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ABSTRACT

A major technique in learning involves the identification of patterns and their use
to make predictions. In this work, we examine the symbiotic relationship between
patterns and Gaussian process regression (GPR), which is mathematically equivalent
to kernel interpolation. We introduce techniques where GPR can be used to learn
patterns in denoising and mode (signal) decomposition [102, ]. Additionally,
we present the kernel flow (KF) algorithm which learns a kernels from patterns in
the data [103] with methodology inspired by cross validation. We further show
how the KF algorithm can be applied to artificial neural networks (ANNSs) to make

improvements to learning patterns in images [154].

In our denoising and mode decomposition examples, we show how kernels can be
constructed to estimate patterns that may be hidden due to data corruption. In other
words, we demonstrate how to learn patterns with kernels. Donoho and Johnstone
[38] proposed a near-minimax method for reconstructing an unknown smooth func-
tion u from noisy data u + ¢ by translating the empirical wavelet coeflicients of
u + { towards zero. We consider the situation where the prior information on the
unknown function # may not be the regularity of u, but that of Lu where £ is a
linear operator, such as a partial differential equation (PDE) or a graph Laplacian.
We show that a near-minimax approximation of u# can be obtained by truncating
the L-gamblet (operator-adapted wavelet) coefficients [101] of u + £. The recovery
of u can be seen to be precisely a Gaussian conditioning of # + { on measurement

functions with length scale dependent on the signal-to-noise ratio.

We next introduce kernel mode decomposition (KMD), which has been designed
to learn the modes v; = a;(¢)y;(6:(r)) of a (possibly noisy) signal },;v; when
the amplitudes a;, instantaneous phases 6;, and periodic waveforms y; may all be
unknown. GPR with Gabor wavelet-inspired kernels is used to estimate a;, 6;,
and y;. We show near machine precision recovery under regularity and separation

assumptions on the instantaneous amplitudes a; and frequencies 6;.

GPR and kernel interpolation require the selection of an appropriate kernel mod-
eling the data. We present the KF algorithm, which is a numerical-approximation
approach to this selection. The main principle the method utilizes is that a “good”
kernel is able to make accurate predictions with small subsets of a training set. In

this way, we learn a kernel from patterns. In image classification, we show that



vi
the learned kernels are able to classify accurately using only one training image
per class and show signs of unsupervised learning. Furthermore, we introduce the
combination of the KF algorithm with conventional neural-network training. This
combination is able to train the intermediate-layer outputs of the network simulta-
neously with the final-layer output. We test the proposed method on Convolutional
Neural Networks (CNNs) and Wide Residual Networks (WRNSs) without alteration
of their structure or their output classifier. We report reduced test errors, decreased
generalization gaps, and increased robustness to distribution shift without significant
increase in computational complexity relative to standard CNN and WRN training

(with Drop Out and Batch Normalization).

As awhole, this work highlights the interplay between kernel techniques with pattern

recognition and numerical approximation.



[1]

(2]

(3]

[4]

vii

PUBLISHED CONTENT AND CONTRIBUTIONS

H. Owhadi, C. Scovel, and G.R. Yoo, Kernel Mode Decomposition and pro-
grammable/interpretable regression networks, arXiv preprint arXiv:1907.08592
(2019),

G.R.Y. was involved in developing and implementing the non-trigonometric
and unknown waveform Kernel Mode Decomposition Networks and the writ-
ing of the corresponding sections in the manuscript. G.R.Y. also developed and
implemented the segmented KMD algorithm which has robustness crossing fre-
quency and vanishing modes as well as noise. G.R.Y. contributed to the proving
of the results on the universality of the aggregated kernel.

H. Owhadi and G.R. Yoo, Kernel flows: From learning kernels from data
into the abyss, Journal of Computational Physics 389 (2019), 22—47, https:
//doi.org/10.1016/j.jcp.2019.03.040

G.R.Y. was involved in developing and implementing the application of Kernel
Flows to Convolutional Neural Networks as well as writing the corresponding
section in the manuscript.

G. R. Yoo and H. Owhadi, De-noising by thresholding operator adapted
wavelets, Statistics and Computing 29 (2019), no. 6, 1185-1201, https:
//doi.org/10.1007/s11222-019-09893-x
G.R.Y. was involved in developing the denoising algorithm, proving the near-
minimax recovery theorems, computing implementations, and writing of the
manuscript with the help and guidance of H.O.

G.R. Yoo and H. Owhadi, Deep regularization and direct training of the inner
layers of neural networks with kernel flows, arXiv preprint arXiv:2002.08335
(2020),

G.R.Y.invented and implemented the CNN variant simultaneously training inner
layer and network outputs with the use of KF. Further involvement included the
writing of the manuscript with help and guidance from H.O.


https://doi.org/10.1016/j.jcp.2019.03.040
https://doi.org/10.1016/j.jcp.2019.03.040
https://doi.org/10.1007/s11222-019-09893-x
https://doi.org/10.1007/s11222-019-09893-x

viii

TABLE OF CONTENTS
Acknowledgements . . . . . .. ... Lo iii
Abstract . . . . . . e v
Published Content and Contributions . . . . . . . . ... ... ... ..... vii
Bibliography . . . . . . . ... vii
Table of Contents . . . . . . . . .. .. . . vii
List of Illustrations . . . . . . . . . . . . . X
Listof Tables . . . . . . . . . . . xiv
Chapter I: Introduction . . . . . ... ... ... .. 1
1.1 Theory of kriging and Gaussian process regression . . . . . . . . . . 2
1.2 Mathematical applications and interplay of GPR . . . . . ... . .. 6
1.3 GPRin the context of applications . . . . . . ... ... ... .... 9
1.4 Additive Gaussian processes and generalized additive models . . . . 14
1.5 Introduction to pattern learning problems . . . . . . ... ... ... 18
1.6 Patternsand kernels . . . . ... ... ... oL 23
Chapter II: Denoising . . . . . . . . . . . . . 27
2.1 Introduction to the denoising problem . . . . . . . .. ... .. ... 27
2.2 Summary of operator-adapted wavelets . . . . . ... ... .. ... 28
2.3 Denoising by truncating the gamblet transform . . . . . ... .. .. 35
24 Comparisons . . . . . ... e e e e e e e 40
Chapter III: The Mode Decomposition Problem . . . . . ... ... ... .. 44
3.1 Hilbert-Huang transform . . . . . . ... ... ... ... ...... 46
3.2 Synchrosqueezing transform . . . . . . ... ... ... ... 48
3.3 Extensions and further approaches . . . . . . ... .. .. ... ... 51
Chapter IV: Iterated micro-local kernel mode decomposition for known base
waveforms . . . ... 53
4.1 Max-pooling and the lowest instantaneous frequency . . . . . . .. 55
4.2 The micro-local KMD module . . . . . ... ... ... ....... 57
4.3 The iterated micro-local KMD algorithm. . . . . ... ... .. .. 63
4.4 Numerical experiments . . . . . . . . ... ... ... ... .. 66
Chapter V: Iterated micro-local kernel mode decomposition for unknown base
waveforms . . . . ... 68
5.1 Micro-local waveformKMD . . . . .. .. ... ... ... 69
5.2 Iterated micro-local KMD with unknown waveforms algorithm . . . 72
5.3 Numerical experiments . . . . . . .. .. ... ... ..., 73
5.4 Further work in kernel mode decomposition . . . . ... ... ... 74
Chapter VI: Kernel Flows . . . . . . . .. ... ... .. .. ......... 76
6.1 Parametric KF Algorithm . . . . ... ... ... ... ... .. 76
6.2 Non-parametric kernel flows . . . . . . ... ... ... L. 80

Chapter VII: Kernel Flows Regularized Neural Networks . . . . . . ... .. 86



7.1 Numerical experiments . . . . . ... ... ... ... ...

Bibliography



Number

1.1

1.2

1.3

1.4

2.1

22
2.3

24

2.5

3.1

3.2

LIST OF ILLUSTRATIONS

[lustrations showing (1) a (2) 5 examples of Vu (3) 5 examples of u
@) lexampleof n=u+{. . . ... ... Lo 19
Mlustrations showing (1) vy (2) v 3) v3 (4) v = vi +vo +v3 in an
example of Problem 3. . . . . . . ... ... o 20
[llustrations showing (1) vi (2) vo 3) vz (4) v = vi +v2 +Vv3 in
an example of the variant of Problem 3 with arbitrary unknown
waveforms. . . ... 20
The top row shows representatives from the MNIST dataset with
images in the classes 5, 0, 4, 1, and 9, from left to right. The second
row shows fashion MNIST images from the classes sneaker, pullover,
sandal, sandal, and T-shirt/top. The third row shows CIFAR-10
images from the classes frog, truck, truck, deer, and automobile.
The bottom row shows CIFAR-100 images from the classes cattle,
dinosaur, apple, boy, and aquarium fish. . . . . . ... ... ... .. 22
[153, Fig. 1], the plots of a, f, u, n, the near minimax recovery
v(n) = n(ﬁ), its error from u, and the derivatives of u and v(n). . .. 37
A comparison of "), In this example [T =4. . . . . ... ... ... 37
[153, Fig. 2], the plots of a, smooth f, u, n, v(n) = n(ﬂ), its error
from u, and the derivativesof u and v(n). . . . . . . . ... .. ... 38
[153, Fig. 3], the plots of a, f, u, n, v(n) = n(ﬁ), its error from u,
and the gradientof u and v(nm). . . . . . . . . ... ..., 39
The plots of a, smooth f, u, n, v(n) = n(ﬁ), its error from u, and the
gradientof u and v(n) [153,Fig.4]. . . .. ... ... ... .. ... 39
[102, Fig. 1], a prototypical mode decomposition problem: given
V=V 4+ V2+V3TECOVEI VI, V2, V3 v v v v v e e e e e e e e e e e 44
Upper and lower envelopes of residual signal v, ; are u and /. The
mean of the envelopes is m. Figure adapted from [67, Fig. 1.2] with

PErMISSION. . . . . . . . . .. e e e e 47



33

4.1
4.2

4.3

4.4

4.5

4.6

Xi

Signal v is the composition of 3 modes where the following is plotted

in time-frequency domain: (1) the instantaneous frequencies of each

mode (2) the norm of the continuous wavelet transform (CWT) of v,

|WL/’ (a, b)| (3) the synchrosqueezed CWT (4) the bands correspond-
ingtoeachmode. . . . . . .. ... ... ... ... ... .. 50
[102, Fig. 23], (1) triangle base waveform (2) EKG base waveform. . 53
[102, Fig. 24], triangle base waveform: (1) Signal v (2) Instantaneous
frequencies w; := 0; (3) Amplitudes a; (4, 5, 6) Modes v, v, v3. . . 54
[102, Fig. 25], EKG base waveform: (1) Signal v (2) Instantaneous
frequencies w; := 6; (3) Amplitudes a; (4, 5, 6) Modes vy, v, v3. . . 54
[102, Fig. 26], max-squeezing with the EKG base waveform and
derivation of the instantaneous phase estimates 6; .. (1,2) (7,w) —
S(1,w,v) and identification of Ajoy (3,4) (7, w) = S(T, W, v—V1,)

and identification of its Ajow (5,6) (T, w) — S(7, W,V —Vie — V2,)

and identification of itS Ajow. - « « . . . o oo 57
[102, Fig. 28], top: v is as in Figure 4.2 (the base waveform is
triangular). Bottom: v is as in Figure 4.3 (the base waveform is
EKG). Both top and bottom: d = 2, (1) The windowed signal v, (2)
limg 10 E[ér0, . [ér.0,. 460 = ve] B) (v=vie)e (Dlimg 0 E[ér o, , €70+
Er = (V=y1)c]| (5) (V=v1e—=Vv2e)r (6) limy 0 E[&r 0, |Er 0y, +E0 =
(V—=Vie— vz,e)f]. ........................... 61
[102, Fig. 29], top: v is as in Figure 4.2 (the base waveform is

triangular). Bottom: v is as in Figure 4.3 (the base waveform is EKG).
Both top and bottom: 7 = 0. (1) the amplitude of the first mode a; ()
and its local Gaussian regression estimation a(7, 1., v)(t) (2) the
error in estimated phase of the first mode 6 (¢) — 6 .(¢) and its local
Gaussian regression 66(t,60;.,v)(t) (3, 4) are as (1,2) with v and
01, replaced by v — vy, and 62, (5,6) are as (1,2) with v and 61,
replacedby v —vi,—vocand 03, . . . ... ... 62



4.7 [102, Fig. 27], modular representation of Algorithm 3, described in
this section. The blue module represents the estimation of the lowest
frequency of signal represented by v as illustrated in Figure 4.4. The
brown module represents the iterative estimation of the mode with
lowest instantaneous frequency of steps 10 through 14 of Algorithm
3. The yellow module represents the iterative refinement of all the
modes in steps 21 through 28. The brown and yellow modules used
to refine phase/amplitude estimates use the same code. . . . . . . ..

5.1 [102, Fig. 30], (1) signal v (the signal is defined over [—1, 1] but
displayed over [0, 0.4] for visibility) (2) instantaneous frequencies
w; = 6; (3) amplitudes a; (4, 5, 6) Modes v1, vy, v3 over [0,0.4]
(mode plots have also been zoomed in for visibility). . . . .. .. ..

5.2 [102, Fig. 31], illustrations showing (1) y; 2) y2 3) y3. . . . . . ..

5.3 [102, Fig. 32], high level structure of Algorithm 4 for the case when
the waveforms are unknown. . . . . .. .. ..o oL

54 [102, Fig. 33], (1) a plot of the function 7 — ¢(3¢)(7,601.,v) (2) a
histogram (cropping outliers) with bin width 0.002 of ¢ (3 () (7, 61,6, V)
values. The true value ¢ (3 is 1/9 since y; is a triangle wave. (3)
a plot of the function 7 — ¢(3.5)(7, 01,¢, v) (2) a histogram (cropping
outliers) with bin width 0.002 of ¢35 (7,61, v) values. The true
value ¢y 35 of thisovertoneis 0. . . .. ... ............

5.5 [102, Fig. 34], (1) signal v (2) instantaneous frequencies w; := 6; (3)
amplitudes a; (4,5, 6) modes vy, vo, V3. . . . . . ...

6.1 [103,Fig.5],(1)a (2) f 3) u (4) p(a) and p(b) (where b = 1) vs k
(5) e(a) and e(b) vs k (6) 20 random realizations of p(a) and p(b)
(7) 20 random realizations of e(a) and e(b). . . . . . .. ... ...

6.2 [103, Fig. 6], (1)a and b forn =1 (2) a and b for n = 350 (2) p(b)
vsn(d)e(b) vsSn. . . . ..

6.3 [103, Fig. 10], F,,(x;) for 8 different valuesofn.. . . . . . ... ...

6.4 [103, Fig. 13], (Fu(xi)1<i<y (dots) and (Fp4300(x) — Fu(x))/300

(arrows) for 5 different valuesofn. . . . . . ... ... ... ....

Xii

63

69



6.5

6.6

6.7

7.1

7.2

7.3

[103, Fig. 14], results for MNIST. N = 60000, Ny = 600 and N, =
300. (1) Test error vs depth n with N; = 6000 (2) Test error vs
depth n with N; = 600 (3) Test error vs depth n with N; = 60
(4) Test error vs depth n with Ny = 10 (5,6) Test error vs depth
n with N; = 6000, 600, 60, 10 (7) p vs depth n (8) Mean-squared
distances between images F,(x;) (all, inter class and in class) vs
depth n (9) Mean-squared distances between images (all) vs depth n
(10) Mean-squared distances between images (inter class) vs depth

n (11) Mean-squared distances between images (in class) vs depth n

(12) Ratio (10)/(11).. . . . . . . . . e

[103, Fig. 15], results for MNIST. N = 60000, Ny = 600 and N, =
300. (1, 3, 5) Training data x; (2, 4, 6) F,(x;) for n = 12000 (7)
F,(x;) — x; for training data and n = 12000 (8) Test data x; (9) F,(x;)

Xiii

for test data and n = 12000 (10) F;,(x;) — x; for test data and n = 12000. 84

[103, Fig. 22], results for Fashion-MNIST. N = 60000, N = 600 and
N, = 300. Left: Training data x; for class 5. Right: F,(x;) training

dataand n =11000. . . . . . . . . . . . e

[154, Fig. 2], training and testing errors are plotted over single runs
trained with original data using (1) BN only (2) BN+KF (3) BN+DO

(4) BN+KF+DO. Data augmented trained network errors are shown

using (5) BN only (6) BN+KF (7) BN+DO (8) BN+KF+DO. . . . . .

[103, Fig. 3], single run with each of BN only, BN+KF, BN+DO,
and BN+KF+DO training methods plotting (1) 6th layer KF-loss
using the original MNIST training set (2) 6th layer KF-loss using
an augmented training set (3) ratio of mean inter-class and in-class
distances of 6th layer outputs using the original training set (4) ratio

of mean inter-class and in-class distances of 6th layer outputs using

anaugmented set. . . . ... ..ol o Lo

[154, Fig. 4], single run using WRN-16-8 with each of BN only,
BN+KF, BN+DO, and BN+KF+DO plotting (1) CIFAR-10 KF loss
(2) CIFAR-100 KF loss (3) CIFAR-10 ratio of mean inter-class and
in-class distances 7* (4) CIFAR-100 ratio of mean inter-class and

in-class distances A™. . . . ...,

94



Number

2.1

2.2 Comparison of the performance of denoising algorithms for d = 2. . .

4.1

4.2

4.3

4.4

5.1

6.1
7.1

7.2

7.3

7.4

LIST OF TABLES

Comparison of the performance of denoising algorithms for d = 1. .

Signal component recovery errors in the triangle base waveform ex-
ampleover [—1,1]. . . . . . . ... ...
Signal component recovery errors in the triangle base waveform ex-
ample over [—%, %] ...........................
Signal component recovery errors on [—1, 1] in the EKG base wave-
formexample. . .. ... ... ...
Signal component recovery errors on [—z, 7] in the EKG base wave-
formexample. . . . . ... ... L Lo
Signal component recovery errors over [—1, 1] when the base wave-
formsareunknown . . . .. ... oo
MNIST test errors using Ny interpolation points . . . . . . . . . ..
The architecture of the CNN used in KF-regularization experiments
is charted. Convolutional layers are divided with horizontal lines.
The middle block shows layer specifics and the shapes of the outputs
of each layerisontheright. . . . .. ... ... ... ... ....
A comparison of the average and standard deviation of testing errors
each over 20 runs for networks. The first data column on the left
shows networks trained and tested on original MNIST data. The
middle is trained using data augmentation and uses original MNIST
testing data. The right column shows the same data augmented
trained network, but uses QMNIST testing data [149]. . . . . . ..
The architecture of the WRN used in KF-regularization experiments
with CIFAR input images. Convolutional blocks are divided with
horizontal lines. The middle portion shows block specifics such as
filter width and depth in each block and the shapes of the outputs of
each layer is on the right. Note that max pooling occurs within the
last residual layer of each block. . . . . .. ... ... ... ....
A comparison of the average and standard deviation of test errors
over 5 runs for networks trained on augmented data on CIFAR-10,
CIFAR-10.1, and CIFAR-100. The second column to the right trains

Xiv

Page
42
43

92

on augmented CIFAR-10 data but tests on CIFAR-10.1 data [110, 135].. 93



Chapter 1

INTRODUCTION

The supervised learning problem involves estimating the relationship between a pair
of variables based on a finite number of measurements and making predictions with
this estimated relationship. This problem can be approached by utilizing known
underlying tendencies, laws, or patterns at play. In addition, solving the learning
problem can lead to clues to improve such knowledge. These observations relate to
main themes of this thesis, which are learning patterns with kernels and learning

kernels from patterns.

Kriging and Gaussian process regression (GPR) are flexible tools with strong math-
ematical theory that have been used to address the supervised learning problem.
Section 1.1 will give more details on kriging and GPR. Although they are derived
using differing assumptions, they are mathematically identical. GPR, which is also
known as kernel interpolation, involves conditioning model Gaussian processes to
make predictions. The mathematical theory has been well known since at least the
1940s, but was not regularly used in applications until the 1970s [109, Sec. 2.8].
Meanwhile, in the Geostatics field, kriging was developed in the early 1950s (with-
out Gaussian Process theory) by Danie Krige with the goal of calculating unbiased

estimates in the mapping of natural resource potential [16, 79].

Kriging is commonly used in geological mapping applications, such as soil analysis
[88] and satellite image classification of land [1 | 5], as well as in the research of air
quality networks such as the justification of optimal sensor locations [10] and the
use of low-cost sensors which may have both poorer accuracy than their traditional
counterparts and data gaps in time and space [I, ]. Another application is in
the mapping of the distribution of metals in galaxies to gain clues to the process of
their formation [12, ]. All of these mapping applications are regressions based

on spatial data.

One-dimensional signal analysis problems can also be approached with GPR, an
overview of which can be found in [ 13]. Examples include detecting the periodicity
in weather and climate data [98] as well as the quasi-periodicity in stellar cycles
[2]. GPR is also used in detecting changepoints (i.e., points in the signal where the

characteristics change suddenly). Examples of this use include detecting changes
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in disease incidence or stock market data [ 1 13]. More uses in the physical sciences

can be found in [16].

In addition to these physical applications, GPR can be used in the general classifi-
cation or regression of data, which is also known as supervised machine learning.
One such example is creating automated real-estate price appraisals based on data
including square footage, condition, and age [¢1]. GPR is also applied in sports
analytics models. It is used in the estimation of the rate of injuries and recovery
time in soccer [71]. It is also used in the regression of probabilities of outcomes
in each National Basketball Association game based on individual player statistics
[82]. Details on the use of GPR and comparisons to its kernel method relative,
Support Vector Machines (SVM), in the context of machine learning can be found
in [109, ]. Within this genre, the canonical examples involve the construction of
an image classifier with the MNIST or CIFAR databases. Each is divided into 10
classes, where MNIST consists of images of each of the 10 written numerical digits.
CIFAR image classes include 6 various types of animals and 4 types of vehicles.
Between the two, GPR methods are much more successful in the MNIST database,

with performances approaching those of modern Neural Network (NN) approaches

[136, 156].

1.1 Theory of kriging and Gaussian process regression

The supervised learning problem can be formulated as follows:

Problem 1. Suppose u : X — Y is unknown. Given x; and y; = u(x;) for

i=1,...,N, estimate u.

The spaces X and VY are referred to as the input and output spaces respectively.
The observations (x;, u(x;)) are designated the training data set.! In many con-
texts, a testing set (x!,u(x!)) is defined to quantify the accuracy of the estimated
relation. Explicitly, a loss function dependent on u*(x!) — u(x!) is used, such as
i (ot (xh) — u(x! ))2. In interpolation problems, u* agrees with u over the training
set, i.e., u™(x;) = u(x;). In contrast, regression problems have a slightly altered as-
sumption where observations of the output are noisy, i.e., (x;, u(x;) + ;) for random,

independent noise ;.

Tt is common to refer to u(x;) as the label of x;.



Simple kriging

As described in [97], there are multiple variants of kriging. We first discuss the
mathematics behind Simple kriging. It is assumed that X : Q — R is a random
real-valued function on some domain € (typically € c R") with known finite mean
and covariance functions m(t) = E[X;] and k(¢,t’) = Cov(X;, X;-). There are no
assumptions made on the distribution of X beyond its mean and covariance. While
there are no restrictions on the mean function m, the covariance k must be such
that K(D, D) := (k(#',1/))1<ij<n is a positive definite n X n matrix for any finite
subset D := {tl, ..., "} of Q with distinct elements. Any such function k is called
valid or positive definite. We further assume that we have partial measurements of
X at a finite number of measurement points {t!, ..., "} = D c Q (i.e., the training
set). Note that, for simplicity, when only one training data set is used, we write
K = K(D, D). For any ¢ € Q, the simple kriging classifier is a linear combination

of the realized values of X on D:
X, =m(t) + Z w! (1) (X = m (1)), (1.1.1)
tieD

where the weights w(¢) are selected to minimize the variance of the estimation error,

Var(X, — X;). This variance can be calculated using covariance function k:
Var(X; — X,) = k(t,1) — 2k(z, D)w(r) + w(t) "Kw(7) (1.1.2)

with k(z, D) = (k(t,1))1<i<n € R™" and the last two terms of the left hand side
consisting of standard matrix multiplication. To minimize with respect to w(z), we

solve the normal equations and obtain
w(r) =k(r, D)K™', (1.1.3)
and hence the simple kriging interpolator is given by
X, = m(t) +k(t, D)K ' (Xp —m(D)), (1.1.4)

where Xp = {X,1,..., X} and m(D) = {m(¢"), ... m(¢")} are both R™! vectors.
The kriging solution to the supervised learning problem is u*(¢) = X;. Extensions
of this method include accommodating the altered assumptions that the mean is
unknown (i.e., ordinary or universal kriging [97, Ch. 4,6]) or that random function
X is vector-valued (i.e., cokriging [97, Ch. 13]). Note that both are equivalent to
special cases of Gaussian Process Regression, summarized in what follows.



Gaussian process regression

We begin by reviewing the mathematical theory of Gaussian processes and their
regressions. It is shown that this regression with Gaussian assumptions yields the
identical result as simple kriging. It is also pointed out that Gaussian process
regressions in the first form presented in this subsection are actually interpolations.
Regressions using GPR can be accomplished with smoothing as presented in 1.1.12.

We begin by defining Gaussian vectors.

Definition 1.1.1. A R-valued random vector, X, is a normal or Gaussian random
vector with mean p € R and covariance K € R™4, for K a positive definite matrix,

if its probability distribution is given by

P(X=y)=——— el (y- @ K -] (L)

(270)4/2+\/det(K)

Any such X is denoted by X ~ N (u, K) and the mean and covariance of X is indeed
E[X] = g and Cov(X) = K.

Note that there exists a Gaussian vector with arbitrary mean and valid covariance
matrix with unique distribution. Moreover, Gaussian vectors have many useful
properties. For example, the conditional distributions of any two components is
Gaussian. Furthermore, there are more fundamental results such as the Central
Limit theorem. This theorem states that for arbitrary identically independently
distributed (IID) X; with finite variance,

?:1 Xi - E[Xl]
i

converges to a Gaussian vector. We next define a Gaussian process (GP).

(1.1.6)

Definition 1.1.2. A collection of random variables, {X;};cq, indexed by arbitrary
set T, is a Gaussian process if for every finite subset with distinct elements of
Q, {t', 1%, ..., 1"}, the R"-valued random vector (X1, X2, ..., Xn) is a Gaussian

random vector.

We use the identical notation as used in kriging. The mean and covariances of a GP,
X, are expressed here by functions m : T — Rand k : T X T — R, respectively,
where m(t) = E[X;] and k(¢,t") = Cov(X;, X;/) is a valid covariance. Note that
there exists a unique GP, up to distribution, with mean m and valid covariance
function k, which is written X ~ N (m, k). Note that occasionally k is expressed as

T — R function, which implies a stationary kernel k(z,¢") = k(|t — t']).
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Shifting to the theory of regression with Gaussian processes, we examine a natural
question: given a GP X ~ N (m, k) with the observation of X over finite subset D =
{(t',..., " c T, ie,Xp := (X,1,...,Xm)T, what can we say about the distribution
of X; for arbitrary + € T? It is well known that the conditional distributions of
Gaussian vectors are also Gaussian, with distributions that are computable using
the fact that L? orthogonality is equivalent to independence [101, Thm. 7.2]. More
explicitly,

X,|Xp = (X, - k(t, D)K 'Xp) + k(t, D)K ' Xp|Xp, (1.1.7)

where K(7, D) = (k(t,1))1<i<n € R and K = (k (', t))i<i,j<n € R, It can be
shown that X; — k(z, D)K~!Xp is independent to each X,: for all ' € D, implying
that X,|Xp = y has the same distribution as X, — k(¢z, D)K™'(Xp +y). Further

calculations can determine its mean and variance:
E[X/|Xp = y] = m(t) + k(t, D)K™' (y - m(D)) (1.1.8)

and
Var(X,|Xp = y) = k(t,1) —k(t, D)K'k(D, 1), (1.1.9)

withm(D) = (m(t"))lT <i<n € R"¥!. Note that the conditional expectation in equation
(1.1.8) is an unbiased estimator for X; assuming measurement Xp =y and has the
same mathematical form as the simple kriging estimator. Note that this estimator is
defined for all # € T and is affine relative to observation y. With the assumption X
is a centered, i.e., zero mean, Gaussian process our estimator becomes linear and is
simplified to u*(¢) =: E[X,|Xp = y] = k(z, D)Kly.

Gaussian process regression also can refer to the slightly more general context where
itis assumed that model GP X ~ N (m(t), k(t,t")+0>6, ) is the sum of independent
GPs X* ~ N(m(t), k(t,t')) and X ~ N(0,0%8,,/), where 6, = 1 whent = ¢’ and
0:r = 0 otherwise. Inspired from the fact that virtually all measurements contain
error, X is constructed as the sum of a GP modeling the true signal, X*, and a GP
modeling noise, X?. This model is an example of additive Gaussian processes,
which will be discussed further in Sec. 1.4. The conditional expectation of X’ based
on measurements of X = X* + X7 is referred to as a Gaussian process regression
(e.g.,in [109, Ch. 2]). Further, the estimator given in equation (1.1.8) is a special
case of this model with oo = 0. This conditional expectation and variance can be

computed as

E[X;|XP =y] = m(1) +k(t, D)(K + o)~ (y - m(D)) (1.1.10)



and
Var (X!|XP = y) = k(t,7) - k(z, D) (K + o*)"'k(D, 1), (1.1.11)

where again, Xp = (X;1,...,X») and K = k(D, D). This can be shown using the
independence of X* and X7, implying Cov(X;, Xp) = k(z, D), and then using the
same logic as the original GPR derivation. A full derivation of this result can be
found in [109, pg. 16-17]. This form of GPR is no longer an interpolation for o= > 0.
Most practical applications use a centered GP X*, i.e., m(t) = 0, simplifying the

regression formula to
E[X!|XP =y] =k(t, D)(K+ D) y. (1.1.12)

1.2 Mathematical applications and interplay of GPR

Reproducing kernel Hilbert spaces

We discuss interplays of GPR with other mathematical topics, beginning with its
relation to non-stochastic Reproducing Kernel Hilbert Spaces (RKHS) and optimal
recovery. Suppose X is an arbitrary set and H is a Hilbert space? comprised of
functions f : X — R such that the evaluation functional 6,( f) := f(¢) is continuous
for each + € X. This continuity condition can be shown to be equivalent to the
existence of a kernel function k : X X X — R such that (f, k(-,1)) = 6,;(f) = f(¢).
This then leads to kernel (k(-,¢), k(-,¢")) = k(t,t’). Furthermore, there is a one-
to-one correspondence between positive definite kernels k and RKHS’s over set X.
Hence, each kernel corresponds to a unique RKHS norm. Further details on the
RKHS can be found in [ 130, Sec. 4].

With inspiration from optimal recovery [92], we can ask the question, with the
observations of f(D) = (f(ti))ngiSn e R™! (and D = {¢',..., "} c X), what is

the minimax optimal recovery of f:

2
t , 1/ —ll
g' = argmin, max ————, (1.2.1)
S IR
where the norm || - || is the RKHS norm, the max is taken over all f € H and the

min is taken over g € H such that g(#') = £(¢)? Itis shownin [101, Ch. 8, 18] that
the mixed strategy of selecting GP 7 ~ N (0, K) is a saddle point in the recovery
objective function with

¢'(1) =k(r, D)K™'£(D), (1.2.2)

2 A complete inner product space.
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where we use similar notation setting k(¢, D) = (k(t,1))i<i<n € R and K =
(k(t', /)<, j<n- Observe this minimax optimal recovery in the RKHS induced
norm is precisely GPR on data (', f(¢')).

Support Vector Machines (SVMs) can be utilized in conjunction with an RKHS to
construct non-linear regressions or classifiers. This method is commonly referred to
as the kernel method or trick [130]. One similarity with GPR is that the regressions
are both linear combinations of k(¢, ') [130, Thm. 5.5]. This method relies on the
fact that for each valid covariance kernel, there exists some feature map ¢ : X — YV,
which may be computationally intractable, into some space V such that k(z,¢") =
(o(1), p(t'))y. SVM classifiers of ¢ are defined with an affine decision boundary?
which is determined through optimization. A key point is that the learning of the
boundary does not require computations of ¢, only of k, which is the motivation for

calling this the kernel trick.

Links to game theory and optimal recovery

Revisiting the minimax optimality of (1.2.1), a link can be made to game theory.
This link can be interpreted as the solution to a two-player, optimal-recovery game
[101, Ch. 8]. Supposing Player I has a loss that is the objective function in (1.2.1),
while player II has the negative of player I’s loss function. Player I selects f € H
with the aim of maximizing the final recovery error while player II is able to observe
(', f(¢')) and selects the g which minimizes recovery error. The optimal strategy
of this game is for Player I to implement a mixed strategy of selecting f at random
according to f ~ N(0, k) and for Player II to select g as the GPR recovery with data
(¢, £(¢)) [101, Ch. 8, 18].

Such connections between GPR, game theory, and optimal recovery are made ex-
plicit in the exposition of operator-adapted wavelets [101] in Theorems 2.2.3 and
2.2.4. These wavelets are interpretable as a Gaussian conditioning on Sobolev spaces
(or more generally, Banach spaces) with covariance operator Q [ 101, Def7.22,17.10]
and observations corresponding to measurements with functions from the dual space.
These measurement functions can be structured in a hierarchy, which leads to a hi-
erarchy of wavelets. These operator-adapted wavelets can also be shown to be an
optimal recovery in the norm defined by Q as in [101, Thm. 3.1, 12.4]. Moreover,
analogous optimal recovery games in this Banach space setting are also explored

in [101, Ch. 8, 18]. These operator-adapted wavelets can be applied to denoise

3This boundary lies in space V and separates points ¢(z).
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solutions to linear equations [ 53], such as partial differential operators and graph
Laplacians, as well as in linear-algebra computations, such as efficient eigenvalue

and eigenvector calculation [145] and Cholesky factorization [119].

Smoothing and numerical approximation

We next point out the connection between GPR to interpolation and smoothing
by splines. The cubic spline interpolation is a widely used example, where an
underlying relationship is estimated by the unique twice-differentiable, piece-wise
cubic function with hinge-points at the observed datapoints (¢, y'). This can be

calculated either analytically or by the minimization of

/ (f"(t))dt, (1.2.3)

with f constrained to agree with observed datapoints. This is shown to be math-
ematically equivalent to universal kriging in [41]. This can be extended to the

minimization of
/ (Lf(1)%dt, (1.2.4)

where £ is a linear differential operator, the minimizer of which satisfies L* L f =0
at all points that are not datapoints. Furthermore, when data is known to contain

noise, smoothing (regression) splines can be constructed by minimizing

/ (LF(D)2d + AE(D) —y) B~ (£(D) — y) (1.2.5)

for some positive definite B. These splines exchange smoothness and fidelity to
the observations according to smoothing parameter A. It is demonstrated that such

splines are mathematically equivalent to GPRs# in [75].

Gaussian process regression with a noisy kernel, as in (1.1.12), is used in data
smoothing and denoising. This technique is used directly in [157] and [1 13, Sec. 5d]
to study noisy one-dimensional signals. GPR has also been applied to image
denoising by using a noisy covariance kernel that is dependent both on pixel position
and neighboring pixel intensities in [29, 86]. Section 2 will introduce a novel
approach to denoising with GP tools which can be applied to signals, u, where the
prior information of the signal may not be the regularity of u but that of Lu for

some linear operator £ (such as a PDE or graph Laplacian).

Gaussian process regression, along with more general Bayesian models, can be used

in numerical approximation tasks. These applications include solving, optimization,

“The model GP has covariance kernel dependent on B and £ as in [75, eq. 3.5].
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and quadrature (i.e., numerical integration) [20, 30, 96, ]. As in the premise
of Information Based Complexity, the fact that continuous functions cannot be
explicitly stored in finite space leads to the need for algorithms which can manipulate
them with finite measurements. This partial information interpretation leads to the
approach of modeling this known deterministic function with a stochastic method
such as GPR.

1.3 GPR in the context of applications

We now discuss the theory supporting GPR in this section in the context of the
supervised-learning problem. Moreover, common difficulties in its utilization,
namely the specification of the model GP and computational complexity, will be

presented in addition to a sample of techniques to address them.

Classification
For virtually all practical examples, an application of GPR involves using equation
(1.1.8) to generate an estimator by treating observations {(#', y')}1<i<» as the real-
izations of a GP, i.e., X; = y'. For simplicity, we make the common assumption
that the GP is centered, i.e., that X ~ N(0, k). In the case of classification with
n different classes, the conventional method, inspired from one-hot encoding, is to
consider n different IID-centered GPs, X', ..., X" ~ N(0, k). Then, if data point ¢/
is identified to be in class c¢;, we condition our model GP with> X l’f = Ok, Note that
taking thj = Oke; — 1

- can also be used to remove the mean from the outputs. The
classifier for arbitrary point ¢ selects the class given by argmax, E[X*|X [’f = 0k.c,]-
In the remainder of this chapter, we will revert to the usage of a single model GP
for mathematical simplicity, although everything that follows is easily convertible

to this context.

Model selection

The first consideration for any application is the choice of model GP. In most
situations, a centered GP is assumed (i.e., m(z) = 0), in which case only the
choice of covariance kernel function must be made. However, for continuous
input domains such as Q = R?, this choice has an uncountably infinite degrees of
freedom. Intuitively, the aim is to use a kernel k(z, ") which is large precisely when
the measurements X; = y; and X, = y,» are expected to be correlated. The contexts

of some problems may make this selections relatively clear. For example, in physical

56 i,j is the Kronecker delta, taking value 1 if i = j and 0 otherwise.
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mapping applications, measurements at nearby points may be expected to be better
correlated than faraway points. In other applications such as high dimensional image
data, it is less clear and we have to learn a kernel. Note that kernels, which are poor

metrics of similarity, lead to poor estimators that do not generalize the training set.

Typical approaches for model selection involves starting with a family of kernels,
defined as a set of covariance functions {kg}, parameterized by 6, living in some
parameter space (typically a R" subset). Each kernel kg corresponds to a GP
X% ~ N(0,kg). Then an “optimal” kernel in some predefined sense is selected
from this family. Note, however, that this approach still requires the choice of kernel
family, which is non-obvious in many contexts, such as image recognition or signal
analysis. Common choices of kernel families can be found in chapter 4.2 of [109],

including the squared exponential® kernel

2
Uil ) 13.1)

k(t,t') =ex ( -
(1,1") = exp Y
with a single free parameter o, which is the length-scale of the GP.

In the context of kriging, the vast majority of geostatistical mapping applications use
variogram fitting [ | 7]. Variogram kernels are defined as the function f(|t—¢’|) where
k(t,t") = f(|t—1']). A family of variograms are selected with parameters f(0) > 0,
lim;, f(¢), and the rate f converges to this limit value. These parameters are
known as the nugget, sill, and range of the variogram. Traditionally, these are
obtained by dividing all pairwise distances into bins, estimating the variance of

pairs in each bin, then parameter fitting.

Maximal likelihood estimates

A common technique for selecting kernel parameters is Maximal Likelihood Esti-
mation (MLE) [109, sec. 5.4.1]. As the name suggests, we calculate the likelihood
of each kernel in the family kg, i.e., P(X]”) =y), and maximize @ over its parameter
space. Applying (1.1.5), for Kg = (kg(¢',#/))1<i j<n, it holds true that

1 1 _
xp[-=y Ko 'y]. (1.3.2)

(27)/2+[det(Ky) TP

Moreover, maximizing above equation (1.3.2) is equivalent to minimizing

P(X} =) =

£(0) =y K¢y +log(det(Kyg)), (1.3.3)

®Also commonly known as the Gaussian or radial basis function (RBF).
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which is a linear mapping of the negative log-likelihood of (1.3.2). The optimization
of L is typically non-convex, and parameter spaces with many degrees of freedom
usually need an application of gradient descent. In lower-dimensional parameter
spaces, the analytical calculation of gradients with Frechet derivatives are usually
tractable. Note that although kriging is a distribution-free technique and likelihoods
are undefined, MLE is still commonly applied. Due to the mathematical equivalency
to GPR, likelihoods of the equivalent GP can be used for kriging covariance kernel

learning [53, ].

The MLE method can be generalized theoretically by examining the parameters in
a Bayesian approach. We suppose X is a mixture of random variables, i.e., with
probability P(6), X has distribution given by X?. Then with measurements Xp =y,

we can apply Bayesian inference to obtain conditional probabilities

P(8ly) = w. (1.3.4)

p(y)

Notice that if p(@) is uniform, then finding the maximal likelihood on P(8]y) is
equivalent to that of P(y|@) as in the MLE approach. Additionally, this leads to
model selection that is regularized via the prior, P(€), where high probabilities
are assigned to more “regular” kernels. Other than for the simplest examples,
calculating such distributions and their expectations is intractable. Methods such
as Monte Carlo, however, can be used to make an estimation. Further details on

Bayesian and MLE model selection can be found in [109, ].

Cross-validation

The generalizeability of a model is a desired quality. This loosely means that the
model is not overfitting training data and is able to make predictions. A common
method for quantifying this generalizeability is cross-validation (CV) [109, Sec. 5.3].
A subset of the training data is designated the validation set and the remaining
training data is then used to construct a GPR estimator. The estimation error on
the validation set serves as a loss function for CV. While the exposition in this
subsection is restricted to the GPR setting, it can be extended to other supervised

learning techniques.

A common approach is to use cross-validation on multiple different validation sets,
which requires multiple GPR calculations. Typical approaches are k-fold cross-
validation, where the training set is split into k disjoint and equal sized subsets.

Then every combination of k — 1 subsets is used to generate a classifier to estimate
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validation accuracy on the final subset. Typically k is taken to be approximately 3
to 10. This is implemented by minimizing the following loss with respect to the

kernel parameters

k
Lev(9) = Y log p(Xf =yilX? =y-) (1.3.5)

i=1
where Xf and X? ; refers to the measurements of GP X? on the i-th disjoint subset
and all other data points in the training set, respectively. Furthermore, y; and y_x
denote the corresponding training subset outputs. This is calculable by estimating
the conditional distribution XZ b « = Y-k as in equation (1.1.7). A notable special
case is leave-one-out cross-validation (LOOCYV), which takes k = n, i.e., the size
of the training set. A total of n classifiers are generated from each of the possible
selections of n — 1 training points to classify the final point. While LOOCYV requires
n kernel inversions, the fact that each of the interpolation sets differs by a single

training point can be exploited in a computational shortcut [109, Eq. 5.12].

The Kernel Flow (KF) algorithm [154], presented in Section 6, is a kernel-learning
method that is a variant of CV. It operates on the same principle that a kernel is
desirable if it is able to accurately generalize a subset of training data to obtain
accurate estimates of the labels of the remainder. The technique optimizes kernel
parameters with an objective function emulating this interpolation accuracy over
various randomly selected training subsets. We obtain data-efficient kernels which

are able to compute accurate interpolations with small amounts of the data.

Comparisons between MLE and CV

Some early work comparing of MLE and CV in learning an appropriate spline
smoothing factor (i.e., 4in (1.2.5)) can be found in [77, , ]. Inthe GPR setting,
a classical result is that the interpolation with MLE and CV will be asymptotically’
equivalent within a fixed domain when using a mis-specified covariance kernel®
[126, , ]. More recent works have been focused on theoretically bounding
the approximation error of MLE or CV learned kernels [3—6, 72] with Gaussian or
Matérn kernels. These results examine the cases where the true covariance function
either lies and does not lie in a specified kernel family. Bounds are obtained

in both the fixed-domain and increasing-domain asymptotics on the number of

7 Asymptotic in number of observation points.
8The mis-specified kernel is assumed to be mutually absolutely continuous with the true covari-
ance kernel.
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training points. The fixed-domain case assumes that the domain containing the
observations is fixed while the latter assumes that the size of the domain increases
with training point densities bounded below. The experimental design (i.e., the
placement of the training points) is usually taken to be uniform random within the
domain or selected with structure, such as Latin hypercube sampling or a grid.
On a high level, [3] shows that when the covariance kernel families are correctly
specified, the GPR with kernel learned from MLE outperforms the one learned
from CV. In contrast, for mis-specified kernel families, CV yields better numerical
results than MLE. Most recently, fixed-domain approximation results for kernel
parameter learning over compact parameter spaces, which include MLE and CV,
without the need of asymptotics have been established in [133, ]. Note that
in typical machine learning applications with high dimensional data, the curse of
dimensionality requires the number of training points to be intractably large to
observe this asymptotic behavior. Further, the distribution of data points is almost

never uniform.

Computational costs

Another important consideration is that the computation of GPR involves the inver-
sion of the kernel matrix, K = (k(¢, ¢/ Di<ij<n € R, where n is the number of
training points in our regression. The computational complexity of this matrix inver-
sion is O(n?) and requires O (n?) of memory, which quickly becomes prohibitively
expensive in large data sets. Furthermore, when applying MLE or CV, there may be
a need to evaluate the GPR and possibly its derivative for multiple parameters. This
has inspired work on techniques to avoid this explosion of computational costs, an
overview of which can be found in chapter 8 of [109] as well as in [47, 85]. The
simplest computational shortcut is regressing on a subset of the original training set
where the subset is selected either randomly or via some algorithm such as cluster-
ing. Others include using sparse kernels, i.e., k(¢,¢") = f(|t—t’|) which vanishes for
sufficiently large |z —#’|; obtaining low-rank approximations of K; creating localized
models, or “experts,” of the GP estimator; or using an exponential kernel, which
has a tri-diagonal inverse [46]. GPR over scalar inputs also can be computation-
ally accelerated to (n) time using Gauss-Markov processes [52, Sec. 1.2] or using
Structured Kernel Interpolation (SKI) [140], which uses a relatively low number of
inducing points to estimate the kernel. Note that SKI is also applicable when the
input space is of low dimension, d < 5. Kernels that are additive can use these

scalar input GPR tricks to obtain (n) complexities and will be discussed further in
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Section 1.4.

1.4 Additive Gaussian processes and generalized additive models

This section will review additive Gaussian processes and their connection with the
family of generalized additive models. An example of additive GPs has been intro-
duced in the GPR in equation (1.1.12) with a noisy covariance kernel constructed
as the sum, or mixture, of X = X* + X?. The conditional distribution of X; with

respect to measurements of X are computable as in equations (1.1.10) and (1.1.11).

Gaussian process conditioning of mixtures

With no changes in argument, we can generalize to mixtures of arbitrary indepen-
dently distributed GP’s, i.e., X' € N(0, k;) with X = X'+ .-+ X™. Tt holds true
that

BIXXp =y] = k(e D)( 3 K1) 'y and

C (1.4.1)
Var (X/|Xp = y) = k(1 1) — ki(r, D)(Z K,.) ki(D,1),

1
due to the independence of X’ and X — X'.

Some applications for this framework will be discussed. An example of these
additive GPs is Multiple Kernel Learning (MKL), which aims to learn the mixture
of pre-specified kernels, k;. These kernels are of the form k = }; B;k; (with
Bi € R) that best models the problem at hand [54]. The separation of periodic and
non-periodic components in a signal can be accomplished by applying (1.4.1) to
periodic and non-periodic kernels [44]. Many machine learning networks output
histogram data, and some classifier of such data is needed. The intersection kernel,

which is the sum of pairwise minimum bin counts

N
Kint(x,x) = Z min(x;, x;) (1.4.2)
i=1

applied to a GPR classifier is examined in [ 14]. This kernel [87], as well as
other types of histogram kernels [137], can also be used in an SVM classifier.
These kernels are additive, defined loosely as each sub-kernel in the mixture being
dependent only on one component. They lead to additive models, which will be

addressed in the next section.
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Additive models

We next examine these additive mixtures of GPs which lead to additive regressions,
i.e., regressions which can be decomposed into regressions over each component.
We suppose that the data input space is Q@ ¢ R? and that X ~ N(0, k) with kernel

k
k(t,t) = Z FGRAR (1.4.3)
j=1

where 7; represents the j-th component of 7 € RY, meaning that the kernel k j in
the mixture is dependent only on the j-th component of the input data. GPR on

X ~ N (0, k) with an additive kernel leads to the following estimator:

d
E[X|Xp =y] = ) kj(1;, D)K 'y, (1.4.4)
j=1
where kj(tj,D) = (kj(tj’tj'))lsiSn and K := k(D,D) = (2] kj(t;,tjf))lsi,ksW In
each term of the sum, the dependence on ¢ is only on a single component®, and

(1.4.4) can be written as
d
E[X,Xp=y] =) f;). (1.4.5)
J=1

Such a regression is an example of a generalized additive model (GAM), which is
defined to be of the form

d
g(f(0) =B+ fi(t)), (1.4.6)

Jj=1
where link function, g, is smooth monotonic, and hence invertible. It is sometimes
taken to be the identity, in which case the regression is also an additive model.
Another common selection is the logistic function to model probabilities between
0 and 1. Models of this form are favorable due to their easy interpretability,
since the contribution to the output from each component of the data space is
easily discernable in f;. Furthermore, data with such additive dependence are less
susceptible to the curse of dimensionality. The additive structure can be used to
relate datapoints far away in R but with similar j-th components. In other words, a
well-sampling of high dimensional spaces no longer requires an exponentially large

quantity of data, and kernels of the form K(z,¢") = f(|t — ¢|) have exponentially

“Though there is dependence on other components of training data points, 7.
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fewer pairs of highly correlated points!© than additive kernels as dimension increases.
Additive models also have theoretical motivation due to the Kolmogorov-Arnold
representation theorem, which states that every continuous function f(zq,...,%z)

admits an additive form

2d d
Fts .o ta) :Zcpq(z%p(z,,)). (1.4.7)
q=0 p=1

A constructive proof of which can be found in [13]. Further, [124] shows any

continuous f is expressible in a restricted additive form

2d d
ferofy = 2,0 D] Aty +na) +4), (1438)
=0 p=l

for a continuous @, Lipschitz continuous! ¢, and n, 1, € R.

GAMs have been in the literature for decades. Most classical fitting techniques
rely on some variant of backfitting [59, ].  This method involves iteratively
estimating f; based on g(f (7)) — B — 2%, fi(#;), which is interpreted as the residual
Jj-th component of the GAM. Typically, f; is estimated based on a spline fitting
of the residual. More recently, this has been refined to a block-coordinate descent
refinement algorithm, in which parameters specifying the GAM are minimized with
respect to a loss function iteratively by block [18]. Another recent technique uses
boosting, which creates multiple GAMs using multiple subsets of the training set.
The array of models is then combined, either through averaging or through ensemble

voting, leading to a model superior to each of its constituents.

The connection to additive kernel GPR can be seen in methods to avoid the full
(n*) GPR computational cost. An algorithm inspired by backfitting can efficiently
compute GPR with an additive kernel, while also using a trick to compute scalar
input GPR in (n) complexity [52]. Furthermore, Structured Kernel Interpolation
(SKI) can be used to approximate scalar-valued kernel  ;, leading to computationally
efficient machine-precision estimates of kj(D, D)v [26]. Combining this with the
conjugate gradient method leads to GPR that is computable in linear time. Moreover,
SKI can be applied to low dimensional input spaces, so it is possible to apply
additive GPR to a mixture of sub-kernels that are dependent on approximately
d < 5 dimensions of the input space.

10 Assuming that only nearby datapoints are correlated in the model, i.e., f(d) is only large when
d is small.
11 e., continuously differentiable with bounded derivative.
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In [43], the comparison is made between additive kernel K4 = } k(#;, /) and tensor
kernel'? Kg = [] k(#;,t]), where k is a one-dimensional RBF kernel. It is done
by considering the ratio at which the training data reduces variance in testing data
estimates, which the Durrande, Ginsbourger, and Roustant term predictivity. This

predictivity is mathematically defined as

T repe Var(X,Xp)  Syepo, k(t, DK 'K(D, 1
ZteDtest Var(X;) ZteDtest k(t,1) ’

for X ~ N(0, k), with D and D being finite training and testing sets, respectively.

Prp=1-

(1.4.9)

Note that Py p varies between O and 1, where Py p = 0 implies no improvement in the
model is made with the knowledge of the training data. On the other hand, Py p = 1
means that testing points are known without uncertainty with training measurements.
By comparing Py, p and Py, p for data sets of differing dimensions, the authors
conclude that the additive model is more predictive for higher dimensional sets
and the converse for lower numbers of dimensions. They draw similar conclusions
by looking at the mixture k = k4 + kg (with X ~ N(0,k), X4 ~ N(0, k), and
X5 ~ N(0, ks)), and analogously comparing the ratios of the variances of X/|Xp
with X2 and X5|Xp with X?.
This is generalized in [45], which compares m-th order interaction terms,

kn(tt) = > [ [k, (1.4.10)

1<ji<<jm<n Ji

with full kernel given by the mixture of these terms,

d
k(t,t) = Za,ikm(t, t). (1.4.11)
m=1

MLE is used to estimate o07,, the results of which are interpretable as information on
which order terms are the most relevant in modeling the data. Notice that the first
and d-th order terms are additive and tensor kernels, as in the previous example.
This work shows that the first-order additive kernel does not model the structure of

the data for certain real-world examples as effectively as higher order kernels.

This additivity can be generalized from being along the #;-axes to general directions
inT = RY. A greedy-type algorithm called projection pursuit GPR (PPGPR) to

iteratively learn projection directions and parameters in kernel

J
2
k(t,1) = ij(Pjr, Pit')+ 025, (1.4.12)
J=1
12The widely used RBF or Gaussian kernel is an example of a tensor kernel.
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where P; : R? — R projection and each sub-kernel k j is parameterized by 6; in
some family of kernels [52]. This PPGPR has linear computational complexity

using an algorithm inspired by backfitting.

A recent work [26] avoids this pursuit of optimal projections by showing the conver-
gence of kernel } le k(P;t, P;t"), for randomly selected projections P; : R 5> R
and scalar input translationally invariant kernel k, to a limiting kernel. It is also

shown that a relatively small number of random projections in additive kernel
J
ki(t,1) = )" ajk;(Pit, Pit) (1.4.13)
J=1

are needed to obtain numerical convergence in GPR classification error. This leads

to efficient algorithms using the previously mentioned SKI trick.

1.5 Introduction to pattern learning problems

We have summarized the theory and applications of Gaussian process regression
and kernel interpolation (more in depth exposition can be found in [109, 113]). Next,
we will present the background to three problems that we will approach with GPR
in this thesis. We will also exhibit the need to learn patterns in data to effectively

address each problem.

Denoising solutions to linear equations
The context of the denoising of linear equation solutions, as in [153] and further

presented in Section 2, will be introduced using the following problem.

Problem 2. Suppose Q c R¢ (d € N) is a regular bounded domain, L H;(Q) —
H5(Q) is a symmetric positive local3 linear bijection, and || f]|* := /Q fLf is
the energy-norm associated with L. It is assumed that u is such that Lu € L*(Q)
with || Lull;2q) < M and that { ~ N(0,06(x — y)). Given the noisy observation
n = u+ ¢, find an approximation of u that is as accurate as possible in the energy

norm || - ||.

To illustrate this problem, we consider elliptic partial differential operator £ =
—div (a(x)V - ) with Q = [0,1] ¢ R!. Hence, Lu = g € L*(Q) is a partial
differential equation (PDE). In Figure 1.1.1, we show a fixed example of a. In

13Symmetric positive local is defined as fQ ulv = fg vLu, fQ ulu > 0foru # 0, and/Q ulv=0
for u,v € H; (€2) with disjoint supports, respectively.
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Figure 1.1: Illustrations showing (1) a (2) 5 examples of Vu (3) 5 examples of u (4)
1 example of p = u + .

Figures 1.1.2-3, we show 5 examples of u for random realizations of g. We see that
while global characteristics of the examples differ, local patterns, i.e., maxima and
inflection points in Vu and u, respectively, are located in identical locations. As
expected, these locations are determined by the coefficients a in PDE Lu = g. This
denoising problem observes n = u + £, e. g., Figure 1.1.4. The local characteristics
of u are lost in n7 due to noise, and the problem requires an accurate estimation
of these patterns. Section 2 will present a result that shows that Gaussian process
conditioning yields a near minimax recovery, i.e., one that is within a fixed constant
of a minimax recovery in norm || - ||. We also numerically observe the lost patterns

recovered.

Mode decomposition
We next present the mode decomposition problem detailed in Sections 3, 4, and 5.

This problem is summarized by the following statement.

Problem 3. For m € N, let ay, ..., a, be piecewise smooth functions on interval
I C R, and let 01, ..., 80, be strictly increasing functions on I. Assume that m and
the a;, 0; are unknown. Given the observation of v(t) = Y, a;(t) cos (6:(1)),t € I,

recover the modes v;(t) := a;(t) cos (6;(1)).

Modes v; defined in this manner are called nearly periodic, and they must each be

estimated from the composite signal v which loses the patterns of each mode. This
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Figure 1.2: Illustrations showing (1) vi (2) v (3) v3 (4) v = v{ + v2 + v3 in an
example of Problem 3.

problem is made more challenging in Section 4, where we generalize the base cosine
waveform, i.e., defining v(¢) = X", a;(t)y(6:(¢)) for some known square integrable

periodic y.
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Figure 1.3: Illustrations showing (1) vi (2) v (3) v3 (4) v = vi + v2 + v3 in an
example of the variant of Problem 3 with arbitrary unknown waveforms.

This is further generalized in Section 5 to mode recovery when each waveform is
unknown, i.e., defining v(¢) = Y, a;(1)y;(6:(¢)) for unknown square integrable
periodic y;. Figure 1.3 illustrates signal v composed of modes vy, v,, and v3 with
arbitrary waveforms. The waveform patterns of each mode are mixed and become
difficult to discern in v. Additionally, mode decomposition with the presence of

noise in the observed signal v(¢) is addressed in [102, Sec. 10].

Image classification
We describe the image classification problem, which is a canonical example of
machine learning and artificial intelligence. A classification problem, which is a

form of supervised learning, is informally given in the following statement.

Problem 4. Suppose the domain Q c RN is divided into multiple classes. Given
training data (x;, y;) where x; € Q and y; is the class of x;, learn a classifier of Q,

i.e., a mapping from all x € Q to class y(x), that is accurate on testing data (x!, y').
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In the image learning problem, the data of each image consists of a grid of pixels. In
the case of grayscale images, each pixel takes a value in R representing brightness at
each position. Overall the image can be expressed equivalently in matrix or vector
form, i.e., R™" or R™", respectively. However, in RGB color images, each pixel
represents the brightness of each of the red, green, and blue components and hence

each image is an element of R or R3"",

While it is unknown exactly how the human brain is able to understand the content
of images, it is more naturally suited to recognize patterns than a computer, which
only observes the vector corresponding to brightness at each pixel. The aim of
the image classification problem is to automate this human pattern recognition by
constructing a map from high dimensional image space to class. Only recently in the
2010s have accuracy rates of machines exceeded those of humans [61, 64], showing
the difficulty of this problem.

We present four datasets with training images sampled in Figure 1.4. The top row
shows examples from the MNIST dataset [83], which consists of 60000 training and
10000 testing grayscale images of written digits O through 9. Each image is of size
28 x 28 and classified according to digit into one of the 10 classes. The middle row
shows examples from fashion MNIST [144], which, identically to MNIST, consists
of 60000 training and 10000 testing 28 X 28 grayscale images. These images,
however, are of articles of clothing, divided into 10 classes: t-shirt/top, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. The CIFAR-10
and CIFAR-100 datasets [80] both have 50000 training and 10000 testing 32 x 32
RGB images. The CIFAR-10 and CIFAR-100 datasets differ in having 10 and 100
image classes, respectively. The CIFAR-10 classes are airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. A list of the CIFAR-100 classes can be
found in [0, Appx. D].

Both MNIST and fashion MNIST images are expressible as R’%% vectors. The
CIFAR-10 and CIFAR-100 images are expressible as R3%72 vectors. A well known
challenge in learning and classification problems over high dimensional spaces is that
an exponentially large training dataset is needed in a dense sampling. For example,
in Q = [0, 1]", approximately 10" points are needed to sample € such that each
point is at most 0.1 units away* from the nearest other point. This issue is known

as the curse of dimensionality. Learning is made possible in MNIST, CIFAR, and

14Djstance measured with the Euclidean metric
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Figure 1.4: The top row shows representatives from the MNIST dataset with images
in the classes 5, 0, 4, 1, and 9, from left to right. The second row shows fashion
MNIST images from the classes sneaker, pullover, sandal, sandal, and T-shirt/top.
The third row shows CIFAR-10 images from the classes frog, truck, truck, deer,
and automobile. The bottom row shows CIFAR-100 images from the classes cattle,
dinosaur, apple, boy, and aquarium fish.

other real-world image datasets because the set of images in each class is a relatively
low-dimensional space embedded in the whole image space. Indeed, a randomly
selected image in the MNIST or CIFAR image spaces will almost always appear as
noise and has an infinitesimal probability of containing the defining patterns and
characteristics of a particular image class, such as a sandal or automobile. The digit
MNIST and CIFAR-10 datasets have been shown to have effective dimensions of
approximately 15 and 35 [123]. Further, the dimensions of the spaces of individual
classes in digit MNIST have been estimated to be between 8 and 13 [21, 1. We
show how incorporating kernel techniques into conventional image classification

methods can improve accuracy rates in Section 7.
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1.6 Patterns and kernels

As discussed in Section 1.3, when applying GPR to general regression problems,
the selection of model GP®5 greatly influences the result. An appropriate covariance
kernel which models the patterns of the data must be chosen. The conventional
approach is to make a selection based on underlying assumptions. This chosen
kernel is then used to make a predictor incorporating both the training data and

assumptions of covariance.

This thesis will present novel approaches to the pattern learning problems discussed
in Section 1.5. In the denoising and mode decomposition problems, we use a kernel
inspired from assumptions in the respective problems. Then, we will estimate
patterns of the PDE solution Lu = g € L?(Q) and of each mode v; in signal
v =v1 +---+v, with GPR along side respective conventional techniques. We will
further elaborate learning patterns with kernels after this paragraph. In the image
learning problem, there are no assumptions on the structure of the high-dimensional
image vectors. A covariance kernel that effectively models image data is a well
known challenge. We present the Kernel Flow (KF) algorithm at the end of this
section as a method for data-based kernel selection, in other words, for learning

kernels from patterns.

Learning patterns with kernels

The first main theme of this work will be showcased using the denoising and
mode decomposition problems. In both of these contexts, we overview how GPR
using kernels constructed from the assumptions of each problem is able to recover
underlying patterns. As illustrated in Figures 1.1, 1.2, and 1.3, these patterns are
learned from data where they are visually incomprehensible due to corruptions from

either noise or other modes.

In the denoising problem, we utilize the operator-adapted wavelet, also known as
gamblet, transform [153]. These hierarchical wavelets are defined to be associated
with a particular operator, and in the context of Problem 2, we choose L-adapted
wavelets. Exposition on gamblets will be given in Section 2.2, and further details can
be foundin [101]. Theorem 2.2.4 presents the result that these gamblets are precisely
the conditional expectation of the canonical Gaussian field!® corresponding to £

with respect to hierarchical measurement functions. A truncation of the gamblet

150r equivalently the selection of kernel.
16A Gaussian field is a generalization of a Gaussian process in Banach Spaces. Gaussian fields
are GPs when point-wise evaluation is continuous. Further details can be found in Def. 2.2.1.
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transform described in Theorem 2.3.1 is found to be within a constant of a minimax
optimal recovery. This denoising is interpretable as a Gaussian conditioning with
covariance kernel derived from L. The length-scale of the conditioning is dependent
on the signal-to-noise ratio in the assumption of the problem. A conventional method
for denoising smooth signals involves thresholding empirical wavelet coefficients.
We numerically compare the near-minimax optimal recovery with thresholding

gamblet transform coefficients in Section 2.4.

Our approach [102] to the mode decomposition problem, kernel mode decompo-
sition (KMD), is outlined in Section 4. There are two main components within
the algorithm: The first, which we name max-pooling, estimates the instantaneous
phase and frequency of the lowest frequency mode in a signal and is presented
in Section 4.1. It is a close variant of the continuous wavelet transform (CWT)
[24], which we summarize in Section 3.2. The second component uses GPR to
estimate the instantaneous amplitude and phase of this lowest frequency mode and
is summarized in Section 4.2. We define a GP with a covariance kernel constructed
from Gaussian-windowed trigonometric waves, i.e., Gabor wavelets [48]. GPR then
is able to estimate the instantaneous phase and amplitude of the lowest frequency
mode. Further, when the base waveform, i.e., y; in v(¢) = X a;(t)y;(0;(t)), of
each mode is unknown, GPR can be applied to estimate y; as presented in Section
5.1. These algorithms were extended in [102, Sec. 10], showing the method can be
constructed to be robust to noise, vanishing amplitudes, and modes with crossing
frequencies. We find that patterns within each mode can be estimated with GPR
from the sum of modes, even when these patterns are visually indistinguishable in

the composite signal.

Learning kernels from patterns

We will discuss the Kernel Flow (KF) algorithm [154] next. At a high level, the
algorithm is interpretable as learning kernels from patterns with a method inspired
by cross-validation. The algorithm is described in Section 6 and operates under
the principle that a kernel is desirable when it can make low error predictions with
small samples of the whole data set. This error is quantified by selecting N random
training points and computing the kernel interpolation with a further random N /2
of these points. We compute the error of the of the interpolation on the other N /2

points. Assuming these interpolations are written as 1~/ and u¢ respectively, the
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error is quantified as the KF loss function,
et =,

0= , (1.6.1)
2
™12,

and the KF algorithm selects a kernel with optimization. Since this loss function is
dependent mainly on the training data, this method selects a kernel based on patterns
in that data. We present examples throughout Section 6 including on the MNIST
dataset. We find that this technique is able to learn kernels which can predict classes
accurately only observing one point per class. Additionally, we observe evidence of
unsupervised learning since archetypes within each class appear to be learned. A
further example of pattern learning applying the KF algorithm can be found in [57],
where it has been applied to data in chaotic dynamical systems to learn a model

kernel.

An application of the KF algorithm to Artificial Neural Networks (ANNs) will
further be demonstrated in Section 7 to improve key performance statistics in MNIST
and CIFAR image classification problems. These ANNs are widely used to address
this problem and are defined as the mapping

fo) = (f o f" Voo i) () (1.6.2)

This map has input x and n layers fg(:)(z) = ¢(W;z + b;) parameterized? by the
weights and biases 6; := (W;, b;), 6 := {61,...,0,}. The output of fy is in R,
where ¢ represents the number of classes in the dataset. This is converted into
a classifier by selecting the component with largest value. The parameters 6 best
modeling the patterns of the data are learned by optimizing the error of the classifier,

usually with cross-entropy loss!®, on the training data.

Kernels can be incorporated into ANNs by allowing fy to map into a higher di-
mensional space and applying kernel interpolation on the result, which leads to an
improvement of error rates [ 103, Sec. 10]. Further improvements can be made by
reverting to the standard fy largest component classifier and constructing a kernel

dependent on intermediate-layer output
R (x) = ( g(f) o 0(1,’:1) 0---0 ;Il))(x), (1.6.3)

fori = 1,...,n. The KF loss corresponding to this kernel is then used in tandem

with the standard cross-entropy loss, which leads to improvements in testing error,

17W6:ights, W;, are linear operators and biases, b; are vectors. The function ¢ is an arbitrary
function, typically taken as the ReLU, ¢(z) = max(0, z).
18This loss is defined in equation (7.0.4).
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generalization gap, and robustness to distributional shift. Details on our numerical
findings can be found in Section 7.1. Note that kernel interpolation itself is not
directly used as a classifier; the KF loss is used only as a regularization of the
loss function used in the optimization of the ANN parameters. This application
of kernels is a novel method for training and clustering intermediate-layer outputs
in conjunction with the final output fy. We present numerical experiments that
show the KF loss function aids in the learning of parameters which most accurately

classify patterns in images.
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Chapter 2

DENOISING

2.1 Introduction to the denoising problem

[37-39] addressed the problem of recovering of a smooth signal from noisy obser-
vations by soft-thresholding empirical wavelet coefficients [37]. More recently, [33]
considered the recovery of x € X based on the observation of Tx + £, where ¢; is IID.
N(0,0%) and T is a compact linear operator between Hilbert spaces X and Y, with
the prior that x lies in an ellipsoid defined by the eigenvectors of 7*T. [33] showed
that thresholding the coeflicients of the corrupted signal 7x + £ in the basis formed
by the singular value decomposition (SVD) of T (which can be computed in (N3)

complexity) approached the minimax recovery to a fixed multiplicative constant.

The contributions presented in this section [ 1 53] address denoisings in the following
formulation. Suppose

L:H(Q) —» H(Q) 2.1.1)

is a symmetric positive local® linear bijection with s € N* and regular bounded
Q c R? (d e N). Let || - || be the energy-norm defined by

Jul|? := / ulu, 2.1.2)
Q

and write
(u,v) ::/u.[:v (2.1.3)
Q

for the associated scalar product. Further, define
Vi = {u € HJ(Q) : Lu € L*(Q) and || Lull 20y < M}. (2.1.4)

Further, let
 ~N(0,0%5(x - y)) (2.1.5)

2

be white noise in domain Q with variance o~. The following is the continuous

version of the denoising problem studied in this section.

Problem 5. Let u be an unknown element of Vy, given the noisy observation
n = u+ ¢, find an approximation of u that is as accurate as possible in the energy

norm || - ||.

'Symmetric positive local defined as fg ulv = fg vLu, fQ ulu > 0foru #0,and fg ulv=0
for u, v € H;(€2) with disjoint supports, respectively.
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This problem will be illustrated in the s = 1 case with the linear differential operator
L = —div (a(x)V . ) where the conductivity a is a uniformly elliptic symmetric
d X d matrix with entries in L>(Q). This example is of practical importance
in groundwater flow modeling (where a is the porosity of the medium) and in
electrostatics (where a is the dielectric constant), and in both applications @ may be

rough (non-smooth) [7, 19].
Example 2.1.1. Assuming

L=—div(a(x)V-): Hy(Q) —» H(Q), (2.1.6)
Prob. 5 then corresponds to the problem of recovering the solution of the PDE

—div (a(x)Vu(x)) = f(x) xe€Q;
u=0 on 08,

(2.1.7)

from its noisy observation n = u + { with knowledge || f||;2(q) < M.

This problem is addressed by expressing 7 in the gamblet transform adapted to
operator £ and applying a truncation to the series. This method is theoretically
proved to yield a recovery within a constant of the minimax optimal recovery
[153]. This method is numerically compared to thresholding the gamblet transform

coeflicients as well as regularization, the minimization of
2 2
V() = il +lv DI (2.1.8)

2.2 Summary of operator-adapted wavelets

We proceed by reviewing operator-adapted wavelets as in [ 153, Sec. 2], also named
gamblets in reference to their game theoretic interpretation, and their main properties
[99, 101, 104, 119]. They are constructed with a hierarchy of measurement functions
and an operator. Theorem 2.2.4 shows these gamblets are simultaneously associated
with Gaussian conditioning, optimal recovery, and game theory. By selecting these
measurement functions to be pre-Haar wavelets, the gamblets are localized both in

space and in the eigenspace of the operator.

Hierarchy of measurement functions

Let g € N* (used to represent a number of scales). Let (I (k))lgksq be a hierarchy
of labels defined as follows. (%) is a set of g-tuples consisting of elements i =
(i1,...,ig). For1 <k < gandie€ 7@ k) .= (i1,...,ix) and 7 ig the set of
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k-tuples 7 = {i(W|i € 7D}, For1 <r <k <gandj=(ji,...,jx) € TPV,
we write j) = (ji,..., j,). We say that M is a 7 x 7() matrix if its rows and

columns are indexed by elements of 7¥) and 7(!), respectively.

Let {¢§k)|k € {1,...,q}, i € 7™M} be a nested hierarchy of elements of H~*(Q)
such that ( ¢f(1))l-e 7 are linearly independent and

(k) _ (k,k+1) , (k+1)
o) = Z D gl 2.2.1)
jeI(k+l)
forie 7MW ke {l,...,q — 1}, where 7&**D js an 7K x 7*+1) matrix and
ﬂ,(k,k+l)ﬂ,(k+l,k) — I(k) . (222)

In (2.2.2), 7%*16) is the transpose of 7(&k*1) and %) is the 7 x 7 identity

matrix.

Hierarchy of operator-adapted pre-wavelets

Let (wl.(k) )ic 7 (0 be the hierarchy of optimal recovery splines associated with (¢§k))i€ 700
ie,forke{l,...,q}andi € 7K

(k) _ (k) p1 5 (k)
ui'= ) AL, (22.3)
jer®
where
AR = (@W)~! (2.2.4)

and ©%) is the 7 %) x 7*) symmetric positive definite Gramian matrix with entries
(writing [¢, v] for the duality pairing between ¢ € H™(Q) and v € H(£2))

k k) -1, (k
0" =gV, £7'¢\9]. (2.2.5)
Note that A¥) is the stiffness matrix of the elements (wi(k) )ier o in the sense that
k k) (k
AY) = (M ). (2.2.6)
Writing ®*) := span{zpl.(k) |ie 70} and BK) = span{wfk) | i e 70}, @) ¢

O*+D and YK = £710K) jmply PK) c wk+D)  We further write [¢X), u] =
(k)
(161" ul) e € BT

The (¢§k))l-€ 7 and (:,[/i(k))l-e 7 form a bi-orthogonal system in the sense that
(61, ¢ = 6 fori, j e 7" (2.2.7)
and the <-, ->—0rthogona1 projection of u € H;(£2) on g0 jg
u® = Z [, uy ™. (2.2.8)

ief (k)
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Multiple interpretations of operator adapted pre-wavelets
Using operator-adapted pre-wavelets, l//l.(k) , we summarize the connections between
optimal recovery, game theory, and Gaussian conditioning. First, we define Gaussian

fields, a generalization of Gaussian processes.

Definition 2.2.1. The canonical Gaussian field ¢ associated with operator L :
Hy(Q) — H™(Q) is defined such that ¢ — [$,£] is the linear isometry from
H=5(Q) to a Gaussian space characterized by

[¢,&] ~ N(0, [|¢]12)
Cov ([¢.£], [@.€]1) = ($, @)

(2.2.9)

pu .
where ||$]l. = Sup,cs o) flfllT” is the dual norm of || - ||.

Remark 2.2.2. When s > d /2, the evaluation functional 5.(f) = f(x) is continu-
ous. Hence, &|s, ceq is naturally isomorphic to a Gaussian process with covariance
Sfunction k(x,x") = (8x, 0y )x.

Several notable properties of these pre-wavelets are summarized in the following

result. Recall we write [¢F), u] = ([(/)l.(k), ul),cruw € R,

Theorem 2.2.3. Consider pre-wavelets t//l.(k) adapted to operator L constructed

with measurement functions ¢§k). Further, suppose that for u € Hg(£2) we define
k k
vi() =u® =¥ 0 [¢f ),u]lﬁf )

1. For fixed u € H;(€2), vi(u) is the minimizer of

Minimize || ||
(2.2.10)
Subject to Y € H(Q) and (60, ] = [, u] .
2. For fixed u € H;(Q), vi(u) is the minimizer of
Minimize ||lu —
lu = v (2.2.11)

Subject to Y € span{ljfl.(k) cie 7MY
3. For canonical Gaussian field &€ ~ N (0, £L™1),

vi(u) =E[£][¢W, €] = [6%,u]]. (2.2.12)
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4. It is true that?

. u—v(u
Te argmin,er (o 73 (@) SUP ”—()H (2.2.13)

\%
etz @) llull

Proof. (1)isaresultof [101, Cor. 3.4] (2) is equivalent to [1 01, Thm. 12.2] (3) and
(4) are results in [101, Sec. 8.5]. O

This result shows that the operator-adapted pre-wavelets transform defined by
vi(u) = u® is an optimal recovery in the sense of Theorem 2.2.3.1-2. Simul-
taneously, v’ () are conditional expectations of the canonical Gaussian field with
respect to the measurements [¢*), -] as in Theorem 2.2.3.3. Another interpreta-
tion of the transform is game theoretic as expressed in Theorem 2.2.13.4. Equation
(2.2.13) represents the adversarial two player game where player I selects u € H;(€2)
and player II approximates u with v(u) with measurements [¢*), u]. Player I and
IT aim to maximize and minimize the recovery error of v(u). This game theoretic
interpretation inspires the name gamblets, referring to operator-adapted wavelets.
Note that the pre-wavelets z//l.(k) lie on only one level of the hierarchy. The following
addresses the construction of a wavelet decomposition of ;(£2) on all hierarchical

levels.

Operator-adapted wavelets
Let (F %)),k <¢ be a hierarchy of labels such that, writing | (®)] for the cardinal of
g,

NaRIEN VAR B VAt (2.2.14)

Fork € {2,...,q},let W) be a T x 75 matrix such that?
Ker(n %10y = Im(w®Ty . (2.2.15)
Fork € {2,...,q}andi € J®) define

x M = Z WDyl (2.2.16)
jer®
and write WK = span{)(l.(k) | i € g}, Then WX is the (-, -)-orthogonal
complement of B¢ in BK) je. BK) = V=D g WK and

%(61) - Q}(l) ® QB(Z) D P ﬂB(q) . 2.2.17)

2L(®, H;(Q)) is defined as the set of H;j(Q) — H; (L) functions that are of form v(u) =
¥ ([¢X),u])) with measureable P : R H; (Q).
3We write M ©)-T and M%)-=1 for the transpose and inverse of a matrix M)
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For k € {2,...,q} write

B .= W gy ()T (2.2.18)
Note that B%) is the stiffness matrix of the elements ( )(J(k>) e g ks 1.6,

k) _ ¢ ) (k)
B ={x;"x;) (2.2.19)

Further, for k € {2,..., g}, define

N® = ARy & gk~ (2.2.20)
and, fori € g%,
k), k),T ,(k
= Y NI (2.221)
jer®

Then defining u® as in (2.2.8), it holds true that for k € {2,...,9}, u®) — (k=1 g
the (-, -)-orthogonal projection of u on WK and

- k), k
u® =50 = 3 [ )y (2.2.22)
iej(k)
To simplify notations, write J(V := 70 B .= AW N .= (1) ¢§1)’X = ¢fl)
forie W, T :=9MDu...ug@D, y, = Xl.(k) and ¢ := ¢§k)’)‘ fori € % and#
1 < k < g. Then the qbl).( and y; form a bi-orthogonal system, i.e.,

(6}, xj]1 =6, fori,je T (2.2.23)
and
W@ =" [¢F ulyi (2.2.24)
ieJ

Simplifying notations further, we will write [¢X, u] for the J vector with entries

[¢,u] and y for the J vector with entries y; so that (2.2.24) can be written
u@ = [¢X,u] - x. (2.2.25)

Further, define the J by J block-diagonal matrix B defined as B;; = Blgl;) if
i,j € % and B; ; = 0 otherwise. Note that it holds that B; ; = ()(,-,)(j>. When
g = oo and U ¥ is dense in H*(Q), then, writing W) := BD),

H(Q) = op , WH) (2.2.26)

4The dependence on k is left implicit to simplify notation, for i € J there exists a unique k such
thati € 7).



33

u@ = y, and (2.2.24) is the corresponding multi-resolution decomposition of
u. When g < oo, (@ is the projection of u on EBZZIQB(") and (2.2.25) is the
corresponding multi-resolution decomposition. Note that the optimal recovery,
game theory, and Gaussian conditioning results in Theorem 2.2.3 also holds for

wavelets.

Theorem 2.2.4. Consider pre-wavelets y; adapted to operator L constructed with

measurement functions ¢*. Further, suppose that for u € H;(Q), we define vi(u) =
ul® = [¢¥X,u] - x.

1. For fixed u € H; (L), vi(u) is the minimizer of

Minimize ||y||

(2.2.27)
Subject to € H(Q) and [¢¥,¢] = [¢X,u] .
2. For fixed u € H;(Q), vi(u) is the minimizer of
Minimize ||lu —
Sl (2.2.28)
Subjecttoyy € span{y; :i € J}.
3. For canonical Gaussian field € ~ N (0, L71),
vi(u) = E[¢|[¢%,€] = [¢*.u]] . (2.2.29)
4. It is true that’
vie argminveL(q)ﬂg(Q)) sup M (2.2.30)
uert @ llull

Pre-Haar wavelet measurement functions
The gamblets used in the subsequent developments will use pre-Haar wavelets (as
defined below) as measurement functions ¢§k) and our main near-optimal denoising

estimates will be derived from their properties (summarized in Thm. 2.2.5).

Letd,h € (0,1). Let (7'1.(1‘)),-e 7 be uniformly Lipschitz convex sets forming a nested

partition of €, i.e., such that Q = Ul-e](k)‘['l.(k), k € {1,...,q} is a disjoint union

except for the boundaries, and Tl.(k) = UJ-e[(kH):j(k):[TJ(-k-'-l), ke{l,...,q -1}

SHere L(®, H;(Q)) is defined as the set of Hj (L) — H;(€2) functions that are of form
v(u) = ¥([#¥,u])) with measureable ¥ : R — H;(Q).
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Assume that each Tl.(k)

radius 6! hK. Writing |Ti(k)| for the volume of Tl.(k), take

, contains a ball of radius 6%, and is contained in the ball of

gt =1 |t 3. (2.2.31)

The nesting relation (2.2.1) is then satisfied with ﬂf];.’kﬂ) = |T](.k+1)|%|rl.(k)|‘% for

(k,k+1) |

(k) _ - _ .
j® =jand T := 0 otherwise.

For k € {2,...,q}, let 7% be a finite set of k-tuples of the form j = (ji,.. ., jk)
suchthat {j %=V | j € W} = 7*-=D ‘andfori € 7*-D Card{j € gK® | j*-D =
i} = Card{s € 7 | =1 = j} — 1. Note that the cardinalities of these sets satisfy
(2.2.14).

Write J%) for the j(k) X j(k) identity matrix. For k = 2,...,¢, let W& be a
T X x 15 matrix such that In(W®-T) = Ker(xk~1K)), wk) (wk)T = j(k) and
W = 0 for (=D % jk=D),

Theorem 2.2.5. With pre-Haar wavelet measurement functions, it holds true that

1. Forke{l,...,q}andu € L7'L*(Q),
lu —u®| < CH || Lullp2q) - (2.2.32)

2. Writing Cond(M) for the condition number of a matrix M, we have for
ke{l,---,q}

C-1p2k=Ds j(k) o plk) < cp=2ks j(k) (2.2.33)
and Cond(BW)) < Ch%.
3. Forie I® and xl.(k) € Ti(k),

190145 (@ ey < CH€™C (2.2.34)

4. The wavelets wi(k), )(l.(k) and stiffness matrices A%, B can be computed to
precision € (in || - ||-energy norm for elements of H;(€2) and in Frobenius

norm for matrices) in O(N log>? %) complexity.

Furthermore the constant C depends only on 6,8, d, s,

| Lutllg-5
I1L]| = =1 E ond
uetrty (@) ullrg @ 2035
1L lullys (< (223
= sup

uer (@ 1 Lutllg-s@)
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Proof. (1) and (2) follows from an application of Prop. 4.17 and Theorems 4.14
and 3.19 from [100]. (3) follows from Thm. 2.23 of [100]. 4 follows from the
complexity analysis of Alg. 6 of [100]. See [101] for detailed proofs. O

Remark 2.2.6. The wavelets zpl.(k), X,-(k) and stiffness matrices A, B®) can also
be computed in O(N log* N log?¢ %) complexity using the incomplete Cholesky
factorization approach of [119].

Theorem 2.2.5.2-3 implies that the gamblets are localized both in the eigenspace
of operator £ and in € space. Further, Theorem 2.2.5.1 shows the accuracy of the
recovery, u®_in £ norm is bounded by L? norm of Lu. This result is used in the

proofs of the denoising result shown in the following section.

2.3 Denoising by truncating the gamblet transform

Near minimax recovery

In this section, we will present the result that truncating the gamblet transform of
n = u + { in a discrete variant of Problem 5 produces an approximation of u that is
minimax optimal up to a multiplicative constant [ 153, Sec. 4], i.e., near minimax.
The discretized version of Hj(€2) is the finite dimensional space spanned by gamblet
wavelets, using pre-Haar measurement functions defined in Sec. 2.2, taken to the
g-th levelS. In addition, the discrete noise used in this problem, ¢ € W(?), is the
projection of the noise (2.1.5) onto ¥(@ (due to (2.2.8)).

Problem 6. Let u be an unknown element of ¥4 c H;(Q) for g < oo. Let { be a

centered Gaussian vector in W'9 such that

E[[o", {1[¢\", 1] = %6 . 2.3.1)

Given the noisy observation n = u + { and a prior bound M on || Lul|;2, find an

approximation of u in ¥ that is as accurate as possible in the energy norm || - ||.

To justify this discrete approximation, recall that by Theorem 2.2.5, we have
lu—u'?| < Ch?*|| Lu|l;2(q)- Hence, with the prior bound on || Lul|;2, this approx-
imation is arbitrarily accurate with g large enough. Let 7 be as in Problem 6 and
let gamblets be defined as in Section 2.2 with pre-Haar measurement functions. For

le{l,...,q},let
!

1) - k), k
D = > 16" ] - W (2.3.2)
k=1
®Note there are no mathematical constraints to the number of levels taken in the decomposition.
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and (¥ =0 € ¥(@. When [ < ¢, ' is a truncation of the full gamblet transform
n=n'9=[¢X,n] - x. Let M > 0 and write

Vit = {u € ¥ ||| Lullz0) < M. 23.3)

Assume that o > 0 and write

[' = argmin,, 0.} B0 (2.3.4)
for
h2s M2 ifl=0
Bl - O.Zh—(2s+d)l + h23(l+1)M2 ifl<l< q- 1 (2.3'5)
h~(2st+d)q 52 ifl=gq.

The following theorem asserts that nm) is a near minimax recovery of u, by which
we mean that the || - || recovery error is minimax optimal up to a multiplicative
constant (depending only on ||.£]|, [|£7!]|,Q,d,d and whose value can be made
explicit using the estimates of [101]). We will also refer to n(l-‘-) as the smooth
recovery of u because, with probability close to 1, it is nearly as regular in energy

norm as u.

Theorem 2.3.1. Suppose v'(n) = n(ﬁ); then there exists a constant C depending
onlyon h, s, | L, I L7, Q d, and 6 such that

sup E[llu —v ()|I*] < Cinf sup E[llu-v(m)|?], (2.3.6)

(q) vin (q)
ueVM ueVM

where the infimum is taken over all measurable functions v : ¥(@ — W@ Fyp-
thermore, if ' # 0, then with probability at least 1 — &,

F 1 s+ 5+
||,7(lk)|| < |lull+C /10g oM (2.3.7)
e

Proof. See [153, Sec. 7]. O

Note that /™ = g occurs (approximately) when g is such that h9 > (%)ﬁ, ie.,
when
— < h?i 7 2.3.8
y (23.8)

and in this case 7@ is a near minimax optimal recovery of #(?). On the other
2
extreme /T = 0 occurs (approximately) when (37)®+@ > h,i.e., when

ag 4s+d

— s> h 2 2.3.
TR (2.3.9)
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and in this case, the zero signal is a near optimal recovery. The signal-to-noise
ratio determines which hierarchical level the truncation occurs. This represents the

length-scale of the Gaussian conditioning. This can be seen in

n®) = E[£][ o™ €] [¢(k),,7]], (2.3.10)

which is a conditioning with the level k hierarchical pre-Haar wavelets ¢¥). The
trade-off between recovering an overly smooth or noisy signal is illustrated in
Fig. 2.2.

Numerical illustrations
Example 2.1.1 with d = 1

4

v(n) —u
s a 1 0.04 Vu
5 0.0001
6 0.02
0.0000
0
4 0.00
0.0001
2 2 ~0.02
0 0.0002
00 02 04 06 08 10 o 0 00 02 04 06 08 10 00 02 04 06 08 10
0.000 0.002 0.000 0.06
0,001 0.000 —0.001 (n) 0.08 Vv(n)
—-0.002 -0.002 —0.002
0.02
-0.003 —0.004 —0.003
. -0.004 )
0.004 _0.006 0.00
0,005 ~0.005
—0.008 —0.02
-0.006 -0.006
00 02 04 06 08 1.0 0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.1|: [153, Fig. 1], the plots of a, f, u, n, the near minimax recovery
v(n) =", its error from u, and the derivatives of u and v(n).

£ E B o §

m

Figure 2.2: A comparison of n"). In this example [ = 4.

Consider Example 2.1.1 with d = 1. Take Q = [0,1] € R, ¢ = 10 and ¢§k) =

1, il i for 1 < i < 2%, Let W) be the 2¢~! by 2% matrix with non-zero entries
’2

0
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defined by W01 = % and W, o; = —%. Let £ := —div(aV-) with

10
a(x) = n(l +0.25cos(2Fx)). (2.3.11)
k=1

In Fig. 2.1 we select f(x) at random uniformly over the unit L?(€2)-sphere of (%)
and let £ be white noise (as in (2.1.5)) with o = 0.001 and n = u + £.

Smi—m) onx € (0,1] and

f(0) = . Let ¢ be white noise with standard deviation oo = 0.01. See Fig. 2.3 for

the corresponding numerical illustrations.

We next consider a case where f is smooth, i.e., f(x) =

Both figures show that (1) v(n7) and Vv(n) are accurate approximations of u and Vu

(2) the accuracy of these approximations increases with the regularity of f.

’ 0.003 1 1.0

Ok
. a f v(n) —u Vu
2.5 0.002+ 0.5
g 20 0.001
-001 0.0
4 [ Il
‘ 1.0 0.0001 \ | lios I
| ) o Vs |
0 0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
0.20 0.20 1.0
U o U] v(n) L, v
015 0.15 0.5
0.15
0.10 0.10 0.10 0.0 W\M
0.5 ML‘
0.05 \\ 0.05 0.05 \J' MW
\ 0.00 _10
0.00 0.00 . . ;
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10

Figure 2.3: [153, Fig. 2], the plots of a, smooth f, u, n, v(n) = n(ﬁ), its error from
u, and the derivatives of u and v(n).

Example 2.1.1 with d =2

Consider Example 2.1.1 with d = 2. Take Q = [0, 1]?> and ¢ = 7. Use the pre-Haar

wavelets defined as ¢§k.) =10 iy jforl <i,j< 2k Let W) be defined
L,J [2_k’2_k]x[2_k’2_k]

be the 3(4%~1) by 4% matrix defined as in construction 4.13 of [99].

In Fig. 2.4 we select f(x) at random uniformly over the unit L?(€2)-sphere of ®(%)
and let £ be white noise (as in (2.1.5)) with o0 = 0.001 and n = u + ¢.



Figure 2.4: [153, Fig. 3], the plots of a, f, u, n, v(n) = nm), its error from u, and
the gradient of u# and v (7).

Figure 2.5: The plots of a, smooth f, u, n, v(n) = n(ﬁ), its error from u, and the
gradient of # and v(n) [153, Fig. 4].

Let £ = —div(aV-) with

7

a(x,y) = B [(1 + %cos(2kﬂ(X+)’)) (23.12)

(1 + zllcos(Zkﬂ(x — 3y))].

Next consider a case where f is smooth, i.e., f(x,y) = cos(3x + y) + sin(3y) +
sin(7x — 5y). Let ¢ be white noise with standard deviation o = 0.01. See Fig. 2.5
for the corresponding numerical illustrations. As with the d = 1 plots, the d = 2
plots show the accuracy of the recovery of u and Vu and the positive impact of the

regularity of f on that accuracy.
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2.4 Comparisons

Hard- and soft-thresholding

Since hard- and soft-thresholding have been used in Donoho and Johnstone [36—38]
for the near minimax recovery of regular signals, we will compare the accuracy of
(2.3.2) with that of hard- and soft-thresholding the Gamblet transform of the noisy
signal [ 153, Sec. 5]. We call hard-thresholding the recovery of u with

q
v@)z}]}]fﬂ“ [ n]) x (24.1)
k=1 je g &)
and
HB(x) = * kl>p (2.4.2)
0 |x|<gB.

We call soft-thresholding the recovery of u with

q

(k) k),
v =)0 > S (g ]y Y (24.3)
k=1 je g k)
and
x—fBsgn(x) |x| >
SP(x) = Begix) Il >$ (2.4.4)
0 x| < B.
The parameters (71, ...,1,) are adjusted to achieve minimal average errors. Since
the mass matrix of ¢ is comparable to identity (see [153, Thm. 10]) and the bi-

orthogonality identities [qﬁX x;jl =0:j, [f, x] is approximately uniformly sampled
on the unit sphere of RY and the variance of [ £, /\(( )] can be approximated by 1/].7|.
Therefore [¢X, u] = BXO-~1[ £, ] and (2.2.33) imply that the standard deviation
of [¢¥)X, u] can be approximated by h~2ks/ \/ﬁ . Therefore optimal choices for
threshold on the k-th hierarchical level follow the power law rX) = h=2k5¢, for some

parameter ?y.

Regularization

We call regularization the recovery of u with v(n) defined as the minimizer of

V() = 7l ) + el (2.4.5)

For practical implementation, we consider A; ; = (zﬁi, W j>, the N X N stiffness matrix

obtained by discretizing £ with finite elements /1, . . ., ry, and write 7 = SN | y;il;
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and = Zfi | zi; for the representation of 7 and ¢ over this basis (7 = u + ¢ and

7 ~ N(0,021,), writing I, for the identity matrix). In that discrete setting we have

N
v(m) = > X, (2.4.6)
i=1
where x is the minimizer of
Ix — y|® + ax Ax . (2.4.7)

Theorem 2.4.1 and Corollary 2.4.2 show that this recovery corresponds to minimiz-

ing the energy norm ||v||> = xT Ax, subject to |x — y| < y with
y=|(I-(aA+D)7)y|. (2.4.8)

In practice y would correspond to a level of confidence (e. g., chosen so that P[|z| >
y] = 0.05 with z ~ N (0, 021y)).

Theorem 2.4.1. Let x be the minimizer of

Minimize  xT Ax
(2.4.9)
subjectto |x —y| <.

If |y| <, then x = 0. Otherwise (if |y| > v), then x = (aA + 1)~y where a is
defined as the solution of (2.4.8).

Proof. Supposing |y| < vy, then if x = 0, then |x — y| < . Further, x = 0 is the
global minimum of x” Ax. Therefore in this case, x = 0.

If |y| > v, then at minimum x, the hyperplane tangent to the ellipsoid of center zero
must also be tangent to the sphere of center y, which implies that Ax = o' (y — x)
for some parameter @. We therefore have x = (@A + I)~'y and « is determined by

the equation |x — y| = vy, which leads to
(I - (@A+D) Hy|=7y. (2.4.10)
m|

Corollary 2.4.2. If |y| > vy, then the minimizers of (2.4.9) and (2.4.7) are identical
with « identified as in (2.4.10).

Proof. V,(|x — y|* + axT Ax) = 0 is equivalent to x — y + aAx = 0, which leads to
x=(eA+1D)1y. O
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Numerical experiments
Example 2.1.1 with d = 1

Consider the same example as in Subsection 2.3. Table 2.1 shows a comparison of
errors measured in L? and energy norms averaged over 3, 000 independent random
realizations of f and ¢ (f is uniformly distributed over the unit sphere of L?(Q)
and ¢ is white noise with o = 0.001). The hard variable thresholding recovery
is as defined in Section 2.4, regularization recovery is as defined in Section 2.4,
and the near minimax recovery refers to v'(n) = n(ﬁ) in Theorem 2.3.1. The best
performing algorithm in each category is in bold. In this experiment, the proposed
near minimax recovery outperforms the other methods in terms of average error and

error variance.

Algorithm L  Error | £L Error || L> Error | L>  Error
AVG STDEV AVG STDEV
Hard variable threshold || 4.78 x 1073 [ 9.64x 107 || 2.25x 107* | 1.07 x 10~*
Soft variable threshold || 4.27x 1073 | 7.70x107™* || 1.65x107* | 5.63x 107>
Regularizationrecovery || 4.37x 1073 | 7.93x 107 || 2.82x 107* | 7.83x 107>
Near minimax recovery || 3.90 x 1073 | 5.30 x 1074 || 1.24 x 1074 | 2.50 x 1075

Table 2.1: Comparison of the performance of denoising algorithms for d = 1.

For reference, the average and standard deviation of the (discrete) energy norm of ¢

used in this trial were 1.68 and 0.06, respectively.

Example 2.1.1 with d =2

Consider the same example as in Subsection 2.3. Table 2.2 shows errors measured
in L? and energy norms averaged over 100 independent random realizations of f
and ¢ (f is uniformly distributed over the unit sphere of L?(Q) and ¢ is white noise
with o = 0.001). In this experiment, the proposed near minimax recovery is the best
or near the best in every error metric (it is slightly outperformed by regularization

in average L error).

For reference, the average and standard deviation of the (discrete) £ norm of this

trial’s £ were 0.250 and 0.06, respectively.
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Algorithm L Error | £ Error || L> Error | L>  Error
AVG STDEV AVG STDEV
Hard variable threshold || 6.95x 107 | 9.78 x 107 || 1.42x10™* | 7.76x 107°
Soft variable threshold || 7.18 x 1073 | 1.57x10™* || 1.90x 10™* | 2.35x 1073
Regularization recovery || 6.90 x 1073 | 1.03x10™* || 1.86x 107 | 1.88x 107>
Near minimax recovery || 6.94x 1073 | 9.58 x 107> || 1.40 x 10™#| 7.29 x 107°

Table 2.2: Comparison of the performance of denoising algorithms for d = 2.
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Chapter 3

THE MODE DECOMPOSITION PROBLEM

This chapter will be devoted to presenting Empirical Mode Decomposition (EMD)
and Synchrosqueezing transform (SST) algorithms. To introduce these topics, we
give the following prototypical mode decomposition problem, with an example
illustrated in Fig. 3.1.

Problem 7. For m € N*, let ay, ..., a, be piecewise smooth functions on interval
I c Randlet 0y,...,0, be strictly increasing functions on 1. Assume that m and
the a;, 0; are unknown. Given the observation of v(t) = Y, a;(t) cos (6;:(1)),1 € 1,
recover the modes v;(t) := a;(t) cos (6;(1)).

U1 V2. vz U
+ +| -

Figure 3.1: [102, Fig. 1], a prototypical mode decomposition problem: given
v =v1 + vy + v3recover vy, vp, v3.

In practical applications, the instantaneous amplitudes and frequencies, i.e., a; and

w; = %, are generally assumed to be smooth and well separated. Furthermore, a;

and w; are usually assumed to be varying at a slower rate than the instantaneous
d;

phases 0;, i.e., %l < el%l and |%| < el

The analysis of this family of signals is found in a wide variety of scientific fields,
a broad exposition of which can be found in [67]. We will briefly summarize
applications in the natural sciences, beginning with meteorology. For instance, time
signals stemming from the geopotential height! can be analyzed. This signal can
be decomposed into modes with differing frequencies [22] and [67, Sec. 10]. The
separated modes are found to correspond to effects from yearly seasonal variability,
the Quasi-Biennial Oscillation (QBO), the El-Nifio—Southern Oscillation (ENSO),

lie., the altitude corresponding to a certain air pressure in Earth’s lower atmosphere.



45

and the solar cycle. The approximate periods of these oscillations are 1, 2, 4,
and 11 years, respectively. These long term climatic effects can also be extracted
from temperature and precipitation data as in [70, 84, ] and [67, Sec. 12]. The
signal corresponding to local sea-level data can also be separated into short-term
effects (such as tides, storm surge, seasonal temperature and precipitation); long-
term, multiyear oscillations (as mentioned in the previous example); and global
sea-level rise [74, ] and [67, Sec. 9]. Furthermore, the recovered modes of local
weather statistics, such as temperature, humidity, pressure, etc., were found to have

associations with the incidence of headaches in [150, ].

Another area where EMD is of importance is in the study of seismological signals
[58, 63, 147]. Specific applications include the denoising of such signals [50, 55] and
the identification of geological features, such as faults, sand boundaries, or resources,
by using seismic reflection data [9, 68, ]. EMD also can use acceleration readings
in buildings to assess structural damage in seismic events, as discussed in [ 146, 157]
and [67, Sec. 14]. Moreover, the structural integrity of bridges can be analyzed by
applying EMD to the response from a passing vehicle [95] and [67, Sec. 15]. Mode
decomposition techniques are also applicable in astronomical signals. Examples of
such include the study of solar atmosphere oscillation [78], X-ray binary systems
[35], and satellite orbital drift [67, Sec. 11]. Nearly periodic signals also occur
in oceanography including in the classification of marine mammal vocal signals
[121], the ocean’s electromagnetic fields [ 5], and the analysis of ocean waves [67,
Sec. 13]. Further, EMD can be used to help process images of ocean waves [67,
Sec. 16].

Finally, EMD is a useful tool with medical data, including ECG and EEG signals,
i.e., heart and brain electrical activity, as well as epidemiologic statistics. ECG
signals can be analyzed with EMD to distinguish healthy patients from those with
cardiac arrhythmia [117]. Such ECG signals can also be denoised to remove noise
and other measurement artifacts [ 14]. Analogously, EEG signals can be decomposed
into modes [93] to help distinguish healthy and epileptic signals [34]. Such analysis
can also aid in the development of a brain-computer interface [32], which maps
EEG signals to physical movements, or an emotion-recognition algorithm [91]. In
addition, emotional recognition can also be accomplished via the analysis of vocal
waves [62]. Moreover, EMD can be used to analyze epidemiological data such
as the spatial-temporal dynamics of the incidence of dengue hemorrhagic fever

and provides information on the processes that contribute to its spread [23]. The
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remainder of this chapter will be devoted to discussing EMD, SST, and their variants.

3.1 Hilbert-Huang transform

Empirical mode decomposition

Algorithm 1 Empirical Mode Decomposition

1: Input: v

2.0, ]« 1,1

3 vV

4: while STOP_OUTER == FALSE do

5. while STOP_INNER == FALSE do

6: Identify all local maxima and minima of v; ;; then fit both sets of points to

a cubic spline and denote as u(¢) and [(¢), respectively.

7: me— (u+l)/2
8: Vi,j+1 — Vij —m
: je—j+1
10: if v; ; is an IMF (or similar stopping condition) then
11: STOP_INNER « TRUE
12: Vi < Vi
13: i,j—i+1,1
14: Vij V=V == Vi
15: end if

16:  end while

17 if v; ; is small or monotonic (or similar stopping condition) then
18: STOP_OUTER « TRUE

19: neei

20: Fe<—v—vy—-—Vy

21:  endif

22: end while

23: Output: vy,...,v,,r

The Hilbert-Huang Transform (HHT) consists of both EMD and an application of
the Hilbert transform. While it is much more widely used in applications than is
synchrosqueezing, it is known that theoretical analysis of the results is difficult. The
input of EMD is a signal defined over some interval / Cc R, i.e., v : I — R, which

is assumed to be of the form given in Problem 7. It outputs a decomposition of v,
v(t) =vi(t) +va(t) +---+v,(t) +r(1), (3.1.1)

where vy, ..., v, are intrinsic mode functions (IMF), which are defined to be such
that (1) over I, the number of extrema and the number of zero-crossings differ by

at most one (2) at any point, the mean value of the envelope defined by the local
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maxima and the envelope defined by the local minima is zero [67, Sec. 1]. Next,

Hilbert spectral analysis (HSA) is applied to these IMF’s to express them in the form
a(t)cos(6(1)).
The methodology of EMD, as outlined in Algorithm 1, will be discussed next. Begin

by inputting signal v into the algorithm as in step 1. The algorithm will use i as
the index of the outer loop (steps 4 to 22), each step of which computes one IMF.
Meanwhile j will be used to index the inner loop (steps 5 to 16), which refines the
estimate of each IMF until it satisfies some stopping condition. This refinement
process aims to remove lower frequency modes to isolate the highest frequency
and is referred to as sifting. Each v; ; can be interpreted as residuals of the signal,
which is initialized as the original signal v; ; = v in step 3. The inner loop consists
of first identifying all local maxima and minima of residual signal v; ; in step 6.
Then, this set of maxima and minima points will be used to interpolate u(¢) and
[(t), respectively, with cubic splines, which are interpretable as the upper and lower
envelope of v; ;. The mean of these envelopes is m = (u +1)/2 as in step 7. An

example of v; ;,u,l,m is plotted in Figure 3.2. In steps 8 and 9, this estimate of

0 2I5 5I0 75 | 100
Time

Figure 3.2: Upper and lower envelopes of residual signal v; ; are u and /. The mean
of the envelopes is m. Figure adapted from [67, Fig. 1.2] with permission.

the mean is removed from v; ; to create the next residual signal v; ;;1 and the inner
index j is updated. It is then checked whether the new residual signal satisfies a

stopping condition in step 11, and if so the residual signal is added as an identified



48

IMF, v;. Finally, it is checked whether residual signal v;; = v — vy —--- —v;_1 is
small or monotonic at step 17, and if so, the algorithm is terminated. The extracted
IMF’s vy, ...v, and residual r = v —v; — --- — v,, are returned. These modes can
be converted into form a(¢) cos(6(¢)) with the Hilbert transform, which will be

presented in the next section.

There is little theoretical backing for the sifting process. The convergence of
sifting has not been established and is left as a conjecture in [76, Hyp. 2,3]. With
the assumption of convergence, however, it is known that the highest frequency
mode remaining is sifted [76]. A major source of difficulty for analysis stems
from the use of cubic splines [27, 51]. Various approaches have been used to
avoid this difficulty, including the derivation of such convergence bounds when
using trigonometric interpolation [60]. Furthermore, in practice it is known that
too many siftings can overly smooth uneven amplitudes, leading to the need for
more sophisticated stopping conditions, such as Cauchy-type convergence tests or
the number of consecutive times the numbers of zero-crossings and extrema are

unchanged [66, pg. 920] [67, pg. 8-9].

Hilbert transform
Following the presentation in [67, Sec. 1.2], the Hilbert transform estimates the
complex component of any real mode x(z). Specifically, if we define

Y1) = HIx()] = TPV / "0

o [T

dt (3.1.2)

as the Hilbert transform of x, then the analytic signal defined as

2(t) := x(t) + iy (1) = a(r)e??, (3.1.3)

a(t) = \|x2 +y2, and 4(¢) = arctan ()XC) . (3.1.4)

Notice that this implies that x(7) = a(¢) cos(6(z)) where a(t) and 6(¢) are called the

where

instantaneous amplitude and phase, respectively. Furthermore, the instantaneous
frequencies can be derived as w(t) = %. This illustrates how derived IMF’s can
be converted into form a(7) cos(6(¢)) and local properties of the oscillation can be

estimated.

3.2 Synchrosqueezing transform
An algorithmic description of the Synchrosqueezing Transform (SST) will be given

in this section. This method aims to address the mode decomposition problem with
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a more mathematical framework than EMD [24]. In this setting, intrinsic mode
functions are defined to be of the form a(z)e’?®, where a and 6 satisfy smoothness

conditions as given in [24, Thm. 3.1].

Accuracy bounds are proven for functions in class A¢ 4, which are superpositions

of intrinsic mode functions

K K
V(1) = ka(t) = Zak(r)ei9k<f>, (3.2.1)
k=1 k=1

with conditions on the separation of instantaneous frequencies 6 (¢). The parameter
€ bounds the rate of change of amplitude and frequency and d the separation between
the instantaneous frequencies of modes. In applications, synchrosqueezing can be
applied to signals not in this class, such as signals corrupted by noise, though
theoretical accuracy bounds would not apply. The methodology utilizes frequency-
reallocation methods to estimate instantaneous frequencies of modes. The estimates

are then used in a wavelet-reconstruction formula to obtain estimates of each mode.

Algorithm 2 Synchrosqueezing
1: Input: v
2: Algorithm parameters: Wavelet ¢ with compactly supported Fourier trans-
form and bump function /4 with unit integral.
WY (a,b) — fv(t)a‘l/zw*(%)dt
wy(a,b) — —i(W (a, b)) ZW (a, b)
Ay (D) «— {a e R : |W/(a,b)| > €}
SO (w, b) — /Av,e(b) WY (a, b)%h(%(a’b))a_wzda
Divide time-frequency domain into K bands, each corresponding to a neigh-
borhood of instantaneous frequencies of each mode by observing Sg,f(w, b).
Denote bands as By, ..., By.
8: Ry =V2r [§(H¢de

9: Vi o(t) R;' lims_,q (/(w,t)eBk Sg,f(w, t)dw)
10: Output: vie,...,Vk,e

N kW

Algorithm 2 outlines the methodology in SST in the continuous setting. In appli-
cations, discrete approximations of the expressions are used [147, Sec. 2.2]. The
input of the SST algorithm is a signal v as shown in step 1. The algorithm utilizes
a mother wavelet  in the Schwartz class, with Fourier transform supported on
[1 —A,1+A] and a unit integral bump function & € C°. In step 3, the continuous

wavelet transform (CWT) of signal v with frequency scale a and time b is computed
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as
t-b
WY (a,b) = / v(t)a_l/zw*(—)dt, (3.2.2)
a
where ¢ * is the complex conjugate of wavelet /. As can be observed in Figure 3.3.2,
this transform has relatively large norm when frequency scale, a, approximately
aligns with the instantaneous frequency of a mode, i.e., §;. This transform has
the drawback of not sharply estimating the instantaneous frequencies, which is

addressed by synchrosqueezing. Step 4 calculates the instantaneous frequency

CA] — . @ - @) - B; @)
— T NN
: ‘~$

Figure 3.3: Signal v is the composition of 3 modes where the following is plotted in
time-frequency domain: (1) the instantaneous frequencies of each mode (2) the norm
of the continuous wavelet transform (CWT) of v, |Wf’ (a, b)| (3) the synchrosqueezed
CWT (4) the bands corresponding to each mode.

of the CWT at time-frequency position (a,b). This is then used to reallocate
CWT frequencies by mapping (a,b) — (wy(a,b),b). Steps 5 and 6 show this
reallocation, where all time-frequency points with CWT norms above cut-off € are
redirected to synchrosqueezed CWT Sg,f(w, b). As can be seen in Figure 3.3.3,
this leads to a more concentrated image of instantaneous frequencies. With this
image, in step 7, the time-frequency plane is split into bands corresponding to each
mode. Although this can require human judgement, the algorithm is not sensitive
to the choice of band so long as one band contains an entire single mode and does
not contain multiple modes. The bands and the synchrosqueezed CWT are then
used to reconstruct each signal in steps 8 and 9. These reconstruction formulas are
inspired from applying Fourier analysis in the case with pure tone v = A cos(wt)
[24, Sec. 2]. Bounds on the recovery errors are proven in the setting where v € A 4,
i.e., acomposition of modes with well separated frequencies, in [24, Sec. 3]. Finally,
in practice, one must shift to discrete analogues of these equations, which is outlined
in[147, Sec. 2.2].
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3.3 Extensions and further approaches

One of the major issues of EMD in practice is mode mixing, which refers to either
when one IMF contains modes with differing frequencies or when a mode is split
between multiple IMFs. Mode mixing is prominent when modes are intermittent,
i.e., supported over a subset of the time domain. An extension of the algorithm has
been developed to address this issue called Ensemble Empirical Mode Decomposi-
tion (EEMD) [142]. The main idea is to construct an ensemble of IMFs by applying
EMD to the signal corrupted with random realizations of white noise. The ensemble

is then averaged to obtain estimates of the modes.

Another issue with EMD is its lack of robustness to signal noise. This is addressed
by thresholding EEMD modes [49]. Further, replacing the sifting process with an
optimization approach has stronger theoretical backing and convergence guarantees
[65, 90, ]. This approach has been found to improve robustness to noise and
sampling? effects [112]. More recently, Variational Mode Decomposition applies
an optimization of mode bandwidth? to concurrently estimate modes which also

shows robustness to noise and sampling effects in practical examples [40].

Further developments to the SST that are outlined in [89] will be discussed next.
The SST described in Section 3.2 is commonly known as the CWT SST or WSST.
A variant of this method is the Short-time Fourier Transform (STFT) SST, which is
typically referred to as FSST [134]. This replaces the CWT calculation in (3.2.2)
with the STFT on signal f with window g € L*(R):

Vj;’(t, w) = / f(t)g(t —t)e 27w qr . (3.3.1)

It is notable that the window, g, has fixed width relative to frequency w, unlike
in CWT where the width is inversely proportional to frequency. This leads to the
main difference between the methods where FSST and WSST have absolute and
relative frequency resolution of modes, respectively [89, Sec. 3.3]. Improvements
in robustness to noise are made in ConceFT [25] with use of multitapering. This
can be defined in both the WSST and FSST contexts. In the WSST context, multiple
wavelets are selected, the SST of each wavelet is calculated, and the results are
averaged. ConceFT can be defined analogously using FSST. Another difficulty
associated with SST is robustness to frequency modulation, i.e., when the rate of

change of instantaneous frequency of a mode, [6/()|, is large. This is addressed

Effects stemming from the fact that signals are not continuously measured in practical applica-
tions.
3Loosely, the variation of frequency and amplitude.
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using the second-order synchrosqueezing transform [11, 94]. In this extension of
SST, Wéw is used in conjunction with Wf,b to generate a reassignment of both time
and frequency in the synchrosqueezing of the CWT (or analogously for the STFT).
This can be taken further in the higher-order synchrosqueezing transform [107]

k k
where W, Y or V. ¢ are used to obtain n-th order reallocation estimates.
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Chapter 4

ITERATED MICRO-LOCAL KERNEL MODE
DECOMPOSITION FOR KNOWN BASE WAVEFORMS

This chapter will introduce iterated micro-local kernel mode decomposition (KMD)
[102, Sec. 8], which is a GP-inspired approach to the mode decomposition problem,
i.e., Prob. 7. We present its adaptability to address generalizations such as possibly
unknown, non-trigonometric waveforms and modes with crossing frequencies or
vanishing amplitudes. The method borrows the sequential peeling of modes from
EMD and uses a variant of the SST to identify mode frequencies. We will present
the methodology behind mode identification and estimation by introducing the

algorithm in the context of mode recovery with known waveforms as in Problem 8.

Problem 8. For m € N*, let ay, . ..,a, be piecewise smooth functions on [—1, 1],
let 01, ...,0, be strictly increasing functions on [—1,1], and let y be a square-
integrable 2m-periodic function. Assume that m and the a;, 8; are unknown and the
base waveform y is known. We further assume that, for some € > 0, a;(t) > €
and that é,-(t)/éj(t) ¢ [1 —€,1+¢€] foralli,j,t. Given the observation v(t) =
Y, ai()y(0:(2)) (for t € [-1,1]) recover the modes v; := a;(1)y(6;(1)).

) 1) /] = (2)

050
025
0.00 104

-0.25

-0.50 0.3

-0.75

0.0
-1.00 4

2T -7 0 71" 27? 2T -7 0 T 27

Figure 4.1: [102, Fig. 23], (1) triangle base waveform (2) EKG base waveform.
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Figure 4.2: [102, Fig. 24], triangle base waveform: (1) Signal v (2) Instantaneous
frequencies w; := 6; (3) Amplitudes a; (4, 5, 6) Modes vy, v, v3.
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Figure 4.3: [102, Fig. 25], EKG base waveform: (1) Signal v (2) Instantaneous
frequencies w; := 6; (3) Amplitudes a; (4, 5, 6) Modes v, v2, v3.

Example 4.0.1. Figure 4.1 shows two full periods of two 2rt-periodic base waveforms

(triangle and EKG), which we will use in our numerical experiments/illustrations.
. . _1 r2
The EKG (-like) waveform is (yexc (1) — 2m) ™" [ yexe (s) ds)/lyexcli2(o.2n)

(4) 0 otherwise.

with ypkc (t) definedon [0, 2n) as (1) 0.3—|t—n| for |t—n| < 0.3(2)0.03 cos2(0”7(t—
m+1)) for |t —m+1] <0.3(3)0.03cos*(Z(t —m — 1)) for |t —x — 1] < 0.3 and
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To aid in the exposition, we present the algorithm as a network assembled with
elementary modules. Our approach is summarized in Algorithm 3 and explained
in the following sections. The algorithm iterates modules described in (1) to (3) to
estimate each mode, v; = v; .. We denote v =y — Vie — " — Vi_1e as signal v
after the first i — 1 mode estimates are peeled. Beginning with i = 0 and v(?) = v,

the algorithm proceeds as follows:

1. Use the max-pool energy S (4.1.6) to obtain an estimate of the instantaneous
phase and frequency, Oiow(v®?) and wiow (v?) associated with the lowest

instantaneous frequency (as described in Section 4.1).

2. Iterate amicro-local KMD (presented in Section 4.2) of the signal v(® to obtain
a highly accurate estimate of the phase/amplitude 6y, a of their corresponding
mode vy for all k& < i (this iteration can achieve near machine-precision

accuracies when the instantaneous frequencies are separated).
3. Peel off the mode v; from v?, i.e., vi*D =y _ . and update indexi — i+1.
4. Tterate 1-3 to obtain all the modes.

5. Perform a last micro-local KMD of the signal for higher accuracy.

To illustrate this approach we will apply it to the signals v displayed in Figures 4.2
and 4.3, where the modes of Figure 4.2 are triangular and those of Figure 4.3 are
EKG.

4.1 Max-pooling and the lowest instantaneous frequency
We will now present a variant of the SST [24] used for identifying mode frequencies.
It will be applied in a module identifying the phase and instantaneous frequency of

the lowest frequency mode [ 102, Sec. 8.2]. Begin by defining wavelets

2 1 _wz(,,ﬂz
Yrwe(t) = (—)“,/ﬂcos(w(t—r))e 2. teR,
T (04
2 1 _wz(,,f)z
Yews@® = (2) [Esin(@@-m)e ", reR, @1
T (04

as well as complex wavelet ., (1) = Xr.w.c(t) —ixr.ws(t). Note that T indicates the
time of the center of the wavelet within [—1, 1] while w represents the frequency.
Then the continuous wavelet transform (CWT) as in [24] of signal f at (1, w) is

defined as 1

W(r,w, f) = /1 Xrw(t) f(D)dt. (4.1.2)
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We further define cosine and sine analogues of the CWT as

1
We(r.w. ) /0 Xrae(Of (1) di

WS(T’ w’ f)

1
/ Xrw,s() f(1)dr. (4.1.3)
0
The energy of the signal in (7, w)-space is then defined by
E(t,w.f) = W(r,0, ). (4.1.4)

Mimicking the instantaneous phase and frequency estimation in SST, we define

O.(T,w, f) = phase(W(7,w, f))

We(T,w, f) = (?99: (T,w, f). (4.1.5)
We introduce the max-pool energy

S(t,w,f)= max E(1,d,f) (4.1.6)

W W (T.0")=w
as a variant of the SST which avoids the dependence on the choice of measure, as
in the remark of [24, Eq. 2.7]. This max-squeezing can also be interpreted in an
additive-kernel setting with further details, illustrations, and comparisons to SST in
[102, Sec. 4].

This calculation of signal energy in (7, w)-space is then used to design modules
which take the signal as input and return an estimate of the instantaneous phase and
frequency of the lowest-frequency mode, Oy (f) and wiow (f). Note that both of
the outputs are [—1, 1] — R functions. We restrict our presentation to the situation
where the instantaneous frequencies 6; do not cross each other. The main steps of
the computation performed by this module are as follows. Let S(7,w, f) be the
max-pool energy defined as in (4.1.6). Then, let A}, be defined to be a subset of
the time-frequency domain (7, w) identified (as in Figure 4.4.2) as a narrow sausage
band around the lowest instantaneous frequency defined by the local maxima of the
S(t,w, f). If no modes can be detected (above a given threshold) in S(7, w, f)

then we set O () = 0. Otherwise, we let

Wiow (f)(7) == w, (T, argmax,,. r ), S (7> W, ) 4.1.7)

be the estimated instantaneous frequency of the mode having the lowest instanta-

neous frequency and, with 6, defined as in (4.1.5), let

Orow ([)(7) := b (7, wWiow () (7). f) (4.1.8)
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Figure 4.4: [102, Fig. 26], max-squeezing with the EKG base waveform and deriva-
tion of the instantaneous phase estimates 6;.. (1,2) (1,w) — S(7,w,v) and
identification of Ajoy (3, 4) (7, w) — S(1,w,v —v},) and identification of its Aoy
(5,6) (tr,w) = S(7,w,v — Vv, —v2,.) and identification of its Ajoy.

be the corresponding estimated instantaneous phase. Notationally, we sometimes

leave out f and write wjoy Or f10y When unambiguous.

4.2 The micro-local KMD module

We will now present the micro-local KMD module [102, Sec. 8.1], which will
estimate amplitudes and refine SST phase estimates. As input, it takes a time 7, an
estimated phase function of a mode 6., and signal f. Suppose the lowest frequency
mode of f is of form viow(#) = aiow(?)y(O1ow(2)), and its phase is estimated as
Blow.c- The module outputs an estimate a (7, fjow.e, f) of the amplitude ajoy (7)
of the mode v; and a correction 66(7, fiow., f) determining an updated estimate

Blow.e (T) + 06(T, Oiow e, f) of the estimated mode phase function 8oy -

Supposinga > 0,7 € [-1,1],andn € {0,...,d}, let)(,fj and)( % be the wavelets
defined by

0, AGIE
Xnet (1) (fetrfent)”
,0¢
X< (1)

and let &; g, be the Gaussian process defined by

cos(fe (1)) (1 —7)"e”

Sin(6,(1) (1 — 7y~ (=)’ 4.2.1)

d
£eo, (1) =Z (Xnexmle () + Xusxite (1)) (4.2.2)
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where X, ¢, Xns ~ N(0,1) are IID random variables. Let f; be the Gaussian
windowed signal defined by

£ = e =) v e -], 42.3)
and, for (n, j) € {0,...,d} x{c, s}, let

Z1j (7. 0. f) = WM E[ Xy j[éra, +E0 = fo]. (4.2.4)

where &, is white noise, independent of &; p,, with variance a?. To compute Z, ;,

observe that since both &; g, and &, are Gaussian fields, it follows from (1.4.1) that

E[‘f‘r,ee fT,Ge +§0’] = AO'(gT,Oe + fa')

for the linear mapping
-1
Ao’ = Q‘rﬁg (Q‘rﬁe + 0_21) s

where Q.g, : L? — L? is the covariance operator of the Gaussian field &;,
and 0?1 is the covariance operator of &,. Using the characterization of the limit
of Tikhonov regularization as the Moore-Penrose inverse, see, e.g., Barata and
Hussein [8, Thm. 4.3], along with the orthogonal projections connected with the

Moore-Penrose inverse, we conclude that limy—0 Ag = P, .0, where P, . is the

L?-orthogonal projection onto the span y™% := span{ )(,Tl:fe, )(,T,,’sge :n=0,...,d},
and therefore
C}_i_)n})E[fTﬂg Erp, + fo-] = PXTs(’e (fr,ee + é:O') . 4.2.5)

Since the definition (4.2.2) can be written &7 9, = X, i Xn.j X;:?", summing (4.2.4)
and using (4.2.5), we obtain

3 2 j(7 0o XL (8) = Preac fe(), 1€ [-1,1]. (4.2.6)
n,j

Consider the vector function Z(7,,, f) € R*¥*? with components Z, i(7,6c, 1),
the 2d + 2 dimensional Gaussian random vector X with components X, ;, (n, j) €
{0, ...,d} x {c, s}, and the (2d +2) x (2d + 2) matrix A" defined by

20e — e 0
AZn,j),(n’,j’) L <XI’7!-,_] 7X,:/,j/>L2[—1,l] * (4'2'7)

Straightforward linear algebra along with (4.2.6) establish that the vector Z(7, 6, f)

can be computed as the solution of the linear system

A" Z(1,0,, f) = b™%(f), (4.2.8)
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where b™% ( f) is the R?¥*? vector with components b;’f.e (f) =« )(;’?e, fr)2. See

sub-figures (1) and (2) of both the top and bottom of Figure 4.5 for illustrations of

&rp, Héo = fT] in
(4.2.5) corresponding to the signals f displayed in Figures 4.2 and 4.3.

the windowed signal f;(¢) and of its projection lim, o E[&7,

To apply these formulations to construct the module, suppose that the signal is a
single mode

J(1) = a(t) cos(6(1)),

so that . ,
£ = e H) 0y cos(0(0)) (4.2.9)
and consider the modified function
— e (1) (1-7) | 2 d (n)
Tty = o~ (52 (Z a” (@, —T)") cos(6(1)) (4.2.10)
— n!

obtained by replacing the function a with the first d + 1 terms of its Taylor series
about 7. In what follows, we will use the expression =~ to articulate an informal
approximation analysis. It is clear that f; € xy™% and, since 9.%(7) is small, that
( )(;:f‘f, fr = fodi2 = 0,¥(n, j) and therefore P, o fr ~ fr, and therefore (4.2.6)

implies that

D20 (T 00 XG5 (1) ~ D), te [-11], 4.2.11)
.

which by (4.2.10) implies that
e () (1=7)

3 2o (2,00, X% (1) ~ () eos(0(1)). taT.  (42.12)
.

which implies that

Z0,c(7,0¢, f) c0s(0c(1)) + Zo,5 (7, 0e, f) sin(6e (1)) ~ a(t) cos(6()), t~7.
(4.2.13)
Setting 65 := 6 — 6, as the approximation error, using the cosine summation formula,

we obtain

Z0,c(T,0¢, f) c0s(0c(1)) + Zo,5 (7, 0c, [) sin(e (1)) =

(4.2.14)
a(7)(cos(8s(1)) cos(, (1)) — sin(8s(2)) sin(6,(2)).
However, t ~ 7 implies that 65(¢) =~ 65(7), so that we obtain
ZO,C(T’ He’ f) COS(Qe(t)) + ZO,S(T’ 06’ f) Sin(@e(t)) ~ (4215)

a(t)(cos(85(7)) cos(b, (1)) — sin(Bs(7)) sin(6, (1)) ,
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which, since 6, (¢) positive and bounded away from 0, implies that

Zo.o(7.6e, f) a(t) cos(65(7))
Zos(1,0c, f) = —a(7)sin(65(7)).

X

Consequently, writing

a(T’ 96’ f) = \/Z(%’C(T’ Qe’ f)+Z§’s(T’ Qe’ f)
§0(1, 0., f) atan2 (= Zo.5(7, 0er f), Zo.o(T, 6, f)),  (4.2.16)

we obtain that a(t,6,, f) ~ a(t) and 60(1,6,, f) ~ 0s(7). We will therefore use
a(t, 6., f) to estimate the amplitude a(7) of the mode corresponding to the estimate
0. and 66(t, 0, f) to estimate the true mode phase 6 through (1) = 0,(7) +0s(7) =
0.(7) +86(t, 0., f). Unless otherwise specified, Equation (4.2.16) will take d = 2.
Experimental evidence indicates that d = 2 is a sweet spot in the sense that d = 0
or d = 1 yields less fitting power, while larger d entails less stability. Iterating this
refinement process will allow us to achieve near machine-precision accuracies in
our phase/amplitude estimates. See sub-figures (1) and (2) of the top and bottom
of Figure 4.6 for illustrations of a(t), a(t, 8., v)(t), 0(t) — 6.(¢) and 60(t, 0., v)(t)
corresponding to the first mode v of the signals v displayed in Figures 4.2.4 and
4.3.4.
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Figure 4.5: [102, Fig. 28], top: v is as in Figure 4.2 (the base waveform is trian-
gular). Bottom: v is as in Figure 4.3 (the base waveform is EKG). Both top and

bottom: d = 2, (1) The windowed signal v; (2) lim, o E
(3) (V - Vl,e)‘r (4) lima’lO E[f‘rﬁz,e
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[é‘:‘r,el,e

fT,gl,e + fo' = VT]

(5) (V —Vie— V2,e)‘r (6)
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Figure 4.6: [102, Fig. 29], top: v is as in Figure 4.2 (the base waveform is triangular).
Bottom: v is as in Figure 4.3 (the base waveform is EKG). Both top and bottom:
7 = 0. (1) the amplitude of the first mode a;(z) and its local Gaussian regression
estimation a (7, 81, v)(¢) (2) the error in estimated phase of the first mode 6;(z) —
01 () and its local Gaussian regression 66(7, 81 ., v)(?) (3, 4) are as (1,2) with v
and 6, , replaced by v — v, and 02, (5,6) are as (1,2) with v and 6; , replaced by
V=Vie— V2. and 63,.
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4.3 The iterated micro-local KMD algorithm.

B w = Wiow(T) el
Oc(T,w)

N ar%nlaxm(ﬂw)e oo

V—— S(T,w) — Alow

4

7'|U - (li,eg(ei,e) - 277&1 aj, eJ(
— ¢ T Ul = ag, cy )

Figure 4.7: [102, Fig. 27], modular representation of Algorithm 3, described in
this section. The blue module represents the estimation of the lowest frequency of
signal represented by v as illustrated in Figure 4.4. The brown module represents
the iterative estimation of the mode with lowest instantaneous frequency of steps 10
through 14 of Algorithm 3. The yellow module represents the iterative refinement
of all the modes in steps 21 through 28. The brown and yellow modules used to
refine phase/amplitude estimates use the same code.

The method of estimating the lowest instantaneous frequency, described in Sec-
tion 4.1, provides a foundation for the iterated micro-local KMD algorithm [102,
Sec. 8.3], Algorithm 3. This algorithm is presented its modular representation in

Figure 4.7, using Figures 4.4, 4.5, and 4.6. We begin by letting

y(t) = ¢y cos(t) + Z ¢, cos(nt + d,) 4.3.1)
n=2

be the Fourier representation of the base waveform y (which, without loss of gener-

ality, has been shifted so that the first sine coefficient is zero) and write
y(1) :=y(t) — c1 cos(t) (4.3.2)

for its overtones.
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Algorithm 3 Iterated micro-local KMD.
1: i« 1
2 vy
3: while true do

4. if Hlow(v(i)) = () then

5: break loop

6: else

T ei,e — Qlow(v(i))

8: endif

9: aio(t) <0

10:  repeat

11: for jin{1,...,i} do

12: Vires €<V — aj,ey(ej,e) - Zk;ﬁj,ksi ar.ey(Ok.e)
13: Aje(T)t a(T, 0. vj,res)/cl

14: Qj,e (T) — Qj’e(T) + %5@(‘1’, Qj,e, Vj,res)
15: end for

16:  until sup; , |69(T, Oic, v[,res)| < €
17: p*D ey — sti aj,e)’(@j,e)

18: [«—i+1

19: end while

200 m«—i—1

21: if refine_final = True then

22:  repeat

23: foriin {1,...,m} do

24: Vires <=V — iy (0ic) — Zj;ei aj,e)’(gj,e)
25: dje (1) « a(T, Oi.e, Vi,res)

26: ei,e(T) — Hi,e(T) + %56 (T, Oies Vi,res)

27: end for

28:  until sup; |69(T, O, vj,res)| <6

29: end if

30: Return the modes v;, «— a;.(t)y(0;.(2)) fori =1,...,m

Let us describe how steps 1 to 19 provide refined estimates for the amplitude and the
phase of each mode v;,i € {1,...,m} of the signal v. Although the overtones of y
prevent us from simultaneously approximating all the instantaneous frequencies 6;
from the max-pool energy of the signal v, since the lowest mode viow = @iowy (Flow)
can be decomposed into the sum vioy = djowC1 C0S(Oiow) + alowy (Flow) Of a signal
alowC1 cos(B1ow) With a cosine waveform plus the signal ajoyy(61ow) containing its

higher frequency overtones, the method of Section 4.1 can be applied to obtain an

I All statements in Algorithms with dummy variable T or ¢ imply a loop over all values of 7 in
the mesh 7.
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estimate oy Of Olow and (4.2.16) can be applied to obtain an estimate djow C1
of ajewc1, producing an estimate djow C1 cOS(Ojow..) Of the primary component
alowC1 c0s(Bow) of the first mode. Since c; is known, this estimate produces the
estimate ajow..y (f1ow..) for the overtones of the lowest mode. Recall that we calculate
all quantities over the interval [—1, 1] in this setting. Estimates near the borders, —1
and 1, will be less precise but will be refined in the following loops. To improve
the accuracy of this estimate, in steps 13 and 14 the micro-local KMD of Section
4.2 is iteratively applied to the residual signal of every previously identified mode
Vires < V=0 y(0)c) = Zkij,ks,- a.eY(Ok.e), consisting of the signal v with the
estimated modes k # j as well as the overtones of estimated mode j removed. This
residual is the sum of the estimation of the isolated base frequency component of
vj and 2 ;.;v;. The rate parameter 1/2 in line 14 is to avoid overcorrecting the
phase estimates, while the parameters €] and e, in steps 10 and 21 are pre-specified
accuracy thresholds. The resulting estimated lower modes are then removed from

the signal to determine the residual v(+! =y — 2j<i@j.ey(8j.)inline 17.

Iterating this process, we peel off an estimate a; . y(6; ) of the mode corresponding
to the lowest instantaneous frequency of the residual v := v — 3 j<i-1aj.eY(0;.¢)
of the signal v obtained in line 17, removing the interference of the first i — 1
modes, including their overtones, in our estimate of the instantaneous frequency
and phase of the i-th mode. See Figure 4.4 for the evolution of the A;,,, sausage
as these modes are peeled off. See sub-figures (3) and (5) of the top and bottom of
Figure 4.5 for the results of peeling off the first two estimated modes of the signal v
corresponding to both Figures 4.2 and 4.3 and sub-figures (4) and (6) for the results
of the corresponding projections in (4.2.5). See sub-figures (3) and (4) of the top
and bottom of Figure 4.6 for amplitude and its estimate of the results of peeling off
the first estimated mode and sub-figures (5) and (6) corresponding to peeling off the

first two estimated modes of the signal v corresponding to both Figures 4.2 and 4.3.

After the amplitude/phase estimates a; ., 0;.,7 € {1, ..., m}, have been obtained in
steps 1 to 19, we have the option to further improve our estimates in a final opti-
mization loop in steps 21 to 28. This choice is symbolized by variable “refine_final”
which is True if we wish to run this final refinement, which enables us to achieve
even higher accuracies by iterating the micro local KMD of Section 4.2 on the
residual signals v res «— v — ;0¥ (0i¢) — Zjii aj.y(0;.), consisting of the signal v

with all the estimated modes j # i and estimated overtones of the mode i removed.

The proposed algorithm can be further improved by (1) applying a Savitsky-Golay
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filter to locally smooth (denoise) the curves corresponding to each estimate 6;,
(which corresponds to refining our phase estimates through GPR filtering) (2) start-
ing with a larger « (to decrease interference from other modes/overtones) and slowly
reducing its value in the optional final refinement loop (to further localize our esti-

mates after other components, and hence interference, have been mostly eliminated).

4.4 Numerical experiments
Here, we present results for both the triangle and EKG base waveform examples
[102, Sec. 8.4]. As discussed in the previous section, these results are visually

displayed in Figures 4.5 and 4.6.

Triangle wave example

The base waveform is the triangle wave displayed in Figure 4.1. We observe the
signal v on a mesh spanning [—1, 1] spaced at intervals of ﬁ) and aim to recover
each mode v; over this time mesh. We take @ = 25 within the first refinement
loop corresponding to steps 1 to 19 and slowly decreased it to 6 in the final loop
corresponding to steps 22 to 28. The amplitudes and frequencies of each of the
modes are shown in Figure 4.2. The recovery errors of each mode as well as their
amplitude and phase functions over the whole interval [—1, 1] and the interior third
[—%, %] are displayed in Tables 4.1 and 4.2, respectively. In the interior third of the
interval, errors were found to be on the order of 10~ for the first signal component
and approximately 1077 for the higher two. However, over the full interval, the
corresponding figures are in the 107* and 1073 ranges due to recovery errors near
the boundaries, —1 and 1, of the interval. Still, a plot superimposing v; and v;,

would visually appear to be one curve over [—1, 1] due to the negligible recovery

Cerrors.
Vie=vill2 Vie—villpe Mai.e—aill;2 o
Mode il il faly | 10ie—6ill.
i=1 547x107% [ 3.85x1073 [ 2.80x107* | 4.14%x 107>
i=2 6.42x107% [ 2.58x 1073 | 3.80%x 107> | 1.85x 10~*
i=3 583%x107* [ 6.29%x1073 | 2.19%x107* | 6.30x 1073

Table 4.1: Signal component recovery errors in the triangle base waveform example
over [—1,1].




Vie—Vi Vie—Villpe aje—ai
Mode ” I]ViIILzlle el ” ||al-||L2”L2 16;.e = 6:1l.»
i=1 1.00x 1078 [ 2.40%x 1078 | 7.08 x 1077 | 6.52x 107°
i=2 2.74%x 1077 | 2.55% 1077 | 1.87x 1078 | 2.43x 1077
i=3 237x1077 | 3.67x1077 | 1.48%x 1077 | 1.48x 1077

67

Table 4.2: Signal component recovery errors in the triangle base waveform example
over [—%, %].

EKG wave example

The base waveform is the EKG wave displayed in Figure 4.1. We use the same
discrete mesh as in the triangle case. Here, we took @ = 25 in the loop corresponding
to steps 1 to 19 and slowly decreased it to 15 in the final loop corresponding to steps
22 to 28. The amplitudes and frequencies of each of the modes are shown in
Figure 4.3, while the recovery error of each mode as well as their amplitude and
phase functions are shown both over the whole interval [—1, 1] and the interior third
[—%, %] in Tables 4.3 and 4.4, respectively. Within the interior third of the interval,
amplitude and phase relative errors are found to be on the order of 107 to 1073
in this setting. However, over [—1, 1], the mean errors are more substantial, with
amplitude and phase estimates in the 10~! to 1073 range. Note the high error rates in
L* stemming from errors in placement of the tallest peak (the region around which
is known as the R wave in the EKG community). In the center third of the interval,

vi. and v; are visually indistinguishable due to the small recovery errors.

||Vi,e—Vi||L2

[vie=villpeo

laie—aill,

Mode itz il a2 16:. =6l

i=1 5.66x107%2 | 1.45x 1071 | 4.96x107° | 8.43x 1073

i=2 4.61x1072 | 2.39%x107" [ 2.35x1072 | 1.15x 1072

i=3 1.34x 107" | 9.39x 107" | 9.31x 1073 | 2.69x 1072
Table 4.3: Signal component recovery errors on [—1, 1] in the EKG base waveform
example.

Mode ||v,»|,|ef||vi|le Dvievillie [ Taic—all [0 g1

vill, 2 [[villze llaill, 2 :

i=1 1.80x10™* [ 3.32x107* | 3.52%x 107 | 2.85% 107

i=2 435%x107* | 5.09x 107 | 3.35x 107 | 7.18 x 107

i=3 3.63x107% | 1.08x 1073 | 7.23x 1075 | 6.26x 107

Table 4.4: Signal component recovery errors on [—%, %] in the EKG base waveform

example.
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Chapter 5

ITERATED MICRO-LOCAL KERNEL MODE
DECOMPOSITION FOR UNKNOWN BASE WAVEFORMS

We continue our discussion of KMD techniques by examining its application to an
extension of original mode recovery problem, Problem 7. We generalize the problem
to the case where base waveforms of each mode are unknown [102, Sec. 9] and is
formally stated below in Problem 9. Previously, in Section 4, we discussed how
GPR can be applied to learn the instantaneous amplitudes and phases of each mode.
In the context of the unknown waveform problem, we will introduce micro-local
waveform KMD in Section 5.1, which again utilizes GPR and is able to estimate

waveforms of modes.

Problem 9. For m € N*, let ay, . ..,a, be piecewise smooth functions on [—1, 1],
let 01, ..., 0, be piecewise smooth functions on [—1, 1] such that the instantaneous
frequencies 0; are strictly positive and well separated, and let y1, . . ., y,, be square-
integrable 2m-periodic functions. Assume that m and the a;, 0;, y; are all unknown.
Given the observation

m

v(t) = ai(n)yi(6:(0), te[-1,1], (5.0.1)

i=1

recover the modes v;(t) = a;(t)y;(0;(1)).

To avoid ambiguities caused by overtones with the unknown waveforms y;, we will
assume that the corresponding functions (kéi),e[_ 1,1] and (k’é,v)te[_ 1,17 are distinct
fori # i’ and k, k' € N*, that is, they may be equal for some 7 but not for all 7. We

represent the i-th base waveform y; through its Fourier series

kmax

y;(t) = cos(t) + Z (¢i.(k.c) cOS(kE) + ¢ (k.5 sin(kr)), (5.0.2)

k=2
that, without loss of generality, has been scaled and translated. Moreover, since we
operate in a discrete setting, we also truncate the series at a finite level k., which is

naturally bounded by the inverse of the resolution of the discretization in time. To
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Figure 5.1: [102, Fig. 30], (1) signal v (the signal is defined over [—1, 1] but
displayed over [0,0.4] for visibility) (2) instantaneous frequencies w; := 6; (3)
amplitudes a; (4, 5, 6) Modes v1, v, v3 over [0,0.4] (mode plots have also been
zoomed in for visibility).

Figure 5.2: [102, Fig. 31], illustrations showing (1) y; (2) y2 (3) y3.

illustrate our approach, we consider the signal v = v + v +v3 and its corresponding
modes v; := a;(1)y;(6;(r)) displayed in Figure 5.1, where the corresponding base

waveforms yp, y, and y3 are shown in Figure 5.2 and described in Section 5.3.

5.1 Micro-local waveform KMD

We are now describing the micro-local waveform KMD [102, Sec. 9.1], Algorithm
4, which takes as inputs a time 7, estimated instantaneous amplitude and phase
functions r — a(#),6(t), and a signal v, and outputs an estimate of the waveform
y(t) associated with the phase function 6. The proposed approach is a direct
extension of the one presented in Section 4.2 and the shaded part of Figure 5.3
shows the new block which will be added to Algorithm 3, the algorithm designed
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for the case when waveforms are non-trigonometric and known. As described below
this new block produces an estimator y; . of the waveform y; from an estimate 6; ,
of the phase 6;.

l f l )
/l} —_— Hl’eﬁﬁ yl,e —x vl,e y yan /l) I vl’e

Figure 5.3: [102, Fig. 32], high level structure of Algorithm 4 for the case when the
waveforms are unknown.

Given a > 0, T € [—1, 1], and differentiable function t — 6(¢), define the Gaussian

process
be (1) (1-7) |2 A
£,(0 = e ) (7 cos (0(0) + ) (X], cos (k6(1) + X]sin (k6(0)))),
k=2
(5.1.1)
where X| ,X] . and X] are independent N (0, 1) random variables. Let
je () (1=1) | 2
vo(t) = e ) L), re-11]. (5.1.2)
be the windowed signal, and define
Z (1,0,v) = E%E[X,Mgiﬁ +&r = Ve, (5.1.3)
and, for k € {2, ..., kmax}, J € {c, s}, let
Z]{j(r, 0,v)
cri(T,0,v) = — 5.14
k]( ) Zy (T, 9, V) ( )

When the assumed phase function 6 := 6; ., is close to the phase function 6; of the
i-th mode of the signal v in the expansion (5.0.1), ¢y ; (7, 0;.,v) yields an estimate
of the Fourier coefficient ¢; ;) (5.0.2) of the i-th base waveform y; at time 7 = 7.
This waveform recovery is susceptible to error when there is interference in the
overtone frequencies (that is for the values of T at which j 19i1 ~ jzéiz for i; < ip).
However, since the coeflicient ¢; « ;) is independent of time, we can overcome this

by computing ¢ ; (7, 6; ¢, V) at each time 7 and take the most common approximate
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value as follows. Let T C [—1, 1] be the finite set of values of 7 in the numerical

discretization of the time axis with N := |T'| elements. For interval I C R,
T; :={t € Tlck,j(1,0;c,v) €1}, (5.1.5)

and let N; := |T;| denote the number of elements of 7;. Let I,,,x be a maximizer of

the function / — Nj over intervals of fixed width L, and define the estimate

1 : . Niinax
Ninax ZTETImax Ck’] (T’ Hl’e’ V) ’ N > 0.05

. (5.16)
Nmax
, Mo <005

Cr,j(0ie,v) =

of the Fourier coefficient c; (¢ ;) to be the average of the values of ¢y ;(7, 6., V)
over T € Ty . The interpretation of the selection of the cutoff 0.05 is as follows:
if % is small then there is interference in the overtones at all time [—1, 1] and
no information may be obtained about the corresponding Fourier coefficient. When
the assumed phase function is near that of the lowest frequency mode v, which we
write 6 := 0., Figures 5.4.2 and 4 shows zoomed-in histograms of the functions

T — ¢3,0)(7,01¢,v) and T — ¢(3,45)(7, 01, V) displayed in Figures 5.4.1 and 3.

(1)‘ - (2)‘ ! ;’q‘“«\ (3)' by (4)‘

] il

Figure 5.4: [102, Fig. 33], (1) a plot of the function 7 — ¢3¢ (7,01.,v) (2) a
histogram (cropping outliers) with bin width 0.002 of ¢ (3 (7, 01,¢, v) values. The
true value ¢y 3.) is 1/9 since y; is a triangle wave. (3) a plot of the function
T — ¢@3,5)(7,01,v) (2) a histogram (cropping outliers) with bin width 0.002 of
€(3,5)(7, 01, v) values. The true value ¢y, (3 5 of this overtone is 0.

On the interval width L. In our numerical experiments, the recovered modes and
waveforms show little sensitivity to the choice of L. In particular, we set L to be
0.002, whereas widths between 0.001 and 0.01 yield similar results. The rationale
for the rough selection of the value of L is as follows. Suppose v = cos(wt) and

v/ = v+ cos(1.5wt). Define the quantity

max (c2,c(1,0,V') = c2.(7,6,v)), (5.1.7)
:
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with the intuition of approximating the maximum corruption by the cos(1.5wt) term
in the estimated first overtone. This quantity provides a good choice for L and is
mainly dependent on the selection of @ and marginally on w. For our selection of

a = 10, we numerically found its value to be approximately 0.002.

5.2 Iterated micro-local KMD with unknown waveforms algorithm

Algorithm 4 Iterated micro-local KMD with unknown waveforms.

;i — landv) v

2: while true do

3 if Glow (v?) = 0 then
4 break loop

5: else

6 Bic — Orow(v)

7 Yie < cos(t)

8
9

end if
: a,;e(t) —0
10:  repeat
11: for /in {1, ...,i} do
12: Vites <V = a1eVe(Ole) = Dksik<i AkeVie(Oke)
13: al,e(T) — a(T’ Hl,e’ Vl,res)/cl
14: O1,e(T)  O1.(7) + %59(7’ Ol.e Vl,res)
15: Cl(k,j),e < Ck,j (gl,ea Vl,res)
16: Vie(t) < cos(t) + Z]]zi_"“zx (ClL(k.c).e COS(KE) + €/ (k.5).e Sin(KT))
17: end for

18:  until sup,’7|59(r,Hl,e,vl,res)| <€
19: V(i+1) — V- sti aj,eyi,e(gj,e)
20: l—1i+1

21: end while

22:m«—i—1

23: if refine_final = True then

24:  repeat

25: foriin {1,...,m} do

26: Vires <~V — ai,eyi,e(gi,e) - Zj;ti aj,eyj,e(gj,e)

27: Ajo(T) — a(T’ Bies Vi,res)

28: ei,e(T) — gi,e(T) + %59(7’ Oie Vi,res)

29: Ciskjre < Chj(biesV = Xjsiaj.eYje(0e))

30: Vie(t) < cos(t) + Zij’z* (Ciik.cy.e COS(KE) + Ci (k5. SiN(KD))
31: end for

32:  until sup,.,T|(59(T, Oi.c vi,res)| <6

33: end if

34: Return the modes v;, «— a;.(1)y(60;.()) fori=1,...,m
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, Sec. 9.2] is identical
to Algorithm 3. As illustrated in Figure 5.3, we first identify the lowest frequency

Except for the steps discussed in Section 5.1, Algorithm 4 [

of the cosine component of each mode (steps 6 and 7 in Algorithm 4). Next, from
steps 10 to 18, we execute a similar refinement loop as in Algorithm 3 with the
addition of an application of micro-local waveform KMD on steps 15 and 16 to
estimate base waveforms. Finally, once each mode has been identified, we again
apply waveform estimation in steps 29-30 (after nearly eliminating other modes and

reducing interference in overtones for higher accuracies).

5.3 Numerical experiments

To illustrate this learning of the base waveform of each mode, we take v(r) =
Z?:l ai(t)y;(6;(t)), where the lowest frequency mode a;(#)y;(6;(¢)) has the (un-
, Sec. 9.3].
waveforms y;,i = 2,3, randomly by setting c; (¢, ;) to be zero with probability 1/2
or to be a random sample from A (0, 1/k*) with probability 1/2, for k € {2,...,7}
and j € {c, s}. The waveforms y1, y», y3 thus obtained are illustrated in Figure 5.2.

known) triangle waveform y; of Figure 4.1 [ We determine the

The modes vy, v, v3, their amplitudes and instantaneous frequencies are shown in

Figure 5.1.

Vie—vill 2 Vie=villpeo Maie—a:l, > 4 Myi,e=yill; 2
Mode e ol s | 6=l | —se
i=1 631x1073 [ 2.39%x1072 [ 9.69x107° | 1.41x107° | 6.32%x1073
i=2 3.83x107% | 1.08x 1073 | 5.75%x107> | 1.16x10™* | 3.76 x 10~
i=3 3.94x107% | 1.46x 1073 | 9.53%x107> | 6.77x 1075 | 3.80x 10~

Table 5.1: Signal component recovery errors over [—1, 1] when the base waveforms
are unknown

We use the same mesh and the same value of @ values as in Section 4.4. The
main source of error for the recovery of the first mode’s base waveform stems
from the fact that a triangle wave has an infinite number of overtones, while in our
implementation, we estimate only the first 15 overtones. Indeed, the L? recovery
error of approximating the first 16 tones of the triangle wave is 3.57 x 107*, while
the full recovery errors are presented in Table 5.1. We omitted the plots of the y; .
as they are visually indistinguishable from those of the y;. Note that errors are only
slightly improved away from the borders as the majority of it is accounted for by the

waveform recovery error.
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5.4 Further work in kernel mode decomposition

Micro-local kernel mode decomposition is also shown to produce mode decom-
position in cases with modes with crossing frequencies or vanishing amplitudes
and noisy observations. This setting is summarized by Problem 10. Further, an

illustrative example is given in Example 5.4.1 and Figure 5.5

Problem 10. For m € N, let ay, . . ., a,, be piecewise smooth functions on [—1, 1],
and let 01, . ..,0,, be strictly increasing functions on [—1, 1] such that, for € > 0
and 6 € [0, 1), the length of t with 6;(t)/0;(t) € [1 — €,1 + €] is less than 6.
Assume that m and the a;, 0; are unknown, and the square-integrable 2n-periodic
base waveform y is known. Given the observation v(t) = Y, a;(t)y(6:(¢)) + v ()

(fort € [—1, 1]), where v is a realization of white noise with variance o2, recover

the modes v;(t) = a;(t)y(0;(1)).

Example 5.4.1. Consider the problem of recovering the modes of the signal v =
Vi+vo+v3+v, shown in Figure 5.5. Each mode has a triangular base waveform. In
this example v3 has the highest frequency and its amplitude vanishes over t > —0.25.
The frequencies of vi and v,, cross around t = 0.25. vy ~ N(0,026(t — 5)) is
white noise with standard deviation o = 0.5. While the signal-to-noise ratio
is Var(vy + vy + v3)/Var(v,) = 13.1, the SNR ratio against each of the modes
Var(v;)/Var(vy), i =1,2,3, is 2.7, 7.7, and 10.7, respectively.
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Figure 5.5: [102, Fig. 34], (1) signal v (2) instantaneous frequencies w; := 6; (3)
amplitudes a; (4, 5, 6) modes vy, v, v3.

On a high level, the problem is approached by iterating the following process.
During the life of the algorithm, the sets V and Vi, are maintained, containing the

identified full modes and mode segments (which will be defined below), respectively.
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First, we identify the lowest instantaneous frequency, wiow(7) at each 7 € [—1,1].
Due to mode instantaneous frequency crossings and amplitude vanishings, this
could correspond to multiple modes. We also determine the continuity of 6oy (7)
and wiew(7), and cut the domain at discontinuities. This leads to mode fragments
(which are supported in between the domain cuts), which correspond to modes
potentially only identified over a subset of domain [—1, 1]. It is checked whether
each mode fragment can be extended with continuous 64y Or wiew and is extended
if possible, leading to mode segments. Then, the user then has the option whether
to disregard, join, or pass on segments to the next iteration. The sets V and Ve
are updated accordingly. The identified modes in V are refined with a micro-local
KMD loop. Finally, the identified modes and mode segments are peeled from the
signal and we iterate the algorithm with the peeled signal. Further details, examples,

and results are presented in [102, Sec. 10].
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Chapter 6

KERNEL FLOWS

As introduced in [103], the Kernel Flow (KF) algorithm is a method for kernel
selection/design in kriging/Gaussian Process Regression (GPR). It operates on the
principle that a kernel is a good model of data if it is able to accurately make
predictions on one subset of the data by observing another subset. We consider the
supervised learning problem that approximates an unknown function # mapping
to R based on the input/output dataset (¢', y');<;<y (Where u(#') = y). We define
the vectors of input and output data as D = (¢'); € QY and Y = (y'); € RY. Any

non-degenerate kernel k(¢,¢") can be used to approximate u with the interpolant
u' (1) = k(t,D)K'Y, (6.0.1)

writing k(z, D) = (k(t,1")); € RPN, K = (k(¢, t/))j € RVN_ The kernel selection
problem concerns the identification of a good kernel for performing this interpolation
for a particular dataset. The KF algorithm’s approach to this problem is to use the loss
of accuracy incurred by removing half of the dataset as a loss of kernel selection. We
will present a pair of variants of the KF algorithm, parametric and non-parametric,

beginning with the former [ 103, Sec. 4], which is outlined in Algorithm 5.

6.1 Parametric KF Algorithm

Algorithm 5 Parametric KF Algorithm
1: Input: dataset (¢, y')1<i<n, kernel family kg, initial parameter 6

2: 0 0

3: repeat

4:  Randomly select {s¢(1),...57(Ns)} from {1,..., N} without replacement.
500 D~ (1 D) gien, and YF — (357 D) ien,..

6:  Randomly select {s.(1),...s:(Nc)} from {sz(1),...57(Ny)} without re-

placement.
: D« (ts"'(i))lsich and Y© « (ys"‘(i))lsisNC-
8 0 —0—eVyp(0, X, Y, X YO
9: until End criterion
10: Return optimized kernel parameter 8* «— 6
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As inputs, in step 1, the parametric variant of the KF algorithm takes a training
dataset (¢, y');, a parametric family of kernels kg, and a initial parameter 6. Kernel
parameter 6 is first initialized to @ in step 2. The main iterative process follows
between steps 3 and 9, beginning with the random selection of size Ny subvectors
D! and Y of D and Y (through uniform sampling without replacement in the index
set {1,...,N})asinsteps 4 and 5. This selection is randomly sampled further with
length N° subvectors D¢ and Y¢ of Df and Y' (by selecting, at random, uniformly
and without replacement, N.. of the indices defining D/) in steps 6 and 7.

Finally in step 8, we update the kernel parameter 6 according to gradient descent
with loss p. We define p(6, Df Y D¢, Y®) to be the squared relative error (in the
RKHS norm! || - ||z, defined by kg) between the interpolants u™f and u™¢ obtained

from the two nested subsets of the dataset and the kernel kg, i.e.?

™ =, YRRy (XE, X9 Y,

0. X yf x© v©) = =1- .
p( ) ””T’f”]%e Yf,Tka(Xf,Xf)—lYf

(6.1.1)

Note that loss p is doubly randomized through the selection of batches (Df, YY) and
sub-batches (D€, Y€). The gradient of p with respect to @ is then computed and
6 is updated @ «— 6 — 6Vgp. This process is iterated until an ending condition
is satisfied, such as the number of iteration steps or p < pgop. The optimized
kernel parameter ™ is returned. The corresponding kernel, k4+, can then be used to
interpolate testing points. This algorithm is a stochastic gradient descent algorithm

of p, hence the KF algorithm is a stochastic gradient descent algorithm.

The [;-norm variant. In the application of the KF algorithm to NN, we will
consider the /,-norm variant of this algorithm (introduced in [103, Sec. 10]) in
which the instantaneous loss p in (6.1.1) is replaced by the error (let || - ||, be the
Euclidean /; norm) e := || Y — u™¢(DF) ||§ of u' in predicting the labels Y, i.e.

e2(6,DF, Y, D%, Y®) := ||[Y' — ko (DF, D¢)ky (D, D)7 Y||3 . (6.1.2)

A simple PDE model
To motivate, illustrate and study the parametric KF algorithm, it is useful to start

with an application [103, Sec. 5] to the following simple PDE model amenable to

Note that convergence in RKHS norm implies pointwise convergence.

2Where u®/ (1) = ko(t, XH)ko(XF, XO)1YF and u™¢ (1) = ko(r, X¢)K(XC, X)~1YC. Further,
p admits the representation on the left-hand side of equation (6.1.1) enabling its computation [103,
Prop. 3.1].
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detailed analysis [101]. Let u be the solution of second order elliptic PDE

—div (a(x)Vu(x)) = f(x) x€Q;
u=0 on 0Q,

(6.1.3)

with interval Q c R! and uniformly elliptic symmetric matrix a with entries in
L*(Q). We write L := —div(aV-) for the corresponding linear bijection from
7-{01 (Q) to H1(Q). In this proposed simple application we seek to both esti-
mate conductivity coefficient a and recover the solution of (6.1.3) from the data
(xi, vi)i<i<n and the information u(x;) = y;. In this example, we use kernel fam-
ily, {Gp|b € L7(Q),essinfq(b) > 0}, where each G, is the Green’s function of
operator — div(bV-). It is known that kernel recovery with G, is minimax optimal
in || - || norm [101]. In what follows, we will numerically demonstrate that the KF

algorithm applied to this problem recovers a kernel G- such that a = b*.

Figure 6.1: [103, Fig. 5], (1) a 2) f (3) u (4) p(a) and p(b) (where b = 1) vs k
(5) e(a) and e(b) vs k (6) 20 random realizations of p(a) and p(b) (7) 20 random
realizations of e(a) and e(b).

Fig. 6.1 provides a numerical illustration of setting of our example, where Q is
discretized over 2% equally spaced interior points (and piecewise linear tent finite
elements) and Fig. 6.1.1-3 shows a, f and u. Fork € {1,...,8}andi € 7 :=
{1,...,25 = 1} let xfk) = /2K and write vék) for the interpolation of the data

(xfk), u(xl.(k) ));cr (o using the kernel G, (note that vl(JS) = u). Let ||v||, be the energy

norm ||v||Z = [,(Vv)"bVv. Take b = 1. Fig. 6.1.4 shows (in semilog scale) the

||v(k)_v(8)||2
W vs k. Note that the value of
Vp Uy

e v I
values of p(Cl) = T ®n
v lla

and p(b) =
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ratio p is much smaller when the kernel G, is used for the interpolation of the data.

11l 20 . .
2 Tz ML”z(Q) is well known and has been extensively
a

studied in Numerical Homogenization [101].

The geometric decay p(a) < C2~

Fig. 6.1.5 shows (in semilog scale) the values of the prediction errors e(a) and e(b)
(vs k) defined (after normalization) to be proportional to ”ng) (x) —u(x)12(q) and
||vl(7k) (x) —u(x)||;2(q)- Note again that the prediction error is much smaller when

the kernel G, is used for the interpolation.

Now, let us consider the case where the interpolation points form a random subset of
the discretization points. Take Ny = 27 and N. =2°. Let {xq,...,xn f} be a subset
with N distinct points of (the discretization points) {i/ 28|i € 7®} sampled with
uniform distribution. Let {zy, ..., zx, } be a subset of N, distinct points of X sampled
with uniform distribution. Write vg for the interpolation of the data (x;, u(x;)) using
the kernel G, and write v for the interpolation of the data (z;,u(z;)) using the
kernel Gj. Fig. 6.1.6 shows in (semilog scale) 20 independent random realizations>
of the values of p(a) = [|v; —vEI12/IIVAII2 and p(b) = |Iv] —vEI12/Ilv] |12, Fig. 6.1.7
shows in (semilog scale) 20 independent random realizations of the values of the
prediction errors e(a) o |[u — vgll;2q) and e(b) o |lu = vi||;2(q). Note again
that the values of p(a), e(a) are consistently and significantly lower than those of
p(b),e(D).

W el e e R ® @
l | ‘H\ w“u J’ u\‘:“‘\‘w‘ﬂ‘,‘f\‘»“-‘“““‘“{2\‘\1},‘HI \ . | & ( b)

00 150 200 250 300 30 400 0 50 100 1% 20 20 0 30 40

Figure 6.2: [103, Fig. 6], (1) a and b for n = 1 (2) a and b for n = 350 (2) p(b) vs
n (4) e(b) vs n.

Fig. 6.2 provides a numerical illustration of an implementation of Alg. 5 with
N =Ny = 27, N, = 2%, and n indexing each iteration of the KF algorithm starting
withn = 1. In this implementation a, f and u are as in Fig. 6.1.1-3. The training data
corresponds to N points X = {xy,...,xy} uniformly sampled (without replacement)
from {i/28]i € 7®}. Note that X remains fixed and since N = N t, the larger batch

3Random realizations of the subsets.



80

(as in step 4 in Alg. 5) is always selected as X. The purpose of the algorithm is to
learn the kernel G, in the set of kernels {G,, |[W} parameterized by the vector W
via .
log by = Z(Wic cos(2mix) + W sin(27wix)) . (6.1.4)
i=1
Using n to label its progression, Alg. 5 is initialized at n = 1 with the guess by = 1
(i.e., Wy = 0) (Fig. 6.2.1). Fig. 6.2.2 shows the value of b after n = 350 iterations and
can be seen to approximate a. Fig. 6.2.3 shows the value of p(b) vs n. Fig. 6.2.4
shows the value of the prediction error e(b) o [u — v} [|;2(q) vs n. The lack of
smoothness of the plots of p(b), e(b) vs n originate from the re-sampling of the
set Z at each step n. Further details of this application of the KF algorithm can be
found in [ 103, Sec. 5].

6.2 Non-parametric kernel flows

Recall that the parametric variant of the KF algorithm utilizes a parameterized
family of kernels kg and optimizes interpolation accuracy, p, with respect to . The
interpolation returned by the algorithm is then kg¢+ where 6 is the optimized kernel
parameter. In contrast, the non-parametric version [103, Sec. 6] is initialized with
kernel k and learns kernel of the form kp(t,t") = k(F(¢), F(t')) where F : Q — Q

is an arbitrary function. In this case,

Yc,TkF (Xc’ Xc)_ch
Yf,TkF (Xf, Xf)—lYf

o(F, DY, Y , D¢, Y®) =1 (6.2.1)

is optimized with respect to F. In practice, this is done by learning the p minimizing
optimal deformations to training inputs in Df and using kernel interpolation. This
leads to a deformation G,, which is used to update F at each iteration according
to (I + €G,) o F where [ is the identity function. Further mathematical detail
can be found in [103, Sec. 6]. We will next present numerical examples of the

non-parametric KF algorithm.

The Swiss Roll cheesecake example

We examine the application of the KF algorithm to the Swiss Roll cheesecake [ 103,
Sec. 7], as illustrated in Figure 6.3.1. The dataset inputs lie in Q = R? in the shape of
two concentric spirals. Red points have label —1 and blue points have label 1. The
purpose of this exposition is to illustrate the flow and deformations in each point in
dataset. Hence, to do so, all datapoints will be considered as training points and we

will not introduce a testing dataset. We select Ny = N and N, = Ny /2 and initialize
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the algorithm with
k(x,x") = eVl o26(x —x'). (6.2.2)

Figure 6.3 shows the KF flow* of each of the N = 250 Swiss Roll points at different
stages of the algorithm. We observe the concentric spirals being unrolled with all
red and blue points placed in linearly separable regions. We also show differential
fields of the deformations at different stages of the optimization of F), in Figure 6.4.
Further information on this example can be found in [ 103, Sec. 7] including potential

instabilities of the algorithm when using a kernel without nugget 026 (x — x”).

Figure 6.4: [103, Fig. 13], (F,,(x;))1<i<n (dots) and (F;4300(x)—F,(x)) /300 (arrows)
for 5 different values of n.

4i.e., F,(x;), where F, is the deformation F at the n-th iteration
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The MNIST and Fashion-MNIST databases

We will now implement, test and analyze the non-parametric KF algorithm applied
to the MNIST dataset [83] as originally presented in [103, Sec. 8,9]. This training
set is composed of 60000, 28 x 28 images of handwritten digits (partitioned into 10
classes) with a corresponding vector of 60000 labels (with values in {1,...,9,0}).
The test set is composed of 10000, 28 x 28 images of handwritten digits with a
corresponding vector of 10000 labels. The Fashion-MNIST set [144] has identical
data structure, though consists of images of articles of clothing of the 10 classes:
T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot.

We will highlight the following observations:

1. the KF algorithm applies class specific distortions, termed class archetypes.

2. the interpolation with the learned kernel from the KF algorithm is accurate
when using a subset of the training data, even for subsets containing 10 total

images with one representative per class.

3. the KF flow clusters images of like-class and separates images of differing

class.

4. in the class of sandals, the KF algorithm clusters this single class into two
sub-class, those with high heels and flat bottoms, which provides evidence of

unsupervised learning.

Ny Average error | Min error | Max error | Standard Deviation
6000 | 0.014 0.0136 0.0143 1.44 x 107%
600 | 0.014 0.0137 0.0142 9.79 x 107>
60 0.0141 0.0136 0.0146 2.03x107*
10 | 0.015 0.0136 | 0.0177 | 7.13x10™*

Table 6.1: MNIST test errors using N; interpolation points

In these experiments, we run 12000 iterations using batch sizes Ny = 600, N. = 300
and initial kernel k(x,x”) = exp(—y||x — x’||?). In Table 6.1, we present the error
statistics® of using kr to interpolate a random subset of N; training points. Note

that for N; = 10 and N; = 60, we require the random subset include one or six

SError measured between steps 11901 and 12000 using random training subsets.
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Error vs Layer 6000 interpolation points
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Figure 6.5: [103, Fig. 14], results for MNIST. N = 60000, N = 600 and N. = 300.
(1) Test error vs depth n with N; = 6000 (2) Test error vs depth n with N; = 600
(3) Test error vs depth n with N; = 60 (4) Test error vs depth n with N; = 10
(5,6) Test error vs depth n with N; = 6000, 600, 60, 10 (7) p vs depth n (8) Mean-
squared distances between images F,(x;) (all, inter class and in class) vs depth n
(9) Mean-squared distances between images (all) vs depth n (10) Mean-squared
distances between images (inter class) vs depth n (11) Mean-squared distances
between images (in class) vs depth n (12) Ratio (10)/(11).

representatives from each class, respectively. We observe relatively stable error
rates when reducing the interpolation size N;. Even an interpolation with a random

single image per class yields similar results to one with N; = 6000 points.

Figure 6.5 shows test errors vs depth n (with N; = 6000, 600, 60, 10 interpolation
points), the value of the ratio p vs n (computed with Ny = 600 and N. = 300)
and the mean squared distances between (all, inter class and in class) images Fj,(x;)
vs n. Observe that all mean-squared distances increase until n ~ 7000. After
n ~ 7000 the in class mean-squared distances decreases with n whereas the inter-
class mean-squared distances continue increasing. This suggests that after n ~ 7000
the algorithm starts clustering the data per class. Note also that while the test errors,
with Ny = 6000, 600 interpolation points, decrease immediately and sharply, the test
errors with N; = 10 interpolation points increase slightly until n =~ 3000 towards
60%, after which they drop and seem to stabilize around 1.5% towards n ~ 10000.



Figure 6.6: [103, Fig. 15], results for MNIST. N = 60000, Ny = 600 and N. = 300.
(1, 3, 5) Training data x; (2, 4, 6) F,(x;) for n = 12000 (7) F,(x;) — x; for training
data and n = 12000 (8) Test data x; (9) F,(x;) for test data and n = 12000 (10)
F,,(x;) — x; for test data and n = 12000.

It is known that iterated random functions typically converge because they are
contractive on average [31, 42]. Here training appears to create iterated functions

that are contractive with each class but expansive between classes.

Figure 6.7: [103, Fig. 22], results for Fashion-MNIST. N = 60000, N = 600 and
N. = 300. Left: Training data x; for class 5. Right: F,(x;) training data and
n = 11000.
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Figure 6.6.1-4 shows the KF flow on 12 representatives of images of 5 and 6. We
observe that a short vertical line is added to the upper right corner of 5’s and a longer
horizontal line is added to the top of each 6. Further observing in Figure 6.6.5-
10, the KF algorithm appears to introduce small, archetypal, and class dependent,

perturbations in those images.

A sign of unsupervised learning? Figure 6.7 shows x; and F,,(x;) for a group
of images in the class 5 (sandal). The network is trained to depth n = 11000.
Surprisingly, the flow F,, accurately clusters that class (sandal) into 2 sub-classes:
(1) high heels (2) flat bottom. This is surprising because the training labels con-
tain no information about such sub-classes: the KF algorithm has separated those

clusters/sub-classes without supervision.
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Chapter 7

KERNEL FLOWS REGULARIZED NEURAL NETWORKS

We introduce a novel technique for regularizing artificial neural networks (ANNs)
using the /;-norm loss function from the Kernel Flow (KF) algorithm [154] as
summarized in section 6.1. Conventional methods of training involve optimizing a
loss function dependent on the final output of the ANN. In our method, we construct
loss function to be the weighted sum of conventional and KF loss functions with
kernel dependent on the inner layer outputs of the ANN. In this way, optimizing
our loss function is a novel technique for simultaneously training the outputs of
multiple layers of the ANN. We test the proposed kernel method on Convolutional
Neural Networks (CNNs) and Wide Residual Networks (WRNs) without alteration
of their structure nor their output classifier. With the incorporation of KF loss, we
report reduced test errors, decreased generalization gaps, and increased robustness
to distribution shift without significant increase in computational complexity relative
to standard CNN and WRN training.

We proceed towards defining our KF loss in the context of a general ANN. Begin
by writing
n n—1 1
fo@) = (£ 0 fy" Voo fil) (x) (7.0.1)

for the compositional structure of an ANN with input x and n layers fg(f)(z) =
¢ (W;z+b;) parameterized by the weights and biases 6; := (W;, b;), 60 :={61,...,60,}.
The output of the ANN, fy(x), lies in domain R"!, where n is the number of
classes in the classification problem. We will use ReLU for the non-linearity ¢ in
our experiments. Fori € {1,...,n— 1} let h((f) (x) be the output of the i-th (inner)
layer, i.e.

hy ()= (fy o fy oo f31) @), (1.0.2)

and let hg(x) = (hél)(x), ey h("_l)(x)) be the (n — 1)-ordered tuple representing
all inner layer outputs. Let k, (-, -) be a family of kernels parameterized by y and let

K, ¢ be the family of kernels parameterized by y and 6 defined by

Ky 0(x,x") = ky(hg(x), ho(x")) . (7.0.3)
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Define

el

Lee(fo(x),y) = ), vjlog (fo(x)), (7.0.4)

J=1

and given the random mini-batch (X, YT)
Lo fo(XN), Y = 3" Lee(fo(X)), Y] (7.0.5)

be the cross-entropy loss! associated with that mini-batch. Given the (randomly sub-
sampled) half sub-batch (X¢,Y¢), let Lxr(y, 6, X, Y!, X, Y¢) be the loss function
(with hyper-parameter A > 0) defined by

Lir = Y = K, o(X, XK, 0 (XS X) Y] + Lee(fo(XD), Y. (7.06)

Our proposed KF-regularization approach is then to train the parameters 6 of the
network fy via the steepest descent (y,0) < (y,0) — 6V, g.Lxr. Network training
with gradient descent must be initialized with 6, yo and specify learning rate ¢,

which is usually taken to be exponentially decreasing. Note that this algorithm

1. israndomized through both the sampling of the minibatch and its subsampling.
2. adapts both 6 and y (since the KF loss term depends on both 6 and ).

3. simultaneously trains the accuracy of the output via the cross-entropy term
and the generalization properties of the feature maps defined by the inner

layers via the KF loss term.

Furthermore while the cross-entropy term is a linear functional of the empirical
distribution NL;, 2.0 ! ¥!) defined by the mini-batch (writing N, for the number
of indices contained in the mini-batch), the KF loss function is non-linear. While
K, ¢ may depend on the output of all the inner layers, in our numerical experiments
we have restricted its dependence to the output of only one inner layer or used a

weighted sum of such terms.

7.1 Numerical experiments

We will now use the proposed KF-regularization method to train a simple Convolu-
tional Neural Network (CNN) on MNIST and Wide Residual Networks (WRN) [155]
on fashion MNIST, CIFAR-10, and CIFAR-100. These results are also presented in

IThis is the loss function most commonly utilized by ANN training.
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[154, Sec. 3]. The conventional approach for training such networks is optimizing
the cross-entropy loss function while using Batch Normalization (BN) and Drop
Out (DO). Summarizing these techniques, BN [69] normalizes the distribution of
every hidden layer output of each training batch. In doing so, BN allows for higher
learning rates and being less careful about network initialization, implying it adds
stability to the training of the network. Furthermore, DO [125] randomly removes
components within each linear mapping layer of the network when training. It is
known to reduce overfitting of data and improve performance of networks. Our
goal is to test our proposed kernel approach and compare its performance with these

conventional training techniques.

Kernel Flow regularization on MNIST

We consider a Convolutional Neural Network (CNN) with six convolutional layers
and three fully connected layers, as charted in Table 7.1 (this CNN is a variant of a
CNN presented in [28] with code used from [56]). Convolutional layers consist of an
image convolution with a multiple filters. All layers in this network have stride one,
meaning the convolution is evaluated at every pixel?. The size of the convolutional
kernel is shown in the second and third columns from the left. “Valid” padding
implies no 0-padding at the boundaries of the image while “same” 0-pads images
to obtain convolutional outputs with the same sizes as the inputs. The “Max Pool”
layers down sample their inputs by reducing each 2 X 2 square to their maximum
values. The “Average Pool” layer in the final convolutional layer takes a simple
mean over each channel. The final three layers are fully connected, or equivalently
dense, each with outputs listed on the right column. Fully connected layers are
arbitrary linear maps, meaning dense layer 1 corresponds to an R3%%1200 matrix.
All convolutional and dense layers include trainable biases. Using notations from
the previous section, the outputs of the convolutional layers, which include ReLU
and pooling, are AV (x) to h(® (x) with output shapes described in the left column.
The dense layers outputs are h(”)(x) to h® (x). We do not pre-process the data
and, when employed, the data augmentation step, in this context, passes the original
MNIST image to the network with probability %, applies an elastic deformation
[122] with probability %, and a random small translation, rotation, and shear with
probability % The learning rate, as selected by validation, begins at 1073 and
smoothly exponentially decreases to 10~ while training over 20 epochs.

2A stride of k implies the convolution is evaluated every k pixels.
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Layer Type Number of filters  Filter size = Padding Output shape
Input layer 28 x 28 x 1
Convolutional layer 1, ReLU 150 3x3 Valid 26 x 26 x 150
Convolutional layer 2, ReLU 150 3x3 Valid 24 %24 x 150
Convolutional layer 3, ReLU 150 5%x5 Same 24 x 24 x 150
Max Pool 2x2 12 x 12 x 150
Convolutional layer 4, ReLU 300 3x3 Valid 10 x 10 x 300
Convolutional layer 5, ReLU 300 3x3 Valid 8 x 8 x 300
Convolutional layer 6, ReLU 300 5x%x5 Same 8 x 8% 300
Max Pool 2x2 4 x4 %300
Average Pool 4 x4 300

Dense layer 1, ReLU 1200

Dense layer 2, ReLU 300

Dense layer 3 10

Softmax Output layer 10

Table 7.1: The architecture of the CNN used in KF-regularization experiments is
charted. Convolutional layers are divided with horizontal lines. The middle block
shows layer specifics and the shapes of the outputs of each layer is on the right.

Comparisons of dropout and KF-regularization

The first experiment we present results of training the CNN with architecture given
in Table 7.1 with (1) Batch Normalization (BN) [69] (2) BN and KF-regularization
(3) BN and dropout (DO) [125] (4) BN, KF-regularization, and DO. We use the
same dropout structure as in [28], and use a rate of 0.3, as selected with validation.

Training Method || Original MNIST | Data augmented | QMNIST

BN only 0.395 + 0.030% 0.302 + 0.026% 0.389 £ 0.014%
BN+KF 0.300 + 0.024% 0.281 + 0.033% 0.341 £ 0.013%
BN+DO 0.363 + 0.028% 0.314 + 0.024% 0.400 + 0.015%
BN+KF+DO 0.296 + 0.023% 0.287 £ 0.022% 0.344 £ 0.015%

Table 7.2: A comparison of the average and standard deviation of testing errors each
over 20 runs for networks. The first data column on the left shows networks trained
and tested on original MNIST data. The middle is trained using data augmentation
and uses original MNIST testing data. The right column shows the same data
augmented trained network, but uses QMNIST testing data [ 149].

We present a KF-regularization experiment using the following Gaussian kernel on

the final convolutional layer 42(® (x) € R3%:

K, x') = ki) (B9 (x), h© (x'))

— Y6l @ 0-nO NI (7.1.1)
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We optimize the loss function in (7.0.6) with kernel Kﬁg) over the parameters 6
and y¢. Specifically, given the random mini-batch (X?,Y”) and the (randomly
sub-sampled) half sub-batch (X¢,Y¢), we evolve 6 and g in the steepest descent
direction of the loss

6 c 6 c -
Lr =AY = K (X7, XK, (X, x)7re3

(7.1.2)
+ Lee(fo(X),Y?).

The comparison between the dropout and KF-regularization training methods, as
well as their combination, is made in Table 7.2. KF-regularization and the network
architecture was inspired by the work in [103, Sec. 10] (the GPR estimator on the
final convolutional output space is here replaced by a fully connected network to
minimize computational complexity). On a 12GB NVIDIA GeForce GTX TITAN
X graphics card, training one network with BN+DO (20 epochs) takes 1605s to
run, compared with 1629s for BN+KF+DO. Furthermore, this KF-regularization
framework has another advantage of being flexible, both allowing the control of
generalization properties of multiple layers of the network simultaneously and being

able to be used concurrently with dropout.

For each of the training methods, we experiment with using original MNIST training
and testing data, augmenting the MNIST training set and testing on the original
data, and finally training on the augmented set, but testing on QMNIST, which
is resampled MNIST test data [149]. These three regimes are presented in the
data columns of Table 7.2 from left to right. The difference between the original
data augmented and QMNIST testing errors quantifies the effect of distributional
shift of the testing data [111]. This effect is observed to be reduced when using
KF-regularized trained networks, which suggests some degree of robustness to
distributional shift.

The training and testing errors of single runs of networks trained with BN only,
BN+DO, BN+KF, and BN+KF+DO are plotted in Fig. 7.1. Observe that the gen-
eralization gap (the gap between the training and testing errors) decreases with
the use of dropout, and that decrease is even more pronounced in the experi-
ments with KF-regularization. We observe similar findings on networks trained
using data augmentation, albeit less pronounced. =~ We finally examine the KF-
regularization component of the loss function as in equation (7.1.2). This KF
loss, ||Y? —Kig’)g(Xb, X")K)(IE’)Q(XC, X¢)~1y¢|12, is computed for batch normalization,
dropout, and KF-regularized training in Fig. 7.2. Both BN+KF and BN+KF+DO
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Figure 7.1: [154, Fig. 2], training and testing errors are plotted over single
runs trained with original data using (1) BN only (2) BN+KF (3) BN+DO (4)
BN+KF+DO. Data augmented trained network errors are shown using (5) BN only
(6) BN+KF (7) BN+DO (8) BN+KF+DO.
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Figure 7.2: [103, Fig. 3], single run with each of BN only, BN+KF, BN+DO,
and BN+KF+DO training methods plotting (1) 6th layer KF-loss using the original
MNIST training set (2) 6th layer KF-loss using an augmented training set (3) ratio
of mean inter-class and in-class distances of 6th layer outputs using the original
training set (4) ratio of mean inter-class and in-class distances of 6th layer outputs
using an augmented set.

are observed to reduce the KF loss and increase the ratio of inter-class and in-class
pairwise distances within each batch. The class-dependent clustering within hidden
layer outputs highlights the difference between traditional training techniques and

KF-regularization.

Kernel Flow regularization on Fashion MNIST and CIFAR

We now consider the Wide Residual Network (WRN) structure described in [155,
Table 1] with the addition of a dense layer. For convenience, we show this archi-
tecture in Table 7.3. Note that there are four convolutional blocks, each with a

certain number of residual layers, which are as described in [155, Fig. 1c,d] for
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Layer/Block name Number of filters  Filter size Number of resid- | Output shape
ual layers

Input layer 32x32%3

Convolutional block 1 16 3x3 1 32 x32% 16

Convolutional block 2 16k 3x3 N 32 %32 % 16k

Convolutional block 3 || 32k 3x3 N

Max Pool 2x2 16 X 16 x 32k

Convolutional block 4 || 64k 3x3 N

Max Pool 2x2 8 x 8 x 64k

Average Pool 8§x8 64k

Dense layer 64k

Softmax Output layer 10

Table 7.3: The architecture of the WRN used in KF-regularization experiments with
CIFAR input images. Convolutional blocks are divided with horizontal lines. The
middle portion shows block specifics such as filter width and depth in each block
and the shapes of the outputs of each layer is on the right. Note that max pooling
occurs within the last residual layer of each block.

BN and BN+DO training respectively. Each layer consists of two convolutional
blocks, with dropout applied between the blocks in dropout training, added to an
identity mapping from the input of the layer. In our dropout experiments, we drop
each neuron in the network with probability 0.3, as selected with cross-validation in
[155]. Note that k and N are hyper-parameters of the WRN architecture governing
width and depth, respectively, and a network with such k, N is written WRN-k-N.
In these presented WRN experiments, we use data augmentation where training im-
ages are randomly translated and horizontally flipped. In our implementations, we
have modified the code from [73] (which uses TensorFlow). Batches consisting of
100 images are used in these experiments. In CIFAR-10, each half batch contains 5
random images from each of the 10 classes. Meanwhile, in CIFAR-100, we require
each class represented in the testing sub-batch to also be represented in the training
sub-batch.

We write the outputs of each of the four convolutional blocks as AV (x), ..., A (x).
Again defining a as the average pooling operator, we have a(h'V(x)) € RS,
a(h@(x)) € R'%, a(h®(x)) € R¥?* and a(h™ (x)) = h¥(x) € R%*. We
define corresponding RBF kernels

l ’ l ’
Ky, (x,x') = ki) (h0 (), hD ()

_ o villa(h? (0)=an® (NIP (7.1.3)

Given the random mini-batch (X?,Y”) and the (randomly sub-sampled) half sub-
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batch (X¢, Y¢), we evolve 6 (and y) in the steepest descent direction of the loss

4
_ ) vb ) b () c\—-lycy2
LKF_;A > -k (xP XKD (X, X)7ve| 3 -

+ Lc—e(fH(Xb), Yb) .

Comparison to Dropout

Training Method | CIFAR-10 CIFAR-10.1 CIFAR-100

BN 4.72 £ 0.17% 11.07 £ 0.55% | 20.42 + 0.25%
BN+KF 4.43 +£0.12% 10.38 £ 0.40% | 20.37 + 0.27%
BN+DO 4.39 + 0.08% 10.50 £0.39% | 19.58 + 0.41%
BN+KF+DO 4.05+0.11% 10.20 £ 0.32% | 19.38 +£ 0.18%

Table 7.4: A comparison of the average and standard deviation of test errors over
5 runs for networks trained on augmented data on CIFAR-10, CIFAR-10.1, and
CIFAR-100. The second column to the right trains on augmented CIFAR-10 data
but tests on CIFAR-10.1 data [110, ]..

Table 7.4 compares the test errors obtained after training with only batch normal-
ization (BN) with the incorporation of dropout (DO), KF-regularization, as well as
a combination of all three. The network architecture WRN-16-8 is used and testing
error statistics over five runs is listed. We train with step exponentially decreasing
We ob-
serve that KF-regularization improves testing error rates against training with BN
and BN+DO. We also run a distributional shift experiment for CIFAR-10 using the
data set CIFAR-10.1, [ ]. As with the QMNIST

experiment, we also observe improvements with the addition of KF-regularization.

learning rates over 200 epochs with identical hyperparameters as [155].

] which is sampled from [

We finally compare the KF loss, Lxr, and ratios of inter-class and in-class Euclidean
distances on the output of the final convolutional layers within each batch in Figure
7.3. These statistics are plotted over runs of WRN trained with CIFAR-10 and
CIFAR-100. We again observe reduced KF losses and increased ratios of mean
inter-class and in-class distances on the final convolutional layer output #(*) when
comparing between BN and BN+KF as well as BN+DO and BN+KF+DO. That is,
KF-regularization reduces the distance (defined on the outputs of the inner layers)

between images in the same class and increases the distance between images in
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Figure 7.3: [154, Fig. 4], single run using WRN-16-8 with each of BN only, BN+KF,
BN+DO, and BN+KF+DO plotting (1) CIFAR-10 KF loss (2) CIFAR-100 KF loss
(3) CIFAR-10 ratio of mean inter-class and in-class distances 4 (4) CIFAR-100
ratio of mean inter-class and in-class distances 7).

distinct classes (thereby enhancing the separation). The opposite effect is observed
with the addition of dropout in training, suggesting they improve testing errors

through distinct mechanisms.
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