
Online Convex Optimization and Predictive Control in
Dynamic Environments

Thesis by
Haoyuan Sun

In Partial Fulfillment of the Requirements for the
Degree of

Bachelor of Science

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Submitted June 11, 2021

ii

© 2021

Haoyuan Sun
ORCID: 0000-0002-6203-0198

Some rights reserved. This thesis is distributed under a Creative Commons
Attribution-NonCommercial-ShareAlike License.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor AdamWierman for his invaluable advice
and guidance on my academics and research. This project would not be possible
without Professor Wierman’s tireless support over the last three years.

I would also like to thanks Professor Jason Marden, Professor Leonard Schulman,
and Professor Pablo Moscato for their help and mentorship during my time at
Caltech. Lastly, I was fortunate to have collaborated with Gautam Goel, David
Grimsman, YangHu, Yiheng Lin, GuannanQu andGuanya Shi duringmy research.

iv

ABSTRACT

Westudy the performance of an online learner under a framework inwhich it receives
partial information from a dynamic, and potentially adversarial, environment at
discrete time steps. The goal of this learner is to minimize the sum of costs incurred
at each time step and its performance is compared against an offline learner with
perfect information of the environment.

We are interested in the scenarios where, in addition to some costs at each time
step, there are some penalties or constraints on the learner’s successive decisions. In
the first part of this thesis, we investigate a Smoothed Online Convex Optimization
(SOCO) setting where the cost functions are strongly convex and the learner pays
a squared ℓ2 movement cost for changing decision between time steps. We shall
present a lower bound on the competitive ratio of any online learner in this setting
and show a series of algorithmic ideas that lead to an optimal algorithm matching
this lower bound. And in the second part of this thesis, we investigate a predictive
control problem where the costs are well-conditioned and the learner’s decisions are
constrained by a linear time-varying (LTV) dynamics but has exact prediction on the
dynamics, costs and disturbances for the next : time steps. We shall discuss a novel
reduction from this LTV control problem to the aforementioned SOCO problem and
use this to achieve a dynamic regret of$ (_:)) and a competitive ratio of 1+$ (_:)
for some positive constant _ < 1.

v

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Table of Contents . v
Chapter 1: Introduction . 1

1.1 Smoothed Online Convex Optimization 2
1.2 Predictive Control . 4

Chapter 2: Smoothed Online Convex Optimization 7
2.1 Model and Preliminaries . 7
2.2 Motivating Algorithms . 9
2.3 Lower Bound . 11
2.4 Optimal Algorithm: Regularized Online Balanced Descent 14

Chapter 3: Application to Predictive Control 17
3.1 Model and Preliminaries . 17
3.2 Relation to Online Convex Optimization 22
3.3 Performance Guarantees . 26

Bibliography . 29
Appendix A: Proofs of the Results from Chapter 2 35

A.1 Proof of Theorem 2.1 . 35
A.2 Proof of Theorem 2.3 . 36
A.3 Proof of Theorem 2.4 . 39
A.4 Proof of Theorem 2.5 . 40
A.5 Proof of Theorem 2.6 . 45

Appendix B: Proofs of the Results from Chapter 3 48
B.1 Proof of Theorem 3.5 . 48
B.2 Proof of Corollary 3.6 . 49
B.3 Proof of Corollary 3.7 . 50
B.4 Proof of Lemma 3.8 . 51
B.5 Proof of Theorem 3.9 . 52
B.6 Proof of Theorem 3.10 . 55

1

C h a p t e r 1

INTRODUCTION

Wewill study optimization as an iterative process where the underlying environment
is so complex that the solver can only a piece of the input or observation at once and
commit to some decisions before rest of the information are revealed. This notion
encompasses a wide of range of problems and had been extensively studied over the
last several decades, e.g. the metrical task problem [1, 2], the convex body chasing
problem [3], the expert problem [4], and many more.

Specifically, over a sequence of time steps 1, . . .) , an online learnermakes a decision
GC and then suffers a loss according to a cost function 5C . This problem is called
the Online Convex Optimization problem when 5C are convex [5]. We are interested
in settings where the online learner is additionally equipped with prediction and
memory. In particular, we can use memory of previous decision points to introduce
a switching cost (sometimes known as movement cost), which can be written in the
form of 2C (GC−1, GC) when thememory has size of one, to better capture the dynamical
context of the problem [6]. And we can leverage prediction on future properties of
the environment to allow the learner to make better decisions. The simplest case
is to reveal the current time cost function 5C before the learner is committed to a
decision GC . The Smoothed Online Convex Optimization (SOCO), or OCO with
switch cost, problem is one example of such idea where the prediction and memory
both have length of one.

We additionally can introduce more sophistication to the environment by enforcing
some system dynamics where the next decision point GC+1 is constrained to be a
function of the current decision point GC , an control action DC , and possibly some
disturbance FC . Then the switching cost can be written as a function of DC and
FC . This framework is wildly used in the control theory community and practical
algorithms such as the Model Predictive Control (MPC) use prediction to achieve
good performance both in theory and practice [7].

Recently, considerable efforts have been made to prove learning guarantees on the
SOCO problem and control with prediction. On a high level, we compare the total
cost incurred by the online learner to the optimal cost of an offline solver which has
complete access to the past and future knowledge of the environment. The SOCO

2

problem is most often studied under the metric called competitive ratio [8–12],
whereas the control problem had being studied under a variety of metrics, such as
static regret [13–19], dynamic regret [20, 21] and competitive ratio [22, 23]. In
this thesis, we shall present several recent results on the performance of SOCO and
control with prediction. And along the performance bounds, we also illuminate
some crucial connections between these two problem that had garnered substantial
interests in recent years [6, 14, 15, 20, 24].

1.1 Smoothed Online Convex Optimization
The problem of SmoothedOnline ConvexOptimization (SOCO), which is a general-
ization of the OCO problem where an online learner plays a series of rounds labeled
1, . . . ,) and incur a convex cost at each round. The SOCO problem differs from
OCO that the learner is additionally penalized for changing its decision between
rounds. We can consider the setting as a game where an online learner plays against
an adaptive adversary. In each round, the adversary picks a convex cost function
5C : R3 → R≥0 and presents this to the learner. After observing the cost function,
the learner decides on GC ∈ R= and pays a hitting cost 5C (GC), as well as a movement
cost 2(GC , GC−1).

SOCOwas originally proposed in the context of dynamic power management in data
centers [25], where themovement costmodels thewear-and-tear from re-configuring
the servers. It has since then seen a wealth of applications, from speech animation
to management of electric vehicle charging [26–28], and more recently applications
in control [24, 29] and power systems [30, 31].

Additionally, SOCO has connections to a number of other important problems
in online algorithms and learning. It has been shown that SOCO is related to
online logistic regression and smoothed onlinemaximum likelihood estimation [24].
Convex Body Chasing (CBC), introduced in [3], is related to SOCO that instead
of a hitting cost function at each round, the online learner is given a convex shape
which its decision point must lie on – the resulting problem would only contain
a movement cost. It has been show that CBC can be reduced to SOCO [32, 33].
The problem of designing competitive algorithms for Convex Body Chasing has
attracted much recent attention. e.g. [32, 34–36]. SOCO can also be viewed as a
continuous version of the Metrical Task System (MTS) problem (see [1, 2, 37]). A
special case of MTS is the celebrated :−server problem, first proposed in [38], and
has received significant attention in recent years (see [39, 40]).

3

Given these connections, the design and analysis of algorithms for SOCO and related
problems has received considerable attention in the last decade. Despite the wealth
of literature, there are several weaknesses to the earlier analysis of SOCO. The prior
results gave constant competitive bounds in one dimension. For instance, SOCO
was first studied in the scalar setting in [8], which used SOCO to model dynamic
“right-sizing” in data centers and gave a 3-competitive algorithm. Later, [9] showed
a 2-competitive algorithm, also in the scalar setting, that matches the lower bound
for online algorithms in this setting [10]. To break the barrier on dimensions, many
works had to rely on the online algorithm having access to prediction of future cost
functions (see [11, 12, 25, 30]).

A breakthrough came in 2017when [41] proposed a new algorithm, Online Balanced
Descent (OBD), and showed that it is constant competitive in all dimensions in the
setting where the hitting costs are locally polyhedral and movement costs are the ℓ2

norm. However, the class of polyhedral functions is rather restrictive and does not
properly model most loss functions used in machine learning.

Here, we present the results from [24, 42] that extend OBD to more general settings.
First, [24] showed that OBD is also constant competitive, specifically 3 +$ (1/<)-
competitive, when the hitting costs are <-strongly convex and the movement costs
are the squared ℓ2 norm (see Theorem 2.2). Then [42] gave the first lower bound
on the performance of any online learner with <-strongly convex hitting costs and
squared ℓ2 norm as the movement cost. As stated in Theorem 2.3, as< tends to zero,
the best competitive achievable by any online algorithm is at least Ω(<−1/2). We
will show that OBD fails to match this bound in Theorem 2.5 that the competitive
ratio of OBD is at least Ω(<−2/3) as < goes to zero.

We will make a crucial observation that a much simpler greedy approach results
in surprisingly good performance (see Theorems 2.1 and 2.4). This motivated us
to construct the current state-of-art of SOCO algorithm, called Regularized OBD
(R-OBD) [42]. In Theorem 2.6, we see that R-OBD’s competitive ratio matches
the performance lower bound, including the constants. Thus, R-OBD is an optimal
SOCO algorithm in the setting of <-strongly convex hitting cost and squared ℓ2

movement cost. In fact, R-OBD can be generalized to a much more general model,
but we will not show this result here for clarity’s sake and we encourage interested
readers to check out [42].

4

1.2 Predictive Control
We are also interested in the problem of predictive control in a linear time-varying
(LTV) system, where the dynamics is given by GC+1 = �CGC + �CDC + FC . Here, GC
is the state, DC is the control action, and FC is the disturbance or exogenous input.
At each time step C, the online controller incurs a time-varying state cost 5C (GC)
and control cost 2C (DC−1). Then the controller decides each action DC by making
use of predictions of the next : future disturbances, cost functions, and dynamical
matrices, and seeks to minimize its total cost on a finite horizon) . In this paper, we
will illustrate the connection between this problem and SOCO.We will leverage this
connection to show the dynamic regret and competitive ratio of predictive controllers
in this LTV setting.

Recently, a growing literature has sought to design controllers that achieve learning
guarantees such as static regret [15, 19], dynamic regret [20, 43], and competitive
ratio [6]. One notable line of work concerns predictive control with learning
guarantees and studies how the regret and competitive ratio can be improved by
changing the prediction window : . Prior work had mostly focused on linear time-
invariant (LTI) systems [7, 20, 43, 44]. However, linear time-varying (LTV) systems
have received increasing attention in recent years due to their importance in a variety
of emerging applications, despite the challenges associated with analysis.

Currently, the performance guarantees in the LTV setting is poorly-understood due
to a lack of progress in developing new techniques to generalize the dynamics from
LTI to LTV systems and the costs from quadratic to well-conditioned functions.
Specifically, the proof approaches used in previous studies on regret and competi-
tive ratio of predictive control in LTI dynamics with quadratic costs, e.g., [7, 43, 44],
require explicit representation of the cost-to-go function, optimal control actions,
and algorithm’s actions in terms of the system parameters. This is very difficult
to generalize to non-quadratic cost functions. A promising alternative is through
reductions from optimal control to online convex optimization with multi-step mem-
ory, e.g., [6, 14, 15, 20, 24]. However, such reductions usually do not work well
for LTV systems because the problem must be written in control canonical form
[6, 20], or because they are limited on the policy class and comparisons to static
benchmarks [14, 15].

Perhaps the most prominent approach for controlling LTV systems is Model Pre-
dictive Control (MPC), also known as Receding Horizon Control [45]. Generally
speaking, at each time step, an MPC-style algorithm solves a predictive trajectory

5

for the future : time steps and commit the first control action in this trajectory.
MPC-style algorithms are known to work well in practice, even when the dynamics
are non-linear and time-varying, e.g., [46–49]. On theoretical side, the asymptotic
behaviors ofMPCsuch as stability and convergence have been studied intensively un-
der general assumptions on dynamics and costs [50–53]. However, non-asymptotic
guarantees such as regret and competitive ratio of MPC-style policies have been
limited, especially for LTV systems.

To address this shortcoming, we introduced a novel reduction between LTV control
and the SOCO problem [54]. Connections between online optimization and control
have received increasing attention in recent years, e.g., [6, 14, 15, 20, 24]. While
existing reductions rely on the canonical form, which does not apply to LTV systems,
and/or formulations of online optimizationwithmemory ofmultiple prior time steps,
which makes the online problem more challenging, the reduction we present here is
a fundamentally different approach and do not suffer the same weaknesses.

This analysis framework based on a perturbation approach. Specifically, instead
of solving for the optimal states and control actions like previous analysis in the
LTI setting with quadratic costs, e.g., [43, 44], we bound how much impact an
perturbation to the system parameters can have on the optimal solution. A result of
this type can be shown under the SOCO setting (Theorem 3.3), where the predictive
states are not limited by the system’s dynamics. Then, it is shown that, under
some mild assumptions, one can rewrite a predictive control problem in a SOCO
problem by dividing the time steps into equal chunks and consider each chunk as
one optimization problem. The resulting perturbation bound (Theorem 3.5) can be
shown even when the optimal trajectory cannot be written down explicitly, which
allows it to be applied in LTV systems with well-conditioned costs.

We can then provide the regret and competitive ratio results for a controller in LTV
systems with time-varying dynamics and costs. Specifically, we show that an MPC-
style predictive control algorithm (Algorithm 4) achieves a dynamic regret that
decays exponentially with respect to the length of prediction window : in the LTV
system (Theorem 3.9): $ (_:)), where the decay rate _ is a positive constant less
than one. Also, with a variation of predictive control (Algorithm 5), we also show
the first competitive bound in LTV systemswith time-varyingwell-conditioned costs
(Theorem 3.10): 1 + $ (_:), where the decay rate _ is identical with the one in the
regret bound.

We note this analysis is not specific to the predictive control algorithm we study,

6

and we expect it to prove useful for other controllers in future work. A limitation
of this reduction framework is that it cannot handle state/control constraints. This
limitation is shared by previous works [7, 20, 43, 44], and represents a challenging
open question in the literature.

7

C h a p t e r 2

SMOOTHED ONLINE CONVEX OPTIMIZATION

2.1 Model and Preliminaries
An instance of Smoothed Online Convex Optimization (SOCO) played on rounds
C = 1, 2, . . . ,) consists of an initial point G0 ∈ R3 , a sequence of non-negative convex
cost functions 51 . . . 5C : R3 → R≥0, and a movement cost 2 : R3 × R3 → R≥0. In
every round, a potentially adversarial cost function 5C is given to an online learner.
After observing the cost function, the learner chooses an action GC ∈ R3 and pays a
cost that is the sum of the hitting cost, 5C (GC), and the movement cost (also known
as the switching cost) 2(GC , GC−1). The online learner seeks to minimize its total cost
over all) rounds:

2>BC (�!�) =
)∑
C=1

5C (GC) + 2(GC , GC−1).

It is worth noting that, if there were no movement costs, e.g. 2(GC , GC−1) = 0, the
problem would be trivial – the learner would always pay the optimal cost simply
by picking the action that minimizes the hitting cost in each round, i.e., by setting
GC = arg minG 5C (G). A nonzero movement cost is key to making this problem
challenging. Since movement cost couples the learner’s decisions across rounds,
the optimal action of the learner depends on unknown future costs.

There is a long literature on SOCO, both focusing on algorithmic questions, e.g.,
[8, 9, 24, 41], and applications, e.g., [25–28]. The variety of applications studied
means that a variety of assumptions about the movement costs have been considered.
Motivated by applications to data center capacity management, movement costs
have often been taken as the ℓ1 norm, i.e., 2(G1, G2) = ‖G1 − G2‖1, e.g. [8, 9].
However, recently, other norms have been considered and the setting of squared ℓ2

movement costs has gained attention due to its use in online regression problems
and connections to LQR control, among other applications (see [24, 29, 55]).

In this paper, we focus on modeling the movement cost by the squared ℓ2 norm,
i.e. 2(G2, G1) = 1

2 ‖G2 − G1‖22 and the hitting cost by <-strongly convex function, as
defined below:

8

Definition 2.1. A real-valued function 6 : R= → R is called ℓ-strongly smooth if

6(H) ≤ 6(G) + 〈∇6(G), H − G〉 + ℓ
2
‖H − G‖22

and is called <-strongly convex if

6(H) ≥ 6(G) + 〈∇6(G), H − G〉 + <
2
‖H − G‖22

for any G, H ∈ R=. Here 〈·, ·〉 denotes the standard inner product of vectors.

Finally, it is worth noting that there are more general models involving the Bregman
divergence for movement costs and quasi-convex hitting costs, and results under this
setting can be found in [42].

Competitive Ratio and Regret
The typical reference point in the analysis of SOCO algorithms is the offline optimal,
which the best solution from an omniscient player who has full knowledge of all
future cost functions { 5C} at the start. Specifically, the cost of the offline optimal is
defined as

2>BC ($%)) = min
G1...G)

)∑
C=1

5C (GC) + 2(GC , GC−1).

Since it is clearly impossible for an online player to match the offline optimal, our
primary goal is to design online algorithms that nearly match the performance of the
offline optimal algorithm. The competitive ratio is a common metric to measure the
performance of SOCO algorithms. It is the worst-case ratio of the online learner’s
total costs versus the offline optimal costs. More precisely, it is defined as

sup
51... 5)

2>BC (�!�)
2>BC ($%)) .

Another important performance measure of interest is the regret. The regret com-
pares the cost of the online learner to the static optimal, which is best solution
without any movement. More precisely, it is defined as:

2>BC (�!�) − min
G∈R3

)∑
C=1

5C (G)

A natural generalization of the regret is to allow a movement budget for the offline
solution. This motivates us to define the !-constrained dynamic regret:

2>BC (�!�)− min
G1,...,G)

)∑
C=1

5C (GC) + 2(GC − GC−1)

9

Algorithm 1 Greedy Algorithm
1: procedure Greedy(5C , GC−1) ⊲ Procedure to select GC
2: EC ← arg minG 5C (G)
3: GC ← EC
4: return GC

s.t.
)∑
C=1
‖GC − GC−1‖ ≤ !

The desirable performance of an online algorithm is typically constant competitive-
ness or sublinear regret, which respective mean that the competitive ratio is bounded
above by a constant or the regret is >()) with respect to the total time) . While regret
and competitive ratio both compare the online learned against a solution made with
full knowledge of the cost functions, regret does not fully capture the dynamical
environment that is potentially adversarial. Hence, we will focus on the competitive
ratio of SOCO algorithms. Nonetheless, regret is an important metric and widely
used in the online algorithm community when the environment is (nearly) static [5].

2.2 Motivating Algorithms
Greedy Algorithm
One of the simplest algorithm is to choose the minimizer EC = arg minG 5C (G) at
every time step (see Algorithm 1).

In the extreme case where the switching cost 2C is zero, then the greedy algorithm
is equivalent to the offline optimal. But when there is a switch cost, the greedy
algorithm may incur a large movement when the minimizer of successive cost
functions 5C are far away. This is potentially problematic when the cost functions are
very “flat” and themovement cost dominates. But surprisingly, the greedy algorithm
can still perform quite well.

Theorem 2.1. Consider hitting cost functions that are <-strongly convex with re-
spect to ℓ2 norm and movement costs given by 1

2 ‖GC − GC−1‖22. The greedy algorithm
is (1 + 4

<
)-competitive.

Note that Theorem 2.1 has competitive ratio of 1 as the strong convexity parameter
< approaches infinity. This makes sense since we can ignore movement costs when
the cost functions are very steep. Also, it is worth noting that the greedy algorithm
is not constant competitive in many other settings with different classes movement
and hitting cost functions.

10

Algorithm 2 Online Balanced Descent (OBD)
1: procedure OBD(5C , GC−1) ⊲ Procedure to select GC
2: EC ← arg minG 5C (G)
3: Let G(ℓ) = ∏

 ℓC
(GC−1). Initialize ℓ = 5C (EC). Here ℓC = {G | 5C (G) ≤ ℓ}.

4: Increase ℓ. Stop when 2(G(ℓ), GC−1) = W(ℓ − 5C (EC)).
5: GC ← G(ℓ).
6: return GC

Online Balanced Descent
Online Balanced Descent (OBD) was a major breakthrough in the performance of
SOCO algorithm. OBD is formally defined in Algorithm 2. OBD works because
the level sets of the cost functions 5C are convex. As illustrated in Figure 2.1, in every
round, OBD projects the previously chosen point GC−1 onto a level set of the current
cost function 5C , which is chosen so that the ratio between the hitting costs and
movement costs are kept constant. Intuitively, OBD maintain a “balance” between
the movement costs and hitting costs of the learner by a fixed balancing ratio which
we shall call W. For any fixed W, the desired level set can then be efficiently selected
via binary search. With an appropriate choice of W, OBD ensures that neither the
movement nor hitting cost is too high, and thus both can be compared to the offline
optimal and satisfy a constant competitive ratio.

OBD has a remarkable semblance to other techniques based on gradient descent or
mirror descent [41], but it notably differs that the direction of each update step is
determined by the gradient of the current cost function 5C rather than the previous
cost function 5C−1. A more close analog of OBD is a proximal algorithm with a
dynamic step size [56]. Similar to proximal algorithms, OBD iteratively projects the
previously chosen point onto a level set of the cost function. And unlike traditional
proximal algorithms, OBD selects the level set adaptively in each round to carefully
maintain a balance between the hitting and movement costs. This interpretation will
become significant when we introduce the Regularized OBD (R-OBD), in which
we shift from the original geometry interpretation of OBD and instead consider it
algebraically as a proximal algorithm. We will add a special regularization term in
the objective of R-OBD to help enforce a “greedier” behavior of the online learner.

OBD was first introduced in [41] and was shown to have a constant and dimension-
free competitive ratio under the model where the movement costs are the ℓ2 norm
and the hitting costs are locally polyhedral, i.e. grow at least linearly with respect to
the distance from the minimizer. This was the first SOCO algorithm with constant

11

Figure 2.1: One step of the OBD algorithm. The dashed lines denote the level sets
of the current hitting cost function ℎC . The green arrow denotes the direction of the
movement. The decision point GC is chosen as the projection onto an appropriately
chosen level sets, which is shaded solid.

competitive beyond one-dimensional action spaces and free of predictions on future
cost functions. And the same paper had shown that a variation of OBD that uses
a different balance condition can achieve $ (√)!) !-constrained regret for locally
polyhedral hitting costs. And in [24], it was also shown that OBD also has a
constant, dimension-free competitive ratio when movement costs are the squared
ℓ2 norm and hitting costs costs are strongly convex. It is worth noting that [3] had
shown that the competitive ratio of any online learner must grow exponentially with
respect to dimension if the hitting costs can be arbitrary convex functions. But, the
results regarding OBD show that having polyhedral or strong convex hitting cost
functions are sufficient conditions to deliver constant competitive SOCO algorithms,
independent of dimensions.

Theorem 2.2. Consider hitting cost functions that are <-strongly convex with re-
spect to ℓ2 norm and movement costs given by 1

2 ‖GC − GC−1‖22. The OBD algorithm
is (3 +$ (1/<))-competitive under the choice W = 2 + 10

<
.

While OBD seemingly fails to match the performance of the greedy algorithm in
the limit of < →∞, we will see in the next section that the performance as < → 0+

is of greater concern and OBD can potentially outperform the greedy algorithm in
this case.

2.3 Lower Bound
In this section, we focus on finding the least competitive ratio that can be attained
by online algorithms for SOCO and to illustrate the need for improving upon OBD.
Generally, [41] proves that the competitive ratio of any online algorithm is bounded

12

below by Ω(
√
3), where 3 is the dimension of the action space. However, there are

many problems of interests where better performance is possible. In particular, from
the previous section, we know that when the hitting costs are <-strongly convex,
OBD provides a dimension-free competitive ratio of 3 + $ (1/<). We are also
interested in knowing whether it is possible to achieve better performance. Before
[42], there are no known lower bounds on the competitive ratio of SOCO algorithms
in the strongly convex hitting cost setting. So, we will present the lower bounded
from [42] that in turn motivates an optimal SOCO algorithm in this setting.

We first bring a general lower bound on the competitive ratio of SOCO algorithms
when the hitting costs are strongly convex and the movement costs are the quadratic
ℓ2 norm. And then we present lower bounds specific to the greedy algorithm and
OBD, demonstrating that there exists a gap between the competitive ratios of the
two algorithms and the general lower bound. In the next section, we will bring
together ideas from the greedy algorithm and OBD to match our general lower
bound, including constants.

We begin by stating the first lower bound for strongly convex hitting costs in SOCO.

Theorem 2.3. Consider hitting cost functions that are <-strongly convex with re-
spect to ℓ2 norm and movement costs given by 1

2 ‖GC − GC−1‖22. Any online algorithm
must have a competitive ratio at least 1

2

(
1 +

√
1 + 4

<

)
.

The proof of Theorem 2.3 can be found in Appendix A.2. Since a quadratic function
is convex, we observe that, reaching a target point via one large step is incurs more
movement cost than reaching it by takingmany small steps. Specifically, we consider
a scenario on the real line where the online learner starts at G = 0 and we first reveal a
long sequence of “flat” cost functions whose minimizers are at zero. At this point, an
online learner cannot move; otherwise we can terminate the game immediately and
the resulting competitive ratio is infinity. Then, we reveal a very steep cost function
with minimizer at G = 1 which forces the online learner to move very close to 1. In
contrast, an offline algorithm with a complete knowledge of the cost functions can
split the journey to G = 1 over many smaller steps. Since wemake the cost functions,
except for the last round, to be as flat as possible, the offline algorithm’s saving in
movement cost overshadows the additional hitting costs it had to incur, resulting in
a large competitive ratio.

Importantly, the lower bound in Theorem 2.3 highlights the dependence of the
competitive ratio on <, the strong convexity parameter. Because we cannot reveal

13
xt−1

xt x∗
t

x∗
t−1

xt+1

x∗
t+1

O

xt+2

x∗
t+2

h

h

ℓ

ℓ

ℓ

Figure 2.2: Counterexample used to prove Theorem 2.5. In the figure, {GC} are the
choices of OBD and {G∗C } are the choices of the offline optimal. This figure is taken
from [24].

flat cost functions when < is large, the example we just described works the best in
the limit as < approaches 0. So we shall take a particular interest in the asymptotic
behavior of the competitive ratio of SOCO algorithms for small <. The general
lower bound is on the order of Ω(<−1/2) as < → 0+ and we will see that both the
greedy algorithm and OBD exhibit worse competitive ratio in this case. The proofs
of these statements can be found in Appendices A.3 and A.4.

Theorem 2.4. Consider hitting cost functions that are <-strongly convex with re-
spect to ℓ2 norm and movement costs given by 1

2 ‖GC − GC−1‖22. The greedy algorithm
must have a competitive ratio at least 1 + 4

<
.

Theorem 2.4 also shows that the competitive ratio derived in Theorem 2.1 is tight.
And next we examine the lower bound of OBD.

Theorem 2.5. Consider hitting cost functions that are <-strongly convex with re-
spect to ℓ2 norm and a movement costs given by 1

2 ‖GC − GC−1‖22. For any fixed W, the
competitive ratio of OBD is Ω(<− 2

3) as < → 0+.

The proof of Theorem 2.5 drew inspiration from the lower bound of projection-
based algorithm in the CBC problem [3]. The OBD algorithm is similar to CBC in
the sense that once the learner chooses a particular level set, it will take a decision
point on this level set, which is convex. In the CBC example, the authors chose a
center away from the starting point and a convex shape for the algorithm to project

14

onto. Then for each round, the convex shape is rotated around the center so the
decision points of a projection-based algorithm would trace a circle around the
center. Meanwhile, an offline player would move to the center in the first round and
incur no further movement cost.

While this example cannot be directly applied to OBD because the algorithm has
some level of freedom in picking the convex shape in according to the cost functions,
we can still construct a very similar scenario. We will instead present a sequence
of cost functions whose minimizers are very close to each other. This way, we
are allowed to replicate the behavior that the online learner fails to move close to
the minimizers. Then an offline solution that follow the minimizers would pay a
moderate movement cost upfront and incur lower hitting and movement costs for all
later rounds.

As shown in Theorems 2.4 and 2.5, the greedy algorithm and OBD can achieve
competitive ratio no better than Ω(<−1) and Ω(<−2/3) for small <, respectively.
We have two takeaways from these results. First, although we were not able to show
tighter competitive ratio bounds for OBD, this algorithm is still promising that it can
potentially outperform the greedy algorithm. Second, if the general lower bound
is in fact achievable, then there is gap between the then-state-of-art OBD and the
general lower bound. And in the next section, we shall iterate on the ideas of OBD
and close this gap.

2.4 Optimal Algorithm: Regularized Online Balanced Descent
We first observe that one weakness in OBD is its failure to follow the minimizer
of the cost functions and thus accumulate a large hitting cost. Additionally, despite
its simplicity, the greedy algorithm does very well in the setting of strongly convex
hitting cost and squared ℓ2 normmovement cost. So a natural extension to OBD is to
add a greedy component. The easiest way is to pick a point between OBD’s decision
point and the minimizer of the current cost function. This formulation, which we
call greedy OBD (G-OBD), is shown to perform better than the classical OBD
algorithm [42]. However, G-OBD relies on many geometric properties specific to
the Euclidean norm and requires repeated projections. So, it is difficult to implement
and computationally inefficient in practice. However, this idea (see Figure 2.3) is
still essential to the development of our optimal algorithm, which would be stated
under a local view of OBD.

Here, we present a local view of OBD that is computationally simpler and leads to

15

Figure 2.3: An (approximate) geometric interpretation of the R-OBD algorithm. In
comparison to OBD (green arrow), R-OBD (orange) incorporates a greedy compo-
nent (bleu arrow) to move close to the minimizer of the cost function 5C . Note that
this diagram is an intuitive, not a faithful representation of R-OBD, as the actual
algorithm formulated the ideas we described in a purely algebraic manner.

an algebraic counterpart to G-OBD. We consider the optimization problem

GC = arg min
G

5C (G) + _1
2
‖G − GC−1‖2 .

While it is not immediately clear on how this is related to OBD, we observe the first
order optimality condition:

∇ 5C (GC) + _1(GC − GC−1) = 0.

Therefore, this optimization problem is equivalent to a projection to some level set
of 5C , where the particular level set is controlled by the parameter _1.

To incorporate a greedy component to the local viewofOBD,we add a regularization
term to the optimization problem. Let EC = arg minG 5C (G) be the minimizer of the
current cost function 5C , then we additionally account for the distance to EC as part
of the objective function:

GC = arg min
G

5C (G) + _1
2
‖G − GC−1‖2 + _2

2
‖G − EC ‖2 .

This describes the update step of the regularized OBD (R-OBD) (see Algorithm 3.
And we shall show that its competitive ratio improves from that of OBD and the
greedy algorithm. The proof of this result can be found in Appendix A.5.

Theorem 2.6. Consider hitting cost functions that are <-strongly convex with re-
spect to ℓ2 norm and movement costs given by 1

2 ‖GC − GC−1‖22. There exists a choice
_1, _2 such that the competitive ratio of Regularized OBD matches the lower bound

proved in Theorem 2.3, i.e. the competitive ratio is at most 1
2

(
1 +

√
1 + 4

<

)
.

16

Algorithm 3 Regularized OBD (R-OBD)
1: procedure R-OBD(5C , GC−1) ⊲ Procedure to select GC
2: EC ← arg minG 5C (G)
3: GC ← arg minG 5C (G) + _12(G, GC−1) + _22(G, EC)
4: return GC

Not only does the local view leads to a computationally simpler algorithm, but we
proved that R-OBD matches the constant factors in Theorem 2.3 precisely, not just
asymptotically. Further, this algorithm can macth the lower bound not just in the
setting where movement costs are the squared ℓ2 norm, but also in the case where
movement costs are Bregman divergences [42].

17

C h a p t e r 3

APPLICATION TO PREDICTIVE CONTROL

3.1 Model and Preliminaries
We consider a finite-horizon discrete-time online control problem with linear time-
varying (LTV) dynamics, time-varying costs, and disturbances, namely

min
G0:) ,D0:) −1

)∑
C=1
(5C (GC) + 2C (DC−1))

s.t. GC = �C−1GC−1 + �C−1DC−1 + FC−1, C = 1, . . . ,), (3.1)

G0 = G(0),

where GC ∈ R=, DC ∈ R<, and FC ∈ R= respectively denote the state, the control
action, and the disturbance of the system at time steps C = 1, . . . ,) , and G(0) ∈ R=
is a given initial state. Define the tuple oC := (�C , �C , FC , 5C+1, 2C+1).
We assume that the algorithm has access to the exact predictions of disturbances,
cost functions and dynamical matrices in the future : time steps (which are time-
varying); i.e., the sequence of actions and observations is

G0, o0, o1, . . . , o:−1, D0, o: , D1, o:+1, . . . , D)−:−1, o)−1, D)−: , D)−:+1, . . . , D)−1.

When there is no prediction (: = 0), the event sequence then becomes:

G0, D0, o0, G1, D1, o1, G2, . . . , G)−1, D)−1, o)−1, G) .

Often, experiments or observations on the dynamics can be conducted repeatedly
and consistently, so we may assume all predictions are exact. This prediction model
has been used in previous works like [25, 33, 43, 57], and is available in many
real-world applications such as disturbance estimation in robotics and frequency
regulation in power grids.

Assumptions
As is standard in studies of regret and competitive ratio in linear control problems,
we assume the cost functions are well-conditioned.

Assumption 3.1 (Well-conditioned Costs). The cost functions satisfy the following
constraints:

18

1. 5C (·) is < 5 -strongly convex for C = 1, . . . ,) , and ℓ 5 -strongly smooth for
C = 1, . . . ,) − 1.

2. 2C (·) is both <2-strongly convex and ℓ2-strongly smooth for C = 1, . . . ,) .

3. 5C (·) and 2C (·) are twice continuously differentiable for C = 1, . . . ,) .

4. 5C (·) and 2C (·) are non-negative, and 5C (0) = 2C (0) = 0 for C = 1, . . . ,) .

Note that assumptions (1) through (3) are quite common [6, 20, 24, 42, 57]. As-
sumption (4) is less common, but can be satisfied via re-parameterization without
loss of generality. Specifically, when the minimizers of state cost 5C and control cost
2C are nonzero, we may perform the transformation

G′C ← GC − arg min
G

5C (G), D′C ← DC − arg min
D

2C+1(D),

F′C ← FC + �C arg min
G

5C (G) + �C arg min
D

2C+1(D).

Additionally, it is crucial that the dynamical system can be steered from an arbitrary
initial state to an arbitrary final state via a finite sequence of permissible control ac-
tions. We call this the controllability of a dynamics. For linear time-invariant (LTI)
systems, the full-rankness of the controllability matrix completely characterizes the
reachability of the state space, which is generally used as a standard assumption for
analysis [44, 58, 59]. This can be stated analogously for LTV systems as follows.

Definition 3.2. For a dynamical system with linear time-varying dynamics GC =
�C−1GC−1+�C−1DC−1+FC−1, C = 1, . . . ,), the transition matrixΦ(C2, C1) ∈ R=×= (from
time step C1 to C2) is defined as

Φ(C2, C1) :=

�C2−1�C2−2 · · · �C1 if C2 > C1

� if C2 ≤ C1
,

and the controllability matrix " (C, ?) ∈ R=×(<?) is defined as

" (C, ?) :=
[
Φ(C + ?, C + 1)�C ,Φ(C + ?, C + 2)�C+1, . . . ,Φ(C + ?, C + ?)�C+?

]
.

The dynamical system is called controllable if there exists a constant 3 ∈ Z+, such
that the controllability matrix " (C, 3) is of full row rank for any C = 1, . . . ,) − 3.
The smallest such constant 3 is called the controllability index of the system.

19

Given the above definition, we can state the key assumption necessary for the
analysis of LTV systems. We use a slightly stronger assumption than being merely
controllable, which we refer to as (3, f)-uniform controllability. It is a natural
generalization of its counterpart for LTI systems (see Assumption 2 in [58], where
(3, f) is instead named as (ℓ, a)).

Assumption 3.3. There exists positive constants 0, 1, and 1′, such that

‖�C ‖ ≤ 0, ‖�C ‖ ≤ 1, and ‖�†C ‖ ≤ 1′

hold for all time steps C = 0, . . . ,) −1, where �†C denotes the Moore–Penrose inverse
of matrix �C . Furthermore, there exists a positive constant f such that

fmin (" (C, 3)) ≥ f

holds for all time steps C = 0, . . . ,) − 3, where 3 denotes the controllability index.

Note that Assumption 3.3 implies fmin(" (C, ?)) ≥ f for all ? ≥ 3 because ap-
pending more columns to a matrix with full row rank will not reduce its minimum
singular value.

The LTV setting we consider is more general than the settings which existing results
on regret and competitive ratio have assumed [15, 20, 43, 44]. We highlight the
generality of this setting with the following example applications.

Example 3.1 (Trajectory tracking in LTV systems with well-conditioned costs).
Consider a trajectory tracking problem with LTV dynamics and well-conditioned
costs, which generalizes the standard linear quadratic tracking problem in [43, 60]
with LTI dynamics and quadratic costs. We adopt LTV dynamics GC+1 = �CGC +
�CDC + FC and general well-conditioned cost functions 5C (·), 2C (·) (see Assumption
3.1). With the desired trajectory 31:) , we consider a new state G̃C := GC − 3C and a
new disturbance F̃C := FC + �C3C − 3C+1. Then the problem problem naturally fits
into our setting with the new state and disturbance. Note that predictive control with
LTV dynamics is practical in nonlinear systems [49, 61] because the nonlinearity
could be well approximated by LTV models [61].

Example 3.2 (Power grid frequency regulation). Consider the frequency regulation
problem in [62], where state G = [\>, l>]> represent the status of a power plant,
and power generation ?in ∈ R= is the control action. The continuous-time dynamics

20

is given by [¤\
¤l

]
︸︷︷︸
¤G(C)

=

[
0 �

−" (C)−1! −" (C)−1�

]
︸ ︷︷ ︸

�̂(C)

[
\

l

]
︸︷︷︸
G(C)

+
[

0
" (C)−1

]
︸ ︷︷ ︸

�̂(C)

?in︸︷︷︸
D(C)

.

Here " (C) denotes the rotational inertia matrix, which is time-varying and is deter-
mined by the proportion of renewable power in total power generation at time C; !
and � are known system parameters. Using standard discretization techniques, we
can formulate a discrete-time linear time-varying system GC+1 = �CGC + �CDC + FC ,
where �C and �C are determined by �̂(C) and �̂(C). The cost functions are quadratic
costs which penalizes frequency deviation [62]. Note that the controllers have ac-
curate predictions of �C and �C in the near future because " (C) can be accurately
predicted [63, 64].

Predictive Control
We study a classical predictive control (PC) algorithm inspired by model predictive
control (MPC), in which an algorithm receives the dynamics and disturbances of the
next : time steps (where : is called the prediction window), calculates the optimal
solution given these predictions, and then applies the first control action of the
optimal solution. We denote the PC algorithm with prediction window : as %�: .

Formally, At time step C <)−: , %�: solves the optimization problem k̃:C (GC , FC:C+:−1; �).
Since we need to consider horizon lengths other than : , for arbitrary ? ≥ 1 and time
step C, we define the optimization problem k̃

?
C (G, Z ; �) as

k̃
?
C (G, Z ; �) := arg min

H0:? ,E0:?−1

?∑
g=1

5C+g (Hg) +
?∑
g=1

2C+g (Eg−1) + � (H:)

s.t. Hg = �C+g−1Hg−1 + �C+g−1Eg−1 + Zg−1, g = 1, . . . , ?, (3.2)

H0 = G,

where G ∈ R= is the initial state, Z ∈ (R=)? (indexed by 0, . . . , ?−1) is a sequence of
disturbances, and � : R= → R is a terminal cost function regularizing the final state.
Here we additionally require that the terminal cost � has the form � (G) = U(‖G‖),
where U : R≥0 → R≥0 is a convex K-function (i.e. continuous increasing function
with 0 at the origin) that is twice continuously differentiable. For each time step
g = 1, . . . , : , Hg ∈ R= is the predictive state, and Eg ∈ R< is the predictive control
action. To make the algorithm well-defined, at time step C =) − : , %�: can finish

21

Algorithm 4 Predictive Control (%�:)
1: for C = 0, 1, . . . ,) − : − 1 do
2: Observe current state GC and receive predictions oC:C+:−1.
3: Solve and commit control actions DC := k̃:C (GC , FC:C+:−1; �)E0 .
4: At time step C =) − : , observe current state GC and receive predictions oC:)−1.
5: Solve and commit control actions DC:)−1 := k̃:C (GC , FC:)−1; 0)E0::−1 .

the rest of the trajectory optimally by committing D)−::)−1 = k̃(G)−: , F)−::)−1; 0).
The pseudocode of predictive control is given in Algorithm 4.

It is also desirable to study the behavior of predictive control under some fixed
terminal point. So, for prediction length ? ≥ 1 and time step C, we define an
auxiliary optimization problem with a strict terminal constraint H? = I as follows:

k
?
C (G, Z , I) := arg min

H0:? ,E0:?−1

?∑
g=1

5C+g (Hg) +
?∑
g=1

2C+g (Eg−1)

s.t. Hg = �C+g−1Hg−1 + �C+g−1Eg−1 + Zg−1, g = 1, . . . , ?, (3.3)

H0 = G, H? = I,

where the optimal value is denoted by]?C (G, Z , I).
Throughout the paper, we use {(GC , DC)})C=1 to denote the trajectory of predictive
control, and use {(G∗C , D∗C)})C=1 to denote the offline optimal trajectory (i.e., the optimal
solution of (3.1)). In addition to the notions of strongly convex/strongly smooth
functions, competitive ratio and regret we defined in the previous chapter, we will
also use some standard notation in linear algebra. In particular, we use vector 2-
norms and inducedmatrix 2-norms throughout this paper unless otherwise specified.

Definition 3.4. We use the follow convention on linear algebra:

1. ‖·‖ denotes the (Euclidean) 2-norm for vectors and the induced 2-norm for
matrices:

‖E‖ =
√
E2

1 + E2
2 + · · · + E2

=, E ∈ R=

‖�‖ = sup
E∈R=\{0}

‖�G‖
‖G‖ , � ∈ R

<×=;

2. f(�) is the collection of singular values of a matrix �, also known as the
singular spectrum;

3. fmin(�) denotes the smallest singular value of a matrix �;

4. � � 0 indicates that a matrix � is positive semi-definite.

22

3.2 Relation to Online Convex Optimization
In this section we seek to study how much the solutions to (3.2) and (3.3) change
with respect to some perturbations to the initial/terminal states and the disturbance
sequence. This perturbation-based approach is related to the concept of incremental
stability defined in [65], but not exactly the same because we consider the optimal
trajectory in a finite horizon whereas the incremental stability focuses on asymptotic
behavior over an infinite horizon. The key perturbation bound result we present in
this section is Theorem 3.5, which states that if the target variable we are concerned
with is the ℎ-th predictive state/control input, while the perturbation occurs at the
g-th time step, then the impact on the target variable is be exponentially small with
respect to the time difference |ℎ − g |.
Proving such a result directly is challenging because of the complexity of the LTV
dynamical constraints in (3.2) and (3.3). Thus, we develop a novel reduction from
LTV systems to fully-actuated systems, i.e., systems where the controller can steer
the system to any state in the whole space R= freely at every time step. This special
case can be stated as a SOCO problem, which we discussed in the previous chapter.
We exploit the controllability of the dynamics to analyze the LTV system in chunks
of 3 time steps. A sequence of 3 time steps combined together can be thought
as a fully-actuated system and thus we can formulate a SOCO problem, which is
(1/3)-times as long as the original LTV system.

In the context if LTV system, the corresponding SOCO problem is an online game
played by an agent against an adversary: at each time step C, the adversary reveals a
hitting cost function 5̂C , a switching cost function 2̂C , and a disturbance (or exogenous
input) F̂C . The agent picks a decision point ĜC ∈ R=, and incurs a hitting cost 5̂C (ĜC)
and a switch cost 2̂C (ĜC , ĜC−1, F̂C−1). The agent seeks to minimize the total cost it
incurs throughout the game. The offline optimal cost is defined as the minimum
cost if the agent has full knowledge of the costs and disturbances at the start of the
game. Note that the switching cost also depends on the disturbances, since it would
affect the actions of the controller.

More formally, observe that when the initial state Ĝ0, terminal state Ĝ?, and the
disturbances F̂ are given, the optimal ?-step trajectory of SOCO can be obtained
from the unconstrained optimization problem

k̂(Ĝ0, F̂, Ĝ?) := arg min
Ĝ1:?−1

?−1∑
g=1

5̂g (Ĝg) +
?∑
g=1

2̂g (Ĝg, Ĝg−1, F̂g−1), (3.4)

where the objective is a convex function of the decision variables Ĝ1:?−1.

23

We first present the following result due to [54], which bounds how much the
perturbations of the system parameters (initial state, terminal state, and disturbances)
impact the offline optimal solution.

Theorem 3.3. Given a ?-step SOCO problem with parameters (Ĝ0, F̂, Ĝ?). Assume
5̂g : R= → R is `-strongly convex, 2̂g : R= × R= × RA → R is convex and ℓ-strongly
smooth, and both are twice continuously differentiable for g = 1, . . . , ?, then

k̂(Ĝ0, F̂, Ĝ?)ℎ − k̂(Ĝ′0, F̂′, Ĝ′?)ℎ

≤ �0

(
_ℎ−1

0

Ĝ0 − Ĝ′0

 + ?−1∑
g=0

_
|ℎ−g |−1
0

F̂g − F̂′g

 + _?−ℎ−1
0

Ĝ? − Ĝ′?

)
for all 1 ≤ ℎ ≤ ? − 1, where �0 = (2ℓ)/` and _0 = 1 − 2 ·

(√
1 + (2ℓ/`) + 1

)−1
.

As a remark, Theorem 3.3 does not require the hitting cost 5̂g to be strongly smooth,
nor the switching cost 2̂g to be strongly convex. This makes the assumptions on the
SOCO costs 5̂g, 2̂g weaker than that of the LTV costs 5g, 2g as defined in (3.1).

We now build upon Theorem 3.3 and derive an exponentially-decaying perturbation
result for LTV systems by reducing it to SOCO. As we have previously discussed,
LTV systems are more difficult than SOCO because the dynamics prevent the online
agent from picking the next state GC+1 freely at a given state GC . We overcome this
obstacle by redefining the decision points as illustrated in Figure 3.1. Specifically,
given state GC at time step C as the last decision point, we then ask the online agent to
decide state GC+3 at time step (C+3) rather than GC+1 at time step (C+1). Since 3 is the
controllability index, GC+3 can be picked freely from the whole space R= regardless
of GC . We also utilize the principle of optimality, e.g. if H0:: , E0::−1 is the optimal
solution to k:C (G, b, I), then H8: 9 , E8: 9−1 is the optimal solution to k 9−8

C+8 (H8, b8: 9−1, H 9)
for any 0 ≤ 8 < 9 ≤ : . Therefore, the trajectory between time C and (C + 3) can
be recovered by solving k3C (GC , FC:C+3−1, GC+3). So we are able to formulate a valid
SOCO problem on the sequence of time steps C, C + 3, C + 23,

Naturally, the hitting cost at time step (C + 3) remains the same, while the switching
cost becomes b3C (GC , FC:C+3−1, GC+3), where the function b ?C is defined as

b
?
C (G, Z , I) :=]?C (G, Z , I) − 5C+? (I). (3.5)

Unlike the switching costs in [24, 36, 41, 42] which are explicitly defined as the
ℓ2-distance or squared ℓ2-distance, the switching cost b ?C here is defined implicitly as

24

ξd
d
(xd , wd:2d−1 , x2d)

xd

fd (xd)

ud
cd (ud)

xd+1

fd+1(xd+1)

ud+1
cd+1(ud+1)

xd+2

fd+2(xd+2)

ud+2
cd+2(ud+2)

· · · u2d−1
c2d−1(u2d−1)

x2d

f2d (x2d)

x̂0

ĉ1(x̂1 , x̂0 , ŵ0)
q

ξd
0
(x0 , w0:d−1 , xd)

· · · x̂1

f̂1(x̂1)
q

fd (xd)

ĉ2(x̂2 , x̂1 , ŵ1)
q

ξd
d
(xd , wd:2d−1 , x2d)

· · · x̂2

f̂2(x̂2)
q

f2d (x2d)

· · · x̂v−1
f̂v−1(x̂v−1)
q

f(v−1)d (x(v−1)d)

ĉv (x̂v , x̂v−1 , ŵv−1)
q

ξd(v−1)d (x(v−1)d , w(v−1)d:vd−1 , xvd)

· · · x̂v

Figure 3.1: Illustration of the reduction from LTV to SOCO. Here we consider a
simple example where C = 0 and ? = E3. At time step 0, the agent cannot steer the
system to an arbitrary target state at the next time step due to dynamical constraints.
However, given (3, f)-uniform controllability, the controller is able to enforce an
arbitrary target state after 3 time steps, which enables the transformation to a SOCO
problem with a decision point in every 3 time steps. This figure is taken from [54].

the optimal value of an optimization problem. Lemma 3.4 shows that the switching
cost defined in (3.5) satisfies the requirements of Theorem 3.3, which allows us to
obtain the desired perturbation bound in Theorem 3.5.

Lemma 3.4. Under Assumption 3.1 and 3.3, for integer ? ≥ 3, we have

1. k?C (G, Z , I) is !1(?)-Lipschitz in (G, Z , I);

2. b ?C (G, Z , I) is convex and !2(?)-strongly smooth in (G, Z , I).

Here !1(?) = � (?) (1 + ℓ · � (?)/<2) , !2(?) = ℓ · � (?)2 + ℓ2 · � (?)4/<2, where
ℓ = max(ℓ 5 , ℓ2),

� (?) =


$ (03?) if 0 > 1;

$ (?2) if 0 = 1;

$ (1) if 0 < 1.

In Lemma 3.4, we use $ (·) to hide quantities 0, 1, and 1/f; the precise expression
of� (?) and the proof of Lemma 3.4 can be found in [54]. Using the reduction from
LTV to SOCO, we obtain a perturbation bound for the LTV systems (3.2) and (3.3)
in Theorem 3.5, the proof of which can be found in Appendix B.1.

25

Theorem 3.5. Consider the optimization problem defined in (3.2) and (3.3) and
with a horizon length ? ≥ 3. Under Assumptions 3.1 and 3.3, given any (G, Z , I)
and (G′, Z ′, I′),

k̃?C (G, Z ; �)Hℎ − k̃?C (G′, Z ′; �)Hℎ

 ≤ � (
_ℎ ‖G − G′‖ +

?−1∑
g=0

_ |ℎ−g |

Zg − Z ′g

)

k?C (G, Z , I)Hℎ − k?C (G′, Z ′, I′)Hℎ

 ≤ � (
_ℎ ‖G − G′‖ +

?−1∑
g=0

_ |ℎ−g |

Zg − Z ′g

 + _?−ℎ ‖I − I′‖)

hold for all time steps C. Here we define !0 = max3≤?≤23−1 !2(?), and the constants
are given by

_ =

(
1 − 2

(√
1 + (2!0/<2) + 1

)−1
) 1

23−1

, � =
2!0
<2
·
(
1 − 2

(√
1 + (2!0/<2) + 1

)−1
)−1

.

Theorem 3.5 allows us to bound the distance between any two trajectories so long
as they can be expressed as the optimal solutions of the optimization problems (3.2)
or (3.3). For example, to bound the norm of each state in the predictive trajectory
k̃
?
C (G, Z ; �), we only need to set G′ = 0, Z ′ = 0 in the first inequality because an

all-zero trajectory can be expressed as k̃?C (0, 0; �).

Corollary 3.6 (Stability of the Optimal Trajectory). For the predicted trajectory
found by solving (3.2) with prediction window ? ≥ 3, the norm of the ℎ-th predictive
state is bounded above by

k̃?C (G, Z ; �)Hℎ

 ≤ � (
_ℎ ‖G‖ +

?−1∑
g=0

_ |ℎ−g | ‖Zg‖
)
≤ �_ℎ ‖G‖ + 2�

1 − _ sup
g

‖Zg‖ ,

where �, _ are the same constants as in Theorem 3.5.

Another implication of Theorem 3.5 is the smoothness of the optimal cost of a ?-step
trajectory between the initial state G and the terminal state I. Intuitively, Corollary
3.7 implies that changing the initial/terminal state will not significantly affect the
optimal cost of a ?-step trajectory between them.

Corollary 3.7. For any time step C and integer ? that satisfies ? ≥ 3, function
]
?
C (·, Z , ·) satisfies that

]
?
C (G, Z , I) ≤ (1 + [)]?C (G′, Z , I′) +

!0 + ℓ 5
2

(
1 + 1

[

) (
‖G′ − G‖2 + ‖I′ − I‖2

)
,

∀G, G′, Z , I, I′, where !0 is the same constant as in Theorem 3.5.

26

3.3 Performance Guarantees
We now demonstrate the power of the perturbation approach in Section 3.2 by
obtaining bounds on regret and competitive ratio. The key intuition behind our
analysis is the following: at time step C, if the predictive controller with prediction
window : is given the knowledge of G∗C and G∗

C+: , it can fully recover the offline
optimal states and control inputs for the future : time steps, G∗

C+1:C+: and D
∗
C:C+:−1, from

k:C (G∗C , FC:C+:−1, G
∗
C+:). However, without the knowledge of the offline optimal states,

the predictive controller solves k:C (GC , FC:C+:−1, GC+:) instead, where GC+: is implicitly
determined by the :-th predictive state of k̃:C (GC , FC:C+:−1; �). We overcome this gap
with our perturbation approach (specifically, Theorem 3.5 and Corollary 3.6), which
allows us to bound the distance between the controller’s trajectory and the offline
optimal trajectory. Then we utilize Corollary 3.7 to convert bounds on the distance
between the trajectories to bounds on the cost %�: incurs.

Dynamic Regret
We first bound the dynamic regret of predictive control. For this analysis, a key ob-
servation is that the offline optimal trajectory is given by G∗ = k̃)0 (G0, F0:)−1; 0)H1:) .

Furthermore, with the principle of optimality, the optimal trajectory starting at time
step C with state GC is equivalent to the trajectory of predictive control with prediction
window () − C) and no terminal cost, i.e. k̃)−CC (GC , FC:)−1; 0)H1:) −C . To leverage this
idea, we first introduce Lemma 3.8, which bounds the change in decision points
against the change in prediction window : by using Theorem 3.5 and Corollary 3.6.

Lemma 3.8. For any positive integers ? ≥ ℎ and time step C <) − ?, we have

k̃?C (
GC , FC:C+?−1; �

)
Hℎ
− k̃?+1C

(
GC , FC:C+?; �

)
Hℎ

≤ 2�_?−ℎ

(
�_? ‖GC ‖ + 2�

1 − _ sup
0≤g≤)−1

‖Fg‖
)
.

By cumulatively summing up the bounded difference in Lemma 3.8 and applying
Theorem 3.5, we can show that at time step C, the distance between the predictive
controller’s next state GC+1 and k̃)−CC (GC , FC:)−1; 0)H1 is in the order of$ (_:), where _
is the decay rate of perturbation impact defined in Theorem 3.5. From here, we can
derive an$ (_:) upper bound on the distance between the algorithm’s trajectory and
the offline optimal trajectory. Furthermore, under Assumption 3.3, we can conclude
that at state GC and time step C, the predictive controller picks a near-optimal control
action DC . Combining these observations, along with Corollary 3.7, leads to the
regret bound in Theorem 3.9.

27

Theorem 3.9 (Dynamic Regret). Suppose ‖FC ‖ ≤ � for some constant � at each
time step C. Let _, �, !0 be the decay rate and constants defined in Theorem 3.5. If
prediction window : ≥ 3 is sufficiently large, such that

: ≥ 1 + log
(

1
1 − X · �

(
2�

1 − _ + _
)) /

log
(

1
_

)
(3.6)

for some constant X ∈ (0, 1), then the dynamic regret of %�: is upper bounded by

2>BC (%�:) − 2>BC ($%)) = $
((
� + _

: (‖G0‖ + �)
X

)2

_:) + _: ‖G0‖2
)
,

where the notation hides quantities 0, 1′, ℓ 5 , ℓ2, �, 1/(1 − _) and !0.

An implication of Theorem 3.9 is that to obtain >(1) dynamic regret when the norm
of disturbances are uniformly upper bounded, it suffices to use a prediction window
of length Θ(log)). This parallels the result shown in [43], although in a more
general setting.

Competitive Ratio
We now focus on bounding the competitive ratio of predictive control. Here, we
study a modification of the predictive control algorithm we have considered to this
point. In particular, we introduce a replan window ℎ, as defined in Algorithm 5
which we denote as %�(:,ℎ) . This style of algorithm has been considered previously
in the SOCO literature, where it has been shown to obtain a constant competitive
ratio in some settings where MPC does not [12].

Our analysis approach highlights why this modification is beneficial for competitive
ratio. Specifically, we obtain the competitive ratio bound by applying a potential
method built upon [66]. We define the potential function as the squared distance
between the algorithm’s trajectory and the offline optimal trajectory, i.e., qC (GC , G∗C) =

GC − G∗C

2

,which is standard in the literature [6, 24, 42]. We study how this potential
function changes over time. Intuitively, we need to upper bound the increment of
this potential function by the offline optimal cost to obtain a competitive ratio result.
To achieve this, the algorithm needs to “move closer” to the offline optimal trajectory
rather than “moving further away” from it. Recall that Theorem 3.5 gives that

k:C (GC , FC:C+:−1; �)Hℎ − k:C (G∗C , FC:C+:−1; �)Hℎ

 ≤ �_ℎ

GC − G∗C

 . (3.7)

When the algorithm commits the first predictive state (ℎ = 1), the left hand side
of (3.7) might be larger than

GC − G∗C

 when �_ > 1. Thus, the algorithm must

28

Algorithm 5 Predictive Control with Replan Window ℎ (%�(:,ℎ))
1: Suppose) = =0ℎ + <0, where integers =0 ≥ 0, : − ℎ + 1 ≤ <0 ≤ : .
2: for C = 0, ℎ, . . . , =0(ℎ − 1) do
3: Observe current state GC and receive predictions oC:C+:−1.
4: Solve and commit control actions DC:C+ℎ−1 := k̃:C (GC , FC:C+:−1; �)E0:ℎ−1 .
5: At time step C = =0ℎ, observe current state GC and receive predictions oC:)−1.
6: Solve and commit control actions DC:)−1 := k̃<0

C (GC , FC:)−1; 0)E0:<0−1 .

“wait” until the right hand side of (3.7) becomes smaller than

GC − G∗C

. This is

accomplished in Algorithm 5 via the replan window ℎ.

Our main result for this section is the following competitive ratio bound for %�(:,ℎ) .

Theorem 3.10. Let _, �, !0 be the decay rate and constants defined in Theorem 3.5.
InAlgorithm5, if the replanwindow ℎ satisfies ℎ ≥ max{log ((1 + Y)�)/log (1/_), 3}
for some positive constant Y, and the prediction window : satisfies : ≥ ℎ + 3, then
it has competitive ratio

1 +$
(
Y−1

(
!0 + ℓ 5
< 5

)1/2
· �_:−1−ℎ

)
,

where the notation only hides a small numerical constant.

Note that when the constant Y and the replan window ℎ are fixed, the competitive
ratio is on the order of 1 +$ (d:) as the length of prediction : tends to infinity. One
potential line of future work is to understand if the replan window is necessary. It
may be possible to either strengthen the constants given in Theorem 3.5 or improve
our proof approach so as to eliminate the requirement on ℎ.

29

BIBLIOGRAPHY

[1] Avrim Blum and Carl Burch. “On-line learning and the metrical task system
problem”. In: Machine Learning 39.1 (2000), pp. 35–58.

[2] Allan Borodin, Nathan Linial, and Michael E Saks. “An optimal on-line
algorithm for metrical task system”. In: Journal of the ACM 39.4 (1992),
pp. 745–763.

[3] Joel Friedman and Nathan Linial. “On convex body chasing”. In: Discrete &
Computational Geometry 9.3 (1993), pp. 293–321.

[4] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The multiplicative weights
update method: a meta-algorithm and applications”. In: Theory of Computing
8.1 (2012), pp. 121–164.

[5] Elad Hazan et al. “Introduction to online convex optimization”. In: Founda-
tions and Trends in Optimization 2.3-4 (2016), pp. 157–325.

[6] Guanya Shi et al. “Online Optimization with Memory and Competitive
Control”. In: Advances in Neural Information Processing Systems. 2020,
pp. 20636–20647.

[7] Chenkai Yu et al. “Competitive Control withDelayed Imperfect Information”.
In: arXiv preprint arXiv:2010.11637 (2020).

[8] Minghong Lin et al. “Dynamic right-sizing for power-proportional data
centers”. In: IEEE/ACM Transactions on Networking (TON) 21.5 (2013),
pp. 1378–1391.

[9] Nikhil Bansal et al. “A 2-competitive algorithm for online convex optimiza-
tion with switching costs”. In: Proceedings of the Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM). SchlossDagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

[10] Antonios Antoniadis and Kevin Schewior. “A tight lower bound for online
convex optimization with switching costs”. In: Proceedings of the Interna-
tional Workshop on Approximation and Online Algorithms. Springer. 2017,
pp. 164–175.

[11] Niangjun Chen et al. “Online convex optimization using predictions”. In:
ACM SIGMETRICS Performance Evaluation Review 43.1 (2015), pp. 191–
204.

[12] Niangjun Chen et al. “Using predictions in online optimization: Looking
forward with an eye on the past”. In: ACM SIGMETRICS Performance Eval-
uation Review 44.1 (2016), pp. 193–206.

30

[13] Sarah Dean et al. “Regret bounds for robust adaptive control of the linear
quadratic regulator”. In: Neural Information Processing Systems (NeurIPS).
2018.

[14] Naman Agarwal et al. “Online control with adversarial disturbances”. In:
International Conference on Machine Learning. PMLR. 2019, pp. 111–119.

[15] Naman Agarwal, Elad Hazan, and Karan Singh. “Logarithmic regret for
online control”. In: Advances in Neural Information Processing Systems 32
(2019).

[16] AlonCohen, TomerKoren, andYishayMansour. “Learning Linear-Quadratic
Regulators Efficiently with only

√
) Regret”. In: International Conference on

Machine Learning (ICML). 2019.

[17] Elad Hazan, ShamM Kakade, and Karan Singh. “The Nonstochastic Control
Problem”. In: Conference on Algorithmic Learning Theory (ALT). 2020.

[18] Dylan J Foster and Max Simchowitz. “Logarithmic regret for adversarial
online control”. In: arXiv preprint arXiv:2003.00189 (2020).

[19] Max Simchowitz and Dylan Foster. “Naive exploration is optimal for online
LQR”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 8937–8948.

[20] Yingying Li, Xin Chen, and Na Li. “Online Optimal Control with Linear
Dynamics and Predictions: Algorithms and Regret Analysis.” In: Advances
in Neural Information Processing Systems 32 (2019).

[21] Gautam Goel and Babak Hassibi. “The Power of Linear Controllers in LQR
Control”. In: Proceedings of Machine Learning Research vol TBD 1 (2020),
p. 13.

[22] Guanya Shi et al. “Beyond No-Regret: Competitive Control via Online Opti-
mization with Memory”. In: arXiv preprint arXiv:2002.05318 (2020).

[23] Gautam Goel and Adam Wierman. “An online algorithm for smoothed re-
gression and LQR control”. In: Proceedings of Machine Learning Research
89 (2019), pp. 2504–2513.

[24] Gautam Goel and Adam Wierman. “An Online Algorithm for Smoothed
Regression and LQR Control”. In: Proceedings of the Machine Learning
Research. Vol. 89. 2019, pp. 2504–2513.

[25] Minghong Lin et al. “Online algorithms for geographical load balancing”.
In: Proceedings of the International Green Computing Conference (IGCC).
2012, pp. 1–10.

[26] Taehwan Kim et al. “A decision tree framework for spatiotemporal sequence
prediction”. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 2015, pp. 577–586.

31

[27] Vinay Joseph and Gustavo de Veciana. “Jointly optimizing multi-user rate
adaptation for video transport overwireless systems:Mean-fairness-variability
tradeoffs”. In: Proceedings of the IEEE INFOCOM. 2012, pp. 567–575.

[28] S. Kim and G. B. Giannakis. “An Online Convex Optimization Approach
to Real-Time Energy Pricing for Demand Response”. In: IEEE Transactions
on Smart Grid 8.6 (2017), pp. 2784–2793. issn: 1949-3053. doi: 10.1109/
TSG.2016.2539948.

[29] Gautam Goel, Niangjun Chen, and AdamWierman. “Thinking fast and slow:
Optimization decomposition across timescales”. In: Proceedings of the IEEE
Conference on Decision and Control (CDC). 2017, pp. 1291–1298.

[30] Yingying Li, Guannan Qu, and Na Li. “Using predictions in online opti-
mization with switching costs: A fast algorithm and a fundamental limit”.
In: Proceedings of the American Control Conference (ACC). IEEE. 2018,
pp. 3008–3013.

[31] Masoud Badiei, Na Li, and Adam Wierman. “Online convex optimization
with ramp constraints”. In: IEEEConference onDecision andControl (CDC).
2015, pp. 6730–6736.

[32] Sebastien Bubeck et al. “Competitively Chasing Convex Bodies”. In: Pro-
ceedings of the ACM SIGACT Symposium on Theory of Computing (STOC).
2019.

[33] Yiheng Lin, Gautam Goel, and Adam Wierman. “Online optimization with
predictions and non-convex losses”. In: Proceedings of the ACM onMeasure-
ment and Analysis of Computing Systems 4.1 (2020), pp. 1–32.

[34] Nikhil Bansal et al. “Nested convex bodies are chaseable”. In: Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA). 2018, pp. 1253–
1260.

[35] CJ Argue et al. “A nearly-linear bound for chasing nested convex bodies”. In:
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA).
2019, pp. 117–122.

[36] CJ Argue, Anupam Gupta, and Guru Guruganesh. “Dimension-Free Bounds
for Chasing Convex Functions”. In: Conference on Learning Theory. PMLR.
2020, pp. 219–241.

[37] Yair Bartal et al. “A Polylog(N)-competitive Algorithm for Metrical Task
Systems”. In: Proceedings of the ACM Symposium on Theory of Computing
(STOC). 1997, pp. 711–719. isbn: 0-89791-888-6.

[38] Mark SManasse, Lyle AMcGeoch, and Daniel D Sleator. “Competitive algo-
rithms for server problems”. In: Journal of Algorithms 11.2 (1990), pp. 208–
230.

https://doi.org/10.1109/TSG.2016.2539948
https://doi.org/10.1109/TSG.2016.2539948

32

[39] Sebastien Bubeck et al. “k-server via multiscale entropic regularization”.
In: Proceedings of the ACM SIGACT Symposium on Theory of Computing
(STOC). 2018, pp. 3–16.

[40] Niv Buchbinder et al. “k-servers with a smile: online algorithms via projec-
tions”. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA). 2019, pp. 98–116.

[41] Niangjun Chen, Gautam Goel, and AdamWierman. “Smoothed Online Con-
vex Optimization in High Dimensions via Online Balanced Descent”. In:
Proceedings of Conference On Learning Theory (COLT). 2018, pp. 1574–
1594.

[42] Gautam Goel et al. “Beyond online balanced descent: An optimal algorithm
for smoothed online optimization”. In: Advances in Neural Information Pro-
cessing Systems 32 (2019), pp. 1875–1885.

[43] Chenkai Yu et al. “The Power of Predictions in Online Control”. In: Advances
in Neural Information Processing Systems 33 (2020).

[44] Runyu Zhang, Yingying Li, and Na Li. “On the Regret Analysis of Online
LQR Control with Predictions”. In: arXiv preprint arXiv:2102.01309 (2021).

[45] Carlos E Garcia, DavidM Prett, andManfredMorari. “Model predictive con-
trol: Theory and practice—A survey”. In: Automatica 25.3 (1989), pp. 335–
348.

[46] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for
iterative tasks. a data-driven control framework”. In: IEEE Transactions on
Automatic Control 63.7 (2017), pp. 1883–1896.

[47] Milan Korda and Igor Mezić. “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control”. In: Automatica
93 (2018), pp. 149–160.

[48] FrankAllgöwer and Alex Zheng.Nonlinear model predictive control. Vol. 26.
Birkhäuser, 2012.

[49] Paolo Falcone et al. “A linear time varying model predictive control ap-
proach to the integrated vehicle dynamics control problem in autonomous
systems”. In: 2007 46th IEEE Conference on Decision and Control. IEEE.
2007, pp. 2980–2985.

[50] Moritz Diehl, Rishi Amrit, and James B Rawlings. “A Lyapunov function for
economic optimizing model predictive control”. In: IEEE Transactions on
Automatic Control 56.3 (2010), pp. 703–707.

[51] David Angeli, Rishi Amrit, and James B Rawlings. “On average performance
and stability of economic model predictive control”. In: IEEE transactions
on automatic control 57.7 (2011), pp. 1615–1626.

33

[52] David Angeli, Alessandro Casavola, and Francesco Tedesco. “Theoretical
advances on economic model predictive control with time-varying costs”. In:
Annual Reviews in Control 41 (2016), pp. 218–224.

[53] Lars Grüne and Simon Pirkelmann. “Economic model predictive control for
time-varying system: Performance and stability results”. In: Optimal Control
Applications and Methods 41.1 (2020), pp. 42–64.

[54] Yiheng Lin et al. “Perturbation-basedRegret Analysis of Predictive Control in
Linear Time Varying Systems”. In: arXiv preprint arXiv:2106.10497 (2021).

[55] Karl JohanAström andRichardMMurray.Feedback systems: an introduction
for scientists and engineers. Princeton university press, 2010.

[56] Neal Parikh and Stephen Boyd. “Proximal Algorithms”. In: Foundations and
Trends in Optimization 1.3 (2014), pp. 127–239.

[57] Yingying Li, Guannan Qu, and Na Li. “Online optimization with predictions
and switching costs: Fast algorithms and the fundamental limit”. In: IEEE
Transactions on Automatic Control (2020).

[58] Horia Mania, Stephen Tu, and Benjamin Recht. “Certainty Equivalence is
Efficient for Linear Quadratic Control”. In: Advances in Neural Information
Processing Systems. Vol. 32. 2019.

[59] Karl Johan Åström and Richard M Murray. Feedback systems. Princeton
university press, 2010.

[60] Brian DO Anderson and John B Moore. Optimal Control: Linear Quadratic
Methods. Courier Corporation, Jan. 2007.

[61] Paolo Falcone et al. “Linear time-varying model predictive control and its
application to active steering systems: Stability analysis and experimental
validation”. In: International Journal of Robust andNonlinearControl: IFAC-
Affiliated Journal 18.8 (2008), pp. 862–875.

[62] Patricia Hidalgo-Gonzalez et al. “Frequency Regulation using Data-Driven
Controllers in Power Grids with Variable Inertia due to Renewable Energy”.
In: 2019 IEEE Power & Energy Society General Meeting (PESGM). 2019,
pp. 1–5.

[63] Madasthu Santhosh, Chintham Venkaiah, and D. M. Vinod Kumar. “Current
advances and approaches in wind speed and wind power forecasting for
improved renewable energy integration: A review”. In: Engineering Reports
2.6 (2020), e12178.

[64] Ruby Nageem and Jayabarathi R. “Predicting the Power Output of a Grid-
Connected Solar Panel Using Multi-Input Support Vector Regression”. In:
Procedia Computer Science 115 (2017), pp. 723–730.

34

[65] Duc N Tran, Björn S Rüffer, and Christopher M Kellett. “Incremental stabil-
ity properties for discrete-time systems”. In: Proceedings of Conference on
Decision and Control (CDC). IEEE. 2016, pp. 477–482.

[66] Nikhil Bansal and Anupam Gupta. “Potential-function proofs for gradient
methods”. In: Theory of Computing 15.1 (2019), pp. 1–32.

35

A p p e n d i x A

PROOFS OF THE RESULTS FROM CHAPTER 2

Throughout the proofs we use the following notation to denote the hitting and
movement costs of the online learner: �C := 5C (GC) and "C := 2(GC , GC−1), where
GC is the point chosen by the online algorithm at time C. Similarly, we denote the
hitting and movement costs of the offline optimal (adversary) as �∗C := 5C (G∗C) and
"∗C := 2(G∗C , G∗C−1), where G∗C is the point chosen by the offline optimal at time C.

The key proof technique which we will apply is called the potential method [66].
The goal is to bound the cost incurred by the online algorithm in each round by some
constant times the per-round cost of the offline optimal. However, this is generally
not possible, so we define a potential function qC , which depends on GC0=3G∗C . Define
ΔqC = qC − qC−1. Then we seek to show that

"C + �C + ΔqC ≤ � ("∗C + �∗C)

for some constant �. Summing up over all rounds and we have the following
inequality after cancellation:∑

C = 1)"C + �C ≤
∑

C = 1)"C + �C + q) ≤ � ·
(
)∑
C=1

"∗C + �∗C
)
,

which established a competitive ratio for the online algorithm.

Lastly, we note that we can assume without loss of generality that 5C (EC) = 0 because
shifting the cost function up by some constant can only decrease the competitive
ratio.

A.1 Proof of Theorem 2.1
This originally unpublished result was part of our work in [42].

�C + "C = 5C (EC) + 1
2
‖EC − EC−1‖2

≤ 1
2

(‖G∗C − EC ‖ + ‖G∗C − G∗C−1‖ + ‖G∗C−1 − EC−1‖
)2

=
1
2

(
‖G∗C − EC ‖2 + ‖G∗C − G∗C−1‖2 + ‖G∗C−1 − EC−1‖2

36

+ 2

G∗C − EC

 ‖G∗C − G∗C−1‖ + 2

G∗C−1 − EC−1

 ‖G∗C − G∗C−1‖

+ 2

G∗C − EC

G∗C−1 − EC−1

)
≤ 1

2

(
(2 + _2)‖G∗C − EC ‖2 + (1 +

2
_2)‖G

∗
C − G∗C−1‖2 + (2 + _2)‖G∗C−1 − EC−1‖2

)
≤

(
2 + _2

<

)
�∗C +

(
2 + _2

<

)
�∗C−1 +

(
1 + 2

_2

)
"∗C

In the second step we used the triangle inequality and in fourth step we applied the
AM-GM inequality (with a tuning parameter _ > 0). Adding up over all time steps,
we have

�!� ≤ min
_>0

max
(
4 + 2_2

<
, 1 + 2

_2

)
$%).

Since the first term is an increasing function of _ and the second a decreasing
function of _, the optimal choice of _ is when they are equal. The best choice is
_2 = <

2 , which yields competitive ratio of 1 + 4
<
as claimed.

A.2 Proof of Theorem 2.3
This proof is adapted from [42].

We consider a sequence of hitting cost functions on the real line such that the
algorithm stays at the starting point through time steps C = 1, 2, · · · , = and is forced
to incur a huge movement cost at time step C = = + 1, whereas the offline adversary
can pay relatively little cost by dividing the long trek between G0 and E=+1 into
multiple small steps through time steps C = 1, 2, · · · , = + 1.

Specifically, suppose the starting point of the algorithm and the offline adversary is
G0 = G

∗
0 = 0, and the hitting cost functions are

5C (G) =

<
2 G

2 C ∈ {1, 2, · · · , =}
<′
2 (G − 1)2 C = = + 1

for some large parameter <′ that we choose later.

Suppose the algorithm first moves at time step C0. If C0 < = + 1, we stop the game at
time step C0 and compare the algorithm with an offline adversary which always stays
at G = 0. The total cost of offline adversary is 0, but the total cost of the algorithm
is non-zero. So, the competitive ratio is unbounded.

37

Next we consider the case where C0 ≥ =+1. This implies that G1, . . . G= = 0 and G=+1
is some non-zero point, say G. We see that the cost incurred by the online algorithm
is

2>BC (�!�) ≥ min
G=+1
("=+1 + �=+1) = min

G

(
1
2
G2 + <

′

2
(G − 1)2

)
.

Notice that the right hand side tends to 1
2 as <′ tends to infinity; specifically, we

have
2>BC (�!�) ≥ min

G

(
1
2
G2 + <

′

2
(G − 1)2

)
=

1

2
(
1 + 1

<′

) . (A.1)

Now let us consider the offline optimal. Notice that, in the limit as <′ tends to
infinity, the offline optimal must satisfy G∗0 = 0 and G∗

=+1 = 1; otherwise it would
incur unbounded cost. Our lower bound is derived by considering the case when
<′ → ∞ and so we constrain the adversary to satisfy the above, knowing that
the adversary is not optimal for finite <′, i.e., 2>BC (��+) ≥ 2>BC ($%)) with
2>BC (��+) → 2>BC ($%)) as <′→∞.
Let the sequence of points the adversary chooses as G∗ = (G∗0, G∗1, · · · , G∗=+1) ∈
R=+2. We compute the cost incurred by the adversary as follows where, to simplify
presentation, we defineK(=, H) to be the set {G ∈ R=+2 | G8 ≤ G8+1, G0 = 0, G=+1 = H}.

0= = 2 min
G∗∈K(=,1)

=+1∑
8=1
(�∗8 + "∗8)

= 2 min
G∗∈K(=,1)

(
=∑
8=1

<

2
(G∗8)2 +

=+1∑
8=1

1
2
(G∗8 − G∗8−1)2

)
.

In words, 0= is twice the minimal offline cost subject to the constraints G∗0 = 0, G∗
=+1 =

1. We derive the limiting behavior of the offline costs as = → ∞ in the following
lemma.

Lemma A.1. For < > 0, define

0= = 2 min
G∗∈K(=,1)

(
=∑
8=1

<

2
(G∗8)2 +

=+1∑
8=1

1
2
(G∗8 − G∗8−1)2

)
.

Then we have lim=→∞ 0= = −<+
√
<2+4<
2 .

Given the lemma, the total cost of the offline adversary will be 0=
2 . Finally, applying

(A.1), we know ∀= and ∀<′ > 0,

2>BC (�!�)
2>BC (��+) ≥

1
2(1+ 1

<′)
0=
2

=
1

(1 + 1
<′)0=

.

38

By taking the limit =→∞ and <′→∞ and using Lemma A.1, we obtain

2>BC (�!�)
2>BC ($%)) = lim

=,<′→∞
2>BC (�!�)
2>BC (��+) ≥

(
−< +

√
<2 + 4<
2

)−1

=
1 +

√
1 + 4

<

2
.

All that remains is to prove Lemma A.1, which describes the cost of the offline
adversary in the limit as = tends to infinity.

Proof of Lemma A.1. Using the fact that the costs are all homogeneous of degree 2,
we see that for all H ∈ [0, 1], we have

min
G∗∈K(=,H)

(
=∑
8=1

<

2
(G∗8)2 +

=+1∑
8=1

1
2
(G∗8 − G∗8−1)2

)
= H2 min

G∗∈K(=,1)

(
=∑
8=1

<

2
(G∗8)2 +

=+1∑
8=1

1
2
(G∗8 − G∗8−1)2

)
.

(A.2)

The sequence {0=}, = ≥ 0 has a recursive relationship as follows:

0=+1 = 2 min
G∗∈K(=+1,1)

(
=+1∑
8=1

<

2
(G∗8)2 +

=+2∑
8=1

1
2
(G∗8 − G∗8−1)2

)
= 2 min

0≤G≤1

(
min

G∗∈K(=,G)

(=∑
8=1

<

2
(G∗8)2 +

=+1∑
8=1

1
2
(G∗8 − G∗8−1)2

)
+ <

2
G2 + 1

2
(1 − G)2

)
= 2 min

0≤G≤1

(
G2 min

G∗∈K(=,1)

(=∑
8=1

<

2
(G∗8)2 +

=+1∑
8=1

1
2
(G∗8 − G∗8−1)2

)
+ <

2
G2 + 1

2
(1 − G)2

)
= 2 min

0≤G≤1

(
0=

2
G2 + <

2
G2 + 1

2
(1 − G)2

)
=

0= + <
0= + < + 1

.

(A.3)

Solving the equation G = G+<
G+<+1 , we find the two fixed points of the recursive

relationship 0=+1 = 0=+<
0=+<+1 are

G1 =
−< +

√
<2 + 4<
2

,

39

and

G2 =
−< −

√
<2 + 4<
2

.

Notice that for 8 = 1, 2, we have

< − (< + 1)G8 = −(1 − G8)G8 .

Using this property, we obtain

0=+1 − G1 =
0= + <

0= + < + 1
− G1 =

(1 − G1)0= + < − (< + 1)G1
0= + < + 1

=
(1 − G1) (0= − G1)

0= + < + 1
,

(A.4)
and

0=+1 − G2 =
0= + <

0= + < + 1
− G2 =

(1 − G2)0= + < − (< + 1)G2
0= + < + 1

=
(1 − G2) (0= − G2)

0= + < + 1
.

(A.5)
Notice that 0=+1 − G2 > 0. By dividing equations (A.4) and (A.5), we obtain(

0=+1 − G1
0=+1 − G2

)
=

1 − G1
1 − G2

·
(
0= − G1
0= − G2

)
,∀= ≥ 0.

Remember that 00 = 1. Therefore we have(
0= − G1
0= − G2

)
=

(
1 − G1
1 − G2

)= (
00 − G1
00 − G2

)
=

(
1 − G1
1 − G2

)=+1
.

Rearranging this equation, we get

0= =

(
1 −

(
1 − G1
1 − G2

)=+1)−1 (
G1 − G2 ·

(
1 − G1
1 − G2

)=+1)
.

Since 0 <
(

1−G1
1−G2

)
< 1, we have

lim
=→∞ 0= = G1 =

−< +
√
<2 + 4<
2

. (A.6)

A.3 Proof of Theorem 2.4
This originally unpublished result was part of our work in [42].

We will give an example in one dimension. We consider the cost functions defined
as 5C (G) = <

2 (G − EC)2 for minimizer defined as:
EC = −1

2 − 2
<

C is even

EC =
1
2 + 2

<
C is odd

40

Then the distance between the greedy algorithm’s successive choices is 1 + 4/<.
So, the greedy algorithm incurs a cost of 1

2 (1 + 4/<)2 at each time step.

If we instead choose GC = −1/2 for even C and GC = 1/2 for odd C, then the distance
between successive points is 1. And we incur a hitting cost of <2 (2

<
)2 = 2/< at each

time step. Hence, the total cost we incur at each time step is 1
2 (1 + 4/<).

Therefore the competitive ratio is at least:

1
2 (1 + 4/<)2
1
2 (1 + 4/<) = 1 + 4

<

A.4 Proof of Theorem 2.5
This proof is adapted from [42].

Our proof of Theorem 2.5 relies on case of the balancing parameter W: when
W ∈ >(1/<) and W ∈ Ω(1/<).
Case 1: W ∈ >(1/<).
We will rely on Lemmas A.2 and A.4.

Lemma A.2. If W = >(1/<), the competitive ratio of OBD is Ω(1/(W<)) when
< → 0+.

Proof. Our approach is to construct a scenario where OBD is forced to move
along the circumference of a large circle, but the offline adversary moves along the
circumference of a much smaller circle (see Figure 2.2). The adversary is hence
able to pay much smaller movements costs, forcing the competitive ratio to be large.

We propose a series of costs which force OBD to move in a circle. The idea is to
construct a cost function so that, at the end of every round, the relative positions of
the OBD algorithm, the offline adversary, and the minimizer are fixed. Since OBD
is memoryless, we can simply input this function arbitrarily many times and the
positions of OBD and the offline adversary will trace out a pair of concentric circles
(see Figure 2.2).

Suppose that, at the start of a round, OBD is at the point �. Let ℓ be the distance
between OBD and the adversary. Consider a right triangle ��� such that |��| =
ℎ =
√
W<ℓ, the offline adversary is at some point � on the hypotenuse �� and

|�� | = |�� | = ℓ (see Figure A.1). Let us introduce a coordinate system such that

41

A

B CD

E

F

G z
x

y

Figure A.1: In the right triangle 4���, ∠��� = 90>, |�� | = ℓ, |��| = ℎ = √W<ℓ.
Point � is on the line segment �� such that |�� | = ℓ. OBD starts at point � and
selects point � . The offline adversary starts at point � and selects point �. � is
the projection point of � on line segment ��.

the origin lies at �, the G-axis contains �� and the H-axis is parallel to ��, such
that the positive part of the axis lies on the same side of �� as the segment ��. Our
goal is to construct a cost function which forces OBD towards �. This will preserve
the relative positions of OBD and the adversary, since we assumed that they were
a distance ℓ away at the start of the round. Consider the costs 6(D) = <

2 ‖D − �‖2,
ℎ(D) = U · 3 (D, ��) where 3 (D, ��) is the distance from the point D to the line
passing through � and � and U > 0 is a parameter we will pick later. Define
5C (D) = ℎ(D) + 6(D). Notice that 5C is <-strongly convex because it is the sum of an
<-strongly convex function and a convex function. Intuitively, when U is large, the
function 5C is infinity outside of the line �� but is equal to 6(D) = <

2 ‖D −�‖2 when
restricted to points D on the line. After observing the cost 5C , OBD will pick some
new point � .

The following lemma highlights that � can be driven arbitrarily close to � by taking
U to be sufficiently large.

Lemma A.3. Let Y > 0, and suppose U is picked to that U > ℎ<ℓ2

Y2 . Then the point
� picked by OBD satisfies |��| < n .

We instruct the adversary to pick the point � on the line �� (the G-axis) such that
�� = ℓ (see Figure A.1). Notice that |�� | = |�� | − |�� | ≤ |�� | + |�� | − |�� | =
|��| + ℓ − ℓ < Y, where we used the triangle inequality. Let I = |�� |. We see that
the total cost incurred by the offline adversary is

"∗C + �∗C =
1
2
|�� |2 + <

2
|�� |2 ≤ 1

2
(|�� | + |�� |)2 + <

2
|�� |2 ≤ 1

2
(I + Y)2 + <Y

2

2
,

where we applied the triangle inequality.

42

Notice that ℎ = |�� | =
√
|�� |2 − |�� |2 by the Pythagorean theorem (recall that

��� is a right triangle). Since |�� | = ℓ+I and |�� | = ℓ, we see that ℎ =
√

2Iℓ + I2.
Hence the movement cost incurred by the OBD is

"C ≥ 1
2
(ℎ − Y)2 = 1

2
(
√

2Iℓ + I2 − Y)2.

Hence the ratio of the costs is

"C + �C
"∗C + �∗C

≥ "C

"∗C + �∗C
≥

1
2 (
√

2Iℓ + I2 − Y)2
1
2 (I + Y)2 + <Y2

2

.

Since the limit of this expression as Y → 0 is 2Iℓ+I2

I2 , for sufficiently small Y this will
be at least 1

2
2Iℓ+I2

I2 ≥ ℓ
I
. Since I =

√
ℎ2 + ℓ2 − ℓ and ℎ = √W<ℓ, the ratio of costs is

at least
ℓ√

W<ℓ2 + ℓ2 − ℓ
=

1√
W< + 1 − 1

=

√
W< + 1 + 1
W<

≥ 2
W<

.

Now, we describe the whole process. When C = 1, the hitting cost function is
51(G) = <

2 ‖G‖22. While OBD stays at G = 0, the adversary moves to the point (ℓ, 0);
it incurs a one-time cost of"∗1 +�∗1 = 1

2ℓ
2+ <2 ℓ2. On all subsequent steps C = 2 . . .) ,

we repeatedly apply the construction, which forces OBD to move in a circle. The
one-time cost incurred by the adversary to setup the game is negligible in the limit
as) is large, and the per-round ratio of costs is Ω(1

W<
), so the competitive ratio is

also Ω(1
W<
) as claimed.

The key technical lemma used in the proof is Lemma A.3, and we now provide a
proof of that result.

Proof of Lemma A.3. Suppose U > ℎ<ℓ2

Y2 . We first show that OBD selects the point
� strictly contained by the <

2 ℓ
2-level set, which is the one � lies on. First observe

that the point � satisfies the balance condition: 1
2 |��|2 = W<2 |�� |2, because we

constructed ��� so that |��| = ℎ = √W<ℓ and |�� | = ℓ. However, the point �
is not necessarily a projection of � onto any level set of 5C . If OBD projected onto
the level set which � lies on, it would incur less cost than if it moved to �; however
then the balance condition would be violated. To restore the balance condition, we
must increase the movement cost while decreasing the hitting cost – which means
we must move to a strictly smaller level set, say the <

2 ;
2
1-level set, where ;1 < ;.

43
xt−1 xt vt = t

Figure A.2: Balance condition at time step C in Lemma A.4. Starting from GC−1,
OBD picks GC after observing the hitting cost function 5C (G) = <

2 (G − C)2.

Let �H denote the H-coordinate of � , using the coordinate system we define in
the proof of Lemma A.2. Notice that �H = 6(�)

U
, since 6(�) was defined to be

the vertical distance to the G-axis times U. Since 6(�) ≤ 5C (�), we see that
�H ≤ 5C (�)

U
=
<;21
2U ≤ <;2

2U , where we used the fact that � lies on the <
2 ℓ

2
1 level set and

ℓ1 ≤ ℓ. By the balance condition, 1
2 |�� |2 =

W<

2 ;
2
1 ≤

W<

2 ;
2 = 1

2ℎ
2. Let� be the point

with coordinates (�G , �H). Applying the Pythagorean theorem successively to the
right triangle ��� and the right triangle ���, we see that

|��|2 = |�G − �G |2 + �2
H ≤ (|�� |2 − (|�� | − �H)2) + �2

H

≤ (|��|2 − (|��| − �H)2) + �2
H ≤ 2ℎ · �H ≤ ℎ<;

2

U
,

(A.7)

where we used the fact that |��| ≥ |�� | and |��| = ℎ. Since we picked U > ℎ<ℓ2

Y2 ,
we see that |��| < Y.

Now we move on to the next technical lemma in the proof of Theorem 2.5.

Lemma A.4. When W = >(1
<
), the competitive ratio of OBD is Ω(

√
W

<
).

Proof. We consider a sequence of cost functions on the real line such that the OBD
algorithm moves far away from the starting point, incurring significant movement
costs, whereas the offline adversary could pay relatively little cost by staying at the
starting point. More specifically, we consider the sequence of hitting cost functions
5C (G) = <

2 (G − C)2, C = 1, 2, · · · , =. The value of = will be picked later. We assume
the starting point is at zero.

Notice that by the balance condition we always have "C = W�C , so 1
2 ‖GC − GC−1‖2 =

W<2 ‖GC − C‖2.We can rearrange this expression to obtain GC−GC−1
C−GC =

√
W<. Define

_ =
GC − GC−1
C − GC−1

=

√
W<

1 + √W< .

We obtain the recursive equation GC = GC−1 + (C−GC−1)_ with initial condition G0 = 0.
Solving this equation, we obtain GC = C − 1−_

_
(1 − (1 − _)C).

44

Suppose we picked = to be = d 1
_
e. By assumption, W = >(1

<
); hence in the limit

as < tends to zero, _ also tends to zero. Notice that G= = = − 1−_
_
(1 − (1 − _)=) ≥

1
_

1
24−(1− 1

4
) ≥ 1

6_ for sufficiently small _. Here we used the fact that (1−_) 1
_ → 4−1.

Suppose the next cost function is 5=+1(G) = <′G2. Notice that if the offline adversary
simply stays at zero throughout the game, the total cost it incurs would be

2>BC (��+) = <
2
(12 + 22 + · · · + =2) ≤ <=

3

2
= Θ

(<
_3

)
= Θ

(
1√
W3<

)
.

In the last step, we used the fact that _ tends to √W< when W = >(1
<
) and < tends

to zero.

If we pick <′ large enough that OBD is forced to incur movement cost at least
1
2 (G=2)2, the total cost incurred by OBD is

2>BC ($��) ≥ 1
2

(G=
2

)2
= Θ

(
1
_2

)
= Θ

(
1
W<

)
.

Putting these facts together, we see that the competitive ratio is at least Θ(
√

W

<
).

By combining Lemma A.2 and Lemma A.4, we know the competitive ratio is at
least max

(
�1
W<
, �2

√
W

<

)
for some positive constants �1, �2. Notice that function �1

W<

is monotonically decreasing in W and �2

√
W

<
is monotonically increasing in W. So

the quality is maximized when �1
W<

= �2

√
W

<
, which yields get W =

(
�1
�2

) 2
3
<−

1
3 .

Therefore,

max
{
�1
W<

,�2

√
W

<

}
≥ �

1
3
1�

2
3
2 <
− 2

3 = Θ(<− 2
3).

Case 2: W ∈ Ω(1/<).

We shall show that in the case, the competitive ratio of OBD is Ω
(

1
<

)
.

Since W = Ω(1
<
), we can assume there exists � > 0 such that W ≥ �/<. We again

consider a situation such that the OBD algorithm moves far away from the starting
point, incurring significant movement cost, whereas the offline adversary could pay
relatively little cost by staying at the starting point. More specifically, suppose the
starting point is zero and the first cost function is 51(G) = <

2 (1 − G)2. Suppose the
adversary stays at zero. The cost incurred by the adversary will be

2>BC (��+) = <
2
.

45

Notice that by the balance condition ("C = W�C), the point G1 picked by OBD
satisfies G2

1
2 = W

<
2 (1 − G1)2. So the cost incurred by OBD is lower bounded by

2>BC ($��) ≥ "1 =
1
2

(√
W<

1 + √W<

)2

≥ 1
2

(√
�

1 + √�

)2

.

Since � is a positive constant, the competitive ratio of OBD is lower bounded by
$��
��+

= Θ

(
1
<

)
.

By combining the two cases, we conclude that the competitive ratio of OBD is at
least Θ(<− 2

3) when < → 0+.

A.5 Proof of Theorem 2.6
This proof is adapted from [42].

This result follows from the more general bound in Theorem A.5 below, which
describes the competitive ratio of Algorithm 3 as a function of _1, _2.

Theorem A.5. Consider hitting cost functions that are <-strongly convex with re-
spect to ℓ2 norm and movement costs given by 1

2 ‖GC − GC−1‖22. Regularized-OBD
(Algorithm 3 with ℎ(G) = 1

2 ‖G‖22) with parameters 1 ≥ _1 > 0, _2 ≥ 0 has competi-
tive ratio at most

max
(
< + _2
_1

· 1
<
, 1 + _1

_2 + <

)
.

Notice that Theorem 2.6 follows immediately by setting <+_2
_1

= <
2

(
1 +

√
1 + 4

<

)
in

Theorem A.5.

Before proving Theorem A.5, we first prove a teechnical lemma which gives a lower
bound of the value of hitting cost as a function of the distance to the minimizer.

Lemma A.6. If 5 : X → R is a <-strongly convex function with respect to some
norm ‖·‖, and E is the minimizer of f (i.e. E = arg minG∈X 5 (G)), then we have
∀G ∈ X,

5 (G) ≥ 5 (E) + <
2
‖G − E‖2 .

Proof. By the definition of <-strongly convex, we obtain that ∀U ∈ (0, 1),

5 (UG + (1 − U)E) ≤ U 5 (G) + (1 − U) 5 (E) − <
2
U(1 − U) ‖G − E‖2 . (A.8)

46

Notice that 5 (E) ≤ 5 (UG + (1 − U)E). Combining this with inequality (A.8), we
obtain that ∀U ∈ (0, 1),

5 (E) ≤ U 5 (G) + (1 − U) 5 (E) − <
2
U(1 − U) ‖G − E‖2 .

Rearranging the terms, we observe that ∀U ∈ (0, 1),

5 (G) ≥ 5 (E) + <
2
(1 − U) ‖G − E‖2 .

Therefore

5 (G) ≥ lim
U→0+

(
5 (E) + <

2
(1 − U) ‖G − E‖2

)
= 5 (E) + <

2
‖G − E‖2 .

Now we return to the proof of Theorem A.5.

Proof of Theorem A.5. In the proof, we use the property of strongly convex to derive
an inequality in the form of �C + "C + Δq ≤ � (�∗C + "∗C), where Δq is the change
in potential and � is an upper bound for the competitive ratio.

Throughout the proof, we use ‖·‖ to denote ℓ2 norm.

Notice that when ℎ(G) = 1
2 ‖G‖2, the update rule in Algorithm 3 is:

GC = arg min
G

5C (G) + _1
2
‖G − GC−1‖2 + _2

2
‖G − EC ‖2 .

For convenience, we define

�C (G) = 5C (G) + _1
2
‖G − GC−1‖2 + _2

2
‖G − EC ‖2 .

Since 5C (G) is<-strongly convex,_1
2 ‖G − GC−1‖2 is_1-strongly convex, and _2

2 ‖G − EC ‖2
is_2-strongly convex, �C (G) is (<+_1+_2)−strongly convex. Since GC = arg minG �C (G),
by Lemma A.6, we obtain

�C (G∗C) ≥ �C (GC) +
< + _1 + _2

2

G∗C − GC

2

,

which implies

�C + _1"C + < + _1 + _2
2

G∗C − GC

2

≤ �C + _1"C + _2
2
‖G − EC ‖2 + < + _1 + _2

2

G∗C − GC

2

≤ �∗C +
_1
2

G∗C − GC−1

2 + _2

2

G∗C − EC

2

.

(A.9)

47

Wedefine the potential function as q(GC , G∗C) = <+_1+_2
2

G∗C − GC

2 andΔq = q(GC , G∗C)−
q(GC−1, G

∗
C−1). We then can rewrite inequality (A.9) as

�C+_1"C+Δq ≤
(
�∗C +

_2
2

G∗C − EC

2
)
+_1

2

G∗C − GC−1

2−< + _1 + _2
2

G∗C−1 − GC−1

2
.

(A.10)
Additionally

_1
2

G∗C − GC−1

2 − < + _1 + _2

2

G∗C−1 − GC−1

2

≤ _1
2

(

G∗C − G∗C−1

 +

G∗C−1 − GC−1

)2 − < + _1 + _2
2

G∗C−1 − GC−1

2 (A.11a)

=
_1
2

G∗C − G∗C−1

2 + _1

G∗C − G∗C−1

 ·

G∗C−1 − GC−1

 − < + _2
2

G∗C−1 − GC−1

2

≤ _1
2

G∗C − G∗C−1

2 + _2

1
2(< + _2)

G∗C − G∗C−1

2 + < + _2

2

G∗C−1 − GC−1

2

− < + _2
2

G∗C−1 − GC−1

2 (A.11b)

=
_1(_1 + _2 + <)

2(_2 + <)

G∗C−1 − G∗C−1

2

= _1

(
1 + _1

_2 + <

)
"∗C ,

where we apply the triangle inequality in line (A.11a) and AM-GM in line (A.11b).

Combining inequalities (A.10) and (A.11), we obtain

�C + _1"C + Δq ≤
(
�∗C +

_2
2

G∗C − EC

2
)
+ _1

(
1 + _1

_2 + <

)
"∗C . (A.12)

And since 5C (G) is <-strongly convex, we have
_2
2

G∗C − EC

2 ≤ _2
<
�∗C .

Substituting the above identity into inequality (A.12) yields

�C + _1"C + Δq ≤ < + _2
<

�∗C + _1

(
1 + _1

< + _2

)
"∗C . (A.13)

Using inequality (A.13), we obtain

�C + "C + 1
_1
Δq ≤ �C + _1"C + Δq

_1
≤ < + _2

_1<
�∗C +

(
1 + _1

< + _2

)
"∗C .

Theorem A.5 follows from summing the above inequality over all timesteps C.

48

A p p e n d i x B

PROOFS OF THE RESULTS FROM CHAPTER 3

B.1 Proof of Theorem 3.5
This proof is adapted from [54].

The proof of Theorem 3.5 is based on the decision-point transformation introduced
in Section 3.2.

Recall that 3 denotes the controllability index, which has been defined in Definition
3.2. To show the perturbation bound of k?C (·, ·, ·)Hℎ , suppose ℎ and ? satisfy
@3 ≤ ℎ < (@ + 1)3 and ? = B3 + A, where @, B, A ∈ N and 0 ≤ A < 3. Now we shall
select the decision points as

H0, H3 , · · · , H (@−1)3 , Hℎ, H (@+2)3 , · · · , H (B−1)3 , H?,

which are also denoted by H80 , · · · , H8B−1 for simplicity. Since the distance of any
consecutive decision points falls in [3, 23), we can apply Lemma 3.4 to bound
the strong smoothness of switching costs. In the transformed SOCO problem, the
disturbance input of the (g − 1)-th time period is a vector F̄g−1 = Z8g−1:8g−1 ∈
R=×(8g−8g−1) . Each stage cost b8g−8g−1

C (G8g−1 , F̄g−1, G8g) is convex and !2(8g − 8g−1)-
strongly smooth by Lemma 3.4, and is thus !0-strongly smooth by definition. Recall
that the solution of the transformed SOCO problem is denoted by k̂(GC , Z , GC+?).
Then by Theorem 3.3 we have

k?C (G, Z , I)Hℎ − k?C (G′, Z ′, I′)Hℎ

=

k̂(G, Z , I)@ − k̂(G′, Z ′, I′)@

≤ �0

(
_
@−1
0 ‖G − G′‖ +

B−2∑
g=0

_
|@−g |−1
0

F̄g − F′g

 + _(B−1)−@−1
0 ‖I − I′‖

)
= �0

(
_
@−1
0 ‖G − G′‖ +

B−2∑
g=0

_
|@−g |−1
0

8g+1−1∑
9=8g

Z 9 − Z ′9

 + _(B−1)−@−1
0 ‖I − I′‖

)
≤ �0
_0

(
_8@−80 ‖G − G′‖ +

B−2∑
g=0

8g+1−1∑
9=8g

_ | 9−8@ |

Z 9 − Z ′9

 + _8B−1−8@ ‖I − I′‖

)
= �

(
_ℎ ‖G − G′‖ +

?−1∑
g=0

_ |ℎ−g |

Zg − Z ′g

 + _?−ℎ ‖I − I′‖) .

49

The last inequality holds because each interval is of length at most (23 − 1). Here
the constants are

�0 =
2!0
<2

, _0 = 1 − 2 ·
(√

1 + (2!0/<2) + 1
)−1

,

� = �0/_0 =
2!0
<2

(
1 − 2 ·

(√
1 + (2!0/<2) + 1

)−1
)−1

,

_ =

(
1 − 2

(√
1 + (2!0/<2) + 1

)−1
) 1

23−1

.

The proof of the perturbation bound of k?C (·, ·, ·)Hℎ is quite similar. The only
difference lies in the terminal cost, which can be addressed with the addition of a
fixed auxiliary state. Specifically, we append Gaux = 0 to the end of the decision point
sequence, and define a zero transition cost to the auxiliary state 2̂B (GC+?, F̄B−1, Gaux) ≡
0 (note that 2̂B is trivially convex and !0-strongly smooth). Denote the solution of
the modified version of transformed SOCO problem by k̂′(GC , Z , Gaux), then by the
same argument as above, we have

k̃?C (G, Z ; �)Hℎ − k̃?C (G′, Z ′; �)Hℎ

 =

k̂′(G, Z , 0)@ − k̂′(G′, Z ′, 0)@

≤ · · · ≤ �

(
_ℎ ‖G − G′‖ +

?−1∑
g=0

_ |ℎ−g |

Zg − Z ′g

) ,

where the constants are the same as previously defined. This finishes the proof of
Theorem 3.5.

B.2 Proof of Corollary 3.6
This proof is adapted from [54].

Proof of Corollary 3.6. Note that k̃?C (0, 0; �)Hℎ = 0. By Theorem 3.5, we see that

k̃?C (G, Z ; �)Hℎ

 =

k̃?C (G, Z ; �)Hℎ − k̃?C (0, 0; �)Hℎ

≤ �

(
_ℎ ‖G‖ +

?−1∑
g=0

_ |ℎ−g | ‖Zg‖
)

≤ �_ℎ ‖G‖ + 2�
1 − _ sup

g

‖Zg‖ ,

where the last inequality holds because
?−1∑
g=0

_ |ℎ−g | ≤ 2
1 − _ .

50

B.3 Proof of Corollary 3.7
This proof is adapted from [54].

Before showing Corollary 3.7, we first show a property of strongly smooth functions.

Lemma B.1. Suppose function 6 : R= → R+ is convex, ℓ-strongly smooth, and
continuously differentiable. For all G, H ∈ R= and [> 0, we have

6(G) ≤ (1 + [)6(H) + ℓ
2

(
1 + 1

[

)
‖G − H‖2 .

Proof of Lemma B.1.

6(G) − 6(H) ≤ 〈∇6(H), G − H〉 + ℓ
2
‖G − H‖2

≤ [

2ℓ
‖∇6(H)‖2 + ℓ

2[
‖G − H‖2 + ℓ

2
‖G − H‖2

≤ [6(H) + ℓ
2

(
1 + 1

[

)
‖G − H‖2 .

where the second inequality follows from the generalized mean inequality and the
last inequality holds because

0 ≤ 6
(
H − ∇6(H)

ℓ

)
≤ 6(H)−

〈
∇6(H), ∇6(H)

ℓ

〉
+ ℓ

2

∇6(H)ℓ

2
= 6(H)− 1

2ℓ
‖∇6(H)‖2

Now we come back to the proof of Corollary 3.7.

Proof of Corollary 3.7. When 3 ≤ ? ≤ 23 − 1, since b ?C (G, Z , I) is !0-strongly
smooth by Lemma 3.4, we know

]
?
C (G, Z , I) = b ?C (G, Z , I) + 5C+? (I)

is (!0 + ℓ 5)-strongly smooth. Therefore, by Lemma B.1, we obtain that

]
?
C (G, Z , I) ≤ (1 + [)]?C (G′, Z , I′) +

!0 + ℓ 5
2

(
1 + 1

[

) (
‖G′ − G‖2 + ‖I′ − I‖2

)
.

When ? = 23, let G1 := k?C (G, Z , I)H3 , and we obtain that

]
?
C (G, Z , I) =]3C (G, Z0:3−1, G1) +]3C+3 (G1, Z3:23−1, I)

≤ (1 + [)]3C (G′, Z0:3−1, G1) +
!0 + ℓ 5

2

(
1 + 1

[

)
‖G − G′‖2

51

+ (1 + [)]3C+3 (G1, Z3:23−1, I
′) + !0 + ℓ 5

2

(
1 + 1

[

)
‖I − I′‖2

≤ (1 + [)]?C (G′, Z , I′) +
!0 + ℓ 5

2

(
1 + 1

[

) (
‖G′ − G‖2 + ‖I′ − I‖2

)
.

When ? > 23, let G1 := k?C (G, Z , I)H3 , G2 := k?C (G, Z , I)H?−3 , and we obtain that

]
?
C (G, Z , I) =]3C (G, Z0:3−1, G1) +]?−23

C+3 (G1, Z3:?−3−1, G2) +]3C+?−3 (G2, Z?−3:?−1, I)

≤ (1 + [)]3C (G′, Z0:3−1, G1) +
!0 + ℓ 5

2

(
1 + 1

[

)
‖G − G′‖2

+]?−23
C+3 (G1, Z3:?−3−1, G2)

+ (1 + [)]3C+?−3 (G2, Z?−3:?−1, I
′) + !0 + ℓ 5

2

(
1 + 1

[

)
‖I − I′‖2

≤ (1 + [)]?C (G′, Z , I′) +
!0 + ℓ 5

2

(
1 + 1

[

) (
‖G′ − G‖2 + ‖I′ − I‖2

)
.

B.4 Proof of Lemma 3.8
This proof is adapted from [54].

For simplicity, we will use the shorthand notations

k̃
?
C (G; �) := k̃?C (G, FC:C+?−1; �) and k?C (G, I) := k?C (G, FC:C+?−1, I)

throughout the proof, since the indices of the disturbances can be inferred from the
starting time C and horizon ?. We also define

I := k̃?C (GC ; �)H? , I′ := k̃?+1C (GC ; �)H? .

Then it is straightforward to see that

k̃?C (GC ; �)Hℎ − k̃?+1C (GC ; �)Hℎ

 =

k?C (GC , I)Hℎ − k?C (GC , I′)Hℎ

 (B.1a)

≤ �_?−ℎ ‖I − I′‖ (B.1b)

≤ 2�_?−ℎ
(
�_? ‖GC ‖ + 2�

1 − _�
)
. (B.1c)

where we use the definition of k and k̃ in (B.1a), Theorem 3.5 in (B.1b), and
Corollary 3.6 in (B.1c).

52

B.5 Proof of Theorem 3.9
This proof is adapted from [54].

Throughout the proof, we will use {(ĜC , D̂C)} to denote the trajectory of predictive
control with predictionwindow) (%�)). Recall that {(GC , DC)} denotes the trajectory
of predictive control with prediction window : (%�:), and {(G∗C , D∗C)} denotes the
offline optimal trajectory ($%)), i.e., the optimal solution of (3.1).

For simplicity, we will use the shorthand notations

k̃
?
C (G; �) := k̃?C (G, FC:C+?−1; �) and k?C (G, I) := k?C (G, FC:C+?−1, I)

throughout the proof.

First, we shall introduce a consequence of Corollary 3.6 and Lemma 3.8 that bounds
the trajectory of predictive control, the proof of which can be found in [54].

Lemma B.2 (Input State Stability). Under the same condition as Lemma 3.9 and
Equation (3.6), the norm of each state GC is upper bounded by

‖GC ‖ ≤

�
X
· (1 − X)max(0,C−:) ‖G0‖ + 2�

X(1−_)
(
1 + 2�

1−_
)
� if 0 < C ≤) − :

�2

X
· (1 − X))−2:_C+:−) ‖G0‖ +

(
2�2

X(1−_)
(
1 + 2�

1−_
)
+ 2�

1−_
)
� if) − : < C ≤).

Proof of Theorem 3.9. By Lemmas 3.8 and B.2, we also see that for C ≤) − : ,

k̃:C (GC ; �)H1 − k̃)−CC (GC ; �)H1

 ≤)−C∑
?=:

k̃?C (GC ; �)H1 − k̃
?+1
C (GC ; �)H1

≤
∞∑
?=:

2�_?−1
(
�_? ‖GC ‖ + 2�

1 − _�
)

=
2�2

_(1 − _2) · _
2: ‖GC ‖ + 4�2

_(1 − _)2 · _
:�

= $

((
� + _

: (‖G0‖ + �)
X

)
_:

)
. (B.2)

We further obtain that for C ≤) − : ,

‖GC − ĜC ‖ =

GC − k̃)0 (G0; �)

≤

GC − k̃)−C+1C−1 (GC−1; �)H1

 + C−1∑
8=1

k̃)−C+8C−8 (GC−8; �)H8 − k̃)−C+8+1C−8−1 (GC−8−1; �)H8+1

≤

GC − k̃)−C+1C−1 (GC−1; �)H1

 + C−1∑
8=1

�_8

GC−8 − k̃)−C+8+1C−8−1 (GC−8−1; �)H1

(B.3a)

53

= $

((
� + _

: (‖G0‖ + �)
X

)
_:

)
, (B.3b)

where in (B.3a), we use Theorem 3.5 and the fact that k̃)−C+8+1
C−8−1 (GC−8−1)H8+1 can be

written as

k̃)−C+8+1C−8−1 (GC−8−1; �)H8+1 = k̃)−C+8C−8
(
k̃)−C+8+1C−8−1 (GC−8−1; �)H1; �

)
H8

;

in (B.3b), we use (B.2) and the following observations

GC−8 − k̃)−C+8+1C−8−1 (GC−8−1; �)H1

 =

k̃:C−8−1 (GC−8−1; �)H1 − k̃)−C+8+1C−8−1 (GC−8−1; �)H1

 ,
1 +

C−1∑
8=1

�_8 ≤ 1 + �

1 − _ = $ (1).

By Corollary 3.6 and triangle inequality, we see that

G∗) − Ĝ)

 ≤ 2�_) ‖G0‖ + 4��
1 − _ .

Then by Theorem 3.5, the following holds for all C ≤) − ::

G∗C − ĜC

 =

k)0 (G0, G
∗
)) − k)0 (G0, Ĝ))

 ≤ �_: (
2�_) ‖G0‖ + 4��

1 − _

)
.

Combining this inequality with (B.3) gives

GC − G∗C

 = $ ((
� + _

: (‖G0‖ + �)
X

)
_:

)
, ∀C ≤) − :. (B.4)

Since
(DC − D∗C) = �†C

((GC+1 − G∗C+1) − �C (GC − G∗C)) ,
we have

DC − D∗C

 ≤ 1′ (

GC+1 − G∗C+1

 + 0

GC − G∗C

) .
Therefore, by Corollary 3.7, for any [> 0 we have

]1C (GC , GC+1) − (1 + [)]1C (G∗C , G∗C+1) (B.5)

=
(
5C+1(GC+1) − (1 + [) 5C+1(G∗C+1)

) + (
2C+1(DC) − (1 + [)2C+1(D∗C)

)
≤ 1

2

(
1 + 1

[

) (
ℓ 5

GC+1 − G∗C+1

2 + ℓ2

DC − D∗C

2

)
≤ 1

2

(
1 + 1

[

) (
ℓ 5 + 2(1′)2ℓ2

)

GC+1 − G∗C+1

2 + 1
2

(
1 + 1

[

)
202(1′)2ℓ2

GC − G∗C

2

≤
(
1 + 1

[

)
· !4

2

(

GC − G∗C

2 +

GC+1 − G∗C+1

2

)
,

54

where
!4 := ℓ 5 + 2(1′)2ℓ2 + 202(1′)2ℓ2 .

Then, for any [> 0, we obtain the following inequality:

2>BC (%�:) − (1 + [)2>BC ($%))

=

(
)−:−1∑
C=0

]1C (GC , GC+1) +]:)−: (G)−: , G))
)
− (1 + [)

(
)−:−1∑
C=0

]1C (G∗C , G∗C+1) +]:)−: (G∗)−: , G∗))
)

=

)−:−1∑
C=0

(
]1C (GC , GC+1) − (1 + [)]1C (G∗C , G∗C+1)

)
+

(
]:)−: (G)−: , G)) − (1 + [)]:)−: (G∗)−: , G∗))

)
≤

)−:−1∑
C=0

(
]1C (GC , GC+1) − (1 + [)]1C (G∗C , G∗C+1)

)
+

(
]:)−: (G)−: , G∗)) − (1 + [)]:)−: (G∗)−: , G∗))

)
(B.6a)

≤
(
1 + 1

[

)
· !4

2

)−:−1∑
C=0

(

GC − G∗C

2 +

GC+1 − G∗C+1

2

)
+

(
1 + 1

[

)
· !0 + ℓ 5

2

G)−: − G∗)−:

2

(B.6b)

=

(
1 + 1

[

)
· !4

)−:−1∑
C=0

GC − G∗C

2 +
(
1 + 1

[

)
· !4 + !0 + ℓ 5

2

G)−: − G∗)−:

2

≤
(
1 + 1

[

)
$

((
� + _

: (‖G0‖ + �)
X

)2

_:)

)
, (B.6c)

where we use the fact that our algorithm %�: plans optimally after time step) − :
in (B.6a); we also use (B.5) and Corollary 3.7 in (B.6b), and (B.3) in (B.6c).

To bound the optimal cost, we consider a suboptimal controller inspired by the
decision-point transformation, where the controller forces the states G3 , G23 , · · · , G(E−1)3 ,
and GE3+A to be 0 (3 is the controllability index, and) = E3 + A). The cost of this
suboptimal control is determined by the transformed transition cost b ?C (·, ·, ·) be-
tween each pair of consecutive decision points. By strong smoothness of b ?C (·, ·, ·)
proven in Lemma 3.4, we have

b
?
C (G, Z , 0) ≤

1
2
!2(?)

(
‖Z ‖2 + ‖G‖2

)
≤ !0�

2

2
? + !0

2
‖G‖2 ,

where !0 = max3≤?≤23−1 !2(?). These inequalities add up to

2>BC ($%)) ≤ b30 (G0, F0:3−1, 0) +
E−2∑
g=1

b3g3 (0, Fg3:(g+1)3−1, 0) + b3+A(C−1)3 (0, F (E−1)3:)−1, 0)

55

≤ !0�
2

2
) + !0

2
‖G0‖2

= $ (�2) + ‖G0‖2).

Hence 2>BC ($%)) = $ (�2) + ‖G0‖2). Now we can take [= Θ(_:) in (B.6) to get
a regret bound of

2>BC (%�:) − 2>BC ($%)) = $
((
� + _

: (‖G0‖ + �)
X

)2

_:) + _: ‖G0‖2
)
.

B.6 Proof of Theorem 3.10
This proof is adapted from [54].

To simplify the notation, we still omit the disturbance sequenceFC:C+:−1 in k̃:C andk:C
throughout the proof. At each time step C, we will use GC/DC to denote the state/input
of %�(:,ℎ) algorithm and use G∗C /D∗C to denote the state/input of the offline optimal.
We define

�C := 5C (GC), "C := 2C (DC−1),
�∗C := 5C (G∗C), "∗C := 2C (D∗C−1).

Let G̃C+: := k̃:C (G∗C ; �)H: , ḠC+: = k̃:C (G∗C ; 0)H: .

If C ≤) − :, C ≡ 0(mod ℎ), we have

GC+ℎ − G∗C+ℎ

2

=

k̃:C (GC , �)Hℎ − k:C (G∗C , G∗C+:)Hℎ

2

≤
(

k̃:C (GC , �)Hℎ − k̃:C (G∗C , �)Hℎ

 +

k̃:C (G∗C , �)Hℎ − k:C (G∗C , G∗C+:)Hℎ

)2

(B.7a)

≤ (1 + n)

k̃:C (GC , �)Hℎ − k̃:C (G∗C , �)Hℎ

2 +

(
1 + 1

n

)

k̃:C (G∗C , �)Hℎ − k:C (G∗C , G∗C+:)Hℎ

2

(B.7b)

≤ (1 + n)

k̃:C (GC , �)Hℎ − k̃:C (G∗C , �)Hℎ

2 +

(
1 + 1

n

)

k:C (G∗C , G̃C+:)Hℎ − k:C (G∗C , G∗C+:)Hℎ

2

(B.7c)

≤ (1 + n)�2_2ℎ

GC − G∗C

2 + �2_2(:−1−ℎ) ·
(
1 + 1

n

)

G∗C+: − G̃C+:

2 (B.7d)

≤ 1
1 + n

GC − G∗C

2 + �2_2(:−1−ℎ) ·
(
1 + 1

n

)

G∗C+: − G̃C+:

2
, (B.7e)

56

where we use the triangle inequality in (B.7a), the AM-GM inequality in (B.7b),
the definition of G̃C+: in (B.7c), Theorem 3.5 in (B.7d), and the assumption on ℎ in
(B.7e).

Since the objective function is < 5 -strongly convex in variables GC+1:C+: , we see that

G∗C+: − ḠC+:

2 ≤ 2
< 5

:∑
g=1
(�∗C+g + "∗C+g). (B.8)

Since 5C+: is < 5 -strongly convex, we also see that

G∗
C+:

2 ≤ 2
< 5
�∗
C+: . Recall that

the terminal cost � (GC+:) = U(‖GC+: ‖), where U is a K-function. By the definition
of k̃, we see that ‖G̃C+: ‖ ≤ ‖ḠC+: ‖. Therefore, we obtain that

G∗C+: − G̃C+:

2 ≤ 2 ‖G̃C+: ‖2 + 2

G∗C+:

2 (B.9a)

≤ 2 ‖ḠC+: ‖2 + 2

G∗C+:

2 (B.9b)

≤ 4

ḠC+: − G∗C+:

2 + 6

G∗C+:

2 (B.9c)

≤ 8
< 5

:∑
g=1
(�∗C+g + "∗C+g) +

12
< 5

�∗C+: (B.9d)

≤ 20
< 5

:∑
g=1
(�∗C+g + "∗C+g),

where we use Cauchy-Schwarz inequality in (B.9a) and (B.9c), ‖G̃C+: ‖ ≤ ‖ḠC+: ‖ in
(B.9b), and (B.8) in (B.9d).

Suppose) = =0 · ℎ + <0, where =0 ∈ Z+ and : − ℎ + 1 ≤ <0 ≤ : . By summing up
inequality (B.7) for C = 0, ℎ, 2ℎ, . . . , (= − 1)ℎ, we obtain that

=0∑
8=1

G8ℎ − G∗8ℎ

2 ≤ �2_2(:−1−ℎ) · (1 + n)
2

n2 ·
=0−1∑
8=1

G∗8ℎ+: − G̃8ℎ+:

2

≤ �2_2(:−1−ℎ) · (1 + n)
2

n2 · 20
< 5

· 2>BC ($%)), (B.10)

where we use (B.9) in the last inequality.

Therefore, we can show that, for all [> 0:

2>BC (%�(:,ℎ)) − (1 + [)2>BC ($%))

=

(
=0−1∑
8=0

]ℎ8ℎ (G8ℎ, G(8+1)ℎ) +]<0
=0ℎ
(G=0ℎ, G))

)
− (1 + [)

(
=0−1∑
8=0

]ℎ8ℎ (G∗8ℎ, G∗(8+1)ℎ) +]<0
=0ℎ
(G∗=0ℎ

, G∗))
)

57

=

=0−1∑
8=0

(
]ℎ8ℎ (G8ℎ, G(8+1)ℎ) − (1 + [)]ℎ8ℎ (G∗8ℎ, G∗(8+1)ℎ)

)
+

(
]
<0
=0ℎ
(G=ℎ, G)) − (1 + [)]<0

=0ℎ
(G∗=ℎ, G∗))

)
≤

=0−1∑
8=0

(
]ℎ8ℎ (G8ℎ, G(8+1)ℎ) − (1 + [)]ℎ8ℎ (G∗8ℎ, G∗(8+1)ℎ)

)
+

(
]
<0
=0ℎ
(G=ℎ, G∗)) − (1 + [)]<0

=0ℎ
(G∗=ℎ, G∗))

)
(B.11a)

≤
(
1 + 1

[

)
· !0 + ℓ 5

2

=0−1∑
8=0

(

G8ℎ − G∗8ℎ

2 +

G(8+1)ℎ − G∗(8+1)ℎ

2

)
+

(
1 + 1

[

)
· !0 + ℓ 5

2

G=0ℎ − G∗=0ℎ

2
(B.11b)

=

(
1 + 1

[

)
· (!0 + ℓ 5)

=0∑
8=1

G8ℎ − G∗8ℎ

2

≤
(
1 + 1

[

)
· (!0 + ℓ 5) · �2_2(:−1−ℎ) · 20(1 + n)2

<n2 · 2>BC ($%)), (B.11c)

where we use the fact that the PC algorithm (with replan window ℎ) plans optimally
after time step =ℎ in (B.11a); we also use Corollary 3.7 in (B.11b), and (B.10) in
(B.11c).

By setting [∼ n−1
(
!0+ℓ 5
<

) 1
2 · �_:−1−ℎ, we see that the competitive ratio of the

%�(:,ℎ) algorithm (with replan window ℎ) is in the order of

1 +$
(
n−1

(
!0 + ℓ 5
<

) 1
2

· �_:−1−ℎ
)
.

	Acknowledgements
	Abstract
	Table of Contents
	Introduction
	Smoothed Online Convex Optimization
	Predictive Control

	Smoothed Online Convex Optimization
	Model and Preliminaries
	Motivating Algorithms
	Lower Bound
	Optimal Algorithm: Regularized Online Balanced Descent

	Application to Predictive Control
	Model and Preliminaries
	Relation to Online Convex Optimization
	Performance Guarantees

	Bibliography
	Proofs of the Results from Chapter 2
	Proof of Theorem 2.1
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Proof of Theorem 2.5
	Proof of Theorem 2.6

	Proofs of the Results from Chapter 3
	Proof of Theorem 3.5
	Proof of Corollary 3.6
	Proof of Corollary 3.7
	Proof of Lemma 3.8
	Proof of Theorem 3.9
	Proof of Theorem 3.10

