
CMOS Imaging Technology with Embedded Early Image

Processing

Thesis by

Christophe Jean-Michel Basset

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended April 6, 2007)



ii

c© 2007

Christophe Jean-Michel Basset

All Rights Reserved



iii

A Mimi,

A Françoise, notre Rose.



iv

Acknowledgements

I would like to start by thanking the members of my committee, who have helped and

supported me at various stages of my research. Professor Pietro Perona, my academic

advisor, Dr. Bedabrata Pain, my research advisor who suggested a partnership with JPL

and the CMOS imaging group, Professors Ali Hajimiri, Christof Koch, Alain Martin, and

Dr. Bimal Mathur who gave me valuable feedback and perspective on my work.

This adventure would not have been possible without the help of the many people whose

path I crossed during my years at Caltech and at JPL. On a scientific level, I would like to

express my gratitude to Guang Yang who jump-started my research by teaching me proper

design techniques as well as confidence in my work and abilities. Everyone in the Active

Pixel Sensors group contributed to a friendly, supportive, and scientifically stimulating

environment. Thanks to my long-time officemate, Pavani Peddada, I had a friend to keep

me in track when the goal seemed so far away.

When I first arrived at Caltech, I had little more than a vague idea of what was lying

ahead and no funding at all. I am indebted to Don Skelton for hiring me as an assistant for

his physics freshman and sophomore laboratory courses as soon as I arrived in California.

This lead to a partnership with the physics department that lasted until the end of my

Ph.D., with the continued help from Frank Porter who always managed to squeeze me into

his budget. These years of teaching, the other instructors I worked with, and most of all my

students have taught me more about science and human interaction than I ever imagined

possible. When Virginio Sannibale took over the supervision of the lab, I found myself with

a great supporter. With his unfailing trust and encouragements, he helped me tremendously

when I needed the flexibility to organize my teaching duties around my research and my

deadlines.

During such a long ordeal, it was a challenge to keep my sanity. When not playing

the guitar or the flute to relieve stress, cycling was always very effective at getting rid of



v

excess negative energy. My time with the cycling club was lots of fun and is full of awesome

memories. A special thank you goes to Pierre Moreels who accompanied me riding up

countless hills and on (much) longer rides than he ever wanted to do.

Thank you to all my friends. I am blessed to have too many to name them all here.

Thank you Kari for your support, kindness, love, and for proofreading this thesis. Finally,

thank you to my family who encouraged me the entire time.



vi

Abstract

As imaging technology evolves, so does the need for accurate, low-power and high-data-rate

low-level image processing in a variety of computationally intensive vision applications.

These applications include optical-flow computation, autonomous navigation, object avoid-

ance or intercept, real-time target tracking, and recognition. To reach this goal, a single

chip was developed, which functions as a camera able to preprocess the image in real time.

It processes images through a convolution filter with a user-chosen kernel.

One of the particulars of this project is to combine the processing unit with an active

pixel sensors (APS) pixel array. This complementary metal-oxide semiconductor (CMOS)

technology for building imager chips allows on-focal plane signal processing, as opposed to

their charge-coupled device (CCD) counterparts that need to serially output the flow of

pixels to an external processing chip. The filtering can therefore be implemented as a fast,

low-power analog circuit.

Convolution is achieved by matching a kernel to an image using a computation unit.

The chip has an integrated imager array and a digital memory large enough to store a

generic, up-loadable kernel. When recognizing or tracking a target, the uploaded kernel

represents the template. Other convolution filters are implemented by setting the kernel to

the set of parameters corresponding to the desired task. Filtering is performed through a

column-parallel architecture of computing units, so real time computation can be achieved.

Several versions of the convolution circuit are investigated. They have been fabricated,

fully tested and characterized. A number of important design changes have occurred, either

to address issues that could be improved on or to experiment with alternative approaches.

Timed and geometrical amplifier controls have also been investigated. By implementing

image arrays of different sizes, we also demonstrate the scalability of the architecture in the

spatial domain to an arbitrarily sized imager. Test results show the analog convolution chip

is a viable solution for highly integrated embedded early image processing.
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Chapter 1

Introduction

1.1 On-chip image processing

While high-speed imagers with varying degrees of performance are being developed [1, 2],

and high speed digital processors exist, signal transfer from the imager, and processing of

images at a high update rate, as required in autonomous navigation or object-avoidance

scenarios, remains a challenge. Existing systems involving CCD or CMOS imager arrays

combined with an external computing chip [3, 4] are limited both by the sheer volume of

data, as well as by the bottleneck of transferring the data serially from the imager to the

processing chip. These limitations only get worse as larger and larger imaging arrays are

being released regularly on the market. It is now common to find imaging systems with well

over ten million pixels. Transferring such a large amount of data for external processing

demands resources capable of handling the information.

On-focal plane systems on a chip [5] benefit from fully parallel computing which simplify

the interaction between neighboring pixels but at the cost of reducing greatly the fill factor

of the pixels. Communication between non neighboring pixels also becomes an issue. In

addition, in-pixel digital or binary systems [6] do not take advantage of the full precision

of the signal from the imager, as the space restrictions for keeping a manageable pixel size

do not allow the digital precision needed for good-quality imaging. Multichip and digital

systems also suffer from large power consumption [2, 6], and they lack the compactness

required in some embedded applications.

The new single-chip architecture, which was presented in a previous paper [7], incor-

porates a layer of analog early-image processing near but separate from the imager array.

It is built on an active pixel sensor (APS) architecture that operates in a column-parallel



2

basis. Due to this semiparallel approach, the data volume and bandwidth to transfer the

signals from the chip to a postprocessing unit are vastly reduced without enlarging the size

of the pixels and therefore do not compromise the quality of the images. This architecture

enables efficient implementation of high-quality, real-time computational imaging systems.

On-chip implementation of a general-purpose convolution filter allows identification in

real time of areas of interests within the field of view without compromising signal integrity.

On-focal plane integration of image preprocessing allows an efficient implementation of a

variety of computationally intensive applications such as autonomous navigation, object

avoidance or intercept, and recognition.

1.2 Outline

Optical flow calculation in real-time systems is a computationally intensive task, yet com-

mon in vision applications. Fast, low-level execution before the transfer of the image to

an external processor alleviates the load on the processor. However, the calculations re-

quire the evaluation of spatial as well as temporal gradients which are not computed easily

in hardware. An optical flow algorithm that is appropriate for hardware implementation

(either analog or digital) is described in the second chapter, also with the benefits from a

parallel first stage to reduce the load on digital circuits and produce a more compact design.

At the heart of the optical-flow computation is the evaluation of convolutions with known

kernels. The third chapter explains the basics of convolution and why it is a costly operation

in circuit development. The term “cost” is defined, and an algorithm taking advantage of the

semi-parallel architecture of active pixel sensor imagers is presented. Again, the algorithm

is appropriate for both analog and digital implementation. Simulations on real images are

shown to illustrate the correctness of the processing.

A fully digital convolution circuit is presented in the fourth chapter. Described in Verilog

and synthesized on an FPGA, it serves as a benchmark for performance and allows further

validation of the algorithm in a real-time, fully operational system. A layout was generated

to illustrate the size of a full-custom chip using this method. The imager is not integrated

since the layout is extracted exactly from the description that was tested in an FPGA. The

transfer from the pixel array to the computing circuits is a pixel-serial link. An already

fabricated imaging APS chip with an integrated, on-chip analog-to-digital converter [8] is
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used for the demonstration setup.

To improve on the performance and the cost of the digital implementation, an analog

system on a chip is introduced which integrates an active pixel sensor with a real-time

convolution system. The convolution follows the algorithm described in chapter 3. The

analog circuits needed for the convolution chip are described in detail in chapter 5. This is

the first stage of the design process. The main equations used to make design decisions are

developed there.

The design phase of the analog convolution chip is described in chapter six. The operat-

ing conditions of each of the circuit subblocks is analyzed and the corresponding simulation

results are presented. The various interfaces between subblocks, which ensure proper trans-

mission of the information in the entire chip are explained. Influencing the design decisions

are the calculations on the derivation of the main noise sources and their propagation

throughout the chip. They are therefore also part of this chapter.

The layout of the chip directly impacts the performance and therefore plays an important

role in the chain of events to create a circuit. The seventh chapter goes through the specifics

of laying out the analog blocks, the floor plan and the choices made to ensure a compact fit

as well as good operation due to proper layout techniques ensuring good matching between

transistors.

The fabricated computational imager chip was tested to evaluate the performance of

both the imaging capabilities and the computation units. Test techniques specific to each

circuit element are shown in chapter eight. The result of the tests are also detailed as

integrated test structures allow separate testing of all the independent blocks.

The analog convolution chip presented is one possible solution to computing convolution.

This approach and the various other ones are summarized in the concluding chapter with

their respective positive and negative aspects. Possible extensions of the work are also

proposed which would take advantage of scalability properties as well as new fabrication

technologies for developing vertical interconnection structures.
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Chapter 2

Optical Flow for Hardware

Implementation

2.1 Introduction

Determining the optical flow of a video sequence consists of extracting the changes in a series

of images. It implies a system capable of finding the direction and velocity of the image

at each pixel location. Optical flow determination is a common and fundamental image-

processing task. It is used in a variety of vision applications. Examples include robotic vision

systems [9], robotics [10], autonomous vehicle navigation, object avoidance or detection, and

medical imaging [11]. However, an optical flow algorithm is not trivial to implement and

is a computationally intensive tack. This problem can be approached in three different

ways [12] depending on the application and the type of implementation: the frequency-

based analysis [13] which extracts the frequencies of high energy, matching algorithms [14]

where the distance between frame is computed, and the gradient method [14–16]. The

gradient method was chosen and is described below because it can yield an algorithm that

is well suited for hardware implementation.

2.2 Optical flow derivation

The calculation of the optical flow of a sequence of images requires fast determination of

gradients as well as other operations. These operators are not easily implementable in a

hardware architecture so they require some adaptation to produce an efficient solution. The

derivation below is based on the works of Martin [15] and Horn [16] in which some of the

simplifications were removed as they were not needed for this specific implementation.
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The optical flow of a sequence of images is the solution to the following constraints

equation:







∇2u = λ2 (Exu + Eyv + Et)Ex,

∇2v = λ2 (Exu + Eyv + Et)Ey,
(2.1)

where




u

v



 is the optical flow at the current pixel location (i, j).

The variables Ex and Ey represent the spatial gradients of the image in the x and y

direction respectively and Et is the temporal gradient. They are all also evaluated at the

current pixel location(i, j).

The factor λ2 is a smoothness factor that can be chosen depending on the specific

application.

To find the optical flow, we are solving equation (2.1) for




u

v



 at every pixel location

in the image. We first need to estimate the laplacians ∇2u and ∇2v as functions of the

current and previous image frames and solve for u and v.

To compute the laplacian, we introduce ū and v̄ such that:







∇2u = k(ū − u),

∇2v = k(v̄ − v),

where k = 3.

The laplacian can now be approximated by applying a discrete kernel to the u and v

neighborhoods. [16–18]

ū =








1/12 1/6 1/12

1/6 0 1/6

1/12 1/6 1/12








∗








ui−1,j−1 ui,j−1 ui+1,j−1

ui−1,j ui,j ui+1,j

ui−1,j+1 ui,j+1 ui+1,j+1








v̄ =








1/12 1/6 1/12

1/6 0 1/6

1/12 1/6 1/12








∗








vi−1,j−1 vi,j−1 vi+1,j−1

vi−1,j vi,j vi+1,j

vi−1,j+1 vi,j+1 vi+1,j+1








With some algebra and these variables introduced, the optical flow equation reduces to:
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





u = ū − Ex · Exū+Eyv̄+Et

α2+E2
x+E2

y
,

v = v̄ − Ey · Exū+Ey v̄+Et

α2+E2
x+E2

y
,

(2.2)

where α2 = k
λ2 .

Note that to evaluate the optical flow, it is necessary to already know its value (ū and v̄

depend on u and v). The calculation is therefore an iterative process which is not ideal for

real-time hardware implementation. A good approximation is the corresponding




u

v





from the previous frame. To give a reliable answer, the algorithm requires that the optical

flow is assumed to not change much in time from one frame to the next.

To implement the above solution in hardware includes some degree of parallelism to

speed up the computation without affecting the accuracy.

The steps to follow to reach a solution for equation 2.2 for two available frames are:

1. Gradient and laplacian are processed in parallel.

(a) Gradients Ex, Ey: spatial gradients in x and y. Both nearest neighbors would

be used for a second-order approximation:







Ex = I1,0,0 − I−1,0,0,

Ey = I0,1,0 − I0,−1,0.
(2.3)

Et: temporal gradient. Only the previous frame is used. It is a first-order

approximation so only one previous frame needs to be stored in memory.

Et = I0,0,0 − I0,0,−1 (2.4)
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(b) The laplacian is found from the variables ū and v̄:

ū =








1/12 1/6 1/12

1/6 0 1/6

1/12 1/6 1/12








∗








ui−1,j−1,−1 ui,j−1,−1 ui+1,j−1,−1

ui−1,j,−1 ui,j,−1 ui+1,j,−1

ui−1,j+1,−1 ui,j+1,−1 ui+1,j+1,−1








,

v̄ =








1/12 1/6 1/12

1/6 0 1/6

1/12 1/6 1/12








∗








vi−1,j−1,−1 vi,j−1,−1 vi+1,j−1,−1

vi−1,j,−1 vi,j,−1 vi+1,j,−1

vi−1,j+1,−1 vi,j+1,−1 vi+1,j+1,−1








.

(2.5)

With these elements, obtaining the optical flow is a straight forward process as we follow

equation 2.2 to compute new values for the vector




u

v



.

To simplify the hardware implementation, in the next steps we break the equation down

and introduce several intermediate variables that eventually lead to the final result:

2. 





D = α2 + E2
x + E2

y

P = Exū + Ey v̄ + Et

3. 





Px = Ex · P
Py = Ey · P

4. 





Rx = Px

D

Ry =
Py

D

5.

⇒







u = ū − Rx

v = v̄ − Ry

2.3 Digital hardware resources

The five steps described above guarantee that each operator has valid inputs when doing its

computation. All necessary variables are calculated in the previous step. Real-time timing

is achieved through a pipeline architecture. The intermediate calculation for the next pixel
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is done while the next operator is still working on the current pixel position.

Assuming an entirely digital implementation, the cost of the algorithm is estimated in

terms of resources needed. Resources are defined as being basic digital operators such as

adders or multipliers. Depending on the precision sought, they can be implemented as any

size words, their complexity growing accordingly. For example, a 3 × 3 convolution unit is

equivalent to nine multipliers and eight adders. Table 2.1 shows the step during which each

operator must perform its calculation such that the flow is not perturbed and shows the

cost associated with its implementation.

Use of prior knowledge of the convolution coefficients can be an efficient way to reduce

the complexity of the circuit but at the cost of making any evolution or modification of

the algorithm difficult or not possible. Two aspects of the convolution operators are worth

noting.

The matrix operation to calculate both ū and v̄ in equation 2.5 is a standard convolution

which allows for the recycling of the convolution hardware. The cost of sharing is the

serialization of the process (only one operation can be done at any given time) and the need

for a router to guide the data flow for the u and v parameters into the same operator. The

kernel used in both convolutions are identical, so even the coefficients storage can be shared

directly.

Also, in order to calculate the laplacian, the convolution kernel is fixed and can therefore

be hard-wired, sparing the cost of a full, generic multiplier. The middle coefficient being

”0”, the operator only has to work with eight parameters for a 3× 3 window. The trade-off

is that no modification of the kernel would then be possible, including to change the window

size to smooth the image for estimating the gradients [19] or the use of a different kernel

for the laplacian. [18]

The resources described above are sufficient to go through the optical flow computation

steps at one pixel location. When generalizing to an entire imager, the resources must either

be duplicated for parallel or semi-parallel circuits, or reused for a serial implementation. On-

chip wiring becomes significant when dealing with parallel signals. A fully parallel or column

parallel circuit would require a data bus per pixel or per column which is unrealistic. A serial

implementation is therefore necessary, at the cost of reduced execution speed, which is at

least partly compensated by the availability of high speed operators and data transmission

for digital circuits.
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Table 2.1: Sequence of operators and their cost in term of hardware resources used

Step Operation Resources

1. Laplacian for ū and v̄ Two 3×3 convolutions
(9 multiplications and 8 additions)

1. Gradients for Ex, Ey and Et Three differences (adders)

2-3. D Two squares and 3-term adder

2. P Two multiplications and 3-term adder

3. Px, Py Two multiplications

4. Rx, Ry Two divisions

5. u, v Two differences (adders)

In addition to the arithmetic operators listed in table 2.1, the cost of the circuit also

includes the use of memory to store the neighboring pixels (or the partial products) for the

convolution operator. The algorithm also makes use of the data from the previous frame to

estimate the temporal gradient when solving for equation 2.4 so each frame must be stored

in a memory for retrieval during processing of the next incoming frame. A FIFO memory

of one frame size is very well suited for such purpose. The need for the nearest neighbor in

both the x and y direction adds one line to the memory needs.

Similarly, the laplacian of equation 2.5 uses the results from the previous frame for both

the ū and v̄ terms. Their values must be retained for an entire frame, with an extra line for

the neighborhood, adding to the overall memory requirements:

Memory needed = 3 × width × (height + 1) , (2.6)

where each memory point is an eight-, twelve- or sixteen-bit word, depending on the analog

to digital converter used in the digitization of the pixels.

The first-order approximation of the temporal gradient in equation 2.4 is justified by

the memory resources. A second-order approximation would use a sequence of frames, and

an extra frame would have to be stored in a buffer memory, increasing significantly the
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storage requirements. Large temporal changes in the image or complex video scenes would

require more complicated techniques such as a multi-scale approach [20,21]. A second-order

approximation would require both nearest neighbors and would therefore require two frames

to be stored while introducing a full frame latency.

However, although the implementation from Mart́ın et al. [15] uses a first-order approx-

imation of the derivative for both temporal and spatial gradients, this rough approximation

is not so beneficial when dealing with the spatial gradients since the nearest neighbors are

readily available in x with a one-pixel latency and in y with a one-row latency as in equa-

tion 2.3. The added resources are one row in the memory, and the arithmetic resources are

equivalent. A wider windows for the spatial gradient and laplacian results in increasing the

memory to accommodate the larger neighborhood and increases the size of the convolution

engine.

2.4 Analog hardware resources

The implementation of the image flow calculation in a fully digital circuit as described above

suffers from several constraints that impair the circuit and can be improved on by introduc-

ing some elements of analog circuitry when they can help the performance, compactness or

integration of the circuit.

Before any processing, the signals from the pixel array are analog signals (current or

voltage) that can be either processed as is or digitized immediately as required in a fully

digital implementation. By delaying the digitization stage, each pixel provides a single-wire

interface that can be used for column-parallel readout similar to that presented in chapter

5, or fully parallel when such readout capability is available. An interesting technique

for such a system is the use of three-dimensional stacked interconnections [22–24] where

a vertical interchip interface is done through thinned wafer and deep via connections. In

this configuration, the pixel signal can be vertically sent to a low-level processing unit

independently of all other pixels in a completely parallel fashion as illustrated in figure 2.1.

Unlike the in-pixel processing approach which crowds the pixels site, the size of each

pixel is not sacrificed and compact, high-fill-factor pixels are not affected. As in standard

active pixel sensor technology, the readout and computation circuits are sent away from

the imaging array, but thanks to the vertical readout, it is not limited to column-parallel,
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Figure 2.1: Example of a three-layer-stack interconnection: pixel array, analog transforma-
tion and analog to digital conversion interconnected with deep vias.

one row at a time access to the image, which can still be used and have the advantage

of allowing large circuits without expanding the overall footprint of the chip. Computing

circuits that are typically developed inside the pixel site [25–30] can be relocated to a lower

layer with no modification.

Although inserting a fully parallel analog layer as the initial low-level computation does

not affect the output flow-rate of the chip after digitization, it opens the door to new

possibilities that eventually lead to higher performance and eventually to a faster outflow

of data. The two most intuitive ways to take advantage of this are to allow insertion of

extra processing on the fly and to be able to preselect pixels or regions of interest before

digitizing so the serial flow of digital information only handles a smaller amount of data.

Area of the chip layout is an issue for both analog and digital circuits. The cost of pro-

ducing the chip directly depends on it. It also affects the integration with other hardware

where space is limited. Power consumption is also critical in autonomous systems. Compar-

ative studies on laying out basic elements such as multiplier cells and adders [31] show that

analog layout is up to forty times smaller than digital counterpart with significantly lower

power consumption. The digital convolution circuit presented in chapter 4 can also be used

to supplement the analysis. It uses a kernel of size 9×9 pixels, encoded with eight-bit words

and was generated as a digital circuit from a Verilog description synthesized with Mentor

Graphics tools and laid out using standard cells. The layout of its analog counterpart is
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Cell Digital area Analog area

8-bit multiplier 120, 000 µm2 5740 µm2

One-pixel memory 15, 600 µm2 615 µm2

9 × 9 convolution 5.88 mm2 to 16.8 mm2 0.1 mm2

Table 2.2: Area comparison between digital and analog cells

presented in chapter 7.

Note that only the arithmetic units to estimate the convolution are included in this

estimate. The area needed to implement the memory used to buffer the previous frame also

varies depending on the nature of the storage elements. A single capacitive memory cell is

used to store an analog signal. The current memory cell presented in section 5.2.3.1 only

occupies 615µm2 in the layout as shown in the bottom of the pixel analog readout circuit

layout in 7.5. The digital memory on the other hand requires one memory cell per bit of

data. A D flip-flop as used in the chip presented in the next chapters uses an edge-triggered

clock to set the memory. It occupies an area of 1950µm2 on the layout. Assuming eight-bit

analog to digital conversion, each pixel or basic element would be encoded using eight bits.

An eight-bit word therefore occupies 8 × 1950 = 15600µm2, which is 25 times larger than

its analog counterpart. Custom layout geared toward compact optimization (e.g., using

non-overlapping clocks schemes) would result in slightly smaller footprint but would not

make up for such a difference.

While digital systems have the advantage to offer great flexibility, easy implementation,

fast computation speeds and easy to use interface for the chip output, the introduction

of an analog layer before digitization makes single chip implementation easier thanks to

a compact layout and reduces the power consumed in the first stages. The comparison in

term of layout area shown in table 2.2 illustrates the gain when analog cells are used instead

of digital ones through the example of several of the most common cells as well as on the

whole convolution circuit.
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Chapter 3

Convolution

3.1 Image convolution

The convolution of two function f and g, noted f ⊗g, is the measure of the overlap between

the two signals. In the case of images, it represents the similarity of two patches. Convo-

lution of an image with a smaller kernel is done by repeating the basic operation on the

neighborhood of all the pixels of the image. The resulting image has the same size as the

original and shows the locations where the kernel is visually similar to the image. Convolu-

tion is used as a stand-alone operation in digital filters such as orientation filters, low-pass

and smoothing filters, or matched filters for tracking and recognition applications. It is

also used as part of a more complex computation like the optical flow estimate described in

chapter 2 where it is used to calculate both the spatial and temporal gradients of sequences

of images.

Let I be an image of arbitrary size. The general expression for discrete convolution

[32, 33] at location (x, y) in the image I with a kernel K of size n × n is given by the

expression:

C(x, y) = (I ⊗ K)|x,y =
n−1∑

i=0

n−1∑

j=0

(

Ix−n−1

2
+i,y−n−1

2
+j × Ki,j

)

.

Another way to look at convolution is at the pixel level rather than the image level.

That is, finding the transformation of each pixel in an independent step and repeat it on

each pixel of the image. The concept of image coordinates (x, y) is no longer used, and the

convolution core only views two small n × n image patches I and K on which it performs

the sum of pixel-wise multiplications. The resulting expression (equation 3.1) is not only
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simpler as it only handles a small amount of data, it is also well suited to the goal of

hardware implementation. Each pixel of the convolved image being derived independently

of all the others, it implicitly introduces the concept of parallel processing that will be

exploited when designing the circuit.

I ⊗ K =

n−1∑

i=0

n−1∑

j=0

(Ii,j × Ki,j) (3.1)

Equation 3.1 is only a rewrite of the general expression and therefore does not affect

the rendering of the output image. Its use is justified by the algorithm development which

becomes more intuitive when approached at the pixel level, as detailed in section 3.2 below.

Some examples of image convolution with different kernels are shown in section 3.3 on

simulation where a Matlab implementation of the algorithm described in the next section

of this chapter is presented.

3.2 Algorithm

3.2.1 Overview

Implementing the convolution algorithm on a chip requires that the circuit be well suited to

the system it is going to be integrated in and its operation. A hardware-oriented algorithm

had to be developed that would take advantage of both the environment used (analog or

digital, system on a chip or external processing system) and the interface (serial, parallel or

semi-parallel) with the components of the imaging setup. What is meant by “setup” is the

complete system interfacing an imager, either off the shelf or custom CMOS or CCD pixel

matrix, with the convolution circuit operating in the digital or analog domain. Depending

on the type of imager and mode of operation, the information from the pixels can be handled

by a computation unit in three ways:

1. Serial interface. A serial interface providing one pixel at a time to the computation

unit is used in multiple-chip systems to preserve external resources by minimizing the

wiring between chips. [3,34,35] The image is extracted one pixel at a time, prohibiting

any kind of parallel processing unless a frame buffer is implemented.
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2. Fully parallel. Fully parallel architectures add computational circuits and intercon-

nections between the pixels on the photodiode site. [5, 25–30, 36–38] The fill factor is

small as most of the pixel site is filled by other elements. Still, limited space remains

for interconnections in the pixel matrix so each pixel can only connect to its nearest

neighbors.

3. Semi-parallel. Active pixel sensor (APS) imagers relocate the computation outside

of the pixel matrix. Some computation or memorization can still be done inside the

pixel [39]; it has the advantage of being able to keep the fill factor large while a column-

parallel readout allow semi-parallel computation. Line buffers or stored partial results

are used to use information from neighbors in different rows. [40–42]

The data flow in the convolution circuit is initialized in the pixel and therefore defines

the interface to the first stage of the computation element. Since the final application for this

project is an integrated fully custom active pixel sensor which operates in column-parallel

mode, the algorithm uses this format to take advantage of that scheme rather than buffer

the whole frame (or part of the frame) before starting computation as a generic processor.

On the contrary, the digital implementation of the convolution chip receives a serial flow of

pixels from an external imager. The incoming pixels are buffered until enough information

has been read and is ready for use in the calculations. See chapter 4 for the details and

specificities of the digital circuit.

In a column-parallel imager architecture, all the pixels of a row are made available at the

same time to the readout circuit. They are kept valid for the entire time of the processing,

until the next row is addressed. They are then replaced by the new incoming pixels which

are in their turn sent to the readout circuit and the computation units. In contrast, the

convolution kernel is a constant for a given frame and can be accessed at all time, allowing

the realization of a pipeline architecture in the row direction.

The columns can therefore be processed in parallel, given that they are each equipped

with a hardware processing chain. The diagram in figure 3.1 shows the resources needed to

compute the convolution for one column. The currently processed pixel is shown in gray in

the diagram. The complete convolution requires not only one pixel but the neighborhood

around it. Therefore, the availability of a window centered on the addressed pixel must

be guaranteed. Because it is the same system repeated for each column, only a single
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Figure 3.1: Semi-parallel architecture: convolution block diagram

convolution unit is described in detail in the next sections. Identical structures operate in

parallel to compute the transformation of every column of the imager.

Neighbors on the same row (horizontal neighborhood) are all read out together along

with the entire row. They are used simultaneously for the calculating the convolution in

nine columns. In the event of an analog system, care must be taken to not attenuate the

signals during this multiple readout sequence. The product with each row of the kernel can

occur at this point as well as the inner sum of equation 3.1 which is the sum of the pixel-

wise products over the same row. In the accumulators the partial results are combined with

those obtained from the rows previously read-out, so the vertical neighborhood is included

in the outer sum as in equation 3.1.

In summary, with each incoming row that is read out, two successive operations take

place. First, the currently addressed neighborhood of pixels is combined with each row of the

kernel separately through a sum of pixel-wise products. Then, the resulting partial products

are combined with those from the previous rows for reconstructing the convolution using

the neighborhood in the vertical direction. In this pipeline architecture, the first complete

convolution is available as soon as a full neighborhood has been processed.
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3.2.2 Sum of products

The first step of calculating the convolution mixes the incoming neighborhood of pixels

with the entire kernel through a set of multiplications and additions. Each incoming pixel

is paired with all the pixels of the kernel of the same column. In a 9×9-pixel window size,

each pixel takes part in nine multiplications, yielding a product for each of the nine rows.

The complete incoming group of pixels provides as many products as the kernel size.

The products obtained from the same line of the kernel are involved in the same con-

volution calculation and can be immediately combined by summing them right after the

multiplications. This direct sum of product approach keeps memory resources lower than

if all products had to be memorized before the sum over the entire window is computed.

The nine remaining partial results will be used when reconstructing the convolution for

the window centered on different pixels of the same column when enough rows have been

read out and the fill window has been multiplied and summed in the same way but against

different rows of the kernel.

During readout, the part of the image that is available (one row) is a one-dimensional

array, while the convolution operation requires a two-dimensional window to be used. The

convolution window is reconstructed with the addressing of subsequent rows of the image.

Each row is only read once but still must be utilized for the calculation of all the convolutions

in which window it appears. Each row is therefore duplicated several times and combined

with each row of the kernel to generate the partial products for each position that will be

used. The duplication of the pixels from the imager and the separate processing for each

kernel row is shown in the diagram of figure 3.2.

3.2.3 Accumulators

At the end of the first phase, the inner sum of products of equation 3.1 is computed for

the current row, the outer sum (sum over different rows) remains to be reconstructed in

accumulators by combining some of these partial products with those from previous rows

and saving some for use with rows still to come.

A pipeline architecture for the accumulator was designed to preserve the rate of pixels

from the imager and to not introduce unnecessary delays. Therefore a real-time operation

is possible. After an 8-row-time latency, the output flow rate is identical to that of the
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Figure 3.2: Semi-parallel architecture: convolution block diagram
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Figure 3.3: Stage i of the pipeline

imager.

Another important consideration is the need to handle a large signal range. When doing

arithmetic in either the digital or the analog domain, signals are limited at both ends of

the range. In the digital domain, information gets lost when small signals are rounded

to a digital binary number and large values get clipped to the maximum number allowed

for the allocated bit space. In the analog world, the noise level and saturation as well as

non-linearity also restrict the range that can be used for transmitting information. The

increase in signal strength is limited at each stage by averaging the result while preserving

the same weight on each input.

Let Xj the output of the jth partial product from the multiplication and inner sum stage,

created when processing the jth row of the window on which the convolution is performed.

Xj is also input to the accumulator. Equation 3.2 summarizes the actual calculation that

is performed, where n is the number of rows used. (The kernel is an n × n array.)

I ⊗ K

n
=

1

n

n+1∑

j=1

Xj (3.2)

To reconstruct this equation in a pipeline form, each stage incorporates its input from

the sum of products from its corresponding kernel row into the average calculated so far.

A weight correction, shown in equation 3.3, is done to preserve the equal influence of each

parameter and to achieve averaging by the number of rows. When expanding it fully, the

average form of equation 3.2 appears.

∑j
i=1 Xi

j
=

(
j − 1

j

)

·
∑j−1

i=1 Xi

j − 1
︸ ︷︷ ︸

from previous stage

+

(
1

j

)

· Xj (3.3)

Since each input comes into the pipeline at different levels, their contribution does not
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ripple through the same number of stages. While the first one, labeled X0 in the figures,

is scaled and transfered through all nine elements, the last one is only processed once.

Although it makes no difference in the equation, the noise and uncertainties from all the

operators will not affect the various inputs in the same way. The last one will have a

greater influence on the final result. The robustness of the algorithm to this asymmetry is

looked into in section 3.3.2. The noise analysis of each analog computational element and

propagation of errors inside the accumulator are studied in section 6.7.

The simplified block diagram of the complete pipeline, figure 3.4, uses the same variables

as the sum of products of figure 3.2, which interconnects with the pipeline. These two

diagrams summarize the full architecture for hardware implementation of the convolution

on one column. Further details on the sub-blocks of the design depend on the type of circuit

being developed. Software simulation of this system is described in section 3.3.

Actual hardware implementations of the convolution algorithm have also been fabricated

and tested: a stand-alone digital system is presented in chapter 4, and an analog circuit is

studied in detail in chapter 5 and following.

3.3 Simulations

High level system simulation were run to illustrate the effects of various convolution filters on

images. The proposed algorithm was implemented using Matlab, rather than the embedded

convolution function. This not only validated the algorithm through simulation, but also

performed various tests on the robustness of the algorithm and analyzed the propagation

of uncertainties from stage to stage.

In the first part of this section, the convolution of an image with various different

templates is shown. No noise is added to the system, so the ideal case is portrayed, and the

effect of various filters is shown. Then, random and systematic uncertainties are inserted

at various stages of the algorithm simulation, and their effect on the final output is shown

with emphasis on the propagation of the errors and the robustness of the system.

3.3.1 System simulation

The algorithm is shown to work through a Matlab implementation run on real images with

several filter kernels. Because no noise is being added at any step of the computation, the
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Figure 3.4: Pipeline accumulator
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simulations show the transformation of the input image when applying a kernel with the

convolution algorithm described in this chapter. The Matlab source code used to generate

these results is shown in appendix A.

The first validation test is to verify the efficiency of the neutral element of the convolution

and to obtain a filtered image identical to the input. When only one of the pixels of the

kernel is non-zero, the image is not modified through convolution. It is only scaled and

shifted, depending on the value and position of the remaining pixel. The identity kernel

used in figure 3.5 uses the central pixel, so no shifting occurs, and its value compensates for

the scaling taking place in the accumulator. The filtered image, shown in 3.5(b) is indeed

identical to the original image.

Blurring can be achieved with a uniform kernel as in figure 3.6(a) where all the pixels

of a 9× 9 neighborhood are averaged by the filter. Gaussian kernels allow for a more subtle

smoothing of the image, depending on the standard deviation σ used to generate them.

Figures 3.7 and 3.8 show examples of such smoothing with two values for σ. As the value

used for σ increases, the Gaussian kernel becomes less sharp and the images get more and

more blurry.

Although the hardware implementation presented in chapters 4 (programmable digital

system) and 5 (analog circuit) do not use signed operators, subtraction is a minor extension

to the circuits and is already planned for in the pipeline algorithm which makes no as-

sumption regarding the sign of the kernel parameters. Two examples of filters using signed

operators are shown in figures 3.9 and 3.10 with first-order derivatives in the horizontal and

vertical directions.

3.3.2 Accuracy tolerance

The reliability of the system depends on how well it is able to handle undesired variations

from the ideal scenario. When dealing with arithmetic circuits, uncertainties may appear

at any stage of the computation, so it is important to be able to predict their influence on

the final results.

Digital circuits have the advantage of being predictable and unaffected by signal noise

during normal operation. Unfortunately, floating point arithmetics is not easily accessible

because of the complexity of implementation and the large size of the circuit. Digital

operators are therefore prone to rounding errors from dividing integer operands. While
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Figure 3.5: Identity filter: output image identical to the original
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Figure 3.6: Uniform filter. (9 × 9 window averaging)
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Figure 3.7: Gaussian filter: σ = 1.5 pixels
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Figure 3.8: Gaussian filter: σ = 2.5 pixels
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(a) Kernel (b) Output image

Figure 3.9: Horizontal edge detector

(a) Kernel (b) Output image

Figure 3.10: Vertical edge detector
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such operators are available and commonly used in microprocessors, they are complex and

yield large designs. [43–46] To minimize rounding errors, the division at each step of the

accumulator from equation 3.3 is not performed until the end of the pipeline where averaging

occurs for all steps at once. Overflow in the pipeline is prevented by an adequately sized

internal data bus. Section 4.3 describes the trade-offs specific to the digital implementation

of the convolution algorithm.

The range of signal in the analog circuit is not expendable as easily in analog circuits.

Although the bus size is constant, the level has to remain inside the linear region of operation

of the operators. This is where scaling at each stage becomes critical to keep the analog sig-

nal from growing into saturation. The rolling averaging of equation 3.3 solves this problem

but amplifies the asymmetry of the error contribution inside the pipeline accumulator.

A full analysis of the noise in analog circuit and how it propagates through the pipeline

is presented for the convolution chip in section 6.7.2.
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Chapter 4

Digital Stand-Alone

Implementation

4.1 Introduction

A general-purpose filter can be built on a variety of circuits, each tailored to specific ap-

plications. A fully analog design is presented in the next chapters that incorporates the

filter on the imager chip. An implementation of the same algorithm onto a fully digital

circuit uses well-defined elements that are easy to set up. It provides a reliable testbench

for validation of the algorithm as well as grounds for comparison of the various systems.

Microprocessor-based computers allow fast integration that is valuable for test and val-

idation of the algorithm. With the use of a high-level programming language, they are easy

to program, fully reconfigurable and operate at speeds that make them the best choice for

many applications. Because of their physical size, however, they are ill suited for miniature

environments and cannot meet power restrictions of many embedded systems.

The more practical implementations for compact, real-time image processing units call

for more specialized components. Digital signal processors have been a platform of choice for

many imaging systems. [47,48] As general-purpose processors, they are also programmable

and only require software-level development, making their turn around and reconfiguration

very fast. They are also often equipped with specialized interfaces for data transfer which

the full microprocessors lack. This is vital in real-time image processing due to the amount

of data that needs to be transferred to and from the DSP.

Dedicated circuits can only perform one task and are the most difficult to work with.

They are versatile in the sense that there are no restrictions in term of what function
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can be implemented and no resource limitations, but unlike processors they cannot be

programmed or reconfigured easily. The development time is much longer and the price

much greater. The finished product is however the best tuned for the application since

it carries no overhead or unused circuitry. Algorithms for convolution on digital VLSI

chips have been developed and tuned using pipeline architectures, parallel computations or

systolic arrays. [49, 50]

Field programmable gate arrays offer an attractive trade-off between cost, ease of de-

velopment and speed. Although they are made of predefined logic cells, they have few

high-level functions and do not suffer from large overhead as DSPs and micro-processors

do. Since they are designed in a similar way to full-custom circuits, they are a platform of

choice for research and development before fabrication of integrated circuits. This is why

algorithms for FPGAs have been studied extensively, either as proofs of concept or as final

products. [35, 51–54]

Digital designs using standard CMOS logic can be implemented on the imager chip

which uses the same technology. However, the test setup being developed would not be

actually fabricated on an integrated circuit. The design is therefore made using the Verilog

hardware description language which is first simulated as a behavioral model. It is then

compiled and uploaded onto a reconfigurable FPGA for fast and efficient validation of the

code and of the algorithm in a real test environment. The final step for a full-custom circuit

is to synthesize the Verilog program to produce a full layout of the chip, ready for fabrica-

tion. Each step of the design flow adds new information that is used in simulation such as

timing restrictions and resources allocated. While the FPGA implementation validates the

accuracy of the algorithm, it is the final layout that shows the actual resources used if it

were to be fabricated.

An FPGA digital implementation was chosen to perform the algorithm comparison. For

testing purposes, an existing, available imager chip with a 512×512-pixel array equipped

with an on-chip 8-bit analog to digital converter [8] was wired to a Xilinx Spartan-3 FPGA.

The output of the FPGA was in turn interfaced to a digital data acquisition system for

visualization. This simulates the interaction of the imaging array with the computing unit,

the main operating difference being that the pixels coming from the imager have to be sent

in series, preventing parallel processing.
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Figure 4.1: Digital implementation block diagram

4.2 Algorithm

The convolution algorithm described in section 3.2 was developed for the purpose of hard-

ware implementation. No assumptions regarding readily available building blocks were

made and the drive was to minimize the cost of the algorithm in terms of resources while

maximizing the parallelism of the data flow. The design process also did not assume which

type of hardware implementation would be used. As a first approximation, the same factors

have to be taken into account whether a digital circuit or an analog circuit is to be produced

and the same trade-offs have to be considered in both cases. Therefore the same algorithm

is implemented in both circuits. The specific implementation details of each approach do

vary however. The trade-offs to be considered are different and will be discussed separately

in section 4.3.

The parallelism capability is an important part of on-focal plane designs. An on-focal

plane digital architecture with an analog to digital converter embedded in each column

would preserve this capability but it is lost when creating a two-chip system as done here.

The test setup should not however hide the design goal which is still an integrated circuit, so

it is important to preserve the structure of the architecture. This way, the same algorithm

can be applied and the produced circuit and layout are a realistic implementation of the

fast, fully integrated system. The imager sends pixels serially to its output interface. A

line buffer was implemented on the receiving end so the data of the full 9-pixel width of

the kernel is always available. It is completed by another 8-line buffer so the nine-line

buffer used in the analog chip to store partial products of the convolution is also accurately
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rendered.

The resources needed are not limited to the memory cells used to store the partial

products which grows linearly as a function of the imager width and the kernel height, but

also include arithmetic units for the actual convolution to take place. For each column

computing unit, a choice had to be made between a fully parallel structure or a semi-

parallel one. With the fully parallel approach, as many multipliers as there are pixels in the

kernel are necessary. (81 8-bit multipliers for a 9×9-pixel kernel) This is the most efficient

design in terms of speed of execution but expectedly produces large layouts due to the

redundancy of the hardware produced. In the semi-parallel implementation, the resources

are re-used constantly in the processing of the columns. It is the width of the kernel only

that determines the number of multipliers, not the product of the width by the length.

Only one multiplier per column in the kernel is needed and provides nine partial products

for each convolution computation.

Both options implement the same algorithm and therefore share the same structure as

shown on the block diagram, figure 4.1. The multipliers and accumulators are wrapped in a

pipeline implemented as a state machine. The difference between the two implementations

are in the number of multipliers used and the latency introduced to ensure availability of

the products at the stage they are needed in the pipeline. The sequence of events is common

to both implementations and is made of four steps that are repeated for each pixel provided

by the imager.

Multiplications.
∑

row (K · I). The pixel neighborhood is multiplied pixel-wise with each

row of the kernel. The results of the same rows are added to each other, producing

nine sums of products that will each be used in a stage of the accumulators.

Read from RAM. The contribution from the previously calculated partial products that

correspond to the accessed column is needed so they need to be extracted from the

memory.

Accumulation. Once both inputs of the accumulators are available, they are processed and

the pipeline running average is executed. A new set of partial products is calculated,

the last stage (the output of the pipeline) is made available for readout as it is the

complete convolution for the current neighborhood.
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Write to RAM. The output of the accumulator is sent back to the RAM so it can be

stored for use when the next column is addressed again with the pixels from the next

row. The last row is not saved as it is already complete and will not be needed again.

4.3 Trade-offs

Decisions during the implementation process of the circuit are made at every stage of the

design. A recurring issue touching digital computational units is the width of the data

bus that needs to grow with each operation to avoid overflows and loss of information. A

worst case scenario approach was taken for the internal buses so the width at the output

of each multiplier or adder can accommodate any result. An internal bus of up to 20 bits

guarantees that no overflow should occur during normal operation. The input range of 8

bits is restored for the output by post-computation division. Although it would keep the

bus width constant and largely reduce the internal wiring, scaling is not done on the fly to

avoid handling small numbers that can round to zero when using integer-based operators

rather than floating-point divisors. On the algorithm level, the averaging factor of equation

3.2 is not done at each step of the accumulator as shown in the block diagram of figure 3.4

but rather at once after the complete accumulation has occurred. This is the only major

difference with the analog implementation which required the signal range to remain in the

linear region for every element, as is described in chapter 6 on the design requirements.

The area reduction by using a semi-parallel architecture consists in not implementing all

81 multiplier cells needed for the 9×9-pixel kernel. Instead, only one row of such multipliers

are implemented, and each is used 9 times to compensate for the lack of resources. A

pipeline setup maintains the high throughput, but a latency is introduced at the beginning

of each pixel computation. This design reducing technique can be enforced further by only

using one multiplier cell used 81 times for each incoming pixel. The trade-off to consider

is that between resources used (which translates directly in silicon area when fabricating a

full-custom ASIC) and computation time. Because less cells operate at once, the power is

reduced when decreasing the number of multipliers, but the energy consumed during the full

convolution operation remains the same, as all 81 multiplications are eventually performed.

It is worth noting that the discussion so far has focused on the resources needed for

implementing the computation cells for one column. A fully parallel architecture would
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Digital Circuit Clock

Frame
rate (Hz)

Row Clk
(kHz)

Pixel Clk
(MHz)

Col-parallel
(kHz)

Full Circuit
(MHz)

16-column
Blocks (MHz)

1 1 1 30 30 0.48
10 10 10 300 300 4.80
30 30 30 900 900 14.4
60 60 60 1800 1800 28.8
100 100 100 3000 3000 48.0

Table 4.1: Clocks for a megapixel imager (1024 rows and 1024 columns): full circuit with
one convolution unit per column, one for the whole chip and one per block of 16 columns.

duplicate these resources into each column and obtain a much more efficient design in

terms of speed of operation. The size of the circuit, however, becomes unmanageable as

the whole arithmetic unit (which includes the multipliers as well as the accumulators) is

multiplied by the number of columns in the imager.

The operating speed of the digital circuit does not justify the use of so much hardware.

The flow of pixel from the imager is regulated by a pixel clock which is itself a function of

the frame rate: CLKpix = CLKrow

height
=

CLKframe

(width×height) . The frame rate can easily be changed

but for practical reasons, only small variations are possible. When the frame time decreases,

less light is integrated in the imager so the image gets darker and the quality is affected. It

can be compensated by increasing the light level and opening the aperture, but only on a

small scale.

The information summarized in table 4.1 shows the two extreme cases and the suggested

trade-off in terms of operating speed of the digital circuit. The data shown assume a 1k×1k-

pixel imager is used and attached to the convolution units as described here while operating

at various frame rates. Processing each pixel requires eight memory accesses in read mode,

and an extra 13 cycles delay for the pipeline dividers and nine memory accesses in write

mode. The total of 30 cycles is therefore the minimum computation time for this algorithm.

The memory modules used in the prototype use a two-cycle read and write scheme that

brings the computation time to 54 cycles. The optimal case of 30 cycles is used as a reference

in table 4.1 as one-cycle memories are readily available.

The fully column-parallel architecture expectedly allows high frame rate while keeping

a low internal clock for the digital circuits (up to 3MHz). It is there that the waste of
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resources becomes evident. As discussed above, digital circuits can operate at much higher

speeds and such resource allocation is unnecessary. The other extreme consists in only

implementing one convolution unit for the entire imager. In this configuration, the only cell

must be used by every pixel of each row. The system becomes fully serial and must the speed

the digital circuit must operate at just to keep up with the frame rate grows dramatically

as we reach normal operating frequencies. Operating speeds of 30fps to 100fps are very

common and require the digital circuit to run with a clock of 900MHz to 3GHz which is

not practical for this type of circuit. As a reference, currently available FPGAs only allow

up to a few hundred mega-hertz. More specifically, the Spartan-3 chip for Xilinx that is

used in the prototype is rated for an internal maximum speed of 300MHz. Digital signal

processing chips can operate at a faster rate but would eventually face the same issue with

fast frame rates (≥100fps) or larger imager arrays.

The suggested trade-off for hardware implementation is to use a block-parallel architec-

ture where the output of the imager is split. Several convolution units are implemented,

each in charge of handling the data from 16 columns. Each convolution units operate in

parallel, and the serialization only includes 16 pixels. The operating frequency remains

in an easily manageable range for normal imaging operation while using significantly less

resources.

4.4 Layout

A description of a single convolution unit was written in the Verilog HDL so a prototype

could be built. The program was synthesized with the Xilinx library to produce a working

setup on a Spartan-3 FPGA and also synthesized with the Mentor Graphics tools to generate

a netlist and a standard cells-based layout. The FPGA uses predefined cells that perform

a function when properly interconnected. The resulting implementation is sub-optimal and

only serves the purpose of validating the code and the algorithm while quickly producing a

working prototype. The netlist and layout, however, give a more realistic estimate of the

resources needed in terms of number of logical gates and flip-flops and in terms of silicon

area for fabrication.

Due to the limited resources of the FPGA, only one convolution cell was described in

Verilog. Although this approach does not allow high-speed processing of the images, it
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validates both the algorithm and the digital implementation approach. It was discussed in

section 4.3 on the trade-offs faced during the design phase that the possibility of parallelism

is important for the viability of the system. This property is preserved with the designed

cell as it is trivial to add more processing units in parallel in this configuration: the same

computation cell needs to be arrayed and wired to various sub-sections of the imager. This

re-wiring is, of course, only possible in the case of a system on a chip where the imager

and the processor are on the same chip. In the case of multi-chip systems in which the

imager provides the pixels as a serial flow of data, a pipeline is needed with a controller so

processing starts on the first pixels of the row before the whole row is made available.

4.4.1 Memory

The memory requirements discussed above already included all that is needed for full frame

processing and therefore do not change when parallel processing is used. However, the

organization of the memory changes slightly. It is split in separate blocks wired to the

various computing units, as each of these units needs to address its corresponding memory

space simultaneously.

In an FPGA, basic operators (such as flip-flops, full adders, and multipliers) are already

implemented as elementary building blocks and need not be redefined. The design makes

extensive use of these blocks as they are optimized for the device. The same goes for the

random access memory for which a core is available for on-chip implementation. Another

option, had the on-chip memory capacity not been sufficient, was to use an external memory

chip. In both cases, the Verilog description focuses on the computation and assumes a proper

memory already instantiated with a known interface as in figure 4.2.

The kernel however, is significantly smaller (648 bits as opposed to 256 Kbits) and can

easily be implemented as a single register. By connecting the most significant bit to a

pad, the register can be initialized serially as a FIFO while providing random access to the

saved data. This register is unique for the whole chip and need not be replicated in each

instance of the circuit in the case of parallel processing. It is therefore not part of the actual

convolution cell which is meant to be fully arrayable.

The interface between the kernel and the convolution unit is a fully parallel connection,

which is easily done internally but would require as many input/output pads as bits in the

kernel to use an external memory. Because of the limited number of pads in the device, the
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Figure 4.2: Memory interfaces. (a) Partial products RAM and (b) kernel serial-in / parallel-
out register

kernel has to connect to the convolution unit internally. Only the serial interface used to

load and change the kernel makes use of the pads (clock, serial data line and reset signals).

The Verilog description used to produce a full custom ASIC does not include any shared

elements, so the arrayability of the convolution cell is not compromised. The partial prod-

ucts are stored in a RAM module that can be implemented on the same chip with one of

the well-defined memory designs available. [55]

The final layout is made of three interfaced blocks: the kernel memory, the partial

products memory and the convolution cell.

4.4.2 Convolution unit

The single convolution unit is the building block of the circuit guaranteeing scalability

for any size imager. Like its analog counterpart presented in chapter 5, it is meant to be

integrated with an imager, along with the memory cells in the same chip. The block-diagram

of figure 4.1 shows how the convolution unit integrated in either a FPGA or an ASIC fits

into the complete system. The resources used in the layout of this cell and its physical

size are the only growing elements of the computation part of the design when modifying

the imager size and the amount of data to process. It therefore represents the factor by

which the complexity of the circuit increases linearly and is consequently the cell for which

a layout was generated.

Automatic layout generation uses a selection of standard cells already available for the

process that is used as a reference. For this design, we selected a process with 0.5µm

minimum feature size, three metal layers and two polysilicon layers. It is similar to the
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one used for laying out the analog chip, so area comparison between the two methods are

relevant.

A custom standard cells library was used to create the layout. It includes layout and

simulation models for all the usual logic gates: two-, three- and four-input nand and nor,

xor, inverters, buffers, tri-states as well as D-type flip-flops, latches, multiplexers, etc. These

allow the generation of all logical and computational elements from the Verilog source code.

A clear improvement on this library, useful for this design, would have been optimized

multipliers. Such cells are available in the FPGAs and would improve the ASIC in terms

of area and timing performance.

To illustrate one of the trade-offs pointed out in section 4.3, two versions of the layout

were produced. It was shown there that with a small increase of the computation time, the

area of the laid-out circuit could be greatly reduced. In addition to quantifying the resources

necessary for each implementation, the two generated layouts illustrate the improvement.

The Verilog code used to produce the prototype implemented in a FPGA was also used

for the layout. Although different synthesis tools had to be used, introducing various timing

uncertainties in the design, the two designs are guaranteed to be functionally identical. Still,

post-routing simulation of the final layout is necessary before fabrication to ascertain all

the timing requirements are met as well when using the standard cells.

A size comparison is shown figure 4.3 where both complete layouts are displayed on the

same scale.

4.5 Testing

The Verilog code used for the synthesis to generate the layout used in the analysis above,

was also used to create a working prototype of a real-time convolution imaging system. An

existing imaging APS chip with integrated analog to digital converters was interfaced to a

Xilinx Spartan-3 FPGA evaluation board on which the synthesized Verilog was uploaded.

The transformed images could then be displayed on a computer monitor through a digital

acquisition system.

Unlike the block diagram of figure 4.1, no external RAM is used. The internal memory

space of the FPGA is sufficiently large to accommodate the memory needs to store the

convolution partial products. Instead, a simple two-stage setup was built with only the
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Figure 4.3: Layout trade-off: 9-multiplier implementation (2.35mm × 2.5mm) and 81-
multiplier implementation (4.2mm × 4.0mm)
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imager custom interface board and the FPGA off the shelf evaluation board.

The imager chosen for the task was an already available APS chip with a 512×512 pixel

image sensor and an integrated 10-bit analog to digital converter [8]. Since the computing

circuit expects 8-bit digital encoding of the pixels, the precision of the ADC was reduced

to eight bits.

Real-time video rate of 30fps was achieved, demonstrating the effectiveness of the algo-

rithm. Images taken with kernels encoding various types of filter are shown as examples

below. For the test, kernels similar to those used in the software simulations of figures 3.5

to 3.8 were used on a poster filmed by the camera while the output is acquired in real time.

Low-pass filters are shown along with the original image in figure 4.4. The granularity

of the unfiltered image (a) is an artifact of the printed image used as a target. It helps to

show the smoothing that occurs when flat or Gaussian kernels are applied: the granularity

disappears, leaving a smooth background instead.

Figure 4.5 uses a kernel with a single non-zero element in it. It effectively encodes

a gain in the image with no distortion. The differences seen between the original image

and image (a) especially in the background, illustrates rounding errors and clipping in the

division operations mentioned above in section 4.3. When too large of a gain is applied, the

opposite problem occurs and saturation appears in the bright areas, as shown in (b). In

this event, the dark background still suffers from division rounding errors so the resulting

image looks binary as the gain increases and the bright pixels saturate.
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(a) Original image (b) Flat kernel

(c) Gaussian σ = 1.5 pixels (d) Gaussian σ = 2.5 pixels

Figure 4.4: Original image and filter responses
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(a) Gain with no distortion (b) Gain inducing saturation

Figure 4.5: Gain applied to the image with no distortion (a) and saturating the output (b)
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Chapter 5

On-Focal Plane Implementation:

Current-Mode Computational

Imager

5.1 Introduction

Several version of the convolution chip were designed, based on different principles for imple-

menting the analog arithmetic operators (adders, multipliers, memory cells, etc.) necessary

for calculating the convolution. In the first version, the charge-mode convolution chip, a

current-based pixel array was implemented. The arithmetic operators were relying on trans-

fer of charges to create voltage levels proportional to the operation result. For example,

accumulation was achieved by flowing a current into a capacitor for an equal period for

each input. The second version, presented in this chapter, manipulates current flows for

the calculations.

The charge-mode convolution chip was fabricated and tested. It gave encouraging results

for the computation but also pointed out some issues that needed to be addressed to improve

the image quality and to develop a seamless interaction between the entire pixel matrix and

the convolution core.

In the next generation of the circuit, which was fabricated and tested, the overall concept

remains the same. However, the actual design was greatly modified to take into account the

results of the previous version. Since the multiplying DAC showed accurate calculations,

it was used again with only minor modifications. The accumulators, although they also

performed well, were entirely redesigned to save space on the chip (large capacitor banks

and their triangular structure required some awkward re-arrangement to be scaled up and
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Figure 5.1: Signal flow block diagram

accommodate a full-imager convolution) and to test another approach that had shown

encouraging results in simulations.

The purpose of this second generation chip was twofold. First, to demonstrate the

ease or arraying the various elements so that the entire imager could be scanned at every

frame and the convolution performed in a semi-parallel fashion. Second, to integrate a new

convolution accumulation algorithm, saving space on chip and improving the accuracy of

the calculations.

This chapter goes through the architecture of the convolution chip by following the

natural flow of information. Following the diagram of figure 5.1, it starts with the pixel

capturing the visual information all the way through the computing elements, to the final

result of the convolution.

5.2 Imager

The imaging part of the chip is made of two entities: the pixel matrix containing the photo-

sensitive elements and the pixel readout circuits, whose task is to transfer and transform

the information for the pixels to the processing unit in an acceptable format.

Several types of pixel designs were studied, and two of them were implemented on dif-

ferent chips. A current-mode pixel was used in the first designs to minimize the complexity

of the downstream processing. Because current-based pixel designs are prone to large fixed

pattern column noise [56], a mode conventional voltage-mode pixel was used in the later

designs. Thanks to a voltage to current converter added in the readout stage, the current

interface with the downstream processing remains unchanged.

Regardless of the pixel design, an appropriate readout is necessary so a current can
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Figure 5.2: Column in the current-mode imager

be provided to the low impedance load of the convolution circuit. The current type pixel

already provides the proper type of signal so the only additional functions needed aim at

selecting the right columns that will be processed while scaling the currents to the expected

range. The voltage type requires an additional conversion so the computation blocks receive

a well-defined current flow. Fixed pattern noise reduction is also performed on the fly at

that level.

Both options, along with the corresponding readout methodology, are described in this

section. Emphasis is, however, placed on the voltage mode pixel paired with a voltage to

current converter which was chosen for the final design.

5.2.1 Pixel implementation

5.2.1.1 Current mode pixel

In the configuration of figure 5.2, a constant current source provides a reference current

down columns of the imager [56]. It is realized by providing a single reference to the chip

and mirroring it for each column. A set of self-biased cascode current mirrors was used in

this design. [57]



44

The transformation from light shining onto the pixel array to currents is a three-step

process. First, the cell is reset so all potentials are initialized to a known value. Then, as

light shines on the photodiode, the current source in the pixel gets biased and allows more

current to flow through. And finally, the column is connected to a load where the difference

between the reference current and the one flowing into the pixel is read.

Reset. Although it initiates the sequence, the reset is actually done last so the integration

phase can benefit from the time needed to access the entire imager to gather light.

This avoids wasting time as the imager is never idle so the frame rate is maximized.

Vpix rst = Vref − VDSsel
− VDSrst,

where Vref is the voltage drop across the current source at the top of the column:

Vref = V dd − Vtp3
−
√

2Iref

µpCox
·
(√

1
(

W
L

)

3

+

√

1
(

W
L

)

4

)

.

Integration The longest step of all. Light is gathered on the photodiode during the other

rows’ readout as well as during the idle time between frames.

Vpix = Vpix rst −
1

C

∫ T

0
idiodedt,

where idiode is the photodiode current which is a function of the light intensity, and

C is the junction capacitance of the diode added to the gate capacitance of Mpix.

Readout. The pixel transistor, biased by Vpix allows a current to flow through it. The

purpose of the readout circuit will be to extract this information and process it.

Ipix =
1

2
µnCox

(
W

L

)

pix

(
Vpix − Vtnpix

)2

The column is connected through a switch to a load which receives the difference

between the reference current and the pixel current:

Iout = Iref − Ipix.
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5.2.1.2 Voltage mode pixel

In this configuration, the current flowing down the pixel column is set by an externally

biased current sink, MLN , shown in figure 5.3. However, the potential of that line is set by

the selected pixel. It is this voltage, V pix that is sent to the readout circuit described in

section 5.2.2.1.

The controls are identical to those of the current mode pixel, so the sequence is the same

(reset, exposure, readout). Two noteworthy differences are that the reset is done directly

without transit through the select transistor and instead of being tied to ground, the signal

is extracted from the gate of Mpix.

Reset. The NMOS reset switch holds the photodiode voltage Vd at one threshold voltage

below the power supply:

VdRST
= Vdd − VtnRST

.

Integration. The photodiode current generated by the energy brought by light discharges

the photo-diode node:

Vd = VdRST
− 1

C

∫ T

0
idiodedt.

Readout. The signal is sampled at time t = T . The transistor Mpix follows the saturation
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equation:

ILN =
1

2
µn

(
W
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)

pix

(
Vd − Vpix − Vtnpix

)2
,

where

ILN =
1

2
µn

(
W

L

)

LN

(VLN − VtnLN
)2 = constant,

and

Vd = VdRST
− idiode · T

C
.

The voltage read out is then:

Vpix = VdRST
− idiode · T

C
−
√
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1
2µn

(
W
L

)

pix
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(5.1)

5.2.2 Readout circuit

The pixel designs proposed in sections 5.2.1.1 and 5.2.1.2 differ in the type of load that

they are intended to be connect to. The first design expects a low impedance interface

such as that of the arithmetic circuits of the chip. (Section 5.3 shows that the input of the

multiplier is a low impedance current mirror.) It can therefore be used as is, and a simple

switch is all that is needed for a readout circuit.

The voltage mode implementation, on the contrary, is designed to communicate with a

high impedance load which contradicts the design specifications of the downstream arith-

metic circuits. To match the impedance of the two modules, a voltage to current converter

interface was designed, with the added functionality of reducing the fixed pattern noise

caused by physical mismatches in the pixels and columns.

5.2.2.1 Voltage to current converter

The conversion of the pixel information from voltage to current is the very first step before

any processing is done. Each column is equipped with a converter so processing can occur

in parallel for the entire width of the imager. A compact circuit as proposed in figure 5.5(a)

fits easily in the layout pitch imposed by the physical size of the pixel column (10µm in
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the case of the convolution chip) while drawing less power than more bulky transimpedance

amplifiers. The cost of the compact circuit is a reduced linearity which is studied in this

section.

Assuming M3 is in saturation (we will verify this hypothesis later),

I =
1

2
µpCox

(
W

L

)

3

· (VSG3
− Vtp3

)2 .

Let K ′

3 = µpCox

(
W
L

)

3
.

Then, I =
K′

3

2 (VSG3
− Vtp3

)2,

⇒ VSG3
= Vtp3

+

√
(

2I

K ′

3

)

.

If we look at the voltage drop across the resistor, VR = Vdd − (Vpix + VSG3
), we obtain

another expression for the current I:

I =
Vdd − (Vpix + VSG3

)

R
.
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Combining these expressions yields:

I =
V dd − Vtp3

R
︸ ︷︷ ︸

constant

− Vpix

R
︸︷︷︸

linear

−

√
2I
K′

3

R
︸ ︷︷ ︸

non linear

.

If we re-arrange this equation, we obtain:

R · I +

√

2I

K ′

3

− (Vdd − (Vpix + VSG3
)) = 0.

Solving for I, we get:

I =
1 + (Vdd − (Vpix + VSG3

))K ′

3 · R +
√

1 + 2 (Vdd − (Vpix + VSG3
)) K ′

3 · R
K ′

3 · R2
,

or, more concisely, with the notation VR = Vdd − (Vpix + VSG3
),

I =
1 + VR · K ′

3 · R +
√

1 + 2VR · K ′

3 · R
K ′

3 · R2
. (5.2)

In order to plot the voltage to current conversion equation above, we use the parameters

obtained from the chip fabrication:

K ′

3 = 37.2µA · V −2 ×
(

W
L

)

3
= 37.2µA · V −2 × 1.2µm

1.8µm
⇒ K ′

3 = 24.8 × 10−6A · V −2

PMOS transistor threshold voltage: Vtp3
= 0.96V

Power supply voltage: Vdd = 5V

Resistor R: designed to be R = 65.2 × 103Ω

Pixel voltage: measured to be in the range Vpix ∈ [0; 1.5V ]

Using these parameters, we can plot equation 5.2, as shown in figure 5.6, with a linear

fit of the region of interest showing the expected conversion.

Is M3 always in saturation?

The equation derived for the voltage to current conversion is only as valid as the assumptions

made. In this case, the transistor M3 of the circuit schematic in figure 5.5(a) was assumed
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Figure 5.6: Matlab simulation of the voltage to current conversion with a linear fit (dashed
line) on the region of interest [0 : 1.5V ]. Slope of the fit: −10.82µA/V .



51

to be in saturation. To verify this, we take a closer look at that same circuit.

M3 is in saturation when VSD3
> VSG3

− Vtp3
⇒ VD3

> VG3
+ Vtp3

.

As a first approximation, VD3
' Vtn1

, and VG3
= Vpix, the condition for saturation is:

Vpix ≤ Vtn1
− Vtp3

︸ ︷︷ ︸

'0

.

The transistor M3 therefore remains in saturation in the operating range of the circuit.

For a further investigation, we re-draw schematic with a load resistor RL as shown in

figure 5.5(b).

M3 is in saturation if VSD3
> VSG3

− Vtp3
, which is true when:

Vdd − RI − RLI > Vdd − RI − Vpix − Vtp3

⇒ Vpix > RLI − Vtp3
. (5.3)

The actual load for the circuit will eventually be the input of a cascode current mirror.

Its resistance is determined in equation 5.6. and the current I will be at most a few

microamperes. It follows that the product RLI will always be smaller than Vtp3
, and

RLI − Vtp3
will always be negative. The input voltage Vpix is, on the contrary, always

positive. The inequality above is therefore always true and M3 is indeed in saturation,

validating the expression of the voltage to current relation of equation 5.2. [58]

5.2.2.2 Cascode load

The V-I converter described is connected to a cascode configuration as a load. Figure 5.7

shows the cascode stage. For this system to function correctly, proper bias voltage Vb has

to be provided to this cascode structure. Vb is determined by looking at the relationship

between the voltage and the current of this cell and identifying the condition for saturation

of the transistors.

Assuming M1 and M2 are in saturation, first look at the current to voltage relationship

in M1:

I =
1

2
µnCox

(
W

L

)

1

(VX − Vtn1
)
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⇒ VX = Vtn1
+

√

2I

µnCox

(
W
L

)

1

. (5.4)

The saturation of M1 and M2 is guaranteed by the setting of the bias voltage applied

to M2.

For minimal headroom consumption,

VY = VGS1
− Vtn1

⇒ Vbn
= VGS2

+ (VGS1
− Vtn1

)

Similarly, the voltage to current relationship in M2 is:

VGS2
= Vtn2

+

√

2I

µnCox

(
W
L

)

2

.

Substituting with equation 5.4, we obtain:

Vbn
= Vtn2

+

√

2I

µnCox

(
W
L

)

2

+

√

2I

µnCox

(
W
L

)

1

.

The condition of saturation of M1 and M2 is therefore:

Vbn
≥ Vtn2

+

√

2I

µnCox

((
L

W

)

1

+

(
L

W

)

2

)

. (5.5)

With this relation, we can apply a bias voltage that guarantees saturation in M1 and
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Figure 5.8: Cascode readout and small-signal equivalent circuit

M2 for the range of current it is intended to receive. The current is set by the conversion

from the pixel voltage and follows equation 5.2.

5.2.2.3 Resistive load of the voltage to current converter

When determining the voltage to current conversion, we assumed in equation 5.3 that the

load resistance seen by the output of the converter circuit was small and we could count

on the relationship RLI < Vtp3
to be true. To validate this assumption, we look at the

small-signal equivalent circuit, figure 5.8, to calculate the input resistance of the cascode

circuit.

i2 = i − gm2
vGS2

− gmb2vBS2
,

i1 = i − gm1
vGS1

,

where vGS2
= −ro1

i1 ; vBS2
= −ro1

i1 and vGS1
= vX .

vX = ro1
i1 + ro2

i2

Substituting,

vX = ro1
(i − gm1

vX) + ro2
(i + gm2

ro1
I1 + gmb2ro1

i1) .

⇒ vX (1 + ro1
gm1

(1 + ro2
(gm2

+ gmb2))) = i (ro2
+ ro1

(1 + ro2
(gm2

+ gmb2)))
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Figure 5.9: Output of the cascode readout current mirror

The input resistance is therefore:

Rin =
ro2

+ ro1
(1 + ro2

(gm2
+ gmb2))

1 + ro1
gm1

(1 + ro2
(gm2

+ gmb2))
. (5.6)

This expression is greatly simplified by taking into account the relationships gm � 1/ro

and gm > gmb. It reduces to:

Rin =
1

gm1

.

When using this resistance as the load resistance in equation 5.3, we find that the

assumption was indeed valid for the range of currents that flow in the circuit and the

transistor M3 is indeed in saturation as assumed in section 5.4.

5.2.2.4 Output of the readout current mirror

The saturation of the transistors forming the output of the readout current memory, shown

in figure 5.9, can be verified by studying the response of M4 and M5 with changes of the

bias voltage Vbn
.

I =
1

2
µnCox

(
W

L

)

5

(Vbn
− VDS4

− Vtn5
)2

I =
1

2
µnCox

(
W

L

)

4

(Vin − Vtn4
)2

⇒ VDS4
= (Vbn

− Vtn5
) −

√

2I

µnCox

(
W
L

)

5
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The transistor M5 is indeed in saturation if VDS4
≥ Vin − Vtn4

:

Vbn
≥ Vtn5

+

√

2I

µnCox

((
L

W

)

5

+

(
L

W

)

4

)

.

This relationship is similar to that found while studying the input of the cascode stage

in equation 5.5. It includes parameters determined through trade-offs, such as the transistor

geometries, and is set by the interface requirements, such as the current I flowing through

the cell. The compromise is discussed in section 6.2 on the design decisions for the circuit

building blocks.

5.2.3 Fixed pattern noise reduction

Fixed pattern noise (FPN) in the imager appears at both the pixel level and the column

level. The mismatch in pixel elements creates pixel level artifacts. The mismatch of the

elements of the readout circuitry which are used when reading out of all the pixels of one

same column, as described in section 5.2.2, creates column-based offsets. Both effects can

be reduced by a two-step sampling and difference circuit. In this scheme, it is the difference

between the pixel being read out and an image of the fixed pattern at that location that is

sent to the output of the imager. [59]
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5.2.3.1 Current memory

The ability to duplicate and hold a current is essential for the operation of several functions

in the chip. This section focuses on improving the image quality by reducing the spatial

noise in the imager as shown in section 5.2.3.2. Such memory cells are also extensively used

in the pipeline accumulator used to reconstruct the processed image, as described in section

5.4.

Figure 5.10 shows the current memory cell that was implemented for fixed pattern

noise reduction. The current corresponding to the exposed pixel is memorized and later

subtracted from the reset value of the same pixel. The subtraction is used to remove the

spatial component of the noise accumulated up to that point, as detailed in section 5.2.3.2.

A cascode PMOS current mirror structured is used, where the same two transistors

serve both on the input and the output side. [60, 61]

During memorization, the load phase, a switch connects the gate of the mirror transistor

M6 to the input. A capacitor on that node charges up to the voltage corresponding to the

current flowing through it:

Vcap = VGS6
= Vtp6

+

√

2Imem

µpCox

(
W
L

)

6

. (5.7)

When the switch opens (the read phase), the voltage level at the gate of the mirror

transistor M6 is held by the capacitor at the same level Vcap from equation 5.7. The drain

current of M6 remains constant, equal to the current that was flowing during the load phase.

In lieu of implementing an actual capacitor (double-poly capacitors were available for

the fabrication process used) which would be quite large, a NMOS transistor, Mcap was

configured as a capacitor by connecting both its source and drain to ground. A double-poly

capacitor of 0.5µF would require an area of 562µm2 while the the NMOS capacitor only

occupies 202µm2. The extra clearance required around the layout of a double-poly capacitor

further increases the difference.

Since VDScap = 0, the transistor operates in the deep triode region and its gate to source

and gate to drain capacitances are equal:

CGS = CGD ⇒ Cmem = WLCox + 2WCov,
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where Cov is the capacitance per unit width due to the overlap of the drain or the source

under the transistor gate oxide. The overlap effect is not only small compared to CGS and

CGD, but it does not affect the memory, as the voltage is properly retained regardless.

5.2.3.2 Difference circuit

With the current memory memorizing the incoming pixel, the fixed pattern noise at that

location can be removed by sampling the difference between the saved signal and the pixel

reset level which only contains the noise information.

The value of the exposed pixel is sampled on a current memory as in section 5.2.3.1,

then the pixel is reset so the image information is removed from the signal and only the

fixed noise features of the pixel remain. The difference of the two signals is then sent to the

output, cleaned from the fixed pattern noise accumulated until that point.

Figure 5.12 shows the simplified circuit and the chronogram describing the sequence to

create the difference of the signals:

1. During the memorization period (Load = 1), the output switch is open so ∆I = 0.

The current memory is storing the value of the exposed pixel: Imem = Ipix.

2. During readout (Load = 0), the addressed pixel is being reset. The current memory

sources the current memorized in the previous step but only the current corresponding

to the reset level. The difference is sent to the branch connected to the next stage

where it will be either processed or read out.
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∆I = Imem − Ipix

It is this difference ∆I that represents the image and becomes the input of the computing

circuits that calculates the convolution. It is combined for this purpose with the digital

template in a multiplying DAC, described in section 5.3. The difference can alternatively

be sent to an output to monitor the raw image and characterize the imaging performance

as described in section 8.2.

5.3 Multiplying DAC

The convolution operation requires the pixel-wise multiplication of the kernel with the

neighborhood of the pixel that is being processed. For this, a multiplier unit was imple-

mented in this work that accepts operands from the imager and from the template. The

signal provided by the imager is analog, as seen in the previous sections. During design, the

template could have been chosen to be either analog or digital as it is meant to be uploaded

by the user.

The three choices for designing the multiplier were therefore to built an analog multiplier,

a digital multiplier or a mixed-signal multiplier. The decision on the nature of the input
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signals was closely linked to this choice. Analog multipliers using CMOS of several types

have been available, starting with the Gilbert cell [62], modified for MOS transistors [63,64].

Various designs operating in either the transistor saturation or linear region allow four-

quadrant or one-quadrant multiplication of analog signals. [65–69]

The typical analog multiplication schemes [70] and circuits [71] share the same overall

advantages and disadvantages. The circuits are typically small in terms of transistor counts

compared to their digital counterparts and operate very quickly. (The unclocked analog

multipliers are limited by the speed of the transient response of the transistors which is

much faster than is needed in this application) Digital multipliers require more hardware but

produce a noiseless result when sufficient bus width is provided to avoid overflows. [72–76]

Floating-point operations also suffer from round-off noise [77] but are not necessary for the

convolution since all operands are integers.

Since the operands are analog for the image and digital for the template, an entirely

analog or digital multiplier scheme requires converting one of the signals through an analog

to digital [78–81] or digital to analog converter [82–85], which unnecessarily increases the

complexity of the circuit. A mixed-signal multiplication scheme [40–42] that accommodates

the nature of both operands was therefore chosen for this task.

The multiplier accepts operands of a different type and performs the multiplication in

a non-clocked scheme. The output is exclusively a function of the two operands, no control

signal or clock is provided in the final version. An early implementation of the multiplier

described here uses a clocked output as part of the calculation.

The first operand is provided as an analog current, output of the pixel readout circuit

described in section 5.2.2, while the other operand is stored as a digital signal in a serial-

input, parallel-output memory. Although the digital signal is changeable by the user, when

computing the convolution over a single frame, it is fixed and available at all times. Each

pixel of the kernel is stored in the form of an 8-bit unsigned integer.

Since the nature of the signal from the imager is to be kept in the entire signal chain,

the multiplying cell was designed to output the result as a current that can be read out in

the same way as the signal from the imager.

Therefore the digital template will be converted to an analog signal through a modified

digital to analog converter operating in the current domain where the reference current is

the one provided by the imager.
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Figure 5.13: Multiplying DAC current ladder

5.3.1 Binary-scaled ladder

The multiplying DAC converts the digital kernel into a current, using the input from the

pixel as reference. The output vary linearly with respect to this reference and to the kernel,

producing the multiplication of the two. The converter build is based on an array of binary-

scaled amplifiers controlled by the kernel bits:

Let K be the number corresponding to the digital operand and I be the analog current

input, the second operand. If K is a natural integer which has been stored as an n-bit

digital number, Ki is the binary value of the ith bit of K. The validity of the multiplying

DAC lies on the associative property:

K =

n−1∑

i=0

(Ki × 2i) ⇒ Iout = K × Iin =

n−1∑

i=0

(Ki × Iin × 2i). (5.8)

The input current is duplicated and amplified through a number of current mirrors

corresponding to the number of bits in the digital signal. The amplification takes the gain

corresponding to the position of the mirror when laid out in the form of a binary-scaled

ladder. That is, the first mirror has unity gain, the second a gain of two, then four, eight,

sixteen, up to 128. [40, 86]

Each bit of K controls a switch allowing the amplifier current to flow or not. All allowed

currents are added, yielding the desired result.
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5.3.2 Output scaling

Achieving 8-bit multiplication using this scheme requires laying out a large number or

transistors. The reference transistors (replicating the pixel current at the input of the

current mirror) is duplicated 255 times, which takes up excessive space on the chip. To

implement this cell, we had to divide it into two identical blocks corresponding to the

template’s four most- and least- significant bits respectively. The output of each of the LSB

blocks is simply read out while the ones from the MSB are amplified.

Two methods were studied and implemented to reconstruct the full signal. One uses

time-controlled switches which regulate the number of charges that flow from each block

and are integrated onto a capacitor. The other uses a
(

W
L

)
geometrical scaling of the current

transferred in a series of current memories.

5.3.2.1 Time scaling

In the case of capacitors used as accumulators, it is not only the current that will determine

the voltage across the capacitor, but also the time the charges are allowed to flow into it.

Although the multiplication cell generates a current proportional to the product of the two

operands, the result will be read as the voltage across the readout capacitor, proportional to

the number of accumulated charges: Vout =
Q

C
=

1

C

∫ T

0
Idt =

I · T
C

. The ×16 amplification
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Figure 5.15: Multiplying DAC time-scaled output simplified circuit

of the most-significant bits is achieved by controlling a switch that remains closed sixteen

times longer than that on the least-significant bits output. The charges flow for a longer

time in the capacitor and the resulting voltage scales linearly with time:

Vout =
1

C

(∫ T

0
I1dt +

∫ 16T

0
I16dt

)

=
(I1 + 16 · I16) · T

C
.

A very accurate clock division is required when using time as an input to such an

arithmetic operation. If an accurate, high-speed master clock is not available, errors in

the correspondence between least- and most-significant bits will occur, which can translate

either as inaccuracies or actual arithmetical errors such as when the monotonicity of the

multiplication is compromised, i.e., when (15 × I) > (16 × I) [87].

5.3.2.2 Geometric scaling

When using a capacitor as the readout element of the multiplier, as in the circuit described

in section 5.3.2.1, the current flow is regulated with accurately controlled clock signals to

give more weight to the most significant template bits. These clock signals allow to scale the

multiplication output as needed. However, using a series of current memories and current-

mirror amplifiers, as in the circuit in section 5.4, is more appropriate to maintain the nature

of the signal.

To interface such a circuit, the outputs of two halves of the multiplier are amplified using
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Figure 5.16: Multiplying DAC geometric-scaled output simplified circuit

cascode current mirrors, in the same way the multiplying DAC was implemented. Figure

5.16 shows a simplified schematic of the output circuit where the output current is:

Iout = I1 + 16 · I16.

Using this method for the output stage, the multiplying DAC does not require any

control signal or timing information to operate. The output is entirely a function of its two

operands, and it only changes when a new pixel is made available.

5.4 Accumulators

The consequence of the row-wise mode of operation of the APS imager is that computation

over a neighborhood of pixels can not take place in a fully parallel fashion. The informa-

tion from all the pixels taking part in the convolution needs first to be released by the

imager. The 9 × 9-pixel convolution requires nine rows to be sent from the imager to the

processing unit before the first results can be computed. With a pipeline architecture for

the accumulator, the flow of pixels is not slowed down once it starts after the nine-row

latency.
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I ⊗ K =

9∑

j=1

(
9∑

i=1

(Ii,j · Ki,j)

)

︸ ︷︷ ︸

row partial products

(5.9)

5.4.1 Pipeline

The row partial products in equation 5.9 are the outputs of the multipliers. Nine neigh-

boring pixels were multiplied pixel-wise with the nine kernel rows and added row-wise with

each other, yielding the nine partial products. Those are noted Xi in the diagram of the

pipeline accumulator, figure 5.17. The input of each stage of the pipeline comes from the

multiplier controlled by the corresponding kernel row, i.e.,
∑9

i=1 (Ii,j · Ki,j) goes to the Xj

input. When a new row is addressed in the imager, the kernel multiplications are added to

the previous states of the pipeline and shifted until the ninth stage where the final result is

read out.

The states of the pipeline represent the partially constructed sum and are stored on

current memories similar to the one in figure 5.10, used in the pixel readout circuit. A

two-step operation (transfer the input into a first current memory, then the sum into a

second current memory) prevents an open flow through all the stages which would cause a

loss of the stored information.

The output of a simple adder grows linearly with the number of inputs. Therefore, the

accumulator has to work with a range of amplitude ninefold larger than that of the input

current without distortion or saturation. This demand on the design requires the current

memories and mirrors to operate over a wide range while consuming significantly more

power than if working with the same amplitude range as the inputs of the accumulator.

A solution to this problem is to scale the partial products in each stage of the pipeline
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to ensure a constant range of operating current. The inputs are scaled down by a factor

matching their position in the pipeline and each partial product receives the complement

so the resulting sum has a constant weight of one.

∑9
i=1 Xi

9
=

8

9

(
7

8

(
6

7

(
5

6

(
4

5

(
3

4

(
2

3

(
1

2
(X1) +

1

2
X2

)

+
1

3
X3

)

+ · · ·+ 1

8
X8

)

+
1

9
X9

(5.10)

The rolling sum and averaging is constructed in nine steps by introducing the partial

product values from the new rows in each stage of the pipeline. Equation 5.11 shows the

partial product at stage j, constructed with the j first inputs coming from the sum of pixel-

wise multiplications of the j first rows of the kernel with the currently addressed row of

the imager array. This is similar to equation 3.3 which appeared in the algorithm study in

chapter 3.

∑j
i=1 Xi

j
=

(
j − 1

j

)

·
∑j−1

i=1 Xi

j − 1
︸ ︷︷ ︸

previous stage

+

(
1

j

)

· Xj (5.11)

The output of stage 9 expands to the same expression as equation 5.10. It is the output

of the accumulator and therefore the result of the convolution. The accumulator introduces

a scaling factor to preserve the swing of the signals:

Xi =
9∑

i=1

(Ii,j · Ki,j) ⇒
∑j

i=1 Xi

j

∣
∣
∣
∣
∣
j=9

= I ⊗ K. (5.12)

The system simulation of the nine-stage pipeline accumulator was presented in section

3.3.1 where the algorithm was first introduced. The Matlab code encoding the complete

accumulator, and used on the images figures 3.5 to 3.10 shown as examples can be found

in section A.1.2.

5.4.2 Single-cell structure

The first stage of the pipeline accumulator does not use a previously saved partial product.

Its purpose is to initiate the pipeline with the first kernel row. For the algorithm to work

properly, the input current X1 needs to be available for transfer to the second stage when

needed. This happens when all the inputs of the other stages have been scaled and transfered
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Figure 5.18: One-step cell in the pipeline: first stage

into the CM2 memory cells of figure 5.17. To maintain the robustness of the pipeline, a

CM2 memory cell also appears into the first stage. It is synchronized with those of the

entire pipeline, guaranteeing the availability of the signal even if the input has already been

withdrawn.

The structure of the initial stage, shown in figure 5.18, is similar to but simpler than

its multi-input counterparts. The single current memory saves the current input X1 on its

load mode and releases it on its read mode to the output Y1. Since no scaling occurs in the

first stage, the current mirrors all have a ratio
(W

L )
in

(W
L )

out

= 1.

Load (Load in). Imem = X1.

The X1 current input flows through M16 into the current memory which is in load

mode. The M17 transistor acts as an open switch and prevents loss of current to the

output.

Read (Load out). Y1 = Imem.

M16 is open and the current memory is in read mode. The memorized current,

corresponding to what the X1 input was equal to (it is no longer assumed valid at

this time), flows though M17 to the output.
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Figure 5.19: Two-step cell in the pipeline: j th stage

Note that the Load in and Load out control signals are non overlapping so that leakage of

the saved current to the output during the load phase is minimized.

5.4.3 Double-cell structure

With the exception of the first stage which only has to work with one input, all the stages of

the pipelines share the same structure. The two inputs are scaled, combined and transfered

to the next level through two current memory cells, CM1 and CM2 on the simplified

schematic of figure 5.19.

Computationally, each of the double-cell stage implements the transformation of equa-

tion 5.11. The two inputs are the current from the multiplier Xj which is getting inserted

into the pipeline at that stage, and the connection with the previous stage which is a partial

product that has been built up in the pipeline up to that point.

Yj =

(
j − 1

j

)

· Yj−1 +

(
1

j

)

· Xj

All the double-cell structures and the one single-cell structure share the same two control

signals. Their operation is therefore very similar. The charging of the memory CM2 obeys

the same timing, ruled by the Load in signal while that of the memory CM1 happens when

the cells share outputs on Load out.
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Load (Load in). Imem in =
(

1
j

)

Xj +
(

j−1
j

)

Yj−1.

The Xj current input is scaled down by
(

1
j

)

while the current previously saved in

CM1 (now in read mode), Imem out is scaled down by
(

j−1
j

)

. They flow through M16

and M14/M15 respectively into the CM2 current memory which is in load mode and

memorizes the sum of the two. The M13 and M17 transistor act as open switches

and prevent exchange of information with the other stages of the pipeline.

Read (Load out). Yj = Imem in and Imem out = Yj−1.

The transmission of the partial products between stages occurs on the Load out signal.

The transistors M14, M15 and M16 act as open switches. The CM2 current memory

is in read mode and the CM1 memory in load mode. The Imem in current from CM2

is sent to the output Yj while the current output of the previous stage Yj−1 flows

through M13 into CM1 where it is memorized. It is this current that will be used in

the next sequence with the next incoming Xj from the multiplier.
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Chapter 6

Design and Simulation

6.1 Introduction

The complete calculation of the convolution between the acquired image and a kernel in-

volves arithmetic operators such as multiplications and additions. This results in an am-

plification of the signal. There is, therefore, a need for a way to handle a wide dynamic

range. For the digital implementation of chapter 4, this was dealt with by assuming the

worst-case scenario (uniform kernel at maximum value with a saturated incoming image)

and by increasing the width of the internal data bus accordingly. When working in the

analog world, other solutions must be found to address the challenges brought by the long

signal chain and to insure linearity, prevent clipping and maximize the signal to noise ratio.

Because of the computational nature of the system, it is necessary to insure that the

accuracy of each stage can be guaranteed over the entire range. Closely related to this is the

noise introduced by each element that must be addressed to minimize its effects on the final

result. The absolute value of the current flowing in the signal chain is also of importance

as the power consumption of the chip directly depends on it.

It is these considerations, and others that are specific to the function of each circuit,

that have guided the many choices made during the design phase. These decisions are the

topic of this chapter. The functional description of the circuits which are the focus of the

greater part of chapter 5 are used as references and starting points for the design of the

cells and their optimization. The challenges of each designed computational block of the

signal chain are detailed with the design requirements of the cell and the simulations used

to validate the choice of the various parameters.
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Figure 6.1: Cascode N- and P-type current mirrors

6.2 Cascode current mirror

As the main building block for most computation elements, the cascode current mirrors

have to be reliable in their accuracy and spatial homogeneity over the chip. The design of

the mirrors takes into account the need for linearity over the operating current ranges and

aims for good matching for predictable arithmetic results.

The cascode current mirror as studied in section 5.2.2, also shown in figure 6.1, is used

for many tasks in the convolution. They are described with the architecture of the chip

in chapter 5. For an overview of their main uses, see section 5.2.2 on the pixel readout

circuit and current memory, section 5.3 on the mixed-signal multiplier and section 5.4 on

the pipeline structure of the accumulator. Although the design of each of these structures

is studied separately in this chapter, they are important in this section as they all rely on

the accuracy of the current mirrors over their operating range of currents.

With proper choice of the bias voltage, we can assume that all transistors in figure 6.1

are in saturation. For the N-type structure, we have on the input side:

Ipix =
1

2
µnCox

(
W

L

)

2

(VGS2
− Vtn2

)2

⇒ Vin = VGS2
= Vtn2

+

√

2Iin

µnCox

(
W
L

)

2

. (6.1)
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Similarly, on the output side,

VGS4
= Vtn4

+

√

2Iout

µnCox

(
W
L

)

4

. (6.2)

Since the gates of M2 and M4 are connected, Vin = VGS2
= VGS4

. Therefore, equations

6.1 and 6.2 can be combined:

Vtn4
+

√

2Iout

µnCox

(
W
L

)

4

= Vtn2
+

√

2Iin

µnCox

(
W
L

)

2

.

A special case of this equation is the ideal one when the threshold voltages are equal.

(Vtn4
= Vtn2

) It then yields the current mirror equation:

Iout

Iin
=

(
W
L

)

4
(

W
L

)

2

.

The same derivation with P-type structures shows that for both types, any uncertainty

on the geometrical parameters (W and L) and the threshold voltage variations will have

a large effect on the effectiveness of the mirrors. Their matching across small and large

areas will be studied in chapter 7, as will the computation errors they might introduce in

the image convolution. The bias voltages also play a role in how well the current mirrors

perform and must be set with care to insure the linearity of the mirrors over the desired

range of currents.

All the current mirrors needed in the convolution chip circuits operate in the [0 : 10µA]

range of currents. They share the same bias voltages (Vbn
and Vbp

, depending on the

polarity) and sizing. The exception is the occurrence of multiple parallel transistors used

for current scaling.

The characteristic curves of the current mirrors and their associated difference plots

(deviation from the ideal case when Iout = Iin) are shown in figures 6.2 and 6.3 respectively

for the N-type mirror and figures 6.4 and 6.5 for the P-type mirror. Both types of mirrors

only show small deviations from the ideal curve over the operating range. They lose their

mirroring properties for input currents greater than 16µA for lack of headroom. This

leaves a range significantly higher than necessary for the system performance during normal

operation.
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Figure 6.2: N-type current mirror simulation output
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Figure 6.3: N-type current mirror simulation output difference plot (top) and fractional
error (bottom)
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Figure 6.4: P-type current mirror simulation output
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Figure 6.5: P-type current mirror simulation output difference plot (top) and fractional
error (bottom)
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6.3 Current memory

Current memories are used extensively in the convolution chip. Because it is such a ver-

satile circuit, the description of its operation in section 5.2.3.1 makes no reference to the

application in which the memory cells are used. To ensure all design considerations are

appropriate, every function they perform in the chip have to be looked at separately in

their respective context.

Following the natural data flow of the chip, the first occurrence of current memories is

in the pixel readout, specifically the fixed-pattern noise reduction circuit shown in section

5.2.2 where the reset pixel level is subtracted from the saved pixel value to reduce the fixed

column noise.

The other block taking advantage of these same memory cells is part of the convolution

computation. They are used extensively for each incoming row to transfer the information

of the partial products inside the accumulator pipelines described in section 5.4.

The design choices common to all applications of the current memories are discussed

here in this section. The application-specific issues and the interaction with surrounding

circuits are studied in the next sections on pixel read-out and accumulators.

A schematic of a current memory is shown in figure 6.7 as part of the pixel readout

circuit. Since it is similar to all other current memories in the convolution chip, it is used

here to illustrate the design description.

As explained in details in section 5.2.3.1, this current memory cell is similar to that

described by Daubert et al. [61] and also Moeneclaey et al. [60] in that it uses two transistors,

M6 and M7, operating as half a cascode current mirror. A switch, M8, allows changing

the operating mode from load to source, while a MOS capacitor Mcap serves as the memory

point. It is charged during the load operating mode, and its charge controls the current

when in source mode.

To simulate the current memory circuit, a series of memorizations are performed with

various current inputs. Figure 6.6 (bottom) shows the chronogram with the succession of

read and load controls. The top figure shows the input of the cell (dashed line) and the

output current (solid line) which is zero anytime the read signal is low and matches the

input when the read signal is high. The input is held at the same level during the read phase

only for comparison purposes. As expected for a memory cell, its switching immediately
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Figure 6.6: Current memory simulation. Input and output currents (top) and chronogram
(bottom)

after the load phase does not affect the output.

The precision of the charge on Mcap is key to proper current restoration. Apart from

the transistor noise, studied in section 6.7.2, which causes some uncertainty on the accuracy

of the memorization, it is also impaired by the charge injection from the switching of the

digitally controlled transistor M8. To minimize the effect of charge feed-through, a dummy

capacitor M8d of half the width of M8 is added next to the switch. Its only purpose is to

compensate for the charges injected when M8 changes states [88–90]. Practically, M8 and

M8d are made of three transistors laid out next to each other to increase the quality of the

matching and the equality of the number of charges injected. Two of them are wired to

make the switch, and the third is used as the dummy.
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6.4 Pixel readout

The initialization of the analog signal chain occurs when the pixel array is read out and

conditioned to be transmitted to the computation unit. This two-step process described in

section 5.2.2 starts with the conversion of the voltage mode pixel to a current, followed by

a fixed-pattern noise reduction circuit. The two components with their connecting mirror

form the complete readout cell as shown in figure 6.7.

The input interface of the readout cell is of course the pixel itself which provides the

initial signals to be processed; therefore this section begins by studying the format of the

pixel output. The specifications of the converter stage, which turns the pixel information

into a current and voltage range that meets the requirements of the computing cells, are

introduced next. Finally the entire readout circuit with a current memory is presented as

the main element of the FPN reduction circuit. Section 6.3 goes over the details of the

operation of the current memory.

6.4.1 Voltage-mode pixel

The voltage level at the output of the pixels depends on a number of parameters which

affect the range of operation and consequently the design of the readout circuit. A close

look at equation 5.1 (repeated here as equation 6.3) and figure 5.3 shows that the output

voltage range is limited by the geometry of the pixel integration transistor (Mpix) and the

current source at the bottom of the column (MLN ).

Vpix = VdRST
− idiode · T

C
− (VLN − VtnLN

)

√
√
√
√

(
W
L

)

LN
(

W
L

)

pix

(6.3)

The photodiode current idiode and the integration time T are user controlled to maximize

the light detection while avoiding saturation, that is to allow as large a signal swing as

possible while avoiding pulling Vpix all the way to 0.

The available range is set by the geometry of the pixel and the current sink transistors

Mpix and MLN and the bias voltage VLN . The specifications for the interface with the

readout circuitry are set by the pixel. As seen in the simulation output of figure 6.8, a

voltage in the range of [1.5V : 0] spanning linearly the light levels between darkness and

saturation is assumed when designing the downstream circuit.
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Figure 6.7: Voltage to current conversion and fixed pattern noise reduction
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6.4.2 V-I conversion

The voltage to current converter is the interface between the sensor and the computa-

tion stage. The requirements are to adapt the signal to transfer the [0V : 1.5V ] voltage

range from the pixel to a usable range of current for the convolution blocks. Following

the schematic and labels of figure 6.7, the transfer of the incoming pixel high impedance

source (voltage mode) to a low input impedance load (current mode) effectively occurs in

the modulating resistor R. R will therefore determine the magnitude of the current flowing

through it and into its load: the current mirror pair M1 − M2. The input transistor M3

introduces a non-linear effect which should ideally be minimized in the range of operation.

Section 5.2.2.1 on the circuit architecture explains the details of the operation of this cell.

The load of the converter is a current mirror with its output connected to a current

memory for fixed pattern noise reduction. The design specificities of those cells are detailed

in sections 6.2 and 6.3. For best linearity while conforming to their interface, the conversion

stage should maintain the current between 0µA and 10µA.

The simulation plot of figure 6.10 shows first that the range of current expected by the

current mirror load is exceeded. This is addressed by the scaling inside the mirror. (See

the complete readout cell description in section 6.4.3.)

The second important piece of information is the linearity of the conversion. A linear

fit of the transfer function over the range of operation ([0 : 1.5V ] input voltage) predicts a

slope of −8.25µA/V with a relative error of less than 0.5%, as shown on the difference plot

and relative error plot of figure 6.11.

6.4.3 Fixed pattern reduction

The purpose of the pixel readout circuit is to transform the raw information from the pixel

into a usable signal for the rest of the chip. The term “usable” in this context means a

signal that conforms to the nature of the circuits it is connected to, and as precise and

predictable as possible. To achieve this, two steps are used. First, the voltage to current

converter described above operates continuously to generate a current proportional to the

pixel column line is it connected to. When a pixel is selected, it can thus be probed through

a current mirror biased by the converter.

To increase the accuracy of the signal, a fixed pattern reduction stage is introduced in
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the column readout signal chain. A current memory, as described in section 6.3, samples

the exposed pixel value onto a capacitor and provides the saved value to the output inter-

face while subtracting the pixel reset level from it, so the difference is independent of the

pixel reset reference voltage, reducing the offset from the pixel. Further sampling is then

homogeneous among the pixels and the range of signals are more accurately comparable.

The simulation setup for this two-step function consists in sampling alternatively a high

and a low current level, as provided by the voltage to current converter. The higher current

represents an exposed pixel response and is saved on the capacitor in the current memory.

The lower current simulates the pixel reset level. When the current memory is in read mode,

the difference between the two values is sampled at the output. A switch at the output
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ensures that no current leaks out. An example with random values (chosen to be in the

range of operation defined by the converter) is shown in figure 6.12. The output (dashed

line) rises to a level equal to the difference between the high and the low input levels.

6.5 Multipliers

After going through the voltage to current converter and the fixed pattern noise reduction

circuits of the readout circuit, the pixel information becomes one of the operands of the

multiplier. The other operand being the digital kernel stored in an on-chip memory cell. The

multiplier is built as a multiplying DAC with the digital operand controlling a binary-scaled

ladder, as described in section 5.3. Because the kernel is fixed,1 the multiplier effectively acts

as a single-input cell. The advantage of having a fixed kernel is that no switching occurs, so

no charge feed-through is generated which would affect the accuracy of the multiplication.

To implement the multiplication using equation 5.8, a series of cascode current mirrors

were arranged as in figure 5.14 with identical but separate blocks for the lowest and most-

significant bits. The regrouping is done by scaling the MSB by a gain of sixteen using

a scaled current mirror, as in figure 5.16, rather than by using a time-controlled switch.

Time-controlled switches require accurate clock division which is best achieved internally

but is not convenient to provide externally. External control is important for a test chip

where testability is critical. A time-scaled circuit was built on a separate test circuit and

yielded encouraging results, but suffered from inaccurate clock ratios in the test setup.

The current mirrors used for the multiplier are identical to those described in section

6.2. Because there are so many of them, the current mirrors need to be well matched.

Proper matching ensures that the scaled current accurately reflects the multiplication and

maintains monotonicity when going from LSB to MSB. Layout considerations were crucial

in this step and are the subject of the discussion of section 7.3.2. Those considerations

include large W
L

for the mirrors, placement of elementary multiplying cells on a regular grid

and close proximity of the controls for the two halves of the multipliers.

A simulation of the multiplier with varying input current and a number of different

kernel values is shown in figure 6.13. It demonstrates how the output current levels when

reaching 20µA, which occurs when the voltage drop across both the N-type and P-type

1The kernel does not change during a frame readout, and is therefore considered fixed for that time.
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Figure 6.13: Multiplying DAC simulation output with varying input current (X-axis) for
several kernel. Dashed area indicated the region of interest.

cascode current mirrors is too large and a larger supply voltage would be required to allow

for sufficient headroom. This issue illustrates the necessity for the computation circuit to

maintain a range of currents that is appropriate to all elements within operating conditions.

The current input of the multiplier is the output of the pixel readout circuit described

in section 6.4. The interface design plans for a current range of [0 : 10µA] to pass to the

multiplier. The corresponding range in the multiplier simulation of figure 6.13 is inside

the dotted rectangle. It is also magnified in figure 6.14 to show the linearity of the circuit

output with respect to the current input. Switching the axis from current input to kernel

value yields a similar plot. Simulation predicts a linear multiplication with respect to both

inputs for the range of currents considered.
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Figure 6.14: Multiplying DAC simulation output restricted to the range of signal used
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6.6 Accumulators

The multiplication units generate the products and the inner sum of the convolution equa-

tion 5.9. Once these partial products are available, the accumulators are in charge of

combining them with the partial products created from previous rows and saving them to

be combined with products from future rows. The pipeline accumulator structure of section

5.4 is used for this task. The pipeline is made of a series of similar stages which only differ

by the scaling factors of their inputs. The first pipeline stage is also different from the

others since it only handles one input, a partial product from the multiplier, instead of two

with the output of the previous stage. The simplified block diagram of figure 5.17 shows

the operation of the pipeline.

The following paragraphs will show the simulation of both the first pipeline stage, a

single accumulator cell, as well as a double accumulator cell, representative of all the other

stages.

6.6.1 Single cell

Because it is the initialization stage, the first stage of the pipeline accumulator only accepts

one input, from the multiplier. Furthermore, it does not perform any scaling of the signal.

It only serves as a buffer and memory cell so the pipeline is initiated in a consistent manner.

What is left is a current mirror at both the input and the output and a current memory

cell. Those elements are identical to those described and simulated above, in sections 6.2

and 6.3.

Details of the single accumulator cells are described in section 5.4.2, with the simplified

schematic in figure 5.18. Because it is very similar to a current memory, the simulation

also looks very similar: the same setup is used in the single cell simulation of figure 6.15

with the load/read sequence shown in the bottom plot. The top plot shows how the output

current matches the input on each read cycle. The operating range is also similar to that

of the current memory so linearity of the response is also good in the range of [0 : 10µA]

6.6.2 Double cell

All other stages of the accumulator are built on the model of the circuit shown in section

5.4.3. Each of the two inputs is mirrored and scaled so the sum is the average of all the
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inputs to the pipeline so far. Because they are made of two current memories and handle

two inputs, they are referred to as double cells. The scaling performed is asymmetric with

respect to the inputs: the input from the previous stage carries more weight than the new

incoming partial product so the rolling average of equation 5.12 is always correct for the

current stage.

Since double cells receive inputs from the same source as single cells, the interfaces are

similar and handle the same range of currents. This appears in the simulation shown in

figure 6.16 which naturally resembles that of the single cell. In this example, the fourth

stage of the pipeline was simulated and compared to the expected output from the equation.

The output current is a function of the two inputs Iprevious and Iin. Iprevious comes from

the previous pipeline stage and Iin from the multiplier. We expect the output of the fourth

stage to be: Iout = 3
4Iprevious + 1

4Iin.

As for the single cell simulation, the sequence of events is a succession of load and read

cycles. The chronogram of figure 6.16 (bottom) shows the cycles. The top plot compares

the simulated output to the expected one. They are equal during each read cycle.

6.6.3 Pipeline

When all stages are connected end to end, the complete pipeline accumulator can also be

simulated. Every input of the pipeline is provided by the multiplier, so the interface with

each stage is always the same. When a new window starts being processed, the accumulation

works its way through the pipeline in as many cycles as pipeline stages. In the convolution

chip, nine stages form the pipeline accumulator so the result is available on the ninth cycle.

The propagation of the signal with the convergence towards the response to a set of inputs

is shown in figure 6.17. The same chronogram is used as in the individual stage simulations.

Assuming the pipeline current memories are initialized to zero (ground), the output rises

at every cycle since one extra input is added to the overall sum. After the ninth stage, the

same value is read out until the inputs change.

A major expectation of the pipeline accumulator is the linearity of the response. Equa-

tion 5.12 predicts that the averaged sum is linear with respect to every input. In particular,

it should show as an identity function when all nine inputs are set to be equal. In this case,

the output Iout follow the input Iout. With the average, the accumulation equation reduces

to: Iout = 9×Iin

9 = Iin. Figure 6.18 shows the response over the range of currents of interest.
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Figure 6.17: 9-stage accumulator with all identical inputs converges on the ninth step

The dashed line represents the linear fit of the simulated data. The absolute and relative

difference plots are available in figure 6.19. They predict uncertainties of up to 2% to 4%

can be expected from the complete pipeline.
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6.7 Uncertainties

6.7.1 Accumulator propagation of errors

The pipeline making up the accumulator is a non-symmetrical structure as its nine inputs

enter at different stages. If the pipeline were perfect, the uncertainties in the input variable

would propagate evenly to the output and contribute equally to the output uncertainty.

Because the amplifiers in each stage are not perfect and suffer from both mismatch and

noise of the transistors, the actual amplification includes both a systematic and a random

error component. The random component, due to noise will be examined in section 6.7.2

on circuit noise, while this section will look at how the systematic errors propagate in the

pipeline and affect the final result. Intuitively, the first inputs to the accumulator go through

more of these imperfect stages and therefore propagate more uncertainty than the last ones.

On the other hand, the uncertainty from the last stage will not go through as many scaling

stages and will therefore not be attenuated. These two effects are shown in figure 6.20 (top)

where the scaling which introduce systematic errors appear. Figure 6.20 (bottom) details

one stage with the scaling factors and the systematic errors associated to them.

Let Ai and Bi the two amplifiers of the stage i, Ai = 1
i

scaled the pixel input Xi, and

Bi the input from the previous stage of the pipeline Yi−1. The systematic errors associated

to those amplifiers are εAi
and εBi

. The real amplifier values (including all uncertainties)

are noted AXri
and AYri

.

The first stage is unique in the sense that it only takes one input X0 and has unity gain.



97

The output can then be expressed as:

Y1 = AXr0
· X0 = AX0

· X0 + εX0
· X0,

Y1 = X0 · (AX0
+ εX0

) .

All the subsequent stages are built on the same template shown in figure 6.20(bottom)

with two inputs: Xi from the column and Yi from the previous pipeline stage. The amplifiers

are the only distinction between them.

For any stage i, the output Yi+1 in terms of the inputs Xi and Yi is:

Yi = Yi−1 (AYi
+ εYi

) + Xi (AXi
+ εXi

)

⇒ Yi = AXi
· Xi + AYi

· Yi−1
︸ ︷︷ ︸

ideal response

+ εXi
· Xi + εYi

· Yi−1
︸ ︷︷ ︸

error introduced in ith stage

.

The amplifier values on both inputs are a function of the pipeline stage: AXi
= 1

i
and

AYi
= i−1

i
. With some algebra, we can directly express the output of any stage of the

pipeline as a function of the inputs:

Yi =

i∑

k=1

((
1

k
+ εXk

)

· Xk

i−1∏

l=k

(
l

l + 1
+ εYl+1

))

.

In particular, the output of the complete pipeline is given by:

Y9 =

9∑

k=1

((
1

k
+ εXk

)

· Xk

8∏

l=k

(
l

l + 1
+ εYl+1

))

. (6.4)

From the expression of equation 6.4, we can extract the influence of the errors depending

on where they are introduced in the pipeline. If we only consider the first order, the

contribution to the final output Y9 of the amplifiers AX is:

εY9
|inputX =

9∑

i=1

i

9
(εXi

· Xi) . (6.5)

Equation 6.5 shows that the closer the stage to the output, the larger the contribution

of the systematic error it introduces. While it is beneficial to attenuate the effects of

the systematic errors from the first stages, it comes at the expense of symmetry on the



98

pipeline which is undesirable since we no longer expect these errors to compensate. A

similar observation can be made from looking at the uncertainties from the AY amplifiers.

Their contribution are also a function of their position and lessen as they get closer to the

beginning.

6.7.2 Circuit noise

As with any circuit, the convolution chip is subject to uncertainties and errors due to circuit

noise. Each transistor in the chip is subject of such perturbation. Those noise sources

can be modeled and their effect on the output of the complete circuit can be estimated

by propagating all the intermediate noise sources through the entire circuit. While it may

seem like an overwhelming task, the analysis can be broken down to a few elementary blocks

which are easily managed and the signal chain can be simplified by recognizing similarities

and assuming a worst-case scenario at every stage. The diagram shown in figure 6.21 will

be used as the basis for the calculations. The dotted boxes isolate the elementary building

blocks that will be studied first:current mirrors, current memories and pipeline stages.

6.7.2.1 Current mirror

The most basic structure used as an elementary building block is the simple current mir-

ror shown in figure 6.22(a). Ideally, when both transistors M1 and M2 are geometrically

identical, the input and output currents are equal: I2 = I1. The noise introduced in this

circuit can be observed as a variation in this equality. We introduce α where I2 = αI1.

Since only ratios of sizes are relevant here, we carry all discrepancies into the widths of the

transistors, such that the lengths are equal: L1 = L2 = L but W1 and W2 are not assumed

to be. Consequently, no assumption is made for the gains gm1
and gm2

.

gm1
= ∂I1

∂VGS1

=
√

2I1Cox
W1

L

gm2
= ∂I2

∂VGS2

=
√

2I2Cox
W2

L






⇒ gm1

gm2

=

√

I2W2

I1W1
.

Also, by definition,

α =
I2

I1
=

W2

W1
⇒ α =

gm2

gm1

.

The noise on the output current I2 is then:
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Figure 6.21: Signal chain for the noise analysis
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Figure 6.22: Simple (a) and cascode (b) current mirrors.

SvI2 =
8

3
kTgm1

α2 +
8

3
kTgm2

SvI2 =
8

3
kTgm2

(
gm1

gm2

α2 + 1

)

⇒ SvI2 =
8

3
kTgm2

(α + 1) . (6.6)

Typical parameters from the fabricated chip process allow to estimate the noise level

to expect in the final circuit. In the specific case of the simple current mirror, numeri-

cal application of equation 6.6 give SvI2 = 0.73pA/
√

Hz. The small number reflects the

compactness of the structure, the small capacitance, and the absence of sampling in this

cell.

The cascode current mirror of figure 6.22(b), which is used in the chip design rather than

the simple current mirror, yields to the same noise equation as the influence of the cascode

transistor changes the noise in the output branch to SvI2 = 8
3kT

(

gm2
+

gm2c

A

)

where A is

the gain. Since A � gm2
, the expression reduces to the one above. Simple stage current

mirrors will therefore be used from now on in the noise analysis.

6.7.2.2 Current memory

The other main building block in the chip is the current memory cell. When in Read

mode, it behaves similarly to the output of the current mirror seen above. However, when
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Figure 6.23: Simple current memory (a) and its small-signal model (b)

a current is written to it, it differs from that model: the sampling on the capacitor through

the switch affects the saved information and noise is introduced on the sampled voltage

Vm. The cell in Write mode is shown in its simplified version in figure 6.23(a). The small

signal model of figure 6.23(b) is used to determine the noise. The main perturbations of the

sampled voltage come the drain to gate capacitance Cf , the switch resistance represented

by its admittance gs and current fluctuations modeled as the two current sources if and

ia which are represented in the circuit diagram. The output of the cell is a current which

depends directly on the sampled voltage. It is the noise of this voltage that we will analyze

here.

Before the switch is closed, the charge at Vx is:

Qx = Cs · V̂x + Cf · (V̂x − V̂m).

When it is toggled, the charges distribute and Vx = Qx

Cs
⇒ Qx = Vx · Cs. Because of

charge conservation, those two expressions of Qx must be equal, and therefore:

Vx = V̂x
(Cs + Cf )

Cs
− V̂m

Cf

Cs
. (6.7)

The noise at the node Vx can therefore be expressed in terms of V̂x and V̂m:

〈
V 2

x

〉
=

〈[

V̂x
(Cs + Cf )

Cs
− V̂m

Cf

Cs

]2
〉

.
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The noise sources is and ia being independent, we can study them separately and apply

the superposition principle to merge the results. We determine the transfer functions with

respect to both sources from the schematic of figure 6.23(b):

V̂m

is
=

1 + gm

jCsω

(gs + jCfω)(g0 + jClω)

(
1+ gm

jCsω

g0+jClω
+ 1

jCsω
+ 1

gs+jCfω

) , (6.8)

V̂m

ia
=

1 +
Cf

Cs
+ gs

jCsω

(gs + jCfω)(go + jClω)

(
1+ gm

jCsω

g0)+jClω
+ 1

jCsω
+ 1

gs+jCfω

) , (6.9)

V̂x

is
=

1
gs+jCf ω

+ 1
gs

1
gs+jCf ω

+ 1
g0+jClw

+ 1
gs

, (6.10)

V̂x

ia
=

1

(g0 + jClω)
(

1 + gm

g0+jClω
+ jCsω

(
1

g0+jClω
+ 1

gs+jCfω

)) . (6.11)

Applying the superposition principle to equation 6.7, we obtain from equations 6.8 to

6.11 an expression for the transfer functions Hs = Vx

is
and Ha = Vx

ia
:

Hs =
(Cf + Cs)

(
1

gs+jCfω
+ 1

gs

)

Cs

(
1

gs+jCf ω
+ 1

go+jClω
+ 1

gs

)

−
Cf

(

1 + gm

jCsω

)

Cs(gs + jCfω)(go + jClω)

(
1+ gm

jCsω

go+jClω
+ 1

jCsω
+ 1

gs+jCf ω

) , (6.12)

Ha =
Cf + Cs

Cs(go + jClω)
(

gm

go+jClω
+ jCsω

(
1

go+jClω
+ 1

gs+jCfω

)

+ 1
)

−
Cf

(
Cf

Cs
+ gs

jCsω
+ 1
)

Cs(gs + jCfω)(go + jClω)

(
1+ gm

jCsω

go+jClω
+ 1

jCsω
+ 1

gs+jCfω

) . (6.13)

The noise sources ia and is being uncorrelated, the noise power of Vx is the sum of the

powers contributed by the noise sources separately:
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< V 2
x >=

[
H2

a · Sia + H2
s · Sis

]
· BW, (6.14)

where BW is the frequency spectrum of the signal, or bandwidth. In the case of this circuit.

Sia and Sis are the spectral density of the two noise sources.

BW =
ωc

4
=

gm

4Cs
; Sia = 4kT

2

3
gm ; Sis = 4kT

2

3
gs

Substituting into equation 6.14, we get:

< V 2
x >=

[

H2
a · 4kT

2

3
gm + H2

s · 4kT
2

3
gs

]

· gm

4Cs

⇒< V 2
x >= 4kT

2

3
(gm + gs)

[
H2

a + H2
s

]
· gm

4Cs
. (6.15)

Similarly to the numerical application that equation 6.6 yielded, typical process param-

eters are used to estimate the noise level in the memory cell. Equation 6.15 predicts a noise

level of Vx = 101.4µV on the memorized voltage. The higher noise (compared to the noise

obtained for the simple current memory) can be attributed to the higher capacitance in the

cell as well as the sampling of the voltage, which is an necessary feature of the memory cell.

The current memory studied above is the building block for most of the computation

units in the convolution chip. It was therefore important to study the noise source in that

cell. The other critical element is the pipeline in which each stage produces circuit noise.

The noise signal chain of figure 6.21 illustrates the similarities of each stage. The stages

are based on the two cells analyzed above: the cascode current mirrors and the current

memories. The noise produced is therefore the combination of the circuit noise sources

from three current mirrors and two current memory cells.

6.8 Conclusion

The successful design of a complex circuit such as a computational imager relies on a

number of techniques that must be followed in order to produce a working chip. The

circuits analysis of chapter 5 already separated the chip into a number of simple blocks

that can each be studied and tuned for good performance. The challenge is then to make
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choices appropriate to ensure proper operation in the operating condition of the final circuit.

Interface requirements have to be met so each block interacts with its neighbors without

loss of signal swing or linearity. The simulations presented in this chapter play an important

role in this process as they raise the level of confidence that the architecture was properly

designed.

Also relevant to the design phase is the circuit uncertainties and noise sources. Circuit

noise appears in all elements, transistors and capacitors. A study on how if affects the con-

volution chip is presented through detailed analysis of the building blocks used throughout

the chip. Uncertainties are a consequence of the mismatch of real circuit elements with

respect to their expected values and with respect to each other. While all efforts are made

to minimize mismatch through conservative transistor sizings and proper layout techniques,

it is important to study the effect on the overall computation. The computation stage most

affected by mismatch is the accumulator cell, more particularly the input and output scaling

amplifiers in each stage. The effect on the signal in each stage was studied as was how er-

rors propagate through the entire pipeline. It was shown that the influence of uncertainties

depends on their position in the pipeline. It was also shown that an offset from the ideal

accumulator response can be expected in the fabricated circuit.
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Chapter 7

Implementation

7.1 Introduction

In the process of designing a circuit for a convolution imager, several integrated circuits were

designed, primarily for the purpose of testing the various methods presented in chapter

5. Those include the performance evaluation of current-mode pixels, using charge-mode

computation and time-controlled multiplying DACs.

The layout presented in this chapter is that of the latest revision. Although it still

includes some test structures, it is the closest to a final design with such necessary features

as a fully scalable layout.

7.2 Chip description

Once the resources of the chip being designed are understood and evaluated, the layout

starts by identifying the footprint it will occupy in the radical and how it will be used

efficiently. Both the current design and its use in possible future developments are taken

into account in the floorplan process. The convolution chip can be functionally divided into

four separable blocks.

1. Image sensor. A pixel array of 128 × 128 pixels is included in the design to provide

a real image as an input of the convolution with the kernel.

2. Kernel memory. The second input to the convolution is a digital memory that holds

the value of the kernel. The pixel array and the kernel memory are the two operands

of the convolution.
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3. Mixed-signal multipliers. Pixel-wise multiplication is at the heart of the convo-

lution. Result addition inside each row is performed on the fly thanks to a parallel

readout of the imager in this direction.

4. Accumulators. Partial products from each row are combined in the accumulators

to reconstruct the complete convolution.

The four-block structure is preserved in the layout and yields to a signal flow oriented

floorplan. The chip diagram of figure 7.1 shows the imager above the multiplier and the

kernel memory on the side. They are the two inputs, and the output is placed below. The

main advantage of this placement is the natural wiring of the analog information flowing

vertically while the many digital lines (the kernel memory has 648 output signals) run on

horizontal straight lines. Being a prototype, all control signals are externally provided,

resulting in a large number of pads for the interface. With all the test fixtures and wiring

added, the fabricated chip is pad limited. Bringing some of the control logic on chip, e.g.,

column and row binary counters, would allow for a more compact circuit at the expense of

some of the testing flexibility. Sufficient space was available on the radical so a completely

addressable circuit was preferred. The circuit, fabricated using a 0.5µm feature size process,

measures 9.2mm × 5.2mm and is bounded in a standard 84-pin PGA package.

The hashed blocks in figure 7.1 are test structures identical to the blocks they are placed

next to. They allow independent testing of the various functions of the chip, used for the

characterization in chapter 8. However, they are not part of the circuit and would be

removed in future designs. The floor plan of the useful elements can be easily stretched to

scale the design to more attractive imaging dimensions. The imager sizes in both directions,

while the multipliers and accumulators only need to be arrayed to accommodate the full

width. The kernel memory being unique, does not need to be scaled. Figure 7.2 shows

the chip floor plan for a 1024 × 1024 pixel array. The computing units that were taking

up most of the area when paired up with a small imager now occupy only a fraction of

the chip thanks to their unidirectional scaling properties due to the row-parallel structure

chosen. The overhead from adding the convolution to an imager-only circuit is less than

25%. Assuming a process similar to that used for fabricating the smaller convolution chip,

we anticipate a total size of 16.9mm×14.0mm. Technologies providing much smaller feature

sizes are commonly available and would reduce the footprint almost proportionally.
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Figure 7.1: Convolution chip layout floorplan. Hashed blocks are test structures.
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Figure 7.2: 1k × 1k convolution chip scaling layout floorplan. The image sensor scales in
both directions but the convolution only in the column direction.
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7.3 Layout specifics

The Verilog description of the digital implementation of chapter 4 for the convolution chip

was synthesized and generated a layout using a library of standard cells. For the analog

design, however, such library was not available, so a fully customized layout was manually

drawn. Special care had to be taken to address the specific requirements of this type of

layout. Of particular concern are the maximization of matching of similar features through

proper transistor sizing, close neighboring of linked structures, multiplicity of small tran-

sistors for scaling, and use of dummy cells to preserve the symmetry of the features. Other

issues of special interest include the compactness of the cells to keep the full chip size small

and help with the transistor matching. Arrayability is necessary on the microscale, e.g., the

pixels need to stack together to create the imager, and on the macroscale to allow the chip

to grow into a large format imager as in figure 7.2.

7.3.1 Imager

The image sensor is by definition an array. The elementary cells that compose it must

therefore be not only compact but also perfectly stackable. Each individual pixel is small but

is duplicated so many times that even small increase in size turns into a significant increase

in total chip area. The pixel size in the convolution chip is quite large, at 10µm × 10µm,

primarily due to the technology used for fabrication which allows for a minimum feature

size of 0.5µm and a large fill factor of 57%. With currently available technologies for imager

fabrication of 0.18µm feature size [2,91] and smaller fill factors, pixel sizes of 2.5µm×2.5µm

are commonly used. This scaling is necessary when large format arrays are produced. Other

techniques, such as sharing transistors between neighboring pixels [92] also help keep the

size small.

Figure 7.3 shows the detail of a single pixel layout, that is, the dotted area of figure 5.3.

The photodiode occupies a large area, and the empty space around it is required to preserve

minimal distance between different diffusion types. The same pixel appears in a small array

in figure 7.4 where the interaction between neighbors is more obvious. The vertical metal

lines are the power supply on metal 1 and the pixel output above it on metal 2. Each of

these lines are common to the entire column. The selection of which row connects to them

is done through the two horizontal lines in each row, the selection and reset signals, both
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Figure 7.3: Pixel layout (grid spacing = 1µm)

on the highest metal layer, metal 3. so they can cross safely the vertical lines.

Also part of the imager is the readout circuit which allows to transfer the information

from the sensor to either a processing unit or the chip output. Its goal in the convolution chip

is to transfer the voltage output of the pixels to the current-mode multipliers. A separate

readout circuit is implemented for each column according to the schematic of figure 5.4, so

a full row can be read simultaneously. It is therefore necessary that it be laid out so that

the width corresponds to the width of a column, i.e., of a pixel: 10µm. This explains the

elongated form of figure 7.5.

The resistor is made of a high-resistivity poly2 line drawn in a snake pattern to remain

compact. The scaling current mirror is divided in small transistors, identical for both the

input and output stages but in different number. They are all arranged close to each other

to maximize their matching. The capacitor is a MOS transistor, as determined in chapter

5, which is much more compact than a poly-poly2 structure of the same capacitance value.

The pitch of 10µm is preserved with space on each side to allow for minimum clearance

between transistor diffusions in adjacent cells.
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40 2

Figure 7.4: Pixel neighborhood (units in µm)
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Figure 7.5: Pixel read out (units in µm)
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7.3.2 Multiplier

Each incoming pixel column is processed along with its neighbors in a nine-column block.

The pixel-wise multiplication combines these nine columns with all nine rows of the kernel,

requiring 9 × 9 × 8 = 648 single-bit multiplying units. Continuing with a fully parallel

layout would excessively stretch the chip into an unreasonable strip. As a compromise,

a multi-level arraying setup was chosen. The multipliers are placed in a 9 × 9 grid of

eight-bit multipliers. As a result, the pixel pitch is no longer respected. The new pitch

occupies 160µm corresponding to the width 16 columns. Each multiplier array is then used

to compute the products for all 16 columns under which it is placed.

The schematic presented in section 5.3 accounts for unity-scaled cells duplicated once,

twice, four times and eight times to create the multiplication. Each of these mirrors is

duplicated so both the lower and upper significant bits are handled. Corresponding bits are

combined to form a symmetric structure, yielding the mirrored basic cell containing two

current mirrors of figure 7.6. The bottom pair of transistors mirror the input current in a

cascode configuration while the top pair are switches controlled by the kernel bits, one from

the LSB and its MSB counterpart, i.e., first and fifth, second and sixth, etc. It is this basic

cell that will be arrayed 15 times to form the ×1, ×2, ×4, ×8 pairs shown in figure 7.7.

The switch control signals from the kernel are brought on metal two horizontal lines

that stretch over all the 8-bit multipliers so they can reach both those working on the

same block but on other pixels of the same row and those in different multiplier blocks

multiplying other columns in parallel. Basic cells controlled by the same bits are grouped

together to minimize wiring and only use one level of metal in the layout. Because of the

space needed to draw the wires from the kernel to each line of multipliers, a minimum space

has to be respected between groups of basic cells. This explains the gaps shown in figure

7.7. Additional dummy cells with switches tied to ground can be used to fill the gaps (not

shown in the figure) and realize a perfectly regular structure which helps with the matching

and accuracy of the multiplication.

The elementary multiplier element of figure 7.6 occupies an area of 12µm× 12µm. The

full eight-bit single-pixel structure of figure 7.7 with vertical space for dummies and power,

control and result lines added stretches to 12µm×216µm. The 9×9-pixel multiplier needed

for each column block is simply a tight array of these single-pixel, eight-bit ones. The size
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Figure 7.6: Multiplier unit (grid spacing = 1µm)

of the complete block multiplier is then 108µm × 1944µm. Because the fabricated chip

received a 128 × 128-pixel image array, and each block multiplier can occupy the width of

sixteen pixels, e.g., 160µm, eight such blocks are placed next to each other. Space is left

between each block that will be used for wiring the accumulator, that is, 160−108 = 52µm.
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Figure 7.7: 8-bit multiplying DAC (units in µm)
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7.3.3 Accumulator

The pitch used in laying out the multipliers is to be used downstream in the accumulators.

The difference is that the memory cells that make up the heart of this step cannot be

reused when scanning through the 16 columns they are supposed to work on. It is therefore

necessary to place 16 complete accumulator pipelines under each other.

All of the nine stages of every pipeline are almost identical. They only differ by the

scaling of the two input current mirrors, as required by equation 3.3. The common parts,

such as the two current memories and the current mirrors frames, were therefore placed

in a template used by all stages. To accommodate the scaling, the repeated transistors

are either wired to be part of the circuit or disconnected to become dummies with the

sole purpose of creating a regular structure when arrayed into the nine-step pipeline. The

complete template shown in figure 7.8 is fully wired with scaling factors of 1
9 and 8

9 for the

ninth and last stage.

The elongated shape of each pipeline stage, 14µm × 140µm, reminds us of the shape

of the single-pixel, eight-bit multiplier. When in a nine-stage array, the pipeline ends up

almost perfectly square, nine times wider than the single stage layout. The full nine-stage

pipeline measures 126µm × 140µm. Because the accumulators are again to fit under the

width of sixteen pixel columns, this leaves room on the side to pull the results on vertical

wires so all sixteen pipeline outputs can be sent to column selection switches to be read

out. The spare space is 160µm− 126µm = 34µm, which is enough to fit sixteen metal lines

in parallel.

The complete layout of an accumulator pipeline shown in figure 7.9 only displays the

computationally useful parts, leaving space for dummy structures. The leftmost stage only

has one input so the upper half, corresponding to the input from the previous stage, is left

blank. The complexity of the following stages grows linearly until the last which is fully

stuffed. The layout closely follows the diagram of figure 3.4.

When all sixteen accumulators are stacked vertically and fully wired to the rest of

the chip, they resemble a strip of width 160µm, i.e., sixteen pixel columns, and height

16 × 140µm = 2240µm.

The height of both the multipliers and the accumulators does not grow with the imager;

it remains constant regardless of the number of columns because it always handles sixteen
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of them. It is duplicated on the horizontal axis to accommodate a larger imager: eight are

used for a 128-column imager and 64 for a 1024-column one. The chip floor plans of figure

7.1 and figure 7.2 show the difference. The circuits are fully scalable and their relative

area with respect to the imager decreases as the imager size increases. Assuming a square

imager, the pixel array grows as n2 while the computation circuits grow as n. This feature

is very advantageous for large imagers when n2 � n.
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Figure 7.8: Accumulator - single stage (units in µm)
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Figure 7.9: Accumulator - complete (units in µm)
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Figure 7.10: Multilayer chip architecture

7.4 Growth prospects

One of the main drive when laying out the convolution was to ensure easy scalability as

the size of the pixel array grows. The vertical structure arrayed to interface with the

128× 128-pixel imager fabricated can directly be scaled up to any size, yielding such result

as illustrated in section 7.2 and the floorplan for a 1k × 1k imager in figure 7.2.

When investigating the resources needed to implement an optical flow computation

in chapter 2, references were made to three-dimensional stacking of dies using vertical

interconnections. In the case of a purely convoluting chip, such an arrangement opens the

door to many exciting possibilities. The proposed schematic of figure 7.10 is an example of

such a possibility. The imager of arbitrary size, assumed to be large so it covers a significant

field of view with good resolution, occupies the top layer of silicon. The imager controls

are on the periphery as in a standard APS architecture. The column readout circuitry,

however, connects vertically to a lower level where multiple convolution computations take

place in parallel. Because of the scalability of the convolution circuit, each convolution is

as wide as the imager above. However, their height is independent of the imager size and

therefore several can be stacked up to the imager height. In the technology of the chip that

was fabricated, the convolution unit is 3mm high so three of them can be placed under a

1k×1k imager. Each of the convolution circuits being completely independent of each other,

they process different kernels in parallel. This is particularly useful for such applications as

tracking multiple targets or features identification.

7.5 Micrographs of the chip

Micrographs of the chips are photographs taken through a microscope to illustrate the

fabricated circuit. The micrographs of the convolution chip are shown in figure 7.11. The
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Figure 7.11: Chip micrograph under different illuminations

dominant features can be easily made out, especially the imager which appears as a large

square in the upper half. The rest of the chip is covered with a sheet of the highest-level

metal to shield the underlying circuits from the high illumination levels. Elements below

the shield are harder to see but can still be identified under the right light conditions. The

features under the metal-3 layer create relief and distort the light shield. Shadows can be

seen when shining light at an angle, thus revealing the features. Micrographs were taken

under different illuminations to facilitate identification of the features which only appear

through their shadows. The floor plan layout of figure 7.1 helps to recognize the various

areas of interest and can be compared to the overlay placed on the micrograph of figure

7.12.
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Figure 7.12: Chip micrograph with floor plan overlay
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Chapter 8

Characterization and Verification

8.1 Introduction

A challenge when designing a circuit is to ensure it can be thoroughly characterized. For

that, each functional block has to be accessible from the interface and has to be made

available for independent testing. For that purpose, the convolution chip that was fabricated

includes a number of access points for test probes as well as on-site duplicate hardware

specifically used for characterization.

The circuits described in chapter 5 were designed to follow the specifications as in chapter

6. The layout presented in chapter 7 was fabricated in an AMI 0.5µm process and tested

on a custom interface board. Waveform generation and digitized data acquisition were

performed with a commercial 32-bit digital acquisition board and a 12-bit analog board

respectively. Transimpedence amplifiers were used on the interface board to probe output

currents (from the imager, the multiplier, and the accumulators) as voltages.

8.2 Imager

The purpose of imager characterization is to be able to assess the quality of both the pixel

and the image readout signal chain. For that, a number of tests are performed that look at

each step of transforming the incoming light into a usable electrical signal.

The tests performed to characterize the image sensor include looking at the linearity

of the response to light, the quantum efficiency of the photodiodes, the conversion gain of

the readout circuit [93] and the spectral response. The assessment of the imager noise is

done by quantizing the fixed pattern noise, the temporal noise, the dark current and the
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Figure 8.1: The two stages of the imaging cell: a photoreceptor of quantum efficiency QE
and a readout circuit of conversion gain CG.

pixel gain variations and non-uniformities. [59, 94–97] The setup, data collection process

and analysis of each of these tests are described in detail in the following sections.

When characterizing the imager, a subwindow is usually used to clean the acquired

data from pixels suffering from dirt deposited on the pixel array and corrupting the images.

The current provided by the pixels is transformed into a voltage through a transimpedence

amplifier situated on the test board. It can then be acquired by a commercial acquisition

system for data analysis. The amplifier bias is modified to best suit the test performed,

which explains the small discrepancies of the absolute values read in the graphs as in figures

8.5 and 8.6. This is only an offset and does not affect the measurements nor the usable

range of signals.

8.2.1 Linearity, quantum efficiency, and conversion gain

The signal resulting from illuminating the imager varies according to the transfer function

of the system. Ideally, a linear relationship exists between the number of photons reaching

the pixel matrix and the output level of the chip (current in the case of the convolution

chip). The linearity test consists in analyzing the range of illumination over which the

output is indeed a linear function of the light input. This dynamic range is bounded by the

noise level when too dark a scene is observed and by the saturation of the pixels when too

much light is provided. The illumination is the amount of light on the imager in an image

frame, that is, the number of photons reaching the pixel array during the integration time

of one frame. It can be controlled either by increasing or decreasing the intensity of the

light source or by changing the integration time. A light measuring device is necessary to

quantify it.

The test setup consists in shining a controlled light source uniformly over the entire array
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and measuring the output of each pixel over multiple frames. A tunable monochromator

filters a white light source allowing only a narrow frequency band of light to go through.

The filtered light is then diffused into an integrating sphere that uniformly distributes the

light onto both the imager and a calibrated photodiode placed diametrically across. A dark

frame difference is done to reduce the fixed pattern noise as the imager integration time

is scanned with a fixed light wavelength. The pixels are averaged in space and time to

take into account the spatial and temporal random variations. Another test will scan the

incoming light wavelength to characterize the imager spectral response as in section 8.2.6.

The imaging cell transforms the incoming light into an electric signal in two steps which

are each characterized by a transfer function. The photoreceptor generates electrons propor-

tionally to the number of photons reaching the imager according to its quantum efficiency

QE. It is a function of the pixel layout (photodiode fill factor) and characteristics of the

semi-conductor.

The readout circuit turns those charges Q into a voltage or a current with a conversion

gain that depends on the circuit amplification. The transfer function of this stage is the

conversion gain CG of the imager. Although the readout of the convolution chip is in the

form of a current, it is probed as a voltage in the imager test setup so it is referred here as

V = V (Q), as in figure 8.1.

When testing the chip, a readout circuit is attached to the pixel. The quantum effi-

ciency and conversion gain are therefore not readily available as separate entities and some

transformations must be done to obtain their values. The only measurable quantities are

the output voltage V (Q) and the light reaching the imager. A light-integrating sphere is

used to distribute evenly a light source to both the imager and a calibrated photodiode.

The calibrated photodiode provides a current that translates precisely into the number of

photons hitting it per second and then into the total number of photons integrated on each

pixel per frame when combined with the known integration time of the imager.

Linearity

The raw data collected from the imager output when increasing the number of photons

reaching the pixel array shows the linearity of the sensor with respect to light. The integra-

tion time is controlled to vary the image intensity while the photodiode accurately measures

the collected photons. The imager response is linear until saturation is reached for a large
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Figure 8.2: Imager response to increasing light exposure with a linear fit (top) and its
derivative showing the linear region of operation. (bottom) The dashed line represents the
slope of −13.6µV/photon in the linear region.

number of photons. The region of operation appears in the plot of figure 8.2 with a fit over

the linear region, as well as the derivative showing the slope in that range.

The total conversion is given by the slope and is −13.6µV/photon.

Quantum efficiency and conversion gain

The data used to show the imager linearity can be analyzed to yield the quantum efficiency

of the pixels and the conversion gain of the readout circuit. The collected data include the

image mean, its variance and the amount of light sent to the imager.

The number of charges Q given by the photoreceptor is a random variable obeying to a

Poisson distribution. Its variance σ2
Q equals its expectation: σ2

Q = Q.
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The output voltage is a function of the charges, so:

σ2
V =

(
dV

dQ

)2

σ2
Q ⇒ σ2

V =

(
dV

dQ

)2

Q + σ2
Q0.

Note that this equation displays the conversion gain: CG = dV
dQ

.

Let the number of charges

Q = K · L, (8.1)

where:

L is a measure of the light (number of photons, integration time under constant illumi-

nation, etc.) reaching the imager: dV
dQ

∝
dV
dt

⇒ Q ∝ t;

K is the quantum efficiency whose units depend on the definition of L. When L is

expressed in number of photons, K is in e−/photons.

Because of non-ideal elements, we can expect residual charges Q0 on the photodiode

when starting the light integration. (Due to dark current, as measured in section 8.2.5)

Therefore,

σ2
V =

(
dV

dQ

)2

· (Q + Q0) + σ2
0. (8.2)

Combining (8.1) and (8.2),

σ2
V = σ2

0 +
1

K2

(
dV

dL

)2

· (Q0 + K · L) (8.3)

⇒ σ2
V

︸︷︷︸

y

= σ2
0

︸︷︷︸

a0

+
Q0

K2
︸︷︷︸

a1

(
dV

dL

)2

︸ ︷︷ ︸

x1

+
1

K
︸︷︷︸

a2

L

(
dV

dL

)2

︸ ︷︷ ︸

x2

. (8.4)

Equation 8.4 is in the form y = a0 + a1x1 + a2x2, where y, x1 and x2 are measured

quantities. The parameters a0, a1 and a2 can be estimated with the least squares fit method.

The quantum efficiency and conversion gain can now be separated:

K =
1

a2
, (8.5)
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CG =
1

K

dV

dL
. (8.6)

The underlying assumption in this result is that the quantum efficiency K is a constant

over the entire range of the imager, which corresponds to the ideal case. To treat K as a

variable, we use a different method to derive it from equation 8.2.

(8.2) ⇒ dV

dQ
=

√

σ2 − σ2
0

Q + Q0

⇒ dV
√

σ2 − σ2
0

=
dQ√

Q + Q0

⇒
∫

dV
√

σ2 − σ2
0

=

∫
dQ√

Q + Q0
= 2
√

Q + Q0.

Let r =
√

Q + Q0 and s =
√

σ2 − σ2
0. We now have a simple relationship between these

two quantities:

r =
1

2

∫
dV

s
.

The number of charges Q generated is directly found from the definition of r: Q = r2−Q0

while the number of photons reaching the imager comes from the calibrated photodiode,

noted L in the previous method as in equations 8.3 and 8.4. The integration constants

Q0 and σ0 are chosen to zero the slope of the conversion gain over the linear region of

the imager. The resulting quantum efficiency is plotted in figure 8.3 where a dashed line

indicates the value when the imager illumination corresponds to the mean of the image

reaching half well (≈600mV).

Once the quantum efficiency of the imager has been determined, it can be used to apply

equation 8.6 to extract the conversion gain, as plotted versus the image intensity in figure

8.4. The graph shows a constant conversion gain of 4.7µV over the linear region of the

imager. It drops when the image level approaches saturation and increases (not shown on

the graph) for a dark image when the noise of the readout dominates over the signal from

the pixel.
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Figure 8.3: Quantum efficiency (%) as a function of the image mean (mV). The dashed line
indicates the QE at half well.



130

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

Mean image intensity (mV)

C
on

ve
rs

io
n 

ga
in

 (µ
V

/e
−
)

Figure 8.4: Conversion gain (µV/e−) as a function of the image mean (mV). The dashed
line indicates 4.7µV/e− conversion gain over the useful imager range.
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Linearity (slope) 13.8µV/photon

Quantum efficiency 30%

Conversion gain 4.7µV/e−

8.2.2 Temporal noise

The variations of each pixel in time (from one frame to the next) form the system temporal

noise. This time dependent noise can not be easily removed as the fixed pattern noise and

therefore define the precision of the imager. To calculate it, a large number of frames are

acquired in the dark over a short integration time to minimize the influence of the dark

current. The temporal variance of each pixel form a variance map from which we find the

root of the temporal variance average. The result, expressed in mV rms is the noise of the

system.

The convolution imager yields a noise of:

Temporal Noise = 1.32mV rms. (8.7)

8.2.3 Dynamic range

The full well of the imager is the usable signal swing between saturated response and

darkness. We measured it to be:

Full Well = 1200mV. (8.8)

The sensibility of the imager is given by the dynamic range of the imager which combines

the information from the full well (equation 8.8) and the noise of the system (equation 8.7)

and is expressed in decibels (dB).

Dynamic Range = 20 × log10

(
Full Well

SystemNoise

)

⇒ Dynamic Range = 59.2dB.
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Figure 8.5: Imager fixed pattern noise (mV)

8.2.4 Spatial noise

When the imager is in the dark, the image acquired is not a flat matrix with all pixels

equal. A pattern is observed that is typically column based and due to the readout cir-

cuitry. A short integration time allows to separate this pattern from the dark current which

is characterize in a different test. (See section 8.2.5.) This noise is neither light nor time

dependent and creates an offset in the output image. The double sampling scheme imple-

mented and described in section 5.2.3 reduces it by compensating the mismatches occurring

before that point in the signal chain. The resulting pattern can be compensated for by

external processing if needed.

A large number of frames need to be acquired so the temporal noise can be averaged out

and the fixed pattern isolated. The average frame, shown in figure 8.5, represents the offset

introduced in the image. It is this average frame that can be used for possible compensation

during external processing. We use 6.5 × Standard Deviation of the average frame rather

than the peak to peak measure as the data span to ignore possible outliers. This number

is then normalized by the full well as determined in equation 8.8.
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Standard Deviation(average frame) = 4.85mV

Full Well = 1200mV

fpn =
6.5 × Standard Deviation(average frame)

Full Well

⇒ fpn = 2.63%

8.2.5 Dark current

The electrons generated thermally when no light reached the imager create a small current

flow that can be measured by comparing frames measured over varying integration times.

Each frame is an average of many frames (typically 200 frames) acquired under the same

conditions so the noise is removed. This being a thermal phenomenon, the dark current

increases with the operating temperature. All the experiments were conducted at a room

temperature of 298K.

The dark current is found in a two step process. First, the dark rate is found by looking

at the increase of the mean signal with increasing integration time. It does not account for

circuit amplification but shows how long of an integration time is needed to saturate the

imager in the dark. Second, the dark current is determined by combining the dark rate

with the conversion gain found in section 8.2.1.

Assuming the dark current is constant, the relationship between the dark image mean

and the integration time is linear. This is confirmed by the plot in figure 8.6. The slope of

the linear fit is the dark rate, found to be:

Dark Rate = 0.202V.s−1.

The dark current and conversion gain are combined to determine the dark current:

Dark Current =
Dark Rate ∗ q

CG ∗ Pixel area
,

where q = 1.6.10−19C is the charge of an electron and the pixel area is 121µm2. The dark

current is expressed in nA.cm−2:
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Figure 8.6: Dark rate: measured (marks) and linear fit (line)



135

Dark Current = 429nA.cm−2.

8.2.6 Spectral response

The sensitivity of silicon to light is a function of the light wavelength. In a setup similar to

the one used to determine the quantum efficiency and the conversion gain in section 8.2.1,

a monochromatic light illuminates the imager while the response is measured. Unlike the

previous experiments where the illumination was made variable by changing the integration

time, the spectral response uses a constant integration time but the wavelength is scanned

across the spectrum. A calibrated photodiode is again used to measure the number of

photons reaching the pixel array. The imager sensitivity, in volts per photon, can then be

plotted as a function of the wavelength as shown in figure 8.7.
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Figure 8.7: Spectral response of the imager. Peak at λ = 640nm.
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(a) 64×64-pixel current
mode imager

(b) 128 × 128-pixel voltage mode imager

Figure 8.8: Images from the direct pixel output of the two types of imagers implemented

8.2.7 Images

Both current-mode and voltage-mode pixel implementations, presented in section 5.2, were

fabricated in two versions of the convolution chips. Although the tests in this chapter focus

on the latter type which was eventually chosen for the final release, it is interesting to show

the imaging properties of both side to side.

Figure 8.8 shows two images of George Washington side to side taken at about the

same magnification with two versions of the imager. The image in (a) was taken with

the current mode pixel type and displays visible column noise. The noise is mostly due

to mismatch in the column current sources that cannot guarantee that exactly the same

current flows in each column. Because of the non-linearity of the modulation, compensation

is only approximate and very large column mismatches can not be entirely removed. The

self-biased readout current mirrors in each column also affect the imager performance. The

image in (b) was taken with the voltage mode pixel and displays much lower noise level.

The column artifacts after fixed pattern compensation are barely noticeable. This is the

pixel used in the convolution chip presented here.
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8.3 Computation performance

The two arithmetic units that are used to compute the convolution, the multiplier and the

accumulator, can be tested independently of the imager and of each other. Their individual

characteristics can thus be asserted, which is a necessary step toward the convolution chip

characterization as the reliability of the convolution result depends on the accuracy of both

entities. The test measurements for each are detailed in the following sections.

8.3.1 Multiplier

The mixed-signal multiplier can be characterized through a multiplying cell added to the

multiplier array and implemented for that purpose only. The digital input is shared with

all the other cells as it connects to one of the 8-bit words of the digital memory used to

store the kernel information. The analog input is externally controlled to provide a set,

measured current, while the output is probed on a transimpedence amplifier placed on the

interface board. Testing the multiplier involves verifying its accuracy and its linearity with

respect to each of its two inputs: the analog current and digital kernel.

A sweep of the current for various values of the kernel is performed, similar to the

simulation shown in section 6.5. A wide scan of input current for several kernel values

shows, in figure 8.9, a linear region followed by a saturation region, as was expected from

figure 6.13. The region of interest shown in figure 8.10 closely matching the simulated

output of figure 6.14.

The reliability of the calculations depends on how well the circuit under test matches

the ideal expected results. To quantify this, the multiplier outputs for set kernel values

were fitted with a straight line for input currents in the useful range of [0, 10µA]. The fit

parameters would ideally be zero for the constant term and the slope equal to the kernel

value, with a fixed scaling constant, independent of the kernel. Only small variations were

found in the origin of the lines, as shown in figure 8.11 (top).

The slope of the ideal multiplier is slope = T/cst where cst is the product of the

attenuation at the input and at the output of the multiplier cell. The differences from the

ideal case are normalized to show their influence on the final result, giving more weight to

larger kernel values that cause greater output variations. The plot in figure 8.11 (bottom)

shows the observed variations for several kernel values.
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Figure 8.9: Multiplier output with kernel values of: K = 8, 16, 32, 64, 128, 192, 255.
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Figure 8.10: Multiplier output restricted to the range of signal used.
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Figure 8.11: Parameters of the linear fits for kernel values of K = 8, 16, 32, 64, 128, 192, 255.
Constant term on top (ideally zero) and weight of the slope variations on the multiplication
output (bottom)
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Figure 8.12: Sweep of the kernel for a fixed input current Iin = 5µA. (a) Kernel swept from
0 to 255. (b) Kernel swept from 0 to 15: least-significant bits only. (c) Kernel swept from
0 to 240 by steps of 16: most-significant bits only.

In a second test, we can look at the multiplier linearity with respect to its digital input.

The analog current input is set to a fixed value (midrange: Iin = 5µA) and the kernel value

is varied from 0 to 255. The inaccuracies observed in the linear fits described above and

in figure 8.11 appear as discontinuities in the graph of figure 8.12(a). Consistent with the

findings of figure 8.11 (top), the 7th bit of the kernel creates a noticeable jump in the data,

that is when the kernel is 64 and 192. The inaccuracies are however small enough that they

do not compromise the monotonicity of the function. The multiplier is therefore reliable

enough to perform the convolution function it is intended for.
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8.3.2 Accumulator

The accumulator is the second arithmetic cell that complements the multiplier for computing

the convolution. As described in section 5.4, each accumulator is made of nine cells arranged

in a pipeline. The first cell is a simple current memory, that is a single-cell structure while

every other stage integrates two current memories in double-cell structures. Test results for

both types are presented here, as well as for the entire pipeline, in a similar fashion as the

simulations of section 6.6.

8.3.2.1 Single-cell module

The first stage of the accumulator pipeline is primarily a current memory that initializes

the nine step sequence. The input current is mirrored into a memory cell which is read out

later through another current mirror. The interface of one of the cells is directly accessible

from the chip pads, allowing the direct testing, in a setup similar to the simulation of

section 6.6.1. Unlike the representation of figure 6.15 showing continuous waves responding

to the chronogram, the actual test samples the output on the readout phase, giving the

relationship between the input and output currents.

The description of the cell in section 5.4.2 shows that the output follows the input as

no scaling was introduced in this stage. The relationship Iout = Iin is expected by design,

also confirmed by the test results, similar to the simulation. A linear fit and difference plot

show the characteristics and linearity of the cell.

8.3.2.2 Double-cell module

With the exception of the very first stage tested above, each cell of the accumulator follows

the same structure. They comprise two current memories and a scaling coefficient on each

of the two inputs which depends on the position of the cell in the pipeline. For testing

purposes, one of these stages was made accessible with full control and monitoring of the

inputs and output. The cell follows the architecture of section 5.4.3.

The test performed to characterize the double-cell module is similar to that of the single-

cell one. The input normally received from the previous stage is held at a typical value of

1µA, so only the scaling was taken into account when comparing the output to the expected

value. The results shown in figure 8.15 and 8.16 are that of the fourth stage of the pipeline,
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Figure 8.13: Single-cell module. First stage of the accumulator pipeline: solid line. Ideal
response: dashed line.
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Figure 8.14: Single-cell module. First stage of the accumulator pipeline: relative error.
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Figure 8.15: Double-cell module. Fourth stage of the accumulator pipeline: solid line. Ideal
response: dashed line.

placed under test as an independent cell. The expected output from inputs Iprevious and

Iin is then:

Iout =
3

4
Iprevious +

1

4
Iin

8.3.2.3 Pipeline

The accumulator pipeline combines, in series, nine stages similar to the one tested above.

The nine input currents that make up the accumulator interface are created for this test from

a single current that passes through the multiplier unit. The digital kernel uploaded to the

chip allows to create nine different inputs, and even to change them rapidly, simulating an

incoming flow of pixels. To illustrate the global behavior of the accumulator, nine identical
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Figure 8.16: Double-cell module. Fourth stage of the accumulator pipeline: relative error.

inputs are sent to the accumulator and nine cycles are run so all stages are used. The kernel

used cancels out the on-chip current scaling so the output is expected to follow the input.

A sweep of the input current is done as illustrated in figure 8.17.

The description of error propagation in section 6.7.1 shows how random statistical er-

rors compensate but systematic errors in each block accumulate, creating an offset in the

accumulator output. Because it is an offset, its relative influence is larger when the output

signal is small. Figure 8.18 shows how this effect on the circuit under test.

8.4 Power dissipation

A usual requirement for usability of a chip in autonomous or semi-autonomous systems is

a cap on the power dissipation so it can be operated on batteries. The power dissipation of

the convolution chip was therefore measured in both modes of operation: imaging only and

imaging with the convolution filter running.

Operating mode Power dissipation

Imaging only 10mW
Convolution imager 90mW

Table 8.1: Imager and convolution power dissipation

To perform this measurement, a dedicated power supply is provided to the chip inde-

pendently of the interface board. The power line is monitored, and the average power is
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Figure 8.17: Complete accumulator pipeline: solid line. Ideal response: dashed line.
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Figure 8.18: Complete accumulator pipeline: relative error.



147

measured over multiple cycles with the imager outputting video at a rate of 30 frames per

seconds. The results for both modes are summarized in table 8.1.

8.5 Conclusion

Each of the main computation elements were fabricated as independent test circuits to allow

easy characterization of each of them separately of the convolution chip. Implementing these

test structures is a convenient way to evaluate the performance of each individual block and

predict the performance of the assembled complete convolution chip without having a fully

operational chip. It also allows to identify the possible weaknesses in the circuit and the

elements that could be improved upon. Finally, troubleshooting is simplified as internal

probing along the signal chain permit tracing error sources inside the chip.

Thanks to the exhaustive testability of the circuit, the convolution chip could be tested

thoroughly, with the results comprising this chapter. The imager performances, summarized

in table 8.2, show that despite reasonable sensitivity, the image quality suffers from high

levels of noise. The experimental circuits created when designing pixel readout blocks

are certainly to blame as it suffers from two major sources of error. First, it suffers the

uncertainty of the current memory from figure 8.13 used for reducing the effect of fixed

pattern noise in the pixel column and voltage to current conversion. Second, the subtraction

to reduce the FPN is done before any other processing. The rest of the signal chain is not

differential and therefore any mismatch will affect the column to column signal accuracy.

A workaround is to perform the entire convolution on the pixel reset and signal levels

independently and combine them just before digitization or chip output in the case of an

analog readout.

Full well 1200mV
Dynamic range 59.2dB

Quantum efficiency 30%
Conversion gain 4.7µV/e−

Dark current 429nA.cm−2

Fixed pattern noise 2.63%

Table 8.2: Imager performance summary

The computational stages were also analyzed and give various degree of confidence in
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their accuracy. The multipliers proved to be linear in the range of operation they are

designed to operate in. The noticeable mismatch between lower and upper halves being

small enough to not compromise the bijectivity of the multiplication.

The accumulator, however, displays a more problematic trend. Each stage only intro-

duces a small error as shown in the graphs of figures 8.14 for the first stage and figure 8.16

which is representative of the other stages. However, the errors are not random and they

systematically add in the same direction, creating a drift in the output. This behavior was

predicted in the accumulator error propagation analysis of section 6.7.1. The outcome is a

significant drift in the simulation of the full pipeline in figure 8.17. The resulting relative

error is large but because it results from an offset from the ideal response, it decreases with

signal strength. It can also be easily accounted for with a simple calibration scheme.
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Chapter 9

Conclusion

9.1 Summary

The resolution of images from solid-state sensors keeps increasing as new technologies and

fabrication processes allow for ever more compact integration of circuits on silicon. With

the size of the images, the amount of data produced grows as well. The problem of image

processing continues to be a sensitive part of any imaging system, as the processing must

be able to keep up with the flow of information and the ever increasing sophistication of the

algorithms. The work presented in this thesis outlines the complexity of choosing a process-

ing scheme most appropriate for a given imaging task. To illustrate this, a computationally

intensive, yet common image processing task was chosen and analyzed: the computation of

the optical flow of a stream of video. Real-time operation of this task requires efficient data

handling capabilities as well as computing power able to process fast arithmetic operations

such as multiplications and accumulation.

Imaging systems based on active pixel sensors (APS) technology were used for the

work presented here. Their versatility and the possibility to integrate on-chip processing

without affecting imaging performance make them an attractive choice for this task. The

appropriateness and usefulness of implementing optical flow computation on the focal plane

was shown through analysis of a hardware oriented derivation. At the heart of the optical

flow computation is a convolution operator which convolves the image with a preloaded

kernel. Because that convolution operator is the computation bottleneck for the optical

flow, it is the focus of the work on hardware implementation. To efficiently compute the

convolution, an algorithm developed specifically for hardware implementation was presented

that takes fully advantage of the column-parallel structure which is characteristic of APS
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image sensors. The algorithm was demonstrated on a fully digital Verilog description. A

prototype was built which combines an existing image sensor with a FPGA programmed

with an interface, a kernel memory and a convolution operator. The digital description also

yielded a layout for a full custom circuit that was used as a reference for comparison with

the circuits developed after that.

A compact, fully analog implementation of the convolution algorithm was investigated

to demonstrate the appropriateness of analog design for low-level processing. Unlike with

digital designs, analog implementations critically depend on their accuracy to transmit

information. The design of each block must play their role in the signal chain and smoothly

interface with other stages. The final result of the convolution depends on it, so the design

phase was described in details to demonstrate how critical choices can be dealt with in

order to create the circuit. The expected errors sources, both from random geometrical and

matching variations and from circuit noise were studied to anticipate how a fabricated chip

might vary from its expected and simulated behavior. Because the circuit noise and the

transistor mismatches are a direct consequence of the layout, the philosophy and techniques

used to layout the convolution chip were also explained, and each relevant circuit block

scrutinized to show how proper geometry considerations had to be observed. This concluded

the presentation of the chip and the development steps from concept to product.

The results of the tests performed on the fabricated convolution imager chip, and the

comparisons with the digital test bench, highlight the usefulness of analog image processing

on the focal plane. The limitations of fully analog implementations are also pointed out

and should always be taken into consideration when designing such a system. The digital

implementation used as a test bench revealed compelling reasons to look into analog image

processing solutions. Investigation of both options showed that analog arithmetic units offer

area reductions over their digital counterparts of 160 times. Trade-offs sacrificing timing and

complexity to area only reduce this ratio down to 50 times. Analog processing, however,

lack the simplicity of a reliable description language that easily translates an algorithm

into a synthesizable circuit. They also lack the predictability of digital operators, as they

are sensitive to noise and mismatch. Drifts from ideal characteristics were observed in the

circuit tested which could be reduced by revisiting the design of some of the most critical

elements but not entirely eliminated.

An example is the good performance of the multiplier which proved to be satisfactorily
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linear and predictable. The pipeline accumulator, however, showed large deviations due to

accumulating and amplifying errors due to mismatch. Previous circuits tested a charge mode

accumulating circuit that was symmetrical and therefore less sensitive to errors propagating

but resulted in an unreasonably large layout. The critical choice to make for an optimal

circuit implementation is to decide when to digitize the signal in the signal chain. An analog

to digital converted is necessary at some point to use the image off-chip, but conversion can

occur at any time in the processing. In the circuit presented here, it appears advantageous

to use analog multipliers but accumulators seem to better perform in the digital domain.

The analog to digital converters could therefore be placed at the output of the multipliers

in order to take advantage of what both worlds have to offer, combining the compactness

and power reduction of analog circuits with accurate, easily implemented digital operators.

9.2 Future work

A few openings were introduced in this report that have the potential to take this work

another step further. The first step would naturally be to use the data collected and analyzed

to feedback into the design process and re-visit the blocks that yielded large errors when

characterized. Of particular importance, the fixed pattern noise reduction circuit showed

that the mismatch of the subtracting current memory affected the column noise, as did the

single-ended convolution signal chain. The accumulators, which proved to be very sensitive

to errors, would benefit from a design review based on the test results.

Beyond the current circuit, the demonstrated feasibility of low-level, integrated analog

image processing opens the door to implementing other useful algorithms that would also

benefit from this approach, such as applications based on convolution. A full optical flow

computation is the obvious choice, as would be a tracking system which uses convolution

to perform normalized correlation between the image and a template. Tracking introduces

little extra circuitry since the normalization only adds an accumulator to measure the

weight of the image patch and a divider. The accumulator is similar to the only used in the

convolution so only a dividing circuit would have to be designed.

Finally, equally as exciting as developing new algorithms and new highly integrated

systems on a chip using analog or mixed-signal processing is the many extensions that ever

evolving technology can offer. State of the art sensors use very large pixel arrays of up



152

to 16 million pixels which put scalable processing units, such as the one described here,

a practical solution. Also, as vertical interconnections between dies are becoming a more

mature technology, they represent a natural evolution, going from on-focal plane computing

to “close to focal plane” systems. Vertical stacking offers the advantage of producing a chip

of only the size of the pixel array while increasing the computing capabilities by using an

equivalent area for multiple image processors on a different layer. This might prove to solve

the issues associated to fully parallel computational imagers that had to crowd the pixel

site with processing units. With vertical interconnection, the processing units can be placed

under the pixel on another layer, preserving the imaging performance of a high-end image

sensor and preserving the benefits of fully parallel interconnections.



153

Appendix A

Appendix

A.1 Matlab simulations

A.1.1 Convolution algorithm using the pipeline accumulator

1 function IMGout = convING(T, IMGin);

% function IMGout = convIMG(T, IMGin);

%

% 9x9 convolution of image IMG with template T

5 % IMG : greyscale input image

% T : 9x9, greyscale template

% convIMG : output image of same size than input image.

% Create the temporary processing image from the input image

10

% Extract the size (Height, Width) of the input image

[Hin, Win] = size(IMGin);

% Define the size (Height, Width) of the image to process;

15 % add a 4-pixel padding around the input image;

% fill the padding with a border of ’0’s for processing

Hproc = Hin + 8;

Wproc = Win + 8;

IMGproc = zeros(Hproc, Wproc);

20 IMGproc([5:Hin+4],[5:Win+4]) = IMGin;

% Initialize the output image variable
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IMGnew = zeros(Hproc, Wproc);

25 % Start the convolution algorithm

% Work on one column at a time as the hardware does

for i = 5 : (Wproc - 4),

% Initialize the pipeline accumulator memories

30 CM1 = zeros(1,10);

% Each image row is processed one at a time, similar to imagers’ readout

for j = 1 : Hproc,

% Sum of products between each template row and the current image row

TI = T * IMGproc(j,[i-4:i+4])’;

35 % Send the sum of products to the pipeline accumulator

CM1 = pip9(TI, CM1);

% Read the output of the accumulator to construct the output image

IMGnew(j,i) = CM1(10);

end

40 end

% Remove the padding and return the output image

IMGout = IMGnew([5:Hin+4],[5:Win+4]);

A.1.2 9-stage pipeline accumulator

1 function [CM1] = pip9(X, CM1);

% function [CM1] = pip9(X, CM1);

%

% 9-stage pipeline implementation.

5 % CM1[2:9] : interface memory

% CM2[1:9] : internal memory

% X[1:9] : input vector

% Compute the values to be saved.

10 Atmp(1) = X(1);

for i=2:9,

Atmp(i) = ((i-1)/i) * CM1(i) + (1/i) * X(i);
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end

15 % First step: Load_in

% CM2_1 = X1

% CM2_i = (i/i+1)CM1_i + (1/i)Xi

% The current memories operate on the same clock:

20 CM2 = Atmp;

% Second step: shift on Load_out

% CM1_i = CM2_{i-1} (i>1)

% Notes:

25 % CM1_1 doesn’t exist: set to 0.

% CM1_10 = output

CM1 = [ 0 CM2 ];
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