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Appendix C: 

Triplet Pair Spin Operators and Spin Hamiltonian 
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Triplet Pair Spin Operators 

 The triplet pair eigenstates may be constructed by standard rules of angular momentum 

addition as we will show below. We first begin by defining the |𝛼⟩ and |𝛽⟩ basis functions in 

matrix form in addition to the Pauli matrices for the Cartesian components of a single electron spin 

operator that operate on these basis functions.1,2 

|𝛼⟩ =  [
1
0
] 

|𝛽⟩ =  [
0
1
] 

𝑆̂𝑥 =
1

2
[
0 1
1 0

] 

𝑆̂𝑦 =
1

2
[
0 −𝑖
𝑖 0

] 

𝑆̂𝑧 =
1

2
[
1 0
0 −1

] 

 From here, there are two potential routes to generating the triplet pair eigenstates. The first 

is the traditional route used by Merrifield by defining two sets of triplet eigenfunctions and 

corresponding spin operators and taking their tensor products to generate the nine triplet pair 

eigenstates.3,4 The second was outlined by Scholes in 2015, by generating the spin operators for 

four electron basis functions and factoring the uncoupled basis into the triplet pair basis assuming 

the two triplets are distinguishable.5 

 To define the triplet pair states in the vein of Merrifield, we must first construct triplet 

eigenstates and spin operators in the coupled two-electron basis. For two electrons, we can define 
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the uncoupled set of basis states as the tensor (Kronecker) product, denoted by ⊗, of the individual 

|𝛼⟩ and |𝛽⟩ basis functions: 

|𝛼𝛼⟩ = |𝛼⟩ ⊗ |𝛼⟩ = [
1
0
] ⊗ [

1
0
] = [

1
0
0
0

] 

|𝛼𝛽⟩ = |𝛼⟩ ⊗ |𝛽⟩ = [
1
0
] ⊗ [

0
1
] = [

0
1
0
0

] 

|𝛽𝛼⟩ = |𝛽⟩ ⊗ |𝛼⟩ = [
0
1
] ⊗ [

1
0
] = [

0
0
1
0

] 

|𝛽𝛽⟩ = |𝛽⟩ ⊗ |𝛽⟩ = [
0
1
] ⊗ [

0
1
] = [

0
0
0
1

] 

 The spin operators in the uncoupled basis are similarly constructed by summing over the 

following Kronecker products where I2 represents the 2x2 identity matrix, 𝑆̂𝑥,𝑦,𝑧 represents the 

total two-electron spin operator for each Cartesian coordinate, and 𝑆̂1𝑥,𝑦,𝑧 and 𝑆̂2𝑥,𝑦,𝑧 represent the 

Cartesian spin operators for electron 1 and 2, respectively: 

𝑆̂𝑇𝑜𝑡 𝑥,𝑦,𝑧 = 𝑆̂1𝑥,𝑦,𝑧 ⊗ 𝑰𝟐 + 𝑰𝟐 ⊗ 𝑆̂2𝑥,𝑦,𝑧 

𝑆̂𝑥 = 𝑆̂1𝑥 ⊗ 𝑰𝟐 + 𝑰𝟐 ⊗ 𝑆̂2𝑥 =
1

2
[
0 1
1 0

] ⊗ [
1 0
0 1

] +
1

2
[
1 0
0 1

] ⊗ [
0 1
1 0

] 

𝑆̂𝑥 =
1

2
[

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

] +
1

2
[

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

] =
1

2
[

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

] 
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𝑆̂𝑦 = 𝑆̂1𝑦 ⊗ 𝑰𝟐 + 𝑰𝟐 ⊗ 𝑆̂2𝑦 =
1

2
[
0 −𝑖
𝑖 0

] ⊗ [
1 0
0 1

] +
1

2
[
1 0
0 1

] ⊗ [
0 −𝑖
𝑖 0

] 

𝑆̂𝑦 =
1

2
[

0 0 −𝑖 0
0 0 0 −𝑖
𝑖 0 0 0
0 𝑖 0 0

] +
1

2
[

0 −𝑖 0 0
𝑖 0 0 0
0 0 0 −𝑖
0 0 𝑖 0

] =
1

2
[

0 −𝑖 −𝑖 0
𝑖 0 0 −𝑖
𝑖 0 0 −𝑖
0 𝑖 𝑖 0

] 

𝑆̂𝑧 = 𝑆̂1𝑧 ⊗ 𝑰𝟐 + 𝑰𝟐 ⊗ 𝑆̂2𝑧 =
1

2
[
1 0
0 −1

] ⊗ [
1 0
0 1

] +
1

2
[
1 0
0 1

] ⊗ [
1 0
0 −1

] 

𝑆̂𝑧 =
1

2
[

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

] +
1

2
[

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

] =
1

2
[

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

] = [

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

] 

𝑆̂2 = 𝑆̂𝑥 + 𝑆̂𝑦 + 𝑆̂𝑧 = [

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

] 

 As can be seen, the 𝑆̂2 operator is not diagonal in the uncoupled basis. Specifically, |𝛼𝛽⟩ 

and |𝛽𝛼⟩ are not eigenstates, i.e. they are not states of pure spin multiplicity. The elements 

⟨𝛼𝛼|𝑆̂2|𝛼𝛼⟩ and ⟨𝛽𝛽|𝑆̂2|𝛽𝛽⟩ are both 2, consistent with the expected eigenvalue S(S+1) for a 

triplet S = 1, and the corresponding matrix elements of the 𝑆̂𝑧 operator give ms values of +1 and -

1, respectively. We can diagonalize the 𝑆̂2 matrix to retrieve the eigenvalues and associated 

eigenvectors: 

𝑆̂2 = [

0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

] 

𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠:
1

√2
[

0
1

−1
0

] , [

1
0
0
0

] ,
1

√2
[

0
1
1
0

] , [

0
0
0
1

] 
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 This provides us a set of eigenvectors in the coupled spin basis |𝑆,𝑀⟩ that are pure singlet 

and triplet functions (S = 0 and S=1 respectively): 

|0,0⟩ = |𝑆⟩ =
1

√2
(|𝛼𝛽⟩ − |𝛽𝛼⟩) 

|1,0⟩ =  |𝑇0⟩ =
1

√2
(|𝛼𝛽⟩ + |𝛽𝛼⟩) 

|1, +1⟩ = |𝑇+⟩ = |𝛼𝛼⟩ 

|1, −1⟩ = |𝑇−⟩ = |𝛽𝛽⟩ 

 From these eigenvectors we can construct a rotation matrix to transform the individual 

Cartesian spin operators into the coupled |𝑆,𝑀⟩ basis; alternatively, we can directly construct the 

matrix from the Clebsch-Gordon coefficients: 

𝑅 =

[
 
 
 
 

0 1 0 0
1

√2
⁄ 0 1

√2
⁄ 0

−1
√2

⁄ 0 1
√2

⁄ 0

0 0 0 1]
 
 
 
 

 

𝑆̂𝑥,𝑦,𝑧
|𝑆,𝑀⟩

= 𝑅′ ∗ 𝑆̂𝑥,𝑦,𝑧 ∗ 𝑅 

𝑆̂𝑥
|𝑆,𝑀⟩

=

[
 
 
 
 
 
0 0 0 0

0 0 1
√2

⁄ 0

0 1
√2

⁄ 0 1
√2

⁄

0 0 1
√2

⁄ 0
]
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𝑆̂𝑦
|𝑆,𝑀⟩

=

[
 
 
 
 
 
0 0 0 0

0 0 − 𝑖
√2

⁄ 0

0 𝑖
√2

⁄ 0 −𝑖
√2

⁄

0 0 𝑖
√2

⁄ 0
]
 
 
 
 
 

 

𝑆̂𝑧
|𝑆,𝑀⟩

= [

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

] 

 As can be seen, the spin operators in the coupled |𝑆,𝑀⟩ basis are block diagonal – no matrix 

elements connect the singlet and triplet eigenfunctions. Furthermore, all elements associated with 

the |𝑆⟩ eigenstate are 0, which makes sense because all components of the net spin vector should 

sum to zero for a singlet. As a result, we will truncate the matrices to carry forward only the triplet 

eigenstates to generate the triplet pair functions: 

𝑆̂𝑇𝑥 =

[
 
 
 
 0 1

√2
⁄ 0

1
√2

⁄ 0 1
√2

⁄

0 1
√2

⁄ 0
]
 
 
 
 

 

𝑆̂𝑇𝑦 =

[
 
 
 
 0 − 𝑖

√2
⁄ 0

𝑖
√2

⁄ 0 −𝑖
√2

⁄

0 𝑖
√2

⁄ 0
]
 
 
 
 

 

𝑆̂𝑇𝑧 = [
1 0 0
0 0 0
0 0 −1

] 

𝑏𝑎𝑠𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠: |1, +1⟩ = |+⟩ = [
1
0
0
] , |1,0⟩ = |0⟩ = [

0
1
0
] , |1, −1⟩ = |−⟩ = [

0
0
1
] 
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 We then take the Kronecker products of our triplet basis functions to generate uncoupled 

triplet pair basis states. 

|+ +⟩ = |+⟩ ⊗ |+⟩ = [
1
0
0
] ⊗ [

1
0
0
] =

[
 
 
 
 
 
 
 
 
1
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

 

|+0⟩ = |+⟩ ⊗ |0⟩ = [
1
0
0
] ⊗ [

0
1
0
] =

[
 
 
 
 
 
 
 
 
0
1
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

 

|+ −⟩ = |+⟩ ⊗ |−⟩ = [
1
0
0
] ⊗ [

0
0
1
] =

[
 
 
 
 
 
 
 
 
0
0
1
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

 

|0 +⟩ = |0⟩ ⊗ |+⟩ = [
0
1
0
] ⊗ [

1
0
0
] =

[
 
 
 
 
 
 
 
 
0
0
0
1
0
0
0
0
0]
 
 
 
 
 
 
 
 

 



271 

 

|00⟩ = |0⟩ ⊗ |0⟩ = [
0
1
0
] ⊗ [

0
1
0
] =

[
 
 
 
 
 
 
 
 
0
0
0
0
1
0
0
0
0]
 
 
 
 
 
 
 
 

 

|0 −⟩ = |0⟩ ⊗ |−⟩ = [
0
1
0
] ⊗ [

0
0
1
] =

[
 
 
 
 
 
 
 
 
0
0
0
0
0
1
0
0
0]
 
 
 
 
 
 
 
 

 

|− +⟩ = |−⟩ ⊗ |+⟩ = [
0
0
1
] ⊗ [

1
0
0
] =

[
 
 
 
 
 
 
 
 
0
0
0
0
0
0
1
0
0]
 
 
 
 
 
 
 
 

 

|−0⟩ = |−⟩ ⊗ |0⟩ = [
0
0
1
] ⊗ [

0
1
0
] =

[
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
1
0]
 
 
 
 
 
 
 
 

 



272 

 

|− −⟩ = |−⟩ ⊗ |−⟩ = [
0
0
1
] ⊗ [

0
0
1
] =

[
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
1]
 
 
 
 
 
 
 
 

 

We build triplet pair spin operators in analogous fashion by the following summation of 

Kronecker products: 

𝑆̂𝑇𝑇𝑥,𝑦,𝑧 = 𝑆̂𝑇𝑥,𝑦,𝑧 ⊗ 𝑰3 + 𝑰3 ⊗ 𝑆̂𝑇𝑥,𝑦,𝑧 

𝑆̂𝑇𝑇𝑥 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 1

√2
⁄ 0 1

√2
⁄ 0 0 0 0 0

1
√2

⁄ 0 1
√2

⁄ 0 1
√2

⁄ 0 0 0 0

0 1
√2

⁄ 0 0 0 1
√2

⁄ 0 0 0

1
√2

⁄ 0 0 0 1
√2

⁄ 0 1
√2

⁄ 0 0

0 1
√2

⁄ 0 1
√2

⁄ 0 1
√2

⁄ 0 1
√2

⁄ 0

0 0 1
√2

⁄ 0 1
√2

⁄ 0 0 0 1
√2

⁄

0 0 0 1
√2

⁄ 0 0 0 1
√2

⁄ 0

0 0 0 0 1
√2

⁄ 0 1
√2

⁄ 0 1
√2

⁄

0 0 0 0 0 1
√2

⁄ 0 1
√2

⁄ 0
]
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𝑆̂𝑇𝑇𝑦 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 − 𝑖

√2
⁄ 0 −𝑖

√2
⁄ 0 0 0 0 0

𝑖
√2

⁄ 0 −𝑖
√2

⁄ 0 −𝑖
√2

⁄ 0 0 0 0

0 𝑖
√2

⁄ 0 0 0 −𝑖
√2

⁄ 0 0 0

𝑖
√2

⁄ 0 0 0 −𝑖
√2

⁄ 0 −𝑖
√2

⁄ 0 0

0 𝑖
√2

⁄ 0 𝑖
√2

⁄ 0 −𝑖
√2

⁄ 0 −𝑖
√2

⁄ 0

0 0 𝑖
√2

⁄ 0 𝑖
√2

⁄ 0 0 0 −𝑖
√2

⁄

0 0 0 𝑖
√2

⁄ 0 0 0 −𝑖
√2

⁄ 0

0 0 0 0 𝑖
√2

⁄ 0 𝑖
√2

⁄ 0 −𝑖
√2

⁄

0 0 0 0 0 𝑖
√2

⁄ 0 𝑖
√2

⁄ 0
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑆̂𝑇𝑇𝑧 =

[
 
 
 
 
 
 
 
 
2 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −2]

 
 
 
 
 
 
 
 

 

𝑆̂𝑇𝑇
2 = 𝑆̂𝑇𝑇𝑥

2 + 𝑆̂𝑇𝑇𝑦
2 + 𝑆̂𝑇𝑇𝑧

2 =

[
 
 
 
 
 
 
 
 
6 0 0 0 0 0 0 0 0
0 4 0 2 0 0 0 0 0
0 0 2 0 2 0 0 0 0
0 2 0 4 0 0 0 0 0
0 0 2 0 4 0 2 0 0
0 0 0 0 0 4 0 2 0
0 0 0 0 2 0 2 0 0
0 0 0 0 0 2 0 4 0
0 0 0 0 0 0 0 0 6]

 
 
 
 
 
 
 
 

 

 By diagonalizing the 𝑆̂𝑇𝑇
2  matrix, we retrieve the pure spin eigenvectors and eigenvalues: 
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𝑆̂𝑇𝑇
2 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 6 0 0 0 0
0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 6]

 
 
 
 
 
 
 
 

 

𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠: 
1

√3

[
 
 
 
 
 
 
 
 

0
0
1
0

−1
0
1
0
0 ]

 
 
 
 
 
 
 
 

,
1

√2

[
 
 
 
 
 
 
 
 

0
1
0

−1
0
0
0
0
0 ]

 
 
 
 
 
 
 
 

,
1

√2

[
 
 
 
 
 
 
 
 

0
0
1
0
0
0

−1
0
0 ]

 
 
 
 
 
 
 
 

,
1

√2

[
 
 
 
 
 
 
 
 

0
0
0
0
0
1
0

−1
0 ]

 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
1
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

,
1

√2

[
 
 
 
 
 
 
 
 
0
1
0
1
0
0
0
0
0]
 
 
 
 
 
 
 
 

,
1

√6

[
 
 
 
 
 
 
 
 
0
0
1
0
2
0
1
0
0]
 
 
 
 
 
 
 
 

,
1

√2

[
 
 
 
 
 
 
 
 
0
0
0
0
0
1
0
1
0]
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
1]
 
 
 
 
 
 
 
 

 

 We can rotate the 𝑆̂𝑇𝑇𝑧 matrix into this new basis to specify the associated ms values with 

each eigenvector, which leads to the following triplet pair eigenstates expanded in the basis of 

uncoupled triplet product states. As can be seen, we expect one state of pure singlet character, 

three of triplet character, and five of quintet character. 

| 𝑇𝑇1 ⟩ =
1

√3
(|00⟩ − |+ −⟩ − |− +⟩) 

| 𝑇𝑇+1
3 ⟩ =

1

√2
(|+0⟩ − |0 +⟩) 

| 𝑇𝑇0
3 ⟩ =

1

√2
(|+ −⟩ − |− +⟩) 

| 𝑇𝑇−1
3 ⟩ =

1

√2
(|0 −⟩ − |−0⟩) 

| 𝑇𝑇+2
5 ⟩ = |+ +⟩ 
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| 𝑇𝑇+1
5 ⟩ =

1

√2
(|+0⟩ + |0 +⟩) 

| 𝑇𝑇0
5 ⟩ =

1

√6
(2|00⟩ + |+ −⟩ + |− +⟩) 

| 𝑇𝑇−1
5 ⟩ =

1

√2
(|0 −⟩ + |−0⟩) 

| 𝑇𝑇−2
5 ⟩ = |− −⟩ 

Triplet Pair Spin Hamiltonian 

 We define the spin Hamiltonian similarly to previous reports.6–9 In the conceptualization 

of the spin Hamiltonian, we consider the four unpaired electron spin system with electrons 1 and 

2 localized on triplet A, and electrons 3 and 4 are localized on triplet B. At zero-field, we will 

consider the intratriplet magnetic dipolar interactions, 𝐻̂𝑧𝑓𝑠, and the intertriplet exchange 

interaction, 𝐻̂𝑒𝑥. The intratriplet exchange, intertriplet dipolar interactions are excluded, and spin-

orbit coupling, typically weak in these organic chromophores, is neglected. 

The intratriplet exchange interaction serves to split the energies of the excited singlet S1 

and excited triplet T1 states by a large energy – in pentacene around 1.2 eV – which is necessary 

for singlet fission to be thermodynamically accessible. When considering the triplet pair states, we 

make the assumption that the singly excited singlet state does not interact substantially with the 

triplets, an assumption that underlies our construction of the triplet pair spin operators when we 

carry forward only the triplet subspace from the individual triplet operators. For the intertriplet 

interactions, the exchange is typically dominant, so we disregard the magnetic dipolar interactions 

between electrons localized on separate chromophores, although these can be included as well. 
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We define the spin Hamiltonian below as a summation over the three interactions: 

𝐻̂ = 𝐻̂𝑧𝑒𝑒 + 𝐻̂𝑧𝑓𝑠 + 𝐻̂𝑒𝑥 

The total Zeeman Hamiltonian, 𝐻̂𝑧𝑒𝑒, can be constructed from the Kronecker product of 

the individual Zeeman Hamiltonians defined for triplets A and B that are expressed in terms of the 

triplet spin operators. 

𝐻̂𝑧𝑒𝑒
𝐴,𝐵 = 𝜇𝐵𝑩𝑻 ∙ 𝒈𝑨,𝑩 ∙ 𝑺𝑨,𝑩 = 𝜇𝐵 ∑ 𝐵𝑖𝑔𝑖𝑗

𝐴,𝐵𝑆̂𝑗
𝐴,𝐵

𝑖,𝑗=𝑥,𝑦,𝑧

 

𝐻̂𝑧𝑒𝑒 = 𝐻̂𝑧𝑒𝑒
𝐴 ⊗ 𝐼3 + 𝐼3 ⊗ 𝐻̂𝑧𝑒𝑒

𝐵  

𝒈𝑨,𝑩 = 𝑅𝐴,𝐵𝒈𝑅𝐴,𝐵𝑇
 

𝒈 = [

𝑔𝑥 0 0
0 𝑔𝑦 0

0 0 𝑔𝑧

] 

Here, 𝜇𝐵 is the Bohr magneton. 𝑩𝑻 is the external magnetic field vector defined by the x-, 

y-, and z-components of the field. 𝒈𝑨,𝑩 is the g tensor defined for each triplet that describes the 

coupling between the spin angular momentum and the externally applied field. The g tensor can 

be defined in its principal frame 𝒈. In general, the principal axes of the two spin systems will not 

be aligned with each other nor the externally applied field. As a result, the g tensor can be rotated 

using three Euler angles by the rotation matrices 𝑅𝐴,𝐵. 

The total zero-field splitting Hamiltonian 𝐻̂𝑧𝑓𝑠 may similarly be constructed over the 

Kronecker sum of the individual triplet zero-field splitting Hamiltonians 𝐻̂𝑧𝑓𝑠
𝐴,𝐵

. 

 𝐻̂𝑧𝑓𝑠
𝐴,𝐵 = 𝑺𝑨,𝑩𝑻

∙ 𝑫𝑨,𝑩 ∙ 𝑺𝑨,𝑩 = ∑ 𝑆̂𝑖
𝐴,𝐵 ∙ 𝐷𝑖𝑗

𝐴,𝐵 ∙ 𝑆̂𝑗
𝐴,𝐵

𝑖,𝑗=𝑥,𝑦,𝑧
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𝐻̂𝑧𝑓𝑠 = 𝐻̂𝑧𝑓𝑠
𝐴 ⊗ 𝐼3 + 𝐼3 ⊗ 𝐻̂𝑧𝑓𝑠

𝐵  

𝑫𝑨,𝑩 = 𝑅𝐴,𝐵𝑫𝑅𝐴,𝐵𝑇
 

𝑫 = [

𝐷𝑥 0 0
0 𝐷𝑦 0

0 0 𝐷𝑧

] =

[
 
 
 
 
 −

1

3
𝐷 + 𝐸 0 0

0 −
1

3
𝐷 − 𝐸 0

0 0
2

3
𝐷]

 
 
 
 
 

 

 Here, 𝑫𝑨,𝑩 is the molecular D tensor for triplets A and B. Similarly, to the g tensor, the D 

tensor may be written in its principal frame as 𝑫. The D tensor arising from magnetic dipolar 

coupling is traceless (i.e. 𝑇𝑟(𝑫) = 𝐷𝑥 + 𝐷𝑦 + 𝐷𝑧 = 0) and as a result, the tensor can be 

parametrized using only two values: 𝐷 = 
3

2
𝐷𝑧 and 𝐸 =

1

2
(𝐷𝑥 − 𝐷𝑦). As with the g tensor, the D 

tensor is defined in the molecular frame, and principal axes for each triplet may not be aligned 

with each other or the magnetic field. As a result, we can apply an arbitrary rotation 𝑅𝐴,𝐵 to the D 

tensor to define a particular intertriplet orientation as well as the orientations with respect to the 

applied field. 

 To describe the exchange interaction between triplets A and B, we define the exchange 

Hamiltonian 𝐻̂𝑒𝑥 as follows:10 

𝐻̂𝑒𝑥 = 𝑺̂𝑨𝑻
∙ 𝑱 ∙ 𝑺̂𝑩 = ∑ 𝐽𝑖𝑗𝑆̂𝑖

𝐴 ⊗ 𝑆̂𝑗
𝐵

𝑖,𝑗=𝑥,𝑦,𝑧

 

 In molecular systems, the isotropic exchange is typically the dominant portion of the 

exchange interaction. Accordingly, we can simplify the expression for 𝐻̂𝑒𝑥 as follows where we 

define the scalar exchange coupling constant as 𝐽𝑖𝑠𝑜 = 𝐽. 
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𝐻̂𝑒𝑥 = 𝐽(𝑆̂𝑥
𝐴 ⊗ 𝑆̂𝑥

𝐵 + 𝑆̂𝑦
𝐴 ⊗ 𝑆̂𝑦

𝐵 + 𝑆̂𝑧
𝐴 ⊗ 𝑆̂𝑧

𝐵) 

 We will provide an illustrative example of the construction of the spin Hamiltonian matrix 

representation under the assumption that the molecular axes of the two triplets, and their respective 

g and D tensor principal axes, are aligned with each other. We use a general magnetic field vector 

𝑩𝑻 = [𝐵𝑥 𝐵𝑦 𝐵𝑧] and use the triplet Cartesian spin operators we defined previously. 

𝐻̂𝑧𝑒𝑒
𝐴,𝐵 = 𝜇𝐵[𝐵𝑥 𝐵𝑦 𝐵𝑧] ∙ [

𝑔𝑥 0 0
0 𝑔𝑦 0

0 0 𝑔𝑧

] ∙ [

𝑆̂𝑥
𝐴,𝐵

𝑆̂𝑦
𝐴,𝐵

𝑆̂𝑧
𝐴,𝐵

] = 𝜇𝐵(𝐵𝑥𝑔𝑥𝑆̂𝑥
𝐴,𝐵 + 𝐵𝑦𝑔𝑦𝑆̂𝑦

𝐴,𝐵 + 𝐵𝑧𝑔𝑧𝑆̂𝑧
𝐴,𝐵) 

𝐻̂𝑧𝑒𝑒
𝐴,𝐵 = 𝜇𝐵 (𝐵𝑥𝑔𝑥

1

√2
[
0 1 0
1 0 1
0 1 0

] + 𝐵𝑦𝑔𝑦

𝑖

√2
[
0 −1 0
1 0 −1
0 1 0

] + 𝐵𝑧𝑔𝑧 [
1 0 0
0 0 0
0 0 −1

]) 

𝐻̂𝑧𝑒𝑒
𝐴,𝐵 =

[
 
 
 
 
 
 𝜇𝐵𝑔𝑧𝐵𝑧

1

√2
𝜇𝐵(𝑔𝑥𝐵𝑥 − 𝑖𝑔𝑦𝐵𝑦) 0

1

√2
𝜇𝐵(𝑔𝑥𝐵𝑥 + 𝑖𝑔𝑦𝐵𝑦) 0

1

√2
𝜇𝐵(𝑔𝑥𝐵𝑥 − 𝑖𝑔𝑦𝐵𝑦)

0
1

√2
𝜇𝐵(𝑔𝑥𝐵𝑥 + 𝑖𝑔𝑦𝐵𝑦) −𝜇𝐵𝑔𝑧𝐵𝑧 ]

 
 
 
 
 
 

 

 Using the triplet Zeeman Hamiltonians, we can construct the triplet pair Zeeman 

Hamiltonian and rotate it into the coupled basis. As we defined the spin operators, the rows and 

columns are ordered from lowest to highest multiplicity (e.g S = 0, S = 1, S = 2) and highest Ms 

value to lowest (e.g. Ms = +2, Ms = +1, Ms = 0, Ms = -1, Ms = -2). 

𝐻̂𝑧𝑒𝑒 = 𝐻̂𝑧𝑒𝑒
𝐴 ⊗ 𝐼3 + 𝐼3 ⊗ 𝐻̂𝑧𝑒𝑒

𝐵  
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𝐻̂𝑧𝑒𝑒

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0

0 𝜇𝐵𝑔𝑧𝐵𝑧

1

√2
𝜇𝐵(𝑔𝑥𝐵𝑥 − 𝑖𝑔𝑦𝐵𝑦) 0 0 0 0 0 0

0
1

√2
𝜇𝐵(𝑔𝑥𝐵𝑥 + 𝑖𝑔𝑦𝐵𝑦) 0

1

√2
𝜇𝐵(𝑔𝑥𝐵𝑥 − 𝑖𝑔𝑦𝐵𝑦) 0 0 0 0 0

0 0
1

√2
𝜇𝐵(𝑔𝑥𝐵𝑥 + 𝑖𝑔𝑦𝐵𝑦) −𝜇𝐵𝑔𝑧𝐵𝑧 0 0 0 0 0

0 0 0 0 2𝜇𝐵𝑔𝑧𝐵𝑧 𝜇𝐵(𝑔𝑥𝐵𝑥 − 𝑖𝑔𝑦𝐵𝑦) 0 0 0

0 0 0 0 𝜇𝐵(𝑔𝑥𝐵𝑥 + 𝑖𝑔𝑦𝐵𝑦) 𝜇𝐵𝑔𝑧𝐵𝑧 𝜇𝐵(𝑔𝑥𝐵𝑥 − 𝑖𝑔𝑦𝐵𝑦) 0 0

0 0 0 0 0 𝜇𝐵(𝑔𝑥𝐵𝑥 + 𝑖𝑔𝑦𝐵𝑦) 0
√6

2
𝜇𝐵(𝑔𝑥𝐵𝑥 − 𝑖𝑔𝑦𝐵𝑦) 0

0 0 0 0 0 0
√6

2
𝜇𝐵(𝑔𝑥𝐵𝑥 + 𝑖𝑔𝑦𝐵𝑦) −𝜇𝐵𝑔𝑧𝐵𝑧 𝜇𝐵(𝑔𝑥𝐵𝑥 − 𝑖𝑔𝑦𝐵𝑦)

0 0 0 0 0 0 0 𝜇𝐵(𝑔𝑥𝐵𝑥 + 𝑖𝑔𝑦𝐵𝑦) −2𝜇𝐵𝑔𝑧𝐵𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 In the limit of an isotropic g-tensor (𝑔𝑥 = 𝑔𝑦 = 𝑔𝑧 = 𝑔𝑒 = 𝑔), 𝐻̂𝑧𝑒𝑒 is independent of the 

orientation of the molecular frame with respect to the external field. As a result, we can take the 

magnetic field vector purely along the quantization axis 𝐵𝑧 (i.e. 𝐵𝑧 = 𝐵) and obtain a simplified, 

diagonal 𝐻̂𝑧𝑒𝑒: 

𝐻̂𝑧𝑒𝑒 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0
0 𝜇𝐵𝑔𝐵 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −𝜇𝐵𝑔𝐵 0 0 0 0 0
0 0 0 0 2𝜇𝐵𝑔𝐵 0 0 0 0
0 0 0 0 0 𝜇𝐵𝑔𝐵 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −𝜇𝐵𝑔𝐵 0
0 0 0 0 0 0 0 0 −2𝜇𝐵𝑔𝐵]

 
 
 
 
 
 
 
 

 

 We next compute the zero-field splitting Hamiltonian 𝐻̂𝑧𝑓𝑠 and rotate it into the coupled 

basis. 
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𝐻̂𝑧𝑓𝑠
𝐴,𝐵 = [𝑆̂𝑥

𝐴,𝐵 𝑆̂𝑦
𝐴,𝐵 𝑆̂𝑧

𝐴,𝐵] ∙

[
 
 
 
 
 −

1

3
𝐷 + 𝐸 0 0

0 −
1

3
𝐷 − 𝐸 0

0 0
2

3
𝐷]

 
 
 
 
 

∙ [

𝑆̂𝑥
𝐴,𝐵

𝑆̂𝑦
𝐴,𝐵

𝑆̂𝑧
𝐴,𝐵

]

= (−
1

3
𝐷 + 𝐸) 𝑆̂𝑥

𝐴,𝐵2
+ (−

1

3
𝐷 − 𝐸) 𝑆̂𝑦

𝐴,𝐵2
+

2

3
𝐷𝑆̂𝑧

𝐴,𝐵2

= 𝐷 (𝑆̂𝑧
𝐴,𝐵2

−
1

3
𝑆̂2) + 𝐸(𝑆̂𝑥

𝐴,𝐵2
− 𝑆̂𝑦

𝐴,𝐵2
) 

𝐻̂𝑧𝑓𝑠
𝐴,𝐵 =

[
 
 
 
 
 
1

3
𝐷 0 𝐸

0 −
2

3
𝐷 0

𝐸 0
1

3
𝐷]

 
 
 
 
 

 

𝐻̂𝑧𝑓𝑠 =

[
 
 
 
 
 
1

3
𝐷 0 𝐸

0 −
2

3
𝐷 0

𝐸 0
1

3
𝐷]

 
 
 
 
 

⊗ [
1 0 0
0 1 0
0 0 1

] + [
1 0 0
0 1 0
0 0 1

] ⊗

[
 
 
 
 
 
1

3
𝐷 0 𝐸

0 −
2

3
𝐷 0

𝐸 0
1

3
𝐷]
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𝐻̂𝑧𝑓𝑠 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0

2

√3
𝐸 0

2√2

3
𝐷 0

2

√3
𝐸

0 −
1

3
𝐷 0 −𝐸 0 0 0 0 0

0 0
2

3
𝐷 0 0 0 0 0 0

0 −𝐸 0 −
1

3
𝐷 0 0 0 0 0

2

√3
𝐸 0 0 0

2

3
𝐷 0

√6

3
𝐸 0 0

0 0 0 0 0 −
1

3
𝐷 0 𝐸 0

2√2

3
𝐷 0 0 0

√6

3
𝐸 0 −

2

3
𝐷 0

√6

3
𝐸

0 0 0 0 0 𝐸 0 −
1

3
𝐷 0

2

√3
𝐸 0 0 0 0 0

√6

3
𝐸 0

2

3
𝐷

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 As shown above, 𝐻̂𝑧𝑓𝑠 is not diagonal in the coupled basis. Thus, the eigenstates of the 

total spin Hamiltonian 𝐻̂ will not all strictly be of pure spin multiplicity 𝑆 or 𝑀𝑠. In the limit of 

large exchange (𝐽 ≫ 𝐷) or high magnetic fields, the zero-field splitting becomes a small 

contribution to the overall spin Hamiltonian, and thus the eigenstates of 𝐻̂ approach the pure spin 

coupled basis we obtained by diagonalization of the 𝑆̂2 operator. Still, by examination of 𝐻̂𝑧𝑓𝑠, 

there are off-diagonal elements connecting the | (𝑇𝑇)0
1 ⟩ state with | (𝑇𝑇)0

5 ⟩ depending on the 

parameter 𝐷 and | (𝑇𝑇)±2
5 ⟩ depending on the parameter 𝐸. If the initially generated triplet pair 

state of singlet fission is the pure singlet state | (𝑇𝑇)0
1 ⟩, these off-diagonal elements allow for the 

population of the quintet sublevels, which we can probe by EPR spectroscopy. 

Last, we construct the exchange Hamiltonian 𝐻̂𝑒𝑥 using only the isotropic component of 

the J tensor and rotate it into the coupled basis. 
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𝐻̂𝑒𝑥 = 𝐽 (
1

√2
[
0 1 0
1 0 1
0 1 0

] ⊗
1

√2
[
0 1 0
1 0 1
0 1 0

] +
𝑖

√2
[
0 −1 0
1 0 −1
0 1 0

] ⊗
𝑖

√2
[
0 −1 0
1 0 −1
0 1 0

]…

+ [
1 0 0
0 0 0
0 0 −1

] ⊗ [
1 0 0
0 0 0
0 0 −1

]) 

𝐻̂𝑒𝑥 =

[
 
 
 
 
 
 
 
 
−2𝐽 0 0 0 0 0 0 0 0
0 −𝐽 0 0 0 0 0 0 0
0 0 −𝐽 0 0 0 0 0 0
0 0 0 −𝐽 0 0 0 0 0
0 0 0 0 𝐽 0 0 0 0
0 0 0 0 0 𝐽 0 0 0
0 0 0 0 0 0 𝐽 0 0
0 0 0 0 0 0 0 𝐽 0
0 0 0 0 0 0 0 0 𝐽]

 
 
 
 
 
 
 
 

 

 The isotropic exchange Hamiltonian is diagonal in the coupled basis. As can be observed, 

the S = 0 singlet state will be separated from the S = 1 triplets by 𝐽 and by the S = 2 quintet manifold 

by 3𝐽. By the convention chosen, a positive 𝐽 value places the singlet state lowest in energy. 

 We can then write the total spin Hamiltonian with the magnetic field aligned along the 

molecular z-axis. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −2𝐽 0 0 0

2

√3
𝐸 0

√6

3
𝐷 0

2

√3
𝐸

0 𝜇𝐵𝑔𝐵 −
1

3
𝐷 − 𝐽 0 −𝐸 0 0 0 0 0

0 0
2

3
𝐷 − 𝐽 0 0 0 0 0 0

0 −𝐸 0 −𝜇𝐵𝑔𝐵 −
1

3
𝐷 − 𝐽 0 0 0 0 0

2

√3
𝐸 0 0 0 2𝜇𝐵𝑔𝐵 +

2

3
𝐷 + 𝐽 0

√6

3
𝐸 0 0

0 0 0 0 0 𝜇𝐵𝑔𝐵 −
1

3
𝐷 + 𝐽 0 𝐸 0

√6

3
𝐷 0 0 0

√6

3
𝐸 0 −

2

3
𝐷 + 𝐽 0

√6

3
𝐸

0 0 0 0 0 𝐸 0 −𝜇𝐵𝑔𝐵 −
1

3
𝐷 + 𝐽 0

2

√3
𝐸 0 0 0 0 0

√6

3
𝐸 0 −2𝜇𝐵𝑔𝐵 +

2

3
𝐷 + 𝐽

]
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