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ABSTRACT

Atmospheric methane plays a significant role in warming the climate. Characterizing its sources
and sinks is important for future climate and air quality impacts. Global methane background
trends suggest a sustained increase in emissions since 2007. There is no debate that reducing
anthropogenic (human-driven) emissions can lead to short-term decreases in atmospheric methane,
posing an attractive avenue towards mitigating climate change. Yet, effective policy to limit
emissions from energy-related activities relies on accurate emission estimates, and historically, it
has been challenging to diagnose both the magnitude and origin of methane leaks from a wide
range of facilities and components across production, transmission, storage, and distribution
systems. We present a novel Bayesian hierarchical model to improve methane emission estimates
on global and regional scales from oil and gas processes. We also present methods to optimize
time and cost of model simulations of certain trace gases, including several of which have
important climate implications. Finally, we present our efforts in characterizing fossil methane
from burgeoning oil production in Oklahoma and Texas using long term ground-based remote-
sensing observations combined with Stochastic Time-Inverted Larangian Transport modeling.
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C,Hs vs CH, anomaly for NOAA sites. The data for each site were filtered using the
chemical aging regime to filter for fresh emissions and to construct CH, anomalies (Section
2.2). See Table S1 for a description of site location/observation type. We also ran a
bootstrap for each individual site (bootstrapping methods, main text). The 95% CI slopes
(ppb/ppb) are as follows: BAO: [0.0833,0.1449],R?=0.91; DND: [0.0289, 0.1205],R? =
0.63; ETL: [0.0030,0.0176], R? = 0.46; HIL: [0.0116, 0.0313], R>= 0.56; TGC: [0.0400,
0.0730], R? = 0.74; WKT: [0.0324, 0.0510], R? = 0.75; SGP: [0.0645, 0.0749], R? =

C;Hs vs CH, anomaly for NOAA sites. The data for each site were filtered using the
chemical aging regime to filter for fresh emissions and to construct CH, anomalies (Section
2.2). See Table S1 for a description of site location/observation type. We also ran a
bootstrap for each individual site (bootstrapping methods, main text). The 95% CI slopes
(ppb/ppb) are as follows: BAO: [0.0587,0.0922],R?=0.91; DND: [0.0221,0.1003],R? =
0.61; ETL: [0.0013,0.0136], R? = 0.41; HIL: [0.0078, 0.0216], R? = 0.54; TGC: [0.0228,
0.0506], R? = 0.68; WKT: [0.0195, 0.0321], R? = 0.71; SGP: [0.0426, 0.0499], R? =

C,Hs vs CH, anomaly for NOAA SGP site and FRAPPE study. We use the chemical aging
approach defined in Section 3.1 to identify C;Hg and CH, observations within a fresh oil
and gas emissions chemical regime. We construct CH,4 background-corrected anomalies as
described in SI Section S2. Results with C,Hg are similar and shown in Figure S9. NOAA
observations for SGP site (Oklahoma, Table S1) are shown here. We show correlations
between 2006-2011, labeled as “NOAA SGP < 2012” (HIPPO takes place between 2009-
2011), 2013-2015 (FRAPPE takes place in 2014), and 2016-2018 (ATom time period).
Left: The slope of the correlation between C;Hg and CH, anomaly for NOAA observations
before 2012 is [0.031, 0.040] ppb/ppb, R? = 0.85; between 2013-2015 is [0.045,0.084], R?
= 0.82; and between 2016-2018 is [0.039, 0.059], R? = 0.86. FRAPPE is [0.063, 0.085]
ppb/ppb, R? = 0.83. The slope of the correlation for all years of NOAA is [0.043, 0.050]
ppb/ppb, R? = 0.83. C;Hg vs CH,. Right: C,Hs vs CH, The FRAPPE slope (95% ClI,
ppb/ppb) is [0.0763,0.1047],R? = 0.85. C,H vs CH, NOAA slope for all years is [0.0647,
0.0749], R? = 0.86. The C,H¢ vs CH, slope before 2012 is [0.047, 0.060], R?>= 0.85; from
2013-2015 is [0.066, 0.143], R? = 0.85; and from 2016-2018 is [0.058, 0.084], R> = 0.88.

NOAA observations at SGP site (Oklahoma). The observations shown here are pre-
processed and filtered for fresh emissions as discussed in the methods section in the main

016 61
Oklahoma oil and gas wells. Plot adapted from Oklahoma Geological Survey!'s:
http://www.ogs.ou.edu/fossilfuels/MAPS/GM-36.pdf...........cccceeviiriiiniiniineceeeeeeeen 61
Oklahoma oil and gas production by county. Plot was created by Joe Wertz of StateImpact
OKIahoma'7.... ... 62
Oil and gas production value by county in Colorado. The plot was obtained from Water
Education Colorado (founded by Colorado State Legislature).!®............................ 62

C;H;g and C,Hg correlation at NOAA SGP site— yearly and tower observations. Left: C;Hs
vs C,Hg colored by all years for the NOAA SGP site. Slope: [0.63,0.70] (95% CI),R?=0.98.
Right: Slope of CsHg vs C,Hg for ground- and tower-based measurements NOAA SGP site.
(The highest tower sampling is 374m sampling at SGP.) The slope is [0.66, 0.70], and
R?=0.99, comparable to [0.63, 0.70] 95% CI slope of the correlation that includes both
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aircraft and tower observations (this Figure, left side). We bootstrapped the samples to
obtain a 95% CI (see methods, main text).

NOAA C;Hg and C,H¢ vs CH4 anomaly colored by year. Data is for SGP site only.
C;Hg/ACH, slope: [0.43, 0.50] ppb/ppb, R?>=0.83. C,H¢/ACH, slope: [0.65,0.75] ppb/ppb,
R?=0.86. We use data within the fresh emission regime (see Section 2.2). Our methods for
determining CH, anomalies are described in detail in section 2.3, and our methods for
determining the 95% CI via bootstrapping is described in the methods section of the main

Yearly correlation between NOAA hydrocarbon vs CH, anomaly. Left: Average
hydrocarbon vs CH,anomaly for each year for NOAA SGP site. C;Hs/CH, anomaly slope:
3.12 =+ 0.63 ppt/ppb/year (R?>=0.71), and C,H¢/CH, anomaly trend is 3.89 + 0.84
ppt/ppb/year (R?>=0.69). The variability in the trend (ppt/ppb/year) comes from the standard
error of a linear regression. The variability in the yearly slope (ppt/ppb) comes from the
95% confidence interval of a pairs bootstrap (we ran a pairs bootstrap for co-measurements
of C;Hs and ACH, and compute the slope of the correlation for each bootstrap sample and
repeated this for every year in the data; please see the methods section of the main text for
more information about pairs bootstrapping). Right: Same as left, but in units of percent
change with respect to the mean hydrocarbon and methane anomalies. The resulting trend
for C;Hg/CH, is 7.13 + 1.44 % with an R? of 0.71. The trend for C,H¢/CH, is 5.87 + 1.26
% with an R?=0.69. Both trends are calculated in the same way as the left

Truncated ATom and HIPPO flight paths. Flight paths used in this analysis are shown
above (Top: ATom, Bottom: HIPPO). We split the data into Pacific (left column) and
Atlantic (right column) “curtains” shown above for ATom, but HIPPO only offered Pacific
curtains over remote ocean. The flight paths shown above do not encompass the entire
dataset due to filtering out measurements south of 20 latitude north, those obtained over
land, and those associated with very recent emissions. A summary of the filtering
parameters we use in the main text are shown in  Table

Stratospheric filter using N,O. Left: ATom. Right: HIPPO. In both figures, GEOS-Chem
simulations were interpolated to aircraft latitude, longitude, time, and potential temperature
in order to compare N,O. However, for all subsequent analysis, GEOS-Chem was filtered
by N,O before interpolating simulations to aircraft potential temperature. We use these
figures to arbitrarily choose 0.327 and 0.320 N,O mole fractions as a filter cutoff for ATom
and HIPPO, respectively, as described in the main text................cooiiiiiiiiiiinne... 68
ATom HCN Pacific transects. HCN (left column), Ethane (middle column), and tropopause
height (right column)....... ... e 69
ATom HCN Atlantic transects. HCN (left column), Ethane (middle column), and
tropopause height (right column)............. oo 70
ATom HCN vs C,Hg. This data includes all four ATom campaigns and ocean transects and
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emissions after implementing the default v13.0.0 C,Hs proxy. “Scaled+Revised C;”
represents the revised C;Hs emissions after scaling with our mean Bayesian estimate
(Section 5.8). “Scaled C,” represent the revised emissions after scaling with our mean
Bayesian estimate (Section 5.8). *: Note that our mean scaled C; estimate shown here are
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emissions increase by 65% from 2010 to 2017 when excluding the bias below in Figure
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by restricting observations and simulations to + 300K potential temperature (Figure S51-
S52). This test affects the estimate about + 1 Tg during 2010-2011 but affects our estimate
by up to 12 Tg in 2009. *: This 2009 estimate is highly biased, as the latitudinal coverage
of aircraft observations is not representative of the global spatial distribution of methane
emissions from oil and gas processes and the confidence interval stretches to nearly 40 Tg
(please see Section 3.3 text and Figure S51-52). We compare our revised ethane and
propane emissions to the default emissions from GEOS-Chem v13.0.0 (relevant
anthropogenic inventories include Tzompa-Sosa et al. 2017% for C,Hg, and Xiao et al.
2008* for C;Hs). #: The studies included here*-! represent anthropogenic fossil emissions,
except Dalsgren et al. 2018 which also includes biofuel, agriculture, and waste. We
obtained the CEDS CMIP6 estimate from Dalsgren et al. 2018. Our emissions estimates
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Chapterl

INTRODUCTION

1.1 Recent trends in atmospheric methane

The atmospheric surface concentration of methane (CH,) is almost 3 times greater than its pre-
industrial value.'? CH, has a stronger global warming potential compared to CO,, and despite
having a shorter lifetime, has played a significant role in warming the climate: CH, has contributed
about 23% to the additional radiative forcing that has accumulated in the lower atmosphere since
1750 In addition to its radiative effects, CH, impacts background tropospheric ozone levels and
the amount of stratospheric water vapor. As such, characterizing the sources and sinks of CHy is
critical for future climate and air quality impacts.

While in situ measurements of atmospheric CH, are highly accurate (Figure 1), processes behind
these global trends remains uncertain. There is no debate that humans have caused of the bulk of
the rise in atmospheric CH, from preindustrial times. However, characterization of the reason for
the stabilization from 1998 to 2007 and the acceleration in global CH, since has proved difficult.
Indeed, it has been suggested that the change in observed growth rate may, in part, reflect changes
in changes in the CH,4 atmospheric lifetime rather than simply changes in emissions.*
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Figure a. Methane atmospheric “background” mole fraction rising worldwide. Data provided by
NOAA2

Nonetheless, the acceleration since 2007 unambiguously suggests a sustained increase in
emissions.



Global sources of CH, include both natural and human-caused sources, including wetlands, fossil
fuels (production, storage, transport, and incomplete combustion of oil/gas and coal), agriculture
(livestock and rice cultivation), landfills and fires.! Globally, estimates of total CH, emissions are
relatively certain at 572 Tg/year, of which 50-65% are attributed to anthropogenic sources.'
Relative to the anthropogenic sector, fossil fuels are thought to make up about 35% of CH,
emissions, while agriculture and waste are estimated at about 60%, and biomass burning at 10%
from a bottom-up perspective.! While regional and sector emissions remain very uncertain, there
is no debate that reducing anthropogenic (human-driven) emissions can lead to short-term
decreases in atmospheric CH,.

1.2 Methane Emissions from Fossil Energy

Not only do fossil fuels constitute a significant fraction of human-influenced CH, emissions, but
a wide variety of technologies already exist to reduce such emissions from oil and gas operations;
IEA estimates that almost 50% of these emissions could be avoided at zero net cost.> Thus,
reducing uncertainty in CH, emission inventories to effectively reduce CH, emissions surrounding
the energy sector presents an attractive avenue to mitigate climate change. Yet, effective policy to
limit emissions from oil and gas activities relies on accurate emission estimates. Historically, it
has been challenging to diagnose both the magnitude and location of emissions from a wide range
of facilities and components across production, transmission, storage, and distribution systems.
Past studies have generated conflicting claims about the magnitude or origin of emissions, such
that top-down estimates (estimates derived from large-scale atmospheric observations) often
exceed bottom-up estimates (totals based on facility-scale emission inventories). Recent work has
found that divergent estimates can be largely attributed to a skewed distribution of emissions,’
where a small number of extreme leaks account for the majority of emissions.””! Recently,
bottom-up!'!'? and top-down!'*!* studies have found that the majority of fossil CH, leaks occur
mainly during the production process through planned venting/flaring and unintended leakage,
with a smaller fraction originating from downstream processes such as separation, storage, and
transportation. Venting and flaring of natural gas depends on many factors, including lack of
proximity to a commercial market and lack of infrastructure.’ The latter is often a challenge in
burgeoning oil production sites where the value of oil can outweigh the associated natural gas
byproduct, resulting in low prices for natural gas and increased venting or flaring of excess gas.

1.3 Fossil Methane Emission Monitoring

Space-based monitoring has come a long way over the years and will be invaluable for quickly
identifying super-emitter leaks and increase transparency of facility-wide processes.!®* However, at
this point in time, space-based monitoring is best-suited for diagnosing super-emitters rather than
small-moderate leaks. Generally, this method cannot resolve point sources smaller than facility-



wide scale.!” For this reason, ground-based monitoring is still important. There are many types of
low-cost instrumentation (near infrared laser absorption spectroscopy, direct absorption mid-IR
spectroscopy, metal oxide sensors) that can be mounted on stationary towers or drones that
effectively capture small to moderate CH4 emissions.!® A widely-used method to apportion CH,
flux is to measure atmospheric molecules that are co-emitted with CH,4 from source processes. For
example, ethane (C,Hs) is the second most abundant component of natural gas besides CHs, but
unlike CHj, it does not have a biogenic origin, singling out CH, from fossil activities.

Despite being a widely used tracer for fossil activities, interpreting changes in C,Hg is
complicated,'*? discussed in more detail in Chapter 2. In Chapter 2, I provide compelling evidence
that propane (C;Hs), another abundant component of natural gas, can serve as an effective tracer
for production emissions from the oil and gas sector. There are few studies that characterize
atmospheric trends of C;Hs, and even fewer that attempt to quantify its emissions. Therefore, the
focus of this thesis is diagnosing CH4 emissions from oil and gas production using C;Hs as a tracer
in addition to C,Hs.

1.4 Thesis Overview

The work included in this thesis details my efforts to estimate global and regional fossil CH,
emissions. In Chapter 2 (published in ES&T), I develop a novel Bayesian hierarchical model to
improve global C;Hg, C,H,, and CH4 emission estimates from energy production. Chapter 3 (in
preparation for submission to AMT) expands on the methods used in Chapter 2 to illustrate how
using potential temperature as a diagnostic coordinate is useful for comparing observations with
chemical transport models, enabling use of much lower spatial resolution, and therefore, much less
costly simulations. Chapter 4 (in preparation for submission to ACP) details my initial effort to
characterize fossil CH, emissions in Oklahoma and Texas using long term ground-based remote-
sensing observations combined with Stochastic Time-Inverted Lagrangian Transport modeling.
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Chapter?

Hydrocarbon tracers suggest methane emissions from fossil sources occur
predominately pre-gas processing and that petroleum plays are a significant
source
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Abstract

We use global airborne observations of propane (C;Hs) and ethane (C,Hg) from the Atmospheric
Tomography (ATom) and HIAPER Pole-to-Pole Observations (HIPPO), as well as US-based
aircraft and tower observations by NOAA and from the NCAR FRAPPE campaign as tracers for
emissions from oil and gas operations. To simulate global mole fraction fields for these gases, we
update the default emissions configuration of C;Hg used by the global chemical transport model,
GEOS-Chem v13.0.0, using a scaled C,Hg spatial proxy. With the updated emissions, simulations
of both C;Hg and C,Hs using GEOS-Chem are in reasonable agreement with ATom and HIPPO
observations, though the updated emissions fields underestimate C;Hg accumulation in the arctic
wintertime pointing to additional sources of this gas in the high latitudes (e.g., Europe). Using a
Bayesian hierarchical model, we estimate global emissions of C,Hs and C;Hg from fossil fuel
production in 2016-2018 tobe 13.3 £ 0.7 (95% CI) and 14.7 & 0.8 (95% CI) Tg/year, respectively.
We calculate bottom-up hydrocarbon emission ratios using basin composition measurements
weighted by gas production, and find their magnitude is higher than expected and is similar to
ratios informed by our revised alkane emissions. This suggests emissions are dominated by pre-
gas processing activities in oil-producing basins.

2.1 Introduction

Many studies have diagnosed recent methane (CH.) trends (both global and regional) using ethane
(C,Hg) atmospheric ratio signatures. However, the rejection of C,H, by oil and gas producers (in
the US, and presumably in countries following similar economic trends, Figure S1) results in an
increase in the mole fraction of C,Hg in the natural gas pipelines. Thus, to the extent that losses
occur in the pipelines and at the end users of natural gas, emissions of C;Hs may not necessarily
directly reflect CH, emissions, adding additional uncertainty in CH, emission estimates from
natural gas operations. In addition, a global uptick in hydraulic fracturing has shifted production



from dry to wet fields resulting in an increase in the ratios of both C,Hs and C;Hg to CH,,' further
complicating the use of the alkanes to diagnose the underlying CH, emission sources.>™

Given the uncertainty in using C,Hg alone as a tracer for CH, emissions, we use both C,Hs and
propane (C;Hs) to diagnose whether significant CH, emissions from natural gas and petroleum
occur pre-gas processing. Unlike C,Hg, C;Hg has a much higher market value and therefore does
not undergo “rejection.” Provided downstream losses are minimal and the raw gas ratio of C;Hs
to CH, is known, C;H; can provide a constraint for raw natural gas pre-gas processing CH,
emissions.

In this study, we employ global observations from aircraft, including the 2009-2011 High-
Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-
Pole Observations (HIPPO)® and the 2016-2018 Atmospheric Tomography (ATom)’ missions,
which provide vertical profiles of a variety of constituents, including C,Hs and C;Hs, around the
remote atmospheres of the globe. Together with the large-scale chemical transport model GEOS-
Chem, we estimate global fossil emissions of C,Hs and C;Hs.

2.2 Materials and methods

Observations from the National Oceanic and Atmospheric Administration (NOAA) Global
Monitoring Laboratory (GML)

Measurements of CH,4,*'° C,Hg and C;Hs!! from flask air collected by the NOAA GML tower!? and
aircraft'® near oil/natural gas basins were used as pre-gas processing references. We refer to site
locations using state abbreviations. More information on data processing/spatial coverage in
included in Section S2, Table S1 and Figure S5. To better quantify geophysical variability and
generate a confidence interval in the correlation between C,Hs and C;Hg mole fractions, we
implement a pairs bootstrap to generate replicates of C,Hes and C;Hg observations. The CIs
calculated from the bootstrapped samples are much broader than those calculated assuming the
noise in the measurements is dominated by analytical errors. This suggests that geophysical noise
induced by differences in transport and chemistry dominates the statistics. See Section S2.1 for
more details.

FRAPPE Observations

FRAPPE C130 flight data were taken within the Colorado Front Range between July 26-August
19 2014. We accessed the data on October 6, 2021 from www-air.larc.nasa.gov from the WAS
C130 merge file. Our data processing for FRAPPE is similar to our methods for the NOAA in situ
samples. A spatial illustration of FRAPPE observations is shown in Figure S6.



HIAPER POLE-TO-POLE OBSERVATIONS (HIPPO) & ATMOSPHERIC TOMOGRAPHY
(ATom) data

The HIPPO campaign was a sequence of five global measurement campaigns which sampled from
near the North Pole to the coastal waters of Antarctica, covering different seasons between 2009
and 2011. Similarly, ATom took place from 2016 and 2018. Flight paths of HIPPO and ATom
campaigns are illustrated in Figure S22 and specific details about the data sources are included in
Section 3, SI.

Only data observed at > 20 degrees north was used since the majority of emissions of these short-
lived gases of interest lie in the northern hemisphere. The lifetime of C;Hg and C,Hg are on the
order of a few months or shorter during the summer, and the time it takes for mixing between the
northern to southern hemispheres is on the order of a year,'* so the mole fraction of these gases of
interest is very low in the southern hemisphere.

Because C,Hs and C;Hj are relatively short-lived gases, their abundance in the stratosphere is low
and poorly connected to the underlying fluxes. To exclude stratospheric observations, we use N,O
(Panther/UCATS instrument) which is inert and generally well-mixed in the troposphere, but is
destroyed in the stratosphere by photolysis and reaction with O'D.!> Thus, we exclude from our
analysis data with low N,O mole fraction (Figure S23).

As our focus in this analysis is quantifying the global emissions of these gases, we exclude from
our analysis data where local fluxes substantially influence the mole fraction of these alkanes. We
use a simple land and altitude constraint, and HCN as a tracer to remove plumes from highly local
sources (including both energy infrastructure and wildfires, Figure S24-26). We also exclude
regions and times where the lifetime of the alkanes is very short and thus regional / local sources
dominate the variance. Thus, we do not analyze the aircraft summer data (but results for the
summer are shown in the SI) or data in the subtropics, where the alkane distribution is very
sensitive to transport from the extratropics where most emissions of C,Hg and C;H; originate. To
exclude subtropical air, we only analyze measurements with tropopause pressure above 100 hPa
(about 5% of the data was excluded under this constraint) for both ATom and HIPPO, which was
sufficient to reduce the influence of tropical intrusions. See Table S1 for a comprehensive outline
of the filters we use.

As in other studies,!®!” we use potential temperature (6, in units of Kelvin) in our analysis as a
zonal coordinate. Potential temperature is conserved following adiabatic flow, and in the extra-
tropics, variability within large-scale circulation can be well captured using this coordinate system.
As a result, trace gases that have long lifetimes compared to synoptic-scale meteorology, which
has a horizontal length scale of an order of 1000 kilometers or more and a timescale of about 10
days,'“!* will be well correlated with 8. Using 6 as a dynamical coordinate allows us to more
accurately compare low spatial resolution GEOS-Chem simulations with the aircraft in situ
measurements (compared with simply using altitude and latitude coordinates, Figure S27).



Potential temperature is not well-correlated with trace gases in the tropics or boundary layer, where
moist convection and surface drag-driven turbulence can result in non-unique pairs, or when the
photochemical lifetimes are short (summer).

GEOS-Chem Simulations

We simulated HIPPO and ATom measurements using the GEOS-Chem “classic” global 3-D
chemical transport model with default settings (details about the simulations and emissions are
provided in the SI, Section 4). We use the same constraints as the aircraft observations except we
use a boundary layer height parameter. As described below, we use a Bayesian model to provide a
best estimate for global emissions of C,Hs and C;H; and their uncertainty. One contribution to the
error estimate is transport errors in GEOS-Chem. To capture some of the uncertainty in the
transport field, we sample the GEOS-Chem model several days before and after the in-situ
sampling time along the aircraft flight path, which we refer to as “synoptic replicates.” Finally, all
GEOS-Chem simulations of C;Hs and C,H were interpolated on the vertical coordinate using 6
to the aircraft measurements. As expected, GEOS-Chem synoptic replicates show less consistency
in latitude (Figure S27), providing support for using 8 as an analysis coordinate.

Bayesian Inference

We wish to quantify the global emissions of C;Hg and C,Hg using the observed mole fraction of
these alkanes during ATom and HIPPO. The ambient mole fraction of C;Hg and C,Hg is most
sensitive to their total northern hemisphere emissions during the winter/fall/spring when there is
decreased sunlight/oxidation. As such, we assume differences between the GEOS-Chem
simulations and the aircraft observations can be largely attributed to the underlying emissions grid,
such that,

a =ges-a (1)
where a is the aircraft C,Hs or C;Hs mole fraction, gcs is the GEOS-Chem simulation of C,Hg or
C;Hg mole fraction, and « is a scalar that represents the missing emissions of C;Hg and C,Hs from
default emissions. We developed a Bayesian hierarchical model to estimate the missing emissions,
where equation (1) forms the basis of our model. Our model only uses the GEOS-Chem simulated
alkane mole fraction data (synoptic replicates), the alkane mole fractions observed by the aircraft,
tropopause height, and UTC time. Our complete statistical model and its development, priors
(Figure S37-41), as well as the software used, are included in the SI, section 5.

Hydrocarbon Percent Composition literature compilation and bootstrapping

We gather literature measurements of hydrocarbon composition from unprocessed gas from oil-
and gas- producing basins in the U.S. and around globe to calculate emission ratios. Summary
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statistics of the percent composition by region and the corresponding literature source is included
in Table S4-5 (SI). Gas composition varies significantly across basins, so we perform bootstrap
calculations for data samples within each basin separately. For each basin, we draw random pairs
of hydrocarbon composition measurements (CH,4, C,Hs, and C;Hjs) the size of the dataset, then take
the mean and repeat this 10,000 times. We use these bootstrap samples in subsequent calculations
(Equation 2), to arrive at emission ratios (Figure 6).

2.3 Results and discussion

CH, leaks from U.S. energy activities are dominated by pre-gas processing emissions

C;H;g and C,Hg are highly correlated at the NOAA sites (Figure 1). The data shown were obtained
across 2-11 years and include tower and aircraft data (Table S1). The cross plot of C;Hg and C,Hg
illustrate two distinct chemical regimes, similar to those described by Parrish et al. 2018.!* Above
1 ppb C;Hs, the distribution is nearly linear, consistent with the mixing of fresh non-
photochemically aged emissions into the background atmosphere. At mole fractions below 1 ppb,
a second regime is defined by mixing of the aged emissions (the lifetime of CsH; is much less than
that of C,Hg). To explore the characteristics of pre-gas processing emissions, we study the ratio of
these gases within the 50™ highest percentile of C;Hg for the combined sites. Varying this
demarcation + 10% negligibly affects the linear fit (Figure S10). We find that the ratio of C;Hjs to
C,H in the linear regime to be [0.63,0.70] (ppb/ppb, 95% CI), and FRAPPE observations show a
similar trend at [0.76,0.87] (Figure S9).

< © Northern OK
Northern CO
Eastern ND
Southwestern Canada

o Central IL
Northwestern CO

o Eastern TX
Western UT
Southeastern TX

10’ 10

CzHs (ppb)
Figure 1. Measurements of C2:Hg and C3Hg from ongoing NOAA GML tower and aircraft sites
(Table S1) from 2005-2018. The data follow the photochemical aging distribution described in
Parrish et al. 2018, where the data below 1 ppb C3Hg are affected by photochemically aged
emissions and mixing processes. As such, we only study the ratio of these gases in the 50" highest
percentile (everything above 1 ppb C3Hsg) that would indicate fresh emissions. After this filtering,
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two sites, Northwestern CO and Western UT (site codes NWR and UTA), did not have any data
in the fresh emission regime and are not included in further analysis (more detail in Figure S8).

Within the fresh emission chemical regime, the NOAA C;Hs/C,Hg ratio changes minimally before
and after 2012 ([0.62, 0.67] and [0.63, 0.71], respectively, ppb/ppb 95% CI, Figure S9) and over
the entire timeseries (Figure S19). An unchanging C;Hs/C,Hs ratio over time across the U.S.
despite large changes in the C;Hg/C,Hg ratio in processed gas during the same years (Figure S1),
suggests that the majority of the alkane (and likely CH,4) emissions occur pre-gas processing when
all the C;Hs and sometimes much of the C,H are separated from the raw gas. Conversely, post-
gas processing (pipeline) composition of C,H at Playa del Rey in Southern California follows
rejection trends, where the C;Hg/C,Hg ratio has decreased by 8% from 2008 to 2018, and in recent
years is about 18% lower in magnitude compared to the NOAA ratio (Figure S4). (Processed gas
in California is a good representation of typical gas composition of domestic and globally-imported
consumer-grade gas.?’) Our results are in agreement with Rutherford et al. 2021’s US-based model
for CH, emissions, which finds that unintentional emissions from the production segment (namely,
liquid storage tanks and other equipment leaks) are the largest contributors to divergence with the
EPA’s GHGI 2!

We use the same chemical aging approach to construct a background for NOAA and FRAPPE CH,
observations (Figure S7, S11). Since we only focus on the linear part of the chemical aging
distribution, our analysis is not terribly sensitive to how the CH, anomaly is determined (it simply
produces varying intercepts, Figure S10). Consistent with the analysis of Lan et al. 2019? (see
Figure S20-21), the ratio of C;Hg and C,H¢ to CH4 has increased with time, reflecting a growing
importance of oil exploration on CH, emissions in the US.

C;Hg demonstrates to be a useful tracer that constrains oil and gas related CH4 emissions. Given
that the fit of C;Hg vs CH, (and C,Hg vs CH,) have similar precision over the whole record, using
C;H; as a tracer likely separated nearby competing non-oil and gas CH, emissions. However, if
there were to be non-oil and gas CH, emissions that were spatially coherent to the NOAA
observation sites, our C;Hg vs CH, and C,Hs vs CH, emission ratios would be impacted.
Investigating and potentially separating spatially coherent emissions of non-fossil origins would
be the topic of future studies.

NOAA observations at Oklahoma ARM site are especially impacted by nearby unprocessed gas
emissions, as C,Hs and C;H; correlations with CH, have less noise compared to other sites (Figure
S12-13). While the ratios of C;Hs and C,H¢ vs CH, have increased by 50% at NOAA Oklahoma
site since 2010, we find that both C,Hs and C;Hs vs CH, ratios are fractionally increasing at the
same rate (Figure 2). That the atmospheric C,Hs and C;H; increase fractionally the same suggests
that the ratio of the alkanes in the reservoirs producing these emissions do not change significantly
over the time of this record. Below, we use the 2017 average C;Hs/CH, and C,Hs/CH,4 from NOAA
Oklahoma site ([0.060, 0.061] ppb/ppb (C,Hs/CH, 1s [0.086, 0.088], Figure S21) to compare our
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emissions estimates for C;Hg and C,Hg to published estimates of CH4 emissions from oil and gas

exploration.
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Figure 2. Yearly correlation between NOAA hydrocarbon vs CH, anomaly in Oklahoma. We show
the percent change of anomalies/year with respect to the mean hydrocarbon and methane
anomalies. The trend for C;Hg/CH, is 7.13 £ 1.44 % with an R? of 0.71. The trend for C,Hs/CH,4
is 5.87 & 1.26 % with an R?>=0.69. The variability in the trend comes from the standard error of a
linear regression. The variability in the individual points comes from the 95% confidence interval
of a pairs bootstrap of the alkanes and CH, anomalies. (We ran a pairs bootstrap for co-
measurements of C;Hg and ACH, and compute the slope of the correlation for each bootstrap
sample and repeated this for every year in the data; please see the methods section). This trend in
units of ppt/ppb/year is shown in Figure S21.

Default GEOS-Chem simulations underestimate C;Hg compared to aircraft observations

We compare the cross plot of C;H; to C,Hs from the HIPPO and ATom aircraft measurements and
GEOS-Chem simulations to the NOAA measurements (Figure 3). As expected, both the aircraft
observations and GEOS-Chem simulations fall under the photochemically aged emissions part of
the NOAA distribution. While the aircraft data overlay the NOAA measurements almost perfectly
(especially in the winter when the lifetimes of both gases are longest), GEOS-Chem
underestimates C;Hjs, particularly over the Atlantic curtain (Figure 3,4). The same conclusion is
drawn for HIPPO time periods (Figure S31-32, S34). Because the atmospheric lifetimes of C;Hs
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and C,H are different and vary seasonally due to the much higher concentrations of OH in the
summer, our estimate of global C,Hs and C;Hs emissions from GEOS-Chem comparisons are
sensitive to the a priori spatial distribution of these emissions.
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Figure 3. Comparison of C3Hg vs C2Hg for NOAA, ATom aircraft, and GEOS-Chem simulations
during fall/winter seasons. NOAA photochemically-aged measurements (all sites, 2005-2018), as
explained in the text, are shown on the heat map (colored by the number density of data). The
spring/summer seasons are included in Figure S29-30, S33. HIPPO is shown in Figure S34.

Relative to C,Hg, the default GEOS-Chem v13.0.0 C;Hs emissions result in a much larger
underestimate of C;Hg mole fractions over the Atlantic transect compared to the Pacific (Figure
3,4) implying an underestimate over North America. This pattern is most clearly visible in the
summer when the C;H; lifetime is short. In contrast, the default C,Hs emissions produce a good
simulation of the ATom data (within 5%) over both ocean basins (Figure 3.4). As such, we use the
mean ratio observed in the linear regime of the NOAA data (0.67 C;Hg/C,Hg, ppb/ppb Figure S9)
as the default global ratio of their emissions to update GEOS-Chem. In mass units (as used in the
GEOS-Chem emissions), this is = 0.99 kg C;Hs/ kg C,He. Given the remarkable coherence in both
the large-scale fields from the aircraft over both the Atlantic and Pacific transects and in the NOAA
data, the spatial distribution of the emissions ratios for both gases must be very similar upwind of
the Pacific (e.g., Asia) and the Atlantic (North America). As such, in our revised emissions fields
for C;Hs, we simply used the default C,Hs emissions configuration used by GEOS-Chem v13.0.0.
This scaling substantially altered the spatial distribution of C;Hs emissions (Figure S28). The effect
on the C;Hg simulation is shown in Figure 4 using ATom 4 as an example, where updating the
emissions resulted in a much better agreement between GEOS-Chem C;Hg and aircraft
measurements (other campaigns are included in Figure S35-36). Although simulations are greatly
improved using the revised emissions, it appears there is a missing high latitude source of C;Hs
and C,H (Figure S47-48, S54-55).
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Figure 4. Impact of revised C3Hsg emissions on GEOS-Chem simulation. Combined Pacific and
Atlantic transects for ATom 4 aircraft campaign, which took place during Spring 2018, are shown
in gold. The GEOS-Chem simulation using default C3Hg emissions are shown in blue and orange,
referring to the Pacific and Atlantic transects, respectively. The GEOS-Chem simulation after
implementing the revised C3Hg emissions is shown in green. The rest of the ATom campaigns are
shown in Figure S36.

Bayesian model suggests decadal increase in global C,Hs and C;H; anthropogenic fossil emissions

The results of our Bayesian inference were satisfactory. We had good sampling of our posterior
and the sampling diagnostics were excellent (Figure S43-44, S50-51). We performed tests that
verified our inference procedure could capture the ground truth (using simulated data for which
the ground truth is known), and that our posterior was more concentrated around the ground truth
than the prior (Figure S42). Furthermore, our model could generate the measured data reasonably
well; the majority of the measured aircraft data fell into the 30th and 50th percentile of the
simulated Bayesian model data (Figure S47-48, 54-55). The exception to this was the summer
season, where the Bayesian model does not capture the measured aircraft data. This is expected,
since during the summer we do not observe a robust relationship between potential temperature
and C;H;g or C,Hs. The model remained robust even when varying the sensitivity to low mole
fractions of alkanes with tropical origin (Figure S58-60).

During ATom 2 (winter) Atlantic curtain, the GEOS-Chem simulations poorly capture the
observed C,H¢ and C;Hg at low potential temperature compared to the aircraft. These
measurements are samples obtained at low altitude, high latitude, and cold temperatures (Figure
S49). During the winter, these arctic airmasses are often characterized by stagnant conditions, with
less mixing with the mid-latitudes.”? As a result, emissions that occur at high latitudes during the
winter can be trapped there unless the zonal flow is disrupted. Additionally, emissions of C,Hs and
C;H; near the arctic during the winter will oxidize more slowly relative to mid-latitudes due to the
cold temperature and minimal sunlight. These conditions result in high C,Hs and C;Hg mole
fraction over the arctic relative to remote mid-latitude chemical regimes. The measurements
subject to arctic conditions during ATom were too few to make a substantial impact on the overall
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Bayesian emissions estimate, but during HIPPO winter flights, few samples were obtained
resulting in a large bias towards arctic data. We place much more weight on the ATom winter C;Hs
analysis estimate of global C;Hs emissions since the arctic represents only a small fraction of the
atmosphere.

It is likely that GEOS-Chem v13.0.0 is missing a high latitude emissions source (Figure S47-49,
S54-55). Underestimation of CsHg and C,Hg at high latitudes is consistent with other studies, which
found fossil fuel emissions from Eurasia accounted for the largest underestimation.? It is possible
that emissions from northern Europe may account for this discrepancy, as fossil emissions were
found to be underestimated* and our revised C;Hs emissions decreased in that region after
implementing the emission C,Hs proxy (Figure S28). This, combined with a relatively lower
number of HIPPO aircraft observations at lower latitudes, results in a substantial positive bias on
the overall Bayesian emissions estimate for C;Hs during winter 2009 (Figure S62).

We report our Bayesian estimates for each seasonal campaign and ocean transect during 2009-
2011 and 2016-2018, and what the GEOS-Chem v13.0.0 default emissions grids should be scaled
by, according to our analysis (Figure S45-46, S52-53, and SI section 5.8). We estimate global
emissions of C,Hs and C;H; from fossil fuel production from 2016-2018 to be 13.3 £+ 0.7 (95%
CI) and 14.7 = 0.8 (95% CI) Tg/year, respectively. Our results compare well to other studies
(Figure 5, Figure S62). Our estimates suggest emissions of C,Hs have increased by about 15%
from 2010-2017 when comparing the mean revised C,Hy emissions during those time periods
(Figure S61). Emissions of C;H; are calculated to have increased more (65%, Figure S62), but this
estimate is highly uncertain due to the few samples obtained during HIPPO and the impact of the
Arctic winter pooling in both campaigns. Nevertheless, these increases are consistent with greater
oil production emissions contribution. Similarly, Helmig et al. 2016, which used data from a global
surface network and atmospheric column observations, found about a 22% increase in C,Hg
emissions between 2009 and 2014.%
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Figure 5. Global revised ethane anthropogenic fossil emissions compared to other studies. Our
emissions estimate in 2016-2018 (during ATom) and 2009-2011 (during HIPPO) includes our
revised emissions for winter, fall and spring seasons that we determined with our Bayesian model
during each season. As discussed in the text, fewer samples were obtained during HIPPO, resulting
in a sampling bias that we test by restricting observations and simulations to + 300K potential
temperature (Figure S56-S57). This test affects the estimate about + 1 Tg during 2010-2011, but
affects our estimate by up to 12 Tg in 2009. We compare our revised emissions to the default
emissions from GEOS-Chem v13.0.0. The studies included here?*2-?’ represent anthropogenic
fossil emissions, except Dalsgren et al. 2018 which also includes biofuel, agriculture, and waste.
We obtained the CEDS CMIP6 estimate from Dalsgren et al. 2018. Our emissions estimates do
not include biomass burning or biofuels. Propane emissions are included in Figure S62.

Oil exploration plays a more significant role in global CH, compared to dry gas

We calculate an emission ratio of C;Hg/CH, for n basins or countries using the following equation,
Cy;
AN e (A
o) (el )
2

where Ppy 1s the dry natural gas production (in million tonnes), C; and C; are the bootstrapped
samples of measured hydrocarbon fractions in raw natural gas samples (in mass %, details on the
bootstrapping in the methods section), and tot is the sum of the bootstrapped samples of measured

hydrocarbon fractions for CH,, C,Hg, and C;Hs. (Note that our E (%) emission ratios are inherently
1
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weighted by natural gas production by basin, Ppy¢.) E (g—i) is calculated similarly. We refer to the

emission ratio in Equation 2 as the “literature” emission ratio, since we combine a variety of natural
gas composition measurements for wet and dry basins. We calculate a global literature emission
ratio using hydrocarbon and dry natural gas production data from the top 5 producing natural gas
basins around the world that made up 50% of the total natural gas production in 2019.% We also
calculate a U.S. literature emission ratio using the top 7 natural gas producing basins that account
for 86% of total U.S. natural gas production.’*3! We show the relative production of the top global
and U.S. basins used in our analysis in Figure S3. Additional summary statistics and sources for
the composition measurements are included in Table S4-S5.

Separately, we calculate an “observationally informed emission ratio (OIER)” by taking the ratio
between our revised C;Hs emissions with literature estimates of CH4 emissions from oil and natural
gas processes. The OIER for C,H¢/CH, is calculated similarly. Previous studies have constrained
global CH,4 emissions from Natural Gas/Petroleum systems to range from 63 — 91 Tg/yr.2532-%
Given our estimate for revised C;Hs and C;Hs emissions, this implies a mean alkane ratio of
100:[8.0, 10.0]:[6.5, 7.3] molar % (CH4:C,Hg:C;Hsg) in 2016-2018. We compare our literature ratio
with several OIER using global estimates in Figure 6 and with U.S. estimates in Figure S63. The
small abundance of spatial and temporal literature measurements of raw gas composition
throughout basins most affect the final uncertainty in the emission ratio comparison.

Global
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Figure 6. Global Literature and Observationally Informed Emission ratios (OIER) C;Hg/CH, and
C,H¢/CH,. The “weighted raw gas ratio” in the figure represents the “literature ratio” described in
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the text, calculated using Equation 2. OIER, ratios between our revised C,Hs and C;Hg emissions
and literature CH, emission estimates, are shown for several literature CH, estimates, including
IEA 2021 (76.4 Tg/yr)*, Scarpelli et al. 2020 (65.7 Tg/yr)**, and Global Carbon Project 2020
bottom-up estimate (128 Tg/yr, 2008-2017 average)*. The variability in the literature ratio is
attributed to the 95% CI of pairs bootstrap samples of hydrocarbon composition measurements
(see text for more detail). The variability in the OIER is attributed to the 95% CI of our revised
C;Hg and C,Hg emission estimates. We also compare C;Hg/CH,4 and C,Hs/CH, correlations from
in-situ observations, including NOAA observations from Northern Oklahoma (2017 average from
Figure S21, units of kg/kg) and FRAPPE observations from Northern Colorado (2014 from Figure
S9, units of kg/kg). The variability in the NOAA ratio is relatively low because it is calculated
from a multi-year average slope, and the error in the slope is low (see Figure S21, left). The
variability in the FRAPPE ratio is relatively high because we use the 95% CI derived directly from
our bootstrap samples, as described in the methods section.

Unprocessed dry gas has a smaller C;Hy/CH, and C,H¢/CH,4 ratio compared to unprocessed
associated gas from oil-producing basins (“wet” gas). A greater contribution of emissions from dry
basins would decrease the magnitude of the overall literature ratio, assuming minimal C;Hg leakage
after separation from raw gas, given the high market value of C;Hs. In the U.S., the basin with the
highest gas production is the Appalachian (East Coast) (Figure S3). If CH, leaks were proportional
to production, we would expect a “dry” (small) emission ratio that resembles the composition of
the Appalachian region (6% mass/mass, calculated from Table S3). However, we find the
production-weighted ratio to be much larger than expected (15%, Figure S63). The second-largest
gas producing region, the Permian (Southwestern US), is also the largest oil producer in the U.S.
and vastly overpowers the Appalachian in terms of oil production (Figure S3). The magnitude of
our production-weighted raw gas “literature” emission ratios suggest a significant contribution
from wet gas and emissions that are biased towards oil-producing basins. We find similar results
for global emission ratios (Figure 6).

The Global Carbon Project CH, emissions estimate implies an OIER that is dry relative to the
production-weighted raw gas ratio (literature ratio), Figure 6. Instead, the IEA (76 Tg/yr) and
Scarpelli et al. 2016 (66 Tg/yr) CH, emissions estimates yield an OIER that is within a few percent
of the production-weighted raw gas literature ratio, given our revised C;Hs and C,Hs emissions.
Both of those studies estimate oil production emissions to have a relatively higher contribution to
the global footprint compared to dry gas production.

The FRAPPE and NOAA Oklahoma observed emission ratios compare well to the global OIER
(Figure 6) and U.S. OIER (Figure S63), suggesting high emissions from oil production. Indeed,
there are substantial oil production activities (Figure S15-18) surrounding the NOAA Oklahoma
and FRAPPE observation sites. Increasing tends in the Oklahoma emission ratios are consistent
with production trends: oil production in Oklahoma tripled from 2010 to 2017 (compared to
doubling of gas production) and in 2020, Oklahoma was the fourth-largest oil producer in the
U.S# (Note that Oklahoma was not included in calculations for the literature ratio, since
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Oklahoma natural gas production does not rank in the top 7.) Several factors may reduce incentive
or ability for oil producers to capture associated natural gas byproducts, including low market
prices and lagging pipeline infrastructure.*!

Since our findings suggest that CH, losses are likely greater and biased towards oil-producing
sites, a significant fraction of bottom-up estimates of CH, emissions may be misallocated to dry
CH, production, when they should instead be included with the oil production sector. Correctly
attributing CH, emissions to oil production would increase the greenhouse gas footprint of
petroleum-based transportation, while decreasing the greenhouse gas emissions ascribed to natural
gas-powered power plants. At a minimum, the CO, equivalent footprint of the global transportation
sector would increase by roughly 5%, using IEA’s estimate of 76 Tg/year CH, emissions from oil
and natural gas and recent transportation CO, emission estimates (Section 6.4, SI).%4? This
estimate will only increase when accounting for vented and flared losses of associated natural gas
that is not accounted for in marketed associated gas (which we use to calculate these numbers).
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Chapter3

An analysis coordinate transform to facilitate use of in-situ aircraft

observations for flux estimation
Ariana L. Tribby, Paul O. Wennberg

In preparation for submission to Atmospheric Measurement Techniques.

Abstract

Analysis of aircraft observations of atmospheric trace gases is key towards improving fundamental
chemical processes and quantifying anthropogenic emissions. A common approach for such
analysis is use of chemical transport models to produce 4-D fields for comparison with these
observations together with various inversion techniques to constrain the underlying fluxes. Yet,
time and monetary constraints of expensive computational jobs for chemical transport modeling
can be a significant hindrance. Here, we show the advantages of using potential temperature as a
dynamical coordinate to compare such simulations to aircraft observations of trace gases whose
concentration fields are strongly influenced by synoptic-scale gradients. We use global
observations of ethane and propane from the Atmospheric Tomography (ATom) aircraft mission
and simulate globe mole fractions for these gases using GEOS-Chem High Performance v13.4.1.
We show that Bayesian estimates of the fluxes of these gases to the Northern Hemisphere are
invariant (£ 10%) even as the simulation spatial and temporal resolution are increased 100-fold.
Our approach can have broad applications for the modeling of trace gases in the extratropics,
particularly those with longer lifetimes compared to synoptic timescales.

3.1 Introduction

A common approach for estimating fluxes of trace gases to the atmosphere involve comparing
atmospheric simulations with in-situ observations. Such studies enable the use of sparse
observations made by aircraft, for example.'? However, computational load can limit the
feasibility of these comparisons. Often, efforts are focused on increasing the temporal and spatial
resolution of the simulations as a means of capturing the fine scale structure that adds variance to
the 4-D chemical fields. This significantly increases the computational load and analysis time.

Motivated by previous analyses of column CO, observations,**> we illustrate here how potential
temperature (6, in units of Kelvin) can be useful in model-observation comparisons, particularly
when the trace gases under analysis have fluxes that are largely dependent on synoptic-scale
dynamics. Variability in the extra-tropics within large-scale circulation can be well-captured since
6 is conserved following adiabatic flow. Trace gases that have longer lifetimes compared to
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synoptic-scale meteorology (about 10 days).® will be well correlated with 8. (The correlation does
not hold in the tropics or boundary layer, or when the photochemical lifetimes are short, i.e., during
the summer months.)

In this study, we use global aircraft observations of ethane (C,Hs) and propane (C;Hg) from
Atmospheric Tomography (ATom) mission during 2016-2017 and simulate those global fields
using the chemical transport model, GEOS-Chem High Performance v13.4.1. We show that when
used a zonal coordinate, 8 improves model/observation correlation compared with using classical
latitude, longitude, altitude and time coordinates. We use the Bayesian hierarchical model from
Tribby et al. 2022 to evaluate flux estimates from simulations performed at 4x5, 2x2.5, and
0.5x0.625 resolutions, and find that when using 8, the comparisons have negligible difference. As
such, 6 offers an opportunity to optimize time and cost of model simulations for certain trace gases,
including several of which have important climate implications.

3.2 Methods

3.2.1 ATom observations

The Atmospheric Tomography (ATom) aircraft campaign comprised of four sequential global
flights. We use two flight campaigns during July-August 2016 and January-February 2017.

As in Tribby et al. 2022, we exclude from our analysis stratospheric observations (using N,O) and
data influenced by highly local emission sources (boundary layer and biomass burning).” When
using 6 as a vertical interpolation coordinate, we exclude the summer months from our analysis,
since the lifetime of C,Hs and C;H; are reduced, and regional/local sources dominate the variance.
Further, we exclude subtropical transport by limiting observations with tropopause pressure above
100 hPa (only about 5% of data was affected by this constraint), which sufficiently reduced
subtropical influence.

We show flight paths for the data above 20 degrees north in Figure 7, as we only consider northern
fluxes since most emissions of short-lived C,Hs and C;H;g originate in the northern hemisphere,
and their lifetimes are shorter than northern-southern hemispheric exchange rate.
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Figure 7. Flight paths during ATom flight campaign. We use summer 2016 and winter 2017
campaigns over the Atlantic Ocean in our analysis. We only consider observations above 20
degrees north, as explained in the methods.

3.2.2 GEOS-Chem simulations

We simulated ATom aircraft observations using the GEOS-Chem classic global3-D chemical
transport model in v13.4.1 (doi:10.5281/zenod0.6564702) on Amazon Web Services (AWS) using
a public GEOS-Chem Amazon Machine Image (ami-0491da4eeba0fe986).2 We used the standard
full-chemistry option and 3 horizontal resolutions to simulate ATom1 & 2, including 4x5, 2x2.5,
and 0.5x0.625, all with the native 72 hybrid sigma/pressure levels using MERRA-2 reanalysis
meteorology products by the Global Modeling and Assimilation Office (GMAO) at NASA
Goddard Space Flight Center,” available on the AMI. For all 3 horizontal resolution simulations,

we output hourly simulations over the ATom 1 and 2 flight campaign periods.

We conducted a global simulation for 4x5 and 2x2.5 horizontal resolutions before sampling to the
aircraft path, except for 0.5x0.625, detailed below. Default chemistry and configurations were used
for 2x2.5 and 4x5, except for custom C,Hys and C;Hg emissions, described below. We used a 1-
year spin-up at 4x5 horizontal resolution, followed by a 10-day spin-up with the 2x2.5 or 0.5x0.625
meteorological files.

The 0.5x0.625 simulations were conducted using a nested-grid over a custom box that
encompassed the ATom Atlantic curtain transect. The vertices of our custom grid included a
minimum/maximum latitude of (18.0, 88.0) and a minimum/maximum longitude of (-90.0, -15.0)
with 3-grid buffer for all sides. We generated global boundary condition tri-hourly daily files for
our custom grid using a 4x5 simulation and custom emissions for C,Hs and C;Hs, described below.
In addition, we re-used the 4x5 spin-up restart files when generating boundary condition files.
During the nested run, several species were flagged as having negative values during PBL mixing
in GEOS-Chem, including HNO;, NH;, NO, NO,, Os, and halogen chemistry sea salt alkalinity
variables, SALAAL and SALCAL, causing the simulations to end. Manually increasing the
background concentrations or reducing the transport/convection timestep to 150 seconds and the
chemistry/emission timestep to 300 seconds did not prevent these issues. We kept the timesteps at
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those reduced values and edited the wrapper module, mixing_mod.F90, to replace negative values
with zero to allow the model to run. No other species were flagged as having negative values.

Emissions for C,H¢ and C;Hg were computed using the Harmonized Emissions Component
(HEMCO)! Standalone version 3.5.0-rc.1 and GEOS-Chem 14.0.0-rc.1 on AWS using a public
Amazon Machine Image (ami-0491dadeeba0fe986). We revised the default emissions using the
same methods from Tribby et al. 2022: we scaled all sectors of default C,Hs by 1.1, and we
substituted C;Hs with default C,Hg before scaling by 1.2.

3.3 Results

In Figure 8, we show curtain plots for C;H; for 4x5, 2x2.5, and 0.5x0.625 horizontal resolution
GEOS-Chem simulations. We interpolate 4x5 and 2x2.5 along pressure and latitude to the
0.5x0.625 scale. As expected, 0.5x0.625 show more defined structures. However, if we instead
create the same curtain plots but using 8 as the vertical coordinate (without interpolation), the three
simulations look very similar (SI). This holds true for the winter 2017 observations, but not for the
summer 2016 observations, since the increased sunlight/oxidation reduces the chemical lifetime
of C,H and C;Hg, resulting in a poor relationship with 8 (Figures AS, A6).
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Figure 8. GEOS-Chem-simulated C;Hg “curtain” during ATom 2 winter 2017 campaign, along
pressure and latitude. All GEOS-Chem simulations were sampled along aircraft latitude and a
single median time/longitude during the flight over the Atlantic ocean. Column 1 shows
simulations sampled 5 days before the median aircraft time; Column 2 shows simulations sampled
on the median aircraft time; Column 3 shows simulations sampled 5 days after the median aircraft
time. FIRST row: 4x5 resolution, interpolated to 0.5x0.625 grid using latitude and pressure
coordinates. SECOND row: 2x2.5 resolution, interpolated to 0.5x0.625 grid using latitude and
pressure coordinates. THIRD row: 0.5x0.625 resolution. FOURTH row: a more detailed
illustration of plot number r3,c2, with aircraft flight path shown in grey, the aircraft observations
shown by triangle markers, and potential temperature contours shown in black. C,H, is included
in the SI.
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Figure 9. GEOS-Chem-simulated C;Hg “curtain” during ATom 2 winter 2017 campaign, along
potential temperature and latitude. All GEOS-Chem simulations were sampled along aircraft
latitude and a single median time/longitude during the flight over the Atlantic ocean. Column 1
shows simulations sampled 5 days before the median aircraft time; Column 2 shows simulations
sampled on the median aircraft time; Column 3 shows simulations sampled 5 days after the median
aircraft time. FIRST row: 4x5 resolution. SECOND row: 2x2.5 resolution. THIRD row: 0.5x0.625
resolution. FOURTH row: a more detailed illustration of plot number r3,c2, with aircraft flight
path shown in grey, the aircraft observations shown by triangle markers, and potential temperature
contours shown in black. C,Hp is included in the SI.

When we interpolate the GEOS-Chem simulations along aircraft latitude, longitude, time, and 8,
we see excellent agreement between simulations and the aircraft observations, consistent across
all 3 horizontal resolutions (Figure 10). Furthermore, there is generally good agreement between
the aircraft observations and simulations 5 days before and after the flight path, which is expected
during the winter months when C;Hs and C,Hg have longer lifetimes and higher abundance.
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Figure 10. GEOS-Chem simulations and ATom aircraft C;Hs vs potential temperature. Left:
Includes aircraft observations and simulations sampled 5 days after the aircraft flight path. Middle:
Includes aircraft observations and simulations sampled during the aircraft flight path. Right:
Includes aircraft observations and simulations 5 days before the aircraft flight path. C,He included
in the SI.

We compare the aircraft observations with the GEOS-Chem simulations using the same Bayesian
hierarchical model from Tribby et al. 2022 to capture the contribution of uncertainty due to
transport in GEOS-Chem. In summary, Tribby et al. 2022 assumed differences between the GEOS-
Chem simulations and aircraft observations are largely dependent on the underlying emissions grid
during the winter when there is decreased sunlight/oxidation, such that

a =ges-a (D)

where a is the aircraft mole fraction, gcs is the GEOS-Chem simulation, and « is a scalar that
quantifies the difference between the simulations and the aircraft observations (that directly
attributes the missing emissions). Since in our simulations here, we updated the fluxes to those
estimated in Tribby et al. 2022, we expect a to be close to 1. We follow all methods of the previous
study, including sampling the GEOS-Chem simulations several days before and after the aircraft
flight latitude, longitude, and time before interpolating on the vertical level using 8. Please refer
to Tribby et al. 2022 for the complete statistical model and its derivation, the software, and the
development of the priors.
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With 6 as the interpolation coordinate, the Bayesian results are similar regardless of the simulation
grid scale (Figure 11): the mean posterior varies 10% or less between all horizontal resolutions for
both C;Hg and C,He. Furthermore, the confidence interval spread was about the same for the finest
and coarsest resolutions, illustrating the value of using 8 as the analysis coordinate.
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Figure 11. Bayesian inference results, 97.5% confidence interval. Top: C;H;s. Bottom: C,Hs.
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Chapterd

Towards constraining methane emissions in southern Oklahoma using STILT
analysis of remote sensing and flask observations of hydrocarbon tracers

Ariana L. Tribby, Dien Wu, Josh L. Laughner, Harrison A. Parker, Paul O. Wennberg

In preparation for submission to Atmospheric Chemistry and Physics.

4.1 Introduction

Previous studies have seen evidence for significant, nearby oil and gas production hydrocarbon
emissions using ethane and propane flask observations from the NOAA station in Lamont,
Oklahoma (Tribby et al. 2022). Their reported decadal trend is consistent with Oklahoma oil and
gas production activities that tripled during the same time.!” We develop a methodology to
quantify emissions of methane from this region using long-term measurements of ethane and
propane tracers, in conjunction with NOAA flask. Finally, we will quantify regional emissions
using STILT. This analysis is in preparation for submission to ACP.

4.2. Methods
4.2.1 TCCON measurements of ethane and propane

Remote sensing observations from ground-based Fourier transform spectrometer located in
Lamont, Oklahoma are part of the Total Carbon Colomn Observing Network (TCCON), which
includes 29 active sites located around the world.> The TCCON instruments are solar-viewing
Bruker 125HR (high-resolution) FT-IR spectrometers (near-infrared) that record an interferogram
every few minutes that are converted to spectra. The volume mixing ratio (VMR) of numerous
trace gases are derived from the measured spectra using a nonlinear least-squares algorithm that
minimizes the residuals between a measured spectrum and one that is the product of the a priori
profile and a uniform scalar.* Column abundances of atmospheric gases are computed by
integrating the optimally-scaled prior profiles.’ The column abundances are converted to column
dry mole fractions (DMF) by dividing by the column of O. In this analysis, we take advantage of
new retrievals of ethane and propane together with standard retrievals of methane.

The a priori profiles are constructed using correlations between meteorological variables and
observations (i.e., balloon) of trace gas DMFs in the atmosphere. While these a priori are
satisfactory for remote observations typical of TCCON sites, in the context of intense oil and gas
emissions, they are not appropriate for regions such as Oklahoma. Here, we use GEOS-Chem
simulations of C;Hg and C3Hs (see configurations for GEOS-Chem below) at Oklahoma to update
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the a priori profiles for the TCCON retrievals using the newly-developed ginput-devel algorithm
(https://github.com/WennbergLab/py-ginput-devel.git), Figure 12. This product was developed
for TCCON users to derive a priori profiles using custom trace gas column profiles. The algorithm
samples custom trace gas profiles (at a frequency of every 3 hours) and interpolates along
geopotential height to arrive at the same vertical coordinates as the meteorology used in TCCON
GGG2020, which uses the Goddard Earth Observing System Forward Product for Instrument
Teams (GEOS FP-IT) reanalysis product. The geopotential height is computed by normalizing the
geometric height by gravity and linearly interpolated in log(pressure) from the model’s level edge

pressures. The edge heights are calculated using the hydrostatic equation, é(PHIS +

K
Cp Ly OvAP), where AP is the difference in (ﬂ) at the lower and upper edges of layer 1, PHIS

Do
is the surface geopotential, ¢, is the specific heat, and 6, is the virtual potential temperature in the

layer (https://gmao.gsfc.nasa.gov/GMAO _products/documents/GEOS-5_Filespec_Glossary.pdf).
We calculate 6, using the virtual temperature (“TV”’) and water profile. All profiles of interfering
species in the spectra of CoHe and C3Hg are taken from the default a priori profiles used in
GGG2020. Below is a comparison of an example of the updated VMR for C2Hg and C3Hs.
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Figure 12. Updated ethane and propane volume mixing ratios (VMR) for TCCON retrievals.
Updated VMR are derived using the new ginput-devel algorithm (see Methods) and GEOS-Chem
profiles made using revised hydrocarbon emissions from Tribby et al. 2022. Index is a proxy for
the hybrid pressure level. Shown in blue are the standard a priori profiles used in ggg.
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We obtain column average dry mole fractions (DMF) with high temporal frequency for ethane and
propane at the Lamont site from 2017-2020 (see Results). We also filter for scaling factor (VSF)
error less than 10 to reduce solar zenith angle dependence.

4.2.2 GEOS-Chem simulations

We use GEOS-Chem simulations to develop custom priors for our TCCON retrievals of CoHe and
CsHs. We ran GEOS-Chem classic global3-D chemical transport model in v134.1
(doi:10.5281/zen0d0.6564702) on Amazon Web Services (AWS) using a public GEOS-Chem
Amazon Machine Image (ami-0491dadeeba0fe986). We used the standard full-chemistry option
at 4x5 degree horizontal resolution at the native 72 hybrid sigma/pressure levels using GEOS-FP
meteorology products available on AWS to simulate C2Hg and C3Hg from June 1 — October 1 2017-
2020, with output frequency of every 3 hours. Default chemistry and configurations were used
except for custom C2Hg and CsHs emissions, described below. We used a 1-year spin up at 4x5
horizontal resolution.

Emissions for CoHe and C3;Hg were computed using the Harmonized Emissions Component
(HEMCO) Standalone version 3.5.0-rc.1 and GEOS-Chem 14.0.0-rc.1 on AWS using a public
Amazon Machine Image (ami-0491dadeeba0fe986). We revised the default emissions using the
same methods from Tribby et al. 2022: we scaled all sectors of default CoHs by 1.1 and substituted
CsHg with default CoHg before scaling by 1.2.

4.2.3 NOAA flask observations

We use observations from the NOAA Oceanic and Atmospheric Administration (NOAA) Global
monitoring Laboratory (GML) measurements of C3Hg, C:Hgs and CHy4 from flask air samples
collected by the NOAA GML tower and aircraft at the Southern Great Plains (SGP) location in
Lamont, Oklahoma from 2017-2020. The CsHs and C;He¢ were accessed from
https://gml.noaa.gov/aftp/data/trace gases/, while CH4 was accessed from
https://gml.noaa.gov/aftp/data/trace gases/ch4/pfp/. We use measurement quality flags labeled as

either preliminary or good sampling analysis only. There were unequal number of quality
measurements for all 3 alkane species, so we matched UTC time stamps that were shared between
all 3 to avoid sampling bias. As in Tribby et al. 2022 we use 1 ppb C3Hg as a threshold for
photochemically aged samples. We restrict our analysis to samples associated with fresh emissions
(unaged). We only use summer data between June 1-October 1 2017-2020.

Wind speed and direction for Lamont NOAA flasks was obtained from the nearby Blackwell
station at
https://mesonet.agron.iastate.edu/sites/windrose.phtml?station=WDG&network=OK ASOS. We
interpolated the speed and direction using the nearest neighbor UTC time.
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4.2.4 STILT modeling

We use the Stochastic Time-Inverted Lagrangian Transport (STILT) model,> which simulates
atmospheric transport backward in time by releasing an ensemble of representative air parcels at a
receptor location, and simulating their stochastic transport by extracting parameters from
assimilated meteorological fields. Only flask NOAA observations are modeled at this time, and
plans for using TCCON retrievals with STILT are described in future directions. 1000 air parcels
are released per tower receptor longitude/latitude/time/altitude. Our model area is defined as 20-
SON latitude, 90-110W longitude. To transport the air parcels, we use the North American
Mesoscale Forecast System (NAM) (12 km resolution) run by the National Centers for
Environmental Prediction (NCEP). The impact on wind error is a topic of future work, but we
utilize a generous uncertainty of 50% in modeled mole fractions for preliminary Bayesian
estimates below.’

STILT generates a footprint, which describes the influence of potential upwind source regions to
downwind receptor mole fraction anomaly, in units of ppm/(umolm?). Each footprint has a
horizontal resolution of 0.1x0.1 degrees. The footprints, multiplied by emissions, describes the
contribution to the mole fraction anomaly at the receptor, in units of ppb.

4.2.5 Emissions prior

Oil and gas wells shapefiles were downloaded from https://www fractracker.org/map/us/ in April 2023

for the following regions: Oklahoma, Colorado, Kansas, Missouri, new Mexico, Oklahoma and
Texas (see SI for visualization). We use geopandas (v 0.12.2) for processing and analysis. After
converting all coordinates to WGS 84, we compute well density for every 0.1x0.1 cell (figure, SI).
We then use Zhang et al. 2020°s® CH, emission estimates in the Permian basin to derive a CH,4
emission rate for our entire footprint area using our computed well density, Figure 13. We use the
mean C3;Hs/CH, and CoHe/CH,4 emission ratios from 2017 at Lamont Oklahoma (Tribby et al.
2022) to estimate C3Hs and CoHe emissions at 0.1x0.1 degrees (Figures in SI). Integrated emissions
over our footprint area are as follows: CH, at 7.6 £ 1.4 Tg/yr, CsHg at 1.3 £ 0.5 Tg/yr, and C2Hg at
1.2 £ 0.5 Tg/yr, where uncertainty is the propagated error between Zhang et al. 2020 CH, emission
rate uncertainty and the variability in the hydrocarbon emission ratio from Tribby et al. 2022. We
compare our area totals with other studies in the SI.
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Figure 13. CH, emissions constructed using wellhead density, used for computing STILT
contribution. C2:He and C3Hg are included in the SI.

We convert from latitude/longitude coordinates to units of meters using pyproj Geod package
(v3.5.0). Finally, we filled any zero values in the emissions grid with le-15 to avoid issues with
log(0) before scaling by the STILT footprint in the Bayesian modeling below.

4.2.6 Bayesian modeling

We assume a linear relationship between the STILT-modeled mole fraction (y,,) and the observed
mole fractions (y,) such that y, = xy,,, where x is the state vector representing the emissions
scaling factor. This assumption holds because the lifetime of ethane and propane are on the order
of weeks during the summertime and longer at other times of year. This is sufficiently long with
respect to transport over a 3-day footprint period that we can assume these gases are passive
tracers. We can reasonably approximate ethane and propane as lognormally distributed:

o~ Norm(0.9,0.15)
log,0x ~ Norm(0,1)

Ayoj ~ LogNorm (xAymj ,a)

where Ay, is the jth observed enhancement hydrocarbon mole fraction, and Ay, is the jth
modeled enhancement mole fraction, which are the STILT footprints;, (of k spatial grid cells)
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scaled by the emissions prior, We define x, on a log scale for its prior for two reasons. First, it is
well documented that emissions from oil and gas follow a heavy-tail distribution, *-'2 so this will
generate scaling factors on an appropriate scale. Second, the emissions priory is likely an
underestimate since we use well density to linearly scale our derived emission rate and do not
account for super emitters. The prior for o is sufficiently broad to allow for an error estimate of
50% in ppb enhancement (the generated samples are in log scale). Figures for our priors are shown
in the SI.

We run our statistical model using Stan software!? (version 2.26) with CmdStanPy Python interface
(version 0.9.67)."* Stan is a probabilistic programming language that uses Hamiltonian Monte
Carlo (HMC),"> which allows for more efficient sampling of the posterior. We parse Markov chain
sampling using ArviZ (version 0.11.1).1®* We use bebil03 package (version 0.1.0)'” to prepare data
for Stan sampling, parse MCMC samples, plot posteriors and plot posterior predictive checks.
Finally, other software we use in our analysis includes Holoviews version 1.14.5,'8 Bokeh version
2.3.3," Pandas version 1.3.1,%° SciPy version 1.6.2,2! and NumPy version 1.20.3.22 We set the
warmup iterations to 2000 and conducted 1000 samples.

4.3. Results & analysis

The TCCON dry mole fractions (DMF) of C3Hg and C2Hs are very well correlated (Figure 14). In
anticipation of performing a STILT run using TCCON columns, we have prepared a TCCON
dataset in which TCCON and NOAA flask observations overlap in day of measurement (SI). We
have not yet completed the algorithm for executing STILT for TCCON column receptors at the
time of this thesis preparation, and this task is left for future work prior to submission of this study
for peer review.
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Figure 14. TCCON dry mole fractions of C2He and C3Hs.

We show NOAA flask tower and plane C3Hg and C2Hg for Lamont in the ‘fresh emission’ regime
(Figure 15). Most samples with highly elevated CsHs and C2Hg are associated with wind direction
vector originating from a south/south-westerly direction.
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Figure 15. C3Hg and C2Hg NOAA flask data. Data filtered for fresh emission chemical regime. Not
yet background corrected. Marker size correlates to relative wind magnitude.
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Below we show an example of our modeled mole fraction anomaly (y,,) contribution to the NOAA
tower flask receptor (STILT footprint scaled by our emissions prior), over the 3 day back-trajectory
(Figure 16). At first glance though all the receptor days, there seem to be a significant number of
footprints from North, South-East origin contributing to the receptor mole fraction. However, more
analysis is needed, as some footprints show a spread-out influence compared to others.

y_m in ppb for 1 single receptor, 72 hours sum

\ - 1072

105

10—17

1020

Figure 16. Example of mole fraction contribution to the NOAA tower flask receptor over the 3-
day back trajectory.

The y,, summed across the entire footprint area represents the total modeled mole fraction anomaly
at the receptor location after influence from neighboring regions. We show this estimate for every
receptor day and compare this to NOAA tower flask background-corrected anomalies (Figure 17).
STILT underestimates NOAA flask observations significantly. More analysis is needed to
determine the validity of these estimates, as we cannot unambiguously determine whether the
emission estimates are significantly underestimated or there are other factors contributing to these
low anomalies. Incorporating the aircraft data and the TCCON retrievals in our STILT analysis
will be helpful in determining whether the high CsHs and C2He we see in the tower data is due to
the presence of highly local emissions (as this will result in highly elevated mole fractions at the
surface) or whether our emissions prior is underestimated.
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Figure 17. STILT-modeled receptor anomaly mole fraction compared to NOAA flask background-
corrected anomaly. Only including tower observations here. Background described in the methods.

We estimate a scaling factor directly related to the missing emissions using our Bayesian model.
We start by estimating a scaling factor for the entire footprint region (all oil and gas basins included
in the emissions grid, Figure 13). We simply use the receptor anomalies (Figure 17) to do this. Our
HMC sampling was successful; using bebi103’s stan.check_all_diagnostics function, our sampling
had effective sample size for all parameters (based on the suggestion of 50 effective samples per
split chain)?® and O out of 4000 iterations ended with a divergence or saturated the maximum tree
depth with no other indication of pathological behavior. The 95% credible interval of the scaling
factor parameter samples is [2.9, 5.8] for C,Hg and [3.2, 6.2] for C;H; (Figure 18). Using the 50
percentile of the samples, this corresponds to 5-6 Tg/yr of C;Hs and C,Hg for the entire footprint
area. Based on previous studies, this is likely an overestimate. Incorporating additional datasets in
our STILT analysis such as aircraft and TCCON will be invaluable in determining the magnitude
of these regional emissions.
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We performed posterior predictive checks, which involve drawing parameter values out of the
posterior, using those parameters in the likelihood to generate a pseudo dataset, and repeat. This
allows us to see whether our Bayesian model can produce the observed data. Below, we show the
posterior predictive checks for our analysis (Figure 19). The majority of the measured C3Hg and
C>Hs NOAA data fell into the 30th and 50th percentile of the simulated Bayesian model data.
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Figure 19. Posterior predictive check of C3;Hg and C:He¢ NOAA flask anomalies. Posterior
predictive checks are explained in the text above. The pseudo data are shown in blue with 30, 50,
70, and 99" percentiles.
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4.4. Future work

We plan to extend the STILT-modeled framework to the column and aircraft measured CoHg and
C3Hs to diagnose why STILT produces very low mole fraction anomalies compared with the tower
observations. One hypothesis, is that a large emission is occurring in close proximity to the site
that is not captured in our emissions prior. If this is the case, we anticipate that the column
observations and those obtained in situ at higher altitudes will show much less of a divergence
from these observaitons. We also plan to expand our Bayesian analysis to find independent
emissions scalars for each basin (ie, which basin has the most impact on the observations and what
emissions lead to the observations). We will further constrain our prior by including TCCON in
the inversion, and need to finish STILT modeling for TCCON columns. This is more
computationally intense as we need to advect air from multiple altitude levels.

Author Contributions

JL.L. created ginput-devel to incorporate chemical profiles into VMR. H.A.P. employed
GGG2020 to create TCCON retrievals and conducted additional post-processing. D.W. provided
guidance in running STILT for NOAA flasks, and working on code to run STILT using DMF
columns from TCCON. A.L.T.ran GEOS-Chem simulations for TCCON priors, processed NOAA
flask and TCCON data, ran STILT, prepared y., created Bayesian model and ran HMC
calculations.
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Appendix S

Supplementary Information for ‘“Hydrocarbon Tracers Suggest Methane
Emissions from Fossil Sources Occur Predominately Before Gas Processing
and that Petroleum Plays Are a Significant Source”

S1. Economics and Production of Oil & Natural Gas

The development of the hydraulic fracturing (fracking) technique has led to a widespread increase
in the production of associated and non-associated natural gas,! as well as natural gas liquids, or
NGLs (Figure S1, left and Figure S2). NGLs are extracted with raw gas and are, just after
extraction, often separated from the stream to yield consumer-grade natural gas and the more
valuable alkane liquids.? Basins with petroleum typically have a larger composition of ethane and
propane and other NGLs, whereas “dry” basins, such as Fayetteville and Appalachian in the U.S.,
tend to provide mostly dry natural gas with low fractions of NGLs.? By volume, ethane, C,Hg, is
the second most abundant component of natural gas after CH,, while propane (C;Hs) is the third
most abundant.* The fraction of C,Hs (but not CsHg) removed during gas processing changes
significantly over time. Over the last 10 years, the dramatic increase of C,Hs production (Figure
S1, left) has exceeded domestic demand or ability to export it abroad,’ resulting in C,Hs prices
generally at or below natural gas since 2012 (Figure S1, right).®7 As a result, it is often more
economical to sell C,Hg as natural gas rather than separate it from the raw stream. Producers can
increase the amount of C,Hg they sell as natural gas by “rejecting” it (not recovering it). Rejection
of C,Hg has continued to grow almost continuously over the past decade (Figure S1, right) resulting
in increasing abundance of C,Hg in the natural gas distribution system.
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Figure S1. Economic trends of natural gas and natural gas liquids. Left: Trends in natural gas and
hydrocarbon production (EIA) and total ethane summed with rejected ethane modeled by OPIS,
Point Logic, provided by IHS Markit. Right: The value of ethane compared to natural gas
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represented by fractionation spread (frac spread) on the left axis. Ethane rejection in the U.S. and
major U.S. refining areas is plotted on the right axis. (Data by OPIS, Point Logic, provided by IHS
Markit.)
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Figure S4. Observed pipeline composition in Playa del Rey and ethane rejection trends. Left: The
ratio of propane/methane and ethane/methane measured in natural gas withdrawn from Playa del
Rey in Southern California,'”> compared to U.S. ethane rejection (see Figure S1 for more
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information on rejection; data provided by IHS Markit). Right: The ratio of U.S. propane
production and total ethane production (including rejection, ER). The production data is provided
by EIA"!4s and the rejection data is provided by IHS Markit. The in-situ observed ratio is
calculated from NOAA-ongoing observations, see Figure S9.

S2.NOAA & FRAPPE Observations
S2.1 Processing and statistical methods

Ethane and propane mole fraction data from aircraft measurements, tall tower, and surface flasks
are publicly available at https://gml.noaa.gov/ccgg/arc/?7id=155. Methane mole fraction data is
publicly available at https://gml.noaa.gov/ccgg/obspack/data.php?Id=obspack multi-
species 1 CCGGAircraftFlask v2.0 2021-02-09 ,
https://gml.noaa.gov/ccgg/obspack/data.php?Id=obspack multi-

species 1 CCGGSurfaceFlask v2.0 2021-02-09, and
https://gml.noaa.gov/ccgg/obspack/data.php?Id=obspack multi-

species 1 CCGGTowerlnsitu v1.0 2018-02-08.

We first discuss NOAA ongoing observations. We use measurement quality flags labeled as either

preliminary or good sampling and analysis only. Some sites had an unequal number of quality
measurements between alkane species, so we match UTC time stamps that are shared between
each species to avoid sampling bias. We drop any corresponding paired measurements of CHy,
C,Hs and C;Hj; that are labeled as NaN (all three pairs are dropped). Figure S5 shows the spatial
location of the NOAA ongoing observation sites used in this analysis, and Table S1 lists the
temporal and spatial coverage offered at each site. Most sites offered a few measurements each
week for the years indicated.

Calgary

Vancouver
.

Toronto
e

27 NewpYork :
. \P_hilaldelphia
F Washingtor

Los#Angeles
State Boundary
I ol wells
Gas Wells

Tight Oil & Shale
Gas Plays

Sedimentary
Basins

Figure S5. Major Oil/Natural Gas Shale Plays ‘ir‘lythe‘ U.S. & NOAA ongoing measurement
locations. Approximate geographical locations of NOAA ongoing measurement locations are
shown in the blue stars on the map. Not pictured is East Trout Lake (ETL) site, located in
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Saskatchewan, Canada (54.354IN, 104.9868W). Well and basin layers provided by
https://atlas.eia.gov/apps/all-energy-infrastructure-and-resources/explore .

Table S1. Sites for NOAA Ongoing Observations in the U.S.

Site Site Years Measurement Processing

Location  Abbreviation Method lab

Homer, IL HIL 2015  Aircraft/Tower CCGG,
- HATS
2018

Lamont, SGP 2006  Aircraft/Tower CCGG

OK -
2017

Dahlen, DND 2014  Aircraft/Tower CCGG,

ND - HATS
2016

East Trout ETL 2014  Aircraft/Tower CCGG,

Lake, - HATS

Canada 2018

Wendover, UTA 2006  Tower CCGQG,

UuT - ARL
2016

Boulder, BAO 2014  Tower CCGQG,

CO - HATS
2016

Moody, WKT 2015 Tower CCGQG,

TX - HATS
2018

Sinton, TGC 2015  Aircraft/Tower CCGG,

TX - HATS
2018

Niwot NWR 2005- Tower CCGQG,

Ridge, CO 2014 ARL

For FRAPPE, we also use 1000 meters as a marker for the boundary layer, and analyze
measurements taken above it. We also drop any corresponding paired measurements of CH., C,Hg
and C;H; that are labeled as NaN (all three pairs are dropped). Figure S6 shows the spatial location
of the FRAPPE observations (after filtering) in Colorado.
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e FRAPPE
u Fort Collins, CO
® Denver, CO

Figure S6. FRAPPE observations. The outline of Colorado state is shown in blue. We show data
already pre-processed and filtered for fresh emissions, as discussed in this section.

To better quantify geophysical variability and generate a confidence interval in the correlation in
measured mole fractions between C,Hs and C;Hg, we implement a pairs bootstrap to generate
replicates of C,Hg and C;Hgobservations for NOAA and FRAPPE observations. We draw random
samples of pairs of C;Hs and C;H;, where instead of drawing two random samples of each array,
we draw the same indices from both arrays so we end up with paired samples, since C,Hg and C;Hs
were measured together and we want to compute the correlation. We draw samples the size of the
dataset, then compute the slope of the correlation. We repeat this 10,000 times. As shown for
different scenarios below, we perform this bootstrap for individual sites separately, as well as all
sites combined. The confidence interval reported for correlations between C,Hs, C;Hs, and CH,4
anomalies is the 95% CI of the 10,000 samples. The Cls calculated from the bootstrapped samples
are much broader than those calculated assuming the noise in the measurements is dominated by
analytical errors. This suggests that geophysical noise induced by differences in transport and
chemistry dominates the statistics.

S2.2 Chemical aging approach to determining methane background

We take a chemical aging approach to defining the threshold between samples associated with fresh
emissions (unaged) and photochemically aged emissions. As in Parrish et al 2018,!5 we observe both
fresh and aged regimes (Figure S7 below). We chose the 50™ percentile of C3Hg as the demarcation
between these regimes (about 10° ppt) and show in Figure S10 that our analysis of the ethane and
propane ratio to methane is not terribly sensitive to the choice. This threshold will clearly depend on
the fraction of samples obtained in the two regimes.
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Figure S7. Identifying fresh emission chemical regime in NOAA and FRAPPE campaigns. Left:
Varying C3;Hg percentiles at the NOAA SGP site. The inflection point between aged and fresh
emission regime is visually contained within varying the C3Hg percentile cutoff by + 10%. We
chose the 50™ percentile of C3Hg as the demarcation between these regimes (about 10° ppt). Right:
CsHg vs CoHg using FRAPPE data (already pre-processed, as described in the methods in the main
text). FRAPPE observations are quite consistent with NOAA, hence we use the same C3Hg
demarcation between the aged and fresh chemical regime.

After filtering for fresh emissions using C;Hs percentile method, two NOAA observation sites
(NWR and UTA) only showed aged emissions (Figure S8). Consequently, these sites were not
used in the subsequent analysis.

1077

CH, (PPY)

°* NWR
UTA

500 1000 1500 2000
CH, (ppY)

Figure S8. NOAA C;Hg vs C,H; after filtering for fresh emissions. We used C3Hs 50 percentile
as a marker for fresh emissions (please see details in text above). Sites NWR and UTA only had
CsHg mole fractions below this demarcation and were assumed to be affected only by aged
emissions, and as such, were excluded from further analysis.
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After filtering for fresh emissions using C;H; percentile method, the cross plot of C;Hg vs C,Hg is
similar for all NOAA sites, NOAA SGP only, and FRAPPE observations (Figure S9).

) /
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g g 10
® s
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S o
"‘;%:
100 NOAA ~'
NOAA SGP only 1001 - %k e
o @ peiore
PRAEES 7 After 2012
10' 10% 10' 102
CzHs (ppb) CzHs (ppb)

Figure S9. C;Hg vs C,H after filtering for fresh oil and gas emissions. Left: The filtering method
is described in Section 3.1. We show observations for all NOAA sites (2005-2018, see Table S1),
NOAA for SGP site only (2006-2018 Oklahoma tower and aircraft observations), and FRAPPE
campaign (2014 aircraft observations around Colorado). Top: FRAPPE linear least squares slope
95% Cl is [0.76, 0.87] (ppb/ppb, R? = 0.97) compared to [0.63,0.70] (ppb/ppb, R? = 0.98) for all
NOAA sites. Variability in the slope for both FRAPPE and NOAA is given by a pairs bootstrap
analysis, described in Section 2.1. Right: Slope before 2012 (2005-2011): [0.62, 0.67] (95% CI),
R2=0.98. Slope after 2012 (2012-2018): [0.63,0.71] (95% CI), R? = 0.98. We use data from SGP,
TGC, ETL, HIL, DND, BAO, and WKT sites (see Table S1) before filtering for air influenced by
fresh oil/gas emissions, which is shown here. We use both tower and aircraft data. We use pairs
bootstrapping to arrive at confidence intervals, described in detail in Section 2.1.

After identifying the fresh emissions, we defined a background for CH, observations and constructed
CH, anomalies by doing the following:

- Find corresponding co-CH, measurements in the aged air regime as identified by C;Hs
mole fraction (below 103 ppt C;Hg).

- Interpolate this CH, array to the full timeseries using time to obtain a CH4 background.

- Subtract this interpolated background from the full CH4 array to obtain a CH,
anomaly. Note that because the CH, lifetime is much longer than either C,Hg or C;Hg, the
differences are much smaller.

Since we only focus on the linear part of the curve, our analysis is not terribly sensitive to how the CH,
anomaly is determined (it simply produces varying intercepts, see our quantitative analysis on the
impact on the slope in Figure S10). Again, to get C;Hs/ C,Hs, we only consider the fresh emission
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regime (beyond 103 ppt C;Hj). Figure S10 shows our calculated CH, background and CH, anomalies

for the NOAA SGP site (near Lamont, OK).

® Raw

261 ® 50th pctile

1 40th pctile

30th pctile
241
£ ]

o

g ]
T 2.2-
© ]
5]
1.84

Year

percentile); [0.0481, 0.0563] (50" percentile).

40 7

30 1

© 30th pctile
40th pctile
- © 50th pctile

.O...

200

400 600 800

A CH, (ppb)

Figure S10. Background estimate for CH, at NOAA SGP site. Left: Using 50% +10% percentile
cutoff of C3Hsg has a minimal effect on the background CHs estimation. Right: CsHg vs CH4
Anomaly at NOAA SGP site. A CH4 anomaly is calculated by linearly interpolating the estimated
CHa4 background to the raw CH4 measurement timescale. The interpolated background is then
subtracted from the raw CH4 measurements. Using 50% +10% percentile cutoff of C3Hsg has a
minimal effect on CH4 anomaly cross plots. Using a pairs bootstrap approach (see Section S2.1),
we generate thousands of slope replicates and calculate the following 95% CIs for the slope using
the following CsHs percentile cutoffs: [0.0458, 0.0526] (30" percentile); [0.0460, 0.0534] (40

Below in Figure S11, we show the result of our CH4 background calculations for each NOAA site.
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Figure S11. Methane vs time for NOAA sites. The estimated background is shown in red. Raw
CH4 data is shown in blue. The background was calculated using 50% Cs;Hs percentile cutoff

method.

S2.3 Methane anomaly plots for NOAA and FRAPPE campaigns

Below, we show the results of our CH, anomaly calculations for NOAA and FRAPPE observations
using the methods described in Section 2.2 (above). First, we show correlations for individual
NOAA sites (Figures S12, S13), followed by a comparison between NOAA SGP site (Oklahoma
site) and FRAPPE observations (Figure S14).
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Figure S12. C,H¢ vs CH, anomaly for NOAA sites. The data for each site were filtered using the
chemical aging regime to filter for fresh emissions and to construct CH4 anomalies (Section 2.2).
See Table S1 for a description of site location/observation type. We also ran a bootstrap for each
individual site (bootstrapping methods, main text). The 95% CI slopes (ppb/ppb) are as follows:
BAO: [0.0833, 0.1449], R? = 0.91; DND: [0.0289, 0.1205], R? = 0.63; ETL: [0.0030, 0.0176], R?



58

= 0.46; HIL: [0.0116, 0.0313], R? = 0.56; TGC: [0.0400, 0.0730], R*> = 0.74; WKT: [0.0324,
0.0510], R?=0.75; SGP: [0.0645, 0.0749], R* = 0.86.
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Figure S13. C;Hg vs CH, anomaly for NOAA sites. The data for each site were filtered using the
chemical aging regime to filter for fresh emissions and to construct CH4 anomalies (Section 2.2).
See Table S1 for a description of site location/observation type. We also ran a bootstrap for each
individual site (bootstrapping methods, main text). The 95% CI slopes (ppb/ppb) are as follows:
BAO: [0.0587, 0.0922], R? = 0.91; DND: [0.0221, 0.1003], R>=0.61; ETL: [0.0013, 0.0136], R?
= 0.41; HIL: [0.0078, 0.0216], R? = 0.54; TGC: [0.0228, 0.0506], R? = 0.68; WKT: [0.0195,
0.0321], R?=0.71; SGP: [0.0426, 0.0499], R? = 0.83.
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Figure S14. C:Hs vs CH4 anomaly for NOAA SGP site and FRAPPE study. We use the chemical aging approach defined in
Section 3.1 to identify CsHs and CH4 observations within a fresh oil and gas emissions chemical regime. We construct CHy
background-corrected anomalies as described in SI Section S2. Results with C2Hg are similar and shown in Figure S9. NOAA
observations for SGP site (Oklahoma, Table S1) are shown here. We show correlations between 2006-2011, labeled as “NOAA
SGP < 2012” (HIPPO takes place between 2009-2011),2013-2015 (FRAPPE takes place in 2014), and 2016-2018 (ATom time
period). Left: The slope of the correlation between CsHs and CH4 anomaly for NOAA observations before 2012 is [0.031, 0.040]
ppb/ppb, R? = 0.85; between 2013-2015 is [0.045, 0.084], R?= 0.82; and between 2016-2018 is [0.039, 0.059], R? = 0.86.
FRAPPE is [0.063, 0.085] ppb/ppb, R? = 0.83. The slope of the correlation for all years of NOAA is [0.043, 0.050] ppb/ppb, R? =
0.83. C3Hs vs CHs. Right: CoHs vs CH4 The FRAPPE slope (95% CI, ppb/ppb) is [0.0763,0.1047], R? = 0.85. CoHs vs CHa4
NOAA slope for all years is [0.0647,0.0749], R? = 0.86. The C2Hs vs CHs slope before 2012 is [0.047, 0.060], R*= 0.85; from
2013-2015 is [0.066,0.143], R? = 0.85; and from 2016-2018 is [0.058, 0.084], R* = 0.88.

S2.4 Maps of FRAPPE and NOAA SGP observations compared to oil and gas sites

Below, we show the location of the NOAA samples taken at the SGP site in Oklahoma, which
include a combination of aircraft and tower measurements (Figure S15). We add the approximate
location on top of a USGS map of oil and gas sites in Oklahoma, using coordinates for Lamont
and Billings for reference (Figure S16), where we see that the SGP measurements are taken around
a mix of oil and gas sites. We include a figure of Oklahoma oil and gas production by county
(Figure S17), where we see widespread surrounding oil and gas production.
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Figure S15. NOAA observations at SGP site (Oklahoma). The observations shown here are pre-
processed and filtered for fresh emissions as discussed in the methods section in the main body.

?

Figure S16. Oklahoma oil and gas wells. Plot adapted from Oklahoma Geological Survey!¢:
http://www.ogs.ou.edu/fossilfuelss MAPS/GM-36.pdf.
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Figure S17. Oklahoma oil and gas productlon by county. Plot was created by Joe Wertz of
StateImpact Oklahoma'”.

Below, we include a plot by Water Education Colorado showing the value of oil and gas production
value by county (Figure S18). If we compare it to Figure S6, it is evident that much of the FRAPPE
observations were taken around nearby oil-producing wells that produce significant revenue. This
is consistent with the large C2 and C3 to C1 emission ratios observed during the FRAPPE
campaign (Figure 13, main text).

2012 Colorado Oil & Gas Production Value By County
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Figure S18. Oil and gas production value by county in Colorado. The plot was obtained from Water
Education Colorado (founded by Colorado State Legislature).'?
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S2.5 Comparison to Lan et al. 2019 study

Lan et al. 2019 investigated C;Hg/CH4 and C,H¢/CH4 ratios using NOAA-ongoing observations.
Consistent with their study, we find increasing C;Hg/CH4 and C,H¢/CHj4 ratios over time with relatively
similar slopes. However, we find no statistically significant temporal trend in C;Hg/C,Hg. As shown in
Figure S9 and in the additional cross plot of C;Hs and C,Hg colored by time (Figure S19, left), the
correlation of these gases in the ‘fresh emissions’ regime is identical within error. Even when excluding
aircraft data for SGP site, the ratio remains nearly the same (Figure S19, right).
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Figure S19. C;H;g and C,H; correlation at NOAA SGP site— yearly and tower observations. Left:
C;H; vs C,Hg colored by all years for the NOAA SGP site. Slope: [0.63,0.70] (95% CI), R?>=0.98.
Right: Slope of C;H; vs C,Hg for ground- and tower-based measurements NOAA SGP site. (The
highest tower sampling is 374m sampling at SGP.) The slope is [0.66, 0.70], and R>=0.99,
comparable to [0.63, 0.70] 95% CI slope of the correlation that includes both aircraft and tower
observations (this Figure, left side). We bootstrapped the samples to obtain a 95% CI (see methods,
main text).

Our C;Hg anomalies are calculated in a different fashion than in Lan et al. 2019. Given the
curvature of the correlation (Figure 1, main text) and its seasonal dependence, we determine the
slope of the C;Hg and CH4 anomalies only within the fresh emission regime (C;Hg > 10° ppt, along
with co-measurements of CHy, see Section 2.2). Since we only focus on the linear part of the curve,
our analysis is not terribly sensitive to how the CH4 anomaly is determined (it simply produces
varying intercepts). To estimate C;Hs/C,Hs, we also only consider the fresh emission regime
(beyond 10° ppt C;Hs).

We replicate Figure 3a,b from Lan et al. 2019 using our methods in Figure S20. Even with very
different methodology, our results for the central value of the emissions ratio between C;Hg and
C,H¢ and CH4 anomalies are similar, albeit Lan et al. claims a much smaller uncertainty in these
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ratios (51.2 £+ 0.6ppt/ppb and 80.5 + 2.5ppt/ppb, respectively) such that the interannual variation
and the trend over the record far exceed the stated uncertainty. Our 95% CI of the slope for
C;Hg/CHy is [42.57,49.87] and for C,H¢/CHa4 is [64.66, 74.89] (both in ppt/ppb) where most of the
CI spread results from the temporal trend (see Figure S20).
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Figure S20. NOAA C;H; and C,Hs vs CH, anomaly colored by year. Data is for SGP site only.
C;Hg/ACH, slope: [0.43, 0.50] ppb/ppb, R?= 0.83. C,H¢/ACH, slope: [0.65, 0.75] ppb/ppb, R*>=
0.86. We use data within the fresh emission regime (see Section 2.2). Our methods for determining
CH, anomalies are described in detail in section 2.3, and our methods for determining the 95% CI
via bootstrapping is described in the methods section of the main text.

We reproduce Figure 3e from Lan et al. 2019 in Figure S21, below. In Figure S21, the variability
in ratios each year is constructed from the 95% confidence interval of the slopes from samples of
a pairs bootstrap, described in more detail in section 2.1 As in Lan et al., we find significant trends
in C;Hg/CH4 anomalies (3.12 + 0.63 ppt/ppb/year), and C,H¢/CHs anomalies (3.89 + 0.84
ppt/ppb/year), which are comparable to their result. On the right side of Figure S21, we plot the
fractional change relative to the mean. Instead, we find that both ratios are fractionally increasing
at the same rate. The reported error in the slope is simply the standard error calculated from a linear
regression of the yearly slopes vs year (that includes the upper and lower CI points). We use the
linear trend of anomalies/year (Figure S21, left) to calculate mean anomaly ratios for SGP during
2016-2018 to be [0.060, 0.061] ppb/ppb (and C,H¢/CH, to be 0.086, 0.088]), where the interval is
determined using the standard error in the slope.
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Figure S21. Yearly correlation between NOAA hydrocarbon vs CH, anomaly. Left: Average
hydrocarbon vs CH, anomaly for each year for NOAA SGP site. C;Hg/CH,4 anomaly slope: 3.12 +
0.63 ppt/ppb/year (R>=0.71), and C,H¢/CH,4 anomaly trend is 3.89 + 0.84 ppt/ppb/year (R?>=0.69).
The variability in the trend (ppt/ppb/year) comes from the standard error of a linear regression.
The variability in the yearly slope (ppt/ppb) comes from the 95% confidence interval of a pairs
bootstrap (we ran a pairs bootstrap for co-measurements of C;Hg and ACH, and compute the slope
of the correlation for each bootstrap sample and repeated this for every year in the data; please see
the methods section of the main text for more information about pairs bootstrapping). Right: Same
as left, but in units of percent change with respect to the mean hydrocarbon and methane anomalies.
The resulting trend for C;Hg/CHy is 7.13 £ 1.44 % with an R? of 0.71. The trend for C,Hs/CH, is
5.87 £ 1.26 % with an R?>=0.69. Both trends are calculated in the same way as the left figure.

Our analysis of the NOAA data suggests that the C;Hs/C,Hg ratio is quite static in the U.S. over
this 12-year record. That the ratios C,H¢/CH4 (and C;Hg/CH4) are increasing over time is
completely consistent with Lan et al. 2019, and as they point out, studies that assume these ratios
are invariant will overestimate the rate of oil/gas CH4 emissions. Here, we use CsHg vs CH4 and
C,Hs vs CH4 between 2012 and 2018 to estimate the CH4 emissions from the US as this is the
period when most of the top-down and bottom-up estimates of CH, have been performed. That the
ratios are getting “wetter” (higher hydrocarbon content in pre-processed gas) over time is
consistent with an increasing contribution from oil exploration. That the atmospheric C,Hs and
C;H; increase fractionally the same, suggests that the ratio of the alkanes in the reservoirs
producing these emissions do not change significantly over the time of this record.

S3. ATom & HIPPO aircraft observations

The HIPPO campaign was a sequence of five global measurement campaigns which sampled from
near the North Pole to the coastal waters of Antarctica, covering different seasons and years:
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HIPPO 1: 8-30 January 2009, HIPPO 2: 31 October — 22 November 2009, HIPPO 3: 24 March —
16 April, HIPPO 4: 14 June — 11 July 2011. ATom was a sequence of four global campaigns that
took place from 29 July — 12 August 2016, 26 January — 10 February 2017, 28 September 2017-
11 October 2017, and 24 April 2018 — 6 May 2018. Flight paths of HIPPO and ATom campaigns
are illustrated in Figure S22.

Summer 2016
Winter 2017
Fall 2017
Spring 2018

«  Winter 2009
e Fall 2009

e Spring 2010
e Summer 2011
e Summer 2011

170°W 160°W 150°W 140°W

Figure S22. Truncated ATom and HIPPO flight paths. Flight paths used in this analysis are shown
above (Top: ATom, Bottom: HIPPO). We split the data into Pacific (left column) and Atlantic
(right column) “curtains” shown above for ATom, but HIPPO only offered Pacific curtains over
remote ocean. The flight paths shown above do not encompass the entire dataset due to filtering
out measurements south of 20 latitude north, those obtained over land, and those associated with

very recent emissions. A summary of the filtering parameters we use in the main text are shown
in Table S2.

Table S2. Filters for Aircraft Measurements.

Parameter ATom HIPPO
Aircraft Aircraft

Altitude > 1000 meters > 1000 meters

N20 >0.327 ppb >0.320 ppb

Tropopause > 100 hPa > 100 hPa
Pressure
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Summer season exclude exclude

HIPPO data were accessed from https://www.eol.ucar.edu/field_projects/hippo on 12/18/18, using
the “discrete continuous merge” file. ATom data were accessed from the WAS-Discrete merged
file from espo.nasa.gov/atom/archive/browse/atom/DC8/MER-WAS in August, 2021. Data taken
over landmass for both aircraft campaigns were filtered away using global-land-mask version
1.0.0," available from Python Package Index.

Here, we outline additional information on processing ATom and HIPPO aircraft observations used
to compare with the GEOS-Chem model. HIPPO measurements were filtered for AWAS/UM
instrument measurements to avoid measurement bias in C;Hg over C,Hg, as the NOAA instrument
only measured one of those species. All measurement species of HIPPO and ATom were filtered
for consistent measurements of C;Hg and C,H¢ within their respective campaigns; i.e., when those
constituents were either both null or non-zero. This requires filtering data to remove plumes from
highly local sources (including both energy infrastructure and wildfires), and to exclude regions
and times where the lifetime of the alkanes is very short and thus regional / local sources dominate
the variance. To reduce the influence of local sources, we only analyze observations in the free
troposphere over the ocean at altitudes above 1000 meters (this filter excludes less than 20% of
the dataset). To diagnose tropical air, we use tropopause pressure as a filter. We use the NASA
Global Modeling and Assimilation Office GEOS FP-IT (version 5.12.4) tropopause pressure
product at 0.5 x 0.67 resolution,” and linearly interpolate it to the HIPPO aircraft path (for ATom,
we use the product already included in the dataset). We only analyze measurements with
tropopause pressure above 100 hPa (about 5% of the data was excluded under this constraint) for
both ATom and HIPPO, which was sufficient to reduce the influence of tropical intrusions.

Because C,Hs and C;Hj are relatively short-lived gases, their abundance in the stratosphere is low
and poorly connected to the underlying fluxes. To exclude stratospheric observations, we use N,O
which is inert and generally well-mixed in the troposphere, but is destroyed in the stratosphere by
photolysis and reaction with O'D.?! Thus, we exclude data associated with low N,O mole fraction
(Figure S23). We use nearest neighbor interpolation to estimate missing N,O observations. In
Figure S23, we compare N,O observations and GEOS-Chem simulations of N,O and determine a
common filter for both datasets. (Note that we generate GEOS-Chem N,O simulations shown in
Figure S23 by interpolating GEOS-Chem to aircraft latitude, longitude, time and potential
temperature, but for all subsequent analysis, we filter GEOS-Chem by N,O before interpolating to
the aircraft potential temperature). To account for biomass burning, we use HCN as a tracer and
did not use data with high HCN (Figure S24-26) for ATom observations only, as HIPPO did not
provide HCN observations.
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Figure S23. Stratospheric filter using N,O. Left: ATom. Right: HIPPO. In both figures, GEOS-
Chem simulations were interpolated to aircraft latitude, longitude, time, and potential temperature
in order to compare N>O. However, for all subsequent analysis, GEOS-Chem was filtered by NoO
before interpolating simulations to aircraft potential temperature. We use these figures to
arbitrarily choose 0.327 and 0.320 N>O mole fractions as a filter cutoff for ATom and HIPPO,
respectively, as described in the main text.

To account for biomass burning, we use HCN as a tracer. We see elevated HCN over the Atlantic
ocean on several campaigns (Figure S21). In the cross plot of HCN and C,H, (Figure S23), we
observe distinct plumes of elevated HCN and C,Hs that suggest biomass burning, and we de-
weighted and excluded samples with high HCN (see description in Figure S23).
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Figure S25. ATom HCN Atlantic transects. HCN (left column), Ethane (middle column), and
tropopause height (right column).
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Figure S26. ATom HCN vs C,Hg. This data includes all four ATom campaigns and ocean transects
and has been filtered using the specifications outlined in the methods section in the main text. The
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few points with very high HCN and C;Hs are associated with biomass burning. We assigned a
weak percentile score for each datapoint, and the values greater than or equal to equal to the 87th
percentile are highlighted in black. Those points were replaced with NaN and then interpolated
using the “backfill” method for C3Hg and CHes.

S4. GEOS-Chem Simulations

We simulated HIPPO and ATom measurements using the GEOS-Chem “classic” global 3-D
chemical transport model in v12.1.1 (doi:10.5281/zenodo.2249246). The simulations were driven
by MERRA-2 reanalysis meteorology product by the Global Modeling and Assimilation Office
(GMAO) at NASA Goddard Space Flight Center.?> MERRA-2 has a native resolution of 0.5 lat x
0.625 lon x 72 hybrid sigma/pressure levels, of which we degrade to a 4 x 5 x 72 resolution. We
simulate time periods that encompass the HIPPO and ATom aircraft measurements with a 1-year
spin-up period. In all cases, we use a standard chemistry simulation with no changes to the
chemistry regimes. Simulations were collected over every hour over every day of each campaign
period (~2 months of results for each campaign time period). Hydrocarbons were converted from
units of carbon to mol,/molyy 4ir-

All emissions are computed using the Harmonized Emissions Component (HEMCO) Standalone®
version 3.0.0 (DOI: 10.5281/zenodo.4429214)%** with GEOS-Chem development version 13.0.0,
cloned on 9/2020 at https://github.com/geoschem/geos-chem). This Standalone utilizes the most
up-to-date versions of emissions as of September, 2020. As such, even though we utilize an older
version of GEOS-Chem classic for the simulations, we implement up-to-date emissions. Relevant
inventories that cover the oil and natural gas sector that are used in the default emissions
configuration for GEOS-Chem v13.0.0 are Tzompa-Sosa et al. 2017 for C,H,, and Xiao et al. 2008
for C;Hs.*»

In Figure S27, we show that GEOS-Chem “synoptic replicates” (GEOS-Chem sampled several
days before and after the aircraft in situ sampling time) show less consistency in latitude compared
to the coordinate, potential temperature.
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Figure S27. GEOS-Chem simulated C,H, vs potential temperature and latitude during 2017. These
data are analyzed for Pacific and Atlantic transects during January-Feburary 2017. Aircraft
observations are shown in black. GEOS-Chem simulations are colored by the sampling time, in
days beyond the flight path. (We found the median time of in-situ sampling of the aircraft, and
then sampled the GEOS-Chem model for several days before and after the median to generate
what we call “synoptic replicates” here. Each of the synoptic replicates were sampled along the
flight path latitude, longitude, time and potential temperature using nearest neighbor interpolation.)
In this figure we include * 5 days to demonstrate the variance, but we use up to + 2 days of the
GEOS-Chem replicates in the Bayesian model. All remaining simulations of ATom and HIPPO
C2Hes and CsHs are included in the SI.

As discussed in Section 3.2 in the main text, we revise C;Hg emissions using GEOS-Chem v13.0.0
default C,H emissions scaled by the observed C;Hs/C,Hg ratio estimated from the NOAA data. In
Figure S28, we show the default C,Hs and C;Hg emissions, as well as the revised C;Hg emissions.

0 1 2 3 4 .5 6 7
Default C,Hs Emissions (kg/m?/s) 1e-11



73

Revised — Default C;Hg Emissions (kg/m?/s) le-11

Figure S28. GEOS-Chem v13.0.0 default and revised emissions. Top: Default C;Hg emissions.
Upper middle: Default C,Hs emissions. Bottom middle: Revised C;Hs emissions scaled by the
observed NOAA C;Hg/C,Hg ratio (0.67 mol/mol, Figure S9). Bottom: Difference between revised
and default C3H8 emissions used by GEOS-Chem v13.0.0.

In the GEOS-Chem simulations, both ethane and propane have the most variability and lowest
mole fraction, as expected, since their oxidative chemistry is much faster. During the summer,



74

ATom Summer Atlantic

ATom Summer Pacific

tropical intrusions with very low mixing ratios are prominent (see Atom summer Pacific transect,

Figure S29.).
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Figure S29. GEOS-Chem simulated C,H, vs potential temperature during ATom campaign. Each
plot is specific to the ocean transect. GEOS-Chem simulations are colored by the sampling time,
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in the number of days from the day of the flight. (We found the median time of in-situ sampling
of the aircraft, and then sampled the GEOS-Chem model for several days before and after the
median to generate “synoptic replicates.” Each of the synoptic replicates were sampled along the
flight path latitude, longitude, time of day and potential temperature using nearest neighbor
interpolation.)
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Figure S30. GEOS-Chem simulated C;Hjs vs potential temperature during ATom campaign. Each
plot is specific to the ocean transect. GEOS-Chem simulations are colored by the sampling time,
in the number of days from the day of the flight. (We found the median time of in-situ sampling
of the aircraft, and then sampled the GEOS-Chem model for several days before and after the
median to generate “synoptic replicates.” Each of the synoptic replicates were sampled along the
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flight path latitude, longitude, time of day and potential temperature using nearest neighbor

interpolation.)
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Figure S31. GEOS-Chem simulated C,Hs vs
campaign. Each plot is specific to the ocean transect. GEOS-Chem simulations are colored by the
sampling time, in the number of days from the day of the flight. (We found the median time of in-
situ sampling of the aircraft, and then sampled the GEOS-Chem model for several days before and
after the median to generate “synoptic replicates.” Each of the synoptic replicates were sampled

along the flight path latitude, longitude, time of day and potential temperature using nearest
neighbor interpolation.)
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Figure S32. GEOS-Chem simulated C;Hs vs potential temperature during HIPPO aircraft
campaign. Each plot is specific to the ocean transect. GEOS-Chem simulations are colored by the
sampling time, in the number of days from the day of the flight. (We found the median time of in-
situ sampling of the aircraft, and then sampled the GEOS-Chem model for several days before and
after the median to generate “synoptic replicates.” Each of the synoptic replicates were sampled
along the flight path latitude, longitude, time of day and potential temperature using nearest
neighbor interpolation.)

We compare the cross plot of C;Hs to C,He from the aircraft measurements and GEOS-Chem
simulations to the NOAA measurements. As expected, both the aircraft and GEOS-Chem
simulations fall under the photochemically aged emissions part of the NOAA curve. While the
aircraft data overlays the NOAA measurements almost perfectly (especially in the winter when the

lifetimes of both gases are longest), GEOS-Chem underestimates C;Hs, particularly over the
Atlantic curtain (Figure S33). The same conclusion is drawn for HIPPO time periods (Figure S

34).
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Figure S33. Comparison of C;Hg vs C,He for NOAA, ATom aircraft, and GEOS-Chem (GC)
simulations. NOAA photochemically-aged measurements (all sites, 2005-2018), as explained in
the text, are shown on the heat map (colored by density of data). Note the distinction between

winter/fall and spring/summer seasons. HIPPO is included in the SI, Section 3.
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Figure S34. C;Hg vs C,H¢ for HIPPO aircraft and GEOS-Chem simulations. Please see section 3.2
in the main text for a discussion.

In the main text, we show, in Figure 4, the impact of the revised C;Hg emissions on GEOS-Chem
simulations during the ATom 4 campaign time period. Below, in Figure S35, we show the impact
of the revised C;Hs emissions for all four ATom campaigns. In Figure S36, we show the impact
of the revised C;Hg emissions during all 5 HIPPO campaigns.
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Figure S35. GEOS-Chem simulations using the default and revised C;Hs emissions during all four
ATom campaigns. Please see section 3.2 in the main text for more discussion.
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Figure S36. GEOS-Chem simulations using the default and revised C;Hg emissions during all 5
HIPPO campaigns. Please see section 3.2 in the main text for more discussion.



82

SS. Bayesian Inference

S5.1 Background and Priors

We wish to use the ATom and HIPPO aircraft observations to quantify C;Hg and C,Hs emissions.
We use hierarchical Bayesian modeling to estimate what global scalar would minimize the
difference between the simulated C;Hs and C,He from the updated GEOS-Chem v13.0.0 emissions
and the observations made during the ATom and HIPPO aircraft campaigns. Using Bayesian
probability, we can quantify a degree of certainty about a hypothesis or parameter value. Using
probability rules, one can derive Bayes’s Theorem:

P(y 16)P(6
po 1) = TLLOPO)

likelihood X prior

postertor = evidence

The likelihood tells us how likely it is to acquire the observed data, y, given the parameter, 6. The
prior is a measure of plausibility of the hypothesis 8 before the experiment was conducted. The
evidence is a marginal likelihood that is computed from the likelihood and the prior. The posterior
contains the information we want about the parameters we are after. The ambient mole fraction of
C:Hs and C,H¢ is more linearly related to its underlying emissions pattern during the
winter/fall/spring when there is decreased sunlight/oxidation. As such, we assume differences
between the GEOS-Chem simulations and the aircraft observations can largely be attributed to the
underlying emissions grid, such that,

a =gces-a
(D
where a is the aircraft C,Hs or C;Hs, ges stands for GEOS-Chem simulation of C,Hs or C;Hg, and
a is a scalar that represents the most likely mismatch between the underlying C;Hg and C,H,

emissions as transported through GEOS-Chem v13.0.0 relative to ATom and HIPPO observations.
This assumption forms the heart of our hierarchical Bayesian model.

We can reasonably approximate C,Hs and C;Hg measured by the aircraft to be Lognormally
distributed with an approximate error. Lognormal distributions have longer tails, which is
appropriate given the outliers we see in the measurements. We can model the GEOS-Chem
simulated results as follows:
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gesj  ~ LogNorm(g - aj, 0)
o ~ Prior
B ~ Prior

2)

where gcs; represents GEOS-Chem simulated C;Hg and C,Hs, a; represents the jth datum of
aircraft-observed C;Hs or C,Hg. Here, f parameter (equivalent to 1/ ) estimates error in the default
GEOS-Chem emissions, and ¢ is the approximate uncertainty in the GEOS-Chem simulations. In
this case, we expect 8 to be less than one since the aircraft observations are usually greater than
the GEOS-Chem simulations. We organized the Bayesian model this way because we consider the
aircraft observations to be unchanging, while treating the GEOS-Chem simulations as the
experimental dataset. To obtain the GEOS-Chem missing emissions, we can invert the [
parameter.

We sampled the GEOS-Chem model several days before and after the aircraft path to estimate
uncertainty in the simulations due to meteorology, as explained in Section 2.3 in the main text. If
we were to pool all the data together, each experiment would be governed by identical parameters.
However, each replicate is subject to differences mainly due to meteorology and we conclude that
the parameters in each replicate experiment should vary from one another, such that we have i
separate models to fit, each looking like equations 2, above. Under this scenario, we organize our
model into a hierarchical structure, pictured in Figure S37.

Level 0

Level 1

Measured Data

Figure S37. Schematic of hierarchical Bayesian model. Level O contains the hyperparameter f3, the
parameter we ultimately wish to get estimates for. Level 1 corresponds to the day the GEOS-Chem
model was sampled (there are 5 days because we sampled 2 days before and after the mean flight
path). There will be variability from day to day, and the location and scale parameters for a given
day are conditioned on the hyperparameters.

We can consider a hierarchical model in which there is a hyperparameter, which we call
(corresponds to level 0, Figure S32), and the values of the scaling parameters of the replicates,
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which we now call $; (corresponds to level 1, Figure S37), may vary from this  according to
some probability distribution, g(f;|8). We now have parameters f; 1, 1 2, ... f1; and (. The
posterior can be written using Bayes’ theorem, defining 1 = (11,12, )

f(a ges|B, f1)g (B, 1)
f(a ges)

9B, B1la ges) =
3)

Note though that the observed values of gcs do not directly depend on £, only on f; and as such,
the observations are only indirectly dependent on 5. So, we can write:

f(a ges|B1)g (B, Br)

g(B,Bila ges) =

f(a ges)
“4)
Next, we can rewrite the prior using the definition of conditional probability:
9B, B) = g(B118)g(B)
(&)
Substituting this back into the previous expression for the posterior, we have:
(6. 5., gcs)  LCESIEDIGilBIB)
SIS f(a,ges)
(6)

In the numerator, we see a chain of dependencies. The gcs simulations depend on f3; . Parameters
p1 depend on hyperparameter 5. Hyperparameter [ then has some hyperprior distribution. As
such, this hierarchical model captures both the sample day-to-day variability, as well as the
hyperparameter.

We must specify a hyperprior, and a conditional prior, g(f;|f). Here, we have no reason to believe
that we can distinguish any one 3 ; from another prior to the experiment. As such, we can assume
the conditional prior to behave in an exchangeable manner, where the label i is not dependent on
the permutations of the indices. Our expression for the posterior is:

fges | B (IT7, 9(Bri 1)) 9(B)
f (@ gcs)

9By, B 1ages) =
(7)

The full hierarchical model is given by one additional level above Level O in Figure 37 that
corresponds to individual aircraft campaign/season and ocean transect. This additional level
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contains the parameter «, the overall parameter that is a result of the sampling replicates and the
season/ocean transect. It is very difficult to sample the full hierarchical model with so many levels,
and for practical reasons, we were not able to. However, given that each season/ocean transect is
assumed to be independent, we can treat each season/ocean transect with a separate hierarchical
model (that is shown in Figure 37), and then sample the posterior samples of those separate models
to define a credible interval for overall a. Our statistical model is defined for campaign/transect,
i, and the observed mole fraction, j, as follows:

7;; = 0.05|At[;; + 0.01
Bi ~ Norm(0.7,0.2)
B1ij ~ Norm(B;, 7;5)
a; =1/B;
o;j = 0.14 - tropht;; + 0.8
gesij ~ LogNorm(py ;5 - a;j, 0y5)

®)

The likelihood is given by gcs;;, which represents the ijth mole fraction of GEOS-Chem simulated
C;H; and C,Hg, and a;; represents the ijth C;Hg or C,H mole fraction observed by the aircraft. The
uncertainty in gcs;; is given by o;;, which increases linearly with tropopause height, tropht;;,
since we expect more variability in C;Hg or C;He mole fraction with high tropopause height that is
often related with tropical intrusions. The conditional parameter, f; ;;, depends on a hyperprior
distribution for the emissions scalar, ; (which is equivalent to 1/a;), and 7;;, which describes
variability in the emissions scalar due to transport errors in GEOS-Chem. As such, 7;; depends on
the difference between the original aircraft sampling time and the GEOS-Chem sampling replicate
time (At;;) and increases with deviation between them. Development of this hierarchical model

and our process for selecting priors are included in the SI.

We assume each a; parameter from individual aircraft campaign season and ocean transect to be
independent of one another. As such, to estimate a credible interval for an overall a, we draw a
random sample of the posterior of hyperparameter «; for each campaign season and ocean transect.
We take the mean of these samples and repeat this 10,000 times. (Note that we do not use the
summer estimates for this calculation, for reasons described in Section 2.2, main text.) Details on
the software used are described below.

The 7;; parameter has the effect of weighting the GEOS-Chem simulation replicate that falls on
the plane path higher than the other replicates that do not. As such, GEOS-Chem simulation
replicate that falls on the exact aircraft data collection time has more influence on the final result
of 5; parameter (the emission scalar). We would not expect meteorology to cause more than + 0.5
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variation in parameter f3; ;;, as this would imply a very large variation in Tg after scaling emissions.
As such, we vary 7;; from 0.05 (the plane path day), to 0.33 for the furthest day from the plane
path (£ 2 days), (Figure S38).

037
0.25
0.2
0.15
0.1

0.05

+ days
Figure S38. Prior for 7;; parameter for the GEOS-Chem simulations in the Bayesian hierarchical

model. The x-axis corresponds to the GEOS-Chem sample replicate, in units of days above or
below the aircraft path (day 0).

We define g;; parameter as a function of tropopause height. As discussed earlier, tropical air
masses are characterized by very low mole fractions of C;Hg and C,He because in the tropics they
have short lifetimes relative to transport. We assign higher g;; (lower weight) to GEOS-Chem
simulations that have higher tropopause height, which extends the width of the lognormal
distribution likelihood for those measurements. This de-weights the samples that have more
tropical influence. (In practice, the model is quite robust against changes in g;;, so this
implementation has a small impact — see results of the sampling the posterior in Section 4.7). We
somewhat arbitrarily define g;; = 0.14 - tropht;; + 0.8, where tropht;; is the tropopause height
in km associated for the jth aircraft observation. This equation results in o;; typically ranging from
1- 1.5 and implementing this range as the variance in a lognormal distribution centered at 1x1073
or 1x10~* (typical of C,Hg or C;Hg measured mole fractions in remote atmospheres) results in a
broad distribution that is consistent with mole fractions that we would expect for short-lived gases
in remote atmospheres. The 1 and 99™ percentiles of the resulting C;Hg distribution are 3x107°
and 3x1073, respectively, which is two orders of magnitude below and one order of magnitude
above an average C;Hs mole fraction we would expect in the remote atmosphere. We find similar
results for C,Hg, except that it is centered at a value that is one magnitude larger. We use the same
g;; when modeling both C;Hg and C,Hes. An example of the value of g;; for ATom 2 observations
over the Atlantic is shown in Figure S39.
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Figure S39. Prior for the o;; parameter for ATom 2 observations in the Bayesian hierarchical
model.

We expect the fB; to be less than 1 since GEOS-Chem typically underestimates the aircraft
observations. The prior for f5; is weakly informative, centered at 0.7 with the 1* percentile at 0.23
and 99" percentile at 1.17 (Figure S40).
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Figure S40. Prior distribution for B; parameter in the Bayesian hierarchical model.

We performed prior predictive checks? to visualize the data our Bayesian model would generate
given our priors. This check includes drawing parameter values from the prior distributions,
plugging those parameters into the likelihood to generate pseudo data, and saving those data. These
simulations gave us insight as to whether this was an appropriate model given our prior knowledge.
The results of are satisfactory, as the empirical cumulative distribution functions are within what
we expect given our prior knowledge. The results are shown in Figure S41.
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Figure S41. Prior predictive checks during ATom 2, Atlantic curtain. Top: Empirical cumulative
distribution function of pseudo data of GEOS-Chem simulations given our priors. Bottom:
Empirical cumulative distribution function of pseudo data of the 8, ;; parameter given our priors.

We run our statistical model using Stan software?’ (version 2.26) with CmdStanPy Python interface
(version 0.9.67)%. We parse Markov chain sampling using ArviZ (version 0.11.1).2 We validate
our hierarchical model using simulation-based calibration,* and posterior predictive checks?
(described more below). We use bebil03 package (version 0.1.0)*! to execute simulation-based
calibration, prepare data for Stan sampling, parse MCMC samples, plot posteriors and plot
posterior predictive checks. We also use igplot (version 0.1.6)*? to visualize empirical cumulative
distribution functions of our priors. Finally, other software we use in our analysis includes
Holoviews version 1.14.5.* Bokeh version 2.3.3 > Pandas version 1.3.1,%° SciPy version 1.6.2 ¢
and NumPy version 1.20.3.%
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S5.2 Simulation based calibration

Often, the posterior distribution is impossible to calculate analytically. Markov chain Monte Carlo
(MCMC) allows us to sample out of an arbitrary probability distribution, where the probability of
choosing a given value of a parameter is proportional to the posterior probability or probability
density. Here, we use Stan to sample the posterior. Stan is a free, open source, state-of-the-art
probabilistic programming language that has interfaces for many other programming languages.
Stan translates the model into C++, which is then compiled into machine code. It uses Hamiltonian
Monte Carlo (HMC),* which allows for more efficient sampling of the posterior by taking large
step sizes while taking into account the shape of the target distribution and tracing trajectories
along it. We use CmdStanPy to install Stan, version 0.9.67. We use the bebil03 package®' to
execute simulation-based calibration.

Simulation-based calibration® consists of the following general steps: 1) Draw a parameter set 6
out of the prior; 2) Use 6 to draw a data set ¥ out of the likelihood; 3) Perform HMC sampling of
the posterior using ¥y as if it were the actual measured data set, and draw L HMC samples of the
parameters; 4) Do steps 1-3 N times, on order of N = 1000. In step 3, we are using a data set for
which we know the underlying parameters that generated it. Because the data were generated using
0 as the parameter set, 8 is now the ground truth parameter set. As such, we can check to see if we
uncover the ground truth in the posterior sampling by calculating the z-score. We can also check
whether the posterior is narrower than the prior (shrinkage), indicating that the data are informing
the model. We compute a z-score for each parameter, 8;, which measures how close the mean
sampled parameter value is to the ground truth, relative to the posterior uncertainty in the parameter
value:

_ <9i>post - éi

i
Ui,post

®)
Here, (0;),0s: is the average value of 6; over all posterior samples, and 0; o5 is the standard
deviation of 6; over all posterior samples. The z-score should be symmetric about zero to indicate
that there is no bias in estimating the ground truth, and should have a magnitude less than 5.3° Our
z-score calculations are satisfactory, shown in Figure S42.
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Figure S42. Z-score and shrinkage. Top: C,Hgs during ATom 2 Atlantic curtain. Bottom: C;Hg
during ATom 4 Atlantic curtain. Satisfactory z-score is symmetric about zero with a magnitude
less than 5, while shrinkage should be around 1.

S5.3 Posterior samples — ATom observations

Below are our results for our HMC sampling of the posterior (Figure S43 and S44). The posterior
of hierarchical models inherently has regions of high curvature, which can cause difficulties for
HMC sampling. If HMC trajectories veer sharply due to this curvature, the Monte Carlo step ends
in a divergence. We decreased the step size of the sampler to sample the areas of high curvature
(increased the adapt_delta parameter to 0.99 in Stan). To further reduce problems with high
curvature, we implemented a non-centered parametrization of f;;;. We also set the warmup
iterations to 2000 and conducted 1000 samples. Using bebi103’s stan.check_all_diagnostics()
function, our sampling had effective sample size for all parameters (based on the suggestion of 50
effective samples per split chain):* 0 out of 4000 iterations ended with a divergence or saturated
the maximum tree depth and the energy-Bayes fraction of missing information indicated no
pathological behavior. We achieved these diagnostics for all runs of ATom and HIPPO.
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Figure S43. HMC Posterior samples for f; ;; and B; parameters using C;Hs ATom 4 aircraft and
GEOS-Chem simulations. Beta 1 parameter is a vector of length 5, corresponding to the synoptic
replicates of GEOS-Chem. Beta 1[0] and beta 1[1] correspond to 2 days before the aircraft,
beta 1[2] is the plane path, and beta 1[3] and beta 1[4] correspond to 2 days after the aircraft.
The hyperparameter £5; is represented by beta .
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Figure S44. HMC Posterior samples for f; ;; and f; parameters using C;Hy ATom 4 aircraft and
GEOS-Chem simulations. Beta 1 parameter is a vector of length 5, corresponding to the
synoptic replicates of GEOS-Chem. Beta 1[0] and beta 1[1] correspond to 2 days before the
aircraft, beta 1[2] is the plane path, and beta 1[3] and beta_1[4] correspond to 2 days after the
aircraft. The hyperparameter, f;, is represented by beta .

In Figure S45, we show a cross plot of our hyperparameter, f; and f3, ;;, in inverse form, for a
single ATom campaign, which directly corresponds to the scaling of our adjusted default emissions
under the GEOS-Chem v13.0.0 simulations. This shows an example of the variability due to
GEOS-Chem meteorology compared to the hyperparameter that we use to scale the emissions. In
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Figure S46, we show the results of the Bayesian model for the a; emissions scalar estimate for all
4 ATom campaigns and ocean transects.
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Figure S45. Posterior samples of a; ;; vs a; during ATom 4. Top: C;He observations. Bottom:
CsHs observations.
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Figure S46. a; hyperparameter estimate for each season during the ATom campaign. We do not
include the summer values to calculate an overall a estimate as discussed in the methods in the
main text. Top: CoHs, Bottom: C3Hs.

S5.4 Posterior predictive check — ATom observations

Posterior predictive checks involve drawing parameter values out of the posterior, using those
parameters in the likelihood to generate a pseudo dataset, and repeat. We can see whether our
Bayesian model can produce the observed data. Below, we show all posterior predictive checks
for all ATom aircraft campaigns (Figures S47, S48). The majority of the measured data fell into
the 30th and 50th percentile of the simulated Bayesian model data. The exception to this was the
summer season, where the Bayesian model does not capture the measured aircraft data. This is
expected, since during the summer we do not observe a robust relationship between potential
temperature and C;Hs or C,He.
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Figure S47. Posterior predictive check of C,Hs using ATom data. Posterior predictive checks are
explained in the text above. The pseudo data are shown in blue with 30, 50, 70, 99" percentiles.
Please see Figure S46 for the estimated values of «; that were used to scale the GCS data in each

season/transect.
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Figure S48. Posterior predictive check of C;H; using ATom data. (Posterior predictive checks are
explained in the text above.) The pseudo data are shown in blue with 30, 50, 70, 99" percentiles.
Please see Figure S46 for the estimated values of «; that were used to scale the GCS data in each

season/transect.

Both C;Hg and C,Hg aircraft observations feature high mole fractions during ATom 2 winter
measurements at low potential temperature. The largest differences between the aircraft and
GEOS-Chem simulations occur at high latitude and low altitude (Figure S49), subject to low
altitude and cold environments. GEOS-Chem does not able to capture this variability, as discussed
in Section 3.3 in the main text.
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Figure S49. Difference between aircraft and GEOS-Chem C;Hg simulations. Simulations and
aircraft observations during ATom 2, Atlantic transect, are shown. Points are colored by altitude
(left) and potential temperature (right).

S5.5 Posterior samples — HIPPO observations

We show an example of our posterior sampling for our Bayesian model using HIPPO C,H, and
C;H; observations in Figures S50 and S51 below.



99

5
4
3
2
1
0
2 N MG

g
SI
(9]
Q
-
=
S.I
Q
Q
5
& 4
9 8
3 2
)
0
4 4
§ 3 3
(“l .2 2
T A
Q 1 1
9 0
15 15 1.5 15 15
_ 14 1.4 1.4 1.4 1.4
¥ 13 13 1.3 13 13
R 1.2 1.2 1.2 1.2
T 14 11 1.1 1.1 11
8 1 1 1 1
09 0.9 0.9 0.9 0.9
0.8 0.8 0.8 0.8 0.8

Q N2 2 NI ME ISEINAINNCIN NN NN 2 NI E
beta_ beta_1[0] beta_1[1] beta_1[2] beta_1[3] beta_1[4]

Figure S50. HMC Posterior samples for f; ;; and f; parameters using C,Hs HIPPO 5 aircraft and
GEOS-Chem simulations. Beta 1 parameter is a vector of length 5, corresponding to the synoptic
replicates of GEOS-Chem. Beta 1[0] and beta 1[1] correspond to 2 days before the aircraft,
beta 1[2] is the plane path, and beta 1[3] and beta 1[4] correspond to 2 days after the aircraft.
The hyperparameter, f3;, is represented by beta .
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Figure S51. HMC Posterior samples for B, ;; and f; parameters using C;Hg HIPPO 5 aircraft and
GEOS-Chem simulations. Beta 1 parameter is a vector of length 5, corresponding to the synoptic
replicates of GEOS-Chem. Beta 1[0] and beta 1[1] correspond to 2 days before the aircraft,
beta 1[2] is the plane path, and beta 1[3] and beta 1[4] correspond to 2 days after the aircraft.
The hyperparameter, £5;, is represented by beta .

In Figure S52, we show a cross plot of our hyperparameter, f; ;; and 5, in inverse form, for a single
HIPPO campaign, which directly corresponds to the scaling of the GEOS-Chem v13.0.0
emissions. This shows an example of the variability due to GEOS-Chem meteorology compared
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to the hyperparameter that we use to scale the emissions. In Figure S53, we show the results of the
Bayesian model for the a; emissions scalar estimate for all 5 HIPPO campaigns.
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Figure S52. Posterior samples of a ;; vs @; during HIPPO 5. Top: C:Hs observations. Bottom:
CsHs observations.
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Figure S53. a; hyperparameter estimate for each season during the HIPPO campaign. We do not
include the summer values to calculate an overall a estimate as discussed in the methods in the
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main text. Top: C2He, Bottom: C3Hs. There are many fewer observations during HIPPO than
ATom resulting in a much larger spread and bigger uncertainty in defining «;.

S5.6. Posterior predictive check — HIPPO observations

Posterior predictive checks involve drawing parameter values out of the posterior, using those
parameters in the likelihood to generate a pseudo dataset, and repeat. We can see whether our
Bayesian model can produce the observed data. Below, we show all posterior predictive checks
for all HIPPO aircraft campaigns (Figures S54, S55).
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Figure S54. Posterior predictive check of C,Hs using HIPPO data. (Posterior predictive check
method is described in the text above.) The pseudo data are shown in blue with 30, 50, 70, 99th

percentiles. Please see Figure S53 for the estimated values of ; that were used to scale the GCS
data in each season/transect.
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Figure S55. Posterior predictive check of C;Hg using HIPPO data. (Posterior predictive check
method is described in the text above.) The pseudo data are shown in blue with 30, 50, 70, 99th
percentiles. Please see Figure S53 for the estimated values of a; that were used to scale the GCS
data in each season/transect.

During HIPPO 1 (winter 2009), observations are biased towards high latitudes and are subject to
arctic conditions. Furthermore, the revised emissions may be missing a high latitude source. This,
combined with a relatively lower number of HIPPO aircraft observations at lower latitudes, results
in a substantial bias on the overall Bayesian emissions scalar estimate for C;Hg during winter 2009
(Figure S53). To illustrate sampling biases at high latitudes during the winter 2009 campaign, we
obtain two Bayesian estimates of «; during each season: one estimate using aircraft observations
restricted above 300 K (potential temperature) and those below 300 K. We see that observations
restricted to values less than 300 K result in very high «; estimates that bias the overall a scalar
estimate (Figure S56-S57).
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Figure S56. Bayesian a; hyperparameter estimate and posterior predictive checks using HIPPO

aircraft observations > 300 K.
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Figure S57. Bayesian a; hyperparameter estimate and posterior predictive checks using HIPPO

aircraft observations < 300 K.
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S5.7. Sigma parameter sensitivity analysis

We use ATom aircraft/GEOS-Chem simulations of C;Hjs to observe the effect of implementing an
unchanging, large o;; parameter. (As a reminder, the g;; parameter has the effect of de-weighting
GEOS-Chem simulations with higher tropopause height, since samples with high tropopause
height tend to originate from the tropics, which is not useful for the purposes of our study. Please
see Section 5.1 for more background on the parameters and the selected prior.) Here, we show that
in practice, our model is quite robust against changes in g;;.

Using an unchanging, relatively large o;; parameter equal to 3.5 in the lognormal likelihood yields
a; hyperparameter estimates (Figure S58, S59) that are nearly identical to our results shown
previously in which o;; varies according to tropopause height (Figure S45, S46). Furthermore, we
obtain similar posterior predictive checks (Figure S60) as our previous results (Figure S48).
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Figure S58. Posterior samples of a; ;; vs @; using a scalar o;; parameter. We use o;; = 3.5 instead
of the usual distribution in the lognormal likelihood during ATom 4 time period.
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Figure S59. Estimate of @ hyperparameter after using a scalar o;; parameter. We use g;; = 3.5 in
the lognormal likelihood during ATom 4 time period.
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Figure S60. Posterior predictive check for C;Hg using a scalar g;; parameter. We use 0;; = 3.5 in
the lognormal likelihood.

S5.8. Estimating an overall emissions scalar

To estimate a credible interval for an overall a, we draw a random sample of the posterior of
hyperparameter «; for each campaign season and ocean transect. We take the mean of these
samples and repeat this 10,000 times. (Note that we do not use the summer estimates for this
calculation, for reasons described in the main text.) For ATom, the 95% confidence interval for a
of C,Hg is [1.02, 1.13] and for a of C;Hg, [1.15, 1.27]. For HIPPO, the confidence interval for a
of C,Hg is [1.06, 1.28] and for a of C;Hg, [1.45, 1.98].

S5.9 Estimating C,Hs and C;Hs Emissions

GEOS-Chem v13.0.0 emissions were calculated using the Harmonized Emissions Component
(HEMCO) v3.0.0, as described in section 2.3 in the main text. To estimate emissions over the
Northern Hemisphere and the U.S., we calculate a simple integration by defining a rectangle that
describes the latitude and longitude boundaries that approximately encloses the geographical
region of interest. (Table S3 shows those boundary estimates.) We approximate latitude and
longitude to meters using the Haversine formula. We then integrate the region of the emission grid
computed by HEMCO of the anthropogenic variable using trapezoidal integration along latitude
and longitude. When estimating global emissions, we do not impose any boundaries on latitude or
longitude. After integration, we simply convert the resulting units of kg/second to Tg/year.
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Table S3. Boundary estimates for emissions grid.

Region Latitude Min Latitude Max  Longitude Min Longitude Max
uUsS 20 50 -130 -60
Northern 0 80 -165 180
Hemisphere

The anthropogenic variable does not include biomass burning or biofuel emissions, according to
GEOS-Chem documentation. Finally, we scale the emissions estimate for each boundary region
with an overall hyperparameter, «, estimated during ATom from section 5.8. We report fossil
emissions using 95% CI of « to define the variability. Our estimates for global fossil fuel emissions
of C,He and C;Hs are [12.67, 13.98] (13.3 £ 0.7,95% CI) and [13.89, 15.44] (14.7 + 0.8,95%
CI) Tglyear, respectively (during the median year of 2017). Northern hemisphere emissions of
C,H¢ and C;Hg from fossil fuel production to be [11.18, 12.30] and [12.23, 13.60] Tg/year,
respectively. In the U.S., we estimate C,Hs and C;H; fossil fuel emissions at [1.29,1.42] and [1.41,
1.56] Tg/year. Note that the global C,Hs emissions estimated in 2016-2018 are about 15% larger
than in 2009-2011 ([10.55, 12.57] Tg/yr, Figure S61). Our C;Hs emissions are about 65% larger
than in 2009-2011 ([7.31, 12.2] Tg/yr when not including the biased winter 2009 estimate that is

impacted by arctic conditions and few observations. Our results are comparable to other studies
(Figure S62).
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Figure S61. Global ethane and propane emissions during 2009-2018. “Unscaled” represent
integrated default emissions from GEOS-Chem v13.0.0. “Revised C;” represent the revised C;Hg
emissions after implementing the default v13.0.0 C,H¢ proxy. “Scaled+Revised C;” represents the
revised C;Hg emissions after scaling with our mean Bayesian estimate (Section 5.8). “Scaled C,”
represent the revised emissions after scaling with our mean Bayesian estimate (Section 5.8). *:
Note that our mean scaled C; estimate shown here are skewed, as the 2009 winter HIPPO



111

observations are latitudinally biased. We show that C; emissions increase by 65% from 2010 to
2017 when excluding the bias below in Figure S62.
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Figure S62. Global revised ethane and propane anthropogenic fossil emissions compared to other
studies. Our emissions estimate in 2016-2018 (during ATom) and 2009-2011 (during HIPPO)
includes GEOS-Chem v13.0.0 emissions for winter, fall and spring seasons scaled by «, that we
determined with our Bayesian model during each season. As discussed in the text, fewer samples
were obtained during HIPPO, resulting in a sampling bias that we test by restricting observations
and simulations to + 300K potential temperature (Figure S51-S52). This test affects the estimate
about + 1 Tg during 2010-2011 but affects our estimate by up to 12 Tg in 2009. *: This 2009
estimate is highly biased, as the latitudinal coverage of aircraft observations is not representative
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of the global spatial distribution of methane emissions from oil and gas processes and the
confidence interval stretches to nearly 40 Tg (please see Section 3.3 text and Figure S51-52). We
compare our revised ethane and propane emissions to the default emissions from GEOS-Chem
v13.0.0 (relevant anthropogenic inventories include Tzompa-Sosa et al. 2017% for C,Hs, and Xiao
et al. 2008* for C;Hg). F: The studies included here***! represent anthropogenic fossil emissions,
except Dalsgren et al. 2018 which also includes biofuel, agriculture, and waste. We obtained the
CEDS CMIP6 estimate from Dalsgren et al. 2018. Our emissions estimates do not include biomass
burning or biofuels. Please see Section 5 in the SI for more information on estimating these
emissions.

S6. Oil & Gas Emissions

S6.1. Hydrocarbon wellhead composition

We gathered hydrocarbon wellhead compositions reported in the literature for the top five natural
gas-producing countries in the world (Table S4 and S5).

Table S4. Statistical summaries of hydrocarbon wellhead composition for the globe. Units are in
mole % for the US,*# Russia,>*>° Qatar,’” Iran,’® and Canada 2. Top: C;; Middle: C;
Bottom: Cs.

count mean std min 25% 50% 75% max

region
CANADA  22.0 74.090909 10.962747 54.00 65.2500 77.000 83.000 89.00
IRAN 45.0 89.531333 4.071936 74.16 89.2700 90.870 91.860 93.53
QATAR 1.0 89.900000 - 89.90 89.9000 89.900 89.900 89.90
RUSSIA  18.0 88.278778 12.873191 65.00 75.6875 95.685 98.500 100.00

US 63.0 85.718413 09.687639 52.67 78.3550 88.170 93.835 98.44

count mean std min 25% 50% 75% max

region
CANADA  22.0 14.909091 4.849242 7.0000 10.250 15.00 18.00 24.00
IRAN 45.0 b5.624667 1506998 4.0300 5110 532 560 11.71
QATAR 1.0 6.000000 - 6.0000 6.000 6.00 6.00 6.00
RUSSIA 18.0 7.075722 7677314 0.0000 0.750 4.50 11.95 26.00

US 630 7029257 5513786 0.0912 2.525 5.30 11.84 24.60



region
CANADA
IRAN
QATAR
RUSSIA
us

count

22.0
45.0

1.0
18.0
63.0

mean

11.000000
2.250222
2.200000

6.242111

2.792530

std

7.244045

1.081225

7.98688

3.044868

- 220

min

4.00

1.37

0.00

0.00

25%

5.0000
1.7500
2.2000
0.5600

0.1535

50%

6.500
1.970
2.200
1.945

1.930

75%

15.75
212
2.20
11.95

4.88

max

24.00
6.78
2.20

26.00

12.86
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Table S5. Statistical summaries of hydrocarbon wellhead composition in the U.S. Units are in mole
%.4% Top: Ci; Middle: C>; Bottom: Cs.

region
Appalachian
Bakken
Barnett
Eagleford
Haynesville
Niobrara

Permian

region
Appalachian
Bakken
Barnett
Eagleford
Haynesville
Niobrara

Permian

region
Appalachian
Bakken
Barnett
Eagleford
Haynesville
Niobrara

Permian

count

22.0
1.0
5.0
13.0
15.0
4.0
3.0

count

22.0
1.0
5.0

13.0

156.0
4.0
3.0

count

22.0
1.0
5.0

13.0

15.0
4.0

3.0

mean

88.089091
52.670000
84.962000
80.726923
94.344000
77.447500
70.140000

mean

6.558182
24.600000
7.544000
10.045385
1.585613
10.877500

12.786333

mean

2.069295
12.860000
2.584000
3.813077
0.370527
5.777500

8.795667

std

7121542
7.248256
7.325718
2.323018
6.680047
3.86114

std

4.71379
3.983802
4.711809
1.58007
2.185869

1172344

std

1.88617
2.465011
2.550161
0.417251

3.298488

1.469655

min

76.38
52.67

77.81
66.20
89.40
68.49
66.26

min

1.1000
24.6000
2.6000
0.2500
0.0912
8.5000

11.4540

min

0.020
12.860
0.000
0.030
0.000
2.700

7.352

25%

82.5250
52.6700
80.3000
77.8000
92.5950
74.2725
68.2190

25%

2.6325
24.6000
4.4000
9.1900
0.2160
9.7000

12.3495

25%

0.15175
12.86000
0.40000
2.06000
0.00850
4.05000

8.04850

50%

88.180
52.670
81.200
80.270
95.000
79.350

70.178

50%

5.235
24.600
8.100
11.880
0.419
10.655

13.245

50%

1.9000
12.8600
2.3000
4.0500
0.0325
5.0000

8.7450

75%

94.1925
52.6700
91.8000
82.9900
96.2100
82.5250
72.0800

75%

10.6600
24.6000
10.8200
12.6200
2.8800
11.8325

13.4525

75%

3.3750
12.8600
5.0200
5.1000
0.8355
6.7275

9.56175

max

98.440
52.670
93.700
91.790

97.100
82.600
73.982

max

16.10
24.60
11.80
16.30
4.10
13.70

13.66

max

6.070
12.860
5.200
8.520
0.927
10.410

10.290
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Using Equation 2 (main text), we combine literature estimates of dry natural gas production and
hydrocarbon composition measurements from a variety of basins (Table S4 and Table S5) to arrive
at a global and U.S. C;/C, emission ratio. We refer to this value as a “literature” emission ratio.
For our global literature emission ratio, we use hydrocarbon and dry natural gas production data
from the top 5 producing natural gas basins around the world that made up 50% of the total natural
gas production in 2019. For our U.S. emission ratio, we include the top 7 natural gas producing
basins that account for 86% of total U.S. natural gas production. The literature emission ratio of
C,/C, is calculated similarly. We arrive at a single literature emission estimate for both the US and
globe (Figure 13, main text). Due to the limited published data on hydrocarbon composition, we
compile data we found for a range of years: U.S. (2003-2020), Russia (1995-2018), Qatar (2005),
Iran (2006), Canada (2004-2020). We calculate confidence intervals for each basin by performing
a pairs bootstrap with co-measurements of hydrocarbon composition using the same bootstrap
methods used with the NOAA and FRAPPE data as described in the methods section of the main
text.

Separately, we calculate an “implied” emission ratio by taking the ratio between our revised C;Hs
emissions with several literature estimates of CH, emissions from oil and natural gas processes.
The results are shown in Figure S63. The implied emission ratio for our revised C,Hj is calculated
similarly. For the EPA U.S. CH, emissions estimate, we sum the categories “Natural Gas
Systems”, “Petroleum Systems”, and “Abandoned Oil and Gas Wells” from Table 3-1 using the
2017 estimates (to match NOAA/ATom time period during 2016-2018).
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Figure S63. Literature and Observationally-Informed Emission ratios. Top: U.S. basins; Bottom:
Global basins. The weighted raw gas ratio represents the “literature ratio” described in the main
text. OIER, ratios between our revised C,H¢ and C;Hg emissions and literature CH, emission
estimates, are shown for several literature CH, estimates, including Alvarez et al. 2018 (13 Tg/yr)®
and EPA 2017 estimate (7.8 Tg/yr, 2021 report)®® for U.S. basins, and IEA 2021 (76.4 Tg/yr),®
Scarpelli et al. 2020 (65.7 Tg/yr),% and Global Carbon Project 2020 bottom-up estimate®” (128
Tg/yr, 2008-2017 average) for global basins. The variability in the literature ratio is attributed to
the 95% CI of pairs bootstrap samples of hydrocarbon composition measurements (see main text
for more detail). The variability in the OIER is attributed to the 95% CI of our revised C;Hg and
C,Hs emission estimates. We also compare C;Hg/CH, and C,H¢/CH, correlations from in-situ
observations, including NOAA observations from Northern Oklahoma (2017 average from Figure
S21, units of kg/kg) and FRAPPE observations from Northern Colorado (2014 from Figure S9,
units of kg/kg). The variability in the NOAA ratio is relatively low because it is calculated from a
multi-year average slope, and the error in the slope is low (see Figure S21, left). The variability in
the FRAPPE ratio is relatively high because we use the 95% CI derived directly from our bootstrap
samples described in the main text.

S6.2. Impact of reallocation of CH4 emissions on the transportation sector footprint

There has been much debate about the greenhouse gas mitigation impact of switching from coal
to natural gas energy in electricity production. The impact depends on how much CHy, is lost during
natural gas production, processing, and transport as these losses will offset some of the benefits of
the lower CO, emissions. A study by the Environmental Defense Fund suggested that a CH, leak
rate greater than 3% would negate the climate benefits of switching from coal to gas in the near
term (the current leak rate is estimated at 2.3%).%® As described here and in other studies, although
CH, emissions associated with dry natural gas production likely remain underestimated, flared and
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vented associated gas from petroleum exploration contributes significantly to the total emissions.
Since global oil production has continually increased over the past 3 decades (Figure S2), and our
findings suggest that CH, losses are at least proportional to production (but likely greater and
biased towards oil-producing sites), a significant fraction of the estimated CH, emissions may be
misallocated to dry CH,4 production and should instead be included with the oil production sector.

Correctly attributing CH, emissions from oil production to the transportation sector, rather than
the power sector, increases the greenhouse gas footprint of petroleum-based transportation, while
decreasing the greenhouse gas emissions ascribed to natural gas-powered power plants. As an
example, if we assume that 20% of natural gas losses are associated with petroleum exploration
(associated natural gas makes up 20% of total natural gas marketed production in the U.S.%), the
CO; equivalent footprint of the global transportation sector would increase by roughly 5%, using
IEA’s estimate of 76 Tg/year CH, emissions from oil and natural gas and recent transportation CO,
emission estimates.””’! Equivalently, the U.S. transportation sector CO, footprint would increase
by 2%, using the EPA’s U.S. 2017 estimate (2021 report)® of 7.8 Tg/year CH, emissions and the
U.S. petroleum/transportation sector CO, (equivalent) footprint as reported by the EPA (2017
estimate, 2021 report)®. Both of our estimates are lower bounds that will only increase when
accounting for vented and flared losses of associated natural gas that is not accounted for in
marketed associated gas.

Methods:

For a global estimate, we estimate the transportation footprint from Figure 4 from Liu et
al. 2020 and multiply it by 365 to get 7,300 Mmt (million metric tones) CO, equivalents/year.
We use 76 Tg/year of CH, from (IEA)% as a global estimate from oil and natural gas and find that
20% of that number results in 15.2 Tg, multiplied by 25 GWP, yields 6% of the transportation
sector. Using the same process for the U.S., the EPA estimates the transportation sector at 1,740.2
Mmt CO,/year (Table 3-5, Petroleum fuel/Transportation sector for 2017). We use the EPA’s 7.8
Tg/year® of CH, for the oil and gas estimate and find that 20% of 7.8 Tg/year multiplied by 25
GWP results in 2.2% of the U.S. transportation sector.
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Appendix A

Supplementary Information for ‘“An Analysis Coordinate Transform to
Facilitate Use of in-situ Aircraft Observations for Flux Estimation”
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Figure Al. GEOS-Chem-simulated C,H “curtain” during ATom 2 winter 2017 campaign, along
pressure and latitude. All GEOS-Chem simulations were sampled along aircraft latitude and a
single median time/longitude during the flight over the Atlantic ocean. Column 1 shows
simulations sampled 5 days after the median aircraft time; Column 2 shows simulations sampled
on the median aircraft time; Column 3 shows simulations sampled 5 days before the median
aircraft time. FIRST row: 4x5 resolution, interpolated to 0.5x0.625 grid using latitude and pressure
coordinates. SECOND row: 2x2.5 resolution, interpolated to 0.5x0.625 grid using latitude and
pressure coordinates. THIRD row: 0.5x0.625 resolution. FOURTH row: a more detailed
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illustration of plot number r3,c2, with aircraft flight path shown in grey, the aircraft observations
shown by triangle markers, and potential temperature contours shown in black. C;Hj is included

in the main body.
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Figure A2. GEOS-Chem-simulated C;H; “curtain” during ATom 1 summer 2016 campaign, along
pressure and latitude. All GEOS-Chem simulations were sampled along aircraft latitude and a
single median time/longitude during the flight over the Atlantic ocean. Column 1 shows
simulations sampled 5 days after the median aircraft time; Column 2 shows simulations sampled
on the median aircraft time; Column 3 shows simulations sampled 5 days before the median
aircraft time. FIRST row: 4x5 resolution, interpolated to 0.5x0.625 grid using latitude and pressure
coordinates. SECOND row: 2x2.5 resolution, interpolated to 0.5x0.625 grid using latitude and
pressure coordinates. THIRD row: 0.5x0.625 resolution. FOURTH row: a more detailed
illustration of plot number r3,c2, with aircraft flight path shown in grey, the aircraft observations
shown by triangle markers, and potential temperature contours shown in black.
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Figure A3. GEOS-Chem-simulated C,H¢ “curtain” during ATom 1 summer 2016 campaign, along
pressure and latitude. All GEOS-Chem simulations were sampled along aircraft latitude and a
single median time/longitude during the flight over the Atlantic ocean. Column 1 shows
simulations sampled 5 days after the median aircraft time; Column 2 shows simulations sampled
on the median aircraft time; Column 3 shows simulations sampled 5 days before the median
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aircraft time. FIRST row: 4x5 resolution, interpolated to 0.5x0.625 grid using latitude and pressure
coordinates. SECOND row: 2x2.5 resolution, interpolated to 0.5x0.625 grid using latitude and
pressure coordinates. THIRD row: 0.5x0.625 resolution. FOURTH row: a more detailed
illustration of plot number r3,c2, with aircraft flight path shown in grey, the aircraft observations
shown by triangle markers, and potential temperature contours shown in black.
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Figure A4. GEOS-Chem-simulated C,H¢ “curtain” during ATom 2 winter 2017 campaign, along
potential temperature and latitude. All GEOS-Chem simulations were sampled along aircraft
latitude and a single median time/longitude during the flight over the Atlantic ocean. Column 1
shows simulations sampled 5 days after the median aircraft time; Column 2 shows simulations
sampled on the median aircraft time; Column 3 shows simulations sampled 5 days before the
median aircraft time. FIRST row: 4x5 resolution. SECOND row: 2x2.5 resolution. THIRD row:
0.5x0.625 resolution. FOURTH row: a more detailed illustration of plot number 13 ,c2, with aircraft
flight path shown in grey, the aircraft observations shown by triangle markers, and potential
temperature contours shown in black. C;Hs is included in the main body.
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Figure A5. GEOS-Chem-simulated C;H; “curtain” during ATom 1 summer 2016 campaign, along
potential temperature and latitude. All GEOS-Chem simulations were sampled along aircraft
latitude and a single median time/longitude during the flight over the Atlantic ocean. Column 1
shows simulations sampled 5 days after the median aircraft time; Column 2 shows simulations
sampled on the median aircraft time; Column 3 shows simulations sampled 5 days before the
median aircraft time. FIRST row: 4x5 resolution. SECOND row: 2x2.5 resolution. THIRD row:
0.5x0.625 resolution. FOURTH row: a more detailed illustration of plot number 13 ,c2, with aircraft
flight path shown in grey, the aircraft observations shown by triangle markers, and potential
temperature contours shown in black.
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Figure A6. GEOS-Chem-simulated C,H; “curtain” during ATom 1 summer 2016 campaign, along
potential temperature and latitude. All GEOS-Chem simulations were sampled along aircraft
latitude and a single median time/longitude during the flight over the Atlantic ocean. Column 1
shows simulations sampled 5 days after the median aircraft time; Column 2 shows simulations
sampled on the median aircraft time; Column 3 shows simulations sampled 5 days before the
median aircraft time. FIRST row: 4x5 resolution. SECOND row: 2x2.5 resolution. THIRD row:
0.5x0.625 resolution. FOURTH row: a more detailed illustration of plot number 13 ,c2, with aircraft
flight path shown in grey, the aircraft observations shown by triangle markers, and potential
temperature contours shown in black.
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Figure A7. GEOS-Chem simulations and ATom aircraft C,Hs vs potential temperature. Left:
Includes aircraft observations and simulations sampled 5 days after the aircraft flight path. Middle:
Includes aircraft observations and simulations sampled during the aircraft flight path. Right:
Includes aircraft observations and simulations 5 days before the aircraft flight path. C;Hg included
in the main body.
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Figure A8. C;H; posterior samples for the conditional parameter and the hyperparameter during
ATom 2 winter 2017. Top: 4x5. Middle: 2x2.5. Bottom: 0.5x0.625.
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Figure A9. C,H; posterior samples for the conditional parameter and the hyperparameter during

ATom 2 winter 2017. Top: 4x5. Middle: 2x2.5. Bottom: 0.5x0.625.
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As in Tribby et al. 2022, we conduct posterior predictive checks, which involve drawing
parameter values out of the posterior, using those parameters in the likelihood to generate a
pseudo dataset, and continue repeating. This allows us to see whether the Bayesian model
reproduces the observed data. Below, we show all posterior predictive checks for ATom 2

atlantic aircraft campaign. The majority of the measured data fell into the 30th and 50th
percentile of the simulated Bayesian model data.
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Figure A10. Posterior predictive check of C;H; using ATom data. Left: 4x5. Middle: 2x2.5. Right:
0.5x0.625. Samples are during ATom 2 winter 2017. Pseudo data are shown in blue with 30, 50,
70, 99t percentiles. Please see Table 1 for values used to scale GCS data.
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Figure A11. Posterior predictive check of C,Hs using ATom data. Left: 4x5. Middle: 2x2.5. Right:
0.5x0.625. Samples are during ATom 2 winter 2017. Pseudo data are shown in blue with 30, 50,
70, 99t percentiles. Please see Table 1 for values used to scale GCS data.
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Table Al. Bayesian inference 97.5% confidence interval.

a C3H8 a C2H6

4x5 [0.803 0.995] [0.878
1.094]

2x25 [0.809 1.012] [0.909
1.141]

0.5x0.625 [0.900 1.134] [0.952

1.204]
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Appendix B
Supplementary Information for ‘“Towards Constraining Methane Emissions

in Southern Oklahoma Using STILT Analysis of Remote Sensing and Flask
Observations of Hydrocarbon Tracers”
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Figure B1l. Temporal intersection between NOAA flask (aircraft + tower) and TCCON
observations.
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Figure B2. Oil and gas well geospatial data from FrackTracker.org.
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Figure B3. Density of oil and gas wells per .1x.1 degree grid.
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Figure B4. Well density (zoom in). The blue circles are the footprint lat/lon, and the squares are
the 0.1x0.1 degree bins in which the density was calculated. The colorbar is in units of wells/cell.
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Figure B5. Emissions of methane, ethane, and propane used as a prior for the STILT analysis.
These emissions were computed as described in the main text.

Emissions comparison to Alvarez et al. 2018 and Zhang et al. 2020

Our total emissions over the footprint area for CHy, in units of Tg/yr, are 7.63 +/- 1.4. We calcula
ted the uncertainty by scaling the 0.5Tg/yr uncertainty from Zhang et al. 2020 to our density calc
ulation. In comparison, We sum several southwestern basin estimates from Alvarez et al. 2018 wi
th the Permian 2.7 Tg (from Zhang et al. 2020) to obtain 5.5 Tg/yr. This sum is missing several k
ey basins that would affect our receptor site, including Anadarko (northern Oklahoma), Ardmore
(southern Oklahoma), Gulf Coast (of Texas), Cherokee Platform (central Oklahoma).
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Figure B6. Priors for key parameters in our Bayesian analysis. Our methodology for choosing
these priors is explained in the main text.



