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ABSTRACT

In contrast to the canonical planets of our solar system, with semimajor axes in
the familiar range of ~ 0.3-30 au, exoplanets have been detected at considerably
shorter and longer distances from their host stars. These planets, at the innermost and
outermost reaches of planetary systems, have challenged many hitherto foundational
ideas of planetary formation and evolution that were based solely on knowledge of
our own solar system. This thesis addresses some of the emergent puzzles posed by
the orbital and interior dynamics of planets orbiting very close and far away from

their stars.

Chapters II-III consider the origins of planets on very short-period orbits. Two
and a half decades ago, the discovery of the first hot Jupiter marked the dawn
of exoplanet detections around sunlike stars. The existence of these extremely
irradiated Jovian planets (orbital periods < 5 days) runs in stark contrast to the
utter absence of material orbiting interior to Mercury in our own solar system. This
striking discrepancy between the close-in planetary content of observed systems and
our own—together with the notion that, interior to the “snow lines” of stars at stello-
centric radii of several au, water ice is not available to contribute to the accretion of
the several Earth-mass cores necessary for runaway core accretion—has led to many
works aiming to explain how Jovian-mass (> 0.1Mj) planets can migrate inward to
become hot Jupiters after forming beyond the snow lines of their stars. One such
migration mechanism, known as high-eccentricity migration, occurs when a Jovian
planet is excited to extremely high eccentricity such that it experiences significant
tidal dissipation at perihelion passage, promoting orbital decay to a short-period
orbit. For cases such as the massive (~ 9Mj), eccentric (e ~ 0.5) hot Jupiter HAT-
P-2b—for which the exterior perturber is characterized—the eccentric orbital state
encodes information about the tidal history of the planet. In Chapter II, I outline
a method for constraining the tidal dissipation rate in eccentric hot Jupiters such
as HAT-P-2b and its analogues. In Chapter III, I consider the opposite limit of
possibilities: local conglomeration. While observations of highly eccentric, tidally
unstable hot Jupiters imply some hot Jupiters must form through high-eccentricity
migration, I present a —2/7 power law prediction which naturally follows from a
basic picture of viscous accretion and inner magnetic truncation of protoplanetary
disks. This power law, combined with simple tidal corrections, agrees well with the

observed period-mass distribution of hot Jupiters, possibly lending new credence



vii
to the hypothesis that hot Jupiters predominantly form in situ, near their observed

close-in positions.

Next, with Chapter IV, we move on from the inner regions of planetary systems to
address the interior dynamics of our furthest observed solar system planets, Uranus
and Neptune. The so-called “ice giants” present a major challenge to interior
modeling efforts due not only to a relative lack of spacecraft coverage compared to
other solar system planets, but also because of a compositional degeneracy which
inherently arises from their intermediate densities. An especially confounding
issue surrounding these planets has been the extremely low heat flux of Uranus
compared to Neptune. Chapter IV addresses these challenges with the application
of novel thermodynamic constraints that follow in the case where hydrogen and
water are taken to be immiscible major constituents. As discussed in Chapter
IV, this model framework can satisfy the observed masses, radii, and gravitational
harmonics of these planets—without being at odds with observations of the magnetic
fields. Importantly, as Chapter IV shows, hydrogen-water immiscibility in the deep
interiors of Uranus and Neptune can offer a natural explanation for the disparate

heat fluxes—but characteristically similar magnetic fields—of Uranus and Neptune.

Following this discussion of the outermost directly observed planets in our solar
system, Chapters V-VI delve into the orbital dynamics of planets on extremely wide
(hundred-au) orbits, with a specific emphasis on the hypothesized Planet Nine. In
our own solar system, the existence of a massive planet on such a wide orbit, with
considerable eccentricity (e > 0.1) and inclination (i ~ 20°), has been proposed to
explain several dynamical features of the outer solar system. In Chapter V, I describe
how this very distant planet could affect the dynamics down to the innermost reaches
of the solar system, through secular modulation of the so-called “invariable” plane
of the canonical planets, relative to the solar spin axis. Next, in Chapter VI, I
numerically derive a prior distribution for the relative occupation of individual
mean-motion resonances with this planet by eccentric small bodies, showing that
assumption of low-order resonances with observed objects is not a viable means to

determine the current true anomaly of Planet Nine.

Finally, in Chapter VII, concluding remarks are given, and the findings of this work
are discussed in relation to the ongoing exploration of related topics in planetary

system dynamics.
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LIST OF ILLUSTRATIONS

Side-by-side comparison of quadrupole- (O(a?)) and octopole-level
(O(a?)) simulations of the orbital evolution of a super-Jovian Planet
(mass m = MyaT-p-2b = 9Mjupiter migrating inward due to the Lidov-
Kozai effects induced by the influence of a massive outer perturber.
The initial conditions (listed in the lower panel of column B) were
one set of many chosen in the manner described in the text. The
figures in column A show that these two levels of approximation pro-
duce qualitatively similar behavior, but a major disparity in evolution
timescale between the quadrupole and octopole cases. In column
B, the first several 107 years of the multi-Gyr simulations are shown
in detail. While the behavior in both cases is qualitatively similar,
it is apparent that the octopole-level dynamics allow for the Jovian
planet to sometimes attain somewhat higher eccentricity than in the
quadrupole case, which hastens the semimajor axis decay. This
suggests that the octopole level must be taken into account when de-

termining which long-term system evolutiofn scenarios are capable

of producing HAT-P-2b on its present orbit over the system lifetime. .

Contour plot showing, for a range of stellar and planetary quality
factors Q given HAT-P-2b’s presently observed orbital period, the
relative importance of the tides raised on the planet versus tides raised
on the star for governing the orbital circularization. In particular, the
colors represent the ratio of |de/dt|p (the rate of eccentricity change
due to tides raised on the planet) to |de/dt|s (the rate of change
due to tides on the star), employing the formulation of Hut 1981 as
described in the text. A large range of planetary Q is shown, while
the stellar Q range shown is in agreement with the range found by
Adams and Bloch 2015 for stars hosting planets in the Kepler dataset.
The thick contour line corresponds to the place on the plot where the
tidal effects of the star and planet are similar in magnitude, whereas
tides raised on the planet dominate the circularization dynamics for
(OQPlanet» Ostar) to the left of the thick contour line. . . . .. .. ..
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2.5

Tidal circularization of HAT-P-2b from its current state. Left column:
Holding the stellar quality factor Q. fixed, Q praner Was varied from
10* to 10°. The time of each simulation was scaled by Qpianer, and
the results stacked, demonstrating that the timescale of circularization
in each case scales with Q, with the trajectories otherwise nearly
identical. Given the observed system’s ~Gyr evolution timescale, and
taking into account that here it is shown that circularization timescale
Teire 18 such that 7erc/Q planer ~ 10* — 10°, we infer an estimate
Oplanet ~ 104 = 10°. Right column: Informed by the aforementioned
estimate, Q pjaner ~ 10° was fixed and Qg was varied from 10° to

10'4. Yellow shading shows the region corresponding to the Qq, ~

10° — 107 estimate found by Adams and Bloch 2015. . . . . .. ..

Approximate locus of suitable initial conditions for HAT-P-2b. The
initial conditions allowing for tidal decay are expected to reside be-
tween the two isosurfaces of the inner orbit’s approximate minimum
perihelion distance. In the “test particle quadrupole" framework, in
which L. is conserved, the lower isosurface (red) represents orbits
that initially come within 0.1 au of the star, in principle giving the
planet an opportunity to experience significant tidal effects. The up-
per isosurface (blue) represents orbits that initially invade the Roche
zone of the star. Orbits capable of producing long-term, long-range

tidal migration of the planet are expected to reside between these two

EXIIEMES. . . . . . . .o e e e e e e e e e e e e e e e

Side-by-side comparison of HAT-P-2b’s eccentricity evolution where
the perturber is varied. Starting conditions for the m = 9M, pirer
inner planet are a = 2 au, e = 0.05, i = 76.5853. The viscous

timescales are ty; = 100000 yr and ty > = 0.05 yr for the star and

planet, respectively. . . . . . . .. ..o L Lo
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Two examples of octupole-level evolution pathways in which HAT-
P-2b initially resides at several au from the star, and, under the influ-
ence of an exterior perturber, experiences circularization on a ~Gyr
timescale comparable to the age of the system. Observed values of
eccentricity and semimajor axis are illustrated with red lines, and the
semimajor axis a ¢ .- 5 of HAT-P-2b occurring at the instant its orbit
attains the observed eccentricity e = 0.5 during the final circular-
ization pathway is shown represented by purple dots in the middle
row, showing that the attained parameters agree roughly with obser-
vations. The viscous timescales #y; = 100000 and #y > = 0.05 yr for
the star and planet, respectively. . . . . . .. .. ... ...
Example result from the method described in Section 2.3 for obtain-
ing the viscous timescale t{,’z of HAT-P-2b, which is related to the
period-dependent quality factor Q via Equation 2.1. Initial condi-
tions were chosen according to the prescription outlined in Section
6.2, with simulated ty» uniformly logarithmically randomly cho-
sen. This plot shows the semimajor axis a ¢ .05 occurring when the
planet executes its final traverse through the observed eccentricity
value e = 0.5, as a function of extrapolated viscous timescale t{,,
obtained by multiplying the simulated ty by a factor of Tops/Tsim,
where 7,1 is the observed system lifetime and 7y, is the time it takes
for each simulation to reach its final passage through ¢ = 0.5 while
circularizing. Notably, it is crucial to point out that in this case, ’{/,2
is the extrapolated viscous timescale derived by scaling according to
the circularization timescale exhibited in the simulation for a chosen
tya. Top: the case where initial Aw is held fixed (Aw; = 0) and
ty is randomly chosen via the method described in the text. Bot-
tom: the case where ty is held fixed and initial Aw is uniformly
randomly chosen. Grey points represent the simulations depicted in
the Aw-invariant case (top). Black symbols (*, o, O, X, +) mark each
randomly chosen Aw = 0 case that is re-run with uniformly ran-
domly chosen initial Aw, and the colors of symbols represent initial
Aw. The tendency for cases with varied Aw to follow the swath
determined in the initial-Aw-invariant case appears to suggest that
the obtained mapping between inferred ty and as .5 is robust to
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4.1

The a o« M~%/7 relation derived for in-situ hot Jupiter formation
shows empirical agreement with the lower boundary of the observed
giant planet population in the a — M diagram. Left panel: The
cold Jupiter (blue shading) and hot Jupiter (red shading) populations
are shown in relation to the giant planet “desert” (yellow shading).
Blue points: planets detected via the radial velocity technique, for
which M sini is plotted in lieu of M. Red points: transiting planets
with directly determined masses. Transiting planets with masses
inferred from a mass-radius relation are shown as grey points. Right
panel (inset): A density histogram in the loga — log M plane. The
boundary of the hot Jupiter population is empirically well-described
by a line with slope in agreement with the magnetically governed
power law relation derived in the text. Adjusting the assumed T-Tauri
parameters within the observed range yields lines traversing the hot
Jupiter population, with a line corresponding to R, ~ 2R bounding
the approximate upper edge of the most populated region (dashed
line). Divergence from this empirical best fit line at short orbital
radii agree with the tidal decay curve (purple) showing the evolution

from the best fit line expected after 5 Gyr of evolution. The grey lines

illustrate the tidal decay isochrons described in the text. . . . . . . . .

Experimental data for the Hy-H,O system, and a diagram showing a
model coexistence curve and its relationship to the critical temper-
ature T.. For the purposes of this work, the “critical curve” refers
to the critical temperature as a function of pressure. Left: The peak
of the coexistence curve occurs at the critical temperature 7, above
which the two species mix freely in any proportion. Below the critical
temperature, the coexistence curve dictates the saturation composi-
tions for coexisting phases. Center: The coexistence curves and
critical temperature have been determined up to 0.25 GPa by Seward
and Franck 1981, showing a trend toward increasing symmetry with
pressure. Right: The critical curve has been experimentally derived
up to ~ 3 GPa by Bali, Audétat, and Keppler 2013, showing a roughly
linear trend. The pentagonal markers show the critical temperature
found by Seward and Franck 1981, while the square/diamond mark-
ers show the data found by Bali, Audétat, and Keppler 2013; black

and white points indicate H>-H,O immiscibility. . . . . .. ... ..

Xiv



4.2

4.3

4.4

Comparison of the experimental critical temperature (red) derived by
Bali, Audétat, and Keppler 2013 (Figure 4.1), and its approximate ex-
trapolation (pink) linear in pressure to beyond the 3 GPa experimental
limit, versus the adiabatic temperature profile (blue) in the outermost,
hydrogen-dominant shell in models of Uranus and Neptune. A deep
region of hydrogen-water immiscibility (7" < T;) is predicted in the
deeper regions of this layer, indicating a plausible phase transition
in the interiors of these planets, although further laboratory data is
warranted. While these temperature profiles refer to the same best-fit
Uranus and Neptune models discussed later in the text (see Figure
4.9), from this rough extrapolation, a deep interior region of immis-

cibility is suggested for all compositions of the H,-dominant shell

considered inthiswork. . . . . . . . . . . .. ... ...

Schematic diagram showing the constraint imposed on the models
in this work, that the compositions of the assumed H,-dominant
and H,O-dominant layers should correspond to the coexisting phase
compositions. A compositional discontinuity is thermodynamically
favorable only if immiscibility of major constituents is implicated.
The model critical curve shown is symmetric in accordance with

Equation 4.1, although model critical curves deviating from symme-

try by a factor of 2 were also considered, as discussed in the text. . . .

Example profiles of abundances of constituents, for y.,, = 0.05 and
0.20, where x{,, = xm,0/(xym,0 + xn,) in the envelope. For these
examples, a symmetric coexistence curve was assumed. Examples
shown are for Neptune, but a similar scheme was used in Uranus. The
left two plots show the mole fractions of constituents as a function
of normalized planet radius, while the right two plots show mole
fractions in the same models as a function of pressure. Water is
taken to be present in the atmosphere at saturation vapor pressure
until the cloud-forming region is reached. The cloud-forming region
was assumed to occur either when the molar abundance reached the
value chosen for the underlying homogeneously mixed region of the
envelope (as in the y” = 0.05 case, or when the critical temperature
of pure water was reached (as in the y” = 0.20 case), whichever came

first. The abundances of homogeneously mixed regions were chosen

according to the rationale described inthe text. . . . . .. ... ...

XV

50



4.5

4.6

4.7

4.8

4.9

Gravitational harmonics derived for three-layer models. Observation-
ally derived harmonics J, and J4 for Uranus and Neptune (Jacobson
2014, 2009) are shown as black boxes (the boxes resemble line seg-
ments due to sufficiently tight constraints on J;). Colors represent
the mole fraction x{,, = xu,0/(xm,0 + xn,) in the envelope. Layer
compositions were chosen in accordance with the rationale described
in Figure 4.3 and in the text. The parameter o describes the as-
sumed asymmetry of the model critical curve and is defined such
that Yeny = O Xman, Where Yman = xH,/(XH,0 + x#,), the ratio in
the mantle. For every set of layer compositions, a range of models
was constructed to satisfy the mean density and radius of the plan-
ets, by varying the radius of the ice-rich mantle and rock core, as
described in the text. As indicated by the arrows, models toward the
lower right have comparatively larger icy mantles and smaller rock
cores. The circle markers refer to gravity harmonics derived by tak-
ing the spheroid density to be the outer extent of each spheroid, while
the plus-sign markers refer to the harmonics derived by taking the
spheroid density to be that of the outer limit of the adjacent interior
spheroid, in accordance with the rationale described in the text.

Gravitational harmonics for derived two-layer models, in a manner

analogous to Figure 4.5. . . . . . .. ... ... L.

Models of Uranus and Neptune assuming a symmetric Hy-H;O crit-
ical curve (o0 = 1 case) with methane abundances n/H; relative to

hydrogen chosen at the lower and upper observational bounds for

each planet (Table 4.1). . . . . . . . . ... ... ... ... .....

Examples of derived two- and three-layer density profiles for Uranus

and Neptune which were found to approximately reproduce observed

J2 and J4 .................................

The estimated gravitational potential energy difference between Nep-
tune’s inferred present-day mixing state with the unmixed future evo-
lutionary endmember is ~ 10% erg, sufficient to supply Neptune’s
present-day observed heat flux, 2 x 10?? erg (Podolak, Hubbard, and
Stevenson 1991; Pearl and Conrath 1991), for roughly 10 solar system

lifetimes. . . . . . . . . .
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54

Geometric setup of the dynamical model. The orbits of the planets are
treated as gravitationally interacting rings. All planets except Planet
Nine are assumed to have circular, mutually coplanar orbits, and are
represented as a single inner massive wire. The sun is shown as a
yellow sphere, and elements are not to scale. Black, grey, and dotted
lines are respectively above, on, and below the inertial reference
plane. The pink arrows demonstrate the precession direction of the
angular momentum vector of the inner orbit, L;j,, around the total
angular momentum vector of the solar system Ly,. Red and blue
arrows represent the differential change in longitudes of ascending
node of the orbits and inclination, respectively. Although not shown
in the figure, the tilting of the oblate sun is modeled as the tilting of
an inner test ring. Over the course of 4.5 billion years, differential
precession of the orbits induces a several-degree solar obliquity with
respect to the final plane of the planets. . . . . . .. ... ... ...
Time evolution of the solar obliquity is in the frame of the solar
system, starting with an aligned configuration of the solar system,
and a 10mg Planet Nine with starting parameters in the exemplary
range ag € [400,600] AU, ey € [0.4,0.6], and iy € [20,30] deg,
demonstrating gradual differential precession of the sun and planets
over 4.5 GYr. . . . ..
Parameters of Planet Nine required to excite a spin-orbit misalignment
of ig = 6 deg over the lifetime of the solar system, from an initially
aligned state. Contours in ag-e9 space denote iy, required to match
the present-day solar obliquity. Contour labels are quoted in degrees.
The left, middle, and right panels correspond to mg = 10, 15, and
20 mg respectively. Due to independent constraints stemming from
the dynamical state of the distant Kuiper belt, only orbits that fall
in the 150 < g9 < 350 AU range are considered. The portion of
parameter space where a solar obliquity of i = 6 deg cannot be
attained are obscured with a light-brown shade. . . . . . . .. .. ..
This set of plots depict the same parameter space as in Figure (5.3),
but the contours represent the longitude of ascending node of Planet
Nine, relative to that of the Sun, A Q. As before the values are quoted

indegrees. . . . . . ... e

Xvii

78



5.5

6.1

6.2

6.3

[lustrative evolution tracks of the solar spin axis, measured with re-
spect to the instantaneous invariable plane. The graphs are shown
in polar coordinates, where i and Qg represent the radial and an-
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Sun’s present-day configuration (i = 6 deg, Qg = 68 deg), and
are performed backwards in time. For Planet Nine, parameters of
mg = 15 mg, ag = 500 AU, eg = 0.5 are adopted throughout. Mean-
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Histogram with discrete bins showing the number of objects in each
occupied resonance, for a range of Planet Nine eccentricities. Each
bin is located at the exact commensurability ascertained by identifica-
tion of resonant angles for objects. Note the close spacing of occupied
high-order resonances. Beyond the axis bound, single objects at the
10/1, 11/1, 13/3, 13/4, 20/1, and 22/7 commensurabilities were
also identified. The colored lines in the lower plot delineate the
locations of commensurabilities predicted by Malhotra, Volk, and
Wang 2016 (i.e. with Sedna at the interior 3/2 resonance), with
1 — o observational error bars. Due to observational error in the
KBO semimajor axes and the close spacing of occupied high-order

resonances, we find there is no clear preference for this as opposed

to many other resonant configurations. . . . . . . . . ... ... ...

Probability that a chosen synthetic particle has a period ratio Pg/P =
N/1 (N € Z%*) (blue), or a period ratio N/1 or N/2 (red). In par-
ticular, the probability that any six independently chosen objects
will all have such period ratios is P(Pg/P € {N/1,N/2})® < 0.05,

highlighting the prevalence of high-order resonances expected in the

high-eccentricity case of Planet Nine. . . . . . . . . ... ... ...

Two distributions of the semimajor axis ao, illustrating the differ-
ence invoked by considering the prior distribution of period ratios
developed from the two-dimensional simulations in this work. Left:
Distribution developed by Millholland and Laughlin 2017. In con-
structing this distribution, the period ratios of observed objects were
assumed to follow the distribution of the Farey sequence F5 of period
ratios having denominator < 5, with all such period ratios assumed
equally likely. Right: Distribution developed assuming the updated
period ratio distribution. For details about the procedure invoked to

produce these distributions, see Millholland and Laughlin 2017. . .
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6.7 Mean period ratio with Planet Nine of objects in full three-dimensional

simulations, sampled in 1-Myr intervals. Objects surviving the 4
Gyr simulation, with perihelion distance ¢ > 30 and semimajor
axis a > 250 au, were considered. These simulations included all
canonical giant planets of the solar system, in addition to Planet
Nine. In order to avoid sampling the mean semimajor axis ||a; ||
of a test particle during scattering events, time intervals having
max(a;p.) > |la;p.|| + 30 au were excluded. A predominance of ob-
jects occupying any particular resonance is evidently lacking. This
example suggests that the lessened predominance of low-order res-
onances in the high-eccentricity case of Planet Nine, demonstrated
in the two-dimensional simulations of this work, continues to hold

relevance in the realistic fully inclined case. . . ... .. ... ...
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Chapter 1

INTRODUCTION

In discussions of the history of scientific progress, it is widely regarded that anthro-
pocentrism, in various forms, is one of the most pervasive fallacies of our species.
Indeed, we humans have historically held a tendency to believe that: (1) we occupy
a central role in everything, (2) that the situations in which we find ourselves are
quintessential, and (3) that our limited observations offer complete representations
of the universe. The first of these fallacies is most commonly illustrated with the fa-
mous example of the Copernican revolution. In retrospect, it is easy to feel vicarious
embarrassment on behalf of those who actually believed the planets were orbiting the
Earth on epicycles. Itis also tempting to dismiss this problematic way of thinking as
simply the result of humanity’s lack of advancement several centuries ago; certainly
we must have progressed considerably since then. However, in recent decades, other
breakthroughs in planetary astronomy have offered shocking challenges to fallacies
(2) and (3). While these recent advances may not be as fundamentally revolutionary
as the realization that the Earth is not the central body of the solar system, they have
served as a humbling reminder that we still have a long way to go in understanding

our place in the cosmos.

Prior to observations of other planetary systems, it was natural to suspect that
our solar system might be a quintessential case. Perhaps the discovery of planets
orbiting a pulsar (Wolszczan and Frail 1992) should have served as a forewarning
that planetary systems are often extremely unlike our own. However, as planet
formation theory had, at that point, focused primarily on processes around sunlike
stars, the main shock to the understanding of how planetary systems originate was
felt when the discovery was announced (Mayor and Queloz 1995) of a gas giant
planet around a sunlike star. While similar to our own Jupiter in mass and radius;
this planet, 51 Pegasi b, was found to orbit its star with a period of less than 5
days—well within the orbital distance of Mercury, where nothing (not even a belt
of asteroids) is known to orbit in our own system—and further detections of similar
short-period giant planets followed thereafter. Prior to the discovery of these so-
called hot Jupiters, the arrangement of planets in the solar system seemed to be neatly
accounted for in the framework of the core accretion model, which holds that giant

planets are nucleated by massive (~ 10-15Mg,n) cores of condensed material that
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accumulate in protoplanetary disks. Inside the snow line, the stello-centric distance
in the disk at which volatiles (particularly water) condense, it was originally expected
that suitably massive cores to form giant planets should not be available. After all,
in our own planetary system, Jupiter resides just past the approximate distance of
the snow line, with the modest-sized terrestrial planets positioned on closer orbits.
However, with the first detection of a planet around a sunlike star presenting a stark
counterexample to this expected outward ordering of terrestrial to giant planets,
the entire understanding of planet formation—which previously seemed to neatly
account for our solar system’s arrangement of worlds—was suddenly jolted out of

its seeming alignment with observations.

Accordingly, the predominant initial response to this challenge was to find ways
to explain how planetary systems, initially forming with a structure similar to our
own, could then proceed to evolve to produce this completely unfamiliar orbital
configuration. In particular, a vast body of work has been produced over the
subsequent decades to understand in detail how a planet similar to Jupiter could
form at Jupiter-like orbital separations of several au, and migrate inward to a short-
period orbit to become a hot Jupiter. One such long-range migration mechanism,
in which the planet is perturbed by a massive companion onto a high-eccentricity
orbit, so that it experiences tides which cause its orbit to shrink and circularize, is
explored in Chapter II. As evidence for the occurrence of this particular migratory
process, several highly eccentric (e > 0.1) hot Jupiters have been observed residing
on tidally unstable orbits. Chapter II addresses a particularly interesting case, for
which the exterior companion, presumably responsible for perturbing the hot Jupiter
to its eccentric state, is partially characterized. As will be discussed in Chapter I,
characterization of the exterior perturber in this system and its analogues can allow
for the obtainment of detailed constraints on tidal dissipation in hot Jupiters, using

a novel method that will be discussed therein.

While it is known that hot Jupiters do form via the process of so-called high-
eccentricity migration, in recent years, another formation mechanism, first proposed
by Bodenheimer, Hubickyj, and Lissauer 2000a, has gained serious consideration
as a possible predominant process by which hot Jupiters can form. In particular,
the idea that hot Jupiters can form in situ—at or near their present-day observed
orbital distances—presents an alternative to the migratory origin hypothesis. More
recently, Batygin, Bodenheimer, and Laughlin 2016a have highlighted the theoretical

feasibility of this formation scenario, demonstrating that conditions at the inner
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regions of protoplanetary disks do not pose a hindrance to successful giant planet
formation via core accretion—provided a suitably massive (~ 10-20Mgy,) core is
available. In fact, it is now understood that there is no shortage of such cores. In
particular, the Kepler space telescope, built to detect transiting planets passing in
front of their stars, has demonstrated that close-in (period < 400 days) super-Earths
reside around ~ 30% of sun-like stars (Zhu et al. 2018). These massive, “Kepler-
like” planets frequently occur on the several-day orbits typical of hot Jupiters; hot
Jupiters, by comparison, are quite rare (albeit highly detectable), occuring around
merely 1% of sun-like stars (Howard et al. 2010; Gould et al. 2006; Wright et
al. 2012). The view of planetary systems offered by Kepler seems to indicate giant
planet accretion at close-in orbital distances does not need to be particularly efficient
to account for the entire hot Jupiter population, suggesting in situ formation—
contrary to what was once widely believed based solely on the architecture of our
own system—could potentially serve as a viable means to produce the majority
of hot Jupiters. As in situ formation has attained recent credence as a possible
predominant formation mechanism, a renewed discussion has emerged, two decades
after the initial discovery of these seemingly exotic planets, about how they most
often tend to originate. In Chapter III, I present a contribution to this debate—
namely, I discuss how a —2/7 power law, which naturally arises from a simple
model of in situ core accretion of hot Jupiters, taking into account the established
understanding of magnetic star-disk interactions, can account for the evident sharp

lower cutoff in the period-mass distribution of observed hot Jupiters.

On a related note, with the advent of their discovery, it was widely suspected that
the highly irradiated, super-Earth to sub-Neptune planets found in abundance by
Kepler might, in many cases, be inwardly migrated analogues to our local “ice
giants” Uranus and Neptune. However, in the last few years, this view has become
disfavored. More specifically, it is now understood that the radius gap (Fulton
et al. 2017a) from (1.5-2.0REg,n) among close-in (P < 100 d) planets can be ex-
plained as resulting from evaporation of the primordial, hydrogen-rich envelopes of
smaller planets (Fulton et al. 2017a; Owen and Wu 2017). These stripped cores
are now understood to be primarily rocky in composition (Gupta and Schlichting
2019), suggesting the close-in, Kepler-like planets—despite often having masses
and radii similar to Uranus and Neptune—are not likely to be inwardly-migrated
ice giant analogues. Unlike the stripped rocky planets observed on short-period
orbits around other stars, because Uranus and Neptune have not lost their over-

lying hydrogen-rich envelopes, their deep interior compositions are not directly
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known. In fact, as discussed in Section IV, there is little direct information about
the proportions of specific metals comprising Uranus and Neptune, although their
observed atmospheric methane enrichments (Fegley et al. 1991; Baines et al. 1993),
in conjunction with their intermediate densities and large present-day stello-centric
distances, are highly suggestive of ice-rich interior compositions. In Section IV,
I introduce models which apply novel thermodynamic constraints to the interior
structure and composition of ice giants, treating hydrogen and water as the immis-
cible major constituents. Viewing Uranus and Neptune in this thermodynamically
justified manner, I show how this new approach to interior modeling of these plan-
ets offers a natural explanation for the different heat flows of Uranus and Neptune
(Fazio et al. 1976; Loewenstein et al. 1977; Loewenstein, Harper, and Moseley 1977,
Hanel et al. 1986; Conrath et al. 1989; Pearl and Conrath 1991)—a longstanding
mystery—and can simultaneously account for their different atmospheric ammonia
abundances (Gulkis, Janssen, and Olsen 1978; de Pater, Romani, and Atreya 1991).

Until recently, Neptune was thought to be the solar system planet with the great-
est heliocentric distance. However, several years ago, a challange to fallacy (3),
as discussed earlier in this chapter, was posed when Batygin and Brown 2016a
suggested that the anisotropic distribution (Brown 2017) of distant small objects
with semimajor axes of hundreds of au could be explained as resulting from the
influence of an unseen super-Earth on an eccentric, inclined (i ~ 20°) orbit. The
Planet Nine hypothesis has generated much debate, and a number of alternative
hypotheses (Madigan and McCourt 2016; Sefilian and Touma 2019; Scholtz and
Unwin 2019) have additionally been put forth to account for the observed anisotropy
of distant, eccentric small bodies beyond Neptune. Moreover, a few works have
since questioned the anisotropy (Shankman et al. 2016; Bernardinelli et al. 2020),
although these have referred to individual datasets with small numbers of detected
objects (and have argued statistical consistency with an isotropic distribution, rather
than inconsistency with an anisotropy). Indeed, without some perturbing influence
in place to gravitationally shepherd the distant, eccentric objects into their observed
configuration, the observed characteristic clustering would scramble on a timescale
orders of magnitude shorter than the solar system’s lifetime. Accordingly, the Planet
Nine hypothesis remains actively considered, despite continued challenges to direct

detection.

Chapter V addresses the effect a distant, eccentric, inclined, massive planet such as

Planet Nine would have on the obliquity of the host star relative to the “invariable”
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plane of the planets. A six-degree tilt of the sun relative to the planets was first
observed by Sir Richard Carrington in the mid-nineteenth century (Carrington 1853-
61). As Chapter V discusses, Planet Nine, with its preliminary proposed orbital
parameters and mass, was initially thought to potentially account entirely for the
observed solar obliquity, by inducing precession of the plane of the other planets
relative to the sun. With current predictions for its mass and orbit, Planet Nine is
no longer expected to account for the entire solar obliquity (Batygin et al. 2019).
As mentioned further in Chapter V, numerous other processes inherent to planetary
system formation can invoke the observed tilt. However, the dynamical construction
presented in Chapter V remains generally relevant to exoplanetary systems, and it is

included in this thesis with this caveat noted.

Finally, Chapter VI turns to address a major challenge inherent to the search for
Planet Nine. While Le Verrier famously managed to predict the location of Neptune
with a flourish of his writing utensil, no comparatively simple strategy has yet been
found to locate Planet Nine. Orbital mean-motion resonances are currently expected
to exist between Planet Nine and a subset of the observed small bodies crossing its
path; at first glance, the existence of these resonances might seem to suggest a
useful means exists by which to locate Planet Nine in the sky, as resonant dynamics
are inherently dependent on the specific locations of objects along their orbits.
However, in Chapter VI, I discuss how the eccentric dynamics of Planet Nine, and
the associated predominance of high-order resonances—combined with the frequent
chaotic transfer of objects between resonances—together pose an inherent statistical
obstacle to the use of mean-motion resonances in determining Planet Nine’s current
location in the sky. As the dominating influences on the outermost reaches of the
solar system remain to be fully accounted for, we are reminded that our very own
planetary system remains to be more completely understood, in order to form a
cohesive understanding of its place among exoplanetary systems. This discussion

is followed by concluding remarks in Chapter VII.



Chapter 2

LONG-TERM TIDAL EVOLUTION OF THE HIGHLY
ECCENTRIC HOT JUPITER HAT-P-2B



ABSTRACT

The massive (M, = 9M), highly eccentric hot Jupiter HAT-P-2b (HD 147506b)
(e ~ 0.5,a ~ 0.07) presents an intriguing opportunity to characterize long-term
dynamical evolution of a short-period exoplanet. In contrast to the vast majority of
hot Jupiters on circular orbits, the remarkable orbital state occupied by this planet
encodes constraints on its tidal evolution. Furthermore, the inferred existence of
an exterior dwarf perturber to HAT-P-2b (Lewis et al. 2013), having potential for
follow-up, presents an opportunity for continued characterization of the long-term
perturbations experienced by HAT-P-2b. Together, these features render the HAT-
P-2 system—and similar analogues hosting highly eccentric, close-in planets—an
effective probe of an exoplanet’s tidal dissipation—parameterized by the viscous
timescale #, or alternatively, the present-day tidal quality factor Q. In this work,
we derive an estimate of Q ~ 10* — 10° for HAT-P-2b based on its present-day
orbital characteristics. Additionally, we present simulations of the planet’s long-
term (~Gyr) tidal evolution, facilitated by Lidov-Kozai evolution from an initially
wide (a > 1 au) orbital separation from the star. We find that the system’s current
parameters can be produced over the system lifetime through long-range migration
from a Jupiter-like orbit due to the eccentric Lidov-Kozai effect. Prospects for future

follow-up of this system are discussed.



2.1 Introduction

When hot Jupiters came to be the first exoplanets discovered around sunlike stars
(Mayor and Queloz 1995), it became necessary to explain how this class of gas
giants—with masses comparable to Jupiter and Saturn—can exist at roughly a
hundredth the distance from their stars. Today, the nature of hot Jupiter formation
remains the oldest open problem of exoplanetary science. At first, it was proposed
(Lin, Bodenheimer, and Richardson 1996) that these planets form on ~ 5 au orbits
via core accretion—in the same manner as Jupiter—and subsequently, interactions
with the remaining circumstellar disk (Kley and Nelson 2012) cause them to migrate
inward. Then, another mechanism was suggested—high-eccentricity migration,
during which the giant planet, again starting on a wide, several-au orbit, is excited
to an extremely eccentric state (typically by a companion), leading to long-range
tidal decay of the orbit (Rasio and Ford 1996; Wu and Murray 2003a; Fabrycky and
Tremaine 2007a; Naoz et al. 2011a; Wu and Lithwick 2011; Beaugé and Nesvorn
2012; Petrovich 2015). More recently, in contrast to these long-range migration
mechanisms, in situ formation via core accretion (Bodenheimer, Hubickyj, and
Lissauer 2000a; Batygin, Bodenheimer, and Laughlin 2016b) has gained ground as

a potentially viable means of formation.

Of the formation mechanisms listed above, a widespread consensus has not yet been
reached on the relative importance of each. Although various sources of evidence
might suggest that high-eccentricity migration may not be the main production line
for hot Jupiters (a lack of highly eccentric hot Jupiters observed in the process of
circularization; Dawson, Murray-Clay, and Johnson 2014a; an inadequate preva-
lence of companions capable of inducing migration; Knutson et al. 2014; Ngo et al.
2015; Ngo et al. 2016; Piskorz et al. 2015), hot Jupiters have been observed on
eccentric orbits with inferred circularization timescales a mere fraction of their sys-
tems’ ages—an apparent smoking gun to confirm that high-eccentricity migration
does, in fact, occur. Moreover, the exotic nature of this process has, in its own right,
justified extensive investigation over the past decade and a half. However, a major
challenge in further characterizing high-eccentricity formation resides in the fact
that most hot Jupiter orbits are circular, and thus lack a record of the timing of any
previous circularization. In contrast to prototypical hot Jupiters on circular orbits,
the orbital states of select, eccentric hot Jupiters encode their specific tidal histories.
As a result, the individual examination of short-period giant planets observed on
eccentric orbits (with the canonical example being HD 80606; Wu and Murray
2003a; Fabrycky and Tremaine 2007a) is essential to the study of high-eccentricity



migratory dynamics.

From a purely orbital point of view, an absolutely unique member of the hot Jupiter
population is HAT-P-2b (HD 147506b). This highly massive hot Jupiter (M}, = 9M},
Ry, = Ry), discovered (Bakos et al. 2007) in observations from the HATNet transit
detection survey (Bakos et al. 2002; Bakos et al. 2004), stands out due to a combi-
nation of unusual attributes. First, despite residing on a short-period orbit typical
of close-in giants, this object is unusually eccentric (e ~ 0.5; Bakos et al. 2007;
Loeillet et al. 2008; Lewis et al. 2013). This un-circularized, close-in (a ~ 0.07
au; Bakos et al. 2007; Winn et al. 2007; Loeillet et al. 2008; Pal et al. 2010; Lewis
et al. 2013) configuration is intriguing in light of the advanced age of the system
(2.6 £ 0.5 Gyr, Pdl et al. 2010), appearing to suggest that this long-term unstable
state may have been attained in the course of tidal circularization. Accordingly, the
characterization of the evolution of this system has been addressed by numerous
works (Jackson, Greenberg, and Barnes 2008; Fabrycky 2008; Matsumura, Takeda,
and Rasio 2008; Baraffe, Chabrier, and Barman 2008).

Second, in addition to the eccentric and close-in present-day orbital state of HAT-
P-2b, the uniqueness of this system is further elevated by the detection of a trend in
the radial velocity data (Lewis et al. 2013). Based on this finding, in conjunction
with non-detection of the companion in direct imaging, Lewis et al. 2013 suggested
the existence of an additional, exterior object—an M/L/T/Y dwarf at 10 — 40 au
separation. As Lewis et al. 2013 pointed out, the presence of this massive exte-
rior perturber renders HAT-P-2b the quintessential candidate for migration through
Lidov-Kozai cycles in conjunction with tidal friction (Referred to by numerous other
works as KCTF) (Wu and Murray 2003a; Fabrycky and Tremaine 2007a; Naoz et
al. 2011a). In the scenario of KCTF, HAT-P-2b would have initially formed at wide
separation from the host star. Due to a substantial initial misalignment between the
inner and outer orbits, repeated secular perturbations from the outer body would
have produced eccentricity and inclination modulations in HAT-P-2b’s orbit. As
a result, during periodic excursions to high eccentricity, HAT-P-2b would have in-
vaded the star’s tidal zone and experienced tidal dissipation. After significant tidal
shrinkage of its orbit, in accordance with the known characteristic behavior of this
process, HAT-P-2b then would have decoupled from the long-period companion,

and embarked on a final trek of circularization and inward migration.

To summarize, two features distinguish the HAT-P-2b system as especially useful

for gathering tidal constraints. First, the planet’s present-day eccentric state can po-
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Figure 2.1: Side-by-side comparison of quadrupole- (O(a?)) and octopole-level
(O(a?)) simulations of the orbital evolution of a super-Jovian Planet (mass m =
Myat-p-2p = 9Mjypiter migrating inward due to the Lidov-Kozai effects induced by
the influence of a massive outer perturber. The initial conditions (listed in the
lower panel of column B) were one set of many chosen in the manner described
in the text. The figures in column A show that these two levels of approximation
produce qualitatively similar behavior, but a major disparity in evolution timescale
between the quadrupole and octopole cases. In column B, the first several 10°
years of the multi-Gyr simulations are shown in detail. While the behavior in both
cases is qualitatively similar, it is apparent that the octopole-level dynamics allow
for the Jovian planet to sometimes attain somewhat higher eccentricity than in the
quadrupole case, which hastens the semimajor axis decay. This suggests that the
octopole level must be taken into account when determining which long-term system
evolutiofn scenarios are capable of producing HAT-P-2b on its present orbit over
the system lifetime.
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tentially encode its evolutionary history, unlike a planet on a circular orbit. Second,
the opportunity exists for ongoing characterization of the outer companion and its
associated secular effects on the planet, which, in conjunction with tidal effects,
seem likely to have governed the system’s long-term evolution. Accordingly, the
primary goal of this study is to characterize high-eccentricity migration within this
system from semi-analytic grounds, and to derive constraints on the dissipation in
this giant planet from available data. In particular, we concern ourselves with the
rate of tidal dissipation permitting the system’s evolution to the observed present-day
state over its multi-Gyr lifetime. As will be discussed shortly in more detail, the tidal
dissipation rate can be parameterized in terms of the quality factors Q of the tidally
interacting bodies, or equivalently, their viscous dissipation timescales ty. While
these parameters admittedly serve as a crude representation of tidal dissipation for
the time being, we choose to neglect the detailed evolution thought to result from
dynamical tides (e.g. Vick, Lai, and Anderson 2019). Such corrections to the tidal
model may be considered in future work, when constraints are obtained in greater
detail for the HAT-P-2 system and other highly eccentric hot Jupiter analogues with

constrained perturbers.!

The remainder of the paper is organized as follows. In Section 6.2, we define the suite
of calculations employed in characterizing HAT-P-2b’s long-term tidal evolution,
followed by the results and discussion in Section 6.3. Finally, conclusions about the
orbital evolution and tidal dissipation of this highly unusual planet are presented in
Section 5.4.

2.2 Methods

We employed the secular formulation of Naoz et al. 2011a; Naoz et al. 2013,
constituted by an octupole-level expansion of the three-body Hamiltonian together
with general relativistic corrections and tides, to derive the long-term evolution of
the HAT-P-2 system. Secular theory is applicable (assuming the system was not
initially near resonance) due to the significant discrepancy between the short period
of HAT-P-2b and that of the outer perturber. The details of our simulations are

discussed below.

IFor circularized hot Jupiter orbits, tidal decay is expected to be dominated by tidal dissipation
in the star (Penev and Sasselov 2011). In contrast, eccentric hot Jupiters offer information about
dissipation rate in the planet, a quantity that is highly uncertain from first principles.
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Octopole-level simulations

A widely-used formulation of the Lidov-Kozai mechanism is an expansion in semi-
major axis ratio @ = dinner/douter Of the disturbing function to quadrupole order
O(a?). In this framework, if one of the masses of the inner orbit of the hierar-
chical triple is a test particle and the outer orbit is circular (aka the test particle
quadrupole approximation; see Naoz 2016 for a review), the component of the in-
ner orbit’s angular momentum parallel to the outer perturber’s angular momentum,
L, = \/(1—762) cosi, is invariant. Hence, with L, held fixed, the inner orbit ex-
periences periodic exchanges of eccentricity and inclination. Overall, the widely
used quadrupole-level Lidov-Kozai mechanism, assuming an inner test particle and
axisymmetric outer orbit, is sufficient to reproduce accurate behavior in many sys-
tems. However, when the outer orbit has non-negligible eccentricity, or the inner
object is unlike a test particle, behavior at the quadrupole level may differ signifi-
cantly from higher-order results (Naoz et al. 2011a; Naoz et al. 2013; Naoz 2016).
Typically, to characterize these scenarios, it is sufficient to carry out the expansion
to the octupole level O(a?). To this end, Naoz 2016 points out major differences
arising in octupole-level simulations that are outlawed in the quadrupole case. In
particular, because at this higher order, L, is no longer fixed, the inner orbit’s ec-
centricity can—in certain cases—approach unity. Remarkably, not even the sign of
L is immune to variation, and the ability to produce retrograde inner orbits is a
notable feature of the octupole-level expansion (Naoz et al. 2011a; Naoz et al. 2013;
Li et al. 2014b).

In the octopole-level formulation, in which the Hamiltonian can be stated as
H = Hguadrupole + Hoctopole, the octopole part Hocopole scales as the parameter
€ = ajez/((1 — ep)as), where subscript 2 refers to the outer orbit of the hierarchical
triple, and 1 to the inner orbit (Naoz et al. 2013). Indeed, it is known that the
eccentricity of the outer perturber, which is likely to be significant if it was captured
into a wide orbit around HAT-P-2 during a three-body interaction in the system’s
birth cluster, can considerably affect the maximum eccentricity reached by the inner
orbit; in fact, either a high mutual starting inclination or a significant eccentricity of
the outer perturber can lead the inner orbit to attain higher eccentricity (Teyssandier
et al. 2013; Li et al. 2014b). However, for the time being, as the perturber’s eccen-
tricity lacks characterization, we opt to treat it as having low eccentricity (e; = 0.05).
However, when the eccentricity of the outer orbit is better-known, the analysis can
be revised, with an eye toward obtaining a more detailed description of the system’s

long-term evolution.
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Figure 2.2: Contour plot showing, for a range of stellar and planetary quality factors
Q given HAT-P-2b’s presently observed orbital period, the relative importance of
the tides raised on the planet versus tides raised on the star for governing the orbital
circularization. In particular, the colors represent the ratio of |de/dt|p; (the rate of
eccentricity change due to tides raised on the planet) to |de/dt|s (the rate of change
due to tides on the star), employing the formulation of Hut 1981 as described in the
text. A large range of planetary Q is shown, while the stellar Q range shown is in
agreement with the range found by Adams and Bloch 2015 for stars hosting planets
in the Kepler dataset. The thick contour line corresponds to the place on the plot
where the tidal effects of the star and planet are similar in magnitude, whereas tides
raised on the planet dominate the circularization dynamics for (Qpjanet, Ostar) to the
left of the thick contour line.
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Figure 2.3: Tidal circularization of HAT-P-2b from its current state. Left column:
Holding the stellar quality factor Q ., fixed, Q pjanes Was varied from 10*to 10°. The
time of each simulation was scaled by Q y/aner, and the results stacked, demonstrating
that the timescale of circularization in each case scales with Q, with the trajectories
otherwise nearly identical. Given the observed system’s ~Gyr evolution timescale,
and taking into account that here it is shown that circularization timescale 7. is
such that 7¢ire/Q praner ~ 10* — 107, we infer an estimate Oplanet ~ 10* - 10°. Right
column: Informed by the aforementioned estimate, Qpianer ~ 10° was fixed and
Qj1ar Was varied from 10° to 104, Yellow shading shows the region corresponding
to the Qgqr ~ 10% — 107 estimate found by Adams and Bloch 2015.
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Despite the aforementioned effect of the outer orbit’s eccentricity on the strength of
the octopole-level dynamics, itis still the case that, even where the outer perturber has
negligible eccentricity, an important difference between the quadrupole and octopole
cases can arise, shown in Figure (2.1). Specifically, for the HAT-P-2b system, we
encountered a significant quantitative inaccuracy in the quadrupole-level simulations
relative to the higher-order case: significant prolongation of the tidal circularization
timescale. Employing a range of plausible initial conditions of the HAT-P-2 system,
the system evolution timescale was, in some cases, an order of magnitude greater in
the quadrupole case relative to the octopole-level examples. We attribute this effect
to the tendency for slightly greater eccentricity to be permitted in the octopole-
versus quadrupole-level simulations. Although the difference in trajectories arising
in the two cases might appear minor at first glance, the compound effect is that
the quadrupole-order evolution occurs more gradually relative to the higher-order
case. Because a major aim of this work is to understand plausible initial conditions
resulting in evolution to the system’s observed parameters in agreement with the
age of the system, we conclude that quadrupole-level simulations will ultimately be
insufficient to fully characterize Lidov-Kozai migration for our purposes, and opt to

employ the more computationally expensive octopole-level equations.

Hence, to ascertain the possible set of long-range evolution tracks of HAT-P-2b,
we use the formulation of Naoz et al. 2011a; Naoz et al. 2013. General relativistic
effects (first post-Newtonian expansion; Misner, Thorne, Wheeler, et al. 1973) are
applied to the inner and outer orbits. The rotation rates for both bodies are initially
set as 25 days, following Naoz and Fabrycky 2014. Setting the rotation rates to 4
days yields qualitatively identical results. The star is treated as a polytrope with
n = 3, appropriate for a radiative body, while the planet is treated as a polytrope
with n = 1 as a model for a Jupiter-class fully convective body (Stevenson 1982b);
the associated apsidal motion constants k, assumed in the simulations are 0.014 and

0.25 respectively.

Parameterization of tidal dissipation

The notion of the quality factor Q for cyclic processes, defined as the ratio of
stored to dissipated energy over one cycle, originated for the purposes of electrical
engineering?. It was first employed by Johnson 1914 during his work for the

2In the more classic context of resonant RLC circuits, Q is inversely related to the bandwidth;
in other words, circuits with greater Q resonate with minimal dissipation at a small frequency range,
whereas those with lower Q resonate with greater dissipation at a wide frequency range.
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American Western Electric Company (Smith 1986). From there, the use of Q has
spread broadly across the physical sciences. In the astrophysical context, Goldreich
and Soter 1966 introduced Q as a descriptor of tidal evolution; for a tidally distorted
body, they defined it as the ratio of the energy lost during one orbit to the total

energy stored in the tidal deformation.

Estimates for the Q of Jupiter, based on the present-day state of its satellites,
originally ranged from approximately 6 x 10* < Q; < 10° (Goldreich and Soter
1966). Subsequently, (Yoder and Peale 1981) found that the tidal heating of Io
can be accounted for only if Qj resides at the lower end of the range obtained by
(Goldreich and Soter 1966). Additionally, (Yoder and Peale 1981) pointed out that,
while measurements of Io’s heat flow (Matson, Ransford, and Johnson 1981; Sinton
1981; Morrison and . T.elesco 1980) implied that Q; was as low as 4 X 10%, no
existing constant-Q model for the production of the present-day satellite resonances
suggested such a low quality factor for Jupiter. However, by fitting a dynamical
model to astrometric observations of the Jupiter system spanning over a century,
Lainey et al. 2009 obtained a quality factor of Jupiter Q = (3.56 + 0.66) x 10* —
specifically, at the present-day forcing frequency of lo (assuming the conventional
Love number value k, = 0.379; Gavrilov and Zharkov 1977). These discrepancies
in understanding the value of Q highlight the challenges in understanding dissipative
tidal processes in giant planets.

In practice, Q is merely a single parameter invoked to describe the effect of a range
of possible interior dissipative processes. Giant planet interiors may experience
time-varying effects that cause Q to vary (for example, a dilute suspension of
one phase in another; Stevenson 1983); additionally, the specific fluid-mechanical
processes responsible for tidal dissipation are thought to depend on the driving
frequency (Ogilvie 2014; Greenberg 2009), which, for Jupiter, would have varied
as the Jovian satellites migrated. As Greenberg 2009 points out, for a perfectly
viscoelastic oscillator, it is reasonable to assume Q is directly proportional to the
viscous dissipation timescale—or equivalently, that it exhibits inverse proportionality
with respect to the time lag (e.g. Leconte et al. 2010). On the other hand, the extent to
which planets are expected to resemble perfect viscoelastic oscillators is debatable,
and the specific frequency dependence of Q remains an open question, highlighting

the importance of having more examples of tidally evolving bodies with inferable
0.

In the original Goldreich and Soter 1966 formalism, Q is treated as a constant in
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terms of an unchanging phase lag between the angle of the tidal bulge and the
line connecting the centers of the interacting bodies. Alternatively, the quality
factor is defined in terms of a constant lag time 7, such as the 7 employed by Hut
1981—a classic formulation to which we refer in Section 6.3 as a comparison to
our semi-analytic results. Rather than treating Q as a constant, this formalism treats
Q as proportional to the period of the orbit. In the semi-analytic formalism used
in this work to address the system’s detailed evolution, Q is likewise treated as
proportional to the period, but is also defined in terms of a constant dissipative
timescale ty; (Fabrycky and Tremaine 2007a; Hansen 2010; Naoz 2016)

4 ki Gm, ty,
== fvr 2.1
O =305 R 7 @1

where k; is the classical apsidal motion constant, G is the universal gravitational
constant, R, is the body’s radius, m, is the body’s mass, and the subscript r refers

to the body on which tides are raised3.

Choice of initial orbital parameters of HAT-P-2b

The initial orbital elements (a, e,7) are chosen by considering starting parameters
for which the inner planet, in the course of its Lidov-Kozai orbital variations, attains
perihelion distances within the tidal zone of the star. In this particular application, we
resort to the test particle quadrupole (TPQ) approximation. Although the quadrupole
level fails to reproduce accurate system lifetimes due to cumulative small differences
in eccentricity, here we are merely concerned with dynamical evolution that unfolds
on a timescale shorter than that associated with octupolar effects. Specifically, by
uniformly randomly choosing initial a, e, and i from the ranges a € {0.1,5} au,
e € {0,1}, and i € {0,90} deg and treating the angular momentum component
J, = V1 = €2 cos(i) as fixed, we choose initial conditions for which the inner planet’s
initial minimum potentially attainable perihelion distance (agnostic to the argument
of perihelion and longitude of ascending node) is less than 0.1 au and greater than a
few times the Roche limit. This procedure thus serves as an approximate selection
process for the initial (a, e, i) triplets of HAT-P-2b. The effects of varying the initial
longitude of perihelion difference as well as the tidal dissipation rate of the planet

are discussed in detail in the upcoming sections.

3Each body will, of course, have its own tides and its own value of Q. The question of whether
the tidal dissipation of HAT-P-2b is dominated by the planet or the star is addressed in Section 6.3.
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Figure 2.4: Approximate locus of suitable initial conditions for HAT-P-2b. The
initial conditions allowing for tidal decay are expected to reside between the two
isosurfaces of the inner orbit’s approximate minimum perihelion distance. In the
“test particle quadrupole" framework, in which L, is conserved, the lower isosurface
(red) represents orbits that initially come within 0.1 au of the star, in principle
giving the planet an opportunity to experience significant tidal effects. The upper
isosurface (blue) represents orbits that initially invade the Roche zone of the star.
Orbits capable of producing long-term, long-range tidal migration of the planet are
expected to reside between these two extremes.

2.3 Results

Beginning with the presently observed state of HAT-P-2b, and irrespective of the
specific parameters of the exterior perturber, we can already obtain approximate
tidal constraints on the system’s evolution. The tidal evolution of HAT-P-2b’s
eccentricity depends on tides raised on both the star and the planet. Treating the
inner two bodies of the system as a binary, and employing the weak friction model
for close-in binaries developed by Hut 1981, the tidal evolution equation for the

eccentricity due to tides raised on the planet is
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Figure 2.5: Side-by-side comparison of HAT-P-2b’s eccentricity evolution where
the perturber is varied. Starting conditions for the m = 9M,, ;. inner planet are
a=2au, e=0.05i=76.5853. The viscous timescales are ¢ty ; = 100000 yr and
ty2 = 0.05 yr for the star and planet, respectively.
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where gp; = my/mp; > 1 is the mass ratio of star and planet, kp; is the planet’s
apsidal motion constant,  is the rotational angular velocity (assumed to be pseu-
dosynchronous in the case of the planet), and Tp; = Rf,l /(Gmp7) is a typical tidal
time scale, where G is the universal gravitational constant, Rp; is the radius of the
planet and 7 is the constant small time lag, with Q ~ % Additionally, the functions
f3.4(e?) are polynomials which can be obtained in the original derivation. While
the above expression describes the eccentricity evolution due to tides raised on the
planet only, the effect due to tides raised on the star, [de/dt],, is analogously given

by the same expression, with the role of star and planet reversed.
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Considering present-day parameters of the bodies and their orbits, we can employ the
above formulation to carry out a precursory examination of the relative importance
of dissipation in the planet versus the star. Assuming a stellar Q ~ 10% — 107 (the
range which Adams and Bloch 2015 determined can best account for the survival of a
sample of close-in Kepler planets having measured stellar rotation rates; McQuillan,
Mazeh, and Aigrain 2013), the present-day ratio of [de/dt]p; to [de/dt]4, obtained
according to the above rationale, is shown in Figure (2.2). Upon examination, it
is apparent that, for the assumed range of stellar Q, dissipation in the planet has
an effect comparable or greater in magnitude, relative to dissipation in the star,
for Qp; < 10°. Furthermore, the timescale 7, of eccentricity evolution can be

approximated as

T, ~ e/|de/dt]|. (2.3)

Equating 7, to the age of the system, this expression provides a rough estimate of
Oplanet, i.e., O ~ 10* — 10°, remarkably close to the inferred Q of Jupiter itself.

Having obtained this precursory estimate, we proceed to numerically integrate the
equations of motion for a more detailed analysis. Figure (3.1) shows the evolution
of HAT-P-2b forward in time from its present-day orbital state, varying either the
quality factor of the planet or the star. Taking into account the ~Gyr system age
and the observation that the circularization timescale 7, scales as Qpjaner, We again
find that Qpjanet ~ 10* - 10° corresponds to a circularization timescale comparable
to the age of the system, a result which agrees with the analysis presented earlier in
this section. Furthermore, we find that a stellar quality factor Qg = 10° produces
evolution timescales that agree, to order of magnitude, with the behavior produced

in the case of the aforementioned stellar constraint from Adams and Bloch 2015.

While HAT-P-2b is now essentially decoupled from the outer companion, its orbital
state seems to indicate this was not always the case, as KCTF is the suspected mech-
anism behind its present-day eccentric orbit. Given the above precursory analysis,
we now carry out a second analysis, this time accounting for the secular evolution-
ary history of HAT-P-2b. Specifically, we consider how the system evolution varies
according to the specific mass and orbital radius of the perturber. The differences
in timescale arising from varying the perturber within the rough range of likely
parameters predicted by Lewis et al. 2013 is illustrated in Figure (2.5). When the

perturber is better characterized, improved constraints will be attainable on the full
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evolutionary history of HAT-P-2b.

Although additional constraints on the perturber will shed light on further details of
HAT-P-2b’s evolution, we do find that, for nominal perturber values in agreement
with Lewis et al. 2013, Lidov-Kozai evolution can indeed successfully reproduce
the system’s present-day parameters over the system’s age, from starting conditions
beyond the approximate location of the “snow line.” At the octopole level, we
found examples of plausible evolutionary pathways. In these cases, HAT-P-2b
initially possesses wide (a > 1 au) separation from the host star, and simultaneously
attains the approximate observed eccentricity and semimajor axis of the planet. This
occurs over a timescale comparable in order of magnitude to the system’s lifetime
of 2.6 £ 0.5 Gyr (Pél et al. 2010).

Method for deriving tidal dissipation rate

Because currently, the exterior perturber of HAT-P-2b is known only as a develop-
ing radial velocity trend, we are limited to a preliminary analysis of the system’s
evolution. Accordingly, we describe a generalizable method by which a hot Jupiter’s
viscous timescale ty—and, by extension, its quality factor Q—may be refined based
not only on the system age, but on the specific present-day a and e in conjunction
with the system age.

First, to identify evolutionary pathways capable of producing the system’s present-
day orbit, we choose initial orbital parameters for HAT-P-2b uniformly at random
from the locus of suitable initial conditions described in Section 2.2. For the
purposes of this example, the viscous timescale of the star is taken to be great
enough that tides from the planet dominate (e.g. ty; = 1 x 10° yr) while the
viscous timescale of the planet is chosen from a uniformly logarithmically random
distribution, for example log,,(tv 2, [yr]) € [-2,1]. In future cases where more
detailed constraints render a more detailed analysis feasible, the viscous timescale of

the star could also be varied. Sampling from this locus of plausible initial conditions

’

V.2
of HAT-P-2b, each simulation’s evolutionary timescale is normalized to agree with

and ty 5, we evolve the system. To calculate the extrapolated viscous timescale ¢

the known system age. That is, for a Tops ~ 10° yr observed system age, if a
simulated system required a time 7, to circularize with a planet viscous timescale

tv .2, we obtain the extrapolated viscous timescale l{/,z = (Tobs/ Tsim )1V 2-

The results obtained from this approach, for one nominal example of a perturber, are

illustrated in Figure (2.7), showing semimajor axis a r .—.5 when the planet crosses
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Figure 2.6: Two examples of octupole-level evolution pathways in which HAT-P-2b
initially resides at several au from the star, and, under the influence of an exterior
perturber, experiences circularization on a ~Gyr timescale comparable to the age
of the system. Observed values of eccentricity and semimajor axis are illustrated
with red lines, and the semimajor axis a s .-o.5 of HAT-P-2b occurring at the instant
its orbit attains the observed eccentricity e = 0.5 during the final circularization
pathway is shown represented by purple dots in the middle row, showing that
the attained parameters agree roughly with observations. The viscous timescales
ty.1 = 100000 and ty > = 0.05 yr for the star and planet, respectively.

through the observed eccentricity e ~ 0.5 in the course of its final circularization, as
a function of extrapolated viscous timescale. Notably, this method does not merely
account for the circularization timescale alone—the specific parameter considered
is the semimajor axis at the moment of final circularization through the system’s
present-day eccentricity value (e = 0.5 in the case of HAT-P-2b). As shown in

Figure 2.7, two cases were explored:

In the first suite of simulations (Figure 2.7, top plot), ty was uniformly logarith-
mically randomly chosen from the plausible range ¢ty € {1072,10'} and initial

longitude of perihelion difference A w is zero for all simulations.
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Figure 2.7: Example result from the method described in Section 2.3 for obtaining
the viscous timescale t{/,z of HAT-P-2b, which is related to the period-dependent
quality factor Q via Equation 2.1. Initial conditions were chosen according to the
prescription outlined in Section 6.2, with simulated #y > uniformly logarithmically
randomly chosen. This plot shows the semimajor axis a0 5 occurring when the
planet executes its final traverse through the observed eccentricity value e = 0.5,
as a function of extrapolated viscous timescale 7}, obtained by multiplying the
simulated ty by a factor of Tops/Tsim, Where Tops is the observed system lifetime and
Tsim 1S the time it takes for each simulation to reach its final passage through e = 0.5
while circularizing. Notably, it is crucial to point out that in this case, t(/,z is the
extrapolated viscous timescale derived by scaling according to the circularization
timescale exhibited in the simulation for a chosen ty . Top: the case where initial
Aw is held fixed (Aw; = 0) and ty is randomly chosen via the method described in
the text. Bottom: the case where ty is held fixed and initial A @ is uniformly randomly
chosen. Grey points represent the simulations depicted in the Aw-invariant case
(top). Black symbols (x, o, O, X, +) mark each randomly chosen Aw = 0 case that
is re-run with uniformly randomly chosen initial Aw, and the colors of symbols
represent initial Aw. The tendency for cases with varied Aw to follow the swath
determined in the initial-Aw-invariant case appears to suggest that the obtained
mapping between inferred ¢ty and a7 .- 5 is robust to variation of initial Aw.
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In the second case (Figure 2.7, bottom plot), successfully circularizing initial con-
ditions from the @;,;;;y = 0 case were chosen at random. From inspection of our
simulations, there is an apparent trend that greater values of Aw lead to longer
circularization timescales. In this second simulation suite, #y was held fixed at
tv = 1072, the lower bound of the initial selection range. Using a fixed lower value
of ty allowed us to investigate the effect of varying initial A@ on the extrapolated
viscous timescale #{,, without sampling high-7y cases with prohibitively long simu-
lation timescales. Moreover, initial A was randomly varied, for several randomly

chosen circularizing simulations from the constant Aw case.

In both cases, it is evident that the synthetic data obtained through this method form a
particular swath across the plane, which appears to suggest a mapping of extrapolated
viscous timescale t{/,z to the semimajor axis at the moment of final passage through
a given eccentricity. In particular, for the given perturber, simulations producing a
correspondent semimajor axis in agreement with observations are associated with a
value of l(/,z between ~ 1072 — 107! yr, for the example perturber used. Moreover,
it is necessary to emphasize that, because the circularization timescale is perturber-

dependent, this method depends on characterization of the outer perturber.

As we have shown that wide variation arises in the system evolution timescale given
different perturbers chosen within the parameter range allowed by Lewis et al. 2013,
we do not consider this example to offer an actual constraint at this time. However,
refinement of the perturber’s parameters will allow for a more definitive analysis,
and this procedure to use system lifetime in conjunction with the presently observed
a, e to determine tidal dissipation rate in the planet may be applicable to additional
systems in the future.

2.4 Discussion and Conclusion

Given the wide array of complexities inherent to the study of tidal dissipation in
giant planets, hot Jupiters which encode tidal dissipation rates are highly valuable
in that they offer a window into vastly more examples of dissipation in planetary
interiors than the solar system can provide. Strides have already been made in this
direction; as an example, Matsumura, Takeda, and Rasio 2008 have provided the
estimate 10° < Q < 10° for transiting planets. In this work, focus has been given to
those hierarchical triples with a characterizable exterior perturber, as these systems

can potentially allow for specific characterization of the system’s orbital evolution.

This work provides an intriguing estimate of tidal dissipation within an exoplanet. In
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addition to the approximate estimate of the present-day quality factor Q@ ~ 10* —10°
derived in this work from the hot Jupiter’s present-day configuration, we have found
that for eccentric hot Jupiter systems where an outer companion is characterized,
more detailed constraints on tidal dissipation in the planet may be available. In
particular, we have outlined a method to constrain the viscous timescale ¢y for such
systems. Itis important to note that, in the formulation used in this work, the quality

factor Q of the planet is a period-dependent function of ¢y.

The hot Jupiter HAT-P-2b (HD 147506b) has presented an atypical opportunity to
characterize the tidal dissipation occurring in a giant planet. Due to the highly eccen-
tric present-day state of HAT-P-2b, combined with the preliminary characterization
of its exterior companion (Lewis et al. 2013), HAT-P-2b encodes its tidal evolution
history. Eccentric analogues to HAT-P-2b that also possess a characterized massive
exterior companion (e.g. Rey et al. 2018) will provide similar contributions to an
emerging perspective of the dissipation in tidally migrating exoplanets, particularly
as the Transiting Exoplanet Survey Satellite (TESS) is expected to greatly increase
the sampling of close-in exoplanets.

Given the presently observed conditions of HAT-P-2b, the estimate Qpjanet ~ 10% —
10° obtained (independent of the perturber’s conditions) at the start of this work
roughly agrees with existing estimates for giant planets, including that of Matsumura,
Takeda, and Rasio 2008, as well as existing constraints on the value of Q for Jupiter
and Saturn. Despite this agreement, it is prudent to remember that the formulation
of tidal decay employed in this work neglects the inherently complicated nature of
the processes underlying Q. When additional planets are discovered with similarly
attainable Q values, this new set of examples may inform more detailed first-

principles estimates of the dissipation.

We have confirmed that Lidov-Kozai evolution (Naoz et al. 2011a; Naoz et al. 2013)
appears to be a feasible route for HAT-P-2b to have attained its present-day state. In
particular, we have found that, in simulations with nominal perturber parameters in
agreement with Lewis et al. 2013, the current a, e values of the system may offer
constraints on planetary Q when characterization of the outer companion is further
developed. In fact, for the nominal perturber parameters considered, we have found
that a surprisingly tight bound on the planet’s tidal dissipation may be attainable
through simulation of the system’s total secular evolution. Thus, as the exterior
companion to HAT-P-2b is better characterized, we expect that it will be possible to

derive improved constraints on the tidal dissipation in this highly exotic giant planet.
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Furthermore, we reiterate that in the Lidov-Kozai formalism we have found that
it can be necessary to consider the order of expansion of the disturbing function
to ensure an accurate system evolution timescale is reproduced. Because at the
octopole level O(a?), the z-component of the angular momentum of the inner planet
(where Z is parallel to the system angular momentum) is not fixed, this effectively
results in slightly higher eccentricities; the compounding effect of numerous slightly
closer encounters with the star is for the orbit to decay at a significantly faster rate.

Consideration of this effect is crucial in future studies of similar systems.

Historically, the understanding of tidal dissipation in planets has faced challenges
from the lack of available examples. Although there are currently thousands of
known exoplanets, the majority of close-in examples retain little information about
their tidal histories. By considering eccentric planets with characterizable exterior
massive companions, we conclude that it will be feasible to reconstruct tidal histories

and obtain a broader understanding of planetary tidal dissipation.
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ABSTRACT

More than two decades after the widespread detection of Jovian-class planets on
short-period orbits around other stars, their dynamical origins remain imperfectly
understood. In the traditional narrative, these highly irradiated giant planets, like
Jupiter and Saturn, are envisioned to have formed at large stello-centric distances
and to have subsequently undergone large-scale orbital decay. Conversely, more
recent models propose that a large fraction of hot Jupiters could have formed via
rapid gas accretion in their current orbital neighborhood. In this study, we examine
the period-mass distribution of close-in giant planets, and demonstrate that the inner
boundary of this population conforms to the expectations of the in-situ formation
scenario. Specifically, we show that if conglomeration unfolds close to the disk’s
inner edge, the semi-major axis-mass relation of the emergent planets should follow
a power law a o« M~2/7 — a trend clearly reflected in the data. We further discuss
corrections to this relationship due to tidal decay of planetary orbits. Although our
findings do not discount orbital migration as an active physical process, they suggest
that the characteristic range of orbital migration experienced by giant planets is

limited.
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3.1 Introduction

Speculation regarding the potential existence of giant planets that orbit their host
stars in a matter of days dates back more than seven decades, to the proposed spec-
troscopic survey of Struve 1952. In retrospect, the remarkable lack of attention
devoted to this possibility (in the forty years that followed its publication, Struve’s
manuscript received six citations) can almost certainly be attributed to the stark
contrast between the imagined nature of such objects and the expansive orbital
architecture of our solar system. Accordingly, the 1995 discovery of the first hot
Jupiter, 51 Pegasi b (Mayor and Queloz 1995), proved to be an immediate challenge
to the hitherto conventional theory of giant planet formation (Pollack et al. 1996),
sparking considerable interest in reconciling the existence of Jupiter-like bodies on
extremely close-in orbits with the theory of core-nucleated accretion. However, de-
spite numerous efforts to conclusively resolve the problem of hot Jupiter formation,

the origins of these remarkable objects remain imperfectly understood.

Generally speaking, the various formation pathways of Jovian-class planets at small
orbital radii can be summarized into three broad categories: smooth migration,
violent migration, and in-situ conglomeration. Within the framework of the first two
scenarios, giant planet formation unfolds exclusively at large stello-centric distances
(i.e. a few astronomical units) as originally imagined for the Solar System’s giant
planets (Bodenheimer and Pollack 1986). Subsequently, upon conclusion of the
primary accretion phase, the planet’s orbital radius undergoes large-scale decay,
shrinking by a factor of ~ 102 (Lin, Bodenheimer, and Richardson 1996). In the
smooth migration picture, this is accomplished by dissipative interactions between
the planet and its natal disk (via the so-called type-II mode of gas-driven migration;
Kley and Nelson 2012), while the violent picture entails a sequence of events wherein
the planet first attains a nearly parabolic trajectory (as a consequence of planet-planet
scattering or the Lidov-Kozai mechanism; Beaugé and Nesvorn 2012; Naoz et al.

2011b) and then gets tidally captured onto a close-in circular orbit.

The in-situ model of hot Jupiter conglomeration (Batygin, Bodenheimer, and Laugh-
lin 2016a) is markedly different from the picture described above in that the extent
of orbital migration is assumed to be limited, and the vast majority of the plane-
tary mass is imagined to accrete onto the planet locally (i.e. at a radial separation
of order ~ 0.1 au or smaller). Importantly, in this case, core-nucleated instabil-

ity is envisioned to be triggered by massive super-Earth type planets!, which are

I'The fact that the process of core-nucleated accretion is relatively insensitive to the temperature



30

strictly disallowed within the context of the traditional Minimum Mass Solar Neb-
ula (Weidenschilling 1977; Hayashi 1981) but are found in great abundance around
Sun-like stars by photometric and spectroscopic surveys (Howard et al. 2010; Mayor
et al. 2011; Batalha et al. 2013a; Dressing and Charbonneau 2013, 2015; Fressin
et al. 2013; Petigura, Howard, and Marcy 2013; Mulders, Pascucci, and Apai 2015;
Winn and Fabrycky 2015a). We note, however, that for the purpose of our study,
we remain completely agnostic as to the origins of the high-metallicity cores them-
selves: whether they too form locally (Chiang and Laughlin 2013; Lee and Chiang
2016; Boley, Contreras, and Gladman 2016) or instead get delivered to short-period
orbits by (type-I) planet-disk interactions (Fogg and Nelson 2007; Savvidou, Bitsch,
and Lambrechts 2020) matters very little for the results that will follow.

In light of the relatively low occurrence rate of hot Jupiters (~ 1% for Sun-like stars;
Howard et al. 2010, Gould et al. 2006, Wright et al. 2012), it is not straightforward
to determine which of the three aforementioned scenarios plays the dominant role
in hot Jupiter generation. While observational signatures associated with each
pathway have been widely discussed in the literature (see e.g. Winn and Fabrycky
2015a for a review), these predictions typically entail some level of degeneracy. To
this end, Batygin, Bodenheimer, and Laughlin 2016a have shown that the in-situ
model is characterized by a key observational consequence - namely that close-
in Jovian planets should frequently be accompanied by (co-transiting as well as
strongly inclined) super-Earth type companions. While circumstantial evidence has
emerged for the existence of such companions (Becker et al. 2015; Huang, Wu,
and Triaud 2016), Spalding and Batygin 2017 point out that the coexistence of hot
Jupiters and low-mass planets is not strictly ruled out within the framework of the
smooth migration paradigm, preventing a definitive distinction between the models.
Furthermore, even spin-orbit misalignments, which were long touted as a marker of
violent evolutionary histories (Fabrycky and Tremaine 2007b; Naoz et al. 2011b),
have failed to conclusively inform the nature of hot Jupiter dynamical evolution, as
numerous studies have shown that arbitrary stellar obliquities can naturally arise as
a result of gravitational and magnetohydrodynamic disk-star interactions (Lai 1999;
Bate, Lodato, and Pringle 2010a; Spalding and Batygin 2014a, 2015a).

With an eye towards resolving the ambiguity among the three categories of hot

Jupiter formation models, here we examine the relationship between the masses of

and pressure of the nebula, and can therefore proceed anywhere in the disk, was first demonstrated
by the analytic calculations of Stevenson 1982a. More realistic numerical simulations of hot Jupiter
conglomeration at » ~ 0.05 au are presented in Batygin, Bodenheimer, and Laughlin 2016a.
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close-in giant planets and the distribution of their orbital periods. In particular, we
argue that the observations signal a strong consistency with the in-situ formation
scenario, suggesting that the extent of orbital migration suffered by this population of
planets is unlikely to be particularly large. The remainder of the paper is structured
as follows. In Section 3.2, we show that the inner boundary of the period-mass
distribution of locally forming hot Jupiters is expected to follow a well-defined
power law, and demonstrate empirical agreement between this relation and the
observations. From there, we proceed to discuss tidal evolution. We present our

conclusions in Section 3.3.

3.2 Period-mass relation

The planetary mass as a function of the semimajor axis of the current observational
census of extrasolar planets shown in Figure (3.1). Objects with confirmed (mini-
mum) masses discovered via the radial velocity technique and transit observations
are shown with blue and red points respectively. Transiting planets without direct
mass measurements are shown as grey dots, and their masses are estimated using

the mass-radius relationship of Chen and Kipping 2016.

The inner boundary

The inner edge of the a — M diagram shown in Figure (3.1) has a rather well-defined
profile, exhibiting a clear dependence on the planetary mass. Specifically, for planets
less massive than ~ 0.1M}, the boundary has positive slope, while the converse is
true for more massive planets (Mazeh, Holczer, and Faigler 2016). Given the four
orders of magnitude spanned by the range of Figure (3.1), it is entirely plausible that

the two dividing lines are carved by unrelated physical processes.

The distribution of sub-Jovian (M < 0.1Mj) planets is almost certainly sculpted by
photoevaporation (Owen and Wu 2013; Lopez and Fortney 2014). Recasting the
period-mass diagram into an irradiation-radius diagram, Lundkvist et al. 2016 have
argued that the region of parameter space that exhibits a strong paucity of planets
(the so-called sub-Jovian desert) is fully consistent with the effects of atmospheric
mass loss. Moreover, the recent determination that the radius distribution of sub-
Jovian planets is strikingly bimodal (as predicted by the photo-evaporation models;
Fulton et al. 2017b) adds further credence to the notion that the origin of the
positively sloped boundary in Figure (3.1) is rooted in radiative stripping of planetary

envelopes.

Intriguingly, the same process cannot be invoked to explain the orbital architecture



32

cold Jupiters

hot Jupiters

Tidal decay

o
T

log, (Planet Mass [M, . 1)
L

2}
(inset)

-2 -

L L L
-3 -2 -1 0 1

log,, (Semi-major axis [au])

Figure 3.1: The a o« M~2/7 relation derived for in-situ hot Jupiter formation shows
empirical agreement with the lower boundary of the observed giant planet population
in the a — M diagram. Left panel: The cold Jupiter (blue shading) and hot
Jupiter (red shading) populations are shown in relation to the giant planet “desert”
(yellow shading). Blue points: planets detected via the radial velocity technique,
for which M sini is plotted in lieu of M. Red points: transiting planets with directly
determined masses. Transiting planets with masses inferred from a mass-radius
relation are shown as grey points. Right panel (inset): A density histogram in
the loga — log M plane. The boundary of the hot Jupiter population is empirically
well-described by a line with slope in agreement with the magnetically governed
power law relation derived in the text. Adjusting the assumed T-Tauri parameters
within the observed range yields lines traversing the hot Jupiter population, with a
line corresponding to R, ~ 2R bounding the approximate upper edge of the most
populated region (dashed line). Divergence from this empirical best fit line at short
orbital radii agree with the tidal decay curve (purple) showing the evolution from
the best fit line expected after 5 Gyr of evolution. The grey lines illustrate the tidal
decay isochrons described in the text.
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of hot Jupiters as a population. Models of atmospheric mass loss from highly
irradiated giant planets (Murray-Clay, Chiang, and Murray 2009; Adams 2011)
suggest that over the main-sequence lifetimes of their host stars, typical hot Jupiters
will only lose ~ 1% of their total mass, altering the period-mass distribution to a
negligible degree. Asaconsequence, a separate mechanism is needed to establish the
negatively sloped boundary in Figure (3.1). Let us now examine the possibility that
the observed distribution is nothing other than a relic of giant planet conglomeration

at short orbital periods.

in-situ formation of hot Juipiters

By now, it is generally accepted that the vast majority of hot Jupiters have formed
via the core accretion pathway (Miller and Fortney 2011). Nevertheless, there
is considerable uncertainty regarding the specific value of the critical core mass
required to trigger runaway gas accretion at orbital radii smaller than ~ 0.1 au. In
particular, 1D calculations of Ikoma, Emori, and Nakazawa 2001; Lee and Chiang
2015, 2016 yield 2 — 3 and 2 — 8 Earth masses respectively, while simulations of
Bodenheimer, Hubickyj, and Lissauer 2000b; Batygin, Bodenheimer, and Laughlin
2016a suggest a value closer to 15M. Adding further uncertainty to this estimate,
3D hydrodynamic models of Lambrechts and Lega 2017 draw attention to the
importance of global circulation within the Hill sphere for the determination of the

energetics of this problem.

The results of our study are largely insensitive to the specific characteristics of the
high-metallicity core, as here we focus on the runaway accretion phase itself, during
which the planet acquires most of its mass. Correspondingly, as a first step, it
is worthwhile to consider the material budget of the inner disk. The amount of
gas contained within & = 0.1 au of a Mestel 1961-type protoplanetary nebula with
surface density profile X = Xo(ro/r) and X9 = 2000 g cm™~2 at rg = 1 au is

3
‘75 / Yrdrdeg < 2nXogroé < My, (3.1

where rj, denotes the inner edge of the disk.

This simple estimate alone is sufficient to conclude that upon entering the runaway
accretion regime, a locally forming hot Jupiter does not attain its final mass on a
comparatively short (e.g. ~ 10* year) timescale. Instead, the gas must be delivered

to the growing proto-planet by viscous accretion. Therefore, it is sensible to crudely
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express the hot Jupiter mass as
MHJ ~T M (32)

where M is the gas accretion rate at the inner edge of the disk, and 7 is some
characteristic accretion timescale (generally, some fraction of the disk lifetime)

governed by the efficiency by which material is accreted onto the hot Jupiter.

Within the framework of the in-situ model of hot Jupiter conglomeration, the small-
est orbital radius where gas accretion can unfold is, roughly, the magnetospheric
truncation radius of the disk. Importantly, like Myj, the truncation radius is also
determined by M. The expression for this length scale is well-known and is written
as (Ghosh and Lamb 1979; Koenigl 1991a; Shu et al. 1994)

A 2/7

MANGM,

where M is the stellar magnetic moment, G M, is the star’s standard gravitational

Rl‘ ~ (3.3)

parameter, and M is the disk accretion rate. Physically, R; is a characteristic radius
at which viscous spreading of disk material is balanced by stellar magnetospheric

torque acting upon the gas.

Combining equations (3.2) and (3.3), we obtain the relation?

2/7

oo M7 (3.4)

Mt
~ HJ

MuyVG M,

Inlog(a)—log(M) space, this power law relation manifests as a line with slope —2/7.
Correspondingly, Figure (3.1) shows a line corresponding to the example T-Tauri
parameters My ~ 1M, and M = B*Ri (Bx ~ 1 kG, Ry ~ 1.2R), in excellent agree-
ment with the lower boundary of the hot Jupiter population. This line corresponds,
specifically, to the lower bound on the hot Jupiter cluster in the period-mass plane.
Intriguingly, keeping the other parameters constant while setting R, ~ 2R, toward
the somewhat higher end of observed T-Tauri radii Bouvier et al. 2007, yields an
additional line which, together with the aformentioned lower bound, envelops the
approximate region of the parameter space most densely populated with observed
hot Jupiters.

2Serendipitously, Wisdom 1980, describing the onset of resonance overlap in the planar circular
restricted three-body problem, also derives a —2/7 power 1aw Soverap = w27 where s ~ 2/ (3Aa)
and Aa is the approximate separation of resonances. However, the underlying physics in these two
cases is unrelated.
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In what now appears, potentially, to be a developing picture of in-situ hot Jupiter
formation, the specific timing of planet accretion is a topic that will require extensive
future study. Observationally derived estimates for M among T-Tauri stars of age
~ 1 Myr have a median of 10~8M ;rl and intrinsic scatter an order of magnitude in
each direction (Hartmann et al. 1998). If these values are well-representative of the
conditions in which hot Jupiters form, then the median value of 7 in relation (3.2) is
roughly 103 yr. Due to the unknown accretion efficiency, the uncertain timing with
which suitable cores appear, and the finding (Hartmann et al. 1998) that accretion
declines with time, the characteristic accretion timescale will be left as a topic of

future consideration. For now, these factors are absorbed into the constant tau.

Tidal evolution

At greater masses and shorter periods, the observations appear to diverge from the
a o« M=% trend. As a resolution to this apparent disparity, let us consider the role
of tidal evolution in shaping the hot Jupiter population. In particular, we follow the
formalism outlined in Murray and Dermott 1999a for the standard case of a planet
moving on a circular, equatorial orbit with mean motion n, around a star rotating
with angular speed Q. For the case Q < n, the tidal bulge induced on the star by the
planet lags behind the planet’s orbit, leading to orbital energy loss and consequent

decay of the semimajor axis.

The contraction of hot Jupiter semimajor axes is predicted by the well-established

formula (Murray and Dermott 1999a):

da 3](2* MHJ (C*)5
= - an.

a0 m\a 35

a

where ko, is the tidal Love number of the star (equal to 0.01 for an n = 3 polytrope
(Batygin and Adams 2013a), appropriate for a fully radiative body, and Q. is
the stellar quality factor, typically estimated to be roughly ~ 10° to 10° (Jackson,
Greenberg, and Barnes 2008; Levrard, Winisdoerffer, and Chabrier 2009; Laughlin
et al. 2009). The stellar mass is represented as M,, and the stellar radius is denoted
as C,. Rearrangement of this equation and integration with respect to a and ¢ yields
an equation for the final semimajor axis a s in terms of initial semimajor axis a; and

total evolution time ¢:

2/13
132 133kox Myy 5
=|a. - CANGM . 3.6
i 2 0, M, *VTV* (3-6)




36

Imagining orbital decay to unfold over a typical system lifetime of ~ 5 Gyr, origi-
nating from initial values of (a, M) defined by the best-fit line found at the boundary
of the hot Jupiter population, we obtain a tidally corrected inner boundary, which
is shown in Figure (3.1) as a purple curve. Remarkably, tidal evolution appears to
fully explain the bulk of trend-crossing hot Jupiters. The expected number of these
tidally decaying planets is sensitively dependent on initial conditions. The Transit-
ing Exoplanet Survey Satellite (TESS) mission is expected to further elucidate the

initial conditions of the hot Jupiter swarm.

Finally, we consider the role of tides in shaping the hot Jupiter population at even
greater masses. Specifically, by rearranging (3.6), we obtain, for a given time span,
an expression for the initial radius from which a planet of given mass decays to
the Roche limit. Examples of the resulting curves, for 1 and 5 Gyr, are shown in
grey (Figure 3.1). Notably, these tidal decay isochrons agree with the approximate
boundary of the hot Jupiter population for M > M;.

3.3 Conclusion

At the dawn of exoplanetary observations, the conceptual foundation of planet
formation was built upon the lone case of the Solar System. Given the paltry
mass of the terrestrial planets and the lack of material orbiting interior to Mercury,
it was thought that planet formation was generally inactive at short orbital radii
(Cameron 1988; Rafikov 2006). To alleviate the ostensible paradox brought about
by the discovery of hot Jupiters, migration mechanisms were invoked to explain
how giant planets could be delivered inward from distant, Jupiter-type orbits (Lin,
Bodenheimer, and Richardson 1996).

Today, the landscape of exoplanet detections foretells a very different story (Laughlin
and Lissauer 2015). It is observationally well-established that a generic outcome of
the planet formation process is short-period super-Earths, the most massive of which
can successfully trigger rapid gas accretion and become gas giants, if allowed to
reside within their natal nebulae for ~ 1 Myr (Bodenheimer, Hubickyj, and Lissauer
2000b; Batygin, Bodenheimer, and Laughlin 2016a). In fact, given the remarkable
scarcity of close-in gas giants relative to sub-Jovian short-period planets, all that is
needed to reproduce the vast majority of the hot Jupiter population in situ, is for
~ 1% of young super-Earths to enter the runaway regime of conglomeration before

dissipation of their protoplanetary nebulae.

In this work, we have explored the in-situ formation scenario of hot Jupiters further,
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and demonstrated that a bounding relation a oc MI;JZ/ Tis expected to manifest if a
significant fraction of these objects formed locally. Intriguingly, we find that the
slope of this power law is in excellent empirical agreement with the lower edge
of the hot Jupiter population on the a — M diagram, with corrections from tidal
dissipation playing a secondary role (Figure 3.1). Accordingly, this finding yields
further support to the hypothesis that in-situ formation accounts for a considerable

fraction of hot Jupiters.

We note that, in addition to typical short-period Jovian planets that reside on nearly-
circular orbits, there exist numerous instances of highly eccentric hot Jupiters with
exterior companions, for which the most simple explanation is that they are undergo-
ing the final circularization phase of violent (possibly Lidov-Kozai) migration (Wu
and Murray 2003b; Fabrycky and Tremaine 2007b). While these objects certainly
do not fit into the picture presented herein, Dawson, Murray-Clay, and Johnson
2014b have demonstrated that only a minority of hot Jupiters could have formed via
this high-eccentricity pathway, weakening the case for this flavor of orbital transport
as a dominant route for hot Jupiter production (see also Ngo et al. 2016). Moreover,
unlike the upper boundary of the hot super-Earths in the a — M diagram (which
is adequately explained as resulting from photoevaporation; Owen and Wu 2013,
Lopez and Fortney 2014), the mass-period relationship governing the sharp lower
boundary of the hot Jupiters has so far evaded migratory explanations (Owen and
Lai 2018).

Despite the aforementioned correspondence between the in-situ a — M relation (3.4)
and the data, it is clear that treating migration as utterly non-existent in planet
formation theory is as extreme as demanding that migration must necessarily be
long-range. To the contrary, there is no doubt that, at least to some extent, giant
planet migration plays a role in shaping planetary systems. For example, mean
motion resonances found in systems such as GJ 876 (Marcy et al. 2001) are almost
certainly a product of convergent migration (Lee and Peale 2002). Moreover, our
own solar system holds distinct markers of past giant planet migration, not least of
all being the notion that the terrestrial planets are best reproduced in models that
include successive inward and out-ward migration of Jupiter over several au (the
so-called “Grand Tack;” Walsh et al. 2011, see also Batygin and Laughlin 2015).
Importantly, however, systems that show evidence of migratory sculpting typically
require only short-range orbital transport. Thus, our results cumulatively suggest

that long-range migration of giant planets is likely to be the exception rather than
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the rule.
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Chapter 4

THERMODYNAMICALLY GOVERNED INTERIOR MODELS
OF URANUS AND NEPTUNE
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ABSTRACT

Interior models of Uranus and Neptune often assume discrete layers. However,
sharply defined interfaces are expected only if major constituents are immiscible.
Diffuse interfaces could arise if accretion favored a central concentration of the least
volatile constituents (also incidentally the most dense); compositional gradients
arising in such a structure would likely inhibit convection. Currently, two lines of
evidence suggest possible hydrogen-water immiscibility in ice giant interiors. The
first arises from crude extrapolation of the experimental H>-H;,O critical curve to
~ 3 GPa (Bali, Audétat, and Keppler 2013). The data are obtained for an impure
system containing silicates, though Uranus and Neptune could also be “dirty.” If this
laboratory result pertains to the H,-H,O binary system, it disagrees with current ab
initio models (Soubiran and Militzer 2015), though hydrogen and water are difficult
to model from first-principles quantum mechanics with the necessary precision. The
second argument for Hp-H,O immiscibility in ice giants, outlined herein, invokes
reasoning about the observed gravitational and magnetic fields. While a consensus
remains lacking, in this work we examine the immiscible case. The interior compo-
sition is then governed by the H,-H,O coexistence curve. Applying this constraint,
we find that to satisfy observations, Neptune models must contain an envelope water
mole fraction y.,, = 0.1 relative to hydrogen. In contrast, Uranus models require
Xy S 0.01. As cooling progresses, the layers approach a fully demixed state.
We find enough total gravitational potential energy would be available from this
process to supply Neptune’s present-day heaflow for roughly ten solar system life-
times. Hydrogen-water demixing could slow Neptune’s cooling rate by an order of

magnitude; different demixing states could account for the different heatflows.



41

4.1 Introduction

Currently, Uranus and Neptune are the only planets in the solar system that still
await visitation by an orbiter mission. Due to this relative lack of spacecraft cov-
erage, as well as challenges to ground-based work resulting from their greater
distance, knowledge about the so-called ice giants! is limited compared to the other
solar system planets. But despite the general dearth of detailed information for
Uranus and Neptune, the Voyager 2 flyby, as well as ongoing ground-based ob-
servations, have revealed a clear paradox for these two planets, to be addressed
in this work. Specifically, while Uranus and Neptune possess qualitatively simi-
lar magnetic fields—suggesting similar interior convective geometries distinct from
all other dynamo-generating solar system bodies—these two planets simultaneously
exhibit distinctly different intrinsic heat fluxes. A cohesive narrative has not yet
been agreed upon to explain these similarities and differences between Uranus and

Neptune.

The intrinsic heat fluxes of Uranus and Neptune have been determined by ground-
based observations (e.g. Fazio et al. 1976; Loewenstein et al. 1977; Loewenstein,
Harper, and Moseley 1977), in conjunction with measurements from the infrared
interferometer spectrometer (IRIS) on Voyager 2 (Hanel et al. 1986; Conrath et
al. 1989; Pearl and Conrath 1991). These works have shown that, while Nep-
tune’s intrinsic heat flux might be consistent with standard adiabatic cooling models
(Hubbard, Podolak, and Stevenson 1995), measurements of Uranus’ heat flux seem
anomalously low compared to the other giant planets, with measurements suggest-
ing heatflow an order of magnitude lower than Neptune’s (and consistent with the
heat flux actually being zero). Proposed reasons for Uranus’ low heat flux have
invoked either a low initial formation temperature, or some mechanism that inhibits
convection in the interior and prevents heat from escaping efficiently (e.g. Podolak,
Hubbard, and Stevenson 1991; Nettelmann et al. 2016; Leconte and Chabrier 2012;
Podolak, Helled, and Schubert 2019). Overall, a commonly considered possibility
has been that Uranus’ interior experiences a mechanism to block heat from leaving,

and that Neptune is not subject to, or is less affected by, this mechanism. In light of

I'This monicker assumes the intermediate density of these planets is due to a significant proportion
of volatile species (i.e. “ices”) in their interiors. However, as discussed in this work, there is actually
no direct evidence that ices comprise a major proportion of these planets’ mass. Observations of
ices in the atmospheres do not necessarily inform the composition of the deep interiors, and the
intermediate densities required to produce the mean densities and measured gravitational fields of
these planets could, in principle, be produced in a scenario of mixed rock and hydrogen and no more
methane than what is needed to explain the atmospheres.
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our comments about uncertain composition, it is worth remembering that any state-
ments about the heat content of these planets is necessarily uncertain because of the
large differences in thermodynamic parameters for the constituents, especially the
very high specific heat for hydrogen relative to ice or rock. Still, the simultaneous
similarity of the observed magnetic fields of Uranus and Neptune appears to present

a paradox to this natural assumption.

These similar magnetic fields are qualitatively different from all other dynamo-
generating solar system bodies. In both planets, the magnetic dipolar component
is offset from the planet center (0.3 Ry, 0.55 Ry), mathematically equivalent to the
large quadrupolar moment of these bodies, and considerably inclined to the spin
pole (Uranus: 60°, Neptune: 47°). This is in contrast to the dipole-dominated fields
generated by all other solar system dynamos (Ness et al. 1986; Ness et al. 1989;
Connerney, Acuna, and Ness 1987, 1991). The unusual field geometry of Uranus
and Neptune has been reproduced with models in which the dynamo source region
is a convecting thin shell surrounding a stably stratified fluid interior (Stanley and
Bloxham 2004, 2006), as well as turbulent thick- and thin-shell models (Soderlund et
al. 2013). Thin-shell dynamo models in particular seem to agree with the potential
explanation of Uranus’ low heat flux as resulting from heat entrapment in the
deep interior of Uranus, due to inhibited convection beneath the convecting shell.
However, if Uranus’ low heat flux is the result of deep inhibited convection, it is
then necessary to explain why Neptune has a significantly greater intrinsic heat flux

than Uranus, despite exhibiting a similar magnetic field.

One proposed means to generate the key differences between Uranus and Neptune,
is giant impacts. The origins of the significant obliquities of these planets remains
an open question—especially the 98° spin axis tilt of Uranus, although Neptune’s
30° misalignment is also non-negligible—and a collisional origin of tilting has long
been proposed (Safronov 1966). A major problem with a collisional origin of
the tilt has been the need to explain the equatorial orientation of the orbits of the
Uranian moons and rings; however, Morbidelli et al. 2012 have found that a multiple-
collision scenario allows for sufficiently gradual tilting that the proto-satellite disk
can re-align with the planet. As an alternative explanation (Boué and Laskar 2010),
Uranus gradually tilted as the result of a resonance between its orbit and precession
of its spin axis. Recently, Reinhardt et al. 2020 have suggested that an oblique giant
impact to Uranus and a head-on collision to Neptune could account for the planets’

obliquities and the differences between their satellite systems. Furthermore, they
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suggest that a head-on impact to Neptune could account for Neptune’s less centrally
condensed state relative to Uranus (inferred from rotation and gravity data), as
well as the differences in heat flow between the planets. While the giant impact
hypothesis represents an intriguing possible explanation for the differences in heat
flow between the two planets, it is also worth considering other possible reasons for

the origin of the disparity in heat flow between Uranus and Neptune.

Highlighting the importance of understanding the solar system’s ice giants, it has
often been suggested that Uranus and Neptune are possibly our best local analogues
to the numerous observed exoplanets having masses and radii intermediate between
those of terrestrial planets and gas giants. In fact, planets in an intermediate mass
and radius range between gas giant planets and terrestrial planets are now understood
to be an extremely common product of planet formation, at least at closer stello-
centric distances (Batalha et al. 2013b). Although low detection sensitivity at host
star separations beyond ~ 10 au has ensured that no perfect exoplanetary analogues
to the solar system’s ice giants have yet been found, the presence of a significant
proportion of both light and heavy constituents in Uranus and Neptune makes them
our most readily accessible laboratories for investigating the interactions of planetary

constituents within all intermediate-mass planets.

Moreover, it is often suggested that the intermediate sizes of Uranus and Neptune are
due to their status as “cores" that failed to attain runaway accretion before the solar
nebula dissipated, in the core accretion model for giant planet formation. However,
despite the central role of Uranus and Neptune in understanding rates of planet
formation in our own solar system, uncertainty about the composition and structure
of their interiors remains a major obstacle to understanding the provenance and
formation conditions of these planets— and accordingly, their position within the
greater narrative of planet formation in our solar system. Compared to gas giants
and small bodies composed entirely of ice and rock, intermediate-density planets
such as Uranus and Neptune suffer from a degeneracy in composition (e.g. Podolak,
Hubbard, and Stevenson 1991). From observations of the gravity fields of Uranus
and Neptune, it is established that the heavier elements must be concentrated toward
the center, and surrounded by an envelope dominated by hydrogen and helium.
However, in lieu of additional constraints, there is not a unique compositional

profile which satisfies the measured properties of these planets.

Over the span of decades, numerous models have been constructed that satisfy

the mass and observed gravity harmonics (up to J4) of Uranus and Neptune. A
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Figure 4.1: Experimental data for the Hp-H,O system, and a diagram showing a
model coexistence curve and its relationship to the critical temperature 7,.. For the
purposes of this work, the “critical curve” refers to the critical temperature as a
function of pressure. Left: The peak of the coexistence curve occurs at the critical
temperature 7., above which the two species mix freely in any proportion. Below
the critical temperature, the coexistence curve dictates the saturation compositions
for coexisting phases. Center: The coexistence curves and critical temperature
have been determined up to 0.25 GPa by Seward and Franck 1981, showing a trend
toward increasing symmetry with pressure. Right: The critical curve has been
experimentally derived up to ~ 3 GPa by Bali, Audétat, and Keppler 2013, showing
a roughly linear trend. The pentagonal markers show the critical temperature found
by Seward and Franck 1981, while the square/diamond markers show the data
found by Bali, Audétat, and Keppler 2013; black and white points indicate H,-H,O
immiscibility.

traditional approach is to include several discrete, layers of uniform composition,
with each layer typically composed primarily of “gas," “ices," and “rock." These
three terms refer to composition rather than the phase in which these materials occur:
“gas" refers to a solar-composition mixture, “ice" refers to volatile hydrides such as
H,0, NH3, and CHy, while “rock” generally refers to a combination of silicates and
iron. In published works that invoke layers, their choice is not generally motivated by
a specific physical rationale. Moreover, models which satisfy the inferred transition,
from the hydrogen-dominated envelope to the denser mantle, using a substantial
density gradient rather than discrete layers cannot satisfy the constraint that the
dynamo magnetic fields require a well-mixed layer of sufficiently large radial extent.
However, discrete interior layers (as opposed to a compositional gradient) are only
expected to be stable when immiscible phases are present. In the case of terrestrial
planets, formation of an iron core with a discrete core-mantle boundary occurs due

to the immiscibility of iron in silicates at the relevant pressures and temperatures.
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Figure 4.2: Comparison of the experimental critical temperature (red) derived
by Bali, Audétat, and Keppler 2013 (Figure 4.1), and its approximate extrapolation
(pink) linear in pressure to beyond the 3 GPa experimental limit, versus the adiabatic
temperature profile (blue) in the outermost, hydrogen-dominant shell in models of
Uranus and Neptune. A deep region of hydrogen-water immiscibility (T < T,) is
predicted in the deeper regions of this layer, indicating a plausible phase transition in
the interiors of these planets, although further laboratory data is warranted. While
these temperature profiles refer to the same best-fit Uranus and Neptune models
discussed later in the text (see Figure 4.9), from this rough extrapolation, a deep
interior region of immiscibility is suggested for all compositions of the H>-dominant
shell considered in this work.

In contrast, in the deep interiors of Jovian planets, it is expected (Wilson and
Militzer 2012b, 2012a) that dissolution of ice and rock in metallic hydrogen is
thermodynamically favorable; therefore, if a core is present today, it is widely
expected to be in the process of dissolving (Wahl et al. 2017; Debras and Chabrier
2019). These are just a few examples of miscibility and immiscibility in planetary
interiors. Another well-known example—helium immiscibility in giant planets—will
be discussed in a later section. This work addresses the effects of inferred possible

hydrogen-water immiscibility in the interiors of Uranus and Neptune.

In Uranus and Neptune, water is generally assumed to be the primary major con-
stituent by mass. To satisfy the gravity harmonics, an underlying mantle with a
density comparable to water, extending to ~ 70 percent of the total planet radius,
must be overlain by a hydrogen-rich envelope. Therefore, in this work, hydrogen
and water are explored as possible dominant constituents whose mixing properties
might dictate the state of ice giant interiors. As discussed herein, constraints on
H,-H>O miscibility remain to be fully characterized. However, some advances have

been made in understanding the hydrogen-water system at conditions relevant to the
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interiors of ice giants, hence motivating this work. Figure 4.1 illustrates the existing
experimental constraints for hydrogen-water mixing. In particular, two related ther-
modynamic curves that describe the mixing properties of hydrogen and water are
the coexistence curve and critical curve. Figure 4.1 also shows a model coexistence

curve for purposes of illustration.

Colloquially, it is often said that two immiscible species do not mix. However,
immiscible species do mix to a limited extent—not freely, but in proportions specified
by the coexistence curve, a curve which defines the compositions (typically in terms
of mole fraction) at which minima of the Gibbs free energy of mixing occur, for given
pressure and temperature. Experimental and theoretical examples of the coexistence
curve are shown in Figure 1. The pressure-dependent critical temperature 7, is
the maximum of the coexistence curve. At pressures and temperatures below the
critical point of pure water (but above the critical point of pure hydrogen), hydrogen
and water separate into two phases: a condensed phase of mostly water, and a
gas containing a partial pressure of water in agreement with the vapor pressure
of water. The H,-H;O coexistence curve has been determined to 0.25 GPa by
Seward and Franck 1981. While their experimental work does not probe the deep
interior conditions of the planet, for the purposes of this work, we employ a model

coexistence curve, which will be discussed shortly in further detail.

While the Hy-H,O coexistence curve has long been known at pressures relevant
to giant planet atmospheres, more recently, Bali, Audétat, and Keppler 2013 have
experimentally derived 7, for the H,-H,O binary system up to ~ 3 GPa, a pressure
range relevant to the deep interiors of Uranus and Neptune. Rough linear extrapo-
lation of their result (Figure 4.2) appears to suggest that the temperature deep in the
ice giants may be below the H,-H,O critical temperature at those pressures, appear-
ing to suggest possible immiscibility of hydrogen and water, and hence separated
phases. However, a few major caveats arise when making this rough linear extrapo-
lation of the critical curve to higher pressures. First, while these experimental data
suggest a roughly linear trend of the critical curve within the experimental range,
there is no reason to expect the critical curve to continue linearly in pressure. In fact,
to the contrary, as hydrogen approaches a more metallic state, the critical curve is
expected to turn over (although the pressure at which this turnover begins, as well as
its specific shape, are not known in detail). Indeed, Wilson and Militzer 2011 report
solubility of water in hydrogen once 10-megabar pressures are reached. Moreover,

Soubiran and Militzer 2015 reported results of ab initio simulations which appear
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to possibly contradict Hy-H,O immiscibility in the deep interiors of Uranus and
Neptune. More specifically, they did not find evidence of concavity of the Gibbs
free energy of mixing AG as a function of composition—in apparent contradiction
to the experimental findings of Bali, Audétat, and Keppler 2013. In response to this
discrepancy, Soubiran and Militzer 2015 argue that the experimental result may be
due to contamination by the carrier silicates used in the experiment. On the other
hand, an experiment contaminated by silicates may actually be more representative
of the interiors of Uranus and Neptune than one that is not, as these planets likely
include silicates as well. Clearly, more work is necessary to resolve the question of
hydrogen-water miscibility in Uranus and Neptune. For the purposes of this work,
we do not intend to make assertions about this question; however, we do explore the
implications that hydrogen-water immiscibility would have for the interior states of

these planets.

The discussion now turns from the critical curve to the specifics of the coexis-
tence curve for hydrogen and water. While Bali, Audétat, and Keppler 2013 have
experimentally determined the critical temperature as a function of pressure to 3
GPa, this finding does not inform the proportions at which hydrogen and water
would be expected to mix. As mentioned previously, the specific compositions of
coexisting (saturated) equilibrium phases are governed by the pressure-dependent
coexistence curve, as was found by Seward and Franck 1981 at pressures relevant to
the atmospheres of these planets. As is evident in Figure 4.1, at the lower pressures
investigated in that work, the coexisting phases are asymmetric, trending toward
symmetric with increasing pressure. The low-pressure asymmetry can be attributed
to the significant repulsion experienced by a (nonpolar) Hy molecule when inserted
into water, whereas the analogous effect in the Hy-dominant phase is lacking due
to the greater (i.e. gas-like) intermolecular spacing of H, at low pressures. With
increasing pressure, the hydrogen-rich phase becomes more closely packed, and the
coexistence curve becomes increasingly symmetric, as shown by the experimental
curves of Seward and Franck 1981. This behavior of the symmetry of binary phase
diagrams at high pressure is common, and can be described in terms of the following

simple model for a two-component regular solution:

AG=x(1=x)AE+kT(yIny+ (1 - x)In(1 - y)) 4.1)

where AG is the Gibbs energy of mixing, AE is an interaction parameter, y is the

mole fraction of one of the components, k is Boltzmann’s constant, and 7 is the
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temperature. As the system will move toward the state with the lowest available
Gibbs energy, the equilibrium composition(s) is/are associated with minima in AG.
The critical temperature 7;, above which the two components mix in all proportions,
is determined by the temperature above which d”A G /dx? is never negative. Below
the critical temperature?, there are two solutions symmetric about y = 1/2. At and
above the critical temperature, they collapse to one solution y = 1/2, and phase
separation does not occur for the case T > T,. Taking this into account, for the
binary system, it is possible to define the coexistence temperature T.,(P) as the
temperature for a given pressure at which a phase containing a water mole fraction

x < 0.5 of water coexists with a phase a water mole fraction (1 — y):

Teo(P) _ 2(1-2x)
TC(P) - In (1—7)() .

4.2)

However, because only extrapolatory inference of 7, exists above 3 GPa, the equi-
librium compositions deep in these planets is not known, and numerous pairs of
complementary (symmetric) compositions are therefore considered in this work.
We cannot be sure that the phase diagram is symmetric at high pressure, since the
two species are not similar in size or behavior, but a more nearly symmetric behavior
is often observed in systems of two condensed (i.e., fluid density) phases exhibiting
immiscibility (Bernabe, Romero-Martinez, and Trejo 1988). Asymmetry can be due
either to difference in size between the two species or to different spacings, as in the
case of aliquid and a vapor (Damay and Leclercq 1991). The experimental curves of
Seward and Franck 1981 show symmetry increasing with pressure, due to decreased
difference in spacing between hydrogen versus water. However, the difference in
molecular size between water and hydrogen suggests that a degree of asymmetry of
the coexistence curve may be indicated at higher temperatures. We therefore allow
coexisting equilibrium phase compositions to deviate from symmetric values by a

factor of up to two.

Taking the symmetric rationale into account, we construct models of Uranus and
Neptune, applying the constraint that models must be compatible with the coex-
isting equilibrium compositions implied by hydrogen-water coexistence diagram.
In addition, the models must not be at odds with the observed magnetic fields of
Uranus and Neptune; this rules out substantial compositional gradients in at least

the outer ~ 20% of the planets, as such gradients would preclude the large-scale

ZRemember that 7. depends on pressure.
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vertical motions necessary for a dynamo. Below the water cloud decks in Uranus
and Neptune at tens or hundreds of bars, the thermodynamically permissible phases
are thus either a water-rich ocean extending deep into the planet, or a hydrogen-
dominant phase. Measurements of the gravitational moments, however, are at odds
with the former, as they would imply too great a value of J,. Therefore, we assume
a hydrogen-dominant phase is present immediately below the water cloud decks of
these planets. A schematic illustration of the thermodynamic constraint applied to
this model, with the model critical curve described above, is shown in Figure 4.3.
Because they introduce unphysical layering, most published layered models either

violate these requirements, or are in danger of doing so.

The remainder of the chapter is outlined as follows. In Section 4.2, the method
for constructing interior models is outlined. The results of this modeling effort
are presented in Section 4.3, while the implications are discussed in Section 4.4,

followed by some concluding remarks in Section 4.5.

4.2 Methods

Multiple approaches have been used to produce static models of ice giant interiors.
In the most traditional approach (Podolak 1976; Hubbard and Macfarlane 1980;
Podolak, Young, and Reynolds 1985; Hubbard, Podolak, and Stevenson 1995;
Podolak, Hubbard, and Stevenson 1991; Podolak, Weizman, and Marley 1995),
the number and composition of interior layers are initially defined, and a density
profile is then derived using equations of state of the chosen layer constituents. In
an alternative set of approaches developed for these planets, density profiles are
generated to satisfy the gravity harmonics without any a priori assumption of the
composition or equations of state (Marley, Gémez, and Podolak 1995; Podolak,
Podolak, and Marley 2000; Helled, Anderson, and Schubert 2010). Although the
latter approach circumvents the need to adopt equations of state at thermodynamic
conditions that are a major challenge to statically produce in the laboratory, the
generated density profiles are not guaranteed to represent any physical mixture of
plausible planetary constituents. Because in this work, we aim to constrain the space
of possible layer compositions of Uranus and Neptune, we take the more traditional

approach, by pre-defining the layers and their compositions.

The models presented in this work are constructed and analyzed in three steps.
First, layer compositions are chosen with y and (1 — y) roughly symmetric about

0.5, in agreement with the rationale discussed in Section 4.1. Next, taking into
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Figure 4.3: Schematic diagram showing the constraint imposed on the models in
this work, that the compositions of the assumed H;-dominant and H, O-dominant
layers should correspond to the coexisting phase compositions. A compositional
discontinuity is thermodynamically favorable only if immiscibility of major con-
stituents is implicated. The model critical curve shown is symmetric in accordance
with Equation 4.1, although model critical curves deviating from symmetry by a
factor of 2 were also considered, as discussed in the text.

account these chosen layer compositions, density profiles are derived that satisfy
each planet’s radius and mean density. Finally, we apply a theory-of-figures approach
(concentric Maclaurin spheroids; Hubbard 2013) to derive the gravity harmonics
for each density profile, comparing them to observational constraints on the gravity
field. The relevant observational constraints for Uranus and Neptune are given in

Table 4.1, and are discussed in further detail in the following sections.

Layer composition
We now discuss the range of layer compositions considered in our static models.
Both two- and three-layer models were considered. In both cases, the outermost layer

consisted primarily of hydrogen and helium, with the proportion of water varied,
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and the proportion of atmospheric methane varied within observational bounds.
The second layer consisted primarily of water, with ammonia and methane included
in fixed amount relative to water, and the proportion of hydrogen included in this
layer was varied. In the three-layer models, a separate core of silicates and iron was
included. Two-layer models were constructed based on the three-layer models, by
taking the proportion of rock in the cores of the three-layer models, assuming this
rock is mixed with the overlying ices and hydrogen, and recalculating the model

accordingly to find the effect on the gravitational harmonics.

In this work, following the thermodynamic rationale discussed in Section 4.1, com-
plementary molar ratios of H,O to H, were considered in the gas-rich and ice-rich
layers. That is, for each model, the molar ratio x/,, = xn,0/(xm,0 + xu,) of H,O
to Hy in the hydrogen-rich envelope was assumed to be equivalent to the molar
ratio X/,an = XH,/ (xH,0 + xn,) of Hy to H>O in the underlying water-rich mantle.
Moreover, as discussed in the previous section, to account for the possibility of an
asymmetric binodal curve, models were also constructed in which these two ratios
varied from one another by a factor of 2. While the ratio of hydrogen and water in
the adjacent layers is assumed to be thermodynamically governed, the fractions of
other constituents, as well as small corrections to this assumption, are now discussed

in detail.

In the gas-rich layer, in addition to water and hydrogen, additional constituents are
expected to be present, most notably Helium, CHy4, and NH3. A solar proportion of
He relative to diatomic hydrogen was assumed. Ammonia abundances in the enve-
lope were chosen according to the atmospheric values given in Lodders and Fegley
1994—however, especially as NH3 is expected to be depleted by interaction with
H;S (de Pater, Romani, and Atreya 1991), these values might not represent ammonia
abundances further down in the envelope. As discussed later in this work, due to
its polar nature, ammonia may plausibly mix preferentially with water. It should
be noted that, for the purposes of understanding the density profiles and gravity
harmonics of these planets, ammonia and water are essentially interchangeable. For
the purposes of this paper, we are motivated by the laboratory result of Bali, Audétat,
and Keppler 2013 to focus on the possible effect of hydrogen-water demixing on ice
giant structure and evolution, but the reader should keep in mind the uncertainty of
the ammonia composition in the envelope and its potentially interchangeable role

with water in the model framework put forth in this work.

Moreover, the observed atmospheric methane abundances of Uranus and Neptune,
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relative to Hy (n/H, = 0.023 £ 0.006 and 0.029 + 0.006 respectively; Fegley et al.
1991; Baines et al. 1993), also presented in Lodders and Fegley 1994, were assumed
to extend deep into the envelope, and to disentangle the effect of methane on the
result, models were constructed with methane abundances at the upper and lower
reported error range. While this first-pass assumption may not accurately reflect
reality, the main point of this work is to consider the role of water as a possible
significant constituent in the envelopes of these planets. We acknowledge that
the density contribution of water to the envelope assumed in this work could, in
principle, be exchanged with that of ammonia and methane. Assumptions made for
the atmosphere will be discussed in the next subsection. Below the assumed water

cloud level, we assume for simplicity that the deeper water-rich region is well-mixed.

Moreover, in the ice-rich layer, the included constituents were H,O, CH,4, NH3, and
varying amounts of H,. The mole fraction of H, with respect to H,O was defined
as described above. Ammonia and methane were assumed to be present in solar
proportion of N and C relative to the O of water, in accordance with Lodders 2010.
The caveats of this assumption are discussed in Section 4.4. Finally, the rock core
was taken to be comprised of the uniform mixture of SiO,, MgO, FeS, and FeO
assumed by Hubbard and Macfarlane 1980. The mantle and core were assumed to

be chemically homogeneous.

Derivation of density profiles

Density profiles were derived beginning at the 1-bar pressure level (Lindal 1992;
Lindal et al. 1987) and integrating to the center of the planet. Specifically, we start
at the average 1-bar level R implied by the extrapolated equatorial and polar 1-bar

radii from the Voyager 2 radio occultation data (Table 4.1).

We assume an adiabatic temperature gradient

I
P (Z)) , (4.3)

T(Z) = Teff( P

e

where z denotes depth, subscript e refers to values at the outer radius of the given
region, and I is the Gruneisen parameter, ~ 0.3 for a solar hydrogen-helium mixture.

This is only approximate.

The exception to this rule occurs in the atmosphere, where we account for the effect

of water condensation on the temperature, in accordance with Kurosaki and Ikoma



53

x'=0.05 x'=0.20 X'=0.05 X'=0.20

e
NP e
Ne 28
o

3
o® A&
e o 6‘3‘\‘

3
NO® e
2

o N o «©

e
e o® e 4@
o & & o o

09

08 R

0.7 |
0.6
05F

04 H

2
= He
H B - NH3
02} L CH,
| f : H,0

— i i — rock

10710

cloud-forming region \

cloud-forming region

03

0.1 F

0 . 1015 H— Py
1 0.5 01 0.5 0 10°¢ 10" 108 10"
r/R r/R Pressure [dyn cm?] Pressure [dyn cm?]

Figure 4.4: Example profiles of abundances of constituents, for y/,, = 0.05 and
0.20, where x’,, = xm,0/(xm,0 + xH,) in the envelope. For these examples, a
symmetric coexistence curve was assumed. Examples shown are for Neptune, but
a similar scheme was used in Uranus. The left two plots show the mole fractions
of constituents as a function of normalized planet radius, while the right two plots
show mole fractions in the same models as a function of pressure. Water is taken
to be present in the atmosphere at saturation vapor pressure until the cloud-forming
region is reached. The cloud-forming region was assumed to occur either when the
molar abundance reached the value chosen for the underlying homogeneously mixed
region of the envelope (as in the y’ = 0.05 case, or when the critical temperature
of pure water was reached (as in the y’ = 0.20 case), whichever came first. The
abundances of homogeneously mixed regions were chosen according to the rationale
described in the text.

2017, via Ingersoll 1969; Atreya 1986; Abe and Matsui 1988, by assuming a wet

adiabatic temperature gradient:

dlnp*
dinp T R dinp*\2 '
1 _gL(_nP )
C, T-x\dInT

where the symbol Vgy refers to the dry adiabatic gradient, while C), is the mean
heat capacity, x; the mole fraction of water, and p? the vapor pressure of water,
which was calculated according to Nakajima, Hayashi, and Abe 1992. Water was
assumed to be present at saturation vapor pressure until the chosen mole fraction
of the lower region was reached (Figure 4.4). If the critical temperature of pure

water (647 K) was reached before the chosen mole fraction of the lower well-mixed
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region was attained, the 647 K temperature level was taken to be the cloud level,
in accordance with Fegley and Prinn 1986. The density contribution of condensed
water clouds was neglected, as was the density contribution of any other condensed
species. Wet adiabaticity due to ammonia and methane was also ignored—this choice
agrees with the finding of Guillot 1995 that a moist adiabat is not indicated by the
deduced temperature gradient to ~ 2 bar in Uranus and ~ 4 bar in Neptune. While
Guillot 1995 also notably finds that condensation of ammonia and methane inhibits
convection around the ~ 1 to 2 bar range, the temperature gradient evidently resumes
a dry adiabat below these levels, and this and any analogous deeper effect of water

condensation is ignored for the purposes of this work.

It should be noted that there is at present no consensus on the correct treatment of the
temperature profile in a region where there is a compositional gradient arising from
condensation alone. In the "wet adiabat" assumption described above, the latent
heat effect can cause the temperature profile to be substantially colder than the dry
adiabat. On the other hand, a sufficiently large compositional gradient (arising from
the strong dependence of vapor pressure on temperature for a condensable such as
water) may actually inhibit convection and cause the temperature gradient to be
hotter (that is, superadiabatic) relative to a dry state (Leconte et al. 2017). Indeed,
this effect is invoked in models for Jupiter’s atmosphere based on microwave data
(Li et al. 2020) and implies a hotter adiabat for Jupiter than the traditional one that

ignores condensation.

Hydrostatic equilibrium is also assumed, taking into account the latitude-averaged

centrifugal force (following Hubbard, Podolak, and Stevenson 1995):

dP GM(r) 2w°r
e -l 1) 4.5)

where P denotes pressure, p denotes density, w the angular velocity, and M (r)
the mass contained inside radius r. Given the pressure and temperature computed
in this manner, and the temperature given by Equation (4.3) at each depth in the
planet, the EOS for each constituent is used to determine the resultant density. In
the outer few percent of the planet, the ideal gas equation of state (EOS) is assumed.
Deeper in the planet we model the density contribution from each constituent with
zero-temperature equations of state, with a thermal pressure correction taken into
account in the envelope and mantle. The transition between the ideal gas to zero-
temperature EOS is assumed several percent of the distance into the planet where

the two equations of state cross.
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Before describing our approach to the equations of state at great depth, we need
first to make a philosophical point: It is not our goal to have the “best possible”
descriptions of the constituent materials. We need only to have descriptions that are
realistic enough to uncover the differences implied for the planets once our phase
diagram assumptions are enforced. This approach is reasonable for Uranus and
Neptune because of the large uncertainties in composition and because the inferred
differences in the planets are large enough to affect the interpretation of their heat
flows and atmospheres. It would be an unreasonable approach for Jupiter or even
Saturn where there are very precisely known parameters and there is an obvious

need to adopt very precise descriptions of hydrogen in particular.

For the zero-temperature equation of states of the assumed constituents, we use the
polynomial approximations suggested by Hubbard, Podolak, and Stevenson 1995
and briefly summarized here. The equation of state for molecular hydrogen is taken
to be the experimental result of Mao et al. 1988 up to pressures of ~ 8 x 10! dynes
cm™2, above which we use the approximation for theoretically determined values
of Zharkov, Tsarevsky, and Trubitsyn 1978. For helium, we use the approximation
to the equation of state of Zharkov, Tsarevsky, and Trubitsyn 1978. For water, we
use the polynomial approximation of the EOS determined by Ree 1976. Due to
their smaller expected abundances, the accuracy for CH4 and NH3 is less crucial,
and again, we use the polynomial approximations given by Hubbard, Podolak, and
Stevenson 1995 for the shockwave CH4 data determined by Nellis et al. 1981 as
well as the approximation given by Hubbard, Podolak, and Stevenson 1995 for the
zero-temperature CH,4 equation of state. Finally, to model the density of rock within
the planets, we employ the EOS from Zharkov and Trubitsyn 1978 used by Hubbard
and Macfarlane 1980 for the mixture of 38% SiO», 25% MgO, 25% FeS, and 12%

FeO which we similarly take to approximately constitute “rock.”

The approximations to the zero-temperature equations of state mentioned above all

take on a form
Py = f(p), (4.6)

where Py is the electron degeneracy pressure and f is a polynomial function. To
account for the effect of thermal pressure in the planets, we apply a thermal correction

to the zero-temperature equation of state, accounting for the thermal pressure P;:

Po+ P = f(p), 4.7)
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where, according to Debye theory, P; is approximated to order of magnitude as
P, =3nykTD(®O/T) (4.8)

where n is the number density of molecules, y is the Gruneisen parameter, k is
Boltzmann’s constant, T is the temperature, D is the Debye function, and ® is the

Debye temperature.

Following Demarcus 1958; Peebles 1964, we use the linear mixing assumption for
the EOS of a mixture of individual constituents:
1 m;

Ly 4.9)
where i is iterated over all constituents present in the mixture, p(P,T) denotes the
density of the mixture at a given pressure and temperature, m; and p; are respectively
the mass fraction and density of constituent i. Densities of ice mixtures derived

using this standard assumption have been found to vary by ~ 4% from a real mixture

of ices at conditions relevant to the interiors of ice giants (Bethkenhagen et al. 2017).

Construction of two-layer models

A range of water-hydrogen ratios for the envelope and hydrogen-water ratios for
the mantle are tested. Three-layer models are constructed with a range of mantle-
envelope transition levels. Specifically, for each set of chosen layer compositions,
the range of mantle-envelope transition depths is found for which it is feasible to
construct a model satisfying the planet radius and mean density. Every feasible
mantle-envelope transition depth has an associated rock core extent which permits

the model to satisfy these basic constraints.

Having constructed this suite of three-layer models, we then derive associated two-
layer models with mixed rock-ice mantles, and lacking separate rock cores. The
mantles in these models retain the same relative proportions of ices and hydrogen
in the mantle, and the mantle is given an ice-rock ratio equivalent to the ratio
collectively present in the mantle and core in the original three-layer model. The
gravitational harmonics for the two-layer models are then derived in a manner

analogous to the three-layer models, as discussed below.

Derivation of model gravity harmonics
After computing a range of models satisfying the planet mass and mean radius, with

varied composition and extent of the layers, we then derived the implied gravity
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Figure 4.5: Gravitational harmonics derived for three-layer models. Observationally
derived harmonics J, and J4 for Uranus and Neptune (Jacobson 2014, 2009) are
shown as black boxes (the boxes resemble line segments due to sufficiently tight
constraints on J,). Colors represent the mole fraction x¢,, = ymo0/(xn,0 + YH,)
in the envelope. Layer compositions were chosen in accordance with the rationale
described in Figure 4.3 and in the text. The parameter o describes the assumed
asymmetry of the model critical curve and is defined such that Yeny = 0 ¥man»
where Yman = xn,/(¥H,0 + xH,), the ratio in the mantle. For every set of layer
compositions, a range of models was constructed to satisfy the mean density and
radius of the planets, by varying the radius of the ice-rich mantle and rock core, as
described in the text. As indicated by the arrows, models toward the lower right
have comparatively larger icy mantles and smaller rock cores. The circle markers
refer to gravity harmonics derived by taking the spheroid density to be the outer
extent of each spheroid, while the plus-sign markers refer to the harmonics derived
by taking the spheroid density to be that of the outer limit of the adjacent interior
spheroid, in accordance with the rationale described in the text.
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Table 4.1: Observational constraints used in this work.

Uranus Neptune
total planet mass [kg x10%] 8.68% 10.2412
measured equatorial radius a at 1 bar [km] 25559 24766°
measured polar radius b at 1 bar [km] 24973b 24342¢
mean planet radius at 1 bar [km] 253624 246244
present-day effective temperature [K] 76(2)° 72(2)°¢
assumed solid-body rotation period [s] 59664° 62849°
quadrupole gravitational harmonic J, X 1072 0.35107(7)f 0.35294(45)8
octopole gravitational harmonic J; x 107# -0.342(13)" -0.358(29)¢

2 yia JPL Horizons.

®Lindal et al. 1987.

¢ Lindal 1992.

4R =Va2b

¢ Helled, Anderson, and Schubert 2010.

f Jacobson 2014.

€ Based on Jacobson 2009; Lindal 1992 in the same manner as Helled, An-
derson, and Schubert 2010; Nettelmann et al. 2013, for a reference radius of
the 1-bar pressure level.

Uranus Neptune  Xenvelope
21

J4><10'5

J2><10'3

Figure 4.6: Gravitational harmonics for derived two-layer models, in a manner
analogous to Figure 4.5.
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Figure 4.7: Models of Uranus and Neptune assuming a symmetric H-H,O critical
curve (o0 = 1 case) with methane abundances n/H; relative to hydrogen chosen at
the lower and upper observational bounds for each planet (Table 4.1).

harmonics and compared the result with observations. Due to the presumed presence
of a density discontinuity in the outer region of these planets, the Radau-Darwin
approximation is not robust (Gao and Stevenson 2013), and moreover the traditional
approach to theory of figures (Zharkov and Trubitsyn 1978) is notideal here. Instead,
we use the concentric Maclaurin spheroids approach to theory of figures developed
by Hubbard 2013, in which the planet is treated as a set of concentric spheroids
with homogeneous densities. The shape of the jth spheroid is an equipotential
surface found by iteratively solving for the balance of gravitational and rotational
potentials. The CMS method was chosen in this work because it allows trivial
inclusion of substantial density discontinuities, while permitting density gradients
to be modeled with arbitrarily many concentric spheroids. A potential caveat resides
in the assumption of solid-body rotation; however, Kaspi et al. 2013 have found that
the gravity field can be explained by limiting the zonal winds to the outer 1% of the

radii of Uranus and Neptune.

For both planets, 30 equally spaced spheroids, with an additional spheroid at the
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location of each transition (i.e. the envelope-mantle transition, and the mantle-
core transition in 3-layer models containing a separate rock core), and 15 iterations
between the shape and gravity, were found to be more than sufficient to compute
the gravitational harmonics to observational precision. It should be noted that one
source of error inherent to the CMS method arises from the discretization of density
gradients within the planet. To address this limitation, two versions of the CMS
calculation were computed for each model, which can be considered as providing
lower and upper bounds on the gravitational harmonics: one in which the density
chosen for each spheroid was the (lower) density occurring at the outer bound of
the next interior spheroid, and another calculation with the chosen density being the
higher density present at the inner boundary of each spheroidal shell (i.e. the outer
bound of the next interior spheroid). The results of these calculations are discussed
in the next section. Another input to the determination of the gravity harmonics
is the assumed solid-body rotation rate. In this work, we use the rotation rates
determined by Helled, Anderson, and Schubert 2010 to minimize the dynamical
heights of the 1-bar isobaric surfaces of Uranus and Neptune. While plausible (and
compatible with our observational understanding of Jupiter and Saturn), accurate

rotation rates must come from future missions.

4.3 Results

Figure 4.5 shows the derived gravitational harmonics J, and J, for three-layer models
of Uranus and Neptune. For Uranus, the models that best fit the gravity data have a
mole fraction in the envelope x,, < 0.01 of water relative to hydrogen. For Neptune,
to fit the observed gravitational field, it appears that y{,, = 0.10 is necessary. This
result holds for both symmetric and asymmetric assumed critical curves, as seen
in Figure 4.5. Evidently, the envelope proportion of water relative to hydrogen
dominates the gravity harmonics in these models. The qualitative robustness of this
result to asymmetry in the phase diagram suggests that, for interior models of ice
giants which take into account hydrogen-water mixing constraints, it is necessary
to include a substantial proportion of metals in Neptune’s envelope, compared to
Uranus, which must be more centrally condensed. Evidently, this appears to point
to the nature of a dichotomy between these two superficially similar planets, which
may be related to their disparate heatflows, as we will discuss further in the next
section. In particular, if hydrogen-water phase separation, as hypothesized in this
work, does hold, and if Neptune is indeed in a less demixed state than Uranus, we

find that an explanation naturally arises for the large heat flow of Neptune relative
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to Uranus.

Next, we consider the dependence of this result on the number of assumed layers.
While, as discussed in the prior section, the gravitational harmonics dictate that a
transition must take place between a lighter, hydrogen-rich region to an intrinsically
denser region, it is also warranted to quantify the possible effect of a separate rock
core on the gravity field. As gravitational harmonics generally probe the density
structure at levels above ~ 0.5Rpjanet, it might be expected that the inclusion of a
separate rock core versus homogeneously mixed rock might not make a substantial
difference to our result. To check that this expectation holds, Figure 4.5 shows the
gravitational harmonics for the associated two-layer models—including rock mixed
in the mantle, rather than in a separate core, as described in the previous section—for
the case of a symmetric coexistence curve. Indeed, although slight variation is seen
from the three-layer case, the resulting gravity harmonics are qualitatively similar

overall.

Moreover, we took into account the effect on our result of the uncertainty for the
abundance of methane in the envelopes of Uranus and Neptune. Models with
methane abundances chosen at the upper and lower observational bounds for each
planet (Table 4.1) are shown in Figure 4.7, again for the case of symmetric H>-H,O
coexistence curve. Although the model gravity harmonics can vary by as much as
several percent within the observational error range for methane abunance, the result

is qualitatively similar at the upper and lower bounds of the measured concentrations.

Examples of density profiles of two- and three-layer models of Uranus and Neptune
producing a close fit to the observed gravitational harmonics with the assumed solid-
body rotation, are shown in Figure 4.8. While these models generally appear quite
similar to many other published models of these planets that assume homogeneous
layers, the key difference in this case is that our novel mixing constraint (Figure 3)
has been imposed for the layer compositions of the envelope and mantle, removing

a degree of freedom compared to traditional layered models.

We now turn to further discussion of these results. In particular, we consider in some
detail the effect our hypothesized demixing scenario—and associated gravitational
potential energy release—could have on he heatflow. We also relate these results to

the observed atmospheric abundances of methane and ammonia.
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Figure 4.8: Examples of derived two- and three-layer density profiles for Uranus
and Neptune which were found to approximately reproduce observed J> and J4.

4.4 Discussion

Our finding that Neptune, in the model framework discussed in this work, would
require substantial metallicity of its outer layer to account for the observed gravity
harmonics, agrees with results of other layered models (e.g. Nettelmann et al. 2013)
showing that Neptune can have substantial metal enrichment in its envelope com-
pared to Uranus in models that satisfy the planets’ gravity fields. From gravity
and rotation data, Neptune is known to be less centrally condensed than Uranus—a
difference that has alternatively been suggested by Reinhardt et al. 2020 to result
from different giant impact histories of Uranus and Neptune. This work presents an
alternative hypothesis for this dichotomy—namely, that both planets might contain
demixed hydrogen and water as major constituents, and that Neptune is currently in
a considerably less-demixed state than Uranus. To test this new hypothesis, it will be
critical to resolve the disagreement between the experimental work of Bali, Audétat,
and Keppler 2013 and the ab initio study of Soubiran and Militzer 2015 addressing
the question of whether hydrogen and water are miscible in the deep interiors of
ice giants. Moreover, if it is found that hydrogen-water immiscibility is in fact ex-
pected in Uranus and Neptune, the specific nature of the hydrogen-water critical and
coexistence curves will be of utmost importance in constraining the interior states
of these planets. As will now be discussed, the properties of the hydrogen-water

system may also be crucial for understanding the disparate heat flows of Uranus and
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Neptune.

In the model framework presented in this work, as Neptune cools, the equilibrium
mole fraction y,, of water in the envelope should currently be decreasing with time.
This process is expected to be associated with a change in gravitational potential
energy in the planet. Our finding that Uranus may have considerably less water in its
envelope than Neptune suggests that, unlike Neptune, hydrogen-water demixing in
Uranus could be at or near completion, and no longer contributing to the heatflow.
Accordingly, it may be worth considering the role of present-day gravitational energy
release due to present-day hydrogen-water demixing in Neptune but not Uranus, as

a potential major source of the observed heatflow in Neptune.

To test whether it is feasible for hydrogen-water separation to account for the present-
day observed heatflow of Neptune, the available gravitational energy release from
this process was estimated as follows. An approximate model of Neptune’s interior
was constructed by taking the masses of hydrogen and water present in the original
best-fit y = 0.11 Neptune model (assuming a symmetric critical curve), and then
recalculating an associated simplified present-day two-layer model, containing only
hydrogen and water in the original proportions.®> As in the previous, more detailed
models, adiabaticity of the interior was assumed, with T.g of the present-day model
assumed to be the same value as before (76 K). The resulting present-day model of
Neptune has a total radius ~ 92% that of the original, the same order of magnitude.
Next, a model of Neptune’s future demixed end state was constructed, with an
envelope of pure hydrogen and a mantle of pure water, and the total masses of each
constituent held fixed compared to the present-day model (Figure 4.9). The effective

temperature of the end-state model was derived by equating the power absorbed to

L(1-a)
Tof = y| ——— ~ 47K, 4.10
eff 160 D? ( )

where the solar luminosity L and bond albedo of Neptune a (Pearl and Conrath 1991)

the power radiated,

are assumed not to deviate from present-day values, o is the Stefan-Boltzmann

constant, and D is orbital distance from the sun.

3The other constituents are neglected for the purposes of this first-pass model, but it is expected
that the nonpolar species (e.g. He and CH,4) would be incorporated into the hydrogen, and the
polar species (e.g. NH3) with the water. Improved constraints on abundances of polar and nonpolar
constituents relative to solar in the envelopes of these planets might eventually shed light on whether
this mechanism is present, and may potentially even serve as an indirect test of hydrogen-water
miscibility in these planets.
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Due to reduced self-compression in the envelope, the total planetary radius in this
model was found to increase by ~ 4% relative to the initial present-day simplified
model. Moreover, the combined effects of intrinically greater mantle density (due
to demixing of hydrogen from the mantle), but reduced compression from the
overlying envelope, coincidentally produce a similar mantle extent compared to
the present-day model, at least in this simplified example. Comparing the total
gravitational potential energy in the two models, we find that the available total
gravitational potential energy release from hydrogen-water demixing in Neptune is
~ 2 x 10 erg, sufficient to supply Neptune’s present-day heat flux of ~ 3 x 10?2
erg/s (Podolak, Hubbard, and Stevenson 1991; Pearl and Conrath 1991) for roughly
ten solar system lifetimes. This rough estimate of total available energy appears to
suggest that gravitational potential energy release from hydrogen-water demixing

could plausibly supply Neptune’s entire present-day heat flux.

It is natural to compare the proposed process of hydrogen-water demixing in Uranus
and Neptune with the well-known mechanism of helium rainout expected to occur
in gas giants due to the immiscibility of helium in metallic hydrogen. This latter
process has been proposed (Stevenson and Salpeter 1977b, 1977a) to account for
the luminosity excess of Saturn, as well as atmospheric depletion of helium in
Saturn (Stevenson 1980; Conrath et al. 1984). But while both helium rainout and
the currently proposed mechanism of continued hydrogen-water demixing invoke
potential energy release of separating constituents as a contributor to the planet’s
luminosity, the two processes are not perfectly analogous. A key difference exists—
more specifically, helium rainout, as it is generally discussed, occurs when the
cooling giant planet’s adiabat crosses into a regime of immiscibility for helium
and metallic hydrogen, causing the helium to become immiscible and rain out
(bringing dissolved noble gases with it). In contrast, with the presently discussed
mechanism of continued hydrogen-water demixing, it is assumed that hydrogen and
water are already immiscible and separated into two phases in ice giant interiors.
The gravitational potential energy release in Neptune is instead proposed to be due
to variation of the equilibrium compositions of the already-separated phases, as
the planet cools and approaches a state where hydrogen and water are completely
demixed. The difference arises primarily because of the much lower pressure
of relevance for the hydrogen-water system, though of course it is contingent on
unknown aspects of the phase diagram at high pressure and can therefore only be

viewed as a hypothesis.
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We now proceed with a somewhat more detailed consideration of the effect of
hydrogen-water demixing on Neptune’s cooling rate, adapting the precedent set
forth for helium rain in gas giants by Stevenson and Salpeter 1977a, to the hypothe-
sized phase separation addressed at present for ice giants. As previously described
in this section, the planet is treated as consisting of a compositionally homogeneous
envelope comprised of the hydrogen-dominant phase, with a compositionally homo-
geneous mantle comprised of the water-dominant phase. The envelope is assumed
to be adiabatic, in agreement with magnetic field observations. The phase sepa-
ration of hydrogen and water dictates the existence of two simultaneous, opposing
gravitational effects: the downward redistribution of water from the envelope to the
mantle, and the upward redistribution of hydrogen from the mantle to the envelope.
Assuming a critical curve roughly symmetric in mole fraction, as we have done in
this work, the proportion of redistributed hydrogen is about an order of magnitude
less than the distributed water by mass. Therefore, because the average vertical dis-
placement is similar for both, the gravitational effect of rising hydrogen is neglected
for the purposes of this work, and we focus on the effect of water redistributing from
the envelope to the mantle. The mass of redistributed water necessary to change the

mole fraction of water in the mantle from x to x + dx is approximately

N 9dx M man
T (1—x)(1+8%)

Mu,0 4.11)

where Mp,, is the total mass of the mantle. The gravitational energy release is

approximately

Egrav ~ MHzogH (412)

where g ~ 1400 cm s~ is the typical gravitational acceleration in the planet and
H ~ 1.2 x 10° is the approximate vertical height between the centers of mass of
the two layers. Moreover, the temperature 7}, at the boundary between the envelope
and mantle is related to the mole fraction x of water in the mantle by the hydrogen-
water coexistence curve. Unfortunately, this curve is not yet known, so we resort
to using our model critical curve as described earlier for a two-component regular
solution, stretched so that the value 7, ~ 3800 K from our good fit y ~ 0.11
adiabatic Neptune model corresponds to an equilibrium saturation mol fraction of
x ~ 0.11. The value of the critical temperature derived in this manner is then

T. ~ 7000K; comparing this value to Figure 2, this derived critical temperature is
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Figure 4.9: The estimated gravitational potential energy difference between Nep-
tune’s inferred present-day mixing state with the unmixed future evolutionary end-
member is ~ 100 erg, sufficient to supply Neptune’s present-day observed heat flux,
2 x 10%2 erg (Podolak, Hubbard, and Stevenson 1991; Pearl and Conrath 1991), for
roughly 10 solar system lifetimes.

indeed potentially suggestive of the aforementioned critical curve turnover expected

in these planets.

The parameter Ty = (dTp/dx)coex 18 the temperature change of the envelope-mantle
boundary as dictated by the coexistence curve. Specifically, 7y can be viewed as the
tangent slope to the scaled model coexistence curve (i.e., scaled such that 7,. ~ 7000
K) at the present-day inferred mole fraction of y ~ 0.11 (i.e. x = 0.89 for the main
constituent). While we again emphasize that the critical curve remains unknown,

we employ our model critical curve for now, and estimate 7p ~ 8000 K.

Then, treating the mantle as adiabatic4, the thermal energy increase Ey, of the mantle

can be expressed (Stevenson and Salpeter 1977a) as

Eg = AC,Tydx Mipan (4.13)

where A is the ratio of typical internal temperature to 7, and is of order 2, C,, ~ 2x107
erg g~! K~! is the specific heat of the mantle, and My, is the mass of the mantle.
(Note that this treatment assumes the mantle is where the thermal energy is deposited;

as the extrapolated curvature of the critical curve relative to the adiabat suggests

4As discussed earlier in Section 4.1, the mantle may well not be adiabatic, but it is difficult to
account for the observed magnetic fields if the outer ~ 10% is not adiabatic. If heat transport is
inhibited between an outer convecting region and inner stratified region, the thermal energy increase
of the mantle may be less, making the ratio E,/ Egray (Which we are about to discuss in the text) even
smaller.
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(Figure 4.2), the envelope may be undersaturated in the regions above the envelope-
mantle boundary. It is the critical temperature at this boundary which we assume
dictates the coexisting phase compositions of the envelope and mantle.) With the
above parameterization, the ratio of thermal energy increase to gravitational energy

release due to demixing water in Neptune can be approximated as

Eth - ACVTO
Egray 9¢H

~ 0.02 (4.14)

This ratio is an upper bound, as discussed in footnote 4. In a similar vein as
Stevenson and Salpeter 1977a, the small value of this ratio suggests most of the
released gravitational energy is radiated. Therefore, we will proceed to estimate the
change in effective temperature with time. We treat the envelope as adiabatic, such
that

P,

Ty, _ (Pp\I
= ( ) (4.15)
where 7, is the effective temperature, P, is the corresponding pressure, andI" ~ 0.3 is
the adiabatic index. Because the water content of the outer atmosphere is negligible
due to the low vapor pressure of water at the relevant temperatures (Figure 4.4),
demixing of water from the envelope should not affect P,, so we treat it as roughly
constant. Moreover, although P, can decrease by a factor of several over the entire
lifetime of the planet, due to the demixing of the water from the envelope and the
associated diminishment of overpressure, P, and I are treated as roughly constant
in a time window surrounding the present day. Therefore dInT,/dt ~ dInT,/dt,
and in a similar manner as Stevenson and Salpeter 1977a, the gravitational energy

release over time can be expressed as

9Alman dTb H
(1—x)(1+80)T dr ©

Qgrav ~ (4.16)

and if Qgray is equated with the present-day observed heat flux ~ 3 x 10%? erg
s~ of Neptune, for Mya ~ 8 x 10% g, x ~ 0.89, Ty ~ 8000 K, g ~ 1400 g
ecm™2, and H ~ 1.2 x 10° cm, then, accounting for the logarithmic temperature
relation between T}, and T, the cooling rate is estimated as d7,/dt ~ 0.1 K Gyr‘l.
Comparing this to the estimated present-day cooling rate of roughly ~ 2 K Gyr™!
found for standard adiabatic cooling models (e.g. Hubbard and Macfarlane 1980)
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that do not account for gravitational energy release of phase separation, it is evident

that the hypothesized demixing could indeed significantly prolong cooling.

Relationship of model to atmospheric abundances

We next turn to a discussion of our model as it relates to the observed abundances
of minor constituents in the atmospheres of Uranus and Neptune. In the partially
analogous case of helium rainout in gas giants discussed above, nonpolar neon is pro-
posed to dissolve into the helium rain droplets, leading to atmospheric depletion of
neon in gas giants when helium rainout occurs (Roulston and Stevenson 1995). The
depletion of neon by an order of magnitude relative to solar observed by Galileo in
Jupiter’s atmosphere (Niemann et al. 1996) has been interpreted as possible evidence
for the commencement of helium rainout in Jupiter (Wilson and Militzer 2010). Ina
somewhat analogous manner, in the potential framework for understanding Uranus
and Neptune that has been discussed in this work, polar constituents (e.g. am-
monia) may be expected to partition preferentially into the water-rich phase, while
nonpolar constituents (e.g. methane) may be expected to partition preferentially
into the hydrogen-rich phase. This partitioning will be progressive and grow as the
demixing proceeds. Hence, if our framework of immiscibility is correct and if it is
true that the demixing of Uranus is further advanced than Neptune, then there may
exist the expectation of ammonia depletion in the atmosphere of Uranus relative to
Neptune. Indeed, de Pater, Romani, and Atreya 1991 find that the Voyager radio
occultation data (Lindal et al. 1990) are best in agreement with the presence of an
ammonia ice cloud at the ~ 5-bar level in Neptune. While the radio occultation data
did not probe deep enough on Uranus to make an analogous determination, ground-
based observations (Gulkis, Janssen, and Olsen 1978) indicate emission at short
cm wavelengths from below the analogous level in Uranus, indicating that such an
ammonia cloud appears to be absent on Uranus. The generally accepted explanation
for the atmospheric ammonia discrepancy between the two planets invokes possible
differences in atmospheric convection, which might allow some ammonia to bypass
depleting reactions with H,S in Neptune but not Uranus. While this explanation re-
mains entirely plausible, the apparent atmospheric depletion of ammonia in Uranus
relative to Neptune can also be explained as possible evidence for the more advanced

demixing, relative to Neptune, of the atmosphere of Uranus.

In an analogous fashion to ammonia in the envelope, methane could otentially
demix from the mantle phase, possibly leading to enrichment over time of methane

in the atmosphere of Uranus compared to Neptune. The atmospheric methane
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abundances of Uranus and Neptune, (n/Hp = 0.023 + 0.006 and 0.029 + 0.006

respectively) from Voyager spectroscopic measurements (Fegley et al. 1991; Baines
et al. 1993 via Lodders and Fegley 1994) do not indicate a clear discrepancy in
atmospheric methane between the two planets, although the measurements are
consistent with Uranus having up to 26% more methane in its atmosphere than
Neptune. More work is needed to understand the mixing properties of methane and
water at conditions relative to the interiors of these planets, to determine whether the
methane abundances are consistent with the hypothesized relative demixing states

of Uranus and Neptune.

Potential caveats of models

There exist several caveats inherent to the theoretical framework used in this work.
Notably, the relevance of Hy-H,O mixing properties are expected to diminish at
depths in the planet where the hydrogen and water molecules become some other
configuration of hydrogen and oxygen atoms. In particular, the occurrence of su-
perioinic ice phases in the lower regions of the inferred ice mantle (e.g. Wilson,
Wong, and Militzer 2013; Bethkenhagen et al. 2015) is expected to affect the rel-
evant species interactions at those depths, as well as the densities. These effects
are not relevant at the shallower depths (~ 0.7Rpjaner) at which the transition from a
hydrogen-dominated envelope to heavier materials must occur to satisfy the planets’
gravity fields. In our assumed model framework of hydrogen-water immiscibility,
if it is assumed this density change is due to a phase transition between coexisting
hydrogen- and water-rich phases, then the coexistence curve at the P — T conditions
of this transition zone would be expected to govern the layer compositions. Accord-
ingly, the superionic behavior of ices at greater pressures would be expected to be
irrelevant to the compositions of the envelope and upper mantle. It may be relevant
to the presence or absence of a separate “rock” component. As shown by Figures
4.5 and 4.6, in our models, it is the composition of the envelope that appears to have

the predominant effect on the gravitational harmonics.

Moreover, a related concern is that the ratios of ammonia, methane, and water
chosen for the envelopes and mantles of our models may not correctly reflect what
is really present. The compositional degeneracy inherent to these intermediate-
mass planets ensures that the ice-like density inferred for their deep interiors could
be satisfied by numerous combinations of ices, rocks, and hydrogen. While we
assume the interiors of both planets contain mantles with well-mixed ices in the

same fixed ratio, alternatively, the ratios of interior ices could be different in Uranus
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and Neptune due to different formation conditions. On the other hand, as Figure
4.5 shows, varying the hydrogen content of the mantle by a factor of two relative
to water makes little difference to the gravitational harmonics in our models, even
at significant hydrogen mole fractions of ., ~ 20%. This invariance of the
gravitational harmonics to y;,,, appears to suggest that the specific relative ratios of
ammonia, water, and methane in the mantle would not affect the result that Neptune
requires a substantial (> 10%) mole fraction of metals in its envelope (in this work
presumed to be water) and that Uranus requires a considerably smaller fraction
(s 1%).

Furthermore, as mentioned earlier, the assumption of a fully adiabatic interior may
not hold for Uranus and Neptune, especially as inhibited convection has often been
invoked to possibly explain the low heat flux of Uranus (e.g. Podolak, Hubbard,
and Stevenson 1991; Nettelmann et al. 2016; Leconte and Chabrier 2012; Podolak,
Helled, and Schubert 2019). For the purposes of this work, the temperature gradient
primarily affects the density distributions inferred from the equations of state. How-
ever, the presence of a dynamo in both Uranus and Neptune is thought to require
convection in at least the outer ~ 20 percent of these planets (Stanley and Bloxham
2004, 2006). Below these depths, the thermal pressure correction is of minimal

consequence to the equations of state.

4.5 Conclusions

It is standard practice to model the interiors of Uranus and Neptune as consist-
ing of discrete, compositionally homogeneous layers. However, as discussed in
Section 4.1, the choice of specific layer compositions—and the assumption of a dis-
crete boundary between these layers—have not previously received rigorous physical
justification. Accordingly, this work presents the first thermodynamically justified
models of ice giant interiors, in which the layers and their compositions are based
on the inference of hydrogen-water immiscibility in these planets. While the true
mixing properties of hydrogen and water remain to be resolved at conditions relevant
to the interiors of these planets, the presence of immiscible hydrogen and water in
Uranus and Neptune would offer physical justification for a sharp compositional
transition from the outer hydrogen-rich envelope to the deeper region of heavier
constituents, a transition that is known from the gravity data to be necessary. If this
transition is not discontinuous and a substantial density gradient instead exists in
the outer ~ 30 percent of these planets, it is then challenging for models to produce

convective flows sufficient to generate the observed magnetic fields.
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Having produced models with the novel thermodynamic constraints applied, we
have found that to satisfy the mean planet density and measured gravitational field,
it seems that Neptune may require a substantial portion of water in its hydrogen-
dominated envelope, x;,, = 0.10. In contrast, models capable of satisfying these
constraints for Uranus must contain a much smaller metallicity in the outer shell,
Xenw S 0.01. As discussed in section 4.4, the inferred continued demixing of
hydrogen and water in Neptune but not Uranus could possibly account for the
disparity in heatflow between the planets. This disparity has long been a challenge
to explain, and most of the focus has been on Uranus’ unexpected lack of heatflow,
rather than Neptune’s significant heatflow. However, if the lack of intrinsic heatflow
from Uranus is due to inhibited convection in the deep interior, it then becomes a
challenge to explain why Neptune is different from Uranus in its heat output. Hence,
the mechanism proposed in this work—of gravitational potential energy release due
to present-day hydrogen-water demixing in Neptune but not Uranus—may offer a
potential means to explain how Neptune could produce the observed heat flow, if its

deep interior convection is indeed inhibited in a manner similar to Uranus.

Importantly to the understanding of these planets’ interior dynamics, if further ex-
perimental and/or theoretical work ultimately were to confirm that hydrogen and
water are immiscible at conditions of ice giant interiors beyond ~ 3 GPa, the
hydrogen-water coexistence curve could then provide a novel means to inform the
compositions of the deep, intermediate-mass mantles. Accordingly, the thermody-
namic rationale presented in this work provides a tentative approach to potentially
infer the internal compositions of Uranus and Neptune. As gravity and magnetic
field data cannot provide unique solutions to the deep interior compositions of these
planets, it may ultimately be necessary to turn to chemical reasoning to resolve their
bulk compositional degeneracies—and accordingly, to guide our understanding of

their place in solar system formation.
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ABSTRACT

The six-degree obliquity of the sun suggests that either an asymmetry was present in
the solar system’s formation environment, or an external torque has misaligned the
angular momentum vectors of the sun and the planets. However, the exact origin of
this obliquity remains an open question. Batygin and Brown (2016a) have recently
shown that the physical alignment of distant Kuiper Belt orbits can be explained by
a 5 — 20 mg planet on a distant, eccentric, and inclined orbit, with an approximate
perihelion distance of ~ 250 AU. Using an analytic model for secular interactions
between Planet Nine and the remaining giant planets, here we show that a planet
with similar parameters can naturally generate the observed obliquity as well as the
specific pole position of the sun’s spin axis, from a nearly aligned initial state. Thus,
Planet Nine offers a testable explanation for the otherwise mysterious spin-orbit

misalignment of the solar system.
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5.1 Introduction

The axis of rotation of the sun is offset by six degrees from the invariable plane
of the solar system (Souami and Souchay 2012). In contrast, planetary orbits have
an RMS inclination slightly smaller than one degree!, rendering the solar obliquity
a considerable outlier. The origin of this misalignment between the sun’s rotation
axis and the angular momentum vector of the solar system has been recognized as
a a longstanding question (Kuiper 1951; Tremaine 1991; Heller 1993), and remains

elusive to this day.

With the advent of extensive exoplanetary observations, it has become apparent that
significant spin-orbit misalignments are common, at least among transiting systems
for which the stellar obliquity can be determined using the Rossiter-McLaughlin
effect (Rossiter 1924; McLaughlin 1924). Numerous such observations of planetary
systems hosting hot Jupiters have revealed spin-orbit misalignments spanning tens of
degrees (Hébrard et al. 2008; Winn et al. 2010; Albrecht et al. 2012), even including
observations of retrograde planets (Narita et al. 2009; Winn et al. 2009; Bayliss
et al. 2010; Winn et al. 2011). Thus, when viewed in the extrasolar context, the solar
system seems hardly misaligned. However, within the framework of the nebular
hypothesis, the expectation for the offset between the angular momentum vectors of
the planets and sun is to be negligible, unless a specific physical mechanism induces
a misalignment. Furthermore, the significance of the solar obliquity is supported

by the contrasting relative coplanarity of the planets.

Because there is no directly observed stellar companion to the sun (or any other
known gravitational influence capable of providing an external torque on the solar
system sufficient to produce a six-degree misalignment over its multi-billion-year
lifetime Heller 1993), virtually all explanations for the solar obliquity thus far have
invoked mechanisms inherent to the nebular stage of evolution. In particular, in-
teractions between the magnetosphere of a young star and its protostellar disk can
potentially lead to a wide range of stellar obliquities while leaving the coplanarity of
the tilted disk intact (Lai, Foucart, and Lin 2011). Yet another possible mechanism
by which the solar obliquity could be attained in the absence of external torque is
an initial asymmetry in the mass distribution of the protostellar core. Accordingly,
asymmetric infall of turbulent protosolar material has been proposed as a mecha-

nism for the sun to have acquired an axial tilt upon formation (Bate, Lodato, and

! An exception to the observed orbital coplanarity of the planets is Mercury, whose inclination is
subject to chaotic evolution (Laskar 1994; Batygin, Morbidelli, and Holman 2015)
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Pringle 2010b; Fielding et al. 2015). However, the capacity of these mechanisms
to overcome the re-aligning effects of accretion, as well as gravitational and mag-
netic coupling, remains an open question (Lai, Foucart, and Lin 2011; Spalding and
Batygin 2014b, 2015b).

In principle, solar obliquity could have been excited through a temporary, extrinsic
gravitational torque early in the solar system’s lifetime. That is, an encounter with a
passing star or molecular cloud could have tilted the disc or planets with respect to
the sun (Heller 1993; Adams 2010). Alternatively, the sun may have had a primordial
stellar companion, capable of early star-disc misalignment (Batygin 2012; Spalding
and Batygin 2014b; Lai 2014). To this end, ALMA observations of misaligned disks
in stellar binaries (Jensen and Akeson 2014; Williams et al. 2014) have provided
evidence for the feasibility of this effect. Although individually sensible, a general
qualitative drawback of all of the above mechanisms is that they are only testable
when applied to the extrasolar population of planets, and it is difficult to discern

which (if any) of the aforementioned processes operated in our solar system.

Recently, Batygin and Brown (2016a) determined that the spatial clustering of the
orbits of Kuiper Belt objects with semi-major axis @ > 250 AU can be understood
if the solar system hosts an additional mg9 = 5 — 20 mg planet on a distant, eccentric
orbit. Here, we refer to this object as Planet Nine. The orbital parameters of this
planet reside somewhere along a swath of parameter space spanning hundreds of
AU in semi-major axis, significant eccentricity, and tens of degrees of inclination,
with a perihelion distance of roughly g9 ~ 250 AU (Brown and Batygin 2016). In
this work, we explore the possibility that this distant, planetary-mass body is fully

or partially responsible for the peculiar spin axis of the sun.

Induction of solar obliquity of some magnitude is an inescapable consequence of
the existence of Planet Nine. That is, the effect of a distant perturber residing on an
inclined orbit is to exert a mean-field torque on the remaining planets of the solar
system, over a timespan of ~ 4.5 Gyr. In this manner, the gravitational influence
of Planet Nine induces precession of the angular momentum vectors of the sun and
planets about the total angular momentum vector of the solar system. Provided that
angular momentum exchange between the solar spin axis and the planetary orbits
occurs on a much longer timescale, this process leads to a differential misalignment
of the sun and planets. Below, we quantify this mechanism with an eye towards
explaining the tilt of the solar spin axis with respect to the orbital angular momentum

vector of the planets.
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orbit 9

inertial reference plane

Figure 5.1: Geometric setup of the dynamical model. The orbits of the planets
are treated as gravitationally interacting rings. All planets except Planet Nine are
assumed to have circular, mutually coplanar orbits, and are represented as a single
inner massive wire. The sun is shown as a yellow sphere, and elements are not to
scale. Black, grey, and dotted lines are respectively above, on, and below the inertial
reference plane. The pink arrows demonstrate the precession direction of the angular
momentum vector of the inner orbit, L;,, around the total angular momentum vector
of the solar system Liy,. Red and blue arrows represent the differential change in
longitudes of ascending node of the orbits and inclination, respectively. Although
not shown in the figure, the tilting of the oblate sun is modeled as the tilting of an
inner test ring. Over the course of 4.5 billion years, differential precession of the
orbits induces a several-degree solar obliquity with respect to the final plane of the
planets.

The chapter is organized as follows. Section 6.2 describes the dynamical model.
We report our findings in section 6.3. We conclude and discuss our results in section
5.4. Throughout the manuscript, we adopt the following notation. Similarly named
quantities (e.g. a, e, i) related to Planet Nine are denoted with a subscript “9",
whereas those corresponding to the Sun’s angular momentum vector in the inertial
frame are denoted with a tilde. Solar quantities measured with respect to the solar

system’s invariable plane are given the subscript ©.
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5.2 Dynamical Model

To model the long-term angular momentum exchange between the known giant plan-
ets and Planet Nine, we employ secular perturbation theory. Within the framework
of this approach, Keplerian motion is averaged out, yielding semi-major axes that
are frozen in time. Correspondingly, the standard N—planet problem is replaced
with a picture in which N massive wires (whose line densities are inversely propor-
tional to the instantaneous orbital velocities) interact gravitationally (Murray and
Dermott 1999a). Provided that no low-order commensurabilities exist among the
planets, this method is well known to reproduce the correct dynamical evolution on
timescales that greatly exceed the orbital period (Mardling 2007; Li et al. 2014a).

In choosing which flavor of secular theory to use, we must identify small parameters
inherent to the problem. Constraints based upon the critical semi-major axis beyond
which orbital alignment ensues in the distant Kuiper belt, suggest that Planet Nine has
an approximate perihelion distance of g9 ~ 250 AU and an appreciable eccentricity
e9 2 0.3 (Batygin and Brown 2016a; Brown and Batygin 2016). Therefore, the
semi-major axis ratio (a/ag) can safely be assumed to be small. Additionally,
because solar obliquity itself is small and the orbits of the giant planets are nearly
circular, here we take ¢ = 0 and sin(i) < 1. Under these approximations, we can
expand the averaged planet-planet gravitational potential in small powers of (a/ay),

and only retain terms of leading order in sin(i).

In principle, we could self-consistently compute the interactions among all of the
planets, including Planet Nine. However, because the fundamental secular frequen-
cies that characterize angular momentum exchange among the known giant planets
are much higher than that associated with Planet Nine, the adiabatic principle (Hen-
rard 1982; Neishtadt 1984) ensures that Jupiter, Saturn, Uranus and Neptune will
remain co-planar with each-other throughout the evolutionary sequence (see e.g.
Batygin, Brown, and Fraser 2011; Batygin 2012 for a related discussion on per-
turbed self-gravitating disks). As a result, rather than modeling four massive rings
individually, we may collectively replace them with a single circular wire having
semi-major axis a and mass m, and possessing equivalent total angular momentum

and moment of inertia:
ma= ) mj G
5

mazzz“mja?, (5.1
>
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Figure 5.2: Time evolution of the solar obliquity i in the frame of the solar system,
starting with an aligned configuration of the solar system, and a 10mg Planet Nine
with starting parameters in the exemplary range ag € [400, 600] AU, eg € [0.4,0.6],
and ig € [20, 30] deg, demonstrating gradual differential precession of the sun and
planets over 4.5 Gyr.

where the index j runs over all planets. The geometric setup of the problem is

shown in Figure (5.1).

To quadrupole order, the secular Hamiltonian governing the evolution of two inter-
acting wires is (Kaula 1962; Mardling 2010):

2
M= g (L) Lot - )Beosion - 1)

g5 14
3
+ 2 sin(217) sin(2ig) cos(Q — .Q.g)], (5.2)
where Q is the longitude of ascending node and g9 = /1 — eg. Note that while

the eccentricities and inclinations of the known giant planets are assumed to be
small, no limit is placed on the orbital parameters of Planet Nine. Moreover, at

this level of expansion, the planetary eccentricities remain unmodulated, consistent
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Figure 5.3: Parameters of Planet Nine required to excite a spin-orbit misalignment
of i = 6 deg over the lifetime of the solar system, from an initially aligned state.
Contours in ag-e9 space denote ig, required to match the present-day solar obliquity.
Contour labels are quoted in degrees. The left, middle, and right panels correspond
to mg = 10, 15, and 20 mg respectively. Due to independent constraints stemming
from the dynamical state of the distant Kuiper belt, only orbits that fall in the
150 < g9 < 350 AU range are considered. The portion of parameter space where
a solar obliquity of i = 6 deg cannot be attained are obscured with a light-brown
shade.

with the numerical simulations of Batygin and Brown 2016a; Brown and Batygin
2016, where the giant planets and Planet Nine are observed to behave in a decoupled

manner.

Although readily interpretable, Keplerian orbital elements do not constitute a canon-
ically conjugated set of coordinates. Therefore, to proceed, we introduce action-

angle coordinates:

I'=m+y Mga

Ty = mygy Mo ag 9

Z =T(1 - cos(i)) 7=-Q
Zy =Ty (1 = cos(iy)) 7= —Qq. (5.3)

Generally, the action Z represents the deficit of angular momentum along the k—axis,
and to leading order, i ~ /2Z/T". Accordingly, dropping higher-order corrections

in i, expression (5.2) takes the form:

2 2
m mo 111 6Z Zo
=) b F)e-R) ‘1)

Zo fzzzzg
1—— 1/ -2 == - 4
( o\ T Ty cos(z Zg) G4
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Application of Hamilton’s equations to this expression yields the equations of motion
governing the evolution of the two-ring system. However, we note that action-
angle variables (5.3) are singular at the origin, so an additional, trivial change to
Cartesian counterparts of coordinates is required to formulate a practically useful
set of equations (Morbidelli 2002). This transformation is shown explicitly in the

Appendix.

To complete the specification of the problem, we also consider the torque exerted on
the sun’s spin axis by a tilting solar system. Because the sun’s angular momentum
budget is negligible compared to that of the planets, its back-reaction on the orbits
can be safely ignored. Then, the dynamical evolution of its angular momentum
vector can be treated within the same framework of secular theory, by considering
the response of a test ring with semi-major axis (Spalding and Batygin 2014b,
2015b):
1/3

, (5.5)

i [16w2k§R6
a=|—s——

912 M,

where w is the rotation frequency, k» is the Love number, R is the solar radius, and

I is the moment of inertia.

Because we are primarily concerned with main-sequence evolution, here we adopt
R = Ry and model the interior structure of the sun as a n = 3 polytrope, appropriate
for a fully radiative body (Chandrasekhar 1939). Corresponding values of moment
of inertia and Love number are / = 0.08 and k, = 0.01 respectively (Batygin
and Adams 2013b). The initial rotation frequency is assumed to correspond to a
period of 27r/w = 10days and is taken to decrease as w o 1/+/1, in accord with the
Skumanich relation (Gallet and Bouvier 2013).

Defining scaled actions I' = VMg @ and Z = I'(1 — cos(7)) and scaling the Hamil-
tonian itself in the same way, we can write down a Hamiltonian that is essentially

analogous to Equation (5.4), which governs the long-term spin axis evolution of the

(oS [ 2]32 32222
7{_;(4a§)a[F+4 = = cos(Z z)]. (5.6)

Note that contrary to Equation (5.4), here we have assumed small inclinations for

Sun:

both the solar spin axis and the planetary orbits. This assumption transforms the
Hamiltonian into a form equivalent to the Lagrange-Laplace theory, where the in-

teraction coeflicients have been expanded as hypergeometric series, to leading order
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in semi-major axis ratio (Murray and Dermott 1999a). Although not particularly
significant in magnitude, we follow the evolution of the solar spin axis for complete-

ness.

Quantitatively speaking, there are two primary sources of uncertainty in our model.
The first is the integration timescale. Although the origin of Planet Nine is not
well understood, its early evolution was likely affected by the presence of the solar
system’s birth cluster (Izidoro et al. 2015; Li and Adams 2016), meaning that Planet
Nine probably attained its final orbit within the first ~ 100 Myr of the solar system’s
lifetime. Although we recognize the ~ 2% error associated with this ambiguity, we

adopt an integration timescale of 4.5 Gyr for definitiveness.

A second source of error stems from the fact that the solar system’s orbital architec-
ture almost certainly underwent a instability-driven transformation sometime early
in its history (Tsiganis et al. 2005; Nesvorny and Morbidelli 2012). Although the
timing of the onset of instability remains an open question (Levison et al. 2011;
Kaib and Chambers 2016), we recognize that failure of our model to reflect this
change in a and m (through equation 5.1) introduces a small degree of inaccuracy
into our calculations. Nevertheless, it is unlikely that these detailed complications
constitute a significant drawback to our results.

5.3 Results

As shown in Figure (5.2), the effect of Planet Nine is to induce a gradual differential
precession of the sun and the solar system’s invariable plane 2, resulting in a solar
obliquity of several degrees over the lifetime of the solar system. The Sun’s present-
day inclination with respect to the solar system’s invariable plane (Souami and
Souchay 2012) is almost exactly i = 6 deg. Using this number as a constraint,
we have calculated the possible combinations of ag, e9 and iy for a given my, that
yield the correct spin-orbit misalignment after 4.5 Gyr of evolution. For this set of
calculations, we adopted an initial condition in which the sun’s spin axis and the

solar system’s total angular momentum vector were aligned.

The results are shown in Figure (5.3). For three choices of mg = 10, 15, and 20 mg,
the Figure depicts contours of the required i9 in ag — e9 space. Because Planet
Nine’s perihelion distance is approximately g9 ~ 250 AU, we have only considered

orbital configurations with 150 < g9 < 350 AU. Moreover, within the considered

2 Although we refer to the instantaneous plane occupied by the wire with parameters a and m
as the invariable plane, in our calculations, this plane is not actually invariable. Instead, it slowly
precesses in the inertial frame.
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Figure 5.4: This set of plots depict the same parameter space as in Figure (5.3), but
the contours represent the longitude of ascending node of Planet Nine, relative to
that of the Sun, A Q. As before the values are quoted in degrees.

locus of solutions, we neglect the region of parameter space where the required solar
obliquity cannot be achieved within the lifetime of the solar system. This section
of the graph is shown with a light brown shade in Figure (5.3). For the considered
range of mg, ag and ey, characteristic inclinations of i9 ~ 15 — 30 deg are required
to produce the observed spin-orbit misalignment. This compares favorably with the
results of Brown and Batygin 2016, where a similar inclination range for Planet Nine
is obtained from entirely different grounds. However, we note that the constraints on
ag and eg seen in Figure (5.3) are somewhat more restrictive than those in previous
works. In particular, the illustrative mg9 = 10 mg, ag = 700 AU, eg = 0.6 perturber
considered by Batygin and Brown (2016a), as well as virtually all of the “high-
probability" orbits computed by Brown and Batygin 2016 fall short of exciting 6
degrees of obliquity from a strictly coplanar initial configuration. Instead, slightly
smaller spin-orbit misalignments of i ~ 3 — 5 deg are typically obtained. At the
same time, we note that the lower bound on the semi-major axis of Planet Nine
quoted in Brown and Batygin 2016 is based primarily on the comparatively low
perihelia of the unaligned objects, rather than the alignment of distant Kuiper belt

objects, constituting a weaker constraint.

An equally important quantity as the solar obliquity itself, is the solar longitude of
ascending node?® Qg ~ 68 deg. This quantity represents the azimuthal orientation
of the spin axis and informs the direction of angular momentum transfer within the
system. While the angle itself is measured from an arbitrary reference point, the
difference in longitudes of ascending node A Q = Qg —Q, is physically meaningful,

and warrants examination.

3The quoted value is measured with respect to the invariable plane, rather than the ecliptic.
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Figure (5.4) shows contours of A Q within the same parameter space as Figure (5.3).
Evidently, the representative range of the relative longitude of ascending node is
A Q ~ —60 to 40 deg, with the positive values coinciding with high eccentricities
and low semi-major axes. Therefore, observational discovery of Planet Nine with a
correspondent combination of parameters ag, eg, i9, and AQ depicted anywhere on
an analog of Figures (5.3) and (5.4) constructed for the specific value of mg, would
constitute formidable evidence that Planet Nine is solely responsible for the peculiar
spin axis of the sun. On the contrary, a mismatch of these parameters relative to the
expected values, would imply that Planet Nine has merely modified the sun’s spin

axis by a significant amount.

Although Q9 is not known, Planet Nine’s orbit is theoretically inferred to reside in
approximately the same plane as the distant Kuiper belt objects, whose longitudes
of ascending node cluster around () = 113 + 13 deg (Batygin and Brown 2016a).
Therefore, it is likely that Qg =~ (Q), implying that A Q ~ 45 deg. Furthermore,
the simulation suite of Brown and Batygin 2016 approximately constrains Planet
Nine’s longitude of ascending node to the range €9 =~ 80 — 120 deg, yielding

12 < A Q < 52 deg as an expected range of solar spin axis orientations.

If we impose the aforementioned range of A  as a constraint on our calculations,
Figure (5.4) suggests that ag < 500 AU and e9 > 0.4. Although not strictly ruled
out, orbits that fall in this range are likely to be incompatible with the observed
orbital architecture of the distant Kuiper belt. As a result, we speculate that either
(I) Planet Nine does not reside in the same plane as the distant Kuiper belt objects it
shepherds, or (II) our adopted initial condition where the sun’s primordial angular
momentum vector coincides exactly with that of the solar system is too restrictive.

Of these two possibilities, the latter is somewhat more likely.

While a null primordial obliquity is a sensible starting assumption, various theoret-
ical studies have demonstrated that that substantial spin-orbit misalignments can be
excited in young planetary systems (Lai, Foucart, and Lin 2011; Batygin 2012; Lai
2014; Spalding and Batygin 2014b, 2015b; Fielding et al. 2015), with substantial
support coming from existing exoplanet data (Huber et al. 2013; Winn and Fab-
rycky 2015b). At the same time, the recent study of Spalding and Batygin 2016 has
suggested that a fraction of multi-transiting exoplanet systems would be rendered
unstable if their host stars had obliquities as large as that of the Sun, and instead
inclinations as small as 1 — 2 deg are more typical. Accordingly, it is sensible to

suppose that the initial obliquity of the sun was not too different from the RMS
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Figure 5.5: Illustrative evolution tracks of the solar spin axis, measured with respect
to the instantaneous invariable plane. The graphs are shown in polar coordinates,
where i and Qg represent the radial and angular variables respectively. The
integrations are initialized with the Sun’s present-day configuration (ip = 6 deg,
Qo = 68 deg), and are performed backwards in time. For Planet Nine, parameters
of mg = 15mg, a9 = 500 AU, eg = 0.5 are adopted throughout. Meanwhile,
the left, middle, and right panels show results corresponding to iy = 10, 20, and
30 deg respectively. The present-day longitude of ascending node of Planet Nine is
assumed to lie in the range 80 < Q9 < 120 deg and is represented by the color of
the individual evolution tracks.

inclination of the planets igys ~ 1 deg.

To examine this possibility, we considered whether a Planet Nine with g9 = 250 AU
and A Q within the quoted range is consistent with a primordial solar obliquity of
order ~ 1 —2 deg. As an illustrative example, we adopted a9 = 500 AU, eg = 0.5,
myg = 15mg, and evolved the system backwards in time. Because Hamiltonian
(5.4) is integrable, a present-day combination of parameters maps onto a unique

primordial state vector.

The calculations were performed for ig = 10, 20, and 30 deg, and the results are
shown in Figure (5.5). Specifically, the panels depict a polar representation of the
sun’s spin axis evolution tracks measured from the instantaneous invariable plane,
such that the origin represents an exactly aligned configuration. The color of each
curve corresponds to a current value of €9. Evidently, for the employed set of
parameters, the calculations yield a primordial inclination range of iy ~ 1 — 6 deg.
Intriguingly, the specific choice of i9 = 20deg, and Q9 ~ (Q) yields the lowest
spin-orbit misalignment, that is consistent with igyss. Therefore, we conclude that

the notion of Planet Nine as a dominant driver of solar obliquity is plausible.
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5.4 Discussion

Applying the well-established analytic methods of secular theory, we have demon-
strated that a solar obliquity of order several degrees is an expected observable effect
of Planet Nine. Moreover, for a range of masses and orbits of Planet Nine that are
broadly consistent with those predicted by Batygin and Brown 2016a; Brown and
Batygin 2016, Planet Nine is capable of reproducing the observed solar obliquity
of 6 degrees, from a nearly coplanar configuration. The existence of Planet Nine
therefore provides a tangible explanation for the spin-orbit misalignment of the solar

system.

Within the context of the Planet Nine hypothesis, a strictly null tilt of the solar
spin-axis is disallowed. However, as already mentioned above, in addition to the
long-term gravitational torques exerted by Planet Nine, numerous other physical
processes are thought to generate stellar obliquities (see e.g. Crida and Batygin
2014 and the references therein). A related question then, concerns the role of
Planet Nine with respect to every other plausible misalignment mechanism. Within
the context of our model, this question is informed by the present-day offset between
the longitudes of ascending node of Planet Nine and the Sun, A Q. Particularly, if
we assume that the solar system formed in a configuration that was strictly co-planar
with the sun’s equator, the observable combination of the parameters mo, ag, €9, ig

maps onto a unique value of the observable parameter A Q.

Importantly, our calculations suggest that if the orbit of Planet Nine resides in
approximately the same plane as the orbits of the a > 250 AU Kuiper belt objects
(which inform the existence of Planet Nine in the first place), then the inferred
range of A Q and Planet Nine’s expected orbital elements are incompatible with an
exactly co-linear initial state of the solar spin axis. Instead, backwards integrations
of the equations of motion suggest that a primordial spin-orbit misalignment of the
same order as the RMS spread of the planetary inclination (i ~ 1 deg) is consistent
with the likely orbital configuration of Planet Nine. In either case, our results
contextualize the primordial solar obliquity within the emerging extrasolar trend of
small spin-orbit misalignments in flat planetary systems (Morton and Winn 2014),
and bring the computed value closer to the expectations of the nebular hypothesis.
However, we note that at present, the range of unconstrained parameters also allows
for evolutionary sequences in which Planet Nine’s contribution does not play a

dominant role in exciting the solar obliquity.

Moreover, we find the result of Gomes, Deienno, and Morbidelli 2016 is compatible
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with this work, the primary differences being the specific choice of methodology
and the preference of Gomes, Deienno, and Morbidelli 2016 to consider select
inclinations of Planet Nine which are significantly higher than the ~ 20 degree incli-
nation of the distant aligned objects that first engendered the Planet Nine hypothesis
(Batygin and Brown 2016a).

The integrable nature of the calculations performed in this work imply that obser-
vational characterization of Planet Nine’s orbit will not only verify the expansion
of the solar system’s planetary album, but will yield remarkable new insights into
the state of the solar system, at the time of its formation. That is, if Planet Nine
is discovered in a configuration that contradicts a strictly aligned initial condition
of the solar spin axis and planetary angular momentum, calculations of the type
performed herein can be used to deduce the true primordial obliquity of the sun. In
turn, this information can potentially constrain the mode of magnetospheric inter-
actions between the young sun and the solar nebula (Koenigl 1991b; Lai, Foucart,
and Lin 2011; Spalding and Batygin 2015b), as well as place meaningful limits on
the existence of a putative primordial stellar companion of the sun (Batygin 2012;

Xiang-Gruess and Papaloizou 2014).

Finally, this work provides not only a crude test of the likely parameters of Planet
Nine, but also a test of the viability of the Planet Nine hypothesis. By definition,
Planet Nine is hypothesized to be a planet having parameters sufficient to induce the
observed orbital clustering of Kuiper belt objects with semi-major axis a > 250 AU
(Batygin and Brown 2016a). According to this definition, Planet Nine must occupy
a narrow swath in a — e space such that g9 ~ 250 AU, and its mass must reside in
the approximate range mg = 5 — 20 mg. If Planet Nine were found to induce a solar
obliquity significantly higher than the observed value, the Planet Nine hypothesis
could be readily rejected. Instead, here we have demonstrated that, over the lifetime
of the solar system, Planet Nine typically excites a solar obliquity that is similar to

what is observed, giving additional credence to the Planet Nine hypothesis.
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5.5 Appendix

To octupole order in (a/ag), the full Hamiltonian governing the secular evolution
of a hierarchical triple is (Kaula 1962; Mardling 2010):

2
H = Lpms (ﬂ) 1 (1 + Eez)%(3 cos(i) — 1)(3 cos(ig) — 1)

4 ag ag gg 2

15 3
+ ﬁez sin? (i) cos(2w) + 7 sin(27) sin(2ig) cos(Q — Qo)

b

3
+ 7 sin (i) sin(ig) cos(2Q — 2Qy9)

where elements without a subscript refer to the inner body, and elements with

subscript 9 refer to the outer body, in this case Planet Nine. Here u = (Mgm) /(Mg +

m) ~ m, and &y is equal to /1 — ;.

To attain integrability, we drop the Kozai harmonic because comparatively rapid
perihelion precession of the known giant planets’ orbits ensures that libration of w
is not possible (Batygin, Morbidelli, and Tsiganis 2011). Because the eccentricities
of the known giant planets are small, we adopt e = O for the inner orbit. Addition-
ally, because the inclination of the inner orbit is presumed to be small throughout
the evolutionary sequence, we neglect the higher-order cos(2€Q — 2Qg) harmonic,

because it is proportional to sin?(i) < sin(2i) < 1.

Keeping in mind the trigonometric relationship sini = V1 — cos?i, and adopting
canonical action-angle variables given by equation (5.3), the Hamiltonian takes the

approximate form
2 2 2
lmmofa\"1]1 Z Z9
H=— — | —=|=13l1-=| -1|{3[1-=]| -1
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Because the inner orbit has small inclination, it is suitable to expand H to leading

order in Z. This yields the Hamiltonian given in equation (5.4).

Since Hamiltonian (5.4) possesses only a single degree of freedom, the Arnold-
Liouville theorem (Arnold 2009) ensures that by application of the Hamilton-Jacobi
equation, H can be cast into a form that only depends on the actions. Then, the
entirety of the system’s dynamics is encapsulated in the linear advance of cyclic
angles along contours defined by the constants of motion (Morbidelli 2002). Here,
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rather than carrying out this extra step, we take the more practically simple approach
of numerically integrating the equations of motion, while keeping in mind that the

resulting evolution is strictly regular.

The numerical evaluation of the system’s evolution can be robustly carried out after

transforming the Hamiltonian to nonsingular Poincaré Cartesian coordinates

x =V2Zcos (2) y= V2Z sin (2)
X9 = /229 cos (z9) Yo = 2Zg sin (z9).

Then, the truncated and expanded Hamiltonian (5.4) becomes
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Explicitly, Hamilton’s equations dx/dt = —dH /dy, dy/dt = dH | Ox take the form:
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The evolution of the sun’s axial tilt is computed in the same manner. The Hamiltonian

describing the cumulative effect of the planetary torques exerted onto the solar spin-
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axis is given by Equation (5.6). Defining scaled Cartesian coordinates

% =v2Zcos (3) ¥ =V2Zsin(3),

7722(%)512 %(x +y) \/ (xx+yy)
J J

Accordingly, Hamilton’s equations are evaluated to characterize the dynamics of the

we have:

sun’s spin pole, under the influence of the planets:

dx m;\ ,[3 1 3y
— =- — @ |\ =+=
d Z]] (4@) (4y\/ T T
dy m;\ ,[3 1 3%
— = — - — + =
dt ;(4@)“ (4x\/rr r

Note that unlike I and I'g, which are conserved, [ is an explicit function of time,

~

and evolves according to the Skumanich relation. The above set of equations fully

specifies the long-term evolution of the dynamical system.



Chapter 6

FEASIBILITY OF A RESONANCE-BASED PLANET NINE
SEARCH
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ABSTRACT

It has been proposed that mean motion resonances (MMRs) between Planet Nine
and distant objects of the scattered disk might inform the semimajor axis and instan-
taneous position of Planet Nine. Within the context of this hypothesis, the specific
distribution of occupied MMRs largely determines the available constraints. Here
we characterize the behavior of scattered Kuiper Belt objects arising in the presence
of an eccentric Planet Nine (e9 € 0.1, 0.7), focusing on relative sizes of populations
occupying particular commensurabilities. Highlighting the challenge of predicting
the exact MMR of a given object, we find that the majority of resonant test particles
have period ratios with Planet Nine other than those of the form Py/P = N/1, N/2
(N € Z%). Taking into account the updated prior distribution of MMRs outlined
in this work, we find that the close spacing of high-order resonances, as well as
chaotic transport, preclude resonance-based Planet Nine constraints from current

observational data.
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6.1 Introduction

The primary line of evidence for the existence of “Planet Nine,” a distant, massive
planet in the solar system, stems from the physical confinement of KBO orbits
with semimajor axis in excess of a ~ 250 AU and perihelion distance beyond
Neptune. While the dominant mode of dynamical coupling between Planet Nine
and KBO orbits remains a subject of active investigation, it has been suggested
that mean-motion resonances (MMRs) may widely occur in the distant, eccentric
confined population of the Kuiper Belt. In particular, Batygin and Brown 2016a
were the first to recognize that synthetic particles exhibiting anti-alignment with
Planet Nine exhibit temporary capture into MMRs with Planet Nine persisting over
hundred-Myr time intervals. Although Beust 2016; Malhotra, Volk, and Wang
2016 have suggested that even non-resonant bodies might survive in a detached,
anti-aligned state for the lifetime of the solar system, Batygin and Morbidelli 2017
have found that, while secular effects are responsible for orbital clustering and
perihelion detachment of KBOs in the confined population, MMRs are implicated

in their long-term survival.

Explicit behavioral dependence on the period and phase of resonantly interact-
ing bodies suggests that MMRs between Planet Nine and distant members of the
scattered disk might encode information about the present-day semimajor axis and
current position of Planet Nine, a possibility explored quantitatively by Millholland
and Laughlin 2017. To this end, we note that the likelihood for a given object to
occupy a specific resonance is fundamental to constraining the semimajor axis ag
and subsequently the mean anomaly My of Planet Nine. Therefore, one aim of this
work is to produce a characterization of relative population sizes expected to occupy
specific MMRs in the high-eccentricity case of Planet Nine.

While high-order mean-motion resonances! have negligible capture probability in
the well-studied case of the circular restricted three-body problem, this tendency
degrades in the high-eccentricity scenario of Planet Nine and, by extension, the
population of KBOs sculpted by its gravity (Batygin and Brown 2016a). In other
words, the typical ordering of terms found in the low-eccentricity expansion of
the disturbing function (Murray and Dermott 1999b) breaks down for the problem
at hand, warranting a numerical evaluation of capture probabilities for specific
resonances. Finally, in light of the prior distribution of MMRs derived in this

work, we explore the feasibility of updated resonant constraints on Planet Nine’s

For m /n resonance, the order is typically defined as |m — n|.
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present-day orbit and location.

The first potential resonance-based constraint is that on the semimajor axis of Planet
Nine. Ideally, given the observed population of confined KBOs, it would be desirable
to deduce likely period ratios with Planet Nine, thereby deriving the associated value
of ag. Using this brand of logic, Malhotra, Volk, and Wang 2016 reported an ag
prediction of ~ 665 au, produced by supposing that the six confined objects known
at the time reside in P9/Pxpo = N/1 and N/2 period ratios with Planet Nine.
Subsequently, Millholland and Laughlin 2017 presented a more comprehensive
analysis of the possibility of resonant constraints. Specifically, they constructed
a ag distribution by assuming small integer ratio mean-motion resonances with
11 known KBOs, followed by a Monte Carlo test to confirm the significance of
the highest peak in their distribution. Enticingly, the highest peak in their ag
distribution occurs around 660 au, in apparent agreement with Malhotra, Volk, and
Wang 2016. The second potential resonance-based constraint on the present-day,
instantaneous position of the planet in its orbit requires knowledge of the resonant
angles themselves. Crucially, such a constraint would be highly valuable in the

observational search for Planet Nine.

This chapter is organized as follows. Section 6.2 describes our suite of semi-
averaged n-body simulations. Section 6.3 describes the manner in which these
simplified simulations capture the essence of the outer Kuiper belt’s interactions
with Planet Nine, and delineates the resulting numerically derived prior distribution
of MMRs. The feasibility of resonance-based determination of Planet Nine’s current
location is further discussed in Section 6.4. Concluding remarks are provided in
Section 6.5.

6.2 Two-Dimensional Numerical Simulations

By now, a considerable number of studies, employing variable levels of approxi-
mation aimed at simulating the dynamical evolution induced by Planet Nine, have
been published in the literature (Batygin and Brown 2016a, 2016b; Brown and
Batygin 2016; Bailey, Batygin, and Brown 2016; Fuente Marcos, Fuente Marcos,
and Aarseth 2016; Shankman et al. 2016; Millholland and Laughlin 2017; Lawler
et al. 2017; Becker et al. 2017; Batygin and Morbidelli 2017; Hadden et al. 2018).
It has been found, in n-body simulations accounting for the observed inclinations of
distant KBOs and the ~ 20 — 30 degree inclination of Planet Nine, that objects tend
to chaotically skip among commensurabilities. The primary aim of this work is to
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Figure 6.1: Four examples of resonant angles ¢ = jid + FAg + j3@ + jswo, for a
variety of resonances.

characterize a prior distribution of mean motion resonances in order to ascertain
the feasibility of resonance-based constraints on Planet Nine, and such transitional
behavior obfuscates the classification of specific MMRs. Thus, we employ a sim-
plified, two-dimensional model of the solar system to understand the degree of
resonance-based constraints that can be made. If significant resonance-based Planet
Nine constraints can be obtained from present observational data, this capability

should be best reflected in this highly idealized two-dimensional model.

Within the framework of this two-dimensional model, we confine all objects to
the plane and average over the Keplerian motion of the known giant planets. Ac-
cordingly, the solar system interior to 30 au is treated as a central mass with a J,
gravitational moment having magnitude equivalent to the mean-field contribution
of the canonical giant planets to the secular evolution of exterior bodies (Burns
1976; Batygin and Brown 2016a). Hence, Planet Nine is the only massive perturber
in these simulations. This model omits various realistic details. Notably, modu-
lations in the eccentricity and inclination of KBOs due to close-range interactions

with Neptune, as well as dynamics induced by the mutual inclination of the KBOs
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Figure 6.2: Trajectories
in semimajor axis and
longitude of perihelion
offset Aw for all bod-
ies surviving the entire
4-Gyr duration of simu-
lations including a 10M
Planet Nine with a9 =
600 au. The anti-aligned
population (dark blue) is
distinguished from other
bodies (light blue) by li-
bration in Aw. Further-
more, the approximate ra-
dius below which con-
finement does not occur
is typically lower than
the perihelion distance g9
of Planet Nine (green).
Each plot corresponds to
the result for a specific
eccentricity eg of Planet
Nine. Among simula-
tions having an eccen-
tric Planet Nine, sev-
eral low-order resonances
are preferentially occu-
pied, including the 1/2,
1/1, 3/2, and 2/1 reso-
nances. However, pre-
dominantly occupied are
a variety of high-order
resonances.
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Figure 6.3: The range of semimajor axis and maximum apsidal libration width
exhibited in simulations by apsidally confined objects in specific resonances, across
simulations featuring a range of Planet Nine eccentricities eg.

with Planet Nine, are absent from our calculations. Crucially, however, due to the
lack of repeated transitions between resonances induced among surviving objects,
these simplified simulations allow rigorous identification of the resonances in which

objects reside, and their capacity to reveal Planet Nine’s parameters.

We implemented direct n-body simulations using the mercury6 integration package
(Chambers 1999), employing the built-in Hybrid symplectic/Bulirsch-Stoer integra-
tor (Wisdom and Holman 1992; Press et al. 1992), with time step chosen to be 1/8
the orbital period of Neptune. In the simulations, we evolve an initially axisym-
metric disk of eccentric test particles having uniformly random angular distribution
and perihelion distance and semi-major axis randomly drawn from the ¢ € [30, 50]
au and a € [50, 1000] au range, respectively. While the initial distribution of test
particles does not reflect the complete evolution of KBOs into resonance with Planet
Nine, it serves as a probe of relative strengths of resonances. For each of the eight
values of eg tested, 6000 such test particles were randomly initialized and simulated.

Particles attaining radial distances r < 10, 000 au or r < 30 au were removed.

In principle, the relative strengths of resonances are not expected to vary signifi-
cantly with ag, as the relative strengths of individual terms associated with specific
resonances in the usual expansion of the disturbing function only depend on the semi-
major axis ratio of the interacting bodies (Murray and Dermott 1999b). Therefore,
Planet Nine was assigned a single, nominal semimajor axis, ag = 600 au. However,

we note that different semimajor axes of ag would, in reality, subject the innermost
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resonances to variable levels of secular coupling with the canonical giant planets,
altering the resonant widths slightly. Still, ag = 600 au is roughly in keeping with
the semimajor axis predictions of Millholland and Laughlin 2017; Malhotra, Volk,
and Wang 2016; thus, we choose this value of ag. Moreover, eccentricities eg were
tested ranging from 0 to 0.7 in increments of 0.1. The simulations in this work span

4 Gyr in approximate accordance with the solar system’s lifetime.

Because this work addresses the distribution of closely-spaced, high-order mean
motion resonances, which have finite width in semimajor axis, the period ratio alone
is insufficient to confirm a specific resonance. Instead, we confirmed specific mean-
motion resonances with Planet Nine among the surviving objects by searching for
a librating resonant argument (Figure 6.1). The general form of such a resonant
argument can be stated as ¢ = jid + jodg + j3w + jswy, where the d’Alembert
relation, following from rotational symmetry, restricts the integer coefficients j to
satisfy Z?Zl Ji = 0 (Murray and Dermott 1999b). (For the 2-dimensional case, we
adopt the standard convention that longitude of ascending node 2 = 0, thus @ = w.)
Based on the values found for coefficients j; and j,, identification of a critical
argument informs the individual resonance in which a particle resides. Specifically,
for an object in p/q resonance with Planet Nine, the resonant argument takes the

form ¢ = gd — pAg + j3w + js@y.

6.3 Behavioral regimes of surviving KBOs

For the range eg € [0,0.7] of Planet Nine eccentricities examined, the range of
longitude of perihelion explored by test particles surviving for the full length of
the 4-Gyr simulations is shown in Figure (6.2). For all cases of nonzero perturber
eccentricity, the surviving bodies occupy several specific regimes. Below a critical
semimajor axis dri;, the vast majority of surviving bodies exist in a circulating
regime, in which Aw@ covers all angular values. Notably, the value of a; depends
the semimajor axis, eccentricity, and mass of Planet Nine, and does not simply

correspond to the perihelion distance of Planet Nine.

Objects with a > a.; exhibit orbital confinement, with the longitude of perihelion
of the object relative to that of Planet Nine, Aw, librating about 180 degrees over the
course of the simulation (i.e. in an anti-aligned configuration with respect to Planet
Nine’s orbit). This population is taken to be analogous to the clustered population
of the observed distant Kuiper belt objects (Batygin and Brown 2016a), and will be

the focus of the following sections of this paper.
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Figure 6.4: Histogram with discrete bins showing the number of objects in each
occupied resonance, for a range of Planet Nine eccentricities. Each bin is located
at the exact commensurability ascertained by identification of resonant angles for
objects. Note the close spacing of occupied high-order resonances. Beyond the
axis bound, single objects at the 10/1, 11/1, 13/3, 13/4, 20/1, and 22/7 commen-
surabilities were also identified. The colored lines in the lower plot delineate the
locations of commensurabilities predicted by Malhotra, Volk, and Wang 2016 (i.e.
with Sedna at the interior 3/2 resonance), with 1 — o observational error bars. Due
to observational error in the KBO semimajor axes and the close spacing of occupied
high-order resonances, we find there is no clear preference for this as opposed to
many other resonant configurations.
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Figure 6.5: Probability that a chosen synthetic particle has a period ratio Py/P =
N/1 (N € Z%) (blue), or a period ratio N/1 or N/2 (red). In particular, the
probability that any six independently chosen objects will all have such period
ratios is P(Pg/P € {N/1,N/2})® < 0.05, highlighting the prevalence of high-order
resonances expected in the high-eccentricity case of Planet Nine.

While the majority of surviving bodies found in our two-dimensional simulations
occupy the two aforementioned regimes, there are some exceptions. In particular,
circulating objects are also found at distances significantly beyond a..i—specifically,
within a neighborhood of the 1/2, 1/1, 3/2, and 2/1 resonances with Planet Nine.
Another class of objects observed is those that migrate stochastically through a
variety of semimajor axes and values of Aw while avoiding ejection. Although
fewer than 1 in 600 bodies exhibit this behavior in our two-dimensional simulations,
such migratory evolution bears resemblance to the stochastic transport between

commensurabilities observed among objects in full three-dimensional simulations.

The dynamical regimes occupied by test particles show broad-ranging consistency
across all nonzero Planet Nine eccentricities examined. For example, Figure (6.3)
shows the maximum width in a and widest apsidal excursion |w — 180°| exhibited
among objects in identified resonances. Notably, the width in a is similar across the
ey tested, and there appears not to be a strict relation between eg and confinement

in Aw. Instead, the primary indicators of eg in these simulations are the location
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Figure 6.6: Two distributions of the semimajor axis ag, illustrating the difference
invoked by considering the prior distribution of period ratios developed from the two-
dimensional simulations in this work. Left: Distribution developed by Millholland
and Laughlin 2017. In constructing this distribution, the period ratios of observed
objects were assumed to follow the distribution of the Farey sequence Fs of period
ratios having denominator < 5, with all such period ratios assumed equally likely.
Right: Distribution developed assuming the updated period ratio distribution. For
details about the procedure invoked to produce these distributions, see Millholland
and Laughlin 2017.

of a.ri; and, in the two-dimensional case, the prevalence of circulating objects at the

1/2,1/1,3/2, and 2/1 resonances for lower-eg cases (Figure 6.2).

Numerically derived period ratio distribution

All confined objects in the simulation are in confirmed mean-motion resonance
with Planet Nine. Moreover, the identified resonant angles persist over the full
4-Gyr simulation. This stable behavior can be attributed to the lack of interference
from close encounters with Neptune occurring in unaveraged three-dimensional
simulations. Figure (6.4) shows the number of bodies found in individual resonances
across the seven simulations with eg ranging from 0.1 to 0.7. In all simulations
with eg > 0, the individual resonances with the greatest number of occupied objects
were the 1/1 and exterior 2/1 resonances. However, as the next section will discuss,

most objects do not occupy these particular commensurabilities.

6.4 Feasibility of resonant constraints on Planet Nine

As Planet Nine’s semimajor axis defines its period ratio with resonant KBOs, it
is natural to attempt to predict ag through commensurabilities. Such predictions
have been produced by Malhotra, Volk, and Wang 2016; Millholland and Laughlin

2017, in rough agreement at a9 ~ 665 and a9 ~ 654 au respectively. In particular,
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Malhotra, Volk, and Wang 2016 postulated that ag ~ 665 au, placing Sedna at

interior 3/2 resonance and five other objects at N/1 and N/2 interior resonances
with Planet Nine. However, the prior distribution of MMRs derived in this work
appears to suggest that the majority of objects do not have period ratios with Planet
Nine of the form N/1 or N/2 (Figure 6.4). Furthermore, the probability that any
six independently chosen objects all have N/1 or N /2 period ratios is less than 0.05
(Figure 6.5). We therefore conclude the assumption that distant KBOs are likely
to reside in N/1 and N/2 resonances with Planet Nine is not supported by these

numerical simulations.

We now turn to our numerically derived resonance distribution from our two-
dimensional simulations and consider what information can be gathered about Planet
Nine’s whereabouts, following the statistical approach developed by Millholland and
Laughlin 2017. Each iteration of their method proceeds as follows: First, they draw
a sample m; from a truncated Gaussian mass distribution for Planet Nine, with mean
10M and bounds 5 — 20M. Then, they randomly select one of the known distant
KBO semimajor axes, together with one orbital period ratio from a chosen period
ratio distribution. The implied Planet Nine semimajor axis is then calculated. If
the implied semimajor axis lies in the range [200 au + 30m;/M 600 au + 20m; /M,
(derived based on Brown and Batygin 2016), a Gaussian centered at the implied
semimajor axis, with o~ equal to the approximate resonance width, is added to the
ag distribution being constructed. These steps are repeated until the resulting ag
distribution is converged upon. In this way, Millholland and Laughlin 2017 have
provided a rigorous means of estimating ag by inferring mean motion resonances
with the observed Kuiper belt objects. However, the period ratio distribution from
which they drew their sample was simplified; they considered period ratios in the
Farey sequence Fy, which includes all fractions with denominators up to N (for
example, Fy = {%, %, }1, %, %}). Critically, Millholland and Laughlin 2017 made the
assumption that period ratios in Fy are equally occupied.

In contrast, Figure (6.6) illustrates the difference between the ag distribution reported
by Millholland and Laughlin 2017 using the Farey sequence Fs distribution, versus
the distribution obtained using the identical methodology and set of observed objects,
but employing the period ratio distribution obtained in this work. We note that,
because Planet Nine’s eccentricity is poorly constrained, and because the period
ratio distributions for varied eg9 resemble each other across the board, we have

considered the sum distribution of period ratios found for all cases eg > 0. Due to
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the close spacing of many occupied high-order resonances, the prominent peak of
the distribution of Millholland and Laughlin 2017 is replaced in our ag distribution
by a broad plateau. We note that reduction of peak prominence also occurs when
the resonance distribution is taken to be an equally-weighted Farey sequence of
higher order, although such treatment neglects the relative population occupying

each resonance.

Indeed, our resulting plateau-shaped distribution for a9 demonstrates that when
the prevalence of high-order MMRs is considered, hopes of a resonance-based
constraint on ag all but vanish, at least given current observations. Furthermore,
compared to the simulations of a simplified Planet Nine system described in this
work, additional behavior arises in fully inclined simulations which include the
canonical giant planets (especially Neptune). Because the behavior exhibited by
eccentric test particles in these more comprehensive simulations includes repeated
transitions between resonances, fully rigorous determination of the distribution
of objects among mean motion resonances is challenged. Moreover, a running
average of period ratios with Planet Nine among objects in full simulations shows
no obvious prevalence of objects occupying particular resonances (Figure 6.7).
Without constraints on the period ratios between observed objects and Planet Nine,

constraints on Planet Nine’s present-day location along its orbit remain elusive.

6.5 Conclusion

Using two- and three-dimensional direct n-body simulations, we have highlighted
several features inherent to the resonant dynamics of distant KBOs. Overall, we
have illustrated that the resonance-based search for Planet Nine is frustrated by the
increased strength of high-order resonances that follows from the high eccentricity
of Planet Nine and the test particles. Existing work aiming to predict ag by consid-
ering possible period ratios between Planet Nine and observed objects (Malhotra,
Volk, and Wang 2016; Millholland and Laughlin 2017) unfortunately neglects the
prevalence of high-order resonances and chaotic transport—traits of the system

which, in practice, challenge characterization of the specific resonances occupied.

A constraint on ag, to a degree allowing inference of the specific resonances in which
observed objects reside, appears crucial for constraining the true anomaly of Planet
Nine through resonant means. The degeneracy between mass and semimajor axis
in simulations further complicates such efforts. Moreover, because knowledge of

the specific period ratios between objects and Planet Nine are necessary to rule out
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Figure 6.7: Mean period ratio with Planet Nine of objects in full three-dimensional
simulations, sampled in 1-Myr intervals. Objects surviving the 4 Gyr simulation,
with perihelion distance ¢ > 30 and semimajor axis a > 250 au, were considered.
These simulations included all canonical giant planets of the solar system, in addition
to Planet Nine. In order to avoid sampling the mean semimajor axis ||a; .|| of a test
particle during scattering events, time intervals having max(a; ,.) > ||a; .|| +30 au
were excluded. A predominance of objects occupying any particular resonance is
evidently lacking. This example suggests that the lessened predominance of low-
order resonances in the high-eccentricity case of Planet Nine, demonstrated in the
two-dimensional simulations of this work, continues to hold relevance in the realistic
fully inclined case.
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Planet Nine’s instantaneous position from specific regions of its orbit, resonance-
based constraints on the current orbital position of Planet Nine do not appear feasible

at this time.

The prevalence of high-order resonances in our simulations, brought about by the
high eccentricity of the system, serves as a reminder that care should be taken
before assuming the dynamics of circular orbits will hold for an eccentric case, such
as Planet Nine’s interaction with the confined population. For example, the lack
of orbital angle clustering found by Lawler et al. 2017 in n-body simulations can
be explained in part as resulting from their condition that eg = 0. It has already
been established (Batygin and Brown 2016a; Brown and Batygin 2016) that Planet
Nine’s orbit must be eccentric to produce the confinement of distant, eccentric
Kuiper Belt objects. Although it follows from symmetry, the results of our direct
n-body simulations provide additional illustration of this fact (Figure 6.2). Because
confinement occurs at the lowest nonzero Planet Nine eccentricity tested, eg = 0.1,
the lowest eccentricity necessary to produce confinement in the planar eccentric

three-body system is a possible subject of interest for future work.

In summary, the expected phase-protected mean-motion resonances between ob-
served distant KBOs and Planet Nine offer a tantalizing connection to the semimajor
axis and current position of Planet Nine. Due to the high eccentricities involved, the
underlying resonant dynamics are fundamentally different from the circular case,
and high-order resonances with Planet Nine appear to dominate in the anti-aligned
population. Considering this and taking the updated MMR distribution into account,
the obtainable constraints on ag appear far less useful than suggested by Malhotra,
Volk, and Wang 2016; Millholland and Laughlin 2017. A resonance-based con-
straint on the mean anomaly My appears to require a constraint on ag, so that correct
resonant angles of observed objects can be deduced and specific regions of the orbit
excluded. Thus, in addition to its unprecedented nature among planets in the solar
system, the large eccentricity of Planet Nine currently postpones precise prediction

of its position.
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis has addressed a range of topics related to the interior and orbital dy-
namics of several, varied classes of planets, both within our own solar system and
orbiting other stars. In recent decades, some of these worlds—including hot Jupiters
on extremely close-in, several-day orbits, as well as the hypothesized distant Planet
Nine at an orbital distance of hundreds of au—have challenged traditional, pre-
existing notions, based on the canonical eight planets of our solar system, of the
planetary arrangements that can occur around sunlike stars. Accordingly, the chap-
ters presented in this work have addressed several critical questions associated with
the orbital and interior dynamics of planets residing at the extreme inner and outer

fringes of planetary systems.

Chapters II and III have discussed the multiple proposed formation pathways of
hot Jupiters, and the orbital and tidal dynamics of these extremely close-in giant
planets. In Chapter II, it is specified how the mechanism of high-eccentricity
inward migration, known to be responsible for the formation of some hot Jupiters,
can, in principle, be harnessed to inform tidal dissipation in ecccentric, short-
period giant planets with characterized exterior perturbers. A case study of the
hot Jupiter HAT-P-2b has been carried out, demonstrating that, in addition to the
simple tidal constraints that can be achieved based solely on the close-in planet’s
orbital state, detailed constraints on dissipation rates are attainable based on the
hot Jupiter’s observed semimajor axis and eccentricity, when combined with orbital
and mass constraints on the exterior perturber (Lewis et al. 2013) expected to be
implicated in the inner planet’s attainment of a high-eccentricity, tidally dissipative
state. Although it should be noted that short-period giant planets such as HAT-
P-2b might potentially represent an intrinsically different population from other
giant planets such as Jupiter and Saturn which have not undergone circumstances to
convert them into hot Jupiters, the limited number of examples of giant planets in
our own solar system means that any attainable tidal constraints on giant exoplanets
should be intrinsically valuable for developing an understanding of planetary tidal

Processes.

Moreover, although observations of high-eccentricity hot Jupiters such as HAT-
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P-2b offer a clear indication that the process of high-eccentricity migration is a
viable generating mechanism for close-in giant planets, Chapter III puts forth novel
evidence in apparent support of the in situ formation pathway as a possible major
source of these enigmatic short-period giants. Following from relatively simple,
generally accepted relationships between the viscous accretion rate of protoplanetary
disks and the voids magnetically carved out in the centers of disks by rotating T-tauri
stars, the -2/7 power-law relationship derived in Chapter III offers an explanation for
how in situ formation could potentially account for inner edge of the period-mass
distribution of the hot Jupiters. Accordingly, the potential for the mechanism of
in situ hot Jupiter formation to offer an explanation for the characteristic boundary
between the hot Jupiter population and the relatively unpopulated “desert” in the
period-mass plane represents apparent evidence in support of the hypothesis that in

situ formation is a dominant driver of hot Jupiter production.

However, if in situ formation is indeed the dominating mechanism by which hot
Jupiters arise, numerous critical questions must then be addressed. In particular, if
it is the case that hot Jupiters generally form in situ and do not typically form via
disk-driven (Type-1I) migration, it must then be established why long-range inward
migration is less active process than classically expected. Moreover, a major issue
with the picture of disk-driven migration as the dominant formation mode is that it
becomes a serious challenge to explain how the observed mass-period distribution
of hot Jupiters could then arise. Moreover, if hot Jupiters predominantly do form
in situ rather than migrating inward from more distant orbits of tens of au, another
major outstanding issue is then the question of why hot Jupiters are not found to
orbit greater proportion of sunlike stars. Given that Batygin, Bodenheimer, and
Laughlin 2016a have demonstrated the feasibility of in situ core accretion when
a suitable core is available, and given that Kepler-like, close-in planets massive
enough to serve as suitable cores for nucleating hot Jupiters are now understood to
be a standard outcome of planet formation, occurring around ~ 30% of sunlike stars
(Zhu et al. 2018), why, then, are hot Jupiters only found to occur around a mere
~ 1% of such stars (Howard et al. 2010; Gould et al. 2006; Wright et al. 2012)?
What processes are limiting the formation of these planets? The absence of massive
planets on short-period orbits in our own solar system remains a related mystery,
especially considering that sufficient material was available to form the gas giants
Jupiter and Saturn at greater orbital distances. Some existing work has sought to
explain how the existence of “cold” Jupiters, including Jupiter in our own system,

might inhibit formation of close-in, massive planets (Batygin and Laughlin 2015),
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as well as investigating the role of tilted host star rotational bulges (Spalding, Marx,
and Batygin 2018) and planetary mass excesses (Johansen et al. 2012) in destroying
sets of close-in, Kepler-like planets. However, the question of why some planetary
systems around sunlike stars have relatively empty inner regions, while others host
close-in super-Earths, or even hot Jupiters, remains far from settled. Any complete
theory of planet formation must account for the existence of our own solar system’s
architecture, as well as the other, varied planetary architectures surrounding sunlike

stars.

At the long-period orbital extreme, Chapters V and VI have addressed the orbital
dynamics and search for the hypothesized Planet Nine. While the view of Planet
Nine as potentially being the primary driver of the six-degree solar obliquity has,
in view of updated constraints on its orbit and mass, become outdated since the
writing and publication of the work in Chapter V, the dynamical effect of a distant,
inclined, massive object on an inner planetary system remains entirely relevant to the
general understanding of planetary system dynamics. With evidence emerging for
the existence of planetary- or brown-dwarf-class objects residing on gravitationally
bound orbits potentially as wide as hundreds to thousands of au (e.g. Fomalhaut
b; Liu et al. 2019, 2MASS J21265040-8140293; Deacon, Schlieder, and Murphy
2016), the dynamical effects of Planet Nine on the solar obliquity, as discussed in
Chapter V, have not lost their general pertinence to planetary system dynamics, nor
is such a distant, massive object in our own system lacking in apparent exoplanetary
precedent. While the analysis presented in Chapter VI unfortunately presents a
pessimistic outlook on the feasiblility of rapid direct detection of this elusive, pro-
posed distant planet in our system, it simultaneously does not constitute evidence
against Planet Nine’s existence. Rather, Chapter VI merely demonstrates that the
eccentric dynamics preclude the use of mean-motion resonances in carrying out the
search. As the scientific community continues to await Planet Nine’s direct detec-
tion, observations of long-period exoplanetary analogues may potentially shed light

for inferring the possible nature and formation of our own putative distant planet.

In addition to planets at the most extreme inner and outer orbital regimes of planetary
systems, in Chapter IV, this work has addressed the interiors of the so-called ice
giants Uranus and Neptune, the furthest directly observed solar system planets.
While the existence of these planets in our solar system has been known for well
over a century, the compositions and interior dynamics of Uranus and Neptune

remain poorly known relative to the gas giants Jupiter and Saturn. The obstacle to
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Earth-based observations posed by their greater orbital distances, as well as a general
lack of spacecraft coverage compared to all other planets!, have been major factors
implicated in the continuation of several major unsolved questions related to Uranus
and Neptune. In particular, the order-of-magnitude difference in observed heat
flows between the two planets, despite their distinctively similar masses, radii, and
quadrupolar-dominant magnetic fields, has represented a longstanding paradox, as
addressed in Chapter I'V. Moreover, as discussed in that chapter, basic constraints on
the interior compositions of Uranus and Neptune are inherently much more difficult
to attain compared to Jupiter and Saturn, due to the compositional degeneracy
posed by their intermediate densities. As gravitational and magnetic data cannot
uniquely inform the interior compositions of the ice giants, in Chapter IV, we have
turned to thermodynamic arguments about the mixing of likely major constituents,
which, combined with observations of the gravitational and magnetic fields, might
ultimately be used to constrain the interior compositions. While further laboratory
and theoretical work remains necessary to better understand the mixing properties of
hydrogen, water, and other plausible constituents at the conditions of these planets’
interiors, the thermodynamically governed modeling approach described in Chapter
IV already presents a possible natural explanation not only for the different observed
heat flows of Uranus and Neptune, but also their different atmospheric ammonia
contents, while maintaining consistency with the gravity and magnetic field data of
these planets. While this finding is certainly intriguing, it still remains necessary, as
highlighted by the recent collision-focused work of Reinhardt et al. 2020, to account
for the processes which could have led to the inferred present-day difference in

mixing states between Uranus and Neptune.

It is the author’s intention that the work presented in this thesis will serve to motivate
continued investigation into the dynamics of planets both residing in our own system,
and orbiting other stars. Notably, calls for further spacecraft exploration of the ice
giants have become loud and widespread across the scientific community in recent
years. For many planetary scientists, an ice giant orbiter mission seems to represent
a logical next step in our understanding of the solar system’s content. Moreover,
in light of the discussion of extreme short- and long-period planets detailed in
this work, and given the increase over recent decades in extensive exoplanetary

observations, it is of utmost importance that a self-consistent theory be developed

! Although the valuable data provided by the Voyager 2 flybys of Uranus and Neptune must
not be discounted, this contribution to our knowledge about Uranus and Neptune cannot match the
information attainable from an orbiter and entry probe.
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to explain how our own solar system fits within the exoplanetary context. Notably,
this type of gestalt understanding is necessary if we wish to understand how our
own life-bearing planet formed, and hence to identify which other systems might

represent true habitable analogues to our own.
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