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ABSTRACT

We study aspects of gapped phases of matter, focusing on their classification, in-
cluding the group law under stacking, and their relation to topological quantum field
theories (TQFT). In one spatial dimension, it is well-known that Matrix Product
States (MPS) efficiently approximate ground states of gapped systems; by showing
that these states arise naturally in 1 + 1-dimensional lattice TQFT, which in turn
are closely related to continuum TQFT, we provide a concrete connection between
ground states of lattice systems and TQFT in 1+ 1 dimensions. We generalize this to
systems with symmetries and fermions, and obtain a classification and group law for
the stacking of 1 + 1-dimensional symmetry-protected topological phases. Further,
we study the effect of turning on/off interactions for the classification: the phase
classification of a given symmetry class of Hamiltonians can be different depending
on whether we allow interactions or not, and in low dimensions we provide some
concrete formulas relating the phases under the non-interacting classification and
those under the interacting classification. Lastly, we study the phases of the 2 + 1-
dimensional topological superconductor, and show that for all 16 phases braiding
statistics of vortices, which determine the underlying TQFT, can be obtained by

stacking layers of the basic p + ip superconductor.
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Chapter 1

PHASES OF MATTER: THE LANDAU PARADIGM AND
BEYOND

1.1 Phases characterized by symmetry
In the Landau paradigm, phases are understood via symmetry breaking: two systems
belong to different phases if their ground states transform differently under the

symmetry of the free energy or the Hamiltonian (Landau, 1937).

For example, take water: liquid water has continuous translation symmetry, but this
is broken in the solid phase down to a discrete translation symmetry of ice. Liquid
and vapor water, on the other hand, have the same continuous translation symmetry,
which means that, in spite of the existence of a first-order phase transition between
them, they actually belong to the same phase. Indeed, it is possible to avoid the
phase transition and deform the system smoothly from liquid to vapor by going

beyond the critical point.

The critical point itself also gives an illustration of the Landau picture: it is a point of
second-order phase transition, where Z, symmetry is broken. In this case, however,
it is not the transition between the liquid and the vapor phases (as they do not
belong to different phases). Instead, the transition is between the line of first-order
phase transition (boiling) and the region of the phase diagram where there is no
transition (supercritical fluid). Above the critical point, there is a Z, symmetry
which exchanges the liquid and vapor (since the two are indistinct now), but below

the critical point, it is broken.

Such critical points are “universal,” in that different systems undergo the same type
of transitions. For example, the critical point of the Ising model, where the spins
transition from being ordered to disordered, belongs to the same universality class
as that of the boiling-supercritical transition in water: they have the same critical
exponents — for example, the specific heat behaves in the same way as we approach
the critical temperature —, and are both characterized by spontaneous breaking of
Zp-symmetry. There is an underlying conformal field theory (CFT) which captures
the universal properties of such transitions (Ginsparg, 1988).



Quantum symmetry-breaking phases

At zero temperature, we may have quantum phases where phase transitions are
driven by quantum rather than thermal fluctuations. Then we work with quantum
Hamiltonians and quantum symmetries (operators which commute with the Hamil-
tonian), but the basic idea is the same: different phases are characterized by how
they break the overall symmetry group. More precisely, consider a Hamiltonian
with a symmetry generated by Q, so that [H,Q] = 0. The ground states |Q) of
H may not be invariant under symmetry: Q|Q) # ¢'*|Q). Then we say that the
symmetry is spontaneously broken. Phases with a given symmetry group G are

classified by the unbroken subgroup G’ C G.

As an example, consider the transverse-field Ising model in 1 dimension, which is

described by the Hamiltonian

H=-]) oici, —h) of (1.1)
i i

where o/ are Pauli operators. Since the Hamiltonian has a Z; symmetry corre-
sponding to flipping all the spins in the z-direction, the system can be in two phases:
the Z; is either broken or unbroken. Indeed, when & > J, there is a unique ground
state; in the J = 0 limit, this is simply |[+) ® - - - ® |+), where |+) is the eigenstate of
o* with eigenvalue +1. On the other hand, when J > h, we have two ground states
—when & = 0, these are the states where every spin is up or every spin is down in the
z-basis. This is the symmetry-broken phase, and indeed the two states are exchanged
under the Z; spin-flip symmetry. When J = h, we have a phase transition, and its
critical exponents are described by the 1 + 1d minimal model with central charge %,
also called the Ising CFT (Ginsparg, 1988).

1.2 Topological phases: quantum phases beyond symmetry-breaking
We say that two gapped quantum systems belong to different phases if we can
smoothly deform one Hamiltonian into the other without closing the gap (in the

thermodynamic limit).

If the ground state of a system is a product state, we call it the trivial system, and any
system which can be smoothly deformed to the trivial system without closing the
gap will belong to the trivial phase. More precisely, we consider local Hamiltonians,
which are constructed as sums of local terms: H = )}; H;, where i labels the sites

and H; acts on a limited number of sites. The total Hilbert space is a tensor product
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of the Hilbert space of each site. For example, if we consider N spin—%s, the total
Hilbert space is H = (C?)®V. A system is topologically trivial if its ground state is
a product state in terms of this local basis: |Q) = ), |v;).

It turns out that with this definition, there are non-trivial quantum phases which do
not break symmetry and hence do not fit into the Landau paradigm. We call these
phases topological. A well-known example is the quantum Hall effect (Klitzing,
Dorda, and Pepper, 1980; Laughlin, 1981): at low temperatures and strong magnetic
fields, the Hall conductance is quantized. When the magnetic field is increased
sufficiently, the Hall conductance will jump, and the system will be in a different
phase — even though no symmetry has been broken. Hence the Hall conductance
can be considered a topological invariant, and is in fact related to the Chern number
of the bundle of filled states over the Brillioun zone. Moreover, the quantum Hall
system is described at low energies by Chern-Simons theory, which is a nontrivial
topological quantum field theory sensitive to the topology of the manifold on which

it is defined (Tong, 2016). For these reasons, we call such phases topological.

There are different ways in which a gapped phase can be topological: it can have
intrinsic topological order, or symmetry-protected topological (SPT) order (Chen,
Gu, and Wen, 2011b).

Phases with intrinsic topological orders (which we also simply call topological
orders) can exist without any symmetry. They are characterized by ground state
degeneracy which depends on the topology of the spatial manifold on which they
are defined, fractional excitations (particle-like in 2 + 1 dimensions), and long-range
entanglement (LRE), which means that their ground states cannot be transformed to
a product state via local unitary transformations. Fractional quantum Hall systems,

for example, exhibit topological order in this sense.

SPT phases, on the other hand, have a unique ground state (on a closed manifold),
and this ground state can be transformed to a product state via local unitary transfor-
mations if we ignore the symmetry protecting the phase. For this reason, they are
also called short-range-entangled (SRE). The Hamiltonian of an SPT phase can be
smoothly deformed to that of the trivial phase if we are allowed to add symmetry-
breaking terms. This is why they are called “symmetry-protected”: symmetry is
what protects them from deformation to the trivial phase. Unlike topological or-
ders, these phases have a unique ground state on any compact spatial manifold.

Well-known examples include the Haldane phase and topological insulators.
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It is possible for a given system to exhibit both SPT order and topological order, in

which case we say that the system has symmetry-enriched topological (SET) order.

Stacking and the monoid structure

The most basic classification of gapped phases consists of simply finding the set S
of distinct equivalence classes of systems. Beyond this, however, we can stack two
system to get a third system (physically, putting two systems on top of each other
and allowing local interactions), which gives a commutative operation S X S — §
on the set of equivalence classes of systems or phases. Moreover, since stacking any
phase with the trivial phase results in the same phase, the trivial phase acts as the

unit for this operation. This turns the set S into a commutative monoid.

Certain phases have an inverse under the stacking operation, and these phases will
form a group under stacking. Kitaev gives an alternative definition of SRE phases as
invertible phases. Clearly, the invertible phases form a group. Non-invertible phases
are then call LRE phases (Kitaev, 2011). When the distinction is relevant, we will
use this definition of SRE phases unless otherwise noted. For example, the Kitaev
chain (Section 2.1) is an LRE phase according to the definition involving local
unitary transformations, but it is an SRE according to the invertibility definition.
The Eg phase in 2 + 1 dimensions, which has a nontrivial CFT on its edge but no
bulk topological excitations, is also an SRE as it is invertible, but it is not protected
by any symmetry. Such phases are sometimes called invertible topological orders
(Kitaev, 2011; Lan, Kong, and Wen, 2016b).

1.3 Description of contents

In the rest of the thesis, we study various aspects of such topological phases. Chapter
2 and Chapter 3 provide the relevant background on SPT phases and topological
quantum field theory. In Chapter 4, based on (Kapustin, Turzillo, and You, 2017;
Kapustin, Turzillo, and You, 2018; Turzillo and You, 2019), we make a concrete
connection between the Matrix Product State formalism, useful for classifying SPT
phases in 1 dimension, and topological quantum field theory in 1 + 1 dimensions.
We generalize this to the fermionic case and cases with anti-unitary as well as
unitary symmetries, and obtain a classification and stacking law for 1+ 1d fermionic
SPTs. In Chapter 5, (based on Chen et al., 2019) we study the relation between the
classification of SPT phases with and without interactions. In 0 and 1 dimension,
we provide a concrete map from the set of free phases (those without interactions)

to the set of phases with interactions. In Chapter 6, based on (You, 2020), we
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study vortices in topological superconductors in 2 + 1 dimensions, which have a
Zy¢-classification, and show that the braiding statistics of vortices for all 16 phases

can be obtained by repeatedly stacking the basic p + ip superconductor.



Chapter 2

SYMMETRY-PROTECTED TOPOLOGICAL PHASES

SPT phases have a unique ground state (on a spatial manifold without boundary),
and can be deformed to the trivial phase if we ignore symmetry. Given a specific
symmetry group, the type of system (bosonic/fermionic, interacting/free), and di-
mension, we can ask the question: what is the set of distinct SPT phases? Moreover,
since SPT phases form a group under stacking, we ask: what is the group structure

on this set?

Here we focus on reviewing two well-known classes of examples which will be
relevant later: phases which can be constructed from free fermions with time-
reversal, particle-hole, and chiral symmetries, and bosonic phases in 1 dimension

(with arbitrary unitary symmetry), which have a matrix product state representation.

2.1 Phases of free fermions
Certain SPT phases can be constructed simply from fermions without any interac-

tions.

A general non-interacting fermionic Hamiltonian in zero dimension involving N

fermions can be written as:

H =y "My +y "Ny + 405407 2.1)

where l//i and t//ﬁ, i =1,...,N, are creation and annihilation operators. This can be

written more compactly as

H=Y"H,,Y/ (2.2)

wl

in terms of the Nambu spinors Y =




Y satisfies the constraint

aYH'=nY (2.3)
. (01 . . .
where 71 is the matrix 10 exchanging ' and ¢ .
In higher dimensions, we have

H= ) Y (kyHyy (k)Y (k) (2.4)
k

where momentum k runs over the Brillouin zone.

Equivalently, we could also write the Hamiltonian in terms of Majorana fermions
r',1=1,..,2N,as
H=T'A;,T’ (2.5)

with A a real anti-symmetric matrix.

The ten-fold way
For systems of free fermions, there are ten special symmetry classes involving

time-reversal, particle-hole, and chiral symmetries.

Time-reversal symmetry is anti-unitary

T : l//i g (UT)[jlﬁj (26)

while particle-hole symmetry exchanges the creation and annihilation operators:

C:y' o (UL @27
where Ur and U are unitary matrices.

The invariance of the “second-quantized” Hamiltonian H under T or C,

THT '=H
CHC '=H (2.8)



leads to the following conditions on the “single-particle Hamiltonian”

UifH Ur = H
ULH"Uc = —H. (2.9)

Moreover, there is a “chiral” or “sublattice” symmetry S, which acts like the com-
bination of 7 and C:

Syl (Us)y' (2.10)

where Us = UrU(. Invariance under S leads to the condition

UiHUs = —H. (2.11)

The action of T or C on the fermions can square to +1 or —1 (or, of course, the
symmetry could simply be absent). Thus there are three possibilities for the action
of T or C and nine possible cases when combined. In each case, the action of S is
determined by S =T - C. In addition, there is the possibility that we have S without

T or C. This results in ten different symmetry classes.

These symmetry classes are classes of the single-particle Hamiltonian H, which can
be thought of as a matrix coupling the different creation and annihilation operators
— this scheme ignores the underlying physical system. For example, consider a
superconducting system with no extra symmetry, written in terms of a BdG Hamil-
tonian H = W H;;¥’/. The constraint that (Y7)” = 7;Y is not a symmetry, but
nevertheless it leads to the condition 7;H”7; = —H. This means that 9 satisfies

the condition Eq. (2.9) with U¢ = 71, and hence belongs to Class D.

The phase classification for free fermionic systems with these symmetries, in all
dimensions, are given in Table 2.1 (Kitaev, Lebedev, and Feigel’man, 2009; Ryu
et al., 2010; Chiu et al., 2016). The classification only depends on the dimension
mod 8. For each symmetry class in a particular dimension, the phases are labeled

by either an integer or a Z, number; sometimes, there are no nontrivial phases at all.

Example: Kitaev chain
The Kitaev chain (Fidkowski and Kitaev, 2011) is an example of a 1D fermionic

SPT. Consider a system of fermions on a 1D lattice. Each site has Hilbert space C2,



Class [T C S |0 1 2 3 4 5 6 7
A 0 0 0z 0 Z 0 Z 0 Z O
AL [0 0 +1/0 Z 0 Z 0 Z 0 Z
Al [[+1 0 0 |Z 0 0 0 22 0 Z, Z
BDI |[+1 +1 1 |Z, Z 0 0 0 2Z 0 Z
D 0 +1 0 |Z, Z, Z 0 0 0 2Z 0
DIl | -1 +1 1 |0 Z, Z, Z 0 0 0 2Z
Al |-1 0 0 |2Z 0 Z, Z, Z 0 0 O
CI |[-1 -1 +1|0 2Z 0 Z, Z, Z 0 O
C 0 -1 0|0 0 220 Z, Z, Z O
CI ||+l -1 +1/0 0 0 2Z 0 Z, Z, Z

Table 2.1: Classification of phases with time-reversal, particle-hole, and chiral
symmetries. The number refers to the spatial dimension (due to Bott periodicity,
the table repeats itself from dimension 8 on).

where we have fermion creation and annihilation operators aj. and a; acting on the

Jth site. We can form Majorana operators, two for each site, as follows:

crj—1 = —i(a; — aj:)
crj=aj+al. (2.12)
The trivial system is given by:
=y 1
— — T
H__Ejzl C2j-1C2; _;(ajaj—i). (2.13)

Evidently, it is simply a series of uncoupled harmonic oscillators, and there is a

unique ground state, |0)®V, in which each site is unoccupied by the fermion. In

the Majorana form, we see that this Hamiltonian only couples Majorana fermions

within the same physical site.

Now consider:

;N
H = =5 2 C2C241 =
j=1

| =

i t
Z (—Cljaj.'_] - ajaj.Jr1 + a;ajﬂ + aj+1aj) . (214
J

This Hamiltonian now couples Majorana fermions in different physical sites (cy;

belongs to physical site j, but ¢5;,1 belongs to physical site j +1). This Hamiltonian
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leads to “edge modes” ¢y and ¢y, which commute with the Hamiltonian. We cannot
gap them out by a local term: a term such as ic;cy would be non-local, since ¢
and cy live on different ends of the chain. This gives us a signature of a topological

phase.

It is more difficult to write down the exact form of the ground state for this system,
but we know that there should be two. We can form a complex fermion out of the

edge modes by

d=c|+icy

d" =c| -icy, (2.15)

and there are two states which are occupied or unoccupied with respect to this
fermion. Both have the same energy, since the Hamiltonian commutes with d* and
d. This ground state degeneracy is robust to local perturbations, since we would
need to add a non-local term to the Hamiltonian in order to lift the degeneracy. This

gives us another signature of a topological phase.

What happens if we stack the system with itself, i.e. put another layer on top of one,
and allow coupling by local terms? For convenience, we will consider chains with
a single edge. Then, we have

H=H,+H, = %l (cic% + c}lcé + ) + %l (c%c% + cﬁc% + ) (2.16)
where the superscript labels the layer, and the subscript labels the site within the
layer. We have two edge modes, c} and c%, but now it is possible to gap them
out by a term such as ic%c%, which is local. Hence, the stacked system is no longer
topologically nontrivial: its gapless edge modes are not protected from being gapped

out. Thus, we have a Z, classification.

Time-reversal invariant Kitaev chain

Note that the original system has time-reversal symmetry, which acts by:

i— —i. (2.17)
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On the Majorana operators, we see that

Crj—1 > —C2j-1

C2j I—)Czj. (218)

Now consider two systems stacked with each other. As before, we have the boundary
modes c} and c%. Time-reversal acts separately on each layer, so the Hermitian term
icic% maps to —ic}c% under time-reversal. Hence, we cannot gap out the boundary

modes if we require that time-reversal invariance is preserved.

If we stack more copies of the Kitaev chain, we get a number of boundary modes
corresponding to the number of copies, and we cannot gap out any of them with a
time-reversal-invariant quadratic term. Hence the free classification is Z (the classes
of systems labeled by negative integers can be understood as differences between

phases).

We could consider interactions, i.e. higher-order terms. It turns out if we have eight
copies of the system, we can construct an interaction which gaps out the edge modes

(Fidkowski and Kitaev, 2010). Hence the interacting classification is Zg.

Topological Superconductors in 2 + 1 dimensions

We start with fermions in 2 + 1 dimensions with p-wave pairing (Read and Green,
2000; Bernevig, 2013):

2
1 - 2iA(py +i
> 245 —2iA*(px—ipy)  —E+u [\l
(2.19)
This can be written as
1
H = Ed(p) o (2.20)
withd = (=2|A|p,, =2|A|py, % — ), where o are Pauli matrices.
We can define a topological invariant called the Chern number,
y=— [ Tr[0dQd0] 2.21)

" T6r
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where Q(p) is the matrix with the same eigenvectors as Hp,, but with eigenvalues

normalized to +1.

In the case at hand, this takes the form

1 o n o
v=oo [ &peld-(0,dxd,,d) (2.22)
Where p > 0 gives the trivial phase with Chern number v = 0, while ¢ < 0 leads
to the topological phase with v = 1. If we have n copies of the nontrivial system,
we get v = n: hence v € Z tells us the number of stacked layers of the p-wave
superconductor. This is consistent with the classification of Class D systems in 2

dimensions.

2.2 Interacting bosonic phases in 1 + 1 dimensions and matrix product states
Now let us consider interacting bosonic systems in 1 + 1 dimensions, such as
spin chains. In one spatial dimension, ground states of gapped Hamiltonians are
efficiently approximated by an ansatz called a matrix product state (MPS) (Hastings,
2007), and we can use this formalism to classify these systems. ! Here we will focus
on the parent Hamiltonian approach, which constructs Hamiltonians associated to
the MPS ground states and considers the equivalnce classes of those Hamiltonians
in order to arrive at a classification (Schuch, Perez-Garcia, and Cirac, 2011); there
is also an approach focusing on the ground states themselves and local unitary

transformations between these states (Chen, Gu, and Wen, 2010).

First, let us define what an MPS is. Consider a closed chain of N sites, each with a
copy of a physical Hilbert space A ~ C¢, so that the total Hilbert space is A®V. To
each physical site, we attach two copies VX, VR of a virtual space CP. We identify
VE =V and VR = V* and choose a Hilbert space structure on V. Between each

adjacent pair (s, s + 1) of sites, place the maximally entangled state

D
) s.5a1 = Z iy @iy e VR VL. (2.23)

i=1

An MPS tensor? is a linear map P : VL ® VR — A. The MPS associated to P is

'We only consider translationally-invariant MPS.
2More generally, the tensors P may depend on the site index s. But any translationally-invariant
state has an MPS representation with a site-independent tensor (Perez-Garcia et al., 2006).
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the state

lyp) =(P1@P2® - Q Py)
(lw)12 ® W)z ® -+ ® [W)y) (2.24)

in A®VN. Since |yp) lies in the image of P®V, we do not lose generality by truncating
A to im P. We will assume we have done so in the following. Equivalently, we
assume that the adjoint MPS tensor T = P is injective3. To be precise, 7 is related

to P via

P = > T(eapli)e. Bl (2.25)
i,a,B

where |a, 8) € VI @ VR and |i) € A.

The MPS wavefunction can be expressed as a trace of a product of matrices, hence

its name. In the basis {e;};=1,._ 4 of A, the conjugate state takes the form

d
Wrl = Z Tr[T(ei,) - T(eiy) | (i1 -+ inl. (2.26)
ipin=1
There may be many different ways to represent a given state in A®" in an MPS form.
Even the dimension of the virtual space V is not uniquely defined. In general, it is

not immediate to read off the properties of the state /7 from the tensor 7.
i J k

. . .

Ty T Too

H v P o

Figure 2.1: An MPS represented as a tensor network

For the tensor 7, one can construct a LCP Hamiltonian Hr, called the parent
Hamiltonian* of |¢7), which has |¢7) as a ground state. It is given as a sum of
2-site terms h; 44 that project onto the orthogonal complement of kerz = (P ®
P)(V ® |w) ® V*). Explicitly,

3To avoid confusion, we stress that injectivity of T is unrelated to the notion of an injective MPS
in the sense of (Schuch, Perez-Garcia, and Cirac, 2011). In particular, while we will always assume
that T is injective, we will not assume that the ground state of the parent Hamiltonian is unique.

“4There is a more general notion of a parent Hamiltonian where / is any operator with this kernel;
however, we will always take /4 to be the projector.
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Hr = Z hss+1  where
S

sse1 =1 = (Ps @ Pos1)5(P] & Py (2.27)

s+1

where ¢ is the projector onto (Vs ® |w) ® V7, |) and P := (T,P;)~'Ty is a left inverse
of ;. The local projectors h; ;41 commute, so Hr is gapped. |y7) is annihilated by
hs s+1, Vs and therefore also by Hr.

Given the parent Hamiltonian, we can classify its phase by the usual principles:
two Hamiltonians, and hence the corresponding MPS ground states, are in the same
phase if we can deform them into each other without closing the gap. In this way, an
MPS, even though it is just a state, defines a specific phase in the usual sense given

by Hamiltonians.

When the Hamiltonian has a symmetry G which acts on-site on the physical Hilbert

Spaces as

g :A®N — AN

W) — R(g)®"|y) (2.28)

with R a representation of G on A, we have a projective representation Q on the
bond space; this acts as Q(g) ® Q(g)" on V ® V*, such that

R(@)P =P (0(s) @ 0(g)"). (2.29)

The projective nature of Q is encoded in the function (cochain) w on G X G in the

following way: Q(g)Q (h) = e*« (&M Q(gh). From the associativity condition

0(g) (Q(MQ(k)) = (Q(g)Q(h)) Q(k) (2.30)

we get the cocycle condition

w(g,h)+w(gh k) —w(h, k) —w(g,hk) =0 mod 1. (2.31)

We can redefine Q(g) by a g-dependent phase factor so that Q’(g) = 2™/ ©Q(g).

Then, we see that
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W' (g, h) =w(g, h)+ f(g)+ f(h)— f(gh) (2.32)

and we identify w’ ~ w. The set of such functions ws modulo the equivalence
relation given above (and this set moreover forms a group under the addition of
ws) is called the second group cohomology group of G with U(1) coefficients,
H*(G,U(1).

If we have two systems with symmetry action in the same cohomology class [w], we
can continuously deform one into the other, while maintaining the symmetry. On the
other hand, it can be shown that any smooth deformation of the parent Hamiltonian
and hence the ground state and the MPS tensors will never change the class [w];
hence, systems with different classes of projective actions will belong to different
phases. Thus, 1 + 1 dimensional (bosonic) systems with symmetry G are classified
by H?(G,U(1)) (Schuch, Perez-Garcia, and Cirac, 2011).

Example: Haldane phase

Consider a chain of spin-1s with the following Hamiltonian:

H = Z (S,- St + 35 Sun)?). (2.33)
The interaction term results in a higher energy cost for neighboring spins forming a

spin-2 state, compared to spin-1 or 0.

The physical on-site Hilbert space is C* spanned by the three spin states | — 1), |0),
and |1). We can take the bond space to be V = C2. Then the ground state is an MPS
with MPS tensor

P =1Ilg- o (]l ® iO'y) . (2.34)

Equivalently, we can write it as

Q)= > T[T TV] iy - -iy) (2.35)

[]5ee0sl N

with the matrices
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1
7Y = —— (0% —ic”)

V2

7O = _g¢
1

TW = — (¢ +i0?). (2.36)
V2

The Hamiltonian is invariant under an SO(3) spin rotation symmetry, represented
on the physical sites by standard spin-1 matrices. On the bond spaces C2, the
symmetry acts by the spin-% representation, which is projective. This action satisfies

the equivariance condition

T(R(g)a) = Q(g)T(a)Q(g)™". (2.37)

Since we have a projective representation of the symmetry group, we cannot deform
the system to the trivial phase without breaking the symmetry. In fact, we only need
a subgroup Z, X Z, € SO(3) to get a nontrivial 2-cocycle and hence a nontrivial
phase (Schuch, Perez-Garcia, and Cirac, 2011; Zeng et al., 2015).
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Chapter 3

TOPOLOGICAL QUANTUM FIELD THEORY AND
TOPOLOGICAL ORDER

3.1 Topological quantum field theory

Topological quantum field theory (TQFT) is a quantum field theory whose partition
function depends only on the topology, and not the geometry, of spacetime (Atiyah,
1989; Kapustin, 2010). For example, the Chern-Simons action

k 2
SCS:—/ ANdA+=-ANANA 3.1
4 X 3

has no explicit dependence on the metric of the spacetime-manifold X. There are
also the so-called Witten-type or cohomological TQFTs, whose action contains
explicit dependence on the metric, but whose correlation functions do not end up

depending on the metric.

Under renormalization group flow, quantum field theories with a mass gap will
flow to a TQFT in the far infrared (while a massless theory will flow to a CFT).
Hence it is believed that TQFTs (with the relevant structures, such as G-bundles for

G-symmetric phases) ultimately classify gapped topological phases.

Unifying these into a formal language, Atiyah proposed a definition of TQFT as a
functor (Atiyah, 1989). A d-dimensional TQFT with no extra structure is given by
a functor from the category of d-dimensional cobordisms, Bord,, to the category
of vector spaces over C, Vect. (The latter could be a more general category such
as the category of modules over some commutative ring, but we will focus on the

physically relevant case of complex vector spaces.)

The category Bord, consists of the following data: objects are closed oriented d — 1-
dimensional manifolds. The morphism between two objects M and N is given by
a d-dimensional bordism, i.e. a d-dimensional manifold X whose boundary 90X

consists of the disjoint union of M and N, the orientation-reversal of N.

A TQFT Z attaches a vector space Z(M) to each d — 1-dimensional closed manifold
M, which can be thought of as the space of states living on a spatial slice M. To a
d-dimensional bordism X from M to N, the TQFT attaches a linear map Z(X) from



18
M to N. To the empty manifold, the TQFT attaches the ground field, which in our

case is C. A closed d-dimensional manifold P can be thought of as a bordism from
the empty manifold to the empty manifold; hence, Z(P) is a linear map between C
and C, which is just a complex number. This number is the partition function of the

theory on P.

The TQFT functor has to be monoidal: to a disjoint union M and N, it attaches the
tensor product of state spaces, Z(M) ® Z(N).

We can consider different types of TQFTs by introducing extra structure on both
sides of the fuctor. For example, we can consider a functor which attaches Z;-graded
vector spaces (or super-vector spaces) to closed d — 1-dimensional manifolds with
spin structure; this is the appropriate type of TQFT to consider when we are dealing

with fermionic theories.

3.2 Topological quantum field theory in 1+1 dimensions

As a simple example, let us consider the 1+ 1-dimensional case. In 1+ 1 dimensions,
there is only one type of closed oriented connected 1-dimensional manifold, the
circle, and this makes things particularly simple: the data of a 1 + 1d TQFT is

equivalent to that of a commutative Frobenius algebra.

A 1+ 1 TQFT associates a space of states ‘A to an oriented circle, and a vector
space A®" to n disjoint oriented circles. To a bordism X from 7 circles to [ circles,
the TQFT associates a linear map from A®" to A®'. This map is invariant under
diffeomorphisms. Gluing bordisms, taking care that orientations agree, corresponds

to composing linear maps.

If ¥ is a pair-of-pants bordism from two circles to one circle, the TQFT gives us a
corresponding map m : A ® A — A which defines an associative, commutative
product on A. The cap bordism defines a symmetric trace function Tr : A — C
such that the scalar product n(a,b) = Tr(ab) is symmetric and non-degenerate.
These data make A into a commutative Frobenius algebra. It is known that a
two-dimensional TQFT is completely determined by the commutative Frobenius
algebra structure on (A.(Atiyah, 1989; Moore and Segal, 2006; Abrams, 1996) The
state-operator correspondence identifies ‘A with the algebra of local operators. This
Frobenius algebra encodes the 2- and 3-point functions on the sphere, from which

all other correlators, including the partition function, can be reconstructed.

In 2d, there is an essentially trivial family of unitary oriented TQFTs parameterized

by a positive real number A. The partition function of such a TQFT on a closed
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oriented 2d manifold ¥ is A¥(X), while the Hilbert space attached to a circle is
one-dimensional. Such 2d TQFTS are called invertible, since the partition function
is a nonzero number for any X. Since, by the Gauss-Bonnet theorem, y(Z) can be
expressed as an integral of scalar curvature, tensoring a 2d TQFT by an invertible
2d TQFT is equivalent to redefining the TQFT action by a local counterterm which
depends only on the background curvature. One usually disregards such countert-
erms — we will follow this practice and regard TQFTs related by tensoring with an

invertible TQFT as equivalent.

1 + 1d spin-TQFT

As mentioned above, we can take additional structures into account to obtain a
generalization of TQFT. One example, which is relevant for fermionic systems, is
the spin-TQFT, where we replace the category of cobordisms with the category of
cobordisms with spin strcutures, and the category of vector spaces with the category
of Zj-graded vector spaces (Moore and Segal, 2006). Now, instead of just the
circle, there are two different kinds of simple 1-manifolds: the circle with periodic
or Ramond (R) spin structure, and the circle with anti-periodic or Neveu-Schwarz
(NS) spin structure. To these, the spin-TQFT associates vector spaces A, and A,
respectively. The automorphisms of the spin structures induce an involution on the

vector spaces A, s, allowing us to define a Z,-grading on the vector spaces.

3.3 Topological quantum field theory in 2+1 dimensions

In 2+ 1 dimensions, a TQFT attaches a space of states Z(X) to every closed oriented
surface X, and a linear map between such spaces to cobordisms between surfaces.
An important and well-studied example is the Chern-Simons theory. It starts from

the action

2
Scszif ANdA+-zANANA (3.2)
4 X 3

which is the integral of the Chern-Simons form over a 3-manifold X (here A is a
G-gauge field for some gauge group G). We can study correlation functions of
Wilson loops W(y;) = exp{ fy‘ A}, and these give invariants of knots and links

(Witten, 1989): if n loops y;,i = 1, ..., n form a link, the correlation function

W(y1) - W(yn) (3.3)
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depends only on the topological class of the link (i.e. is unchanged when the link,
or the ambient manifold, is smoothly deformed). These links can be thought of
as trajectories of quasiparticle excitations (or quasiparticle-antiquasiparticle pairs).
It was also shown in (Witten, 1989) that by canonically quantizing on X x R!, the
Chern-Simons theory (with gauge group G and level k) attaches to 2 a Hilbert space
which is the space of conformal blocks of a level k£ G-Wess-Zumino-Witten model, a
chiral rational conformal field theory (RCFT). These surfaces can be further pierced
by quasiparticle trajectories, which correspond to insertions of fields on the 2d RCFT

level.

Modular tensor categories and topological order

There is a different but related way of characterizing a 2+ 1d TQFT, which focuses on
quasiparticle excitations and their properties under braiding and fusion. The types
of quasiparticles and their braiding and fusion data, known as the R- and F-symbols,
determine a mathematical structure known as a modular tensor category, which in
turn determines a 2 + 1d TQFT (Kitaev, 2006; Bais and Slingerland, 2009). The
boundary RCFT is also constrained by this data, which in that context is known as
the Moore-Seiberg data (Moore and Seiberg, 1989).

In 2 + 1d, pointlike excitations can have anyonic statistics, in addition to the usual
bosonic and fermionic statistics; hence, we will call them anyons in general. An
anyon type can equivalently be thought of as a superselection sector: since it is
impossible to create or destroy anyons by acting with local operators on the vacuum,
states with different types of anyons belong to different superselection sectors. We

always have the vacuum superselection sector, usually denoted by 1.

Two anyons can fuse into different types of anyons. We encode this through the

fusion rules

axXb= Ncbc. (3.4)

This states that anyons a and b can fuse to a particle type ¢ whenever N7, # 0. If

c
Nab

vacuuin:

> 1, we get multiple copies of the anyon c¢. All anyons fuse trivially with the

l1xa=a 3.5)
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and fusion is commutative and associative:

aXb=bxa

axX(bxc)=(axb)xc. (3.6)

For each anyon a, there exists a unique anti-particle a, with which it can fuse to the

vacuuin:

axa=1+.. (3.7)

where ... represents some other anyons which may potentially be present. Another

way to put this is that N;ﬁ =1.

When we fuse a and b, we can get states [“?), which form a Hilbert space V.
We can decompose this space into different superselection sectors labeled by c:
Vap = &.V;,. Thespaces V', are called fusion spaces, with dimensiondimV’, = N¢,

which corresponds to the number of ways of fusing a and b into c.

When we fuse three anyons, there are multiple ways of getting to the final result.

The F-symbol encodes the relation (basis transformation) between them.

More relevant for us will be the R-symbol, which encodes the braiding data. If we
exchange two anyons a and b, we get a map R : V% — V54, called the braiding
coeflicient (or the braiding matrix, if dich“b > 1). The braiding coefficient of a

and b depends on the fusion channel c, and is denoted by R%.

When a # b, R% does not have a gauge-invariant meaning. Only the full braiding
of one type of anyon around the other, R?*R%?, is a topological invariant. We denote
this by M:

M@ = RbaRaY, (3.8)

F and R satisfy consistency conditions know as the pentagon equation and the

hexagon equation.

Relation to abelian Chern-Simons theory

In the case of an abelian Chern-Simons theory, described by an N X N K-matrix, we
can obtain the braiding statistics of anyons in a simple manner (Belov and Moore,
2005; Stirling, 2008; Kapustin and Saulina, 2011).
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The anyons are characterized by a vector ¢/ € ZV describing how it is charged under
each Ay; the phase acquired under a full braiding of two anyons described by ¢/, ¢"’/
is given by

exp{2nig’ (K™")1,q"}. (3.9)

Under exchange of two anyons of the same type ¢/, we get a phase

exp{m‘qll(,_Jl qJ}. (3.10)

Two charge vectors related by g — ¢ + K[ for [ € Z" are equivalent; indeed, the
modified ¢ leads to the same braiding statistics.

We can think of the charge vector ¢ as living on a lattice A = Z"; then the distinct

charges (anyon types) are elements of the discriminant group

D =A/KA (3.11)

and their braiding statistics is encoded in a quadratic form Q, such that forx,y € D,

Q(x+y) - Q) +0(y) = K\ (%,5) = K/ &5’ (3.12)

where X and J are lifts of x, y from D to A, and

0(nx) = n*Q(x) (3.13)

for any integer n.
Note that Q(x) = %K ~1(#,%): we can recover Q from the braiding statistics.

P and Q, together with the chiral central charge ¢ mod 24 (9 and Q by themselves
only determine the central charge mod 8), fully determine an abelian Chern-Simons
theory (Belov and Moore, 2005).
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Example: Toric code
Kitaev’s toric code model proposed in (Kitaev, 2003) has four anyons 1, e, m, ¢ with

fusion rules

exXxe=mxXm=y Xy=1

exXm=y
exXy=m
mxXy =e. (3.14)
The braiding coeflicients are
R{*=R|" =1
RV =-1
My =M = -1
My" =-1. (3.15)

This system can be represented as an abelian Chern-Simons theory with

k=" 2 (3.16)
{2 o) '

0} (1} [O 1
In A/KA, we have (0), (0), (1), and (1) By labeling

0):1

—_ O

|
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(3.17)
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<
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1
oz)
1
1o

and the equations (3.9) and (3.10), we recover the braiding statistics for the toric
code (3.15).

we immediately see that they satisfy the fusion rules (3.14), and using K ! =

Example: Ising TQFT and p-wave superconductors

This theory consists of three anyons 1, o, i with the fusion rules

oxo=1+y
oXy=0

Uxy = 1. (3.18)

The braiding coeflicients are given by:

RI7 = g%

Ry = Ge %, (3.19)

A p-wave superconductor in the presence of a vortex (modelled by the winding
behavior of the phase of the order parameter, A = Ag(r)e’¥ where ¢(0) = 6)
has a zero-energy Majorana solution to the BdG equations. The Majorana zero
mode y = / rdrdd (u(r,0)c(r,0) +v(r,0)c’(r,0)) is exponentially localized to

the vortex:

v = / rdrd0ig(r) [—eie/zc(r, 0) + e 2 (r, 9)] (3.20)

where g(r) is exponentially localized at r = 0.

If we have two vortices, we obtain two Majorana zero modes y; and y;, each

localized to the respective vortex core. Exchanging these vortices results in (Ivanov,
2001)

Y12
Y2 Y1 (3.21)
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With two Majorana modes, we can form a complex fermion

1
a= 5(71 +1iy2)
o4 1 .
a'= 5(71 —1y2) (3.22)

and the occupied and unoccupied states with respect to this fermion, |0) and |1),
span the space of ground states C2. These states correspond to the superselection

sectors 1 (vacuum) and ¢ (fermion) in the Ising TQFT.

The operator on C? which accomplishes Eq. (3.21) by conjugation is
R =0e 57172 = geid(ron), (3.23)

From this we can recover Eq. (3.19).
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Chapter 4

TOPOLOGICAL QUANTUM FIELD THEORY AND MATRIX
PRODUCT STATES

4.1 Introduction and overview

It is a widely held belief that the universal long-distance behavior of a quantum
phase of matter at zero temperature can be encoded into an effective field theory.!
In the case of gapped phases of matter, the extreme infrared should be described
by a topological quantum field theory, discussed in 3.1. On the other hand, we
have seen in 2.2 that the ground state of any gapped 1+1d Hamiltonian with a
short-range interaction can be approximated by a Matrix Product State (MPS). This
representation is very efficient, especially in the translationally-invariant case, and
is well-suited to the Renormalization Group analysis. In particular, it leads to a
classification of Short-Range Entangled Phases of 1+1d matter in terms of group
cohomology (Chen, Gu, and Wen, 2011a; Chen, Gu, and Wen, 2011b; Fidkowski
and Kitaev, 2011). It is natural to ask about the connection between these two
approaches to gapped phases of matter. This chapter will attempt to answer this

question.

First, we consider the bosonic case without symmetry. We show that a standard-form
MPS is naturally associated with a module M over a finite-dimensional semisimple
algebra A. The universality class of the MPS depends only on the center Z(A). On
the other hand, every unitary 2d TQFT has a state-sum construction which uses a
semisimple algebra as an input. Further, given a module M over this algebra, one
naturally gets a particular state in the TQFT space of states. We show that this state
is precisely the MPS associated to the pair (A, M). Since the TQFT depends only
on Z(A), we reproduce the fact that the universality class of the MPS depends only
on Z(A).

In the case of an MPS with a symmetry G, a similar story holds. A G-equivariant
MPS is encoded in a G-equivariant module M over a G-equivariant semisimple
algebra A. Such an algebra can be used to give a state-sum construction of a G-

equivariant TQFT, while every G-equivariant module M gives rise to a particular

1Tt is hard to make this rigorous since neither the notion of a phase of matter nor that of an
effective field theory has been formalized.
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state. This state is an equivariant MPS state. Again, different A can give rise to the
same TQFT. This leads to an equivalence relation on G-equivariant algebras which
is a special case of Morita equivalence. An indecomposable phase with symmetry
G is therefore associated with a Morita-equivalence class of indecomposable G-
equivariant algebras. The classification of such algebras is well known (Ostrik,
2003) and leads to an also well-known (Chen, Gu, and Wen, 2011a; Chen, Gu, and
Wen, 2011b; Fidkowski and Kitaev, 2011) classification of bosonic 1+1d gapped
phases of matter with symmetry G. In the special case of Short-Range Entangled

gapped phases, we recover the group cohomology classification of SPT phases.

We then move on to the relation between fermionic MPS and spin-TQFTs. We
review the state-sum construction of spin-TQFTs in two space-time dimensions
from Z,-graded algebras following (Novak and Runkel, 2014; Gaiotto and Kapustin,
2016). We also show that stacking fermionic systems together corresponds to taking
the supertensor product of the corresponding algebras. This gives a very clean
and simple derivation of the spin-statistics relation in the topological case. We
evaluate the annulus diagram and show that it gives rise to a generalized MPS
both in the Neveu-Schwarz and the Ramond sector, and work out the commuting
projector Hamiltonian starting from the TQFT data describing an invertible spin-
TQFT. We show that for a nontrivial spin-TQFT, the resulting Hamiltonian describes
the Majorana chain (Fidkowski and Kitaev, 2011). In section 4.8, we discuss G-
equivariant spin-TQFT and G-equivariant fermionic MPS. We show that fermionic
SRE phases with a symmetry G times the fermion parity are in 1-1 correspondence
with invertible G-equivariant spin-TQFTs, and that the TQFT data give rise to
fermionic G-equivariant MPS. We also discuss the case when the symmetry is a
nontrivial extension G of G by fermion parity, which is related to G-Spin TQFTs.
We then derive interpretations of the invariants on the closed chain that extend the
results of (Kapustin and Thorngren, 2017), which were discovered in the context
of spin-TQFT. Next, time-reversing symmetries and their relation to spatial parity
are discussed. The generalizations of the three invariants to phases with such
symmetries are derived and interpreted. In Section 4.9, a general stacking law
(4.174) is derived for fermionic SRE phases with a symmetry G that is a central
extension by fermion parity of a bosonic symmetry group that may contain anti-
unitary symmetries. We contrast this result with the bosonic group structure and
emphasize the origin of the difference. In Section 4.10, we demonstrate our result
with several examples, recovering the Z/8 classification of fermionic SRE phases
in the symmetry class BDI (72 = 1) and the Z/2 classification in the class DIII
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(T> = P).

4.2 Matrix Product States at RG Fixed Points

Matrix product states

In this section, we review matrix product states (MPS) and extract the algebraic
data that characterizes them at fixed points of the Renormalization Group (RG).
We find that a fixed point MPS is described by a module over a finite-dimensional
semisimple algebra. We discuss the notion of a gapped phase and argue that they are
classified by finite-dimensional semisimple commutative algebras. Given a fixed
point MPS and the corresponding semisimple algebra A, the commutative algebra

characterizing the gapped phase is the center Z(A) of A, denoted A.

We are interested in Hamiltonians with an energy gap that persists in the thermody-
namic limit of an infinite chain. A large class of examples of gapped systems come
from local commuting projector (LCP) Hamiltonians; that is, H = ) hy (1, where
the h; 441 are projectors that act on sites s, s + 1 and commute with each other. Since
the local projectors commute, an eigenstate of H is an eigenstate of each projector.
It follows that the gap of H is at least 1. Thus LCP Hamiltonians are gapped in the
thermodynamic limit. As noted in 2.2, these are efficiently approximated by MPSs
in one spatial dimension, and an MPS is given by atensor 7 : A — V ® V*, or,
equivalently, # : V® V* — A, where V is the virtual space and A is the physical
Hilbert space on each lattice site. From this, one can construct the parent Hamil-
tonian H7, which has the associated MPS as its ground state. Here we will discuss

the properties of the parent Hamiltonian in more detail.

While Hr is constructed so that it has the MPS with conjugate wavefunction (2.26)
as its ground state, Hy can have other ground states in general. Consider a state of

the form

WXy =(P1@Pr® - ®Py)

(lod @ )3 - ) ) (4.1)

for some virtual state
D
e Z Xijliyel|j)eVieV (4.2)
i=1

where X is a matrix that commutes with 7' (a) for all a € A. Note that |wﬂ> = |w)
and so |¢/¥> = |¢7). The states (4.1) are clearly annihilated by 4 ;41 for s # N. To
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see that they are annihilated by iy1, note that tensor 7'(e;) XT (e;) is expressible as
a linear combination of tensors T (e;)T (e;) if and only if X commutes with every

T(e;). The conjugate states have wavefunctions

Wil =) Te[XTT(eq) -+ Ter,)] it - inl. (4.3)
We will refer to these states as generalized MPS.

It turns out that all ground states of Hy can be written as generalized MPS. One can
always take 7 to be an isometry with respect to some inner product on A and the

standard inner product
(M|N) =Trt[M'N] M,N €End(V) (4.4)

on End(V). For an orthogonal basis {¢;} of A, Tr[T(e,-)TT(ej)] = 9;;. Consider

the case N = 1. An arbitrary state
Wl=> ail (4.5)
i

can be written in generalized MPS form (4.3) if one takes
X =Y ajT(e)", (4.6)
J

Thus generalized MPS with commuting X are the only ground states. Neither the
number of generalized MPS nor the number of ground states depends on N; thus,

the argument extends to all N.

Suppose the data (A, V(,T;) and (Aj, V2, T2) define two MPS systems with parent
Hamiltonians H; and H,. Consider the composite system (A1 @ Ay, Vi@V, T1 QT>).
IthasP =P ®Prand 6 = 6; ® 92. Then

haeg = Tajea, — 7)267):&-12®A2
= 14, ® La, - P2PL © P26P}
= (La, —P?P}) @ La, + 14, ® (14, - P?6PL)
= hp, @1, + 14, ® hy, 4.7)

where the penultimate line follows from the fact that P25P*? is a projector. There-

fore, the composite parent Hamiltonian is

Hpagp=Hp, @14, +14, ® Ha,. 4.8)
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RG-fixed MPS and gapped phases

Under real-space renormalization group (RG) flow (Verstraete et al., 2005), adjacent
pairs of sites are combined into blocks with physical space A ® A. The MPS form

of the state is preserved, with the new MPS tensor being
T'(a®b) =T(a)T(b), 4.9)

where on the r.h.s. the multiplication is matrix multiplication. We also define
P’ = T"". Though an RG step squares the dimension of the codomain of the MPS
tensor, the rank is bounded above by D?, and so the truncated physical space im(%”)

never grows beyond dimension D?.

An RG fixed MPS tensor is an MPS tensor such that £ and #’ have isomorphic
images and are identical (up to this isomorphism) as maps. That is, there exists an

injective map u : A — A ® A such that
uoP =P, (4.10)
If we denote m = y*, this is equivalent to

T(m(a® b)) =T(a)T(b). 4.11)

Since 7" was assumed to be injective, this equation completely determines m. Simi-
larly, the fact that matrix multiplication is associative implies thatm : A® A — A
is an associative multiplication on A. The map 7 : A — End(V) then gives V
the structure of a module over A. Since 7T is injective, this module is faithful (all
nonzero elements of A act nontrivially). The statement that X commutes with 7
in the ground state of the parent Hamiltonian is the statement that X is a module

endomorphism of V.

As previously stated, a state in A®Y

may have multiple distinct MPS descriptions.
One can always choose T to have a certain standard form (Schuch, Perez-Garcia,
and Cirac, 2011) — regardless of whether it is RG fixed. When this is done, the
matrices T (a) are simultaneously block-diagonalized, for all a € A. Moreover, if
we denote by T(® the o™ block, say of size Ly X Ly, then the matrices 7' (e;) span
the space of L, X L, matrices. That is, 7'® defines a surjective map from A to the

space of L, X L, matrices.

For an RG-fixed MPS tensor in its standard form, one can easily see that A is a direct

sum of matrix algebras. Indeed, each block A® defines a surjective homomorphism
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T“ from A to the algebra of L, X L, matrices, and if an element of A is annihilated

by all these homomorphisms, then it must vanish. Thus we get a decomposition
A =9, A, (4.12)

where each A = (ker T%)* is isomorphic to a matrix algebra. We stress that some
of these homomorphisms might be linearly dependent, so the number of summands
may be smaller than the number of blocks in the standard form of 7. An algebra
of such a form is semisimple, that is, any module is a direct sum of irreducible
modules. More specifically, any module over a matrix algebra of L X L matrices
is a direct sum of several copies of the obvious L-dimensional module. This basic
module is irreducible. If, for a particular A*, T contains more than one copy of
the irreducible module, the corresponding blocks in the standard form of 7" are not

independent.

The ground-state degeneracy is simply related to the properties of the algebra A.
Namely, the number of ground states is equal to the number of independent blocks in
a standard-form MPS, or equivalently the number of summands in the decomposition
(4.12). Since the center of a matrix algebra consists of scalar matrices and thus is
isomorphic to C, one can also say that the number of ground states is equal to the
dimension of A = Z(A).

Two gapped systems are said to be in the same phase if their Hamiltonians can be
connected by a Local Unitary (LU) evolution, i.e. if they are related by conjugation
with a finite-time evolution operator for a local time-dependent Hamiltonian (Chen,
Gu, and Wen, 2010). Clearly, the ground-state degeneracy is the same for all systems
in a particular phase. In fact, for 1+1d gapped bosonic systems, it completely
determines the phase (Schuch, Perez-Garcia, and Cirac, 2011; Chen, Gu, and Wen,
2011a).

It is convenient to introduce an addition operation @ on systems and phases. Given
two 1+1d systems with local Hilbert spaces A; and A,, we can form a new 1+1d
system with the local Hilbert space A| @ A,. The Hamiltonian is taken to be the sum
of the Hamiltonians of the two systems plus projectors which enforce the condition
that neighboring “spins” are either both in the A; subspace or in the A, subspace.
The ground state degeneracy is additive under this operation. A phase is called
decomposable if it is a sum of two phases, otherwise it is called indecomposable.

Clearly, it is sufficient to classify indecomposable phases.
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It is easy to see that if A decomposes as a sum of subalgebras, the corresponding
phase is decomposable. Further, an indecomposable semisimple algebra A is iso-
morphic to a matrix algebra. The corresponding ground state is unique. Moreover,
while the parent Hamiltonians for different matrix algebras are different, they all
correspond to the same phase,(Chen, Gu, and Wen, 2011a) i.e. are related by a Local
Unitary evolution. Hence the phase is determined by the number of components in
the decomposition (4.12), or in other words, by Z(A).

4.3 Topological quantum field theory

We have seen above that an RG-fixed MPS state is associated with a finite-dimensional
semisimple algebra A, and that the universality class of the corresponding phase
depends only on the center of A. On the other hand, it is known since the work
of Fukuma, Hosono, and Kawai (1994) that for any finite-dimensional semisimple
algebra A with an invariant scalar product, one can construct a unitary 2D TQFT,
and that the isomorphism class of the resulting TQFT depends only on the center of
A. In this section, we show that this is not a mere coincidence, and that the ground
states of this TQFT can be naturally written in an MPS form, with an RG-fixed MPS

tensor.

State-sum construction of 2d TQFTs
We have seen in 3.2 that a (closed) 2D TQFT associates a space of states A to an

oriented circle, and a vector space A®" to n disjoint oriented circles.

Every unitary oriented 2d TQFT? has an alternative construction called the state-
sum construction (Fukuma, Hosono, and Kawai, 1994), which is combinatorial and
manifestly local. The input for this construction is a finite-dimensional semisimple
algebra A, which is not necessarily commutative. To compute the linear maps
associated to a particular bordism X, one needs to choose a triangulation of X.
Nevertheless, the result is independent of the choice of the triangulation. The
connection between the not-necessarily commutative algebra A and the commutative
algebra A is that A is Z(A), the center of A. From the perspective of open-closed
TQFTs, A is the algebra of states on the interval for a particular boundary condition.

The scalar product on (A is also fixed by the structure of A.

Let us describe the state-sum construction for the partition function Zy of a closed

oriented 2D manifold X, following (Fukuma, Hosono, and Kawai, 1994). Fix a

ZMore precisely, every equivalence class of unitary oriented 2d TQFTs, in the sense explained
in the previous paragraph.
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basis e;, i € S, of A. We define the following tensors:
nij =n(ei,e;) =Tra PiPj, Cijk = Tra P;P; Py (4.13)

Here P, : A — A s the operator of multiplication by e;. The tensor 77;; is symmetric
and non-degenerate (if the algebra A is semi-simple); the tensor C;jx is cyclically
symmetric. We also denote by 1/ the inverse to the tensor 7; . Note also that C;

is related to the structure constants C' j in this basis by

C' ik :Znﬂc,jk. (4.14)
l

Let T(X) be a triangulation of X. A coloring of a 2-simplex F of T(X) is a choice
of a basis vector e; for each 1-simplex E € dF. A coloring of T(X) is a coloring
of all 2-simplices of T(X). Note that each 1-simplex of 7(X) has two basis vectors
attached to it, one from each 2-simplex that it bounds. The weight of a coloring
is the product of C;;; over 2-simplices and 1"/ over 1-simplices, where the cyclic
ordering of indices for each 2-simplex is determined by the orientation of X. The

partition function is the sum of these weights over all colorings.

Topological invariance of Zy can be shown as follows. It is known that any two
triangulations of a smooth manifold are related by a finite sequence of local moves
(Pachner, 1991). In two dimensions, there are two moves — the 2-2 move and the 3-1
move, depicted in Figure 4.1 — which swap two or three faces of a tetrahedron with

their complement. Invariance of the state-sum under the 2-2 “fusion” move reads
Cii’Coil = CitPCip'. (4.15)
Similarly the 3-1 move reads
C/"Cy*C' iy = Cii*. (4.16)

These axioms are satisfied by any finite-dimensional semisimple algebra A (Fukuma,

Hosono, and Kawai, 1994); therefore, the partition sum is a topological invariant3.

Open-closed 2d TQFT
So far we have discussed what is known as closed 2D TQFTs. That is, the boundary
circles were interpreted as spacelike hypersurfaces, and thus each spatial slice had

an empty boundary. The notion of a TQFT can be extended to incorporate spatial

3In two dimensions, there is no difference between topological and smooth manifolds.
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Figure 4.1: The 2-2 and the 3-1 Pachner moves.

boundaries; such theories are called open-closed TQFTs. In such a theory, a spatial
slice is a compact oriented manifold, possibly with an nonempty boundary. That s, it
is a finite collection of oriented intervals and circles. A bordism between such spatial
slices is a smooth oriented surface with corners: paracompact Hausdorft spaces for
which each point has a neighborhood homeomorphic to an open subset of a half-
plane. Surfaces with corners are homeomorphic, but typically not diffeomorphic,

to smooth surfaces with a boundary.

The corner points subdivide the boundary of the bordism into two parts: the initial
and final spatial slices, and the rest. We will refer to the initial and final spatial slices
as the cut boundary, while the rest will be referred to as the brane boundary. The
cut boundary can be thought of as spacelike, while the brane boundary is timelike.
Bordisms are composed along their cut boundary (hence the name), while on the
brane boundary, one needs to impose boundary conditions (known as D-branes
in the string theory context, hence the name). More precisely, if C is the set of
boundary conditions, one needs to label each connected component of the brane

boundary with an element of C.

An open-closed 2d TQFT associates a vector space Vs to every oriented interval
with the endpoints labeled by M, M’ € C, and a vector space A to every oriented
circle. To a collection of thus labeled compact oriented 1D manifolds, it attaches the
tensor product of spaces Vjsy- and A. To every bordism with corners labeled in the
way explained above, it attaches a linear map from a vector space of the “incoming”
cut boundary to the vector space of the “outgoing” cut boundary. Gluing bordisms

along their cut boundaries corresponds to composing the linear maps.

Just like in the case of a closed 2d TQFT, one can describe algebraically the data
which are needed to construct a 2d open-closed TQFT. These axioms were dis-

covered by (Lazaroiu, 2001), and we also refer to (Moore and Segal, 2006) for
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Figure 4.2: An elementary shelling representing T;I;;TZ' =C f]Tlil « (4.17). The thick
line is a physical boundary.

details. Suffice it to say that each space V), is a (possibly noncommutative) Frobe-
nius algebra, and each space V) is a left module over Vi and a right module
over Vyry. That is, to every element x € V), one associates a linear operator
™ (x) : Vaemr — Ve so that composition of elements of Vs corresponds to the
composition of linear operators: TM (x)TM (x") = T (xx”) (and similarly for Vy;p1).
Also, for every M € C, there is a map M+ A — Vi which is a homomorphism
of Frobenius algebras. The dual map ¢y : Viyyr — A is known as the generalized
boundary-bulk map. In particular, if we act with ¢); on the identity element of the
algebra Vj s, we get a distinguished element ), € A called the boundary state
corresponding to the boundary condition M. Geometrically, ¢, is the element of
A which the open-closed TQFT associates to an annulus whose interior circle is a

brane boundary labeled by M, while the exterior circle is an outgoing cut boundary.

One may wonder if it is possible to reconstruct the open-closed TQFT from the
closed TQFT. The answer turns out to be yes if A is a semisimple, i.e. if every
module over A is a sum of irreducible modules (Moore and Segal, 2006).4 Then
C is the set of finite-dimensional modules over A, and Vj;;,- is the space of linear
maps from the module M to the module M” commuting with the action of A (i.e.
Vame is the space of module homomorphisms). Conversely, one can reconstruct the
algebra A from any “sufficiently large” brane M € C: if we assume that the module

M is faithful (i.e. all nonzero elements of (A act nontrivially), then A = Z(Vyu).

The state-sum construction generalizes to the open-closed case (Lauda and Pfeiffer,
2007). Let us describe it for a semisimple A, assuming that the bordism % only
has a brane boundary. Each connected component of 9% is then labeled by a brane
M € C. We pick a sufficiently large brane M, such that A = Z(Vi,m,). Let

A = Viym,- We also choose a basis f}f” , 4 € Sy in each module M. Denote the

4This might seem like a rather uninteresting case, since by the Wedderburn theorem, every
commutative semisimple algebra is isomorphic to a sum of several copies of C. But as explained
below, unitarity forces A to be semisimple. Also, in the case of TQFTs with symmetries and
fermionic TQFTs, the classification of semisimple algebras is more interesting.



36

¢ ’ Hivy

: . . . H P ~Jk _ pp
Figure 4.3: An elementary shelling representing ijTv G =T,

(4.18).

matrix elements of the action of A on M by TA/fIV,-. We choose a triangulation of X,
which also gives us a triangulation of each connected component of the boundary.
2-simplices of X are labeled as before. We label the boundary O-simplices on any
M-labeled boundary component by the basis vectors flﬁ” . Thus each boundary
I-simplex is labeled by a basis vector of A and a pair of basis vectors of a module.
We assign a weight to each 2-simplex and each interior 1-simplex as before. We
also assign a weight to each boundary 1-simplex as follows. Suppose the boundary
1-simplex is labeled by ¢; € A and £, fM € M. Then the weight of the boundary
1-simplex is T},
all 1-simplices (both interior and exterior).

vi- The total weight is the product of weights of all 2-simplices and

Due to the introduction of brane boundaries, there are two more moves, called the
2-2 and 3-1 elementary shellings and depicted in Figures 4.2 and 4.3, that must be
considered when demonstrating topological invariance (Lauda and Pfeiffer, 2007).
They yield conditions

U _ ki
TMpl.TMVj =CiTy 4.17)

and

T 10 clf=T

Mpj~ Mvk Mvi® (418)

respectively. The first one is the definition of a module, and the second one follows
from the semisimplicity of A. Therefore the state-sum is a well-defined open-
closed TQFT. Moreover, such structures are precisely those required to define a

topologically invariant state-sum.

Unitary TQFTs and semisimplicity

The state-sum construction defines a perfectly good topological invariant for any
finite-dimensional semisimple algebra A; however, if it is to model an actual physical
system, its space of states must carry a Hilbert space structure, and linear maps
corresponding to bordisms must be compatible in some sense with this structure. To
be precise, for any oriented bordism X whose source is a disjoint union of n circles

and whose target is a disjoint union of / circles, let —X denote its orientation-reversal.
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—X has [ circles in its source and n circles in its target. A 2d TQFT attaches to X a
linear map A®" — A% and to —X a linear map A® — A®". A unitary structure
on a 2d TQFT is a Hilbert space structure on A such that the maps corresponding
to X and —X are adjoint to each other. For an open-closed 2D TQFT, we require
that the state-space assigned to each boundary-colored interval has a non-degenerate
Hermitian metric, and that cobordisms with nonempty brane boundary also satisfy
the Hermiticity condition. In particular, the product m and coproduct i are adjoints.
It then follows from the Pachner moves that u is an isometry. Likewise, the module

structure 7" is an isometry.

Let (a, b) denote the Hilbert space inner product of a,b € A. Since A also has a
bilinear scalar product 17, we can define an antilinear map

x A>A, awra, (4.19)

such that {a,b) = n(a*, b). It can be shown that this map is an involution (i.e.
a™ = a) and an anti-automorphism (i.e. (ab)* = b*a*) (Turaev, 2010). This can
also be expressed by saying that A is a x-algebra. Conversely, one can show that
any commutative Frobenius *-algebra such that the sesquilinear product n(a*, b) is

positive-definite gives rise to a unitary 2d TQF (Turaev, 2010).

A corollary of this result is that for a unitary 2d TQFT, the algebra A is semisimple.
To see this, note first that any nonzero self-adjoint element a, a = a*, cannot be
nilpotent. Indeed, if n is the smallest n such that a" = 0, then a* = 0, where
m = |(n+1)/2]. Then (a™|a™) = (1]a®"|1) = 0, and therefore a™ = 0. Since
n < m, repeat with n” = m until n = 1, i.e. @ = 0. Now we can use a result
(Kapustin, 2013) which says that a *-algebra with no nilpotent self-adjoint elements

(apart from zero) is semisimple.

By the Artin-Wedderburn theorem, a finite-dimensional semisimple algebra over
complex numbers is isomorphic to a sum of matrix algebras. Since A is also

commutative, this means that it is isomorphic to a sum of several copies of C.

Figure 4.4: The Poincare dual of a triangle.
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Figure 4.5: The dual 2-2 and 3-1 Pachner moves.

Frobenius and x-algebra structures exist and are unique up to isomorphism. This
means that the only invariant of the 2d TQFT is the dimension of A, i.e. the
ground-state degeneracy of the corresponding phase.

As discussed above, for a semisimple algebra A, boundary conditions correspond to
finite-dimensional modules over (A. It is easy to see that for the open-closed TQFT

to be unitary, the algebra V), must also have a Hilbert space structure such that
T(a)" =T(a"). (4.20)

Such a structure always exists and is unique. Thus a boundary condition for a unitary
2d TQFT can be simply identified with a module over (A. One can use any faithful

module over A as an input for the state-sum construction.

State-sum construction of the space of states

We have discussed above the state-sum construction of the partition function Z(X)
for an oriented 2d manifold X without boundary (or more generally, with only brane
boundary). More generally, one also needs to describe in similar terms the state
space A and a linear map A®" — A® for every bordism T whose source is a
disjoint union of n circles and target is a disjoint union of / circles. That is, one

needs to describe Z(X) for the case when X has nonempty cut boundary.

Consider a bordism % with a nonempty cut boundary. For simplicity, let us assume
that there is no brane boundary; the general case is a trivial generalization, but
requires a more cumbersome notation. We choose a triangulation 7~ of 2. It
induces a triangulation of each boundary circle. We label the edges of 2-simplices
with basis elements of A, as before. The only difference is that boundary 1-simplices
have only one label rather than two. If we assign the weights to every 2-simplex
and every internal 1-simplex as before and sum over the labelings of internal 1-
simplices, we get a number Z7(X) which depends on the labelings of the boundary

I-simplices. Suppose some boundary circle is divided into N intervals. Then a
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labeling by e;,, .. ., e;, corresponds to a vector
e, ®...0e;, € A®V, 4.21)

We can think of the number Z+(X) computed by the state-sum as a matrix element

of a linear map

AN g @ A®N — APMI g @ ABMI (4.22)
where Ni,...,N, denote the number of 1-simplices in the source circles, and
M, ..., M; denote the number of 1-simplices in the target circles of X. It can be

shown (Fukuma, Hosono, and Kawai, 1994) that the map Z+(X) does not depend

on the triangulation of X, provided we fix the triangulation of the boundary circles.

Zg(X) is not yet the desired Z(X) because it depends on the way the boundary
circles are triangulated. To get rid of this dependence, we need to restrict this map
to a certain subspace in each source factor A®Vi and project to a certain subspace
in each target factor A®™i. Both tasks are accomplished by means of projectors
Cy : A®N — A®N_ The projector Cy is simply Zg;, (C), where C is a cylinder and
Ty is any triangulation of C such that both boundary circles are subdivided into N
intervals. The image of each Cy is a certain subspace of A®" isomorphic to Z(A)
(Fukuma, Hosono, and Kawai, 1994). Restricting Zs(X) to these subspaces and

then projecting to the image of each Cy; gives us the desired map
Z(%) : A% - A%, (4.23)
where A = Z(A).

MPS from TQFT

Let us consider the special case when X is an annulus such that one of the circles
is a cut boundary, while the other one is a brane boundary corresponding to an
A-module M. Let T(a) € Hom(M, M) represent an action of a € A in this module.
For definiteness, we choose the cut boundary to be the source of 2, while the target
is empty. Thus Z(X) is a linear map A — C. It is the dual of the boundary state

corresponding to the module M.

Let us now pick a triangulation of the annulus such that the cut boundary is divided
into N intervals. Then Zs(X) is a linear map A®Y — C which depends only on
7 and N. We claim that this map is the dual of the MPS state with the dual MPS
tensor givenby 7 : A — Hom(M, M).
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Figure 4.6: The dual shelling of (4.17). A filled dot represents 7', while an empty
dot represents C.

Figure 4.7: The dual shelling of (4.18), representing Tl{pT’f‘vC,- ik = TLV

To see this, it is convenient to reformulate the state-sum on the Poincare dual
complex. This complex is built from the triangulation 7 (X) by replacing k-cells
with (2 — k)-cells, as in Figure 4.4. The dual of a triangulation is not a simplicial
complex but a more general cell complex; since we will only be interested in the
edges and vertices of this dual complex, we will refer to it as a skeleton for . The
Pachner moves are the same for skeleton as for triangulations, see Figure 4.5. Recall
that for a unitary TQFT, one can choose 1;; = ¢;;, so that indices may be freely
raised and lowered; nonetheless, keeping track of index positions now will pay off
later when we generalize to equivariant theories. Choose a direction for each edge;
the state-sum does not depend on this choice. Choose these directions so that all
edges on incoming boundaries are incoming and all edges on outgoing boundaries
are outgoing. To define a state-sum on a skeleton, label its non-boundary edges
with elements e; and assign structure coefficients C to each non-boundary vertex
according to orientation and using lower indices for incoming arrows and upper
for outgoing. With these conventions, the Pachner moves algebrize to (4.15) and
(4.16) as before. To incorporate brane boundaries, color brane boundary edges by
elements v,, and attach the module tensor T to each boundary vertex. The boundary
moves recover (4.17) and (4.18). The dual state-sum is naturally a tensor network:
it defines a circuit between the incoming and outgoing legs. Note that the “virtual”

module indices are all contracted, so these legs are physical.

Consider the triangulation, shown in Figure 4.8a, of the annulus with boundary

condition 7" on one of its boundary components. Its state-sum defines a state in the
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(a) Annulus with upper boundary colored by
module T

(b) The Poincare dual of (a)

(c) The move (4.17) applied to (b) (d) The move (4.18) applied to (c)

Figure 4.8: The equivalence of the annulus to the tensor network representation of
an MPS.

physical space AY. We claim that this state is the fixed point MPS |y7). The proof
of this fact is straightforward: by Pachner invariance, the annulus and MPS tensor

networks are equivalent, see Figure 4.8.

More generally, one can insert a local observable on the brane boundary of the
annulus. Such a local observable is parameterized by X € Hom(M, M) which
commutes with T'(a) for all a € A. The corresponding dual state is Tr[ X'TT - -- T,
i.e. itis a generalized MPS state, with A being the physical space.

Since the linear operators T'(a) satisty T(a)T(b) = T(ab), all these MPS states
are RG-fixed MPS states. The RG-step is described by the algebra structure on A,
m:A®A — A. Moreover, the MPS is automatically in a standard form. The
module 7 : A — End(V) is semisimple, so it has a decomposition into simple
modules 7@ : A — End(V®). The collection of spaces End(V(®)) form a block-
diagonal subspace of End(V). Since V@ is simple, T'® surjects onto the block
End(V®). Moreover, as we have seen, unitarity of the TQFT enforces that T is an

isometry.

The parent Hamiltonian of the MPS on an N-site closed chain has a TQFT inter-
pretation as well: it is the linear map Cy = Zg;, (C) : A®Y — A®N assigned to a
triangulated cylinder C whose boundary consists of two circles triangulated into N
intervals. As previously stated, Cy projects onto a subspace A = Z(A) c A®N, pre-
cisely the space of ground states of the parent Hamiltonian. In the continuum TQFT,
topological invariance requires that the cylinder is the identity; this is consistent with

our already having projected to A in defining the continuum state spaces.
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We have seen that a unitary TQFT is completely determined by its space of states
A on a circle and that each finite-dimensional commutative algebra A defines a
unitary TQFT. Therefore, the classification of unitary TQFTs is quite simple: there
is one for every positive integer n, in agreement with the MPS-based classification of
gapped phases (Chen, Gu, and Wen, 2011a; Chen, Gu, and Wen, 201 1b; Fidkowski
and Kitaev, 2011).

4.4 Equivariant TQFT and equivariant MPS

In this section, we generalize the relation between 2D TQFT and MPS states to
systems with a global symmetry G. We show that both G-equivariant TQFTs
and G-equivariant RG-fixed MPS states are described by semisimple G-equivariant
algebras. In particular, we show that invertible G-equivariant TQFTs correspond

to short-range entangled phases with symmetry G, and that both are classified by
H?*(G,U(1)).

G-equivariant matrix product states
Let G be a finite symmetry group acting on the physical space A via a unitary
representation R, ¢ +— R(g) € End(A). A G-invariant MPS tensor is a map

P : U ®U" — A equivariant in the following sense:

R@P(X) =P (2(0)X0(s™), (4.24)

where the linear maps Q(g) € End(U) form a projective representation of G. Let

T = P*. In terms of T, the equivariance condition looks as follows:

T(R(g)a) = Q(g)T(a)Q(g) ", (4.25)

forany a € A and any g € G. The dual MPS state corresponding to T is

Wrl= Y TrylT(eq)...Tei)]i .. inl. (4.26)

i1y
It is easy to see that the state 7 is G-invariant, thanks to the equivariance condition
on P. More generally, let X € End(U). Note that End(U) is a genuine (not
projective) representation of G. Then the generalized MPS state Tr[X7T ...T]

transforms in the same way as X.

G-equivariant TQFT
Roughly speaking, a definition of a G-equivariant TQFT is obtained from the defini-

tion of an ordinary TQFT by replacing oriented manifolds with oriented manifolds
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with principal G-bundles. This reflects the intuition that a model with a global
non-anomalous symmetry G can be coupled to a background G gauge field. (For
a finite group G, there is no difference between a G gauge field and a principal
G-bundle.)

Some care is required regarding marked points and trivializations. Namely, each
source and each target circle must be equipped with a marked point and a trivializa-
tion of the G-bundle at this point. This means that the holonomy of the gauge field
around the circle is a well-defined element g € G, rather than a conjugacy class. A
G-equivariant TQFT associates a vector space A, to a circle with holonomy g. A
generic G-equivariant bordism has more than one marked point, and the holonomies
between marked points along chosen paths are well-defined elements of G as well.
Of course, these holonomies depend only on the homotopy classes of paths. For
example, a G-equivariant cylinder bordism has two marked points (one for each
boundary circle) and depends on two arbitrary elements of G. On the other hand,
a G-equivariant torus, regarded as bordism with an empty source and empty target,
has no marked points and depends on two commuting elements of G defined up to

an overall conjugation.

One can describe a G-equivariant TQFT purely algebraically in terms of a G-crossed
Frobenius algebra (Turaev, 2010; Moore and Segal, 2006). This notion generalizes
the commutative Frobenius algebra ‘A and encodes the linear maps Z(X, %) in a

fairly complicated way.

We will use instead a state-sum construction of 2D equivariant TQFTs which is
manifestly local. Its starting point is a finite-dimensional semisimple G-equivariant
algebra A. This is an algebra with an action of G that preserves the multiplication
m:A®A — A. Thatis, G acts on A via a linear representation R(g), g € G, such
that

m(R(g)a ® R(g)b) = R(g)m(a ® b). (4.27)

This condition implies that the group action also preserves the scalar product n
defined in (4.13):

n(R(g)a,R(g)b) =n(a,b). (4.28)
The condition (4.28) says that R(g) is orthogonal with respect to 7. As a conse-

quence, if R(g) commutes with the anti-linear map (4.19), it is unitary with respect

to the Hilbert space inner product.



44

A large class of examples of G-equivariant algebras is obtained by taking A =
End(U), where U is a vector space, and G acts on U via a projective represen-
tation Q(g). It is clear that this gives rise to a genuine action of G on End(U)
which preserves the usual matrix multiplication on End(U). Moreover, the standard
Frobenius structure

n(a,b) = Tr(ab) (4.29)

is clearly G-invariant.

A G-equivariant module over a G-equivariant algebra A is a vector space V with
compatible actions of both A and G. That is, for every a € A we have a linear
map T(a) : V — V such that T(a)T(a’) = T(aa’), and for every g € G we have
an invertible linear map Q(g) : V — V such that Q(g)Q(g’) = Q(gg’). The
compatibility condition that they satisfy reads

T(R(g)a) = Q(g)T(a)Q(g)™". (4.30)

If we take A = End(U), where U is a projective representation of G with a 2-cocycle
w € H*(G,U(1)), then U is not a G-equivariant module over A unless w vanishes.
However, if W is a projective representation of G with a 2-cocycle —w, then U ® W

is a G-equivariant module.>

Equivariant TQFTs admit a lattice description as well. It is simplest to describe a
Poincare dual formulation in the sense of Section 3.5; spaces in this formulation also
have direct interpretations as tensor networks. A trivialized background gauge field
is represented on a skeleton as a decoration of each oriented edge with an element
g € G. Flipping the orientation of the edge replaces g with g~!. We require that
the field is flat: that the product of the group elements around the boundary of each
face is the identity element.® In a basis e¢;,7 € S of A, the weight of a coloring of the
skeleton is the product of the structure constants C'/* over vertices (with the cyclic
order given by the orientation) and a factor n(R(g)e;, e;) = R( 2)kin ik for each edge
directed from i to j labeled by g. The partition sum is the sum of these weights
over all colorings; we emphasize that the group labels represent a background gauge
field and are not summed. To incorporate brane boundaries, choose a G-equivariant

module V over A. Fix a basis f, of V. For each brane boundary vertex, label its

>In fact, the category of projective representations of G with a 2-cocycle —w is equivalent
to the category of G-equivariant modules over End(U), and the equivalence sends a projective
representation Wto U ® W.

®In the triangulation picture, we require the product of all group elements corresponding to edges
entering a particular vertex to be the identity element.
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g2 81 hg> hgy

83 ggh_1

Figure 4.9: A gauge transformation at the vertex by &

adjacent boundary edges each with a basis element, so that each boundary edge has
a total of two labels. The weight of a skeleton with a brane boundary is a product
of C’s and R’s as well as a module tensor 7 for each brane boundary vertex and a

matrix element Q(g)", for each brane boundary edge.

As before, topological invariance of the state-sum amounts to checking the condi-
tions (4.15), (4.16), (4.17), and (4.18). These are satisfied by any finite-dimensional
semisimple A. In order for the equivariant state-sum to constitute a well-defined
equivariant TQFT, it must also be independent of the choice of trivialization of the
background gauge field; in order words, it must be gauge invariant. A gauge trans-
formation by 4 € G on a vertex acts by changing the decorations of the three edges
whose boundary contains the vertex: incoming edges with g become hg, outgoing
gh™!, as in Figure 4.9. Invariance under a gauge transformation on a vertex in
the interior is ensured by axioms (??) and (4.28) of a G-equivariant algebra. For
vertices in the brane boundary, the analogous result follows from the G-equivariant
module condition (4.30).7 Finally, invariance under simultaneously reversing an

edge direction and inverting its group label is enforced by the axiom (4.28).

G-equivariant semisimple algebras

The classic Wedderburn theorem implies that every finite-dimensional semisimple
algebra is a sum of matrix algebras. Let us discuss a generalization of this result to
the G-equivariant case following (Ostrik, 2003) and (Etingof, 2015).

First, we can write every G-equivariant semisimple algebra as a sum of indecompos-
able ones, so it is sufficient to classify indecomposable G-equivariant semisimple
algebras. A large class of examples is given by algebras of the form End(U), where
U is a projective representation of G. Another set of examples is obtained as follows:
let H ¢ G be a subgroup. Consider the space of complex-valued functions on G

invariant with respect to left translations by H, i.e. f(h~'g) = f(g) forallg € G

"Here it is crucial that linear transformations Q(g) form an ordinary (i.e. not projective)
representation of G.
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and all &7 € H. The group G acts on this space by right translations:

(R(g)N)(&) = f(g'g). (4.31)

Pointwise multiplication makes this space of functions into an associative alge-
bra, and it is clear that the G-action commutes with the multiplication. This

G-equivariant algebra is indecomposable for any H.

The most general indecomposable G-equivariant semisimple algebra is a combi-
nation of these two constructions called the induced representation IndgEnd(U )
(Ostrik, 2003; Etingof, 2015). One picks a subgroup H C G and a projective
representation (U, Q) of H. Here U is a vector space and Q is a map H — End(U)
defining a projective action with a 2-cocycle w € H*(H,U(1)). Then one consid-
ers the space of functions on G with values in End(U) which have the following

transformation property under the left H action:

f(h'g)=0(h) f(g)Q(h)~". (4.32)

It is easy to check that the right G translations act on this space of functions.
Pointwise multiplication makes this space into a G-equivariant algebra, and one
can show that it is indecomposable. To summarize, indecomposable G-equivariant
semisimple algebras are labeled by triples (H, U, Q), where H C G is a subgroup,
and (U, Q) is a projective representation of H. All these algebras are actually

Frobenius algebras: the trace function A — C is given by

3 T s(e). @)

geG

A G-equivariant module over such an algebra A is obtained as follows. Start with
an H-equivariant module (M, Q) over End(U). Here M is a module over End(U)
and Q : H — End(M) is a compatible action of H on M. As explained above, M
must have the form U ® W, where W carries a projective action S(&) of H with a
2-cocycle —w. Then consider functions on G with values in M which transform as

follows under the left H-translations:
m(h™'g) = (Q(h) ® S(h)m(g), m:G ->UQW. (4.34)

The group G acts on this space by right translations, and it is easy to see that the
pointwise action of A = (H, U, Q) makes it into a G-equivariant module over A.
One can show that any G-equivariant module over such an A is a direct sum of

modules of this sort.
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G-equivariant MPS from G-equivariant TQFT

It is sufficient to consider indecomposable TQFTs and G-equivariant algebras. Let
us begin with the case H = G. Then the algebra A = (G, U, Q) is isomorphic to the
algebra End(U), and a G-equivariant module over it is simply a vector space M with
a G-equivariant action of End(U). In other words, M = U ® W, where U carries
a projective representation of G with the 2-cocycle w, and W carries a projective

representation of G with a 2-cocycle —w.

Consider an annulus whose outer boundary is labeled by a brane M and whose
inner boundary is a cut boundary. Let us triangulate both boundary circles into N
intervals. Let g; ;41 be the element of G labeling the interval from the (7 + D™ to
the /™ points on the boundary. We also assume that the holonomy of the gauge field
between the points labeled by 1 on the two boundary circles is trivial. We get the

following dual state:

Wrl =) Tryew(T(e;)Q(g12) -+
T (eiy)Qgn )] -+ - in]- (4.35)
Note that although 7T'(e;) is an operator on U ® W, it has the form T'(e;) ® 1y.
Therefore, if g;;+1 = 1 for all 7, the trace over W gives an overall factor dim W,
and up to this factor we get the equivariant MPS (4.26). Inserting an observable
X € End(U) on the brane boundary, we get a generalized equivariant MPS. The

case when X € End(U ® W) does not give anything new, since the trace over V

factors out.

The generalized equivariant MPS (cf. eq (4.3))

Wil = Tr[XT(ei,) - Tlei,) | (ir i (4.36)

may be charged under the action of & € G:

RN (] = S Te[XTT () - Teg ) (W in) -+ (7" i)
= > Te[XTT(h-er)---T(h-e;,)] (i1 il
= > T[QHX QT (er) -+~ T(er)] it -+ +inl.  (437)

Let us now consider the case when H is a proper subgroup of G and A =
IndgEnd(U), for some projective representation U of H. If we choose right H-

coset representatives g,, a € H\G, and a basis e¢; in End(U), then a basis in A is
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given by ef. Similarly, if f,, is a basis in an H-equivariant module U ® W, then a

basis in the corresponding G-equivariant module M is f;.

The action of A on M is diagonal as far as the a index is concerned. Therefore the
dual state corresponding to a triangulated annulus with g; ;41 = 1 for all 7 vanishes

unless all a indices are the same. Then

Yr| = dim(W) Z Try [T (e;,) - -

A,il,..., iN

--T(ejy)(i1aira - -inal. (4.38)

This state has equal components along all |H\G| directions. We can get a state
concentrated at a particular value of a by inserting a suitable observable X € End(M)
on the brane boundary. Such an observable must commute with the action of A, so
it must have the form X% b=r (a)s" 6% Choosing the function f'(a) to be supported
at a particular value of a gives a generalized MPS state supported at this value of a.

The symmetry group G acts transitively on H\G. This suggests that we are dealing
with a phase where the symmetry G is spontaneously broken down to H, so that
we get |H\G| sectors labeled by the index a. To confirm this, consider the partition
function of this TQFT on a closed oriented 2-manifold ¥ with a trivial G-bundle.
After we choose a skeleton of 2, we can represent this G-bundle by labeling every
1-simplex with the identity element of G. In addition, every 1-simplex is labeled by
a pair of basis vectors of A. Since both the multiplication in the algebra A and the
scalar product are pointwise in H\G, the partition function receives contributions
only from those labelings where all a labels are the same. Furthermore, turning on
a gauge field which takes values in H does not destroy this property. We conclude
that the theory has superselection sectors labeled by elements of H\G, and each

sector has unbroken symmetry H.

Twisted-sector states

Now let us not assume that g; ;41 = 1, but instead allow the gauge field around the
circle to have a nontrivial holonomy. Let us take H = G first, i.e. the case of
unbroken symmetry. Consider the MPS (4.35). Applying a gauge transformations

(by 812823 - - - 8k—1.x at vertex k) to the boundary vertices, it can be written as

Wrgl =D Truew[Q(g)T(ei) - T(eiy)]
®; R(g12° &—1.6)™ i ikl (4.39)
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where g = g12823 - - gn.1 is the holonomy of the gauge field. This is LU equivalent
to the state

Wrgl = ZTYU®W[Q(£’)T(€1'1) < T(eiy) i1+ inl (4.40)

so we have effectively set g; ;41 = 1 foralli # Nand gy ; = g. Notethat Q = 0 ® S,
so the trace factors into a product of a trace over U and a trace over W. The latter

gives us an overall factor, and we have

(Wl = Trw[S(2)] ) Try[Q()T (er,) -+
- T(eiy) G- inl. (4.41)

This state transforms under /2 € G into

RN (yrre| = (Tew[S(2)]) D Tr[Q()T (eiy) - T(es ) (™" i) - (7" i)
= (Trw[S(2)]) ), Tr[Q() ™ Q) QT (ey,) - T(es,) | Gir -+ il

= (Trw[S()])w (g, Hw(h™", gh) Z Tr[Q(h™'gmT (ei)) - - T(ei,) |G - -+ inl.
(4.42)

Note that the g-twisted sector becomes the hgh™!-twisted sector.

Now suppose H is a proper subgroup of G. Since T acts pointwise in the a label,
while G acts on a € H\G by right translations, the annulus state vanishes unless the
holonomy around the circle is in H. This confirms once again that H is the unbroken
subgroup. Indeed, when the holonomy does not belong to the unbroken subgroup,
there must be a domain wall somewhere on the circle. Its energy is nonzero in the
thermodynamic limit, so the TQFT space of states must be zero-dimensional for

holonomies not in H.

If A, denotes the space of states in the g-twisted sector, the space A = @, A, has
an automorphism @, := R(h)®" for each h € G such that ap(Ag) C Apgp1. A s
the G-graded vector space underlying the G-crossed Frobenius algebra that defines
the associated G-equivariant TQFT (Turaev, 2010; Moore and Segal, 2006).

Morita equivalence

We have seen that to any semisimple G-equivariant algebra, one can associate a
G-equivariant 2d TQFT. But different algebras may give rise to the same TQFT.
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In particular, we would like to argue that the TQFT corresponding to an indecom-
posable algebra A = (H, U, Q), where (U, Q) is a projective representation of H,
depends only on the subgroup H and the 2-cocycle w, but not on the specific choice

of (U, Q).

To show this, note first of all that the partition function vanishes if the holonomy
does not lie in H (this again follows from the fact that multiplication in the algebra
A is pointwise with respect to the a index). Thus it is sufficient to consider oriented
2-manifolds with H-bundles. Further, if U and U’ are projective representations of
H with the same 2-cocycle, then U’ = U ® W, where W is an ordinary representation
of H. Thus we only need to show that the partition functions corresponding to
algebras (H,U,Q) and (H,U ® W,Q ® S) are the same, where S : H — End(W)
is a representation of H. But it is clear from the state sum construction that the
two partition functions differ by a factor which is the partition function of two

dimensional H-equivariant TQFT corresponding to the algebra (H, W, S).

We reduced the problem to showing that the H-equivariant TQFT constructed from
the algebra (H, W, S) is trivial when (W, S) is an ordinary (not projective) repre-
sentation of H. This is straightforward: the equation S(4;)...S(h,) = S(hy...hy,)
and the flatness condition for the H gauge field imply that the partition function is
independent of the H-bundle, and for the trivial H-bundle the partition function is
the same as for the trivial TQFT with A = C.

From the mathematical viewpoint, G-equivariant algebras with the same H and w
are Morita-equivalent® (Ostrik, 2003). Thus we have shown that Morita-equivalent

algebras lead to identical G-equivariant TQFTs.°?

Stacking phases

Consider two gapped systems built from algebras A; and A,. Recall from Section
4.2 that the stacked system (4.8) is built from the tensor product algebra A; ® A,.
Although we have not discussed parent Hamiltonians of G-equivariant MPS, an
analogous stacking operation can be defined for G-symmetric gapped phases by way
of the connection to TQFT. Now suppose A; and A, are G-equivariant algebras. It

is clear from the G-equivariant state sum construction that the partition functions for

8More accurately, algebras with the same H and w, up to conjugation in G, are Morita-equivalent.
In physical contexts, however, it is typical to keep track of the embedding of the unbroken symmetry
H in the full symmetry group G. Therefore, the classification of physical gapped G-symmetric
phases is slightly more refined than that of Morita classes.

9Strictly speaking, we only showed this for closed 2d TQFTs, but the argument easily extends to
the open-closed case.
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(H,w) type of phase name
({a, b), 1) trivial 1
({a, b),w;) | symmetry-protected
({a), 1) broken symmetry
((b), 1) broken symmetry
({ab), 1) broken symmetry
(1, 1) broken symmetry

ocNwW» e

Figure 4.10: Indecomposable phase classification for the G = Z; X Z,.

the algebra A; ® A, are products of those for A; and A, and that the Hilbert spaces
are tensor products. Thus the MPS ground states, which determine a phase and

which are realized in TQFT, stack like the tensor product of G-equivariant algebras.

It is a tedious but straightforward exercise to check that the result of stacking the

phase labeled by subgroup-cocycle pair (H, w) with the phase (K, p) is the phase
(H N K, lpok + pling) 1K) (4.43)

where w|gnx denotes the restriction of w to the intersection subgroup H N K and
[G : HK] denotes the index of the subgroup HK in G, assuming H and K are

normal in G.

Let us consider a simple example: take G = Z; X Z, = {a, b), where a and b are
commuting elements of order 2. For the subgroup H = G, there are two cohomology
classes w € H*(Zo X Z»,U(1)). Let w; denote the nontrivial class. For each of
the other subgroups H = {a), (b), {ab), 1, there is a unique cocycle. Thus the

classification of Z; X Z,-equivariant phases is like Figure 4.10.

According to (4.43), the stacking rules are

1®1=1, 1Qw=w, 1®A=A, 1®B=B, 18C=C, 1®0=0
ww=1, w®A=A, w®B=B, weC=C, w®0=0
AA=A%2 B@B=B* (Cc®C=C* A®B=0, BC=0, C®A=0
A®0=0%, B®0=0%2, C®0=0%%, 0&0=0%.

Symmetry-protected topological phases
Finally, let us discuss the case of Short-Range Entangled (SRE) phases with sym-
metry G. According to one definition (Kitaev, 2015), an SRE phase is one that is
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invertible under the aforementioned stacking operation. Such phases have a one-
dimensional space of ground states for every G-bundle on a circle. Since the space
of states of a decomposable TQFT on a circle with a trivial bundle has a dimension
greater than one, a TQFT corresponding to an SRE phase must be indecomposable.
We showed that when H is a subgroup of G, the space of states is zero-dimensional
whenever the holonomy does not lie in H. Hence an equivariant TQFT built from
an indecomposable G-equivariant algebra (H, U, Q) cannot correspond to an SRE
unless H = G.

These SRE phases are all Symmetry Protected Topological (SPT) phases - phases
that are trivial if we ignore symmetry. A G-equivariant algebra of the form End(U),
where U is a projective representation of G, is simply a matrix algebra if we
ignore the G action. Hence the corresponding non-equivariant TQFT is trivial;
the corresponding Hamiltonian is connected to the trivial one by a Local Unitary
transformation. Hence SPT phases with symmetry G are labeled by 2-cocycles
w € H*(G,U(1)). This is a well-known result (Chen, Gu, and Wen, 2011a; Chen,
Gu, and Wen, 2011b; Fidkowski and Kitaev, 2011).

4.5 Spin-TQFTs

Z,-graded semi-simple algebras

Now, let us consider a fermionic version of the relation between MPS and TQFT. The
algebraic input for the fermionic state-sum construction is a Z-graded semisimple
Frobenius algebra A (Novak and Runkel, 2014; Gaiotto and Kapustin, 2016).10
A Frobenius algebra is a finite-dimensional algebra over C with a non-degenerate
symmetric scalar product n : A ® A — C satisfying n(a, bc) = n(ab,c) for all
a,b,c € A. A Z-grading on A is a decomposition A = A, & A_ such that

A+'A+CA+, A_'A_CA+,
A_-ALCA., A,-A_CA_. (4.44)

Equivalently, a Z,-grading is an operator ¥ : A — A such that ¥2 = 1 and
F(a)-F(b) =F (a-b). The operator F is called fermion parity and is traditionally

denoted (—1)". We also assume that the scalar product 7 is F-invariant:

n(¥ (a), (b)) =n(a,b). (4.45)

0While it is possible to relax the semi-simplicity condition (Novak and Runkel, 2014), here
we are interested in unitary TQFTs, and for such TQFTs, one may assume that A is semi-simple
(Kapustin, Turzillo, and You, 2017).




53

Note that # defines an action of Z; on A which makes A into a Z;-equivariant
algebra. This observation is the root cause of the bosonization phenomenon: there
is a 1-1 map between 1+1d phases of bosons with Z, symmetry and 1+1d phases
of fermions. For now, we use this fact to describe the classification of Z,-graded
simple algebras. Namely, since the only proper subgroup of Z; is the trivial one,
and H%(Z,,U(1)) = 0, a simple Z,-graded algebra is isomorphic either to End(V)
for some Z,-graded vector space V =V, ®V_, or to C£(1) ® End(V) for some purely
even vector space V = V, (Kapustin, Turzillo, and You, 2017). Here C¢(1) denotes
the Clifford algebra with one generator, i.e. an algebra with an odd generator I
satisfying I'? = 1.

As explained in (Kapustin, Turzillo, and You, 2017), the bosonic phase depends
only on the Morita-equivalence class of A. The choice of V does not affect the
Morita-equivalence class of the algebra, so there are only two Morita equivalence
classes of Z;-graded algebras: the trivial one, corresponding to the algebra C, and
the nontrivial one, corresponding to the algebra C£(1). In the bosonic case, the
former one corresponds to the trivial gapped phase with a Z, symmetry, while the

latter one corresponds to the phase with a spontaneously broken Z;.

The fermionic interpretation is different. As briefly mentioned in (Gaiotto and
Kapustin, 2016) and discussed in more detail below, the algebra C£(1) describes a
gapped fermionic phase which is equivalent to the nontrivial Majorana chain. This

is in accord with the intuition that fermion parity cannot be spontaneously broken.

Spin structures

A spin structure on an oriented manifold enables one to define a spin bundle. Fora 1d
manifold X, a spin bundle is a real line bundle L plus an isomorphism L® L — TX.
Thus a spin bundle is a square root of the tangent bundle. Since 7X is trivial, such
L are classified by elements of H Y(X,Z,). Since H'(S',Z,) = Z,, there are two
possible spin structures on a circle, called the R (Ramond) an NS (Neveu-Schwarz)
spin structures in the string theory literature. The R structure corresponds to a trivial
L, while NS structure corresponds to the “Mdbius band” L. In other words, if we
give L a metric and compute the holonomy of the unique connection compatible

with it along S', we get 1 for the R case, and —1 for the NS case.

For an oriented 2d manifold X, we can regard 7X as a complex line bundle, and
then a spin bundle on X is a complex line bundle S equipped with an isomorphism

S®S — TX. One can show that such an § always exists. If S and S’ are two
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spin bundles, they differ by a line bundle which squares to a trivial line bundle on
Y. The latter are classified by elements of H'(X,Z,). Thus there are as many spin
structures as there are elements of H' (2, Z,). But in general there is no natural way

to identify elements of H' (X, Z,) with spin structures.!!

It is easy to see that a spin structure s on an oriented 2d manifold X induces a spin
structure on any oriented 1d manifold y embedded into X. Define o(y) = +1 if
the induced structure is of the NS type and o(y) = —1 if the induced structure is
of the R type. That is, o(y) is the negative of the holonomy of the connection
corresponding to the induced spin structure. It is easy to show that o(y) depends
only on the homology class of y and thus defines a function o : H{(Z,Z;) — Z;.

With more work, one can show that this function satisfies

o ([y] + [¥']D = os([yDos ([y' D (= DPID, (4.46)

That is, it is a quadratic Z;-valued function on H;(X,Z;) whose corresponding
bilinear form is the intersection pairing on H;(X,7Z,). In fact, it is a theorem of
Atiyah (Atiyah, 1971) that for a closed X, the spin structure is determined by such a
quadratic function, and that any such quadratic function determines a spin structure.
Note that the ratio of two such quadratic functions is a linear function on H (X, Z,),
or equivalently an element of H'(X,Z,). Thus we recover the result that two spin

structures differ by an element of H' (X, Z,).

We record for future use another property of the function o:

Fora(¥]) = (=Dh oy ([y)), (4.47)

where a is an arbitrary element of H'(X,Z,). Thus oy([y]) is an affine-linear

function of s and a quadratic function of [y].

We will also need a version of this result for the case when X has a nonempty
boundary. As in the case of equivariant TQFT, it is convenient to choose, along with
a spin structure s, a point on every connected component of 0¥ and a normalized
basis vector for the real spin bundle L at this point. This simplifies the gluing of
spin manifolds. We will denote by 9y the set of all marked points, and will call a
spin structure on X together with a trivialization of L at 9y a spin structure on the
pair (2, 30X). The group H'(Z, dpX;Z») acts freely and transitively on the set of

spin structures on (X, dpX). Despite this, there is no canonical way to identify spin

"'"The case of a torus is an exception, since then TZ is trivial. This is why one can talk about
periodic and anti-periodic spin structures on a torus.
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structures with elements of H' (X, 99X; Z;). To get an algebraic description of spin
structures, one can proceed as follows (Segal, 1988). First, note that H (X, 0pX; Z»)
can be identified with H (Z., Z;), where Z, is a closed oriented 2d manifold obtained
by gluing a sphere with holes onto 2. This identification depends on the choice of
a cyclic order of the set of boundary circles of X. Thus the intersection form on
H|(X.,7Z) induces a non-degenerate symmetric bilinear form on H;(Z, 0pZ; Z,).
There is also an identification of the set of spin structures on (X, dpX) and the set
of spin structures on X* (Segal, 1988). Thus the set of spin structures on (X, dpX)
can be identified with the set of Z,-valued quadratic functions on H; (X, pX;Z;)
refining the intersection form. This identification still depends on a choice of a
cyclic order on the set of boundary circles of X£. One can determine which spin
structure is induced on any particular connected component of 9 by evaluating this

quadratic function on the closed curve wrapping that component.

State-sum construction of the spin-dependent partition function

To define the partition function of a spin-TQFT on a closed oriented 2-manifold
Y with a spin structure, we choose a skeleton of %, i.e. a trivalent graph I" on X
whose complement is homeomorphic to a disjoint union of disks. Equivalently, one
may think of I'" as the Poincaré dual of a triangulation 7~ of .12 For every vertex
v € T, let I'(v) denote the edges containing v. Orientation of X gives rise to a
cyclic order on I'(v) for all v. This is sufficient to produce the partition function
of a bosonic TQFT based on the algebra A, but in order to construct the fermionic
partition function, we need to choose an actual order on I'(v). We can do it by
picking one special edge eg(v) € I'(v) for every v. We also choose an orientation
for each edge of I'. (In Ref. (Gaiotto and Kapustin, 2016) both an orientation of
edges and a choice of eg(v) arose from a branching structure on 7-, but here we
follow Ref. (Novak and Runkel, 2014) and choose them independently.) These

choices are called a marking of I.

We also need to describe a choice of spin structure on X. This is a cellular 1-
cochain s valued in Z, (i.e. an assignment of elements of Z; to edges of I') with
its coboundary being a certain 2-cocycle w, whose cohomology class is the second
Stiefel-Whitney class [w;](X). Following (Novak and Runkel, 2014), we write the
constraint 0s = wy as

(0s)(f) =1+ K + D mod 2 (4.48)

120ne can formulate the construction either in terms of triangulations or in terms of skeletons,
but the latter approach gives a bit more flexibility when we allow X to have a nonempty boundary.
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where f is a particular cell in Z\I', K is the number of clockwise oriented edges
in df, and D is the number of vertices v for which the counterclockwise-oriented
curve homologous to df in I" enters v through eg(v). Two solutions s, s” of this
constraint are regarded equivalent, s ~ §’, if s — s’ = 6t for some 0-cochain 7. Two
solutions s, s’ define isomorphic spin structures on X if and only if s ~ s* (Novak
and Runkel, 2014; Gaiotto and Kapustin, 2016). Thus we recover the fact that the

number of distinct spin structures on X is equal to |H!(Z, Z,)|.

One can give an explicit description of the holonomy function () corresponding
to the 1-cochain s in terms of the marking of I" along a closed oriented curve y; see
eq. (3.45) of Ref. (Novak and Runkel, 2014). This formula can be written as

o5 (y) = —(=1)S KDL (4.49)

where K is the number of edges anti-aligned with vy, D is the number of special
edges through which y enters a vertex, and L is the number of special edges to the
left of y. For example, when v is a counterclockwise-oriented curve bounding a
single cell in X\I', L vanishes, and so, by (4.48), we have o(y) = +1. One can
show that this function depends only on the homology class of y and is a quadratic

refinement of the intersection form.

Choose a basis e; in A whose elements are eigenvectors of . Let n;; = n(e;, e;).
Since i is non-degenerate, it has an inverse /. Let C" jk denote the structure
constants of A. Define C;j; = m,Cl jk- It can be shown that the tensor C;ji is
cyclically symmetric (Kapustin, Turzillo, and You, 2017). Denote by (—1)# the

eigenvalue of ¥ corresponding to e;.

Now we can explain the recipe for computing the partition function for a surface X
with a marked skeleton I" and a spin structure s. Each edge of I" is colored with a
pair of basis vectors e; € A, and we have a factor of C;j; for each vertex and n'/
for each edge. Since A is Z,-graded, '/ vanishes unless 3; = 8 7, and C;j; vanishes
unless B; + B; + B = 0. Hence the function g : ¢; — f; on the set of edges of I
defines a mod-2 1-cycle on . The contribution of a particular coloring of I' is the

product of all C;jx and n'/, the spin-dependent sign factor
(_1)5(5) — (_1)Ze S(e)ﬁ(e)’ (4.50)

and the Koszul sign (). The partition function is obtained by summing over all

colorings. Note that

Zieem (A,1) = ) Zoose (A, B (B), (4.51)
B
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where Zpose (A, 8) is the sum over all colorings with a fixed 1-cycle 8. Using the
isomorphism H;(X,Z,) ~ H'(Z,Z,), one can interpret 8 as a Z, gauge field on
a dual triangulation and Zpos (A, 8) as the partition function of a bosonic system
with a global Z, symmetry coupled to 5. Equation ((4.51)) is a manifestation of the

bosonization phenomenon.

It remains to explain how the Koszul sign o () is evaluated. Consider a vertex
whose edges are labeled by i, j, k starting from the special edge and going counter-
clockwise. Assign to it an element C, = Cjjre; ® ¢j ® e in A ® A ® A. Tensoring

A®3N where N is the number of vertices of

over vertices, we get an element Cr of
I". Now consider an oriented edge of I" labeled by i, j. It corresponds to an ordered
pair of factors in Cr. Permute the factors of Cr until these two are next to each other

and in order, keeping track of the fermionic signs
ei®ej > (=1)Phie; @e; (4.52)

one incurs in the process, and then contract using the scalar product . Continuing
in this fashion, we are left with the product of all C;;; and 1/ times a sign. This
sign is the Koszul sign o(B). It is clear that it depends on the coloring of I" only
through the 1-cycle 8. Note that the elements C, as well as the pairs of factors for
each edge are all even, so one does not need to order the set of vertices or the set of
edges. One can also define 0 (8) as a Grassmann integral, as was originally done in
(Gu and Wen, 2014). The product of the Koszul sign oy(8) and the spin-dependent
factor (—1)*® is nothing but the quadratic function o(8) (Gaiotto and Kapustin,
2016).

One can show (Novak and Runkel, 2014; Gaiotto and Kapustin, 2016) that the
partition function thus defined depends only on the spin surface (X, s) and not the
skeleton I', its marking, or the particular 1-cochain representing s. Finally, it is
clear that if A is purely even, both the Koszul sign and the spin-dependent sign
factor are trivial, and the partition function reduces to the bosonic partition function

associated with A.

Stacking and the supertensor product

It is interesting to determine the behavior of the partition function under stacking
systems together. Given a pair of fermionic systems encoded in a pair of Z;-graded
Frobenius algebras A, A;, stacking these systems together gives us a system with a

partition function Zgerm (A1, 17) Zterm (A2, 7). It turns out that

Zferm(Al, n)Zferm(A2, 77) = Zferm(Al é’ As, 77)’ (453)
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where ® is the supertensor product of Z,-graded algebras. Let us recall what this

means. The usual tensor product of algebras A; ® A, obeys the multiplication rule
(a1 ®az) - (a] ®aj) = (a1 -a}) ® (az - a)). (4.54)

If the algebras A1, A, are Z,-graded, A| ® A, is also Z,-graded in an obvious way.
On the other hand, for the supertensor product, the multiplication is defined as
follows:

(a1 ® a2) - (a} ®ay) = (=D)1"M(a) - a}) B (a2 - a)), (4.55)

where (—1)!4! is the fermionic parity of a.

To derive (4.53), we first note that

Zvose (A1, B1) Zvose (A2, B2) = Zpose (A1 ® A2, B1, B2), (4.56)

where we used the fact that the stacking of two bosonic systems with symmetry Z;
has a symmetry Z, X Z, and thus can be coupled to a pair of Z, gauge fields 81, 52.
Next, it is easy to see that

Z(A1® Ag, B1,B2) = (-D)IALED Z(A © Ay, By, o). (4.57)

These two identities together with (4.46) imply (4.53).

As an illustration, consider A = C£(1). Since apart from 1, this algebra has a single
odd basis element y, 5 completely determines the coloring of I". With the proper

normalization of Zy.se, One gets

Zierm(5) = 2702 %" o ([B)). (4.58)
(8]
The r.h.s. is called the Arf invariant of the spin structure s and is denoted Arf(s).
One can show that it takes values +1. If we stack two such systems together, we will
get the partition function which is 1 for all spin structures and all X, i.e. a trivial
spin-TQFT.

It is easy to see that C£(1) ® C£(1) is the Clifford algebra with two generators,
C{(2). This algebra is non-trivial, but it is Morita-equivalent to the trivial algebra
C. One can show that, just as in the bosonic case (Kapustin, Turzillo, and You, 2017),
spin-TQFT constructed from A depends only on the Morita equivalence class of A.

This explains why the spin-TQFT corresponding to C£(2) is trivial.

We see that A = C£(1) corresponds to a nontrivial SRE phase in the fermionic

case (it is its own inverse). On the other hand, C£(1) ® C¢(1) is a commutative
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algebra isomorphic to a sum of two copies of C£(1). Therefore the bosonic phase
corresponding to C€(1) is not invertible. This example illustrates that bosonization

does not preserve the stacking operation.

Including boundaries

When X has a non-empty boundary, I is allowed to have univalent vertices which all
lie on the boundary 0%. Let M be the number of boundary vertices. For every vertex
v, we color each element of I"(v) with a basis vector of A, so that a vertex on the
boundary has only a single label. As before, the weight of each coloring is a product
of three factors: the product of C;j; over all trivalent vertices and n'/ over all edges,
the Koszul sign, and the spin-dependent sign. When summing over colorings, the
labels of the boundary vertices remain fixed. The result of the summation can be

interpreted as a value of a map
Zr(Z) : A®M -, (4.59)
on a particular basis vector in A®M

It is implicit here that the map depends on the spin structure on every connected
component of dX. It can be read off from the function o(y) evaluated on the
boundary components. The spin structure is Neveu-Schwarz if oy = 1 and Ramond

if oy = —1.

We can also consider open-closed spin-TQFT, i.e. spin-TQFT in the presence of
topological boundary conditions (branes). Such boundary conditions are encoded
in Z-graded modules over A. A Zj-graded module over a Z;-graded algebra
A is a Zp-graded vector space U = U, & U_ with the structure of an A-module
T:A — End(U) such that T(A;)U. C U, and T(A-)U. C Us. Equivalently, U is
an A-module equipped with an involution P such that T(¥ (a)) = PT(a)P~".

For each boundary component of X, choose a Z,-graded A-module U and a homo-
geneous basis fMU of U. Label each boundary edge with a basis vector of U. The
weight of the coloring is a product of the C’s and 1’s and a sign o(8), as well as a
module tensor 7#,; for each boundary vertex. The sign is computed as before as a

product of the spin-structure-dependent sign and the Koszul sign.

4.6 Fermionic MPS
Fermionic matrix product states and the annulus diagram
In this section, we will extract MPS wavefunctions from the spin-TQFT by consid-

ering the special case when X is an annulus. Take one of the boundary circles to
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Figure 4.11: Black arrows are edge orientations, and red arrows are special edges.
All of the spin signs are —1 except possibly the one on the N-to-1 edge, which is +1
in the NS sector and —1 in the R sector.

be a source cut boundary and the other to be a brane boundary corresponding to a
Zy-graded A-module U with action T'(a) € End(U). Choose a triangulation of Z. It
was shown in (Kapustin, Turzillo, and You, 2017) that one can deform the skeleton
to look like Figure 4.11.

Give the skeleton a marking and spin signs that models the spin structure on X. It is
convenient to make the choices shown in Figure 4.11. The sign on the N-to-1 edge
is +1 if the spin structure induced on the boundary circles is NS and —1 if it is R. To

get the sign (4.50), we insert a factor of P for each +1.

Following the procedure detailed in Section 4.5 to evaluate the diagram in Figure
4.11, one finds

Z(Zr,Ns) = Z oo(Br) X TN Th2R2
I={ix.px-fr }

.. THN-1INUN _ _
X T 6/«11/«116#2/12

x"'PﬂNﬁN <i1i2'~~iN| (460)

in the NS sector and

Z(ZrR) = Z 0o(By) x TANTHI PRI
I={ik ppefik}

.. THN-1INUN _ _
X T O i O

“ e Ouyan 12N (4.61)

in the R sector, where the Koszul sign is given as a Grassmann integral
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o0 (B1) :/ a6 g™ gglel gl . gglin gghin
litl gglial . .. gglinl gliinl glirl glatl glaal glizl gl
x do\dg)" - agNg gl gl gl gl gl
x o GVl gt (4.62)

Evaluating the integral amounts to reordering the variables in the integrand to match

the ordering in the measure while recording the sign
6107 = (=1)"126767". (4.63)

Moving é}f}” " across the integrand gives a sign (—1)/"¥!. Then moving each 9!1"' to
the right gives a sign +1. Therefore the total sign is

oo(Br) = (1)l (4.64)

Noting that &, 7, (-1)/"¥| = P, .. we find that the MPS wavefunctions take the

forms

(r.ns| = Z(Zrns)
= > Te[T(eq)T(en) -+ Tleiy)] Cinia---in (4.65)

1,02, IN

and

(Yrr|=Z(ErR)
= Z Te[PT(e;)T(es,) - T(eiy)] (iria---inl - (4.66)

1,02, [N

More general states, called generalized MPS, on the closed chain are obtained from
the spin-TQFT by inserting a local observable on the brane boundary of the annulus.
Such observables are parametrized by linear maps X : U — U and can be either
even or odd; that is, PX = XP or PX = —XP, respectively.

The NS sector MPS resulting from the insertion of X has conjugate wavefunction

<9/’7)"(,NS‘ = Z [ X T(ei) - T(eiy)] G-+ -inl. (4.67)
In the R sector,
(Wi xl = Z tw[PXT(ei) - T(ew)] (i1 inl. (4.68)

TR,
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(a) Skeleton of an annulus with cut boundaries

>

T

(b) An annulus with one brane and one cut
boundary

Figure 4.12

Note that the generalized MPS corresponding to the trivial observable X = 1 are
the states (Y| (4.65)(4.66).

The state ‘w;f NS/ R> has the same fermionic parity as the observable X since

7o <W ?NS(R)‘
= Y T [(P)X'T(F - ei) - T(F - €;,)] i1 -+
= Z Te[(P)PXTPT(e;) - -T(e;,)] (i1 - -+ il

= (DX (X g (4.69)

Parent Hamiltonians

Hamiltonians appear in TQFT as cylinders. There is one for each of the NS and R

sectors. To be precise, the Hamiltonian is the linear map

Hysiry =1 = Z(Cns(r))- (4.70)

where Cyg(g) denotes the cylinder with NS (R) spin structure. The composition of
two cylinder cobordisms is again a cylinder, so Z(C) is a projector, and therefore
so is H. Ground states are those with eigenvalue 1 under Z(C). It is convenient to
specialize to the case of a single site, N = 1. Since these Hamiltonians arise from
a topologically-invariant theory, properties of the N = 1 system must hold more

generally. Consider the skeleton of the cylinders depicted in Figure 4.12.
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Figure 4.13: The cylinder partition sum Z(C) factors as a signed sum of four colored
diagrams: O'(ﬁl)cl+O'(ﬁ2)C2+O’(ﬁ3)C3+O’(,34)C4 = C1+nCr+C3—nCy. Magenta
lines indicate odd edges.

xX) (X)
<‘/’even| = (] = + 0 =~
Figure 4.14: (Yeven| = o (B1) (Y1] + o (B2) (Y2| = (W1] + 1 (Y2l

8% 8%
X \)9|
+ 04

Woadl = 03

Figure 4.15: (Yoddl = 0 (B3) (W3l + 0 (B4) (al = Wl + 1 (Wal.

By exploiting (4.51), we will not need the full machinery of lattice spin structures
to understand the Hamiltonians and their ground states. The path integrals for
the cylinders can be expressed as a sum over the four relative 1-cycles 81, ..., 84
depicted in Figure 4.13. The first colored diagram corresponds to the trivial cycle 5,
and has no odd labels, so its sign is trivial, o (81) = 1. The second one corresponds
to the equator of the cylinder and comes with the sign o-(8,) := 1, which is +1
in the NS sector and —1 in the R sector. The relative cycles 83 and 4 sum to 5
and have intersection number 1, where the intersection pairing is defined by gluing
another annulus onto the annulus, to get a torus C* = T2, as explained in Section

4.5. Therefore (4.46) says that there is a relative sign

0'5(,33)0'5(ﬂ4) = O's(ﬂ3 +ﬁ4)(_1)<,33,ﬁ4)
= o5(B2)(=1) = -n. (4.71)

One can choose a spin structure on the closed space C* = T2 such that oy (83) =
I; this amounts to fixing trivializations of the spin structures induced on each

component of JC at the univalent vertices.

Similarly, an even MPS can be expressed as the sum in Figure 4.14, where o = 1
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and 0» =7, and an odd MPS as the sum in Figure 4.15 with oy = 1 and 0 = 7.

Now we are ready to argue that the parent Hamiltonian has a generalized MPS <1//¥ |
as a ground state if X supercommutes with T (a); that is, if an even observable
satisfies

XT(a)=T(a)X Vac€A, (4.72)

and an odd observable satisfies
XT(a) = (-D)T(a)X Va € A. (4.73)

Linear maps satisfying these conditions are called even and odd Z,-graded module

endomorphisms.

The maps C3 and Cy4 correspond to diagrams with odd legs, and so annihilate even

states (Yeven|.- Therefore

Z(C) (even| = 2(C1 +1C2) (1| + 7 (Y2)). (4.74)

By the sequence of diagram moves depicted in Figures 4.16, B.1, B.2, and B.3, one

can show that

Ci (il =Wil, Gyl =nx Yol,
Ci (W2l = Wal, Co Y2l =nx WYil, 4.75)

where nx denotes the sign due to commuting X with odd 7 (a). According to the
rule (4.72), nx =1, so

Z(C) (Yeven| = %(1 +1x) (Weven| = (Weven| - (4.76)

Similarly, the cylinder acts on odd states as

Z(C) (Yoaal = 3(C3 = nCs) (3] + 1 (Yal). 4.77)

Commuting X with the vertex gives (¥4| = nx (¥3|, which means (Yoqq| = (1 +
nnx) (Y3|. According to the rule (4.73), nxy = —1, so the only odd ground state in
the NS sector is (/| = 0. This agrees with (Moore and Segal, 2006).

In the Ramond sector, one can have nonzero odd ground states. The sequence of

moves of Figures B.4 and B.5 shows

C3 (U3l = (Wsl, Calysl = (Ysl, (4.78)
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&)

Ci(y1) = = =

&)

/X\
&/
= = :wl

Figure 4.16: Diagrammatic proof of Ci(¥1| = (¥1|. The topmost line represents
the physical boundary, with module indices living on it. The others are depicted in
Appendix B.1.

SO
Z(C) (Woudl = 3(1 = 1) (Woddl = (Woudl (in the R sector). (4.79)
Therefore (w;f | is indeed a ground state of Hyg(g) provided X is a Z,-graded module

endomorphism.

Next we argue that every ground state of H of the form (4.67) or (4.68) for arbitrary
X can be written as a generalized MPS where X supercommutes with 7. A result
of (Moore and Segal, 2006) (c.f. eq 3.18) implies that

Z(Cys) lij)y = (=)W Z(Cyg) | ji) (4.80)
and
Z(Cp) lijy = (=DIMWIZ(Cg) | i) . (4.81)
In Appendix B.2, we rederive this result in the Novak-Runkel formalism. Then,
since | X| = [i] + /],
Z(Cns) Tr[XT (en)T (e)] lif)
= (-D)"XIZ(Cns) Tr[T(e) XT (e))] i) (4.82)
and
Z(Cg) Tt|PXT (e/)T (e;)] lij)
= (=DIXIZ(CR) Tr[PT (e) XT ()] | i - (4.83)
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For ground states, i.e. eigenstates of Z(C) with eigenvalue 1, this means that X

supercommutes with 7.

It turns out that all ground states of H can be written as generalized MPS. As
discussed in (Kapustin, Turzillo, and You, 2017), in a unitary theory, T is an

isometry with respect to some inner product on A and the standard inner product
(M|N) =Tr[M'N] M,N €End(V) (4.84)

on End(V). For an orthogonal basis {e;} of A, Tr[T(ei)TT(ej)] = ¢;;. Consider
the case N = 1. An arbitrary state

Wl=) aiil (4.85)

1

can be written in generalized MPS form (4.67)(4.68) if one takes

Xns = Z ajT(ej)T or Xp= ZajPT(ej)T. (486)

J J

Thus generalized MPS with supercommuting X are the only ground states. Neither
the number of generalized MPS nor the number of ground states depends on N;

thus, the argument extends to all V.

A consequence of supercommutativity and (4.69) is that there are no odd ground
states in the NS sector. Suppose that X is an odd observable. For a € A_, the matrix
X" anticommutes with 7' (), so the coefficient Tr[X TT(a)] vanishes. For a € A,
the matrix X'T(a) maps U, to Uz, so again it vanishes in the trace. Therefore the
state (4.67) is zero for odd X, which is to say that the NS sector does not support
odd states. The argument fails for the state (4.68); generically, the R sector supports
both even and odd states. The lack of odd states in the NS sector can also be seen

directly from (4.80), which implies |C |ij) | = |i| + |j| = 0.

Stacking fermionic MPS

Bosonization establishes a 1-1 correspondence between 1d bosonic systems with
Z, symmetry and 1d fermionic systems. In the gapped case, the corresponding
topological phases are described by the same algebraic data, namely by a Z;-graded
algebra A. But bosonization does not preserve a crucial physical structure: stacking
systems together. From the mathematical viewpoint, either bosonic or fermionic
topological phases of matter form a commutative monoid (a set with a commutative

associative binary operation and a neutral element, but not necessarily with an
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inverse for every element), but bosonization does not preserve the monoid structure
(i.e. it does not preserve the product). A well-known example is given by the
fermionic SRE phases: the non-trivial fermionic SRE phase (the Majorana chain)
is mapped to the bosonic phase with a spontaneously broken Z;. The former one is

invertible, while the latter one is not. Both phases correspond to the algebra C£(1).

In the bosonic case, it was shown in (Kapustin, Turzillo, and You, 2017) that, given
two algebras A; and A, with bosonic Hamiltonians H| and H», the tensor product
system A} ® A has a Hamiltonian H; ® 1, + 1| ® H,. That is, stacking bosonic

systems together corresponds to the tensor product of algebras.

On the other hand, in Section 4.5 we have shown that for fermionic systems, stacking
corresponds to the supertensor product (4.55). We can now see that the supertensor
product rule is consistent with the way fermionic generalized MPS are defined (while

the usual tensor product is not).

Suppose H; is the Hamiltonian for the MPS system built from a Z,-graded algebra
A that acts on a Z,-graded module U; by 7. Its ground states are parametrized by
Zy-graded module endomorphisms X; of U;. Consider stacking H; with a second
system H, defined by 75 : A, — End(U,) with ground states parametrized by X5.
The stacked system is the MPS system with physical space A} ® A, and Hamiltonian
H=H ®1,+1; ® H,. It has bond space U; ® U, and MPS tensor T =71 ® T5.

The ground states are generalized MPS, and so correspond to Z;-graded endomor-
phisms of the module U; ® U,. Since the MPS tensor is T = T} ® T3, the state (w;f |
is trivial unless X is of the form X; ® X;. We also know that X supercommutes with
T:

(X1 ® X2)(T1 ®T7)
— (_1)(|X1|+|X2|)(|T1|+|T2|)(T1 D) (X; ® X»). (4.87)

There are two ways one might define the composition of tensor products of opera-
tors13:
(X1 X)(Th 1) = XiT1 @ XpT» (4.88)

and
(X, @ Xo)(T; ®T) = (-)*INX, Ty @ X,75. (4.89)

3These correspond to the two symmetric monoidal structures on the category of Z,-graded vector
spaces.



68

Since X supercommutes with 77 and X, with 75, only the second notion (4.89) of
composition is consistent with (4.87). The composition rule is an algebra structure
on End(U;) ® End(U,) and pulls back by T to an algebra structure on A} ® A, given
by the rule (4.55).

An important assumption in this argument is that isomorphic TQFTs correspond to
equivalent gapped phases. Assuming this is true, we can easily see that the group of
fermionic SRE phases is isomorphic to Z;. Indeed, one can easily see that a phase
which is invertible must correspond to an indecomposable algebra (i.e. the algebra
which cannot be decomposed as a sum of algebras). Since all our algebras are
semisimple, this means that invertible phases must correspond to simple algebras.
It is well-known that there are exactly two Morita-equivalence classes of Z,-graded
algebras: the trivial one and the class of C£(1). The square of the nontrivial class
is the trivial class. Hence the group of invertible fermionic phases is isomorphic
to Z,. In the next section, we will show explicitly that C£(1) corresponds to the

nontrivial Majorana chain.

4.7 Hamiltonians for fermionic SRE phases

The trivial SRE phase

An example of a system in the trivial phase is the trivial Majorana chain (Fidkowski
and Kitaev, 2011). On a circle, this system has only bosonic states: one in the NS

sector and one in the R sector. We will now demonstrate that this is the same phase
as the MPS system built out of the Clifford algebra C£(2) = End(C'").

The algebra A = C£(2) is expressed in terms of its odd generators as C[x, y]/(x* —
1,y> = 1,xy +yx). Let A acton U = C!I' by

T:x—[ox]le , yelol (4.90)

where [-]. denotes a matrix in the homogeneous basis of U. This action is graded

and faithful. The fermion parity operator P acts by o-.

The even ground states of this system are parametrized by matrices that commute
with o, oy, and 0. Thus X is proportional to the identity 1. The corresponding
NS sector state has the wavefunction Tr[T(e,-,) » -T(eiN)]. There is also an even
state in the R sector given by Tr[PT(el-l) . ~T(e,~N)].

The odd ground states are parametrized by matrices that commute with 7'(a) — in
particular, T'(xy) = o, — and anticommute with P = o,. This is impossible, so there

are no odd states in either sector.
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In summary, the ground states of the A = C£(2) MPS system are a bosonic one in
the NS sector and a bosonic one in the R sector, just like the ground states of the

trivial Majorana chain.

One can show that the MPS parent Hamiltonian (c.f. (Kapustin, Turzillo, and You,
2017; Schuch, Perez-Garcia, and Cirac, 2011)) is a nearest-neighbor Hamiltonian

with the two-body interaction Hy = — Zizl [va) (ve| where

Vi =1®1l-x®x-y®y—xyQ®xy
VM =10x+x®1+y®@xy—xy®Yy

(4.91)
3=10y+y®1+xy®@x-xQ®uxy

Va=1®xy+xy®1+xQy—-y®x.

It is not obvious that Hr is equivalent to the Hamiltonian of the trivial Majorana

chain

H= Z(aja -1 (4.92)
J

but it should be possible to construct an LU transformation between the two Hamil-
tonians (after some blocking), as the systems have the same spaces of ground states

and so lie in the same phase.

The nontrivial SRE phase
An example of a fermionic system in a nontrivial SRE phase is the Majorana chain
with a two-body Hamiltonian (Fidkowski and Kitaev, 2011)

1
_ T i ot
H; = 5 (—ajaj+1 —a; ajtaga; + aj+1aj) . (4.93)

This system has one bosonic and one fermionic ground state on the interval arising
from one Majorana zero mode at each end. In the continuum limit, this system
becomes a free Majorana fermion with a negative mass. In the NS sector, there is a
unique ground state which is bosonic, while in the R sector there is a unique ground

state which is fermionic (this is most easily seen from the continuum field theory).

In order to get this phase from a spin TQFT, we let A = C£(1). To see the full space
of ground states, we need a faithful graded module over A. Let U = U, & U_, where

each U, is spanned by a single vector u.. Let A act on U by
T:T [ox]ls =us Qul +u_Q®uj. (4.94)

In other words, U is A regarded as a module over itself.
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The even ground states of this system are parametrized by matrices that commute
with P = [0;]+ and T(I') = [0y]+. Such matrices are proportional to 1. The
corresponding NS sector state has wavefunction Tr[T(e,-,) e T(eiN)] . There is no

even state in the R sector as the trace Tr[PT(el) T (eiy )] vanishes.

The odd ground states are parametrized by matrices that anticommute with P and
T(I'). Such matrices X are all proportional to [o].. By the general argument
of Section 4.6, we know that the NS sector has no odd states. The wavefunction
Tr[PXTT(e,-I) e T(e,-N)] defines an odd state in the R sector.

In summary, the ground states of the A = C£(1) MPS system are a bosonic one in
the NS sector and a fermionic one in the R sector, just like the ground states of the

nontrivial Majorana chain.

We can also observe the equivalence of the two systems from the standpoint of
Hamiltonians. We build the MPS parent Hamiltonian for the A = C¢(1) system
by following (Kapustin, Turzillo, and You, 2017; Schuch, Perez-Garcia, and Cirac,
2011). The adjoint # = T is given by

P:2urQuy,— 101+, 2u.@ui—»1T+I'Q1. (4.95)

With respect to the inner products on A and U for which 1 and I" and u, and u_ are
unit vectors, the graded module structure 7 is an isometry, so the left inverse £~ is

simply 7. Putting these pieces together, we find
Hr = |11){IT| = |1[) ('l = |T'1) (1T + |[T'T) (11| (4.96)

where |ab) (cd| denotes the element a ® b ® ¢* ® d* € End(A ® A). In terms of
the annihilation operators a; = V2 1) (T ; and their adjoints, the hopping (top row)

and pairing (bottom) terms look like

al ®aj =2[T1)(IT] a}+1®aj=2|1r> (T'1] won
aj®c§+1:2|rr><1u aj1 ®a; =2[11) ([T

so the Hamiltonians (4.93) and (4.96) agree. The variables a; satisfy fermionic
anti-commutation relations. For example,
{aj,a_,-+1} =(a®l)(1®a)+(1®a)(a® 1)
—a®a+(-D"g®a=0 (4.98)

if we are careful to use the fermionic tensor product (4.55). The other relations can

be checked similarly.
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4.8 Equivariant spin-TQFT and equivariant fermionic MPS

(G, p)-equivariant algebras and modules

Let (G, p) be a finite supergroup, i.e. a finite group G with a distinguished involution
p € G called fermion parity. We assume that the involution p is central in G, which
means that there are no supersymmetries. Every supergroup (G, p) arises as a
central extension of a group G, =~ G/Z, of bosonic symmetries by Z, = {1, p}; that

is, there is an exact sequence
1 575656, 51 (4.99)

A trivialization of (G, p) is a function t : G — Z; such that ¢ o i is the identity on
Z,. Given a trivialization, one can encode the multiplication rule for G in terms of
the product on G and a Z,-valued group 2-cocycle p of G;,. Consider the following
product on the set G, X Z, (denoted G, X, Z3). For g, heGy, [, f €z,

(&, f) - (h, f) = (gh,p(8.h) + f+ f'). (4.100)

Denote g := b(g). The map b X, t : g — (g,t(g)) defines a group isomorphism
G N Gp X, Zo; that is,

g h=(g.1(8) (ht(h)) = (gh,p(g h) +1(g) +1(h))
= (gh,1(gh)) = gh, (4.101)

if and only if
p(8.h) =t(gh) +1(g) +t(h). (4.102)

Suppose ¢’ is another trivialization. Since ¢ = ' on the image of i and the sequence
(4.99) is exact, the map t — ¢’ defines a 1-cochain of G,. Thus, upon replacing ¢
with ¢/, p is modified by the coboundary §(z —t’), so only the cohomology class [p]
of ¢ is an invariant of the extension. If [p] is trivial, G is isomorphic to the direct
product group G X Z, and we say the extension splits; in general, this is not the
case. Some discussions of fermionic phases in the physics literature assume that
(G, p) is split, but we will consider both cases simultaneously. Note that (Fidkowski
and Kitaev, 2011) considered both cases as well.

An action R of (G, p) on a vector space V endows it with a distinguished Z,-grading

Ve={veV:R(p)==xv} (4.103)
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Centrality of p ensures that R(g) is even with respect to this grading, forall g € G.
A (G, p)-equivariant Frobenius algebra is a Frobenius algebra (A, m,n) with an

action of (G, p) that satisfies
m(R(g)a ® R(g)b) = R(g)m(a ® b) (4.104)

and
n(R(g)a, R(g)b) =n(a,b) (4.105)

foralla,b € A, g € G. As was true for the special case G = Z,, there are two notions
of tensor product of these algebras: the usual one that forgets the distinguished Z,-
grading and a supertensor product (4.55) that remembers it. In both cases, the

symmetry acts on the product as
R(g)(a1 ® az) = Ri(g)a1 ® Ra(g)az (4.106)

which is a special case of the rule

(¢1® ¢2) (a1 ® az) = (-1 (ay) @ pa(a2) (4.107)
for ¢ ® ¢» € End(A;) ® End(A;), where we have taken R(g) = R1(g) ® R2(g).

We have argued in (Kapustin, Turzillo, and You, 2017) that bosonic phases with
symmetry G are classified by G-equivariant symmetric Frobenius algebras and
that stacking of phases corresponds to the usual tensor product of their algebras.
Here we will argue the fermionic analog: (G, p)-equivariant symmetric Frobenius
algebras classify fermionic phases with symmetry (G, p), for which stacking is
governed by the supertensor product. In this language, bosonization means taking a
(G, p)-equivariant algebra to a G-equivariant algebra by forgetting the distinguished
involution p. Generically, if G has more than one central involution, this map is

many-to-one.

An equivariant module over a (G, p)-equivariant algebra A is vector space V with
compatible actions of A and (G, p); that is, for every a € A, we have a linear map
T(a) € End(V) such that T (a)T(b) = T(ab), and for every g € G, a linear map
Q(g) such that Q(g)Q(h) = Q(gh). The compatibility condition reads

T(R(g)a) = Q(HT(2)Q(g)™". (4.108)
Note that T automatically respects the Z,-grading.

For a review of the classification of equivariant algebras and modules, we refer

the reader to the prequel (Kapustin, Turzillo, and You, 2017), which compiles
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some algebraic facts from Ostrik, 2003 and Etingof, 2015. There are two classes
of algebras that will be especially useful in the present context, as they describe
fermionic SRE phases. One class of algebras is those of the form End(U) for
a projective representation U of G. Each pair (Q,U) has an associated class
[w] € H*(G,U(1)) that measures the failure of Q to be a homomorphism:

Q(g)Q(h) = exp(2riw(g, h))Q(gh). (4.109)

Each [w] defines a Morita class of algebras and therefore a phase. Equivariant
modules over End(U) are all of the form U ® W, where W is a projective represen-
tation with class —[w]. When G can be written as G, X {1, p} for some group G,
of bosonic symmetries, another class of equivariant algebras is those of the form
End(Uj,) ® C¢(1) for a projective representation (Uj, Qp) of G,. The group Gy
acts by conjugation on End(Up). It also acts on the generator of C{(1) by

g:T > (=1)B@r, (4.110)

where 8 : G, — Z; is ahomomorphism. Up to Morita-equivalence, algebras of this
type depend only on the 1-cocycle S and the 2-cocycle @ on G, corresponding to the
projective representation ;. While the bosonic phases built from these algebras

have a broken Z;, their fermionic duals are nonetheless SRE phases.

Equivariant fermionic MPS
Let (G, p) be a supergroup acting on the physical space A by a unitary representation
R. A (G, p)-invariant MPS tensorisamap T : A — End(U) such that T (a)T (b) =
T(ab) and

T(R(g)a) = Q()T(@)Q(g)™ (4.111)
where the linear maps Q(g) € End(U) form a projective representation of (G, p)
on U. For X € End(U) satisfying the supercommutation rule (4.72) or (4.73), the

conjugate generalized MPS is

(W7 |=Tru[XT(er) - T(eiy)] i1 in (4.112)
in the NS sector and

(7| =Tru[PXT(er) -+~ T(eiy)] it i (4.113)

in the R sector, where P denotes Q(p). More generally, we can insert Q(g) instead
of P:

(W] = Try[Q(g)XT (er,) -+ T(ery)] (i -+ in] - 4.114)
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These are twisted sector states. When G = G, X {1, p}, states with twist Q(g, 1)
correspond to NS spin structure on a circle and a G, gauge field of holonomy g,
while states with twist Q(g, p) correspond to the R spin structure on a circle and
a G gauge field of holonomy g. When G is non-split, one does not have spin

structures and gauge fields, but a G-Spin structure, as discussed in Section 4.8.

Note that End(U) carries a genuine (not projective) action of (G, p). By arguing as
in (4.69), one can show that (v,[/%( | transforms under (G, p) in the same way as X.

Fermionic SRE phases and their group structure

In this section, we restrict our attention to fermionic SRE phases, i.e. topological
fermionic phases that are invertible under the stacking operation. These phases
form a group under stacking. According to (Fidkowski and Kitaev, 2011), if the
symmetry group G splits as G, X Z;, each fermionic SRE phase corresponds to an

element of the set

(@, B,y) € H (G, U(1)) x H' (G}, Z2) X Zy. (4.115)

If G, = {1}, the two elements (0,0,0) and (0,0, 1) correspond to the trivial
and nontrivial Majorana chains, respectively. More generally, elements of the
form (a,,0) correspond to fermionic SRE phases that remain invertible after
bosonization, while the bosonic duals of the fermionic SREs («, 8, 1) are not SREs

(they have a spontaneously broken Z; but unbroken Gj).

If G does not split, we claim that fermionic SRE phases are classified by pairs («, 8),
where 8 € H'(Gy,Z,), and « is a 2-cochain on G, with values in U(1) satisfying
oa = %p UgB,i.e. for g, h, k, € Gy,

(g, h) +a(gh, k) =a(h, k) +a(g, hk) + %p(g, (k). (4.116)

Here p is the 2-cocycle on G, which encodes the multiplication in G. Certain
pairs (a, B) correspond to equivalent SRE phases. Namely, adding to @ an exact
2-cochain gives an equivalent SRE. Also, if we add to the 2-cocycle p a coboundary

of a 1-cochain y, « is shifted by %,u U B.

This classification can be understood from the standpoint of bosonization. Recall
that G-invariant bosonic SREs are classified by group cohomology classes [w] €
H?(G, U(1)) and arise from algebras of the form A = End(U) where U is a projective

representation of class [w]. Unlike the linear maps R(g) of a genuine representation,
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the Q(g) can be either even or odd with respect to P := Q(p). Using (4.109) and
the centrality of p, it can be shown that Q(g) and Q(gp) have the same parity

w(p,g) — w(g, p); thus, one can define B(g) :=|Q(g)|, i.e.

PQ(g) P! = ™) g (g). (4.117)

The function g is clearly a homomorphism, and so defines a Z-valued group 1-
cocycle of G,. Given a trivialization ¢, one can re-express w in terms of 5 and a

U(1)-valued group 2-cochain a of G, satistying da = % p U B as follows: 4

(8, h) = (8. 7) + 51 (B, @.118)

Using (4.102), one can verify that (4.116) is equivalent to the cocycle condition
for w. We prove in Appendix B.3 that (4.118) defines an isomorphism between
H?*(G,U(1)) and the set of pairs (a, 8), up to coboundaries.

When G does not split, it is impossible to break Z, without breaking G, = G/Z,,
so all fermionic SRE phases arise as fermionized bosonic SRE phases. Then the
analysis above agrees with the result of (Fidkowski and Kitaev, 2011) that, in the
non-split case, fermionic SREs are classified by elements of H>(G, U(1)) (modulo

identifications).

But when G splits, it is possible to break G and still get an invertible fermionic
phase. One can break G down to any subgroup H such that the quotient G/H is a Z,
generated by p. Any such subgroup takes the form Hg = {g € G : t(g) = B(g)} for
some homomorphism 8 : G, — Z;, and all homomorphisms give such a subgroup.
This gives rise to a second class of fermionic SPTs - those whose bosonic duals are

not invertible.

The algebras corresponding to these phases are of the form A = End(Up) ® C¢(1)
for some projective representation (Ug, Qp) of Hg. Let h € Hg, M € End(Up),
m € Zj. The subgroup and quotient act on A as

R(h) : M®T™  Qg(h)'MQs(h) @ T™, (4.119)

R(p) :MT" > (-1)"M @I, (4.120)

“When the extension splits, both @ and S are cocycles, and their equivalence to w can be seen
from the Kiinneth theorem for homology and the fact that H>(G, U(1)) is the Pontryagin dual of
Hy(G,Z).
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This action is a special case of the more general rule discussed in Section 4.3 of
(Kapustin, Turzillo, and You, 2017). In terms of G,

R(g) = R(g,B(2)) - R(p)" &+
MeI™

> (=)&) (2, 8(8) ' MQs(8, B(5) @ T (4.121)

as claimed in (4.110) (after setting 7#(g, 1) = 0). Note that 8, which encodes the
action of the symmetry on fermions, can be offset by changing the trivialization ¢,
i.e. the splitting isomorphism G — G}, X Z». As a projective representation, Qg is
characterized by a class [a] € H>(H,U(1)) ~ H>(G,,U(1)).

We have shown that (G, p)-equivariant fermionic SRE phases can be charac-
terized by pairs (a,B) and - if G is split - an additional Z, label y that rep-
resents a C{(1) factor in the algebra. This parameterization is useful for dis-
cussing stacking of fermionic phases, which is different from the standard group
structure on H>(G,U(1)) (the latter describes bosonic stacking). First, since
Ct(1) ® CL(1) ~ C¢(2) is Morita-equivalent to C, the y parameters must sim-
ply add up under stacking. Second, if we consider two phases with parameters
(a1, B1,0) and (a3, B2,0) corresponding to two G-equivariant algebras (Q1, Uj)
and (Q», U,), the supertensor product is a G-equivariant algebra (Q,U), where
U=U, ®U,and 0=0; ® Q>. We can easily compute:

0(g)Q(h) = (Q1(g) ® 02(£))(Q1(h) ® Q2(h))

= (-1)%@F N0, (2)01(h) @ Q2(8)Q2(h)
— (_1)ﬁ2(g'),31(71)62ﬂi01(§ﬁ) (_1)f(g),31(71)

% ezniaz(g,iz)(_l)t(g)ﬁz(ﬁ)Ql (gh) ® 02(gh)
1 -
= exp|27i(a; + ap + Eﬂz U B (&, h)

% (_1)l(g)(ﬁ1+ﬁ2)(7l)Q(gh). (4.122)

Thus the group structure in this case is

(a1,1,0) + (a2, 52,0)

1
=(a1+a+ 5,31 U B, B1 + 2,0). (4.123)
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Note that 8 U B, differs from S, U 1 by an exact term, and thus the difference
between them is inessential. Based on these two special cases, it is easy to guess

that the group structure induced by stacking is

(a1, B1,v1) + (@2, B2, v2)
1
= (@ +C¥2+§,31 U B2, B1 + B2, v1 +72). (4.124)
This will be verified later when we incorporate anti-unitary symmetries 4.9.

The set of triples (a, B, y) with this group law is isomorphic to the spin-cobordism
group Qgpm(BGb) (Gaiotto and Kapustin, 2016). This agrees with the proposal
of (Kapustin et al., 2015) about the classification of fermionic SRE phases. In the
non-split case, the group structure is given by the same formulas, except that vy is

set to zero, and « is not closed, but satisfies the equation da = % pUpB.

If G splits, the isomorphism G ~ G, X Z; may be taken as part of the physical
data. This means that one fixes the action of G, on fermions as well as on bosons.
Alternatively, if one regards this isomorphism as unphysical, one only fixes the action
of G, on bosons, while the action on fermions is fixed only up to certain signs. So
far we have been taking the former viewpoint. If we take the latter viewpoint, we
also need to understand how the parameters («, 3,y) change when we change the
action of G on fermions. Given a particular action of g € G, any other action
which acts in the same way on bosons differs from it by p#(®, where p is fermion
parity and i : G, — Z, is a homomorphism. If we define Q(g) = Q(g)P*®, we
have
0(@)0(h) = exp(2mia(g, 1)) (-1)* PP (gh), (4.125)
and
PO()P™" = (-1)PPQ (). (4.126)
This implies that for y = 0, the parameter S is unchanged, while @ — a + % JTANCR
For y = 1, the situation is different, since fermion parity acts trivially on U, and
thus « is not modified. But it acts nontrivially on the generator of C£(1), so that the
new G, transformation multiplies it by (—1)®@+#()_ Thus 8 +— B+ u. Thus if we
do not fix the action of G}, on fermions, all fermionic SRE phases with y = 1 and a

fixed [«] are equivalent. This agrees with (Fidkowski and Kitaev, 2011).

Two examples with G, = Z,
Let us consider the case G, = Z, = {1,b}. There are two extensions of G; by
fermionic parity Z? = {1, p}: one is Z, X Z, = Z[b]/(b?) x Z[p]/(p?); the other
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is Za = Z[b, p]/(b* - p).

First take G = Z; X Z;. Consider algebras of the form A = End(U), where
U is a projective representation of G. Each is characterized by a class [w] €

H?*(Z X Z,,U(1)) = Z,. The two options for [w] have cocycle representatives
1
wo(g,h) =0 and wi(g,h)= Egzhl (4.127)

where g = (g1, £2), h = (hy, hy). Onthe bosonic side of the duality, we think of wq as
describing the trivial phase and w as describing a nontrivial SRE. Alternatively, one
can replace each w by a pair («, 8). There is only the trivial [a] € H*(Z,, U(1)).
There are two B’s: Bo(b) = 0 and B1(b) = 1. These correspond to wy and wy,

respectively, as
1
wi(8, h) = 51(8)Bi(b(h)) (4.128)

where 7(g) = g» and b(h) = hy. On the fermionic side, By describes a trivial phase
and B, a nontrivial SRE.

Now consider breaking the symmetry down to any of the three Z, subgroups of G;
this means considering algebras A = Indg(End(U )) for projective representations
U of the unbroken H = Z,. Since H>(Z,, U(1)) is trivial, the only possibility (up to
Morita equivalence) is A = C{(1), graded by G/H. On the bosonic side, each choice
of H is a different non-invertible phase. As fermionic phases, the G,-graded C£(1)
is a symmetry-broken phase, while the Z;-graded C¢(1) is a nontrivial Majorana-
chain phase (0, By, 1). Breaking down to the diagonal Z, gives a p-graded C¢(1)

on which the bosonic symmetry acts non-trivially, i.e. (0, 8, 1).

Now take G = Z4. The extension class is represented by the 2-cocycle p(b, b) = 1.
There is only the trivial class [w] € H?>(Z4, U(1)) = {1}. Meanwhile, there are two
B’s: Bo and B; as before. They satisfy p U Bp = 0 and p U B1(b,b,b) = 1. The
trivial « is the unique solution to da = p U By, and one can show that there are no
solutions to da = p U By. In summary, there is only one pair (@, 8) — it is the trivial

one.

Consider breaking the only subgroup ZZT. The corresponding algebra is the G-
graded C¢(1), which, as before, describes a symmetry-broken phase in both the

bosonic and fermionic pictures.

State-sum for the equivariant fermionic theory
In Section 4.6, we observed that fermionic MPS arise from the state-sum for a

spin-TQFT evaluated on an annulus diagram. A similar story can be told about
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bosonic | (H,w) | (a,B,y) | fermionic
trivial | (G,wo) | (0, Bo,0) trivial
BSRE | (G,w) | (0,81,0) | FSRE
SB (Gp, 1) | (0,B0,1) | FSRE
SB (bp),1) | (0,B1,1) FSRE
SB (Z7,1) n/a SB
SB (1,1) n/a SB
(a) Phases with G = Z», X Z»
bosonic | (H,w) | (a,B) | fermionic
trivial | (G, wo) | (0, Bo) trivial
SB | (zX,1)| n/a SB
SB (1,1) n/a SB

(b) Phases with G = Z4

Figure 4.17: Phase classification for the G, = Z; symmetry groups.

equivariant fermionic MPS. Now we will define a state-sum for equivariant spin-
TQFTSs and recover the MPS (4.114) as states on an annulus.

We will focus on the case where the total symmetry group G splits as a product
of G, and Z; and then indicate the modifications needed in the non-split case. A
Gp-equivariant spin-TQFT is defined in the same way as an ordinary spin TQFT,
except that spin manifolds are replaced with spin manifolds equipped with principal
Gp-bundles. Since Gy is finite, a Gp-principal bundle is completely characterized
by its holonomies on non-contractible cycles. We will denote by A the collection
of all holonomies. When working on manifolds with boundaries, it is convenient to
fix a marked point and a trivialization of the bundle at this point on each boundary,
so that the holonomy around each of these circles is a well-defined element of G,

rather than a conjugacy class.

The algebraic input for the state-sum construction is G, X Z,-equivariant semisimple
Frobenius algebra A. The geometric data are a closed oriented two-dimensional
manifold 2 equipped with a G,-bundle and a spin structure. To define the state-
sum, we also choose a marked skeleton I". Then a trivialized Gp-bundle can be
represented as a decoration of each oriented edge with an element g € G,. Reversing
an edge orientation replaces g with g~'. We impose a flatness condition: the product
of group labels around the boundary of each 2-cell is the identity. Equivalently, we
can use the dual triangulation I'*: each dual edge is labeled by a group element, and

the flatness condition says that the cyclically-ordered product of group elements on
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dual edges meeting at each dual vertex is the identity. One can think of the dual
edges as domain walls and the dual edge labels as the G, transformations due to

moving across them.

The state-sum is defined as follows. Given a skeleton with a principal bundle,
color the edges with pairs of elements e; of some homogeneous basis of A. The
weight of a coloring is the product of structure constants C;;; over vertices (with
indices cyclically ordered by orientation) and terms R(g)"xn*/ over edges times the
spin-dependent Koszul sign 0. The partition sum is the sum of the weights over
colorings; the holonomies A, which represent a background gauge field, are not

summed over.

To incorporate brane boundaries, choose a G, X Z;-equivariant A-module U for
each boundary component. Color the boundary edges by pairs of elements f/f] of
a homogeneous basis of U — one for each vertex sharing the edge. The weight of
a coloring is the usual weight times a factor of 7%, for each boundary vertex and

Q(g)*, for each boundary edge.

As in the non-equivariant case, the partition sum is a spin-topological invariant. It
also does not depend on the choice of trivialization of the principal bundle; in other
words, it is gauge invariant. Invariance is ensured by the equivariance conditions
(4.104), (4.105), and (4.108). In fact, one can evaluate the partition function in
a closed form when the boundary is empty. Let A = End(U) ® C¢(1) for some
projective representation of G, with a 2-cocycle «, and the action of G, on C¢(1)
determined by a homomorpism 8 : G, — 7Z,. It is easy to see that the partition
function factorizes into a product of the partition function corresponding to End(U)
and the partition function corresponding to C£(1). The former factor is the partition
function of a bosonic SRE phases, i.e. exp (27ri /2 a) (Kapustin, Turzillo, and You,
2017). The latter one is essentially the Arf invariant, modified by additional signs
from the edges e for which B(e) = 1:

7=b1(2)/2 Z O_s(a)(_l)Zeea B(A(e)) (4.129)
[aleH(2,22)

Using the property (4.47), the definition of the Arf invariant, and the identity
Arf(s + a) = Arf(s)o(a) (Atiyah, 1971), we can write this as

Arf(s + B(A)) = Arf(s)os (B(A)). (4.130)
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Thus partition function of the fermionic SRE with the parameters («, 8, 1) is

eXp(ZJTi / a)O's (B(A))Arf(s). (4.131)
%

Tensoring with another copy of C£(1) multiplies this by another factor Arf(s), so

that the partition function of the fermionic SRE with the parameters (a, 8, 0) is
exp (2m' / oz)o's (B(A)). (4.132)
p)

We can also recover the equivariant MPS wavefunctions from the state sum. First
suppose A = End(U), i.e. the parameter v = 0. An equivariant module over A is
of the form M = U ® W, where (U, Q) and (W, S) have projective actions of G
characterized by opposite cocycles. Consider the annulus where one boundary is
a brane boundary labeled by M and the other is a cut boundary. We work with a
skeleton on the annulus such that each boundary is divided into N intervals, and let
gii+1 denote the group label between vertices i and i + 1. A computation similar to

that of Section 4.6 gives the state

Wrl = Truew[T(e)Q(g12) - - T(eiy )Qgn1)]
X (i1 in| (4.133)

which, after performing gauge transformations and LU transformations, can be put

in the form

(Wrl =) Truewl[Q()T (i) - T(ei)] Gir -+ in] (4.134)

where g = g12---gn1. Since Q = Q ® S and T'(e;) has the form T'(e;) ® 1y, the

trace factorizes:

(Wrl =Try[S(2)] D Tru[Q(g)T(ei) - T(eiy)]
X (i1 ---in]. (4.135)

Up to normalization, this is the MPS (4.114).

The case A = End(Up) ® C{(1) is similar. An indecomposable module over A is
of the form U ® W ® V, where U and W carry projective Hg actions of opposite
cocyclesand V = C'" is the C£(1)-module considered in Section 4.7. The action of
G is determined by Q(h) = Qp(h) ® S(h)® 1 and Q(p)(M ®us) = +M Qu.. The
argument proceeds as before, with the trace over W factoring out. We are left with
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an expression of the form (4.114) where the trace is over U ® V, the most general

indecomposable MPS tensor over A.

Let us now discuss the non-split case. If G is a nontrivial extension of G by fermion
parity, it is no longer true that a G-equivariant algebra defines a G,-equivariant spin-
TQFT. Rather, it defines a G-Spin TQFT (Kapustin et al., 2015). A G-Spin structure
on a manifold X is a G, gauge field A on X together with a trivialization of the
Zy-valued 2-cocycle wy — p((A), where p(A) is the pull-back of p from BG, to X
and w,, is a 2-cocycle representing the 2" Stiefel-Whitney class of X. Now, if X is
a Riemann surface X, [w;] is always zero, so [p(:A)] must be trivial too. Instead of
choosing a trivialization of wy — p(:A), we can choose a trivialization s of w, and
a trivialization 7 of p(A). That is, we choose Z;-valued 1-cochains s and 7 such
that §s = wy and 67 = p(A). These data are redundant: we can shift both s and 7
by ¢y € H'(Z,Z5).

We can now proceed as in the split case. Instead of a triple («, 3,y), we have a
pair (a, 8) where 8 € H'(G},Z») and « is a 2-cochain on G}, with values in U(1)
satisfying da = %p U B. These data parameterize a 2-cocycle on G. As shown
above, the pairs («,8) and (@ + % 1 U B, B) correspond to the same 2-cocycle on
G, for any u € H'(Gy,Z,). The partition function is evaluated exactly in the same
way as in the split case, except that @ is no longer closed, and an extra correction
factor is needed to ensure the invariance of the partition function under a change of

triangulation or a G gauge transformation. This correction factor is
(~1)k oA (4.136)

where 7 is a trivialization of p(A) which is part of the definition of the G-Spin

structure on X. Thus the partition function is

eXp(ZJTi / a(ﬂ))(—1)/)27Uﬂ(ﬂ)0's(,8(ﬂ)). (4.137)
%

Using Eq. (4.47), one can easily see that the partition function is invariant under
shifting both 7 and s by any ¢ € H'(X,Z,). One can also see that the partition
function is invariant under shifting @ by %/,c U B for any u € H'(Gy,Z,) if we
simultaneously shift 7 +— 7 + u(A).

Returning to the split case, we can examine the effect of treating the isomorphism
G =~ G XZ; asunphysical. Every two such isomorphisms differ by ahomomorphism

u : Gy — Z. The effect this has on the data (a, 8, y) has been described in section
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4.8:
1
a/|—>a+(1—y)§,uu,8, B B+yu, Yy, (4.138)

Using the properties of oy and the Arf invariant, it is easy to check that the partition
function is unaffected by these substitutions if we simultaneously shift the spin
structure:

s s+ u(A). (4.139)

This can be interpreted as a special case of an equivalence relation between different

spin structures which define the same G-Spin structure.

Invariants of fermionic SRE phases

We have seen in 4.8 that a fermionic equivariant algebra A is characterized by the
invariants @, 8, and y. These can also be extracted from an SRE fermionic MPS
system without reference to the algebra A. Inspired by (Kapustin and Thorngren,

2017), we give a physical interpretation of these invariants as observable quantities.

We begin by studying how the MPS in the g-twisted sector transforms under the
action of a unitary symmetry & € Gy. Let w be the cocycle that characterizes the

projective action Q on the module. Then

R(h)-Tr[Q(g)XT'] (il
=Tr[Q(g)XQ(h)~'T'Q(h)] (il

= pri(w(hg)+wlhgh™h)-w(hh™) (4.140)
Te[Q(hgh™H[Q(WXQ(h)~'IT'] (il
We have used the fact that
w(h,h™) =w(h™, h), (4.141)

which follows from the cocycle condition.’> We see that under the action of a unitary

symmetry A,

1. The g-twisted sector maps to the hgh~!-twisted sector.
2. The operator X is conjugated by Q(h).

3. States also pick up a phase of

p2ri(@(hg)+w(hg.h™)=-w(hh™) (4.142)

SWe always work in a gauge (1) = 1.
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We are now ready to interpret the three invariants.
Gamma.

Suppose h = p and g € {1, p}. Then the phase (4.142) vanishes, but there is still
a sign coming from the conjugation of X by P. It is always +1 if the algebra is of
the form End(U) (i.e. if y = 0). If the algebra is of the form End(U;) ® C£(1) (i.e.
if y = 1), this sign is +1 in the NS sector and —1 in the R sector. Therefore we can
conclude that the invariant (—1)? is detected as the fermion parity (p-charge) of the

R sector state.
Beta.

Continuing to take & = p, in the g-twisted sector, the phase (4.142) becomes

1L6(g) = w(p, g) — w(g, p). (4.143)

This term satisfies B(pg) = B(g) and takes values in {0,!/2}; in fact, it defines a
Z/2-valued cocycle of G,. See the appendix for a proof. When y = 0, the sign
(—1)B(») is the fermion parity of the g-twisted sector for g with b(g) = g5. If G
splits, one can equivalently say that (—1)#() is the parity of the b(g)-twisted NS
and R sectors. If G splits, it is possible that v = 1. In this case, one must choose
a splitting to make sense of 8. Then (—1)A() is still the parity of the b(g)-twisted
NS sector, but the parity of the b(g)-twisted R sector receives a contribution of —1

from conjugation of X by P, in addition to the B(g) term.

Note that B(g) also describes the g-charge of the p-twisted (Ramond) sector for
systems with y = 0. This is no coincidence: the phase (4.142) agrees with Equation
4.11 of Ref. (Kapustin and Turzillo, 2017), where it was derived from bosonic (i.e.
X = 1) TQFT. If g and A commute, one can sew together the ends of the cylinder
to create a torus with holonomies g and 4 around its cycles. This torus evaluates to

the phase
w(h, g) +w(hg, h™") —w(h, k") = w(h, g) — w(g, h). (4.144)

This surface can also be evaluated as a torus with holonomies 4 and g~!, respectively,

yielding
w(g ™, h)+w(g'hg) —w(g™ g)
=w(h,g) +w(g' hg) —w(g™.g) (4.145)
= (,()(h, g) - a)(g’ h)
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These are equal, as is required by consistency of the TQFT. In terms of states,
the h-charge of the g-twisted sector is the same as the g~'-charge of the h-twisted
sector, as long as g and 4 commute. There is no analogous statement for systems
with v = 1. Recall that 8(g) measures whether or not g acts as o, on the second
factor of End(U) ® C£(1). Then Q(g) anticommutes with X = 1 ® o7, and so the
state picks up an extra charge of (g) which cancels with the sign (4.142) for a total
g-charge of +1 in the R sector.

Alpha.

Consider the MPS state on a circle with two adjacent domain walls, parametrized

by bosonic symmetries g, h, € Gp, as in Figure 4.18. Upon fusing them, the state

picks up a phase:
Tr[Q<s<gb>>Q<s(hb))Tf] (il | (4.146)
= 2l o) Te[Q(s(gy)s (s )T i1
These phases define a G,-cochain
a(gp, hp) = w(s(gp), s(hp)). (4.147)

If G splits, then the fact that w is a cocycle implies that « is as well. If the extension
G is instead defined by a nontrivial p, then @ has coboundary !/28 U p. See the
appendix for details. Redefining each X = 1 by a sector-dependent phase shifts «

by a G-coboundary with arguments in G, as expected.

Note that when g and vy are trivial, there are no fermionic states and the system is
insensitive to spin structure. In this sense, a captures purely bosonic features of the

system.

In summary:

e (—1)7 is the fermion parity of the untwisted R sector.

e If y =0, (—1)5() is the fermion parity of the g-twisted sector for either of
the two g’s with b(g) = g,. Alternatively, (—1)5(») is the g-charge of the
untwisted R sector. If y = 1, (=1)8(») is the fermion parity of the g,-twisted

NS sector, as determined by the choice of splitting.

o 2mia(gn.hb) s the phase due to fusing g, and /i, domain walls.
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Figure 4.18: Fusion of domain walls.
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Figure 4.19: Symmetry data.

Anti-unitary and orientation-reversing symmetries

More generally, a fermionic system may be invariant under anti-unitary symmetries
as well as unitary ones. In this case, the full symmetry group G is a central extension
by Zg of a bosonic symmetry group G, which is itself an extension of Zg by a
finite group Gy, as in Figure 4.19. The symmetry class (G, p, x) is determined by a
central p € G and a map x : G, — Z/2 that encodes whether a bosonic symmetry
is unitary or anti-unitary. Note that the composition x o b, which we also call ‘x,
satisfies x(p) = 0. Let Gy denote its kernel.

A fixed point MPS system of symmetry class (G, p, x) consists of a finite-dimensional
semisimple associative algebra A and a faithful module 7 : A — End(V), satisfying
the equivariance conditions (4.25) and (4.27) as before; only now the group action
may be anti-unitary. In particular, the projective action on V is given by a unitary
operator Q(g) for each g € Gy and an anti-unitary operator Q(g) for each g ¢ Gy
that satisfy

0(g)Q(h) = &N (gh) (4.148)

for phases w(g, h). By comparing [Q(8)Q(h)]Q (k) and Q(g)[Q(h)Q(k)], we find
the x-twisted cocycle condition:

w(g, h) +w(gh, k) = (=)@ w(h, k) + w(g, hk). (4.149)
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Redefining each Q(g) by a g-dependent phase corresponds to shifting w by an x-
twisted coboundary. Therefore the action of G on the module V is characterized
by a twisted cohomology class [w] € H*(G,U(1)r). The group action R on A is
defined via (4.25). It will be convenient to define linear maps M (g) by

(4.150)

0(g) g€<Go
M =
(® {Q(g)K ¢ ¢ Go

where K denotes complex conjugation.

Unitary symmetries that reverse the orientation of one-dimensional space can also be
described in this language. Let x measure whether a symmetry reverses orientation.

The natural generalization of (4.25) is

T(R(g)a) = M(g)T(a)M(g)™"  forg € Gy

4.151)
T(R(g)a) = M(g)T(a)"M(g)™"  for g ¢ Go.

Let us introduce the following shorthand. For a matrix O € End(V), define

OTO — O, OTI — OT,

{O}O =0, {()}1 — [O—I]T_ (4.152)

Since R is a group homomorphism,

M(){M (W)Y T (@)™ M ()™ M (g)™"
=T(R(g)R(h)a)
=T(R(gh)a)
= M(gh)T (@)™ "M (gh)™".

(4.153)

This implies that there exists a number w(g, h) € R/Z such that
M (g){M(h)}*&) = & p(gh). (4.154)

By comparing the two equal expressions M (g){M (h)}*® {M (k)}*€") and
M (g){M(h)M (k)*M}*(@) one recovers the x-twisted cocycle condition (4.149) for

w.

From the perspective of two-dimensional spacetime, it is not surprising that time-

reversal’® and space-reversal should be treated similarly. To make the connection

6By a well-known result of Wigner, an anti-unitary symmetry reverses the direction of time.
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more explicit, note that the physical Hilbert space carries the action of an anti-linear
involution *, which we regard as CPT (see Ref. (Kapustin, Turzillo, and You, 2017)).
Using equivariance of the multiplication and (anti-)unitarity of R(g) with respect to
the inner product on the Hilbert space, it may be shown that * commutes with R(g)
forall g € G. With respect to the product on A, this map is an anti-automorphism. If
R(g) denotes the action of a time-reversing symmetry, R(g)* is a unitary symmetry
that reverses the orientation of space. Then

T(R(g) *a) = M(g)T(xa)M(g)™"' = M(g)T(a)" M(g)™". (4.155)

Moreover, since * commutes with R(g), the equivariance condition (4.25) implies
that M (g) is unitary (up to a phase), so (4.148) and (4.154) are equivalent (up to a
coboundary). For the remainder of the paper, we suppress * and simply write R to

denote a time-reversing or space-reversing symmetry.

Invariants of fermionic SRE phases with anti-unitary symmetries

As in the case of unitary symmetries, fermionic SRE systems at fixed points
correspond to even algebras of the form End(U) and odd algebras of the form
End(Uj,) ® C£(1). However, when the symmetries may act anti-unitarily, the coho-

mology class characterizing the Morita class (and hence the SRE phase) is twisted.

We now discuss the meaning of the invariants @, 8, and v in the anti-unitary context,
following the previous analysis. The form of the MPS conjugate wavefunction is
(4.114) as before. Consider the action of an anti-unitary symmetry & ¢ Gy on an
MPS in the g-twisted (g € Gy) sector:

R(h)-Tr[Q(g)XT'] i
=Tr[M () XM (h™)(T"Y M(h™")™"] (i
= Te[M(h~)T X" M(g)" M(h~)™1TT] (i
= 27D T [M (K1) M (hg) ™ M(hg)
X" MM (g)"717'T7] (il (4.156)
= 2@ )b Ty [[M (hg)M (h™) 1T
[M(hg)X" M (hg)~'1T"] (il

= 2ri(w(hg ) +w(hg™ . h+w(g.g™)-w(hh™)

Tr[Q(hg™'h™") [M(hg) X" M (hg)~"1T] (il
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where in the last line we use the fact that
w(hg™'h™, hgh™)
=-w(h,g) —w(hg,h™") —w(hg™, k™" (4.157)
—w(hg™) ~w(g™ ) —2w(h™, h),

which can be verified by repeated application of the twisted cocycle condition. We

see that under the action of an anti-unitary symmetry #,

1. The g-twisted sector maps to the hg~'h~!-twisted sector.
2. The operator X is transposed, then conjugated by M (hg).”

3. States also pick up a phase of

eZni(w(h,g’l)ﬂu(hg’l,h’l)+w(g,g’1)—u)(h,h’1)) ) (4 158)

The phase matches Equation 4.12 of Ref. (Kapustin and Turzillo, 2017). In

particular, when g acts on the R sector, it is

12B(g) == w(g,p) —w(p,g) +w(p,p), g ¢ Go. (4.159)

This phase satisfies B(pg) = B(g), takes values in Z/2, and, together with (4.143),
is a Gp-cocycle. Refer to the appendix for a proof. When y = 0, this is the g-charge
of the R sector. However, when y = 1, the charge receives an additional contribution
from the transformation of X. Similarly to the unitary case detailed above, the total

charge is the B-independent quantity (—1)*(), so this interpretation of S fails.

The invariant § also has an interpretation in terms of edge states, like (4.117).18 A
time-reversing symmetry g ¢ Go maps V to its dual space V*, on which p acts as
P!, so the parity of Q(g) is read off of

P'0(g)P' = ™®0(g), g ¢ Go. (4.160)

A similar interpretation holds if g reverses the orientation of space. Let V* ® V
represent the tensor product of left and right edge state spaces. On this space, g acts

as

Y ®Ypr
0(g) (YL ®Yr) 0(g) = 0(g) 'wr ® Q(g)1.

171f X is Hermitian, this is the same as X being conjugated by the anti-linear operator Q (hg).
131f g is anti-linear, the expression (4.117) is not invariant under the change of gauge w — w+6A.

(4.161)
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B appears as the result of acting by P ® P~!, g, and then by P~ ® P:

Y1l 1®PO(g)PYy =™ (1 y). (4.162)

The meaning of « (4.147) is more difficult to describe in Hamiltonian language.®
The lack of twisted sectors for anti-unitary symmetries means that a(gp, /) has
an interpretation as the phase due to fusing domain walls only when g, and A, are
unitary. The rest of a appears in other places. It is convenient to first describe the
invariant w. For two unitary symmetries g, 1 € Gy, the phase w(g, h) is due to
fusing domain walls. It was shown in Ref. (Kapustin and Turzillo, 2017) that two
extra families of phases — which we now describe — together with w restricted to
Go, determine the full w on G. The first family is the phases (4.158) due to acting
on the g-twisted sector by an anti-unitary symmetry /4. The second family consists
of the relative phases due to comparing, for each anti-unitary symmetry g ¢ Gy, the
crosscap state (see Refs. (Shiozaki and Ryu, 2017; Kapustin and Turzillo, 2017))
Tr[Q(g)Q(g)Ti ] (i| to the MPS state in the g>-twisted sector. These phases have
the simple form w(g, g). Note that these data are not gauge invariant, and the
equivalence classes of them under shifting w by a twisted coboundary do not take
a simple form. Now that we have described the full w, the full @ can be recovered
by restricting to G,. As we demonstrate in the appendix, the result is a G;, cochain

whose x-twisted coboundary is S U p.

Finally, y is the fermion parity of the untwisted Ramond sector, as in the unitary

case.

4.9 The fermionic stacking law

Gapped fermionic phases form a commutative monoid under the operation of stack-
ing. The result of stacking fixed point systems corresponding to algebras A; and
As is the system corresponding to the supertensor product A; ® A», defined by the
multiplication law (a ® ar)(b; ® by) = (—1)'“2”bl|a1b1 ® a»by (Bultinck et al.,
2017; Kapustin, Turzillo, and You, 2018). SRE phases are precisely those that are
invertible under stacking, so they form a group. The goal of this section is to derive
this group structure on the set of SRE phases in terms of the invariants «, 3, and .
We will derive (4.124) and its generalization which takes into account the possibility

that Q(g) is anti-linear. We summarize the results at the end of the section.

19n the Lagrangian picture, we expect a to be related to trivalent junctions of possibly orientation-
reversing domain walls.
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The following discussion relies on a result proven in the appendix: that one can
choose a gauge such that the twisted cocycle w is related to @ and g by, for all

g, h € G, where g is short for b(g),
w(g, h) = (g, h) +'1B(g)1(h). (4.163)

There are three cases to consider: the stacking of 1) two even algebras, 2) an even
and an odd algebra, 3) two odd algebras. When G does not split, there are no odd

algebras so we need only consider the first case.
Even-even stacking

Consider the even algebras End(U,) and End(U,). Their tensor product is End(U; ®

U,), where U, ® U, carries a projective representation Q = Q| ® Q». Then

Q(8)Q(h) = (Q1(8) ® 02(8)) (Q1(h) & Q2(h))
= (=) OPN 0, ()01 (h) ® 02(8)Q2(h)
- (_1)(ﬁzuﬁ1)(§ﬁ)62ﬂi(m (g.h)+'/2B1(8)1(h)) (4.164)
e2ﬂi((¥2(Eﬁ)+1/2ﬁz(§)l(h))Ql (gh) Q 0>(gh)
- 827”'(&1+012+‘/2ﬁ2Uﬂ1)(§,71)+1/2(ﬁ1+ﬁ2)(§)l(h)Q(gh).
Thus the invariants of the stacked phase are @ = @) + @y + '2(8; U 82)?° and

B = B1 + B>. Since the stacked algebra is again even, ¥y = 0. The presence of

anti-unitary symmetries does not affect even-even stacking.
Even-odd stacking

Now consider the even algebra A; = End(U;), where U, carries a projective repre-
sentation O of G, and the odd algebra A, = End(U,) ® C£(1), where U, carries
a projective representation Q, of Gy, Their tensor product End(U;) ® (End(U,) ®
C¢(1)) is isomorphic as an algebra to the odd algebra End(U; ® U,) ® C£(1) by the
map

JW: M ® (M, ®T") > M P" @ M, ® "Ml (4.165)

which has inverse
JW My @ My @ T > M P™IMI g (M, @ THMI), (4.166)

where the parity of M| is defined by Q;: PiM;P; = (—1)™ilp1;. This isomorphism
respects the Z/2-grading defined by the standard action of fermion parity on even

and odd algebras.

20We have used the fact that 8, U 8| is cohomologous to 3; U 85 in Z/2.
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It remains to determine the G, action on the odd algebra. For g € G with t(g) =0,
JWogoJW™ . (M@ M,®I™)
=W og - (MP"IMIE (b & TN )
=JW- (Ql(g)M1Pm+|M‘|Q1(g)_1<§
(02(0)M20:2(3)"' ® (—1)(m+|M1|)ﬁ2(g)Fm+|M1|))
= (=)D B @) 0 ()M 01 (g) "
® 02(3)M202(3)”' @I

(4.167)

In order to read off the invariants from this group action, we must rewrite it in the
standard form by defining 01(g) = Q1(g) PP @22 and 0(g) = 01(g) ® 02(8).
Then, continuing from (4.167),

g (M @M, ®TI™)
= (=1)"B@5) (G (g) ® 02(8)) M (4.168)
@My (01(g) ' ®0x(3) HeI™,

from which we read off the stacked invariant 8 = 81 + ,. In addition,

0(g)Q(h) = (01(g) ® 02(3)) (01(h) ® Q2(h))
_ Ql(g)pﬁl(g‘)wz(g)Ql(h)P,Bl(B)wz(ﬁ) ® 02(2)0>(h)
_ (_1)ﬁ1<iz)(ﬁ|<g>+ﬁz(g‘)) (4.169)

01(8)Q1(h)PPEM+M @ 0, (2)0,(h)
— il (g’h)+flz(gah)+1/2(ﬁ2Uﬁ1)(g,h)+1/2(ﬁ1U,31)(g,h))Q(gh)’

from which we see @ = a1 + @ + 1281 U B2 + 1281 U B1. There is no asymmetry:
the 1281 U B term always comes from the 3 of the even algebra.?? Finally, y = 1

since the stacked algebra is odd.
Odd-odd stacking

Consider the odd algebras A} = End(U;) ® C£(1), where U, carries a projective
representation Q| of G, and A, = End(U,) ® C£(1), where U, carries a projective

2l Adding a phase factor to O would have shifted the resulting 2-cocycle @ by an irrelevant
coboundary. For example, if we had chosen a factor P18 ag in Ref. (Kapustin, Turzillo, and You,
2018), we would have gotten 5; U x instead of 81 U §; in the final answer.

22Note that while 8; U 81 is an ordinary coboundary and hence could be ignored for phases
without time-reversal, it is not a twisted coboundary and so cannot be ignored when time-reversing
symmetries are present. By adding a twisted coboundary, we can put it in the form £; U x, which
makes the dependence on time-reversal symmetry manifest.
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representation Oy of G,. Their tensor product is given by A} ® Ay ~ End(U; ®
U, ® CN, since C£(1) ® C£(1) ~ C£(2) ~ End(C!!"), via an isomorphism

(M @T"") ® (Ma ®TS) > My ® My ® 0] 05, (4.170)

where o and o are any two distinct Pauli matrices. With respect to the action of
fermion parity on the End(C!!") factor as conjugation by o3 = —icrj 07, this map is

an isomorphism of Z/2-graded algebras.

One choice?? of Gj-action Q on U ® Uy ® C2, with respect to which (4.170) is

equivariant, is
g u®uy®vi> 01(9u; ® 02(8)ur ® O'fgz(g_)afl(g)Kx(g)v, 4.171)

for g € G with t(g) = 0, where K denotes complex conjugation in a basis in which
o1 and o are real. Then
0(3)0(h)
=(01(3) ® 02(2) ® O.ﬁz(g)o.ﬁl (g)Kx(g)
1 2
> > B () gl
(Ql(h) ® 02(h)® 0'{32( )0'51( )K"(h)) @172)
= 2N, (gh) ® 2MREN 0, (gsh)®
(-1)P (8)Ba(h) Ulﬁ 1(gh) Ué?z(g'h) K~(gh)
= 627”'(011+02+‘/2ﬁ1Uﬁz)(gjl)Q(g_h)’
from which we see that @ = a| + az + /281 U B,. Since U; ® U, is purely even, the
parity of Q comes from
B2(8) _Bi(2) grx(g)
P& gx@p
= (—i0'10'2)0'182(g)0'f'(g)Kx(g)(—imo'z) (4.173)
— (—1)ﬂ2(§)+ﬁl(g)alﬂZ(g)o-fl(g)Kx(g)(—1)"@.

We read off 8 = B + 52 + x. Finally, the stacked algebra is even, so y = 0.

In summary

The stacking law for the invariants (a, 8, y) is given by
(@1,B1,0) - (a2, 2,0) = (@1 + @2 + 281 U B2, B1 + B2,0)
(@1,B1,0) - (a2, B2, 1) = (a1 + a2 + 121 U B2 + 1251 U B1, B1 + B2, 1) (4.174)
(@1,B1,1) - (a2, B2, 1) = (a1 + @2 + 261 U B2, B1 + B2 + X, 0).

23 Again, had we chosen a different Gj-action on C'I' compatible with the action g;, : I';
(—1)Pi(ep)T; on the C£(1) factors, the 2-cocycle @ would be shifted by a twisted coboundary.
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This group law inherits the properties commutativity and associativity from the
tensor product of algebras. When G does not split, y is not present, and the stacking

law is simply
(a1, 1) - (@2, B2) = (a1 + @2 + 21 U B2, B1 + Ba). (4.175)

We emphasize that while data [a, 8] are equivalent to [w] € H*(G,U(1)r), the
group structure on H>(G,U(1)r) differs from (4.174). On the other hand, the
stacking of bosonic SRE phases, which are also characterized by classes [w], is

described by the usual group structure on (G, U(1)r).

4.10 Examples

Class BDI fermions: G = Z5 x Z}

Let us consider SRE phases with symmetry G = Zg X Zg. The two classes a €
H*(ZT,U(1)r) = Z/2, two classes 8 € H'(ZL,Z/2) = Z/2, and two classes
v € Z/2 make for a total of eight phases. A straightforward application of the
general stacking law (4.174) reveals that these phases stack like the cyclic group
Z/8. In this section, we will reproduce this group law by exploiting the relationship
between G-equivariant algebras, real super-division algebras, and Clifford algebras,
which have Bott periodicity Z/8.

We begin by describing simple G-equivariant algebras. The matrix algebra M,C
represents the sole Morita class of simple complex algebras. This algebra has
a unitary structure * given by conjugate transposition. Its action fixes a basis
{1,X,Y,Z = —iXY}. On C6{LC ~ M,C, x acts by Clifford transposition and
complex conjugation of coeflicients with respect to a pair of generators that square
to +1.

There are two distinct real structures on M,C given by complex conjugation 7 on the
second component of M,C ~ M>R ®g C and M>C ~ H ®g C. The unitary structure
* of M>C acts by transposition on M>R, complex conjugation on C, and inversion
of the generators 7 and j of H; that is, its fixed bases are
{I®1,X®1,iY®i,Z® 1} € MhoR®R C,
. (4.176)
(1®1,i0i,]®i,k®i} € H®g C.

These bases have the same T-eigenvalues as they do =T-eigenvalues, where T

acts as transposition on MR and inversion of generators on H. Under the algebra
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isomorphisms M>R =~ C{; 1R =~ CloR and H =~ C{y 7R, #T acts by inverting the

generators and products of generators that square to —1.

Let us derive the invariants « of these real structures. Pulled back from M>R ®r C
to M,C, T acts like complex conjugation and =T like transposition; thatis M (z) = 1.
Then

MM =1, (4.177)

which means «a(¢,1) = w(t,t) = 0. Pulled back from H ®g C, T acts like complex
conjugation and conjugation by Y, while =T acts like transposition and conjugation
by Y; thatis M(¢) =Y. Then a(t,t) = !/2 since

M@OM(@)™ T = e™1. (4.178)

By the Skolem-Noether theorem, a superalgebra structure on M,C is given by
conjugation by an element that squares to one. If this element is 1, the Z/2-grading
is purely even; otherwise, it has two even dimensions and two odd ones. All

structures of the latter type are isomorphic in the absence of a real structure.

In the presence of the real structure M>R ®g C, there are three distinct gradings.
First, there is the purely even grading, given by P = 1. This structure has !/28(z) =
w(t,p) = 0. Second, there is conjugation by Z (or X), which gives MR the
superalgebra structure of C{; R. Again, B(¢) = 0 since P = Z means

PM()PT =717" =1. (4.179)

The matching of the invariants alludes to the fact that the real superalgebra structures
M,R and C{ 1R are graded Morita equivalent. Third, there is conjugation by Y;
that is, P =Y. Then B(¢) = 1 since

PM()PT =Y1YT = ¢™1. (4.180)

The corresponding real Clifford algebra is C¢; gR and represents a distinct Morita
class.

On the real structure H ®g C, there are two distinct gradings. First, there is the
purely even grading P = 1, which has B(¢) = 0. The second grading is given by
conjugation by Z (or X or Y) on M>C and gives H the superalgebra structure of
C¢yoR. Then B(r) = 1 since

PM(t)PT =zvZ" =Y. (4.181)
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Now consider algebras of the form M>;C ® C¢|C. The second component C¢{;C has
a unitary structure * given by complex conjugation of coefficients of the generator I"
that squares to +1. There are two distinct real structures on C¢;C given by complex
conjugation 7" on the second component of C¢; )R®g C and C{y jR®g C. The unitary
structure * of C¢|C acts by complex conjugation on C and inversion of generators
that square to —1; that is, the fixed bases are {1 ® 1,y ® 1} for C{; R ®r C and
{1®1,y®i} for C{y R ®r C. The map =T is trivial on C¢; R and inversion of
the generator on C{pR. Therefore, pulled back from C¢; R ®r C to C{1C, T is
complex conjugation and =T is trivial. From C¢y R ®g C, T is inversion of I'".

As discussed in Ref. (Kapustin, Turzillo, and You, 2018), we need only to consider
a single Z/2-grading on M,C ® C¢;C — the one where M,C is purely even and the
generator of C{;C is odd. The algebra M;C @ C¢,C has four real structures: a
choice of M>R or H for the first component and C¢; oR or C{y 1R for the second. As
was true for even algebras, the first choice determines whether M (t) is 1 or Y; that
is, whether a(z, t) is 0 or !/2. The second choice determines whether T inverts the

odd generator; this is 8(¢).

Due to the Morita equivalence MR ~ R, several of the eight Morita classes
are represented by algebras of lower dimension; for example, C¢;oR instead of
M>R ®r CoR. Up to this substitution, the eight real-structured superalgebras
we found are complexifications of the eight central real super-division algebras —
real superalgebras with center R that are invertible under supertensor product up
to graded Morita equivalence (Wall, 1964; Trimble, 2005). They constitute a set
of representatives of the eight graded Morita classes of real superalgebras. These
algebras appear in the second column of Figure 4.20, next to their invariants in the

third column.

Another set of Morita class representatives is the Clifford algebras C¢, oR. In terms

of these algebras, stacking is simple, as
ClyoR ® ClyoR =~ ClyymoR (4.182)

and
Cl,oR ~ Cl,0R for n = m mod 8. (4.183)

Each central super-division algebra can be matched with the Clifford algebra C¢, R,
n < 8 in its Morita class (Trimble, 2005), as in the first column of Figure 4.20. This
determines a Z/8 stacking law on central super-division algebras and their invariants

that agrees with the more general law (4.174).
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Physically speaking, the Z/8 classification is generated by the time-reversal-invariant
Majorana chain (Fidkowski and Kitaev, 2011; Fidkowski and Kitaev, 2010). While
the symmetry protects pairs of dangling Majorana zero modes from being gapped
out, turning on interactions can gap out these modes in groups of eight. Fidkowski
and Kitaev formulate their stacking law in terms of three invariants that are equivalent

to @, B, and y. Their results match ours.

For contrast, we list the invariants of the corresponding bosonic phases in the
rightmost column of Figure 4.20. There, H denotes the subgroup of unbroken
symmetries and w denotes 2-cocycle characterizing the SPT order. These invariants
can be obtained from the fermionic invariants (Kapustin, Turzillo, and You, 2018).
We observe that invertibility is not preserved by bosonization; in particular, only the
fermionic SREs with y = 0 become bosonic SREs. The four bosonic SRE phases
have a Z/2 x Z/2 stacking law. We also include the two non-central super-division
algebras C and C{; at the bottom of the table. These correspond to symmetry-

breaking (SB) phases.

Clho | Adiv a, B,y | fermionic | bosonic | (H,w)
0 R 0,0,0 | trivial trivial | (G,0)
1 | Cty 0,0,1 | SRE SB (ZL,0)
2 | Cby 0,1,0 | SRE SPT (G,w1)
3 |He®Cl, | 1,1,1 | SRE mixed | (Z5"¢, @)
4 | H 1,0,0 | SRE SPT (G, w))
5 |H®Clo| 1,0,1 | SRE mixed | (ZI,a)
6 | Cty, 1,1,0 | SRE SPT (G, w1 +w)
7 | Clyy 0,1,1 | SRE SB (z;hag, 0)
- |c - SB SB (ZF,0)
- ey - SB SB (1,0)

Figure 4.20: The ten-fold way of Zg X Zg—symmetric fermionic phases.

Class DIII fermions: G = Z/"

In the following, G = Zf T denotes the non-trivial extension of G = Zg by fermion
parity. Let us consider fermionic SRE phases with this symmetry. There are two
distinct classes 8 € H'(Z!,7/2), determined by B(¢) = 0 and 8(¢) = 1. The trivial
B has a single a, the trivial one, that satisfies r@ = '8 U p, up to the proper
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equivalence.?* The nontrivial g also has a single compatible «, up to equivalence:
a(t,t) =1/a

The trivial phase is represented by the algebra C with trivial actions of p and ¢, as

always. For the nontrivial phase, consider A = End(U), where P and T act on U as
P bo d M(t) 01 (4.184)
= an = . .
0 -1 -i 0

Then the invariants can be recovered:

MM @)~'T = 27il4p = a(t,t) = /s (4.185)
PM(t)PT = " M (1) = B(1) = 1. (4.186)

According to the rule (4.174), stacking two copies of this phase results in the trivial
phase:
(Ya, 1) - (Ya, 1) = (Ya+Ya+1-1-1,1+1) =(0,0). (4.187)

We find that fermionic SRE phases with symmetry Zf T have a Z/2 classification, in
agreement with the condensed matter literature (Ryu et al., 2010; Kitaev, Lebedev,
and Feigel’man, 2009). The nontrivial phase appears as a Majorana chain with two

dangling modes protected by the symmetry.

Unitary Z/2 symmetry

As a last set of examples, let us consider systems with a unitary bosonic symmetry
group Go = Z/2, in addition to time-reversal and fermion parity. There are many
ways to organize these symmetries into a full symmetry class (G, p, x). Here, we
consider the five abelian possibilities, which are listed with their fermionic and
bosonic phase classifications in Figure 4.21. The first three have G, = Z, x Z!, the
last two G = Zz. In the two cases where the central extension of G, by Zg splits,
we use a superscript y to denote the subgroup of the fermionic classification that

contains the odd phases.

24The cocycle a(t,t) = /2 is nontrivial in H*>(Gp,U(1)7), but is trivialized by adding a 2-
coboundary on G satisfying the proper conditions. See the Appendix for details.



symmetry class || fermionic | bosonic
ZyxZE X ZY || ZyxZY | (Zp)*
ZzXZfT Zp X Zp Zo X Zp
Zh xz¥ yA Zr X2
Z?XZ% ZZXZZ Zo X Zn
zgr Zy Zy

Figure 4.21: Fermionic phases with unitary and anti-unitary symmetries.
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Chapter 5

FREE VERSUS INTERACTING PHASES OF FERMIONS

5.1 Introduction

It is well-known by now that short-range-entangled (SRE) phases of free fermions
on a lattice can be classified using K-theory (Kitaev, Lebedev, and Feigel’man,
2009), or equivalently using the topology of symmetric spaces (Schnyder et al.,
2009; Ryu et al., 2010). Originally, the classification was done in the framework
of the ten-fold way, where the only allowed symmetries are charge conservation,
time-reversal, particle-hole symmetry, or a combination thereof, as explained in
section 2.1. But the K-theory framework can also be extended to systems with more
general symmetries, both on-site and crystallographic (Teo, Fu, and Kane, 2008;
Mong, Essin, and Moore, 2010; Fu, 2011; Kruthoff et al., 2017; Freed and Moore,
2013; Ando and Fu, 2015). The answer is encoded in an abelian group, with the

group operation corresponding to the stacking of phases.

The first goal of this chapter is to derive the classification of free fermionic SRE
phases with a unitary on-site symmetry G in arbitrary dimensions. We show that
in any dimension, representation-theoretic considerations reduce the problem to
classifying systems of class D, A, and C. Since the solution of the latter problem is
well-known, the key step in the derivation is the reduction from a general symmetry G
to ten-fold symmetry classes. Such a reduction is not new and has been described in
detail in Ref. (Heinzner, Huckleberry, and Zirnbauer, 2005). But since (Heinzner,
Huckleberry, and Zirnbauer, 2005) works with complex fermions, and for our
purposes it is more convenient to use Majorana fermions, we give a new proof of
the reduction. The classification is described succinctly in Table 5.1. We have
included in Table 5.2 the results of applying this general classification formula to

some common symmetry groups.

When we consider systems with symmetries other than the ten-fold way symmetries,
it is no longer useful to adopt the ten-fold way nomenclature. For example, a
fermionic system with a U(1) X G symmetry, where the generator of U(1) is the
fermion number, can equally well be regarded as a symmetry-enriched class A system
and as a symmetry-enriched class D system. On the other hand, the distinction

between unitary and anti-unitary symmetries remains important. If we denote by
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G the total symmetry group (including the fermion parity Zg ), this information is
encoded in a homomorphism
p:G -7 (5.1)

We also need to specify an element P € G which generates the subgroup Zg . This
element satisfies P> = 1 and is central.! Since P is unitary, we must have p(P) = 1
(here we identify Z, with the set {1,—1}). The symmetry of a fermionic system
is encoded in a triplet (G, P, p). For example, class D systems correspond to a
triplet (Z,, —1, po), where pg is the trivial homomorphism (sends the whole G to
the identity), while class A systems correspond to a triplet (U(1),—1, pg). In this
chapter, we study only systems with unitary symmetries, i.e. we always set p = pg.
We allow G to be an arbitrary compact Lie group, with the exception of section 3.3,

where G is assumed to be finite.

The reader might notice that many of our results on the classification of free sys-
tems can be naturally expressed in terms of equivariant K-theory. The connection
between free systems with an arbitrary (not necessarily on-site or unitary) sym-
metry and equivariant K-theory has been studied in detail in (Freed and Moore,
2013). However, in this paper we prefer to use more elementary methods, such as
representation theory of compact groups. This has the advantage of making clear
the physical meaning of K-theory invariants, which is crucial for the purpose of

comparison with interacting systems.

The second goal of this chapter is to study the relationship between the free classifi-
cation and the classification of short-range entangled interacting fermionic phases.
When interactions of arbitrary strength are allowed, the classification of SRE phases
of fermions is much more complicated, but in low dimensions?, the answer is known
for an arbitrary finite on-site symmetry G (Chen, Gu, and Wen, 2011b; Fidkowski
and Kitaev, 2011; Gu and Wen, 2014; Bhardwaj, Gaiotto, and Kapustin, 2017;
Wang, Lin, and Gu, 2017; Kapustin, Turzillo, and You, 2018; Wang and Gu, 2018;
Kapustin and Thorngren, 2017). It is also given by an abelian group, where the

group operation is stacking.

Every free fermionic system can be regarded as an interacting one (where the quartic
and higher order interaction terms are set to zero), and this gives a homomorphism

from the abelian group of free SRE phases to the abelian group of interacting ones

! Centrality is equivalent to the assumption that all symmetries are bosonic, i.e. do not exchange
bosons with fermions.
2 An answer in an arbitrary number of dimensions was conjectured in (Kapustin et al., 2015).



102

(with the same symmetry). In general, this homomorphism is neither injective
nor surjective. The homomorphism may have a non-trivial kernel because some
non-trivial free SRE phases can be destabilized by interactions. It may fail to be
surjective because some interacting SRE phases are intrinsically interacting, i.e.
cannot be realized by free fermions. The most familiar example of the former
phenomenon occurs in 1d systems of class BDI (Fidkowski and Kitaev, 2011):
while free SRE phases in this symmetry class are classified by Z, the interacting
ones are classified by Zg. An example of the latter phenomenon apparently occurs
in dimension 6, where the cobordism classification of systems in class D predicts
Z X Z, while the free phases in the same symmetry class are classified by Z. We
study both phenomena more systematically in low dimensions. In particular, we
will see that already in zero and one dimensions, there exist fermionic SRE phases

protected by a unitary symmetry which cannot be realized by free fermions.

To address such questions, it is very useful to have an efficient way to compute the
interacting invariants of any given band Hamiltonian with any on-site symmetry G.
One of the results of our paper is the computation of these invariants for arbitrary
0d and 1d band Hamiltonians. We also propose a partial answer in the 2d case. In

the 1d case, we identify one of the invariants as a charge-pumping invariant.

The content of the chapter is as follows. In Section 5.2, we derive the classification
of free SRE phases with a unitary symmetry G in an arbitrary number of dimensions.
In particular, we show that for d = 3, all such phases are trivial. In Section 5.3 we
describe the map from free to interacting SRE phases ford = 0, 1, and 2. Appendices
C.1 and C.2 contain some of the mathematical background. In Appendix C.3, we
show that one of the invariants for free 1d SPT systems can be interpreted as a

charge-pumping invariant.

5.2 Free fermionic systems with a unitary symmetry

Reduction to the ten-fold way

In this section, we show that the classification of free fermionic SRE systems with a
unitary symmetry G in dimension d reduces to the classification of systems of class
D, A, and C in the same dimension. The group G is assumed to be a compact Lie
group. This includes finite groups as a special case. For simplicity, we show this for
the case of 0d systems, from which the general case can be deduced. For systems of
dimension d > 0, the Majorana fermions have an additional index (the coordinate

label). Accordingly, all matrices except r(g) (defined below) become infinite.
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However, since the symmetry is on-site, all representation-theoretic manipulations

remain valid, and the conclusions are unchanged.

Consider a general quadratic 0d Hamiltonian

H = %A,Jrfrf, (5.2)
where A;y, I,J = 1,...,2N is a real skew-symmetric matrix and I are Majorana
fermions satisfying

{r’, v’y = 26". (5.3)

This Hamiltonian is known as the Majorana representation of the Bogoliubov-de
Gennes Hamiltonian and may be straightforwardly obtained from its more familiar
complex-fermion representation as, for example, in Ref. (Chiuetal.,2016). Suppose

the Hamiltonian is invariant under a linear action of a group G:
§:T1— R(g)IT. (5.4)
This defines a homomorphism R : G — O(2N).

Let us decompose R into real irreducible representations of G. Suppose the irre-
ducible representation r, enters with multiplicity n,. The sum of all these copies
of r, will be called a block. It is clear that the Hamiltonian can only couple the

fermions in the same block, so the matrix A is block-diagonal.

Let us focus on a particular block corresponding to an irreducible real representation
r. There are three kinds of real irreducibles which are distinguished by the set of
matrices which commute with all 7(8), § € G (Brocker and Dieck, 1985). This set is
known as the commutant of r. It is easy to see that it is closed under multiplication,
and thus the commutant is an algebra. By Schur’s lemma, if r is irreducible, the
commutant must be a real division algebra, so we have irreducibles of type R,
C, and H, corresponding to the algebras of real numbers, complex numbers, and
quaternions.3 The corresponding block A, can be thought of as an operator on the
space r ® R”, where n is the multiplicity of r. G-invariance of the Hamiltonian
implies that this operator commutes with the G-action. The resulting constraint on

A, depends on the type of the representation r.

If r is of R-type, only scalar matrices commute with all 7(g). (Hence r ®g C is a

complex irreducible representation of G. This is an equivalent characterization of

3The reader may be more familiar with Schur’s lemma for complex representations, where there
is only one possible commutant: the unique complex division algebra C corresponding to matrices
proportional the identity.
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R-type irreducibles.) Hence A, must have the form
A =10 A, (5.5

where (A is a real skew-symmetric matrix of size n X n. There are no further
constraints on A, so such a block can be thought of as describing dim r copies of a
system of class D, i.e. a free fermion system whose only symmetry is the fermion

parity. In particular,

. . dimr
l l P
H= Al =2 3 A, (5.6)
7
where we have relabeled fermions I'! +— FL by indices i = 1,...,n and u =

1,...,dimr.

If r is of C-type, then the algebra of matrices commuting with all 7(g) is spanned
by 1 and an element J satisfying J? = —1. Since J7 must be proportional to J, this
means that J© = —J. The most general G-invariant A, must have the form

Ar=1®@A+J®C, (5.7)

where A is skew-symmetric and C is symmetric. We can equivalently parametrize

such a Hamiltonian by a complex Hermitian matrix
h=C+iA. (5.8)

Upon complexification, we can decompose r into eigenspaces of J with eigenvalues
+i. These eigenspaces are complex irreducible representations of G, and it is clear
that they are conjugate to each other. We will denote them ¢ and . (An equivalent
definition of a C-type representation is that r ®g C is a sum of two complex irreducible
representations g and § which are complex-conjugate and inequivalent). The n-dim r
Majorana fermions can be equivalently described by %n - dimr complex fermions

‘PZ, a=1,....n,k=1,...,  dimr satisfying the commutation relations
(P, 90} = 646} (5.9)
In terms of these fermions, the Hamiltonian takes the form

H= Z Yo pbye, (5.10)
k,a,b

Thus a C-type block can be thought of as describing dimg = %dimr copies of a

system of class A.



105

If r is of H-type, then the algebra of matrices commuting with all r(g) is spanned

by 1 and three elements 7, J, K which are skew-symmetric and obey the relations
F=J=K*=-1, 1J=K. (5.11)
Accordingly, A, must have the form
A=10A+I®B+J/C+K®D, (5.12)

where A is skew-symmetric and 8, C, D are symmetric. Equivalently, we can

introduce a Hermitian 2n X 2n matrix

7 = C+iA B+iD ' 5.13)
B-iD —(C+iA)T

This is the most general Hermitian matrix satisfying the particle-hole (PH) symmetry

condition

c'z'c =-z2, (5.14)
where C =io» ® 1. Since C*C = —1, such a PH-symmetric system belong to class
C.

To make this relationship with class C systems explicit, we again decompose r ®g C
into a pair of complex-conjugate representations g and g. These two representations
are equivalent, with the intertwiner being given by the tensor /. We also can think
of I as a non-degenerate skew-symmetric pairing ¢ ® ¢ — C. This implies that
dim ¢ is divisible by 2 (and hence dim r is divisible by four). As in the C-type case,
we can describe the system by n - dim ¢ complex fermions. However, the presence

of an G-invariant tensor / means that the most general G-invariant Hamiltonian is
- 1
H=%(10 Y+ (‘I’T(1®Y)‘I’+h.c.), (5.15)

where £ is a Hermitian matrix, and Y is a complex symmetric matrix. This is a BdG

Hamiltonian, which can be re-written in terms of Dirac-Nambu fermions

v
(Ie1)¥PT

) (5.16)

The Dirac-Nambu spinors are defined so that the upper and lower components
transform in the same way under G. They take values in ¢ ® C> ® C”, where C? is

the Dirac-Nambu space. The particle-hole (PH) symmetry acts by

C:d— (U0 ®1)d" (5.17)
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and satisfies C2 = —1. In terms of Dirac-Nambu spinors, the Hamiltonian takes the
form
H=d(1®2), (5.18)
where
1(h -YT
== . 5.19
oy (5.19)

Such matrices describe the most general class C system. Thus an H-type block can

be thought of as describing dim g = %dim r copies of a system of class C.

Classification of free SRE phases with a unitary symmetry
We always make the physically reasonable assumption that the generator of Zg acts

on all fermions by negation, i.e.
R(P) = -1. (5.20)

The same must be true for all irreducible representations r, which appear with
nonzero multiplicity. We will call such irreducible representations allowed. The
set of all irreducible real representations of a compact group G will be denoted
Irr( G), while the set of all allowed irreducible real representations will be denoted
Ir’ (G). The set of allowed irreducible representations of type K (K = R, C, H)
will be denoted Irr’ (G, K). If G = Zg x G, we can identify Irr’ (G, K) with the set
Irr(G, K).

Let us recall the classification of class D, A, and C systems from the periodic table.

Here we are listing only the “strong” invariants which do not depend on translational

invariance.
O 1 2 3 4 5 6 7
Class D (R-type) | Z, 2, Z Z
Class A (C-type) | Z Z Z Z
Class C (H-type) Z Zy Zp Z

These results together with those of the previous subsection allow us to deduce the
classification of free fermionic SREs with an arbitrary unitary symmetry G. In the
physically interesting dimensions d < 3, the classification is given in Table 5.1.
This does not contradict the fact that there are interesting interacting fermionic 3d
SRE:s.
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d=0| &, rZ2 X ®enr (o)l
d=11|&, v Grle

d=2| &)L

d =3 | trivial

Table 5.1: The classification of free phases protected by on-site unitary symmetry
G in physical dimensions.

In what follows, an invariant attached to a particular irreducible representation r,
will be denoted p,. Depending on the spatial dimension and the type of ry, 04
will take values either in Z, or Z. An invariant of free SRE phases will thus be a
“vector” with components o, . If Gis finite, then the number of allowed irreducible
representations is finite, and the “vector” has a finite length. If G is a compact Lie
group, the number of allowed irreducible representations may be infinite, and then
the space of “vectors” has infinite dimension (although all but a finite number of o,
are zero for a particular SRE phase). These vectors can be interpreted as elements of
the (twisted) equivariant K-theory, whose relevance to the classification of gapped

band Hamiltonians is explained in (Freed and Moore, 2013).

The above results can be simplified a bit when G is a product of G and Zg . In this
case the sums over allowed representations of G can be replaced with the sums over

all representations of G.

The Z and Z, invariants that appear in K-theory are relative invariants; that is, they
detect something non-trivial about the junction between two phases. If one chooses
a phase to regard as trivial (typically the phase containing the product state ground
state in dimension d > 0), the invariant for the junction of a phase [H] with the

trivial phase may be regarded as an absolute invariant of [H].

Examples

Let us consider a few examples of free classifications for common symmetry groups.

« Superconductors with spin parity symmetry. G = ZI; X Zy. The action of
Zg on fermions is fixed, so we only need to choose the action of the second
Z,. Overall, there are two allowed irreducible representations, both of them
of R-type. Thus free phases with this symmetry are classified by Z, X Z, in
0d and 1d, and by Z X Z in 2d.
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zy umt  su@f  Zix7Z,, Zk ZY > =75 X Zope
0| 2 zN 0 /R VAR A Zy X 2"
1| Zp 0 0 z; 0 Z,
2 7 ZN ZN Zn+1 7n Zn+1
310 0 0 0 0 0

Table 5.2: Free classification results for some common symmetry groups.

* Charge-4e superconductors. G = Zy, where the Z subgroup is fermion parity.
Z4 has three irreducible real representations, of dimensions 1, 1, and 2, but
only the 2-dimensional representation is allowed. It is of C-type, hence free
0d and 2d phases with this symmetry are classified by Z, while those in 1d

have a trivial classification.

e G = Z; X Z4. Allowed irreducible representations of G are equivalent to the
1, 1, and 2 dimensional irreducible representations of G = Z4. Therefore the
0d classification is Zp X Z, X Z, the 1d classification is Z, X Z,, and the 2d
classification is Z X Z X Z.

« Class A insulators. G = U(1), with the obvious Zg subgroup. There is one
real representation for every non-negative integer, but only odd integers are
allowed. All of these representations are of C-type, so free 0d phases with
this symmetry are classified by Z", that is, by a product of countably many
copies of Z. Note that although the symmetry is the same as for class A
insulators, the classification is different. This is because it is usually assumed
that complex fermions have charge 1 with respect to U(1), while we allow
arbitrary odd charges. In 1d, there are no free phases with this symmetry,

while in 2d there is again a Z" classification.

« G = SU(2) with Zg being the center. In this case, only representations of
half-integer spin are allowed. All these representations are of H-type, hence
all free Hamiltonians with this symmetry are in the same (trivial) phase in
both 0d and 1d. In 2d, the classification is Z~.
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5.3 Interacting invariants of band Hamiltonians
Zero dimension
The only invariant of a general gapped fermionic Od Hamiltonian with a unique

ground state and symmetry G is the charge* of the ground state
we HY(G,U(1)). (5.21)

As usual, this charge suffers from ambiguities, so it is better to consider the relative
charge of two ground states. Let us compute this relative charge for the free Hamil-
tonian corresponding to a representation R. We decompose it into irreducibles,

compute the charge in each sector separately, and then add up the results.

Let us start with C-type representations. The corresponding Hamiltonian is de-
scribed by a non-degenerate Hermitian matrix 4 of size n, X n,. Suppose we are
given two such matrices 4 and /', with the number of negative eigenvalues m, and
m,.. We can consider a path deforming A’ to h. Every time an eigenvalue of A’
changes from a positive one to a negative one, the ground state is multiplied by an

operator

[Twev. (5.22)

a
where V' is the corresponding eigenvector of /. Since ‘i’l“ transforms under § € G
as
P - g2y, (5.23)

the above operator has charge det g(g). Thus a C-type irreducible representation r,

contributes a relative charge
(detqa(8))°, (5.24)

where o, = m, — m), € Z is the relative topological invariant of a pair of gapped

class A Hamiltonians.

For an R-type representation r, the Hamiltonian is described by a non-degenerate
skew-symmetric real matrix A, ;; of size n, X n,. Any two such matrices A, and A,
are related by

A, =0TA 0, 0e€0(n). (5.25)

To compute the relative charge of the ground states, we recall that the orthogonal

group is generated by hyperplane reflections. Without loss of generality, we can

4Recall that H' (G, U(1)) is the group of one-dimensional unitary complex representations of
G.
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assume that the hyperplane is orthogonal to the 1st coordinate axis. Let us compute
the change in the ground state charge due to a reflection of the 1st coordinate axis.
This corresponds to the following map on fermions:

r!

a

- -Tl, a=1,...,dimr, (5.26)

while the rest of the fermions remain invariant. We need to treat separately the cases

when dim r is even and when it is odd.

If dimr is even, the map on fermions is in SO (n, - dimr), even though it arises
from an element of O(n,) with determinant —1. On the Hilbert space, this map is

represented by a bosonic operator proportional to

dimr

ﬂ rl. (5.27)
a=1

This operator carries charge det r(8) under § € G, hence the relative charge of the

ground state corresponding to a hyperplane reflection is det r(g).

If dim r is odd, the map on fermions is an orthogonal transformation with determinant
—1, and thus must be represented on the Hilbert space by a fermionic operator. This

fermionic operator is proportional to

n, dimr )
/. (5.28)
j=2 a=1

It carries charge (det r(8))"~! = det r(g) under § € G. Hence the relative charge
of the ground state is again det r(g).

We conclude that when O € O(n,) is a hyperplane reflection, the relative charge of
the ground state under ¢ € G is det r(g). Since det r(8) = +1 and every element of
SO(n,) is a product of an even number of hyperplane reflections, this implies that
the relative charge is trivial when O € SO(n,). Since every element of O(n,) is a
product of a hyperplane reflection and an element of SO(n, ), the relative charge of

the ground state for an O which is not in SO (n,) is det r(g).

To summarize, the relative charge contribution from an R-type representation r, is
(det ro(£))%, (5.29)

where o, € Z; is the relative invariant of a pair of gapped class D Hamiltonians.
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Finally, H-type representations do not contribute to the relative charge since all Od

class C systems are deformable into each other.

In summary, the map from free to interacting phases in 0d is

et mpo@= || (etra@) || @etga(@)®. (530

aelrr'(é,R) aelrr’(G,C)

In what follows, we often find it more convenient to identify U (1) withR/Z, i.e. write
the abelian group operation on 1-cocycles additively rather than multiplicatively.
This amounts to taking the logarithm of both sides of (5.30) and dividing by 2i.
Then w becomes as sum of two terms, w = wj + w,. The first term
. 1 .
wi@ = ), 5=0elogdetry(d) (5.31)

| 2mi
acl’(G,R)

can be interpreted as the weighted sum of the 1st Stiefel-Whitney classes of the
representations r, (see Appendix C.2 for an explanation of this terminology). More
precisely, the 1st Stiefel-Whitney class w(ro) is an element of H'(G,Z,), while

w) involves the corresponding class in H' (G, R/Z) which we denote w?(l) (rq):

wi= Y o0a!V(ra) e H'(G,R/Z). (5.32)
aclrr’ (G ,R)

The 2nd term which arises from C-type representations can be interpreted in terms

of the Ist Chern class of the complex representations ¢g,:

w= Y B (c1(0aq0)) € H'(G,R/D). (5.33)
aelrr’(G,C)

Here 8~ is the inverse of the Bockstein isomorphism 3 : H'(G,R/Z) — H*(G,Z).
In the Od case, it seems superfluous to express determinants in terms of Stiefel-
Whitney and Chern classes, but in higher dimensions, characteristic classes of

representations become indispensable. They are briefly reviewed in Appendix C.2.

It is clear that the map from {0, } to w is many-to-one for almost all G. In fact, for Lie
group symmetries, such as U(1) or SU(2), a single interacting phase corresponds

to an infinite number of free phases.

More surprisingly, the map may fail to be surjective. A class w € H'(G,U(1))
defines a one-dimensional complex representation g of G. If this representation is

allowed (i.e. if w(P) = —1), we can take a complex fermion ¥ and its Hermitian
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conjugate ¥ and let them transform in the representations ¢ and g, respectively.

Now the two G-invariant Hamiltonians

H.

-
+ (‘P‘P - E) (5.34)

have relative ground-state charge w. But if the representation ¢ is not allowed,
w(P) = 1, then the situation is more complicated. For certain G, there are no
allowed one-dimensional representations at all, but one could try to use higher-

dimensional allowed representation to get the relative ground-state charge w.

Let us exhibit an example of a group G where certain relative charges w cannot be
obtained from free systems. This shows that the map from free to interacting Od
phases is not surjective in general. Consider extending the group G = Z4 XZ4 by Z,.
If the extension class in H*(G,Z,) maps to a non-trivial element in H>(G, U(1)),

the group G may be presented in terms of generators A, B, P, where P is central and
PP=A*=B*=1 and AB=PBA. (5.35)

The group of one-dimensional representations of G is then the same as the group
of one-dimensional representations of G, i.e. Z4 X Z4, defined by ¢(A), g(B) €
{£1, +i}. All sixteen of these are disallowed, as g(P) = +1. Up to equivalence,
only four irreducible representations remain. They are two-dimensional and of the
form ¢(P) = —1, (allowed), g(A) = i%c, and g(B) = i’ o, for a, b € {0, 1}. Each
is related to a complexification of a real irreducible representation r by rc = ¢ ® ¢
and has det ¢(g) € {+1}. This means that twelve out of sixteen cocycles (those with

w(g) = +i for some g) do not arise from free systems.

One dimension

Let us begin by recalling invariants of interacting fermionic SRE phases in 1d and
their interpretation in terms of boundary zero modes. Any fermionic 1d SRE phase
has an invariant y € Z, (Fidkowski and Kitaev, 2011). (From now on, we will write
Z, additively, i.e. identify it with the set {0, 1}, unless stated otherwise.) It tells
us whether the number of fermionic zero modes on the boundary is even or odd.
Algebraically, if y = 0, the algebra of boundary zero modes A is a matrix algebra,
while for y = 1, it is a sum of two matrix algebras. In both cases, A, is simple
provided we regard it as a Zg -graded algebra. In the case y = 0, the graded center of
Ay is isomorphic to C, while for y = 1, it is isomorphic to C£(1). The odd generator
of C£(1) is denoted Z.
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If the system also has a unitary symmetry G, then there are further invariants
whose form depends on the value of y (Fidkowski and Kitaev, 2011). If y = 0,
the additional invariant is @ € H>(G,U(1)). If y = 1, the additional invariants
are a homomorphism u : G — Z, such that u(P) = 1 (the generator of Z;) and
@ € H*(G,U(1)). A homomorphism u allows one to define an isomorphism
G =~ G x Z£ as follows:

g (g u(@)). (5.36)

So if G is not isomorphic to the product G x Z£, the case y = 1 is impossible.

Note that there is a homomorphism H?(G,U(1)) — H'(G,Z,) whose kernel is
non-canonically isomorphic to H>(G,U(1)). To see this, let us define the group

law on G using a Z,-valued 2-cocycle p on G:

(g,€)o(g'.€)=1(g8".e+€ +p(g.8"), 8.8 €G, €€ €{0,1}. (537

Then & can be parameterized by a pair of cochains («, 8) € C?(G,U(1))xC' (G, Z»)
satisfying 68 = 0 and da = %p U B, modulo a — a + 64, 1 € C'(G,U(1)). The
map from H2(G, U(1)) to H'(G,Z5) sends the pair (a, ) to B.

The boundary interpretation of the additional invariants also depends on whether
v =0ory = 1. Fory = 0, the algebra A, is a matrix algebra, and therefore G acts

on it by conjugation:
g:am V(Q)avV(e)™, aeA. (5.38)

One can even choose the invertible elements V(&) € A;, to be unitary (A, is actually
a C*-algebra, so the notion of a unitary element makes sense). The elements V(&)
are well-defined up to a U(1) factor and satisfy

V(QIV(E) =a(g.8)V(g8), (5.39)
where & is a 2-cocycle on G.

On the other hand, if y = 1, then the same considerations apply to the even part of
the graded algebra A, and one gets an invariant @ € H>(G, U(1)) in the same way.
In addition, one can ask how the group G acts on the odd central element Z € Ay.
One must have

8: 2 (-7, (5.40)

where 11 : G — Z; is a homomorphism satisfying u(P) = 1.
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As explained above, free SRE 1d systems with symmetry G are classified by a
sequence of invariants o, € Z,, one for each real irreducible representation of G of
R-type. The physical meaning of o, is simple. The group G acts on the boundary

zero modes (assumed to form a Clifford algebra) via a real representation’
R = ®vyr,. (5.41)

The integer v, reduced modulo 2 is the free topological invariant o, discussed in
Section 5.2.

Let us now describe the map from free to interacting invariants. For a free system,
the algebra of boundary zero modes is A, = C¢(M), so one has y = M mod?2.
Equivalently, using the decomposition (5.41), we get

y = Z 0o dimr, mod 2. (5.42)
(07

Now let us determine the remaining invariants. Consider the case y = 0 first. Then
O (M) is a non-trivial extension of SO (M) by Z,. We can interpret A, = C{(M) as
the algebra of operators on a Fock space of dimension 2™/2, and the group G acts
projectively on this space. The cohomology class of the corresponding cocycle is

&. Clearly, it is completely determined by the representation R : G — O(M).

From the group-theoretic viewpoint, a projective action of G on the Fock space is the
same as a homomorphism G — Pin.(M), where Pin.(M) is a certain non-trivial
extension of O(M) by U(1). Pin.(M) and related groups are reviewed in Appendix
C.1. Thus & is the obstruction to lifting R to a homomorphism G — Pin.(M). As
discussed in Appendix C.2, this obstruction is the image of the 2nd Stiefel-Whitney
class of R under the homomorphism H?(G,Z,) — H*(G,U(1)). We denote it
wg ) (R). The Whitney formula for Stiefel-Whitney classes says

W2(R) = w2 (&Yara) = D 0awa(ra) + ), 0a0pwi(ra) Uwi(rg).  (5.43)

a<f

Therefore

~_ U Ul 1

@ =wy V(R) = ) 0awy V(ra) + ) 3000w (ra) Uwi(rp).  (5.44)
a a<pf

3One should not confuse the “boundary” representation R with the on-site representation R. The

former can be odd-dimensional, while the latter is always even-dimensional. Also, R takes values in
SO(2N), while R in general takes values in the orthogonal group.
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Note that Pin.(M) is a Z,-graded group, i.e. it is equipped with a homomorphism
to Z,. The value of this homomorphism tells us if V(g) is an even or odd element
in C{(M). It is easy to see that this homomorphism is precisely 8(g). On the other
hand, as explained in Appendix C.2, the said homomorphism is simply det R(g).
Thus

B=wi(R) =D 0awi(ra). (5.45)

In Appendix C.3, we give an alternate characterization of S as a charge-pumping

invariant.

Now consider the case y = 1, where A, ~ C{(M) with odd M. In agreement with
(Fidkowski and Kitaev, 2011), the map § +— det R(g) defines a splitting of G, i.e.

an isomorphism G X Zf ~ G. This means

p=wi(R) = ) 0awi(ra). (5.46)

We can define a new representation R : G — SO (M) by
R(g) = R(g) detR(g). (5.47)
Here § € G is any lift of g € G. Thus we get a homomorphism
G XxZ — O(M) =SO(M)xZ5, (g.€)  (R(g),e). (5.48)

By definition, « is the obstruction for lifting R to a homomorphism G — Spin.(M).
Thus
a=wiV(R). (5.49)

Using a formula for Stiefel-Whitney classes of a tensor product (see Appendix C.2),

one can show that w,(R) = w2 (R), and thus one can also write

a=wi(R). (5.50)

We note that the map from free to interacting 1d SRE phases is compatible with the
stacking law derived in (Kapustin, Turzillo, and You, 2018; Gaiotto and Kapustin,
2016). For example, if we consider for simplicity the case y = 0, then the stacking
law takes the form

God =a+& +3BUp. (5.51)

On the other hand, stacking two SRE systems characterized by representations R

and R’ gives an SRE system corresponding to the representation R & R’. If we set
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a = wg(l)(ﬂ) = %Wz(R) and 8 = w;(R), then the stacking law (5.51) follows from
the Whitney formulas

wi(R®R) =wi(R) +wi(R), (5.52)
w2 (R®R) = wa(R) + wa2(R') + wi(R) Uwi(R). (5.53)

It is clear that the map from free to interacting phases is not injective. Let us discuss
surjectivity. We have seen that for free systems, the invariants & and « are always
of order 2. Hence to get an example of a fermionic SRE phase which cannot be
realized by free fermions, it is sufficient to pick a G and a non-trivial 2-cocycle
which is not of order 2. For example, if we take G = Zg X Z3 X Z3, and take a to
be any non-trivial element of H>(Z3 X Z3, U(1)) = Zs, then such a phase cannot be

realized by free fermions.

One might hope that perhaps every & or @ of order 2 can be realized by free
fermions, but this is not the case either. The reason for this is that for any orthogonal
representation R of G, the 2-cocycle w,(R) satisfies some relations (Strickland,
n.d.). This is explained in Appendix C.2. These relations need not hold for a general
2-cocycle on G. Unfortunately, the simplest example of G for which this happens is

rather non-trivial (Gunarwardena, Kahn, and Thomas, 1989).

While not every fermionic 1d SRE phase can be realized by free fermions, every
fermionic 1d SRE phase with G ~ G x ZZF can be realized by stacking bosonic 1d
SRE phases with free fermions. First, we can change y of an SRE phase at will by
stacking with the Kitaev chain. If we make y = 0 by such stacking, then we can
change g at will by stacking with two copies of the Kitaev chain on which the group

G acts by
(y1,72) = (=DP®y1,y,). (5.54)

Finally, since « is an arbitrary element of H(G, U(1)) in this case, one can change

it at will by stacking with bosonic SRE phases with symmetry G.

Two dimensions
To every fermionic 2d SRE phase, one can attach an integer invariant «. It measures

the chiral central charge for the boundary CFT.

If the SRE has a unitary symmetry G, there are further invariants. For simplicity,
let us assume that we are given an isomorphism G ~ G x Zg . We will also assume

that G is finite, rather than merely compact. Then the invariants are a 1-cocycle
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y € H'(G,Z,), a 2-cocycle B € H*(G,Z5), and a 3-cochain & € C3(G,U(1))
satisfying
1
da = Eﬁ U B. (5.55)

There are certain non-trivial identifications on these data, see (Gu and Wen, 2014;
Gaiotto and Kapustin, 2016). The abelian group structure corresponding to stacking
the systems is also quite non-trivial. We just note for future use that if we ignore «,

the group law is

B.y)+(B.Y)=B+p +yUy.,y+v). (5.56)

The physical meaning of these invariants is somewhat complicated, with the ex-
ception of y(g): it measures the number of Majorana zero modes on a g-vortex,

reduced modulo 2.

On the other hand, a free 2d SRE is characterized by a sequence of invariants o, € Z,

one for each real irreducible representation of G.

It is easy to determine the chiral central charge « for such a free SRE. A basic system
of class D has k = 1/2. For example, a p + ip superconductor has a single chiral
Majorana fermion on the boundary which has chiral central charge 1/2.¢ A basic
system of class A has k = 1. For example, the basic Chern insulator has a single
chiral complex fermion on the boundary which has chiral central charge 1. Two
basic class C systems” have chiral central charge 2. For example, two copies of the
basic Chern insulator can be regarded as the basic class C system tensored with a
two-dimensional representation of SU(2), and thus has k = 2. Consequently, the

chiral central charge is given by

k=5 > oudimr,. (5.57)
rq€lrr(G)

The other interacting invariants are harder to deduce. We will propose natural

candidates for y and 8 based on experience with lower-dimensional cases.

Given an orthogonal representation r : G — O(n), we can define a 1-cocycle

detr(g) € H'(G,Z»). (5.58)

®In the literature on fermionic SRE phases, it is common to re-write systems of class D, which
only have a Zg symmetry, as systems with both a U(1) symmetry and a particle-hole symmetry
(Bernevig, 2013; Chiu et al., 2016). This entails doubling the number of degrees of freedom, and
therefore doubling «.

’Since dim g is even for H-type representations, only an even number of class C systems can
occur.
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It is sometimes called the st Stiefel-Whitney class of r, for reasons explained in
Appendix C.2. We will denote it w;(r). For irreducible representations of type C
and Hi, it is trivial.8

Similarly, we can define the 2nd Stiefel-Whitney class of G as an obstruction to
lifting r : G — O(n) to 7y : G — Pin.(n). One can lift each r(g) to an element
7+(g) € Pin,, but the composition law will only hold up to a 2-cocycle A(g, g") with
values in +1. Thus we get a well-defined element w,(r) € H>(G,Z,). One might
also consider an obstruction to lifting r to a homomorphism 7_ : G — Pin_(n),
but it is expressed in terms of w;(r) and w;(r) (namely, the Pin_ obstruction is

wo + w%).

A natural guess for the contribution of an irreducible r, to y is 0, w1(ry). Assuming

this, the formula for the invariant y is
y= D> eawi(ra) =wi(R), (5.59)
ro€lrr(G,R)

where we defined a “virtual representation”®
R =®y0a"a- (5.60)

Note that only R-type representations contribute to vy, since only those representa-

tions can have nonzero wi(r). On the other hand, R includes all representations.

There are two natural guesses for the contribution of a single irreducible r to S:
wa(7) or wa(r) = wa(r) + wi(r)%. To derive j for a general virtual representation

R, we note that the Whitney formula for Stiefel-Whitney classes says
w2 (R+R) = wr(R) + wa(R) + wi(R) Uw(R). (5.61)

The same formula applies to W, (r). This formula looks just like the stacking law
for B8 and v, if we identify y with w; and 8 with w, (or Ww;). Hence for a general R,
we have either B(R) = w2(R) or B(R) = wa(R) + w1 (R)?.

A non-trivial check on both of these candidates is that they are compatible with the
group supercohomology equation. This equation implies that 3 U 8 € H*(G,Z,)
maps to a trivial class in H*(G,U(1)). This is automatically satisfied for both
B =ws(R) and 8 = wa(R) + w1 (R)?, as shown in Appendix C.2.

8For C-type representations, we have detr(g) = detg(g)det{g}(g) = 1, while for H-type
representations, det ¢(g) = 1 since ¢(g) takes values in the unitary symplectic group.

9The word “virtual” reflects the fact that the numbers o, can be both positive and negative.
Thus R is best thought of as an element of the K-theory of the representation ring of G.
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Is there any way to decide between the two candidates for ? Not without under-
standing better the physical meaning of 8. Indeed, formally, a change of variables
B +— B+ 7y Uy is an automorphism of the group of fermionic SRE phases in 2d.
This automorphism maps one candidate for S to the other one. Thus formally they
are equally good. One can pick one over another only if one assigns 8 a particular
physical meaning. The same is even more true about @ € C3(G,U(1)), since it

depends on various choices in a complicated way.

Let us make a few remarks about surjectivity of the map from free to interacting SRE
phases in the 2d case. It is clear that every value of the parameter y € H'(G,Z,)
can be realized by free fermionic systems. One can just take two copies of the basic
system of class A with opposite values of the chiral central charge « (for example, a
p + ip superconductor stacked with a p — ip superconductor) and let G act only on
the first copy via a 1-dimensional real representation of G given by the 1-cocycle .

This construction was used in Ref. (Gu and Levin, 2014) for the case G = 7Z,.

One can also ask if every g that solves the supercohomology equation can be realized
by free fermions. The answer appears to be no (Strickland, n.d.), for a sufficiently
complicated G. The reason is again some highly non-trivial relations satisfied by
Stiefel-Whitney classes. Thus not all supercohomology phases in 2d can be realized
by free fermions. At the moment, we do not know how to find a concrete example
of a finite group G for which this happens. It would be interesting to study this
question further and in particular determine both @ and g for a general 2d band

Hamiltonian with symmetry G.
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Chapter 6

BRAIDING STATISTICS OF VORTICES IN TOPOLOGICAL
SUPERCONDUCTORS

6.1 Introduction

As discussed in Section 2.1, a p-wave superconductor in 2 + 1 dimensions supports
Majorona zero modes on vortices. These Majorana modes o, together with the
quasiparticle ¢, satisfy the fusion and braiding rules of the Ising TQFT (Section
3.3). We can stack layers of the p-wave superconductor, which has Chern number
v = 1, and v tells us the number of layers that have been stacked, yielding us
an integer classification of topological superconductors. On the other hand, by
considering the underlying TQFT, or the braiding statistics of vortices, we obtain a
Zy6-classification (Kitaev, 2006) (Bernevig and Neupert, 2015). In (Kitaev, 2006),
the underlying TQFTs for the 16 phases was computed, and the bulk-boundary
correspondence was invoked to match the Chern number (number of layers of the
basic p + ip superconductor) to the TQFTs. In this chapter, we construct effective
Hamiltonians describing the statistical interaction of vortices for each of the 16
phases, and show that we obtain the correct vortex braiding statistics for all 16
phases by starting with the basic v = 1 system (or any chosen phase) and stacking

layers of the system.

6.2 Review of the 16-fold way and anyon condensation

The interacting classification: the 16-fold way

In the absence of interactions, Class D superconductors in 2 + 1 dimensions have
the Chern number invariant v, which tells us the net number of layers of the p +ip
superconductor (Section 2.1). In the presence of interactions, this integer classifi-
cation breaks down to a Z4-classification, which is based on the underlying TQFT.
In particular, they can be distinguished by the the braiding statistics of vortices
(Kitaev, 2006; Bernevig and Neupert, 2015). We shall denote these phases by #,,
v = 1,...,16. Here we summarize the results which will be relevant. R will
denote the braiding coefficient of a and b in fusion channel ¢, and M = (R%")?
will denote the phase due to the double exchange of a and b in fusion channel c:
when a and b are of different types, only the double exchange yields a topologically

invariant phase factor.
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When v € Z4 is odd, we have the Ising topological order, consisting of three anyons
1, o, ¥ with the fusion rules Eq. (3.18)

oxo=1+y
oXy=0

Uxy=1. 6.1)

The braiding coeflicients are given by Eq. (3.19):

R?O’ — Heia%
R}7 = 6e™'% (6.2)
where 0 := 0(v) = e™/8 and @ = (-1)+D/2,

When v is even, we have an abelian theory, but the exact fusion rules depend on
whether v = 0 or 2 mod 4. If v = 0 mod 4, we have the toric code fusion rules, or

the Z, X Z, fusion rules: four anyons 1, e, m, ¥ with fusion rules

e><e:m><m:1//xl//:1

exXm=y
exXy=m
mxy =e. (6.3)

The braiding coeflicients for vortices (e and m) are

ee _ pmm _ _7miv/8
R"=R" =e

Ml/e/m — _em'v/4. (64)

When v = 2 mod 4, we have the Z,4 fusion rules: four anyons 1, a, {, @ with

axXxa=axa=y

Q
X
Qi
Il
[E—

IS
X
<
Il
IS}

axy = (6.5)



122

and the braiding coeflicients are

aa _ paa _ ,miv/8
Rd/ —Rl// =e

M = e, (6.6)

Fermionic stacking and anyon condensation

The topological superconductor may be described by the Ising topological order, but
we need to be careful about stacking. Naively stacking two Ising TQFTs, £ X #;
leads to a theory with 9 anyons. We need to stack them as fermionic phases. Roughly
speaking, for the Ising category without extra structure, the fermion is treated as
just another anyon, a non-local (topological) excitation, while as a fermionic theory,
we should consider the fermion to a local excitation (possible to create or annihilate
by a local operator) (Lan, Kong, and Wen, 2016b). From this perspective, the Ising
TQFT or the toric code theory, which contain a fermion, are modular extensions
of the trivial fermionic theory consisting only of 1 and ¢ (Lan, Kong, and Wen,
2016b). The correct stacking law is defined in (Lan, Kong, and Wen, 2016a), and
in this case reduces to using the naive stacking law and condensing the condensable

bosons (Neupert et al., 2016). We will denote this fermionic stacking by X .

An anyon which has trivial braiding with itself can be condensed and is called
a condensable boson (for a non-abelian anyon, we require that it has trivial self-
braiding in at least one of the fusion channels, though we will only have to deal
with condensing abelian anyons) (Burnell, 2018). After condensation, several things
happen: (1) anyons which have nontrivial braiding with the condensed boson become
confined; (2) anyons related by fusion with the condensed boson are identified; (3)

other anyons can split into different anyons.

Let us discuss some cases which will be relevant. If we (bosonically) stack two

theories with Ising fusion rules, we obtain a theory with nine anyons: (1, 1), (1, 0),

(Ly), (0.1), (0,0), (0.¢), (¥, 1), (,0), (¥, ¢¥). We can condense (,),

which is a boson. Then,

(1,0') ~ (1’0-) X (lﬁ,lﬂ) = (lﬁ, O-)
(0-9 1) ~ (0-9 1) X (lﬁ, l;[’) = (O-’ lﬂ)
(lﬂ, 1) ~ (W’ 1) X (l/” lﬂ) = (1’ l//) (67)
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and (1, 0) and (o, 1) are confined. We are left only with (1, 1), (o, o), and (1, ¢).

(1, 1) clearly takes the role of the vacuum, which we denote by 1, and (L,y)isa

fermion, which we denote by .

Note that

(o, o) x (o)=L, D)+ (L) + W, D+ W, ¥) ~T+1+4 +4. (6.8)

As (o, o) fuses with itself to two copies of the vacuum in the condensed phase,

(o, o) cannot be a single type of anyon — it actually splits into two anyons.

One possibility is that it splits as (o7, o) +— e + m with

exe=mxm=1

exXm=y. (6.9)

It is easily verified that (¢ + m) X (e + m) = 1 + 1 + ¢ + 4. Then, we end up with
four anyons 1, W, e, m with Z, x Z, fusion rules.

Another possibility is (o, o) +— a + a with the fusion rules

axa=axa=iy. (6.10)

This also satisfies the condition that (a + @) X (a +a) = 1 + 1 + ¢ + ¢. Then we

obtain a theory with four anyons l,a,a , xﬁ with Z4 fusion rules.

Which kind of theory we end up with depends on the exact braiding coefficients of
the Ising theory we are stacking, and can be determined algebraically: see (Neupert
et al., 2016). We shall give another way of determining which kind of fusion rules

we obtain, in Section 6.4.

6.3 Effective Hamiltonian for vortices of an odd v phase
Braiding coefficients and superselection sectors
Consider two vortices, with the corresponding Majorana zero modes y; and 73,

respectively. These combine into a single set of creation and annihilation operators,

1
a= 5(71 +1y2)
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oL 1
a' = 5(71 —iy2)

and act on a Hilbert space C? spanned by |0) and |1), which are respectively
unoccupied and occupied with respect to a, a’.

As discussed in Sec. 2.1, braiding two vortices results in

Y1 y2
Y2 = =Y1. (6.11)

This can also be derived by the following reasoning: the states |0) and |1) formed
from two Majorana modes differ by a fermion. If we do a 2x rotation of the whole
configuration, it is equivalent to two braids between v; and v,, and hence should

give us a R%. On the other hand, a fermion acquires a sign under 27 rotation, so

1 0
|0) > |0) and |1) — —[1),ie. R? = 0 _1 = iy2Y1, i.e. it just acts by fermionic
parity and hence reverses the sign of each y. This is achieved by a single R taking

Y1 — Y1, Y2 — —Y2 Or vice versa, since y have to be real.

The operators y; and y, generate CI(2) =~ Mat(2, C) which acts on the C? spanned
by the states |0) and |1). From the fermionic point of view, which considers fermions
to be fundamental particles, the two basis states belong to the same superselection
sector. From a bosonic point of view, however, they belong to different superse-
lection sectors: the bosonic operators 1 and y;vy, are both diagonal in this basis,
so there is no way to move from one state to another if we employ only bosonic

operators.

Recall that the Ising topological order describes a bosonized picture of the topolog-
ical superconductor: the anyon ¢ corresponds to a nontrivial superselection sector
since there is no local bosonic operator which can create it out of the vacuum 1. Let
us denote the states in the two superselection sectors 1 and ¢, which are the two
possibilities we can land on when fusing two o particles (which carry Majorana
modes), as |00 1) and |oo; ). These should correspond to the states |0) and |1),
which are even and odd, respectively, under the fermonic parity iy,7y;. Since we do

not a priori know which one is odd and which is even, we write
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iyayiloo; 1) = —aloo; 1)

iyayiloosy) = +aloo; y) (6.12)

for some a = +1.

The operator on C? which accomplishes Eq. 6.11 by conjugation is

R = Qe 37172 = i ivan) (6.13)

where 6 is a phase factor. By noting how iy;y; acts on the states |oo; 1) and
oo ¢y, we see that RT7 = fe'®% and R{;‘T = ge¢~%. By invoking the bulk-
boundary correspondence, Kitaev determines this e to be (=1)*+1/2 and 6 to be
e™/8 so we get Eq. (6.2). 6 can be interpreted as the topological spin of the o
anyon (Kitaev, 2006).

If v =1mod4, «a = —1. Since iyyy; is fermionic parity, this means that
(=)f|oo; 1) = +|oo; 1), ie. the fusion channel 1 corresponds to the “unoccu-
pied” state |0); similarly, ¥ corresponds to the “occupied” state |1). On the other
hand, if v = 3 mod 4, @ = +1, and we have iy,yi|oco;1) = —|oo; 1), etc. The

fusion channel 1 corresponds to |1) and i to |0).

Note that R as an operator acting on C? is fixed to be of the form 8¢~ y,y,; This
difference between P4, and Pu,43 in how one interprets the fusion channels in

terms of fermionic states will be important for stacking.

The effective Hamiltonian

Consider an odd v system. Two o vortices interacting with each other can be

effectively described by

1 - - - - . N N
H = % ((Pl - A1)2 +(p2 — Az)z) +iyay V(|1 — 7r2)). (6.14)

acting on the Hilbert space L>(R?) ® L*(R?) ® C2.

> F(v

A= q(—ﬁ)z (=(y1 = y2),x1 —x2) (6.15)
71 =72l

is the gauge field felt by the vortex 1 due to vortex 2. F(v) is a v-dependent factor

valued in End(C?); it takes the form



126

I %
F = —— + —. 6.16
(v) RCARE (6.16)

It is clear that F(—v) = —F(v). The expression for A, is similar.

V is some Hermitian potential (i is itself Hermitian) which splits the energies of

the two states in C2. (Cheng et al., 2009) calculate the splitting energy to be V(R) ~

) Ag COSPF R+%
4 VPR

coherence length and A is the mean-field value of the superconducting order

e R/¢ for large separation R > ¢ where ¢ is the superconducting

parameter A. Unless otherwise noted, we will assume that the vortices are far
enough apart that we can ignore the potential energy, and focus on the universal

properties of their braiding.

In terms of complex coordinates z = x +iy, x = % y= Zz;lz and

dzy 1 dzy

> 1
A-dii=F(v) = .
! ! ) 2izi—z20 2i71—22

If vortex 1 encircles vortex 2, which corresponds to a double-braiding, the wave-
function changes by e’ $ Ar-dry _ exp{2niF(v)} = exp{%yzyl}e% which produces
the correct double-braiding coeflicients, i.e. the square of Eq. (6.13).

When v is even, we have multiple types of vortices and hence the effective Hamilto-
nian describing the interaction of vortices depends on the specific types of vortices
we consider. The Hamiltonians for even v will be written down when we discuss
stacking. Moreover, in Section 6.5 we will show that given the effective Hamiltonian

for any one odd v phase, we can obtain those for the others by stacking.

6.4 Stacking: even from odd-odd
Stacking two v = 1 systems

Take v = 1 system with two vortices, of Eq. 6.14:

1/ . - . ‘ o
H=>— ((p1 — AN +(pa - A2)2) +iyy V(|71 = 7). (6.17)

We stack it with the same system; we write the second layer as

01 . 4 L o
H = % ((ﬁl —A1)2 + (]52 —Az)z) +i’)72’}_/1V(|}71 — le) (618)
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where the bars simply denote that we have different coordinate and momentum
variables, as well as different Majorana operators, from the first layer, even though
the two are formally the same. The gauge fields X,- on the second layer are written

in terms of the barred Majorana operators y; and the barred coordinates 7;.

Stacking these two systems, we obtain

H=Heol+1®H (6.19)

acting on (L*(R?))®* ® C*. H’ depends on four coordinates z1, 22, Z1, Z2, which are
the positions of the first and second vortex on the two layers. Recall that we need
to condense the (i,y) anyon in the stacked phase in order to get to the resultant
fermionic phase. This condensation does three things: confinement, identification,

and splitting.

Confinement occurs for the (o-,1) ~ (o,¢) and (1,0) ~ (¥,0) anyons. This
can be achieved by introducing a potential such as V ~ el%~%! which forces the
position of the vortices on each layer to be the same — there is no way to move
z; independently of Z;, so (o7, 1) and (1,0) are confined. After confinement, we

obtain:

1 L - - ‘ o L
H = o ((Pl - Al)2 +(p2 - Az)z) +i(y2y1 + 7271V (|1 = r2)), (6.20)

where ;| and vy, are the Majorana modes of the second v = 1 layer, and we see that

> R 1 . o 1\ 1 dzy dz;
Ay -dry ===y +iv2y) + < | 53 -—0.
4 4)2i\z1-22 Z1—-72
This leads to the braiding matrix R = (¢™/3)? exp{—%ylyz} exp{—%ifﬁlz}. Since
a = —1 for both layers, R|00) = R{“R77(00) = (e™/8)2e=271/4|00) = e 7/4, etc.
The full braiding matrix in the {|00), |01), |[10), |11)} basis is:

e7m4 0 0
0 et 0 0
R = A ) 6.21
0 0 e 0 ©.21)

0 0 0 ei37r/4
After confinement, we are left with the (o, ) anyon, and since it fuses with (¥, )

to itself, there is no further identification of anyons needed. The remaining question

is the splitting of (o, o) into a + a.
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Just as two o anyons on a single layer behave as either 1 or ¢ when zoomed out
and considered together, the two o~ anyons on two different layers behave as either
a or a when considered together. Since they differ by a fermion (@ = a X ¥ and
a = a xy), we look for eigenstates of the fermionic parity operator localized to a
single vortex — that is, we change the basis from the eigenbasis of iy>y; and iy2y
to the eigenbasis of iy1y| and iy,y,>. With respect to localized fermionic parity, we
will denote the even state by |a) and the odd state by |a@). The expression for the

new basis states in terms of the old basis is given by:

) - 01) — i[10)
V2
gy < 00 =il
V2
aay < 00+l
\2
aay = 12210 (6.22)

V2

Under braiding, |aa) and |aa) transform with a phase of e™/* while |aa)
e ™/%|aa). These are the correct braiding coeflicients for >, Eq. (6.6). Note that
laa) should belong to the superselection sector s since a X a = . Since |aa) is
a linear combination of |01) and |10), each of which belongs to the superselection
sector ¥, this is consistent with the fusion rules Eq. (6.5). The same holds for the

other three states.

Let us discuss what the effective Hamiltonian looks like. The stacked Hamiltonian

acts on C*. If we take the |aa) sector,

v+ 7290 + 3 @) = 3 101) < 101) (110 + 10)+7laa) = Flaa)

(6.23)
So in this sector, the gauge field takes the form 5’1 -dry = }1% (Zflf‘zz - Z?flzz)
The Hamiltonian is
H = ﬁ ((171 ~ A+ (P2 - gz)z) (6.24)

with A taking the above form. The potential term vanishes as it should (no ground
state degeneracy in this sector) since iy>y; +iy,2¥y; vanishes on |aa). We could still
have a simple V(|F| — 72|) that depends only on the distance.
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The |aa) sector works similarly. On the other hand, since |aa) and |aa) transform
into each other after braiding, we need to consider these states together. The sector
spanned by |a@) and |aa) is C> = Span{|00), |11)}, and

-1

(6.25)

1 1 1
F(v) = (—Z(ivfz?’l +iy2y1) + Z) =7

o O O

S O = O
S = O O
w O O O

Restricting this to the subspace C2, we see that the gauge field takes the form

g, d_, 1[(-1 0} 1 ( le dfi< )
~dry = — = - .
PP T o 3)2i\z -z -3

in the |00) and |11) basis.

Now we convert this to the |aa) and |da) basis. Since

1 1 1
(—Z(in)’l +iy2y1) + 4_1) laa) = 1 (=laa) +2|aa))
and
Liyay: +i7270) + ~| laa) = + (2lag) - |aay)
4 y2Y1 +1y2vi ) aa =7 aa aay),

in the |aa), |aa) basis the gauge field takes the form

> (-1 2}1 d dz}
Ay diy == R P 1*).
412 -1)2i\zn-22 z]—-%

The Hamiltonian describing the interaction between an a vortex and a a vortex will

take the form

1

H
2m

- - 0 1
((ﬁl —A1)2+(ﬁ2—A2)2)+\/§(1 0) V(|r1 —72l) (6.26)

in the |aa), |aa) basis, where A takes the above form. The form of the potential

comes from noting how i(y,y; + ¥2¥1) acts on |aa) and |aa).
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Stacking v = 1 with v = —1

We start with H for two vortices in the phase P:

1L - L | o
"= om ((pl — A+ (P2 - Az)z) +iy2y1V([F1 = 7al) (6.27)

and add a second layer in the phase _;:

7 ! 5 i = H i o R
H = % ((pl - Al)2 +(p2 - Az)z) — iy V(|7 — 7). (6.28)
v1 and 9, are Majorana modes of the second layer.

(Note that the gauge field is odd under time-reversal, and F(—1) = —F (1), so $—;
is the time-reversal of $;.)

After stacking, the total Hamiltonian is again H” = H ® 1 + 1 ® H, acting on
(L2 (IRZ))@4 ® C*. The condensation process proceeds in the same way as in the

P M Py case, and after confinement we obtain:

4 1 g e - - . o N .
H = ﬁ ((pq - A’1)2 + (p/2 - A/2)2) +i(y2y1 — 2y)V(r1 — ra). (6.29)

- N S5 dz*
where A’ - dr| = }1(7‘72;7 172) ( da _ f‘) Note that the overall phase factors
l 21722 Zl ZZ

6(v) cancel each other out, since 6(1)0(-1) = 1.

The braiding matrix will then be

T T
R = exp|- Ty} expf-Z7172}. (6:30)

We follow the same steps as in the $; X P case. Now, @ = —1 for the first layer
and @ = +1 for the second layer, so the state |00) = |0) ® |0) corresponds to the
state in the fusion channel 1 on the first layer and ¢ on the second layer. Thus we
have R|00) = (R™="){ (R*="")77|00) = 0(1)e~™/*9(=1)e ™/4|00) = e~™/2|00).
Repeating this for the other states, we compute the braiding matrix in this basis to
be

i 000
0100

R= (6.31)
0 010
0 00 i
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Now we consider the system in a different basis: instead of thinking of C* as
c?  ®C? we think of it as C2 ® C2

Jayer] layer2? vortex] vortex2? where each vortex carries two

Majorana modes v;, ¥;. Each vortex carries a space C> whose states are eigenstates
. . . . .~ .~ 2

of the vortex-localized fermionic parity operator iy1y; oriy,y2. Oneach C; - we

have an even state |e) and an odd state |m); the total fermionic Hilbert space C* is

spanned by the basis |ee) = |e); ® |e),, |em), |me), and |mm). We can write these

states in terms of the old basis states as:

ee) = |01) —i|10)
V2

lem) = |00) —i|11)
V2

me) = |00) +|11)
V2

|01) +£|10)

|mm) = ———.

V2

Since we know how the states |00), |01), etc. transform under braiding, we can
compute the behavior of the new basis states under braiding. We see that R{* =
R =1; and also that R|em) = —i|me) and R|me) = —ilem), from which we see
that R{"™RY"® = M{™ = —1. These are indeed the correct braiding coefficients for
the toric code, Eq. 6.4.

The effective Hamiltonians involving different types of vortices can be obtained

from this braiding matrix in the same manner as the $; X #; case.

Action of time-reversal

In the P X $_; system, time-reversal (TR) acts as (Bernevig, 2013)

Yi P —Vi
Vi B i (6.32)

This flips the sign of the fermionic parity operator on each vortex:

Yiyi & —iyivi. (6.33)
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Hence, |e) and |m) map to each other under time-reversal.

Stacking a p +ip (which belongs to 1) and a p —ip superconductor (which belongs
to P_1), we obtain a superconductor in Class DIII, a system that is protected by time-
reversal symmetry from deformation to the trivial system. If we break time-reversal
symmetry, we can deform it to the s-wave superconductor, which has the toric code
as its underlying topological order (Hansson, Oganesyan, and Sondhi, 2004). In the
s-wave superconductor, the vortex m and the sector which has a vortex and a fermion
e = m X Y are unrelated by time-reversal symmetry, whereas we have seen that in
the nontrivial Class DIII TR-invariant superconductor, the TR operation exchanges
e and m. Thus, on the level of the TQFT, this nontrivial TR action distinguishes it
from the trivial phase — without it, it would be identical to the toric code simpliciter,

which is the unit for the group of phases Z .

With the two systems stacked, we could have terms like iy;¥,V; which is now
local (unlike iy,y1V). This would break the degeneracy between the e and m
particles, since iy1y1|e) = +|e), iy1y1lm) = —|m). However, under time-reversal,

iyy +— —iy(=)y = —iy?y, so such terms are not TR-invariant.

In v = 2 phase, there is no TR symmetry, so nothing prevents us from adding such
terms, which would lift the degeneracy between a and a. As discussed in (Bernevig
and Neupert, 2015), there are no stable Majorana bound states in even v phases,

unless we protect them by a symmetry.

Zp X 7, fusion rules or Z, fusion rules?

Stacking gives us a way to determine whether a given even-v phase #,,, is described
by Z, X Z; anyons {1,e,m, ¥} or by Z4 anyons {1,a,¥,a}. We can distinguish
between the two by noting that two vortices of the same type fuse to 1 in the former
case, but they fuse to ¢ in the latter case; 1 will of course have trivial braiding, while
¥ will acquire a phase —1 under exchange. In the former case, we need R{“ = 114,
and in the latter case, Rf;/“ = (=1)!/4. If we denote a basic vortex of the phase in
question by v, we can consider the braiding of v with itself, which gives us a phase
R".If (R,,)* = 1, the phase is of the Z; X Z, type, while if (Ry,)* = —1, the phase
is of Z4 type.

Consider the above examples. The v = 0 phase had |ee) — |ee) under braiding.

1* = 1, so it is indeed of Z, X Z, type. The v = 2 phase on the other hand had

laa) — e”/*|aa) under braiding, and since (e™/*)* = —1, it is of Z4 type.
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6.5 Stacking: odd from even-odd

P3 =P, Xr Py

Let us first consider this stacking on the level of anyon condensation: we stack the
v = 2 phase consisting of 1, a, a, ¥ and the v = 1 phase consisting of 1, o, ¥, and
condense the (¥, ) anyon. Most of the combinations are confined, and we are left
with

"= (1,1)

o' =(a,0) ~(a,o)

lV = (1’ W) ~ (lﬁ, 1) (634)

with the usual fusion and braiding rules for the Ising TQFT, Egs. (3.18) and (3.19).

As we saw in section 6.4, there are four different v = 2 Hamiltonians for two vortices,
corresponding to the sectors |aa), |aa), |d@a), and |aa); each Hamiltonian acts on
a Hilbert space L?(R?) ® L?(R?). Let us consider the |aa) sector, which has the
Hamiltonian Eq. 6.24 with

- 11
A’l-d71:——(

(6.35)

42 '

z71—-22 %

Let us stack this with a v = 1 system, which is just the Hamiltonian in Eq. 6.14,

1. - o | o
H = 5= (51 = A1) + (52 = 2)?) + iy V(71 = o) (6.36)
with
A 7 l 1 1 dz 1 dz;
Av-dri=|=zvm+g)|y ~ 5 : 6.37
| - dF (47’271 8)(2izl—Z2 21.21_22) (6.37)

The total Hilbert space becomes (L2 (Rz))®4 ® C2, but after condensation, forcing
the vortex (a or a on the first layer and o on the second) position to be the same on
the two layers, we are left with (LZ(RZ))®2 ® C2.

Suppose the original v = 2 Hamiltonian was in the |aa) sector. After stacking with
a v = 1 Hamiltonian with two vortices, we obtain a Hamiltonian for two (a, o)

particles, which has an internal space C? from

(a,0) %X (a,0) =W, 1)+ (W, ¥) ~ ¢+ 1. (6.38)
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The result actually should be the same if we had started with the |@a) sector or
the sector containing |@a) and |aa), since (a,0) ~ (a, o). Regardless of which
Hamiltonian we chose for the v = 2 phase, after fermionic stacking, we end up with

a single type of vortex, described by a Hamiltonian of the type Eq. 6.14.

Let us confirm that we get the correct braiding coefficients. First, consider the case
where we have started with the |aa) sector. The braiding matrix for the v = 1 phase
is diag(e™/8, ¢37/3) for the braiding of two o vortices. However, for the v = 3
phase, we need to switch the two components: the v = 3 vortex 0’ = (a, o) has
fusion o’ x o’ = (Y, 1) + (Y¥,¥) = ¢’ + 1’, hence if we are in the 1 sector of the
v = 1 phase that is being stacked, we are in the " sector of the v = 3 phase, and vice
versa. Thus, R‘IT,"" = ¢3/3 and Rf;:"l = ¢~™/8 up to the additional phase coming
in/4

from the as. After multiplying by a phase e¢'"/* from the exchange of two as, we get

R?'/’o” — eSm’/S
R;;,"f’ = ¢™/8, (6.39)

These are indeed the braiding coefficients for the v = 3 phase, Eq. 6.2. Since
Riﬁ = Rf;a, the same argument would hold, had we started out in the |@a) sector.

Now, let us consider the vortices coming from the |aa) and |d@a) sector. First, we
note that
(a,0)x (@)=, 1)+ (Ly)=1+y’" (6.40)

So the 1 sector of the v = 1 phase gives rise to the 1’ sector of the v = 3 phase,

and the y sector of the v = 1 phase gives rise to the ¥’ sector of the v = 3 phase.

Therefore, the braiding coefficients of v = 3 inherit those of v = 1 directly: e in/8

and ¢3™/8, Multiplying these by the phase ¢~™/*

obtain (RY", R:;,’cr’ = (e737/8 oif8).

from the braiding of a and a, we

We consider the double-braiding, where all coefficients are gauge-invariant (Kitaev,
2006). After a double-braid we get the phases

R?,/O—, — e—6m‘/8 — elOm’/S
RO — eZm’/S (641)
which is the same as the double-braiding coeflicients obtained from stacking with

the |aa) sector, the square of Eq. 6.39.

General braiding coefficients from stacking

Recall that for any odd v, we have
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RCITO' — g(v)emri/4

R7 = 0(v)e ™/ (6.42)

vai

where 6(v) = e3 and @ = —1 for v = 1 mod 4 and +1 for v = 3 mod 4.

The value of @ can be understood from the stacking perspective in the following
way. A v = 1 mod 4 phase is obtained by stacking $; with a P4,; the latter phase
has e and m type vortices. After stacking, we get the vortex o’ = (o, e) ~ (o, m),

with the fusion rule
o'xo'=(1,1)+ W, 1) =1 +y/, (6.43)

so the sectors 1’ and ¢’ of P4,+1 correspond to the sectors 1 and ¢ of $;. Hence we

get @ = —1 (since P has @ = —1).

On the other hand, 4,13 = P1 X r Payy2, and since Panio has a and a type vortices,

Pan+3 has the vortex o’ = (0, a) ~ (o, @) with the fusion rule
o'xo' =(Ly)+ W, y) =y +1, (6.44)

so the sectors 1" and ¢’ of P4,,+3 correspond to the sectors ¢ and 1 of Py, respectively.
This means that the braiding coefficients R{” and Rl‘;” need to change places,
compared to those for $; (and 6(v) is unaffected since it is common to both). Thus

we see that @ = +1 for Pyy43.

We can also think of an odd phase #, as the stacking of #, with some other odd
phase $,_». By the above logic, stacking with > changes the sign of a; on the
other hand, the braiding coefficients for the vortex o’ of P, also acquires a phase

¢'"/* from the braiding of the a vortices of P,. Hence the overall phase behaves as

0(v) = 30 (v - 2). (6.45)

Thus we see that, whenever v advances by 2, going from an odd phase to an odd

27i/8  This means that

phase, the value of a gets reversed and 8(v) increases by e
once we are given the braiding coefficients for one odd phase, we can obtain those

of all the other odd phases immediately.
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Appendix A
APPENDICES FOR CHAPTER 4

A.1 Relations between bosonic and fermionic invariants
Lemma A.1.1. For a twisted cocycle w € Z*(G, U(1)r), the 1-cochain defined by

12B(g) := w(g, p) — w(p,g) +x(gw(p, p)
_ | w(g,p)-w(p.g) g €Go (A.1)
w(g,p) —w(p,g) +w(p,p) g¢Go

is gauge-invariant, satisfies f(gp) = B(g), takes values in {0, )2}, and defines a

Gp-cocycle.

Proof. First, 1/28(g) picks up a factor of

(L(9)+(~1)"® L(p) = L(gp)) - (L(p) + L(g) - L(gp))
+x(g)(L(p) + L(p) — L(1)) (A.2)
= -2x(g)L(p) +2x(g)L(p) —x(g)L(1) =0

under a transformation w — w+dr L for some 1-cochain L of G satisfying L(1) = 0.1

Second,
12B(gp) = w(gp,p) — w(p,gp) +x(gp)w(p, p)
= w(g,p) —w(p,g) +x(g)w(p, p) - drw(p,g, p) (A.3)
=1/p(g).
Third,

w(g,p) —w(p.g)
= (-1)"®w(p, p) - w(g.p) - w(p.gp)
— (6rw)(g, p, p) + (6rw)(p. &, P)
= (-1)"®w(p, p) - w(g.p) - w(p. p)
+w(p,g) + (6rw)(p,p.8)
=-w(g.p) +w(p.g) - (1 - (1)) (p,p)

(A4)

I'This condition on L ensures that Q(1) = 1 is preserved.
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means that !/2 takes values in the Z/2 subgroup of U(1).

Therefore /28 defines a 8 € C'(G,,Z/2). Let gp, hy, € Gy, and choose any lifts g, &
to G.

Fourth,

(68)(8b» hp)
= 1/2(B(g) + B(h) — B(ghp”TM))
=1(B(g) + B(h) — B(gh))
=w(g, p) —w(p,g) +x(g)w(p,p)
+w(h,p) —w(p, h) +x(h)w(p, p)
— w(gh, p) + w(p, gh) — x(gh)w(p, p)
=w(g,p) —w(p,g) +w(h,p) —w(p, h)
+w(g. h) — w(g, hp) — (1) Pw(h, p)
—w(g, h) +w(p,g) + w(pg, h) +2x(g)x(h)w(p, p)
= w(g, p) +2x(g)w(h, p) —w(p, h)
+(=1)*"®w(p, h) - w(g, p) +2x(g)x(hw(p, p)
=2x(g)(w(h, p) — w(p, h) +x(h)w(p, p))
=2x(g) - '2B(h)
=0.

(A.5)

O

Lemma A.1.2. Each cohomology class H*(G,U(1)r) contains an element w that
satisfies, for all g, h € G,

w(pg,h) =w(g,h) (A.6)
w(g,ph) = w(g, h) +w(g,p). (A7)

Proof. For an arbitrary 2-cocycle W € Z%(G, U(1)r), define
w=W-6rL (A.8)

where L € C1(G, U(1)r) satisfies
L(1)=0
L(p) ='/2W(p,p) or 'LW(p,p)+'/2 (A.9)
L(pg) = L(8) —W(p.g) + L(p).
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Here, we abuse notation by letting g denote a g € G with 7(g) = 0. This implies
L(p) ='12W(p, p). We have fixed L(pg) in terms of L(g) and L(p), but left L(g)
undetermined, while L(p) is fixed up to a /2.

We see that
w(p.p) =W(p.p) = (=1)*PL(p) - L(p) + L(1) (A.10)
=W(p,p)-2-12W(p,p) =0
and
w(p.3) =W(p.) - ((-D*P'L@) + L(p) - L(pd)) (A.11)

=W(p,8) —-W(p,g) +'2W(p,p) -12W(p,p) =0.

Next we show that any w satisfying (A.10) and (A.11) must also satisfy the gauge
conditions (A.6) and (A.7). First,

w(p, pg) = —orw(p,p,8) — (-1)* (p)w(p,§)
+w(p,p)+w(l,§) =0.

(A.12)

Similarly, computing 0 = 67w(p, g, h) shows that w(gp, h) = w(g, h) and comput-
ing 0 = 67w(p, g, hp) shows that w(gp, hp) = w(g, hp). Putting these together,
we see that (A.6) is satisfied.

Now we compute 0 = 67w (g, p, h) which shows that w(g, ph) = w(g, h) + w(g, p)
and 0 = 67w(g, p, ph) which shows that w(g,h) = w(g, ph) + w(g, p). Putting
these together, we see that (A.7) is satisfied.

Lemma A.1.3. Given a trivialization t, the map

w(g, h) = (g, h) +'1B(8)t(h) (A.13)

defines a bijection from pairs («, B) € C*(Gyp, U(1)r) x C'(Gy,Z/2) that satisfy
ora =12B U p and 6 = 0 (where ' 23 is regarded as a U(1)r-valued cocycle) to
twisted cocycles w € Z>(G,U(1)r) that satisfy (A.6) and (A7) forall g,h € G. In

particular, for all gy, hy, € Gy, this map has an inverse

a(gp, hp) = w(s(gp), s(hp))

(A.14)
12B(gp) = w(s(gp), ).
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Proof. First we show that w is a twisted cocycle:

(6rw)(g, h, k)

= (=1)*®w(h, k) + w(g, hk) — w(g, h) — w(gh, k)

= (-1)*®a(h, k) + a(g, hk) - a(g, h) — a(gh, k)
+1/2(=1)" O B(R)t (k) +/2B(3)t(hk) (A.15)
—1/B(2)t(h) = '/B(gh)t(k)

= (67@) (g, h, k) +'/2(67B) (&, h)t(k) = '/2B(3)(61) (h, k)

=0.

Next we verify that w satisfies the gauge conditions:

w(pg. h) = a(pg, h) +'1B(pg)t(h)
= (g, h) +'B(g)t(h) (A.16)
= w(g,h)

w(g, ph) = a(g, ph) +'/B(3)t(ph)
= (g, h) +'/B(3)(1(h) +1) (A.17)
= w(g, h) +w(g,p).

Then we check the conditions for @ and S. For these two calculations, let ¢ denote
g» and g denote s(g5). Note that s(gh) = pP &M gh. Then

(67@) (g, h, k)
= (-1)"®a(h, k) + a (g, hk) — a (3. h) — a(gh. k)
= (=1)*®w(h, k) + w(g, p* "0 hk)
~w(g, h) — w(p?EMgh, k)
= (0rw)(g, h, k) + {terms of the form w(p~, -)}
+ (g, pP M0 + (570) (pPEP gh, k)
— (67w) (g, "0 hk) + (670) (p* "D, g, k)
=11B(g)p(h, k).

(A.18)

The object /28 defined in (A.14) is the gauge-fixed form of (A.1). Then, by A.1.1,
it defines a 8 € Z'(Gy,Z/2).

It remains to show that these maps are indeed inverses. Since !/28 is the image of

a Z/2-valued cocycle B, w can be written with a minus sign like w = @ — 1,8 U ¢.
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Note also that s(g) = p'®)g. Then
w(g, h) = (g, h) = 'B(g)t(h)
= w(p"®g,p""h) - w(p'®g, p)i(h) (A.19)
= w(g, h),

a(gp, hp) = w(s(gp),s(hp))
a(gp, hp) +1/28(gp)t(s(gp)) (A.20)
a(gp, hp),

2B(gp) = w(s(gp), p)
= a(gp, 1) +'/2B(gn)t(p) (A.21)
=1/B(gp).

O

Theorem A.1.4. H>(G,U(1)r) equals, as a set, the set of pairs («, B) (see A.1.3),

modulo the following equivalence relation: (a’,B) ~ (a,B) if &’ = a + é7Ad with A
a cochain in C' (G, U(1)r) satisfying A(s(gp)p) = A(s(gp)) + A(p).2

Proof. The preceding lemmas show that the set of twisted cocycles w satisfying
the gauge conditions (A.6) and (A.7) is equivalent to the set of pairs («, 8). After
transforming w into this gauge, there remains freedom to choose L(g) for each
g € G such that 1(g) = 0, and to shift L(p) by !/2. We have already seen that 3 is
invariant under an arbitrary gauge transformation. However, there is some residual

gauge freedom for a.

Let w’ = w + 074 be another 2-cocycle satisfying the gauge conditions. It takes
the form W — 67L’, with L’ possibly differing from L in its values on s(g) and
p. We see from 674 = ' —w = 67(L’ — L) that A = L’ — L + k where « is a
twisted 1-cocycle. Then, by (A.9), A(s(gp)p) = A(s(gp)) + A(p). The quantities
L(p), L'(p), k(p), and therefore A(p), can each be chosen to be 0 or !/2. Finally,
by (A.14), this freedom in gauge-fixed w translates into the desired freedom in «.

O

2Had we chosen a different representative p’ = p + 6u of [p] to describe the extension of Gy,
by Zzp , we would have considered a different set of cochains @ (modulo coboundaries), shifted by
18 U u, but their counting would be the same.
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Appendix B

APPENDICES FOR CHAPTER 5

B.1 Diagrams for the ground states

These diagrams are used in the argument of Section 4.6.

X
X

C (1) =

x
?

—
X)

= nx¥1
Figure B.1: Diagrammatic proof of Co(y/1| = nx(¥2|.
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S

Ci(¥2) =

S

—
X)

=
Figure B.2: Diagrammatic proof of C;{(¢¥>| = (¢>|.
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)

C(¢2) =

x
?

X

=nxy1
Figure B.3: Diagrammatic proof of C, (2| = nx{(¢¥1].
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S

C3(y3) =

&

X

=nx¥4 =3
Figure B.4: Diagrammatic proof of C3{i3| = (¢¥3].
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&

Cy(Y3) =

%
?
B

X

= Y3
Figure B.5: Diagrammatic proof of C4 (3| = (¢3].

B.2 Necessity of supercommutativity

This appendix is a derivation of the results (4.80) and (4.81) from the lattice spin
formalism introduced in Section 4.5. Consider acting on the state |ij) with the
cylinder map Z(C); this is represented in the top diagram of each column of Figure
B.6. To manipulate these diagrams into the diagrams at the bottom of each column,
one applies a series of “moves” that are like Pachner moves, but are compatible with
the lattice spin structure (see (Novak and Runkel, 2014) for details). Finally, one
unbraids the legs at the cost of a sign (—1)/ 171,



\\,\\,
¥

G
'

t
3

(a) NS sector: C;; = (—1)|i||-i|+|i|Cji (b) R sector: C;j = (—1)|i||j|Cj,~

Figure B.6: A proof of equations (4.80) and (4.81). Arrows denote edge directions,
magenta line segments denote special edges, and black dots denote spin signs +1,
i.e. insertions of F.
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B.3 Description of w in terms of pairs («, 8)
Start with some [w] € H*(G,U(1)). We denote by g either an element of Gy, or
the corresponding element in G whose 7(g) = 0, i.e. (g,0). A general element of

G then takes the form of either g or gp.

Given an arbitrary w, we can shift it by a coboundary 6B where B € C'(Z,,U(1))
such that B(0) = 0 and B(p) = %a)(p,p) so that our new w satisfies w(p, p) = 0.
Then we can add a coboundary §A with A € C!(G, Z») satistying A(gp) = A(g) —
w(g, p) to w to make w(g, p) =0forall g € Gp.

Evaluating the 3-cochain éw on (g, p, p), (&, h,p), and (gp, h, p), and using the
fact that 6w = 0, we see that changing the second argument of w by p does not affect

its value, i.e. w(g, h) = w(g, hp),Vg,h e G.

Then, evaluating dw on (g, p, h) gives w(gp,h) = w(g, h) + w(p, h). Defining
a(g, h) = w(g, h) and B(g) := w(p,§), w = a +1t U B, and we can check that
0B =0, and hence da = -6t U B = p U 5. With our gauge choice, one can show that
this definition of 3 is consistent with 8(g) = |Q(g)|. The residual gauge freedom,
shifts w by a coboundary 64 for A which is a pull-back from G;,. This leaves
invariant, but shifts @ by a G,-coboundary. Hence @ ~ a + 64, and we see that
equivalence classes of w correspond to equivalence classes of pairs («, B) satisfying
da = p U Band 6B = 0 with (a,B) ~ (@ + 4, ).

When G splits, p is trivial and we have da = 0, so the set of equivalence classes of
a is H*(Gyp, U(1)). The set of equivalence classes of 8 is of course H'(Gy,, Z,).
This confirms H>(G, U(1)) ~ H*(G, U(1))xH' (G}, Z,), which we already knew

from more abstract arguments.
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Appendix C

APPENDICES FOR CHAPTER 5

C.1 Pin groups

Here we review the definition and some properties of Pin groups following Ref.
(Atiyah, Bott, and Shapiro, 1963). Just as Spin(M) is a non-trivial extension of
SO(M) by Z,, Pin,(M) and Pin_(M) are extensions of O (M) by Z,. Since O (M)
has two connected components, so do Pin.(M). The connected component of the
identity for both Pin,(M) and Pin_(M) is Spin(M).

The groups Pin.(M) can be defined using the Clifford algebra C£(M). To define

Pin, (M), one considers the Clifford algebra for the positive metric:
(ri,r’y=28", 1,J=1,...,M. (C.1)

This is a Z,-graded algebra. For any a € CI(M), we let €e(a) = a if a is even and
€(a) = —a if a is odd. Invertible elements in the Clifford algebra form a group.
Pin,(M) is a subgroup generated by elements of the form y = I'’'v!, where v; is a
unit vector in RM. To define the homomorphism Pin, (M) — O(M), consider the

“twisted conjugation map”
IV e(@)Ma™', aecCl(M). (C.2)
If a = ¢, then this map becomes
I - -y =17 - 207y (C.3)

This is a hyperplane reflection on the space spanned by I'’. Since the whole group
O(M) is generated by hyperplane reflections, twisted conjugation by elements of
Pin, (M) gives a surjective homomorphism from Pin, (M) to O(M). The kernel of
this map is the Z, generated by —1. The subgroup Spin(M) C Pin,(M) consists of
products of an even number of hyperplane reflections. Note that every hyperplane

reflection y squares to the identity in Pin,.(M).

The group Pin_(M) is defined similarly, except that one starts with the “negative”
Clifford algebra
(rir’y=-26", 1,J=1,...,M. (C.4)
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In this case, hyperplane reflections y square to —1, which generates the kernel of the
homomorphism Spin(M) — SO(M). In other words, for Pin_(M), hyperplane
reflections square to fermion parity.

Finally, the group Pin.(M) is defined as (Pin, (M) xU(1))/ Z;ﬁag , and its subgroup
Spin.(M) C Pin.(M) isdefined as (Spin(M)xU(1))/Z,. Pin.(M) is an extension
of O(M) by U(1), while Spin.(M) is an extension of SO(M) by U(1). It is easy
to show that the group (Pin_(M) x U(1))/Z, is isomorphic to Pin.(M). The
significance of Pin.(M) is the following: if we regard the complexification of the
Clifford algebra as the algebra of observables of a fermionic system, then Pin. (M)
can be identified with the subgroup of those unitaries which act linearly on the
generators of the Clifford algebra. Thus lifting a real linear action of a group G
on the Clifford generators I'/ to a unitary action on the Fock space is equivalent
to lifting the corresponding homomorphism G — O(M) to a homomorphism
G — Pin.(M). Similarly, if we are given a homomorphism G — SO (M), lifting
it to a unitary action on the Fock space is the same as lifting it to a homomorphism
G — Spin.(M).

C.2 Characteristic classes of representations of finite groups

The theory of characteristic classes of vector bundles (a classic reference is (Milnor
and Stasheff, 1974)) is familiar to physicists. A version of this construction also
gives rise to characteristic classes of representations of a finite group which take
values in cohomology of the said group (Atiyah, 1961). Real representations give
rise to Stiefel-Whitney and Pontryagin classes, while complex representations give

rise to Chern classes.

To define these classes, it is best to think of a real representation of G of dimension
n as a homomorphism R : G — O(n), which then induces a continuous map of
classifying spaces R : BG — BO(n). The map R is defined up to homotopy
only, but this suffices to define cohomology classes on BG by pull-back from
BO(n). Any cohomology class w on BO(n) thus defines a cohomology class R*w
on BG. Cohomology classes on BO(n) are precisely characteristic classes of real
vector bundles, and their pull-backs via R are called characteristic classes of the
representation R. Similarly, given a complex representation R : G — U(n), we
get a continuous map R : BG — BU(n), and can define Chern classes of R by
pull-back.

In low dimensions, these classes have a concrete representation-theoretic interpre-
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tation. For example, the Ist Stiefel-Whitney class wi(R) € H'(G,Z) of a real
representation R is the obstruction for R : G — O(n) to descend to homomorphism
R’ : G — SO(n). Obviously, wi(r)(g) is given by det R(g).

Similarly, the Ist Chern class ¢{(R) € H*(G,Z) of a complex representation R
can be interpreted as an obstruction for R to descend to R” : G — SU(n). The
obstruction det R(g) is a 1-cocycle on G with values in U(1). The corresponding
class in H*(G,Z) is obtained by applying the Bockstein homomorphism (which for
finite groups is an isomorphism). Explicitly:

c1(R)(g, h) = % (logdet R(gh) —logdet R(g) —logdetR(h)) . (C.5)

The 2nd Stiefel-Whitney class w2(R) € H?>(G,Z,) is an obstruction to lifting R to
a homomorphism R’ : G — Pin.(n). One can always define R’ as a projective
representation, and the corresponding 2-cocycle represents w,(R). The image of
wa(R) in H*(G, U(1)) under the embedding Z, — U(1) is an obstruction to lifting
R to a homomorphism R’ : G — Pin.(n). In the main text, it is denoted w;j 0 (R).
By the isomorphism H?*(G,U(1)) ~ H*(G,Z) (valid for finite groups), this class
can be interpreted as an element of H>(G,Z). Then it is known as the 3rd integral
Stiefel-Whitney class Ws.

By functoriality, known relations between cohomology classes of BO(n) and BU (n)
lead to relations between characteristic classes of representations. Let us describe
those of them which we have used in the main text. First of all, the Whitney formula
expresses Stiefel-Whitney (or Chern) classes of R + R’ in terms of Stiefel-Whitney
(or Chern) classes of R and R’:

k
wkue+R9::EZM@(R)uM%ﬂ4RU. (C.6)
p=0

There are also more complicated formulas expressing characteristic classes of R® R’
in terms of those of R and R’ (Milnor and Stasheff, 1974). We will only need a
particular case: let R be a real representation of odd dimension M, and L be a

one-dimensonal real representation, then

wa(R® L) = wa(R). (C.7)

In Section 5.3, we propose that given a gapped 2d band Hamiltonian, the invariant
B € H*(G,Z,) of 2d fermionic SRE phases with symmetry G x Zg is given
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either by wo(R) or wo(R) + wi(R)?, where R is a certain representation of G.
The supercohomology equation implies that 8 U 8 € H*(G,Z,) maps to a trivial
class in H*(G,U(1)). To show that this is automatically the case for our two
candidates, we note that for finite groups H*(G,U(1)) ~ H>(G,Z). The class
in H>(G,Z) corresponding to 8 U 3 can be obtained by applying the Bockstein
homomorphism H*(G,Z,) — H’(G,Z). A mod-2 class is annihilated by the
Bockstein homomorphism if and only if it is a mod-2 reduction of an integral class.
Now recall the well-known relation between Stiefel-Whitney classes and Pontryagin
classes (Milnor and Stasheft, 1974):

w3 = pj mod 2. (C.8)

Hence w% is indeed annihilated by the Bockstein homomorphism. The same is true

if we replace wyp with wo + w%. Indeed, since
(wo + w%)2 = w% + WT, (C.9

it is sufficient to show that w‘l‘ maps to a trivial class in H*(G, U(1)). Now we recall

2

that w% is cohomologous to w/2, where w is an integral lift of wy. Therefore w7 is

cohomologous to %&u U %&u, which is a coboundary of A—Ilw U dw.

In Section 5.3, we show that for a band Hamiltonian, the invariant & € H2(G, U(1))
of 1d fermionic SRE phases with symmetry G is equal to the image of w1(R)
under the map ¢ : H*(G,Z,) — H*(G,U(1)), for a particular representation R.
Obviously, any element in the image of ¢ has order 2, so in general not every element
in H2(G,U(1)) can be realized by a band Hamiltonian. But we claimed that for
some G, even certain elements of order 2 in H2(G, U(1)) cannot be realized by
band Hamiltonians. This happens because not every element in H>(G, Z5) arises as
wy(R) for some representation R. The reason is again the relation (C.8). It implies
that for any representation R of G, the Bockstein homomorphism annihilates w, (R)?.
On the other hand, a generic element of H>(G, Z,) need not have this property. An
example of a finite group G for which some elements of H>(G,Z,) do not arise as

wy(R) for any R is given in (Gunarwardena, Kahn, and Thomas, 1989).

C.3 Beta as a charge pumping invariant

As discussed in Section 5.3, fermionic SRE phases in 1d with symmetry G have an
invariant 8 € H'(G,Z,). More precisely, this invariant is defined if the invariant y
(the number of boundary fermionic zero modes modulo 2) vanishes. The definition

of B given in (Fidkowski and Kitaev, 2011) relies on the properties of boundary zero
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modes. Namely, B(g) = 1 (resp. B(g) = 0) if g € G acts on the boundary Hilbert

space by a fermionic (resp. bosonic) operator. Here we explain an alternative
formulation of 8 € H'(G,Z,) as a charge pumping invariant. Any symmetry g € G
gives rise to a loop in the space of 1d band Hamiltonians. The net fermion parity
pumped through any point is a Z-valued invariant of the loop. This is a special
case of the Thouless pump (Teo and Kane, 2010; Moore and Balents, 2007).

Given g € G which is a symmetry of a band Hamiltonian H(k), we can define a loop
in the space of band Hamiltonians as follows. Since SO(2N) is a connected group,
we can choose a path 77 : [0,1] — SO(2N) such that 7(0) = 1 and (1) = R(3).
Next we define H(k,t) = n(t)H(k)y(r)~'. Since R(g) commutes with H(k),
H(k,1) = H(k,0). Thus H(k,1) is a loop in the space of 1d band Hamiltonians. A
general argument (Teo and Kane, 2010; Moore and Balents, 2007) shows that the
net fermion parity (—1)#® pumped through one cycle of this loop does not depend
on the choice of path . This immediately implies that B(gg") = B(g)+B(g’). Thus
B(2) defines an element of H' (G, Z,).

To evaluate B(g), we apply the general formula from (Teo and Kane, 2010) for
Hamiltonians in class D. One simplification is that locally in &, 7, the Berry connec-
tion can be taken as 19,7, and thus its curvature vanishes. Then

B©) =5 [ [P0 = P tom0] de - (C10)

where P, (k) is the projector to positive-energy states at momentum k.

Next we decompose R into real irreducible representations r,. Obviously, each
representation contributes independently to B(g). Representations of C-type and H-
type do not contribute at all, since the corresponding Hamiltonians can be deformed
to trivial ones. A Hamiltonian A, ;; corresponding to an R-type representation r, is
of class D and can be deformed either to a trivial one or to a trivial one stacked with
a single Kitaev chain. In the former case, both the boundary invariant (—1)#®) and
the charge-pumping invariant B(g) are trivial (equal to 1). In the latter case, we get
a single Majorana zero mode for each of the d, = dimr basis vectors of r, so the
boundary invariant (—1)#®) is equal to detr(g). We just need to verify that B(2) is
also equal to detr(g) for d, copies of the Kitaev chain. The on-site representation

of G is given by R = r @ r in this case.

For d, copies of the Kitaev chain, the projector to positive-energy states is

Pi(k) =3 (L, —oysink + o, cosk) ® 1, (C.11)
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which commutes with R(g) = 1, ® r(g) and satisfies P.(0)R(g) = r(g) ® 0 and
P.(m)R(g) = 0@ r(g). Let n(¢) be a path in SO(2d,) from 1 to R(g). We may
choose it to belong to the U(d,) subgroup of matrices that commute with P, (0) and
P, (). Then n(t) = q(t) ® ¢(¢) for a path ¢(¢) through U(d,) from 1 to r(@).

Substituting all this into (C.10), we get

B@) =5 [ (2@ = P o (o) ar

= %/TT(CN)‘](%Q(I) —ci(t)‘latci(t)) dt. (C.12)

Note that this vanishes whenever ¢g(¢) = ¢(t) at all . We now show how to recover
(-1)B® = detr(g).

If (&) has determinant +1, it lives in SO(d,), which is path-connected. Hence
the path ¢(¢) from 1 to r(g) may be taken to lie in SO(d,) C U(d,). Therefore
q(t) = q(t)isreal, and so B(g) = 0.

If () has determinant —1, we construct g(¢) as follows. First connect 1 to
diag(—1,+1,+1,...,+1) by diag(exp(it),+1,+1,...,+1). Now that the determi-
nant is —1, we may get to r(g) through a real path in the identity-disconnected
component of O(d,). This second segment of the path contributes nothing to B(g).

It remains to compute the contribution of the first segment, where g (f) = exp(it)®1:

1

B(g) = 2—/ (70" —e"de™) dt = 1. (C.13)
n
This completes the proof that B(g) = B(&). In particular, B(P) =0, i.e. B is really

a homomorphism from G = G/ Zg to Z,.

The interpretation of S(g) in terms of a fermion-parity pump has the following
intuitive reason. Assume that one can make a “Wick rotation” of the pump. Then
the twist by g along the “time” direction gets reinterpreted as a twist along the spatial
direction. The invariant B(g) can be re-interpreted as the fermionic parity of the
ground state of the system with an g-twist, or equivalently as the fermionic parity
of the ¢ domain wall. On the other hand, it is known (Kapustin, Turzillo, and You,

2018) that this is yet another interpretation of the invariant 3.

To conclude this section, we show how to compute B(g) = S(g) from the holonomy
of the Berry connection between k = 0 and k = n. This makes the topological

nature of B(g) explicit. Recall first how the holonomy is defined. If there are
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2N Majorana fermions per site, a free 1d Hamiltonian can be described by a non-
degenerate 2N X 2N matrix X (k), where k is the momentum (Chiu et al., 2016).
At k = 0 and k = 7, this matrix is real and skew-symmetric. We can bring X (0) to
the standard form X, using an orthogonal transformation O (0) € O(2N). Similarly,
we use X () to define O(xr) € O(2N). The holonomy of the Berry connection is
O = O(n)0(0)~'. The invariant (—1)? is equal to the sign of det O (Budich and
Ardonne, 2013). If y vanishes, then det O (0) and det O () have the same sign, and
by a choice of basis we may assume that both O(xr) and O(0) lie in SO(2N).

To define a topological invariant associated to an element § € G, we choose a path
n(t) : [0,1] — SO(2N) from the identity to R(g). Consider now the following
map from [0, 1] to SO(2N):

sz{n@m 0<r<1/2 1

on(2-2007', 1/2<t<1.

Since O = O(n)0O(0)~! is the holonomy of the Berry connection from 0 to 7, it
commutes with all symmetries of the Hamiltonian, including R(g) for all § € G.
This implies that I1(7) is a loop in SO(2N). We claim that B(g) is the class of this
loop in 71 (SO(2N)) = Z;.

This definition is independent of the path from 1 to R(g). Any two paths differ (in
the sense of homotopy theory) by a loop in SO(2N). Thus changing the path will
result in composing I1(z) with a loop and its conjugation by O. Since these two

loops are homotopic, the homotopy class [I1] is unchanged.

To prove that the homotopy class of the loop IT coincides with B(g), one can follow
the same strategy as before: use homotopy-invariance to reduce to the case of
a single Kitaev chain, and then compute the invariant by choosing a particularly

convenient path.



