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ABSTRACT

This thesis consists of two main parts. In the first part, we study a space of sym-
bolic dynamical systems for countable discrete ICC groups and show that minimal
proximal actions in that space are generic. This study leads to a characterization of
countable discrete strongly amenable groups; a countable discrete group is strongly
amenable if and only if it has no ICC quotients.

In the second part, we show that a countable discrete group is Choquet-Deny if and
only if it has no ICC quotients, where a group is called Choquet-Deny if the Poisson
boundary of every non-degenerate measure on the group is trivial. Combining the
aforementioned results, we get that a countable discrete group is Choquet-Deny if
and only if it is strongly amenable.

In the case of finitely generated groups, by an old result due to McLain [McL56] and
Duguid and McLain [DM56] and our classifications, we see that strongly amenable
groups and Choquet-Deny groups are the same as virtually nilpotent groups.
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C h a p t e r 1

INTRODUCTION

In this thesis, we study two group properties for countable discrete groups and show
that they are both equivalent to the group not having ICC quotients.

The first property is strong amenability. Let � be a topological group and let
� y - be a continuous action of � on a compact Hausdorff space - . This action
is said to be proximal if for any G, H ∈ - there exists a net {68} in � such that
lim8 68G = lim8 68H. � is said to be strongly amenable if every such proximal action
of � has a fixed point.

The second class of groupswe study are Choquet-Deny groups. Let� be a countable
discrete group. A probability measure ` on � is non-degenerate if its support
generates � as a semigroup. A function 5 : � → R is `-harmonic if 5 (:) =∑
6∈� `(6) 5 (:6) for all : ∈ �. We say that the measured group (�, `) is Liouville

if all the bounded `-harmonic functions are constant; this is equivalent to the
triviality of the Poisson boundary Π(�, `). � is called Choquet-Deny if (�, `) is
Liouville for every non-degenerate `.

1.1 ICC Groups
Let � be a group. Recall that � has the infinite conjugacy class property (ICC) if
each of its non-trivial elements has an infinite conjugacy class. For example, the
group (∞ of finite permutations of N is ICC.

One can define the upper FC-series of a group � as

1 6 �1 6 �2 6 · · · 6 �U 6 · · · 6 �,

where �U+1/�U is the normal subgroup of �/�U consisting of the elements of the
finite conjugacy classes, and �V = ∪U<V�U for V a limit ordinal [Hai53; McL56].
The group ∪U�U is called the hyper-FC center of �.

Groups that have no ICC quotients are known as hyper-FC-central [McL56] or
hyper-FC [Dug60]. Note that hyper-FC groups are precisely the groups whose
hyper-FC center is the whole group. The class of hyper-FC groups is closed under
forming subgroups, quotients, and finite index extensions.
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It has been long known that a finitely generated group is hyper-FC if and only
if it is virtually nilpotent. This result, due to McLain [McL56] and Duguid and
McLain [DM56], simplifies our characterizations for strongly amenable groups and
Choquet-Deny groups in the case of finitely generated groups. In §A, we bring
a self-contained presentation of the original proof of this fact, which is divided
between [McL56, Theorem 2] and [DM56, Theorem 2].

A key property of ICC groups is that for them switching elements exist; given an
ICC group � and a finite subset - ⊂ �, there are infinitely many 6 ∈ � such that
- ∩ 6−1-6 ⊆ {4}. We call any such 6 ∈ � a switching element for - . Indeed, we
show in §3.1 that if � is in addition amenable, then for any finite subset - ⊂ �, the
set of switching elements for - has full measure for any invariant finitely additive
probability measure on �. Switching elements play an important role in the proof
of Lemma 2.4.2 and the proof of Proposition 3.0.2, which are the main ingredients
for the proofs of our main results.

1.2 Strongly Amenable Groups
Let � be a topological group and let � y - be a continuous action of � on a
compact Hausdorff space - . This action is said to be proximal if for any G, H ∈ -
there exists a net {68} in � such that lim8 68G = lim8 68H. � is said to be strongly
amenable if every such proximal action of � has a fixed point. Similarly, the
continuous action � y - is said to be strongly proximal if for each regular Borel
probability measure ` on - there exists a net {68} in � such that lim8 68` is a point
mass. Glasner in [Gla76b] introduced these notions and showed that a group is
amenable if and only if all its strongly proximal actions have a fixed point, strongly
amenable groups are amenable, and that every virtually nilpotent group is strongly
amenable.

Our main result in §2 is a characterization of countable discrete strongly amenable
groups; a countable discrete group is strongly amenable if and only if it has no
ICC quotients, which is equivalent to hyper-FC. In particular, in the case of finitely
generated groups, a countable discrete group is strongly amenable if and only if it
is virtually nilpotent.

1.3 Choquet-Deny Groups
Our main result in §3 is a characterization of countable discrete Choquet-Deny
groups; a countable discrete group is Choquet-Deny if and only if it has no ICC
quotients. Using our other result, this is equivalent to strong amenability. This
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implies that a countable discrete group � is strongly amenable if and only if (�, `)
is Liouville for every non-degenerate `, which is parallel to the following result: a
countable discrete group � is amenable if and only if (�, `) is Liouville for some
non-degenerate ` [Fur73; KV83; Ros81].
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C h a p t e r 2

PROXIMAL FLOWS AND STRONGLY AMENABLE GROUPS

Let � y - be a continuous action of a countable discrete group on a compact
Hausdorff space. This action is said to be proximal if for any G, H ∈ - there exists
a net {68} in � such that lim8 68G = lim8 68H. � is said to be strongly amenable
if every such proximal action of � has a fixed point. Glasner introduced these
notions in [Gla76b] and proved a number of results: he showed that every virtually
nilpotent group is strongly amenable, and that non-amenable groups are not strongly
amenable. He also gave some examples of amenable groups that are not strongly
amenable.1 Since then, a number of papers have studied strong amenability [DG17;
GW02; Gla83; MVT15], but none have made significant progress on relating it to
other group properties.

Let � y - be a continuous action of a countable discrete group on a compact
Hausdorff space. This action is said to be strongly proximal if for each regular
Borel probability measure ` on - there exists a net {68} in � such that lim8 68` is a
point mass. This notion, as well as that of the related Furstenberg boundary [Fur03;
Fur63a; Fur73], have been the object of a much larger research effort, in particular
because a group is amenable if and only if all of its strongly proximal actions on
compact spaces have fixed points.

Our main result in this chapter is a characterization of strongly amenable groups.

Theorem 1. A countable discrete group is strongly amenable if and only if it has
no ICC quotients, i.e. it is hyper-FC. In particular, a finitely generated group is
strongly amenable if and only if it is virtually nilpotent.

For example, this implies that the group (∞ of finite permutations ofN is not strongly
amenable. Likewise, the alternating subgroup of (∞ is not strongly amenable, as is
every infinite simple group.

Recall from §1.1 that a finitely generated group is hyper-FC if and only if it is
virtually nilpotent [DM56; McL56]. The second part of the theorem follows from
this.

1Glasner attributes one of these examples to Furstenberg.
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The case of groups with no ICC quotients is a straightforward consequence of
Glasner’s work. To prove that groups with ICC quotients are not strongly amenable,
we consider an ICC group � and a certain class of symbolic dynamical systems for
�. Using a topological genericity argument, we show that in this class there is a
proximal action without a fixed point.

In §2.5, we look at Thompson’s group �. Since it has an ICC quotient, we know
from Theorem 1 that it is not strongly proximal. Our proof for Theorem 1 is an
existence proof. In §2.5, we directly construct a proximal action of � that has no
fixed points, and thus show directly that � is not strongly amenable. This action
does admit an invariant measure, and thus does not provide any information about
the amenability of �.

The Universal Minimal Proximal Action
In [Gla76b, Section II.4], Glasner defines the universal minimal proximal action
of a group �; this is the unique minimal proximal action of � which has every
minimal proximal action as a factor. We denote this action by � y m?�. In
Proposition 2.3.6, we show that every ICC group has a minimal proximal faithful
action. On the other hand, the proof of Proposition 2.1.1 shows that the hyper-FC
center of � acts trivially on m?�. Combining these gives us:

Corollary 2.0.1. For a countable discrete group �, ker(� y m?�) is equal to the
hyper-FC center of �.

Glasner also defines the universal minimal strongly proximal action of a group
�, which is the unique minimal strongly proximal action of � which has every
minimal strongly proximal action as a factor. We denote this action by � y mB�.
Furman [Fur03, Proposition 7] shows that the kernel of � y mB� is the amenable
radical of �.

The Group von Neumann Algebra
It is known that the group von Neumann algebra of a group � has a unique tracial
state iff � is ICC, and we show that ICC groups are precisely the groups with
faithful universal minimal proximal actions. We thus have the following dynamical
characterization of the unique trace property of the group von Neumann algebra:

Corollary 2.0.2. For a countable discrete group �, the following are equivalent:

1. The group von Neumann algebra of � has a unique tracial state.



6

2. � y m?� is faithful.

Analogously, it has been recently shown by Breuillard, Kalantar, Kennedy, and
Ozawa [Bre+17, Corollary 4.3] that the reduced C∗-algebra of � has a unique
tracial state if and only if � y mB� is faithful.

Following this analogy raises an interesting question. We know from [KK17,
Theorem 1.5] that simplicity of the reduced C∗-algebra of a group� is equivalent to
the freeness of � y mB�. We also know from [Bre+17, Corollary 4.3] that unique
trace property of the reduced C∗-algebra of a group � is equivalent to faithfulness
of � y mB�. On the other hand, for group von Neumann algebras of discrete
groups, simplicity and the unique trace property are equivalent. So it is natural to
ask whether freeness of � y m?� is equivalent to its faithfulness.

2.1 Overview of the Proof of Theorem 1
That a group with no ICC quotients is strongly amenable follows immediately from
the following proposition.

Proposition 2.1.1. Let � be a countable discrete group that acts faithfully, min-
imally, and proximally on a compact Hausdorff space - . Then each non-trivial
element of � has an infinite conjugacy class.

Proof. Let 6 be a non-trivial element of �. Assume by contradiction that 6 has a
finite conjugacy class. Let � be the centralizer of 6, so that � has finite index in
�. By [Gla76b, Lemma 3.2], � acts proximally and minimally on - . Since 6 is in
the center of �, it acts trivially on - , by [Gla76b, Lemma 3.3]. This contradicts the
assumption that the action is faithful. �

Thus, to prove Theorem 1, we consider any � that is ICC, and prove that it has a
proximal action that does not have a fixed point. This is without loss of generality,
since if � has a proximal action without a fixed point, then so does any group that
has � as a quotient.

2.2 Existence by Genericity
Our general strategy for the proof of Theorem 1 is to consider a certain space S of
non-trivial actions of�. We show that this space includes a proximal action without
a fixed point by showing that, in fact, a generic action in this space is minimal and
proximal. Genericity here is in the Baire category sense.
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To define the space S, let � be a finite alphabet of size at least 2. The full shift
�� , equipped with the product topology, is a space on which � acts continuously
by left translations. Enumerate elements of � = {61, 62, . . .} and endow �� with
the metric 3 (·, ·) given by 3 (B, C) = 1/: where : = inf{= : B(6=) ≠ C (6=)}. An
element of �� is called a configuration.

The closed, �-invariant non-empty subsets of �� are called shifts. The space of
shifts is endowed with the subspace topology of the Hausdorff topology (or Fell
topology) on the closed subsets of �� . This topology is also metrizable: take, for
example, the metric that assigns to a pair of shifts (, ) ⊆ �� the distance 1/(= + 1),
where = is the largest index such that ( and ) agree on {61, . . . , 6=}; by agreement
on a finite - ⊆ � wemean that the restriction of the configurations in ( to - is equal
to the restrictions of the configurations in ) to - . Note that for any shift ( ⊆ �� , the
sets of the form {) ⊆ �� | ) agrees with ( on -} for different finite subsets - ⊆ �
form a basis of the neighborhoods for (.

We define the space S to be the closure, in the space of shifts, of the strongly
irreducible shifts, with the |�|-many trivial (i.e., singleton) shifts removed. Strongly
irreducible shifts are defined as follows:

Definition 2.2.1. A shift ( ⊆ �� is said to be strongly irreducible if there exists a
finite - ⊆ � including the identity such that for any two subsets �1, �2 ⊆ � with
�1- ∩�2- = ∅ and any two configurations B1, B2 ∈ (, there is a configuration B ∈ (
such that B restricted to �1 equals B1 restricted to �1, and B restricted to �2 equals
B2 restricted to �2.

To show that the proximal actions are generic in S, we define Y-proximal actions;
proximal actions will be the actions which are Y-proximal for each Y > 0.

Definition 2.2.2. An action � y - on a compact metric space with metric 3 (·, ·)
is Y-proximal if for all G, H ∈ - there exists a 6 ∈ � such that 3 (6G, 6H) < Y.

To show that minimal actions are generic in S, we similarly define the notion of
Y-minimality.

Definition 2.2.3. An action � y - on a compact metric space with metric 3 (·, ·)
is Y-minimal if for all G, H ∈ - there exists a 6 ∈ � such that 3 (6G, H) < Y.

A subset of a topological space is generic (in the Baire category sense) if it contains
a dense�X. To prove our main result, we show that the proximal actions are a dense
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�X in S. The proof of density is the main challenge of this chapter, while it is
straightforward to prove that this subset is a �X.

Claim 2.2.4. The set of Y-proximal shifts is an open set in S. Thus the set of
proximal shifts is a �X set in S.

Similarly, the set of Y-minimal shifts is an open set in S. Thus the set of minimal
shifts is a �X set in S.

The Baire Category Theorem guarantees that for well behaved spaces (such as our
locally compact spaceS), a countable intersection of dense open sets is dense. Thus,
to prove that the proximal shifts are dense in the closure of the strongly irreducible
shifts, it suffices to show that the Y-proximal shifts are dense in S for each Y. That
is, fixing Y, we must show that for each strongly irreducible shift ( ⊆ �� and each
finite subset - ⊆ � there exists a strongly irreducible shift (′ that agrees with ( on
- , and is Y-proximal.

To this end, we construct a class of shifts of {0, 1}� (which we denote by 2�)
which are Y-proximal. Furthermore, for these shifts Y-proximality is witnessed by
a particular configuration around the origin: one having a 1 at the origin and zeros
close to it. For a finite symmetric subset - ⊂ � and 6, ℎ ∈ �, we say that 6 and ℎ
are --apart if 6−1ℎ ∉ - .

Definition 2.2.5. Let - be a finite symmetric subset of�. A non-trivial shift ( ⊂ 2�

is an --witness shift if

1. For each B ∈ (, B(0) = 1 and B(1) = 1 implies that 0 and 1 are --apart.

2. For each B, C ∈ ( there exists an 0 ∈ � such that B(0) = C (0) = 1.

The construction of --witness shifts in Propositions 2.3.1 and 2.3.2 contains the
main technical effort of this chapter.

A Toy Example
To give the reader some intuition and explain the role of ICC in the construction of
--witness shifts, we now explain how to construct a single configuration in 2� with
an --witness orbit, and show that such configurations do not exist for groups that
are not ICC. Note that the closure of this orbit is not necessarily an --witness shift;
the construction of --witness shifts requires more work and a somewhat different
approach, which we pursue later, in the formal proofs.
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Given a configuration D ∈ 2� , we denote by �D = {6D : 6 ∈ �} the �-orbit of D.
Given a finite symmetric - ⊂ �, we say that a configuration D ∈ 2� is an --witness
configuration if

1. For each B ∈ �D, B(0) = 1 and B(1) = 1 implies that 0 and 1 are --apart.

2. For each B, C ∈ �D there exists an 0 ∈ � such that B(0) = C (0) = 1.

We now informally explain that when� is ICC, then for every such - there exist --
witness configurations, and that when � is not ICC, then there is a finite symmetric
- ⊂ � for which there are no such configurations.

Suppose first that � is not ICC. Then there cannot exist an --witness shift for every
- . To see this, suppose that 6 ∈ � is an element with finitely many conjugates,
and let - be a finite symmetric subset of � that contains all the conjugates of
6. Assume towards a contradiction that there exists an --witness configuration
D. So, by the second property of --witness configurations, there exists an 0 ∈ �,
such that [6D] (0) = D(0) = 1, which means D(6−10) = D(0) = 1. Now, by the
first property of D, we need to have that 6−10 and 0 are --apart, which means
(6−10)−10 = 0−160 ∉ - . This is a contradiction, since we let - contain all the
conjugates of 6.

Consider now the case that� is ICC.Given a finite symmetric - , we choose a random
configuration D ∈ 2� as follows. Assign to each element of � an independent
uniform random variable in [0, 1]. Let +0 be the random variable corresponding to
0 ∈ �. For each 0 ∈ �, let D(0) = 1 iff +0 > +0G for all G ∈ - \ {4}; i.e., D(0) = 1
if +0 is maximal in its --neighborhood. Note that if 6 and ℎ are -2-apart, then the
event D(6) = 1 and the event D(ℎ) = 1 are independent.

We claim that D is, with probability one, an --witness shift. By construction, D
almost surely satisfies the first property: if B = 6−1D and B(0) = B(1) = 1, then
D(60) = D(61) = 1, hence 60 and 61 are --apart, and so 0 and 1 are --apart. To
satisfy the second property, it must hold that for every 6 ≠ ℎ ∈ � there is some
0 ∈ � such that D(60) = D(ℎ0) = 1. By the ICC property, we can choose an 0 ∈ �
to make 60 and ℎ0 arbitrarily far apart, as this corresponds to finding an 0 such that
0−1(ℎ−16)0 is large. For such a choice of 0, the events D(60) = 1 and D(ℎ0) = 1
are independent, and, since we have infinitely many such 0’s that we can use, with
probability one at least one of them will give us the desired result.
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2.3 Constructing --witness Shifts
We now return to the construction of --witness shifts, which are the main tool in
our proof of Theorem 1. The first step is to construct a single configuration which
is an --witness in a large finite set.

Proposition 2.3.1. Let � be an ICC group. For each finite symmetric - ⊂ �, there
exists an B ∈ 2� and a finite symmetric . ⊃ - such that

1. For every 0, 1 ∈ �, if B(0) = B(1) = 1, then 0 and 1 are --apart.

2. For every 6, ℎ ∈ .100 there exists some 0 ∈ . such that B(60) = B(ℎ0) = 1.

The proof of this proposition—along with Proposition 2.3.2 below—contains the
main technical effort of this chapter. The proof elaborates on the ideas of the
informal construction of §2.2: we choose the configuration B at random, and then
show that it has the desired properties with positive probability. This stage crucially
uses the assumption that the group is ICC, which translates to independence of some
events that arise in the analysis of this random choice. This is the only step in the
proof of Theorem 1 in which we use the ICC property of �.

We use the configuration constructed in Proposition 2.3.1 to construct --witness
shifts. These shifts will additionally (and importantly) be strongly irreducible.

Proposition 2.3.2. Let � be a group for which, for each finite symmetric - ⊂ �,
there exists a configuration that satisfies the conditions of Proposition 2.3.1. Then
for each such - there also exists a strongly irreducible --witness shift.

The combination of Propositions 2.3.1 and 2.3.2 immediately yields the following.

Proposition 2.3.3. Let � be an ICC group. Then for each finite symmetric - ⊂ �
there exists a strongly irreducible --witness shift ( ⊂ 2� .

Y-proximal Shifts
Finally, we use these strongly irreducible --witness shifts to construct approxima-
tions to a given strongly irreducible shift ( that are both Y-proximal and Y-minimal.

Proposition 2.3.4. Let� be a group for which there exists, for each finite symmetric
- ⊂ �, a strongly irreducible --witness shift. Let ) ⊆ �� be a strongly irreducible
shift. Then for each Y and finite - ⊂ � there exists a strongly irreducible shift
) ′ ⊆ 2� that is Y-proximal, Y-minimal, and agrees with ) on - .
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An immediate consequence of Proposition 2.3.3, Proposition 2.3.4, and Claim 2.2.4
is the following.

Proposition 2.3.5. Let � be an ICC group. Then there is a dense �X set in S for
which the action � y ( is minimal and proximal.

In the next proposition, we show that this result can be strengthened to show that a
generic shift is additionally faithful.

Proposition 2.3.6. Let � be an ICC group. Then there is a dense �X set in S for
which the action � y ( is faithful, minimal, and proximal.

Given all this, the proof of our main theorem follows easily.

Proof of Theorem 1. That groups with no ICC quotients are strongly amenable fol-
lows immediately from Proposition 2.1.1. Let � be ICC. By Proposition 2.3.5, the
proximal minimal shifts are a dense �X in S, and in particular exist, since S is
non-empty (e.g., the full shift �� is strongly irreducible and non-constant). Since
there are no trivial shifts in S, and since non-trivial minimal shifts have no fixed
points, we have proved that � is not strongly amenable. �

2.4 Proofs
Proof of Proposition 2.3.1
Let � be an ICC group, and let - be a finite, symmetric subset of �. We choose a
randomconfigurationD ∈ 2� as follows. Assign to each element of� an independent
uniform random variable in [0, 1]. Let +0 be the random variable corresponding to
0 ∈ �. For each 0 ∈ �, let D(0) = 1 iff +0 > +0G for all G ∈ - \ {4}. That is,
let D(0) = 1 if +0 > +1 whenever 0−11 ∈ - and 1 ≠ 0. The following claim is an
immediate consequence of the definition of D.

Claim 2.4.1. If 01, . . . , 0= are -2-apart2 for 08 ∈ �, then {D(08) = 1} are indepen-
dent events.

Clearly, for all values of the random configuration, D(0) = D(1) = 1 implies that
0−11 ∉ - for all 0, 1 ∈ �, which means that 0 and 1 are --apart. So the random
configuration D almost surely satisfies the first part of the proposition. It thus remains

2Recall that given a finite symmetric subset - ⊂ � and 6, ℎ ∈ �, we say that 6 and ℎ are --apart
if 6−1ℎ ∉ - .
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to find a finite symmetric subset . ⊃ - such that, with positive probability for the
random configuration D, for each 6, ℎ ∈ .100 there exists some 0 ∈ . such that
D(60) = D(ℎ0) = 1.

The next lemma claims that there exists a subset . with certain useful properties.
We use this lemma to prove our proposition, and then prove the lemma.

Lemma 2.4.2. There exists a . ⊃ - with the following properties.

1.
|. |200(1 − |- |−2) |. |/(20|-2 |+5) < 1.

2. For each 6, ℎ ∈ � there exists a subset.6,ℎ ⊆ . with the following properties.

a) |.6,ℎ | ≥ |. |/(20|-2 | + 5).

b) For H ∈ .6,ℎ, 6H and ℎH are -2-apart.

c) For H1 ≠ H2 ∈ .6,ℎ, F1 and F2 are -2-apart for any F1 ∈ {6H1, ℎH1}
and F2 ∈ {6H2, ℎH2}.

For 2, 3, H ∈ �, let �2 be the event that D(2) = 1, and let � H
2,3
= �2H ∩ �3H. Now fix

6, ℎ ∈ �.

1. By the second property of .6,ℎ, 6H and ℎH are -2-apart for any H ∈ .6,ℎ.
Hence �6H and �ℎH are independent, by Claim 2.4.1.

2. P [�2] = 1/|- | for all 2 ∈ �.

3. Combining the previous two results: P
[
�
H

6,ℎ

]
= |- |−2 for all H ∈ .6,ℎ. So

P
[
¬� H

6,ℎ

]
= 1 − |- |−2.

4. � H
6,ℎ

are independent events for different values of H ∈ .6,ℎ. This is because
(I) 6H and ℎH are -2-apart for any H ∈ .6,ℎ, and (II) F1 and F2 are -2-
apart for any H1 ≠ H2 ∈ .6,ℎ, F1 ∈ {6H1, ℎH1}, and F2 ∈ {6H2, ℎH2}, which
means {�6H, �ℎH | H ∈ .6,ℎ} are independent events. And finally, since � H6,ℎ =
�6H ∩ �ℎH, we get that � H6,ℎ are independent events for H ∈ .6,ℎ.
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5. We say that the pair (6, ℎ) fails if � H
6,ℎ

does not happen for any H ∈ .6,ℎ. So,
by the previous two results,

P [(6, ℎ) fails] = P
[
�
H

6,ℎ
for no H ∈ .6,ℎ

]
= (1 − |- |−2) |.6,ℎ |

≤ (1 − |- |−2) |. |/(20|-2 |+5) ,

where the last inequality follows from the first property of .6,ℎ.

By the last inequality, union bound, and the first property of . :

P
[
(6, ℎ) fails for some 6, ℎ ∈ .100] ≤ |.100 |2(1 − |- |−2) |. |/(20|-2 |+5)

≤ |. |200(1 − |- |−2) |. |/(20|-2 |+5) < 1.

So, there is at least one configuration, say B, for which no (6, ℎ) fails for 6, ℎ ∈ .100.
Therefore, for all 6, ℎ ∈ .100, there is an 0 ∈ . such that B(60) = B(ℎ0) = 1.
So this B satisfies the second part of the proposition, which concludes the proof of
Proposition 2.3.1, except the proof of Lemma 2.4.2, to which we turn now.

Proof of Lemma 2.4.2. We call an element 6 ∈ � switching if for all non-identity
G ∈ -2 we have 6−1G6 ∉ -2.

Claim 2.4.3. There exists at least one switching element 6B ∈ �.

Proof. Let �G be the centralizer of G for each G ∈ -2. Then there are finitely many
cosets of �G , say 6G1�G , . . . , 6

G
=G
�G , such that 6−1G6 ∈ -2 only if 6 ∈ 6G

8
�G for some

8 ∈ {1, . . . , =G}. So, non-switching elements are in the union of finitely many cosets
of subgroups with infinite index, i.e. 6 is non-switching only if 6 ∈ 6G

8
�G for some

G ∈ -2 and some 8 ∈ {1, . . . , =G}. Since � is ICC, each �G has infinite index in
�. By [Neu54, Lemma 4.1], a finite collection of cosets of infinite index does not
cover the whole group �, so there is at least one switching element in �. �

Let 6B be a switching element. We can choose an arbitrarily large finite subset
.1 ⊆ � which includes the identity and such that .1 ∩ .16B = ∅. Choose such a .1

that is large enough so that

(5|.1 |)200(1 − |- |−2)2|.1 |/(20|-2 |+5) < 1 and |.1 | ≥ |- |
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and let . = (.1 ∪ .16B) ∪ (.1 ∪ .16B)−1 ∪ - . Note that . is symmetric and
5|.1 | ≥ |. | ≥ 2|.1 |, which implies that

|. |200(1 − |- |−2) |. |/(20|-2 |+5) < 1.

This establishes the first property of . .

Fix 6, ℎ ∈ � with 6 ≠ ℎ. We say H ∈ � is distancing for the pair (6, ℎ) if 6H and ℎH
are -2-apart.

Claim 2.4.4. If H ∈ � is not distancing for (6, ℎ), then H6B is distancing for (6, ℎ).

Proof. Since H is not distancing for (6, ℎ), (6H)−1(ℎH) = H−16−1ℎH ∈ -2. By
the definition of a switching element 6−1

B [(6H)−1(ℎH)]6B = (6H6B)−1(ℎH6B) ∉ -2,
which means that H6B is distancing for (6, ℎ). �

By this observation, if H1 ∈ .1 is not distancing for (6, ℎ), then H16B ∈ .16B is
distancing for (6, ℎ). So at least half of the elements in .1 ∪.16B are distancing for
(6, ℎ) and thus at least one fifth of the elements in . are distancing for (6, ℎ). Let
. ′
6,ℎ

be the collection of elements in . that are distancing for (6, ℎ). We just saw
that |. ′

6,ℎ
| ≥ |. |/5.

Now define a graph on . ′
6,ℎ

by connecting H1 ≠ H2 ∈ . ′6,ℎ if F1 and F2 are not
-2-apart for some F1 ∈ {6H1, ℎH1}, F2 ∈ {6H2, ℎH2}. Call this graph �′

6,ℎ
. Note

that the degree of each H ∈ . ′
6,ℎ

in �′
6,ℎ

is at most 4|-2 |. So, we can find an
independent set of size at least |. ′

6,ℎ
|/(4|-2 | + 1) ≥ |. |/(20|-2 | + 5) in �′

6,ℎ
. Call

this independent set .6,ℎ.

Claim 2.4.5. |.6,ℎ | ≥ |. |/(20|-2 | + 5), for H ∈ .6,ℎ, 6H and ℎH are -2-apart, and
for H1 ≠ H2 ∈ .6,ℎ, we have that F1 and F2 are -2-apart for F1 ∈ {6H1, ℎH1}, F2 ∈
{6H2, ℎH2}.

Proof. The bound on the size of.6,ℎ is established in the previous paragraph. Since
.6,ℎ ⊆ . ′6,ℎ and all elements of . ′

6,ℎ
are distancing for (6, ℎ), the second property

holds. The third property follows from independence of .6,ℎ in �′6,ℎ. �

This establishes the three properties of .6,ℎ, and thus concludes the proof of the
lemma. �
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Saturated Packings
In this section, we prove some general claims regarding saturated packings (see,
e.g., [TK93]).

Definition 2.4.6. Let /1, . . . , /= be distinct non-empty finite subsets of �. A
{/1, . . . , /=}-packing is a ? ∈ {/1, . . . , /=, ∅}� with ℎ ?(ℎ) ∩ 6 ?(6) = ∅ for
all 6 ≠ ℎ ∈ �; note that ℎ ?(ℎ) and 6 ?(6) are each a translate, by ℎ and 6, respec-
tively, of some element of {/1, . . . , /=, ∅}. When ?(6) ≠ ∅, we call the translate
6 ?(6) a block.

By an abuse of notation, we use the term /-packing instead of {/}-packing when
we have only one subset.

Definition 2.4.7. A {/1, . . . , /=}-packing ? is saturated if there is no {/1, . . . , /=}-
packing ?′ ≠ ? such that ?(6) ≠ ∅ implies that ?′(6) = ?(6).

We say that ? is a saturation of @ if ? is saturated and @(6) ≠ ∅ implies that
?(6) = @(6).

Saturated packings are packings to which one cannot add any blocks. Note, however,
that it may be possible to add more blocks by first removing some. Note also that by
Zorn’s Lemma, there exists for each {/1, . . . , /=}-packing @ a {/1, . . . , /=}-packing
? that saturates it.

The following claim shows the existence of strongly irreducible saturated packings,
which will be useful in the construction of strongly irreducible --witness shifts. A
similar claim with a similar proof appears in [FT17, Lemma 2.2].

Given twodistinct non-emptyfinite subsets /1 and /2 of�, we denote by c : {/1, /2, ∅}� →
{/1, ∅}� the map

(c(?)) (6) =

/1 if ?(6) = /1

∅ otherwise.

That is, c transforms a {/1, /2}-packing into a /1-packing by removing all the
/2-blocks.

Claim 2.4.8. Let /1 and /2 be two distinct non-empty finite subsets of �. Let %
be the collection of all saturated {/1, /2}-packings ? such that c(?) is a saturated
/1-packing. Then % is a non-empty strongly irreducible shift.
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Proof. The proof of the fact that % is a non-empty shift is standard. It thus remains
to be shown that it is strongly irreducible.

Let - = (/1 ∪ /2) ∪ (/1 ∪ /2)−1. Let �1, �2 ⊂ � be any two subsets of � that
are -14-apart. To prove the claim, it suffices to show that for any ?1, ?2 ∈ %, there
is a ? ∈ % that agrees with ?1 on �1 and with ?2 on �2. We know that �1-

6 and
�2-

6 are disjoint, and furthermore, if 01 ∈ �1-
6 and 02 ∈ �2-

6, then the blocks
01?1(01) and 02?2(02) are disjoint.

Let @1 = c(?1) and @2 = c(?2). We know that @1 and @2 are saturated /1-packings.
We also know that if 01 ∈ �1-

6 and 02 ∈ �2-
6, then 01@1(01) and 02@2(02) are

disjoint. Thus there is a /1-packing, say @′, that is equal to @1 on �1-
6 and to @2 on

�2-
6. Let @ be a /1-packing that is a saturation of @′. Fix 8 ∈ {1, 2} and 6 ∈ �8-4.

We will show that @8 (6) = @(6).

• If @8 (6) = /1, we know that @′(6) = /1, and hence @(6) = /1.

• If @8 (6) = ∅, since @8 is a saturated /1-packing, there exists 0 ∈ 6/1/
−1
1 ⊆

�8-
6 with @8 (0) = /1. So, @′(0) = /1, and hence @(0) = /1. Since

6/1 ∩ 0/1 ≠ ∅, this implies that @(6) = ∅.

So, @ is a saturated /1-packing that agrees with @1 on �1-
4 and with @2 on �2-

4.

Since @ agrees with @1 = c(?1) on �1-
4 and with @2 = c(?2) on �2-

4, it is easy
to see that ?′, which is defined as follows, is a well-defined {/1, /2}-packing:

?′(6) =


?1(6) if 6 ∈ �1-

2

?2(6) if 6 ∈ �2-
2

@(6) otherwise.

So, by definition, ?′ agrees with ?1 on �1-
2 and with ?2 on �2-

2. Furthermore,
c(?′) = @, since c(?8) agrees with @ on �8-2.

Let ? be a {/1, /2}-packing that is a saturation of ?′. Since c(?′) = @ is a saturated
/1-packing, we have c(?) = c(?′) = @. So, ? is a saturated {/1, /2}-packing where
c(?) is a saturated /1-packing, which means ? ∈ %. To complete the proof, we just
need to show that ? agrees with ?1 on �1 and with ?2 on �2. Fix 8 ∈ {1, 2} and
6 ∈ �8. We will show that ?8 (6) = ?(6).

• If ?8 (6) ∈ {/1, /2}, we know that ?′(6) = ?8 (6) ∈ {/1, /2}, and hence
?(6) = ?8 (6).
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• If ?8 (6) = ∅, since ?8 is a saturated {/1, /2}-packing, for any 9 ∈ {1, 2} there
exist ℓ ∈ {1, 2} and 0 ∈ 6/ 9/−1

ℓ
⊆ �8-2 with ?8 (0) = /ℓ. So, ?′(0) = /ℓ,

and hence ?(0) = /ℓ. Since 6/ 9 ∩ 0/ℓ ≠ ∅, this implies that ?(6) = ∅.

�

Proof of Proposition 2.3.2
We can now start the proof of proposition 2.3.2. Assume that - , a finite symmetric
subset of �, is given. We now seek to construct a strongly irreducible --witness
shift ) . Since � satisfies proposition 2.3.1, we can let . and B be a finite symmetric
subset of � and a configuration on � that satisfy the statement of proposition 2.3.1
for - ⊆ �.

Let % be the strongly irreducible shift given by Claim 2.4.8 for /1 = .
100- and

/2 = .- .

Define k : %→ 2� by

[k(?)] (6) =



B(ℎ−16) if 6 ∈ ℎ .100 for some ℎ ∈ �

with ?(ℎ) = .100-

B(ℎ−16) if 6 ∈ ℎ . for some ℎ ∈ �

with ?(ℎ) = .-

0 otherwise.

What k does is produce a configuration which is 0 outside of the --interior3 of
blocks, and is equal to translates of B |.100 and B |. inside the interior of blocks.

It is again easy to see that k is continuous and equivariant, so ) = k(%) is a strongly
irreducible shift. The following claim completes the proof of proposition 2.3.2.

Claim 2.4.9. ) is an --witness shift.

The claim follows immediately from the following two lemmas. The first of the
lemmas is straightforward from our construction, while the second is less immediate.

Lemma 2.4.10. For all C ∈ ) , the 1’s in C are --apart.

Proof. Let C ∈ ) and 0, 1 ∈ � with C (0) = C (1) = 1. Since C ∈ ) , there is a ? ∈ %
with k(?) = C. By the definition of k, since [k(?)] (0) = [k(?)] (1) = 1, we get

3The --interiors of .100- and .- are .100 and . .
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that 0 ∈ ℎ ?(ℎ) and 1 ∈ 6 ?(6) for some ℎ, 6 ∈ �. If 6 = ℎ, i.e. 0 and 1 are in the
same block of ?, then B(ℎ−10) = C (0) = 1 and B(ℎ−11) = C (1) = 1. But, since B
satisfies proposition 2.3.1 (in particular, the 1’s in B are --apart), ℎ−10 and ℎ−11 are
--apart, which implies that 0 and 1 are --apart. If 6 ≠ ℎ, then ℎ ?(ℎ) and 6 ?(6)
are disjoint, so the --interior of ℎ ?(ℎ) and the --interior of 6 ?(6) are --apart. We
also know that 0 is in the --interior of ℎ ?(ℎ) and 1 is in the --interior of 6 ?(6).
Therefore, 0 and 1 are --apart. �

Lemma 2.4.11. For any C1, C2 ∈ ) , there is an 0 ∈ � with C1(0) = C2(0) = 1.

Proof. We essentially prove this lemma by a series of reductions.

Let C1, C2 ∈ ) . So there are ?1, ?2 ∈ % with k(?1) = C1 and k(?2) = C2. Pick
an 01 ∈ � with ?1(01) = .100- . This means that 0−1

1 ?1 has a block of shape
.100- centered at the identity. Let ?′1 = 0

−1
1 ?1, ?′2 = 0

−1
1 ?2, and let C′1 = k(?

′
1),

C′2 = k(?
′
2). So, ?

′
1 has a block of shape .100- centered at the identity.

Since ?′2 is saturated, we know there is an 02 ∈ .4 such that either (I) 02 is in the
.--interior of a block of shape .100- in ?′2, or (II) 02 is the center of a block of
shape .- in ?′2. Let ?′′1 = 0

−1
2 ?′1, ?

′′
2 = 0

−1
2 ?′2, and let C′′1 = k(?

′′
1 ), C

′′
2 = k(?

′′
2 ).

Observe that in ?′′1 the identity is in the .--interior of a block of shape .100- , say
4 ∈ :1.

99 for some :1 ∈ � with ?′′1 (:1) = .100- . Moreover, in ?′′2 the identity is
either (I) in the .--interior of a block of shape .100- or (II) in the center of a block
of shape .- .

In case (I), since in ?′′2 the identity is in the .--interior of a block of shape .100- ,
4 ∈ :2 .

99 for some :2 ∈ � with ?′′2 (:2) = .100- . So :−1
2 ∈ .

99. By the second
part of proposition 2.3.1 applied to 6 = :−1

1 and ℎ = :−1
2 , we know that there is an

03 ∈ . such that B(:−1
1 03) = B(:−1

2 03) = 1. So, by the definition of k, the fact that
:−1

1 03 ∈ .100, and the fact that ?′′1 (:1) = .100- , we get C′′1 (03) = B(:−1
1 03) = 1, and

similarly, we get C′′2 (03) = B(:−1
2 03) = 1. Therefore, C1(010203) = C′′1 (03) = 1 and

C2(010203) = C′′2 (03) = 1. Case (I) is schematically depicted in Figure 2.1.

In case (II), ?′′2 (4) = .- . Again, if we apply the second part of proposition 2.3.1 to
6 = :−1

1 and ℎ = 4, we get that there is an 03 ∈ . such that B(:−1
1 03) = B(03) = 1.

So, by the definition of k, the fact that :−1
1 03 ∈ .100, and the fact that ?′′1 (:1) =

.100- , we get C′′1 (03) = B(:−1
1 03) = 1. Also, by the definition of k, the fact that

03 ∈ . , and the fact that ?′′2 (4) = .- , we get C′′2 (03) = B(03) = 1. Therefore,
C1(010203) = C′′1 (03) = 1 and C2(010203) = C′′2 (03) = 1. Case (II) is schematically
depicted in Figure 2.2.
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Figure 2.1: Case (I).
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Figure 2.2: Case (II).
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In both cases, we showed that there is an 0 ∈ � with C1(0) = C2(0) = 1. This
completes the proof. �

Proof of Proposition 2.3.4
Fix n > 0 and - a finite symmetric subset of �. Without loss of generality,
we may assume that - includes the identity, and is large enough so that any two
configurations that agree on - have distance less than Y.

Since ) ⊆ �� is a strongly irreducible shift, there is a finite symmetric * ⊆ �
including the identity such that for any two subsets �1, �2 ⊆ � with �1*∩�2* = ∅
and any two configurations C1, C2 ∈ ) , there is a configuration C ∈ ) such that C
restricted to �1 equals C1 restricted to �1, and C restricted to �2 equals C2 restricted
to �2

Given a shift ( ⊆ �� and a finite . ⊂ �, we call a map ? : . → � a . -pattern of
( if it is equal to B |. , the restriction of some B ∈ ( to . . In this case, we say that B
contains the . -pattern ?.

By strong irreducibility of) , we can find a D ∈ ) whose orbit {6D : 6 ∈ �} contains
all the --patterns of ) . Furthermore, since there are only finitely many --patterns
in ) , there must be a finite + ⊂ � (which we assume w.l.o.g. to be symmetric
and contain the identity) such that {6D : 6 ∈ the --interior of +} contains all the
--patterns of ) . By making + even larger, we can assume that 3 (C, C′) < Y for any
two configurations C, C′ ∈ ) that agree on + , where 3 (·, ·) is the metric on ) .

Let / = (+*2-) (+*2-)−1. By the assumption in the statement, there is a strongly
irreducible /-witness shift for �. Call this shift (.

Now, define a continuous equivariant function q : ( × ) → �� . Let B ∈ (, C ∈ ) .
Let C′ = q(B, C) be defined as follows, in the following cases:

1. 6 = :ℎ for some : ∈ � with B(:) = 1 and some ℎ ∈ + :

In this case, let C′(6) = D(ℎ).

2. 6 = :ℎ for some : ∈ � with B(:) = 1 and some ℎ ∈ +*2 \+ :

In this case let �1 = :+ and �2 = :+*
2-2 \ :+*2. Since �1* ∩ �2* = ∅,

there is a E ∈ ) with E |�1 = (:D) |�1 and E |�2 = C |�2 . If there are multiple
choices for E, choose the E such that the restriction of :−1E to � = +*2-2\+*2

is lexicographically least for a fixed ordering of � and a fixed ordering of �.
Let C′(6) = E(:ℎ).
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k1V

k1(V U2 \ V )
k1V U2X

k1

k2V

k2(V U2 \ V )
k2V U2X

k2

k3V

k3(V U2 \ V )
k3V U2X

k3

ki’s are points g ∈ G for which s(g) = 1.

The restriction of t′ to kiV equals a translate of the restriction of u to V .

In ki(V U2 \ V ), t′ is filled in a way that t′ locally looks like an element of T around ki

t′ agrees with t outside of kiV U2’s.

Figure 2.3: C′ = q(B, C) for B ∈ ( and C ∈ ) .

3. 6 ≠ :ℎ for B(:) = 1 and ℎ ∈ +*2:

In this case, let C′(6) = C (6).

Since the 1’s in ( are /-apart, this leads to awell-defined definition for C′. Informally,
C′ is constructed from C as follows: the configuration C′mostly agrees with C. The first
exceptions are the +-neighborhoods of any : ∈ � such that B(:) = 1, where we set
C′ to equal the pattern that appears around the origin in D. The second exceptions are
the borders of these +-neighborhoods, where some adjustments need to be made so
that—as we explain below—C′ and C agree on any translate of - . This construction
is schematically depicted in Figure 2.3.

The following hold:

• q is continuous and equivariant. So ) ′ = q(( × )) is a shift.

• Since strong irreducibility is closed under taking products and factors, we see
that ) ′ is strongly irreducible.
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• Let C′1 = q(B1, C1), C′2 = q(B2, C2) ∈ ) ′. Since ( is a (+*2-) (+*2-)−1-witness
shift, there is a 6 ∈ � with B1(6) = B2(6) = 1. So, C′1 |6+ and C′2 |6+ are both
translates of D |+ , which means (6−1C′1) |+ = (6

−1C′2) |+ . So from the definition
of + , we get 3 (6−1C′1, 6

−1C′2) < n . Hence )
′ is n-proximal.

• Now we claim that the set of --patterns of ) ′ and ) are equal.

First note that since D |+ has all the --patterns in ) , and D |+ appears in ) ′, we
get that all the --patterns of ) appear in ) ′.

Now let C′ = q(B, C) ∈ ) ′ and fix an --pattern in C′, located at 6- . If 6- does
not meet any : (+*2) for B(:) = 1, then C′|6- = C |6- and so the pattern appears
in ) . If, on the other hand, 6- intersects : (+*2) for some : with B(:) = 1
(note that there is at most one such :), we have 6- ⊆ : (+*2-2), and by the
definition of C′ around : , we again see that the pattern in 6- appears in ) .

• To see Y-minimality of ) ′, let C′1, C
′
2 ∈ )

′. We know that C′2 |- is one of the
--patterns in ) , so it appears somewhere in C′1, i.e. there exists a 6 ∈ � such
that (6C′1) |- agrees with C′2 |- . We assumed that any two configurations that
agree on - have distance less than Y. So, 3 (6C′1, C

′
2) < Y.

This concludes the proof of Proposition 2.3.4.

Proof of Claim 2.2.4
First we prove that proximal shifts are a �X. Given a shift (, an Y > 0 and a 6 ∈ �,
let %6 ⊂ ( × ( be the set of pairs of configurations B1, B2 such that 3 (6B1, 6B2) < Y.
Since %6 is the preimage of an open set under a continuous map, we have that %6 is
open. Thus, whenever ( is Y-proximal, the collection {%6 : 6 ∈ �} forms an open
cover of ( × ( and thus, by compactness, whenever a shift is Y-proximal, there is a
finite subset - ⊂ � which suffice to demonstrate this. For each - ⊂ �, whether
- demonstrates Y-proximality is determined by the restriction of ( to a finite set of
elements of �. But this is exactly the definition of a clopen set in the topology on
the space of shifts. Thus the set of Y-proximal shifts is the union of a collection of
clopen sets and is therefore open.

Now we prove that minimal shifts are a �X. To do this, since minimal shifts are
exactly the shifts that are Y-minimal for all Y > 0, it is enough to show that the set
of Y-minimal shifts is open. Note that by compactness of - , a shift is Y-minimal iff
its Y-minimality is demonstrated by a finite set. Thus Y-minimality is determined
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by the set of /-patterns for a finite large enough / ⊆ �. So, as above, the set of
Y-minimal shifts is a union of clopen sets, so it is open.

Proof of Proposition 2.3.6
By Proposition 2.3.5, the minimal proximal shifts are a dense �X in S. It thus
remains to be shown that faithfulness is also generic. Given an element 6 ∈ �, call
a shift 6-faithful if 6 acts non-trivially on the shift. It is easy to see that 6-faithfulness
is an open condition, and so the intersection over all non-trivial 6 ∈ �, which is
faithfulness of the action of �, is a �X set. It remains to show that it is dense. To
do this, we show that each non-trivial 6 ∈ � acts non-trivially on every non-trivial
strongly irreducible shift. Suppose 6 is not the identity and acts trivially on a shift (.
Then all conjugates of 6 also act trivially on (, so that ℎB = B for every ℎ a conjugate
of 6 and B ∈ (. In particular, B(ℎ−1) must be the same for every ℎ a conjugate of
6 and every B ∈ (. Since 6 has an infinite conjugacy class, this holds for infinitely
many such ℎ. But if ( is strongly irreducible and non-trivial, then there is some
finite - ⊂ � such that, if ℎ ∉ - , then there is an B ∈ ( such that B(ℎ) ≠ B(4). Thus
6 must act non-trivially on every non-trivial strongly irreducible shift, and so we
have proved the claim.

2.5 Thompson’s Group �
Let � denote Thompson’s group �. In the representation of � as a group of piecewise
linear transformations of R (see, e.g., [Kai17, Section 2.C]), it is generated by 0 and
1 which are given by

0(G) = G − 1

1(G) =


G G ≤ 0

G/2 0 ≤ G ≤ 2

G − 1 2 ≤ G.

The set of dyadic rationals Γ = Z[ 12 ] is the orbit of 0. The Schreier graph of the
action � y Γ with respect to the generating set {0, 1} is shown in Figure 2.4
(see [Kai17, Section 5.A, Figure 6]). The solid lines denote the 0 action and the
dotted lines denote the 1 action; self-loops (i.e., points stabilized by a generator) are
omitted. This graph consists of a tree-like structure (the blue and white nodes) with
infinite chains attached to each node (the red nodes).

Equipped with the product topology, {−1, 1}Γ is a compact space on which � acts
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Figure 2.4: The action of � on Γ.

continuously by shifts:

[ 5 G] (W) = G( 5 −1W). (2.5.1)

Proposition 2.5.1. Let 2−1, 2+1 ∈ {−1, 1}Γ be the constant functions. Then for any
G ∈ {−1, 1}Γ, it holds that at least one of 2−1, 2+1 is in the orbit closure �G.

Proof. It is known that the action � y Γ is highly-transitive (Lemma 4.2 in
[CFP96]), i.e. for every finite +,, ⊂ Γ of the same size, there exists a 5 ∈ � such
that 5 (+) = , . Let G ∈ {−1, 1}Γ. There is at least one of -1 and 1, say U, for
which we have infinitely many W ∈ Γ with G(W) = U. Given a finite, ⊂ Γ, choose
a + ⊂ Γ of the same size and such that G(W) = U for all W ∈ + . Then there is some
5 ∈ � with 5 (+) = , , and so 5 G takes the value U on, . Since, is arbitrary, we
have that 2U is in the orbit closure of G. �

Given G1, G2 ∈ {−1, 1}Γ, let 3 be their pointwise product, given by 3 (W) = G1(W) ·
G2(W). By Proposition 2.5.1, there exists a sequence { 5=} of elements in � such that
either lim= 5=3 = 2+1 or lim= 5=3 = 2−1. In the first case, lim= 5=G1 = lim= 5=G2,
while in the second case lim= 5=G1 = − lim= 5=G2, and so this action resembles a
proximal action. In fact, by identifying each G ∈ {−1, 1}Γ with −G, one attains a
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proximal action, and indeed we do this below. However, this action has a fixed point
— the constant functions — and therefore does not suffice to prove our result. We
spend the remainder of this section in deriving a new action from this one. The new
action retains proximality, but does not have fixed points.

Consider the path (1/2, 1/4, 1/8, . . . , 1/2= , . . .) in the Schreier graph of Γ (Figure 2.4);
it starts in the top blue node and follows the dotted edges through the blue nodes
on the rightmost branch of the tree. The pointed Gromov-Hausdorff limit of this
sequence of rooted graphs4 is given in Figure 2.5, and hence is also a Schreier
graph of some transitive �-action � y �/ . In terms of the topology on the space
Sub� ⊂ {0, 1}� of the subgroups of �, the subgroup  is the limit of the subgroups
 =, where  = is the stabilizer of 1/2= . It is easy to verify that  is the subgroup of
� consisting of the transformations that stabilize 0 and have right derivative 1 at 0
(although this fact will not be important). Let Λ = �/ .

Figure 2.5: The action of � on Λ.

We can naturally identifywithZ the chain black nodes at the top ofΛ (see Figure 2.5).
Let Λ′ be the subgraph of Λ in which the dotted edges connecting the black nodes
have been removed. Given a black node = ∈ Z, denote by )= the connected
component of = in Λ′; this includes the black node =, the chain that can be reached
from it using solid edges, and the entire tree that hangs from it. Each graph )= is
isomorphic to the Schreier graph of Γ, and so the graph Λ is a covering graph of Γ
(in the category of Schreier graphs). Let

Ψ : Λ→ Γ

be the covering map. That is, Ψ is a graph isomorphism when restricted to each )=,
with the black nodes in Λ mapped to the black node 0 ∈ Γ.

4The limit of a sequence of rooted graphs (�=, E=) is a rooted graph (�, E) if each ball of radius
A around E= in �= is, for = large enough, isomorphic to the ball of radius A around E in � (see,
e.g., [AL07, p. 1460]).
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Using the map Ψ, we give names to the nodes in Λ. Denote the nodes in )0 as
{(0, W) : W ∈ Γ} so that Ψ(0, W) = W. Likewise, in each )=, denote by (=, W) the
unique node in )= that Ψ maps to W. Hence we identify Λ with

Z × Γ = {(=, W) : = ∈ Z, W ∈ Γ}

and the �-action is given by

0(=, W) = (=, 0W) (2.5.2)

1(=, W) =

(=, 1W) if W ≠ 0

(= + 1, 0) if W = 0.
(2.5.3)

Equip {−1, 1}Λ with the product topology to get a compact space. As usual, the
�-action on Λ (given explicitly in 2.5.2 and 2.5.3) defines a continuous action on
{−1, 1}Λ.

Consider c : {−1, 1}Γ → {−1, 1}Λ, given by c(G) (=, W) = (−1)=G(W). Let . =

c({−1, 1}Γ) ⊆ {−1, 1}Λ.

Claim 2.5.2. . is compact and �-invariant.

Proof. c is injective and continuous, so . = c({−1, 1}Γ) ⊆ {−1, 1}Λ is compact
and isomorphic to {−1, 1}Γ. Moreover, . is invariant to the action of �, because

0±1c(G) = c(0±1G) and 1±1c(G) = c(1±Ḡ) where Ḡ(W) =

G(W) if W ≠ 0

−G(W) if W = 0
. �

The last �-space we define is / , the set of pairs of mirror image configurations in
. :

/ = {{H,−H} : H ∈ . } . (2.5.4)

Now it is clear that, equipped with the quotient topology, / is a compact and Haus-
dorff �-space. Furthermore, we now observe that / admits an invariant measure.
Consider the i.i.d. Bernoulli 1/2 measure on {−1, 1}Γ, i.e. the unique Borel measure
on {−1, 1}Γ, for which

-W : {−1, 1}Γ → {0, 1}, G ↦→ G(W) + 1
2

are independent Bernoulli 1/2 random variables for all W ∈ Γ. Clearly, it is an
invariant measure and hence it is pushed forward to an invariant measure on . , and
then on / . In particular, this shows that / is not strongly proximal.
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Claim 2.5.3. The action � y / does not have any fixed points.

Proof. Pick Ĥ = {H,−H} ∈ / . We have [1H] (0,−1) = H(0,−1) ≠ −H(0,−1), so
1H ≠ −H. Similarly, [1H] (0, 0) = H(−1, 0) = −H(0, 0) ≠ H(0, 0), and so 1H ≠ H.
Hence 1Ĥ ≠ Ĥ. �

Proposition 2.5.4. The action � y / is proximal.

Proof. Let Ĥ1 = {H1,−H1} and Ĥ2 = {H2,−H2} be two points in / , and let H8 = c(G8).

Let G1 · G2 denote the pointwise product of G1 and G2. Now by Proposition 2.5.1,
there is a sequence of elements { 5=}= in � such that { 5= (G1 · G2)}= tends to either 2−1

or 2+1 in {−1, 1}Γ. Since . is compact, we may assume that { 5=H1}= and { 5=H2}=
have limits, by descending to a subsequence if necessary.

It is straightforward to check that 5=H1 · 5=H2 = 5=c(G1) · 5=c(G2) = c( 5=G1) ·c( 5=G2).
So:

[ 5=H1 · 5=H2] (=, W) = [c( 5=G1) · c( 5=G2)] (=, W)
= (−1)2= [ 5=G1] (W) [ 5=G2] (W)
= [ 5=G1 · 5=G2] (W) = [ 5= (G1 · G2)] (W).

So lim= 5=H1 = ± lim= 5=H2, which implies that lim= 5= Ĥ1 = lim= 5= Ĥ2. �

Theorem 2.5.5. Thompson’s group � is not strongly amenable.

Proof. Since the space / we constructed above is proximal (Proposition 2.5.4) and
has no fixed points (Claim 2.5.3), we conclude that � has a proximal action with no
fixed points, so � is not strongly amenable. �
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C h a p t e r 3

RANDOMWALKS AND CHOQUET-DENY GROUPS

Let� be a countable discrete group. Aprobabilitymeasure ` on� is non-degenerate
if its support generates � as a semigroup.1 A function 5 : � → R is `-harmonic if
5 (:) = ∑

6∈� `(6) 5 (:6) for all : ∈ �. We say that the measured group (�, `) is
Liouville if all the bounded `-harmonic functions are constant; this is equivalent to
the triviality of the Poisson boundary Π(�, `) [Fur63b; Fur71; Fur73] (also called
the Furstenberg-Poisson boundary; for formal definitions see also, e.g., Furstenberg
and Glasner [FG10], Bader and Shalom [BS06], or a survey by Furman [Fur02]).

When� is non-amenable, (�, `) is not Liouville for every non-degenerate ` [Fur73].
Conversely, when � is amenable, then there exists some non-degenerate ` such that
(�, `) is Liouville, as shown by Kaimanovich and Vershik [KV83] and Rosen-
blatt [Ros81]. It is natural to ask for which groups� it holds that (�, `) is Liouville
for every non-degenerate `. We call such groups Choquet-Deny groups; as we
discuss later, there are a few variants of this definition (see, e.g., [Gla76a; Gla76b;
Gui73], or [JR07]), which, however, we show to be equivalent.

The classical Choquet-Deny Theorem (which was first proved for Z3 by Black-
well [Bla55]) states that abelian groups are Choquet-Deny [CD60]; the same holds
for virtually nilpotent groups [DM61]. There are many examples of amenable
groups that are not Choquet-Deny: first examples of such groups2 are due to
Kaimanovich [Kai83] and Kaimanovich and Vershik [KV83], and include locally
finite groups; Erschler shows that finitely generated solvable groups that are not vir-
tually nilpotent are not Choquet-Deny [Ers04b], and that even some groups of inter-
mediate growth are not Choquet-Deny [Ers04a]. Kaimanovich and Vershik [KV83,
p. 466] conjecture that: “Given an exponential group G, there exists a symmetric
(nonfinitary, in general) measure with non-trivial boundary.” See Bartholdi and
Erschler [BE17] for additional related results and further references and discussion.

Our main result in this chapter is a characterization of Choquet-Deny groups. We
say that ` is fully supported if supp ` = �; obviously this implies that ` is non-

1In the context of Markov chains, such measures are called irreducible.
2In the Lie group setting, an example of an amenable group that is not Choquet-Deny was already

known to Furstenberg [Fur63b].
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degenerate.

Theorem 2. A countable discrete group � is Choquet-Deny if and only if it has no
ICC quotients, i.e. it is hyper-FC. Moreover, when � does have an ICC quotient,
then there exists a fully supported, symmetric, finite entropy probability measure `
on � such that (�, `) is not Liouville. In particular, if � is finitely generated, then
it is Choquet-Deny if and only if it is virtually nilpotent.

That a groupwith no ICC quotients is Choquet-Denywas shown by Jaworski [Jaw04,
Theorem 4.8]. Our contribution is therefore in the proof of the converse.

Recall from§1.1 that a finitely generated group is hyper-FC if and only if it is virtually
nilpotent [DM56; McL56]; this implies the result in Theorem 2 for finitely generated
groups. Since finitely generated groups of exponential growth are not virtually
nilpotent, Theorem 2 implies that the above mentioned conjecture of Kaimanovich
and Vershik [KV83] is correct.

Different Possible Definitions of Choquet-Deny Groups
Our definition of Choquet-Deny groups is not the usual one, which states that a
group is Choquet-Deny if (�, `) is Liouville for every adaptedmeasure `, where `
is called adapted if its support generates � as a group (rather than as a semigroup,
as in the non-degenerate case) [Gla76a; Gla76b; Gui73]. Yet another definition
used in the literature requires that for every `, every bounded `-harmonic function
is constant on the left cosets of �`, where �` is the subgroup of � generated by the
support of ` [JR07].

While a priori these are different definitions, they are equivalent, as demonstrated
by our result and by Jaworski’s Theorem 4.8 in [Jaw04]. Jaworski’s result shows
that groups with no ICC quotients are Choquet-Deny according to any of these
definitions. Since our construction of ` with a non-trivial boundary yields measures
that are supported on all of � (hence non-degenerate, hence adapted), it shows
that groups with ICC quotients are not Choquet-Deny according to any of these
definitions. Moreover, our result shows that the class of Choquet-Deny groups
(whether defined with adapted or with non-degenerate measures) is closed under
taking subgroups, which, to the best of our knowledge, was also not previously
known.
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Proof of Theorem 2
In the remaining of this chapter, unless stated otherwise, we will assume that all
groups are countable and discrete. Recall that a probability measure ` on � is
symmetric if `(6) = `(6−1) for all 6 ∈ �. Its Shannon entropy (or just entropy) is
� (`) = −∑

6∈� `(6) log `(6).

Our Theorem 2 is a direct consequence of [Jaw04, Theorem 4.8], which proves it for
the case of groups with no ICC quotients, and of the following proposition, which
handles the case of groups with ICC quotients.

Proposition 3.0.1. Let � be a group with an ICC quotient. Then there exists a
fully-supported, symmetric, finite entropy probability measure ` on � such that
Π(�, `) is non-trivial.

The main technical effort in the proof of Proposition 3.0.1 is in the proof of the
following proposition.

Proposition 3.0.2. Let � be an amenable ICC group. For every ℎ ∈ � \ {4}, there
exists a fully supported, symmetric, finite entropy probability measure ` such that

lim
<→∞

‖ℎ`∗< − `∗< ‖ > 0. (3.0.1)

Here `∗< is the <-fold convolution ` ∗ · · · ∗ `. We will prove this Proposition later,
and now turn to the proof of Proposition 3.0.1.

Proof of Proposition 3.0.1. The case of non-amenable � is known, so assume that
� is amenable and has an ICC quotient &. Let ℎ be a non-identity element of &.
Applying Proposition 3.0.2 to& and ℎ yields a finite entropy, symmetric measure ¯̀
on & that is fully supported, and satisfies (3.0.1).

Since ¯̀ has full support and satisfies (3.0.1), it follows from [Gla76a, Theorem
2] that (&, ¯̀) has a non-trivial Poisson boundary. Let ` be any symmetric, finite
entropy non-degenerate probabilitymeasure on� that is projected to ¯̀; the existence
of such a ` is straightforward. Then (�, `) has a non-trivial Poisson boundary. �

3.1 Switching Elements
Here we introduce two notions: switching elements and super-switching elements.
We will use these notions in the proof of Proposition 3.0.2.

Definition 3.1.1. Let - be a finite symmetric subset of a group �.



31

• We call 6 ∈ � a switching element for - if

- ∩ 6-6−1 ⊆ {4}.

• We call 6 ∈ � a super-switching element for - if

- ∩
(
6-6 ∪ 6-6−1 ∪ 6−1-6 ∪ 6−1-6−1) ⊆ {4}.

Note that since - is symmetric, 6 ∈ � is a switching element for - if and only if
6−1 is a switching element for - .

Claim 3.1.2. Let - be a finite symmetric subset of a group � and let 6 ∈ � be a
super-switching element for - . If 6F1G6F2 = H for G, H ∈ - and F1, F2 ∈ {−1, +1},
then G = H = 4.

Proof. Let 6F1G6F2 = H for G, H ∈ - and F1, F2 ∈ {−1, +1}. Since

H = 6F1G6F2 ∈
(
6-6 ∪ 6-6−1 ∪ 6−1-6 ∪ 6−1-6−1)

and H ∈ - , it follows from the definition of a super-switching element for - that
H = 4.

From 6F1G6F2 = H, we get 6−F1H6−F2 = G. So, by symmetry, the same argument
shows G = 4. �

Proposition 3.1.3. Let � be a discrete (not necessarily countable) amenable ICC
group, and let - be a finite symmetric subset of �. The set of super-switching
elements for - is infinite.

Proof of Proposition 3.1.3. Fix an invariant finitely additive probability measure 3
on �. For � ⊆ �, we call 3 (�) the density of �. We will need the fact that infinite
index subgroups have zero density, and that 3 (�) = 0 for every finite subset � ⊂ �.

Let�� (G) be the centralizer of a non-identity G ∈ - . Then, since - is finite, there is
a finite set of cosets of �� (G) that includes all 6 ∈ � such that 6−1G6 ∈ - . So, non-
switching elements for - are in the union of finitely many cosets of subgroups with
infinite index, since� is ICC. This means that the set of non-switching elements for
- has zero density, and so the set ( of switching elements for - has density one.

Let ) be the set of all super-switching elements for - . Let � ⊆ � be the set of
involutions {6 ∈ � | 62 = 4}.
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If 3 (�) > 0, then 3 (� ∩ () > 0. On the other hand, for any 6 ∈ � ∩ (, since 6 is
switching for - and 6−1 = 6, 6 is super-switching for - . Hence � ∩ ( ⊆ ) . This
shows that if 3 (�) > 0, then 3 ()) ≥ 3 (� ∩ () > 0, and so we are done.

So, we can assume that 3 (�) = 0. For any G, H ∈ - , let (G,H = {6 ∈ ( | 6G6 = H}.
Note that

) = ( \
⋃
G,H∈-

(G,H)≠(4,4)

(G,H .

It is thus enough to be shown that each (G,H has zero density when (G, H) ≠ (4, 4).
So assume for the sake of contradiction that 3 ((G,H) > 0. Fix 6 ∈ (G,H. We have the
following for all ℎ ∈ 6−1(G,H.

6G6 = H = 6ℎG6ℎ =⇒ (G6) = ℎ(G6)ℎ
=⇒ (G6)−1ℎ−1(G6) = ℎ
=⇒ ℎ = (G6)−1ℎ−1(G6)

= (G6)−1 [(G6)−1ℎ−1(G6)]−1(G6)
= (G6)−2ℎ(G6)2

=⇒ ℎ is in the centralizer of (G6)2.

So, the centralizer of (G6)2 includes 6−1(G,H, which has a positive density. So,
the centralizer of (G6)2 has finite index. This implies that (G6)2 = 4, because in
an ICC group only the identity can have a finite index centralizer. Hence G6 ∈ �
for all 6 ∈ (G,H. So G(G,H ⊆ �. Hence (G,H also has zero density, which is a
contradiction. �

3.2 A Heavy-Tailed Probability Distribution on N
Here we state and prove a lemma about the existence of a probability distribution
on N = {1, 2, . . .} such that infinite i.i.d. samples from this measure have certain
properties. We will use this distribution in the proof of Proposition 3.0.2.

Lemma 3.2.1. Let ? be the following probability measure on N: ?(=) = 2=−5/4,
where 1/2 = ∑∞

==1 =
−5/4. Then ? has finite entropy and the following property:

for any Y > 0, there exist constants  Y, #Y ∈ N such that for any natural number
< ≥  Y, there exists an �Y,< ⊆ N< such that:

1. ?×< (�Y,<) ≥ 1 − Y, where ?×< is the <-fold product measure ? × · · · × ?.

2. For any B = (B1, . . . , B<) ∈ �Y,<, the maximum of {B1, . . . , B Y } is at most #Y.
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3. For any B = (B1, . . . , B<) ∈ �Y,< and for any  Y ≤ : ≤ <, the maximum of
{B1, . . . , B: } is at least :2.

4. For any B = (B1, . . . , B<) ∈ �Y,< and for any  Y ≤ : ≤ <, the maximum of
{B1, . . . , B: } appears in (B1, . . . , B: ) only once.

Proof. It is straightforward to see that ? has finite entropy.

Let B = (B1, B2, . . .) ∈ N∞ have distribution ?×∞; i.e., B is a sequence of i.d.d.
random variables with distribution ?. Since each B8 has distribution ?, for each
= ∈ N, we have:

P [B8 ≥ =] =
∞∑
<==

?(<) = 2
∞∑
<==

<−5/4 ≥ 2
∫ ∞

=

G−5/4dG = 42=−1/4. (3.2.1)

For : ≥ 1, let

": Bmax{B1, . . . , B: },

and let

next(:) Bmin{8 > : | B8 ≥ ": }.

In words, next(:) is the first index 8 > : for which B8 matches or exceeds ": .

We first show that with probability one, ": ≥ :2 for all : large enough. To this
end, let �: be the event that ": < :

2. We have:

P [�: ] = P
[
B8 < :

2 ∀8 ∈ {1, . . . , :}
]

= (1 − P
[
B1 < :

2]):
≤ (1 − 42(:2)−1/4):

≤ 4−42:1/2
.

Since the sum of these probabilities is finite, by Borel-Cantelli we get that

P [�: infinitely often] = 0.

Hence ": ≥ :2 for all : large enough, almost surely. Furthermore, the expectation
of 1/": is small:

E

[
1
":

]
= E

[
1
":

�����: ]P [�: ] + E [
1
":

����¬�: ]P [¬�: ] ≤ 4−42:1/2 + 1
:2 · (3.2.2)
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Next, we show that, with probability one, Bnext(:) > ": for all : large enough. That
is, for large enough : , the first time that ": is matched or exceeded after index : , it
is in fact exceeded.

Let �: be the event that Bnext(:) = ": . We would like to show that this occurs only
finitely often. Note that

P [�: |": ] = P
[
Bnext(:) = ":

��":

]
=

∞∑
8=:+1

P [B8 = ": , next(:) = 8 |": ] .

Applying the definition of next(:) yields

P [�: |": ] =
∞∑

8=:+1
P [B8 = ": , B:+1, . . . , B8−1 < ": |": ] .

By the independence of the B8’s, we can write this as

P [�: |": ] =
∞∑

8=:+1
P [B8 = ": |": ]

8−(:+1)∏
==1
P [B:+= < ": |": ]

=

∞∑
8=:+1

2

"
5/4
:

P [B:+1 < ": |": ]8−(:+1) .

By (3.2.1), P [B:+1 < ": |": ] ≤ 1 − 42"−1/4
:

. Hence

P [�: |": ] ≤
2

"
5/4
:

· 1
42"−1/4

:

=
1

4":

·

Using (3.2.2), it follows that

P [�: ] = E [P [�: |": ]] ≤ E
[

1
4":

]
≤ 1

4
4−42:1/2 + 1

4:2 .

Hence
∑
: P [�: ] < ∞, and so by Borel-Cantelli �: occurs only finitely often.

Since �: and �: both occur for only finitely many : , the (random) index ind′ at
which they stop occurring is almost surely finite, and is given by

ind′ = min{ℓ ∈ N : B ∉ �: ∪ �: for all : ≥ ℓ}.

Let
ind = next(ind′).

Hence for : ≥ ind, ": ≥ :2 and ": appears in (B1, . . . , B: ) only once.
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Fix Y > 0. Since ind is almost surely finite, then for large enough constants  Y ∈ N
and #Y ∈ N, the event

�Y = {ind ≤  Y and " Y ≤ #Y}

has probability at least 1 − Y, and additionally, conditioned on �Y, it holds that
: ≥ ind for all : ≥  Y, and hence ": ≥ :2 and ": appears in (B1, . . . , B: ) only
once. Therefore, if for < ≥  Y we let �Y,< be the projection of �Y to the first <
coordinates, then �Y,< satisfies the desired properties. �

3.3 Proof of Proposition 3.0.2
Let 1

8 > Y > 0. Let ?,  Y ∈ N, #Y ∈ N, and �Y,< ⊆ N< be the probability measure,
the constants, and the events from Lemma 3.2.1. To simplify notation, let # = #Y

and  =  Y.

Let � = {01, 02, . . .}, where 01 = 02 = · · · = 0# = 4. We define (6=)=, (�=)=,
(�=)= and (�=)= recursively. Given 61, . . . , 6=, let �= = {6=, 6−1

= , 0=, 0
−1
= } and

�= = ∪8≤=�8. Denote �= = �= ∪ {ℎ−1, ℎ}. Note that �=, �=, and �= are finite and
symmetric for any = ∈ N. Let 61 = 62 = . . . = 6# = 4. For = + 1 > # , given �=, let
6=+1 ∈ � be a super-switching element for (�=)2=+1 which is not in (�=)8=+1. The
existence of such a super-switching element is guaranteed by Proposition 3.1.3 and
the facts that (�=)2=+1 is a finite symmetric subset of � and that (�=)8=+1 is finite.

For = ∈ N, define a symmetric probability measure `= on �= by

`= = Y2−= (1
2
X0= +

1
2
X0−1

=
) + (1 − Y2−=) (1

2
X6= +

1
2
X6−1

=
).

Here X6 is the point mass on 6 ∈ �. Finally, let

` =

∞∑
==1

?(=)`=.

Obviously ` is symmetric and supp ` = �. Since ? has finite entropy and each `=
has support of size at most 4, it follows easily that ` has finite entropy.

We want to show that
lim
<→∞

‖ℎ`∗< − `∗< ‖ > 0.

Fix < ∈ N larger than  and # . For each = ∈ N, define 5= : {1, 2, 3, 4} → �= by

5= (1) = 0=, 5= (2) = 0−1
= , 5= (3) = 6=, 5= (4) = 6−1

= ,
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and define a= : {1, 2, 3, 4} → [0, 1] by

a= (1) = a= (2) =
1
2
Y2−=, a= (3) = a= (4) =

1
2
(1 − Y2−=).

Let
Ω = {(B, F) | B ∈ N<, F ∈ {1, 2, 3, 4}<}.

We define the measure [ on the countable set Ω by specifying its values on the
singletons:

[({(B, F)}) = ?×< (B) aB1 (F1) aB2 (F2) . . . aB< (F<).

It follows immediately from this definition that [ is a probability measure.

Define A : Ω→ � by

A (B, F) = 5B1 (F1) 5B2 (F2) . . . 5B< (F<).

It is not difficult to see that A∗[ = `∗<, and so we need to show that ‖ℎA∗[ − A∗[‖ is
uniformly bounded away from zero for < larger than  and # .

Recall that �Y,< ⊆ N< is the event given by Lemma 3.2.1. Fix B ∈ �Y,<. Define

8B,1 = min{ 9 ∈ {1 . . . , <} | B 9 > #},
8B,2 = min{ 9 > 8B,1 | B 9 ≥ B8B,1},

...

8B,; (B) = min{ 9 > 8B,; (B)−1 | B 9 ≥ B8B,; (B)−1}.

Note that by the second property of �Y,< in Lemma 3.2.1, we know that

 < 8B,1 < 8B,2 < · · · < 8B,; (B) ,

and by the fourth property,

# < B8B,1 < B8B,2 < · · · < B8B,; (B) = max{B1, . . . , B<}.

Let
, B
Y = {F ∈ {1, 2, 3, 4}< | ∀: ≤ ; (B) F8B,: = 3, 4}.

For B ∈ N<, let [B be the measure [, conditioned on the first coordinate equalling B.
I.e., let

[B (�) =
[(� ∩ΩB)
[(ΩB) ,
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where ΩB = {B} × {1, 2, 3, 4}< ⊆ Ω.

Then

[B ({B} ×, B
Y) = 1 − [B ({F8B,1 = 1, 2; or F8B,2 = 1, 2; . . . ; or F8B,; (B) = 1, 2 })

≥ 1 −
; (B)∑
:=1

[B ({F8B,: = 1, 2})

= 1 −
; (B)∑
:=1

Y2−B8B,:

≥ 1 −
∞∑
9=1
Y2− 9

= 1 − Y,

where the first inequality follows from the union bound, and the last inequality holds
since B8B,1 < B8B,2 < · · · < B8B,; (B) .

Finally, let
ΩY = {(B, F) ∈ Ω | B ∈ �Y,<, F ∈ , B

Y}.

By the above, and since [(�Y,< × {1, 2, 3, 4}<) ≥ 1 − Y by Lemma 3.2.1, we have
shown that

[(ΩY) ≥ (1 − Y) (1 − Y) > 1 − 2Y.

Claim 3.3.1. For any U, V ∈ ΩY, we have ℎA (U) ≠ A (V).

We prove this claim after we finish the proof of the Proposition.

Let [1 be equal to [ conditioned on ΩY, and [2 be equal to [ conditioned on the
complement of ΩY. We have [ = [(ΩY)[1 + (1− [(ΩY))[2, and by the above claim,
we know ‖ℎA∗[1 − A∗[1‖ = 2. So for < larger than  and #

‖ℎ`∗< − `∗< ‖ = ‖ℎA∗[ − A∗[‖
= ‖[(ΩY) (ℎA∗[1 − A∗[1) + (1 − [(ΩY)) (ℎA∗[2 − A∗[2)‖
≥ [(ΩY) ‖ℎA∗[1 − A∗[1‖ − 2(1 − [(ΩY))
≥ 2(1 − 2Y) − 2(2Y) = 2 − 8Y,

which is uniformly bounded away from zero since Y < 1
8 . Since ‖ℎ`

∗< − `∗< ‖ is a
decreasing sequence, this completes the proof of Proposition 3.0.2.
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Proof of Claim 3.3.1. Let U = (B, F), V = (C, E) ∈ ΩY. Hence max{ , #} < <,
B ∈ �Y,<, C ∈ �Y,<, F ∈ , B

Y , and E ∈ , C
Y. Assume that ℎA (U) = A (V). So, we have

ℎ 5B1 (F1) · · · 5B< (F<) = 5C1 (E1) · · · 5C< (E<).

Let  < 81 < 82 < · · · < 8; (B) and  < 91 < 92 < · · · < 9; (C) be the indices we
defined for B and C in the proof of Proposition 3.0.2. We remind the reader that the
unique maximum of (B1, . . . , B<) is attained at 8; (B) , with a corresponding statement
for (C1, . . . , C<) and 9; (C) . So we have

ℎ

11︷                             ︸︸                             ︷
5B1 (F1) · · · 5B8; (B) −1 (F8; (B)−1) 5B8; (B) (F8; (B) )

12︷                              ︸︸                              ︷
5B8; (B) +1

(F8; (B)+1) · · · 5B< (F<)

= 5C1 (E1) · · · 5C 9; (C) −1 (E 9; (C)−1)︸                           ︷︷                           ︸
21

5C 9; (C)
(E 9; (C) ) 5C 9; (C) +1 (E 9; (C)+1) · · · 5C< (E<)︸                            ︷︷                            ︸

22

.

Let ? = B8; (B) = max{B1, . . . , B<} and @ = C 9; (C) = max{C1, . . . , C<}. Since F ∈ , B
Y

and E ∈ , C
Y, we know 5B8; (B)

(F8; (B) ) = 6±1
? and 5C 9; (C) (E 9; (C) ) = 6

±1
@ , so

ℎ116
±1
? 12 = 216

±1
@ 22. (3.3.1)

Since ? = max{B1, . . . , B<}, and since < ≥  , we know that < ≤ <2 ≤ ?. So
11, 12 ∈ (�?−1)?−1 ⊆ (�?−1)?−1. Similarly, 21, 22 ∈ (�@−1)@−1.

Consider the case that ? > @. Then 21, 22, 6
±1
@ ∈ (�@)@ ⊆ (�?−1)?−1. Hence

6±1
? = [1−1

1 ]ℎ
−1 [216

±1
@ 221

−1
2 ] by (3.3.1), and so

6? ∈ (�?−1)4(?−1){ℎ, ℎ−1}(�?−1)4(?−1) ⊆ (�?−1)8(?−1)+1,

which is a contradiction with our choice of 6?, since ? > # . Similarly, if ? < @, we
get a contradiction. So we can assume that ? = @.

If ? = @, then by (3.3.1) we have

ℎ116
±1
? 12 = 216

±1
? 22,

and 21, 22, 11, 12 ∈ (�?−1)?−1. So, for G = 2−1
1 ℎ11 ∈ (�?−1)2(?−1)+1, we have

6±1
? G6

±1
? = 221

−1
2 ∈ (�?−1)2(?−1) ⊆ (�?−1)2(?−1)+1. By the fact that 6? is a super-

switching element for (�?−1)2(?−1)+1 and from Claim 3.1.2, we get that G is the
identity.

So ℎ11 = 21, i.e.

ℎ 5B1 (F1) · · · 5B8; (B) −1 (F8; (B)−1) = 5C1 (E1) · · · 5C 9; (C) −1 (E 9; (C)−1).
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By the exact same argument, we can see that this leads to a contradiction unless

ℎ 5B1 (F1) · · · 5B8; (B)−1−1 (F8; (B)−1−1) = 5C1 (E1) · · · 5C 9; (C)−1−1 (E 9; (C)−1−1).

And again, this leads to a contradiction unless

ℎ 5B1 (F1) · · · 5B8; (B)−2−1 (F8; (B)−2−1) = 5C1 (E1) · · · 5C 9; (C)−2−1 (E 9; (C)−2−1).

Note that if ; (B) ≠ ; (C), at some point in this process we get that either all the B8’s or
all the C8’s are at most # while the other string has characters strictly greater than # .
This leads to a contradiction similar to the case ? ≠ @, which we explained before.
So, by continuing this process, we get a contradiction unless

ℎ 5B1 (F1) · · · 5B81−1 (F81−1) = 5C1 (E1) · · · 5C 91−1 (E 91−1). (3.3.2)

Note that B1, . . . , B81−1 ≤ # , which implies that

5B1 (F1) = · · · = 5B81−1 (F81−1) = 4.

Similarly, C1, . . . , C 91−1 ≤ # implies that

5C1 (E1) = · · · = 5C 91−1 (E 91−1) = 4.

So, from (3.3.2), we get ℎ = 4, which is a contradiction.

�
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A p p e n d i x A

FINITELY GENERATED HYPER-FC GROUPS

Here we bring a self-contained presentation of the original proof that a finitely
generated group is hyper-FC if and only if it is virtually nilpotent, which is divided
between [McL56, Theorem 2] and [DM56, Theorem 2].

Let� be a group. An element 6 ∈ � is said to be a finite conjugacy (or FC) element
if it has only finitely many conjugates in �. The FC-center of � is the set of all
FC-elements in �. The upper FC-series of � is defined as follows

{4} = �0 6 �1 6 · · · 6 �U 6 · · · ,

where �U+1/�U is the set of all FC-elements of �/�U, and �V = ∪U<V�U for a limit
ordinal V. This series will stabilize at some ordinal W. �W is called the hyper-FC
center of � and the least such W is called the FC-rank of �. If � is equal to its
hyper-FC center, � is called hyper-FC.

Theorem 3. For a finitely generated group �, the following are equivalent.

1. � is virtually nilpotent.

2. � is hyper-FC.

3. � has no non-trivial ICC quotients.

As a corollary, a finitely generated group is either virtually nilpotent or has an ICC
quotient.

The following easy, but important, proposition shows that the obstruction to a group
being ICC is the hyper-FC center of the group. Before we state the proposition, we
define a universal ICC quotient of a group. This notion is useful to see the relation
between the hyper-FC center of a group and its ICC quotients.

Definition A.0.1. Let � be a group. A universal ICC quotient of �, which we
denote by q : � → �, is a quotient of � onto an ICC group � such that any quotient
g : � → � of � onto an ICC group � lifts to a homomorphism d : � → � such that
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the following diagram commutes.

�

� �

dq

g

Now we can state the following proposition.

Proposition A.0.2. Let � be a group and let � E � be the hyper-FC center of �.
The quotient map q : � → �/� is the unique, up to isomorphism, universal ICC
quotient of �.

Proof. First, we show that � is in the kernel of any ICC quotient g : � → �. Let

{4} = �0 6 �1 6 · · · 6 �U 6 · · ·

be the upper FC-series of �. If � is not in the kernel of g, then there exists a
minimum ordinal U such that �U * ker g. Obviously U is not a limit ordinal. Let
ℎ ∈ �U \ ker g. Since ℎ�U−1 is FC in �/�U−1 and �U−1 ⊆ ker g and g is a surjective
homomorphism, we get that g(ℎ) is FC in �. So, g(ℎ) is the identity in �, which is
a contradiction. So, � is in the kernel of any ICC quotient of �.

Now, we show that the quotient map q : � → �/� is an ICC quotient. Let W
be the FC-rank of �. So � = �W. Note that since �W = �W+1, we know that any
non-identity element of �/� = �/�W has infinitely many conjugates, which shows
that �/� is ICC.

Thus q : � → �/� is a universal ICC quotient. Uniqueness follows from a standard
fact about universal properties. �

An immediate corollary of the above result is that hyper-FC groups are exactly those
with no non-trivial ICC quotients. Theorem 3, which we prove next, gives a third
equivalent condition when the group is finitely generated.

Proof of Theorem 3. The equivalence of (2) and (3) follows from the above corol-
lary. We will show that (1) and (2) are equivalent. For that, we first show that
the upper FC-series of a finitely generated hyper-FC group stabilizes at some finite
ordinal, i.e. the FC-rank is finite.

Claim A.0.3. Let � be a finitely generated hyper-FC group. The upper FC-series
of � stabilizes at some = ∈ N, i.e. its FC-rank is finite.
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Proof. Let ( be a finite symmetric generating set for �. Let

{4} = �0 6 �1 6 · · · 6 �U 6 · · · 6 �W = �

be the upper FC-series of �. We need to show that for some = ∈ N, we have
( ⊆ �=. For that, we will define a sequence -0, -1, . . . of finite subsets of � with
the following properties:

1. -0 = (.

2. IfU8 is the least ordinalwith -8 ⊆ �U8 , then eitherU8 = U8−1 = 0 orU8 = U8−1−1.

Given such a sequence, if none of the U8’s are 0, then U0, U1, . . . is an infinite strictly
decreasing sequence of ordinals, which is a contradiction. So, some U8 is 0. Let =
be the least index with U= = 0. Then U0 = =. By the definition of U0, we get that
( = -0 ⊆ �=. But since ( generates �, we get that � ⊆ �=. So the upper FC-series
stabilizes at =.

Now we define the sequence -0, -1, . . . and prove that it has the properties we
claimed. Let -0 = (. Assume that -0, . . . , -8 are defined. We want to define -8+1.
If U8 = 0, then simply let -8+1 = -8. And if U8 ≠ 0, we define -8+1 below. First, we
make a few observations.

• Note that since U8 is the least ordinal such that �U8 contains the finite set -8,
we get that U8 is not a limit ordinal.

• Since �U8/�U8−1 is the FC-center of �/�U8−1 and -8 ⊆ �U8 , we have that
G�U8−1 is FC in �/�U8−1 for each G ∈ -8.

• For each G ∈ -8 and each conjugate of G�U8−1, pick an element of � in that
conjugate, and let .8 be the union of -8 and the collection of all the elements
we chose. So, -8 ⊆ .8 ⊆ �U8 and .8 is finite.

Note that if H ∈ .8 and 6 ∈ �, then � = (6−1H6)�U8−1 is a conjugate of G�U8−1 for
some G ∈ -8. Thus � = I�U8−1 for some I ∈ .8, and so I−1(6−1H6) ∈ �U8−1 for some
I ∈ .8. Let

-8+1 = {I−1(6−1H6) | I−1(6−1H6) ∈ �U8−1, 6 ∈ (, H, I ∈ .8}.

Note that -8+1 is finite and -8+1 ⊆ �U8−1. So, U8+1 ≤ U8−1. To show thatU8+1 = U8−1,
we just need to show that U8 ≤ U8+1 + 1, i.e. -8 ⊆ �U8+1+1, which is the same as
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showing that G�U8+1 is FC in�/�U8+1 for all G ∈ -8. Since -8 ⊆ .8, it suffices to show
that H�U8+1 is FC in �/�U8+1 for all H ∈ .8.
Since -8+1 ⊆ �U8+1 , for any H ∈ .8 and B ∈ (, there exists a I ∈ .8 with I−1(B−1HB) ∈
�U8+1 . Since ( generates � and �U8+1 is normal in �, the same holds for any 6 ∈ �
replacing B ∈ (. Thus .8�U8+1 ⊂ �/�U8+1 is closed under taking conjugates. Since .8
is finite, H�U8+1 is thus FC in �/�U8+1 for any H ∈ .8. This completes the proof. �

Now, we show that a finitely generated group has finite FC-rank if and only if it
is virtually nilpotent. For = ∈ N, denote the class of finitely generated hyper-FC
groups of FC-rank less than or equal to = by FC=, and the class of finitely generated
virtually nilpotent groups of rank less than or equal to = byVN=.

First we prove a useful lemma.

Lemma A.0.4. Let � be a group, and � be a finitely generated subgroup of the
FC-center of �. The centralizer of � in �, denoted by �� (�), has finite index in
�.

Proof. Let {ℎ1, ...ℎ=} be a set of generators for �. Note that for each ℎ8, since it
is FC in �, its centralizer �� (ℎ8) has finite index. Thus, the intersection of the
centralizers ∩=

8=1�� (ℎ8), which is the same as �� (�), has finite index in �. �

Claim A.0.5. We have

VN0 ⊆ FC1 ⊆ VN1 ⊆ FC2 ⊆ · · · ⊆ F C= ⊆ VN= ⊆ FC=+1 ⊆ · · · .

Proof. First, we show that VN=−1 ⊆ FC= for any = ∈ N. Let � be a group in
VN=−1 for = ∈ N. Let # E � be a finite index normal subgroup with the upper
central series

{4} = /0 6 /1 6 · · · 6 /< = #,

where < ≤ = − 1. Since /1 is the center of a normal subgroup of �, we get that /1

is normal in �. Similarly, we can show that each /: is normal in �. Since /://:−1

is in the center of #//:−1, we get that #//:−1 6 ��//:−1 (I/:−1) for any I ∈ /: ,
which means that ��//:−1 (I/:−1) is of finite index in �//:−1 for any I ∈ /: . So,
/://:−1 is in the FC-center of �//:−1. Obviously, since �/# is finite, we have
that �/# is FC. So, we have that

{4} = /0 6 /1 6 · · · 6 /< = # 6 �
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is an FC-series for � with length < + 1 ≤ =. So, � belongs to FC=.

Now, by induction on = ∈ N we show that FC= ⊆ VN=. Let � be a group that
belongs to FC1. By Lemma A.0.4, the center of � has finite index in �. So, � is
virtually abelian, which means that � belongs toVN1. Thus FC1 ⊆ VN1.

Let � be a group that belongs to FC= for = ≥ 2. Let

{4} = �0 6 �1 6 · · · 6 �< = �

be the upper FC-series of �, where < ≤ =. Since �/�1 is in FC<−1, by the
induction hypothesis we know that�/�1 is virtually nilpotent of rank at most <−1.
So, there is a normal subgroup # E � with finite index such that �1 6 # and #/�1

is nilpotent of rank at most < − 1. We can make the following observations:

• Since # has finite index in a finitely generated group, # is finitely generated.
Let ( be a finite symmetric set of generators for # .

• Let # = Γ0 D Γ1 D · · · D Γ<−1 be the first < subgroups in the lower central
series of # . Since #/�1 is nilpotent of rank at most < − 1, we know that
Γ<−1 6 �1. So, Γ<−1 is FC.

• It is easy to see that Γ<−1 is the least normal subgroup of # that contains all
the (< − 1)-fold commutators [B1, B2, . . . , B<−1], where B8’s are elements of
(. Note that 1) since Γ<−1 is FC, we know that each of [B1, B2, . . . , B<−1] has
finitely many conjugates in # , and 2) since ( is finite, we have finitely many
elements of the form [B1, B2, . . . , B<−1]. So, Γ<−1 is finitely generated.

From the last two observations, we know that Γ<−1 is a finitely generated FC
subgroup of # . By Lemma A.0.4, we know that �# (Γ<−1) has finite index in # .
Obviously, �# (Γ<−1) has a normal subgroup " with finite index in # . It is clear
that / = Γ<−1 ∩ " is in the center of " . Since # has finite index in �, we get that
" also has finite index in �.

By the second isomorphism theorem for groups, we have that

"// = "/(Γ<−1 ∩ ") � ("Γ<−1)/Γ<−1 6 #/Γ<−1.

But we know that #/Γ<−1 is nilpotent with rank at most<−1. So, "// is nilpotent
with rank at most < − 1. Also, / is in the center of " . Hence, " is nilpotent with
rank at most < ≤ =. So, � is virtually nilpotent with rank at most =. �
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Now, we can show that (1) and (2) are equivalent. Let � be a finitely generated
group.
If � is a virtually nilpotent group of rank =, then by Claim A.0.5 we know that it is
FC with FC-rank at most = + 1.
If, on the other hand, � is hyper-FC, then by Claim A.0.3 we know that its FC-rank
is finite, say = ∈ N. So, by Claim A.0.5 we know that it is virtually nilpotent of rank
at most =. �
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