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ABSTRACT

The problem of radiationless transitions in polyatomic
molecules has been much discussed in recent years. Most attention
has been focused on the Targe energy gap or statistical limit case
where the lineshape is Lorentzian and the emission decay exponential.
The weighted density of states is assumed to pe constant with energy.
The broad band approximation, which states that the exciting Tlight
uniformly and coherently excites the entire molecular resonance, is
standardly employed. The cases of intermediate energy gap have not
been extensively investigated. Also, the effect of a finite bandwidth
excitation light has only been formally treated. The generalizations
proposed here allow the weighted density function to assume general
enerqgy debendence. Using the techniques of scattering theory, we are
able to present exact formulas for the spectrum and the emission
decay which must be evaluated numerically. This enables a more
thorough treatment of the intermediate energy gap case where the
density is expected to be "line-like". The spectral line shapes
become very complex and in no way resemble a Lorentzian. The emission
decay curves are correspondingly cbmp]ex showing quantum beat effects.
The ability to detect these quantum beats is also discussed. Also,
the excitation band.is allowed to have finite width (and, of necessity,
a finite time duration). The width and positioning of the excitation

band has a dramatic effect on the emission decay. The above generaliza-
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tions also lead to a new interpretation of the lifetimes of some
intermediate case molecules such as NO2, SO,, and CS,. Finally, we
apply the formal results to the calculation of the second singlet
spectrum of naphthalene in various mixed crystal hosts. We are able
to get virtually exact fits to the spectrum using our simple formulas
Also, we compute some emission deéay curves and compare these curves

with some measured gas phase emission curves.



PART 1:

PART 2:

PART 3:

PART 4:

TABLE OF CONTENTS

INTRODUCTION
Historical Background.........ciiiiiiiiniinnninnnennnenns 2
Mathematical Background..........c.coiiiiiiiiiiiinnennnnn. 17

PAPER I: Radiationless Transitions: Their Effect on

Absorption Line Shapes and Emission Decay Curves

INtroduetiOn. .. cossionrbnsbranmansnsnannsernnmnannssnnssnnn 33
TG o b 6556 5 80 4 5 ¥ BB Ab P RAS S BE R A P N R B b m o wm wm m N s o e 35
Computed Spectra and Decay CUrvesS. ....couiiiiniiennnnnenns 46
Y1111 2 58
Appendix ...ttt i it i it i ittt 62
Appendix Il.. ...ttt ittt iiientneeneenenennnanennns 64
RETETENEESE 2 o 0w 0 e w w0 w 2 0 50 0 3 0 0 0 S 66

PAPER II: The Energy Shift Term and Its Effect on

“Absorption Line Shapes

Introduction. ..o ittt it i ittt e 70
Line Shapes and the Energy Shift Term............cccviin.. 71
Conclusion..........couvun.. P R F R 85
g o < 86

PAPER III: The Occurrence and Observation of
Nonexponential Decays

INtrodUCETON . . ottt ittt it et ittt eeeosenneensceeeaeaanns 88



PART 4:

PART 5:

PART 6:

-vi-

PAPER III: (continued)

IOy s vwnnsmes b unbnpdsBadaissdshaismbabobabndmb fadhssds 89
RESUTES . s cuassranirrasnsrusssunsadosoussssuensasadssasdrnss 100
IR Y o5 s s 26 405k o+ REER S HE G S PRASARAFR G RRER PRI IS hEE S ERES 141
RETEYBNCES s ssventssosanpusnnsrasssunes ssagansansnmenunnsens 145

PAPER IV: The Intermediate Energy Gap Case and

the Second Singlet of Naphthalene

I OdUCE T OM. wc s e s escsmanssmensnmasnns vusamasenamanss cuss 148
General Theory of Vibronically Tangled Systems............ 150
The Naphthalene Second Singlet: Theory................... 156
Results: Origin ReSONANCE.....vviitiireneenneenennennnnns 167
Results: ag AdAdTLTODS s ssssssssuserassnbonshuninsnsingsans 201
1B,y Origins and Their Widths.........ccoviieeeiniannnnn. 221
Predicted Emission Decay CUrVES . ... iiit it iennernneeennannn 227
7111112 1 po (o e 234
PROPOSITIONS



PART 1
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The radiationless transition problem has been around almost
since the origins of the quantum theory. The early work dealt mainly
with phenomena such as the Auger effect and predissociation. Later,
chemical physicists began to worry about the origins and properties
of fluorescence and phosphorescence. This work led to the currently
used terms "internal conversion" and "“intersystem crossing". The
most recent times have seen both simple and sophisticated mathematical
tools applied to the problem with a bewildering array of results
forthcoming. Robinson [1] has recently written a summary of the history
of the development of the field. Earlier reviews by Henry and Kasha
[2], Hochstrasser, et. al. [3], and Schlag, et. al. [4] present a
great deal of the experimental and theoretical results obtained since
1965. Freed [5] has reviewed principally the theoretical work in the
same period.

Before proceeding to discuss the theoretical models proposed to
explain the phenomenon of the radiationless transition, we will present
some of the experimental criteria characterizing it. We will hence-
forth deal only with the radiationless transitions due to internal
conversion or intersystem crossing. We will ignore the problems of
predissociation, dissociation, and any kind of photochemistry (see
Ref. [3] for some discussion of the photochemistry problem). There
are three areas in which the radiationless transition is manifested
experimentally. These are the electronic absorption spectrum, the

emission decay curve or lifetime, and the quantum yield.
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The thing that one generally looks for in the absorption
spectrum to indicate radiationless transitions is diffuseness or
broadening. According to standard solutions of the Schroedinger
equation, one would expect to see regular structure such as well
defined, sharp lines whose positions are ascribable to electronic,
vibrational, or rotational energy levels. For many molecules this
is the case for the first and maybe the second and third electronic
transitions. Almost in every case, however, the upper excited states
are diffuse and frequently featureless. This is commonly known as
Kasha's rule. This diffuseness is aftributed to the presence of a
continuum of states which interact with the zero-order vibrational
and rotational levels of the electronic transition. The net result
is that the zero order levels broaden. If the broadening is comparable
to the spacing between consecutive zero-order energy levels, no
structure would be resolvable. Hochstrasser [6] has recently provided
a qualitative discussion of this diffuseness together with several
examples. Bryne and Ross [7] have also presented an extensive
discussion of the causes of diffuseness in electronic spectra along
with many examples.

In addition to simple broadening caused by interaction with a
continuum, there is another effect which is quite striking. When two
electronic states are separated by a fairly small energy gap (roughly
a few thousand wavenumbers), the interaction of the upper electronic
state with the higher vibrational levels of the Tower state gives rise

to extra structure in the region of the higher electronic state. This
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phenomenon has been observed in dilute mixed crystals of quinoxaline
in a durene host [6] and naphthaline in durene, p-xylene, n-pentane
and toluene hosts [8]. We will later present a detailed discussion
of the naphthalene spectrun (see Part 5).

The decay curves are roughly related to the absorption spectrum
via the uncertainty brincip]e. Thus, a linewidth AE implies a
lTifetime At =A/AE [6]. Normally, the radiation field contributes
a certain width to the spectrum and thus gives rise to a radiative
lifetime. If a second continuum (say from a lower electronic state)
interacts with the zero order level, then it also contributes a
component to the width and lifetime. The presence of the second
continuum thus shortens the lifetime. This is the usual case for
larger molecules. Much experimental effort has been expended in
determining lifetimes of single vibronic levels in benzene and
perdeuterobenzene [11], B-naphthylamine [12], naphthalene vapor [13],
acetone [14] and aniline [15]. These references are surely not all
the work done in this area. If the diffuseness is of the second kind
where sharp structure is introduced into what is otherwise a broad
spectrum, then the uncertainty principle relationship is somewhat
difficult to define. Indeed, one would not expect the decay curve to
be even exponential. Some nonexponential decays of this type have
been reported [9], but these claims have been questioned. At present
the situation is not resolved.

A second decay time effect has been observed in small molecules

and is discussed by Douqlas [14]. 1In small molecules the densities
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are not broad and almost constant, but rather line-like. This is due
to the small number of vibrational degrees of freedom. As opposed
to the above discusséd case of lifetime shortening, the lifetime is
apparently lengthened over that of the radiative lifetime. Here the
radiative lifetime is estimated from the integrated absorption
coefficient. The spectra in these cases are line-like, but they do
not seem to obey the usual spectroscopic rules and as of now have
not been assigned.

Quantum yields of emission have been measured for many molecules.
By measuring the quantum yield and the fluorescent lifetime, one can
get an estimate of the nonradiative decay rate separate from the
radiative component. This technique has been applied only to molecules
where the interacting states are a continuum of the first kind. In
particular the most treated molecule has been benzene [16]. This has
been used to map out the nonradiative rate as a function of energy.
The same has been done for acetone [17] and formaldehyde [18]. The
method has not been applied to any broadening of the second kind.

Having surveyed the experimental results, we will not briefly
survey the theoretical models proposed to explain them. In all models
we start with a zero-order set of states whose exact description we
will ignore for the present. We will restrict our model somewhat more
by allowing only one zero-order state (designated the primary state) to
carry oscillator strength from the ground state. The continuum levels

are called sccondary levels. The zero-order states are eigenstates
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of the zero-order Hami1tonian Ho. The true Hamiltonian is H = Hq+V.
V is thus the interaction which causes the transition. More will be
said about the nature of Hy, later. This will be called henceforth
the canonical model. This model was originally proposed by 0. K. Rice
(see Ref. [1]) and was reintroduced into the radiationless problem
by Robinson and Frosch [19]. The latter's treatment of the transition
pictured it as a kind of ?radiative transition" in which the photon
absorbed had 'zero energy". Thus, they employed Fermi's Golden Rule
to the calculation of the rate.

Bixon and Jortner [20] assumed that the continuum was a
ladder of equally spaced levels and calculated the molecular
eigenstates after diagonalizing the Hamiltonian matrix. The mathematics
is specialized to their model of the continuum, but the results were
shown to be valid for a more general model of the continuum [21]. In
both cases the broad band approximation is used. This assumes that
the excitation source has an infinite bandwidth which excites the
entire broadened band. This means that they have reduced their model
back to the Robinson and Frosch model where it was assumed the entire
primary state is excited [22]. One important result of this work was
the prediction of the absorption band shape to be Lorentzian. Since
this work, more. sophisticated and powerful mathematical techniques
have been applied to the problem with very little further physical
insight forthcoming [23].

Two aspects of the problem that have been mostly ignored are
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the effect of excitation bandwidth on decays and quantum yields, and
the changes introduced by the intermediate level density cases.
Rhodes [24] has discussed the first problem in detail formally, but
then makes some simplifying approximations which reduce the generality
of his results (see also Ref. [22] for a qualitative discussion).
The changes due to intermediate level density have been discussed in
a highly formal manner by Nitzan, Jortner, and Rentzepis [25]. Other
than these papers, little attention has been paid to these two aspects
of the problem.

One can go beyond the canonical model to situations where there
is more than one state carrying oscillator strength from the ground
state. The original treatment of this situation is due to Fano [26].
He was able to predict the line shape of a resonance where the
primary and secondary states carried comparable oscillator strength.
Freed and Jortner [23] also discussed a similar problem. Recently,
Nitzan and Jortner [27] and Nitzan [28] have treated the problem in
some detail. They computed the line shape for various cases under
some simplifying assumptions. Tric [29] has also discussed a related
problem. Again, most of these treatments are highly formal and invoke
many simplifying approximations. It also seems that this type of
model is not generally needed for describing the radiationless
transition problem among the first few excited states. The argument
that the continuum carries no oscillator strength because of spin

selection rules (triplet continuum, singlet ground state) or because
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of vanishingly small Franck-Condon factors seems to be generally
valid. Such a model may be significant for higher electronic states
such as Rydberg states [30].

The key quantity central to the entire field of radiationless
transitions is the weighted density of states. This quantity is in
general energy dependent and is formed from the product of the
interaction energy matrix element between secondary and primary
states and the density of secondary states both evaluated at a
particular energy. For the situation in which the secondary state
spectrum is continuous (a fact we shall soon show.to be generally
true), this quantity can be treated as a continuous function of the
energy. As we shall show later (see also Ref. [3]), all observable
properties of a molecular system can be calculated once knowledge
of the weighted density is obtained.

There are several contributing components to the weighted
density function. The two principal components are the radiation
field and lower energy electronic states of the system. The
radiation field states are a true continuum. The inclusion of these
states in the problem are necessary to describe photon emission and
absorption. Usually, and we also do so here, the assumption is made
that the weighted dénsity due to the radiation field is constant
within the bandwidth of a 1ine. The molecular weighted density can
be divided into two components where applicable. The first is a
constant component. The second is the line-like density due to a

nearby electronic energy level [25]. This second component is not
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present in the large energy gap situation.

The molecular weighted density is the inverse of the radiation-
less decay rate which is, of course, energy dependent in the general
case. The ultimate aim is to extract this quantity from the total
weighted density function. For the statistical 1imit case of benzene,
this quantity has been calculated in a fashion [31], [32], and also
measured experimentally (Spears and Rice, [11]). It has also been
experimentally measured for SO, [33] and chloro- and bromoacetylene
[34].

The calculational methods can be divided up into two groups.
The first [35] considers the transition rate from a thermally averaged
excited state. A more general formalism has been achieved by Lin
[32] and Heller, et. al. [31]. These calculations allow for both
frequency change and displacement of the oscillators. They are able
to apportion the energy of the excited states among the various
vibrational modes of the lower electronic state. Unfortunately,
these calculations are totally within the harmonic approximation.

The results of Burland and Robinson [36] seem to indicate that
anharmonicities are very important in the values of the Franck-Condon
factors and densities of states. Thus, there is still some lingering
doubt as to the accuracy of these calculations in an absolute sense,
but they do seem to reproduce relative values of radiationless rates
quite well. These methods would seem also to be more accurate than

the factorization technique of Robinson and Frosch [19], [36].
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It should be noted that the above calculations [31]-[32] ignore
the electronic interaction part of the whole interaction integral.
There is at‘present a controversy over the exact nature of the coupling
term. An equivalent question is, what is a proper choice of zero-
order states? Most workers have used Born-Oppenheimer states for
zero-order states. Burland and Robinson [37] and Sharf and Silbey
[38] have suggested that Herzberg-Teller states are a more appropriate
choice. Recently, Siebrand [39] has proposed some criteria for
testing which of these choice of basis sets is correct or partially
correct. The issue is still open to considerable debate. We will
see that the assumption of one or the other basis set is not necessary
for deriving the description of the total weighted density function
from experiment. To extract the nonradiative rate from the total
rate, some calculations must be done and these will involve some choice
of basis. Al1l calculations so far attempted have employed a Born-
Oppenheimer basis set.

Most mathematical developments use the assumption that at
time t = 0 the state is prepared in some étate |a>. We do not ask
or need to know what the_system Tooks 1ike at times less than zero.
One can worry about how crucial this assumption is to the results
of our model. What the worrying amounts fo is a consideration of
the preparation of the state. For examp]e, if one is using Tow
energy electron impact excitation, the time characteristics of the

preparation of the state are very different from using say a mode
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locked laser because of the differences of sources. The problem
conveniently divides itself up into two (or possibly three) con-
venient regions, each of which corresponds to a different type of
experiment or theoretical treatment. We will now proceed to examine
these experiments briefly. In all subsequent discussion we assume
photon excitation solely.

If one uses an excitation pulse which is a delta function in
time, the approximation of the above discussion is valid. The molecule
suddenly at time t = O(+) is in the excited state. Previous to the
pulse it was not in the excited state. No emitted light can be
detected before time t = 0. By the uncertainty principle, our
excitation sbﬁrce must have an infinite bandwidth. This is the
so-called broad band approximation used frequently in the literature
[20]. Of course, the delta function time pulse is a mathematical
construct. In the laboratory this 1imit can be reached if the time
duration of the pulse is much less (say 0.01-0.001) than the decay
time. This means that the excitation bandwidth is wider (roughly 100-
1000) than the absorption band. If the absorption band is a simple
Lorentzian, not'much more can be done experimentally. This is the
statistical limit. If, however, the abosrption band is structured,
i.e. the molecule lies in the intermediate or small molecule
classification, then by not having a finite bandwidth to isolate
various regions of the spectrum, some potential information is lost.

The opposite extreme is the situation where the excitation
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is continuous and the bandwidth very narrow (a delta function
mathematically) [14]. This is more appropriately discussed in terms
of scattering theory [41]. Here we cannot really talk about the
molecule being prepared in a definite state at a definite time. The
quantities we must deal with are probabilities of absorption or of
scattering most frequently measured in terms of cross sections.
A]so; one measures the quantum yié1d of each channel of the decay via
these either computed or experimentally measured cross sections. The
advantage of this type of experiment is that excellent spectral
resolution is avai1ab1e; Again, with statistica] limit molecules,
nothing really interesting occurs. However, in an intermediate or
small type molecule, one can very completely explore the details of
the spectrum. The disadvantage of these experiments is that one has
little, if any, time resolution.

The third type of experiment encompasses all the territory
in between the th above Timiting cases. We permit our excitation
source to have a variable bandwidth and corresponding variable time
duration. We have the advantage of some spectral as well as some
time resolution. Technically, the language of this experiment should
be scattering theory, but frequently we can resort to reasoning about
the decay of prepared states. Thus, we combine some of the advantages
of both above types of treatments and also reject many of the
objectionable qualities. We will nave some spectral and time resolution.

and will be able to measure both time decays and absorption spectra.
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This is a more general treatment and encompasses both previous
experiments as limiting cases. We will bg concerned with this type
of description from here on.

In summary, the series of papers that follows will generalize
. the radiationless transition problem in two different ways. The first
is permitting the weighted density of states to assume a general
energy dependence. This allows us to encompass all the different
classifications (statistical 1imit, intermediate, and small molecule)
under "one roof" so to speak. We do not have to resort to
approximations to the density such as a constant continuum or a
"ladder" of states. In treating the naphthalene problem (Section IV),
we will make no assumptions about the density, but let the spectrum
tell us what it should be. The second generalization will be in
letting the excitation bandwidth assume a general width. By doing
this we avoid the limiting case of the broad band approximation.
This should allow a closer comparison with experiments where very
narrow excitation is used. Also, the physics of the narrow band
situation is different from the broad band approximation because a
pure zero order state is not excited. This will be a crucial factor
in understanding intermediate or small molecule absorption spectra and

emission curves.
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MATHEMATICAL THEORY OF THE GREEN'S FUNCTION

As was shown in the previous section, our problem is to
calculate the solution to the Schoedinger equation written in the

form

Hy = (HotV)¥ = Ey (1)

The situation of interest in the case where the eigenvalue spectrum
we obtain from Eq. (1) is continuous. We can rewrite Eq. (1) as an

inhomogeneous equation

(Ho-E)y = Vy (2)

where the solutions to the homogeneous part of Eq. (2),

(Ho-E)yo = 0 (3)

are presumed known. By standard differential equation theory,

Eq. (3) has a Green's function which satisfies

(Ho=E) + G (r,r"3E) = =8(r-r") (4)

The solution to the inhomogeneous equation (2) is then given by

W(r,E) = bo(r,E) + £ G (r,r se)-V(r ) y(r’)d’r” (5)

~
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This will give the true wavefunction of the system (if it can be
solved). |

The wavefunction in Eq. (5) contains all the information we
need know about the system. However, in order to get meaningful
results to compare with experiment, we do not need the wavefunction
itself. A1l we essentially need is the eigenvalue spectrum together
with formal manipulations. Thus, we circumvent the‘usually impossible
job of solving Eq. (5). In particular the two quantities of interest
which we wish to have are the absorption spectrum and the time
evolution of the system. These are the observable quantities. This
can be done without any detailed knowledge of the exact eigenstates
of the system. The approach to be taken here is actually a type of
‘perturbation theory where We use a series expansion to calculate the
Green's function. From this Green's function; which ié essentially a
presentation of the eigenvalues of the system, we can get directly
the quantities of 1hterest. The approach used here ié also called by
some authors the resolvent method [1].

A brief summary of the Green's function theory to be used in
Section II will be presented now. This summary will try to collect in
one section most of the pertinent mathematical arguments and result.
In Tater sections the results of the particular situation in question
and the}physical interpretation will be presented in greater detail.

The diagram expansion was an important development in the

theory of Green's function [2]. Although to the uninitiated this
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appears to be a formal mathematical device, it is in reality a
powerful device because of its simplicity. Its use is not as

significant here as in the many body problem [2]. A second important

result is the Dyson's equation,

G = Go+GoVG (6)

where G and G, are the Green's functions of the true and zero order
Hamiltonians respectively, and V is the remaining part of the
Hamiltonian as in Eqs. (1) and (2). It is this equation which gives
the solution ultimately for the Green's function. Applications of
these jdeas can be found in many sources [3].

We deal with a matrix representation of the Green's function
which is first computed in energy space. This will give the answer
to the first part of the problem, the calculation of an absorption
spectrum. If we express our true Green's function operator in the
represeﬁtation of the exact eigenstates (i.e., the eigenstates of

H = H0+V)
G(e) = f lAlgL%%ﬁ&L dx (7)

where €~ is a complex energy, A a real energy eigenvalue of the
molecular eigenstate |[A> and p(A) is the number of eigenstates
between A and x+dA. Now set €”= e+in, where € and n are real and

n>0. After letting n>0, we get the result,



-20-

6(e) =(P;.JL>%%)_<AL - im8(e-2) Aop()<r|

The term %} ImG(e) is easily seen to be the density operator [4] for the
system. This relationship of density of states with the Green's
function is sometimes called the Lehman spectral representation of the
Green's function [5]. In the representation of our zero order states,

the density of the primary state is Dp(e),

Dp(e)-= - %?n<p|6(elp> (9)

This will be proportional to the absorption spectrum in our simple
case. For situations where there is more than one primary level, the
absorption spectrum is a more complicated expression involving
several matrix elements of the Green's function.

One aspect of Green's function theory that has received
considerable attention in thelliterature is the analytical
properties of G and its related function R, the Tevel shift operator.
G and R are really functions of a complex energy variable and thus
must obey the rules of complex function theory. As.wi11 be seen, when
the zero order energy spectfum is discrete, the Green's function
has a set of discrete poles. However, when the zero order
eigenvalue problem is continuous, the situation is much more subtle.
It is here that we must deal with the Green's function as a complex
variable function whose properties in energy space will determine its

behavior in time space.
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As was noted earlier, the Green's function "operator" can be
written in terms of the exact eigenstates of the system, or it is said
that the Green's function is written in the molecular eigenstate
representation. This matrix representation of the Green's function
must be diagonal, and all the poles lie on the real axis. This must
be so since the exact molecular eigenstates are stationary states of the
system and have real energy eigenvalues. A1l of this 1is conveniently
expressed by Eq. (7) where X is a real energy. If we are concerned with
a state which is not a stationary state but is a Tinear combination
of stationary states, the diagonal matrix element in this new
representation, i.e., that of our complete set of nonstationary states
(the zero-order set) will be seen not to have poles on the real axis
any longer. The poles are now complex reflecting the finite lifetime
(nonstationarity) of these states.

Before proceeding, a slight diversion will be made to relate
some of the above considerations to the actual experiment with which
we are concerned here. This experiment involves the excitation of
a molecule by a Tight source with the observation of the subsequent
decay of resonance fluorescence. By the word decay it is clear that
we must be dealing with a nonstationary state. Also note that any
real molecule must have a continuous spectrum because of the radia-
tion field. Thus, it is clearly impossible in any real experiment
to deal with excited stationary states. " The only representation of

the Green's function which we will deal with is that of the zero-
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order states. It will even turn out that the experimentalist has a
certain amount of control over what state the experiment actually
involves.

The important point to be noted here is that in our zero-order
representation, the position of the poles of the Green's function, and
thereby its analytical properties, will change from the molecular
eigenstate representation. This is due to the fact that the state
with which we deal in zero-order is a superposition of molecular
eigenstates. Thus, we expect that the analytical properties of the
diagonal matrix element involving this state would be different from
any diagonal matrix element in the molecular eigenstate representation.

It can be shown in general [6] that a diagonal element of the
Green's function matrix in some representation for the simple case

we are dealing with can be written as

. ] ) 1 (10)
<albla> = 6, = <l Ry 19 TRt
where <a| satisfies
Hola> = €,la> (11)
and
Ho + V = H | (12)

H is the exact Hamiltonian for the system.
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R(e) is the so-called level shift operator which is given by the

equation

R(e) =V + /7 p, (A\)dA V—U'lax‘dgﬁf;i'(]"axél)v (13)

with [Xx> being the eigenstates of the Hamiltonian

Ha|A> = [Ho+(1-]a><a|)V(1-]a><al)] [r>= exlx> (14)

Since 1-|a><a| = S| y>p(y)<y|dy where the |y>'s are all the other

states in our complete set, the Hamiltonian in our case reduces to

H. = Ho (15)

since we define <y|V|y> = 0 (see Section I A). Also, since we take

<a|V]a> = 0, for the equation for R(e) becomes

R(e) = foly)dy Lzl (16)

Note that again €y is real and € is complex. We can again explicitly

show € to be complex by writing

»

e” » e*in (17)

where ¢ and n are real and n>0 as before. We must pick the plus sign

in Eq. (17) to insure getting a causal or retarded Green's function [7].
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Thus,

2
Tim <a|R|a>=1im Ra(€+n)=11m fp(Y)legélYIIZl_

iP0(+) 0 (+) m0(+) gl
(18)

2
= Jp(y)dy lf%%glle—-- imp(e) |<a|V]e>]?

Y

where use was made of a standard identity [8]

Tim =) gy =6>f;(f—_(% dx & inf(x,) (19)

Fin-
>0 (+) X=17Xe

and(P represents the Cauchy princip]é value integral.

We see that Ra(e') has both a real and an imaginary part,

R, (e+in) = D(e) - I(e) (20)
n+0(+)

I(e) is always positive which we have indicated in Eq. (21) by the

negative sign. Also, it is clear from Eq. (19) that

R,(e-in) = D(e) + I(e) (21)

0 (+)
which shows that Ra(etin) has a branch cut (discontinuity) along the
the real axis. Dispersion relations can be then derived connecting

D(e) and I(e), but we will not be concerned with these. Note that in



-25-

the discrete state limit, R(e) has only poles and no branch cut. This
will prove to be a significant difference between the two cases.
Returning to the Green's function itself, we see that it can be
written
1 1

<alGla> = G, (g) = e-¢-R_(€) = e-€_-D(e]+TI(e) (22)

The question is, where are the poles (if any) and the branch cut(s)
(if any)? If for some reason, D (e) and I (e) are constants, or
equivalently when D (ea)|<< leal and |I (ea)|<<ha|, the pole of the

Green's function is clearly located at

€ =¢€p =€_ + D(ea) - il(e.) (23)

which is a complex pole seemingly in the negative half plane.
However, since Ra(e) has a branch cut along the real axis, we must be
very careful. Expressing Ga specifically as a function of complex

energy,

1

6, (e+n) = 61(€) = e—preywTITe) (242)
0 (+) .
A ]
Gale-in) = 6,(e) = e pe)=TT(ey {280}

n>0(+)



and

Tim [6,(e-in) - G, (e+in)] = i(e_aa_0%2§§2+(l(€))z (24c)

m0(+)
showing that Ga(e) also has a branch cut along the real axis. To get
to the pole in Eq. (23) we must analytically continue Ra(and thus also
Ga) into the second Riemann sheet which is reached when crossing the

branch cut. This is done by defining

Ro(e-in) = Ry (e+in) = D()-11(e) (25)

with RE’I being the value of Ra in the second and first Riemann sheets
respectively. Then it is seen that the pole Ties in the second
Riemann sheet.

From this simple case one can give a very simple physical
interpretation to the real and imaginary parts of Ra(e). The real
part is seen to be the energy shift. This shift is related to (See Eq.
(26)) the perturbative shifting of discrete zero order energy levels
which are allowed to interact. The complex part is only non-zero for
the continuous spectrum case. It represents the half-width of the
band which now characterizes our once discrete state. Note that the
term half-width (and the related lifetime) only has true meaning in
this simple case where it is a constant. When it is strongly energy

dependent, then the above interpretation is not valid.



-27-
One now has to worry about what happens when the conditions
leading to our simple pole no longer exist. To get some understanding
of this, let us return to the case where our zero-order energy spectrum
is discrete. Then the poles are located by solving the equation (See

Section II)

s |2
Wil g (262)

n
€-€1~- L
i=2 i

or
n
n a 1=2(€-Ej)
I le-E;)~ B Vo |*[—p—1 =10 (26b)
i=1 i-2 J

The Ei's are the zero-order energy eigenvalues, € is real, and V;i =
<1|V|[i>. This is easily seen to be an nth order polynomial

equation in € which thus has n roots (eigenvalues). Thus, the Green's
E

function has n poles. If we let n»~ and (E )-0, we get to our

i i-
continuum case. Here we have an infinite set of poles all of which
must be in the second Riemann sheet because of the properties of
Ra(e) in this limit.

The second observable we desire is the emission decay curve.
To get this quantity we must be concerned with the time evolution of
our eigenstates. The calculation of the time evolution of the system
will give us directly the emission decay curve. The important result

here is the following [9]:



U(t,t) = e s
[(ad

where U(t,t”) is the time evolution operator, Gop(E) is the Green's
function operator, the contour of integration is a Cauchy contour
(counterclockwise, closed path encircling all the poles of G) and A
is a complex energy. When t-t“>0, we can push the contour in the
lTower half plane to infinity and the integration along this path goes
to zero because the integrand approaches zero. The only path that
contributes is that above the real axis in the first Riemann sheet.
We can then lower this contour to the real axis because there are no
poles in the first sheet, and we obtain [10]

(£) e Th "A(E-t7) o (28)

U(t,t7) = o 6
which is the Fourier transform of the entire Green's function . E is
now a real energy variable.

In applying this time evolution uperator to the initial wave-
function, we must ask exactly what the quantity is we wish to follow.
Since our experiment involves the detection of photons, the quantity

to calculate is the time dependent transition probability,

T(t)

z|<0

e-r|¥(t)>]?
e (t)>]

(29)

£|<0[er|U(t,0) .¥(0)> |2

€.r
~ A
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where <0| is the ground state, XL the dipole moment with polarization
A, and ¥(0) is the state that we prepare at time zero. Note that we
are here tacitly assuming that the excitation pulse is a delta function
in time (See Part 4). We can expand T(t) in our zero order
representation, and assume that |¥(0)> = |a>. In Section III we will
show that this last assumption can be relaxed if certain modifications

are made to the Green's function. Continuing, we get

T(t)

z{|< Ole-r|a><a|U(t,0)|a>]|?}
. <°r

|<Cle-r|a>|?|<a|U(t,0)|a>]|? (30)
s

(o]

|
<0lula>|? —lv-f <alG a>e'1h Et
2mi_

1}

dE |2

where in the last step we used Eq. (29) and also we assumed only one
component of the dipole transition moment is non-zero. If we have
more than one optically allowed state, this transition moment would be
somewhat more complicated.

In some very simple cases we can get an approximation to the
emission decay probability, Eq. (30). Using the discussion of the
analytical properties of Ga(eiin), in particular Eq. (23) and the
assumptions behind it, we see that T(t) is simply evaluated by the
Cauchy integral formula. <a|G|a> has a simple pole on the second

Riemann sheet which is within closed contour of Eq. (27). Thus,
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using Eqs. (28) and (23) and the theorem of residues from complex

variable theory,

(e <]

%Tf <a|G]a> e~ iEtye . e-i(ea+D(ea)-iI(ea))t

(31)
- e-i(ea+D(ea))t _e-I(ta)t
Upon taking the magnitude squared,
T(t) = |<Ofuja>|? g 727 1(e2)E (32)

which is the standard exponential decay. Note that this is only an
approximation to the true decay because of the assumptions involved

in Eq. (23). However, as discussed in Goldberger and Watson [11] and |
by Galitskiiand Migdal [5], the approximations are generally good ones
and deViatibns only occur at long times. This confirms the opinion one

has from experimental results for many molecules and experiments.
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PART 2

RADIATIONLESS TRANSITIONS: THEIR EFFECT ON
ABSORPTION LINE SHAPES AND EMISSION DECAY CURVES
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I. INTRODUCTION

The subject of radiationless transitions in large polyatomic
molecules has been extensively discussed in the literature for the last
ten years beginning with the papers by Robinson and Frosch [1]. A
review of theoretical work up to 1968 can be found in the article by
Henry and Kasha [2]. Within the past four years there has been a large
number of theoretical papers published in this area. The article by
Jortner, et al. [3], provides an extensive review of much of this work
plus some good experimental background in the field. Two other review
articles more recent than those above and with slightly different
emphasis have come to the éuthor‘s attention [4].

One basic starting model used in radiationless transition theory
| has not changed since the Robinson and Frosch treatment. The zero
order states consist of a single, discrete quantum state (primary level),
carrying all the oscillator strength, which interacts with a quasi-
continuum of quantum states (secondary levels). Using this basic model
many workers have computed the radiationless transition rate by a
variety of techniques and approximations [5]. A second derivable
property is the spectral line shape due to the interaction of discrete
and continuum states. This latter property, mentioned only briefly in
earlier work [6], is the subject of this paper.

Fano [7] first discussed in detail the line shape of a state
interacting with a continuum of states in connection with the
autoionization of helium. His line shapes were based on a model where
both the discrete state and the continuum have comparable oscillator

strength. Thus [8] his model does not coincide exactly with ours.
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Bixon and Jortner, using Fano's formalism, compute the line shape to be
a symmetric Lorentzian. Their model assumes a uniform density of
states and an energy independent interaction. Their line shape is thus
an idealized one. Sharf [9] discusses line shapes in somewhat more
detail than Bixon and Jortner but still employs the same basic model
and assumptions. The paper by Byrne and Ross [10] provides an
extensive discussion of many mechanisms of line broadening. They
provide many examples of spectra which are broadened both by electronic
relaxation mechanisms and by other mechanisms. Like Byrne and Ross,
Hochstrasser, et al., [10, 11] discuss the broadening of spectra from
the experimentalist's viewpoint. Hochstrasser's discussion [11d] is
particularly relevant to the topic of this paper, although his
discussion is more qualitative than ours.

In this paper we present a general formalism that allows the
calculation of the spectral line shape of a single resonance and its
fluorescence decay curve. We place no restriction on the coupled
states (i.e., they may vary anywhere from a true continuum to a set of
discrete coupled levels) or on the energy dependehce of the interaction
matrix element. In order to get a visua1 idea of what real 1line shapes
might look 1ike, we pick some representative examples and plot the Tine
shape and decay curve. These model examples hopefully provide some
idea of what may be observed in real spectra. Discussion of the
properties of these Tine shapes is presented. We restrict ourselves in
this paper to the particular case of one single discrete state carrying
all the oscillator strength interacting with a secondary set of states.

Broad band excitation is assumed. The situation of more than one discrete
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level, or where the secondary states also carry oscillator strength, or
where the excitation bandwidth is finite and narrow with respect tb the
broadened 1ine will be dealt with in a subsequent paper. For a
discussion of the latter aspect of the radiationless transition problem,

see the article by Kasha, et al. [12], and the one by Rhodes [13].

IT. THEORY

The method of the Green's Function has been applied to the
problem of radiationless transitions by several authors. These results
are identical to earlier ones concerned with the decay of metastable
particles [14]. We briefly present our derivation for completeness.
Our formalism has its origins in the theory of mixed crystal spectra
[15, 16]. In this theory, impurities are viewed as perturbations on
the delocalized electronic wavefunction of the pure crystal. The
problem with which we wish to deal is formally equivalent to the mixed
crystal problem in which there is only a single impurity atom present
in the otherwise pure crystal. In this treatment, assumptions as to
the functional energy dependence of either the density of secondary
states or of the interaction matrix elements between primary and
secondary states may be deferred until the end of the calculation.

We define a zero order Hamiltonian matrix Ho consisting of the
true molecular Hamiltonian matrix H minus the interaction matrix v,
which connects the primary level with the secondary levels. The
secondary levels at first are assumed to be a set of discrete states.
This is done for mathematical convenience, and the limit to a density of

states function is taken after some initial manipulations. We define
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the Green's function as follows:

_ 1 - 1
G- - - (1)

~ ~ ~ ~ ~

where € is the matrix of complex energy eigenvalues measured with
respect to an appropriate zero of energy, V is the matrix of inter-
action integrals between states, and Go = [e - Ho T:. G could also

be expressed in a diagram expansion [16]

'x\\ ,').(‘\\
e T L
: Go oo GorV-GarU G,

Where dotted lines represent an interaction V, and arrows represent Go
in a manner indicated by the first term on the RHS. The diagram
expansion is not so useful in this very simple case. In some cases
(see Ref. [14]), the construction of the diagram expansion and
rearrangement of the diagrams allows one to obtain the approximate
Green's function using the technique of partial summation.

From (1) then, the true Green's function is found by calculating

the inverse of the matrix,

where the states have been arranged so that E; is the zero order energy

of the primary state. The first row and column contain the interaction
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matrix elements, and Ei is the zero order energy of the ith continuum
state. We assume that the continuum states are prediagonalized. The
ordering of the diagonal elements is done solely for convenience. The
inverse is calculated in a standard fashion as indicated in Appendix I.
The density of states resulting from the perturbation was calculated

from the relationship [16],
Density of states ="%-Im tr G. (4)

The calculation of the trace is repeated in Appendix I. The result is

Vgl 2o 1 v
tr G = [e-Eq- I 101+ 2 — (E-E]- I o
~ kA1 e-E, #1678 k#i,1 S Ek

Since the line shape is dependent only on the primary state, which is
the sole carrier of oscillator strength, we need only be concerned
with that diagonal element in the Green's function matrix dealing with

this state. This matrix element is

Vo 12
k#1 k
We now make the transition to the density of states function by
transforming the sums over discrete secondary states to integrals over
an energy dependent density of states function Dg(e). The transformation

is in this case not really an approximation. Since all real eigenstates

have a certain amount of breath, they cannot truly be described by delta
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functions in energy space. Thus, any sum over energy levels is in fact
more correctly described as an integration over a density function.

The density function at a point in energy space is the sum of the

amplitudes of all energy levels at that point. The density may be
quite smooth, or rapidly varying, even line-like, depending on the
situation. (cf. Nitzan and Jortner, Ref. [17] sec III).

Thus, the denominator of tr G becomes

Do(E”)|V(E")|? Do(E”) [V(E")}?
e-E,-f dE“=e-E - [— = dE“-imD,o (e) |V(e) {2
e - E € - E
=e-E1-(P ()-imDq () |V(e) |2 (7)

where the integration is over the energy spectrum of the continuum
states. After lowering the contour of integration to the real axis, use

was made of the standard identity [18],

11m F ) - %—ixldx - im f(A).

A-x+iA

The principle value integral corresponds to a level shift operator for
the E; level. The adjusted energy is denoted E;. For constant Do(g)
and |V(g)|?, the level shift is seen to be zero.

The final density function for the primary state is

[V(e) [*Do(e) _
(e-Ev)2+[m|V(e) |?Do(e)]?

- in [6]1:= (8)

This function describes how the originally discrete primary state is

broadened, due to the interaction with the secondary states.
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A. Addition of Radiation Field

The above case considers the coupling of the discrete state to
one continuum, supposed to be the upper vibrational levels of a lower
electronic state [1]. In actuality, this is a very artificial model, as
the discrete state is coupled to a lot of things. If it is assumed that
the molecule is isolated in the gas phase or in a low temperature
matrix, the principle other coupling is to the radiation field. We
approximate this, or some other set of interacting states, by a second
continuum orthogonal and uncoupled, at least directly, to the first
continuum.

The matrix G ' is calculated as before and is given by

EjF_I.oov_Iiloo_w]kooo \

6 = il ey (9)

where the V's are the interaction matrix elements with the vibrational
continuum, and the W's are the fnteraction matrix elements with the
radiation field. A1l other matrix elements are zero. The determinant
and co-factors were cé]cu]ated as before. Denoting the vibrational
continuum density of states function as Do(e), and similarly po(e) for
the radiation field continuum, the final density function for the

primary state (see Appendix II) is
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] Do(e) [V(€) | 2+pa(e) W(e) |
T Im [G],, = — (10)
(e-E1)2+[m(Do(e) [V(e) |*+po(e) |W(e)[?)]?

where now

Do(E”)|V(E7) ]2 o(E”)|W(E)|?
(E”) | V( )IdE'+0>fp( ) [W( )IdE,- (1)

e - E° e -FE°

—E-1=E1+€f

This expression is merely a generalization of Eq. (8), and results

directly from the assumption of non-coupling between continua.

B. Computation of the Line Shape and Decay Function

The approach to calculation of the general line shape using the

Green's Function is through the formula derived by Harris [19],

w

14m e
3 ¢

A (e) = I 2 Im< OlukG uk|0> (13)

k=1
where A~ is the absorption coefficient and is computed as a function of
wavenumber & . The summation is over the three cartesian components of
the dipole operator u. Our absorption coefficient can be written,
assuming only one vector component of ﬁ is active, and that only the

discrete state |1> has oscillator strength,

- _ 8
R = 7%? |<0u|1> |2 Im<|G[1>

|

81 ., . mlV(e)|2Do(e) ) (13)

& (e-E1)2+[m|V(e) |2Do(e) 12
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which involves only the G;; element of the Green's function.

Normally the assumption made is that the product |V(e)|2Do(e) is a
constant. This assumption was made chiefly to give mathematical
simplicity to the resulting formulas [5]. However, calculations of
Do(e) and the Franck-Condon overlap factor part of |V(e)|? [20] show
that both vary approximately exponentially over energy ranges of about
a bandwidth. For small molecules, on the other hand, the density
function should be almost discrete. The energy dependence of the
density-interaction product is also verified in several experimental
studies [21-24]. 1In order to preserve complete generality, we now

write

[V(e)|2Do(e) = [V(E1)|?Do(Es)f"(e) (14)

where f”(e) is an as yet unspecified modifying function with f°(E;) = 1.
This notation will allow for the computation of the 1ine shape in reduced

units. A~ becomes

K’— 8m u(z)l 1 ege f’(g)
T (mvzng)  [(e-E)2/(nv2Do) ]+ [F7(e)]2

where V2Do =|V(E,)|?Do(E1). We define a reduced energy & as,

£ _e- B (16)
ﬂszo
& is then energy measured in units of the Tinewidth, where V2D, is

the true line width if f(e) = 1 for all €. Finally,
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€ _=¢+ Ey - Ei . constant (17)
V2D, V2D,  mV2D,

since E; >> mV2D,.

Thus the final expression is

3c_ mV3D, _ f(&)

8m U%l E1 €2+f2(£)

where

f(g) = f7(e). (19)

This then gives the 1ine shape upon the assumption of a reasonable
f(¢). The A is a reduced absorption coefficient which applies to the
shape of any line.

A similar derivation for the case of two coupled but independent
continua is also possible and will be used later in the examples. The

result comes from Eqs. (10) and (18) and assumes that po(e)]| W(e)|?= W?po

is constant. Then Eq. (16) becomes

o () |V(e) |2

W "
K= Ar._3¢c_ mWpo _ i (20)
gr ud ( 7 2)+(nooge)| V(e)|?, 1)2
mW2po m™W?po

We also make the assumption that the discrete secondary states are

approximated by Gaussian functions (for simplicity only) of a particular
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width (wi) and position (gi). Thus,

ﬂDo(E)lV(€)|2 E _Ei
) w

TTpoW2 1

where

WVZDO
§ =

"szo

is then the ratio of the line broadening of the primary state due to the
interaction with the discrete secondary levels as compared to the
broadening due to interaction with the radiation field continuum. The
assumption made is that the sum of Gaussians describes the energy
dependent product of the density function and the interaction matrix
element. For simplicity § is assumed to be a constant for all coupled

levels. The energy is again in reduced units

s=c-E1 (22)
Wpowz

similar to Eq. (16).

C. Time Evolution of the Perturbed State

The approach to the time evolution problem through the Fourier
transform of the Green's function was developed by Goldberger and
Watson [14a] and Zumino [14b]. The utility of the Green's function is

seen here. Not only does it provide a simple and high order way of
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doing perturbation theory (sometimes the only way), but it also governs
the time evolution of the system. The time evolution of the primary
state is given by the probability

1t
|

o ST et 161> |2 (23)

[ (62,0 (£))]? =

where y(t) is the complete time dependent wavefunction for the system
and w(O)'= 1 corresponding to the preparation of the state by photon
absorption into the zero order state ¢,. The time evolution of the
secondary states is given by

o]

dwe” 1%t <i|6]1>|2 (24)

-00

[ (6558(t) ]2 = |y /

which corresponds to a transition to one of the secondary levels. To
get a measure of the total transition, we would want to integrate over
the whole set of secondary levels.

As just stated, the Fourier transform of the Green's function
gives the time varying overlap integral. Freed and Jortner [25] calculate
the probability of finding the molecule in a secondary state, equating
the time derivative of Eq. (24) to the observed fluorescence decay. We
prefer to calculate the probability of finding the molecule in the
primary state with the observed fluorescence decay then being directly
proportional to this quantity. (See Ref. [26]).

The Fourier transform in reduced units is found as follows:

w__F
=2mc_lie_ V. w (25)
TV “Do c 2mc
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dw = 2w2cV2D,dE. (26)

The transform becomes

jwt

o] - 2 E
I Sdue i 2mE(cmV2D,) + 21rcE1)Glldg

Gi11= 2ﬂ2CV200 f_:e-1 t(

= 2m2cv2D, o 12TCEAY s e 1et6, e, (27)
where
R A (28)
1
NCVZDO

is time measured in units of 2w times the reciprocal of the line width
frequency, or in units of true lifetimes if f(£) is constant. The
magnitude squared of the above integral then governs the time evolution
of the primary state.

The matrix element used in this computation must be the entire
matrix element, both real and imaginary parts, unlike the 1line shape
function where only the imaginary part of the Green's function applies.

In reduced units the matrix element of concern is

Gi1 = ] = = ] f(E)
V2 E2+F2(E) mDoV? E2+F2(E)

It should be mentioned that the lifetime is technically defined only in
terms of an exponential decay whereas almost all examples presented here

are nonexponential decays. For this reason we plot the whole decay
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curve. The term "lifetime" is used from now on only in a qualitative

manner indicating the speed of decay.

IIT. COMPUTED SPECTRA AND DECAY CURVES

We will now present some examples of line shapes and decay
curves that we have chosen to illustrate some of the various spectral
perturbations that may occur for nonideal situations. There are
obviously a large number of possible examples and only a few can be
included here. Each example was chosen to illustrate a particular
effect. In real systems, a superposition of these effects may generally
be expected. Also, there are other broadening mechanisms, which will
come into play in real systems, that we ignore here. A1l the line
shapes correspond to a single vibronic transition in condensed phases or
to a single rotational line in a gas phase vibronic transition. One
further comment about the examples here is that whenever we refer to an
interacting continuum we are in actuality referring to the function
that is given by the product w|V(e)|?Do(e) and not just Do(e).

The decay curves were computed using the fast Fourier transform
algorithm of Cooley and Tukey [27]. This algorithm takes a finite
bandwidth function and converts it into a periodic function. The
Fourier series of the periodic function is then computed. The discrete
points from this computation are then points in the true Fourier
transform of the nonperiodic function. If the original function does
not go to zero at the endpoints, errors in the form of ripples in the

transform occur. We removed this error as much as possible by multiplying
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the Green's function by a "filter" that forced the end points to go
smoothly to zero while not affecting the main part of the Green's
function near resonahce. The jagged appearance of many decay curves is
due to the finite point approximation of the algorithm to the continuous
transform. Under higher time resolution, the decay curves appear

smooth, as they should be.

A. Smooth Density-of-States Function

The first example is the large molecule 1imit case where the
interacting states form a true continuum, see Fig.(1). If the continuum
is a constant across the bandwidth, the 1line shape is a pure Lorentzian
function. With a varying continuum, the Lorentzian becomes distorted to
a degree depending oh how rapidly the continuum varies. We allowed the
continuum to vary exponentially. This particular form of the energy
dependence is not critical for the general conclusions drawn here. For
a moderately varying continuum, such as with an exponent of 0.1 per
linewidth, the Lorentzian becomes asymmetric with greater intensity on
the lower energy side than on the higher energy side of the resonance.
The peak also shifts slightly to higher energy, although this is not
readily detected in the figure. For slightly higher exponents, 0.5 per
linewidth, the same effect continues. The distortions of the symmetric
Lorentzian are not overly noticeable on inspection. A moment analysis
of the 1ine would possibly reveal the distortion more easily. In the
cases where the continuum is rapidly varying, exponents of 1.0 and 5.0 per
linewidth, the Tine continues to shift its peak slightly to higher energy,

but at the same time sharpens considerably and increases in peak
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FIGURE 1 (Uniform Density)

Uniform density of states varying exponentially. A1l Tline
shapes are plotted on the same scale. The exponential coefficients

are from top to bottom, 0.0, 0.1, 0.5, 1.0, 5.0.
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intensity. We do not know if such rapidly varying continua exist in
nature, so verifying this prediction may prove impossible.

The decay curves also follow the expected pattern of longer
lifetime corresponding to narrower bandwidth. The decay curve
corresponding to the pure Lorentzian shows exponential behavior over
almost the entire time period except for very short times. The rise
preceeding the decay can only be observed when the exciting pulse is a
delta function in time. For a pulse of a finite width of time, this
effect is washed out [28]. The rise is due to the 1imits of integration
imposed by the finite bandwidth. If the limits could be infinite, then
the decay would be exponential at all times. Asymmetry in the
absorption spectrum manifests itself as a curvature (in a log plot) at
short times. At longer times the curve becomes linear (exponential) in
the Tog plot. The stronger the asymmetry, the longer the curvature
lasts. The deviation from exponential decay due to a varying continuum
is not striking and care would have to be taken to observe it in real

systems.

B. Discrete Secondary Levels

The rest of the examples involve a number of relatively discrete
secondary levels that have both a variable position and width,
superimposed on, and noninteracting with, a constant, smooth continuum
as described in Eqs. (20) and (21).

The continuum can be regarded as the radiation field continuum
governing radiative decay or any other interacting continuum. The

secondary discrete levels obtain their width either from interaction
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with the radiation field, interaction with other continua if possible,
or from collisions with other molecules which can be regarded as
effectively broadening out the vibrational levels.

We now consider three cases obtained by variations of the

parameters, 6, W35 and gi.

1. Variable Spacing of Couples Levels

For this example (Fig. 2) we chose wi=0.5 linewidths and &§=50.
The spectra show many spurious peaks due to the coupled levels. At the
position of each coupled level there appears a doublet peak. Sometimes
the doublet is not resolved if the width of the coupled level is too
small, or if the coupling strength is too small and the coupled level
too far from resonance.

This doublet structure is clearly seen in Fig. 2. The large
splitting at the position of the primary state is due to there being a
coupled Tevel exactly in resonance with it. The symmetric appearance of
the profile of the spurious peaks is due to the constancy of § for all
coupled levels and the symmetric placement of the levels. If this were
not so, there would be no sfmp]e profile and the peaks would vary in
intensity and splitting. The examples of variable § will display this
point a Tittle more.

The doublet exactly at resonance is due to the plus and minus
combinations of the two degenerate states. For exact resonance the
intensity distribution is symmetric as shown here. When the secondary
state is slightly off resonance, the intensity is asymmetric [28]. The

doublets that occur far from resonance are due to a more subtle effect.
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FIGURE 2 (Variable Spacing)

Discrete density of states with W, = 0.5 and § = 50.0. The
line shapes are on the same scale. The level spacing is, from top to

bottom, 10.0, 5.0, 2.0.
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The nature of the broadened sfate is necessary to understand this. Any
broadened level is not really a single state but consists of
superposition of a large number of discrete (or at least very narrow)
energy levels. We can mix the secondary and primary states by a
stepwise perturbation approach. In first order the primary level mixes
with each component of the broadened secondary level giving each one
oscillator strength. The shape of the spectrum should reflect simply
the energy distribution of the interacting secondary state. Now,
however, these first-order states can mix thrdugh indirect interaction
via the primary state. Since they are almost degenerate states, these
second- and higher-order interactions are nonnegligible. These higher-
order interactions resuTt in a redistribution of the first order
intensity within the broadened secondary level. The levels near the
center gain very little intensity whereas those on the wings gain
proportionately more. The net result is a proportionate increase in the
intensity of the wings with respect to the center. Thus,a "hole" is
burned in the center of the broadened secondary level. The extent of
this hole burning is dependent on the coupling strength and distance
from resonance, which determine the interaction magnitude, and on the
width of the secondary level, which determines the magnitude of the
splitting of the two components of the doublet.

The decay curves are now highly nonexponential and show quantum
beat effects (See Ref. [3] for some discussion of this phenomenon). The
actual structure of the decay curve is complicated by the presence of
several coupled levels at different spacing. The first two decay curves

are dominated by the structure very near resonance. Calculations with
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only this one level present show that the first three peaks in the upper
d=cay curve, and the first, second, and fourth peaks in the second decay
curve are due to this major doublet in the absorption spectrum. The
third decay curve is quite different from the first two, corresponding to
a much more radical spectral perturbation. The initial rise in the
fluorescence followed by the decay will be discussed in a future paper.
The decay curves are not simple because they are a superposition of

many recurrence phenomena from the many coupled levels.

2. Variable Coupling Strength (Fig. 3)

One would expect the coupling strength parameter to determine how
the intensity of the primary state is distributed between the discrete
secondary states and the secondary continuum. To a certain extent the
calculated shapes confirm this. The intensity of the central doublet
does decrease slightly on increase of §. More intensity is shunted to
the outlying coupled levels as the coupling strength is increased. The
progression from single lines to double lines is clearly shown as the
coupling strength increases. Even at the lowest coupling strength, the
peaks at +5.0 and -5.0 are beginning to show the effects of doublet
resolution as the single peaks are flattened on top. The decay curves
are dominatéd by the central doublet.

The position of the beats is now independent of the coupling
strength, but the height of each beat is related to the coupling
strength ratio. The shape of the curve changes little for times less

than ~ 0.5 lifetimes. Beyond this, as the coupling strength increases,

the beats become stronger. This is related to the fact that the levels
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FIGURE 3 (Variable Coupling Strength)

Discrete density of states with W, = 0.5 and the levels are
spaced 5.0 energy units apart. The line shapes are on the same sca]e;
The coupling parameter, §, is, from top to bottom, 5.0, 10.0, 50.0,
100.0.
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further from the resonance position gain more absorption intensity.
Thus, the dominance of the central doublet on the decay curve is lessened

as its intensity becomes relatively smaller.

3. Variable Width of the Coupled Levels (Fig. 4)

For this case 6 = 10 and the spacing is equal to 1.0 Tlinewidths.
For very narrow coupled ieve]s (wi = 0.1 linewidths), the doublet
structure described previously does not appeér resolved. A singlet
appears at the position of each coupled level. The most prominent
feature is the strong doublet (again due to the coupled level at exact
resonance) at the position of the primary level. For a slightly greater
width [w1=0.5 linewidths, which, with a spacing of one linewidth, makes
the w|V(e)|2Do(e) product almost constant], there is a dramatic decrease
in the intensfty of the central peak due to broadening. For an wi=1.0
linewidth, the spectrum is featureless and very broad. The decay curves
merely reflect the changes in the spectrum along the lines discussed
earlier. For the broadest spectrum, the decay is almost too fast for the

time resolution employed here.

IV. SUMMARY

We have investigated in this paper the various types of spectral
perturbations resulting from interactions leading to radiationless
transitions. We have shown that a nonuniform interaction continuum
manifests itself in a perturbation on the spectral Tine shape as

described previously in the examples. These perturbations range from
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FIGURE 4 (Variable Width)

Discrete density of states with § = 10.0 and the level
spacing equal to 1.0. The line shaves are on the same scale. The

width of the coupled levels is, from top to bottom, 0.1, 0.5, 1.0.
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making a pure Lorentzian asymmetric to introducing either singlet or
doublet peaks into the spectrum at positions corresponding to the
positions of the secondary levels. The magnitude and type of
perturbation depend on the parameters describing the interacting
continuum.

We have also shown how the line shape is intimately related to
the decay curve through the process of Fourier transformation. The
various perturbations of the spectrum are also manifest in the decay
curve as was shown in the examples. The ideal exponential decay can be
greatly distorted depending on the perturbation. The appearance of a
beat decay occurs when the interacting continuum is resolved into
relatively discrete states.

A Tater paper will deal with the effect on the decay curve of
varying the temporal and energy bandwidth characteristics of the

exciting light.
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APPENDIX 1

The determinant is evaluated by performing column operations on
the matrix. Multiply the i-th column by +V11/(€'Ei) and add to the first

column. The resulting determinant is,

512
1
E_El_z OOI—V ‘..'
i#1 E_Ei 11
|Got-V]| = .
e-Fi
IV, |2
= I (E_E1) 1 - eIE e—ék
all i LgA Jj

where the sums and products are taken over all the coupled states. The

cofactors are,

[cof §]11 =1
i

S U I T
co .. = - —
~71 j E_Ei e-E, KA1, i e-Ek

Since we need only the trace of the matrix, the only elements we need

calculate are the diagonal elements. Thus,



2
ot / LIy
[9']11 = I:[ E-El ]_-iI (E-Ei) ] - E‘El z €-Ek

! / k#1
"1
[V |2
= E"El- z —E—:"—IE——
k#1 k

Vi |2 Vo 12
1 Vg 1k
[G] = (E - E1 - I —_—F €e-E - X B
~T o e-ky kA1,i €Ek k1 €k

The trace is then,

2
Vg, ]2 Vq|
trg=l1+32 — (% “Ey - % ) e-E -2

e-E
~ i#1 €k k#1,i € Ek kAl = 7k

Transforming from a sum over discrete, coupled states to an
integral over a quasicontinuum of states whose density is given by
Do(e), the trace becomes

- - , - 2
1+ (e-£a) s DodED) gp - p DolE )Dgfg,7|V(E M® ge-de~

E#E”
= Y2
- e - £y - 5 DETIVETE o -
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APPENDIX II

The determinants and cofactors are evaluated as in Appendix I.

The result for the determinant is

both | -
cont. |9,
65t v =M |1 - = 5 U
¥ - b i
and the cofactors are given by
[cof 6111 = M/(e-E1)
both | E
M M cont. Q]k
feof Elay =<7 = = - I —
< € Ei (e-Ey) (e Eiyikfi e-Ek

Where the following symbols have been used,

911 = V]i or w]. depending on which continua one is in

i

=
"

I (e - Ei) where i ranges over both continua
i

The diagonal elements are then

both -1
cont. [Q]?
[G]i1 ={e - E1 - £ —FC
- i#] i
L, both , both
2
[6].; = — c-f -3 LTS I P E, -cogt'l?lgl_
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nally the trace is,

both "1 both both

cont.lQHI2 ] cont. cont. |9, |*
e-bi- I —F oo eh e T

i#] i i#l i k#1,1 k

make the tranformation to the continuum form. The denominator

) Do(E’)]V(E‘)IZ po(E')IW(E')IZ
- S dE! -Prs dE”
- E) - rd
\ € ; A € E ;
P, (e) ®.(e)

+ im(Do(e) |V(€) | 2+po(e) [W(e)|?)

rerator consists of a number of terms. Evaluating only the first

1ich concerns the primary levels, we obtain

1

<d|G[1> = —
e-E1-imDo () |V(e) | 2+impo(€) [W(e) |2
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PART 3

THE ENERGY SHIFT TERM AND ITS EFFECT
ON THE ABSORPTION LINE SHAPE
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I. INTRODUCTION

In applying the Green's function to various perturbation problems,
a term always arises which is called the energy shift or level
disp]acement operator. It is given by the formula,
| 2Do(€)

T|V(€)
Energy Shift = GDI - de (1)
€-Lo

where E, is the zero order energy of the shifted state, Do(X) is the
density of states with which E, interacts and |V(A)|? is the strength of
the interaction. Heitler presents a discussion of this term when the
interacting states are the radiation field [1]. Once the density and
interaction strengths are known, the new energy of the state is found by
solving the following equation for e,

V(e)|?Do
e-Eo-Pf"' lis d\ =0 (2)

€-Eo

Generally, the equation must be solved iteratively and a solution is
generally difficult to find. The solution of this equation and its
properties was briefly discussed on page 27. There it was shown that
as the 1imit to a continuous set of states was reached, the number of
eigenvalues becomes infinite, and are infinitely close together, i.e. a
continuum as expected. The level shift operator really does not
"shift" levels around in this situation. If, however, the weighted

density function has structure (i.e. peaks), the peaks will be shifted
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around much along the same Tines as the delta function states are
shifted. The spectra fitting procedure wused by the authors in another
paper [2] is in effect a way of finding a solution to Eq. (2) by an
iterative trial and error method.

If one wishes to compute the line shape of a homogeneously
broadehed molecular resonance (See Refs. [2]-[5]), the energy shift is
ffequently ignored because of the difficulty of computation and also
because it is-generally believed to not contribute significantly to the
line shape. We will show here that this neglect of the energy shift is
permissable in some cases, but that in other situations the energy
shift plays a dominant role in determining the actual line shape.

These latter cases are those where the secondary levels [6] are
discrete. |

Some other diScussions of the energy shifts in different contexts
have appeared in the 1iterature. The situation where the secondary
level density is bounded below results in the possibility of the

formation of new molecular states [7].

II. LINE SHAPES AND THE ENERGY SHIFT TERM

A11 calculations of homogeneously broadened line shapes up to this time
[1] have used the following formula,
T|V(g)|2D,(g)

a(e) = —— (3)
(e-Eo)?+(m|V(e) |?Do(€))?
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where the symbols used are
€ - energy variable
Do(€) - density of secondary states
V(e) - interaction matrix element of primary and secondary states
a(e) - absorption coefficient multiplied by a constant
proportionality factor
Eo - shifted primary state energy.
Eo is treated as a constant in the above line shape. For the situation
where w|V(e)|?Do(e) = constant, the Tine is Lorentzian and the energy

shift Ra(e)

is exactly zero. This is strictly the only case where the neglect of
energy shift is valid. In situations where the w|V(g)|2Do(e) term
depends on energy one must use a slightly modified form for the line
shape function,

T|V(e)|2?Do(€)

ale) = — (4a)
(e-Eo(e))?+(m(V(e)|?Do(e))?

Eo(e) = Eo-Ro(e) (4b)

where the Eo(€) energy dependent term replaces the constant E,.
As in the previous paper [3], this line shape function can be

computed in relative units. In our calculations for each point of the
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spectrum, we must first calculate the two parts ofvthe principal value
integral Eq. (1), take the sum of these two and then insert this into
the Tine shape function. The figures that we calculate here have
parameters which are essentially identical to those presented in

Ref. [3], where the energy dependence of the shift term is ignored.
The details of calculation are the same as in Ref. [2].

The first case (Fig.(1)) deals with situations where the secondary
level density is smooth, but increasing in magnitude with increasing
energy. This increase in Ref. [3] was exponential but in the present
calculations it is linear. A1l that is of concern is what general
trends seem to develop, not the relevance of a specific energy
dependence. The first thing to be noticed is that the sharpening‘
effect observed by ignoring the energy shift is not present when the
energy shift is correctly included. The function of the energy shift
to move the resonance position is clearly seen. Although there was an
energy Shift observed in Ref. [3], it was very small. In fact, from
the figures there, no energy shift is readily detectable. This is an
indication that the magnitude of splittings calculated by deleting the
energy shift will be much too sha11. The slope of the density of
secondary levels does have an effect on the line shape as well as on the
resonance position. Increasingly sloped densities result in broader

lines. The lines still appear to be Lorentzian functions or close

approximations.
One problem not clearly evident from the drawing is that the

spectra near the ends of the calculated interval show a gradual upturn.
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FIGURE 1 (Variable Smooth Density)

The density is a linear function of energy with the slopes from

top to bottom 0.0 (a pure Lorentzian), 0.5, 1.0, 5.0 respectively.



ABSORPTION (RABITARRY UNITS) RBSOAPTION (RABITRARY UNITS) RABSORPTION (RABITRRAY UNITS)

RABSORPTION (ARBITRARY UNITS)

=75

ENISSION (RELATIVE UNITS)
T
—
Q
~

J I £ ! 1 1 T 1 1 ‘.I l.l .{
45000  -30.000 ~15.000 0.0 15.000 .. 10. 12. n. 3 .
ENEAGYC L INEWIOTHS) TINE IN LIFETINES

T

T

ENISSION (RELATIVE UNITS)
T T
—
=
N

1 i 1 1 I 1 1 1 R
.0  -2.00 ~15.000 0.0 1nom .00 wem o 2. .. .. .. 10. 12, 8 ". " .
ENERGY(L INENIDTHS) TIME N LIFETIIES
< 2
I W
e | :
=
8l (c)
51
8
Er
—J  ——— 1 1 ;i 1 1 1 1 .- ;
8% .00 -30.000 ~19.000 o LTE .00 0. 2. .. e. S "». ". .

.. 10. 1.
TIME IN LIFETIMES

0.0 1%.000
ENERGY(L INENIDTHS)

- 3
=
- 3
G ¢
=
- -]
¢
&
- S
gl
- g -
- -
e 1 P 1 I 1 1 1 1 1 . S
-46.000 ~30.000 -18. 30.000 L %] . 2. .. [] ", 1. 1. ».

o 0.0 15.00 .. 10. 12.
ENEAGY(LINEWIOTHS ) TINE IN LIFETIMES



-76-
This is noticeable in some later figures. This effect is not real and
is due to the artificial termination of the secondary level density
there. Although not noticeable in the spectra, the time decay curve
results are very sensitive to this effect. The ripples that appear on
the decay curves are due to this effect. Even the filter function
discussed in Ref [3] is unable to remove them. Thus,no serious notice
should be taken of these ripples as they are a calculational artifact.
The only point to notice about the decay curves is that they reflect the
broadening change in the corresponding spectrum by shortening their
decay times. The decays do show deviations from exponential behavior,
but the deviation is not radical. Only a small curvature can be seen.
Again ripples in the curve are due to the interval end point effect
mentioned above and are not significant.

The following figures all deal with the situation where the
secondary state density is line like. These are the situations where
one expects to see a multiplet spectrum and a quantum beat decay. The
first example of this group illustrates the effect of a variable
spacing between secondary levels (Fig. 2). There are some general
features which should be noticed. First, the secondary level in
resonance with the primary level gives rise to three, not two, peaks
in the spectrum. This is in contrast to the doublet formed if the
energy shift is ignored [3]. However, the doublets formed off
resonance in the neglected energy shift spectra are now doublets only
at much higher coupling strengths. The general trend that we see is
that the levels are more closely spaced, the primary line distributes

itself in a broader general envelope of sharp lines. This means that
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FIGURE 2 (Variable Spacing)

The widths of all levels is 0.5 & and the coupling strength is
5.0 &. Top to bottom, the number of levels is 7, 13, and 31, and the

spacing between levels is 10.0, 5.0, and 2.0.
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we are approaching the statistical limit situation [8].

The decay curves are quite complicated as were those for the
neglected energy shift case. The occurrence of beats is observed to be
approximately inversely related to the spacing of the lines in the
spectrum. The similarity of the first two decay curves is due to the
dominating effect of the central triplet on the Fourier transform of the
Green's function. The third decay curve is much different from the
first two because the central triplet structure is now much less
dominant.

Figure (3) illustrates the effect of a variable coupling
strength. It is in this figure that one of the most important
differences between spectra calculated with and without the energy shift
appears clearly. In Ref. [3] the secondary levels dff resonance give
rise to new lines in the spectrum. For very weak [9] coupling, the
lines are singlets. When the coupling strength is increased, the
height of the line increases up to a certain point which is only a
fraction of the intensity of the central peak. Increasing the coupling
beyond that causes a splitting which gives rise to a doublet. The
intensity of each component never exceeds a certain level. When the
energy shift is correctly included, the height of the off resonance
peak is now much greater and can be equal or greater than the central
peak. Doublets are produced, but at relatively higher coupling
strengths than before. Moreover the two components of the doublets
are now highly assymmetric in intensity, the component furthest away

from resonance being most intense.
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FIGURE 3 (Variable Strength)

There are 13 coupled levels in each spectrum. They begin at
-30.0 £ and are spaced 5.0 g apart and have a width of 0.5 £. The
coupling strength is, top to bottom, 1.0, 5.0, 10.0, and 20.0 &

respectively.
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FIGURE 4 (Variable Width)

There are 61 coupled levels in each spectrum beginning at -30.0 &
and separated by 1.0 £ and each has a coupling strength of 5.0 £. The

widths are, top to bottom, 0.1, 0.3, and 1.0 respectively.
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The statement that many extra lines would appear in such a
perturbed spectrum (if coupling strengths are high enough) is strongly
reinforced. Little semblance of the original Lorentzian would be
expected to be evident. Assignment of such a spectrum when the
levels are not as symmetrically spaced as here would clearly be
impossible according to standard spectroscopic methods.

The decay curves reflect quite clearly the spectral
modifications. Beginning with a nearly non-beat decay, they progress
to a very sharply beated decay for the final spectrum. It is
noticeable that the position of the beats changes only very little.
This occurs because the position of the peaks in the spectrum change
very ]itt]e.v The decay curve resembling the Fourier transform of the
spectrum is clearly illustrated here (See Ref. [10] for a hore exact
understanding of the Fourier transform process).

The final figure illustrates the transition from a discrete to
a continuous secondary state spectrum. This is accomplished by fixing
the positions and strengths of the secondary states and then
increasing the widths. A1l levels have the same coupling strength.
The first spectrum in this figure shows clearly how the high order
perturbation technique used here distributes the intensity. The first
order theory would predict a spectrum resembling the second spectrum.
But, as is seen, when the secondary states are discrete enough, the
second and higher order terms can play a dominant role in the

intensity distribution. The doublets again appear as expected. The
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upturned ends in the last spectrum are due to the artificial
termination of the calculation at the end of the interval and are not
physically real.
The pattern of the decay curves follows directly from the
spectrum. The beat magnitude is dependent on the dominance of the
sharp structure in the spectrum. Where there is no structure in the

spectrum, the decay is smooth and related to the spectral breath.

ITI. CONCLUSION

We have shown here the energy shift operator can be an
important term in calculating the line shape of a homogeneously
broadened molecular resonaﬁce. When the interacting states are
discrete, or line-like, the energy shift may be the dominant term in
the line shape function. Calculations of the line shape function
neglecting the energy shift in these situation will be definitely
wrong, even though the experimental 1ine shape may be reproduced.

For situations where the interacting states are only slowly varying
the energy shift term is much less important. Thus, for a really
correct calculation of the line shape function, the energy shift term

should be included.
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PART 4

THE OCCURRENCE AND OBSERVATION OF NONEXPONENTIAL DECAYS
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I. INTRODUCTION

An almost universal model of electronic radiationless transitions
in polyatomic molecules has in zero order a discrete state, which
carries all the oscillator strength, interacting with a quasi-continuum
of states. In the ideal case where the interacting continuum is a
constant over an energy range of one or more bandwidths, the line shape
is predicted to he Lorentzian. If broad band excitation is used,
resulting in the entire Lorentzian Tine being excited uniformly, then
the emission is predicted to be an exponential decay [1].

Now we ask the question, what happens if the exciting light
source has a bandwidth smaller than that of our broadened level such
that only part of the band is excited. The article by Kasha, et al.,
[2], deals specifically with this question in a qualitative way. Their
chief concern was to describe the nature of the initial state upon
absorption of a photon. Rhodes [3] has applied density matrix methods
to this problem and has formalized the results of Kasha, et al. The
conclusion of these papers is that the bandwidth of the exciting Tight
is important in determining the nature of the initial excited state.
Since the emission properties will depend on the initial state, they
will also depend on the bandwidth of excitation.

Previously [4], we have discussed the effect of non-constant
coupled continua on the line shape and corresponding emission decay
curves for some model systems. In this paper we study the decay

curves in more detail including the effect of finite excitation bandwidth.
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Finite bandwidth excitation also has a finite time duration. We
show how the Green's function method automatically takes this into
account.

Since there is an experimental problem in obtaining the minimum
time width (related to the bandwidth by the uncertainty principle) of
the exciting pulse, we also compute some decay curves where the time
width of the pulse is wider than its minimum time width. This is
intended to give the experimentalist a better idea of the conditions

necessary to observe quantum beat and other nonexponential decays.

II. THEORY

A. Basic Assumptions

We use the standard zero order model with one discrete state
(primary state) which carries all the oscillator strength and a
quasi-continuum of states (secondary states) coupled to the primary
state but carrying no oscillator strength. In the sense of Nitzan and
Jortner [5], we assume that the primary state is isolated so the effect
of other states carrying 6sci11ator strength is negligible. Since all
oscillator strength is derived from the primary state, all new states
are indistinguishable in the sense of Ref. [1]. Assuming that an
appropriate choice of zero order states has been made, we use the
techniques of reference.[4] and compute an absorption lineshape.

We make some further assumptions concerning experimental
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conditions to which these results relate. The "experiment" is
presumably either done in the gaS phase under isolated molecule
conditions, or in a very dilute mixed crystal where the host is
presumed to be inert and any exciton effects may be ignored. In the
former situation we are then talking about rovibronic states; in the
latter about vibronic states. Discussion about the assumptions made

about the exciting light characteristics is in the next section.

B. The Exciting Light

Most previous studies have employed the so-called broad band
approximation [1] (See also Ref. [ 6]). Thus, by implicit assumption
the exciting pulse is a delta function in time. This is so because of
the uncertainty principle. The Fourier transform process assures us
that the energy - bandwidth uncertainty principle is automatically
accounted for in computing our decay curves. This is easily proved
using the convolution theorem. For the case of a finite bandwidth
exciting pulse, we modify the true Green's function by multiplying
it by the band shape of the exciting pulse. Let us call this
excitation function E(x). Then the amplitude of the time decay of this

excited state is

+o0 ; )
f e~ 12Xt oy iE(x) dx = D G(X)E(X)] (1)

-00
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By the convolution theorem, this transform of a product is a
convolution of the transforms of each individual function in the
product.

t— —

S E(t7)G(t-t7) dt~ (2)

- 00

T G(x)-E(x)]

The upper limit of integration is established by the fact that our

Green's function is causal, or retarded. We have used the notation

o -j2nft
E(t) =/e E(f)df =" [E(f)]
(3)
o -j2nft
G(t) =S e G(f)df = F[G(f)]

Thus, we see that by using a finite band of exciting light, we
automatically include the finite time width that is implied by the
uncertainty principle because of our use of the Fourier transform to
calculate the time evolution.

In practical situations one seldom is able to obtain the minimum
time duration that the uncertainty principle implies given a particular
frequency bandwidth. The only source which can possibly achieve the
minimum time duration is the mode locked laser. Flash lamps and even
pulsed or Q-switched lasers do not approach the minimum time. In the
mode locked laser the phases of all the emitters (modes) are fixed at

a definite value because of the strong radiation field. Thus, the
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emitters can interfere with each other giving rise to the short duration
pulse. In other types of sources the phases of the emitters (or modes)
are randomly distributed. There is no interference between emitters
because they are not coupled to one another as in the mode Tocked laser.
Thus, if used without any modifications, the results calculated by the
methods described above and in reference [4] are not applicable to most
conventional experiments.

In order to find the proper modification to bring our minimum
uncertainty results in line with conventional experiments, it is
important that a numbher of points are made clear. The first point to
consider is that the Fourier transform of the Green's function gives
one the time evolution of a "single" molecule after it has absorhed a
“single" photon. These results are given in terms of probabilities
which are presumably interpretable in terms of experiments involving
many "single" molecules. Also, the Fourier transform of the exciting
pulse energy band shape gives again a probability distribution of
photons with time. Without any modifications the results of our calcu-
iations give the results for the best possible experiment limited only
by the uncertainty'principle. When the photon statistics are not the
ideal minimum, we must modify our decay curves to take this nonideality
into account. This modification again takes the form of a convolution.
We presume that we can form a real life pulse from the minimum
uncertainty pulse by adding together a number of minimum pulses each

displaced slightly in time. We define a function D(t) which does this
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displacement-addition process. Then, our observed emission decay

Do(t) is given by the following convolution

o' +

Do(t) = J D(t-1) Thg(r) dr (4)

where we used the abbreviation

o  -i2mX\

S‘rq(x) =/e “E(x) +G(x)dx (5)
After we present some model calculations using the minimum
uncertainty pulse, we will present a few results using the above
convolution procedure with a model D(t). These results are given in

Section III D.

C. Nature of Excited State

The excited state which is initially prepared is definitely not
a zero order state in the narrow band excitation case [2]. Our
perturbation treatment has mixed the primary and secondary states of
zero order into a new set of eigenfunctions which we shall call molecular
eigenstates. Note that these "molecular" eigenstates also include the
radiation field states even though we do not explicitly say so. What
we have in effect done is couple the primary state to two sets of
secondary states, the molecular continuum and the radiation field
continuum. (See Ref.[ 7] for a more complete discussion.) These are

true molecular eigenstates only in the sense that the zero order
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Hamiltonian Ho plus the interaction term V completely describe the
molecule. A band in an absorption spectrum then corresponds to a
superposition of a large number of these molecular eigenstates.

Now that we have generated our molecular eigenstates, the
importance of the exciting bandwidth is seen. The exciting Tight acts
as the selector of, or in Rhode's terminology [3], as a projection
operator on the molecular eigenstates. The molecular eigenstates
which participate in the observed resonance fluorescence are in part
determined by the exnerimentalist. If he uses a broad band of
excitation, then he excites all the molecular eigenstates generated by
the interaction of the primary and secondary states. This is then
equivalent to exciting the zero order primary state followed by
radiationless "transition" to the secondary states [2] since the
superposition of all the molecular eigenstates gives back the zero
order states. This provides justification for the approximation that
one band corresponds to one state, but only for this type of excitation.
When we narrow the exciting band so that only a fraction of the
generated molecular eigenstates are excited, their superposition does
not give the zero order states. Any further discussion of the dynamics
of this excited state must use the molecular eigenfunctions, not the
zero order functions. Thus,when we refer to a state henceforth, we
mean one of these molecular eigenstates unless otherwise specifically

mentioned.
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D. Nature of the Emission Process

Once the selected molecular eigenstates have been formed by the
excitation process (which we still are assuming is a delta function in
time), they begin to evolve in time. The time evolution of a single
molecular eigenstate |j> is governed by the exponential factor e'iEjﬁ-lt
where Ej is the energy of state [j>. The time evolution of the total
eigenstate is the sum over all the excited molecular eigenstates

& -1
e"lEj'ﬁ tl. (6)

Vype(t) = 3 5>

Mol.

Eig.
The emission decay curve is then given by the expression |<p|wtot(t)>|2
where |p> is the zero order primary state. For the cases with which
we deal where there are an infinite number of eigenstates, this sum
becomes a Fourier transform._ Also, as shown in Ref. [4], the
exponential operétor can be changed into a Green's function with the
final expression for the emission decay curve given by

<]

2 - __]_ 'iE-f]-lt - »|z i
I<p|wtot(t)>l = Izﬂi _ie J Gpp(E )dE”| (7)

where Gpp is the diagonal element of the Green's function matrix
corresponding to the primary state. Thus, Fourier transform process
actually calculates the direct time evolution of the excited molecular
eigenstates plus the interference terms between the molecular

eigenstates. It is these interference terms which give the emission
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decay its shape. One can get a qualitative idea of the decay of a
particular absorption band by doing a rough Fourier transform mentally.
If the spectrum has two main peaks, for example, one would expect a
relative maximum in the decay curve for a time t such that e'iEjﬁ-lt has
maxima coinciding with the maxima of the absorption spectrum. Also,

all the higher harmonics of this particular time should be Tocal

‘maxima in the decay curve. This of course results in a beat decay as
expected. More complicated features of the decay curves can be
understood in this way.

It should be noted that in Eq. (7) both the real and imaginary
parts of the Green's function are transformed. This is to be contrasted
with the absorption coefficient formula [4] where only the imaginary
part of Gpp is used. An alternative reasoning can be used to obtain

the time evolution process. MWe expand each stationary state |j> in our

zero order basis set,

[y> = CYDIP> + [ dkp(X)Cy(A)|A> (8)

We can then calculate the spontaneous emission probability (transition
moment squared) as a function of time. Assuming that the exciting band

is uniform, we get

L 1
s dy|<0fy-glys|2e R

|<0u-€l¥(t)>]*

ivh™ 1t

.A>2 d 25"
[<0fu-€lp>|* f dvc |%e



-97-

We have assumed that

|¥(0)> = s dyc__|p> (10)

YP

Now the term ]cYpl2 represents the density of the primary state as a
function of energy, thus

= - l-Im G
T

I 2

“yp pp

It appears that from this analysis one need only transform the
imaginary part of the Green's function. On the other hand, the
derivation of Eq. (7) is rigorous [8].

This apparent dilemma is resolved by understanding the physical
nature of the real part of the Green's function. The classical problem
of a driven, damped harmonic oscillator is very similar to the
resonance fluorescence problem except for the assumption of an
harmonic potential. The solution has been worked out many times (see
Refs. [9] and [10]). The response of the system consists of an in-
phase or so-called coherent response and a 90° out-of-phase (quadrature)
or incoherent response. This is analagous to the real and imaginary
parts of the Green's function. The net response is thus out of phase
with the driving force with a phase angle given by the arctangent of
the out-of-phase divided by the in-phase components. This latter

property has some interesting consequences (see Section III E). When
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one moves far away from resonance, the imaginary part of the response
(and thus Im Gpp) goes to zero and one is left with only the real part.
One can easily show that in this case the real part correctly gives

the dispersion formula for scattering by virtual states [10]. This is
the key point. The Green's function formalism thus gives not only the
true absorption re-emission component of resonant fluorescence, but
also the scattered light.

In truth, the above statement is not rigorously correct. The
scattering near a resonance is not the normal virtual scattering used
to derive dispersion formulas. It is in fact intermingled and coupled
to the "absorption re-emission". Experimentally the two processes are
inseparable. The power of the Green's function method is evident
here. It allows us to unify the real experimental situation with the
theoretical model by including all components of detectable 1light

emission.

E. Effect of Excitation Bandwidth on Time Evolution

There are two effects which a finite exciting bandwidth has on
our process. The emission decay curve, as we saw in Section B, is
automatically a convolution of the time band shape of the exciting pulse
and the time evolution of the Green's function. As was pointed out,
this is the best experiment that one can do. Any use of time delta
functions with finite bandwidth exéiting sources in theoretical
treatments bear only a small resemblance to what can be done in the

laboratory and results thereof should be carefully used.
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Secondly, as was pointed out in Section D., the bandwidth
selects which eigenstates are to be excited. Obviously, the emission
decay curve is greatly affected by this selection process since it is
determined by the interference between the evolving excited states.
Thus, when we excite a Lorentzian band with a broad band of exciting
light such that all of the states are excited, the interference between
these evolving states gives an exponential decay. If the bandwidth
only selects part of the Lorentzian band, the resulting decay is of
necessity nonexponential. The results of our model calculations show
this quite clearly. Thus, this selection process is at the discretion
of the experimentalist and he should be able to control the type of
emission decay curve he wants, within the confines of the molecular
Hamiltonian, by choosing the exciting handwidth properly. Conversely,
to observe nonexponential decays, he must carefully choose his

exciting bandwidth to be able to observe them.

ITI. RESULTS

A. Details of the Calculations

In order to try to understand in more detail the decay curves
corresponding to a particular spectrum (i.e.,a Green's function), we
restrict ourselves to the situation where there is only one discrete
coupled level. There is also a constant coupled set of states which is

necessary to take into account the radiation field states and any other
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coupled continuum of levels that may be present. We use the relative
units of reference [4] where all energies are given relative to the
1ine width due to the constant coupled levels alone (the term mWp? in
[4]). Time is measured in units relative to the 1ifetime of the state
due to coupling with the constant density of sets. In some cases

the constant density set of levels is the radiation field, so the units
are measured relative to the radiative lifetime. For the most part we
restrict ourselves to the minimum uncertainty-principle-width pulse
discussed above. Finally, we ca]cu1afe some decay curves with a
nonminimum time duration pulse to see what effect this experimental
situation has on the observation of nonexponential decays.

We use two different mathematical band shapes for our finite
bandwidth pulses. The first is a simple Gaussian of varying width and
position which is called hencefdrth a GA pulse. The second is the
function describing the spectral output of a single order of a
diffraction grating [11] which is henceforth denoted as a DG pulse.

This expression is

(12)

where x is the energy variable, xp the center position of the exciting
band, W its half-width (measured to the first zero), and XBW is the

bandwidth of the computed absorption spectrum. These two different
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types of pulses are used to show what the differences are for different
shaped pulses. Also, the Gaussian pulse should approximate the output
of a mode locked laser, whereas the diffraction grating pulse should"
approximate those experiments utilizing a flash lamp (or other thermal
source) and a monochromator for wavelength selection. Although there
are differences in the details of the decays, the general conclusions

for both types of bandshape are the same.

Since we compute the Fourier transform of the real and imaginary
parts of the Green's function separately, we must properly recombine
the real and imagainary parts of the transforms of each part in order
to get the correct dgcay function. First the transforms of the real and

imaginary parts of G are denoted by,

R R ) ‘ -inft
ay ¥ ib ¢ = _i GR(f) e df (13a)
a, +ib, = SG(f)e  df (13b)

where G = GR - iGI and the a's and b's are functions of t. This is
correct for t>0. For t<0, the correct transforms are the complex
conjugates (easily seen by replacing t by -t on the right hand side of

Eq. (5)) of the above transforms. Proceeding for t>0,

AN S S S A
|31g(t)| = | ag + iby - i(ag + iby)|
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| P I R I R I
+ by + i(by - ag)[? = (ag + b))+ (b - ap)? (14)

_ 1.R
= |a t

t

Notice that the minus sign indicates that there is some interference

between the real and imaginary parts. For t<0,

R .. R
lat - 1bt

%, (1)1 - ilag - iby)|?
(15)

R Lva, R, LIy
= (ay - by)® + (by + ay)

The only difference between the two time regions is a difference in
sign as indicated. This means we can compute the entire response
function of the system to an excitation pulse which has a finite time
duration. The zero of time in this scale corresponds to the maximum
in the excitation function. Note we still have a causal Green's
function. Negative time has meaning because our excitation function
mathematically extends to plus and minus infinity. Thus,we can
actually detect fluorescence before time zero.

One further note on the way the decay curves are plotted is in
order. The maximum of each curve is assigned the arbitrary value of
one. This allows for a convenient evaluation of the shape of different
curves, but gives no indication of the relative magnitude of emitted
light. To get a feeling for the latter, we have calculated the
integrated area under the curves and collected these together with the

maximum value in Table 1. This fact should be ever present in the
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reader's mind when viewing the plots.

B. Constant Density of States

1. Exciting Band on Resonance, Variable Width

This case is illustrated in Fig. (1) where a Gaussian excitation
pulse is employed. Because of the simplicity of this particular case,
an analytical Fourier transform can be obtained. The Green's function
is given by

f a 1

G(f) = -1 = (16)
f2+a? f2+a?  f+ia

f is the frequency or energy variable and a is the (constant)

Tinewidth (a = mV2D,) [4]. The excitation function is given by

_f2/b2
E(f) = e (17)

with b being the width parameter. Thus the Fourier transform, which is
the decay function ﬂ'g(t), is
_f2 K2
= rh -2nft
?'g(t) = _o.l; o e df (18)

By the convolution theorem this integral is a convolution of the

Fourier transforms of each member of the product. These transforms are,
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o -j2nft -2mat

- 1
G(t) = _i e G(f)df = 5T © , >0 (19a)
_ o -j2nft -f?/b? -m2h2t?
E(t) = fe e df = bfr e (1%b)
Thus, the convolution is
}g(t) = C S E(t?)G(t-t")dt” (20a)
t_
= C S E(t7)G(t-t")dt” (20b)

C is a constant factor and the upper Timit in Eq. (20b) is due to
G(t) being a causal, or retarded Green's function whose value is 0 if

t<0. Putting in Eqs. (19a) and (19) into Eq. (20b),

-2mat t -w?b%t”? +2nat”

3'g(t) = Ce S e dt ~ (21a)
-amat t +(f)? -(mbt*- )2
= Ce J e e dt” (21b)

We now transform the integration variable. Let

’_ “ a
R

dt” = dt~
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+(%)2 -2mat t- —%7- -mbt ™ 2
Ce e s e dt™ (23)

-00

KLY

The integral is closely related to the error function. Thus,

t-a/b? -m?b2t™ 2 0 -mbt*?2 t-a/b? -wbt* 2
I e dt™”= [ e dt™+ f e dt™
-00 -00 O
(24a)
] ] t"a/bz -'ﬂ’b’t”z
=515 + J e dt™ (24b)

0

When t <a/ b , the upper Timit of the integral is negative. This
means the whole integral is negative since the integrand is positive
definite, but the direction of the integration is negative. Thus, for

times less than a/ b?, the amplitude of the decay has the form,

-2mat
35u)=Ve (C™ - C™*(t)) (25)

where C”, C™ are constants and C°““(t) is a decreasing positive function
of t. The net effect of this added term is to displace the maximum in
the decay curve from time t = 0 to some later time. The response to
E(t) is then time delayed with respect to the excitation pulse for

the particular E(t) chosen. The physical reasons for this time delay
will be discussed in a Tater section.

P

As t gets large, the function C”"“(t) varies less rapidly than

for short times. This effectively means C“““(t) can be approximated by
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a constant and the decay becomes exponential. This statement is only
true if one views the decay curve over a limited time range. Over a
very long time the decay is not purely exponential.

We now turn to the numerically calculated spectra, Fig.(1).
They verify clearly the above analytical results. The time delay is
present in all cases and follows the pattern that one would expect.
As the width of the Gaussian excitation function increases, the
magnitude of the delay decreases. In the 1limit of an infinitely wide
excitation, i.e.,an excitation which is a delta function in time, the
time delay is small but nonzero. In practice this limit is, of course,
never reached. Numerically, the band must be finite even without using
an excitation function. So, in reality, the true excitation function
is the Gaussian multiplied by a top hat rectangular function. When the
top hat is much wider than the Gaussian in energy space, the time
duration is much shorter than that of the Gaussian and can be ignored.

The degree of exponentiality in the decay curves is shown
clearly in log plots of the above decay curves Fig., (3). None of the
decay curves are purely exponential over the entire decay. From
roughly 3.0 to 16.0 lifetimes the decay curves for all but the
narrowest band case are quite linear. At longer times there is a
gentle upward curvature. The curvature in the narrowest band case
results from the relatively long time delay present there. As concerns
the very long time part of the curves, the intensity of emitted light is

down by roughly three orders of magnitude. This means that unless the
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FIGURE 1 (Variahle Width, Constant Density)

In all figures in this paper the spectrum is shown as a dashed
line and the excitation function is shown as a solid line. The
spectrum is a pure Lorentzian. The excitation band is a Gaussian

with widths, top to bottom, 1.0, 2.0, 5.0, and 10.0 &, and position

always on resonance.
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initial intensity is great, noise may obscure an accurate determination
of this part of the curve. Also, inhomogeneous effects such as
collisions between molecules or collision with the walls, effects not
included in this model, would distort the curves from the shapes
calculated here for long times.

For even smaller bandwidths than used here, one would expect
that the deviations from exponentiality would be greater. However,
one factor to consider is that the smaller the bandwidth, the longer
the time duration of the pulse. Then the meaning of a lifetime
experiment becomes obscure since the experiment is measuring the time
duration of the pulse as much as the response of the molecular system
to the pQ]se. The Timit to keep in mind, which illustrates the
difficulty, is the case of a delta-function-in-energy excitation. This
means that the time duration of the excitation is infinite. Obviously,

no lifetime can be measured.

2. Constant Energy Bandwidth of Excitation, Variable Position

The linear plots, Fig. (2),of the decay curves do not show a
marked effect due to variable position. The time delay decreases as the
excitation band moves off resonance and disappears completely in
Fig. (3d). The decay curves, especially Figs. (3a) and (3d) Tlook 1like
Gaussian functions, but this is difficult to state with the 1limited

time range of these plots. Fig. (3b) is a lagarithmic plot of the
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FIGURE 2 (Variable Position, GA, Constant Density)

The spectrum is a pure Lorentzian. The Gaussian excitation
bandwidth is 1.0 £ and the positions are, top to bottom, 1.0, 2.0,

3.0, and 5.0 & respectively.
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decay curves of Fig. (2) on a longer time scale. It reveals much more
about the form of the decay curves than the linear plots. The last
two plots show that the decay curve is essentially a Gaussian curve
over 6-7 orders of magnitude. The first decay curve shows possibly a
mixture of Gaussian and exponential decay curves. The curve starts to
tail off -1ike a Gaussian at around 12 lifetimes, but then it begins to
straighten out and look more 1ike a straight Tine exponential decay.
It never becomes a straight line as a pure exponential should, but the
decay curves in Fig. (3a) are not really straight lines either, and
they should be very close to exponentials.

The interesting decay curve is the second one of Fig. (3b). The
curve seems to show a beat at around 14-15 lifetimes. What has
happened here is that the "effective" spectrum, i.e., the product of
the excitation function and the true spectrum, has two peaks. One is
the resonance peak of the spectrum which is multiplied by a small number
due to the small value of the excitation function at that energy. The
second is the point where the excitation function is a maximum. Thus, an
"artificial" beat decay pattern has been created by the experimentalist
in choosing his excitation function. One should note that the
magnitude of the beat is small and in a real experiment may not be
detectable. The log plots also give an indication of the intensity and
relative yield of emission (see also Table 1). The expected pattern
which is that less intensity in absorption results in less emission

intensity is seen to be oheyed.
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FIGURE 3 (Log Plots of Emission)

On the Teft hand side are the logarithmic piots of the decay
curves of Fig. 1 to longer times. On the right hand side are the

logarithmic plots of Fig. 2.
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C. Line-Like Coupled Densities

1. Single Coupled Level at Resonance;

Excitation on Resonance, Variable Width

The situations where there is one coupled level on resonance are
not amenable to analytical solution. Thus, we rely solely on the
numerical results. For all spectra dealt with here, the coupled level
parameters are as follows: position = 0.0, width = 0.5 linewidths,

coupling strength = 20.0 linewidths. This results in the splitting
pattern depicted in Figs. (4) and (5). The doublet is the expected

pattern from second order perturbation theory. Thé small peak comes

from the higher order terms in the expansion of the Green's function

[ 4]. The decay curves are dominated by the doublet in most cases.
Turning to the decay curves, we use hoth the DG pulse and the GA

pulse. The spectrum of our present case is one in which a beat decay

would be expected to occur. For excitation bandwidths narrow enough

so that the two peaks of the doublet are only weakly excited, the

beats may be missing or very weak. This is indeed the observed

situation and is especially apparent with the GA pulse plots, Fig. (4).

In Figs.(4c) and (4d) the beats in the decay are very strong because in

these cases the doublet is strongly and uniformly excited. One can

easily see that the beat positions do not change very much because the

positions of the spectral peaks remain fixed. A detailed viewing of

the plots however shows that the beats dd shift very slightly closer
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FIGURE 4 (Variable Width, GA, Level in Resonance)

There 1is one coupled Tevel with position at 0.0 &, width of
0.5 &, and coupling strength of 20.0 £. The excitation band position

is 0.0 &, and the widths are, top to bottom, 0.5, 2.0, 5.0, 10.0.



e
12
-
e
-

4.9

o

-

w

=

442

z

w

z

==
e
s
]

CSLIINN 3ALLIYT3W) NGISSIWI

-117-

[N SN () (SO (S O O N |

i

i
0.0
ENERGYCLINENTDTHS)

a==7
~10.000

(SLINN A¥bWLIEHY) NOI1du0SBY

(b)

10
55
10.

4 ————t=
6. s.
.

TIME IN LIFETIMES
€

S.

..
2. 3. .. S. .
TIME IN LIFETIMES

.
. Lo Mo NAL __1.&/[_ D
2.

L

(S1INN 3AI1B73Y4) NOISSIA3

SIS/ [N S (S (S [ Y (O |

1

(SL1iNN 3ALIET3%) NOISSIA3

30,00
30.000

10.000

01HS)

0.0
ENERGY(LINERIDINS)

ENERGY( L INEH

-20.000
-20.000

~30.000
000

(SiINN AbbLLISEY) NOIiduOSEY

(SLINN AYgdll&dd) NOI.dudSEY

)

s,

IS CASURILEA

\

/

/

C(SLINN 3ATLIYI36) NOISSIW3

.00

20,00

J

O, R S IO |

C(SLINM aubdlI6ad) NC:luee3so

ENEAGYCLTRERIDTNS )Y



<18~

with increasing bandwidth. This is due to the excitation function
"effectively" shifting the peaks slightly. One.curious feature is that
in Fig. (4c) the second beat is higher than the first. The most
reasonable explanation of this seems to be that the time delay

observed with the constant density case comes into play and reduces

the first beat relative to the second. See Section III E for a further
discussion.

The DG pulse plots resemble the G pulse plots except for a few
details. One must remember that when the width parameters for the DG
pulse (first zero) and the G pulse (1/e of maximum) are equal, the
main peak of the two functions is not roughly the same width. Thus,
for example, Fig. (5d) resembles Fig. (4c) more than Fig. (4d). This
should be clear from the plots of spectrum and excitation function.
There are some extra peaks in Figs. (5a) and (5b) and even (5c) as
compared to Fig. (5d), the latter of which should be mostly the
spectrum determined decay curve. These are due to the side peaks in
the excitation function itself. Actually, as indicated in Table 1,
these beats are very weak compared to those due to the spectrum. Thus,
in Fig. (5c) the extra peaks are very weak and in Fig. (5d) they are
missing completely. The lack of really strong beats in Fig. (5c) is
due to the coincidental position of the first zero of the excitation
pulse and the two peaks of the doublet.

Table 1 gives the value of the maximum of the decay function and
the integrated areas under the decay curve. This gives one an indication

of the emitted intensity for each decay curve since, as mentioned in
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FIGURE 5 (Variable Width, DG, Level in Resonance)

Same spectrum as Fig. 4. The position of the excitation band

is 0.0 £ and the widths are, top to bottom, 0.5, 2.0, 5.0, and 10.0.
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Section III A, no feeling for this can be obtained from the plotted

decay curves.

2. Single Coupled Level in Resonance,

Constant Width and Variable Position.

For this series of plots we plot only the GA pulse curves.
They are illustrated in Fig. (6). The most interesting feature of this
series is the dependence of beat appearance on the excitation of both
peaks of the doublet spectrum. This was mentioned previously, but is
made very clear in these decay curves. The intensity of the beats
diminishes quite markedly as the excitation band moves to the right
thereby ‘exciting primarily the peak on the right. The last decay
curve shows no beats at all resembling the decay curves of Fig. (1).
The maxima and integrated intensities show no unusual features. For
this particular case it turns out that they are all of the same order
of magnitude. One final comment on the time delay observed here is
that one only sees a measurable delay when the excitation band is
centered or is close to a large peak in the spectrum. See Section III E

for a more complete discussion.

3. Single Coupled Level Off Resonance,

Constant Position, Variable Width

The spectrum, Fig. (7), here shows again a triplet structure as did the

spectrum when the coupled Tevel was in resonance with the primary level.
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FIGURE 6 (Variable Position, GA, Level in Resonance)

The spectrum is the same as Fig. 4. The excitation band has
a width of 1.0 and the positions are, top to bottom, 2.0, 4.0, 6.0,

and 8.0 respectively.
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FIGURE 7 (Variable Width, DG, Level Off Resonance)

The single coupled Tevel is at 5.0 &, its width is 0.5 &,
and its coupling strength is 10.0 £. The DG excitation band is
positioned at 0.0 £ and has widths, top to bottom, 2.0, 5.0, 10.0,
and 20.0



4.0 d.» N o
i°% ¥ £ x
i E e £ =
4.5 e ;3 2
ﬁ z z z =
g 2 £ £
|~n.u e = N
. -
g -
/ i
! . 4 i
i ™ ,l
. /r 1 r// L 1 1 1 1 1 S i 1 1 L L A 1 1 3 1 1 1 i 1 .u
w CSLING 3AIIBT3E) NGISSIHI (SLINN 3AL.0756) NCISSIAG (SLIN 3AILBI3E) NISSIA3
N 8
P -
1 18
{3 I8
] ]

(a)

10.000

0.0
ENERGYCLINEWIDTHS)

e
-10.000

(b)

o aed

h _

10.

ENERGY(LINEWIDTHS )

—
Q
~

ENCRGYCLINLHIDTHS)

ENERGYCL INCHIDTHS )

1,
-20.000
-20.000
-20.000

j SO VU SO SN, | SO [P, SO (S |

~30.000
uno
.‘i’.n

~30.000

U S S T { PR ST S S TS S S S SN | (O W T ) (R S S ()
(SLIND Abdll8bY) NOI1loucSad (SLINN ABYYLIBEY) NOIL1duO4EY

[ T 1

(SLINT AbbYilSHd) NGI1dudS8y

CS1INN AbudlI8WY) NOiLdUCSEY



-126-

The two major peaks are of about equal peak intensity, the level close
to resonance being the broader line. It is these two lines that one
would expect to appear using simple second order perturbation theory.
The two Tevels, one at 0.0 and the other at 5.0 on our energy scale,
interact and repel each other. One would calculate that these two
levels should lie at the energies -3.1 and 8.1 on our energy scale
using the interaction strength of 10.0. They do lie very close to
these points. Thus, simple perturbation theory explains the major
aspects of the spectrum. However, one can only rationalize the third
peak using the higher interaction order terms. This third peak lies
very close to the zero order coupled level position. If the coupling
strength would be weaker, the third peak would not appear. The
coupled level would then give rise to a line shape resembling the
Fano line shape [12]. Only when the coupling strength is above a
certain level does the single Tine split into a doublet. See Ref. [ 4].
The calculated decay curves reflect most of the trends which
have been previously noted in the foregoing discussion. The very weak
beat structure appearing in Figs. (7a) and (7b) is most likely due to
the side bands of the excitation function with a little assistance from
the spectrum. In Fig. (7c), the spectrum is being excited more
uniformly and the beats are getting stronger. Finally, in Fig. (7d) we
see strong beat structure as both major peaks are strongly excited.
The maxima and integrated intensity all increase as the bandwidth

increases. They are all of the same order of magnitude (Table 1).
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4. Single Coupled Level Off Resonance,

Variable Position, Constant Width

Again, the decay curves for thi§ case, Fig. (8), are understood
by the same principles outlined before. To get beats, both peaks must
be excited, Fig. (8b). Otherwise one sees merely a monotonic decay,

Figs. (8a), (8c), (8d). From a close inspection of the spectra and
excitation function for Fig. (8c) and (8d), one would guess that beats
due to the weak third peak and the strong peak should appear. In
fact they are present, but they do not occur within the 10.0 Tifetimes
of the plotted decay curves. Also, they are very weak because of the
difference in the size of the two peaks excited and are almost
unresolvable. Integrated intensities and maxima obey their
relationship noted earlier with the magnitude of excited absorption in-
tensity.

D. Nonminimum Time Excitation Pulses

The results to be presented here are based on the discussion
in the latter part of Section II A (Eqs. (4) and (5)). The D(t) used
in these calculations is defined as follows:

0.0 t< ]

1.0 Ty<t<, (26)
"—t"' T2<t<0

T, -

n.0 t>0

This crudely approximates a real excitation pulse which can be
relatively long compared to the decay time, but has a short cutoff

compared to the decay time. Naively, one might expect to be abie to
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FIGURE 8 (Variable Position, DG, Level Off Resonance

The spectrum is the same as Fig. 7. The DG excitation width
is 1.0 £, and its position is, top to bottom, 0.0, 2.5, 5.0, and

7.5 £ respectively.
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view the decay time because of the sharp cutoff. One can certainly
get results out of such an experiment, but, as we show here, they are
not necessarily the resu]ts one desires. Before beginning it should

be noted that the above definition of D(t) introduces a slight shift

in the time scale of the plots. Thus, sometimes beats may appear to

be moving as the parameters of D(t) change. This is due solely to the
particular definition of D(t) and the manner in which the convolution
was computed, and is not physically real. The above D(t) was chosen to
make computations as simple as possible.

Before proceeding to the actual plots, one important point
regarding the units of time will be made. The units used, as noted
before, are from Ref. [4]. There, time is measured in the reciprocal
linewidth frequency due to interaction only with the radiation field.
Thus, time is measured in units of the "radiative lifetime" which is
different from the natural or observed lifetime. When both coupled
continua are constant in density and coupling strength (i.e., the
statistical 1imit), the units are not very important. The decays are
generally exponential and a nonuncertainty minimum pulse does not
distort this. However, when the molecular density is discrete, there
is a subtle change which is significant. In these cases, the
radiative bandwidth can be much larger than it appears from the
absorption spectrum [7]. Then the time scale (i.e., the unit lifetime)

is much shorter than one would expect from the linewidths observed in
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the spectrum. The observed linewidths are due to the widths of the
secondary coupled levels only, not to the radiative width of the
primary level. The latter quantity is obtained only by fitting the
observed spectrum to the lineshape formula [4].

The net result is that the possibility of observing nonexponen-
tial decays is crucially dependent on the knowledge of this primary
radiative width, at least for the case where an incoherent or thermal
light source is used. Thus, if one observes an exponential lifetime
for such a system to be A seconds, and if the primary state radiative
lifetime is say A/5 seconds then a pu]se duration even aS long as
O.SA will obscure most nonexponentiality in the decay curve. This is
what we shall show in the following figures. Of course, if one uses
an ideal uncertainty-minimum pulse, the above discussion does not
apply. Then all one need do, as shown in the previous decay curves,
is to make one's excitation band excite the multiple peaks in the
spectrum. Beats will then be observed.

The plots on the left of Fig. (9) are the curve of Fig. (1d)
with various D(t). The parameters are given in the figure. Very little
change is noticed in the shape.of the curves. This is because the
curves are mostly exponential over this time range and the convolution
process does not change this. The time delay seems to disappear, but
it really is still present since the zero of the time scale should
actually be farther to the left. The time delay is smeared out and is

made more difficult to observe.
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FIGURE 9 (Variable Time)

The Teft hand side uses the emission curve of Fig. 1d with T,
having the values, top to bottom, 0.075, 0.3, 0.54, 1.54 lifetimes,
and T, = 0.075, 0.23, 0.46, 0.46 1ifetimes respectively. The
right hand side uses the emission curve from Fig. 7d. 71, and 1, are
as follows, top to bottom: T, = 0.075, 0.3, 0.54, 1.54 lifetimes, and

T, = 0.075, 0.23, 0.46, 0.46 lifetimes respectively.
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The right hand side of Fig. (8) shows how pronounced an effect
a nonuncertainty-minimum pulse has on a beat decay. This decay
curve comes from Fig. (7d). The first three decay curves show strong
beaf structure. However, as the pulse width reaches two lifetimes,
the beat structure is almost gone. If one had noise to contend with,
the final curve may itself look Tike a perfectly smooth decay.

One further note about nonuncertainty minimum pulses is
concerned with the integrated intensities and intensity maxima of the
decay curves. The wider the pulse width, the larger both of these
quantities will be. Thus, one will not get an accurate measure of the
absolute quantum yield by integrating the emission decay curve under
these situations. Relative yields might be measured, but they are
subject to a number of errors such as scattered light, constancy of
D(t) from one experiment to another and the artificial determination
of the zero of the time scale [13]. Quantum yield measurements are
more accurately done using long time light pulses as discussed by'

| Nitzan and Jortner [6].

E. Initial Rise in Fluorescence

In several of the spectra-decay curve plots presented above,
there has been a noticeable initial rise in the fluorescence intensity.
This is certainly not expected from the simple models which give rise

to exponential or cosinusoidal modulated exponentials [14]. We will
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now explore in detail the physical reasons for the occurrence of this
phenomenon and comment on its significance.

There are several experimental factors which result in the
appearance of the initial rise. From a survey of the decay curves
contained in this paper, several of these factors can be observed.

The first is that the excitation band must be centered around
significant absorption intensity in the spectrum. See Fig. (2) for

an example of this. Secondly, the width of the excitation band is
related inversely to the rate at which the fluorescence rises. With

a wide excitation bandwidth, the rise is rapid; with a narrow
excitation bandwidth, the rise is slower. See Fig. (1) for an example.

The first of these observations is related to the question of
the meaning of the real and imaginary parts of the Green's function
and their transforms. As was previously shown, the real part
corresponds to the in phase response and the imaginary part to the
out of phase response of the molecule to the electromagnetic field.
When both parts of the Green's function are non-zero, the response of
the molecule has a time lag due to the non-zero phase angle of the
response.

This is a fairly well-known phenomenon in the theory of
scattering [15]. The reasoning is as follows: the initial state of
the system at t = -= consists of an incident wave packet (superposition
of plane waves) and the molecule in its ground state. The final state

of the system at t = +» is a scattered wave plus the molecule in its
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ground state. Now, as shown above, the scattered wave acquires a
phase change in being scattered by the molecule due to a resonance.
Following the treatment of Bohm [15] one can write the phase of the

scattered wave as

6(p) = pf - Ef (27)

where p is the momentum, x the position, t the time and 7 the phase
of the scattered wave. Taking the derivative with respect to p,

setting this equal to zero and solving for x,

= -CREyV _p3®y o _ By _ 439 - oy . 43D
x = -Gt - ) it - figh = vt - A% (23)

using the fact that E = p 2/2m and p = mv. Thus, for a given position,

Xo, the time delay in reaching xo compared to an unscattered wave is,

sty = 2 (38 (29)

Thus, we see that the time delay is a perfectly natural result from
the theory of resonant scattering.

Goldberger and Watson [16] provide an additional discussion
of the delay phenomenon based on Wigner's original concept of the
lifetime of the scattering event. Physically, the time delay is
viewed as the time that the photon takes to undergo a series of
"scatters" off the resonance. The "series of scatters" is described

diagramatically by the expansion of the Green's function [4]. This
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process is similar to the one dimensional scattering of a wave packet
off a square well potential [17]. As the wave packet reaches the
well, it tends to rebound bhack and forth in the well before moving on.
The photon wave packet does exactly the séme thing in the "well" of
the molecular resonance.

With this understanding, we can easily understand the two
observations made earlier on the occurrence of the time delay.

The phase angle of the response is given by

p(e) = tan” ! (A0aiE ~(30)
for a particular energy €. The excitation function will select a
range of energies over which one could compute an average w. If, in
this range, the imaginary part is small with respect to the real part,
the phase angle is small and the time delay short. The opposite is
also obviously true. Since the absorption spectrum is proportional to
ImG, peaks correspond to large values of ImG. ReG does not vary as
rapidly or as much as ImG, so the peaks indicate a region of large
phase shift and thus large time delay.

The second observation relating the width of the excitation
pulse to the rate of rise is explained simply by a consideration of
the uncertainty principle. Wide bandwidth excitation has a short time
duration and thereby a quicker rise. Thus, the rise to the maximum in

the decay curve is quicker. The delay times are different for
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different width pulses since the average phase angle will change
slightly. Thus, the first and second observations are intermingled.
With a slightly wider band, the rise to maximum is faster, but the
phase angle is slightly smaller and the time delay is thus a little

shorter. See Figs. (1) and (2) for examples.

F. Positive and Negative Time Plots

Fig. (1C) displays some example decay curves for both positive
and negative times. The curves on the left of the Fig. (10) are those
of Fig. (1). The progression is toward a wider bandwidth-narrower time
pulse as one moves down the figure. The top curve shows very little
effect of the actual decay in this time range since the excitation
pulse time duration is roughly as long as the decay time. Only by
going to Tonger times can one get a measure of the decay process. As
the pulse duration becomes shorter, the curves become more asymmetric
and move toward the 1imit of a delta function pulse followed by a long
emission decay.

The right hand side of Fig. (10) displays the right hand side
of Fig. (9). The dramatic loss of resolution of a beat decay is seen
in the Tast curve. The apparent shift in time is due to the way D(t)
was defined as discussed previously. It is interesting to note that
the beats also appear before time zero.

With these curves we can see that there is a new way to do

emission decay experiments. One merely starts the detection apparatus
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FIGURE 10 (Full Time)

The left hand side shows the same curves as Fig. 1. The right

hand side shows the right hand side of Fig. 9.
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before the pulse arrives at the sample and measures the entire pulse
of emitted Tight. This removes the problem of deciding (artificially
at best) where the excitation pulse stops and the decay starts. With
our method of treating the decay problem, the distinction between
resonance "scattering" and resonance "absorption-emission" is removed
as it is in any real experiment. To get the true "molecular" decay
function, one must deconvolute the finite pulse shape from the decay

function.

IV. SUMMARY

This paper deals with the application of the Green's function
technique to the study of resonance fluorescence from molecular
resonances. In particular we apply the technique to the situation
where the excitation bandwidth is finite and both the position and
bandwidth are variable. For statistical Timit cases where the
product of secondary level density and interaction matrix element are
constant, the resulting decays, upon using the above excitation band,
are nonexponential in general, but in most cases are approximately
exponential decays. For situations Tike the intermediate case where
the secondary level density is "line-Tike", the possibility of a
quantum beat decay occurs. It was shown that the observation of these
beats is critically debendent on the experimentalist's choice of

exciting light conditions. In particular he must choose his excitation
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bandwidth and position properly, and, if using a nonuncertainty
principle 1ight pulse, he must regulate the time duration of the pulse
in order to be able to see the beats.

Theoretically, we have shown that the Green's function method
describes both scattered and absorbed re-emitted 1ight which are of
necessity experimentally indistinguishable. The presence of both
real and imaginary parts of the Green's function results in their
being a phase change or time delay in the response of the system to
the 1ight pulse. This is seen experimentally by a time delay in the
emitted Tight as compared to the "free flight time" of 1ight over the
same distance. In addition, we have shown that the effect of using
a finite bandwidth excitation is trivially accounted for in the Green's
function method by multiplying the Green's function by the excitation
function. The finite time duration of such a pulse is automatically
accounted for in the Fourier transform process. We can also by this
method compute the magnitude of emitted light from times before the
maximum of the pulse arrives until long after it has arrived giving

a complete picture of the time response of the system.
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TABLE 1
Maximum of Decay Curve® Integrated Intensitya
Figure 1 (a) 0.150 0.802° (0.8148°)
(b) 0.360 1.316° (1.321°)
(c) 0.798 1.925° (1.929%)
(d) 1.188 2.226° (2.231°)
Figure 2 (a) 0.1173 0.6150°
(b) 0.0551 0.2333°¢
(c) 0.0270 0.1022°
(d) 0.0099 ’ 0.0357°
Figure 3 See Figs. 1 and 2 above.
Figure 4 (a) 0.000079 0.00021°
(b) 0.001587 0.00099°
(c) 0.1674 0.1911P
(d) 0.6983 6.7199°
Figure 5 (a) 0.000043 0.000129°
(b) 0.00058 0.000357°
(c) 0.0058 0.003659°
(d) 0.2088 0.2366°



values mean nothing; only relative values have meaning.
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TABLE 1 (continued)

Maximum of Decay Curve®

Integrated Intensitya

curve which is plotted.

including the portion not plotted.

Figure 6  (a) 0.00013 0.00020°
(b) 0.04273 0.13090°
(c) 0.04748 0.11630°
(d) 0.00958 0.01725°
Figure 7 (a) 0.05699 0.1309°
(b) 0.2989 0.5081°
(c) 0.5547 0.7690°
(d) 1.031 0.9760°
Figure 8 (a) 0.01419 0.04503°
(b) 0.00176 0.00466°
(c) 0.00052 0.00082"
(d) 0.00880 0.03362°
@ The units are undimensioned but all are on the same scale. Absolute

These integrated intensities are only for the portion of the decay

These integrated intensities represent the entire decay curve
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PART 5

THE INTERMEDIATE ENERGY GAP CASE AND
THE SECOND SINGLET OF NAPHTHALENE IN DILUTE MIXED CRYSTALS
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I. INTRODUCTION

Hoping to resolve a question concerning the assignments of the
first two electronic transitions in naphthalene, in 1954 D. S.
McClure investigated the spectrum of naphthalene in a durene host
crystal [1]. The naphthalene goes into the crystal structure
substitutionally and should closely approximate the oriented gas
model. There are several advantages to this technique. First,
the complication of rotational band structure is removed. Secondly,
sequence structure, which is pronounced in gas phase naphthalene
spectra [2], can be eliminated by going to liquid hydrogen or
helium temperatures. Thirdly, polarizations of different electronic
transitions can be isolated and overlapping transitions separated
according to their polarization. McClure did find the correct
assignments of the two singlets by being able to separate the two
transitions by polarization.

A new problem arose, however, when he viewed the spectrum in
the region of the second singlet. Instead of seeing a set of
normally spaced vibronic transitions which would be assignable in
terms of a harmonic oscillator with possibly anharmonic corrections,
the lines were ifregular]y spaced and were described as a "forest
of 1lines". This entangled spectrum was attributed to vibronic
perturbations, but no quantitative explanation was offered. The

key point to remember about this system is the small energy gap
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(v 3000 cm ') between the first and second singlets. If the lower
state interacts with the upper state, then the density of levels
is so low in the region of resonance with the upper state that the
spectrum would not be broadened as in the statistical limit [3], but
would be split into numerous lines.

Some other examples of this type of splitting have recently
been observed. The system quinoxalene in durene apparently shows
the same effect [4]. Similar spectra have been observed for
phenathrene in durene [5] and pyrene in biphenyl and fluorene [6].
Interestingly, there have also been reports on some anomalous
emission properties in the region of the second singlet of
naphthalene [7] and the pyrene derivative 3, 4 benzpyrene [8]..
Also, some anomalous emission properties of benzophenone have been
reported [9]. The emission in this case is from the first singlet

! separation) triplet

which interacts with a very close (v 2000 cm”
level. These examples are also most likely closely related to the
well known anomalous spectra of NO,, SO,, and CS, [10]. Thus, it
is beginning to appear that these vibronically entangled systems
are somewhat more common than was at first realized. The case of
naphthalene is the most carefully documented and analyzed case yet
reported. We will Tater analyze this éase in greater detail.
Before we proceed to do this, we will present a general discussion

of the vibronically tangled electronic states and their emission

properties.
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II. GENERAL THEORY OF VIBRONICALLY TANGLED SYSTEMS

The first real theoretical discussion of vibronically tangled
systems was presented by Douglas [10]. His arguments are mostly
qualitative and are based on some results connecting the oscillator
strength (which is proportional to the integrated intensity) of an
absorption band to the lifetime of the state giving rise to
absorption [11]. Douglas was principally interested in explaining
the emission lifetimes observed in NO,, SO,, and CS,. In these
molecules, the lifetime is longer than estimates obtained from the
oscillator strength of the transitions. His idea was that a set of
zero order states could be postulated in which only one carried
oscillator strength and all states interact by vibronic perturbations.
The result is in Douglass words, "The perturbations therefore have
the effect of producing a spectrum in which there are a large
number of weak lines instead of the expected smaller number of
strong lines and the lifetime is correspondingly shorter." Bixon
and Jortner [12] have formalized Douglas' arguments based on a
model in which the levels carrying no oscillator strength are
described by a "ladder" of equally spaced levels. Later, Nitzan
and Jortner [13] used somewhat more rigorous mathematics and a more
general consideration of the coupled levels to reaffirm the earlier
results. A1l of these models are based on the premise that the

lifetime of a state is related to the oscillator strength of the
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transition. We will now examine this basic idea somewhat more
thoroughly and show that it is not generally true.

Let us consider the following simple example: we are given an
atomic energy level which carries oscillator strength from the
ground state. There is no molecular continuum with which it can
interact, only the radiation field continuum is present. When
the Tine shape is calculated, it turns out to be the familiar
Lorentzian. The absorption coefficient (or cross section) is

equal to the following expression [14],

W |<qlu]Ee>|? Y (1)
7 |<9lulEe | ey iy

where |g> is the ground state, |Eo> the excited state, € the energy

variable, and y is the width which is equal to

3
Y = 2 |<a|ulEe>|? (2)

This, of course, means that the state obeys an exponential decay

Taw with a lifetime equal to Ay !.

Since the Lorentzian is
normalized, integration over the Lorentzian part of the line shape
gives unity. Thus, the integrated intensity is proportional only

to the transition dipole moment. Note also that the width of the
level is proportional to the same quantity. Thus, by the uncertainty

principle, the Tifetime is inversely related to the width of the

level which is in turn directly proportional to the oscillator
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strength. This is the explanation of Mulliken's relationship [11].
If the transition moment is increased, the integrated intensity

is increased. Also, the line is broadened and the lifetime is
shortened. Thus, we see that the oscillator strength-1ifetime
relationship is obeyed here. We would expect the above model to
hold for most low lying, nonpredissociated diatomic excited states
also since the only interacting states here are the radiation field
states. However, these are the only situations where the
relationship would be expected to hold true. For polyatomics in
general, the relationship is not valid as we shall show.

If one now amends the simple model by introducing a set of
molecular quasi-continuum states, then any relationship between
lifetime and oscillator strength is destroyed. In this case, the
familiar statistical limit [3], the integrated absorption remains
the same, but the linewidth is increased and the 1ifetime is shortened.
Thus, the lifetime is dependent only on the shape of the line, not
its integrated area. This is the interpretation that the authors
have been advocating recently [15]. The problem that Douglas
failed to realize is that, for polyatomics, the observed lifetime
is a combination of several "component lifetimes" (or rates [16]).
The oscillator strength gives us a measure of the radiative component.
If there are "nonradiative" processes competing with emission, the
observed lifetime reflects this competition and must change

accordingly.
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Now if we allow the molecular continuum to have structure, i.e.,
be 1ine-1ike, we then arrive back at the situation where we started
this discussion. These are the cases which Douglas [10] originally
discussed. We see that the lifetime-oscillator strength relation-
ship is not valid for the molecules Douglas discussed. The lifetime
is not dependent only on the oscillator strength, but rather on the
shape of the line. When a simple Lorentzian line is split up into
a number of narrower lines by interaction with a line-Tike continuum,
the Tlifetime must depend on the width of the narrower lines in the
spectrum, not the net integrated intensity or oscillator strength.
Since decay curves will not in general be exponential, we use the
term 1ifetime somewhat loosely to describe the rapidity of the
decay [15a].

Take the following limit of the Douglas model where the
number of coupled levels is allowed to become very large.

According to Douglas-Bixon-Jortner argument, the lifetime should
get very long. However, this situation is approaching the
statistical 1imit where the Tifetime is known to be shortened. This
limit illustrates the basic inconsistency of the treatment given by
Douglas and Bixon and Jortner.

Based on our model calculations previously reported [15], we
can illustrate some of these ideas. In the spectra shown in
Fig. (1), we have one coupled level positioned at +5.0 linewidths.
We vary the width of this level and excite it with a Gaussian pulse

as shown. Then we look at the lifetime of the emission. Fig. (la)
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FIGURE 1

The spectra are shown as dashed lines, the excitation band as

a solid line.

(a)

Pure Lorentzian, Gaussian excitation with width 20.0 &,
and position 0.0 &.

The coupled level parameters are position = 5.0 &,
width = 3.0 & and interaction strength = 30.0. The
Gaussian excitation band is positioned at 7.0 &, and

has width 2.0 .

Same spectrum as (b); excitation parameters are
position = 0.0 &, width = 20.0 &.

The coupled Tevel parameters are position = 5.0 &,
width = 1.0 &, interaction strength = 10.0 &.
Excitation parameters are position = 7.0 &, width =

5.0 &.

The spectrum is the same as (d); excitation parameters

are position = 0.0, width = 20.0.
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is the plot of a pure Lorentzian with its corresponding decay curve.
1n Fig. (1b) the coupled level is wider (3.0 lifetimes) than the
primary Tine, and the emission decay is thus faster than the pure
Lorentzian. This Tevel has only a fraction of the integrated
intensity of the pure Lorentzian, but has a shorter lifétime. This
is the opposite of the prediction by the "dilution of oscillator
strength" theory. In Fig. (1d) the coupled level is the same width
as the pure Lorentzian and has a slightly longer lifetime than the
original primary state. Fig. (1c) and Fig. (1d) are plots of the
excitation of the entire state. These are much different from the
excitation of the isolated coupled level for now the primary peak

is excited strongly. Thus, the lifetime here will be slightly

longer than the original zero-order primary lifetime because the
primary peak has been narrowed. Thus, we see that it is the shape
of the resonance which determines the emission decay characteristics,
not the integrated intensity of the spectrum. The latter only
governs the radiative component of the lifetime and ignores contribu-

tions from intramolecular radiationless transitions.

IIT. THE NAPHTHALENE SECOND SINGLET

SPECTRUM-THEORY

We will here only be concerned with the origin region of the

second signlet and the totally symmetric additions to the origin.
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Wessel [17] has treated, in addition, the low energy portion of the
spectrum corresponding to the first singlet absorption which is
vibronically induced by the second singlet. We will only be
concerned with the ¢” polarized (short molecular axis) absorption.
In this polarization, which is apparently very pure, the first
singlet ('Bsy) has no oscillator strength and the second singlet
('Byy) has its oscillator strength only along this polarization.
Any 1lines appearing must be due to intensity originating in the
second singlet. In the gas phase, of course, both polarizations
are mixed. In terms of model systems, the traditional canonical
model [15] seems to be a very good representation for this system.
See Refs. [1] and [17] for more detailed explanations of the

experimental conditions and techniques.

A. Wessel's Treatment

We will now briefly explain Wessel's spectral fitting procedure
so that we may compare it to our procedure later. The first
approximation which Wessel makes is to assume that both zero order
and final states have no width. Thus, he will compute a spike
function for a state whose height is proportional to the integrated
intensity of the corresponding peak in the spectrum. The position
of the spike should be either at the maximum of a single spectral
peak or the intensity centroid of a multiple peak. With this

approximation he sets up a finite dimensional matrix of the
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following form:

/ H(T1,1)eeeeH(1,9) "

where only the first column, first row, and diagonal are nonzero.
The diagonal elements are the energies of the zero order states
with H(1,1) being the position of the !B,y origin. The H(1,i)'s
are the interaction energies between zero order states |1> (!B,
origin) and |i> (higher vibronic level of 'Bsy). One then has to
diagonalize the above matrix and find the eigenvalues. The
eigenva]ués then give the perturbed energy levels. By changing the
various matrix elements in a trial and error procedure, the
observed spectrum is fit by iteration. We will perform the same
calculation, but we have allowed our zero order states to have width.
Thus, we generate a true fit to the spectrum, not to just peak
positions and integrated intensities.

One thing that must be done when using this method is to
separate out "lattice" intensity from the !Bsy vibronically borrowed
intensity. By lattice intensity we mean phonon combination bands
associated with a vibronic transition. Thus, in a solid one may
see a transition due to excitation of a pure molecular vibronic

state, and also to the pure vibronic state plus one or more phonons.
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The idea is the same as having symmetric norma] mode additions to an
origin band in the gas phase. Generally, these phonon "addition
bands" are broad and lie to the high energy side of a vibronic
transition. Wessel attempts to eliminate any contribution of this
phonon intensity by drawing a baseline which touches the valleys

in his spectrum. This eliminates supposedly the broad underlying
intensity attributed to the phonon bands. While this seems
perfectly reasonable; no one can say with certainty where the baseline
should be drawn. If it is in error, the integrated intensities

will be in error making the calculated results also in error. We

do not feel that this procedure results in gross errors by any
means, but it is an uncertainty in the calculation [19]. We use

a different procedure which takes the phonon states into account.
Thus, we do not have to do the type of baseline subtraction Wessel
did.

In order to simplify the calculations, Wessel assumed that only
the !B,y origin contributes intensity. This neglects the possible
contributions from the symmetric mode additions to the origin.

We will do the same. This should not produce any serious errors

in the calculated spectrum. First, we shall only be interested

in the resonance region where contributions from other intensity
sources should be minimal. Secondly, the 'B,, origin does carry

about 70 percent more intensity than any symmetric addition peak, so it

should be the major contributor to borrowed intensity anyway,
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especially near resonance. Thirdly, if one does the multiple
intensity source problem [20], it can he shown that one can mimic
the multiple-source spectrum by a one-source spectrum, especially
in a resonance region, or far away from all intensity sources.
Thus, we should be able to calculate a spectrum which fits the
observed spectrum.

By measuring the intensity of the b,g(8) mode of 'Bsy, (this
is the lowest frequency mode which can borrow intensity), and by
estimating the changes which occur in Franck-Condon overlap
factors, Wessel estimated what the intensities of symmetric addi-
tions to the b,g modes should be. In comparing these with the
calculated intensities from the diagonalization, there are certain
lines which appear to have abnormally low intensities. This he
attributes to cancellation of the borrowed intensity from the
1B,y origin because of interference with the symmetric additions
to the 'B,, origin. One can still calculate a correct spectrum,
however. Once parameters are obtained, one may go back and compare
the calculated intensities with the computed Franck-Condon envelope.
If the two intensities disagree, appeal can then be made to the
moment interference model. Thus, we see that the calculated
parameters from the spectral fit are really the correct ones. It is
then a question as to whether they are consistent with Franck-Condon
overlap factors. Since this happens for only a few lines, this

approximation is further reinforced [21].
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One final comment about Wessel's calculations concerns his
method of choosing the initial guess zero order states. He compares
the resonance region in the p-xylene spectrum with the isoenergetic
region in the durene spectrum. The lines which appear in the
durene spectrum are corrected by a first order perturbation pro-
cedure to give zero order durene energy levels. The zero order
coupling strengths are estimated from the square root of the
intensity of a durene peak. These positions and strengths are
the first guess in the p-xylene calculation. Because of solvent
shifts in both vibrational and electronic states, this estimation
procedure should not be too accurate. This is verified in Wessel's
first calculation. It has the further drawback that unless one
has a "durene spectrum" from which to estimate the zero-order
states of a "p-xylene spectrum," one is at a loss to find a
beginning. This apparently is why Hessel was not able to refine
the durene spectrum. We shall use a different procedure which
extracts guesses for the zero order states from the perturbed
spectrum itself. Thus, we can fit any spectrum that we can

measure, given enough patience and computer time.

B. Our Treatment

The Green's function technique that we shall use here has been

discussed previously by the authors [15] and [22]. According to
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this technique, the Green's function matrix is given by

§=[G o"V] (4)

where G is the true Green's function, G, is the diagonal zero-order
Green's function matrix, and V is the interaction matrix between
zero order levels. The perturbed energy levels are given by the
poles of the Green's function. The poles are found by equating the

determinant of [G, - V] to zero.

det|6™h - v] = e-r- 3 LDQL (5)
=2 i

where E; is the zero-order energy of the primary state, the Ei's
the zero-order energies of the secondary states, and € is the
energy variable. Moreover, one can calculate analytically the
secular determinant of Wessel's matrix (Eq. (3)), and it is seen
to be exactly Eq. (5), which is to be solved for its various
eigenvalues (zeroes). Thus, at this point we are doing the same
mathematics as Wessel.

Now, we allow the secondary states to become continuous, the
sum is converted to an integral over a density of states function,

and the discrete V,i becomes continuous functions of energy. Eq. (5)

becomes [15],
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2
e-El—GD.fdAp(A) lﬁgll¥lAiL— +imp(e) |<E1|V]e>|2 = 0  (6)

€-A

By this transformation we have converted our finite, discrete matrix
into a continuous, infinite matrix. This is the chief advantage

to our method over Wessel's. Now we can include secondary state
widths in the calculation, phonon bands if necessary, and continua
including that from the radiation field or from other low-lying
electronic states (most probably triplets). In addition, we now

do not have to numerically diagonalize the continuous, infinite
matrix (an impossible job!), for we have already analytically done
so. The fitting procedure is a roundabout, but simple way of calcu-
lating the eigenvalues. The calculation of the absorption spectrum
is straightforward since it is proportional to the imaginary part

of the Green's function [15]. Our fitting procedure is to guess a
weighted density function (mp(e)|V(e)|?), calculate a spectrum,
compare it to the observed spectrum, make changes in the weighted
density, and repeat until a satisfactory fit is obtained. More

will be said about the details of the calculation later.

The continuous weighted density function deserves some attention.
Normally in theoretical treatments, the secondary states are
assumed to be discrete, infinitely sharp states. This is in
reality a crude approximation to the real physical situation. First,

all states interact with the radiation field. This in itself is
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enough to justify the continuous density assumption since the
radiation field is a true continuum. Secondly, the presence of
anharmonicities will broaden out vibrational levels. For low-lying
levels, this breadth may be very small, but for higher vibrational
levels where the density of interacting states (combinations and
overtones) is higher, the breadth should be correspondingly larger.
Finally, in our solid state example, the phonon structure of the
lattice contributes even further breadth to vibronic states. From
these factors we see that the continuous density function is not
really an approximation at all, but is a realistic physical picture.
We assume that the weighted density function is composed of
two parts. One is a constant continuum which is composed of
several continua including radiation field and molecular continua
from lower-lying molecular states. The second part is the set of
discrete states composed of vibrational states of the 'Bj, state
which must have the symmetry b;g. We define in our calculations

the weighted-density as a sum of normalized Gaussians:

n . - 2
WD(e) = 7%.1_51%%1 exp[—]/Z (%1-) ] (7)

where € is the energy variable, DELi the interaction strength, wi
the width, and €; the position of level i. The number of coupled
levels is n. In a stepwise fashion, the zero order primary state

is first broadened into a Lorentzian by the constant continuum
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which is then split up into many lines by the discrete continuum.
Some care must be applied when interpreting this density function.
In some regions the density will Took like a set of slightly
broadened discrete peaks. In these regions the interpretation as a
set of slightly broadened vibronic states is valid. However, in
some regions the density appears as a smooth function even though
the region is really made up of the superposition of several
individual "states". Here one may not necessarily be justified in
assuming that the Gaussians are assignable as vibronic states.
The region might just as correctly be assigned to phonon states.
Such a judgement depends, of course, on the particular situation in
question. In any case, the density function derived from é
spectrum fitting calculation correctly describes the weighted
density no matter what the zero order interpretation is given to it.
The spectra were fit by a trial and error procedure. The
first quess at zero order positions was made by measuring the
positions of the valleys in the spectrum. In some earlier work
(155 it was found that such a procedure gave very good estimates
to the correct zero order positions if the energy shift term was
ignored. It turns out that this gquess also provides a reasonable
first choice for the correct calculations. The changes to be
made are estimated visually using intuition as a guide. This
intuition is built up after many hours of tedious laboring over

differences between calculated and observed spectra. It often
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was a considerable help to compare the weighted density function
with the calculated and observed spectra. Some of these points will
be illustrated as we discuss the individual spectra.

The calculations were performed in the reduced units of Ref.
[15a]. The zero order position of the !B, origin (or ag addition)
was estimated visually and varied to give the best fit. The magni-
tude of the constant density was also varied to give the best fit.

Because we have not been concerned with the absolute units
of our absorption curves, we must also estimate what the vertical
scale of our calculated spectra is. This was done again by trial
and error, but the choice made seems fairly correct judging from
the goodness of the fits. A general baseline was used to account
for instrumental baseline drift. This is due to light scattering
and instrument response. For a particular spectrum, a linear
baseline was estimated from Wessel's low resolution spectra. This
was added to the calculated spectrum to give improved fit and was
not varied. Finally, individual level interaction strengths,
widths, and position were varied. Where necessary, new levels
were inserted or taken out as required by the fit. On the order
of 40 or more, iterations were generally required to fit a
spectrum. We present here a total of seven different fitted
spectra including the h-8 and d-8 !B,y origin regions in both
p-xylene and ddrene, and the supposed 'B,y 0-0 + ag(9) (501 cm ')

symmetric addition regions of h-8 in durene and p-xylene and d-8
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in p-xylene only.

IV. RESULTS--ORIGIN RESONANCES

A. h-8 Origin in p-xylene

In Fig. (2) we show the weighted-density function. The
calculated spectrum, and the observed spectrum. The calculated
and observed spectra are virtually identical with a few minor
differences in certain areas. We are confident that, given enough
time and patience on the part of the fitter, essentially exact
fits could be obtained. Diminishing returns unfortunately comes
into play and the Tast few changes necessary to achieve a good fit
are difficult to estimate. The parameters of the fit are given
in Table 2. The positions, widths, and interaction energies are
given in both our reduced units and in wavenumbers. The zero
order position of the !B,y origin and its width due to the constant
density is given in Table 1. Also included in Table 2 is a set
of possible assignments which are generated by using both Tong axis
values of symmetric modes and short axis values of b;g modes. These
assignments are most likely subject to considerable error as the
frequencies, especially those of the blg modes, are uncorrected for
vibronic interaction with the B,y state. Our assignments are

somewhat different from Wessel's because he derives them from the
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FIGURE 2

h-8 origin region is p-xylene host. The weighted density is
shown at the bottom, the calculated spectrum just above, and the
observed spectrum with wavelength designations on top. The

observed spectrum is taken from Wessel's thesis.
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durene spectrum where frequencies change slightly from the values
in p-xylene. A somewhat more reliable assignment would be obtained
if we would have fit the low energy region in p-xylene. Then we
would have a good zero order set of mode frequencies to work with.
We will not refer to assignments very often because we do not have
much faith in them.

A most interesting comparison to make is between the weighted
density and the calculated spectrum. It is here that one can get
a feel for how the various lines in the spectrum derive from the zero

order density. The most prominent features are the doublets at

1 1

2267 om” ! and 2294 cm”! and the single peaks at 2343 cm = and 2482 cm .
In examining the density for the doublets, we see that the major
peak in the spectrum occurs shifted very slightly to lower energy
from the corresponding density peak. The outer component of each
doublet is almost not shifted at all from its zero order position.
These are also good examples of the outer component intensification
discussed by Wessel [23]. The outer component, though coupled
weakiy compared to the inner component, has comparable intensity.
This is due to higher order coupling where, even though first order
interactions result in little intensity borrowing, higher order terms
contribute as much or more than the first order terms.

The two prominent singlet peaks are the result of the
basic splitting pattern. From the density function there is

roughly a broad peak running from -1.8 & (2360 cm_]) to
0.8 £ (2470 cm-]). (¢ is the reduced energy unit.) This
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interacts with the ‘Bzu origin to give the basic two humped intensity
pattern. The fine structure on top of these humps is due to the
fine structure in the zero order density. This is one of those
regions in which some phonon activity may be present. If so, this
may be the reason for the broad intensity under the sharp structure
in the density function. There is no way to quantitatively determine
if this is so, or if there is coincidentally a superposition of a
number of 'Bj, vibronic states. If the latter is the case, one
might not expect the broadness because higher order interactions
would possibly just split the levels up. Whatever the reason for the
broadness, the density function is correct and does give the proper
spectrum.

The peak at -7.95 & (2129 cm-]) deserves further examination.
From first order theory one expects that the shape of the spectrum
should resemble the shape of the density function. We see here
that this is not the case. This peak resembles a Fano-type line shape
[24] with its dip to higher rather than lower energy. In general,
all Tines in the spectrum show some "antiresonance" behavior. The
dip occurs toward the !B,y origin position. For example, the
Jip to higher energy of the 2482 cm_] peak in the calculated spectrum
is due to this effect. The level at 5.13 £ (2629 cm°]) was added
to the calculation to "fill in" the dip due to the two levels at
5.25 £ (2634 cm-]) and 5.40 £ (2640 cm—]). One encounters many

such considerations throughout the iteration procedure.
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A word about accuracy in the parameters is in order. We do
not compute any error limits, but we can give some idea of what the
variance might be based on experience in varying the parameters to
achieve a fit. The absolute variance in the positions may be quite

high, as much as 10-20 en !,

This is due to inherent errors in
plotting, in converting from & units to wavenumbers, and the
inaccuracies of the observed spectra that we used to fit our-
calculated spectra. However, the relative error in positions is
quite good, easily less than 5 cn™! and most likely 2-3 cn” .
Because of the way we define our coupled levels, and the fact that
they have finite width, makes the comparison of our interaction
energies with Wessel's somewhat difficult. The way we define our
coupled levels makes each one normalized. Whether that is necessary
or not is difficult to decide. In viewing the interaction energies
one should also look at the widths to get a true feel for the
pre-exponential term in Eq. (7).

The sharper the level, the more accurate its position is. As
far as widths are concerned, the error here, percentage wise, is
fairly high in some cases, possibly as much as 20-40 percent. Again,
the error depends on the level in question, some being very accurate
and some not. Generally, the sharper the line, the more critical
is its width to achieve a fit.. The relative interaction strengths are

accurate to 2-3 cm']. Again, the variance depends on the level

involved. One should notice that the interaction strength and the
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width together determine the peak height of a level (see Eq. (7)).
Thus, the broader a level, the stronger its interaction must be to
have the same height in the density function.

The absolute values of the widths and interaction energies
are also most likely not too accurate, but the relative values are
fairly accurate. This is because both parameters derive their
absolute value from the estimate of the zero order width of the
primary ('B,y) state. This is a difficult parameter to estimate with

accuracy (see Section VII for a discussion).

B. d-8 Origin in p-xylene

The density function and calculated and observed spectra are
shown in Fig. (3). The zero order position and width of the !B,y
origin are given in Table 1. Parameters of the fit of Fig. (3)
are given in Table 3. This spectrum is interesting from a number
of aspects. The intensity distribution is much different from the
two-humped, h-8 spectrum. Also we seem to have better evidence
here of the presence of phonon excitation. Another interesting
feature is that on the average the discrete levels in the density
seem to be broader than the levels in h-8. This may be due to
increased lattice coupling which is in turn due to higher vibrational
amplitudes (d-8 shows this effect in the ground state [25]). Whether

this observation is significant or not is uncertain.
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FIGURE 3

d-8 origin region in p-xylene. Observed spectrum is Wessel's,
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The strong peak at 2256 cm-] is interesting Tor two reasons.
It is due principally to the levels in the density function at
_2.55 £ (2267 cn”) and -2.21 £ (2281 cm™') respectively. There
are no strong normal mode combinations involving big(8) or big(7)
in this region. These were the only two modes which showed any
substantial activity in the h-8 spectrum. In the durene d-8 spectrum

1 and 2276 em”! as big(2)

Wessel assigns two strong peaks at 2261 cm_
and blg(l) respectively. These two modes do not show activity in

the h-8 spectra. The fact that the density function also shows

these two strongly coupled levels in p-xylene lends credence to the
assignment as Wessel has noted.

The second interesting feature is the broad band with super-
imposed fine structure which follows these two levels. This may
indicate strong phonon absorption. If this is so, it falls in line
with the statement above that there is larger amplitude in the d-8
modes and thus, one would assume, stronger phonon coupling. The
same kind of broad-banded structure, although much less pronounced,
appears after the triple peak in the density at 1.29 &, 1.38 &, and
1.50 €. The latter is possibly assignable as big(4) + ag(6). The
blg(4) mode is again not seen in the h-8 system. Moreover, from
Franck-Condon factor predictions, Wessel concludes that ag(6) assumes
much more borrowing activity in d-8 than h-8. This reinforces some-
what this assignment.

The main double peak in the spectrum is due to the interaction of
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the !By, origin and the triple peak centered at around +1.40 E.

1 and 2280 cm”!

This origin, after interacting with the 2261 cm”
levels, is pushed to higher energy where it interacts with the
triplet. This region is reminiscent of the resonance spectra
discﬁssed previously by the authors [15b]. Another way of looking
at this structure is to realize that the density function and
spectrum are often approximately inversely related. That is,

when the density is high, the spectrum shows a dip, and vice versa.
The same notibn is evidenced in the region just to the left of
-2.70 E. The central region from -0.70 to 1.0 & was possibly the
most difficult region to fit in this spectrum. The spectral shape

is incredibly sensitive to the variations of the individual Tevel

parameters in this region.

C. h-8 Origin Region in Durene

The density function and calculated and observed spectra are
shown in Fig. (4). The parameters of the fit are given in Tables 1
and 3. The durene host crystal produces the sharpest spectra of the
two hosts dfscussed here. This can be seen both in the spectrum
itself and in the density function. The spectrum's general
appearance is similar to the h-8 spectrum in that both are double
humped. There are differences between the two spectra. Most

noticeable in the durene spectra are the two strong peaks at 3087 cm'1

1

and 3144 ¢cm '. These have no parallel in the p-xylene spectrum.
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FIGURE 4

h-8 origin region in durene host. Observed spectrum is Wessel's.
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The basic features of the durene spectrum can be understood
by a two state argument similar to the h-8 p-xylene spectrum. If
the region around -2.0 & (2915 cm']) is considered to be one state,
then its interaction with the origin at 2983 cm'] causes the basic

1

splitting pattern. Assignments in the 2915 ¢cm ' region are not as

interesting as in the d-8 p-xylene spectrum. The two strong peaks

at 3087 cm-] and 3144 cm']

are due mainly to two strong coupled
levels at 2.80 & (3077 cm_]) and 4.20 & (3123 cm']) respectively.
These two levels have been tentatively assigned as blg(7) + aq(8)
+ag(4) and big(7) + ag(8) + ag(3). In this region one would perhaps
expect some contribution from the ag(9) addition to the origin.
Thus, most conclusions about interaction strengths in this region
are somewhat dubious.

The density function is amazingly sharp. The number of levels
is high, but they are all for the most part resolved. Only in the
regions around -2.00 £ and from +3.00 £ to +6.20 & is there any
appreciable broadness underlying the sharp structure. This is in
marked contrast to the situations in h-8 and d-8 p-xylene spectra.
It may indicate that there is less molecule-lattice interaction
resulting in less phonon activity. A second explanation may be
that solvent shifts of the triplet levels with respect to th;
singlet levels are different for durene and p-xylene hosts. It
thus can be argued that the triplet level shift in durene leads to
less broadening than in p-xylene if such a triplet exists. Along

these lines, the broadening from +3.00 £ on may be due to the
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presence of a triplet level originating at about that position.

This is a similar type of argument to that made by Hochstrasser [4].
Both of the above arguments should be recognized as being highly
speculative since we can offer no real quantitative evidence for

gither one (or for any other explanation).

D. d-8 Low Resolution,

Low Energy and Origin in Durene

The density function and calculated and observed spectra are
shown in Fig. (5). The parameters of the fit are given in Tables 1
and 5. Because this is a Tow resolution spectrum, very little of
the interesting detail around the resonance region can be resolved.
The low energy region is easily understood by first order theory if
one ignores the Franck-Condon overlap calculations as discussed
earlier. The resonance region appears to be different from the pre-
vious spectra in that there does not appear to be any one or two
strongly coupled levels which determine the intensity pattern. The
levels around the origin are mostly of similar coupling strength
and width. The result, as shown in the spectrum, is no overall
splitting as seen previously (especially the broad doublet as in
h-8 origins in p-xylene and durene). The spectrum can be described
as a broad peak with superimposed fine structure. Little more can

be said about this particular spectrum. No assignments of the zero
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FIGURE 5

d-8 origin plus some of the low energy spectrum in durene host.

Observed spectrum is Wessel's.
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order levels were attempted.

V. RESULTS -- ag(9) ADDITIONS

A. h-8 p-xylene

The density function, calculated spectrum and observed spectrum
are shown in Fig. (6). The parameters of the fit are given in
Tables 1 and 6. The resemblance of the origin and ag(9) addition
spectra is really quite remarkable. This resemblance also carries
over into the density functions. It appears that on this basis the
main features of the spectrum are determined by adding a single
ag(9) quantum to both the 'Boy 0-0 and to the !B, levels in resonance
with it. Other mode combinations seem to be less significant in
determining density. Most of the features of this spectrum can be
readily explained in the same manner as the features of the h-8
origin spectrum. No assignments were attempted for the zero order
levels.

The major difference between the origin and ag(9) addition
density functions is the different shape and shift in the maximum
of the main peak. In the h-8 spectrum its shape can be crudely
described as a peak with a high energy tail. This tail, as noted
earlier, could possibly be attributed to phonon mode coupling.

However, in the ag(9) addition density, the peak seems to have a
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FIGURE 6

h-8 origin + ag(9) addition in p-xylene. Observed spectrum is

Wessel's.
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Tow energy tail. This cannot be rationalized in terms of phonon
modes (at least at Tow temperatures). It appears that one can only
say that the interaction strength has been redistributed among the
individua1‘1evels which combine to give the broad "lTevel". This
may be an indication thaf phonon modes play less of a role in
determining the intensity pattern, but such a conclusion is quite
tenuous. Most other parts of the density functions are quite

similar.

B. d-8 in p-xylene

The density and calculated and observed spectra are shown in
Fig.(7). The parameters of the fit are given in Tables 1 and 7.
Again, as in the h-8 p-xylene case, the spectra of origin and ag(9)
are remarkably similar in many respects. However, there are also
some striking differences. Most notable is the disappearance of the
major origin peak 2256 cm! (attributed to big(2)) in the ag(9)

addition. Also, the two strong peaks at 2417 cn”!

_and 2455 em ! are
much reduced in intensity. The set of four peaks (2267, 2280, 2301,
2331 cm']) is still present in the agq(9) addition with much.the
same intensity pattern. Also, the structure on the high ehergy end
of the spectrum is different but not drastically so.

The big problem is to explain what happens to the 2256 cm']

peak in the ag(9) addition. If the origin assignment of b{g(2)
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FIGURE 7

d-8 origin + aq(9) addition in p-xylene. Observed spectrum is

Wessel's.
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fundamental is correct, it appears that the Franck-Condon overlap
factors cause a drastic reduction of the intensity of this
component. A comparison of the widths shows that this level

increases in width from 2.5 cm'] to either 4.2 or 3.8 cm'].

It
js difficult to ascertain if this is significant. This aspect of
the ag(9) addition remains a puzzle. The decrease in intensity
of the doublet 2417 and 2455 cm'] is most likely due to the
absence of a state corresponding to the strong 2267 cm'] origin
level. In the origin region its interaction with the 'B,, 0
origin shoves intensity into the doublet. In the ag(9) addition
it is not present and the doublet is less intense even though the
states corresponding to the origin triplet have roughly the same
interaction energy in the origin and the ag(9) addition. The
comments on phonon mode activity made for the origin region still
seem to apply to the ag(9) addition region. We ignore, of course,
the possible intensity sources 'Bay + ag(6) or ag(7) which should

1

lie around 830 cm ' above the origin, relatively close to the

region of the ag(9) addition. Possibly multiple source interference

1

causes the reduction of the 2267 cm ' analog in the ag(9) addition

region.

C. h-8 in Durehe

The density, calculated spectra and observed spectra are shown

in Fig. (8). The parameters of the fit are given in Tables 1 and 8.
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FIGURE 8

h-8 origin + ag(9) addition in durene. Observed spectrum is

Wessel's.
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Both the spectra and densities of the origin and ag(9) addition regions
are remarkably similar, perhaps even more so than the h-8 p-xylene
case. The only real difference occurs at the high energy end of the
ag(9) spectrum where the two peaks corresponding to the origin peaks

at 3087 and 3144 cm'] appear with much reduced intensity. Rationaliza-
tions about Franck-Condon factors could be one explanation. Another
might be multiple source interference. As these peaks occur on the
high energy end of the origin spectrum, they might be subject to
interference (around the origin constructive) between B, 0-0 and

'Bay 0-0 + ag(9). In the ag(9) region, the contribution of the 0-0

is reduced and the interference may now become destructive. This

is only a speculation as we have not done the phasing calculations

to justify it.

VII. !By, ORIGINS AND THEIR WIDTHS

A subject which we have as yet not touched upon is the "zero
order" width of the B,y states. By "zero order" width we mean the
width due to the constant component of the weighted density function.
It was noted earlier, and can be seen in Table 1, that these widths
are much greater than those observed for the !By, levels. We are
fairly confident that these widths are not in error by the order of
magnitude difference between 'B;y and 'By, levels. Thus, the

increased width of the 1B,y state seems real. We have plotted in
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Figs. (9) and (10) examples of the width of the !By origin. The
pure Lorentzian (plus baseline) is superimposed on the calculated
spectrum. One can see how the wings of the pure Lorentzian determine
the wings of the spectrum. It was this type of judgement, plus
considerations of the general intensity pattern near resonance, that
lead to the estimation of the widths. One can see that it would be
very difficult to estimate the width to an accuracy of a few
wavenumbers, but variation of this parameter does indeed show that
some accuracy is attainable.

To what can this width be due? We can offer no definitive
answer to this question. It is surely not due to an increase in
the radiative lifetime over the !Bjy state since this would lead
to a drastic increase in the intensity of the transition which is
not observed. The only other reasonable explanation seems to be
interaction with some other electronic states which broaden the
!B,y state, but not the !Bs, state. The only other possible
electronic states would seem to be triplets. This seems to be a
difficult question to resolve and deserves further attention. Our
spectral fitting procedure cannot suggest an answer, but can only
point up the problem.

Also in Figs. (9) and (10) one gets a somewhat clearer picture
of how the basic intensity patterns discussed earlier are determined.
One can visually perform a crude, first order perturbation splitting

argument to arrive at the overall intensity patterns. Also, it is
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FIGURE 9

Calculated h-8 origin region in durene. The density is plotted
above. The dashed line superimposed on the spectrum is the pure

Lorentzian due to the constant component of the density. Its width is

1

33.3 cm (HWHM).
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FIGURE 10

Calculated d-8 origin region in p-xylene. Same as Fig. 9

1

The width of the Lorentzian is 42.2 cm ' (HWHM).
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easy to see how, if the Lorentzian were much narrower, the overall
intensity patterns would not be correct. The difficulty in
determining accurately the zero order positions and widths of the
1B,y state is the weakest 1ink in our fitting procedure. One
further fact must be noted. Wessel places the zero order B,y
positions at much lower energies (v100-200 cm-]) than we do. He
included in his calculations all the low energy lines in his
diagonalization which supposedly push the !B,y state up into the
region where resonance structure is observed. We place the 'By,
where it seems to give the best fit to the resonance structure,
ignoring the low energy lines. This is the reason for this
discrepancy in our leuApositions. If we also calculated the low
energy lines, our zero order position would most likely have to

be moved to Tower energy.

VIIT. PREDICTED EMISSION DECAY CURVES

Using our calculated spectra and the Fourier transform
technique outlined previously [15a], we can compute what the
resonance emission decay curves should Took like. Caution must
be used in comparing this with vapor phase emission decay curves
[7]. Our system is not a vapor phase spectrum. The vapor
spectrum at Tow temperatures has not been measured, but at room

and slightly below room temperature, the spectrum is very broad and
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complicated by strong sequence structure. Moreover, our decay
curves are computed for ideal, minimum uncertainty-principle width
excitation pulses. Even the experiments of Wannier, et. al. [7],
using the fourth harmonic of the Nd** glass laser, do not have the
uncertainty-principle minimum width. This, as shown [15b], will
tend to wash out any nonexponential behavior of the decay.

We have plotted two examples of decay curves. These are
shown in Figs. (11) and (12). The first uses the h-8 origin
region in durene. Using the values in Table 1 for the width of
the B,y state, we can now give absolute values to our relative

1 for the

units of time. Thus, one epsilon is equal to 33.3 cm
h-8 origin in durene. This means, employing the unéertainty
principle AtAw ~ 1, that one lifetime unit is equal to 0.159
picoseconds. It should be noted that these numbers are in error
by approximately 20-30 percent at most. The second example is
the d-8 origin in p-xylene. Here the width is & = 42.2 cn”!
giving a lifetime unit of 0.126 picoseconds.

We give three examples of different widths and positions of
the excitation pulse for each spectrum. Al1l decay curves show
quantum beat effects as expected [15a]. The spacing of the beats
in time is inversely related to the separation of the excited peaks
in the spectrum. Thus, in Figs. (11c) and (12c), the beats are

very closely spaced corresponding to the relatively large separation

of the major excited peaks in the spectkum. As we narrow the
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FIGURE 11

Various calculated emission decay curves for h-8 origin region

in durene. The Gaussian excitation parameters are:

Position (&) Width (&)
(a) -3.8 1.2
(b) -3.0 2.5

(c) 0.0 6.0



RSSOAPTION (QABITRARY UNITS)
T ) SR

AESCHPTION (ARBITRGRY UNITS)
1T T

R3STAPTION (RR3ITAARY LNITS)

k0 1w -ueo R

-230-

(a)

e
T———
3 i
'8 ?’
- ?
EMISSICN (RELRTIVE UNITS)

| EY POV, | JN | S
[N 10, 12. 18. 18. 20.
TIME IN LIFETIVES

2 VRN

\x\fk el
«©
Iy .
i
Ii:
= J | [RESSTRRS RN, SO . NN SRR (I |
. 6. w. 18. .

(RELATIVE UNITS)

5 s PR )
EY) .20 o. 2. [} [N 10 12. 8. 2.
TIME IN LIFETIMES

1N

ki,

j d\ //1J N, soms s » ) ol = !

2=k e sblises s s b
20 6.2 .20 0. 2. A

S S

€ UNITS)

o (c)
\/\/\/W\/\/\/\

»]SSION (RELQTIV!

155
T
SR

T T, T | -
16. 18.

e 0.2 2. T w. 7 e
ENTRGYCH INERITITNS ) TIME IN LIFETIMES



-231-

FIGURE 12

Various calculated emission decay curves for d-8 origin region

in p-xylene. The Gaussian excitation parameters are:

Position (E) Width (&)
(a) 1.3 2.0
(b) -1.7 1.0

(c) -0.7 6.0
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bandwidth of the excitation pulse, the peaks which contribute to

the decay curve are more closely spaced given beats which are
relatively widely spaced in time. The irregular pattern of the

beat structure is due to the irregular spacing of the spectral
peaks. See Fig. (1) for a more regular peak spacing in the spectrum
and a more expected beat pattern.

The long decay in the curves results from the very narrow line
widths of some of the peaks in the spectrum. This is what most
ordinary experiments measure. These long decay times are due mainly
to the width of the coupled levels of the 'Bsy state. Thus, it is
not unexpected that the exponential lifetimes measured by various
workers (which correspond to our long decay times) in the region
of the second singlet are close to those measured in the first
singlet [26]. This also is a partial confirmation of our
criticism of the Douglas "dilution" effect discussed earlier.

As one can see from our numbers, it is difficult to understand how
the experiments of Wannier, et. al. [7] were able to see beat decays
on the basis of the time resolution of the experiment. Our entire
plotted decay curves cover roughly three picoseconds. The beats occur
on times less than this. There is no way that Wannier, et. al.'s time
resolution could have detected these beats. Also, if one plots our
curves linearly instead of logarithmically, the beats are so weak
it would seem difficult to be able to observe them given the weakness

of the resonance fluorescence. Thus, the results of this experiment
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seem doubtful as far as their having been quantum beats observed.

IX. SUMMARY

We have presented here a general discussion of the intermediate
or narrow energy gap class of molecules in terms of their spectra
and emission decay curves. There we showed that the speed of the
emission decay is related not to the integrated intensity of the
absorption band, but to the width of the peaks in the absorption
spectrum. The general results were then made more specific by
calculating the spectra and emission decay curves of the second
singlet of naphthalene in two host crystals where fine structure is
resolvable. From these calculations one can get values of the
position, width, and interaction energies of the vibronic levels of
the first singlet which interact with the second singlet giving rise
to the fine structure. From a few sample computed decay curves
considerable doubt is cast on the experiments of Wannier, et. al. [7]
where quantum beats were reported in the resonance fluorescence of the

second singlet.
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