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ABSTRACT

A promising strategy for pushing single-shot energy-resolving detection to the level
of individual microwave photons, thermal phonons, and single kBT heat pulses is the
development of thermal detectors with miniscule heat capacities. Graphene, with
its vanishing heat capacity and diminished electron-phonon coupling at cryogenic
temperatures, is an enticing material platform for achieving heat capacities at the
level of single-kB in solid-state systems at dilution refrigerator temperatures. Key
to the design and operation of a thermal detector is the readout method employed
to monitor the temperature of the thermal element. However, to date, existing
thermometry methods for Van-der-Waals materials have typically been slow and
ill-suited for single-shot calorimetry, limited either by long averaging times, sweep
repetition rates, or resetting times of switched Josephson junctions.

This dissertation presents Josephson inductance thermometry, a method we have
demonstrated for probing the electron temperature of Van-der-Waals materials at
milli-Kelvin temperatures. The technique relies upon the inductive loading of a
superconducting resonator by a graphene-based Josephson junction, in which in-
creases in electron temperature of the graphene flake are transduced to shifts of the
resonant frequency. This technique brings with it many of the benefits of resonant
readout, such as fast response times, ease of frequency-division multiplexing, and
operation at the lowest temperatures available to a dilution refrigerator where the
device parameter regime yields the greatest detector sensitivities. Such a device de-
sign is well-suited, for example, to the serving as the fundamental pixel architecture
of next-generation dark matter searches.

This thesis derives all thermal detector performance metrics and fundamental noise
sources from first principles and provides a pedagogical introduction to the su-
perconducting phenomena and low-temperature physics exploited by the detector.
Subsequently, a thorough discussion is presented of the device architecture, fabri-
cation procedures, measurement chain, physical characterization via carrier density
sweeps, physical characterization via Joule heat sweeps, and noise measurement
characterization. It is our hope that researchers interested in pushing the limits of
ultrasensitive thermal detectors and calorimetry can use this thesis to delve into de-
tails of Josephson inductance thermometry as well as the field of cryogenic thermal
detection broadly.
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5.1 Patterning the NbTiN Resonator. a) A cross-section schematic of
the NbTiN film sputtered on a SiO2 chip is shown. b) To form the
etch mask for patterning the NbTiN resonator, an electron beam resist
is spin, baked, patterned in an EBPG and developed. c)A reactive ion
etch etches away that portion of the NbTiN which is not covered by
the electron beam resist mask. d) The resist is removed according to
standard procedures, leaving behind the patterned NbTiN resonator,
shown in cross section. . . . . . . . . . . . . . . . . . . . . . . . . . 94
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a glass slide covered by a silicone elastomer (PDMS) and adhesive
polycarbonate (PC), b) The glass slide and polymers are lowered
until the PC layer contacts the hexagonal boron nitride (hBn) layer.
c) With the PC layer adhered to the hBn layer, the glass slide is
raised, lifting the hBn layer off of the substrate. d) This procedure is
repeated on all layers of the Van-der-Waalsmaterial stack, whereVan-
der-Waals forces create a sufficient attraction between the layers to
allow stacking without any additional adhesive beyond the PC layer.
The final material stack is shown and the SiO2 wafer, in contrast
to the SiO2 substrate denoted previously, refers to the SiO2 NbTiN
chip upon which the Van-der-Waals stack will be stamped. e) The
full stack is lowered onto the SiO2 NbTiN chip for final placement.
f) The glass slide is heated to melt the PC layer and lifted away,
leaving behind the material stack covered in a layer of molten PC.
Thematerial stack is now ready to be contacted withmetallic electrodes. 96
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5.3 Deposition of Aluminum Electrodes. a. From the prior stamping
step, the Van-der-Waals material stack is stamped on the NbTiN
resonator chip. b. A PMMA mask is spun and baked on the chip.
The mask will be used both as an etch mask and for a liftoff procedure
to define the metallic contacts. c. Using electron beam lithography,
the electrode pattern is inscribed into the PMMA and developed in
a standard PMMA developer, removing the PMMA mask in those
regions of the chip where aluminum contacts will be placed. d. An
RIE CHF3/O2 etch is performed to etch into the Van-der-Waals stack
and reveal the 1D edge of the graphene flake, in order to make a
low-resistance Ohmic contact. e. Aluminum is evaporated onto the
chip using an electron beam evaporator free of magnetic materials
which may inhibit superconductivity. A thin titanium layer can be
included to promote adhesion between the evaporated aluminum and
substrate. f. The PMMA mask is removed in a standard liftoff
procedure, leaving behind the aluminum electrodes patterned by the
etch mask. The nanofabrication procedure is now complete and the
sample is ready for measurement. . . . . . . . . . . . . . . . . . . . 97

5.4 Optical Image of Patterned Electrodes in a PMMA Mask on a
Graphene-based Material Stack. Visible is a developed PMMA
etch mask with an inscribed electrode pattern. The aqua-colored
region is the bottom hBn, the yellow region within the aqua region is
the top hBn, and the darkened region overlapping both colored regions
is the graphite backgate. Brown finger-like projections correspond to
electrode designs patterned into the PMMA etch mask. . . . . . . . . 99
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5.5 Electrical circuit schematic. A resonator designed for low charac-
teristic impedance made of Niobium Titanium Nitride (NbTiN) is
coupled to the external microwave line via coupling capacitor and
terminated by the S-G-S junction. Characterization of the device is
performed by sending in a microwave tone and measuring transmis-
sion coefficient S21. Changes in the junction’s electrical impedance
shift the resonant frequency of the NbTiN resonator. A dedicated
heater port allows application of Joule heat to the graphene flake,
thereby electrically isolating the heating and readout ports while
maintaining a thermal link between them. The resistance between
heater port and the ground is ∼1 kΩ. We model the S-G-S junc-
tion electrically as the parallel sum of a dissipationless branch of
inductance LJ =

Φ0
2πIc

and a dissipative branch of resistance RSG. . . . 100
5.6 Optical Image of Graphene Flake. Optical image showing the

graphene flake encapsulated in hexagonal boron nitride (blue-green)
and contacted by aluminum electrodes (light blue). Two ground
wires span the entire length of the flake. The top contact is placed in
close proximity to the ground wires to form gJJ. The bottom contact
placed far from the ground electrodes and can be used to apply Joule
heating via heater current (Iheater). The inset shows the partial cross-
section across the gJJ. Encapsulated graphene is contacted at the
edges to form the superconductor-graphene-superconductor (S-G-S)
junction. The metallic contacts consist of superconducting Al and a
thin (5 nm) adhesion layer of titanium (not shown). Tuning the global
carrier density in the graphene flake is achieved by applying a DC
voltage VBG to a graphite backgate. . . . . . . . . . . . . . . . . . . 102

5.7 Unit Cell of Transmission Line, from M. Pozar [75] . . . . . . . . 104
5.8 Van-der-Waals Stack and NbTiN Resonator, borrowed with per-

mission from Arora [4]. . . . . . . . . . . . . . . . . . . . . . . . 107
5.9 Impedance Model The electrical impedance model of the resonator-

graphene device consists of the graphene Josephson junction in the
RSJ model, a NbTiN transmission line resonator characterized by
parameters in Table 5.1, a coupling capacitorCc, and 50Ωmicrowave
ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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6.1 Schematic of Frequency-Domain Multiplexed Graphene Detec-
tors. Here we show a schematic for frequency-domain multiplexed
readout of graphene detectors. As indicated by the differing lengths of
transmission line resonators, each resonator has a different resonant
frequency, with a frequency profile indicated in the inset. Since the
resonances are separated in frequency space bymore than a linewidth,
a tone sent down the feedline initializedwithin the linewidth of a given
resonant frequency will be loaded only by that resonator and will pass
by all others. Thus, an array of detectors can load the same feedline
and be read out with a single, wideband cryogenic amplifier. . . . . 113

6.2 a, Representative |S21 | data and fits for electron and hole doping.
Color and labels denote backgate voltage VBG. Arrows show the
direction of resonant frequency shifts as VBG is swept from positive
voltage (electron doped) to negative voltage (hole doped) through
charge-neutrality. Green arrow shows the resonant frequency ap-
proaching 500 MHz as electron-doping decreases to charge neutral-
ity. Blue arrow shows that the resonant frequency increases away
from 500 MHz as hole-doping increases. . . . . . . . . . . . . . . . 116

6.3 c, |S21 | vs. VBG shows the resonant frequency of the device as a
function of electron density as tuned by the back gate. Near the
charge neutrality point (CNP; VCNP = −0.3 V), the gJJ maximally
loads the resonator and consequently minimizes the value of resonant
frequency. Far from the CNP, the gJJ acts as a low-inductance ter-
mination to the resonator and the resonant frequency approaches its
maximum. On the hole-side (Vbg < VCNP), Fabry-Perot type oscilla-
tions are visible due to formation of the regions of different doping
in the graphene (hole doping; p-type) and in vicinity of contacts
(electron doping n-type)[101]. . . . . . . . . . . . . . . . . . . . . . 117

6.4 Fermi Level Shift At Metal/Graphene Interface, from Giovan-
netti et al. [45]. Plotted is the Fermi level shift as a function of
displacement between surfaces for different graphene/metal inter-
faces. A negative Fermi level shift corresponds to n-doping of the
graphene, and a positive Fermi level shift corresponds to p-doping
of the graphene. For the entire range of displacements, aluminum is
expected to n-dope the graphene flake. Figure taken from [45] . . . . 118
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6.5 Heater Port Resistance. Measured resistance of the heater port
(via the 4-wire measurement) is shown as a function of the backgate
voltage (proxy for carrier density). The charge neutrality point exists
at approximatelyVBG = 0.3 V. The resistance of the hole side is larger
than that of the electron side, in agreement with a non-negligible
contact resistance resulting from p-n junctions on the hole-side. . . . 121

6.6 (Left) Hole side Ic vs. VBG. Blue trace is hole side Ic data for
Tmxc = 160mK. Red trace is the slowly-varying background as fit
to a 7th-order polynomial. (Middle) Background-subtracted ∆Ic vs.
kF . ∆Ic is obtained by subtracting the two traces in 6.6(left). (Right)
Power spectral density of ∆Ic. The large peak is consistent with an
effective Fabry-Perot cavity length of Lcav = 361.51 nm. . . . . . . . 123

6.7 Impedance Model The electrical impedance model of the resonator-
graphene device consists of the graphene Josephson junction in the
RSJ model, a NbTiN transmission line resonator characterized by
parameters in Table 5.1, a coupling capacitorCc, and 50Ωmicrowave
ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.8 Resonance Fits and Extracted Parameters. Top Left, f0 as a
function ofVBG for representativeTmxc =160, 210, 260, 310, 360, 410,
460 mK. Extracted resonant frequency f0 as a function ofVBG shows
a characteristic lineshape consistent with Fig 1c. As Tmxc increases,
f0 decreases for all backgate voltages. Near charge neutrality and
for higher temperatures, the device becomes undercoupled to such an
extent that fitting is unreliable. Fit parameters in these regions are
not included in the plots. Top Right, Qi as a function of VBG and
Tmxc. Bottom Row, RSJ model parameters Ic (Bottom Left), and
RSG (Bottom Right) as a function of VBG and Tmxc. Ic and RSG are
determined using a numerical impedance model of the resonator/gJJ
device with resonance parameters ( f0, Qi) as inputs. . . . . . . . . . 125
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6.9 ExtractedParameters fromResonanceFits and ImpedanceModel
a. Qi vs. VBG. The internal quality factor Qi is extracted from the S21

fit function. b. Qi/Qc vs. VBG. Ratio of internal quality factorQi and
coupling quality factor Qc (also extracted from the S21 fit function)
shows that the device is in the undercoupled limit for all backgate volt-
ages. c. ωLJ/RSG vs. VBG. Ratio of the inductive branch impedance
to resistive branch impedance in the RSJ model. d. τ = Q0/ωi vs.
VBG. The resonator time constant τ is expected to set the system time
constant for all measured backgate voltages and temperatures. e. LJ

vs. VBG. The Josephson inductance LJ =
Φ0

2πIc
. f. f0 vs. VBG. The red

line corresponds to the projected unloaded (LJ = 0 nH) resonance
frequency. ∆ f corresponds to the loaded (LJ , 0 nH) resonance
frequency at Tmxc = 160mK. δ f corresponds to further shift in the
resonance frequency due to the increase in flake temperature. . . . . . 126

6.10 (left) Ic vs. T . An example fit of Ic vs. T for VBG = −2.01 V with
extracted fit parameters Ic(0) and ∆. (center) Fit parameter Ic(0) vs.
VBG. Ic(0) fit parameter is shown for both electron and hole doping.
(right) Fit parameter ∆ vs. VBG. A coarse estimate of induced gap
∆ ≈ 80 µV. Fine features are discussed in the text. . . . . . . . . . . 128

7.1 Heat Transfer via Electron-Phonon Coupling, from Wellstood,
Urbina, and Clarke [120]. (Left) In a standard model of thermal
transport in solid-state systems, heat flow typically has two dominant
sources of thermal resistance. Electron-phonon thermal resistance
Rep is typically limited by the slow rate of scattering between elec-
trons and thermal phonons. The Kapitza boundary resistance RK

between thermal phonons of the solid-state system and the substrate
arises from the acoustic impedance mismatch of the solid-state lattice
and the environment [93]. At sub-500 mK temperatures, it is often
the case that Rep > RK , which allows the electron temperature to
rise above the phonon temperature and yield ‘hot-electron’ effects.
(Right) Two key scattering processes occur between electrons and
thermal phonons, as indicated by the two energy- and momentum-
conserving Feynman diagrams. In one, an electron emits a thermal
phonon and relaxes to lower energy. In the other, electrons can absorb
a thermal phonon and be excited to a higher energy. . . . . . . . . . . 131
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7.2 Experimental Demonstration of the Hot Electron Effect, from
Roukes et al. [97]. (Left) Example of the dependence of copper
film resistance on temperature, with resistance saturating below ∼50
K. (Right) Electron Temperature vs. Applied Bias Voltage. The
power law dependence is in agreement with electron-phonon scatter-
ing calculations for 3D electrons and phonons in metal films under
the deformation potential approximation. Inset shows that the elec-
tron temperature is elevated relative to the phonon temperature up to
approximately the Rep ∼ RK crossover. . . . . . . . . . . . . . . . . 134

7.3 Measurement Circuit for Johnson Noise Thermometry of Mono-
layer Graphene, from Fong and Schwab [39]. Circuit diagram
shows the impedance matched ∼ 30 kΩ to the 50Ω measurement
circuit and HEMT via the LC-tank circuit. Additional plots show
measurements of the circuit, including the noise PSD which peaks at
approximately 1.16 GHz. . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Thermal Measurements of Monolayer Graphene, from Fong and
Schwab [39]. (left) IntegratedNoise Power vs. Temperature. Depen-
dence is agreement with the Johnson Noise Formula. The inset plot
shows that the measured precision of the temperature is in agreement
with the Dicke radiometer formula. (center) Thermal conductance
Gth vs. Temperature exhibits a temperature dependence consistent
with P ∝ T4

e − T4
ph. Inset shows that a heater current applied at ω

yields a temperature modulation at 2ω. (right) Electron temperature
vs. Applied Joule heat power. . . . . . . . . . . . . . . . . . . . . . 137
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7.5 Electron-side andHole-sideHeating andCalibration. a-c,Electron-
side (VBG = 1.1 V) and f-h, hole-side (VBG = −1.8 V) |S21( f )|
vs. Iheater for three representative mixing stage temperatures a, f)
Tmxc = 170 mK b, g)Tmxc = 280 mK c, h)Tmxc = 400 mK . Applying
a DC heater current Iheater to the designated heater port decreases
the resonant frequency of the device. As expected, the shifts are
symmetric with respect to the polarity of Iheater . d, Electron-side
and i, hole-side Ic as a function of Iheater . Fitting a-c and f-h allows
extraction of resonance parameters ( f0, Qi) which are subsequently
used to estimate the junction parameters (Ic, RSG) via a numerical
impedance model). Ic is plotted as a function of Iheater for sev-
eral mixing chamber temperatures Tmxc (color). The dashed line at
Iheater = 0 nA corresponds to the data cut plotted in e and j. e,
Electron-side and j, hole-side calibration curve, the unheated Ic as a
function of Tmxc. Since Ic monotonically decreases with increasing
Tmxc, there is a one-to-one correspondence between Ic and Tmxc, so
shifts in Ic can be transduced into shifts of graphene flake temperature.140

7.6 Power-Temperature Curves. a, Electron-side flake temperature as
a function of heat power. From the injected DC current Iheater and
measured voltage drop V across the heater port, the injected heater
power can be determined Pheater = Iheater × V . From the Ic vs.
Iheater traces in Fig. 3d,i and the Ic vs. Tmxc calibration in Fig. 3e,j,
flake temperature can be determined as a function of applied Pheater .
Color corresponds to the mixing chamber stage temperature. b, Gth

vs. Tmxc. Taking the numerical derivative ∂P
∂T of Fig. 4a allows

the data to be plotted on a single line. Fit line is to the power law
Gth = ∂P/∂T = nΣATn−1 where n is the scaling exponent and ΣA

is the multiplicative factor. c, Electron and hole Gth vs. Tmxc (log-
log scale). Hole and electron doping both show power law scaling
with an n = 5 scaling exponent. The units of the ΣA electron-phonon
coupling prefactor in the label areW/K5. The factor of∼ 2 difference
between the electron and hole prefactors is discussed in the main text. 142
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8.1 Schematic of Measurement Chain First panel shows a pure carrier
tone sent down the microwave line. Second panel shows that an
applied ω heater current and subsequent 2ω modulation of the heat
power and temperature of the graphene flake yields a 2ω modula-
tion of the transmission function (S21 parameter) between unheated
(blue) and heated (red) states. The pure tone (dashed line) is placed
within the bandwidth of the transmission function, such that it will
be amplitude modulated at 2ω with a modulation index that depends
on the magnitude of the S21 dip. Third panel shows the amplitude-
modulated signal with sidebands at 2ω as readout on the spectrum
analyzer. The measured signal-to-noise ratio of the sideband is used
to determine the NEP. b, Circuit Diagram. A continuous-wave car-
rier tone at ωc is sent down a microwave line to the graphene device,
amplified, and read out by a spectrum analyzer. An AC heater current
at frequency ω = 2π × 337 Hz injects a 2ω heat power Pheater in the
graphene flake and produces 2ω amplitude modulation of the carrier
tone, as discussed in a. . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.2 NEP Measurement Procedure. Left Panel, Representative spec-
trum at output of measurement chain. Spectrum as read out by spec-
trum analyzer (RBW = 1Hz) for applied heat power off (blue) and on
(red). The primary effect of the applied heat is to produce sidebands
spaced at 2ω from the the carrier tone. Other peaks in the spectrum
exist at multiples of the line frequency. A peak at ω is consistent
with a DC offset in the applied heat power. Inset shows the 2ω side-
band. Center Panel, Sideband Power vs. Pheater . In the low-Pheater

linear-response regime, the sideband voltage Vsb ∝ Pheater . Since the
spectrum analyzer reads out the sideband power, Psb ∝ P2

heater , which
is consistent with the slope at low Pheater . Right Panel, NEP vs.
Pheater . The linear-response regime is characterized by a regime of
constant NEP, before rising as the amplitude modulation saturates to
its maximal value. The NEP plotted in g,f corresponds to the linear
response regime (green dashed line). . . . . . . . . . . . . . . . . . 147
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8.3 Noise Equivalent Power (NEP)Measurement. e, NEP vs. Pheater .
The linear-response regime is characterized by a regime of constant
NEP, before rising as the amplitude modulation saturates to its maxi-
mal value. The NEP plotted in g,f corresponds to the linear response
regime (green dashed line). f, g, NEP vs. carrier power Pc and car-
rier frequency fc for f) electron-side (VBG = 1.0V) and g) hole-side
(VBG = −2.75V). Minimal NEP occurs near the resonance dip
minimum where amplitude modulation is largest. As carrier power
Pc is increased, the resonance dip downshifts to lower frequencies
and is driven into nonlinearity, as characterized by an asymmetric
resonance lineshape with steep falling edge and shallow rising edge.
The minimum NEP tracks the steep falling edge where amplitude
modulation is greatest. . . . . . . . . . . . . . . . . . . . . . . . . . 149
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C h a p t e r 1

INTRODUCTION

A promising strategy for pushing single-shot energy resolution to the level of indi-
vidual microwave photons, thermal phonons, or single kBT heat pulses [96, 102]
is the development of thermal detectors with miniscule heat capacities. Graphene,
with its vanishing heat capacity and diminished electron-phonon coupling at cryo-
genic temperatures, is an enticing material platform for achieving heat capacities
at the level of single-kB in solid-state systems at dilution refrigerator temperatures
[40, 39]. Key to the design and operation of a thermal detector is the readout
method employed to monitor the temperature of the thermal element. However, to
date, existing thermometry methods for Van-der-Waals materials have been slow
and ill-suited for single-shot calorimetry, limited either by long averaging times,
sweep repetition rates, or resetting times of switching Josephson junctions [69].

This dissertation presents Josephson inductance thermometry, a method we have
demonstrated for probing the electron temperature of Van-der-Waals materials at
milli-Kelvin temperatures. The technique relies upon the inductive loading of a su-
perconducting resonator by a graphene-based Josephson junction, where increases
in electron temperature are transduced to shifts of the resonant frequency. This
technique brings with it many of the benefits of resonant readout, such as increased
measurement bandwidth, fast response times, ease of frequency-division multiplex-
ing, and operation at the lowest temperatures available to a dilution refrigerator
where the device parameter regime yields the greatest detector sensitivities [28].
Such a device design is well-suited, for example, to the serving as the fundamental
pixel architecture of next-generation dark matter searches [7, 50, 58, 81].

Thermal characterization of the device shows a power/temperature scaling lawwhich
disagrees with standard electron-phonon coupling in monolayer graphene [49], but
which is in agreement with a novel thermalization mechanism in which defects in
the graphene lattice mediate thermal phonon emission by ballistic hot electrons [47].
Signatures of such a mechanism have been observed previously in high-resolution
scanning-SQUID measurements, and our thermal characterization presents a power
law dependence between applied Joule heat power and electron temperature which
is in agreement with predictions of this theory.
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In this dissertation, we derive all key performance and noise metrics of a thermal
detector, introduce the relevant background for recent superconducting graphene
detectors, and provide a detailed discussion of all steps of the experimental appa-
ratus, including nanofabrication and design, device characterization and relation to
fundamental properties of ballistic graphene, Joule heatingmeasurements, and noise
analysis. This work suggests that graphene-based thermal detectors utilizing res-
onator readout are a promising route for pushing the limits of detectable single-shot
energy resolution to the regime of low-GHz quanta.

This thesis is organized as follows:

In Chapter 2, we introduce the small-signal model of a thermal detector and derive
fundamental performance metrics, including the noise-equivalent power arising
from thermal fluctuations and the fluctuation-limited energy resolution of a thermal
detector operated as a calorimeter.

In Chapter 3, we present important background on the relevant superconducting and
cryogenic phenomena which are employed in the design of ultrasensitive graphene-
based thermal detectors, including the origin of the temperature-dependent su-
percurrent in S-N-S junctions, the resistively- and capacitively-shunted junction
(RCSJ) impedance model of a Josephson junction, the diminished heat capacity of
two-dimensional electron gases at cryogenic temperatures, and a brief review of
important types of cryogenic graphene thermal detectors developed over the last
decade.

In Chapter 4, we present our measurement setup used for simultaneous microwave
reflectometry andAC/DC Joule heating of the graphene flake, including a discussion
of the physical mechanisms underlying dilution refrigeration and a full electrical
impedance model of the measurement circuit.

In Chapter 5, we detail the nanofabrication procedure for making the resonantly-
coupled graphene-based device, including procedures for mechanical exfoliation
of the Van-der-Waals material stack and coupling to a superconducting resonator,
and key parameters for the superconducting NbTiN resonator employed to perform
readout.

In Chapter 6, we demonstrate device operation, in which shifts in the carrier density
and mixing stage temperature are transduced into shifts of the resonant frequency.
Carrier density sweeps are used to reveal physical properties of the device, including
the presence of Fabry-Perot-type oscillation for n-p-n doping.
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In Chapter 7, we present heating measurements in which Joule heat is applied to
the graphene flake and the resulting temperature rise is subsequently measured. A
measured power-temperature is presented and a possible mechanism by which hot
electrons emit thermal phonons in ballistic graphene is discussed.

In Chapter 8, we present measurements of the noise equivalent power of our device,
which is based upon amplitudemodulation of a carrier tone via appliedAC Joule heat
power. From the measured noise equivalent power, we estimate device performance
limits.

It is our hope that researchers interested in pushing the limits of ultrasensitive thermal
detectors and calorimetry can use this thesis to delve into details of Josephson
inductance thermometry as well as the field of cryogenic thermal detection broadly.
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C h a p t e r 2

THERMAL DETECTORS: PHYSICAL MODEL AND
FUNDAMENTAL PERFORMANCE LIMITS

2.1 Introduction
Of great importance in the use and development of thermal detectors is determining
fundamental limits on detector performance. Toward this end, we will undertake
the following in this chapter:

• First, we will introduce a physical model of a thermal detector and discuss its
operation in several limits.

• Second, wewill introduce an important calculational tool called the Fluctuation-
Dissipation Theorem (FDT), sketch its derivation from quantum mechanics,
and discuss its consequences in the quantum and classical regimes.

• Third, we will use the FDT to derive fundamental noise floors, including the
Johnson noise formula and fluctuation-limited noise equivalent power of a
thermal detector NEPth.

• Finally, we will derive the energy resolution
√
〈E2〉 of thermal detector and

show that, in principle, it can be made arbitrarily small when limited by
thermal fluctuations.

Having completed this chapter, the reader will be equipped to understand key perfor-
mance metrics for many state-of-the-art cryogenic detectors, which we will survey
in the next section. Additionally, they will be well-equipped to understand the
measured figures-of-merits of our graphene Josephson junction-based detector.

2.2 Linear Model of a Thermal Detector
What is a thermal detector?
Of the myriad types of detectors in use today, the thermal detector is particularly
simple. Radiation is absorbed by the detector, converts to heat, and induces a
temperature rise which is measured out through some experimental setup. From
this measured temperature rise, the magnitude of the incident radiation can be
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determined, sometimes by employing an additional calibration step. Assuming low
absorption loss, the detector temperature rises in proportion to the energy contained
in the radiation, such that the detector will experience a larger temperature rise
as the incident photon energy is increased ∆T ∝ Ephoton or as the flux of incident
photons are increased ∆T ∝ Ephoton Ûnphoton. The former mode of operation is termed
‘calorimetry’ or ‘single-photon detection’ while the latter is called ‘bolometry’. In
calorimetry, the fact that the detector temperature rises in proportion to the incident
photon energymeans that it is possible to measure not just the photon time-of-arrival
but also the energy of the incident photon. For this reason, thermal detectors are
said to possess ‘native energy spectroscopy’.

We note here that we have referred to energy quanta as ‘photons’, though the thermal
detector is agnostic to the type of incident energy quantum, provided that such an
energy quantum can induce a measurable temperature rise in the detector.

Linear Model of Thermal Detectors
We now describe a linear model of thermal detectors [82]. We note a few assump-
tions:

• The model exists in the limit in which all equilibration times are short relative
to all control and measurement time scales, so that the system always has
a well-defined temperature. This is a good assumption for populations of
electrons, where the electron-electron scattering takes place on the order of
picoseconds, even at cryogenic temperatures when the thermal link between
such electrons and the thermal bath phonons becomes weak.

• The model exists in the limit of small deviations in temperature ∆T from the
thermal bath T0, so that we may assume that all nonlinear terms are small and
may be ignored.

Under these assumptions, we describe the basic operation of a thermal detector in
response to the absorption of incident energy.

The detector is composed of a small island of heat capacity Cth connected to a
thermal bath fixed at temperature T0 by a thermal link Gth. Initially, the temperature
of the islandT is in thermal equilibriumwith the bath, i.e. T = T0. When heat energy
is absorbed by the island, the temperature of the island increases to T = T0 + ∆T .

We now discuss a few limits:
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Figure 2.1: Linear Model of a Thermal Detector. A device schematic (left)
and equivalent circuit model (right) of a thermal detector. Shown are physical
parameters heat capacity Cth and thermal conductance Gth, applied heat power P(t),
bath temperature T0, and temperature rise ∆T .

Isolated Detector, Gth = 0

Suppose the thermal link between the island and the bath vanishes, i.e. Gth = 0.
This corresponds to the case in which the detector is isolated from its environment.
Upon absorption of heat energy Q, the detector temperature will rise according to

Q = Cth∆T (2.1)

Applied DC Power P0

Suppose that a DC heat power ÛQ = P0 is incident upon the thermal detector. The
temperature of the island will rise until ∆T drives an equal heat power through the
thermal link Gth to the bath

P0 = Gth∆T (2.2)

Applied Time-dependent Power P(t)

Suppose a time-dependent heat power P(t) is incident upon the island. Then, both
of the above processes will occur, i.e. the temperature of the island will increase in
proportion to Cth and heat power will flow through the thermal link Gth.

P(t) = Gth∆T(t) + Cth
d∆T(t)

dt
(2.3)
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Applied AC heat power P(ω)

Suppose an AC heat power P(ω) = P0eiωt is incident upon the island. We can
Fourier transform the above equation to obtain the following

P(ω) = Gth∆T(ω) + iωCth∆T(ω) (2.4)

This can be rearranged to

∆T(ω) = ∆P(ω)/Gth

1 + iωτth
(2.5)

for τth =
Cth

Gth
. We see immediately that the thermal response of an applied AC P(ω)

will experience a 1-pole roll-off for ω > 1
τth
. As we will show later in this chapter,

this roll-off has several interesting implications for the character of the thermal
fluctuations across an island-bath system, the fluctuation-limited noise equivalent
power (NEP), and fundamental energy resolution δErms of thermal detectors.

Figure 2.2: Thermal Response of a Single Absorption Event. In response to the
absorption of energy quantum δE , the temperature of a thermal detector increases
by ∆T = δE

Cth
and subsequently decays to bath temperature T0 over a time τth =

Cth

Gth
.
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Example: Thermal response of a single absorption event
We now consider the response of a thermal detector to an absorption of a single
energy quantum, i.e. a thermal detector used as a calorimeter. This example will
illustrate several important features of a thermal detector, including its response
time and native energy spectroscopy.

Suppose an energy quantum δE is absorbed at time t = 0. Then, we may place a
boundary condition upon the temperature response of the detector

∆T(t = 0) = ∆T0 =
δE
Cth

(2.6)

Allowing the detector to evolve according to the equation [], we determine

∆T = ∆T0e−t/τth (2.7)

where the thermal response is a decaying exponential with time constant τth =
Cth

Gth
,

in agreement with the one-pole roll-off of ∆T in frequency space.

From this example, we determine three important properties of a thermal detectors.

• First, ∆T0 is proportional to δE , demonstrating a means of determining the en-
ergy of an incident energy quantum providing the Cth of the detector is known
(or can be estimated). It is clear that pushing down the energy sensitivity of
a calorimeter/single-photon detector will require minimizing Cth. This is one
motivation for building graphene-based thermal detectors.

• Second, although we have stated that the photon arrives at t = 0, this of course
is a proxy for time-of-arrival of an incident photon. Thus, we can determine
the photon time-of-arrival by observing the time-domain thermal response of
a thermal detector.

• Third, the thermal time constant τth provides an important response time for
comparison to the arrival rate of incident photons. Calorimeters operate in
the limit of few photon arrivals in time τth while bolometers operate in the
limit of many photon arrivals in time τth.

2.3 Fluctuation Dissipation Theorem
One of the most useful applications of quantum mechanics for the experimental
physicist is the fluctuation-dissipation theorem (FDT), which can be used to derive
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the Johnson noise relation and other fundamental noise floors. It is surprising,
then, that few undergraduate quantum mechanics courses treat this theorem. To
illustrate this important tool, we will sketch the derivation of the FDT from quantum
mechanics, discuss classical and quantum mechanical limits, and use this relation
to derive the Johnson noise formula and the noise-equivalent power arising from
temperature/entropy fluctuations of a small island connected to a thermal bath. The
latter is often the fundamental noise floor of a thermal bolometric or calorimetric
device.

A Brief Overview of the Fluctuation Dissipation Theorem
Before delving into the details of the derivation, we give a brief overview of the
FDT in the classical and quantum regimes [67], [23].

FDT in the Classical Picture

Suppose you have a physical system with a linear relation between a drive f and a
response x

x = α f

The susceptibility α is the transfer function between the drive and response and has
real (in-phase) and imaginary (quadrature) components:

α = α′ + iα′′

We will show that the imaginary component of the susceptibility α′′ refers to the
dissipation, i.e. rate of energy loss, of the system. Note that in the above equations
we have omitted time t and frequency ω dependence of the variables for clarity,
though this will be rectified in the subsequent discussion.

If the drive f can be interpreted to have a random, fluctuating component, the drive
and the response have associated variances about their mean values, i.e. 〈x2〉 and
〈 f 2〉, respectively. We will show for thermodynamic systems that

〈x2〉 ∝ α′′

In other words, the variance of the response is proportional to the degree to which
the response is 90°-out-of-phase with the drive.
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FDT in the Quantum Picture
Suppose you have a quantum mechanical system with quantized energy levels
|n〉, |m〉 (where Em > En) that is subjected to a linear periodic perturbation
V̂ = −x̂ f0 cosωt, which can be interpreted as the quantum mechanical analog
of a classical drive. If the perturbing frequency is at the energy difference of the two
levels ω = (Em − En)/~ ≡ ωnm and the perturbing potential V̂ contains off-diagonal
terms xnm that allow transitions between |n〉 and |m〉, then there will be two rates
of interest, the rate of emission of ~ω (the system loses energy) and the rate of
absorption of ~ω (the system gains energy). We will show that

〈x̂2〉 ∝
( Absorptionωn+ω=ωm︷︸︸︷

ρn +

Emission
ωm−ω=ωn︷︸︸︷
ρm

)
× |xnm |2δ(ω + ωnm) (2.8)

α′′ ∝
( Heat In︷︸︸︷

ρn −
Heat Out︷︸︸︷
ρm

)
× |xnm |2δ(ω + ωnm) (2.9)

where 〈x̂2〉measures the degree of fluctuations, α′′ = Q
ω| f0 |2

is the normalized energy
flow Q into (α′′ > 0) or out of (α′′ < 0) the system, and ρn and ρm refer to the
number occupation of states |n〉 and |m〉, respectively.

For equal occupation of |n〉 and |m〉, i.e. ρn = ρm, the variance 〈x̂2〉 will be finite,
but α′′will vanish since the rates of incoming and outgoing energy cancel. However,
if the quantum mechanical system is connected to a thermal bath, the occupation of
the energy levels follow a Boltzmann distribution, i.e. ρm/ρn = e−(Em−En)/kBT . This
implies that the rate of absorption is larger than the rate of emission. It follows that
the system will absorb energy from the drive (α′′ > 0), which is interpreted as an
uptake of heat. This picture will be used to derive the relation

〈x̂2〉 ∝ α′′ ×
{ Zero Point

Motion︷︸︸︷
1
2
+

B-E Distribution︷       ︸︸       ︷
1

eE/kBT − 1

}
︸                           ︷︷                           ︸

Average Occupation Number

where the two terms in braces show that the FDT smoothly interpolates between the
quantum and classical regimes.

In short, when a quantum system is connected to a thermal bath and subjected to a
periodic linear perturbation, transitions between different states will produce both
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a finite 〈x̂2〉 and a net uptake of heat. Taking the limit of large temperature T will
recover the classical FDT.

What is dissipation?
Dissipation is the net rate of energy loss from a physical system. To quantify the
dissipation of a driven classical system, we start with a relation from Hamiltonian
mechanics for a conservative Hamiltonian H = H(t, pi, qi) and mean energy E

dE
dt
=

〈∂H
∂t

〉
(2.10)

This relation tells us that the time derivative of the mean energy of the system equals
the mean of the partial derivative of the Hamiltonian with respect to time.

Why is dE
dt related only to the partial derivative of the Hamiltonian ∂H

∂t instead of the
total derivative dH

dt ? Ultimately, the other terms in the total derivative will cancel
out. Consider the expression for the total derivative

dH
dt
=
∂H
∂t
+

∑
i

{∂H
∂qi
Ûqi +

∂H
∂pi
Ûpi

}
(2.11)

(2.12)

For a Hamiltonian system, we know that

Ûqi =
∂H
∂pi

Ûpi = −
∂H
∂qi

(2.13)

It follows that

dH
dt
=
∂H
∂t
+

∑
i

{∂H
∂qi

∂H
∂pi
− ∂H
∂pi

∂H
∂qi

}
(2.14)

=
∂H
∂t

(2.15)

where it follows that that a time-independent Hamiltonian conserves mean energy.

However, this derivation applied to the case of a conservativeHamiltonian system. In
order to take into account dissipation, we include the so-called Rayleigh dissipation
function
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f =
1
2

∑
i

γ Ûqi
2 (2.16)

which yields the updated Hamilton equations

Ûqi =
∂H
∂pi

Ûpi = −
∂H
∂qi
− ∂ f
∂ Ûqi

(2.17)

If we have only one coordinate qi = x, including this dissipation function in the
previous derivation gives us the following relation

dE
dt
=

〈∂H
∂t
− γ Ûx2

〉
(2.18)

We will show that when the Hamiltonian contains a time-dependent linear drive
term, the first term corresponds to the heat energy taken up by the system from the
applied drive while the second term corresponds to the rate of energy dissipated out
of the system, P = F × v = −γv2. We will show that these two terms have equal
magnitude and opposite sign, implying that any net energy taken up from the drive
will be dissipated from the system.

For a time-dependent linear drive, we include the energy term

V̂ = −x̂ f (t) = −x̂( f0e−iωt + f0eiωt) (2.19)

Then, using the susceptibility relation between the drive and response x(ω) =
α(ω) f (t), we have

x = α(ω) f0e−iωt + α(−ω) f0eiωt (2.20)

For the purpose of concreteness, we will assume here that our system is a driven-
damped harmonic oscillator with damping γ and spring constant k, so that the
susceptibility is
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α =
1

iωγ + k
(2.21)

Using the above relations, and taking the time average (which has the effect of
averaging away oscillatory terms), we can show that

dE
dt
=

〈∂H
∂t
− γ Ûx2

〉
(2.22)

=
−iω f 2

0
4

(
α(ω) − α(−ω)

)
+
γω2 f 2

0
4

(
− 2α(ω)α(−ω)

)
(2.23)

We can further simplify this equation by expanding α(ω) = α′(ω)+ iα′′(ω) into real
and imaginary parts,

dE
dt
=
ω f 2

0
2
α′′(ω) −

ωγ f 2
0

2

(
α′(ω)2 + α′′(ω)2

)
(2.24)

=
ω f 2

0
2

ωγ

ω2γ2 + k2 −
ω f 2

0
2

ωγ

ω2γ2 + k2 (2.25)

= 0 (2.26)

Here we see that the rate of uptake of heat energy by the system from the drive is
given by

Q =
ω f 2

0
2
α′′(ω) (2.27)

which is subsequently dissipated out of the system by the damping term. They key
takeaway from this expression is that the rate of heat uptake by the system Q is
proportional to α′′(ω), the degree to which the response x is out-of-phase with the
drive.

What are fluctuations?
Since elementary classical physics, e.g. kinematics, is presented as a set of de-
terministic processes, it is reasonable to ask why a finite variance 〈x2〉 should be
associated with a physical parameter x.

In thermodynamics, the proper description of a physical observable is a probability
distribution over accessible values. While a given thermodynamic variable (S, P,
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U . . .) in equilibrium will take a mean value, there should be an associated
variance about that mean value. In particular, the appropriate description of a
thermodynamic variable x is a probability distribution which peaks about a mean
value 〈x〉 and possesses a variance 〈x2〉

p(x)dx =
1√

2π〈x2〉
exp

(
− x2

2〈x2〉

)
dx (2.28)

where it is assumed in this expression that 〈x〉 = 0. The variance 〈x2〉 will be
associated with the dissipation of a physical system in the following derivation.

The Derivation of the FDT from Quantum Mechanics
We now seek to sketch the derivation of the fluctuation-dissipation theorem from
quantummechanics. We follow the treatment in Chapter XII of Landau and Lifshitz
Vol. 5 “Statistical Physics” [67] and the original paper by Callan and Welton [23].

The Quantum Mechanical Picture of Fluctuations

We now look to derive the FDT from quantum mechanics. Suppose we have a
quantum mechanical system with a series of energy eigenstates {... |n〉 ... |m〉 ...}
with corresponding energies {...En...Em...}. Without loss of generality, suppose
the system is initialized to state |n〉 and (for the moment) we will not assume any
relative sizes of En and Em. Let x̂ be an operator upon these eigenstates (we will
discuss shortly the importance of non-zero off-diagonal terms 〈m| x̂ |n〉 ). Since we
wish to define a quantum mechanical analog of fluctuations, we look to the operator

1
2
(x̂ω x̂ω′ + x̂ω′ x̂ω) (2.29)

which can be expanded in Fourier modes

(x̂ω)nm =

∫ ∞

−∞
〈m| x̂ |n〉 ei(ωnm+ω)t dt = 2π 〈m| x̂ |n〉 δ(ωnm + ω) (2.30)

for ωnm = (En − Em)/~ to obtain

(x̂2)ω = π
∑

m

|xnm |2[δ(ω + ωnm) + δ(ω + ωmn)] (2.31)
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where we write xnm = 〈m| x̂ |n〉 for simplicity. The above expression stands for the
ω-th Fourier component of the spectral density of x̂2. We see that this quantity will
be non-zero only when we consider a Fourier component at the difference of two
energy eigenvalues, e.g. ω = ωmn = ωm − ωn or ω = ωnm = ωn − ωm. We will see
that since ω > 0 and the system is initialized in state ωn, the former process refers
to energy transitions up (ωn + ω = ωm) while the latter process refers to energy
transitions down (ωn − ω = ωm).

In the above expression, we also see the importance of off-diagonal terms xnm for
n , m. If the energy eigenstates {... |n〉 ... |m〉 ...} are also eigenstates of x̂, i.e. if x̂

is diagonal, all |xnm |2 will vanish for n , m, and the system will remain in |n〉 for
all time.

The Quantum Mechanical Picture of Heat

Now we turn to the quantum mechanical analog of a driving force. Suppose the
system is subject to a periodic perturbation at frequency ω

V̂ = −1
2
( f0e−iωt + f ∗0 eiωt)x̂ (2.32)

Under this perturbation, Fermi’s Golden Rule tells us that there will be a transition
rate from |n〉 → |m〉 of

Rmn =
π | f0 |2
2~2
|xmn |2{δ(ω + ωnm) + δ(ω + ωmn)} (2.33)

where |xnm |2 = |xmn |2. As before, the first term refers to transitions up in energy
(ωn + ω = ωm) while the latter process refers to energy transitions down in energy
(ωn − ω = ωm). Another way of saying this is that in the former case, the system
absorbs an energy quantum hω from the drive, while in the latter it emits an energy
quantum hω. We also note that the strength of the rate Rnm is proportional to |xnm |2

which immediately suggests a correspondence between the rate of energy transitions
and the magnitude of the fluctuations (x̂2)ω found in the previous section.

Using the above transition rate, we can now define a quantity analogous to classical
heat
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Q =
∑

m

Rnm~ωmn (2.34)

which refers to the mean energy absorbed by the body per unit time. For positive
Q, the system absorbs a net positive mean energy from the drive, which is subse-
quently dissipated in the body. Using the expression for Rnm, standard algebraic
manipulations show that

Q =
πω| f0 |2

2~

∑
m

|xmn |2{δ(ω + ωnm) − δ(ω + ωmn)} (2.35)

Normalizing this quantity, we can obtain an expression for

α′′ =
Q

ω| f0 |2/2
=
π

~

∑
m

|xmn |2{δ(ω + ωnm) − δ(ω + ωmn)} (2.36)

Here we see that, up to factors of ~, this expression differs from the expression for
(x̂2)ω only in that this one is a difference of the terms in braces, while that one was
the sum of the terms in braces.

The Competing Rates of Absorption and Emission

So far we have assumed that the system starts in state |n〉. However, to determine
the total rate of energy flow and the total amount of fluctuations, we must relax this
condition and allow the system to start in any eigenstate. Accordingly, we sum over
all starting energy eigenstates and weight each eigenstate by a weighting parameter
ρn, as follows:

(x̂2)ω = π
∑

n

∑
m

ρn |xnm |2{δ(ω + ωnm) + δ(ω + ωmn)} (2.37)

α′′ =
π

~

∑
n

∑
m

ρn |xmn |2{δ(ω + ωnm) − δ(ω + ωmn)} (2.38)

For both quantities of interest, we can reorder the sums as follows

(x̂2)ω = π
∑

n

∑
m

(ρn + ρm)|xnm |2{δ(ω + ωnm)} (2.39)

α′′ =
π

~

∑
n

∑
m

(ρn − ρm)|xmn |2{δ(ω + ωnm)} (2.40)
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ρn|xmn|2
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ρm|xnm|2
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ρm
ρn

= e =-(Em-En)/kBT

Figure 2.3: Emission and Absorption Rates. Two energy levels |m〉 and |n〉 with
energies Em > Em are shown. Absorption of energy quanta (red) allows transitions
from |n〉 to |m〉, while emission of energy quanta (blue) allows the reverse transitions
from |m〉 to |n〉. In the presence of a thermal bath, the ratio of the emission and
absorption rates is set by the ratio of Boltzmann factors ρn = e−En/kBT/Z.

The above expressions are useful when we consider transitions between two energy
eigenstates |n〉 , |m〉 where ωn + ω = ωm as enforced by the delta function. The ρn

term refers to the transitions which start in |n〉, absorb a quantum ~ω, and transition
up to |m〉. The ρm term refers to the reverse processes which start in |m〉, emit a
quantum ~ω, and fall to |n〉. It is evident that both the absorption and emission rates
add to the amount of fluctuations (x̂2)ω while the normalized rate of heat flow α′′

depends on the difference between these two processes.

However, here arises a problem. We know from the second law of thermodynamics
that a system subjected to an applied drive should absorb a net positive quantity
of heat, i.e. α′′,Q > 0. However, nowhere in our description have we introduced
an asymmetry between the absorption and emission rates. If we assume an equal
weight for all energy levels, i.e. ρn = ρm, this will force α′′ = 0 no matter the
magnitude of the drive, which clearly violates the second law.

The solution to this problem is that we connect our quantum system to a thermal
bath held at temperature T . This enforces the condition that the probability of
being in a given energy levels is Boltzmann distributed, i.e. ρn = e−En/kBT/Z. It
follows that higher energy states will be less populated than low energy states, i.e.
ρm/ρn = e−(Em−En)/kBT , and, therefore, that the rate of energy absorption will be
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larger than the rate of emission.

Exploiting a property of the delta function, we can bring the factors of ρn, ρm outside
of the sum

(x̂2)ω = π(1 + e−~ω/kBT )
∑

n

∑
m

ρn |xnm |2{δ(ω + ωnm)} (2.41)

α′′ =
π

~
(1 − e−~ω/kBT )

∑
n

∑
m

ρn |xmn |2{δ(ω + ωnm)} (2.42)

where we see that the sums are now equal for both quantities. Thus, we can relate
the two quantities

(x̂2)ω = ~α′′
1 + e−~ω/kBT

1 − e−~ω/kBT
= 2~α′′

{1
2
+

1
e~ω/kBT − 1

}
(2.43)

The terms in braces can be interpreted as the zero-point motion and Bose-Einstein
occupation factor, respectively.

We have successfully derived the fluctuation-dissipation theorem from quantum
mechanics. Let us now interpret this result in the quantum (low-temperature) and
classical (high-temperature) limits.

Quantum Limit of the FDT

We consider the limit in which ~ωkbT >> 1. For this argument, we shall assume there
is a minimum energy level E0 = ~ω0 and keep terms of order 1

Z0
e−~ω0/kBT , so that

(x̂2)ω = π
∑

m

|x0m |2 × δ(ω + ω0m) (2.44)

α′′ =
π

~

∑
m

|x0m |2 × δ(ω + ω0m) (2.45)

The interpretation is that the system sits in its lowest energy state E0 and can absorb
photons ~ω from the drive that excite it to higher energies with a rate determined
exclusively by the off-diagonal terms |x0m |2. Since the system can absorb, but
not emit, energy it follows that Q > 0. Since there is a non-zero probability of
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transitions, (x̂2)ω > 0. In this low-temperature limit, the Bose-Einstein occupation
term of the FDT vanishes and we are left with

(x̂2)ω = ~ω ×
α′′

ω
(2.46)

Classical Limit of the FDT

Now we consider the opposite limit ~ωkbT << 1. Here, many energy levels are
occupied and the ratio of occupation probabilities for two energy levels ωm and ωn,
where ωm > ωn, is ρm

ρn
= e−~ωmn/kBT ≈ 1 − ~ωmn

kBT . This means there is a small
asymmetry between the emission and absorption rates of these two energy levels of
order ~ωmn

kBT .

For an applied drive ω at the difference between two energy levels, i.e. ω = ωmn,
we have

(x̂2)ω = π(2 −
~ω

kBT
)
∑

n

∑
m

ρn |xnm |2{δ(ω + ωnm)} (2.47)

The factor of 2 − ~ωmn

kBT means the absorption and emission rates contribute almost
the same amount to the fluctuations, with the emission process contributing less by
an amount ~ωmn

kBT .

Likewise, we have

α′′ =
π

~
× ~ω

kBT

∑
n

∑
m

ρn |xmn |2{δ(ω + ωnm)} (2.48)

Here, the small ~ωmn

kBT asymmetry between emission and absorption rates means that
the heat absorbed is proportional precisely to ~ωmn

kBT .

In this high-temperature limit, the Bose-Einstein occupation dominates over the zero
point motion, so

(x̂2)ω = 2kBT × α
′′

ω
(2.49)

We note that the ~ has vanished from the equation, as is expected in the classical
limit.
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2.4 Fundamental Noise Sources and Detection Limits
We now use the FDT to derive fundamental noise limits resulting from dissipation
in two systems, a resistor and an island connected to a thermal bath.

Applications of the FDT: Johnson Noise of a Resistor
We derive the Johnson-Nyquist noise formula by considering a linear system in
which voltage V is the generalized force, charge Q is the generalized response, and
U = QV is the associated energy. For the simple case of a voltage placed across a
resistor R, working in frequency space we have

−iωRQ̃ = Ṽ (2.50)

The associated susceptibility α is all-imaginary:

α(ω) = Q̃

Ṽ
=

i
ωR

(2.51)

α′′(ω) = 1
ωR

(2.52)

From 2.43, the second moment of the response is

〈Q2〉 = 2
π

∫ ∞

0

~

ωR

{1
2
+

1
e~ω/kBT − 1

}
d ω (2.53)

Taking the high-temperature limit in which ~ω/kBT << 1

〈Q2〉 = 4kBT∆ f
Rω2 (2.54)

where we have limited the integration interval to a width ∆ f . This implies a current
noise through the resistor of magnitude

〈I2〉 = 〈ω2Q2〉 = 4kBT∆ f
R

(2.55)

We can obtain the generalized force noise 〈V2〉 by dividing the 〈Q2〉 by response
|α(ω)|2 to obtain
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〈V2〉 = 4kBT R∆ f (2.56)

This is the celebrated Johnson-Nyquist noise formula describing the fundamental
voltage fluctuations across a resistor R at temperature T over frequency width ∆ f

[89, 53].

Applications of the FDT: Johnson Noise of an RC Circuit
We now consider the case of a series RC circuit. Suppose a voltage V drops over a
series combination of resistor R and capacitor C, so that the following relation holds

V =
Q
C
+ ÛQR (2.57)

where Q is defined as the charge across the plates of the capacitor.

In the frequency domain, the susceptibility is

α =
Q̃

Ṽ
=

C
1 − iωτ

(2.58)

=
C

1 + ω2τ2 + i
ωCτ

1 + ω2τ2 (2.59)

where τ = RC.

Using the same procedure as the previous section, we find in the high-temperature
limit (per frequency)

〈Q2〉 f =
4kBTτC
1 + ω2τ2 (2.60)

This implies a roll-off of the charge fluctuations across the capacitor for ω > 1/τ.
Multiplying both sides by ω2 gives the current fluctuations through the resistor

〈I2〉 f =
4kBTτCω2

1 + ω2τ2 (2.61)

For frequencies much larger than the 1/τ roll-off

lim
ω>>1/τ

〈I2〉 f =
4kBT

R
(2.62)
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which is in agreement with the previous section. As before, dividing 〈Q2〉 f by
|α(ω)|2 produces

〈V2〉 f = 4kBT R (2.63)

The interpretation here is that a constant fluctuating force noise 〈V2〉 f drives the RC
circuit and produces response fluctuations given by 〈Q2〉 f and 〈I2〉 f .

Applications of the FDT: Temperature Fluctuations of a Small Island
We now turn our attention to determining the noise floor of our thermal device [26,
30]. In particular, we consider a small island of heat capacity Cth with a thermal
link Gth to a large bath held at temperature T . To review the assumptions underlying
the linear thermal model used in this chapter, we assume that control parameters
are applied on time scales much longer than the time scales of equilibration of the
island to the thermal bath, which is typically a good approximation for cryogenic
bolometric and calorimetric devices. This will justify our use of a lumped element
circuit model for temperature increases accompanying applied heat power.

In this case, the relation of heat and entropy give us our generalized force and
generalized response. Since the relation

δQ = TδS (2.64)

tells us that an increase in entropy δS at temperature T is associated with an increase
of heat energy δQ, our generalized force is δS and our generalized response is δT .

The standard lumped-element model of a thermal detector in the presence of an
applied heat power ∂Q

∂t is

∂Q
∂t
= GthδT + Cth

∂T
∂t

(2.65)

T
∂S
∂t
= GthδT + Cth

∂T
∂t

(2.66)

(2.67)

In the frequency domain, this corresponds to a susceptibility
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α =
δT
S
=
ω2Tτ/G
1 + ω2τ2 + i

ωT/G
1 + ω2τ2 (2.68)

From which we determine that

α′′ =
ωT/G

1 + ω2τ2 (2.69)

From the FDT in the high-temperature limit, we find

(∆T2) f =
4kBT2/G
1 + ω2τ2 (2.70)

which tells us that the variance of the temperature fluctuations with increasing
frequency will experience a roll-off at ωth = 1/τth. We note there are two factors of
T in the numerator. One arises from low-frequency response of the system, while the
other arises from the kBT

~ω occupation number. Further, integrating this expression
over frequency gives us the expression

〈∆T2〉 = kBT2

Cth
(2.71)

which gives the magnitude of fundamental temperature fluctuations across the ther-
mal link. This expression is interesting for two reasons. First, it shows that the
integrated area of (∆T2) f is independent of Gth. This means that increasing Gth will
decrease the magnitude of low-frequency (ω < 1

τth
) temperature fluctuations while

increasing the roll-off frequency ωth (bandwidth) of the fluctuations, and these two
effects will cancel to leave the integrated area unchanged. The second is that this
expression can also be derived from the following simple argument [85]:

We expect the fractional fluctuations of a thermodynamic system to go as

∆Trms

T
=

1
√

N
(2.72)

where N is the system size. If our system size is Cth as measured in units of kB,
then N = Cth/kB. Squaring both sides of the above equation gives us

〈∆T2〉 = kBT2

Cth
(2.73)
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We can convert the above temperature fluctuation PSD (generalized response) to
entropy fluctuations (generalized force) by dividing by |α(ω)|2, which gives us

(∆S2) f =
4kBGth

ω2 (2.74)

Converting to power units, we obtain

(∆P2) f = ω2T2(∆S2) f = 4kBT2Gth (2.75)

which is the standard formula for the fluctuation-limited noise equivalent power of
a bolometer or calorimeter. We write this key conclusion as follows

NEPth =
√

4kBT2Gth (2.76)

It is important to note, especially for the next section, that (∆T2) f rolls off forω > 1
τth

while (∆P2) f and NEPth are constant for all frequencies.

Energy Resolution of a Calorimeter
We might assume that the fundamental energy resolution Erms of a thermal detector
when used as a single photon detector is set by the fundamental temperature fluc-
tuations Trms of a small island of heat capacity Cth connected to a thermal bath of
temperature T

Erms = CthTrms =
√

kBT2Cth (2.77)

However, we shall show that by employing a clever weighting procedure to the fre-
quency domain signal, it is possible to improve the energy resolution of a fluctuation-
limited thermal detector without bound by increasing the measurement bandwidth
BW , according to

√
〈E2〉 = NEPth

2
√

BW
(2.78)
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Thus, in principle, it is possible to make the energy resolution arbitrarily small by
making the measurement bandwidth arbitrarily large.

Ultimately, the reason for this surprising result lies inwherewithin the measurement
chain a fundamental noise source arises. White noise at the output of the measure-
ment chain degrades the signal-to-noise ratio for ω > 1

τth
while white noise at the

input does not. To derive this result, we perform the following procedure:

• First, we will determine the weights on the measured signal and rms noise
which optimize the signal-to-noise ratio.

• Second, we will derive an expression for the energy resolution Erms from
this weighting procedure in terms of the noise equivalent power NEP of the
detector.

• Third, we will consider the energy resolution Erms for two different sources
of noise. This will demonstrate how the location of noise in the measurement
chain affects the ultimate energy resolution of the detector.

Determining Weights wk

Here we describe here a weighting procedure on measured data which can be
performed by almost any digital filter. We follow the analysis in McCammon [82].

An estimate of the energy E of a single-absorption event can be made from a
series of signal measurements si in different bins i which may be summed with
weights wi. In the frequency domain, each signal measurement si (per frequency
bin) is independent of the measurements in other bins, so summing over more
bins improves our mean estimate of δE0. Additionally, there will be an rms noise
contribution ni for each bin, which we also assume is not correlated with the noise
contribution in other bins. In the frequency domain, this assumption is valid for
stationary processes, which applies to the case of thermal detectors. Therefore, we
can define an average and second moment of this weighting procedure

〈V〉 =
∑

i

wisi (2.79)

〈∆V2〉 =
∑

i

w2
i |ni |2 (2.80)
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We note that our sum here is symbolic for simplicity. In the next section, we will
interpret it as an integral in frequency space. Similarly, we have not specified the
units of si or ni here, but we will relate them to physical parameters in the next
section.

We now determine the weight wk which will maximize the signal-to-noise ratio

∂

∂wk

〈V〉√
〈∆V2〉

= 0 (2.81)

=⇒ wk =
si∗
|ni |2
× 〈∆V2〉
〈V〉 =

1
Z0

si∗
|ni |2

(2.82)

It follows that

〈V〉 = 1
Z0

∑
i

|si |2

n2
i

(2.83)

〈∆V2〉 = 1
Z2

0

∑
i

|si |2

n2
i

(2.84)

Relating Erms to NEP

Wewill now relate the symbolic sums above to integrals over measurable parameters
with the goal of deriving an expression for the measurement uncertainty Erms =√
〈∆E2〉 of an incident energy pulse E . Ultimately, we will find that Erms can be

related to the integrated NEP of the measurement chain.

A few points to motivate the derivation:

• We assume that our device is a thermal detector with heat power P at the input
and voltage V at the output.

• We assume a photon E arrives with delta impulse function P(t) = Eδ(t),
where δ(t) has units of 1

Time .

• The terms si and ni above referred to the signal and rms noise per bin at the
output of the measurement, so their integrals will be interpreted as 〈V〉 and
〈∆V2〉, respectively.

• Ultimately, we are interested in Erms which is the energy uncertainty at the
input of the thermal detector. So, we will use the responsivity ∂〈V〉

∂E to refer
〈V〉 and 〈∆V2〉 to the input.
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• Wewill work in the frequency domain since noise between different frequency
bins is uncorrelated for stationary processes. This means that it is valid to
estimate the mean-square voltage ∆V2 as a sum-of-squares,

〈∆V2〉 =
∫

w2
i |ni |2df (2.85)

• Altogether, we wish to calculate the function

〈∆E2〉 = 〈∆V2〉|t=0(
∂V
∂E

)2���
t=0

(2.86)

We begin by defining the frequency domain analogs of the weighted sums in the
previous section for voltage-per-frequency v( f ), rms voltage noise-per-frequency
en( f ), and (unitless) weights w( f )

〈V(t)〉 =
∫ ∞

−∞
w( f )v( f )eiωt df (2.87)

〈∆V2〉 =
∫ ∞

0
w( f )2en( f )2df (2.88)

where the sum-of-squares expression for 〈∆V2〉 holds for any time t, while 〈V(t)〉
is the Fourier transform of the weighted voltage w( f )v( f ) to time t. We note that
voltage signal v(t) and voltage rms noise en(t) in the time domain are as follows:

v(t) = ∂V
∂xi

...
∂xi

∂T
∂T
∂P
× P(t) = SVP × Eδ(t) (2.89)

en(t) = SVP × NEP (2.90)

where SVP is the responsivity between the input power and output voltage and NEP

is the noise equivalent power at the input.

The weights we use in analog to the previous section are

w( f ) = 1
Z0

v( f )∗
|en( f )|2

=
〈∆V2〉
〈V〉

v( f )∗
|en( f )|2

(2.91)

where we have expanded out the normalization factor Z0 for clarity. We note that
these normalization factors will cancel in the final expression. The primary things
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to remember is that they are constant and can be taken out of the integral, and they
have a dependence on E , which we will discuss soon.

The two integrals become

〈V〉 = 1
Z0

∫ ∞

−∞

|v( f )|2
|en( f )|2

df (2.92)

〈∆V2〉 = 1
Z2

0

∫ ∞

−∞

|v( f )|2
|en( f )|2

df (2.93)

Now, we would like to obtain an expression for ∂〈V〉
∂E to convert 〈∆V2〉 to 〈∆E2〉. To

do so, we factor out E from the two integrals by defining v( f ) = s( f ) × E .

〈V〉 = E
Z′0

∫ ∞

−∞

|s( f )|2
|en( f )|2

df (2.94)

〈∆V2〉 = 1
Z′20

∫ ∞

−∞

|s( f )|2
|en( f )|2

df (2.95)

We note the normalization Z0 contains factors of E since 〈V〉 ∝ E while 〈∆V2〉 is
independent of E , so it transforms to Z′0 =

〈V2〉
〈S〉 . It follows that

∂〈V〉
∂E

���
t=0
=

2
Z′0

∫ ∞

0

|s( f )|2
|en( f )|2

df (2.96)

(2.97)

where we have used the symmetry of the integrand to change the integration range.

Finally, we have the following expression for the mean-square energy fluctuations
at the input

〈∆E2〉 = 〈∆V2〉
(∂V/∂E)2 |t = 0

=
1

4
∫ ∞
0
|s( f )|2
|en( f )|2 df

(2.98)

=
1∫ ∞

0
4

NEP( f )2 df
(2.99)
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wherewehave used the definitions s( f )2 = |SVP |2 |P( f )|2 and |en( f )|2 = |SVP |2NEP( f )2

together with the fact that |P( f )|2 = 1 for a delta function potential transformed to
the Fourier domain.

We write our result as follows

Erms =
√
〈∆E2〉 = 1√∫ ∞

0
4

NEP( f )2 df
(2.100)

Sources of NEP

NEPJohnson
SNRJohnson

f
τ
1

NEPth

Pin
SNRth

th

Figure 2.4: Signal and Noise at the Output of the Measurement Chain. Signal
P( f ) and noise spectral densities NEPth( f ) and NEPJohnson( f ) at the measurement
output. Both P( f ) and NEPth( f ) experience a one-pole roll off above the thermal
cut off ωth =

1
τth
, producing a signal-to-noise ratio SNRth which does not roll-off

above the thermal cut off. By contrast, NEPJohnson is flat at the output, so the
signal-to-noise ratio SNRJohnson does roll off above ωth.

We now compare two sources of noise to identify how their location within the
measurement chain affects the bandwidth over which they can be integrated.

Suppose there exists a resistor at the output of themeasurement chain. The associated
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Johnson noise and responsivity of this noise source are

en =
√

4kBT R∆ f (2.101)

SVP =
∂V
∂P
=
∂V
∂xi

...
∂xi

∂T
∂T
∂P

(2.102)

=
∂V
∂xi

...
∂xk

∂T
1/Gth

1 + iωτth
(2.103)

It follows that Johnson noise referred to the input of the detector is

NEP2
Johnson =

|en |2
|SVP |2

=
4kBT R∆ f

| ∂V
∂xi
... ∂xk

∂T |2
× G2

th(1 + ω
2τ2

th) (2.104)

and the associated signal to noise ratio, referred to input, is

SNRJohnson =
|P( f )|2

NEP2
Johnson

=
1

4kBT R∆ f

| ∂V∂xi ...
∂xk
∂T |2
× G2

th(1 + ω2τ2
th)

(2.105)

It is clear that SNRJohnson experiences a one-poll roll due to the thermal response
of the calorimeter.

Now, let us look at a different noise source, in particular, the thermal fluctuations at
the input of the calorimeter

NEP2
th = 4kBT2Gth (2.106)

It follows that the signal-to-noise ratio is frequency independent

SNRth =
|P( f )|2

NEP2
th

=
1

4kBT2Gth
(2.107)

even for frequencies above the thermal time constant ω > 1
τth
.

Physically, what’s going on here is that the signal P( f ) experiences a thermal roll-off
as it passes through the measurement chain, by virtue of the temperature response
to applied power
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���δT
P

���2 = 1/G2
th

1 + ω2τ2
th

(2.108)

so, if there is a white noise at the output, the signal-to-noise ratio (relative to that
white noise) will also roll-off. However, the fluctuation limited NEPth experiences
precisely the same thermal roll-off as P( f ) as it passes through the measurement
chain, so the signal-to-noise ratio | P( f )

NEPth
| does not roll off. This is a good reminder

that the important quantity in a measurement is neither the signal nor the noise by
themselves, but the signal-to-noise ratio.

Since the fluctuation-limited NEPth is frequency independent, the accompanying
energy resolution is

√
〈E2〉 = NEPth

2
√

BW
(2.109)

where there is no fundamental limit on the integration bandwidth BW .

Key Takeaway

The key idea in this section concerns the precision with which we can estimate the
energy E0 incident upon a thermal detector operated in calorimeter/single-photon
mode. For the signal in frequency space, each frequency bin gives an independent
estimate of E0, so averaging overmore frequency bins gives amore accurate estimate
of E0. Typically, though, there exists a limit on the bandwidth that can be summed
over. For example, when white noise is introduced after the input, the temperature
roll-off of the signal above ωth =

1
τth

degrades the signal-to-noise ratio and limits
the bandwidth to BW = 1

4τth . However, rather remarkably, the fluctuation-limited
NEP is flat at the input and also rolls off aboveωth, which causes the signal-to-noise
ratio to be constant for all ω and places no fundamental limit on the bandwidth.
Therefore, within this picture, the energy resolution of a fluctuation-limited detector
can be made arbitrarily small.

2.5 Conclusion
We review what has been demonstrated in this chapter:
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• First, we have introduced a physical model of a thermal detector and discussed
its operation under applied DC and AC power, in the frequency and time
domains, and for single-quantum absorption events.

• Second, we have introduced the Fluctuation-Dissipation Theorem (FDT),
sketched its derivation and discussed its consequences in the quantum and
classical regimes.

• Third, we have used the FDT to derive the Johnson-Nyquist noise formula for
a resistor and fluctuation-limited noise equivalent power NEPth for a thermal
detector.

• Finally, we have derived a limit on the energy resolution
√
〈E2〉 of thermal

detector and shown that there is no fundamental lower bound on this resolution
for a fluctuation-limited thermal device.

The reader should now be equipped to understand the performance limits for a
variety of state-of-the-art cryogenic detectors, including for the graphene-based
thermal detector we have recently demonstrated.
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C h a p t e r 3

GRAPHENE-BASED SUPERCONDUCTING DETECTORS
BACKGROUND

In this chapter we discuss some fundamental concepts related to graphene-based
superconducting detectors.

• First, we motivate and discuss the phenomenon of the temperature-dependent
supercurrent in an S-N-S weak link, which arises from electron-hole reflec-
tions at the interface of a normalconductor and a superconductor.

• Second, we motivate the use of two-dimensional electron gases when design-
ing low-heat capacity thermal detectors, with a focus on how graphene’s linear
band structure can produce exceptionally low heat capacities

• Third, we introduce the resistively- and capacitively-shunted Josephson junc-
tion (RCSJ) model which describes the RF and DC electrical impedance of a
Josephson junction

• Fourth, we give a brief review of some of the important cryogenic graphene-
based thermal detectors in the last decade, many of which integrate super-
conducting phenomena into their device design in order to push performance
limits.

• Finally, we discuss an exciting application of ultrasensitive calorimetry, the
measurement of Landauer’s postulated minimum kBT log (2) heat dissipation
associated with the erasure of a classical bit.

Having completed this chapter, the reader will be prepared to understand the phys-
ical mechanisms underlying the resonantly-coupled graphene device which will be
discussed in subsequent chapters.

3.1 Principles of Superconductor-Normal-Superconductor Junctions
BCS theory, formulated by Bardeen, Cooper and Schrieffer in 1957, explains the
origin of the interesting phenomena of superconductors as ultimately originating
in a phase transition which occurs at low temperatures [8, 110, 49]. In this phase
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transition, particles in the ground state become correlated in a way that can be
measured by an order parameter in the limit of length scales much larger than a
Fermi wavelength λF

Fσσ′(r) = 〈ϕσ(r)ϕσ′(r)〉 (3.1)

Essentially, this expression means that in the superconducting state where F , 0, the
positions of electrons are correlated. Scaling this order parameter by the strength of
the interaction λ produces the pair potential

∆(r) = λ(r)F(r) (3.2)

= |∆(r)|eiϕ(r) (3.3)

where the second line implies that all of the particles in the ground state are associated
with a single quantum mechanical phase φ(r). For a conventional superconductor
such as elemental aluminum, this pair potential serves as the relevant energy scale
by which Cooper pairs— bound states of electrons which are mediated by the
attractive interaction of electron-phonon scattering in the presence of a Fermi sea—
are energetically lowered from other excitations [44].

Quasiparticles and the BdG Equations
We now look to characterize the excited states (quasiparticle states above the Cooper
pair ground state) which will take the form of linear combinations of electrons and
holes, each of which possesses an energy strictly bounded below by the supercon-
ducting gap energy ∆. This will motivate a key feature of the superconducting
density-of-states, which is that there exist no states within an energy ∆ of the Fermi
energy EF . In the next section, we will see how this produces a quantummechanical
amplitude for electron-hole reflections at the interface of a superconducting and
normalconducting metal.

Quasiparticle states can be elegantly constructed from the eigenstates and eigen-
values of the Bogoliubov-de-Gennes (BdG) equations [49, 44, 110, 2], which are
expressed as follows

(
~2k2

2m − µ ∆(r)
∆∗(r) µ − ~2k2

2m

) (
uk

vk

)
= Ek

(
uk

vk

)
(3.4)
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To illustrate the difference between the normal-conducting and superconducting
states, we introduce a simple case of the BdG equations, with two key simplifica-
tions. First, we assume electrons and holes propagate as plane waves, i.e. electron
wavefunction is described as u(r) = uk ei®k ·®r and hole wavefunction is described
by v(r) = vk ei®k ·®r . Second, we assume bulk superconductivity, which implies that
∆(r) = ∆0eiϕ where we have removed the spatial dependence of the phase.

We will first consider the uncoupled (∆0 = 0) normal-conducting case and then the
coupled (∆0 , 0) superconducting case.

Uncoupled (Normal State) BdG Equations

In the absence of a superconducting correlations ∆0 = 0, off-diagonal terms vanish
and the BdG equations become

(
~2k2

2m − µ 0
0 µ − ~2k2

2m

) (
uk

vk

)
= Ek

(
uk

vk

)
(3.5)

Since the matrix is diagonal, the resulting equations are uncoupled.

(~2k2

2m
− µ

)
uk = Euk (3.6)(~2k2

2m
− µ

)
vk = −Evk (3.7)

(3.8)

These sets of equations describe two energy bands (see Fig. 3.1). The top equation
describes the electron band, in which electrons propagate as plane waves according
to the Schrodinger Equation. As the k-vector of an electron increases, so does its
energy since Ek =

~2k2

2m − µ.

Conversely, the bottom equation describes the hole band, in which holes also propa-
gate as plane waves according to the Schrodinger equation. Similarly, as the k-vector
of a hole increases, so does its energy since its energy is given by Ek = µ − ~

2k2

2m .

Clearly, the two bands are symmetric about a flip across the Fermi energy axis E = µ.
This has an important consequence for the group velocity. While electrons and holes
with the same k-vector have the same energy, they have opposite group velocities



36

kF

k

Energy Energy

-kF kF

k
-kF

2𝝙0 2𝝙02𝝙0

Figure 3.1: Quasiparticle Energy Bands for Normalconducting and Supercon-
ducting States. (left) In the normal state, the superconducting gap energy vanishes
(∆ = 0) and the BdG equations decouple into two different energy bands. The
concavity of the electron band (red) implies that electrons have a positive group
velocity ∂ω

∂k ≥ 0, whereas the hole band (blue) implies that holes have a negative
group velocity ∂ω

∂k ≤ 0. (right) In the superconducting state (∆ , 0), the presence
of the superconducting gap ∆ couples electron and holes to produce quasiparticles,
where a quasiparticle of a given k-vector is composed of a linear combination of an
electron and hole of the same k-vector. The relative magnitude of the electron and
hole contributions depend on the proximity of k to kF . In the case of the E > 0
band, excitations deep within the Fermi-sea are hole-type, excitations far above the
Fermi-sea are electron-type, and excitations close to the Fermi sea are of mixed
character. This can also be understood from the two quasiparticle energy bands,
where the sign of the group velocity of the quasiparticle changes as k sweeps across
kF , indicating a cross-over from hole-type to electron type (blue trace) or vice-versa
(red trace).

∂ω
∂k . Electrons have positive group velocity

∂ω
∂k > 0, while holes have negative group

velocity ∂ω
∂k < 0, which implies that electrons and holes with the same k travel with

the same speed but in opposite directions. This will have important consequences
for the phenomenon of Andreev reflection, discussed later in this chapter.

Coupled (Superconducting) BdG Equations

We now consider the case in which the superconducting gap is non-zero, i.e. ∆ =
∆0eiϕ. Just as we might ask about the eigenvectors and eigenvalues of a coupled
mass/spring system to determine resonant modes and frequencies of the system, we
now ask for eigenvectors and eigenvalues of the BdG equations to determine the
excitation energies and linear combinations of electrons and holes which comprise
such excitations. Note also thatwe enforce the normalization condition |uk |2+|vk |2 =
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1.

(
ξk − Ek ∆0eiϕ

∆0e−iϕ −ξk − Ek

) (
uk

vk

)
= 0 (3.9)

where, for simplicity, we have written the energy difference relative to the Fermi
energy as ξk =

~2k2

2m − µ. Finding the eigenvalue of this matrix gives an important
expression for the energy of the excitations

Ek = ±
√
ξ2

k + ∆
2
0 (3.10)

This equations has a few important conclusions. First, it tells us that that every
excitation comes with a minimum energy ∆0, which is why we have referred to this
quantity as an important energy scale for superconductivity. This means low-energy
disturbances, e.g. phonons with E < ∆0, will not disturb the system since they
do not have sufficient energy to produce transitions between different energy states
of the system. In the common parlance, a superconducting system is ‘gapped’ to
excitations.

Second, whereas the two energy bands– electron and hole– were previously uncou-
pled from one another, they are now coupled, i.e. the modes have hybridized. As
can be seen in Fig. [...], starting in the positive energy band Ek = +

√
ξ2

k + ∆
2
0 =

+

√
(~2k2

2m − µ)2 + ∆2
0 at k = 0 and increasing k, will initially yield excitation energies

which decrease as k approaches kF , but which then ‘turn around’ at k = kF and
yield energies which increase for k > kF . Clearly, this also means that the group
velocity ∂ω

∂k is negative (hole-like) for k < kF , while it is positive (electron-like) for
k > kF .

The physical interpretation here is that each excitation of the superconducting system
is a linear combination of an electron and hole of the same wavevector k, and the
relative size of the electron and hole contributions is determined by the proximity of
k to the Fermi wavevector kF . Thus, the same energy band can smoothly interpolate
between hole-like and electron-like excitations as k is swept through kF . This
can be seen by considering the eigenvectors of the equation, which are the linear
combination of electrons and holes of the same k-vector. Thus,
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uk =
1
√

2

√
1 +

ξk

Ek
× eiϕ, vk =

1
√

2

√
1 − ξk

Ek
(3.11)

For excitations deep within the Fermi sea |k | << kF , the excitation is essentially
hole-like (uk ≈ 0, vk ≈ 1). For excitations far above the Fermi sea |k | >> kF ,
the excitation is essentially electron-like (uk ≈ 1, vk ≈ 0). Excitations close to the
Fermi surface k ≈ kF have a mixed character (uk ≈ 1√

2
, vk ≈ 1√

2
), and this mixed

character is sustained over an energy width of ∆0. Thus, we can appreciate that
much of the important behavior of superconducting systems occurs within a width
∆0 of the Fermi energy EF .

Andreev Reflection
At an N-S interface, an important question is what happens when an electron prop-
agating in the normal metal impinges upon the interface with the superconducting
contact. If the electron possesses an energy above the Fermi energy but below the
superconducting energy gap ∆, there will be no quasiparticle states of equal energy
to which it can transition in the superconductor. Further, if the interface is clean,
i.e. high transparency, it can neither undergo a low-energy scattering to another
electronic state in the normal metal. What happens then?

The answer is that a different physical process occurs, known asAndreev reflection, in
which the electron (an excitation above the Fermi sea) reflects as a hole (an excitation
below the Fermi sea), where both the electron and hole propagate within the normal
metal [15, 1, 100, 9, 111, 108]. In such a reflection event, charge conservation
implies that a Cooper pair is transferred to the superconductor. Conversely, if a hole
is incident upon the N-S interface, it will reflect as an electron, taking up a Cooper
pair from the superconductor. In an S-N-S junction, the back-to-back S-N and N-S
junctions allow a round-trip process to occur in which an electron in the normal
metal can reflect from one interface as a hole, and the hole can propagate with
opposite group velocity to reflect from the the other interface as an electron. The
combination of these reflection events allows for the net flow of a Cooper pair, i.e. a
supercurrent, through the S-N-S junction. Thus, the source of the Josephson effect
in an S-N-S junction is the net transfer of Cooper pairs from one superconducting
contact to another mediated by electron-hole reflections at the interfaces.
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a

b c

Figure 3.2: Andreev Reflection. a. Scattering Processes at a Superconductor-
Normalconductor Interface, with permission from Blonder, Tinkham, and Klapwijk
[15]. In the case of an electron in a normal metal (0) incident upon a superconduc-
tor, the following processes are considered. Quasiparticle transmission into the left
branch (2) or right branch (4). Reflection as a normal electron (5) or (6) Andreev-
reflection as a hole b. Andreev Reflection coefficients as a function of incident
electron energy E (with permission from Heikkilä [49]). For an incident electron,
|rhe |2 corresponds to the probability of Andreev electron-hole reflection, while t+
corresponds to the transmission into the superconductor as a quariparticle of equal
energy. We see that for electron energies below the superconducting gap E < ∆
only electron-hole reflection may occur. Above the gap, the probability of electron-
hole reflection decreases and quasiparticle transmission increases with energy. c.
Andreev Bound State Energy E ABS vs. the phase difference between the supercon-
ductors φ (with permission from Heikkilä [49]). For finite transmission coefficients
τ < 1, the bound state energy is 2π-periodic, while for perfect transmission it is
4π-periodic.
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This phenomena can be formulated as a scattering problem, in which there exist
amplitudes for each of the relevant processes [49]. Suppose initially that an electron
in the normal metal moves to the right toward the N-S junction with unity amplitude.
In this case, the electron can be transmitted into the superconductor as a quasiparticle
excitation. Alternatively, it can be reflected in the normal metal as normal reflection
or it can deposit a Cooper pair into the superconductor, leaving behind a hole of
equal energy below the Fermi sea. These possibilities are contained in the following
wavefunctions

ψnormal =

(
1
0

)
eik x + ree

(
1
0

)
e−ik x + rhe

(
0
1

)
eik x (3.12)

ψsupercon = t+

(
u0eiφ0

v0

)
eik x + t−

(
v0eiφ0

u0

)
eik x (3.13)

In the limit of a transparent interface, expressions for the coefficients can be obtained
by solving for continuity of the wavefunctions (up to a deposition of a Cooper pair
in the superconductor) and their derivatives across the boundary. This yields:

ree = 0, t+ = t− = 0, |reh |2 = 1 for |E | < ∆ (3.14)

ree = t− = 0, |reh |2 =
E −
√

E2 − ∆2

E +
√

E2 − ∆2
|t+ |2 = 1 − |reh |2 for |E | > ∆ (3.15)

We explain the subgap (|E | < ∆) scattering process. For energies below the
superconducting gap, only evanescent waves can propagate in the superconductor,
so the quasiparticle states cannot support a proability current (We note that the above
equations hold for probability currents, in the sense that they take into account length
scales much larger than the superconducting coherence length, e.g. the length scale
of the evanescent wave.). Further, for a transparent interface, there is no amplitude
to reflect as a normal metal electron at any energy. So, the only allowed scattering
process is that the invident electron reflects as a hole in the normal metal with
probability |rhe |2 = 1, i.e. Andreev reflection is the only allowed process for subgap
energies. Conversely, for energies above the gap, there is a finite amplitude to
reflect as a hole and a finite amplitude to transition into the superconductor as a
quasiparticle.
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It is important to note that the electrical current does not carry heat, since Cooper
pairs do not possess entropy. Thus, this mechanism allows the flow of electrical
current but blocks the flow heat current, and it is therefore a good candidate for
measuring the temperature of an electron gas contained in the normal metal while
simultaneously isolating it from external heat loss through the superconducting
leads.

Andreev Bound States
We recognize that the S-N-S junction bears a striking resemblance to the elementary
picture of a quantum mechanical particle-in-a-box. In particular, unpaired electrons
and holes can propagate as waves within the normal metal, but at subgap energies
they decay as evanescent waves in the superconducting contacts. (As Blonder, Tin-
kham, and Klapwijk [15] showed, the current of the evanescent waves is converted
into supercurrent of the Cooper pair generated at each reflection, with an exponen-
tial dependence on the length from the interface.) Since the length of the normal
metal region is finite, we should expect a series of bound states to occur in an S-N-S
junction in analogy to the bound states of a particle in a finite length quantum well.

To determine the energies of these bound states, we match the phases of back-to-
back electron/hole and hole/electron reflections [49]. For an electron-hole or a
hole-electron reflection from a superconducting lead of phase φ, it can be shown
that the phase accumulated upon this reflection is

ϕeh = − arccos (E/∆) + φ ϕhe = − arccos (E/∆) − φ (3.16)

We can write down total accrued phases for the round-trip in the two cases in which
an electron is initially incident and when a hole is initially incident.

ϕ1 = (ke + kh)L + φ − 2 arccos (E/∆) (3.17)

ϕ2 = (ke + kh)L − φ − 2 arccos (E/∆) (3.18)

where we have assumed that one superconducting lead has phase φ and the other su-
perconducting lead has zero phase. In the limit of a ballistic junction, the dynamical
phase accumulation is small relative to the phase accrued from the superconducting
leads, so we approximate (ke + kh)L ≈ 0. We then enforce the boundary condition
for a bound state
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ϕ1, ϕ2 = 2πn (3.19)

for some integer n. From this phase matching condition, the allowed bound state
energies of a transparent contact are

E± ≈ ±∆ cos(φ/2) (3.20)

If the contact has some transmission coefficient τ, such that τ = 1 characterizes a
transparent contact and τ << 1 characterizes a low-transparency (tunnel) contact,
the bound states energies are modified to

E± = ±∆
√

1 − τ sin2(φ/2) (3.21)

Since charge and phase are conjugate elements in a Josephson junction, the current
through the junction goes as Is =

∂E
∂φ , so the total current through a ballistic S-N-S

junction is

IS =
2e
~

∑
±

∂E±
∂φ

tanh
( E±
2kBT

)
=

e∆2

2~
τ sin (φ)
E+(φ)

tanh
(E+(φ)

2kBT

)
(3.22)

In the limit of low transparency τ << 1, the Ambekagaor-Baratoff [110] relation is
recovered

IS ≈
π∆

2eRN
tanh

(
∆

2kBT

)
sin(φ) = Ic(T) sin (φ) (3.23)

where we see that the temperature dependence of the critical current arises from
the thermal filling of the Andreev bound states. For longer junctions, more states
(including states above the gap) contribute to the current, and more sophisticated
mathematical tools are required, yielding a more complex temperature dependence
of the critical current [35, 46].
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3.2 Graphene Background
Heat Capacity of an Electron Gas
A simple argument for electronic heat capacity in a solid state system is given by
Kittel [60]. In a classical monoatomic gas in, suppose, three dimensions, each atom
is endowed with three degrees of freedom. This means that each atom should have
a heat capacity 3

2 kB, and since each atom is independent of all the others, the total
heat capacity of an N-atom classical gas is

Cclassical ≈ N × 3
2

kB (3.24)

However, early researchers found that the heat capacity of an electron gas is much
smaller than this, often at the level of 1% of the classically-predicted value.
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Figure 3.3: Thermal Excitations of a Fermi Electron Gas. (left) Fermi-Dirac
Distribution. At T = 0, the Fermi-Dirac distribution is brick-wall occupation
function in which all electrons are at their lowest possible energies prescribed by
Pauli repulsion. As the temperature is increased to a finite T , a smearing of the
distribution occurs over a width kBT . In other words, only those electrons with in a
kBT of the Fermi energy are thermal excited. (right) The Fermi Sea. This diagram
is meant to demonstrate that only a small fraction of the total electrons in the Fermi
sea are thermally excited, accounting for a suppression of Cth by a factor of T

TF

relative to the classical case.

The reason for this discrepancy is that electrons, of course, are not classical particles.
They are fermions which fill up a Fermi sea as their number increases. With the
Fermi-Dirac distribution as our guide, increasing the temperature of the electron
gas from 0 Kelvin to some finite temperature T smears the Fermi distribution by an
amount kBT . In other words, only those electrons within a kBT of the Fermi surface
are involved in the absorption of thermal energy This can be a very small fraction
of the total electrons, ∼ T

TF
. Thus, we can write the heat capacity of an electron gas
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Cth ≈ NkB
T
TF

(3.25)

up to numerical factors, where we see that the suppression by the factor T
TF

accounts
for the diminished heat capacity of an electron gas. We also see the important
result that the electronic heat capacity scales linearly in T , even down to 0 Kelvin.
This linear T scaling implies that the electronic heat capacity typically dominates
at low temperatures over the phonon heat capacity, which typically scales as T2

or T3 depending on the thermal phonon dimension, or the heat capacity of the
superconducting leads, which is exponentially suppressed Cth ∼ e−∆/kBT . Roukes
[96] shows this predicted scaling for a suspended nanostructure, as shown in Fig.
3.4.
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Figure 3.4: Heat CapacityCth Scaling with Temperature in a Suspended Nanos-
tructure, from Roukes [96]. In the case of an electron gas on a suspended nanos-
tructure with galvanic contact via superconducting leads, Roukes considered the
relative contributions to the total heat capacity. At low temperatures, the electronic
heat capacity, which scales as ∼ T typically dominates over the other sources of
heat capacity, which possess a stronger temperature scaling. Due to the energy
gap between the ground state and the excited states, the heat capacity of the super-
conducting leads are exponentially suppressed as ∼ e−∆/kBT . Since the phononic
contributions to the heat capacity go as the dimensionality of the phonons, with
freeze-out occurring when the phonon wavelength exceeds the device size.
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An alternative derivation can be given by the Sommerfeld expansion of the Fermi-
Dirac distribution in the limit of small temperature [6]. We briefly quote the result
that the Sommerfeld approximation expands the Fermi Dirac distribution to zero-th
order in T as a step function with step at EF , and higher order terms in T2n. With
these assumptions the electorn gas energy is given by

U = EF +
π2

6
(kBT)2g(EF) (3.26)

where EF is the Fermi energy and the lowest-order expansion term scales as T2

where g(EF) = ∂N
∂E

���
EF

is the density of states at the Fermi level. We note that N

comes in units of number.

Taking temperature derivative to obtain the heat capacity

Cth =
π2

3
k2

BTg(EF) (3.27)

where once again we have shown the linear-T scaling of the electronic heat capacity.

Heat Capacity of a Graphene 2DEG
Our focus now turns to calculating the two-dimensional electron gas heat capacity
for two different types of band structures, graphene’s linear band structure and a
standard parabolic band structure such as might be found in a InAs quantum well.
The two types of band structures share many similarities, in the sense that they both
scale linearly in area A and temperature T , i.e. Cth ∝ AT . We will see that the
key difference between the heat capacities of these two solid-state systems is the
dependence on carrier density nA, with the parabolic band structure Cth possessing
no dependence and the graphene possessing Cth ∝

√
nA.

Heat Capacity of a 2DEG with a Parabolic Band Structure

Starting from the expression for heat capacity of a two-dimensional electron gas
[60, 6]

Cth =
π2

3
k2

BT × dN
dEF

���
EF

(3.28)
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where see that the density-of-states at the Fermi level dN
dEF
|EF is key quantity which

differentiates the heat capacity of different electron gases. The number of electrons
can be determined from the phase-space product of the area A and the k-vector area
πk2

F , and numerical factors accounting for the phase-space volume and two-fold
spin degeneracy

N =
2
(2π)2

× A × πk2
F (3.29)

In the case of a parabolic band structure E = ~
2k2

2m∗ . This implies that

N =
A

2π
2m∗

~2
E (3.30)

=⇒ dN
dE

�����
EF

=
A

2π
2m∗

~2
(3.31)

The surprising result here is that the density of states is independent of the carrier
density, so we expect that the heat capacity Cth should also be independent of the
carrier density. Indeed this is the case

Cparabolic = A
π2

3
k2

B
m∗

~2
T (3.32)

2DEG Heat Capacity for Graphene (Linear Band Structure)

For graphene, the linear band structure E = ~vF k (vF = 106m/s) yields a different
form of the density-of-states at the Fermi level [113, 115]. As before, we calculate
the number of states from the phase-space product

N =
4
(2π)2

× A × πk2
F (3.33)

=
A
π

E2

~2v2
f

(3.34)

=⇒ 1
A

dN
dE

���
EF

=
2EF

π~2v2
F

(3.35)
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where the factor of 4 comes from the total degeneracy of graphene. Since EF ∝ kF =√
πnA, where nA is the number of carriers per area, we see that the density-of-states

has a dependence on carrier density. The heat capacity of graphene then becomes

Cth = A
2π3/2

3
k2

B

√
nA

~vF
T (3.36)

where we note that the primary effect of the linear band structure has been to
introduce the Cgraphene ∝

√
nA dependence. Thus, in contrast to 2DEGs with a

parabolic band structure, the heat capacity of the graphene 2DEG can be varied by
changing the carrier density.

As a rule of thumb, a 2DEG with parabolic band structure (of any carrier density)
with m∗ ≈ 0.05me, area A ≈ 1µm2, and temperature T = 100 mK has a heat
capacity of Cparabolic ≈ 18 kB. By contrast a graphene flake of size A = 1µm2,
carrier density nA = 1012/cm2, and temperature T = 100mK has a heat capacity
of Cgraphene ≈ 4.6 kB, and scales with √nA. Thus, decreasing carrier density to
√

nA = 1011/cm2 will decrease the graphene heat capacity to ∼ 1.5kB. From
Walsh et al. [115], the heat capacity of a graphene flake is plotted in Fig. 3.5
with its corresponding energy resolution ∆E/h. In the latter, it is assumed that the
measurement bandwidth is limited by the thermal time constant τth. This is not a
fundamental bound, as derived in section 2.4.
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Figure 3.5: Projected Thermal Detector Specifications for a graphene 2DEG,
from Walsh et al. [115]. (left) Cth vs. Flake Temperature for a graphene 2DEG.
For temperatures below 100 mK, it should be possible to achieve heat capacities
below 10kB, where the Cth can be further reduced by shrinking the flake area A,
reducing the carrier density nA, or lowering the flake temperature T . (right) Energy
resolution vs. Flake Temperature for a graphene 2DEG. It is assumed that the
energy resolution of graphane 2DEG operated as a thermal detector is limited by a
measurement bandwidth set by the thermal roll-off τth.

3.3 Resistively- and Capacitively-Shunted Junction (RCSJ) Model
The key model for DC and RF response of a Josephson junction is the resistively-
and capacitively-shunted junction (RCSJ) model, in which the junction is in parallel
with a lumped-elemenet resistor and a lumped-element capacitor [110, 112]. The
resistive branch accounts for normal losses and the capacitive branch accounts for
the capacitive coupling between the superconducting leads. Accounting for the
Josephson equation for current and the standard voltage drops across a resistor and
capacitor, the equations of motion for this model are as follows:

C
dV
dt
+

V
R
+ Ic sin (ϕ) = I (3.37)

Due to the Josephson relation for voltage, V = φ0
dϕ
dt for φ0 = ~/2e, we can convert

the above equation into one solely in terms of derivatives of the phase ϕ and the bias
current I, where the former is the dynamical variable and the latter in the forcing
term
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d2ϕ

dτ2 +
1
Q

dϕ
dτ
+ sin (ϕ) = I/Ic (3.38)

where we have introduced the characteristic (plasma) frequencyωp =

√
2eIc
~C , quality

factor Q = ωpRC, and scaled time as τ = ωpt. These equations describe a particle
moving in a washboard-like potential

U(ϕ) = −EJ cos (ϕ) − φ0Iϕ (3.39)

In which the capacitance C controls the inertia (acceleration term) of ϕ, the resis-
tance R controls the damping, and applying a bias current I amounts to tilting the
washboard potential. For DC I ≤ Ic, there exist regions in which the phase may be
stationary, and thus the voltage is be zero. This corresponds to the superconducting
regime. For I > Ic, there exist no regions in which the phase can be stationary, so
velocity of the particle will always be non-zero. This is known as the free-running,
or normal, state, and it corresponds to the junction developing a non-zero voltage
drop.

For I slightly below Ic, the particle can be excited over the potential maximum, either
by thermal excitation or quantum mechanical tunneling. This excitation produces a
variance about the mean switching current, as in 3.7.

For SNS junctions, the capacitance is typically low (<pF) and the inertial term may
be disregarded. Thus, the equations of motion describe an overdamped particle in
a washboard potential, in which the velocity of the particle is solely determined by
the slope of the potential at a given instant.

dϕ
dt
=

2eIcR
~

( I
Ic
− sin (ϕ)

)
(3.40)

If a time-dependent bias current I(t) is applied, the Josephson voltage and current
relations conspires to produce an effective inductance. Implicit in this description
is the assumption that the current source has a much larger impedance than the
junction, which is typically the case for a 50 Ω measurement circuit and a 1Ω
graphene Josephson junction. Differentiating the Josephson current relation, we
find
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I(t) = Ic sin (ϕ(t)) (3.41)
dI
dt
= Ic cos (ϕ)dϕ

dt
(3.42)

We can scale this equation by φ0 to relate voltage to the time-derivative of the bias
current

V =
φ0

Ic cos (ϕ)
dI
dt

(3.43)

LJ =
φ0

Ic cos (ϕ) =
φ0

Ic
√

1 − (I/Ic)2
(3.44)

≈ φ0
Ic

(3.45)

where the final expression holds in the limit of I << Ic, implying that the junction
state is deep within a well of the RCSJ model and executes oscillations about the
well minimum [78]. Clearly, as the bias current increases, higher order nonlinear
terms will contribute to the Josephson inductance.

3.4 Cryogenic Graphene Thermal Detectors
In this section, we give a brief overview of some recent cryogenic graphene detectors
and important techniques used to perform temperature readout which often rely upon
the cryogenic or superconducting phenomena discussed earlier in this chapter.

Resistive Readout
The temperature-dependence of the resistance R(T) can be used to monitor the
temperature of a graphene flake, where the resistance can be measured in a four-wire
IV measurement [123]. However, since the resistance of graphene (as with many
solid-state systems) saturates at sub-Kelvin temperatures, this technique is typically
limited to liquid helium temperatures and above. Further, the four-wiremeasurement
requires sourcing a normal current through a normal resistance, which dissipates
P = I2R to the graphene flake. At sub-Kelvin temperatures, this typically heats
the electrons of the graphene far above the fridge temperature, making it unsuitable
for operating the graphene flake at the 100 mK-level required for calorimetry of
low-GHz photons.



52

Figure 3.6: Resistive Readout of Dual-Bilayer Gated Graphene Flake Temper-
ature at 5K, from Yan et al. [123]. a. A bilayer graphene sample is gated with
a global top gate and bottom gate. b. A heat map of the resistance is shown as
function of top gate and bottom gate. c. The temperature-dependent resistance R(T)
is shown down to 5K.

Noise Thermometry
A suitable technique for cryogenic measurement of the graphene electronic tem-
perature is Johnson noise thermometry, as demonstrated first by Fong and Schwab
[39] and Fong et al. [40] and subsequently by many others [36]. This technique is
described in greater detail in Chapter 7.3, both for normal metals and graphene at
cryogenic temperatures.

In Johnson noise thermometry[31], the Johnson noise fluctuations of a lumped-
element resistance are amplified and directly measured. Since the noise comes in
units of kBT , it is a form of primary thermometry in that it does not, in principle,
require a calibration to an additional temperature standard. For this reason, John-
son noise thermometry is often considered to be a ‘gold-standard’ technique for
performing thermometry, especially on cryogenic solid-state systems.

For graphene, Johnson noise thermometry typically requires an impedance match
between the (usually) high resistance of the graphene flake and a 50 Ohm mea-
surement circuit. For this reason. Fong and Schwab used a NbTiN tank resonator
circuit with resonant frequency 1.16 GHz and bandwidth of 80 MHz, to impedance
match a 30 kΩ region of a graphene flake to their 50 Ω measurement circuit, with a
TN = 4K cryo-HEMT as the front-end amplifier.

Unfortunately, due to system noise, the temperature range of their measurement was
limited to temperatures in excess of 2K, though this limit can be circumvented by
using a quantum noise-limited front-end amplifier, such as a Josephson parametric
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amplifier, a traveling-wave parametric amplifier, or a SQUID amplifier [29, 97].

Graphene Josephson Junction Switching Detectors
Due to the mechanism of Andreev reflection, we expect a temperature-dependence
of the supercurrent which flows through a graphene Josephson junction [69, 115,
34, 95, 114, 17, 124, 16, 59, 66, 70, 90, 33, 52, 55, 71, 37]. Since this temperature-
dependence often persists down to the level of 100 mK before saturating, it can be
used to measure temperature changes of the graphene flake down to the preferred
level for using a graphene flake as a thermal detector of sub-10 GHz microwave
photons.

A particularly straightforward way of measuring the supercurrent is by four-wire
I-V measurements, in which the bias current IB is ramped through the scale of the
critical current Ic and the resulting voltage drop is measured across the junction.
For IB < Ic, the junction will remain in its supercurrent state and there will be
no voltage drop. However, once the bias current exceeds a given threshold value
known as the switching current IS, the junction switches normal and a non-zero
voltage drop develops across the junction. Usually, the switching current is close to
the value of the critical current Ic, though various experimental considerations can
suppress it, such as the speed of the bias sweep. In the RCSJ model, increasing the
bias current corresponds to increasing the tilt of the washboard potential until the
particle transitions from the stationary (superconducting) state to the free-running
(normalconducting) state. Figure 3.7 shows an example of the temperature de-
pendence of the mean value of the switching current, where it is evident that this
technique maintains temperature sensitivity down to ∼200 mK.
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a

c d

b

Figure 3.7: Graphene Josephson Junction Switching Detector, from Lee et al.
[69] a. SEMimage of a graphene Josephson Junction. The grapheneflake is the long,
thin the center of the image surrounded by four contacts and a gate to control carrier
density. The contacts are composed of edge-contacted NbN superconductors, where
the contacts at the top and bottom of the image comprise the Josephson junction
leads, and the contacts at the left and right of the image comprise the heater leads. b.
IV curve of the graphene Josephson Junction. The zero-voltage supercurrent region
has a maximum value Is(T) of the switching current which demonstrates a clear
temperature dependence. There is a clear hysteresis in the IV curve between the
positive and negative bias due the positive-to-negative Ibias sweep direction, where
Joule heating of the flake in the normal regime suppresses the retrapping current
Ir relative to the switching current Is. c. Temperature dependence of the average
switching current. Clearly, the switching current exhibits a temperature dependence
down to 200 mK, which allows operation of the threshold detector down to these
temperatures. d. Switching probability of Is. Variance of the switching current σ2

IS
about the mean value 〈Is〉 can be explained in the RCSJ model either by thermal
excitation or macroscopic quantum tunnelling.
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The relevant uncertainty in this measurement typically appears as a variance about
〈Is〉 the mean value of the switching current. As stated previously, this can be
modeled as the escape of the particle over the barrier, either due to thermal excitation
or macroscopic quantum tunneling [115].

A bare Josephson junction integrated into a graphene flake can be operated as a
threshold detector, in the following sense. A particular bias current I can be chosen,
where I < Is. In the event of absorption of radiation, the flake temperature will
increase, the temperature-dependent switching current will be suppressed, and the
junction will switch normal when I > Is. This registers that the incoming radiation
was above a given threshold value.

As discussed in section 8, a linear detector in the small-signal regime will output a
signal proportional to its input signal. In this case, the noise equivalent power can
be straightforwardly defined as the noise spectral density measured at the output
referred to the input of the detector for a 1 Hz measurement bandwidth. In the
case of a threshold detector, however, the noise equivalent power is much less
straightforward to define or interpret. Lee et. al. calculated an NEP-like metric of
their threshold detector, which they define as

NEPLee = Pmin/
√

BW (3.46)

where Pmin is the minimum resolvable input power due to the measured standard
deviation of the switching current and BW is an estimated measurement bandwidth.

When applied to a linear detector, this metric is well-defined. Suppose there is a
steady-state signal P at a particular frequency in the presence of the noise spectral
density NEP (in units of W/

√
Hz). In this case, we can ask for the total integrated

noise signal, and subsequently, the signal-to-noise ratio.

Assuming the noise spectral density in each unit bandwidth is uncorrelated (true for
white noise), each channel of bandwidth provides an independent contribution to the
total integrated noise. Thus, the total integrated rms noise is σP =

√
NEP2 × BW =

NEP×
√

BW , where we have assumed that the NEP is constant over the bandwidth
of interest. Now, we can define the minimum resolvable power Pmin as that signal
power which will produce a signal-to-noise ratio of unity
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1 =
Pmin

σP
=

Pmin

NEP ×
√

BW
=⇒ Pmin = NEP ×

√
BW (3.47)

where we see that shrinking the measurement bandwidth BW reduces the number
of independent noise contributions and, correspondingly, decreases the minimum
resolvable power Pmin, i.e. makes the detectormore sensitive. As in lock-in detection
[72], we see it is advantageous to employ the narrowest integration bandwidth BW

possible in order to minimize the added noise. From this discussion, we see that this
figure-of-merit is well-defined in the case of a steady-state signal in the presence of
a noise spectral density.

However, in the case of a threshold detector, there exists neither a steady-state signal
nor a steady-state noise spectral density. Instead, each sweep of the bias current
produces onemeasurement of the switching current Is. Considering the RCSJmodel
at the bias point just below junction switching (in other words, for large tilt of the
washboard potential), the fundamental uncertainty of this measurement arises from
the stochastic escape of the phase particle over a potential barrier, either by thermal
activation or quantum tunneling. The stochasticity of this particle escape yields an
uncertainty in Is, which can be seen from the measured standard deviation σs about
the mean switching current 〈Is〉. This is a fundamental uncertainty, but it arises
from a different measurement technique than the steady-state signal in the presence
of a noise spectral density.

It would be more appropriate to simply use the measured Pmin (the uncertainty in
the switching current σs referred to the input of their power detector) as the figure-
of-merit for their threshold detector, in analogy to using timing jitter to quantify the
uncertainty of a superconducting nanowire single photon detector (SNSPD), another
type of threshold detector [86]. The timing jitter quantifies the timing uncertainty
between the arrival of a photon and the voltage pulse arising from the switching of
the detector from its superconducting to normalconducting states. Practically, it can
be defined as the FWHM of the Gaussian envelope of the delay time between the
photon arrival and measured voltage pulse.

As a brief aside, we also note that while Lee et. al. claim a measurement
bandwidth limited by the dissipation time of the input heater signal to the flake
(BW ≈ 790 MHz), this particular measurement technique will have a measurement
bandwidth limited by the repetition rate of the I-V sweep or the resetting time of the
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junction from the normal state to the superconducting state. Both of these rates are
substantially slower than the thermally-limitedmeasurement bandwidth and degrade
the sensitivity of their defined metric.

We direct the reader to chapter 8 to see how the noise-equivalent power can be
measured in a linear detector composed of a resonantly-coupled graphene Josephson
junction.

Resonant Readout of Graphene-based Josephson Junctions
In the interest of increasing the measurement bandwidth to the level in which it
is possible to resolve individual thermal events, we turn to understanding how a
graphene flake can be coupled to a superconducting resonator for the purpose of fast
monitoring of the graphene flake temperature. Ultimately, this readout mechanism
may allow for straightforward frequency-division multiplexing of many thermal
graphene detectors on a single microwave line.

Microwave Kinetic Inductance Detectors

The microwave kinetic inductance detector (MKID) has been a key enabling tech-
nology for precision astronomical detection and multiplexed readout [28, 127, 80,
42]. Here, we discuss the fundamental mechanism for device operation with the goal
of demonstrating how this detector inspired the temperature readout mechanism of
the device architecture presented later in this thesis.

Energy from an applied AC signal can be stored in the kinetic energy of Cooper
pairs. The reactive (non-dissipative) energy flow between electromagnetic field
and superconductor produces an effective surface inductance Ls, with length-scale
set by the penetration depth λ into the superconductor. At temperatures far below
the superconducting transition temperature T << Tc, the electrical impedance of
the film is dominated by this so-called ‘kinetic inductance’, rather than by resistive
quasiparticle losses.

When pair-breaking radiation (hν > 2∆) is absorbed by the superconductor, Cooper-
pairs are broken apart into quasiparticles. This results in a shift of the surface
inductance, with an estimate of the fractional change in the surface inductance given
by

δLs

Ls
=
δnqp

2N0∆
(3.48)
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for nqp the quasiparticle density, N0 the single spin density of states at the Fermi level,
and N0∆ the density of Cooper pairs. To exploit this property of superconducting
films for detection purposes, the superconductor can be patterned into a transmission
line resonator, so that shifts in the surface inductance resulting from the absorption
of pair-breaking radiation can be transduced into shifts of a resonant frequency that
can be monitored by microwave reflectometry.

A microwave resonator loading a feedline (measurement line) has the important
property that the electrical loading depends on the frequency of a microwave tone
propagating down the feedline [75], allowing for straightforward frequency-division
multiplexing. To illustrate, suppose an applied microwave signal has frequency
within the linewidth of the resonance. In this case, the resonator will electrically
load the line and scatter the signal. Since the phase and magnitude of the transmitted
signal will shift when the resonant frequency shifts, the scattered signal can be used
as a measure of the shift of the surface inductance, and therefore, as a measure of the
incoming pair-breaking radiation. If the microwave signal has frequency outside of
the linewidth of the resonance, the impedance of the resonator will be much larger
than that of the 50Ω line, and the signalwill pass bywithout scattering. Provided that
many microwave tones can be sent down the feedline simultaneously and provided
that each resonance is spaced into non-overlapping regions of frequency space,
an array of MKIDs to be individually and simultaneously addressed, with readout
occurring with a single wideband cryogenic amplifier.

This remarkable technology has drivenmuch progress in superconducting astronom-
ical instrumentation over the last two decades. For example, recent demonstrations of
microwave kinetic inductance detectors include 20 kilopixel frequency-multiplexed
arrays, noise equivalent powers of 1 × 10−19W/

√
Hz, and a variety of applications

including precise triangulation of phonon emission events from high-energy par-
ticle collision [84]. Buoyed by the success of this device architecture, especially
its capability to easily multiplex many devices on a single feedline, other detectors
have been designed to incorporate resonant readout. For example, thermal KIDs
(TKIDs) have been designed to serve as a drop-in replacements for TES bolometers,
obviating the need for costly and complex time-domain multiplexing SQUID chips
[116].

However, the need to break Cooper pairs places fundamental limits on the KID
photon energy resolution, with typical MKID operation in the near IR and up.
Pushing single-shot photon resolution below the IRwill require a fundamentally new
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detection mechanism. For this reason, other groups (including ours) have pushed
to combine the benefits of resonant readout as discussed here with temperature-
sensitive elements such as graphene flakes capable of pushing photon resolution to
the level of the low-GHz regime.
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a)

c) d)

b)

Figure 3.8: A Brief Introduction to MKIDs (borrowed with permission from
Day et al. [28]). a. Detection Principle of an MKID. Pair breaking radiation
(hν > 2∆) breaks Cooper pairs, alters the surface inductance of the superconducting
film, and shifts the resonant frequency of the resonantor. b. Resonant Frequency
Shift. Accompanying the absorption of radiation, the resonant frequency and quality
factor shift. This shift can be monitored by the scattering of a microwave tone at a
frequencywithin the linewidth of the resonance. Tones outside the linewidth will not
be scattered. c. Top-down Image of Superconducting Resonator. Example of a
CPW-style quarter-wavelength resonator patterned from superconducting aluminum
on a sapphire substrate. d. Absorption of an X-ray photon. Phase the transmitted
scattered signal upon absorption of an X-ray photon.
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Graphene Qubits

Figure 3.9: Resonantly-coupled Graphene Josephson Junction Qubits (from
Wang et al. [117] and Schmidt et al. [101]). (left) In their graphene JJ/microwave
circuit, [117] show resonance tuning over a range of 6-12 GHz and p-n-p Fabry-
Perot type oscillations with an effective Fabry-Perot cavity length of Lc = 110nm
(right) Schmidt et al. [101] show resonance tuning over a range of 6.8-8.2 GHz and
Fabry-Perot type oscillations in a cavity length of Lc = 390nm.

In recent years, there has been growing interest in using voltage biases to control
qubits in order to reduce the stray electromagnetic fields endemic in current-based
control of superconducting qubits. This style of ‘gatemon’ qubit typically involves
coupling a superconducting resonator to a Josephson junction integrated into a
semiconductor or Van-der-Waals heterostructure.

Toward the goal of developing voltage-tunable transmon qubits, Wang et. al. and
Schmidt et. al. have demonstrated superconducting resonator-VdW structures, with
Wang et. al. demonstrated coherent behavior in the strong-coupling regime. Their
resonantly-coupled graphene devices are exceedingly similar to the one presented
in this thesis, though they are primarily interested in using the voltage-tunable
supercurrent to realize control of their qubit.

As shown in Figure 3.9, both groups observe Fabry-Perot-type oscillations resulting
from the propagation of ballistic carriers in a p-n-p junction, with Wang estimating
an Lc ≈ 110 nm cavity length (excluding the doping length about the contacts) and
Schmidt demonstrating a cavity length of Lc ≈ 390 nm. As expected, the substantial
tunablity of the Josephson current yields tuning of the resonant frequency, withWang
demonstrating tuning over a range of 6 to 12 GHz and Schmidt demonstrating tuning
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from 6.8 to 8.2 GHz.

From standard qubit measurements of energy relaxation and dephasing, Wang
demonstrated an energy relaxation coherence time T1 ≈ 36ns and a dephasing
time T∗2 ≈ 55ns. It is suggested that a limiting source of these coherence time is
the capacitive coupling between the shunt capacitance and backgate, which can be
alleviated by a redesign of the geometric capacitance in future generations of these
devices.

Resonantly-Coupled Graphene Josephson Junction Thermal Detector

Figure 3.10: Bolometer Operating at the Threshold of QCD, from Kokkoniemi
et al. [63]. a. Examples of resonance position at different backgate voltages and
applied powers. b. Differential thermal conductance G and measured NEP as a
function of bath temperature Tb. c. Time trace showing device response for quick
turn-on and turn-off of applied power. Exponential fits determine rising and falling
time constants.

Kokkoniemi et al. [63] demonstrated a resonantly-coupled graphene Josephson junc-
tion which performed temperature readout of the graphene flake. Their thermal ab-
sorber consisted of graphene-on-SiO2 where the inductance of the graphene Joseph-
son junction was integrated with lumped-element capacitors to form a resonant cir-
cuit. In this setup, heating and readout were performed on the same microwave line,
which required estimation of absorbed heat power to the flake from estimates of the
signal attenuation and measurements of the transmitted signal. It would be useful
in future iterations of this experiment to perform heating via a 4-wire measurement
where the applied heat power can be precisely measured. In this thesis, we present
an example of such a device architecture with this capability.

Their SiO2-stamped graphene flake demonstrated excellent thermal properties, such
as measured noise equivalent power down to the level of 10 zW/

√
Hz and very small



63

Gth at the level of 1 fW/K. Due to this small thermal coupling to the environment,
the device demonstrated a minimum resolvable thermal time constant of τ = 200
ns, which implies the ability to resolve 30 GHz photons.

Excitingly, this result demonstrates the viability of using a resonantly-coupled
graphene flake as a low-Cth thermal detector for microwave photons. It remains
to be seen which properties of such a VdW material stack will increase the yield
of such detectors, and astronomical detection efforts will focus on whether this de-
sign can be implemented via top-down lithography and associated nanofabrication
techniques in order to scale up to production of detector arrays.

3.5 Applications of Ultrasensitive Calorimetry: Measurement of the Lan-
dauer Limit

An interesting application of a cryogenic calorimeter operating at single-kBT energy
resolution is the direct measurement of the Landauer limit, the heat dissipation as-
sociated with the erasure of a classical bit. We give a brief pedagogical introduction
to Landauer erasure and briefly review the associated theoretical and experimental
literature.

In 1961, Rolf Landauer [68] postulated that the erasure of a classical bit should be
accompanied by a fundamental minimum heat dissipation to the local environment.
This postulate emerged from considerations of two different types of entropy. The
first type, Shannon entropy [105], is an information-theoretic metric defined for a
logic element with states i occupied with probability pi. It is defined as

〈S〉 = −kB

∑
i

pi log (pi) (3.49)

If a classical bit (two-state logic element) can be in either state with equal probability,
then the corresponding Shannon entropy of the classical bit is

〈S〉 = kB log (2) (3.50)

When the bit undergoes an irreverible erasure, it is forced into only one of the two
possible states, so its Shannon entropy vanishes, i.e. 〈S〉 = 0. Thus, the erasure of a
classical bit is accompanied by the reduction of Shannon entropy ∆S = −kB log (2),



64

where the sign refers to the fact that the erasure procedure reduces the Shannon
entropy of the bit.

The second type of entropy considered by Landauer was thermodynamic entropy
Sthermo, a fundamental state variable of thermodynamic systems that characterizes
the number of accessible states [61]. Landauer suggested that there exists a real,
measurable correspondence between these two types of entropy that preserves the
second law of thermodynamics. Namely, the irreversible erasure of a classical bit,
which reduces the Shannon entropy of the system by ∆S = −kB log (2), must be
accompanied by a minimum increase in thermodynamic entropy by a corresponding
amount∆Sthermo = kB log (2). This increase in thermodynamic entropy is equivalent
to the heat dissipation

∆Q = kBT log (2) (3.51)

In this way, the reduction of Shannon entropy of the bit is compensated by an
increased thermodynamic entropy to the local environment, and, thus, the second
law of thermodynamics is not violated. We note that since, at any given moment, a
single classical bit can occupy only one of its two states, an experimentalist would
need to perform the erasure proceduremany times or on several identically-initialized
classical bits in order to measure the average quantity ∆Q = kBT log (2).

This result was celebrated as a resolution to the paradox of the Maxwell’s demon,
which supposes that an intelligent demon can rectify fluctuations of a thermody-
namic system in such a way that it can perform thermodynamic work without an
accompanying dissipation of thermodynamic heat. Several thought experiments
utilizing such a demon have been presented, including Szilard’s Engine [107] and
Brillouin’s torch [21]. The novelty of Landauer’s postulate was in identifying the
ultimate source of the dissipation in the erasure of the logic elements used by the
demon to store information required to perform the rectification [10].

Experimentally, there has been growing interest in demonstratingMaxwell’s demons
[54, 12, 51, 91, 73, 62], or even using generalized Maxwell’s demons to perform
useful work [18, 19, 121, 20]. We shall detail one type of experiment here, though
there are many others utilizing a variety of physical systems.

Bérut et al. [13] used a a laser trap to create a bistable well potential which traps
a glass bead in an aqueous solution, shown in Fig. 3.11(left). The laser trap was
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deformed in real time to realize an irreversible erasure protocol in which the bead
was initialized in either well with equal probability and then forced into one of the
two wells. Subsequently, a heat dissipation was associated with with this erasure
protocol. Using a camera with a high-frame rate, the position of the bead was
tracked and the velocity was determined at each time point. Assuming a particular
dissipation function which depends on the velocity and integrating over the entire
trajectory of the bead, a total dissipation was calculated and found to be consistent
with the bound set by the Landauer limit.

This is a well-defined experiment with a clearly-defined erasure protocol and as-
sociated dissipation. However, its reliance upon an estimated loss function and
its indirect estimation of the thermodynamic properties of the system based upon
measurements of the dynamics of the system leaves room for a direct measurement
of the thermodynamic itself. Roukes conceived of such an experiment, in which
a logical element is integrated directly into a suspended cryogenic calorimeter, as
shown in Fig. 3.11 (center) . This system should allow both an erasure protocol
with high precision in a cryogenic logic element and the direct coupling of the logic
element to a heat measurement device for direct measurement of the dissipated heat.

The erasure capability of this experiment was demonstrated by Saira et al. [99],
using superconducting flux logic as realized with a flux qubit. The flux qubit, a
parallel combination of back-to-back Josephson junctions (see Fig. 3.11c), realizes
an underdamped bistable well potential where the dynamical variables are linear
combinations of the superconducting junction phases. Independent control of the
barrier height and tilt is achieved via external magnetic flux lines with DC and
fast-pulse fluxes. The qubit is operated in a regime where the bistable well can
be a continuously deformed from two isolated wells to a single global minimum,
allowing for fast and precise implementation of the erasure protocol.

To determine the origin of environmental fluctuations (in particular, if they are
of thermal origin), a time-domain pulse sequence is implemented in which the
escape of the system from one well to the other is monitored with a DC SQUID
magnetometer. Results shown in Fig. 3.11d indicate that the activation rate smoothly
interpolates from being dominated by thermal fluctuations to being dominated by
macrosopic quantum tunneling (MQT) with crossover occurring at Tmxc ≈ 100 mK.
Subsequent experiments are performed at Tmxc ≈ 500 mK in order for the system to
be well within the thermal fluctuation-dominated regime.

When implementing a control protocol to perform a Landauer erasure, the micro-
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Figure 3.11: Modern Landauer Erasure Experiments a. Bistable potential re-
alized by the laser trap, from Bérut et al. [13]. The erasure protocol allows the
silica bead to start initially in either the left or the right well, but ensures that at
the end of the procedure, the bead will only be on the right well. b. Schematic of
a calorimetric measurement of the heat dissipation of a logical element. Here, the
logic element takes the form of a nanoelectomechanical system (NEMS), though
any controllable logic element will suffice. The logical element is integrated into
a suspended low-Cth island, where local thermometry is performed to monitor the
island’s temperature. If ∆Q = kBT log (2) is dissipated locally in a control protocol
upon the logic element, the suspended structure will have sufficient energy resolu-
tion and measurement bandwidth to resolve the associated temperature increase.c
Impedance diagram of flux qubit, from Saira et al. [99] (along with d,e). Back-
to-back Josephson junctions are shown, along with flux bias lines for controlling
barrier height and tilt. dActivation rate vs. stage temperature shows crossover from
thermal activation to macroscopic quantum tunneling (MQT) at Tmxc ≈ 100 mK.
(e) Probability ratios of trajectory-level work W for forward and reverse processes
follows Crook’s relation [27], as realized by a superconducting flux logic platform.

scopic work W integrated over the entire trajectory is determined from a summation
of the potential differences as the system transitions from one potential well to the
other. The erasure protocol can also be reversed by time-reversing both control
channels. As seen in Fig. 3.11e, statistics of the microscopic work were found to be
in agreement with the Crook’s relation for work in microscopic systems [27], where
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the ratio of the probability of the system absorbing work W during the forward and
reversed protocols is given by the relation

P f wd(W)
Prev(W)

= eW/kBT (3.52)

Thus, it is apparent that the Landauer erasure protocol can be implemented, and
the associated dynamics can be measured, using superconducting flux logic. The
remainder of this thesis will discuss progress toward the complementary capability
of pushing the limits of calorimetry toward the level of single-kBT resolution.

We note that the postulated Landauer limit and Maxwell demon thought experi-
ments are not without their criticisms [88, 87]. Critiques are leveled at selective
inclusion and exclusion of thermal fluctuations at various stages of the demon pro-
tocol; at the notion of a reversible control procedure which, though valid in standard
thermodynamic protocols, is argued not to hold at the molecular scales where the
Maxwell’s demon is relevant; and at the notion of a high-fidelity dissipationless con-
trol protocol, with some authors claiming that any physical procedure that reduces
fluctuations with high probability comes at the cost of additional sources of dissi-
pation that will ultimately defeat the Maxwell’s demon. For theorists, a centralized
response treating these critiques would be useful [11]. For experimentalists, the
direct measurement of ∆Q = kBT log (2) accompanying the erasure of a classical
bit would serve as gold-standard evidence for this postulate.

3.6 Conclusion
In this chapter we have

• First, we have discussed models for much of the superconducting phenomena
which will be exploited in the rest of this thesis, including Andreev reflection-
mediated supercurrent in S-N-S junctions and the RCSJ model of a Josephson
junction.

• Second, we discussed how the heat capacities of cryogenic solid-state system
can be substantially diminished relative to their classical counterparts, and
we discussed advantages of using graphene’s linear band structure toward this
end.

• Third, we reviewed of some of the recent relevant graphene and related super-
conducting detectors in development.
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• Finally, we review Landauer erasure pedagogy and recent experiments, in-
cluding an implementation in superconducting flux logic.

With this background, reader should now be equipped to delve into the details of
our cryogenic graphene-based thermal detector.



69

C h a p t e r 4

MEASUREMENT SETUP

In this chapter, our goal is to describe the cryogenic and RF instrumentation with
which we perform the measurements discussed in the subsequent chapters. We will
perform the following:

• We will discuss the operation of a dilution refrigerator from first principles,
including a rule-of-thumb expression for the cooling power of a standard
fridge.

• We will discuss our cryogenic setup, which is primarily composed of a Blue-
Fors LD400 dilution refrigerator.

• We will discuss the measurement setup used for microwave reflectometry and
heating measurements of the graphene/resonator sample.

• We will discuss key RF components of the measurement setup, including the
amplifier chain, sample boxes, and filtering.

When reading the subsequent chapters, the reader is encouraged to refer back to this
chapter to review the measurement setup.

4.1 Principles of Dilution Refrigeration
The key physical concept behind a dilution refrigerator is that a particle in a particular
state of matter has an associated energy. It follows that when the particle transitions
from one state of matter to another, it must gain (or emit) the energy difference ∆E

between being in the initial and final states. Often, we are interested in the case
when there is an energy barrier, i.e. ∆E > 0, and we ask for the transition rate
between the initial and final states since this rate will set the cooling power of our
refrigerator.

Classically, the energy to overcome the barrier typically comes from the thermal
bath, and often we need only consider the relative sizes of ∆E and the thermal
energy scale kBT to determine the likelihood of transition. As we will see, this
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likelihood scales as the Boltzmann factor e−
∆E
kBT , which means that the transition

rate is exponentially suppressed as T → 0 K.

However, for a quantum states of matter, important additional principles must be
considered, such as Pauli repulsion, superfluidity, and zero-point motion. We will
see that these additional phenomena alter the energy budget such that transitions
from one quantum state to another can occur even at T = 0 K. This is the surprising
result that underlies the design of a dilution refrigerator.

In the following, we first consider the case which is essentially classical and then
consider the case which is essentially quantum.

Evaporative Cooling in the (Essentially) Classical Limit
In this section, we discuss how a vat of Helium-4 can be used to achieve evaporative
cooling. We follow the treatment in Pobell [92].

Helium-4 has the remarkable property that its zero-point motion is so large that it
does not condense into a solid at ambient pressure, even at T = 0 K. Thus, even
down to T = 0 K, a vat of helium-4 will have two coexisting phases— liquid and
gas— and helium-4 atoms will go from one phase to the other. The pressure in the
gas phase when the liquid and gas phases are in equilibrium is called the vapour
pressure denoted Pvap. We also assume that the vat is in good thermal contact with
the helium-4, so that thermal energy can be exchanged and there exists a common
temperature T .

If we apply a pump to the gas phase to remove helium-4 atoms at some rate, this
will cause a continuous rate of liquid helium-4 atoms to cross the phase boundary
into the gas phase to replenish the vapour. Then, we should expect cooling power
associated with this net evaporation since each particle going from the liquid to the
gas phase takes up some energy from the environment

Q = ÛnL (4.1)

where Q is the cooling power, Ûn is the rate of particles crossing the phase boundary
and L is the energy-per-particle required to do so. Assuming the pump displaces a
constant volume of the gas at a rate ÛV , we can write the cooling power as

Q =
ÛV L
RT

P(T) ∝ P(T) (4.2)
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Figure 4.1: Helium-4 Liquid-Gas Phase Coexistence. A vat of helium-4 held at
temperature T will have coexisting liquid and gas phases. The gas phase has an
equilibrium vapour pressure Pvap and entropy Sgas and the liquid has entropy Sliquid .
A He-4 atom can transition from the liquid to the gas phase upon absorption of
latent heat L = T(Sgas − Sliquid).

We now seek the temperature dependence of the vapour pressure, P(T). We will see
that P(T) is strongly dependent on T , so it will primarily determine the temperature
dependence of Q.

In thermodynamics, it can be tricky to remember which quantities change and which
are constant during a given process, so we review the assumptions for a first-order
phase change.

For a closed system during a first-order phase change:

• Vapour pressure Pvap and temperature T do not change across the phase
change, i.e. a phase change occurs at a exists a well-defined point in P − T

space. However, the vapour pressure Pvap does change with T , and it will
trace out a line called in the coexistence curve situated at the boundary of the
liquid and gases phases. It follows that we can define the derivative dP

dT as the
tangent to this curve (where we have dropped the vap label).
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• Entropy S and volumeV do change across the phase change. For the liquid-gas
case, we can define ∆S = Sgas − Sliquid > 0 and ∆V = Vgas − Vliquid > 0.

• For a phase change, there will be a per-particle enthalpy L = T∆S > 0 (in
units of Joules) which a particle will take up as it transitions from the liquid
to the gas phase. We call L the latent heat of vaporization and note that it is
weakly dependent on temperature, so we assume it to be constant.

From the Clausius-Clapeyron relation (or deriving from Maxwell’s relations), we
have the relation

dP
dT
=
∆S
∆V
=

Sgas − Sliquid

Vgas − Vliquid
(4.3)

which says that the slope of P relative to T at a given point on the P −T coexistence
curve can be determined by the per-particle (or per-mole) entropy difference relative
to the volume difference across the phase change.

We can make the approximation that the molar volume of the gas is much greater
than the molar volume of the liquid, soVgas−Vliquid ≈ Vgas ≈ RT

P . Using the relation
between the entropy difference ∆S and the latent heat of vaporization L, we then
obtain

dP
dT
=

LP(T)
RT2 (4.4)

=⇒ P(T) ∝ e−L/RT (4.5)

which tells us that the pressure is exponentially suppressed as T → 0. It follows
that the cooling power has temperature dependence

Q ∝ e−L/RT (4.6)

where the suppression of the cooling power arises from the fact that the rate of par-
ticles crossing the liquid-gas boundary is exponentially suppressed with L

kBT . This
is in agreement with our earlier discussion that the transition probability from the
liquid to the gase phase should go as the Boltzmann factor e−

L
kBT . This exponential
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suppression has the consequence that the practical minimum temperature—that is,
the temperature at which the heat load of the system equals the cooling power—is
Tmin ≈ 1.3 K for helium-4. Thus, a different refrigerator design must be employed
to access the milli-Kelvin temperature regime.

To review, although helium-4 is a liquid down to T = 0 K, evaporative cooling is
exponentially suppressed at low temperatures due to the finite energy L required to
promote a helium-4 atom from the liquid to the gas phase.

He-3 Rich
Phase

Pump
He-3
Out

Pump
He-3
In

He-3/He-4
Phase

ΔH

Figure 4.2: Dilution Cooling in Mixing Chamber. Schematic shows the flow of
helium-3 in themixing chamber of a dilution refrigerator, where the blue circles refer
to He-3 atoms and the gray region refers to the inert superfluid He-4 background.
He-3 is pumped into the chamber to the low-density He-3 rich phase. As each He-3
atom crosses into the He-3/He-4 phase, it takes up a heat ∆H from its surroundings,
producing a cooling power. He-3 is then pumped out of the mixing chamber to
be re-circulated and pumped back into the mixing chamber. Dilution cooling can
achieve temperatures below Tmxc = 10 mK due to the finite (6.6%) concentration of
He-3 in the He-3/He-4 phase.

Dilution Cooling in the Quantum Limit
In evaporative cooling, the heat of vaporization L is the relevant energy associated
with a particle in the liquid phase crossing into the gas phase. By contrast, when



74

a single particle goes from from one mixture to another, the relevant energy is the
enthalpy of mixing

∆H =
∫ T

0
∆CdT (4.7)

where ∆C is the difference in heat capacities between the two mixtures. We can
achieve cooling of the environment when ∆H > 0, which will occur when ∆C >

0. The intuition for this is that the heat capacity C characterizes the number
of degrees-of-freedom of the particle in a given mixture, where each degree-of-
freedom possesses a thermal energy set by temperature T . When the particle goes
into another mixture with larger C, it gains additional degrees-of-freedom, each of
which will take up thermal energy from the environment. Because of this property,
maintaining a continuous flow of particles across the boundary, e.g. by pumping,
produces a continuous cooling power.

To illustrate the procedure of dilution cooling, we will first discuss key properties
of He-3 and He-4, then discuss why a finite amount of He-3 dissolves in superfluid
He-4 even down at T = 0 K, and finish with an expression for the cooling power of
this process.

Sub-Kelvin Properties of Helium-3 and Helium-4
The two isotopes of helium we will concern ourselves with are He-4 and He-3.

He-4 is a boson and becomes a superfluid at 2.177 K. Below 500mK, He-4 is almost
entirely condensed into its quantum mechanical ground state, free of excitations
such as rotons and phonons. In other words, it behaves primarily as a so-called inert
superfluid background, which contributes to, say, the system volume but does not
contribute to the heat capacity of the system.
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Figure 4.3: Phase Diagram of Helium-3/Helium-4 Mixture, from [92]. Phase
diagram is shown as a function of temperature (y-axis) and He-3 mole fraction
(x-axis). Below T = 870 mK, the hatched "two-phase region" is not physically
accessible and the mixture has two distinct accessible phases along the phase-
separation line, with different He-3 mole fractions x. One phase is He-3 rich
(x > 70%) and approaches x = 100% as T → 0 K. The other (x < 70%) is a
dilute mixture of He-3 in superfluid He-4 and approaches x = 6.6% as T → 0 K.
This finite concentration of helium-3 is the source of the cooling power of a dilution
refrigerator. Diagram taken from [92].
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By contrast, He-3 is a fermion, and we will see shortly why this is relevant. First,
though, we askwhat happens ifwe add a concentration x ofHe-3 to the superfluidHe-
4 and lower the surrounding temperature T . As shown in Fig. 4.3, for T < 870 mK
the mixture of He-3 and He-4 splits into two phases, one which is rich in He-3
and one which contains a dilute concentration of He-3 in superfluid He-4. As T

approaches 0 K, the He-3 rich phase approaches a concentration of 100% He-3.
However, the dilute concentration of He-3 in He-4 approaches a finite concentration
of 6.6% even at T = 0K, which is the surprising result we will answer in the next
section.

There are two key properties to note about He-3. First, since He-3 has a smaller
per-atom mass than He-4 but roughly the same electronic properties, it will have a
lower density than the He-4. For this reason, the He-3 rich phase will sit on top of
the He-3/He-4 phase in the mixing chamber. Second, due to its fermionic properties,
He-3 in superfluid He-4 can be modeled as a dilute non-interacting gas—similar to
electrons in a metal—with the interactions between He-3 and the He-4 superfluid
background taken into account via the substitution of the He-3 mass m with the
effective mass m∗ ≈ 2.5m.

Finite Concentration of He-3 in He-4
To understand why there is a a finite concentration of He-3 in superfluid He-4 down
to T = 0 K, we compare the energy of a single He-3 atom in the He-3 rich phase to
the energy of a single He-3 atom in superfluid He-4. The former is simply given by
the per-atom latent heat of vaporization L, where

µ = −L (4.8)

says that L is the binding energy that must be added to take a single He-3 atom from
the He-3 rich phase to infinity.

On the other hand, if we place a single He-3 atom in superfluid He-4, it will bemore
strongly bound than in the He-3 rich phase. This is because the Van-der-Waals forces
between He-3 and He-4 are identical due to their identical electronic structure, but
the He-4 has a lower zero-point motion due to it’s higher mass, i.e. it is more dense.
Because of this, a single He-3 will be closer to the liquid He-4 atoms than to liquid
He-3 atoms, so it will experience larger VdWs forces and a larger binding energy
−ε in superfluid He-4 than in the He-3 rich phase. We write this as
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−ε < −L (4.9)

Finally, if we add more He-3 atoms to superfluid He-4, they add as a non-interacting
Fermi gas. In other words, due to Pauli repulsion, they will populate a Fermi sphere
until the energy to add an additional He-3 atom to the He-3/He-4 phase is equal to
the latent heat L of the He-3 rich phase

−ε + kBTF(x = 6.6%) = −L (4.10)

where the Fermi temperature is kBTF =
~

2m∗

(
3π2xN0

V

)2/3
for N0 the total number of

helium atoms, V the volume of the solution, m∗ the effective mass of He-3 in He-4,
and x the mole fraction of He-3. As denoted in the equation, this equality holds
when the concentration of He-3 in He-4 is x ≈ 6.6%.

Projected Cooling Power of a Dilution Refrigerator
To calculate the cooling power of the mixing, we use the equation

Q = Ûn3∆H (4.11)

which says that the cooling power Q is proportional to the rate Ûn3 of He-3 going
from the He-3 rich phase to the He-4 superfluid phase and each He-3 atom takes up
an enthalpy ∆H as it crosses the phase boundary. Since the concentration of He-3
in superfluid He-4 is finite down to T = 0 K, it follows that Ûn3 will also be finite.

Omitting a detailed calculation of the heat capacities of the two phases, we appeal
to the fact that the heat capacity of the He-3 in both the He-3 rich and superfluid
He-4 phase scales as

C ∝ T
TF

(4.12)

where, as discussed previously, the superfluid He-4 is in its quantum ground state
below 500 mK and thus its heat capacity is dominated by that of the dilute gas of
He-3. This implies that
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∆H =
∫ T

0
∆CdT ∝ T2 (4.13)

where as discussed previously ∆C > 0, i.e. the heat capacity of He-3 in superfluid
He-4 is larger than the heat capacity of the He-3 rich phase. Had we gone through
the details of the calculation, we would have found, for Ûn3 in units of moles per
second crossing the phase boundary,

Q = 84 Ûn3T2 [W] (4.14)

which approximately corresponds to Q = 1 µW for Ûn3 = 100µmol/s at T = 10 mK.

4.2 BlueFors LD-400 Dilution Refrigerator
In late 2015, our group purchased and installed a BlueFors LD-400 dilution re-
frigerator. In this fridge, cooling takes place in a vacuum-sealed cryostat (see Fig
4.4 and 4.5e) with multiple radiation shields and thermally-conductive stages, the
most important of which is the mixing chamber stage achieving measured tempera-
tures as low as 6.8 mK and a measured cooling power of Pcool = 18µW at 20 mK
(nmol = 1.08 mmol/s) and Pcool = 530µW at 100 mK (nmol = 1.140 mmol/s). We
note that the dependence of cooling power agrees with a T2 dependence to within
6%. A Cryomech pulse tube performs initial cooling of the system to ∼4K, at
which point the condensing and dilution procedure can begin. The dilution cycle
is achieved using turbo and scroll pumps, high pressure lines, and compressors to
force evaporated He-3 back into the dilution cycle (see Fig. 4.5a,b). Stage tem-
perature is measured by resistive RuOx thermometers. A separate control unit (see
Fig. 4.5d) toggles valves and pumps, sets and monitors stage temperature, initiates
cooldowns, and monitors fridge operation. A gas handling cabinet on wheels (see
Fig. 4.5a) contains all pumps and pneumatic valves and can be placed in another
room to reduce vibrations at the cryostat. An cooling water system (see Fig. 4.5c)
allows a closed-circuit loop to cool the pumps while allowing heat transfer to occur
to building water.
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Figure 4.4: LD400DilutionRefrigerator Insert, borrowedwith permission from
BlueForsOy. Image showing the cryogenic plates of an LD400 dilution refrigerator.
Descending plates achieve lower temperatures with the lowest mixing chamber plate
achieving the minimum temperatures of the dilution refrigerator. At the top of the
image is shown the coldhead of the pulse-tube used for pre-cooling the system
without liquid He-4.
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a) b)

c) d)

e)

Figure 4.5: S21. a. Gas Handling System. b. High-Pressure Lines and Compressor
c. Water Chiller d. Control Unit e. Cryostat
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4.3 S21 Measurement Circuit
Thermal characterization of the gJJ/resonator device require two sets of measure-
ments. The first is microwave reflectometry to monitor the resonance feature pro-
duced by the gJJ-loaded microwave resonator. The second is the application and
measurement of Joule heat power to the graphene flake in order to determine thermal
properties of the flake which set fundamental limits on detector performance. We
discuss both and refer to the full circuit diagram 4.3. Other useful resources for
cryogenic RF measurement include [65].

Microwave Reflectometry
A standard S21 transmission measurement is performed in which a swept microwave
tone is sent out of Port 1 of a PicoVNA 2 vector network analyzer (VNA) and down
through attenuators and stages of the dilution refrigerator. The impedance of the
resonator/gJJ device loads the line and scatters the incoming microwave tone. The
transmitted portion of the microwave signal is amplified by a first-stage Tn = 4K
CIT LF2 low noise amplifier, and then by three room temperature amplifiers, where
it is detected by Port 2 of the VNA. The measured signal is

S21( f ) =
V2( f )
V1( f )

�����
Z0 on port 2

=

���V2( f )
V1( f )

���ei∆φ (4.15)

where V1 is the complex voltage sent out of Port 1, V2 is the complex voltage at Port
2 (which is terminated in a Z0 impedance), and S21 is their complex ratio which
contains the relative magnitude and the phase difference between the two waves.

To improve DC isolation between the device and the VNA, we include inner/outer
DC blocks on the ports of the VNA. To vary readout power incident upon to the
device, we vary the room temperature attenuation between −50 dB and −80 dB.
The attenuation at the fridge stages ensures the 300 K noise at room temperature
is attenuated below the noise floor of the mixing chamber. In the diagram 4.3,
the attenuators and amplifiers are positioned immediately under the fridge stage to
which they are thermally anchored.

Heat Application and Measurement
Heater measurements are performed by applying a DC heater current Iheater to the
heater port of the graphene flake and reading out the corresponding voltage drop in a
4-wire measurement. To source Iheater , an Agilent 33210A AWG outputs a DC volt-
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age for the DC heating measurements and an AC voltage for noise equivalent power
measurements. Since the ballast resistor Rballast = 1MΩ is 3 orders-of-magnitude
larger than the heater port resistance Rheater ≈ 1 kΩ, the series combination of the
AWG and Rballast can be well-approximated as a current source Iheater . The Iheater

current travels down phosphor-bronze (PhBr) twisted-pair lines to the heater port
where it Joule heats the graphene flake. Outside of the fridge, the shield on the
twisted pair lines is held at fridge ground. The return line of the twisted pair is
grounded through a 100Ω resistor to a breakout box (not shown) which is also held
at fridge ground. The return line terminates at the negative terminal of the AWG.
We note that the possible ground loop introduced by the grounding of the twisted
pair return line through the 100Ω resistor does not have an appreciable effect on the
measurement.
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Figure 4.6: S21 Circuit Diagram. The circuit diagram shows both the S21 readout
of the resonance feature and the application and readout of Pheater . In the S21 mea-
surement, a signal is sourced from the PicoVNA2 vector network analyzer (VNA)
and passes through a series of attenuators down to the resonator/graphene device
held at Tmxc. The transmitted portion of the signal is amplified by an amplification
chain with a first-stage 4K LNA and read out by the VNA. Application of Pheater
proceeds by sourcing a current I generated by a voltage sourced by the Agilent
33221A AWG and dropped over a 1MΩ ballast resistor. After passing through a
two stages of filters, the sourced current flows through the normal resistance Rheater
of the heater port of the graphene sample and dissipates Joule heat power in the
flake. The voltage drop V across graphene heater is amplified by a SR560 preamp
and read out by a 32201A digital multimeter (DMM). In this way, the Pheater = I×V
delivered to the graphene flake is measured in a 4-wire measurement.
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4.4 Amplifier Chain
Front-end amplifiers typically determine the accessible experimental parameter
space of a low-noise cryogenic measurement. For the microwave reflectometry
portion of our measurement, our front-end amplifier is a SiGe CIT LF2 low noise
amplifier from SandyWeinrab. For an applied bias voltage of 2.5 V, the gain is ≈ 30
dB, optimum frequency range is 10 MHz – 2 GHz, noise temperature is Tn ≈ 4, gain
compression is -14 dBm. While this represents a standard low noise amplifier in
the present day, novel state-of-the-art amplifiers show improved specifications, such
as the traveling-wave parametric amplifiers of Josephson-type (JJ-TWPA) [76] and
of kinetic inductance-type (KI-TWPA) [38]. These amplifiers, especially the latter,
suggest a means of achieving quantum-limited (Tn ≈ 50 mK/GHz), large-gain am-
plification over large bandwidths. While much work has been focused on amplifiers
in the frequency ranges of 1-4 GHz, 4-8 GHz and 8-12 GHz for quantum information
applications, recent work has shownKI-TWPAs operating up to 30 GHz [106]. With
a fundamental limit on frequency operation set by the ∼1.4 THz superconducting
gap frequency of NbTiN, the coming years are expected to see amplifier designs at
even higher frequencies for applications in astronomy and high-frequency quantum
information.

As shown in Fig. 4.7, we additionally have three room-temperature amplifiers
following the first stage amplifier for amplifying the S21 resonance signal. In order,
the amplifiers are a +15 dB Narda-MITEQ AFS1 00100100 15-10P-4, a +20 dB
Mini-Circuits ZX60-83LN12+, and a +44 dB Narda-MITEQ AU-1578. For a -
100dB tone sent through these three amplifiers, we see the output signal (Fig 4.8)
is amplified by +80 dB in the frequency range of 500 MHz – 1 GHz. This is in
agreement with the specifications for each of these three amplifiers.
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a) b)

c) d)

f)e)

Figure 4.7: S21. a. DL 1201 LowNoise Voltage Preamp, used for amplifying output
of heater port. b. Model SR844 RF Lock-In Amplifier. c. Breakout box used for
sending signals on twisted-pair lines. d. +44 dB Narda-MITEQ AU-1578 Room
Temperature Amplifier e. +15 dB Narda-MITEQ AFS1 and +20 dB Mini-Circuits
ZX60-83LN12+ Room Temperature Amplifiers. f. PicoVNA 106, 300 kHz– 6 GHz
Vector Network Analyzer.
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,

Figure 4.8: S21 Room Temperature Amplifier Cascaded Gain Profile. For an
input -100 dBm signal, the gain (S21 mag) of the thee room temperature amplifiers
is approximately 80 dB over 500 MHz- 1 GHz.

4.5 Sample Box
The sample box (designed by Olli Saira) fulfills three purposes. First, it holds the
samples and maintains a low-resistance thermal link with the mixing chamber stage.
Second, it includes magnetic shielding to reduce parasitic couplings between the
sample and environment. Third, it routes and filters DC and RF electrical signals to
the samples.

To achieve the the first of these functions, the sample box has 24 DC lines (connected
via PhBr twisted pair lines to room temperature electronics) and 6 RF lines (con-
nected via RF BeCu coaxial cables to room temperature electronics). The sample is
adhered to the sample box using epoxy or other thermally conductive adhesive and
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Figure 4.9: Sample Holder. Here we have a view of the inside of the sample
holder, with two chips adhered to the holder with wirebonds to the lines responsible
for carrying DC or RF signals to the sample. At the bottom, 16 quasi-DC filtered
twisted pair lines are available to wirebond to the samples. From the sides and
top, 6 RF lines are available for wirebonding, here shown as coplanar waveguides
with the central conductor clearly separated from the aluminum ground plane and 6
connectors visible.

wirebonded to any of the lines. As shown in Fig 4.10a, the sample box is made of
low-thermal resistance metal and attached to the mixing chamber stage via a copper
L-joint and screws (see Fig 4.10e-f).

Second, a magnetic shield is placed over sample box, as denoted by the grey region
in Fig 4.10a. Since mu-metal shielding characteristics can degrade at cryogenic
temperatures, the shield is made of CRYOPHY, a high-permeability nickel-iron soft
magnetic alloy (Ni/Mo/Fe) operational down to cryogenic temperatures. The shield
is 1.5mm thick and 4.4" in its longest dimension. COMSOL simulations predict
shielding of external magnetic fields up to a factor of 105 approximately 1" into
the body of the shield. As shown in 4.10f, a piece of heavy copper foil is used to
thermally link the magnetic shield to the sample box.

For electrical filtering, the sample box includes a copper powder filter on the DC
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lines. Fig 4.10b shows the DC lines prior to their submersion in the stycast/Cu
powder mixture, with more in-depth discussion of such filters in section 4.6. The 6
RF lines in the sample box are designed as air-gap CPW lines filled with Eccosorb,
a microwave absorber used to attenuate high-frequency signals. The top and bottom
portions of the RF lines are shown in 4.10c-d, where the black sections are the
Eccosorb. COMSOL simulations suggest Eccosorb attenuation scales roughly as
1 dB
GHz cm . We use a 0.5"-long piece of Eccosorber which is predicted to yield no

appreciable change in the 50 Ω characteristic impedance for < 5 GHz frequencies.
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a) b)

c) d)

f)e)

Figure 4.10: Sample Box Photos (courtesy of Olli Saira). a. CAD diagram of
sample box. b. DC twisted pair lines prior to immersion in copper powder/Stycast
mixture. c. Sample box coplanar waveguide grooves. d. Coplanar waveguide
grooves in opposite plate, with Eccosorb regions. e. Sample box installed on mixing
chamber stage. f. Installed sample boxwithmagnetic shield and thermalizing copper
sheet
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4.6 Metal Powder Filters
Since Josephson junctions act as wideband detectors of microwave and RF signals,
filtering high frequency noise is important for proper operation of these devices. For
example, ambient high-frequency RF noise can be filtered with mu-metal shielding,
and high frequency noise on electrical lines can be filtered with electrical filters.

Focusing on the latter of these two filter types, low-pass lumped-element RC, RLC,
and LC filters in the microwave and RF regime typically have precisely engineered
filter characteristics, such as cut-off frequency, roll-off steepness, attenuation, and
ripple. However, these filters often suffer from diminished attenuation at higher
frequencies due to parasitics. For example, Bladh et. al. [14] showed that a single
pole RC, two-stage RLC, and Minicircuits LC filters all demonstrated attenuation
no better than 20-30 dB for frequencies above 4 GHz. This is of particular concern
when >120dB attenuation is required to attenuate high frequency signals below the
noise floor.

To alleviate this issue, Martinis et. al. [77] introduced a new type of filter to
improve attenuation at high frequencies. Initially, they used an RC filter bank at 4.2
K with cutoff frequency of 1 MHz which showed a large 60 dB attenuation from
20-200 MHz. However, at higher frequencies the attenuation decreased, likely due
to stray capacitance across the resistors. Subsequently, a filter composed of a spiral
coil of insulated Manganin wire surrounded by copper powder was included, which
achieved an attenuation of 50 dB from 0.5-12 GHz. By incorporating a chain of
filters, including a 3-pole RF LC filter, two series powder filters installed at 4.2K,
and two filters at the stage temperature, they demonstrated a 200 dB attenuation
from 100 MHz to 12 GHz.

Metallic powder filters have since become standard in cryogenic electronics. They
can simultaneously filter high-frequency noise and spurious signals while thermal-
izing the line to the low temperature stages. Further, they are relatively easy to make
and present a low resistance which reduces extraneous heating. However, they are
often relatively bulky, with high cutoff frequencies and low temperature behavior
which is difficult to predict at the construction stage. Mixing the powder with epoxy
can improve thermalization of the wire, but it can also diminish the attenuation and
produce parasitic resonances when the packing inside of the wire coil is incomplete
or when air bubbles produce a non-homogenous grain distribution.

Construction of the filter is reasonably straightforward. A thin insulated wire is
surrounded by a fine grain metal powder. Grains are typically of size 30µm - 60µm
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and coated by a native insulating dielectric which produce a large effective surface
area. The physical mechanism underlying the filter is the phenomenon of skin-effect
damping, in which high frequency magnetic fields on the line are dissipated as eddy
currents induced in the grains of the metallic powder. To reduce magnetic pickup,
half the wire is wound in a spiral while the other half is counter-wound. To ensure
good thermalization, the metallic powder can be mixed with Stycast epoxy and used
to coat the inside and outside of the coil. Attenuation depends on grain size and
composition (copper, bronze, stainless steel) as well as the geometry of the wire [77,
74].

When designing a filter chain to attenuate the entire bandwidth of interest, it is
important to remember that metallic powder filters typically have large cut-off
frequencies (attenuation to the noise floor at 1-2GHz). By contrast, lumped-element
filters can be engineered to have much lower cut-off frequencies, although they
suffer from diminished attenuation at higher frequencies. Therefore, it is standard
to place these two types of filters in series to attain good attenuation throughout the
bandwidth of the measurement. Lukashenko et. al. [74] take this idea to the limit of
integrating an LC filter directly into the powder filter. They exploit the inductance
of the powder filter wire and integrate two discoidal capacitors to construct what
they term a powder-Pi filter. Their design achieves filter characteristics including
a low cut-off frequency at 1 MHz, low ripple, steep decay of -50dB/decade per
filter stage, attenuation at high frequencies, and low-temperature behavior which
well-approximates the intended design of the filter.

In our setup (see Fig. 4.3), we include two low-pass filters on the heater twisted
pair lines used for applying DC and low-frequency AC heat to our graphene device
[98]. There is an RC filter bank at 4K (R = 600 Ω, f0 = 1

2πRC = 100 kHz)
followed by a copper powder filter at stage temperature. The copper powder filter is
composed of a 20 cm resistive constantan twisted pair (R=14Ω/wire) in a Stycast/Cu
powder dielectric mixture. Room temperature characterization of a similar filter box
suggests a cutoff frequency of f0 = 100 MHz.

4.7 Conclusion
In this chapter, we have done the following:

• We have discussed the operation of a dilution refrigerator from first principles,
showing how the properties of quantum fluids makes possible cooling down
to < 10 mK temperatures.
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• We have discussed attributes of our BlueFors LD400 dilution refrigerator used
for cooling samples to sub-Kelvin temperatures.

• We have discussed microwave reflectometry and heating measurement setups,
including a detailed diagram of these measurements.

• We have discussed important RF components of our measurements, including
the amplifier chain, sample boxes, and filtering.
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C h a p t e r 5

NANOFABRICATION

In this chapter, we will discuss the nanofabrication procedure used to make the
graphene/resonator device. Often the least celebrated stage of an cryogenic experi-
ment, nanofabrication is nevertheless often the most important (and least predicable
from first principles) since it determines the set of accessible devices that can be
constructed and measured. To illustrate the nanofabrication procedure, we perform
the following:

• First, we will discuss the nanofabrication recipe used to define and etch the
NbTiN resonator, form the graphene-based material stack, and evaporate the
aluminum electrodes used to join the material stack to the resonator. The
recipe will be discussed in sufficient detail to be replicated in a standard
university cleanroom.

• Second, we will discuss the device design, including a brief review of trans-
mission lines and transmission line resonators, and provide key transmission
line parameter estimates from RF electromagnetic simulations.

Completion of this chapter will provide the reader a sufficient understanding of
the device architecture to prepare them for the following chapters, in which the
graphene/resonator device will be fully characterized using microwave reflectome-
try, thermal response measurements, and noise measurements.

5.1 Fabrication Procedure
This nanofabrication procedure follows standard graphene and transmission line
resonator fabrication procedures. Additional details may be found in Harpreet
Singh Arora’s PhD thesis [4].

Patterning the NbTiN Resonator
The initial substrate is a commercially available undoped silicon wafer with 300
nanometers of thermally-grown silicon dioxide. After a few hundred nanometers of
NbTiN (Tc ≈ 14K) are sputtered using a commercially available sputtering target,
the wafer is diced into small ∼5x7mm pieces using a handheld diamond scriber.
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Figure 5.1: Patterning the NbTiN Resonator. a) A cross-section schematic of
the NbTiN film sputtered on a SiO2 chip is shown. b) To form the etch mask for
patterning the NbTiN resonator, an electron beam resist is spin, baked, patterned
in an EBPG and developed. c) A reactive ion etch etches away that portion of
the NbTiN which is not covered by the electron beam resist mask. d) The resist
is removed according to standard procedures, leaving behind the patterned NbTiN
resonator, shown in cross section.

To pattern the resonator (as shown in Fig. 5.1), an etch mask is defined using a
conventional electron beam resist, typically ZEP 520-A (ZionChemicals). The resist
is spun onto a diced chip at 5000 rpm for 90 seconds and baked on a hotplate at 150°C.
The chip is then transferred to the electron beam pattern generator (EBPG) where
the resonator pattern is inscribed into the resist using a 1 nA beam current and 350
µC/cm2 dose. Following the EBPGwrite, the chip is dipped in a developer solution,
typically ZED N50, for 90 seconds and isopropyl alcohol for 30 seconds before
being blow-dried with nitrogen gas. To smooth the resist edges, and consequently
the resonator profile, the chip is placed on the 150°C hotplate for an additional 3
minutes.

To etch the NbTiN resonator, we place the chip in the reactive ion etcher (RIE). To
remove any residual resist, we first perform a mild O2 reactive ion etch for 45s (50
sccm O2 flow, 60 mTorr chamber pressure, 40 W RF power). Then, we perform an
SF6/Ar reactive ion etch with an etch rate of approximately 100nm NbTiN per 120
seconds (20 sccm SF6 flow, 10 sccm Argon flow, 15 mTorr chamber pressure, 80
W RF power).

For a final clean, the chip is placed in N-Methyl-2-Pyrrolidinone (NMP) at 80°C for
an hour. A final mild O2 reactive ion etch (same recipe as above) is performed to
remove any residual resist. The chip is now ready for the graphene stack transfer.

‘Stamping’ the Van-Der-Waals Material Stack
The stack of Van-der-Waals materials (of which graphene is the active layer) is
assembled via a ‘stamping’ procedure, in which the top layer is first picked up and
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is then used to pick up all subsequent layers [5, 119]. Remarkably, no adhesive
is required beyond that used to pick up the top layer, since the thin layers of dif-
ferent Van-der-Waals materials attract one another via Van-der-Waals forces. This
procedure is shown in Fig. 5.2.

Initially, a glass slide is prepared with two layers of polymer. The base layer,
a silicone elastomer Polydimethylsiloxane (PDMS), is chosen for its mechanical
properties and chemical inertness. The second layer, a solution containing poly-
carbonate (PC) plastic with bisphenol-A (BPA), is chosen for its good adhesive
properties. The glass slide is heated to 100°C, lowered to contact the top hBn
layer with the adhesive PC, and subsequently raised to pick up the hBn layer. This
is repeated to pick up the descending layers of the material stack and achieve the
desired stack profile. Once all layers have been picked up, the entire stack is placed
on the chip with the etched NbTiN resonator at 100°C. Then, the glass slide is
raised to a temperature of 180°C to melt the PC and is lifted away, leaving behind
the Van-der-Waals material stack covered by a layer of PC. The outcome of this
nanofabrication step is that the Van-der-Waals material stack has been ‘dropped’ on
the resonator chip and is ready to be contacted with metallic electrodes.

Deposition of Aluminum Electrodes
To define a deposition mask for the aluminum electrodes (as shown in Fig. 5.3),
a 400-500nm layer of PMMA 950-A5 is spun onto the chip at 2000 rpm at 180°C
for 90 seconds. Once again using electron beam lithography, the electrode pattern
is inscribed into the resist with a large 1200 µC/cm2 dose to ensure removal of
the PMMA. After a standard PMMA development (MIBK:IPA 1:3 for 90 seconds),
the chip undergoes a mild O2 etch in the RIE (recipe above) to remove residual
resist. Then, a CHF3/O2 etch in the RIE is performed to expose the 1D edge of
the graphene [118] and allow for an Ohmic contact to the aluminum (40/4 sccm
CHF3/O2 flow, 40 mTorr pressure, 60 W RF power). To deposit the aluminum
electrodes, the chip is transferred to a Lesker electron beam evaporator free of any
magnetic materials. There a Ti/Al (5nm/100nm) film is evaporated, where the thin
Ti layer is included for improved adhesion of the aluminum to the Van-der-Waals
stack. Following a standard liftoff (typically in acetone), the result of this procedure
is to contact aluminum electrodes to the Van-der-Waals material stack and NbTiN
resonator. Fabrication is complete and the sample is now ready for measurement.
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Figure 5.2: Stamping Procedure. a) The stamping procedure is performed using
a glass slide covered by a silicone elastomer (PDMS) and adhesive polycarbonate
(PC), b) The glass slide and polymers are lowered until the PC layer contacts the
hexagonal boron nitride (hBn) layer. c)With the PC layer adhered to the hBn layer,
the glass slide is raised, lifting the hBn layer off of the substrate. d) This procedure
is repeated on all layers of the Van-der-Waals material stack, where Van-der-Waals
forces create a sufficient attraction between the layers to allow stacking without any
additional adhesive beyond the PC layer. The final material stack is shown and the
SiO2 wafer, in contrast to the SiO2 substrate denoted previously, refers to the SiO2
NbTiN chip upon which the Van-der-Waals stack will be stamped. e) The full stack
is lowered onto the SiO2 NbTiN chip for final placement. f) The glass slide is heated
to melt the PC layer and lifted away, leaving behind the material stack covered in a
layer of molten PC. The material stack is now ready to be contacted with metallic
electrodes.
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Figure 5.3: Deposition of Aluminum Electrodes. a. From the prior stamping step,
the Van-der-Waals material stack is stamped on the NbTiN resonator chip. b. A
PMMA mask is spun and baked on the chip. The mask will be used both as an etch
mask and for a liftoff procedure to define the metallic contacts. c. Using electron
beam lithography, the electrode pattern is inscribed into the PMMAand developed in
a standard PMMAdeveloper, removing the PMMAmask in those regions of the chip
where aluminum contacts will be placed. d. An RIE CHF3/O2 etch is performed
to etch into the Van-der-Waals stack and reveal the 1D edge of the graphene flake,
in order to make a low-resistance Ohmic contact. e. Aluminum is evaporated onto
the chip using an electron beam evaporator free of magnetic materials which may
inhibit superconductivity. A thin titanium layer can be included to promote adhesion
between the evaporated aluminum and substrate. f. The PMMA mask is removed
in a standard liftoff procedure, leaving behind the aluminum electrodes patterned
by the etch mask. The nanofabrication procedure is now complete and the sample
is ready for measurement.
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Example of an In-Process Sample
Shown is an example of an in-process (failed) hBn-encapsulated graphene sample.
The goal of this sample was to define a Hall bar geometry in order to characterize
the carrier density and mobility of the two-dimensional electron gas housed in the
graphene flake.

Visible is a developed PMMA etch mask with an inscribed electrode pattern. The
etchmask has also undergone an RIE plasma etch to etch into the Van-der-Waals ma-
terial and prepare the sample for deposition of metallic electrodes. This corresponds
to the completion of step d) in Fig. 5.3.

The central, brightly colored region at the center of the image shows the location of
the stamped Van-der-Waals material stack. The aqua-colored region is the bottom
hBn, the yellow region within the aqua region is the top hBn, and the darkened
region overlapping both region is the graphite backgate, which sits underneath all
other Van-der-Waals layers.

In the center of the material stack, the patterned Hall bar geometry is clearly visible.
The topmost electrode is designed to contact the backgate, as indicated by its
overlap of the darkened region of the sample. For the bottom set of electrodes,
the uninterrupted brown regions show that reactive ion etch has etched through the
bottom hBn and likely into the graphite backgate. Were metal to be evaporated on
this sample, the bottom electrodes would likely be shorted to the gate, eliminating
the possibility of performing reliable Hall measurements.
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Figure 5.4: Optical Image of Patterned Electrodes in a PMMA Mask on a
Graphene-based Material Stack. Visible is a developed PMMA etch mask with
an inscribed electrode pattern. The aqua-colored region is the bottom hBn, the
yellow region within the aqua region is the top hBn, and the darkened region over-
lapping both colored regions is the graphite backgate. Brown finger-like projections
correspond to electrode designs patterned into the PMMA etch mask.
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Figure 5.5: Electrical circuit schematic. A resonator designed for low charac-
teristic impedance made of Niobium Titanium Nitride (NbTiN) is coupled to the
external microwave line via coupling capacitor and terminated by the S-G-S junc-
tion. Characterization of the device is performed by sending in a microwave tone
and measuring transmission coefficient S21. Changes in the junction’s electrical
impedance shift the resonant frequency of the NbTiN resonator. A dedicated heater
port allows application of Joule heat to the graphene flake, thereby electrically iso-
lating the heating and readout ports while maintaining a thermal link between them.
The resistance between heater port and the ground is ∼1 kΩ. We model the S-G-S
junction electrically as the parallel sum of a dissipationless branch of inductance
LJ =

Φ0
2πIc

and a dissipative branch of resistance RSG.

5.2 Graphene/Resonator Device
We now discuss the design and architecture of the Van-der-Waals material stack and
NbTiN resonator define by the nanofabrication recipe as previously stated. In the
next chapter, we will discuss the electrical properties of this device further, but for
now we show the electrical circuit realized by the electrically-connected resonator
and Van-der-Waals material stack (see Fig. 6.4), in order to give the reader an
intuition for the relative placement and function of each of the components.
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Encapsulated Graphene Device
Fig. 5.6 shows a top-down, real-color optical image of the encapsulated monolayer
graphene device, to which material stack in Fig. 5.3 refers. The Van-der-Waals
material stack is the blue-green region (the hBn primarily sets the color) and is
contacted by aluminum electrodes (light blue). The encapsulated graphene flake
has approximate area A ≈ 25µm2.

The electrodes serve four purposes. First, they form the superconducting leads
of a superconductor-graphene-superconductor (S-G-S) junction, in which supercur-
rent flows from one superconducting aluminum electrode, through the monolayer
graphene, to another superconducting aluminum electrode. In our device, supercur-
rent flows from the finger at the top of the image to either of the two symmetrically-
placed groundwires which span the length of the device. The small superconducting
gap (Tc ∼1.1K) of the aluminum is expected to increase the temperature sensitivity
of the graphene detector at sub-Kelvin temperatures. This is born out in the large
temperature sensitivity of the device for device temperatures 180 mK–500 mK. Sec-
ond, the electrodes form electrical contacts which are either connected to ground
or form a series electrical connection to the NbTiN resonator. Third, the electrodes
define the heater port and lead, which is used to source a normal current Iheater to
the graphene flake and apply Joule heat for thermal characterization measurements.
This port is placed far enough from all other superconducting electrodes to suppress
supercurrent flow. Finally, one electrode (not shown) is used to apply a DC voltage
to the graphite backgate in order to control the carrier density of the graphene flake.

The purpose of encapsulating monolayer graphene in hexagonal boron nitride is to
reduce disorder and increase the mean free path of carriers [122]. We see from
the Fabry-Perot-type oscillations measured in 6.3 that the carriers in the are indeed
ballistic.
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Figure 5.6: Optical Image of Graphene Flake. Optical image showing the
graphene flake encapsulated in hexagonal boron nitride (blue-green) and contacted
by aluminum electrodes (light blue). Two ground wires span the entire length of
the flake. The top contact is placed in close proximity to the ground wires to form
gJJ. The bottom contact placed far from the ground electrodes and can be used to
apply Joule heating via heater current (Iheater). The inset shows the partial cross-
section across the gJJ. Encapsulated graphene is contacted at the edges to form the
superconductor-graphene-superconductor (S-G-S) junction. The metallic contacts
consist of superconducting Al and a thin (5 nm) adhesion layer of titanium (not
shown). Tuning the global carrier density in the graphene flake is achieved by
applying a DC voltage VBG to a graphite backgate.
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5.3 Transmission Line Resonator
Since transmission lines are key devices for routing microwave and RF signals, we
briefly give a background discussion here (the interested reader is encouraged to
consult Pozar’s excellent text for further information [75]). Subsequently, we show
how the patterened NbTiN realizes a transmission line resonator.

Transmission Line Background
Stated simply, a transmission line is a medium through which disturbances can
propagate as waves. Good transmission lines allow waves to be routed from one
location to another with minimal attenuation. The architecture of a transmission
line can be thought of as a series of ‘unit cells’ strung one after another, where each
unit cell is a simple resonant system. Thus, for each type of resonant system, e.g. a
mass-on-a-spring or an LC circuit, there is a corresponding transmission line which
carries the associated waves, e.g. a series of alternating masses and springs carrying
compressive or transverse waves or a series of alternating inductors and capacitors
carrying voltage and current waves.

To routewaves from one place to another, a transmission line requires two properties:
a restoring force and inertia. To illustrate the dependence of wave propagation on
these two properties, imagine we have a transmission line composed of a series of
alternating identical masses and identical springs and suppose we are interested in
a transverse waves propagating through this medium, i.e. the deflection of the mass
along the y-axis if the masses and springs at rest lie on the x-axis. When a given
mass deviates from rest, i.e. is deflected up or down, the restoring force arising
from the springs pulls it back toward the rest position. Further, the inertia of the
mass allows it to maintain a velocity even in the absence of an applied force, which
implies that the mass may move from positive deflection, through the zero-crossing,
to negative deflection, and vice versa.

With these two properties, a disturbance can propagate as a wave, according to the
standard wave equation

∂2u
∂t2 + c2 ∂

2u
∂x2 = 0 (5.1)

which describes a deflection u propagating along a transmission line with wave
speed c. We show how the discussion in the previous paragraph is borne out by
the wave equation. The equation tells us that the acceleration of a section of the
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Figure 5.7: Unit Cell of Transmission Line, from M. Pozar [75]

transmission line ( ∂2u
∂t2 ) is proportional to the curvature of the line at that section ( ∂

2u
∂x2 ).

For a sinusoidal wave, this is in accordance with the fact that the restoring force is
greatest at the peak of the sinusoid, where the curvature is greatest. Conversely, the
restoring force vanishes at the zero-crossing of the sinusoid, where the curvature
also vanishes. This latter case demonstrates the importance of the inertia of the
transmission line, in the following sense: although the curvature and restoring force
vanish at a zero crossing, the inertia of transmission line allows for a non-zero
velocity ( ∂u

∂t = const.) which allows the mass to move through the zero-crossing and
deflect until it is stopped by the restoring force, at which point the process repeats.
Thus, the potential energy stored in the curvature is converted to kinetic energy of
the undeflected section, back to potential energy, and so on.

Since we are interested in routing waves of voltage and current in our device, we use
a transmission line based on a series of alternating inductors and capacitors, with
unit cell shown in Fig. 5.7. In the limit of a dissipationless transmission line, the
per-length series resistance R vanishes, as does the per-length shunt conductance G.
We can think of the primary purpose of the per-length inductor L and capacitor C

as controlling the flow of free charge. When there is a non-zero charge on its plates,
the capacitor produces a restoring force that pushes on the charge. Meanwhile, the
inductor produces an inertia which keeps charge moving even when the capacitor is
uncharged. In this way, we have an analogy to mass/spring transmission line. Since
a non-zero charge on the capacitor produces a voltage drop across the capacitor and
a non-zero charge flow through the inductor produces a current, the disturbances
which propagate along this transmission line are voltage and current waves.
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As mentioned above, a key parameter of the transmission line is the wave speed c,
which is set solely by the per-length inductance L and the per-length capacitance C.
Another interesting property of the propagating voltage and current waves is that
their ratios are in a fixed proportion to each other when viewed in complex space,
where the two waves are 90° out-of-phase with one another. This proportionality
constant is known as the characteristic impedance Z0 of the transmission line and it
is also set entirely by the per-length inductance L and per-length capacitance C of
the transmission line.

Although we omit a derivation here, the propagating voltage and current can be
expressed as coupled variables in a linear 2D system, where the wave speed can be
derived as the eigenvalue and the characteristic impedance can be derived from the
eigenvector of this linear 2D system.

Once a transmission line can be engineered, it becomes straightforward to design a
resonator. All that is required is an architecture which defines boundary conditions
on either end of some length of the transmission line. If this is done, a series of
resonant modes will exist in this system which respect the wave equation in the
medium and the boundary conditions at the ends. For example, if one end of the
length of transmission line is shorted such that the voltage V(x = L) = 0, while
the other end is electrically open such that voltage V(x = 0) = Vmax , then a series
of modes will exist in this system with the lowest mode enforcing that the length
of the resonator L equals one quarter-wavelength of the mode, i.e. L = λ

4 . For
obvious reasons, this is referred to as quarter-wavelength or λ

4 resonator. Thus, by
engineering such a structure, we can engineer an electrical resonator with a resonant
frequency convenient for our measurements.

NbTiN Transmission Line Resonator
We now discuss the architecture of the resonator/graphene device. As we will show,
the coupling capacitor, transmission line, and termination realize a tunable λ/4
resonator. Refer to Fig. 5.8 for the following discussion.

The transmission line is of coplanar waveguide (CPW)-type and is loaded by a series
of stubs to increase the specific capacitanceC and lower the characteristic impedance
Z0 of the line. The interdigitated NbTiN coupling capacitor is co-fabricated with
the transmission line in the same mask and etch step. The coupling capacitor exists
on the probe port side of the resonator, where two wirebonds make contact with
the on-chip pad to the external RF lines of the sample box and fridge. This allows
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RF signals to be routed down to the device and transmitted out to the 4K CIT LN2
cryoamp for the S21 measurement. The high impedance of the coupling capacitor
enforces the condition that V = Vmax on the port side.

On the opposite side, the transmission line is terminated by the low-impedance
inductance of the S-G-S junction, which presents the Josephson inductance LJ to
the transmission line. One side of the S-G-S junction contacts the NbTiN resonator,
while the other side is grounded to the fridge. In the case of LJ = 0, the boundary
condition is V = 0 and the device realizes a true λ/4 resonator. The additional
small LJ lifts the voltage of the boundary condition to some V > 0, which has the
result of increasing the effective wavelength (lowering the resonant frequency) of the
resonant mode. Thus by varying LJ , which can be done by increasing the electron
temperature or changing the carrier density of the flake, it is possible to shift the
resonance and realize a mechanism for performing thermometry of the graphene
electron temperature by measuring shifts in the resonant frequency of the device.
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Figure 5.8: Van-der-Waals Stack and NbTiN Resonator, borrowed with permis-
sion from Arora [4].
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Properties of the NbTiN Transmission Line
Sonnet®15.53 is used to estimate the physical parameters of the NbTiN transmission
line resonator [75] (See Table 5.1 and 5.9 ). The coupling capacitance CC is
estimated by fitting a set of resonances at VBG = −1.9V, numerically solving for
CC , and creating a histogram of extracted CC values with mode Cc = 0.243 pF and
standard deviation of approximately σCc = 0.02 pF.

... ...

RSJ
Model

RSGLJ

NbTiN
Resonator

Coupling
Cap. Cc

Z0', l, C', L'

Z0 Z0

Figure 5.9: Impedance Model The electrical impedance model of the resonator-
graphene device consists of the graphene Josephson junction in the RSJ model,
a NbTiN transmission line resonator characterized by parameters in Table 5.1, a
coupling capacitor Cc, and 50 Ω microwave ports.
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CC Coupling capacitor 0.243 pF

l TLR length 4989 µm

C′ TLR capacitance per length 3515 pF/m

L′ TLR inductance per length 1130 nH/m

Z′0 TLR characteristic impedance 17.9Ω

vph TLR phase velocity 1.575 × 107 m/s

Z0 Reference characteristic impedance 50Ω

Zout Parallel two-port impedance 25Ω

Table 5.1: Coupling Capacitor, Transmission Line Resonator (TLR), and Mi-
crowave Port Parameters.
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5.4 Conclusion
In this chapter, we have done the following:

• First, we have discussed the nanofabrication procedure required to fabricate
the NbTiN resonator, stamp the Van-der-Waals material stack, and deposit the
aluminum electrodes.

• Second, we have reviewed transmission lines and transmission line resonators
and shown how our device design implements a transmission line reasonator.

In the next section, we will discuss in great detail how the series combination of
the NbTiN resonator and graphene-based Van-der-Waals stack yields a mechanism
which can be used to track the temperature of the graphene flake via measured shifts
in the resonant frequency of the resonator, i.e. dispersive thermometry.
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C h a p t e r 6

DEVICE CHARACTERIZATION

In graphene heterostructures, a common way of characterizing device physics is
to track various measurable quantities as a function of the carrier density of the
graphene flake. Since the carrier density of our device is controlled by a DC voltage
applied to the backgate, we can vary the carrier density from hole-type (p-doped)
through the charge neutrality point (CNP) to electron-type (n-doped). In this chapter,
we perform the following:

• First, we discuss some of the benefits conferred by the graphene/resonator
device architecture.

• Second, we discuss characterization of the device using a backgate voltage
sweep, including the resonance fitting procedure, physics of the doping of
the graphene by the aluminum contacts, Fabry-Perot-type oscillations on the
hole-side, and the resistance of the heater port.

• Finally, we discuss how we can input extracted fit parameters from the res-
onance fits into an impedance model and extract physical parameters of the
graphene Josephson junction.

Having completed this section, the reader will be well-prepared to understand the
thermal characterization discussed in the next chapter.

6.1 Benefits of Resonantly-Coupled Graphene Device
The combined graphene-based Van-der-Waals stack and superconducting resonator
architecture allows for straightforward frequency-domain multiplexed readout of
the graphene detectors (see Fig. 6.1). As discussed in the caption of that figure,
each resonator is associated with a non-overlapping portion of frequency-space,
so a readout tone initialized to a single frequency will be loaded only by a single
resonator. Advances in microwave electronics allow for generation of many tones in
frequency space, to separately monitor each resonator. Using this scheme, readout
can be performed on a single feedline using a single wideband cryogenic amplifier.
The larger the bandwidth of the cryogenic amplifier, the larger the number of
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multiplexable channels. For this reason, it will be useful to use a large-bandwidth,
quantum noise-limited traveling wave parametric amplifier (TWPA) for readout.
The novel kinetic inductance TWPA (KI-TWPA) fulfills these requirements and
possesses a large dynamic range, rendering it ideal for detector applications. The
interested reader is encouraged to consult the literature on these novel paramps [29],
[128].

Additionally, the detection mechanism allows operation at the lowest temperatures
available to a dilution refrigerator (<100mK), where graphene photodetectors are
most sensitive, all the way up to 10K where liquid-He cryostats may be employed
in place of expensive dilution refrigerators. Further, the readout mechanism is non-
destructive, allowing the state of the photodetector to be continuouslymonitoredwith
minimal backaction from the readout chain. Finally, the device architecture allows
for in situ frequency tuning to compensate for non-idealities in device fabrication
or to modify spectral bandwidth in real time. Taken together, the benefits of this
device architecture present a significant step towards readout of arrays of graphene
photodetectors for tackling the most difficult problems in radio astronomy, quantum
information processing, and dark matter detection.
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Figure 6.1: Schematic of Frequency-Domain Multiplexed Graphene Detectors.
Here we show a schematic for frequency-domain multiplexed readout of graphene
detectors. As indicated by the differing lengths of transmission line resonators, each
resonator has a different resonant frequency, with a frequency profile indicated in
the inset. Since the resonances are separated in frequency space by more than a
linewidth, a tone sent down the feedline initialized within the linewidth of a given
resonant frequency will be loaded only by that resonator and will pass by all others.
Thus, an array of detectors can load the same feedline and be read out with a single,
wideband cryogenic amplifier.
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6.2 Resonance vs. Backgate Voltage
The resonator-coupled gJJ allows us to probe the response of the gJJ supercurrent
to changes in electron density and temperature[101, 117]. Since the gJJ acts as an
additional inductive element, it modifies the resonant frequency, which we mon-
itor through microwave reflectometry. The parameters characterizing the gJJ, the
Josephson inductance LJ =

Φ0
2πIc

and subgap resistance RSG, depend strongly on
electron density (see the next section). Accordingly, the resonant frequency and
spectral width are both highly dependent on the back gate voltage VBG[101].

The first set of characterization measurements performed on the device involve
varying the backgate voltage, which serves as a proxy for the carrier density of the
graphene flake, and observing the resulting dispersive shifts of the device. By fitting
the resonance feature, we can extract resonance parameters and input them into an
impedance model to numerically solve for the physical parameters of the S-G-S
junction terminating the NbTiN resonator.

Backgate Voltage Sweep
In Fig. 6.2, we see the magnitude of the resonance feature, as measured by an
S21 measurement, as the backgate voltage is swept from electron doping through
charge neutrality to hole doping. As indicated by the arrows, the resonance feature
starts at a large resonant frequency at large electron doping, reaches a minimum
resonant frequency at charge neutrality, and increases again in frequency for large
hole doping. A colormap of this backgate voltage sweep can be found in Fig. 6.3.
As will be discussed in the subsequent sections, this behavior arises from the large
critical current Ic found at large electron and hole doping and the minimal critical
current Ic found at charge neutrality.

Figure 6.3 shows how the resonance changes as a function of VBG. The maximal
tuning of resonance frequency f0 withVBG occurs in the range [VCNP,VCNP+0.3V],
where the ∂ f0

∂VBG
≈ 670 MHz

1V . Assuming a parallel-plate capacitance of hBN (εr = 3)
and a separation d = 30 nm between the graphene flake and backgate, ∂ f0

∂ncarrier
≈

1.21 GHz
1012/ cm2 . Since we estimate the area of our graphene flake to be A = 25µm2, the
maximum sensitivity of our device used as an electrometer is ∂ f0

∂Ncarrier
= 4.84 kHz

1 e− .

Resonance Fit Function
Fitting of the resonance feature follows the procedure in Ref. [43]. Background-
subtracted S21 transmission data is fit to a four-parameter fitting function
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S21 = 1 −
Q0/Qc − 2iQ0

δω
ω0

1 + 2iQ0
ω−ω0
ω0

Extracted fit parameters include resonant frequency ω0, internal quality factor Qi,
coupling quality factor Qc, and asymmetry parameter δω0. Total quality factor
is defined as the parallel sum of the dissipation channels 1

Q0
= 1

Qi
+ 1

Qc
. Error

bars in Fig. 2b-d correspond to the 95% (2σ) confidence level calculated from the
covariance matrix of the fits. An asymmetry in the resonance circle can cause the
diameter of the resonance circle to occur off of the real axis. Such an asymmetrymay
arise from a non-negligible line inductance or mismatched input/output impedance.

For each backgate voltage point in the sweep, the resonance can be fit to this function
and the resonance parameters f0, Qi, and Qc can be extracted. In the subsequent
sections, we will see how these parameters can be fit to an impedance model to solve
for the physical S-G-S junction parameters.
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Figure 6.2: a, Representative |S21 | data and fits for electron and hole doping. Color
and labels denote backgate voltage VBG. Arrows show the direction of resonant
frequency shifts as VBG is swept from positive voltage (electron doped) to negative
voltage (hole doped) through charge-neutrality. Green arrow shows the resonant
frequency approaching 500 MHz as electron-doping decreases to charge neutrality.
Blue arrow shows that the resonant frequency increases away from 500 MHz as
hole-doping increases.
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Figure 6.3: c, |S21 | vs. VBG shows the resonant frequency of the device as a function
of electron density as tuned by the back gate. Near the charge neutrality point (CNP;
VCNP = −0.3 V), the gJJmaximally loads the resonator and consequentlyminimizes
the value of resonant frequency. Far from the CNP, the gJJ acts as a low-inductance
termination to the resonator and the resonant frequency approaches its maximum.
On the hole-side (Vbg < VCNP), Fabry-Perot type oscillations are visible due to
formation of the regions of different doping in the graphene (hole doping; p-type)
and in vicinity of contacts (electron doping n-type)[101].
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6.3 Heater Port Resistance Measurement
While we cannot perform a 4-wire measurement directly on the S-G-S junction, we
can do so on the heater port to determine the resistance of the port as a function
of backgate voltage (see Fig. 6.5). Here, we observe features in agreement with
the behavior of the resonance under a backgate voltage sweep. Since many of
these features result from n-doping of the graphene in a boundary layer around the
aluminum contacts, we make a brief aside to discuss doping of graphene by metallic
contacts.

Metal-Graphene Doping

Figure 6.4: Fermi Level Shift At Metal/Graphene Interface, from Giovannetti
et al. [45]. Plotted is the Fermi level shift as a function of displacement between
surfaces for different graphene/metal interfaces. A negative Fermi level shift cor-
responds to n-doping of the graphene, and a positive Fermi level shift corresponds
to p-doping of the graphene. For the entire range of displacements, aluminum is
expected to n-dope the graphene flake. Figure taken from [45]

It has been found experimentally that aluminum leads consistently n-dope (electron-
dope) the graphene around the leads. We now provide an argument why this is
the case, according to reference [45]. From standard solid-state theory, the work
function difference determines the doping when two dissimilar materials are brought
into contact, e.g. a metal and a semiconductor brought into contact yield a Schottky
diode. Briefly, the work function is the positive energy difference between the
vacuum energy and the Fermi energy,W = Evac−EF , so thework function difference
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of two dissimilar materials ∆W = −∆EF is the negative of the difference between
their Fermi energies. Due to the work function difference (analogously, the Fermi
energy difference), charge will move to establish an equilibrium potential between
the two materials brought into contact. Intuitively, we can think of the reason
for this phenomenon as follows: if the Fermi energy EF1 of material 1, a metal,
is larger than that of material 2, a semiconductor, then EF1 > EF2 and electrons
from the metal can fall into the semiconductor to lower their energy. This means
the semiconductor becomes n-doped near the surface. Conversely, if EF1 < EF2,
then electrons from the semiconductor can fall into the metal to lower their energy,
which p-dopes material 2 near the surface. We note that due to Poisson’s equation,
the presence of a non-zero charge yields a curvature in the potential which can be
interpreted as a bending of the energy bands at the interface of the two materials.

We might now expect to apply this picture to graphene/metal contacts. However,
when these two materials are brought into contact, DFT calculations suggest that the
work function of graphene is approximately WG = 4.02 eV and the work function
of aluminum is approximately WAl = 4.2 eV, which would suggest that graphene
should be p-doped since the Fermi energy of graphene is larger than the Fermi
energy of aluminum, i.e. EG > EAl . Why, then, is graphene actually n-doped? It
turns out that the standard solid-state formalism can only be usedwhen the electronic
wavefunctions of two materials are well-separated. In graphene/metal contacts, the
equilibrium spacing between the graphene and metal surfaces is d ≈ 3.3Å, so we
must account for wavefunction overlap.

We can now ask what the graphene doping looks like for different combinations
of metal and graphene. It turns out that some metals, such as platinum, deform
graphene’s linear band structure substantially, so that there is no longer a well-
defined conical point at which the linear electron and hole bands meet. However,
many metals of interest, such as aluminum and silver, weakly deform graphene’s
band structure. Primarily, these metals have the effect of shifting the Fermi energy
relative to the conical point, resulting in an electron or hole doping of graphene.

Armed with this simplified picture, DFT calculations show that an additional energy
contribution due to the exchange repulsion between the electrons in graphene and
the electrons in aluminum must be accounted for to determine proper doping of the
graphene. This energy contribution must be overcome for the electrons of graphene
to diffuse into themetal and yield p-doping of the graphene. For equilibrium spacing
of the graphene andmetal interface, this energy contribution is approximately 0.9 eV,
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so that thework function ofAlmust be greater than 0.9 eV+WG = 0.9 eV+4.02 eV =
4.92 eV in order to cross from n-doping to p-doping. As stated before, the work
function Al is approximately 4.2 eV when in contact with graphene, so the graphene
remains n-doped. In conclusion, due to its work function of Al and graphene/metal
interactions, the graphene around anAl contact should be n-doped under equilibrium
conditions.

Heater Resistance
Wenow look to explain the features of Fig. 6.5. At charge neutrality (VBG ≈ −0.3 V),
the resistance experiences a largemaximum as is expected from an absence of charge
carriers. For large electron and hole doping, the resistance is small relative to charge
neutrality. However, we note that the hole doping resistance is larger than the electron
doping resistance, which we now discuss.

Due to the work function mismatch between the aluminum leads and the graphene
flake, n-type carriers from the aluminumdiffuse into the graphene, forming an n-type
boundary layer around the aluminum leads. When the graphene bulk is doped n-type
by the backgate, this typically yields an Ohmic, low-resistance contact. However,
when the graphene flake is doped p-type, at least one of the contacts will be reverse
biased when current flows from one aluminum lead to the other, resulting in a larger
contact resistance. For this reason, the hole-doped (VBG < VCNP) region of Fig. 6.5
possesses a larger resistance than the corresponding doping level on the electron
side (VBG > VCNP).
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Figure 6.5: Heater Port Resistance. Measured resistance of the heater port (via
the 4-wire measurement) is shown as a function of the backgate voltage (proxy for
carrier density). The charge neutrality point exists at approximately VBG = 0.3 V.
The resistance of the hole side is larger than that of the electron side, in agreement
with a non-negligible contact resistance resulting from p-n junctions on the hole-
side.
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Fabry-Perot Oscillations
An important observation of Fig. 6.3 is that the hole doping regime admits a series
of ‘oscillations’ in the resonant frequency with varied backgate voltage. This is
a known phenomenon arising from the coherent quantum phase of holes as they
propagate through the graphene flake and reflect at the contacts [24, 22, 94, 103,
83].

In a two-dimensional electron/hole gas, the primary charge carriers are those
at the Fermi surface, which propagate as plane waves with Fermi wavefector
kF =

√
π |ncarrier |. In ballistic graphene samples, these carriers propagate with-

out collisions in the bulk of the graphene flake, which preserves the quantum phase
evolution of the carrier. If this phase is also preserved after the carrier reflects with
a contact, e.g. due to the increased resistance of a reverse-biased contact, it can
interfere upon a round-trip propagation. Peaks (troughs) in the conductance, and
therefore in the critical current and resonant frequency, appear when a round trip
produces constructive (destructive) interference, which occurs when

kF × 2L∗cav = n × 2π (6.1)

where L∗cav is the effective cavity length, and n is an integer. Thus, by varying
the carrier density ncarrier , and therefore kF , it is possible to produce so-called
Fabry-Perot oscillations which can be used to determine the effective cavity length
L∗cav.

In Fig. 6.6, modulation of the critical current Ic(0) with VBG on the hole side is con-
sistent with pnp-type Fabry-Perot interference (we discuss how Ic(0) is determined
in the next sections). Following the standard method for determining Fabry-Perot
cavity length in ballistic graphene, we subtract the slowly varying background with
a fit to a 7th-order polynomial (see Fig. 6.6 (left)) and take the power spectral density
(see Fig. 6.6 (middle)). The large peak in the power spectral density is consistent
with a Fabry-Perot cavity length of Lcav = 361.51 nm (see Fig. 6.6 (right)). This
cavity length is consistent with the length scale of the electrode separation as pat-
terned in the fabrication mask, where each electrode is surrounded by a n-doping
layer of approximately 120 nm.



123

0 0.5 1 1.5 2
L ( m)

0

0.5

1

1.5

PS
D
(a
.u
.) Lcav= 361.51 nm

1 1.5 2 2.5
kF (1/m) 108

-0.01

0

0.01

I c
(
A)

Tmxc= 160 mK

-4 -3 -2 -1
VBG (V)

0.2

0.25

0.3

0.35

0.4

0.45

I c
(
A)

Figure 6.6: (Left) Hole side Ic vs. VBG. Blue trace is hole side Ic data for Tmxc =

160mK. Red trace is the slowly-varying background as fit to a 7th-order polynomial.
(Middle) Background-subtracted ∆Ic vs. kF . ∆Ic is obtained by subtracting the
two traces in 6.6(left). (Right) Power spectral density of ∆Ic. The large peak is
consistent with an effective Fabry-Perot cavity length of Lcav = 361.51 nm.



124

6.4 Impedance Model
To deduce the physical parameters of the gJJ from the fit parameters of the S21

resonance feature, we employ an electrical impedance model of our device which
takes the inputs ( f0, Qi) and numerically solves for junction parameters (Ic, RSG).
Sonnet®15.53 is used to estimate the physical parameters of the NbTiN transmission
line resonator. The coupling capacitanceCC is estimated byfitting a set of resonances
at VBG = −1.9V, numerically solving for CC , and creating a histogram of extracted
CC values with mode Cc = 0.243 pF and standard deviation of approximately
σCc = 0.02 pF. We note that an estimate of microwave losses in the junction is
not accessible from the switching current measurements that have typically been
employed in gJJ threshold detection schemes.

... ...

RSJ
Model

RSGLJ

NbTiN
Resonator

Coupling
Cap. Cc

Z0', l, C', L'

Z0 Z0

Figure 6.7: Impedance Model The electrical impedance model of the resonator-
graphene device consists of the graphene Josephson junction in the RSJ model,
a NbTiN transmission line resonator characterized by parameters in Table 5.1, a
coupling capacitor Cc, and 50 Ω microwave ports.
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Figure 6.8: Resonance Fits and Extracted Parameters. Top Left, f0 as a function
of VBG for representative Tmxc = 160, 210, 260, 310, 360, 410, 460 mK. Extracted
resonant frequency f0 as a function ofVBG shows a characteristic lineshape consistent
with Fig 1c. As Tmxc increases, f0 decreases for all backgate voltages. Near charge
neutrality and for higher temperatures, the device becomes undercoupled to such
an extent that fitting is unreliable. Fit parameters in these regions are not included
in the plots. Top Right, Qi as a function of VBG and Tmxc. Bottom Row, RSJ
model parameters Ic (Bottom Left), and RSG (Bottom Right) as a function of VBG
and Tmxc. Ic and RSG are determined using a numerical impedance model of the
resonator/gJJ device with resonance parameters ( f0, Qi) as inputs.



126

-4 -2 0 2
VBG (V)

102

103

Q
i

-4 -2 0 2
VBG (V)

10-2

10-1

100

Q
i/Q

c

-4 -2 0 2
VBG (V)

0.01

0.015

0.02

0.025
0.03
0.035
0.04a b c

-4 -2 0 2-4 -2 0 2

150 4

3

2

1

0

100

50

0

L J
(n
H
)

ω
L J
/R

S
G

f 0
(M
H
z)

𝝉
(n
s)

-4 -2 0 2
Vbg (V)

0

200

400

600

800

R
n
(
)

0

0.2

0.4

0.6

0.8

1

0 0.5 1160mK 480mK

d e

VBG (V)

500

550

600

650

700

750

800

f 0
(M
Hz
)

-4 -2 0 2

f

Δf

𝞭f

VBG (V)VBG (V)

Figure 6.9: Extracted Parameters from Resonance Fits and Impedance Model
a. Qi vs. VBG. The internal quality factor Qi is extracted from the S21 fit function.
b. Qi/Qc vs. VBG. Ratio of internal quality factor Qi and coupling quality
factor Qc (also extracted from the S21 fit function) shows that the device is in the
undercoupled limit for all backgate voltages. c. ωLJ/RSG vs. VBG. Ratio of the
inductive branch impedance to resistive branch impedance in the RSJ model. d.
τ = Q0/ωi vs. VBG. The resonator time constant τ is expected to set the system
time constant for all measured backgate voltages and temperatures. e. LJ vs. VBG.
The Josephson inductance LJ =

Φ0
2πIc

. f. f0 vs. VBG. The red line corresponds to
the projected unloaded (LJ = 0 nH) resonance frequency. ∆ f corresponds to the
loaded (LJ , 0 nH) resonance frequency at Tmxc = 160mK. δ f corresponds to
further shift in the resonance frequency due to the increase in flake temperature.
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6.5 Discussion of Extracted Parameters from Resonance Fits and RSJ Model
As shown in Fig. 6.8 and Fig. 6.9, our fitting and modeling procedure allows several
fit and junction parameters to be plotted as a function of backgate voltage VBG and
flake temperature Tmxc.

6.9a shows a dip in Qi at VBG = −2V, which is propagated to the other plots 6.9b-d.
This dip arises from an asymmetry in the S21 parameter which rotates the resonance
circle off the real axis. Such rotations can arise from line impedancemismatches and
parasitic couplings[43]. Since RSG is determined primarily by Qi, RSG is sensitive
to dissipation in the graphene flake as well as the electromagnetic environment of
the flake/resonator assembly. By contrast, f0 and Ic are largely insensitive to these
effects, so our thermometry based upon the dispersive shifts of the resonance is also
largely insensitive to these effects.

6.9b shows that our device for all backgate voltages is in the undercoupled limit
(Qi < Qc), where dissipation occurs primarily within device instead of via the
coupling to the microwave lines. The variation of the coupling quality factor Qc is
consistent with the circuit model and a constant coupling capacitor Cc = 0.243 pF.

The dispersive shifts of the resonance can be understood from the impedance model
shown in 6.9, which consists of a transmission line resonator terminated by the
junction impedance. This model predicts an unloaded (LJ = 0 nH) resonant fre-
quency of funload = 774.75 MHz as indicated by the solid red line in 6.9f. When
a finite inductance LJ loads the transmission line resonator, the resonant frequency
decreases. As discussed in the previous chapter, this occurs because a change in
the terminating impedance alters the boundary condition at the terminating end
of the resonator. In the case of the unloaded resonator, i.e. a λ/4 resonator, the
termination is a short-to-ground, which fixes the boundary voltage at V = 0. This
enforces the resonance condition that the length of the resonator equals one quarter
of the resonant wavelength, i.e. λ/4 = l. However, terminating the transmission
line resonator in an inductance alters the boundary condition such that the boundary
voltage amplitude is fixed at some V = V0 > 0. This has the effect of enforcing the
resonance condition that a quarter-wavelength is larger than the resonator length,
i.e. λ/4 > l, or, analogously, that the resonant frequency is decreased relative to the
unloaded case. The larger the terminating impedance, i.e. the larger LJ , the lower
the resonant frequency[101, 75].

Due to higher contact transparency, electron doping should exhibit a larger super-
current than hole doping. It follows that the electron side should exhibit a smaller LJ
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than the hole side, and, correspondingly, the electron side should exhibit a smaller
decrease in resonant frequency relative to funload than the hole side. This is con-
sistent with 6.9f for electron and hole doping, i.e. ∆ felectron < ∆ fhole where ∆ f is
defined as the resonant frequency decrease at Tmxc = 160mK.

As shown in 6.9c, ω0LJ

RSG
is a common figure-of-merit for RF-driven Josephson junc-

tions[112]. It compares the impedance of the dissipationless supercurrent branch to
the dissipative resistive branch. A smaller value of ω0LJ

RSG
denotes a less dissipative

device. At Tmxc = 160mK, ω0LJ

RSG
≈ 1.5% within a factor of 2. As the temperature

rises to Tmxc = 400 mK, ω0LJ

RSG
increases to 3%. This is consistent with decreases

in Ic raising the impedance of the dissipationless branch and driving more current
through the dissipative branch, as indicated by the degrading quality factor with
increasing flake temperature (6.8c).

Ic vs. T Dependence and Extracted Superconducting Gap ∆
Since we cannot perform 4-wire measurements directly on the gJJ to estimate the
induced superconducting gap ∆0 via multiple Andreev reflection measurements, we
perform a fitting procedure based upon the temperature dependence of the critical
current Ic(T).

-4 -3 -2 -1 0 1
VBG (V)

60

70

80

90

100

(
eV
)

-4 -3 -2 -1 0 1
VBG (V)

0

0.5

1

1.5

2

I c(
0)
(
A)

100 200 300 400 500
Tmxc (mK)

0.2

0.25

0.3

I c
(
A)

-2.01 V
Ic(0)= 0.32 μA
Δ = 69.05 μeV

ba c

Figure 6.10: (left) Ic vs. T . An example fit of Ic vs. T for VBG = −2.01 V with
extracted fit parameters Ic(0) and ∆. (center) Fit parameter Ic(0) vs. VBG. Ic(0) fit
parameter is shown for both electron and hole doping. (right) Fit parameter ∆ vs.
VBG. A coarse estimate of induced gap ∆ ≈ 80 µV. Fine features are discussed in
the text.

The Ic(T) vs. VBG data in Fig. 6.8 is fit to extract physical parameters. The fit
function we employ describes the supercurrent that arises from thermally populating
the Andreev bound states (ABS) in a ballistic junction[70].

Ic(T) = Ic(0) tanh
(
∆

2kBT

)
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The two fit parameters correspond to the physical parameters Ic(0), the zero-
temperature critical current, and ∆, the induced superconducting gap. An example
fit is shown in 6.10a.

From 6.10c, we can make a coarse estimate of the induced superconducting gap
∆ ≈ 80 µV. However, further measurements are needed to determine whether the
finer structure of 6.10c is due to the physics of the S-G-S junction or an artifact of
the fitting procedure. Toward this end, it would be useful to perform simultaneous
RF characterization and DC multiple-Andreev reflection measurements on a gJJ
sample[101].

6.6 Conclusion
In this chapter, we have done the following:

• We have discussed benefits of resonant readout of graphene heterostructures.

• We have considered physical properties of the graphene device and related
them to device measurements taken in a carrier density and stage temperature
sweeps, including the Fabry-Perot-type oscillations resulting from ballistic
transport in the presence of low contact transparency.

• We have discussed our implementation of an impedance model to extract gJJ
parameters, as well as conclusions related to device performance resulting
from these parameters.

Having characterized device performance and physics under a backgate voltage
sweep, we now turn to understanding device performance and physics under heating
measurements.
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C h a p t e r 7

HEATING MEASUREMENTS

7.1 Introduction
Thermal characterization of our device proceeds by applying DC Joule heat power
to the monolayer graphene flake and measuring the resulting temperature shifts. To
motivate and present these findings, we do the following in this chapter:

• We discuss electron-phonon scattering in the deformation potential approxi-
mation and present results for 3D scattering in a normal metal.

• We present discuss experimental verification by Roukes for the hot electron-
effect in metals and similar measurements performed on monolayer graphene
by Fong and Schwab.

• We discuss our heating and dispersive thermometry measurements of mono-
layer graphene, including the power law-dependence between applied power
and electron temperature and possible interpretations based on thermalization
mechanisms in ballistic graphene.

7.2 Electron-Phonon Coupling in Normal Metals
In solid-state devices at cryogenic temperatures, a key mechanism by which hot
electrons thermally equilibrate with their environment is through electron-phonon
scattering. To illustrate this important process, we will first discuss calculations of
this rate based on the deformation potential approximation, followed by a discus-
sion of experimental verification in metals by Roukes and similar measurements in
graphene by Fong and Schwab.

Theory Background
We follow the treatment by Wellstood, Urbina, and Clarke [120]. As described by
the Feynman diagrams in in Fig, 7.1, two scattering processes contribute to electron-
phonon coupling. An electron can either emit a phonon and relax to a lower energy,
or an electron can absorb a phonon and be excited to a higher energy. The rate at
which these processes occur can be calculated using Fermi’s Golden Rule [104].
For the scattering process in which an electron of wavevector k emits a phonon of
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wavevector q and transitions to a lower energy state of wavevector k′ = k − q, the
rate of transition is given by

1
τkk ′
=

2π
~

M2(q)δ(Ek ′ − Ek − εq)[1 − f (Ek ′)][n(q) + 1] (7.1)

Here, we see that the transition rate is proportional to the square of the matrix
element M2(q) between initial and final electron states. The delta function δ(...)
enforces energy conservation for the electron and emitted phonon. The factor of
[1 − f (Ek ′)] gives the probability that the final electron state is unoccupied (and,
thus, that scattering may proceed) where f (Ek ′) is the Fermi-Dirac function, and the
factor of [n(q)+ 1] gives the probability of phonon occupation upon emission of the
phonon of wavevector q. An analogous expression holds for phonon absorption.

Figure 7.1: Heat Transfer via Electron-Phonon Coupling, from Wellstood,
Urbina, and Clarke [120]. (Left) In a standard model of thermal transport in solid-
state systems, heat flow typically has two dominant sources of thermal resistance.
Electron-phonon thermal resistance Rep is typically limited by the slow rate of
scattering between electrons and thermal phonons. TheKapitza boundary resistance
RK between thermal phonons of the solid-state system and the substrate arises from
the acoustic impedance mismatch of the solid-state lattice and the environment [93].
At sub-500 mK temperatures, it is often the case that Rep > RK , which allows the
electron temperature to rise above the phonon temperature and yield ‘hot-electron’
effects. (Right) Two key scattering processes occur between electrons and thermal
phonons, as indicated by the two energy- and momentum-conserving Feynman
diagrams. In one, an electron emits a thermal phonon and relaxes to lower energy.
In the other, electrons can absorb a thermal phonon and be excited to a higher energy.

The physics of the electron-phonon scattering is contained primarily in the matrix
element M2(q). A common approximation is that of the deformation potentialmodel
[125, 126]. In the following we will argue how the presence of long-wavelength
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thermal phonons mediates electron scattering, and we will focus on the special case
of a three-dimensional metal, though these arguments can be adapted to different
solid state systems of different dimensions.

The presence of a low-energy (long-wavelength) thermal phonon serves to dilate
the lattice as it passes, suppose by the dimensionless amount ∆. By virtue of this
dilation, the local electron density n0 will be diminished to n0(1−∆), locally shifting
the Fermi energy by an amount

δV =
2
3

EF∆ (7.2)

The local variation in the Fermi energy will allow charge to rearrange until the Fermi
level is constant throughout the material. This means that a local region of charge
will collect. By Poisson’s equation, this local accumulation of charge produces
an electrostatic potential of compensating energy δV . Invoking standard quantum
mechanical scattering theory, this potential can mediate scattering of electrons of
one state into another state. Thus, the presence of a phonon serves to mediate the
scattering of electrons from one state (and energy) to another. This model yields
the squared matrix element

M2(q) = ~q
2ρvsV

(2εF

3

)2
(7.3)

We note that in a superconductor, the superconducting gap energy precludes low-
energy scattering events such as these, since there exist no unpaired electronic
states capable of absorbing or emitting low-energy phonons. Instead, in the case
of standard s-wave superconductivity, electron-phonon coupling in the presence of
filled Fermi sphere serves to produce an attractive interaction between two electrons
[44]. Due to the presence of the Fermi sphere, this attractive interaction will yield
a bound state between the electrons no matter how small the attraction, which will
be separated by a finite energy from unpaired electronic states—this bound state
is known as the Cooper pair. For this reason, it is said that a superconductor is
‘gapped to excitations’ and this property is responsible for much of the interesting
physics of these materials.

Returning to the main line of argument and guided by this model of electron-phonon
scattering, one can use the scattering rate to calculate the average loss of energy
from the electron via phonon emission
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dU
dt
= −

εq

τkk ′
(7.4)

To calculate the net power emitted by the electron gas, one can integrate over all
phonon and electron contributions to the scattering process which produces the 3D
collision integral

P =
dU
dt
=

∫ ∞

0
f (k)De(k)d3k

∫
dUkk ′

dt
Dp(q)d3q (7.5)

Evaluating this integral (and the analogous one for phonon absorption) gives the
final expression for the net power emitted via electron-phonon scattering in a 3D
metal

∆P = ΣV(T5
e − T5

p ) (7.6)

where the electron-phonon coupling constant is given by

Σ =
~

2ρvs

(2εF

3

)2 D(EF)k5
BΓ(5)ζ(5)

2π~5v3
s vFV

(7.7)

Experimental Verification of the Hot Electron Effect in Thin Metal Films
Roukes et al. [97] measured the hot electron effect in metal films, a phenomenon
occurring at cryogenic temperatures in which the electron temperature of a metal
rises above the temperature of the lattice phonons. This can be understood from
the different timescales involved in heat transport through the system. The rate
at which heat from the applied bias field is transferred to the electrons is set by
the electron-impurity scattering rate, which is largely temperature independent and
results from elastic scattering events. The rate at which hot electrons cool via
phonon emission is set by the electron-phonon coupling rate. Since it is typically
much slower than impurity scattering, it produces an effective thermal resistance
Rep. Finally, the rate at which lattice phonons transfer heat to the environment is
typically limited by the Kapitza boundary resistance RK between the lattice and
the environment. A common model for the emergence of the Kapitza resistance is
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based upon the difference between the speed-of-sound (and, therefore, the phonon
momenta) of dissimilar materials which impedes the passage of thermal phonons
from one material to another and which can yield a temperature difference between
the two materials. In the thermal model of Fig [], when the thermal resistance of
electron phonon coupling Rep > RK , a ‘bottleneck’ in heat flow can occur such that
the electrons rise to a well-defined temperature in excess of the temperature of the
lattice phonons.

Figure 7.2: Experimental Demonstration of the Hot Electron Effect, from
Roukes et al. [97]. (Left) Example of the dependence of copper film resistance on
temperature, with resistance saturating below ∼50 K. (Right) Electron Temperature
vs. Applied Bias Voltage. The power law dependence is in agreement with electron-
phonon scattering calculations for 3D electrons and phonons in metal films under
the deformation potential approximation. Inset shows that the electron temperature
is elevated relative to the phonon temperature up to approximately the Rep ∼ RK
crossover.

In the experiment, noise thermometry was performed on two co-fabricated but
galvanically-isolated metal films with a tight thermal coupling between them via
the substrate. A bias was applied to one of the two films inducing a temperature
rise of the electrons of that film, and the electronic and phononic temperatures were
subsequently measured.

The films consisted of 100-nm-thick evaporated copper on a thin mono-crystalline
sapphire substrate. Since the resistance of the copper films typically saturates
at approximately 200 W from 15 mk-10 K, DC SQUID noise thermometry was
performed to track the temperature of the two films down to 20 mK [57, 56]. Noise
thermometry of the biased resistor yielded a measurement of the elevated electron
temperature while noise thermometry of the unbiased resistor yielded measurement
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of the lattice (phonon) temperature. The latter was possible since the spacing of
the two resistors (40 µm) was much smaller than the phonon mean free path, so a
negligible thermal gradient was expected. TheDCSQUID amplifier had an effective
measurement bandwidth of ∼6 kHz, and coupled energy sensitivity of 30~, and was
impedance matched to the high-impedance films by a superconducting transformer.

The results demonstrated a difference in electronic and phononic temperatures from
20mK to 320mK (see 7.2, left panel inset), with the electron temperature being
in excess of the phonon temperature until approximately RK ∼ Rep. A power law
dependence between applied power and temperature increase was in agreement
with the standard model of electron-phonon coupling in metals P ∝ T5

e − T5
ph, as

demonstrated by Wellstood’s calculation in the previous section [120, 3, 41].

7.3 Electron-Phonon Coupling in Monolayer Graphene
Calculation of Electron-Phonon Coupling in Monolayer Graphene
In graphene, the 2Dpopulation of electrons is scattered by a 2Dpopulation of thermal
phonons [113]. Due to the linear band structure of monolayer graphene, an electron
of wavevector k has energy Ek = ~vF |k |, for Fermi velocity vF . The phonons
involved in scattering are 2D longitudinal acoustic phonons, where a phonon of
wavevector q has energy Eq = ~vsq, for speed of sound vs. In the low-temperature
limit, we can make the approximation q << 2k. This allows expansion of the Dirac-
Fermi function to first order in ~ω, i.e. f (Ek)− f (Ek+~ω) ≈ ~ωqδ(Ek − EF). Under
these conditions, the collision integral becomes proportional to the Riemann-Zeta
function

P = F(Te) − F(Tph) (7.8)

F(T) ∝
∫ ∞

0
dqq3Nq(Tph) (7.9)

where Nq(T) is the Bose-Einstein occupation factor at temperature T . Performing
the integration, the relation between applied heat power P and electron Te and
phonon Tph temperature is

P = AΣ(T4
e − T4

ph) (7.10)

with electron-phonon coupling constant
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Σep =
π2D2EF k4

B

15ρ~5v3
s v

3
F

(7.11)

Experimental Verification
Fong et al. [40] and Fong and Schwab [39] performed Johnson noise thermometry
on monolayer graphene and deduced several key thermal characteristics.

Figure 7.3: MeasurementCircuit for JohnsonNoiseThermometry ofMonolayer
Graphene, from Fong and Schwab [39]. Circuit diagram shows the impedance
matched ∼ 30 kΩ to the 50Ω measurement circuit and HEMT via the LC-tank
circuit. Additional plots show measurements of the circuit, including the noise PSD
which peaks at approximately 1.16 GHz.

In their setup, a flake of monolayer graphene was stamped on SiO2 and a resistive
region of ∼30 kOhm was contacted by metallic probes. To achieve an electrical
impedance match between this high-resistance region of the graphene and the 50
Ohm measurement circuit, a superconducting NbTiN lumped-element LC tank cir-
cuit was employed, with resonant frequency of 1.16 GHz and an 80MHz bandwidth.
The first stage amplifier was a TN = 4K cryo-HEMT.

The Dicke radiometer formula [31] calculates the measurement precision of the tem-
perature from the number of independent measurements of the noise, which yields
the following relation between the electron temperature Te, the system temperature
Ts, the measurement bandwidth B, and the integration time tm

δTe

Te + Ts
=

1
√

B × tm
(7.12)
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where in the experiment the measurement bandwidth was B = 80 MHz and the
measured system noise was Ts = 12K. From the formula, at Te = 2K the electron
temperature noise density is

√
ST = 2mK/

√
Hz. As shown in Fig. 7.4, the depen-

dence of δTe
Te+Ts

upon B and tm follows the Dicke radiometer formula to excellent
precision.

Figure 7.4: Thermal Measurements of Monolayer Graphene, from Fong and
Schwab [39]. (left) Integrated Noise Power vs. Temperature. Dependence is agree-
ment with the Johnson Noise Formula. The inset plot shows that the measured
precision of the temperature is in agreement with the Dicke radiometer formula.
(center) Thermal conductance Gth vs. Temperature exhibits a temperature depen-
dence consistent with P ∝ T4

e − T4
ph. Inset shows that a heater current applied at ω

yields a temperature modulation at 2ω. (right) Electron temperature vs. Applied
Joule heat power.

With this measurement setup in place, it was possible to perform heating mea-
surements in which Joule heat was applied to the graphene flake and the resulting
electron temperature was measured. As seen in Fig. 7.4, applied AC heater current
at ω generated the expected 2ω response in electron temperature. Further, a scal-
ing law of P ∝ T4

e − T4
ph was found, in agreement with standard electron-phonon

coupling theory for monolayer graphene.

7.4 Heater Measurements
To characterize the thermal properties of the gJJ device, we employ a measurement
configuration in which the graphene flake is heated by applying a DC current Iheater

to a resistive heater port. The port electrode is placed sufficiently far from the
ground electrodes to preclude supercurrent flow. This configuration allows us to
accurately monitor the input power delivered to the graphene flake while simulta-
neously monitoring the resonance frequency. For different device temperatures and
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doping, representative changes in the S21 resonance dip are shown in Fig. 7.5a-c
and Fig. 7.5f-h. By increasing the stage temperature from 170 mK to 400 mK , we
observe a decrease in the resonant frequency of 27 MHz for holes, compared to
6 MHz for electrons. This is consistent with greater inductive loading (lower Ic) in
the hole regime. By applying a heater current Iheater , the internal flake temperature
T is increased above Tmxc, decreasing the resonant frequency. Combined with the
measurements taken at different temperatures for calibration (Fig. 7.5e,j) the power
vs. temperature characterization and, consequently, the thermal conductivity Gth of
the graphene flake can be determined. We use this approach to investigate thermal
properties for both electron and hole doping regimes.

The data we have acquired is consistent with a power law Pheater = ΣA(Tn − Tn
mxc),

with electron temperature T , stage temperature Tmxc, scaling exponent n and the
electron-phonon coupling prefactor ΣA. We plot ∂P/∂T = Gth = nΣATn−1 (7.6c)
which shows that the scaling exponents for hole and electron doping are consistent
with n = 5. We note that our fitting procedures produce only comparably small
errors for each of the individual data points and, accordingly, the uncertainty of the
extracted scaling exponent is much less than 1. This enables us to clearly distinguish
that the exponent obtained here is not consistent with the n = 3 or n = 4 scaling
predicted for bulk electron-phonon coupling in reduced dimensions[113, 25]. While
an n = 5 scaling exponent is expected for the electron-phonon coupling of a 3D
electron gas[97], these considerations do not apply for our graphene device in which
the electron and phonon density-of-states are 2D.

In Fig. 7.5a-c and f-h, we note that the relative decrease in resonance frequency is
greater on the hole side than the electron side. In the previous chapter, we observed
∆ felectron < ∆ fhole where ∆ f is defined as the resonant frequency decrease at
Tmxc = 160mK relative to the unloaded LJ = 0 case. This was due to the larger
supercurrent (smaller LJ) on the electron side relative to the hole side. Increasing
the flake temperature further increases LJ and decreases the resonant frequency. A
rough estimate of the further decrease of the resonant frequency δ f due to increased
temperature is as follows:

|δ f |
|∆ f | ≈

|δIc |
|∆Ic |

Ic typically decreases by 20-30% as the flake temperature is increased from 160 mK

to 400 mK . From Fig. 7.5, we find
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Hole Side:
|δ fhole |
|∆ fhole |

=
26 MHz
110 MHz

≈ 24%

Electron Side:
|δ felectron |
|∆ felectron |

=
5.9 MHz
18.6 MHz

≈ 32%

The change in resonant frequency is therefore consistent with the typical change in
Ic(T). We conclude that the greater magnitude of frequency decrease on the hole
side relative to the electron side follows as a straightforward result of the greater
inductive loading of the transmission line resonator.
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Figure 7.5: Electron-side andHole-side Heating andCalibration. a-c, Electron-
side (VBG = 1.1 V) and f-h, hole-side (VBG = −1.8 V) |S21( f )| vs. Iheater for three
representative mixing stage temperatures a, f) Tmxc = 170 mK b, g) Tmxc = 280 mK
c, h) Tmxc = 400 mK . Applying a DC heater current Iheater to the designated heater
port decreases the resonant frequency of the device. As expected, the shifts are
symmetric with respect to the polarity of Iheater . d, Electron-side and i, hole-side Ic
as a function of Iheater . Fitting a-c and f-h allows extraction of resonance parameters
( f0, Qi) which are subsequently used to estimate the junction parameters (Ic, RSG)
via a numerical impedance model). Ic is plotted as a function of Iheater for several
mixing chamber temperatures Tmxc (color). The dashed line at Iheater = 0 nA
corresponds to the data cut plotted in e and j. e, Electron-side and j, hole-side
calibration curve, the unheated Ic as a function of Tmxc. Since Ic monotonically
decreases with increasing Tmxc, there is a one-to-one correspondence between Ic
and Tmxc, so shifts in Ic can be transduced into shifts of graphene flake temperature.
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7.5 Power/Temperature Scaling
Measurements of hBN-encapsulated graphene performed previously[32, 69] re-
veal that Gth (scaled by the area) is about three orders-of-magnitude larger than
predictions by simple bulk electron-phonon coupling theory. The magnitude of
Gth ∼ 5 − 300 pW/K in our measurements is consistent with these observations.
Due to enhanced mobility, hBN-encapsulated graphene is typically in the ballistic
scattering limit, in which the carrier mean free path lm f p is limited by the device
dimension (Ldevice ≈ 5 µm in our sample). This observation has led to the hypoth-
esis that the enhanced Gth may arise from “resonant supercollisions” [64, 109] a
scenario consistent with the spatially resolved measurements[48, 47]. In this sce-
nario, defects located at edge of the graphene flake locally enhance electron-phonon
interactions and open a thermalization pathway that dominates over electron-phonon
coupling in the bulk. Spatially-resolved scanning SQUID measurements show an
enhancement of surface phonon temperature at graphene edges and close to metal
contacts. Theory formulated to explain these results[109] suggests that an n = 5
scaling exponent should hold down to milli-Kelvin temperatures (T < TBG) in the
limit of strong scattering (δ ∼ 1). In this context, our high precision measurements
provide the first clear evidence that an n = 5 scaling exponent and thus resonant
supercollisions can indeed dominate the thermalization in graphene at sub-Kelvin
temperatures.

We note Gth exhibits a power law consistent with n = 5 for both electron and hole
doping, indicating that this mechanism remains dominant in both regimes. Inter-
estingly, the electron- and hole-side prefactors differ by a factor of approximately
two (see 7.6c). A possible explanation for this difference arises from the energy
distribution of resonant scattering centers[47]. In this scenario, different scattering
centers are activated when the chemical potential of the flake is shifted by the back-
gate. Therefore, it is possible that the difference in the prefactors can be attributed
to different populations of activated scatterers. Additionally, we note that, in case
of hole doping, the intrinsic p-n junction formed between the graphene region close
to the Al contacts (which is always intrinsically n-doped) and the p-doped bulk
may also play a role. In this regime, holes from the bulk must pass across the p-n
junction in order to efficiently thermalize via resonant scattering centers. Since
the p-n junction has a finite transmission probability, it may therefore reduce the
overall thermalization rate. We note that attaining an accurate calculation of the
thermalization prefactor from first principles is difficult due to effects outlined above
and further theoretical work is needed for quantitive comparisons.
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Figure 7.6: Power-Temperature Curves. a, Electron-side flake temperature
as a function of heat power. From the injected DC current Iheater and measured
voltage drop V across the heater port, the injected heater power can be determined
Pheater = Iheater × V . From the Ic vs. Iheater traces in Fig. 3d,i and the Ic vs. Tmxc
calibration in Fig. 3e,j, flake temperature can be determined as a function of applied
Pheater . Color corresponds to the mixing chamber stage temperature. b, Gth vs.
Tmxc. Taking the numerical derivative ∂P

∂T of Fig. 4a allows the data to be plotted on
a single line. Fit line is to the power law Gth = ∂P/∂T = nΣATn−1 where n is the
scaling exponent and ΣA is the multiplicative factor. c, Electron and hole Gth vs.
Tmxc (log-log scale). Hole and electron doping both show power law scaling with
an n = 5 scaling exponent. The units of the ΣA electron-phonon coupling prefactor
in the label are W/K5. The factor of ∼ 2 difference between the electron and hole
prefactors is discussed in the main text.
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7.6 Conclusion
In this chapter, we have done the following:

• We have introduced the standard deformation potential approximation for
electron-phonon scattering as well as expressions for electron-phonon cou-
pling in metals and monolayer graphene.

• We have discussed experimental verification of the hot-electron effect in met-
als by Roukes and in monolayer graphene by Fong and Schwab.

• We have discussed our Joule heating measurements employing Josephson
inductance thermometry performed on monolayer graphene, and we have
discussed the origin of the measured power law-dependence between applied
power and electron temperature.

In the next section, we will characterize the noise of our detector by measuring the
noise equivalent power in an amplitude-modulation scheme.
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C h a p t e r 8

NOISE EQUIVALENT POWER

8.1 Introduction
To characterize the noise of our thermal detector, we measure the noise-equivalent
power (NEP). In this chapter wewill develop a discussion of the NEP measurement
as follows

• First, we will discuss the calculation that will motivate the measurement
scheme.

• Second, we will sketch the measurement setup and sketch a circuit diagram.

• Third, we will show key intermediate measurements to demonstrate that our
measurement is well-behaved.

• Fourth, we will plot the measured NEP as a function of carrier frequency
and applied carrier power (to be explained) in order to explore the parameter
space.

• Finally, we will discuss detection limits implied by the measured NEP.

Having completed this chapter, the reader should have a strong grasp of the mea-
surement procedure, experimental checks, and results, and should be able to repeat
this method in order to characterize the NEP of any equivalent thermal detector.

8.2 Theory
A key figure-of-merit for linear power detectors is noise-equivalent power (NEP)
[79, 85]. A power-to-voltage detector has a responsivity R, such that

Vout = R(Pin)

In the linear-response regime, i.e. for small applied power, this expression simplifies
to

δVout ≈
(
∂Vout

∂Pin

����
δPin=0

)
∗ δPin
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In this regime, the NEP of a power-to-voltage detector (in units of W√
Hz

) can be de-
fined as that power spectral density at the device input which produces the measured
voltage spectral density

√
SV at the output:

NEP ≡
√

SV

∂Vout/∂Pheater |δPheater=0

The above expression suggests two immediate ways to measure the NEP. One is to
measure the voltage spectral density

√
SV at the output and the device responsivity

∂Vout/∂Pheater . Another is to measure the applied power at the input δPin, and the
SNR at the output as suggested by rearranging the above expression

NEP ≡
√

SV

δVout
∗ δPin =

δPin

SNR
=
δPheater

4 × SNR

In the above equation, the SNR is in units of V
V/
√

Hz
and Pin = Pheater/4. The latter

expression is true since we have implicitly assumed Pin is that input power which
produces the measurable Vout signal. In our case, only one quarter of the heat power
Pheater injected at the heater port produces the measured sideband signal.

8.3 Experimental Design
To measure the NEP, we use the measurement setup in Fig. 8.3a,b and perform the
following procedure:

• We apply a carrier tone on the microwave line (Fig. 8.3a, first panel). The S21

parameter is the transfer function which determines the magnitude and phase
of the signal at the output. Thus, a carrier tone at the resonant frequency,
i.e. at the maximal dip of the S21 parameter, will have a smaller transmitted
magnitude than a carrier tone placed off-resonance.

• Measurement of Pheater(ω) = Iheater(ω) × Vheater(ω) is achieved by sourc-
ing a current Iheater(ω) to the heater port and measuring the voltage drop
Vheater(ω) = Iheater(ω)Rheater over the heater port in a 4-wire lock-in mea-
surement. Since we apply an AC heater current Iheater(ω) ∝ cosωt, it follows
that Pheater(ω) ∝ cos2 ωt = 1

2 (1 + cos(2ωt)). Only the 2ω term in the final
expression contributes to the Vout sideband signal.

• Applying an AC heat power Pheater to the heater port modulates the S21

parameter between unheated and heated states (Fig. 8.3a, second panel).
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A.M. TonePure Tone

Figure 8.1: Schematic ofMeasurement Chain First panel shows a pure carrier tone
sent down the microwave line. Second panel shows that an applied ω heater current
and subsequent 2ω modulation of the heat power and temperature of the graphene
flake yields a 2ω modulation of the transmission function (S21 parameter) between
unheated (blue) and heated (red) states. The pure tone (dashed line) is placed within
the bandwidth of the transmission function, such that it will be amplitude modulated
at 2ω with a modulation index that depends on the magnitude of the S21 dip. Third
panel shows the amplitude-modulated signal with sidebands at 2ω as readout on the
spectrum analyzer. The measured signal-to-noise ratio of the sideband is used to
determine the NEP. b, Circuit Diagram. A continuous-wave carrier tone at ωc is
sent down a microwave line to the graphene device, amplified, and read out by a
spectrum analyzer. An AC heater current at frequency ω = 2π × 337 Hz injects a
2ω heat power Pheater in the graphene flake and produces 2ω amplitude modulation
of the carrier tone, as discussed in a.

Consistent with the heating measurements performed in the main text, the
heated state has a lower resonant frequency and lower quality factor than the
unheated state. The 2ω component of the input power Pheater modulates the
flake temperature at 2ω. Thus, modulation of the S21 resonance feature will
occur at 2ω.

• Placing the frequency of the carrier tone within the bandwidth of the mod-
ulated S21 resonance feature will amplitude modulate the carrier, producing
sidebands spaced at 2ω from the carrier (Fig. 8.3a, second and third panel).
Provided that the device is in the linear-response regime, the voltage of the
sidebands will increase in proportion to applied heat power, i.e. Vsb ∝ Pheater .
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Figure 8.2: NEP Measurement Procedure. Left Panel, Representative spectrum
at output ofmeasurement chain. Spectrum as read out by spectrum analyzer (RBW =
1Hz) for applied heat power off (blue) and on (red). The primary effect of the applied
heat is to produce sidebands spaced at 2ω from the the carrier tone. Other peaks in
the spectrum exist at multiples of the line frequency. A peak at ω is consistent with
a DC offset in the applied heat power. Inset shows the 2ω sideband. Center Panel,
Sideband Power vs. Pheater . In the low-Pheater linear-response regime, the sideband
voltage Vsb ∝ Pheater . Since the spectrum analyzer reads out the sideband power,
Psb ∝ P2

heater , which is consistent with the slope at low Pheater . Right Panel, NEP
vs. Pheater . The linear-response regime is characterized by a regime of constant
NEP, before rising as the amplitude modulation saturates to its maximal value. The
NEP plotted in g,f corresponds to the linear response regime (green dashed line).

It follows that the power of the sidebands will increase as Psb ∝ P2
heater .

• The amplitude-modulated carrier is read out by a spectrum analyzer (Fig. 8.3a,
third panel). The signal-to-noise ratio of the sideband is used to calculate the
NEP. We note that only one sideband is used in the NEP measurement.
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8.4 Sideband Spectrum
In Fig. 8.3c, we see that application of an AC heater current of magnitude Iheater =

20 nA results in sidebands at 2ω offset from the carrier, where ω = 2π × 337 Hz.
In addition to the 2ω sidebands, sidebands at multiples of the 60Hz line frequency
frequency are present. Additionally, there are sidebands at ω approximately 10 dB
down from the 2ω sidebands. This can be explained by a small DC offset in the
heater current.

With increasing heater power, the magnitude of the sidebands saturates at a value
consistent with expectations. It is straightforward to show that a resonance dip of
3 dB generates a maximum amplitude modulation index m = 17%, which should
produce sidebands 21 dB lower than the carrier. This is in agreement with the
measured sideband magnitude that is 23 dB lower than the carrier.

8.5 Sideband Scaling
In the linear response regime, Vsb ∝ δPheater . Therefore, the sideband signal as
measured on the spectrum analyzer (in power units) should scale as Psb ∝ P2

heater ,
or by 20 dB/decade. This is seen in Fig. 8.3d for applied heat Pheater in the range
−120 dBm to −105 dBm, where the slope of fit at low-Pheater is consistent with a
scaling exponent n = 2. This confirms that our measurement is in linear-response
regime at low Pheater . For greater applied Pheater , the sideband power saturates as
the amplitude modulation reaches the full maximum of the resonance dip.

8.6 NEP vs. Pheater

In the linear response regime, the NEP is constant with respect to Pheater since
Vsb ∝ Pheater . This is shown Fig. 8.3e for Pheater < −105 dBm. As stated above,
the NEP rises for Pheater > −105 dBm as the SNR saturates while Pheater continues
to increase.

8.7 NEP vs. Carrier Frequency and Carrier Power
To explore the NEP as a function of the carrier tone, we generate a heat map
with swept carrier frequency fc and carrier power Pc (Fig. 8.3f,g). For the lowest
carrier powers, the NEP is minimized for carrier frequencies close to the resonance
minimum, where the responsivity of the resonance to applied heater power is greatest
and therefore the amplitude modulation of the carrier is greatest. As the carrier
power Pc is increased, the junction is driven to nonlinearity, resulting in a resonance
dip with a steep falling edge and a shallow rising edge. This has the effect of
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Figure 8.3: Noise Equivalent Power (NEP) Measurement. e, NEP vs. Pheater .
The linear-response regime is characterized by a regime of constant NEP, before
rising as the amplitude modulation saturates to its maximal value. The NEP plotted
in g,f corresponds to the linear response regime (green dashed line). f, g, NEP
vs. carrier power Pc and carrier frequency fc for f) electron-side (VBG = 1.0V)
and g) hole-side (VBG = −2.75V). Minimal NEP occurs near the resonance dip
minimum where amplitude modulation is largest. As carrier power Pc is increased,
the resonance dip downshifts to lower frequencies and is driven into nonlinearity,
as characterized by an asymmetric resonance lineshape with steep falling edge
and shallow rising edge. The minimum NEP tracks the steep falling edge where
amplitude modulation is greatest.
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enhancing the NEP on the falling edge and reducing it on the rising edge. For carrier
powers Pc > −98 dBm, the quality factor of the resonance feature is degraded to
such an extent that the amplitude modulation of sideband is reduced and the NEP

increases. The NEP reaches a minimum value of 7 × 10−17 W/
√
Hz for a carrier

power Pcarrier = −102 dBm and carrier frequency fcarrier = 753.5 MHz.

8.8 Detection Limits
The measured minimum noise-equivalent power NEPmin ≈ 7 × 10−17 W/

√
Hz. It

is limited by the noise of the 4K cryoamp and is ∼ 20× larger than the thermal
fluctuation-limited NEP =

√
4kBT2Gth at Tmxc = 200mK. At Tmxc = 58mK ,

the projected thermal fluctuation-limited NEPproj ≈ 1 × 10−19 W/
√

Hz, assuming
that the T4 dependence of Gth holds down to these temperatures [79, 85]. The
corresponding thermal fluctuation-limited energy resolution δE = NEPproj

√
τth ≈

h × 65GHz, assuming the projected thermal time constant τth =
Cth

Gth
≈ 170 ns,

ncarrier =
1012

cm2 , A = 25 µm2.

8.9 Conclusion
In this chapter, we have done the following:

• We have motivated the amplitude-modulation scheme of the NEP measure-
ment and related it to physical measurables of our setup.

• We have shown intermediate measurements to demonstrate close agreement
of each step of the measurement with predictions.

• We have explored the measured NEP as a function of carrier frequency and
applied carrier power.

• We have discussed the detection limits implied by the measured NEP.

This completes the characterization measurements of our device.
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C h a p t e r 9

SUMMARY

In this thesis, we have presented a method of thermometry convenient for integra-
tion with low-heat capacity Van-der-Waals materials. In this method, increases of
the graphene flake temperature manifest as decreases of the temperature-dependent
supercurrent of an SNS-type Josephson element. In turn, this produces disper-
sive shifts of the resonant frequency of a superconducting resonator, which can be
monitored with standard microwave reflectometry. This technique is amenable to
frequency-domain multiplexed readout of detector arrays akin to the readout mech-
anism of microwave kinetic inductance detectors (MKID) arrays [28]; to operation
at dilution refrigerator temperatures where graphene thermal properties yield great-
est detector sensitivities; and to enhanced measurement bandwidths for tracking
single-shot photon arrivals.

We have discussed the relevant details for a researcher interested in pushing the
limits of single-shot thermal detectors, beginning with a thorough discussion of the
relevant physicalmodels and fundamental limits of a thermal detector and continuing
with key superconducting phenomena exploited in this device scheme.

Subsequently, we discussed fabrication details, device architecture, and cryogenic
measurement setup for application of Joule heat and microwave readout of the
device. Using this setup, we have characterized the physical properties of this device
with sweeps of carrier density and Joule heat. The former revealed the ballistic
nature of charge carriers in this device, while the latter revealed an unexpected
P ∝ T5 dependence for which we have discussed possible explanations. Finally, we
measured the noise of our detector to be at the level of NEPmin ≈ 7× 10−17 W/

√
Hz

using a amplitude-modulation scheme amenable to measuring the noise-equivalent
power of resonantly-coupled linear detectors.

If the benefits of this readout scheme can be combined with reliable fabrication of
low-Gth and low-Cth Van-der-Waals materials, resonantly-coupled Van-der-Waals
heterostructures will remain an exciting research avenue for pushing the limits of
calorimetric detection.
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