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ABSTRACT

The representation theory of Lie groups has connections to various fields in mathe-
matics and physics. In this thesis, we are interested in the classification of irreducible
admissible complex representations of real reductive groups. We introduce two ap-
proaches through the local Langlands correspondence and the Beilinson-Bernstein
localization respectively. Then we investigate the connection between these two
classifications for the group GL(2,R).
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C h a p t e r 1

INTRODUCTION

1.1 Background
In the late nineteenth century, motivated by the view of Klein that the geometry
of space is determined by its group of symmetries, Lie started to investigate group
actions on manifolds, laying the foundation of the theory of Lie groups. Around the
same time, while working on algebraic number theory, Dedekind discovered a for-
mula involving multiplicative characters of finite abelian groups. Built on this idea,
Frobenius and Schur developed the representation theory of finite groups. With the
introduction of invariant integration, analogous results for compact groups were also
established soon after. Since then, representation of Lie groups has found applica-
tions to numerous fields in mathematics and physics, notably number theory (Tate
thesis) and quantum mechanics (Heisenberg and Lorentz groups). Progress was
made to expand the theory to locally compact groups, nilpotent/solvable Lie groups,
and semisimple Lie groups. These efforts culminated in Langlands classification
[9] of all irreducible admissible representations of reductive groups as quotients of
induced representations. When the field is R or C, this classification takes an alter-
native, more concrete form in terms of representation of Langlands groups. From
an entirely different viewpoint and as a generalization of the Borel-Weil theorem
for compact groups, Beilinson and Bernstein [1] identified representations of Lie
algebras with global sections of certain D-modules on the flag variety, paving the
way for a geometric classfication. In this thesis, we first introduce the details of
these two distinct approaches, following the expositions in [7], [3], and [4]. Then we
apply them explicitly to the group GL(2,R) and investigate the connection between
the results.

1.2 Notation
Throughout the thesis, unless indicated otherwise, we adopt the following notations:

𝐺0 is a connected real reductive Lie group
𝐺 is the complexification of 𝐺0 with Lie algebra 𝔤
𝐵, 𝐻 are Borel and Cartan subgroups of 𝐺
𝐾0 is the maximal compact subgroup of 𝐺0 with complexification 𝐾
𝑈 (𝔤) is the universal enveloping algebra of 𝔤 with center 𝑍 (𝔤)
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1.3 Preliminaries

Definition 1.3.1 A connected linear algebraic group 𝐿 over R is reductive if the
base change 𝐿C is reductive, which is equivalent to the largest smooth connected
unipotent normal subgroup of 𝐿C being trivial.

Definition 1.3.2 A real Lie group 𝐺0 is reductive if there exists a linear algebraic
group 𝐿 over R whose identity component (in the Zariski topology) is reductive and
a homomorphism 𝜑 : 𝐺0 → 𝐿 (R) with ker 𝜑 finite and im 𝜑 open in 𝐿 (R).

Example 1.3.3 Every connected semisimple real Lie group (i.e. with semisimple
Lie algebra) with finite center is reductive.

Definition 1.3.4 A subgroup 𝐵 of an algebraic group 𝐺 is Borel if it is maximal
among all Zariski closed connected solvable subgroups. A subgroup 𝐻 ⊂ 𝐺 is
Cartan if it is the centralizer of a maximal torus.

Example 1.3.5 For GL(𝑛,C), the subgroup of upper triangular matrices is a Borel
subgroup, while the subgroup of diagonal matrices is a Cartan subgroup.

Definition 1.3.6 A continuous representation (𝜌,𝑉) of 𝐺0 on a complex Hilbert
space 𝑉 is admissible if 𝜌 |𝐾0 is unitary and each irreducible representation of 𝐾0

occurs with at most finite multiplicity in 𝜌 |𝐾0 . If 𝑉 is admissible, a vector 𝑣 ∈ 𝑉 is
called 𝐾0-finite if it lies in a finite-dimensional space under the action of 𝐾0.

Definition 1.3.7 A (𝔤, 𝐾)-module is a vector space 𝑉 with actions of 𝔤 and 𝐾 such
that for any 𝑣 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑋 ∈ 𝔤, and 𝑌 ∈ 𝔨 (the Lie algebra of 𝐾), we have

𝑘 · (𝑋 · 𝑣) = (Ad(𝑘)𝑋) · (𝑘 · 𝑣)
𝐾𝑣 ⊂ 𝑉 spans a finite-dimensional subspace on which 𝐾 acts continuously
( 𝑑
𝑑𝑡

exp(𝑡𝑌 ) · 𝑣) |𝑡=0 = 𝑌 · 𝑣

Given an admissible representation (𝜌,𝑉) of 𝐺0, we can consider the space 𝑉𝐾 of
𝐾0-finite vectors. Since the action of 𝐾0 on 𝑉𝐾 is locally finite, it extends to an
action of 𝐾 . Moreover, it is shown that𝑉𝐾 is dense in𝑉 and inherits a 𝔤 action. The
actions of 𝐾 and 𝔤 are compatible in the sense that (𝜌,𝑉𝐾) is a (𝔤, 𝐾)-module. [6,
Chapter III]. We also have the following result [6, Chapter VIII].

Proposition 1.3.8 (𝜌,𝑉) is irreducible if and only if (𝜌,𝑉𝐾) is irreducible.

Another result by [10] shows that:
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Proposition 1.3.9 Every irreducible (𝔤, 𝐾)-module is isomorphic to (𝜌,𝑉𝐾) for
some irreducible admissible representation (𝜌,𝑉) of 𝐺0.

Definition 1.3.10 Two admissible representations of 𝐺0 are infinitesimally equiva-
lent if their underlying (𝔤, 𝐾)-modules are isomorphic.

We would like to classify irreducible admissible representations of𝐺0 up to infinites-
imal equivalence, or equivalently, irreducible (𝔤, 𝐾)-modules up to isomorphism.
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C h a p t e r 2

LOCAL LANGLANDS CORRESPONDENCE

2.1 Parabolic Induction

Definition 2.1.1 A unitary representation of 𝐺0 is a continuous norm-preserving
group action of 𝐺0 by linear transformations on a Hilbert space.

Definition 2.1.2 Let (𝜌,𝑉) be an irreducible admissible representation of 𝐺0 and
𝑣, 𝑣′ be 𝐾0-finite vectors. Then a 𝐾0-finite matrix coefficient of 𝜌 is a function
𝑥 ↦→ 〈𝜌(𝑥)𝑣, 𝑣′〉. If all 𝐾0-finite matrix coefficients of 𝜌 are in 𝐿2+𝜖 (𝐺) for ∀𝜖 > 0,
we say 𝜌 is a tempered representation.

Proposition 2.1.3 (Iwasawa) Let 𝔤0 be the Lie algebra of 𝐺0 and 𝔤0 = 𝔨0 + 𝔭0 be
the Cartan decomposition. Then there is moreover a decomposition 𝔤0 = 𝔨0+𝔞0+𝔫0

such that 𝔞0 is abelian, 𝔫0 is nilpotent, and [𝔞0 ⊕ 𝔫0, 𝔞0 ⊕ 𝔫0] = 𝔫0.

Definition 2.1.4 Let 𝐴𝔭, 𝑁𝔭 be the analytic subgroups of 𝐺0 with Lie algebras 𝔞0

and 𝔫0 respectively. Let 𝑀𝔭 be the centralizer of 𝔞0 in 𝐾0. The subgroup 𝑀𝔭𝐴𝔭𝑁𝔭

is call a minimal parabolic subgroup of 𝐺0. Any closed subgroup 𝑄0 containing
𝑀𝔭𝐴𝔭𝑁𝔭 is called a standard parabolic subgroup.

Proposition 2.1.5 Any standard parabolic subgroup 𝑄0 has a Langlands decom-
position 𝑄0 = 𝑀0𝐴0𝑁0, where 𝑀0 is reductive, 𝐴0 is abelian, and 𝑁0 is nilpotent.

Example 2.1.6 For GL(2,R), the only proper parabolic is the subgroup of upper
triangular matrices with

𝑀0 =

{(
±1 0
0 ±1

)}
𝐴0 =

{(
𝑥 0
0 𝑦

)
: 𝑥, 𝑦 > 0

}
𝑁0 =

{(
1 𝑧

0 1

)}
Theorem 2.1.7 (Langlands) [8] The equivalence classes (up to infinitesimal equiv-
alence) of irreducible admissible representations of 𝐺0 are in bijection with all
triples (𝑀0𝐴0𝑁0, [𝜎0], 𝜈0) satisfying

a) 𝑀0𝐴0𝑁0 is a parabolic subgroup of 𝐺0 containing 𝑀𝔭𝐴𝔭𝑁𝔭

b) 𝜎0 is an irreducible tempered (unitary) representation of 𝑀0 and [𝜎0] its
equivalence class
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c) 𝜈0 is a member of 𝔞′0 such that Re〈𝜈0, 𝛼〉 > 0 for every positive restricted
root not vanishing on 𝔞0

In particular, the correspondence is that (𝑀0𝐴0𝑁0, [𝜎0], 𝜈0) corresponds to the
class of the unique irreducible quotient of Ind𝐺0

𝑀0𝐴0𝑁0
(𝜎0 ⊗ 𝜈0 ⊗ 1).

Specifically, the induced representation Ind𝐺0
𝑀0𝐴0𝑁0

(𝜎0 ⊗ 𝜈0 ⊗ 1) is given by first
considering all 𝐹 ∈ 𝐶 (𝐺0, 𝑉) with

𝐹 (𝑥𝑚𝑎𝑛) = 𝑒−(𝜈0+𝜌) log 𝑎𝜎0(𝑚)−1𝐹 (𝑥)

and defining Ind𝐺0
𝑀0𝐴0𝑁0

(𝜎0 ⊗ 𝜈0 ⊗ 1) (𝑔)𝐹 (𝑥) = 𝐹 (𝑔−1𝑥).

Definition 2.1.8 The parameters (𝑀0𝐴0𝑁0, [𝜎0], 𝜈0) are called the Langlands pa-
rameters of the given irreducible admissible representation.

2.2 Representations of the Weil Group𝑊R

Definition 2.2.1 The Weil group of R, denoted 𝑊R, is the nonsplit extension of C×

by Z/2Z given by𝑊𝑅 = C× ∪ 𝑗C×, where 𝑗2 = −1 and 𝑗𝑐 𝑗−1 = 𝑐 for ∀𝑐 ∈ C×.

For reasons that will become clear, we are interested in classifying 𝑛-dimensional
complex representations of 𝑊R whose images consist of semisimple elements (i.e.
semisimple matrices in GL(𝑛,C)). We refer to them as semisimple representations.

Lemma 2.2.2 One-dimensional representations of C× are of the form 𝑧 ↦→ 𝑧𝜇𝑧𝜈

with 𝜇, 𝜈 ∈ C and 𝜇 − 𝜈 ∈ Z. (Note that C× � 𝑆1 × R+, and representations of the
components are known.)

Proposition 2.2.3 One-dimensional representations 𝜑 of𝑊R are of the form

〈+, 𝑡〉 : 𝜑(𝑧) = |𝑧 |𝑡R and 𝜑( 𝑗) = 1

〈−, 𝑡〉 : 𝜑(𝑧) = |𝑧 |𝑡R and 𝜑( 𝑗) = −1

where 𝑡 can be any complex number.

Proof : Suppose 𝜑( 𝑗) = 𝑤 ∈ C× and ∀𝑧 ∈ C×, 𝜑(𝑧) = 𝑧𝜇𝑧𝜈. Then since 𝜑(𝑧) =

𝑤𝜑(𝑧)𝑤−1 = 𝜑( 𝑗 𝑧 𝑗−1) = 𝜑(𝑧), it follows that 𝜇 = 𝜈, so 𝜑(𝑟𝑒𝑖𝜃) = 𝑟2𝜇. Since
𝑤2 = 𝜑( 𝑗2) = 𝜑(−1) = 1, 𝑤 = ±1. Let 𝑡 = 2𝜇. It is easy to check that the formulas
above indeed give valid representations.
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Proposition 2.2.4 Equivalent classes of irreducible two-dimensional semisimple
representations 𝜑 of𝑊R are of the form

〈𝑙, 𝑡〉 : 𝜑(𝑟𝑒𝑖𝜃)𝛼 = 𝑟2𝑡𝑒𝑖𝑙𝜃𝛼 and 𝜑( 𝑗)𝛼 = 𝛽

𝜑(𝑟𝑒𝑖𝜃)𝛽 = 𝑟2𝑡𝑒−𝑖𝑙𝜃𝛽 and 𝜑( 𝑗)𝛽 = (−1)𝑙𝛼

where 𝛼, 𝛽 form a basis of the two dimensional vector space and 𝑙 ∈ Z+, 𝑡 ∈ C.

Proof : Given such a representation 𝜑, pick a basis 𝑎, 𝑏 such that 𝜑(C×) consist of
diagonal matrices. By the lemma, we can suppose 𝜑(𝑧)𝑎 = 𝑧𝜇1𝑧𝜈1𝑎 and 𝜑(𝑧)𝑏 =

𝑧𝜇2𝑧𝜈2𝑏. Since 𝜑 is irreducible, either 𝜇1 ≠ 𝜇2 or 𝜈1 ≠ 𝜈2. Let 𝑎′ := 𝜑( 𝑗)𝑎. Then

𝜑(𝑧)𝑎′ = 𝜑( 𝑗 𝑧 𝑗−1)𝑎′ = 𝜑( 𝑗 𝑧)𝑎 = 𝑧𝜈1𝑧𝜇1𝑎′

If 𝜇1 = 𝜈1, then 𝑎′ ∈ C𝑎 and C𝑎 is an invariant subspace. Contradiction! Thus
𝑎′ ∈ C𝑏 by the equation above, which means 𝜈 := 𝜈1 = 𝜇2 and 𝜇 := 𝜇1 = 𝜈2. Since
𝜑( 𝑗)−1 = 𝜑( 𝑗)𝜑(−1) = (−1)𝜇−𝜈𝜑( 𝑗), we have

𝜑(𝑧)𝑎 = 𝑧𝜇𝑧𝜈𝑎 and 𝜑( 𝑗)𝑎 = 𝑎′

𝜑(𝑧)𝑎′ = 𝑧𝜈𝑧𝜇𝑎′ and 𝜑( 𝑗)𝑎′ = (−1)𝜇−𝜈𝑎

Considering instead the basis 𝑎′, (−1)𝜇−𝜈𝑎 and in view of the symmetry, we can
suppose without the loss of generality that the integer 𝑙 := 𝜇 − 𝜈 is positive. Let
𝑡 = 1

2 (𝜇 + 𝜈), 𝛼 = 𝑎, and 𝛽 = 𝑎′. Then the result follows immediately.

Proposition 2.2.5 Every finite-dimensional semisimple representation 𝜑 of 𝑊R is
fully reducible, and each irreducible representation has dimension one or two.

Proof : Given a representation 𝜑 acting on 𝑉 , since 𝜑(C×) consists of commuting
diagonalizable matrices, 𝑉 is the direct sum of spaces 𝑉𝜇,𝜈 on which 𝜑(𝑧) acts by
𝑧𝜇𝑧𝜈. Meanwhile, 𝜑( 𝑗)𝑉𝜇,𝜈 = 𝑉𝜈,𝜇. If 𝜇 = 𝜈, we can choose a basis of eigenvectors
for 𝜑( 𝑗) in𝑉𝜇,𝜈, so the span of each vector is an one-dimensional invariant subspace
under 𝜑(𝑊R). If 𝜇 ≠ 𝜈, pick a basis 𝑢1, 𝑢2, · · · 𝑢𝑟 of 𝑉𝜇,𝜈. Then C𝑢𝑖 ⊕ C𝜑( 𝑗)𝑢𝑖 is a
two-dimensional invariant subspace. Moreover, 𝑉𝜇,𝜈 ⊕𝑉𝜈,𝜇 =

⊕𝑟

𝑖=1 C𝑢𝑖 ⊕C𝜑( 𝑗)𝑢𝑖.

2.3 𝐿-function and 𝜖-factor
Given any irreducible admissible representations 𝜌 of 𝐺0, we can attach two invari-
ants, called the 𝐿-function and 𝜖-factor. For simplicity, we define them here for the
special case of𝐺0 = GL(𝑛,R). Fix an additive character 𝜓 of R given by 𝑥 ↦→ 𝑒2𝜋𝑖𝑥 .



7

Let 𝑀𝑛 (R) be the collection of 𝑛 × 𝑛 matrices and I0 be the space of functions
𝑀𝑛 (𝐾) → R of the form 𝑃(𝑥𝑖 𝑗 ) exp(−𝜋∑

𝑥2
𝑖 𝑗
) for any polynomial 𝑃. For any

𝐾0-finite matrix coefficient 𝑐 of 𝜌, ∀ 𝑓 ∈ I0, and 𝑠 ∈ C, we define

𝜁 ( 𝑓 , 𝑐, 𝑠) =
∫
𝑀𝑛 (R)

𝑓 (𝑥)𝑐(𝑥) | det 𝑥 |𝑠𝑑×𝑥

Here 𝑑×𝑥 = | det 𝑥 |−𝑛𝑑𝑥, where 𝑑𝑥 is a fixed invariant measure for 𝑀𝑛 (R).

Proposition 2.3.1 If 𝜌 is irreducible, then all 𝜁 ( 𝑓 , 𝑐, 𝑠) converge in the right half
plane and extend to a meromorphic function (in terms of 𝑠) on C. Moreover, there
is a finite collection {(𝑐𝑖, 𝑓𝑖)} such that

𝐿 (𝑠, 𝜌) =
∑︁
𝑖

𝜁 ( 𝑓𝑖, 𝑐𝑖, 𝑠)

satisfies ∀(𝑐, 𝑓 ), 𝜁 ( 𝑓 , 𝑐, 𝑠 + 1
2 (𝑛 − 1)) = 𝑃( 𝑓 , 𝑐, 𝑠)𝐿 (𝑠, 𝜌) with a polynomial 𝑃 in 𝑠.

In particular 𝐿 (𝑠, 𝜌) is uniquely defined this way (up to a scalar).

Now for ∀ 𝑓 ∈ I0, we define

𝑓 =

∫
𝑀𝑛 (R)

𝑓 (𝑦)𝜓(Tr(𝑥𝑦))𝑑𝑦

where 𝑑𝑦 is the self-dual Haar measure on 𝑀𝑛 (R). Then 𝑓 ∈ I0.

Proposition 2.3.2 If 𝜌 is irreducible, there exists a meromorphic function 𝛾(𝑠, 𝜌, 𝜓)
independent of 𝑓 and 𝑐 with 𝜁 ( 𝑓 , 𝑐, 1− 𝑠+ 1

2 (𝑛−1)) = 𝛾(𝑠, 𝜌, 𝜓)𝜁 ( 𝑓 , 𝑐, 𝑠+ 1
2 (𝑛−1))

for ∀ 𝑓 ∈ I0 and any 𝐾0 finite matrix coefficient 𝑐 of 𝜌. Here 𝑐(𝑥) = 𝑐(𝑥−1).

Definition 2.3.3 We refer to 𝐿 (𝜌, 𝑠) as the 𝐿-function of 𝜌. The 𝜖-factor is defined
as

𝜖 (𝑠, 𝜌, 𝜓) = 𝛾(𝑠, 𝜌, 𝜓)𝐿 (𝑠, 𝜌)
𝐿 (1 − 𝑠, 𝜌̃)

where 𝜌̃ is the admissible dual of 𝜌.

We can also attach an 𝐿-function and an 𝜖-factor to a representation of𝑊R as follows.

Definition 2.3.4 Given an irreducible finite-dimensional semisimple representation
𝜑 of𝑊R, we can attach an 𝐿-function

𝐿 (𝑠, 𝜑) =


𝜋−

𝑠+𝑡
2 Γ( 𝑠+𝑡2 ) for 𝜑 given by 〈+, 𝑡〉

𝜋−
𝑠+𝑡+1

2 Γ( 𝑠+𝑡+1
2 ) for 𝜑 given by 〈−, 𝑡〉

2(2𝜋)−(𝑠+𝑡+ 𝑙
2 )Γ(𝑠 + 𝑡 + 𝑙

2 ) for 𝜑 given by 〈𝑙, 𝑡〉
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and an 𝜖-factor:

𝜖 (𝑠, 𝜑, 𝜓) =


1 for 𝜑 given by 〈+, 𝑡〉

𝑖 for 𝜑 given by 〈−, 𝑡〉

𝑖𝑙+1 for 𝜑 given by 〈𝑙, 𝑡〉

Now to state the local Langlands correspondence, we need one last ingredient.
Roughly speaking, the 𝐿-group of a connected reductive group 𝐺0 over R is given
by the semi-direct product of a complex reductive group with dual root datum to 𝐺0

and the Galois group Gal(C/R). We denote it by 𝐿𝐺0. Concretely,

Definition 2.3.5 The 𝐿-groups of GL(𝑛,R), SL(𝑛,R), SO(2𝑛+1,R), and SO(2𝑛,R)
are GL(𝑛,C), PGL(𝑛,C), Sp(𝑛,C), and SO(2𝑛,C) respectively.

2.4 Main Results

Theorem 2.4.1 (Local Langlands Correspondence) There is a bijection between
semisimple representations of𝑊R into 𝐿𝐺0 and 𝐿-packets of irreducible admissible
representations of 𝐺0.

Remark 2.4.2 This theorem means we have a partition of all the irreducible ad-
missible representations of 𝐺0, indexed by semisimple representations of 𝑊R into
𝐿𝐺0. An 𝐿-packet is a collection of representations of 𝐺0 that correspond to the
same representation of𝑊R, which is called the 𝐿-parameter of that packet.

Proposition 2.4.3 The 𝐿-parameter and representations in its corresponding 𝐿-
packet have the same 𝐿-function and 𝜖-factor.

A priori, there can be multiple representations in a single 𝐿-packet. However, when
𝐺0 = GL(𝑛,R), each 𝐿-packet has size one. In particular,

Theorem 2.4.4 There is a bijection between the set of equivalence classes of 𝑛-
dimensional semisimple complex representations of 𝑊R and the set of equivalence
classes of irreducible admissible representations of GL(𝑛,R).

To make the correspondence explicit, we first define some classes of representations
of GL(1,R) and GL(2,R). Note that for 𝑗 = 1, 2, any matrix 𝑋 ∈ GL( 𝑗 ,R) admits
a decomposition 𝑋 = 𝑌𝑍 where 𝑌 ∈ SL±( 𝑗 ,R) and 𝑍 is positive scalar. Denote the
two characters of SL±(1,R) as 1 and sgn. For 𝑙 ∈ Z+, let 𝐷+

𝑙
be the representation
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of SL(2,R) on the space of analytic functions 𝑓 on the upper half plane satisfying
‖ 𝑓 ‖2 =

∫ ∫
| 𝑓 (𝑧) |2𝑦𝑙−1𝑑𝑥𝑑𝑦 < ∞ given by

𝐷+
𝑙

(
𝑎 𝑏

𝑐 𝑑

)
𝑓 (𝑧) = (𝑏𝑧 + 𝑑)−𝑙−1 𝑓 ( 𝑎𝑧 + 𝑐

𝑏𝑧 + 𝑑 )

Consider 𝐷 𝑙 = indSL± (2,R)
SL(2,R) (𝐷+

𝑙
). For GL(1,R), ∀𝑡 ∈ C, we have representations

1 ⊗ | · |𝑡 : 𝑋 ↦→ |𝑍 |𝑡

sgn ⊗| · |𝑡 : 𝑋 ↦→ sgn(𝑌 ) |𝑍 |𝑡

Similarly for GL(2,R), we have

𝐷 𝑙 ⊗ | det(·) |𝑡 : 𝑋 ↦→ 𝐷 𝑙 (𝑌 ) | det(𝑍) |𝑡

Now given a representation of 𝜑 of 𝑊R, suppose 𝜑 =
⊕ 𝑗

𝑖=1 𝜑 𝑗 , where 𝜑 𝑗 is a 𝑛 𝑗 -
dimensional representation with 𝑛 𝑗 = 1 or 2. We associate to 𝜑 𝑗 to a representation
𝜓 𝑗 of GL(𝑛 𝑗 ,R) in the following way

〈+, 𝑡〉 → 1 ⊗ | · |𝑡

〈−, 𝑡〉 → sgn ⊗| · |𝑡

〈𝑙, 𝑡〉 → 𝐷 𝑙 ⊗ | det(·) |𝑡

Let 𝑡 𝑗 be the complex number corresponding to 𝜑 𝑗 . Suppose wlog that 𝑛−1
1 Re 𝑡1 ≥

𝑛−1
2 Re 𝑡2 ≥ · · · ≥ 𝑛−1

𝑗
Re 𝑡 𝑗 . Let 𝐷 =

∏ 𝑗

𝑖=1 GL(𝑛 𝑗 ,R) and𝑈 the block strictly upper
triangular subgroup of GL(𝑛,R). We can extend

⊕ 𝑗

𝑖=1 𝜓 𝑗 to a representation 𝜓′ on
𝐷𝑈 by making it trivial on𝑈.

Proposition 2.4.5 The induced representation indGL(𝑛,R)
𝐷𝑈

of GL(𝑛,R) has a unique
irreducible quotient 𝜓, which is admissible.

Remark 2.4.6 The bijection in Theorem 2.4.4 is given by 𝜑 ↦→ 𝜓 described above.
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C h a p t e r 3

BEILINSON–BERNSTEIN LOCALIZATION

3.1 Representation of Lie Algebras
If we choose a positive root system Δ+ for 𝔤 then the set of roots of 𝔤 is given by
Δ+ ∪ {0} ∪ Δ− and we have a decomposition

𝔤 =
⊕
𝛼∈Δ+

𝔤𝛼 ⊕ 𝔥 ⊕
⊕
𝛼∈Δ−

𝔤𝛼

where 𝔥 is the Cartan subalgebra. Let 𝔫 =
⊕

𝛼∈Δ+ 𝔤𝛼 and 𝔫− =
⊕

𝛼∈Δ− 𝔤𝛼. Then
𝔟 := 𝔥 ⊕ 𝔫 is a Borel subalgebra. Let Π = {𝛼 𝑗 }1≤ 𝑗≤𝑛 be a collection of simple roots.

Proposition 3.1.1 For each 𝛼𝑖 ∈ Π, there exists 𝛼∨
𝑖
∈ 𝔥 such that 𝛼∨

𝑖
(𝛼𝑖) = 2 and

𝑠𝛼∨
𝑖
,𝛼𝑖 (Δ) = Δ, where the map 𝑠𝛼∨

𝑖
,𝛼𝑖 : ℎ∗ → ℎ∗ is given by 𝑣 ↦→ 𝑣 − 𝛼∨(𝑣)𝛼.

Definition 3.1.2 The subgroup of GL(𝔥∗) generated by {𝑠𝛼∨
𝑖
,𝛼𝑖 }1≤𝑖≤𝑛 is called the

Weyl group, denoted𝑊 . We also define the following subsets of 𝔥∗:

The fundamental weights 𝜋𝑖 are defined by 𝛼𝑖 (𝜋 𝑗 ) = 𝛿𝑖 𝑗
𝜌 =

∑𝑛
𝑖=1 𝜋𝑖 =

1
2
∑𝑛
𝑖=1 𝛼𝑖

𝑄+ is the nonnegative integral span of {𝛼𝑖}, i.e.
⊕𝑛

𝑖=1 Z≥0𝛼𝑖

𝑃+ =
⊕𝑛

𝑖=1 Z≥0𝜋𝑖, with elements referred to as dominant weights
Elements in −𝑃+ are referred to as anti-dominant weights
Elements in {𝜆 ∈ 𝔥∗ : 𝑎∨

𝑖
(𝜆) < 0} ⊂ −𝑃+ are called regular weights

Given a representation 𝑉 of 𝔤, we can write 𝑉 =
⊕

𝑉𝜆, where all 𝜆 ∈ 𝔥∗ appearing
in the decomposition are called weights of 𝑉 .

Theorem 3.1.3 Any irreducible representation𝑉 of 𝔤 has a unique maximal weight
𝜆 and a unique minimal weight 𝜇 with respect to the partial ordering given by 𝑄+,
with 𝜆 dominant and 𝜇 anti-dominant. Moreover, for ∀𝜆 ∈ 𝑃+ there is a unique
representation of 𝔤, denoted 𝐿+(𝜆) with maximal weight 𝜆.

Definition 3.1.4 It is known that the center 𝑍 (𝔤) ⊂ 𝑈 (𝔤) acts on 𝐿+(𝜆) by scalars,
which defines a map 𝜒𝜆 : 𝑍 (𝔤) → C, called the central character associated to 𝜆.

Consider the map 𝑓 : 𝑈 (𝔥) → 𝑈 (𝔥) induced by the linear map 𝔥 → 𝑈 (𝔥) with
ℎ ↦→ ℎ + 𝜌(ℎ)1. Since𝑈 (𝔤) = 𝑈 (𝔥) ⊕ (𝔫𝑈 (𝔤) +𝑈 (𝔤)𝔫−), ∀𝑧 ∈ 𝑍 (𝔤) can be written
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as 𝑧 = ℎ + 𝑛 for some ℎ ∈ 𝑈 (𝔥) and 𝑛 ∈ (𝔫𝑈 (𝔤) +𝑈 (𝔤)𝔫−). The Harish-Chandra
homomorphism is the map 𝛾 : 𝑍 (𝔤) → 𝑈 (𝔥) given by 𝛾(𝑧) = 𝑓 (ℎ). Moreover, for
the central character, we have 𝜒𝜆 (𝑧) = 𝜆(𝛾(𝑧)).

Theorem 3.1.5 (Harish-Chandra) The Harish-Chandra homomorphism is injec-
tive and an isomorphism onto 𝑈 (𝔥)𝑊 ·, with the dotted action of 𝑊 on 𝔥∗ given by
𝑤 · 𝜆 = 𝑤(𝜆 + 𝜌) − 𝜌.

3.2 Algebraic D-modules
In this subsection, 𝑋 denotes a smooth algebraic variety over C, with structure sheaf
O𝑋 and tangent sheaf T𝑋 . For simplicity, we only discuss the affine case here, but
the definitions can be extended to general cases and the propositions hold as well.

Definition 3.2.1 A linear map 𝐷 : O𝑋 → O𝑋 is a differential operator of order
0 if it is multiplication by a function. For 𝑘 ∈ Z+, 𝐷 is a differential operator of
order 𝑘 if for any function 𝑓 ∈ O𝑋 , the commutator [𝐷, 𝑓 ] is a differential operator
f order 𝑘 − 1. Let 𝐷𝑋,𝑘 be the collection of differential operators of order 𝑘 and
𝐷𝑋 =

⋃∞
𝑘=0 𝐷𝑋,𝑘

Concretely, we have the following description of 𝐷𝑋 .

Proposition 3.2.2 The graded algebra gr(𝐷𝑋) is isomorphic to SymO𝑋
(T𝑋).

Definition 3.2.3 A (left) D-module is an O𝑋-quasicoherent sheaf of (left) modules
over 𝐷𝑋

Now consider any line bundle L on 𝑋 with dual sheaf L∨.

Definition 3.2.4 A map 𝐷 : L → L is a differential operator of order 0 on L if it
is multiplication by a function. For 𝑘 ∈ Z+, 𝐷 is a differential operator of order 𝑘
on L if for any function 𝑓 ∈ O𝑋 , the commutator [𝐷, 𝑓 ] is a differential operator
of order 𝑘 − 1. Denote the collection of all such differential operators by 𝐷L .

Proposition 3.2.5 Concretely, we have 𝐷L = L ⊗O𝑋
𝐷𝑋 ⊗O𝑋

L∨.

3.3 Main Results

Definition 3.3.1 The quotient 𝐺/𝐵 is called the flag variety of 𝐺.

Proposition 3.3.2 The 𝐺-equivariant vector bundles on 𝐺/𝐵 are in bijection with
representations of 𝐵.
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Proposition 3.3.3 The one-dimensional representations of 𝐵 are in bijection with
characters of 𝐻 (i.e. integral characters of 𝔥).

Hence given an integral weight 𝜆 ∈ 𝔥∗, we can attach an one dimensional represen-
tation C𝜆 of 𝐵 and a 𝐺-equivariant line bundle L(𝜆)

Definition 3.3.4 For an integral weight 𝜆 ∈ 𝔥∗, we define 𝐷𝜆 as the sheaf 𝐷L(𝜆+𝜌) .

We denote by 𝐷𝜆 (𝐺/𝐵) the category of 𝐷𝜆-modules that are quasi-coherent as
O𝐺/𝐵-modules, and by 𝔤 -mod𝜆 the category of 𝑈 (𝔤)-modules on which 𝑍 (𝔤) acts
by the character 𝜒𝜆. Then we have the following crucial result:

Theorem 3.3.5 (Beilinson–Bernstein Localization) If 𝜆 is regular, then the global
section functor Γ : 𝐷𝜆 (𝐺/𝐵) → 𝔤 -mod𝜆 is an equivalence of categories with quasi-
inverse given by 𝐷𝜆 ⊗𝑈 (𝔤) (·)

This is still not exactly what’s needed for our purpose, as we are intersted in clas-
sifying (𝔤, 𝐾)-modules. As it turns out, the appropriate notion corresponding to
(𝔤, 𝐾)-modules with central character 𝜒𝜆 on the geometric side is the category
𝐷𝜆 (𝐺/𝐵)𝐾 of “𝐾-equivariant” 𝐷𝜆-modules on 𝐺/𝐵. In other words, we have an
equivalence of categories 𝐷𝜆 (𝐺/𝐵)𝐾 � (𝔤, 𝐾) -mod𝜆. Thus to classify irreducible
(𝔤, 𝐾)-modules, it suffices to classify simple objects in 𝐷𝜆 (𝐺/𝐵)𝐾 , for which the
following two results are necessary.

Proposition 3.3.6 For every simple M ∈ 𝐷𝜆 (𝐺/𝐵)𝐾 , there is a 𝐾-orbit 𝑄 of 𝐺/𝐵
and a simple N ∈ 𝐷𝜆 (𝑄)𝐾 such that M � 𝑗!∗(N). (For a detailed discussion of
the functor 𝑗!∗, see [3, Section 5].)

Proposition 3.3.7 Fix a point 𝑥 in a 𝐾-orbit 𝑄. Let 𝐾𝑥 be the stabilizer of 𝑥 in 𝐾 .
Then 𝐷𝜆 (𝑄)𝐾 = 0 unless 𝜆 integrates to a character of the identity component 𝐾0

𝑥

of 𝐾𝑥 , in which case 𝐷𝜆 (𝑄)𝐾 � Rep(𝐾𝑥/𝐾0
𝑥 ), the category of representations.

Remark 3.3.8 The integrality condition means we can first conjugate 𝐾𝑥 so that it
is contained in 𝐻 and then find a character of 𝐾0

𝑥 whose derivative coincides with
the restriction of 𝜆.

3.4 Induction in the Geometric Context
Parallel to the procedure of parabolic inductions, there is also a notion of induction
for (𝔤, 𝐾)-modules. In particular, let 𝐾𝐻 = 𝐾 ∩ 𝐵.
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Definition 3.4.1 The Jacquet functor 𝑟𝐺
𝐻

is given by (𝔤, 𝐾) -mod → (𝔥, 𝐾𝐻) -mod
with 𝑀 ↦→ 𝑈 (𝔥) ⊗𝑈 (𝔟) 𝑀 , in other words, taking 𝔫 coinvariants. Notably, it admits
a right adjoint, denoted 𝑖𝐺

𝐵
.

Remark 3.4.2 On the level of 𝐾-modules, 𝑖𝐺
𝐵

is equivalent to the functor ind𝐾𝐾𝐻
[5].
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C h a p t e r 4

AN EXAMPLE OF GL(2,R)

In this section, we investigate the connection between the classifications of irre-
ducible admissible representations of GL(2,R) through the “Langlands” approach
and the “geometric” approach.

4.1 Notation

𝐺0 = GL(2,R)
𝐺 = GL(2,C)
𝐾 = O(2,C)
𝐵 is the subgroup of upper triangular matrices
𝐻 is the subgroup of diagonal matrices

4.2 Langlands Approach
By Remark 2.4.6, all irreducible admissible representations of GL(2,R) are param-
eterized in the following way, with 𝑙 ∈ Z+, 𝑡, 𝑡1, 𝑡2 ∈ C satisfying Re 𝑡1 ≥ Re 𝑡2:

〈1, 𝑡1, 1, 𝑡2〉 : (1 ⊗ | · |𝑡1)⊗(1 ⊗ | · |𝑡2)
〈1, 𝑡1, sgn, 𝑡2〉 : (1 ⊗ | · |𝑡1)⊗(sgn ⊗| · |𝑡2)
〈sgn, 𝑡1, 1, 𝑡2〉 : (sgn ⊗| · |𝑡1)⊗(1 ⊗ | · |𝑡2)
〈sgn, 𝑡1, sgn, 𝑡2〉 : (sgn ⊗| · |𝑡1)⊗(sgn ⊗| · |𝑡2)
〈𝑙, 𝑡〉 : 𝐷 𝑙 ⊗ | det(·) |𝑡

Here ⊗ refers to the procedure of taking induced representations and irreducible
quotient as described in Remark 2.4.6.

Proposition 4.2.1 The center 𝑍 (𝔤𝔩(2,C)) is generated by 𝐼 and the Casimir Δ =

−1
4 (𝐻

2 − 2𝐻 + 4𝐸𝐹), where

𝐼 =

(
1 0
0 1

)
𝐻 =

(
0 −𝑖
𝑖 0

)
𝐸 =

(
− 𝑖

2
1
2

1
2

𝑖
2

)
𝐹 =

(
𝑖
2

1
2

1
2 − 𝑖

2

)
Proposition 4.2.2 [2] For the representations (sgn𝜖1 ⊗| · |𝑡1) ⊗ (sgn𝜖2 ⊗| · |𝑡2) of
GL(2,R) with 𝜖1, 𝜖2 ∈ {1, 2}, the central character 𝜒𝜆 is given by

𝐼 ↦→ 𝑡1 + 𝑡2, Δ ↦→ 1
4
[1 − (𝑡1 − 𝑡2)2]
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Let 𝑡 = 1
2 (𝑡1 − 𝑡2 + 1) and 𝜖 = 𝜖1 + 𝜖2. Then moreover

If 2𝑡 . 𝜖 (mod 2), the representation above is irreducible.
Otherwise, it has two irreducible factors: a finite representation (trivial if and
only if 𝑡 = 1

2 ) and a discrete series representation (a limit of discrete series if
and only if 𝑡 = 1

2 ).

Remark 4.2.3 As all irreducible representations come from parabolically induced
ones, we will focus on finding a geometric interpretation of parabolic induction.

4.3 Geometric Approach
By explicit computation, there are two 𝐾-orbits on 𝐺/𝐵, represented by{

𝑝 :=

(
1 0
0 1

)}
and

{
𝑞 :=

(
1 0
𝑖 1

)}
respectively. Moreover, the stabilizer groups are given by

𝐾𝑝 =

{(
𝑥 0
0 𝑦

)
: 𝑥2 = 𝑦2 = 1

}
𝐾𝑞 =

{(
𝑥 𝑦

−𝑦 𝑥

)
: 𝑥2 + 𝑦2 = 1

}
Note that 𝐾𝑝 is discrete with size four, so Rep(𝐾𝑝/𝐾0

𝑝) has four simple objects.
Moreover, the condition from Proposition 3.3.7 that 𝜆 integrates to a character of 𝐾0

𝑝

is always satisfied. These D-modules correspond to the irreducible representations
〈sgn𝜖1 , 𝑡1, sgn𝜖2 , 𝑡2〉, where 〈𝑡1, 𝑡2〉 parametrize the weight 𝜆 and 〈𝜖1, 𝜖2〉 the simple
object in Rep(𝐾𝑝/𝐾0

𝑝).

On the other hand, 𝐾𝑞 is connected, so Rep(𝐾𝑞/𝐾0
𝑞) has exactly one simple object.

Note that characters of 𝐾𝑞 are parametrized by integers 𝑛 ∈ Z.(
𝑥 𝑦

−𝑦 𝑥

)
↦→ (𝑥 + 𝑦𝑖)𝑛

These D-modules correspond to the discrete series representations 𝐷 𝑙 ⊗ | det(·) |𝑡

with 𝑙 ∈ Z+ and 𝑡 ∈ C that we described in Theorem 2.4.4.

Hence as expected, the Langlands approach and the geometric approach both yield
the same classification for GL(2,R).
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4.4 Parabolic Induction
For a dominant regular weight 𝜆, let Δ𝜆 : (𝔤, 𝐾) -mod𝜆 → 𝐷𝜆 (𝐺/𝐵)𝐾 be the
localization functor from Theorem 3.3.5. Let 𝑄 be the orbit of 𝑝 in 𝐺/𝐵 and 𝑗 the
inclusion 𝑄 ↩→ 𝐺/𝐵. Finally, let 𝑇𝑝 (−) be the functor of taking fiber at 𝑝.

Proposition 4.4.1 We have a commutative diagram:

(𝔤, 𝐾)-mod𝜆 𝐷𝜆 (𝐺/𝐵)𝐾

(𝔤, 𝐾)-mod 𝐷𝜆 (𝑄)𝐾 = 𝐷 (𝑄)𝐾

(𝔥, 𝐾𝐻)-mod Rep(𝐾𝑝/𝐾0
𝑝)

Δ𝜆

𝑗∗

𝑟𝐺
𝐻

𝑇𝑝 (−)

C𝜆⊗𝑉𝜃
(−)

Here 𝜃 = 𝑊 · 𝜆 and 𝑉𝜃 = 𝑈 (𝔥)/𝐽𝜃𝑈 (𝔥) where 𝐽𝜃 is the kernel of 𝑈 (𝔥) → C

determined by 𝜆 + 𝜌. Notably, on the 𝐾-orbit 𝑄, any 𝜆-twisting is trivialized.

Proof : By [11, Theorem 2.5], we have an isomorphism between the left derived
functors 𝐿𝑇𝑝 ◦ 𝐿Δ𝜆 and C𝜆 ⊗𝐿𝑉𝜃

(𝑈 (𝔥) ⊗𝐿
𝑈 (𝔟) −). As 𝑗∗ doesn’t change the fiber and

𝑟𝐺
𝐻

is exactly𝑈 (𝔥) ⊗𝑈 (𝔟) −, the diagram follows.

Remark 4.4.2 This gives two interpretations of the localization of principal series
representations. Now take right adjoints.

(𝔤, 𝐾)-mod𝜆 𝐷𝜆 (𝐺/𝐵)𝐾

(𝔤, 𝐾)-mod 𝐷𝜆 (𝑄)𝐾 = 𝐷 (𝑄)𝐾

(𝔥, 𝐾𝐻)-mod Rep(𝐾𝑝/𝐾0
𝑝)

Γ𝜆 (−)

𝑗∗

𝑖𝐺
𝐵

We obtain two parametrizations of the principal series representations by the four
simple objects in Rep(𝐾𝑝/𝐾0

𝑝). On the right hand side, this is exactly the geometric
approach, while on the left hand side, note that 𝑖𝐺

𝐵
is the same as indGL(𝑛,R)

𝐷𝑈
from

Proposition 2.4.5, so it is essentially the Langlands approach.
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