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ABSTRACT 

I. Carbon-13 Nuclear-Magnetic Resonance Spectroscopy of Erythromycin 

Derivatives 

CMR spectra were taken and assigned for a series of erythromycin 

derivatives. Interpretation was based on known effects on cmr spectra 

and conformational changes among the derivatives. While the results 

were consistent with a gross conformational homogeneity, some subtle 

differences were observed. Proposals were made concerning the conforma­

tional differences between erythromycin A and Band among the series of 

aglycones. A conformation was proposed for 5,6-dideoxy-5-oxoerythrono­

lide B consistent with cmr and pmr results. It was also proposed that 

in the natural antibiotics the desosamine side-chain sugar is free to 

swing around to the side of the aglycone ring, while the cladinose 

side-chain sugar is relatively fixed. The results suggested and were 

consistent with this situation. In this series it appeared that cmr 

was most useful in ascertaining intramolecular hydrogen bonding and 

orientation of and around carbonyls. Diagnostic usefulness for the 

various ketal structures was also suggested. The results of an enriched 

propionate feeding experiment confirmed the propionate biosynthesis 

hypothesis and gave direct evidence for the origin of the individual 

aglycone carbons. 

II. Algebraic Chemistry 

Several mathematical-chemical problems were treated and general 

considerations discussed. 
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It was shown that the Polya method could be used to count 

stereoisomers in systems with chiral ligands. An iterative procedure 

was given to determine the distribution and synnnetry of all isomers 

possible in any given system. An extension of the method was made to 

count possible one-step substitution reactions in benzene systems. 

The algebraic nature of the synthetic design problem was dis-

cussed, based on some simple concepts from algebraic topology. It was 

shown that the symmetry group of a chemical structure relevant to the 

synthetic design problem can be considerably larger than the usual point 

group. Examples of this group were constructed along with some methods 

for taking advantage of this symmetry in hypothetical cases. 

A complete algebraic description of pseudochirality was given. 

It was shown that pseudochirality results when a structure lacks a par­

ticular kind of symmetry based on the point group and operations which 

invert configurations of chiral ligands. Other related forms of stereo­

isomerism were similarly described. A derivation of the possible 

pseudochirality groups based on the usual point groups was given. 

The treatment of through-space orbital interactions given by 

Goldstein and Hoffmann was described abstractly and extended to reac­

tion problems. A ribbon topology was assigned a homomorphism from a 

group of mode change operations to a group of interaction change 

operations. The concept of topologically equivalent transition 

state geometries was shown to correspond to group isomorphisms. The 

action of the mode. change group on a dynamic symmetry group for 

1,5-hexadiene was given which interchanged allowed and forbidden re­

actions. It was suggested that the existence of allowed and forbidden 
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reactions could be considered as a symmetry of a chemical structure. 

The applicability of concepts of categorical algebra to biologi­

cal, physical and chemical problems was discussed. Basic categorical con­

cepts were discussed andit was shown that the center . and inner automor­

phism groups are functorial constructions on the subcategory of Grp 

including only epi arrows. General features of application of cate­

gorical concepts outside pure mathematics were compared. The functorial 

nature of the problems treated in earlier sections was discussed. The 

similarity between isomerization of triaryl methanes and tris-metal 

chelates observed by Gust and Mislow was expressed as an isomorphism of 

the dynamic synnnetry groups. The use of groupoids in problems of 

isomerizations between different geometric forms was demonstrated. It 

was shown that groupoids can be considered as representations of wreath 

products. A dynamic symmetry group for cyclobutene-butadiene intercon­

versions was derived. 



-viii-

CONTENTS 

I. Carbon-13 Nuclear Magnetic Resonance Spectroscopy of 

Erythromycin Derivatives 

A. Introduction 

B. Biosynthesis 

C. Conformational Studies 

D. 
13c Nuclear Magnetic Resonance Spectroscopy 

E. Model Systems 

F. 13c Spectra and Interpretation 

1. Experimental 

2. Aglycone spectra 

3. Amino-sugar spectra 

4. Monoglycoside spectra 

5.' Erythromycin spectra 

G. Discussion 

1. Substituent and steric effects 

2. Hydrogen bonding 

3. Conformational considerations 

H. Enriched Studies 

I. Summary 

II. Algebraic Chemistry 

A. Isomer Counting 

B. Synthetic Design 

C. Pseudochirality 

D. Through-Space Orbital Interactions 

E. General Chemical-Mathematical Considerations 

References 

1 

3 

8 

18 

20 

27 

28 

39 

39 

41 

51 

59 

61 

75 

80 

81 

103 

115 

152 

177 

205 



-ix-

Table 0 

Macrolide Derivatives Studied 

(1) Erythromycin A 

(2) Erythromycin B 

(3) Erythromycin C 

(4) 6-deoxyerythronolide B 

(5) Erythronolide B 

(6),(13) 3-0-a-L-mycarosylerythronolide B 

(7) 5-0-S-D-desosaminyl-3-0-a-L-mycarosylerythronolide B 

(8) 5-deoxy-5- oxoerythronolide B 

(8h) 5-deoxy-5-oxoerythronolide B-6,9-hemiketal 

(9) 5,6-dideoxyerythronolide B 

(10) oleandomycin 

(11) 11-acetylerythronolide B 

(12) 11-acetyl-6-deoxyerythronolide B 

(14) 5-0-B-D-desosaminylerythronolid~ B­

(15) 3,5-diacetylerythronolide B 

(16) 3,5·,11-triacetylerythronolide B 

(17) 9-S-9-dihydroerythronolide B 

(18) de-N-methylerythromycin A 

(19) de-N-methylerythromycin B 

(20) 3'-dedimethylamino-3' ,4'-dehydroerythromycin A 

(21) anhydroerythromycin A 

(22) erythralosamine 

(23) 8,9-anhydroerythromycin B-6,9-hemiketal 

(24) 8,9-anhydroerythronolide B-6,9-hemiketal 

(25) megalomycin A 
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I. CARBON 13 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY OF ERYTHROMYCIN 

DERIVATIVES 

A. Introduction 

13 A study of the C nmr of erythromycin and several of its deriva-

tives was undertaken for two reasons. First, carbon chemical shifts 

could be useful in further determinations of the conformations of these 

antibiotics and the changes in these shifts could be indicative of the 

conformational changes in going from one derivative to another. 

Secondly, assigned spectra are necessary for biosynthesis studies using 

13c enriched precursors. 

Erythromycin A(l) is one of the macrolide family of antibiotics 

which also includes oleandomycin, picromycin, and magnamycin among 

others. The first · isolation of "erythrornycin" (actually a mixture of 

erythrornycins A, Band C) and discovery of its antibiotic properties 

was in 1952(l). Separation of the mixture and determination of the 

absolute structure came much later due to the complexity of the mole­

cule(Z) (Figure 1). Final proof came in 1965 with the results of a 

single-crystal x-ray determination of erythromycin A hydroiodide(J). 

Erythromycin A is the major component of the antibiotic produced for 

commercial use. Erythromycin B differs from Erythromycin A by the lack 

of the hydroxy group at the 12-position. Erythromycin Clacks the O­

methyl group at the 3" position. 

The structures of the other 12- and 14-membered ring macrolides 

are all similar to erythromycin. This observation was made by W. D. 
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Celmer before many of the f inal structural determinations had been com­

pleted and prompted him to propose a configuration model for the 

(4) series • This model was successful in predicting and correcting 

configurational assignments of macrolides discovered before and after 

the model was proposed. In Figures 2 and 3 are standard and projected 

drawings of some of these macrolides. 

B. Biosynthesis 

Erythromycin has been shown to originate biosynthetically from 

seven propionate units(S), verifying a prediction by Gerzon et al. in 

1956(6) (Figure 4). The available evidence indicates that the lactone 

originates from~ chain built from a starter propionate unit and six 

extending methyl-malonate units. This conclusion was based on the 

results of 14c feeding experiments and subsequent degradation and 

analysis(S). 

More recent work has led to the elucidation of some of the final 

steps in the biosynthetic sequence leading to the three known 

erythromycins (Figure 5). 6-Deoxyerythronolide B (4) is converted to 

erythronolide B (5) (l) by a~propriate oxidation. Erythronolide Bis 

then converted to 3-0-a-L-mycarosylerythronolide B (6) by glycosidation. 

From here it is postulated that the major change is a conversion to 

5-0-S-D-desosaminyl-3-0-a-L-mycarosylerythronolide B (7), an inter­

mediate as yet unobserved. This intermediate can then be converted to 

erythromycin B (2) or C (3), both of which can be converted to erythro­

mycin A (1). These studies(B) have also led to the isolation and 

characterization of several shunt metabolites, two of which, 
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FIGURE 2 
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Final Steps in Erythromycin Biosynthesis 

) 

(4) 

OH 
/ crr3 ., Oij 

0 

(6) 

Erythromycin Band C > Erythrornycin A 

FIGURE 5 
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5-deoxy-5-oxoerythronolide B (8) and 5,6-dideoxy-5-oxoerythronolide B 

(9) are shown in Figure 6. Compounds (1-2,4-6,7-9) make up part of the 

collection on which the 13c nmr studies were done. 

C. Conformational Studies 

A considerable amount of work has been done to determine the 

conformation of erythromycin antibiotics and derivatives in solution. 

The principal methods used have been proton nmr(9) (pmr) and circular 

dichroism (CD) (lO). 

The first conformation proposed for a macrolide was for oleando­

mycin (10) by Celmer(ll). He fit the diamond lattice conformation 

proposed for cyclotetradecane by Dale(lZ) to the lactone of oleandomycin 

minimizing unfavorable interactions (Figure 7). As it turned out, the 

analogy to the hydrocarbon was good, but the wrong diamond lattice con­

formation was predicted. 

The bulk of the conformational studies were done by investigators 

at Abbott(l3)_ They examined an extensive series of erythromycin deriv­

atives by pmr in deuteriochloroform and pyridine solutions. Generally, 

the vicinal couplings between adjacent protons on the aglycone ring 

were found to be invariant to both temperature and solvent changes over 

the full range of derivatives studied. Most of the differences that 

were observed could be explained by conformational changes caused by 

addition or removal of side chain sugars or acetoxy groups in the 

various compounds. With this strong evidence for a rigid rather than 

mobile system, a conformation was proposed based on the Karplus rela­

tion for vicinal proton couplings(l4)_ The proposed conformations 
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Shunt Metabolites from Erythromycin Biosynthesis 

5-Deoxy-5-oxoerythronolide B (8) 
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FIGURE 7 

Proposed 0leandomycin Conformation 

O-0leandrose 



-11-

for the aglycones (sugars removed) and the parent glycosidated anti­

biotics are shown in Figure 8. In Table 1 is a list of representative 

vicinal couplings in a series of derivatives. These are split into 

those which exist in the aglycone conformation and those which exist in 

the erythromycin conformation. These conformations resemble an alter­

nant diamond lattice arrangement as shown in Figure 9. This conforma­

tion would be of higher energy in the parent hydrocarbon, cyclotetra­

decane, due to steric interactions of protons directed into the center 

of the ring. The proposed conformation also resembles very closely the 

solid-state conformation as determined by x-ray crystallography(3)_ 

A few deviations from this conformational model were observed, 

however. Egan(lS) noted some significant, unexpected differences in 

the chemical shifts and vicinal couplings between erythronolide Band 

11-acetylerythronolide B (Figure 10 and Table 2). Of particular 

interest were the chemical shifts of H-8 and the 7-8 vicinal couplings. 

Further, a temperature dependence of the 7-8 couplings was noted. 

Egan(lS) postulated a conformational change in this region of the ring 

since a direct shielding or deshielding effect of the distant 11-acetyl 

group seemed unlikely. All of the data were consistent with the follow­

ing proposal. There are two conformations of these aglycones which 

differ in the 6-9 region of the ring, as shown in Figure 11 (conforma­

tion A is the one shown earlier in Figure 8). They are populated dif­

ferently in the various derivatives. Presumably, 11-acetylerythronolide 

B exists in conformation B to a greater extent than do any of the other 

derivatives. It was further noted that conformation B has the 6-9 

region in a pseudo five-membered ring which resembles very closely the 
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FIGURE ·s 

Proposed Conformationsa 

A. Aglycone Conformation 

B:. Erythromycin Conformation 

a. Reference 15 
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Table 1 

Representative Vicinal Proton-Proton Couplingsb 

erythromycin conformation 

(1) (2) (15) 

J2,3 9.0 8.3 10. 9 

J3,4 2.0 ca.l 1.4 

J4,5 7.5 7.0 4.6 

J5,6 

J 
6,7a 

J 
6,7e 

J 7a,7e 15.0 15.0 14.6 

J 7a,8 10.0 10.0 9.4 

J 7e,8 3.0 3.0 3.3 

Jl0,11 1.5 ca.l 1.5 

Jll,12 9.8 10.3 

Jl2,13 ca.l 0.9 

J 13,14a 10. 6 9.0 8.4 

J 
13,14e 2.4 5.5 5.6 

Jl4a,14e ca.lS 

a 
Pyridine solvent 

bData taken from Ref. 15. 

Compound names are in Table 0 

aglycone conformation 

(4) (5) a (6) 

10.5 10. 2 10.5 

1 1.3 ca.0 

2.5 2.9 2.5 

4.7 

4.7 

10.2 

15.0 14.5 14.6 

13. 0 6.7 11.4 

4.0 7.4 2.2 

2.0 2.0 ca· •. 1 

10.2 9.8 10.0 

1.5 1.2 1 

8.9 8.8 9.5 

4.6 6.6 4.8 

14.0 14.0 14.0 



-14-

FIGURE 9 

Erythronolide Bon Alternant Diamond Lattice Conformation 
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Table 2 

Comparison of pmr Data for Erythronolide B(5) 

and 11-Acetylerythronolide B(ll) 

(5)a (ll)a (5)a 

2.94 2.94 J2,3 10.2 

4.08 4.24 J3,4 1.3 

2.45 2.33 J4,5 2.9 

4.07 4.34 J 
7a,7e 14.5 

2.23 2.17 J 
7a,8 6.7 

1.64 1.69 J 7e,8 7.4 

3.09 3.59 Jl0,11 2.0 

3.08 3.14 J 11,12 9.8 

4.25 5.27 Jl2,13 1.2 

1.81 2.04 J 13,14a 8.8 

5.70 5.25 J 
13, 14e 6.6 

1.74 J 
14a,14e 14.0 

1.55 

aPyridine solution. All data from Ref. 15. 

(ll)a 

10.1 

1.5 

2.0 

14.5 

3.4 

11.5 

1.5 

9.6 

1.4 

8.0 

5.7 
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FIGURE 11 

Equilibrating Aglycone Conformationsa 

CONFORMATION A 

CONVOnMi\ rTON 13 
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hemiketal that a number of erythromycin derivatives form. In Figure 

12 are shown 5-deoxy-5-oxoerythronolide Band its hemiketal form which 

exist in a 3:1 ratio. Much of the observed chemistry of erythromycin 

appears to proceed through such a hemiketal(l6). In the case of 11-

acetylerythronolide B, the driving force for the conformational change 

is unclear; however, steric effects or lack of hydrogen bonding between 

the 11-acetyl group and the 9-ketone may contribute. In most of the 

other derivatives any unexpected deviations from the proposed model 

conformations were confined to the 6-9 region. · 

D. 13c Nuclear Magnetic Resonance Spectroscopy 

Carbon-13 nuclear magnetic resonance spectroscopy capabilities 

have increased enough over the last few years to the point where a 

study of compounds as complicated as rnacrolide antibiotics is feasible 

and practical. The most significant advance has been the development 

of pulsed Fourier-transform techniques. Samples with concentrations 

as low as 0.1 M can be run in reasonable times. 

13 (17) There is now a large body of C chemical shift literature • 

In most typical organic molecules carbon shifts and comparisons be­

tween chemical shifts in similar molecules can be rationalized in terms 

of substituent effects and steric effects. Substituent effects gen­

erally have the following pattern. In a linear alkane,substitution 

for hydrogen causes a downfield shift at the a-carbon, a downfield 

shift at the $-carbon and an upfield shift at they-carbon. Beyond that 

the shifts are variable but usually small. The size (and occasionally 

the sign) of these effects vary from substituent to substituent. 
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FIGURE 12 

Keto-hemiketal Equilibrium of 5-Deoxy-5-oxoerythronolide B 
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Typical examples are given in Table 3. It has been shown by Grutzner 

et al. (lS) that substituent effects are not additive but rather de-

crease with increasing substitution. In a heavily substituted molecule 

the S-effect can be reduced by as much as 75%. 

The steric effect is the upfield shift that is observed for 

carbons which are sterically compressed. It can actually be considered 

a remote substituent effect and in fact they-effect mentioned above 

appears to actually be a steric shift(l9 )_ The origin of this shift 

has been discussed from a theoretical standpoint by Grant(ZO)_ The 

magnitude of this effect has been determined for a number of systems. 

Some representative values for cyclic structures are given in Table 4. 

The major contribution to these steric shifts seems to be 1,3 diaxial 

interactions. 

One other observed effect on carbon shifts is relevant to this 

study. It has been noted that hydrogen bonding causes a downfield shift 

in carbonyl derivatives. This has been observed as a solvent effect( 2Z) 

and intramolecularly(Z3 )_ 

These are the known effects on carbon chemical shifts that seem 

to play the largest role in interpretation of macrolide spectra. The 

body of available knowledge on cmr is certainly much larger. 

E. Model Systems 

There do not seem to be any reported crnr studies of systems 

which model macrolides in complexity. However, a number of simpler 

systems have been studied and the results are relevant to this one. 
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Table 3 

Typical Substituent Effects 

Me(a) 

a-effect -9.1 ± o. 1 

S-eff ect -9.4 ± o. 1 

y-effect +2.5 ± 0.1 

o-effect -0.3 ± o. 1 

e:-effect -0.1 ± 0.1 

8Ref. 17a, p.58 

b Ref. 17a, p.142. 

in Linear Alkanes 

OH(b) ,1° 

-48.3 

--10.2 

+ 5.8 

-0.3 

-0.1 

A negative shift is downfield (internal cs2 reference) 

OH(b), 2° 

-44.5 

-9.7(Cl) 
--7. 4 (C3) 

+3.3 

-0.2 

-0.2 
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Table 4 

Typical Substituent Effects 

eq-Me(c) 

a-effect -5.6 ± 0.2 

$-effect -8.9 ± 0.1 

y-effect . o.o ±--.o •. 6 

a-effect +0.3 ± 0.2 

cRef. 17a, p.65 

d Ref. 1 7 a , p • 10 6 

ax-Me(c) 

-1.1 ± 0.4 

-5.2 ± 0.3 

+5.'4 ± 0.2 

+0.1 ± 0.1 

in Cyclohexanes 

eq-OH(d) ax-OH(d) 

-41 to 44 -35 to -40 

-6.5 to -8 -7.6 to -5.3 

+l to -L 5 +6.6 to +7.8 

+l to 1.8 +0.7 to +2.6 
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An extensive series of methylated aliphatic and alicyclic hydro­

carbons, alcohols and ketones have been studied by several groups< 24). 

In Table 5 are listed data for cyclohexane derivatives. Besides the 

effects mentioned above a number of comparisons are relevant. In 

derivatives with predominantly axial hydroxyl groups (cis-2-methylcyclo­

hexanol and trans-3-methylcyclohexanol) the carbon with the hydroxy 

group is shifted upfield relative to one with an equatorial hydroxy 

group. A similar effect is noted in cis-1,2-dimethylcyclohexane and 

trans-1,3-dimethylcyclohexane. The methyl carbons are also shifted 

upfield in these compounds due to a steric shift. Comparing cyclo­

hexanols with the corresponding cyclohexanones shows a downfield shift 

at all the saturated carbons except the methyls and the position 

directly across from the oxygenated carbon when the hydroxy group is 

oxidized to a ketone. In a temperature study, Anet< 25) has determined 

the chemical shifts of axial and equatorial methylcyclohexane. There 

is a 5-6 ppm upfield shift in the resonances of the 3 and 5 positions 

and of the methyl carbon on going from the equatorial to the axial con­

former. This provides another measurement of the steric shift mentioned 

earlier. 

A number of carbohydrate spectra have also been reported. Dorman 

and Roberts( 26 ) studied a series of pentose and hexose aldopyranoses 

for which some representative data appear in Table 6. Two consistent 

effects deserve to be mentioned. First, the anomers with an axial 

hydroxyl (a-glucose and a-galactose) have all carbons except C-4 and 

C-6 shifted upfield relative to the 8-anomer. This is another example 
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Table 5 

13c Shifts of Cyclohexane Derivatives 

1 2 3 4 5 6 M e 

cyclohexane 165.1 165.1 165.1 165.1 165.1 165.1 

methyl- 159.1 156.4 165.7 165.8 165.7 156.4 169.5 

cis-1, 2-dimethyl- 157.8 157.8 160.7 168.5 168.5 160.7 176.5 

trans-1,2-di- 152. 7 152.7 156.2 165.4 165.4 156.2 172.0 

cis-1,3-di- 159.4 147.5 159.4 156.8 165.8 156.8 169.4 

trans-1,3-di- 165.2 150.8 165.2 158.3 171.5 158.3 171. 7 

cyclohexanol 123.0 157.0 168.1 166.6 168.1 157.0 

1-methyl- 123.5 152.8 169.7 166.5 169.7 152.8 163.0 

trans-2-methyl- 115.9 152.8 158.5 166. 7 167 .1 157.4 173.7 

cis-2-methyl- 121.4 156.7 163.2 168.3 171.0 160.7 176.3 

trans-3-methyl- 126.0 151.3 165.9 158.1 172.3 159.7 172.3 

cis-3-methyl- 122.0 148.5 160.8 157.7 168.1 158.1 170.0 

cyclohexanone -16.0 152.1 166.0 168.7 166.0 152.1 

2-methyl- -17.5 148.5 157.3 168.3 165.5 151.9 179.0 

3-methyl- -15.6 148.7 159.3 160.3 168.3 152.7 171. 7 

Data from Ref. 17a, pp. 64, 163, 173, 290 
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Table 6 

13c Shifts for Some Pentose and Hexose Aldopyranoses b 

1 2 3 4 5 6 

2-D-glucose 100.s 119.7 121.0a 122.9 121.2a 131.7 

-methyl glycoside 93.4 119.3 121.oa 127.8 121.2a 131.8 

3-0-methyl- 100.4 121.4 109.8 123.4 121.2 131.8 

S-D-glucose 96.7 118.3 116.8 122.9 116.8 131. 7 

-methyl glycoside 89.3 119.4 116.6a 127.8 116.7a 131. 6 

3-0-methyl- 96.5 118.8 107.3 123.6 116.8 131.8 

a.-D-galactose 100.3 123.3 124.1 123.3 122.3 131.4 

S-D-galactose 96.0 120.5 119. 7 123.8 117.6 131.6 

a.-D-fucose 100.3 123.1 124.3 120.7 126.5 176.9 

S-D-fucose 96.2 120.7 119.5 121.1 122.0 176.9 

ainterchangeable with others noted on same row 

bdata from Ref. 26 

Fructopyranose 

Fructofuranose 

Table 7 

13c Shifts for Fructose 

1 2 3 4 5 6 

94.6 122.7 123.3 124.7 128.4 129.3 

91.0 111.8 116.7 117.8 129.4 130.1 

OM e 

137.7 

132.6 

135. 6 

132.9 

-
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of a steric effect. Secondly, the methyl glycosides have the anomeric 

carbon shifted downfield relative to the free sugar. This is just the 

B-substituent effect. 

Dorman and Roberts also studied a series of oligosaccharides(27 ). 

Aside from the expected and observed effects of glycosidation, a par­

ticularly relevant comparison of the spectra of the furanose and 

pyranose forms of fructose was given (Table 7). All of the carbons 

common to both rings are shifted significantly downfield in the 

furanose form. 

Finally, there are reports of the carbon spectra of cyclotetra­

decanone and cyclotetradecane. Stothers and Lauterbur(2B) reported a 

chemical shift of -15.3 (downfield from internal cs
2

) for the ketone of 

cyclotetradecanone. Burke and Lauterbur<29 ) reported a value of 167.0 

for the mobile hydrocarbon. Anet(30) has done a variable temperature 

cmr study of cyclotetradecane and obtained a low temperature spectrum 

consistent with the proposed lowest energy diamond lattice conformation 

mentioned earlier. The chemical shifts were not reported or assigned; 

however, they could be estimated from the drawing of the spectrum in the 

paper. It seems reasonable that the most upfield carbons would be those 

designated D since they have protons directed into the ring. The carbon 

designated A can be assigned by the observed intensities leaving Band C 

for the downfield peak. It has already been established, however, that 

the erythronolide ring does not exist in this conformation. 
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13 C Spectra and Interpretation 

1. Experimental 

All spectra were taken on a Varian DFS-60 or HR-220 spectrometer. 

Most of the DFS-60 spectra and all of the HR-220 spectra were taken 

using a pulse-Fourier transform system. Unless otherwise noted, spectra 

were taken in a 4 to 1 mixture of CDC1
3 

and CH
2

c1
2

• Chemical shifts 

were measured relative to internal CH2c12 and converted to internal 

cs2 using the relationship: d(cs2) = d(CH2c12) + 138.8. The resulting 

value can be converted to the currently favored internal TMS scale by 

the relationship d(TMS) = 192.8 - d(cs
2
). The estimated error in the 

chemical shift, unless otherwise noted, is plus or minus 0.1 ppm. The 

DFS-60, as currently equipped, has a Bruker probe and pulse system with 

a Varian 620i computer. A typical spectrum is taken in approximately 

0 0.5- 1.0 ml solvent at ambient probe temperature (30-35 centigrade) 

using either noise, off-resonance, or single frequency decoupling (SFD). 

The magnet is locked on the deuterium signal from CDC1
3

• Spectra can 

usually be obtained at concentrations greater than 0.1 molar, but con­

centrations of O. 3 - Q. 4 molar are more typical. 

A couple of general statements can be made about what might be 

expected in macrolide cmr spectra with regard to the effects discussed 

above. The effect of adding or removing a substituent should be smaller 

than in most of the model systems because of the observed attenuation 

on increased substitution. In particular the a-effect should be smaller 

and they-effect variable. When a substituent is removed the expected 

upfield (negative) $-shift could be opposed by a coincident downfield 
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shift caused by conformational reorganization which reduces steric com­

pression. The observed S-effect which is already reduced due to 

extensive substitution could be even further reduced. Steric shifts 

would be expected to be much harder to predict due to the many pos­

sible steric interactions around and inside the large ring. 

2. Aglycone spectra 

Spectra were taken and assigned for nine aglycone derivatives. 

An example of a noise-decoupled spectrum for 6-deoxyerythronolide Bis 

shown in Figure 13. This spectrum was obtained with a 0.5-1.0 molar 

solution in less than thirty minutes on the DFS-60 as currently 

equipped. 

Assignments for the spectra of these nine derivatives plus the 

hemiacetal of 5-deoxy-5-oxoerythronolide Bare given in Tables 8-10. 

The structures are shown in Figure 14. Ambiguous assignments are in­

dicated on the tables; the more probable assignment is the one given. 

By and large these assignments were very tediously made. The only 

reliable method appeared to be low-power single frequency decoupling 

of the directly bonded protons. Discussion of how the assignments 

were made will proceed by region of the spectrum. The letter A fol­

lowed by a number refers to "aglycone, position ". Later on the 

letter D refers to desosamine, the letter C to cladinose, and the 

letter M to mycarose. 

The oxygenated carbons are the ketone and lactone carbonyls A9 

and Al, the three secondary alcohols A3, AS, All, the tertiary alcohol 

A6, and the lactone ester Al3, The assignment of A9 was generally easy 



.
..

. {s
 :i.
 

FI
G

U
R:

S 
13

 

N
o

is
e-

d
ec

o
u

p
le

d
 c

iIB
 

sp
ec

tr
u

m
 
o

f 
6

-D
eo

x
y

er
y

th
ro

n
o

li
d

e 
B

 

C
E

3 
OH

 ... -..
. 

CP
.:3

 C
2

R
5

 

cT
I 3 I I I I 

,.
cH

3 
.,,

00
 

I 5"
0 

CH
3 

I rc
o 

·--·
--1

 
-

l ' ! j 

I : I
 ~ ~ 

I N
 

\0
 

I 



T
ab

le
 

8 

A
gl

yc
on

e 
A

ss
ig

n
m

en
ts

 
fo

r 
O

xy
ge

na
te

d 
C

ar
bo

ns
 

(4
) 

A
9 

-2
2

.1
 

A
l 

1
4

.1
 

A
3 

11
3.

 2
 

A
5 

1
1

6
.3

 

A
6 

1
5

7
.2

 

A
ll

 
1

2
1

.6
 

A
l3

 
1

1
6

.3
 

ad
io

x
an

e 
so

lv
e
n

t 

b 
n

o
t 

in
v

e
st

ig
a
te

d
 

C
 C

H
fl

2 
so

lv
e
n

t 

(5
)a

 
(8

) 

b 
-2

3
.7

 

1
4

.8
 

±
 1

 
1

6
.8

 

1
1

3
.4

 
1

2
0

.5
 

1
1

1
.5

 
-2

6
.5

 

1
1

7
.8

 
1

1
3

. 4
 

1
2

7
.6

 
1

2
2

.8
 

1
1

7
.8

 
1

1
6

.5
 

d
in

te
rc

h
an

g
ea

b
le

 
in

 s
am

e 
co

lu
m

n.
 

S
ee

 T
ab

le
 O

 f
o

r 
co

m
po

un
d 

na
m

es
. 

{S
h

) 
(9

) C
 

(1
1)

 

8
1

.2
 ±

1
 

-2
3

.0
 

-2
0

. 5
 ±

 1
. 5

 

ca
.1

5
 

1
6

.8
 

1
7

.2
 

1
2

1
.2

 
1

2
0

.9
 

1
1

2
. i 

c
a
.-

2
5

 
-2

5
.0

 
1

1
3

.0
d

 

1
0

5
.9

 
1

4
7

.2
 

1
1

6
.6

 

1
2

2
.4

 
1

2
2

.0
 

1
1

7
.6

 

1
1

6
.0

 
1

1
7

.1
 

1
1

8
.0

 

(1
2)

 
(1

5)
 

(1
6)

 
(1

7)
 

-2
0

.7
 

-i
1

.2
 

-2
2

.5
 

1
1

0
.9

 

1
7

.4
 

1
7

.9
 

1
9

.5
 

1
4

.1
 

1
1

3
. 6

 
1

1
5

.1
 

1
1

5
.9

 
1

1
2

.l
d

 

1
1

6
.4

 
1

1
3

.1
 

11
3.

 7
 

1
1

2
.4

d
 

1
5

6
.9

 
1

1
8

.0
 

1
1

8
.4

 
1

1
6

.5
 

I 
1

1
8

.2
 

1
2

2
.7

 
1

1
9

.9
 

1
2

1
.8

 
w

 
0 I 

1
1

8
.2

 
1

1
7

.2
 

1
1

8
.4

 
1

1
6

.5
 



T
ab

le
 

9 

A
gl

yc
on

e 
A

ss
ig

n
m

en
ts

 
fo

r 
M

et
h

in
e 

an
d 

M
et

hy
le

ne
 C

ar
bo

ns
 

(4
) 

(5
)a

 
(8

) 

A
6 

1
5

7
. 2

b 
1

1
7

.8
 

11
3.

 4
 

A
2 

1
4

9
.1

 
1

4
8

.8
 

1
4

8
.9

 

AB
 

1
5

2
.8

d
 

1
5

0
.6

b
 

1
4

7
.0

 

A
lO

 
1

4
8

. 6
d 

1
5

3
.l

b
 

1
5

4
.8

b
 

A
4 

1
5

5
.0

b
 

1
5

6
.4

 
1

5
1

.4
b

 

A
l2

 
1

5
2

.0
b

 
1

5
2

.2
 

1
5

1
.9

b
 

A
7 

1
5

5
.0

b
 

1
5

1
.6

 
1

5
1

.9
b

 

a 
D

io
xa

ne
 
so

lv
en

t 

b
P

o
si

ti
v

e
ly

 c
o

n
fi

rm
ed

 b
y 

SF
D

 

C
 C

H
f 1

2 
so

lv
en

t 

(8
h)

 
(9

) C
 

(1
1)

 
(1

2)
 

(1
5)

 

1
0

5
.9

 
1

4
7

.2
 

1
1

6
.6

 
1

5
6

.9
 

1
1

8
.0

 

1
4

8
.2

 
1

4
8

.9
 

1
4

9
. 2

b 
14

9.
 4

b 
1

4
9

.9
 

1
4

1
.0

 
1

4
5

.9
 

1
4

9
.9

b
 

1
5

2
.5

b
 

1
4

7
.1

 

1
5

5
.1

 
1

5
3

. 4
b 

1
5

3
.4

b
 

1
5

0
. 2

b 
1

5
3

.8
b

 

1
4

9
.2

 
1

4
5

. 9
 

1
5

5
.8

b
 

1
5

5
.2

b
 

1
5

6
.6

b
 

e 
1

5
2

. 2
b 

1
5

3
.4

b
 

1
5

3
. 5

b 
1

5
2

.2
b

 

1
5

0
.2

 
1

5
6

.0
b

 
1

5
0

.6
b

 
1

5
5

.2
b

 
1

5
5

.0
b

 

d 
In

te
rc

h
a
n

g
e
a
b

le
 w

it
h

 
o

th
e
rs

 
in

 s
am

e 
co

lu
m

n
, 

m
o

st
 
li

k
e
ly

 a
ss

ig
n

m
en

t 
sh

ow
n 

~
u

ri
e
d

 

(1
6)

 
(1

7
) 

1
1

8
.4

 
1

1
6

.5
 

1
4

9
.i

 
1

4
8

.2
b

 

1
5

0
.3

d
 

1
5

8
.2

 

1
5

2
. S

b 
1

6
0

.5
 

1
5

6
.5

b
 

1
5

6
.3

 

15
3.

 4
b 

1
5

2
.2

 
I w
 

.....
. 

1
5

5
.8

b
 

I 
1

5
1

.4
 



T
ab

le
 

10
 

A
gl

yc
on

e 
A

ss
ig

nm
en

ts
 

fo
r 

M
et

h
y

l 
C

ar
bo

ns
 

(4
) 

(5
) a

 
(8

) 
(8

h)
 

(9
) 

C
 

(1
1

) 
(1

2)
 

(1
5)

 
(1

6)
 

(1
7)

 

A
l4

 
1

6
7

.2
 

1
6

6
.7

d
 

1
6

6
.6

 
1

6
7

.2
 

1
6

7
.0

 
1

6
6

.5
d

 
1

6
6

.6
 

1
6

6
.4

 
16

6.
 4

d 
1

6
7

.3
 

6-
M

 
1

7
6

.0
 

1
6

7
.0

d
-

1
7

1
.3

 
1

6
7

.7
 

1
7

6
.4

 
1

6
5

.9
d

 
1

7
5

.7
 

1
6

6
.4

 
1

6
6

.8
d

 
1

6
5

.9
 

e 

12
-M

 
1

8
3

.6
 

1
8

3
.9

 
1

8
3

.6
 

1
8

4
.3

 
1

8
3

.7
d

 
1

8
2

.8
 

1
8

2
.8

 
1

8
3

.5
d

 
1

8
2

.9
 

1
8

4
.1

 
e 

4-
M

 
1

8
5

.8
d

 
1

8
6

.2
 

1
8

2
.8

d
 

b 
1

8
3

.7
d

 
1

8
6

.1
 

1
8

5
.1

 
1

8
3

.5
d

 
1

8
3

.7
e 

1
8

7
.2

 
e 

10
-M

 
1

7
9

.4
e 

1
7

6
.3

e 
1

7
4

.8
 

b 
1

7
8

. 4
 

1
7

6
.7

e 
1

7
8

. 5
 .

 
17

7 
.5

 
1

7
8

.0
 

1
7

5
.4

 
e 

2
-M

 
1

7
8

.0
e 

1
7

8
.l

e
 

1
7

8
.4

 
1

7
7

.6
 

1
7

8
.4

 
1

7
8

.l
e
 

1
7

8
.5

 
1

8
3

. O
d 

1
8

2
.4

e 
1

7
8

.2
 

e 

8-
M

 
1

8
6

.5
d

 
1

8
5

.0
 

1
8

3
.l

d
 

b 
1

8
3

.9
d

 
18

'•
· 8

 
1

8
5

.1
 

1
8

3
.5

d
 

18
3.

 7
e 

18
2.

 7
 

I w
 

e 
N

 I 

A
l5

 
1

8
2

.1
 

1
8

2
.7

 
1

8
2

.3
 

b 
1

8
2

.4
 

1
8

2
.1

 
1

8
2

.2
 

1
8

1
.9

 
1

8
2

.4
 

1
8

2
.2

 

A
c-

M
 

-
-

-
-

-
1

7
1

.8
 

1
7

1
.5

 
17

1.
5(

A
3)

 
17

1.
 7

 
e 

17
3.

8(
A

5)
 
a
ll

 3
 

a D
io

xa
ne

 s
o

lv
e
n

t 
d

,e
 

In
te

rc
h

an
g

ea
b

le
 w

it
h

 o
th

e
rs

 
in

 t
h

e 
sa

m
e 

co
lu

m
n.

 

b b
u

ri
ed

 

C
 C

H
f 1

2 
so

lv
e
n

t 



cn
3 

,/'" 

c21\ 
IS"° l'i 

-33-
FIGURE 14 

Aglycone Structures 
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FIGURE 14 (Cont.) 

Aglyoone Structures 
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as ketones appear at lower field than any other type of carbon in 

question here. Only in the case of the 5-oxo derivatives was ambiguity 

possible. The differentiation in this case could be made by the 

observation of a (negative) S-shift in going from 5-deoxy-5-oxoerythro­

nolide B to 5,6-dideoxy-5-oxoerythronolide Band the comparison of the 

former with its hemiketal spectrum. Assignment of Al was also easy. 

The only possible ambiguities here were in the acetoxy derivatives; 

however, the actoxy carbonyls are generally 3-6 ppm upfield from the 

lactone. 

Most of the assignments of A3, A5, A6, All and Al3 were made by 

single-frequency decoupling (SFD) and off-resonance decoupling (ORD). 

Unequivocal assignments could usually be made if the proton signals 

differed by more than 0.1 ppm. Most of the proton data came from 

Reference 15. Th~ spectrum of erythronolide B was taken on a very 

dilute sample in dioxane since it is nearly insoluble in deuterio­

chloroform. For this reason the comparison of this sample with the 

others is less reliable. Single frequency decoupling was not feasible 

but the pattern ·of resonances is the same as for the others so assign­

ment was made by comparison. The spectrum of 5,6-dideoxy-5-oxoerythro­

nolide B was taken in methylene chloride and again no proton data were 

available. Assignments were made by comparison with the 5-oxo deriva­

tives. Little solvent shift was observed in other spectra ·taken in 

CDC1
3 

and CH
2
c1

2
• The resonances in the spectrum of the hemiketal of 

5-deoxy-5-oxoerythronolide B were not all found in this relatively 

insoluble sample. Assignments were made by comparison with the ketone 

spectrum and with the other ketal spectra. The changes observed on 
\ 
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going from the keto to hemiketal from will be discussed later. 

The remaining aglycone ring carbons A2, A8, AlO, A4, Al2 and 

A7 proved to be the most difficult to unambiguously assign. For this 

region only,unambiguous assignments based on SFD experiments are noted. 

Proton data were available in most cases, but the resonances were 

closer together and less well characterized due to the complexity of 

the proton spectra. In all cases in which proton data were available, 

the peaks representing A2, A8 and AlO could be separated from those 

representing A4, Al2,and A7. Further, A7 could often be assigned since 

it is a methylene rather than a methine. The spectra of 11-acetyl­

erythronolide Band 11-acetyl-6-deoxyerythronolide B could be completely 

assigned in this region by SFD. Beyond this some comparative assign­

ments had to be made. A2 was generally assigned by SFD but for those 

not so indicated in Table 10, assignments were based on the fact that 

this region appears to be conformationally homogeneous in all deriva­

tives without a s~bstituent on the adjacent (A3) hydroxy group. This 

is the conclusion of Egan(lS) based on his study of vicinal proton 

couplings. In the 3-acetoxy derivatives an upfield shift would be 

expected due to steric interaction with the freely rotating acetoxy 

group. 

The assignments of AS and AlO were the most difficult. The 

assignments for 6-deoxyerythronolide B were indicated by repeated SFD 

(15) 
experiments. In this case the proton signals differ by 0.12 ppm • 

For 9S-9-dihydroerythronolide B no SFD was possible but the assignments 

of AS and AlO rest on the observed upfield shift on reducing a ketone 

to an alcohol of the adjacent carbons. This is one substituent effect 
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which was consistently observed at near its expected value in the entire 

series. The assignments of AB and AlO for erythronolide Bare based on 

comparison. The uncertainty of the solvent change makes these assign-

ments even less meaningful. The assignment of AB in 3,5-diacetyl-

erythronolide Bis by elimination. The proton frequencies of AB and A2 

were too close in this compound; however, comparison with 

3,5,11-triacetylerythronolide B indicates the assignment is correct. 

Egan's(lS) results show that the only differences in the vicinal 

couplings between these two compounds are in the AB region. No proton 

data (in CDC1
3

) was available for 5,6-dideoxy-5-oxo-erythronolide B 

but in light of the surprisingly different carbon shifts, SFD experi­

ments were done in the following manner. Comparison of proton results 

for a number of compounds in pyridine (including the one in question) 

and CDC1
3 

show that HlO would be furthest downfield; H8 and H2 would be 

next; H6 would be next most upfield; and Hl2 would be the furthest 

upfield. The carbon peaks responded significantly to a "scanning" of 

the proton region so assignments were made on this basis. 

The assignments of A4, Al2 and A7 are almost all unequivocal 

by SFD. Only for 9S-9-dihydroerythronolide Band erythronolide B were 

comparative assignments made. 

The spectrum of the hemiketal form of 5-deoxy-5-oxoerythronolide 

B presented a problem because of the low intensity of the peaks. The 

peak at 141.0 corresponding to AB is expected by comparison with other 

derivatives of this type. The others that could be found were assigned 

by comparison. 
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In the methyl region the only completely assigned spectrum is 

of 9S-9-dihydroerythronolide B. This was done by SFD using data from 

(31) Demarco and from the observed effect of reducing a ketone on the 

adjacent methyl as mentioned earlier. In most cases proton data were 

unavailable or the proton peaks were too close together. Al4 and 6-Me 

were assignable in most cases based on their chemical shift. Al5 was 

usually assigned by SFD since its proton is generally the furthest 

upfield and the carbon shift varied little. Some of the assignments 

of 12-Me were made by SFD since the methyl protons generally appear at 

higher field than all the others except Al5. The remaining assignments of 

12-Me were made assuming small changes. This region of the ring was 

also found to be conformationally homogeneous by Egan(lS). Furthermore, 

the carbon shifts for Al2 already assigned are nearly constant except 

in 11-acetyl derivatives in which a 1.0- 1.5 ppm upfield shift is 

observed. The corresponding shifts of 12-Me in these derivatives seems 

to be downfield. The remaining methyls fall into a reasonable pattern 

based on comparison with 9S-9-dihydroerythronolide Band known effects. 

The two highfield methyls in all but the 3,5-diacetyl derivatives cor­

respond to 4-Me and 8-Me. These are axial in the expected conformation. 

In particular, 4-Me is held in a very unfavorable axial position because 

of the apparent hydrogen bonding between the hydroxyls on A3 and AS 

(Figure 8). Differentiation between 4-Me and 8-Me is made by comparison 

of the various derivatives and the most likely assignments are shown. 

The remaining methyls, 2-Me and 10-Me are therefore downfield in the 

various derivatives. The only exceptions are in the 3,5-diacetyl com­

pounds in which 2-Me is shifted upfield. The effect of acetoxy 
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substitution on the gamma-carbon will be discussed more fully later. 

Differentiation of 2-Me and 10-Me is made on the same comparative basis 

with the more likely assignment shown. Further support for these 

assignments is given in the discussion of the erythromycin spectra. 

Most of the peaks for the hemiketal of 5-deoxy-5-oxoerythronolide 

B were not found. Those that were are assigned as indicated. The 

acetoxy _methyl assignments are also indicated. 

3. Amino-sugar spectra 

Samples of cladinose and desosamine were obtained and cmr spectra 

run. The assignments are shown in Table 11. No SFD was done on the 

free sugars, but a number of assignments were made by comparison with 

glycoside spectra which were assigned by SFD. The assignments of the 

anomers not observed naturally were made using the results of Dorman 

and Roberts( 26 ) • . In the alpha-anomers the resulting 1,3-diaxial inter­

actions with the 3- and 5-carbons results in upfield shifts of all 

three. The shift is 5-6 ppm for D3 and D5 of desosamine and for C5 of 

cladinose. For C3 the shift was 1 ppm; however, this is a quaternary 

carbon. No sugars with such quaternary carbons were studied by Dorman 

and Roberts( 26). The smaller upfield shift for the quaternary center 

may be due to the fact that steric compression is felt more strongly by 

a carbon with a directly bonded proton. The corresponding upfield 

shifts of Cl, C2, Dl, and D2 are also observed (comparing anomers). 

4. Monoglycoside spectra 

Two monoglycosides, 3-0-a-L-mycarosylerythronolide B (13) and 

5-0-8-D-desosaminylerythronolide B (14) were available. The structures 



Table 11 

13 C Assignments for Cladinose and Desosamine 

Cl C2 C3 C4 C5 C6 C3-0M C3-M 
e e 

a-cladinose 101.1 156.0 116.9 114.9 128.3 174.6 142.5 .171.9 

S-cladinose 100.6 153.3 117.8 114.7 121.8 174.6 143.8 171.9 

a-desosamine 

S-desosamine 

Dl D2 D3 D4 D5 D6 

99.6 122.6 132.4 163.4 127.5 171.6 

94.4 120.8 127.5 163.4 123.5 171.6 

D-N-Me 
2 

152.4 

152.1 
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are shown in Figure 15 and the assignments in Table 12. The sample of 

(14) was somewhat difficult to work with due to partial decomposition. 

The assignments in the oxygenated region were made relatively 

easily by SFD. The pattern is the same as in the aglycone derivatives 

with the exception of the carbon retaining the sugar substituent. The 

assignments of the sugar peaks were also made by SFD. 

The methine region was again the most difficult to assign. 

Assignments of (13) were made by SFD. However, it was here that the 

trouble with (14) was greatest. The assignments shown are the most 

likely and are consistent with the repeated SFD experiments done. The 

signals for A12, D-NMe2 and AlO were often unresolved. 

The methyl peaks were assigned by comparison with the aglycone 

spectra. The only significant difference between the two are the 

assignments for 2-Me which would be expected to be upfield in (13). 

These monoglycosides were found to be largely conformationally homo­

geneous with the aglycone derivatives by Egan(lS). 

5. Eryt~ro~ycins' spectra 

Included in this set are the parent antibiotics erythromycin A 

and Band several derivatives made by acid degradation or modification 

of the glycosidated desosamine. Structures are shown in Figure 16 and 

the assignments in Tables 13-16. A sample noise-decoupled spectrum is 

shown in Figure 17. Complete proton data were available for all but 

the modified desosamine derivatives. The 3'-de-dimethylamino-3',4'­

dehydroerythromycin A sample was only slightly soluble. 

The oxygenated carbons were assigned by ORD and SFD where 

proton data were available and by comparison otherwise. The only 
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FIGURE 15 

3-0-c{-L-Mycarosylerythronolide B (6) 

5-0-,8-D-desosaminylerythronolide R (14) 
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Table 12 

Monoglycoside Assignments 

(6) (7) (6) (7) (6) (7) 

A9 -26.3 -22.1 A2 148.2 147.9 Al4 166.8 167.3 

Al 17.4 14.5 A8 147.1 149.8 6-M 167.2 165.1 e 

A3 102.9 115.0 AlO 153. 6 152.7d 12-M 183.7c 183. 8 e 

AS 110.9 99.6 A4 156.4 154.i 4-M 183.Sc 185.? 
e 

A6 117.3 117.8 Al2 152.5 152.3 10-M 177. 0 176.9 
e 

All 122.6 122.0 A7 151.4 151. 6d 2-M 183.7c 176.9 
e 

Al3 117.3 116.7 Al5 182.4 182.3 8- M .184.lc 185.3b 
e 

(7) (6) 

Dl 86.4 Ml 91.8 

D2 122.0 M2 155.8 

D3 127.1 M3 122.1 

D4 164.7 M4 116.0 

D5 122.6 MS 125.7 

D6 171. 7 M6 174.4a 

D-NM 152.5 M3-M 174.9a 
e e 

a,b,c,d interchangeable 
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FIGURE 16 

Erythromycin Structures 

0 
q 

CH3 
OH ... ~.o 

de-N-methylerythromyoin A 

R = OH (18) 

de-N-methylerythromycin B 

R = H (19) 

OH -......... 
CH/.,,. ,,,--

C2H5 

Erythromycin A 

R= OH (1) 

Erythromycin B 

R= H ( 2) 

3' -d.ed.im0 thylamino-

3', 4' -dehydro­

erythromycin A (20) 



~ythralosamine 

(22) 

CH 3 
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FIGURE 16 (Cont.) 

Erythromycin Structures 

'cH 3 

~nhydroerythromycin A 

(21) 

8,9 anhydroerythro­
rnycin 'B-6, 9-hemiket8-l 

(23) 
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Table 13 

Erythromycin Assignments for 

(1) (2) 

A9 -29.4 -27.2 

Al 16.2 16.4 

A3 112.3 112.1 

AS 108.7 108.7 

A6 117.5 117.5 

All 123.5 123.1 

Al3 115.3 117.S 

Al2 117.5 153.2 

a · CH
2
c12 solvent 

b interchangeable 

See Figure 16 

(18)a (19)a 

-28.2 -26.3 

16.7 16.6 

112. 4 112.1 

108. 2 108.1 

117.8 117. 7 

123.6 123.2 

115.6 117.7 

117.8 153.1 

Oxygenated Aglycone Carbons 

(20) (21) (22) (23) 

-29.1 76.4 72.7 41.4 

16.4 13.2 13.9 14.5 

112.2 116.5 121.9 115.5 

108.3 105.5 105.6 112. 2 

117.3 110.3b 110.6 106.5 

123.4 106.5 64.0 121.3 

115.3 117.3 113 •. 7 115.1 

117.3 111.0b 103.8 148.2 
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Table 14 

Erythromycin Assignments for Sugar Carbons 

(1) (2) (18)a (19)a (20) (21) (22) (23) 

Dl 89.1 89 .4 89.7 89.7 89.6 89.5 88.0 89.8 

D2 121.4 121.5 118.1 118.2 122.0b 123.0d 122.5 121.5 

D3 126.8 126.9 132.4 132.3 60.2c 127.4 126.7 126.7 

D4 163.6 163.6 160.1 160.0 66.lc 163.7 163.7 163.6 

D5 123.5 123.6 124.0 124.0 123. 4b 122.8 123.2 123.7 

D6 171.0 171.2 171.6 171.4 171.0 171.2 171.0 171.5 

DN-M e2 152.1 152. 2 155.7 155.6 152.3 152.4 152.3 

Cl 96.0 95.9 96.1 95.9 95.8 97.8 98.0 

C2 157.4 157.5 157.6 157.5 157.4 157.9 157.6 

C3 119. 7 119.9 119.9 119.9 119.7 119. 7 119.3 

C4 114.3 114.6 114.5 114.6 114.4 114.2 114.2 

cs 126.8 126.9 127.0 126.9 1Q6.8 126.7 126.7 

C6 173.8 174.0 174.1 174.2 174.1 174.9 174.2 

C3-0M 142.9 143.1 143.2 143.3 143.0 143.4 142.9 
e 

C3-M 171.0 171.2 171.3 171.4 171.0 171.6 171.0 
e 

a 
CHfl2 solvent 

b,c,d interchangeable 
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Table 15 

Erythromycin Assignments for Methine Carbons 

(1) (2) (18)a (19)a (10) (21) (22) (23) 

A2 147.4 147.6 147.5 147.5 147.3 146.7 152.0b 147.9 

AB 147.4 147.6 147.9 148.1 147.1 141.6 145.8 91.4 

AlO 154.3 153.2 154.1 153.1 153.8 151.0 53.4 158.4 

A4 152.9 152.9 153.1 152.5 152.7 149.6 147.8 149.2 

A12 117.5 153.2 117.8 153.1 117.3 111.0 103.8 148.2 

A7 153.9 154.6 154.1 154.4 153.8 151.0 149. 6b 150.1 

a CH2c12 solvent 

b interchangeable 

Table 16 

Erythromycin Assignments of Methyl Carbons 

(1) (2) (18)a (19)a (20) (21) (22) (23) 

A14 171.0 . 166. 8 171.3 166.9 171. 0 168.9 168.9 166.4 

6-M 165.6 165.5 166.1 165.7 165.7 164.9 163.2 167.5 
e 

12-M 174.0 183.3 174.3 183.6 174.1 167.8 169.2 183.8 e 

4-M 183.2 183.3 183.1 183.6 183.0 180.6d 179.9e 183.5 e 

10-M 176.4b 174.0 176.4c 174.2 176.4b 178.3 178.9 179.4f 
e 

2-M 17 6. 1 b 176.8 176.8c 177 .o 176.lb 175.i 179.0e 177. 3f 
e 

8-M 180.3 183.3 180. 7 183.0 180.6 179.2d 180.8 180.4 
e 

Al5 181.7 182.2 182.1 182.4 181.8 181.9 182.5 182.1 

a 
CHfl2 solvent 

b,c,d,e,f interchangeable 
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difficulty in this region was determining that the quaternary carbons 

A6 and Al2 are coincident in erythromycin A. 

Except for the modified desosamine derivatives assignment of 

the sugar peaks was straightforward. These assignments were indepen­

dently verified by SFD. In the de-N-methyl derivatives the assignments 

were made based on the expected substituent and steric effects. In 

these pyranose sugars these effects tend to be more predictable based 

(26 27) 
on others' results ' • The downfield shift of D2 in going to the 

de-N-methyl derivatives is a negative gamma effect and the upfield 

shifts of D3 and D-NMe are negative $-effects. The upfield shift of 

D5 is a negative remote steric effect. 

The methine region was assigned primarily by SFD and ORD. Some 

of the difficulties encountered in the aglycone spectra were also 

encountered here._ The problems caused by overlapping peaks were acute. 

in this region; however, repeated SFD experiments allowed the assign­

ments to be made independent of comparison of spectra. 

The overlapping of peaks is acute in the methyl region. As 

mentioned before, all the proton data were available but many of the 

proton resonances were too close together to allow differentiation in 

the carbon spectra. One particularly critical assignment was the 

differentiation of 2-Me and 10-Me in erythromycin B. In this case the 

proton resonances happened to be separated by 0.20 ppm and assignment 

could be made. The result is also the intuitive comparative one based 

on the observed invariance of vicinal proton couplings in the A2-A5 

region(lS). 
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Spectra were taken and assigned of two other samples, 

8,9-anhydroerythronolide B -6,9-hemiketal and megalomycin A. The 

former is obtained from erythronolide Bin acid(32 ). Megalomycin A 

is a naturally occurring antibiotic recently discovered(33 )_ The 

structures and spectral assignments are shown in Figure 18 and Tables 

17 and 18. Proton data were available for 8,9-anhydroerythronolide 

B-6,9-hemj.ketal .(34) and the spectrum was assigned by SFD. The only 

signficant differences between assigned peaks for this sample and 

8,9-anhydroerythronycine B-6,9-hemiketal are in the A2-A6 region and 

will be discussed later. The assignments for megalomycin A are based 

on an ORD experiment and comparison with the erythromycins. 

G. Discussion 

1. Substituent and steric effects 

A number of regularities are discernible based on connnonly 

observed effects on carbon spectra. The effect of adding or removing 

a hydroxyl group in aliphatic and alicyclic hydrocarbons was discussed 

earlier. Several of the samples studied differ by the presence or 

absence of hydroxy groups at A6 or Al2. Removing the hydroxyl group 

causes a 35-40 ppm upfield shift at the directly bonded carbon and a 

9-10 ppm upfield shift at the geminal methyl except in the 5-oxo 

derivatives. These are the expected magnitudes. The effects at the 

other $-carbons are considerably diminished. Removing the 6-hydroxy 

causes a 3-5 ppm upfield shift of AS (when hydroxylated) and A7. The 

effect on A5 as a ketone is only 1.2 ppm. Substituent effects on a 

ketone are expected to be smaller(35 )_ The effect of removing the 
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FIGURE lB 

8, 9-anhydroery thronoli 6 9-hemiketal · de B- , 

·n A Megalomyc1 
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Table 17 

Assignments for 8,9-anhydroerythronolide B-6,9-hemiketal 

A9 41.4 

Al 16.0 

A3 110.5 

AS 110.5 

A6 108. 6 

All 121.9 

Al3 114.6 

a interchangeable 

A2 

AB 

AlO 

A4 

Al2 

A7 

Al5 

148. 2 Al4 166.7 

90.9 6-M 164.3 
e 

158.7 12-M 184.3 e 

157.6 4-M 186.5 
e 

146.7 10-M 177. Sa 
e 

150.3 2-M 178.6a 
e 

182.3 8-M 180.6 e 



A9 -28.9 

Al 16.9 

Dl 87.9 

Ml 93.9 

Rl 102.0 

AS 107.3 

A3 109.4 

Al2 112.0 

A13 115.5 

M4 115.7 

A6 117.9 

All 118.9 

D2 121.2 

M3 122.8 
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Table 18 

Assignments for Megalomycin A 

R4 123.-2 

D5 123.5 

MS 125.1 

D3 126.8 

R3 126.8 

RS 132.9 

AB 146.6 

A2 147.6 

R-NM e2 149.9 

A4 151.3 

D-NM e2 152.2 

A7 153.6 

AlO 154.7 

M2 155.2 

D4 163.8 

R2 164. 4 

6-M 166.6 
e 

Al4 170.9 

D6 171.2 

M3-M 173. 6 
e 

M6 173.8 

12-M 174.0 
e 

10-M 176.0 e 

R6 176.0 

2-M 177 .4 
e 

8-M 180.2 
e 

Al5 181.9 

4-M 182.9 
e 
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12-hydroxy is only +2 ppm at Al3, ca. 0 ppm at All, and -4 ppm at Al4. 

Smaller a-effects are expected in more highly substituted molecules as 

discussed earlier, but it is likely that conformational changes asso­

ciated with removing or adding these hydroxy groups contribute also. 

These changes will be discussed later. 

The effect of interconverting a hydroxy and a ketone appears to 

be larger and comparable to the magnitude observed in simpler systems. 

Reducing the ketone at A9 shifts the S-methines upfield 7-8 ppm and 

they-methyls downfield 1-2 ppm. The S-effect here is comparable to 

that observed in cyclohexane . systems while they-effect is smaller 

(Table 5). The effect of oxidizing AS to a ketone is 4-5 ppm downfield 

at A6 when hydroxylated and 10 ppm downfield in the 6-deoxy derivatives. 

The S-effect at A4 is 4 ppm downfield. The effects at they-methyls 

are variable. Conformational changes are more important here because 

the flexible part of the ring (A6-A9) is affected. 

The effects of acetoxy and methoxy groups relative to the free 

alcohols have been studied in several systems(36). The general trend 

for acetoxy substitution seems to be a downfield shift at the a-carbon, 

an upfield shift at the S-carbon, and little or no · effect elsewhere. 

When All is acetylated there is a 2-3 ppm downfield shift at All, a 

1-1.5 upfield shift at Al2 and a 1 ppm upfield shift at Al3. These 

are reasonable based on accepted considerations. An upfield shift in 

the lactone Al is also apparent in 11-acetoxy derivatives. This is 

most likely a remote steric effect. The effects at A9 and AlO vary 

considerably. These inconsistencies (based on the simple models) are 

almost certainly caused by the conformational changes which accompany 
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11-acetylation and will be discussed more fully later. It is worth­

while to note that the Al0-Al3 region does not change throughout the 

erythromycin B series as indicated by the constant vicinal proton­

proton couplings(lS). The success of the simple model in predicting 

the acetylation shifts at All-Al3 is consistent with this conclusion. 

The effect of acetylation at A3 and AS is complicated by the conforma­

tional change that occurs in this region. Egan(lS) has shown that the 

conformation of the 3,5-diacetyl derivatives resembles the conformation 

of the natural antibiotics in which the substituent at A3 moves above 

the plane of the ring and the substituent at AS moves down (Figure 8). 

In the 3,5-diacetyl derivatives the shifts of A3 and AS are upfield 

1-4 ppm. There are also upfield shifts of 1-2 ppm at A2, A4 and A6. 

The effects at they-carbons are more profound. Al is shifted upfield 

1-2 ppm, 2-Me is shifted upfield 5-6 ppm, 4-Me is shifted downfield 

3-4 ppm, 6-Me is essentially unchanged and A7 is shifted upfield 3~4 

ppm. As noted earlier, acetylation generally has little or no effect 

at y-carbons so an explanation is in order. These shifts are consis­

tent with the conformational changes and the fact that the free 

hydroxyls in the non-acetylated derivatives are diaxial and hydrogen 

bonded. Since no hydrogen bonding can exist in the diacetyl deriva­

tives, the acetyl groups are more free to rotate and the steric effects 

of this substituent are felt at the gamma carbons. The upfield shifts 

at 2-Me and A7 are consistent with the nearest acetyl group moving 

closer as in the proposed conformation. The downfield shift at 4-Me 

is a result of the relief of 1,3-diaxial steric interactions in the 

non-acetylated derivatives. As shown in Figure Sa, the 4-Me group is 
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held in an unfavorable axial position by the hydrogen bonded hydroxy 

groups. In Figure 8b the 4-Me has moved away from the center of the 

ring. This conclusion is consistent with the assignments given earlier. 

In fact, the chemical shift of 4-Me in the non-substituted (at A3 and 

A5) derivatives is among the highest reported for any methyl in any 

hydrocarbon. 

The effect of methyl substitution at oxygen and nitrogen can be 

assessed by comparing mycarose with cladinose and the de-N-methyl 

derivatives with desosamine respectively. Mycarose differs from 

cladinose by methylation of the 3-hydroxy group (see Figure 19 and 

Table 19). 

. (37) 
Dorman, Angyal and Roberts determined in a series of 

inositols that 0-methylation of axial hydroxyls causes downfield 

shifts at the a- and $-carbons and little or no effect elsewhere. The 

only significant deviation from this pattern is at CS where an upfield 

shift is observed in going from mycarosyl to either cladinose or 

cladinosyl. The change is only +1.2 ppm in the glycosidated sugars, 

however. 

The expected changes caused by de-N-methylation of desosamine 

were used to assign the spectra and no further comment is justified or 

necessary. 

Most of the steric effects observed are associated with the 

conformational changes to be discussed later. One change that is 

satisfactorily explained by a simple argument is the upfield shift at 

A2 in the non-glycosidated derivatives. It has already been pointed 

out that 4-Me is forced down by the hydrogen·bonding in these 
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derivatives. This increases the 1,3-diaxial interaction between A2 

and A4 and causes the observed upfield shift. 

It is generally accepted that carbons bearing axial hydroxyl 

groups appear upfield from those with equatorial hydroxyl groups in 

(38) cyclohexane derivatives • These considerations seem to be only 

partially applicable to this study. All is always axial and appears 

at higher field (121-123). A3 and AS are always equatorial and appear 

at low field in unmodified derivatives (111-115). However, A6 which 

is primarily axial and Al2 which is equatorial when hydroxylated are 

coincident in erythromycin A. Worse yet, A9 in 9S-9-dihydroerythro­

nolide B has been shown to be axial <39 ) yet appears at 110.9 ppm. 

A possible explanation is that this position is a "corner" on the 

alternate diamond lattice conformation and in the proposed conforma­

tion is free of diaxial interactions except with the hydroxy at All. 

Differentiation of axial and equatorial methyls by chemical shift is 

much clearer. The axial methyls 4-Me, 8-Me and 12-Me are always up­

field from the equatorial methyls 2-Me, 6-Me and 10-Me. The average 

difference is about 6 ppm. A priori use of these simplified consider­

ations on molecules of this complexity is probably not justified; 

however, a reasonable agreement is obtained. 

2. Hydrogen bonding 

It appears that cmr is extremely useful in assessing intra­

molecular hydrogen bonding in these molecules. The observed down­

field shift of carbonyl carbons involved in hydrogen bonding has 

already been mentioned<22 ,z3)_ Examination of the ketone shifts in 
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the various derivatives shows a variation of about 9 ppm. The shift 

of A9 for erythromycin A is -29.4 ppm and is one of the most deshielded 

(if not the most deshielded in a solvent other than sulfuric acid) 

organic carbonyls reported to date. By comparison, bis-isopropyl 

ketone appears at -22.8 ppm(4o). Since it is unlikely that ring strain 

(which can cause a downfield shift(4l)) is much of a problem here, and 

since steric effects should cause an upfield shift, intramolecular 

hydrogen bonding provides the most reasonable explanation. Examination 

of the proposed conformations (Figure 8) reveals that hydrogen bonding 

to A9 .could be from either the hydroxyl group at All or A6. It appears, 

however, that the dominant bonding is from A6. Comparison of erythro­

mycin A with megalomycin A, which has a sugar substituent at All, shows 

ketone shifts of -29.4 and -28.9 ppm respectively. In all 6-deoxy 

derivatives the ketone appears at -20.7 to -23.0 ppm. In lankamycin 

(Figures 2,3) which lacks a 6-hydroxy group and has an 11-acetoxy 

group (and also an 8-hydroxy) the ketone appears at -21.9 ppm. These 

latter values are comparable to what would be expected for an unstrained 

tetra-substituted ketone. Further, 11-acetylation causes a 1-2 ppm 

upfield shift in the 6-deoxy derivative which could be attributed to 

loss of hydrogen bonding or a steric effect. 

It has already been noted that the carbons bearing the sugar 

substituents in the monoglycosides appear at very low field (Table 12). 

This is also most likely a result of hydrogen bonding from the corres­

ponding free hydroxyl (that is, the hydroxyl at A3 is hydrogen bound to 

the glycosidated oxygen at AS in 5-0~8-D-desosaminylerythronolide B). 

In the 5-oxo derivatives the A5 ketone appears at low field (Table 8) 
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again, probably due to hydrogen bonding from A3. It has been deter­

mined that these derivatives (5-oxo) are conformationally homogeneous 

to the others in the A2-A5 region(42). Also significant is the 8 ppm 

upfield shift of A3 in the 5-oxo derivatives (Table 8). Available 

evidence indicates a downfield shift is expected for the hydrogen donor 

in hydrogen bonding situations. In particular, the carbon of chloro­

form was found to shift downfield in oxygenated solvents(43 )_ Downfield 

shifts are also observed in hydrogen bonding phenolic systems such as 

salicylaldehyde and salicylic acid derivatives(44)_ A cmr spectrum of 

4-hydroxy-4-methylpentanone was taken. The shifts for this sample and 

some other reported alcohols are shown in Table 20. At best, a 1 ppm 

upfield shift is observed in the hydrogen bonded situation. The up­

field shift of A3 in the 5-oxo derivatives relative to 5-hydroxy 

derivatives is most probably caused by the lack of hydrogen bonding to 

A3 and an apparent conformational change at the lactone. Al is shifted 

upfield in these derivatives also. 

3. Conformational considerations 

The cmr data described are consistent with several subtle con­

formational changes among the various derivatives. 

Comparison of the spectra for erythromycin A and erythromycin 

B show a number of differences that have not already been accounted 

for by simpler considerations. In particular, the changes at A9, AlO, 

10-Me and 8-Me are significant. Going from erythromycin A to erythro­

mycin B (removal of the 12-hydroxy group) the changes are A9 upfield 

2.2 ppm, AlO downfield 1.1 ppm, 10-Me downfield 2.1--2.4 ppm, and 8-Me 

upfield 3.0 ppm. Comparison of the pmr spectra for these two indicates 
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Table 20 

Comparison of Some Alcohol Spectra 

Cl C2 C3 C4 cs M e 

4-hydroxy-4-methyl- 161.0 -16.7 137.8 123.3 163.2 163.2 2-pentanone 

2-butanola 169.9 123.8 160.5 182.6 

2-methyl-2-butanol a 163.9 122.2 156.0 184.0 163.9 

2-pentanol a 169.2 125.5 150.9 173.4 178.5 

a Data from Ref. 17a, p.141 
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no significant change in any of the vicinal proton-proton couplings on 

the ring~lS). Further, it was demonstrated earlier that the dominant 

interaction at the A9 ketone is the hydrogen bonding with the hydroxyl 

group at A6. All of this is consistent with the following conforma­

tional difference between erythromycins A and B. In erythromycin A 

the 10 methyl moves down to avoid ·the 1,3-diaxial interaction with the 

12-hydroxyl by a rotation of the 9-10 bond. This moves the ketone into 

the ring closer to the 6-hydroxyl. There is no change in the 10-11 

bond but a slight .. rotation around the 11-12 bond (Figure 20). Further 

evidence for this change can be obtained from the CD data for these 

two ketones as determined by Mitscher et al. <45 )_ The effect of this 

change is to drive the 10-Me into a positive quadrant of the ketone in 

erythromycin A. The observed rotations are -6600 degrees for 

erythromycin A and -10800 for erythromycin B. Since the 12-hydroxy 

is in a negative quadrant, its removal should cause an increase rather 

than a decrease in the observed rotations going from erythromycin A to 

B. This change is also consistent with the cmr data. The A9 ketone 

is closer to the 6-hydroxy in erythromycin A and hence can be more 

strongly hydrogen bound. This explains the observed downfield shift. 
~ 

The 10-Me and AlO shifts move downfield as a result of reduced steric 

compression. The 8-Me moves upfield because of increased diaxial 

interaction with AlO across the ketone. Alternatively, a rotation 

around the 8-9 bond could also occur. Since pmr and cmr indicate no 

significant differences between these two erythromycins anywhere else, 

ascertaining the nature of this change could be important in explain­

ing the different antibiotic activities observed. 
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FIGURE 20 

Conformational Difference between Erythromycins A and B 

Erythromycin A 

A11 

I 

+ ' -

- ·----AS ~-A\0-------

j - : + I 
8-Me 1 

,o-t-.\e 

A11 

+ 

Erythromycin B 

0 

AB 
I 

H-lO 

10-Me 

- --A8-Q-AID------

l - : +- '----- io-M~ 
8-Me 
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It would seem that conformational differences are also respon­

sible for the bewildering scatter of the methine peaks in the aglycone 

derivatives. As discussed earlier, Egan(lS) has considered this 

problem using the observed differences in vicinal proton-proton 

couplings. The differences between the proton spectra of erythronolide 

Band 11-acetylerythronolide B were explained by assuming that the two 

conformers shown in Figure 11 are populated differently in the two 

derivatives. In particular, 11-acetylerythronolide B was assumed to 

exist in conformer B more than the other derivatives(lS)_ Examination 

of the relevant carbon spectra offers evidence in favor of this argu­

ment. A7 in 11-acetylerythronolide B appears at 150.6 ppm, shifted 

considerably downfield from the other aglycone derivatives (Table 9). 

A similar downfield shift of A7 is observed in the spectra of anhydro­

erythromycin A arid erythralosamine relative to erythromycin A and in 

the spectrum of the hemiketal of 5-deoxy-5-oxoerythronolide B rela­

tive to the ketoform. It has already been pointed out that the car­

bons in the furanose form of fructose appear downfield from those in 

the pyranose form(Z]). The proposed conformation for 11-acetyl­

erythronolide B has this region of the ring in a pseudo five-membered 

(15) 
ring and the analogy to the hemiketals was also made by Egan • 

Furthermore, this conformation has the A6 hydroxy group directed into 

the ring and poorly oriented for hydrogen bonding with the ketone at 

A9. The observed highfield shift of A9 in 11-acetylerythronolide B 

offers further evidence for this conformation. 
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It appears, however, that the spectra of the other derivatives 

which could be conformationally mobile may not follow this pattern. 

In Table 21 are shown the relevant data for several derivatives which 

differ only by their oxygen substituents. The strongest correlations 

among the first six examples are between A8, A9, H-8, and the vicinal 

couplings. The proposed equilibration(lS) requires the first three to 

exist in conformation A (Figure 11) and the second three to exist in a 

mixture of conformations A and B. This is based on the observed 

proton chemical shifts of H-8 and the vicinal couplings. Those in the 

second group of three have values intermediate between those of the 

first group of three and those of 11-acetylerythronolide B (Table 21). 

Further evidence for this proposal is seen in the observed shifts of 

A9. The same averaging pattern is apparent. However, the data for 

AS, A7, 8-Me and AlO are not consistent in any obvious way. In par-

ticular, a downfield shift of A7 would be required in the second group 

of :three relative to the first (independent of already ascertained 

steric effects at A7 due to substitution at AS). An alternative con­

formational change is consistent with the observed data. The change 

going from the first group of three to the second group of three in 

Table 22 is shown in Figure 21. The principal effects of this change 

would be to move A9 away from A6, thus weakening the hydrogen bond and 

causing the observed upfield shift; increase the diaxial interaction 

of A8 with the hydroxy at A6 causing an upfield shift in A8; make the 

vicinal 7-8 proton couplings more nearly equal; and move H-8 away from 

the ketone causing a downfield shift of the proton. The effects at 

other centers are harder to ascertain, but a slight . increase in the 
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Table 21 

Comparison of cmr and pmr Data for Several Aglycone Derivatives 

AB A7 A9 Al0 8-M .H-8b 
e 

(2) 147.6 154.3 -26.4 153.2 183.6 2.76 

(6) 147.1 151.4 -26.3 153. 6 183.5-184 2.70 

(15) 147.1 155.0 -27.3 154.0 183-183.5 2.74 

153.1 185.0 (5) 

(16) 

(7) 

150.6 

150.3 

149.8 

151.6 

155.8 

151.6 

-22.5 152.5 182.4-183.7 2.88 

-22.1 152.7 185.3 2.80 

(11) 149.9 150. 6 -20. 5 ± 1 153. 4 184.8 3.18 

a Approximate values, taken from Ref. 15 

bFrom Ref. 15 

(2) erythromycin B 

(6) 3-0-a-L-mycarosylerythronolide B 

(15) 3,5-diacetylerythronolide B 

(5) erythronolide B 

(16) 3,5,11-triacetylerythronolide B 

(7) 5-0-$-D-desosaminylerythronolide B 

(11) 11-acetylerythronolide B 

J a J 
7a,8 7e,8 

10 3 

9 4 

9 3 

7 7 

7 8 

3 12 

a 
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FIGURE 21 

Aglycone Conformational Change 

> 
.8-Me 

) 

8-Me 

A9 
1o.. 
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6-Me, 8-Me interaction is likely. The resulting conformation 

resembles a cis-1,3-dimethylcyclopentane at A6-A8, but the "axial" 

proton on A7 still points into the aglycone ring. 

A number of changes other than those already discussed occur 

in the 6-deoxy derivatives. Relative to the 6-oxygenated derivatives, 

6-deoxyerythronolide Band 11-acetyl-6-deoxyerythronolide B have AB 

upfield 3 ppm and AlO downfield 4-5 ppm (Table lCX}. The upfield shift 

of AS is most probably caused by an increased 1,3-diaxial interaction 

of its proton with 6-Me. This is consistent with the proposed con­

formation and observed vicinal couplings. The reason for the down­

field shift of AlO is not apparent but probably involves a change in 

the diaxial interaction across the ketone A9, since no changes are 

observed in the All-Al3 region in either the proton or carbon spectra. 

The change in going to the 5-oxo derivatives (Table 10) is amazingly 

large. AS moves downfield 7 ppm and AlO moves upfield 5 ppm. The 

conformation proposed<42 ) for 5,6-dideoxy-5-oxoerythronolide B does 

not seem consistent with either the proton or carbon data. In Figure 

22 is shown a conformation compatible with the observed data in Table 

22. This conformation is homogeneous to the other aglycones except 

that A6, A7 and A8 are eclipsed as in a rigid cyclopentane with the A6 

proton pointing into the ring. The reasons for observed changes in the 

carbon spectra are now apparent. The 1,3-diaxial interaction between 

the 6-methyl and the 8-proton has been relieved while the interaction 

between the 8-methyl and 10-hydrogen has been increased. This could 

cause the observed shifts. This conformation is also consistent with 

the observed vicinal 6-7 and 7-8 proton-proton .· couplings. 



cmr and pmr Data 

AB AlO 

(g)a 145.9 153.4 

(4)a 152.8 148.6 

aProton data from Ref. 42 

bProton data from Ref. 15 

for 

J 
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Table 22 

5,6-dideoxy-5-oxoerythronolide 

6,7a J 6,7e J 7a,8 J 7e,8 

8.2 8.2 3.0 13. 0 

4.7 10.2 13.0 4.0 

FIGURE 22 

B 
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One conformational problem that has received little attention 

is the orientation of the 6-deoxy sugars with respect to the aglycone 

ring. The cmr results seem to shed some light on this. In the 

crystal structure of erythromycin A (3) the sugars are roughly per­

pendicular to the ring with. the 6-methyl groups above. the plane of the 

ring. 

A comparison of the free and glycosidated chemical shifts of 

the sugars is given in Table 23. Glycosidation of the S-anomer of 

desosamine has little effect as might be predicted(Z7)_ Glycosidation 

of the a-anomer of cladinose has a greater effect, again as would be 

predicted. The interesting change here is the 2.8 ppm upfield 

of C3 on glycosidation. The 3-carbon on an a-hexose would be expected 

to move downfield after glycosidation with a non-freely rotating group 

due to a partial relief of the 1,3-diaxial interaction. In the 

crystal structure ,conformation-, the C3-0Me group is closest to 

desosamine and is the only group that seems to have a significant 

interaction with anything else in the molecule. C3-0Me also moves 

upfield, but only slightly, on glycosidation. The expected change 

again would be a downfield one. All of this is consistent with a solu­

tion conformation similar to that in the solid-state in which the 

observed upfield shifts at C3 and C3-0Me are caused by the remote 

(through mariy bonds) steric compression. 

Egan(lS) briefly mentioned observations that the proton shift 

of the methoxy group on cladinose was sensitive to the substitution at 

the 3-position of desosamine. These comparisons can also be made in 

cmr spectra. C3-0Me is found at 142.9, 143.2 and· 143.0 in erythromycin 
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A, de-N-methylerythromycin A (CH2c12 solvent) and 3'-de-dimethylamino-

3' ,4'-dehydroerythromycin A respectively. The differences between 

these shifts are too small to be significant. The reverse comparison 

can also be made. Megalomycin A (Figure 18) has a mycarosyl substitu­

ent at A3 and desosaminyl at AS. Mycarose differs from cladinose by 

the lack of the 3-0-methyl group. The shift of D3-NMe2 in megalomycin 

A is 152.2 compared to 152.1 for erythromycin A. Further comparison 

of the de-N-methyl spectra with the natural antibiotics does yield 

interesting results. Neglecting effects already discussed on the 

desosamine shifts and changes whic~ appear to result from overlapping 

peaks, a number of small but significant differences are apparent (Table 

24), The effect at AS may be disrnissible as a remote substituent or 

steric effect but the others require an explanation. Working with 

models of the proposed information ~Figure 8b) indicates that it is 

possible for the desosamine to move around to the side of the aglycone 

ring by rotation principally around the AS-0 bond. This places the 

D-NMe
2 

group near the 8-Me and the D2 proton near A7. Since most of 

the changes occur in the A7-Al0 region, this seems to be a viable ex­

planation for the observed changes on going to the de-N-methyl deriva­

tives. Further evidence for the existence of this freedom for 

desosarnine can be cited. Comparison of the desosamine peaks in the 

various anhydro derivatives (Table 14) shows significant variation in 

the desosamine peaks, particularly D2 and D3. Meanwhile, almost no 

changes are observed in the cladinose spectra. Furthermore, A7 is up­

field in erythromycin A and B relative to the unsubstituted (at AS) 

aglycones by about 3 ppm. It has already been observed that 



-74-

Table 24 

Comparison of cmr Data for Several Modified Desosamine Derivatives 

(l)a 

(18)a 

(2)b 

(19)b 

A9 

-29.0 

-28.2 

A9 

-27.2 

-27 .1 

A9 

-29.4 

-29.1 

a 
CHf 12 solvent 

bCDC1
3 

solvent 

A5 

109.2 

108.2 

A5 A3 

108.7 112.1 

107.4 111.9 

A5 

108.7 

108.3 

. (1) erythromycin A 

(2) erythromycin B 

A3 

112.7 

112.4 

4-M e 

183.3 

183.1 

A8 

147.4 

147~1 

(18) de-N-methylerythromycin ·A 

(19) de-N-methylerythromycin B 

4-M e 

183.6 

183.1 

AB 

147.6 

147.8 

AlO 

154.3 

153.8 

AB 

147.6 

147.9 

8-M 
e 

183.3 

183.1 

8-M 
e 

180.3 

180.6 

A7 

154.6 

154.0 

Dl 

89.1 

89.6 

(20) 3 '-dedimethylamino-:i-3' ,4 '-dehydroerythromycin A 

AlO 

153.3 

152.9 
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acetylation at A5 causes an upfield shift at A7. Thus the observed 

upfield shifts of A7 are consistent with the steric interaction that 

would be caused by movement of the desosamine ring. All of this evi­

dence seems consistent with a situation in which cladinose is in the 

crystal state conformation and relatively fixed, while desosamine can 

move in the manner described. 

Comparison of the spectra of the various anhydro and ketal 

derivatives (Tables 9-11, 14-17) verifies the pronounced downfield 

shifts of the carbons which end up in five-membered rings. Some ex­

amples are given in Table 25. 

Going from erythromycin A to anhydro erythromycin A, a 17 ppm 

downfield shift of All is observed. While this may be only due to the 

five-membered ring formation, it is possible that this shift is indica­

tive of steric relief at All in forming this derivative. As such, this 

may be part of the driving force for this reaction. The downfield 

shifts of AB and A7 seem characteristic for the formation of the hemi­

ketal and the saturated spiroketal. Since derivatives of this type 

play a major role in macrolide chemistry, these shifts could be used 

diagnostically. Certainly, other physical methods are capable of de­

tecting these changes. The upf_ield shifts of A3 are almost certainly 

due to the steric interaction that can occur between the A6-oxygen and 

and A3-hydrogen. 

H. Enriched Studies 

It was mentioned earlier that erythromycin is believed to 

originate biosynthetically from seven propionate units. The 
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Table 25 

Comparison of Some cmr Data for Anhydro Derivatives 

A3 All AB A7 

(1) 112.4 123.5 147.4 153.9 

(21) 116.5 106.5 141.6 151.0 

(22) 121.9 64.0 145.8 149.6 

(2) 112.0 123.0 147.6 154.3 

(23) 116.5 121.9 91.4 150.1 

(1) erythromycin A 

(21) anhydroerythromycin A 

(22) erythralosamine 

(2) erythromycin B 

(23) 8,9-anhydroerythromycin B-6, 9-hemiketal 
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experimental evidence for this consists of 14c labelling studies(S). 

These studies did not dissect the molecule into its actual precursors, 

but rather, convenient degradations were done which mix individual 

enriched carbons. As a test of the propionate theory and of the use­

fulness of cmr in biosynthesis studies, feeding experiments were done 

by Dr. James B. McAlpine at Abbott. A blocked mutant of streptomyces 

erythreus which accumulates erythronblide B was fed Cl labelled pro-
~ 

pionate. The resulting enriched erythronolide B was converted into the 

3,5,11-triacetate to improve solubility. Spectra of an unenriched and 

the enriched samples are shown in Figures 23-24. It is evident from 

the assignments given earlier that Al, A3, A5, A7, A9, All and Al3 are 

enriched as expected. That Al3 is enriched rather than A6 with which 

it is coincident is evident from the intensity. A6 is quaternary and 

would be of much lower intensity. Also, undecoupled spectra were run. 

From what can be seen of the remaining unenriched part of the spectrum 

in the enriched sample, no differences in intensity are evident com­

pared to the unenriched sample. The enrichment appears to be about 

twenty-five times over natural abundance. While the biosynthetic 

potential is dramatically indicated, the very efficient, specific en­

richment suggests that these samples could be used to determine carbon­

hydrogen and carbon~carbon coupling constants. In particular, vicinal 

carbon-hydrogen couplings have an angular dependence<46) and if 

resolvable could be used in conformational studies. For example, the 

sugar orientations would be determined by the two dehedral angles 

A3-0-Cl-ClH and A3H-A3-0-Cl for cladinose and A5-0-Dl-DIH and 

A5H-A5-0-Dl for desosamine. A3 and A5 are easily enriched as shown 
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above. Dl and Cl could be enriched using glucose (in a separate 

experiment of course). The resolution of the desired couplings would 

be nontrivial because of the many geminal and vicinal couplings pos­

sible. 

I. Summary 

The assigned cmr spectra of this series of erythromycin deriva­

tives have been interpreted in light of known effects on carbon spectra 

and conformational differences among the derivatives. Some new pro­

posals were made concerning these differences and evidence offered. In 

these compounds it appears that conformationally>natural abundance cmr 

is most useful in questions of intramolecular hydrogen bonding and 

orientation across and around carbonyls and other quaternary centers. 

Diagnostic usefulness for the various ketal structures is also sug­

gested. Enriched cmr is shown to be useful biosynthetically and its 

potential for conformational studies based on carbon spectra fine 

structure is suggested. 
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II. ALGEBRAIC CHEMISTRY 

A. Isomer Counting 

The problem of counting the number of isomers of . a chemical 

structure has received chemists' attentions for many years(47 )_ Aside 

from the fascination of the combinatorial problem involved, isomer 

counting is a necessity in any problem involving isomerizations. In 

particular, polytopal and carbonium ion rearrangement problems have 

received considerable attention recently(4B). 

The combinatorial formulas required for isomer counting problems 

were derived by Polya(49). More recently, a paper appeared describing 

the adaption of Polya's permutation group method to the more familiar 

point group formalism(SO). The method will be illustrated by means of 

an example. Consider the problem of the number of isomers of an 

octahedrally coordinated metal with two different substituents 

m(A)n(B)
6
_n• The relevant symmetry group is the octahedral rotation 

group O (Figure 25). Each element of the group permutes the 6 ver­

tices of the octahedron. In this way the group is represented by the 

permutation of the vertices. Each member of a conjugacy class · is repre­

sented by a permutation of the.same cyclic type •. That is, the sizes of 

the sets of vertices which are closed with respect to the permutation 

(called orbits or cycles) are the same for each member of a conjugacy 

class. For example, the c4 rotations all have cyclic type (a){b)(cdef). 

From this information the cycle index Z(G) can be constructed. 

For an arbitrary group G: 
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n (g) 
f m 

m 

The symbol 

The symbol 

IGJ refers to the order (number of elements) of the group 
n (g) 

f p 
p 

means that for the permutation g there are n (g) 
p 

cycles of length p. In the example a c4 rotation has two cycles of 

length one and one cycle of length four, thus the term is con-

tributed to the cycle index. Since all c
4 

rotations have the same 

cyclic type, the coefficient is the number of members of the conjugacy 

class. To determine the number of isomers of the desired type, the 

expression (AP+ BP) is substituted for f in the cycle index. 
p The 

resulting polynomial is expanded and terms collected. The coefficient 

of the term ApBm-p is the number of isomers with (p) A substituents 

and (m-p) B substituents. 

This method seems to have been used only for determining the 

number of permutation isomers of a structure with a designated number 

of different achiral ligands. Application to dissymetric molecules 

seems to be straightforward. The problem is treated in the same way 

except that the permuted substituents A and B now refer to the two 

absolute configurations of constitutionally identical chiral ligands. 

As an example, consider a benzene substituted in the 1,2,4, and 5 

positions with identical chiral ligands (symbolized F; F written back­

wards refers to the enantiomeric configuration, Figure 26). This 

structure has n
2 

rotation synunetry. The cycle index is computed in 

the same way as before, the substitution (AP+ BP) is made for f 
p 

The only difference is that A and Bare dummy substituents which refer 
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to absolute configurations. The number of stereoisomers is verified 

by the drawings. No general method seems to have been given for 

determining the number of stereoisomers in a dissymetric system. Some 

formulas which work in special cases have been described(Sl). Further, 

it has be~n stated that Polya's theorem is inadequate in cases with 

chiral ligands<52). This statement was based on the generally accepted 

concept that there are two causes for the reduced number of isomers in 

dissymmetric systems called enantiomeric reduction and diastereomeric 

reduction. A diastereomeric reduction is termed one caused by a rigid 

rotation. The three isomers shown in Figure 27 are equivalent by a 

c3 rotation (open circles and filled circles represent enantiomeric 

configurations of the same ligand). An enantiomeric reduction is 

termed one caused by symmetrical substitution of ligands of opposite 

cilirality to give. a meso compound (Figure 28). These are, in fact, 

exactly the same thing. The reduction in the number of isomers in both 

cases is cause<l by the presence of a rotation axis of symmetry in the 

original structure without chiral ligands. If there were no rotation 

symmetry in this latter case (Figure 28) then two diastereomeric meso 

structures would be possible and there would be no reduction in the 

number of isomers. Polya's method was stated to be inadequate for 

systems exhibiting enantiomeric reduction<52 ). Several examples of 

systems said to exhibit enantiomeric reduction were described and are 

correctly treated using the Polya method. The abbreviated calculations 

are shown in Figure 29. Note that substituting 2 for (A+B) gives the 

number of isomers without the distribution. 



0 

6 0 -- • 

-86-

FIGURE 27 

Example of Diastereomeric Reduction 

FIQURE 28 

Example of Enantiomerio Reduction 

@ 0 
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l◄1IGURE 29 

Examples of Isomer-Coun·ting Calculations on Dissymetric Systems 
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This method can be applied to any dissymmetric system, not just 

those which resemble permutation problems. Three more examples are 

shown in Figure 30. In the first, the decalin system, the permutations 

of the four asymmetric centers by the c2 rotation has to be determined 

on the structure in which all constitutionally identical centers have 

the same absolute configurations. In the second example, a.-onocerin, a 

naturally occurring triterpene, is treated. Chiral planes and axes<53 ) 

can also be handled. The third example shows a structure with two 

planes and two centers of chirality. 

The effect of changes in chemical structures on the number of 

isomers can also be readily determined. In Figure 31 four related 

problems are treated. Structure A can be thought of as a benzene sub­

stituted with 6 constitutionally identical amino acids. Using the 

rotation group n
6

~ the number of possible stereoisomers is calculated 

to be thirteen. Structure Bis the same as structure A except that the 

amide bonds have been formed. The rotation group is now c
6 

and fourteen 

isomers are found. The extra isomer results because of the formation of 

a cycloenantiomeric pair(54)_ Structure C is the same as A except for 

the indicated metal coordination. Again the rotation symmetry is c6 

and fourteen isomers result. Structure D combines structures Band C. 

Here a plane of chirality has been added since the faces of the ring 

are different after cyclization. Again the rotation symmetry is c6 and 

twenty-eight isomers are found. 

The number of permutation isomers of a structure including 

chiral ligands can be determined in the same way as the number of 
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Examples of Isomer-Counting Calcul~tions 

z(c2 ) = 1/2 ( ri + f~) 
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+ 2

2 
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HO 
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+ 24 ) = 136 
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FIGURE 31 

Effect of Change of Symmetry on Isomer-Counting Calculations 

F F©t= A 
F ~ 

F 

Z(D6) = l/12(f~ + 2f6 + 2f~ + f~ + 3f~ + 3f~f~) 

no • . isomers= 1/12 (156) = 13 

no. isomers= 1/6 (84) = 14 

F 

M _r((YF 
p(S)F 

F 

B 

C 

6 2 3 z(c6) = 1/6 (r1 + 2r6 + 2r
3 

+ r2) 

no. isomers= 1/6 (84) = 14 

D 

7 2 3 ) z(c6) = 1/6 (fl+ 2flf6 + 2f3fl + f2fl 

no. isomers 1/6 (168) = 28 
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permutation isomers with achiral ligands were determined above. 

Another system<52) said to exhibit enantiomeric reduction is the 

cyclobutane structure shown in Figure 32 with four achiral ligands A, 

and four constitutionally identical chiral ligands with two in each 

absolute configuration. The relevant symmetry group is n
4

• The cycle 

index is computed as usual and the substitution (A+B+c)p for f is 
p 

made. The coefficient of the terms A4B2c2 is needed. Isolation of 

a single term can be done in several ways. The fully generalized 

Polya theorem considers this( 55)_ The resulting coefficient is 480 

which means there are 480/8 = 60 isomers. This total is verified by 

the structure drawings. Isomers designated with the number 2 are chiral 

and only one enantiomer is shown. 

Further information about an isomeric system can be obtained by 

noting that the terms arising from the cycle index for each symmetry 

element represent the permutation isomers which have that particular 

kind of rotation symmetry. Returning to the octahedral example in 

2 Figure 26, the cycle index for a c
4 

rotation is fl
4

• Substitution 

yields the polynomial A6+2A5B+ A
2

B4+A2B
4 + 2AB5 + B6• These terms cor­

respond to the permutation isomers (not distinct isomers) shown in 

Figure 33. Each of these structures has a c4 axis of symmetry, and in 

this manner all isomers with at least c4 symmetry can be determined. 

To find isomers with more than one rotation axis, a combined cycle index 

is created. As shown in Figure 34 the indicated c4 and c2 axes are con­

sidered. The cycles used to construct the cycle index are those that 

are intact after both symmetry operations. The resulting term in this 
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Figure 32 

Cyclobutane Isomers with four Chiral Ligands 
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Permutation Isomers with c
4 

~3ymmetry 
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FIGURE 34 

Illustration of Combination of Symmetry Elements 
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6 4 2 2 4 6 case is f 4f 2 and substitution yields the polynomial A+ AB+ AB+ B. 

The permutation isomers are shown in Figure 34. This procedure c.an 

also be used to determine the reflective (improper rotation) synnnetry 

of isomers but only when achiral ligands are involved. The cycle index 

is computed in the same way using the permutation representation. 

The problem with chiral ligands is that they change configuration 

on reflection and that no planes or alternating axes of symmetry can 

pass through them. Therefore, determining the reflective symmetry in 

such cases must be done differently. Clearly a structure with chiral 

ligands which is itself achiral must have an equal number of ligands in 

opposite configurations. Therefore only symmetry operations represented 

by cycles of even length are possible. All of this can be taken into 

n n account by substituting (A)+ (-A) for f in the cycle index for the 
n 

reflective elements of symmetry. If n is odd, this term will go to 

zero. As an example, the number of meso forms possible in a square 

planar structure with two constitutionally different chiral ligands 

will be computed in Figure 35. 

A simple relationship between the order of the rotation sub­

group of an isomer and its permutational degeneracy can be derived. As 

was pointed out earlier, subst~tution into the cycle index for a partic­

ular symmetry element counts the number of permutation isomers with 

that symmetry. Any permutation isomer will be counted once for each 

element of rotation symmetry it possesses. Since a distinct isomer 

must be counted jG l r 
times (where JG I r 

is the order of the rotation 

symmetry group used in the calculation), its permutation degeneracy 

times the order of its rotation subgroup must equal r. Note that the 
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Counting Isomers with Constitutionally Different Chiral 

Ligands 

permute F, -F, G, -G 

no. isomers · = 1/8 ( 3(F
2 
+( -F) 

2 
+G

2 
+( -G / )+2( F4+( -F) 4+a4+(-G )4)) 

= 1/8 (3(2F
2

+2G
2

)
2 

+ 2(2F4+20
4)) 

= ·2F4 + 3F2G2 
+ 204 . 

F :t 

F □ 'f 
F ~ 

1Dr-
FD "'I C}□ F F□0 
G- 0 G i> G- "=i 

G v 6 0 

G□V. CJ□G 



-96-

symmetry group of any isomer must be a subgroup of this group used in 

the calculation. Then the relationship is obtained: 

IG I r 

= permutation degeneracy of isomer i 

= order of rotation symmetry group of isomer i 

Combining all the methods described so far allows one to do a 

complete analysis of an isomer problem. That is, one can determine the 

number, ligand distribution, and symmetry of all possible isomers. The 

only additional piece of information needed is a knowledge of the lat­

tice of subgroups of the principal symmetry group. The method will be 

illustrated by means of an example. The number and distribution of 

chlorobenzenes will be determined as shown in Figure 36. First, the 

number and distribution of isomers are found as described earlier. 

There are 13 isomers distributed as shown. Next it will be determined 

if there are any isomers of ,D6h 
1
symmetry (the most possible). All the 

symmetry operations of this group yield the combined cycle index £6 • 

Substitutions in the usual manner gives A6+ B6• As mentioned above, 

the permutation degeneracy times jG I must equal 
ri 

I G I . r 
In this 

case jG I = JG I = 12 and the permutation degeneration is one (the 
ri r 

coefficient of the term in the resulting polynomial). Hence there are 

two isomers with n
6

h symmetry, benzene and hexachlorobenzene. 

Isomers of lower symmetry are now located. The largest subgroups 

of n
6
h are of order 12. These are c6v, c6h, 0 6 , n3h (twice), and D0d 

(twice). c6v yields the combined cycle index £ 6• However, any isomer 
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FIGURE 36 

Calculation of Possible Chlorobenzenes 
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with n
6
h synnnetry will also have c6v symmetry, hence the expression for 

determinipg the number of c6v isomers is £6- f 6 = 0. Thus there are 

no c6v isomers. Similarly there are no c6h or n6 isomers. The two 

possible n
3

h subgroups yield different combined cycle indices. The one 

with the c
2 

axes between the carbon atoms yields the combined cycle 

index £
6 

and therefore there are no isomers of this symmetry. The 

other · D3h subgroup has its c2 axes through the carbon atoms and the 

2 
cycle index is f 3 • Again any isomer with n

6
h symmetry also has D 3h 

symmetry, so the expression is f;-f 6 • As shown in Figure 36, sub­

stitution and cancellation gives the term 2A
3

B
2

• Here the permutation 

degeneracy is two and jG I is six, so there is one chlorobenzene 
ri 

(1,3,5-trichlorobenzene) with n
311 

symmetry. No D isomers are ·found. - · 
3d 

The next group considered is DZh' of which there are three iden­

tical subgroups. The combined cycle index for one of these is f 2f 4 so 

that the expressions for the number of isomers is 3(£
2

£
4
-£

6
). This 

4 2 2 4 
yields the polynomial 3A B + 3A B. Since JG I = 4 , there are two 

ri 
chlorobenzenes with this symmetry. The rest of the calculation is done 

in the same manner. Only subgroups yielding isomers are shown. 

When chiral ligands are present the procedure has to be modi­

fied slightly. The rotation symmetry of all isomers is calculated in 

the same way. The reflective symmetry of meso forms is calculated by 

substituting ±A, ±B, etc. for each constitutionally different chiral 

ligand into the cycle index for the reflective symmetry elements of 

each subgroup. The same iterative procedure is used. 
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An alternative formulation of Polya's isomer counting method 

indicates further uses of the procedure. The set of permutation 

isomers form a permutation representation of the rotation symmetry 

group of the unsubstituted skeletons. This reducible representation 

can be decomposed into its irreducible components in the usual man- -

ner(56). The number of times the totally syDm1etric representations 

appears is equal to the number of distinct isomers. This statement can 

easily be proved. All the permutation isomers of a distinct isomer are 

permuted among themselves by the action of the skeletal symmetry group. 

Further, each permutation isomer can be converted into any other by 

the action of some member of the group. Therefore the permutation iso­

mers of each distinct isomer yield a transitive representation of the 

group. From standard group representation theory it is known that a 

transition permutation representation contains the totally symmetric 

representation exactly once(57 )_ The reducible representation obtained 

in this manner is identical to the cycle index after substitution of 

np for f where n is the number of substituents pennuted. However, 
p 

in other counting problems the relationship between the permutation 

representations and the cycle index is not as apparent. For example, 

. (58) 
in a recent paper, J. B. Hendrickson discusses the design of syn-

theses of benzene derivatives. A relevant problem is the calculation 

of the number of possible one-step conversions of benzene with one 

kind of substituent. This can be accomplished by constructing a repre­

sentation of n
6 

using the number of permutation isomers times the 

number of remaining unsubstituted sites on each isomer. The resulting 
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reducible representation is shown in Figure 37. The totally symmetric 

representation is included twenty times, which is the number of pos­

sible one-step conversions. This representation can also be constructed 

by taking the derivative of the cycle index with respect to f
1 

and sub-

stituting 2P for f The validity of this method can be easily verified. 
p 

On an unsubstituted benzene ring there are six possible sites for 

substitution and five remaining sites which may already be substituted 

or not. This yields the term 6 x 25 
= 192 as shown in Figure 38. The 

process of designating a site to be substituted destroys all symmetry 

except the c
2 

axes which go through the carbon atoms. Hence all other 

terms go to zero as shown. Further, if AP+ BP is substituted for f 
p 

the distribution of possible conversions is obtained. This is shown in 

Figure 37 along with a graph of the possible changes. Similarly the 

second derivative _yields the number of two-step substitutions with dif­

ferent substituents in a prescribed order. 
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FIGURE 37 

Calculation of One-Step Substitutions of Benzene Derivatives 
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B. Synthetic Design 

One unsolved and largely unstructured chemical problem is that of 

designing a synthesis of a given target molecule. The usual strategy 

is to "work backwards" from this target structure to generate a synthe­

sis tree. Likely intermediates can then be selected. Convergent 

syntheses, in which the lengths of consecutive chains of reactions are 

minimized, are generally preferable to non-convergent syntheses. 

Beyond these considerations strategies generally apply to individual 

cases. 

Some of the simpler aspects of the general design problem have 

an underlying algebraic structure generated by the bonds to be made. 

For each bond a change of bond status operation is defined which acts 

on the possible intermediate structures in the synthesis. This opera­

tion forms a bond in a structure if it is unformed and breaks it if it 

is formed. Repeating the operation returns the structure to its orig-

inal bonded status. 
n This construction gives a group of order 2 where 

n is the number of bonds considered. The group is isomorphic to the 

direct product of n cyclic groups of order 2. The set of all syn­

thetic intermediates form a regular representation of the group by the 

action of the group on the set(59 )_ The construction of this group is 

well known in algebraic topology. The chemical structure defines a 

one-dimensional simplical complex (actually a graph). The group de­

scribed is called the (one-dimensional) mod 2 chain group of the 

complex(60). 
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This group can be applied in at least three ways to the design 

problem. First, the action of this group on the target structure 

generates all possible intermediates. These would of course be needed 

for any complete analysis of the design problem for a given target 

molecule. The other applications involve the use of subgroups. Corey 

and Petersson(6l) have considered the problem of the number of rings 

(cycles) and their disconnection in a polycyclic molecule. There are 

organic structures sufficiently complicated to make such a problem non­

trivial. They found that a group could be used to generate all the 

cycles in a given target structure. This group is a subgroup of the 

mod 2 chain group and is called the mod 2 cycle group of the cornplex(60). 

Evans( 62 ) has considered the problem of the separation of functional 

pairs of functional groups (substituents) on the target structure. 

Briefly, he classifies the possible functional groups on the basis of 

their ability to impart nucleophilicity or electrophilicity on the 

adjacent sites. He then shows that nontrivially different situations 

arise depending on whether the functional groups are separated by an 

odd or even number of carbon atoms. All the fragments of a chemical 

structure with designated ends will generate a subgroup of the chain 

group. This group, in turn, can be used to find all these fragments 

which need to be considered if Evans' considerations are to be used. 

Another group can be described by considering the carbon atoms 

and their absolute stereochemistry. Each appropriately substituted 

carbon atom can exist in two possible absolute configurations. An 

operation is defined which "inverts" the configuration of each center. 

n All of these operations generate a group of order 2 in which n is 
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the number of asymmetric centers. The set of all stereoisomers form a 

regular representation of this group and action of the group on one 

stereoisomer generates all the others. This group, hereafter referred 

to as the stereochemistry group, is a subgroup of the (zero-dimensional) 

mod two chain group of the simplical complex defined by the target 

molecule. 

Another strategy of synthetic design is to take advantage of 

symmetry whenever any is present. Clearly, whenever a molecule can be 

broken into two identical pieces, it would be advantageous to design a 

synthesis which requires their combination in a late step. The iden­

tical pieces can be made together in the earlier steps. An example is 

the synthesis of a-onocerin(63 ) (Figure 38). The action of the sym­

metry group (in most cases the point group of the target molecule) on 

the groups mentio~ed above can be described. For example, consider 

the stereochemistry group. Each symmetry operation determines an auto­

morphism of the stereochemistry group by its permutation of and action 

on the asynnnetric centers. The symmetry group and stereoch~~istry 

. (64) group can then be combined as a semidirect product • This enlarged 

group contains all the symmetry operations, stereochemical inversions 

and their combinations. So far this enlarged group has no particular 

significance. 

For a given design problem it is possible to define symmetry 

operations other than the usual point group operations which turn out 

to be useful. As an example, the abstract structure shown in Figure 

39 will be considered. As drawn, this structure has a synnnetry point 

group that iµcludes only two operations, the identity and reflection 
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FIGURE 38 
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FIGURE 39 

Construction of the Enlarged Symmetry Group 

Cl a.. 
reflect 

) 

rotations 

(1)(2)(3) 

(121) 
( 132) 

(]1_){)_) 

(1)(23) 

( 13) (.g.) 

a. 

a.. 

a. 

invert 

► 

-a. 

invert '0.3 /q, 
--#) 

2 

(1)(_23)i 

reflections 

(])(.g)(]_)i 
( 123). 

- 1 
( 132) . 
- 1 

(12)(3). 
J. 

(1)(23)i 

( 13)(2). 
- J. 

-a... 



-108-

in the vertical plane between atoms 1 and 2 and including atoms. 3. 

However, a number of other operations can be defined. If the structure 

is rotated 120° clockwise and atoms 2 and 3 inverted, the structure is 

left unchanged. This sequence of operations is shown in Figure 40 and 

is symbolized as (123). This symbol is read: move the atom in site l 

to site 2 and leave it in the same configuration; move the atom in 

site 2 to site 3 and invert its configuration; move the atom in site 3 

to site 1 and invert its configuration. Another type of sequence of 

operations· will leave the structure unchanged. The structure is 

reflected in the plane going through atom land between atoms 2 and 3. 

Following this, the configurations of the atoms in sites 2 and 3 are 

inverted. This sequence is also shown in Figure 39 and is symbolized 

(1) (6_1) i where the i refers to the fact that the original opera­

tion was an improper rotation. There turns out to be twelve such 

operations which leave this structure unchanged, which are listed in 

Figure 39. These•twelve operations form a group which is isomorphic 

to the symmetry point group n
3
h. The "reason" for the existence of 

this larger group is that all three centers on the structure are 

constitutionally identical and differ only in configuration. 

The precise mathematical description of this group can be briefly 

stated. The semidirect product of the stereochemical inversion group 

c
2

xe
2
xc

2 
and the permutation group n

3 
is formed as determined by the 

(65) 
This is also the wreath product n

3
fc 2J • 

and has order 48. The group derived above is a subgroup of this group. 

Alternatively, the semidirect product of c2xc 2 by n
3

h is formed where 
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c2xc2 is isomorphic to the factor group of c
2
xc

2
xc

2 
by the operation 

which inverts all three centers at once. This can be symbolized as: 

➔ 

+ 
F 

where the arrows are group homomorphisms and the zeroes represent the 

trivial group of one element. This diagram represents a splitting ex­

tension which means that the product group has at least one subgroup 

isomorphic to n
3

h satisfying certain criteria. The group derived above 

is one of these subgroups. 

Other strategies useful in design problems can be defined as 

symmetries of the target structure. For example, there are numerous 

known interconversions of functional groups so that in the synthesis 

of a functionalized molecule it is usually possible to take care of 

this functionality after the carbon skeleton is formed. Stated differ­

ently, a symmetry is defined which permutes functionalized parts of a 

chemical structure based on known interconversions. As an example, a 

ketone and an alcohol can usually be interconverted and are often 

thought of as just an oxygenated carbon. An arbitrary designation for 

funct:ionality is often used in the crude design of the carbon skeleton 

synthesis (67). In .this group derived above, the atom permutations were 

based on a familiar point group. Since synthesis presupposes that 

parts of the target molecule will be separate in the earlier stages, 

they need not have any obvious relationship to each other in the final 

structure. Hence any permutation of constitutionally identical atoms 

in the target structure could represent a useful symmetry~ The main 

point here is that the symmetry group of a target structure that is of 
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potential use to the synthetic chemist can be considerably larger than 

the usual point group. In fact an upper limit on the size of this 

group can be given as 

where ni 

n. 
II (n. l ) (2 1

) 
i J. 

is the number of atoms of constitution i • 

gives the order of the corresponding wreath product. 

The formula 

Existence of symmetries of the type discussed above does not 

determine how or even whether they are used in the design of the 

synthesis, Generally this will depend on the individual case. Two 

hypothetical examples indicate some strategies that may be used. First, 

consider the abstracted structure shown in Figure 40. The heavy dots 

are junction points which include the part of the molecule not being 

considered for symmetry. This structure is left invariant by the four 

indicated symmetry operations. A synthesis which would take advantage 

of this symmetry would proceed as follows. The pure enantiomer (1) is 

stereoselectively synthesized with appropriate functionality for crea­

tion of the third chiral center and formation of the junction. The 

third chiral center is formed .£2!!-stereoselectively. This will 

naturally give two diastereomers, each of which has the proper configur­

ation : for one-half of the desired target structure. These diastereomers 

are separated and the junction is formed. The inherent advantage of 

this route is apparent. A molecule with six chiral centers is synthe- ··· 

sized requiring only one stereoselective reaction, a resolution of 

enantiomers and a separation of diastereomers. Normally such a synthesis 
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Illustration of the Use of Symmetry in a Hypothetical Synthesis 
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would require five stereoselective reactions, a resolution of enantio­

mers and separations of diastereomers depending on the extent of 

stereoselectivity of the previous reactions. 

The synthesis proposed here can be thought of as intermediate 

between a completely symmetric synthesis such as that reported for 

a-onocerin(6
J) (Figure 38) and the usual convergent synthesis. The 

comparison is pictured in Figure 41. 

As a second example consider the target structure trans-decalin 

shown in Figure 42. This structure is left invariant by the four 

operations indicated. Advantage could be taken of this symmetry if the 

synthesis could be projected through a cis-decalin intermediate as 

shown. The chiral centers could be created symmetrically in this inter­

mediate. The cis-decalin would then be converted into the desired 

trans-decalin. Two racemic cis-decalin intermediates are possible, but 

both give the same desired racemic trans-decalin product. One of the 

cis-decalin intermediates might be preferable, however if a mixture were 

obtained, both would give the desired product. 

Other examples have to be treated individually, but it is likely 

that some advantage can be taken of synnnetry in most cases. 
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FIGURE 41 
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FIGURE 42 

Example of the Use of Symmetry in a Hypothetical 

Synthesis 
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C. Pseudochirality 

The concept of pseudoasymmetry is reasonably well known as a 

special case of stereoisomerisrn(6B)_ It is well known that carbon 

atoms with four different substituents are chiral and that the enan­

tiorneric forms can be interconverted by reflection in any mirror plane. 

However, if two of the substituents are themselves enantiorneric chiral 

ligands, two isomeric forms result which are meso and cannot be 

interconverted by reflection in a mirror plane. Such a pair of stereo­

isomers have been termed a pseudoasynunetric pair(G9)_ A symbolic and 

a real example are given in Figure 43. These are diastereomers and 

differ in physical properties such as melting point, etc. 

An important distinction must be made between pseudoasymmetric 

structures typically termed "meso" and structures such as (2) shown 

at the bottom of Figure 43. For this structure there exists only one 

~ form. Such a structure will be designated meso from now on while 

the pseudoasymmetric structures will be termed pseudoasymmetric or 

pseudochiral. This is a departure from standard terminology which 

designates all these structures as meso. The: intrinsic difference 

between the pseudochiral and meso situations will be established later 

in this section. 

Prelog(]O) has synthesized compounds which are pseudoasymmetric 

based on axes and planes of chirality, rather than on centers of 

chirality like the example in Figure 43. An axial pseudoasymmetric 

pair is shown in Figure 44. The reported(]O) melting points of these 

diastereomers are given underneath the structures. 
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FIGURE 43 

Illustration of Pseudoasymmetric and Meso Structures 
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FIGUR"P: 44 
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The purpose here is to give an algebraic description of this 

phenomenon analogous to that for regular chirality. A chemical struc­

ture is chiral if it lacks an alternating axis of synnnetry. It may, 

however, have pure rotation symmetry. In Figure 45 are shown three 

chiral structures (one enantiomer only) with their rotation symmetry 

designated underneath. 

To get at the desired algebraic description an apparent digres­

sion must be made. In Figure 46 are shown a number of configurations 

of triangles and the effect of symmetry operations on them. Configura­

tion (1) is invariant to a c2 rotation as shown. Configuration (2) is 

invariant to reflection in a vertical plane. These are the two types 

of synnnetry operations traditionally encountered. Two more will now 

be defined. Configuration (3) is not invariant to a c2 rotation, 

since the triangles are colored differently. However, this configura­

tion is invariant to the sequence of operations shown. First, a c2 

rotation is done followed by a color change operation which colors the 

white triangle black and the black triangle white. This combined 

operation will be designated £
2

• Similarly, the sequence of reflec­

tion and color change leaves configuration (4) unchanged. This 

operation will be designated s 
,-v 

Thus a total of four symmetry op-

erations are defined. This situation has been well studied and is 

termed dichromatic antisymmetry(7l). 

Now a similar sequence will be done on the structures shown in 

Figure 47. Structure (1) is invariant to a c2 rotation and structure 

(2) is invariant to a S reflection. However, structure (1) is also 
V 
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FIGURE 46 

Illustration of Dichrornatic Symmetry Operations 
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invariant to the sequence of operations shown. First (1) is reflected 

in the plane Sv which reverses the configuration of the chiral ligands. 

The operator, chirality reversal, is perfomed which changes the 

ligands back to their original configuration. This sequence of opera­

tions will be symbolized S • Similarly the sequence of rotation and vp 

chirality reversal leaves (2) unchanged. This combination will be 

symbolized c2p. These two combination operations will be termed 

pseudochirality operations. 

Some further clarification of the effect of these pseudochir-

ality operations may be helpful. AC operation in its simplest form np 

reverses the chirality of all chiral ligands in a structure, while it 

is simply a C rotation for the rest of the structure. Therefore a 
n 

structure with a C element of symmetry is invariant to the C rota-
np n 

tion except that all (+)-chiral ligands are taken to (-)-chiral 

ligands of the same constitution. AC axis (for a set of chiral np 

ligands) cannot pass through any of the ligands in the set and any 

structure with a C element of symmetry has an equal number of (+)­
np 

and (-)-chiral ligands. An S rotation-reflection operation leaves np 

all (+)-chiral ligands as (+)-chiral ligands, while it is simply an 

S rotation-reflection for the rest of the structure. A structure 
n 

with an S element of symmetry is invariant to the S operation ex-
np n 

cept that all (+)-chiral ligands are taken into (+)-chiral ligands of 

the same constitution. An S axis can pass through chiral ligands np 

and there are no restrictions on the relative number of (+)- and (-)-

ligands. 
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Comparison of the color change and chirality change operations 

shows one significant difference. Reflection does not change color, 

while it does change chirality. This means that the reflection opera­

tion in the color change case corresponds to the reflection plus 

chirality change operations in the chirality change case. 

It is well known that all the symmetry operations of a structure 

form a group, hence the group properties of these pseudochirality 

operators will be investigated. 

In Figure 48 are shown three structures and the symmetry opera­

tions to which they are invariant. It is a simple matter to verify that 

these operations form the groups indicated (hereafter termed pseudo­

chirality groups). For structures (1) and (2) the group is isomorphic 

to the symmetry point group Czv· In fact, these structures would have 

c
2
v symmetry if the ligands were not chiral. Structure (3) would have 

C synnnetry without chiral ligands. The problem now is to determine 
s 

how these groups can be derived and what relation they have to the 

problem at hand. 

The mathematical problem here can be concisely stated. The group 

that includes all of the symmetry and pseudochirality operators is the 

direct product S x C • S is the symmetry point group and C is the 

chirality chan·ge group. In the present example C is· isomorphic to the 

cyclic group of order two, c2 • In the general case C will be the 

direct product of cyclic groups of order 2. The direct product C x S 

has the property shown diagrammatically in Figure 49. The zeroes refer 

to the trivial group of one element. The homomorphisms i and i 
C S 



-122-
FIGURE 48 

Illustration of Symmetry Operations and Groups 
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are not unique. Composing the homomorphisms shown in Figure 49 gives 

the indicated results. Injecting C into C x S (i ) followed by the 
C 

projection p gives the same result as the identity mapping of C onto 
C 

itself. Similary, i followed by p gives 1 
s s s The significance of 

all this to the problem at hand can now be stated. The possible 

pseudochirality groups correspond to the possible injections i • The 
s 

desired group is the image in C x S of i Now the composition of 
s 

i with pc gives a projection of s onto C • It has already been s 

noted that C is isomorphic to c2, hence each pseudochirality group 

determines a homomorphism of s onto c2. This property suggests an 

easy way of deriving these groups using chemically familiar group­

theoretic methods. Each homomorphism of a group onto c
2 

determines a 

one-dimensional irreducible representation of the group. Thus the 

desired pseudochirality groups correspond to the one-dimensional,real 

irreducible representations of the synnnetry point group. 

The derivation of the pseudochirality groups obtainable from 

c2h is sketched in Figure 50 along with examples. The desired groups 

are obtained by "imposing" the one-dimensional irreducible representa­

tion on the point group. For example, consider the Bg representatio~. 

Imposition maps E and i to +land c2 and Sh to -1. This corresponds 

to the pseudochirality group (E,C2 ,i,S ). This group is given the 
p hp 

unique designation c
2
h:Bg. The structure with this symmetry is meso 

(one isomeric form). Similarly the~ representation yields a pseudo­u 

chirality group and a meso structure. Now imposition of the A represen­
g 

tation maps all the group elements to +l. However, it must be 
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FIGUR8 50 

Derivation of Pseudochirality groups obtained 
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remembered that chiral ligands are present. This group includes no 

pseudochirality operators and describes the symmetry of a pseudochiral 

structure with c2h point gr_oup symmetry. The two pseudoenantiomeric 

forms of such a structure are shown. The reason for using the term 

pseudochiral rather than pseudoasymmetric is now apparent. This 

example satisfies the requirement for being "pseudoasymmetric" yet has 

non-trivial rotation symmetry, hence the term pseudochirality is pre­

ferred. This parallels the reason for using the term chirality rather 

than asymmetry to describe traditional enantiomerisms. 

The final representation is A and imposition yields the 
u 

group (E,c2 ,i ,S ). This group includes no alternating axis of sym­p np 

metry, hence any structure with this symmetry must be chiral and exist 

in two enantiomeric forms, as does the example. 

At this point it is possible to describe the types of isomerism 

possible. The type of isomerism of a structure is determined by the 

kinds of symmetry element a structure has. This information is con­

tained in Table 27. Examples of the first three types are included 

among those in Figure 50. Examples of the latter two are given in 

Figure 51. These structures can be thought of as octahedrally coor­

dinated metals with two tridentate ligands, themselves containing 

chiral ligands. In all cases the isomeric forms are interconverted by 

operations which are not included among the symmetry operations. This 

gets complicated in the latter case and the interconversions of the four 

isomers are indicated. 



NAME C n 

mesa yes 

pseudochiral yes 

chiral A yes 

chiral B yes 

chiral C yes 
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Table 27 

Types of Isomerism 

C s np ff 

yes yes 

no yes 

s np 

yes 

no 

no no yes 

yes no no 

no no no 

·No. of Isomers 

1 

2 

2 

2 

4 
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FIGURE 51 

Illustration of remaining chiral forms 
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A generalization is possible by allowing more than one set of 

chiral ligands. Such sets can be constitutionally different or be 

situated in sites that are never interchanged. As might be expected, 

the number of possibilities increases significantly. However, the 

method of determining the pseudochirality groups and types of isomerism 

is easily derived from the sample case. In the case of n sets of 

chiral ligands the group C in Figure 49 is the direct product of n 

cyclic groups of order two. The desired pseudochirality groups are 

therefore in correspondence with all the possible sums of n one-dimen­

sional irreducible representations of the synnnetry point group. The 

possible double pseudochirality groups for c 2h are derived in Figure 

52 in an abbreviated form, except for the first one. The two represen-

tations A (for the set of F ligands) and B (for the G set) are g g 

imposed on c 2h. The resulting group c 2h: Ag+Bg is shown and an 

example given. The operator c2pf is a c 2 rotation followed by a 

chirality reversal operation on the F ligands only. 

Using these methods the possible single and double pseudochiral­

ity groups have been derived and are listed in Table 28. Only one 

representative group from each class of synnnetry point groups is used. 

For example, c
2 

is representative of all C , n even. The information 
v . nv 

given for each group is its name, type (m=meso, p=pseudochiral, 

c =chiral), number of isomers, and the location or name of any examples. 

There is a simple rela tion,ship: 

ne = 
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FIGURE 52 

Derivation of Double Pseudochirality Grou~s from c
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where n is the number of i$omers, e is the number of types of sym­

metry elements, ands is the number of sets of chiral ligands. Some 

of the infinite groups yield no derived groups or groups that cannot 

be realized in any chemical structure and are included only for com­

pleteness. Since chiral ligands are being considered as two-valued 

points, the group ¾ :An represents a single asymmetric carbon atom. 

A number of tables of single and double antisymmetry groups 

exist (also called magnetic symmetry groups)<72 ). The present deriva­

tion is necessary because of some important differences between the 

two problems, which change the number and kind of groups obtained. It 

has already been noted that the operations are labelled differently. 

Furthermore, double, antisymmetry groups of the type c2h: An+Bn and 

c2h: Bu+Au are considered to be different. In the present case such 

a distinction leads to constitutional isomerism. Antisymmetry groups 

resulting from the totally symmetric representation are trivial. In 

the present case they yield pseudochiral structure, the major form of 

isomerism here. Finally, degeneracies which occur in the antisymmetry 

groups are removed in the present case. For example, the groups 

c2v: B
1 

and c
2
v: B2 (Figure 53) are considered as a degenerate pair, 

since the planes of symmetry differ only by labels. However, these 

two groups can be represented by different chemically realizable 

examples as shown and therefore must be considered different. The 

assignment of each example to its pseudochirality group is arbitrary, 

however. 
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FIGURE 53 

Illustration of Non-degenerate Pseudochirality Groups 
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Groups with three or more sets of chiral ligands would be 

derived similarly. There would be about 400 such groups with three 

sets of chiral ligands. Such chemical structures are easily realizable, 

particularly as cyclic peptides. It is interesting that there can be 

no meso structure with three or more sets of chiral ligands. This can 

be easily proved by noting that meso structures occur only for Dnh 

groups with two sets of chiral ligands. A meso structure can result 

only if the homomorphism of the symmetry group onto the chirality 

change group is onto with respect to both rotation and reflection sym-

metry. Since D has only two generators, it cannot be mapped (epimor­
n 

phically) onto c
2
xc 2xc 2 . Hence no meso structure is possible. 

An overview of this work is hopefully ascertainable from the 

following discussion. Consider the three structures with chiral 

ligands drawn in Figure 54. The symmetry of these structures can be 

specified in several ways. The first and simplest is to specify just 

the rotation symmetry. A has n
4 

rotation symmetry, B has c
2 

rotation 

synunetry, and Chas n
2 

rotation symmetry. Knowing only rotation sym­

metry is sufficient tQ describe some properties of chemical structures. 

For example, the number of isomers is determined using just the rotation 

symmetry as discussed in an earlier section. The rr-molecular orbitals 

of benzene can be determined from just the rotation group c6 (73 ). 

Specification of only rotation symmetry is, however, insufficient to 
, 

determine other properties such as chirality. This leads to the next 

higher level of symmetry specification, namely point group symmetry. 

A has n
4 

symmetry, B has c2h symmetry, and Chas n2d syrmnetry. From 
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these specifications it is apparent that A exists in two enantiomeric 

forms and Band Care superimposible on their mirror images. The 

point group description is a great deal more useful than the rotation 

group description and most applications of group theory to chemistry 

require it. The point group designation is, however, inadequate to 

ascertain pseudochirality. 

The present work extends this sequence by one. Of the examples 

given, A is n4h: Alu' Bis D2h: Blg' and C is D2d: Al. This indicates 

that B is meso and C is pseudochiral and exists in two pseudoenan­

tiomeric forms. The information gained (pseudochirality) by specify­

ing the pseudochiral symmetry and point group synnnetry instead of just 

the point group symmetry is analogous to the information gained 

(chirality) by specifying point group symmetry instead of just rotation 

symmetry. 

This sequence can be extended and the work generalized in any 

number of ways. What is needed is a designation of the group C in 

Figure 49. For example, the members of this group could include per­

mutations of constitutionally different ligands. The structure shown 

in Figure 55 yields a representation for c6h: Bg+ Elg. The develop­

ment here is somewhat similar to the treatment of polychromatic sym­

metry<74). Other generalizations are possible by modifying the 

combination of the groups. The diagram shown in Figure 49 is for the 

(75) 
direct product which is a rather trivial extension of C by S • 

More generalized extensions are represented by the diagrams in Figure 

56. The semidirect product was already used in the section on 
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synthetic design. Also, some nonrigid synnnetry groups can be ex­

pressed as semidirect products(76). 
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Table 28 

Possible Pseudochirality Groups 

Super group Symmetry elements 

Cl E 

1) One set of chiral ligands (single) 

derived grou:e name ~ isomers example 

c
1

:A C 4 Figure 51 

2) two sets of chiral ligands (double) 

Cl:2A C 8 

C E oh s 

1) Single 

C :A' p 2 All known (experimentally) 
6 pseudochiral structures 

C :A" C 2 
s 

2) Double 

C :2A' p 4 
8 

C : 2A" C 4 
6 

C :A'+A" C 4 
s 

Ci E i 

1) Single 

c1 :Ag p 2 

Ci:Au C 2 

2) Double 

Ci: 2Ag p 4 

Ci:2Au C 4 

Ci :A +A C 4 
g u 
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Table 28 (continued) 

Super group Symmetry elements 

c2 E c2 

derived group name ~ isomers example 

1) Single 

c 2 :A C 4 

c 2 :B C 2 Figure 51 

2) Double 

C2:2A C 8 

c 2 :2B C 4 

c2 :A+B C 4 

D4 E 2C4 c2 2C' 2 2C" 
2 

1) Single 

D4:Al C 4 

D4 :A2 C 2 

D4:Bl C 2 

D4 :B2 C 2 

2) Double 

D 4 :;lA.1 C 8 

D4:2A2 C 4 

n
4

:2B1 
C 4 

n4 :2B2 C 4 

D4 :Al+A2 C 4 

D4 :Al+Bl C 4 

D4 :Al+B2 C 4 
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Table 28 (continued) 

Supergroup Symmetry elements 

derived group name ~ isomers example 

D4:A2+Bl C 4 

D 4 :Az+B2 C 2 

D 4 :Bl+B2' C 2 

c2v E c2 (1 
v(xz) 

(1' 
v(yz) 

1) Single 

C2v:Al p 2 

C2v:A2 C 2 

c2v=B1 m 1 Figure 53 

C2v:B2 m 1 Figure 53 

2) Double 

C2v:2A1 p 4 

c2v: 2A2 C 4 

C2v:2Bl p 2 

c2v:2B2 p 2 

C2v:Al+A2 C 4 

C2v:Al+Bl p 2 

C2v:Al+B2 p 2 

C2v:A2+Bl C 2 

C2v:A2+B2 C 2 

c2v=B1+B2 C 2 
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Table 28 (Continued) 

Supergroup Symmetry elements 

derived group name ~ isomers examples 

c3v E 2C 3 30 
V 

1) Single 

c3v:Al p 2 

c3v:A2 C 2 

2) Double 

c3v: 2Al p 4 

c3v:2A2 C 4 

c3v:Al+A2 C 4 

C2h E c2 i oh 

1) Single 

C2h:Ag p 2 Figure 50 

C2h:Bg m 1 Figure 50 

C2h:Au C 2 Figure 50 

C2h:Bu m 1 Figure 50 

2) Double 

Czh: 2Ag p 4 Figure 52 

c 2h:2Bg 2 " p 

C2h:2Au 4 II 
C 

C2h:2Bu 2 II p 

C2h:Au+Bu C 2 II 

c2h:Ag+B8 
-2 " p 

4 II 

Czh:Ag+Au 
C 

2 " p 
C2h:Ag+Bu 
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Table 28 (Continued) 

Super group Symmetry elements 

derived group name ~ isomers examples 

C2h:Bg+Au C 2 Figure 52 
\ 

C2h:Bg+Bu C 2 " 

C3h E CJ c2 
3 h s3 s5 

3 

1) Single 

C3h:A' p 2 

C ·A" 
3h

0 C 2 

2) Double 

c3h:2A' p 4 

C • 2A" 3h. C 4 

A'+A" C 4 

D3h E 2C3 
3C2 2S3 3a 

V 

1) Single 

D3h:Al p 2 

D3h:A2 p 2 

D ·A" 3h. 1 C 2 

D ·A" 3h. 2 m 1 

2) Double 

D3h:2A:i_ p 4 

D3h:2A2 p 2 

D . 2A" 
3h 0 

1 
C 4 

D • 2A" 3h. 2 p 2 

D3h:Ai+A2 p 2 
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.Table 28 (Continued) 

Super group Symmetry elements 

derived grou:2 name ~ isomers exam;2les 

D3h:A_i+Al C 4 

n3h:A_i+A2 p 2 

D3h:A;_+Al C 2 

D3h:A2+A2 C 2 

D •A"+A" 
3h 0 

1 2 C 2 

D4h E 2c
4

, c2 ·-· 2c2·~ · 2c" i 2s
4 a 2a 2crd 2 - h, .. V 

1) Single 

D4h:Alg p 2 

D4h:A2g m 1 

D4h:Blg m 1 

D4h:B2g m 1 

D4h:Alu C 2 

D4h:A2u rn 1 

D4h:Blu m l · 

D4h:B2u m 1 

2) Double 

D4h:2Alg p 4 

D4h:2A2g p 2 

D4h:2Blg p 2 

D4h:2B2g ,P 2 

D4h:2Alu C 4 

n4h:2A2u p 2 

D4h: 2Blu p 2 
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Table 28 (Continued) 

Super group Symmetry elements 

derived grouJ? name . ~ isomers examples 

D4h: 2B2u p 2 

D4h:Alg+A2g p 2 

D4h:Alg+Blg p 2 

D4h:Alg+B2g p 2 

D4h:Alg+Alu C 4 

D4h:Alg+A2u p 2 

D4h:Alg+Blu p 2 

D4h:Alg+B2u p 2 

D4h:A2g+Blg m 1 

D4h:A2g+B2g m 1 

D4h:A2g+Alu C 2 

D4h:A2g+A2u C 2 

D4h:A2g~Blu m 1 

D4h:A2g+B2u m 1 

D4h:Blg+B2g m 1 

D4h:Blg+A1u C 2 

D4h:Blg+A2u m 1 

D4h:Blg+Blu C 2 

D4h:B2g+Alu C 2 

D4h:Blg+B2u m 1 

D4h:B2g+A2u m 1 

D4h:B2g+Blu m l 
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Table 28 ( Continued) 

Super group Symmetry elements 

derived group name ~ isomers examples 

D4h:B2g+B2u C 2 

D4h:Alu+A2u C 2 

D4h:Alu+Blu C 2 

D4h:Alu+B2u C 2 

D4h:A2u+Blu rn 1 

D4h:A2u+B2u m 1 

D4h:Blu+B2uq m 1 

D2d E 2S4 c2 2C' 2 2crd 

1) Single 

D2d:Al p 2 

D2d:A2 m 1 

D2d:Bl C 2 

D2d:B2 m 1 

2) Double 

D2d:2Al p 4 

D2d:2A2 p 2 

D2d:2Bl C 4 

D2d:2B2 p ·2 

D2d:Al+A2 p 2 

D2d:Al+Bl C 4 

D2d:Al+Bz p 2 

D2d:A2+Bl C 2 
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Table 28 (Continued) 

Supergroup Symmetry elements 

derived group name ~ isomers examples 

D2d:A2+B2 C 2 

D2d:Bl+B2 C 2 

D3d E 2c
3 

3C2 i 2s6 3ad 

1) Single 

D3d:Alg p 2 

D3d:A2g m 1 

D3d:Alu C 2 

D3d:A2u m 1 

2) Double 

D3d:2Alg p 4 

D3d:2A2g p 2 

D3d:2Alu C 4 

D3d:2A2u p 2 

D3d:Alg+A2g p 2 

D3d:Alg+Alu C 4 

D3d:Alg+A2u p 2 

D3d:A2g+Alu C 2 

D3d:A2g+A2u C 2 

D3d:Alu+A2u C 2 

s4 E s4 c2 
s3 
4 

1) Single 

s4 :A p 2 

s4:B C 2 
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Table 28 (Continued) 

Super group Synnnetry elements 

derived grou;e name ~ isomers exam;eles 

2) Double 

s
4

:2A p 4 

s4 :2B C 4 

S 
4 

:A+B C 4 

Td E 8C3 3C2 6s4 6crd 

1) Single 

Td:Al p 2 

Td:A2 C 2 

2) Double 

Td:2A1 
p 4 

Td:2A2 C 4 

Td:Al+A2 C 4 

Th E rc
3 

4c
2 
3 

3C2 i 4S
6 

4S
2 
6 3crd 

1) Single 

Th:Ag p 2 

Th:Au C 2 

2) Double 

Th: 2Ag p 4 

Th: 2Au C 4 

Th:A +A C 4 
g u 
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Table 28 (Continued) 

Super group Symmetry elements 

derived group name ~ isomers examples 

Oh E 8C3 
6C 2 6c4 3C2 i 6S4 8S6 3crh 6crd 

1) Single 

Oh:Alg p 2 

Oh:A2g m 1 

Oh:Alu 0 2 

Oh:A2u m 1 

2) Double 

Oh :2Alg p 4 

Oh:2A2g p 2 

Oh :2Alu 0 4 

Oh:2A2u p 2 

Oh:Alg+A2g p 2 

Oh:Alg+Alu C 4 

Oh:Alg+A2u p 2 

Oh:A2g+Alu C 2 

Oh:A2g+A2u C 2 

Oh:Alu+A2u C 2 

Ih E 12C5 12C2 
5 20C3 15C2 

i 12s10 12sio.1 ~os6 
150' 

1) Single 

Ih:A
8 

p 2 

Ih:Au C 2 
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Table 28 (Continued) 

Super group Symmetry elements 

derived group name . ~ isomers examples 

2) Double 

Ih: 2Ag p 4 

Ih :2Au C 4 

Ih :A +A C 4 g u 

T E 8C3 
3C2 

1) Single 

T:A C 4 

2) Double 

T:2A C 8 

0 E 8C3 6C 2 6c4 3C2 

1) Single 

O:A1 C 4 

O:A2 
C 2 

2) Double 

0:2A
1 

C 8 

0:2A2 C 4 

O:A1+A2 
C 4 

I E 12C5 
12C2 

5 20C3 15C2 

1) Single 

I:A C 4 

2) Double 

I:2A C 8 
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Table 28 (Continued) 

Supergroup Symmetry elements 

derived group name isomers examples 

C 
(X) 

V 
1) Single 

C : I:+ 
(X) 

V 

-C :}: 
(X) 

V 

2) Double 

-C :2E 
00 

V 

The other 

D 
00 

h 
1) Single 

D :}:+ 
00 g 

h 
-D :E 

ooh g . 

D :z:+ 
00 u h -D :E 
00 u h 

2) Double 
-D : 2E 

00 g h 

D : 2E-
ooh u 

-D :E +E 
00 g u h 

The other 

E 2C 
(X) 

This group is not physically possible because there cannot 
be 00 a planes in a structure containing discrete chiral 
units. This is another difference from dichromatic anti­
symmetry in which infinite syrmnetry · planes are possible. 

C 2 

C 4 

combinations are not possible. 

E 2C ooa i 2S ooC2 00 V 00 

Not possible 

m 1 meso-tartaric acid 

Not possible 

C 2 d-tartaric acid 

p 2 

C 4 

C 2 

combinations are: not possible. 
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Table 28 (Continued) 

Super group Symmetry elements 

derived group name ~ isomers examples 

D E 2C ooC 
00 00 2 

1) Single 

Doo:Al C 4 

D oo :A2 C 2 

2) Double 

D
00

: 2A1 C 8 

D
00

: 2A2 C 4 

Doo:Al +A2 C 4 

C E 2C 
00 00 

1) Single 

Coo:Al C 4 

2) Double 

-C
00

: 2A1 
C 8 

C E 2C i 2S 
00 00 00 

h 
1) Single 

C :A p 2 
00 g 

h 
C :A C 2 

00 u 
h 

2) Double 

C :2A p 4 
00 g 

h 
C :2A C 4 

00 u 
h 

C :A +A C 4 
00 g u 

h 



Supergroup 

derived group 

¾ 

1) Single 

¾:Ag Not 

¾:Au 

2) Double 

~:2Au 

K 
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Table 28 (Continued) 

Synnnetry elements 

name type isomers examples 

E ooC i 005 
00 CX) 

possible. 

C 2 Singl~ asymmetric carbon 

C 4 

E ooC Yields no derived groups. 
00 
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Table 28 (Continued) 

Summary of Derived Groups 
Single Double 

M P2 C2 C4 Tot M P2 P4 C2 C4 CB Tot 

Cl 0 0 0 1 ' l 0 0 0 0 0 1 1 

C 0 1 1 0 2 0 0 1 0 2 0 3 
s 

Ci 0 1 1 0 2 0 0 1 0 2 0 3 

c2 0 0 1 1 2 0 0 0 0 2 1 3 

c3 0 0 0 1 l · 0 0 0 0 0 1 3 

D3 0 0 1 1 2 0 0 0 0 2 1 3 . 

D4 0 0 3 1 4 0 0 0 3 6 1 10 

c2v 2 1 1 · 0 4 0 4 1 3 2 0 10 

c3v 0 1 1 0 2 0 0 1 0 2 0 3 
\ 

C2h 2 1 1 0 4 0 4 1 3 2 0 10 

C3h 0 1 1 - 0 2 0 0 1 0 2 0 3 

D3h 2 l 1 0 3 0 3 1 2 J 0 10 

D4h 6 1 1 0 8 12 12 1 9 2 0 36 

D2d 2 1 1 0 4 0 4 1 3 2 0 10 

D3d 2 1 1 0 4 0 4 1 3 2 0 10 

S4 0 1 1 0 2 0 0 1 0 2 0 3 

Td 0 1 1 0 2 0 0 1 0 2 0 3 

Th 0 1 1 0 2 0 0 1 0 2 0 3 

Oh 2 1 1 0 4 0 4 1 3 2 0 10 

Ih 0 1 1 0 2 0 0 1 0 2 0 3 

T 0 0 0 1 1 0 0 0 0 0 1 1 
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Table 28 

Summary of Derived Groups (Continued) 

Single Double 
M P2 CZ C4 Tot M P2 P4 CZ C4 CB Tot 

0 0 0 l 1 z 0 0 0 0 2 1 3 

I 0 0 0 1 1 0 0 0 0 0 1 1 

C 
00 

0 0 1 0 1 0 0 0 0 1 0 1 

D 1 0 1 0 2 0 1 0 1 1 0 3 
00 

h 
C 0 0 0 1 1 0 0 0 0 0 1 1 

00 

D 0 0 1 1 2 0 0 0 0 2 1 3 
00 

C 0 1 1 0 2 0 0 1 0 2 0 3 
ooh 

¾ 0 0 1 0 1 0 0 0 0 1 0 1 

K 0 0 0 0 0 0 0 0 0 0 0 0 

Total 19 16 26 10 71 12 37 16 31 49 10 155 
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D. Through-Space Orbital Interactions 

In a recent paper Goldstein and Hoffmann( 77 ) have considered the 

problem of through-space orbital interactions and their stabilization 

or destabilization of chemical structures. The purpose here will be to 

give an algebraic structure to this problem and describe some conse­

quences and extensions of the idea. 

Goldstein and Hoffmann's purpose in their work was to establish 

the topological requirements for aromaticity. Their approach was to 

consider interactions based on simple second-order perturbation theory 

between conjugated polyene fragments (called ribbons) in various 

orientations or topologies. Some of these topologies for one, two or 

three ribbons are shown in Figure 57. The familiar simple Ruckel 

molecular orbitals were used to determine the interactions. Ribbon 

interactions were assumed to_·result primarily from the interactions of 

the termini. Each orbital was classified as pseudo-p or pseudo-cl based 

on the relationship of the termini to each other as shown in Figure 58. 

It was noted that this designation alternates with increasing orbital 

energy in an acyclic polyene, also shown in Figure 58. When two rib­

bons interact, it was assumed the stabilization: was principally a 

result of the HOMO-LUMO (_!!ighest Qccupied Molecular Orbital- Lowest 

!!_noccupied !:!_olecular Qrbital) interaction. They further noted that 

there were only four possible patterns of orbital occupancy for ground 

states of linear polymers with respect to the pseudo-symmetry designa­

tions of the HOMO and LUMO. These were designated by mode numbers 

calculated as (n-z) modulo 4 where n is the number of carbons in the 
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FIGURE 57 

Ribbon Interaction 'ropologies 

pericyclic( 1) -pericyclic (3) longicyclic (3) 

0 
pericyclic (2.) s-pirocycli c (2.) la ticyclic (?,) 

~ 
!) 

' ' I 
I D ~ 

• i ! I 
i I 

' J ~ 

FIGURE 58 

~ ~ pseudo-p symmetry d ~ i ~ i 
p ~ ~ ~ ~ 
d 3 ~ ~ ~ 

~ ~ pseudo-d symmetry 
p ~ ® ~ B 



-154-

ribbon and z is the charge. These mode numbers had the following 

algebraic property. When ribbons were added by extending one ribbon 

by another, the mode of the resultant ribbon was equal to the sum of 

the modes of the two components (modulo 4). This information is given 

pictorally irt Figure 59. 

· They further assumed that HOMO's and LUMO's be at the same abso­

lute level in different ribbons (universal energies)(]S). They als~ 

restricted this work to ribbons of mode O and 2. As an example they 

considered the conditions for stabilization of two ribbins in a spiro­

cyclic topology. · The only orbital interaction which is non-zero is the 

d-d interaction. Hence, there will be net stabilization only when one 

ribbon has a LUMO with d pseudosymmetry and the other has a HOMO with 

d pseudosymmetry. This situation arises when one ribbon has mode 0 

and the other has mode 2. Thus a spirocyclic is stabilized when there 

are 4n+2 electrons. Where both ribbons are mode O or mode 2 (4n elec­

trons) there is no stabilization and in fact a net destabilization as 

noted in their paper. They then proceeded to other topologies -and 

determined favorable and unfavorable mode combinations. 

Before giving an algebraic description of this problem it is 

necessary to ·formulate a mode change operator. Considering only cases 

involving mode O and mode 2, such an operator will •change a ribbon from 

mode Oto mode 2 or vice-versa. This operation can be accomplished in 

any of several ways. For example, lengthening or shortening the ribbon 

by two carbon atoms will cause this change. Twisting the ribbon by 

180° or adding or moving two electrons will also change the mode. These 

changes are shown in Figure 60. 
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Illustration of Ribbon Modes 

LUMO d d P. 

HOMO p 11 d I 11 

Mode r 3 0 

Sum of Mode 1 and Mode 2 by acyclic extension 

d ... 
...... 

H H 
.,,, ... d .,/ ✓ 

' ... ..... .. 
............ , ,,,,, 

, ,, 
p 

,, ~ ,,. ... 
' ' ,,, 

H H ' ' ll ,,,, .. 
f> ' ., ,, p ', ·" 

II ,, ,, 
...... p 

1 3 
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FIGURE 60 

Illustration of Mode Change operations 
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~ (" 
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-~ 
d 180 ~ 

r~ ~ 
D 

~ t ~ 180 > J ~ . ~ 
p 

mode 2 mode 0 

p 

J \ \ 
') 

r \ \ \ \ 

d II \I 

mode 0 mode 2 

LUMO 

HOMO 



-157-

In the ensuing discussion it is most useful to think of this 

operator (symbolized M) as changing the length of a neutral ribbon 
C 

(first example in Figure 60). 

It is worthwhile to consider the (lack of) commutativity of 

this operator with the energy operators involved here. Clearly M 
C 

does not commute with total energy operat_or for a single ribbon 

M H -f HM 
C C 

Stated in more familiar terms, the total energy of a polyene is dif­

ferent from the total energy of the polyene with two more or two less 

carbon atoms. Similarly, any power of M (Mn) will not commute with 
C C 

H. Now consider the case of two interacting ribbons. The total 

energy operators here can be expressed as H1+ H2+ P where H
1 

and 

H
2 

are the energ~ operators for the isolated ribbon and P is the 

perturbation operator which will be considered as the operator deter­

mining the (de)stabilization caused by the interaction. It has 

already been shown that M . for each ribbon will not commute with 
C 

for that ribbon. Furthermore, M 
C 

for one ribbon will not commute 

with P. This can be seen in the spirocyclic example presented 

earlier. The combination 0+2 was stabilized while the combination 

O+O and 2+2 (which are obtained from o+2 by action of M ) were de­
e 

stabilized. 
2 

However, under the assumptions given earlier, M does 
C --

H 

commute with P. Specifically, since only the interactions of ribbon 

termini are considered and a universal energy for the LUMO and HOMO is 

assumed, the effect of M 2 
C 

on one ribbon is to leave it unchanged. 



-158-

n 
Similarly M (n=even) will commute with 

C 
p while n+l M will not. 

C 

It is therefore convenient to think of M as an operator of order 
C 

two. (Actually, the homomprphic image of M 
C 

on the cyclic group of 

order two is considered). 

With the operator M 
C 

as defined, it is possible to give a 

group-theoretic description of this problem. For each ribbon in an 

n-interacting ribbon topology the group M (isomorphic to the cyclic 
C 

group of order 2) is assigned. Hence for the set of n ribbons, the 

direct product group (Mc)n (isomorphic to (C
2

)n) is assigned. This 

group is then mapped to an interaction change group I 
C 

These 

operators change a two-orbital interaction from stabilizing to de­

stabilizing or vice-versa. Further consideration of the spirocyclic 

example should make these concepts clearer. In this case there are 

two interacting r~bbons so that the mode change group is isomorphic to 

The interaction change group consists of operators which change 
I 

all possible binary orbital interactions. Such a group would be quite 

large; however, it has already been pointed out that only certain 

binary orbital interactions are significant, and that they can be 

classified on the basis of the pseudosymmetry of the interacting orbit-

als. In the case of the spirocyclic topology, only the d-d interaction 

is non-zero, hence I 
C 

is isomorphic to c2 . (More precisely, the 

image of the mapping is isomorphic to c2). From the previous discus­

sion it is apparent that changing the mode of one ribbon will change 

the interaction. However, changing the mode of both ribbons leaves 

the interaction unchanged. This homomorphism is depicted in Figure 61. 

The operators are named by the ribbon or interaction they change. 
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FIGURE 61 

Illustration of Homomorphism for Spirocyclic To9ology 
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Overall, this process assigns to each topology of n interacting 

ribbons a homomorphism M + I 
C C 

Other interaction topologies of two 

ribbons yield different homomorphisms as shown in Figure 62. Only the 

image of the mappings is shown. The actual homomorphism considered is 

into the large group I discussed earlier. 
C 

In the pericyclic case both the p-p and d-d interactions change 

when changing the mode of one ribbon. In the unnamed case which is the 

same as the transition state for the allowed 2+2 cycl 0 addition, the 

d1-p2 interaction is the only non-zero interaction and changes as indi­

cated in Figure 62. 

So far nothing has been said about which mode combination is the 

favored one in the various topologies. This preference is determined 

by the dominant interaction in the image of the homomorphism. For 

example, in the spirocyclic and pericyclic examples, the dominant 

interactions are between orbitals of the same pseudosymmetry which 

means that the 0+2 and 2+0 combinations are favored (4n+2 electrons). 

In the third example the dominant (and only) interaction is between 

orbitals of different pseudosymmetry which means the O+o and 2+2 com­

binations are favored (4n electrons). 

Cases with three or more interacting ribbons can be considerably 

more complicated. Only when then-ribbon interactions can be broken 

up into binary interactions will a group homomorphism of the type des­

cribed above result. The three ribbon topologies considered in detail 

by Goldstein and Hoffmann satisfied this requirement, although their 

formulation of the orbital interactions in these cases used ternary 

interactions. They remarked thatannelating ribbons caused additional 
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pericyclic-like interactions and that therefore stabilization could 

only come from 0+2 combinations. The resulting group homomorphism for 

the longicyclic topology is shown in Figure 63. Changing the mode of 

one ribbon causes a change in the p-p and d-d interactions with adja­

cent ribbons. Goldstein and Hoffmann also noted that any formulations 

of this example must be invariant to any permutation of the ribbons. 

This property can be made precise in this group-theoretic formulation. 

The homomorphism must be invariant to the automorphism of the groups 

induced by the ribbon permutations. Stated differently, the square 

diagram shown at the bottom of Figure 63 must commute. The horizontal 

arrows refer to the induced automorphisms. The vertical arrows are 

the same homomorphism. Commutativity means that going around the square 

either way from upper left to lower right must yield the same composed 

homomorphism. 

The laticyclic topology yields a homomorphism in the same way as 

shown in Figure 64. Clearly the image of the homomorphism in I 
C 

is 

different in the laticyclic and longicyclic cases. Although it was not 

mentioned in their paper, the formulation in this case must be invari­

ant to permutation of the outer ribbons. 

Although it is aside from the main point here, it is interesting 

to look at the algebraic structure resulting from a topology not 

satisfying the simplifying assumptions mentioned at the beginning of 

the preceding paragraph. Such a case was briefly mentioned by 

Goldstein and Hoffmann( 79 )_ For the topology shown in Figure 65 they 

gave a table of the doubly stabilized, singly stabilized and non-

stabilized combinations, also shown in Figure 65. It is apparent 
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FIGURE 63 
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that the rule concerning 0+2 combinations fails here. In this case 

the only non-zero orbital interactions are between the pseudo-p 

orbitals of the center ribbon and the pseudo-d orbitals of the outer 
s 

two and between the pseudo d orbital of the center ribbon and the 

pseudo-d orbital of the outer two, also shown in Figure 65. No analy-a 

sis of binary orbital combinations suffices to define the interaction. 

Examination of the possible ternary interactions shown in Figure 65 

indicates that a simple pattern of alternation of the interactions 

with ribbon mode change does not exist. The effects of changing the 

mode of a ribbon depend on which combination is considered. This prob­

lem did not occur in any of the previous cases. In particular, 

changing the mode of either of the outer ribbons on the 000 or 020 

combinations causes a change in the d-d interaction, while the same 
a 

· mode change in the 202 or 222 combinations causes a change in the 

p-d interaction. This difference makes the group description impos-
s 

sible since the same mode change operators must be mapped to two 

interaction change operations. The proper algebraic description is 

depicted in Figure 66. This construction is called a groupoid and is 

mapped homomorphically onto the interaction change group in the same 

way the groups were earlier. The image of each arrow of the groupoid 

in the interaction change group is indicated by the designations on 

the arrows in the figure. This point will not be developed further 

here. Groupoids and their applications to chemical problems will be 

discussed more completely in the next section. 
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FIGURE 66 

Illustration of Groupoid described in Text 
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Some uses and extensions of these ideas can now be described. 

Goldstein and Hoffmann mentioned that the direction of isomerizations 

which interconvert topologies could be predicted. Such a prediction is 

based only on stabilization or destabilization caused by these through­

space interactions. Other reasons for predicting reaction directions 

may agree with or oppose this prediction. The set of ribbon mode com­

binations for any topology yields a regular representation of the 

group. Likewise the set of favorable interactions forms a regular 

representation of the interaction change group. The homomorphism 

M ➔ I induces a mapping of these sets dependent upon an arbitrary 
C C 

choice of one member of the mode combination set. All of the other 

combinations are then compared to this arbitrary combination. This 

process can be made clearer pictorially as in Figure 67 for the lati­

cyclic case. Th~ arbitrary combination chosen is the destabilized 

0 + 0 + 0 combination. The relative stabilities of the other combina­

tions are then completely detemined by the induced set mapping. 

Repeating this procedure for the longicyclic case (Figure 68) using 

the same choice of the O + 0 + 0 combination allows a mapping from the 

laticyclic set to the longicyclic set to be made. From this mapping 

it is apparent which combinations prefer which topology (Figure 69). 

No account is taken of the strengths of the interactions. 

Further use of these concepts can be made by recalling the 

similarity of this problem of through-space interaction to that of 

transition state stabilization in concerted reactions(BO). This 
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FIGURE 67 
Illustration of Induced Set Map-ping Showing Stabilization 

of Ribbon Combinations in the Laticyclic 'i.1opology 
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FIGURl~ 69 

Illustration of Induced Set Mapping from Laticyclic to Longicyclic 
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analogy was alluded to earlier when it was noted that the second example 

in Figure 62 corresponds to the transition state for the allowed 

2 + 2 cycloaddition. Woodward and Hoffmann(Bl) make use of the concept 
s a 

of a "continuum of topologically equivalent .•• processes" in describ-

ing the relationship of the two transition state geometries shown in 

Figure 70. This concept can be made precise using the group homomor-

phisms derived above. These cases can be analyzed as the pericyclic 

interaction of two ribbons since ribbons can be added acyclically(77 ). 

The resulting homomorphisms are shown underneath the respective drawing 

in Figure 70. The mathematical condition for a topological equivalence 

based on continuous deformations can be stated precisely. If there is 

a continuum of topologically equivalent transition state geometries 

going from B to C then there will be isomorphisms between the respective 

M and I groups which makes the diagram shown at the bottom of Figure 
C C · 

70 commute. This is apparent because the interactions in all the in-

termediate geometries must be the same. The converse is not true; the 

existence of an isomorphism does not establish the existence of a 

topological equivalence. The contrapositive: no commutative diagram 

implies no equivalence can be used to establish the topological differ­

ence between_ the "topologies" used as examples so far. This sort of 

mathematical operation will be discussed in greater detail in the next 

section. 

The next application requires the development of an independent 

concept. Consider the degenerate rearrangements of 1,5-hexadiene. 

These can proceed by a 3,3-sigmatropic shift (Cope rearrangement) or 
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by one of two possible 1,3-sigmatropic shifts as shown in Figure 71. 

A "reaction group" G r can be constructed which includes all these 

degenerate rearrangements. Such a group resembles the non-rigid sym­

metry groups derived by various authors(82) to assign microwave spectra. 

A convenient representative of this group is by the permutations of the 

substituents (most likely protons) since these changes could in principle 

be detected experimentally by appropriate labelling. For example, the 

3,3 shift with the stereochemical outcome shown in Figure 72 is repre­

sented by the indicated permutations of the numbered hydrogens. The 

resulting group is of order 64 and can be conveniently decomposed as the 

direct product n
4 

xD
4 

• Each n
4 

component represents one of the pos­

sible 1,3 sigmatopic isomerizations. The 64 permutations represent all 

the possible changes of 1,5-hexadiene by single or successive [3,3] or 

[1,3] sigmatopic ~earrangements. 

Now the effect of the mode change group on this reaction group 

will be demonstrated. Some of the permutations in the reaction group 

represent symmetry-allowed reactions, while others represent symmetry 

forbidden reactions. Choose an allowed reaction r. A correspondence 

between allowed and disallowed reactions can be made with the following 

sequence of operations: (mode change)(preferred reaction corresponding 

to r)(mode change). Stated differently, if the 1,5-hexadiene could be 

"ribbon extended" to a 1,3,7-octatriene, the preferred reaction allowed 

to occur, and then converted back into a 1,5-hexadiene, the overall per­

mutation would be different from r. This process determines the 

action of the mode change group M 
C 

on the reaction group G r 
This 
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operation permutes the members of G. However, an automorphism of G· 
r r 

does not result, since there is no obvious correspondence of symmetri-

cally equivalent reactions. That is, two 1,3-shifts like those shown 

in Figure 73 are equivalent by reflections in the plane of the paper. 

This problem can be alleviated by forming a factor group of G which r 

collects these equivalent reactions into cosets. The factor group is 

of order 16 and isomorphic to the direct product group c
2
xc

2
xc

2
xc

2 
• A 

complete listing is given in Table 26 with meaningless names for the 

cosets which will be used later. The action of the mode change group 

M 
C 

on this group F r induces automorphisms of F r Stated more 

precisely, there is a homomorphism from M into the automorphism group 
C 

of F r These automorphisms relate allowed and disallowed reactions 

and are depicted in Figure 74. The effect of the mode change operation 

is to exchange th~ roles of these reactions just like the effect of the 

mode change operation was to interchange stabilizing and destabilizing 

interactions in the earlier part of this section. This analogy is not 

surprising in light of the observed similarity of the through-space 

ribbon interaction problem to the symmetry allowed and disallowed transi­

tion state problem(77 )_ In fact, the mode change group can be regarded 

as defining a further symmetry -of these chemical systems. This notion 

can be made more precise by observing that the homomorphism from M 
C 

into Aut(F) determines a semi-direct product of the two groups(B3)_ 
r 

Since F is actually a dynamic symmetry group for the 1,5-hexadiene, r 

this process has enlarged its synunetry group. Hence the existence of 

allowed and disallowed reactions for a chemical structure can be 

thought of as a symmetry of the structure (at least when considering 
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Table 26 

Listing of Factor Group of Reaction Group 

E R RS s 

e (58) (7 6) (56) (5867) 

(12) (34) (12) (34) (58) (67) (12) (34) (56) (12) (34) (5867) 

(56) (78) (57) (68) (78) (5768) 

(12) (34) (56) (78) (12) (34) (57) (68) (12) (34) (78) (12) (34) (5768) 

p PR PRS PS 

(13) (24) (13) (24) (58) (67) (13) (24) (56) (13) (24) (5867) 

(14)(23) (14) (23) (58) (67) (14)(23)(56) (14) (23) (5867) 

(13) (24) (56) (78) (13) (24) (57) (68) (13)(24)(78) (13)(24)(5768) 

(14) (23) (56) (78) (14) (23) (57) (68) (14) (23) (78) (14)(23)(t768) 

PQ PQR PQRS PQS 

(12) (12) (58) (67) (12) (56) (12)(5867) 

(34) (34) (58) (67) (34) (56) (34) (5867) 

(12) (56) (78) (12) (57) (68) (12) (78) (12)(5768) 

(34) (56) (78) (34) (57) (68) (34) (78) (34) (5768) 

Q QR QRS QS 

(1324) (1324) (58) (6 7) (1324) (56) (1324) (5867) 

(1423) (1423)(58)(67) (1423)(56) (1423 )(586 7) 

(1324)(56)(78) (1324) (57) (68) (1324)(78) (1324)(5768) 

(1423) (56) (78) (1423)(57)(68) (1423)(78) (1423) (5768) 
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FIGURE 74 
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degenerate isomerizations; more general cases will be discussed in the 

next section. 
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E. General Chemical-Mathematical Considerations 

The purpose here is to describe the applicability of some concepts 

of categorical algebra to problems in chemistry. This will be done by 

briefly covering the concepts of category theory, discussing general 

problems in its application, and treating several chemical examples. 

Category theory is a relatively new field of mathematics, having 

been born in 1945(84) and developed most extensively after 1954. A 

number of comprehensive introductory treatments of the subject have 

recently appeared. An incomplete listing is given in Reference (85). 

Any of these may be consulted for a more detailed explanation of the 

basic concepts. A category consists of a class of objects (A,B,C,••·) 

and a class of morphisms or arrows (f,g,h,••·) subject to several 

axioms. Each arrow relates two (not necessarily different) objects 

which are called its domain and codomain. A is the domain and B is 

the codomain of f. 

f 
A~ B 

Furthermore, each arrow uniquely determines its domain and co-

domain. That is, the arrow f cannot relate any other objects and 

relates A and B uniquely. Whenever the codomain of one arrow is 

the same as the domain of a second arrow, a composite arrow is defined 

which relates the domain of the first arrow and the codomain of the 

second. 

g•f 
A -> C 
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The composite is written g•f rather than f•g by convention. This 

composition must be associative, so that (h•g)•f = h•(g•f) if the 

domain of h matches the codomain of g. For each object there must 

be an identity arrow which serves as a left and right identity for the 

appropriate compositions 

i 
B -:> B if = f and gi = g 

Familiar examples of categories are the class of all sets and mappings 

(Set), all groups and homomorphisms ~) and all topological spaces 

and continuous functions (Top) • Similarly any class of structural 

sets and structure preserving maps will be a category. These are termed 

concrete categories because they are based on underlying sets and map­

pings. More abstract categories are possible. A set with any binary 

relation, a lattice, and a partially ordered set are three more ex­

amples. A group is a category with one object and arrows the elements 

of the group acting on the object. Composition is multiplication of 

group elements. Finally a diagram of objects and arrows is a category 

if compositions are properly defined. 

If the composites gf, hg and hgf and four identity arrows are included, 

this diagram is a category. 

A number of familiar set-theoretic mapping concepts are ab­

stracted in category theory. An arrow f is termed epi if gf = hf 

implies g = h, that is, f is right cancellable. In familiar 
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categories such as Set or Grp, epi arrows are the surjective, epimor­

phic or onto mappings. Similarly (actually dually), an arrow k is 

termed monic if kg= kh implies g = h, that is, k is left can­

cellable. Monie arrows are the injective, monomorphic or into 

mappings. An isomorphism (bijection) is an arrow which has a right 

and left inverse, and in Set or Grp corresponds to an arrow which is 

both monic and epi. A category in which all arrows are invertable, 

that is all arrows are isomorphisms, is called a groupoid. 

A subcategory of a category is a subclass of the objects and a 

subclass of the arrows which themselves satisfy the axioms. For 

example, the category of abelian groups (&) is a subcategory of the 

category of all groups. 

A structure preserving mapping between categories is called a 

functor and consists of two parts ', an object map and an arrow map. 

Any arrow which is an identity in the domain of a category must be 

mapped to an identity in the codomain. Composition of arrows must be 

preserved, so that if F is a functor from the category C to cate­

gory D and if f and g are composable arrows in C , 

F(g) F(f) = F(g•f) in D. An example of a functor from Top to Ab 

is the assignment of a homology group to a topological space. Continu­

ous functions go over to group homomorphisms. As another example, 

consider the functor from Grp to Set which assigns to a group its 

underlying set of elements but "forgets" the multiplicative structure. 

Homomorphisms go over to the underlying set mappings. This type of 

functor is called a forgetful functor. Another example is the identity 
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functor, symbolized le for the category C which assigns all objects 

and arrows to themselves. 

A mapping of one functor to another is called a natural trans­

formation. This mapping is formulated as follows. Consider two 

functors F and G from C to D. A natural transformation N is 

a function which assigns to each object of C an arrow from its image 

by F in D to its image by G in D . That is, an arrow, 

N(c): F(c) + G(c) in the category D is assigned to c , an object 

of C. This assignment is subject to the following condition. If h 

is an arrow of C taking c to c' , the square diagram in D must 

commute 

F(c) 

F(h) + 

F(c') 

N(c) 

N(c') 

G(c) 

+ G(h) 

G(c') 

The natural transformation is symbolized N: F + G. An example of a 

natural transformation is determined by the projection of the fundamen­

tal group of a topological space (with a base point) onto its first 

singular homology group. The kernel of the projection is the commuta­

tor subgroup of the fundamental group. The natural transformation is 

from the fundamental group functor to the singular homology group 

functor, both of which go from the category of pointed topological 

spaces to the category of groups. All functors from one category to 

another form a category themselves with natural transformations as 

arrows. This construction is appropriately called a functor category. 
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This admittedly sketchy outline of the basis of categorical 

algebra can be expanded and clarified by referring to the more rigorous 

treatments given in Reference (85). 

Now the subject of functors from subcategories, which is gen­

erally unemphasized in most discussions of category theory, will be 

treated in greater detail, because of its apparent relevance to the 

applications discussed below. Most categories, in particular Set and 

Grp, can be decomposed into subcategories in the following fashion: 

D + G + M 

"' t E + C 

C is the category being decomposed. E is the subcategory which con­

sists of all the objects of C and all the epi arrows. The arrow from 

E to .Q. represents the functor or embedding of E into C. M is 

the subcategory which consists of all the objects and monic arrows, and 

is similarly embedded into C. G is the subgroupoid of C which 

consists of all the objects and all isomorphisms. Since isomorphisms 

are both ~onic and epi, G is contained in M and E. D is the 

discrete subcategory of C and consists of all the objects and iden­

tity arrows only. 

Often in discussions of categories and functors examples are 

given of nonfunc-torial constructions, such as the center of a group or 

the automorphism group of a group or set(SG). It will be shown that 

these can be functorial construction if the domain of the functor is 

restricted to the appropriate subcategory. Consider the assignment of 
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S to the finite set with n elements. n This is 

clearly not a functorial construction for all mappings of finite sets. 

Any non-bijective, surjective set mapping cannot be assigned a group 

homomorphism of the appropriate symmetric groups. There is no homo-

morphism of S onto S for n, 5. n n4 ~ 
However, if the assignment 

is restricted to monic arrows only, a functorial construction results. 

Injective set mappings go to the corresponding injective group mappings 

since S has a subgroup S for all m ~ n. Permutationsof a set n m 

go to the inner automorphism of the symmetric group induced by that 

permutation by conjugation. Thus a functor from the monies-only sub­

category of the category of finite set to the monies-only subcategory 

of Grp has been constructed. 

As another example, 1consider the assignment of the center of a 

group to the group (the center ZG of a group G is the subgroup of 

all Z in G such that zg = gz for all g in .G .) This assign-

ment fails to be functorial for monic arrows. For example, consider 

the injection of n
2 

into the symmetric group s4 . D2 is abelian, 

hence is its own center. s4 has a trivial center, so that the injec­

tion of n
2 

into s
4 

does not induce a corresponding map of the cen­

ters. However, if the assignment is restricted to the subcategory of 

epi arrows, a functorial construction results. If f: A+B is the 

epimorphic group homomorphism, a
1

a 2 = a 2a
1 

in A implies 

f(a
1

)£(a
2

) = f(a
2
)f(a

1
) in B. Thus if a

1 
commutes with everything 

in A, f(a
1

) must commute with everything in B since all of B is 

in the image of f. This defines a mapping of the center of A to 
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the center of B, which need not be epi. Thus a functor Z from 

E to Grp has been defined which assigns each group its center. A -=Grp . 
natural transformation Z + ·I can be defined where I is the functor 

which embeds b into Grp. This natural transformation simply embeds ~rp 

the center of a group into the group so that the diagram commutes: 

. 
Z + I Z(G) + G 

Z(f) + + f 

Z(H) + H 

f is the epi arrow in Grp. 

Another functor from E to Grp is defined by the assignment -=Grp 

of the inner automorphism group of a group G to G. (The inner auto-

morphism group is the group of automorphisms of a group G caused by 

conjugation by elements of G .) For an epimorphism f: A+B, 

is taken to 
-1 

f(a
1

) f(a
2

) f(a
1
), thus mapping the inner auto-

morphism of A induced by a
1 

to the inner automorphism of B 

induced by b(a
1

) • A natural transformation from I to Auti is 

defined by the projection of a group onto its inner automorphism group 

G + Auti(G) 

f + + 
H + Auti(H) 

The kernel of this projection is just the center of the group so the 

two natural transformations can be composed 
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Z (G) + G + Auti(G) 

+ £ 't 't 

Z(H) + H + Auti(H) 

(The natural transformation Z + I is the kernel of I ..;. Auti in 

the functor category %rp to Grp). 

It is now apparent that any object assignment from one category 

to another can be made functorial by sufficient restriction of the 

arrows in the domain category. Clearly this can result in a com­

pletely trivial case in which the domain is the discrete subcategory. 

Two points can be made about the relevance of all this to applications 

of categorical methods. First, deciding which arrows are to be 

included in the domain category is of utmost importance. Too restricted 

a domain will give trivial constructions while too large a domain re­

stricts the constructions possible. There is even no a priori reason 

why the arrows have to be structure-preserving. Secondly, changing 

the domain is itself a potentially useful variable. This is apparent 

from the above example in which the center and automorphism group 

assignments are not recognized as functorial constructions until the 

domain is sufficiently restricted. 

Next, the question of why any of this should be relevant to 

chemistry will be discussed. First, treating any problem in chemistry 

or anything else by mathematical methods constitutes an assignment of 

the problem to a mathematical object and hence a potential functorial 

construction. Secondly, a .category is itself a rather weak algebraic 

structure and can be thought of as a generalized group. To show this, 
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only the arrows of a category are considered. Axiomatically, a group 

is a set on which a two-sided multiplication is defined for all pairs 

of elements (composability). Further, a two-sided identity,inverses of 

all elements, and associativity of the multiplication is required. Con­

sider the two axioms of composability and invertibility and the effect 

of their removal. This is shown in Table 29. 

Table 29 

composable? invertible? 

group yes yes 

semigroup yes no 

groupoid no yes 

category no no 

The three algebraic objects, semigroups, groupoids and categories can 

be regarded as generalized groups. Now an arrow representing a chemi­

cal reaction or any change can also have these properties. A reaction 

that has the same reactant and product is a degenerate reaction and can 

certainly be reversible. An example of the applications of group theory 

to such a problem was discussed in the previous section. Degenerate 

irreversible reactions would yield a semigroup. Reactions with dif­

ferent reactants and products are not generally composable, yet cancer­

tainly be reversible. This structure is described by a groupoid and 

will be discussed more fully later in this section. Finally, noncom­

posable, irreversible reactions describe a category. 
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An analogy of the two-level applicability of categorical ideas 

to chemistry can be made to the applicability to topology. Consider 

the assignment of a collection of atoms to its potential energy sur­

face. Arrows would be mappings or some comparison of these surfaces. 

This corresponds to the consideration of topological spaces and con­

tinuous functions between them. For a given space, the fundamental 

groupoid can be constructed by considering a set of disjoint points 

in the space and all paths between them. This would correspond to the 

consideration of chemical reactions as paths on the potential energy 

surface. Treating topology functorially is done in the field of 

algebraic topology. It was for this reason that the term algebraic 

chemistry was chosen. 

Some work on the application of categorical ideas outside of 

pure mathematics has appeared. In an extensive series of papers, 

Rosen(B 7) has described abstract biological systems as sequential 

machines. Briefly, he was able to describe the organizational prop­

erties (metabolic and genetic) of a biological system as a sequence 

of mappings. In the simplest case this corresponded to(SB): 

A-~ B -~ H(A,B) 

in which A represents the set of inputs to the various components. 

of the system and B represents the set of outputs. H(A,B) is the 

set of mappings of A to B, typically called a horn-set. The 

mapping f refers to the metabolic parts of the system which relate 
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outputs to the various metabolic components represented as mappings in 

H(A,B). A sequential machine is a quintuple L = (S,M,N,g,h) where 

S is the set of states of the machine L, M is the set of inputs to 

L N is the set of outputs of L , g: M x S -+ S is the next state 

function and L: Mxs-+ N is the output function(B9)_ M generates a 

monoid (also called a semigroup) by its action on the set of states. 

Rosen was able to define his biological systems as sequential machines 

by the following assignment(S9) 

S = H(A,B) 

M.::A 

N = B 

g: Ax H(A,B) -+ H(A,B) = g(a,f) = cpF(f (a)) 

h: Ax H(A,B) -+ B = h(a,f) = f (a) 

h is an evaluation map, while g is determined by the original mapping. 

A morphism of sequential machines L-+ L' is a triple of 

mappings 
kl 

s' s -+ 

k_z 
M' M + 

k3 
N' N + 

subject to the commutavity conditions 
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kl x k2 
s' x M' SXM -+ 

kl x k2 
SXM -+ s' x M' 

g + + g' h + + h' 
kl 

S' 
k3 

s -+ N -+ N' 

With composition defined in the obvious manner, the class of sequential 

machines and arrows forms a category. Rosen was able to show that 

biological systems as sequential machines formed a subcategory if the 

triple of arrows was restricted in the following manner. k
1 

must be 

onto (epi) while k
2 

and k
3 

must be one-to-one (monic)(90). 

Give' on (9l) has considered categories of transition systems. 

Briefly, a transition system A is composed of a fixed monoid M, a 

set of states S(A) and a transition function B f : s (A) X w -+ s (A) ' 

where f ·describes the action of the monoid on the set of states. A 

category of transition systems over a fixed monoid is constructed with 

homomorphisms of the type 

$(A) X W 

f + 

S(A) 

g 
A -+ B such that the diagram commutes 

g X 1 
-+ s (B) X w 

S(B) 

This category resembles the category of right actions of a monoid.des­

cribed by Mac1ane(92 ). Give'on shows that for a certain broad class of 

monoids the properties of a given transition system are "retrievable" 

by studying arrows to and from the systems. Stated differently, study 

of the category of transition systems is in principle equivalent to the 
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study of individual systems, although the former may certainly not be 

preferred. 

Hajek(93 ) has considered the application of categorical concepts 

to dynamical system theory. A dynamical system (also a transformation 

group) is composed of a topological space X (the phase space), a 

topological group (phase group) and a mapping TI: X XT ➔ X subject to 

(94) . (93) certain conditions • HaJek considers the situation in which T 

is ~ , the group of real numbers. Considerable attention is given to 

the problem of which morphisms should be included in the category. 

Morphisms P x R1 ➔ P' x R1 can be phase-space maps combined with a 

group identity homomorphism, an identity phase space map combined with 

a group homomorphism, or any of several combinations of phase-space 

maps and group homomorphisms. That is, either the phase-space is 

changed, the group is changed or both are changed. The different re­

sults, depending on the class of morphisms chosen, are cited. 

Finally, a possible application to theoretical physics can be 

formulated. A quantum mechanical system can be described as a dynamic 

system in which a Lie algebra of observables L acts on a Hilbert 

space V of states, subject to a number of conditions(95 ). This can 

be represented as L x V ➔ V • Morphisms can map the space, the algebra 

or both. In particular, physical systems with isomorphic Lie algebras 

will have identical spectra. This is shown for the case of angular 

momentum and isospin by Lipkin(96). However, another type of arrow 

includes more significant changes in physical systems. The intuitive 

process of changing a physical system by letting a constant go to zero 

or infinity can be mathematically described. Well known examples are 
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the passage from relativistic mechanics to classical mechanics by 

letting the speed of light go to infinity and the passage from quantum 

mechanics to classical mechanics by letting Planck's constant go to 

zero. These changes can be described by Lie algebra contractions. A 

contraction is a non-continuous non-homomorphism which changes a Lie 

algebra into another Lie algebra with a smaller or equal dimensional 

derived algebra. As formulated by Inonu and Wigner (97) and elaborated 

by Saletan(9B) and Conatser(99), a contraction is defined on a Lie 

algebra V, decomposed as V = W+U. The linear transformation: 

A = 
t 

0 

0 

0 

D 0 

+ t 

0 

on W + U is def_ined where 1
1 

and 12 are identity transformations 

and D is any non-singular operator on W. For any two operators 

X,Y in the original algebra, the new algebra is defined by the rela­

tion: 

[X,Y] 
C 

If [X,Y] = 0, then 

= lim 
t -+ 0 

[X, Y] = 0 ; however, if 
C 

[X,Y] ~ 0, [X,Y] may 
C 

be zero, thus the derived algebra of the new algebra can be only 

smaller or of the same dimension. Composition of contractions does 

not necessarily give a contraction, but does give a non-continuous 

non-homomorphism. Such arrows yield a category if it is noted that 

W can be all of V , thus giving identity arrows. As a functorial 

construction, assignment is restricted to the subcategory of physical 
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systems and non-continuous changes in which the system becomes "less 

complicated." 

All of these possible applications of categorical concepts seem 

to fall into the same pattern. The objects are defined by the action 

of some algebraic structure on some (un)structured set. Arrows can 

relate the algebra, the set or both and need not be structure preserv­

ing, although they generally are. In particular, for any given problem 

different classes of arrows are most relevant. Observation of this 

pattern suggests a justification for the claim of applicability of 

categorical concepts. Category theory has proved useful in the devel­

opment of homological algebra, which is largely a study of the category 

(100) 
of R-modules and homomorphisms , R-Mod. An R-module ~ is 

defined by the action of a unitary ring R on an abelian group, 

M: Rx M -+ M (lOl). (This is a left module, a right module is defined 

by M x R -+ M) • The analogy to the above examples is clear. However, 
I 

the category R-Mod has a number of "nice" properties which make it 

into an abelian category, on which the standard methods of homological 

algebra are applicable. None of the above examples were abelian 

categories. Morphisms of R-modules map the abelian group and leave the 

ring unchanged. Hence the category studied, R-Mod, consists of all 

the modules over a particular ring. Change of rings is handled 

functorially, that is, a functor R-Mod-+ R'-Mod is induced by a ring 

homomorphism R'-+ R (lOZ). 

Some applications of these and earlier discussed concepts to 

specific chemical problems will now be described. The original 
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formulation of the Woodward-Hoffmann rules considered a chemical 

reaction as a mapping of orbitals, their. correlation diagram(l03). 

The condition for an allowed reaction can be stated as the existence 

of bijective mapping r of orbitals so that diagram ·commutes: 

(b ,a) -+ (b ,a) 

t t 
0 -+ 0 

X y 
'f 'f 

(A,S) -+ (A,S) 

0 is the set of orbitals for the reactant X, (b,a) refers to bond­
x 

ing or antibonding, and (A,S,) refers to symmetric or antisymmetric 

with respect to the symmetry operation(s) in question. 

Functorially, each chemical structure is assigned the diagram: 

(a,b) + 0-+ (S,A) , and each allowed concerted reaction the commutative 

diagram. This can be described as a functor 
•+•-+• 

Chem-+ Set -- -- The 

former category is the one described above, the latter is a functor 

(104) category as described by MacLane • 

At this point the concept of a forgetful functor becomes rele­

vant. The above process assigns to each chemical structure a set of 

molecular orbitals and in a sense forgets every 1 other property of the 

structure. It is well known that errors are made by over-simplifica­

tion. This corresponds to finding arrows in the codomain category 

which are not in the image of the functor from the domain category. 

As another example, the existence of an isomorphism between the funda­

mental groups of two topological spaces does not insure the existence 
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of a continuous function between them, only that they are of the same 

homotopy type. 

The construction described in Section IID can be treated func­

torially. In particular, each ribbon topology is assigned the con­

struction: 

M XM + M 
C 

+ + 
I xI + I 

C 

M is the mode change group (or groupoid in more complicated cases), 
C 

M is the set of modal combinations, I is the interaction change 
C 

group, and I is the set of interactions. It was already noted that 

M acts on M as a regular representation, as does I on I . Thus 
C C 

an object assignment is defined. If the arrows between the ribbon 

topologies correspond to continuous deformations (Woodward and 

Hoffmann's topological equivalence(Bl)) the arrows between the diagrams 

are those which change the groups only. As was noted earlier, topolog­

ical equivalences go over to connnutative diagrams of groups by this 

functor. However, if the arrows are reactions which change topology, 

they are assigned the set mappings which determine preferred reactions 

based on these considerations (Figure 69). Thus two different ftmc­

torial constructions result depending on the information desired. 

It is interesting to look at this problem in the light of a 

more rigorous description to topology. These ribbon topologies could, 

in principle, be assigned standard topological invariants such as 

fundamental groups or homology groups. However, one cotmter-example 
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shows that thege will not suffice to determine chemically different 

cases. If the ribbons are thought of as sheets with comers tied 

together to represent interactions, it can be shown that the peri­

cyclic and longicyclic "topologies" are topologically identical 

(rigorously, from a mathematical standpoint). This is shown in Figure 

75. Hence the standard algebraic topological methods are inadequate 

for this problem. On the other hand, it has not been shown in any way 

that the group construction derived yields a (real) topological in­

variant. It only suffices to describe the chemical problem at hand. 

The group construction derived in Section IIB can also be 

described functorially. To each chemical structure is assigned the 

group describing the symmetry relevant to the synthetic design problem. 

The only relevant arrows are monies, which correspond to considering 

only a part of th~ target structure for symmetry. This consideration 

is useful, since most syntheses proceed through smaller intermediates. 

For the next example, an observation of Gust and Mislow(lOS) 

will be discussed. In their analysis of the isomerizations of 

generalized polyaryl methanes they noted a similarity between the 

analysis for a triphenyl carbonium ion and a transition metal tris 

chelate. Structures are shown in Figure 76. The purpose here is to 

make this notion more precise and suggest extensions. 

The possible degenerate isomerizations of a triaryl carbonium 

ion fonn a group as might be expected. Four changes are possible 

(Figure 77): flip ring A, flip ring B, flip ring C, and change heli­

city. These are all of order two and all commute, hence the direct 
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FIGURE 75 

Illustration of Pericyolic-Longicyclic Equivalence 
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product group c2x c2 x c2 x c2 of order 16 describes these isomeriza­

tions. (The ring flip operation differs from that described by Gust 

and Mislow). It has been shown by Eaton and Eaton(l06) that the 

degenerate isomerizations of a tris metal chelate likewise form a group. 

A convenient representation is by permutation of the ligands and twist­

ing along the c
3 

axis as shown in Figure 78. This group is also 

4 isomorphic to (C2) • The isomorphism between the group for the triaryl 

case and the group for the tris-chelate case describes the desired 

similarity. This isomorphism is listed in Table 30 along with names 

for the isomerizations in the tris-chelate case(l0 7,lOB). 

Some mathematical considerations of this case will now be 

described. A large nlUllber of isomorphisms between these two groups 

are mathematically possible so that the chemical considerations which 

distinguish this one are of interest. First of all, isomerizations 

which change chirality must be distinguished from those which do not. 

These are the operations which change the helicity of the structures. 

This condition can be stated as a requirement of connnutivity of the 

diagram 

C. 
l. 

where Ci is the inversion group. Similarly, diagrams which relate 

ring flip operations to ligand permutation operations can be constructed 
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Table 30 

Isomorphism of Isomerization Groups for 

Triaryl Methanes and Tris-Chelates 

¢3C M(chel) 3 

E E 

Flip A (12) 

B (56) 

C (34) 

AB (12) (56) 

AC (12)(34) 

BC (34)(50) 

ABC (12)(34)(56) 

change helic:i.ty (H) c3 twist (T) Bailar twist 

AH (12)(T) Ray and Dutt twist 

BR (56) (T) 

CH (34) (T) 

ABH (12)(56)(T) 

ACH (12)(34)(T) 

BCH (34)(56)T 

ABCH (12) (34) (56)T 
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(C )4 + (C )4 
2 + 2 

+ + 
c2a 

+ 
c2(12) + 

Secondly, these structures have n
3 

point group symmetry. A semi-direct 

product of the point group and the isomerization group can be con­

structed by considering the action of the point group on the isomeriza­

tion group. An isomorphism of the resulting groups is required 

Use can be made of groupoids(l09) in treating problems of 

isomerization between different geometries. The applicability of 

group theory to degenerate isomerization has already been exploited. 

Consider the interconversion of the tetrahedral and square-planar geo­

metries for 4-coordinate structures. The drawings in Figure 79 are 

considered to be in a fixed orientation. There are twenty-four ways 

of mapping the four ligands on the tetrahedral structure to the square­

planar structure. Furthermore, there are twenty-four degenerate 

isomerizations for each geometry, corresponding to the synnnetric group 

on four objects. This situation is described by a groupoid with two 

vertex groups isomorphic to s
4 

and twenty-four invertible arrows 

between the two vertices. Functorially, each geometry is assigned a 

vertex, each degenerate isomerization is assigned to a member of the 

corresponding vertex group, and each non-degenerate isomerization is 

assigned to an arrow between the two vertices. With this groupoid it 
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FIGURE 79 
Interconversion of Tetrahedral and Square-Planar Geometries 
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is possible to determine the differentiable degenerate and non­

degenerate isomerizations using the methods described by Klemperer(llO). 

Further use can be made of this construction by first noting 

that a groupoid is actually a representation of the wreath product of 

the vertex group with the symmetric group S , where n is the 
n 

number of vertices. Consider the collection of all n-tuples of arrows 

of the following type. There must be one and only one arrow with any 

particular vertex as its domain and similarly, one and only one with 

this vertex as its range. The collection of all these arrows forms a 

group of order I Gj nl S I • Now define an isomorphism of the vertex 
n 

objects. In the chemical examples considered this is done most con­

veniently by ntunbering all the ligands with the same numbers for each 

geometry. The above group can now be represented by n n 
ni x ni permu-

tation matrices where i is the number of members of the vertex set 

or, in the chemical examples, - the number of ligands. The isomorphism 

to the wreath product is now apparent since the wreath product 

GWrS can be represented by permutation matrices with entries from 
n 

G (lll). The particular element of g is the one which yields the 

permutation of ligands caused by a non-degenerate arrow (relative to 

the numbering). It should be .possible to do this proof without con­

sideration of the vertex objects, but such generality is not needed 

here. 

It is now possible to determine the differentiable degenerate 

cycles of isomerization of any isomer which ·goes through intermediates 

of different geometry by forming the double cosets in the wreath 
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product by a group which is the direct product of the symmetry point 

groups of all the involved geometries. In the example shown in Figure 

79, the degenerate isomerization cycles for either geometric form 

would be the double cosets of T x n
4 

in the wreath product. In 

principle, all differentiable paths and cycles can be determined by 

reference to the groupoid or wreath product. 

Gilles and Phillipot(s2c) have mentioned the possibility of ob­

taining groups which describe isomerizations between different geome­

tries. The wreath product obtained above is such a group, but its 

representation by permutation of the structures is not regular, a 

property shared by point groups and non-rigid symmetry groups. Such 

groups describing isomerizations between different geometric forms 

are possible. The requirement for this is that every reaction be 

defined on every ~tructure. Such a group would be a subgroup of the 

corresponding wreath product. However, wreath products are very large 

and enumeration of possible subgroups would be formidable. Hence, a 

more intuitive construction of an example of this type of group will 

be described. Consider the butadiene-cyclobutene rearrangement and 

all its stereochemical consequences (Figure 80). A stereochemical 

inversion group, .isomorphic to· n
2

, acts on each structure by invert­

ing the substituted centers. This group will be extended by c2 to 

include the reactions. This type of group extension is described by 

Hall(ll2). The factor set is shown in Figure 80. The chemical 

"reason" for this construction is that two consecutive reactions -of 
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FIGURE 80 
Construction of Reaction Group for Cyclobutene-Butadiene 
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the same type result in stereochemical inversion at both centers. The 

resulting extended group is abelian since the automorphisms of n
2 

associated with c2 are all trivial and the factor set mapping is sym­

metric with respect to permutation of the factors. This extended 

group is isomorphic to c4 x c2 which is isomorphic to the synnnetry 

point group c4h. For this reason, a very convenient graphical repre­

sentation of this group can be constructed as shown in Figure 80. This 

graph has c4h symmetry. Rotation clockwise represents the conrotatory 

reaction, while s4 rotation represents the disrotatory reaction. This 

group can also be extended by point group symmetry or by the mode 

change group as in Section IID. The group obtained by point group ex­

tension can be used to determine differentiable reactions(llO). 

The final example considers the problem of symmetry change in 

chemical reactions. If the domain category Chem is restricted to 

those reactions which do not lower symmetry,a functor to the lattice 

of point groups (thought of as a category) is readily constructed. In 

any (single-step) reaction which increases symmetry, the synnnetry 

group of the reactant is a subgroup of the symmetry group of the 

product. Another construction yields a functor from the category of 

all one-step reactions which change symmetry. Consider the deforma­

tion of tetrahedral structure as shown in Figure 79. Each of the 

three deformed structures is represented by a left coset in Td by n2d. 

The permutation of these cosets by right multiplication represents 

the effect (permutation) of one of the original symmetry operations on 
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the deformed structures. Cosets fixed by any operation represent 

structures which retain or conserve that symmetry. The assignment of 

any chemical structure to this permutation group (which is isomorphic 

to the least upper bound of the symmetry groups of all structures 

that can be interconverted) allows all reactions which change symmetry 

to be expressed as isomorphisms. These isomorphisms are useful in 

determining symmetry conserved in any reactions, as required for use 

(103) of the Woodward-Hoffman rules in their original form • These 

isomorphisms also determine symmetry operations which change effect 

during the course of a reaction such as those which interconvert 

reactants and products but are symmetry operations for a transition 

state. These considerations are useful in using selection rules which 

limit the size of the symmetry group of a transition state relative to 

(113) 
that for the reac~ants or products • 

In all these examples the full force of cgtegory theory is 

hardly being used. In fact it may turn out that categorical concepts 

will only be an intuitive language for formulating problems. 

MacLane(ll4 ) has noted that for the first ten years of its existence 

"category theory was just a language", even for mathematicians. 
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