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ABSTRACT

The representation theory of Lie groups has connections to various fields in mathe-
matics and physics. In this thesis, we are interested in the classification of irreducible
admissible complex representations of real reductive groups. We introduce two ap-
proaches through the local Langlands correspondence and the Beilinson-Bernstein
localization respectively. Then we investigate the connection between these two

classifications for the group GL(2,R).
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Chapter 1

INTRODUCTION

1.1 Background

In the late nineteenth century, motivated by the view of Klein that the geometry
of space is determined by its group of symmetries, Lie started to investigate group
actions on manifolds, laying the foundation of the theory of Lie groups. Around the
same time, while working on algebraic number theory, Dedekind discovered a for-
mula involving multiplicative characters of finite abelian groups. Built on this idea,
Frobenius and Schur developed the representation theory of finite groups. With the
introduction of invariant integration, analogous results for compact groups were also
established soon after. Since then, representation of Lie groups has found applica-
tions to numerous fields in mathematics and physics, notably number theory (Tate
thesis) and quantum mechanics (Heisenberg and Lorentz groups). Progress was
made to expand the theory to locally compact groups, nilpotent/solvable Lie groups,
and semisimple Lie groups. These efforts culminated in Langlands classification
[9] of all irreducible admissible representations of reductive groups as quotients of
induced representations. When the field is R or C, this classification takes an alter-
native, more concrete form in terms of representation of Langlands groups. From
an entirely different viewpoint and as a generalization of the Borel-Weil theorem
for compact groups, Beilinson and Bernstein [1] identified representations of Lie
algebras with global sections of certain 9-modules on the flag variety, paving the
way for a geometric classfication. In this thesis, we first introduce the details of
these two distinct approaches, following the expositions in [7], [3], and [4]. Then we
apply them explicitly to the group GL(2, R) and investigate the connection between

the results.

1.2 Notation

Throughout the thesis, unless indicated otherwise, we adopt the following notations:

G is a connected real reductive Lie group

G is the complexification of G with Lie algebra g

B, H are Borel and Cartan subgroups of G

Ky is the maximal compact subgroup of G with complexification K

U(g) is the universal enveloping algebra of g with center Z(g)



1.3 Preliminaries

Definition 1.3.1 A connected linear algebraic group L over R is reductive if the
base change Lc is reductive, which is equivalent to the largest smooth connected

unipotent normal subgroup of Lc being trivial.

Definition 1.3.2 A real Lie group G is reductive if there exists a linear algebraic
group L over R whose identity component (in the Zariski topology) is reductive and

a homomorphism ¢ : Gog — L(R) with ker ¢ finite and im ¢ open in L(R).

Example 1.3.3 Every connected semisimple real Lie group (i.e. with semisimple

Lie algebra) with finite center is reductive.

Definition 1.3.4 A subgroup B of an algebraic group G is Borel if it is maximal
among all Zariski closed connected solvable subgroups. A subgroup H C G is

Cartan if it is the centralizer of a maximal torus.

Example 1.3.5 For GL(n, C), the subgroup of upper triangular matrices is a Borel

subgroup, while the subgroup of diagonal matrices is a Cartan subgroup.

Definition 1.3.6 A continuous representation (p,V) of Gog on a complex Hilbert
space V is admissible if p|k, is unitary and each irreducible representation of Ko
occurs with at most finite multiplicity in p|g,. If V is admissible, a vector v € V is

called Ky-finite if it lies in a finite-dimensional space under the action of K.

Definition 1.3.7 A (g, K)-module is a vector space V with actions of § and K such
that foranyv € V,k € K, X € g, and Y € ¥ (the Lie algebra of K), we have

k-(X-v)=(Ad(k)X) - (k-v)
Kv C V spans a finite-dimensional subspace on which K acts continuously

(& exp(¥) - V)lizg = ¥ - v

Given an admissible representation (p, V) of G, we can consider the space Vg of
Ko-finite vectors. Since the action of Ky on Vi is locally finite, it extends to an
action of K. Moreover, it is shown that Vx is dense in V and inherits a g action. The
actions of K and g are compatible in the sense that (p, Vk) is a (g, K)-module. [6,
Chapter III]. We also have the following result [6, Chapter VIII].

Proposition 1.3.8 (p, V) is irreducible if and only if (p, Vk) is irreducible.

Another result by [10] shows that:
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Proposition 1.3.9 Every irreducible (g, K)-module is isomorphic to (p,Vk) for

some irreducible admissible representation (p,V) of Gy.

Definition 1.3.10 7wo admissible representations of G are infinitesimally equiva-

lent if their underlying (g, K)-modules are isomorphic.

We would like to classify irreducible admissible representations of G up to infinites-

imal equivalence, or equivalently, irreducible (g, K)-modules up to isomorphism.



Chapter 2

LOCAL LANGLANDS CORRESPONDENCE

2.1 Parabolic Induction

Definition 2.1.1 A unitary representation of G is a continuous norm-preserving

group action of G by linear transformations on a Hilbert space.

Definition 2.1.2 Let (p, V) be an irreducible admissible representation of Gy and
v,V be Ky-finite vectors. Then a Ko-finite matrix coefficient of p is a function
x = {p(x)v,v"). If all Ko-finite matrix coefficients of p are in L**¢(G) for Ve > 0,

we say p is a tempered representation.

Proposition 2.1.3 (Iwasawa) Let gg be the Lie algebra of Go and gy = ¥y + po be
the Cartan decomposition. Then there is moreover a decomposition ¢y = To+ ag+1y

such that ag is abelian, n is nilpotent, and [ag ® g, ag & 1y = ng.

Definition 2.1.4 Let Ay, Ny be the analytic subgroups of G with Lie algebras ay
and n respectively. Let My be the centralizer of ag in Ko. The subgroup My,ApNy
is call a minimal parabolic subgroup of Go. Any closed subgroup Qo containing

MyApNy is called a standard parabolic subgroup.

Proposition 2.1.5 Any standard parabolic subgroup Qg has a Langlands decom-
position Qo = MyAgNy, where My is reductive, Ay is abelian, and Ny is nilpotent.

Example 2.1.6 For GL(2,R), the only proper parabolic is the subgroup of upper

triangular matrices with

(| I (N Bt I

Theorem 2.1.7 (Langlands) /8] The equivalence classes (up to infinitesimal equiv-
alence) of irreducible admissible representations of Go are in bijection with all

triples (MyAoNo, [00], vo) satisfying

a) MyAoNy is a parabolic subgroup of G containing MyAyNy
b) oy is an irreducible tempered (unitary) representation of My and [oy] its

equivalence class
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¢) vo is a member of a;, such that Re{vo, @) > 0 for every positive restricted

root not vanishing on

In particular, the correspondence is that (MyAogNo, [00], vo) corresponds to the

class of the unique irreducible quotient of IndAG/[((’) Ao NO(O'() Qv ®1).

Specifically, the induced representation Indz‘; Ao NO(O'() ® vp ® 1) is given by first
considering all F € C(Gy, V) with

F(xman) = e~ 0*P) 1024 50 () =1 F ()
and defining Indg[(())AoNo(o-O ®vo® 1)(g)F(x) = F(g 'x).

Definition 2.1.8 The parameters (MyAyNo, [00], vo) are called the Langlands pa-

rameters of the given irreducible admissible representation.

2.2 Representations of the Weil Group Wr

Definition 2.2.1 The Weil group of R, denoted Wy, is the nonsplit extension of C*
by 727 given by Wi = C* U jCX, where j> = =1 and jcj~' =€ for Vc € C*.

For reasons that will become clear, we are interested in classifying n-dimensional
complex representations of Wr whose images consist of semisimple elements (i.e.

semisimple matrices in GL(n, C)). We refer to them as semisimple representations.

Lemma 2.2.2 One-dimensional representations of C* are of the form z — M7’
with u,v € C and u — v € Z. (Note that C* = S' x R*, and representations of the

components are known.)

Proposition 2.2.3 One-dimensional representations ¢ of Wr are of the form

<+’ t> . SD(Z) = |Z|ItR and QD(_]) =1
<_’ t) : QD(Z) = |Z|ItR and (p(]) =—1

where t can be any complex number.

Proof: Suppose ¢(j) = w € C* and Vz € C*, ¢(z) = z#7". Then since ¢(z) =
we(w™ = o(jzj~!) = ¢(2), it follows that 4 = v, so p(re®) = r?*. Since
w2 =0(j?) = @(-=1) =1, w = +1. Let t = 2u. It is easy to check that the formulas

above indeed give valid representations.
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Proposition 2.2.4 Equivalent classes of irreducible two-dimensional semisimple

representations ¢ of Wr are of the form

L,t): oréa=r"e®a and ¢(j)a=p
p(re)p=r*ep and () =(-D'a

where a, B form a basis of the two dimensional vector space and | € Z*,t € C.

Proof: Given such a representation ¢, pick a basis a, b such that ¢ (C*) consist of
diagonal matrices. By the lemma, we can suppose ¢(z)a = z#'7"'a and ¢(z)b =

7"27”b. Since g is irreducible, either u; # pp or vi # vy. Leta’ := ¢(j)a. Then

p(2)a’ = ¢(jzj )a' = p(jD)a=2"T"d

If 41 = vy, then a’ € Ca and Ca is an invariant subspace. Contradiction! Thus
a’ € Cb by the equation above, which means v := v| = up and yu := u; = v,. Since

e(N'=0(Ne(=1) = (=1)* (), we have

o(z)a=z7"7"a and o@(jla=ad

o(z)a’ =7"7%a’" and ¢(j)a' = (-1)""a

Considering instead the basis a’, (—1)*"Va and in view of the symmetry, we can
suppose without the loss of generality that the integer [ := u — v is positive. Let

t= %(,u +Vv), @ = a, and § = a’. Then the result follows immediately.

Proposition 2.2.5 Every finite-dimensional semisimple representation ¢ of Wy is

fully reducible, and each irreducible representation has dimension one or two.

Proof: Given a representation ¢ acting on V, since ¢(C*) consists of commuting
diagonalizable matrices, V' is the direct sum of spaces V,,, on which ¢(z) acts by
z#z”. Meanwhile, ¢(j)V,., = V, 4. If 4 = v, we can choose a basis of eigenvectors
for ¢(j)in 'V, ,, so the span of each vector is an one-dimensional invariant subspace
under ¢(Wr). If u # v, pick a basis uy,us, - - -u, of V,,,,. Then Cu; ® Co(j)u; is a

two-dimensional invariant subspace. Moreover, V,,, ®V, , = EB;:] Cu; ® Cop(j)u;.

2.3 L-function and e-factor

Given any irreducible admissible representations p of G, we can attach two invari-
ants, called the L-function and e-factor. For simplicity, we define them here for the
special case of Gy = GL(n, R). Fix an additive character y of R given by x +> ™™~
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Let M, (R) be the collection of n X n matrices and ) be the space of functions
M,(K) — R of the form P(x;;) exp(—ﬂle.zj) for any polynomial P. For any
Ko-finite matrix coefficient c of p, Vf € Iy, and s € C, we define

(f,c,8)= /M ) F(x)c(x)|detx|*d*x

Here d*x = | detx|™"dx, where dx is a fixed invariant measure for M, (R).

Proposition 2.3.1 If p is irreducible, then all {(f,c,s) converge in the right half
plane and extend to a meromorphic function (in terms of s) on C. Moreover, there
is a finite collection {(c;, f;)} such that

L@MzZﬁh%@

satisfies¥(c, f), {(f,c, s+ %(n - 1)) = P(f,c,s)L(s, p) with a polynomial P in s.
In particular L(s, p) is uniquely defined this way (up to a scalar).

Now for Vf € 1, we define
F= [ o
My (R)

where dy is the self-dual Haar measure on M, (R). Then f € .

Proposition 2.3.2 If p is irreducible, there exists a meromorphic functiony(s, p, )

independent of f and c with £ (f, ¢, 1 —s+%(n— 1) =vy(s,p,0)(f,c, s+%(n— 1))
forVf € Iy and any K finite matrix coefficient ¢ of p. Here &(x) = c(x7").

Definition 2.3.3 We refer to L(p, s) as the L-function of p. The e-factor is defined

as
y(s, p, )L (s, p)

L(l —S,,ﬁ)

(s, p,¢) =

where p is the admissible dual of p.
We can also attach an L-function and an e-factor to a representation of Wx as follows.

Definition 2.3.4 Given an irreducible finite-dimensional semisimple representation

¢ of Wg, we can attach an L-function

S+t

n=2T(S)  for ¢ given by (+,1)
L(s,p) = ﬂ_ﬁéﬂlﬁ(%) for ¢ given by (—, 1)
2(271)‘(S+’+%)F(s +1+ é) for ¢ given by (I, t)




and an e-factor:

1 for ¢ given by (+,t)
e(s,0, ) =19 i forp givenby{—,t)
i for ¢ given by (I, 1)
Now to state the local Langlands correspondence, we need one last ingredient.
Roughly speaking, the L-group of a connected reductive group G over R is given
by the semi-direct product of a complex reductive group with dual root datum to G
and the Galois group Gal(C/R). We denote it by “G. Concretely,

Definition 2.3.5 The L-groups of GL(n,R), SL(n,R), SO(2n+1,R), and SO(2n,R)
are GL(n,C),PGL(n,C), Sp(n, C), and SO(2n, C) respectively.

2.4 Main Results

Theorem 2.4.1 (Local Langlands Correspondence) There is a bijection between
semisimple representations of Wy into “G and L-packets of irreducible admissible

representations of Gy.

Remark 2.4.2 This theorem means we have a partition of all the irreducible ad-
missible representations of G, indexed by semisimple representations of Wg into
LGy. An L-packet is a collection of representations of G that correspond to the

same representation of Wr, which is called the L-parameter of that packet.

Proposition 2.4.3 The L-parameter and representations in its corresponding L-

packet have the same L-function and e-factor.

A priori, there can be multiple representations in a single L-packet. However, when

Gy = GL(n,R), each L-packet has size one. In particular,

Theorem 2.4.4 There is a bijection between the set of equivalence classes of n-
dimensional semisimple complex representations of Wr and the set of equivalence

classes of irreducible admissible representations of GL(n, R).

To make the correspondence explicit, we first define some classes of representations
of GL(1,R) and GL(2,R). Note that for j = 1,2, any matrix X € GL(/,R) admits
a decomposition X = YZ where Y € SL*(j,R) and Z is positive scalar. Denote the
two characters of SL*(1,R) as 1 and sgn. For [ € Z, let D;’ be the representation
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of SL(2,R) on the space of analytic functions f on the upper half plane satisfying
If11% = [ [1f(@)I*y'" dxdy < o given by

a

az+c

D+
! bz+d

)

Z) £ = (bz+ ) f(

Consider D; = indgtzz(%&) (D7). For GL(1,R), Vt € C, we have representations

11" X |Z|
sgn®|-|": X - sgn(Y)|Z|

Similarly for GL(2, R), we have
D;®|det(:)]": X+ D;(Y)|det(2)|"

Now given a representation of ¢ of Wg, suppose ¢ = @{:1 ¢j, where ¢; is a n;-
dimensional representation with n; = 1 or 2. We associate to ¢; to a representation
Y j of GL(n;,R) in the following way

(1 - 1]
(—1) — sgn®|-|

(Lty — D;®|det()[

Let 7; be the complex number corresponding to ¢;. Suppose wlog that n]_1 Ret) >
ny'Rety > -+ 2 n7'Ret;. LetD = H{zl GL(n;,R) and U the block strictly upper
triangular subgroup of GL(n,R). We can extend @Ll Y/ j to a representation ¢’ on
DU by making it trivial on U.

Proposition 2.4.5 The induced representation indg](“]("’R) of GL(n,R) has a unique

irreducible quotient W, which is admissible.

Remark 2.4.6 The bijection in Theorem 2.4.4 is given by ¢ +—  described above.
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Chapter 3

BEILINSON-BERNSTEIN LOCALIZATION

3.1 Representation of Lie Algebras
If we choose a positive root system A* for g then the set of roots of g is given by

A" U {0} U A~ and we have a decomposition

g= é%}!&teabeg é};}ga

aeAt a€eA™

where ) is the Cartan subalgebra. Let n = (5« 8o and 1~ = P, - 8o Then

b := h@nis aBorel subalgebra. Let IT = {a; }1<;<, be a collection of simple roots.

Proposition 3.1.1 For each «; € 11, there exists a; € Yy such that a; (a;) = 2 and

sa’y,ai(A) = A, where the map SaYa; - h* — h*is givenbyv — v —a"(v)a.

Definition 3.1.2 The subgroup of GL(Y*) generated by {Saiv,a,-}ISiSn is called the
Weyl group, denoted W. We also define the following subsets of §*:

The fundamental weights n; are defined by a;(r ) = 6;;
1
p=2 =5 N
+ . . . n
Q" is the nonnegative integral span of {a;}, i.e. P,_| Zsoa;
Pt = @7: | Z>om;, with elements referred to as dominant weights
Elements in —P* are referred to as anti-dominant weights

Elements in {1 € b* : a; (1) < 0} € —P* are called regular weights

Given a representation V of g, we can write V = (P V,, where all A € h* appearing

in the decomposition are called weights of V.

Theorem 3.1.3 Any irreducible representation V of g has a unique maximal weight
A and a unique minimal weight y with respect to the partial ordering given by Q¥,
with A dominant and u anti-dominant. Moreover, for YA € P* there is a unique

representation of @, denoted L* () with maximal weight A.

Definition 3.1.4 It is known that the center Z(g) C U(g) acts on L* () by scalars,
which defines a map y, : Z(g) — C, called the central character associated to A.

Consider the map f : U(h)) — U(h) induced by the linear map ) — U(h) with
h— h+p(h)l. Since U(g) = U(h) ® (nU(g) +U(g)n"), Yz € Z(g) can be written
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as z = h+n for some h € U(Yh) and n € (nU(g) + U(g)n~). The Harish-Chandra
homomorphism is the map y : Z(g) — U(}h) given by y(z) = f(h). Moreover, for
the central character, we have y,(z) = A(y(2)).

Theorem 3.1.5 (Harish-Chandra) The Harish-Chandra homomorphism is injec-
tive and an isomorphism onto U(§)V", with the dotted action of W on y* given by
w-A=w(d+p)—p.

3.2 Algebraic D-modules
In this subsection, X denotes a smooth algebraic variety over C, with structure sheaf
Oyx and tangent sheaf 7x. For simplicity, we only discuss the affine case here, but

the definitions can be extended to general cases and the propositions hold as well.

Definition 3.2.1 A linear map D : Ox — Ox is a differential operator of order
0 if it is multiplication by a function. For k € Z*, D is a differential operator of
order k if for any function f € Oy, the commutator [ D, f] is a differential operator
forder k — 1. Let Dx j be the collection of differential operators of order k and

Dx =i o Dxk
Concretely, we have the following description of Dy.
Proposition 3.2.2 The graded algebra gr(Dyx) is isomorphic to Symg_ (7x).

Definition 3.2.3 A (left) D-module is an Ox-quasicoherent sheaf of (left) modules

over Dx
Now consider any line bundle £ on X with dual sheaf £".

Definition 3.2.4 A map D : L — L is a differential operator of order 0 on L if it
is multiplication by a function. For k € Z*, D is a differential operator of order k
on L if for any function f € Oy, the commutator | D, f] is a differential operator
of order k — 1. Denote the collection of all such differential operators by D z.

Proposition 3.2.5 Concretely, we have Dy = L ®p, Dx ®o, L.
3.3 Main Results
Definition 3.3.1 The quotient G /B is called the flag variety of G.

Proposition 3.3.2 The G-equivariant vector bundles on G | B are in bijection with

representations of B.
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Proposition 3.3.3 The one-dimensional representations of B are in bijection with

characters of H (i.e. integral characters of ).

Hence given an integral weight A € §*, we can attach an one dimensional represen-

tation C, of B and a G-equivariant line bundle £(1)
Definition 3.3.4 For an integral weight A € §*, we define D, as the sheaf D g (4p).

We denote by D,(G/B) the category of D,-modules that are quasi-coherent as
Og/p-modules, and by g-mod, the category of U(g)-modules on which Z(g) acts
by the character y,. Then we have the following crucial result:

Theorem 3.3.5 (Beilinson—Bernstein Localization) [f A is regular, then the global
section functorT" : D (G /B) — g-mod, is an equivalence of categories with quasi-

inverse given by Dy ®yq) ()

This is still not exactly what’s needed for our purpose, as we are intersted in clas-
sifying (g, K)-modules. As it turns out, the appropriate notion corresponding to
(g, K)-modules with central character y,; on the geometric side is the category
D, (G/B)X of “K-equivariant” D ;-modules on G/B. In other words, we have an
equivalence of categories D (G /B)X = (g, K)-mod,. Thus to classify irreducible
(g, K)-modules, it suffices to classify simple objects in D,(G/B)X, for which the

following two results are necessary.

Proposition 3.3.6 For every simple M € D;(G/B)X, there is a K-orbit Q of G/B
and a simple N € D (Q)X such that M = j.(N). (For a detailed discussion of
the functor j., see [3, Section 5].)

Proposition 3.3.7 Fix a point x in a K-orbit Q. Let K, be the stabilizer of x in K.
Then D ;(Q)X = 0 unless A integrates to a character of the identity component K)?
of K., in which case D (Q)X = Rep(K,/K?), the category of representations.

Remark 3.3.8 The integrality condition means we can first conjugate K, so that it
is contained in H and then find a character of KV whose derivative coincides with

the restriction of A.

3.4 Induction in the Geometric Context
Parallel to the procedure of parabolic inductions, there is also a notion of induction

for (g, K)-modules. In particular, let Ky = K N B.
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Definition 3.4.1 The Jacquet functor rg is given by (g, K) -mod — (), Ky) -mod
with M +— U(b) ®y ) M, in other words, taking n coinvariants. Notably, it admits
a right adjoint, denoted ig.

Remark 3.4.2 On the level of K-modules, ig is equivalent to the functor indgy [5].
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Chapter 4

AN EXAMPLE OF GL(2,R)

In this section, we investigate the connection between the classifications of irre-
ducible admissible representations of GL(2,R) through the “Langlands” approach
and the “geometric” approach.

4.1 Notation

Go = GL(2,R)
G = GL(2,C)
K =0(2,C)

B is the subgroup of upper triangular matrices

H is the subgroup of diagonal matrices

4.2 Langlands Approach

By Remark 2.4.6, all irreducible admissible representations of GL(2, R) are param-
eterized in the following way, with [ € Z*, t,¢,t, € C satisfying Re#; > Re t5:
(Lo, Ly :(1e]-[Me(le]-|?)
(Ln,sgn, o) : (1@ |- [")@(sgne| - |?)
(sgn,t1, L) @ (sgn®| - [")@(1® |- [?)
(sgn, 11,sgn,12) : (sgn®| - [")@(sgn®| - |?)
(L,t) : D; ® | det(+)|’

Here ® refers to the procedure of taking induced representations and irreducible

quotient as described in Remark 2.4.6.

Proposition 4.2.1 The center Z(gl(2,C)) is generated by I and the Casimir A =
—;{(H2 —2H + 4EF), where

1 0
I =
b

Proposition 4.2.2 [2] For the representations (sgn® ®| - |'') ® (sgn® ®| - |2) of

i
E=|?

1
2

GL(2,R) with €1, €; € {1,2}, the central character x, is given by

1
I— 1t +1, AHz[l—(ll_IZ)z]
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Lett = %(tl —tr+ 1) and € = €] + €. Then moreover

If 2t # € (mod 2), the representation above is irreducible.

Otherwise, it has two irreducible factors: a finite representation (trivial if and

only if t = % ) and a discrete series representation (a limit of discrete series if
. 1

and only if t = 3).

Remark 4.2.3 As all irreducible representations come from parabolically induced

ones, we will focus on finding a geometric interpretation of parabolic induction.

4.3 Geometric Approach

By explicit computation, there are two K-orbits on G /B, represented by

o) = et

respectively. Moreover, the stabilizer groups are given by

o e
oAl e

Note that K, is discrete with size four, so Rep(K), /Kg) has four simple objects.
Moreover, the condition from Proposition 3.3.7 that A integrates to a character of KIO,
is always satisfied. These 9-modules correspond to the irreducible representations
(sgn®, t1,sgn®, t,), where (1, ;) parametrize the weight A and (ej, €;) the simple
object in Rep(Kp/Kg).

On the other hand, K|, is connected, so Rep(K,/ Kg) has exactly one simple object.

Note that characters of K, are parametrized by integers n € Z.
X
( ’ ) - (i)
—y x

These D-modules correspond to the discrete series representations D; ® | det(-)|’
with [ € Z* and t € C that we described in Theorem 2.4.4.

Hence as expected, the Langlands approach and the geometric approach both yield
the same classification for GL(2, R).
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4.4 Parabolic Induction

For a dominant regular weight A, let Ay : (g,K)-mod; — D, (G/B)X be the
localization functor from Theorem 3.3.5. Let Q be the orbit of p in G/B and j the
inclusion Q < G/B. Finally, let T),(—) be the functor of taking fiber at p.

Proposition 4.4.1 We have a commutative diagram:

(8, K)-mody —=—3 DY(G/B)K

l I

(9, K)-mod DYQ)* =D(O)F

gl o

(b, Kn)-mod W Rep(K,/K})

Here 8§ = W - A and Vy = U(Y)/JoU(Y) where Jy is the kernel of U(h)) — C
determined by A + p. Notably, on the K-orbit Q, any A-twisting is trivialized.

Proof: By [11, Theorem 2.5], we have an isomorphism between the left derived
functors LT, o LA; and C, ®‘§0 (U(y) ®5(b) —). As j* doesn’t change the fiber and
G

rp is exactly U(D) ®y(v) —, the diagram follows.

Remark 4.4.2 This gives two interpretations of the localization of principal series

representations. Now take right adjoints.

(9. K)-mod, +—2 DG /B)¥
T T/
(. K)-mod DY(Q)X = D(Q)K

(b, Ky)-mod <——— Rep(K,/K7)

We obtain two parametrizations of the principal series representations by the four
simple objects in Rep(K,/ Kg) On the right hand side, this is exactly the geometric
approach, while on the left hand side, note that ig is the same as indgll“](n’R) from

Proposition 2.4.5, so it is essentially the Langlands approach.
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