Appendix C:

Triplet Pair Spin Operators and Spin Hamiltonian
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Triplet Pair Spin Operators

The triplet pair eigenstates may be constructed by standard rules of angular momentum
addition as we will show below. We first begin by defining the |a) and |B) basis functions in
matrix form in addition to the Pauli matrices for the Cartesian components of a single electron spin

operator that operate on these basis functions.'

0=}

From here, there are two potential routes to generating the triplet pair eigenstates. The first
is the traditional route used by Merrifield by defining two sets of triplet eigenfunctions and
corresponding spin operators and taking their tensor products to generate the nine triplet pair
eigenstates.># The second was outlined by Scholes in 2015, by generating the spin operators for
four electron basis functions and factoring the uncoupled basis into the triplet pair basis assuming

the two triplets are distinguishable.®

To define the triplet pair states in the vein of Merrifield, we must first construct triplet

eigenstates and spin operators in the coupled two-electron basis. For two electrons, we can define
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the uncoupled set of basis states as the tensor (Kronecker) product, denoted by &, of the individual

|a) and |B) basis functions:

N
ey = 1) @ lay = [ 3] ® [o] = |1
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The spin operators in the uncoupled basis are similarly constructed by summing over the
following Kronecker products where I2 represents the 2x2 identity matrix, §x_y,2 represents the
total two-electron spin operator for each Cartesian coordinate, and SAlx,y,Z and SAZx,y,Z represent the

Cartesian spin operators for electron 1 and 2, respectively:

Stot Yz — Slx,y,z QI +1,® SZx,y,z
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As can be seen, the $? operator is not diagonal in the uncoupled basis. Specifically, |af)
and |Ba) are not eigenstates, i.e. they are not states of pure spin multiplicity. The elements
(aa|S?|aa) and (BB|S?|BB) are both 2, consistent with the expected eigenvalue S(S+1) for a
triplet S = 1, and the corresponding matrix elements of the S, operator give ms values of +1 and -

1, respectively. We can diagonalize the $? matrix to retrieve the eigenvalues and associated

eigenvectors:

00 0 0
~_ |0 2 00
=10 0 2 0

00 0 2

0 1 0] [0

eigenvectors:i 1 0 i o
V2 =11'|of’vz2|1]’|0

0 1

0 0
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This provides us a set of eigenvectors in the coupled spin basis |S, M) that are pure singlet
and triplet functions (S = 0 and S=1 respectively):

1

10,0) = |S) = 7

(laB) = |Ba))

1
11,0) = To) =ﬁ(|aﬁ) +|Ba))

11, +1) = |T;) = |aa)
|1,-1) = |T_) = |BB)

From these eigenvectors we can construct a rotation matrix to transform the individual
Cartesian spin operators into the coupled |S, M) basis; alternatively, we can directly construct the

matrix from the Clebsch-Gordon coefficients:

1 1
. lz © [z O
~ -1 1
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o 0 0 1
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As can be seen, the spin operators in the coupled |S, M) basis are block diagonal — no matrix
elements connect the singlet and triplet eigenfunctions. Furthermore, all elements associated with
the |S) eigenstate are 0, which makes sense because all components of the net spin vector should
sum to zero for a singlet. As a result, we will truncate the matrices to carry forward only the triplet

eigenstates to generate the triplet pair functions:

0 1/\/5 0
s _|1 o 1
$rx ="/ /3 V7
0 1/\/7 0
0 —i/\/7 0
Sry = l/\/g 0 _L/\/g
0 i/\/i 0
1 0 0
§TZ=[0 0 0]
0 0 -1
1 0 0
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0 0 1
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We then take the Kronecker products of our triplet basis functions to generate uncoupled

triplet pair basis states.
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We build triplet pair spin operators in analogous fashion by the following summation of

Kronecker products:

STTx,y,Z = STx,y,z QI; +1I;® STx,y,z

0 1/\/5 0 1/\/5 o o0 0 0 0

1/\/2 0 1/ﬁ 0 1/\/5 o 0 0 0

0 1/\/5 o 0 0 1/\/5 0o 0 0
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By diagonalizing the $2. matrix, we retrieve the pure spin eigenvectors and eigenvalues:
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We can rotate the Sy, matrix into this new basis to specify the associated ms values with
each eigenvector, which leads to the following triplet pair eigenstates expanded in the basis of
uncoupled triplet product states. As can be seen, we expect one state of pure singlet character,

three of triplet character, and five of quintet character.
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Triplet Pair Spin Hamiltonian

We define the spin Hamiltonian similarly to previous reports.®® In the conceptualization
of the spin Hamiltonian, we consider the four unpaired electron spin system with electrons 1 and
2 localized on triplet A, and electrons 3 and 4 are localized on triplet B. At zero-field, we will

consider the intratriplet magnetic dipolar interactions, ﬁzfs, and the intertriplet exchange

interaction, H,,. The intratriplet exchange, intertriplet dipolar interactions are excluded, and spin-

orbit coupling, typically weak in these organic chromophores, is neglected.

The intratriplet exchange interaction serves to split the energies of the excited singlet S;
and excited triplet Ty states by a large energy — in pentacene around 1.2 eV — which is necessary
for singlet fission to be thermodynamically accessible. When considering the triplet pair states, we
make the assumption that the singly excited singlet state does not interact substantially with the
triplets, an assumption that underlies our construction of the triplet pair spin operators when we
carry forward only the triplet subspace from the individual triplet operators. For the intertriplet
interactions, the exchange is typically dominant, so we disregard the magnetic dipolar interactions

between electrons localized on separate chromophores, although these can be included as well.
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We define the spin Hamiltonian below as a summation over the three interactions:

— — —

H= Hyee + Hzfs + Hey

The total Zeeman Hamiltonian, H,,,, can be constructed from the Kronecker product of
the individual Zeeman Hamiltonians defined for triplets A and B that are expressed in terms of the

triplet spin operators.

Hyee = upBT - g*% - S48 = z Bigg"BﬁjA,B

L,j=x,y,Z
Hee=HA, QL +1;Q HE
zee zee 3 3 zee

gA,B — RA,BgRA,BT

gx O 0
g =10 gy 0
0 0 g,

Here, up is the Bohr magneton. BT is the external magnetic field vector defined by the x-,
y-, and z-components of the field. g4 is the g tensor defined for each triplet that describes the
coupling between the spin angular momentum and the externally applied field. The g tensor can
be defined in its principal frame g. In general, the principal axes of the two spin systems will not
be aligned with each other nor the externally applied field. As a result, the g tensor can be rotated

using three Euler angles by the rotation matrices R4E.

The total zero-field splitting Hamiltonian ﬁzfs may similarly be constructed over the

Kronecker sum of the individual triplet zero-field splitting Hamiltonians ITIZA];’;’.

7AB _ cABT . nAB . cAB _ GAB . nAB . ¢AB
Hyl=s DAB . §AB — Z S -Diy" - S

L,j=xy,z
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ﬁzfs = H\;‘fs QL+ Hffs

DA,B — RA,BDRA,BT

— 1 -
—=D+E 0 0
D, 0 0 3 )
D=|0 D, 0= 0 _§D_E 0
0 0 D, 2
=D
0 0 30

Here, D4B is the molecular D tensor for triplets A and B. Similarly, to the g tensor, the D
tensor may be written in its principal frame as D. The D tensor arising from magnetic dipolar

coupling is traceless (i.e. Tr(D) =D, + D, + D, =0) and as a result, the tensor can be
parametrized using only two values: D = %Dz and E = %(Dx — D,)). As with the g tensor, the D

tensor is defined in the molecular frame, and principal axes for each triplet may not be aligned
with each other or the magnetic field. As a result, we can apply an arbitrary rotation R4 to the D
tensor to define a particular intertriplet orientation as well as the orientations with respect to the

applied field.

To describe the exchange interaction between triplets A and B, we define the exchange

Hamiltonian H,, as follows:°

- T — A A
Hex:SA ']'SB: Z ]ijSLA®SjB

Lj=x,y,z

In molecular systems, the isotropic exchange is typically the dominant portion of the
exchange interaction. Accordingly, we can simplify the expression for H,, as follows where we

define the scalar exchange coupling constant as J;5, = J.
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Hex =J($2 ® S7 + 5 @ 57 + 87 ® $F)

We will provide an illustrative example of the construction of the spin Hamiltonian matrix
representation under the assumption that the molecular axes of the two triplets, and their respective
g and D tensor principal axes, are aligned with each other. We use a general magnetic field vector
BT = [B, B, B;]and use the triplet Cartesian spin operators we defined previously.

9. 0 0] [$°

AAS = ug[Bx By B,]-|0 g, O0f-|S7
_O 0 g, &AB

oy (010 ;[0 =1 0 10 0
Hyée = tp| Bx9x—=|1 0 1|(+Byg,—([1 0 —-1|+B,g9,|/0 0 O
\/E-O 1 0 V2 0 1 0 0 0 -1
1 .
Up9.B; EMB (ngx - LgyBy) 0
_ 1 _ 1 _
H;él: = ﬁ#B(ngx + lgyBy) 0 ﬁ.uB(ngx - lgyBy)
1 .
0 EMB (ngx + LgyBy) —HBYzB;

Using the triplet Zeeman Hamiltonians, we can construct the triplet pair Zeeman
Hamiltonian and rotate it into the coupled basis. As we defined the spin operators, the rows and
columns are ordered from lowest to highest multiplicity (e.g S =0, S =1, S = 2) and highest Ms

value to lowest (e.g. Ms=+2, Ms=+1, Ms = 0, Ms = -1, Ms = -2).

Hzee = Héqee QL+ HzBee
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In the limit of an isotropic g-tensor (g, = gy = gz = ge = 9), H,.. is independent of the
orientation of the molecular frame with respect to the external field. As a result, we can take the
magnetic field vector purely along the quantization axis B, (i.e. B, = B) and obtain a simplified,

diagonal H,,,:

0 0 0 0 0 0 0 0 0

0 uggB 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 —uggB 0 0 0 0 0
H., =[0 0 0 0 2uggB 0 0 0 0

0 0 0 0 0 uggB 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 —puggB 0

0 0 0 0 0 0 0 0 —2upgB]

We next compute the zero-field splitting Hamiltonian ﬁzfs and rotate it into the coupled

basis.
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As shown above, ﬁzfs is not diagonal in the coupled basis. Thus, the eigenstates of the
total spin Hamiltonian A will not all strictly be of pure spin multiplicity S or M. In the limit of
large exchange (J > D) or high magnetic fields, the zero-field splitting becomes a small
contribution to the overall spin Hamiltonian, and thus the eigenstates of H approach the pure spin
coupled basis we obtained by diagonalization of the $2 operator. Still, by examination of Hzfs,
there are off-diagonal elements connecting the | *(TT),) state with | >(TT),) depending on the
parameter D and | °(TT)..) depending on the parameter E. If the initially generated triplet pair
state of singlet fission is the pure singlet state | 1(TT)O), these off-diagonal elements allow for the

population of the quintet sublevels, which we can probe by EPR spectroscopy.

Last, we construct the exchange Hamiltonian H,, using only the isotropic component of

the J tensor and rotate it into the coupled basis.
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The isotropic exchange Hamiltonian is diagonal in the coupled basis. As can be observed,
the S = 0 singlet state will be separated from the S = 1 triplets by J and by the S = 2 quintet manifold

by 3J. By the convention chosen, a positive J value places the singlet state lowest in energy.

We can then write the total spin Hamiltonian with the magnetic field aligned along the

molecular z-axis.

2] 0 0 0 z E 0 \/gD 0 2 E
V3 3 3
1
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