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ABSTRACT

The performance of most algorithms for signal processing and machine learning
applications highly depends on the underlying optimization algorithms. Multiple
techniques have been proposed for solving convex and non-convex problems such
as interior-point methods and semidefinite programming. However, it is well known
that these algorithms are not ideally suited for large-scale optimization with a high
number of variables and/or constraints. This thesis exploits a novel optimization
method, known as Riemannian optimization, for efficiently solving convex and
non-convex problems with signal processing and machine learning applications.
Unlike most optimization techniques whose complexities increase with the number
of constraints, Riemannianmethods smartly exploit the structure of the search space,
a.k.a., the set of feasible solutions, to reduce the embedded dimension and efficiently
solve optimization problems in a reasonable time. However, such efficiency comes at
the expense of universality as the geometry of eachmanifold needs to be investigated
individually. This thesis explains the steps of designing first and second-order
Riemannian optimization methods for smooth matrix manifolds through the study
and design of optimization algorithms for various applications. In particular, the
paper is interested in contemporary applications in signal processing and machine
learning, such as community detection, graph-based clustering, phase retrieval, and
indoor and outdoor location determination. Simulation results are provided to attest
to the efficiency of the proposed methods against popular generic and specialized
solvers for each of the above applications.
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C h a p t e r 1

INTRODUCTION

Optimization is a fundamental and crucial tool for most signal processing and ma-
chine learning applications. Several classes of optimization have been identified in
the literature, e.g., discrete [1], non-smooth [2], and derivative-free [3] optimiza-
tion. For its numerous applications, this thesis only focuses on smooth continuous
optimization, denoted simply by the generic term “optimization" in the rest of the
thesis. Historically initiated with the study of least-squares and linear programming
problems [4], convex optimization is an essential subclass of optimization problems
in which both the objective function and the search set, i.e., constraints, are convex.
As the successor and the generalization of linear programs, convex optimization
received significant attention from the research community thanks to the desirable
convergence property it exhibits. As a matter of fact, under mild conditions, well-
defined and explicit convex problems can be solved numerically efficiently [5]. As
such, it has been successfully and extensively used in numerous applications, re-
gardless of their convexity [6]. Indeed, while the actual applications may not be
convex, reformulating or approximating the problem by a convex program has been
a successful approach to obtaining “good-enough" solutions. Such a strategy is
known in the scientific literature as a convex relaxation of the problem [7].

Despite their relative success, relying on relaxations and convex solvers might lead
to poor performance in some instances. Indeed, while convex relaxations can induce
an unwanted degradation in the quality of the solution, it has been established that
convex methods are excessively slow for high dimensions. In other words, they
suffer from the curse of dimensionality. As such, it has been observed that for some
contemporary signal processing and machine learning applications, non-convex
solvers are significantly more efficient than their convex counterparts both in terms
of quality of the solution and convergence time [8]. Such behavior is primarily
due to the fact that non-convex methods successfully exploit the structure of the
problem, which is destroyed in the convex reformulation/approximation. Therefore,
proposing non-convex solvers has been an emerging and captivating research topic
of late, e.g., see [9, 10] and references therein.

Multiple algorithms have been proposed in the literature to solve both convex and
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non-convex constrained optimization problems. These algorithms include the cel-
ebrated interior-point methods [11], semi-definite programming [5], Lagrangian
multiplier methods [12], and simpler approaches such as alternating minimization
algorithms [13, 14], including alternating orthogonal projection [15]. While these
algorithms have the merit of being both generic and easily implementable, their
convergence might be excessively time-consuming for high-dimensional convex
problems. Furthermore, the performance of these algorithms is largely unknown for
non-convex programs.

This thesis presents an alternative optimizationmethod that circumvents both above-
identified limitations, i.e., poor solution’s quality and high complexity, resulting in
highly efficient convex and non-convex optimization algorithms. The optimization
method, known as Riemannian optimization, solves the constrained optimization
problem as an unconstrained one over a restricted search space. This restriction of
the search space allows the solution to be feasible while reducing the dimension
of the problem, thus providing Riemannian optimization with exceptional abilities
in finding efficient solutions in a reasonable time. However, the same mechanism
introduces curvature as the search space is no longer Euclidean, which hinders the
universality of themethod for the geometry of eachmanifold needs to be investigated
individually. To that end, this paper explains the steps of designing first and second-
order Riemannian optimization methods for smooth matrix manifolds through the
study and design of optimization algorithms for various contemporary applications
in signal processing and machine learning.

1.1 Introduction to Riemannian Optimization Methods
Unconstrained and Riemannian Optimization Methods
As stated earlier, numerical optimization is the foundation of various engineering
and computational sciences. Consider a smooth map f from a subset D of R= to
R. The goal of optimization algorithms is to discover an extreme point x∗ ∈ D
such that f(x∗) ≤ f(y) for all feasible points y ∈ Nx∗ in the neighborhood of x∗.
These traditional optimization schemes in which the embedding space is linear,
such as the space of real vectors R= and matrices R=×<, are identified with the
term Euclidean in contrast with the Riemannian algorithms in the rest of the paper.
While unconstrained Euclidean optimization refers to the setup in which the domain
of the objective function is the whole space, i.e., D = R=, constrained Euclidean
optimization denotes problems in which the search set is restricted, i.e., D ( R=.
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This manuscript is interested in the generic class of optimization problems in which
the interior of the search space can be identified with a manifold that is embedded
in a higher-dimensional Euclidean space, e.g., low-rank matrices embedded in the
Euclidean space of matrices R=×<. While such problems can be solved using
constrained optimization methods [11], these algorithms can be excessively slow
as they require solving on the high-dimensional Euclidean space. Riemannian
optimization takes advantage of the fact that the manifold is of lower dimension and
exploits its underlying geometric structure to reduce the computation complexity
significantly.

The above property is achieved by extending unconstrained optimization schemes
from Euclidean spaces to Riemannian manifolds. As such, Riemannian optimiza-
tion methods fall within the scope of iterative optimization algorithms. In other
words, starting from an initial position, the algorithm sequentially finds a series of
neighboring points that converge to a critical point of the optimization objective
function. However, unlike the interior-point method and similar algorithms that
modify the objective function by including a barrier or additional (dual) variables,
the philosophy of Riemannian optimization is to solve the constrained optimization
problem as an unconstrained one over a restricted search space. Indeed, by reformu-
lating the problem as a minimization over the set defined by the constraints, called
the search or the feasible space, the problem can be thought of as an unconstrained
optimization over a constrained set, known as the manifold.

Thanks to the aforementioned low-dimension feature, optimization over Riemannian
manifolds is expected to perform more efficiently [16] than traditional optimization
approaches. Therefore, a large body of literature has been dedicated to adapting
traditional Euclidean optimization methods and their convergence properties to
Riemannian manifolds. The rest of this section provides an overview of such rich
Riemannian optimization literature along with the achieved milestones.

History, Merits, and Limitations of Riemannian Optimization
Riemannian optimization algorithms appeared in the literature for the first time in the
1970s work of Luenberger [17] by the adaptation of the standard Newton’s method
to Riemannian manifolds. The author demonstrated that the Riemannian version
of Newton’s method exhibits quadratic convergence. However, such guarantees
come at a high complexity price per iteration. Indeed, finding the search direction
requires computing the exact Hessian using parallel vector transport, and the step
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size is optimized by searching along the geodesic, i.e., straight line on a Riemannian
manifold. The complexity is partially reduced for embedded submanifolds of R=

with the work of Gabay [18] which introduces the steepest-descent and the quasi-
Newton algorithms and demonstrate their convergence for embedded submanifolds
of R=.

The convergence results of the steepest-descent and the quasi-Newton in [18] are
extended from embedded submanifolds of R= to abstract Riemannian manifolds
[19, 20]. Although these approaches are notably faster than the standard Newton’s
method, they are far from competing with established constrained optimization
algorithms. The first breakthrough in the field happens with the substitution of the
complex exact line-search by the effective Armijo step-size control while preserving
the convergence rate. Such improvement allows the design of a unified framework
for constrained and unconstrained optimization [21]. Another notable improvement
for the quasi-Newton algorithms is the use of a general connection as an alternative
to the canonical parallel vector transport for computing the approximate Hessian.
However, while the modified algorithm conserves its global convergence property,
it no longer ensures a superlinear convergence rate [22].

All above-mentioned Riemannian optimization works extend the unconstrained
schemes to Riemannian manifolds by, inter alias, replacing the line-search part
with the natural and intuitive search along the straight lines of the manifolds, viz.,
geodesics. The expression of these geodesics is acquired from the exponential map,
which may be more challenging to derive than solving the original optimization
problem [23]. The authors in [24] achieved the second breakthrough in Riemannian
optimization by showing that Newton’s method conserves its quadratic convergence
rate when using a second-order approximation of the exponential map, known as a
retraction.

With multiple efforts from the Riemannian optimization community, e.g., [25, 26,
27, 28], the result of [24] has been extended to first-order retractions and more-
sophisticated optimization algorithms such as the CG and TR methods. These
algorithms have been successfully implemented to efficiently solve various problems
in communication and signal processing such as clustering or community detection
[29, 30, 31, 32] and low-rank matrix completion [33, 34, 35, 36].

Thanks to its high efficiency in solving sizeable convex and non-convex programs,
Riemannian optimization is slowly but surely gaining momentum in the optimiza-
tion literature [16]. However, its use by the scientific community at large remains
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relatively limited mainly due to the non-universality of the method and the required
pre-requisite knowledge of differential geometry and Riemannian manifolds. In-
deed, as the technique relies on the structure of the problem and due to the lack
of a systematic mechanism to design optimization algorithm over manifolds, its
use might be prohibitively complicated for non-experts in the field. Nonetheless,
thanks to the implementation of multiple optimization algorithms over a broad set of
manifolds, e.g., the MATLAB optimization framework ManOpt [37], Riemannian
optimization is becoming more and more user-friendly.

1.2 Signal Processing and Machine Learning Problems of Interest
This manuscript exploits Riemannian optimization techniques to solve multiple
problems in signal processing and machine learning. These applications include
convex and non-convex graph-based clustering [38], also known as the similarity
clustering [39, 40, 41] by doubly stochastic matrices, Fourier phase retrieval [42,
43, 44], indoor high-accuracy spatial location and orientation estimation using
ultrasound waves [45, 46, 47], and outdoor precise attitude determination in the
Global Navigation Satellite Systems (GNSS) [48, 49, 50, 51, 52].

Clustering by Doubly Stochastic Matrices
Convex and non-convex optimization over the set of doubly stochastic matrices
has numerous applications in signal processing and machine learning applications
for its close relationship with graph theory and Markov chains. One of the most
popular application of doubly stochasticmatrices inmachine learning is graph-based
clustering [39, 53, 54, 55] wherein one wishes to separate data points into different
groups, known as clusters. Similarity clustering is a subset of clustering applications
in which one is given an entry-wise non-negative similarity matrix A between = data
points with the goal of clustering these data points into A clusters. Multiple convex,
e.g., [39], and non-convex, e.g., [53], approaches have been proposed to solve the
similarity clustering problem. This thesis provides a unified framework to carry
such optimization.

Fourier Phase Retrieval
Phase retrieval is a classical problem in signal processing [42] inwhich onewishes to
recover a complex signal from observations of the amplitude of linear combinations
of the signal. The problem is crucial in multiple imaging applications wherein
the phase of the signal cannot be measured for technical or economic reasons.
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Indeed, due to the inability of physical measurement devices to detect phases, e.g.,
a photosensitive film that measures the light intensity, only the magnitude of the
signal is available. These applications include optics, crystallography, astronomical
imaging, speech processing, computational biology, and blind deconvolution.

Phase retrieval engaged several researchers over the years with numerous theoretical
results [43, 56] and practical algorithms [57]. Thismanuscript focuses on the popular
case of Fourier phase retrieval [58, 59] inwhich a subset of the available observations
are obtained through the Fourier transform of the signal. This particular structure of
the phase retrieval problem allows its reformulation as a constrained optimization
problem wherein the constraint set is represented by an orthonormal basis. This
paper demonstrates how to effectively exploit the structure of the problem to speed
up its solution.

Spatial Location Estimation Using Ultrasound Waves
With the rapidly increasing number of smartphones and the proliferation of the
Internet of Things (IoT), location-based services gained an increased interest in the
last decade [60]. These services range from outdoor localization, e.g., for naviga-
tion purposes, to accurate indoor pinpointing for applications such as robot steering,
surveillance, video gaming, and virtual reality [61]. While outdoor localization is
universally solved by the GNSS, such a system is not feasible indoors. As such,
indoor localization systems have been implemented using various competing tech-
nologies, including ultrasound waves [62], radio-frequency [63], infrared radiation
[64], and laser signals [65].

For most localization systems, a small perturbation in the measurement can result
in a significant deviation in the expected location, especially under a bad geometry
[66]. To circumvent the aforementioned limitation, this manuscript aims to design
a novel and highly accurate spatial location estimation method that uses multiple
transmitters and considers exploiting their geometry in the estimation process. The
resulting transmitter diversity not only significantly improves the accuracy of the
estimated location but also provides the 3D orientation of the device.

Attitude Determination in Global Navigation Satellite Systems
The goal of attitude determination is to estimate the orientation of a vehicle relative
to the selected coordinate system, such as the East-North-Up (ENU) frame or the
East-North-Down (END) frame. The 3-D attitude information can be represented
using Euler angles (yaw, pitch, and roll), which can be uniquely determined by
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three or more non-collinear GNSS receivers. These receivers collect two types
of measurements, pseudo-range and carrier phase. Carrier phase measurements
are several orders of magnitude more accurate than pseudo-ranges, but are subject
to ambiguities due to unknown (integer) number of unobserved wavelength cycles
[67]. Therefore, phase ambiguity resolution is a critical process for high-accuracy
attitude determination. After successfully resolving the ambiguity, the carrier phase
can be utilized to precisely estimate direction vectors of the receiver baselines
[68]. The estimation can be enhanced by leveraging geometrical information of
the receiver configuration, as well as the unitary nature of the direction vectors of
interest. This manuscript uses Riemannian optimization techniques to obtain the
baseline’s direction vectors, which can be directly converted into Euler angles to
fully characterize the attitude of the platform.

1.3 Contributions, Notations, and Organization
Scope and Contributions
The main contribution of this paper is to exploit Riemannian optimization methods
to design efficient optimization algorithms to solve the aforementioned convex and
non-convex problems in signal processing and machine learning. However, such en-
deavor requires some level of knowledge of differential and Riemannian geometries.
To that end, the manuscript provides an introduction on designing efficient first and
second-order Riemannian optimization methods for smooth matrix manifolds. As
only smooth embedded and quotient matrixmanifolds are considered, the definitions
and theorems herein may not apply to abstract manifolds. In addition, the author
opted for a coordinate-free analysis omitting charts and differentiable structures of
manifolds. For an introduction to differential geometry, abstract manifolds, and
Riemannian manifolds, we refer the readers to the following references [69, 70, 71],
respectively.

After introducing the necessary machinery to design Riemannian optimization algo-
rithm, this thesis investigates the aforementioned convex and non-convex clustering,
phase retrieval, and localization applications. In particular, the doubly stochastic
and symmetric stochastic multinomial manifolds are introduced and their geome-
tries investigated so as to design efficient convex clustering algorithms. Afterwards,
the low-rank property of the solution to the clustering problem is exploited to re-
formulate the community detection task as a non-convex program. The non-convex
reformulation is solved by providing theoretical guarantees on the quality of the
solution and investigating the geometry of the low-rank symmetric stochastic multi-
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nomial.

For the phase retrieval problem, the feasible set is represented by generic quadratic
equations. While there is no guarantees that such set admits a manifold structure in
general, the manuscript shows that the set of feasible solutions represents a Rieman-
nian manifold under Fourier observations. The first and second-order geometries of
the newly introduced manifold, known as the fixed norms manifold, are investigated
and efficient phase retrieval algorithms are designed. Furthermore, by exploiting the
fact that the optimization problem for phase retrieval presents non-isolated solutions,
the manifold is demonstrated to admit a quotient structure, allowing the design of
even faster algorithms.

Afterwards, the thesis investigates and designs indoor and outdoor precise localiza-
tion systems. For instance, the problem of accurate indoor spatial location and ori-
entation estimation using ultrasound waves is considered. To improve the accuracy
of the localization system, the transmitters’ geometry is integrated into the loca-
tion estimation process by formulating the problem as a non-convex optimization.
Afterward, the set of feasible solutions is shown to admit a Riemannian manifold
structure, which allows solving the underlying optimization problem rigorously.

Finally, outdoor localization is examined through the problem of altitude determina-
tion in GNSS. The antenna geometry and baseline lengths are exploited to formulate
the 3-D GNSS attitude determination problem as an optimization over a non-convex
set, shown to be a manifold. The study of the geometry of the manifold allows the
design of efficient first and second-order Riemannian algorithms to solve the 3-D
GNSS attitude determination problem.

Organization
The rest of this manuscript is organized as follows. Chap. 2 introduces Riemannian
manifolds and optimization techniques. These techniques are utilized in Chap. 3
to design efficient optimization algorithms for convex graph-based clustering. The
results are extended to low-rank matrices in Chap. 4 so as to tackle non-convex
community detection. The Fourier phase retrieval problem is investigated inChap. 5.
Finally, before concluding in Chap. 7, accurate indoor and outdoor localization
algorithms are designed in Chap. 6.
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Notations
Throughout the paper, lower-case letters G denotes scalar variables, while bold-
face lower-case letters x and boldface upper-case X denote vectors and matrices,
respectively. Tangent vectors and matrices are an exception to the previous rule
and are denoted by Greek letters with an index representing the foot of the tangent
space, e.g., bx represents a tangent vector at x. These Riemannian geometry related
notations would become more apparent in Chap. 2.

The 8-th entry of vector x is denoted by x8 and the element in the 8-th row and 9-th
column of matrix X is denoted by X8 9 . The notations 0, 1, and I denote the null
vector, the all ones vector, and the identity matrix, respectively. If the dimension of
the vector is not clear from the context, it is added as a subscript. For example, I=
denote the identity matrix of size = × =.

Given a vector x, the symbols |x|, xT, and x★ denote the absolute value, the transpose
and the conjugate transpose operators of vector x, respectively. The absolute value
of a vector is defined as the absolute value of each of its entries. For a matrix X,
the notations ‖X‖, XT, and XH denotes the Frobenius norm, the transpose and the
Hermitian operators of matrix X, respectively.

While sets are denoted by a calligraphic font, e.g., X, the sets of real and complex
numbers are denoted by R and C, respectively. The set of real and complex vectors
and matrices follow the usual notation of placing the dimension as exponents. For
instance, R=×< refers to the set of real matrices of size = × <. Given a symmetric
(or Hermitian) matrix X = XT (or X = XH), the notation X � 0 means that matrix is
positive-definite, i.e., all its eigenvalues are strictly positive. Likewise, the symbol
X > 0 refers to a real matrix X ∈ R=×< with strictly positive entries, i.e., X8 9 > 0
for all 1 ≤ 8 ≤ = and 1 ≤ 9 ≤ <.

Let the notation Tr(.) refer to the trace operator and 〈X,Y〉 = Tr(YTX) to the
Frobenius inner product of matricesX andY on the spaceR=×=. Given twomatrices,
the element-wise product, a.k.a., the Hadamard product, is denoted by the symbol
�, i.e., (X � Y)8 9 = X8 9Y8 9 . Similarly, the Hadamard division is denoted by the
symbol �. Let S= and S=skew be the set of symmetric and skew-symmetric matrices,
respectively. A full-rank = × ? matrix Y is an element of the set R=×<★ . The set
O? = {O ∈ R?×?★ |OOT = I} represents orthogonal matrices.

Functions are denoted by lower- and upper-case letters with sans serif font. Addi-
tionally, Greek letters are used to denote functions representing curves onmanifolds.
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To explicitly mention the pre-image and image sets by a function F, the standard
notation F : X → Y is used. For a single variable function, e.g., W(C), the shorthand
notation ¤W(C) is used to denote the first-order derivative ¤W(C) = dW

dC .

The set of continuously differentiable is denoted by C1. Similarly, the symbol C2 is
used to refer to the class of all first and second continuously differentiable functions.
In the rest of the manuscript, a smooth function refers to a function of class at least
C1 for first-order algorithms and at least C2 for second-order methods.
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C h a p t e r 2

OPTIMIZATION ON RIEMANNIAN MANIFOLDS

This chapter introduces Riemannian optimization methods on embedded and quo-
tient Riemannian matrix manifolds. In particular, Section 2.1 presents the manifold
definitions and notations used throughout the thesis. Afterward, the geometries of
embedded and quotient matrix submanifolds are investigates in Sections 2.2 and
2.3, respectively. Finally, Section 2.4 exploits such geometries to design various
first and second-order Riemannian optimization algorithms.

2.1 Manifold Definitions and Notation
The philosophy of Riemannian optimization techniques is to extend unconstrained
optimization methods from Euclidean spaces to manifolds. As such, this part first
recalls the principals of Euclidean optimization. Afterward, Riemannian matrix
manifolds and submanifolds are introduced. Finally, an overview of Riemannian
optimizationmethods is presented. For clarity purposes, the optimization over linear
spaces, i.e., Euclidean spaces, is refereed as Euclidean optimization with contrast
with Riemannian optimization.

Euclidean Spaces and Optimization
The general idea behind unconstrained Euclidean numerical optimization methods
is to start with an initial point X0 and to iteratively update it according to certain
predefined rules in order to obtain a sequence {XC}∞

C=0 which converges to a local
minimum of the objective function. A typical update strategy is XC+1 = XC + UC ?C

where UC is the step size and ?C the search direction. Let Grad f(X) be the Euclidean
gradient of the objective function defined as the unique vector satisfying:

〈Grad f(X), b〉 = D f(X) [b], ∀ b ∈ E,

where 〈., .〉 is the inner product on the vector space E andD f(X) [b] is the directional
derivative of 5 given by:

D f(X) [b] = lim
C→0

f(X + Cb) − f(X)
C

.

In order to obtain a descent direction, i.e., f(XC+1) < f(XC) for a small-enough step
size UC , the search direction ?C is chosen in the half space spanned by −Grad f(X).
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In other words, the following inequality holds:

〈Grad f(XC), ?C〉 < 0. (2.1)

In particular, the choices of the search direction satisfying

?C = −
Grad f(XC)
| |Grad f(XC) | | (2.2)

Hess f(XC) [?C] = Grad f(X), (2.3)

yields the celebrated steepest-descent (2.2) and the Newton’s method (2.3), wherein
Hess f(X) [b] is the Euclidean Hessian of 5 at X defined as an operator from E to
E satisfying:

1. 〈Hess f(X) [b], b〉 = D2 f(X) [b, b] = D (D f(X) [b]) [b],

2. 〈Hess f(X) [b], [〉 = 〈b,Hess f(X) [[]〉, ∀ b, [ ∈ E.

Riemannian Matrix Manifolds
A matrix manifoldM is a smooth subset of a vector space E included in the set of
matrices R=×<. The set E is called the ambient or the embedding space. By smooth
subset, we mean thatM can be mapped by a bijective function, i.e., a chart, to an
open subset of R3 where 3 is called the dimension of the manifold. The dimension
3 roughly represents the degrees of freedom of the manifold. In particular, a linear
space E is a manifold.

Unconstrained optimization exploits both the linear structure of the embedding
space and the derivatives of the function to optimize. Therefore, to generalize
unconstrained algorithms, such as gradient descent and Newton’s method, one
needs a notion of linear approximation to a curved surface, i.e., manifold, and the
concepts of gradient and Hessian on such a surface. The linearization of a smooth
manifold M can be accomplished locally around any point X ∈ M using the
notion of a tangent space TXM. By endowing each tangent space with a smoothly
varying inner product, known as the Riemannian metric, the manifold turns into a
Riemannianmanifold. Such Riemannian structure allows the definition of derivative
operators similar to the gradient andHessian and called the Riemannian gradient and
Riemannian Hessian, respectively. It is implicitly understood that for an Euclidean
space, the Euclidean and Riemannian gradients and Hessians coincide.

Define a real and smooth function f : M → R. The function that associates to
each bX the directional derivative D f(X) [bX] is called the indefinite directional
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Table 2.1: Riemannian embedded and quotient manifolds notations.

Variable Definition
M,M Embedded manifold and its quotient

X and X = [X] A point onM and its class onM
bX ∈ TXM A point on the tangent ofM
HXM,VXM Horizontal and vertical spaces at X

ΠX Orthogonal projection onto TXM
ΠHX Orthogonal projection ontoHXM
ΠVX Orthogonal projection ontoVXM

bX ∈ TXM A point on the tangent ofM
bX ∈ HXM Horizontal lift of bX at X ∈ c−1(X)
Grad f(X) Euclidean Gradient at X

Hess f(X) [bX] Euclidean Hessian at X and bX
grad f(X) Riemannian Gradient at X

hess f(X) [bX] Riemannian Hessian at X and bX
grad f(X) Lift of grad f(X) at X ∈ c−1(X)

hess f(X) [bX] Lift of hess f(X) [bX] at X ∈ c−1(X)
RX(bX) Retraction of bX at X ∈ M
RX(bX) Retraction of lift bX at X ∈ c−1(X)

derivative of 5 at X. The Euclidean and Riemannian gradients of 5 at X ∈ M
are denoted by Grad f(X) and grad f(X), respectively. Similarly, the Euclidean and
Riemannian Hessian of 5 at the pointX ∈ M in the direction bX ∈ TXM are denoted
by Hess f(X) [bX] and hess f(X) [bX], respectively.

In the rest of the manuscript, variables relative to quotient manifolds, e.g., equiv-
alence classes, are denoted by overline characters and their representatives in the
embedded manifold are represented without the overline. For convenience, Ta-
ble 2.1 summarizes all Riemannian notations used in this paper. These notations
are introduced in Sections 2.2 and 2.3 for the embedded and quotient submanifolds,
respectively.

Overview of Riemannian Optimization Techniques
In the XIX century, Riemann investigated curvature in high-dimensional spaces
which led to the developed of an abstract geometry, known today as differential
and Riemannian geometries. Nowadays, these abstract geometric concepts found
real applications in the realm of numerical optimization. This is accomplished
by exploiting the geometry of the manifolds to extend unconstrained methods from
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Figure 2.1: The update step for the two-dimensional sphere embedded in R3.

Euclidean to Riemannian spaces. This part explains the general concept of designing
optimization algorithms using Riemannian geometry.

The fundamental idea of optimization algorithms on manifolds is to locally ap-
proximate the manifold by a linear space known as the tangent space. Afterwards,
unconstrained optimization is performed on that tangent space. In particular, a de-
scent direction is computed by deriving the Riemannian gradient. Finally, the point
on the tangent space is “projected" to the manifold using a retraction. The steps of
the algorithm are available in Algorithm 2.1 and an illustration of one iteration of
the algorithm is given in Figure 2.1.

Algorithm 2.1 Template of optimization algorithms on Riemannian manifolds.
Require: ManifoldM, function f, and retraction R.
1: Initialize X ∈ M.
2: while | |grad f(X) | |X ≥ n do
3: Choose search direction bX ∈ TXM.
4: Compute step size U.
5: Retract X = RX(UbX).
6: end while
7: Output X.

Sections 2.2 and 2.3 define the above relevant concepts from differential and Rie-
mannian geometry for embedded and quotient manifolds, respectively. These geo-
metric operators are exploited afterwards in Section 2.4 to design various first and
second-order optimization algorithms.
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Figure 2.2: Tangent space of a 2-dimensional manifold embedded in R3.

2.2 Embedded Riemannian Manifolds
First-Order Embedded Manifolds Geometry
Along the lines of approximating a function locally by its derivatives, a manifoldM
of dimension 3 can be approximated locally at a point X by a 3-dimensional vector
space TXM generated by taking derivatives of all smooth curves going through X
at the origin. Formally, let W(C) : I ⊂ R→M be a curve onM with W(0) = X and
denote by W′(0) its derivative at 0. The space generated by all such W′(0) represents a
vector space TXM called the tangent space ofM at X. Figure 2.2 shows an example
of a two-dimensional tangent space generated by a couple of curves. The tangent
space plays a primordial role in Riemannian optimization algorithms in the same
way that derivatives of functions play an important role in Euclidean optimization.
The union of all tangent spaces TM is referred to as the tangent bundle ofM, i.e.,:

TM =
⋃

X∈M
TXM .

To optimize functions on manifolds, besides the notion of a tangent space described
above, one needs the notion of directions and lengths which can be achieved by
endowing each tangent space TXM by an inner product 〈bX, [X〉X, ∀ bX, [X ∈ TXM.
Suchmetric, known as the Riemannian metric, turns the manifold into a Riemannian
manifold. The norm on the tangent space TXM is denoted by | |.| |X and defined by:

| |bX | |X =
√
〈bX, bX〉X, ∀ bX ∈ TXM .

Since both the ambient space and the tangent space are vector spaces, one can define
the orthogonal projectionΠX : E → TXM verifyingΠX ◦ΠX = ΠX. The projection
is said to be orthogonal with respect to the restriction of the Riemannian metric
to the tangent space, i.e., ΠX is orthogonal in the 〈., .〉X sense which means that
〈ΠX(Y),Y − ΠX(Y)〉X = 0, ∀ Y ∈ E.
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The Riemannian gradient is defined in a similar manner as the Euclidean one with
the exception that it uses the Riemannian geometry, i.e.,:

Definition 2.1 The Riemannian gradient of f of a manifold M at X, denoted by
grad f(X), is defined as the unique tangent vector in TXM that satisfies:

〈grad f(X), bX〉X = D f(X) [bX], ∀ bX ∈ TXM .

While the update step XC+1 = XC + UC ?C is trivial in Euclidean optimization thanks
to its vector space structure, it might result in a point XC+1 outside the manifold.
Moving in a given tangent direction while remaining on the manifold is realized by
the retraction operator. The ideal retraction is the exponential map1 ExpX as it maps
a tangent vector bX ∈ TXM to a point on the manifold along the geodesic curve
(straight line on the manifold) that goes through X in the direction of bX. However,
computing geodesic curves is challenging and may be more difficult that solving
the original optimization problem. Luckily, one can use a first-order approxima-
tion of the exponential map, called a retraction herein, without compromising the
convergence properties of the algorithms.

Definition 2.2 A retraction on a manifoldM is a smooth map R from the tangent
bundle TM ontoM. For all X ∈ M, the restriction of R to TXM, denoted by RX,
satisfies the following properties:

• Centering: RX(0) = X.

• Local rigidity: The curve WbX (g) = RX(gbX) satisfy ¤WbX (0) = bX, ∀ bX ∈
TXM.

Embedded Submanifolds: Second-Order Geometry
Generalizing Newton’s method to the Riemannian setting requires computing the
Riemannian Hessian which can be accomplished by taking a directional derivative
of a vector field. As vectors belong to different tangent spaces, one needs the notion
of a connection ∇, also called the covariant derivative, which generalizes the notion
of directional derivative to vector fields. The definition of a connection is given
below:

1The exponential map and geodesics are introduced later as part of the second-order geometry
of the manifold.
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Definition 2.3 An affine connection ∇ is a map that associate to ([, b) the tangent
vector ∇[b satisfying for all [, b, j ∈ TM, for all smooth f, g :M → R, and for all
reals 0, 1 ∈ R:

• ∇f([)+g(j)b = f(∇[b) + g(∇jb)

• ∇[ (0b + 1i) = 0∇[b + 1∇[i

• ∇[ (f(b)) = b ( 5 )[ + f(∇[b),

wherein the vector field b acts on the function f by derivation, i.e., b ( 5 ) = D (f) [b]
also noted as b 5 in the literature.

On a Riemannian manifold, the Levi-Civita connection is the canonical choice of
affine connections as it preserves the Riemannian metric. Indeed, the Levi-Civita
connection is the unique affine connection onM with the Riemannian metric 〈., .〉
that satisfies for all [, b, j ∈ TM:

1. ∇[b − ∇b[ = [[, b]

2. j〈[, b〉 = 〈∇j[, b〉 + 〈[,∇jb〉,

where [b, [] is the Lie bracket, i.e., a function from the set of smooth function to
itself defined by [b, []g = b ([(g)) − [(b (g)).

Definition 2.4 The Riemannian Hessian of f at X, denoted by hess f(X), of a
manifoldM is a map from TXM into itself defined by:

hess f(X) [bX] = ∇bXgrad f(X), ∀ bX ∈ TXM,

where grad f(X) is the Riemannian gradient and ∇ is the Riemannian connection
onM.

Given a Riemannian connection ∇ on M and an interval I ⊆ R containing 0, a
geodesic curve W : I →M going through X ∈ M in the direction bX ∈ TXM, i.e.,
W(0) = X and ¤W(0) = bX, is denoted by WX,bX (C). The geodesic WX,bX (C) defines the
Exponential map ExpX : TXM →M by ExpX(bX) = WX,bX (1). In addition, if there
exists a unique geodesic WX,bX (C) between the points X and WX,bX (1) = Y ∈ M, the
inverse of the Exponential map, also known as the Logarithmic map, is denoted by
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LogX(Y) = Exp−1
X (Y) = bX. Under the previous assumption, the geodesic distance

on M, i.e., shortest distance, between points X and Y is defined and denoted by
3 (X,Y) = | |LogX(Y) | |X = | |LogY(X) | |Y. Given two points X and Y inM and the
geodesic WX,bX (1) = Y, the parallel translation ΓY

X : TXM → TYM of the tangent
vector [ ∈ TXM is denoted by ΓY

X[ ∈ TYM.

2.3 Quotient Riemannian Manifolds
Equivalence Relationship and Quotient Structure
Let ∼ be an equivalence relationship and define the setM =M/∼ as the quotient of
the manifoldM by ∼. In order to show that the setM=

? =M=
?/∼ admits a manifold

structure, it is sufficient to show that ∼ is regular [23], meaning that it satisfies the
three following properties

1. graph(∼) is an embedded submanifold of the productM=
? ×M=

?.

2. The projection c1 : graph (∼) → M=
? given by c1(X1,X2) = X1 is a submer-

sion.

3. graph (∼) is closed,

wherein graph (∼) = {(X1,X2) ∈ M=
? ×M=

? | X1 ∼ X2}.

Combining the three properties above allows concluding thatM=

? admits a unique
manifold structure known as the quotient manifold ofM=

? by∼. However, it does not
allow to conclude thatM=

? inherits the Riemannian structure ofM=
? as it requires

the Riemannian metric to be compatible with ∼, as described in the next part.

Under the above assumptions, the quotient manifoldM admits a quotient structure
that groups all elements ofM in the same equivalence class as a single point. Let
c be the natural projection that associates to each X ∈ M its equivalence class
c(X) = [X] = X ∈ M. These three notations for equivalence classes are used
interchangeably in this paper.

Quotient Submanifolds: First-Order Geometry
Let 〈., .〉X be the Riemannian metric on the tangent space TXM of the embedding
spaceM. The quotientM =M/∼ admits a Riemmanian structure for the induced
Riemannian metric if and only if the metric is compatible with the equivalence
relationship∼, i.e., it does not depend on the chosen representative of the equivalence
class.
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To express the compatibility of the metric, we first introduce the horizontal lift. For
a point X ∈ M, let bX ∈ TXM be a tangent vector. In a similar manner that X can
be represented by multiple X ∈ c−1(X), the tangent vector bX can be represented
by multiple predecessors for each X ∈ c−1(X). Indeed, fix X ∈ c−1(X), then any
tangent vector bX ∈ TXM satisfying D (c(X)) [bX] = bX can be considered as a
valid representation of the tangent vector bX. To circumvent the aforementioned
problem and obtain a unique representation of bX for each predecessor X ∈ c−1(X),
we use the fact that c−1(X) represents a manifold. Therefore, one can obtain a
unique representation by orthogonally decomposing the tangent space TXM into a
vertical spaceVXM and a horizontal spaceHXM such that

VXM = TXc−1(X)
TXM = VXM ⊕HXM .

The ambient vector space can be composed into a tangent space TXM and its
orthogonal complement T⊥X M. In particular, for each X ∈ M, the embedding
space R=×< can be uniquely decomposed into a direct sum of the above defined
linear space, i.e.,

R=×< = HXM ⊕VXM ⊕ T⊥X M .

The representation of bX ∈ TXM at X ∈ c−1(X), denoted by bX and referred to as
the horizontal lift of a tangent vector bX at X, is the unique element in the horizontal
space HXM satisfying D (c(X)) [bX] = bX. Such representation as horizontal lift
allows to get a unique parameterization of tangent vectors in a quotient manifold.
The manifold M represents a Riemannian manifold for the Riemmanian metric
〈., .〉X on TXM if and only if for all tangent vectors bX, [X ∈ TXM the following
holds

〈bX1 , [X1〉X1 = 〈bX2 , [X2〉X2 , ∀ X1,X2 ∈ c−1(X).

Under the above assumption, the operator 〈., .〉X on TXM defined by 〈bX, bX〉X =

〈bX, [X〉X for any X ∈ c−1(X) represents a well-defined Riemannian metric for the
quotient manifoldM. Let ΠHX be the orthogonal projection from the ambient space
R=×< to the horizontal spaceHXM and let f :M → R be a function that is constant
on each equivalence class [X] for all X ∈ M. The above function, said to be
compatible with the equivalence relationship, induces a function f : M → R such
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that f(X) = f(X) for any predecessor X of the equivalence class X. Under the above
assumptions, the Riemannian gradient is obtained by projecting the Euclidean one
onto the horizontal space of any predecessor, i.e.,

grad f(X) = ΠHX (Grad f(X)), X ∈ c−1(X).

Second-Order Geometry of Quotient Manifolds
In the same manner as for the embedded manifold, the Riemannian Hessian can be
expressed as the covariant derivative of the Riemannian gradient on the quotient
manifold hess f(X) [bX] = ∇bX

grad f(X). Given that the ambient space, R=×<

herein, is a vector space and that the Riemannian metric is induced and compatible,
the connection simplifies as ∇bX

[X = Π
H
X (D ([X) [bX]), for any X ∈ c−1(X) which

allows the Riemannian Hessian to be expressed as

hess f(X) [bX] = Π
H
X (D (grad f(X)) [bX]).

Let X ∈ M and X1 and X2 be any two arbitrary representatives in c−1(X). Assume
that the retractions RX1 and RX2 on the tangent spaces TX1M and TX2M of the
manifoldM satisfy the property c(RX1 (bX1)) = c(RX2 (bX2)) for all tangent vectors.
Such retraction is said to be compatible with the equivalence relationship and
generate a retraction on the quotient manifold as follow

RX(bX) = c(RX(bX)),X ∈ c−1(X). (2.4)

2.4 Optimization on Riemannian Manifolds
This part exploits the geometry operators introduced in the previous sections to
design Riemannian optimization algorithms. In particular, the paper illustrates the a
generalization of the Riemannian steepest-descent algorithm, known as line-search
algorithms. Afterward, a second-order algorithm is presented in the form of the Rie-
mannian version of Newton’s method. Finally, a more-sophisticated algorithm, i.e.,
conjugate gradient, is introduced. Although this manuscript considers sophisticated
second-order algorithms on Riemannian manifolds, such as the trust-region (TR)
method, these methods can be derived using the geometry operators introduced in
this manuscript and are omitted herein. Nonetheless, their performance is reported
in each corresponding simulation section.

Line-Search Algorithms on Manifolds
The Riemannian version of the steepest-descent follows similar steps as the Eu-
clidean one with the exception that the search direction is obtained with respect
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to the Riemannian gradient. After choosing the search direction as mandated by
(2.1), the step size is selected according toWolfe’s conditions using the backtracking
procedure. As stated earlier, the update step XC+1 = XC + UC ?C is trivial in Euclidean
optimization thanks to its vector space structure. However, it might result in a point
XC+1 outside the manifold which motivates the use of retractions. The ideal retrac-
tion is the exponential map ExpX as it maps a tangent vector bX ∈ TXM to a point
on the manifold along the geodesic curve (straight line on the manifold) that goes
through X in the direction of bX. However, the convergence of the steepest-descent
algorithm is guaranteed under the use of a first-order retraction. Therefore, the gen-
eralization of the steepest-descent algorithm to Riemannianmanifolds is obtained by
finding the search direction that satisfies equation (2.2) for the Riemannian metric.
The update is, then, mapped to the manifold using the retraction. The steps of the
method are summarized in Algorithm 2.2.

Algorithm 2.2 Template of the gradient descent procedure on Riemannian mani-
folds.
Require: ManifoldM, function f, and retraction R.
1: Initialize X ∈ M.
2: while | |grad f(X) | |X ≥ n do
3: Choose search direction bX ∈ TXM such that:

〈grad f(X), bX〉X < 0.

4: Compute Armijo step size U using backtracking.
5: Retract X = RX(UbX).
6: end while
7: Output X.

Newton’s Method on Riemannian Manifolds
Algorithm 2.3 Template of Newton’s method on Riemannian manifolds.
Require: ManifoldM, function f, retraction R, and affine connection ∇.
1: Initialize X ∈ M.
2: while | |grad f(X) | |X ≥ n do
3: Find descent direction bX ∈ TXM such that:

hess f(X) [bX] = −grad f(X),

wherein hess f(X) [bX] = ∇bXgrad f(X)
4: Retract X = RX(bX).
5: end while
6: Output X.
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Given the above definitions, the generalization of Newton’s method to Riemannian
manifolds is accomplished by replacing both the Euclidean gradient and Hessian by
their Riemannian counterparts in (2.3). Hence, the search direction is the tangent
vector bX that satisfies hess f(X) [bX] = −grad f(X). The update is obtained by
retracting the tangent vector to themanifold similar to the steepest-descent algorithm.
The full steps of the algorithm are illustrated in Algorithm 2.3.

Riemannian Conjugate Gradient Algorithm

Algorithm 2.4 Template of the conjugate gradient method on Riemannian mani-
folds.
Require: ManifoldM, function f, retraction R, and vector transport T.
1: Initialize X ∈ M.
2: Initialize Y = −grad f(X).
3: while | |grad f(X) | |X ≥ n do
4: Compute step size U using line-search procedures, e.g., backtracking.
5: Retract X = RX(UY).
6: Compute V using (2.7), (2.8), or (2.9).
7: Update Y = −grad f(X) + VTUY(Y).
8: end while
9: Output X.

The conjugate gradient algorithm is an unconstrained optimization method devel-
oped for solving quadratic equations of the form

min
x∈R=

1
2
xTAx − xTb,

wherein matrix A is an = × = symmetric positive-definite matrix and b ∈ R=.
While simple first-order algorithms fail to converge quickly for problems with ill-
conditioned matrix A, the conjugate gradient method alleviates the problem by
choosing only conjugate search directions in which the inner product is computed
with respect to the matrix A. Therefore, the main idea of conjugate gradient
algorithms is to perform the update

x:+1 = x: + U:p: , (2.5)

wherein
{
pC

}:
C=1 are conjugate directions related thought the expression

p:+1 = V:p: − Grad f(x: ), (2.6)

with V: can be chosen independently, yielding different nonlinear conjugate gradient
methods.
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The generalization of the conjugate gradient from Euclidean spaces to Rieman-
nian manifolds is not direct. Indeed, unlike the Riemannian steepest-descent, the
conjugate gradient algorithm cannot be readily extended to Riemannian manifolds
as equation (2.6) combines different gradients which is not possible on manifolds.
Indeed, each Riemannian gradient lives in a different tangent space. This issue
is resolved throught the concept of parallel translation to connect different tangent
spaces in a manifold. However, similar to the use of a retraction instead of the
complicated Exponential map, one can use a vector transport instead of the more
difficult to derive parallel translation. A vector transport T can be obtained by ex-
ploiting the linear structure of the embedding space and the notion of retraction as
T[Y (bY) = ΠRY ([Y) (bY) (see Proposition 8.1.2 [23]).

The Riemannian version of the conjugate gradient can be described as follows.
Starting froman initial guessX0, the initial residue is computed asY0 = −grad f(X0).
Afterward, while not converged, the step size U: is computed using line-search
procedures, e.g., backtracking. Generalizing the linear combination in (2.5) gives
the update via the retraction X:+1 = RX: (U:Y: ). Finally, the residue is updated as
Y:+1 = −grad f(X:+1) + V:+1TU:Y: (Y: ), where the V:+1 can be one of the following
choices

• Quasi Newton [23]

V:+1 =
〈TU:Y: (Y: ),Hess f(X: ) [grad f(X: )]〉X:
〈TU:Y: (Y: ),Hess f(X: ) [TU:Y: (Y: )]〉X:

. (2.7)

• Fletcher-Reeves [72]:

V:+1 =
〈grad f(X:+1), grad f(X:+1)〉X:+1
〈grad f(X: ), grad f(X: )〉X:

. (2.8)

• Polak-Ribiere [73]:

V:+1 =
〈grad f(X:+1), grad f(X:+1) − TU:Y: (grad f(X: )〉X:+1

〈grad f(X: ), grad f(X: )〉X:
. (2.9)

Finally, after obtaining the V:+1, the residue is updated through the equation
Y:+1 = −grad f(X: ) + V:+1TUY: (Y: ). The steps of the algorithm are summarized
in Algorithm 2.4.
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C h a p t e r 3

EFFICIENT RIEMANNIAN ALGORITHMS FOR COMMUNITY
DETECTION

[1] A. Douik and B. Hassibi. “A Riemannian Approach for Graph-Based Clus-
tering by Doubly Stochastic Matrices”. In: Proc. of the IEEE Statistical
Signal Processing Workshop (SSP’ 2018), Freiburg, Germany. Vol. 1. 1.
June 2018, pp. 806–810. doi: 10.1109/SSP.2018.8450685.

[2] A. Douik and B. Hassibi. “Manifold Optimization Over the Set of Doubly
Stochastic Matrices: A Second-Order Geometry”. In: IEEE Transactions on
Signal Processing 67.22 (Nov. 2019), pp. 5761–5774. doi: 10.1109/TSP.
2019.2946024.

This chapter suggests using a Riemannian optimization approach to solve a subset
of convex optimization problems wherein the optimization variable is a doubly
stochastic matrix. Optimization over the set of doubly stochastic matrices is crucial
for multiple communications and signal processing applications, especially graph-
based clustering. The paper introduces and investigates the geometries of three
convex manifolds, namely the doubly stochastic, the symmetric, and the definite
multinomial manifolds which generalize the simplex, also known as the multinomial
manifold. Theoretical complexity analysis and numerical simulation results testify
the efficiency of the proposed method over state-of-the-art algorithms for clustering
applications. In particular, they reveal that the proposed framework outperforms
conventional generic and specialized approaches, especially in high dimensions.
The results on this chapter appear in the research papers [74] and [75] and as such
some of the text appears as it is in these publications.

3.1 Clustering via Optimization over the Set of Doubly Stochastic Matrices
State-of-the-Art Clustering Approaches
Optimization over the set of doubly stochastic matrices is a particularly interesting
class of problems for its connection with probability density functions and its numer-
ous applications in communications and signal processing, especially in graph-based
clustering [39, 53, 54, 55]. Furthermore, doubly stochastic matrices play an impor-
tant role in graph theory such as in critical arcs for strongly connected graphs [76]
and in optimizing the mixing time of Markov chains with applications in network
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coding [77] and epidemics [78, 79], respectively. In addition to the aforemen-
tioned applications, the study and optimization over doubly stochastic matrices are
crucial for some communication systems such as satellite-switched, time-division,
multiple-access systems [80]. Finally, these matrices are also exploited in linear
optimization and more specifically in the assignment problem, e.g., see [81] and
references therein, which appears in various discrete optimization problems such as
the resource scheduling problem.

This chapter introduces a framework for solving optimization problems in which the
optimization variable is a doubly stochastic matrix. As stated earlier, such class of
optimization is particularly interesting for clustering applications. In such problems,
e.g., [39, 53, 54, 55], one wishes to recover the structure of a graph given a similarity
or adjacency matrix. The recovery is performed by minimizing a predefined cost
function over the set of doubly stochastic matrices. This work provides a unified
framework to carry such optimization.

In a context of tensor decomposition, the authors in [32] propose a framework to
optimize functions of stochastic matrices. This manuscript proposes extending the
results to a more-general class of manifolds by introducing a framework for solving
a subset of convex programs in which the optimization variable is represented by a
doubly stochastic and possibly symmetric and/or definite matrix. To this end, the
thesis introduces three convex manifolds which generalize the multinomial mani-
fold. While the multinomial manifold represents stochastic matrices, the proposed
manifolds characterize doubly stochastic, symmetric and definite matrices.

The paper investigates the first and second-order geometries of the proposed Rie-
mannian manifolds endowed with the Fisher information metric which guarantees
a differentiable structure. For each manifold, the tangent space, Riemannian gra-
dient, Hessian, and retraction are derived so as to formulate first and second-order
optimization algorithms. The convergence properties and theoretical complexity of
these algorithms is analyzed, and simulation results are provided to further illustrate
the efficiency of the proposed method against state-of-the-art algorithms.

Problems of Interest
This chapter’s main contribution is to propose a framework for solving a subset
of convex programs wherein the optimization variable is a doubly stochastic and
possibly symmetric and/or definite matrix, i.e., a multidimensional probability dis-
tribution function. In other words, for a convex function f : R=×< → R, the paper
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proposes solving the following problem:

min f(X) (3.1a)

s.C. X8 9 > 0,∀ 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <, (3.1b)
<∑
9=1

X8 9 = 1,∀ 1 ≤ 8 ≤ =, (3.1c)

=∑
8=1

X8 9 = 1,∀ 1 ≤ 9 ≤ <, (3.1d)

X = XT, (3.1e)

X � 0, (3.1f)

wherein constraints (3.1b)-(3.1c) produce a stochastic matrix, (3.1b)-(3.1d) a doubly
stochastic one, (3.1b)-(3.1e) a symmetric stochastic one, and (3.1b)-(3.1f) a definite
symmetric matrix. The study of these optimization problems is crucial as they
appear in multiple communications and signal processing applications.

Manifolds and Contributions
As shown earlier, computing the Riemannian gradient and Hessian for a given
function over somemanifoldM and designing a retraction allows the development of
efficient first and second-order optimization algorithms that exploit the geometrical
structure of the problem. Define the multinomial, doubly stochastic multinomial,
symmetric multinomial, and definite multinomial, respectively, as follows:

P<= =
{
X ∈ R=×<

�� X > 0, X1 = 1
}

DP= =
{
X ∈ R=×=

�� X > 0, X1 = 1, XT1 = 1
}

SP= =
{
X ∈ R=×=

�� X > 0, X1 = 1, X = XT
}

SP+= =
{
X ∈ R=×=

�� X > 0, X1 = 1, X = XT, X � 0
}
,

wherein the notationX > 0 refers to an element-wise positivematrix and the notation
X � 0 to a positive-definite matrix.

Recall that the notation A � B refers to the Hadamard, i.e., element-wise, division
of A by B. Similarly, the symbol � denotes the Hadamard product. For all above
manifolds, the paper uses the Fisher information as the Riemannian metric whose
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restriction to TXM is computed in [31] (Section 3.2) as follows

〈bX, [X〉X = Tr((bX � X)[T
X)

=

=∑
8=1

<∑
9=1

(bX)8 9 ([X)8 9
X8 9

, ∀ bX, [X ∈ TXM .

Endowing the above manifolds with the Fisher information metric ensures a dif-
ferential structure that is invariant to the choice of a coordinate system. More
information about the Fisher information metric and its uses in information geome-
try can be found in [82]. Using the definitions above, the optimization problems of
interest in this chapter can be reformulated as:

min
X∈P<=

f(X), min
X∈DP=

f(X), min
X∈SP=

f(X), min
X∈SP+=

f(X).

3.2 The Doubly Stochastic Multinomial Manifold
Manifold Geometry
The set of doubly stochastic matrices is the set of square matrices with positive
entries such that each column and row sums to 1. It can easily be shown that only
a square matrix can verify such property. As a consequence of the Birkhoff–von
Neumann theorem, DP= is an embedded manifold of R=×=. A short proof of the
Birkhoff-von Neumann theorem using elementary geometry concepts can be found
in [83]. The dimension of DP= is (= − 1)2 which can be seen from the fact that the
manifold is generated from 2= − 1 linearly independent equations specifying that
the rows and columns all sum to one. Let X ∈ DP= be a point on the manifold, the
tangent space TXDP= is given in the following proposition.

Proposition 3.1 The tangent space TXDP= is defined by:

TXDP= =
{
bX ∈ R=×=

�� bX1 = 0, bT
X1 = 0

}
.

Proof: Let X(C) be a smooth curve such that X(0) = X. Since X(C) ∈ DP= for
some C in the neighborhood of the origin, then the curve satisfies:

X(C)1 = 1⇒ ¤X(C)1 = 0

X(C)T1 = 1⇒ ¤X(C)T1 = 0.

Differentiating both equations above concludes that the tangent space is a subset of

TXDP= ⊆
{
bX ∈ R=×=

�� bX1 = 0, bT
X1 = 0

}
.
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From the Birkhoff-von Neumann theorem [83], the degrees of freedom of the set of
doubly stochastic matrices is 3 = (= − 1)2. Similarly, one can note that the above
space is generated by 2= − 1 independent linear equations. Indeed, all 2= − 1 sums
of columns and rows are independent except the sum of the last column which is
the difference of the sum of all rows and all except the last column. In other words,
the dimension of the space is =2 − (2= − 1) = (= − 1)2. Therefore, the set identified
above has the same dimension as the tangent space which concludes that the tangent
space is equal to the set above. �

Let ΠX : R=×= → TXDP= be the orthogonal projection from the ambient space
onto the tangent space. The expression of such operator for the doubly stochastic
multinomial is given below.

Theorem 3.1 The orthogonal projection ΠX has the following expression:

ΠX(Z) = Z − (U1T + 1VT) � X,

wherein vectors U and V are a solution to the following over-determined but consis-
tent 2= × 2= system of equations(

Z1
ZT1

)
=

(
I X

XT I

) (
U

V

)
.

Proof: In order to obtain the orthogonal projection ΠX onto the tangent space
TXDP=, one needs to derive a parameterization of the orthogonal complement of
the tangent space T⊥X DP= is given in the following lemma.

Lemma 3.1 The orthogonal complement of the tangent space of the doubly stochas-
tic multinomial has the expression:

T⊥X DP= =
{
b⊥X ∈ R

=×= �� b⊥X = (U1T + 1VT) � X
}
,

for some vectors U, V ∈ R=.

Proof: Let b⊥X ∈ T
⊥

X DP= and bX ∈ TXDP=, the inner product can be written as:

〈b⊥X , bX〉X = Tr((b⊥X � X)bT
X) = Tr((U1T + 1VT)bT

X)
= UTbX1 + VTbT

X1.

But bX1 = bT
X1 = 0 by definition of the tangent space. Therefore, we have

〈bX, b
⊥
X〉X = 0, ∀ bX ∈ TXDP=. Finally, one can note that each orthogonal vector
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b⊥X ∈ T
⊥

X DP= is completely defined by its first row and column, i.e., by 2= − 1

entries. Indeed, we have (b⊥X)8 9 = (U8 + V 9 )X8 9 =
©­«
(b⊥X)81
X81

+
(b⊥X)1 9
X1 9

−
(b⊥X)11

X11

ª®¬ X8 9 .

Therefore, the dimension of the orthogonal complement of the tangent space is
2=− 1 which is the correct dimension for T⊥X DP=. In conclusion, the derived set is
the orthogonal complement of the tangent space. �

Let Z ∈ R=×= be a vector in the ambient space and X ∈ DP=. The expression of the
orthogonal projection is obtained using the following decomposition:

Z = ΠX(Z) + Π⊥X (Z) ⇒ Z1 = ΠX(Z)1 + Π⊥X (Z)1. (3.2)

However, by definition of the tangent space, the first term in the right-hand side in
the above equation vanishes. Similarly, from Lemma 3.1, the second term can be
replaced by its parameterization (U1T + 1VT) �X. Therefore equation (3.2) implies

Z1 = ((U1T + 1VT) � X)1⇔
=∑
9=1

Z8 9 =
=∑
9=1
(U8 + V 9 )X8 9 , 1 ≤ 8 ≤ =⇔

=∑
9=1

Z8 9 = U8 +
=∑
9=1

V 9X8 9 , 1 ≤ 8 ≤ =⇔

Z1 = U + XV. (3.3)

A similar argument allows to conclude that ZT1 = XTU+ V. Grouping the equations
above gives the following system(

Z1
ZT1

)
=

(
I X

XT I

) (
U

V

)
. (3.4)

By definition of the manifold, we have X > 0 which translates to the fact that
the Markov chain represented by X is irreducible. According to Perron-Frobenius
theorem, X has a unique eigenvector at 1 associated with the eigenvalue 1. As a

result, even though the matrixA =

(
I X

XT I

)
is rank deficient as it has a null vector at(

1
−1

)
, the systems admits infinitely many solutions. Indeed, given the identification

of the range space and the orthogonal complement of the null space of the matrix
A, i.e., R(A) = N⊥(A), it is sufficient to show that the vector is orthogonal to the
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null space of the matrix of interest as follows:(
Z1
ZT1

)T (
1
−1

)
= 1TZT1 − 1TZ1

= 1TZ1 − 1TZ1 = 0.

Finally, rearranging the terms in (3.2) concludes that the orthogonal projection onto
the tangent space has the following expression

ΠX(Z) = Z − (U1T + 1VT) � X,

wherein U and V are obtained according to (3.4). �

Although its representation in terms of U and V is not unique, the projection ΠX(Z)
is unique and does not depend on the choice of the solution to the over-determined
system. The non-uniqueness of the representation follows from the fact that the
2=− 1-dimensional space T⊥X DP= is parametrized with 2= variables, namely U and
V.

Riemannian Gradient and Retraction Computation
For the Fisher information metric, the Riemannian gradient grad f(X) can be ex-
pressed as the projection of a scaled version of the Euclidean gradient Grad f(X).
Indeed, the authors in [32] demonstrate that the Riemannian gradient for the multi-
nomial manifold is given by

grad f(X) = ΠX(Grad f(X) � X). (3.5)

Therefore, given the expression of the orthogonal projection onto the tangent space
in Theorem 3.1, the Riemannian gradient can be computed from its Euclidean
counterpart using equation (3.5). Besides, note that the relationship in (3.5) depends
solely on the expression of the Riemannian metric and thus applies to the three
manifolds of interest in this paper.

As stated in Chap. 2, one needs to define a retraction from the tangent bundle to the
manifold to take advantage of optimization algorithms on Riemannian manifolds.
The canonical approach to derive an efficient retraction, e.g., a retraction that can
be computed quickly, is to exploit the linear structure of the embedding space. The
construction of such retraction rely on the following theorem whose proof can be
found in [23].
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Theorem 3.2 LetM be an embedded manifold of the Euclidean space E and letN
be an abstract manifold such that dim(M) + dim(N ) = dim(E). Assume that there
is a diffeomorphism

q :M ×N → E★

(F,G) ↦−→ q(F,G),

where E★ is an open subset of E, with a neutral element I ∈ N satisfying

q(F, I) = F, ∀ F ∈ M .

Under the above assumptions, the map

RX : TXM →M
bX ↦−→ RX(bX) = c1(q−1(X + bX)),

where c1 :M×N →M : (F,G) ↦−→ F is the projection onto the first component,
defines a retraction on the manifoldM for all X ∈ M and bX in the neighborhood
of 0X.

Define the set of entry-wise positive matrices R=×= = {X ∈ R=×= | X > 0}. The
canonical retraction on the doubly stochastic multinomial manifold is given in the
following theorem:

Theorem 3.3 The map R : TDP= → DP= whose restriction RX to TXDP= is
given by:

RX(bX) = X + bX,

represents a well-defined retraction on the doubly stochastic multinomial manifold
provided that bX is in the neighborhood of 0X, i.e., X + bX > 0.

Proof: This proof uses Sinkhorn’s theorem [84] to derive an expression for themap
q. Sinkhorn’s theorem states that for an element-wise positive matrix A ∈ R=×=,
there exists two strictly positive diagonal matrices d1 and d2 such that d1Ad2 is
doubly stochastic. Due to the invariance of the above theorem for scaling d1 and d2,
the rest of the paper assumes that (d1)11 = 1 without loss of generality. Define the
map q as follows:

q : DP= × R
2=−1 → R=×=

©­«A,

(
31

32

)ª®¬ ↦−→ diag(1, 31)Adiag(32).



32

Note that R2=−1 is an open subset of R2=−1 and thus is a manifold by definition.
Similarly, R=×= is an open subset of R=×=. Finally, dim(DP=) + dim(R

2=−1) =
(= − 1)2 + 2= − 1 = =2 = dim(R=×=). Also, the all one element of R2=−1 satisfies
q(A, 1) = A. Furthermore, given that this paper is interested in points on the
manifoldDP=, then all entries ofA are strictly positive which guarantees, according
to Sinkhorn and Knopp [85], that the map q is invertible.

Clearly, the map q is smooth given the smoothness of the matrix product. The
existence of the inverse map is guaranteed by Sinkhorn and Knopp [85] as discussed
above. Such an inverse map is obtained through Sinkhorn’s algorithm [84] that
scales the rows and columns of the matrix. Hence, the smoothness of the inverse
map derives from the fact that the map is computed as a finite sequence of smooth
operations over an open set, namely the positive quadrant. Finally, we conclude that
q represents a diffeomorphism.

Using the result of Theorem 3.2, we obtain that c1(q−1(X+ bX)) is a valid retraction
for bX in the neighborhood of 0X, i.e., (X + bX) ∈ R

=×= which can explicitly written
as X8 9 > −

(
bX

)
8 9
, 1 ≤ 8, 9 ≤ =. Using the properties of the manifold and its tangent

space, the inverse map reduce the identity. Indeed, it holds true that:

(X + bX)1 = X1 + bX1 = 1 + 0 = 1

(X + bX)T1 = XT1 + bT
X1 = 1 + 0 = 1.

Hence, the retraction is defined by RX(bX) = X + bX. �

The performance of the above retraction is satisfactory as long as the optimal
solution X★ does not have vanishing entries, i.e., some X★

8 9
that approaches 0. In

such situation, the update procedure results in tiny steps which compromise the
convergence speed of the algorithm. Although the projection on the set of doubly
stochastic matrices is costly [85], this paper proposes a highly efficient retraction
that takes advantage of the structure of both the manifold and its tangent space. Let
P : R=×= → DP= be the map to the set of doubly stochastic matrices obtained using
the Sinkhorn-Knopp algorithm [84]. The proposed retraction, using the element-
wise exponential of a matrix exp(.), is given in the following lemma

Lemma 3.2 The map R : TDP= → DP= whose restriction RX to TXDP= is given
by:

RX(bX) = P
(
X � exp(bX � X)

)
,
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is a first-order retraction on the doubly stochastic multinomial manifold for all
bX ∈ TDP=.

Proof: To show that the operator represents a well-defined retraction, one needs
to demonstrate that the centering and local rigidity conditions are satisfied. The
centering property is straightforward, i.e.,:

RX(0) = P
(
X � exp(0)

)
= P (X) = X,

wherein the last equality is obtained from the fact thatX is already a doubly stochastic
matrix.

To prove the local rigidity condition, one needs to study the behavior of P(X) around
a “small" perturbation mX in the tangent space TDP= wherein “small" refers to
the fact that X + mX ∈ R=×=. First note from Sinkhorn-Knopp algorithm that
P(X) = d1Xd2. However, since X is already doubly stochastic, then d1 = d2 = I.
The first-order approximation of the P(X + mX) can be written as:

P(X + mX) = (d1 + md1) (X + mX) (d2 + md2)
= d1Xd2 + d1mXd2 + md1Xd2 + d1Xmd2

= X + mX + md1X + Xmd2.

Since P(X + mX) and X are doubly stochastic and mX is in the tangent space, then
we obtain:

P(X + mX)1 = (X + mX + md1X + Xmd2)1⇒
md1X1 + Xmd21 = md11 + Xmd21 = 0.

Similarly, by post multiplying by 1T, we obtain 1Tmd1X + 1Tmd2 = 0T. For ease of
notations, let md11 = md1, i.e., md1 is the vector created from the diagonal entries
of md1 and the same for md2. Combining both equations above, the perturbation on
the diagonal matrices satisfy the condition:(

I X
XT I

) (
md1

md2

)
=

(
0
0

)
.

In other words,

(
md1

md2

)
is in the null space of the above matrix which is generated

by

(
1
−1

)
from the previous analysis. As a result, md1 = −md2 = 21 which gives
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md1X+Xmd2 = 0. Therefore, P(X+ mX) = X+ mX+ >( | |mX| |2). Now, consider the
curve WbX (g) = RX(gbX). The derivative of the curve at the origin can be written
as:

3WbX (g)
3g

���
g=0

= lim
g→0

P(X � exp(gbX � X)) − X
g

. (3.6)

A first-order approximation of the exponential allows to express the first term in the
denominator as:

P(X � exp(gbX � X)) = P(X + gbX) = X + gbX.

wherein the last equality is obtained from the previous analysis. Plugging the
expression in the limit expression shows the local rigidity condition. �

Connection and Riemannian Hessian Computation
The computation of the Riemannian Hessian requires the derivation of the Levi-
Civita connection ∇[b. Using the result of [23], the Levi-Civita connection of a
submanifoldM of the Euclidean space R=×= can be obtained by projecting the Levi-
Civita ∇[XbX of the embedding space onto the manifold, i.e., ∇[XbX = ΠX(∇[XbX).
From Koszul’s formula, the connection ∇[XbX on R=×= solely depends on the Rie-
mannian metric. In other words, the connection ∇[XbX on the embedding space is
the same for all manifolds in this paper. For manifolds endowed with the Fisher
information metric, the Levi-Civita connection on R=×= is given in [32] as

∇[XbX = D(bX) [[X] −
1
2
([X � bX) � X. (3.7)

Therefore, the Riemannian Hessian can be written as a function of the Euclidean
gradient and Hessian as follows:

Theorem 3.4 The Riemannian Hessian hess f(X) [bX] can be obtained from the
Euclidean gradient Grad f(X) and the Euclidean Hessian Hess f(X) [bX] using the
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identity:

hess f(X) [bX] = ΠX
©­« ¤X −

1
2
(X � bX) � Xª®¬

U = n (W − XWT)1
V = WT1 − X)U

W = Grad f(X) � X

X = W − (U1T + 1VT) � X

n = (I − XXT)†

¤U =
[
¤n (W − XWT) + n ( ¤W − bXW − X ¤WT)

]
1

¤V = ¤WT1 − bT
XU − X) ¤U

¤W = Hess f(X) [bX] � X + Grad f(X) � bX

¤X = ¤W − ( ¤U1T + 1 ¤VT) � X − (U1T + 1VT) � bX

¤n = n (XbT
X + bXXT)n .

Proof: Recall that theRiemannianHessian is related to theRiemannian connection
and Riemannian gradient through the following equation:

hess f(X) [bX] = ∇bXgrad f(X), ∀ bX ∈ TXM .

= ΠX(∇bXgrad f(X)),

with the Levi-Civita connection ∇[XbX, i.e., covariant derivative, being defined
in (3.7). Therefore, the computation of the Hessian only requires computing the
covariant derivative of the Riemannian gradient and projecting it onto the tangent
space which is omitted herein for conciseness. �

3.3 The Symmetric Multinomial Manifold
This section derives the first and second-order geometries of the symmetric and the
definite multinomial manifolds. As the geometries of both manifolds are alike, the
two first parts derive the expression of the tangent space, Riemannian gradient and
Hessian. Finally, the final part provides an expression of a retraction that exploits
the structure of the definite multinomial manifold.

Whereas the doubly stochastic multinomial manifold is regarded as an embedded
manifold of the space of matrices R=×=, the symmetric and definite multinomial
manifolds are seen as embedded manifolds of the set of symmetric matrices. In
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other words, the embedding Euclidean space is the space of symmetric matrices S=
defined as:

S= =
{
X ∈ R=×=

�� X = XT
}
.

Such choice of ambient space allows to reduce the ambient dimension from =2 to
=(=+1)

2 and thus enables the simplification of the projection operator. As a result, the
Riemannian gradient and Hessian expressions can be computed more efficiently.

Manifold Geometry, Gradient, and Retraction
Let X ∈ SP= be a point on the manifold, the tangent space TXSP= is given in the
following proposition.

Proposition 3.2 The tangent space TXSP= is defined by:

TXSP= =
{
bX ∈ S=

�� bX1 = 0
}
.

Proof: A smooth curve X(C) that goes through a point X ∈ SP= satisfies:

X(C) = X(C)T ⇒ ¤X(C) = ¤X(C)T

X(C)1 = 1⇒ ¤X(C)1 = 0,

which concludes that the tangent spaceTXDP= is included in the set {bX ∈ S=
�� bX1 =

0}. Now consider bX in the above set and the smooth curve W(C) = X+ CbX. Clearly,
W(C) = W(C)T for all C ∈ R. Furthermore, we have:

W(C)1 = X1 + CbX1 = X1 = 1.

Finally, since X > 0 defines an open set, there exists an interval I ⊂ R such that
W(C) > 0. Finally, it is clear that W(0) = X and W′(0) = bX which concludes that:

TXSP= =
{
bX ∈ S=

�� bX1 = 0
}
.

�

Let ΠX : S= → TXSP= be the orthogonal projection from the ambient space onto
the tangent space. Note that the ambient space for the symmetricmultinomialSP= is
the set of symmetric matrices S= and not the set of all matrices R=×=. The following
theorem gives the expression of the projection operator:
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Theorem 3.5 The orthogonal projection ΠX onto the tangent space TXSP= has the
following expression

ΠX(Z) = Z − (U1T + 1UT) � X,

wherein the vector U is computed as:

U = (I + X)−1Z1.

Proof: Using similar steps as in Lemma 3.1, the expression of the orthogonal
complement of the tangent space is given by the following set:

T⊥X SP= =
{
b⊥X ∈ S=

�� b⊥X = (U1T + 1UT) � X
}
,

for some U ∈ R=. Let Z ∈ S= be a vector in the ambient space and X ∈ DP=. The
decomposition of Z gives

Z = ΠX(Z) + Π⊥X (Z) ⇒
Z1 = ΠX(Z)1 + Π⊥X (Z)1⇒
Z1 = ((U1T + 1UT) � X)1⇒
Z1 = U + XU = (I + X)U⇒
U = (I + X)−1Z1, (3.8)

wherein the steps of the computation are obtained in a similar fashion as in (3.3).
Therefore, the orthogonal projection on the tangent space of the symmetric multi-
nomial manifold is given by:

ΠX(Z) = Z − (U1T + 1UT) � X,

with U being derived in (3.8). �

Given the expression of the projection onto the tangent space, the Riemannian
gradient can be efficiently computed as:

grad f(X) = W − (U1T + 1UT) � X

U = (I + X)−1W1

W = (Grad f(X) � X).

Similar to the doubly stochastic multinomial manifold, the canonical retraction on
the symmetric multinomial manifold can be efficiently computed as shown in the
following corollary.
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Corollary 3.1 The map R : TSP= → SP= whose restriction RX to TXSP= is given
by:

RX(bX) = X + bX,

represents a well-defined retraction on the symmetric multinomial manifold provided
that bX is in the neighborhood of 0X, i.e., X + bX > 0.

The proof of this corollary is omitted herein as it follows similar steps than Theo-
rem 3.3. However, instead of using Sinkhorn’s theorem to find the adequate matrix
decomposition, we use its extension to symmetric matrices known as the DAD
theorem [86].

The canonical retraction suffers from the same limitations discussed in the previous
section. Indeed, the performance of the optimization algorithm heavily depend on
whether the optimal solution has vanishing entries or not. This section shows that
the retraction proposed in Lemma 3.2 is a valid retraction on the set of symmetric
double stochastic matrices. However, instead of the Sinkhorn-Knopp algorithm
[84], this part uses the DAD algorithm [86] to project the retracted vector. Let S= ={

X ∈ R=×=
�� X > 0, X = XT} represent the set of symmetric, element-wise positive

matrices. The map to the set of symmetric doubly stochastic matrices is denoted
by the operator P+ : S= → SP=. The retraction is given in the following corollary
whose proof is omitted as it mirrors the steps used in the proof of Lemma 3.2.

Corollary 3.2 The map R : TSP= → SP= whose restriction RX to TXSP= is given
by:

RX(bX) = P+
(
X � exp(bX � X)

)
,

is a first-order retraction on the symmetric multinomial manifold for all bX ∈ TSP=.

Connection and Riemannian Hessian Computation
As discussed earlier, the Levi-Civita connection solely depends on the Riemannian
metric. Therefore, the symmetric multinomial manifold shares the same connection
on the embedding space as the doubly stochastic multinomial manifold. The Rie-
mannian Hessian can be obtained by differentiating the Riemannian gradient using
the projection of the Levi-Civita connection onto the manifold as shown in the below
corollary:
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Corollary 3.3 The Riemannian Hessian hess f(X) [bX] can be obtained from the
Euclidean gradient Grad f(X) and the Euclidean Hessian Hess f(X) [bX] using the
identity:

hess f(X) [bX] = ΠX
©­« ¤X −

1
2
(X � bX) � Xª®¬

U = (I + X)−1W1

X = W − (U1T + 1UT) � X

W = Grad f(X) � X

¤U =
(
(I + X)−1 ¤W − (I + X)−1bX(I + X)−1W

)
1

¤X = ¤W − ( ¤U1T + 1 ¤UT) � X − (U1T + 1UT) � bX

¤W = Hess f(X) [bX] � X + Grad f(X) � bX.

Proof: The proof of this corollary follows similar steps like those of Theorem 3.4
and thus is omitted herein. �

Extension to the Definite Multinomial Manifold
The geometry of the definite multinomial manifold is similar to the symmetric
multinomial manifold and thus one can use the machinery developed above to
design optimization algorithms on the definitemultinomialmanifold. However, even
though the proposed retraction is valid, its implementation is more problematic as it
includes a condition on the eigenvalues. Indeed, the positive-definiteness constraint
is a difficult one to retract. In order to produce highly efficient algorithms, one
usually needs a re-parameterization of the positive-definiteness condition of the
manifold and to regard the new structure as a quotient manifold, e.g., a Grassmann
manifold. However, this falls outside the scope of this chapter and is left for low-
rank matrices in the next chapter. Nonetheless, this subsection proposes another
retraction that exploits the definite structure of the manifold and uses the matrix
exponential to retract tangent vectors as shown in the following theorem.

Theorem 3.6 Define the map RX from TXSP+= to SP+= by:

RX(bX) = X + 1
lX

I − 1
lX

e−lXbX ,
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wherein eX the matrix exponential of matrix X and lX is a scalar that ensures:

RX(bX) > 0, (3.9)

RX(bX) � 0, (3.10)

for all bX ∈ TXSP+= in the neighborhood of 0X, i.e., | |bX | |2� ≤ n for some n > 0.
Then, the map R : TSP+= → SP+= , whose restriction RX to TXSP+= , is a retraction
on the definite multinomial manifold.

Proof: Unlike the canonical retraction that relies on the Euclidean structure of the
embedding space, this retraction is obtained by direct computation of the properties
given in Chap. 2. The organization of the proof is the following: First, assuming
the existence of lX, we show that the range of the map RX is included in the
definite symmetric manifold. Afterward, we demonstrate that the operator satisfies
the centering and local rigidity conditions. Therefore, the operator represents a
retraction. Finally, showing the existence of the scalar lX for an arbitrary X ∈ SP+=
concludes the proof.

Recall that the matrix exponential of a symmetric real matrix bX with eigenvalue
decomposition bX = UΛUT is given by ebX = U exp(Λ)UT, where exp(Λ) is the usual
element-wise exponential of the element on the diagonal and zeros elsewhere. From
the derivation of the tangent space of the definite symmetric multinomial manifold
TXSP+= , we have bX1 = 0. Therefore, bX has an eigenvalue of 0 corresponding to
the eigenvector 1. One can see from the definition of the matrix exponential that the
eigenvalues are exponentiated while the eigenvectors are unchanged. Therefore, ebX

(and thus e−lXbX) has an eigenvalue exp(0) = 1 corresponding to the eigenvector 1,
i.e., e−lXbX1 = 1. Now, computing the rows summation gives:

RX(bX)1 = X1 + 1
lX

I1 − 1
lX

e−lXbX1

= 1 + 1
lX

1 − 1
lX

1 = 1.

Hence RX(bX) is stochastic. Besides, all matrices in the expression of RX are sym-
metric which concludes that the matrix is doubly stochastic. Finally, the conditions
onlX ensure the element-wise positiveness and the definiteness of the matrix which
concludes that RX(bX) ∈ SP+= .

The centering property can be easily checked by evaluating the retraction RX at the
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zero-element 0X of TXSP+= . Indeed, we obtain:

RX(0X) = X + 1
lX

I − 1
lX

e−lX0X

= X + 1
lX

I − 1
lX

I = X.

The speed of the rigidity curve WbX (g) = RX(gbX) at the origin is given by:

3WbG (g)
3g

���
g=0

= − 1
lX

3e−lXgbX

3g

���
g=0

= bX.

Therefore, we conclude that RX(bX) is a well-defined retraction.

The existence of the weight lX is ensured by the fact that S+= is an open subset of
S=. Indeed, consider a positive sequence {l<X}

∞
<=1 decreasing to 0 and construct the

function series {X<}∞<=1 as follows:

X< (bX) = X + 1
l<X

I − 1
l<X

e−l
<
X bX .

We aim to show that {X<}∞<=1 uniformly converges to the constant X ∈ S+= . Since
S+= is an open set, then there exists an index <0 above which, i.e., ∀ < ≥ <0 the
sequence X< (bX) ∈ S

+
= ,∀ bX ∈ TXSP+= with | |bX | |� ≤ n . Hence lX can be chosen

to be any l<X for < ≥ <0.

The uniform convergence of the function series {X<}∞<=1 is satisfied as ∀ n′ > 0,
∃ "0 such that ∀ < ≥ "0 the following holds:

| |X< (bX) − X| |� < n′, ∀ bX ∈ TXSP+= with | |bX | |� ≤ n

Indeed, note that the condition over all tangent vectors can be replaced by the
following condition (up to an abuse of notation with the n′):

| |X< (bX) − X| |� < n′, ∀ bX ∈ TXSP+= with | |bX | |� ≤ n
⇔ sup

bX∈TXSP+=
| |bX | |�≤n

| |X< (bX) − X| |2� < n′

⇔ max
bX∈TXSP+=
| |bX | |�≤n

| |X< (bX) − X| |2� < n′, (3.11)

wherein the last equivalence is obtained from the fact that the search space is closed.
The last expression allows us to work with an upper bound of the distance. Indeed,
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Table 3.1: Complexity of the steepest-descent algorithm and Newton’s method.

Manifold Steepest-descent algorithm Newton’s method
DP= (16/3)=3 + 7=2 + log(=)

√
= 32/3=3 + 15=2 + log(=)

√
=

SP= (1/3)=3 + 2=2 + 2= + log(=)
√
= =3 + 8=2 + 17/2= + log(=)

√
=

SP+= =3 + 3=2 + 3= 4/3=3 + 13/2=2 + 7=

the distance can be bound by:

| |X< (bX) − X| |2� =
1
(l<X)2

| |I − e−l
<
X bX | |2�

=
1
(l<X)2

=∑
8=1
(1 − exp

(
−l<X_8

)
)2

≤ =

(l<X)2
(1 − exp

(
−l<Xn

)
)2, (3.12)

with the last inequality being obtained from | |bX | |� ≤ n ⇒ _8 ≤ n, 1 ≤ 8 ≤ =.
Now using the fact that {l<X}

∞
<=1 is decreasing to 0, then there exists "0 such that

∀ < ≥ "0, the following is true:

=

(l<X)2
(1 − exp

(
−l<Xn

)
)2 ≤ n ≤ n′ (3.13)

Combining the above results, we find out that ∀ n′ > 0, ∃ "0 such that ∀ < ≥ "0

the following holds:

| |X< (bX) − X| |� < n′, ∀ bX ∈ TXSP+= with | |bX | |� ≤ n

Finally, as stated earlier, combining the uniform convergence and the fact that S+=
is an open subset of S= allows us to conclude the existence of lX such that both
conditions (3.9) and (3.10) are satisfied for all tangent vectors bX ∈ TXSP+= with
| |bX | |� ≤ n . �

3.4 Convergence and Theoretical Complexity
Convergence of the Proposed Methods
All proposedmanifolds in this chapter are open convexmanifolds. Therefore, given a
convex objective function, the resultingRiemannian optimization problem is convex.
As a result, local first and second-order Riemannianmethods are globally convergent
to the global minimum of the objective function [23]. Mirroring their Euclidean
counterparts, the Riemannian steepest-descent algorithm and Riemannian Newton’s
methods have a linear and a superlinear (at least quadratic) rate of convergence to



43

the optimum. For general objective functions, these local methods converge to an
extreme point of the problemwhich, in practice, is very likely to be a local minimum
unless the initial point is carefully crafted [23]. The rest of this section analyses
the complexity of the proposed steepest-descent algorithm and Newton’s method.
These complexities are summarized for each manifold in Table 3.1.

Riemannian Gradient Descent Complexity
The complexity of computing the gradient for the doubly stochastic multinomial
manifold can be decomposed into the complexity of computing W, U, and grad f(X).
The term W is a simple Hamadard product that can be computed in =2 operations.
The term U is obtained by solving a system of equations which takes (2/3) (2=)3

when using an LU factorization. Finally, the expression of grad f(X) requires a
couple of additions and an Hadamard product which can be done in 3=2 operations.
Finally, the complexity of computing the retraction can be decomposed into the
complexity of computing the update vector and the complexity of the projection.
The update vector requires an Hadamard product and division that can be computed
in at most 3=2. The complexity of projecting a matrix A onto the set of doubly
stochastic manifold [87] with accuracy n is given by:

O((1/n + log(=))
√
=+/E), (3.14)

wherein + = max(A) and E = min(A). Therefore, the total complexity of an
iteration of the gradient descent algorithm on the doubly stochastic multinomial
manifold is (16/3)=3 + 7=2 + log(=)

√
=.

The complexity of the symmetric multinomial manifold can be obtained in a similar
manner. Due to symmetry, the term W only requires =(=+1)/2 operations. The term
U is the solution to an = × = system of equations which can be solved in (1/3)=3.
Similarly, grad f(X) requires 3/2=(=+1) operations. Therefore, the total complexity
can be written as:

(1/3)=3 + 2=2 + 2= + log(=)
√
=. (3.15)

The retraction on the cone of positive matrices requires =3 + 2=2 which gives a total
complexity of the algorithm for the definite multinomial manifold of =3 + 3=2 + 3=.

Riemannian Newton’s Method Complexity
Computing Newton’s method involves computing the Riemannian gradient and Hes-
sian and solving an = × = linear system of equations. However, from the expression
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of the Riemannian Hessian, one can note that the complexity of computing the
Riemannian gradient is included in the Riemannian Hessian.

For the doubly stochastic manifold, the complexity of computing the Riemannian
Hessian is controlled by the complexity of the projection and the inversions. The
projection onto the tangent space requires solving a = × = system of equations and
a couple of additions and an Hadamard product. The total cost of the operation
is 2/3(2=)3 + 3=2. The n and ¤n terms are inversions and matrices products that
require 4=3. The other terms combined require 9=2 operations. The retraction costs
3=2 + log(=)

√
= and solving for the search direction requires 2/3(2=)3 which gives

a total complexity of:

32/3=3 + 15=2 + log(=)
√
=. (3.16)

A similar analysis as the one above allows to conclude that the total complexity of
a second-order method on the symmetric and positive doubly stochastic manifold
require, respectively, the following number of iterations:

=3 + 8=2 + 17/2= + log(=)
√
= (3.17)

4/3=3 + 13/2=2 + 7=. (3.18)

3.5 Simulation Results
This section attests the performance of the proposed framework in efficiently solving
optimization problems in which the optimization variable is a doubly stochastic ma-
trix. The experiments are carried out using MATLAB on an Intel Xeon Processor
E5-1650 v4 (15M Cache, 3.60 GHz) computer with 32GB 2.4 GHz DDR4 RAM.
The steepest-descent algorithm (denoted by Steep. Des.) is implemented directly
in MATLAB for comparison purposes with successful algorithms, i.e., Quadratic
Programming (denoted by Quad. P.), Interior-Point Method (denoted by IPM),
Sequential Quadratic Programming (denoted by SQP), and the Active Set Method
(denoted by Act. Set). More-sophisticated Riemannian algorithms, e.g., the Conju-
gate Gradient (denoted by Conj. Grad.) and Trust-Region (denoted by Trust R.), are
implemented using the MATLAB manifold optimization toolbox “ManOpt" [37].
The performance of all algorithms is averaged over 1000 iterations and the mean
value is presented herein.

The section is divided into three subsections: the first compares the running time
of the proposed Riemannian methods against popular convex and non-convex al-
gorithms. The second subsection solves a convex clustering problem [39] and
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Table 3.2: Execution time of the doubly stochastic multinomial manifold.

= 20 40 60 80 100
Steep. Des. 0.099 0.134 0.148 0.197 0.216
Conj. Grad. 0.053 0.081 0.109 0.163 0.171
Trust R. 0.154 0.374 0.609 0.917 1.644
Quad. P. 0.821 101.4 1031 5745 9280
IPM 0.562 8.745 48.66 170.04 406.6
SQP 0.040 1.439 16.07 105.20 429.0

Act. Set 0.108 2.477 21.64 125.02 471.2

Table 3.3: Execution time of the symmetric multinomial manifold.

= 20 40 60 80 100
Steep. Des. 0.075 0.093 0.138 0.171 0.264
Conj. Grad. 0.045 0.049 0.062 0.087 0.094
Trust R. 0.069 0.120 0.162 0.357 0.786
Quad. P. 0.838 100.0 1004 5619 9076
IPM 0.620 9.641 53.20 191.0 456.7
SQP 0.034 0.510 3.531 16.42 66.95

Act. Set 0.089 1.145 7.043 26.09 98.33

testifies to the efficiency of the proposed algorithms against popular methods from
the literature. Finally, the last subsection shows that the proposed framework outper-
forms a specialized algorithm [53] in finding the solution of a non-convex clustering
problem.

Performance of the Proposed Manifolds
This section solves the following convex optimization problem minX∈M | |A −X| |2

�
,

wherein the manifoldM is the doubly stochastic, symmetric, and definite multino-
mial manifold, respectively. For each of the experiment, matrix A is generated by
A = M+N with M ∈ M belonging to the manifold of interest and N is a zero-mean
white Gaussian noise of unit variance. The variance of the noise has a negligible
impact on the performance of the different algorithms as the optimization problem
is convex.

The optimization problem is first solved using the steepest-descent algorithm to
obtain the optimal solution X★ with a predefined precision n = 10−4. All other
algorithms are executed using the same initialization and carried on until the desired
optimal solution X★ is reached with the same precision n . The total execution time
is displayed in the corresponding table.
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Table 3.4: Execution time of the definite multinomial manifold.
= 20 40 60 80 100

Steep. Des. 0.067 0.092 0.131 0.174 0.279
Conj. Grad. 0.040 0.050 0.063 0.083 0.093
Trust R. 0.060 0.108 0.208 0.354 0.494
Quad. P. 0.799 99.79 1001 5631 9606
IPM 0.556 10.07 53.52 195.6 239.6
SQP 0.030 0.464 3.397 11.86 15.07

Act. Set 0.073 1.047 6.951 20.94 22.83

Table 3.2 illustrates the execution time of the proposedmethod in denoising a doubly
stochastic matrix against the problem dimension. The table reveals a significant gain
in the execution time for the steepest-descent method, conjugate gradient, and trust-
region algorithms against all simulated algorithms. The gain in performance can be
explained by the fact that the proposed method uses the geometry of the problem
efficiently unlike generic optimization algorithms which convert the problem in
a standard form and solve it using standard methods. The second-order method
performs poorly as compared with the first-order method due to the fact that the
expression of the Riemannian Hessian is complex to compute. The problem can be
circumvented with the use of quasi-Newton methods, e.g., BHHH, BFGS.

Table 3.3 shows the running time of the proposed algorithms on the symmetric
multinomial manifold against the problem size. One can note that the gain is more
important than in Table 3.2. Indeed, the symmetric manifold enjoys a larger dimen-
sion reduction as compared with the doubly stochastic which makes the required
ingredients easier to compute. One can note that the computation of the Riemannian
Hessian on the symmetric multinomial manifold is more efficient than on the doubly
stochastic manifold which is reflected in a better performance against state-of-the-art
algorithms.

Table 3.4 displays the execution time for the definite multinomial manifold. The pro-
posed Riemannian algorithms efficiently find the solution to the problem thanks to
the fact that the optimal solution does not include vanishing entries or eigenvalues as
pointed out previously. Given that such condition is not fulfilled, the performance of
the positive-definite manifold is omitted, and a relaxed version using the symmetric
manifold and regularization is presented.
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Table 3.5: Performance of the Riemannian methods for convex clustering.

Algorithm Run. Time Var. of Inf. Error Rate
Conj. Grad. DP= 13.8574 0.503 6.1%
Conj. Grad. SP= 9.148 0.540 6.3%
Trust R. SP= 128.0 0.503 6.1%

SQP 4363 0.525 6.3%
Act. Set 6409 0.576 6.3%

Similarity Clustering via Convex Programming
This section suggests using the proposed framework to solve a convex clustering
problem [39]. Given an entry-wise non-negative similarity matrix A between = data
points, the goal is to cluster these data points into A clusters. The similarity matrix
for = = 473 images dogs from the Stanford Dogs Dataset [88] is obtained from
crowdsourcing on Amazon Mechanical Turk in [89]. These images are divided into
A = 3 different breeds, i.e., Norfolk Terrier (172), Toy Poodle (151) and Bouvier des
Flandres (150). Around 15% (17260 edges) of the total number of entries in the
matrix A are queried with an error rate of 22% as compared with the ground truth.
Under the above conditions, the reference guarantees the recovery of the clusters by
solving the following optimization problem:

min
X∈SP=

X�0

| |A − X| |2� + _Tr(X), (3.19)

wherein _ is a regularizer parameter whose expression is derived in [39]. The
optimal solution to the above problem is a block matrix (up to a permutation) of
rank equal to the number of clusters. Due to such rank deficiency of the optimal
solution, the definite positive manifold cannot be used to solve the above problem.
Therefore, we reformulate the problem on SP= by adding the adequate regularizers
as below:

min
X∈SP=

| |A − X| |2� + _Tr(X) + d( | |X| |∗ − Tr(X)), (3.20)

wherein d is the regularization parameter. The expression of such regularizer can
be obtained by expressing the Lagrangian of the original problem and deriving the
expression of the Lagrange multipliers. However, this falls outside the scope of this
paper. Clearly, the expression | |X| |∗ −Tr(X) =

∑=
8=1 |_8 | −_8 is positive and equal to

zero if and only if all the eigenvalues are positive which concludes that X is positive.
Similarly, the problem can be reformulated on DP= as follows:

min
X∈SP=

f(X) + d( | |X| |∗ − Tr(X)) + `( | |X − XT | |2�), (3.21)
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where f(X) is the original objective function in (3.19) regularized with d and ` to
promote positiveness and symmetry.

The nuclear norm of a matrix is a non-smooth function. However, the function is
differentiable for full-rank matrices. Indeed, given a full-rank matrix X = UΣVT,

the gradient is computed in [90] as
X | |X| |∗
XX

= UVT which can be written as
X | |X| |∗
XX

=

UVT = X(XTX)− 1
2 . The non-smoothness arises for rank deficientmatrices for which

the gradient can be arbitrarily perturbed to produce an approximate gradient. More
concretely, for singularmatrices, the positive semi-definitematrixXTX is offset by nI
to produce a positive-definite matrix. Therefore, we obtain the approximate gradient
X | |X| |∗
XX

= X(XTX + nI)− 1
2 for some small perturbation n > 0. The above described

approximate gradient is not valid for all applications. In general, one needs to

perform a change a variable | |X| |∗ ≤ H ⇔
(
W1 X
XT W2

)
� 0 and Tr(W1 +W2) ≤ 2H.

However, the convex and smooth nature of our simulation allows convergence to the
global optimum with the aforementioned approximate gradient.

Table 3.5 shows the running time for solving the convex clustering problem (3.21)
along with the achieved variation of information and error rate for the different
methods. Clearly, the proposed Riemannian optimization algorithms largely outper-
form the standard approach with gains ranging from 15 to 700 fold for the first-order
methods. As the problem is convex, all the above methods are expected to produce
similar results up to some numerically insignificant differences. Indeed, the preci-
sion of the proposed algorithms is satisfactory as they all achieve the same accuracy
as state-of-the-art methods. Also, note that using the symmetric multinomial man-
ifold produces better results. This can be explained by the fact that not only the
objective function (3.20) is simpler than (3.21) but also by the fact that the manifold
contains fewer degrees of freedom which makes the projections more efficient.

Clustering by Non-Convex Programming
This last part tests the performance of the proposed method for clustering by low-
rank doubly stochastic matrix decomposition in the setting proposed in [53]. Given
a similarity matrix as in the previous section, the authors in the above reference
claim that a suitable objective function to determine the clusters structure is the
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Figure 3.1: Running time of the different non-convex clustering algorithms.

following non-convex cost:

max
X∈SP=

X�0

∑
8, 9

A8 9 log ©­«
∑
:

X8:X 9 :∑
E XE:

ª®¬ + (U − 1)
∑
8 9

log
(
X8 9

)
.

The authors propose a specialized algorithm, known as “RelaxedMM", to efficiently
solve the problem above. This section suggests solving the above problem using the
positive and the symmetric multinomial manifold (with the proper regularization
as shown in the previous subsection). In order to reach the same solution, all
algorithms are initialized with the same value. The objective function achieved by
the algorithm of [53] is taken as a reference, and the other algorithms stop as soon
as their cost drops below such value.

Table 3.1 illustrates the running time of the different algorithms in order to reach
the same solution. The plot reveals that the proposed framework is highly efficient
in high dimension with significant gain over the specialized algorithm. The per-
formance of the first-order method is noticeably better than the second-order one.
This can be explained by the complexity of deriving the Riemannian Hessian. As
stated before, in practical implementations, one would use an approximation of the
Hessian to remedy to the complexity of computing the Hessian. Finally, one can
note that the symmetric multinomial performs better than the positive one which can
be explained by the fact that the optimal solution has vanishing eigenvalues which
make the retraction on the cone of positive matrices non-efficient.
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C h a p t e r 4

LOW-RANK RIEMANNIAN METHODS FOR GRAPH-BASED
CLUSTERING

[1] A. Douik and B. Hassibi. “Low-Rank Riemannian Optimization on Pos-
itive Semidefinite Stochastic Matrices with Applications to Graph Clus-
tering”. In: Proc. of the International Conference on Machine Learning
(ICML’ 2018), Stockholm, Sweden. Vol. 80. July 2018, pp. 1299–1308. url:
proceedings.mlr.press/v80/douik18a.html.

[2] A. Douik and B. Hassibi. “Non-Negative Matrix Factorization via Low-
Rank StochasticManifoldOptimization”. In:Proc. of the IEEE International
Symposium on Information Theory (ISIT’ 2019), Paris, France. Vol. 1. 1.
June 2019, pp. 497–501. doi: 10.1109/ISIT.2019.8849441.

With the abundance of data, machine learning applications engaged increased at-
tention in the last decade. An attractive approach to robustify the statistical analysis
is to preprocess the data through clustering. While the previous chapter solves the
problem using Riemannian optimization over the set of doubly stochastic matrices,
this part develops a low-complexity Riemannian optimization framework for solv-
ing optimization problems on the set of positive semidefinite stochastic matrices.
The low-complexity feature of the proposed algorithms stems from the factoriza-
tion of the optimization variable X = YYT and deriving conditions on the number
of columns of Y under which the factorization yields a satisfactory solution. The
embedded and quotient geometries of the resulting Riemannian manifolds are inves-
tigated. In particular, the chapter explicitly derives the tangent space, Riemannian
gradients and Hessians, and a retraction operator allowing the design of efficient first
and second-order optimization methods for the graph-based clustering applications
of interest. The numerical results reveal that the resulting algorithms present a clear
complexity advantage as compared with state-of-the-art Euclidean and Riemannian
approaches for graph clustering applications. Finally, the chapter extends the study
to non-symmetric matrices by employing the factorization X = UVT. The resulting
Riemannian manifolds and optimization algorithms allow solving a large class of
clustering problems such as the non-nagative matrix factorization. The results on
this section appear in the research papers [89], [91], and [92] and as such some of
the text appears as it is in these publications.
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4.1 Low-Rank Optimization on the Set of Stochastic Matrices
Overview, Related Work, and Contributions
As stated in the introduction, multiple non-convex optimization problems can be
approximated using convex relaxations, e.g., non-negative matrix factorization [93,
94], compressive sensing [95], and matrix completion [34, 36]. Despite their
convexity, solving these relaxed problems can often be a computation bottleneck in
large-scale applications. Moreover, numerous relaxation techniques require expand-
ing the dimension of the problem and the search space. For example, the celebrated
lifting technique transforms an =-dimensional vector problem into a semidefinite
= × = matrix problem. Luckily, these relaxations share an intrinsic property that
greatly simplifies the computation, namely, the optimal solution is low-rank.

This chapter considers solving convex and non-convex optimization problems over
the set of positive semidefinite stochastic matrices. Such problems arise in multiple
communications [80, 77], signal processing [81, 76], and machine learning applica-
tions, notably in graph clustering and community detection [96, 39, 53, 54, 74, 55].
The factorization of the =×= optimization variable X = YYT, with Y being an =× ?
matrix, allows us to reduce the search space from its original =2 dimension to =?,
which is extremely attractive for ? � =. However, while convenient, the factoriza-
tion turns the problem into a non-convex optimization with non-isolated solutions.
Indeed, consider any solution Y and an orthogonal ? × ? matrix O, the matrix YO
also represents a solution, i.e., the solution is invariant by right multiplication by an
orthogonal matrix.

Riemannianmanifold optimization offers the required tools for designing specialized
algorithms for solving the aforementioned problems with moderate complexity. In
particular, Riemannian quotient manifolds allow grouping all solutions YO into the
same equivalence class and solving the optimization problem over these classes.
While this fact might be irrelevant for first-order methods, it can be crucial for the
convergence of second-order algorithms, e.g., Newton’s method [23]. Consider
an optimization problem over the set of positive semidefinite stochastic matrices.
This chapter suggests factorizing the optimization variable X = YYT, deriving
conditions on ? under which the factorization yields a satisfactory solution, and
investigating the first and second-order geometries of the resulting manifolds so as
to take advantage of Riemannian optimization to design highly efficient specialized
algorithms.

Factorizing a low-rank matrix and casting the optimization problem into a non-
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convex form is well studied in the literature, particularly for solving semidefinite
programs (SDPs). For example, the factorization X = YYT is suggested in [97] to
solve the maximum cut problem. The authors in [98] exploit similar factorization
to solve SDPs with fixed traces. More generally, [99] investigates low-rank fac-
torization for solving SDPs in standard form. The authors study the equivalence
between the original and reformulated problems and propose a method for choosing
the rank of the factorization in such a way to reduce complexity while preserving
the optimality of the solution. This thesis proposes similar theoretical guarantees
for positive semidefinite stochastic matrices.

Taking advantage of both the low-rank factorization and the optimization over Rie-
mannian manifolds, the authors in [100] propose a first-order Riemannian algorithm
for solving optimization problems on the elliptope, i.e., positive semidefinite ma-
trices with ones on the diagonal. The quotient manifold is investigated in [101]
and an invariant metric that makes the manifold geodesically complete is derived.
A simpler quotient structure is introduced in [102] to solve optimization problems
with general trace constraints, including the elliptope and the spectahedron, by
proposing a second-order algorithm with guaranteed quadratic convergence. This
chapter follows a similar approach in the sense that a novel quotient structure is
proposed to solve optimization problems in which the optimization variable is a
positive semidefinite stochastic matrix.

The contribution of this chapter is two-fold, namely providing theoretical guarantees
and designing optimization algorithms. The first part of the chapter exploits the
factorization to cast the problem as a non-convex optimization with non-isolated
solutions. The optimality conditions of the original problem and its non-convex
reformulation are derived and analyzed. Such a theoretical study provides conditions
under which the solution to the reformulated problem coincides with that of the
original optimization problem. In particular, the analysis allows deriving a general
procedure for solving the original problem in which the rank of the factorization is
increased sequentially until the derived optimality conditions are satisfied.

The second part of the chapter focuses on proposing first and second-order algo-
rithms for solving the reparametrized optimization problem using tools from the
Riemannian optimization. In particular, the study of the manifolds geometries al-
lows deriving first and second-order algorithms with guaranteed linear and quadratic
convergence, respectively. Numerical experiments on clustering tasks reveal that
the proposed algorithms present a clear complexity advantage over state-of-the-art
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Euclidean and Riemannian approaches.

Finally, the analysis is extended to low-rank non-symmetric stochastic and doubly
stochastic matrices so as to provide a unified framework for multiple clustering
approaches, including the non-negative matrix factorization.

Problem Formulation
This section presents the optimization problems of interest and exploits the fac-
torization to reparametrize them. After introducing the required notations and
terminology, the optimality conditions of the original problem and its non-convex
reformulation are derived and analyzed. The analysis reveals an efficient method
for selecting the optimization rank while retaining equivalence with the original
optimization problem.

Let X ∈ R=×= be a real symmetric = × = matrix and define the objective function
6 : R=×= → R. While most applications possess a convex objective function, such
assumption is not required herein. However, the thesis assumes that the objective
function is smooth, i.e., at least differentiable for convex functions and at least
twice differentiable for non-convex ones. This section in interested in solving the
following problem

min
X∈R=×=

g(X) (4.1a)

s.C. X8 9 ≥ 0, 1 ≤ 8, 9 ≤ = (4.1b)
=∑
9=1

X8 9 = 1, 1 ≤ 8 ≤ =, (4.1c)

X � 0, (4.1d)

wherein constraint (4.1b) underlines that the matrix is element-wise positive, con-
straint (4.1c) corresponds to the fact that the matrix is stochastic, and constraint
(4.1d) insists that the matrix is positive semidefinite (PSD), i.e., the matrix is sym-
metric X = XT and VTXV ≥ 0 for any vector V ∈ R=.

The optimization problem (4.1) requires searching for a solution in a space of di-
mension =(=+1)

2 = O(=2) which can be intractable for large-scale problems, e.g.,
community detection with millions of individuals. Nevertheless, as stated earlier,
the applications of interest in this paper share the intrinsic property that the optimal
solution has a much smaller rank than the ambient dimension. Such structure can
be used to reduce by and large the computation complexity of both the optimiza-
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tion problem and the involved matrix operations, e.g., eigenvalue decomposition,
Cholesky factorization.

The rest of the paper assumes that the optimal solution X∗ has a rank A. If such
rank is known a priori, one may directly use the appropriate Riemannian geometry.
However, in most applications, such rank is unknown in which case one needs to
increase the size of the model ? until the optimality conditions derived in the rest
of this chapter are satisfied. The steps of the general approach for unknown rank A
are described later.

The Non-Convex Reformulation and Optimality Conditions
As stated previously, solving problem (4.1) requires searching for a solution in
an =(=+1)

2 -dimensional space. To alleviate such computation burden, this section
proposes using the low-rank decomposition X = YYT wherein Y ∈ R=×?. Hence,
the reformulated optimization problem has the form

min
Y∈R=×?

g(YYT) (4.2a)

s.C. YYT ≥ 0 (4.2b)

YYT1 = 1. (4.2c)

Notice that the original PSD constraint (4.1d) is implicitly assumed in the structure
YYT which is always a PSDmatrix. The reparametrized problem requires searching
for a solution in an =? � =(=+1)

2 dimensional space. However, even under the
assumption that the optimization problem (4.1) is convex, the reformulated problem
(4.2) is non-convex.

Ideally, the decomposition rank ? would coincide with the actual rank A of the
solution X∗. However, such rank being unknown in most applications, the rest
of this section derives conditions under which the reformulated problem and the
original one are equivalent. In other words, this section derives conditions under
which an extreme pointY of (4.2) corresponds to an extreme pointX = YYT of (4.1).
To this end, first and second-order optimality conditions are derived. These results
extend the findings of [99] to non-convex functions with inequality constraints.

The optimality condition of problem (4.1) is obtained from the first-order Karush-
Kuhn-Tucker (KKT) conditions [5]. To simplify the analysis, the optimization
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problem is rewritten in a symmetric form as follows

min
X∈R=×=

g(X) (4.3a)

s.C. X + XT ≥ 0 (4.3b)

(X + XT)1 = 2 (4.3c)

X � 0. (4.3d)

Let 	, f and SX be the dual variables corresponding to constraints (4.3b), (4.3c),
and (4.3d), respectively. The Lagrangian LX(X, f, SX,	) can be written as

LX(X, f, SX,	) = g(X) + 〈f, (X + XT)1 − 2〉
− 〈	,X + XT〉 − 〈SX,X〉, 	 ≥ 0, SX � 0.

Differentiating the above Lagrangian with respect to the variable X gives

GradX(g(X)) + f1T + 1fT − SX − 	 − 	
T
= 0

with the corresponding positiveness and complementary slackness constraints SX �
0, 	 ≥ 0, X � 	 = 0, and SXX = 0. Let 	 = 	 + 	T ∈ S=, the non-negativity
constraints 	 ≥ 0 and 	 ≥ 0 along with the complementary slackness conditions
X � 	 = 0 and X � 	 = 0 are equivalent. Finally, the uniqueness of the dual
variables derives from the independence of the constraints [103].

Combining all the above, a solutionX ∈ R=×= is an extreme point of the optimization
problem (4.1) if there exists the unique dual variables f ∈ R=, SX,	 ∈ S= such that
the following equations hold

GradX(g(X)) + f1T + 1fT = SX + 	 (4.4a)

X � 0 (4.4b)

X ≥ 0 (4.4c)

X1 = 1 (4.4d)

SX � 0 (4.4e)

	 ≥ 0 (4.4f)

X � 	 = 0 (4.4g)

SXX = 0, (4.4h)

with constraint (4.4a) translating the fact (X, f, SX,	) is a saddle point for the
Lagrangian, (4.4b)-(4.4d) stating that the solution is a feasible point, (4.4e) and
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(4.4f) representing the positiveness of the dual variables and (4.4g) and (4.4h)
expressing the complementary slackness.

A similar analysis on the reparametrized optimization problem (4.2) allows to con-
clude that a solution Y ∈ R=×? is an extreme point of (4.2) if there exists the unique
dual variables _ ∈ R= and � ∈ S= satisfying the following

(GradX(g(YYT)) + _1T + 1_T −�)Y = 0 (4.5a)

YYT ≥ 0 (4.5b)

YYT1 = 1 (4.5c)

� ≥ 0 (4.5d)

YYT � � = 0, (4.5e)

with constraint (4.5a) translating the fact (Y, _,�) is a saddle point for the La-
grangian, (4.5b) and (4.5c) stating that the solution is a feasible point, (4.5d) repre-
senting the positiveness of the dual variable and (4.5e) expressing the complementary
slackness.

Theorem 4.1 An extreme point Y of the optimization problem (4.2) produces an
extreme point X = YYT of the problem (4.1) if and only if the following holds

GradX(g(YYT)) + _1T + 1_T −� = SY � 0, (4.6)

wherein _ and � are the dual variable associated with Y.

Proof: Let Y be an extreme point of (4.2). Following the above analysis, there
exists the dual variables f and � satisfying the conditions (4.5)-(4.5e). Let SY be
defined as SY = GradX(g(YYT)) + _1T + 1_T −�. The sufficient part of the proof
is straightforward by considering the identification X = YYT, f = _, SX = SY,
and 	 = �. Indeed, one can clearly see that the optimality conditions (4.5)-(4.5e)
with the positiveness of SY � 0 result in the optimality conditions (4.4b)-(4.4h).
Furthermore, by definition of SY, the constraint (4.4a) is satisfied which concludes
by virtue of the optimality conditions in (4.4) that the point is an extreme point of
the optimization problem (4.1).

Conversely, assume that X = YYT is an extreme point of (4.1) for some dual
variables f, SX, and 	. In order to show that SY � 0, we exploit the uniqueness of
the dual variables to establish the equality f = _ and 	 = �. From the optimality
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conditions in (4.4), by multiplying (4.4a) by X1 and using the identity in (4.4d) and
(4.4h), we obtain the following equation

(f1T + 1fT)1 = (	 − GradX(g(YYT)))1.

Solving for f in the above expression gives

(=I + 11T)f = (	 − GradX(g(YYT)))1

f =
1
=
(I −

1
2=

11T) (	 − GradX(g(YYT)))1.

Using the optimality conditions in (4.5) and combining the equations (4.5a) and
(4.5c) yields the following equation for _

_ =
1
=
(I −

1
2=

11T) (� − GradX(g(YYT)))1.

Exploiting the uniqueness of the variables, we conclude that f = _ and � = 	.
Finally, using the definition of SY = GradX(g(YYT)) + _1T + 1_T −� with _ = f
and 	 = � gives SX = SY. Therefore, the optimality condition (4.4e) results in
SY � 0 which concludes the proof. �

The above first-order analysis and result in Theorem 4.1 are sufficient to declare
optimality for optimization problems with a convex objective function 6. For non-
convex functions, the following theorem investigates the second-order optimality
conditions.

Theorem 4.2 A sufficient condition for an extreme point Y ∈ R=×? of (4.2) to yield
an extreme point X = YYT of (4.1) is that Rank (Y) < ?.

Proof: The proof of this theorem relies on the second-order KKT conditions of the
optimization problem (4.2). These conditions, combined with the rank deficiency
assumption, allow showing that SY is positive which by virtue of Theorem 4.1
concludes that X is an extreme point of (4.1).

Proposition 4.1 Let (Y, _,�) satisfying the first-order KKT conditions in (4.5) and
let SY = GradX(g(YYT)) + _1T + 1_T − �. For all matrices Z ∈ R=×? satisfying
YZT = 0, it holds that Tr(ZTSYZ) ≥ 0.
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Proof: Let the optimization problem (4.2) be rewritten in a more-systematic form
as

min
Y∈R=×?

1
2

g(YYT)

s.C. Tr(ET
8 9YYT) ≥ 0, 1 ≤ 8, 9 ≤ =

Tr(ET
8 YYT) = 1, 1 ≤ 8 ≤ =,

wherein E8 9 is the matrix with 1 on the (8, 9)-th entry and zeros elsewhere and E8
is the matrix with ones on the 8-th column and zeros elsewhere. The analysis of the
second-order conditions of the above problem reveals the inequality

Tr(ZTHess Y(GradYLY(Y, _,�) [Z])) ≥ 0, (4.7)

for all matrix Z ∈ R=×? satisfying the following

Tr(ZT(E8 9 + E 98)Y) = 0, 1 ≤ 8, 9 ≤ =,�8 9 > 0 (4.8)

Tr(ZT(E8 9 + E 98)Y) = 0, 1 ≤ 8, 9 ≤ =,�8 9 = 0 (4.9)

Tr(ZT(E8 + ET
8 )Y) ≥ 0, 1 ≤ 8 ≤ =. (4.10)

In particular, note that the inequality in (4.7) is achieved for any matrix Z ∈ R=×?

satisfying YZT = 0. Indeed, the condition YZT = 0 implies the three conditions
in (4.8), (4.9), and (4.10). Furthermore, noting that GradYLY(Y, _,�) = SYY and
under the constraint YZT = 0, the left-hand side of (4.7) simplifies as follows

Tr(ZTHess Y(GradYLY(Y, _,�) [Z]))
= Tr(ZTD (SY) [Z]Y) + Tr(ZTSYZ)
= Tr(ZTSYZ),

wherein the last equality is obtained from the fact that Tr(ZTD (SY) [Z]Y) =
Tr(D (SY) [Z]YZT) = 0. Therefore, we obtain Tr(ZTSYZ) ≥ 0 for all Z such
that YZT = 0 �

The rest of the proof uses the result of Proposition 4.1 and shows that for a rank
deficient solution Y, the inequality Tr(ZTSYZ) ≥ 0 implies the positiveness of
SY � 0 which by virtue of Theorem 4.1 results in X being an extreme point of (4.1).
The above-mentionned steps are omitted as they mirrors the steps used in proving
Theorem 7 in [102]. �
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4.2 The Embedded Low-Rank Positive Multinomial Manifold
Manifold, Tangent Space, and Metric
Recall that the embedded low-rank positive multinomial manifold M=

? is defined
asM=

? = {Y ∈ R
=×?
∗ | YYT > 0 and YYT1 = 1}. The manifoldM=

? is seen as an
embedded manifold of the set of non-singular matrices R=×?∗ . In other words, the
manifold is regarded as an embedded structure in the non-compact Stiefel manifold
R
=×?
∗ . Define the function f(Y) = g(YYT) wherein the function g is defined in (4.2).

The tangent spaceTYM=
? for a pointY ∈ M=

? is computed using a two-way inclusion.
For an open interval � containing 0, let W : � ⊆ R → M=

? be a smooth curve in
the embedded low-rank positive multinomial manifold satisfying W(0) = Y and

¤W(0) =
3W(C)
3C

���
C=0

= bY. The curve W(C) being in the manifold for C ∈ �, it satisfies
W(C)W(C)T1 = 1. Taking derivative of the equation above, evaluating at C = 0, and
substituting the values for W(0) and ¤W(0) yields the following characterization for
the tangent space at Y ∈ M=

?

TYM=
? ⊆ {bY ∈ R=×? | (bYYT + YbT

Y)1 = 0} (4.11)

The converse is obtained by extending the tangent space characterization of [23]. To
that purpose, first introduce the rank and level set of a function. Let � :M1 →M2

be a smooth function from a manifoldM1 of dimension 31 to the manifoldM2 of
dimension 32. The rank of � at a point X ∈ M1 is the dimension of the image of
TXM1 by the indefinite directional derivative D (� (X)) [.] : TXM1 →M2, i.e., the
rank is defined as the dimension of the manifold generated by D (� (X)) [bX] for all
bX ∈ TXM1. A function � is rank-constant if the rank is constant for all X ∈ M1.
Given Y ∈ M2, the set �−1(Y) is called a level set or a fiber of �.

While the authors in [23] present a precise characterization of the tangent space of
manifolds that can be expressed as a level set of some function, the following lemma
extends the results for manifolds that contain the level set of some function.

Lemma 4.1 LetM be a manifold embedded in the Euclidean space E. Assuming
thatM contains the level set of a rank-constant function � : E → R=, the tangent
space TXM at X ∈ M satisfies Ker (D (� (X))) ⊆ TXM.

Proof: The manifold M contains the level set of �. Let Y be the fiber such
that �−1(Y) ⊆ M and defineM′ as �−1(Y) = M′. SinceM′ is a level set of a
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smooth function, it represents a manifold. Note thatM′ satisfies the conditions of
the theorem of [23] as it is a level set of a constant-rank function. Therefore, we
obtain Ker (D (� (X))) = TXM′.. Finally, by definition ofM′, we haveM′ ⊆ M
which implies that TXM′ ⊆ TXM. Exploiting this last inequality yields the result
Ker (D (� (X))) ⊆ TXM. �

LetR=×?∗+ be the set of entry-wise and full-rank =× ?matrices and define � : R=×?∗+ →
R= such that � (Y) = YYT1. Given that Y ∈ R=×?∗+ with positive entries, it is clear
that YYT > 0. Therefore, the manifoldM=

? includes the predecessor of 1 by �, i.e.,
�−1(1) ⊆ M=

?. The fact that � has a fixed rank can be readily obtained from the
fact that 1 is a regular value of �, i.e., the rank of any Y ∈ �−1(1) is equal to =.
Using the result of Lemma 4.1, we conclude that

Ker (D (� (Y))) ⊆ TYM=
? ⇔

{bY ∈ R=×? | D (� (Y)) [bY] = 0} ⊆ TYM=
? ⇔

{bY ∈ R=×? | (bYYT + YbT
Y)1 = 0} ⊆ TYM=

? . (4.12)

Combining (4.11) and (4.12) allows to conclude that the tangent space TYM=
? for a

point Y ∈ M=
? is given by

TYM=
? = {bY ∈ R=×? | (bYYT + YbT

Y)1 = 0}.

The dimension of the tangent space, and thus the dimension of the manifold, can
readily be seen from its characterization. The tangent space is embedded in a
=? dimension Euclidean space with = independent linear equations which gives a
dimension of =(? − 1).

Riemannian Gradient, Retraction, and Riemannian Hessian Expressions
The expression of the Riemannian gradient as a function of the Euclidean gradient
is given in the following proposition

Proposition 4.2 Let Grad f(Y) be the Euclidean gradient of 5 at Y, the Riemannian
gradient grad f(Y) is given by

grad f(Y) = Grad f(Y) − (U1T + 1UT)Y, (4.13)
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with U being the =-dimensional vector obtained by

U =
1
=
(I −

1
2=

11T) (I + YYT)−1×(
Grad f(Y)YT + YGrad f(Y)T

)
1.

Proof: Define ΠY as the orthogonal projection from the ambient space R=×? to
the tangent space TYM=

?. As stated earlier, the Riemannian gradient at Y can be
expressed as the orthogonal projection of the Euclidean gradient atY onto the tangent
space TYM=

? [23]. In order to derive an expression of the orthogonal projection ΠY,
this proof first parametrizes the orthogonal complement of the tangent space. The
orthogonal complement T⊥Y M

=
? of the tangent space TYM=

? in R=×? is parametrized
by

T⊥Y M
=
? = {[ ∈ R=×? | [ = (U1T + 1UT)Y},

for some =-dimensional vector U. Indeed, let bY ∈ TYM=
? and [Y = (U1T + 1UT)Y,

we obtain

〈bY, [Y〉Y = Tr(bT
Y(U1T + 1UT)Y)

= Tr(bYYT1UT) + Tr(YbT
Y1UT)

(a)
= Tr(bYYT1UT) − Tr(bYYT1UT) = 0, (4.14)

wherein the equality in (0) is obtained from the fact that bY satisfies (bYYT+YbT
Y)1 =

0. Therefore, we obtain that {[ ∈ R=×? | [ = (U1T+1UT)Y} ⊆ T⊥Y M
=
?. Finally, note

thatDim ({[ ∈ R=×? | [ = (U1T+1UT)Y}) = =which in addition to the dimension of
tangent space of =(?−1) concludes that T⊥Y M

=
? = {[ ∈ R=×? | [ = (U1T +1UT)Y}.

We now derive an explicit expression for the orthogonal projection ΠY onto the
tangent space TYM=

?. Let Z ∈ R=×? be a point on the ambient space written as the
sum of the component in the tangent space TYM=

? and its orthogonal complement as
Z = ΠY(Z) +Π⊥Y (Z). Recall that a pointΠY(Z) in the tangent space TYM=

? satisfies
(ΠY(Z)YT + YΠY(Z)T)1 = 0. Furthermore, a point Π⊥Y (Z) on the orthogonal
complement of the tangent space is parametrized by Π⊥Y (Z) = (U1T + 1UT)Y.
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Therefore, we obtain

(ZYT + YZT)1 = (Π⊥Y (Z)Y
T + YΠ⊥Y (Z)

T)1

=

(
(U1T + 1UT)YYT + YYT(U1T + 1UT)

)
1

(a)
= =U + 11TU + YYT(=U + 11TU)
(b)
= (=I + 211T + =YYT)U, (4.15)

with both equalities in (0) and (1) being obtained from the fact that YYT1 = 1.
Finally, notice the following identities

(I + YYT) (=I + 11T) = =I + 211T + =YYT (4.16a)

(=I + 11T)−1 =
1
=
(I −

1
2=

11T). (4.16b)

Substituting (4.16a) and (4.16b) in (4.15) gives an expression for U as

U =
1
=
(I −

1
2=

11T) (I + YYT)−1(ZYT + YZT)1.

Therefore, the orthogonal projection ΠY from the ambient space R=×? onto the
tangent space TYM=

? is given by

ΠY(Z) = Z − (U1T + 1UT)Y,

with U defined by

U =
1
=
(I −

1
2=

11T) (I + YYT)−1(ZYT + YZT)1.

As stated earlier, the final expression of the Riemannian gradient is obtained by pro-
jecting the Euclidean one onto the tangent space, i.e., grad f(Y) = ΠY(Grad f(Y)).
Using the expression of the orthogonal projection, the Riemannian gradient can be
expressed as

grad f(Y) = Grad f(Y) − (U1T + 1UT)Y,

with U being the =-dimensional vector obtained by

U =
1
=
(I −

1
2=

11T) (I + YYT)−1

(
Grad f(Y)YT

+ YGrad f(Y)T
)
1.



63

�

As stated previously, the RiemannianHessian hess f(Y) [bY] can be obtained by pro-
jecting the directional derivation D (grad f(Y)) [bY] onto the tangent space TYM=

?,
i.e., hess f(Y) [bY] = ΠY(D (grad f(Y)) [bY]). Using the fact that Hess f(Y) [bY] =
D (Grad f(Y)) [bY], the directional derivative of the Riemannian gradient is

D (grad f(Y)) [bY] = Hess f(Y) [bY] − ( ¤U1T + 1 ¤UT)Y
− (U1T + 1UT)bY, (4.17)

with ¤U being defined by ¤U = D (U) [bY]. Define the constant matrix A =
1
=
(I −

1
2=

11T) and recall that U is defined by

U = A(I + YYT)−1

(
Grad f(Y)YT + YGrad f(Y)T

)
1.

The directional derivative of the quantity (I + YYT)−1 = B can be obtained by
exploiting the Kailath variant of Sherman-Morrison-Woodbury formula [104] which
gives

¤B = D (B) [bY] = −B(Yb)Y + bYY) )B.

Let the vector V =

(
Grad f(Y)YT + YGrad f(Y)T

)
1. Its directional derivative is

given by

¤V = D (V) [bY] =
(
Grad f(Y)bT

Y + bYGrad f(Y)T

+Hess f(Y) [bY]YT + YHess f(Y) [bY]T
)
1.

Finally, the expression of ¤U simplifies to ¤U = AB( ¤V − (Yb)Y + bYY) )BV) which
allows to get the Riemannian Hessian by applying the projection operator ΠY to the
expression in (4.17).

Let RY denote a retraction from the tangent space TYM=
? to the manifoldM=

?. To
derive an expression of such operator, recall that for an entry-wise positive matrix
A ∈ S=, there exists a unique diagonal matrix D with strictly positive entries such
that S = DAD is a doubly stochastic matrix. Such matrix is obtained by the DAD
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algorithm [86]. This result extends the Sinkhorn’s theorem for symmetric matrices
[84].

Let R=×?+/2 = {Z ∈ R
=×? | ZZT > 0} and introduce the projection Π : R=×?+/2 → M

=
?

defined by Π(Z) = DZ wherein the diagonal matrix D is obtained from applying
the DAD algorithm to the matrix ZZT. This paper suggests the following retraction
to project tangent vectors to the manifold

Theorem 4.3 Let RY : TYM=
? →M=

? be defined by

RY(bY) = Π
(
Y + 1=1T

? − exp
{
(−bY)

})
, (4.18)

with exp
{
(bY)

}
begin the entry-wise exponential of the entries of the matrix bY.

The operator RY is a well-defined retraction from the neighborhoodN0 of TYM=
? to

M=
?.

Proof: In order to show that the operator suggested in the theorem represents a
well-defined retraction, one needs to show that there exists an open interval N0

around 0 such that for all tangent vectors bY inN0 ⊂ TYM=
?, for some neighborhood

N0, the following properties are satisfied

RY(bY) ∈ M=
? (4.19a)

RY(0) = Y (4.19b)

3RY(gbY)
3g

���
g=0

= bY. (4.19c)

By definition of the retraction and the projection operator Π, it is sufficient to show
that there exists a neighborhood N0 such that the matrix Y + 1=1T

? − exp
{
(−bY)

}
is

in the set R=×?+/2 to conclude that RY(bY) satisfies (4.19a). Let G= be a real sequence
converging to zero and define the matrix sequence H= = Y + 1=1T

? − exp
{
(−G=bY)

}
.

Therefore, the matrix sequence H= converges to Y ∈ R=×?+/2 . The set R
=×?
+/2 being both

open and Hausdorff, there exists # ∈ N such that for all = ≥ # , we have H= ∈ R=×?+/2
which allows us to conclude that, for small-enough bY, we have RY(bY) ∈ M=

?.

The centering property (4.19b) can readily be seen from the definition of the re-
traction. Indeed, given that 40 = 1, it is clear that RY(0) = Y. Finally, the local
rigidity property (4.19c) is obtained from the study of the first-order perturbation
of the projection operator Π. Note that the curve W(C) = Y + 1=1T

? − exp
{
(−CbY)

}
has a first-order approximation of W(C) = Y + CbY + >(C2). Therefore, to obtain



65

the derivative of RY(gbY) around 0, it is sufficient to study the behavior of Π
for small perturbations in the tangent space TYM=

?. Recall that Π(Z) = DZ.
Therefore, the first-order perturbation is given the diagonal matrix XD such that
Π(Z + XZ) = (D + XD) (Z + XZ). Since Y ∈ M=

?, then Π(Y) = Y, i.e., D = I.
Note that the first-order perturbation of Π(Y + bY) can be obtained through the
study of the first-order perturbation of the operator Π(Y + bY)Π(Y + bY)T. In-
deed, let � :M1 →M2 be a differential function with a first-order approximation
� (X + XX) = � (X) + D (� (X)) [XX] + >(XX)2. Then, the operator � (.)�T(.)
has the following first-order expansion � (X + XX)� (X + XX)T = � (X)� (X)T +
� (X)D (� (X)) [XX]T +D (� (X)) [XX]� (X)T + >(XX)2 which allows to readily get
the coefficients of �. The first-order perturbation of Π(Y + bY)Π(Y + bY)T is given
by

Π(Y + bY)Π(Y + bY)T

= (I + XD) (Y + bY) (Y + bY)T(I + XD)
(a)
= YYT + YbT

Y + YYTXD + bYYT + XDYYT, (4.20)

wherein the equality in (0) only keeps the first-order terms of the expansion. The
following part of the proof uses the definition of the embedded manifold and its
tangent space to conclude that XD = 0. Recall that Π(Z)Π(Z)T1 = 1 and (YbT

Y +
bYYT)1 = 0 and define XD1 = XD. Multiplying (4.20) by 1 yields the following
equation

1 = 1 + 0 + (YYT + I)XD.

Therefore, XD is in the null space of (YYT + I). However, since YYT is doubly
stochastic, it is concluded that XD = 0. Therefore, we obtain

Π(Y + bY)Π(Y + bY)T = YYT + YbT
Y + bYYT,

which concludes that the first-order perturbation ofΠ is given byΠ(Y+bY) = Y+bY.
Therefore, we have RY(gbY) = Π(W(g)) = Y + gbY + >(11Tg2) and concludes that
3RY(gbY)

3g

���
g=0

= bY. �

4.3 The Quotient Low-Rank Positive Multinomial Manifold
The Quotient Structure of the Quotient Low-Rank Positive Multinomial
Due to the reformulation, the considered problem exhibits non-isolated solutions.
Indeed, given a solution Y ∈ M=

? and an orthogonal matrix O ∈ O?, the point YO



66

represent another solution. Define the relationship ∼ onM=
? such that

Y1 ∼ Y2 ⇔ ∃ O ∈ O? s.t. Y1O = Y2.

Clearly, the relationship ∼ defines an equivalence relationship. Let the setM=

? =

M=
?/∼, or equivalentlyM

=

? = M=
?/O?, be the quotient set. In order to show that

the setM=

? = M=
?/∼ admits a manifold structure, it is sufficient to show that ∼ is

regular [23], meaning that it satisfies the following three properties

1. graph (∼) is an embedded submanifold of the productM=
? ×M=

?.

2. The projection c1 : graph (∼) → M=
? given by c1(Y1,Y2) = Y1 is a submer-

sion.

3. graph (∼) is closed,

wherein graph (∼) = {(Y1,Y2) ∈ M=
? ×M=

? | Y1 ∼ Y2}.

The proof that graph (∼) is an embedded submanifold of the productM=
? ×M=

? is
omitted herein as it mirrors the steps in proving the same result for the Grassmann
manifold. Indeed, note that graph (∼) ⊂ graph (∼′) with Y1 ∼′ Y2 means that
Y1M = Y2 for some invertible ?×?matrixM. Therefore, graph (∼) is an embedded
submanifold as wanted.

For a matrix Y ∈ M=
?, let X ∈ R=×? satisfying Y + CX ∈ M=

? for C in some interval
I containing zero. The existence of X is guaranteed by the fact thatM=

? represents
an open set, and thus it contains an open ball centered at each Y. For an orthogonal
matrix O ∈ O?, define the curve W(C) by W(C) = (Y + CX, (Y + CX)O). For C ∈ I, it
is clear that W(C) ∈ graph (∼). Furthermore, W(C) satisfies the property

3c1(W(C))
3C

���
C=0
=
3 (Y + CX)

3C

���
C=0
= X.

Therefore, c1 is a submersion.

Finally, the closure of graph (∼) can be obtained by noticing that graph (∼) is the
pre-image of 0=×= by the function (Y1,Y2) ↦→ Y1YT

1 − Y2YT
2 . Indeed, note that

Y1YT
1 = Y2YT

2 implies that Y1O = Y2 for some orthogonal matrix O ∈ O?. Given
that the function is continuous and that {0=×=} is a closed set, we conclude that
graph (∼) is closed.
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Combining the three results above allows concluding that M=

? admits a unique
manifold structure known as the quotient manifold ofM=

? by ∼. Points onM
=

? are
seen as equivalence classes denoted by [Y] = Y for Y ∈ M=

?. Let c :M=
? →M

=

?

be the canonical, or natural, projection of points to their equivalence class, i.e.,
c(Y) = Y.

Note that f(Y) = g(YYT) is invariant under ∼ as f(Y1) = f(Y2) for all Y1 ∼ Y2.
Therefore, there exists a unique function 5 :M=

? → R, known as the projection of
5 , such that f(Y) = 5 ◦ c(Y) for all Y ∈ M=

?. The rest of this chapter is interested
in studying the geometry of the quotient low-rank positive multinomial manifold in
order to solve optimization problems of the form min

Y∈M=

?

5 (Y).

The Riemannian Structure of the Quotient Low-Rank Positive Multinomial
Let Y ∈ M=

?, the equivalence class c−1(Y) can be represented by the following
set c−1(Y) = {YO | O ∈ O?}. Recall that the vertical space VYM=

? of Y at
Y ∈ c−1(Y) is given by VYM=

? = TYc−1(Y). Let the function F : R=×? → R=×=

defined by F(Z) = YYT − ZZT. Note that c−1(Y) is given by the level set of F at
0=×=. Indeed, each Z satisfying F(Z) = 0 implies that YYT = ZZT, i.e., Z = YO for
some orthogonal matrix O. Furthermore, it is straightforward to conclude that F is
a constant-rank function from either the fact that 0=×= is a regular value or by noting
that F is a submersion onto the set of positive matrices. Therefore, the tangent space
at Y is given by the kernel of the indefinite directional derivative (see Lemma 4.1).
In other words, the vertical space is given by

VYM=
? = TYc−1(Y) = {bY | bYYT + YbT

Y = 0}.

Recall that Y ∈ R=×?∗ is a full-rank matrix and define Y⊥ as any = × (= − ?) matrix
orthogonal complement of Y satisfying YTY⊥ = 0, then any matrix bY can be
written as bY = YM +Y⊥K for some ? × ? matrix M and some (= − ?) × ? matrix
K. Hence, the characterization bYYT + YbT

Y = 0 of VYM=
? can be rewritten as

follows

YMYT + Y⊥KYT + YMTYT + YKT(Y⊥)T = 0.

Post and pre-multiplying the above equation by YT and Y, respectively, gives
(YTY)M(YTY) = −(YTY)MT(YTY). Since (YTY) is invertible, we obtain the
following alternate representation of the vertical space ofM=

? at Y

VYM=
? = {YM | M ∈ S?skew }.
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Theorem 4.4 Consider the Y ∈ M=

?. The bi-linear form defined on TYM
=

?×TYM
=

?

by

〈bY, [Y〉Y = Tr
(
b

T
Y[Y

)
,Y ∈ c−1(Y), (4.21)

is a well-defined Riemannian metric that is compatible with ∼ and turnsM=

? into
a Riemannian quotient manifold. The horizontal distribution of Y ∈ M=

? at Y ∈
c−1(Y) is

HYM=
? = {[Y ∈ TYM=

? | [T
YY = YT[Y}.

Proof: It is sufficient to show that the Riemannian metric on the embedding space
is compatible with the equivalence relationship∼. Hence, this theorem is established
by expressing the horizontal lifts [Y of tangent vectors [Y as function of an arbitrary
representative Y ∈ c−1(Y). Afterwards, it is shown that the inner product does not
depend on the representative at which the horizontal lift is computed.

Recall that the horizontal distributionHYM=
? is given by the orthogonal complement

of the vertical spaceVYM=
? in the tangent spaceTYM=

?. The orthogonal complement
of the vertical space is parameterized by the following

V⊥YM
=
? = {[Y ∈ R=×? | 〈bY, [Y〉Y = 0, ∀ bY ∈ VYM=

?}

= {[Y ∈ R=×? | Tr
(
[T

YYM
)
= 0, ∀M ∈ S?skew }. (4.22)

The set of skew-symmetric matrices can be re-parameterized as the difference of
general matrices and its transpose, i.e., M = A−AT for some A ∈ R?×?. Therefore,
the equality in (4.22) can be expressed as

Tr
(
[T

YYA
)
= Tr

(
YT[YA

)
, ∀ A ∈ R?×? .

Therefore, we obtain [T
YY = YT[Y. Finally, the horizontal distribution is given by

HYM=
? = V⊥YM

=
? ∩ TYM=

?

= {[Y ∈ TYM=
? | [T

YY = YT[Y}.

To show that HYM=
? ⊕ VYM=

? ⊆ TYM=
?, let bY = YM ∈ VYM=

?, [Y ∈ HYM=
?,

and define ZY = bY +[Y, then we have (ZYYT +YZT
Y)1 = ([YYT +Y[T

Y)1 = 0 which
gives ZY ∈ TYM=

?. Finally, note that Dim (VYM=
?) =

?(?−1)
2 and Dim (HYM=

?) =
=? − ?(?−1)

2 − = which givesHYM=
? ⊕ VYM=

? = TYM=
? as anticipated.
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Let bY ∈ HYM=
? represent the horizontal lift of bY ∈ TYM

=

? for Y ∈ c−1(Y). The
following lemma characterizes the horizontal lift within the same equivalence class
with respect to the horizontal lift of an arbitrary representative

Lemma 4.2 Let Y ∈ M=

? and Y ∈ M=
? such that Y ∈ c−1(Y). For any O ∈ O?,

the following holds

bYO = bYO.

Proof: Define UY = {[Z] | ZZT1 = 21,ZTY ∈ O?, 2 ∈ R} and let the function
fY : UY → R=×? be given by

fY( [Z]) = ZZTY.

Note that fY( [Z]) can be written as fY( [Z]) = ZO for O = ZTY being an
orthogonal matrix. Therefore, fY satisfies c(fY( [Z])) = c(ZO) = [Z], i.e.,
it represents a right inverse of the natural projection c. Therefore, the operator
D (c(fY( [Z]))) ◦ D (fY( [Z])) represents the identity map on UY. Furthermore,
let O ∈ O? and note that the function satisfies the additional property fYO( [Z]) =
ZZTYO = fY( [Z])O. Let SY be the image of UY by fY. The set SY admits the
following parameterization

SY = {A ∈ R=×? | A = ZZTY, [Z] ∈ UY}. (4.23)

The set SY has the following explicit characterization as

SY = {A ∈ R=×? | (AYT + YAT)1 = 21, 2 ∈ R,
ATY = YTA}. (4.24)

Indeed, let A = ZZTY, then we have

(AYT + YAT)1 = (ZZTYYT + YYTZZT)1
(a)
= ZZT1 + 21 = 221 = 2′1,

with the equality in (0) comes from the fact that YYT1 = 1. Furthermore, we have
ATY = (ZZTY)TY = YTZZTY = YTA. The equalities above conclude that SY is
included in the set described in (4.24). Finally, note that both representations in
(4.23) and (4.24) have the same dimension =(?−1) − ?(?−1)

2 which gives that (4.24)
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is a valid parameterization of SY. Such parameterization allows to get the indefinite
directional derivative of fY( [Z]) as follows

D fY( [Z]) = TASY

= {[Y ∈ R=×? | (Y[T
Y + [YYT)1 = 0, [T

YY = YT[Y}
= {[Y ∈ TYM=

? | [T
YY = YT[Y} = HYM=

?,

which concludes the characterization of the horizontal lift bY = D (fY) ( [Z]) [b].
Using the above equality, the horizontal lift over the equivalence class can be written
as

bYO = D (fYO) ( [Z]) [b] = D (fYO) ( [Z]) [b]
= D (fY) ( [Z]) [b]O = bYO.

�

Using the result of Lemma 4.2, it becomes clear that the metric proposed in (4.21)
is compatible with the equivalence relationship ∼. Indeed, for Y ∈ M=

? and any
predecessor Y1 and Y2 = Y1O in c−1(Y), we have the following

〈bY, [Y〉Y = Tr
(
b

T
Y2[Y2

)
= Tr

(
b

T
Y1O[Y1O

)
= Tr

(
O)b

T
Y1[Y1O

)
= Tr

(
b

T
Y1[Y1

)
, ∀ bY, [Y ∈ TYM

=

? .

Therefore, the Riemannian metric is independent of the chosen representation which
concludes thatM=

? admits a Riemannian manifold structure. �

Geometry of the Quotient Low-Rank Positive Multinomial
LetΠVY andΠHY be the orthogonal projections from the ambient space to the vertical
spaceVYM=

? and horizontal spaceHYM=
?, respectively. Furthermore, letΠY be the

orthogonal projection from the ambient space to the tangent space TYM=
?. Recall

that the ambient space can be decomposed as R=×? = TYM=
? ⊕ T⊥Y M

=
? wherein the

tangent space can be expressed as TYM=
? = VYM=

? ⊕ HYM=
?. Therefore, ΠHY (Z)

can be written as ΠHY (ΠY(Z)) which reduces the study of ΠHY to the tangent space
TYM=

?.

Given a tangent vector bY ∈ TYM=
?, it can be decomposed into a vertical and hori-

zontal components as bY = Π
V
Y (bY) +ΠHY (bY). Recall thatΠVY (bY) = YM for some
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skew-symmetric matrix M andΠHY (bY)TY = YTΠHY (bY). Therefore, matrix M sat-
isfies the Sylvester equation (YTY)M+M(YTY) = YTΠY(Z) −ΠY(Z)TY. Finally,
rearranging the terms of the decomposition gives that the orthogonal projection of
Z from the ambient space R=×? to the horizontalHYM=

? is ΠHY (Z) = ΠY(Z) −YM
where M is the solution to the above Sylvester equation. In other words, the quotient
Riemannian gradient can be written as a function of the Euclidean and embedded
Riemannian gradients as follows

grad 5 (Y) = ΠHY (Grad f(Y)) = grad f(Y) − YM, (4.25)

with M being the solution to the Sylvester equation

(YTY)M +M(YTY) = YTgrad f(Y) − grad f(Y)TY. (4.26)

The expression of the Riemannian Hessian on the quotient space is obtained by
projecting the directional derivative of the Riemannian gradient on the quotient
manifold which gives

hess 5 (Y) [bY] = Π
H
Y (hess f(Y) [bY] − bYM − Y ¤M), (4.27)

with M being the solution to (4.26) and ¤M satisfying

(YTY) ¤M + ¤M(YTY) = bT
Ygrad f(Y) − grad f(Y)TbY

+ YThess f(Y) [bY] − hess f(Y) [bY]TY

− 2(bT
YYM +Mb

T
YY). (4.28)

Let the retractionRY be defined on the tangent spaceTYM=
? byRY(bY) = Π(Y+bY).

The proof that the above operator represents a retraction on M=
? is omitted as it

mirrors the steps used in the proof of Theorem 4.3. Indeed, the proposed retraction
represents the first-order approximation of the retraction in (4.18). Finally, consider
the retraction

RY(bY) = c
(
Π(Y + bY)

)
, (4.29)

for Y ∈ c−1(Y). The aforementioned operator represents a well-defined function
as it does not depend on the representative Y ∈ c−1(Y). Indeed, let Y ∈ M=

? and
consider a couple of representatives Y and YO in c−1(Y). Let D be the diagonal
matrix such that D(Y + bY) (Y + bY)TD is doubly stochastic matrix, then

D(YO + bYO) (YO + bYO)TD

= D(YO + bYO) (YO + bYO)TD

= D(Y + bY) (Y + bY)TD.
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In other words, c
(
Π(YO+bYO)

)
= c

(
Π(Y+bY)

)
which shows that RY satisfies the

local rigidity property. Therefore, we conclude that RY is a well-defined retraction
on the quotient manifold.

4.4 Algorithms and Performance of the Low-Rank Positive Multinomial
Optimization Algorithms on the Positive Multinomial Manifold
This section exploits the previously studied embedded and quotient low-rank positive
multinomial manifolds to propose a first and a second-order optimization algorithms
on these manifolds. The optimality conditions are then utilized to solve the original
optimization problem (4.1) by means of solving its non-convex reformulation (4.2).

Algorithm 4.1 Steepest-descent algorithm on the manifoldM=
?.

Require: ManifoldM=
?, function f, and tolerance n .

1: Initialize ? = ?0.
2: Initialize SY = −I.
3: while SY ≺ 0 do
4: Initialize Y randomly inM=

?.
5: while | |grad f(Y) | | ≥ n do
6: Find Riemannian Gradient grad f(Y) using (4.13).
7: Set descent direction bY = −

grad f(Y)
| |grad f(Y) | |Y

8: Find X using the Armijo’s backtracking procedure.
9: Retract Y = RY(XbY) using (4.18).
10: end while
11: Solve the convex program in (4.30) to get _ and �.
12: Compute SY using (4.6).
13: Set ? = ? + 1.
14: end while
15: Output X = YYT.

This manuscript suggests solving a sequence of optimization problems with in-
creasing dimension ?, i.e., an increasing rank of the solution, until the theoretical
guarantees in Theorem 4.1 are satisfied. Recall that the condition that SY being
positive semidefinite is sufficient to guarantee the optimality of X = YYT for a
convex objective function. Therefore, initializing ? with some ?0 (usually ?0 = 1),
the algorithm solve the optimization problem (4.2) using the Riemannian geometry
tool. In particular, starting at a random point Y in the manifold, the tangent space is
computed, and the Euclidean gradient is projected to obtain a descent direction bY.
For enhanced performance, the step size X is optimized through the Armijo’s back-
tracking procedure [23]. Afterwards, the intermediate point on the tangent space is
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retracted to the manifold. The process is repeated until the gradient vanishes. After
obtaining the solution Y∗, the dual variable � is obtained by solving the convex
problem

min
�∈S=

| | (Grad f(Y) + _(�)1T + 1_(�)T −�)Y| |2�

s.C. � ≥ 0 (4.30)

YYT � � = 0,

with _(�) =
1
=
(I −

1
2=

11T) (� − Grad f(Y))1. Given the unique solution �, the
second dual variable _ is obtained by the expression above which allows to compute
matrixSY and check its non-negativity. In case of success, the optimalX∗ = Y∗(Y∗)T

is returned. Otherwise, the process is repeated for an increased value of ?. The
steps of the algorithm are summarized in Algorithm 4.1.

Algorithm 4.2 Newton’s method on the manifoldM=

?.

Require: ManifoldM=

?, function f, and tolerance n .
1: Initialize ? = ?0.
2: Initialize SY = −I.
3: while SY ≺ 0 do
4: Initialize Y inM=

? representative of c(Y) ∈ M
=

?.
5: while | |grad f(Y) | | ≥ n do
6: Find Riemannian Gradient grad f(Y) and Hessian hess f(Y) on M=

?

using (4.13) and (4.17), respectively.
7: Find Riemannian Gradient grad 5 (Y) and Hessian hess 5 (Y) onM=

?

using (4.25), (4.26), (4.27), and (4.28).
8: Find descent direction bY satisfying hess f(Y) [bY] = grad f(Y)
9: Find X using the Armijo’s backtracking procedure.
10: Retract Y = RY(XbY) using (4.29).
11: end while
12: Solve the convex program in (4.30) to get _ and �.
13: Compute SY using (4.6).
14: Set ? = ? + 1.
15: end while
16: Output X = YYT.

Newton’s method on the quotient manifold follows similar steps as the one in on
embeddedmanifolds by properly substituting the geometrical objects. The algorithm
sequentially increases the rank of the solution and solves the optimization problem
using Newton’s method on the manifoldM=

?. The Newton’s step on the quotient
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Table 4.1: Performance of the Riemannian methods for non-convex clustering.

Algorithm Running Time Var. of Inf. Accuracy
CVX 3183.060 s 0.5404 6.3%
ALM 2.848651 s 0.8688 12.68%

CG onM= 6.121646 s 0.5543 6.7%
CG onM=

? 4.777171 s 0.5403 6.3%
CG onM=

? s 3.813541 0.5501 6.5%

manifold is accomplished by computing the Riemannian gradient and Hessian and
finding the tangent vector bY satisfying hess f(Y) [bY] = grad f(Y). Afterwards,
the step size X is computed, and the point retracted onto the manifold. In a similar
manner as before, the algorithm stop for the first rank ? for which the matrix SY is
non-negative. The steps are summarized in Algorithm 4.2.

Similarity Clustering via Convex Programming
This chapter uses the same real-world data obtained in the previous chapter through
crowdsourcing on Amazon Mechanical Turk [105]. It compares the performance
of the proposed Conjugate Gradient (CG) and the Trust-Region (TR) methods on
both the embedded and the quotient manifold. The performance of the proposed
algorithms is tested again the generic convex solver CVX [106] and the symmetric
multinomialM= = {X ∈ S= | X � 0,X > 0,X1 = 1} introduced in the previous
chapter. All simulations are carried out using theMATLAB toolboxManopt [37] on
an Intel Xeon Processor E5-1650 v4 (15M cache, 3.60 GHz) computer with 32Gb
2.4 GHz DDR4 RAM.

This part reveals the cluster structure by solving the following convex optimization
problem whose theoretical guarantees are studied in [39]

min
X∈M

1
2
| |A − X| |2

�
+ _Tr(X),

wherein the restricted Frobenius � norm is computed only over the observed entries
of A. The optimization problem is solved using the numerical optimization toolbox
CVX [106], a specialized approximate and fast algorithm [107], known as aug-
mented Lagrange multipliers (ALM), and the symmetric multinomial. Afterwards,
the same problem is solved by reformulating X = YYT and using our proposed
methods on the embedded and the quotient manifold.

The quality of the recovery is attested through the computation of the variation
of information [108] between the reached cluster structure and the ground truth.
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Figure 4.1: Accuracy of Riemannian methods for clustering a large system.
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Figure 4.2: Running time of Riemannian methods for clustering a large system.

Table 4.1 illustrates the running time and the performance of the above-mentioned
optimization methods. To be fair in comparison, only the conjugate gradient al-
gorithm is employed over the different manifolds. Clearly, the proposed methods
considerably outperform the generic solver CVX and the Riemannian symmetric
multinomial in term of running time while maintaining the quality of the solution.
The simulation also shows that the quotient manifold provides better results than
its embedded counterpart which is expected as the quotient manifold reduces the
dimension of the ambient space by grouping all equivalent solutions.
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Figure 4.3: Accuracy of Riemannian methods against the number of clusters.

High Dimension Community Detection
This subsection proposes solving the clustering problem for a large number of entries
= ,e.g., large number of dogs, using synthetic data. In particular, the crowdsourcing
part is simulated by sampling from a stochastic block model similar to the one
studied in [39] to obtain the similarity matrix. The number of clusters, e.g., the
number of breeds of dogs, is also variable so as to study multiple scenarios. The
size of clusters is chosen randomly from a set of predefined sizes for each dimension
such that the recovery is theoretically guaranteed. Furthermore, the parameters of
the stochastic block model are selected so that the theoretical guarantees proposed
in [39] are valid which is further confirmed by an almost null total variation of
information between the ground truth and the reached solution. The first part of
these simulations compares the time performance of the proposed first and second-
order methods on the embedded and quotient manifolds against the performance
achieved by a first-order method on the symmetric multinomialM=. The second
part shows the performance of the proposed solution against a system of huge
dimension. For such large dimension, neither the generic CVX nor the specialized
Riemannian symmetric multinomial are applicable. The final part plots the running
time of the suggested methods against the number of clusters ? for a fixed dimension
=.

Figure 4.1 plots the running time of the proposed first and second-order methods
again the dimension of the problem = for clusters scaling as ? = 4=/1000. As a
base of comparison, this subsection plots the performance of the conjugate gradient
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Figure 4.4: Convergence rate of the conjugate gradient algorithm onM=
? andM

=

?.

algorithm on the symmetric multinomial. The running time of the second-order
method on the symmetric multinomial requires solving an = × = system of linear
equations which largely deteriorate its performance and thus is omitted in these
simulations. Figure 4.1 clearly displays that the proposed methods achieve the same
performance with drastically lower running time. The behavior is further illustrated
in Figure 4.2 wherein the system dimension is very large 8000 ≤ = ≤ 10000 for
a number of clusters ? = =/1000. The configuration of Figure 4.1 is prohibitively
complex to run either CVX or the symmetric multinomial. Nevertheless, our
proposed methods achieve the optimal solution in reasonable running time.

Figure 4.3 plots the performance of the proposed algorithms in clustering large data
sets versus the number of clusters. As shown in the analysis in the manuscript,
the dimension of the suggested manifold increases with the rank ?, i.e., number of
clusters. Such fact is attested by Figure 4.3. The figure especially displays that the
second-order method is more sensitive to a change in ? as an ? × ? linear systems
needs to be solved at each iteration for these second-order methods.

Optimization with Unknown Rank ?
This final set of simulation attests the performance of Algorithm 4.1 and Algo-
rithm 4.2 in finding the optimal solution for an unknown rank ?. A matrix A is
generated from a low-rank ? doubly stochastic matrix and corrupted with a zero-
mean white Gaussian noise with unitary total power. This part solves the following
denoising problem minY∈M=

?
| |A−YYT | |2

�
. Assuming the solution rank ? is known,
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Figure 4.6: Performance of Algorithm 4.1 and Algorithm 4.2.

the first part of the simulation confirms the linear and quadratic convergence behav-
ior of the proposed first and second-order methods, respectively. The second part
runs Algorithm 4.1 and Algorithm 4.2 in order to find the optimal solution without
any prior knowledge of the rank. The convergence is attested by checking that the
solution is rank (almost) deficient from Theorem 4.2 which is cheaper than checking
the first-order conditions in Theorem 4.1.

Figure 4.4 illustrates the convergence rate of the conjugate gradient method (first-
order method) on the proposed embedded and quotient manifolds. The figure reveals
that the proposed first-order methods exhibit a linear behavior as anticipated. One
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can note that the linear response of these methods mimics the one of unconstrained
optimization as the Riemannian method transforms a constrained optimization into
an unconstrained one. Similarly, Figure 4.5 plots the convergence rate of the second-
order methods. These second-order methods achieve a superlinear convergence as
compared with the first-order methods. The figure also illustrates that the quadratic
behavior is reached after a certain number of iterations which can be explained by
the fact that the quadratic approximation of the objective function in the TR method
is tight only in a region close to the optimal value.

Figure 4.6 shows the running time of the proposed algorithms in solving the above
optimization problem with unknown solution rank ?. Recall that the symmetric

multinomial solves the problem over the
=(= − 1)

2
space, unlike our method that

reduces the dimension to =(? − 1). However, the geometry of the embedded and
quotient manifold ismore complex than the one of the symmetricmultinational. Fur-
thermore, as the rank of the solution is unknown, Algorithm 4.1 and Algorithm 4.2
solve the optimization multiple times with increasing rank. Nevertheless, Figure 4.6
attests that for a reasonable number of clusters ?, our proposed Algorithm 4.1 and
Algorithm 4.2 both perform better than the symmetric multinomial.

4.5 Beyond the Positive Multinomial Manifold
Several combinatorial applications of late can be relaxed as convex optimization
problems with theoretical guarantees under which the solution to the convex relax-
ation coincides with the optimal solution under suitable conditions. A particularly
interesting class of problems requires the optimization over stochastic or doubly
stochastic matrices such as graph-based and spectral clustering [55, 53, 39, 109,
54], clustering by tensor decomposition [32], hidden Markov models [110], and
graph optimization [111].

The previous sections took advantage from the fact the solution to these problem is
low-rank to propose highly efficient algorithms. This part is interested in solving
similar optimization problems while alleviating the restriction that the matrix is
symmetric. In particular, by explicitly factorizing the = × < variable X = UVT

with U and V being = × ? and < × ? matrices, a significant complexity gain can be
achieved for ? � min(=, <), e.g., [98, 97]. However, as before, the factorization
makes the problem non-convex with non-isolated solutions. Fortunately, the quality
of the solution of the original convex problem can be theoretically attested, e.g.,
[102]. More recently, inspired by the Burer-Monteiro approach [99], the authors in
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[112] showed that a large class of Semidefinite Programs (SDPs) almost never has
any spurious local optima.

The study of the non-symmetric factorization is crucial to multiple non-symmetric
clustering algorithms including the non-negative matrix factorization (NMF) [113,
96, 114, 115] of interest in this section. The rest of this section explicitly uses the
low-rank property of the solution to reformulate the problem and investigate the
geometry of the resulting manifold.

Problems and Manifolds of Interest
Let f : R=×= → R be a smooth function and consider the following optimization
problem

min
X∈R=×=

f(X) (4.31a)

s.C. X ≥ 0, (4.31b)

X1 = 1, (4.31c)

wherein constraint (4.31b) underlines that the matrix is element-wise positive and
constraint (4.31c) corresponds to the fact that each row sums to 1, i.e., the matrix is
stochastic.

This section factorizes the optimization variable to include the low-rank property in
the structure of the variable. The paper assumes that the rank ? of the solution is
known a priori. Otherwise, one can solve the reformulated problems with increasing
rank until a similar condition as the one in the previous section is satisfied. A matrix
X of rank ? can be factorized in various ways [116], e.g., full-rank factorization,
polar decomposition, SVD, etc. The full-rank factorization X = UVT with U and
V being = × ? full-rank matrices, denoted by U,V ∈ R=×?∗ , is adopted herein [101,
102, 117]. The reformulation allows reducing the dimension of the ambient space
from =2 to 2=? with ? � =.

Given the low-rank factorization X = UVT and an invertible matrix M, we have
(UM−1,VMT) represents the same factorization. Hence, one can study the quotient
structure of the manifolds by the general linear group. However, as non-isolated
solutions only impair second-order methods, the study of the quotient structure is
left for future investigation and this thesis only focuses on the first-order geometries
of the low-rank multinomial and the low-rank doubly stochastic manifolds defined
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as follows:

P ?= =
{
(U,V) ∈

(
R
=×?
∗

)2 ��� UVT > 0 and UVT1 = 1
}

(4.32)

DP ?= =
{
(U,V) ∈

(
R
=×?
∗

)2 ��� UVT > 0,UVT1 = 1, and VUT1 = 1
}
. (4.33)

Geometry of the Low-Rank Multinomial
The low-rank multinomial manifold P ?= is seen as an embedded manifolds of the
product of non-compact Stiefel manifolds. The ambient space is of dimension 2=?
and the manifold is characterized by = linearly independent equations. Therefore,
the manifold is of dimension =(2? − 1). The following proposition characterizes
the tangent space.

Proposition 4.3 The tangent space T(U,V)P ?= of the low-rank multinomial manifold
P ?= at the point (U,V) ∈ P ?= is given by

T(U,V)P ?= =
{
(bU, [V) ∈

(
R=×?

)2
��� (bUVT + U[T

V)1 = 0
}
. (4.34)

Proof: The proof of this proposition relies on showing the inclusion of the tangent
space in the set illustrated in (4.34). Afterward, a dimension counting argument
concludes the proof.

Consider the curve W(C) ∈ P ?= for C ∈ I with � being an open interval containing
0 going through (U,V) at the origin, i.e., W(0) = (U,V). From the manifold
description in (4.32), W(C) ∈ P ?= implies that W1(C)W2(C)T1 = 1. Differentiating the
equation gives ( ¤W1(C)W2(C)T + W1(C) ¤W2(C)T)1 = 0 which evaluated at C = 0 gives the
following inclusion

T(U,V)P ?= ⊆
{
(bU, [V) ∈

(
R=×?

)2
��� (bUVT + U[T

V)1 = 0
}
.

Finally, notice that the dimension of the set on the right-hand side of (4.34) is
=(2? − 1) which matches the dimension of the manifold. Therefore, we have
equality of both sets which gives a parameterization of the tangent space. �

This section endows the tangent space T(U,V)P ?= with the following Riemannian
metric in anticipation that it is a compatible Riemannian metric with the quotient
manifold (not included herein):

〈(bU, [V), (b′U, [
′
V)〉(U,V) = Tr((UTU)−1bT

Ub
′
U) + Tr((VTV)−1[T

V[
′
V). (4.35)

The following lemma relates the Euclidean and Riemannian gradients.
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Lemma 4.3 The Riemannian gradient grad f(U,V) can be obtained from its Eu-
clidean counterpart Grad f(U,V) using the following identity

grad f(U,V) =
(
gradUf(U,V)
gradVf(U,V)

)
= Π(U,V)

(
GradUf(U,V) (UTU)
GradVf(U,V) (VTV)

)
,

with Π(U,V) being the orthogonal projection from the ambient space
(
R=×?

)2 onto
the tangent space T(U,V)P ?= .

Proof: Let (bU, [V) ∈ T(U,V)P ?= be a tangent vector. The Euclidean gradient can
be expressed as a directional derivative as follows:

D f(U,V) [(bU, [V)] =
〈 (

GradUf(U,V)
GradVf(U,V)

)
,

(
bU

[V

) 〉
=

〈 (
GradUf(U,V) (UTU)
GradVf(U,V) (VTV)

)
,

(
bU

[V

) 〉
(U,V)

=

〈
Π(U,V)

(
GradUf(U,V) (UTU)
GradVf(U,V) (VTV)

)
,

(
bU

[V

) 〉
(U,V)

.

Therefore, for all tangent vectors (bU, [V) ∈ T(U,V)P ?= , the tangent vector defined by

Π(U,V)

(
GradUf(U,V) (UTU)
GradVf(U,V) (VTV)

)
satisfies the equation of Riemannian gradient which

concludes the proof. �

Given the identity in Lemma 4.3, the Riemannian gradient expression is provided
in Theorem 4.5

Theorem 4.5 The Riemannian gradient on the low-rank multinomial can be ex-
pressed as (

gradUf(U,V)
gradVf(U,V)

)
=

(
GradUf(U,V)UTU − U1TVUTU
GradVf(U,V)VTV − 1UTUVTV

)
,

with U being the =-dimensional vector given by

U =
1
=
(I + UVTVUT)−1

(
GradUf(U,V)UTUVT + UVTVGradT

Vf(U,V)
)

1.

Proof: As shown previously, it is sufficient to derive the expression of the or-
thogonal projection onto the tangent space to get the expression of the Riemannian
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gradient. First, notice that the orthogonal complement of the tangent space is
characterized by an =-dimensional vector U as follows

T⊥(U,V)P
?
= =

{
(A,B) ∈

(
R=×?

)2
��� A = U1TVUTU and B = 1UTUVTV

}
.

Let (R, S) be an ambient vector and decompose it into a tangent and an orthogonal
components, i.e., (R, S) = Π(U,V) (R, S) + Π⊥(U,V) (R, S). Using the definition of
the tangent space in Proposition 4.3 and the parameterization of the orthogonal
complement to the tangent space, we obtain the following equation

(RVT + UST)1 = (AVT + UBT)1 = (U1TVUTUVT + UVTVUTU1T)1.

Using the fact that UVT1 = 1, the vector U can be expressed as U = 1
=
(I +

UVTVUT)−1(RVT + UST)1. Finally, applying the above result to matrices R and S
equal to GradUf(U,V) (UTU) and GradVf(U,V) (VTV), respectively, concludes the
proof. �

This part describes a first-order retraction on the low-rank multinomial P ?= and

its positive extension P ?= =

{
(U,V) ∈

(
R
=×?
∗

)2 ��� U > 0,V > 0, and UVT1 = 1
}
.

First, let Π : R=×=+ → P= be the projection1 of entry-wise positive matrices to the
set of stochastic matrices P= given by Π(X) = DX wherein D is a strictly positive

diagonal matrix such that D88 =

(∑=
9=1 X8 9

)−1
. Extend the definition of Π to P ?=

such that Π(U,V) = (DU,V) with D obtained by applying Π to the =×= entry-wise
positive matrix UVT. The following theorem derives the expression of a first-order
retraction

Theorem 4.6 Consider the tangent space T(U,V)P ?= and the tangent vector (bU, [V)
and define Ub = U + 1=1T

? − exp
(
−bU

)
and V[ = V + 1=1T

? − exp
(
−[V

)
for the usual

exponential function. The operator R(U,V) : T(U,V)P ?= → P ?= defined by

R(U,V) (bU, [V) = Π(Ub ,V[),

is a well-defined retraction for small-enough tangent vectors, i.e., for (bU, [V) such
that Ub (V[)T ∈ R=×=+ .

Proof: It is sufficient to demonstrate the centering and the local rigidity properties
to show thatR(U,V) is a first-order retraction. The centering properties can be directly
obtained by replacing the tangent vectors by zeros. The study of the local rigidity is

1Not to be confused with Π(U,V) , the orthogonal projection onto the tangent space.
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accomplished by studying the first-order perturbation of (UCb ,VC[) and the projection
operatorΠ. Note that the first-order approximation of UCb = U+1=1T

?−exp
(
−CbU

)
=

U + CbU + >(C21=1T
?). The same holds for VC[. Therefore, it is sufficient to study

the perturbation of Π in the direction of the tangent space. By definition, we have
Π(U + bU,V + [V) = ((D + XD) (U + bU),V + [V). For (U,V) ∈ P ?= , the matrix
UVT is stochastic, i.e., D = I. Therefore, expanding the stochastic matrix given by
Π(U + bU,V + [V) and keeping only the first-order terms, we obtain

(I + XD) (U + bU) (V + [V)T = UVT + XDUVT + bUVT + U[T
V.

Since the matrix is stochastic, then by multiplying the above equality by the all ones
vector we obtain

1 = UVT1 + XDUVT1 + (bUVT + U[T
V)1 = 1 + XD1⇒ XD1 = 0⇒ XD = 0.

By showing above that Π(U + bU,V + [V) = (U + bU,V + [V), one obtains the
first-order approximation of R(U,V) as

R(U,V) (CbU, C[V) = Π(UCb ,VC[) = Π(U + CbU,V + C[V) + >(C21=1T
?)

= (U + CbU,V + C[V) + >(C21=1T
?),

which shows the local rigidity property as desired. �

Corollary 4.1 A first-order retraction on the positive low-rank multinomial of any
tangent vector (bU, [V) ∈ T(U,V)P

?

= is given by

R(U,V) (bU, [V) = Π(U
b
,V[),

with Ub

8 9 = U8 9 exp
(
b8 9/U8 9

)
and V[

8 9 = V8 9 exp
(
[8 9/V8 9

)
.

Proof: The proof of this corollary is straightforward by noticing that the first-order
approximation of Z8 9 = X8 9 exp

(
b8 9/X8 9

)
is given by X8 9 + b8 9 and using similar steps

as in the proof of Theorem 4.6. �

The Low-Rank Doubly Stochastic Manifold
Similar to the low-rank multinomial manifold, the low-rank doubly stochastic mani-

fold DP ?= =
{
(U,V) ∈

(
R
=×?
∗

)2 ��� UVT > 0,UVT1 = 1, and VUT1 = 1
}
is seen an

embedded manifold of the product of non-compact Stiefel manifolds. The dimen-
sion of the manifold is 2=(? − 1) + 1 which can be obtained from the Birkhoff–Von
Neumann theorem [118].
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Corollary 4.2 The tangent space for the low-rank doubly stochastic manifold is
characterized by

T(U,V)DP ?= =
{
(bU, [V) ∈

(
R=×?

)2
��� (bUVT + U[T

V)1 = (Vb
T
U + [VUT)1 = 0

}
.

(4.36)

Proof: The proof of this theorem is omitted as it mirrors the steps used in proving
Proposition 4.3. �

Using theRiemannian inner product as defined in (4.35), the orthogonal complement
to the tangent space is the 2=−1-dimensional space parametrized by two =×1 vectors
U and V as follows

T⊥(U,V)DP
?
= =

{
(A,B) ∈ R=×?

��� A = (U1T + 1VT)VUTU,

B = (1UT + V1T)UVTV
}
.

As both the low-rank multinomial and the low-rank doubly stochastic manifolds
share the same Riemannian metric, the relationship between the Riemannian gradi-
ent and its Euclidean counterpart provided in Lemma 4.3 is still valid. Therefore,
one only needs to derive an expression of the orthogonal projection onto the tangent
space to get the expression of the gradient as shown in the following corollary

Corollary 4.3 The Riemannian gradient on the low-rank multinomial can be ex-
pressed as(

gradUf(U,V)
gradVf(U,V)

)
=

(
GradUf(U,V)UTU − (U1T + 1VT)VUTU
GradVf(U,V)VTV − (1UT + V1T)UVTV

)
. (4.37)

Define M1 = (I + UVTVUT) and M2 = (I + VUTUVT), the vectors U and V are a
solution to the over-determined system of equations(

=M1 M111T

M211T =M2

) (
U

V

)
=

(
GradUf(U,V)UTUVT + UVTVGradT

Vf(U,V)
GradVf(U,V)VTVUT + VUTUGradT

Uf(U,V)

) (
1
1

)
.

Proof: The proof of this corollary is similar to the proof of Theorem 4.5. As such
and due to space limitations, the details of the computation are greatly compressed.
Let (R, S) be an ambient vector and decompose it, as before, into a tangent and
an orthogonal component. Recall that tangent vectors satisfy (bUVT + U[T

V)1 =
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(VbT
U + [VUT)1 = 0. Therefore, exploiting the characterization of the orthogonal

complement of the tangent space allows to write the following equations:

(RVT + UST)1 = (AVT + UBT)1
(VRT + SUT)1 = (VAT + BUT)1.

Solving the above system of equations in the unknown U and V and substituting
R and S by GradUf(U,V) (UTU) and GradVf(U,V) (VTV), respectively, gives the
expression for the Riemannian gradient illustrated in (4.37). �

This part extends the proposed retractions for the low-rank doubly stochastic mani-
foldDP ?= and its positive extensionDP

?

= . Let Π : R=×=+ → DP= be the projection
of entry-wise positive matrices to the set of doubly stochastic matrices given by
Π(X) = D1XD2 wherein D1 and D2 are strictly positive diagonal matrix obtained
from the Sinkhorn-Knopp algorithm [84]. As before, extend the definition of Π to
DP ?= such that Π(U,V) = (D1U,D2V) with D1 and D2 being obtained by applying
Π to the = × = entry-wise positive matrix UVT. The following theorem derives the
expression of a first-order retraction on DP ?= and DP

?

=

Theorem 4.7 For small-enough tangent vectors, an efficient first-order retraction
on the low-rank doubly stochastic manifold DP ?= is given by R(U,V) (bU, [V) =
Π(Ub ,V[), for Ub and V[ as defined in Theorem 4.6. Similarly, for Ub and V[

given in Corollary 4.1, a retraction on DP ?= can be defined by R(U,V) (bU, [V) =
Π(Ub

,V[).

Proof: The proof of this theorem follows similar steps as the one for the low-rank
multinomial with the exception of the projection operatorΠ. Therefore, for concise-
ness purposes, this proof only focuses on the study of the first-order perturbation
of Π in the direction of tangent vector. Recall that Π(U,V) = (D1U,D2V) with
D1 and D2 being obtained from the Sinkhorn-Knopp algorithm. Given the tangent
perturbation (bU, [V), the first-order perturbation of the projection is expressed as

Π(U + bU,V + [V) = (D1 + XD1) (U + bU) (VT + [T
V) (D2 + XD2)

= UVT + XD1UVT + UVTXD2 + (bUVT + U[T
V),

wherein the last equality is obtained by keeping only the first-order terms and
substituting D1 and D2 by identities since UVT is a doubly stochastic matrix. Define
XD1 = XD11 and XD2 = XD21. Then, by multiplying the above equation on the right
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and left by 1 and 1T, respectively, and using the characterization of tangent vectors,
we obtain the following matrix equations(

I UVT

VUT I

) (
XD1

XD2

)
=

(
0
0

)
.

In other words,

(
XD1

XD2

)
is an eigenvalue associated with the eigenvalue 0. A similar

analysis to [75] allows to show that Π(U + bU,V + [V) = (U + bU,V + [V) which
concludes the proof. �

Numerical Results
This subsection attests the performance of the proposed manifold optimization
algorithms for non-negative matrix factorization applications using real-world and
synthetic data. In particular, the section compares the performance of the low-rank
multinomial (denoted by LRM) against popular2 NMF algorithms [114] and their
accelerated variants [120] namely

• Alternating Least-Squares (ALS).

• Alternating Non-negative Least-Squares (ANLS).

• Hierarchical Alternating Least-Squares (HALS).

• Accelerated HALS (A-HALS).

• The Multiplicative Updates (MU).

• Accelerated MU (A-MU).

As stated in above, given the above derived description of the first-order geometry,
optimization algorithms can be obtained mechanically using the MATLAB mani-
fold optimization toolbox Manopt [37]. The numerical results herein are obtained
using the conjugate gradient (CG) algorithm on the low-rank multinomial. Unlike
the steepest-descent method, CG requires a vector transport T[XbX which can be
computed [23] for matrix manifolds as T[XbX = ΠRX ([X) (bX).

Given an = × < matrix A generated as A = UVT +W, wherein U and V are two
element-wise non-negative matrices of size = × ? and < × ?, respectively, and W

2The Projected Gradient Methods (PGM) and its accelerated (A-PGM) version [119] are not
tested herein due to their poor performance on our simulation set.
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Figure 4.7: Performance of the different NMF algorithms.
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Figure 4.8: Running time to decompose the ORL and the CBCL face databases.

is a white Gaussian noise such that the signal-to-noise ratio (SNR) is 20dB. This
section proposes factorizing A by solving the problem min(U,V)∈P ?=,< | |A−DUVT | |2

�

wherein D is a diagonal matrix containing the sum of each row of A. In other words,
the above program insists on finding a non-negative factorization close to A that
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preserves the row sums. The factors DU and V are then used to initialize the HALS
and MU algorithms, respectively, in Figure 4.7 and Figure 4.8, in order to obtain the
non-negative matrix factorization of A. All algorithms are initialized with the ALS
solution, i.e., the positive part of the low-rank approximation of A, and stopped as
soon as the cost drops below the one of the LRM or the number of iterations exceeds
the threshold of # = 105 iterations.

Figure 4.7 illustrates the performance and the running time of the different NMF
algorithms for recovering a synthetically generated 50 × 80 matrix with rank ?

varying from 3 to 15. The figure clearly shows that using the proposed method and
applying the HALS algorithms provides quicker convergence then directly applying
the MU, HALS, or their accelerated versions. In other words, the proposed method
presents the best performance for the considered scenario, i.e., ? � min(=, <).

Figure 4.8 shows a similar comparison for real-world data using the CBCL [121]
and the ORL [122] face database which contains 2429 and 400 gray-level 19 × 19
and 92 × 112 pixels images, respectively. Similar to [123, 122], the rank of the
decomposition is set to ? = 49 and ? = 30, respectively. Due to its high computation,
the ANLS algorithm is not simulated for this scenario. In addition, HALS (MU) and
A-HALS (A-MU) have similar performance. The proposed algorithm significantly
improves over HALS, in terms of running time, and slightly outperforms MU on the
CBLC and ORL databases as the assumption ? � min(=, <) is hardly met unlike
in the synthetic data simulation in Figure 4.7.
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C h a p t e r 5

FAST FOURIER PHASE RETRIEVAL THROUGH MANIFOLD
OPTIMIZATION

[1] A. Douik, F. Salehi, and B. Hassibi. “A Novel Riemannian Optimization
Approach and Algorithm for Solving the Phase Retrieval Problem”. In:
Proc. of the 53rd Asilomar Conference on Signals, Systems, and Computers
(Asilomar’ 2019), Asilomar, CA, USA. Vol. 1. 1. Nov. 2019, pp. 1962–1966.
doi: 10.1109/IEEECONF44664.2019.9049040.

Several imaging applications require constructing the phase of a complex signal
given observations of its amplitude. In most applications, a subset of phaseless
measurements, say the discrete Fourier transform of the signal, form an orthonor-
mal basis that can be exploited to speed up the recovery. This chapter suggests
a novel Riemannian optimization approach for solving the Fourier phase retrieval
problem by studying and exploiting the geometry of the problem to reduce the
ambient dimension and derive extremely fast and accurate algorithms. The phase
retrieval problem is reformulated as a constrained problem and a novel Rieman-
nian manifold, referred to as the fixed norms manifold, is introduced to represent
all feasible solutions. The geometry of the Riemannian manifold is derived in
closed form which allows the design of highly efficient optimization algorithms.
Furthermore, the quotient structure of the manifold is investigated to further accel-
erate the optimization. Numerical simulations indicate that the proposed approach
outperforms conventional optimization-based methods both in accuracy and in con-
vergence speed. The results presented herein are available in the research paper [44]
and as such some of the text appears as it is in the publication.

5.1 The Phase Retrieval Problem
Overview of the State-of-the-Art Methods
The phase retrieval problem is a classical problem [42] in which one is interested in
recovering an =-dimensional complex signal from < observations in the form of the
amplitude of its linear combinations. It has a rich history, in terms of both theoretical
results (see, e.g. [124, 56, 43] and references therein), and practical algorithms [125,
126, 127], that spans over generations of researchers thanks to its numerous appli-
cations in engineering and applied sciences such as imaging [128], crystallography
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and optics [129]. Indeed, due to the inability of physical measurement devices to
detect phases, e.g., a photosensitive film that measures the light intensity, only the
magnitude measurements are feasible in such applications.

In many applications of the phase retrieval problem, a subset of phaseless mea-
surements is obtained via an orthonormal basis. For example, in the Fourier phase
retrieval problem the goal is to reconstruct the signal from phaseless measurements
of its discrete Fourier transform (DFT) [57, 58, 59]. This particular structure of the
phase retrieval problem allows its reformulation as a constrained optimization prob-
lem wherein the constraint set is represented by an orthonormal basis. This chapter
suggests exploiting the problem structure to reduce the dimension of the problem
and design fast recovery algorithms using Riemannian optimization techniques. To
the best of the author’s knowledge, the fixed normsmanifold has not been introduced
nor studied in the literature, except for the simple case of a single observation in
which the fixed norms manifold coincides with the complex sphere in C=, S=−1.

Problem Formulation and Assumptions
Let x0 ∈ C= be a complex vector of dimension = and assume that the < observations
are obtained by

√
18 = |a★8 x0 |, 1 ≤ 8 ≤ < with the sensing vectors a8 ∈ C=. Consider

a smooth loss function ℓ, the phase retrieval problem can be formulated as

min
x∈C=

<∑
8=1

ℓ( |a★8 x|,
√
18) (5.1)

Without loss of generality, assume that the first : observations are obtained from
an orthogonal basis, say the discrete Fourier transform for : = =. In other words,
matrices A8 = a8a★8 , 1 ≤ 8 ≤ : are orthogonal projection matrices that collectively
span the whole ambient space C=, i.e., A8 = A★

8
, A8A 9 = X8 9A8 and

∑:
8=1 A8 = I=. As

an example, in Fourier phase retrieval : = =, and a8, for 8 = 1, 2, . . . , =, is the 8th row
of the = × = DFT matrix.

Proposed Approach: The Fixed Norms Manifold
The unconstrained optimization of the phase retrieval problem in (5.1) can be
formulated as a constrained optimization as follows:

min
x∈C=

<∑
8=:+1

ℓ( |a★8 x|,
√
18) (5.2a)

s.C. |a★8 x| =
√
18, 1 ≤ 8 ≤ : . (5.2b)
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For a complex number 2 ∈ C, the notation Re(2) =
1
2
(2 + 2★) represents the real

part of 2. Likewise, the symbol Im(2) =
1
2i
(2 − 2★) refers to the imaginary part of

2 wherein i denotes the imaginary unit, i.e., i2 = −1. Clearly, the modulus equality
constraint |a★

8
x| =
√
18 of (5.2) is equivalent the quadratic constraint x★a8a★8 x = 18.

Define the matrices A8 = a8a★8 , 1 ≤ 8 ≤ : . From the previous assumptions on the
system model, the set of matrices {A8}:8=1 are orthogonal projection matrices that
collectively span the whole ambient space C=. In other words, for all 1 ≤ 8, 9 ≤ : ,
we have A8 = A★

8
, A8A 9 = X8 9A8 and

∑:
8=1 A8 = I=. LetM denote the set of solutions

to the optimization problem (5.2), i.e., M =
{
x ∈ C= | x★A8x = 18, 1 ≤ 8 ≤ :

}
,

called herein the fixed norms manifold. The optimization problem (5.2) can be
reformulated as,

min
x∈M

<∑
8=:+1

ℓ( |a★8 x|,
√
18). (5.3)

5.2 The Embedded Fixed Norms Manifold Geometry
This section investigates the first and second-order geometry of the fixed norms
manifold seen as an embedded manifold in the Euclidean space R= × R= which is
isomorphic to C=. We compute the linear approximation of the manifold at each
point, known as the tangent space, and we further characterize its geodesics and
provide an expression of the Exponential map. All these ingredients are used later
on to derive efficient first-order optimization algorithms on the manifold to solve
the phase retrieval problem.

Manifold, Tangent Space, and Projection
Given a set of : non-negative and orthogonal =× = projection matrices {A8}:8=1 over
the complex field C, i.e., A8 � 0 and A8A 9 = X8 9A8 for all 1 ≤ 8, 9 ≤ : , satisfying∑:
8=1 A8 = I= and : positive real numbers {18}:8=1 ∈ R++, the fixed norms manifold

is defined by,

M =
{
x ∈ C= | x★A8x = 18, 1 ≤ 8 ≤ :

}
. (5.4)

Theorem 5.1 The setM is a well-defined real manifold of dimension 2= − : em-
bedded in R= × R=, which is isomorphic to C=, and whose tangent space at x ∈ M
is given by,

TxM =
{
bx ∈ C= | b★x A8x + x★A8bx = 0, 1 ≤ 8 ≤ :

}
(5.5)
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Proof: In order to show that the setM is a manifold with dimension 2= − : and
compute the expression of its tangent spaces, we use the following special case of
the constant-rank theorem known as the implicit function theorem

Theorem 5.2 Let 5 : R= → R< be a smooth constant-rank function near 0. Then,
the setM = 5 −1(0) is an embedded manifold of R= with dimension = −<. Further-
more, the tangent space TxM is given by all directions bx for which the directional
derivative of 5 is zero, i.e., TxM = Ker (D f(x)).

Define the function f : R=×R= → R: such that f(y, z) = (x★A1x−11, · · · , x★A:x−
1: )) wherein x is defined as x = y + 8 · z. For simplicity, without loss of generality,
the rest of the proof considers that f accepts a complex argument x ∈ C=. It is not
difficult to see thatM = 5 −1(0). Therefore, to conclude thatM is an embedded
manifold ofR=×R= � C= with dimension 2=−: , we need to show that f is a constant-
rank function. Due to the smoothness of the function 5 , it is sufficient to show that
0 is a regular value of the function, i.e., the indefinite directional derivative of f at
x ∈ M is a surjective map. Given a direction bx ∈ C=, the directional derivative of
f at x is given by

D f(x) [bx] = (b★x A1x + x★A1bx, · · · , b★x A:x + x★A:bx)) .

Let c ∈ R: and define bx ∈ C= by bx =
1
2

:∑
8=1

28

18
A8x. The 9-th entry in the vector

D f(x) [bx] is given by

b★x A 9x + x★A 9bx
(0)
=

2 9

21 9
(x★A 9x + x★A 9x)

(1)
= 2 9 ,

wherein the equality in (0) derives from the fact that the A8’s are orthogonal pro-
jection matrices and that the 18’s and 28’s are real numbers and the equality in (1)
follows from the definition of x ∈ M. Therefore, we conclude that the indefinite
directional derivative of f at x ∈ M is a surjective map and that the tangent space is
given by its kernel, i.e.,

TxM =
{
bx ∈ C= | b★x A8x + x★A8bx = 0, 1 ≤ 8 ≤ :

}
.

�

Tangent spaces play an important role in Riemannian optimization in the same fash-
ion that derivatives of smooth functions play a crucial role in numerical optimization.
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The tangent space TxM allows to approximate the manifold in the neighborhood of
x ∈ M by a Euclidean space and to locally transform the constrained optimization
into an unconstrained one. The real Riemannian metric 6 whose restriction to TxM
is defined by,

〈bx, [x〉x = Re(b★x [x) =
1
2
(b★x [x + [★xbx), (5.6)

turns (M, 6) into a real smooth Riemannian manifold.

The normal space is defined as the orthogonal complement of the tangent space
with respect to the Riemannian metric. In other words, the normal space at x ∈ M,
denoted by NxM, is defined as the set of [x ∈ C= such that 〈bx, [x〉x = 0 for all
bx ∈ TxM. For the fixed norms manifold, the normal space has the following form,

NxM =

[x ∈ C= | [x =
:∑
8=1

U8A8x, {U8}:8=1 ∈ R
 . (5.7)

Indeed, it is easy to see that for any tangent vector bx ∈ TxM, and any normal vector
[x ∈ NxM, the inner product gives

〈bx, [x〉x
(0)
=

1
2

:∑
8=1

U8
(
b★x A8x + x★A8bx

) (1)
= 0,

wherein the equality (0) is obtained from the fact that the A8’s are Hermitian and the
U8’s are real numbers and (1) follows directly from the definition of the tangent space
in (5.5). This shows that the normal space is included in the set identified in (5.7).
Furthermore, we have the direct sum TxM⊕NxM = C= with Dim (TxM) = 2=− : ,
then Dim (NxM) = : which conclude the expression of the normal space in (5.7).

Regarding the fixed norms manifold as an embedded manifold in the Euclidean
space C= allows to exploit its linear structure to derive the required Riemannian
operators to design optimization algorithms. The orthogonal projection from the
linear embedding space to the linear tangent space plays an important role in deriving
the Riemannian gradient, covariant derivative, etc. The projection for the fixed
norms manifold is given in the following proposition.

Proposition 5.1 Let y ∈ C= be an arbitrary complex vector, the projections of y
onto the tangent space TxM and the normal space NxM, denoted by Πx(y) and
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Π⊥x (y), respectively, are given by,

Πx(y) = y −
:∑
8=1

1
218
(y★A8x + x★A8y)A8x, (5.8)

Π⊥x (y) =
:∑
8=1

1
218
(y★A8x + x★A8y)A8x. (5.9)

Proof: Using the fact that the embedding spaceC= is an Euclidean space satisfying
TxM ⊕NxM = C=, any arbitrary y ∈ C= can be decomposed as y = Πx(y) +Π⊥x (y)
with the orthogonality condition 〈Πx(y),Π⊥x (y)〉x = 0.

Recall that the tangent vector Πx(y) satisfies Π★x (y)A8x+x★A8Πx(y) = 0, 1 ≤ 8 ≤ :
and that the normal vector Π⊥x (y) is parameterized with Π⊥x (y) =

∑:
8=1 U8A8x.

Combining the decomposition of y with the parameterization of the tangent and
normal space and the fact that x ∈ M gives the expression of the reals U8 =
1

218
(y★A8x + x★A8y). Therefore, we obtain the projection on the normal space

provided in (5.9) and thus the projection on the tangent space in (5.8). �

Geodesics, Exponential, and Logarithmic Map
The exponential map is a function from a subset of a tangent space TxM to the
manifoldM that associates to each tangent direction bx in the neighborhood of 0x

a geodesic curve W : R → M going through x ∈ M in the direction bx ∈ TxM,
i.e., W(0) = x and ¤W(0) = bx. If the domain of the Exponential map is the whole
tangent space, then the manifold is said to be geodesically complete. Hence, before
deriving the exponential map, and its inverse known as the logarithmic map, one
needs to define geodesics.

Geodesics are curves inM that generalize the concept of a “straight" line inR=. The
concept of straight lines is generalized to curved space by the notion of curves with
zero acceleration. While the velocity ¤W(C) of a curve W(C) can be computed easily
through a usual derivative by exploiting the Euclidean structure of the embedding
space, the notion of acceleration is more delicate. Indeed, the Euclidean definition
of acceleration requires the differential of the vector field ¤W(C) : R → TW(C)M.
However, points ¤W(C) and ¤W(C + XC) are in two different tangent spaces, i.e., TW(C)M
and TW(C+XC)M. The notion of a covariant derivative is introduced to obtain a
correspondence between the tangent spaces and compute the acceleration of curves.

The covariant derivative of a vector field is obtained by the Riemannian connection
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∇ that generalizes the notion of directional derivative to vector fields. In particular,
given two vector fields bx and [x, the covariant derivative of bx in the direction [x is
denoted by ∇[xbx. While there are infinitely many affine Riemannian connections,
there exists a unique one that is symmetric and compatible with the Riemannian
metric. Such connection is called the Levi-Civita connection and can be computed
using Koszul formula. However, since the fixed norms manifold is embedded in
an Euclidean space with a metric that does not depend on the tangent space, the
Levi-Civita connection is given by,

∇[xbx = Πx
(
D (bx) [[x]

)
.

With the above definition, finding the geodesic Wx,bx (C) going through x ∈ M in the
direction bx ∈ TxM amounts to solving the differential equation ∇ ¤W(C) ¤W(C) = 0 with
the initial conditions W(0) = x and ¤W(0) = bx. The closed-form expression of W(C)
is given in the following lemma.

Lemma 5.1 The geodesic curve Wx,bx : R → M going through x ∈ M in the
direction bx ∈ TxM is given by

Wx,bx (C) =
:∑
8=1

cos
©­­­«
√√
b★x A8bx

18
C

ª®®®¬ A8x

+

√√
18

b★x A8bx
sin

©­­­«
√√
b★x A8bx

18
C

ª®®®¬ A8bx . (5.10)

Proof: Expanding the geodesic equality, ∇ ¤W(C) ¤W(C) = ΠW(C) ( ¥W(C)) = 0, gives the
following differential equation,

¥W(C) =
:∑
8=1

1
218
( ¥W★(C)A8W(C) + W★(C)A8 ¥W(C))A8W(C) . (5.11)

Let 28 =

√
b★x A8bx

18
, 1 ≤ 8 ≤ : and define the curve W(C) by

W(C) =
:∑
8=1

cos (28C) A8x +
1
28

sin (28C) A8bx

The curve W(C) satisfies the following properties:
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(i) W(0) = ∑:
8=1 A8x = x.

(ii) ¤W(0) = ∑:
8=1 A8bx = bx.

(iii) ¥W(C) = ∑:
8=1 −22

8
cos (28C) A8x − 28 sin (28C) A8bx.

Furthermore, notice that A8W(C) = cos (28C) A8x+
1
28

sin (28C) A8bx, for all 1 ≤ 8 ≤ : .

Therefore, the second derivative can be expressed as ¥W(C) = ∑:
8=1 −22

8
A8W(C). Finally,

using the above properties, one can show that
1

218
( ¥W★(C)A8W(C)+W★(C)A8 ¥W(C)) = −22

8
.

Therefore, W(C) is a solution to the differential equation in (5.11) which concludes
that it is the geodesic curve. �

Given the expression of the geodesics on the fixed norms manifold in (5.10), the

exponential map is defined as Exp x(bx) =
∑:
8=1 cos (28) A8x +

1
28

sin (28) A8bx with

28 =

√
b★x A8bx

18
, 1 ≤ 8 ≤ : . Furthermore, since the geodesic curve is defined for

all initial velocities bx ∈ TxM, then the exponential map is defined for the whole
tangent space which makesM geodesically complete.

Geodesic Distance and First-Order Retraction
For a smooth curve W : [0, 1] → M on the manifoldM, the length of the curve W
is defined as L (W) =

∫ 1

0
| | ¤W(C) | |W(C)XC. Let x and y be two points on the manifold

M. The distance between x and y, denoted by 3 (x, y), is defined the infimum of
the lengths of all curves W(C) on M going through x, i.e., W(0) = x, and ending
at y, i.e., W(1) = y. The distance operator is well defined for any couple of points
(x, y) ∈ M2 that can be joined by a curve onM in which case the manifold is said
to be connected.

If there exists a unique geodesic between two points x and y in M, one can de-
fine the distance 3 (x, y) using the Logarithmic map by 3 (x, y) = | |Log x(y) | |x =
| |Log y(x) | |y. Therefore, the distance on the fixed norms manifold between x and y
such that {A8Πx(y)}:8=1 is not identically null, is given by the following expression

3 (x, y) =
√

Log ★
x (y)Log x(y) (5.12)

=

√√√
:∑
8=1

18 arccos2
(

1
218
(y★A8x + x★A8y)

)
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The choice of a computationally efficient retraction is a crucial step in designing
highly efficient Riemannian optimization algorithms. This chapter re-uses Theo-
rem 3.2 to design the following highly efficient first-order retraction on the fixed
norms manifold.

Rx(bx) =
:∑
8=1

√√
18

18 + b★x A8bx
A8

(
x + bx

)
(5.13)

Corollary 5.1 The mapping Rx defined in (5.13) is a retraction.

Proof: Let N = R:++ be the set of element-wise strictly positive vectors of length
: and define E★ =

{
y ∈ C= | y★A8y ≠ 0, 1 ≤ 8 ≤ :

}
. Clearly, E★ is an open subset

of C=. Now define q :M ×N → E★ such that

q(x, c) =
©­­­«
:∑
8=1

√√
18

28
A8

ª®®®¬
−1

x.

To show that q is well defined, we need to show that any linear combination of the
A8’s with non-zero weights is always full-rank. In other words, the matrix

∑:
8=1 V8A8

is full-rank for non-zero V8’s. Assume it is not the case for some {V8}:8=1. Then,
there exists a non-zero vector u such that

∑:
8=1 V8A8u = 0. By applying A 9 to the

previous equation and using the orthogonality of the A8’s and the fact that they are
projection matrices, we obtain V 9A 9u = 0. Since V 9 ≠ 0, we conclude that A 9u = 0
for all 1 ≤ 9 ≤ : which leads to

∑:
9=1 A 9u = 0 = I=u and contradicts the fact that

u ≠ 0.

It is straightforward to see that q is a smooth and differentiable function with

q(x, b) = x for all x ∈ M. Furthermore, given that
©­­«
∑:
8=1

√
18

28
A8

ª®®¬ is an invertible

matrix, q is a bijection whose differentiable inverse (x, c) = q−1(y) is given by

c 9 = y★A 9y, 1 ≤ 9 ≤ :

x =
©­­­«
:∑
8=1

√√
18

28
A8

ª®®®¬ y

According toTheorem3.2, the first component of q−1(x+bx) represents the retraction
of the tangent vector bx. Finally, using the expression of the manifold and its tangent
space, the first component of q−1(x + bx) reduces to the expression in (5.13). �
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5.3 The Quotient Fixed Norms Manifold Geometry
The previous section studies the geometry of the manifold as embedded in the
Euclidean space C= in order to solve the phase retrieval problem in (5.2). However,
the optimization problem in (5.2) presents non-isolated solutions. Indeed, solutions
are invariant by left multiplication by a unit norm scalar. In other words, for any
feasible solution x ∈ M, all points 4i\x for \ ∈ [0, 2c) are also solutions with an
identical cost function as |a★x| = |4i\a★x|. While the above-mentioned issue does
not affect the convergence of first-order methods, it may not be benign to second-
order algorithms such as Newton’s or the TR methods. A popular approach to deal
with the problem is to group all equivalent solutions x into an equivalence class
x and solve the optimization problem over these equivalence classes. This section
accomplishes such goal by investigating the quotient geometry of the fixed norms
manifold.

Equivalence Classes on Quotient Manifolds
Let ∼ be an equivalence relationship on the manifold M defined by x1 ∼ x2 ⇔
∃ \ ∈ [0, 2c) s.t. 4i\x1 = x2. The equivalence class of x, i.e., all elements in
relationship with x, is denoted by x. Consider the setM =M/∼ defined as the set
of all equivalence classes of points x ∈ M by the relationship ∼. The mapping from
points to their equivalence class c :M →M is known as the canonical projection
of points to their equivalence class, i.e., c(x) = x.

Theorem 5.3 The equivalence relation ∼ is regular for the fixed norms manifold
M which provides the set M with a manifold structure that makes it a quotient
manifold ofM.

Proof: Define the graph of an equivalence relationship by graph (∼) = {(x1, x2) ∈
M ×M | x1 ∼ x2}. According to [23], a necessary and sufficient condition forM
to admit a quotient structure is that the equivalence relationship ∼ is regular onM,
i.e., it needs to satisfy the following properties:

1. graph (∼) is an embedded submanifold of the productM ×M.

2. The projection c1 : graph (∼) → M given by c1(x1, x2) = x1 is a submersion.

3. graph (∼) is closed.
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We show that graph (∼) is an embedded submanifold ofM ×M by applying the
implicit function theorem in Theorem 5.2. Define Ω8 ⊂ M such that for all x ∈ Ω8,
we have x8 ≠ 0. Clearly, we have ∪:

8=1Ω8 =M. Define the mapping Ω8 →M that
associate to x the vector x̃8 = x/arg(x8). Define the function 58 : Ω8 × Ω8 → C=

by 58 (x, y) = x̃8 − ỹ8. Clearly, we have graph (∼) ∩ dom ( 58) is included in the
level set 5 −1

8
(0) as x̃8 = ỹ8 for any (x, y) ∈ graph (∼). Furthermore, the equality

(x, y) ∈ 5 −1
8
(0) implies that x̃8 = ỹ8 which means that x = 4i\y for some \ ∈ [0, 2c),

i.e., (x, y) ∈ graph (∼) ∩ dom ( 58). Therefore, we obtain the equality graph (∼) =
∪:
8=1 5

−1
8
(0).

According to Lemma 5.2, we only need to show that indefinite directional derivative
of 58 at (x, y) ∈ graph (∼) ∩ dom ( 58), i.e., x = 4i\y, is a surjective map. The
directional derivative of 58 (x, y) in the direction b, [ is given by

D 58 (x, y) [b, [] =
b

arg(x8)
− Re(b8) Re(x8) − Im(b8) Im(x8)

Re(x8)2 arg(x8)2

− [

arg(y8)
+ Re([8) Re(y8) − Im([8) Im(y8)

Re(y8)2 arg(y8)2

For any z ∈ C=, there exists b, [ defined by [ 9 = − arg(y8)z 9 for 9 ≠ 8 and 0 otherwise
and b 9 = 0 for 9 ≠ 8 and b8 = Re(x8) arg(x8)2 Re(z8)−Im(x8) Im(z8)

Re(x8) arg(x8)−1 + i arg(y8)z8 such that
D 58 (x, y) [b, [] = z which concludes that 58 is a submersion and hence graph (∼) is
an embedded submanifold.

The fact that the projection c1 is a submersion can be demonstrated by showing that
the differential Xc1 is a surjective map. This can be accomplished by deriving a
curve Wy(C) : I → graph (∼) for all y ∈ TxM and all x ∈ M such that

Xc1(Wy(C))
XC

���
C=0
= y. (5.14)

Let x ∈ M be an equivalence class and consider two representatives x, x′ ∈ c−1(x)
with x′ = 4i\x for some \ ∈ [0, 2c). Consider the tangent vector y ∈ TxM and
define the curve Wy(C) =

(
x + Cy, 4i\ (x + Cy)

)
= (z, z′). Clearly, we have z ∼ z′.

Furthermore, for any 1 ≤ 8 ≤ : , we have the following

zA8z′ = (x + Cy)★A8 (x + Cy)
= x★A8x + C (y★A8x + x★A8y) + >(C2)
= 18 + >(C2).
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Therefore, for small-enough C, we have Wy(C) ∈ graph (∼) while satisfying property
(5.14) which concludes that c1 is a submersion onM.

Finally, to show that graph (∼) is a closed set, it is sufficient to notice that graph (∼)
can be expressed as a level set of a smooth function. Define the function 5 :
M×M → R=×= by f(x1, x2) = x1x★1 −x2x★2 . Clearly, we have graph (∼) is included
in the level set 5 −1(0) as x1x★1 −x2x★2 = 0 for any (x1, x2) ∈ graph (∼). Furthermore,
the equality (x1, x2) ∈ 5 −1(0) implies that x1x★1 = x2x★2 which means that x1 = 4

i\x2

for some \ ∈ [0, 2c), i.e., (x1, x2) ∈ graph (∼). Therefore, we obtain the equality
graph (∼) = 5 −1(0). Finally, we conclude that graph (∼) is closed by the fact that
it is the image of a closed set by a smooth function. �

Let O= = {O ∈ C=×= |OO★ = O★O = I} be the set of unitary = × = matrices. In the
rest of the chapter, the setM = M/∼= M/O1 is called the quotient fixed norms
manifold. The rest of this section investigates the different geometric elements of
the quotient manifold that are crucial to design optimization algorithms.

Remark 5.1 While Theorem 5.3 demonstrates thatM has a quotient structure, it
does not imply thatM inherits the Riemannian structure ofM. This property is
shown later on by demonstrating that the Riemannian metric in (5.6) is compatible
with the equivalence relationship ∼.

Horizontal and Vertical Spaces
Consider an equivalence class x ∈ M, the class can be represented by multiple pre-
decessors x ∈ c−1(x). Similarly, the tangent vector bx ∈ TxM can be represented by
different tangent vectors bx ∈ TxM satisfying D (c(x)) [bx] = bx for x ∈ c−1(x). In
order to obtain a unique representation of the tangent vector bx for each predecessor
x ∈ c−1(x), i.e., a unique solution to D (c(x)) [bx] = bx, one needs to decom-
pose the tangent space TxM into a vertical VxM and horizontal HxM orthogonal
components such that the representation is unique on the horizontal space. Such
decomposition is possible thanks to the fact that c−1(x) represents an embedded
submanifold ofM whose tangent space Txc−1(x) defines the vertical space. The
horizontal space is the orthogonal, in the Riemannian metric sense, complement of
the vertical space in TxM. In other words, a unique representation is obtained by
decomposing the tangent space TxM such that

VxM = Txc−1(x)
TxM = VxM ⊕HxM
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For the fixed norms manifold, the embedded submanifold of the predecessors of
x ∈ M can be expressed as c−1(x) = {y ∈ M | y = 4i\x, \ ∈ [0, 2c)}. As
stated earlier, the vertical space is defined as the tangent space Txc−1(x). Consider
the following curve W(C) : I → c−1(x) such that W(C) = 4i\Cx. Clearly, we have
W(C) ∈ c−1(x) for all C ∈ R and W(0) = x. The speed of the curve ¤W(0) = i\4i\Cx ∈
{y ∈ M | y = i\x, \ ∈ [0, 2c)}. Conversely, for y = i\x, one can construct the
curve W(C) = 4i\Cx such that W(0) = x and ¤W(0) = y. Therefore, we conclude that
the vertical and horizontal spaces are given by

VxM = {bx ∈ C= | bx = i\x, for \ ∈ [0, 2c)} (5.15)

HxM = {[x ∈ TxM | x★[x = [
★
x x} (5.16)

Let bx ∈ VxM and [x ∈ HxM and define ix = bx+[x. Notice that 〈bx, [x〉x = 0 and
b★x A8x + x★A8bx = −i\18 + i\18 = 0. Therefore, we obtainVxM ⊂ TxM and hence
VxM⊕HxM ⊆ TxM. Finally, given that Dim (TxM) = 2=− : = 1+ (2=− : −1) =
Dim (VxM)+Dim (HxM), we get the equalityVxM⊕HxM = TxM as anticipated.

Using the above decomposition of the tangent space, given x ∈ M, the tangent
vector bx ∈ TxM can be uniquely represented at x ∈ c−1(x) by bx ∈ HxM, called
the horizontal lift of a tangent vector bx at x and satisfying D (c(x)) [bx] = bx.

Lemma 5.2 Consider the equivalence class x ∈ M and x1, x2 ∈ c−1(x) such that
x2 = 4

i\x1 for some \ ∈ [0, 2c). The horizontal lift bx2 of bx at x2 is related to the
horizontal lift bx1 at x1 by

bx2 = b4i\x1 = 4
i\bx1 (5.17)

Proof: Define the following set of equivalence classes

Ux = {y | y★A8y = 18, y★x = 4i\ , 1 ≤ 8 ≤ :, \ ∈ [0, 2c)}.

Let y1, y2 ∈ c−1(y) such that y2 = 4
i\ ′y1. Assume that y★1A8y1 = 18 and y)1 x = 4i\ ,

then this implies that y★2A8y2 = 18 and y)2 x = 4i\ ′′ with \′′ = \ + \′ ∈ [0, 2c). In
other words, the set Ux is a well-defined set. Define the function fx : Ux → C=

by fx(y) = yy★x. Using the same technique used for Ux, one can show that the
expression of fx(y) does not depend on the representative of the equivalence class
y, i.e., the function fx is a well-defined function. Furthermore, it satisfies

c(fx(y)) = c(yy★x) = c(4i\y) = y
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Therefore, fx is a right inverse of the natural projection c which implies that the
operator D (c(fx(y))) ◦ D (fx(y)) reduces to the identity map on Ux. Moreover,
for any angle \ ∈ [0, 2c) notice the following

f4i\x(y) = yy★4i\x = 4i\yy★x = 4i\fx(y) (5.18)

Define the set Sx = {z ∈ C= | z = fx(y), y ∈ Ux} as the image of Ux by fx. The
set Sx can be parameterized by

Sx = {z ∈ C= | z★A8z = 18, z★x = x★z, 1 ≤ 8 ≤ :}. (5.19)

Indeed, let z = fx(y) = yy★x = 4i\y, then we have z★A8z = 4i\4−i\y★A8y = 18.
Furthermore, the inner product z★x = x★yy★x = x★z. Finally, by noticing that both
sets have dimension 2= − : − 1, we conclude that Sx has the expression provided
in (5.19). The above parameterization allows to relate the horizontal space and the
directional derivative of fx through the equation

D fx(y) = TxSx

= {[x ∈ C= | [★x A8x + x★A8[x = 0, [★x x = x★[x, 8 ≤ :}
= {[x ∈ TxM | [★x x = x★[x} = HxM (5.20)

Therefore, the horizontal lift bx can be expressed as bx = D (fx) (y) [b]. Finally,
using property (5.18), we conclude that the horizontal lift at 4i\x for some \ ∈ [0, 2c)
is related to the horizontal lift at x by

b4i\x = 4
i\bx

�

To show that the quotient manifold inherits the Riemannian structure of the embed-
ded manifold, one needs to show that the Riemannian metric is compatible with the
equivalence relationship. In other words, the Riemannian metric does not depend
on the chosen representation of the class. To show that the property holds for the
fixed norms manifold, consider an arbitrary equivalence class x, any two tangent
vectors bx, [x ∈ TxM, and some predecessors x1, x2 ∈ c−1(x), the horizontal lifts
of bx and [x at x1 and x2 need to satisfy

〈bx1 , [x1〉x1 = 〈bx2 , [x2〉x2 . (5.21)

Given the expression of the horizontal lift in (5.17), it can clearly be seen that
property (5.21) holds for any equivalence class x, any tangent vectors bx, [x ∈ TxM,
and any predecessors x1, x2 ∈ c−1(x). Therefore, the quotient manifoldM inherits
the Riemannian structure ofM.
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Levi-Civita Connection, Geodesics, and Exponential Map
This section derives the required geometric operator for the quotient fixed norms
manifold so as to derive optimization algorithms over the manifold. In particular,
this part first derives the expression of the Riemannian Levi-Civita connection.
Afterward, the expression of the covariant derivative is utilized to solve the geodesic
equation and provide an expression for the Exponential map.

Similar to the embedded fixed norms manifold, the covariant derivative ∇[xbx of a
vector field bx in the direction [x can be obtained from the Riemannian Levi-Citiva
connection on the embedding Euclidean space which is given by (D (bx) [[x] for
the fixed norms manifold. However, instead of projecting the connection onto the
whole tangent space, quotient manifold require the projection of the embedding
connection onto the horizontal space. In other words, the Levi-Citiva connection
on the quotient fixed norms manifold is

∇[xbx = Π
H
x

(
D (bx) [[x]

)
,

wherein ΠHx is the orthogonal projection onto the horizontal space at x whose
expression is given in the following lemma.

Lemma 5.3 The projection from the ambient space to the horizontal space is

ΠHx (y) = Πx(y) −
x★y − y★x

2x★x
x (5.22)

where Πx(y) is the orthogonal projection onto the tangent space TxM as defined in
(5.8).

Proof: This lemma is demonstrated through a direct computation of the orthog-
onal projection on the horizontal space. First, notice that the projection onto the
horizontal space can be obtained as a projection onto the tangent space followed by
a projection onto the horizontal space. For an ambient vector y ∈ C=, the projection
on the tangent space TxM for some x ∈ M is given by Πx(y) defined in (5.8).
Now, the tangent vector Πx(y) can be decomposed into a vertical and horizontal
component using the fact that TxM = VxM ⊕ HxM. Given the expression of the
horizontal space in (5.16), we have bx ∈ VxM implies that bx = i\x. Similarly,
[x ∈ HxM implies that [★x x = x★[x. Therefore, the projection Πx(y) can be de-

composed as Πx(y) = bx + [x with bx = i\x =
x★Πx(y) − Π★x (y)x

2x★x
x. With the above
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decomposition, the projection from the ambient space to the horizontal space is
given by

ΠHx (y) = Πx(y) −
x★Πx(y) − Π★x (y)x

2x★x
x.

Finally, we obtain the expression for the orthogonal projection onto the horizontal
space in Lemma 5.3 by noticing the following equalities

x★Πx(y) = x★y − 1
2
(y★A8x + x★A8y)

Π★x (y)x = y★x − 1
2
(y★A8x + x★A8y)

�

The expressions of the Exponential map, Logarithmic map, and geodesic distance
for the quotient fixed norms manifold are given in the following theorem.

Theorem 5.4 Similar to the embedded fixed norms manifold, the expressions of the
Exponential map, Logarithmic map, and geodesic distance for the quotient fixed
norms manifold are

Exp x(bx) =
:∑
8=1

cos (28) A8x +
1
28

sin (28) A8bx

Log x(y) =
:∑
8=1

arccos
(

1
218
(y★A8x + x★A8y)

)
√
Π★x (y)A8Πx(y)

18

A8Πx(y)

3 (x, y) =

√√√
:∑
8=1

18 arccos2
(

1
218
(y★A8x + x★A8y)

)
,

with x ∈ c−1(x), y ∈ c−1(y), 28 =

√
b★x A8bx

18
, 1 ≤ 8 ≤ : , and bx = Log x(y).

Proof: Let x ∈ M be an equivalence class and consider the tangent vector bx ∈
TxM. The geodesic Wx,bx (C) going through x in the direction bx is the solution
to the differential equation ∇ ¤W(C) ¤W(C) = ΠHW(C) ( ¥W(C)) = 0 with the initial conditions
W(0) = x and ¤W(0) = bx with x ∈ c−1(x) and bx being the horizontal lift of bx at x.

Let Wx,bx (C) be the geodesic on the embedded fixed norms manifold going through x
in the direction bx whose expression in available in (5.10). The acceleration of the
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curve ¥Wx,bx (C) satisfies

¥W(C)★W(C) =
:∑
8=1
−22

8 cos2 (28C) x★A8x − sin2 (28C) b★x A8bx

=

:∑
8=1
−22

8 cos2 (28C) 18 − sin2 (28C) b★x 22
8 18

=

:∑
8=1
−22

8 18 = W(C)★ ¥W(C)

In other words, the vector ¥Wx,bx (C) is in the horizontal spaceHW(C)M, i.e.,ΠH
W(C) ( ¥W(C))

= ΠW(C) ( ¥W(C)). Therefore, the geodesic Wx,bx (C) satisfies the differential equation
∇ ¤W(C) ¤W(C) = ΠHW(C) ( ¥W(C)) = 0, i.e., the expression of the geodesic on the quotient
manifold is identical to the one on the embedded manifold.

Alternatively, one can one that the geodesic curve in (5.10) for the embedded fixed
norms manifold is a solution to the differential equation ΠH

W(C) ( ¥W(C)) for the geodesic
on the quotient fixed norms manifold. Therefore, the expression of the Exponential
map on the quotient manifold is identical to the one on the embedded manifold with
the substitution of the equivalence class x by a representative x ∈ c−1(x) and the
tangent vector bx by its bx horizontal lift at x. A similar remark allows to conclude
that the expressions of the Logarithmic map and geodesic distance are identical to
the previous ones, up to minor changes in notations as discussed above. �

5.4 Phase Retrieval Algorithms and Numerical Results
Proposed Algorithms for Phase Retrieval
Piecing all the above ingredients together results in the Riemannian steepest-descent
optimization algorithm on the embedded fixed norms manifold. For convenience,
all the steps are summarized in Algorithm 5.1.

Simulation Results
To attest the performance of the proposed manifold in efficiently solving the Fourier
phase retrieval problem, the convergence time and accuracy of the proposed gradient
descent and conjugate gradient algorithms on the fixed normsmanifold are compared
to state-of-the-art unconstrained, e.g., TR, and constrained (interior-point and active
set) optimization methods. The underlying signal x★ is generated as a random
complex Gaussian vector and all algorithms are initialized with x such that E| |x −
x★| |22 = 2=f2.
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Algorithm 5.1 Gradient descent on the fixed norms manifold.
Require: ManifoldM, loss function ℓ, gradient Grad ℓ.
1: Initialize x ∈ M.
2: while |Grad ℓ(x) | |x ≥ n do
3: Compute search direction

bx = −Grad ℓ(x) +
:∑
8=1

1
218
(Grad ℓ★(x)A8x + x★A8Grad ℓ(x))A8x

4: Find Armijo step size U using Backtracking.

5: Update x =
:∑
8=1

√
18

18 + U2b★x A8bx
A8

(
x + Ubx

)
.

6: end while
7: Output x.
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Figure 5.1: Running time to solve the Fourier phase retrieval problem.

Figure 5.1 plots the running time of the different algorithms in solving the Fourier
phase retrieval problem. It can be seen from the figure that the proposed algorithms
on the fixed normsmanifold systematically run faster than all other tested algorithms
with an average of 50 − 100 fold gain. Furthermore, it can be observed from
Figure 5.2 that optimizing over the fixed norms manifold provides significantly
higher accuracy, or equivalently a lower loss. For instance, for a f equal to 5-dB,
the achieved accuracy by the conjugate gradient on the fixed norms manifold is 7
order ofmagnitude higher than the best accuracy achieved by other tested algorithms.
Hence, one can conclude that by properly exploiting the geometry of the problem,
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Figure 5.2: Accuracy in the reconstruction of the Fourier phase retrieval problem.

the proposed manifold outperforms traditional optimization-based methods both in
accuracy and convergence speed.
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C h a p t e r 6

ACCURATE INDOOR AND OUTDOOR RIEMANNIAN
LOCALIZATION

[1] A. Douik et al. “Precise 3-D GNSS Attitude Determination Based on Rie-
mannian Manifold Optimization Algorithms”. In: IEEE Transactions on
Signal Processing 68.1 (Dec. 2020), pp. 284–299. doi: 10.1109/TSP.
2019.2959226.

As its name indicates, this chapter uses Riemannian geometry to design efficient and
accurate localization algorithms for indoor and outdoor applications. In particular,
the thesis exploits the geometry of the receivers and transmitters to improve the
accuracy of indoor and outdoor localization systems. Unlike previous works that
consider each antenna separately, this chapter suggests incorporating the information
about the geometry of the transmitters or receivers to perform a joint estimation under
physical constraints on the placement of the antennas. The results of this section
have been published in the research papers [130] and [52] for indoor and outdoor
localization, respectively, and as such some of the text appears as it is in these
publications.

6.1 Indoor Location Estimation Using Ultrasound Waves
Overview
Light-based localization systems, i.e., radio, infrared, and laser signals, suffer either
from a low accuracy or a high hardware cost. Indeed, due to the top speed of
light and without precise and costly synchronization, small timing errors result in
significant localization errors [131]. As a result, localization systems based on Wi-
Fi or Bluetooth technologies not only experience a low accuracy but also require
pre-calibration [132]. Similarly, while radio-based approaches utilizing the Time
of Flight (ToF) estimation do not require pre-calibration, these systems depend on
an exact synchronization. Finally, laser and infrared-based localization devices
are complicated and expensive to build and maintain[133]. This paper considers
ultrasound-based localization methods [45] for their low-cost and high-accuracy,
which is enabled by the relatively low speed of sound [134].

Besides the effects of the employed technology, the accuracy of indoor localization
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systems primarily depends on the optimization objective utilized in the design of
those systems, e.g., see [135, 136] and references therein. For example, a simple
approach consists of estimating the Received Signal Strength (RSS). While popular,
the method suffers from poor localization accuracy due to multipath fading and
temporal dynamics [137]. Alternatively, theAngle ofArrival (AoA) can be exploited
to design high-accuracy systems for close-range location estimation. However, its
performance significantly degrades as the distance between the transmitter and the
receivers increases as a tiny error in the estimated angle results in a massive failure
in the estimated position [138].

The previously mentioned ToF, defined as the time required for the signal to travel
from the transmitter to the receiver, represents an attractive alternative approach
for its simplicity. Still, a small perturbation in the estimated ToF can result in
a significant deviation in the expected location, especially under a bad geometry
[66]. To circumvent the aforementioned limitation, this manuscript uses multiple
transmitters and considers exploiting their geometry in the estimation process. The
resulting transmitter diversity not only significantly improves the accuracy of the
estimated location but also provides the 3D orientation of the device.

In particular, this section considers a target with three transmitters that are placed
on an equilateral triangle and utilizes a set of four receivers, known as beacons, to
estimate the 3D location and orientation of the target accurately. The positions of
the beacons are assumed to be identified correctly, and all distances between the
transmitters and receivers are supposed to be estimated with a uniformly distributed
error. These distances are fed to a classical nonlinear least-squares solver, such as
the Gauss-Newton algorithm [139], to obtain an initial 3D location of the transmit-
ters. Finally, the computed initialization is exploited by the designed non-convex
Riemannian-based optimization algorithm to improve the location estimates of the
three transmitters.

This section aims to design a novel and highly accurate spatial location estimation
method using ultrasoundwaves. To that end, the transmitters’ geometry is integrated
into the location estimation process by formulating the problem as a non-convex
optimization. Afterward, the set of feasible solutions is shown to admit a Rieman-
nian manifold structure, which allows solving the underlying optimization problem
rigorously. Hence, this thesis characterizes its geometry so as to design Riemannian
optimization algorithms for the ultrasound spatial location estimation problem. The
efficiency of the proposed method is attested through extensive simulations and
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comparisons with available algorithms in the literature. The numerical results sug-
gest that the inclusion of the fixed equilateral triangle geometry of the transmitters
as nonlinear constraints in the optimization problem significantly improves the qual-
ity of the location estimate. Furthermore, the proposed Riemannian-based method
offers a clear complexity advantage as compared with popular generic non-convex
approaches.

Related Work
A significant portion of indoor localization works that are available in the literature
utilizes an array of receivers or transmitters to determine the location and orientation
of a target. For example, in [140], the authors designed the Active Bat system, which
estimates the position and orientation of an array of ultrasound transmitters based
on the ToF estimation. The reference suggests performing a nonlinear regression
combined with a least-squares solver to obtain the position of the target. Similarly,
the Cricket system is introduced in [141]. The system consists of an array of ultra-
sound receivers that estimates the time of arrival (ToA) and angle of arrival (AoA)
simultaneously. The time and angle of arrival are fed to nonlinear least-squares
solver to obtain the location and orientation of the target. In [142], DOLPHIN has
been introduced as an system to localize synchronized nodes in a typical indoor
environment. DOLPHIN is similar to the Active Bat and Cricket systems except
that it requires only few pre-configured reference nodes.

Combining the ToA and AoA as in [141] results in better performances, which
explains their wide adoption in the literature. For example, Saad et al. [143]
extend the method to mobile devices in a system that utilizes an array of three
receivers. However, instead of relying on a nonlinear least-squares solution, the
authors estimate the position of the target through a classical trilateration algorithm.
Along the same lines, reference [144] considers an array of 8 receivers whose
locations are estimated by a Taylor series trilateration method [145]. Finally, the
mobile device’s position and orientation are obtained based on averaging the AoA
and location estimates for the 8 receivers. Such classical trilateration algorithm has
been extended in [146] and [147] into a multilateration algorithm for a broadband
localization system with multiple ultrasound transmitters and receivers.

The authors in [46] consider the problem of determining the position of a moving
robot in a system comprising an equilateral ultrasound receiver array with a set of
transmitters of known locations. The problem is solved by extending the Kalman
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Figure 6.1: A localization system consisting of 3 transmitters and 4 receivers.

filter to incorporate a dynamic distance estimation method. The method of [46] is
extended in [47] to design a time difference of arrival (TDoA)-based localization
system. Thanks to the use of an interactive multiple model estimator, the authors
report a precision of 2.5 to 3.5 cm.

To the best of the author’s knowledge, all previously reported indoor localization
systems do not impose the geometry of the receivers array as constraints when
solving for the position of the target. Exploiting the fixed geometry of the transmitters
or receivers array when formulating the optimization problem is expected to improve
the localization estimation accuracy as long as the resulting non-convex problem
can be solved efficiently. To that end, the rest of this section formulates the location
determination problem as a non-convex program in which the constraints highlight
the transmitters’ geometry. Afterward, an efficient Riemannian-based optimization
algorithm is designed by studying the geometry of the manifold derived from the
set of all feasible solutions.

System Model and Problem Formulation
This section considers a localization system consisting of three ultrasound transmit-
ters and four receivers, also known as beacons, and whose positions are perfectly
known. The three transmitters form an equilateral triangle of size 3 as shown in
Figure 6.1. The position of the target of interest is known with respect to the trans-
mitters, e.g., it can be placed in the centroid of the triangle. Therefore, estimating the
3D locations of the three transmitters accurately provides an accurate 3D location
and orientation of the target.

Let the 3D location of the 8-th transmitter be x8 ∈ R3. Likewise, let b 9 ∈ R3 denote
the position of the 9-th beacon. These positions are grouped in a matrix A ∈ R4×3

such that the 9-th row the matrix corresponds to the location of the 9-th beacon, i.e.,
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a)
9
= b)

9
where the notation z) refers to the transport of the vector z.

The range A8 9 , i.e., distance, from the 8-th transmitter to the 9-th beacon is estimated
from themeasurements on the received signal. It can readily be seen that the distance
can be expressed using the vectors x8 and b 9 as follows

A8 9 = | |x8 − b 9 | |2 =
√
(x8 − b 9 )T(x8 − b 9 ), (6.1)

For ease of notations, the positions, distances, and measurements are collected in
vectors are follows

x2
8 = | |x8 | |2214 =

©­­­­­­«
| |x8 | |22
| |x8 | |22
| |x8 | |22
| |x8 | |22

ª®®®®®®¬
, b2 =

©­­­­­­«
| |b1 | |22
| |b2 | |22
| |b3 | |22
| |b4 | |22

ª®®®®®®¬
, r2
8 =

©­­­­­­«
A2
81
A2
82
A2
83
A2
84

ª®®®®®®¬
,

where 14 is the all ones vector of dimension 4. Define the transformed measurement

vector y8 =
1
2
(b2 − r2

8
). Using the expression of A8 9 ’s in (6.1), it can easily be

concluded that

Ax8 −
1
2

x2
8 = y8 ∈ R4×1. (6.2)

This section assumes that all distances between the transmitters and receivers, i.e.,
the A8 9 ’s, are supposed to be estimated with a uniformly distributed error. Therefore,
a reasonable objective function is to consider the ℓ2 loss between the measurement
and the model (6.2). In other words, the paper consider the following objective
function

3∑
8=1
| |Ax8 −

1
2

x2
8 − y8 | |22 .

The choice of the loss function to be used depend on the assumptions on the system
model. While the manuscript focuses on the ℓ2 loss, the results are more generic and
can be applied to any smooth loss function as explained by the end of this section.
To incorporate the fixed geometry of the transmitters, the spatial location estimation
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problem using ultrasound waves can be formulated as

min
x1,x2,x3∈R3

3∑
8=1
| |Ax8 −

1
2

x2
8 − y8 | |22 (6.3a)

s.C. (x1 − x2)T(x2 − x3) = −32 cos
(
c

3

)
(6.3b)

(x1 − x3)T(x2 − x3) = 32 cos
(
c

3

)
, (6.3c)

wherein constraint (6.3b) insists on the length and angle of one side of the triangle
while equation (6.3c) constraints the second side. It is worth noting that the con-
straint on the third side of the triangle is redundant as it can be obtained as a linear
combination of constraints (6.3b) and (6.3c).

Despite the convexity of the objective function in (6.3a), the optimization problem
is non-convex due to the quadratic nature of the constraints. Indeed, each feasible
solution x1, x2, x3 ∈ R3 to (6.3) belongs to a set, named the equilateral triangle
manifold, which is defined as follows:

M =

{
{x8}38=1 ∈ R

3
���(x1 − x2)T(x2 − x3) = −32 cos

(
c

3

)
(x1 − x3)T(x2 − x3) = 32 cos

(
c

3

)}
.

As stated earlier, the setM is non-convex. However, it forms a closed and bounded,
i.e., a compact, matrix manifold embedded in the Euclidean space R3×3. Therefore,
the study of the geometry of this newly introduced manifold allows to take advantage
Riemannian optimization methods to efficiently solve the location estimation prob-
lem. Furthermore, instead of directly solving the optimization problem (6.3), this
thesis suggests solving its generalization. In particular, let {x8}38=1 be 3-dimensional

vectors in R3 and consider a smooth function 5 :
(
R3

)3
−→ R, that may or may not

be convex, the rest of this section solves the optimization problem

min
x1,x2,x3∈R3

f(x1, x2, x3) (6.4a)

s.C. (x1, x2, x3) ∈ M (6.4b)

The Equilateral Triangle Manifold Geometry
This part investigates and characterizes the first and second-order geometries of the
equilateral triangle manifold so as to design optimization algorithms for the location
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estimation problem of interest. The first part shows that the set is indeed a manifold
and computes its tangent space and orthogonal projection. The second and third
parts compute the expression of the Riemannian gradient and Hessian and derive a
computationally efficient retraction of the equilateral triangle manifold, respectively.

For conciseness and ease of notations, the variableX ∈ R3×3 is used in the rest of this
manuscript as a shorthand notation for the three vectors X = [x1, x2, x3]. Similarly,
the tangent vector at X = [x1, x2, x3] is denoted by bX = [bx1 , bx2 , bx3] ∈ R3×3.

Recall that the equilateral triangle manifold is defined by

M =

{
X ∈ R3×3

���(x1 − x2)T(x2 − x3) = −32 cos
(
c

3

)
(x1 − x3)T(x2 − x3) = 32 cos

(
c

3

)}
(6.5)

To show that the set defined in (6.5) is a well-defined manifold and to compute its
tangent space, this section uses the implicit function theoremTheorem 5.2. Consider
the function 6 : R3×3 −→ R2 defined by

6(X) =
©­­«
(x1 − x2)T(x2 − x3) + 32 cos

(
c
3

)
(x1 − x3)T(x2 − x3) − 32 cos

(
c
3

)ª®®¬ . (6.6)

The above defined function only involves linear combinations and inner products
of the vectors which makes it smooth as required by the implicit function theorem.
In addition, the set of 2-dimensional vectors R2 is a linear space as mandated by
Theorem 5.2. From the definition of the function and the setM is (6.5), it is clear
that M is a level set of 6 as it can interpreted as the image of 0 ∈ R2. Finally,
showing that 6 is a constant-rank function can be accomplished by demonstrating
that 0 is a regular value of 6, i.e., the rank of each X ∈ 6−1(0) = M is equal to
Dim (R2) = 2 or equivalently that the indefinite directional derivative of 6 st any
X ∈ M is a surjective map.

Let X ∈ M and consider an arbitrary direction bX ∈ R3×3, the directional derivative
of 6 at X in the direction bX is

D (6(X)) [bX] = (6.7)(
(bx1 − bx2)T(x2 − x3) + (x1 − x2)T(bx2 − bx3)
(bx1 − bx3)T(x2 − x3) + (x1 − x3)T(bx2 − bx3)

)
.
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Let

(
U

V

)
be an arbitrary vector in R2. Finding bX ∈ R3×3 such that D (6(X)) [bX] =(

U

V

)
amounts to solving the following linear system of equations

©­­­«
x2 − x3 x2 − x3

x1 + x3 − 2x2 x1 − x3

x2 − x1 2x3 − x1 − x2

ª®®®¬
T ©­­­«
bx1

bx2

bx3

ª®®®¬ =
(
U

V

)

The above linear system has a fat matrix of dimension 2×3 and a full-rank 2. Indeed,
assuming that the rank is equal to 1 gives the equality x2 = x3 which is impossible
for any X ∈ M. Therefore, it holds true that the map D (6(X)) is surjective which
concludes that the function 6 is a constant-rank function.

Finally, according to the results of Theorem 5.2, we conclude that the equilateral
triangle setM defined in (6.5) is a well-defined manifold of dimension 7 embedded
in the Euclidean space R3×3. The tangent space is given by all directions bX ∈ R3×3

such that nullify D (6(X)) [bX] which according to the expression given in (6.7) can
be written as

TXM =

{
bX ∈ R3×3

��� (6.8)

(bx1 − bx2)T(x2 − x3) + (x1 − x2)T(bx2 − bx3) = 0

(bx1 − bx3)T(x2 − x3) + (x1 − x3)T(bx2 − bx3) = 0
}

As stated earlier, this manuscript consider the induced Riemannian metric from the
canonical inner product 〈X,X〉 = Tr(XTX) inR3×3. In other words, the induced Rie-
mannian metric on the tangent space TXM is obtained from the natural embedding
ofM in R3×3, i.e.,

〈bX, [X〉X = Tr(bT
X[X) = bT

x1[x1 + bT
x2[x2 + bT

x3[x3

The Riemannian gradient grad f(X) can be expressed as the orthogonal projection
of the Euclidean gradient from the embedding space R3×3 to the tangent space
TXM. Let ΠX : R3×3 −→ TXM denote such orthogonal projection and note that
the orthogonal complement T⊥X M to the tangent space TXM at X ∈ M is given by
the expression

T⊥X M =

{
[X ∈ R3×3

���[X = XUV
U

}
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for some reals U and V and the matrix UV
U being defined as

UV
U =

©­­­«
0 U + V −U − V

U + V −2U U − V
−U − V U − V 2V

ª®®®¬
Indeed, consider a tangent vector bX ∈ TXM and a normal vector [X ∈ T⊥X M, their
inner product after expansion is given by

〈bX, [X〉X = bT
x1[x1 + bT

x2[x2 + bT
x3[x3

= U

[
(bx1 − bx2)T(x2 − x3) + (x1 − x2)T(bx2 − bx3)

]
+ V

[
(bx1 − bx3)T(x2 − x3) + (x1 − x3)T(bx2 − bx3)

]
= 0

Combine the above equality with the fact that T⊥X M is an Euclidean space of
dimension 2 allows to conclude that it represents the complement of the tangent
space.

LetZ ∈ R3×3 be a vector in the ambient space. LetX ∈ M be a point on themanifold,
the vector Z can be decomposed into a tangent part ΠX(Z) = ZX ∈ TXM and an
orthogonal partΠ⊥X (Z) = Z⊥X ∈ T

⊥
X M. From the previous analysis of the orthogonal

complement of the tangent space, the orthogonal vector Z⊥X is parametrized by two
reals U and V such that Z⊥X = XUV

U. Finally, using the fact that the tangent vector ZX

satisfies the equations in (6.8), we obtain that the reals U and V are the solution to(
| |XU0

1 | |
2
X 〈XU1

0,XU0
1〉X

〈XU0
1,XU1

0〉X | |XU1
0 | |

2
X

) (
U

V

)
=

(
〈Z,XU0

1〉X
〈Z,XU1

0〉X

)
The above linear system of equations admits a unique solution. Indeed, matrix S

defined by S =

(
| |XU0

1 | |
2
X 〈XU1

0,XU0
1〉X

〈XU0
1,XU1

0〉X | |XU1
0 | |

2
X

)
is a positive semi-definite matrix

with _2
1+_

2
2 = | |S| |

2
�
≤ Tr2(S) = (_1+_2)2, i.e., _1_2 ≠ 0. Therefore, the orthogonal

projection onto the tangent space is given by

ΠX(Z) = Z − XUV
U (6.9)

with U and V defined as the solution to the linear system S

(
U

V

)
=

(
〈Z,XU0

1〉X
〈Z,XU1

0〉X

)
.

Finally, applying the orthogonal projection ΠX to the Euclidean gradient Grad f(X)
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results in the expression of the Riemannian gradient grad f(X) as follows:

grad f(X) = Grad f(X) − XUV
U (6.10)

with the reals U and V being the solution to the linear system(
| |XU0

1 | |
2
X 〈XU1

0,XU0
1〉X

〈XU0
1,XU1

0〉X | |XU1
0 | |

2
X

) (
U

V

)
=

(
〈Grad f(X),XU0

1〉X
〈Grad f(X),XU1

0〉X

)
Given the expression of the Riemannian gradient in (6.10), the Riemannian Hessian
can be computed as the orthogonal projection of the directional derivative of the
Riemannian gradient. Let X ∈ M be a vector on the manifold, bX ∈ TXM a tangent
vector, and 5 : M −→ R a smooth function, the rest of this manuscript uses the
short hand notation ¤5 (X) to denote the directional derivative D (f(X)) [bX]. Using
the previously defined dot notation, the expression of the Riemannian Hessian is
provided in the following corollary.

Corollary 6.1 The Riemannian Hessian for the equilateral triangle manifold has
the expression

hess f(X) [bX] = ΠX(Hess f(X) [bX] − bXUV
U − XU ¤V¤U) (6.11)

wherein the expression of the orthogonal projection ΠX is given in (6.9),

S =

(
| |XU0

1 | |
2
X 〈XU1

0,XU0
1〉X

〈XU0
1,XU1

0〉X | |XU1
0 | |

2
X

)
and U and V are the solution to

S

(
U

V

)
=

(
〈Grad f(X),XU0

1〉X
〈Grad f(X),XU1

0〉X

)
and their directional derivatives ¤U and ¤V are the solution to the system

S

(
¤U
¤V

)
=

(
〈Hess f(X) [bX],XU0

1〉X + 〈Grad f(X), bXU0
1〉X

〈Hess f(X) [bX],XU1
0〉X + 〈Grad f(X), bXU1

0〉X

)
− ¤S

(
U

V

)
and the directional derivative of S in the direction bX is

¤S =

©­­­­­­«
2〈bXU0

1,XU0
1〉X

〈bXU1
0,XU0

1〉X
+〈XU1

0, bXU0
1〉X

〈bXU0
1,XU1

0〉X 2〈bXU1
0,XU1

0〉X+〈XU0
1, bXU1

0〉X

ª®®®®®®¬
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Proof: The proof of this corollary is omitted herein as it follows from a direct com-
putation of the orthogonal projection of the directional derivative of the Riemannian
gradient. �

Retraction on the Equilateral Triangle Manifold
Designing a computationally efficient retraction is a crucial step in deriving Rie-
mannian optimization algorithms. While it is relatively easy to design functions
that are local retraction around 0X, e.g., RX(bX) = X + bX, these retractions of-
ten result in Riemannian algorithms with poor performance. Indeed, the resulting
iterative optimization algorithm would generate smaller and smaller optimization
steps ultimately converging before reaching a critical point of the problem. Luckily,
for manifolds defined with only equality constraints such as the equilateral trian-
gle manifold of interest herein, Theorem 3.2 can be exploited to design efficient
retractions.

To that end, define E∗ as a subset of R3×3 such that Z ∈ E∗ implies that z2 ≠ ±z3.
It can easily be seen that E∗ is an open subset of R3×3. Furthermore, let N = R2

∗ be

the set of 2-dimensional vectors

(
U

V

)
such that U ≠ 0 and V ≠ 0. Since dim(N ) = 2,

the property dim(M) + dim(N ) = dim(E) is satisfied. Now define the function

q
©­«X,

(
U

V

)ª®¬ =
©­­­­­­­­«

©­­­«
UV 0 0
0 UV 0
0 0 V

ª®®®¬ x1

Vx2

Vx3

ª®®®®®®®®®¬
Note that for any X ∈ M, we have q ©­«X,

(
1
1

)ª®¬ = X as mandated by Theorem 3.2. In

addition, the smoothness of the function q directly derives from its definition as it
involves only products. Now let Z be an arbitrary vector in E∗. From the expression
of q is can easily be seen that the first term of the inverse c1(q−1) can be written as

©­­­«
x1

x2

x3

ª®®®¬ = _
©­­­­­­­­«

©­­­«
W 0 0
0 W 0
0 0 1

ª®®®¬ z1

z2

z3

ª®®®®®®®®®¬
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for some _ and W functions of Z. Therefore, the inverse of the first component is

smooth. Consider the transformation u1 =
©­­­«
W 0 0
0 W 0
0 0 1

ª®®®¬ z1, u2 = z2, and u3 = z3. It is

easy to see that there exists a unique W such that the equality (u1 − u2)T(u2 − u3) =
−(u1 − u3)T(u2 − u3) is satisfied. The expression of W is given by

W =
(z2 + z3)T(z2 − z3) − z)1 (z2 − z3)

2z)1
©­­­«
1 0 0
0 1 0
0 0 0

ª®®®¬ (z2 − z3)

− 1

Finally, the point X ∈ M is obtained by scaling the vector U by the quantity

_ =

√√√
32 cos

(
c
3

)
(u1 − u3)T(u2 − u3)

, i.e., X = _U to obtain the manifold characterization

(x1 − x2)T(x2 − x3) = −32 cos
(
c

3

)
(x1 − x3)T(x2 − x3) = 32 cos

(
c

3

)
Since the expressions of W and _ are rational functions of the argument Z without
any pole as z2 ≠ ±z3 and that X is obtained by a simple multiplication, it can be
concluded that q−1 is smooth which gives that q is a diffeomorphism as requested
by Theorem 3.2. Finally, combining all the results above and letting Z = X + bX,
this section proposes the following retraction

RX(bX) =

√√
32 cos

(
c
3

)
_

©­­­­­­­­«

©­­­«
W 0 0
0 W 0
0 0 1

ª®®®¬ z1

z2

z3

ª®®®®®®®®®¬
(6.12)
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with

_ =

©­­­­«
©­­­«
W 0 0
0 W 0
0 0 1

ª®®®¬ z1 − z3

ª®®®®¬
T

(z2 − z3)

W =
(z2 + z3)T(z2 − z3) − z)1 (z2 − z3)

2z)1
©­­­«
1 0 0
0 1 0
0 0 1

ª®®®¬ (z2 − z3)

− 1

Initialization and Proposed Algorithm
Incorporating the geometry of the receivers in the optimization problem turns the
problem into a non-convex program. The performance of non-convex problems
heavily relies on the quality of the initialization. An random initialization on the
manifold can obtained by generating a random orthonormal matrix o ∈ R3×3, i.e.,

ooT = I, and initializing X = 3

√
cos

(
c
3

)
o. However, due to the non-convex nature

of the optimization problem, better results can be obtained by using an improved
initialization.

This section proposes finding an improved initialization by solving the location
problem without constraints on the geometry of the transmitters. This can be
accomplished using a classical non-linear least-squares solver, such as the Gauss-
Newton algorithm [139]. Let X̃0 be the solution obtained without constraints on
the geometry of the transmitters. Such solution does not necessarily belong to the
equilateral triangle manifold. Therefore, the second step in deriving an improved
initialization is to “project" the point X̃0 to the manifold. This is accomplished by
solving the optimization problem

X0 = arg min
X∈M
| |X − X̃0 | |22 (6.13)

The optimization problem in (6.13) can be efficiently solved using the geometry
derived previously. Indeed, as pointed out previously, the proposed framework
allows to optimize any objective function over the equilateral triangle manifold,
including the function | |X − X̃0 | |22 . Random initialization on the manifold, as
described above, can be used to solve (6.13). The steps of the algorithm are omitted
herein as they are provided and described in the next subsection.
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Note that the initialization highly depend on the assumptions on the system and the
considered loss function. In other words, while the proposed initialization in (6.13)
performs well for the considered ℓ2 loss in (6.3), it might not be optimal for different
objective functions.

The algorithm starts by initialization X = X0 ∈ M. Afterward, the algorithm
iterates on finding a search direction and updating the current position. The search

direction is given by bX = −
grad f(X)
| |grad f(X) | |X

wherein the Riemannian gradient is
computed according to (6.10). The step size C is chosen by backtracking so as it
satisfies the following Wolfe conditions

1. f(X + CbX) ≤ f(X) + 21Cb
T
XGrad f(X)

2. −bT
XGrad f(X + CbX) ≤ −22b

T
XGrad f(X),

for some constants 0 < 21 < 22 < 1. The tangent vector bX scaled with the step
size C is retracted to the manifold using (6.12) to update the position X. The process
is repeated until convergence which can be attested by the norm of the Riemannian
gradient. The steps of the proposed Riemannian steepest-descent algorithm are
summarized in Algorithm 6.1.

It is worth noting that unlike other non-convex methods whose complexity is at
least quadratic in the number of variables =, all the steps in our proposed Rieman-
nian method are linear in the number of variables resulting in an overall algorithm
with linear complexity. Furthermore, recall that Newton’s method on the equi-
lateral triangle manifold is obtained by choosing the tangent vector that solves
hess f(X) [bX] = −grad f(X). Since the previous step can be accomplished in =2

operations, our proposed Riemannian Newton’s method is quadratic in the number
of variables which competes with the complexity of first-order generic non-convex
solvers, e.g., interior-point method (IPM).

Simulation Setup and Numerical Results
This part presents the simulation results to evaluate the proposed algorithm against
some benchmark algorithms in a noisy environment. We evaluate the performance
of the proposed algorithm against some benchmark algorithms, namely the interior-
point method (IPM) [148, 149, 150], the active set algorithm [151], and the sequen-
tial quadratic programming (SQP) algorithm [151]. Moreover, the paper illustrates
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Algorithm 6.1 Riemannian steepest-descent on the equilateral triangle manifold.
Require: Length 3 > 0, initialization X0, a tolerance n > 0, and a smooth function

5 .
1: Initialize X = X0 ∈ M.
2: while | |grad f(X) | |X ≠ n do
3: Find U and V by solving(

| |XU0
1 | |

2
X 〈XU1

0,XU0
1〉X

〈XU0
1,XU1

0〉X | |XU1
0 | |

2
X

) (
U

V

)
=

(
〈Grad f(X),XU0

1〉X
〈Grad f(X),XU1

0〉X

)
4: Compute the Riemannian gradient

grad f(X) = Grad f(X) − X
©­­«

0 U + V −U − V
U + V −2U U − V
−U − V U − V 2V

ª®®¬
5: Set search direction bX = −

grad f(X)
| |grad f(X) | |X

6: Compute the step size C using backtracking.
7: Define Z = X + CbX and compute

W =
(z2 + z3)T(z2 − z3) − z)1 (z2 − z3)

2z)1
©­­«
1 0 0
0 1 0
0 0 0

ª®®¬ (z2 − z3)

− 1

8: Define the equilateral triangle U by

[u1, u2, u3] =

©­­«
W 0 0
0 W 0
0 0 1

ª®®¬ z1, z2, z3


9: Scale the sides of U to obtain a triangle inM by

X =

√√√
32 cos

(
c
3

)
(u1 − u3)T(u2 − u3)

U

10: end while
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the improvement in the location estimation accuracy as compared to the commonly
used trilateration algorithm which utilizes Gauss-Newton (GN) method [145].

Besides the previously mentioned steepest-descent and Newton’s algorithms on
manifolds, this section implements the Riemannian version of the trust-region [152]
and Adaptive Regularization with Cubics (ARC)methods [153]. These methods can
readily be implemented using the derived geometry. All methods use the same initial
point which is obtained using the GN-based trilateration method and projecting it
onto the equilateral triangle manifold.

All Riemannian algorithms are implemented using the MATLAB toolbox Manopt
[37] on an Intel Xeon Processor E5-1650 v4 (15M cache, 3.60 GHz) computer
with 32Gb 2.4 GHz DDR4 RAM. In these simulations, the maximum number of
iterations is set to 50, the optimality tolerance is set to 10−4, and the step tolerance
is set to 10−6.

The size of the room, where the target is located, is given by 30 m x 30 m x 8 m.
The locations of the three transmitters are chosen randomly under the constraint
that they form an equilateral triangle. The length of the sides of the equilateral
triangle, 3, is chosen to be 1 cm, unless otherwise indicated. The true ranges from
transmitters to beacons, denoted by the 38 9 ’s, are computed and corrupted with a
uniformly distributed error 48 9 to produce the noisy range estimates A8 9 = 38 9 + 48 9 .
The error, 48 9 , is bounded by 4max, i.e., −4max < 48 9 < 4max. The value of the
maximum error in the range varies from 150 mm to 250 mm with increments of
12.5 mm so as to study multiple scenarios. Typical ultrasound ranging algorithms
can achieve such accuracy even under low SNR scenarios [154].

The noisy range estimates A8 9 are utilized in the GN-based trilateration algorithm
to obtain initial estimates of the transmitters locations. These initial locations are
projected onto the equilateral triangles manifold by solving (6.13) to obtain an initial
point that belongs to the manifold. For each simulation setup, the tests are repeated
1000 times with random transmitters locations and random ranging errors.

The performance of the proposed algorithm is evaluated by comparing the mean
square error (MSE) calculated as the average mean square error between the genuine
transmitters’ position and their estimates. Moreover, the value of the cost function is
plotted for each of the algorithms. Furthermore, the computational complexity for
the proposed algorithm is compared against the considered benchmark algorithms
by calculating the overall running time required to obtain an estimate of the target
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Figure 6.2: Mean square error of the location estimate.

250 237.5 225 212.5 200 197.5 175 162.5 150

Max Ranging Error in (mm)

1

1.5

2

2.5

3

3.5

4

4.5

C
o

s
t 

F
u

n
c

ti
o

n
 V

a
lu

e

10
4

Riem SD

Riem TR

Riem Arc

IPM

ACM

SQB

Trilateration

Figure 6.3: Value of the cost function at the reached solution.

position.

Figure 6.2 plots the MSE for each of the tested algorithms. This plot shows the
improvement in the localization accuracy when exploiting the geometry of the
equilateral triangle of the transmitters as all algorithms have a lower MSE compared
to the traditional GN-based trilateration. Moreover, we can see that both the first-
order and second-order Riemannian-based localization algorithms outperforms the
benchmark algorithms.

Figure 6.3 shows the value of the cost function at the solution obtained by each of the
algorithms. The proposed algorithmwidely outperforms the benchmark algorithms.

Figure 6.4 shows the cumulative error in the estimated location of the target with a
maximum ranging error of 250 mm. More than 90 % of the location estimates are
in less than 10−5 mm2 MSE for the proposed Riemannian algorithm. In contrast,
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Figure 6.4: CDF of the location error under maximum ranging error of 35 mm.
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Figure 6.5: Running time to estimate the location of the target.

less than 90 % of the location estimates are in less than 10−5 mm2, 10−5 mm2, and
10−5 mm2 MSE for the IPM, Active Set method and SQP method, respectively.

We compare the computational complexity of all the algorithms by calculating the
running time required to reach the minimum of the cost function under different
ranging error values. Figure 6.5 shows that the steepest-descent Riemannian local-
ization algorithm requires much lower running time to reach theminimum compared
to all benchmark algorithms.
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6.2 Precise GNSS Outdoor Attitude Determination
Introduction to Outdoor Localization
The attitude of a vehicle refers to the orientation of its body frame relative to a
reference coordinate system [48]. Global Navigation Satellite Systems can provide
highly precise 3-D attitude information, which can be determined by two or more
non-parallel pointing vectors. GNSS-based attitude determination plays a vital role
in vehicle attitude measurement thanks to its high-accuracy, low-cost, stable and
real-time performance. As such, it has been widely used in aircrafts, spacecrafts,
vessels, automobiles, and many other dynamic platforms [49, 50, 51]. Furthermore,
the recent advances in autonomous driving have ignited a renewed interest in GNSS
attitude determination, especially for land vehicles.

Although both GNSS pseudo-range and carrier phase measurements can be utilized
for attitude estimation, the high precision of GNSS attitude determination mainly
derives from the accurate carrier phase measurements. Indeed, the noise level of
the carrier phase measurements is a couple of orders of magnitude lower than that
of pseudo-range measurements[155]. On the downside, the primary challenge in
GNSS attitude determination stems from the fact that the phase observables are
ambiguous by an unknown integer number of cycles ambiguity that needs to be
resolved. Hence, carrier phase ambiguity resolution, i.e., the process of resolving
these unknown integer values, is a crucial step for GNSS attitude determination and
other GNSS applications such as positioning, navigation, and so on.

A number of carrier phase ambiguity resolution methods have been proposed over
the years, most of which belong to one of the following two classes: motion-
basedmethods and search-basedmethods [156]. Motion-basedmethods incorporate
information about the dynamics of the vehicle into the estimation process and
resolve the carrier phase ambiguities by exploiting the change in the receiver-satellite
geometry with time [157, 158, 159]. These methods take advantage of multiple
epochs of observations collected over a given period of time assuming that the
integer ambiguities remain unchanged during this period. As a consequence of their
design, these methods are not well suited for real-time applications [156].

On the other hand, search-based methods, as their name suggests, search for the
optimal solution in different domains. Indeed, the search-based methods are more
diverse than the motion-based ones thanks to the use of various cost functions and
different information provided by the system. For example, there are search-based
methods based on carrier phase only or carrier phase combined with pseudo-range,
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single-frequency versus multi-frequency methods, with or without aid knowledge.
As a result of their diversity, thesemethods differwidely in their efficiency depending
on the adopted objective function and the search strategies [160, 161, 162, 163].
For instance, in [161], a constraint equation is used, and the search is carried out in
the antenna positions domain. In contrast, the authors in [162] solve the ambiguity
using an artificial neural network. For a limited number of GNSS observables, a
search algorithm based on Gram-Schmidt orthonormalization (GSO) is developed
in [163]. With only four GNSS observables, the algorithm constraints the search
space to two dimensions so as to significantly improve the estimation efficiency.

While motion-based methods are not designed for real-time applications, their
search-based counterparts are independent of the platform’s motion, making them
good candidates for instantaneous attitude determination. Among the search-based
methods, the LAMBDA approach [160] and its extended versions [164, 165, 166] re-
ceived considerable attention in the literature. The main advantage of these methods
is that the ambiguity resolution search is performed directly in the integer domain.
The LAMBDA method solves an integer least-squares problem through an ambigu-
ity transformation that allows for an efficient search for the optimal estimates over a
hyper-ellipsoidal region [160].

Depending on the assumptions on the system, GNSS observations can be prepro-
cessed in numerous ways. In particular, the phase observables are processed as
phase single, double, or even triple-differences [167]. The phase single-difference,
or simply phase difference, is defined as the difference between the simultaneous
phase observations (from the same satellite) at two different antennas. The purpose
of phase single-difference is to eliminate the satellite clock bias. However, such
approach would not solve the problem of receiver clock bias which still needs to be
estimated. With common receiver clock technology, single-difference models can
be used to simplify the complexity and reduce the influence of uncorrelated noise
[168, 169, 170]. The phase double-difference refers to the instantaneous difference
between the phase (single) difference observations of two different satellites [171].
By applying double-difference, the clock errors, instrumental delays, atmospheric
parameters, and other unknown error sources are significantly lowered to levels that
they become almost negligible [172]. As a result, most of the existing GNSS attitude
determination methods use the phase double-difference model to carry out baseline
settlement. Finally, the phase triple-difference is defined as the difference between
the phase double differences from two successive epochs [167]. Assuming that
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the integer ambiguity remains unchanged during the time interval between epochs,
the use of triple difference allows the total removal of the carrier phase integer
ambiguity.

In this section, we draw on the ambiguity resolution method proposed in [173, 174,
168] where a particular receiver configuration leads to a simple solution for the
ambiguity problem. The search space is reduced to only three candidate integer
values, guaranteeing that the search is highly efficient and performs well even with
a minimal number of satellites. A single-difference model is adopted with all the
antennas operating using a single common clock, whichmeans that the receiver clock
bias is automatically canceled [175]. In [173, 174], a triple-antenna configuration is
considered, and a solution for the single baseline line pointing direction is developed.
This section considers a more complex configuration of five antennas to obtain the
pointing direction vectors of non-parallel baselines for more-accurate 3-D attitude
determination.

The main contribution of this section is to provide a highly accurate 3-D GNSS
attitude determination by rigorously solving the underlying optimization problem.
As pointed out in [176], the inclusion of the information about the receiver geometry
and baseline length as non-linear constraints in the optimization problem improves
the quality of the attitude estimate. While previous works, e.g., [51, 156], use
regularization to deal with the non-convexity indirectly, this section proposes a more
direct method by solving the non-convex optimization problem using a Riemannian
optimization approach. The efficiency of the proposed scheme is tested through
extensive simulation with a particular focus on the most challenging case of GNSS
attitude determination, i.e., the single-epoch single-frequency case. In contrast to
previous works that use Riemannian optimization over well-investigated manifolds
to solve the attitude determination problem, e.g., [177, 178], this paper introduces a
new manifold and thoroughly investigates its geometry.

Adopting an ambiguity resolution method based on the approach of [173, 174, 168]
aims at simplifying the presentation of this paper. Namely, the method of [173, 174,
168] is capable of delivering unambiguous phase-difference estimates after simple
algebraic steps. This allows us to focus on the main objective of the paper, and
formulate the optimization problem directly using unambiguous phase differences.
However, generally speaking, the proposed Riemannian optimization method can
be paired with any ambiguity resolution method. This will be demonstrated in the
simulation section by pairing the proposed Riemannian optimization method with
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the MC-LAMBDA method [179].

System Model and Problem Formulation
As stated earlier, this section focuses on the problem of determining the attitude of
a platform, equipped with GNSS single-frequency receivers, using the carrier phase
measurements. The problem is formulated using the phase differences observed
between antenna pairs. Without loss of generality, we assume that the carrier phase
and all distances are measured in units of wavelength.

For antenna 8, the carrier phase observation equation based on the signal from
satellite B is given by

i8,B = d8,B +
2

_
(g − gB) + �8,B − )8,B + q0 − q0,B − =8,B + 48,B, (6.14)

where the ambiguous carrier phase >8,B ∈ [−0.5, 0.5]; d8,B is the satellite-to-antenna
range; 2 is the speed of light; _ is the wavelength; g and gB are the receiver and
satellite clock bias, respectively; �8,B is the ionospheric delay; )8,B is the tropospheric
delay; q0 and q0,B are the initial phase offsets for the receiver and satellite at their
zero clock time, respectively; =8,B is the unknown integer ambiguity; 48,B includes
noise and other errors.

Common receiver clock technology can be realized using the multi-antenna syn-
chronized GNSS receiver. This means that these antennas share identical receiver
clock bias and initial phase offset, which can be eliminated by the single-difference
operation. The observed phase difference between antenna 8 and 9 is given by

i8 9 ,B = i8,B − i 9 ,B = d8 9 ,B − =8 9 ,B + 48 9 ,B, (6.15)

where the atmospheric delays are ignored since the baseline for GNSS attitude
determination is usually very short compared to the satellite-to-antenna distance.
The unambiguous phase difference d8 9 ,B satisfies the following linear relationship:

d8 9 ,B = 38 9h)B x, (6.16)

where 38 9 denotes to the baseline length, hB is the satellite line-of-sight vector, and
x represents the unit direction vector of the antenna baseline.
We consider phase observations from < satellites, and we collect all the phase
measurements in a single vector. Under the above conventions and similar to [168],
the carrier phase-difference observation equation for attitude determination can be
expressed as

>8 9 = 38 9Hx − N8 9 + E, (6.17)
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Figure 6.6: Receiver antenna configuration for ambiguity resolution.

where H is an < × 3 matrix whose rows are the satellite line-of-sight vectors,
N8 9 ∈ Z< is an integer ambiguity vector, and E is an unmodeled error vector. The
unambiguous carrier phase differences can be modeled as

58 9 = >8 9 + N8 9 . (6.18)

Attitude determination can be achieved by estimating two unit vectors (or pointing
directions), such as x in (6.17), using two non-collinear baselines. The integer
ambiguity problem, i.e., the fact that the integer vector N8 9 in (6.17) is unknown,
is the main source of difficulty in applying GNSS carrier phase difference based
attitude determination. The resolution of carrier phase ambiguity is a rich research
field. This section tailors the phase difference ambiguity resolution method for the
specific antenna configuration in [168, 173, 174] to the antenna configuration of
interest herein, depicted in Figure 6.6. More details and a rigorous analysis of the
integer ambiguity resolution method presented in this section can be found in [173]
and [174].

Three collinearly positioned antennas are configured such that the lengths of the
shortest two baselines are different, i.e., 312 ≠ 323. The difference between these
two baselines, 4 = 323 − 312, satisfies the criterion suggested in[174] for ambiguity
resolution. In other words, we have the following:

0 < | 4 | ≤ 1
2| sin(o) | , (6.19)

wherein o ∈ [− c2 ,
c
2 ] is the angle of arrival (AoA) of the signal from one satellite

through the line-of-sight path, i.e., the angle between the line-of-sight and the plane
perpendicular to the antenna baselines. For the sake of simplicity, a fixed value is
used in practice. It can readily be noted that when the AoA approaches ± c2 , the
above inequality simplifies to the following

0 < | 4 | ≤ 1
2
. (6.20)

Given the above antenna configuration, there are only three candidate values for the
unwrapped phase difference [173]. These candidate phase differences are related to
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the difference of two carrier phase observables as follows:

512,B (:) =
312
4 (>23,B − >12,B + :), : = −1, 0, 1, (6.21)

where 512,B is the unwrapped phase difference between antenna 1 and 2 for the B-th
satellite. It is demonstrated in [173] that the desired unwrapped phase difference is
the unique one that satisfies 512,B (:) ∈ [−312, 312]. Furthermore, according to the
results of [168] and given the unique candidate phase difference, the unique solution
of the phase unwrapping problem is the candidate with minimum absolute value,
i.e., 5́12,B = 512,B ( :̂) for :̂ satisfying

:̂ = arg min
:∈{−1,0,1}

|512,B (:) |. (6.22)

Finally, due to the impact of noise, the recovered integer ambiguity and the un-
wrapped phase difference can be refined in practice using

n̂12,B = b5́12,B − >12,Be,
5̂12,B = >12,B + n̂12,B . (6.23)

This rest of this subsection formulates the 3-DGNSSattitude determination problem.
The first part describes the single baseline pointing vector estimation approach.
This is done by adapting the least-squares approach proposed in [168] for the
configuration of interest herein. Afterward, a second non-collinear baseline pointing
vector is considered to obtain precise 3-D GNSS attitude estimation.

This part concerns in determining the single baseline pointing vector which is a unit
vector that indicates the pointing direction of the baseline in a reference coordinate
system. Given the ambiguity resolution process and the system equations described
previously, the single baseline pointing vector determination can be expressed as
the following minimization problem

min
x∈R3

| |5̂12 − 312Hx| |22 , (6.24)

which has the least-squares (LS) solution

x́ =
1
312
(H)H)−1H) 5̂12. (6.25)

It can be noted from (6.25) that under the same phase noise, the longer the baseline is,
the more-precise the pointing vector is. In other words, the accuracy of the pointing



133

d12 d23

d45

d14

Θ

1 2 3

5

4

d13

d15

Figure 6.7: Receiver antenna configuration for 3-D attitude determination.

vector estimation is proportional to the length of the antenna baseline. Hence, the
longest baseline, 313 herein, should be exploited to acquire a more-precise pointing
vector which can be realized using the upcoming operations

n̂13 = b313Hx́ − >13e,
5̂13 = >13 + n̂13,

x̂ =
1
313
(H)H)−1H) 5̂13. (6.26)

wherein b�e refers to the rounding operation.

Single pointing vector estimation is the first step in 3-D attitude measurement.
Indeed, in order to obtain 3-D attitude information, one needs at least another
baselinewhich is not parallel to the first one. A natural extension of the configuration
in Figure 6.6 that can tackle the 3-D attitude determination and ambiguity resolution
is shown in Figure 6.7. One antenna is shared by the two baselines so as to reduce
the number of required antennas. As a consequence, only 5 antennas are required
instead of 6. The angle between the two baseline directions is denoted byΘ. Similar
to the first baseline direction, the difference between the two shorter baselines of the
antenna configuration of antenna 1, 4, and 5 satisfies the criterion

0 < | 4′ | = |345 − 314 | ≤
1
2
, (6.27)

In a similar fashion as for (6.24)-(6.26), the carrier phase difference vectors 5̂14

and 5̂15, the integer ambiguity vector n̂14 and n̂15, and the corresponding pointing
vector ŷ can be estimated. In other words, the two baseline pointing vectors are
estimated independently by solving the minimization problem (6.24) for each of the
two baselines separately. Once the two baseline vectors have been estimated, two
non-parallel pointing vectors are known in the reference coordinate and the 3-D
attitude of platform can be calculated by transferring these two pointing vectors
to an attitude matrix in a straightforward manner. However, the described method
does not take the antenna geometry and baseline length into consideration which
can greatly reduce the precision of the estimation. We suggest instead to use two
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baselines jointly to incorporate all the available information. After recovering the
unambiguous phase differences, the 3-D GNSS attitude determination problem can
be formulated as

min
x,y∈R3

| |512 − 312Hx| |22 + ||514 − 314Hy| |22 (6.28a)

s.C. | |x| |22 = 1 (6.28b)

| |y| |22 = 1 (6.28c)

〈x, y〉 = cos(Θ). (6.28d)

This is a non-convex optimization problem as indicated by the three quadratic
equality constraints. More generally, let a and b be two <-dimensional vectors, let
A and B be two<×=matrices and consider a scalar −1 < 2 < 1. This paper focuses
on solving the following optimization problem:

min
x,y∈R=

| |a − Ax| |22 + ||b − By| |22 (6.29a)

s.C. | |x| |22 = 1 (6.29b)

| |y| |22 = 1 (6.29c)

〈x, y〉 = 2, (6.29d)

wherein constraint (6.29b) underlines the fact that x is a unit norm vector and
constraint (6.29c) corresponds to the fact that y is also a unit norm vector. Finally,
constraint (6.29d) insists that the cosine of the angle between x and y is 2. Notice
that the strict inequalities in −1 < 2 < 1 comes without loss of generality. Indeed,
if we set 2 = 1, then x = y which allows to reformulate the optimization problem in
a convex, single-variable program. The same is valid for 2 = −1 for which x = −y.

Despite the convexity of the objective function (6.29a), the optimization problem in
(6.29) is not convex due to the coupling of variables in constraint (6.29d). However,
the setM of potential solutions given by

M =

{
(x, y) ∈

(
R=

)2 | xTx = yTy = 1, xTy = 2
}

(6.30)

forms a compact, i.e., closed and bounded, manifold embedded in the Euclidean
space (R=)2 = R= × R=. Therefore, one can takes advantage of Riemannian opti-
mization algorithms over manifolds to efficiently solve the above problem. Indeed,
thanks to the compactness of the manifold M and the convexity of the objective
function (6.29a), first-order Riemannian methods are guaranteed to converge to a
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critical point of the optimization problem [23], i.e., a saddle point, local minimum
or local maximum. However, it has been observed in the literature that first-order
methods converge to a local minimum unless the initialization is specifically crafted
(see [23]). On the other hand, second-order methods are always guaranteed to con-
verge to a local minimum due to the instability of saddle points and local maxima for
these methods [23]. This thesis solves the non-convex optimization problem (6.29)
by designing both first and second-order Riemannian algorithms over the manifold
M, called herein the oriented spheres manifold.

Optimization Over the Set of Unit Norm Oriented Vectors
As stated previously, the tangent space can be computed using the implicit function
theorem available in Theorem 5.2. The following theorem derives the expression of
the tangent bundle TM of the oriented spheres manifoldM.

Theorem 6.1 The tangent space T(x,y)M at the point (x, y) ∈ M is given by the
following (2= − 3)-dimensional Euclidean space

T(x,y)M =

{
(bx, [y) ∈

(
R=

)2 | xTbx = yT[y = 0,

xT[y + yTbx = 0
}
. (6.31)

Proof: Let S= be the set of = × = symmetric matrices and consider the function
F : (R=)2 → S2 given by

F(x, y) =
(
xTx xTy
yTx yTy.

)
(6.32)

The set of symmetric matrices S= is a linear set as mandated by the conditions of
Theorem 5.2. Furthermore, from the definition of the function F, it is clear that

the oriented spheres manifoldM is the level set of C =

(
1 2

2 1

)
by the continuous

and smooth function �. Indeed, the manifold can be expressed as M = F−1(C).
In order to show that the map F is a constant-rank function, it is sufficient to show
that C is a regular value of F, i.e., the rank of each (x, y) ∈ F−1(C) = M is equal
to Dim(S2) = 2(2+1)

2 = 3. In other words, we need to show that the indefinite
directional derivative of F is a surjective map.

The directional derivative of F at (x, y) in the direction (bx, [y) ∈ (R=)2 is given by

D (F(x, y)) [bx, [y] =
(

2xTbx xT[y + yTbx

xT[y + yTbx 2yT[y.

)
(6.33)
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Let S =

(
S11 S12

S21 S22

)
∈ S= be an arbitrary 2 × 2 symmetric matrix, i.e., S21 = S12.

Finding (bx, [y) such that D (F(x, y)) [bx, [y] = S can be reduced to solving the
following linear system of equations

A

(
bx

[y

)
=

©­­­«
2xT 0
0 2yT

yT xT

ª®®®¬
(
bx

[y

)
=

©­­­«
S11

S22

S12

ª®®®¬ . (6.34)

With the obvious assumption that = ≥ 2, the linear system has a fat matrix A with
dimension 3 × 2=. Furthermore, the matrix A is full-row rank. Indeed, assume that
some linear combination of the rows with the scalars U, V, and W, respectively, gives
a zero vector. In other words, we have the following system of equations:

2UxT + WyT = 0T, (6.35)

2VyT + WxT = 0T. (6.36)

Multiplying each equation in the above system of equations by x and y, and rear-
ranging the expressions yields

©­­­­­­«
2 0 2

22 0 1
0 2 2

0 22 1

ª®®®®®®¬
©­­­«
U

V

W

ª®®®¬ =
©­­­­­­«
0
0
0
0

ª®®®®®®¬
. (6.37)

To attest that the matrix above has trivial Null space, one can notice that the de-
terminant of the first 3 × 3 block is 422 − 4 which does not have solutions for
2 ∈ (−1, 1). Therefore, we conclude that the matrix A is full-row rank and thus the
map D (F(x, y)) is surjective which concludes that F is a rank-constant function.

Exploiting the result of Theorem 5.2, the tangent space ofM can be expressed as
the set of directions that annihilate the directional derivative of the function F. In
other words, we obtain the following characterization of the tangent space

T(x,y)M = Ker(D (F(x, y)))

=

{
(bx, [y) ∈

(
R=

)2 | D (� (x, y)) [bx, [y] = 0
}

=

{
(bx, [y) ∈

(
R=

)2 | xTbx = yT[y = 0,

xT[y + yTbx = 0
}
. (6.38)
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Finally, assuming = ≥ 2 and using the submersion theorem of Riemannian manifold
[23], we conclude that M = F−1(C) is a manifold of dimension Dim((R=)2) −
Dim(S2) = 2= − 3. The dimension of the manifold can also be concluded from the
expression of the tangent space derived above. �

Let the embedding space (R=)2 be equipped with the Frobenius inner product,
defined as 〈(x, y), (x′, y′)〉 = xTx′+yTy′ for all vectors (x, y) and (x′, y′) in ((R=)2).
This section considers that the embedded manifold inherits the inner product of the
embedding space. In other words, the induced inner product 〈., .〉(x,y) on the tangent
space T(x,y)M for (x, y) ∈ M is given by

〈(bx, [y), (b′x, [′y)〉(x,y) = b)x b′x + [)y[′y, (6.39)

for all tangent vectors (bx, [y) and (b′x, [′y) in T(x,y)M.

As this section considers the induced inner product from the ambient space (R=)2, the
expression of the Riemannianmetric simplifies to grad f(x, y) = Π(x,y) (Grad f(x, y))
with Π(x,y) : (R=)2 → T(x,y)M being the orthogonal projection from the ambi-
ent space to the tangent one [74, 75]. In the rest of this section, the first and
second components of the Riemannian gradient are denoted by grad xf(x, y) and
grad yf(x, y), respectively. The same notation is used for the Euclidean gradient,
i.e., Grad xf(x, y) and Grad yf(x, y) for the derivative with respect to x and y, respec-
tively. The following theorem relates the expression of the Riemannian gradient
grad f(x, y) = Π(x,y) (Grad f(x, y)) to its Euclidean counterpart Grad f(x, y) by pro-
viding the expression of the orthogonal projection Π(x,y) .

Theorem 6.2 The orthogonal projection Π(x,y) from the ambient space
(
R=∗

)2 to the
tangent space T(x,y)M is given by

Π(x,y) (u, v) =

©­­­­­«
u −

1
2(1 − 22)

(
Ux + Wy

)
v −

1
2(1 − 22)

(Wx + Vy).

ª®®®®®¬
(6.40)

where the scalars U, V, and W are given by the following equations

©­­­«
U

V

W

ª®®®¬ =
©­­­«
(2 − 22)xTu + 22yTv − 2(xTv + yTu)
(2 − 22)yTv + 22xTu − 2(yTu + xTv)

xT(v − 2u) + yT(u − 2v)

ª®®®¬ . (6.41)
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Proof: In order to derive the expression of the Riemannian gradient, one needs to
compute the orthogonal projection from the ambient space to the tangent bundle.
Such orthogonal projection is obtained by first expressing the orthogonal comple-
ment of the tangent space in the below lemma.

Lemma 6.1 The orthogonal complement of T⊥(x,y)M of the tangent space T(x,y)M
at (x, y) ∈ M is given by

T⊥(x,y)M =

{
(Zx, ky) ∈

(
R=

)2 | Zx = Ux + Wy (6.42)

ky = Wx + Vy, U, V, W ∈ R
}
.

Proof: The proof of this lemma is obtained by double inclusion of the orthogonal
complement of the tangent space and the proposed set in the lemma. The first
inclusion is asserted by direct computation of the inner product between the tangent
space and its orthogonal complement. A dimension counting argument concludes
the proof.

Recall that the tangent vector (bx, [y) ∈ T(x,y)M satisfies the following equality

xTbx = yT[y = 0,

xT[y + yTbx = 0. (6.43)

Now, consider the vector (Zx, ky) satisfying Zx = Ux+Wy and ky = Wx+ Vy for some
real numbers U, V, and W. The inner product can be expressed as

〈(bx, [y), (Zx, ky)〉(x,y) = b)x Zx + [)yky (6.44)

= b)x (Ux + Wy) + [)y(Wx + Vy)

= W(bT
x y + [T

y x) = 0.

Therefore, we obtain the inclusion

T⊥(x,y)M ⊆
{
(Zx, ky) ∈

(
R=

)2 | Zx = Ux + Wy (6.45)

ky = Wx + Vy, U, V, W ∈ R
}
.

Now notice that the dimension of the ambient space is 2= and the dimension of
the tangent space is 2= − 3 which concludes that T⊥(x,y)M is of dimension 3 which
matches the dimension of the set in the left-hand side of (6.42). Therefore, we
conclude the equality of both sets. �
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With the characterization of the orthogonal complement of the tangent space in the
previous lemma, we now compute the orthogonal projection from the ambient space
to the tangent one. Consider a vector (u, v) ∈ (R=)2 in the ambient space. Such
vector can be decomposed into a tangent and an orthogonal component as follows:

(u, v) = Π(x,y) (u, v) + Π⊥(x,y) (u, v), (6.46)

where Π⊥(x,y) (u, v) is the projection onto the orthogonal complement of the tangent
space that can be expressed as

Π⊥(x,y) (u, v) =
(
Ux + Wy
Wx + Vy

)
(6.47)

for some real numbers U, V, and W. Recall that the tangent vector Π(x,y) (u, v)
satisfies the following three equations

〈Π(x,y) (u, v), (x, 0)〉(x,y) = 0 (6.48)

〈Π(x,y) (u, v), (0, y)〉(x,y) = 0

〈Π(x,y) (u, v), (y, x)〉(x,y) = 0

Combining the equations in (6.46) with the tangent space characterization in (6.48)
and using the expression of the orthogonal projection in (6.40), we obtain the
following three equations

xT(Ux + Wy) = xTu (6.49)

yT(Wx + Vy) = yTv (6.50)

yT(Ux + Wy) + xT(Wx + Vy) = xTv + yTu. (6.51)

Now using the manifold equations, the above equations can be simplified to the
following linear system in the variables U, V, and W.

©­­­«
1 0 2

0 1 2

2 2 2

ª®®®¬
©­­­«
U

V

W

ª®®®¬ =
©­­­«

xTu
yTv

xTv + yTu

ª®®®¬ . (6.52)

Finally, noticing that

©­­­«
1 0 2

0 1 2

2 2 2

ª®®®¬
−1

=
1

2(1 − 22)

©­­­«
2 − 22 22 −2
22 2 − 22 −2
−2 −2 1

ª®®®¬ , (6.53)
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and rearranging the terms concludes the proof. �

The fact that the manifoldM is an embedded manifold in a Euclidean ambient space
allows us to simplify the expression of the Riemannian Hessian. Indeed, as stated
earlier, the expression of the Riemannian Hessian can be simplified to a directional
derivative followed by an orthogonal projection, i.e.,

hess f(x, y) [bx, [y] = Π(x,y) (D (grad f(x, y)) [bx, [y])

= Π(x,y)

(
D (grad xf(x, y)) [bx, [y]
D (grad yf(x, y)) [bx, [y]

)
. (6.54)

Using the above characterization of the Riemannian Hessian, the next proposition
establishes the relation between the Riemannian Hessian and its Euclidean Hessian
counterpart.

Proposition 6.1 The Riemannian Hessian (denoted by hess f(x, y) [bx, [y]) of the
function f at the point (x, y) ∈ M and in the direction [bx, [y] is given by the
following expression

hess f(x, y) =
(
hess xf(x, y)
hess yf(x, y)

)
= Π(x,y)

(
Δx

Δy

)
, (6.55)

where the components of the vector are given by

Δx = Δx −
1

2(1 − 22)
(
¤Ux + Ubx + ¤Wy + W[y

)
, (6.56)

Δy = Δy −
1

2(1 − 22)

(
¤Wx + Wbx + ¤Vy + V[y

)
. (6.57)

The scalars U, V, and W are given by

©­­­«
U

V

W

ª®®®¬ = A
©­­­«

xTGrad xf(x, y)
yTGrad yf(x, y)

xTGrad yf(x, y) + yTGrad xf(x, y)

ª®®®¬ , (6.58)

where A is the constant matrix
©­­­«
2 − 22 22 −2
22 2 − 22 −2
−2 −2 1

ª®®®¬ and the derivatives ¤U, ¤V, and
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¤W are given by the following equations:

©­­­«
¤U
¤V
¤W

ª®®®¬ = A
©­­­«
bT

x 0T xT 0T

0T [T
y 0T yT

[T
y bT

x yT xT

ª®®®¬
©­­­­­­«

Grad xf(x, y)
Grad yf(x, y)

Hess xf(x, y) [bx, [y]
Hess yf(x, y) [bx, [y]

ª®®®®®®¬
. (6.59)

Proof: The proof of this proposition is omitted herein as it follows directly from
the expression of the Riemannian gradient and the definition of the Riemannian
Hessian for a manifoldM embedded in a Euclidean space endowed with the induced
canonical inner product, i.e., the Riemannian Hessian characterization in (6.54) and
the Riemannian gradient expression in Theorem 6.2. �

To design a computationally efficient retraction R(x,y) on the tangent space T(x,y)M
of the manifold M, this section exploits Theorem 3.2 as the manifold is defined
by only equality constraints. Let N = R∗ × R∗ × R be a manifold of dimension 3.
Therefore, we have dim(M) + dim(N ) = dim((R=)2). Now consider the mapping q
defined by

q : M ×N −→ E∗ ⊂
(
R=

)2

(
x
y

)
×

©­­­«
U

V

W

ª®®®¬ ↦−→
(
Ux + Wy
Wx + Vy

)
, (6.60)

with E∗ =
(
R=∗

)2 representing the open subset of (R=)2 containing only non-zero
vectors in each of the two components. Note that the function q is a continuous
and differentiable function for all input parameters. Furthermore, for any input
parameters (x, y) ∈ M, notice that

q

©­­­­«
(
x
y

)
,

©­­­«
1
1
0

ª®®®¬
ª®®®®¬
=

(
x
y

)
. (6.61)

In other words, the element
©­­­«
1
1
0

ª®®®¬ ∈ N is a neutral element for q as mandated

by Theorem 3.2. Finally, the following theorem provides the expression of the
proposed retraction.
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Theorem 6.3 The mapping R : TM → M whose restriction R(x,y) to T(x,y)M is
given by

R(x,y) (bx, [y) = (v,w), (6.62)

with the vector (v,w) being expressed as(
v
w

)
=

(
cos(\)I= − sin(\)I=
cos

(
i
)
I= sin

(
i
)
I=

) (
E1

e2

)
(6.63)

where the angles \ and i, the basis vectors e1 and e2, and the constants 21, 22, and
23 are given by

\ = cos−1(2) − i

i = tan−1

(
21
√

1 − 22 + 23
22 + 212

)
21 = | |x + bx | |2

e1 =
x + bx
21

22 = (y + [y)Te1

23 = | | (y + [y) − 22e1 | |2

e2 =
(y + [y) − 22e1

23
.

Proof: This theorem is demonstrated by applying the result of Theorem 3.2 to the
mapping q. Given the preliminary results above, the expression of the retraction
is proven by showing that q is a diffeomorphism and by computing its inverse. In
other words, the retraction is derived by showing that q is a bijection fromM ×N
to E∗ = q(M,N) and by obtaining the expression of the inverse.

Let (v,w) with v ≠ 0 and w ≠ 0 be a vector in E∗. It can readily be seen that, up
to the permutation of (x, y) and (U, V), there exists a unique (x, y) ∈ M and unique
reals U, V, and W such that

q

©­­­­«
(
x
y

)
,

©­­­«
U

V

W

ª®®®¬
ª®®®®¬
=

(
v
w

)
. (6.64)

The rest of the proof derives a closed-form expression of the inverse map q−1. First,
using the Gram-Schmidt basis orthogonalization theorem, the family (v,w) can be
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expressed as (
v
w

)
=

(
21e1

22e1 + 23e2

)
=

(
21I= 0I=
22I= 23I=

) (
e1

e2

)
(6.65)

with 21, 23 > 0 and | |e1 | |2 = | |e2 | |2 = 1 and e)1 e2 = 0. The expression of these basis
vectors and constants obtained from the Gram-Schmidt basis orthogonalization
theorem are given by

21 = | |v| |2

e1 =
v
21

22 = wTe1

23 = | |w − 22e1 | |2

e2 =
w − 22e1

23
.

Now, let O =

(
cos(\)I= − sin(\)I=
cos

(
i
)
I= sin

(
i
)
I=

)
be an 2= × 2= matrix for some angles \ and

i. Consider the non-isometric transformation of the basis vectors(
x
y

)
= O

(
e1

e2

)
. (6.66)

Notice that thanks to the structure of the matrix O, the constraint xTx = yTy = 1.
Indeed, we have xTx = cos(\)2 + sin(\)2 = 1. The constraint xTy = 2 implies the
following

cos(\) cos
(
i
)
− sin(\) sin

(
i
)
= 2 ⇒ cos

(
\ + i

)
= 2.

Now, combining (6.66) and (6.65) gives the following change of basis(
v
w

)
=

(
21I= 0I=
22I= 23I=

)
1

det{O}

(
sin

(
i
)
I= sin(\)I=

− cos
(
i
)
I= cos(\)I=

) (
x
y

)
Multiplying the above matrices an insisting that the component along y of the first
vector matches the component along x of the second vector, i.e., the scalar W is the
same in (6.65), generate the following equality:

21 sin(\) = 22 sin
(
i
)
− 23 cos

(
i
)

21
sin(\)
cos

(
i
) = 22

sin
(
i
)

cos
(
i
) − 23

21
sin(\)
cos

(
i
) = 22 tan

(
i
)
− 23. (6.67)
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Recall that \ = cos−1(2) − i. Therefore, we have

sin(\) = sin
(
cos−1(2) − i

)
=

√
1 − 22 cos

(
i
)
− 2 sin

(
i
)
. (6.68)

Substituting the previous equality in (6.67) and rearranging the terms gives
21(
√

1 − 22 − 2 tan
(
i
)
) = 22 tan

(
i
)
− 23 and allows to conclude that

tan
(
i
)
=
21
√

1 − 22 + 23

22 + 212
. (6.69)

The scalars U, V, and W can be obtained by expanding (6.66). However, it is omitted
herein as the retraction is only interested in the first component of the inverse map
q−1.

Finally, the retraction is obtained by applying the above algorithm to the vector
(x + bx, y + [y). In other words, the retraction is given by the following expression:

R(x,y) (bx, [y) = c1
©­­«q−1 ©­«

(
x + bx

y + [y

)ª®¬
ª®®¬ . (6.70)

�

Remark 6.1 Note that the arc-tangent function tan−1 in Theorem 6.3 is defined from
[0, c) instead of the usual [−c/2, c/2) in order to obtain a positive scalar U, i.e., a
positive sine.

3-D GNSS Attitude Determination Using Riemannian Optimization
This part describes the proposed method for 3-D GNSS attitude determination using
the above derived first and second-order Riemannian optimization algorithms. First,
the ambiguity resolution method presented in (6.21) and (6.22) is applied to resolve
the integer ambiguities. It should be noted that the antenna configuration shown
in Figure 6.7 is utilized instead of the one in Figure 6.6. The estimations of the
phase differences 5̂12 and 5̂14 are recovered. These phase differences can be used
directly to obtain an estimate of the desired attitude. However, as pointed in [168],
the unambiguous phase estimates usually suffer in terms of accuracy due to the
accumulation of phase error. In addition, it is not guaranteed that the correct
integer value is recovered by (6.22), i.e., the ambiguity resolution may actually fail.
Therefore, these factors dictate that some processing should be performed before
these phase estimates can be used for attitude determination.
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Since the processes of ambiguity resolution for two baselines are independent, the
geometry information of the antenna configuration is not respected. The prior
knowledge of the angle between the two baselines can act as a constraint to judge
the resolved integer ambiguities. If the angle condition isn’t satisfied, a correction
is performed to the resulting integer ambiguities by changing them to the closest
integer until reaching a reasonable result. For a short baseline case, the bias of
wrong integer ambiguity is usually very small.

Now, we are in a position to precisely estimate the pointing vectors usingRiemannian
Optimization (RieOpt method) developed in Chap. 2. The optimization problem in
(6.29) is solved by the proposed RieOpt method initializing x̂ and ŷ with the LS
solutions x́ and ý as computed in (6.25). As mentioned before, the constraints in
(6.29) strictly integrate the antennas geometry and baseline lengths into the cost
function. Thus, as the optimization problem is ensured to converge to a critical
point of the objective function, it is guaranteed that the geometry and the angles are
satisfied.

In order to further improve the results, the phase difference between the longest
baselines should be exploited. This can be done by applying the correction operation
as in (6.26), and the step of integer ambiguity check and correction can be repeated
again. Finally, the RieOpt method is carried out again for the largest baselines to
refine the results of attitude determination. The integral process of the proposed
method can be found in Algorithm 6.2.

Algorithm 6.2 Algorithm for 3-D GNSS attitude determination.
1: Recover 5̂12 and 5̂14 independently using (6.21)-(6.26).
2: Estimate the pointing vectors x́ and ý using 5̂12 and 5̂14 by the least-squares

solution (12).
3: while |x́Tý − cos(Θ) | > n do
4: Adjust the integer ambiguities to the closest integer.
5: Re-compute 5̂12 and 5̂14 using the adjusted integer ambiguities.
6: Re-compute x́ and ý based on (12).
7: end while
8: Estimate the pointing vectors x̂ and ŷ using the RieOpt method initialized using

x́ and ý.
9: Compute 5̂13 and 5̂15 from x̂ and ŷ using (13).
10: Re-compute x̂ and ŷ using 5̂13 and 5̂15 through the RieOpt method described

in Chap. 2.

The proposed Riemannian steepest-descent method in Algorithm 6.2 requires the
computation of the Riemannian gradient and the retraction at each step. As shown
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previously, the Riemannian gradient is obtained by simply projecting the Euclidean
gradient. Given that the derived orthogonal projection only involves inner prod-
ucts, its complexity is linear in the dimension of the system. Likewise, from the
expression of the retraction, the most expensive step is the matrix multiplication,
which is quadratic in =. However, given the tri-diagonal structure of the matrix,
the multiplication can be done in linear time, which results in a retraction with
linear complexity. Finally, it can be concluded that the per iteration complexity
of the proposed Riemannian steepest-descent method is linear in the dimension of
the problem. Furthermore, thanks to the compactness of the manifold, first-order
Riemannian methods are shown to exhibit a linear convergence rate.

The complexity analysis of the proposed Riemannian Newton’s method follows
similar steps as for the steepest-descent. Indeed, it can easily be seen that the most
complex step is to compute the Hessian and solve for the search direction. From
the expression of the Hessian in Proposition 6.1, we can easily see that it can be
computed in O(=) steps. However, solving for the search direction bx that satisfies
hess f(x) [bx] = −grad f(x) requires solving a system of = linear equations which
can be done is =3. However, the use of iterative methods can reduce the complexity
to =2 resulting in an algorithm with quadratic complexity. Thanks to the use of
second-order derivatives, the proposed Newton’s method exhibits a convergence
rate that is at least quadratic.

Simulation Setup and Results
This subsection presents the simulation results in order to evaluate the performance
of the proposed approach under a noise-controlled environment by plotting the
performance of the proposed method against benchmarks methods in the literature,
namely, the least-squares, LAMBDAmethod [160], and generic non-convex solvers.
The LAMBDA method is the standard method for attitude determination and has
found success in different attitude scenarios. The LS method resolves the integer
ambiguity and estimates the attitude using the (6.21)-(6.26) for each baseline sepa-
rately. A detailed description of this method can be found in [168]. The proposed
RieOpt method applies the procedure summarized in Algorithm 6.2. This method
solves the optimization problem to refine the results obtained from the procedure
given by (6.21)-(6.26), and obtain a final attitude estimate. While the LS and the pro-
posed approach utilizes only carrier phase, the LAMBDA [160] andMC-LAMBDA
[179] methods take advantage of both the carrier phase and pseudo-range. However,
the LAMBDA method does not utilize the a-priori knowledge of the antenna array
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geometry. Finally, similar to the proposed methods, the MC-LAMBDA method
leverages all the available geometrical information.

Table 6.1: Success rates over many GPS weeks.

Date GPS week LS RieOpt LAMBDA
x y x y x y

03-Sep-2017 941 0.960 0.960 0.961 0.962 0.973 0.974
01-Oct-2017 945 0.982 0.984 0.984 0.985 0.998 0.998
19-Nov-2017 952 0.987 0.988 0.988 0.989 0.999 0.988
28-Jan-2018 962 0.988 0.988 0.988 0.988 0.999 0.999
04-Feb-2018 963 0.985 0.987 0.984 0.987 0.999 0.999
01-Apr-2018 971 0.981 0.982 0.983 0.984 0.998 0.998
08-Apr-2018 972 0.980 0.981 0.983 0.984 0.998 0.998
22-Apr-2018 974 0.969 0.970 0.972 0.973 0.991 0.992
29-Apr-2018 975 0.982 0.983 0.984 0.985 0.999 0.999
06-May-2018 976 0.983 0.984 0.985 0.985 0.998 0.998

Table 6.2: Root mean square error over different GPS weeks.

Date GPS week LS RieOpt LAMBDA
x y x y x y

03-Sep-2017 941 0.465 0.458 0.338 0.331 0.651 0.637
01-Oct-2017 945 0.338 0.367 0.268 0.280 0.478 0.519
19-Nov-2017 952 0.521 0.536 0.359 0.382 0.734 0.755
28-Jan-2018 962 0.734 0.746 0.489 0.498 1.035 1.052
04-Feb-2018 963 0.555 0.637 0.416 0.541 0.783 0.900
01-Apr-2018 971 0.349 0.343 0.265 0.263 0.491 0.483
08-Apr-2018 972 0.304 0.307 0.251 0.252 0.428 0.433
22-Apr-2018 974 0.301 0.317 0.253 0.256 0.424 0.447
29-Apr-2018 975 0.330 0.331 0.271 0.271 0.465 0.467
06-May-2018 976 0.379 0.394 0.284 0.287 0.532 0.555

The simulations are implemented using MATLAB and the libraries of the visual
simulation software [180]. The basic parameters are produced based on the libraries
of this software using the receiver location or antenna baseline and real GPS con-
stellation information. Furthermore, the MATLAB version 3.0 of the LAMBDA
software [181] is used.

The presence of trees, buildings and other high rising structures, natural or artificial,
around the receivers may hamper the view of the satellites. GNSS observations
below 15 degrees are usually disturbed by multipath and other problems, e.g., cycle
slips, and low signal-to-noise ratio [167]. The elevation mask allows us to set an
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elevation angle such that we can discard the data below that angle. This parameter
has a great influence on dilution of precision (DoP), so it needs to be chosen carefully.
In our simulations, an elevation mask of 15 degrees is applied.

The proposed method can be easily modified and extended to multi-epoch and
multi-frequency cases. However, in our simulations, only the challenging single-
epoch, single-frequency case is considered using the GPS L1 frequency, which has
a wavelength equal to 19cm approximately. The antenna configuration is similar
to Figure 6.7 with 4 = 4′ = 8 cm and different values of the angle Θ between the
two baselines are considered. According to this setup, both conditions (6.20) and
(6.27) are satisfied. It should be noted that this configuration is not required for
the LAMBDA and MC-LAMBDA methods, which are able to perform ambiguity
resolution using any arbitrary configuration. As aforementioned, this special con-
figuration is used as a means to simplify the ambiguity resolution process. Besides,
the proposed Riemannian manifold optimization can be paired with any ambiguity
resolution method, as will be demonstrated in this section.

To demonstrate the performance of the proposedmethod inmultiple possible scenar-
ios, simulations are carried out over different GPS weeks, noise levels and number
of satellites. For each simulation setup, the tests are repeated 105 times with ran-
dom Gaussian noise and random baseline pointing vectors. For the carrier phase
observables, the Gaussian noise has zero mean and standard deviation fq, ranging
from 1 mm to 7 mm. Unlike other non-convex methods, the proposed Riemannian
method is guaranteed to always reach an extreme point of the problem. Furthermore,
for moderate to high noise variance, non-convex solvers return different results due
to the existence of multiple local minima. Typical GPS phase measurements have
phase standard deviation in the range of 1− 3 mm [182].For GPS, the pseudo-range

and phase variance ratio is around 104 [155], i.e.,
f2
?

f2
q

= 104. For pseudo-range

measurements, according to the above radio, the Gaussian noises with zero-mean
and standard deviation f? are used.

To test the performance of the proposed approach, we evaluate the success rate and
root mean square error (RMSE) of the baseline pointing direction. Success rate is
defined as the percentage of occurrences that the integer vectors are correctly fixed
over 105 simulation trials. The baseline pointing vector error refers to the deviation
of the resulting direction vector from the true pointing direction. Finally, the RMSE
is evaluated only for the configurations resulting in a successful estimation.
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Figure 6.8: Fraction of estimates with error less than n over different GPS weeks.
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Figure 6.9: Root mean square error versus noise levels (29/4/2018).
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Figure 6.10: Root mean square error versus the number of satellites (29/4/2018).

Table 6.1 shows the success rates of the proposed and the two benchmark approaches
for 10 different GPS weeks on specific days and time 00 : 00. In this result set,
the same setup is used with 312 = 314 = 45 cm, 4 = 4′ = 8 cm, fq = 3 mm,
Θ = 90◦ and number of satellites < = 4. Such a small number of satellites is meant
to provide a challenging scenario to compare the performance of three methods.
Table 6.1 indicates that all the three methods have very high success rates. The
RieOpt method and LS method have similar success rates since the RieOpt method
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Figure 6.11: Root mean square error versus the angle (29/4/2018).

is based on the unwrapped phase obtained from the LS method. However, the
success rate of the LAMBDA method is a little higher than the other two methods,
which may come from the fact that the LAMBDA method also takes advantage of
pseudo-range data. Even though the success rates are slightly different, all the three
methods offer excellent performance in satellite-deprived environments.

Table 6.2 lists the RMSE of the three methods over the 10 GPS weeks of Table 6.1.
It is clear that the RieOpt method provides the best accuracy in almost all simulated
cases except few instanceswherein theActive setmethod provides better results. The
RieOptmethod rigorously integrates the antenna geometry and baseline lengths to its
objective function so that it produces more accurate results than the other methods.
However, it is worth mentioning that the LS method also outperforms the LAMBDA
method.

Figure 6.8 shows the fraction of simulation trials with RMSE below different values
on two different dates, January 28, 2018 and April 29, 2018. These plots depict the
success rates and attitude estimation accuracy of the seven methods in a different
way. These four plots show that the RieOpt method can enhance the accuracy of
the resulting pointing vectors while offering similar success rates to those of the LS.
Comparing the plots of these two GPS weeks, we can find out that the improvement
is more evident for the case in which the LS method and LAMBDA method have
less accurate results.

To test the effect of carrier phase noise on the proposed method, a set of simulations
is carried out for GPS week 975. The standard deviation of carrier phase, fq, varies
from 1 mm to 7 mm, and the standard deviation of pseudo-range adjusted according
to the ratio f2

?/f2
q
= 104. All the other setting parameters are kept unchanged.

Figure 6.9 plots the corresponding RMSE of the three methods under different noise
levels. Although the errors of all the methods increase as the noises increase, the
RieOpt method consistently offers the best performance in almost all scenarios. The
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LSmethod outperforms the LAMBDAmethod over the different scenarios. Besides,
the larger the noise is, the more obvious the accuracy improvement of the RieOpt
method is. Figure 6.10 shows the RMSE of all methods when different numbers of
satellites are used. As expected, the accuracy of all the methods improves as the the
number of satellites increases. The results prove that the RieOpt method provides
the best performance in almost all situations regardless of the number of satellites.
The proposed methods outperform the LAMBDA method in terms of the RMSE,
which is mainly attributed to the incorporation of the geometry in the optimization
process. The success rate of the proposed method is slightly lower than that of the
LAMBDA method. An explanation of this is that the difference operation in (6.21)
exacerbates the effect of the phase error, which affects the final success rate.

Table 6.3: Performance of different GNSS attitude determination algorithms.

Method Time(s) RMSE (◦) x RMSE (◦) y
LAMBDA 0.0038 1.0216 1.1002

MC-LAMBDA 0.0120 0.2592 0.2615
Rie-1st 0.0094 0.2596 0.2591
Rie-2nd 0.0255 0.2592 0.2606

LS 0.0038 0.2855 0.2879
Alternate 0.2224 0.2699 0.2762
Interior 0.0468 0.2615 0.2691
Active 0.0313 0.2696 0.2701

While the above mentioned simulations assume orthogonal baselines, Figure 6.11
attest the performance of the proposed algorithmusing amore-general configuration,
i.e., with different angle values between two baselines. From the numerical results,
it appears that the angle between two baselines does not show any visible effect
on the results. Finally, considering all the aforementioned simulations, it can be
concluded that the RieOpt approach is able to significantly improve the accuracy of
attitude estimation over that offered by the LS, the LAMBDA methods, and generic
non-convex solvers. Finally, as stated earlier, the proposed Riemannian methods
can be combined with the integer ambiguity resolution from the MC-LAMBDA
method. Table 6.3 shows the performance and the runtime for the LAMBDA, MC-
LAMBDA, LS, generic non-convex solvers, and the proposed algorithms. From the
table, it can easily be seen that our method provides similar performance to that
of the MC-LAMBDA but for a lower complexity. Indeed, the table shows that our
method is on average 25% faster than MC-LAMBDA. This further emphasizes the
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clever exploitation of the geometry of the problem by the proposed Riemannian
methods.
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C h a p t e r 7

CONCLUSION

This thesis exploits a recent optimization technique known as Riemannian opti-
mization for solving convex and non-convex signal processing and machine learn-
ing problems. While the complexity of traditional optimization methods, such as
interior-point methods and semi-definite programs, increases with the number of
constraints of the problem, Riemannian optimization cleverly reformulates the prob-
lem on the feasible space which results in a reduction of the embedded dimension
and thus efficient optimization algorithms. The required ingredients for designing
first-order Riemannian optimization schemes are derived for multiple contemporary
convex and non-convex examples in signal processing and machine learning, such
as community detection, graph-based clustering, phase retrieval, and indoor and
outdoor location determination. Even though the resulting Riemannian algorithms
are not universal but rather problem dependent, the broad set of available implemen-
tations in the literature for different optimization algorithms is turning Riemannian
optimization into a toolbox that can be used by the scientific community at large
regardless of their knowledge on differential geometry and Riemannian manifolds.
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