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ABSTRACT

The problem considered is that of a three-dimensional, mini-
mum time, helioce tric, Earth-Mars transfer of a continuous low-
thrust rocket vehicle.

The first crder unecessary conditions of the calculus of varia-
tions define the optimal trajectory in terms of a nonlinear first
order two-point boundary-value problem, which is solved by the
backward-sweep method. The caiculation of a set of feedback gain
matrices, a cross-check on the numerical accuracy of these
matrices, and the satisfaction of a set of necessary conditions for
the trajectory to be at least locally minimizing are done simul-
taneously.

The spacecraft is then perturbed from the nominal trajectory,
and two neighboring optimum feedback control laws, the so-called
time-to-go guidance technique, and minimum distance guidance
techﬁique are compared.

In-plane and out-of-plane perturbations are considered, and
both guidance techniques, in most cases, reduce the initial error,
although not by a very large factor.

It is shown that the minimum distance technique, as applied

in this study, performs much better than found by Lattimore.?!

1La‘cti.rncﬁre, J. P. "A Comparison of Open and Closed Loop
Applications of the Minimum Distance Guidance Technique,"

University of Texas at Austin, Engineer's Degree Dissertation, 1972.
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CHAPTER !

INTRODUCTION

Since the appearance of the high speed digital computer, the
solution of trajectory optimization problems has been a subject of
extensive research. The solution of any of these problems, even on
modern computers, is very time consuming. In certain trajectory
problems, for instance re-entry flights, this is an important factor.
As a result, research was also directed to perturbation guidance -
a procedure which gives information about the control history if the
spacecraft is, for some reason, perturbed from the precalculated
optimal trajectory. In order to determine the relative merits of
several perturbation guidance schemes, the low-thrust transfer
prcblem has received much attention in the literature.l:l’z’4’ X
This example is of theoretical interest only, since in real missions
there is in most cases enéugh time to re-optimize the trajectory

in case a disturbance should occur. Nevertheless, some interesting

facts have crystallized out of the various low-thrust studies made.

1.1 The Guidance Problem

The nonlinear érdinary differential equation that describes the

motion of an interplanetary spacecraft can be expressed as:
x(t) = £[x(t), ut), t], (1.1.1)

where x is a n vector of state variables, u is a2 m vector of
control variables, f is a known n vector function, and t is the

independent variable, time.



A nominal control history, say g_N(t), that will minimize a

scalar performance index of the form

te
ai :f 1.4t , (1.1.2)
to

while satisfying g terminal constraints of the form

Ylx(teht]l - ¥y = 0, (1.1.3)

must be found. The initial time and state are specified and the
final time, te is allowed to vary. y is a vector of constants.

A set of necessary conditions generates the sclution to the
above problem, while a set of sufficient conditions guarantees that
the resulting state history is at least locally minimized.

Once the mission is initiated, small disturbances that will
place the spacecraft off the precalculated path are likely to occur.

The resulting variations in the state vector are represented as:
sx(t) = x(t) - xp(t) . (1. 1. 4)

where x(t) represents the perturbed state and the subscript N
denotes the nominal (precalculated) state.

If such a state error is detected, the perturba.tiqn guidance
program calculates a control variation history which will, if added
to the nominal control history, still minimize the transfer time,
while satisfying the terminal constraints. Of the most widely used
perturbation guidance algorithms are time-to-go guidance and mini-

mum distance guidance.
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Periect knowledge of all state variables of the problem con-
sidered in this study is assumed so that the control problem is

deterministic.

1.2 Motivation for the Investigation

Hart[]‘] made a comparison between time-to-go guidance,
minimum distance guidance, and several other guidance techniques.
The comparison example was a three-dimensional, minimum time,
heliocentric, Earth-Mars transfer of a continuous low-thrust rocket
vehicle. In this work it was concluded that time-to-go guidance
exhibits a poor performance in minimizing the terminal constraint
errors. The time-to-go algorithm was applied in an open’ loop
fashion, and the problem considered was that of a rendezvous.

Wood[4’ 6] considered a two-di'rnensional, Earth to Mars orbit
transfer and concluded that time-to-go handles even very large
initial errors quite well. It was attempted to rendezvous with the
orbit of Mars rather than with the planet itself. The problem
therefore is less constrainted. Also, the time-to-go algorithm was
presented in a closed loop fashion.

The large discrepancy between Wood's study - where a large
initial perturbation resulted in a small terminal error - and Hart's
study - where a small initial perturbation resulted in a large termi-
nal error - promoted this study.

In this study, it will be attempted to.apply the time-to-go
algorith.fn presented in Ref. [11] to Hart's problem in an attempt
to develop an understanding of this discrepancy. Endeavoring to

27
attain a smaller terminal error than that found by I_,a’c‘c'nfnore,[{‘J
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the minimum distance algorithm as presented by Lattirnorefz] will
also be applied. The nominal trajectory will be calculated by a
backward-sweep algorithm. This algorithm simultanecusly generates
a set of feedback gain matrices. This procedure when compared to
the transition-matrix algorithm (as used by Hart) often has a
greater numerical accuracy, since unit solutions of the second-order
influence equations may differ by orders of magnitude, producing

an ill-conditioned transition matrix. [5]

1.3 Notation Convention

All vectors are assumed to be column vectors and will be
denoted by lower case letters; i.e., x,A. Vector components will
be denoted by a subscript, i.e., %, ;. A superscript T denotes
the transpose of a matrix, and the superscript -1 indicates the
inverse of a square matrix.

The first partial derivative of a scalar with respect to a
vector is a row vector denoted by

0H _ p _ (2H MH . 2H
—X 0X; 0Xg o0x, / -

Second partial derivatives of scalars with respect to vectors are

matrices denoted by

= -

I-g(lul T Hxlu

H o s
L xnul X



¥irst partial derivatives of vectors, with respect to vectors, are

also matrices:

0f) of; _
r" —— PORTRT T st
0%, 0%y,

bfn bfnJ
T 0x B,
The variation of (*) is denoted by &(*), and the differential of

(*) is denoted by d(*). (¥) denotes d—dt_(*)‘
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CHAPTER 2

THE OPTIMAL TRAJECTORY

After the definition of the mathematical model and coordinate
system, a very orief summauary is given of all the necessary and
sufficient conditions which must be satisfied in order to obtain the
solution to the control praoblem. For details of the derivations, see
Refs. [5,6].

2.1 The Three-Dimensional Mathematical Model and Coordinate

System

In this study the mathematical model, coordinate system,
initial conditions, and vehicle constants were chosen exactly as in
Refs. [1,2]7.

The equations of motion, which describe the minimum time
low-thrust, heliocentric, Earth-to-Mars transfer, are expressed in
terms of a heliocentric, rectangular, coordinate system, x4 xg, xg .
The 'origi_n of the coordinate system coincides with the Sun, and the
x, axis coincides with the line of the ascending node of Mars. The
x, and x5 axes lie in the ecliptic plane. The xg axis coincides with
the angular momentum vector of the Earth w.r.t. the Sun. See
Figure 1.

The spacecraft is represented by a point mass under the
influence of only the central force of the Sun and that of a constant
(magnitude) low-thrust jet.

In the beginning of the mission, the gravitational effects of

the Earth are neglected. Instead, the spacecraft is given the
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position and velocity of the Earth at the initial time.[l3] These
initial conditions are given in Appendix 2.

At the end of the mission, the gravitational effects of Mars
are also neglected. Along the trajectory, the perturbing effects of
other.planets were ignored. The inclusion of such forces would
complicate the analysis considerably and would make interpretation
of results much more difficult.

Information on the orbits of the Earth and Mars can be found
in Appendix 1. For the coordinate system employed, the angle of
the ascending node of Mars is taken to be 0.0 rad.

Finally, note that we want to rendezvous with Mars.

2.2 Equations of Motion

By a straightforward application of Newtons law, the equations
of motion for the space vehicle in the three-dimensional reference
frame are given by the following set of first-order, non-linear,

ordinary, differential equations:

. -MX, T
x = X% 4 = cosu, cosu,
3 m
r
% -MXg bl .
Xy = + ——cosuy, sinu,
3 m
¥
" -MXg y
Xz = + — sinu
3 3 m % (2.2.1)
r
Xe = X
X5 = Xg
X = X3
2 2 2

r = X4 t+ Xg +x62



=
i

P,
(2.2.1 cont.)

mO"ﬁt’

m

where x, X5, X3 are the velocity components of the spacecraft,
X4, X5, Xg are the corresponding position ccordinates, p is the gravi-
tational constant of the Sun, r is the distance of the 5pacecraft' from
the Sun, and T is the magnitude of the thrust vector. The angles,
y and uy describe the direction of the thrust vector, B is the con-
stant mass ejection rate, C is the constant relative speed of the
exhaust gas, mgy is the initial mass of the spacecraft, including
fuel, and t is the independent variable, time.

Numerical values for the constants B, m, C, and p can be
found in Appendix 1.

The six initial conditions for the above mentioned set of

differential equations are

x(to) - xplto) = 0,

where x » is a six column vector representing the state of the
Earth at the initial time t;. Numerical values for g_E(to) are given
in Appendix 2.

Since a rendezvous problem is considered, there are six ter-

minal constraints, denoted by
Ylxlte) te] -y = xlt;) - xqgltp) (2.2.2)

where t; is the terminal time, y is a vector of constants, Y is a

six vector function of terminal constraint relations, and XM
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represents the state of Mars. Note that for the transfer problem
y = 0. The details of the constraint relations (2.2.2) can be found
in Appendix 3.

2.3 Necessary and Sufficient Conditions for a Locally Minimizing
Time Optimal Reference Trajectory

The problem of finding the control history that will minimize
(at least locally) the transfer time while meeting the terminal con-
straints can formally be stated as follows: Find the n-dimensional
set of state variable functions x(t) and m-dimensional control

variable functions u(t) that satisfy a set of n ordinary differential

equations of the form
2} = £fc 0 t) . toS s te .  x(to) given, (2.3.1)
and q < n terminal constraint relations of the form
Ylx(t)t] - y = 0, (2.3.2)

while minimizing a scalar performance index of the form

t
T = glx(te) tg] + f fL(}ﬁ,g._, t)dt . (2.3.3)

to

The final time is unspecified.

The functions f, L, Y, and g are twice continuously differen-
tiable with respect to their arguments.

By using the classical calculus of variations approach, a set

of conditions which are necessary and sufficient to guarantee weak
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minimization of the above performance index, while satisfying

constraint relations, is given by:

2.3.a2 Necessary Conditions

x = flx,01),
AT = E

[3-6

]

to < t < tg

to= t =t

to<tstg

to, x(ty;) speciiied,

X(Efrtf) = ¥ = 0 ’

AT (ty)

, A L 96
Ziyr Bgs Ger 1) S (L tde )t_t

= G
X ’

—f

f

f

= 0 .

G, H, v, and A are defined in paragraph 2.3.b.

" The above set of equations defines an extremal path.

(.

2.

(2. 3.

TL
AL

the

.3.4b)

3.4e)

we

consider small perturbations in the initial state 6x(ty) and in the

terminal conditions dy, these perturbaticns will give rise fto per-

turbations 6x(t), ¢A(t), and Su(t). It can be shownl:sz| that these

perturbations satisfy

where

o
M
I

o
>
I

A(t)sx - B(t)sA ,

-C(t)ox -

AT

(t)6A ,

(2.

(2.

(2.

3.5a)

3. 5b)

3.5c¢)



At) = ‘f"_‘_ - 'f'&HE.B_._HEE’ (2.3.6a)
= -1 ¢ T
B(t) = f—_‘lHl_E ig (2.3.6Db)
- -1
C(t) = HZS_;’S_ - H'_EH.‘}_.‘}_ H‘_l.’i {2 3. 6c)
2.3.b Sufficient Conditions
Huu(t) positive definite , tos t=te (2.3.7a)
§*(t) finite for to < t=t;, and S{t) finite
for t; = t=t., where t; is any intermediate
time such that to =< t; < te. Alternatively, {2, 3. Th)
we must have S, (t) finite for tp<ts< te,
except at te where it need not exist.
dz dy
—— > 0, applicable only in cases where —— = (2. 3. Te)
dtf dte

Note that we have used the notation X for }i(tf).
The quantities G and H are defined by introducing a set of n
undetermined time dependent multipliers A(t) and a set of q con-

- stant multipliers v as follows:

Glxerteyv) = 8 + v Y (2.3.8)

Hx,u,A,t) = L + A~ f (2.3.9)

The sweep matrices S(t), R(t), Q(t), §*(t), R (t), and Q*(t)

are defined by the following set of differential equations and



boundary conditions:

5= -aTs - sa +sBs - ¢,
R= (B - AR,
Q- R'BR,

S(t,) = G

=t XfXf

B_(tf) = [E;T z T] ’

=f £f

0 4y |
Qlty) = dtg
- T

GE?) dz.

dtf dtf-
S, = S - RQ™RT,
Ry, = RQ™.,

= =)

Q* - 'Q ’

where Af(t), B(t), and C(t) are defined in paragraph 2.3.a.

Note that the ( ), quantities also satisfy (2.3.10).

.

(2

(2.

(2.

(2.

W

w

. 10a)

. 10b)

.10c)

.11a)

.11b)

.1llc)

.12a)

. 12b)

. 12c)

In Ref. [6] it is shown that if the first order necessary con-

ditions are linearized about the stationary path, neighboring station-

ary paths are found, characterized by the perturbation equations:

5A(t) S,t) R ()] ]ox(t)

(
-d7 R T(t)

e
~ %

Q_*(t) dz ’

bu = Cy6x + Doy ,

(2.3.13)
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where the feedback gain matrices C and D are given by

C = -H gt Hy, tL£.58,), (2. 3. 14b)
S -1 f T —_
D = -Hyy Ly R,.dy, (2. 3. 14¢)
and
dv ]
d¥ = (2.3.15)
..dtf— ’
_ fax]
dy = (2.3.16)
Lo J .

It is sometimes necessary to write (2.3.13) in different forms. The

following forms are equivalent to (2.3.13).

5 A(t) S(t) R(t) m(t)] [ex(t) (2.3.17a)
dy | = | RTt) Q@) n) dv. (2.3.17b)
dz m ) aTe) a@)dla, J,  @.3.17¢)

where S, R, m, n, and a satisfy the differential equations

$ = -sa - afs + sBs - ¢, (2.3. 18a)
R = -(AY - SB)R, (2.3;.18b)
dQ = rRTBR, | (2.3.18¢c)
m = -(AT - SB)m, , (2.3.18d)
n=RIBm (2.3.18e)

2 = m'Bm , (2.3. 18f)



with boundary conditions given by

62;(tf) Gx - (X?Ef) (zx ) é}i(tf) (2.3.19a)
XXy xf
dy = |y 0 dy dv (2.3.19b)
T dt -
£
dy T
dz
— L2 2.3.1
n 4z - 3 (dtf) dt, Ldtf Jd - ( ve)

If %ta # 0, Equation 2.3.19c can be solved for d'cf in terms of
f

6:_{_(tf) and dv:

dz \™* : dy '
dtf = (a‘t—f' dz - ZXfO}if - E‘ dl . (2.3.20)

Using Equation (2.3.20) in (2.3.19a) and (2.3.19b) we get

" 7 B T dz\™ T dy - dz \™* Naihe

f f f —f
dY /4, \ dY /4, \-1/dY\T
s Yxp " ad\dy) "= -a‘*(a‘) dt;
S 4 L7=f ¢/ =t £\"'f £ -
(2.3.21)
This elimination makes a simpler backward-sweep possible:
5 A(t) S(t) R(t)| | 8x(t)
= | _T _ (2.3.22)
dy R (t) Q) dv.

s

where



(2.3.22)

il
1
w
]

g
5
g
i)

(2.3.23)

pre]
T
=
]
12
=)
H
~
»

6=Q-nr_1T/a,

Note that S, R, and Q satisfy (2.3.18a,Db,c).
Note also that we have partitioned the matrices R, Q, R, and

Q. as follows:
~

R = [R m], (2.3.243)

R, = [R, m,], (2.3.24b)
s &

Q = , (2.3.24c)
o' al,
—az’z I_'J;*

Q, = ‘ (2.3.24d)
I_1.>:<T a:’.: L

m, m,, n, and n, are column vectors. a and a, are scalars.
Then from Equations (2.3.13), (2.3.24b), and (2.3.24d), it

follows that[4]

at; = -m T ex - n, (t)dy (2. 3. 25)

— %
0

Equations (2.3.4), (2.3.6), and (2.3.11) for the minimum time
orbit transfer problem are derived in Appendix 3.
The optimality condition 2.3.4c determines the m-vector u(t).

The solution to the 2n differential equations (2. 3. 4a) and (2. 3. 4b)
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and the choice of the q+1 parameters v and t; are determined by
the 2n+q+1 boundary conditions (2. 3.4d) - (2. 3. 4g).
In the next chapter, an algorithm for the solution of the above

two-point boundary-value problem will be presented.
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CHAPTER 3
NUMERICAL SOLUTION OF THE TRANSFER PROBLEM
AND A SET OF FEEDBACK GAINS

Several algorithms are discussed briefly with particular
emphasis on the advantages and disadvantages of each. A detailed
discussion of the algorithm selected will then be given, which is
followed by some details on the specific integration routine that was
used to solve the problem. Some numerical aspects, such as con-
vergence and numerical stability are discussed in paragraph 3. 3.
Finally, a method which can be used to cross-check the accuracy

of the feedback gains is presented.

3.1 Several Algorithms

Several algorithms for the solution of the non-linear, two-
point boundary-value problem have been developed {Refs. [5-8] and
others}. Among the most well known of these are the neighboring
extremal methods, gradient methods and quasilinearization methods.

Except in very special cases, all these methods involve either
flooding or iterative procedures.

Gradient methods are in general not very sensitive to initial
estimates of the unspecified boundary conditions, and it is therefore
a good method to generate a first approximation of the solution.
First order gradient methods are, however, slow to converge when
the solution approaches the opﬁmal solution, and second order

gradient methods are very bulky to program.
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Neighboring extremal methods often involve an iterative pro-
cedure which improves an initial guess of the unspecified initial
(terminal) conditions so as to satisfy the specified terminal (initial)
conditions.

The main disadvantage of these methods is the difficulty of
finding a first estimate at one end that produces a reasonable solu-
tion at the other. This difficulty arises naturally due to the in-
herent sensitivity of the Euler-Lagrange equations (Eq. 2. 3.4b).

Soluticn by the neighboring extremal method involves the sclu-
tion of a linear, two-point boundary wvalue problem. Such problems
can be solved by either finding a transition matrix between unspeci-
fied boundary conditions at one end and specified boundary conditions
at the other end, or by a ''sweep' method which generates, for the
set of equations with specified final conditions, an equivalent set of
initial conditions. The coe€fficients of the terminal conditions are
thus in effect "swept' backwards in time to the initial time. We
have then an ordinary initial value problem which is easily inte-
grated. This method involves the integration of a matrix Riccati
equation (see Equation 2. 3.10a).

As pointed out in Ref. [5], we have, in many systems, a
significant difference in the growth of the solutions x(t) and At).
Since all calculations are done in finite accuracy, this difference in
growth rate often leads to an ill-conditioned transition matrix. The
difficulty of an ill-conditioned transition matrix can often be side-

stepped by using the ''sweep'' method.
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It is to be noted that handy 'by-producis' result from the
backward-sweep method: If we integrate Eguations (2.3.10) back-
wards with initial conditions (2,3.11) from t; to t;, then perform
the transformation (2.3.12), and continve the integraticn to ty, we
can easily calculate a set of feedback gains Ly using (2.3. 14b),
while simultaneously investigating the sufficient conditions for a
local minimum, (2.3.7b).

Since the solution of the low-thrust Earth-to-Mars transfer
in three dimensions was found by Hart’mj there was no starting
difficulty, and the backward-sweep methed was chosen to generate

the solution.

3.2 A Backward Sweep AlgoritthE\J

The following algorithm was used to generate the solution to

the two-point boundary-value problem stated in Chapter Z.

Step 1: Guess the n terminal conditions x{t;), the g parameters v,
and the terminal time te

Step 2: Determine A(t;) and z[g(tf), p;(tf), ¥y tf] from (2.3.4f) and
(2.3.4g). Calculate (2.3. 4e).

Step 3: Integrate (2.3.4a) and (2. 3.4b) backward from t; to tg
usiné (2.3.4c) to determine u(t) in terms of A(t), with
terminal conditions g;_(tf) and A(tf) from steps 1 and 2.

Step 4: Simultaneously with step 3, integrate (2.3.10) with
boundary conditions (2.3.11) to t =t;.

Step 5: At t =t carry out the transformation (2.3.12) and con-

tinue integration to ty, using (2 3.10).



Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

-

Record x, A, S-,w R.,, Q* at t = t,.

-~

Choose 6x(t;), dy and dz sco as to bring the next solution

closer to the desired values of x(ty), X(}if, tf) -y =0 and

z = 0. A good choice is
8% (o) xi{to) - x°
where x° is specified,
dy = =€ X(;:_f, tf) -y 0<éxs 1.
dZ Z(}—('f’ tf)

Use (2.3.13) and the stored values in step 6 to calculate
§A(ty) and dv. Record dV.
Integrate (2.3.5a,b) forward with boundary conditions

§x(tg) and 8A(ty). Record d}_i_(tf) = 63{_(tf) + }_Z(_(tf)dtf-

Using |
o t - - -dx 7
v = v + dy.
| % Jnew | % Joua [ %% |-

repeat step 1 through 10 until x(t) = x°, _ﬁ_((xf, tf) -y=0,-

and z = 0 to the desired accuracy.

3.3 Numerical Aspects

In order to speed up the convergence, it was found necessary

to perform the elimination discussed in Chapter 2.3.b. This

resulted in the simultaneous integration of 90 differential equations

instead of the 103 equations obtained from (2.3.4a), (2.3.4b), and



(2.3.10). The boundary conditions for the integration of the 90
differential equations are given by (2.3.4d), (2.3.4f), and (2.3.21).
The above algorithm was programmed and run on an IBM
370/158 computer. It took roughly 4.5 mihutes of computation time
to simultaneously integrate the 90 differential equations and generate
a set of feedback gain matrices at 158 points along the trajectory.
The integration method used is that of R. Bulirsch and
J. Stoer. It has a variable step size and uses rational functions
rather than polynomials tc extrapolate the solution from the discrete
approximation.
When compared to Runge Kutta, Adams Moulton Bashforth
(of order 6), and methods which extrapolate using polynomials
based on the midpoint rule, this method should yield more accurate
results and fewer operations to obtain these results. The rational
approximation method does not fix the order of approxation, but
adapts it automatically to the problem treated.[gj
In highly non-linear regions, the step size was as small as
0.14 days and the maximum step size was limited to 1.7 days. The
best time to perform the transformation is approximately 126 days
into the mission (taking O days as the launching time from the-
Earth). The solution agrees to within 1% with that of Ref. [1] and

it converged within five iterations.

3.4 A Cross Check on the Accuracy of the Feedback Gains[4]

The feedback gain matrix for the transfer problem is given

by (see 2.3.14b)
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G) = -H, T s" (3.4.1)

It is possible to get an estimate of the accuracy of the feed-
back gain matrix if an estirnateb of the accuracy of _§* can be
obtained.

From (2.3.25), it follows that the change in terminal timé
can be expressed in terms of perturbations in the state and termi-
nal constraint levels by

dt, = -mT)ex(t) - nJt)dy . (3. 4.2)

In addition, if the first order necessary conditions are satisfied,

(4]

the first variation in the performance index can be expressed as

87 = AT(to)ox(ty) - vIdy . (3. 4.3)

On the nominal path any time t, is a possible initial time so that

(3.4.3) can be written as

57 = AT(t)ox(t) - vlidy . (3. 4. 4)
For the problem under consideration we have J = Btf. Hence, from
Eqgs. (3.4.2)- (3.4.4) we have
m(t) = -A(t)/B,

(3. 4.5)
n.(t) = v/B = const.

For ty sts=s te My is given by the last column of (2.3.12b) which

can be evaluated as long as Q7 exists.
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After the transformation, m, can be evaluated by simultaneous

backward integration of
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and (3.4.6)

m, = -(AT - BS )m, .

Over the first 80% of the integration interval (up to about 155 days
from the Earth) the agreement of 1 and A/B was found tc be
within 2%.

During the last few days a check on m , is not possible since
§* diverges as t approaches tf. As tf is approached, fluctuations in
m* increase partly because of large errors introduced by inverting
Q, a matrix which is singular at te.

The generated feedback gains are given in Appendix 4.
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CHAPTER 4

TWO DIFFERENT LINEAR GUIDANCE SCHEMES

In Chapter Two, a method for generating guidance information
was discussed. A control correction is obtained from the product
of a time dependent feedback gain matrix and a linear state varia-
tion. The gain matrices are evaluated along the nominal trajectory
and stored as a function of time.

When applying a guidance scheme of this nature, the ambiguity
of determining the 'lookup' parameter for the gain matrices arises.
If, for instance, the spacecraft is perturbed onto a neighboring path
such that the final time on the perturbed trajectory is greater than
the final time on the nominal trajectory, there are no gain matrices
available for the time greater than the nominal final time, so that
no guidance information can be calculated. In the event of using
the current time on the perturbed trajectory to enter the gain
tablés, and if there is an index time which represents a nominal
state ''closer' to the perturbed state, the question arises whether
this time should not be used to enter the gain tables.

Several methods exist to circumvent this ambiguity {Refs. [1,
4-6, 10-12, and others]}. In this chapter two of these methods
are discussed - the so-called time-to-go technique and the minimum
distance technique.

The minimum distance guidance technique employed in this
study closely resembles that of Lattimore.[zj The feedback infor-

mation, however, is calculated in the form of a continuous feedback
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law, dult) = Cy(t)6x(t), rather than in the form of a sampled data
feedback law,[s:1 Su(t) = Cy(t, t;) 8x(t;), as employed by Lattimore.
Here t represents the current time on the perturbed trajectory,

and t;, represents the time of the last loop closure.

4.1 The Time-To-Go Guidance Technique

The time-to-go scheme presented in this section avoids the
problem of 'running out of gains'' if the perturbed state of the
spacecraft is such that actual te is greater than nominal te- All

the parameters associated with time-to-go are illustrated in Figure

2.
In terms of these parameters, we have
T = (1:f -t) = (tf -tN) = time-to-go (4.1. 1la)
N
or
ty =ttt (th - tf) ’ (4.1.1b)

The change in final time can be calculated using Eq. (2.3.25).
This method demands the storing of an additional set of feedback
gains, namely the Lagrange multipliers, A(t).

For problems where the terminal time is allowed to vary,

differential changes of x(t) and u(t) are given by

dx(t) = 6x(t) + x(t)dt , (4.1.2a)

su(t) +uk(t)dt , (4.1.2b)

du(t)

to first order in dt. The quantity ${*) denctes the variation of {-),
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i.e., the change of the quantity at a fixed time t. dx and du are

defined below.

Using (2.3.25), (4.1.2a), and subtracting dt, the differential of

time-to-go is obtained:[4]
ik r ~r A T s .
d(tf -t) = =Zi, (t)dx(t) - L1 - E*L(t)Jdt - 1_1_**(t)d_y. (4.1.3)
The index time, tN’ is then that time t for which d(’cf -t)=0
With such a choice of t (4.1.3) is satisfied to first order in dt.

N’
Using (2.3.14), (4.1.2a,b), and evaluating the gains at tN’ we

obtain the feedback law[4]

duft) = GCl(tp)dx + [g(tN) - Ciltp)E(ey)]dt + Dt )dy > (4.1.4)

where
Cilty) = -[Hgg-l (Hyy + ggg ')]t:tN , (4. 1. 5a)
D(tN) = - 29:1 in_f Exjtth , (4.1.5b)
du = u(t) - EN(tN) s (4. 1. 5¢)
dx = x(t) - x(ty) (4.1.54d)
dt = t -ty : (4. 1. 5e)
dy = ¥y - ¥y - (4. 1. 5f)

An Algorithm to solve d(tf -t) =0 is given in Section (4. 3).

In this study the terminal constraint levels are not varied, that is

dy = 0.
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4.2 The Minimum Distance Guidance Techniqgue

The guidance information used for the minimum distance
technique is exactly the same as that used for the time-to-go tech-
rique. The schemes differ only in the way this information is used.
In the minimum distance technique an index time for entering the
gain tables is determined by minimizing a metric function of the
difference between the current perturbed state and the nominal
trajectory. It is expected that the nominal state ''closest' to the
perturbed state produces the most accurate feedback data avail-
able.[loj The parameters associated with minimum distance
gu;idance are illustrated in Figure 3.

A general form for this metric, as suggested by Powers,[B:l
is

1

rlEns bty) = (ol -t +lala-xyg 017+ + kgD -xy (9112

(4.2.1)

where k, = k.(x) is a sensitivity coefficient, generally determined by
the physical knowledge of the problem.

Harttl] and Lattirnore[Z] considered a special case of
(4.2.1) with kg = k) =k, = kg = 0 and k; = kg = kg = 1. Equation

(4.2.3) is then obtained by setting

G = Dxem 3y, (1)) (1) + Dxgmxpy (1)1 (1) + D=3 ()] g (1) = O

Expanding XN'(T) and ;{N (t) about their values at the current time

1 1
to first order, that is
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= t) + x. (t) At
xNi(T) XNl( ) YI\Ii( )

(4.2.2)
2N (T) = x &) + EG ()AL, i=4,56,
| i i
and solving for At:
. \
NED > = (4.2.3)
o (F B0 -xyg ) - oxy (O
i=4 i k i
The index time is then given by
ty =t At (4.2.4)
and the change in the control history by
sut) = Cplty)ox(t) , (4.2.5)

where Cl(tN) is given by (4.1.5a).

Ha.rt[l:l and Lattimore[zj used essentially the same law for
calculating the control variation. See the introduction of this
chapter.

4,3 Minimum Distance and Time-To-Go Guidance - Previous
Results

After investigating several open loop guidance algorithms,
Hart[lj found that the minimum distance technique is superior to

(2]

the time-to-go technique. Lattimore continued the investigation
of the minimum distance algorithm and applied it in a closed loop
form. This study indicated that the closed loop application of the

minimum distance algorithm reduces the terminal error only
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slightly. Furthermore, the terminal error was quite large: for
an initial perturbation of 5.0 x 10™° AU/day in the x; velocity com-
ponent, the Euclidean norm of the terminal velocity errors was
approximately 6.81 x 10-° AU/day.

Since Hart calculated a new optimal trajectory for this per-
turbed initial condition, the terminal time was uniquely defined.
The terminal error was defined as the difference between the state
of Mars and the state of the vehicle at this terminal time.

The method applied in this study to calculate the minimum
distance index time is that of Lattimore.[Z] A different algorithm,
however, was used to generate the feedback matrices. For the
purpose of comparison, Lattimore's closed loop guidance algorithm
will be summarized.

The problem statement, first order necessary conditicns,
terminal constraint relations, and initial conditions are as in
Chapter 2.

Considering a perturbation of the nominal trajectory [Equa-

tions (2.3.4a)-(2.3.4c)], and after some algebraic manipulation,

one finds
8% Arlt)  As(t)|] ox
.1 = (4.3.1)
8 Agl(t) Ault)|] 8A
where
Ay(t) = Hy, - HAuHu‘;l Hyo s
Ax(t) = -H,  Hyy Hy, »



Ag(t) = -H,, + H HE_‘;‘* =
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with boundary conditions given by (2.3.19).

Furthermore,

_ =1 o
su = -Hy,' {Hy, 6x + Hy, o1} . (4.3.2)

Numerical integration of (4.3.1), using the proper boundary
conditions will determine 6x(t) and 6)A(t). This is used in (4.3.2)
to calculate su(t). The boundary conditions needed for integrating
(4.3.1) can be obtained from (2.3.19). The n+q+1 linearly
independent equations (2.3.19) contain 2n+q+1 unknowns éx., 81,
dv, and dtf (taking dy = 0 and dz = 0). Choose, therefore, the g
components of dv and n -q components of X arbitrarily. The
remaining gq quantities 6>_<_f and the n+1 quantities 6Af and dtf are
now uniquely determined and (4.3.1) can be integrated backwards in
time from te to an arbitrary time t; in the interval ty <t < tf.

If the backward integration of (4.3.1) is done n+q times with
(n +q) linearly independent starting conditions, the n+q solution

vectors 6x and 6)A forms a (2n X n+q) transition matrix, denoted by

X. Next, partition the transition matrix as:

Xl (t) tf) X2 (tr t )
X(t, tf) = -

Xs(t, t,) Xal(t, tf) .

then, after some manipulation, the desired solution for 6x(t) and
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8A(t) is obtained:

8x(t) Xt t,)  Xaltty) | X, £)7 - (Bt T K () | 6x(ty)
I
6_):«3) XS (t9 t ) X‘L(t’ tf)J qun ‘qxq dx‘ s
(4.3.3)

where X, (t, t.) and Xj(t, tf) are nxn matrices and X (t, tf) and
Xalt, tf) are nxq matrices.

Finally, Equation (4.3.3) into (4.3.2) gives the control varia-
tion history in terms of the state error ¢x(t;) and terminal con-

straint error dy.

su(t) = -[A(t) Ag(t)]

Xt t))™ Xy, t) T Xglty, te)y [ox(ty)

(4. 3.4)
Ogxn Tyxq Z |}
where
M) = Hy O {HE?_(_ Xy (t, te) + HE—-)_\_Xa(t, tf)} ,
and
Aa(t) = Hyg' {Hyx Xa (6 te) + Hy ) Xalt, t)]

2]

Formally then, the algorithm used by Lattimore can be sum-

marized as follows:

Step 1. Solve the n+q+1 Equations (2.3.19) n+q times. From
the solution of these equations, n+q initial conditions are

obtained for the backward integration of Equations (4. 3.1).
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Step 2. Integrate Equation (4.3.1) n + q times from t; to Lo and
store the integrated values at each step.
Step 3. Evaluate the gain matrices, A;{t) and A,(t), using the state

of the ''closest' point on the nominal trajectory.

Step 4. Substitute A;(t) and A(t) into Equation (4.3.4) to obtain
the control variation history, &u(t).

Step 5. Form the augmented control history and integrate the non-
linear equations of motion to the time of next loop
closure, using the new control history.

Step 6. Evaluate 6x at this time, call it &x(t;). If t; is less than

tf, go to step 3.

Woodl:4’6:| considered a two-dimensional version of the mini-
mum time, low-thrust, Earth to Mars transfer. A rendezvous with
Mars is not attempted, instead, it is attempted to match an assumed
circular orbit of Mars. A set of feedback gains was generated as
described in Chapter 2. After an initial disturbance was introduced,
the time-to-go guidance scheme presented in Section 4.1 was used
to drive the terminal error to zero. It was concluded that the
scheme handles even very large initial perturbations quite well.

After the quantities x, A, C; and \_.1_- C;f were stored as func-

tions of time, the guidance algorithm used was the following:

Step 1: Assuming the current perturbed state x(t) known, obtain
the appropriate index time using the algorithm given

below.
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2. Evaluate the quantities dx, dt and dy and interpolate
linearly between the two appropriate data points to obtain

C,(ty) and other quantities.

3. Calculate du and form the augmented control u(t) =
du + EN(tN)'
4. Integrate the non-linear equations of motion from t to

t + H, where t is the current time arnd H is the maximum
step size.
5 The perturbed state x(t + H) is now known. If t + H is

less than t., go to step 1.
An algorithm for evaluating the index time:

1 Guess a value for the index time and evaluate d(tf—t)
from Equation (4.1.3). A good guess is, for instance,
the current time.

2 If d(tf-t) is greater than zero, choose a smaller value
for tN' If d(tf-t) is less than zero, choose a larger
value for tN' One might choose, for instance, the index
time that coincides with the next/previous data point.

3. Continue the process until d(tf-t) changes sign, then

interpolate linearly between the last two data points to

find tN

When the initial conditions were such that d(tf-t) was less

zero when tN = t,, the index time was chosen to be t,.



An extensive search in this way was necessary only once.
Thereafter the index time can be calculated by two or at most

three evaluations of d(tf-t).

4.4 Minimum Distance and Time-To-Go Guidance - The Algorithms

Used in This Study

While generating the nominal trajectory, the 35 quantities x,
;_';_, X, A, u, (1—_r£1__f_f_), (L.J;-Cli) and C; were stored at 158 points.
In regions where the control and feedback gains change rapidly, the
data points were closer together than in regions where changes in
these quantities were small. The minimum time between any two
data points was 0. 14 days, while the maximum time between any
two data points was limited to 1.7 days.

In order to be able to compare the neighboring solution found

2]

in this study with that of Lattimore, the terminal constraint
levels were not varied.

In applying the minimum distance technique, the index time
was determined from Equations (4.2.3) and (4.2.4). The augmented

control can then easily be evaluated from Equation (4.2.5).

Formally then, for minimum distance guidance:

Step 1. Assuming the current perturbed state x(t) known, use

Equations (4.2.3) and (4.2.4) to calculate t Evaluate

N?
5x(t) = x(t) - x (t)-
Step 2. Interpolate linearly between the appropriate data points to

find Cl(tN). Evaluate su(t) using (4.2.5).
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Step 3. Assuming that Su(t) remains constant over the entire
integration step, integrate the non-linear equations of
motion forward from t to t+H, using second order inter-
polation to evaluate the nominal control at any intermediate
time ty € [t,t+H] and forming the augmented control by

adding 8u(t) to this value: u(t) = suft) +u H is the

N
basic step size, i.e., the time between any two data
points.

Step 4. The perturbed state x(t+H) is now known. If t+H is less

than tf, go to step 1.

The time-to-go guidance algorithm used in this study is the
same as the one discussed in Section 4.3, except that steps 3 and

4 in the algorithm of Section 4.3 are replaced by:

Step 3. Calculate du using (4. 1. 4).

Step 4. Assuming that du stays constant over the step size H,
form the augmented control history u(t) = du + EN(tN“*'tl)’
where 0 < tt < H, and integrate the non-linear equations of
motion forward from t to t+H. Evaluate EN(tN+tl) from

the stored values of U by second order interpolation.

Both these algorithms were programmed and various initial per-
turbations were considered. The results of these flight simulations

are discussed in Chapter 5.
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CHAPTER 5

RESULTS OF THE SIMULATIONS

The results obtained from the algorithms presented in Chapter
4 are summarized in this chapter. A discussion of some numerical
problems encountered in implementing these algorithms and the
solutions to these problem areas precedes the results.

5.1 Numerical Problems Encountered in Implementing the
Guidance Schemes

A problem area common to both time-to-go and minimum
distance guidance is the time period near the end of the flight
where the feedback gains diverge. This phenomenon can be
explained physically. The effect of control changes at this point in
time is small, with the consequence that a large control correction
is needed in order to correct for a small error.

The region is characterized by large and erratic contrcl
corréctions. The cross-check on the accuracy of the feedback
gains (Section 3.4) indicates that the feedback data in this region
are inaccurate. As explained in Section 3.4, large errors are
encountered in inverting the near singular matrix Q. The cross
check indicates that after a time of 160 days from the Earth, the
error in some of the feedback gains is greater than 4%.

Since the state variations are approximately normal to the

rows of the feedback gain matrix, an inaccuracy of 4% results in

control corrections of which not even the sign is to be trusted.

This problem was also encountered by Wood[4’ J and Lat’cirnore.l:z:l
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A possible solution for this problem is to use nominal control.
The question is now from what point in time should the nominal
control only strategy be used. Or equivalently, what size of con-
trol changes can be tolerated without viclating the linear assump-
tions. The cross-check on the feedback gain accuracy gives an
indication of the time from which nominal control only should be used,
but gives no specific value. This problem was circumvented by
using nominal control from various times in the neighborhood of
the predicted 'switching time.'" The strategy used was then that
one which gives the smallest terminal error. In Tables 1-8, the
""best" switching time for each initial perturbation is given.

A second common problem is the time of termination of inte-
gration. The strategy used to overcome this problem is by defining

a normalized norm of the terminal error,

and continue integration until this norm starts to increase.

In all cases considered, the actual final time of the perturbed
state, i.e., the integration termination time, was to within 0.5 days,
the same as the first order predicted final time using the initial
perturbation. Since the position and velocity of the vehicle matches
the position and velocity of Mars closely (as will be seen from the
results), the actual time of termination of the integration has very

little effect on the terminal error, so that this problem is not very

important.
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. (2]
Lattimore*

used a minimum distance, closed loop guidance
algorithm on the same transfer problem. He defined another
problem area, namely the middle of the flight. It was found
necessary to use nominal control during the middle of the flight.
Since he does not define the ''middle of the flight," it is unclear
how this strategy was employed. In additicn, the results indicate
an error of 7.5959967022 x 10~° (AU) in position and an error of
7.5581577845 x 102 AU/day in velocity for an initial perturbation
in the x velocity component of 5.0 x 10"® AU/day. This means
that the velocity error has grown by a factor of at least 1500 - a
poor result if the performance of the guidance scheme is judged by
the satisfaction of the terminal constraints only. A constant step
size routine was used, and the use of nominal control during the

"middle of the flight' was motivated by an argument that the

perturbed control causes the time of the turn around period to

shift slightly. This in turn causes large control corrections which
exceed linearity so that the algorithm breaks down.
It is believed that this result is inaccurate. Certainly it is

possible that a set of initial conditions can shift the time of turn

around and that control changes will be larger in this region due to
this fact, but for an initial perturbation of 5.0 x 107° AU/day the
control changes calculated in this study did not exceed the limits of
linearity. In implementing the algorithms presented in Chapter 4,
it was not necessary to switch to nominal control during turn

around.
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Although the control changes are larger and again somewhat
erratic during the middle 20% of the flight, it caused no trouble
for any perturbations except the perturbation of 5.0 x 10™° AU/day
in the x, velocity component. Here it was found necessary to place
an upper limit of 0.35 radians on the control change of u, and an
upper limit of 0.15 radians on the control change of u;. In addition,
this upper limit was in effect only for two integration steps. It is
believed that the fact that much smaller step sizes were employed
during turn around in this study than in that of Lattimore contributes
to the numerical stability experienced in this study during turn
around. It is to be noted that the initial perturbation of 5.0 x 10~°
AU/day is ten times larger than the initial perturbation considered
by Lattimore.

In addition, and/or altermatively, it is possible that inaccurate
guidance information was generated by the scheme presented in
Section 4.3 (maybe due to a programming error or very sensitive
numerical behavior) and that this could be the reason for the poor
satisfaction of the terminal constraint relations as found by
Lattimore [ 2l

Finally, it is to be noted that Hart and Lattimore carried all
dependent variables in double precision in order to control roundoff.
Al computations in this study were done in single precision, since
the errors introduced by single precision computation are much
smaller than the truncation error introduced by numerical integra-

tion.



-43-

5.2 Results of the Flight Simulations

5.2.a Initial Perturbation in x; Velocitvy Component, Introduced
at Zero Days

The set of initial perturbations in the x; velocity component
range from -4.0x 10™® AU/day to +5.0 x 10™° AU/day. The result-
ing Euclidian norms of the terminal velocity error and terminal
position error are given in Figures 4 and 5, respectively.

For a velocity perturbation of -4.0 x 10-° AU/day, the termi-
nal velocity error is reduced by a factor of 4. For a velocity
perturbation of -1.0 AU/day, the terminal velocity error is approxi-
mately the same as the initial error. There is hardly any dif-
ference between the performance of time-to-go and minimum dis-
tance.

For velocity perturbations greater than zero, time-to-gc gives
a slightly better terminal error than minimum distance, but the
terminal error increases rapidly for perturbations larger than
2.0 x 10° AU/day. Minimum distance vguidance diverges for initial
perturbations greater than 4.0 x 10° AU/day.

To get a clear picture of the terminal position error, the
initial perturbation should be put in a dimensionless form, since
AU/day is not comparable with AU. The velocity variables can be
put in dimensionless form by measuring the time in units of
(the Earth's angular velocity about the sun)~!, instead of in days.

Using this unit of time, the velocity perturbations AU/day

must be multiplied by a factor
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365.198084 days / radi‘an1s
2T vear period

Using this scale, it is seen that for a velocity perturbation in
the range -2.0x 10™® to -4.0 x 107®, the terminal error is actually
less than the initial error for both time-to-go and minimum dis-
tance guidance.

For perturbations between 1.8 x 107® and -1.0 x 107® AU/day,
the terminal error is slightly greater than the initial error. Again
there is hardly any difference between the performance of time-to-
go versus minimum distance guidance.

As before, positive velocity perturbations less than 1.5 x 107°
are handled slightly better by time-to-gc guidance than by minimum
distance guidance, and the reverse is true for initial velocity per-
turbations greater than 1.5 x 10-5,

Tables 1 to 4 give the actual terminal error and the specific

time from which nominal control only was used.

5.2.b Initial Perturbation in x4 Position Component, Introduced at
Zero Days

The set of initial perturbations in the x, position components
ranges from -2.0x 107% to -0.3 x 10™® AU and from 0.3 x 1072 to
3.3 x 107 AU. Note that a perturbation of 0.5 x 10™® AU/day is
comparable to a perturbation of 0.3 x 10™® AU, so that the pertur-
bations considered in part 5.2.a are comparable to those considered
here.

As can be seen from Figure 6, minimum distance and time-

to-go guidance exhibit approximately the same performance in
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minimizing the terminal error. The magnitude of the final error is
slightly larger than the magnitude of the initial error for the
smaller (in absolute value) perturbations, while the final error is
smaller than the initial perturbation for larger initial perturbations.

Figure 7 must be interpreted with care. At points A and A’
the terminal control strategy indicated that, by switching to the
nominal control only strategy at a slightly different tirme, the ter-
minal error can be reduced to 0.172 x 1072 AU in the case of point
A and to 0.192 x 1072 AU in the case of point A*. In the case of
such a ''conflicting'' terminal control strategy, the strategy used was
that which gives a minimum velocity error (see Figure 8).

For a rendezvous problem these errors are more significant than
position errors. Observe that for all perturbations considered the
terminal position errors are approximately ten times smaller than
the initial perturbations.

In all the perturbations considered, this conflicting control
strategy was encountered only with these two perturbations. The
importance of the control strategy during the final stages of the
flight is clearly illustrated by the above results.

Finally, it is to be noted that Lattimore considered an initial
perturbation of 5.0 x 10™® AU (approximately 60 times smaller than
the smallest position perturbation considered in this study). The
terminal velocity error for this perturbation was 6.8088261401 x 1072
AU/day. Putting this velocity error in a dimensionless form and
dividing it by the initial perturbation (assuming that the magnitude

of the perturbation considered is larger than any roundoff and
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turncation errors encountered during integration so that one should
get a meaningful result), it is found that the error has increased
by a factor of 78,900. It is noted that this result is obtained by
judging the guidance scheme by the satisfaction of the terminal
constraints only. This is, however, the primary purpose of the
guidance scheme, and the minimization of the transfer time is
secondary.

A perfurbation of such a small magnitude was not considered
in this study, since it is smaller than the turncation errors encoun-
tered during the integration of the equations of motion. Any result
from such a small error would be difficult to interpret.

In all cases considered, there is a ''residual'' terminal error.
This error is due to roundoff and turncation errors encountered
while integrating the non-linear equations of motion forward using
a variational control history added to a nominal control history that
was generated by backward integration. This error will always be
present and is a result of the inherent inaccuracy of numerical
integration.

5.2.c Initial Perturbation in xs Velocity and xs Position
Components, Introduced at Zero Days

Results for out-of-plane perturbations are given in Figures 8
to 11 and in Tables 5 to 8.

The performance of time-to-go and minimum distance is again
similar, except for perturbations less than -1.0x 10™® AU/day and
-2.1x10-° AU, where minimum distance guidance diverges very

rapidly due to a poor estimate of the index time. In this region
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the linear assumptions 4.2.2 are invalid and an iterative procedure
to evaluate the index time seems to be necessary.

Conclusions similar to that of paragraph 5.2 can be drawn,

5.3 A Second Minimum Distance Guidance Technique

A simulation with ky = 0, k; = 1, i=1to 6 (see Equation 4.2.1)
with initial perturbation 3.0 X 10'4 in x, was also run. The index
time was calculated by Equations (4.2.3)and (4.2.4) summing i
from 1 to 6. The velocity and position errors were found to be
0.6357898 x 10™® AU/day and 0. 1485626 x 10~° AU, respectively.
Comparing this with the results given in Figure 3, a slight improve-
ment in the velocity error is sensed. The position error is un-

changed.

5.4 Summary and Conclusions

It was shown in this study that, for the specific minimum
distance metrics considered, there is no appreciable difference in
the performance of the time-to-go and minimum distance techniques.
In most cases, both techniques reduced the terminal error to a
level lower than the initial error. In the cases where there are
no reductions in the terminal error, this error was never greater
than 2.5 times that of the initial error.

It was argued that, in general, the second order guidance
schemes work well when compared to the performance of these
schemes as found by Hart[lJ and Lattimore.[zj When compared to
the performance of the time-to-go guidance scheme as applied to

a simplified version of the transfer problem, done by Wood,[4’ 5]



-48-

the time-to-go scheme is not as impressive. It is not possible to
handle perturbations as large as those considered in this reference.

By minimizing different weighting functicns of the form 4.2.1,
be&er results can probably be obtained. This idea is illustrated for
one isolated case.

The results stress the importance of the control strategy
during the terminal stages of the flight. Since nominal controcl
(which is non-optimal unless the vehicle is exactly on the nominal
path) had to be used, there is not a large reduction in the initial
error. It is possible that this period of non-optimal control comn-
ceals the relative merits of the guidance schemes, and for this
reason it is unwise to come to any definite conclusion as to which
works better.

A more rigorous technique for treating this period in the
flight must be established. One possibility that might prove better
than. using nominal control is, for instance, to use open loop control
for the last 20% of the flight.

Satisfaction of the terminal constraints can also be improved
by taking more data points along the trajectory and doing matrix
inversion in double precision. The accuracy of the terminal s>tate
appears to be limited by the accuracy of the feedback data at each
point, the number of points, the various properties of the integration
routine, and the specific control strategy used during the final
stages of the flight.

It would be interesting to apply the minimum distance tech-

nique using (4.1.4) to compute the control change du and an
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algorithm similar to the time-to-go algorithm employed in this
study. It is believed that this method should yield better

[14]

results.
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APPENDIX 1

1.1 Earth Orbital Data

Semi-major axis, ap 1.0 AU

Eccentricity, eg | 0.016726

Argument of perihelion, wg 0.0°

Angle of inclination, ip 0.0°

Argument of ascending node, Qp 0.0°

Time of perihelion Jan. 3.022307069, 1950
Period 365.198084 days

1.2 Mars Orbital Data

Semi-major axis, a,, 1.523691 AU
Eccentricity, ey, ‘ 0. 093393
Argument of perihelion, wy, 286.07366
Angle of inclination, iy, 1.84991°

Argument of ascending node, Q,, 0.0°
Time of perihelion March 17.490627, 1950

Period 686. 868886 days

1.3 Vehicle- and other constants

Mass flow rate, P 0.00108 (initial vehicle

mass/day)
Exhaust speed, C 0. 045365 AU/day
Initial spacecraft mass, m, 1.0

Solar gravitational constant, 2.96007536 x 10~-* AU3/day®
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APPENDIX 2

The initial conditions for the set of differential Equations (2.2.1)

and (2.3.4b) are:
x, = -1.4835073 x 1072

xg = 9.2714508 x 10°°

x4 = 5.199345 x 107!

xg = 8.3463802 x 107t

A, = 1.006871 x 10t

A = -2.135045 x 10
As = -6.701413 x 107%
Ag = -5.168126 x 1073
Ag = -4.327681 x 107

Ag = -1.323293 x 1072
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APPENDIX 3

The objective of this appendix is to summarize all the equa-
tions used in this study. For clarity, a brief indication of how they

were derived will be given.

Al The Diiferential Equations of Motion

The non-linear set of ordinary differential equations of motion

are

}.{ = - = + —I—‘- cosu, cosu
1 = M 2 Py 1 2
s % , LT -
Xy = =M -3 i m Cosyu sinuy
- *x I )
% = RS t o osiny (A.1.1)
).{4 = Xl
Xg = Xg
X = X3

A2 The Performance Index, Hamiltonian, and First Order
Necessary Conditions

The performance index for minimizing transfer time can be

written as

t

f
J = jf Bedt . (A.2.1)
to
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The Hamiltonian, defined as H =L + _‘QT_f_, then becomes
X , T X3 ¢ .
H =1+ )\l(-p;g+ o cosw cosugy) + ka(—p;gi- o Cosw sinugy)
X6 T .
+ As(-u-r—s- = sinuy) + Agxy + AsgXg t+ AegXs . (A.2.2)

The first order necessary conditions (2.3.4b) and (2. 3.4c) yield

y = =da
Az = -Asg
As = -ke
5\4 = E;};—l - 35:4 (A1xa + Agxg + AzXg) (A.2.3)
5\5 - H}? - BP:{S A1xq + Agxg + Agxg)
r r
Ag = Hrlas - 3::6 (Aixa + Agxg + Azxg)
A, sinu; cosuy + Ag sinu, sinuy - }\;: 0 (A.Z.'4)
Ay cosu, sinug + Az cosu; cosug = 0

Using the fact that for a minimum we must have Huu> 0, Equations

(A.2.4) can be solved for u;,u;. Thus,
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. -
sin U.l = - —
NAZ + A2+ 05
A h®
cosuy =
Va2 + 22+ 22
(A.2.5)
. -Ag
sin ug =
AV/-;\]_Q + A.az
-)\1
COE Uy & e
NAZ + a2

A3 The Second Variation

. s =
A3.1i The Matrices HE“ . Hf_‘.?.‘.’ HEE' = -

These matrices are easily calculated using Equation (A.2.2).

They are
1
o O g
T
a '\/ )\12 = >\32 -+ }\32
l;l - (A.3.1)
T 5 NAZ + A2 + 02
T N
L E (Alz + 22) -
3%X3 3X3
He, = (A.3.2)
zX 0 Bxax, Hxx, Hxex,
3X3 HX4X5 Hxsxs Hszs

Hxoe Fxgxe Txexe

where



Sl o . , 15

HXAL-X4 - _r% (BAaxat hoxs+ AaXs) - _1__'7&3‘;42()\13’444' AsXs+ AaXg)
5 Sk . 2 150

HXSXS = rg (A%, + 3A3Xs+ A3 Xg) - 7 X (A1xg + Ag X5+ AaXg)

3 15
erxs - ;% (Aixg+ Apxg+ 3hgxg) - ’—&XGZ(MX:L‘*' AaXs T AgXg)

r?
- 3 15
hx4X5 = - (Ayxg+ Agxy) - —:-,?IT-L-X4X5()\IX4+ ha Xz + A3 Xg)
H, = 2 (Ax—+A3x)-l-5—H—xx6(}\x+}\ Xg+ Az Xp)
%A 5 1%6 4 o7 & 1¥s 2 3
_ 3p , 15p
Hyx, = 5 (Azg g+ A5 xg) - 7 x5 Xg(A1xy4 + Ag X5+ A3 Xg)
0
Hux = o6 (A.3.3)
0
e T oexe (A.3.4)
A3.ii The Matrices j_&,ﬁ_g

Noting that }_( = f(x, u,t) f

and f are calculated from

A.l.1



3pxd  p 3EXeXs  3pxaxe
r® 1‘3 5 »5
G 3UX4Xs 3pxd o 3pPXeXe
3X3 r5 rs 1‘3 1~5
Ly = 3p3,Xe Zux.xg 3uxé - (A.3.5)
r5 rs r5 Y g
! 0
| 3%3 3X3
_:Sirl ul COS u_-a -cos ul Sin uaq
-sin u; sin u, cos u; cos ug
£y = ™ 0 (A.3.6)
u 0 5
0 0
L 0 0 |

A3.iii Calculation of A(t), B{t), C(t)

Using (2.3.11)-(2.3.13) together with (A.3.1)-(A.3.4) and the

above

Aft)

1]
|-

x
Bm=£u%ggf (A.3.7)
Clt) = Hyy

A4 Boundary Conditions for the Differential Equations (2.3.18)

A4.i The Terminal Constraint Relations

Since a rendezvous problem is considered, there are six

terminal constraint relations
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Y(xes t) = x(t) - x0t) = 0 (A.4.1)
where
2 : g% .
le-(tf) = -aMEf{cos wy sin Ef + (1 -epf)? sin Wy €OS EI.}
x . (t,) = a, E.cosi, {-sinw,  sin E, +(l-e 2)%cosw cos E,}
Myt M™f M M f M M f
s s . . . 2% 1
xMa(tf) aMEf smlM{-smwM sinE, + (1 - ey S cos wygcos Ec]
(A.4.2)

‘1
= 1 - = - 22 gi 3
X0 (tf) = ayicos wM(cos Ef eM) (1 enf )? sin wp 4 Sin Ef}

1

= 3 3 - - 2\2 . v Y
st(tf) 2,1 cos 1M{smwM(cos Ef eM) + (1 eM) coS Wy, sinE_}

1

= . . . ; - - 2§ . 3
X\ (tf) ay; sin 1M{sm J.)M(COS Ef eM) + (1 eM) coswy, sin Ef3
Ef is the eccentric anomaly of Mars at tf and it satisfies Keplers
equation:

- ; Y T i ;
Ef eM s1n]:'3f tf<aMs> + Eq e sinE; , (A. 4. 3)

where E, = 178.995341° is the eccentric anomaly of Mars at t;.

Differentiating A.4.2 and A.4.3 with respect to time, we find
R . . , 41 .
le(tf) & —aMEf{cos wy, Sin Ef +(1- eM)2 sinw,, cos Ef} -

. 1
2 TR = . ;
aMEf {cos Wy, COS Ef (1 eM) sinw,, sin Ef} ,
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e 3_{1—\" : - ’ % .
Hf){costsmEf+ (1 ey sinw

(tf) = aM\Ef

}.(.

M, cos EI,}

M

v &
.)2

M sinw

-3a EEf{cosw cosEf -(l-e

N M sin K.},

M

C s ) = )
f) aMEfc051M{ 51nc,uMmef + (1 ey)? cosw,cos Lf}

D2 { —el)E : !
a’MEf cos 1Mk51ancos Ef + (1 eM) coswy, smEf,

1
.e _ . 0-0_ ° 3 el R } 3
ge(tf) = aLMc051M|:(Ef Ef ) sinw, o smEf +(l-e,,)? cosw,, cos Ef}

M M

A i 1 - = i ; . 4.4
3EfE {smchos E, + (1 M) cosw,, sin Ef}] g (A.4.4)

- "
- . . _ . . - 2—2—
a, E sm1M{ sinw, sinE . + (1 -e, “)?cosw, cos Ef}

M, M f M f

a. E2

1
. s . 215 \ .
MmEs smlM{smchos Ef + (1 - ey )zcosu,MsmEf} ;

~ Stn | eee s o ) ] A
Me(’cf) = aMeos11\/1l:(EfEf ){-smstm Ef +(1 -eM) COS Wy, COS Ef}

3EE{si.nw cosE. + (1-e )%costsinEf}] .

71 M f M

¢ (p/aMs)% /(1 - g COS Ef) ,

trj.
1]

-E2e. _sinE

Ef _ f M f ’
1-eMcosEf

e 3EZ o,

B, = + E.E.cotE, .
B ff f

f
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A4.ii The Tranvenality Conditicn

The tranvenality condition (2.3.4g) can be writien as

i & p‘}{‘i ] __T__ . . ° P’XS
z(}itf’ Gt te, v) = [vi{ (- —= T 5 cos u, cosu,) - le} + vy{ - = +
T PXg , T ... .
= cosuy, sinu -x + v ———+ sinu, - 1
m 1 2 } 3{ G 1 XM S

+ ve{x; - ;{M4} + vg{xg - xMS} + vg{x, - ;{Ms}]t:tf
B . (A.4.5)

Using (2.3.3), (2.3.6), and (A.2.1), we have

Glxg, ter v) Z v [x o) xMi(tf)] . (A. 4. 6)

The Boundary conditions (2.3.19) are then

T
=X 66
e, - -_'A_f (A.4.7)
dX L ] L]
— = X, - X
dt, © Etf T Em
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where

X

3 . ’ y P-X4 T --Bcosu; cosu
—rE&[X4X4+XSX5+X6X€] - E[ : nll ¢

+ sinuy, cosuyu, + cosuy sinugu,]

3 . . . e T ~-Pcosu; sinug
2EXS [x,%, + xg%g + X5 - === o

5 [xaxs sX5 T X5%6 ] e m[ o

+ sinu; sinuguy - cosu cosugug]

3pxg . . . PXg | T _PBsinu
';'5_[X4X4+X5X5+X6X6] -t el B

+ cosu ul]

_}\3

VAZ+ 2 A2+ 22412

Ag

[AszAgt AgAg+ ApAa] +

)\1 }\5 = )\2)\4
(A2 +1r2)

a2+ A2

(A.4.8)

(A.4.9)
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APPENDIX 4

FEEDBACK GAIN MATRICES
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