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Abstract 

 Unnatural amino acid (UAA) incorporation is an invaluable technique that is 

seeing increased use.  THG73 is an amber suppressor tRNA used to incorporate > 100 

residues at the UAG, amber stop codon, in Xenopus oocytes.  We have found that yeast 

Phe frameshift suppressors (YFFS) can incorporate UAAs at the CGGG and GGGU 

quadruplet codons in vitro and in vivo, allowing simultaneous incorporation of three 

UAAs in the nicotinic acetylcholine receptor (nAChR).  The YFFS are more 

“orthogonal” than the amber suppressor tRNA, THG73, but the frameshift suppressors 

incorporate UAAs less efficiently than THG73.  A library of tRNAs derived from THG73 

has produced an amber suppressor that is “orthogonal” and suppresses similarly to 

THG73.  An analogous opal suppressor tRNA allows incorporation of UAAs at the UGA, 

opal stop codon.  The use of the amber, opal, CGGG, and GGGU codons should allow 

for the simultaneous incorporation of four UAAs in vivo.  Bioorthogonal labeling of 

UAAs is useful for the addition of large fluorophores.  We incorporated p-AcPhe at α70 

of the nAChR and labeled with biotin and Cy5.5 hydrazide.  Biotin and Cy5.5 hydrazide 

consistently labeled three proteins on oocytes not expressing α70p-AcPhe and isn’t 

useful for site-specific labeling of ketone containing UAAs in oocytes.  We explored the 

known subunit stoichiometry of the nAChR (2α:β:γ:δ) expressed in oocytes and detected 

each subunit with the HA tag by Western blot.  The α-subunit is present in excess of the 

other subunits in a ratio of ≈ 3:1, which is expected to be 2:1.  UAAs are being sold 

commercially for detection of protein-protein interactions in eukaryotic cells.  The UAAs 

are heterogeneously incorporated and little is known about the effect on protein function 

and stability.  We heterogeneously incorporated UAAs into the nAChR and detected 

changes in function by shifts in EC50.  Many UAAs altered the function of the nAChR.  

Incorporation of photo-reactive UAAs allowed for detection of cross-linking by Western 

blot.  Heterogeneously incorporated UAAs also altered the functional nAChR expression 

on the surface of oocytes.  Site-specific and heterogeneous incorporation of multiple 

UAAs are useful techniques for novel experiments to explore protein function, FRET 

experiments, cross-linking, and protein expression. 
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