

Strongly Amenable Groups, Choquet-Deny Groups, and  
the Infinite Conjugacy Class Property

Thesis by  
Pooya Vahidi Ferdowsi

In Partial Fulfillment of the Requirements for the  
Degree of  
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY  
Pasadena, California

2020  
Defended May 12, 2020

© 2020

Pooya Vahidi Ferdowsi  
ORCID: 0000-0002-3477-9492

All rights reserved

## ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Omer Tamuz, for supporting me over the past few years. He is one of the smartest and most insightful people I know and working with him has been a great opportunity for me. I am grateful for his patience, motivation, enthusiasm, ideas, knowledge, and the countless discussions we had that helped me progress as a mathematician and as a researcher.

I would like to thank my friend and colleague, Joshua Frisch. Keeping up with his speed is a challenge, but with his help and patience I could learn and achieve a lot from working with him.

I would also like to thank Alexander Kechris and Mehrdad Kalantar for their insightful discussions and valuable suggestions. I am also grateful to my undergraduate teachers and mentors, Hamed Najafi and Madjid Mirzavaziri.

Last but not least, I would like to thank my parents for their love, encouragement, and unconditional support throughout my life. I am grateful to my dear siblings, Parisa and Nima, and my dear friend, Ehsan, with whom I shared the great experience of graduate school, for their friendship over the years. I would also like to thank Omid, Peyman, Erfan, Parsa, Majid, Vahid, Hanieh, Hamed, Fariborz, Parham, Aryan, Pourya, and all my other friends who helped and supported me in the past six years.

## ABSTRACT

This thesis consists of two main parts. In the first part, we study a space of symbolic dynamical systems for countable discrete ICC groups and show that minimal proximal actions in that space are generic. This study leads to a characterization of countable discrete strongly amenable groups; a countable discrete group is strongly amenable if and only if it has no ICC quotients.

In the second part, we show that a countable discrete group is Choquet-Deny if and only if it has no ICC quotients, where a group is called Choquet-Deny if the Poisson boundary of every non-degenerate measure on the group is trivial. Combining the aforementioned results, we get that a countable discrete group is Choquet-Deny if and only if it is strongly amenable.

In the case of finitely generated groups, by an old result due to McLain [McL56] and Duguid and McLain [DM56] and our classifications, we see that strongly amenable groups and Choquet-Deny groups are the same as virtually nilpotent groups.

## PUBLISHED CONTENT AND CONTRIBUTIONS

- [Fri+19] Joshua Frisch, Yair Hartman, Omer Tamuz, and Pooya Vahidi Ferdowsi. “Choquet-Deny groups and the infinite conjugacy class property.” In: *Annals of Mathematics* 190.1 (2019), pp. 307–320. doi: <https://doi.org/10.4007/annals.2019.190.1.5>.  
The authors contributed equally.
- [FTV19] Joshua Frisch, Omer Tamuz, and Pooya Vahidi Ferdowsi. “Strong amenability and the infinite conjugacy class property.” In: *Inventiones Mathematicae* 218.3 (2019), pp. 833–851. doi: <https://doi.org/10.1007/s00222-019-00896-z>.  
The authors contributed equally.
- [Har+19] Yair Hartman, Kate Juschenko, Omer Tamuz, and Pooya Vahidi Ferdowsi. “Thompson’s group  $F$  is not strongly amenable.” In: *Ergodic Theory and Dynamical Systems* 39.4 (2019), pp. 925–929. doi: <https://doi.org/10.1017/etds.2017.49>.  
The authors contributed equally.
- [FV18] Joshua Frisch and Pooya Vahidi Ferdowsi. “Non-virtually nilpotent groups have infinite conjugacy class quotients.” In: *arXiv preprint arXiv:1803.05064* (2018). URL: <https://arxiv.org/abs/1803.05064>.  
The authors contributed equally.

## TABLE OF CONTENTS

|                                                                       |     |
|-----------------------------------------------------------------------|-----|
| Acknowledgements . . . . .                                            | iii |
| Abstract . . . . .                                                    | iv  |
| Published Content and Contributions . . . . .                         | v   |
| Table of Contents . . . . .                                           | v   |
| Chapter I: Introduction . . . . .                                     | 1   |
| 1.1 ICC Groups . . . . .                                              | 1   |
| 1.2 Strongly Amenable Groups . . . . .                                | 2   |
| 1.3 Choquet-Deny Groups . . . . .                                     | 2   |
| Chapter II: Proximal Flows and Strongly Amenable Groups . . . . .     | 4   |
| 2.1 Overview of the Proof of Theorem 1 . . . . .                      | 6   |
| 2.2 Existence by Genericity . . . . .                                 | 6   |
| 2.3 Constructing $X$ -witness Shifts . . . . .                        | 10  |
| 2.4 Proofs . . . . .                                                  | 11  |
| 2.5 Thompson's Group $F$ . . . . .                                    | 23  |
| Chapter III: Random Walks and Choquet-Deny Groups . . . . .           | 28  |
| 3.1 Switching Elements . . . . .                                      | 30  |
| 3.2 A Heavy-Tailed Probability Distribution on $\mathbb{N}$ . . . . . | 32  |
| 3.3 Proof of Proposition 3.0.2 . . . . .                              | 35  |
| Appendix A: Finitely Generated Hyper-FC Groups . . . . .              | 40  |
| Bibliography . . . . .                                                | 46  |

## Chapter 1

### INTRODUCTION

In this thesis, we study two group properties for countable discrete groups and show that they are both equivalent to the group not having ICC quotients.

The first property is strong amenability. Let  $G$  be a topological group and let  $G \curvearrowright X$  be a continuous action of  $G$  on a compact Hausdorff space  $X$ . This action is said to be *proximal* if for any  $x, y \in X$  there exists a net  $\{g_i\}$  in  $G$  such that  $\lim_i g_i x = \lim_i g_i y$ .  $G$  is said to be *strongly amenable* if every such proximal action of  $G$  has a fixed point.

The second class of groups we study are Choquet-Deny groups. Let  $G$  be a countable discrete group. A probability measure  $\mu$  on  $G$  is *non-degenerate* if its support generates  $G$  as a semigroup. A function  $f: G \rightarrow \mathbb{R}$  is  $\mu$ -harmonic if  $f(k) = \sum_{g \in G} \mu(g)f(kg)$  for all  $k \in G$ . We say that the *measured group*  $(G, \mu)$  is *Liouville* if all the bounded  $\mu$ -harmonic functions are constant; this is equivalent to the triviality of the Poisson boundary  $\Pi(G, \mu)$ .  $G$  is called Choquet-Deny if  $(G, \mu)$  is Liouville for *every* non-degenerate  $\mu$ .

#### 1.1 ICC Groups

Let  $G$  be a group. Recall that  $G$  has the infinite conjugacy class property (ICC) if each of its non-trivial elements has an infinite conjugacy class. For example, the group  $S_\infty$  of finite permutations of  $\mathbb{N}$  is ICC.

One can define the *upper FC-series* of a group  $G$  as

$$1 \leq F_1 \leq F_2 \leq \cdots \leq F_\alpha \leq \cdots \leq G,$$

where  $F_{\alpha+1}/F_\alpha$  is the normal subgroup of  $G/F_\alpha$  consisting of the elements of the finite conjugacy classes, and  $F_\beta = \cup_{\alpha < \beta} F_\alpha$  for  $\beta$  a limit ordinal [Hai53; McL56]. The group  $\cup_\alpha F_\alpha$  is called the *hyper-FC center* of  $G$ .

Groups that have no ICC quotients are known as *hyper-FC-central* [McL56] or *hyper-FC* [Dug60]. Note that hyper-FC groups are precisely the groups whose hyper-FC center is the whole group. The class of hyper-FC groups is closed under forming subgroups, quotients, and finite index extensions.

It has been long known that a finitely generated group is hyper-FC if and only if it is virtually nilpotent. This result, due to McLain [McL56] and Duguid and McLain [DM56], simplifies our characterizations for strongly amenable groups and Choquet-Deny groups in the case of finitely generated groups. In §A, we bring a self-contained presentation of the original proof of this fact, which is divided between [McL56, Theorem 2] and [DM56, Theorem 2].

A key property of ICC groups is that for them *switching elements* exist; given an ICC group  $G$  and a finite subset  $X \subset G$ , there are infinitely many  $g \in G$  such that  $X \cap g^{-1}Xg \subseteq \{e\}$ . We call any such  $g \in G$  a switching element for  $X$ . Indeed, we show in §3.1 that if  $G$  is in addition amenable, then for any finite subset  $X \subset G$ , the set of switching elements for  $X$  has full measure for any invariant finitely additive probability measure on  $G$ . Switching elements play an important role in the proof of Lemma 2.4.2 and the proof of Proposition 3.0.2, which are the main ingredients for the proofs of our main results.

## 1.2 Strongly Amenable Groups

Let  $G$  be a topological group and let  $G \curvearrowright X$  be a continuous action of  $G$  on a compact Hausdorff space  $X$ . This action is said to be *proximal* if for any  $x, y \in X$  there exists a net  $\{g_i\}$  in  $G$  such that  $\lim_i g_i x = \lim_i g_i y$ .  $G$  is said to be *strongly amenable* if every such proximal action of  $G$  has a fixed point. Similarly, the continuous action  $G \curvearrowright X$  is said to be *strongly proximal* if for each regular Borel probability measure  $\mu$  on  $X$  there exists a net  $\{g_i\}$  in  $G$  such that  $\lim_i g_i \mu$  is a point mass. Glasner in [Gla76b] introduced these notions and showed that a group is amenable if and only if all its strongly proximal actions have a fixed point, strongly amenable groups are amenable, and that every virtually nilpotent group is strongly amenable.

Our main result in §2 is a characterization of countable discrete strongly amenable groups; a countable discrete group is strongly amenable if and only if it has no ICC quotients, which is equivalent to hyper-FC. In particular, in the case of finitely generated groups, a countable discrete group is strongly amenable if and only if it is virtually nilpotent.

## 1.3 Choquet-Deny Groups

Our main result in §3 is a characterization of countable discrete Choquet-Deny groups; a countable discrete group is Choquet-Deny if and only if it has no ICC quotients. Using our other result, this is equivalent to strong amenability. This

implies that a countable discrete group  $G$  is strongly amenable if and only if  $(G, \mu)$  is Liouville for every non-degenerate  $\mu$ , which is parallel to the following result: a countable discrete group  $G$  is amenable if and only if  $(G, \mu)$  is Liouville for some non-degenerate  $\mu$  [Fur73; KV83; Ros81].

## Chapter 2

## PROXIMAL FLOWS AND STRONGLY AMENABLE GROUPS

Let  $G \curvearrowright X$  be a continuous action of a countable discrete group on a compact Hausdorff space. This action is said to be *proximal* if for any  $x, y \in X$  there exists a net  $\{g_i\}$  in  $G$  such that  $\lim_i g_i x = \lim_i g_i y$ .  $G$  is said to be *strongly amenable* if every such proximal action of  $G$  has a fixed point. Glasner introduced these notions in [Gla76b] and proved a number of results: he showed that every virtually nilpotent group is strongly amenable, and that non-amenable groups are not strongly amenable. He also gave some examples of amenable groups that are not strongly amenable.<sup>1</sup> Since then, a number of papers have studied strong amenability [DG17; GW02; Gla83; MVT15], but none have made significant progress on relating it to other group properties.

Let  $G \curvearrowright X$  be a continuous action of a countable discrete group on a compact Hausdorff space. This action is said to be *strongly proximal* if for each regular Borel probability measure  $\mu$  on  $X$  there exists a net  $\{g_i\}$  in  $G$  such that  $\lim_i g_i \mu$  is a point mass. This notion, as well as that of the related Furstenberg boundary [Fur03; Fur63a; Fur73], have been the object of a much larger research effort, in particular because a group is amenable if and only if all of its strongly proximal actions on compact spaces have fixed points.

Our main result in this chapter is a characterization of strongly amenable groups.

**Theorem 1.** *A countable discrete group is strongly amenable if and only if it has no ICC quotients, i.e. it is hyper-FC. In particular, a finitely generated group is strongly amenable if and only if it is virtually nilpotent.*

For example, this implies that the group  $S_\infty$  of finite permutations of  $\mathbb{N}$  is not strongly amenable. Likewise, the alternating subgroup of  $S_\infty$  is not strongly amenable, as is every infinite simple group.

Recall from §1.1 that a finitely generated group is hyper-FC if and only if it is virtually nilpotent [DM56; McL56]. The second part of the theorem follows from this.

---

<sup>1</sup>Glasner attributes one of these examples to Furstenberg.

The case of groups with no ICC quotients is a straightforward consequence of Glasner's work. To prove that groups with ICC quotients are not strongly amenable, we consider an ICC group  $G$  and a certain class of symbolic dynamical systems for  $G$ . Using a topological genericity argument, we show that in this class there is a proximal action without a fixed point.

In §2.5, we look at Thompson's group  $F$ . Since it has an ICC quotient, we know from Theorem 1 that it is not strongly proximal. Our proof for Theorem 1 is an existence proof. In §2.5, we directly construct a proximal action of  $F$  that has no fixed points, and thus show directly that  $F$  is not strongly amenable. This action does admit an invariant measure, and thus does not provide any information about the amenability of  $F$ .

### The Universal Minimal Proximal Action

In [Gla76b, Section II.4], Glasner defines the universal minimal proximal action of a group  $G$ ; this is the unique minimal proximal action of  $G$  which has every minimal proximal action as a factor. We denote this action by  $G \curvearrowright \partial_p G$ . In Proposition 2.3.6, we show that every ICC group has a minimal proximal faithful action. On the other hand, the proof of Proposition 2.1.1 shows that the hyper-FC center of  $G$  acts trivially on  $\partial_p G$ . Combining these gives us:

**Corollary 2.0.1.** *For a countable discrete group  $G$ ,  $\ker(G \curvearrowright \partial_p G)$  is equal to the hyper-FC center of  $G$ .*

Glasner also defines the universal minimal *strongly proximal* action of a group  $G$ , which is the unique minimal strongly proximal action of  $G$  which has every minimal strongly proximal action as a factor. We denote this action by  $G \curvearrowright \partial_s G$ . Furman [Fur03, Proposition 7] shows that the kernel of  $G \curvearrowright \partial_s G$  is the amenable radical of  $G$ .

### The Group von Neumann Algebra

It is known that the group von Neumann algebra of a group  $G$  has a unique tracial state iff  $G$  is ICC, and we show that ICC groups are precisely the groups with faithful universal minimal proximal actions. We thus have the following dynamical characterization of the unique trace property of the group von Neumann algebra:

**Corollary 2.0.2.** *For a countable discrete group  $G$ , the following are equivalent:*

1. *The group von Neumann algebra of  $G$  has a unique tracial state.*

2.  $G \curvearrowright \partial_p G$  is faithful.

Analogously, it has been recently shown by Breuillard, Kalantar, Kennedy, and Ozawa [Bre+17, Corollary 4.3] that the reduced  $C^*$ -algebra of  $G$  has a unique tracial state if and only if  $G \curvearrowright \partial_s G$  is faithful.

Following this analogy raises an interesting question. We know from [KK17, Theorem 1.5] that simplicity of the reduced  $C^*$ -algebra of a group  $G$  is equivalent to the freeness of  $G \curvearrowright \partial_s G$ . We also know from [Bre+17, Corollary 4.3] that unique trace property of the reduced  $C^*$ -algebra of a group  $G$  is equivalent to faithfulness of  $G \curvearrowright \partial_s G$ . On the other hand, for group von Neumann algebras of discrete groups, simplicity and the unique trace property are equivalent. So it is natural to ask whether freeness of  $G \curvearrowright \partial_p G$  is equivalent to its faithfulness.

## 2.1 Overview of the Proof of Theorem 1

That a group with no ICC quotients is strongly amenable follows immediately from the following proposition.

**Proposition 2.1.1.** *Let  $G$  be a countable discrete group that acts faithfully, minimally, and proximally on a compact Hausdorff space  $X$ . Then each non-trivial element of  $G$  has an infinite conjugacy class.*

*Proof.* Let  $g$  be a non-trivial element of  $G$ . Assume by contradiction that  $g$  has a finite conjugacy class. Let  $H$  be the centralizer of  $g$ , so that  $H$  has finite index in  $G$ . By [Gla76b, Lemma 3.2],  $H$  acts proximally and minimally on  $X$ . Since  $g$  is in the center of  $H$ , it acts trivially on  $X$ , by [Gla76b, Lemma 3.3]. This contradicts the assumption that the action is faithful.  $\square$

Thus, to prove Theorem 1, we consider any  $G$  that is ICC, and prove that it has a proximal action that does not have a fixed point. This is without loss of generality, since if  $G$  has a proximal action without a fixed point, then so does any group that has  $G$  as a quotient.

## 2.2 Existence by Genericity

Our general strategy for the proof of Theorem 1 is to consider a certain space  $\mathcal{S}$  of non-trivial actions of  $G$ . We show that this space includes a proximal action without a fixed point by showing that, in fact, a *generic* action in this space is minimal and proximal. Genericity here is in the Baire category sense.

To define the space  $\mathcal{S}$ , let  $A$  be a finite alphabet of size at least 2. The *full shift*  $A^G$ , equipped with the product topology, is a space on which  $G$  acts continuously by left translations. Enumerate elements of  $G = \{g_1, g_2, \dots\}$  and endow  $A^G$  with the metric  $d(\cdot, \cdot)$  given by  $d(s, t) = 1/k$  where  $k = \inf\{n : s(g_n) \neq t(g_n)\}$ . An element of  $A^G$  is called a *configuration*.

The closed,  $G$ -invariant non-empty subsets of  $A^G$  are called *shifts*. The space of shifts is endowed with the subspace topology of the Hausdorff topology (or Fell topology) on the closed subsets of  $A^G$ . This topology is also metrizable: take, for example, the metric that assigns to a pair of shifts  $S, T \subseteq A^G$  the distance  $1/(n+1)$ , where  $n$  is the largest index such that  $S$  and  $T$  agree on  $\{g_1, \dots, g_n\}$ ; by agreement on a finite  $X \subseteq G$  we mean that the restriction of the configurations in  $S$  to  $X$  is equal to the restrictions of the configurations in  $T$  to  $X$ . Note that for any shift  $S \subseteq A^G$ , the sets of the form  $\{T \subseteq A^G \mid T \text{ agrees with } S \text{ on } X\}$  for different finite subsets  $X \subseteq G$  form a basis of the neighborhoods for  $S$ .

We define the space  $\mathcal{S}$  to be the closure, in the space of shifts, of the strongly irreducible shifts, with the  $|A|$ -many trivial (i.e., singleton) shifts removed. Strongly irreducible shifts are defined as follows:

**Definition 2.2.1.** *A shift  $S \subseteq A^G$  is said to be **strongly irreducible** if there exists a finite  $X \subseteq G$  including the identity such that for any two subsets  $E_1, E_2 \subseteq G$  with  $E_1 X \cap E_2 X = \emptyset$  and any two configurations  $s_1, s_2 \in S$ , there is a configuration  $s \in S$  such that  $s$  restricted to  $E_1$  equals  $s_1$  restricted to  $E_1$ , and  $s$  restricted to  $E_2$  equals  $s_2$  restricted to  $E_2$ .*

To show that the proximal actions are generic in  $\mathcal{S}$ , we define  $\varepsilon$ -proximal actions; proximal actions will be the actions which are  $\varepsilon$ -proximal for each  $\varepsilon > 0$ .

**Definition 2.2.2.** *An action  $G \curvearrowright X$  on a compact metric space with metric  $d(\cdot, \cdot)$  is  $\varepsilon$ -proximal if for all  $x, y \in X$  there exists a  $g \in G$  such that  $d(gx, gy) < \varepsilon$ .*

To show that minimal actions are generic in  $\mathcal{S}$ , we similarly define the notion of  $\varepsilon$ -minimality.

**Definition 2.2.3.** *An action  $G \curvearrowright X$  on a compact metric space with metric  $d(\cdot, \cdot)$  is  $\varepsilon$ -minimal if for all  $x, y \in X$  there exists a  $g \in G$  such that  $d(gx, y) < \varepsilon$ .*

A subset of a topological space is generic (in the Baire category sense) if it contains a dense  $G_\delta$ . To prove our main result, we show that the proximal actions are a dense

$G_\delta$  in  $\mathcal{S}$ . The proof of density is the main challenge of this chapter, while it is straightforward to prove that this subset is a  $G_\delta$ .

**Claim 2.2.4.** *The set of  $\varepsilon$ -proximal shifts is an open set in  $\mathcal{S}$ . Thus the set of proximal shifts is a  $G_\delta$  set in  $\mathcal{S}$ .*

*Similarly, the set of  $\varepsilon$ -minimal shifts is an open set in  $\mathcal{S}$ . Thus the set of minimal shifts is a  $G_\delta$  set in  $\mathcal{S}$ .*

The Baire Category Theorem guarantees that for well behaved spaces (such as our locally compact space  $\mathcal{S}$ ), a countable intersection of dense open sets is dense. Thus, to prove that the proximal shifts are dense in the closure of the strongly irreducible shifts, it suffices to show that the  $\varepsilon$ -proximal shifts are dense in  $\mathcal{S}$  for each  $\varepsilon$ . That is, fixing  $\varepsilon$ , we must show that for each strongly irreducible shift  $S \subseteq A^G$  and each finite subset  $X \subseteq G$  there exists a strongly irreducible shift  $S'$  that agrees with  $S$  on  $X$ , and is  $\varepsilon$ -proximal.

To this end, we construct a class of shifts of  $\{0, 1\}^G$  (which we denote by  $2^G$ ) which are  $\varepsilon$ -proximal. Furthermore, for these shifts  $\varepsilon$ -proximality is witnessed by a particular configuration around the origin: one having a 1 at the origin and zeros close to it. For a finite symmetric subset  $X \subset G$  and  $g, h \in G$ , we say that  $g$  and  $h$  are  $X$ -apart if  $g^{-1}h \notin X$ .

**Definition 2.2.5.** *Let  $X$  be a finite symmetric subset of  $G$ . A non-trivial shift  $S \subset 2^G$  is an  $X$ -witness shift if*

1. *For each  $s \in S$ ,  $s(a) = 1$  and  $s(b) = 1$  implies that  $a$  and  $b$  are  $X$ -apart.*
2. *For each  $s, t \in S$  there exists an  $a \in G$  such that  $s(a) = t(a) = 1$ .*

The construction of  $X$ -witness shifts in Propositions 2.3.1 and 2.3.2 contains the main technical effort of this chapter.

### A Toy Example

To give the reader some intuition and explain the role of ICC in the construction of  $X$ -witness shifts, we now explain how to construct a single configuration in  $2^G$  with an  $X$ -witness *orbit*, and show that such configurations do not exist for groups that are not ICC. Note that the closure of this orbit is not necessarily an  $X$ -witness shift; the construction of  $X$ -witness shifts requires more work and a somewhat different approach, which we pursue later, in the formal proofs.

Given a configuration  $u \in 2^G$ , we denote by  $Gu = \{gu : g \in G\}$  the  $G$ -orbit of  $u$ . Given a finite symmetric  $X \subset G$ , we say that a configuration  $u \in 2^G$  is an  $X$ -witness configuration if

1. For each  $s \in Gu$ ,  $s(a) = 1$  and  $s(b) = 1$  implies that  $a$  and  $b$  are  $X$ -apart.
2. For each  $s, t \in Gu$  there exists an  $a \in G$  such that  $s(a) = t(a) = 1$ .

We now informally explain that when  $G$  is ICC, then for every such  $X$  there exist  $X$ -witness configurations, and that when  $G$  is not ICC, then there is a finite symmetric  $X \subset G$  for which there are no such configurations.

Suppose first that  $G$  is not ICC. Then there cannot exist an  $X$ -witness shift for every  $X$ . To see this, suppose that  $g \in G$  is an element with finitely many conjugates, and let  $X$  be a finite symmetric subset of  $G$  that contains all the conjugates of  $g$ . Assume towards a contradiction that there exists an  $X$ -witness configuration  $u$ . So, by the second property of  $X$ -witness configurations, there exists an  $a \in G$ , such that  $[gu](a) = u(a) = 1$ , which means  $u(g^{-1}a) = u(a) = 1$ . Now, by the first property of  $u$ , we need to have that  $g^{-1}a$  and  $a$  are  $X$ -apart, which means  $(g^{-1}a)^{-1}a = a^{-1}ga \notin X$ . This is a contradiction, since we let  $X$  contain all the conjugates of  $g$ .

Consider now the case that  $G$  is ICC. Given a finite symmetric  $X$ , we choose a random configuration  $u \in 2^G$  as follows. Assign to each element of  $G$  an independent uniform random variable in  $[0, 1]$ . Let  $V_a$  be the random variable corresponding to  $a \in G$ . For each  $a \in G$ , let  $u(a) = 1$  iff  $V_a > V_{ax}$  for all  $x \in X \setminus \{e\}$ ; i.e.,  $u(a) = 1$  if  $V_a$  is maximal in its  $X$ -neighborhood. Note that if  $g$  and  $h$  are  $X^2$ -apart, then the event  $u(g) = 1$  and the event  $u(h) = 1$  are independent.

We claim that  $u$  is, with probability one, an  $X$ -witness shift. By construction,  $u$  almost surely satisfies the first property: if  $s = g^{-1}u$  and  $s(a) = s(b) = 1$ , then  $u(ga) = u(gb) = 1$ , hence  $ga$  and  $gb$  are  $X$ -apart, and so  $a$  and  $b$  are  $X$ -apart. To satisfy the second property, it must hold that for every  $g \neq h \in G$  there is some  $a \in G$  such that  $u(ga) = u(ha) = 1$ . By the ICC property, we can choose an  $a \in G$  to make  $ga$  and  $ha$  arbitrarily far apart, as this corresponds to finding an  $a$  such that  $a^{-1}(h^{-1}g)a$  is large. For such a choice of  $a$ , the events  $u(ga) = 1$  and  $u(ha) = 1$  are independent, and, since we have infinitely many such  $a$ 's that we can use, with probability one at least one of them will give us the desired result.

### 2.3 Constructing $X$ -witness Shifts

We now return to the construction of  $X$ -witness shifts, which are the main tool in our proof of Theorem 1. The first step is to construct a single configuration which is an  $X$ -witness in a large finite set.

**Proposition 2.3.1.** *Let  $G$  be an ICC group. For each finite symmetric  $X \subset G$ , there exists an  $s \in 2^G$  and a finite symmetric  $Y \supset X$  such that*

1. *For every  $a, b \in G$ , if  $s(a) = s(b) = 1$ , then  $a$  and  $b$  are  $X$ -apart.*
2. *For every  $g, h \in Y^{100}$  there exists some  $a \in Y$  such that  $s(ga) = s(ha) = 1$ .*

The proof of this proposition—along with Proposition 2.3.2 below—contains the main technical effort of this chapter. The proof elaborates on the ideas of the informal construction of §2.2: we choose the configuration  $s$  at random, and then show that it has the desired properties with positive probability. This stage crucially uses the assumption that the group is ICC, which translates to independence of some events that arise in the analysis of this random choice. This is the only step in the proof of Theorem 1 in which we use the ICC property of  $G$ .

We use the configuration constructed in Proposition 2.3.1 to construct  $X$ -witness shifts. These shifts will additionally (and importantly) be strongly irreducible.

**Proposition 2.3.2.** *Let  $G$  be a group for which, for each finite symmetric  $X \subset G$ , there exists a configuration that satisfies the conditions of Proposition 2.3.1. Then for each such  $X$  there also exists a strongly irreducible  $X$ -witness shift.*

The combination of Propositions 2.3.1 and 2.3.2 immediately yields the following.

**Proposition 2.3.3.** *Let  $G$  be an ICC group. Then for each finite symmetric  $X \subset G$  there exists a strongly irreducible  $X$ -witness shift  $S \subset 2^G$ .*

#### $\varepsilon$ -proximal Shifts

Finally, we use these strongly irreducible  $X$ -witness shifts to construct approximations to a given strongly irreducible shift  $S$  that are both  $\varepsilon$ -proximal and  $\varepsilon$ -minimal.

**Proposition 2.3.4.** *Let  $G$  be a group for which there exists, for each finite symmetric  $X \subset G$ , a strongly irreducible  $X$ -witness shift. Let  $T \subseteq A^G$  be a strongly irreducible shift. Then for each  $\varepsilon$  and finite  $X \subset G$  there exists a strongly irreducible shift  $T' \subseteq 2^G$  that is  $\varepsilon$ -proximal,  $\varepsilon$ -minimal, and agrees with  $T$  on  $X$ .*

An immediate consequence of Proposition 2.3.3, Proposition 2.3.4, and Claim 2.2.4 is the following.

**Proposition 2.3.5.** *Let  $G$  be an ICC group. Then there is a dense  $G_\delta$  set in  $\mathcal{S}$  for which the action  $G \curvearrowright \mathcal{S}$  is minimal and proximal.*

In the next proposition, we show that this result can be strengthened to show that a generic shift is additionally faithful.

**Proposition 2.3.6.** *Let  $G$  be an ICC group. Then there is a dense  $G_\delta$  set in  $\mathcal{S}$  for which the action  $G \curvearrowright \mathcal{S}$  is faithful, minimal, and proximal.*

Given all this, the proof of our main theorem follows easily.

*Proof of Theorem 1.* That groups with no ICC quotients are strongly amenable follows immediately from Proposition 2.1.1. Let  $G$  be ICC. By Proposition 2.3.5, the proximal minimal shifts are a dense  $G_\delta$  in  $\mathcal{S}$ , and in particular exist, since  $\mathcal{S}$  is non-empty (e.g., the full shift  $A^G$  is strongly irreducible and non-constant). Since there are no trivial shifts in  $\mathcal{S}$ , and since non-trivial minimal shifts have no fixed points, we have proved that  $G$  is not strongly amenable.  $\square$

## 2.4 Proofs

### Proof of Proposition 2.3.1

Let  $G$  be an ICC group, and let  $X$  be a finite, symmetric subset of  $G$ . We choose a random configuration  $u \in 2^G$  as follows. Assign to each element of  $G$  an independent uniform random variable in  $[0, 1]$ . Let  $V_a$  be the random variable corresponding to  $a \in G$ . For each  $a \in G$ , let  $u(a) = 1$  iff  $V_a > V_{ax}$  for all  $x \in X \setminus \{e\}$ . That is, let  $u(a) = 1$  if  $V_a > V_b$  whenever  $a^{-1}b \in X$  and  $b \neq a$ . The following claim is an immediate consequence of the definition of  $u$ .

**Claim 2.4.1.** *If  $a_1, \dots, a_n$  are  $X^2$ -apart<sup>2</sup> for  $a_i \in G$ , then  $\{u(a_i) = 1\}$  are independent events.*

Clearly, for all values of the random configuration,  $u(a) = u(b) = 1$  implies that  $a^{-1}b \notin X$  for all  $a, b \in G$ , which means that  $a$  and  $b$  are  $X$ -apart. So the random configuration  $u$  almost surely satisfies the first part of the proposition. It thus remains

---

<sup>2</sup>Recall that given a finite symmetric subset  $X \subset G$  and  $g, h \in G$ , we say that  $g$  and  $h$  are  $X$ -apart if  $g^{-1}h \notin X$ .

to find a finite symmetric subset  $Y \supset X$  such that, with positive probability for the random configuration  $u$ , for each  $g, h \in Y^{100}$  there exists some  $a \in Y$  such that  $u(ga) = u(ha) = 1$ .

The next lemma claims that there exists a subset  $Y$  with certain useful properties. We use this lemma to prove our proposition, and then prove the lemma.

**Lemma 2.4.2.** *There exists a  $Y \supset X$  with the following properties.*

1.

$$|Y|^{200}(1 - |X|^{-2})^{|Y|/(20|X^2|+5)} < 1.$$

2. For each  $g, h \in G$  there exists a subset  $Y_{g,h} \subseteq Y$  with the following properties.

- a)  $|Y_{g,h}| \geq |Y|/(20|X^2| + 5)$ .
- b) For  $y \in Y_{g,h}$ ,  $gy$  and  $hy$  are  $X^2$ -apart.
- c) For  $y_1 \neq y_2 \in Y_{g,h}$ ,  $w_1$  and  $w_2$  are  $X^2$ -apart for any  $w_1 \in \{gy_1, hy_1\}$  and  $w_2 \in \{gy_2, hy_2\}$ .

For  $c, d, y \in G$ , let  $E_c$  be the event that  $u(c) = 1$ , and let  $E_{c,d}^y = E_{cy} \cap E_{dy}$ . Now fix  $g, h \in G$ .

- 1. By the second property of  $Y_{g,h}$ ,  $gy$  and  $hy$  are  $X^2$ -apart for any  $y \in Y_{g,h}$ . Hence  $E_{gy}$  and  $E_{hy}$  are independent, by Claim 2.4.1.
- 2.  $\mathbb{P}[E_c] = 1/|X|$  for all  $c \in G$ .
- 3. Combining the previous two results:  $\mathbb{P}[E_{g,h}^y] = |X|^{-2}$  for all  $y \in Y_{g,h}$ . So  $\mathbb{P}[\neg E_{g,h}^y] = 1 - |X|^{-2}$ .
- 4.  $E_{g,h}^y$  are independent events for different values of  $y \in Y_{g,h}$ . This is because (I)  $gy$  and  $hy$  are  $X^2$ -apart for any  $y \in Y_{g,h}$ , and (II)  $w_1$  and  $w_2$  are  $X^2$ -apart for any  $y_1 \neq y_2 \in Y_{g,h}$ ,  $w_1 \in \{gy_1, hy_1\}$ , and  $w_2 \in \{gy_2, hy_2\}$ , which means  $\{E_{gy}, E_{hy} \mid y \in Y_{g,h}\}$  are independent events. And finally, since  $E_{g,h}^y = E_{gy} \cap E_{hy}$ , we get that  $E_{g,h}^y$  are independent events for  $y \in Y_{g,h}$ .

5. We say that the pair  $(g, h)$  *fails* if  $E_{g,h}^y$  does not happen for any  $y \in Y_{g,h}$ . So, by the previous two results,

$$\begin{aligned}\mathbb{P}[(g, h) \text{ fails}] &= \mathbb{P}\left[E_{g,h}^y \text{ for no } y \in Y_{g,h}\right] \\ &= (1 - |X|^{-2})^{|Y_{g,h}|} \\ &\leq (1 - |X|^{-2})^{|Y|/(20|X^2|+5)},\end{aligned}$$

where the last inequality follows from the first property of  $Y_{g,h}$ .

By the last inequality, union bound, and the first property of  $Y$ :

$$\begin{aligned}\mathbb{P}[(g, h) \text{ fails for some } g, h \in Y^{100}] &\leq |Y^{100}|^2 (1 - |X|^{-2})^{|Y|/(20|X^2|+5)} \\ &\leq |Y|^{200} (1 - |X|^{-2})^{|Y|/(20|X^2|+5)} < 1.\end{aligned}$$

So, there is at least one configuration, say  $s$ , for which no  $(g, h)$  fails for  $g, h \in Y^{100}$ . Therefore, for all  $g, h \in Y^{100}$ , there is an  $a \in Y$  such that  $s(ga) = s(ha) = 1$ . So this  $s$  satisfies the second part of the proposition, which concludes the proof of Proposition 2.3.1, except the proof of Lemma 2.4.2, to which we turn now.

*Proof of Lemma 2.4.2.* We call an element  $g \in G$  *switching* if for all non-identity  $x \in X^2$  we have  $g^{-1}xg \notin X^2$ .

**Claim 2.4.3.** *There exists at least one switching element  $g_s \in G$ .*

*Proof.* Let  $C_x$  be the centralizer of  $x$  for each  $x \in X^2$ . Then there are finitely many cosets of  $C_x$ , say  $g_1^x C_x, \dots, g_{n_x}^x C_x$ , such that  $g^{-1}xg \in X^2$  only if  $g \in g_i^x C_x$  for some  $i \in \{1, \dots, n_x\}$ . So, non-switching elements are in the union of finitely many cosets of subgroups with infinite index, i.e.  $g$  is non-switching only if  $g \in g_i^x C_x$  for some  $x \in X^2$  and some  $i \in \{1, \dots, n_x\}$ . Since  $G$  is ICC, each  $C_x$  has infinite index in  $G$ . By [Neu54, Lemma 4.1], a finite collection of cosets of infinite index does not cover the whole group  $G$ , so there is at least one switching element in  $G$ .  $\square$

Let  $g_s$  be a switching element. We can choose an arbitrarily large finite subset  $Y_1 \subseteq G$  which includes the identity and such that  $Y_1 \cap Y_1 g_s = \emptyset$ . Choose such a  $Y_1$  that is large enough so that

$$(5|Y_1|)^{200} (1 - |X|^{-2})^{2|Y_1|/(20|X^2|+5)} < 1 \text{ and } |Y_1| \geq |X|$$

and let  $Y = (Y_1 \cup Y_1 g_s) \cup (Y_1 \cup Y_1 g_s)^{-1} \cup X$ . Note that  $Y$  is symmetric and  $5|Y_1| \geq |Y| \geq 2|Y_1|$ , which implies that

$$|Y|^{200} (1 - |X|^{-2})^{|Y|/(20|X^2|+5)} < 1.$$

This establishes the first property of  $Y$ .

Fix  $g, h \in G$  with  $g \neq h$ . We say  $y \in G$  is *distancing* for the pair  $(g, h)$  if  $gy$  and  $hy$  are  $X^2$ -apart.

**Claim 2.4.4.** *If  $y \in G$  is not distancing for  $(g, h)$ , then  $y g_s$  is distancing for  $(g, h)$ .*

*Proof.* Since  $y$  is not distancing for  $(g, h)$ ,  $(gy)^{-1}(hy) = y^{-1}g^{-1}hy \in X^2$ . By the definition of a switching element  $g_s^{-1}[(gy)^{-1}(hy)]g_s = (gyg_s)^{-1}(hyg_s) \notin X^2$ , which means that  $y g_s$  is distancing for  $(g, h)$ .  $\square$

By this observation, if  $y_1 \in Y_1$  is not distancing for  $(g, h)$ , then  $y_1 g_s \in Y_1 g_s$  is distancing for  $(g, h)$ . So at least half of the elements in  $Y_1 \cup Y_1 g_s$  are distancing for  $(g, h)$  and thus at least one fifth of the elements in  $Y$  are distancing for  $(g, h)$ . Let  $Y'_{g,h}$  be the collection of elements in  $Y$  that are distancing for  $(g, h)$ . We just saw that  $|Y'_{g,h}| \geq |Y|/5$ .

Now define a graph on  $Y'_{g,h}$  by connecting  $y_1 \neq y_2 \in Y'_{g,h}$  if  $w_1$  and  $w_2$  are not  $X^2$ -apart for some  $w_1 \in \{gy_1, hy_1\}, w_2 \in \{gy_2, hy_2\}$ . Call this graph  $G'_{g,h}$ . Note that the degree of each  $y \in Y'_{g,h}$  in  $G'_{g,h}$  is at most  $4|X^2|$ . So, we can find an independent set of size at least  $|Y'_{g,h}|/(4|X^2| + 1) \geq |Y|/(20|X^2| + 5)$  in  $G'_{g,h}$ . Call this independent set  $Y_{g,h}$ .

**Claim 2.4.5.**  $|Y_{g,h}| \geq |Y|/(20|X^2| + 5)$ , for  $y \in Y_{g,h}$ ,  $gy$  and  $hy$  are  $X^2$ -apart, and for  $y_1 \neq y_2 \in Y_{g,h}$ , we have that  $w_1$  and  $w_2$  are  $X^2$ -apart for  $w_1 \in \{gy_1, hy_1\}, w_2 \in \{gy_2, hy_2\}$ .

*Proof.* The bound on the size of  $Y_{g,h}$  is established in the previous paragraph. Since  $Y_{g,h} \subseteq Y'_{g,h}$  and all elements of  $Y'_{g,h}$  are distancing for  $(g, h)$ , the second property holds. The third property follows from independence of  $Y_{g,h}$  in  $G'_{g,h}$ .  $\square$

This establishes the three properties of  $Y_{g,h}$ , and thus concludes the proof of the lemma.  $\square$

### Saturated Packings

In this section, we prove some general claims regarding *saturated packings* (see, e.g., [TK93]).

**Definition 2.4.6.** Let  $Z_1, \dots, Z_n$  be distinct non-empty finite subsets of  $G$ . A  $\{Z_1, \dots, Z_n\}$ -packing is a  $p \in \{Z_1, \dots, Z_n, \emptyset\}^G$  with  $h p(h) \cap g p(g) = \emptyset$  for all  $g \neq h \in G$ ; note that  $h p(h)$  and  $g p(g)$  are each a translate, by  $h$  and  $g$ , respectively, of some element of  $\{Z_1, \dots, Z_n, \emptyset\}$ . When  $p(g) \neq \emptyset$ , we call the translate  $g p(g)$  a *block*.

By an abuse of notation, we use the term  $Z$ -packing instead of  $\{Z\}$ -packing when we have only one subset.

**Definition 2.4.7.** A  $\{Z_1, \dots, Z_n\}$ -packing  $p$  is *saturated* if there is no  $\{Z_1, \dots, Z_n\}$ -packing  $p' \neq p$  such that  $p(g) \neq \emptyset$  implies that  $p'(g) = p(g)$ .

We say that  $p$  is a *saturation* of  $q$  if  $p$  is saturated and  $q(g) \neq \emptyset$  implies that  $p(g) = q(g)$ .

Saturated packings are packings to which one cannot add any blocks. Note, however, that it may be possible to add more blocks by first removing some. Note also that by Zorn's Lemma, there exists for each  $\{Z_1, \dots, Z_n\}$ -packing  $q$  a  $\{Z_1, \dots, Z_n\}$ -packing  $p$  that saturates it.

The following claim shows the existence of strongly irreducible saturated packings, which will be useful in the construction of strongly irreducible  $X$ -witness shifts. A similar claim with a similar proof appears in [FT17, Lemma 2.2].

Given two distinct non-empty finite subsets  $Z_1$  and  $Z_2$  of  $G$ , we denote by  $\pi: \{Z_1, Z_2, \emptyset\}^G \rightarrow \{Z_1, \emptyset\}^G$  the map

$$(\pi(p))(g) = \begin{cases} Z_1 & \text{if } p(g) = Z_1 \\ \emptyset & \text{otherwise.} \end{cases}$$

That is,  $\pi$  transforms a  $\{Z_1, Z_2\}$ -packing into a  $Z_1$ -packing by removing all the  $Z_2$ -blocks.

**Claim 2.4.8.** Let  $Z_1$  and  $Z_2$  be two distinct non-empty finite subsets of  $G$ . Let  $P$  be the collection of all saturated  $\{Z_1, Z_2\}$ -packings  $p$  such that  $\pi(p)$  is a saturated  $Z_1$ -packing. Then  $P$  is a non-empty strongly irreducible shift.

*Proof.* The proof of the fact that  $P$  is a non-empty shift is standard. It thus remains to be shown that it is strongly irreducible.

Let  $X = (Z_1 \cup Z_2) \cup (Z_1 \cup Z_2)^{-1}$ . Let  $F_1, F_2 \subset G$  be any two subsets of  $G$  that are  $X^{14}$ -apart. To prove the claim, it suffices to show that for any  $p_1, p_2 \in P$ , there is a  $p \in P$  that agrees with  $p_1$  on  $F_1$  and with  $p_2$  on  $F_2$ . We know that  $F_1 X^6$  and  $F_2 X^6$  are disjoint, and furthermore, if  $a_1 \in F_1 X^6$  and  $a_2 \in F_2 X^6$ , then the blocks  $a_1 p_1(a_1)$  and  $a_2 p_2(a_2)$  are disjoint.

Let  $q_1 = \pi(p_1)$  and  $q_2 = \pi(p_2)$ . We know that  $q_1$  and  $q_2$  are saturated  $Z_1$ -packings. We also know that if  $a_1 \in F_1 X^6$  and  $a_2 \in F_2 X^6$ , then  $a_1 q_1(a_1)$  and  $a_2 q_2(a_2)$  are disjoint. Thus there is a  $Z_1$ -packing, say  $q'$ , that is equal to  $q_1$  on  $F_1 X^6$  and to  $q_2$  on  $F_2 X^6$ . Let  $q$  be a  $Z_1$ -packing that is a saturation of  $q'$ . Fix  $i \in \{1, 2\}$  and  $g \in F_i X^4$ . We will show that  $q_i(g) = q(g)$ .

- If  $q_i(g) = Z_1$ , we know that  $q'(g) = Z_1$ , and hence  $q(g) = Z_1$ .
- If  $q_i(g) = \emptyset$ , since  $q_i$  is a saturated  $Z_1$ -packing, there exists  $a \in g Z_1 Z_1^{-1} \subseteq F_i X^6$  with  $q_i(a) = Z_1$ . So,  $q'(a) = Z_1$ , and hence  $q(a) = Z_1$ . Since  $g Z_1 \cap a Z_1 \neq \emptyset$ , this implies that  $q(g) = \emptyset$ .

So,  $q$  is a saturated  $Z_1$ -packing that agrees with  $q_1$  on  $F_1 X^4$  and with  $q_2$  on  $F_2 X^4$ .

Since  $q$  agrees with  $q_1 = \pi(p_1)$  on  $F_1 X^4$  and with  $q_2 = \pi(p_2)$  on  $F_2 X^4$ , it is easy to see that  $p'$ , which is defined as follows, is a well-defined  $\{Z_1, Z_2\}$ -packing:

$$p'(g) = \begin{cases} p_1(g) & \text{if } g \in F_1 X^2 \\ p_2(g) & \text{if } g \in F_2 X^2 \\ q(g) & \text{otherwise.} \end{cases}$$

So, by definition,  $p'$  agrees with  $p_1$  on  $F_1 X^2$  and with  $p_2$  on  $F_2 X^2$ . Furthermore,  $\pi(p') = q$ , since  $\pi(p_i)$  agrees with  $q$  on  $F_i X^2$ .

Let  $p$  be a  $\{Z_1, Z_2\}$ -packing that is a saturation of  $p'$ . Since  $\pi(p') = q$  is a saturated  $Z_1$ -packing, we have  $\pi(p) = \pi(p') = q$ . So,  $p$  is a saturated  $\{Z_1, Z_2\}$ -packing where  $\pi(p)$  is a saturated  $Z_1$ -packing, which means  $p \in P$ . To complete the proof, we just need to show that  $p$  agrees with  $p_1$  on  $F_1$  and with  $p_2$  on  $F_2$ . Fix  $i \in \{1, 2\}$  and  $g \in F_i$ . We will show that  $p_i(g) = p(g)$ .

- If  $p_i(g) \in \{Z_1, Z_2\}$ , we know that  $p'(g) = p_i(g) \in \{Z_1, Z_2\}$ , and hence  $p(g) = p_i(g)$ .

- If  $p_i(g) = \emptyset$ , since  $p_i$  is a saturated  $\{Z_1, Z_2\}$ -packing, for any  $j \in \{1, 2\}$  there exist  $\ell \in \{1, 2\}$  and  $a \in gZ_jZ_\ell^{-1} \subseteq F_iX^2$  with  $p_i(a) = Z_\ell$ . So,  $p'(a) = Z_\ell$ , and hence  $p(a) = Z_\ell$ . Since  $gZ_j \cap aZ_\ell \neq \emptyset$ , this implies that  $p(g) = \emptyset$ .

□

### Proof of Proposition 2.3.2

We can now start the proof of proposition 2.3.2. Assume that  $X$ , a finite symmetric subset of  $G$ , is given. We now seek to construct a strongly irreducible  $X$ -witness shift  $T$ . Since  $G$  satisfies proposition 2.3.1, we can let  $Y$  and  $s$  be a finite symmetric subset of  $G$  and a configuration on  $G$  that satisfy the statement of proposition 2.3.1 for  $X \subseteq G$ .

Let  $P$  be the strongly irreducible shift given by Claim 2.4.8 for  $Z_1 = Y^{100}X$  and  $Z_2 = YX$ .

Define  $\psi : P \rightarrow 2^G$  by

$$[\psi(p)](g) = \begin{cases} s(h^{-1}g) & \text{if } g \in h Y^{100} \text{ for some } h \in G \\ & \quad \text{with } p(h) = Y^{100}X \\ s(h^{-1}g) & \text{if } g \in h Y \text{ for some } h \in G \\ & \quad \text{with } p(h) = YX \\ 0 & \text{otherwise.} \end{cases}$$

What  $\psi$  does is produce a configuration which is 0 outside of the  $X$ -interior<sup>3</sup> of blocks, and is equal to translates of  $s|_{Y^{100}}$  and  $s|_Y$  inside the interior of blocks.

It is again easy to see that  $\psi$  is continuous and equivariant, so  $T = \psi(P)$  is a strongly irreducible shift. The following claim completes the proof of proposition 2.3.2.

**Claim 2.4.9.**  *$T$  is an  $X$ -witness shift.*

The claim follows immediately from the following two lemmas. The first of the lemmas is straightforward from our construction, while the second is less immediate.

**Lemma 2.4.10.** *For all  $t \in T$ , the 1's in  $t$  are  $X$ -apart.*

*Proof.* Let  $t \in T$  and  $a, b \in G$  with  $t(a) = t(b) = 1$ . Since  $t \in T$ , there is a  $p \in P$  with  $\psi(p) = t$ . By the definition of  $\psi$ , since  $[\psi(p)](a) = [\psi(p)](b) = 1$ , we get

<sup>3</sup>The  $X$ -interiors of  $Y^{100}X$  and  $YX$  are  $Y^{100}$  and  $Y$ .

that  $a \in h p(h)$  and  $b \in g p(g)$  for some  $h, g \in G$ . If  $g = h$ , i.e.  $a$  and  $b$  are in the same block of  $p$ , then  $s(h^{-1}a) = t(a) = 1$  and  $s(h^{-1}b) = t(b) = 1$ . But, since  $s$  satisfies proposition 2.3.1 (in particular, the 1's in  $s$  are  $X$ -apart),  $h^{-1}a$  and  $h^{-1}b$  are  $X$ -apart, which implies that  $a$  and  $b$  are  $X$ -apart. If  $g \neq h$ , then  $h p(h)$  and  $g p(g)$  are disjoint, so the  $X$ -interior of  $h p(h)$  and the  $X$ -interior of  $g p(g)$  are  $X$ -apart. We also know that  $a$  is in the  $X$ -interior of  $h p(h)$  and  $b$  is in the  $X$ -interior of  $g p(g)$ . Therefore,  $a$  and  $b$  are  $X$ -apart.  $\square$

**Lemma 2.4.11.** *For any  $t_1, t_2 \in T$ , there is an  $a \in G$  with  $t_1(a) = t_2(a) = 1$ .*

*Proof.* We essentially prove this lemma by a series of reductions.

Let  $t_1, t_2 \in T$ . So there are  $p_1, p_2 \in P$  with  $\psi(p_1) = t_1$  and  $\psi(p_2) = t_2$ . Pick an  $a_1 \in G$  with  $p_1(a_1) = Y^{100}X$ . This means that  $a_1^{-1}p_1$  has a block of shape  $Y^{100}X$  centered at the identity. Let  $p'_1 = a_1^{-1}p_1$ ,  $p'_2 = a_1^{-1}p_2$ , and let  $t'_1 = \psi(p'_1)$ ,  $t'_2 = \psi(p'_2)$ . So,  $p'_1$  has a block of shape  $Y^{100}X$  centered at the identity.

Since  $p'_2$  is saturated, we know there is an  $a_2 \in Y^4$  such that either (I)  $a_2$  is in the  $YX$ -interior of a block of shape  $Y^{100}X$  in  $p'_2$ , or (II)  $a_2$  is the center of a block of shape  $YX$  in  $p'_2$ . Let  $p''_1 = a_2^{-1}p'_1$ ,  $p''_2 = a_2^{-1}p'_2$ , and let  $t''_1 = \psi(p''_1)$ ,  $t''_2 = \psi(p''_2)$ . Observe that in  $p''_1$  the identity is in the  $YX$ -interior of a block of shape  $Y^{100}X$ , say  $e \in k_1 Y^{99}$  for some  $k_1 \in G$  with  $p''_1(k_1) = Y^{100}X$ . Moreover, in  $p''_2$  the identity is either (I) in the  $YX$ -interior of a block of shape  $Y^{100}X$  or (II) in the center of a block of shape  $YX$ .

In case (I), since in  $p''_2$  the identity is in the  $YX$ -interior of a block of shape  $Y^{100}X$ ,  $e \in k_2 Y^{99}$  for some  $k_2 \in G$  with  $p''_2(k_2) = Y^{100}X$ . So  $k_2^{-1} \in Y^{99}$ . By the second part of proposition 2.3.1 applied to  $g = k_1^{-1}$  and  $h = k_2^{-1}$ , we know that there is an  $a_3 \in Y$  such that  $s(k_1^{-1}a_3) = s(k_2^{-1}a_3) = 1$ . So, by the definition of  $\psi$ , the fact that  $k_1^{-1}a_3 \in Y^{100}$ , and the fact that  $p''_1(k_1) = Y^{100}X$ , we get  $t''_1(a_3) = s(k_1^{-1}a_3) = 1$ , and similarly, we get  $t''_2(a_3) = s(k_2^{-1}a_3) = 1$ . Therefore,  $t_1(a_1a_2a_3) = t''_1(a_3) = 1$  and  $t_2(a_1a_2a_3) = t''_2(a_3) = 1$ . Case (I) is schematically depicted in Figure 2.1.

In case (II),  $p''_2(e) = YX$ . Again, if we apply the second part of proposition 2.3.1 to  $g = k_1^{-1}$  and  $h = e$ , we get that there is an  $a_3 \in Y$  such that  $s(k_1^{-1}a_3) = s(a_3) = 1$ . So, by the definition of  $\psi$ , the fact that  $k_1^{-1}a_3 \in Y^{100}$ , and the fact that  $p''_1(k_1) = Y^{100}X$ , we get  $t''_1(a_3) = s(k_1^{-1}a_3) = 1$ . Also, by the definition of  $\psi$ , the fact that  $a_3 \in Y$ , and the fact that  $p''_2(e) = YX$ , we get  $t''_2(a_3) = s(a_3) = 1$ . Therefore,  $t_1(a_1a_2a_3) = t''_1(a_3) = 1$  and  $t_2(a_1a_2a_3) = t''_2(a_3) = 1$ . Case (II) is schematically depicted in Figure 2.2.

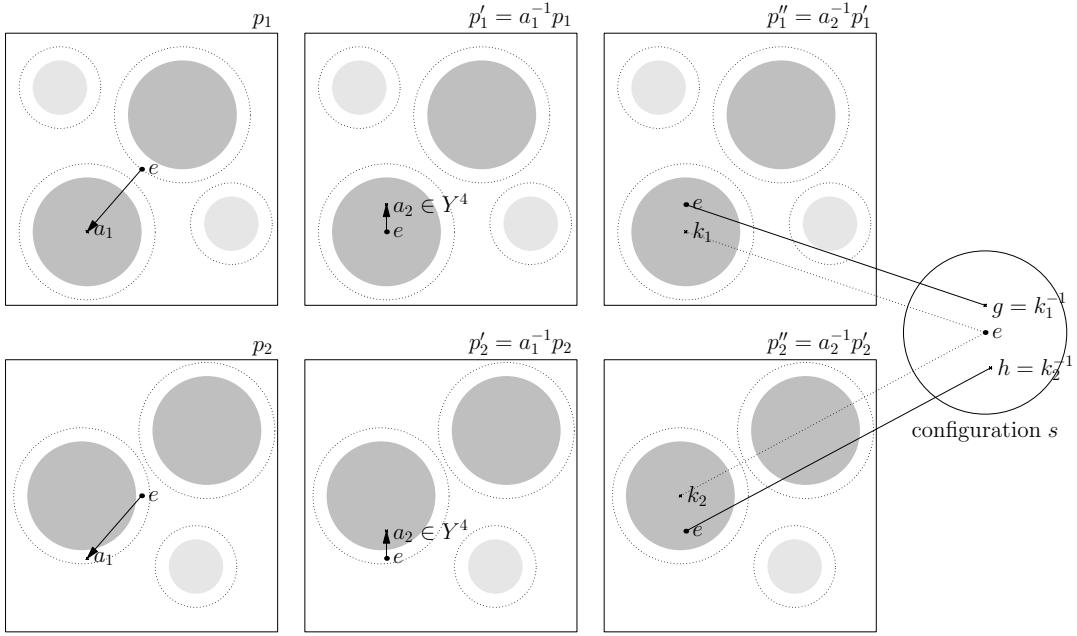


Figure 2.1: Case (I).

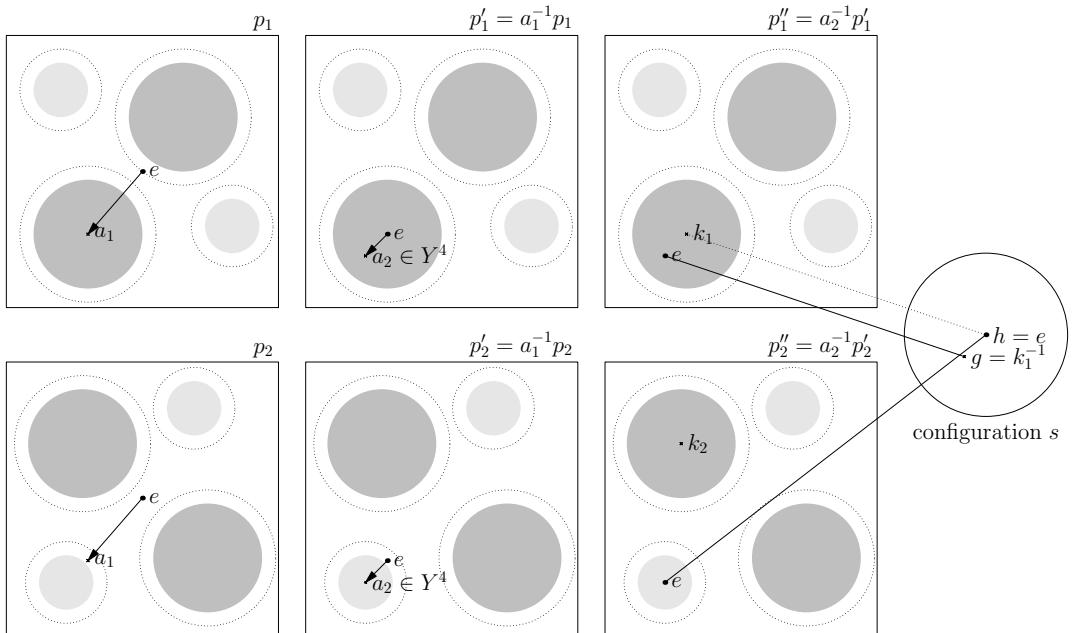


Figure 2.2: Case (II).

In both cases, we showed that there is an  $a \in G$  with  $t_1(a) = t_2(a) = 1$ . This completes the proof.  $\square$

### Proof of Proposition 2.3.4

Fix  $\epsilon > 0$  and  $X$  a finite symmetric subset of  $G$ . Without loss of generality, we may assume that  $X$  includes the identity, and is large enough so that any two configurations that agree on  $X$  have distance less than  $\epsilon$ .

Since  $T \subseteq A^G$  is a strongly irreducible shift, there is a finite symmetric  $U \subseteq G$  including the identity such that for any two subsets  $E_1, E_2 \subseteq G$  with  $E_1U \cap E_2U = \emptyset$  and any two configurations  $t_1, t_2 \in T$ , there is a configuration  $t \in T$  such that  $t$  restricted to  $E_1$  equals  $t_1$  restricted to  $E_1$ , and  $t$  restricted to  $E_2$  equals  $t_2$  restricted to  $E_2$ .

Given a shift  $S \subseteq A^G$  and a finite  $Y \subset G$ , we call a map  $p: Y \rightarrow A$  a *Y-pattern of S* if it is equal to  $s|_Y$ , the restriction of some  $s \in S$  to  $Y$ . In this case, we say that  $s$  contains the *Y-pattern p*.

By strong irreducibility of  $T$ , we can find a  $u \in T$  whose orbit  $\{gu : g \in G\}$  contains all the  $X$ -patterns of  $T$ . Furthermore, since there are only finitely many  $X$ -patterns in  $T$ , there must be a finite  $V \subset G$  (which we assume w.l.o.g. to be symmetric and contain the identity) such that  $\{gu : g \in V\}$  contains all the  $X$ -patterns of  $T$ . By making  $V$  even larger, we can assume that  $d(t, t') < \epsilon$  for any two configurations  $t, t' \in T$  that agree on  $V$ , where  $d(\cdot, \cdot)$  is the metric on  $T$ .

Let  $Z = (VU^2X)(VU^2X)^{-1}$ . By the assumption in the statement, there is a strongly irreducible  $Z$ -witness shift for  $G$ . Call this shift  $S$ .

Now, define a continuous equivariant function  $\phi: S \times T \rightarrow A^G$ . Let  $s \in S, t \in T$ . Let  $t' = \phi(s, t)$  be defined as follows, in the following cases:

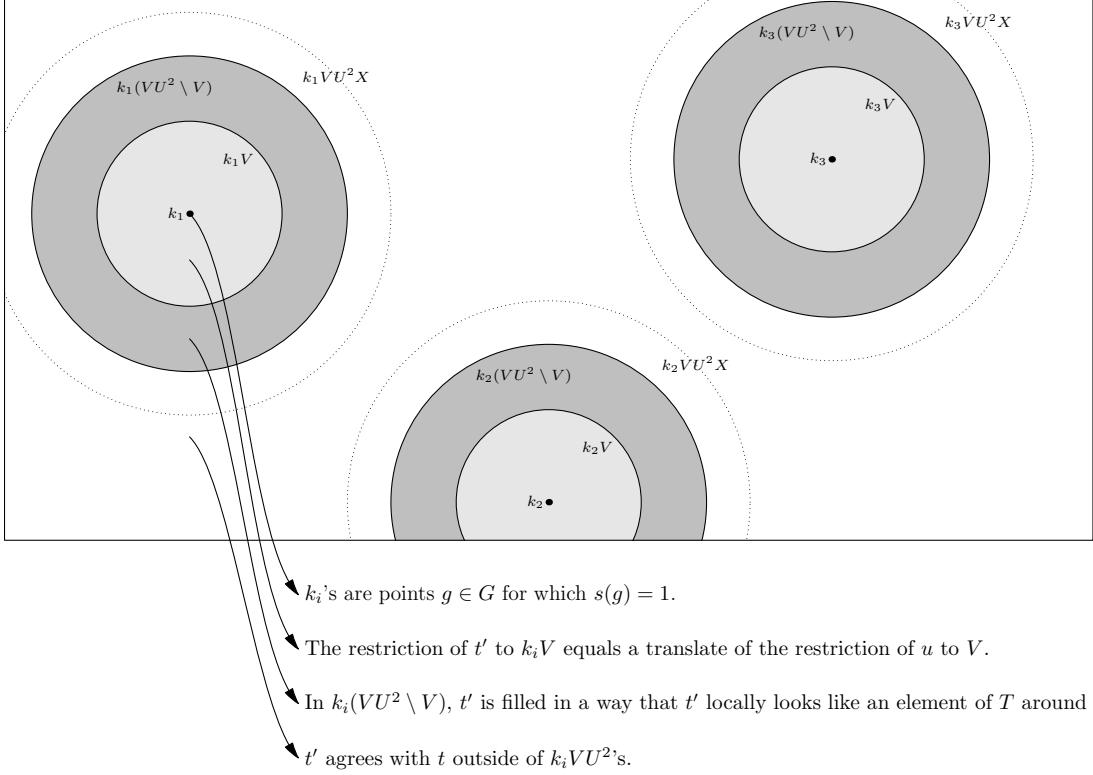
1.  $g = kh$  for some  $k \in G$  with  $s(k) = 1$  and some  $h \in V$ :

In this case, let  $t'(g) = u(h)$ .

2.  $g = kh$  for some  $k \in G$  with  $s(k) = 1$  and some  $h \in VU^2 \setminus V$ :

In this case let  $E_1 = kV$  and  $E_2 = kVU^2X^2 \setminus kVU^2$ . Since  $E_1U \cap E_2U = \emptyset$ , there is a  $v \in T$  with  $v|_{E_1} = (ku)|_{E_1}$  and  $v|_{E_2} = t|_{E_2}$ . If there are multiple choices for  $v$ , choose the  $v$  such that the restriction of  $k^{-1}v$  to  $F = VU^2X^2 \setminus VU^2$  is lexicographically least for a fixed ordering of  $F$  and a fixed ordering of  $A$ .

Let  $t'(g) = v(kh)$ .

Figure 2.3:  $t' = \phi(s, t)$  for  $s \in S$  and  $t \in T$ .

3.  $g \neq kh$  for  $s(k) = 1$  and  $h \in VU^2$ :

In this case, let  $t'(g) = t(g)$ .

Since the 1's in  $S$  are  $Z$ -apart, this leads to a well-defined definition for  $t'$ . Informally,  $t'$  is constructed from  $t$  as follows: the configuration  $t'$  mostly agrees with  $t$ . The first exceptions are the  $V$ -neighborhoods of any  $k \in G$  such that  $s(k) = 1$ , where we set  $t'$  to equal the pattern that appears around the origin in  $u$ . The second exceptions are the borders of these  $V$ -neighborhoods, where some adjustments need to be made so that—as we explain below— $t'$  and  $t$  agree on any translate of  $X$ . This construction is schematically depicted in Figure 2.3.

The following hold:

- $\phi$  is continuous and equivariant. So  $T' = \phi(S \times T)$  is a shift.
- Since strong irreducibility is closed under taking products and factors, we see that  $T'$  is strongly irreducible.

- Let  $t'_1 = \phi(s_1, t_1), t'_2 = \phi(s_2, t_2) \in T'$ . Since  $S$  is a  $(VU^2X)(VU^2X)^{-1}$ -witness shift, there is a  $g \in G$  with  $s_1(g) = s_2(g) = 1$ . So,  $t'_1|_{gV}$  and  $t'_2|_{gV}$  are both translates of  $u|_V$ , which means  $(g^{-1}t'_1)|_V = (g^{-1}t'_2)|_V$ . So from the definition of  $V$ , we get  $d(g^{-1}t'_1, g^{-1}t'_2) < \epsilon$ . Hence  $T'$  is  $\epsilon$ -proximal.
- Now we claim that the set of  $X$ -patterns of  $T'$  and  $T$  are equal.

First note that since  $u|_V$  has all the  $X$ -patterns in  $T$ , and  $u|_V$  appears in  $T'$ , we get that all the  $X$ -patterns of  $T$  appear in  $T'$ .

Now let  $t' = \phi(s, t) \in T'$  and fix an  $X$ -pattern in  $t'$ , located at  $gX$ . If  $gX$  does not meet any  $k(VU^2)$  for  $s(k) = 1$ , then  $t'|_{gX} = t|_{gX}$  and so the pattern appears in  $T$ . If, on the other hand,  $gX$  intersects  $k(VU^2)$  for some  $k$  with  $s(k) = 1$  (note that there is at most one such  $k$ ), we have  $gX \subseteq k(VU^2X^2)$ , and by the definition of  $t'$  around  $k$ , we again see that the pattern in  $gX$  appears in  $T$ .

- To see  $\epsilon$ -minimality of  $T'$ , let  $t'_1, t'_2 \in T'$ . We know that  $t'_2|_X$  is one of the  $X$ -patterns in  $T$ , so it appears somewhere in  $t'_1$ , i.e. there exists a  $g \in G$  such that  $(gt'_1)|_X$  agrees with  $t'_2|_X$ . We assumed that any two configurations that agree on  $X$  have distance less than  $\epsilon$ . So,  $d(gt'_1, t'_2) < \epsilon$ .

This concludes the proof of Proposition 2.3.4.

### Proof of Claim 2.2.4

First we prove that proximal shifts are a  $G_\delta$ . Given a shift  $S$ , an  $\epsilon > 0$  and a  $g \in G$ , let  $P_g \subset S \times S$  be the set of pairs of configurations  $s_1, s_2$  such that  $d(gs_1, gs_2) < \epsilon$ . Since  $P_g$  is the preimage of an open set under a continuous map, we have that  $P_g$  is open. Thus, whenever  $S$  is  $\epsilon$ -proximal, the collection  $\{P_g : g \in G\}$  forms an open cover of  $S \times S$  and thus, by compactness, whenever a shift is  $\epsilon$ -proximal, there is a finite subset  $X \subset G$  which suffice to demonstrate this. For each  $X \subset G$ , whether  $X$  demonstrates  $\epsilon$ -proximality is determined by the restriction of  $S$  to a finite set of elements of  $G$ . But this is exactly the definition of a clopen set in the topology on the space of shifts. Thus the set of  $\epsilon$ -proximal shifts is the union of a collection of clopen sets and is therefore open.

Now we prove that minimal shifts are a  $G_\delta$ . To do this, since minimal shifts are exactly the shifts that are  $\epsilon$ -minimal for all  $\epsilon > 0$ , it is enough to show that the set of  $\epsilon$ -minimal shifts is open. Note that by compactness of  $X$ , a shift is  $\epsilon$ -minimal iff its  $\epsilon$ -minimality is demonstrated by a finite set. Thus  $\epsilon$ -minimality is determined

by the set of  $Z$ -patterns for a finite large enough  $Z \subseteq G$ . So, as above, the set of  $\varepsilon$ -minimal shifts is a union of clopen sets, so it is open.

### Proof of Proposition 2.3.6

By Proposition 2.3.5, the minimal proximal shifts are a dense  $G_\delta$  in  $\mathcal{S}$ . It thus remains to be shown that faithfulness is also generic. Given an element  $g \in G$ , call a shift  $g$ -faithful if  $g$  acts non-trivially on the shift. It is easy to see that  $g$ -faithfulness is an open condition, and so the intersection over all non-trivial  $g \in G$ , which is faithfulness of the action of  $G$ , is a  $G_\delta$  set. It remains to show that it is dense. To do this, we show that each non-trivial  $g \in G$  acts non-trivially on every non-trivial strongly irreducible shift. Suppose  $g$  is not the identity and acts trivially on a shift  $S$ . Then all conjugates of  $g$  also act trivially on  $S$ , so that  $hs = s$  for every  $h$  a conjugate of  $g$  and  $s \in S$ . In particular,  $s(h^{-1})$  must be the same for every  $h$  a conjugate of  $g$  and every  $s \in S$ . Since  $g$  has an infinite conjugacy class, this holds for infinitely many such  $h$ . But if  $S$  is strongly irreducible and non-trivial, then there is some finite  $X \subset G$  such that, if  $h \notin X$ , then there is an  $s \in S$  such that  $s(h) \neq s(e)$ . Thus  $g$  must act non-trivially on every non-trivial strongly irreducible shift, and so we have proved the claim.

## 2.5 Thompson's Group $F$

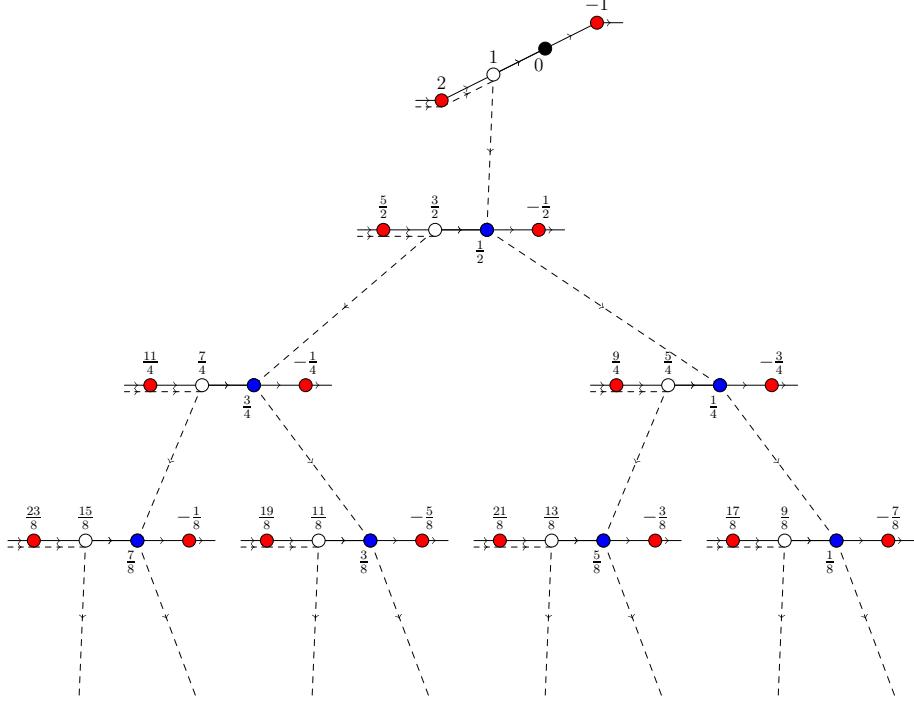
Let  $F$  denote Thompson's group  $F$ . In the representation of  $F$  as a group of piecewise linear transformations of  $\mathbb{R}$  (see, e.g., [Kai17, Section 2.C]), it is generated by  $a$  and  $b$  which are given by

$$a(x) = x - 1$$

$$b(x) = \begin{cases} x & x \leq 0 \\ x/2 & 0 \leq x \leq 2 \\ x - 1 & 2 \leq x. \end{cases}$$

The set of dyadic rationals  $\Gamma = \mathbb{Z}[\frac{1}{2}]$  is the orbit of 0. The Schreier graph of the action  $G \curvearrowright \Gamma$  with respect to the generating set  $\{a, b\}$  is shown in Figure 2.4 (see [Kai17, Section 5.A, Figure 6]). The solid lines denote the  $a$  action and the dotted lines denote the  $b$  action; self-loops (i.e., points stabilized by a generator) are omitted. This graph consists of a tree-like structure (the blue and white nodes) with infinite chains attached to each node (the red nodes).

Equipped with the product topology,  $\{-1, 1\}^\Gamma$  is a compact space on which  $F$  acts

Figure 2.4: The action of  $F$  on  $\Gamma$ .

continuously by shifts:

$$[fx](\gamma) = x(f^{-1}\gamma). \quad (2.5.1)$$

**Proposition 2.5.1.** *Let  $c_{-1}, c_{+1} \in \{-1, 1\}^\Gamma$  be the constant functions. Then for any  $x \in \{-1, 1\}^\Gamma$ , it holds that at least one of  $c_{-1}, c_{+1}$  is in the orbit closure  $\overline{Fx}$ .*

*Proof.* It is known that the action  $F \curvearrowright \Gamma$  is highly-transitive (Lemma 4.2 in [CFP96]), i.e. for every finite  $V, W \subset \Gamma$  of the same size, there exists a  $f \in F$  such that  $f(V) = W$ . Let  $x \in \{-1, 1\}^\Gamma$ . There is at least one of -1 and 1, say  $\alpha$ , for which we have infinitely many  $\gamma \in \Gamma$  with  $x(\gamma) = \alpha$ . Given a finite  $W \subset \Gamma$ , choose a  $V \subset \Gamma$  of the same size and such that  $x(\gamma) = \alpha$  for all  $\gamma \in V$ . Then there is some  $f \in F$  with  $f(V) = W$ , and so  $fx$  takes the value  $\alpha$  on  $W$ . Since  $W$  is arbitrary, we have that  $c_\alpha$  is in the orbit closure of  $x$ .  $\square$

Given  $x_1, x_2 \in \{-1, 1\}^\Gamma$ , let  $d$  be their pointwise product, given by  $d(\gamma) = x_1(\gamma) \cdot x_2(\gamma)$ . By Proposition 2.5.1, there exists a sequence  $\{f_n\}$  of elements in  $F$  such that either  $\lim_n f_n d = c_{+1}$  or  $\lim_n f_n d = c_{-1}$ . In the first case,  $\lim_n f_n x_1 = \lim_n f_n x_2$ , while in the second case  $\lim_n f_n x_1 = -\lim_n f_n x_2$ , and so this action resembles a proximal action. In fact, by identifying each  $x \in \{-1, 1\}^\Gamma$  with  $-x$ , one attains a

proximal action, and indeed we do this below. However, this action has a fixed point — the constant functions — and therefore does not suffice to prove our result. We spend the remainder of this section in deriving a new action from this one. The new action retains proximality, but does not have fixed points.

Consider the path  $(1/2, 1/4, 1/8, \dots, 1/2^n, \dots)$  in the Schreier graph of  $\Gamma$  (Figure 2.4); it starts in the top blue node and follows the dotted edges through the blue nodes on the rightmost branch of the tree. The pointed Gromov-Hausdorff limit of this sequence of rooted graphs<sup>4</sup> is given in Figure 2.5, and hence is also a Schreier graph of some transitive  $F$ -action  $F \curvearrowright F/K$ . In terms of the topology on the space  $\text{Sub}_F \subset \{0, 1\}^F$  of the subgroups of  $F$ , the subgroup  $K$  is the limit of the subgroups  $K_n$ , where  $K_n$  is the stabilizer of  $1/2^n$ . It is easy to verify that  $K$  is the subgroup of  $F$  consisting of the transformations that stabilize 0 and have right derivative 1 at 0 (although this fact will not be important). Let  $\Lambda = F/K$ .

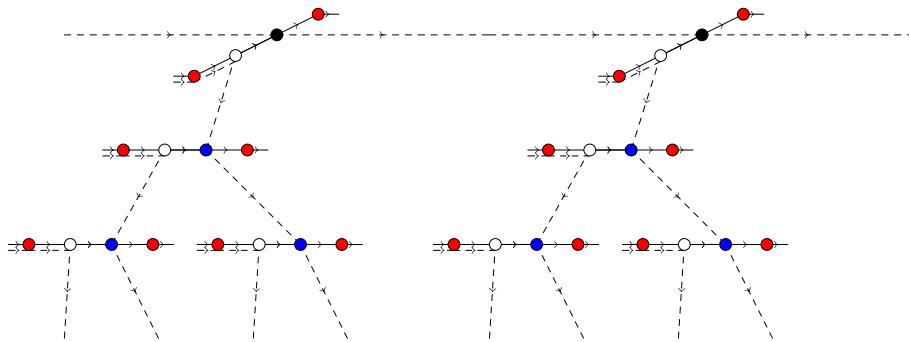


Figure 2.5: The action of  $F$  on  $\Lambda$ .

We can naturally identify with  $\mathbb{Z}$  the chain black nodes at the top of  $\Lambda$  (see Figure 2.5). Let  $\Lambda'$  be the subgraph of  $\Lambda$  in which the dotted edges connecting the black nodes have been removed. Given a black node  $n \in \mathbb{Z}$ , denote by  $T_n$  the connected component of  $n$  in  $\Lambda'$ ; this includes the black node  $n$ , the chain that can be reached from it using solid edges, and the entire tree that hangs from it. Each graph  $T_n$  is isomorphic to the Schreier graph of  $\Gamma$ , and so the graph  $\Lambda$  is a covering graph of  $\Gamma$  (in the category of Schreier graphs). Let

$$\Psi: \Lambda \rightarrow \Gamma$$

be the covering map. That is,  $\Psi$  is a graph isomorphism when restricted to each  $T_n$ , with the black nodes in  $\Lambda$  mapped to the black node  $0 \in \Gamma$ .

<sup>4</sup>The limit of a sequence of rooted graphs  $(G_n, v_n)$  is a rooted graph  $(G, v)$  if each ball of radius  $r$  around  $v_n$  in  $G_n$  is, for  $n$  large enough, isomorphic to the ball of radius  $r$  around  $v$  in  $G$  (see, e.g., [AL07, p. 1460]).

Using the map  $\Psi$ , we give names to the nodes in  $\Lambda$ . Denote the nodes in  $T_0$  as  $\{(0, \gamma) : \gamma \in \Gamma\}$  so that  $\Psi(0, \gamma) = \gamma$ . Likewise, in each  $T_n$ , denote by  $(n, \gamma)$  the unique node in  $T_n$  that  $\Psi$  maps to  $\gamma$ . Hence we identify  $\Lambda$  with

$$\mathbb{Z} \times \Gamma = \{(n, \gamma) : n \in \mathbb{Z}, \gamma \in \Gamma\}$$

and the  $F$ -action is given by

$$a(n, \gamma) = (n, a\gamma) \tag{2.5.2}$$

$$b(n, \gamma) = \begin{cases} (n, b\gamma) & \text{if } \gamma \neq 0 \\ (n+1, 0) & \text{if } \gamma = 0. \end{cases} \tag{2.5.3}$$

Equip  $\{-1, 1\}^\Lambda$  with the product topology to get a compact space. As usual, the  $F$ -action on  $\Lambda$  (given explicitly in 2.5.2 and 2.5.3) defines a continuous action on  $\{-1, 1\}^\Lambda$ .

Consider  $\pi : \{-1, 1\}^\Gamma \rightarrow \{-1, 1\}^\Lambda$ , given by  $\pi(x)(n, \gamma) = (-1)^n x(\gamma)$ . Let  $Y = \pi(\{-1, 1\}^\Gamma) \subseteq \{-1, 1\}^\Lambda$ .

**Claim 2.5.2.**  *$Y$  is compact and  $F$ -invariant.*

*Proof.*  $\pi$  is injective and continuous, so  $Y = \pi(\{-1, 1\}^\Gamma) \subseteq \{-1, 1\}^\Lambda$  is compact and isomorphic to  $\{-1, 1\}^\Gamma$ . Moreover,  $Y$  is invariant to the action of  $F$ , because

$$a^{\pm 1}\pi(x) = \pi(a^{\pm 1}x) \text{ and } b^{\pm 1}\pi(x) = \pi(b^{\pm 1}x) \text{ where } \bar{x}(\gamma) = \begin{cases} x(\gamma) & \text{if } \gamma \neq 0 \\ -x(\gamma) & \text{if } \gamma = 0 \end{cases}. \quad \square$$

The last  $F$ -space we define is  $Z$ , the set of pairs of mirror image configurations in  $Y$ :

$$Z = \{\{y, -y\} : y \in Y\}. \tag{2.5.4}$$

Now it is clear that, equipped with the quotient topology,  $Z$  is a compact and Hausdorff  $F$ -space. Furthermore, we now observe that  $Z$  admits an invariant measure. Consider the i.i.d. Bernoulli 1/2 measure on  $\{-1, 1\}^\Gamma$ , i.e. the unique Borel measure on  $\{-1, 1\}^\Gamma$ , for which

$$X_\gamma : \{-1, 1\}^\Gamma \rightarrow \{0, 1\}, \quad x \mapsto \frac{x(\gamma) + 1}{2}$$

are independent Bernoulli 1/2 random variables for all  $\gamma \in \Gamma$ . Clearly, it is an invariant measure and hence it is pushed forward to an invariant measure on  $Y$ , and then on  $Z$ . In particular, this shows that  $Z$  is not strongly proximal.

**Claim 2.5.3.** *The action  $F \curvearrowright Z$  does not have any fixed points.*

*Proof.* Pick  $\hat{y} = \{y, -y\} \in Z$ . We have  $[by](0, -1) = y(0, -1) \neq -y(0, -1)$ , so  $by \neq -y$ . Similarly,  $[by](0, 0) = y(-1, 0) = -y(0, 0) \neq y(0, 0)$ , and so  $by \neq y$ . Hence  $b\hat{y} \neq \hat{y}$ .  $\square$

**Proposition 2.5.4.** *The action  $F \curvearrowright Z$  is proximal.*

*Proof.* Let  $\hat{y}_1 = \{y_1, -y_1\}$  and  $\hat{y}_2 = \{y_2, -y_2\}$  be two points in  $Z$ , and let  $y_i = \pi(x_i)$ .

Let  $x_1 \cdot x_2$  denote the pointwise product of  $x_1$  and  $x_2$ . Now by Proposition 2.5.1, there is a sequence of elements  $\{f_n\}_n$  in  $F$  such that  $\{f_n(x_1 \cdot x_2)\}_n$  tends to either  $c_{-1}$  or  $c_{+1}$  in  $\{-1, 1\}^\Gamma$ . Since  $Y$  is compact, we may assume that  $\{f_n y_1\}_n$  and  $\{f_n y_2\}_n$  have limits, by descending to a subsequence if necessary.

It is straightforward to check that  $f_n y_1 \cdot f_n y_2 = f_n \pi(x_1) \cdot f_n \pi(x_2) = \pi(f_n x_1) \cdot \pi(f_n x_2)$ . So:

$$\begin{aligned} [f_n y_1 \cdot f_n y_2](n, \gamma) &= [\pi(f_n x_1) \cdot \pi(f_n x_2)](n, \gamma) \\ &= (-1)^{2n} [f_n x_1](\gamma) [f_n x_2](\gamma) \\ &= [f_n x_1 \cdot f_n x_2](\gamma) = [f_n(x_1 \cdot x_2)](\gamma). \end{aligned}$$

So  $\lim_n f_n y_1 = \pm \lim_n f_n y_2$ , which implies that  $\lim_n f_n \hat{y}_1 = \lim_n f_n \hat{y}_2$ .  $\square$

**Theorem 2.5.5.** *Thompson's group  $F$  is not strongly amenable.*

*Proof.* Since the space  $Z$  we constructed above is proximal (Proposition 2.5.4) and has no fixed points (Claim 2.5.3), we conclude that  $F$  has a proximal action with no fixed points, so  $F$  is not strongly amenable.  $\square$

## Chapter 3

## RANDOM WALKS AND CHOQUET-DENY GROUPS

Let  $G$  be a countable discrete group. A probability measure  $\mu$  on  $G$  is *non-degenerate* if its support generates  $G$  as a semigroup.<sup>1</sup> A function  $f: G \rightarrow \mathbb{R}$  is  $\mu$ -harmonic if  $f(k) = \sum_{g \in G} \mu(g)f(kg)$  for all  $k \in G$ . We say that the *measured group*  $(G, \mu)$  is *Liouville* if all the bounded  $\mu$ -harmonic functions are constant; this is equivalent to the triviality of the Poisson boundary  $\Pi(G, \mu)$  [Fur63b; Fur71; Fur73] (also called the Furstenberg-Poisson boundary; for formal definitions see also, e.g., Furstenberg and Glasner [FG10], Bader and Shalom [BS06], or a survey by Furman [Fur02]).

When  $G$  is non-amenable,  $(G, \mu)$  is not Liouville for every non-degenerate  $\mu$  [Fur73]. Conversely, when  $G$  is amenable, then there exists some non-degenerate  $\mu$  such that  $(G, \mu)$  is Liouville, as shown by Kaimanovich and Vershik [KV83] and Rosenblatt [Ros81]. It is natural to ask for which groups  $G$  it holds that  $(G, \mu)$  is Liouville for *every* non-degenerate  $\mu$ . We call such groups *Choquet-Deny* groups; as we discuss later, there are a few variants of this definition (see, e.g., [Gla76a; Gla76b; Gui73], or [JR07]), which, however, we show to be equivalent.

The classical Choquet-Deny Theorem (which was first proved for  $\mathbb{Z}^d$  by Blackwell [Bla55]) states that abelian groups are Choquet-Deny [CD60]; the same holds for virtually nilpotent groups [DM61]. There are many examples of amenable groups that are not Choquet-Deny: first examples of such groups<sup>2</sup> are due to Kaimanovich [Kai83] and Kaimanovich and Vershik [KV83], and include locally finite groups; Erschler shows that finitely generated solvable groups that are not virtually nilpotent are not Choquet-Deny [Ers04b], and that even some groups of intermediate growth are not Choquet-Deny [Ers04a]. Kaimanovich and Vershik [KV83, p. 466] conjecture that: “Given an exponential group  $G$ , there exists a symmetric (nonfinitary, in general) measure with non-trivial boundary.” See Bartholdi and Erschler [BE17] for additional related results and further references and discussion.

Our main result in this chapter is a characterization of Choquet-Deny groups. We say that  $\mu$  is *fully supported* if  $\text{supp } \mu = G$ ; obviously this implies that  $\mu$  is non-

<sup>1</sup>In the context of Markov chains, such measures are called *irreducible*.

<sup>2</sup>In the Lie group setting, an example of an amenable group that is not Choquet-Deny was already known to Furstenberg [Fur63b].

degenerate.

**Theorem 2.** *A countable discrete group  $G$  is Choquet-Deny if and only if it has no ICC quotients, i.e. it is hyper-FC. Moreover, when  $G$  does have an ICC quotient, then there exists a fully supported, symmetric, finite entropy probability measure  $\mu$  on  $G$  such that  $(G, \mu)$  is not Liouville. In particular, if  $G$  is finitely generated, then it is Choquet-Deny if and only if it is virtually nilpotent.*

That a group with no ICC quotients is Choquet-Deny was shown by Jaworski [Jaw04, Theorem 4.8]. Our contribution is therefore in the proof of the converse.

Recall from §1.1 that a finitely generated group is hyper-FC if and only if it is virtually nilpotent [DM56; McL56]; this implies the result in Theorem 2 for finitely generated groups. Since finitely generated groups of exponential growth are not virtually nilpotent, Theorem 2 implies that the above mentioned conjecture of Kaimanovich and Vershik [KV83] is correct.

### Different Possible Definitions of Choquet-Deny Groups

Our definition of Choquet-Deny groups is not the usual one, which states that a group is Choquet-Deny if  $(G, \mu)$  is Liouville for every *adapted* measure  $\mu$ , where  $\mu$  is called adapted if its support generates  $G$  as a *group* (rather than as a semigroup, as in the non-degenerate case) [Gla76a; Gla76b; Gui73]. Yet another definition used in the literature requires that for *every*  $\mu$ , every bounded  $\mu$ -harmonic function is constant on the left cosets of  $G_\mu$ , where  $G_\mu$  is the subgroup of  $G$  generated by the support of  $\mu$  [JR07].

While a priori these are different definitions, they are equivalent, as demonstrated by our result and by Jaworski's Theorem 4.8 in [Jaw04]. Jaworski's result shows that groups with no ICC quotients are Choquet-Deny according to any of these definitions. Since our construction of  $\mu$  with a non-trivial boundary yields measures that are supported on all of  $G$  (hence non-degenerate, hence adapted), it shows that groups with ICC quotients are not Choquet-Deny according to any of these definitions. Moreover, our result shows that the class of Choquet-Deny groups (whether defined with adapted or with non-degenerate measures) is closed under taking subgroups, which, to the best of our knowledge, was also not previously known.

### Proof of Theorem 2

In the remaining of this chapter, unless stated otherwise, we will assume that all groups are countable and discrete. Recall that a probability measure  $\mu$  on  $G$  is symmetric if  $\mu(g) = \mu(g^{-1})$  for all  $g \in G$ . Its Shannon entropy (or just entropy) is  $H(\mu) = -\sum_{g \in G} \mu(g) \log \mu(g)$ .

Our Theorem 2 is a direct consequence of [Jaw04, Theorem 4.8], which proves it for the case of groups with no ICC quotients, and of the following proposition, which handles the case of groups with ICC quotients.

**Proposition 3.0.1.** *Let  $G$  be a group with an ICC quotient. Then there exists a fully-supported, symmetric, finite entropy probability measure  $\mu$  on  $G$  such that  $\Pi(G, \mu)$  is non-trivial.*

The main technical effort in the proof of Proposition 3.0.1 is in the proof of the following proposition.

**Proposition 3.0.2.** *Let  $G$  be an amenable ICC group. For every  $h \in G \setminus \{e\}$ , there exists a fully supported, symmetric, finite entropy probability measure  $\mu$  such that*

$$\lim_{m \rightarrow \infty} \|h\mu^{*m} - \mu^{*m}\| > 0. \quad (3.0.1)$$

Here  $\mu^{*m}$  is the  $m$ -fold convolution  $\mu * \dots * \mu$ . We will prove this Proposition later, and now turn to the proof of Proposition 3.0.1.

*Proof of Proposition 3.0.1.* The case of non-amenable  $G$  is known, so assume that  $G$  is amenable and has an ICC quotient  $Q$ . Let  $h$  be a non-identity element of  $Q$ . Applying Proposition 3.0.2 to  $Q$  and  $h$  yields a finite entropy, symmetric measure  $\bar{\mu}$  on  $Q$  that is fully supported, and satisfies (3.0.1).

Since  $\bar{\mu}$  has full support and satisfies (3.0.1), it follows from [Gla76a, Theorem 2] that  $(Q, \bar{\mu})$  has a non-trivial Poisson boundary. Let  $\mu$  be any symmetric, finite entropy non-degenerate probability measure on  $G$  that is projected to  $\bar{\mu}$ ; the existence of such a  $\mu$  is straightforward. Then  $(G, \mu)$  has a non-trivial Poisson boundary.  $\square$

### 3.1 Switching Elements

Here we introduce two notions: switching elements and super-switching elements. We will use these notions in the proof of Proposition 3.0.2.

**Definition 3.1.1.** *Let  $X$  be a finite symmetric subset of a group  $G$ .*

- We call  $g \in G$  a switching element for  $X$  if

$$X \cap gXg^{-1} \subseteq \{e\}.$$

- We call  $g \in G$  a super-switching element for  $X$  if

$$X \cap (gXg \cup gXg^{-1} \cup g^{-1}Xg \cup g^{-1}Xg^{-1}) \subseteq \{e\}.$$

Note that since  $X$  is symmetric,  $g \in G$  is a switching element for  $X$  if and only if  $g^{-1}$  is a switching element for  $X$ .

**Claim 3.1.2.** *Let  $X$  be a finite symmetric subset of a group  $G$  and let  $g \in G$  be a super-switching element for  $X$ . If  $g^{w_1}xg^{w_2} = y$  for  $x, y \in X$  and  $w_1, w_2 \in \{-1, +1\}$ , then  $x = y = e$ .*

*Proof.* Let  $g^{w_1}xg^{w_2} = y$  for  $x, y \in X$  and  $w_1, w_2 \in \{-1, +1\}$ . Since

$$y = g^{w_1}xg^{w_2} \in (gXg \cup gXg^{-1} \cup g^{-1}Xg \cup g^{-1}Xg^{-1})$$

and  $y \in X$ , it follows from the definition of a super-switching element for  $X$  that  $y = e$ .

From  $g^{w_1}xg^{w_2} = y$ , we get  $g^{-w_1}yg^{-w_2} = x$ . So, by symmetry, the same argument shows  $x = e$ .  $\square$

**Proposition 3.1.3.** *Let  $G$  be a discrete (not necessarily countable) amenable ICC group, and let  $X$  be a finite symmetric subset of  $G$ . The set of super-switching elements for  $X$  is infinite.*

*Proof of Proposition 3.1.3.* Fix an invariant finitely additive probability measure  $d$  on  $G$ . For  $A \subseteq G$ , we call  $d(A)$  the density of  $A$ . We will need the fact that infinite index subgroups have zero density, and that  $d(A) = 0$  for every finite subset  $A \subset G$ .

Let  $C_G(x)$  be the centralizer of a non-identity  $x \in X$ . Then, since  $X$  is finite, there is a finite set of cosets of  $C_G(x)$  that includes all  $g \in G$  such that  $g^{-1}xg \in X$ . So, non-switching elements for  $X$  are in the union of finitely many cosets of subgroups with infinite index, since  $G$  is ICC. This means that the set of non-switching elements for  $X$  has zero density, and so the set  $S$  of switching elements for  $X$  has density one.

Let  $T$  be the set of all super-switching elements for  $X$ . Let  $A \subseteq G$  be the set of involutions  $\{g \in G \mid g^2 = e\}$ .

If  $d(A) > 0$ , then  $d(A \cap S) > 0$ . On the other hand, for any  $g \in A \cap S$ , since  $g$  is switching for  $X$  and  $g^{-1} = g$ ,  $g$  is super-switching for  $X$ . Hence  $A \cap S \subseteq T$ . This shows that if  $d(A) > 0$ , then  $d(T) \geq d(A \cap S) > 0$ , and so we are done.

So, we can assume that  $d(A) = 0$ . For any  $x, y \in X$ , let  $S_{x,y} = \{g \in S \mid gxg = y\}$ . Note that

$$T = S \setminus \bigcup_{\substack{x,y \in X \\ (x,y) \neq (e,e)}} S_{x,y}.$$

It is thus enough to be shown that each  $S_{x,y}$  has zero density when  $(x, y) \neq (e, e)$ . So assume for the sake of contradiction that  $d(S_{x,y}) > 0$ . Fix  $g \in S_{x,y}$ . We have the following for all  $h \in g^{-1}S_{x,y}$ .

$$\begin{aligned} gxg = y = ghxgh &\implies (xg) = h(xg)h \\ &\implies (xg)^{-1}h^{-1}(xg) = h \\ &\implies h = (xg)^{-1}h^{-1}(xg) \\ &= (xg)^{-1}[(xg)^{-1}h^{-1}(xg)]^{-1}(xg) \\ &= (xg)^{-2}h(xg)^2 \\ &\implies h \text{ is in the centralizer of } (xg)^2. \end{aligned}$$

So, the centralizer of  $(xg)^2$  includes  $g^{-1}S_{x,y}$ , which has a positive density. So, the centralizer of  $(xg)^2$  has finite index. This implies that  $(xg)^2 = e$ , because in an ICC group only the identity can have a finite index centralizer. Hence  $xg \in A$  for all  $g \in S_{x,y}$ . So  $xS_{x,y} \subseteq A$ . Hence  $S_{x,y}$  also has zero density, which is a contradiction.  $\square$

### 3.2 A Heavy-Tailed Probability Distribution on $\mathbb{N}$

Here we state and prove a lemma about the existence of a probability distribution on  $\mathbb{N} = \{1, 2, \dots\}$  such that infinite i.i.d. samples from this measure have certain properties. We will use this distribution in the proof of Proposition 3.0.2.

**Lemma 3.2.1.** *Let  $p$  be the following probability measure on  $\mathbb{N}$ :  $p(n) = cn^{-5/4}$ , where  $1/c = \sum_{n=1}^{\infty} n^{-5/4}$ . Then  $p$  has finite entropy and the following property: for any  $\varepsilon > 0$ , there exist constants  $K_{\varepsilon}, N_{\varepsilon} \in \mathbb{N}$  such that for any natural number  $m \geq K_{\varepsilon}$ , there exists an  $E_{\varepsilon,m} \subseteq \mathbb{N}^m$  such that:*

1.  $p^{\times m}(E_{\varepsilon,m}) \geq 1 - \varepsilon$ , where  $p^{\times m}$  is the  $m$ -fold product measure  $p \times \dots \times p$ .
2. For any  $s = (s_1, \dots, s_m) \in E_{\varepsilon,m}$ , the maximum of  $\{s_1, \dots, s_{K_{\varepsilon}}\}$  is at most  $N_{\varepsilon}$ .

3. For any  $s = (s_1, \dots, s_m) \in E_{\varepsilon, m}$  and for any  $K_\varepsilon \leq k \leq m$ , the maximum of  $\{s_1, \dots, s_k\}$  is at least  $k^2$ .
4. For any  $s = (s_1, \dots, s_m) \in E_{\varepsilon, m}$  and for any  $K_\varepsilon \leq k \leq m$ , the maximum of  $\{s_1, \dots, s_k\}$  appears in  $(s_1, \dots, s_k)$  only once.

*Proof.* It is straightforward to see that  $p$  has finite entropy.

Let  $s = (s_1, s_2, \dots) \in \mathbb{N}^\infty$  have distribution  $p^{\times\infty}$ ; i.e.,  $s$  is a sequence of i.d.d. random variables with distribution  $p$ . Since each  $s_i$  has distribution  $p$ , for each  $n \in \mathbb{N}$ , we have:

$$\mathbb{P}[s_i \geq n] = \sum_{m=n}^{\infty} p(m) = c \sum_{m=n}^{\infty} m^{-5/4} \geq c \int_n^{\infty} x^{-5/4} dx = 4cn^{-1/4}. \quad (3.2.1)$$

For  $k \geq 1$ , let

$$M_k := \max\{s_1, \dots, s_k\},$$

and let

$$\text{next}(k) := \min\{i > k \mid s_i \geq M_k\}.$$

In words,  $\text{next}(k)$  is the first index  $i > k$  for which  $s_i$  matches or exceeds  $M_k$ .

We first show that with probability one,  $M_k \geq k^2$  for all  $k$  large enough. To this end, let  $A_k$  be the event that  $M_k < k^2$ . We have:

$$\begin{aligned} \mathbb{P}[A_k] &= \mathbb{P}[s_i < k^2 \ \forall i \in \{1, \dots, k\}] \\ &= (1 - \mathbb{P}[s_1 < k^2])^k \\ &\leq (1 - 4c(k^2)^{-1/4})^k \\ &\leq e^{-4ck^{1/2}}. \end{aligned}$$

Since the sum of these probabilities is finite, by Borel-Cantelli we get that

$$\mathbb{P}[A_k \text{ infinitely often}] = 0.$$

Hence  $M_k \geq k^2$  for all  $k$  large enough, almost surely. Furthermore, the expectation of  $1/M_k$  is small:

$$\mathbb{E}\left[\frac{1}{M_k}\right] = \mathbb{E}\left[\frac{1}{M_k} \middle| A_k\right] \mathbb{P}[A_k] + \mathbb{E}\left[\frac{1}{M_k} \middle| \neg A_k\right] \mathbb{P}[\neg A_k] \leq e^{-4ck^{1/2}} + \frac{1}{k^2}. \quad (3.2.2)$$

Next, we show that, with probability one,  $s_{\text{next}(k)} > M_k$  for all  $k$  large enough. That is, for large enough  $k$ , the first time that  $M_k$  is matched or exceeded after index  $k$ , it is in fact exceeded.

Let  $B_k$  be the event that  $s_{\text{next}(k)} = M_k$ . We would like to show that this occurs only finitely often. Note that

$$\begin{aligned}\mathbb{P}[B_k|M_k] &= \mathbb{P}[s_{\text{next}(k)} = M_k|M_k] \\ &= \sum_{i=k+1}^{\infty} \mathbb{P}[s_i = M_k, \text{next}(k) = i|M_k].\end{aligned}$$

Applying the definition of  $\text{next}(k)$  yields

$$\mathbb{P}[B_k|M_k] = \sum_{i=k+1}^{\infty} \mathbb{P}[s_i = M_k, s_{k+1}, \dots, s_{i-1} < M_k|M_k].$$

By the independence of the  $s_i$ 's, we can write this as

$$\begin{aligned}\mathbb{P}[B_k|M_k] &= \sum_{i=k+1}^{\infty} \mathbb{P}[s_i = M_k|M_k] \prod_{n=1}^{i-(k+1)} \mathbb{P}[s_{k+n} < M_k|M_k] \\ &= \sum_{i=k+1}^{\infty} \frac{c}{M_k^{5/4}} \mathbb{P}[s_{k+1} < M_k|M_k]^{i-(k+1)}.\end{aligned}$$

By (3.2.1),  $\mathbb{P}[s_{k+1} < M_k|M_k] \leq 1 - 4cM_k^{-1/4}$ . Hence

$$\mathbb{P}[B_k|M_k] \leq \frac{c}{M_k^{5/4}} \cdot \frac{1}{4cM_k^{-1/4}} = \frac{1}{4M_k}.$$

Using (3.2.2), it follows that

$$\mathbb{P}[B_k] = \mathbb{E}[\mathbb{P}[B_k|M_k]] \leq \mathbb{E}\left[\frac{1}{4M_k}\right] \leq \frac{1}{4}e^{-4ck^{1/2}} + \frac{1}{4k^2}.$$

Hence  $\sum_k \mathbb{P}[B_k] < \infty$ , and so by Borel-Cantelli  $B_k$  occurs only finitely often.

Since  $A_k$  and  $B_k$  both occur for only finitely many  $k$ , the (random) index  $\text{ind}'$  at which they stop occurring is almost surely finite, and is given by

$$\text{ind}' = \min\{\ell \in \mathbb{N} : s \notin A_k \cup B_k \text{ for all } k \geq \ell\}.$$

Let

$$\text{ind} = \text{next}(\text{ind}').$$

Hence for  $k \geq \text{ind}$ ,  $M_k \geq k^2$  and  $M_k$  appears in  $(s_1, \dots, s_k)$  only once.

Fix  $\varepsilon > 0$ . Since  $\text{ind}$  is almost surely finite, then for large enough constants  $K_\varepsilon \in \mathbb{N}$  and  $N_\varepsilon \in \mathbb{N}$ , the event

$$E_\varepsilon = \{\text{ind} \leq K_\varepsilon \text{ and } M_{K_\varepsilon} \leq N_\varepsilon\}$$

has probability at least  $1 - \varepsilon$ , and additionally, conditioned on  $E_\varepsilon$ , it holds that  $k \geq \text{ind}$  for all  $k \geq K_\varepsilon$ , and hence  $M_k \geq k^2$  and  $M_k$  appears in  $(s_1, \dots, s_k)$  only once. Therefore, if for  $m \geq K_\varepsilon$  we let  $E_{\varepsilon,m}$  be the projection of  $E_\varepsilon$  to the first  $m$  coordinates, then  $E_{\varepsilon,m}$  satisfies the desired properties.  $\square$

### 3.3 Proof of Proposition 3.0.2

Let  $\frac{1}{8} > \varepsilon > 0$ . Let  $p, K_\varepsilon \in \mathbb{N}, N_\varepsilon \in \mathbb{N}$ , and  $E_{\varepsilon,m} \subseteq \mathbb{N}^m$  be the probability measure, the constants, and the events from Lemma 3.2.1. To simplify notation, let  $N = N_\varepsilon$  and  $K = K_\varepsilon$ .

Let  $G = \{a_1, a_2, \dots\}$ , where  $a_1 = a_2 = \dots = a_N = e$ . We define  $(g_n)_n, (A_n)_n, (B_n)_n$  and  $(C_n)_n$  recursively. Given  $g_1, \dots, g_n$ , let  $A_n = \{g_n, g_n^{-1}, a_n, a_n^{-1}\}$  and  $B_n = \cup_{i \leq n} A_i$ . Denote  $C_n = B_n \cup \{h^{-1}, h\}$ . Note that  $A_n, B_n$ , and  $C_n$  are finite and symmetric for any  $n \in \mathbb{N}$ . Let  $g_1 = g_2 = \dots = g_N = e$ . For  $n+1 > N$ , given  $C_n$ , let  $g_{n+1} \in G$  be a super-switching element for  $(C_n)^{2n+1}$  which is not in  $(C_n)^{8n+1}$ . The existence of such a super-switching element is guaranteed by Proposition 3.1.3 and the facts that  $(C_n)^{2n+1}$  is a finite symmetric subset of  $G$  and that  $(C_n)^{8n+1}$  is finite.

For  $n \in \mathbb{N}$ , define a symmetric probability measure  $\mu_n$  on  $A_n$  by

$$\mu_n = \varepsilon 2^{-n} \left( \frac{1}{2} \delta_{a_n} + \frac{1}{2} \delta_{a_n^{-1}} \right) + (1 - \varepsilon 2^{-n}) \left( \frac{1}{2} \delta_{g_n} + \frac{1}{2} \delta_{g_n^{-1}} \right).$$

Here  $\delta_g$  is the point mass on  $g \in G$ . Finally, let

$$\mu = \sum_{n=1}^{\infty} p(n) \mu_n.$$

Obviously  $\mu$  is symmetric and  $\text{supp } \mu = G$ . Since  $p$  has finite entropy and each  $\mu_n$  has support of size at most 4, it follows easily that  $\mu$  has finite entropy.

We want to show that

$$\lim_{m \rightarrow \infty} \|h\mu^{*m} - \mu^{*m}\| > 0.$$

Fix  $m \in \mathbb{N}$  larger than  $K$  and  $N$ . For each  $n \in \mathbb{N}$ , define  $f_n : \{1, 2, 3, 4\} \rightarrow A_n$  by

$$f_n(1) = a_n, \quad f_n(2) = a_n^{-1}, \quad f_n(3) = g_n, \quad f_n(4) = g_n^{-1},$$

and define  $\nu_n : \{1, 2, 3, 4\} \rightarrow [0, 1]$  by

$$\nu_n(1) = \nu_n(2) = \frac{1}{2}\varepsilon 2^{-n}, \quad \nu_n(3) = \nu_n(4) = \frac{1}{2}(1 - \varepsilon 2^{-n}).$$

Let

$$\Omega = \{(s, w) \mid s \in \mathbb{N}^m, w \in \{1, 2, 3, 4\}^m\}.$$

We define the measure  $\eta$  on the countable set  $\Omega$  by specifying its values on the singletons:

$$\eta(\{(s, w)\}) = p^{\times m}(s) \nu_{s_1}(w_1) \nu_{s_2}(w_2) \dots \nu_{s_m}(w_m).$$

It follows immediately from this definition that  $\eta$  is a probability measure.

Define  $r : \Omega \rightarrow G$  by

$$r(s, w) = f_{s_1}(w_1) f_{s_2}(w_2) \dots f_{s_m}(w_m).$$

It is not difficult to see that  $r_*\eta = \mu^{\times m}$ , and so we need to show that  $\|hr_*\eta - r_*\eta\|$  is uniformly bounded away from zero for  $m$  larger than  $K$  and  $N$ .

Recall that  $E_{\varepsilon, m} \subseteq \mathbb{N}^m$  is the event given by Lemma 3.2.1. Fix  $s \in E_{\varepsilon, m}$ . Define

$$\begin{aligned} i_{s,1} &= \min\{j \in \{1, \dots, m\} \mid s_j > N\}, \\ i_{s,2} &= \min\{j > i_{s,1} \mid s_j \geq s_{i_{s,1}}\}, \\ &\vdots \\ i_{s,l(s)} &= \min\{j > i_{s,l(s)-1} \mid s_j \geq s_{i_{s,l(s)-1}}\}. \end{aligned}$$

Note that by the second property of  $E_{\varepsilon, m}$  in Lemma 3.2.1, we know that

$$K < i_{s,1} < i_{s,2} < \dots < i_{s,l(s)},$$

and by the fourth property,

$$N < s_{i_{s,1}} < s_{i_{s,2}} < \dots < s_{i_{s,l(s)}} = \max\{s_1, \dots, s_m\}.$$

Let

$$W_{\varepsilon}^s = \{w \in \{1, 2, 3, 4\}^m \mid \forall k \leq l(s) w_{i_{s,k}} = 3, 4\}.$$

For  $s \in \mathbb{N}^m$ , let  $\eta_s$  be the measure  $\eta$ , conditioned on the first coordinate equalling  $s$ .

I.e., let

$$\eta_s(A) = \frac{\eta(A \cap \Omega^s)}{\eta(\Omega^s)},$$

where  $\Omega^s = \{s\} \times \{1, 2, 3, 4\}^m \subseteq \Omega$ .

Then

$$\begin{aligned}
\eta_s(\{s\} \times W_\varepsilon^s) &= 1 - \eta_s(\{w_{i_{s,1}} = 1, 2; \text{ or } w_{i_{s,2}} = 1, 2; \dots; \text{ or } w_{i_{s,l(s)}} = 1, 2\}) \\
&\geq 1 - \sum_{k=1}^{l(s)} \eta_s(\{w_{i_{s,k}} = 1, 2\}) \\
&= 1 - \sum_{k=1}^{l(s)} \varepsilon 2^{-s_{i_{s,k}}} \\
&\geq 1 - \sum_{j=1}^{\infty} \varepsilon 2^{-j} \\
&= 1 - \varepsilon,
\end{aligned}$$

where the first inequality follows from the union bound, and the last inequality holds since  $s_{i_{s,1}} < s_{i_{s,2}} < \dots < s_{i_{s,l(s)}}$ .

Finally, let

$$\Omega_\varepsilon = \{(s, w) \in \Omega \mid s \in E_{\varepsilon, m}, w \in W_\varepsilon^s\}.$$

By the above, and since  $\eta(E_{\varepsilon, m} \times \{1, 2, 3, 4\}^m) \geq 1 - \varepsilon$  by Lemma 3.2.1, we have shown that

$$\eta(\Omega_\varepsilon) \geq (1 - \varepsilon)(1 - \varepsilon) > 1 - 2\varepsilon.$$

**Claim 3.3.1.** *For any  $\alpha, \beta \in \Omega_\varepsilon$ , we have  $hr(\alpha) \neq r(\beta)$ .*

We prove this claim after we finish the proof of the Proposition.

Let  $\eta_1$  be equal to  $\eta$  conditioned on  $\Omega_\varepsilon$ , and  $\eta_2$  be equal to  $\eta$  conditioned on the complement of  $\Omega_\varepsilon$ . We have  $\eta = \eta(\Omega_\varepsilon)\eta_1 + (1 - \eta(\Omega_\varepsilon))\eta_2$ , and by the above claim, we know  $\|hr_*\eta_1 - r_*\eta_1\| = 2$ . So for  $m$  larger than  $K$  and  $N$

$$\begin{aligned}
\|h\mu^{*m} - \mu^{*m}\| &= \|hr_*\eta - r_*\eta\| \\
&= \|\eta(\Omega_\varepsilon)(hr_*\eta_1 - r_*\eta_1) + (1 - \eta(\Omega_\varepsilon))(hr_*\eta_2 - r_*\eta_2)\| \\
&\geq \eta(\Omega_\varepsilon) \|hr_*\eta_1 - r_*\eta_1\| - 2(1 - \eta(\Omega_\varepsilon)) \\
&\geq 2(1 - 2\varepsilon) - 2(2\varepsilon) = 2 - 8\varepsilon,
\end{aligned}$$

which is uniformly bounded away from zero since  $\varepsilon < \frac{1}{8}$ . Since  $\|h\mu^{*m} - \mu^{*m}\|$  is a decreasing sequence, this completes the proof of Proposition 3.0.2.

*Proof of Claim 3.3.1.* Let  $\alpha = (s, w)$ ,  $\beta = (t, v) \in \Omega_\varepsilon$ . Hence  $\max\{K, N\} < m$ ,  $s \in E_{\varepsilon, m}$ ,  $t \in E_{\varepsilon, m}$ ,  $w \in W_\varepsilon^s$ , and  $v \in W_\varepsilon^t$ . Assume that  $hr(\alpha) = r(\beta)$ . So, we have

$$h f_{s_1}(w_1) \cdots f_{s_m}(w_m) = f_{t_1}(v_1) \cdots f_{t_m}(v_m).$$

Let  $K < i_1 < i_2 < \cdots < i_{l(s)}$  and  $K < j_1 < j_2 < \cdots < j_{l(t)}$  be the indices we defined for  $s$  and  $t$  in the proof of Proposition 3.0.2. We remind the reader that the unique maximum of  $(s_1, \dots, s_m)$  is attained at  $i_{l(s)}$ , with a corresponding statement for  $(t_1, \dots, t_m)$  and  $j_{l(t)}$ . So we have

$$\begin{aligned} & h \overbrace{f_{s_1}(w_1) \cdots f_{s_{i_{l(s)}-1}}(w_{i_{l(s)}-1})}^{b_1} f_{s_{i_{l(s)}}}(w_{i_{l(s)}}) \overbrace{f_{s_{i_{l(s)}+1}}(w_{i_{l(s)}+1}) \cdots f_{s_m}(w_m)}^{b_2} \\ &= \underbrace{f_{t_1}(v_1) \cdots f_{t_{j_{l(t)}-1}}(v_{j_{l(t)}-1})}_{c_1} f_{t_{j_{l(t)}}}(v_{j_{l(t)}}) \underbrace{f_{t_{j_{l(t)}+1}}(v_{j_{l(t)}+1}) \cdots f_{t_m}(v_m)}_{c_2}. \end{aligned}$$

Let  $p = s_{i_{l(s)}} = \max\{s_1, \dots, s_m\}$  and  $q = t_{j_{l(t)}} = \max\{t_1, \dots, t_m\}$ . Since  $w \in W_\varepsilon^s$  and  $v \in W_\varepsilon^t$ , we know  $f_{s_{i_{l(s)}}}(w_{i_{l(s)}}) = g_p^{\pm 1}$  and  $f_{t_{j_{l(t)}}}(v_{j_{l(t)}}) = g_q^{\pm 1}$ , so

$$hb_1 g_p^{\pm 1} b_2 = c_1 g_q^{\pm 1} c_2. \quad (3.3.1)$$

Since  $p = \max\{s_1, \dots, s_m\}$ , and since  $m \geq K$ , we know that  $m \leq m^2 \leq p$ . So  $b_1, b_2 \in (B_{p-1})^{p-1} \subseteq (C_{p-1})^{p-1}$ . Similarly,  $c_1, c_2 \in (C_{q-1})^{q-1}$ .

Consider the case that  $p > q$ . Then  $c_1, c_2, g_q^{\pm 1} \in (C_q)^q \subseteq (C_{p-1})^{p-1}$ . Hence  $g_p^{\pm 1} = [b_1^{-1}]h^{-1}[c_1 g_q^{\pm 1} c_2 b_2^{-1}]$  by (3.3.1), and so

$$g_p \in (C_{p-1})^{4(p-1)}\{h, h^{-1}\}(C_{p-1})^{4(p-1)} \subseteq (C_{p-1})^{8(p-1)+1},$$

which is a contradiction with our choice of  $g_p$ , since  $p > N$ . Similarly, if  $p < q$ , we get a contradiction. So we can assume that  $p = q$ .

If  $p = q$ , then by (3.3.1) we have

$$hb_1 g_p^{\pm 1} b_2 = c_1 g_p^{\pm 1} c_2,$$

and  $c_1, c_2, b_1, b_2 \in (C_{p-1})^{p-1}$ . So, for  $x = c_1^{-1}hb_1 \in (C_{p-1})^{2(p-1)+1}$ , we have  $g_p^{\pm 1}xg_p^{\pm 1} = c_2 b_2^{-1} \in (C_{p-1})^{2(p-1)} \subseteq (C_{p-1})^{2(p-1)+1}$ . By the fact that  $g_p$  is a super-switching element for  $(C_{p-1})^{2(p-1)+1}$  and from Claim 3.1.2, we get that  $x$  is the identity.

So  $hb_1 = c_1$ , i.e.

$$h f_{s_1}(w_1) \cdots f_{s_{i_{l(s)}-1}}(w_{i_{l(s)}-1}) = f_{t_1}(v_1) \cdots f_{t_{j_{l(t)}-1}}(v_{j_{l(t)}-1}).$$

By the exact same argument, we can see that this leads to a contradiction unless

$$h f_{s_1}(w_1) \cdots f_{s_{i_{l(s)-1}-1}}(w_{i_{l(s)-1}-1}) = f_{t_1}(v_1) \cdots f_{t_{j_{l(t)-1}-1}}(v_{j_{l(t)-1}-1}).$$

And again, this leads to a contradiction unless

$$h f_{s_1}(w_1) \cdots f_{s_{i_{l(s)-2}-1}}(w_{i_{l(s)-2}-1}) = f_{t_1}(v_1) \cdots f_{t_{j_{l(t)-2}-1}}(v_{j_{l(t)-2}-1}).$$

Note that if  $l(s) \neq l(t)$ , at some point in this process we get that either all the  $s_i$ 's or all the  $t_i$ 's are at most  $N$  while the other string has characters strictly greater than  $N$ . This leads to a contradiction similar to the case  $p \neq q$ , which we explained before. So, by continuing this process, we get a contradiction unless

$$h f_{s_1}(w_1) \cdots f_{s_{i_1-1}}(w_{i_1-1}) = f_{t_1}(v_1) \cdots f_{t_{j_1-1}}(v_{j_1-1}). \quad (3.3.2)$$

Note that  $s_1, \dots, s_{i_1-1} \leq N$ , which implies that

$$f_{s_1}(w_1) = \cdots = f_{s_{i_1-1}}(w_{i_1-1}) = e.$$

Similarly,  $t_1, \dots, t_{j_1-1} \leq N$  implies that

$$f_{t_1}(v_1) = \cdots = f_{t_{j_1-1}}(v_{j_1-1}) = e.$$

So, from (3.3.2), we get  $h = e$ , which is a contradiction.

□

## Appendix A

## FINITELY GENERATED HYPER-FC GROUPS

Here we bring a self-contained presentation of the original proof that a finitely generated group is hyper-FC if and only if it is virtually nilpotent, which is divided between [McL56, Theorem 2] and [DM56, Theorem 2].

Let  $G$  be a group. An element  $g \in G$  is said to be a *finite conjugacy (or FC) element* if it has only finitely many conjugates in  $G$ . The *FC-center* of  $G$  is the set of all FC-elements in  $G$ . The *upper FC-series* of  $G$  is defined as follows

$$\{e\} = F_0 \leqslant F_1 \leqslant \cdots \leqslant F_\alpha \leqslant \cdots,$$

where  $F_{\alpha+1}/F_\alpha$  is the set of all FC-elements of  $G/F_\alpha$ , and  $F_\beta = \bigcup_{\alpha < \beta} F_\alpha$  for a limit ordinal  $\beta$ . This series will stabilize at some ordinal  $\gamma$ .  $F_\gamma$  is called the *hyper-FC center* of  $G$  and the least such  $\gamma$  is called the *FC-rank* of  $G$ . If  $G$  is equal to its hyper-FC center,  $G$  is called *hyper-FC*.

**Theorem 3.** *For a finitely generated group  $G$ , the following are equivalent.*

1.  $G$  is virtually nilpotent.
2.  $G$  is hyper-FC.
3.  $G$  has no non-trivial ICC quotients.

As a corollary, a finitely generated group is either virtually nilpotent or has an ICC quotient.

The following easy, but important, proposition shows that the obstruction to a group being ICC is the hyper-FC center of the group. Before we state the proposition, we define a *universal ICC quotient* of a group. This notion is useful to see the relation between the hyper-FC center of a group and its ICC quotients.

**Definition A.0.1.** *Let  $G$  be a group. A universal ICC quotient of  $G$ , which we denote by  $\phi : G \rightarrow I$ , is a quotient of  $G$  onto an ICC group  $I$  such that any quotient  $\tau : G \rightarrow J$  of  $G$  onto an ICC group  $J$  lifts to a homomorphism  $\rho : I \rightarrow J$  such that*

the following diagram commutes.

$$\begin{array}{ccc}
 & I & \\
 \phi \nearrow & & \searrow \rho \\
 G & \xrightarrow{\tau} & J
 \end{array}$$

Now we can state the following proposition.

**Proposition A.0.2.** *Let  $G$  be a group and let  $H \trianglelefteq G$  be the hyper-FC center of  $G$ . The quotient map  $\phi : G \rightarrow G/H$  is the unique, up to isomorphism, universal ICC quotient of  $G$ .*

*Proof.* First, we show that  $H$  is in the kernel of any ICC quotient  $\tau : G \rightarrow J$ . Let

$$\{e\} = F_0 \leq F_1 \leq \cdots \leq F_\alpha \leq \cdots$$

be the upper FC-series of  $G$ . If  $H$  is not in the kernel of  $\tau$ , then there exists a minimum ordinal  $\alpha$  such that  $F_\alpha \not\subseteq \ker \tau$ . Obviously  $\alpha$  is not a limit ordinal. Let  $h \in F_\alpha \setminus \ker \tau$ . Since  $hF_{\alpha-1}$  is FC in  $G/F_{\alpha-1}$  and  $F_{\alpha-1} \subseteq \ker \tau$  and  $\tau$  is a surjective homomorphism, we get that  $\tau(h)$  is FC in  $J$ . So,  $\tau(h)$  is the identity in  $J$ , which is a contradiction. So,  $H$  is in the kernel of any ICC quotient of  $G$ .

Now, we show that the quotient map  $\phi : G \rightarrow G/H$  is an ICC quotient. Let  $\gamma$  be the FC-rank of  $G$ . So  $H = F_\gamma$ . Note that since  $F_\gamma = F_{\gamma+1}$ , we know that any non-identity element of  $G/H = G/F_\gamma$  has infinitely many conjugates, which shows that  $G/H$  is ICC.

Thus  $\phi : G \rightarrow G/H$  is a universal ICC quotient. Uniqueness follows from a standard fact about universal properties.  $\square$

An immediate corollary of the above result is that hyper-FC groups are exactly those with no non-trivial ICC quotients. Theorem 3, which we prove next, gives a third equivalent condition when the group is finitely generated.

*Proof of Theorem 3.* The equivalence of (2) and (3) follows from the above corollary. We will show that (1) and (2) are equivalent. For that, we first show that the upper FC-series of a finitely generated hyper-FC group stabilizes at some finite ordinal, i.e. the FC-rank is finite.

**Claim A.0.3.** *Let  $G$  be a finitely generated hyper-FC group. The upper FC-series of  $G$  stabilizes at some  $n \in \mathbb{N}$ , i.e. its FC-rank is finite.*

*Proof.* Let  $S$  be a finite symmetric generating set for  $G$ . Let

$$\{e\} = F_0 \leq F_1 \leq \cdots \leq F_\alpha \leq \cdots \leq F_\gamma = G$$

be the upper FC-series of  $G$ . We need to show that for some  $n \in \mathbb{N}$ , we have  $S \subseteq F_n$ . For that, we will define a sequence  $X_0, X_1, \dots$  of finite subsets of  $G$  with the following properties:

1.  $X_0 = S$ .
2. If  $\alpha_i$  is the least ordinal with  $X_i \subseteq F_{\alpha_i}$ , then either  $\alpha_i = \alpha_{i-1} = 0$  or  $\alpha_i = \alpha_{i-1} - 1$ .

Given such a sequence, if none of the  $\alpha_i$ 's are 0, then  $\alpha_0, \alpha_1, \dots$  is an infinite strictly decreasing sequence of ordinals, which is a contradiction. So, some  $\alpha_i$  is 0. Let  $n$  be the least index with  $\alpha_n = 0$ . Then  $\alpha_0 = n$ . By the definition of  $\alpha_0$ , we get that  $S = X_0 \subseteq F_n$ . But since  $S$  generates  $G$ , we get that  $G \subseteq F_n$ . So the upper FC-series stabilizes at  $n$ .

Now we define the sequence  $X_0, X_1, \dots$  and prove that it has the properties we claimed. Let  $X_0 = S$ . Assume that  $X_0, \dots, X_i$  are defined. We want to define  $X_{i+1}$ . If  $\alpha_i = 0$ , then simply let  $X_{i+1} = X_i$ . And if  $\alpha_i \neq 0$ , we define  $X_{i+1}$  below. First, we make a few observations.

- Note that since  $\alpha_i$  is the least ordinal such that  $F_{\alpha_i}$  contains the finite set  $X_i$ , we get that  $\alpha_i$  is not a limit ordinal.
- Since  $F_{\alpha_i}/F_{\alpha_i-1}$  is the FC-center of  $G/F_{\alpha_i-1}$  and  $X_i \subseteq F_{\alpha_i}$ , we have that  $xF_{\alpha_i-1}$  is FC in  $G/F_{\alpha_i-1}$  for each  $x \in X_i$ .
- For each  $x \in X_i$  and each conjugate of  $xF_{\alpha_i-1}$ , pick an element of  $G$  in that conjugate, and let  $Y_i$  be the union of  $X_i$  and the collection of all the elements we chose. So,  $X_i \subseteq Y_i \subseteq F_{\alpha_i}$  and  $Y_i$  is finite.

Note that if  $y \in Y_i$  and  $g \in G$ , then  $A = (g^{-1}yg)F_{\alpha_i-1}$  is a conjugate of  $xF_{\alpha_i-1}$  for some  $x \in X_i$ . Thus  $A = zF_{\alpha_i-1}$  for some  $z \in Y_i$ , and so  $z^{-1}(g^{-1}yg) \in F_{\alpha_i-1}$  for some  $z \in Y_i$ . Let

$$X_{i+1} = \{z^{-1}(g^{-1}yg) \mid z^{-1}(g^{-1}yg) \in F_{\alpha_i-1}, g \in S, y, z \in Y_i\}.$$

Note that  $X_{i+1}$  is finite and  $X_{i+1} \subseteq F_{\alpha_i-1}$ . So,  $\alpha_{i+1} \leq \alpha_i - 1$ . To show that  $\alpha_{i+1} = \alpha_i - 1$ , we just need to show that  $\alpha_i \leq \alpha_{i+1} + 1$ , i.e.  $X_i \subseteq F_{\alpha_{i+1}+1}$ , which is the same as

showing that  $xF_{\alpha_{i+1}}$  is FC in  $G/F_{\alpha_{i+1}}$  for all  $x \in X_i$ . Since  $X_i \subseteq Y_i$ , it suffices to show that  $yF_{\alpha_{i+1}}$  is FC in  $G/F_{\alpha_{i+1}}$  for all  $y \in Y_i$ .

Since  $X_{i+1} \subseteq F_{\alpha_{i+1}}$ , for any  $y \in Y_i$  and  $s \in S$ , there exists a  $z \in Y_i$  with  $z^{-1}(s^{-1}ys) \in F_{\alpha_{i+1}}$ . Since  $S$  generates  $G$  and  $F_{\alpha_{i+1}}$  is normal in  $G$ , the same holds for any  $g \in G$  replacing  $s \in S$ . Thus  $Y_i F_{\alpha_{i+1}} \subset G/F_{\alpha_{i+1}}$  is closed under taking conjugates. Since  $Y_i$  is finite,  $yF_{\alpha_{i+1}}$  is thus FC in  $G/F_{\alpha_{i+1}}$  for any  $y \in Y_i$ . This completes the proof.  $\square$

Now, we show that a finitely generated group has finite FC-rank if and only if it is virtually nilpotent. For  $n \in \mathbb{N}$ , denote the class of finitely generated hyper-FC groups of FC-rank less than or equal to  $n$  by  $\mathcal{FC}_n$ , and the class of finitely generated virtually nilpotent groups of rank less than or equal to  $n$  by  $\mathcal{VN}_n$ .

First we prove a useful lemma.

**Lemma A.0.4.** *Let  $G$  be a group, and  $H$  be a finitely generated subgroup of the FC-center of  $G$ . The centralizer of  $H$  in  $G$ , denoted by  $C_G(H)$ , has finite index in  $G$ .*

*Proof.* Let  $\{h_1, \dots, h_n\}$  be a set of generators for  $H$ . Note that for each  $h_i$ , since it is FC in  $G$ , its centralizer  $C_G(h_i)$  has finite index. Thus, the intersection of the centralizers  $\cap_{i=1}^n C_G(h_i)$ , which is the same as  $C_G(H)$ , has finite index in  $G$ .  $\square$

**Claim A.0.5.** *We have*

$$\mathcal{VN}_0 \subseteq \mathcal{FC}_1 \subseteq \mathcal{VN}_1 \subseteq \mathcal{FC}_2 \subseteq \dots \subseteq \mathcal{FC}_n \subseteq \mathcal{VN}_n \subseteq \mathcal{FC}_{n+1} \subseteq \dots$$

*Proof.* First, we show that  $\mathcal{VN}_{n-1} \subseteq \mathcal{FC}_n$  for any  $n \in \mathbb{N}$ . Let  $G$  be a group in  $\mathcal{VN}_{n-1}$  for  $n \in \mathbb{N}$ . Let  $N \trianglelefteq G$  be a finite index normal subgroup with the upper central series

$$\{e\} = Z_0 \leqslant Z_1 \leqslant \dots \leqslant Z_m = N,$$

where  $m \leq n-1$ . Since  $Z_1$  is the center of a normal subgroup of  $G$ , we get that  $Z_1$  is normal in  $G$ . Similarly, we can show that each  $Z_k$  is normal in  $G$ . Since  $Z_k/Z_{k-1}$  is in the center of  $N/Z_{k-1}$ , we get that  $N/Z_{k-1} \leq C_{G/Z_{k-1}}(zZ_{k-1})$  for any  $z \in Z_k$ , which means that  $C_{G/Z_{k-1}}(zZ_{k-1})$  is of finite index in  $G/Z_{k-1}$  for any  $z \in Z_k$ . So,  $Z_k/Z_{k-1}$  is in the FC-center of  $G/Z_{k-1}$ . Obviously, since  $G/N$  is finite, we have that  $G/N$  is FC. So, we have that

$$\{e\} = Z_0 \leqslant Z_1 \leqslant \dots \leqslant Z_m = N \leqslant G$$

is an FC-series for  $G$  with length  $m + 1 \leq n$ . So,  $G$  belongs to  $\mathcal{FC}_n$ .

Now, by induction on  $n \in \mathbb{N}$  we show that  $\mathcal{FC}_n \subseteq \mathcal{VN}_n$ . Let  $G$  be a group that belongs to  $\mathcal{FC}_1$ . By Lemma A.0.4, the center of  $G$  has finite index in  $G$ . So,  $G$  is virtually abelian, which means that  $G$  belongs to  $\mathcal{VN}_1$ . Thus  $\mathcal{FC}_1 \subseteq \mathcal{VN}_1$ .

Let  $G$  be a group that belongs to  $\mathcal{FC}_n$  for  $n \geq 2$ . Let

$$\{e\} = F_0 \leqslant F_1 \leqslant \cdots \leqslant F_m = G$$

be the upper FC-series of  $G$ , where  $m \leq n$ . Since  $G/F_1$  is in  $\mathcal{FC}_{m-1}$ , by the induction hypothesis we know that  $G/F_1$  is virtually nilpotent of rank at most  $m - 1$ . So, there is a normal subgroup  $N \trianglelefteq G$  with finite index such that  $F_1 \leqslant N$  and  $N/F_1$  is nilpotent of rank at most  $m - 1$ . We can make the following observations:

- Since  $N$  has finite index in a finitely generated group,  $N$  is finitely generated. Let  $S$  be a finite symmetric set of generators for  $N$ .
- Let  $N = \Gamma_0 \trianglerighteq \Gamma_1 \trianglerighteq \cdots \trianglerighteq \Gamma_{m-1}$  be the first  $m$  subgroups in the lower central series of  $N$ . Since  $N/F_1$  is nilpotent of rank at most  $m - 1$ , we know that  $\Gamma_{m-1} \leqslant F_1$ . So,  $\Gamma_{m-1}$  is FC.
- It is easy to see that  $\Gamma_{m-1}$  is the least normal subgroup of  $N$  that contains all the  $(m - 1)$ -fold commutators  $[s_1, s_2, \dots, s_{m-1}]$ , where  $s_i$ 's are elements of  $S$ . Note that 1) since  $\Gamma_{m-1}$  is FC, we know that each of  $[s_1, s_2, \dots, s_{m-1}]$  has finitely many conjugates in  $N$ , and 2) since  $S$  is finite, we have finitely many elements of the form  $[s_1, s_2, \dots, s_{m-1}]$ . So,  $\Gamma_{m-1}$  is finitely generated.

From the last two observations, we know that  $\Gamma_{m-1}$  is a finitely generated FC subgroup of  $N$ . By Lemma A.0.4, we know that  $C_N(\Gamma_{m-1})$  has finite index in  $N$ . Obviously,  $C_N(\Gamma_{m-1})$  has a normal subgroup  $M$  with finite index in  $N$ . It is clear that  $Z = \Gamma_{m-1} \cap M$  is in the center of  $M$ . Since  $N$  has finite index in  $G$ , we get that  $M$  also has finite index in  $G$ .

By the second isomorphism theorem for groups, we have that

$$M/Z = M/(\Gamma_{m-1} \cap M) \cong (M\Gamma_{m-1})/\Gamma_{m-1} \leqslant N/\Gamma_{m-1}.$$

But we know that  $N/\Gamma_{m-1}$  is nilpotent with rank at most  $m - 1$ . So,  $M/Z$  is nilpotent with rank at most  $m - 1$ . Also,  $Z$  is in the center of  $M$ . Hence,  $M$  is nilpotent with rank at most  $m \leq n$ . So,  $G$  is virtually nilpotent with rank at most  $n$ .  $\square$

Now, we can show that (1) and (2) are equivalent. Let  $G$  be a finitely generated group.

If  $G$  is a virtually nilpotent group of rank  $n$ , then by Claim A.0.5 we know that it is FC with FC-rank at most  $n + 1$ .

If, on the other hand,  $G$  is hyper-FC, then by Claim A.0.3 we know that its FC-rank is finite, say  $n \in \mathbb{N}$ . So, by Claim A.0.5 we know that it is virtually nilpotent of rank at most  $n$ .  $\square$

## BIBLIOGRAPHY

- [AL07] David Aldous and Russell Lyons. “Processes on unimodular random networks.” In: *Electronic Journal of Probability* 12 (2007), no. 54, 1454–1508. ISSN: 1083-6489. doi: 10.1214/EJP.v12-463. URL: <http://dx.doi.org/10.1214/EJP.v12-463>.
- [BS06] Uri Bader and Yehuda Shalom. “Factor and normal subgroup theorems for lattices in products of groups.” In: *Inventiones Mathematicae* 163.2 (2006), pp. 415–454.
- [BE17] Laurent Bartholdi and Anna Erschler. “Poisson–Furstenberg boundary and growth of groups.” In: *Probability Theory and Related Fields* 168.1–2 (2017), pp. 347–372.
- [Bla55] David Blackwell. “On transient Markov processes with a countable number of states and stationary transition probabilities.” In: *The Annals of Mathematical Statistics* (1955), pp. 654–658.
- [Bre+17] Emmanuel Breuillard, Mehrdad Kalantar, Matthew Kennedy, and Narutaka Ozawa. “C\*-simplicity and the unique trace property for discrete groups.” In: *Publications Mathématiques de l’IHÉS* 126.1 (2017), pp. 35–71.
- [CFP96] James Cannon, William Floyd, and Walter Raymond Parry. “Notes on Richard Thompson’s groups F and T.” In: *L’Enseignement Mathématique. Zbl* 42.3 (1996), pp. 215–256.
- [CD60] Gustave Choquet and Jacques Deny. “Sur l’équation de convolution  $\mu = \mu * \sigma$ .” In: *Comptes Rendus de l’Académie des Sciences Paris* 250 (1960), pp. 799–801.
- [DG17] Xiongping Dai and Eli Glasner. “On universal minimal proximal flows of topological groups.” In: *arXiv preprint arXiv:1708.02468* (2017).
- [Dug60] A. M. Duguid. “A class of hyper-FC-groups.” In: *Pacific Journal of Mathematics* 10.1 (1960), pp. 117–120.
- [DM56] A. M. Duguid and D. H. McLain. “FC-nilpotent and FC-soluble groups.” In: *Mathematical Proceedings of the Cambridge Philosophical Society*. Vol. 52. 3. Cambridge University Press. 1956, pp. 391–398.
- [DM61] Evgenii Borisovich Dynkin and Mikhail Borisovich Malyutov. “Random walk on groups with a finite number of generators.” In: *Doklady Akademii Nauk*. Vol. 137. 5. Russian Academy of Sciences. 1961, pp. 1042–1045.
- [Ers04a] Anna Erschler. “Boundary behavior for groups of subexponential growth.” In: *Annals of Mathematics* (2004), pp. 1183–1210.

- [Ers04b] Anna Erschler. “Liouville property for groups and manifolds.” In: *Inventiones Mathematicae* 155.1 (2004), pp. 55–80.
- [FT17] Joshua Frisch and Omer Tamuz. “Symbolic dynamics on amenable groups: the entropy of generic shifts.” In: *Ergodic Theory and Dynamical Systems* 37.4 (2017), pp. 1187–1210.
- [Fur02] Alex Furman. “Random walks on groups and random transformations.” In: *Handbook of dynamical systems*. Vol. 1. Elsevier Science, 2002, pp. 931–1014.
- [Fur03] Alex Furman. “On minimal, strongly proximal actions of locally compact groups.” In: *Israel Journal of Mathematics* 136.1 (2003), pp. 173–187.
- [FG10] *Stationary dynamical systems*. Vol. 532. Contemporary Mathematics. American Mathematical Society, 2010, pp. 1–28.
- [Fur63a] Harry Furstenberg. “A Poisson formula for semi-simple Lie groups.” In: *Annals of Mathematics* (1963), pp. 335–386.
- [Fur63b] Harry Furstenberg. “Noncommuting random products.” In: *Transactions of the American Mathematical Society* 108.3 (1963), pp. 377–428.
- [Fur71] Harry Furstenberg. “Random walks and discrete subgroups of Lie groups.” In: *Advances in Probability and Related Topics* 1 (1971), pp. 1–63.
- [Fur73] Harry Furstenberg. “Boundary theory and stochastic processes on homogeneous spaces.” In: *Harmonic analysis on homogeneous spaces* 26 (1973), pp. 193–229.
- [GW02] Eli Glasner and Benjamin Weiss. “Minimal actions of the group of permutations of the integers.” In: *Geometric and Functional Analysis* 12.5 (2002), pp. 964–988.
- [Gla76a] Shmuel Glasner. “On Choquet-Deny measures.” In: *Annales de l’Institut Henri Poincaré B* 12 (1976), pp. 1–10.
- [Gla76b] Shmuel Glasner. *Proximal flows*. Lecture Notes in Mathematics, Vol. 517. Springer-Verlag, Berlin-New York, 1976, pp. viii+153.
- [Gla83] Shmuel Glasner. “Proximal flows of Lie groups.” In: *Israel Journal of Mathematics* 45.2 (1983), pp. 97–99.
- [Gui73] Yves Guivarc’h. “Croissance polynomiale et périodes des fonctions harmoniques.” In: *Bulletin de la Société Mathématique de France* 101.333 (1973), p. 379.
- [Hai53] Franklin Haimo. “The FC-chain of a group.” In: *Canadian Journal of Mathematics* 5 (1953), pp. 498–511.

- [Jaw04] Wojciech Jaworski. “Countable amenable identity excluding groups.” In: *Canadian Mathematical Bulletin* 47.2 (2004), pp. 215–228.
- [JR07] Wojciech Jaworski and Robinson Edward Raja. “The Choquet–Deny theorem and distal properties of totally disconnected locally compact groups of polynomial growth.” In: *New York J. Math* 13 (2007), pp. 159–174.
- [Kai83] Vadim A. Kaimanovich. “Examples of non-abelian discrete groups with non-trivial exit boundary.” In: *Zapiski Nauchnykh Seminarov POMI* 123 (1983), pp. 167–184.
- [Kai17] Vadim A. Kaimanovich. “Thompson’s group F is not Liouville.” In: *Groups, Graphs and Random Walks* 436 (2017), p. 300.
- [KV83] Vadim A. Kaimanovich and Anatoly M. Vershik. “Random walks on discrete groups: boundary and entropy.” In: *The Annals of Probability* (1983), pp. 457–490.
- [KK17] Mehrdad Kalantar and Matthew Kennedy. “Boundaries of reduced C\*-algebras of discrete groups.” In: *Journal für die reine und angewandte Mathematik (Crelles Journal)* 727 (2017), pp. 247–267.
- [McL56] D. H. McLain. “Remarks on the Upper Central Series of a Group.” In: *Glasgow Mathematical Journal* 3.1 (1956), pp. 38–44.
- [MVT15] Julien Melleray, Lionel Nguyen Van Thé, and Todor Tsankov. “Polish groups with metrizable universal minimal flows.” In: *International Mathematics Research Notices* 2016.5 (2015), pp. 1285–1307.
- [Neu54] Bernhard H Neumann. “Groups covered by permutable subsets.” In: *Journal of the London Mathematical Society* 1.2 (1954), pp. 236–248.
- [Ros81] Joseph Rosenblatt. “Ergodic and mixing random walks on locally compact groups.” In: *Mathematische Annalen* 257.1 (1981), pp. 31–42.
- [TK93] Gábor Fejes Tóth and Włodzimierz Kuperberg. “Packing and covering with convex sets.” In: *Handbook of Convex Geometry, Part B*. Elsevier, 1993, pp. 799–860.