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ABSTRACT

FTIR spectromicroscopy heavily resides in the domain of cell-based and tissue-
based studies when focusing on its direct application to biological systems. The goal of the
reported graduate research is to extend FTIR spectromicroscopy to multicellular whole-
organism imaging, ideally for non-invasive, non-destructive, and label-free spatiochemical
imaging of biological model Caenorhabditis elegans (C. elegans). With modern optics,
detector, and light source technologies implemented at synchrotron facilities, this thesis
focuses on exploring the feasibility of multicellular whole-organism imaging while
identifying challenges and presenting working solutions for them. A brief introduction and
explanation of infrared spectroscopy and the instrumentation enabling the experimental
technique’s development into one of spatiochemical imaging capabilities (Chapter 1)
precedes the performed graduate research. The selection and preliminary assessment of C.
elegans as our biological multicellular whole-organism model (Chapter 2), a solution for
performing efficient scanning hyperspectral imaging of complex biological organisms
(Chapter 3), and the design and synthesis of biomimetic nanomaterials for IR imaging

applications (Chapter 4) are described in subsequent chapters.



PUBLISHED CONTENT AND CONTRIBUTIONS

Holman, E.A., Fang, YS., Chen, L. et al. Autonomous adaptive data acquisition for
scanning hyperspectral imaging. Commun Biol 3, 684 (2020).
https://doi.org/10.1038/s42003-020-01385-3

E.A.H. participated in implementing the algorithm at ALS Beamline 1.4.3. and in
designing and testing the IR processing module. E.A.H. designed and performed proof-
of-principle experiments. L.C. and E.A.H. performed IR data processing. E.A.H.
performed IR spectral analysis, gathered materials from all authors, and wrote the
manuscript.


https://doi.org/10.1038/s42003-020-01385-3

TABLE OF CONTENTS

vi

ACKNOWIEAGEMENLS .....cveviicieecec e i
ADSIFACT ... iv
Published Content and ContribULIONS. ..o, %
Table OF CONENES......cviiieecicce e vi
NOMENCIALUIE ..ottt vii
Chapter 1: INtrodUCTION.........ccooiiiiieiee e 1
Brief history of mid-infrared SPeCtroSCOPY........ccvveerrierirnieririseeseeeeneae 1
Instrumentation for FTIR SPectromiCroSCOPY ........cccccevvverveerereeresieiesiereenen, 3
Toward applications for whole-organism spatiochemical imaging............. 8
RETEIENCES. ...t e 10
Chapter 2: Whole-organism FTIR spectromicroscopy: a feasibility study in
Caenorhabditis ElEgaNS ...........cociiiiiiee e 11
N 0 1 - T S 11
INEFOAUCTION. ...t 11
RESUILS aNd AISCUSSION.......ccveieiirieieiirieisieriee et nn s 13
CONCIUSTION ..t 24
METNOUS ... e 25
RETEIENCES. ... bbb 26
Chapter 3: Autonomous adaptive data acquisition for scanning hyperspectral imaging
............................................................................................................................ 28
ADSIFACT ... s 28
INEFOAUCTION. ....cvieiece bbb 29
RESUILS ...t bbb 30
DISCUSSION ...ttt sttt 42
METNOUS ... e 44
RETEIENCES. ... bbb 52
Chapter 4: Designing optically transparent photocrosslinked peptoid nanosheets for
IMAging aPPICALIONS.......cccoiiiiiee s 54
ADSIFACT ... s 54
INEFOAUCTION. ...t bbb 54
RESUILS aNd AISCUSSION........ccveiiiirieirieiieiesie et 58
CONCIUSION ..t 66
METNOUS ... e 66
RETEIENCES. ... bbb 70
N o] o151 T L) A OSSR 71
APPENAIX B ..o 72

Y o] o<1 T L) S 75



vil

NOMENCLATURE

IR. Infrared region of the electromagnetic spectrum.
MIR. Mid-infrared region of the electromagnetic spectrum.

Absorption band. A range of energies, often described in the form of frequency or
wavelength for spectroscopy, that are characteristic of a specific transition from an initial to
final state of a sample.

Thermopile. A device using the thermoelectric effect to convert thermal energy into
electrical energy through the use of connected thermocouples.

Wheatstone bridge. The resistance bridge circuit that calculates an unknown resistance by
balancing two arms of a bridge circuit. It consists of three known resistors and one unknown
resistor and is used to precisely measure low resistances.

Wavenumber. A unit of spatial frequency that is defined as number of wavelengths per unit
distance, typically centimeters for applications in spectroscopy.

FTIR. Fourier-transform infrared spectroscopy, a technique used to obtain a high-resolution
infrared spectrum of absorption or emission of a sample.

NMR spectroscopy. Nuclear magnetic resonance spectroscopy.

NEP. Noise equivalent power.

BLIP. Background-limited infrared photodetector.

MCT. Mercury cadmium telluride (usually used in the case of detector identification).
SIR. Synchrotron infrared radiation.

SR-FTIR. Synchrotron radiation Fourier transform infrared (usually used with
spectromicroscopy).

PCA. Principal component analysis.
MCR-ALS. Multivariate curve resolution alternating least square analysis.

VIS. Visible light region of the electromagnetic spectrum.



Chapter 1

INTRODUCTION

“Who sees farther, a dwarf or a giant? Surely a giant for his eyes are situated at a higher
level than those of a dwarf. But if the dwarf is placed on the shoulders of the giant, who sees
further? Surely the dwarf, for now the eyes of the dwarf are situated at a higher level than
those of the giant. So too, we are dwarfs, astride the shoulders of giants. We master their
wisdom and move beyond it. Due to their wisdom we grow wise and are able to say all that
we say, but not because we are greater than they.”

Isaiah di Trani (c. 1180-1250)

Brief history of mid-infrared spectroscopy|[1]

The infrared (IR) region of the electromagnetic spectrum was first discovered by Sir
William Herschel in 1800 and emerged from his observation that heat along with light was
generated on the lenses that he used for his solar observations. Through the early 1800s,
sensitive temperature-measurement methods and alternative sources of solar heat radiation
were developed and discovered respectively. This lay the foundation for experiments of the
1840s and 1850s, which supported John Tyndall’s speculation that the origins of IR
absorption are vibrations within molecules.

Macedonio Melloni performed the first measurements of the mid-infrared (MIR)
absorption bands using a rocksalt crystal for dispersion experiments. By 1850, he completed
his slit-containing spectrometer design that incorporated a lens to image the slit and a method
by which the slit-shaped thermopile could sample across the spectrum created by a fixed
prism. This became the instrument for MIR radiation study for several decades, and its

spectral resolution was limited by the amount of radiation needed to fill the detector.



2
Samuel P. Langley addressed the resolution issue by implementing three concepts

into the form of a smaller detector, termed a bolometer. By constructing the detector with
low heat capacity materials, he created a chamber in which temperature changes would be
greatly increased in comparison to previous devices; by utilizing narrow slits, he reduced the
heat lost by the device prior to assessing the device’s change in temperature. Incorporating
A. F. Svanberg’s methodology of heat detection from 1851, Langley used a blackened
platinum wire as a material of unknown electrical resistance in a Wheatstone bridge—the
platinum wire was blackened to better absorb the infrared radiation, and its resistance would
change as a function of temperature. The bolometer would be used to lay the foundation for
further developments in the IR detector field until the application of electronic amplification
methods and semiconductor technology during World War 11.

Although Langley also was responsible from the first calibration of IR spectra in
terms of wavelength, Willem Henri Julius recorded the MIR spectra of 20 organic liquids in
1892 and found that certain compounds with the same functional group always had a
conserved absorption band at the same wavenumber[2]. His work highlighted multiple
instances of spectral regularity among the 20 compounds and drew attention to the strengths
of the fundamental region of infrared, namely the amount of detail present in the spectra
when systematically measuring across the MIR region. Years later and inspired by W. H.
Julius’ results, William Coblentz obtained spectra of 112 organic compounds up to the
transmission limit of his rocksalt prism of 667 cm™ (15 um) in comparison to the
transmission limit of Julius’ at 1000 cm™ (10 pm). In the 1920s, Jean Lecomte introduced
the concept of viewing an IR spectrum as an overall pattern of absorption bands that could

serve as a molecular fingerprint when studied with the compound’s distinguishable
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isomers[3]. By the 1930s, Reinhard Mecke developed a notation for approximately

describing vibrational motions of group characteristic vibrational modes, namely the bond-
stretching (v), angle-bending (8), and out-0f-plane (y) modes. The cumulative results of the
scientists around the world during this time and were applied during World War |1, showing
the usefulness of IR spectroscopy for molecular structure analysis via group frequencies by
1947[1].

With advancements in electronic amplification methods and double beam
spectrometers, the level of automation and ability to correct the data for light-source behavior
respectively greatly increased the accessibility and ease of IR spectroscopy during and after
World War II. The introduction of computers to spectrometers in the 1970s enabled
exploitation of interferometry and subsequent development of Fourier transform infrared
(FTIR) spectrometers[1]. The advantages obtained in higher sensitivity coupled with digital
processing of IR data drastically increased the opportunities of IR spectroscopic applications,
setting the stage for modern-day FTIR imaging and its use in agriculture, polymer science,
and biomedicine[4, 5].

Instrumentation for FTIR spectromicroscopy

New experiments that could be performed after 1945 due to technological
advancements in instrumentation broadened our understanding of spectroscopic phenomena
via IR spectroscopy until NMR spectroscopy of the 1950s and mass spectrometry of the
1960s were able to serve as physical methods for determining structural information of
compounds. However, this only led IR spectroscopy to be explored for further applications
towards areas such as microscopy. IR spectromicroscopy combines infrared spectral analysis

with the spatial resolution of a microscope. Three major technologies emerged that supported
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the potential of FTIR to be used as a spatiochemical imaging technique: the sensitive infrared

detectors, brighter light sources and optics, and increased computational power of computers
used with the spectral microscopes.

Well-designed infrared detectors try to achieve generally reasonable responsivity and
noise equivalent power (NEP) while minimizing all noise sources to the point where thermal
background shot noise is the dominant noise component for the detector. IR detectors that
operate in this regime successfully are called background limited infrared photodetectors
(BLIPs). Where an ideal IR detector generates no noise, and hence, the only other noise
component detectable by the detector should emerge from the shot noise due to photons
reaching the detector from objects at ambient temperatures that are within the detector’s field
to view, a detector operating in the background limited regime or BLIP is the best practical
form of a detector in the real-world experimental space. In the case of infrared detectors,
responsivity is determined by the ratio of electrical output divided by the incident infrared
power in order to quantitatively determine the detector’s ability to convert infrared radiation
into electrical signal. Importantly, this parameter neither determines the repeatability of the
detector’s measurement nor the minimum magnitude of signal that the detector can resolve.
To address this, NEP is used to quantitatively assess the detector’s ability to resolve small
signals and is the ratio of noise power density at the detector’s output divided by the its
responsivity[6]. NEP is incorporated into specific detectivity (D*), which corrects for NEP’s

dependency on the detector’s active area as

— (Adet)o'5

D*
NEP ’
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where Adet is the area of the detector, and D” also represents the signal-to-noise ratio of a

detector of unit area in a unit bandwidth when a radiant power of 1 W is hitting the detector.

With the emergence of the photon detectors and cryogenic cooling options, detection
capabilities increased for IR spectroscopy in the MIR region for two reasons: (1) photon
detectors respond over a narrow section of the spectrum in comparison to thermal detectors
to reduce thermal background noise and reach operational BLIP conditions with appropriate
cooling, and (2) photon detectors operate on a much faster time scale than thermal detectors,
the response time being on the order of microseconds instead of milliseconds respectively[6].
Specifically, the introduction single-element photoconductive mercury cadmium telluride
(MCT) detectors greatly enabled MIR spectroscopy to enter its era of time-resolved
spectroscopy when paired with an interferometer.

As a direct result of computational abilities and the MCT detector’s response time,
co-addition of frames or mirror scans could easily be performed per spectrum as well as
background subtraction per spectrum in order to increase the signal-to-noise ratio (S/N); the
higher sensitivity of the photoconductive single-element MCT detectors also contributed to
the overall increase of signal with minimal noise[7]. To further sample visualization with
FTIR spectroscopy, the commercial development of multichannel IR detectors became
possible through a hybrid detector approach, in which one layer performs the photon
detection and the second layer executes signal collection, multiplexing, and amplification.
This permitted the development of single-element detector arrays to increase the spatial
coverage per sampling event—64 x 64 pixel MCT detectors (3500 cm™ to 900 cm™) and 256
X 256 MCT arrays (4000 cm™ to 900 cm™) became commercially available in FTIR

instruments[4]. Today, IR detectors can effectively cover the MIR region of 4000 cm™to 650
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cmt while spatially resolving scientific phenomena. The main detection limitation occurs in

the temporal domain, where the speed of photon-to-signal conversion in MCT detectors
occurs on the millisecond timescale. It should be noted that in 2021, single-photon detection
was successful achieved in the MIR region for wavelengths between 3 to 10 microns using
tungsten silicide superconducting nanowire detectors, suggesting that developments in
nanotechnology may enable future detector developments for FTIR spectromicroscopy|[8].
In a similar manner to detector technology limiting the broad application of FTIR
spectroscopy, light sources and their associated brightness became increasingly important
when aiming for high spectral as well as spatial resolution for FTIR spectromicroscopy. Light
of a specific wavelength is often characterized by its brightness, bandwidth, and power.

Brightness is defined as the following

ower
B@) = pow

area X solid angle’
and its relationship to the S/N in an IR region where an FTIR instrument is limited by detector
noise is

S B@)x(6u)xD*xC
N~ (Af)O5x A0S

where B(V) is source brightness, 57 is resolution, D" is detectivity, C is optical efficiency
multiplied by the limiting étendue of the experiment, Af is the electronic bandwidth, and A
is detector area. Since brightness cannot be well-controlled for IR thermal sources outside of
either altering emissivity or changing temperature, brightness maximization was typically
ignored until photodetectors and alternative light sources became available and accessible.
Government-funded electron particle accelerators enabled the generation and use of

synchrotron radiation as a high-brightness and broadband IR light source for diffraction-
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limited FTIR spectromicroscopy. The Advanced Light Source at Lawrence Berkeley

National Laboratory is the nearest government synchrotron IR (SIR) radiation source to
Pasadena, CA. At this synchrotron, electrons are accelerated close to the speed of light and
are circulating in a storage ring. Since the electron is traveling relativistically in a magnetic
field with a motion that describes a circle, the light energy emitted from the electron generates
a sharp pulse (in time), its resulting Fourier transform yielding a broadband spectrum[9].
Specifically, SIR can be up to 1000 times brighter than conventional thermal IR sources in
the molecular fingerprint region of the MIR region[10]. When paired with custom beamline
optics, this brightness can approach a diffraction-limited spot size of 2 to 10 um, which
directly contrasts with the globar IR source spot size of greater than 100 pum aperture in order
to obtain similar S/N values[11].

Although more developments in materials science and engineering allowed scientists
to harness SIR as an alternative light source in FTIR spectromicroscopy, advancements in
computer hardware and software catalyzed the technique’s application to complex biological
systems. Automation of the Michelson interferometer in FTIR spectrometers permitted rapid
acquisition of IR spectra, and utilizing broadband light sources increased the detector’s S/N
by obtaining multiplexed measurements—as described by Fellgett’s advantage[1]. By
increasing the speed with which IR spectra could be gathered from a hardware standpoint, it
became possible to not only observe biological systems in a non-invasive and label-free
manner but also to observe their phenomena and how these organisms may change under
perturbative effects, such as introducing environmental stimuli. An initial primary concern
emerged from the intensity of the MIR photons generated from the synchrotron when

applying SR-FTIR spectromicroscopy to living biological systems, though the energy of the
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MIR photons theoretically was too low in energy to cause bond breakage. This question was

addressed by assessing temperature heating of a fully hydrated lipid layer. The mechanism
of heating emerges from infrared heating of water, which then causes the hydrated lipid layer
to undergo a phase change at 315 K during heating. This experiment showed that negligible
sample heating at 0.5 £ 0.2 K occurred over the course of a 30-minute acquisition timeframe
at a single point[12]. With these findings along with experiments monitoring E. coli biofilm
response to antibiotics, SR-FTIR spectromicroscopy became widely accepted as a non-
invasive, label-free spatiochemical imaging technique that could potentially track in situ
biochemical phenomena in real-time[13].
Toward applications for whole-organism spatiochemical imaging

SR-FTIR spectromicroscopy is a non-destructive, label-free, highly sensitive
spatiochemical technique that can perform real-time monitoring of biological systems
ranging from single cells to biofilms and tissues. Over the last decade, MIR-tunable quantum
cascade lasers were developed further to serve as a more accessible broadband light source
alternative to a synchrotron[14, 15]. With broadband MIR light sources to be implemented
in the near future for FTIR spectromicroscopy, interest in actively applying this technique in
the biomedical field for precision theranostics and disease research has renewed and grown.

Currently, FTIR spectromicroscopy heavily resides in the domain of cell-based and
tissue-based studies when focusing on its direct application to biological systems. The goal
of this reported graduate research is to extend FTIR spectromicroscopy to multicellular
whole-organism imaging via the biological model Caenorhabditis elegans (C. elegans).
With modern optics, detector, and light-source technologies implemented at synchrotron

facilities, this thesis focuses on exploring the feasibility of multicellular whole-organism
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imaging while identifying challenges and presenting working solutions for them. The

selection and preliminary assessment of C. elegans as our biological multicellular whole-
organism model (Chapter 2), a solution for performing efficient scanning hyperspectral
imaging of complex biological organisms (Chapter 3), and the design and synthesis of
biomimetic nanomaterials for IR imaging applications (Chapter 4) are described in

subsequent chapters.
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Chapter 2

WHOLE-ORGANISM FTIR SPECTROMICROSCOPY: A FEASIBILITY
STUDY IN CAENORHABDITIS ELEGANS

Abstract

We assess the feasibility of mapping the biochemical energy landscape in the
roundworm C. elegans as the first step towards developing experiments to elucidate
biochemical cues driving the decision to different animal states, such as either young larval
(L2) arrest or a strain-modeled disease state. Our preliminary results show that the bright SR-
FTIR offers high signal-to-noise spectra with diffraction-limited spatial resolution in C.
elegans; our fine SR-FTIR spectral features can describe spatially compartmentalized
chemistries in the context of the whole organism when complemented with other orthogonal
analytical techniques such as mass spectrometry. This suggests that further developments in
experimental techniques to perform non-invasive, label-free spatiochemical imaging of C.
elegans in real time can be used for future studies testing the hypothesis that global
biochemical phenotypes may play a deterministic role in subsequent gene expression.
Introduction

Nutritional control of gene expression has come to the forefront of biological and
health research due to increasing evidence supporting a nutritional parameter behind aging
as well as prevalent disease states such as diabetes, obesity, and cancer[1]. C. elegans
provides a superb model system to study nutritional control due to its ability to halt
development very early in response to environmental cues that are independent of population

density, which in this case is regulated commonly through pheromone signaling. L1 arrest is
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triggered by an absence of food, is reversible with feeding, and confers a high resistance to

a variety of environmental stresses without inducing morphological changes in the larvae—
contrasting with other alternative developmental programs. When coupling the lack of
morphological modification in the L1 arrest state with the principle of stress response
hormesis[2], a preliminary biochemical investigation of L1 and L1-arrested larvae requires
a technique that permits non-invasive and real-time probing of C. elegans to exclude
technique-induced free radical production and propagation that alter observable
biochemistries[3-5]. This is especially true in the case of expanding biological studies toward
investigating the biochemistry behind the concept of maternal stress memory in C. elegans
progeny after their mother undergoes stress-induced L1 arrest[6].

Synchrotron  radiation-based ~ Fourier  transform  infrared  (SR-FTIR)
spectromicroscopy meets the non-invasive spatiotemporal and spatiochemical baseline
requirements necessary to achieve our experimental goal[7-9]. This is achieved due to SIR
being a broadband and very bright infrared light source, which addresses S/N considerations
mentioned in Chapter 1 with respect to multiplexed measurements improving S/N as well
as the direct relationship between instrument S/N and light source brightness. Non-
destructive FTIR spectromicroscopy is established as a useful tool to study nematodes[10-
12]. Starting in 2004, the Doglia group demonstrated that their highly reproducible FTIR
spectromicroscopy data revealed distinct principal absorption band differences among the
pharynx, intestine, and tail regions of C. elegans. With their single-point measurements from
a single-element infrared detector of photoconductive mercury cadmium telluride (MCT)
using an aperture size of 60pum x 80um, they obtained a 4 cm™ spectral resolution over the

course of 256 scan co-additions[10]. Their detector selection and data acquisition method
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theoretically favors spectral-chemical resolution over spatial resolution with coverage of the

mid-infrared region with a lowest cut-off of ~650 cm™.

The subsequent decade following the Doglia study was marked with technological
advancements in not only computer hardware and software used to control data acquisition
but also focal plane array (FPA) detectors based upon photovoltaic MCT designs rather than
photoconductive MCT designs. The first application of a 64 x 64 pixel FPA detector to
effectively cover a 170 um x 170 um sample area was applied to FTIR investigations C.
elegans in 2016[11], and the FTIR-FPA imaging data revealed that rapid mapping speed
came at the cost of fine spectral information encoded in the FTIR signal. Each pixel’s S/N in
MCT FPA detectors is determined by less sensitive photovoltaic MCT detectors when
compared to the photoconductive MCT detectors,[13] which motivated the development of
our approach to overcome this challenge of signal-to-noise ratio (S/N) decrease through
experimental design.

Results and discussion

Our solution to maintain rapid chemical and diffraction-limited spatial mapping of
C. elegans for potential live, multicellular organism imaging at the cellular and tissue level
is to simply increase the brightness of the broadband source—in other words, replace the
thermal infrared emitter IR source with a much brighter source in the form of synchrotron
infrared radiation. Our preliminary results verified that although the FPA imaging system
permits an increased image acquisition speed by multiplexing the data acquisition, low S/N
limits its applicability to living C. elegans measurements when restricted to using a thermal
infrared emitter IR source. Next, we tested our solution of substituting the thermal infrared

emitter with synchrotron radiation as our IR source and found that our expected S/N
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advantage encoding fine spectral feature resolution among different tissue regions of the C.

elegans sample is achievable with this strategy, as depicted in Figure 1.
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Figure 1. A comparison of FTIR spectromicroscopy results obtained from using the
synchrotron versus a thermal infrared emitter as our IR source when targeting different
anatomical regions of a C. elegans sample. The SR-FTIR spectromicroscopy data (in red)
was collected over 5 seconds in 4 scans while the FTIR-FPA data (in blue) was collected
over 26 minutes in 256 scans.

The superior quality of the spectral data allows us to (1) fully mine the infrared
metadata, (2) identify defining spectral regions of interest, and (3) determine the key
differences in molecular family composition among the assayed phenotypes modeled by C.
elegans. The quality of SR-FTIR metadata directly guides our appropriate selection of
complementary analytical techniques for obtaining corroborative and additionally
informative data to characterize more comprehensively our observable, spatially

compartmentalized chemistries in the context of the whole organism.



15
After showing that SIR brightness and broadband attributes when coupled with the

sensitive photoconductive single-element MCT detector addressed concerns raised by Sheng
et al. in 2016, we proceeded to investigate the best approach for laying the foundation for
linking mass spectrometry results to non-invasive, label-free SR-FTIR spatiochemical and
spatiotemporal imaging of the living, whole-organism C. elegans animal. To test the viability
of creating either a tissue- or organ-specific FTIR library, we isolated a 5-micron-thick
section of the cuticle from a flash-frozen gravid adult C. elegans hermaphrodite for
subsequent SR-FTIR spatiochemical imaging. To avoid signal contamination, we achieved
this sectioning in a purely mechanical manner using a two-armed micromanipulator (AxisPro
SS; Micro Support Co., Ltd.; Japan) without using either chemical fixation or glue for the
removal of the cuticle. As shown in Figure 2, the chemical signature of the partial section of
the C. elegans cuticle FTIR was easily distinguishable from the background with only four

co-added scans necessary, implying that generation of SR-FTIR C. elegans tissue libraries
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Figure 2. (Left) Heat map of sectioned cuticle at 1015 cm™, an absorption band associated
with alkyl phosphate stretching modes. (Right) The bright-field image of the sample
through a 32x IR objective. The red rectangle correlates to the mapped region, each dot
indicates the location at which a broadband FTIR spectrum was acquired, and the red cursor
marks spatial location of the epicuticle FTIR spectrum shown in Figure 3.
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can be performed quickly. Theoretically, library generation for applications of SR-FTIR

spectroscopy would involve dissecting tissues, arranging the tissues into an array, and then
scanning through each sample with approximately 4 co-added scans—this translates to
approximately 1.25 seconds between each tissue sample. These data would ideally be stored
in a C. elegans database such as Wormbase for ease of reference, and the tissue samples
should retain hydration in order to preserve the structural information that can be obtained
from the FTIR spectra.

With the feasibility of tissue-based library generation for C. elegans studies affirmed,
we next addressed concerns of signal deconvolution from the cuticle data as well as the
necessary steps performed to remove synchrotron noise from the MIR region (Figure 3).

Prior to March 2019, the maximum mirror velocity of the ALS Beamline 1.4.3 spectral
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Figure 3. SR-FTIR spectrum displayed in OMNIC 9.8 from sampled point 88 of 1085,
spatially identified by the red cursor in Figure 2. When using a mirror velocity of
approximately 1.8 cm/s, synchrotron noise emerging from synchrotron-specific behavior
can be detectable in the fingerprint region of the MIR spectra.
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microscope was 1.8 cm/s. By upgrading the computer, the OMNIC software that drives the

spectral microscope, and the Michelson interferometer, we were able to achieve mirror
velocities up to 6.3 cm/s. With these velocities at a slight cost to total signal, we could shift
the synchrotron noise from the MIR fingerprint region to a variable region below 900 cm™,
with the majority of the noise restricted to 800 cm™ and below. Due to the signal
contamination specifically within the 1800 to 1700 cm™ range, we remain conservative in
our following proof-of-concept FTIR spectral analysis to support the potential physico-
chemical information that SR-FTIR spectral information can provide to the C. elegans

community.
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Figure 4. Gaussian approximations performed in OMNIC 9.8 for SR-FTIR spectrum of
epicuticle mechanically isolated from gravid adult hermaphrodite. Although synchrotron
noise is also likely present in the sharp peak approximately at 1754 cm™, the major
synchrotron noise contributions in the amide regions are labeled for clarity of epicuticle
identification.
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To accurately interpret the SR-FTIR spectra of the partial cuticle, we perform curve

fitting while assuming Gaussian distributions as shown in Figure 4. The most notable feature
of the spectrum is the complete absence of amide | and amide Il absorption bands—meaning
that this sample neither contains collagen nor glycoproteins in detectable quantities relative
to the nitrogen-less lipid content. This strongly suggests that we isolated solely the epicuticle
of the cuticle with the micromanipulator, which is known to be lipid-rich while being an
exception to the extensive collagen presence of the nematode’s flexible exoskeleton[14]. The
lack of C-N stretching modes also confirms the removal of the glycoprotein surface coat of
the cuticle, further supporting the sample’s identity as an epicuticle isolate.

Viewing the fitted Gaussian distributions in the 1800 to 1700 cm™ region, we
conservatively can comment on the strong presence of saturated aliphatic esters and
dicarboxylic acids via the v(C=0) modes, which include but are not limited to sn-1 ester C=0
(free C=0) and sn-2 ester C=0 (bound C=0) around 1741 and 1723 cm* respectively[15,
16]. Specifically, v(C=0) component bands at 1743 and 1727 cm™ that emerge strongly in
our peak deconvolution are known to be commonly shifted in hydrated diacylglycerolipids
that exhibit phase-state dependence[17]. When the strong absorption peak at 1015 cm? is
interpreted in the context of the aforementioned ester v(C=0) modes and the P=0 associated
vibrations emerging from associated and unassociated v(P=0O) modes that are embedded
between approximately 1310 and 1150 cm™[15], we can conclude that this lipid-rich
epicuticle sample contains alkyl phosphates, likely in the form of phospholipids. It is also
important to note that the presence of ethers is supported by the Gaussian deconvolution,
specifically the vasym(C-O-C) modes of vinyl ethers with a band at approximately 1205 cm™

and of saturated aliphatic ethers with bands ranging from 1150 to 1070 cm™[15].
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This preliminary chemical information on the epicuticle would ideally be

supplemented with mass spectrometry to address detection limitation concerns, especially in
the context of nitrogen-containing compounds in the epicuticle. However, several testable
hypotheses emerge from this preliminary data associated with further studies to better
understand the relatively uncharacterized epicuticle layer of the C. elegans’ cuticle[18, 19].
Currently, the epicuticle is functionally associated with water loss reduction and acting as a
physical barrier; yet, the data suggests that the ether and ester lipid-rich layer could also
potentially serve as a tunable gel or crystalline liquid depending upon the temperature and
addition of cholesterol-like secretions into the epicuticle. Ether lipids have already been
established as necessary for optimal fertility, lifespan, survival at cold temperatures, and
resistance to oxidative stress in C. elegans via loss-of-function mutation experiments[20].
The latter two concepts can potentially be relevant to the epicuticle. Survival at cold
temperatures can be related to tuning the gel-like epicuticle to maintain optimal fluidity as
temperature changes. Oxidative stress response can be related if the epicuticle is viewed not
only for its exoskeletal role but also as a temporary storage and readily available
phospholipid sink to serve potentially as free radical termination sites, molecular precursors,
and lipid-based free radical scavengers such as plasmalogens[21].

After having established the usefulness of SR-FTIR spectromicroscopy as a guiding
tool to generate evidence-driven hypotheses to increase our understanding of the
biochemistry of C. elegans at a structural and functional level, we moved towards the final
stage in assessing the feasibility of live whole-organism imaging. Accurate spectral
interpretation of C. elegans in the MIR region became possible with the FTIR spectrometer

upgrade in March 2019, and a more detailed proof-of-concept application of multivariate
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analysis for the head region of a L2 larval stage C. elegans animal SR-FTIR

spectromicroscopy is located in Chapter 3 for a spectral range of 3500 to 2600 cm™.

Therefore, we will apply multivariate curve resolution alternating least squares (MCR-ALYS)
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Figure 5. Plotted using OMNIC 9.8. (Left) Intensity plot of SR-FTIR map at 2959 cm'*
performed as a quality assessment for spatial resolution. An intensity plot at major peak
1641 cm™ (not shown) confirms that absorption spectra did not exhibit saturation due to
muscle-dense structures. (Right) Bright field image the sample through a 32x IR
objective, and the red rectangle correlates to the mapped region shown on left.
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analysis of a similar L2 larval stage C. elegans animal over the approximate spectral range

of 1800 to 875 cm™ to ensure avoidance of synchrotron noise contamination and
appropriately address the multicomponent aspect of this biological system that univariate
analyses have difficulty in comprehensively addressing[22].

To perform a data quality assessment of the acquired SR-FTIR spectral map detailing
our L2 larval stage C. elegans, we examine the univariate spectra in the alkane v(C-H) modes
for alkane functional groups for spatial and spectral resolution examination[15]. As shown
in Figure 5, we successfully achieve fine diffraction-limited spatial resolution with our 2.0
by 2.0 mapping step size while avoiding spectral signal saturation at our most intense spectral
peak—the amide I band which primarily is governed in our case by H-bonded primary amide
C=0 stretching modes exhibited by proteins[23].

In selecting our multivariate analysis method, we select MCR-ALS over principal
component analysis (PCA) due to the application of the non-negative least squares solver
used to determine the eigenvector solutions in MCR-ALS[24]. This means that our loading
vectors acquired through executing MCR with initial estimates in OMNIC 9.8 can undergo
subsequent model-fitting approximations for potentially more accurate identification of
component-associated identities when assuming non-negative components do reflect spectral
ground truth[22, 25]. We set our eigenvector number to 9 parameters, basing this on the
calculated y2-value of 0.0188 in OMNIC 9.8. Our parameter selection was further confirmed
by the residual plot which revealed coefficients for pixels outside of our region of interest
(the worm). MCR component 5 was identified as instrument-specific, and MCR components
6 and 9 emerged from wave-like behavior exhibited by IR light as it interacts with particles

close to the size of its wavelength (Appendix A).
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Our MCR-ALS spectral analysis of larval stage L2 wildtype (N2) C. elegans

detailed in Figure 6 reveals potential compartmentalization of chemistry even within the
same organs. MCR component 1 captures the overall majority of the extended chain
polypeptides (amide | band ~1630 cm™ and amide 1 band at 1525 cm™) and carbohydrates
(multiple from C-H and O-H deformation vibrations between 1460 and 1200 cm™) in the
animal, which mainly distinguishes between spectral chemistry exhibited by the organismin
contrast to the OP50-contaminated ZnSe crystal upon which the sample was mounted. MCR
component 2 co-localizes with head, neck, and body muscle[26, 27] while exhibiting
chemical spectral signatures of hydrated proteins in the form of a broadened amide | band
(~1700 to 1600 cm™), broadened amide 11 bands (1575 to 1480 cm™), and amide 111 bands
(1308 to 1230 cmY), of which all are peptide-characteristic peaks[28, 29]. The amide-rich,
peak-broadened MCR component 3 suggests that the amide-containing compounds
described by this loading vector are hydrated, and the co-localization with the nerve ring
suggests that these may reflect amide-containing glycophospholipids, especially when taking
into account the v(P-O-C) mode commonly found in alkyl phosphates between 1050 and 990
cm![15, 16]. MCR component 7 corresponds to large amounts of hydrated inorganic
phosphate species and phosphorus-containing compounds[15, 30], which co-localize to a
very specific sub-region within the intestine. MCR components 4 and 8 also co-localize with
the intestinal region of the C. elegans[27], suggesting that perhaps there is specialization of
biochemical processes specific to sub-regions of the intestine at the L2 larval stage of C.
elegans development. Notably, this potential specialization of biochemical processing within
an organ could also be present in the adult animal, although this hypothesis should be

assessed with orthogonal analytical techniques.
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Conclusion

Our results support that whole organism imaging in Caenorhabditis elegans is not
only feasible but also an under-utilized analytical tool in guiding the formation of evidence-
driven testable hypotheses in complex biological systems. Furthermore, this study shows that
living multicellular whole-organism spatiochemical imaging is possible with SR-FTIR
spectromicroscopy. With biological studies pushing the boundary more towards an idealized
concept of real-time omics, we show that non-invasive and label-free SR-FTIR
spectromicroscopy is a promising realistic alternative to “real-time” omics in generating a
longitudinal dataset on the same animal if there are resources invested into its development.

Several challenges need to be addressed in order to increase the accessibility of this
technique to whole organism real-time imaging applications. First, mapping regions and
sampling methods were limited to a rectangular uniform grid sampling methodology due to
software restrictions with the FTIR spectrometer. This led to high-resolution spatiochemical
map acquisition times of 8-12 hours, depending upon the larval stage of the C. elegans
sample. With the maximum allowable sample acquisition time being 12 hours due to the
cryogen cooling needs of the detector, sampling must be performed efficiently with respect
to physical space and sample chemistries—our solution to this problem can be found in
Chapter 3. Second, monitoring living organisms responding to controlled introduction of
environmental stimuli require analytical chambers that are relatively IR transparent to
minimize signal attenuation through the infrared light path. We investigate alternative
optically transparent windows to the current 500-micron ZnSe crystals to address this

challenge in Chapter 4.
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Methods

Sample Preparation. For the cuticle sample, adult hermaphrodites aged by 3 days were flash-
frozen with liquid nitrogen. A single animal was selected and moved to the micromanipulator
stage, in which 1 probe arm was exchanged with a blade. The initial cut was performed
length-wise at the thickest portion of the nematode. Due to the nematode’s curvature, the
second cut was performed 5 microns below the initial horizontal slicing plane to generate the
cuticle sample. No chemical fixatives were used in this sample preparation to reduce signal
contamination.

Whole-organism samples were mounted on 0.5-mm-thick ZnSe crystals, which were
cleaned with Milli-Q water, 5% acetic acid, acetone, then Milli-Q water sequentially in order
to remove organics while minimizing crystal damage. Each C. elegans (N2; Caenorhabditis
Genetics Center) animal used was selected at their specific developmental stage based on
morphology. Each animal was moved from their agar growth plates to 1 uL of 0.25 mM
Levamisole (CAS# 16595-80-5, Sigma-Aldrich) on the ZnSe crystal and rinsed three times
with Milli-Q water before mounting the sample onto the microscope stage for imaging.
Instrumentation. Synchrotron FTIR measurements were performed on a Nicolet Nic-Plan
IR microscope with a x32, 0.65 numerical aperture objective with a Thermo Scientific
Nicolet iS50 FTIR spectrometer using a KBr beamsplitter and MCT (HgCdTe) detector at
Beamline 1.4.3 of the Advanced Light Source at Lawrence Berkeley National Laboratory
(Berkeley, CA, USA). Scanning SR-FTIR diffraction-limited (2—10 um) spectra were
collected in transmission mode between 650 and 4000 cm ™! at 4 cm™! spectral resolution
and recorded with 8 co-added scans at interferometer mirror velocities of 1.8 cm/s (only for

case in Figure 1) and 6.3 cm/s.
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Chapter 3

AUTONOMOUS ADAPTIVE DATA ACQUISITION FOR SCANNING
HYPERSPECTRAL IMAGING

Material from:
Holman, E.A., Fang, YS., Chen, L. et al. Autonomous adaptive data acquisition for
scanning hyperspectral imaging. Commun Biol 3, 684 (2020).
https://doi.org/10.1038/s42003-020-01385-3 Published by Springer Nature.
Abstract

Non-invasive and label-free spectral microscopy (spectromicroscopy) techniques can
provide quantitative biochemical information complementary to genomic sequencing,
transcriptomic profiling, and proteomic analyses. However, spectromicroscopy techniques
generate high-dimensional data; acquisition of a single spectral image can range from tens
of minutes to hours depending on the desired spatial resolution and the image size. This
substantially limits the timescales of observable transient biological processes. To address
this challenge and move spectromicroscopy towards efficient real-time spatiochemical
imaging, we developed a grid-less autonomous adaptive sampling method. Our method
substantially decreases image acquisition time while increasing sampling density in regions
of steeper physico-chemical gradients. When implemented with scanning Fourier transform
infrared (FTIR) spectromicroscopy experiments, this grid-less adaptive sampling approach
outperformed standard uniform grid sampling in a two-component chemical model system

and in a complex biological sample of Caenorhabditis elegans (C. elegans). We
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quantitatively and qualitatively assess the efficiency of data acquisition using performance

metrics and multivariate infrared spectral analysis, respectively.
Introduction

Advancements in optical microscopy, especially fluorescence microscopy, have
enabled biologists to observe multiplexed living cellular events with ever higher spatial and
temporal resolutions[1]. The use of targeted fluorescent indicators provides spatial and
temporal context to omics analyses[2-4], resulting in discoveries of dynamic spatial
architecture in disease pathogenesis[5], organogenesis[6], and wound healing[7]. These
advances inspired the drive towards high-dimensional image-based profiling[8], which
requires high information-content and rapid, robust measurements of as many living cell or
tissue phenotypes as possible to capture time-dependent spatial heterogeneities in structure
and morphological patterning.

One solution is to introduce another complementary dimension of label-free
observation one that focuses on the spatiochemical mapping of biological systems. This
information can be used to guide fluorescence microscopy, its real-time imaging capabilities
limited to a few features of interest identified a priori, and to improve the interpretation of
omics data and information from advanced transmitted light microscopy images. Non-
invasive and label-free multiplexed imaging techniques, such as scanning synchrotron
radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy, can identify and
monitor spatial heterogeneity in chemical composition that is indistinguishable when using
the visible region of the electromagnetic spectrum; however, a major challenge in using these
techniques for real-time characterization of time-dependent biochemical processes is the

substantial image acquisition time that ranges from minutes to hours. This complication



30
emerges from the high dimensionality of the generated data set, which contains not only

spatial but also spectral information, and the utilization of uniform grid (UG) sampling as
the current standard sampling method, which historically is objective and computationally
inexpensive.

With advancements in the accessibility of computing technology, we find that grid-
less autonomous adaptive data acquisition (AADA\) is a viable and more efficient alternative
to UG sampling. AADA maintains a systematic and reproducible approach while capturing
spectral and spatial heterogeneity with fewer sampled points and shorter experimental time
frames. We discuss the significance of this method for studying time-sensitive living systems
and its future development toward monitoring time-dependent phenomena in biological
systems prior to expanding our discussion towards AADA’s applicability to other fields and
workflow processes.

Results

To implement an autonomous adaptive sampling algorithm (Figure 1) for data
acquisition, we prioritized optimization of spatiotemporal and spatiochemical sampling
efficiency while operating under experimental parameters that nonetheless vyield
comprehensive and informative spectral map data. We assume that less predictable yet
detectable phenomena emerging from spatiochemical heterogeneity are primary regions of
interest, informational “hot spots” that should be spatiochemically resolved with subsequent
sample points after initial detection. To achieve this, our adaptive sampling is driven by
leave-one-out cross-validation (LOOCV)[9] to facilitate rapid and accurate approximations

of the experimentally mapped space[10] for predictive error calculations from which the
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Figure 1. Autonomous adaptive sampling workflow.

algorithm can rapidly identify regions for subsequent sample exploitation[11-13]. We build
our surrogate models using a hybrid sequential sampling strategy closely related to other
established methods[11, 14, 15] by combining two-dimensional (2D) barycentric linear
interpolation with Voronoi tessellation (LIV). With LIV, the relative importance of a
sampled point is determined by its adjusted VVoronoi-weighted leave-one-out error (€Loo)[12,
16], which is calculated by normalizing and equally weighing the leave-one-out error with
the Voronoi predictive error. Since collected IR spectra often form continuous and
multimodal regions in our input space per sampled point[12], we introduced an IR spectral
preprocessing module upstream of our surrogate model construction and LOOCV to
conserve the spectral resolution while the algorithm determines where to subsequently

sample.
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As our first experimental demonstration, we designed a two-component chemical

model system of blue permanent marker and high vacuum grease for spatiochemically
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Figure 2. Autonomous sampling of abiotic two-component sample for current standard
UG and adaptive LIV methods (scale bar, 200 um). First three PCA components are shown
as an RGB overlay with sampled points (white circles) and their predictive error (circle
diameter).



33
resolved characterization using scanning FTIR spectroscopy. This complete sample

characterization enabled quantitative evaluations and comparisons between adaptive LIV
and widely utilized, non-adaptive UG data acquisition (Figure 2). In this visibly featureless
case, the mapped domain was selected with minimal experimenter knowledge input to guide
the autonomous adaptive data acquisition. Under these experimental conditions, we
quantitatively and qualitatively determine data acquisition performance using mathematical
and spectral metrics. When using mean Voronoi-weighted LOO error (eLoo)v to quantify
modeling accuracy, we found that adaptive LIV data acquisition outperformed the non-

adaptive data acquisition methods (Figure 3) in this experimental system.
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Figure 3. Mean Voronoi-weighted leave-one-out error plotted for non-adaptive and
adaptive data acquisition experiment for the abiotic two-component sample. Adaptive LIV
data acquisition of map regions defined without domain knowledge outperforms current
gold-standard non-adaptive data acquisition.
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Figure 5. Globar FTIR variance fingerprint spectra of each model compound
eventually used in synthetic two-component control sample. The variance was used to
determine the domains selected for exploratory PC-LDA (gray).
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To verify this conclusion, we tuned the spectral, on-target ratio (OTR) assessment by

selecting the major contributing peak per component using our normalized mean standard
spectra (Figure 4) and variance spectra (Figure 5); peak selection guided by normalized
spectra emphasize chemical identification[17] over concentration in spectral interpretation.

For high vacuum grease, we referenced the symmetric stretching mode of v(Si-O-Si) at

Globar FTIR Spectral Comparison of Permanent Ink Ingredients
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Figure 6. Known alcohol ingredients of Sanford Permanent Marker ink shown as
cumulative IR spectrum generated using OMNIC 9.8 alcohol libraries: ethyl alcohol, 1-
propanol, 1-butanol, and diacetone alcohol in red to contrast against our normalized
permanent marker ink mean spectrum obtained using globar FTIR spectromicroscopy.
Identified peaks support the discussion and analysis of the main text presenting 1580 cm™
and region 3105 cm™ to 3000 cm™ vibrational modes as unique to the pigments or dyes
present in the deposited ink. Plotted in OMNIC 9.8.
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798 cm ™! emerging from its fumed amorphous silica[18] composition. For permanent ink

presence, we used the major peak at 1580 cm™! stemming from conjugated carbon—carbon

ring v(-C=C-) stretching modes[19] in pigment compounds[20], which was further

substantiated by the presence of aromatic v(=C-H) vibrations between 3105c¢m™' and

3000 cm'[19] (Figure 6). All spectra were evaluated for non-adaptive UG and adaptive LIV

experiments prior to processing the OTR as the proportion of on-target sampled points to

total sampled points. Using this spectrally-based metric for enhanced real-world fidelity[21],

we confirmed that adaptive LIV data acquisition (OTR = 0.95) outperforms non-adaptive UG
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Figure 7. Exploratory 2D PC-LDA score plot of noise-filtered and baseline-corrected
acquired data 95% confidence intervals as shaded areas.
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(OTR=0.19) data acquisition in experimental cases where domain knowledge is either

limited or unavailable.

To verify that our acquired adaptive LIV data is interpretable through multivariate
analysis from an experimenter’s standpoint, we performed principal component analysis
(PCA) followed by linear discriminant analysis (LDA)[22] on the noise-removed IR data to
discriminate between the permanent marker and high vacuum grease present in the
spatiochemical map (Figure 7). We see that the first PC-LDA factor distinguishes between
permanent ink-containing spectral regions and pure high vacuum grease, while the second
PC-LDA factor separates between pure permanent ink and regions containing both
permanent ink and high vacuum grease. This conclusion is further supported by the mean
spectra plotted per cluster (Figure 8); we see the imine v(C=N-H) from 3400cm™! to

3300cm™! and intermolecular hydrogen-bonded v(O-H) at 3550cm™' and 3230 cm™

0.05
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=== Blue Permanent Marker

Imine v(C=N-H) = Mixed Components

0.04 r“L‘1
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ol
=
<1

Absorbance (a.u.)

Intermolecular v(O-H)

—
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Figure 8. Globar FTIR spectral mean of each identified PC-LDA cluster showing the peak
identifications used to corroborate chemical identity of high vacuum grease (red), permanent
marker (blue), and mixed components (green).
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contributions[19] from permanent ink’s pigment compounds and alcohols, respectively. The

identified high vacuum grease cluster matches the standard mean spectra expectations with
vibrational silence in frequencies >3000 cm™!, while peak broadening and the change in peak
ratio between the imine and intermolecular hydrogen bonding regions of the permanent ink
and mixed component clusters suggest that permanent ink alcohols experienced inhibited
evaporation in the mixed component regions due to the ink’s deposition under the high
vacuum grease during sample preparation (Figure 9).

For our proof-of-principle bioimaging case, we applied scanning broadband SR-
FTIR spectromicroscopy to overcome signal-to-noise limitations when characterizing a
young L2 C. elegans animal. C. elegans are well characterized in genetics, microscopy, and

omics-related fields while also representing a large, whole-organism experimental model

Identified Cluster Mean Spectra via Exploratory PC-LDA
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Figure 9. Full spectral region for identified cluster mean spectra of baseline-corrected

cluster spectra. Spectra were not normalized in order to conserve concentration

information.
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containing known compartmentalized chemistry. Relative to the diffraction-limited spatial

resolution (2-10 um) of scanning SR-FTIR spectromicroscopy, their large size of 100 um to
I mm in length when coupled with current mapping region software restrictions often lead
to temporally inefficient spatiochemical mapping of unfixed samples. With our implemented
graphical user interface at ALS Beamline 1.4.3 (Lawrence Berkeley National Laboratory,
Berkeley, CA), we were able to apply domain knowledge in spatial and spectral restrictions

to better optimize our adaptive data acquisition of C. elegans (Figure 10) for comparison

-: —l -11500 - —1 —l —11350 1 —1

X @um)
Figure 10. Adaptive LIV data acquisition of an early-stage L2 C. elegans over a spatial
map defined with domain knowledge to include the pharyngeal, nerve ring, and intestinal

regions of the animal.

Y (um)

-11620 -11600 -11580 —11560 -11540 -11520 -11500
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Figure 11. Density plot of sampled areas from adaptive LIV sampling for ease of more
frequently sampled regions (red circle).
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against the high-spatial (step-size 1.5 pm) resolution map of the same sample. We found that

increased adaptive LIV sampling in the spatial domain (Figure 11) identified regions
characterized by chemistries consistent with those of known anatomical features. Sampling

increased in either transitional or overlapping anatomical regions between pharyngeal, head,

4

MCR Component 1 MCR Component 4 MCR Components 1 and 4

Figure 12. Coefficient heat maps of MCR component 1 (intensity range: 0.00-5.08), MCR
component 4 (intensity range: 0.00-1.13), and the overlaid RG coefficient maps of both MCR
components 1 and 4. Red cursor indicates same pixel; red circle indicates same region of dense
sampling shown in Figure 11 (scale bar, 10 um).
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Figure 13. Loading vectors for MCR components 1 (blue) and 4 (red) over evaluated
frequency domain of 3500 cm™! to 2800 cm™. Vibrational stretching assignments are labeled
as discussed in the main text and Figure 14.
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neck, and body wall muscle[23], regions of the nerve ring[24], and the lipid-rich

intestine[25]. Our qualitative post validation of adaptive data acquisition using multivariate
curve resolution[26] (MCR) and Fourier self-deconvolution[27] (FSD) SR-FTIR analyses
further confirmed these anatomical co-localization results with reliable MCR
components[28] 1 and 4 (Figure 12) corresponding to hydrated proteins (amino acid v(N-H)

stretching modes)[19] and hydrated lipid assemblies (N-H, O-H, methyl, and v(-(CH2)n-)

Fourier Self-Deconvolution of Loading Vectors for SR-FTIR MCR Components 1 and 4
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Figure 14. FSD plots of the 3000 cm™ to 2900 cm* spectral region for MCR components 1
and 4 for accurate peak identification in a high signal-to-noise region of C-H stretching
vibrations. To be conservative, we only used major peaks to support assignments and co-
localization with chemistry of known anatomical structures. For component 4, we referenced
the asymmetric stretching mode of characterized lipid methyl groups (~2963 cm™) and lipid
antisymmetric stretching -(CH2)n- modes (2916 cm™ — 2936 cm™). For component 1, we
referenced the asymmetric stretching -(CH2)n- mode of characterized biological polyglycines
(~2925 cm'®). Plotted in OMNIC 9.8.
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stretching modes)[19, 29], respectively (Figure 13 and Figure 14). With these two

components overlapping in the more frequently sampled region, we verify that adaptive LIV
data acquisition helps resolve spatiochemical gradients in a complex whole-organism model.
Discussion

We constructed and implemented grid-less adaptive LIV data acquisition to address
a key challenge in the hyperspectral imaging of time-sensitive systems. Specifically, we
decrease image acquisition time while improving sampling density in regions of increased
spatiochemical complexity. Using this sampling strategy, we non-destructively explore the
chemistry of anatomical features in living C. elegans. We observe that increased sampling
density corresponded with known anatomical features, and these results serve as a proof-of-
principle for the use of AADA on a complex, biological specimen.

In this study, all experimental L1V-based AADA cases were performed on standard
hardware found with commercial high-dimensional imaging microscope designs, revealing
the accessibility and computational efficiency of the algorithm for a broadened use in
imaging techniques that require a sequential exploration of space, such as scanning probe
techniques. We show that LIV-based AADA can operate efficiently and effectively under
conditions where the map area is unconstrained, and therefore, when the main goal of a study
Is to characterize a system through a discovery approach. This performance implies that LIV-
based AADA will still benefit an experimentalist who has a detectable, discovery aspect of
their research in otherwise well-characterized biological systems that can range from single
living cells to, in the case of smaller animal models like C. elegans, whole organisms. We
also report that L1V-based adaptive sampling outperforms standard sampling methodologies

in complex biological systems in which we apply domain knowledge to restrict mapping
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UG Sample Points: 1 — 125 LIV Sample Points: 1 — 125
Scan Time: 11m 16s Scan Time: 11m 31s

UG Sample Points: 250 —375 LIV Sample Points: 250 — 375
Scan Time: 11m 19s Scan Time: 11m 28s

Figure 15. Standard UG sampling compared with LIV sampling over a tightly bound,
pharyngeal mapping region of late-stage L1 C. elegans (scale bar, 10 um) per given time
interval as defined by ordered, sample point domain. The first three principal components
are displayed as RGB false color composites.

regions. When specifically referencing instrument time usage to spatiochemically image the
young L2 C. elegans experimental case, we were able to map the head region in 45 min with
the LIV-based AADA software in comparison to ~4.9 h with the commercially available
software. Lastly, we find that LIV-based AADA provides more comprehensive
spatiochemical understanding of the total map domain at any given time interval in
comparison to the established and standard UG sampling (Figure 15), suggesting that this
aspect can be harnessed for further development of AADA to achieve adaptive high-
dimensional real-time, non-invasive, label-free imaging through modular additions to the

sampling algorithm.
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This advance in hyperspectral imaging offers the biological community an

orthogonal perspective into the dynamic physico-chemical architectures of studied tissues
and model organisms. Critically, this information can potentially guide an investigator
towards time-points and regions of interest for follow-up omics characterization, which is
important in but not limited to the areas of carcinogenesis and developmental biology.
Particularly in cases of discovery-based experimental design, AADA enables unbiased
assessment of spatially resolved chemical changes between biological samples that differ by
genotype, drug treatment or substance exposure, and physiological state such as age. More
broadly, LI1V-based AADA can be applied to fields outside of biology, such as hyperspectral
remote sensing and space exploration. In these cases, future development towards real-time
AADA will enable rapid identification, characterization, and even surveillance of chemical
spills, toxic algal bloom formation, and spontaneous solar events.

Methods

Autonomous adaptive sampling. Our adaptive sampling workflow is based upon LOOCV
and begins with an initial scan of randomly distributed points. Using PCA for dimensionality
reduction and our IR preprocessing module for frequency domain restriction and rubber-
band baseline correction, we increased computational and temporal efficiency by calculating
and operating over the first 5 principal components during our proof-of-principle, temporally
intensive, high-dimensional data acquisition. A model U, based upon 2D barycentric linear
interpolation (LIV) is constructed from this processed data set. We quantify the sensitivity
of the surrogate model to the removal of an individual data point through the eLoo. By
removing a single point X;, model U_; is rebuilt using the incomplete data set. The €Loo

associated with the sample point is the difference between the two models evaluated at the
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removed point §(U,(X;), U_;(X;)) with respect to the L, norm[30]. After this is iterated for

every sampled point in the acquired data set, the region defined by the sampled point with
highest eLoo is sampled next by picking a random point within that region. This procedure is
repeated until a set criterion is reached, which in our case was 500 total sampled points.

To assess algorithm sampling performance, we aggregate the eLoo of all sample
points in the acquired data set and quantify the self-consistency using established
LOOCV][31]. We take the mean €Loo, {€Loo)v, Of all sample points in the data set and use it
as an unbiased, quantitative measure of the model accuracy due to theoretical guarantees of
(eLoo)v convergence to a model’s generalization error[32]. Since acquired points are often
neither regularly nor uniformly distributed in the case of adaptive sampling, we partition the
region into a collection of cells {V/;} containing positions closest to each point {X;}. The mean

is then weighted by the associated VVoronoi area of sample point {X;}. Explicitly, we define

__ YilVil-eLoo,i
(ELOO>V - Vil

With the LOOCV adaptive sampling procedure, we follow the heuristic for (eLoo)v
minimization, and thus, effectively achieve minimization of model generalization error by
sampling near the point with the largest eLoo. This section includes materials provided by co-
author Yuan-Sheng Fang (Department of Physics, UC Berkeley) that were modified for the
related publication.

Surrogate modeling. We use the scipy.interpolate.griddata method from the Python Scipy
package to implement 2D barycentric linear interpolation and treat each PCA component
independently. Although it is computationally efficient, it does not quantify uncertainty in
error estimate. To address this, we include the VVoronoi area associated with each point into

our calculated eLoo by treating it as an ad hoc regularizer. For a collection of points X =
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{x; € R%}, the Voronoi cell that we associate with point x; is the region of space containing

positions in Euclidean distance closest to x;:
Vi = {weR%:|lx —ull, < ||xj —u|| vj # i} c R%.
2

The Voronoi area is the area of the set, V; = [|V;||. This implies that if point x; is
spatially isolated from the rest of the data set, then point x; will be associated with a greater
\oronoi area. By approximating the error uncertainty using the VVoronoi area, we utilize the
fact that linear interpolation error tends to increase with larger distances from points used in
the interpolation. To achieve this, we first normalize both eLoo and V; in order to compare

both quantities using a linear scaling from [0, 1]:

X;—min(X)
max(X)-min(X)’

o(X;) =

Next, we take the regularized LIV eLoo to be

LIV
£00,)i = O'(GLoo,i) +a(Vy),

€
which is used to calculate our adjusted eLoo for our adaptive data acquisition in simulations
and experiments[33]. Our approach is inspired by and related to the LOLA-Voronoi and CV-
Voronoi surrogate modeling techniques[11, 14]. This section includes materials provided by
co-author Yuan-Sheng Fang (Department of Physics, UC Berkeley) that were modified for
the related publication.
Sample preparation. All samples were mounted on 0.5-mm-thick ZnSe crystals, which were
cleaned with Milli-Q water, 5% acetic acid, acetone, then Milli-Q water sequentially in order
to remove organics while minimizing crystal damage. The two-component control sample

was prepared with high vacuum grease (2021854-1993, Dow Corning) that was lightly

applied to a 0.5-mm-thick ZnSe crystal (CAS# 1315-09-9, International Crystal
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Laboratories) in an area identifiable by fiducial markings drawn with a permanent marker

(Item #37003, Sanford Ultra-Fine Blue Sharpie Permanent Marker). Spectral standards were
acquired of both components independently prior to autonomous adaptive sample acquisition
of abiotic two-component system. Spectral regions of component mixing could be identified
by alcohol presence in the mixed spectra.

The first C. elegans (N2; Caenorhabditis Genetics Center) animal used for temporal
exploratory LIV experiments was selected at the late L1 stage (based on morphology). The
second animal for qualitative LIV assessment via FTIR spectral analysis was selected at the
young L2 stage (based on morphology). Each animal was moved from their agar growth
plates to 1 uL of 0.25 mM Levamisole (CAS# 16595-80-5, Sigma-Aldrich) on the ZnSe
crystal and rinsed three times with Milli-Q water before mounting the sample onto the
microscope stage for imaging.

Instrumentation. Scanning benchtop and synchrotron FTIR measurements were performed
on a Nicolet Nic-Plan IR microscope with a x32, 0.65 numerical aperture objective with a
Thermo Scientific Nicolet iS50 FTIR spectrometer using a KBr beamsplitter and MCT
(HgCdTe) detector at Beamline 1.4.3 of the Advanced Light Source at Lawrence Berkeley
National Laboratory. Adaptive sampling was implemented using a GUI (Supplementary
Figure 6) developed in PyQt and installed on the Beamline 1.4.3 computer (Dell Optiplex
7050: 8 GB RAM, Intel Core i5-7500 CPU @ 3.41 GHz, Windows 10 64 bit). OMNIC 9.8
software by Thermo Fisher Scientific controlled the microscope and FTIR bench, and our
software communicated with OMNIC through Dynamic Data Exchange to store the OMNIC

background-subtracted spectral output into our software’s dataframe format.
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In this study, we used two different infrared sources: an internal globar source and a

synchrotron source. Although an internal globar source is readily available in commercial
FTIR microscopes, an accelerator-based synchrotron source offers at least 1000 times
improvement in brightness (photon counts per unit time per unit area) over the globar
source[34] at the same spatial resolution. As a result, we used different total co-added scan
and spatial resolutions for measurements performed on each instrument, which are detailed
in the following sections.

Globar FTIR spectromicroscopy and multivariate analysis. Benchtop scanning FTIR
measurements using internal globar source were performed in transmission mode with an
aperture-limited spatial resolution of 75 pm x 75 um. IR spectra between 650 cm™' and
4000cm™ at 4cm™' spectral resolution were collected with 16 co-added scans at a
interferometer mirror velocity of 1.83 cm/s. Rubber-band baseline correction and
dimensionality reduction via PCA to 5 components were performed over the entire collected
spectral region during adaptive LIV data acquisition. For each experimental assessment of
sampling method, the total sampled points were limited to 500 to remain below the full-
resolution map of 840.

On-target ratio. We define the on-target ratio (OTR) to be the number of samples that meet

the on-target criteria over the total number of sampled points. To determine the criteria by
which a spectrum is considered on-target, we use our full-resolution data set and remove
spectra close to the detection limitations of the instrument that violate the signal-to-noise
filter criteria. Using this noise-removed subset of data, we calculate the mean spectra of the
noise-removed subset. After identifying one major peak component per known component

standard, we evaluated all acquired spectra per method for the presence of either
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aforementioned peak above the threshold that we determined as the noise-removed mean

intensity at defined frequencies to define OTR as

_ Navp
OTRmethod - N )
total

where Navb is the number of spectra that met either the first mean peak criterion, second mean
peak criterion, or both mean peak criteria, while Nwtal IS the total number of spectra acquired

using the referenced data acquisition method. Using this definition of spectral metric, we

calculated OTR,;y = % (0.95) and OTRy; = % (0.19).

FTIR multivariate analysis. The control sample components (high vacuum grease and

permanent marker) were evaluated individually as spectral standards. The data were baseline
corrected and vector normalized using OMNIC 9.8, and the spectral mean was calculated
over 8 spectra per standard. Referencing the normalized mean and variance spectra, we use
domain knowledge to perform PCA over the frequency domains of 3600 cm™' to 2800 cm™!
and 1750 cm™! to 1450 cm™! simultaneously before applying LDA to maximize interclass
variance over intraclass variance of our factors[22] of our baseline-corrected and vector-
normalized data in MATLAB R2017a. 2D score plots were generated in which the nearness
between classes indicates similarity, whereas distance implies dissimilarity. The final mean
spectrum of each cluster is shown for spectral validation of vibrational modes, resulting in
segregation of classes.

Synchrotron FTIR spectromicroscopy and multivariate analysis. Scanning SR-FTIR
diffraction-limited (2-10 pum) spectra were collected in transmission mode between 650 and
4000 cm ! at 4 cm™! spectral resolution and recorded with 8 co-added scans at an

interferometer mirror velocity of 6.3 cm/s. We restricted the spectral domain adaptive LIV
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sampling workflow from 900 to 3700 cm™' to avoid signal contamination from detectable

synchrotron noise and to decrease sample morphology[17] baseline effects, respectively, on
subsequent dimensionality reduction and error calculation steps. Rubber-band baseline
correction and dimensionality reduction to 5 components was performed over the restricted
spectral region between 900cm™' and 4000 cm™' during adaptive LIV sampling. Using
domain knowledge, we restricted our mapping region to the pharynx, nerve ring, and
intestine[24] of our young L2 C. elegans to reduce off-target sampling with respect to C.
elegans for increased temporal efficiency in spatiochemical mapping.

SR-FTIR multivariate analysis. We restricted our analyzed MCR domain from 3500 cm™' to

2800 cm™! for reduction of morphological effects on the spectral baseline and for higher
diffraction-limited spatial resolution, since the goal of MCR analysis was to qualitatively
assess adaptive LIV data acquisition performance. Based upon the cumulative explained
variance calculated by OMNIC 9.8 on our experimental data, we performed MCR analysis
in OMNIC using 5 components in which 99.82% of data variance is explained. Guided by
well-characterized C. elegans anatomy and chemistry, we identified reliable MCR
components[28] that would strongly correlate with muscle and lipid assembly structures—
components 1 and 4. For better accuracy in peak identification on our MCR components, we
applied FSD to the C-H vibrational region. Since our analysis region was restricted, we could
only broadly state the presence of protein-related stretching vibrations of v(N-H) from amino
acids between 3390cm™! and 3260 cm™'[19] and polyglycine asymmetric CH2 stretching
modes at ~2925 cm![19] (Figure 14) in MCR component 1. Similarly for MCR component
4 and in referencing characterized hydrated lipid assemblies, we found broad peak

contributions from N-H and O-H stretching modes between 3400 cm™' to 3100 cm'[29],
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lipid-relevant antisymmetric v(-(CH2)n-) modes at ~2932 cm™'[29], and lipid-related methyl

antisymmetric and symmetric stretching at 2963 cm™! and 2873 cm™![29], respectively.

Statistics and reproducibility. Each sample size, type, and statistical method applied is
described in the relevant Method section. For the two-component model system, spectral
standards for permanent ink and high vacuum grease were performed with sample replicates
(n=38). Infrared spectral data are available through the CaltechDATA repository

(https://doi.org/10.22002/D1.1609)[35].
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Chapter 4

DESIGNING OPTICALLY TRANSPARENT PHOTOCROSSLINKED
PEPTOID NANOSHEETS FOR IMAGING APPLICATIONS

Material from the in-preparation manuscript written by Elizabeth A. Holman containing
information from co-authors Dong Li and Ronald N. Zuckermann.
Abstract

Peptoid bilayer nanosheets are a new class of biocompatible 2D nanomaterial with
broad applications, including sensing, membrane mimicry, and pathogen binding. They are
formed from the self-assembly of sequence-defined peptoid chains and can be readily
functionalized to tune their properties. In order to broaden their utility, there is a need to
improve their mechanical stability. Here, we create nanosheets that can potentially function
as a mechanically robust, optically transparent interfacial barrier for covering microfluidic
channels, microscopy grids, and other sample chambers. This barrier would increase
hydration control in otherwise open-channel environments, permitting water-sensitive, non-
destructive infrared spectroscopy to be incorporated into multimodal imaging platforms.
Therefore, we explored new peptoid analogs containing photo-crosslinkable side chains that
are capable of forming intra-monolayer as well as inter-layer covalent bonds. These
constructs can be co-assembled in various ratios to achieve a range of desirable mechanical
properties to provide a new route to ultrathin, mechanically robust, 2D nanomaterials that

serve as optically transparent interfacial barriers for a variety of imaging techniques.
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Introduction

With the advancement of high-throughput technologies in genomics and
transcriptomics, a non-invasive, non-destructive, and label-free imaging technique for
investigating cell-to-organism biochemical landscape changes is needed for a more complete
characterization of biological systems. As early as the 1950's, modern infrared microscopy
was identified as a promising technique that meets the three aforementioned requirements
for biological studies interrogating cellular dynamic behavior; unfortunately, its realizable
potential has always been limited by the software and hardware technology of the time. This
limitation has been addressed with the introduction of mercury cadmium telluride detectors
and inexpensive fast digital computers, enabling reasonable FTIR microscope design and
manufacturing to be possible[1].

Fourier transform infrared (FTIR) spectromicroscopy is a powerful tool for label-free
and non-destructive chemical analysis that merges visible light microscopy to match physical
morphology with chemical and molecular information obtained from infrared absorption
spectral data. In this manner, FTIR provides molecular insight to unlabeled chemical targets,
enabling complementation with gene- and molecule-specific labeling methods in
fluorescence microscopy for a more complete understanding of the organism’s global
biochemical environment under which concentrations of the target molecules change.
However, a key challenge in live organism FTIR studies is the development of an imaging
platform that both (1) ensures the organism’s hydration and survival during real-time and
long-term FTIR data acquisition and (2) permits the diverse set fluorescent probe emissivity
detection for multimodal imaging concepts, such as complementary single-molecule-specific

spatial imaging.
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Maintaining hydration of the organism during measurements is difficult when

attempting to decrease the IR absorbance of the device namely through minimization of the
total thickness of the device and utilization of materials with maximal IR transparency. As
shown in Figure 1, most current IR/VI1S-compatible bioimaging microfluidics platforms use
ZnSe windows, which do not transmit light with wavelengths smaller than 600nm (green
region) and also causes MIR signal loss due to light attenuation (red region) in the typically
500-micron-thick crystal[2]. Additionally, IR-active vacuum grease is necessary when
clamping the ZnSe crystals for closed-channel microfluidic imaging platforms—this
introduces a potential source of strong signal contamination in the MIR fingerprint region.

The emergence of these spurious bands coupled with light attenuation directly limits the
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Figure 1. Light transmission through established IR windows. Fluorescence
excitation/emission wavelength region displayed as green. MIR broadband spectral region
indicated by red. Raw transmission data obtained from publicly disclosed ThorLabs dataset.



57
biological systems of interest that can be imaged to samples of specific thicknesses and IR

transmissivities.
R; O R3 @)
N N \/u\
H,N /ﬁ( N OH
O R, @]

Figure 2. Generic peptoid oligomer structure. The repeating N-substituted glycine monomer
is in brackets. Side-chain substituents in red can be diverse in speciation to alter peptoid
oligomer structure and function.

Peptoid nanosheet technology presents potential solutions to previous optical,
mechanical, and chemical challenges that have hampered multimodal bioimaging platform
development for studies of living, whole organisms. Peptoids were developed in the late
1980s and are effectively regioisomers of peptides that retain the amide-based backbone for
ease of synthesis[3], as displayed in Figure 2. Additionally, the incorporation of the side
chain directly to the amide nitrogen can block protease activity, this being ideal when
designing biocompatible barriers for imaging platforms. When placed at an air-water
interface, peptoid oligomers can self-assemble into an ordered monolayer of peptoids. This
monolayer can be either Langmuir-Blodgett or Langmuir-Schaefer transferred onto
substrates for a variety of applications such as sensing[4], or it can be laterally compressed
to the point of collapse, the monolayer serving as an intermediate for the eventual formation

of a peptoid bilayer nanosheet[5].

In order to broaden the application of peptoid nanosheet technology to potentially

address IR/VIS bioimaging platform challenges, we determined that synthesizing a new
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chloro-containing analog of peptoid Block-28 (B28) was necessary. In 2016, Flood et al.

showed that para-chloro analogs of B28 (B28pClz; Figure 3a) were able to photocrosslink
through the hydrophobic core of the peptoid bilayer nanosheets for improved chemical and
mechanical stability[6], and Robertson et al. showed that functionalizing the phenyl ring at
the meta position with a methyl group did not disrupt of B28 nanosheet formation[7].
Combining these two concepts, we aimed to synthesize the meta-chloro analog of B28
(B28mCl7; Figure 3b) with the goal of increasing the mechanical stability of a peptoid

monolayer deposition onto a substrate by either Langmuir-Blodgett or Langmuir-Schaefer
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Figure 3. (a) Synthesized and published chloro-containing peptoid B28 analog has shown
photo-crosslinking behavior in peptoid nanosheets. (b) Our proposed chloro-containing
peptoid B28 analog. (c) Representative cartoon showing feasibility of intralayer and
intermolecular covalent bond formation due to the ideal positioning of the chloride atom
(pink) in peptoid B28-mCl-.
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methods. By functionalizing the phenyl ring at the meta position, we avoid disruption of

peptoid monolayer during self-assembly. Notably, by substituting a photolabile chloride onto
the phenyl ring at the meta position, we place the chlorine atom in close proximity to the
neighboring polypeptoid strand for potential intermolecular crosslinking within the
hydrophobic region of the peptoid monolayer (Figure 3c). Ideally, the incorporation of
peptoid B28mCl into the peptoid mixture that forms the peptoid monolayer on a Langmuir
trough will increase the mechanical stability of the initial peptoid monolayer after UV
exposure and prior to its deposition onto a silicon substrate to potentially cover etched
microchannels and wells of a IR/VIS bioimaging platform.
Results and discussion

We successfully synthesized and characterized the identity (mass spectra) and purity

(HPLC traces) of our peptoid stock solutions by UPLC-MS (see Methods and Appendix B).
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To show that peptoid B28mCI- is able to form an ordered peptoid monolayer, we directly

confirmed that functionalizing the phenyl ring with a chlorine did not disrupt B28mCl;
monolayer formation via Langmuir trough experiments that generated a surface pressure
versus area isotherm. As detailed in Figure 4, the presence of a collapse point in the
compression-expansion cycles implied that peptoid B28mCl- successfully self-assembled

into an ordered solid phase[8].

B28 | B28mCl,

| Crosslinked 1:1
Crosslinked B28mCl- B28mCl,:B28pCl,

Figure 5. Epifluorescence microscopy of peptoid bilayer nanosheets formed by the
vial-rocking method (scale bar = 50 um). Crosslinked peptoid nanosheets were
exposed to 254 nm light in solution prior to imaging on an agarose pad.
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Depicted in Figure 5, epifluorescence imaging of peptoids B28 and B28mClI- further

supported peptoid bilayer nanosheet formation, since the environmentally-sensitive Nile Red
dye fluoresces in hydrophobic environments[5]—meaning that the dye would stably
fluoresce when residing within the hydrophobic core. Crosslinked B28mClz as well as
crosslinked B28mCl7 mixtures provided showed that the new peptoid B28mClz could be
used in tandem with other peptoid B28 analogs without disrupting nanosheet formation. To
verify this fluorescence microscopy result, we further characterized the crosslinked peptoid
B28mCl7 nanosheets and compared them to control peptoid B28 and established peptoid
B28pCl7. As shown in Figure 6 and Appendix C, the height profiles of each peptoid bilayer
nanosheet were between 3 nm and 5 nm. This confirmed that incorporation of peptoid
B28mCly7 into peptoid B28 analog mixtures did not disrupt nanosheet formation, even with
two different mechanisms of photoreactions present[6].

Having established that peptoid B28mCl7 exhibits a collapsing point on its
compression-expansion isotherm and successfully forms peptoid bilayer nanosheets of
thicknesses that are similar to control peptoids B28 and B28pCl: after UV exposure, we
tested our hypothesis that suggested B28mClIz would provide increased mechanical stability
to the bilayer nanosheets into which they were incorporated. B28mCl- stereoisomer B28pCl»
was already established as a peptoid block that forms nanosheets with increased mechanical
stability relative to peptoid B28 bilayer nanosheets[6]. This additional stability is attributed
to the photolability of the chloride that was functionalized in the para position on the phenyl
ring and the subsequent covalent bond formation, since peptoid B28 was structurally unable

to easily form new covalent bonds under the same nanosheet crosslinking conditions.
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Figure 6. Atomic force microscopy of control and crosslinked peptoid bilayer nanosheets
formed by the vial-rocking method. Peptoid bilayer nanosheets are all approximately 3-5 nm
thick, although the topography of the nanosheets appear to vary with this sample preparation
method.



63

Native State Sonication

B238

Crosslinked
B28pCl,

Crosslinked
B28mCl,

Crosslinked 1:1
B28mCl-:B28pCl,

Figure 7. Epifluorescence imaging of established peptoid bilayer nanosheets and crosslinked
peptoid bilayer nanosheets incorporating B28mCl7 before (left) and after (right) 60 minutes
of sonication (scale bar = 50 um).
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Modifying the previously established mechanical assessment of peptoid bilayer

nanosheets by sonication[6], we increased the sonication time from 30 minutes to 60 minutes.
As shown in Figure 7, we found that peptoid bilayer nanosheets incorporating peptoid
B28mCl7 maintained structural fidelity throughout the sonication, contrasting with peptoid
bilayer nanosheets formed by peptoid B28 and even crosslinked nanosheets of peptoid
B28pCl7. These results suggest that future incorporation of peptoid B28mCl7 into peptoid
B28 analog mixtures at different ratios could be used to tune the mechanical stability of the
formed peptoid nanosheet via introduction of intralayer crosslinking at the monolayer level.

To chemically assess the origin of mechanical stability in nanosheets containing
peptoid B28mCl7, we used FTIR spectroscopy to determine the extent of the nanosheet
crosslinking reaction when the meta instead of the para position of the phenyl ring is
functionalized with chloride. Previously, the extent of the peptoid B28pCl; nanosheet
crosslinking reaction was experimentally determined to be approximately 40% when using
Raman spectroscopy[6]. Here, we assume Gaussian approximations for peak resolving
subsequently and quantify the extent of the peptoid B28mCIz nanosheet reaction using the
aromatic out-of-plane C-H vibrations at 830 cm™[9], which emerge from the three adjacent
hydrogen atoms to the meta-substituted aromatic. This is further supported from the
experimentally acquired spectrum for peptoid standard B28 in Figure 8. To increase
accuracy of assessing total peptoid present, we determine total amount of peptoid present
using the peak area of the Gaussian approximation describing our assigned aromatic v(C=C)
mode at 1480 cm™[9], which is conserved in the peptoid standard as well as the peptoid
B28mCl- nanosheets. We avoid using the spectral region between 1700 cm™ and 1500 cm'™*

to reduce error emerging from different levels of sample hydration, which is also why
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Figure 8. Normalized FTIR spectra of peptoid B28 and B28mCl~ bilayer nanosheets. Spectra
of crosslinked nanosheets were also obtained for extent of photolabile reaction reactivity
within the peptoid B28mClz nanosheets. Indicated peaks were used for normalization (1480
cm?) and quantification of the v(C-Cl) disappearance (830 cm™).

normalization by the N-H and O-H stretching modes were not performed. The confounding
error would take the form as broadened peaks as well as possible peak shape differences,
which could drastically affect the quality of the Gaussian approximation. In this manner, we
calculated the extent of the photocrosslinking reaction in the peptoid B28mCl7 nanosheets to

be approximately 90% (see Methods section).
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Conclusion

We designed, synthesized, and characterized the meta chloro-analog of established
peptoid B28. Crosslinked peptoid B28mClI- bilayer nanosheets as well as crosslinked peptoid
bilayer nanosheets that incorporated B28mCl- into a peptoid block mixture showed enhanced
mechanical stability. FTIR spectra support that the functionalization at the meta position
drastically increases the extent of the nanosheet crosslinking reaction, which we suspect
occurs intermolecularly between peptoid strands at the intralayer level of the peptoid bilayer
nanosheets. Subsequent studies to determine the selectivity of peptoid B28mCl7 covalent
bond formation requires further experimentation, although the lack of maintenance of
peptoid bilayer nanosheet structure when exposed to 50% acetonitrile:H20 in the pure
B28mCl7 peptoid nanosheet cases (not presented due to negative correlation methodology in
analysis with limited techniques for nanosheet characterization) suggest that the majority of
the nanosheet crosslinking with B28mClz may occur in an intralayer manner.

Methods

Peptoid oligomer synthesis and purification. All peptoid oligomers (B28, B28pCly, and
B28mCI7) were synthesized by a sub-phase monomer method previously described[6, 10],
using polystyrene Rink Amide resin (100 mg per vessel) on an AAPPTec Apex 396 peptide
synthesizer. Peptoids B28 and B28pClz were purified by reverse-phase HPLC following
published protocols[6, 10].

For new peptoid oligomer candidate B28mClz, the peptoid-resin was washed three
times with DCM and cleaved with a 95:2.5:2.5 TFA/H20/TIPS (v/v/v) cocktail for 2 hours.
The TFA cleavage solution was then filtered to separate the polystyrene beads from the

solution prior to evaporating the filtrate to dryness on a Biotage V10 evaporator. The crude
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peptoid was re-dissolved in 37% MeCN in H20 prior to purification by reverse-phase HPLC

on a semi-preparative column (C18 Vydac column). A 30-75% gradient of acetonitrile:H20
with 0.1% TFA was used over 30 minutes with a flow rate of 17 mL/min. All purified peptoid
oligomers were subsequently characterized by ultra-performance liquid chromatography
mass spectrometry (UPLC-MS) via a Waters Acquity H-class Ultra High Pressure Liquid
Chromatography (UPLC) system coupled to a Waters Xevo G2-XS Time-of-Flight Mass
Spectrometer with an electrospray ionization (ESI) source. Mass spectra and HPLC traces of
peptoid B28, B28mCl7, and B28pCl; are found in Appendix B, where mass spectra
determine the presence of our peptoid oligomers of interest while the HPLC traces are used
to accurately assess purity of the stock solutions. The lyophilized peptoids were then re-
dissolved in 2:1 (viv) DMSO:H20 to create a 2mM stock solution (100X) for B28 and
B28pCl7 and a 1.33 mM stock solution for B28mCl-.

Preparation of peptoid monolayer for compression-expansion isotherm. 15 pL of peptoid
B28mClI- stock solution (1.33 mM in 2:1 DMSO/H20) was applied to the surface of a 100
mL subphase (2mM TRIS buffer, pH 8) in a Langmuir trough (KSV Nima mini trough) with
surface area of 80 cm? in order to provide a slight excess to the amount of peptoid needed to
generate the monolayer. Peptoid adsorption at the air-water interface occurred for 1800
seconds before surface area compression-expansion cycles began. The surface area was
reduced at a rate of 50 cm?/min from 80 cm (open barriers) to approximately 20 cm (closed
barriers). Immediately after the barriers were closed, they were opened at a rate of 100
cm?/min as previously described[8]. The isotherm measurement was performed in this

manner to reduce the amount of utilized peptoid stock solution.
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Bulk peptoid nanosheet assembly. Peptoid nanosheets were formed using the vial-rocking

method as previously reported[11]. For each sample preparation, 500 pL of 20 uM peptoid
solution in 2 mM TRIS buffer (pH 8) was transferred into a 4 mL dark vial and rocked with
a 900 second waiting time per cycle for 350 cycles to produce nanosheets on a thermally-
controlled modified rocking device at 30°C.

Nanosheet crosslinking. 500 pL of peptoid nanosheet solution was irradiated for 9999
seconds at 254 nm in 4 mL open glass vials via a Spectrolinker XL-1500 UV Crosslinker.
Samples were placed 7.5 cm below the light source.

FTIR spectroscopy instrumentation and univariate analysis. Scanning benchtop FTIR
measurements were performed on a Nicolet Nic-Plan IR microscope with a x32, 0.65
numerical aperture objective with a Thermo Scientific Nicolet iS50 FTIR spectrometer using
a KBr beamsplitter and MCT (HgCdTe) detector at Beamline 1.4.3 of the Advanced Light
Source at Lawrence Berkeley National Laboratory. Benchtop scanning FTIR measurements
used an internal globar source and were performed in reflectance mode. IR spectra between
650 cm ™! and 4000 cm ™! at 8 cm™! spectral resolution were collected with 512 co-added scans
at an interferometer mirror velocity of 6.3 cm/s. Spectral acquisitions were performed by
personnel of the Berkeley Synchrotron Infrared Structural Biology Imaging Program
(LBNL, Berkeley, CA) due to COVID-19 restrictions governing instrument access. Gaussian
approximations in OMNIC 9.8 were used for resolving peak areas for quantitative analysis.
We used the following relationship to calculate extent of nanosheet photocrosslinking

reaction:

PA i — PA i
% Of reacted chloride = ( uncrosslinked crossllnked) x 100’
PAuncrosslinked
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where PA are normalized peak areas of different samples, as denoted by the subscript.

Mechanical stability analysis. Peptoid nanosheet solutions (500 pL) were sonicated for up
to 60 minutes. Every 15 minutes, aliquots of each solution were removed from the sonicator
and incubated with 1 uM Nile red for 15 minutes to stain the hydrophobic core of the
nanosheets. From each aliquot, 1.3 pL of dye-containing nanosheets were transferred onto a
1% porous agarose pad for imaging via fluorescence microscopy. The nanosheets were
imaged with epifluorescence illumination using an Olympus 1X81 inverted microscope with
a Hamamatsu Orca CCD camera.

Atomic Force Microscopy (AFM) analysis. All sample peptoid nanosheet solutions (500
pL) underwent buffer exchange using 100 kDa Amicon centrifugal filters to replace the 2
mM TRIS buffer (pH 8) with Milli-Q grade water. From this solution, 2 pL of buffer-
exchanged nanosheet solution was transferred onto a clean mica surface and dried under N2
flow overnight. AFM micrographs were acquired on an Asylum Cypher atomic force
microscope, from which heights of individual and folded sheets were obtained. Co-author
Dong Li from the Molecular Foundry (LBNL, Berkeley, CA) performed these measurements

due to COVID-19 site regulations.
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Appendix A
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MCR-ALS performed on larval stage L2 C. elegans in Omnic 9.8. (Top) Each individual
MCR component loading vector is plotted as a function of wavenumber to better exhibit the
physical phenomena in spectral form incorporated into the loading vector emerging from
light-matter interactions. As a result, MCR components 6 and 9 were not further mined for
chemical information. (Bottom) MCR components 5, 6, and 9’s coefficients displayed as
individual heat maps per component, which were the components removed from spectral
interpretation in Chapter 2.
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UPLC-MS spectra for peptoid B28pClz. (Top) Mass spectrum of [M]2* and [M]?*
species. (Middle) HPLC trace taken at 210 nm. (Bottom) Total ion count per unit time.
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Three AFM line profiles from topographical AFM maps of uncrosslinked peptoid

B28 bilayer nanosheets. Our determined nanosheet thickness reported as mean +

std is 4.779 + 0.606 nm.
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Appendix C

AFM Line Profiles
Crosslinked Peptoid B28pCl, Bilayer Nanosheets
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Three AFM line profiles from topographical AFM maps of crosslinked peptoid
B28pCly bilayer nanosheets. Our determined nanosheet thickness reported as
mean =+ std is 3.084 + 0.082 nm.
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Three AFM line profiles from topographical AFM maps of crosslinked peptoid
B28mCl~ bilayer nanosheets. Our determined nanosheet thickness reported as

mean + std is 3.763 + 0.369 nm.
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Three AFM line profiles from topographical AFM maps of crosslinked peptoid

B28mCl7:B28mCl~ (1:1) mixture bilayer nanosheets. Our determined nanosheet
+ std is 3.295 + 0.075 nm.

thickness reported as mean
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