chemical Shift 
Difference 

1 24.9 24.8 0.1 
2 34.5 34.4 0.1 
3 216.8 216.8 0 
4 58.2 58.0 0.2 
5 41.9 41.8 0.1 
6 36.7 36.6 0.1 
7 26.9 26.8 0.1 
8 30.4 30.4 0 
9 45.5 45.4 0.1 
10 36.1 36.0 0.1 
11 74.7 74.5 0.2 
12 44.1 44.0 0.1 
13 44.9 44.7 0.2 
14 69.9 69.8 0.1 
15 14.8 14.7 0 
16 16.6 16.6 0 
17 11.5 11.5 0 
18 26.5 26.3 0.2 
19 138.9 138.8 0.1 
20 117.3 117.4 0.1 
21 172.2 172.1 0.1 
22 61.4 61.3 0.1 
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Preparation of 12-epi crotylation adducts 74 and 75 

 

This procedure was adapted from the work of Szabó and coworkers.10 In a nitrogen-

filled glovebox, a flame-dried, 50 mL Schlenk flask equipped with a stir bar was charged 

with freshly activated 3 Ǻ molecular sieves (pellets) (613 mg), allylboronic acid 73 (11.5 

mL of a 0.15 M solution, 1.68 mmol, 1 equiv), 3,3′-Br2-(R)-BINOL (149 mg, 0.336 mmol, 

20 mol %), freshly distilled tBuOH (483 µL, 5.09 mmol, 3 equiv), and a solution of the 

enal hydrindanone 10 (367 mg, 1.68 mmol, 1 equiv) in dry, degassed PhMe (1.68 mL). 

The resulting heterogeneous mixture was sealed, removed from the glovebox, then placed 

in a pre-equilibrated 0 °C bath and stirred. 

After 40 h, the reaction was quenched with MeOH (5 mL), stirred for 5 min, 

filtered, and concentrated under reduced pressure to afford a viscous residue. Purification 

was achieved via flash column chromatography on SiO2 [100 g SiO2, Acetone/hexanes = 

4%→15%] to afford 74 and a mixture of 75 and residual 3,3′-Br2-(R)-BINOL (fractions 

71–85). The volatiles were concentrated under reduced pressure to afford 74 (566 mg, 1.01 

mmol, 60% yield) as a puffy white solid and the 75/BINOL mixture, respectively. 

The 75/BINOL mixture was subjected to flash column chromatography on SiO2 

[100 g SiO2, Et2O/hexanes = 40%] to afford 3,3′-Br2-(R)-BINOL and 75 (237 mg, 0.423 

mmol, 25% yield) as a puffy white solid. 
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Experimental Note: It is critical that all operations be carried out in a rigorously oxygen-

free environment. Failure to do so will result in rapid decomposition of the allylboronic 

acid. 

 

12-epi crotylation adduct (74) 

TLC (20% acetone/hexanes): Rf = 0.54 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 7.43 (dd, J = 8.4, 1.3 Hz, 6H, OCPh3), 7.34 – 7.19 (m, 9H, OCPh3), 

6.15 (dd, J = 17.8, 10.9 Hz, 1H, C19), 5.59 (s, 1H, C17), 5.04 (dd, J = 10.9, 1.2 Hz, 1H, C20), 4.92 

(dd, J = 17.8, 1.3 Hz, 1H, C20), 4.76 (s, 1H, C17), 4.01 (d, J = 6.7 Hz, 1H, C11), 3.21 (dt, J = 10.0, 

6.3 Hz, 1H, C14), 3.11 (ddd, J = 9.9, 7.4, 5.4 Hz, 1H, C14), 2.54 (d, J = 7.0 Hz, 1H, OH), 2.22 – 2.05 

(m, 8H, C1, C2, C6, C8), 1.92 (dd, J = 13.5, 6.2 Hz, 1H, C13), 1.80 (dd, J = 12.9, 6.9 Hz, 1H, C13), 

1.64 (dtd, J = 15.5, 6.1, 5.1, 3.5 Hz, 1H, C7), 1.57 – 1.46 (m, 1H, C1), 1.36 – 1.13 (m, 3H, C7, C8), 

1.05 (d, J = 7.1 Hz, 3H, C16), 0.88 (s, 3H, C18). 

13C NMR (101 MHz, CDCl3): δ 208.0 (C3=O), 152.8 (C10), 152.5 (C5), 143.9 (OCPh3), 142.8 

(C19), 135.7 (C4), 128.6 (OCPh3), 127.8 (OCPh3), 127.0 (OCPh3), 118.4 (C17), 113.9 (C20), 87.4 

(OCPh3), 74.4 (C11), 60.7 (C14), 52.0 (C9), 44.5 (C12), 40.0 (C13), 38.0 (C6), 35.5 (C2), 33.2 (C8), 

32.4 (C1), 28.4 (C7), 19.9 (C18), 19.1 (C16), 17.0 (C15). 

FTIR (thin film, NaCl): 3416, 2930, 1702, 1627, 1448, 1213, 1032, 758, 632 cm–1. 

HRMS (TOF, ES+): calc’d for C39H44O3Na [M+Na]+ 583.3188, found 583.3174. 

[𝜶]𝑫𝟐𝟑: –72.0° (c = 0.41, CHCl3). 

 

11-epi crotylation adduct (75) 

TLC (40% Et2O/hexanes): Rf = 0.14 (UV, p-anisaldehyde). 
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1H NMR (400 MHz, CDCl3): δ 7.46 – 7.39 (m, 6H, OCPh3), 7.33 – 7.20 (m, 9H, OCPh3), 6.15 

(dd, J = 17.8, 10.9 Hz, 1H, C19), 5.62 (s, 1H, C17), 5.04 (dd, J = 10.9, 1.3 Hz, 1H, C20), 4.95 (dd, J 

= 17.8, 1.4 Hz, 1H, C20), 4.77 (s, 1H, C17), 3.95 (d, J = 7.3 Hz, 1H, C11), 3.26 – 3.16 (m, 1H, C14), 

3.15 – 3.05 (m, 1H, C14), 2.62 (d, J = 7.4 Hz, 1H, OH), 2.47 (dd, J = 12.2, 7.9 Hz, 1H, C2), 2.32 – 

2.17 (m, 1H, C8), 2.15 (d, J = 5.9 Hz, 1H, C6), 2.12 (s, 3H, C15), 2.04 (dd, J = 18.4, 7.6 Hz, 1H, C8), 

1.95 (dd, J = 12.5, 7.2 Hz, 1H, C13), 1.89 (d, J = 13.2 Hz, 1H, C1), 1.85 – 1.76 (m, 1H, C13), 1.65 – 

1.56 (m, 1H, C7), 1.42 (td, J = 12.5, 7.9 Hz, 1H, C2), 1.33 – 1.11 (m, 3H, C1, C7), 1.06 (d, J = 7.1 

Hz, 3H, C16), 0.89 (s, 3H, C18). 

13C NMR (101 MHz, CDCl3): δ 208.4 (C3=O), 152.2 (C10), 151.0 (C5), 143.9 (OCPh3), 142.9 

(C19), 136.3 (C4), 128.6 (OCPh3), 127.8 (OCPh3), 127.0 (OCPh3), 118.7 (C17), 113.9 (C20), 87.5 

(OCPh3), 74.7 (C11), 60.7 (C14), 52.0 (C9), 44.3 (C12), 40.2 (C13), 37.5 (C6), 35.8 (C8), 32.7 (C1), 

32.5 (C2), 28.2 (C7), 20.4 (C18), 19.2 (C16), 16.8 (C15). 

FTIR (thin film, NaCl): 3451, 2930, 1702, 1630, 1449, 1214, 1066, 923, 759, 705 cm–1. 

HRMS (TOF, ES+): calc’d for C39H44O3Na [M+Na]+ 583.3188, found 583.3178. 

[𝜶]𝑫𝟐𝟑: –53.4° (c = 0.585, CHCl3). 

 

Preparation of MOM protected crotylation adduct (12-epi) 

 

A flame-dried, 50 mL round-bottom flask equipped with a stir bar was charged with 

alcohol 74 (535 mg, 0.954 mmol, 1 equiv), CH2Cl2 (4.8 mL), and freshly distilled iPr2NEt 
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(4.3 mL, 24.7 mmol, 26 equiv). To the homogeneous solution was added chloromethyl 

methyl ether (1.8 mL. 23.8 mmol, 25 equiv) dropwise over 10 min, taking care to vent HCl 

fumes formed via the use of a needle. The reaction was stirred at ambient temperature for 

20 h. The resulting viscous, orange mixture was quenched via addition of sat. aq. NaHCO3 

(20 mL) and stirred at ambient temperature for 30 min. The aqueous layer was extracted 

with CH2Cl2 (3 x 10 mL) and washed with H2O (1 x 10 mL). The combined organic layers 

were washed with brine (1 x 10 mL), dried over Na2SO4, and concentrated via distillation 

to afford a viscous, dark orange residue. 

Purification was achieved via flash column chromatography on SiO2 [50 g SiO2, 

Et2O/hexanes = 20%] to afford MOM ether (455 mg, 0.75 mmol, 79% yield) as a puffy 

white solid. 

 

TLC (40% Et2O/hexanes): Rf = 0.56 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 7.42 (m, 6H, OCPh3), 7.32 – 7.17 (m, 9H, OCPh3), 5.88 (dd, J = 

17.7, 10.9 Hz, 1H, C19), 5.49 (s, 1H, C17), 4.93 (dd, J = 10.9, 1.2 Hz, 1H, C20), 4.86 (s, 1H, C17), 

4.79 (dd, J = 17.7, 1.2 Hz, 1H, C20), 4.59 (d, J = 6.7 Hz, 1H, OCH2OCH3), 4.55 (d, J = 6.7 Hz, 1H, 

OCH2OCH3), 3.84 (s, 1H, C11), 3.38 (s, 3H, OCH2OCH3), 3.14 – 3.00 (m, 2H, C14), 2.22 – 2.04 

(m, 8H, C1, C2, C6, C7, C15), 1.98 – 1.81 (m, 2H, C13), 1.67 – 1.57 (m, 1H, C8), 1.56 – 1.40 (m, 1H, 

C1), 1.28 – 1.20 (m, 2H, C7, C8), 1.06 (d, J = 7.1 Hz, 3H, C16), 0.93 (s, 3H, C18). 

13C NMR (101 MHz, CDCl3): δ 208.1 (C3=O), 151.8 (C5), 149.8 (C10), 144.4 (OCPh3), 143.2 

(C19), 136.2 (C4), 128.7 (OCPh3), 127.7 (OCPh3), 126.8 (OCPh3), 121.4 (C17), 113.8 (C20), 96.4 

(OCH2OCH3), 86.8 (OCPh3), 82.1 (C11), 60.7 (C14), 56.4 (OCH2OCH3), 51.0 (C9), 45.3 (C12), 37.7 

(C6), 36.9 (C13), 35.9 (C2), 33.4 (C7), 32.5 (C1), 28.2 (C8), 19.7 (C19), 19.1 (C16), 17.1 (C15). 
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FTIR (thin film, NaCl): 3418, 2931, 2071, 1704, 1628, 1449, 1214, 1036, 920, 760 cm–1. 

HRMS (TOF, ES+): calc’d for C41H48O4Na [M+Na]+ 627.3450, found 627.3444. 

[𝜶]𝑫𝟐𝟑: –52.6° (c = 0.965, CHCl3). 

 

Preparation of alcohol 76 (12-epi) 

 

A flame-dried, 250 mL round-bottom flask equipped with a stir bar was charged 

with MOM ether (332 mg, 0.549 mmol, 1 equiv). Thereafter, a freshly prepared solution 

of formic acid (98%, 3.4 mL) and Et2O (3.4 mL) was rapidly added, and within 5 min, the 

reaction was judged to be complete by TLC analysis. We found it critical to stop this 

reaction immediately after full conversion was achieved. Prolonged times afforded copious 

quantities of formate ester product. The reaction was diluted with Et2O (15 mL) and 

quenched via slow addition of NaHCO3 (100 mL). The aqueous layer was extracted with 

Et2O (4 x 25 mL) and washed with H2O (1 x 10 mL). The combined organic layers were 

washed with brine (1 x 25 mL), dried over Na2SO4, and concentrated under reduced 

pressure to afford a viscous yellow residue. 

Purification was achieved via flash column chromatography on SiO2 [7 g SiO2, 

Et2O/hexanes = 70%] to afford alcohol 76 (173 mg, 0.477 mmol, 87% yield) as a viscous, 

colorless oil. 
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TLC (40% Et2O/hexanes): Rf = 0.13 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 6.07 (dd, J = 17.8, 10.9 Hz, 1H, C19), 5.58 (s, 1H, C17), 5.11 (dd, 

J = 10.9, 1.1 Hz, 1H, C20), 5.03 (dd, J = 17.8, 1.2 Hz, 1H, C20), 4.92 (s, 1H, C17), 4.65 (d, J = 6.8 

Hz, 1H, OCH2OCH3), 4.59 (d, J = 6.8 Hz, 1H, OCH2OCH3), 3.94 (s, 1H, C11), 3.66 (td, J = 6.9, 

3.0 Hz, 2H, C14), 3.42 (s, 3H, OCH2OCH3), 2.30 – 2.11 (m, 8H, C1, C2, C6, C8, C15), 1.89 (td, J = 

6.8, 4.1 Hz, 2H, C13), 1.66 – 1.54 (m, 2H, C1, C7), 1.31 – 1.23 (m, 2H, C7, C8), 1.11 (s, 3H), 1.07 

(d, J = 7.0 Hz, 3H). 

13C NMR (101 MHz, CDCl3): δ 207.9 (C3=O), 151.9 (C5), 149.8 (C10), 143.7 (C19), 136.1 (C4), 

121.7 (C17), 114.0 (C20), 96.2 (OCH2OCH3), 82.1 (C11), 59.7 (C14), 56.4 (OCH2OCH3), 50.9 (C9), 

45.4 (C12), 39.9 (C13), 37.7 (C7), 35.8 (C2), 33.4 (C8), 32.5 (C1), 28.1 (C7), 19.8 (C18), 19.0 (C16), 

17.0 (C15). 

FTIR (thin film, NaCl): 3417, 2931, 1704, 1627, 1455, 1212, 1152, 1036, 918, 731 cm–1. 

HRMS (TOF, ES+): calc’d for C22H34O4Na [M+Na]+ 385.2355, found 385.2344. 

[𝜶]𝑫𝟐𝟑: –43.8° (c = 0.230, CHCl3). 

 

Preparation of aldehyde 77 (12-epi) 

 

Stahl Oxidation: 

A flame-dried, 2 dram vial equipped with a stir bar was charged with alcohol 76 

(164 mg, 0.452 mmol, 1 equiv) and MeCN (2.0 mL). Thereafter, added 860 μL of the 
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[Cu]/bpy stock solution, 860 μL of the NMI stock solution, and 860 μL of the ABNO stock 

solution, in that order. The orange reaction was stirred at 960 rpm open to the atmosphere 

for 90 min. Subsequently, the resulting light blue solution was diluted with Et2O (3 mL), 

passed through a short pad of SiO2 using Et2O as the eluent, and concentrated under 

reduced pressure to afford a pale yellow oil. 

Purification was achieved via flash column chromatography on SiO2 [8 g SiO2, 

Et2O/hexanes = 30%→60%] to afford aldehyde 77 (148 mg, 0.411 mmol, 90% yield) as a 

viscous, colorless oil that solidified to a white solid upon standing in the freezer. 

 

Preparation of stock solutions: See page 101. 

 

TLC (70% Et2O/hexanes): Rf = 0.57 (UV, p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 9.73 (dd, J = 4.1, 1.8 Hz, 1H, C14), 6.08 (dd, J = 17.7, 10.9 Hz, 

1H, C19), 5.51 (s, 1H, C17), 5.16 (dd, J = 10.9, 0.7 Hz, 1H, C20), 5.10 (dd, J = 17.7, 0.7 Hz, 1H, 

C20), 4.99 – 4.97 (m, 1H, C17), 4.58 (d, J = 6.9 Hz, 1H, OCH2OCH3), 4.51 (d, J = 6.9 Hz, 1H, 

OCH2OCH3), 4.00 (d, J = 1.2 Hz, 1H, C11), 3.40 (s, 3H, OCH2OCH3), 2.66 (dd, J = 15.1, 4.1 Hz, 

1H, C13), 2.49 (dd, J = 15.1, 1.7 Hz, 1H, C13), 2.29 – 2.05 (m, 8H, C1, C2, C6, C8, C15), 1.68 – 1.49 

(m, 2H, C1, C7), 1.32 (s, 3H, C18), 1.30 – 1.21 (m, 2H, C7, C8), 1.06 (d, J = 7.1 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 207.8 (C14=O), 202.6 (C3=O), 141.8 (C5), 122.0 (C10), 114.8 (C19), 95.3 

(OCH2OCH3), 80.4 (C11), 56.5 (OCH2OCH3), 50.7 (C9), 50.2 (C13), 45.7 (C12), 37.6 (C6), 35.9 (C2), 33.4 

(C8), 32.5 (C1), 28.1 (C7), 21.8 (C18), 19.1 (C16), 17.1 (C15). 

FTIR (thin film, NaCl): 2932, 1714, 1628, 1456, 1413, 1373, 1212, 1151, 1035, 921 cm–

1. 

HRMS (TOF, ES+): calc’d for C22H32O4Na [M+Na]+ 383.2198, found 383.2182. 
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[𝜶]𝑫𝟐𝟑: –67.3° (c = 0.095, CHCl3). 

 

Preparation of tricycle 78 (12-epi) 

 

A 25 mL Schlenk tube equipped with a stir bar was charged with a solution of 

aldehyde 77 (75 mg, 0.208 mmol, 1 equiv) in 10.3 mL of THF that had been submitted to 

five freeze-pump-thaw cycles and H2O/THF (1.88 mL). The solution was cooled to 0 ºC 

and stirred at this temperature for 5 min. Thereafter, SmI2/THF (6.3 mL, 0.63 mmol, 3 

equiv) was added dropwise over 8 min. The deep blue color of SmI2 was immediately 

quenched upon addition of each drop. The first drop afforded a yellow solution, fading to 

a pale yellow and almost clear by the time 1.6 equiv SmI2 had been added. When 2.2 equiv 

SmI2 had been added, the blue color became increasingly persistent and upon addition of 

2.6 equiv SmI2, the reaction was dark blue/green. After stirring an additional 10 min at 0 

ºC, TMSCl/THF (1.9 mL, 1.05 mmol, 5 equiv TMSCl) was added dropwise over 2 min, 

and the reaction was stirred an additional 10 min. Throughout this time, the deep blue color 

was quenched to yellow. Thereafter, the reaction was removed from the ice bath and stirred 

open to the atmosphere for 5 min. 

The resulting pale yellow solution was diluted with Et2O (50 mL), and washed with 

H2O (2 x 10 mL). The aqueous layer was back-extracted with Et2O (2 x 10 mL), and the 
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combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced 

pressure to afford a dark orange oil. Purification was achieved via flash column 

chromatography on SiO2 [10 g SiO2, Et2O/hexanes = 30%] to afford tricycle 78 (62 mg, 

0.172 mmol, 77% yield) as a white solid. 

 

Preparation of SmI2: See page 103. 

Stock solution of TMSCl: See page 104. 

Stock solution of H2O/THF: A solution of H2O (60 µL) in THF (5.0 mL) was submitted 

to five freeze-pump-thaw cycles. 

 

TLC (50% Et2O/hexanes): Rf = 0.50 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.98 (dd, J = 17.5, 10.8 Hz, 1H, C19), 5.42 (d, J = 0.9 Hz, 1H, C17), 

5.32 (t, J = 0.7 Hz, 1H, C17), 5.09 (dd, J = 17.5, 1.0 Hz, 1H, C20), 5.03 (dd, J = 10.8, 1.0 Hz, 1H, 

C20), 4.54 (d, J = 7.1 Hz, 1H, OCH2OCH3), 4.34 (dd, J = 7.1, 0.5 Hz, 1H, OCH2OCH3), 4.12 (d, J 

= 6.2 Hz, 1H, C14), 4.00 (s, 1H, C11), 3.34 (s, 3H, OCH2OCH3), 2.39 – 2.16 (m, 3H, C2, C4), 2.13 – 

1.96 (m, 3H, C1, C8, C13), 1.72 (dtt, J = 15.9, 6.2, 2.9 Hz, 1H, C6), 1.63 (dd, J = 13.1, 3.3 Hz, 1H, 

C7), 1.46 – 1.37 (m, 1H, C7), 1.29 (s, 4H, C1, C15), 1.24 (d, J = 0.8 Hz, 3H, C18), 1.08 (dd, J = 15.8, 

1.2 Hz, 1H, C8), 0.98 (d, J = 6.8 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 216.6 (C3=O), 148.1 (C19), 147.9 (C10), 112.8 (C17), 111.3 (C20), 

92.3 (OCH2OCH3), 76.2 (C11), 67.0 (C14), 59.5 (C4), 55.9 (OCH2OCH3), 46.5 (C9), 45.7 (C8), 43.6 

(C12), 42.1 (C5), 37.4 (C6), 34.9 (C2), 31.2 (C13), 29.8 (C1), 26.8 (C7), 18.2 (C16), 15.1 (C18), 13.4 

(C15). 

FTIR (thin film, NaCl): 3521, 2937, 1738, 1456, 1376, 1147, 1095, 1032, 967 cm –1. 

HRMS (FAB+) calc’d for C22H35O4 [M+H]+ 363.2535, found 363.2556. 
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[𝜶]𝑫𝟐𝟑: +161.6° (c = 0.09, CHCl3). 

 

Preparation of silyl enol ether 79 (12-epi) 

 

A flame-dried 1 dram vial equipped with a stir bar was charged with tricycle 78 

(13.1 mg, 0.036 mmol, 1 equiv) and anhydrous THF (720 µL) under an atmosphere of 

argon. The mixture was cooled to –78 °C and stirred for 5 min prior to dropwise addition 

of LiHMDS in THF (108 µL of a 1.0 M solution, 0.108 mmol, 3 equiv) over 5 min. The 

resulting yellow solution was stirred at –78 °C for 5 min and was then placed in an ice bath 

and stirred for 5 min. Subsequently, TIPSOTf (22 µL, 0.072 mmol, 2 equiv) was added 

rapidly. After 3 min, the reaction was quenched at 0 °C via rapid addition of sat. aq. 

NaHCO3 (1 mL) and vigorously stirred at 0 °C for 10 min. Thereafter, the mixture was 

extracted into Et2O (3 x 1 mL) and the combined organic layers were washed with sat. aq. 

NaHCO3 (3 x 1 mL) (note: failure to quench residual TIPSOTf in this manner resulted in 

extensive decomposition of product upon concentration). The combined organic layers 

were dried over Na2SO4, filtered, and concentrated under reduced pressure to afford a pale 

yellow oil. 

Purification was achieved via flash column chromatography on SiO2 [3 g SiO2, 

Et2O/hexanes = 8%] to afford silyl enol ether 79 (19.1 mg, 0.036 mmol, quantitative yield) 
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as a puffy, viscous, colorless oil that formed a white solid upon standing in the freezer 

overnight. 

 

TLC (30% Et2O/hexanes): Rf = 0.56 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 6.02 (dd, J = 17.5, 10.8 Hz, 1H, C19), 5.39 (s, 1H, C17), 5.23 (s, 

1H, C17), 5.09 (dd, J = 17.5, 1.1 Hz, 1H, C20), 5.01 (dd, J = 10.8, 1.1 Hz, 1H, C20), 4.50 (d, J = 6.9 

Hz, 1H, OCH2OCH3), 4.42 (q, J = 2.8 Hz, 2H, C2), 4.33 (d, J = 6.9 Hz, 1H, OCH2OCH3), 4.24 – 

4.15 (m, 2H, C11, C14), 3.33 (s, 3H, OCH2OCH3), 2.81 (s, 1H, C4), 2.33 (ddd, J = 14.2, 3.2, 1.7 Hz, 

1H, C1), 2.21 – 1.95 (m, 3H, C8, C13), 1.77 (ddq, J = 14.3, 7.1, 3.8 Hz, 1H, C6), 1.65 – 1.53 (m, 1H, 

C7), 1.45 – 1.32 (m, 2H, C1, C7), 1.32 – 1.18 (m, 6H, C18, OSi(CH(CH3)2)3), 1.15 (s, 3H, C15), 1.12 (dd, J = 

7.2, 5.1 Hz, 18H, OSi(CH(CH3)2)3), 1.04 – 0.95 (m, 4H, C13, C16). 
13C NMR (101 MHz, CDCl3) δ 157.5 (C3), 149.5 (C10), 148.6 (C19), 112.0 (C17), 110.9 (C20), 98.6 

(C2), 92.7 (OCH2OCH3), 77.2 (C11), 67.7 (C14), 55.9 (OCH2OCH3), 53.2 (C4), 48.9 (C9), 46.3 (C13), 

43.8 (C12), 41.3 (C5), 40.9 (C1), 38.4 (C6), 30.1 (C8), 27.2 (C7), 18.3 (C16), 18.1 (OSi(CH(CH3)2)3), 

17.7 (OSi(CH(CH3)2)3), 15.6 (C18), 15.3 (C15), 12.9 (OSi(CH(CH3)2)3). 

FTIR (thin film, NaCl): 2928, 1636, 1465, 1298, 1140, 1026, 906, 689 cm–1. 

HRMS (FAB+) calc’d for C31H54O4Si [M+H]+ 518.3791, found 518.3798. 

[𝜶]𝑫𝟐𝟑: +31.1° (c = 0.15, CHCl3). 
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Preparation of ketone 80 (12-epi) 

 

This procedure was adapted from the work of Shenvi and coworkers.33 To a 1 dram 

vial was added TIPS enol ether 79 (25.6 mg, 0.049 mmol, 1 equiv) and adventitious water 

was removed via azeotropic drying with PhH (3 x 1 mL) under high vacuum (70 mTorr). 

An oven dried stir bar was added, and the atmosphere was exchanged three times with 

argon. Thereafter, 775 µL of a stock solution containing PhSiH3 (9.3 µL, 0.075 mmol, 1.5 

equiv) and TBHP (20 µL, 0.100 mmol, 2 equiv) in iPrOH was added, followed by 175 µL 

of a stock solution containing Mn(dpm)3 (3.0 mg, 0.00506 mmol, 0.1 equiv) in iPrOH. The 

reaction was stirred for 30 min at ambient temperature and another 50 µL of the Mn(dpm)3 

(0.9 mg, 0.00144 mmol, 0.03 equiv) was added. After 1 h, the reaction was passed through 

a plug of SiO2 (eluting with Et2O/hexanes = 10%), and concentrated under reduced 

pressure to afford a dark orange oil. 

Purification was achieved via flash column chromatography on SiO2 [3 g SiO2, 

Et2O/hexanes = 7%→11%] to afford ketone 80 (13.7 mg, 0.0251 mmol, 54% yield) as a 

viscous, colorless oil. 

Experimental Notes: This reaction exhibits a pronounced sensitivity to both residual 

oxygen and water. In addition, we found it critical to perform this reaction at 23 °C, as 

higher temperatures promoted over-reduction and lower temperatures slowed catalysis. 
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iPrOH was stored over activated 4 Ǻ molecular sieves (pellets) overnight then was distilled 

from CaH2 (10% w/v) in a flame-dried, argon-filled apparatus immediately prior to use. 

 

Preparation of stock solutions: PhSiH3 (30 µL) and tert-butyl hydroperoxide (65 µL of a 

5.0 M solution in nonane) were dissolved in iPrOH (2.5 mL) and the homogeneous solution 

was submitted to three freeze-pump-thaw cycles. Mn(dpm)3 (17.3 mg) was dissolved in 1 

mL iPrOH and the dark brown homogeneous solution was submitted to three freeze-pump-

thaw cycles.  

 

TLC (30% Et2O/hexanes): Rf = 0.72 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.96 (dd, J = 17.4, 10.7 Hz, 1H, C19), 5.09 – 4.97 (m, 2H, C20), 

4.55 (d, J = 7.0 Hz, 1H, OCH2OCH3), 4.53 (d, J = 7.0 Hz, 1H, OCH2OCH3), 4.44 (s, 1H, C2), 3.81 

(d, J = 5.8 Hz, 1H, C11), 3.37 (s, 3H, OCH2OCH3), 3.22 (s, 1H, C4), 2.92 (d, J = 12.0 Hz, 1H, C13), 

2.15 (ddd, J = 14.1, 3.2, 1.6 Hz, 1H, C1), 1.95 – 1.66 (m, 4H, C7, C8, C10, C13), 1.66 – 1.50 (m, 3H, 

C1, C6, C7), 1.34 (s, 3H, C15), 1.27 – 1.22 (m, 4H, C8, OSi(CH(CH3)2)3), 1.19 (s, 3H, C18), 1.17 (d, 

J = 7.0 Hz, 3H, C16), 1.13 (d, J = 2.9 Hz, 9H, OSi(CH(CH3)2)3), 1.11 (d, J = 2.9 Hz, 9H, 

OSi(CH(CH3)2)3). 

13C NMR (101 MHz, CDCl3): δ 214.4 (C14=O), 156.8 (C3), 147.7 (C19), 111.4 (C20), 98.6 (C2), 

98.1 (OCH2OCH3), 81.5 (C11), 56.6 (OCH2OCH3), 51.5 (C4), 50.6 (C5), 48.1 (C9), 47.9 (C12), 46.6 

(C13), 37.2 (C6), 34.5 (C1), 34.4 (C10), 32.0 (C7), 26.7 (C8), 23.2 (C15), 18.1 (OSi(CH(CH3)2)3), 16.2 

(C16), 15.0 (C18), 12.9 (OSi(CH(CH3)2)3), 12.0 (C17). 

FTIR (thin film, NaCl): 2946, 2868, 1698, 1634, 1463, 1300, 1129, 1086, 882, 692 cm–1. 

HRMS (FAB+): calc’d for C31H54O4Si [M]+ 518.3791, found 518.3797. 

[𝜶]𝑫𝟐𝟑: –18.5° (c = 0.195, CHCl3). 
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Preparation of alcohol 81 (12-epi) 

 

A 100 mL 3-necked flask equipped with a stir bar was equipped with a cold finger 

connected to a two-way valve, and the entire apparatus was flame-dried under high 

vacuum. After cooling to ambient temperature, the atmosphere was exchanged three times 

for argon, and anhydrous EtOH (7.3 mL) and Et2O (4 mL) were added. The mixture was 

cooled to –78 °C, and ammonia (30 mL) was condensed into the vessel. Subsequently, a 

solution of ketone 80 (23 mg, 0.0443 mmol, 1 equiv) in Et2O (5.3 mL) was added. After 

allowing the system to equilibrate for 5 min, Li0 wire (69 mg, 9.9 mmol, 223 equiv) that 

had been freshly washed with hexanes and cut into ~10 mg pieces was added. Within 3 

min, a deep blue color developed, and after 30 min, the reaction was colorless. 

The apparatus was removed from the cooling bath, and ammonia was boiled off 

over 1 h. The resulting slurry was extracted into Et2O (50 mL), washed with sat. aq. 

NaHCO3 (10 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to 

afford an oil.  

Purification was achieved via flash column chromatography on SiO2 [3 g SiO2, 

Et2O/hexanes = 7%] to afford alcohol 81 (12.7 mg, 0.0244 mmol, 55% yield) as a viscous, 

colorless oil. 
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TLC (15% Et2O/hexanes): Rf = 0.36 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.76 (dd, J = 17.6, 10.8 Hz, 1H, C19), 4.97 (dd, J = 17.6, 1.2 Hz, 

1H, C20), 4.90 (dd, J = 10.8, 1.2 Hz, 1H, C20), 4.50 (d, J = 6.9 Hz, 1H, OCH2OCH3), 4.47 (d, J = 

6.8 Hz, 1H, OCH2OCH3), 4.20 (t, J = 7.5, 6.7 Hz, 1H, C14), 3.35 (s, 3H, OCH2OCH3), 3.08 (d, J = 

5.6 Hz, 1H, C11), 2.47 – 2.28 (m, 2H, C2), 2.22 – 2.07 (m, 2H, C10, C13), 1.98 (d, J = 15.3 Hz, 2H, 

C1, C7), 1.40 (m, 5H, C6, C7, C15), 1.26 – 1.08 (m, 27H, C1, C8, C13, C18, OSi(CH(CH3)2)3), 1.01 

(d, J = 6.6 Hz, 3H, C16), 0.84 (d, J = 7.2 Hz, 3H, C17). 

13C NMR (101 MHz, CDCl3): δ 149.1 (C19), 147.2 (C3), 120.3 (C4), 110.5 (C20), 99.0 

(OCH2OCH3), 83.5 (C11), 68.2 (C14), 56.5 (OCH2OCH3), 50.6 (C9), 47.1 (C13), 46.2 (C5), 44.9 (C12), 

43.2 (C6), 39.4 (C1), 36.3 (C10), 34.4 (C2), 28.4 (C7), 28.3 (C8), 18.33 (C15), 18.26 

(OSi(CH(CH3)2)3), 18.2 (OSi(CH(CH3)2)3), 17.8 (C16) 14.4 (C18), 13.8 (OSi(CH(CH3)2)3), 11.4 

(C17). 

FTIR (thin film, NaCl): 2921, 2866, 1635, 1463, 1328, 1218, 1030, 1002, 913, 797 cm–1. 

HRMS (FAB+): calc’d for C31H56O4Si [M]+ 520.3948, found 520.3932. 

[𝜶]𝑫𝟐𝟑: –46.3° (c = 0.14, CHCl3). 
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Preparation of (+)-12-epi-pleuromutilin 82 (12-epi) 

 

This procedure was adapted from the work of Procter and coworkers.4 A flame-

dried 2 dram vial equipped with a stir bar was charged with alcohol 81 (12.7 mg, 0.0244 

mmol, 1 equiv), EDCI•HCl (28.0 mg, 0.146 mmol, 6 equiv), and DMAP (17.8 mg, 0.146 

mmol, 6 equiv), and the atmosphere was exchanged three times for argon. Subsequently, 

the vessel was charged with anhydrous CH2Cl2 (1.2 mL) and 2-(2,2,2-

trifluoroacetoxy)acetic acid (25.0 mg, 0.146 mmol, 6 equiv), and the reaction was stirred 

at ambient temperature. After 10 min, a light yellow color developed, and after 30 min, the 

reaction was complete by TLC analysis (30% Et2O/hexanes, Rf = 0.77 [p-anisaldehyde], 

Rf (starting material) = 0.70). Thereafter, a solution of anhydrous MeOH (19 μL, 0.480 

mmol, 20 equiv) in freshly distilled Et3N (67 μL, 0.480 mmol, 20 equiv) was added, and 

the reaction immediately turned bright yellow. After 5 min, the reaction was judged was 

complete by TLC analysis (30% Et2O/hexanes, Rf = 0.35 [p-anisaldehyde]). A solution of 

HCl in THF (600 µL of a 2.0 M solution, 1.2 mmol) was added, and the reaction was heated 

to 50 °C. After 30 min, an additional portion of HCl in THF (260 uL) was added. At this 

time, hydrolysis of the methoxymethyl group was judged complete by TLC analysis (70% 

Et2O/hexanes, Rf = 0.42 [p-anisaldehyde]), and after 2 h global hydrolysis was complete. 
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The reaction was cooled to 0 °C and was cautiously quenched with sat. aq. NaHCO3 

(3 mL). After warming to ambient temperature, the crude mixture was extracted into Et2O 

(3 x 5 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford 

an orange oil. 

Purification was achieved via flash column chromatography on SiO2 [1.5 g SiO2, 

Et2O/hexanes = 50%→70%] to afford (+)-12-epi-pleuromutilin 82 (5.4 mg, 0.0143 mmol, 

60% yield) as a white solid. 

 

TLC (70% Et2O/hexanes): Rf = 0.26 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 5.81 – 5.65 (m, 2H, C14, C19), 5.27 – 5.17 (m, 2H, C20), 4.07 (dd, 

J = 17.1, 5.6 Hz, 1H, C22), 4.01 (dd, J = 17.1, 5.2 Hz, 1H, C22), 3.45 (d, J = 6.4 Hz, 1H, C11), 2.45 

– 2.00 (m, 6H, C2, C4, C10, C13, C22OH,), 1.81 (dq, J = 13.9, 2.7 Hz, 1H, C8), 1.73 – 1.58 (m, 2H, 

C1, C6), 1.58 – 1.45 (m, 3H, C1, C7, C11OH), 1.44 (s, 3H, C15), 1.42 – 1.36 (m, 1H, C7), 1.25 (s, 3H, 

C18), 1.18 – 1.04 (m, 2H, C8, C13), 0.97 (d, J = 7.1 Hz, 3H, C17), 0.70 (d, J = 7.0 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 217.0 (C3=O), 172.1 (C21), 146.8 (C19), 115.4 (C20), 71.9 (C11), 

70.1 (C14), 61.3 (C22), 58.2 (C4), 45.4 (C9), 45.3 (C12), 43.6 (C13), 41.8 (C5), 36.6 (C6), 34.5 (C2), 

34.4 (C10), 30.1 (C8), 26.9 (C7), 25.0 (C1), 16.7 (C16), 14.8 (C15), 14.1 (C18), 10.8 (C17). 

FTIR (thin film, NaCl): 3437, 2927, 1728, 1603, 1444, 1382, 1232, 1098, 1011, 755 cm 

–1. 

HRMS (FAB+): calc’d for C22H33O5 [M+H]+–H2 377.2328, found 377.2329 

[𝜶]𝑫𝟐𝟑: +9.12° (c = 0.125, CHCl3). 
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Preparation of 11,12-bis-epi-Dowd-Beckwith rearrangement tricycle 83 

 

A 2 dram vial equipped with a stir bar was charged with a solution of aldehyde 7 

(35 mg, 0.097 mmol, 1 equiv) in 4.8 mL of THF that had been submitted to five freeze-

pump-thaw cycles and H2O/THF (2.7 mL). The solution was cooled to 0 ºC and stirred at 

this temperature for 5 min. Thereafter, SmI2/THF (2.9 mL, 0.294 mmol, 3 equiv) was added 

dropwise over 8 min. The deep blue color of SmI2 was immediately quenched upon 

addition of each drop. The first drop afforded a yellow solution, fading to a pale yellow 

and almost clear by the time 1.6 equiv SmI2 had been added. When 2.2 equiv SmI2 had 

been added, the blue color became increasingly persistent and upon addition of 2.6 equiv 

SmI2, the reaction was dark blue/green. After stirring an additional 10 min at 0 ºC, 

TMSCl/THF (889 µL, 0.490 mmol, 5 equiv TMSCl) was added dropwise over 2 min, and 

the reaction was stirred an additional 10 min. Throughout this time, the deep blue color 

was quenched to yellow. Thereafter, the reaction was removed from the ice bath and stirred 

open to the atmosphere for 5 min. 

The resulting pale yellow solution was diluted with Et2O (2 mL), and washed with 

H2O (2 x 1 mL). The aqueous layer was back-extracted with Et2O (2 x 1 mL), and the 

combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced 

pressure to afford a dark orange oil.  

Me

Me

MeH
MOMO

O

O
7

(11,12-bis-epi)

O

MOM

O

H
Me

Me

Me

H11
12

THF, 0 °C
then TMSCl

SmI2, H2O

20%

83
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Purification was achieved via flash column chromatography on SiO2 [3 g SiO2, 

Et2O/hexanes = 20%] to afford tricycle 83 (7 mg, 0.020 mmol, 21% yield) as a white solid. 

 

Preparation of SmI2: See page 103. 

Stock solution of TMSCl: See page 104. 

Stock solution of H2O/THF: See page 133. 

 

TLC (30% Et2O/hexanes): Rf = 0.33 (p-anisaldehyde). 

1H NMR (400 MHz, CDCl3): δ 6.11 (dd, J = 17.6, 10.9 Hz, 1H, C19), 5.53 (dd, J = 9.0, 5.5 Hz, 

1H, C14), 5.10 (dd, J = 11.0, 1.4 Hz, 1H, C20), 5.07 (d, J = 0.8 Hz, 1H, C17), 5.03 (d, J = 0.8 Hz, 1H, 

C17), 5.00 (dd, J = 17.7, 1.5 Hz, 1H, C20), 4.63 (d, J = 6.8 Hz, 1H, OCH2OCH3), 4.49 (d, J = 6.7 

Hz, 1H, OCH2OCH3), 4.21 (s, 1H, C11), 3.38 (s, 3H, OCH2OCH3), 2.49 – 2.36 (m, 3H, C1, C2), 

2.35 – 2.18 (m, 2H, C8, C13), 2.02 (tq, J = 9.4, 3.6, 2.4 Hz, 1H, C6), 1.92 (ddd, J = 11.7, 9.0, 6.1 Hz, 

1H, C2), 1.81 – 1.65 (m, 1H, C7), 1.61 (dd, J = 13.6, 9.0 Hz, 1H, C13), 1.45 – 1.36 (m, 1H, C7), 1.26 

(d, J = 0.9 Hz, 3H, C18), 1.10 (s, 3H, C15), 1.10 – 1.01 (m, 1H, C8), 0.92 (d, J = 7.0 Hz, 3H, C16). 

13C NMR (101 MHz, CDCl3): δ 219.1 (C3=O), 155.2 (C10), 142.3 (C19), 141.8 (C10), 119.8 

(C17), 112.3 (C20), 106.7 (C14), 93.1 (OCH2OCH3), 79.9 (C11), 56.9 (C5), 55.4 (OCH2OCH3), 45.1 

(C9), 45.0 (C12), 38.7 (C6), 38.5 (C1), 37.1 (C8), 35.6 (C13), 29.6 (C2), 27.8 (C7), 23.1 (C18), 19.8 

(C15), 13.7 (C16). 

FTIR (thin film, NaCl): 2923, 2853, 1711, 1461, 1378, 1261, 1142, 1101, 1040 cm–1. 

HRMS (TOF, ES+): calc’d for C22H33O3 [M+H]+ 345.2430, found 345.2409. 

[𝜶]𝑫𝟐𝟑: –78.7° (c = 0.045, CHCl3). 
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Appendix 2 

X-Ray Crystallography Reports Relevant to Chapter 2: 

Total Synthesis of (+)-Pleuromutilin and (+)-12-epi-Pleuromutilin 
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Single Crystal X-ray Diffraction Data 
 
Low-temperature diffraction data (φ- and ω-scans) were collected on a Bruker AXS D8 
VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu-
Kα radiation (λ = 1.54178 Å) from a IµS HB micro-focus sealed X-ray tube. All 
diffractometer manipulations, including data collection, integration, and scaling were 
carried out using the Bruker APEXII software.1 Absorption corrections were applied using 
SADABS.2 The structure was solved by intrinsic phasing using SHELXT3 and refined 
against F2 on all data by full-matrix least squares with SHELXL-20144 using established 
refinement techniques. 5  All non-hydrogen atoms were refined anisotropically. Unless 
otherwise noted, all hydrogen atoms were included into the model at geometrically 
calculated positions and refined using a riding model. The isotropic displacement 
parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are 
linked to (1.5 times for methyl and hydroxyl groups). Crystallographic data for 61, 59, and 
83 can be obtained free of charge from The Cambridge Crystallographic Data Centre 
(CCDC) via www.ccdc.cam.ac.uk/data_request/cif under CCDC deposition numbers 
1589653-1589655. Graphical representation of the structure with 50% probability thermal 
ellipsoids was generated using Mercury visualization software.6 
 
Table 1: Crystal and refinement data for compounds 61, 59, and 83. 

 61 59 83 
CCDC Number 1589655 1589654  1589653 

Empirical formula C22H34O6 C22H34O4 C22H32O3 
Formula weight 394.49 362.49 344.47 

T (K) 100 100 100 
Crystal system Orthorhombic Orthorhombic Orthorhombic 
Space group P212121 P212121 P212121 

a, Å 7.2336(4) 8.8601(3) 7.4344(9) 
b, Å 16.5583(8) 11.6560(4) 11.7916(15) 
c, Å 34.6198(18) 37.8871(14) 21.810(3) 
a, ° 90 90 90 
b, ° 90 90 90 
g, ° 90 90 90 

Volume, Å3 4146.6(4) 3912.7(2) 1912.0(4) 
Z 8 8 4 

dcalc, g/cm
3
 1.264 1.231 1.197 

Abs. coeff. (mm
-1) 0.738 0.658 0.609 

q range, ° 2.552 to 79.430 3.968 to 79.461 4.054 to 78.898 
Abs. correction Semi-empirical Semi-empirical Semi-empirical 

GOF 1.066 1.097 1.064 
R1,a wR2,b [I>2s(I)] 0.0345, 0.0897 0.0339, 0.0877 0.0291, 0.0764 

Flack parameter 0.04(3) 0.06(2) 0.00(4) 
Extinction coefficient n/a 0.00096(12) 0.0103(7) 
aR1 = Σ||Fo|-|Fc||/Σ|Fo|. bwR2 = [Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]1/2. 
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Figure 1: Structure of 61 with 50% probability anisotropic displacement ellipsoids. The 
second molecule of 16 is omitted for clarity. 
 
Special Refinement Details for 61 
Compound 61 crystallizes in the orthorhombic space group P212121 with two molecules in 
the asymmetric unit. The coordinates for the hydrogen atoms bound to O2A, O4A, O2B, 
and O4B were located in the difference Fourier synthesis and refined using a riding model. 
No hydrogen bond acceptor was found for O2B. Absolute configuration was determined 
by anomalous dispersion (Flack = 0.04(3)).6  
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Figure 2: Structure of 59 with 50% probability anisotropic displacement ellipsoids. The 
second molecule of 17 is omitted for clarity. 
 
Special Refinement Details for 59 
Compound 59 crystallizes in the orthorhombic space group P212121 with two molecules in 
the asymmetric unit. The coordinates for the hydrogen atoms bound to O2A and O2B were 
located in the difference Fourier synthesis and refined using a riding model. Absolute 
configuration was determined by anomalous dispersion (Flack = 0.06(2)).6  
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Figure 3: Structure of 83 with 50% probability anisotropic displacement ellipsoids. 
 
Special Refinement Details for 83 
Compound 83 crystallizes in the orthorhombic space group P212121 with one molecule in 
the asymmetric unit. Absolute configuration was determined by anomalous dispersion 
(Flack = 0.00(4)).6 
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Chapter 3 

Progress Towards the Total Synthesis of (–)-Merrilactone A 
 
 
 

3.1 INTRODUCTION 

The Illicium family of neurotrophic natural products has received remarkable 

attention from the synthetic community not only for their challenging chemical structures 

but also for their promising biological activities. Since their discovery as small molecules 

that are capable of promoting outgrowth in neuronal cultures, synthetic chemists across the 

field have sought to develop novel synthetic routes to access these natural products.1–25  

Amongst the Illicium natural products, comprehensive biological investigation of 

merrilactone A has been limited, as the Illicium genus only produces it in quantities of 

parts-per-million. Structurally, merrilactone A is a complex cage-shaped pentacyclic 

sesquiterpene that contains a highly strained oxetane moiety. Its lack of natural availability, 

coupled with its densely functionalized and complex architectural framework has attracted 
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considerable attention from the synthetic community. However, the syntheses to date do 

not address the shortage of material needed for biological studies. Recognizing this 

quandary as an opportunity for the development of a concise synthesis with the prospect 

of new reaction development, a synthetic campaign towards (–)-merrilactone A was 

initiated. This chapter will outline the development of a novel Pd-catalyzed asymmetric 

allylic alkylation reaction for the synthesis of vicinal quaternary centers that will enable 

our synthetic studies towards (–)-merrilactone A.  

3.2 NEUROTROPHINS AND CURRENT LIMITATIONS 

Neurodegeneration poses a serious threat to human health and is the hallmark of 

many diseases including Alzheimer’s disease, Parkinson’s disease, motor neuron diseases, 

Huntington’s disease, spinocerebellar ataxia, spinal muscular atrophy, and amyotrophic 

lateral sclerosis. Individuals diagnosed with neurological disorders have few treatment 

options, which leaves them to endure poor quality of life and ultimately results in death. 

The prevalence of neurodegenerative brain disorders increases dramatically with advanced 

age, and with the increasing average life expectancy, the projected financial, societal, and 

emotional costs of treating these disorders are expected to be staggering.26,27 Thus, 

uncovering novel treatments or preventative interventions for brain related 

neurodegenerative disorders is paramount to reducing these growing health threats.  

Neurotrophic factors present a compelling opportunity for treating neurological 

disorders. Studies have demonstrated that under conditions of neurodegeneration, supra-

physiological (i.e., biopharmaceutical) application of neurotrophic factors can activate 

neuronal repair genes.28 Induction of these repair genes by neurotrophins is reported to 
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produce morphological and functional restoration of the degenerating neurons, preventing 

further neurodegeneration while also protecting against cell death.29 Since the discovery of 

the first neurotrophin, NGF (1, Figure 1), neurotrophic factors have become the focus of 

substantial interdisciplinary research due to their therapeutic potential; however efforts to 

translate this potential to the clinic has been unsatisfactory, as in vivo evaluation requires 

direct microinjection of the peptides into the brain.29 Currently, most well-characterized 

neurotrophins are naturally occurring polypeptidic or protein based biomolecules (NGF, 

BDNF, GDNF, NT4/5, NT6) which are too large to cross the blood–brain barrier. These 

suboptimal pharmacological properties are a serious impediment to future development 

and applications as treatment for neurodegeneration in humans.30 In contrast to protein 

neurotrophins such as NGF, small-molecule neurotrophins are of considerable interest 

because of their desirable pharmacokinetic properties and pharmacological advantages: 

low molecular weight, high serum stability, and most importantly, blood–brain barrier 

permeability.  

 

Figure 1. Known polypeptide neurotrophic factor, NGF, 1. 
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3.3 OVERVIEW OF ILLICIUM SESQUITERPENES AND 
PROPOSED BIOSYNTHETIC PATHWAY 

To date, over 100 sesquiterpene lactones have been isolated from the Illicium genus 

of plants. Collectively known as Illicium sesquiterpenes, these natural products share a 

common ring system that have varying oxidation patterns. Initial isolations, for example of 

anisatin (2) and pseudoanisatin (3), were guided by their potent neurotoxic activities 

(Figure 2).31,32 More recently, Fukuyama and coworkers have demonstrated that a number 

of natural products of the same family, such as jiadifenolide (4) and merrilactone A (5), do 

not share this same toxicity profile but instead stimulate neurite outgrowth at low 

nanomolar to low micromolar concentrations in primary cultures of fetal rat cortical 

neurons.33 Such results have drastic implications in the study of neurodegenerative diseases 

such as Alzheimer’s and Parkinson’s28,34 and this difference in activity truly highlights how 

slight oxidation state changes in this family of natural products leads to profoundly 

different biological activities.  

 

Figure 2. Neurotoxic and neurotophic Illicium sesquiterpenes. 
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during the cyclase phase of the biosynthesis and their differing oxidation patterns. (Figure 

3).  

 

Figure 3. Illicium sesquiterpene subtypes based on lactonization pattern.  
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Scheme 1. Proposed biosynthesis of Illicium sesquiterpenoids. 
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merrillianum by Fukuyama and coworkers in 2000 (Figure 4). It was identified as a 

nonpeptidal neurotrophic factor that promotes neurite outgrowth in the culture of fetal rat 
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In addition to its interesting bioactivity, the dense triquinane-like carbon skeleton 

has garnered much interest from the synthetic community due to its oxygenation pattern 

and structural complexity. Merrilactone A (5) contains seven contiguous stereocenters, 

three of which are quaternary and two of which are vicinal. It also bears an oxetane linkage 

bridging the b-faces of C7 and C1, making the overall structure highly compact and caged.  

 

Figure 4. Structure and numbering of (–)-merrilactone A (5). 
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biogenetic precursors to merrilactone A (5).1 The two-step sequence from Fukuyama’s 

intermediate involves 1) epoxidation and 2) homo-Payne rearrangement, and has been 

adopted by many groups for the construction of the oxetane E ring in order to access 

merrilactone A (5).  

 

Scheme 1. Conversion of anislactone B (18) to merrilactone A (5). 
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rearrangement, followed by saponification to produce a mixture of carboxylic acids 25 in 

1.8:1 dr that were inseparable until iodolactonization was performed to forge the A ring 

26. Construction of the final B ring was accomplished in six steps through a radical 

cyclization reaction to afford Fukuyama’s intermediate 19, which was then epoxidized and 

subjected to an acid-promoted homo-Payne rearrangement to afford merrilactone A (5) in 

20 linear steps. 

 

Scheme 2. Danishefsky’s racemic synthesis of merrilactone A (5).  
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Their synthesis commenced with conversion of ynol 27 to substituted furan 28 that later 

served as the A ring lactone (Scheme 3). Lithium-halogen exchange of 28 and treatment 

with Weinreb amide 29 afforded coupled product 30, which was poised for their key 

Nazarov cyclization reaction. As planned, Nazarov cyclization of 30 proceeded smoothly 

using a dicationic iridium catalyst to afford a single diastereomer of bicycle 31. Initial 

attempts to cyclize protected alkyne 31 failed to provide tricycle 33. However, desilylation 

to afford 32 allowed smooth radical cyclization to 33.  

To forge the final D ring, a three-step protocol was developed. 33 was subjected to 

fluoride-mediated silyl deprotection conditions, converted to the carbonate, and 

intramolecularly lactonized upon treatment with base to afford tetracycle 34. The C6 

vicinal quaternary center was installed through a-methylation in near quantitative yield 

and complete diastereoselectivity. Reduction of ketone 35 with sodium borohydride 

afforded a 1.2:1 mixture of diastereomers 36 at the resultant alcohol which could be 

reoxidized and resubjected to increase product yield. Exocyclic olefin 19 was isomerized 

under acidic conditions to afford Fukuyama’s intermediate 19. Epoxidation and homo-

Payne rearrangement afforded merrilactone A (5) in 17 linear steps from ynol 27.  
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Scheme 3. Frontier’s racemic synthesis of merrilactone A (5). 
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key intermediate 40 where a bis(trifluoromethyl)benzyl (BTB) group was installed as a 

bulky protecting group to differentiate C5 from C6. 40 was then subjected to a ring-closing 

metathesis reaction to produce a bicyclo[4.2.0]octyl system, which was then subjected in 

situ to lead(IV) tetraacetate-promoted oxidative ring expansion to yield the substituted 

eight-membered ring 41. At this stage, the key transannular aldol reaction was performed 

and site-selective deprotonation and diastereoselective C4–C9 bond formation was 

observed to afford bicycle 42. In 13 steps, the A and D rings were installed to afford 

Fukuyama’s intermediate, which could be elaborated to (–)-merrilactone A (5) in two steps 

making their asymmetric synthesis 31 linear steps. 

 
Scheme 4. Inoue’s asymmetric synthesis of (–)-merrilactone A (5). 
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studies of this natural product (Table 1). Structurally, the C5 and C6 vicinal quaternary 

centers within such a compact and densely functionalized scaffold also present a unique 

challenge and are an opportunity for the development of new methodologies to access this 

type of structural motif. For the aforementioned reasons, efforts towards an asymmetric 

synthesis were initiated. It was envisioned that our synthesis would allow investigators to 

design analogues through elaboration of key intermediates to address questions 

surrounding the biological target, its ability to cross the blood-brain barrier, and the rational 

design of potent synthetic neurotrophic small molecules. 

 

Table 1. Summary of prior syntheses of merrilactone A (5). 

3.6 RETROSYNTHETIC ANALYSIS 

Retrosynthetically, it was envisioned that (–)-merrilactone A (5) would arise from 

Fukuyama’s intermediate (19) through epoxidation and Payne rearrangements as reported 

by many other prior syntheses (Scheme 5). The A ring of 19 could then be accessed through 

lactonization of acetylated 43, which could be obtained through a selenium(II) oxide 

mediated allylic C–H oxidation36 from tricycle 44. The B ring of tricycle 44 could be forged 

Entry Laboratory (year) C5/C6 Longest Linear
Sequence Yield (%) Series (±)

1 Danishefsky (2001) [4+2] 20 steps 11 (±)

2 Inoue & Hirama (2006) [2+2] 31 steps 1.1 (–)

3 Inoue (2007) [2+2] 23 steps 1.7 (+)

4 Mehta (2006) [2+2] 21 steps 0.0042 (±)

5 Greaney (2010) [2+2] 25 steps 4 (±)

6 Frontier (2006) Nazarov/Enolate 17 steps 3.7 (±)

7 Zhai (2012) [3,3]/Enolate 18 steps 3.7 (±)

8 Wang (2018) 15 steps 1.5 (±)–
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through an intramolecular Pauson–Khand reaction from enyne 45. Enyne 45 could then be 

synthesized from 46 through a nucleophilic propynyl addition.  

 

Scheme 5. Retrosynthesis of (–)-merrilactone A (5). 
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Scheme 6. Pauson–Khand reaction stereochemical rationale. 

 It was then envisioned that the vicinal quaternary centers at C5 and C6 could be 

constructed through a palladium-catalyzed asymmetric allylic alkylation reaction from 

commercially available materials 48 and 49 (Scheme 7).  

 

Scheme 7. Pd-catalyzed asymmetric allylic alkylation to set vicinal quaternary 
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as a-cyano ester 48 under conditions adapted from Xie’s synthesis, could provide 

enantioselective access to lactone 46.  

 

Scheme 8. Xie’s allylic alkylation en route to hyperolactone C.  

3.7 FORWARD SYNTHETIC EFFORTS 
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Scheme 9. Proposed catalytic cycle.  

With this catalytic cycle in mind, investigations of this reaction were initiated 

(Scheme 10). Thus, treatment of vinyl epoxide 49 and a-cyano ester 48 with Pd2(dba)3 (1 

mol %) and (R,R)-DACH-naphthyl ligand 69 (3 mol %, vide infra, Table 2) in anhydrous 

benzene afforded a diastereomeric mixture of lactones 56, branched uncyclized product 55, 
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O Me

CN

Me
OEt

O

LnPd0

PdII

Me OH

PdII

NC
O

OEt
Me

NC
O

OEt
OH

Me

Me

O

O
NC Me

Me proposed
catalytic
cycle

O
MeLn

Ln

55
49

52

53

54

53

46



Chapter 3 – Progress Towards the Total Synthesis of (–)-Merrilactone A 263 

 

Scheme 10. Initial result for the formation of lactone 56 and anticipated challenges. 
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alkyl substituent on the ester (entries 4 and 5) led to diminished yields. Interestingly, the 
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Table 2. Evaluation of alternative nucleophiles. 

 Next, a ligand evaluation was conducted in an effort to improve the yield and 

diastereoselectivity. Efforts with non-diaminocyclohexyl (DACH) ligands (Table 3, entries 

1 and 2) furnished high yields of the undesired linear products; however, little lactone and 

branched products were observed. Therefore, ligand investigations were continued with 

DACH ligands, where nearly all (entries 4–6) yielded some productive reactivity with the 

exception of (R,R)-DACH-pyridyl 67, which mainly resulted in recovered starting ester 48. 

In summary, most of the ligands employed facilitated successful nucleophilic addition; 

however, the previously established conditions with (R,R)-DACH-naphthyl 69 were still 

superior in branched-to-linear selectivity. 
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Table 3. Ligand evaluations. 

 Upon establishing the optimal nucleophile and ligand for the reaction, attention was 

turned towards additive investigations. Efforts were focused on tetrabutylammonium salts 

due to their low cost and reasonable solubility in most organic solvents. A survey of 

tetrabutylammonium halides led to a prominent increase in lactone (56, Table 4, entries 1–

3) formation and a decrease in linear product 57 formation. Interestingly, softer anions led 

OMe

O

EtO
CN

Me
Pd2(dba)3 (1 mol %)

Ligand (3 mol %)

CH2Cl2, 23 ºC
O

OMe
NC

Me49

NC CO2Et
Me

Me
OH

(1.1 equiv)

Me
OH

CO2EtNC
Me

55
branched

57
linear

56
lactone

48

Entry Ligand % SM (ester) (cis:trans)% lactone % branched % linear

1 (R)-BINAP 0% 1:13% 4% 78%
2 (S)-tBu-Bn-PHOX 0% –0% 0% 99%
3 (R,R)-DACH-pyridyl 67 60% 0% – 0% 0%
4 (R,R)-DACH-phenyl 70 0% 0% – 51% 43%
5 (R,R)-DACH-naphthyl 69 0% 30% 1:1 15% 56%
6 (R,R)-DAPh-phenyl 68 0% 35% 1:1 – 43%

NH HN

O O

NN

(R,R)-DACH-pyridyl 67

NH HN

O O

(R,R)-DACH-phenyl 68
(R,R)-DACH-naphthyl 69

PPh2 Ph2P
Ph Ph

NH HN

O O

(S,S)-DAPh-phenyl 70

PPh2 Ph2P
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to higher lactone 56 yields. A notable increase in yield occurred when 15 mol % of 

tetrabutylammonium difluorotriphenylsilicate (TBAT) was used (entries 5–7).  

 

Table 4. Additive investigations. 

The use of TBAT in Pd-catalyzed asymmetric allylic alkylation reactions and its 

effects on regioselectivity have been studied extensively.38–44 It is hypothesized that, in the 

absence of TBAT, the initial ionization of racemic epoxide 49 results in a kinetically 

determined ratio of the two diastereomeric p-allylpalladium species: one that favors the 

formation of the branched product and the other that favors the formation of the linear 

product (Figure 4). If interconversion between the two diastereomers is sluggish, the initial 

diastereomeric ratio dictates the branched-to-linear selectivity. It is proposed that the 

addition of TBAT increases the rate of equilibration of the diastereomeric p-allylpalladium 

complexes, which can then lead to better regioselectivity.44 

OMe

O

EtO
CN

Me
Pd2(dba)3 (1 mol %)

(R,R)-DACH-naphthyl (69) (3 mol %)

additive, CH2Cl2, 23 ºC
O

OMe
NC

Me49

NC CO2Et
Me

Me
OH

(1.1 equiv)

Me
OH

CO2EtNC
Me

48

Entry additive (60 mol %) % SM (ester) (cis:trans)% lactone % branched % linear

1 0% 1:1.517% 57% 11%
2 0% 1:1.758% 26% 16%
3 0% 61% 1:1.5 12% 18%
4 48% 5% – – 6%
5 TBAT (30 mol %) 0% 66% 1:1.3 10% 33%
6 TBAT (15 mol %) 0% 71% 1:1.5 3% 14%

TBACl
TBABr
TBAI

TBACN

7 TBAT (10 mol %) 0% 63% 1:1 0% 30%

TBAT = N(nBu)4
+Ph3SiF2

– 55
branched 57

linear
56

lactone
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Figure 4. Cartoon adapted from Trost and coworkers44 rationalizing regioselectivity.  

Further improvement of the yield of the reaction was achieved by changing the 

solvent, where 2-methyltetrahydrofuran at 0.2 M concentration was found to be best (Table 

5, entry 8). At this stage, the enantiomeric excess of each product (cis and trans) was also 

determined. It was found that across all solvents, both diastereomers were formed in high 

enantiomeric excess; however, the diastereoselectivity remained poor (Table 5). It is 

hypothesized that this poor diastereoselectivity arises from poor facial selectivity of the 

enolate nucleophile. It is also possible that reaction though a mixture of enolate geometries 

is responsible for the poor dr.  

PdMe
HO

PdMe
OH

HO

Me
OH

Me

CN
O

EtO
Me

NC
Me

OEtO

branched selectivity

linear selectivity
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Table 5. Solvent evaluation. 

After the reaction parameters were optimized, it was critical that the scalability of 

the reaction be investigated if it were to be used as the first step in total synthesis 

investigations. During the small-scale optimization stage, reactions were performed in a 

nitrogen-filled glovebox in one dram vials. However, this setup was impractical on larger 

scales. Fortunately, this reaction scaled considerably well after slight procedural 

modifications on the benchtop, and the yield increased to 73% (Scheme 11). It was 

determined during optimization that slight variations in the glovebox temperature greatly 

influenced the yield of the reaction mixture. Therefore, it is hypothesized that slow addition 

and more consistent temperatures on the benchtop contributed to the yield increase. 

Although reaction optimization was carried out with (R,R)-DACH-naphthyl (69) 

ligand, it was later determined that this enantiomer resulted in formation of the undesired 

OMe

O

EtO
CN

Me
Pd2(dba)3 (1 mol %)

(R,R)-DACH-naphthyl (69) (3 mol %)

TBAT (15 mol %), solvent, 23 ºC
O

OMe
NC

Me49

(1.1 equiv)48

Entry solvent (1.0 M) (cis:trans)% lactone %ee (cis) % ee (trans)

1 1:1.651% 87% 84%
2 1:1.340% 93% 95%
3 60% 1:1.5 90% 91%
4 47% 1:1 95% 95%
5 2-Me-THF 62% 1:1 90% 92%
6 1,4-dioxane 61% 1:1 93% 96%

CH2Cl2
1,2-DCE

PhMe
THF

7 44% 1:1.2 92% 92%

cis-56

O

O
Me

CN

Me
trans-56

MeCN
8 2-Me-THF (0.2 M) 69% 1:1 96% 93%
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enantiomers cis-56 and trans-56. This was discovered once semisolid cis-56 was converted 

to crystalline dimethylamide 72. Scale up studies were therefore conducted using the (S,S)-

DACH-naphthyl, allowing a mixture of cis-73 and trans-73 to be prepared in 73% yield on 

94 mmol scale. 

 

Scheme 12. Determination of absolute stereochemistry and successful upscale. 

3.7.2 Proposed Path Forward 

  Although the Pd-catalyzed asymmetric allylic alkylation delivers a 1:1 mixture of 

diastereomers cis-73 and trans-73, it was determined that the pseudosymmetrical nature of 
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both diastereomers would be useful for these synthetic efforts (Scheme 13). If propynyl 

addition were to occur preferentially into the nitrile, cis-73 would be used to afford ynone 

74. Reduction of the carbonyl would then afford propargyl alcohol 45, the Pauson–Khand 

precursor.  

 If propynyl addition were to occur preferentially into the lactone, the trans-73 

would be used to afford resultant alkoxide 75. Alkoxide 75 could then lactonize onto the 

nitrile, and upon reduction, would afford propargyl alcohol 45. Therefore, both 

diastereomers could potentially be elaborated to the Pauson–Khand precursor.  

 

Scheme 13. PKR precursor 45 is accessible to both diastereomers.  

3.8 CONCLUDING REMARKS 

Herein is described a proposed strategy toward the synthesis of (–)-merrilactone A 

featuring a late-stage allylic C–H oxidation, Pauson–Khand reaction to construct the B and 

C rings, and a Pd-catalyzed asymmetric allylic alkylation reaction for D-ring construction 

to set the C5 and C6 vicinal quaternary centers. The development of the key Pd-catalyzed 
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asymmetric allylic alkylation reaction was accomplished and should enable future 

synthetic efforts toward this structurally complex and biologically active natural product.  

3.9 EXPERIMENTAL SECTION 

3.9.1 Materials and Methods 

Unless otherwise stated, reactions were performed under an inert atmosphere (Ar) 

with freshly dried solvents utilizing standard Schlenk techniques. Glassware was oven-

dried at 120 °C for a minimum of four hours, or flame-dried utilizing a Bunsen burner 

under high vacuum. Tetrahydrofuran (THF), methylene chloride (CH2Cl2), diethyl ether 

(Et2O), benzene (PhH), and toluene (PhMe) were dried by passing through activated 

alumina columns. Absolute ethanol (200 Proof) was purchased from Koptec. Methanol 

(HPLC grade) was purchased from Fisher Scientific. Anhydrous ammonia (NH3) was 

purchased from Matheson Tri-Gas. N,N-diisopropylethylamine (iPr2NEt), triethylamine 

(Et3N), methanol (MeOH), isopropanol (iPrOH), tert-butanol (tBuOH), and trimethylsilyl 

chloride (TMSCl) were distilled over calcium hydride prior to use. Unless otherwise stated, 

chemicals and reagents were used as received. All reactions were monitored by thin-layer 

chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and 

were visualized by UV (254 nm), p-anisaldehyde, and/or KMnO4 staining. Flash column 

chromatography was performed using silica gel (SiliaFlash® P60, particle size 40-63 

microns [230 to 400 mesh]) purchased from Silicycle. 1H and 13C NMR spectra were 

recorded on a Bruker Avance III HD with Prodigy Cryoprobe (at 400 MHz and 101 MHz, 

respectively) or a Varian Inova 500 (at 500 MHz and 101 MHz respectively) and are 

reported relative to internal CHCl3 (1H, δ = 7.26) and CDCl3 (13C, δ = 77.0). Data for 1H 
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NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling 

constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR 

spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in 

frequency of absorption (cm–1).  

3.9.2 Experimental Procedures 

Preparation of lactones cis-73 and trans-73 

 

 To an oven-dried 3-neck round-bottom flask equipped with a stir bar was added 

Pd2dba3 (0.862 g, 0.94 mmol, 1 mol %), (S,S)-DACH-Np (2.61 g, 3.30 mmol, 3.4 mol %), 

and TBAT (7.63 g, 14.1 mmol, 15 mol %) under a steady stream of argon. The flask was 

evacuated and backfilled with Ar three times. 157 mL of 2-Me-THF was added and the 

maroon solution was stirred for 30 min. at ambient temperature. The solution became dark 

orange after 40 minutes. A solution of ethyl 2-cyanopropanoate 48 (11.84 mL, 94 mmol, 1 

equiv) in 157 mL 2-Me-THF was added in one portion (stirring was set to 500 rpm). 

Isoprene monoxide 49 (15.28 mL, 155 mmol, 1.65 equiv) was added in 157 mL 2-Me-THF 

via addition funnel over 30 minutes, where the solution began to turn dark yellow/green 

over the course of epoxide addition. Once two-thirds of the solution had been added, the 

temperature of the solution had risen to 23 ºC and began to steadily decrease back to 

ambient temperature thereafter. The slightly heterogeneous solution was stirred (110 rpm) 

O
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at ambient temperature for 5 h. Upon completion by TLC analysis, the reaction was filtered 

through 65 g of SiO2 below a pad of celite. 1H NMR analysis of the crude mixture showed 

a 1:1 diastereomeric mixture.  

Purification was achieved via flash column chromatography on SiO2 [0% 

EtOAc/hexanes → 25%] afforded a mixture of the diastereomers cis-73 and trans-73 as a 

white solid (11.3 g, 68.6 mmol, 73%). 

 

1H NMR (500 MHz, CDCl3): δ 6.08 (dd, J = 17.3, 10.8 Hz, 1H), 5.77 (dd, J = 17.5, 10.9 

Hz, 1H), 5.47 (d, J = 10.9 Hz, 1H), 5.40 (d, J = 10.9 Hz, 1H), 5.36 (d, J = 17.3 Hz, 1H), 

5.28 (d, J = 17.5 Hz, 1H), 4.45 – 4.41 (m, 1H), 4.33 (d, J = 9.3 Hz, 1H), 4.21 (d, J = 9.3 

Hz, 1H), 4.08 (d, J = 9.4 Hz, 1H), 1.52 (s, 3H), 1.52 (s, 3H), 1.50 (d, J = 0.4 Hz, 2H), 1.24 

(d, J = 0.6 Hz, 3H). 

 

Preparation of amide 71	

 

 A 150 mL pressure flask was charged with lactone 56 (8.5 g, 51.5 mmol) and 

suspended in EtOH:H2O (5:2, 85 mL, 0.6 M) after which Ghaffar-Parkins catalyst was 

added (100 mg, 0.233 mmol, 0.0045 mol %). The vessel was sealed and placed in a 

preheated oil bath at 80 ºC and monitored by TLC and LCMS. After 5 hours, the reaction 
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Me
43%
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P Pt P
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was removed from heating and allowed to cool to ambient temperature. The crude reaction 

mixture was then poured into a 500 mL separatory funnel, diluted with water (100 mL), 

and extracted with 10% DCM in EtOAc (150 mL x 5), dried over Na2SO4, filtered, and 

concentrated under reduced pressure to yield a mixture of diastereomers as a white solid 

(8.76 g, 47.8 mmol, 87% combined yield).  

 1H NMR analysis of the crude mixture shows a 1:1 diastereomeric mixture. The 

diastereomers were separated by flash column chromatography on SiO2 [15% Et2O/15% 

acetone/70% hexanes] to yield the cis-diastereomer 71 (4.5 g, 24.7 mmol, 43% yield) as a 

white solid. 

 

TLC (50% EtOAc/Hexanes): Rf = 0.40 (UV, p-anisaldehyde).  

1H NMR (400 MHz, CDCl3): δ 7.32 (dd, J = 7.7, 0.8 Hz, 1H), 7.19 (d, J = 7.7 Hz, 1H), 

3.77 (s, 3H), 3.20 (ddq, J = 6.7, 4.5, 2.2 Hz, 1H), 2.63 (dd, J = 17.8, 4.5 Hz, 1H), 2.55 (dd, 

J = 17.8, 6.6 Hz, 1H), 2.34 (d, J = 0.7 Hz, 3H), 2.08 (d, J = 2.2 Hz, 3H), 1.69 (s, 3H).  

13C NMR (101 MHz, CDCl3): δ 210.3, 168.8, 155.1, 152.0, 134.7, 133.8, 132.3, 128.1, 

118.8, 75.6, 60.8, 55.7, 35.2, 24.6, 15.9, 9.9.  

FTIR (NaCl, thin film): 3389, 2963, 2919, 1690, 1639, 1320, 1227, 1091, 1018 cm-1.  

HRMS (MM:ESI–APCI): calc’d for [M+Na]+ 259.1334, found 259.1347. 
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Preparation of dimethylamide 72 

 

 An oven-dried 500 mL round-bottom flask equipped with a stir bar was charged 

with NaH (2.06 g, 86.3 mmol, 3.5 equiv) and THF (100 mL). An oven-dried addition funnel 

was quickly attached to the reaction flask and filled with a solution of cis-amide 71 (4.5 g, 

24.7 mmol, 1.0 equiv) in THF (100 mL). The flask was then cooled to 0 ºC. After cooling 

for 15 min, a solution of the cis-amide 71 was added dropwise over 30 min at 0 ºC. The 

solution was warmed to ambient temperature over 30 min. The flask was cooled to 0 ºC 

and stirred for 15 min before a solution of MeI (6.14 mL, 98.7 mmol, 4.0 equiv) in THF 

(50 mL) was added dropwise over 30 min at 0 ºC, after which the reaction was warmed to 

ambient temperature and stirred for 24 h. The reaction was then cooled to 0 ºC and 1 N 

HCl (10 mL) was slowly added. The solution was diluted with H2O (100 mL). The crude 

reaction mixture was extracted with 10% DCM/EtOAc (120 mL x 5), dried over Na2SO4, 

filtered, and concentrated under reduced pressure.  

Purification was achieved through flash column chromatography on SiO2 [10% 

EtOAc/hexanes → 60%] to afford dimethylamide 72 as an off-white solid (3.4 g, 16.1 

mmol, 65% yield). 

 

TLC (50% EtOAc/Hexanes): Rf = 0.40 (UV, p-anisaldehyde).  

NaH, MeI
THF, 0 ºC

65%

O

O
Me

Me

H2N O

O

O
Me

Me

Me2N O

71 72



Chapter 3 – Progress Towards the Total Synthesis of (–)-Merrilactone A 276 

1H NMR (400 MHz, CDCl3): δ 7.32 (dd, J = 7.7, 0.8 Hz, 1H), 7.19 (d, J = 7.7 Hz, 1H), 

3.77 (s, 3H), 3.20 (ddq, J = 6.7, 4.5, 2.2 Hz, 1H), 2.63 (dd, J = 17.8, 4.5 Hz, 1H), 2.55 (dd, 

J = 17.8, 6.6 Hz, 1H), 2.34 (d, J = 0.7 Hz, 3H), 2.08 (d, J = 2.2 Hz, 3H), 1.69 (s, 3H).  

13C NMR (101 MHz, CDCl3): δ 210.3, 168.8, 155.1, 152.0, 134.7, 133.8, 132.3, 128.1, 

118.8, 75.6, 60.8, 55.7, 35.2, 24.6, 15.9, 9.9.  

FTIR (NaCl, thin film): 3389, 2963, 2919, 1690, 1639, 1320, 1227, 1091, 1018, 921 cm-

HRMS (MM:ESI–APCI): calc’d for [M+Na]+ 259.1334, found 259.1347. 

3.9.3 Proof of Enantiopurity 

Due to COVID-19, this data at the present moment is not obtainable. 
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X-Ray Structure Determination  
 
Low-temperature diffraction data (φ- and ω-scans) was collected on a Bruker AXS D8 
VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu-
Kα radiation (λ = 1.54178 Å) from a IµS HB micro-focus sealed X-ray tube. All 
diffractometer manipulations, including data collection, integration, and scaling were 
carried out using the Bruker APEXII software.1 Absorption corrections were applied using 
SADABS.2 The structure was solved by intrinsic phasing using SHELXT3 and refined 
against F2 on all data by full-matrix least squares with SHELXL-20143 using established 
refinement techniques.4 All non-hydrogen atoms were refined anisotropically. Unless 
otherwise noted, all hydrogen atoms were included into the model at geometrically 
calculated positions and refined using a riding model. The isotropic displacement 
parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are 
linked to (1.5 times for methyl groups). Compound 72 crystallizes in the monoclinic space 
group P21 with one molecule in the asymmetric unit. The Flack parameter was determined 
to be 0.11(6); absolute configuration was determined by anomalous dispersion. Graphical 
representation of the structures with 50% probability thermal ellipsoids was generated 
using Mercury visualization software.  
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Table 1:  Crystal data and structure refinement for 72. 

Identification code  V18640 

Empirical formula  C11 H17 N O3 

Formula weight  211.25 

Temperature  99.98 K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P 21 

Unit cell dimensions a = 6.7743(13) Å a= 90°. 

 b = 11.832(2) Å b= 109.879(4)°. 

 c = 7.2005(13) Å g = 90°. 

Volume 542.76(18) Å3 

Z 2 

Density (calculated) 1.293 Mg/m3 

Absorption coefficient 0.768 mm-1 

F(000) 228.0 

Crystal size 0.41 x 0.3 x 0.21 mm3 

Theta range for data collection 15.074 to 159.652°. 

Index ranges -8<=h<=8, -15<=k<=14, -7<=l<=9 

Reflections collected 8035 

Independent reflections 2266 [R(int) = 0.0499, R(sigma)=0.0444] 

Completeness to theta = 67.679° 94.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7543 and 0.5508 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2266 / 1 / 148 

Goodness-of-fit on F2 1.045 

Final R indices [I>2sigma(I)] R1 = 0.0353, wR2 = 0.0794 

R indices (all data) R1 = 0.0314, wR2 = 0.0795 

Absolute structure parameter 0.11(6) 

Largest diff. peak and hole 0.19 and -0.16 e.Å-3 
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Compound 72 crystallizes in the monoclinic space group P21 with one molecule in the 
asymmetric unit. Absolute configuration was determined by anomalous dispersion (Flack 
= 0.11(6)).  
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After receiving her B.S. in Chemistry from UC Irvine in 2015, Sean enrolled in the 
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