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ABSTRACT

Self-organized spatial periodic patterning mechanisms are responsible for the gener-
ation of repetitive structures, such as digits, vertebrae, and teeth, during multicellular
development. Adopting a synthetic biology approach, we aim to unravel the core
principles of multicellular spatial patterning by designing and reconstituting it in

tissue-cultured cell lines.

The reaction-diffusion mechanism, as an established paradigm, has successfully elu-
cidated and forecasted pattern formation across varying scales and species. However,
the potential for reconstituting synthetic reaction-diffusion patterns using unconven-
tional reaction-diffusion elements within mammalian cell cultures has been insuffi-
ciently explored, thus leaving a gap in our comprehension of how spatial periodic

patterns could be generated.

The simplest reaction-diffusion systems are thought to necessitate a minimum of two
morphogens to generate periodic patterns. In contrast, with the help of mathematical
modeling, we illustrate that a simpler circuit, comprising only a single diffusible
morphogen, can adequately produce long-range, spatially periodic patterns. These
patterns propagate outward from transient initiating perturbations and remain stable
after the disturbance is removed. Moreover, introducing an additional bistable intra-
cellular feedback or operation on a growing cell lattice can enhance the robustness

of the patterning against noise.

Concurrently, we reconstruct the Turing pattern in mammalian cell culture utilizing
a bottom-up approach. We construct a synthetic circuit based on BMP4 and Activin
signaling pathways in HEK293 cells. After validation of each circuit component, we
exhibit the spatial pattern formation driven by a synthetic reaction-diffusion circuit
within the mammalian cell line. This adaptable circuit facilitates us to adjust circuit
parameters or implement various boundary conditions, thereby revealing the impact

of these alterations on patterning dynamics.

Collectively, these findings lay the groundwork for the engineering of pattern for-

mation in the nascent field of synthetic developmental biology.
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Chapter 1

INTRODUCTION

1.1 Spatial patterning in biology

Spatial patterning is a fundamental phenomenon in biology that involves the or-
ganization and distribution of biological structures and processes across various
spatial scales. This can range from the subcellular level, such as the distribution of
specific proteins or complexes within a cell, to the tissue and organism level, like
the arrangement of distinct cell types within an embryo, and even to the community

and ecosystem level, where organisms are distributed within a habitat.

These patterns are crucial for the proper functioning and organization of living
systems, and disruptions in these patterns can lead to developmental defects (Ahmed
et al., 2017; Subasioglu et al., 2015), disease (Muragaki et al., 1996; Quinonez and
Innis, 2014), or ecological imbalance (Turner, 1989; Chen, Chi, and J. Li, 2020).
Grasping the core principles and foundational logic of spatial patterning allows us

to better understand, manipulate, and innovate various biological processes.

One fascinating example is the multicellular self-organized spatial patterning. This
remarkable property emerges exclusively in multicellular systems that extend beyond
a single cell, encompassing multicellular organisms or populations of single-cell
organisms that coexist and function collectively. Multicellular organisms rely on
self-organized spatial patterning to regulate development, tissue organization, and
cellular coordination (Xavier da Silveira Dos Santos and Liberali, 2019; Wedlich-
Soldner and Betz, 2018). In the case of populations of single-cell organisms, such
as bacteria or yeast, self-organized spatial patterning can manifest as cooperative
behavior, allowing the population to function as a whole. This may involve the
formation of biofilms and the establishment of distinct microenvironments (Nunan
et al., 2003; Ren et al., 2018).

This self-organization depends on the individual cell’s ability to spatially send and
receive signals, accurately interpret and respond differentially to these signals, and
dynamically adapt to changes in their interactions with other cells (Xavier da Silveira
Dos Santos and Liberali, 2019; Wedlich-Soldner and Betz, 2018). In practice, cells
frequently communicate through various means, such as mechanical forces (Gordon

etal., 2015; Chien, S. Li, and Shyy, 1998), secretion of signaling molecules (Briscoe
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and Thérond, 2013; Rahman et al., 2015), or electrical signaling (Magee et al., 1998;
Fromm and Lautner, 2007).

Delving deeper into its applications, one of the most prominent examples of self-
organized spatial patterning in multicellular organisms is embryogenesis. This
complex and highly dynamic process involves cells guided by intrinsic instructions,
such as gene regulatory networks and extrinsic signals from neighboring cells. These
signals play a critical role in directing proper spatial patterning, cell differentiation,
and ultimately the formation of functional tissues and organs. Some key mechanisms
underlying spatial patterning during development include the positional information
mechanism (French flag model) (Wolpert, 1971) and reaction-diffusion systems

(Turing patterns) (Turing, 1952).

1.2 Positional information mechanism

The positional information mechanism, often referred to as the French flag model, is
a fundamental concept in developmental biology that explains how cells in a devel-
oping organism acquire their specific identities based on their positions within the
tissue (Wolpert, 1971). This mechanism falls under the sender-receiver paradigm,
which involves the exchange of signals between cells to drive coordinated develop-

mental processes.

In this model, morphogens (signaling molecules) are secreted by sender cells and
diffuse through the extracellular space or extracellular matrix, creating a concentra-
tion gradient across an extended region. Receiver cells detect the morphogen signal
and interpret it in a dose-dependent manner, meaning that the cell’s response to the
signal is determined by the morphogen concentration it experiences. Based on spe-
cific morphogen concentration thresholds, cells will adopt distinct fates depending
on their proximity to the sender cells. This process allows cells to generate spatial

patterns based on their relative distance from the signal source.

While the positional information mechanism is effective for patterning tissues with
a limited number of domains, it is less suited for generating multiple domains or

spatial periodic patterns. There are several reasons for this limitation:

1. Additional concentration thresholds: Generating multiple cell fates requires the
establishment of multiple concentration thresholds, which can be challenging

to achieve when the difference between two thresholds is close to the biological
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noise of the system. This can make it difficult for cells to reliably interpret the

morphogen concentration and adopt the correct fate.

2. Increased complexity with additional morphogen species: Another strategy to
pattern multiple domains is to incorporate more morphogen species that oper-
ate independently or cooperatively. However, this can dramatically increase the
complexity of the system, making it more challenging to decipher the interac-
tions and interdependencies between various morphogens and their effects on

cell fate determination.

3. Despite these limitations, the positional information mechanism has been a
foundational concept in understanding how cells acquire their spatial identities
during development. Researchers continue to investigate the intricacies of this
mechanism and explore alternative strategies for generating complex spatial
patterns in developing tissues, including the use of reaction-diffusion systems

and other self-organizing processes.

1.3 Reaction-diffusion mechanism

The reaction-diffusion mechanism is another self-organizing process that leads to
the formation of patterns, particularly spatial periodic patterns (which can hardly
achieve with the positional information mechanism), in various biological and chem-
ical systems. In 1952, Alan Turing, a pioneering mathematician and computer
scientist, proposed a simple mathematical model to explain the emergence of these
patterns from a homogeneous tissue using only two diffusive signal molecules, or
morphogens (Turing, 1952). This groundbreaking model laid the foundation for
further understanding of pattern formation in developmental biology, chemistry,
and other fields.

In Turing’s model, there are two interacting morphogens: an activator and a repres-
sor. The activator promotes the production of both itself and the repressor, while the
repressor inhibits the production of both. The key to pattern formation in this model
is that the repressor morphogen diffuses more rapidly than the activator. Within spe-
cific parameter ranges, this system can spontaneously form spatial patterns, which

are now commonly referred to as “Turing patterns”.

Following Turing’s original work, researchers have expanded and refined the concept

of the reaction-diffusion mechanism in several ways. These advancements include:

1. Incorporating more types of reaction kinetics: This has led to the develop-
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ment of more complex and nuanced models that better represent the diverse
array of interactions observed in biological and chemical systems (Gierer and
Meinhardt, 1972; Schnakenberg, 1979).

2. Increasing the number of circuit components: By considering additional molec-
ular species or cellular components, researchers have been able to model more
intricate patterns and gain insights into the mechanisms driving the formation
of these patterns (Scholes et al., 2019; Marcon et al., 2016).

3. Exploring various boundary conditions and initial conditions: By analyzing
different spatial constraints and initial configurations, scientists have understood
how these factors influence pattern formation and predict the resulting patterns
under various circumstances (Cross and Hohenberg, 1993; Ben-Jacob et al.,
1985).

These expansions and refinements of the reaction-diffusion mechanism have enabled
a deeper understanding of how patterns form in nature and have led to practical
applications in areas such as tissue engineering, material science, and the study of
ecological systems. As a result, the reaction-diffusion mechanism has become a
fundamental concept in the study of self-organization and pattern formation across

multiple scientific disciplines.

Specifically, developmental biologists have used the concept of reaction-diffusion
mechanisms to explain a variety of biological observations in living organisms.
This theory posits that the patterning of tissues and organs during development is
determined by the interplay between two opposing forces: the reaction of chemical
signals that drive differentiation and the diffusion of those signals that spread their

influence.

One of the most notable examples of reaction-diffusion mechanisms in action can be
seen in the development of feather buds in birds (Jung et al., 1998). As the feathers
begin to emerge, BMP4 and FDF4 are produced and diffuse outwards, guiding the
growth and patterning of the feathers. This process is thought to be regulated by a
series of genes that are activated or suppressed based on the concentration of the

chemical signals.

Another example can be found in the branching of the lungs and kidneys (Warburton
et al., 2000; Costantini and Kopan, 2010; Little, Combes, and Takasato, 2016).

During embryonic development, these organs grow by a process known as branching
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morphogenesis, where the organ bud splits and divides into smaller branches. This
process is thought to be regulated by the interplay between chemical signals that

promote branching and those that inhibit it.

Finally, the formation of digits and teeth can also be explained by reaction-diffusion
mechanisms (Raspopovic et al., 2014; Kavanagh, Evans, and Jernvall, 2007). In
these cases, chemical signals are produced in specific regions of the developing
limb or jaw, and as they diffuse, they guide the differentiation and patterning of the
developing tissue. The result is the formation of distinct digits or teeth, each with

its own unique shape and size.

In conclusion, reaction-diffusion mechanisms are believed to play a crucial role in
the development of a wide range of structures and organs, from animals to plants.
However, due to the intrinsic defect of studying patterning in situ, no matter how
detailed the model is proposed, these practices still have limitations in conclusively
establishing the sufficiency of the underlying patterning circuit. Then, a bottom-
up “build to understand” approach becomes necessary to answer this sufficiency

question.

1.4 The bottom-up approach of synthetic biology

Synthetic biology is an interdisciplinary field that combines elements of biology,
engineering, and computer science with the goal of designing and constructing
novel biological systems, functions, and organisms. The primary goals of synthetic
biology include understanding the fundamental principles of life, improving existing
biological systems, and creating new applications that can address a wide range of

challenges in areas such as medicine, agriculture, and environmental sustainability.

Synthetic biology, with its bottom-up approach of designing and constructing novel
biological functions, systems, and organisms using well-characterized modules and
basic elements, offers a unique perspective in the field of biology that resembles the
engineering approach and provides several advantages over traditional biological

study methodologies, including the following:

1. Isolated background: By designing and building biological systems from
scratch or by modifying existing systems, synthetic biology allows researchers
to study the components and interactions of a system in a controlled and iso-
lated environment. This reduces the complexity of the system and minimizes

interference from external factors, making it easier to determine the specific
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roles and functions of individual components. This in turn facilitates a better

understanding of the underlying biological mechanisms and principles.

2. Tunability: Synthetic biology enables researchers to precisely control the prop-
erties and behaviors of the biological systems they create. By altering specific
components, such as genes or proteins, it is possible to modulate the expres-
sion levels, activities, or interactions within the system. This tunability allows
scientists to explore a wide range of conditions and parameters, helping them
to identify the optimal conditions for achieving a desired outcome, such as
maximizing the production of a specific compound or minimizing the energy

required for a particular process.

1.5 Multicellular synthetic biology and synthetic patterning

In the past 20 years, synthetic biology has started from designing, rewiring, and
de novo constructing circuits intracellularly, including gene regulatory circuits and
protein-based circuits (Elowitz and Leibler, 2000; Gardner, Cantor, and Collins,
2000; Gao et al., 2018; Moraga et al., 2017). Exploiting the capabilities of multicel-
lular organization has the potential to significantly expand the functional capabilities
of synthetic biology, enabling it to perform tasks that are challenging to accomplish
within a single cell. This includes the ability to reproduce complex spatial-temporal
dynamics observed during development. In this process, cell proliferation, migra-
tion, and differentiation are orchestrated through mutual signaling between cells
and their local environment, resulting in a self-organized structure. Moreover, the
phenomena observed at the multicellular level, such as self-organization, cannot
be fully understood or predicted by examining the functions of individual cells in
isolation. This suggests that the emergent properties of multicellular organization
are more than just the sum of their parts. Consequently, the study and design of
synthetic multicellular circuits are crucial in comprehending how organisms execute

these complex tasks.

By advancing our understanding and ability to design synthetic multicellular sys-
tems, we will be able to harness and potentially replicate many of the processes
and functions that are characteristic of multicellular organisms. This knowledge
and these tools could open up new possibilities in a range of fields, from bioengi-
neering to medicine. In application, synthetic organs will be the solution to the
daily increasing shortage of organ donors and all side-effects of transplantation.

With decades of effects, researchers have been able to generate almost all the types
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of cells of the human body. Meanwhile, how to spatially organize multiple cells
types in a designed manner still remains challenging. The ability to control spatial
organization via designed and implemented circuits appears to be the most intuitive

goal.

Meanwhile, synthetic patterning is still a young field with few studies and largely
unsolved questions and challenges. In prior studies, investigators endeavored to
construct circuits that direct spatial patterning via positional information mecha-
nisms. The synthetic Shh system builds an isolated platform allowing researchers
to study how morphogen modification and receptor feedback affect Shh signaling
(P. Li et al., 2018). In Li’s work, they build an Shh secretion cell line and an
SHH reporter cell line. With spatial co-culture experiments, they are able to ob-
serve Shh secreted from senders forming a concentration gradient in the receiver
region. The synNotch system was developed by designing a synthetic Notch-like
receptor, which involved exchanging the extracellular recognition domain with the
intracellular signaling domain (Morsut et al., 2016; Toda et al., 2018). Employing a
Notch-like cell-cell interaction mechanism, the synNotch patterning circuit enables
cells to communicate with and impact their immediate neighboring cells, resulting

in the formation of well-ordered cellular fate layers.

Meanwhile, self-organized patterning via reaction-diffusion mechanism has been
reported in both bacteria and mammalian systems (Karig et al., 2018; Sekine,
Shibata, and Ebisuya, 2018). David Karig et al. worked with E.coli to reconstitute
periodic patterns by using two quorum-sensing molecules as “morphogens” for the
pattern formation on the growing biofilm (Karig et al., 2018). By wiring Nodal and
Lefty natural signaling pathway to the Turing circuit in HEK293 cell culture, Ryoji
Sekine et al. observed the dynamic of heterogeneity emerging and spatial pattern
forming (Sekine, Shibata, and Ebisuya, 2018). However, the reaction-diffusion
circuit in this work is based on two morphogens that have been reported working
in pairs and creating Turing patterns in nature. The core reaction kinetics in their
synthetic circuit is still the natural interactions where Nodal and Lefty compete
for receptors. Thus, no experimental attempts have been made to advance this
concept ‘“‘self-organized patterning via reaction-diffusion mechanism” further, by
constructing a synthetic reaction-diffusion circuit featuring two morphogens not

previously documented within the same natural reaction-diffusion system.



1.6 Our research goal and strategy

Our objective is to employ a synthetic biology approach, combining mathematical
modeling and experimental reconstitution techniques, to elucidate the core principles
underlying reaction-diffusion-mediated spatial patterning in multicellular systems.
By integrating computational simulations with experimental validation, we seek to
gain a comprehensive understanding of the mechanisms that drive the formation
of spatial patterns through reaction-diffusion processes, ultimately leading to the

coordinated organization of multicellular structures.

Through the application of mathematical models, we will explore diverse circuit
designs and a wide range of parameters that may influence pattern formation, not
limited by the natural systems. These models will help us identify key factors that
govern the emergence of distinct spatial patterns and generate testable hypotheses

for experimental validation.

In parallel, we will perform experimental reconstitution, where we will reconstitute
the reaction-diffusion systems in engineered cellular systems. This approach will
enable us to manipulate and control individual components involved in patterning,
allowing us to test the predictions generated by our mathematical models directly.
By systematically altering specific factors and observing the resulting changes in
pattern formation, we can gain valuable insights into the underlying principles of

reaction-diffusion-mediated spatial patterning.

Ultimately, this integrated synthetic biology approach will enhance our understand-
ing of the complex interplay between reaction-diffusion processes and multicellular
spatial patterning, providing a solid foundation for future synthetic biology re-
search and potential therapeutic applications in tissue engineering and regenerative

medicine.

In Chapter 2, I will introduce our theoretical work on spatial periodic patterning using
a single-morphogen reaction-diffusion circuit. We demonstrated that a reaction-
diffusion circuit with only one diffusive component could generate regular spatial
periodic patterns in a discrete system when given a spatially localized perturbation
as the initial trigger. Additionally, we proposed two strategies to address the noise-
sensitive issue in pattern formation and ensure regular pattern generation in a noisy

environment.

In Chapter 3, I will present our experimental efforts to reconstitute the classical

Turing pattern in mammalian cell culture. We interconnected two natural signaling
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pathways, which have not been reported to function together in a natural reaction-
diffusion system, to construct a synthetic reaction-diffusion circuit in wild-type
HEK?293 cell lines. We verified the diffusion coefficients of both morphogens, the
orthogonality of the signaling pathways, and the functionality of each arm of our
designed circuit. Ultimately, we demonstrated the pattern formation dynamics and
the transformation of final patterns in response to adjustments in circuit parameters

and various boundary conditions.
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Chapter 2

PERIODIC SPATIAL PATTERNING WITH A SINGLE
MORPHOGEN

2.1 Abstract

During multicellular development, periodic spatial patterning systems generate
repetitive structures such as digits, vertebrae, and teeth. Turing patterning pro-
vides a foundational paradigm for understanding such systems. The simplest Turing
systems are believed to require at least two morphogens to generate periodic patterns.
Here, using mathematical modeling, we show that a simpler circuit, including only
a single diffusible morphogen, is sufficient to generate long-range, spatially periodic
patterns that propagate outward from transient initiating perturbations and remain
stable after the perturbation is removed. Further, an additional bistable intracellular
feedback or operation on a growing cell lattice can make the single-morphogen
patterning robust to noise. Together, these results show that a single morphogen can
be sufficient for robust spatial pattern formation, and should provide a foundation
for engineering pattern formation in the emerging field of synthetic developmental

biology.

2.2 Introduction

The fundamental question of how periodic spatial patterns emerge in multicellular
organisms arises both in the context of natural developmental systems and in the
emerging field of synthetic development, where researchers seek to engineer bio-
logical circuits that recapitulate fundamental aspects of multicellular development
(Davies, 2008; Toda et al., 2018; Ebrahimkhani and Ebisuya, 2019). Understanding
the minimal requirements to generate spatial patterning could provide insight into
natural patterning processes, and offer a basis for engineering synthetic patterning

circuits with minimal complexity.

Previous work has focused on three general paradigms for spatial periodicity (Schweisguth
and Corson, 2019). First, studies of early embryonic development in Drosophila
unveiled a far-reaching scenario for patterning based on positional information and
hierarchical morphogen gradients (Briscoe and Small, 2015; Wieschaus, 2016).
Second, at the other extreme, classic Turing patterning systems use interactions be-

tween two morphogens to spontaneously generate periodic spatial patterns (Kondo
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and Miura, 2010). Finally, short-range alternating patterns can be produced by
lateral inhibition mechanisms in which neighboring cells establish opposite fates
through direct signalings, like those implemented by the Notch pathway (Collier
et al., 1996; Sprinzak et al., 2011; Corson et al., 2017). While powerful, these
three mechanisms may not, individually, be ideal for all purposes or may be more
complex than necessary. For example, positional information-based mechanisms
do not readily scale to pattern an arbitrarily extended region (Ben-Zvi, Shilo, and
Barkai, 2011), potentially limiting their evolvability. In turn, classic Turing mech-
anisms require multiple morphogens and fine-tuning of key parameters (Marcon
et al., 2016; Scholes et al., 2019), adding complexity for synthetic applications.

Finally, lateral inhibition patterns generally operate at small spatial length scales,
comparable to that of the individual cell (Cohen et al., 2010; Hadjivasiliou, Hunter,
and Baum, 2016). Natural systems undoubtedly combine these and other mecha-
nisms to achieve more complex pattern formation capabilities (Green and Sharpe,
2015).

In natural contexts, periodic patterns are generated by a combination of 1) reaction-
diffusion circuits operating within the developing tissue and 2) triggering signals
that emerge from tissue boundaries. For example, digit patterning in the developing
limb bud is set off by signals coming from the apical epidermal ridge (Raspopovic
et al., 2014). Similarly, tooth patterning is thought to involve sequential activa-
tion of new primary enamel knots, through a mechanism that may involve both
local morphogen dynamics and inputs from adjacent tissue (Kavanagh, Evans, and
Jernvall, 2007). Feather patterning appears to similarly combine these mechanisms
(Kavanagh, Evans, and Jernvall, 2007; W. K. W. Ho et al., 2019). These examples
provoke the question of what minimal circuits are sufficient for periodic boundary-

triggered patterning.

An ideal pattern-forming system would have several key characteristics: First, it
should be triggered by signals from a localized adjacent region or boundary, to
enable control of patterning. Second, the pattern would spatially propagate to fill
an extended region of tissue. Third, to enable synthetic engineering, the system
should be as simple as possible, utilizing a minimal number of components and
interactions. The ideal system should further be robust to unavoidable fluctuations

in cellular components.

Here, we introduce a remarkably simple mechanism for boundary-triggered spatial

periodic patterns that uses a single morphogen. This architecture differs from
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classical Turing systems in that the activator is confined to the cell in which it
is synthesized, and cannot diffuse to other cells. It thus represents the limit of a
classic Turing system when the mobility of the activator approaches 0. Unlike Turing
systems, this circuit cannot, by itself, spontaneously produce consistent, well-defined
long-wavelength patterns. However, when stimulated by an adjacent signal from a
localized region, or boundary, it can produce spatially propagating periodic patterns
in the levels of its components that self-sustain even after the initiating signal is
removed. This single morphogen mechanism demonstrates how complex spatio-
temporal patterns can arise from remarkably simple underlying circuit mechanisms,

and provides a realistic design for synthetic developmental patterning systems.

2.3 A single morphogen is sufficient to form patterns on the spatial discrete
lattice

Alan Turing’s patterning circuit in his 1952 paper is one of the mathematically
simplest models that can form patterns through diffusion-driven instability (Tur-
ing, 1952). The Turing circuit comprises two components that regulate their own
production and/or degradation, and diffuse as morphogens (Figure 2.1A, upper left
panel). Patterning occurs when the inhibitory morphogen has a larger diffusion
coefficient than the activating morphogen, causing local activation and long-range
inhibition (Figure 2.1A, left row) (Murray, 2001).
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The single-morphogen reaction-diffusion circuit obeys the “local activation
with long-range inhibition (LALI)” rule on the discrete lattice. Classical Turing
circuit requires at least two diffusive species, while in the single-morphogen
reaction-diffusion circuit, the repressor is the only component that could diffuse
among the cells. In specific parameter regimes, the classical Turing mechanism
could form patterns on both continuum and discrete lattice, though the power
frequency selection is different in these two cases (Plahte, 2001). The patterning

on discrete lattice provides the activator with at least two-cell size spatial period.

The shortest wavelength on the discrete lattice determines the upper bound of
the wavenumber for the single-morphogen reaction-diffusion circuit. Stabil-
ity analysis reveals that once the single-morphogen reaction-diffusion circuit
drives the patterning, the dominated wavenumber of the final pattern goes to
infinity. This type of pattern, named “Type II Turing pattern” (Scholes et al.,
2019), is purely a mathematical concept with no actual pattern in the physical
world. Meanwhile, patterns on the discrete lattice intrinsically have the shortest
wavelength as two-cell size, which sets a cutoff for wavenumbers and enables
the reaction-diffusion patterning with a single morphogen.

The minimal single-morphogen reaction-diffusion circuit contains two compo-
nents driven by the same promoter, a non-diffusive activator upregulating both

production and a diffusive repressor downregulating the production.

The simulation executes on a chain (1-D) or a square lattice (2-D), where each
lattice node directly contacts two or four neighboring nodes, respectively. The
isolated system forbids diffusion of R among cells so that each lattice node is
well separated. Meanwhile, the connect system allows free diffusion of R. i

denotes the cell counts number in the lattice.

The promoter integrates the upregulation from A and the downregulation from
R in a ratiometric fashion. The model assumes four possible promoter binding
states, polymerase + activator, polymerase + repressor, polymerase only, and
empty cassette. The portion of the four states shaped by the A and R concentra-
tions determines the promoter activity F' (A, R). The calculated titration matrix
reveals that the promoter activity has a ratiometric relation of co-existing A and
R.

The simulation starts from the homogeneous state and ends up with stable

patterns. In the isolated system where no diffusion is allowed among cells,
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the lattice stays at its homogeneous steady-state. In the connected system,
if a circuit is patternable, this steady-state should become unstable so that
cells would bifurcate and evolve into heterogeneous patterns. Meanwhile, a

non-patternable circuit is still stable under the connected system.

Since there is no lower bound for the diffusion coefficient of the activating mor-
phogen, we wondered whether the system could support pattern formation in the
limit of no activator diffusion at all, i.e. if the activator were confined to a single cell
rather than diffusing as a morphogen. In continuous systems, the limit of no activator
diffusion does not pattern due to the unbounded spectrum of high-frequency modes
(Figure 2.1A, lower right panel). However, on a discrete lattice, cells expressing the
non-diffusive activator exhibit local (same-cell) activation, while inhibiting cells in
their extended neighborhood (Figure 2.1A, upper right panel). In this case, self-
activation occurs on the scale of a single cell, providing a high-frequency cutoff

(Figure 2.1B, upper left panel).

To understand whether such a discrete system could form robust patterns and, if
so, what characteristics these patterns might have, we performed linear stability
analysis of both discrete and continuous single-morphogen systems (Murray, 2001).
We analytically computed the spatially homogeneous steady state of the system,
and analyzed its stability to harmonic perturbations with varying wavenumber k
(inversely related to the wavelength A of the spatial perturbation, k& = 27/1). To
that end, we determined the eigenvalues of the system’s Jacobian, focusing on
the one with the largest real part, which we call the “dominant eigenvalue” in
what follows. The dependence of the real part of the dominant eigenvalue on the
wavenumber k is known as the dispersion relation (Murray, 2001). In a classic
two-morphogen Turing system, the real part of the dominant eigenvalue takes on a
maximum value at an intermediate wavenumber (Figure 2.1B, left panels, purple
lines). By contrast, in a single-morphogen system, the resulting dispersion relation
increases monotonically with increasing k (decreasing spatial period), as shown by
the blue lines in the left panels of Figure 2.1B (Methods: Analytical study of the
single-morphogen reaction-diffusion circuit in the continuum limit). This monotonic
increase suggests that the resulting pattern should be dominated by perturbations
with arbitrarily large spatial frequencies. In the continuous limit, this situation leads
to physiologically unreasonable patterns, which involve infinitely small wavelengths
(Figure 2.1B, lower right panel). However, a discrete lattice imposes a cutoff at a

wavelength of two cell diameters (Figure 2.1B, upper left panel), and can thereby
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support patterns involving alternating cell states (Figure 2.1B, upper right panel,
Methods: Stability analysis of the single-morphogen reaction-diffusion circuit in
a discrete lattice). Thus, a single-morphogen circuit that would not pattern in the
continuous limit, could produce “fine-grain” alternating patterns on a lattice, similar
to lateral inhibition patterns (Collier et al., 1996). Further, as we will see below,
certain conditions, including particular initial perturbations, can further expand the

spectrum of patterning behaviors to include longer wavelength patterns.

To gain more insight into particular realizations of single-morphogen reaction-
diffusion systems, we considered a minimal, two-component regulatory system that
could be constructed synthetically in a living cell using known genes and regulatory
sequences (Figure 2.1C). In this system, an intracellular transcriptional activator
denoted A, promotes its own production and that of a repressor, denoted R. The
repressor, but not the activator, is assumed to be secreted and can diffuse from one
cell to another to down-regulate production of both A and R in both its own cell
and neighboring cells. In practice, this repressor could represent a composite of a
diffusible morphogenetic protein and an intracellular transcriptional repressor that it
activates through signaling (see Discussion). To simulate dynamics on a discrete cell
lattice, we used ordinary differential equations (ODEs) to represent the dynamics
within each cell, allowing R molecules to transfer from one cell to its neighbors
(Figure 2.1D). With these assumptions, we obtain the following equations for the

dynamics of the single-morphogen system on a discrete lattice:

AA;

o = BaF (A, R;) —yaA; 2.1)

AR, J

— = BrF(AiR) = yrRi+D ) (R; = R) (2.2)
! jelil

Here, B4 and Bg denote the maximal production rate of the activator and the
repressor, respectively. y4 and yg denote effective protein degradation and loss
rates. D denotes the diffusion coefficient of the repressor. ]i[ denotes the set of
cells that directly contact cell i. Finally, to mathematically represent combinatorial
regulation by the activator and repressor, we assume that the two regulators compete
to bind to the same target DNA binding site, arelatively simple type of interaction that
can be synthetically engineered (Phillips et al., 2012; Zhu et al., 2022). This results
in the following dependence of target promoter activity on A and R concentration
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(Figure 2.1E):
(#)" +x

F(A,R) = (A + (B + 1+k

(2.3)

Here, k quantifies the basal expression in the absence of activator and repressor, k4
and kg respectively represent the concentrations required for half-maximal activation
and repression, and h is a Hill coefficient that quantifies the ultrasensitivity of the
response to either regulator. This production function F'(A, R) is assumed to affect

the expression of both A and R.

We note that the alternative Gierer—Meinhardt reaction-diffusion kinetics (Mein-
hardt and Gierer, 1974), which is widely applied to model biological patterning
formation, leads to similar results, albeit with additional patterning features (Figure
2.7, Methods: Patterning with Gierer—Meinhardt kinetics). Furthermore, systems
with additional components or time delays are also compatible with this single-
morphogen reaction-diffusion mechanism (Figure 2.9, Methods: Models with addi-

tional components or time delays).

A typical reaction-diffusion simulation starts from a homogeneous initial condition
in which all cells are at the same value, equal to the steady-state for the case of
no diffusion, D = 0 (Figure 2.1F, left), perturbed by small spatial fluctuations. As
time progresses, diffusion can, under some circumstances, destabilize the spatially
homogeneous initial state, leading to patterning. The simulation continues until the

concentration profiles of all cells reach new steady-state values (Figure 2.1F, right).

We estimated model parameters (Methods: Parameter estimation, Parametric robust-
ness analysis, Figure 2.10) and simulated the model on a square two-dimensional
lattice, starting with a low level of random noise in the initial state (Figure 2.2A,
Movie S1, Methods: Lattice ODE simulation). Concentrations of activator and
repressor began diverging in different cells, eventually reaching two distinct states
with high and low concentrations of A (Figure 2.2A). Spatially, these states formed
a disordered “salt and pepper” pattern, with a wavelength of about 2 cell diameters,
as expected from the dispersion relation (Figures 2.1B, 2.2B). Autocorrelation anal-
ysis showed that the diffusion coefficient defines the length scale of the final pattern
(Figure 2.2C, Methods: Final stable pattern auto-correlation). In the low diffusion
regime, the circuit generates checkerboard-like patterns (Figure 2.2C, upper two
panels), while high diffusion rates produce irregular, low wavenumber patches of
elevated A expression (Figure 2.2C, lower two panels). Further frequency power

spectrum analysis confirmed the two regimes corresponding to the checkerboard-
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like pattern and less regular patch pattern (Figure 2.2D). Together, these results
show that the discrete single-morphogen system can spontaneously pattern with a

diffusion-dependent wavelength.
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(A) The identical lattice cells bifurcate during the simulation forming two distinct
classes. The histogram of cell count percentage based on the activator con-
centration captures the dynamics of the bifurcation. The lattice system finally

converges to a “salt and pepper” pattern.

(B) The final heterogeneous pattern is spatially autocorrelated. The blue curve
presents the radially averaged 2-D autocorrelation of the final frame. The
negative value at one cell distance reveals the lateral inhibition effect. As the
control, random shuffling cell positions of the final pattern lose the spatial

correlation (red curve).

(C) The diffusion coeflicient of the repressor alters the range of the lateral inhibition
zone. If the repressor diffuses slowly, the lateral inhibition intensively represses
the adjacent cells. Meanwhile, with a large D, the adjacent neighbors show a
positive correlation, and farther neighboring cells are repressed. Panels on the
left show simulation results in a 100 x 100 zoom-in view of the original 200 x
200 lattice. The right panels show an origin-centered 31 x 31 submatrix of the
2D autocorrelation function. Autocorrelation values at long distances are close

to zero, indicating that long-distance correlation is weak in this type of pattern.

(D) The wavenumber of the final pattern shows two types of dependence on the dif-
fusion coeflicient. Lower diffusion coefficients produce checkerboard patterns
with wavenumber at the spatial frequency cutoff corresponding to two cell di-
ameters. In the high diffusion regime, however, the final wavenumber decreases
when the diffusion coeflicient increases. The pattern wavenumber is defined
as the spatial frequency with the highest power, as calculated from the spatial
power spectrum (structure function), obtained from the Fourier transform of

the 2-D autocorrelation function.

2.4 The single-morphogen reaction-diffusion circuit can generate stable, long-
wavelength periodic patterns
Given the large range of wavenumbers for which the dispersion relation is positive,
one could expect patterns with low wavenumbers to be stable, as long as they fall
within the above-mentioned range of positive dispersion relation. We thus asked
whether initial conditions could stabilize particular low wavenumber modes, and
thereby establish well-defined spatial patterns. To that end, we first investigated the
effect of point and line morphogen sources (Figure 2.3A, left). We simulated the

same system (Figure 2.2A) as above, but transiently increased the concentration of
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R to a higher value either in a single cell or a line of cells. These perturbations
generated, respectively, either concentric rings or periodic lines of elevated activator
expression (Figure 2.3A, right). The patterns exhibited several key features: First,
they formed sequentially, as a front dynamically propagates away from the perturba-
tion at a constant velocity, as shown in Figure 2.3B (orange arrow) and Movie S2 for
the case of the line source (limitations on pattern propagation are discussed below).
Second, in the final pattern, A and R exhibit in-phase periodic spatial oscillations
(Figure 2.3C), as expected given that they are co-regulated by the same inputs (Figure
2.1C). Third, in contrast to standard Turing patterns in which spots of high activator
concentration tend to rearrange to maximize distances from neighboring peaks, in
this case, peak morphogen positions remained fixed throughout patterning (Figure
2.3B). Finally, once triggered, the dynamic patterning process is self-sustaining and
continues to propagate even if the initiating perturbation is transient (Figure 2.3B,

purple arrow).
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Figure 2.3: Spatially localized perturbation triggers low-wavenumber periodic pat-

terns with the propagative dynamics.
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Spatially localized perturbation as initial condition provokes low-wavenumber
regular patterns. The global noise triggers synchronized high-wavenumber
patterns. Meanwhile, the perturbing at one cell or a line of cells would promote
stripes patterns and circle patterns, respectively. The final wavenumber of
stable patterns is notably lower than the ones of patterns triggered by global

noise.

This low-wavenumber pattern forms in a propagative fashion from the per-
turbation position. A uniform speed traveling wavefront provokes a series of
low-wavenumber stripes to form with uniform time intervals. The established

patterns stay unchanged in both position and amplitude.

The concentration of the activator and the repressor in the final pattern stay
in phase. The activator concentration profile behaves close to a binary style,

while the repressor profile is more smooth and moderate.

The diffusion coefficient determines the pattern wavelength. A lower diffusion
coeflicient produces shorter wavelength patterns. The pattern wavelength mea-
sured from simulations with various diffusion coefficients is proportional to the

square root of the corresponding diffusion coeflicient.

The intensity of the constant repressor influx alters the phase of pattern stripes.
The constant influx of repressors at the trigger position also induces propagative
pattern formation. Increasing the influx level enlarges the distance from the

trigger point to the first stripe. Meanwhile, the wavelength stays consistent.

The dominated wavenumber measured from the final pattern is consistently
lower than the wavenumber preference from stability analysis. The evaluation
repeated with various D indicates the actual patterning dynamics do not choose
the one with the highest tendency but the one with 70% of the maximum, which
locates at the edge of the plateau reading from the dispersion relation curve.

The orange region shows the error bar from the measurement.

All of these features can occur with a variety of perturbations, including reducing

R, or increasing or decreasing A (Figure 2.8). Even perturbations whose amplitude

is small compared to the initial state concentrations can be sufficient to generate the

patterns in a deterministic setting (Figure 2.8). Similar results were also obtained on

a hexagonal lattice (Figure 2.11A, Methods: Patterning on the hexagonal lattice and

the rod-shaped lattice) or with anisotropic unit cells (Figure 2.11B,C). Analogous
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patterns also form in three-dimensional systems (Figure 2.11D, Methods: Patterning
in three-dimensional lattice). Together, these results indicate that transient spatially

structured perturbations can initiate stable, periodic, long-wavelength patterns.

One of the most important features of patterns is their spatial periodicity. In our
simulations, the wavelength of the single-morphogen pattern exhibited a square-
root dependence on the diffusion coefficient, D, with larger diffusion coefficients
producing larger intervals between adjacent stripes (Figure 2.3D, Methods: Pattern
wavelength determination). This relationship can be understood from a dimensional
argument: D, with units of um?/s, is the only parameter in the system whose
dimensions include length. The velocity of pattern propagation is proportional to
the square root of D for the same reason (Figure 2.3D, Methods: Pattern propagation
speed determination). By contrast, the temporal interval between the formation of

adjacent stripes is independent of D (Figure 2.3D).

In a biological context, the pattern-establishing perturbations could be generated by
a group of “source” cells that produce the morphogen constitutively, as occurs with
the sonic hedgehog morphogen in the developing neural tube (Dessaud, McMahon,
and Briscoe, 2008; Alaynick, Jessell, and Pfaff, 2011; Briscoe and Small, 2015). To
understand how these source cells impact patterning, we simulated the system with a
constant influx of morphogen at a defined position (Figure 2.3E). Higher morphogen
levels suppress the expression of A in correspondingly larger regions around the
source, effectively pushing out the position at which periodic patterning begins
(Figure 2.3E). When morphogen influx is stopped after patterning is established, the
existing patterned region expands inward, effectively “filling in” the proximal spatial
region without affecting the established phase (Figure 2.8B). Thus, morphogen
production rates from source cells determine the phase of the final pattern, without
affecting its period (Figure 2.3E). Taken together, these results indicate that a single-
morphogen reaction-diffusion system, triggered by a spatially localized perturbation,

can generate stable periodic patterns whose wavelength and phase can be controlled.

More generally, from the point of view of mode selection (Cross and Hohenberg,
1993), these dynamics suggest that transient perturbations can selectively amplify
modes with intermediate wavenumbers despite the monotonically increasing dis-
persion relation, as shown in a simplified one-dimensional example (Figure 2.3F).
This contrasts with the classic stationary-pattern formation scenario, in which the
dispersion curve is only positive for intermediate wavenumbers (Figure 2.1B left,

purple lines). In that case, the final wavenumber of the emerging pattern results from
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the competition between the linear instability, the nonlinear terms, and the boundary
conditions (Dee and Langer, 1983; Ben-Jacob et al., 1985; Murray, 2001). In our
case, simulations revealed that the wavenumber of the spatial pattern corresponded
to a dominant eigenvalue whose real part is about 70% of its maximum value (Figure

2.3F, right panel, gray shaded line).

2.5 Spontaneous single-morphogen pattern formation is sensitive to noise

We next asked if single-morphogen pattern formation is sensitive to stochastic
fluctuations (noise) in circuit components (Kilfoil, Lasko, and Abouheif, 2009; Eldar
and Elowitz, 2010) (Figure 2.4A). To quantify this sensitivity and understand how it
impacts patterning, we considered a version of the circuit that could be implemented
synthetically, in which A and R are co-expressed from a single promoter (e.g. using
an internal ribosome entry site (IRES) or 2A ribosomal skip sequence). In this
configuration, the expression of the two genes can fluctuate due to noise, in a largely
correlated manner due to their co-transcriptional expression. We therefore assumed
that the dominant source of the noise was extrinsic, comprising both static variation
as well as dynamic, correlated variability in the expression of the two genes (Elowitz
et al., 2002; Thattai and Oudenaarden, 2002; Raser and O’Shea, 2005). More
specifically, we modeled expression noise using an Ornstein—Uhlenbeck process
(Fox et al., 1988; Gillespie, 1996; Rohlfs, Harrigan, and Nielsen, 2013), which
describes fluctuations with a standard deviation over time of ¢, a standard deviation
of mean expression across cells of 77, and an autocorrelation time for fluctuations of
7 (Figure 2.4B). These fluctuations are encapsulated in the random function H (i, 1),
where i denotes the cell index, and ¢ denotes time, to produce a modified set of

circuit equations:

0A;

o = ByH G OF (An Ry) = yads (24)
o = PRH(.OF (A R) ~ygRi+D ) (R; = R) (2.5)
Jelil

Here, H(i,t), the random time series for an individual cell, exhibits a normal
distribution with mean m; =< H(i,t) >, and variance o->. Mean expression levels
are assumed to be normally distributed with mean 1 and variance 7%. The timescale
of fluctuations, 7, is taken to be about 10 hours, comparable to the mRNA half-life,

which sets a natural timescale for fluctuations.
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Figure 2.4: The propagation pattern is sensitive to noise during the formation process
and is robust to noise once the pattern is established.
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(A) The simulation of pattern formation in noisy conditions introduces noise in the
production rate of both species. The noise in the simulation recapitulates the

fluctuation in protein production in general.

(B) The dynamic noise represents the temporal fluctuation in a particular cell.
Meanwhile, the static noise describes the heterogeneity among the cell popu-
lation. The standard deviation quantifies the noise intensity, denoting o and 7,

for the temporal dynamic noise and the static heterogeneity, respectively.

(C) The final pattern is sensitive to the timing of introducing noise. The simulations
take place on a 1x100 lattice with reflective boundary conditions and transient
perturbation on the left end. At time O hours or 20 hours, o = 0.001 level
of noise starts to add to the simulation. The kymograph shows the pattern
formation dynamics averaging from 20 repeated simulations. The introduced
noise causes cells far from the perturbation center to bifurcate, generating “salt
and pepper” patterns and causing propagation failure (black arrows in middle
panel). Note that even without introduced noise, there is some pattern regularity

loss due to numerical errors in the simulation (gray arrows in right panel).

(D) The minimal single-morphogen reaction-diffusion circuit is sensitive to noise
only during pattern formation. The spatial correlation of two final patterns
with and without noise reveals the influence of noise and further indicates the
circuit robustness to the noise. The simulations starting from the homogeneous
state capture the pattern forming dynamics. Meanwhile, simulations with an
established pattern as the initial condition reveal the pattern sustaining stage.
During the patterning, the robustness score drops vastly even with a trace level
of noise (orange arrow). The established pattern shows high robustness even

with intensive noise.

In the presence of the noise sources described above, our simulations show that
even small amplitudes of noise disrupted pattern formation (Figure 2.4C, Methods:
Noise interpretation). In a one-dimensional system with stochastic fluctuations (o
= 0.001, n = 0), patterning was disrupted after formation of the first stripe (Figure
2.4C, left vs. right panel). Suspending noise until the middle of the simulation (t
= 20 h) allowed more stripes to form, but pattern propagation was quickly blocked
once the noise was present (Figure 2.4C, middle panel, black arrows). On the
other hand, while noise prevented the formation of new stripes, it did not disrupt

stripes that had already formed. These results indicate that noise can disrupt pattern
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formation and cause propagation failure without destabilizing patterned regions.
(Note that even in the noise-free condition, the pattern eventually loses regularity
(Figure 2.4C, right panel, gray arrows) due to accumulated numerical errors in the

simulation, reflecting the sensitivity of the system to noise.)

To quantify the ability of noise to disrupt pattern formation, we analyzed patterning
across different values of o and . As a measure of noise robustness in pattern
formation, we analyzed the spatial correlation between the steady state patterns with
and without noise. Values near 1 indicate patterning is unaffected by noise, while
values near 0 indicate the absence of periodic patterning at the expected frequency
(Methods: Noise robustness quantification). With a homogeneous initial condition,
the circuit was sensitive to noise during pattern formation (Figure 2.4D, blue line).
Disruption increased with the amplitude of noise, but even extremely low values of
o and n were sufficient to at least partially disrupt patterning (Figure 2.4D, orange
arrows). By contrast, if we initialized the system with a deterministically formed
pattern, even larger values of noise, up to at least 10%, failed to disrupt it (Figure
2.4D, red line). These results were again consistent with the notion that noise
disrupts patterning specifically in unpatterned regions and, more generally, could be
understood in terms of the ability of noise-stimulated patterns to fill in previously
unpatterned regions, but not penetrate regions in which the pattern is already formed
(Figure 2.4C, middle panel).

2.6 An inhibition-release mechanism overcomes noise sensitivity

Based on the results above, and inspired by aspects of retinal patterning in Drosophila
(Heberlein, Wolff, and Rubin, 1993), we reasoned that suppressing A and R expres-
sion in unpatterned regions could prevent their premature activation by noise, while
preserving their ability to pattern in response to the advancing wave of pattern for-
mation. To implement this behavior, we added an “inhibition release” mechanism
to the A-R circuit, based on a hysteretic positive feedback loop (Figure 2.5A). More
specifically, we incorporated an intracellular regulator, denoted M, which can exist
in either an inactive (M) or active (M*) state. We assume three key interactions
for M. First, the transition from the inactive M to active M* is stimulated by R in
an ultrasensitive manner. Second, M* stimulates M activation, creating a positive,
ultrasensitive, and bistable feedback loop. Third, M* inhibits A degradation, which
1s assumed to occur at an accelerated rate, and thereby boosts A protein levels. With
these assumptions, in the appropriate parameter regimes, M* exhibits an ultrasen-

sitive, hysteretic dependence on its input, R (Figure 2.5A, inset). Low levels of
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M* lead to correspondingly low levels of A, which in turn ensures low levels of
R production, maintaining the cell in a homogeneous (non-patterned) ground state
(Figure 2.5B, purple). By contrast, when M* is high, stabilization of A allows the
circuit to exhibit the pattern-forming behaviors described above, as the excited state
(Figure 2.5B, orange). In this way, an advancing wave of R morphogen can convert
M to its active form, progressively de-inhibiting the A-R circuit as it propagates
(Figure 2.5C).
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(A) Implementing this inhibition-release mechanism, we propose a three-component
circuit that relies on an intracellular regulator (M) to temporarily stabilize pre-
patterning cells. The third component has two forms: M* (active) and M
(inactive). Only the active form could repress the degradation of A and restore
its level in the cell. Meanwhile, both R and M* mediate the transition from M
to M*. The ultra-sensitivity of R-mediated M activation ensures the M* level

is either low or high.

(B) This inhibition-release circuit is bistable in the isolated system (no diffusion).
The excited state is patternable while the ground state is non-patternable in the
connected system. With proper parameters, the switch between two forms of M
is designed to accomplish either stabilizing pre-patterning cells (ground state,

purple) or releasing the inhibition to form patterns (excited state, orange).

(C) The patterned cells convert adjacent ground state cells and trigger new stripes
in a propagative fashion. Initially, all cells stay in the ground state. The local
increase of R converts the cell to the excited state. Reaction-diffusion pattern
forms on these patternable cells. The high concentration of R from the region
of patterned cells diffuses to their ground state neighbors and further converts
them to be patternable. Three events, the repressor elevation in the ground state,
the transition of the cell state from ground to excited, and the reaction-diffusion
pattern formation on newly excited cells, occur in a synchronous sequential
fashion. A snapshot of the concentration profiles from the simulation cap-
tures the detailed dynamics of the pattern formation, confirming our proposed

dynamics in the model design.

(D) The inhibition-release circuit generates propagative periodic patterns, validated
by the lattice ODE simulation. The simulation kymograph presents similar dy-
namics of A and R to the minimal single-morphogen reaction-diffusion circuit,
where the periodic stripe pattern forms sequentially following the constantly
propagated wavefront. Meanwhile, cells transform from the dormant to the

active state, ahead of the wavefront swapping and patterning.

(E) In the connected system, cell trajectories bifurcate after being evicted from the
ground state, bypassing the excited state. The phase portrait of the connected
lattice system shows the populational behavior of bifurcation. If we provide
perturbations (green arrows) to evict cells from the ground state in a connected

system, instead of ending at a single stable steady-state as in an isolated system,
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they end up with multiple stable states. All final states fall into two clusters,
responding to a typical periodic pattern’s bright (red dash circle) and dark
regions (green dash circle).

(F) The inhibition-release circuit vastly increases the patterning robustness to either
type of noise. Pattern formation simulations under such a paradigm at various
noise intensities show better robustness to either type of noise than the minimal
circuit. For minimal circuits, the regularity of the pattern is sensitive to even
considerably low-level noise. Meanwhile, the inhibition-release circuit shows

robustness to a wide range of both types of noise.

To test whether this circuit could prevent noise from triggering premature circuit
activation, while still allowing pattern propagation, we simulated the system on a
one-dimensional cell lattice (Figure 2.5C, 2.5D). We initialized the lattice with all
cells in the homogeneous ground state (low M*), which is stable in the absence
of external R. Production of R at the boundary triggered activation of M*, and
consequent de-inhibition of the A-R circuit, in boundary-adjacent cells (Figure
2.5C). Since excited state cells produce R at a higher rate than ground state cells
(Figure 2.5C, gray arrows), the R concentration gradient drove a net R flux towards
more distal, inhibited cells, leading to a propagating front of M* activation (Figure
2.5C, 2.5D). Once de-inhibited in this way, the A-R circuit progressively developed
periodic patterns of A and R concentration through a diffusion-driven bifurcation.
Patterning occurred through three sequential stages: 1) elevation of the repressor,
R, in the inhibited ground state, prior to its activation; 2) transition of the cell
from the ground to the excited state by activation of M; and 3) reaction-diffusion
pattern formation by the A-R circuit in the excited cells (Figure 2.5C). The third
step resembled periodic stripe patterns following a propagating wavefront in the
minimal A-R circuit (Figure 2.3). The effects of R diffusion can also be observed
in the phase portrait (Figure 2.5E). Once cells are evicted from the inactive state,
instead of ending at a stable excited state as in an isolated system, they exhibit
multiple stable states as a consequence of the diffusion-driven bifurcation. Most
importantly, all final states fall into two clusters, responding to the typical bright and
dark regions of a periodic pattern (Figure 2.5C). Tuning the M activation threshold
(K7 in the model) affects the propagation speed (Figure 2.12) by controlling the
effective time delay before a cell converts from the ground state to the excited state

in response to the propagating pattern. More specifically, with a higher threshold
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value, ground state cells require a higher R level, and therefore a longer time to

activate.

The inhibition-release mechanism makes patterning more robust to noise. We
simulated the circuits with or without inhibition release at different noise intensities.
Without inhibition release, even very low levels of noise were sufficient to disrupt
patterning, as discussed previously (Figure 2.5F, blue line). With inhibition release,
patterning remained robust across many orders of magnitude of noise strength that
disrupted the simpler circuit (Figure 2.5F, red line). Taken together, these results
show that single-morphogen reaction-diffusion can overcome the challenge of noise-

induced spontaneous high-frequency patterns.

2.7 Growth-coupled patterning is robust to noise

A second mechanism that can make single-morphogen reaction-diffusion patterns
robust to noise is through tissue growth. In many developmental systems, such as
somitogenesis or intestinal crypt development, tissue patterning is closely coupled
to growth (Schnell et al., 2002; Moreno and Kintner, 2004; Itzkovitz et al., 2012).
In some cases, including intestinal crypts and apical meristems, progenitor cells at
one location undergo repeated asymmetric divisions generating the rest of the tissue,

which develops patterns as it is produced.

We reasoned that this sort of growth-coupled patterning could reduce the noise
susceptibility of single-morphogen patterning. Assuming tissue growth occurs at
a similar or slower rate compared to pattern propagation, newly formed tissue can
immediately be patterned by adjacent, already patterned, tissue regions. The single-
morphogen circuit could thus operate in a regime in which cells pattern immediately
after division, and do not “wait” in a noise-sensitive state for a propagating front of

patterned cells to reach them (Figure 2.6A).
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The growth-coupled patterning model assumes a tissue growing in one dimen-
sion. All patterning cells with the minimal single-morphogen reaction-diffusion
circuit originate from a specialized cell type, the sender-progenitor (SP) cell,
which can asymmetrically divide, creating a patterning cell while keeping its
number constant. The newborn cell appears between the SP and the elder
patterning cell so that the entire tissue elongates as the consequence of cell di-
vision. Meanwhile, the SP cell stays at the tissue’s elongation end and produces
the repressor constantly. The Repressor gradient established by the SP cell sta-
bilizes newborn patterning cells. [R]g,qq is the spatial concentration profile of

the repressor gradient from the SP cell as an exponential decay function.

The growth-coupled circuit forms periodic patterns on the actively growing
tissue. The pattern formation process, initiated by the SP cell, takes place on
the patterning cells. The new stripes emerge periodically near the growing
center, where new patterning cells are produced. Meanwhile, the stabilized

patterns on the mature pattering cells stay unchanged.

The growth-coupled circuit generates periodic patterns on expanding tissue,
validated by the lattice ODE simulation. The simulated kymograph presents
similar dynamics of A and R to the minimal single-morphogen reaction-
diffusion circuit. The propagation speed of pattern stripes is coupled with

tissue growth rate.

Both diffusion coefficient and tissue expansion rate scale the pattern wavelength.
Besides the diffusion coeflicient, the tissue expansion rate is the second spatial
parameter in the model. A high expansion rate widens the wavelength. The
diffusion coefficient is well-coupled with a wide range of tissue growth rates.
Patterning circuits with small D fail to form regular stripes patterns on a fast-

growing tissue. Each cell is assumed to have a size of 10 um.

The growth-coupled patterning circuit notably increases the noise robustness of
the single-morphogen patterning. The noise interference test repeated with the
tissue-growing paradigm shows significant improvement in noise robustness
during the pattern formation stage. When the noise is beyond the tolerance, the

robustness score drops faster for extrinsic noise than intrinsic noise.

To test whether tissue growth could allow robust single-morphogen patterning,

we analyzed the minimal A-R patterning circuit on a growing cell lattice. We
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designated a specialized sender-progenitor (SP) cell type that asymmetrically divides
to generate a differentiated cell, which inserts itself between the SP and the products
of the previous asymmetric divisions (Figure 2.6A). This simple toy model of tissue
growth maintains a constant number of SP cells at one end of the tissue, while
generating a linearly elongating lattice of patterning-competent cells. We assume
that the differentiated cells express the full patterning circuit, and are therefore
competent to form patterns. By contrast, the SP cell acts as a constitutive producer
of the R repressor, establishing a concentration gradient from the tissue edge, whose
length scale extends several cell diameters into the most recently generated cells
(Figure 2.6A, Methods: Modeling growing tissue). In this scheme, the extracellular
repressor emanating from the SP cell inhibits patterning in the proximal region
(Figure 2.6B). However, as tissue growth progresses, individual cells eventually
emerge from this inhibitory zone and can begin to pattern. Together, these features
could allow growth-coupled patterning and avoid the disruptive effects of noise in

pre-patterned cells.

To simulate deterministic growth-coupled patterning, we initialized the cell lattice
with a single SP cell, and then periodically inserted newly differentiated cells directly
adjacent to it (Figure 2.6B). In the differentiated cells, we simulated the same A-
R circuit with the same parameter set analyzed above (Figure 2.3, 2.4), imposing
reflective boundary conditions at both ends of the growing tissue. As anticipated,
newborn cells initially expressed low levels of both A and R due to the production
of R by the adjacent SP. Once a cell reached a distance from the SP, its A and
R production rates switched to either a high state, in which both proteins were
strongly expressed, or a low state, in which both were weakly expressed, depending
on the states of the previous adjacent cells (Figure 2.6B). This led to periodic
patterning (Figure 2.6B, 2.6C). Patterning proceeded indefinitely, and no defects
were observed in this deterministic case for these parameters (Figure 2.6C). Further,
growth-coupled patterning occurred across a broad range of values of diffusion
coefficients and tissue growth rates (Figure 2.6D). These results show that coupling

to growth can allow progressive patterning.

We next asked whether growth-coupled patterning could overcome the disruptive
effects of noise. We simulated the system with the same growth dynamics, but
systematically varied the levels of temporal and static noise, as discussed previously.
Across a wide range of noise intensities, the growth-coupled system maintained

predictable patterning for conditions that prevented periodic patterning in static
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lattices (Figure 2.6E). In fact, both inhibition-release and growth-coupled allowed
patterning in the presence of both types of noise (Figure 2.13). These results
show that coupling to tissue growth can allow predictable patterning with a single

morphogen in the presence of noise.

2.8 Discussion

Turing patterning is a classic concept in developmental biology. In this work, we in-
vestigated reaction-diffusion patterning using only a single diffusible morphogen —
a regime that does not permit patterning under standard assumptions. Implemented
on a discrete cell lattice, rather than in a continuous medium, this single-morphogen
reaction-diffusion system can spontaneously generate patterns ranging from spa-
tially alternating cell states to irregular, longer wavelength features (Figure 2.2).
Motivated by the powerful roles that initial conditions and boundary conditions play
in development (Murray, 2001; Hiscock and Megason, 2015), we considered their
impact on patterning by this circuit. When stimulated by a point or line initial
condition, the same circuit can generate propagating “stripes” that, once patterned,
remain stable even if the initiating signal is removed (Figure 2.3). Transient initial
conditions can thus control what types of single-morphogen circuits are capable of

patterning.

In the single-morphogen system, low spatial frequency patterning modes must com-
pete with the global attractor of high spatial frequency noise. Without mitigation,
noise dominates, generally limiting the range and precision of the low-frequency
patterns. More specifically, we found that noise was most disruptive when it had time
to trigger high spatial frequency patterns that block the propagation pattern from the
initiating boundary (Figure 2.4C). However, two remarkably simple, biologically

plausible mechanisms are sufficient to ensure robust patterning.

On a static cell lattice, cells could circumvent noise-induced high-frequency patterns
by “locking down” circuit activity until the propagating front of pattern formation
approaches sufficiently to provide a high enough local concentration of morphogen
to “unlock” the circuit. At that point, the adjacent cells are sufficiently well patterned
to ensure the correct outcome for the cell in question. While this effect could be
achieved in many ways, here we demonstrate how a relatively simple bistable switch,
comprising a single positive autoregulatory factor, can provide this functionality,

ensuring robust patterning (Figure 2.5).

In growing tissues, noise can be circumvented in a distinct manner, by limiting
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patterning with tissue growth (Figure 2.6). In this regime, a set of progenitor cells
elongate the tissue by self-renewing and differentiating into patterning cells. These
newborn patterning cells immediately respond to the local environment to reach the
appropriate state. In this case, cells spend little time in a noise-susceptible state
where they are patternable, but not yet patterned. Hence, such a regime avoids the

unwanted formation of high-frequency patterns.

How realistic are these assumptions? Mathematically, multicellular patterning sys-
tems are often imagined to first approach a transient homogeneous unstable state
before cells diverge into distinct fates (Sprinzak et al., 2011; Raspopovic et al., 2014;
Palau-Ortin et al., 2015; Onimaru et al., 2016). However, in natural development,
patterning may more often proceed from a pre-patterned state that avoids the need
for further symmetry breaking. In fact, many biological systems exhibit features that
appear similar to those considered here. For example, in drosophila retinal develop-
ment, the periodic patterning of ommatidia occurs dynamically in the wake of the
morphogenetic furrow, as it sweeps across the eye disc, from posterior to anterior,
over two days (Heberlein, Wolff, and Rubin, 1993). Cells located anterior to the
morphogenetic furrow are unpatterned, while cells posterior to the morphogenetic
furrow assemble into patterned ommatidia in a stepwise process. The progressive
unlocking of patterning by the furrow is analogous to our inhibition-release model.
We note, however, that this system relies on both the Hedgehog and Dpp signaling

pathways, rather than a single morphogen, as analyzed here.

Patterning of the intestinal crypt provides an example of growth-coupled patterning
(Gehart and Clevers, 2019). In this case, the columnar cells at the crypt base act
as progenitor cells, dividing asymmetrically to produce a continually growing crypt
with patterning of differentiated absorptive (high Notch signaling) or secretory (low
Notch signaling) cells. Here, growth appears to play a role in unlocking competence
for patterning. Further, Wnt ligands secreted by Paneth cells at the base of the crypt
play a key morphogenetic role in inhibiting differentiation, although other diffusible

signals also play roles in this system.

Finally, in plant development, apical meristem development involves a central zone
of progenitor cells that divide and differentiate to replace cells in the peripheral
and rib zones, which divide more rapidly and further differentiate (Nakajima and
Benfey, 2002; Carles and Fletcher, 2003). Meanwhile, the shoot apical meristem
also produces the signaling molecule auxin, preventing axillary buds, which initially

locate in the leaf axil dormant, from undergoing shoot development because of the
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apical dominance (Dun, Ferguson, and Beveridge, 2006; Kebrom, 2017). We note,
however, that auxin signaling also involves efflux and influx carrier proteins that

could generate more complex patterning dynamics than those modeled here.

The simplicity of single-morphogen patterning could make it ideal for the nascent
field of synthetic development. As synthetic biology progresses from single-cell to
multicellular systems, a key challenge is engineering cells that can establish their
own spatial patterns. In this context, circuit architectures with minimal components
and interactions, such as the single-morphogen patterning systems explored here,
are critical. The entire single-morphogen reaction-diffusion circuit proposed here
could be implemented with well-characterized components. For example, Gal4 or
engineered zinc finger transcription factors (Khalil et al., 2012; Zhu et al., 2022)
could serve as the activator, A. The repressive morphogen, R, could be implemented
with the combination of a secreted diffusible signaling molecule and an intracellular
repressor whose expression it activates. Sonic Hedgehog has been shown to form
well-defined morphogenetic gradients in 3T3 cells, making it a candidate for the
morphogen (Li et al., 2018). Other natural pathways such as BMP could also
function in this way. Alternatively, synthetic small signaling molecules such as
auxin (Liang, W. Q. Ho, and Crabtree, 2011; Ma et al., 2020), and variants of
the synNotch system that allow morphogenetic patterning (Morsut et al., 2016)
could enable the engineering of patterning systems orthogonal to natural pathways.
Tet repressor variants could allow downstream negative regulation. To circumvent
noise, the bistable switch (Figure 2.5) could be implemented with a self-stabilizing
protease (Gao et al., 2018), synthetic phosphorylation systems (Mishra et al., 2021;
Woodall et al., 2021), transcriptional autoregulation (Zhu et al., 2022), or RNA-level
regulation (Levine et al., 2007; Morris and Mattick, 2014; Dykes and Emanueli,
2017), among other mechanisms. Finally, coupling patterning to tissue growth
could be realized using spatially confined cell culture systems that restrict growth to
elongated channels, as was shown for mammalian cells using the “mother machine”
microfluidic system (Pearl Mizrahi et al., 2016; Potvin-Trottier et al., 2016).

Thus, we anticipate this circuit providing a feasible foundation for engineering
synthetic pattern formation systems. Turing’s remarkably general pattern-forming
architecture is well known for the broad range of patterns it can generate. It is
interesting to see how initial conditions, noise, and variations in circuit architecture

jointly allow robust patterning in both natural and synthetic multicellular contexts.
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2.9 Methods

Lattice ODE simulation

Framework To tie experiment and modeling closely, we use cell-lattice simulation to
approximate experimental conditions. Depending on the geometry of the simulation,
we run simulations on 1-D or 2-D. In the one-dimensional case, virtual cells in a finite
length chain are connected with their left and right neighbors. In a two-dimensional
case, cells are connected in a square lattice. For each cell, we assign one set
of ODEs. Meanwhile, morphogen diffusion is realized by molecules transferring

among adjacent cells.

Equilibrium simulation An initial concentration profile guess is assigned to all

components. In the pre-equilibrium simulation, diffusion is turned off and the
ODE systems in each virtual cell would evolve by themselves. The system even-
tually reaches the homogeneous steady state, in which all the cells have the same

concentration profile in each circuit component.

Patterning simulation To start the pattern formation, we turn on the diffusion. A

specific trigger, corresponding to the initial condition, creates a transient heteroge-
neous perturbation in the system. The simulation finishes once the pattern stops

changing spatially and temporally.

Initial conditions Our simulations use two types of initial conditions, which lead

to two types of patterning results and dynamics. All lattice nodes are subject to
global random noise in the concentration of A (or R). The perturbation profile is
generated by random sampling from a Gaussian distribution with zero mean and
given standard deviation. The spatial localized initial condition only affects selected
cells in the same fashion. The selected cells usually follow a certain geometry, either
a single dot or a straight line. The pattern can be triggered by acting upon any of
the two species, by increasing or decreasing its concentration for an arbitrary time
window. Specifically, some tests involve a constant influx from a line of cells as the

initial condition.

Boundary conditions We consider a square lattice of size [ x w for our simulations

(in some cases the system is one-dimensional by setting w = 1). The simulation
is repeated with two types of boundary conditions: reflective and periodic. The
general features of the single-morphogen reaction-diffusion pattern are not affected

by the choice of boundary condition.

Parameter estimation To better fit the biological context, we estimate model param-
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Parameter Name Parameter Description Parameter value
Ba Production rate of activator 100 nM /h
Br Production rate of repressor 80nM/h
YA Degradation rate of activator 1.5 /h
YR Degradation rate of repressor 0.5 /h
D Diffusion coefficient of morphogen 1 um?/s
K4 Dissociation constant of activator 10 nM
Kg Dissociation constant of repressor 10 nM
K Basal leakage of promoter 0.01
h Hill coefficient of promoter 2

Table 2.1: Parameter list and estimated values in simulations

eters from BioNumbers (Milo et al., 2009) and from our own wet-lab experiments.
The estimated parameter values are shown in Table 2.1. Our model assumes that the
cell size is 10 um x 10 um x 10 um, and we further deduce other parameter values
from there.

Noise interpretation Our simulations consider two types of noise: temporal dy-

namic noise and static heterogeneity. Specifically, we generate the noise profile
H(i, 1), with given o and n ahead of the simulation. The temporal dynamic noise
is denoted by H (i, t)|,=0,-and the static heterogeneity by H (i, t)|, s=o. Initially, the
noise randomizes the production rate of both species. Linear interpolation between
time points in H (i, t)|, - is used when needed in the simulation. In the case where
the noise starts to interfere with the simulation at a later time point, we reset the

value of H (i, t)|,,- to 1 during the noise-free time period.

Modeling growing tissue The lattice is initiated with two lines of cells. One line is

the patterning cells, which have the complete single-morphogen reaction-diffusion
circuit. The other line is sender-progenitor (SP) cells, which only constitutively
produce the repressor. The “tissue growth” is realized by adding a new line of
patterning cells between SP cells and the adjacent existing patterning cells every
cell cycle Teye. In our model, the newborn patterning cells inherit R molecules
associated with the mother cells, i.e., the initial concentration of R in a newborn cell
is the same as that in the SP cell. The single-morphogen patterning circuit begins
to operate immediately in newborn cells. We did not consider dilution in the model
because the time-scale of R dynamics is faster than the timescale of cell division,
allowing R levels to quickly re-equilibrate in SP cells after division. To realize cell
growth in our model, the simulation “pauses” every T, and extends the lattice by

one cell. Thus, the tissue growth rate is defined as 1 cell /¢ in the later discussion
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of this work.

Quantification and statistical analysis
Final stable pattern auto-correlation 2-D spatial auto-correlation, calculated by
MATLAB function corr2() on the original 200 x 200 lattice simulation final frame,

reveals lateral inhibition (Figure 2.2B, 2.2C). In the 1-D pattern, the auto-correlation
function is calculated with the MATLAB function corr().

Pattern wavelength determination To measure the pattern wavelength, the MAT-

LAB peak detection function identifies the peak positions from the auto-correlation
profile of the 1-D simulation final frame. The measured wavelength is the average

distance of two adjacent peaks.

Pattern propagation speed determination We locate the peak positions in the final

pattern and then record the time when the activator in the corresponding cells crosses
a threshold (10% above the steady state). The time series defines the propagation
period. The propagation speed is the spacing between two peaks divided by the

propagation period.

Noise robustness quantification To evaluate the noise robustness of a certain

model, we run the pattern formation simulation with and without noise. The spatial
correlation between the two final repressor profiles quantifies the similarity of the
two patterns. If the correlation is near 1, we claim the model is robust to this partic-
ular level of noise. Otherwise, if the correlation is close to 0, the model is sensitive
to noise. This test is repeated at various levels of noise (both temporal dynamic
noise and static heterogeneity) in all three models, to evaluate the noise robustness

in the three circuits.

2.10 Supplementary

Analytical study of the single-morphogen reaction-diffusion circuit in the con-
tinuum limit

The following analysis considers a two-component system, and the conclusion is

valid for a multiple-component pattern. Given a single-morphogen patterning circuit

dA
rri Jf(A,R) (2.6)
%—I: =g(A,R) + DV?R (2.7)

the necessary and sufficient condition to generate stable spatial patterns is that

the Jacobian matrix stays stable without diffusion and becomes unstable for some
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wavenumber k with diffusion. denoting J(k) as

s = ) (2.8)
ga 8r— Dk
where k is the wavenumber (k = 1, 2, 3, ...). The eigenvalue is the solution of
(fa—=)(gr — Dk* = 1) — frga =0 (2.9)
A% = (fa+8r — DK*) A+ fagr — frga — faDk* = 0. (2.10)

When k is large, the equation becomes,
A2+ DKk*A - f4Dk* = 0. (2.11)

Assuming Re(A;) < Re(A3), then

P2 214 2
b= Dk +\/D2k +4f4Dk 2.12)
_ Dk2 A
== e 1) (2.13)
_ Dk2 1 4f4 4fA 2,
_ .
=fh-5a +@( (2.15)

monotonically increases as the function of k when k is large.

Stability analysis of the single-morphogen reaction-diffusion circuit in a discrete
lattice

Steady-state of the isolated system Given the lattice ODE of a single-morphogen

patterning circuit, firstly we solve the steady-state without diffusion terms.

aaA = f(Ai, R) (2.16)
IR J
~ =8(ALR)+D ) (R}~ R) (2.17)
jelil
f(Ai,R) =0 (2.18)
g(Ai,R)=0 (2.19)

The steady-state concentrations, denoted as Ag and Ry, are valid for all lattice nodes.
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Stability analysis on 1-D or 2-D discrete lattice Similar to the calculation in Plahte’s
work (Plahte, 2001), denoting C = [A1, R}, Az, R, ... An, Ry], the linearized ki-
netics of the whole system near the steady-state is

oC

5 =Un®J+0®BC. (2.20)

foof
£ 5 0 1

Q is the matrix describing the connectivity of the lattice. For all diagonal elements,

where

Qii = —m, where m is the number of cells directly connected with cell i. If diffusive
molecules can directly transfer between cell i and cell j, Q;; = 1. Otherwise, Q;; =

0. If the connectivity matrix Q can be diagonalized with matrix U and U~!, then

we have
L=U"'eL) ' (In®J+0®B)(U ' o) (2.21)
J+qVB 0 0 . 0
0 J+q?¥B 0 ... 0
- 0 0 J+q®B ... 0 . (2.22)
0 0 0 ... J+q"™MB
Since L is a block-diagonal matrix, which means
Eig(L) = U Eig(J +q"B). (2.23)
i€{1,2,..N}

The whole lattice is stable, if and only if all of J + q(i)B are stable. Meanwhile, the

lattice would be unstable as long as one of the J + ¢ B is unstable.

Connectivity matrix In our work, we study the patterning on both 1-D lattice and

2-D square lattice. In later analysis, we only demonstrate two analytical solutions
from two specific boundary conditions. The simulation also repeats with other types
of boundary conditions, which have no simple analytical solution for eigenvalues.
The MATLAB code numerically solves the eigenvalues of the connectivity matrix

from given boundary conditions in simulation.

Dispersion relation The 1-D dispersion relation, the maximum of the real part of

the Jacobian eigenvalues as the function of wavenumber &, is symmetric since g
= gN=k)_ In the Dispersion curve, we only show the left half, from k = 0 (isolated
system) to k = N/2.
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Parameter Name Parameter Description Parameter value
ki Basal production of activator 0.1
ko Degradation rate of activator 1
k3 Production rate of activator 1
ky Production rate of repressor 1
ks Degradation rate of repressor 1
Dy Diffusion coeflicient of activator 0
Dg Diffusion coefficient of repressor 3

Table 2.2: Parameter list and estimated values in the Gierer-Meinhardt model sim-
ulations

Patterning with Gierer-Meinhardt kinetics

The Gierer-Meinhardt model (Gierer and Meinhardt, 1972) is a well-studied reaction-
diffusion patterning system that has been evaluated in many simulation studies
(Ruan, 1998; Iron, Ward, and Wei, 2001; Sun, Wang, and Wu, 2017). Here
we demonstrate the mechanism behind the single-morphogen patterned propagative
periodic patterns is also valid with Girrer-Meinhardt kinetics. The Girrer-Meinhardt

kinetics are

0A A?

— =k - kA — +D,V3A 2.24
5 k1 — koA + ks R +D4 ( )
e k4A% — ksR + DRV°R, (2.25)

where k1, kp, k3, and k4 are circuit parameters. Setting D 4 = 0, we simulated the

non-dimensionalized system with values in Table 2.2 for other parameters.

Simulation on a square lattice with the same initial triggers as in the main model
showed similar patterns (Figure 2.7A). This periodic pattern also forms in a prop-
agative fashion (Figure 2.7B).

Models with additional components or time delays

Separating the morphogen and the transcriptional repressor In the model ana-

lyzed in the main text, the protein R has two distinct functions: acting as a morphogen
that can transmit signals from one place to another, and acting as a repressor that
can down-regulate A expression. Biologically, these two functions are more likely
to be implemented by distinct proteins. To analyze this more realistic scenario, we
considered an expanded three-component model, in which the activator (A) and the
repressor (R) are two transcription factors functioning intracellularly, while a new
morphogen “ligand” (L) can diffuse among cells and transmit signals. The promoter

integrates inputs from A and R to control the expression of A and L. Once secreted
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Parameter Name Parameter Description Parameter value
Ba Production rate of activator 100 nM /h
Br Production rate of repressor 80nM/h
BL Production rate of morphogen 80nM/h
YA Degradation rate of activator 0.4 /h
YR Degradation rate of repressor 0.6 /h
YL Degradation rate of morphogen 0.6 /h
D Diffusion coefficient of morphogen 1 um?/s
K4 Dissociation constant of activator 10 nM
Kr Dissociation constant of repressor 10 nM
K Dissociation constant of singling 10 nM
K Basal leakage of promoter 0.01
K2 Basal leakage of signaling promoter 0.01
h Hill coefficient of promoter 2
) Hill coefficient of signaling promoter 2

Table 2.3: Parameter list and estimated values in the three-component model simu-
lations

from the cell, the extracellular L can diffuse and signal to upregulate R expression
via a cognate signaling pathway, which is not explicitly modeled. In this case, we
have the following PDEs (Figure 2.9A):

0A

Y Ba((AJKD)" + 1)/ ((AJKA)" + (R/KR)" + 1+ k) — yaA (2.26)
Z—If = BR((L/KL) ho) + k2) [((L/K1) ha) + 1 + k2) — YRR (2.27)
%—f =BL((A/KA)" + )/ ((A/Ka)" + (R/Kg)" + 1+ &) =y L+ DV*L (2.28)

This model contains extra parameters. 1, yr, are the production and degradation
rates of the morphogen ligand L. k7, hj, x» describes the production dependence
of intracellular R to the L level. In this three-component model, we assigned
physiological values (Table 2.3) to these parameters and ensured the parameter set

was in the patternable regime.

Simulations of this model on the standard cell lattice produce similar patterns to

those observed in the more minimal circuit (Figure 2.9B).

Incorporating time delays in the regulatory system In cells, key regulatory func-

tions such as transcription, translation, secretion, and signaling can involve substan-

tial time delays of minutes to hours. These time delays could potentially impact the
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ability of the circuit to generate patterns. Moreover, compared to the activator, the
diffusible repressor is expected to have a longer delay, because it must be secreted
and then sensed by a corresponding signaling pathway. We therefore introduced
two time-delay constants, one for each arm of the circuit, denoted 74 and 7g, with
T4 < Tg. With these additions, the system can be modified to the following set of

delay differential equations:

%—? = BAF(A(t = 7). R(t — T8)) = y4A(1) 2:29)
% = BrF(A(t = 74), R(t — T8)) — yrR () + DV?R(1) (2.30)

Here, the notation A(r — 74) and R(¢ — 7g)) represents the value of A or R at a
time of 74 or Tg time units in the past. We simulated pattern formation dynamics
with various time delays spanning a physiological range from 10 minutes to 10
hours, while fixing all other parameters (Figure 2.9C). Incorporating the time delay
maintained patterning but slowed down its spatial propagation (Figure 2.9C). If
only introducing a time delay in the repression arm, the time delay eventually
destroyed pattern propagation and replaced it with temporal oscillations (Figure
2.9D). Similar phenomena have been described previously by (Gelens, Anderson,
and Ferrell, 2014; Bailles, Gehrels, and Lecuit, 2022). They demonstrated that a
time delay only in the repression arm leads to oscillations of the activator-repressor
system. In a combinatorial evaluation of the two delay terms, we also found that the
system with greater time delay in two regulation arms has a lower tolerance to time
delay difference (Figure 2.9E). Together, these results show that the two-component
patterning circuit discussed in this work can function under reasonable parameter
values when expanded to a three-component system, or when explicit time delays

are included.

Parametric robustness analysis

Understanding how patterning depends on parameter values is critical for engi-
neering synthetic pattern formation and for understanding the constraints on natural
patterning. We performed two analyses of parametric robustness: First, we evaluated
the robustness of the system to perturbations of the basal parameter set (Methods:
Parameter estimation, Table 2.1) used in this work. Second, we compared the
robustness of the single-morphogen patterning circuit to that of a corresponding

classical Turing circuit (by setting D 4 > 0) for the same parameter values.

Variation of basal parameters We analyzed parametric robustness using an ap-
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proach described previously (Scholes et al., 2019; Landge et al., 2020). We analyzed
system behavior across a multi-dimensional grid in parameter space, and calculated
the percentage of grid nodes that allow the pattern to form. Our minimal model has
nine parameters. We first focused on the four that can most readily be tuned ex-
perimentally: the production and degradation rates of both activator and repressor.
We created a 4-D grid varying each parameter over a 100-fold range, from 0.1 to 10
times its initial value, in logarithmic steps (Methods: Parameter estimation, Table
2.1). The patternable regime occupied about 8% of this scanned 4-D parameter
space (Figure 2.10A). We also scanned each parameter individually, while fixing
the values of the others (Figure 2.10B orange bars above each plot). This analysis

showed the range of robustness for each parameter.

Comparison to classical Turing patterning We also compared the sensitivity of

the single morphogen system to that of a classical two-morphogen Turing model. In
the Turing system, we take the same parameter values from the single morphogen
system (in which Dg = 1 um?/s) and set the diffusion coefficient of A equals
0.1 um?/s (D4/Dg = 1:10). The stability analysis reveals 3.1% of the available
parameter space can generate patterns. This value is nearly three times smaller than
the patterning region exhibited by the single-morphogen patterning circuit (8%).
In a more systematic analysis (Figure 2.10B), we evaluated the D 4, the diffusion
coefficient of A, from 0.001 um?/s to 1 um?/s. This value was chosen to be greater
than 0 but still lower than the R diffusion coefficient (1 um?/s), consistent with
the known requirement for standard Turing patterning. The patternable regimes are
getting narrower when D4 > 0 in all single parameter scans (Figure 2.10B). These
results suggest that, at least in these regimes, the single-morphogen patterning circuit

can operate with comparable parameter robustness as the classical Turing circuit.

Patterning dynamical behaviors varying in parameter space We also performed

simulations to investigate how the patterning dynamical behaviors vary in parameter
space. The patterning dynamics are mainly affected by two patterning criteria: 1)
The Jacobian of the isolated system is stable; 2) the Jacobian of the multicellular con-
nected system is unstable for some wavenumber (Figure 2.10C). Regimes satisfying
both criteria are the patternable regime, where the single-morphogen mechanism we
criteria 1 always stay homogeneous statically (Figure 2.10C, panel i, vi). However,
interestingly, regimes only satisfying criteria 2 starts from temporal oscillation and

forms spatial patterns in a propagative fashion (Figure 2.10C, panel iv). Similarly,
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we performed simulations varying all other parameters one at a time (Figure 2.10D).
In general, increasing 54, yYr, and Kg increases the activator level and increasing
Br, Y4, Ka, and h decreases the activator level. Moreover, patterns tend to have

shorter wavelengths when the activator level is high.

Patterning on the hexagonal lattice and the rod-shaped lattice

Besides the square lattice, the single morphogen patterning mechanism is compara-
ble with other isotropic lattices. Meanwhile, an anisotropic lattice, which is equiva-
lent to an isotropic lattice with anisotropic diffusion coefficients, would rescale the
patterns in corresponding directions. Here, we demonstrate that on the hexagonal
lattice, the circuit recurs the same pattern features (Figure 2.11A, left). The upper
panels in Figure 2.11A below show where the initial condition was applied. The fi-
nal stable patterns (Figure 2.11A, lower panels) and formation dynamics are similar
to the simulation results from the square lattice. Next, we investigate an anisotropic
cell lattice that has rod-shaped (length: width # 1) cells (Figure 2.11B, left). The
patterning dynamics from this lattice are similar to previous ones, however, because
of the anisotropy, patterns elongate in the cells’ major axis (Figure 2.11B, middle
and right). Simulations performed on the rod-shaped (ratio 3:1) cell lattice clearly
reveal that the pattern wavelength is anisotropic in two propagation directions (Fig-
ure 2.11C, upper panels). Furthermore, the scaling of wavelength is dependent on
the length:width ratio of the lattice cell. Figure 2.11C lower panels show patterns
from a less anisotropic lattice (rod-shape, length: width = 2). The pattern in the

x-axis is less “stretched” compared to the one from the ratio 3:1 cell lattice.

Patterning in a three-dimensional lattice

This single-morphogen reaction-diffusion circuit forms patterns in 3-D. We sim-
ulated pattern formation in a 3-D cubic lattice, where cells are allowed to signal
their six directly adjacent neighbors. Simulating with the same set of parameters
used in the 2-D case, spatially localized perturbations (Figure 2.11D, upper panels)
still triggered pattern formation in 3 dimensions (Figure 2.11D, lower panels). A
point source at the origin generates sequentially propagating concentric ‘“‘shells”
of activation (Figure 2.11D, left column). Meanwhile, a 1D perturbation (a line
of cells) triggers concentric cylindrical patterns, and a 2D perturbation (a sheet of
cells) triggers propagating parallel planes of patterning (Figure 2.11D). The spatial
periodicity is similar in 3-D to the period obtained for the analogous perturbation in
2-D.
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Figure 2.7: Single-morphogen reaction-diffusion circuit with Gierer—-Meinhardt

kinetics also generates propagating spatial patterns.
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(A) Simulations of the single morphogen model on a 61 x 61 cell lattice with
Gierer—Meinhardt kinetics, as described in Supplementary. Here, we show
three types of initial conditions: i) global random noise, ii) a line, and iii) a point.
The Gierer—Meinhardt kinetics generate similar patterns to those observed with
the main circuits analyzed in this paper, although additional bifurcations (stripe

breaks up into spots perpendicular to the propagation direction) can occur.

(B) Patterns propagate from the linear initial trigger. Simulations showed similar
pattern propagation dynamics, but different from those in Figure 2.3 in that

they also exhibited further bifurcations.
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A transient perturbation at the center in [A] or [R] profile can both initiate the
ring pattern formation. In the test, the perturbed concentration varies from
0.01x to 100x of the original steady state values. In all cases, the system is able

to form patterns, with changes in the phase of the patterns.

Removal of morphogen influx causes pattern stripes to “fill in” the empty space.
The constant influx of R creates an inhibition zone for the peaks of the activator.
Parallel stripes form on both sides at distance and propagate further. Once R
influx stops, the inhibition zone dampens. New stripes form in the empty space

with proper distance.



57

Diffusion
A B
y > .. g Initial perturbation position [A] (nM) in final stable pattern
[S = - 180
=}
.. ERT) /"— E
3 e 140
4 <20 o
B . ( @ 100
>
£ 40
ﬁAF(A R) ﬁLF(A R) c """*-._.-- 60
g \\‘_ _.-:45|
G 20
BxG(L) 8 60 Ay
= 10 20 30 40 50 60 10 20 30 40 50 60
o Cell position in x-axis (cell number)
.
C T7w=0,T,r=0 Tw=1,TR=1 =3 T®r=3 Ta=5Tn®=5 Ta=8Tr=8 w=10,,=10
OF
3 K
K=y
o 200
£ | '
=
400 | I 1 I i l i
10 30 50 10 30 50 10 30 50 10 30 50
D CeII p05|t|on (cell number) Ta, Ta (houn)
T=0,T:=0 T7w=0,T,=01 Th=0,Tr=05 T=0,Tg=1 T2 =0,Ta=2 T,=0,Ta=5 [R] (nM)
0 7 — —_——— — 50
= ;
2
e 200
£
=
400 20
10 30 50 10 30 50 10 30 50 0 30 50 10 30 50
Cell position (cell number)
E Ta (hour)
1 3 5 8 10
S | ’ ‘ Cell position (cell number)
Il Ill. | |L _ o000
5
o
< 200
%) @
et {11111} 1 . = oy
3 WL e e (L
<
< Lirs
> P
L=
It
I ’ ‘
=
< | T —
o Aeel I E T
HIELIRRE
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els with additional components or time-delay.
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In a more realistic model, the dual functions of the repressor in the minimal
model are realized by an intracellular repressor and a morphogen. The activator
(A) and the repressor (R) are two transcription factors functioning intracellu-
larly, while a new morphogen “ligand” (L) can diffuse among cells and transmit
signals. The promoter integrates inputs from A and R to control the expression
of A and L.

The three-component model can form propagative spatial periodic patterns.
With certain parameters (Methods: Models with additional components or
time delays) and proper initial condition, the expanded model forms “ring”

patterns.

The time-delayed model has good tolerance to the time-delay which is applied
equally in both regulation arms within a physiological range. With the 10
hours’ time-delay, the pattern stripes still form while the propagation speed

slows down.

The model is sensitive to the time-delay difference of the two regulation arms.
If the time-delay is above one hour, this single-morphogen circuit produces

temporal periodic patterns rather than the spatial periodic patterns.

The single-morphogen model has lower tolerance to time-delay difference with

greater time-delay in two regulation arms.
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Figure 2.10: Parametric analysis reveals the patternable regime of the single-
morphogen reaction-diffusion model.
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Stability analysis on the high-dimensional grid in parameter space surrounding
the basal parameter set reveals the patternable regime. The patternable do-
main is quantified as the percentage of patternable parameter sets in the entire

searched grid.

Varying each individual parameter, the patternable regime of a single-morphogen
circuit is greater than a corresponding classic two-morphogen circuit. For each
value of D4 (horizontal line) stability analysis shows the patternable regime
(orange) when varying a particular parameter (X-axis) and fixing all others.
The first line presents the single-morphogen circuit (D 4/Dg = 0). The other
lines show classic two-morphogen circuits with varying values of D 4 ranging
from 0.0001x Dg (0.0001 um?/s) to 1x Dg (1 um?/s).

The patterning dynamics and final spatial concentration profiles shift when
varying each individual parameter. The orange and purple bars show the
regimes satisfying each of the two patterning criteria: 1. The Jacobian matrix
of this system is stable without diffusion; 2. The Jacobian matrix is unstable
for some wavenumber with diffusion. The overlap regime (gray shade) is
patternable (also refers to Figure 2.10B, orange region). Lower panels stitch
1-D simulation results (vertical, triggered from top) with different values of
Br. In general, increasing S lowers the concentration of both components and
increases the pattern wavelength. Right panels present the pattern formation
dynamics with six given S values. Panel i and vi satisfied criteria 1, showing
homogenous static concentration profiles. Panel 1ii, iii, and v satisfied both
criteria and formed propagative spatial patterns, which followed the single-
morphogen reaction-diffusion patterning mechanism discussed in this work.
Panel iv only satisfied criteria 2 and showed a new pattern mechanism, where
a propagative wavefront converts a temporal oscillation into spatial periodic
patterns. Instead of staying at a steady state, the whole system undergoes
temporal oscillation without diffusion. Once the trans-signaling is allowed
and the proper initial trigger is applied, the wavefront propagates and converts
oscillation into spatial patterns. This interesting mechanism is not discussed in

this work.

A similar analysis for other parameters shows how dynamic behavior varies in

the corresponding parameter space.



A B

Initial perturbation  Final pattern

- Rod-shape lattice
C

length : width Propagation in long axis

Hexagonal lattice

[RI(nM)

40

20

0 [

D 0-D 1-D

c
o
= 25
38 20
Q
> N 15
< 10 *
[oN 5.
2 25
e
<
£
c
<
9]
9
£
©
a
©
£
[

<2 IS

Propagation in short axis

2-D

61

[RI (nM)
40

20

0

[R] (nM)

40

Figure 2.11: The single-morphogen system can pattern on hexagonal lattices and
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In a hexagonal lattice, where each lattice node has six adjacent neighbors, the

single-morphogen patterning circuit can form rings and stripes patterns.

The single-morphogen patterning circuit forms “stretched” patterns on rod-

shaped lattices.

The length: width ratio of a rod-shaped lattice cell affects the “stretching”
effects of the final patterns. Vertical stripes patterns have longer wavelengths
generated from more elongated cells, while the horizontal stripes patterns are

not affected.

The 3-D simulations start from point, line, and plane initial perturbations
(upper panels) and produce corresponding types of patterns (lower panels).
To visualize 3-D patterns, the final patterns only show cells with the activator
concentration higher than an arbitrary level (here we set [A] > 1 nM) in red and
hide the rest. In the sphere pattern (left column), three plane cross sections (z
=35, 9, 13 cell number) show the concentric “shells”, colored by each layer of

shells (from inner layer to outer layer, red to yellow).
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(A) If K7 is too small, the final stable pattern is similar to the one from minimal
circuit (regularity loss), which indicates that the inhibition-release mechanism
is not active. If K7 is too large, since the threshold is too high to have the

trigger wavefront to flip the cell state, no pattern will form.

(B) In the valid regime, the higher K7 slows down the propagation speed by in-
creasing the effective time delay before a cell converts from the ground state to

the excited state.
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Both inhibition-release and growth-coupled models allow patterning in the presence

of either or both types of noise.
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Chapter 3

RECONSTITUTION REACTION-DIFFUSION PATTERNS IN
MAMMALIAN CELL CULTURE

3.1 Abstract

Alan Turing proposed diffusion-driven instability patterning in 1952 as a “sim-
plified” mathematical explanation for periodic pattern formation in developmental
biology. Since then, many studies have explained the pattern formation in various
scales and species with the Turing mechanism. However, no studies have shown
that the simple circuit Turing proposed is sufficient to generate the periodic spatial
and temporal patterns in biology. We take advantage of synthetic biology, following
a bottom-up approach to reconstitute the Turing pattern in mammalian cell culture.
We build a synthetic circuit based on BMP4 and Activin signaling pathways in
AD293 cells (a derived cell line from HEK293). After validating each circuit com-
ponent, we test the spatial patterning of the full-circuit monoclonal cells in the cell
culture plate. This versatile circuit should allow us to tune the parameter for altering
the final patterns and reveals how spatial heterogeneous initial conditions affect the
patterning dynamics. Finally, we will include mathematical model simulations to
validate our experimental conclusions and further explore other possible circuitry

based on these two signaling pathways.

3.2 Introduction

Periodic patterns are widespread and diverse in nature. They are not only for
the decoration of the living creatures’ appearance (Shigeru Kondo, Iwashita, and
Yamaguchi, 2009) but also are found as the basis of periodic structure development,
such as teeth (Kavanagh, Evans, and Jernvall, 2007), limbs (Cooper, 2015), and hairs
(Jung et al., 1998). In 1952’s paper, Alan Turing first explained pattern formation
with reaction-diffusion theory. A homogeneous system of two diffusible components
could eventually form stable periodic heterogeneity patterns with particular reaction

terms and parameters (Turing, 1952).

Since then, Turing’s theory has been widely used to explain the formation of natural
periodic patterns. Early studies like Shigeru Kondo et al. used a classic Turing
model, the diffusive activator and repressor model, to explain stripes growth and
bifurcation of the marine angelfish Pomacanthus (Kondo and Asal, 1995). With



73

further understandings of the molecular basis of morphogenesis, more evidence
revealed the role of signaling morphogens in natural periodic pattern formation.
Han-sung Jung et al. believed BMP4 and FGF4 controlled the feather bud develop-
ment in chicken embryos under the Turing mechanism. FGF4 worked as the local
activator, and meanwhile, BMP4 worked as the long-range inhibitor. The perturba-
tion studies verified the prediction from a two-morphogen Turing model of BMP4
and FGF4 (Jung et al., 1998). These studies demonstrated that the Turing mecha-
nism is sufficient to generate periodic patterns. However, because of the complexity
of cell transcriptional and signaling networks, natural development content based
on in vivo studies cannot show the minimal structure and core feature of a functional

Turing circuit.

Furthermore, to understand the circuit fully, a natural development system has
limitations to perform perturbation studies. Rushikesh Sheth et al. tried to explain
mouse digit development with the Turing mechanism by knocking out endogenous
Gli and Hoxa (Sheth et al., 2012). Since there were only two components that could
be tuned at three (limited) levels, respectively, the perturbation study did not provide
complete evidence to model the role of these two genes under the reaction-diffusion

mechanism.

Last but not least, without a clear boundary of the gene regulatory network, occasion-
ally, the Turing mechanism could be overwhelmed in explaining natural periodic
patterns. For instance, not all fish skin patterns could be explained by reaction-
diffusion. Alexandria Volkening et al. claimed that the stripe formation of zebrafish
is due to pigment cell migration and proliferation (Volkening and Sandstede, 2015),
while the Turing mechanism is absent in this case (Watanabe and Shigeru Kondo,
2015).

Meanwhile, synthetic biology provides a new perspective on this problem. By
reconstituting the Turing pattern in a blank slate cell line out of any specific de-
velopmental content, fundamentally, we could avoid some of the issues mentioned
above. On the one hand, building a circuit (in parallel building a series of circuits)
following the Turing pattern criteria helps us figure out the minimum requirement
for the core function and the contribution from each component. On the other hand,
with a reconstituted tunable system, perturbation studies help us explore a more vast

parameter space in a higher dimension.

Recent attempts at building the synthetic Turing pattern are from bacteria to mam-

malian cells. David Karig et al. worked with E.coli to reconstitute periodic patterns



74

by using two quorum-sensing molecules as “morphogens” for the pattern formation
on the growing biofilm (Karig et al., 2018). By wiring Nodal and Lefty natural
signaling pathway to the Turing circuit in HEK293 cell culture, Ryoji Sekine et
al. observed the dynamic of heterogeneity emerging and spatial pattern forming
(Sekine, Shibata, and Ebisuya, 2018). However, the reaction-diffusion circuit in
this work is based on two morphogens that have been reported working in pairs
and creating Turing patterns in nature. The core reaction kinetics still hides in the
natural interactions where Nodal and Lefty compete for receptors. Thus, the po-
tential for reconstituting synthetic reaction-diffusion patterns using unconventional
reaction-diffusion elements within mammalian cell cultures has been insufficiently
explored, leaving a gap in our understanding of how spatial periodic patterns could

be generated.

In this project, we aim to reconstitute synthetic Turing patterns from scratch in
mammalian cell culture. We build a circuit for the synthetic Turing pattern based on
two nearly orthogonal signaling pathways: BMP4 and Activin. BMP4, as the short-
range active morphogen, induces the production of both morphogens. Meanwhile,
we design to use a third component, Smad6, to mediate the inhibition from Activin
to BMP4. Although involving two natural morphogens, this synthetic reaction-
diffusion circuit is fully bottom-up constructed since no natural Turing pattern based
on BMP4 and Activin has been reported so far. Based on this synthetic patterning
circuit, we confirm the minimal requirement for reaction-diffusion patterns and
provide a versatile platform to study patterning mechanisms, parameter tunability,

and noise-robustness.

3.3 BMP4 and Activin signaling pathways are capable of constructing syn-
thetic reaction-diffusion patterns
BMP and Activin all belong to the TGE family. They share similar signaling path-
way structures but nearly two distinct sets of signaling components. BMP4 signaling
transduces via the type I receptor BMPR1A/1B and type II receptor ACTR2/2B,
BMPR?2, further phosphorylates Smad1/5/8. The active Smad1/5/8, together with
Smad4, promotes the expression of the downstream gene via binding to the BMP
response element (BRE). Similarly, Activin interacts with type I receptor ACVRI1B
and type II receptor ACTR2/2B and further phosphorylates Smad2/3. The Smad2/3
also forms complexes with Smad4. However, they bind to the Activin response
element (ARE) and activate its downstream genes (Chen, Zhao, and Mundy, 2004;
Kawabata and Kohei Miyazono, 1999). Meanwhile, Smad6, classified as inhibitory
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Smad, only downregulates BMP signaling by blocking phosphorylated Smad1/5/8
(Miyazono, 2000) (Figure 3.1A). On the shoulder of the TGFg signaling pathways,
we hacked the natural circuit and designed the reaction-diffusion circuit based on
BMP4, Activin, and Smad6. In our circuit, BMP4 drives the expression of itself and
the other morphogen Activin; Activin induces Smad6 production, further inhibiting
the BMP4 self-activation.
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(A) BMP and Activin signaling pathways belong to the TGFS family but use

two subsets of components mediating signal transduction. Each of the two
morphogens has a combination of type I and type II receptors to receive the
signal. Expect Smad4, they use two exclusive sets of Smad proteins mediating
signal transducing and regulating their downstream genes. Smad6 is an inhibit

smad that only blocks BMP signaling inside the cell.

(B) BMP and Activin signaling are nearly orthogonal, and the cross-interference is
minor. The titration matrix of two recombinant morphogens on a dual reporter
cell line indicates BMP4 mainly activates BRE response while Activin activates
ARE. The data also reveals minor promotion from BMP4 to ARE reporter and

slight repression from Activin to BRE reporter.

(C) BMP4 and Activin gradient formation in the same spatial sender-receiver setup
shows a greater potential of Activin diffusing to a longer distance. With the
iBiDi insert, the dual senders are seeded in a well-defined region at the well
center. Senders produced both morphogens once induced by two different
inducers. The dual reporter cells covering the rest of the well presented a

gradient of fluorescent proteins in response to a morphogen gradient.

(D) Small molecule kinase inhibitors alter cell response to BMP4 and Activin.
The titration test evaluates the influence on the fluorescent signals of dual
reporter cells that are given an intermediate level of both two morphogens.
A83-01 represses the Activin response. Meanwhile, DMH1 mainly represses
the BMP4 response.

Before building the synthetic circuit for the Turing pattern, we evaluated the signaling
interference between BMP4 and Activin pathways. BMP4 and Activin signaling
pathways have little crosstalk. We performed a two-dimension titration on the
AD293 BMP4/Activin dual receiver cells with recombinant morphogen proteins.
The dual receiver is a stable cell line with BRE-mCherry and ARE-Citrine reporters.
The titration matrix data confirms BMP4 and Activin are the main ligands for BRE
and ARE response, respectively (Figure 3.1B). Furthermore, BMP4 can slightly
lift ARE response, while Activin represses BRE signaling. However, this minor
crosstalk is consistent with our circuit design, in which BMP should promote Actvin

signals while Activin would inhibit BMP signals.

Then we reconstituted both morphogens’ concentration gradients in the tissue culture

plate to evaluate their diffusion ability. Sequential plating of senders and receivers
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with iBiDi inserts creates a sender region surrounded by the receiver region—the
dual-sender cells secret BMP4 and Activin via two chemically inducible promoters:
40HT induces the UAS-Gal4 system producing BMP4, and Dox activates the TetOn
system making Activin. The secreted morphogen from senders forms a concentra-
tion gradient over receiver cells. Meanwhile, receivers sense the spatial signals
and interpret them as perception gradients. Activin reaches a further distance than
BMP4 in the gradient formation test (Figure 3.1C), confirming that Activin diffuses
faster than BMP4, which is also reported in the literature (McDowell et al., 1997;
Jones, Armes, and Smith, 1996).

To further expand the tunability of our patterning system, we use commercialized
small molecule kinase inhibitors to alter the morphogen signaling. A selective
kinase inhibitor A83-01, which inhibits Activin receptor ALK4/7 and blocks the
phosphorylation of Smad2, decreases the intracellular downstream ARE response
(Tojo et al., 2005). Meanwhile, DMH]1, which blocks BMP4 type I receptor ALK?2,
mainly dampens the response of BRE (Mohedas et al., 2013; Neely et al., 2012)(Fig-
ure 3.1D).

3.4 Stepwise evaluation with the full-circuit cell line confirms that the de-
signed circuit works properly

Our synthetic Turing circuit contains two functional modules. The reaction-diffusion

module is a three-component circuit with BMP4, Activin, and Smad6. BMP4 is

the short-range active morphogen, and Activin works as the long-range inhibitive

morphogen. The BRE promotor controls BMP4 production as a self-activated

feedback loop. The ARE promoter regulates the Smad6 (Figure 3.2A).
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(A) A schematic plot presents a synthetic Turing circuit design based on BMP4
and Activin signaling pathways. BMP4 and Activin are the two morphogens
in the reaction-diffusion circuit. Meanwhile, synthetically the BRE promoter
regulates the production of both two morphogens, and the ARE promoter

regulates the production of Smad6.

(B) Each construct has a coding sequence for a degron-tagged (DHFR) fluores-
cent protein downstream of the core circuit component, separated by IRES
sequence. The chemical-induced degron DHFR causes fast degradation of the
target protein (fluorescent proteins in this case), which can be stabilized by a

small molecule ligand trimethoprim (TMP).

(C) The reaction-diffusion circuit is active all the time due to BMP4 self-activation
unless actively removing extracellular BMP4. Meanwhile, the fluorescent
signals are under the control of TMP. They only appear once fluorescent proteins

are stabilized.

(D) Every individual arm of the synthetic reaction-diffusion circuit works properly.
A monoclonal with stably integrated the first two plasmids, the BMP4 self-
activation and Activin-induced Smad6-producing modules, can self-activate in
the regular cell culture media, showing high mCherry signal once meet TMP.
Inducing with additional recombinant BMP4 would not further increase the
signal. On the other hand, adding recombinant Activin can induce Smad6 pro-
duction and suppress the BMP4 self-activation. Meanwhile, further integration
of the Activin-producing module in this particular monoclonal drove the cells

to stay at high Citrine and low mCherry, indicating Activin was produced.

Our circuit has also equipped with a signaling readout module. Three fluores-
cent proteins link to each patterning component with the IRES sequence (Figure
3.2B). The mCherry and mTurquoise indicate the production dynamic of BMP4
and Activin, respectively. The third color mCitrine tracks Smad6. In practice, the
reaction-diffusion module is constantly active since all three species’ production is
based on the self-sustained BMP positive feedback loop. (Fig 2C, left) Meanwhile,
no signal readout is available without TMP induction. In our design, all fluorescent
proteins have the protein degron tag DHFR attached to the C-terminal, which causes
protein degradation in a TMP-dependent manner. Providing TMP to the cells blocks

the degron and starts to accumulate the fluorescent protein. We could find a flu-
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orescent protein half-life regime with fluorescent intensity reflecting the promoter

activity dynamics by titrating the TMP level. (Fig 2C, right)

Before selecting close-loop full-circuit cell lines for patterning, we performed step-
wise evaluation confirming each regulation arm of the synthetic Turing circuit works
properly. We first transfected wild-type HEK293T cells with the BMP4-producing
construct and Smad6-producing construct (Figure 3.2D, upper). We tested a mon-
oclonal with various inducers, together with TMP, which is for revealing the flu-
orescent color. Firstly, this monoclonal shows high mCherry and low Citrine in
the no-inducer condition and does not show stronger mCherry with additional re-
combinant BMP4, which indicates that the BMP4 self-regulation can sufficiently
self-sustain in a high production state. Secondly, treated with recombinant Activin,
these cells show low mCherry and high Citrine, proving that Activin induced Smad6
production and Smad6 inhibited the BMP4 self-activation (Figure 3.2D, lower-left).

Thirdly, we had another round of transfection to this monoclonal cell line with the
Activin-producing construct generating the close-loop full-circuit cells (Figure 3.2D,
upper). These cells show lower mCherry and higher mCitrine than the untransfected
cells, indicating that BMP4 successfully induces Activin production. So that Activin
can enhance Smad6 production and further represses BMP4 self-activation (Figure
3.2D, lower-right). So far, all regulation arms among the three circuit components

are functional, ensured by stepwise evaluation.

3.5 Monoclonals with full circuits develop spatial patterns

With all validation above, then we evaluate the pattern formation ability of full-circuit
monoclonal cell lines. The variation in monoclonals, due to random integration via
the PiggyBac system, enables a broad range of sampling in parameter space. Some
clones, which are situated in the appropriate parameter regime, display spatial

heterogeneity during pattern formation experiments.

The pattern formation assay begins with homogeneous monoclonal cells in an off
state for the reaction-diffusion circuit, and proceeds to form patterns in the tissue
culture plate. Pattern formation starts with confluent cells in a homogeneous state.
To achieve this, we cultured the cells in 250 ng/ml Noggin (which can neutralize
BMP4 and further attenuate the BMP4 self-activation) to shut off the reaction-
diffusion circuit, preventing bifurcation before the patterning experiment. Then,
we suspended and loaded well-mixed cells into the culture plate and allowed 24

hours for cell settling with Noggin protection. Finally, after cells were bound to
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the surface firmly, we washed away Noggin and initiated the experiment in pattern
formation media, containing 0.1 uM TMP for fluorescent protein stabilization, 5
mg/ml Palbociclib for cell division inhibition, and specific levels of inducers. These
procedures ensure that, in the beginning, all cells have the same circuit component

profile, no morphogen production, and are localized with their clonal (Figure 3.3A).
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Monoclonals selected from AD293 cells transfected with the synthetic reaction-
diffusion circuit are used for patterning experiments. Patterning cells in culture
seeding confluently on the Poly-D-lysine treated surface and covered with
patterning media. To keep the cells in a homogenous pre-patterning state, they
were kept in the regular culture media with 250 ng/mL recombinant Noggin
protein. Two days before the patterning experiment, the culture plates were
treated with Poly-D-lysine for better adherence. Twenty-four hours before the
experiments, patterning monoclonal cells cultured in Noggin were trypsinized
and transferred to the treated patterning device. The cells were loaded at full
confluency and kept in the cell seeding media containing 250 ng/mL Noggin
for one day. This guarantees that the cells are well-mixed and that the synthetic
circuit was off before patterning. On day 0, we replaced the cell seeding media
with patterning media with no Noggin, allowing the BMP self-activation to
establish. This media also contains TMP for stabilizing fluorescent signaling
and Palbociclib for slowing down the cell cycle. After induction, cells were
placed in the environmental chamber on top of a microscope for a three-day

time-lapse movie.

Spatial patterns emerge in the monoclonal cells with the synthetic reaction-
diffusion circuit. The first two rows demonstrated the entire scanned field
of view at various time points. The first row showed the fluorescent signal
profiles from mCherry and mTurquoise. They all reveal the BRE promoter
activity. Meanwhile, the second row showed the signal profiles from Citrine,
which indicates the ARE promoter activity. Within 60 hours, the homoge-
nous monoclonal cells bifurcated roughly into active and inactive populations
and developed spatial patterns. Instead of being sparsely and well-separated
distributed among the population, the active morphogen-producing cells (high
signal in RFP and CFP channels) were clusterized into domains with a simi-
lar size. The distribution of these clusters was roughly uniform in the whole
field of view. Meanwhile, the active Smad6-producing cells (high signal in the
YFP channel) formed larger clusters than the RFP channel, which are almost
connected into a spaghetti-shaped structure. The zoom-in view of the pattern-
ing dynamics (third row) clearly showed the “local activation with long-range
inhibition”, where the morphogen-producing cell cluster is always surrounded
by Smad6-producing cells, presenting a structure with a red center and green
peripheral. The pattern formation dynamic of the synthetic reaction-diffusion

involves the forming and competing of the LALI events. The white arrows
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point to the centers of four LALI events and show their activity with the size
of the arrow’s nock. They grew together in the first 15 hours and then started
to compete. In the later time, the middle two dampened their morphogen pro-
duction and inhibition of their neighbors. Meanwhile, the other two became

brighter and dominated the pattern.

(C) A83-01 and DMHI1 can tune the final pattern by affecting the circuit parameters.
Among the left three conditions, increasing the A83-01 level would allow more
cells to become morphogen-producing cells via self-activation, resulting in
larger clusters in the final patterns. Meanwhile, Smad6-producing cells are
also encouraged since more Activin was produced in the system. Among the
right three conditions, increasing the DMHI level would suppress the self-

activation, resulting in smaller clusters in the final patterns of both channels.

Time-lapse movies, captured with an incubator-top macroscope, reveal the fol-
lowing stages (Figure 3.3B). 1) Homogeneous cells randomly activate production
downstream of the BRE or TRE promoter. 2) Later, morphogen-producing cells
(BRE ON) contribute to local BMP4 and wide-range Activin morphogen gradients.
Smad6-producing cells (TRE ON) block the BMP4 signaling pathway, preventing
further morphogen production. 3) Eventually, a group of cells around the center
of local morphogen production dominate signal transmission, creating a saylocal
activation with long-range inhibition (LALI) zone. Fluorescent output appears as a
wider green gradient (Citrine reporter) surrounding narrower red (mCherry reporter)
and blue (mTurquoise reporter) gradients. 4) LALI centers adjust their positions
by inhibiting each other if they are too close or allowing a third center to emerge if
there is ample space in between. 5) Patterning dynamics continue until the system
collapses, caused by factors such as limited nutrition, waste accumulation, signal-
ing transduction changes in crowded cell populations, or morphogen accumulation

erasing spatial heterogeneity.

The heterogeneous states in patterned cells are transient. Sorting and replating cells
after three days in the patterning condition show they are able to reset their color in
the new patterning test rather than committing to a certain cell state permanently.
This versatility indicates the bifurcation of cell states is due to the local environment
of the cell.

The parameters of the synthetic reaction-diffusion circuit are tunable. Two selec-
tive kinase inhibitors, DMHI1 and A8301, can specifically dampen the BMP4 and
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Activin signaling, respectively. DMHI inhibits self-activation through BMP4 sig-

naling, resulting in fewer Cherry and turquoise positive cells in the final pattern.
Concurrently, A8301 moderates the Activin response, which weakens the repression
of self-activation, leading to an increase in Cherry and turquoise positive cells in
the final patterns (Figure 3.3C).

3.6 LALI events emerge during pattern formation

Next, we aim to determine if the heterogeneity in the final pattern is driven by
the reaction-diffusion mechanism, in which cell state distribution has a spatial
correlation. We analyzed movie data using two approaches: the spatial-temporal
correlation to reveal global features and the event-based superimposition to present
the self-organization of cells as local interactions.

The auto-correlation of mCherry and Citrine channels shows a “blub” size of around
400 um (Figure 3.4A). The cross-correlation between the mCherry and Citrine
channels displays a volcano-shaped spatial correlation profile. The red and green
channels are roughly colocalized, but the maximum is located a short distance from
the origin, indicating that strongly self-activated cells tend to repress their distant

neighbors more than themselves or adjacent neighbors (Figure 3.4B).
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(A) The auto-correlation of mCherry and Citrine profiles measures the pattern
wavelength. The auto-correlation matrix from the final pattern was further
radially averaged. The distance where the curve passes the x-axis defines the
periodic pattern wavelength. In both cases, the wavelengths measured were
around 400 um. The dynamics also showed that the auto-correlations curve

gradually converged to the final stable one.

(B) The cross-correlation between mCherry and Citrine profiles indicates that the
inhibition is mainly on neighbor cells. The radially averaged cross-correlation
curves at each time point present the interaction dynamics between morphogen-
producing and Smad6-producing cells. The distance where the maximum
correlation is located is gradually increasing over time. Meanwhile, the cross-
correlation is negative at zero distance. This indicates that the inhibition effect
on cells is not perfectly aligned with the Activin morphogen gradient. The
active morphogen-producing cells repressed their neighbor at a short distance

mainly, other than themselves and their adjacent neighbors.

(C) The cross-correlation of mCherry and Citrine profiles pairwise in time series
reveals the causality of morphogen-producing and Smad6-producing. For all
possible combinations of mCherry and Citrine profiles as time series, the
radially averaged cross-correlation was calculated. By further averaging by the
time difference, the cross-correlation shows as a heatmap. The X-axis is the
time difference between the two channels. The Y-axis is the shifted distance.
The maximum locates where the time difference is around 3 hours and shift

distance is about 40 um.

(D) The event-based superimpose captures the “local activation with long-range
inhibition” events. The event centers were identified by searching for the local
maximum in the RFP channel. The neighborhood of each center was extracted
as a series of sub-images. The “average” event is calculated by aligning the
event centers and superimposing all these sub-images. Further radially averaged
intensity profiles in both RFP and YFP channels clearly reveal the LALI feature.
As a control, the same metric is applied to the randomly shuffled coordinates

showing no spatial distribution of either channel.

Taking into account the time delay, we calculate the cross-correlation between the
mCherry and Citrine channels pairwise between each channel’s time series. For

each time points combination, radial-averaged cross-correlation is a function of shift
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distance discarding the directionality. We then further compress the 3-D correlation
data into 2-D by averaging based on the time difference. The resulting heatmap
of averaged cross-correlation has the time difference on the x-axis and the spatial
shift on the y-axis. The peak position demonstrates the causality between local
activation and long-range inhibition. The maximum correlation occurs when a
mCherry profile pairs with a Citrine profile that is 3 hours later and 40 pum apart in
the distance (Figure 3.4C).

Another way to capture LALI events is by superimposing them all. For each time
frame, we identify LALI event centers by searching for peaks in the mCherry
profile pre-processed with a log-LoG filter. The Laplacian of Gaussian (LoG)
filter highlights peak positions in a smoothed image. The logarithm applied to
the original image reduces absolute intensity differences among LALI events and
presents relative changes within any LALI event. In each frame, we take all LALI
events (radius 50 pixels from the center) and superimpose them, aligning by the
center position. We then apply a further radial average to the averaged superimposed
distributions in both mCherry and Citrine channels. This distribution profile clearly
reveals “local activation with long-range inhibition”, where the self-activation signal
(mCherry) has a narrow distribution, while the lateral repression signal (Citrine)
is widely spread. In comparison, the null model generates new coordinates by
shuffling the LALI center coordinates and applies the same matrice to them. This
control test only shows the uniform distribution for both channels (Figure 3.4D). This
superimposing method can also apply to temporal dynamics. We track LALI center
positions over time, and each trajectory records the formation and dissipation of a
LALI event. Aligning all trajectories, we gain insight into the formation dynamics

of an average LALI.

Both methods confirm the presence of LALI events in the patterning dynamics of
our cell lines, proving that our designed synthetic reaction-diffusion circuit is the

dominant mechanism guiding pattern formation in HEK cells.

3.7 Boundary conditions reshape the pattern formation

Another characteristic of reaction-diffusion patterns is their sensitivity to boundary
conditions. In previous studies (Jung et al., 1998), researchers used beads soaked
with morphogen proteins to perturb the local environment of patterning cells. These
perturbations established new boundaries with a roughly constant morphogen influx

into the reaction-diffusion system. Patterns in cells close to the boundaries deviated
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from those in the rest of the field. In chicken feather bud development, BMP4 and
FGF4 function as the two morphogens in the reaction-diffusion circuit, with BMP4
as the activator and FGF as the repressor. Introducing BMP4 beads induced adjacent
cells to develop into feather buds, while FGF repelled feather bud formation near
the beads.

We tested our synthetic reaction-diffusion circuit by sparsely co-culturing inducible
morphogen senders with patterning cells. As predicted by the model, BMP4 senders
caused adjacent patterning cells to become active morphogen senders, forming
the center of LALI. Conversely, Noggin senders depleted BMP4 secreted by the
patterning cells, inhibiting LALI formation near them. Statistical analysis of distance
measurements from LALI centers to the sender cells before or after induction

demonstrated a significant change in the location of LALI centers relative to senders.

3.8 Discussion

Traditional techniques employed to explore periodic patterning in nature have often
hit roadblocks in definitively establishing the sufficiency of underlying patterning cir-
cuits, complicating the comprehensive understanding of spatial organization. Until
the present study, the potential of reconstituting synthetic reaction-diffusion pat-
terns using non-natural elements within mammalian cell cultures remained largely
untapped, creating a knowledge gap regarding the generation of artificial spatial pat-
terns. Here, we’ve established a reconstitution circuit providing compelling proof
that a dual-morphogen system is sufficient for spatial pattern creation. This discov-
ery indicates that no additional hidden factors are required to create these patterns,
which paves new paths for synthetic biology research and prospective therapeutic

applications.

In this research, we devised a unique synthetic reaction-diffusion circuit, showcas-
ing pattern formation dynamics in a mammalian cell culture. The created synthetic
reaction-diffusion pattern is adjustable and can adapt to a variety of boundary con-
ditions. The circuit design incorporates two natural signaling pathways: BMP4
and Activin, which had never been identified in the same natural reaction-diffusion
circuit. BMP4 serves as the short activator and Activin as the long-range inhibitor.
By introducing Smad6, which only inhibits BMP4 signaling, we crafted a circuit
in which BMP4 promotes itself and Activin while Activin represses both itself and
BMP4. We selected monoclonals from AD293 cells stably transfected with our
synthetic circuit after evaluating the circuit components and regulatory arms. The
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pattern formation experiments began with a homogenous cell population seeded
confluently in the culture device. Guided by reaction-diffusion mechanisms, the
population started to bifurcate into active morphogen-secreting cells and inhibited
cells. Interestingly, the spatial distribution of these cells was not random. Rather,
the configuration of local activation with long-range inhibition domains was evenly
distributed, leading to spatial periodic patterns. By modulating the signaling sen-
sitivity with selective kinase inhibitors targeting either BMP4 or Activin pathways,

we could generate variations of the original pattern.

Our study introduces a novel method for building a synthetic reaction-diffusion
system that includes two morphogens not previously seen together in a natural
reaction-diffusion process. This breakthrough not only propels our understanding of
spatial patterning forward but also underscores the potential of alternative strategies
in reconstituting synthetic reaction-diffusion circuits. In essence, any morphogen
could potentially mediate cell-cell signaling within a reaction-diffusion mechanism’s
context, thus widening the spectrum for experimentation and application. Other
morphogens with fast diffusion coefficients, or the auxin system (Liang, Ho, and
Crabtree, 2011; Ma et al., 2020) as a “synthetic” morphogen, could serve as long-
range morphogens. As for short-range signaling, we could employ the natural
Notch-delta signaling or its synthetic counterpart: synNotch or SNIPR (Morsut
et al., 2016; Toda et al., 2018; Zhu et al., 2022).

The choice of morphogens is merely one dimension of the design space. An array of
possibilities exist for the “reaction” kinetics as well. Using the same morphogens,
researchers can explore numerous variations in reaction kinetics, potentially unveil-
ing new and unexpected patterns and behaviors. This extensive design space allows
for the customization of synthetic reaction-diffusion systems for particular applica-
tions, such as tissue regeneration or synthetic embryogenesis, by finely adjusting the

interactions between morphogens and the involved kinetics.

3.9 Methods

Plasmid construction:

The process of plasmid construction was carried out in adherence to standard molec-
ular biology protocols. The backbone of the plasmids was linearized with the help
of restriction enzymes sourced from New England Biolabs (NEB). The DNA frag-
ments that were to be inserted into these plasmids were produced either by utilizing

the PCR method or by means of gBlock synthesis, a service provided by Integrated
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DNA Technologies (IDT). For the ligation process, which involves the joining of
the DNA fragments to the plasmid backbones, we used Quick Ligation or Gibson
Assembly methods. To confirm the successful construction of the plasmids, each

was subjected to sequencing, performed by Primordium.
Cell Culture:

The cell line used in these experiments was AD293, a derivative of the standard
HEK?293 (Human Embryonic Kidney) cell line, chosen for its improved cell adher-
ence and plaque formation characteristics. These parental cells were procured from
Agilent. All cell lines used in subsequent experiments were derived from these
parental cells. For the routine maintenance of these cell lines, cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine
Serum (FBS), 1x Penicillin/Streptomycin/L-glutamine, ] mM Sodium Pyruvate, and
1 mM Non-Essential Amino Acids (NEAA). The cells were passaged every three
days, with a ratio of 1:10. For the maintenance or seeding of the patterning cell line,
an additional 250 ng/ml of recombinant Noggin was included in the media. When
patterning was required, the regular DMEM was replaced with FluoroBrite DMEM
from Gibco, and 0.1 uM TMP and 5 uM Palbociclib were added.

Transfection:

Transfection of the AD293 cells was performed when they had been plated in a
24-well plate for 24 hours, at a density of 100,000 cells per well. This transfection
process followed the standard protocol associated with Lipofectamine LTX. In the
transient transfection experiments, cells were transfected with the target plasmids
along with a co-transfection marker. For the creation of stable cell lines, cells were
co-transfected with a plasmid encoding the PiggyBac transposase and were then

selected using specific antibiotics for a minimum of two passages.
Flow Cytometry:

Flow cytometry experiments were conducted using a CytoFLEX (Beckman) flow
cytometer. Initially, cells were plated in a 96-well plate at a density of 30,000
cells per well. After two days of induction, the cells were dissociated using 0.05%
trypsin for five minutes at room temperature and then neutralized with a flow buffer.
The flow buffer contained 1x Hank’s Balanced Salt Solution (HBSS) with 2.5
mg/ml Bovine Serum Albumin (BSA) and 2 mM Magnesium Chloride (MgCl2).
Before being loaded into the flow cytometer, cells were passed through a 40-um cell

strainer to remove clumps. The flow cytometry data were subsequently analyzed
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with a Matlab-based software named EasyFlow, developed by Yaron Antebi.
Cell Sorting Procedures:

For cell sorting experiments, we utilized the MA900 cell sorter from Sony. Our
protocol began by dissociating the sample cells with 0.05% trypsin for ten minutes
at room temperature in their original culture vessels. This step was followed by
neutralization using four times the volume of sorting buffer. After this, the cells
were centrifuged, the supernatant was removed, and the cells were resuspended
in 0.5 mL of fresh sorting buffer. To ensure a single-cell suspension, cells were
filtered through a 40-micrometer cell strainer prior to loading into the cell sorter.
The sorting buffer was specially formulated to maintain cell viability and contained
I1x Hank’s Balanced Salt Solution (HBSS) supplemented with 2.5 mg/ml Bovine
Serum Albumin (BSA), 2 mM MgCl2, and 500 units of DNAse I to prevent cell
clumping caused by extracellular DNA. Post-sorting, cells were carefully transferred
to appropriately sized culture vessels and maintained in regular media to allow for

recovery and further growth.
Reconstitution of Morphogen Gradients:

To recreate morphogen gradients in vitro, we employed the iBiDi 2-well silicone
insert (Cat.No:80209). The insert was placed centrally in an empty well of a 24-well
plate. In one of the chambers, 60,000 sender cells were seeded in 80 microliters
of media. After a period of 12 hours to allow for cell attachment, the insert was
carefully removed and 500,000 receiver cells were plated to cover the entire well.
Once the receiver cells were firmly attached to the bottom surface of the well, the
media was replaced with fresh media that contained specific inducers for the sender
cells. This setup allowed the sender cells to modulate the behavior of the receiver
cells via the secretion of morphogens, creating a recreated in vitro morphogen
gradient. After a period of two days to allow for gradient formation and cell-cell
communication, image data were acquired by scanning the cells with an EVOS
imaging system. This approach allowed us to capture the effects of the morphogen

gradient on receiver cell behavior in a controlled and replicable manner.
Patterning experiment preparation:

The setup for pattern formation begins with the treatment of a 96-well plate. A 50
ng/ul. D-poly-lysine solution, a molecule that aids in cell adhesion, is applied to the
plate for one hour at room temperature. The plate is then thoroughly washed with

deionized water (ddH20) three times to remove any residual D-poly-lysine. It’s then
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left to air-dry at room temperature for 24 hours, which ensures optimal adherence of
cells in the subsequent steps. After the plate is prepared, patterning cells are seeded
at full confluency. These cells are then cultured in a media containing 250 ng/mL
Noggin for 24 hours, ensuring they are firmly attached. Following this, the Noggin
media is replaced with a specific patterning media to initiate the pattern formation
process. Finally, for observation and data collection, the cells are placed under
an Olympus microscope equipped with an environmental chamber. This setup
maintains the natural conditions required for cell behavior and capturing pattern

formation process in real-time using time-lapse microscopy.
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Chapter 4

CONCLUDING REMARKS

4.1 Why show interest in this project

Multicellular circuitry is fundamental to tissue-level functions, necessitating the
collaboration of numerous cells and often involving a variety of cell types. A
primary challenge lies in understanding how cell populations can self-recognize,
coordinate, and manipulate their spatial arrangements to achieve intricate biological

functions and maintain homeostasis.

Comprehending the emergence of self-organized patterning is critical to under-
standing natural tissue or embryo development and ensuring their functionality
through well-regulated and robust mechanisms. During the process of develop-
ment, cells undergo a series of transformations, differentiating into specific cell
types that eventually form the basis of tissues and organs (Shahbazi, 2020; Edel-
man, Chandrasekaran, and Price, 2010). This intricate process requires precise

spatial organization and coordination among diverse cellular populations.

In parallel, the ability to construct artificial multicellular circuits represents a sig-
nificant milestone in developing synthetic tissues with designed spatial features.
Achieving this goal would enable the creation of complex, functional structures
with potential applications in tissue engineering, regenerative medicine, and dis-
ease modeling. Developing synthetic tissues with spatial features would also serve
as an invaluable platform for studying the fundamental principles of multicellular
organization, communication, and coordination, shedding light on the underlying

mechanisms that govern tissue formation and function.

Taking into account that the reconstitution of the positional information model, such
as the synthetic Shh gradient pattern, still involves pre-specified sender-receiver
information, we decided to focus on an alternative patterning mechanism: the
reaction-diffusion model. In this approach, a pre-defined pattern is not required,

offering a more dynamic and flexible means of organizing cellular structures.

4.2 Remaining questions in the field
Synthetic multicellular spatial patterning remains an area of interest in synthetic

biology, with many questions still left to be addressed. The development of multi-



98

cellular circuitry has come a long way, but more orthogonal cell signaling modules

need to be characterized and developed for further advancement in this field.

Quorum sensing modules, mediated by small molecules, have been transplanted
from certain bacterial species and applied in many circuit designs (Dilanji et al.,
2012; Ma et al., 2020; Karig et al., 2018). The benefits of these modules include:

1. Easy translocation across cell membranes, eliminating the need for secretion

machinery and cell surface receptors.

2. Direct targeting of transcription factors, simplifying the key components of the

entire signaling module.

3. Originating from bacteria, providing better orthogonality when applied in mam-

malian systems.

Synthetic Notch receptors, such as synNotch (Morsut et al., 2016; Toda et al., 2018)
and its later version SNIPR (Zhu et al., 2022), have been used in various research
and medical applications, including CAR-T therapy (Choe et al., 2021; Hyrenius-
Wittsten et al., 2021). These protein-based signaling modules offer versatility in
receiving and executing signals. Despite their potential, synNotch signaling modules
have limitations due to their reliance on direct cell-to-cell contact, which restricts

their application in certain contexts.

A synthetic orthogonal morphogen signaling system, similar to BMP or Shh, is still
highly desired in many cases to address these limitations and broaden the range of

possible applications.

Noise presents another challenge in multicellular circuit design. Cell-cell interac-
tions introduce new dimensions, such as spatial location, environmental factors, and
heterogeneity among cell populations. These factors can affect the extracellular sig-
nal distribution and alter the signal flow, creating new situations for noise analysis.
Noise-robustness analysis in multicellular spatial patterning circuits has considered
two types of extrinsic noise: temporal dynamic noise and spatial static noise (Wang,
Garcia-Ojalvo, and Elowitz, 2022).

Noise control is essential, especially in self-organized spatial patterning or pro-
cesses requiring precise temporal-spatial coordination. Wide distributions of circuit
component levels in each cell can introduce unexpected features into the system.

However, noise can also be a key factor that brings certain features to the system that
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may not appear in a noise-free deterministic system. Some studies have reported

how noise can lead to a bistable state in a simple circuit (Weinberger, 2015).

Synthetic biology has made significant strides in insulating circuit components from
their natural biological contexts. However, there are still challenges in isolating the
target process dynamics from a series of non-equilibrium transient states. For
instance, reaction-diffusion theory often begins with a hypothetical uniform, homo-
geneous, and unsteady state for the entire cell population of interest. However, in

reality, we can barely find such a case in a noisy, dynamically developing system.

In our first work, we propose two strategies. The first is to temporarily lock unpat-
terned cells in a ground state and unlock them to an excited “ready-for-patterning”
state at the right time. This approach helps avoid unsteady unpatterned cells and en-
sures that the process starts from a controlled state. The second strategy is to couple
patterning with tissue growth, which also helps to bypass the unsteady unpatterned

cell issue while allowing for a more natural progression of development.

Interestingly, the transient transition between states may also lower the requirements
for certain steps in development. In spatial patterning, regardless of what the final
steady state of the circuit may be, as long as the circuit can transiently generate
regular spatial patterns, these patterns can be captured and stabilized in the next
step of development through other mechanisms. This allows the final steady state of
the patterning circuit to be less crucial to the overall success of the developmental

process.

In summary, refining and expanding our understanding of multicellular spatial pat-
terning involves developing more orthogonal cell signaling modules, addressing the
limitations of current signaling systems, and finding ways to analyze and control
noise in multicellular circuits. Additionally, addressing the challenges associated
with non-equilibrium transient states in synthetic biology requires innovative strate-
gies, such as temporally controlling cell states and coupling patterning with tissue
growth. By overcoming these obstacles and continuing to explore these challenges,
researchers can expect to see significant advancements in the field of synthetic
biology and its applications, further refining and expanding our understanding of

multicellular spatial patterning.
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Chapter 5

DATA AVAILABILITY AND DEPOSITS

Movie 1, Movie 2, and Matlab code for the mathematic model of the single-
morphogen reaction-diffusion in Chapter 2 are available at CaltechDATA (Sheng,
W. (2023). Synthetic Circuits for Multicellular Spatial Patterning [Data set]. Cal-
techDATA. https://doi.org/10.22002/sdgha-1xt88).

Further information and requests for resources and reagents should be directed to
and will be fulfilled by the Elowitz lab.



