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ABSTRACT 

The problem. considered is that of a three-dimensional, mini­

mwn ti.me, helioce·~ tric, Earth-lv1ars transfer of a continuous low­

thrust rocket vehicle. 

The first order 1'J.ecessary conditions of the calculus of varia­

tions define the optimal trajectory in terms of a nonlinear first 

order two-point boundary-value problem, which is solved by the 

backward-sweep method. The calculation of a set of feedback gain 

matrices, a cross-check on the numerical accuracy of these 

matrices, and the satisfaction of a set of necessary conditions for 

the trajectory to be at least locally minimizing are done simul­

taneously. 

The spacecraft is then perturbed from the nominal trajectory, 

and two neighboring optimum feedback control laws, the so-called 

time-to-go guidance technique, and minim.um distance guidance 

technique are compared. 

In-plane and out-of-plane perturbations are considered, and 

both guidance techniques, in most cases, reduce the initial error, 

although not by a very large factor. 

It is shown that the minirr1um distance technique, as applied 

in this study, performs much better than found by Lattimore. 1 

1 . 
Lattimore, J. P. "A Comparison of Open and Closed Loop 

Applications of the Minimum Distance Guidance Technique, 11 

University of T exas at Austin, Engineer's Degree Dissertation, 1972. 
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CHAPTER l 

INTRODUCTION 

Since the appearance of the high speed digital con:puter, the 

solution of trajectory optimization problems has been a subject of 

extensive research. The solution of any of these problems, even on 

modern computers, is very time consuming. In certain trajectory 

problerns, for instance re-entry flights, this is an important factor. 

As a result, research was also directed to perturbation guidance -

a procedure which gives information about the control history if the 

spacecraft is, for some reason, perturbed from the precalculated 

optimal trajectory. In order to determine the relative merits of 

several perturbation guidance schemes, the low-thrust transfer 

. [1 2 4 6] 
problem has received much attention in the literature. ' ' ' 

This example is of theoretical interest only, since in real missions 

there is in most cases enough time to re-optimize the trajectory 

in case a disturbance should occur. Nevertheless, some interesting 

facts have crystallized out of the various low-thrust studies made. 

1. 1 The Guidance Problem 

The nonlinear ordinary differential equation that describes the 

motion of an interplanetary spacecraft can be expressed as: 

~(t) = i[~(t), u(t), t] , (1. 1. 1) 

where x is a n vector of state variables, ~ is a m vector of 

control variables, £ is a known n vector function, and t is the 

independent variable, time. 



A nominal control history, say ~N(t), that will minirnize a 

scalar performance index of the form 

/

tf 
J = 1 · dt , (1. 1. 2) 

to 

while satisfying q terminal constraints of the form 

(1.1.3) 

must be found. The initial time and state are specified and the 

final time, tf' is allowed to vary. y_ is a vector of constants. 

A set of necessary conditions generates the solution to the 

above problem, while a set of sufficient conditions guarantees that 

the resulting state history is at least locally mi.Tlim.ized. 

Once the mission is initiated, small disturbances that will 

place the spacecraft off the precalculated path are likely to occur. 

The resulting variations in the state vector are represented as: 

(1. l. 4) 

where ~(t) represents the perturbed state and the subscript N 

denotes the nominal (precalculated) state. 

If such a state error is detected, the perturbation guidance 

program calculates a control variation history which will, if added 

to the nominal control history, still minimize the transfer time, 

while satisfying the terminal constraints. Of the most widely used 

perturbation guidance algorithms are time-to-go guidance and mini­

mum distance guidance. 
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Perfect knowledge of all state variables of the problem con­

sidered in this study is asswned so that the control problem is 

deterministic. 

1. 2 Motivation for the Investigation 

Hart[ 1 J made a comparison between time-to-go guidance, 

1ninimum distance guidance, and several other guidance techniques. 

The comparison example was a three-dimensional, minimum time, 

heliocentric, Earth-Mars transfer of a continuous low-thrust rocket 

vehicle. In this work it was concluded that time-to-go guidance 

exhibits a poor performance in minimizfag the terminal constraint 

errors. The time-to-go algorithm was applied in an open ' loop 

fashion, and the problem considered was that of a rendezvous. 

Wood [ 4 , 6 J considered a two-dimensional, Earth to Mars orbit 

transfer and concluded that time-to-go handles even very large 

initial errors quite well. It was attempted to rendezvous with the 

orbit of Mars rather than with the planet itself. The problem 

therefore is less constraini ed. Also, the time-to-go algorithm was 

presented in a closed loop fashion. 

The large discrepancy between Wood's study - where a large 

initial perturbation resulted in a small terminal error - and Hart's 

study - where a small initial perturbation resulted in a large termi­

nal error - promoted this study. 

In this study, it will be attempted to apply the time-to-go 

algorithm presented in Ref. [ 11 J to Hart's problem in an attempt 

to develop an understanding of this discrepancy. Endeavoring to 

attain a smaller terminal error than that found by Lattimore, [ 2 J 
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the minimum distance algorithm as presented by Lattiinore[ZJ will 

also be applied. The nominal trajectory will be calculated by a 

backward-sweep algorithm. This algorithm simultaneously generates 

a set of feedback gain matrices. This procedure when compared to 

the transition-matrix algorithm (as used by Hart) often has a 

greater numerical accuracy, since unit solutions of the second-order 

influence equations may differ by orders of magnitude, producing 

an ill-conditioned transition matrix. [ 5 J 

1. 3 Notation Convention 

All vectors are asswned to be column vectors and will be 

denoted by lower case letters; i.e., x,l· Vector components will 

be denoted by a subscript, i.e., x1 , >i. 4 • A superscript T denotes 

the transpose of a matrix, and the superscript -1 indicates the 

inverse of a square matrix. 

The first partial derivative of a scalar with respect to a 

vector is a row vector denoted by 

H -x = 

Second partial derivatives of scalars with respect to vectors are 

matrices denoted by 

I-!_xl U1 
H 

X1Um 

· c?H [a~(~~ n H = = = QUO~ XU 

H H 
XnUl xnum 
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First partial derivatives of vectors, with respect to vectors, are 

also matrices: 

0£1 
OX1 

b£_ 
= !..x = 

bx 
ofn 

OX1 

The variation of (*) is denoted by o (:::, ), and the differential o f 

(*) is denoted by d (,:, ). (:::~) denotes :t {* ). 



CR.APTER 2 

TI-iE OPTIMAL TR_AJECTORY 

After the definition of the n~athematical rr10d.el and coordinate 

system, a very brief sum.mary is given of all the necessary and 

sufficient conditions which must be s2.tisfied L-r1 order to obtain the 

solution to the control problem. For details of the derivations, see 

Refs . [ 5, 6 ] . 

2. 1 The Three-Dirr,ensi.onal Mathematicc,l Model and Coordin2.te 
System 

In this study the mathematic al model, coordinate s ysten1, 

initial conditions, and vehicle constants were chosen exactly as in 

Refs . [ 1, 2 ] . 

The equations of motion, which describe the minimuin tune 

low-thrust, heliocenh'ic, Earth-to-Mars transfer, are expressed in 

terms of a heliocentric, rectangular, coordinate systen~, x 4 , x 5 , ~. 

The origin of the coordinate system coincides with the Sun, and the 

x 4 axis coincides with the line of the ascending node of Mars. The 

x 4 and Xs axes lie in the ecliptic plane. The Xs axis coincides with 

the angular momentum vector of the Earth w. r. t. the Sun. See 

Figure 1. 

The spacecraft is represented by a point mass under the 

influence of only the central force of the Sun and that of a constant 

(magnitude) low-thrust jet. 

In the beginning of the mission, the gravitational effects of 

the Earth are neglected. Instead, the spacecraft is given the 
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position and velocity of the Earth at the initial time. [ 
13 J These 

initial conditions are given in Appendix 2. 

At the end of the mission, the gravitational effects of Mars 

are also neglected. Along the trajectory, the perturbing effects of 

other planets were ignored. The inclusion of such forces would 

complicate the analysis considerably and would make interpretation 

of results much more difficult. 

Information on the orbits of t..½e Earth and Mars ca..t'l be found 

in Appendix 1. For the coordinate system employed, the angle of 

the· ascending node of Mars is taken to be 0.0 rad. 

Finally, note that we want to rendezvous with Mars. 

2. 2 Equations of Motion 

By a straightforward application of Newtons law, the equations 

of motion for the space vehicle in the three -dimensional reference 

frame are given by the following set of first-order, non-linear, 

ordinary, differential equations: 

-µx4 + T 
Xi = m. COS U1 COSU 2 r3 

-1J.X5 + T sin u 2 X2 = - COS U1 
r3 m 

-fJ.X6 T 
X3 = + - sin ui (2. 2. 1) ra m 

X4 = Xi 

X5 = X2 

X6 = X,.3 

r2 = x; + 2 
X5 + Xo2 
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{2 . 2. 1 cont.) 

where x1 , xa, ~ are the velocity components of th e spacecraft, 

~, Xs, x5 are the corresponding position coordinates, µ is the gravi­

tational constant of the Sun, r is the distance of the spacecraft from. 

the Sun, and T is the magnitude of the thrust vector. The angles, 

u1 and ua describe the direction of the thrust vector, (3 is the con­

stant mass ejection rate, C is the constant relative speed of the 

exhaust gas, mo is the initial mass of the spacecraft, including 

fuel, and t is the independent variable, time. 

Numerical values . for the constants {3, Ino, C, and µ can be 

found in Appendix 1. 

The six initial conditions for the above mentioned set of 

differential equations are 

where ~E is a six colunm vector representing the state of the 

Earth at the initial time to- Numerical values for ~E(t0 ) are given 

in Appendix 2. 

Since a rendezvous problem is considered, there are six ter -

minal constraints, denoted by 

(2. 2. 2) 

where ½ is the terminal time, y_ is a vector of constants, Y is a 

six vector function of terminal constraint relations, and ~M 
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represents the state of M2.rs. Note that for the transfer problem 

y_ = 0. The details of the constraint relations (2. 2. 2) can be fou...-1.d 

in Appendix 3. 

2. 3 Necessary and Sufficient Conditions for a Locally Minimizing 
Time Optimal Reference Trajectory 

The problem of finding the control history that will minimize 

(at least locally) the transfer time while meeting the terminal con­

straints can formally be stated as follows: Find the n-dimensional 

set of state variable functions ~(t) and m-dimensional control 

variable functions u(t) that satisfy a set of n ordinary differential 

equations of the form 

. 
x(t) = i._(x, u, t) , t 0 ~ t ~ tf , ~(t0 ) given, (2. 3. 1) 

and q ~ n terminal constraint relations of the form 

(2. 3. 2) 

while minimizing a scalar performance index of the form 

f
t£ 

J = g[x(tf), tf] + L(~, ~, t)dt (2. 3. 3) 

to 

The final time is unspecified. 

The functions i_, L, Y, and g are twice continuously differen­

tiable with respect to their arguments. 

By using the classical calculus of variations approach, a set 

of conditions which are nece_s sary and sufficient to guarantee weak 
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minimization of the above perf orm.ance index, while satisfying the 

. 1 . . . b [ 3-6 J constraint re ations: 1s given y: 

2. 3. a Necessary Conditions 

X = i.(~, u, t) , to s ts tf (2. 3. 4a) 

·T 
-H , to s ts tf A = X 

(2. 3. 4b) 

0 = Hu , to s t s tf {2.3.4c) 

1:o, x(t0 ) specified, (2. 3. 4d) 

,X{xf' tf) - Y. = 0 (2. 3. 4e) 

~_T (tf) = G 
~f, 

(2. 3. 4£) 

z (~ f , u f ~ t f , ::._) 
D. ( · dG) 0 L + - = 

dtf t=tf 
{2. 3. 4g) 

G, H, ::._, and l are defined in paragraph 2. 3. b. 

The above set of equations defines an extremal path. If -we 

consider small perturbations in the initial state 6~(t0 ) and in the 

terminal conditions dy_, these perturbations \.vill give rise to per -

turbations 6~(t), 6l(t), and ou(t). It can be shown[SJ that these 

perturbations satisfy 

. 
ox = A(t) 6~ - B(t) 6~, (2. 3. Sa) 

. 
A T(t) 61 6A = -C(t) 6~ - (2.3.Sb) 

o u(t) = -H -1 {H ox + f T 6 A) 
uu ux - -u - {2. 3. Sc) 

where 
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A(t) = ix 

B(t) = .c H -1 £ T 
=-u u u -u - --

C(t) = H H H -i 
Hux xx XU uu -- ·--

2. 3. b Sufficient Conditions 

Hu u (t) positive definite , 

S * (t) finite for ta s t ~ ti , ~nd f (t} finite 

for ti :::;; t :::;; tf, where ti is any intermediate 

time such that to~ t 1 ::;: tf. Alternatively, 

we must have _§ * (t) finite for to ::;: t::;: tf, 

except at tf where it need not exist. 

(2. 3. 6a) 

(2.3.6b) 

(2. 3. 6c) 

(2. 3. 7a) 

(2. 3. 7b) 

dz dY 
-d- > 0, applicable only in cases where d - 0 (2. 3. 7c) 
tf tf 

Note that we have used the notation ~f for ~(tf ). 

The quantities G and H are defined by introducing a set of n 

undetermined time dependent multipliers l(t) and a set of q con-

/ stant multipliers v as follows: 

(2. 3. 8) 

(2. 3. 9) 

The sweep matrices ~ (t ), ~ (t ), Q (t ), _§ ):~ (t ), ~ ~:~ (t ), and g ):~ (t) 

are defined by the following set of differential equations and 
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boundary conditions: 

. 
-ATS s = - SA + S BS - C 

' -. 
AT)~ R = ~B -

. 
RTBR g = 

~(tf) = G 
xf~f 

~(tf) = [YxT z T J 
-£ ~£ 

dY 
0 

dtf Q(tf) = rr dz 
dtf dtf 

s ..,, = s - ~Q-l ~ T _.,, 

R ,., = ~ g-1., -- .,, 

Q..,, = -g-1 _.,, 

where A(t), B(t), and C(t) are defined in paragraph 2. 3. a. 

Note that the ( L,, quantities also satisfy (2. 3. 10). 
. ..., ... 

(2. 3. 1 Oa) 

(2. 3. 10b) 

(2. 3. 10c) 

(2. 3. lla) 

(2. 3. llb) 

(2. 3. llc) 

(2. 3. 12a) 

(2. 3. 12b) 

(2. 3. 12c) 

In Ref. [ 6 J it is shown that if the fir st order necessary con­

ditions are linearized about the stationary path, neighboring station­

ary paths are found, characterized by the perturbation equations: 

["~(t)] [~ ~' (t) ~ *(t)] [ Ox~] = (2. 3. 13) 
-dv R _: (t) Q ,~ tt) dy_ .......... ........ 

6u = C16X + D 0~ ' 
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where the feedback gain matrices c;_ and D are given by 

(2. 3. 14b) 

D = H - 1 f TR d-- uu =-u ----:::~ y_, (2. 3. 14c) 

and 

dv = [::J (2. 3. 15) 

d Y. = [d:] 
. 

(2. 3. 16) 

It is sometimes necessary to write (2. 3. 13) in different forms. The 

following forms are equivalent to (2. 3. 13 }. 

[6::] [ S(t) R(t) m(t] [~(t)] (2. 3. 17 a} 

= RT(t} Q(t) n(t) dv (2. 3. 17b) 

m T(t) n T (t) a(t) dtf , {2. 3. 17 C) 

where S, R, m, n, and a satisfy the differential equations 

. 
ATS s = -SA - + SBS - C , (2. 3. 18a) 

. 
-(AT R = - SB)R (2.3.18b) 

. 
RTBR, Q = (2. 3. 18c) 

m = -(AT - SB)m, (2. 3. 18d) 

n = RTBm (2. 3. 18 e) -
a = mTBm, (2. 3. 18£) 
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,·.vith boundary conditions given by 

- (Y )T )T o ~(tf) G (z o~(tf) (2. 3. 19a) 
xf~f -~£ xf 

d_y = y 0 dY dv (2. 3. 19b) 
-xf 

dtf 

dz (:~t dz 
dtf (2. 3. 19c) zx dtf -f 

If ~t I 0, Equation 2. 3. 19c can be solved for dtf in terms of 
f 

ox{tf} and dv: 

Using Equation (2. 3. 20) in (2. 3. 19a) and (2. 3. 19b) we get 

= 

dY(dz )-l(dy)T - dtf dtf dtf 

This elimination makes a simpler backward-sweep possible: 

where 

= [S(t) 
-T 
R {t) 

R{t)] [ox(t)] 
Q(t) dy_ 

, 

(2. 3. 20) 

(2.3.21) 

(2. 3. 22) 



-16-

s = s - ~mT /a (2. 3. 22) 

R = R - m~T/a (2.3.23) 

T 
Q = Q - ~-!!. I a 

Note that S, R, and Q satisfy (2. 3. 18a, b, c). 

Note also that we have partitioned the matrices ~, g, ~ ~:~ and 

Q J., as follows: 
,,__"'I' 

R = [R m, , _j (2. 3. 24a) 

RJ., = [R~~ m _,J - , .... _,,, (2. 3. 24b) 

(2. 3. 24c) 

(2. 3. 24d) 

n, and n _,, are colw:nn vectors. a and a~ are scalars. - -, .... ,,, 

Then from Equations (2. 3. 13 ), (2. 3. 24b ), and (2. 3. 24d), it 

follows that[ 4 ] 

(2. 3. 2 5) 

Equations (2. 3. 4), (2. 3. 6), and (2. 3. 11) for the minimum time 

orbit transfer problem are derived in Appendix 3. 

The optimality condition 2. 3. 4c determines the m-vector u(t). 

· The solution to the 2n differential equations (2. 3. 4a) and (2. 3. 4b) 
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and the choice of the q + 1 parameters ~ and tf are determined by 

the 2n+q+l boundary conditions (2.3.4d)-(2.3.4g). 

In the next chapter, an algorithm for the solution of the above 

two-point boundary-value problem will be presented. 
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CHAPTER 3 

NUMERICAL SOLUTION OF THE TRANSFER PROBLEM 
AND A SET OF FEEDBACK GAINS 

Several algorithms are discussed briefly with particular 

emphasis on the advantages and disadvantages of each. A detai.led 

discussion of the algorithm. selected will then be given1 which is 

followed by some details on the specific integration routine that was 

used to solve the problem. Some nwnerical aspects, such as con­

vergence and numerical stability are discussed in paragraph 3. 3. 

Finally, a method which can be used to cross-check the accuracy 

of the feedback gains is presented. 

3. 1 Several Algorithms 

Several algorithms for the solution of the non-linear, t\:vo­

point boundary-value problem have been developed [ Refs. [5-8] and 

others}. Among the most well known of these are the neighboring 

extremal methods, gradient methods and quasiiinearization methods. 

Except in very special cases, all these methods involve either 

flooding or iterative procedures. 

Gradient methods are in general not very sensitive to initial 

estimates of the unspecified boundary conditions, and it is therefore 

a good method to generate a first approximation of the. solution. 

First order gradient methods are, however, slow to converge when 

the solution approaches the optimal solution, and second order 

gradient methods are very bulky to program. 
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Neighboring extremal methods often involve a.n iterative pro­

cedure which im.proves an initial guess of the unspecified initial 

(terminal) conditions so as to satisfy the specified terminal (i!iitia.l) 

conditions. 

The main disadvantage of these methods is the difficulty of 

finding a first estimate at one end that produces a reasonable solu­

tion at the other. This difficulty arises naturally due to the in­

herent sensitivity of the Euler-Lagrange equations (Eq. 2. 3. 4b). 

Solution by the neighboring extremal method involves the solu­

tion of a li..."'1.ear, two-point boundary value problem. Such problems 

can be solved by either finding a transition matrix between unspeci­

fied boundary conditions at one end and specified boU&."'1.dary conditions 

at the other end, or by a "sweep" method which generates, for the 

set of equations with specified final conditions, an equivalent set of 

initial conditions. The coefficients of the terminal conditions are 

thus in effect "swept" backwards in time to the initial time. We 

have then an ordinary initial value problem which is easily inte -

grated. This method involves the integration of a matdx Riccati 

equation (see Equation 2. 3. 10a). 

As pointed out in Ref. [ 5 ], we have, in many systems, a 

significant difference in the growth of the solutions ~(t) and j.(t). 

Since all calculations are done in finite accuracy, this difference in 

growth rate often leads to an ill-conditioned transition matrix. The 

difficulty of an ill-conditioned transition matrix can often be side­

stepped by using the "sweep" method. 
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It is to be noted that handy ''by--pro<l .. ;Lci.: s '' res ult fron1 the 

backv/a:cd-sw eep method: If we integrate Eci11.ations (2. 3. 10) back-

wards with initial conditions (2, . 3. 11) from tf to t1 , then perforrn 

the transformation (2. 3. 12), and continlJ.e the. i:ntegration to t01 ,v e 

can easily calculate a set of feedback gains by using (2. 3. 14:b ), 

while simultaneously investigating the sufficient conditions for a 

local n1ininrnrn, (2. 3. 7b ). 

Since the solution of the low-thrust Earth-to-Mars transfe.r 

in three dimensions was found by Hart[ 
1 J t here was no starting , 

diffkulty, and the backward-sweep rnethod ".:vas chosen to generate 

the s elution. 

3. 2 
r t; ~ 

A Backward Sweep Algorithm L..., J 

The following 2.lgorithrn was us~d to genera.tE the s::JluHon to 

the two-point boundary-value problem stated in Chapter 2 . 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Guess the n terminal conditions x{t.~), the q pararnetE:-rs v~ - .,_ 

and the terminal time t,.. 
I 

Determine ];_(tf) and z[x(tf)' u(t£) 1 v, tf] from (2. 3. 4£) and 

(2. 3. 4g). Calculate (2. 3. 4e). 

Integrate (2. 3. 4a) and (2. 3. 4b) backward from 4 to to 

using (2. 3. 4c) to determine ~(t) in terms of l(t ), \vith 

terminal conditions ~(tf) and l(tf) from steps l and 2. 

Simultaneously with step 3, integrate (2. 3. 10) with 

boundary conditions (2. 3. 11) to t = t1 . 

At t = t1 carry out the transformation {2. 3. 12) and con -

tinue integration to t 0 , using (2 . 3. 10). 



Step 6: 

Step 7: 

Step 8: 

Step 9: 

-·21-

Record x, ,\,, S -·~, R ..,~ , Q _., at t = t 0 • 
- - --..., ,..-,... --"1' .--...,.,f e 

Choose 6x(tc,), dy_ and dz so as to brL-r1g the next solution 

closer to the desired values of ~(t0 ), 1: (x f, tf) - y = 0 and 

z = 0. A good choice is 

where x 0 is specified, 
o < e ~ 1. 

Use (2. 3. 13) and the stored values in step 6 to calculate 

6 !(to) and d ~- Record d v. 

Integrate (2. 3. 5a, b) forward with boundary conditions 

. 
5~(1:o) and 6l(t0 ). Record ~(tf) = 6~(tf) + ~(tf)dtf · 

Step 10: Using 

V = V + dv 

new old 

repeat step I through 10 until x(t0 ) = x 0
, ,X(xf,tf) -y_= 0, 

and z = 0 to the desired accuracy. 

3. 3 Numerical Aspects 

In order to speed up the convergence, it was found necessary 

to perform the elimination discussed in Chapter 2. 3. b. This 

resulted in the simultaneous integration of 90 differential equations 

instead of the 103 equations obtained from (2. 3. 4a ), (2. 3. 4b ), and 
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(2. 3. 10). The boundary conditions for the integration of the 90 

differential equations are given by (2. 3 . 4d ), (2. 3. 4£), and {2. 3. 21 ). 

The above algorithm was programmed and run on an IBM 

370/158 computer. It took roughly 4. 5 minutes of computation time 

to simultaneously integrate the 90 differential equations and generate 

a set of feedback gain matrices at 158 points along the trajectory. 

The integration method used is that of R. Bulirsch and 

J. Stoer. It has a variable step size and uses rational functions 

rather than polynomials to extrapolate the solution from the discrete 

approximation. 

When compared to Runge Kutta, Adams Moulton Bashforth 

(of order 6 ), and methods which extrapolate using polynomials 

based on the midpoint rule, this method should yield more accurate 

results and fewer operations to obtain these results. The rational 

approximation method does not fix the order of approxation, but 

adapts it automatically to the problem treated. [ 9 J 

In highly non-linear regions, the step size was as small as 

0. 14 days and the maximum step size was limited to 1. 7 days. The 

best time to perform the transformation is approximately 126 days 

into the mission (taking 0 days as the launching time from the 

Earth). The solution agrees to within 1 % with that of Ref. [ 1 J and 

it converged within five iterations. 

3. 4 A Cross Check on the Accuracy of the Feedback Gains[ 4 J 

The feedback gain matrix for the transfer problem is given 

by (see 2. 3. 14b) 
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(3. 4. 1) 

It is possible to get an estimate of the accuracy of the feed­

back gain matrix if an estin1ate of the accuracy of s:::~ can be 

obtained. 

From (2. 3. 25), it follows that the change in terminal time 

can be expressed in terms of perturbations in the state and termi­

nal constraint levels by 

(3.4.2) 

In addition, if the first order necessary conditions are satisfied, 

the first variation in the performance index can be expressed as[ 4 J 

(3.4.3) 

On the nominal pc3;th any time t 0 is a possible initial time so that 

(3. 4. 3) can be written as 

(3.4.4) 

For the problem under consideration we have J = f3tr Hence, fron1 

Eqs. (3. 4. 2) - (3. 4. 4) we have 

(3.4.5) 
~ :i:.: ( t ) = -y_/ f3 = c on st 

For t1 ~ ts tf' m ~:~ is given by the last column oi (2. 3. 12b) which 

b 1 t d 1 Q -1 can e eva ua ·e as ong as exists. 
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After the transformation, m J, can be evaluated by simultaneous _..,, 

backward integration of 

S .J,A + S _., B S ,,, . - C , ......... ..,.. __ .,... __ .., ... 

and (3.4.6) 

m,,, = -{AT - BS.J,)m_,, 
-,r- ..... ...,.... - ... , 

Over the first 80% of the integration interval (up to about 155 days 

from the Earth) the agreement of m ,,, and 11./ p was f01u1d to be 
-'I' -

within 2 %. 

During the last few days a check on m ._;. is not possible since - ... -
s* diverges as t approaches tf" As tf is approached, fluctuations in 

m* increase partly because of large errors introduced by inverting 

Q, a matrix which is singular at tf° 

The generated feedback gains are given in Appendix 4. 
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CHAPTER 4 

TWO DIFFERENT LINEAR GUIDANCE SCHEMES 

In Chapter Two, a method for generating guidance information 

was discussed. A control correction is obtained from the product 

of a time dependent feedback gain matrix and a linear state varia­

tion. The gain matrices are evaluated along the nominal trajectory 

and stored as a function of time. 

When applying a guidance scheme of this nature, the ambiguity 

of determining the Tllookup 11 parameter for the gain matrices arises. 

If, for instance, the spacecraft is perturbed onto a neighboring path 

such that the final time on the perturbed trajectory is greater than 

the final time on the nominal trajectory, there are no gain matrices 

available for the time greater than the nominal final time, so that 

no guidance information can be calculated. In the event of using 

the current time on the perturbed trajectory to enter the gain 

tables, and if there is an index time which represents a nominal 

state Tlcloser" to the perturbed state, the question arises whether 

this time should not be used to enter the gain tables. 

Several methods exist to circumvent this ambiguity [ Refs. [ 1, 

4-6, 10-12, and others J}. In this chapter two of these methods 

are discussed - the so-called time-to-go technique and the minimum 

distance technique. 

The minimum distance guidance technique employed in this 

study closely resembles that of Lattimore.CZ] The feedback infor­

mation, however, is calculated in the form of a continuous feedback 
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law, 6 ~( t) ::: Ci (t) o~_(t ), rather than in the form of a sampled data 

feedback law, [ 
5 J ou(t) = Ci(t, t 1 ) 6x(t1 ), as employed by Lattimore. 

Here t represents the current time on the perturbed trajectory, 

and ti represents the time of the last loop closure. 

4. 1 The Time-To-Go Guidance Technique 

The time-to-go scheme presented in this section avoids the 

problem . of "running out of gains II if the perturbed state of the 

spacecraft is such that actual tf is greater than nominal \· All 

the parameters associated with time-to-go are illustrated in Figure 

2. 

In terms of these parameters, we have 

T = (t .. - t) 
I 

time-to-go (4. 1. la) 

or 

(4. 1. lb) 

The change in final time can be calculated using Eq. (2. 3. 25 ). 

This method demands the storing of an additional set of feedback 

gains, namely the Lagrange multipliers, !(t). 

For problems where the terminal time is allowed to vary, 

differential changes of x(t) and u(t) are given by 

. 
dx(t) = 6~(t) + ~(t)dt (4. 1. 2a) 

(4.l.2b) 

to first order in dt. The quantity 6 ( ·) denctes the variation of ( • ), 
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i.e., the change of the quantity at a fixed time t. dx and du are 

defined below. 

Using (2. 3. 25), (4. 1. 2a), and subtracting dt, the differential of 

time-to-go is obtained:[
4

] 

The index time, tN, is then that time t for which d(tf - t) = 0. 

With such a choice of tN, (4. 1. 3) is satisfied to fir st order in dt. 

Using (2. 3. 14), (4. 1. 2a, b), and evaluating the gains at tN, we 

obtain the feedback law[ 
4

] 

where 

(4. 1. Sa) 

D(tN) = -[H -i f T R ., 
uu -u --~<Jt=t 
-- - N 

(4.l.5b) 

du = ~(t) u N(tN) (4. 1. 5c) 

dx = ~(t) - X N(tN) , (4. l.5d) 

(4. 1. Se) 

dy = y - y N . ( 4. 1 . 5£) 

An Algorithm to solve d(tf - t) = 0 is given in Section (4. 3 ). 

In this study the terminal constraint levels are not varied, that is 

d_y = 0. 
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4. 2 The Minimum Distance Guidance Technig11e 

The guidance information used for the minimum distance 

technique is exactly the same as that used for the time -to-go tech­

nique. The sche1nes differ only in the ·way this information is used. 

In the minimum distance technique an index time for entering the 

gain tables is determined by n1inimizing a metric function of the 

difference between the current perturbed state and the nominal 

trajectory. It is expected that the nominal state "closest" to the 

perturbed state produces the most accurate feedback data avail­

able. [ l OJ The parameters associated with minimum distance 

guidance are illustrated in Figure 3. 

A general form for this metric, r 13 J as suggested by Powers, L 

is 

,. 2 ]2 1:. 
r(x,~N' t, tN) = lko(t-tN) + k1 [x1 -xN

1 
(t) + · · · + ~[~ -xNn{t)]} 2 

(4.2.1) 

where ki = ki (x) is a sensitivity coefficient, generally determined by 

the physical knowledge of the problem. 

Hart[l] and Lattimore[ 2
] considered a special case of 

(4. 2. 1) with k0 = k1 = ~ = k3 = 0 and k4 = k5 = ~ = 1. Equation 

(4. 2. 3) is then obtained by setting 

dr 
dt 0 • 

Expanding xN, (T) and ~N- (T) about their values at the current time 
1 1 

to first order, that is 



and solving 

xN. (T) = xN. (t) 
1 1 

. . 
xN. (r) = xN. (t) 

1 1 

for 6t: 

6 
6t = I: 

i=4 
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+ ~N- (t) 6t 
l 

+ x (t) 6t N. 
1 

The index time is then given by 

and the change in the control history by 

where C1 (tN) is given by (4. 1. Sa). 

(4.2.2) 

i = 4, 5, 6 
' 

(4.2.3) 

(4. 2. 4) 

(4.2.5) 

Hart[ 1 J and Lattimore [ 2 J used essentially the same law for 

calculating the control variation. See the introduction of this 

chapter. 

4. 3 Minimll.Ill Distance and Time-To-Go Guidance - Previous 
Results 

After investigating several open loop guidance algorithms, 

Hart[ 1 J found that the minimum distance technique is superior to 

the time-to-go technique. Lattimore[ 2 ] continued the investigation 

of the minimum distance algorithm and applied it in a closed loop 

form. This study indicated that the closed loop application of the 

minimum distance algorithm reduces the terminal error only 
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slightly. Furthermore, the termL7.al error was quite large: for 

an initial perturbation of 5. 0 x 10-6 AU /day in the x 1 velocity com­

ponent, the Euclidean norm of the terminal velocity errors was 

approximately 6. 81 X 10-3 AU /day. 

Since Hart calculated a new optimal trajectory for this per­

. turbed initial condition, the terminal tune was uniquely defined. 

The terminal error was defined as the difference between the state 

of Mars and the state of the vehicle at this terminal time. 

The method applied in this study to calculate the minL."Tium 

distance index time is that of Lattimore. [ 2 J A different algorithm, 

however, was used to generate the feedback m.atrices. For the 

purpose of comparison, Lattimore' s closed loop guidance algorithm 

will be summarized. 

The problem statement, first order necessary conditions, 

terminal constraint relations, and initial conditions are as in 

Chapter 2. 

Considering a perturbation of the nominal trajectory [Equa­

tions (2. 3. 4a) - (2. 3. 4c)], and after some algebraic manipulation, 

one finds 

where 

[

A1 (t) 

A.J(t) 
(4.3.1) 
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with boundary conditions given by (2. 3. 19 ). 

Furthermore, 

(4. 3. 2) 

Numerical integration of (4. 3. 1 ), using the proper boundary 

conditions will determine o~(t) and o ~(t). This is used L-ri (4. 3. 2) 

to calculate ou(t). The boundary conditions needed for integrating 

(4. 3. 1) can be obtained from (2. 3. 19 ). The n + q + 1 linearly 

independent equations (2.3.19) contain 2n+q+l unknowns 6¾, 6lf, 

dv, and dtf (taking dy = 0 and dz = 0 ). Choose, therefore, the q 

components of dv and n-q components of 6x.c arbitrarily. The 
-J. 

remaining q quantities o~f and the n + 1 quantities 6lf and dtf are 

now uniquely determined and (4. 3. 1) can be integrated backwards in 

time from tf to an arbitrary time t1 in the interval t0 ~ ti ~ tr 

If the backward integration of (4. 3. 1) is done n +q times with 

(n + q) linearly independent starting conditions, the n + q solution 

vectors 6~ and 6 l forms a (2n X n + q) transition matrix, denoted by 

X. Next, partition the transition matrix as: 

then, after some manipulation, the desired solution for o~(t) and 
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5l{t) is obtained: 

where Xi(t, tf) and X3 (t, tf) are nxn matrices and X 2 (t, tf) 2.nd 

X4 (t, tf) are nxq rnatrices. 

(4~3.3) 

Finally, Equation (4. 3. 3) into (4. 3. 2) gives the control varia­

tion history in terms of the state error c~(t1 ) and terminal con­

straint error dy_. 

(4. 3. 4) 

where 

and 

Formally then, the algorithm used by Lattimer e[ 2 J can be sum­

marized as follows: 

Step 1. Solve the n + q + 1 Equations (2. 3. 19) n + q times. From 

the solution of these equations, n +q initial conditions are 

obtained for the backward integration of Equations (4. 3. 1 ). 



Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 
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Integrate Equation (4. 3. 1) n + q times from tf to to and 

store the integrated values at each step. 

Evaluate the gain rnatrices, J\i(t) and A2 (t), using the state 

of the "closest" point on the nominal trajectory. 

Substitute A1 (t) and A2 {t) into Equation (4. 3. 4) to obtain 

the control variation history, o~_(t ). 

Form the augmented control history and integrate the non­

linear equations of motion to the time of next loop 

closure, using the new control history. 

Evaluate ox at this time, call it o~(ti). If t1 is less than 

tf, go to step 3. 

Wood[ 4 , b] considered a two-d4'nensional version of the mini­

mwn time, low-thrust, Earth to Mars transfer. A rendezvous with 

Mars is not attempted, instead, it is attempted to match an assumed 

circular orbit of Mars. A set of feedback gains was generated as 

described in Chapter 2. After an initial disturbance was introduced, 

the time-to-go guidance scheme presented in Section 4. 1 was used 

to drive the terminal error to zeroo It was concluded that the 

scheme handles even very large initial perturbations quite well_ . 
. 

After the quantities x, >.., Ci and u - C1£. were stored as func -

tions of time, the guidance algorithm used was the following: 

Step 1: Assuming the current perturbed state ~(t) known, obtain 

the appropriate index time using the algorithm given 

below. 



Step 2. 

Step 3. 

Step 4. 

Step 5. 
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Evaluate the quantities dx, dt and d_y and interpolate 

linearly between the two appropriate data points to obtain 

<;(tN) and other quantitieso 

Calculate du and form the augmented control u(t) = 

du+ u N(tN). 

Integrate the non-linear equations of motion from t to 

t + H, where t is the current tin1e and H is the maximum 

step size. 

The perturbed state ~(t + H) is now known. If t + H is 

less than tf, go to step 1. 

An algorithm for evaluating the index time: 

Step 1. 

Step 2. 

Step 3. 

Guess a value for the index time and evaluate d(tf - t) 

from Equation (4. 1. 3). A good guess is, for instance_. 

the current time. 

If d(tf - t) is greater than zero, choose a smaller value 

for tN. If d(tf - t) is less than zero, choose a larger 

value for tN. One might choose, for instance, the index 

time that coincides with the next/previous data point. 

Continue the process until d(tf - t) changes sign, then 

interpolate linearly between the last two data points to 

find tN. 

When the initial conditions were such that d(tf - t) was less 

than zero when tN = t 0 , the index time was chosen to be t 0 • 



-37-

An extensive search in this way was neces s ar y only once. 

Thereafter the index time can be calculated bv two or at m .ost 

three evaluations of d(tf - t) . 

4. 4 Minimum Distance and Tirne-To-Go Guidance ~ The Algorithrns 
Used in This Study 

While generating the nominal trajectory, the 35 quantities ~-' 

x, ).q u, (1 - m }' f ), (l; - Ci£) and C1 were stored a t 158 points~ - - - _ ....... - - -
In regions where the control and feedback gains change rapidly, the 

data p0Lt1ts were closer together than in regions where changes in 

these quantities were small. The minimum time between any two 

data points was 0. 14 days, while the maximurn time between any 

two data points was limited to 1. 7 days. 

In order to be able to compare the neighboring solution found 

in this study with that of Lattimore, [ 
2 J the terminal constraint 

levels were not varied. 

In applying the minimum distance technique, the index time 

was determined from Equations (4. 2. 3) and (4. 2. 4 ). The augmented 

control can then easily be evaluated from Equation (4. 2. 5 ). 

Formally then, for minimum distance guidance: 

Step 1. 

Step 2. 

Assuming the current perturbed state x(t) known, use 

Equations (4. 2. 3) and (4. 2. 4) to calculate tNr Evaluate 

o~(t) = x(t)- xN(t). 

Interpolate linearly between the appropriate data points to 

find C1 (tN). Evaluate ou(t) using (4 . 2. 5 ). 



Step 3. 

Step 4. 
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Assuming that ou(t) rerr1ains constant over the entire 

integration step, integrate the non-linear equations of 

motion forward from t to t + H, using second order inter -

polation to evaluate the nominal control at any intermediate 

time tH E [t, t + HJ and forming the augmented contro~ by 

adding o~Jt) to this value: u(t) = o~Jt) + uN(tH). H is the 

basic step size, i.e., the time between any two data 

pointso 

The perturbed state x(t +H) is now known. If t +H is less 

than tf, go to step 1. 

The time-to-go guidance algorithm used in this study is the 

same as the one discussed in Section 4 . 3, except that steps 3 and 

4 in the algorithm of Section 4. 3 are replaced by: 

Step 3. 

Step 4. 

Calculate du using (4. 1. 4 ). 

Assuming that du stays constant over the step size H, 

form the augmented control history ~(t) = du + ~N(tN + t1 ), 

where O $;; t1 ~ H, and integrate the non-linear equations of 

motion forward from t to t+H. Evaluate uN(tN+t1) from 

the stored values of ~N by second order interpolation. 

Both these algorithms were programmed and various i?itial per­

turbations were considered. The results of these flight simulations 

are discussed in Chapter 5. 
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CHAPTER 5 

RESULTS OF THE SIMULATIONS 

The results obtained from the algorithms presented in Chapter 

4 are summarized in this chaptero A discussion of some nun1erical 

problems encountered in implementing these algorithms and the 

solutions to these problem areas precedes the results. 

5. l · Numerical Problems Encountered in Implementing the 
Guidance Schemes 

A problem area common to both time-to-go and minimum 

distance guidance is the time period near the end of the flight 

where the feedback gains diverge. This phenomenon can be 

explained physically. The effect of control changes at this point in 

ti.me is small, with the consequence that a large control correction 

is needed in order to correct for a small error. 

The region is characterized by large and erratic control 

corrections. The cross-check on the accuracy of the feedback 

gains (Section 3. 4) indicates that the feedback data in this region 

are inaccurate. As explained in Section 3. 4, large errors are 

encountered in inverting the near singular matrix 9. The cross 

check indicates that after a time of 160 days from the Earth, the 

error in some of the feedback gains is greater than 4%. 

Since the state variations are approximately normal to the 

rows of . the feedback gain matrix, an inaccuracy of 4% results in 

control corrections of which not even the sign is to be trusted. 

This problem was also encountered by Wooi 4 , 6 J and Lattimore. [ 2 J 
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A possible solution for this problem is to use nom.inal control. 

The question is now from what point in time should the nominal 

control only strategy be used. Or equivalently, what size of con­

trol changes can be tolerated without violating the linear assump­

tions. The cross-check on the ·feedback gain accuracy gives 2..1~ 

indication of the time frorr1 which nominal control only should be used, 

but gives no specific value. This problem was circumvented by 

using nominal control from various times in the neighborhood of 

the predicted "switching time. 11 The strategy used was then that 

one which gives the smallest terminal error. In Tables 1-8, the 

"best" switching time for each initial perturbation is given. 

A second common. problem is the ti.me of termination of inte -

gration. The strategy used to overcome this problem is by defining 

a normalized norm of the ternrinal error, 

6 

E = L 
i= 1 

and continue integration until this norm starts to increase. 

In all cases considered, the actual final time of the perturbed 

state, i.e., the integration termination time, was to within 0. 5 days, 

the same as the first ord_er predicted final time using, the initial 

perturbation. Since the position and velocity of the vehicle matches 

the position and velocity of Mars closely (as will be seen from the 

results), the actual time of termination of the integration has very 

little effect on the terminal . error, so that this problem is not very 

important. 
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r?J 
LattimoreL..... used a minimum distance> closed loop guidance 

algorithm on the same transfer problem. He defined another 

problem area, namely the middle of the flight. It was found 

necessary to use non1inal control during the middle of the flight. 

Since he does not define the "middle of the flightJ 11 it is unclear 

how this strategy was employed. In addition, the results indicate 

an error of 7. 5959967022 x 10-5 (AU) in position and an error of 

7. 5581577845 x 10-3 AU/day in velocity for an initial perturbation 

in the x1 velocity com.ponent of 5. 0 x 10-6 AU/day. This means 

that the velocity error has grown by a factor of at least )500 - a 

poor result if the performance of the guidance scheme is judged by 

the satisfaction of the terminal constraints only. A constant step 

size routine was used, and the use of nominal control during the 

"middle of the flight" was motivated by an argument that the 

perturbed control causes the time of the turn around period to 

shift slightly. This in turn causes large control corrections vvhich 

exceed linearity so that the algorithm breaks down. 

It is believed that this result is inaccurate. Certainly it is 

possible that a set of initial conditions can shift the time of turn 

around and that control changes will be larger in this region due to 

this fact, but for an initial perturbation of 5. 0 x 10- 6 AU/day the 

control changes calculated in this study did not exceed the limits of 

linearity. In implementing the algorithms presented in Chapter 4, 

it was not necessary to switch to nominal control during turn 

around. 
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Although the control changes are larger and again some..-..vhat 

erratic during the middle 20% of the flight, it caused no trouble 

for any perturbations except the perturbation of 5. 0 x 10-5 AU/clay 

in the x1 velocity component. Here it was found necessary to pla.ce 

an upper limit of 0. 35 radians on the control change of u 2 and an 

upper limit of O. 15 radians on the control change of u1 • In addition, 

this upper- limit was in effect only for two integration steps. It is 

believed that the fact that m.uch smaller step sizes were employed 

during turn around in this study than in that of Lattimore contributes 

to the numerical stability experienced in this study during turn 

around. It is to be noted that the initial perturbation of 5. 0 x 10-5 

AU/ day is ten times larger than the initial perturbation considered 

by Lattimore. 

In addition, and/ or alternatively, it is possible that inaccurate 

guidance information was generated by the scheme presented in 

Section 4. 3 (maybe due to a programming error or very sensitive 

numerical behavior) and that this could be the reason for the poor 

satisfaction of the terminal constraint relations as found by 

Lattimore. [ 2 J 

Finally, it is to be noted that Hart and Lattimore carried all 

dependent variables in double precision in order to control roundoff. 

All computations in this study were done in single precision, since 

the errors introduced by single precision computation are much 

smaller than the truncation error introduced by numerical integra­

tion. 
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5. 2 Results of the Flight Simulations 

5. 2. a L--1.itial Perturbation in x1 Velocitv Comoonent, Introduced 
at Zero Days 

The set of L"'1itial perturbations in the x1 velocity component 

range fr om -4 o O x 1 0 - 5 AU/day to + 5. 0 x 10 - 5 AU/day. The re s ult­

ing Euclidian norms of the te:r-minal velocity error and terminal 

position error are given in Figures 4 and 5, respectively. 

For a velocity perturbation of -4. 0 x 10-5 AU/day, the termi­

nal velocity error is reduced by a factor of 4. For a velocity 

perturbation of -1. 0 AU/day, the terminal velocity error is approxi­

mately the same as the initial error. There is hardly any dif­

ference between the performance of time-to-go and minimum dis­

tance. 

For velocity perturbations greater than zero, tune-to-go gives 

a slightly better terminal error than minimum distance, but the 

terminal error increases rapidly for perturbations larger than 

2. 0 x la5 AU/day. Minimum distance guidance diverges for initial 

perturbations greater than 4. 0 x la5 AU/day. 

To get a clear picture of the terminal position error, the 

initial perturbation should be put in a dimensionless form, since 

AU/day is not comparable with AU. The velocity variables can be 

put in dimensionless form by measuring the time in units of 

(the Earth's angular velocity about the sun}-1, instead of in days. 

Using this unit of time, the velocity perturbations AU /day 

must be multiplied by a factor 
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365. 198084 9:~ I radians 
u -- 27r year period 

Using this scale, it is seen that for a velocity perturbation in 

the range -2. 0 X 10-6 to -4. 0 x 10-5
, the te.rminal e .rror is actually 

less than the initial error for both time-to-go and minimum dis -

tanc e guidance. 

For perturbations between 1. 8 x 10-5 and -1. 0 X 10-5 AU/day, 

the terminal error is slightly greater than the initial error. Again 

there is hardly any difference between the performance of time-to­

go versus minimum distance guidance. 

As before, positive velocity perturbations less than 1. 5 x 10-5 

are handled slightly better by time-to-go guidance than by mbimum 

distance guidance, and the reverse is true for initial velocity per -

turbations greater than 1. 5 x 10-5 
0 

Tables 1 to 4 give the actual terminal error and the specific 

time from which nominal control only was used. 

5. 2. b Initial Perturbation in X4 Position Component, Introduced at 
Zero Days 

The set of initial perturbations in the x 4 position components 

ranges from -2. 0 x 10-3 to -0. 3 x 10-3 AU and from 0. 3 x 10-3 to 

3. 3 X 10-3 AU. Note that a perturbation of 0. 5 x 10-5 AU/day is 

comparable to a perturbation of 0. 3 x 10-3 AU, so that the pertur­

bations considered in part 5. 2. a are comparable to those considered 

here. 

As can be seen from Figure 6, minimum distance and time­

to-go guidance exhibit approximately the same performance in 



-45-

minimizing the terminal error. The magnitude of the final error is 

slightly larger than the magnitude of the initial error for the 

smaller {in absolute value) perturbations, while the final error is 

smaller than the initial perturbation for larger initial perturbationso 

Figure 7 must be interpreted with care. At points A and A1 

the terminal control strategy indicated that1 by switching to the 

nominal control only strategy at a slightly different tirne, the ter -

minal error · can be reduced to 0. 172 x 10-3 AU in the case of point 

A and to O. 192 x 10-3 AU in the case of point P?. In the case of 

such a "conflicting" terminal control strategy, the strategy used was 

that which gives a minimum velocity error {see Figure 8). 

For a rendezvous problem these errors are more significant than 

position errors. Observe that for all perturbations considered the 

terminal position errors are approxirriately ten times smaller than 

the initial perturbations. 

In all the perturbations considered, this conflicting control 

strategy was encountered only with these two perturbations. The 

importance of the control strategy during the final stages of the 

flight is clearly illustrated by the above results. 

Finally, it is to be noted that Lattimore considered an initial 

perturbation of 5. 0 X 10-6 AU (approximately 60 times smaller than 

the smallest position perturbation considered in this study). The 

terminal velocity error for this perturbation was 6. 8088261401 x 10-3 

AU/day. Putting this velocity error in a dimensionless form and 

dividing it by the initial perturbation {assuming that the magnitude 

of the perturbation considered is larger than any r0tmcloff and 



turncation errors encountered durjng integration so that one should 

get a meaningful result), it is found that the error has increased 

by a factor of 78, 900. It is noted that this result is obtained by 

judging the guidance scheme by the satisfaction of the tenninal 

constraints only. This is, however, the primary purpose of the 

guidance scheme, and the rninimization of the transfer time is 

secondary. 

A perturbation of such a small magnitude was not considered 

in this study, since it is smaller than the turnc:ation errors encou..11.­

tered during the integration of the equations of motion. Any result 

from such a small error would be difficult to interpret. 

In all cases considered, there is a "residual!! terminal error. 

This error is due to roundoff and turncation errors encountered 

while integrating the non-linear equations of motion forward using 

a variational control history added to a nominal control history that 

was _generated by backward integration. This error will always be 

present and is a result of the inherent inaccuracy of numerical 

integration. 

5. 2o c Initial Perturbation in X3 Velocity and X6 Position 
Components, Introduced at Zero Days 

Results for out-of-plane perturbations are given in Figures 8 

to 11 and in Tables 5 to 8. 

The performance of time-to-go and minimum distance is again 

similar,' except for perturbations less than -1. 0 x 10-5 AU/day and 

-2. 1 x 10-3 AU, where minimum distance guidance diverges very 

rapidly due to a poor cstL.-nate of the index time. In this region 
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the linear assumptions 4. 2. 2 are invalid and an iterative procedure 

to evaluate the index time seems to be necessary. 

Conclusions similar to that of paragraph 5. 2 can be drawn. 

5. 3 A Second Minimum Distance Guidance Technique 

A simulation with ko = 0, ki = 1, i = 1 to 6 (see Equation 4. 2. 1) 

with initial perturbation 3. 0 x 10-4 in x 4 was also run. The index 

time was calculated by Equations (4. 2. 3) and (4. 2. 4) summing i 

from 1 to 6. The velocity and position errors were found to be 

0. 6357898 x 10-5 AU/day and 0. 1485626 x 10-3 AU, respectively. 

Comparing this with the results given in Figure 3, a slight improve­

ment in the velocity error is sensed. The position error is un­

changed. 

5. 4 Summary and Conclusions 

It was shown in this · study that, for the specific minimum 

distance metrics considered, there is no appreciable difference in 

the performance of the time-to-go and minimum distance techniques. 

In most cases, both techniques reduced the terminal error to a 

level lower than the initial error. In the cases where there are 

no reductions in the terminal error, this error was never greater 

than 2. 5 times that of the initial error. 

It was argued that, in general, the second order guidance 

schemes work well when compared to the performance of these 

schemes as found by Hart[ 1 J and Lattimore . [ 2 J When compared to 

the performance of the time-to-go guidance scheme as applied to 

a simplified version of the transfer problem, done by Wood, [ 4 , 6 J 
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the time-to-go scheme is not as impressive. It is not possible to 

handle perturbations as large as those considered in this reference. 

By minimizing different weighting functions of the form 4. 2. l, 

better results can probably be obtained. This idea is illustrated for 

one isolated case. 

The results stress the importance of the control strategy 

during the terminal stages of the flight. Since nominal control 

(which is non-optimal unless the vehicle is exactly on the nominal 

path) had to be used, there is not a large reduction in the initial 

error. It is possible that this period of non-optimal control con­

ceals the relative merits of the guidance schemes, and for this 

reason it is unwise to come to any definite conclusion as to which 

works better. 

A more rigorous technique for treating this period in the 

flight must be established. One possibility that might prove better 

than . using nominal control is, for instance, to use open loop control 

for the last 20% of the flight. 

Satisfaction of the terminal constraints can also be improved 

by taking more data points along the trajectory and doing matrix 

inversion in double precision. The accuracy of the terminal state 

appears to be limited by the accuracy of the feedback data at each 

point, the number of points, the various· properties of the integration 

routine, and the specific control strategy used during the final 

stages of the flight. 

It would be interesting to apply the minimum distance tech­

nique using (4. 1. 4) to compute the control change du and an 
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algorithm sL."'Tlilar to the time-to-go algorithm employed in this 

study. It is believed that this method should yield better 

results.[ l 4 ] 
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1. l Earth Orbital Data 

Semi-major axis, aE 

Eccentricity, eE 
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APPENDIX 1 

Argument of perihelion, WE 

Angle of inclination, iE 

Argument of ascending node, OE 

Time of perihelion 

Period 

1. 2 Mars Orbital Data 

Semi-major axis, aM 

Eccentricity, eM 

Argument of perihelion, wM 

Angle of inclination, iM 

. Argument of ascending node, OM 

Time of perihelion 

Period 

l. 3 Vehicle- and other constants 

Mass flow rate, /3 

Exhaust speed, C 

Initial spacecraft mass, mo 

Soiar gravitational constant, µ 

1. 0 AU 

0.016726 

o. 0° 

o. 0° 

0. 0° 

Jan. 3. 022307069, 1950 

365. 198084 days 

1. 523691 AU 

0.093393 

286. 07366° 

1. 84991 ° 

0. 0° 

March 17.490627, 1950 

686.868886 days 

0. 00108 (initial vehicle 
mass /day) 

0. 045365 AU /day 

LO 

2. 96 0075 36 x 10-4 AU3 
/ day2 
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The initial conditions for the set of differential Equations (2. 2. 1) 

and (2. 3.4b) are: 

X1 = -1. 4835073 X 10-2 

Xa = 9. 2 7 14 5 0 8 X 1 0 -3 

~ = 0.0 

X4 = 5. 19 9 34 5 X l 0-1 

X5 = 8. 3463802 X 10-1 

x6 = 0. 0 

A.1 = 1. 006871 X 101 

A.2 = -2. 135045 X 101 

As = -6. 701413 X 10-1 

A.4 = -5. 168126 X 10-2 

A.5 = -4. 3 2 7 6 81 X l O - 1 

ti.6 = -1.323293 X 10-3 
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APPENDIX 3 

The objective of this appendix is to summarize all the equa­

tions used in this study. For clarity, a brief indication of how they 

were derived will be given. 

Al The Differential Equations of Motion 

The non-linear set of ordinary differential equations of motion 

are 

A2 The Performance Index, Hamiltonian, and Fir st Order 
Necessary Conditions 

(A. 1. 1) 

The performance index for minimizing transfer time can be 

written as 

[3 • dt . (A.2.1) 
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The Harniltonian, defined a.s H = L + I\ T !._, then becomes 

(A. 2. 2) 

The first order necessary conditions (2. 3. 4b) and (2. 3. 4c) yield 

.. 
A -,- -A.4 

. 
A2 = -"'s 
. 
A.3 = - A6 

. ~ 3µx4 
A4 = ( A1X4 + f1..c3X5 + /1.3 X6) 3 rs r 

(A.2.3) 

. µ11,~ 3µx5 
As = - -- (;.l X4 + "'2Xs .L A3 X5) r3 

I 

rs 

. µAs 3µx6 
As = - -6- (A1X4 + AaXs + A3 XG) ra r 

(A.2.4) 

Using the fact that for a minimum we must have H > 0 Equations uu ' 

(A. 2. 4) can be solved for u1 , u.a . Thus, 



.A.3 

A3. i 

sin u~ 

cos u~ 

The Second Variation 

= 

= 

= 

= 

-70-

(A.2.5) 

- A2 

✓ A{2' + i,.,..} 

- 7'.1 

✓ A12 + A 2 
;i 

These matrices are easily calculated using Equation (A. 2. 2 ). 

They are 

1 
0 

(A. 3.1) 

0 

0 0 
3X3 3X3 

flxx = (A. 3. 2) 
Hx4X4 H:xc::x HX6X4 0 ::> 4 

3X3 Hx4Xs HXsX5 Hx5~ 

Hx~6 HXs .. r .A6 Hx5~ 

where 
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8x4x4 = 21:. (3 /\ 1X4 + A2 ~ + A3 ~) .!21::. 2( A 2 x 5 + A 3 x6 ) r5 - 7 X4 A1X4 + 
r 

fixs:xs = ~ ( A 1X4 + 3 Aa Xs + A3 x5) 151:: 2( 
A;a Xs + A3 ~) - 7 X5 t,1X4 t 5 r r 

~ ( Al X4 + A 2 Xs + 3 A 3 X£ ) .!21::. Bx6Xs = - xlO.. x + A2 X5 + /\3 xd r5 7 l 4 r 

11x4Xs 
~ (>-.1 X5 + A; X4) ~ A3¾) = - r 7 X4x5P..1x4 + A2 X5 + r5 

~4~ 
~ 0.1X6 + /1.3 X4) ~ A:a x 5 + A3 x5) = - 7 X4X5(A1X4 t rs r 

¾¾ ~ ( A:a X5 + A 3 Xs) ~ A~ Xs t A.3 X5) = - 7 X5~(>._1X4t rs r 

Hux 
0 

= 2X6 (A. 3. 3) 

. H.xu 
0 

= 
6X2 (A. 3. 4) 

A3. ii The Matrices ix,£ u 

Noting that x = .!.(!., ~, t), ix and !._u are calculated from 

A. 1. 1 



0 
3X3 

I 
3X3 

T 
iu = m 

-Tl-

2 

~-~ 
r5 r3 

3µx4,Xs 
... s 
.lo 

3µx4x6 
rs 

-sin U1 COS U2 

- sin u1 sin u 2 

COS Ul 

0 

0 

0 

3)-lX4X5 3µx4X5 

r5 ro 

2 
3 JJ.Y-5X6 3µx5 IJ. ----'--

rs r3 rs 
t) 

3µ.xif - µ '/, µX5X6 
rs rs 

0 
3X3 

-cos u1 sin u 2 

COS Ul COS u 2 

0 

0 

0 

0 

r; 

A3. iii Calculation of A{t), B(t), C(t) 

(A. 3. 5) 

(A. 3. 6) 

Using (2. 3. 11)- (2. 3.13) together with (A. 3.1)- (A. 3.4) and the 

above 

A(t) = ix 

B(t) = f H -l f T 
-u uu -u 

C(t) = ~x 

(A. 3. 7) 

A4 Boundary Conditions for the Differential Equations (2. 3. 18) 

A4. i The Terminal ConstraL.--it Relations 

Since a rendezvous problem is considered, there are six 

terminal constraint relations 



-73-

Y(~f' tf) = X (t.i:) - ~M(tf) = 0 
- .I. 

(A. 4. 1) 

where 

XM1~tf) -aM:E\ [ cos wM sin Ef + 
2 .1. 

sin WM cos E~} = (1 - eM)2 
I 

(A. 4. 2) 

Ef is the eccentric anomaly of Mars at tf and it satisfies Keplers 

equation: 

(A. 4. 3) 

where E 0 = 1780 995341 ° is the eccentric anomaly of Mars at t 0 • 

Differentiating A. 4. 2 and A. 4. 3 with respect to time, we find 
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(A. 4. 4) 

s l YI • • • • • 3 • . 'L. 1 
x1¾ (tf) = aM eo-s-1M[ (Ef Ef )[-sm wM sm Ef + (1 - eM)2 cos WM cos Ef} -

g ~31~\Ef[ sin wM cos Ef + (1 -· e~/J cos wM sin Ef }J , 

. 1 

Ef = (µ/aM3
)2 / (1 - eM cos Ef), 

• 2 . 

Ef 
-Ef eM smEf 

= 
1 - eM cos Ef 

.. 
3E 2 ... f . 

Ef = + EfEf cot Ef . 
Ef 
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A4. ii The Tranvenality Condit i on 

The tranvenality condition (2. 3. 4g) can be written as 

Z (x t , U t , tf, V) = [ Vi [ (- ~ t I_ cos U1 COS lJa) ~ ~M } t V2 [ - µ ,x3
5 + 

-f -f - r m 1 r 

+ f3 • (A. 4. 5) 

Using (2. 3. 3 ),. (2. 3. @ ), and (A. 2. 1 ), we have 

6 
G{~f, tf, v) = I: vi [xi (tf) - x~ (tf)J 

i=l 

(A. 4. 6) 

The Boundary conditions (2. 3. 19) are then 

0 
= 6x6 

y .'I. = 6x6 -xf 

. 
z 
~f 

= -'A -f (A. 4. 7) 

dY 

dtf 
= xf ~M 

f 

n 
dz L v. (x. - xMi )t=tf dtc 

= 
1 1 

.1. i= 1 



where 

X3 = 

X4 = 

Xs = 
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+ sL-ri u1 cos u lb u1 + cos u1 sh1 u 2 ~ 2 J 
1.-

. 
IJ.Xs _ .I_ [-f3 cos u1 sin ua 
r3 m m 

+ sin u 1 sin u2 ~ 1 - cos u 1 cos u~ ~ 2 J 

3~ • • • 
-- [X4X4 + X543 + X5~] 
rs 

Xl 

X2 

A1 A5 - A2 A4 

P.,1
2 + Al) 

-
. 

.I_ [ f3 SID u1 IJ.Xs + r3 m m + COS U1 ; 1 ] 

(A. 4. 8) 

{A. 4. 9) 
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APPENDIX 4 

FEEDBACK GAIN MA TRICES 



-78-

0.0 -.1721712E 02 0 . 5335265E 02 -.5645279E 0 2 
- . 2 7 44-402E 02 0.3554014E 03 0.2Z30197E 0 1 

0. 2 l 92804E 00 0. ll 10709E 01 0 . 6 .541234E 00 
0. 1081683E 01 0.7964890E 01 -. l 128942E -01 

6. 851333 -. 1979636E 02 0.4986687E 02 -. 7319661E 02 
-.2489188E 02 0.3175447E 03 0 . 21 76482E 01 

0.7476503£ -01 0. 1097645E 01 0.5083852E 00 
0. 1416520E 00 0.7318948E 01 0. 3038645E -03 

15. 181320 -. 2191891E 02 0.4563968E 02 -.9522758E 02 
-. 1239404E 02 0.2803958E 03 0. 1922581E 01 

-. 8750153E -01 0. 1050349E 01 0 . 2624919E 00 
- . 6921496E 00 0.6434589E 01 0. 1443756E -01 

23.681290 -. 2298911E 02 0.4168097E 02 -. 1197221E 03 
0. 9433838E 01 0. 2537935E 03 0. 1406731E 01 

-. 2291337E 00 0.9739190E 00 -. 7918924E -01 
-. ll 73534E 01 0. 5510531E 01 0.2828145E -01 

32.181290 -. 2301952E 02 0.3839275E 02 -. 1464174E 03 
0.3921851E 02 0. 2392017E 03 0. 5498348E 00 

-. 3395112E 00 0.879404 5E 00 -. 5284011E 00 
-. 1275840E 01 0. 4461711E 01 0.4076630E -01 

40.681259 -. 2202863E 02 0. 36 04976E 02 -. l 755862E 03 
0. 766 l 143E 02 0.2368889E 03 -. 7962586£ 00 

-. 4141299E -00 0.7790247E 00 -. 1103312E 01 
-. 1004169E 01 0. 3982292E 01 0. 5077314E -01 

49. 181259 -. 1990195E 02 0. 3491495E 02 -. 2078124E 03 
0. 1228118E 03 0.2469475E 03 -. 2904782E 01 

-. 4501182E 00 0. 6858255E 00 -. 1827065E 01 
-.3609847E 00 0.3555165E 01 0. 5621225E -01 

57.511230 -. 1632689E 02 0.3526346E 02 -.2439881E 03 
0. 1806932E 03 0.2692493E 03 -.6220917E 01 

-. 4440466E 00 0. 6144261E 00 -. 2716885E 01 
0.6576290E 00 0. 3453 ll 7E 01 0.5300790E -01 

66.011230 -. 1007206E 02 0. 3753333E 02 -. 2900613E 03 
0. 2638577E 03 0. 3067588E 03 -. 1200906E 02 

-. 3836204E 00 0.5762007E 00 -. 3888690E 01 
0. 2228788E 01 0.3746106E 01 0. 3116339E -01 

74.511200 0.2094148E 01 0. 4244307E 02 -.3582488E 03 
Oo4038821E 03 0.3657107E 03 -.2324190E 02 

-. 2242206E 00 0. 5907142E 00 -.5540355E 01 
0.4820793E 01 0.4561557E 01 -. 3691655E -01 



-79-

83.011200 0. 3284534E 02 0. 5049292 E 02 - . 4898533E 03 
0.7181409E 03 0.4616011E 03 - . 5097591E 02 

0. 2246723E 00 0. 6748506E 00 - c 8368228E 01 
0. 1033583E 02 0.6i62663E 01 -. 2559355E 00 

91.086166 0. 1405987E 03 0.4656905E 02 -. 8263621E 03 
0. 1757207E 04 0. 5671111E 03 -d 1531651E 03 

0. 1891297E 01 0.6401778E 00 -. 1477387E 02 
0.2793781E 02 0.8378171E 01 -. 1244892E oi 

98.736160 o. -3030979E 03 -. 1501084E 03 -. 1688435E 04 
0. 7237785E 04 -. 7161924E 03 -.8302456E 03 

Oo4367702E 01 -.2132745E 01 -.3051900E 02 
Oo 1205330E 03 -. 6778504E 01 -. 8982697E 01 

1070236130 -.2543965E 04 0.8245547E 03 -. 1453970E 04 
0.2259173E 05 -. 9735352E 04 -.2679829E 04 

- . 44363 l 9E 02 0.9516509E 01 -. 2936388E 02 
0. 385_6045E 03 -. 1222640E 03 -. 3201256E 02 

110. 958832 -. 5042949E 04 0. 2185109E 04 -. 1072077E 04 
0. 32 l 8859E 05 - . l 596482E 05 -. 36484 77E 04 

-. 880170-9E 02 0.2664040E 02 -. 246 7392E 02 
0. 5551680E 03 -. 2025572E 03 -. 4459052E 02 

112.064331 -. 6051594E 04 O. 2759203E 04 -.9398240E 03 
Oo3573244E 05 -. 1824387E 05 -. 3998082E 04 

-. 1058064E 03 0.3395969E 02 -.2308005E 02 
0. 6184102E 03 -.2323599E 03 -. 4926346E 02 

115. 2 71774 -. 1016523E 05 0.5158129E 04 -. 4588318E 03 
0. 4865400E 05 -. 2652669E 05 -. 5259895E 04 

-.1790408E 03 0. 6508568E 02 -. 1720653£ 02 
0. 8514036E 03 -.3425264E 03 -. 66 58400E 02 

li6.964615 -. 1339125E 05 0. 708069iE 04 -. 1112617E 03 
0. 5750163E 05 -.3219469E 05 -.6113547E 04 

-.2372273E 03 0. 9054834£ 02 -. 1284656E 02 
0. 1012262E 04 -.4196138E 03 -. 7866576E 02 

120.020935 -. 2222544E 05 0. 1243475E 05 0.7905154E 03 
0.7762425E 05 -. 4521225E 05 -. 8038555E 04 

I 

-. 3981309E 03 0. 1632336E 03 -. 1038910E 01 
0. 1384891E 04 -. 6017190E 03 -. 1068584E 03 

123. 166077 -. 3767869E 05 0.2201906E 05 0.2304918E 04 
0. 1036820E 06 -.6233925E 05 -. 1047313E 05 

-. 6847461E 03 0.2978728£ 03 0. 1998267E 02 -
0. 1878582E 04 -.8520857E 03 -. 1444788E 03 
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128.478531 -. 7959069E 05 0. 4896538E 05 0. 6235211E 04 
0. 1287280E 06 -. 8091100E 05 -o 1254069E 05 

-. 1491688E 04 0.7033009E 03 0.7977245E 02 
0.2406465E 04 -. 1173461E 04 -. 1857813E 03 

135. 437881 -.8540575E 05 0. 54 75425E 05 0.6424250E 04 
0. 2400500E 05 -. 1733900E 05 -.2310125E 04 

-. 1691168E 04 0. 8670313E 03 0. 9155713E 02 
0.4691875E 03 -.2858357E 03 -.3812891E 02 

139. 581573 -. 6603163E 05 0.4297975E 05 0.4430723E 04 
-.2993000E 05 0. 1754800E 05 0.2630938E 04 

-. 1362133E 04 0. 7282813E 03 0. 6278394E 02 
-o 6201250E 03 0.2823750E 03 0.4637108E 02 

146.388199 -.4554738E 05 0.3009750E 05 0.2303340E 04 
-. 7196000E 05 0.4540900E 05 0. 6205063E 04 

-. 1022895E 04 0. 57926 lSE 03 0. 2 77976 lE 02 
-. 1618813E 04 0.8571094E 03 0. 1241055E 03 

151. 806915 -. 3921525E 05 0. 2603131E 05 0. 1515141E 04 
0. 9439600E 05 0.6055000E 05 0.7922188E 04 

-.9585271E 03 0. 5632852E 03 0. 1220947E 02 
-.2316125E 04 0. 1287352E 04 0. l 7792 l 9E 03 

157.756897 -. 3741444E 05 0.2479950£ 05 0. 1058488E 04 
-. 1221090E 06 0.7856900E 05 0.9910563E 04 

-. 1026383E 04 0.6222576E 03 0.4125977£ 01 
-o3363438E 04 0. 1943938E 04 0. 2566482E 03 

163.457169 -.3971738E 05 0. 2614444E 05 0.8725625E 03 
-. 1603060E 06 0. 1026250E 06 0. 1257488E 05 

-. 1248527E 04 0. 7722266E 03 -. 9259766E 01 
-. 5049063E 04 0. 3002438E 04 0. 3823240E 03 

171. 107132 -. 4841500E 05 0.3143769E 05 0. 8295000E 03 
-. 2417060E 06 0. 1534850E 06 0. 1819369E 05 

-. l 934359E 04 0. 1215016E 04 -. 2417577E 02 
-. 0672813E 04 0.5874750E 04 0. 7165625E 03 

176.685242 -.6398000E 05 0.4075100E 05 0. 1142750E 04 
-.3614560E 06 0.2262520E 06 0.2616600E 05 

-.3225438E 04 0. 202 5813E 04 -.3185938E 02 
-. 1825081E 05 0. l 116506E 05 0. l320000E 04 

183.485199 -. 1342160E 06 0.8349700E 05 0. 4215688E 04 
-.8573440E 06 0. 5273920E 06 0.5958200E 05 

-. 1017444E 05 -.6304938E 04 0. 1250742E 03 
-. 6510700E 05 0.3963100E 05 0. 4532313E 04 
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187.248795 -. 2375040E 06 0. 1448950E 06 0 . 9092000E 04 
-. 1610592E 07 0.9774560E 06 0. 1087660E 06 

-. 2506600E 05 0. 1531500E 05 0. 5893125E 03 
-. 1695410E 0. 1024730E 0. l 152700E 
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