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ABSTRACT 

The problem of radiationless transitions in polyatomic 

molecules has been much discussed in recent years. Most attention 

has been focused on the large energy gap or statistical limit case 

where the lineshape is Lorentzian and the emission decay exponential. 

The weighted density of states is assumed to be constant with energy. 

The broad band approximation, which states that the exciting light 

uniformly and coherently excites the entire molecular resonance, is 

standardly employed. The cases of intermediate energy gap have not 

been extensively investigated. Also, the effect of a finite bandwidth 

excitation light has only been formally treated. The generalizations 

proposed here allow the weighted density function to assume general 

energy dependence. Using the techniques of scattering theory, we are 

able to present exact formulas for the spectrum and the emission 

decay which must be evaluated numerically. This enables a more 

thorough treatment of the intermediate energy gap case \vhere the 

density is expected to be "line-like". The spectral line shapes 

become very complex and in no way resemble a Lorentzian. The emission 

decay curves are correspondingly complex showing quantum beat effects. 

The ability to detect these quantum beats is also discussed. Also, 

the excitation band is allowed to have finite width (and, of necessity, 

a finite time duration). The width and positioning of the excitation 

band has a dramatic effect on the emission decay. The above generaliza-
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tions also lead to a new interpretation of the lifetimes of some 

intermediate case molecules such as N02, S02, and CS2. Finally, we 

apply the formal results to the calculation of the second singlet 

spectrum of naphthalene in various mixed crystal hosts. We are able 

to get virtually exact fits to the spectrum using our simple formulas 

Also, we compute some emission decay curves and compare these curves 

with some measured gas phase emission curves. 
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The radiationless transition problem has been around almost 

since the origins of the quantum theory. The early work dealt mainly 

with phenomena such as the Auger effect and predissociation. Later, 

chemical physicists began to worry about the origins and properties 

of fluorescence and phosphorescence. This \\fork led to the currently 

used terms "internal conversion" and 11 intersystem crossing". The 

most recent times have seen both simple and sophisticated mathematical 

tools applied to the problem with a bewildering array of results 

forthcoming. Robinson [l] has recently written a summary of the history 

of the development of the field. Earlier reviews by Henry and Kasha 

[2], Hochstrasser, et. al. [3], and Schlag, et. al. [4] present a 

great deal of the experimental and theoretical results obtained since 

1965. Freed [5] has reviewed principally the theoretical work in the 

same period. 

Before proceeding to discuss the theoretical models proposed to 

explain the phenomenon of the radiationless transition, we will present 

some of the experimental criteria characterizing it. We will hence­

forth deal only with the radiationless transitions due to internal 

conversion or intersystem crossing. We will ignore the problems of 

predissocia,tion, dissociation, and any kind of photochemistry (see 

Ref. [3] for some discussion of the photochemistry problem). There 

are three areas in which the radiationless transition is manifested 

experimentally. These are the electronic absorption spectrum, the 

emission decay curve or lifetime, and the quantum yield. 
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The thing that one generally looks for in the absorption 
I 

spectrum to indicate radiationless transitions is diffuseness or 

broadening. According to standard solutions of the Schroedinger 

equation, one would expect to see regular structure such as well 

defined, sharp lines whose positions are ascribable to electronic, 

vibrational, or rotational energy levels. For many molecules this 

is the case for the first and maybe the second and third electronic 

transitions. Almost in every case, however, the upper excited states 

are diffuse and frequently featureless. This is commonly known as 

Kasha's rule. This diffuseness is attributed to the presence of a 

continuum of states which interact with the zero-order vibrational 

and rotational levels of the electronic t~ansition. The net result 

is that the zero order levels broaden. If the broadening is comparable 

to the spacing between consecutive zero-order energy levels, no 

structure would be resolvable. Hochstrasser [6] has recently provided 

a qualitative discussion of this diffuseness together with several 

examples. Bryne and Ross [7] have also presented an extensive 

discussion of the causes of diffuseness in electronic spectra along 

with many examples. 

In addition to simple broadening caused by interaction with a 

continuum, there is another effect which is quite striking. When two 

electronic states are separated by a fairly small energy gap (roughly 

a few thousand wavenumbers), the interaction of the upper electronic 

state with the higher vibrational levels of the lower state gives rise 

to extra structure in the region of the higher electronic state. This 
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phenomenon has been observed in dilute mixed crystals of quinoxaline 

in a durene host [6] and naphthaline in durene, p-xylene, n-pentane 

and toluene hosts [8]. We will later present a detailed discussion 

of the naphtha 1 ene s pectrur:1 ( see Pa rt 5). 

The decay curves are roughly related to the absorption spectrum 

via the uncertainty principle. Thus, a linewidth ~E implies a 

1 i feti me ~t ~Ai; flE [6]. Normally, the radi a tfon fie 1 J contd bu tes 

a certain ~'lidth to the spectrum and thus gives rise to a radLttive 

lifetime. If a second continuum (say from a lower electronic state) 

interacts with the zero order level, then it also contributes a 

compohent to the width and lifetime. The presence of the second 

continuum thus shortens the lifetime. This is the usual case for 

larger molecules. Much experimental effort has been expended in 

determining lifetimes of single vibronic levels in benzene and 

perdeuterobenzene [11], B-naphthylamine [12], naphthalene vapor [13], 

acetone [14] and aniline [15]. These references are surely not all 

the work done in this area. If the diffuseness is of the second kind 

\'/here sharp structure is introduced into what is otherwise a broad 

spectrum, then the uncertainty principle relationship is somewhat 

difficult to define. Indeed, one would not expect the decay curve to 

be even exponential. Some nonexponential decays of this type have 

been reported [9], but these claims have been questioned. At present 

the situation is not resolved. 

A second decay time effect has been observed in small molecules 

dnd is discussed by Douglas [14]. In s1nall molecules the densities 
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are not broad and almost constant, but rather line-like. This is due 

to the small number of vibrational degrees of freedom. As opposed 

to the above discussed case of lifetime shortening, the lifetime is 

apparently lengthened over that of the radiative lifetime. Here the 

radiative lifetime is estimated from the integrated absorption 

coefficient. The spectra in these cases are line-like, but they do 

not seem to obey the usual spectroscopic rules and as of now have 

not been assigned. 

Quantum yields of emission have been measured for many molecules. 

By measuring the quantum yield and the fluorescent lifetime, one can 

get an estimate of the nonradiative decay rate separate from the 

radiative component. This technique has been applied only to molecules 

where the interdcting states are a continuum of the first kind. In 

particular the most treated molecule has been benzene [16]. This has 

been used to map out the nonradi a ti ve rate as a function of energy. 

The same has been done for acetone [17] and formaldehyde [18]. The 

method has not been applied to any broadening of the second kind. 

Having surveyed the experimental results, we will not briefly 

survey the theoretical models proposed to explain them. In all models 

we start with a zero-order set of states whose exact description we 

will ignore for the present. We will restrict our model somewhat more 

by allowing only one zero-order state (designated the primary state) to 

carry oscillator strength from the ground state. The continuum levels 

are called ~econdary levels. The zero-order states are eigenstates 
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of the zero-order Hamiltonian Ho. The true Hamiltonian is H = H0 +V. 

Vis thus the interaction which causes the transition. More will be 

said about the nature of Ho later. This will be called henceforth 

the canonical model. This model was originally proposed by O. K. Rice 

(see Ref. [l]) and was reintroduced into the radiationless problem 

by Robinson and Frosch [19]. The latter's treatment of the transition 

pictured it as a kind of "radiative transition" in which the photon 
\ 

absorbed had 'zero energy''. Thus, they ernp l oyed Fermi 's Golden Rule 

to the calculation of the rate. 

Bixon and Jortner [20] assumed that the continuum was a 

ladder of equally spaced levels and calculated the molecular 

eigenstates after diagonalizing the Hamiltonian matrix. The mathematics 

is specialized to their model of the continuum, but the results were 

shown to be valid for a more general model of the continuum [21]. In 

both cases the broad band approximation is used. This assumes that 

the excitation source has an infinite bandwidth which excites the 

entire broadened band. This means that they have reduced their model 

back to the Robinson and Frosch model where it was assumed the entire 

primary state is excited [22]. One important result of this work was 

the prediction of the absorption band shape to be Lorentzian. Since 

this work, more sophisticated and powerful mathematical techniques 

have been applied to the problem with very little further physical 

insight forthcoming [23]. 

Two aspects of the problem that have been mostly ignored are 
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the effect of excitation bandwidth on decays and quantum yields, and 

the changes introduced by the intermediate level density cases. 

Rhodes [24] has discussed the first problem in detail formally, but 

then makes some simplifying approximations which reduce the generality 

of his results (see also Ref. [22] for a qualitative discussion). 

The changes due to intermediate level density have been discussed in 

a highly formal manner by Nitzan, Jortner, and Rentzepis [25]. Other 

than these papers, little attention has been paid to these two aspects 

of the problem. 

One can go beyond the canonical model to situations where there 

is more than one state carrying oscillator strength from the ground 

state. The original treatment of this situation is due to Fano [26]. 

He was able to predict the line shape of a resonance where the 

primary and secondary states carried comparable oscillator strength. 

Freed and Jortner [23] also discussed a similar problem. Recently, 

Nitzan and Jortner [27] and Nitzan [28] have treated the problem in 

some detail. They computed the line shape for various cases under 

some simplifying assumptions. Tric [29] has also discussed a related 

problem. Again,most of these treatments are highly formal and invoke 

rnany simplifying approximations. It also seems that this type of 

model is not generally needed for describing the radiationless 

transition problem among the first few excited states. The argument 

that the continuum carries no oscillator strength because of spin 

selection rules (triplet continuum, singlet ground state) or because 
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of vanishingly small Franck-Condon factors seems to be generally 

valid. Such a model may be significant for higher electronic states 

such as Rydberg states [30]. 

The key quantity central to the entire field of radiationless 

transitions is the weighted density of states. This quantity is in 

general energy dependent and is formed from the product of the 

interaction energy matrix element beb,een secondary and primary 

states and the density of secondary states both evaluated at a 

particular energy. For the situation in which the secondary state 

spectrum is continuous (a fact we shall soon show to be generally 

true), this quantity can be treated as a continuous function of the 

energy. As we shall show later (see also Ref. _ [3]), all observable 

properties of a molecular system can be calculated once knowledge 

of the weighted density is obtained. 

There are several contributing components to the weighted 

density function. The two principal components are the radiation 

field and lower energy electronic states of the system. The 

radiation field states are a true continuum. The inclusion of these 

states in the problem are necessary to describe photon emission and 

absorption. Usually, and we also do so here, the assumption is made 

that the weighted density due to the radiation field is constant 

within the bandwidth of a line. The molecular weighted density can 

be divided into two components where applicable. The first is a 

constant component. The second is the line-like density due to a 

nearby electronic energy level [25]. This second component is not 
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present in the large energy gap situation. 

The molecular weighted density is the inverse of the radiation­

less decay rate which is, of course, energy dependent in the general 

case. The ultimate aim is to extract this quantity from the total 

weighted density function. For the statistical limit case of benzene, 

this quantity has been calculated in a fashion [31], [32], and also 

measured experimentally {Spears and Rice, [11]). It has also been 

experimentally measured for S02 [33] and chloro- and bromoacetylene 

[34]. 

The calculational methods can be divided up into two groups. 

The first [35] considers the transition rate from a thermally averaged 

excited state. A more general formalism has been achieved by Lin 

[32] and Heller, et. al. [3l]. These calculations allow for both 

frequency change and displacement of the oscillators. They are able 

to apportion the energy of the excited states among the various 

vibrational modes of the lower electronic state. Unfortunately, 

these calculations are totally within the harmonic approximation. 

The results of Burland and Robinson [36] seem to indicate that 

anharmonicities are very important in the values of the Franck-Condon 

factors and densities of states. Thus, there is still some lingering 

doubt as to the accuracy of these calculations in an absolute sense, 

but they do seem to reproduce relative values of radiationless rates 

quite well. These methods would seem also to be more accurate than 

the factorization technique of Robinson and Frosch [19], [36]. 
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It should be noted that the above calculations [31]-[32] ignore 

the electronic interaction part of the whole interaction integral. 

There is at present a controversy over the exact nature of the coupling 

term. An equivalent question is, what is a proper choice of zero­

order states? Most workers have used Born-Oppenheimer states for 

zero-order states. Burland and Robinson [37] and Sharf and Silbey 

[38] have suggested that Herzberg-Teller states are a more appropriate 

choice. Recently, Siebrand [39] has proposed some criteria for 

testing which of these choice of basis sets is correct or partially 

correct. The issue is still open to considerable debate. We will 

see that the assumption of one or the other basis set is not necessary 

for deriving the description of the total weighted density function 

from experiment. To extract the nonradiative rate from the total 

rate, some calculations must be done and these will involve some choice 

of basis. All calculations so far attempted have employed a Born­

Oppenheimer basis set. 

Most mathematical developments use the assumption that at 

time t = 0 the state is prepared in some state la>. We do not ask 

or need to know what the system looks like at times less than zero. 

One can worry about how crucial this assumption is to the results 

of our model. What the worrying amounts to is a consideration of 

the preparation of the state. For example, if one is using low 

energy electron impact excitation, the time characteristics of the 

preparation of the state are very different from using say a mode 
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locked laser because of the differences of sources. The problem 

conveniently divides itself up into two (or possibly three) con­

venient regions, each of which corresponds to a different type of 

experiment or theoretical treatment. We will now proceed to examine 

these experiments briefly. In all subsequent discussion we assume 

photon excitation solely. 

If one uses an excitation pulse which is a delta function in 

time, the approximation of the above discussion is valid. The molecule 

suddenly at time t = O(+) is in the excited state. Previous to the 

pulse it was not in the excited state. No emitted light can be 

detected before time t = 0. By the uncertainty principle, our 

excitation source must have an infinite bandwidth. This is the 

so-called broad band approximation used frequently in the literature 

[20]. Of course, the delta function time pulse is a mathematical 

construct. In the laboratory this limit can be reached if the time 

duration of the pulse is much less (say 0.01-0.001) than the decay 

time. This means that the excitation bandwidth is wider (roughly 100-

1000) than the absorption band. If the absorption band is a simple 

Lorentzian, not much more can be done experimentally. This is the 

statistical limit. If, however, the abosrption band is structured, 

i.e. the molecule lies in the intermediate or small molecule 

classification, then by not having a finite bandwidth to isolate 

various regions of the spectrum, some potential information is lost. 

The opposite extreme is the situation where the excitation 
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is continuous and the bandwidth very narrow (a delta function 

mathematically) [14]. This is more appropriately discussed in terms 

of scattering theory [41]. Here we cannot really talk about the 

molecule being prepared in a definite state at a definite time. The 

quantities we must deal with are probabilities of absorption or of 

scattering most frequently measured in terms of cross sections. 

Also, one measures the quantum yield of each channel of the decay via 

these either computed or experimentally measured cross sections. The 

advantage of this type of experiment is that excellent spectral 

resolution is available. Again, with statistical limit molecules, 

nothing really interesting occurs. However, in an intermediate or 

small type molecule, one can very completely explore the details of 

the spectrum. The disadvantage of these experiments is that one has 

little, if any, time resolution. 

The third type of experiment encompasses all the territory 

in between the two above limiting cases. We permit our excitation 

source to have a variable bandwidth and corresponding variable time 

duration. We have the advantage of some spectral as well as some 

time resolution. Technically, the language of this experiment should 

be scattering theory, but frequently we can resort to reasoning about 

the decay of prepared states. Thus, we combine some of the advantages 

of both above types of treatments and also reject many of the 

objectionable qualities. We will have some spectral and time resolution. 

and will be able to measure both time decays and absorption spectra. 
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This is a more general treatment and encompasses both previous 

experiments as 1 i mi ting cases. We wi 11 be concerned with this type 

of description from here on. 

In summary, the series of papers that follows will generalize 

the radiationless transition problem in two different ways. The first 

is permitting the weighted density of states to assume a general 

energy de~endence. This allows us to encompass all the different 

classifications (statistical limit, intermediate, and small molecule) 

under "one roof" so to speak. He do not have to resort to 

approximations to the density such as a constant continuum or a 

"ladder" of states. In treating the naphthalene problem (Section IV), 

we will make no assumptions about the density, but let the spectrum 

tell us what it should be. The second generalization will be in 

letting the excitation bandwidth assume a general width. By doing 

this we avoid the limiting case of the broad band approximation. 

This should a 110\-J a c 1 oser comparison \vi th experiments where very 

narrow excitation is used. Also, the physics of the narrow band 

situation is different from the broad band approximation because a 

pure zero order state is not excited. This will be a crucial factor 

in understanding intermediate or small molecule absorption spectra and 

emission curves. 
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MATHEMATICAL THEORY OF THE GREEN'S FUNCTION 

As was shown in the previous section, our problem is to 

calculate the solution to the Schoedinger equation written in the 

form 

(1) 

The situation of interest in the case where the eigenvalue spectrum 

we obtain from Eq. {l) is continuous. We can rewrite Eq. (1) as an 

inhomogeneous equation 

where the solutions to the homogeneous part of Eq. (2), 

(Ho-E)llJo = 0 

are presumed known. By standard differential equation theory, 

Eq. (3) has a Green's function which satisfies 

The solution to the inhomogeneous equation (2) is then given by 

(2) 

(3) 

(4) 

llJ(r,~) = llJo{r,~) + f G+(r,r;;s)·V(r;),~(r;)d 3 r; (5) - - - ,...,, .._ ....., 
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This will give the true wavefunction of the system (if it can be 

so 1 ved). 

The wavefunction in Eq. (5) contains all the information we 

need know about the system. However, in order to get meaningful 

results to compare with experiment, we do not need the wavefunction 

itself. All we essentially need is the eigenvalue spectrum together 

with formal manipulations. Thus, we circumvent the usually impossible 

job of solving Eq. (5). In particular the two quantities of interest 

which we wish to have are the absorption spectrum and the time 

evolution of the system. These are the observable quantities. This 

can be done without any detailed knowledge of the exact eigenstates 

of the system. The approach to be taken here is actually a type of 

·perturbation theory where we use a series expansion to calculate the 

Green's function. From this Green's function, which is essentially a 

presentation of the eigenvalues of the system, we can get directly 

the quantities of interest. The approach used here is also called by 

some authors the resolvent method [1]. 

A brief su111T1ary of the Green I s function theory to be used in 

Section II will be presented now. This summary will try to collect in 

one section most of the pertinent mathematical arguments and result. 

In later sections the results of the particular situation in question 

and the physical interpretation will be presented in greater detail. 
f 

The diagram expansion was an important development in the 

theory of Green's function [2]. Although to the uninitiated this 
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appears to be a formal mathematical device, it is in reality a 

powerful device because of its simplicity. Its use is not as 

significant here as in the many body problem [2]. A second important 

result is the Dyson's equation, 

G = Go+GoVG (6) 

where G and G0 are the Green's functions of the true and zero order 

Hamiltonians respectively, and Vis the remaining part of the 

Hamiltonian as in Eqs. (1) and (2). It is this equation which gives 

the solution ultimately for the Green's function. Applications of 

these ideas can be found in many sources [3]. 

We deal with a matrix representation of the Green's function 

which is first computed in energy space. This will give the answer 

to the first part of the problem, the calculation of an absorption 

spectrum. If we express our true Green's function operator in the 

representation of the exact eigenstates (i.e., the eigenstates of 

H = Ho+V) 

wheres~ is a complex energy, A a real energy eigenvalue of the 

molecular eigenstate IA> and p(A) is the number of eigenstates 

between A and A+dA. Now set£~= £+in, where£ and n are real and 

n>O. After letting n+O, we get the result, 

(7) 
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G(E) ='° I · !A>p(A)<AI - ino(E-A) IA>p(A)<).I 
\T €-A 

The term-~ ImG(E) is easily seen to be the density operator [4] for the 

system. This relationship of density of states with the Green's 

function is sometimes. called the Lehman spectral representation of the 

Green's function [5]. In the representation of our zero order states, 

the density of the primary state is DP(E), 

(9) 

This will be proportional to the absorption spectrum in our simple 

case. For situations where there is more than one primary level, the 

absorption spectrum is a more complicated expression involving 

several matrix elements of the Green's function. 

One aspect of Green's function theory that has received 

considerable attention in the literature is the analytical 

properties of G and its related function R, the level shift operator. 

G and Rare really functions of a complex energy variable and thus 

must obey the rules of complex function theory. As will be seen, when 

the zero order energy spectrum is discrete, the Green's function 

has a set of discrete poles. However, when the zero order 

eigenvalue problem is continuous, the situation is much more subtle. 

It is here that we must deal with the Green's function as a complex 

variable function whose properties in energy space will determine its 

behavior in time space. 
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As was noted earlier, the Green's function "operator" can be 

written in terms of the exact eigenstates of the system, or it is said 

that the Green's function is written in the molecular eigenstate 

representation. This matrix representation of the Green's function 

must be diagonal, and all the poles lie on the real axis. This must 

be so since the exact molecular eigenstates are stationary states of the 

system and have real energy eigenvalues. All of this is conveniently 

expressed by Eq. (7) where A is a real energy. If we are concerned with 

a state which is not a stationary state but is a linear combination 

of stationary states, the diagonal matrix element in this new 

representation, i.e., that of our complete set of nonstationary states 

(the zero-order set) will be seen not to have poles on the real axis 

any longer. The poles are now complex reflecting the finite lifetime 

(nonstationarity) of these states. 

Before proceeding, a slight diversion will be made to relate 

some of the above considerations to the actual experiment with which 

we are concerned here. This experiment involves the excitation of 

a molecule by a light source with the observation of the subsequent 

decay of resonance fluorescence. By the word decay it is clear that 

we must be dealing with a nonstationary state. Also note that any 

real molecule must have a continuous spectrum because of the radia­

tion field. Thus, it is clearly impossible in any real experiment 

to deal with excited stationary states. The only representation of 

the Green's function which we will deal with is that of the zero-
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order states. It will even turn out that the experimentalist has a 

certain amount of control over what state the experiment actually 

involves. 

The important point to be noted here is that in our zero-order 

representation, the position of the poles of the Green's function, and 

thereby its analytical properties, will change from the molecular 

eigenstate representation. This is due to the fact that the state 

with which we deal in zero-order is a superposition of molecular 

eigenstates. Thus, we expect that the analytical properties of the 

diagonal matrix element involving this state would be different from 

any diagonal matrix element in the molecular eigenstate representation. 

It can be shown in general [6] that a diagonal element of the 

Green's function matrix in some representation for the simple case 

we are dealing with can be written as 

l 
<a I GI a> = G = < a I ,,. H R ( ) I a> = a £ - o- £ 

where <al satisfies 

and 

Ho I a> = e: la> a 

Ho+ V = H 

His the exact Hamiltonian for the system. 

l 
£"'-e: -R (e:) a a 

( 10) 

( 11 ) 

( 12) 
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R(e:) is the so-called level shift operator which is given by the 

equation 

with IA> being the eigenstates of the Hamiltonian 

Since 1-la><al = JI y>p(y)<y!dy where the ly>'s are all the other 

states in our complete set, the Hamiltonian in our case reduces to 

( 13) 

( 14) 

Ha== Ho (15) 

since we define <yjVIY> = 0 (see Section I A). Also, since we take 

<alVla> = o·, for the equation for R(e:) becomes 

= Jp(y )dy V l~><yj_y_ 
£ -e: (16) 

Note that again e:Y is real and£~ is complex. We can again explicitly 

show e: to be complex by writing 

( 17) 

where e: and n are real and n>O as before. We must pick the plus sign 

in Eq. (17) to insure getting a causal or retarded Green's function [7]. 
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lim <a!Rla>=lim R (E+n)=lim /p(y)d)l<alVly>l
2 

n-+-0 ( + ) n-+-0 ( + ) a n-+-0 ( + ) £-£y+, n 

= /p(y)dy l<~i~ly>l
2 

- i~p(£)1<alVl£>1 2 

y 

where use was made of a standard identity [8] 

and (P represents the Cauchy pri nci p 1 e value i ntegra 1. 

We see that Ra(£~) has both a real and an imaginary part, 

Ra(£+in) = D(E) - 1(£) 
n-+O(+) 

1(£) is always positive which we have indicated in Eq. (21) by the 

negative sign. Also, it is clear from Eq. (19) that 

Ra(£-in) = 0(£) + 1(£) 
~O(+) 

( 18) 

( 19) 

(20) 

( 21 ) 

which shows that R (e:±in) has a branch cut (discontinuity) along the a 

the real axis. Dispersion relations can be then derived connecting 

D(E) and I(c), but we will not be concerned with these. Note that in 
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the discrete state limit, R(e:) has only poles and no branch cut. This 

will prove to be a significant difference between the two cases. 

Returning to the Green's function itself, we see that it can be 

written 

<alGla> = G (e:) a (22) 

The question is, where are the poles (if any) and the branch cut(s) 

(if any)? If for some reason, D (e:) and I (e:) are constants, or 

equivalently when D (e:a)I<< le:al and jI (e:a)l<<~al, the pole of the 

Green's function is clearly located at 

£ = e: 0 = £ + D(e:) - iI(e:a) a a (23) 

which is a complex pole seemingly in the negative half plane. 

However, since R (£) has a branch cut along the real axis, we must be a 

very careful. Expressing Ga specifically as a function of complex 

energy, 

Ga(£+in) = G;(£) 
n+O ( +) 

G (e:-in) a 
n+O(+) 

1 = --=--r------:,-r,~-
e:-e: a -D ( E) + i ( I (e:) (24a) 

(24b) 
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and 

showing that Ga(£) also has a branch cut along the real axis. To get 

to the pole in Eq. (23) we must analytically continue Ra(and thus also 

Ga) into the second Riemann sheet which is reached when crossing the 

branch cut. This is done by defining 

(25) 

with ~,I being the value of Ra in the second and first Riemann sheets 

respective1y. Then it is seen that the pole lies in the second 

Riemann sheet. 

From this simple case one can give a very simple physical 

interpretation to the real and imaginary parts of R (£). The real a 

part is seen to be the energy shift. This shift is related to (See Eq. 

(26)) the p~rturbative shifting of discrete zero order energy levels 

which are allowed to interact. The complex part is only non-zero for 

the continuous spectrum case. It represents the half-width of the 

band which now characterizes our once discrete state. Note that the 

term half-width (and the related lifetime) only has true meaning in 

this simple case where it is a constant. When it is strongly energy 

dependent, then the above interpretation is not valid. 
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One now has to worry about what happens when the conditions 

leading to our simple pole no longer exist. To get some understanding 

of this, let us return to the case where our zero-order energy spectrum 

is discrete. Then the poles are located by solving the equation (See 

Section II) 

or 

n 
i=II(e:-E.) n n 2 J 

II (e:-El.)- L IV1, 1
2

[ E ] = 0 
i=l i-2 1 £- j 

(26a) 

(26b) 

The Ei 's are the zero-order energy eigenvalues, e: is real, and V1 i = 

<l !Vii>. This is easily seen to be an nth order polynomial 

equation in e: which thus has n roots (ei genva 1 ues). Thus, -~h<' Green's 

function has n poles. If we let n~ and (E.-E. 1)-+0,we get to our 
J J-

continuum case. Here we have an infinite set of poles all of which 

must be in the second Riemann sheet because of the properties of 

Ra(e:) in this limit. 

The second observable we desire is the emission decay curve. 

To get this quantity we must be concerned with the time evolution of 

our eigenstates. The calculation of the time evolution of the system 

will give us directly the emission decay curve. The important result 

here is the following [9]: 
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U(t, tJ = _l __ f _l_ e-ih-1H(t-t~)dA = f G (E)e-ih-1A(t-t')dE 
21T1 c A-H c op 

where U(t,t') is the time evolution operator, G (E) is the Green's op 
function operator, the ~ontour of integration is a Cauchy contour 

(counterclockwise, closed path encircling all the poles of G) and A 

is a complex energy. When t-t'>O, we can push the contour in the 

lower half plane to infinity and the integration along this path goes 

to zero because the integrand approaches zero. The only path that 

contributes is that above the real axis in the first Riemann sheet. 

We can then lower this contour to the real axis because there are no 

poles in the first sheet, and we obtain [10] 

which is the Fourier transfonn of the entire Green's function . Eis 

now a real energy variable. 

In app.lying this time evolution uperator to the initial wave­

function, we must ask exactly what the quantity is we wish to follow. 

Since our experiment involves the detection of photons, the quantity 

to calculate is the time dependent transition probability, 

(29) 
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e•r where <OI is the ground state, ~A~ the dipole moment with polarization 

A, and ~(O) is the state that we prepare at time zero. Note that we 

are here tacitly assuming that the excitation pulse is a delta function 

in time (See Part 4). We can expand T(t) in our zero order 

representation, and assume that lf(O)> = la>. In Section III we will 

show that this last assumption can be relaxed if certain modifications 

are made to the Green's function. Continuing, we get 

T(t) = r{I< Ole•rla><alU(t,O) la>l 2
} 

A ~ ~ 

(30) 

where in the last step we used Eq. (29) and also we assumed only one 

component of the dipole transition moment is non-zero. If we have 

more than one optically allowed state, this transition moment would be 

somewhat more complicated. 

In some very simple cases we can get an approximation to the 

emission decay probability, Eq. (30). Using the discussion of the 

analytical properties of Ga{e±in), in particular Eq. (23) and the 

assumptions behind it, we see that T(t) is simply evaluated by the 

Cauchy integral formula. <alGla> has a simple pole on the second 

Riemann sheet which is within closed contour of Eq. (27). Thus, 
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using Eqs. (28) and (23) and the theorem of residues from complex 

va ri able theory, 

Upon taking the magnitude squared, 

(31) 

(32) 

which is the standard exponential decay. Note that this is only an 

approximation to the true decay because of the assumptions involved 

in Eq. (23). However, as discussed in Goldberger and Watson [11] and 

by Galitskii and Migdal [5], the approximations are generally good ones 

and deviations only occur at long times. This confirms the opinion one 

has from experimental results for many molecules and experiments. 
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PART 2 

RADIATIONLESS TRANSITIONS: THEIR EFFECT ON 

ABSORPTION LINE SHAPES AND EMISSION DECAY CURVES 
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I. INTRODUCTION 

The subject of radiationless transitions in large polyatomic 

molecules has been extensively discussed in the literature for the last 

ten years beginning with the papers by Robinson and Frosch [1]. A 

review of theoretical work up to 1968 can be found in the article by 

Henry and Kasha [2]. Within the past four years there has been a large 

number of theoretical papers published in this area. The article by 

Jortner, et al. [3], provides an extensive review of much of this work 

plus some good experimental background in the field. Two other review 

articles more recent than those above and with slightly different 

emphasis have come to the author's attention [4]. 

One basic starting model used in radiationless transition theory 

has not changed since the Robinson and Frosch treatment. The zero 

order states consist of a single, discrete quantum state (primary level), 

carrying all the oscillator strength, which interacts with a quasi­

continuum of quantum states (secondary levels). Using this basic model 

many workers have computed the radiationless transition rate by a 

variety of techniques and approximations [5]. A second derivable 

property is the spectral line shape due to the interaction of discrete 

and continuum states. This latter property, mentioned only briefly in 

earlier work [6], is the subject of this paper. 

Fano [7] first discussed in detail the line shape of a state 

interacting with a continuum of states in connection with the 

autoionization of helium. His line shapes were based on a model where 

both the discrete state and the continuum have comparable oscillator 

strength. Thus [8] his model does not coincide exactly with ours. 
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Bixon and Jortne~using Fano's formalism, compute the line shape to be 

a symmetric Lorentzian. Their model assumes a uniform density of 

states and an energy independent interaction. Their line shape is thus 

an idealized one. Sharf [9] discusses line shapes in somewhat more 

detail than Bixon and Jortner but still employs the same basic model 

and assumptions. The paper by Byrne and Ross [10] provides an 

extensive discussion of many mechanisms of line broadening. They 

provide many examples of spectra which are broadened both by electronic 

relaxation mechanisms and by other mechanisms. Like Byrne and Ross, 

Hochstrasser, et al., [10, 11] discuss the broadening of spectra from 

the experimentalist's viewpoint. Hochstrasser's discussion [lld] is 

particularly relevant to the topic of this paper, although his 

discussion is more qualitative than ours. 

In this paper we present a general formalism that allows the 

calculation of the spectral line shape of a single resonance and its 

fluorescence decay curve. We place no restriction on the coupled 

states (i.e., they may vary anywhere from a true continuum to a set of 

discrete coupled levels) or on the energy dependence of the interaction 

matrix element. In order to get a visual idea of what real line shapes 

might look like, we pick some representative examples and plot the line 

shape and decay curve. These model examples hopefully provide some 

idea of what may be observed in real spectra. Discussion of the 

properties of these line shapes is presented. We restrict ourselves in 

this paper to the particular case of one single discrete state carrying 

all the oscillator strength interacting with a secondary set of states. 

Broad band excitation is assumed. The situation of more than one discrete 
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level, or where the secondary states also carry oscillator strength, or 

where the excitation bandwidth is finite and narrow with respect to the 

broadened line will be dealt with in a subsequent paper. For a 

discussion of the latter aspect of the radiationless transition problem, 

see the article by Kasha, et al. [12], and the one by Rhodes [13]. 

I I. THEORY 

The method of the Green's Function has been applied to the 

problem of radiationless transitions by several authors. These results 

are identical to earlier ones concerned with the decay of metastable 

particles [14]. We briefly present our derivation for completeness. 

Our formalism has its origins in the theory of mixed crystal spectra 

[15, 16]. In this theory, impurities are viewed as perturbations on 

the delocalized electronic wavefunction of the pure crystal. The 

problem with which we wish to deal is formally equivalent to the mixed 

crystal problem in which there is only a single impurity atom present 

in the otherwise pure crystal. In this treatment, assumptions as to 

the functional energy dependence of either the density of secondary 

states or of the interaction matrix elements between primary and 

secondary states may be deferred until the end of the calculation. 

We define a zero order Hamiltonian matrix ~0 consisting of the 

true molecular Hamiltonian matrix H minus the interaction matrix V, 
~ 

which connects the primary level with the secondary levels. The 

secondary levels at first are assumed to be a set of discrete states. 

This is done for mathematical convenience, and the limit to a density of 

states function is taken after some initial manipulations. We define 



-36-

the Green's function as follows: 

1 1 G= ----= ~-,-_,,..,. 
- £ - ~o - V §~ 1 

- V 
( 1 ) 

where£ is the matrix of complex energy eigenvalues measured with 

respect to an appropriate zero of energy, Vis the matrix of inter-

[ ] -1. action integrals between states, and §o = ~ - Ho G could also 

be expressed in a diagram expansion [16] 

... x .. .. x .. 

> I ' , ' ' 
➔ : ) ',> I \ 

= > + + ) : ) ') '➔ + • •• (2) 
G Go Go•V•Go §o•Y•§o•Y•§o ~ ~ ~ ~ 

where dotted lines represent an interaction V, and arrows represent Go 

in a manner indicated by the first term on the RHS. The diagram 

expansion is not so useful in this very simple case. In some cases 

(see Ref. [14]), the construction of the diagram expansion and 

rearrangement of the diagrams allows one to obtain the approximate 

Green's function using the technique of partial summation. 

From (1) then, the true Green's function is found by calculating 

the inverse of the matrix, 

£-E 1 ···-Vli······ . . 

(3) 
t:-E. 

• 1 

where the states have been arranged so that E1 is the zero order energy 

of the primary state. The first row and column contain the interaction 
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matrix elements, and Ei is the zero order energy of the .i_th continuum 

state. We assume that the continuum states are prediagonalized. The 

ordering of the diagonal elements is done solely for convenience. The 

inverse is calculated in a standard fashion as indicated in Appendix I. 

The density of states resulting from the perturbation was calculated 

from the relationship [16], 

-1 tr G. (4) Density of states= - Im 
7T ~ 

The calculation of the trace is repeated in Appendix I. The result is 

1vn1;-1 •{1 1 
IV , 2. 

tr G = [£-E1- r + E -- (£-E - E 1 k ) } (5) 
~ k/1 £-Ek i;l£-Ei 1 k/i, 1 e:-Ek 

Since the line shape is dependent only on the primary state, which is 

the sole carrier of oscillator strength, we need only be concerned 

with that jiagonal element in the Green's function matrix dealing with 

this state. This matrix element is 

1 
G11 = 

e:-E - E 
I vl k 12 

l k/1 e:-Ek 

We now make the transition to the density of states function by 

transforming the sums over discrete secopdary states to integrals over 

an energy dependent density of states function D0 (e:). The transformation 

is in this case not really an approximation. Since all real eigenstates 

have a certain amount of breath, they cannot truly be described by delta 



-38-

functions in energy space. Thus, any sum over energy levels is in fact 

more correctly described as an integration over a density function. 

The density function at a point in energy space is the sum of the 

amplitudes of all energy levels at that point. The density may be 

quite smooth, or rapidly varying, even line-like, depending on the 

situation. (cf. Nitzan and Jortner, Ref. [17] sec III). 

Thus, the denominator of tr G becomes 

Do(E')IV(E')l 2 Do(E')IV(E')} 2 

e:-E1-f -----1 E'=e:-E1-@f · dE'-inDo(e:) IV(e:) f 
2 

£ - E' e: - E' 

(7) 

where the integration is over the energy spectrum of the continuum 

states. After lowering the contour of integration to the real axis, use 

was made of the standard identity [18], 

lim f(x) _ID ffx). . ( ) 
~+() f A-X+i ~ dX-\f f f-tdX - 17T f A • 

The principle value integral corresponds to a level shift operator for 

the E1 level. The adjusted energy is denoted E1. For constant D0 (e:) 

and IV(e:)1 2
, the level shift is seen to be zero. 

The final density function for the primary state is 

(8) 

This function describes how the originally discrete primary state is 

broadened, due to the interaction with the secondary states. 
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A. Addition of Radiation Field 

The above case considers the coupling of the discrete state to 

one continuum, supposed to be the upper vibrational levels of a lower 

electronic state [1]. In actuality, this is a very artificial model, as 

the discrete state is coupled to a lot of things. If it is assumed that 

the molecule is isolated in the gas phase or in a low temperature 

matrix, the principle other coupling is to the radiation field. We 

approximate this, or some other set of interacting states, by a second 

continuum orthogonal and uncoupled, at least directly, to the first 

continuum. 

The matrix G- 1 is calculated as before and is given by 

e:-E1 •••Vli ·••-W1k••• .. 
. . 

·e:-E. 
• 1 (9) 

where the V's are the interaction matrix elements with the vibrational 

continuum, and the W's are the interaction matrix elements with the 

radiation field. All other matrix elements are zero. The determinant 

and co-factors were calculated as before. Denoting the vibrational 

continuum density of states function as Do(e:), and similarly po(e:) for 

the radiation field continuum, the final density function for the 

primary state (see Appendix II) is 
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l Do(E)IV(E)l 2+po(E)IW(E)l 2 

- - Im [G] 11 = ---------------
n (£-E1)2+[n(Do(E)IV(E)l 2+po(E)IW(E)l 2

)]
2 

(10) 

where now 

(11) 

This expression is merely a generalization of Eq. (8), and results 

directly from the assumption of non-coupling between continua. 

B. Computation of the Line Shape and Decay Function 

The approach to calculation of the general line shape using the 

Green's Function is through the formula derived by Harris [19], 

-A'(~) l 4n £ ~ 2 I OI G IO 
c.. = 3 -c- k~l m < µk µk > ( 13) 

where A' is the absorption coefficient and is computed as a function of 

wavenumber & • The summation is over the three cartesian components of 

the dipole operator ~· Our absorption coefficient can be written, 

assuming only one vector component ofµ is active, and that only the 

discrete state ll> has oscillator strength, 

A,,. = 
8Ii I <O Iµ I 1 > I 2 Im <l I G 1.1 > 

(13) 
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which involves only the G11 element of the Green's function. 

Normally the assumption made is that the product jV(c)l 2 Do(e:) is a 

constant. This assumption was made chiefly to give mathematical 

simplicity to the resulting formulas [5]. However, calculations of 

D0 (e:) and the Franck-Condon overlap factor part of IV(c)l 2 [20] show 

that both vary · approximately exponentially over energy ranges of about 

a bandwidth. For small molecules, on the other hand, the density 

function should be almost discrete. The energy dependence of the 

density-interaction product is also verified in several experimental 

studies [21-24]. In order to preserve complete generality, we now 

write 

( 14) 

where f"' ( e:) is an as yet unspecified modifying function with f,.. (Ei) = 1. 

This notation will allow for the computation of the line shape in reduced 

units. A,.. becomes 

( 16) 

~ is then energy measured in units of the linewidth, where nV 2 D0 is 

the true line width if f(e:) = 1 for all £. Finally, 
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E = ~ + E1 ~ E1 = constant ( 17) 
TIV 2 D0 TIV 2D0 TIV 2 D0 

since E1 >> TIV 2 Do. 

Thus the final expression is 

A= p;:~. 3c TIV 2 Do = f{§;) ( 18) 

8TI µ~1 E1 ~2+f2(~) 

where 

( 19) 

This then gives the line shape upon the assumption of a reasonable 

f(~). The A is a reduced absorption coefficient which applies to the 

shape of any line. 

A similar derivation for the case of two coupled but independent 

continua is also possible and will be used later in the examples. The 

result comes from Eqs. (10) and (18) and assumes that Po(e:) I W(E) 1
2

= W?.po 

is constant. Then Eq. (16) becomes 

TID O ( e:) I V ( e:) I 2 

TIW Po 
+ l 

We also make the assumption that the discrete secondary states are 

approximated by Gaussian functions (for simplicity only) of a particular 
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width (wi) and position(~;)· Thus, 

where 

7TOo(e:) IV(e:) 12 

------- o E exp 
1rpoW2 i 

0 =--
7TW2po 

( 21) 

is then the ratio of the line broadening of the primary state due to the 

interaction with the discrete secondary levels as compared to the 

broadening due to interaction with the radiation field continuum. The 

assumption made is that the sum of Gaussians describes the energy 

dependent product of the density function and the interaction matrix 

element. For simplicity o is assumed to be a const~nt for all coupled 

levels. The energy is again in reduced units 

s i mi 1 a r to Eq. ( 16) . 

0 = e: - E1 

'1TpoW 2 

C. Time Evolution of the Perturbed State 

(22) 

The approach to the time evolution problem through the Fourier 

transform of the Green's function was developed by Goldberger and 

Watson [14a] and Zumino [14b]. The utility of the Green's function is 

seen here. Not only does it provide a simple and high order way of 
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doing perturbation theory (sometimes the only way), but it also governs 

the time evolution of the system. The time evolution of the primary 

state is given by the probability 

where $(t) is the complete time dependent wavefunction for the system 

and $(0) = ~1 corresponding to the preparation of the state by photon 

absorption into the zero order state ¢1. The time evolution of the 

secondary states is given by 

which corresponds to a transition to one of the secondary levels. To 

get a measure of the total transition, we would want to integrate over 

the whole set of secondary levels. 

As just stated, the Fourier transform of the Green's -function 

gives the time varying overlap integral. Freed and Jortner [25] calculate 

the probability of finding the molecule in a secondary state, equating 

the time derivative of Eq. (24) to the observed fluorescence decay. We 

prefer to calculate the probability of finding the molecule in the 

primary state with the observed fluorescence decay then being directly 

proportional to this quantity. (See Ref. [26]). 

The Fourier transform in reduced units is found as follows: 

(25) 



The transform becomes 

where 
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2,r 

1 

(26) 

(27) 

t (28) 

is time measured in units of 2,r times the reciprocal of the line width 

frequency, or in units of true lifetimes if f(~) is constant. The 

magnitude squared of the above integral then governs the time evolution 

of the primary state. 

The matrix element used in this computation must be the entire 

matrix element, both real and imaginary parts, unlike the line shape 

function where only the imaginary part of the Green's function applies. 

In reduced units the matrix element of concern is 

i f(q 

It should be mentioned that the lifetime is technically defined only in 

terms of an exponential decay whereas almost all examples presented here 

are nonexponential decays. For this reason we plot the whole decay 
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curve. The term "lifetime" is used from now on only in a qualitative 

manner indicating the speed of decay. 

III. COMPUTED SPECTRA AND DECAY CURVES 

We will now present some examples of line shapes and decay 

curves that we have chosen to illustrate some of the various spectral 

perturbations that may occur for nonideal situations. There are 

obviously a large number of possible examples and only a few can be 

included here. Each example was chosen to illustrate a particular 

effect. In real systems, a superposition of these effects may generally 

be expected. Also, there are other broadening mechanisms, which will 

come into play in real systems, that we ignore here. All the line 

shapes correspond to a single vibronic transition in condensed phases or 

to a single rotational line in a gas phase vibronic transition. One 

further comment about the examples here is that whenever we refer to an 

interacting continuum we are in actuality referring to the function 

that is given by the product nlV(£)1 2 Do(£) and not just Do(£). 

The decay curves were computed using the fast Fourier transform 

algorithm of Cooley and Tukey [27]. This algorithm takes a finite 

bandwidth function and converts it into a periodic function. The 

Fourier series of the periodic function is then computed. The discrete 

points from this computation are then points in the true Fourier 

transform of the nonperiodic function. If the original function does 

not go to zero at the endpoints, errors in the form of ripples in the 

transform occur. We removed this error as much as possible by multiplying 
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the Green's function by a "filter" that forced the end points to go 

smoothly to zero while not affecting the main part of the Green's 

function near resonance. The jagged appearance of many decay curves is 

due to the finite point approximation of the algorithm to the continuous 

transform. Under higher time resolution, the decay curves appear 

smooth, as they should be. 

A. Smooth Density-of-States Fune ti on 

The first example is the large molecule limit case where the 

interacting states form a true continuum, see Fig. (1 ). If the continuum 

is a constant across the bandwidth, the line shape is a pure Lorentzian 

function. With a varying continuum, the Lorentzian becomes distorted to 

a degree depending on how rapidly the continuum varies. We allowed the 

continuum to vary exponentially. This particular form of the energy 

dependence is not critical for the general conclusions drawn here. For 

a moderately varying continuum, such as with an exponent of 0.1 per 

linewidth, the Lorentzian becomes asymmetric with greater intensity on 

the lower energy side than on the higher energy side of the resonance. 

The peak also shifts slightly to higher energy, although this is not 

readily detected in the figure. For slightly higher exponents, 0.5 per 

linewidth, the same effect continues. The distortions of the symmetric 

Lorentzian are not overly noticeable on inspection. A moment analysis 

of the line would possibly reveal the distortion more easily. In the 

cases where the continuum is rapidly varying, exponents of 1 .0 and 5.0 per 

linewidth, the line continues to shift its peak slightly to higher energy, 

but at the same time sharpens considerably and increases in peak 
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FIGURE 1 (Uniform Density) 

Uniform density of states varying exponentially. All line 

shapes are plotted on the same scale. The exponential coefficients 

are from top to bottom, 0.0, 0.1, 0.5, 1.0, 5.0. 
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intensity. We do not know if such rapidly varying continua exist in 

nature, so verifying this prediction may prove impossible. 

The decay curves also follow the expected pattern of longer 

lifetime corresponding to narrower bandwidth. The decay curve 

corresponding to the pure Lorentzian shows exponential behavior over 

almost the entire time period except for very short times. The rise 

preceeding the decay can only be observed when the exciting pulse is a 

delta function in time. For a pulse of a finite width of time, this 

effect is washed out [28]. The rise is due to the limits of integration 

imposed by the finite bandwidth. If the limits could be infinite, then 

the decay would be exponential at all times. Asymmetry in the 

absorption spectrum manifests itself as a curvature (in a log plot) at 

short times. At longer times the curve becomes linear (exponential) in 

the log plot. The stronger the asymmetry, the longer the curvature 

lasts. The deviation from exponential decay due to a varying continuum 

is not striking and care would have to be taken to observe it in real 

systems. 

B. Discrete Secondary Levels 

The rest of the examples involve a number of relatively discrete 

secondary levels that have both a variable position and width, 

superimposed on, and noninteracting with, a constant, smooth continuum 

as described in Eqs. (20) and (21). 

The continuum can be regarded as the radiation field continuum 

governing radiative decay or any other interacting continuum. The 

secondary discrete levels obtain their width either from interaction 
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with the radiation field, interaction with other continua if possible, 

or from collisions with other molecules which can be regarded as 

effectively broadening out the vibrational levels. 

We now consider three cases obtained by variations of the 

parameters, o, wi, and ~i. 

l. Variable Spacing of Couples Levels 

For this example (Fig. 2) we chose wi=0.5 linewidths and o=50. 

The spectra show many spurious peaks due to the coupled levels. At the 

position of each coupled level there appears a doublet peak. Sometimes 

the doublet is not resolved if the width of the coupled level is too 
j 

small, or if the coupling strength is too small and the coupled level 

too far from resonance. 

This doublet structure is clearly seen in Fig. 2. The large 

splitting at the position of the primary state is due to there being a 

coupled level exactly in resonance with it. The symmetric appearance of 

the profile of the spurious peaks is due to the constancy of o for all 

coupled levels and the symmetric placement of the levels._ If this were 

not so, there would be no simple profile and the peaks would vary in 

intensity and splitting. The examples of variable o will display this 

point a little more. 

The doublet exactly at resonance is due to the plus and minus 

combinations of the two degenerate states. For exact resonance the 

intensity distribution is symmetric as shown here. When the secondary 

state is slightly off resonance, the intensity is asymmetric [28]. The 

doublets that occur far from resonance are due to a more subtle effect. 
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FIGURE 2 (Variable Spacing) 

Discrete density of states with wi = 0.5 and o = 50.0. The 

line shapes are on the same scale. The level spacing is, from top to 

bottom, 10.0, 5.0, 2.0. 
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I 

The nature of the broadened state is necessary to understand this. Any 

broadened level is not really a single state but consists of 

superposition of a large number of discrete (or at least very narrow) 

energy levels. We can mix the secondary and primary states by a 

stepwise perturbation approach. In first order the primary level mixes 

with each component of the broadened secondary level giving each one 

oscillator strength. The shape of the spectrum should reflect simply 

the energy distribution of the interacting secondary state. Now, 

however, these first-order states can mix through indirect interaction 

via the primary state. Since they are almost degenerate states, these 

second- and higher-order interactions are nonnegligible. These higher­

order interactions result in a redistribution of the first order 

intensity within the broadened secondary level. The levels near the 

center gain very little intensity whereas those on the wings gain 

proportionately more. The net result is a proportionate increase in the 

intensity of the wings with respect to the center. Thus a "hole" is , 

burned in the center of the broadened secondary level. The extent of 

this hole burning is dependent on the coupling strength and distance 

from resonance, which determine the interaction magnitude, and on the 

width of the secondary level, which determines the magnitude of the 

splitting of the two components of the doublet. 

The decay curves are now highly nonexponential and show quantum 

beat effects (See Ref. [3] for some discussion of this phenomenon). The 

actual structure of the decay curve is complicated by the presence of 

several coupled levels at different spacing. The first two decay curves 

are dominated by the structure very near resonance. Calculations with 
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only this one level present show that the first three peaks in the upper 

d~cay curve, and the first, second, and fourth peaks in the second decay 

curve are due to this major doublet in the absorption spectrum. The 

third decay curve is quite different from the first two, corresponding to 

a much more radical spectral perturbation. The initial rise in the 

fluorescence followed by the decay will be discussed in a future paper. 

The decay curves are not simple beca,.•s~ they are a superposition of 

many recurrence phenomena from the many coupled levels. 

2. Variable Coupling Strength (Fig. 3) 

One would expect the coupling strength parameter to determine how 

the intensity of the primary state is distributed between the discrete 

secondary states and the secondary continuum. To a certain extent the 

calculated shapes confirm this. The intensity of the central doublet 

does decrease slightly on increase of 8. More intensity is shunted to 

the outlying coupled levels as the coupling strength is increased. The 

progression from single lines to double lines is clearly shown as the 

coupling strength increases. Even at the lowest coupling strength, the 

peaks at +5.0 and -5.0 are beginning to show the effects of doublet 

resolution as the single peaks are flattened on top. The decay curves 

are dominated by the central doublet. 

The position of the beats is now independent of the coupling 

strength, but the height of each beat is related to the coupling 

strength ratio. The shape of the curve changes little for times less 

than 'v 0.5 lifetimes. Beyond this, as the coupling strength increases, 

the beats become stronger. This is related to the fact that the levels 
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FIGURE 3 (Variable Coupling Strength) 

Discrete density of states with wi = 0.5 and the levels are 

spaced 5.0 energy units apart. The line shapes are on the same scale. 

The coupling parameter, o, is, from top to bottom, 5.0, 10.0, 50.0, 

100.0. 
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further from the resonance position gain more absorption intensity. 

Thu~ the dominance of the central doublet on the dec~y curve is lessened 

as its intensity becomes relatively smaller. 

3. Variable Width of the Coupled Levels (Fig. 4) 

For this case o = 10 and the spacing is equal to l .0 linewidths. 

For very narrow coupled levels (wi = 0.1 linewidths), the doublet 

structure described previously does not appear resolved. A singlet 

appears at the position of each coupled level. The most prominent 

feature is the strong doublet (again due to the coupled level at exact 

resonance) at the position of the primary level. For a slightly greater 

width [wi=0.5 linewidths, which, with a spacing of one linewidth, makes 

the 1rlV(e)l 2 Do(e:) product almost constant], there is a dramatic decrease 

in the intensity of the central peak due to broadening. For an wi=l .0 

linewidth, the spectrum is featureless and very broad. The decay curves 

merely reflect the changes in the spectrum along the lines discussed 

earlier. For the broadest spectrum, the decay is almost too fast for the 

time resolution employed here. 

IV. SUMMARY 

We have investigated in this paper the various types of spectral 

perturbations resulting from interactions leading to radiationless 

transitions. We have shown that a nonuniform interaction continuum 

manifests itself in a perturbation on the spectral line shape as 

described previously in the examples~ These perturbations range from 
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FIGURE 4 (Variable Width) 

Discrete density of states with o = 10.0 and the level 

spacing equal to 1.0. The line shapes are on the same scale. The 

width of the coupled levels is, from top to bottom, 0.1, 0.5, 1 .0. 
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making a pure Lorentzian asymmetric to introducing either singlet or 

doublet peaks into the spectrum at positions corresponding to the 

positions of the secondary levels. The magnitude and type of 

perturbation depend on the parameters describing the interacting 

continuum. 

We have also shown how the line shape is intimately related to 

the decay curve through the process of Fourier transformation. The 

various perturbations of the spectrum are also manifest in the decay 

curve as was shown in the examples. The ideal exponential decay can be 

greatly distorted depending on the perturbation. The appearance of a 

beat decay occurs when the interacting continuum is resolved into 

relatively discrete states. 

A later paper will deal with the effect on the decay curve of 

varying the temporal and energy bandwidth characteristics of the 

exciting light. 
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APPENDIX I 

The determinant is evaluated by performing column operations on 

the matrix. Multiply the i-th column by +V;
1
/(£-Ei) and add to the first 

column. The resulting determinant is, 

= n 
all 

£-E . . , 

where the sums and products are taken over all the coupled states. The 

cofactors are, 

[cof G] .. = n e:-EEj [1 - _LE E I Vlk 121 
~ 11 j £- i e:- 1 kfl , i e:-Ek 

Since we need only the trace of the matrix, the only elements we need 

calculate are the diagonal elements. Thus, 
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= II e:-Ei < (e:-El.) 
. e:-E1 / ~ 
1 / 1 

( 

E 
k/1, i 

The trace is then, 

1 - e:~E1 E 

k/1 

Transfonning from a sum over discrete, coupled states to an 

integral over a quasicontinuum of states whose density is given by 

Do(e:), the trace becomes 
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APPENDIX II 

The determinants and cofactors are evaluated as in Appendix I. 

The result for the determinant is 

1 cont. 
[ 

both 

IG_~ 1
- V_I = M 1 - -E E 

e:- 1 ill 

and the cofactors are given by 

Where the following symbols have been used, 

n1i = v1i or w1i depending on which continua one is in 

M = IT (e: - Ei) where i ranges over both continua 
i 

The diagonal elements are then 

[G]i 1 

= t- E1 
_ co~t. I Ql i I 2 
both )- 1 

ill e:- Ei 

{( £ - f 1 -

both 

lnlk/
2

) /( ~~~~-ln1ki
2 

)} 1 cont. 
[G] .. - e:-E. E £ - E1 - E ~ ~ 11 kl l , i e:-Ek kll e:- k 1 
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make the tranformation to the continuum form. The denominator 

Do(E.-) I V(E.-) I 2 Po(E--) IW(E.-) I 2 

----- dE 1 -Q> J----- dE.­
L E - E----·v J 

(Pde:) 

~erator consists of a number of tenns. Evaluating only the first 

1ich concerns the primary levels, we obtain 

l 
<l IG I l> = ------------

E-E1-inDo (E) IV(E)l 2+inpo(£)IW(£)l 2 
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PART 3 

THE ENERGY SHIFT TERM AND ITS EFFECT 

ON THE ABSORPTION LINE SHAPE 
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I. INTRODUCTION 

In applying the Green's function to various perturbation problems, 

a term always arises which is called the energy shift or level 

displacement operator. It is given by the formula, 

/4) nlV(e:)l 2 Do(e:) 
Energy Shift = V f ----- de: 

e:-Eo 
(1) 

where E0 is the zero order energy of the shifted state, Do(A) is the 

density of states with which Eo interacts and IV(A)l 2 is the strength of 

the interaction. Heitler presents a discussion of this term when the 

interacting states are the radiation field [1]. Once the density and 

i nterac ti on strengths are known, the new energy of the state is found by 

solving the following equation for e:, 

()1 
nlV(e:) I 2Do(e:) 

e: - E o - dA = 0 (2) 
e:-E o 

Generally, the equation must be solved iteratively and a solution is 

generally difficult to find. The solution of this equation and its 

properties was briefly discussed on page 27. There it was shown that 

as the limit to a continuous set of states was re3ched, the number of 

eigenvalues becomes infinite, and are infinitely close together, i.e. a 

continuum as expected. The level shift operator really does not 

11 shift 11 levels around in this situation. If, however, the weighted 

density function has structure (i.e. peaks), the peaks will be shifted 
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around much along the same lines as the delta function states are 

shifted. The spectra fitting procedure used hy the authors in another 

paper [2] is in effect a way of finding a solution to Eq. (2) by an 

iterative trial and error method. 

If one wishes to compute the line shape of a homogeneously 

broadened molecular resonance (See Refs. [2]-[5]), the energy shift is 

frequently ignored because of the difficulty of computation and also 

because it is .generally believed to not contribute significantly to the 

line shape. We will show here that this neglect of the energy shift is 

permissable in some cases, but that in other situations the energy 

shift plays a dominant role in determining the actual line shape. 

These latter cases are those where the secondary levels [6] are 

discrete. 

Some other discussions of the energy shifts in different contexts 

have appeared in the literature. The situation where the secondary 

level density is bounded below results in the possibility of the 

formation of new molecular states [7]. 

II. LINE SHAPES AND THE ENERGY SHIFT TERM 

All calculations of homogeneously broadened line shapes up to this time 

[1] have used the fo 11 ow.ing· formula, 

1rlV(e:) l2 Do(e:) 
a(e:) = -------- (3) 
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where the symbols used are 

£ - energy variable 

Do(£) - density of secondary states 

V(£) - interaction matrix element of primary and secondary states 

a(£) - absorption coefficient multiplied by a constant 

proportionality factor 

Eo - shifted primary state energy. 

Eo is treated as a constant in the above line shape. For the situation 

where nlV(c) l2 Do(c) = constant, the line is Lorentzian and the energy 

shift Ra(£) 

is exactly zero. This is strictly the only case where the neglect of 

energy shift is valid. In situations \r1here the n1V(£)j 2 00 (c) term 

depends on energy one must use a slightly modified form for the line 

shape function, 

n IV(£) I 2Do (£) 
a(£) = ---------­

(c-Eo(c)) 2+(n(V(c) I 2Do (£)) 2 

(4a) 

(4b) 

where the Eo(£) energy dependent term replaces the constant E0 • 

As in the previous paper [3], this line shape function can be 

computed in relative units. In our calculations for each point of the 
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spectrum, we must first calculate the two parts of the principal value 

integral Eq. (1), take the sum of these two and then insert this into 

the line shape function. The figures that we calculate here have 

parameters which are essentially identical to those presented in 

Ref. [3], where the energy dependence of the shift term is ignored. 

The details of calculation are the same as in Rel [2]. 

The first case (Fig.(1» deals with situations where the secondary 

level density is smooth, but increasing in magnitude with increasing 

energy. This increase in Ref. [3] was exponential but in the present 

calculations it is linear. All that is of concern is what general 

trends seem to develop, not the relevance of a specific energy 

dependence. The first thing to be noticed is that the sharpening 

effect observed by ignoring the energy shift is not present when the 

energy shift is correctly included. The function of the energy shift 

to move the resonance position is clearly seen. Although there was an 

energy shift observed in Ref. [3], it was very small. In fact, from 

the figures there, no energy shift is readily detectable. This is an 

indication that the magnitude of splittings calculated by deleting the 

energy shift will be much too small. The slope of the density of 

secondary levels does have an effect on the line shape as well as on the 

resonance position. Increasingly sloped densities result in broader 

lines. The lines still appear to be Lorentzian functions or close 

approximations. 

One problem not clearly evident from the drawing is that the 

spectra near the ends of the calculated interval show a gradual upturn. 
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FIGURE 1 (Variable Smooth Density) 

The density is a linear function of energy \-Jith the slopes from 

top to bottom 0.0 (a pure Lorentzian), 0.5, 1.0, 5.0 respectively. 
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This is noticeable in some later figures. This effect is not real and 

is due to the artificial termination of the secondary level density 

there. Although not noticeable in the spectra, the time decay curve 

results are very sensitive to this effect. The ripples that appear on 

the decay curves are due to this effect. Even the filter function 

discussed in Ref [3] is unable to remove them. Thus, no serious notice 

should be taken of these ripples as they are a calculational artifact. 

The only point to notice about the decay curves is that they reflect the 

broadening change in the corresponding spectrum by shortening their 

decay times. The decays do show deviations from exponential behavior, 

but the deviation is not radical. Only a small curvature can be seen. 

Again ripples in the curve are due to the interval end point effect 

mentioned above and are not significant. 

The following figures all deal with the situation where the 

secondary state density is line like. These are the situations where 

one expects to see a multiplet spectrum and a quantum beat decay. The 

first example of this group illustrates the effect of a variable 

spacing between secondary levels (Fig. 2). There are some general 

features which should be noticed. First, the secondary level in 

resonance with the primary level gives rise to three, not two, peaks 

in the spectrum. This is in contrast to the doublet formed if the 

energy shift is ignored [3]. However, the doublets formed off 

resonance in the neglected energy shift spectra are now doublets only 

at much higher coupling strengths. The general trend that we see is 

that the levels are more closely spaced, the primary line distributes 

itself in a broader general envelope of sharp lines. This means that 
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FIGURE 2 (Variable Spacing) 

The widths of all levels is 0.5 t and the coupling strength is 

5.0 t. Top to bottom, the number of levels is 7, 13, and 31, and the 

spacing between levels is 10.0, 5.0, and 2.0. 
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we are approaching the statistical limit situation [8]. 

The decay curves are quite complicated as were those for the 

neglected energy shift case. The occurrence of beats is observed to be 

approximately inversely related to the spacing of the lines in the 

spectrum. The similarity of the first two decay curves is due to the 

dominating effect of the central triplet on the Fourier transform of the 

Green's function. The third decay curve is much different from the 

first two because the central triplet structure is now much less 

dominant. 

Figure (3) illustrates the effect of a variable coupling 

strength. It is in this figure that one of the most important 

differences between spectra calculated with and without the energy shift 

appears clearly. In Ref. [3] the secondary levels off resonance give 

rise to new lines in the spectrum. For very weak [9] coupling, the 

lines are singlP.ts. When the coupling strength is increased, the 

height of the line increases up to a certain point which is only a 

fraction of the intensity of the central peak. Increasing the coupling 

beyond that causes a splitting which gives rise to a doublet. The 

intensity of each component never exceeds a certain level. When the 

energy shift is correctly included, the height of the off resonance 

peak is now much greater and can be equal or greater than the central 

peak. Doublets are produced, but at relatively higher coupling 

strengths than heforP.. Moreover the two components of the doublets 

arP now highly assym,m~tri c in intensity, the component furthest away 

from resonance beinq most intense. 



-80-

FIGURE 3 (Variable Strength) 

There are 13 coupled levels in each spectrum. They begin at 

-30.0 ( and are spaced 5.0 t apart and have a width of 0.5 t. The 

coupling strength is, top to bottom, l .0, 5.0, 10.0, and 20.0 t 

respectively. 
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FIGURE 4 (Variable Width) 

There are 61 coupled levels in each spectrum beginning at ~30.0 ~ 

and separated by 1.0 ~ and each has a coupling strength of 5.0 ~- The 

widths are, top to bottom, 0.1, .0.3, and 1 .0 respectively. 
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The statement that many extra lines would appear in such a 

perturbed spectrum (if coupling strengths are high enough) is strongly 

reinforced. Little semblance of the original Lorentzian would be 

expected to be evident. Assignment of such a spectrum when the 

levels are not as symmetrically spaced as here would clearly be 

impossible according to standard spectroscopic methods. 

The decay curves reflect quite clearly the spectral 

modifications. Beginning with a nearly non-beat decay, they progress 

to a very sharply beated decay for the final spectrum. It is 

noticeable that the position of the beats changes only very little. 

This occurs because the position of the peaks in the spectrum change 

very little. The decay curve resembling the Fourier transform of the 

spectrum i~ clearly illustrated here (See Ref. [10] for a more exact 

understanding of the Fourier transform process). 

The final figure illustrates the transition from a discrete to 

a continuous secondary state spectrum. This is accomplished by fixing 

the positions and strengths of the secondary states and then 

increasing the widths. All levels have the same coupling strength. 

The first spectrum in this figure shows clearly how the high order 

perturbation technique used here distributes the intensity. The first 

order theory would predict a spectrum resembling the second spectrum. 

But, as is seen, when the secondary states are discrete enough, the 

second and higher order terms can play a dominant role in the 

intensity distribution. The doublets again appear as expected. The 
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upturned ends in the last spectrum are due to the artificial 

tennination of the calculation at the end of the interval and are not 

physically real. 

The pattern of the decay curves follows directly from the 

spectrum. The beat magnitude is dependent on the dominance of the 

sharfJ structure in the spectrum. Where there is no structure in the 

spectrum, the decay is smooth and related to the spectral breath. 

III. CONCLUSION 

We have shown here the energy shift operator can be an 

important term in calculating the line shape of a homogeneously 

broadened molecular resonance. When the interacting states are 

discrete, or line-like, the energy shift may be the dominant term in 

the line shape function. Calculations of the line shape function 

neglecting the energy shift in these situation will be definitely 

wrong, even though the experimental line shape may be reproduced. 

For situations where the interacting states are only slowly varying 

the energy shift term is much 1 ess important. Thus, for a really 

correct calculation of the line shape function, the energy shift term 

should be included. 
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PART 4 

THE OCCURRENCE AND OBSERVATION OF NONEXPONENTIAL DECAYS 
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I. INTRODUCTION 

An almost universal model of electronic radiationless transitions 

in polyatomic molecules has in zero order a discrete state, which 

carries all the oscillator strength, interacting with a quasi-continuum 

of states. In the ideal case where the interacting continuum is a 

constant over an energy range of one or more bandwidths, the line shape 

is predicterl to be Lorentzian. If broad band excitation is used, 

resulting in the entire Lorentzian line being excited uniformly, then 

the emission is predicted to be an exponential decay [l]. 

Now we ask the question, what happens if the exciting light 

source has a bandwidth smaller than that of our broadened level such 

that only part of the band is excited. The article by Kasha, et al., 

[2], deals specifically with this question in a qualitative way. Their 

chief concern was to describe the nature of the initial state upon 

absorption of a photon. Rhodes [3] has applied density matrix methods 

to this problem and has formalized the results of Kasha, et_~. The 

conclusion of these papers _is that the bandwidth of the exciting light 

is important in determining the nature of the initial excited state. 

Since the emission properties will depend on the initial state, they 

will also depend on the bandwidth of excitation. 

Previously [4], we have discussed the effect of non-constant 

coupled continua on the line shape and corresponding emission decay 

curves for some model systems. In this paper we st~dy the decay 

curves in more detail including the effect of finite excitation bandwidth. 
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Finite bandwidth excitation also has a finite time duration. We 

show how the Green's function method automatically takes this into 

account. 

Since there is an experimental problem in obtaining the minimum 

time width (related to the bandwidth by the uncertainty principle) of 

the exciting pulse, we also compute some decay curves where the time 

width of the pulse is wider than its minimum time width. This is 

intended to give the experimentalist a better idea of the conditions 

necessary to observe quantum beat and other nonexponential decays. 

II. THEORY 

A. Basic Assumptions 

We use the standard zero order model with one discrete state 

(primary state) which carries all the oscillator strength and a 

quasi-continuum of states (secondary states) coupled to the primary 

state but carrying no oscillator strength. In the sense of Nitzan and 

Jortner [5], we assume that the primary state is isolated so the effect 

of other states carrying oscillator strength is negligible. Since all 

oscillator strength is derived from the primary state, all new states 

are indistinguishable in the sense of Ref. [1]. Assuming that an 

appropriate choice of zero order states has been made, we use the 

techniques of reference [4] and compute an absorption lineshape. 

We make some further assumptions concerning experimental 
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conditions to which these results relate. The "experiment" is 

presumably either done in the gas phase under isolated molecule 

conditions, or in a very dilute mixed crystal where the host is 

presumed to be inert and any exciton effects may be ignored. In the 

former situation we are then talking about rovibronic states, in the 

latter about vibronic states. Discussion about the assumptions made 

about the exciting light characteristics is in the next section. 

B. The Exciting Light 

Most previous studies have employed the so-called broad band 

approximation [1] (See also Ref. [ 6]). Thus, by implicit assumption 

the exciting pulse is a delta function in time. This is so because of 

the uncertainty principle. The Fourier transform process assures us 

that the energy - bandwidth uncertainty principle is automatically 

accounted for in computing our decay curves. This is easily proved 

using the convolution theorem. For the case of a finite bandwidth 

exciting pulse, we modify the true Green's function by multiplying 

it by the band shape of the exciting pulse. Let us call this 

excitation function E{x). Then the amplitude of the time decay of this 

excited state is 

~ e-i 21rxt•G(x) •E(x) dx = 3' [G{x)E{x)] {1) 
-oo 
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By the convolution theorem, this transform of a product is a 

convolution of the transforms of each individual function in the 

product. 

t 
1'[G(x)•E(x)] = J E(t ... )G(t-t-") dt ... (2) 

-co 

The upper limit of integration is established by the fact that our 

Green's function is causal, or retarded. We have used the notation 

00 -i21rft 
E(t) = f e E(f)df = 1-t [E(f)] 

-oo 

(3) 

00 -i21rft 
G(t) = J e G(f)df = ~[G(f)] 

-oo 

Thus, we see that by using a finite band of exciting light, we 

automatically include the finite time width that is implied by the 

uncertainty principle because of our use of the Fourier transform to 

calculate the time evolution. 

In practical situations one seldom is able to obtain the minimum 

time duration that the uncertainty principle implies given a particular 

frequency bandwidth. The only source which can possibly achieve the 

minimum time duration is the mode locked laser. Flash lamps and even 

pulsed or Q-switched lasers do not approach the minimum time. In the 

mode locked laser the phases of all the emitters (modes) are fixed at 

a definite value because of the strong radiation field. Thus, the 
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emitters can interfere with each other giving rise to the short duration 

pulse. In other types of sources the phases of the emitters (or modes) 

are randomly distributed. There is no interf,~rence between emitters 

because they are not coupled to one another as in the mode locked laser. 

Thus, if used without any modifications, the results calculated by the 

methods described above and in reference [4] are not applicable to most 

conventional experiments. 

In order to find the proper modification to bring our minimum 

uncertainty results in line with conventional experiments, it is 

important that a number of points are m~de clear. The first point to 

consider is that the Fourier transform of the Green's function gives 

one the time evolution of a "single" molecule after it has absorbed a 

"single" photon. These results are given in terms of probabilities 

which are presumably interpretable in terms of experiments involving 

many "single" molecules. Also, the Fourier transform of the exciting 

pulse energy band shape gives again a probability distribution of 

photons with time. Without any modifications the results of our calcu­

lations give the results for the best possible experiment limited only 

by the uncertainty principle. When the photon statistics are not the 

ideal minimum, we must modify our decay curves to take this nonideality 

into account. This modification again takes the form of a convolution. 

We presume that we can form ·a real life pulse from the minimum 

uncertainty pulse by adding together a number of minimum pulses each 

displaced slightly in time. We define a function D(t) which does this 
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displacement-addition process. Then, our observed emission decay 

Do(t) is given by the following convolution 

t 
Do(t) = f D(t-A) ~ G(:X.) d\ 

0 l 
(4) 

where we used the abbreviation 

00 -i27TXA 
= f e •E(x)•G(x)dx (5) 

-oo 

After we present some model calculations using the minimum 

uncertainty pulse, we will present a few results using the above 

convolution procedure with a model D(t). These results are given in 

Section III 0. 

C. Nature of Excited State 

The excited state which is initially prepared is definitely not 

a zero order state in the narrow hand excitation case [2]. Our 

perturhation treatment has mixed the primary and secondary states of 

zero order into a new set of eigenfunctions which we shall call molecular 

eigenstates. Note that these "molecular" eigenstates also include the 

radiation field states even though we do not explicitly say so. What 

we have in effect done is couple the primary state to two sets of 

secondary states, the molecular continuum and the radiation field 

continuum. (See Ref. [ 7] for a more complete discussion.) These are 

true molecular eigenstates only in the sense that the zero order 
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Hamiltonian Ho plus the interaction term V completely describe the 

molecule. A band in an absorption spectrum then corresponds to a 

superposition of a large number of these molecular eigenstates. 

Now that we have generated our molecular eigenstates, the 

importance of the exciting bandwidth is seen. The exciting light acts 

as the selector of, or in Rhode's terminology [3], as a projection 

operator on the molecular eigenstates. The molecular eigenstates 

which participate in the observed resonance fluorescence are in part 

determined hy the exnerimentalist. If he uses a broad band of 

excitation, then he excites all the molecular eigenstates generated by 

the interaction of the primary and secondary states. This is then 

equivalent to exciting the zero order primary state followed by 

radiationless "transition" to the secondary states [2] since the 

superposition of all the molecular eigenstates gives back the zero 

order states. This provides justification for the approximation that 

one band corresponds to one state, but only for this type of excitation. 

When we narrow the exciting band so that only a fraction of the 

generated molecular eigenstates are excited, their superposition does 

not give the zero order states. Any further discussion of,the dynamics 

of this excited state must use the molecular eigenfunctions, not the 

zero order functions. Thus,when we refer to a state henceforth, we 

mean one of these molecular eigenstates unless otherwise specifically 

mentioned. 
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D. Nature of the Emission Process 

Once the selected molecular eigenstates have been formed by the 

excitation process (which we still are assuming is a delta function in 

time), they begin to evolve in time. The time evolution of a single 
L-1 . I . 1 f - i E ;n t molecular eigenstate j> is governed by the exponent,a actor e J 

where Ej is the energy of state lj>. The time evolution of the total 

eigenstate is the sum over all the excited molecular eigenstates 

( 6) 

The emission decay curve is then given by the exp~ession l<Pl~tot(t)>l 2 

where IP> is the zero order primary state. For the cases with which 

we deal where there are an infinite number of eigenstates, this sum 

becomes a Fourier transform. Also, as shown in Ref. [4], the 

exponential operator can be changed into a Green's function with the 

final expression for the emission decay curve given by 

I< P I ~tot ( t > > 12 (7) 

where GPP is the diagonal element of the Green's function matrix 

corresponding to the primary state. Thus, Fourier transform process 

actually calculates the direct time evolution of the excited molecular 

eigenstates plus the interference terms between the molecular 

eigenstates. It is these interference terms which give the emission 
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decay its shape. One can get a qualitative idea of the decay of a 

particular absorption band by doing a rough Fourier transform mentally. 

If the spectrum has two main peaks, for example, one would expect a 
. - l 

relative maximum in the decay curve for a time t such that e- 1 Ej~ t has 

maxima coinciding with the maxima of the absorption spectrum. Also, 

all the higher harmonics of this particular time should be local 

maxima in the decay curve. This of course results in a beat decay as 

expected. More complicated features of the decay curves can be 

understood in this way. 

It should be noted that in Eq. (7) both the real and imaginary 

parts of the Green's function are transformed. This is to be contrasted 

with the absorption coefficient formula [4] where only the imaginary 

part of GPP is used. An alternative reasoning can be used to obtain 

the time evolution process. ifo expand each stationary state lj> in our 

zero order basis set, 

(8) 

We can then calculate the spontaneous emission probability (transition 

moment squared) as a function of time. Assuming that the exciting band 

is uniform, we get 

(9) 
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jo/(0)> = f dye jp> yp ( 10) 

Now the term le 12 represents the density of the primary state as a yp 

function of energy, thus 

le I 2 = - l 1m G yp TI pp 

It appears that from this analysis one need only transform the 

imaginary part of the Green's function. On the other hand, the 

derivation of Eq. (7) is rigorous [8]. 

( 11) 

This apparent dilemma is resolved by understanding the physical 

nature of the real part of the Green's function. The classical problem 

of a driven, damped harmonic oscillator is very similar to the 

resonance fluorescence problem except for the assumption of an 

harmonic potential. The solution has been worked out many times (see· 

Refs. [9] and [10]). The response of the system consists of an in­

phase or so-called coherent response and a 90° out-of-phase (quadrature) 

or incoherent response. This is analagous to the real and imaginary 

parts of the Green's function. The net response is thus out of phase 

with the driving force with a phase angle given by the arctangent of 

the out-of-phase divided by the in-phase components. This latter 

property has some interesting consequences (see Section III E). When 
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one moves far away from resonance, the imaginary part of the response 

(and thus Im G ) goes to zero and one is l e ft w i th only the real part. 
PP 

One can easily show that in this case the real part correctly gives 

the dispersion formula for scattering by virtual states [10]. This is 

the key point. The Green's function formalism thus gives not only the 

true absorption re•emi ss ion component of resonant fluorescence, but 

also the scattered light. 

In truth, the above statement is not rigorously correct. The 

scattering near a resonance is not the normal virtual scattering used 

to derive dispersion formulas. It is in fact intermingled and coupled 

to the "absorption re-emission". Experimentally the two p"'ocesses are 

inseparable. The power of the Green's function method is evident 

here. It allows us to unify the real experimental situation with the 

theoretical model by including a 11 components of detectable light 

emission. 

E. Effect of Excitation Bandwidth on Time Evolution 

There are two effects which a finite exciting bandwidth has on 

our process. The emission decay curve, as we saw in Section B, is 

automatically a convolution of the time band shape of the exciting pulse 

and the time evolution of the Green's function. As was pointed out, 

this is the best experiment that one can do. Any use of time delta 

functions with finite bandwidth exciting sources in theoretical 

treatments bear only a small resemblance to what can be done in the 

laboratory and results thereof should be carefully used. 
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Secondly, as was pointed out in Section D., the bandwidth 

selects which eigenstates are to be excited. Obviously, the emission 

decay curve is greatly affected by this selection process since it is 

determined by the interference between the evolving excited states. 

Thus, when we excite a Lorentzian band with a broad band of exciting 

light such that all of the states are excited, the interference between 

these evolving states gives an exponential decay. If the bandwidth 

only selects part of the Lorentzian band, the resulting decay is of 

necessity nonexponential. The results of our model calculations show 

this quite clearly. Thus, this selection process is at the discretion 

of the experimentalist and he shoul~ be able to control the type of 

emission decay curve he wants, within the confines of the molecular 

Hamiltonian, by choosing the exciting bandwidth properly. Conversely, 

to observe nonexponential decays, he must carefully choose his 

exciting bandwidth to be able to observe them. 

II I. RES UL TS 

A. Details of the Calculations 

In order to try to understand in more detail the decay curves 

corresponding to a particular spectrum {i.e.,a Green'~ function), we 

restrict ourselves to the situation where there is only one discrete 

coupled level. There is also a constant coupled set of states which is 

necessary to take into account the radiation field states and any other 



-100-

coupled continuum of levels that may be present. We use the relative 

units of reference [4] where all energies are given relative to the 

line width due to the constant coupled levels alone (the term nWp 2 in 

[4]). Time is measured in units relative to the lifetime of the state 

duet~ coupl;ng with the constant density of sets. In some cases 

the constant density set of levels is the radiation field, so the units 

are measured relative to the radiative lifetime. For the most part we 

restrict ourselves to the minimum uncertainty-principle-width pulse 

discussed above. Finally, we calculate some decay curves with a 

nonminimum time duration pulse to see what effect this experimental 

situation has on the observation of nonexponential decays. 

We use two different mathematical band shapes for our finite 

bandwidth pulses. The first is a simple Gaussian of varying width and 

position which is called henceforth a GA pulsa The second is the 

function describing the spectral output of a single order of a 

diffraction grating Dl] which is henceforth denoted as a DG pulse. 

This expression is 

sin 2 

W sin2 n(x-xo) 
XBW 

( 12) 

where xis the energy variable, xo the center position of the exciting 

band, Wits half-width (measured to the first zero), and x8w is the 

bandwidth of the computed absorption spectrum. These two different 
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types of pulses are used to show what the differences are for different 

shaped pulses. Also, the Gaussian pulse should approximate the output 

of a mode locked laser, whereas the diffraction grating pulse should · 

approximate those experiments utilizing a flash lamp (or other thermal 

source) and a monochromator for wavelength selection. Although there 

are differences in the details of the decays, the general conclusions 

for both types of bandshape are the same. 

Since we compute the Fourier transform of the real and imaginary 

parts of the Green's function separately, we must properly recombine 

the real and imagainary parts of the transforms of each part in order 

to get the correct decay function. First the transforms of the real and 

imaginary parts of G are denoted by, 

aR + .bR 
00 -i1rft 

1 = / GR(f) e df t t 
-co 

(13a) 

al + .bl 
00 -i1rft 

1 t = / G1(f) e df t 
-co 

(13b) 

where G = GR - iG1 and the a's and b's are functions oft. This is 

correct for t>O. For t<O, the correct transforms are the complex 

conjugates (easily seen by replacing t by-ton the right hand side of 

Eq. (5)) of the above transforms. Proceeding for t>O, 
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Notice that the minus sign indicates that there is some interference 

between the real and imaginary parts. For t<O, 

I,,. (t)l2 = I R .bR .( I .bI)l2 ~•g at - 1 t - 1 at - 1 t 

(15) 

The only difference between the two time regions is a difference in 

sign as indicated. This means we can compute the entire response 

function of the system to an excitation pulse which has a finite time 

duration. The zero of time in this scale corresponds to the maximum 

in the excitation function. Note we still have a causal Green's 

function. Negative time has meaning because our excitation function 

mathematically extends to plus and minus infinity. Thus,we can 

actually detect fluorescence before time zero. 

One further note on the way the decay curves are plotted is in 

order. The maximum of each curve is assigned the arbitrary value of 

one. This allows for a convenient evaluation of the shape of different 

curves, but gives no indication of the relative magnitude of emitted 

light. To get a feeling for the latter, we have calculated the 

integrated area under the curves and collected these together with the 

maximum value in Table 1. This fact should bP. ever present in the 
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reader's mind when viewing the plots. 

B. Constant Density of States 

1. Exciting Band on Resonance, Variable Width 

This case is illustrated in Fig. (1) where a Gaussian excitation 

pulse is employed. Because of the simplicity of this particular case, 

an analytical Fourier transform can be obtained. The Green's function 

is given by 

f 
G(f) = -- i 

a l 
----- ( 16) 

f is the frequency or energy variable and a is the (constant) 

linewidth (a= ~V 2D0 ) [4]. The excitation function is given by 

-f2 /b2 
E(f) = e (1 i') 

with b being the width parameter. Thus the Fourier transform, which is 

the decay function 1 g(t), is 

-f2 /b2 
00 e -2Tift 

~g(t) = -~ f+ia e df (18) 

By the convolution theorem this integral is a convolution of the 

Fourier transforms of each member of the product. These transforms are, 
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00 -i21rft 1 -21rat 
G ( t ) = / e G ( f ) d f = 21r; e , t ?.0 ( 1 9 a ) 

-oo 

00 -i21rft -f 2 /b 2 -1r 2 b2 t 2 

E(t) = f e •e df = bi;' e (1%) 
-00 

Thus, the convolution is 

00 r 
9
(t) = C f E(t ... )G(t-t ... )dt ... 

-00 

(20a) 

t 
=Cf E(t ... )G(t-t ... )dt ... (20b) 

-oo 

C is a constant factor and the upper limit in Eq. (20b) is due to 

G(t) being a causal, or retarded Green's function whose value is O if 

t<O. Putting in Eqs. (19a) and (19b) into Eq. (20b), 

- 21r at t -TI 2 b 2 t ... 2 + 2n a t ... 
= Ce f e dt ... (21a) 

-oo 

(21b) 
-oo 

We now transform the integration variable. Let 

( 22) 
dt ... = dt ...... 
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e 
- 2,ra t t- -h -,rbt ,,.,,. 2 

J b e dt"'"' 
-oo 

The integral is closely related to the error function. Thus, 

t-a/b 2 -,r 2 b2 t"""' 2 0 -,rbt"'"' 2 t-a/b 2 -,rbt"',,. 2 

(2'3) 

f e d t,,.,,. = f e d t ,,.,,. + f e d t ,,.,,. 
-oo -oo O 

(24a) 

l {f t-a/b 2 -,rbt,,.,,. 2 
,,.,,. 

= - - + f e dt 
2 b O 

(24b) 

When t < a/ b , the upper 1 imit of the i ntegra 1 is negative. This 

means the whole integral is negative since the integrand is positive 

definite, but the direction of the integration is negative. Thus, for 

times less than a/ b2
, the amplitude of the decay has the form, 

-2nat 
j< g ( t) = C' e ( C" - C "'( t) ) (25) 

where C,,., C~ are constants and C,,.,,.,,.(t) is a decreasing positive function 

oft. The net effect of this added term is to displace the maximum in 

the decay curve from time t = 0 to some later time. The response to 

E(t) is then time delayed with respect to the excitation pulse for 

the particular E(t) chosen. The physical reasons for this time delay 

will be discussed in a later section. 

Ast gets large, the function C"'"'~(t) varies less rapidly than 

for short times. This effectively means C#"'"'(t) can be approximated by 
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a constant and the decay becomes exponential. This statement is only 

true if one views the decay curve over a limited time range. Over a 

very long time the decay is not purely exponential. 

We now turn to the numerically calculated spectra, Fig.(l). 

They verify clearly the above analytical results. The time delay is 

present in all cases and follows the pattern that one would expect. 

As the width of the Gaussian excitation function increases, the 

magnitude of the delay decreases. In the limit of an infinitely wide 

excitation, i .e.,an excitation which is a delta function in time, the 

time delay is small but nonzero. In practice this limit is, of course, 

never reached. Numerically, the band must be finite even without using 

an excitation function. So, in reality, the true excitation function 

is the Gaussian multiplied by a top hat rectangular function. When the 

top hat is much wider than the Gaussian in energy space, the time 

duration is mu(:h shorter than that of the Gaussian and can be ignored. 

The degree of exponentiality in the decay curves is shown 

clearly in log plots of the above decay curves Fig., (3). None of the 

decay curves are purely exponential over the entire decay. From 

roughly 3.0 to 16.0 lifetimes the decay curves for all but the 

narrowest band case are quite linear. At longer times there is a 

gentle upward curvature. The curvature in the narrowest band case 

results from the relatively long time delay present there. As concerns 

the very long time part of the curves, the intensity of emitted light is 

down by roughly three orders of magnitude. This means that unless the 
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FIGURE l (Variable Width, Constant Density) 

In all figures in this paper the spectrum is shown as a dashed 

line and the excitation function is shown as a solid line. The 

spectrum is a pure Lorentzian. The excitation band is a Gaussian 

with widths, top to bottom, 1.0, 2.0, 5.0, and 10.0 ~, and position 

always on resonance. 
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initial intensity is great, noise may obscure an accurate determination 

of this part of the curve. Also, inhomogeneous effects such as 

collisions between molecules or collision with the walls, effects not 

included in this model, would distort the curves from the shapes 

calculated here for long times. 

For even smaller bandwidths than used here, one would expect 

that the deviations from exponentiality would be greater. However, 

one factor to consider is that the smaller the bandwidth, the longer 

the time duration of the pulse. Then the meaning of a lifetime 

experiment becomes obscure since the experiment is measuring the time 

duration of the pulse as much as the response of the molecular system 

to the pulse. The limit to keep in mind, ~1ich illustrates the 

difficulty, is the case of a delta-function-in-energy excitation. This 

means that the time duration of the excitation is infinite. Obviously, 

no lifetime can be measured. 

2. Constant Energy Bandwidth of Excitation, Variable Position 

The linear plot~ Fig. (2),of the decay curves do not show a 

marked effect due to variable position. The time delay decreases as the 

excitation band moves off res~na~ce and disappears completely in 

Fig. (3d). The decay curves, especially Figs. (3a) and (3d) look like 

Gaussian functions, but this is difficult to state with the limited 

time ranqe of these plots. Fiq. (3b) is a logarithmic plot of the 
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FIGURE 2 (Variable Position, -GA, Constant Density) 

The spectrum is a pure Lorentzian. The Gaussian excitation 

bandwidth is 1.0 ~ and the positions are, top to bottom, 1.0, 2.0, 

3.0, and 5.0 ~ respectively. 
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decay curves of Fig. (2) on a longer time scale. It reveals much more 

about the form of the decay curves than the linear plots. The last 

two plots show that the decay curve is essentially a Gaussian curve 

over 6-7 orders of magnitude. The first decay curve shows possibly a 

mixture of Gaussian and exponential decay curves. The curve starts to 

tail off like a Gaussian at around 12 lifetimes, but then it begins to 

straighten out and look more like a straight line exponential decay. 

It never becomes a straight line as a pure exponential should, but the 

decay curves in Fig. (3a) are not really straight lines either, and 

they should be very close to exponentials. 

The interesting decay curve is the second one of Fig. (3b). The 

curve seems to show a beat at around 14-15 lifetimes. What has 

happened here is that the 11effective 11 spectrum, i.e., the product of 

the excitation function and the true spectrum, has two peaks. One is 

the resonance peak of the spectrum which is multiplied by a small number 

due to the small value of the excitation function at that energy. The 

second is the point where the excitation function is a·maximum. Thu~ an 

"artificial" beat decay pattern has been created by the experimentalist 

in choosing his excitation function. One should note that the 

magnitude of the beat is sma 11 and in a ·rea 1 experiment may not be 

detectable. The log plots also give an indication of the intensity and 

relative yield of emission (see also Table 1). The expected pattern 

which is that less intensity in absorption results in less emission 

intensity is seen to be obeyed. 
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FIGURE 3 (Log Plots of Emission) 

On the left hand side are the logarithmic plots of the decay 

curves of Fig. 1 to longer times. On the right hand side are the 

logarithmic plots of Fig. 2. 
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C. Line-Like Coupled Densities 

1. Single Coupled Level at Resonance; 

Excitation on Resonance, Variable Width 

The situations where there is one coupled level on resonance are 

not amenable to analytical solution. Thus, we rely solely on the 

numerical results. For all spectra dealt with here_, the coupled level 

parameters are as follows: position= 0.0, width= 0.5 linewidths, 

coupling strength= 20.0 linewidths. This results in the splitting 

pattern depicted in Figs. (4) and (5). The doublet is the expected 

pattern from second order perturbation theory. The small peak comes 

from the higher order terms in the expansion of the Green's function 

[ 4]. The decay curves are dominated by the doublet in most cases. 

Turning to the decay curves, we use both the DG pulse and the GA 

pulse. The spectrum of our present case is one in which a beat decay 

would be expected to occur. For excitation bandwidths narrow enough 

so that the two peaks of the doublet are only weakly excited, the 

beats may be missing or very weak. This is indeed the observed 

situation and is especially apparent with the GA pulse plots, Fig. (4). 

In Figs.(4c) and (4d) the beats in the decay are very strong because in 

these cases the doublet is strongly and uniformly excited. One can 

easily see that the beat positions do not change very much because the 

positions of the spectral peaks remain fixed. A detailed viewing of 

the plots however shows that the beats do shift very slightly closer 
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FIGURE 4 (Variable Width, GA, Level in Resonance) 

There is one coupled level with position at 0.0 ~' width of 

0.5 ~' and coupling strength of 20.0 ~- The excitation band position 

is 0.0 ~, and the widths are, top to bottom, 0.5, 2.0, 5.0, 10.0. 
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with increasing bandwidth. This is due to the excitation function 

"effectively" shifting the peaks slightly. One curious feature is that 

in Fig. (4c) the second beat is higher than the first. The most 

reasonable explanation of this seems to be that the time delay 

observed with the constant density case comes into play and reduces 

the first beat relative to the second. See Section III E for a further 

discuss ion. 

The DG pulse plots resemble the G pulse plots except for a few 

details. One must remember that when the width parameters for the DG 

pulse (first zero) and the G pulse (1/e of maximum) are equal, the 

main peak of the two functions is not roughly the same width. Thus, 

for example, Fig. (5d) resembles Fig. (4c) more than Fig. (4d). This 

should be clear from the plots of spectrum and excitation function. 

There are some extra peaks in Figs. (5a) and (5b) and even (5c) as 

compared to Fig. (5d), the latter of which should be mostly the 

spectrum determined decay curve. These are due to the side peaks in 

the excitation function itself. Actually, as indicated in Table 1, 

these beats are very weak compared to those due to the spectrum. Thus, 

in Fig. (Sc) the extra peaks are very weak and in Fig. (5d) they are 

missing completely. The lack of really strong beats in Fig. (5c) is 

due to the coincidental position of the first zero of the excitation 

pulse and the two peaks of the doublet. 

Table 1 gives the value of the maximum of the decay function and 

the inteqrated areas under the decay curve. This gives one an indication 

of the emitted intensity for each decay curve since, as mentioned in 
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FIGURE 5 (Variable Width, DG, Level in Resonance) 

Same spectrum as Fig. 4. The position of the excitation band 

is 0.0 ~ and the widths are, top to bottom, 0.5, 2.0, 5.0, and 10.0. 
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Section III A, no feeling for this can be obtained from the plotted 

decay curves. 

2. Single Coupled Level in Resonance, 

Constant Width and Variable Position. 

For this series of plots we plot only the GA pulse curves. 

They are illustrated in Fig. (6). The most interesting feature of this 

series is the dependence of beat appearance on the excitation of both 

peaks of the doublet spectrum. This was mentioned previously, but is 

made very clear in these decay curves. The intensity of the beats 

diminishes quite markedly as the excitation band moves to the right 

thereby ·exciting primarily the peak on the right. The last decay 

curve shows no beats at all resembling the decay curves of Fig. (1). 

The maxima and integrated intensities show no unusual features. For 

this particular case it turns out that they are all of the same order 

of magnitude. One final co111T1ent on the time delay observed here is 

that one only sees a measurable delay when the excitation band is 

centered or is close to a large peak in the spectrum. See Section III E 

for a more complete discussion. 

3. Single Coupled Level Off Resonance, 

Constant Position, Variable Width 

The specirum,Fig. {7),here shows again a triplet structure as did the 

spectrum when the coupled level was in resonance with the primary level. 
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FIGURE 6 (Varidble Position, GA, Level in Resonance) 

The spectrum is the same as Fig. 4. The excitation band has 

a width of l .0 and the positions are, top to bottom, 2.0, 4.0, 6.0, 

and 8.0 respectively. 
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FIGURE 7 (Variable Width, DG, Level Off Resonance) 

The single coupled level is at 5.0 ~, its width is 0.5 ~, 

and its coupling strength is 10.0 ~- The DG excitation band is 

positioned at 0.0 ~ and has widths, top to bottom, 2.0, 5.0, 10.0, 

and 20.0 . 
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The two major peaks are of about equal peak intensity, the level close 

to resonance being the broader line. It is these two lines that one 

would expect to appear using simple second order perturbation theory. 

The two levels, one at 0.0 and the other at 5.0 on our energy scale, 

interact and repel each other. One would calculate that these two 

levels should lie at the energies -3.l and 8.1 on our energy scale 

using the interaction strength of 10.0. They do lie very close to 

these points. Thus, simple perturbation theory explains the major 

aspects of the spectrum. However, one can only rationalize the third 

peak using the higher interaction order terms. This third peak lies 

very close to the zero order coupled level position. If the coupling 

strength would be WP.aker, the third peak would not appear. The 

coupled level would then give rise to a line shape resembling the 

Fano line shape [12]. Only when the coupling strength is above a 

certain level does the single line split into a doublet. See Ref. [ 4 ]. 

The calculated decay curves reflect most of the trends which 

have been previously noted in the foregoing discussion. The very weak 

beat structure appearing in Figs. (7a) and (7b) is most likely due to 

the side bands of the excitation function with a little assistance from 

the spectrum. In Fig. (7c), the s~ectrum is being excited more 

uniformly and the beats are getting stronger. Finally, in Fig. (7d) we 

see strong beat structure as both major peaks are strongly excited. 

The maxima and integrated intensity all increase as the bandwidth 

increases. They are all of the same order of magnitude (Table 1). 
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4. Single Coupled Level Off Resonance, 

Variable Position, Constant Width 

Again, the decay curves for this case, Fig. (8), are understood 

by the same principles outlined before. To get beats, both peaks must 

be excited, Fig. (8b). Otherwise one sees merely a monotonic decay, 

Figs. (8a), (8c), (8d). From a close inspection of the spectra and 

excitation function for Fig. (Be) and (8d), one would guess that beats 

due to the weak third peak and the strong peak should appear. In 

fact they are present, but they do not occur within the 10.0 lifetimes 

of the plotted decay curves. Also, they are very weak because of the 

difference in the size of the two peaks excited and are almost 

unresolvable. Inteqrated intensities and maxima obey their 

relationship noted earlier with the magnitude of excited absorotion in­

tensity. 

D. Nonminimum Time Excitation Pulses 

The results to be presented here are based on the discussion 

in the latter part of Section II A (Eqs. (4) and (5)). The D(t) used 

in these calculations is defined as follows: 

0.0 t < T1 

1.0 T1~t<T2 (26) 
t T2<t:c_:O 

'[ 2 

0.0 t>O 

This crudely approximates a real excitation pulse which can be 

relatively long compared to the decay time, but has a short cutoff 

compared to the decay time. Naively, one might expect to be able to 
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FIGURE 8 (Variable Position, DG, Level Off Resonance 

The spectrum is the same as Fig. 7. The DG excitation width 

is 1.0 ~, and its position is, top to bottom, 0.0, 2.5, 5.0, and 

7.5 ~ respectively. 
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view the decay time because of the sharp cutoff. One can certainly 

get results out of such an experiment, but, as we show here, they are 

not necessarily the results one desires. Before beginning it should 

be noted that the above definition of D(t) introduces a slight shift 

in the time scale of the plots. Thus, sometimes beats may appear to 

be moving as the parameters of D(t) change. This is due solely to the 

particular definition of D(t) and the manner in which the convolution 

\vas computed, and is not physically real. The above D(t) was chosen to 

make computations as simple as possible. 

Before proceeding to the actual plots, one important point 

regarding the units of time will be made. The units used, as noted 

before, are from Ref. [4]. There, time is measured in the reciprocal 

linev.Jidth frequency due to interaction only with the radiation field. 

Thus, time is measured in units of the "radiative lifetime" which is 

different from the natural or observed lifetime. When both coupled 

continua are constant in density and coupling strength (i.e., the 

statistical limit), the units are not very important. The decays are 

generally exponential and a nonuncertainty minimum pulse does not 

distort this. However, when the molecular density is discrete, there 

is a subtle change which is significant. In these cases, the 

radiative bandwidth can be much larger than it appears from the 

absorption spectrum [7]. Then the time scale (i.e., the unit lifetime) 

is much shorter than one would expect from the linewidths observed in 
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the spectrum. The observed linewidths are due to the widths of the 

secondary coupled levels only, not to the radiative width of the 

primary level. The latter quantity is obtained only by fitting the 

observed spectrum to the lineshape formula [4]. 

The net result is that the poss i bi 1 i ty of observing _nonexponen­

ti al decays is crucially dependent on the knowledge of this primary 

radiative width, at least for the case where an incoherent or thermal 

light source is used. Thus, if one observes an exponential lifetime 

for such a system to be A seconds, and if the primary state radiative 

lifetime is say A/5 seconds then a pulse duration even as long as 

O.SA will obscure most nonexponentiality in the decay curve. This is 

what we shall show in the following figures. Of course, if one uses 

an ideal uncertainty-minimum pulse, the above discussion does not 

apply. Then all one need do, as shown in the previous decay curv~s, 

is to make one's excitation band excite the multiple peaks in the 

spectrum. Beats will then be observed. 

The plots on the left of Fig. (9) are the curve of Fig. (ld) 

with various D(t). ~he parameters are given in the figure. Very little 

change is noticed in the shape of the curves. This is because the 

curves are mostly exponential over this time range and the convolution 

process does not change this. The time delay seems to disappear, but 

it really is still present since the zero of the time scale should 

actually be farther to the left. The time delay is smeared out and is 

made more difficult to observe. 
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FIGURE 9 (Variable Time) 

The left hand side uses the emission curve of Fig. ld with T 1 

having the values, top to bottom, 0.075, 0.3, 0.54, 1 .54 lifetimes, 

and T2 = 0.075, 0.23, 0.46, 0.46 lifetimes respectively. The 

right hand side uses the emission curve from Fig. 7d. T1 and T2 are 

as follows, top to bottom: T1 = 0.075, 0.3, 0.54, 1 .54 lifetimes, and 

T2 = 0.075, 0.23, 0.46, 0.46 lifetimes respectively. 
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The right hand side of Fig. (8) shows how pronounced an effect 

a norauncertai nty-mi n-imum pulse has on a beat decay. This decay 

curve comes from Fig. (7d). The first three decay curves show strong 

beat structure. However, as the pulse width reaches two lifetimes, 

the beat structure is almost gone. If one had noise to contend with, 

the final curve may itself look like a perfectly smooth decay. 

One further note about nonuncertainty minimum pulses is 

concerned with the integrated intensities and intensity maxima of the 

decay curves. The wider the pulse width, the larger both of these 

quantities will be. Thus, one will not get an accurate measure of the 

absolute quantum yield by integrating the emission decay curve under 

these situations. Relative yields might be measured, but they are 

subject to a number of errors such as scattered light, constancy of 

D(t) from one experiment to another and the artificial determination 

of the zero of the time scale [13]. Quantum yield measurements are 

more accurately done using long time light pulses as discussed by 

Nitzan and Jortner [6]. 

E. Initial Rise in Fluorescence 

In several of the spectra-decay curve plots presented above, 

there has been a noticeable initial rise in the fluorescence intensity. 

This is certainly not expected from the simple models which give rise 

to exponential or cosinusoidal modulated exponentials D4]. We will 
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now explore in detail the physical reasons for the occurrence of this 

phenomenon and comment on its significance. 

There are several experimental factors which result in the 

appearance of the initial rise. From a survey of the decay curves 

contained in this paper, several of these factors can be observed. 

T~e first is that the excitation band must be centered around 

significant absorption intensity in the spectrum. See Fig. (2) for 

an example of this. Secondly, the width of the excitation band is 

related inversely to the rate at which the fluorescence rises. With 

a wide excitation bandwidth, the rise is rapid; with a narrow 

excitation bandwidth, the rise is slower. See Fig. (1) for an example. 

The first of these observations is related to the question of 

the meaning of the real and imaginary parts of the Green's function 

and their transforms. As was previously shown, the rP.al part 

corresponds to the in phase response and the imaginary _part to the 

out of phase response of the molecule to the electromagnetic field. 

When both parts of the Green's function are non-zero, the response of 

the molecule has a time lag due to the non-zero ohase angle of the 

response. 

This is a fairly well-known phenomenon in the theory of 

scattering [15]. The reasoning is as follows: the initial state of 

the system at t = - 00 consists of an incident wave packet (superposition 

of plane waves) and the molecule in its ground state. The final state 

of the system at t = -too is a scattered wave plus the molecule in its 
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ground state. Now, as shown above, the scattered wave acquires a 

phase change in being scattered by the molecule due to a resonance. 

Following the treatment of Bohm [15] one can write the phase of the 

scattered wave as 

(27) 

where pis the momentum, x the position, t the time and~ the phase 

of the scattered wave. Taking the derivative with respect top, 

setting this equal to zero and solving for x, 

X = - Q.t - -ria<t>_ = -vt 
M ap (28) 

using the fact that E = p 212m and p = mv. Thus, for a given position, 

x0 , the time delay in reaching xo compared to an unscattered wave is, 

(29) 

Thus, we see that the time delay is a perfectly natural result from 

the theory of resonant scattering. 

Goldberger and Watson [16] provide an additional discussion 

of the delay phenomenon based on Wigner's original concept of the 

lifetime of the scatterinq event. Physically, the time delay is 

viewed as the time that the photon takes to undergo a series of 

11 scatters 11 off the resonance. The "series of scatters" is described 

diaqramatically by the expansion of the Green's function [4]. This 



-137-

process is similar to the one dimensional scattering of a wave packet 

off a square well potential [17]. As the wave packet reaches the 

well, it tends to rebound back and forth in the well before moving on. 

The photon wave packet does exactly the same thing in the "well II of 

the molecular resonance. 

With this understanding, we can easily understand the two 

observations made earlier on the occurrence of the time delay. 

The phase angle of the response is given by 

A- (. ) _ t - l ( ImG f £ j ) ~ £ - an ReG £ (30) 

for a particular energy£. The excitation function will select a 

range of energies over which one could compute an average rr. If, in 

this range, the imaginary part is small with respect to the real part, 

the phase angle is small and the time delay short. The opposite is 

also obviously true. Since the absorption spectrum is proportional to 

ImG, peaks correspond to large values of ImG. ReG does not vary as 

rapidly or as much as ImG, so the peaks indicate a region of large 

phase shift and thus large time delay. 

The second observation relating the width of the excitation 

pulse to the rate of rise is explained simply by a consideration of 

the uncertainty principle. Wide bandwidth excitation has a short time 

duration and thereby a quicker rise. Thus, the rise to the maximum in 

the decay curve is quicker. The delay times are different for 
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different width pulses since the average phase angle will change 

slightly. Thus, the first and second observations are intermingled. 

With a slightly wider hand, the rise to maximum is faster, but the 

phase angle is slightly smaller and the time delay is thus a little 

shorter. See Figs. (1) and (2) for examples. 

F. Positive and Negative Time Plots 

Fig. (10) displays some example decay curves for both positive 

and negative times. The curves on the left of the Fig. (10) are those 

of Fig. (1). The progression is toward a wider bandwidth-narrower time 

pulse as one moves down the figure. The top curve shows very little 

effect of the actual decay in this time range since the excitation 

pulse time duration is roughly as long as the decay time. Only by 

going to longer times can one get a measure of the decay process. As 

the pulse duration becomes shorter, the curves become more asymmetric 

and move toward the limit of a delta function pulse followed by a long 

emission decay. 

The right hand side of Fig. (10) displays the right hand side 

of Fig. (9). The dramatic loss of resolution of a beat decay is seen 

in the last curve. The apparent shift in time is due to the way D(t) 

was defined as discussed previously. It is interesting to note that 

the beats also appear before time zero. 

With these curves we can see that there is a new way to do 

emission decay experiments. One merely starts the detection apparatus 
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FIGURE 10 (Full Time) 

The left hand side shows the same curves as Fig. 1. The right 

hand side shows the right hand side of Fig. 9. 
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before the pulse arrives at the sample and measures the entire pulse 

of emitted light. This removes the problem of deciding (artificially 

at best) where the excitation pulse stops and the decay starts. With 

our method of treating the decay problem, the distinction between 

resonance "scattering" and resonance "absorption-emission" is removed 

as it is in any real experiment. To get the true "molecular" decay 

function, one must deconvolute the finite pulse shape from the decay 

function. 

IV. SUMMARY 

This paper deals with the application of the Green's function 

technique to the study of resonance fluorescence from molecular 

resonances. In particular we apply the technique to the situation 

where the excitation bandwidth is finite and both the position and 

bandwidth are variable. For statistical limit cases where the 

product of secondary level density and interaction matrix element are 

constant, the resulting decays,upon using the above excitation band, 

are nonexponential in general, but in most cases are approximately 

exponential decays. For situations like the intermediate case where 

the secondary level density is "line-like", the possibility of a 

quantum beat decay occurs. It was shown that the observation of these 

beats is critically dependent on the experimentalist's choice of 

exciting light conditions. In particular he must choose his excitation 
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bandwidth and position properly, and, if using a nonuncertainty 

principle light pulse, he must regulate the time duration of the pulse 

in order to be able to see the beats. 

Theoretically, we have shown that the Green's function method 

describes both scattered and absorbed re-emitted light which are of 

necessity experimentally indistinguishable. The presence of both 

real and imaginary parts of the Green's function results in their 

being a phase change or time delay in the response of the system to 

the light pulse. This is seen experimP.ntally by a time delay in the 

emitted lig.,t as compared to the "free flight time" of light over the 

same distance. In addition, we have shown that the effect of using 

a finite bandwidth excitation is trivially accounted for in the Green's 

function method by multiplying the Green's function by the excitation 

function. The finite time duration of such a pulse is automatically 

accounted for in the Fouri.er transform process. We can a 1 so by this 

method compute the magnitude of emitted light from times before the 

maximum of the pulse arrives until long after it has arrived giving 

a complete picture of the time response of the system. 
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TABLE 1 

Maximum of Decay Curvea Integrated Intensitya 

Figure 1 (a) 0. 150 0.802b (0.8148c) 

(b) 0.360 l . 316b ( 1 . 321 C) 

(c) 0.798 l . 925b ( 1 . 929c) 

(d) 1 . 188 2.226b (2.231c) 

Figure 2 (a) 0 .1173 0.6150c 

(b) 0. 0551 0.2333c 

(c) 0.0270 0.1022c 

(d) 0.0099 0.0357c 

Figure 3 See Figs. 1 and 2 above. 

Figure 4 (a) 0.000079 0.00021b 

(b) 0.001587 0.00099b 

(c) 0. 1674 0.1911b 

(d) 0.6983 0.7199b 

Figure 5 (a) 0.000043 0.000129b 

{b) 0.00058 0.000357b 

(c) 0.0058 0.003659b 

(d) 0.2088 0.2366b 
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TABLE l (continued) 

Maximum of Decay Curvea Integrated Intensitya 

Figure 6 (a) 0.00013 0.00020b 

(b) 0.04273 0. l 3090b 

(c) 0.04748 0.11630b 

(d) 0.00958 0.01725b 

Figure 7 (a) 0.05699 0.1309b 

(b) 0.2989 0.5081b 

(c) 0.5547 0.7690b 

(d) 1.031 0.9760b 

Figure 8 (a) 0.01419 0.04503b 

(b) 0.00176 0.00466b 

(c) 0.00052 0.00082b 

(d) 0.00880 0.03362b 

a The units are undimensioned but all are on the same scale. Absolute 
values mean nothing; only relative values have meaning. 

b These integrated intensities are only for the portion of the decay 
curve which is plotted. 

c These integrated intensities represent the entire decay curve 
including the portion not plotted. 
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PART 5 

THE INTERMEDIATE ENERGY GAP CASE AND 

THE SECOND SINGLET OF NAPHTHALENE IN DILUTE MIXED CRYSTALS 
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I. INTRODUCTION 

Hoping to resolve a question concerning the a~signments of the 

first two electronic transitions in naphthalene, in 1954 D. s. 

McClure investigated the spectrum of naphthalene in a durene host 

crystal [l]. The naphthalene goes into the crystal structure 

substitutionally and should closely approximate the oriented gas 

1nodel. There are several advantages to this technique. First, 

the complication of rotational band structure is removed. Secondly, 

sequence structure, which is pronounced in gas phase naphthalene 

spectra [2], can be eliminated by going to liquid hydrogen or 

helium temperatures. Thirdly, polarizations of different electronic 

transitions can be isolated and overlapping transitions separated 

according to their polarization. McClure did find the correct 

assignments of the two singlets by being able to separate the two 

transitions by polarization. 

A new problem arose, however, when he viewed the spectrum in 

the region of the second singlet. Instead of seeing a set of 

normally spaced vibronic transitions which would be assignable in 

terms of a harmonic oscillator with possibly anharmonic corrections, 

the lines. were irregularly spaced and were described as a ''forest 

of lines". This entangled spectrum was attributed to vibronic 

perturbations, but no quantitative explanation was offered. The 

key point to remember about this system is the small energy gap 
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(~ 3000 cm- 1
) between the first and second singlets. If the lower 

state interacts with the upper state, then the density of levels 

is so low in the region of resonance with the upper state ·that the 

spectrum would not be broadened as in the statistical limit [3], but 

would be split into numerous lines. 

Some other examples of this type of splitting have recently 

been observed. The system quinoxalene in durene apparently shows 

the same effect [4]. Similar spectra have been observed for 

phenathrene in durene [5] and pyrene in biphenyl and fluorene [6]. 

Interestingly, there have also been reports on some anomalous 

emission properties in the region of the second singlet of 

naphthalene [7] and the pyrene derivative 3, 4 benzpyrene [8] .. 

Also, some anomalous emission properties of benzophenone have been 

reported [9]. The emission in this case is from the first singlet 

which interacts with a very close(~ 2000 cm- 1 separation) triplet 

level. These examples are also most likely closely related to the 

well known anomalous spectra of N02, S02, and CS2 [10]. Thus, it 

is beginning to appear that these vibronically entangled systems 

are somewhat more common than was at first realized. The case of 

naphthalene is the most carefully documented and analyzed case yet 

reported. We will later analyze this case in greater detail. 

Before we proceed to do this, we will present a general discussion 

of the vibronically tangled electronic states and their emission 

properties. 
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II. GENERAL THEORY OF VIBRONICALLY TANGLED SYSTEMS 

The first real theoretical discussion of vibronically tangled 

systems was presented by Douglas [10]. His arguments are mostly 

qualitative and are based on some results connecting the oscillator 

strength (which is proportional to the integrated intensity) of an 

absorption band to the lifetime of the state giving rise to 

absorption [11]. Douglas was principally interested in explaining 

the emission lifetimes observed in N02, S02, and CS2. In these 

molecules, the lifetime is longer than estimates obtained from the 

oscillator strength of the transitions. His idea was that a set of 

zero order states could be postulated in which only one carried 

oscillator strength and all states interact by vibronic perturbations. 

The result is in Douglas~ words, "The perturbations therefore have 

the effect of producing a spectrum in which there are a large 

number of weak lines instead of the expected smaller number of 

strong lines and the lifetime is correspondingly shorter." Bixon 

and Jortner [12] have formalized Douglas' arguments based on a 

model in which the levels carrying no oscillator strength are 

described by a "ladder" of equally spaced levels. Later, Nitzan 

and Jortner [13] used somewhat more rigorous mathematics and a more 

general consideration of the coupled levels to reaffirm the earlier 

results. All of these models are based on the premise that the 

lifetime of a state is related to the oscillator strength of the 
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transition. We will now examine this basic idea somewhat more 

thoroughly and show that it is not generally true. 

Let us consider the following simple example: we are given an 

atomic energy level which carries oscillator strength from the 

ground state. There is no molecular continuum with which it can 

interact, only the radiation field continuum is present. When 

the line shape is calculated, it turns out to be the familiar 

Lorentzian. The absorption coefficient (or cross section) is 

equal to the following expression [14], 

3 

2~c3 l<glµIEo>l
2
•{£-Eo)1+(ny)2 (1) 

where jg> is the ground state, IEo> the excited state,£ the energy 

variable, and y is the width which is equal to 

(2) 

This, of course, means that the state obeys an exponential decay 

law with a lifetime equfll to fly- 1
• Since the Lorentzian is 

normalized, integration over the Lorentzian part of the line shape 

gives unity. Thus, the integrated intensity is proportional only 

to the transition dipole moment. Note also that the width of the 

level is proportional to the same quantity. Thus, by the uncertainty 

principle, the lifetime is inversely related to the width of the 

level which is in turn directly proportional to the oscillator 
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strength. This is the explanation of Mulliken's relationship [11]. 

If the transition moment is increased, the integrated intensity 

is increased. Also, the line is broadened and the lifetime is 

shortened. Thus, we see that the oscillator strength-lifetime 

relationship is obeyed here. We would expect the above model to 

hold for most low lying, nonpredissociated diatomic excited states 

also since the only interacting states here are the radiation field 

states. However, these are the only situations where the 

relationship would be expected to hold true. For polyatomics in 

general, the relationship is not valid as we shall show. 

If one now amends the simple model by introducing a set of 

molecular quasi-continuum states, then any relationship between 

lifetime and oscillator strength is destroyed. In this case, the 

familiar statistical limit [3], the integrated absorption remains 

the same, but the linewidth is increased and the lifetime is shortened. 

Thus, the lifetime is dependent only on the shape of the line, not 

its integrated area. This is the interpretation that the authors 

have been advocating recently [15]. The problem that Douglas 

failed to realize is that, for polyatomics, the observed lifetime 

is a combination of several "component lifetimes" (or rates [16]). 

The oscillator strength gives us a measure of the radiative component. 

If there are 11 nonradiative 11 processes competing with emission, the 

observed lifetime reflects this competition and must change 

accordingly. 
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Now if we allow the molecular continuum to have structure, i.e., 

be line-like, we then arrive back at the situation where we started 

this discussion. These are the cases which Douglas [10] originally 

discussed. We see that the lifetime-oscillator strength relation­

ship is not valid for the molecules Douglas discussed. The lifetime 

is not dependent only on the oscillator strength, but rather on the 

shape of the line. When a simple Lorentzian line is split up into 

a number of narrower lines by interaction with a line-like continuum, 

the lifetime must depend on the width of the narrower lines in the 

spectrum, not the net integrated intensity or oscillator strength. 

Since decay curves will not in general be exponential, we use the 

term lifetime somewhat loosely to describe the rapidity of the 

decay [15a]. 

Take the following limit of the Douglas model where the 

number of coupled levels is allowed to become very large. 

According to Douglas-Bixon-Jortner argument, the lifetime should 

get very long. However, this situation is approaching the 

statistical limit where the lifetime is known to be shortened. This 

limit illustrates the basic inconsistency of the treatment given by 

Douglas and Bixon and Jortner. 

Based on our model calculations previously reported [15], we 

can illustrate some of these ideas. In the spectra shown in 

Fig. (1), we have one coupled level positioned at +5.0 linewidths. 

We vary the width of this level and excite it with a Gaussian pulse 

as shown. Then we look at the lifetime of the emission. Fig. (la) 
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FIGURE l 

The spectra are shown as dashed lines, the excitation band as 

a solid line. 

(a) Pure Lorentzian, Gaussian excitation with width 20.0 ~' 

and position 0.0 ~-

(b) The coupled level parameters are position= 5.0 ~, 

width= 3.0 ~ and interaction strength= 30.0. The 

Gaussian excitation band is positioned at 7.0 ~,and 

has width 2.0 . 

(c) Same spectrum as (b); excitation parameters are 

position= 0.0 ~'width= 20.0 ~-

(d) The coupled level parameters are position= 5.0 ~' 

width= 1.0 ~, interaction strength= 10.0 ~­

Excitation parameters are position= 7.0 ~,width= 

5.0 ~-

(e) The spectrum is the same as (d); excitation parameters 

are position= 0.0, width= 20.0. 
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is the plot of a pure Lorentzian with its corresponding decay curve. 

In Fig. (lb) the coupled level is wider (3.0 lifetimes) than the 

primary line, and the emission decay is thus faster than the pure 

Lorentzian. This level has only a fraction of the integrated 

intensity of the pure Lorentzian, but has a shorter lif@time. This 

is the opposite of the prediction by the "dilution of oscillator 

strength" theory. In Fig. (ld) the coupled level is the same width 

as the pure Lorentzian and has a slightly longer lifetime than the 

original primary state. Fig. (le) and Fig. (ld) are plots of the 

excitation of the entire state. These are much different from the 

excitation of the isolated coupled level for now the primary peak 

is excited strongly. Thus, the lifetime here will be slightly 

longer than the original zero-order primary lifetime because the 

primary peak has been narrowed. Thus, we see that it is the shape 

of the resonance which determines the emission decay characteristics, 

not the integrated intensity of the spectrum. The latter only 

governs the radiative component of the lifetime and ignores contribu­

tions from intramolecular radiationless transitions. 

II I. THE NAPHTHALENE SECOND SINGLET 

SPECTRUM-THEORY 

We will here only be concerned with the origin region of the 

second signlet and the totally symmetric additions to the origin. 
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Wessel [17] has treated, in addition, the low energy portion of the 

spectrum corresponding to the first singlet absorption which is 

vibronically induced by the second singlet. We will only be 

concerned with the c~ polarized (short molecular axis) absorption. 

In this polarization, which is apparently very pure, the first 

singlet ( 183u) has no oscillator strength and the second singlet 

(
1 B2 u) has its oscillator strength only along this polarization. 

Any lines appearing must be due to intensity originating in the 

second singlet. In the gas phase, of course, both polarizations 

are mixed. In terms of model systems, the traditional canonical 

model [15] seems to be a very good representation for this system. 

See Refs. [l] and [17] for more detailed explanations of the 

experimental conditions and techniques. 

A. Wessel 's Treatment 

We will now briefly explain Wessel 's spectral fitting procedure 

so that we may compare it to our procedure later. The first 

approximation which Wessel makes is to assume that both zero order 

and final states have no width. Thus, he will compute a spike 

function for a state whose height is proportional to the integrated 

intensity of the corresponding peak in the spectrum. The position 

of the spike should be either at the maximum of a single spectral 

peak or the intensity centroid of a multiple peak. With this 

approximation he sets up a finite dimensional matrix of the 
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fo 11 owing form: 

H(l ,l )····H(l ,i)••· 

0 (3) 

where only the first column, first row, and diagonal are nonzero. 

The diagonal elements are the energies of the zero order states 

with H(l ,l) being the position of the 1 B2u origin. The H(l,i) 's 

are the interaction energies between zero order states ll> ( 1B2u 

origin) and Ii> (higher vibronic level of 1B3u). One then has to 

diagonalize the above matrix and find the eigenvalues. The 

eigenvalues then give the perturbed energy levels. By changing the 

various matrix elements in a trial and error procedure, the 

observed spectrum is fit by iteration. We will perform the same 

calculation, but we have allowed our zero order states to have width. 

Thus, we generate a true fit to the spectrum, not to just peak 

positions and integrated intensities. 

One thing that must be done when using this method is to 

separate out 11 1 atti ce" intensity from the 1 B3u vi broni ca lly borrowed 

intensity. By lattice intensity we mean phonon combination bands 

associated with a ~ibronic transition. Thus, in a solid one may 

see a transition due to excitation of a pure molecular vibronic 

state, and also to the pure vibronic state plus one or more phonons. 
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The idea is the same as having symmetric normal mode additions to an 

origin band in the gas phase. Generally, these phonon "addition 

bands'' are broad and lie to the high energy side of a vibronic 

transition. Wessel attempts to eliminate any contribution of this 

phonon intensity by drawing a baseline which touches the valleys 

in his spectrum. This eliminates supposedly the broad underlying 

intensity attributed to the phonon bands. While this seems 

perfectly reasonable, no one can say with certainty where the baseline 

should be drawn. If it is in error, the integrated intensities 

will be in error making the calculated results also in error. We 

do not feel that this procedure results in gross errors by any 

means, but it is an uncertainty in the calculation [19]. We use 

a different procedure which takes the phonon states into account. 

Thus, we do not have to do the type of baseline subtraction Wessel 

did. 

In order to simplify the calculations, Wessel assumed that only 

the 182 u origin contributes intensity. This neglects the possible 

contributions from the symmetric mode additions to the origin. 

We will do the same. This should not produce any serious errors 

in the calculated spectrum. First, we shall only be interested 

in the resonance region where contributions from other intensity 

sources should be minimal. Secondly, the 1B2u origin does carry 

about 70 percent more intensity than any symmetric addition peak, so it 

should be the major contributor to borrowed intensity anyway, 



-160-

especially near resonance. Thtrdly, if one does the multiple 

intensity source problem [20], it can be shown that one can mimic 

the multiple-source spectrum by a one-source spectrum, especially 

in a resonance region, or far away from all intensity sources. 

Thus, we should be able to calculate a spectrum which fits the 

observed spectrum. 

By measuring the intensity of the b1g(8) mode of 183u (this 

is the lowest frequency mode which can borrow intensity), and by 

estimating the changes which occur in Franck-Condon overlap 

factors, Wessel estimated what the intensities of symmetric addi­

tions to the big modes should be. In comparing these with the 

calculated intensities from the diagonalization, there are certain 

lines which appear to have abnonnally low intensities. This he 

attributes to cancellation of the borrowed intensity from the 

1B2u origin because of interference with the symmetric additions 

to the 1B2u origin. One can still calculate a correct spectrum, 

however. Once parameters are obtained, one may go back and compare 

the calculated intensities with th~ computed Franck-Condon envelope. 

If the two intensities disagree, appeal can then be made to the 

moment interference model. Thus, we see that the calculated 

parameters from the spectral fit are really the correct ones. It is 

then a question as to whether they are consistent with Franck-Condon 

overlap factors. Since this happens for only a few lines, this 

approximation is further reinforced [21]. 
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One final comment about Wessel 's calculations concerns his 

method of choosing the initial guess zero order states. He compares 

the resonance region in the p-xylene spectrum with the isoenergetic 

region in the durene spectrum. The lines which appear in the 

durene spectrum are corrected by a first order perturbation pro­

cedure to give zero order durene energy levels. The zero order 

coupling strengths are estimated from the square root of the 

intensity of a durene peak. These positions and strengths are 

the first guess in the p-xylene calculation. Because of solvent 

shifts in both vibrational and electronic states, this estimation 

procedure should not be too accurate. This is verified in Wessel 's 

first calculation. It has the further drawback that unless one 

has a "durene spectrum" from which to estimate the zero-order 

states of a "p-xylene spectrum," one is at a loss to find a 

beginning. This apparently is why Wessel was not able to refine 

the durene spectrum. We shall use a different procedure which 

extracts guesses for the zero order states from the perturbed 

spectrum itself. Thus, we can fit any spectrum that we can 

measure, given enough patience and computer time. 

B. Our Treatment 

The Green's function technique that we shall use here has been 

discussed previously by the authors [15] and [22]. Accordinq to 
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this technique, the Green's function matrix is given by 

G [ -1 ]-1 
= G o - V (4) 

~ ~ 

where G is the true Green's function, Go is the diagonal zero-order 

Green's function matrix, and Vis the interaction matrix between 

zero order levels. The perturbed energy levels are given by the 

poles of the Green's function. The poles are found by equating the 

d [G- o
1 

- V] eterminant of to zero. 

where E1 is the zero-order energy of the primary state, the E.'s 
l 

the zero-order energies of the secondary states, and£ is the 

energy variable. Moreover, one can calculate analytically the 

secular determinant of Wessel 's matrix (Eq. (3)), and it is seen 

to be exactly Eq. (5), which is to be solved for its various 

eigenvalues (zeroes). Thus, at this point we are doing the same 

mathematics as Wessel. 

(5) 

Now, we allow the secondary states to become continuous, the 

sum is converted to an integral over a density of states function, 

and the discrete Vii becomes continuous functions of energy. Eq. (5) 

becomes [ 15], 
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(6) 

By this transformation we have converted our finite, dis'crete matrix 

into a continuous, infinite matrix. This is the chief advantage 

to our method over Wessel 's. Now we can include secondary state 

widths in the calculation, phonon bands if necessary, and continua 

including that from the radiation field or from other low-lying 

electronic states (most probably triplets). In addition, we now 

do not have to numerically diagonalize the continuous, infinite 

matrix (an impossible job!), for we have already analytically done 

so. The fitting procedure is a roundabout, but simple way of calcu­

lating the eigenvalues. The calculation of the absorption spectrum 

is straightforward since it is proportional to the imaginary part 

of the Green's function [15]. Our fitting procedure is to guess a 

weighted density function (1rp(£) IV(£) 1
2
), calculate a spectrum, 

compare it to the observed spectrum, make changes in the weighted 

density, and repeat until a satisfactory fit is obtained. More 

will be said about the details of the calculation later. 

The continuous weighted density function deserves some attention. 

Nonnally in theoretical treatments, the secondary states are 

assumed to be discrete, infinitely sharp states. This is in 

reality a crude approximation to the real physical situation. First, 

all states interact with the radiation field. This in itself is 
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enough to justify the continuous density assumption since the 

radiation field is a true continuum. Secondly, the presence of 

anharmonicities will broaden out vibrational levels. For low-lying 

levels, this breadth may be very small, but for higher vibrational 

levels where the density of interacting states (combinations and 

overtones) is higher, the breadth should be correspondingly larger. 

Finally, in our solid state example, the phonon structure of the 

lattice contributes even further breadth to vibronic states. From 

these factors we see that the continuous density function is not 

really an approximation at all, but is a realistic physical picture. 

We assume that the weighted density function is composed of 

two parts. One is a constant continuum which is composed of 

several continua including radiation field and molecular continua 

from lower-lying molecular states. The second part is the set of 

discrete states composed of vibrational states of the 1B3 u state 

which must have the symmetry big. We define in our calculations 

the weighted-density as a sum of normalized Gaussians: 

(7') 

where£ is the energy variable, DEL. the interaction strength, W. 
1 1 

the width, and £i the position of level i. The number of coupled 

levels is n. In a stepwise fashion, the zero order primary state 

is first broadened into a Lorentzian by the constant continuum 
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which is then split up into many lines by the discrete continuum. 

Some care must be applied v1hen interpreting this density function. 

In some regions the density will look like a set of slightly 

broadened discrete peaks. In these regions the interpretation as a 

set of slightly broadened vibronic states is valid. However, in 

some regions the density appears as a smooth function even though 

the region is really made up of the superposition of several 

individual "states". Here one may not necessarily be justified in 

assuming that the Gaussians are assignable as vibronic states. 

The region might just as correctly be assigned to phonon states. 

Such a judgement depends,of course, on the particular situation in 

question. In any case, the density function derived from a 

spectrum fitting calculation correctly describes the weighted 

density no matter what the zero order interpretation is given to it. 

The spectra were fit by a trial and error procedure. The 

first guess at zero order positions was made by measuring the 

positions of the valleys in the spectrum. In some earlier work 

[l 5~ it was found that such a procedure gave very good estimates 

to the correct zero order positions if the energy shift term was 

ignored. It turns out that this guess also provides a reasonable 

first choice for the correct calculations. The changes to be 

made are estimated visually using intuition as a guide. This 

intuition is butlt up after many hours of tedious laboring over 

differences between calculated and observed spectra. It often 
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was a considerable help to compare the weighted density function 

with the calculated and observed spectra. Some of these points will 

be illustrated as we discuss the individual spectra. 

The calculations were performed in the reduced units of Ref. 

[15a]. The zero order position of the 1B2 u origin (or ag addition) 

was estimated visually and varied to give the best fit. The magni­

tude of the constant density was also varied to give the best fit. 

Because we have not been concerned with the absolute units 

of our absorption curves, we must also estimate what the vertical 

scale of our calcu'lated spectra is. This was done again by trial 

and error, but the choice made seems fairly correct judging from 

the goodness of the fits. A general baseline was used to account 

for instrumental baseline drift. This is due to light scattering 

and instrument response. For a particular spectrum, a linear 

baseline was estimated from Wessel 's low resolution spectra. This 

was added to the calculated spectrum to give improved fit and was 

not varied. Finally, individual level interaction strengths, 

widths, and position were varied. Where necessary, new levels 

were inserted or taken out as required by the fit. On the order 

of 40 or more, iterations were generally required to fit a 

spectrum. We present here a total of seven different fitted 

spectra including the h-8 and d-8 1B2u origin regions in both 

p-xylene and durene, and the supposed 1 B2 u 0-0 + a9(9) (501 cm- 1
) 

symmetric addition regions of h-8 in durene and p-xylene and d-8 
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in p-xylene only. 

IV. RESULTS--ORIGIN RESONANCES 

A. h-8 Origin in p-xylene 

In Fig. (2) we show the weighted-density function. The 

calculated spectrum, and the observed spectrum. The calculated 

and observed spectra are virtually identical with a few minor 

differences in certain areas. We are confident that, given enough 

time and patience on the part of the fitter, essentially exact 

fits could be obtained. Diminishing returns unfortunately comes 

into play and the last few changes necessary to achieve a good fit 

are difficult to estimate. The parameters of the fit are given 

in Table 2. The positions, widths, and interaction energies are 

given in both our reduced units and in wavenumbers. The zero 

order position of the 1B2u origin and its width due to the constant 

density is given in Table l. Also included in Table 2 is a set 

of possible assignments which are generated by using both long axis 

values of symmetric modes and short axis values of b1g modes. These 

assignments are most likely subject to considerable error as the 

frequencies, especially those of the big modes, are uncorrected for 

vibronic interaction with the 1 8 2 u state. Our assignments are 

somewhat different from Wessel 's because he derives them from the 
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FIGURE 2 

h-8 origin region is p-xylene host. The weighted density is 

shown at the bottom, the calculated spectrum just above, and the 

observed spectrum with wavelength designations on top. The 

observed spectrum is taken from Wessel 's thesis. 
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durene spectrum where frequencies change slightly from the values 

in p-xylene. A somewhat more reliable assignment would be obtained 

if we would have fit the low energy region in p-xylene. Then we 

would have a good zero order set of mode frequencies to work with. 

We t'-lil 1 not refer to assignments very often because we do not have 

much faith in them. 

A most interesting comparison to make is between the weighted 

density and the calculated spectrum. It is here that one can get 

a feel for how the various lines in the spectrum derive from the zero 

order density. The most prominent features are the doublets at 

-1 -1 -1 -1 2267 cm and 2294 cm and the single peaks at 2343 cm and 2482 cm . 

In examining the density for the doublets, we see that the major 

peak in the spectrum occurs shifted very slightly to lower energy 

from the corresponding density peak. The outer component of each 

doublet is almost not shifted at all from its zero order position. 

These are also good examples of the outer component intensification 

discussed by Wessel [23]. The outer component, though coupled 

weakly compared to the inner component, has comparable intensity. 

This is due to higher order coupling where,even though first order 

interactions result in little intensity borrowing, higher order terms 

contribute as much or more than the first order terms. 

The two prominent singlet peak~ are the result of the 

basic splitting pattern. From the density function there is 

roughly a broad peak running from -1 .8 ~ (~2360 cm- 1) to 

-1 0.fl ~ (2470 cm ) . (~ is the reduced energy unit.) This 
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interacts with the 1B2u origin to give the basic two humped intensity 

pattern. The fine structure on top of these humps is due to the 

fine structure in the zero order density. This is one of those 

regions in which some phonon activity may be present. If so, this 

may be the reason for the broad intensity under the sharp structure 

in the density function. There is no way to quantitatively determine 

if this is so, or if there is coincidentally a superposition of a 

number of 1B3u vibronic states. If the latter is the case, one 

might not expect the broadness because higher order interactions 

would possibly just split the levels up. Whatever the reason for the 

broadness, the density function is correct and does give the proper 

spectrum. 

The peak at -7.95 t (2129 cm- 1) deserves further examination. 

From first order theory one expects that the shape of the spectrum 

should resemble the shape of the density function. We see here 

that this is not the case. This peak resembles a Fano-type line shape 

[24] with its dip to higher rather than lower energy. In general, 

all lines in the spectrum show some 11 antiresonance 11 behavior. The 

dip occurs toward the 1 B2u origin position. For example, the 

Ji.J to higher energy of the 2482 cm-l peak in the calculated spectrum 

is due to this effect. The level at 5.13 ~ (2629 cm- 1) was added 

to the calculation to "fill in" the dip due to the two levels at 

- 1 ( - l 5.25 ~ (2634 cm ) and 5.40 ~ 2640 cm ). One encounters many 

such considerations throughout the iteration procedure. 
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A word about accuracy in the parameters is in order. We do 

not compute any error limits, but we can give some idea of what the 

variance might be based on experience in varying the parameters to 

achieve a fit. The absolute variance in the positions may be quite 

high, as much as 10-20 cm-l. This is due to inherent errors in 

plotting, in converting from~ units to wavenumbers, and the 

inaccuracies of the observed spectra that we used to fit our~ 

calculated spectra. However, the relative error in positions is 
-1 1 quite good, easily less than 5 cm and most likely 2-3 cm- . 

Because of the way we define our coupled levels, and the fact that 

they have finite width,makes the comparison of our interaction 

energies with Wessel 's somewhat difficult. The way we define our 

coupled levels makes each one normalized. Whether that is necessary 

or not is difficult to decide. In viewing the interaction energies 

one should also look at the widths to get a true feel for the 

pre-exponential term in Eq. (7). 

The sharper the level, the more accurate its position is. As 

far as widths are concerned, the error here, percentage wise, is 

fairly high in some cases, possibly as much as 20-40 percent. Again, 

the error depends on the level in question, some being very accurate 

and some not. Generally, the sharper the line, the more critical 

is its width to achieve a fit .. The relative interaction strengths are 

accurate to 2-3 cm-l. Again, the variance depends on the level 

involved. One should notice that the interaction strength and the 
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width together determine the peak height of a level (see Eq. (7)). 

Thus, the broader a level, the stronger its interaction must be to 

have the same height in the density function. 

The absolute values of the widths and interaction energies 

are also most likely not too accurate, but the relative values are 

fairly accurate. This is because both parameters derive their 

absolute value from the estimate of the zero order width of the 

primary ( 1 B2u) state. This is a difficult parameter to estimate with 

accuracy (see Section VII for a discussion). 

B. d-8 Origin in p-xylene 

The density function and calculated and observed spectra are 

shown in Fig. (3). The zero order position and width of the 1 B2u 

origin are given in Table l. Parameters of the fit of Fig. (3) 

are given in Table 3. This spectrum is interesting from a number 

of aspects. The intensity distribution is much different from the 

two-humped, h-8 spectrum. Also we seem to have better evidence 

here of the presence of phonon excitation. Another interesting 

feature is that on the average the discrete levels in the density 

seem to be broader than the levels in h-8. This may be due to 

increased lattice coupling which is in turn due to higher vibrational 

amplitudes (d-8 shows this effect in the ground state [25]). Whether 

this observation is significant or not is uncertain. 
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FIGURE 3 

d-8 origin region in p-xylene. Observed spectrum is Wessel 's. 
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The strong peak at 2256 cm-l is interesting for two reasons. 

It is due principally to the levels in the density function at 

-2.55, (2267 cm- 1) and -2.21 ~ (2281 cm-1) respectively. There 

are no strong normal mode combinations involving b1g(8) or b1g(7) 

in this region. These were the only two modes which showed any 

substantial activity in the h-8 spectrum. In the durene d-8 spectrum 

-1 -1 ( ) Wessel assigns two strong peaks at 2261 cm and 2276 cm as big 2 

and b1g(l) respectively. These two modes do not show activity in 

the h-8 spectra. The fact that the density function also shows 

these two strongly coupled levels in p-xylene lends credence to the 

assignment as Wessel has noted. 

The second interesting feature is the broad band with super­

imposed fine structure which follows these two levels. This may 

indicate strong phonon absorption. If this is so, it falls in line 

with the statement above that there is larger amplitude in the d-8 

modes and thus, one would assume, stronger phonon coupling. The 

same kind of broad-banded structure, although much less pronounced, 

appears after the triple peak in the density at 1.29 ~, 1.38 ~, and 

l .50 ~- The latter is possibly assignable as b1g(4) + ag(6). The 

b1g(4) mode is again not seen in the h-8 system. Moreover, from 
I 

Franck-Condon factor predictions, Wessel concludes -that a9(6) assumes 

much more borrowing activity in d-8 than h-8. This reinforces some­

what this assignment. 

The main double peak in the spectrum is due to the interaction of 
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the 1B2u origin and the triple peak centered at around +l .40 t. 

This origin, after interacting with the 2261 cm-l and 2280 cm-1 

levels, is pushed to higher energy where it interacts with the 

triplet. This region is reminiscent of the resonance spectra 

discussed previously by the authors [15b]. Another way of looking 

at this structure is to realize that the density function and 

spectrum are often approximately inversely related. That is, 

when the density is high, the spectrum shows a dip, and vice versa. 

The same notion is evidenced in the region just to the left of 

-2.70 t. The central region from -0.70 to 1.0 twas possibly the 

most difficult region to fit in this spectrum. The spectral shape 

is incredibly sensitive to the variations of the individual level 

parameters in this region. 

C. h-8 Origin RP.ginn in DurenP 

The density function and calculated and observed spectra are 

shown in Fig. (4). The parameters of the fit are given in Tables 1 

and 3. The durene host crystal produces the sharpest spectra of the 

two hosts discussed here. This can be seen both in the spectrum 

itself and in the density function. The spectrum's general 

appearance is similar to the h-8 spectrum in that both are double 

humped. There are differences between the two spectra. Most 
-1 noticeable in the durene spectra are the two strong peaks at 3087 cm 

and 3144 cm-l. These have no parallel in the p-xylene spectrum. 



-186-

FIGURE 4 

h-8 origin region in durene host. Observed spectrum is Wessel 's. 
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The basic features of the durene spectrum can be understood 

by a two state argument similar to the h-8 p-xylene spectrum. If 

the region around -2.0 ~ (2915 cm- 1) is considered to be one state, 

then its interaction with the origin at 2983 cm-l causes the basic 

splitting pattern. Assignments in the 2915 cm-l region are not as 

interesting as in the d-8 p-xylene spectrum. The two strong peaks 

at 3087 cm-l and 3144 cm-l are due mainly to two strong coupled 

levels at 2.80 ~ (3077 cm- 1) and 4.20 ~ (3123 cm- 1) respectively. 

These two levels have been tentatively assigned as b1g(7) + ag(8) 

+ag(4) and b1g(7) + ag(8) + ag(3). In this region one would perhaps 

expect some contribution from the ag(9) addition to the origin. 

Thus, most conclusions about interaction strengths in this region 

are somewhat dubious. 

The density function is amazingly sharp. The number of levels 

is high, but they are all for the most part resolved. Only in the 

regions around -2.00 ~ and from +3.00 ~ to +6.20 ~ is there any 

appreciable broadness underlying the sharp structure. This is in 

marked contrast to the situations in h-8 and d-8 p-xylene spectra. 

It may indicate that there is less molecule-lattice interaction 

resulting in less phonon activity. A second explanation may be 

that solvent shifts of the triplet levels with respect to the 

singlet levels are different for durene and p-xylene hosts. It 

thus can be argued that the triplet level shift in durene leads to 

less broadening than in p-xylene if such a triplet exists. Along 

these lines, the broadening from +3.00 ~ on may be due to the 



-194-

presence of a triplet level originating at about that position. 

This is a similar type of argument to that made by Hochstrasser [4]. 

Both of the above arguments should be recognized as being highly 

speculative since we can offer no real quantitative evidence for 

either one (or for any other explanation). 

D. d-8 Low Resolution, 

Low Energy and Origin in Durene 

The density function and calculated and observed spectra are 

shown in Fig. (5). The parameters of the fit are given in Tables 1 

and 5. Because this is a low resolution spectrum, very little of 

the interesting detail around the resonance region can be resolved. 

The low energy region is easily understood by first order theory if 

one ignores the Franck-Condon overlap calc~lations as discussed 

earlier. The resonance region appears to be different from the pre­

vious spectra in that there does not appear to be any one or two 

strongly coupled levels which determine the intensity pattern. The 

levels around the origin are mostly of similar coupling strength 

and width. The result, as shown in the spectrum, is no overall 

splitting as seen previously (especially the broad doublet as in 

h-8 origins in p-xylene and durene). The spectrum can be described 

as a broad peak with superimposed fine structure. Little more can 

be said about this particular spectrum. No assignments of the zero 
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FIGURE 5 

d-8 origin plus some of the low energy spectrum in durene host. 

Observed spectrum is Wessel 's. 
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order levels were attempted. 

V. RESULTS -- a9(9) ADDITIONS 

A. h-8 p-xylene 

The density function, calculated spectrum and observed spectrum 

are shown in Fig. (6). The parameters of the fit are given in 

Tables 1 and 6. The resemblance of the origin and ag(9) addition 

spectra is really quite remarkable. This resemblance also carries 

over into the density functions. It appears that on this basis the 

main features of the spectrum are determined by adding a single 

ag(9) quantum to both the 1B2u 0-0 and to the 1B3u levels in resonance 

with it. Other mode combinations seem to be less significant in 

determining density. Most of the features of this spectrum can be 

readily explained in the same manner as the features of the h-8 

origin spectrum. No assignments were attempted for the zero order 

levels. 

The major difference between the origin and ag(9) addition 

density functions is the different shape and shift in the maximum 

of the main peak. In the h-8 spectrum its shape can be crudely 

described as a peak with a high energy tail. This tail, as noted 

earlier, could possibly be attributed to phonon mode coupling. 

However, in the ag(9) addition density, the peak seems to have a 
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FIGURE 6 

h-8 origin+ a9(9) addition in p-xylene. Observed spectrum is 

Wessel' s. 
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low energy tail. This cannot be rationalized in terms of phonon 

modes (at least at low temperatures). It appears that one can only 

say that the interaction strength has been redistributed among the 

individual levels which combine to give the broad "level". This 

may be an indication that phonon modes play less of a role in 

detennining the intensity pattern, but such a conclusion is quite 

tenuous. Most other parts of the density functions are quite 

similar. 

B. d-8 in p-xylene 

The density and calculated and observed spectra are shown in 

Fig.(7}. The parameters of the fit are given in Tables l and 7. 

Again, as in the h-8 p-xylene case, the spectra of origin and ag(9) 

are remarkably similar in many respects. However, there are also 

some striking differences. Most notable is the disappearance of the 

major origin peak 2256 cm-l (attributed to b1g(2)) in the ag(9) 
-1 -1 addition. Also, the two strong peaks at 2417 cm .and 2455 cm are 

much reduced in intensity. The set of four peaks (2267, 2280, 2301, 

2331 cm-1) is still present in the a9(9) addition with much the 

same intensity pattern. Also, the structure on the high energy end 

of the spectrum is different but not drastically so. 

The big problem is to explain what happens to the 2256 cm-l 

peak in the ag(9) addition. If the origin assignment of b19{2) 



-208-

FIGURE 7 

d-8 origin+ a (9) addition in p-xylene. Observed spectrum is 
g 

Wessel 1 s. 
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fundamental is correct, it appears that the Franck-Condon overlap 

factors cause a drastic reduction of the intensity of this 

component. A comparison of the widths shows that this level 

increases in width from 2.5 cm-l to either 4.2 or 3.8 cm-l. It 

is difficult to ascertain if this is significant. This aspect of 

the ag(9) addition remains a puzzle. The decrease in intensity 

of the doublet 2417 and 2455 cm-l is most likely due to the 

absence of a state corresponding to the strong 2267 cm-l origin 

level. In the origin region its interaction with the 1B2u 0 

origin shoves intensity into the doublet. In the ag(9) addition 

it is not present and the doublet is less intense even though the 

states corresponding to the origin triplet have roughly the same 

interaction energy in the origin and the ag(9) addition. The 

co,nnents on phonon mode activity made for the origin region still 

seem to apply to the ag(9) addition region. We ignore, of course, 

the possible intensity sources 1B2u + ag(6) or ag(7) which should 

lie around 830 cm-l above the origin, relatively close to the 

region of the a9(9) addition. Possibly multiple source interference 

causes the reduction of the 2267 cm-l analog in the a9(9) addition 

region. 

C. h-8 in Durene 

The density, calculated spectra and observed spectra are shown 

in Fig. (8). The parameters of the fit are given in Tables 1 and 8. 
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FIGURE 8 

h-8 origin+ a
9
{9) addition in durene. Observed spectrum is 

Wessel 's. 
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Both the spectra and densities of the origin and ag(9) addition regions 

are remarkably similar, perhaps even more so than the h-8 p-xylene 

case. The only real difference occurs at the high energy end of the 

ag(9) spectrum where the two peaks corresponding to the origin peaks 

at 3087 and 3144 cm-l appear with much reduced intensity. Rationaliza­

tions about Franck-Condon factors could be one explanation. Another 

might be multiple source interference. As these peaks occur on the 

high energy end of the origin spectrum, they might be subject to 

interference (around the origin constructive) between 1B2u 0-0 and 

1B2u 0-0 + ag(9). In the ag(9) region, the contribution of the 0-0 

is reduced and the interference may now become destructive. This 

is only a speculation as we have not done the phasing calculations 

to ju s ti f y i t . 

VII. 1B2u ORIGINS AND THEIR WIDTHS 

A subject which we have as yet not touched upon is the "zero 

order" width of the 1B2u states. By "zero order" width we mean the 

width due to the constant component of the weighted density function. 

It was noted earlier, and can be seen in Table 1, that these widths 

are much greater than those observed for the 1B3u levels. We are 

fairly confident that these widths are not in error by the order of 

magnitude difference between 183u and 1B2u levels. Thus, the 

increased width of the 1 B2 u state seems real. We have plotted in 
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Figs. (9) and (10) examples of the width of the 1B2u origin. The 

pure Lorentzian (plus baseline) is superimposed on the calculated 

spectrum. One can see how the wings of the pure Lorentzian determine 

the wings of the spectrum. It was this type of judgement, plus 

considerations of the general intensity pattern near resonance, that 

lead to the estimation of the widths. One can see that it would be 

very difficult to estimate the width to an accuracy of a few 

wavenumbers, but variation of this parameter does indeed show that 

some accuracy is attainable. 

To what can this width be due? We can offer no definitive 

answer to this question. It is surely not due to an increase in 

the radiative lifetime over the 1B3u state since this would lead 

to a drastic increase in the intensity of the transition which is 

not observed. The only other reasonable explanation seems to be 

interaction with some other electronic states which broaden the 

1B2u state, but not the 183u state. The only other possible 

electronic states would seem to be triplets. This seems to be a 

difficult question to resolve and deserves further attention. Our 

spectral fitting procedure cannot suggest an answer, but can only 

point up the problem. 

Also in Figs. (9) and (10) one gets a somewhat clearer picture 

of how the basic intensity patterns discussed earlier are determined. 

One can visually perform a crude, first order perturbation splitting 

argument to arrive at the overall intensity patterns. Also, it is 
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FIGURE 9 

Calculated h-8 origin region in durene. The density is plotted 

above. The dashed line superimposed on the spectrum is the pure 

Lorentzian due to the constant component of the density. Its width is 

33.3 cm-l (HWHM). 
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FIGURE 10 

Calculated d-8 origin region in p-xylene. Same as Fig. 9 

The width of the Lorentzian is 42.2 cm-l (HWHM). 
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easy to see how, if the Lorentzian were much narrower, the overall 

intensity patterns would not be correct. The difficulty in 

determining accurately the zero order positions and widths of the 

1B2u state is the weakest link in our fitting procedure. One 

further fact must be noted. Wessel places the zero order 1B2u 

positions at much lower energies (~100-200 cm- 1) than we do. He 

included in his calculations all the low energy lines in his 

diagonalization which supposedly push the 1B2u state up into the 

region where resonance structure is observed. We place the 1B2u 

where it seems to give the best fit to the resonance structure, 

ignoring the low energy lines. This is the reason for this 

discrepancy in our 1 B2u positions. If we also calcul~ted the low 

energy lines, our zero order position would most likely have to 

be moved to lower energy. 

VIII. PREDICTED EMISSION DECAY CURVES 

Using our calculated spectra and the Fourier transform 

technique outlined previously [15a], we can compute what the 

resonance emission decay curves should look like. Caution must 

be used in comparing this with vapor phase emission decay curves 

[7]. Our system is not a vapor phase spectrum. The vapor 

spectrum at low temperatures has not been measured, but at room 

and slightly below room temperature, the spectrum is very broad and 
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complicated by strong sequence structure. Moreover, our decay 

curves are computed for ideal, minimum uncertainty-principle width 

excitation pulses. Even the experiments of Wannier, et. al. [7], 

using the fourth harmonic of the Nd 3+ glass laser, do not have the 

uncertainty-principle minimum width. This, as shown [15b], will 

tend to wash out any nonexponential behavior of the decay. 

We have plotted two examples of decay curves. These are 

shown in Figs. (11) and (12). The first uses the h-8 origin 

region in durene. Using the values in Table 1 for the width of 

the 1B2u state, we can now give absolute values to our relative 

units of time. Thus, one epsilon is equal to 33.3 cm-l for the 

h-8 origin in durene. This means,employing the uncertainty 

principle ~t~w ~ 1, that one lifetime unit is equal to 0.159 

picoseconds. It should be noted that these numbers are in error 

by approximately 20-30 percent at most. The second example is 

the d-8 origin in p-xylene. Here the width is~= 42.2 cm-l 

giving a lifetime unit of 0.126 picoseconds. 

We give three examples of different widths and positions of 

the excitation pulse for each spectrum. All decay curves show 

quantum beat effects as expected [15a]. The spacing of the beats 

in time is inversely related to the separation of the excited peaks 

in the spectrum. Thus, in Figs. (llc) and (12c), the beats are 

very closely spaced corresponding to the relatively large separation 

of the major excited peaks in the spectrum. As we narrow the 
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FIGURE 11 

Various calculated emission decay curves for h-8 origin region 

in durene. The Gaussian excitation parameters are: 

Position (EJ Width (~) 

(a) -3.8 1.2 

(b) -3.0 2.5 

(c) 0.0 6.0 
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FIGURE 12 

Various calculated emission decay curves for d-8 origin region 

in p-xylene. The Gaussian excitation parameters are: 

Position (~) Width (~) 

(a) l. 3 2.0 

(b) -1. 7 l.O 

(c) -0.7 6.0 
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bandwidth of the excitation pulse, the peaks which contribute to 

the decay curve are more closely spaced given beats which are 

relatively widely spaced in time. The irregular pattern of the 

beat structure is due to the irregular spacing of the spectral 

peaks. See Fig. (1) for a more regular peak spacing in the spectrum 

and a more expected beat pattern. 

The long decay in the curves results from the very narrow line 

widths of some of the peaks in the spectrum. This is what most 

ordinary experiments measure. These long decay times are due mainly 

to the width of the coupled levP.ls of the 1 B3u state. Thus, it is 

not unexpected that the exponential lifetimes measured by various 

workers (which correspond to our long decay times) in the region 

of the second singlet are close to those measured in the first 

singlet [26]. This also is a partial confirmation of our 

criticism of the Douglas 11 dilution 11 effect discussed earlier. 

As one can see from our numbers, it is difficult to understand how 

the experiments of Wannier, et. al. [7] were able to see beat decays 

on the basis of the time resolution of the experiment. 

plotted decay curves cover roughly three picoseconds. 

Our entire 

The beats occur 

on times less than this. There is no way that Wannier, et~ al .'s time 

resolution could have detected these beats. Also, if one plots our 

curves linearly instead of logarithmically, the beats are so weak 

it would seem difficult to be able to observe them given the weakness 

of the resonance fluorescence. Thus, the results of this experiment 
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seem doubtful as far as their having been quantum beats observed. 

IX. SUMMARY 

We have presented here a general discussion of the intermediate 

or narrow energy gap class of molecules in terms of their spectra 

and emission decay curves. There we showed that the speed of the 

emission decay is related not to the integrated intensity of the 

absorption band, but to the width of the peaks in the absorption 

spectrum. The general results were then made more specific by 

calculating the spectra and emission decay curves of the second 

singlet of naphthalene in two host crystals where fine structure is 

resolvable. From these calculations one can get values of the 

position, width, and interaction energies of the vibronic levels of 

the first singlet which interact with the second singlet giving rise 

to the fine structure. From a few sample computed decay curves 

considerable doubt is cast on the experiments of Wannier, et. al. [7] 

where quantum beats were reported in the resonance fluorescence of the 

second singlet. 
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