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Abstract

Open questions in fundamental physics, such as the cosmological origins of the
observed imbalance of matter and antimatter, motivate the search for fundamental
symmetry violating physics beyond the Standard Model (BSM). Recent measure-
ments of heavy, polar, diatomic molecules constrain the existence of new, Parity (𝑃)
and Time-reversal (𝑇) violating physics at ∼10 TeV energy scales, exceeding the
reach of particle colliders. The power of existing molecular measurements motivates
us to pursue the next-generation of searches for symmetry violation. By adopting
polyatomic molecules as an experimental platform, we can generically combine
laser-cooling and trapping, BSM sensitivity, and exquisite quantum control over 𝑃
and/or 𝑇 violating energy shifts. These improvements are projected to increase the
sensitivity of measurements to the PeV energy scale. In this thesis, we develop
the foundations for new physics searches using cold and ultracold, linear triatomic
molecules. These molecules have long-lived vibrational bending modes with closely
spaced, opposite parity doublets, a key structure that aids polarizability, molecule
control, state engineering, and systematic suppression. We produce a cryogenic
buffer gas beam of cold YbOH molecules, using laser-enhanced chemical reactions
to increase molecular yield by an order of magnitude. As a prerequisite for precision
measurements, we perform high-resolution spectroscopic characterization of both
the ground and excited bending modes of YbOH. Next, we present detailed tests
of quantum state preparation and readout protocols in a YbOH beam, successfully
demonstrating Ramsey interferometry using two-photon transitions. Finally, as part
of the PolyEDM collaboration, we illustrate the power of polyatomic molecules by
combining laser cooling and optical trapping with quantum state engineering to
perform proof-of-principle measurements of 𝑃,𝑇 violating physics in magnetically-
insensitive states of ultracold CaOH molecules at Harvard University. Our results
open the door to a wide range of quantum-enhanced symmetry violation searches
benefiting from the unique structural features of polyatomic molecules.
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2.1 Diagram of second order interactions that arise in the effective Hamil-
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3.3 The beam extension downstream from the CBGB source. This photo
was taken with many electronics, optics, and detectors removed. . . 79
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3.5 Some examples of targets we have used for ablation. (a) Yb metal
target with stoichiometric Yb+Yb(OH)3 targets, the bottom one hav-
ing been cold sintered (see main text for details). (b) Targets after
ablation. Pale coloration occurs from oxidization. (c) Target used
for double ablation tests. In addition to the Yb and Yb + Yb(OH)3

targets, this plate has a well sealed off with kapton and stycast. Inside
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with 532 nm absorption. (d) In addition to the usual Yb and Yb +
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3.6 Energy profile for the Yb(1S)+H2O and Yb(3P)+H2O reactions lead-
ing to YbOH(𝑋̃2Σ+)+H(2S) products calculated calculated with DFT
and drawn with Gauss View 5. The molecular models represent the
system geometries at critical points, and were drawn in the Gauss
View 5 program. The Yb, O, and H atoms are represented by green,
red and white spheres, respectively. Solid and dashed lines connect-
ing the atoms correspond to 𝜎 bonds and temporary connections the
transition states, respectively. These calculations are performed by
Svetlana Kotochigova and Jacek Kłos, and are published in Ref. [227].108

3.7 Energies and molecular geometries at critical points for the Yb(1S)+H2O2

collision and Yb(3P)+H2O2 reaction leading to either YbO(𝑋1Σ+)+OH(𝑋2Π)
and YbOH(𝑋̃2Σ+)+H calculated with DFT and drawn with Gauss
View 5. The Yb, O, and H atoms are represented by green, red
and white spheres, respectively. Solid and dashed lines connecting
the atoms correspond to 𝜎 bonds and temporary connections the
transition states, respectively. These calculations are performed by
Svetlana Kotochigova and Jacek Kłos, and are published in Ref. [227].108

3.8 Depictions of the enhancement light geometries investigated. The
enhancement light is depicted by the thick green arrows. The thin
arrows indicate the absorption probes, which are fixed in position. (a)
Transverse geometry: the enhancement light is introduced through a
window ∼ 25 mm away from the ablation target and ∼ 12 mm away
from the cell aperture. (b) Longitudinal geometry: the enhancement
light is introduced through the cell aperture. (c) Collinear geometry:
the enhancement light is sent through the ablation window, collinear
with the YAG pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.9 Log scale absorption spectroscopy of YbOH density in the 𝑁 = 2,
𝑋̃2Σ+(000) state, both in-cell and front-of-cell. This data was taken
with the enhancement light in the transverse geometry. (a): In-cell
un-enhanced yield of 4× 1010 molecules, enhanced yield of 3× 1011

molecules. (b): Front-of-cell un-enhanced yield of 7×109 molecules,
enhanced yield of 8 × 1010 molecules. The difference in noise floors
can be attributed to different photodiodes operating with different gains.112
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3.10 Enhancement line shapes, data taken with the longitudinal geometry.
Left: Frequency scans and Voigt fits, demonstrating the variation
of YbOH enhancement with detuning of the Yb laser at different
powers. Right: Full widths at half maximum for the enhancement
line shape as a function of the power sent into the cell. The Doppler
width for the Yb atomic transition averaged over the entire ablation
pulse is ∼150 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.11 Absorption scans of the 3P1 line, over the 173Yb(5
2 →

5
2 ) transition

(left peak) and the combined 171Yb(1
2 →

3
2 ) + 173Yb(5

2 →
3
2 ) transi-

tions (right feature). The solid blue line is the integrated OD obtained
by integrating signals > 1 ms after ablation. The dashed orange line
is the integrated OD obtained by integrating from 0 to 1 ms. The
athermal nature of the early Yb population is immediately apparent
in the large linewidths. The YAG energy here was approximately 15
mJ/pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.12 Enhancement magnitude, calculated as a ratio of optical depths, plot-
ted against the laser power sent into the cell. The laser beam was
collimated to a ∼ 2.5 mm diameter. Error bars represent standard
deviations of results, as opposed to standard error, in order to show
the typical fluctuations over different shots and ablation spots. (a):
In cell enhancement, (b): Front of cell enhancement. . . . . . . . . . 116

3.13 Pulsed enhancement in cell for fixed pulse width of 0.5 ms, beginning
at different times relative to ablation. The y-axis is the fraction of
enhancement that occurs in during a specific pulse, compared to the
combined enhancement over all the different pulse times. Error bars
are standard deviations. . . . . . . . . . . . . . . . . . . . . . . . . . 116
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3.14 Enhancement of rotational and vibrational states in 174YbOH, and
hypefine states of 173YbOH. Error bars represent the standard devi-
ation of measured enhancement factors. (a), (b): Enhancement of
174YbOH as a function of ground state rotational level (a) and ground
state vibrational level (b). The rotational population was probed using
𝑄𝑄11(𝑁) lines. (𝑣1𝑣2𝑣3) denote the vibrational quanta in the Yb-O
stretch, O bend, and O-H stretch, respectively. The (000) data point is
an average of the 𝑁 = 0 through 𝑁 = 4 rotational enhancements. The
excited vibrational population was probed with diagonal transitions
to the 𝐴̃ state with Δ𝑣1,2 = 0. We note the (020) transition assign-
ment is not definitive, hence the question mark. (c): Enhancement
of the molecular hyperfine levels in the odd 173YbOH isotopologue,
resulting from driving 𝐹 = 5/2→ 𝐹′ hyperfine transitions in atomic
173Yb. The molecular quantum number 𝐺 results from coupling of
𝑆 to 𝐼𝑌𝑏, 𝐺 = 𝑆 + 𝐼𝑌𝑏. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1 Diagram of the rotational structure in the 𝑋̃2Σ+(000) (left) and
𝑋̃2Σ+(010) (right) states of YbOH. The different values of 𝑁 are
first split by the rotational energy, 𝐵 ∼ 7.5 GHz. For 𝑋̃ (000), the
value of 𝑁 uniquely determines the state parity. Then, on a smaller
scale, the spin-rotation interaction, parameterized by 𝛾 ∼ −100 MHz,
causes splittings of different 𝐽 levels. In the 𝑋̃ (010) state, we have
an additional fine structure, given by parity-doubling Coriolis inter-
actions on the 20 MHz scale. For brevity, we have not included
asymmetries that occur in the parity splittings. Finally, hyperfine
couplings between 𝐼 and 𝑆 cause ∼4 MHz splittings for different val-
ues of 𝐹. We note that 𝑋̃ (000) goes through a hyperfine “resonance”,
such that the ordering of hyperfine states reverses between 𝑁 = 1 and
𝑁 = 2. Such a reversal does not occur in 𝑋̃ (010), owing to the
different internuclear orientations of the spins in the symmetric top
like bending mode compared to the linear rotor-like absolute ground
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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4.2 Experimental schematic of the 𝑋̃ (010) → 𝐴̃(000) spectroscopy. (a)
YbOH molecules are produced in the 4 K cryogenic buffer gas cell
(brown box) by laser ablation (dark green triangle) of a solid pressed
target. The molecules are thermalized by collisions with He buffer
gas continuously flowed into the cell. The production of YbOH is en-
hanced by exciting Yb atoms using a laser (light green line) resonant
with the 1𝑆0 → 3𝑃1 atomic Yb transition. Some of the molecules are
produced in the 𝑋̃ (010) bending mode. The molecules are entrained
in the He gas flow and extracted out of the cell. We detect the molecule
number density in the 𝑋̃ state via absorption spectroscopy (yellow
lines) both in the cell (i) and in front of the cell (ii). The molecular
beam is collimated by a skimmer and collimators before entering the
probe region with electric and magnetic fields. We apply magnetic
fields using coils outside the vacuum chamber, and apply electric
fields using ITO coated glass electrodes inside the vacuum chamber.
In the center of the fields, molecules in the 𝑋̃ (010) state are excited by
a laser (orange line) and their fluorescence is collected through a light
pipe to a PMT (iii). (b) Sample signals from the CBGB. (i) In-cell ab-
sorption on the 𝑅𝑅11(0) line of YbOH 𝑋̃ (000) → 𝐴̃(000). The peak
optical depth corresponds to a molecule density of ∼5×109 cm−3 in
the 𝑋̃ (000), 𝑁 = 0 state. (ii) Front of cell absorption on the same
𝑅𝑅11(0) line. The peak optical depth corresponds to a molecule
density of ∼2×109 cm−3. (iii) Fluorescence after excitation of the
bending mode on a strong 𝑋̃ (010) → 𝐴̃(000) line. The integrated
signal corresponds to ∼8300 photons detected on the PMT. . . . . . . 132

4.3 Field-free spectrum over a ∼9 cm−1 range. Orange upper part is
experimental observation and blue lower part is theory prediction.
Prediction is using effective model detailed in section 4.2.3.3 with
coefficients (𝑐𝜇 = 0.28, 𝑐𝜅 = −0.49, 𝑐𝐵 = 0.83) and a temperature of
𝑇 = 2 K. Lines marked with * are unassigned and could arise from
other isotopologues or bands. . . . . . . . . . . . . . . . . . . . . . 135

4.4 Field-free level structure of the 𝑁 = 1 manifold in the 𝑋̃ (010) state.
States are arranged vertically by energy and horizontally by their 𝑀𝐹

angular momentum projection. States are labeled in the parity basis.
The hyperfine structure was not resolved in our work, and is instead
approximated using parameters from a study of the 𝑋̃ state [290]. . . 138
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4.5 Zeeman spectroscopy of the 𝑋̃ (010) state. The main plot shows
the transition frequency shift (with subtracted offset) in a magnetic
field, the blue lines are optimized model predictions, and the orange
circles are experimental measurements. Error bars are 1-𝜎 mea-
sured peak widths, set by a combination of radiative broadening and
unresolved hyperfine structure, limiting the ability to resolve closely-
spaced lines. Lower subplots are slices of the spectra at various
magnetic field values, with experimental data in orange and pre-
dicted line locations indicated with vertical dashed blue lines. On the
left, we show the field-free level structure of the transitions studied. . 140

4.6 Stark spectroscopy of the 𝑋̃ (010) state. The main plot shows the
transition frequency shift (with subtracted offset) in an electric field,
the blue lines are optimized model predictions, and the orange circles
are experimental measurements. The blue color gradient represents
parity forbidden transitions that gain strength at finite electric field.
Error bars are 1-𝜎 peak widths, set by a combination of radiative
broadening and unresolved hyperfine structure, limiting the ability to
resolve closely-spaced lines. Lower subplots are slices of the spectra
at various electric field values, with experimental data in orange and
predicted line locations indicated with vertical dashed blue lines. On
the left, we show the field-free level structure of the transitions studied.141

4.7 Level schematic for relevant states and perturbations in YbOH. Lev-
els are labeled by their vibronic term symbol. We detect the 𝑋̃ (010)
bending state (which is a vibronic 2Π state) by laser excitation (or-
ange line) up to the 𝐴̃2Π1/2(000) state and observe the fluorescence
from decays to the ground 𝑋̃ (000) state (yellow wavy line). This
excitation is a forbidden E1 transition, however, it acquires intensity
by mixing of the excited 𝐴̃2Π1/2(000) state with other |ℓ | = 1 states.
Mixing with 𝐵̃(010) occurs via first-order (blue) Renner-Teller (RT)
interactions, and mixing with the 𝜇, 𝜅(010) states occurs via second-
order (purple) cross terms between RT and spin-orbit (SO) (red)
interactions. Not shown for simplicity are similar SO interactions
between 𝐴̃2Π1/2(000) and 𝐵̃(000) and similar RT interactions be-
tween 𝜇, 𝜅(010) and 𝐵̃(000), which also contribute to state mixing. . 145
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4.8 Level diagram showing the splittings of a 2Π electronic state in 𝑣2 =

0, 1 vibrational states. We label states with vibronic term symbol
notation, 2𝑆+1𝐾𝑃. The spin-orbit strength is 𝐴, and the Renner-Teller
(RT) interaction is given by 𝜖 . Dotted lines show the correlation
of states as spin-orbit and RT interactions are turned on and off.
We choose to show 𝜖 < 0 and 𝐴 > 0 to match the sign of these
parameters in the M-OH molecules we consider. Diagram adapted
from Ref. [295]. Thanks to Jane Panangaden for helping make the
diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.9 Schematic diagram of the beamline used for pump probe experiments
to study the 𝑋̃ (000) → 𝐴̃(010) transition. Upstream, the pump light
is scanned. Downstream, the probe light monitors a single rotational
level in 𝑋̃ (000). If the pump laser hits a resonance, we will see
fluorescence in the pump region. Furthermore, if the pump addresses
the same ground state as the probe, then we will observe correlated
loss of the probe fluorescence. . . . . . . . . . . . . . . . . . . . . . 160

4.10 Sample LIF spectra obtained from excitation of the 𝑋̃ (000) →
𝐴̃(010) transition. a) The two largest features correspond to 𝑄11(1)
and 𝑅12(1) lines addressing the upper 𝐽′ = 3/2+ state. b) The two
largest features correspond to a second pair of 𝑄11(1) and 𝑅12(1)
lines addressing the lower 𝐽′ = 3/2+ state. . . . . . . . . . . . . . . . 162

4.11 Sample depletion spectra obtained from pump-probe spectroscopy.
The upstream pump laser is scanned over the 𝑋̃ (000) → 𝐴̃(010)
features shown in Fig. 4.10b, with LIF plotted in blue. Meanwhile,
the downstream probe is fixed on a 𝑋̃ (000) → 𝐴(000) line probing
𝑁′′=1, 𝐽′′=1/2−, with LIF plotted in orange. The depletion signal at
17651.37 cm−1 shows both pump and probe share a common ground
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.12 2-D confidence interval plots of correlated parameters from the
𝐴̃(010) effective Hamiltonian fits. See main text for details on pa-
rameters. Confidence intervals calculated using F-tests. The star
indicates the best-fit parameter values. Though we observe strong
correlations, overall the range of fit parameters have physically rea-
sonable values, see main text for discussion. . . . . . . . . . . . . . . 167
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4.13 Energy level diagram for the 𝐴̃2Π1/2(010) manifold of YbOH. As-
signemnts are given in terms of 𝐽 and parity P quantum numbers.
P = ±1 levels are separated horizontally for clarity. The center of
the diagram shows the levels observed in the experiment, while the
dashed lines on the side shows the levels obtained from diagonaliz-
ing the Hamiltonian from Table 4.2 with the parameters provided in
Table 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.14 Deperturbation diagram of the 𝐴̃2Π1/2(010) state of YbOH. The
levels are obtained by diagonalizing Tab. 4.2 using the parameters
in Tab. 4.4. We have grouped the levels on the right/left sides ac-
cording to their rotationless 𝑒/ 𝑓 parity [332], where 𝑒 levels have
P = (−1)𝐽−𝑆−𝑙 and 𝑓 levels have P = −(−1)𝐽−𝑆−𝑙 . . . . . . . . . . . 170

4.15 Schematic of the beamline used for tests of optical pumping into
the 𝑋̃ (010) state and characterization of 𝑋̃ (010) → 𝐴̃(010) lines.
Upstream, the molecules are pumped out of 𝑋̃ (000) through the
excited 𝐴̃(010) state, decaying into 𝑋̃ (010). Downstream, we probe
the increased fluorescence in the 𝑋̃ (010) state using the diagonal
transition to 𝐴̃(010). . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.16 Sample LIF spectrum obtained from excitation of the 𝑋̃ (010) →
𝐴̃(010) transition, driving the 𝐽 = 1/2, 3/2 components of 𝑁′′ =
1− to the lower 𝐽′ = 3/2+ state. The zero frequency offset is
17331.7093 cm−1, and the line centers are fit to be 17331.7083
cm−1 and 17331.7098 cm−1. a) Optical pumping into the bend-
ing mode is visible by comparing the blue (pump on) and orange
(pump off) signals. The salmon lines are two Lorentzian fits. The
optical pumping is performed with 265 mW of power, retroreflected,
on the 𝑋̃ (000) → 𝐴̃(010) line at 17651.3740 cm−1, addressing the
lower (𝑁′ = 1) 𝐽′ = 3/2+ state. As mentioned in the main text, the
probe power of 465 µW in 1.1 mm diameter beam results in power
broadening. b) The same spectrum taken with smaller frequency
steps and 70 µW power. The optical pumping light is always on, and
the salmon line is once again a two Lorentzian fit. . . . . . . . . . . . 173
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4.17 Saturation signals obtained by fixing the laser frequencies on a pump-
probe pair of lines and scanning the pump power. In both plots, the
probe was fixed on the 𝑁′′ = 1, 𝐽′′ = 1/2− → 𝐽′ = 3/2+, 𝑁′ =
2 transition of the 𝑋̃ (010) → 𝐴̃(010) band, while the pump was
varied. In both plots, orange squares (blue circles) indicate the pump
addresses the upper, 𝑁′ = 2 (lower, 𝑁′ = 1) 𝐽′ = 3/2+ state in
𝐴̃(010). a) The ratio of pump on vs pump off population probed
in the bending mode. The different excited states for pumping have
different pumping efficiencies and saturate to different values. b) The
fluorescence detected in the pump region when driving the 𝑋̃ (000) →
𝐴̃(010) transitions at 17651.3740 cm−1 (lower) and 17652.1465 cm−1

(upper). The traces indicate both a difference in saturation intensity
and saturation fluorescence. . . . . . . . . . . . . . . . . . . . . . . 175

4.18 An energy level diagram of the lowest lying bending levels of the
𝑋̃ , 𝐴̃, and [17.73](Ω = 1/2) manifolds. Diagram not to scale. The
splitting of 𝑋̃ (020) indicates the anharmonic splitting of the ℓ = 0, 2
levels. Lines marked with “?” are potential re-assignments. See
main text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.1 Rabi and Ramsey lineshapes, plotted as a function of unitless detuning
Δ𝜏, where 𝜏 is the interaction time. For the Rabi lineshape, we fix the
condition Ω𝑅𝑎𝑏𝜏 = 𝜋. For the Ramsey case, we fix Ω𝑅𝑎𝑚𝑡𝑝 = 𝜋/2,
and set 𝜏 = 𝜂𝑡𝑝, with 𝜂 = 0.1. Plots (a) and (b) are with no velocity
dispersion. For plots (c) and (d), we add velocity dispersion given by
𝜎𝑣/𝑣 = 0.1, which is a conservative estimate. Dispersion is modeled
by random sampling from a Gaussian distribution. We use light
shading to indicate 1-𝜎 variation of the readout signal. . . . . . . . . 196

5.2 A comparison of Rabi and Ramsey lineshapes Rabi and Ramsey line-
shapes, plotted as a function of unitless detuningΔ𝜏. We use the same
parameters as Fig. 5.1 and explicitly set the interaction times equal.
(a) Rabi and Ramsey lineshapes with velocity dispersion 𝜎𝑣/𝑣 = 0.1,
which is a conservative estimate. The line widths indicating 1-𝜎
variation. (b) Derivatives of the lineshapes, representing differential
sensitivities, normalized by the maximum value of the Rabi sensitiv-
ity. With dispersion, the maximum Ramsey sensitivity is ≈0.54 and
the maximum Rabi sensitivity is ≈0.29. . . . . . . . . . . . . . . . 198



xxix

5.3 The angular momentum probability distribution for the |𝑋⟩ and |𝑌⟩
states used for the ACME measurement, see main text for details.
The distributions are plots of ⟨𝐽, 𝐽 (𝜃, 𝜙) |𝜌 |𝐽, 𝐽 (𝜃, 𝜙) = 𝐽⟩, where
𝑀 (𝜃, 𝜙) = 𝐽 describes the state with maximum projection in an
arbitrary direction. Figures are made using the AtomicDensityMatrix
package in Mathematica. . . . . . . . . . . . . . . . . . . . . . . . 200

5.4 A schematic diagram describing coherent population trapping. On
the left, we have two ground states |𝑔1⟩, |𝑔2⟩, connected to the excited
state |𝑒⟩ by arbitrary TDMs. We can perform a change of ground
state basis (detailed in the main text) to transform to the optically
bright/dark basis, shown on the right. The bright state |𝐵⟩ is coupled
to the excited state, while the dark state |𝐷⟩ is not. Excited state
decays can either repopulate the bright/dark manifold, or they can
decay to different level manifolds dark to the laser, represented by |𝜂⟩. 203

5.5 Schematic diagram describing CPT linkages in multi-level transi-
tions. Laser couplings are indicated with full red and dashed green
arrows to clearly indicate the various linkages. In both cases the light
is transversely polarized. Rotating to 𝑍̂ polarization makes the dark
states self-evident. (a) A 𝐽 = 3/2 → 3/2 transition. In this case
we do not have any dark states. (b) A 𝐽 = 2 → 𝐽 = 1 transition.
Now we have two dark states. The first results from the “M” linkage,
indicated with red arrows. The other dark state results from the Λ

linkage, indicated with green dashed arrows. . . . . . . . . . . . . . 204
5.6 A photo of the home-made magnetic shielding around the six-way

KF50 cross. See main text for details. . . . . . . . . . . . . . . . . . 209
5.7 A schematic diagram of the ground and excited states in the 𝐽′′ =

1/2 → 𝐽′ = 1/2 transition driven by linearly polarized light. We
consider two bases that both describe equivalent physics. (a) Excita-
tion by transversely polarized light in the quantization axis defining
𝑀𝐹 . (b) Performing a basis rotation, we can consider a rotated
quantization axis defining 𝑀′

𝐹
. Now the excitation light is parallel

polarized, showing all ground states are coupled to a unique excited
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
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5.8 A schematic diagram of the ground and excited states in the 𝐽′′ =
1/2→ 𝐽′ = 1/2 transition driven by transverse polarized light. The
hyperfine states are written in the decoupled |𝑀𝐽 , 𝑀𝐼⟩ basis. In
this basis, E1 selection rules enforce Δ𝑀𝐼 = 0, and with transverse
polarization we haveΔ𝑀𝐽 = ±1. The TDM phase for optical coupling
depends on the excited state Clebsch-Gordan coefficients. We have
colored the excitation laser according to the TDM phase, where red is
positive and blue is negative. We see the twoΛ systems have opposite
relative phase on the two excitation arms, resulting in destructive
interference of dark states. . . . . . . . . . . . . . . . . . . . . . . 211

5.9 Oriented states used to implement spin precession using circularly
polarized light. The notation 𝑀𝑌 = 𝐹 · 𝑌 indicates our quantization
axis is along 𝑌 . These states are dark states of 𝜎± beams, and rotate
into each other by the action of transverse magnetic fields along 𝑋̂ or
𝑍̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.10 Schematic diagram of dynamics with the circularly polarized spin
precession scheme. The left side of the diagram has 𝑌 as the quan-
tization axis, while the right side has 𝑍̂ as the quantization axis. (i)
The molecules are initially optically pumped into |𝑀𝑌 = 1⟩ using 𝜎+

light. We work with a 𝑄 line, and therefore 𝑀𝑌 = 1 is dark to 𝜎+.
(ii) With a Wigner rotation, we can write |𝑀𝑌 = 1⟩ in a rotated basis
as a superposition of 𝑀𝑍 = −1, 0, +1 states. (iii) In the 𝑍̂ frame, the
application of a 𝐵𝑍 magnetic field causes the 𝑀𝑍 levels to split by the
Larmour frequency 𝜔𝐵 = 𝑔𝜇𝐵𝑀𝑍 , where 𝑔 is the state 𝑔-factor. (iv)
Alternatively, in the 𝑌 frame, the 𝐵𝑍 field is transverse and causes
Δ𝑀𝑌 = ±1 couplings that move population between states. (v) After
half a Larmour period, in the 𝑍̂ frame, the two𝑀𝑍 = ±1 have reversed
their sign relative to the 𝑀𝑍 = 0 state. (vi) In the 𝑌 frame, which
can be obtained from (v) by an inverse Wigner rotation or directly
time-evolved from (iv), we see the state has now evolved into the
|𝑀𝑌 = −1⟩ configuration. The spin has now reversed direction, and
this state can now be probed by 𝜎+ light. . . . . . . . . . . . . . . . 217
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5.11 A diagram detailing the circular polarization spin precession scheme.
(a) A level diagram of the 𝑄 line is shown schematically in the 𝑀𝑌

basis. The green arrows indicate optical pumping into the stretched
state by 𝜎+ light propagating along 𝑌 . (b) Schematic diagram of the
beam line, with the 𝑍̂ axis coming out of the page. The molecules
exit the CBGB, enter the magnetically shielded region, and encounter
the prep beam. Then, they precess freely for ≈ 25 µs before being
probed by the readout beam. We have shown the prep and readout
beams with the same polarization, but they can in principle be made
opposite to change the spin precession phase, similar to the ACME
polarization switch. . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.12 Spin precession data obtained using oriented stretched states. Here,
the prep and readout beams both had the same circular polarization
handedness. The y-axis plots the ratio of the fluorescence with and
without the readout beam. When 𝐵 ≈ 0, the initial dark state does not
precess and remains dark, and the fluorescence ratio is at a minimum.
As we vary the magnetic field, the stretched state is rotated into bright
states, which can fluoresce and give us signals.The functional form
of the fit is cos4 𝜔𝐵/2 + 𝜙, where 𝜔 = 𝑔𝜇𝐵𝜏/2. Using 𝑔 = 2, we
obtain 𝜏 = 14.8 µs. . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.13 A photo of the beamline used for the two-photon tests. The molecule
beam exits the beam source on the right and travels toward the left.
The region wrapped in magnetic shielding contains the upstream
KF50 cross and the 3-axis square magnetic field coils, and is where
the two-photon tests occur. The downstream octagon is where we
perform state readout and collect LIF. The 6 inch scale indicated is
approximate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.14 A schematic of the two-photon experiments performed in this section.
In the first stage, the population in 𝜓1 = |𝑁 = 1, 𝐽 = 1/2+⟩ is depleted
using 𝑋̃ (010) → 𝐴̃(000) light. Then, the molecules encounter the
two-photon light, in either CPT or detuned Raman configurations.
When the two-photon resonance matches the spin-rotation splitting,
there is population transfer from 𝜓2 = |𝑁 = 1, 𝐽 = 3/2+⟩ to 𝜓1. In
the final stage, the population revival in 𝜓1 is readout with the same
light that was used for depletion, and we collect the fluorescence. . . 224
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5.15 The annotated acousto-optic modulator (AOM) setup used to gener-
ate two-photon light. White arrows label optical path directions for
the double-pass setup. Parts are labeled as follows: VRFA, visible
Raman fiber amplifier; HWP, half waveplate; QWP, quarter wave-
plate; PBS polarizing beam-splitter; BS, 50/50 beam-splitter; H/V,
horizontal/vertical polarization; L/R, left/right handed circular polar-
ization. See main text for details. We thank Yi Zeng for setting up
the breadboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

5.16 Three level toy models for AOM and EOM two-photon setups. The
two ground states are 𝜓1 and 𝜓2, split by 𝜔12, and the excited state
is 𝑒, separated from the ground states be 𝜔𝑒2 and 𝜔𝑒1. (a) With an
AOM, we generate two laser beams, 𝐿1 and 𝐿2, that can address either
ground state. The one photon detuning is given byΔ = 𝜔𝐿2−𝜔𝑒2 , and
the two-photon detuning is 𝛿 = 𝜔𝐿2 −𝜔𝐿1 −𝜔12. (b) With an EOM,
we generate three frequencies: the carrier 𝜔0, and two sidebands 𝜔+1
and 𝜔−1. The diagram shows the resonant two-photon case when
|𝜔0 − 𝜔±1 | = 𝜔12. On resonance, we have two separate two-photon
linkages, 𝜔0𝜔−1 and 𝜔+1𝜔0. The relative phase of -1 between the
sidebands results in destructive interference of the total 𝜓1 ↔ 𝜓2

transition amplitude, see main text for details. (b) is adapted from
Ref. [398] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.17 A schematic diagram of the 𝑋̃ (010) and 𝐴̃(010) states involved in the
two-photon experiments with orthogonal polarizations. The diagram
is applicable to both CPT and detuned Raman transitions. Here, we
show the case of |𝜓1⟩ = |𝐽 = 1/2+⟩ and |𝜓2⟩ = |𝐽 = 3/2+⟩. The
two AOM sidebands are 𝐿1 and 𝐿2, and we indicate the one photon
detuning Δ and the two-photon detuning 𝛿 (see main text for more
details). Here, we have only shown one of the possible linkages
between 𝐹 = 2 and 𝐹 = 1. In general there will also be linkages
involving 𝐹 = 2, 𝑀𝐹 = ±1 states, not shown. . . . . . . . . . . . . . 238
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5.18 Coherent population trapping (CPT) features obtained with Δ = 0
scanning the two-photon frequency 𝛿 across the 𝑁 = 1+ spin-rotation
splitting. The signal is the population read out from the 𝐽 = 1/2 level,
denoted 𝜓1 in the main text. All model curves are calculated with
𝑠1 = 0.5, 𝑠2 = 10, taking into account the AOM scanning efficiency
with 𝜎 = 2.5 MHz, and using a 10 MHz excited state Doppler
broadened width. Both data curves have slopes due to target decay and
heating. (a) CPT signals obtained with perpendicular polarization on
the two sidebands 𝐿1 and 𝐿2. The feature in the middle is a dark
state formed by connecting 𝐽 = 3/2, 𝐹2 = 2 ↔ 𝐽 = 1/2, 𝐹 = 1. (b)
The CPT feature is absent when using parallel polarization on 𝐿1 and
𝐿2, a result of hyperfine interference. . . . . . . . . . . . . . . . . . 239

5.19 Detuned Raman transitions between 𝑁 = 1, 𝐽2 = 3/2+ and 𝑁 =

1, 𝐽1 = 1/2+ hyperfine states, driven by perpendicular two-photon
beams. The hyperfine transitions are labeled as 𝐹2 ↔ 𝐹1. The inset in
the top right shows a diagram of the levels involved, not to scale. The
data correspond to the LIF signal characterizing population revival
in 𝜓1. The two-photon laser beam has 22.5 mW of total power
split evenly between both sidebands. The beam is cylindrical with
𝑑𝑋 = 2 mm along the molecule travel direction and 𝑑𝑍 = 5.2 mm
along the transverse direction. Model curves are obtained using
𝑠1 = 𝑠2 = 220, and 𝑏𝐹 = 4.07 MHz and 𝑐 = 3.49 MHz, see main
text for details. The model curve is offset by 700 kHz to account
for unknown light shifts and inaccuracies in the optically determined
spin-rotation parameters. . . . . . . . . . . . . . . . . . . . . . . . . 243

5.20 A schematic diagram of the 𝑋̃ (010) and 𝐴̃(010) states involved in the
Ramsey interferometry tests with 𝐵𝑍 = 320 mG. Level positions are
representative only and not to scale. The states of interest, 𝑀𝐹 = 2
and 𝑀𝐹 = 1, are detailed in the main text, and their total 𝑔-factors
(in terms of 𝜇𝐵) are also indicated. The other states are off-resonant
and/or depleted. The two AOM sidebands are 𝐿1 and 𝐿2, and with
polarizations 𝑋̂ and 𝑍̂ , respectively. Levels are labeled according to
their free-field quantum numbers. . . . . . . . . . . . . . . . . . . . 247
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5.21 A schematic of the two-photon experiments performed in this section.
In the Depletion stage, we first apply polarization pumping to collect
population in |𝜓2⟩ = |𝐽 = 3/2+, 𝐹 = 2, 𝑀 = 2⟩. Then, we apply
depletion pumping to deplete |𝜓1⟩ = |𝐽 = 1/2+, 𝐹 = 1, 𝑀 = 1⟩.
Next, in the Prep stage, we apply a 𝜋/2 pulse between 𝜓1 and 𝜓2

using a detuned two-photon transition. After a free evolution time 𝜏,
we then apply another 𝜋/2 pulse in the Readout stage, mapping the
superposition phase evolution onto 𝜓1 and 𝜓2 populations. Finally,
in the Probe stage we use resonant light to probe the 𝜓1 population. . 249

5.22 A photo of the laser beams used to perform Ramsey interferometry.
The beams are cylindrically shaped to cover the entire molecular
beam. The molecules first encounter polarization pumping, followed
by depletion, and then Ramsey beams. See main text for details.
Readout is not pictured. The retroreflecting prism used to generate
the second Ramsey beam is visible. . . . . . . . . . . . . . . . . . . 249

5.23 Ramsey oscillations for various velocity classes in the molecular
beam, denoted 𝑣. The time axis is obtained from 𝑑/𝑣, where 𝑑 is
the spacing between Ramsey beams. Error bars are 1-𝜎 standard
deviations of the data. The data are fit to a sinusoid with frequency
𝑓 , representing the detuning, included above each plot, along with
standard fit errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.24 Ramsey interferometry on the 𝐹 = 2, 𝑀𝐹 = 2 ↔ 𝐹 = 1, 𝑀𝐹 = 1
transition. The main plot shows data from a 1 ms wide arrival
window of molecules with 200 m/s mean velocity. (i) A zoom in on
the region near zero detuning. Data given by orange markers with
error bars representing standard error. The blue line is a fit using
eq. 5.6 with velocity averaging. Parameters are center frequency
𝑓0 = 59.536 MHz, interaction time 𝜏 = 41.7 µs, Ω𝑡𝑝 = 𝜋/2, 𝑡𝑝 =

𝜏/10, and 𝜎𝑣 = 13.2 m/s. (ii) The interference lineshape obtained by
integrating all arrival times over the 4 ms wide pulse. Fewer fringes
are visible due to larger velocity dispersion. . . . . . . . . . . . . . 254
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5.25 Schematic diagram of the CaOH experimental apparatus at Harvard.
First, molecules are produced in a 2 stage buffer gas cell by laser
ablation of a solid Ca target in the presence of He buffer gas flow. A
heated fill line introduced H2O reagents, and chemical enhancement
light stimulates reactions that form CaOH. The molecules exit the cell
in a beam, are slowed by lasers, and are trapped in an RF magneto-
optical trap (MOT). The molecules are cooled further via sub-Doppler
methods, and then loaded into an optical dipole trap (ODT). In the
ODT, the molecules are polarized by an electric field, and we perform
spin precession using microwave pulse sequences. The left half of
the diagram (CBGB, slowing, MOT) was adapted from the CaOH
team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

5.26 Information about the zero 𝑔-factor experiment at Harvard Univer-
sity. (a) A geometric picture of the bending molecule at the zero
g-factor crossing, showing the electron spin ( ®𝑆) has a finite projec-
tion on the molecule axis (𝑛̂), giving eEDM sensitivity. However, the
electron spin ( ®𝑆) is orthogonal to the magnetic field ( ®𝐵), resulting in
suppressed magnetic field insensitivity. (b) The magnetic sensitiv-
ity (upper plot) and eEDM sensitivity (lower plot) for a pair of zero
g-factor states (𝑁 = 1, 𝐽 = 1/2+, 𝐹 = 1, 𝑀𝐹 = ±1) are shown as a
function of the applied electric field. (c) Experimental sequence to
prepare the eEDM sensitive state. First, the molecules are pumped
into a single quantum state (𝑁 = 1, 𝐽 = 1/2−, 𝐹 = 0) with a combina-
tion of microwave drives and optical pumping (I). Next, a microwave
𝜋-pulse drives the molecules into the𝑁 = 2, 𝐽 = 3/2−, 𝐹 = 2, 𝑀𝐹 = 0
state (II). Lastly, the eEDM measurement state is prepared as a coher-
ent superposition of the 𝑁 = 1, 𝐽 = 1/2−, 𝐹 = 1 𝑀𝐹 = ±1 states with
a microwave 𝜋-pulse (III). The states which are optically detectable
with the detection light are shown in black, while those not addressed
by the detection light are in gray. Figure reproduced from Ref. [403]. 261
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5.27 Electric field tuning of 𝑁 = 1 zero g-factor states near 𝐵𝑍 = 0 in the
absence of trap shifts. Blue lines denote 𝑀𝐹 = +1 states and red lines
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Introduction

Luminous beings are we, not this
crude matter.

–Yoda

1.1 Overview
Fundamental physics research currently lies at a paradoxical juncture. On one

hand, the last 50 years have seen the development and validation of the most suc-
cessful description thus far of Nature’s fundamental building blocks—the Standard
Model of particle physics. Built on the mathematical foundations of quantum field
theory (QFT), the Standard Model has consistently demonstrated its accuracy in
experimental tests, such as the discovery of the Higgs boson particle at the Large
Hadron Collider (LHC) [1, 2], or the one part per trillion agreement of theoretical
predictions with experimental measurements of the electron’s magnetic moment [3].

On the other hand, the Standard Model is a deeply incomplete theory. First,
though we observe four fundamental forces in nature1, the Standard Model only
describes three—gravity is missing. Second, the Standard Model has major inaccu-
racies when compared to cosmological observations, failing to provide an origin for
dark matter or dark energy. Third, the Standard Model does not explain the observed
imbalance of matter and antimatter in the universe [4]. Fourth, while experiments

1The strong nuclear force, the weak nuclear force, electromagnetism, and gravity.
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have determined neutrinos have finite mass, the Standard Model describes them as
massless. Finally, the Standard Model has 19 free parameters2 that must be provided
as an input to the model. These parameters are not derived, can only be obtained
experimentally, and their origin is not understood, giving rise to the flavor [5] and
hierarchy problems [6]. To address these issues and more, we require new physics
beyond the Standard Model (BSM).

The silver lining is that the new physics is out there; we simply have to discover
it. The experimental program searching for new physics has two complimentary
approaches—one can either precisely measure properties of exotic objects, or one
can take a magnifying glass to so-called ordinary matter, and precisely search for ex-
otic properties. The former approach motivates experiments detecting gravitational
waves or colliding particles at high energy, while the latter approach motivates table-
top experiments performing measurements on our ubiquitous constituents, atoms
and molecules. In this thesis, we focus on the low energy, tabletop approach, though
we emphasize that both approaches are complimentary, and their combination is
necessary to cover the vast parameter space of possible BSM physics.

A fruitful approach to searching for new physics is to perform a “background-
free” measurement. To ensure a low energy observable is background-free, we
can look for violations of fundamental symmetries that are expected to be very
weak in the Standard Model. Fundamental symmetry violation can generically
manifest as “exotic” electromagnetic moments that have not yet been observed in
Nature [7]. A textbook example is the permanent electric dipole moment (EDM) of a
fundamental particle, which would violate fundamental Parity (𝑃) and Time-reversal
(𝑇) symmetries, and is highly suppressed in the Standard Model [8]. In general,
vacuum fluctuations of symmetry violating BSM particles at high energy scales
can interact with fundamental particles, such as the electron, and induce permanent
EDMs at the atomic or molecular scale. Any nonzero measurement of an EDM
would constitute an exciting new realm of exploration in physics, while a null result
can place tighter bounds on proposed theories of BSM physics, such as models of
supersymmetry or extra dimensions [9]. As an example, current state-of-the-art
searches for the electron’s EDM in diatomic molecules [10, 11] have sensitivity to
symmetry violating new physics at ∼50 TeV energy scales, beyond the current reach
of particle colliders [12].

2Without neutrino masses and mixing, we get: 6 quark masses, 4 angles for the CKM matrix, 3
lepton masses, 3 gauge coupling constants, 2 Higgs constants, and the QCD vacuum angle. Neutrinos
add 4 angles for the PMNS matrix and 3 masses.
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It may seem odd that measurements of atoms or molecules at low energies can
provide us information on the inner-workings of high energy particle physics [13–
15]. After all, the center of mass energies of LHC experiments are at ∼13 TeV, while
the temperature of the cold molecules in our experiments are orders-of-magnitude
away at ∼100 µeV. However, the electromagnetic environment inside an atom or
molecule is actually quite extreme. For example, electrons orbiting a heavy nucleus
can travel at near light speed through the inside of the nucleus. These electrons
experience relativistically-enhanced electric fields, on the order ∼30 GV/cm, that
are 105 times stronger than what we can produce in a lab! Measurements of these
relativistic, core-penetrating orbits can have amplified sensitivity to the subtle effects
of permanent EDMs. Core-penetrating electrons can also provide sensitive probes
of Standard Model nuclear properties, and we direct the curious reader to Ref. [16]
for more details.

The powerful reach of existing molecular EDM measurements motivates us to
pursue the next-generation of BSM searches. By adopting polyatomic molecules as
an experimental platform, we can generically combine laser-cooling and trapping,
BSM sensitivity, and exquisite quantum control over EDM interactions [17]. This
will enable significant synergy with the toolbox of atomic physics techniques de-
veloped for quantum information, simulation, and metrology [18]. However, before
we can reach the promised land of quantum-enhanced measurements, we must first
understand and control the additional complexity present in polyatomics molecules.

The work described in this thesis develops the foundations for precision measure-
ments of symmetry violating physics in polyatomic molecules. While the majority
of this work focuses on YbOH molecules, the results are extendable to other linear
triatomic molecules of the M-OH form (M=Ca, Sr, Ba, Yb, Ra). Before presenting
results, we provide useful background in the introduction. In Section 1.2, we in-
troduce fundamental symmetries, motivate searches for their violation, and discuss
their manifestation as exotic electromagnetic moments. Then, in Section 1.3, we
discuss symmetry violation in atoms and molecules, including mechanisms for their
enhancement, and connections to high energy theory. Finally, in Section 1.4, we
conclude the introduction by answering the question, “Why polyatomic molecules?”

The rest of the thesis is divided as follows. Chapter 2 provides a foundational
understanding of molecules and the electromagnetic interactions used to control
them. In Chapter 3, we describe our beam source used to generate high fluxes of
cold YbOH molecules, and we present a novel scheme for enhancing molecule pro-
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duction using laser light. In Chapter 4, we present results on spectroscopy of YbOH,
in particular the study of the molecule’s fundamental bending mode, unique to poly-
atomics. In Chapter 5, we discuss methods for performing precision measurements
in polyatomic molecules, including results from prototype measurements in both a
cold YbOH beam and a trap of ultracold CaOH molecules. We conclude with an
outlook on an ongoing search for symmetry violation in 173YbOH, and discuss the
future of polyatomic molecules for precision measurements.

1.2 Fundamental Symmetry Violation
1.2.1 Background

A symmetry describes a transformation of an object that leaves the physical
properties of the object unchanged. The study of symmetry can simplify a complex
problem and classify emergent behavior. Symmetries help us understand what prop-
erties are redundancies of our reference frame, and what properties have physical
consequences independent of our basis. For example, the rotational states of poly-
atomic molecules can be very complicated, as we will see. However, in the language
of symmetry, we can understand and classify the many states of a molecule in terms
of their behavior under transformations (rotations, reflections) performed in the
molecule’s rotating frame. If we further understand the symmetries of interactions,
we can develop an accurate theory of the molecule’s physical behavior in external
electric and magnetic fields. Further, we can use our understanding of molecular
symmetry to predict emergent behaviors and to engineer specific quantum states
with favorable properties. Ironically, we use our understanding of symmetries in
molecules to look for violations of fundamental symmetries in physics!

The same principles of symmetry classification can be found all over physics,
including at the fundamental level in describing subatomic particles. The laws
of physics as we construct them are imbued with various spacetime symmetries.
Theories of fundamental physics can trace a lineage to Copernicus’s insight that as
observers, we do not occupy a privileged position in the universe. In other words,
the law of physics should be independent of our frame of reference in in space and
time. Of course, there is a program of new physics looking for violations of even
these symmetries [14]. However, to date, we have not found evidence for variation
of the laws of physics in different regions of space or different points in time.

The complete group of spacetime symmetries is the Poincare group [19], con-
sisting of the following transformations: translations, rotations, and Lorentz boosts.
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Particles in our theories are defined as objects that retain characteristic physical
properties even when we transform our reference frame. Wigner put this concept
on mathematical grounds in 1939 [20] by defining particles as the irreducible repre-
sentations of the Poincare group, classified by two properties: an intrinsic spin that
must take on integer or half-integer values, 𝑆 = 0, 1

2 , 1,
3
2 , . . . and an intrinsic mass

𝑚 ≥ 0. For 𝑚 > 0, what we call a particle is a collection of 2𝑆 + 1 spin orientation
states that transform into each other upon rotations of physical space. This is just
a statement of angular momentum conservation: while the spin of an electron may
point in different directions in different reference frames, its magnitude 𝑆 = 1

2 must
be conserved. The transformation properties of an arbitrary spin 𝑆 under rotations
are given by the Wigner D-matrices,D (𝑆) , which we will repeatedly encounter later
in this thesis in the context of the symmetric top eigenstates that describe molecular
rotation. Finally, Wigner also showed for 𝑚 = 0, we can only have 2 orientations,
which correspond to the two polarizations of light. We do not observe 𝑚 < 0 states
in nature.

So far, the spacetime symmetries we have discussed are continuous in nature.
We can also investigate the behavior of physical systems under discrete symmetries,
essentially generalizations of the concept of a reflection. In QFT, dynamic quantities
such as momenta or currents are described in terms of relativistic four-vectors. For
example, we can consider the electromagnetic current 𝑗𝜇 = (𝜌, ®𝑗), where 𝜌 is the
charge density and ®𝑗 describes standard three dimensional charge currents. We
consider a generalized reflection operation, consisting of 𝑗𝜇 → − 𝑗𝜇. This turns
out to be a deep symmetry transformation that is connected to Lorentz invariance,
and it is known as Charge-Parity-Time (𝐶𝑃𝑇) symmetry. 𝐶𝑃𝑇 is postulated to
be an exact symmetry of the universe by the CPT theorem, a cornerstone of QFT.
Observations of 𝐶𝑃𝑇 violation would require major reworkings of the theoretical
framework underpinning the Standard Model. Of course, there are experiments
searching for 𝐶𝑃𝑇 violation, detailed in a recent review [14]. But as with Lorentz
invariance, no evidence has yet to be discovered for the violation of 𝐶𝑃𝑇 , and we
take it to be an exact symmetry in this thesis.

As the name suggests, a 𝐶𝑃𝑇 transformation can be factored into three separate
discrete symmetry operations: Charge reversal (𝐶), Parity reversal (𝑃), and Time
reversal3 (𝑇). The effect of these transformations in QFT is derived in textbooks,

3We note that we are discussing microscopic 𝑇-symmetry—while we observe a clear asymmetry
in the flow of time in our everyday life, this applies only to macroscopic phenomena that statistically
will always evolve from low entropy initial states to high entropy final states.
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Table 1.1: Table of useful symmetry relations. To be explicit, we have included spin
in its own row, but there is no reason for it to behave differently from an ordinary
angular momentum 𝐽.

Symbol Description 𝐶 𝑃 𝑇

®𝑟 Position + − +
®𝑝 Momentum + − −
®𝐽 Angular momentum + + −
®𝑆 Spin + + −
®𝐸 Electric field − − +
®𝐵 Magnetic field − + −
®𝑗 Electric current − − −
𝜌 Charge density − + +

and here we simply provide an intuitive physical explanation. Performing a 𝐶
transformation reverses electromagnetic charges, swapping matter with antimatter.
Performing a 𝑃 transformation inverts spatial coordinates, ®𝑟 = (𝑥, 𝑦, 𝑧) → −®𝑟 =

(−𝑥,−𝑦,−𝑧). This operation is equivalent to a mirror reflection, followed by a
180◦ rotation along an axis perpendicular to the mirror plane. Finally, performing
a 𝑇 transformation reverses the sign of all motion, such as momenta or currents,
swaps initial and final states, and performs complex conjugation, i.e. takes 𝑖 → −𝑖.
For convenience, we have provided a table of the 𝐶, 𝑃,𝑇 symmetry properties of
various common physical quantities in 1.1.

Intriguingly, while the combination of 𝐶𝑃𝑇 is a good symmetry, all three
individual symmetries have been found to be violated separately in Nature. The
details depend on the specific fundamental force in question. Gravity is expected
to be fully symmetric under 𝐶, 𝑃, and 𝑇 , though only recently are gravitational
wave experiments able to place bounds. Thus far, electromagnetism and the strong
nuclear force have been observed to be fully symmetric under any of 𝐶, 𝑃, or 𝑇 ,
applied together or individually, but as we shall see, there could still be symmetry
violation at scales we have yet to probe. On the other hand, the weak nuclear force
explicitly violates 𝑃, 𝑇 , and𝐶𝑃 symmetries [21], and we note the various violations
are all in agreement with the 𝐶𝑃𝑇 theorem4. To date, the weak nuclear force is the
only fundamental force that has been observed to violate discrete symmetries5.

4Technically, if 𝐶𝑃𝑇 = −1, then 𝑇 = −𝐶𝑃, but overall phases are not distinguishable.
5Curiously, the weak force is also the only force that violates flavor symmetry. Among other

things, flavor violation is essential for the proton-proton chain, the dominant fusion reaction in the
sun and other stars with similar or smaller mass.



7

1.2.2 Cosmological Motivation
Is there any reason to expect Nature to violate fundamental symmetries? Orig-

inally, scientists believed that Nature should be symmetric by principle. However,
fundamental symmetry violation can have drastic consequences for Cosmology, the
study of the origins of the universe. In this section, we motivate the existence of
fundamental symmetry violation on cosmological grounds.

Astronomical observations indicate the universe is dominated by matter, with
virtually no free antimatter [4, 22]. While antimatter is produced in physical pro-
cesses, such as radioactive decays or high energy collisions, once antimatter encoun-
ters its equivalent ordinary matter partner, both masses annihilate into photons. This
is indeed how we know the universe is matter dominated—if there were a region of
antimatter in the universe, the boundary of interstellar space would generate enough
annihilation events to be observable [4, 22]. A special region of antimatter in the
universe would also violate the cosmological isotropy principle, which states the
universe should be statistically homogeneous on large scales [23–25]. The observed
imbalance of matter and antimatter is known as the Baryon6 Asymmetry of the Uni-
verse (BAU). The BAU is often parameterized in terms of the asymmetry parameter
𝜂𝐵 =

𝑛𝐵−𝑛𝐵̄
𝑛𝛾
∼ 10−10, where 𝑛𝐵 (𝑛𝐵̄) is the number density of baryons (antibaryons)

observed in the universe, and 𝑛𝛾 is the number density of cosmic microwave back-
ground (CMB) photons, which represent the photons produced by matter/antimatter
annihilation in the early universe7. The asymmetry parameter 𝜂𝐵 can be obtained
experimentally from many sources, such as analysis of studies of the CMB, or the
observed abundances of light elements [21, 22, 26]. Interestingly, the asymmetry
we see now actually began as a relatively small one in the early universe.

In 1967, Sakharov showed [27] that three conditions must be satisfied to generate
the BAU: 1) The existence of 𝐶 and 𝐶𝑃 (= 𝑇) violation; 2) The violation of baryon
number; and 3) Departure from thermal equilibrium. As it turns out, the Standard
Model can have all three ingredients, though not at sufficient scales for the latter
two. The violation of baryon number can occur via non-perturbative processes
known as sphaleron transitions [4, 7, 19] that violate baryon number but preserve
the difference of baryon number minus lepton number. The Standard Model can also

6Baryons are composite particles, in particular protons and neutrons, which are made of three
quarks.

7Since the CMB photon density changes over time in an expanding universe, some authors prefer
instead to normalize by the total entropy density of the universe 𝑠, which remains constant. We note
𝑠 and 𝑛𝛾 are proportional to each other.
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satisfy departure from thermal equilibrium if the electroweak phase transition of the
Higgs vacuum is a first order transition. However, the measurement of the Higgs
mass at 𝑚𝐻 ≈ 125 GeV indicates the electroweak phase transition is likely a second
order transition [28], which cannot generate sufficient deviation from equilibrium [7,
22], requiring new physics. Finally, we mentioned earlier that the electroweak force
violates 𝐶𝑃 and 𝐶 symmetries. However, it turns out this violation is too weak
to physically cause the BAU [4, 7, 22], even if we had sufficient departure from
thermal equilibrium. Essentially, the processes that result in 𝐶𝑃 violation happen
at many loops in perturbation theory that must involve all three quark generations8,
suppressing their dynamical contribution. Typically, the “strength” of 𝐶𝑃 violation
is parameterized by the Jarlskog determinant [22, 29], in invariant product of quark
masses and mixing angles. The Jarlskog determinant is much smaller than the energy
scale of sphaleron processes, making it difficult to develop a model for electroweak
baryogenesis [22].

In general, electroweak baryogenesis models require new physics to explain
the BAU. There are of course other possible explanations, such as leptogenesis [9,
30–32], where 𝐶𝑃 violation in neutrinos first generates a lepton asymmetry, and
sphaleron transitions convert this to a baryon asymmetry. Another possible ex-
planation is violations of 𝐶𝑃𝑇 symmetry [33], though this would have drastic
consequences on the rest of our understanding of nature. Further details on the
baryon asymmetry of the universe can be found in Refs. [4, 7, 22], as well as the
pedagogical review given in Ref. [34].

1.2.3 P, T Violating Moments
Since we know Nature can violate symmetries, and we have cosmological

motivations for symmetry violation, we have reason to expect electromagnetism
and/or the strong force have their discrete symmetries broken on a a subatomic
scale. Generically, both forces can admit interactions and terms that violate 𝑃 and
𝑇 symmetries, but so far no such interactions have been observed in Nature. In
this section we provide a discussion of how such symmetry violation manifests in
electromagnetic interactions.

𝑃 and 𝑇-violation can can result in symmetry violating electromagnetic mo-
ments of fundamental particles. These moments can be derived generally, either
from a standard multipole expansion of charge and current, or from a decomposition

8If fewer than 3 generations are invovled, the CKM phase is trivial can be transformed away by
a unitary operation.
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of the electromagnetic current operator, 𝑗𝜇, into Lorentz invariant form factors. The
latter approach is detailed in Refs. [35–38], and we outline it here schematically.
Consider the matrix element of 𝑗𝜇 connecting generic initial and final particle states
with a given spin 𝑆 and momenta 𝑘, 𝑘′. The matrix element ⟨𝑘′, 𝑆 | 𝑗𝜇 |𝑘, 𝑆⟩ can
be factored into its Lorentz invariant constituents, known as form factors, labeled
as 𝐹1(𝑞2), 𝐹2(𝑞2), . . ., and parameterized in terms of the 4-momentum transfer
𝑞2 = (𝑘′ − 𝑘)2. There are generically 6𝑆 + 1 form factors for a given spin 𝑆.

For now, we consider the case of a fundamental spin-1
2 particle, such as the

electron, giving us four separate terms. In the non-relativistic rest frame, 𝑞2 → 0,
and the form factors can be identified9 with various properties of our spin-1

2 particle,
some more familiar than others:

𝐹1(0) = 𝑄 (charge) (1.1)
1

2𝑚
(𝐹1(0) + 𝐹2(0)) = 𝜇 (magnetic dipole moment) (1.2)

− 1
2𝑚

𝐹3(0) = 𝑑 (electric dipole moment) (1.3)

1
𝑚2𝐹4(0) = 𝑎 (anapole moment). (1.4)

The first two quantities, the charge𝑄 and magnetic moment 𝜇, are familiar properties
of all subatomic particles, including electrons. The electric dipole moment has a
clear classical analogue, and the anapole moment describes a “torodial” magnetic
moment. We note all of these quantities are intrinsic. Of these quantities, only 𝑄
is invariant under rotations. While the magnitude of the moments (including the
anapole) are fixed, they are vector observables that must be oriented along the same
axis as the spin: ®𝜇 = 𝜇 ®𝑆, ®𝑑 = 𝑑 ®𝑆, and ®𝑎 = 𝑎 ®𝑆. We now give some reasons for such
a constraint.

First, recall our spin-1
2 particle transforms under rotations according to the

Wigner D-matrices, D (𝑆= 1
2 ) , and this was obtained by demanding our particle

properties remain invariant under changes to our reference frame. Imagine we
were to add another, second physical axis to describe our particle, describing
2𝑆′ + 1 hypothetical orientations of some dipole moment ®𝑑. To maintain invari-
ance under rotations, we demand this second axis also transform according to the
D-matrices10, and our particle’s rotation properties are now given byD ( 1

2 ) ⊕D (𝑆′) =
9For composite particles such as protons or neutrons, the form factors besides 𝐹1 are generally

hard to compute.
10If we did not do this, then ®𝑑 would pick out an absolute direction in space, which is Lorentz

violating.
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D ( |𝑆′− 1
2 |) ⊗ D ( |𝑆′− 1

2+1|) ⊗ . . .D (𝑆′+ 1
2 ) . Our simple spin-1

2 particle has turned into a
coupled angular momentum problem consisting of (2( 12 ) + 1) (2𝑆′ + 1) orientations,
contradicting our initial classification of the particle’s rotational symmetries. If we
tried to use this two-axis state to describe a wavefunction of identical electrons in
the same spatial state, we would conclude that we have (2𝑆′ + 1) times more con-
figurations available than what we physically observe with electrons under the Pauli
exclusion principle. Furthermore, we run into a deeper issue—by the spin-statistics
theorem, if 𝑆′ is half-integer, then our combined two-axis particle is now a boson,
and Pauli exclusion does not apply at all! In Nature, we observe spin-1

2 electrons
that only have 2-fold internal degrees of freedom, which is only consistent with the
case that ®𝑑 ∝ ®𝑆.

For the sake of argument, let us proceed as if ®𝑑 can point at an arbitrary angle
relative to ®𝑆. If we try to measure ®𝑑, we will run into problems. Since our particle
has angular momentum, any components of ®𝑑 perpendicular to ®𝑆 will be averaged
away by the spin, leaving only the projection ®𝑑 · ®𝑆. Since ®𝑆 only has 𝑆𝑧 defined due to
the commutation relationships of angular momenta, the transverse components of ®𝑆
and ®𝑑 vanish, and we can only measure 𝑑𝑧 ∝ 𝑆𝑧. This argument can be generalized
to angular momenta larger than 𝑆 = 1

2 via the Wigner-Eckart theorem, presented in
Sec. 2.1.2. In the language of spherical tensor operators [39], all electromagnetic
moments of a given rank are therefore proportional to the angular momentum tensor
of the same rank, which classifies the rotational symmetries of our particle.

Now we move on to considering the symmetry behaviors of these moments
interacting with external fields. One approach is to consider the coupling of 𝑗𝜇 to
the photon field in the QED Lagrangian [35]. Instead, we pursue the low energy
equivalent, considering the Hamiltonian derived from the non-relativistic limit of the
Lagrangian [19, 38]. If the Hamiltonian is left changed by our symmetry operation,
then the symmetry is broken. First, we consider the charge 𝑄. While 𝑄

𝐶−→ −𝑄, the
Couloumb interaction scales as 𝐻𝑄 ∝ 𝑄𝜙, where 𝜙 is the charge-dependent electric
potential, and therefore 𝐻𝑄

𝐶−→ 𝐻𝑄 . Similarly, for the magnetic moment, we have
𝜇

𝐶−→ −𝜇 𝑇−→ 𝜇, recalling that ®𝜇 ∝ 𝑄 ®𝑆. But also, the interaction Hamiltonian is
𝐻𝜇 = − ®𝜇 · ®𝐵, and magnetic fields are generated by currents which are 𝐶- and 𝑇-odd
(see Table 1.1), so we have 𝐻𝜇

𝑇−→ 𝐻𝜇, and a similar argument shows 𝐻𝜇 is also
𝐶-symmetric.

The anapole moment 𝑎 has a non-relativistic interaction Hamiltonian given
by [37, 38] 𝐻𝑎 ∝ 𝑎 ®𝑆 · (∇ × ®𝐵 − 𝜕𝐸

𝜕𝑡
). Note the anapole only interacts with elec-
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tromagnetic sources or sinks, which means it is only nonzero in matter. Since ∇
is 𝑃-odd and 𝜕𝑡 is 𝑇-odd, we see the term in the parentheses is 𝐶-odd, 𝑃-odd and
𝑇-odd. The spin is 𝑇-odd as well, so the resulting anapole Hamiltonian is 𝐶-odd,
𝑃-odd, and 𝑇-even, and satisfies 𝐶𝑃𝑇 invariance as expected. The 𝐶-odd nature of
the anapole means it cannot have long-distance effects [35]. Finally, we consider
the electric dipole moment, given by 𝐻𝑑 = −𝑑 ®𝑆 · ®𝐸 . The spin 𝑆 is 𝑇-odd, while the
electric field, generated by charge distributions, is 𝑃-odd and 𝐶-odd. By intuition
(and by 𝐶𝑃𝑇) 𝑑 is 𝐶-odd, and we therefore have that 𝐻𝑑 is 𝑃-odd, 𝑇-odd, 𝐶-even.

We emphasize that in the above discussion, 𝑑 refers to a permanent moment, and
is not taken to be 𝑃-odd, though often it is presented as such when hand-waving. The
permanent dipole moment ®𝑑 ∝ ®𝑆 of a point particle is not the same as a composite
dipole moment ®𝐷 ∝ ®𝑟 that we will encounter in atoms and molecules, distinguished
by capital 𝐷. Since ®𝐷 is explicitly 𝑃-odd and 𝑇-even, its interaction with the 𝑃-odd
𝐸 field is 𝑃-even,𝑇-even. Further, one can show that ⟨𝐷⟩must vanish for states with
well-defined parity [40, 41], and therefore there are no permanent dipole moments
of atoms and molecules at zero field, which are good parity eigenstates. For an atom
this makes sense given its spherical symmetry. For a simple diatomic molecule,
the spherical symmetry is reduced to cylindrical symmetry, with ®𝐷 pointing along
the symmetry axis. However, the molecule eigenstate still has well-defined parity.
We can think of the molecule as constantly rotating, causing ⟨ ®𝐷⟩ = 0 in the lab
frame. As we shall see later, only by applying an external field and breaking the 𝑃
symmetry of the molecule do we begin to an induce a dipole moment in the system.
The total dipole moment can then be decomposed into 𝑇-even contributions and
𝑇-odd contributions, and we search for the latter.

We finally return to the case of an arbitrary spin-𝑆 particle, with 6𝑆 + 1 total
invariant form factors. In Ref. [35], these form factors are tabulated according to
their total interaction symmetry under𝐶, 𝑃, and 𝑇 , and we reproduce their results in
Table 1.2. For this thesis, we will only focus on the 𝑃,𝑇-odd moments. The 𝐶-odd
moments are discussed further in Refs. [42–44].

If we have a particle with spin 𝑆 ≥ 1, we can now support additional 𝑃,𝑇-
violating moments, which correspond to higher order multipoles. Of particular
interest is the magnetic quadrupole moment (MQM)M, which is 𝑃,𝑇-odd and has
never been observed, in contrast to the electric quadrupole moment (EQM)Q, which
is 𝑃,𝑇-even, and a commonly observed property of nuclei. Similar to how 𝑑 and 𝜇
have analogous mathematical forms, so too can we draw comparisons betweenM
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Table 1.2: Table denoting the𝐶, 𝑃,𝑇 symmetry properties of the 6𝑆+1 electromag-
netic moments obtained from the form factor decomposition of the electromagnetic
current. When two values are given separated by the semi-colon, the left value refers
to half-integer 𝑆; the right refers to integer 𝑆. Table reproduced from Ref. [35].

𝐶 𝑃 𝑇 Number of moments

+ + + 2𝑆 + 1
− − + 𝑆 + 1

2 ; 𝑆
− + − 𝑆 − 1

2 ; 𝑆
+ − − 2𝑆

and Q.

The EQM and MQM are both rank 2 moments, which means they are described
by two spatial indices, and referred to as tensors. To obtain a rotationally invariant
interaction Hamiltonian, these moments must be contracted with tensor quantities
that also have two indices. The EQM naturally interacts with electric field gradients,
𝐻Q ∝ Q𝑖 𝑗∇𝑖𝐸 𝑗 , while the MQM interacts with magnetic field gradients, 𝐻M ∝
M𝑖 𝑗∇𝑖𝐵 𝑗 . As with the EDM, the MQM must point along the spin 𝑆, but since it
is a tensor quantity, we must construct a rank 2 representation of 𝑆. The common
choice is the irreducible, traceless tensor, given by:

M𝑖 𝑗 =M
3

2𝑆(2𝑆 − 1)𝑇𝑖 𝑗 . (1.5)

Here, we have defined the tensor 𝑇𝑖 𝑗 = {𝑆𝑖, 𝑆 𝑗 } − 2
3𝛿𝑖 𝑗𝑆(𝑆 + 1), where {𝐴, 𝐵} =

𝐴𝐵 + 𝐵𝐴 is the anti-commutator, and 𝛿𝑖 𝑗 is the Kronecker delta, with 𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗

and 0 otherwise. The 2𝑆 − 1 factor in the denominator means the MQM is only
well-defined for 𝑆 ≥ 1. The quantityM B M𝑧𝑧 is the “magnitude” of the MQM,
which can be seen by evaluating eq. 1.5 for a polarized spin, 𝑆𝑧 = 𝑆. The M𝑖 𝑗

form is given in Cartesian coordinates. In the language of spherical tensor operators
(discussed in Sec. 2.1.2 and Ch. 5 of Ref. [39]), we can write the MQM as:

𝑇2
𝑝 (M) =

√
6

𝑆(2𝑆 − 1)𝑇
2
𝑝 (𝑆, 𝑆) (1.6)

where 𝑝 is the index labeling the 5 components in the spherical basis, running from
𝑝 = −2,−1, 0, 1, 2. Returning to the form of 𝐻M , we have an odd number of 𝑇-odd
quantities (2 spin components inM, and one from the magnetic field 𝐵), and the
dependence on the gradient results in 𝑃-odd behavior as well, and therefore the
MQM interaction is 𝑃,𝑇-odd, 𝐶-even.
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Classically, we can think of an MQM as two opposite current loops, with
magnetic moments ± 𝑗𝑎, separated by a distance 𝑟, where 𝑗 is electric current and
𝑎 is area. Using atomic units, the MQM is given byM ∝ 𝜇𝐵𝑎0, or alternatively
with nuclear units, 𝜇𝑁 fm. Clearly, the MQM is the mangnetic dipole analogue of
the EDM, with units of dipole × distance instead of charge × distance. The SI units
of the MQM are current × volume, or A m3. We note some papers write the MQM
by factoring out the speed of light and setting 𝑐 = 1, resulting in the same units for
MQMs and EQMs, charge × area.

Finally, for completeness, we provide the classical formula for the MQM. The
classical form of the MQM multipole is given by [45, 46]:

←→
M =

1
2

∫
d®𝑟

(
®𝑟 (®𝑟 × ®𝐽) + ( ®𝐽 × ®𝑟)®𝑟

)
(1.7)

where the notation
←→
M indicates we are dealing with a tensor quantity. Like the

previous forms we provided of the MQM, this form is also traceless and symmetric.
Further, classical vector potential generated by

←→
M is given by:

®𝐴(®𝑟) = 𝜇0

4𝜋
𝑟 ×
←→
M × 𝑟
𝑟3 (1.8)

and the magnetic field can be obtained by the usual relation, ®𝐵 = ∇ × ®𝐴. A
generalization to higher order moments can be found in Jackson [47].

So far, our discussion has focused on permanent 𝑃,𝑇 violating moments of
fundamental particles. Early on, physicists realized that these permanent moments
can also manifest in composite systems. The first example was the work of Ramsey
and Purcell in 1957 [48], where they placed the first limits on the EDM of the
neutron (𝑑𝑛 < 10−20 𝑒 cm). We might naively expect a nonzero neutron EDM,
given the neutron is made up of oppositely charged quarks. However, no EDM has
been found so far, with current experimental bounds limiting the neutron EDM to
𝑑𝑛 < 1.8×10−26 𝑒 cm, and even more sensitive experiments currently underway [49].
The neutron EDM is explicitly a probe of 𝑃,𝑇 violation in the strong force, which
manifests in the quantum chromodynamics (QCD) vacuum angle, parameterized
by the 𝜃 parameter. The experimental neutron EDM bound translates to a limit of
𝜃 ≲ 10−10 [7], though the exact value can vary in the literature as the calculation
is challenging. The question of the small or zero value of 𝜃 constitutes the strong-
CP problem, a rich field of physics that has given rise to the theory of axion-like
particles, a potential dark matter candidate. We do not discuss this further, but direct
the reader to the excellent review in Ref. [50] for more information.



14

1.3 Atoms and Molecules
1.3.1 Electronic Enhancements

Permanent 𝑃,𝑇 violating moments can also arise in atoms and molecules. An
excellent and comprehensive discussion is given in Ch. 5 of Ref. [14] as well as
Refs. [7, 51, 52]. Furthermore, the white paper in Ref. [12] describes the state of
the field at the time of this thesis.

The existence of 𝑃,𝑇 violation in composite systems actually non-trivial—in
a neutral, non-relativistic collection of point charges, Schiff’s theorem [53] states
that there can be no permanent EDM of the composite system, as the constituent
charges will re-arrange themselves to “screen” EDMs. However, Schiff also showed
this screening breaks down for magnetic interactions [54] (there are no magnetic
charges to screen with) and if there is a finite charge distribution that is offset from
the spin distribution (as can happen in generically a nucleus with different proton and
neutron distributions). This gives rise to the following nuclear 𝑃,𝑇 violating nuclear
moments: the nuclear Schiff moment (NSM) [55, 56], which is a partially screened
dipole moment, and the nuclear magnetic quadrupole moment (NMQM) [57, 58],
which is essentially the composite equivalent of the MQM discussed earlier. We
note there is also an electric octupole moment [59], but this effect is supressed
in atoms and molecules and is usually not considered. Further, Sandars [60] first
showed that relativistic effects can also result in evasion of Schiff’s theorem, adding
the electron EDM (eEDM) as another possible observable in a composite atom or
molecule. Ref. [61] explains the relativistic evasion directly in terms of the Lorentz
contraction of the eEDM (which has units of charge distance) when viewed from
the frame of the stationary nucleus. An additional result is that for both electrons
and nuclei, 𝑃,𝑇 violation can actually be amplified by relativistic effects compared
to the bare particle value [14]. For example, the eEDM is enhanced by a factor of
roughly 𝑍3, while the NMQM is enhanced by roughly 𝑍2, where 𝑍 is the number of
protons in the heavy nucleus. These scalings motivate us to perform measurements
in systems with high 𝑍 and core-penetrating, relativistic electron orbitals with 𝑠
character.

There are many different enhancement factors at play in measurements of 𝑃,𝑇
violation in atoms and molecules. First we discuss “electronic” enhancement. Since
the 𝑃,𝑇 violating effects are strongest near the heavy nucleus, we can think of their
effect as causing mixing between opposite parity electronic orbitals, i.e. mixing
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𝑠1/2 and 𝑝1/2 orbitals11, where the letter denotes the orbital angular momentum 𝑙,
and the subscript labels total spin and orbital angular momentum 𝑗 . For example,
with the eEDM, the mixing is generated by the relativistic interaction [63] of the
spin with the electric field inside the atom or molecule. As a result, the eEDM
interaction scales like ∼𝛼2𝑍3, originating from the overlap integral of the 𝑠1/2 and
𝑝1/2 wavefunctions near the nucleus [14, 51, 57, 58, 60].

For the NMQM, the interaction is now between the nucleus and the gradient
of the magnetic field generated by the electron spin [35, 52, 57]. Imagining the
NMQM as two opposite current loops oriented along the nuclear spin, we see a
traveling electron will either be deflected upwards or downwards depending on
its spin, generating a spin-dependent charge distribution (manifestly 𝑃,𝑇 odd) of
the whole system. Because the NMQM interacts with the electron spin, it is only
observable in systems with unpaired valence electrons (paramagnetic). Additionally,
since the NMQM is a tensor operator, it only arises in nuclei with 𝐼 ≥ 1. Further, by
the Wigner-Eckart theorem, the rank 2 NMQM mixes the 𝑠1/2 and 𝑝3/2 relativistic
electron wavefunctions, resulting in ∼𝑍2 scaling [57, 58]. This is also why the rank
3 electric octupole moment is so small [64], as it must now mix 𝑠1/2 and 𝑓5/2, or
𝑝1/2 and 𝑑5/2, all which have small mutual overlap at the nucleus.

Finally, considering the NSM, the offset of charge and spin distributions results
in an effective electric field that is nonzero inside the nucleus, and points collinear
with the nuclear spin [51, 55]. The NSM distribution arises at third order in the
nuclear radius [51, 56], similar to the octupole [64], though the NSM is still a rank
1 moment. Similar to the case of the NMQM, the internal field caused by the NSM
deflects electrons dependent on the nuclear orientation, generating a 𝑃,𝑇 odd charge
distribution. However, now the interaction is independent of electron spin, and so the
NSM can be measured in systems with paired off valence electrons (diamagnetic).
Due to the partial cancellation of the NSM and the strong relativistic enhancement
of the eEDM and NMQM interactions, the electronic enhancement of the NSM
is typically weaker than the paramagnetic moments by an order-of-magnitude or
more [51, 57].

1.3.2 Atoms
The manifestation of 𝑃,𝑇 violation has significant differences between the

atomic and molecular case. In the case of atoms, the 𝑠 and 𝑝 wavefunctions are well
11If the mixing coefficient is imaginary, we obtain a 𝑃 odd, 𝑇 even effect, and if the coefficient is

real, we obtain a 𝑃,𝑇 violating effect, see Ref. [62].



16

separated in energy by ∼eV or more. As a result, in free-field, the 𝑃,𝑇 violating
interaction, 𝐻𝑃𝑇 , will only slightly mix the opposite parity levels, inducing a small
dipole moment along the direction of the total atomic angular momentum ®𝐽. We
should always remember the orientation of a spatial vector (dipole) along an angular
momentum vector (𝐽) is manifestly 𝑃,𝑇 violating. Continuing, if we evaluate the
dipole moment ®𝐷 = 𝑒®𝑟 of the atom in perturbation theory, we find the induced 𝑃,𝑇
violating EDM in free-field as [51]:

⟨ ®𝐷𝑃𝑇 ⟩atom = 2
⟨𝑠 | ®𝐷 |𝑝⟩⟨𝑝 |𝐻𝑃𝑇 |𝑠⟩

𝐸𝑠 − 𝐸𝑝
∝

®𝐽√︁
𝐽 (𝐽 + 1)

(1.9)

If we apply an external electric field, ®𝐸lab, we expect to observe very small first-order
Stark shifts from ®𝐷𝑃𝑇 · ®𝐸lab. Crucially, in atoms the 𝑃,𝑇 violating effect scales with
𝐸lab, motivating the use of very large fields [65]. In atoms, there will also be a
𝑃,𝑇 even effect resulting from the ordinary induced dipole moment, ®𝐷 = 𝛼 ®𝐸lab,
where 𝛼 is the DC polarizability. This results in quadratic Stark shifts on top of the
hypothetical linear Stark shifts. Of course, these two effects can be disentangled by
comparing their shifts for 𝑇-reversed states.

In the literature, the concept of an internal electric field of the atom, Eeff, is
provided as heuristic picture for the 𝑃,𝑇 violating effects of the eEDM [14, 35]. We
can see that in free-field, the atom is spherically symmetric, and so the interaction
of Eeff with the eEDM, 𝑑𝑒, will mostly average away. As we show in eq. 1.9, any
intrinsic 𝑃,𝑇 violation will result in a slight orientation of Eeff along 𝐽, suppressed
by the separation of atomic opposite parity levels. By applying an external field
𝐸lab, we polarize the atom ever so slightly, shifting the electron cloud center slightly
relative to the positive nucleus. This provides a preferential axis for orienting Eeff.
Unfortunately, even with 100 kV/cm external electric fields, atoms always remain in
the induced dipole moment regime, limiting the orientation of Eeff in the lab frame,
which limits our ability to access the full enhancement of EDM effects. Molecules,
however, have their spherical symmetry broken down to cylindrical symmetry, which
naturally provides an orientation for Eeff. This has very important consequences that
make molecules significantly more sensitive than atoms to 𝑃,𝑇 violating effects.

1.3.3 Molecules
In molecules, the electronic wavefunctions localized on the heavy nucleus are

now strongly modified by the electric field from the ligand. For polar molecules in
particular, the molecule now has a molecule frame electric dipole moment ®𝐷mol,
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indicating a separation of charge across the molecule. This dipole moment is on
the order of 𝑒𝑎0 ≈ 2.54 D, where D is the preferred unit of dipole moment, the
Debye. The dipole moment lies along the axis drawn from the heavy nucleus to the
ligand, which defines the internuclear axis12 𝑛̂. Often 𝑛̂ is taken to lie along the 𝑧
axis of the molecule frame coordinate system. We note that 𝐷mol is not symmetry
violating, as it reverses under 𝑃 and remains invariant under 𝑇 , and therefore the
overall interaction ®𝐷mol · ®𝐸lab is 𝑃,𝑇 even. Since the ligand field causes Stark mixing
of states with different orbital angular momenta 𝑙, only the projection of 𝑙 given by
𝜆 = ®𝑙 · 𝑛̂ is well-defined. As a result, the molecular electronic state can be expressed
as a combination of atomic orbitals, for example 𝑎𝑠𝑠𝜎 + 𝑎𝑝𝑝𝜎 + . . ., where the
𝑎 values are wavefunction amplitudes. Here, we use molecular orbital notation,
where 𝜎 means 𝜆 = 0. Therefore, in the molecule frame, 𝑃,𝑇 violating interactions
can directly connect the 𝑠 and 𝑝 orbitals, without suppression by the Δ𝐸−1

𝑠𝑝 factor
we encountered in atoms [35]. Connecting to the atomic picture, we can think of
®Eeff ∝ 𝑛̂ in the molecule.

However, since molecular eigenstates still have well-defined parity to very good
degree, there are still no 𝑃,𝑇 violating shifts in free-field13, in other words ⟨𝑛̂⟩ = 0.
We can think of this as the molecular rotation averaging away 𝐷mol in the lab frame,
such that ®Eeff has no preferred orientation. More rigorously, free-field molecu-
lar eigenstates are always written as symmetric or anti-symmetric combinations:
|𝜓mol⟩ ∝ |𝜂, 𝑛̂⟩ ± |𝜂′,−𝑛̂⟩, where ± is connected to the parity of the molecular state,
and 𝜂(′) encodes additional quantum numbers. The key strength of molecules is
that the opposite parity levels arise from molecular rotation, with energy separa-
tions of Δ𝐸 ≲ 50 µeV ∼ ℎ × 10 GHz. As a result, compared to atoms, polarizing
a molecule and orienting 𝑛̂ in the lab frame is a manageable task, achieved with
𝐸lab ≳ 10 kV/cm fields by mixing rotational states. As we shall see, certain
molecules can have nearly degenerate opposite parity levels, known as parity dou-
blets [17], separated by Δ𝐸 ≲ 50 neV ∼ ℎ × 10 MHz, which can be polarized in
fields 𝐸lab ≲ 100 V/cm. In parity doublets, the states |𝜓mol⟩ are written with 𝜂 = 𝜂′,
that is all the quantum numbers are the same in parity doublet superpositions except
for the direction of the internuclear axis. A good discussion of polarization by
mixing opposite parity levels is given in Ch. 2 of Ref. [41], as well as in Ch. 2 of

12We take 𝑛̂ to point along ®𝐷𝑚𝑜𝑙 , that is pointing from − → +. In M-OH molecules, ®𝐷mol points
from O to M in the physics convention for dipole moment.

13Technically, similar to atoms, there will be a small, induced 𝑃,𝑇 violating dipole moment [52,
66], but we can do much better than this as we shall see.
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Ref. [67]. Sandars was the first to realize [68] that by orienting the molecule in the
lab frame, we have effectively aligned ®Eeff, allowing us to access the full relativistic
EDM enhancements available. Indeed, modern molecular EDM experiments have
shown the power of this enhancement, setting very strong limits on the eEDM [10,
11], |𝑑𝑒 | < 4.1 × 10−30 𝑒 cm.

Fundamentally, in molecular experiments searching for 𝑃,𝑇 violating moments,
we are measuring an interaction Hamiltonian of the form:

𝐻𝑃𝑇𝑉 = 𝜉𝑃𝑇𝑉 𝑊elec ( ®𝐽odd · 𝑛̂). (1.10)

Here · indicates the dot-product. The quantity 𝜉𝑃𝑇𝑉 represents the magnitude of the
𝑃,𝑇 violating electromagnetic moment, which can be connected to the high-energy
physics scale. For example, this could be the eEDM, 𝑑𝑒. For nuclear observables,
there can be additional enhancements in 𝜉𝑃𝑇𝑉 , discussed later. The quantity 𝑊elec

encodes the aforementioned relativistic enhancement of 𝑃,𝑇 violating observables
in the electromagnetic environment near a heavy nucleus. This quantity must be
calculated from electronic structure theory, and the calculation accuracy can be
gauged by also calculating hyperfine interaction parameters and comparing against
experiment. For the eEDM,𝑊elec can be directly related to the notion of an internal
effective field, Eeff. Continuing, the quantity ®𝐽odd represents the rank 1 operator
formed by coupling together an odd number of angular momenta in the atom or
molecule, which is explicitly 𝑇-odd. The form of ®𝐽odd varies for different moments.
However, regardless of the interaction, 𝜉𝑃𝑇𝑉 must lie along ®𝐽odd, as we discussed
earlier. Finally, we measure the projection of ®𝐽odd onto the internuclear axis of
the molecule, 𝑛̂. The dependence on 𝑛̂ explicitly makes the interaction 𝑃 odd, and
requires us to apply an external field to polarize the system. Since our goal is to
measure the shifts from 𝐻𝑃𝑇𝑉 , we can go about measuring frequency differences
between states with various orientations of 𝐽odd relative to 𝑛̂. In an atom experiment,
we can use a similar Hamiltonian, just replacing 𝑛̂with the applied field ®𝐸lab. Finally,
we note there are proposed schemes to measure 𝑃,𝑇 violating couplings between
opposite parity states by using AC fields, see Ref. [69], however we do not discuss
the details here.

We now discuss the form of ®𝐽odd for different 𝑃,𝑇 violating interactions. For the
eEDM, we have ®𝐽odd = ®𝑆, which means the EDM shift is just the projection of the
electron spin on the internuclear axis of the molecule, as expected. For the NSM,
we recall that the physical mechanism of the interaction results in an electric field
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internal to the nucleus that points along the spin 𝐼. Therefore, for the NSM we have
®𝐽odd = ®𝐼. Finally, for the NMQM, the situation is more complicated because we are
dealing with a rank 2 tensor,M, interacting with a rank 1 vector, the electron spin
𝑆. Since 𝐽odd must be rank 1 in order to be contracted with 𝑛̂, we surmise the form
of 𝐽odd is obtained by coupling 𝐼 to itself, and then coupling with 𝑆. Indeed, up to
some constants, this gives us the effective the form of the NMQM interaction [57,
58, 70]:

𝐻MQM = 𝑊𝑀M ®𝐽odd · 𝑛̂ = −
M

2𝐼 (2𝐼 − 1)
®𝑆 · ←→𝑇 · 𝑛̂

=
M

2𝐼 (2𝐼 − 1)

√︂
20
3
𝑇1(𝑆, 𝑇2(𝐼, 𝐼)) · 𝑛̂.

(1.11)

Here,𝑊𝑀 is the electronic enhancement factor, andM ≔M𝑧𝑧, where 𝑧 = 𝑛̂. In the
second line we have written the interaction in terms of spherical tensor operators
(see Ch.5 of Ref. [39] for details). The tensor

←→
𝑇 is the same as 𝑇𝑖 𝑗 in eq. 1.5, and is

written as 𝑇𝑖 𝑗 = {𝐼𝑖, 𝐼 𝑗 } − 2
3𝛿𝑖 𝑗 𝐼 (𝐼 + 1) = 2𝑇2(𝐼, 𝐼). Using the same arguments, we

see that the effective interaction of an electric octupole moment should be written
as ®𝐽odd · 𝑛̂ ∝ 𝑇1(𝐼, 𝐼, 𝐼) · 𝑛̂.

1.3.4 Nuclear Enhancements
Finally, we discuss the nuclear enhancements of 𝜉𝑃𝑇𝑉 , which are relevant for the

nuclear moments. The enhancements of nuclear moments have been discussed in
many references [51, 57, 70–84], though we caution that nuclear structure calcula-
tions are intrinsically challenging. Of these, Refs. [81] treats the nuclear theory with
particular care. Fundamentally, all of the nuclear enhancement mechanisms relate
to the existence of deformed nuclei [85], which arise from collective proton-neutron
interactions14 [86]. The collective states of deformed nuclei are described by the
Nilsson model [86], and the wavefunctions describing the rotation of the deformed
nucleus are the same symmetric top wavefunctions that we use to describe rotating
molecules.

In general, there are two types of relevant nuclear deformations: quadrupole
and octupole deformations. A quadrupole deformed nucleus is shaped like an
ellipse, with the deformation either along 𝐼 (prolate) or perpendicular to 𝐼 (oblate).
Quadrupole deformed nuclei can be though of like a homonuclear linear molecule, as
the deformation is symmetric upon reflection through a plane perpendicular to 𝐼. Just
like homonuclear molecules, quadrupole deformed nuclei have rotational ladders

14It is interesting to observe that the simplest proton-neutron system, deuterium, has a quadrupole
deformation.
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of same parity states. In quadrupole deformed nuclei, there are many nucleons in
the valence shell, and the total NMQM is enhanced by an order-of-magnitude by
summing all of the individual nucleon contributions [57, 70, 80]. Note, however,
these estimates tend to ignore configuration mixing effects, which could modify the
overall NMQM magnitude [80].

On the other hand, octupole deformed nuclei are pear-shaped with a cylindrical
symmetry axis, and have intrinsic reflection asymmetry when reflected about a
plane perpendicular to the symmetry axis [85, 87–89]. Several nuclei, including
isotopes of Thorium [90] and Radium [91], have been observed15 to exhibit octupole
deformations, which are classified as either static (intrinsic deformation) or dynamic
(arising via vibrations). Their reflection asymmetry means they are the nuclear
analogue of heteronuclear molecular states, which naturally have rotational ladders
containing opposite parity states. In fact, because the nucleus can have angular
momentum projected on the cylindrical symmetry axis, octupole deformed nuclei
are actually analogues of parity doublet states in heteronuclear molecules. As a
result, octupole deformed nuclei can have closely spaced opposite parity levels
that split due to Coriolis interactions. For example, 223Ra and 225Ra have parity
doublets separated by 50 keV [92] and 55 keV [93], respectively, which are “close”
by nuclear standards. Similar to the earlier discussion of 𝑃,𝑇 violation in atoms,
any interaction 𝐻𝑃𝑇 in the nucleus can mix these opposite parity levels, inducing
a small overall orientation (dipole moment) of the nuclear pear shape along the
nuclear spin 𝐼. Such a correlation of orientation with angular momentum is 𝑃,𝑇
odd. The mixing of opposite parity nuclear states is expected to significantly
increase the value of the NSM and NMQM by over an order-of-magnitude [74–78,
81, 83]. Further, the NSM receives an additional increase from the 𝑟3 nuclear radius
dependence of the NSM, which correlates with the octupole matrix element [81]
(recall an octupole deformation is proportional to rank 3 spherical harmonics). As a
result, NMQMs can be 1-2 orders-of-magnitude higher in octupole deformed nuclei,
while the NSM can be 2-3 orders-of-magnitude higher [83]. This provides strong
motivation for performing 𝑃,𝑇 violation measurements on molecules containing
Radium nuclei [94].

15In Thorium, Ref. [90] observes the E1 (electric dipole) matrix elements, a sign of reflection
asymmetry, and uses that to estimate the octupole deformation. In Radium, the E3 (octupole) matrix
elements are directly observed.
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1.3.5 Connection to High Energy Physics
Interpreting EDM bounds in terms of high energy physics requires the frame-

work of the Standard Model effective field theory (SMEFT) [7, 15, 95–97]. The-
orists can use the SMEFT to match low energy observable to high energy models,
deriving model-dependent constraints. Ref. [98] provides an excellent example by
interpreting the high energy consequences of recent molecule EDM experiments.
The basic idea of SMEFT is similar to the effective Hamiltonians we use later for
modeling molecular physics. Further, one of the first examples of an EFT is the
Fermi electroweak theory, which was developed before the discovery of the 𝑊 and
𝑍 bosons. Fermi used an effective constant 𝐺𝐹 (equivalent to a Wilson operator) to
encode all of the unknown physics at high energy scales, and was able to write an
effective model for beta decay that only invovled particles known at the time.

In SMEFT, the Standard Model is taken to be an effective theory that is only
accurate at “low energies” below a cut-off scale, Λ, which encodes the high energy
scale of new physics beyond the Standard Model (BSM). The new physics effects are
accounted for at low energies using a series of effective operators that only involve
the Standard Model degrees of freedom. The coefficients that scale these operators
are known as Wilson coefficients, and they encode all of the new physics information.
To construct the effective theory, in addition to the Standard Model, we write down
any additional terms that satisfy physically relevant constraints. Examples of such
constraints include Lorentz invariance, gauge symmetry, 𝑇 symmetry (=𝐶𝑃), and
locality. For searches for 𝑃,𝑇 violation, we can relax the 𝑇 symmetry constraint.
The terms encoding BSM physics are written as:

L𝐵𝑆𝑀 =
∑︁
𝑘,𝑑

𝛼
(𝑑)
𝑘

(
1
Λ

)2
O (𝑑)
𝑘
. (1.12)

Here, the O (𝑑)
𝑘

are the 𝑘 different operators of a given dimension16 𝑑 that satisfy
our constraints. The operators essentially describe a vertex of the Lagrangian, with
certain particles going into the vertex and certain particles coming out. The 𝑑 sum
begins at 𝑑 ≥ 4. The 𝛼(𝑑)

𝑘
are the Wilson coefficients that encode all the BSM

physics we have integrated out. And Λ is the scale of the new physics. We note
these effective operators are not renormalizable, and are only meant to be applied to
low energy scales.

16In high energy physics, energy = mass = length−1, so we can think of everything as having
energy dimension.
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For𝑇 violating observables, the only relevant term at 𝑑 = 4 is the 𝜃 QCD vacuum
angle. At dimension 𝑑 = 5 we have the operators that generate fermion EDMs in the
electroweak force via the CKM matrix. We will return to the EDMs generated by
CKM later. Then, at 𝑑 = 6, we have a host of 15 operators that encode 𝑇 violating
effective interactions between the first-generation Standard Model fermions and
bosons. Typically other generations of particles are not considered. These operators
are listed in Refs. [7, 95, 96]. The 𝑇 violating terms can be grouped into the
following categories: fermion EDMs, four-quark couplings, three gluon couplings,
quark Higgs couplings, lepton quark couplings, and quark chromo-EDMs. An
example is the operator encoding a fermion EDM 𝑑 𝑓 , given by:

LEDM = −𝑖
𝑑 𝑓

2
𝜓̄𝜎𝜇𝜈𝛾5𝐹𝜇𝜈𝜓. (1.13)

Here, 𝑑 𝑓 = 𝛼 𝑓Λ−2 is the fermion EDM Wilson coefficient including the high energy
mass scaling, 𝜎𝜇𝜈 = 𝑖

2 [𝛾
𝜇, 𝛾𝜈] represents the fermion spin, sums are performed

over repeated indices, 𝛾𝜇 are Dirac gamma matrices, 𝛾5 causes 𝑃-odd behavior, 𝐹𝜇𝜈
is the electromagnetic field strength tensor, and the combination of 𝜓̄ and 𝜓 encode
the fermion wavefunction, indicating the operator vertex has the fermion 𝜓 in both
the initial and final states.

To connect from the SMEFT scale to our low energy atomic and molecular scale,
theorists must go from working with quarks to working with hadrons, which are
bound states of the strong force with no color charge. This involves the application
of further EFTs, such as chiral EFT, which we will not discuss. In the end, the
result is a series of contributions to our low energy 𝑃,𝑇 violating moments of
interest. In general, multiple Wilson coefficients will contribute to interpreting any
𝑃,𝑇 violating moment. The nuclear 𝑃,𝑇 violating moments in particular receive
numerous contributions. This would make it not possible to determine the source
of 𝑃,𝑇 violation from one positive measurement alone, requiring measurements
in many different systems. In Figure 1.1, we show the various contributions to 𝑇
violation in atomic and molecular systems at the hadronic scale.

Even the electron EDM receives multiple contributions in EFT. At the hadronic
scale, the ®𝑆 · ®Eeff eEDM interaction receives contribtuions from both the fermion
EDM of the electron, 𝑑𝑒, and from the scalar-pseudoscalar nucleon-electron cou-
pling, denoted 𝐶𝑆. In the hadronic picture, the 𝐶𝑆 interaction given by 𝑒𝑖𝛾5𝑒𝑁̄𝑁 ,
where 𝑁 is a nucleon wavefunction, 𝑒 is the electron wavefunction, and 𝑖𝛾5 is 𝑃,𝑇
odd. This is essentially an interaction of the electron spin with the scalar nucleon
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Figure 1.1: Schematic diagram illustrating some sources, not exhaustive, of 𝑃,𝑇
violating physics in atoms and molecules. The interactions displayed are: the
electron electric dipole moment (EDM), the electron-nucleon scalar-pseudoscalar
coupling 𝐶𝑆, quark EDMs, quark chromo-EDMs (CEDM), overall nucleon EDMs
(NEDM), and 𝑃,𝑇 violating pion exchange (𝜋NN), representing internal nuclear
forces. Figure created by N. Hutzler.

density that arises from the quark-lepton interactions in the SMEFT. Essentially,
when we interpret an eEDM experiment as a constraint on 𝑑𝑒, we are performing
a single-source assumption, and setting 𝐶𝑆 = 0 implicitly. Technically, an EDM
constraint from a single experiment consists of bounding 𝑃,𝑇 violation to a diagonal
line of some width in the entire 2-D parameter space spanned by 𝐶𝑆 and 𝑑𝑒. Only
by performing measurements in multiple systems, which naturally have different
slopes in the 𝐶𝑆, 𝑑𝑒 space, can we obtain a finite constraint region. For example,
only by combining the EDM constraint from the JILA experiment in Ref. [10] and
the constraint from the ACME experiment in Ref. [11], do we obtain tight bound on
both variables: |𝑑𝑒 | < 2.1 × 10−29 𝑒 cm and |𝐶𝑆 | < 1.9 × 10−9 𝑒 cm [10]. This is a
reason why having many different EDM searches is complimentary.

We must also consider multiple eEDM sources when we ask the very relevant
question, “What is the eEDM prediction of the Standard Model?” The Standard
Model is known to violate 𝑇 symmetry in the electroweak force via the complex
phase of the CKM matrix that converts quark mass eigenstates to electroweak
eigenstates. It turns out the Standard Model contributions to 𝑑𝑒 are considerably
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Figure 1.2: Diagram of the leading order contributions to the𝐶𝑆 interaction resulting
in an equivalent eEDM of ∼10−35 𝑒 cm, adapted from Ref. [99]. The interaction
is a 3rd order electroweak interaction involving all three quark generations, which
is necessary to generate a non-trivial CKM phase. The particle exchanged between
the electron and neutron is a Kaon. The upper electron vertex is 𝑇-odd, 𝑃-even,
while the lower nulceon vertex is 𝑇-even, 𝑃-odd, resulting in an overall 𝑃,𝑇-odd
interaction. Thanks to Jane Panangaden for creating this figure.

weaker than the contribtions to 𝐶𝑆. While the pure 𝑑𝑒 contribution is estimated
at ∼ 6 × 10−40 𝑒 cm, the 𝐶𝑆 term was previously estimated to contribute at the
∼ 10−38 𝑒 cm [8] equivalent scale. A very recent calculation from Ref. [99] has
considered a novel mechanism that contributes to𝐶𝑆 at third order in the electroweak
force. The Feynman diagram for this interaction is reproduced in Figure 1.2. The
interaction results in 𝐶𝑆 ∼ 7 × 10−16, corresponding to an an equivalent Standard
Model eEDM at the 10−35 𝑒 cm scale, much larger than any previous estimate.
While this is still ∼5 − 6 orders-of-magnitude smaller than the current best eEDM
bounds, it raises the possibility that future order-of-magnitude improvements in
EDM experiments could measure the Standard Model value. While this would
mean eEDM measurements would no longer be background-free, is an exciting
prospect nonetheless. Measurements of the eEDM in different systems could be
used to extensively benchmark our theoretical understanding of nature, all the way
from the high energy scale to the nuclear scale to the atomic scale.

Finally, we note that by using dimensional arguments, we can estimate model-
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independent constraints on high energy physics [7, 12, 98]. These estimates are
expected to be accurate to within an order-of-magnitude. This allows us to connect
an experimental EDM bound to the high energy scale in a simple manner. For
example, for the eEDM, the estimate is given by [10, 11, 98]:

𝑑𝑒

𝑒
∼ (ℏ𝑐) sin 𝜙𝑇𝑉

(𝛼BSM

4𝜋

)𝑛 𝑚𝑒𝑐2

Λ2 . (1.14)

Here, 𝑒 is the electron charge, 𝜙𝑇𝑉 is the 𝑇 violating phase angle, 𝛼BSM is the
coupling strength of BSM physics to the electron, 𝑛 is the number of loops involved
in generating the eEDM, 𝑚𝑒 is the electron mass, and Λ is the energy scale of the
BSM physics. Typically, estimates set 𝛼𝐵𝑆𝑀 ∼ 𝛼𝐸𝑀 , and 𝜙𝑇𝑉 ∼ 𝜋/2. For example,
the constraint of Ref. [10] corresponds to a limit of Λ ≳ 40 TeV for 1-loop processes
and Λ ≳ 1 TeV for 2-loop processes. Even if we introduce additional caveats that
pull these constraints down by a factor of 10, we see they are still competative with
the direct constraints from the LHC. Furthermore, regardless of our caveats, order-
of-magnitude improvements in EDM bounds result in order-of-magnitude increases
in high-energy physics.

1.4 Why Polyatomic Molecules?
1.4.1 Long Term Vision

So far, we have provided an overview of searches for fundamental symmetry
violation in atoms and molecules. We have shown why molecules with heavy nuclei
are extremely sensitive probes of new physics. We now provide the final motivation
for why we seek to perform EDM measurements in polyatomic molecules.

Current state-of-the-art eEDM experiments are broadly sensitive to T-violating
physics at energies much greater than 1 TeV [10–12, 100, 101]. Molecular beam
experiments have achieved high statistical sensitivity by measuring a large number
of molecules over a ≈ 1 ms coherence time [11, 100]. While there are further
improvements that can increase sensitivity, beams of neutral molecules are ultimately
limited by their interaction time. To achieve orders-of-magnitude improvement in
sensitivity, we must slow, cool, and trap the molecules. Already, molecular ion
experiments obtain seconds long coherence times [10, 101, 102], though the number
of ions in their traps are limited by Coloumb repulsion. Measurements with trapped
neutral polyatomic molecules can potentially combine the best features of each
approach to achieve orders-of-magnitude improved statistical sensitivity [17].

Additionally, precision measurements in trapped atoms and molecules have
significant synergy with the toolbox of techniques developed for studies of quantum
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information, quantum simulation, and quantum metrology. In these fields, state-of-
the-art quantum control techniques allow for bottom-up control of quantum states,
their interactions, and their entanglement. Precise entanglement control in atoms has
already been demonstrated to provide metrological advantages. By harnessing these
techniques for EDM searches, we can push the energy reach of EDM experiments
to PeV energy scales or higher.

The starting point for ground-up quantum control of neutral atoms is laser
cooling and trapping. While atomic laser cooling is now decades old, molecular
laser cooling was first demonstrated in 2010 with SrF molecules [103], with the first
magneto-optical trap following a few years later [104]. Since then, the field has made
significant strides, with laser cooling and/or trapping having been demonstrated for
many diatomic species. Further, laser cooling and/or trapping has recently extended
to several species of polyatomic molecules [105–111]. These advances have been
made possible by the development of a recipe of the primary ingredients necessary
for molecular laser cooling [112, 113]. Most importantly, the molecule must be
chosen such that the laser cooling valence electron is decoupled from chemical
bonds. This decoupling is achieved by choosing molecules formed by an alkaline-
earth(-like) atom with two valence electrons, designated M, that is single-bonded
to an electronegative ligand. The ligand can be a halogen (F, Cl, etc.) in the case
of diatomic molecules, or, in the case of polyatomic molecules, can have the form
-O-R, with R serving as a placeholder ranging from a simple H atom to complicated
functional groups [112]. We can think of the bond in the ionic picture, where the
metal atom readily gives up an electron that bonds with the ligand, giving us a simple
picture of the charge distribution in the molecule: M+−O−−R. The remaining un-
bonded electron on the metal atom is pushed away from the bonding region, and
is described as having atomic character. Though the M-O-R motif may not be
absolutely necessary for laser cooling [114], it certainly guarantees, to good degree,
that the valence electron of the molecule is largely independent of of the bond. This
allows for many photon scatters with minimal vibrational repumping lasers [115].

On the other hand, the success of existing molecule EDM experiments has
demonstrated the power of parity doublets. When polarized, parity doublets allow
for reversal of 𝑃,𝑇 violating interactions without modifying laboratory fields. This is
a huge aid for systematic error rejection in precision measurements [10, 11]. Further,
parity doublets allow for coherent control of the orientation of the internuclear axis
in the lab frame. It is difficult to generically find a diatomic molecule that satisfies
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all three of the following constraints: laser-coolable, containing parity doublets, and
containing core-penetrating orbitals centered on a heavy nucleus. The difficulty is
largely because we are relying on the electronic structure of the molecule to satisfy
three requirements at once, resulting in conflicting demands. This motivates moving
toward polyatomic molecules for the future of molecular EDM experiments.

Polyatomic molecules generically have parity doublets arising from internal
rotations of nuclei about the molecule axis. Since this structure results from rotations
of nuclei, and since we have chosen a molecule with an electron decoupled from
the bonds, the electronic structure for laser-cooling can generically co-exist with
the parity doublet structure for EDM measurements. This lays the foundation for a
future vision of laser cooled and trapped polyatomic atomic molecules, entangled
together to perform an EDM measurement with quantum enhanced metrology [18].

1.4.2 Molecular Orientation Control
Molecules with parity doublets have free-field eigenstates with parity P that

can be generically written as:

|𝜓,P = ±⟩ = 1
√

2

(���𝐽, 𝐾, 𝑀〉
±

���𝐽,−𝐾, 𝑀〉)
. (1.15)

Here, ± represents the state parity (up to a 𝐽 dependent phase for simplicity), 𝐽 is
the total angular momentum of the state, 𝑀 = ®𝐽 · 𝑍̂ is the projection of 𝐽 on the
lab 𝑍̂ axis, and 𝐾 = ®𝐽 · 𝑛̂ is the projection of 𝐽 on the intermolecular axis. For a
given value of 𝐽, we see that molecular eigenstates are labeled by two projection
quantum numbers, 𝑀 and 𝐾 , that desribe the orientation of 𝐽 in both the lab and
molecule frames. The separation of the ± parity states can vary depending on the
choice of polyatomic molecule, allowing for some tuning. In the bending modes of
linear triatomic molecules, the parity states can be separated by ∼10 MHz, while in
symmetric top molecules, the splitting can be even smaller, ∼300 kHz [116].

While ordinary angular momentum states, |𝐽, 𝑀⟩, have 2𝐽 + 1 degeneracy in
free field, describing the different orientations of 𝐽, we see molecular eigenstates
have 2(2𝐽 + 1) near-degenerate states, describing both the orientations of 𝐽 and the
two orientations ±𝐾 of the internuclear axis. For certain molecules, like bending
modes of linear triatomics, we are restricted to have a single value of |𝐾 | in a given
electronic and vibrational state. However, if we generalize our consideration to
asymmetric rotors, we find there are actually (2𝐽 + 1) (2𝐽 + 1) states, though they
are no longer necessarily near degenerate. One factor corresponding to the spatial
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Figure 1.3: Plot of ⟨𝑛̂⟩, labeled “Dipole Orientation,” as a function of the applied
electric field (note the log scale), in a polyatomic molecule with parity doubling (blue
lines) with 𝑁 = 1 (𝑁 labels rotational quanta), compared to a diatomic molecule
without parity doubling (dashed red lines) with 𝑁 = 0, 1, 2. Not only do parity
doublets polarize at order-of-magnitude lower fields, but they generically provide
states with collinear orientation and transverse alignment with respect to the electric
field. We note the orientation for parity doublets saturates at |𝑛̂| = 0.5 because the
projection on the laboratory axis is given by ℓ𝑀𝑁/(𝑁 (𝑁 + 1)) = 1/2 for a Hund’s
case (b) (see Ch. 2) molecule with 𝑁 = 𝑀𝑁 = ℓ = 1 [117]. We can think of this as
the molecular rotation being split between overall rotation and rotation about the 𝑛̂
axis. At large fields, the parity doublet in 𝑁 = 1 mixes with higher 𝑁 , causing an
overall orientation behavior of the polyatomic similar to the diatomic.

orientations of 𝐽 on 𝑍̂ , and the other factor corresponds to the internal orientations
of 𝐽 on the molecular axis 𝑛̂ = 𝑧. However, we note we are typically interested in
the maximally projected states, 𝐽 = |𝐾 |.

Regardless of the specific polyatomic molecule, by creating superpositions of
different 𝑀 and 𝐾 states, we have available to us many different orientations of the
molecular axis in space. The orientation of the molecule axis in the lab frame is
given by ⟨𝑛̂⟩ ∝ ⟨𝑀𝐾⟩, with ⟨𝑛̂⟩ = 0 at free field. However, since parity doublet
states in polyatomic molecules are separated by ≲10 MHz, and since them have
𝐷mol ∼ 𝑒𝑎0, we can mix these states and polarize the molecule by applying an
external field 𝐸lab ∼ 100 V/cm. In Figure 1.3, as a function of the applied electric
field, we compare the orientation ⟨𝑛̂⟩ of a linear triatomic molecule with parity
doubling with the orientation of a diatomic molecule without parity doublets. Not
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only does the polyatomic molecule polarize more quickly, it also has states available
that correspond three possible lab orientations: aligned with the applied field,
perpendicular to the applied field, and anti-aligned to the applied field. Here, we
only have 3 orientations as we considered a 𝐽 = 1 state. In general, when the
molecule is fully polarized, we have 2𝐽 + 1 orientations of the internuclear axis,
corresponding to the different values of 𝑀 in the expectation value ⟨𝑀𝐾⟩.

In molecules with parity doublets, we can provide a simple intuitive picture of
such states in the fully polarized limit. For now, we consider just a space of four
states, formed by the combinations of ±𝑀 with ±𝐾 , given by |𝐽, 𝑀, 𝐾⟩. These
states are shown in Figure 1.4, which encapsulates the basic idea of any molecule
EDM experiment with parity doublets. Recall from eq. 1.10, we can think of any
𝑃,𝑇 violating interaction as 𝐻𝑃𝑇𝑉 ∝ ®𝐽odd · 𝑛̂. For this discussion, we will use 𝐽
to generically represent 𝐽odd, such that 𝐻𝑃𝑇𝑉 ∝ 𝐾 , as the basic picture is agnostic
about the specific 𝑃,𝑇 violating interaction in question. Each |𝐽, 𝑀, 𝐾⟩ state has a
unique set of shifts under 𝐸 fields, 𝐵 fields, and 𝑃,𝑇 violating interactions. When
comparing the energy shifts of states with ±𝑀 and fixed 𝑀𝐾 , we are probing 𝑇
violation, which can result from either 𝐵 or 𝐻𝑃𝑇𝑉 . On the other hand, if we compare
±𝑀𝐾 states with fixed 𝑀 , we are probing 𝑃 violation, which can result from either
𝐸 or 𝐻𝑃𝑇𝑉 . By comparing both ±𝑀 and ±𝑀𝐾 states, we can uniquely distinguish
𝐻𝑃𝑇𝑉 from 𝐸 or 𝐵 effects. Since this manifold of four states exists generically at any
value of 𝐸lab that polarizes the molecules, we see we have access to all combinations
of 𝑃 and 𝑇 violation without changing the orientation of any laboratory fields! In
reality, the electric and magnetic sensitivities of the upper and lower 𝑀𝐾 manifolds
will not be exactly identical, which can mimic an EDM. However, we can then
perform additional reversals of laboratory fields to help disentangle real EDM shifts
from differential sensitivities. Therefore, a major goal of any EDM experiment is to
reduce systematics and false signals that can arise from interactions with external
fields, particularly non-reversing fields. In this regard, the near-complete reversal
of 𝑃,𝑇 violating effects afforded by parity doublets have proved to be an extremely
useful tool for systematic error rejection in molecular eEDM searches [10, 11].

As we have seen, not only do parity doublets allow for easy molecular po-
larization, they allow for exquisite control of the orientation of both 𝑇 odd angular
momenta and the 𝑃 odd internuclear axis vector 𝑛̂. It should come as no surprise that
such a structure is very desirable for experiments seeking to measure 𝑃,𝑇 violation.
Furthermore, if we can one day harness quantum entanglement for a metrological
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Figure 1.4: Diagram showing schematic energy shifts for measurements of 𝑃,𝑇
violation (PTV) in a fully polarized molecule with parity doublets. Dotted lines
show energies in absence of PTV. 𝑀 = ± describes the lab frame projection of
𝐽odd (see main text), while 𝑀𝐾 = ± describes the lab frame orientation of the
internuclear axis 𝑛̂. The PTV shift is given by 𝐻𝑃𝑇𝑉 ∝ 𝐾 , where 𝐾 is the projection
of 𝐽odd on 𝑛̂. Energy shifts from external 𝐸 and 𝐵 fields are also indicated.

advantage, it will be very useful to have the toolbox of |𝐽, 𝑀, 𝐾⟩ states available
to develop novel EDM measurement techniques that evade sources of noise and
systematic errors that typically plague experiments.

1.4.3 Quantum Projection Noise
Fundamentally, the precision of an EDM measurement is limited by quantum

projection noise (QPN), which is a quantum mechanical effect arising from non-
commutation of operators. In this section, we discuss how QPN limits EDM
experiments, motivating us to move toward trapped neutral molecules for precision
measurements.

For detailed discussion on QPN, see Refs. [118, 119]. Consider repeated
measurements of the phase of a two level superposition state, |𝜓(𝜏)⟩ ∝ |0⟩ + 𝑒𝑖𝜙 |1⟩.
If we project this state onto the |0⟩ ± |1⟩ basis, we obtain a spread of results with
some width. For 𝑁 independent measurements of a phase 𝜙, irrespective of other
noise sources, the QPN limit is given by [119]:

𝛿𝜙 =
1

2C
√
𝑁
. (1.16)

Here, C ≤ 1 is the contrast of our measurement, which encapsulates deviations
resulting from decoherence as well as imperfect state preparation and readout.

The QPN limit can be recast into a limit on our ability to measure a frequency𝜔,
by scaling it by the measurement interaction time 𝜏. For experiments that operate in
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a pulsed fashion, we can also expand 𝑁 as 𝑁 = 𝑁𝑝𝑅𝑝𝑇𝑡𝑜𝑡 , where 𝑁𝑝 is the number
of measurements obtained in a pulse, 𝑅𝑝 is the rate of pulses per time, and 𝑇𝑡𝑜𝑡 is
the total time that we run the experiment. We then obtain:

𝛿𝜔 =
1

2C𝜏
√︁
𝑁𝑝𝑅𝑝𝑇tot

. (1.17)

We can make some rough estimates for a beam source. With 𝜏 = 1 ms, C = 0.5,
𝑁𝑝 = 106, 𝑅𝑝 = 10 Hz, we obtain a frequency QPN limit of 𝛿𝜔 = 2𝜋 × 1 mHz for
𝑇tot = 1 day.

The scaling of 𝛿𝜔 ∝ 𝜏−1 motivates us to consider the effect of extending the
interaction time by using a trap. Consider now the value 𝜏 = 1 s, limited by the
lifetime of a bending mode in a polyatomic molecule, and a trapped number of
𝑁𝑝 = 104 molecules17. We note that we can no longer run at 10 Hz, however, as
the entire experiment takes at minimum 1 second. To encapsulate the connection
between increasing measurement time and decreasing measurement rate, we write
𝑁 = 𝑁𝑝𝐷𝜏

−1𝑇 , where 𝐷 is the duty cycle of the experiment. The full frequency
QPN limit for a duty cycle limited experiment is given by:

𝛿𝜔 =
1

2C
√
𝜏
√︁
𝑁𝑝𝐷𝑇tot

. (1.18)

Continuing with our estimate, for a 104 trapped molecules, 1 s coherence, and a
𝐷 = 50% duty cycle, we obtain 𝛿𝜔 = 2𝜋 × 0.02 mHz for 𝑇tot = 1 day.

While two orders-of-magnitude is already quite good, we provide further dis-
cussion on why traps are the future of molecular EDM experiments. First, there
is a pathway towards increasing both the number of trapped molecules [120–122]
and toward increasing the lifetime of the species [123]. Next, an experiment may
not always be quantum projection noise limited. If other noise sources are not ade-
quately controlled, we will have to contend with them first. Therefore it is attractive
to develop methods for suppressing sensitivity to external noise.

Noise reduction can be classified as passive, active, or “quantum.” Magnetic
shielding is an example of passive noise cancellation, whereby we redirect ambient
magnetic fields away from the experiment. It is certainly easier to shield a small
trapped volume compared to a large beamline. We can also use active compensation

17A factor of 2 higher number was trapped in a CaOH MOT in Ref. [108]. While the EDM
measurement cannot proceed in a MOT, we use this as an initial estimate.
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to measure and feedback on the ambient field to cancel its fluctuations, which is also
easier to perform for a small volume.

We use “quantum” to refer to techniques that utilize quantum control to improve
sensitivity to noise. An example of this is state engineering in molecules, where we
tune the noise sensitivities of measurement states using external control fields. We
demonstrate this technique in trapped CaOH molecules in Ch. 5, Sec. 5.4. Further, in
Ref. [124], it was shown that transitions between molecular states can also be tuned
with external fields to have suppressed noise sensitivity. All of these techniques are
more easily implemented in a trap, where we can precisely control applied fields.
Finally, we note that there are protocols that achieve metrological gain in isotope
shifts of trapped ions by using entangled states in a decoherence free subspace [125,
126]. Generalization of these techniques to EDM measurements would be very
useful.

Finally, we add that quantum control can also be used to make a state more
sensitive to the interaction of interest, by going beyond the QPN limit. Using
spin-squeezed states [127], measurements can approach the ultimate Heisenberg
limit, ∝ 1/𝑁 , instead of 1/𝑁−1/2 [18]. A spin-squeezed state is essentially an
ensemble of entangled spins. For an un-entangled state, the minimum uncertainty
noise is symmetric in all observables. For a spin squeezed state, the noise from
an observable of interest, is transferred to another observable. For example, spin-
squeezing of a superposition along the 𝑋𝑌 plane of the bloch sphere can reduce
quantum uncertainty of the 𝑋𝑌 phase observable, which is sensitive to 𝑍 rotations,
at the expense of increased uncertainty in the phase along the 𝑋𝑍 or 𝑌𝑍 planes.
However, the observable with reduced uncertainty will be more sensitive to noise
from other sources that were previously unresolved, for example from stray magnetic
fields. Furthermore, entangled states are difficult to produce and keep coherent,
necessitating the use of a trap. Nonetheless, quantum metrology is the final frontier
for achieving significant EDM sensitivity gains in the future, with many different
entangled states available that can offer unique advantages [128].
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2
Molecules

This is where the fun begins.

–Anakin Skywalker

2.1 Molecular Structure
Most atomic and molecular systems, beyond hydrogen and H+2 , constitute a

many-body quantum Hamiltonian that is too complicated to be described analyti-
cally, and requires extensive theoretical tools to approach from a purely computa-
tional perspective. How then are we to perform a precision measurement in such a
complicated system? We rely on the fact that atomic and molecular systems have
degrees of freedom that remain relatively well-conserved as the system state evolves.
We refer to these conserved or approximately conserved quantities as good quantum
numbers.

Quantum numbers are eigenvalues of a state associated with the action of an
operator of interest on the state. A perfect quantum number is associated with an
operator that commutes with the Hamiltonian. Since the Hamiltonian generates time
evolution, a commuting operator corresponds to a conserved quantity. By Noether’s
theorem, perfect quantum numbers correspond to symmetries of the Hamiltonian.
In the matrix representation of the Hamiltonian, these conserved quantities allow us
to represent the Hamiltonian in a diagonal basis. Examples of quantum numbers in
free space, which, as far as we know, are perfect, include: the total energy 𝐸 , which
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is the eigenvalue of the operator 𝐻; the total angular momentum 𝐹, associated with
the operator 𝐹2 with eigenvalue 𝐹 (𝐹 + 1); and the projection of 𝐹 on the lab Z-axis,
®𝑀𝐹 = ⟨ ®𝐹 · 𝑍⟩. These operators are conserved by virtue of time-reversal symmetry

and 3D rotational invariance of the atomic or molecular Hamiltonian.

Now, imagine we break the spherical symmetry of space by applying an elec-
tromagnetic field along the 𝑍̂ axis. If this field couples to the atom or molecule,
we no longer have 𝐹 as a perfect quantum number, as the system can exchange mo-
mentum with the field. However, there still exists cylindrical symmetry around the
applied field vector, and therefore 𝑀𝐹 is conserved. If the applied field interaction
is weak compared to the energy separation of different 𝐹 levels, then the coupling
of different 𝐹 levels is perturbatively small, and we say 𝐹 is an approximately good
quantum number.

Of course, this discussion need not be restricted to interactions with an external
field, as the notion of approximately good quantum numbers can apply to individual
operators in a constituent system as well. If there is a separation of energy scales,
then we can have approximately good quantum numbers that are only slightly mixed
by off-diagonal matrix elements of the Hamiltonian. These good quantum numbers
are only good to some approximation, and the collection of good quantum numbers
can vary among eigenstates separated by large energy scales (i.e., large in the atomic
scale, ∼ eV). A given collection of good quantum numbers can be used to construct
a basis to describe the molecule or atom. In the systems we study, there are often
electronic states with internal structure that is well described with a single basis.

There are also poor quantum numbers, associated with operators with com-
pletely undefined expectation values. This can apply when there are strong interac-
tions between angular momenta that make them indistinguishable from each other.
For example, the intuitive end-over-end rotation of the molecule, 𝑅, interacts with
the angular momentum of the electrons, 𝐿, and as a result only their combination
is well-defined. The separation of energy scales and perturbative treatments of
off-diagonal operators is essential to make the molecular problem tractable. Con-
necting various physical scenarios to a choice of a quantum number basis is at the
heart of the effective Hamiltonian treatment of molecular states. We will discuss
the effective Hamiltonian in Sec. 2.2 in detail, along with Hund’s cases (Sec. 2.1.5),
which correspond to different bases used to describe molecules in different phys-
ical regimes. However, first we will establish the foundations of describing with
molecules, which is first describing atoms.
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2.1.1 Angular Momentum and Spherical Tensors
There are many good references on angular momentum algebra, such as Brown

and Carrington Ch. 5 [39], Hirota [129], or Zare [130]. Here we simply present a
few foundational concepts. We define the lab frame with axes written as 𝑋̂,𝑌 , 𝑍̂ ,
and we note these are unit vectors, not operators. In quantum mechanics, the angular
momentum vector1 ®𝐽 has lab-frame components (i.e., 𝐽𝑋 = ®𝐽 · 𝑋̂) that satisfy the
essential commutation relations [𝐽𝑖, 𝐽 𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝐽𝑘 , where 𝜖𝑖 𝑗 𝑘 is the Levi-Civita
symbol, and the index 𝑖, 𝑗 , 𝑘 runs over 𝑋,𝑌, 𝑍 .

The total angular momentum magnitude ®𝐽2 commutes with any of its com-
ponents. Picking 𝐽𝑍 as is convention, we can define quantum states of angular
momentum, written as |𝐽, 𝑀⟩. These states are eigenstates of the the operators ®𝐽2

and 𝐽𝑍 = ®𝐽 · 𝑍̂ , with respective eigenvalues 𝐽 (𝐽+1) and 𝑀 . Each of the 2𝐽+1 values
of𝑀 specifies an orientation of the vector ®𝐽, with𝑀 running from−𝐽,−𝐽+1, . . . , 𝐽.
The remaining components, 𝐽𝑋 and 𝐽𝑌 , are written in terms of raising and lowering
operators: 𝐽± = 𝐽𝑋 ± 𝑖𝐽𝑌 . As the name implies, 𝐽± can change the orientation of the
angular momentum vector, 𝑀 → 𝑀 ± 1, while preserving the magnitude 𝐽. The
matrix elements of 𝐽± can be found in the literature. These definitions encode an
accepted phase convention choice, the Condon and Shorltey phase, such that the
matrix elements of 𝐽𝑋 are real.

All of the atoms and molecules we are interested in consist of multiple com-
posite angular momenta coupled together by internal interactions. Mathematically,
different angular momenta, 𝐽1 and 𝐽2, belong to different Hilbert spaces, and the
combined state is written |𝐽1, 𝑀1⟩ ⊗ |𝐽2, 𝑀2⟩, though often we and others abbreviate
this as |𝐽1, 𝑀1⟩|𝐽2, 𝑀2⟩. Under interactions coupling two or more angular momenta,
the combined angular momentum is conserved, and written as ®𝐽 = ®𝐽1 ⊗ 𝐼2 + 𝐼1 ⊗ ®𝐽2,
with 𝐼1/2 representing the identity operator, and once again often the tensor product
notation is usually dropped in practice. Mathematically, one can show that 𝐽 can
take on quantity 2×min(𝐽1, 𝐽2) +1 values, given by |𝐽1−𝐽2 |, |𝐽1−𝐽2 | +1, . . . , 𝐽1+𝐽2.
Much like the individual angular momentum eigenstates, each 𝐽 value has 2𝐽 + 1
orientations with well-defined lab frame projection 𝑀 = ®𝐽 · 𝑍̂ .

We can therefore define a new basis, defined by eigenstates of the coupled
1Note, in this entire thesis, we work with dimensionless angular momentum operators, and the

physical value of an angular momentum is given in the correct units by ®𝐽ℏ.
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angular momentum 𝐽. The change of basis is given by:

|𝐽, 𝑀⟩ =
∑︁
𝑀1,𝑀2

|𝐽1, 𝑀1⟩|𝐽2, 𝑀2⟩ ⟨𝐽1, 𝑀1; 𝐽2, 𝑀2 |𝐽, 𝑀⟩

= (−1)𝐽1−𝐽2+𝑀
√

2𝐽 + 1
∑︁
𝑀1,𝑀2

(
𝐽1 𝐽2 𝐽

𝑀1 𝑀2 −𝑀

)
|𝐽1, 𝑀1; 𝐽2, 𝑀2⟩.

(2.1)

Here, ⟨𝐽, 𝑀 |𝐽1, 𝑀1; 𝐽2, 𝑀2 |𝐽, 𝑀⟩ is a real number known as a Clebsch-Gordan
coefficient, and will show up very often in manipulations of angular momenta. In
the second line, we have written the Clebsch-Gordan coefficient in terms of the
symbol in parentheses, known as the Wigner 3j symbol. The 3j symbol encodes
all of the information in the Clebsch-Gordan coefficient, and has certain selection
rules. Namely, the symbol is zero unless 𝐽2, 𝐽2, 𝐽3 satisfy a triangle inequality and
𝑀1 + 𝑀2 + 𝑀3 = 0. Further symmetry details and identities of the 3j symbol are
given in Ref. [39].

This procedure can be generalized to sequentially couple multiple angular mo-
menta, labeled 𝐽1, 𝐽2, 𝐽3, . . . etc. We note there is a choice of coupling sequence–we
can either couple 𝐽1 and 𝐽2 to form 𝐽12, which we then couple to 𝐽3 to obtain 𝐽tot,
or we can follow another path. These different coupling schemes represent different
bases that span the same space, and are related by unitary transformations to each
other. Further information on coupling schemes of multiple angular momenta can
be found in Ref. [39]. We will write coupled states with the following notation:
| (𝐽1, 𝐽2)𝐽12⟩. In the case where we have multiple sequential couplings, we will write
the states as: | (𝐽1, 𝐽2)𝐽12; (𝐽12, 𝐽3)𝐽tot⟩. This can be extended for arbitrary number
of couplings.

We note that it is typically convenient to begin by coupling the angular momenta
that interact most strongly and incorporating the more weakly coupled angular
momenta after. This allows us to express the Hamiltonian of interest with larger on-
diagonal elements compared to off-diagonal elements, and to effectively encapsulate
the effects of the off-diagonal elements via perturbation theory.

2.1.2 Spherical Tensors and the Wigner-Eckart Theorem
We are often interested in the behavior of angular momentum states and opera-

tors under rotations. This is certainly the case in molecules, where various molecular
properties, such as the molecule frame dipole moment, are most naturally defined
in the frame rotating with the nuclear framework. Further, because the physics of
interest remains invariant under coordinate frame rotations, considering a physical
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problem in multiple frames can provide helpful insights. In this section we provide
an overview of angular momentum rotations, culminating in the presentation of the
Wigner-Eckart theorem, which will be indispensable for the work in this thesis.

We can parameterize a rotation about an axis 𝑛̂ by an angle 𝜃 as 𝑅𝑛̂ (𝜃). We note
that rotations can either be active, applied to the angular momentum state, or passive,
applied to the coordinate frame. Any active rotation by an angle 𝜃 can be written
as a passive rotation by the inverse angle −𝜃. In this thesis, we follow the rotation
conventions in Ref. [39], where angular momenta 𝐽𝑋 , 𝐽𝑌 , 𝐽𝑍 are generators of active
rotations2. Therefore a rotation about a single axis is written as 𝑅𝑛̂ (𝜃) = 𝑒−𝑖𝜃𝐽𝑛̂ ,
where 𝐽𝑛̂ generates rotations about the 𝑛̂ axis.

We require three angles, known as Euler angles, to fully parameterize arbitrary
rotations of the coordinate axes. In this thesis, we denote the Euler angles as
𝜔 = (𝜙, 𝜃, 𝜒), following the definitions of Ref. [39]. The full rotation that relates
one coordinate frame (“the lab frame”) to a second frame (“the molecule frame”) is
given by:

𝑅(𝜔) = 𝑅𝑍 (𝜙)𝑅𝑌 (𝜃)𝑅𝑍 (𝜒) = 𝑒−𝑖𝜙𝐽𝑍 𝑒−𝑖𝜃𝐽𝑌 𝑒−𝑖𝜒𝐽𝑍 . (2.2)

We emphasize all of the above rotations are defined by the lab frame axes. We
note the operations are performed from right to left, and the rotation angles have
the ranges 0 ≤ 𝜙 ≤ 2𝜋, 0 ≤ 𝜃 ≤ 𝜋, and 0 ≤ 𝜒 ≤ 2𝜋. Since the angular
momentum states are diagonal under 𝐽𝑍 , we see that the 𝐽𝑌 rotation is the operation
that couples different 𝑀 states. We also note the inverse rotation is given by
𝑅−1(𝜙, 𝜃, 𝜒) = 𝑅(−𝜒,−𝜃,−𝜙).

We may write the effect of the rotation 𝑅(𝜔) of an angular momentum state as
a unitary operator D(𝜔) that acts on Hilbert space. Physically, a rotation should
preserve the length of the angular momentum 𝐽, so the matrix representation of
D(𝜔) for all angular momentum states will be block diagonal in 𝐽, and we can
denote a single 𝐽 block as D (𝐽) (𝜔). We expect the D (𝐽) (𝜔) matrices to mix the 𝑀
values for a given 𝐽, because we rotations generically change the orientation of 𝐽
relative to 𝑍̂ . The angular momentum states transform under rotations as follows:

|𝐽, 𝑀⟩
𝑅(𝜔)
−−−−→ D (𝐽) (𝜔) |𝐽, 𝑀⟩ (2.3)

D (𝐽) (𝜔) |𝐽, 𝑀⟩ =
∑︁
𝑀 ′
|𝐽, 𝑀′⟩D (𝐽)

𝑀 ′,𝑀 (𝜔). (2.4)

2We note that this is opposite of the convention followed by Ref. [131].
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Here, D (𝐽)
𝑀 ′,𝑀 (𝜔) = ⟨𝐽, 𝑀

′|D (𝐽) (𝜔) |𝐽, 𝑀⟩ are the matrix elements of the unitary
operator representing rotations, known as the Wigner rotation matrix or Wigner
D-matrix. It turns out these D-matrices are very useful, being the irreducible
representations of both the group of 3D rotations, SO(3), and the group of unitary
2x2 matrices, SU(2), which are used to describe spins and two level systems. We
shall see the D-matrices again again in our section discussing of molecular states,
which can have angular momentum about both lab and molecule axes.

Finally, we also summarize the concept of spherical tensor operators. The de-
composition of vectors and operators into the spherical basis is extremely convenient
for performing calculations with angular momentum states. Essentially, spherical
tensor operators transform under rotations akin to angular momentum states, as
described by the D-matrices. For any vector operator ®𝐴 with rank 𝑘 , we write the
spherical tensor components of 𝐴 as 𝑇 𝑘𝑝 (𝐴). These transform under coordinate
rotations as:

𝑇 𝑘𝑝 (𝐴) =
∑︁
𝑝′
𝑇 𝑘𝑝′ (𝐴)D

(𝑘)
𝑝′,𝑝 (𝜔) (2.5)

The properties of spherical tensor operators are summarized in the literature [39].
We can draw an intuitive analogy with angular momentum states. The rank 𝑘

corresponds to the magnitude 𝐽, and encodes the number of possible orientations as
2𝑘 + 1. We note that unlike 𝐽, the rank of a spherical tensor 𝑘 must be an integer.
The orientations of the operator are denoted by 𝑝, in analogy to the 𝑀 projection of
an angular momentum.

We can now introduce a very important theorem known as the Wigner-Eckart
Theorem. This theorem allows us to write the matrix elements of spherical tensor
operators on angular momentum states as:

⟨𝜂, 𝐽, 𝑀 |𝑇 𝑘𝑝 (𝐴) |𝜂′, 𝐽′, 𝑀′⟩ = (−1)𝐽−𝑀
(

𝐽 𝑘 𝐽′

−𝑀 𝑝 𝑀′

)
⟨𝜂, 𝐽 | |𝑇 𝑘 (𝐴) | |𝜂′, 𝐽′⟩.

(2.6)
We use 𝜂 to denote all other quantum numbers, for example those related to the
electronic or vibrational state of a molecule. The box is for emphasis, as we will use
this eq. 2.6 over and over again.

The Wigner-Eckart theorem essentially factorizes the matrix element into a fac-
tor dependent on orientations 𝑀 , which we can look up in a table or on a computer,
and a factor independent of orientation in physical space, known as the reduced
matrix element ⟨𝜂, 𝐽 | |𝑇 𝑘 (𝐴) | |𝜂′, 𝐽′⟩. If the operator 𝐴 is an angular momentum
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operator, then the reduced matrix element can be obtained analytically [39]. Oth-
erwise, calculating the reduced matrix element is typically a hard problem, and
often one actually compares to experiment to obtain the value of the reduced matrix
element as a fit to data. This is the case for example when ®𝐴 = ®𝑟, the position
operator acting on the electronic wavefunction.

Using the Wigner-Eckart theorem and the theory of angular momentum cou-
pling, we can effectively evaluate the matrix elements of any operator acting on a
composite molecular angular momentum state. In Appendix A, we provide a recipe
for evaluating matrix elements in molecules. Many important formulae, identities,
and results are provided in Refs. [39, 129]. Chapter 2 of Ref. [132] is also an
excellent introduction to evaluating angular momentum matrix elements. Now, with
basic angular momentum machinery in hand, we now proceed to describing the
physical content of atomic and molecular states.

2.1.3 Atomic States
There are many fantastic textbooks detailing the atomic Hamiltonian, so here

we just mention some relevant aspects that have parallels in molecules. First and
foremost, the energy scales of the atomic problem are far smaller than those involved
in the nucleus. Therefore the nuclear degrees of freedom are frozen out, and we
only deal with the nuclear ground state. This is a somewhat trivial example of using
separations of energy scales to simplify a problem, which we will encounter later
with molecules. By the same logic, when working with multi-electron atoms, we
typically only care about the valence electron, as the lower shells are tightly bound
and not accessed by our energy scales of interest.

In multi-electron atoms, the “Hydrogenic” quantum numbers (particularly the
orbital angular momenta 𝑙 and spins 𝑠) are coupled, and we must introduce new
quantum numbers. The quantum numbers used depend on the basis that renders the
Hamiltonian most diagonal, which depends on the scale of the physical interactions
present. We can categorize the energy scales of interest as Δ𝐸elec, representing
the electrostatic separation of states due to the central Coloumb potential, and
Δ𝐸SO, representing the scale of the splitting of spin-orbit states. We note that the
ratio between relativistic 𝐸SO interaction and the electrostatic energy is given by
𝐸SO/𝐸elec ∼ 𝛼2𝑍2 [133], where 𝛼 is the fine structure constant, and 𝑍 is the atomic
number of the nucleus. Therefore we expect spin orbit to dominate for heavy atoms.
A similar situation will hold in molecules as well.
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In the regime with Δ𝐸elec > Δ𝐸SO, we are dominated by the central field
potential, and we use the Russell-Saunders coupling scheme. In this coupling
scheme, all the electron orbital angular momenta first couple together to form the
total electronic orbital angular momentum ®𝐿 =

∑
𝑖
®𝑙𝑖, where 𝑖 runs over electrons in

the valence orbital. Similarly, the electron spins also initially couple to each other
first, forming the total electron spin angular momentum ®𝑆 =

∑
𝑖 ®𝑠𝑖. Finally, spin-

orbit interactions couple the 𝐿 and 𝑆 together to form the total angular momentum
®𝐽 = ®𝐿 + ®𝑆. If the atom has non-zero nuclear spin, it couples to 𝐽 at the very end to
obtain the grand total angular momentum, ®𝐹 = ®𝐽 + ®𝐼.

To succinctly describe the good quantum numbers describing a system of inter-
est, we use term symbols. The notation of these symbols dates back to the early days
of quantum mechanics, and initially they may seem difficult to interpret. However,
after becoming familiar with term symbols, they can be used to succinctly label
different electronic states of an atom or molecule. For Russell-Saunders coupling
in atoms, the term symbol is given by:

2𝑆+1𝐿𝐽 (2.7)

where we have already defined the angular momenta 𝐿,𝑆, amd 𝐽. For historical
reasons, the spin 𝑆 is labeled by its multiplicity of 𝑀𝑆 orientations (i.e., singlet,
doublet, triplet,...), while the orbital angular momentum 𝐿 = 0, 1, 2, 3, 4, . . . is
represented by the capital letters 𝑆, 𝑃, 𝐷, 𝐹, 𝐺, . . .. We note sometimes the term
symbol is also written with a ◦ subscript to denote a state of opposite parity from
the ground state.

In the other regime, Δ𝐸SO > Δ𝐸elec, and we are dominated by spin-orbit
coupling. The Hamiltonian now contains large off-diagonal matrix elements in the
basis denoted by the Russell-Saunders coupling scheme. Instead of the orbital and
spin angular momenta initially coupling separately amongst themselves, we now first
couple each electron’s orbit and spin together first, before coupling all the electrons
together. We therefore have the good quantum number ®𝑗𝑖 = ®𝑙𝑖 + ®𝑠𝑖 defined for each
electron indexed by 𝑖. Then the individual 𝑗𝑖 are coupled together to form the total
angular momentum ®𝐽 = ∑

𝑖
®𝑗𝑖. Essentially, 𝐽 is the only good quantum number, with

𝐿 and 𝑆 so strongly coupled that they are indistinguishable. This is known as the
𝑗 𝑗-coupling scheme, and is particularly relevant for heavy atoms where spin-orbit
interactions cannot be treated perturbatively. We note there are further variations
on atomic coupling schemes related to configurations where multiple valence shells
may be active.
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We shall soon see that while we have more degrees of freedom to contend with
in molecules, the description of their states follows as a natural generalization of
atomic term symbols.

2.1.4 The Simplest Molecule
Now we move on to adding another nucleus to the atom and forming a diatomic

molecule. By no means will we give a comprehensive discussion of the chemical
bonds holding the molecule together. For details, we direct the curious reader to
Pauling’s introduction on the subject [134].

Just as we turn to the hydrogen atom initially to gain insight in the case of atoms,
so too can we turn to the H+2 cation to gain insight into molecules. The case of
infinitely rigid H+2 , fixed in place, can be solved analytically by introducing elliptical
coordinates [39, 135], allowing the wavefunction to be separated, much like the case
with the hydrogen atom. We simply quote the result: the eigenstates 𝜓𝑛,𝑙,𝜆 are now
labeled by three good quantum numbers, 𝑛, 𝑙, 𝜆. The first two quantum numbers
are familiar from the atomic case, and have similar interpretations–𝑛 describes
the “radial” wavefunction, now in terms of constant ellipsoidal surfaces, while 𝑙
describes the electronic angular momentum. The quantum number 𝜆 = 𝑙 · 𝑛̂ can
be interpreted as the projection of 𝑙 on the internuclear axis 𝑛̂ pointing from one
nucleus to the other. Given the cylindrical symmetry of the problem, it is natural
that the projection 𝜆 can be defined.

In an approach known as Ligand Field Theory (LFT) [136–138], we can consider
constructing the 𝜓𝑛,𝑙,𝜆 states by beginning with an isolated 𝐻 atom, and bringing
closer a proton initially separated at infinite distance. Here, the proton represents a
“ligand.” The electric field between the orbiting electron and the distant proton cre-
ates an interaction analogous to the Stark effect in atoms and molecules. Essentially,
the states of the isolated atom, designated by 𝑛 and 𝑙, with degenerate orientations
𝑚𝑙 , are now split by the ligand according to different projections of 𝑚𝑙 along 𝑛̂,
which is the definition of 𝜆.

Indeed, we note the eigenvalues depend only on 𝜆2, and therefore we have a
double degeneracy of ±𝜆. Additional interactions, such as molecular rotation, will
inevitably couple ±𝜆 states, causing them to split into states written as symmetric
and anti-symmetric combinations of ±𝜆. Such combinations are actually necessary
to preserve parity symmetry, as we shall see. Indeed, the weak mixing of nominally
degenerate projection states is the mechanism behind parity doubling, which is
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present in certain diatomic molecules, generic in polyatomic molecules, and absent
in atoms.

Though our molecule neither rotates nor vibrates thus far, we have already
seen the emergence of key properties in considering the simplest case. Similar to
atoms, we have 𝑛 ≥ 𝑙 ≥ 𝜆. The molecular quantum numbers can be written in
terms of molecular orbitals, with 𝑛 designated by an integer, 𝑙 designated by lower-
case Latin characters (𝑠, 𝑝, 𝑑, 𝑓 , . . .) and |𝜆 | designated by lower Greek characters
(𝜎, 𝜋, 𝛿, 𝜙, . . .). In general, lowercase symbols are used to designate single electron
properties.

As we add more electrons and possibly more nuclei, the molecular problem
rapidly increases in complexity. In general, we sidestep a great deal of the multi-
electron complexity in molecules by working with systems with one valence electron.
The molecules we focus on follow a motif that has been identified to produce laser
coolable molecules, by engineering favorable vibrational decays, discussed further in
Sec. 2.1.7. A good discussion of the electronic structure of laser-coolable molecules
is given in Ch. 2.2 of Ref. [139].

2.1.5 Separation of Energy Scales and Hund’s Cases
Molecules can vibrate and rotate, in addition to their electronic degrees of free-

dom. We provide a sense of the energy scales involved. In molecular spectroscopy,
it is customary to describe energy as a wavenumber, 𝐸 = ℎ𝑐𝑘 , with 𝑘 given in units
of cm−1. While these units may seem odd, they encapsulate the many orders-of-
magnitude of energy scales present in molecules. For the molecules we consider
here, electronic energies are typically order ∼104 cm−1, vibrational energies are on
the scale of 100−1000 cm−1, rotational splittings are on the 0.1−1 cm−1 scale, and
rotational fine and hyperfine structure (encoding interactions of rotation with other
angular momenta) are on the scale of ≤ 0.1 cm−1.

The significant variation of the energy scales of the problem translates to signif-
icant differences in the timescales of molecular dynamics. The electronic dynamics
are the fastest in the problem, followed by vibration, then rotation. As a result, we
are motivated to perform an approximate separation of the wavefunction, known as
the Born-Oppenheimer approximation, which is treated in detail in many textbooks.
Here we provide a brief summary, following Refs. [39, 135].

We denote the full molecular wavefunction as Ψ𝑟𝑣𝑒, which is a function of the
electron spatial coordinates ®𝑟𝑖 with electron index 𝑖, the electronic spins ®𝑠𝑖, the
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nuclear coordinates ®𝑅𝑘 with nuclear index 𝑘 , and the Euler angles 𝜔 := (𝜙, 𝜃, 𝜒)
describing the orientation of the molecular frame relative to the lab frame. Prior to
performing the approximations, the total Hamiltonian can be written as:

(𝐻elec + 𝐻nucl)Ψ𝑟𝑣𝑒 = 𝐸𝑟𝑣𝑒Ψ𝑟𝑣𝑒 . (2.8)

Here, 𝐻elec has been factored such that it does not contain any effects of nuclear
motion. On the other hand, 𝐻nucl contains angular momentum operators that can
couple different electronic states. The first step, not yet an approximation, is to
expand the total wavefunction in a complete basis spanned by products of electronic
and nuclear wavefunctions:

Ψ𝑟𝑣𝑒 =
∑︁
𝑛

𝜓𝑛𝑒 (®𝑟𝑖, ®𝑅𝑘 )𝜓𝑛𝑟𝑣 ( ®𝑅𝑘 , 𝜔). (2.9)

Here, 𝑛 is an index labeling different wavefunctions correlated with electronic
states of the rigid molecule, and we have dropped the spin interactions for con-
venience, as they will be very weak in comparison. At this point, we note the
electronic wavefunctions are defined as eigenstates of the electronic Hamiltonian,
𝐻elec𝜓

𝑛
𝑒 (®𝑟𝑖, 𝑅𝑘 ) = 𝐸𝑛𝑒 (𝑅𝑘 )𝜓𝑛𝑒 (®𝑟𝑖, 𝑅𝑘 ).

We now perform the adiabatic approximation, writing the wavefunction as:

Ψ0
𝑟𝑣𝑒 = 𝜓

𝑛
𝑒 (®𝑟𝑖, 𝑅𝑘 )𝜙𝑛𝑟𝑣 (𝑅𝑘 , 𝜔). (2.10)

Here, 𝜙𝑛𝑟𝑣 is an appoximation of a single 𝜓𝑛𝑟𝑣 vibrational state, which means we are
neglecting terms that mix different 𝑛 states. As the name “adiabatic” implies, in
this approximation the electrons instantaneously adjust their dynamics to track the
vibrating and rotating nuclei, which move slowly in comparison. This approxima-
tion is motivated by the separation of electronic and nuclear timescales observed
in molecules. The electronic wavefunction depends parametrically on the nuclear
coordinates, ®𝑅𝑘 , but is independent of the nuclear momenta or operators. We imag-
ine we can fix the nuclei in place, solve for the electronic Hamiltonian, then vary
the fixed nuclear position, re-solve the electronic energies, and so on, obtaining a
potential energy surface describing the electronic state as a function of the nuclear
coordinates. For diatomic molecules, this potential energy surface is one dimen-
sional, as there is only one nuclear “coordinate,” the relative separation of the nuclei
𝑅. For polyatomic molecules, the potential energy surface is multi-dimensional,
which can have consequences such as allowing certain crossings known as conical
intersections, where the approximations discussed break down completely, though
we do not discuss the matter further in this work.
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Finally, to complete the Born-Oppenheimer (BO) approximation, we neglect
all couplings of electronic and nuclear motions when determining 𝜙𝑛𝑟𝑣. By using
Euler angles to describing the molecular rotation in relation to the molecule body-
fixed axes, we can further separate the rotation-vibration wavefunction into separate
vibrational and rotation parts. For the complete molecular wavefunction in the
BO approximation, we therefore have completed a full separation of electronic,
vibrational, and rotational degrees of freedom:

Ψ0
𝑟𝑣𝑒 = 𝜓𝑒𝜓𝑣𝜓𝑟 . (2.11)

We note that the procedure of quantizing the molecule rotation in terms of the
body-fixed axes will have consequences for how we handle 𝜓𝑟 , discussed in the next
section. This separation of the molecular wavefunction is at the heart of how we can
perform physics experiments with molecules in a tractable manner. In essence, the
BO approximation expands the molecular energy 𝐸 in terms of the BO parameter,
𝜅 = (𝑚/𝑀)1/4, where 𝑚 is the electron mass, and 𝑀 is the nuclear mass. Very
approximately, we have 𝐸𝑚𝑜𝑙 ≈ 𝐸elec(𝜅0) + 𝐸𝑣𝑖𝑏 (𝜅2) + 𝐸Rot(𝜅4). However, we shall
see that even in the molecules we consider, we will encounter breakdowns of the
approximations we have introduced. For example, we shall see later that vibration-
rotation couplings will be relevant for bending polyatomic molecules. Nonetheless,
we will be able to treat the relevant interactions perturbatively in the case of the
variations from BO wavefunctions that we encounter.

2.1.6 Rotation and Symmetric Top States
In this section we provide a detailed discussion the rotational states of the

molecule, denoted 𝜓𝑟 in eq. 2.11. In this section we will denote the total rotational
angular momentum of the molecule generically as ®𝐽. In later sections, we will
discuss the specific composition of this rotation in terms of spin, nuclear framework,
etc., but for this discussion we remain agnostic about the specifics. We introduce
the notion of the molecular frame, labeled by axes 𝑥, 𝑦̂, 𝑧. We use lowercase letters
to denote the molecule frame components, while we reserve the uppercase letters
𝑋̂, 𝑌 , 𝑍̂ to denote the lab frame components. In a linear molecule, 𝑧 is taken along
the axis of cylindrical symmetry, and often referred to as the internuclear axis 𝑛̂.
For symmetric and asymmetric rotors, we follow the convention of aligning 𝑧 to the
principal axis with the largest moment of inertia.

We discuss further what we meant in the previous section by “quantizing” the
rotational angular momentum in the molecule body-fixed frame. We can convert
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back and forth between the lab and molecule frames by using rotations parameterize
by the Euler angles, defined in eq. 2.2. The rotations that transforms lab frame
vector to the molecule frame and vice versa can be written as a unitary matrix 𝑈
that acts on 3D vectors. That is, if ®𝑉𝐿 is in the lab frame and ®𝑣𝑚 is in the molecule
frame, ®𝑉𝐿 = 𝑈®𝑣𝑚. The matrix 𝑈 is always 3x3, resulting from the dimension of
physical space. The matrix elements of𝑈 are referred to as the direction cosines in
the literature [39, 129], and the explicit form of𝑈 is given in eq. 2.39 of Ref. [39].

We can use the direction cosines to define the rotational angular momentum
of the molecule, 𝐽, in the molecule frame, which allows us to separate 𝜓𝑟 and 𝜓𝑣.
The body-fixed angular momenta 𝐽𝑥 , 𝐽𝑦, 𝐽𝑧 generate rotations in the molecule frame.
Further, it can be shown that the space-fixed Euler rotation in eq. 2.2 is equivalent
to a series of body-fixed rotations performed in the reverse order:

𝑅𝑍 (𝜙)𝑅𝑌 (𝜃)𝑅𝑍 (𝜒) = 𝑅𝑧 (𝜒)𝑅𝑦 (𝜃)𝑅𝑧 (𝜙). (2.12)

The rotations on the right hand side are generated by the angular momenta quantized
along the molecule frame axes3. While rotations of the molecule body may be
easier to conceptualize, the associated angular momenta are difficult to work with
as the molecule axes are changing in space as we perform the rotations, causing
complications.

The biggest issue with the molecule rotation 𝐽 being quantized in the molecule
frame is that the components 𝐽𝑥 , 𝐽𝑦, 𝐽𝑧 have anomalous commutation relations.
Explicitly, we have [𝐽𝑎, 𝐽𝑏] = −𝑖𝐽𝑐𝜖𝑎𝑏𝑐, where 𝑎, 𝑏, 𝑐 are indices for the molecule
axes, and the sign of −𝑖 is anomalous. This means if, in analogy with the lab frame,
we were to naively construct a “raising” 𝐽 (𝑚)+ = 𝐽𝑥 + 𝑖𝐽𝑦 operator in the molecule
frame and act it on the molecule state, it would actually lower the projection 𝐽𝑧 in
the molecule frame! This means we cannot apply the machinery of spherical tensor
operators presented earlier. We note the anomalous commutation only applies to
operators that contain the molecule body rotation, which will either be denoted by
𝐽 or 𝑁 , depending on the coupling scheme. Other operators such as 𝐿 and 𝑆 are not
anomalous in either the lab or molecule frame [39].

To deal with the anomalous commutation relations, we always transform oper-
ators coupled with the molecule rotation from the molecule frame to the lab frame.
We consider an operator 𝐴 represented in the lab frame with spherical tensor form

3Technically the angular momenta are quantized along lab frame axes that are always rotated to
be instantaneously coincident with the molecule body axes, see Ref. [39] and references therein.
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𝑇 𝑘𝑝 (𝐴). We use 𝑝 to refer lab frame components. We can also define the same
operator 𝐴 in the molecule frame as 𝑇 𝑘𝑞 (𝐴), where we use 𝑞 to refer to molecule
frame components. Using the D-matrices, we can transform the operator 𝐴 between
the two frames as follows:

𝑇 𝑘𝑝 (𝐴) =
∑︁
𝑞

D (𝑘)𝑝,𝑞 (𝜔)∗𝑇 𝑘𝑞 (𝐴) (2.13)

𝑇 𝑘𝑞 (𝐴) =
∑︁
𝑝

(−1)𝑝−𝑞D (𝑘)−𝑝,−𝑞 (𝜔)∗𝑇 𝑘𝑝 (𝐴). (2.14)

The advantage of this approach is that the matrix elements of the D-matrix can be
found in the literature [39, 129, 130]. Essentially, when we calculate matrix elements
involving D (𝑘)𝑝,𝑞 (𝜔), we are integrating over the space of all possible molecular
orientations with a measure given by d𝜔 = 𝑠𝑖𝑛𝜃 d𝜙 d𝜃 d𝜒. For more details on
matrix element calculations, see Appendix A.

We now introduce the eigenstates that generically describe the molecular rotation
𝐽 in both the molecule and lab frames. The rotational Hamiltonian can take many
forms, depending on the symmetries of the principal axes that diagonalize the
moment of inertia matrix, which is constructed from the nuclear masses and bond
geometries. On one hand, the simplest rotational Hamiltonian is that of a diatomic
molecule with zero angular momentum about the internuclear axis 𝑛̂, that is 𝐽𝑧 =
𝐽 · 𝑛̂ = 0. Such a molecule has infinite rotational symmetry about 𝑛̂ = 𝑧, and is
described by only one moment of inertia, 𝐼, describing rotation perpendicular to 𝑛̂
(i.e., only 𝐽𝑥 and 𝐽𝑦 are non-zero). The Hamiltonian is referred to as the rigid rotor
Hamiltonian, given by:

𝐻 = 𝐵 ®𝐽2. (2.15)

Here, 𝐵 ∝ 𝐼−1 is the energy scaling of the moment of inertia in wavenumber units.
The eigenstates of the rigid rotor Hamiltonian are described by spherical harmonics,
with eigenvalue 𝐽 (𝐽 + 1), and degenerate 𝑀 = ®𝐽 · 𝑍̂ sublevels.

On the other end of the rotational complexity scale, we have an asymmetric
rotor, which is a molecule without any symmetry axis. Here, ®𝐽 is described by three
unique moments of inertia, one for each component. The Hamiltonian is given by:

𝐻 = 𝐴𝐽2
𝑎 + 𝐵𝐽2

𝑏 + 𝐶𝐽
2
𝑐 . (2.16)

Here, A, B, and C denote the three principle axes of the moment of inertia, and
the usual convention4 has 𝐼𝑎 < 𝐼𝑏 < 𝐼𝑐 (𝐴 > 𝐵 > 𝐶), with the 𝑎, 𝑏, 𝑐 identified

4The convention we present for identifiying 𝑎, 𝑏, 𝑐 with 𝑧, 𝑥, 𝑦 is known as 𝐼𝑟 .
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with 𝑧, 𝑥, 𝑦̂. The eigenstates of this Hamiltonian are typically complicated, with
the rotation Hamiltonian mixing states with by Δ𝐽𝑧 = ±2. Therefore 𝐽𝑧 is not
well-defined, and only 𝐽 and its lab frame projection 𝑀 are good quantum numbers.
More information can be found in Refs. [39, 135, 140, 141].

It turns out that we can describe the molecular rotation eigenstates in a single
basis that will let us interpolate between the asymmetric rotor on one hand, and
the diatomic molecule on the other hand. This basis is referred to as the symmetric
top basis, which describes rotors with two equal moments of inertia. For example,
setting 𝐵 = 𝐶 equal in eq. 2.16, we obtain the symmetric top Hamiltonian:

𝐻 = 𝐵( ®𝐽2 − 𝐽2
𝑧 ) + 𝐴𝐽2

𝑧 . (2.17)

This is specifically the Hamiltonian for a prolate symmetric top, with 𝐼𝑎 < 𝐼𝑏 = 𝐼𝑐

(and therefore 𝐴 > 𝐵 = 𝐶), and 𝑧 identified with the 𝑎 axis. Pictorally, such a
system can be thought of as a football or an egg like shape5. A symmetric top can
also be oblate, and convention then is to label 𝑧 with the 𝑐 axis, with 𝐼𝑐 > 𝐼𝑏 = 𝐼𝑎

(and therefore𝐶 < 𝐴 = 𝐵). Pictorally, oblate rotors are shaped like a disk or frisbee.
Given we often have a heavy atomic mass on the symmetry axis, we consider only
prolate tops.

The Hamiltonian in eq. 2.17 can be shown to commute with ®𝐽2, 𝐽𝑧 B 𝐾 ,
and 𝐽𝑍 B 𝑀 . The symmetric top eigenstates are therefore labeled with three
quantum numbers, written as |𝐽, 𝐾, 𝑀⟩. In the basis of Euler angles, the normalized
wavefunction can be written in terms of the D-matrix:

Ψ𝐽𝐾𝑀 = ⟨𝜔|𝐽𝐾𝑀⟩ =
√︂

2𝐽 + 1
8𝜋2 D

(𝐽)
𝑀,𝐾
(𝜔)∗ (2.18)

where the normalization is defined such that
∫

d𝜔Ψ = 1. The eigenvalues of the
three good operators have their usual values. The spherical harmonics are a special
case of the symmetric top wavefunction when 𝐾 = 0.

We can intuitively understand the symmetric top wavefunctions as describing the
amplitude for finding the molecule fixed angular momentum state |𝐽, 𝐾⟩ projected
onto the lab-frame state |𝐽, 𝑀⟩. Indeed, using the properties of the D-matrices, we
can write:

D (𝐽)
𝑀,𝐾
(𝜔)∗ = ⟨𝐽, 𝑀 |D (𝐽) (𝜔) |𝐽, 𝐾⟩∗

= ⟨𝐽, 𝐾 |D (𝐽) (𝜔−1) |𝐽, 𝑀⟩
(2.19)

5The mass quadrupole is positive for prolate and negative for oblate.
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Where 𝜔−1 = (−𝜒,−𝜃,−𝜙) denotes the Euler rotation inverse to 𝜔. Alternatively,
𝜔−1 denotes the passive rotation of the axes equivalent to the active rotation 𝜔 of
the body. We therefore see the symmetric top wavefunctions describe a rotation of
the lab-frame angular momentum state into the molecule frame given by an Euler
rotation 𝜔−1 of the lab-frame coordinates. We finally note that |𝐽𝐾𝑀⟩ can also
describe half integer 𝐽, which can occur if 𝐽 contains contributions from the electron
spin. We also note that the symmetric top wavefunction can have significant impact
on the matrix elements of operators evaluated in the molecule frame, for example
causing hyperfine shifts to differ between 𝐾 = 0 and 𝐾 = 1 states.

2.1.7 Vibrational States
In this section, we discuss the vibrational part of the molecule wavefunction,

denoted 𝜓𝑣 in eq. 2.11. In the discussion of rotation, we considered the molecule
as being rigid. However, in reality the bond distances can deform as the molecule
vibrates. Large molecules can have large amplitude, “floppy” vibrations, and we
do not consider them here. Instead, we work with molecules where the vibrational
displacements can be considered as small variations of the equilibrium nuclear
framework.

For a diatomic molecule, the vibration is relatively simple, with the only vibra-
tional coordinate being the variation of the bond distance 𝑅 about the equilibrium
value 𝑅𝑒. The potential for 𝑅−𝑅𝑒 can be approximated as that of a simple harmonic
oscillator, with anharmonicities being included perturbatively, either with additional
higher order terms or with the Morse potential. The vibrational energy for a single
vibrational mode is written as [39]:

𝐸𝑣𝑖𝑏 = 𝜔𝑒

(
𝑣 + 1

2

)
− 𝜔𝑒𝑥𝑒

(
𝑣 + 1

2

)2
+ 𝜔𝑒𝑦𝑒

(
𝑣 + 1

2

)3
+ . . . (2.20)

Here, 𝑣 is the number of vibrational quanta, 𝑥𝑒 and 𝑦𝑒 are small corrections repre-
senting deviations from the harmonic oscillator potential, and 𝜔𝑒 is the equilibrium
vibrational constant. We note the vibration contributes zero point energy to the total
molecular energy.

Since the rotation of the molecule is much slower than the vibration, we can
consider the rotational constant as averaged over the vibrational motion. Therefore,
the rotational constant measured in a given vibrational level 𝑣 can be written as [129]:

𝐵𝑣 = 𝐵𝑒 − 𝛼
(
𝑣 + 1

2

)
+ . . . (2.21)
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Here, 𝐵𝑒 is the rotational constant obtained from the equilibrium bond distance, and
𝛼 represents the correction to the rotational constant from vibration.

Often, we are interested in electronic transitions between different molecular
states. Such transitions can also be accompanied by a change in the vibrational
coordinates, Δ𝑣 = 𝑣′ − 𝑣′′. In the Condon approximation, we assume the electronic
transition happens instantaneously compared to vibrational timescales, and so the
ground vibrational wavefunction |𝑣′′⟩ is projected onto the excited state wavefunction
|𝑣′⟩. The strength of the electronic transition for a given Δ𝑣 is scaled by the overlap
integral of the two states, known as the Franck-Condon Factor (FCF), given by
|⟨𝑣′|𝑣′′⟩|2. We note the FCFs must be scaled by the electronic transition frequency
𝜔3
𝑒𝑔 to obtain branching ratios for the transition, see Ch. 3, Sec. 3.2.4.1 for details.

We can imagine writing the FCFs as a matrix where the diagonal entries of
the matrix denote Δ𝑣 = 0 transitions. For a generic molecule, we expect large
values off-diagonal elements of the FCF matrix. However, for a class of carefully
selected molecules, the FCF matrix is dominated by the on-diagonal entries. In
a so-called “diagonal” molecule, the majority of spontaneous decays for a given
excited state have Δ𝑣 = 0, with increasingly smaller branching ratios for transitions
with |Δ𝑣 | = 1, 2, . . ..

Molecules that have diagonal FCFs can be laser-coolable, requiring only a
modest number6 of additional of lasers to address all relevant vibrational decays
from the excited state. The number of vibrational states that need addressing depend
on the number of photons we would like to scatter. In general, scattering 𝑁𝑝ℎ photons
requires addressing all vibrational decays that occur at the ∼𝑁−1

𝑝ℎ
branching level.

For example, to scatter 𝑁𝑝ℎ = 104, we must ensure the sum of all unaddressed
branching is < 10−4. At this point there is an established motif for choosing
molecules with near-diagonal FCFs by bonding an alkaline-earth (like) metal atom
with an electronegative ligand, such has OH [112, 113, 123]. We discussed some
relevant details earlier in Ch. 1, Sec. 1.4. The details of weak vibrational branching
and establishing nearly closed optical cycles in polyatomic molecules are discussed
further in Refs. [139, 143, 144].

In this thesis, we are interested in polyatomic molecules, which have additional
vibrational degrees of freedom. For a molecule with 𝑁 nuclei, we will have 3𝑁 − 6
vibrational degrees of freedom (3𝑁−5 for a linear molecule7). We note the cartesian

6∼3 lasers for a diatomic [142], ∼10 lasers for a linear triatomic [108].
7𝑁 nuclei have 3𝑁 degrees of freedom. We subtract 3 for translational motion and 3 for rotation
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vibrational coordinates will generically be coupled to each other. This motivates
the transformation into orthogonal vibrational coordinates, known as normal modes
denoted 𝑄𝑖. The procedure to obtain normal modes is known as the GF matrix
approach, and is detailed in Refs. [145, 146]. We do not discuss the GF matrix
approach, and merely assume that we begin with a series of normal modes for the
molecule.

For a linear triatomic molecule such as YbOH, the normal modes of vibration
associated with two stretching vibrations, denoted 𝑣1 to describe the Yb-O stretch
and 𝑣3 to describe the O-H stretch, and one bending vibration, denoted 𝑣2. Owing
to the large mass asymmetry of Yb compared to H, the bend can be interpreted
physically as the bending of the H atom off the axis defined by the Yb-O bond [146,
147]. The stretching modes are treated similarly to the case of vibrations in a
diatomic molecule. The total vibrational wavefunction is written as a product of
the individual wavefunctions for the 𝑣𝑖, and often we will designate the vibrational
state as (𝑣1, 𝑣

ℓ
2, 𝑣3). Here, ℓ is the angular momentum associated with the doubly-

degenerate bending mode, which we will investigate further.

We concern ourselves with the normal coordinate 𝑄2 describing the bending
mode of the molecule, which is doubly-degenerate. In a non-rotating molecule, there
is no difference between displacements along 𝑄2𝑥 and 𝑄2𝑦, and so the eigenstates
are linear combinations of the two motions, resulting in the emergence of vibrational
angular momentum ®𝐺ℓ with projection ®𝐺ℓ · 𝑧 = ℓ on the symmetry axis. Physically,
we can picture the molecule in a bent configuration, rotating around its former
symmetry axis. The degeneracy of ℓ then refers to a degeneracy in the direction of
the molecule axis orientation. Of course, higher order electron-vibration couplings
and Coriolis effects will lift this degeneracy, resulting in small splittings of opposite
parity levels in doubly-degenerate bending modes.

The vibrational eigenstates of the bending mode are denoted |𝑣2, ℓ⟩, where 𝑣2

is the number of vibrational quanta, and ℓ is the angular momentum projection.
The possible eigenvalues of ℓ are obtained by considering aligned or anti-aligned
combinations of the vibrational quanta. For example, 𝑣2 = 1 only has ℓ = 1,
while 𝑣2 = 2 can support an aligned, ℓ = 2 configuration, and an-antialigned, ℓ = 0
configuration. Continuing, 𝑣2 = 3 will have available ℓ = 1, 3, 𝑣2 = 4 has ℓ = 0, 2, 4,
and so on.

for non-linear molecules, or 2 for rotation in a linear molecule.
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To obtain a form of |𝑣2, ℓ⟩, we consider the case of a two-dimensional harmonic
oscillator discussed in detail in the Appendix of Ref. [145]. We can write the
normal mode in dimensionless units as 𝑞2 = 𝛾1/2𝑄2, where 𝛾 = 2𝜋𝑐𝜔2/ℏ, with 𝜔2

the harmonic bending frequency. The eigenstates of the two dimensional harmonic
oscillator can be written as [145, 148, 149]:

|𝑣2, ℓ⟩ =
1
√

2𝜋
𝑒𝑖ℓ𝜙Ψ𝑣2,ℓ (𝑞). (2.22)

Here, 𝑞 = 𝑞2 =
√︃
𝑞2

2𝑥 + 𝑞
2
2𝑦, where (𝑞2𝑥 , 𝑞2𝑦) are the dimensionless normal coordi-

nates of the bending mode, and 𝜙 = tan−1(𝑞2/𝑞1) is the bending angle associated
with the normal mode8. The function Ψ𝑣2,ℓ is given by [148]:

Ψ𝑣,ℓ (𝑞) = (−1) (𝑣+|ℓ |)/2𝑁𝑣,ℓ𝑞 |ℓ |𝑒−𝑞
2/2𝐿 |ℓ |(𝑣+|ℓ |)/2(𝑞

2). (2.23)

Here, 𝑁𝑣,ℓ is a normalization factor defined up to an overall phase, i.e., 𝑁𝑣,ℓ =

𝑒𝑖2𝛿ℓ |𝑁𝑣,ℓ |, and 𝐿𝑘𝑛 (𝑥) is an associated Laguerre polynomial. The phase 𝛿ℓ can
be chosen according to two conventions; either 𝛿ℓ = 0, and |𝑣, ℓ⟩ = |𝑣,−ℓ⟩, or
𝛿ℓ = 𝜋/2, and |𝑣, ℓ⟩ = −|𝑣,−ℓ⟩. While this sign is just a convention and cannot
affect the eigenstate energies, differences in phase can result in disagreements over
the sign of off-diagonal matrix elements in the Hamiltonian. We discuss phase
conventions in detail in Appendix A, Sec. A.2, where we discuss parity symmetries
of molecular states.

Further, we can also define ladder operators for the bending mode as 𝑞± =

𝑞2𝑒
±𝑖𝜙 = 𝑞2𝑥 ± 𝑖𝑞2𝑦. The matrix elements of these operators is given in Refs. [129,

148, 151], all using the 𝛿ℓ = 0 phase convention. The result is:

𝑞± |𝑣2, ℓ⟩ =
√︂
𝑣2 + 2 ± 𝑙

2
|𝑣2 + 1, ℓ ± 1⟩ +

√︂
𝑣2 ∓ ℓ

2
|𝑣2 − 1, ℓ ± 1⟩. (2.24)

Interestingly, 𝑞+ must raise ℓ, but it can either raise or lower 𝑣2, and vice versa for
𝑞−. This is because the “true” ladder operators of both 𝑣2 and ℓ involve not just
𝑞 but also 𝑝, the momenta conjugate to the bending normal coordinate [148, 149,
152, 153]. If we analogously define 𝑝± = 𝑝2𝑥 ± 𝑖𝑝2𝑦, then we can write total ladder
operators 𝐹±(±) = 𝑞 (±) ∓ 𝑖𝑝 (±) , which cause Δ𝑣2 = ±1 and Δℓ = (±)1, and have
matrix elements provided in Ref. [148, 152]. We note Ref. [149] defines their ladder
operators 𝑅±(±) with an additional factor of ∓𝑖, such that 𝐹±(±) = ∓𝑖𝑅±(±) .

8It is not so simple to interpret this as the physical bending coordinate. See Ref. [150]
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We often do not consider 𝑝, but it shows up in the Coriolis couplings of the
vibrational angular momentum. We also note that both 𝑞 and 𝑝 are used to define
the bending angular momentum ®𝐺ℓ, according to [129]:

®𝐺ℓ =
∑︁
𝑖

∑︁
𝑗

𝜁𝑖 𝑗𝑄𝑖𝑃 𝑗 (2.25)

where the indices 𝑖 and 𝑗 run over all normal modes, including both modes for a
degenerate vibration (i.e., 𝑄2𝑥 and 𝑄2𝑦 in the linear triatomic case), 𝑄𝑖 and 𝑃𝑖 are
pairs of conjugate position and momenta, and 𝜁𝑖 𝑗 are the Coriolis coupling constants
defined in Refs. [129, 154], which satisfy 𝜁𝑖 𝑗 = −𝜁 𝑗𝑖 in general, and specifically for
linear molecules we have the relation

∑
𝑖 𝜁

2
𝑖 𝑗

= 1 [154]. These Coriolis coupling
constants arise when we write the bending rotation in the molecule frame [155].

We now return to the total vibrational energy of the polyatomic molecule.
In general, the vibrations will have anharmonic corrections, and there will also
be anharmonic cross-couplings between different vibrational modes. The total
vibrational energy for a polyatomic molecule with 𝑛 = 𝑠 + 𝑡 total vibrational modes,
with 𝑠 symmetric stretching modes and 𝑡 degenerate bending modes, is given by [135,
145, 155]:

𝐸 (𝑣𝑠; 𝑣𝑡 , ℓ𝑡 , . . .) =
𝑛∑︁
𝑖

𝜔𝑖

(
𝑣𝑖 +

𝑑𝑖

2

)
+

𝑛∑︁
𝑖≤ 𝑗

(
𝑣𝑖 +

𝑑𝑖

2

) (
𝑣 𝑗 +

𝑑 𝑗

2

)
+

𝑡∑︁
𝑘≤𝑘 ′

𝑔𝑘𝑘 ′ℓ𝑘ℓ𝑘 ′ + . . .

(2.26)
Here, 𝑑𝑖 is the degeneracy of a vibrational mode, with 𝑑𝑠 = 1 and 𝑑𝑡 = 2. The
sums over 𝑖 are taken for all modes, while the sums over 𝑘 are only taken for the 𝑡
degenerate modes. The term 𝑔𝑘𝑘 ′ℓ𝑘ℓ𝑘 ′ generates the anharmonic splitting between
the different values of ℓ possible for a degenerate bending mode 𝑣𝑘 , and can also
include cross couplings of 𝑣𝑘 and 𝑣′

𝑘
. The ellipses indicate we can always add higher

order terms to the expansion. Similar to a diatomic molecule, the vibrations also
affect the rotational constant of a polyatomic molecule [129, 135]:

𝐵𝑣 = 𝐵𝑒 −
∑︁
𝑖

𝛼𝑖

(
𝑣𝑖 +

𝑑𝑖

2

)
+ . . . (2.27)

Many higher order corrections are discussed in Hirota [129].

2.1.8 Electronic States and Hund’s Cases
We now follow the same path as our discussion of atoms, and define bases of

good quantum numbers that can label molecules in different regimes of competing
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physical interactions. Once we have a basis, we can write the term symbols for
molecules. The different bases for representing molecular states are known as
Hund’s cases [39, 129]. The relevant physical interactions we consider are Δ𝐸elec,
Δ𝐸SO, and Δ𝐸Rot, representing the energy of the electrostatic interaction with the
ligand field, spin-orbit interactions, and the rotation of the molecule. Once again, we
refer to the molecule frame, labeled by axes 𝑥, 𝑦̂, 𝑧. In a linear molecule, 𝑧 is taken
along the axis of cylindrical symmetry, and often referred to as the internuclear axis
𝑛̂. For symmetric and asymmetric rotors, we follow the convention of aligning 𝑧 to
the principal axis with the smallest moment of inertia.

We now write down all of the angular momenta of a linear polyatomic molecule;
some quantities will end up being well-defined, while others will be poor quantum
numbers. Similar to the atomic case, we define ®𝐿 =

∑
𝑖
®𝜆𝑖 and ®𝑆 =

∑
𝑖 ®𝜎𝑖, where 𝑖 is a

sum over valence electrons, and 𝜆 and 𝜎 represent values associated with molecular
orbitals. Novel in the molecular case, we can also define an operator ®𝑅 to describe
the end-over-end rotation or tumbling motion of the bare nuclei. Further, in the case
of polyatomic molecules, as we discussed earlier the nuclei can exhibit vibrational
bending motions that constitute orbits about the molecular symmetry axis, and we
will denote this angular momentum as ®𝐺ℓ with projection ℓ on the internuclear axis.
We will see that none of 𝐿, 𝑅, or𝐺ℓ are well-defined, and so instead we introduce the
combined electronic and nuclear rotation without spin, ®𝑁 = ®𝐿 + ®𝑅 + ®𝐺ℓ. Depending
on the molecule, if spin-orbit interactions are large, 𝑁 may also be a poor quantum
number, with the well-defined quantity being the total electronic and nuclear angular
momentum including spin, ®𝐽 = ®𝑁 + ®𝑆. Finally, as in the case of atoms, if we have
a nuclear spin 𝐼, then we must form the grand total angular momentum ®𝐹 = ®𝐽 + ®𝐼.
The various symbols are summarized in Table 2.1.

The Hund’s cases are first classified according to the coupling scheme of the
electron spin, and then subclassified according to the hyperfine coupling scheme
of the nuclear spin. Beginning with the electron spin ®𝑆, we can describe the spin
components in the molecule frame, which describes Hund’s case (a) and (c), or in
the lab frame, which describes Hund’s case (b). Cases (a) and (c) are distinguished
from one another by the strength of spin-orbit coupling. As we shall see, in case
(c) we cannot even separate the electron’s spin from its orbital angular momentum
𝐿. Meanwhile, the hyperfine subclassifications are added as subscripts and denote
how strong the electron spin-nuclear spin coupling is compared to the electron spin-
rotation or electron spin-orbit couplings. Often the case of strong hyperfine coupling
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Table 2.1: The various angular momenta relevant to the linear polyatomic molecules
we consider. The column “Anomalous?” indicates if the angular momentum has
anomalous commutation relationships. The columns labeled (a), (b𝛽J), (b𝛽S), (c)
each correspond to the respective Hund’s case. A checkmark ✓ indicates the
angular momentum is a good quantum number in this basis. An x-mark ✗ indicates
the angular momentum is not well-defined in this basis, and must be written in terms
of good angular momenta. For example, in case (a), we must write ®𝑁 = ®𝐽 − ®𝑆.

Symbol Description Anomalous? a b𝛽J b𝛽S c
®𝑅 Rotation of the nuclear

framework
Yes ✗ ✗ ✗ ✗

®𝐺ℓ Vibrational angular
momentum

No ✗ ✗ ✗ ✗

ℓ = ®𝐺ℓ · 𝑛̂ Projection of 𝐺 − ✓ ✓ ✓ ✓
®𝐿 Electronic orbital an-

gular momentum
No ✗ ✗ ✗ ✗

Λ = ®𝐿 · 𝑛̂ Projection of 𝐿 − ✓ ✓ ✓ ✗
®𝑁 = ®𝑅 + ®𝐿 + ®𝐺ℓ Nuclear and electronic

rotation
Yes ✗ ✓ ✓ ✗

𝐾 = Λ + ℓ Projection of 𝑁 − ✓ ✓ ✓ ✗
®𝑆 Total electron spin No ✓ ✓ ✓ ✗

𝛴 = 𝑆 · 𝑛̂ Projection of 𝑆 − ✓ ✗ ✗ ✗

Ω = Λ + 𝛴 Projection of elec-
tronic momentum

− ✓ ✗ ✗ ✓

®𝐽 = ®𝑁 + ®𝑆 Total angular momen-
tum

Yes ✓ ✓ ✗ ✓

𝑃 = Λ + ℓ + 𝛴 Projection of 𝐽 − ✓ ✗ ✗ ✓
®𝐼 Nuclear spin No ✓ ✓ ✓ ✓
®𝐺 𝐼 = ®𝑆 + ®𝐼 Total hyperfine spin No ✗ ✗ ✓ ✗
®𝐹 = ®𝐽 + ®𝐼 = ®𝑁 + ®𝐺 𝐼 Grand total angular

momentum
Yes ✓ ✓ ✓ ✓
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Table 2.2: The various Hund’s cases relevant to this work and their corresponding
basis states. Here we include hyperfine interactions with a nuclear spin 𝐼, and we
have defined the total spin quantum number ®𝐺 𝐼 = ®𝑆+ ®𝐼. The second column indicates
the energy hierarchy implied by the basis of interest, where 𝐸SO, 𝐸SR, and 𝐸Hyp are
scale of the spin-orbit, spin-rotation, and hyperfine interactions, respectively. A full
list of Hund’s cases, including other hyperfine coupling scenarios, can be found in
Ref. [39] and Ref. [129].

Hund’s Case Energy Scales Basis States1,2

(𝑎𝛽) 𝐸SO > 𝐸SR > 𝐸Hyp |𝑣, ℓ⟩ |𝜂,Λ⟩ |𝑆, 𝛴⟩ |𝐽, 𝑃; (𝐽, 𝐼)𝐹, 𝑀𝐹⟩
(𝑏𝛽𝐽) 𝐸SR > 𝐸Hyp > 𝐸SO |𝑣, ℓ⟩ |𝜂,Λ⟩ |𝑁, 𝐾; (𝑁, 𝑆)𝐽; (𝐽, 𝐼)𝐹, 𝑀𝐹⟩
(𝑏𝛽𝑆) 𝐸Hyp > 𝐸SR > 𝐸SO |𝑣, ℓ⟩ |𝜂,Λ⟩ |𝑁, 𝐾; (𝑆, 𝐼)𝐺 𝐼 ; (𝑁,𝐺 𝐼)𝐹, 𝑀𝐹⟩
1 We use the notation | (𝐽1, 𝐽2)𝐽12⟩ to denote coupled angular momenta.
2 𝜂 represents all other possible quantum numbers labeling the electronic state.
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only arises in case (b), and by default when we omit subscripts we describe weak
hyperfine coupling. We now present the cases in more detail.

First, we consider Hund’s case (a), which corresponds to the hierarchyΔ𝐸elec ≫
Δ𝐸SO ≫ Δ𝐸Rot. The strong electrostatic interaction couples the angular momenta
to the internuclear axis 𝑛̂, and therefore only the projections on 𝑛̂ are good quantum
numbers, denoted by Λ = 𝐿 · 𝑛̂ and 𝛴 = 𝑆 · 𝑛̂. Semiclassically, we can think of
the angular momenta 𝐿 and 𝑆 as precessing around the internuclear axis, a result
of the torque exerted by electrostatic forces. Conversely, the operators ®𝐿 and ®𝑅 are
poorly-defined in case (a), and we do not use their eigenvalues to label the states.
Instead we write ®𝑅 = ®𝐽 − ®𝐿 − ®𝑆, first considering diatomic molecules. States with
different magnitudes of |Λ| are split in energy by the electrostatic interaction Δ𝐸elec.
At smaller energy scale, on-diagonal spin-orbit terms cause splittings of states with
the same value |Λ| but different orientations of 𝛴. The off-diagonal terms can
also cause small mixings of Λ. Overall, the spin-orbit interaction preserves the
magnitude of Ω = Λ + 𝛴, and this is therefore a good quantum number as well that
can be used to label the states. In Hund’s case (a), we label electronic states with
term symbols using the following notation:

2𝑆+1Λ(±)
Ω
. (2.28)

We note that the values of Ω and Λ are taken to be unsigned for the term symbol.
As in the case of atoms, 2𝑆 + 1 labels the spin multiplicity. The values of Λ are
designated with capital Greek letters9, with Λ = 0, 1, 2, 3, 4, . . . . . . corresponding
to Σ,Π,Δ,Φ, . . .. States with Λ > 0 exhibit a double degeneracy of ±Λ states,
which is lifted by higher order Coriolis couplings in the molecule, resulting in
parity doubling. The ± superscript is only used for Σ states (Λ = 0) to denote
the symmetry of the electronic wavefunction upon reflection in a plane containing
𝑛̂. Practically, this has the consequence of determining the parity of the lowest
rotational state. For example, in a state where two 𝜆 = 𝜋 molecular orbitals anti-
align to form a Λ = 0 state, the electronic state is an anti-symmetric singlet state
designated Σ−. It is also conventional to drop the Ω value when writing the term
symbol for a Σ state.

The above discussion can be easily generalized to linear polyatomic molecules.
Here, the only addition we need to consider is the vibrational angular momentum

9There is an unfortunate overuse of notation. We use italic 𝛴 to denote the spin projection in the
molecule frame, and upper case Σ to denote the electronic value of the term symbol.
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®𝐺ℓ that can result from doubly degenerate bending modes. The bending motion has
well-defined projection angular momentum ℓ = ®𝐺ℓ ·𝑛̂. The projection ℓ can be added
to Λ to form the combined orbital and bending angular momentum 𝐾 = Λ + ℓ. In-
teractions in the molecule between the bending vibration and the electronic angular
momentum can cause “vibronic” splittings for different values of 𝐾 . These inter-
actions are known as Renner-Teller interactions and we discuss them in Sec. 2.2.4.
Continuing, in Hund’s case (a) we can combine 𝛴 with 𝐾 to obtain the total projec-
tion quantum number 𝑃 = Λ + 𝛴 + ℓ. This allows us to describe the molecular state
using a vibronic term symbol:

2𝑆+1𝐾 (±)
𝑃
. (2.29)

We can see this term symbol is the polyatomic analogue to the electronic term
symbol for diatomic molecules. In a similar fashion, 𝐾 is given by Σ,Π, . . ., and ±
only applies to Σ vibronic states. Now, we will have parity doubling interaction from
both the degeneracy of ±Λ and the degeneracy of ±ℓ. Their combination can result
in very rich and interesting molecular structure, as we shall see in Ch. 4, Sec. 4.3.2.

We do not consider Hund’s case (a) for more complicated molecules (symmetric
tops, asymmetric rotors) in detail, other than to comment on two effects that occur
as the molecule deviates further from cylindrical symmetry. First, anisotropic
spin-orbit and rotational interactions result in a reduction (a.k.a quenching) of the
electronic orbital angular momentum, such that ⟨𝐿𝑧⟩ = 𝜁𝑒 obtains a fractional
value [123]. The increase in molecular asymmetry means the internal projection axis
is no longer fully well-defined. Furthermore, symmetric tops we can have rotational
angular momenta about the top axis, and in Hund’s case (a), this quantity is denoted
𝐾 = 𝑁 = 𝑃 − 𝛴. For asymmetric rotors, we can have angular momentum about all
three axes: 𝐾𝑎, 𝐾𝑏, and 𝐾𝑐. Typically one picks one axis as a basis to help write the
asynmmetric rotor states as mixtures of symmetric top wavefunctions [141].

In case (c), we have the hierarchy Δ𝐸SO ≫ Δ𝐸elec ≫ Δ𝐸Rot. The spin-orbit
interaction overpowers all the other splittings in the molecule, causing mixing of Λ
and Σ. Hund’s case (c) is similar to the 𝑗 𝑗-coupling scheme in atoms, as now we
cannot talk about 𝐿 or 𝑆 separately, but must discuss 𝐽𝑒, the total electronic angular
momentum. Further, because of strong coupling to the internuclear axis, only the
projection of 𝐽𝑒 is well-defined, given by Ω = Λ + 𝛴 = ®𝐽𝑒 · 𝑛̂. Case (c) is the most
general approach one can take to a molecular state, only labeling the state in terms
of Ω. The total angular momentum of the molecule is still given by 𝐽, we just cannot
divide it among 𝑁 and 𝑆.
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Finally, we now consider Hund’s case (b), corresponding to the hierarchy
Δ𝐸elec ≫ Δ𝐸Rot ≫ Δ𝐸SO. Here, the spin-orbit interaction is weak or non-existent,
and case (b) is valid either for Σ electronic states or light molecules with very strong
rotational couplings. In Hund’s case (b), the spin 𝑆 is not strongly coupled to the
molecule frame, and so we write it in the lab frame with projection 𝑀𝑆. In terms of
𝛴, the 𝑀𝑆 eigenstates can be written as symmetric or anti-symmetric superpositions,
and vice versa. Further, the combined orbital and rotational angular momentum,
excluding spin, is a good quantum number, given by ®𝑁 = ®𝐿 + ®𝑅 + ®𝐺ℓ. However,
we note the individual angular momenta that make up ®𝑁 are not well-defined. Fi-
nally, the spin-rotation interaction couples the spin to the molecule rotation to form
well-defined ®𝐽 = ®𝑁 + ®𝑆.

We note that 𝐽 is a good quantum number in both case (a) and (b), even though
they describe very different coupling schemes. We can go back and forth between
the two bases using a unitary transformation, derived by Brown in Ref. [156], and
also provided in Hirota [129]. The change of basis is given by:

|𝑁, 𝐾; (𝑁, 𝑆)𝐽, 𝑀⟩ =
∑︁
Σ,𝑃

(−1)𝑁−𝑆+𝑃
√

2𝑁 + 1

(
𝐽 𝑆 𝑁

𝑃 −Σ −𝐾

)
|𝑆, Σ⟩|𝐽, 𝑃, 𝑀⟩.

(2.30)
Here, 𝑃 = Λ + Σ + ℓ, and 𝐾 = Λ + ℓ. We note the formula in Ref. [39] has a typo.
We use this formula extensively to calculate transition dipole moments in molecules
by expressing all states in Hund’s case (a) for convenience.

We now consider the hyperfine subdivisisions, provided in Table 2.2. We focus
on Hund’s case (b) subdesignations, denoted (b𝛽J) and (b𝛽S). The 𝛽J case describes
the situation when the hyperfine energy splittings from nuclear spin interactions,
Δ𝐸Hyp, are smaller than the spin-rotation splittings Δ𝐸SR between different 𝐽 states.
As a result we couple the nuclear spin 𝐼 to 𝐽 as the last step in our coupling scheme
to obtain the grand total angular momentum 𝐹. This is the “default” case in atoms
and molecules, and the equivalent scenario in case (a) is denoted (a𝛽)10.

Meanwhile, the 𝛽S coupling scheme describes the hierarchy Δ𝐸Hyp > Δ𝐸SR.
This coupling scheme can arise with core-penetrating orbitals, and is particularly
relevant for precision measurement searches in odd-isotopes of molecules. In case
𝛽S, we first couple 𝐼 and 𝑆 together to form the total hyperfine spin ®𝐺 𝐼 = ®𝑆+ ®𝐼, where
we use the subscript to distinguish this quantity from ®𝐺ℓ. Then, the rotation 𝑁 is
coupled to𝐺 to form the grand total angular momentum ®𝐹 = ®𝑁 + ®𝐼. We note 𝐽 is not

10The (a𝛼) coupling describes strong coupling of 𝐼 to 𝑛̂, which is not common.
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well-defined, in contrast to the other cases. Finally, if there are multiple spins, they
can be coupled sequentially according to the hierarchy of their interaction strengths.
For example, in the 2Σ+ ground state of 171/173YbOH, we first couple ®𝐺Yb = ®𝑆+ ®𝐼𝑌𝑏,
where 𝐼Yb is the nuclear spin of the Yb atom, then we couple ®𝐹1 = ®𝑁 + ®𝐺Yb, and
then finally we couple ®𝐹 = ®𝐹1 + ®𝐼H, where 𝐼H is the hydrogen nuclear spin.

The unitary change of basis to convert from (b𝛽J) to (b𝛽S) is given by the
Clebsch-Gordan coefficients. We may write this in terms of Wigner 6j-symbols as
follows [39]:

|𝑁, 𝐾; (𝑁, 𝑆)𝐽; (𝐽, 𝐼)𝐹, 𝑀𝐹⟩ =
∑︁
𝐺 𝐼

(−1) 𝐼+𝑆+𝐹+𝑁
√︁
(2𝐺 𝐼 + 1) (2𝐽 + 1)

×
{
𝐼 𝑆 𝐺 𝐼

𝑁 𝐹 𝐽

}
|𝑁, 𝐾; (𝑆, 𝐼)𝐺 𝐼 ; (𝑁,𝐺 𝐼)𝐹, 𝑀𝐹⟩

(2.31)
where the quantity in curly brackets is the Wigner 6j-symbol [39]. We include
this formula for completeness, noting that throughout this thesis, we use Hund’s
case (b𝛽J), which we simply abbreviate to case (b), or Hund’s case (a𝛽), which we
abbreviate to case (b).

2.2 Effective Hamiltonians
2.2.1 Basic Principle

The effective Hamiltonian arises out of the need to model the complicated quan-
tum states of molecules with high precision, in a self-contained, modular fashion. In
fact the effective Hamiltonians we use for molecules are very similar to the effective
field theories (EFTs) in high energy physics, discussed in Ch. 1. The goal of the
effective Hamiltonian program in molecules is to reduce the effects of electronic,
vibrational, and rotational interactions to a single, finite Hamiltonian, expressed
within a basis of good quantum numbers that specify the relevant angular momenta
present in the molecule. Regardless of the interaction present in the molecule, we
can always encapsulate its effects in the effective Hamiltonian. Crucially for pre-
cision measurements, effective Hamiltonians can also be used to accurately model
the behavior of molecules in applied electric and magnetic fields, aiding much of
the work on measurement protocols for polyatomic molecules presented in Ch. 5.

However, there is a price to be paid for this level of accuracy and precision—we
require a series of experimentally determined parameters to construct the effective
Hamiltonian. Essentially, these parameters are obtained from fits to the spectral
data, and the resulting effective Hamiltonian is only as accurate as the residuals
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of the fit. These parameters are like the Wilson coefficients in EFTs, in that they
encode all of the complicated physics that we have “integrated out” in order to
obtain a simple model. Therefore, the measured effective Hamiltonian parameters
provide a connection to the theory describing the underlying molecular dynamics,
allowing us to gain intuition for the molecule’s behavior. Furthermore, effective
parameters are crucial for benchmarking theory computations. For example, the
hyperfine parameters are used to gauge the accuracy of calculations determining
molecular sensitivities to symmetry violation [157]. The experimental process of
determining effective Hamiltonian parameters from data is the work of molecular
spectroscopy, the topic of Ch. 4. In this section, we lay out some foundations for
modeling molecules with effective Hamiltonians.

Effective Hamiltonians are discussed extensively in Brown and Carrington [39],
particularly Ch. 7. While the textbook is quite comprehensive, it also suffers from
the fact that useful and relevant information is scattered throughout the book. An-
other good textbook is Hirota [129], particularly when dealing with polyatomic
molecules. Brown originally derived effective Hamiltonians for diatomic molecules
in Ref. [158], and included the vibronic interaction of triatomic molecules in
Refs. [151, 156, 159]. Furthermore, there is good discussion of how to deal with
anomalous commutation of molecule rotation operators in Ref. [160], Hirota [129],
and Brown and Carrington [39]. There is also good discussion of effective Hamil-
tonians and matrix element calculations in Nick Hutzler’s thesis [41] and Nick
Pilgram’s thesis [161]. Finally, in Ref. [141], Sears provides the effective Hamil-
tonian for an asymmetric top molecule, including Zeeman effects from an applied
magnetic field.

2.2.2 Details of the Effective Hamiltonian
We wish to study and model the rotational states belonging to a single vibrational

and electronic configuration of the molecule. We generically denote this state
|𝜓 (0) , 𝑖⟩ = |𝑃(0); 𝑣 (0); 𝜂, 𝐽⟩. Here, 𝑖 is simply an index labeling the quantum numbers
defining our state. We use 𝑃(0) to denote the collection of projection quantum
numbers relevant to our state. For example, for a diatomic molecule in Hund’s
case (a), 𝑃(0) = (Λ, Σ), while for Hund’s case (b), 𝑃(0) = (Λ). Since we are
most interested in interactions internal to the molecule frame, it is easier to use
case (a) representations, though we will try to keep the discussion as generic as
possible. Continuing, we use 𝑣 (0) to denote the vibrational state of the molecule, for
example 𝑣 (0) = (𝑣1, 𝑣2, 𝑣3) in a triatomic molecule. Finally, we use 𝐽 to characterize
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the total angular momentum of our state, and 𝜂 to represent all other relevant
quantum numbers, such electronic or nuclear spins, which we will often suppress
for brevity. Since total angular momentum is conserved by internal interactions, we
will consider dynamics that re-orient 𝐽 and change its projections, but never that
change the magnitude of 𝐽. Of course, when we apply an external electromagnetic
field, the total molecule angular momentum will no longer be conserved, as the
interaction with the field can exchange angular momenta.

There are many interactions in the molecule that will necessarily couple our
state of interest to other vibronic states. We use the index 𝛼 to label the space of
all states not within our vibronic manifold of interest, characterized by their own
values of 𝑃(𝛼) and 𝑣 (𝛼) . In reality, the true molecular state |𝜓, 𝑖⟩ is actually a
mixture of |𝜓 (0) , 𝑖⟩ and many other contributions |𝜓 (𝛼) , 𝑘⟩, with potentially different
quantum numbers represented by the index 𝑘 . When the admixtures of other states
are comparable to the admixture for 𝜓 (0) , it is an indication that we have not used a
good basis of approximate quantum numbers. However, it is often the case that the
mixtures of other states are perturbative, owing to the large separation of electronic
and vibrational energy scales from the rotational energy scale. In such a case, to deal
with mixings outside of our vibronic state, we do not have to consider the whole,
“true” wavefunction. Instead, we work only with |𝜓 (0) , 𝑖⟩, and we incorporate the
effects of interactions external to our subspace in a source-agnostic manner by simply
adding additional, effective terms to the Hamiltonian. These effective terms must be
consistent with the symmetries of our Hamiltonian (rotation, parity), so in free-field
they are written as scalar products of possibly many angular momenta. There is
also the constraint from the Wigner-Eckart theorem that any operator involving the
spin 𝑆 can only be allowed if its rank 𝑘 satisfies 2𝑆 ≥ 𝑘 [39]. For example, when
working with a state with a single unpaired valence electron spin, we do not need
to worry about considering spin-spin interactions. We caution this may not be the
case if there is strong configuration mixing (for example, strong mixing with state
that has extra valence spin excitation). As a related point, the situation is also quite
complicated in multi-electron systems, which must be written in terms of Slater
determinants [39]. However, in the single valence electron molecules we consider
(often the case for laser coolable molecules), the effective Hamiltonian approach is
applicable and quite powerful.

The primary interactions that we would like to “integrate out” are those that
involve the electronic angular momentum 𝐿. Later, we will also discuss the very
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similar procedure for dealing with operators that couple the vibrational angular
momentum 𝐺ℓ present in triatomic molecules. Returning to 𝐿, we specifically do
not want to deal with the transverse components 𝐿⊥ = 𝐿𝑥,𝑦, which can be written
in terms of raising and lowering operators 𝐿±. Determining the matrix elements of
these ladder operators is a hard computational task, as 𝐿 is not well-defined in the
molecule due to the breaking of spherical symmetry. We can see that two essential
molecular interactions will have 𝐿± operators: spin-orbit (𝐻SO) and rotation 𝐻Rot.
Writing these out in Hund’s case (a), we have:

𝐻Rot = 𝐵
(
®𝐽 − ®𝐿 − ®𝑆

)2

= 𝐵

(
®𝐽2 + ®𝐿2 + ®𝑆2 − 2 ®𝐽 · ®𝐿 − 2 ®𝐽 · ®𝑆 − 2®𝐿 · ®𝑆

)
= 𝐵

(
®𝐽2 + ®𝐿2 + ®𝑆2 − 2𝐽𝑧 (𝐿𝑧 + 𝑆𝑧) − 2𝐿𝑧𝑆𝑧

− 𝐽+𝐿− − 𝐽−𝐿+ − 𝐽+𝑆− − 𝐽−𝑆+ − 𝐿+𝑆− − 𝐿−𝑆+
)

(2.32)

𝐻Rot = 𝐴( ®𝐿 · ®𝑆)

= 𝐴

(
𝐿𝑧𝑆𝑧 +

1
2
(𝐿+𝑆− + 𝐿−𝑆+)

)
.

(2.33)

Here, we have written the nuclear rotation as ®𝑅 = ®𝐽 − ®𝐿 − ®𝑆, and 𝐵 and 𝐴 are “bare”
constants that will not be the parameters we fit in the effective Hamiltonian. We
note this can be generalized to a triatomic molecule by writing ®𝑅 = ®𝐽 − ®𝐿 − ®𝐺ℓ − ®𝑆,
as was done in Ref. [162], for example. The dot products have been expanded in the
molecular frame, and we emphasize that the matrix elements of 𝐽± have anomalous
commutation relations, and care must be taken to transform them to the lab frame
before evaluation [39, 160]. Keeping this in mind, the operators 𝑆± and 𝐽± can be
dealt with using the Wigner-Eckart theorem, but the 𝐿± and 𝐿2 operators, as we
mentioned before, are not easy to compute. We note there is an approximate method
for estimating their matrix elements, described further in Appendix A.3.2.

The effective Hamiltonian approach actually does not require us to evaluate any
matrix elements of 𝐿⊥ or 𝐿2. Instead, we recognize that the operators in eqs. 2.32
and 2.33 can be grouped into three classes. First, we have operators that are well-
defined to act among two states 𝑖 and 𝑗 belonging to 𝜓 (0) , for example the operators
®𝐽2 = 𝐽 (𝐽 + 1) or 𝐽+𝑆−. Their matrix elements can be calculated within 𝜓 (0) using
angular momentum algebra [39]. Then we have operators whose form is identical for
all the different states in 𝜓 (0) , for example ®𝑆2. These operators are simply absorbed
into an overall energy offset of the electronic state, known as the “origin.” We note
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the distinction between which operators are diagonal shifts and which operators are
origin contributions is somewhat arbitrary—for example, 𝐿𝑧𝑆𝑧 can be taken as a
diagonal energy shift if our basis of interest contains multiple Ω states, or it can just
be taken as a contribution to the origin if we consider just a single Ω state. Further,
here we have shown rotational contributions to the origin, but we note that there are
also vibrational contributions, such as the zero point energy.

Continuing, we have operators that contain 𝐿± and connect us to different
electronic states |𝜓 (0) , 𝑖⟩ → ∥𝜓 (𝛼) , 𝑘⟩. These operators only have an impact on
the energies of 𝜓 (0) state when they connect back, that is when we also consider
|𝜓 (𝛼) , 𝑘⟩ → |𝜓 (0) , 𝑗⟩ at some higher order of perturbation theory. For example,
separate terms in the spin-orbit and rotational Hamiltonians can take us to another
state and back—if we combine 𝐽+𝐿− with 𝐿+𝑆−, we obtain an overall interaction
that looks like 𝐽+𝑆−. This term looks like a term in the rotational Hamiltonian, and
the two effects are actually indistinguishable. We note we have swept under the rug
the possibility of combining 𝐽+𝐿− and 𝐿−𝑆+. Such a possibility is allowed, but can
result instead in parity doubling interactions, where the signs of the projections in
𝑃(0) are flipped. We discuss parity doubling more later on. In general, once we
begin to consider the effective Hamiltonian expansion, the original parameters of
the theory, such as 𝐵 and 𝐴, are mixed up, and all we can determine are effective
parameters that receive contributions at various orders of perturbation theory. In
Appendix A.3.3, we provide further information about the mathematical formulation
of the effective Hamiltonian.

To gain an intuition, we illustrate the situation diagrammatically in Figure 2.1.
We consider four relevant angular momenta of the molecule, 𝐿, the electronic orbit,
𝑆, the electronic spin, 𝑅, the molecular rotation, and 𝐼, the nuclear spin. We also
consider the possible coupling of an external magnetic field 𝐵, which we elaborate on
soon. In the effective Hamiltonian, we are free to write down symmetry conserving
terms involving interactions of any of these angular momenta. However, once we
reduce the Hamiltonian to act only within the subspace of a given vibronic state
by “tracing out” 𝐿, we may end up with different effective interactions, shown at
second order in Fig. 2.1. If the traced out interactions involve flips of Λ, they will
result in parity doubling, which we discuss in Sec. 2.2.3.

As a further concrete example, we consider the contributions to the spin-rotation
operator, 𝛾 ®𝐽 · ®𝑆 in case (a), and 𝛾 ®𝑁 · ®𝑆 in case (b)11. In the effective Hamiltonian

11See Appendix A.3.1 for the use of 𝑁 vs. 𝑅 in effective Hamiltonians.
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(a) (b)

(c)

(d)
Figure 2.1: Diagram of second order interactions that arise in the effective Hamil-
tonian when we trace out 𝐿, the electronic orbital angular momentum. (a) This
diagram describes contributions to an effective spin-rotation interaction. We note
that depending on the states involved, this interaction can either generate parity
doubling, or be parity preserving, see main text for details. (b) Effective contri-
bution to the electron spin-nuclear spin interaction. (c) Effective contribution to
the 𝑅2 rotational interaction, showing how even the rotational constant becomes an
effective parameter. (d) An applied magnetic field 𝐵 can also couple to the orbital
angular momentum 𝐿, and when we form the effective Hamiltonian we can end up
with additional interactions between 𝐵 and 𝑆. See main text for further details.

approach, the spin-rotation parameter receives contributions from various orders of
perturbation theory, 𝛾 = 𝛾 (1) + 𝛾 (2) + · · · [39]. The first order term 𝛾 (1) results
from the magnetic interaction between the electron spin and the magnetic dipole
moment of the rotating molecule [163]. In heavy molecules, the first order term
is small compared to the dominant second order contribution 𝛾 (2) , arising from
off-diagonal spin-orbit and rotational perturbations, i.e., combinations of 𝐵𝐽+𝐿−
and 𝐴𝐿+𝑆−. The resulting contribution to 𝛾 (2) is provided in 7.122 of Ref. [39], and
more discussion can be found in Ref. [161].

If we now consider the application of a magnetic field to the molecule, we will
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have terms that look like ®𝐵 · ®𝐿. The evaluation of this operator requires rotating
®𝐵 into the molecule frame, where 𝐿𝑧 is good and 𝐿⊥ is undesirable. We deal
with the 𝐿⊥ terms by using the effective Hamiltonian approach. We can now obtain
effective interactions of the form 𝐵𝑥𝑆𝑥+𝐵𝑦𝑆𝑦, where 𝑥, 𝑦 are defined in the molecule
frame. This term encodes electronic mixing of Λ, and the interaction represents
the anisotropic response of the electron g-factor in a molecule, compared to the
usual isotropic response in an atom. See Ref. [164] for an excellent discussion of
magnetic effects in molecules. We can also obtain parity dependent Zeeman effects,
which we will return to when discussing parity doubling. Curiously, there are no
effective Stark terms in the effective Hamiltonian. However, we can understand why
simply; such terms would involve a coupling of the internuclear axis 𝑛̂, which is
𝑃-odd 𝑇-even, to an angular momentum of the molecule, ®𝐿, which 𝑃-even 𝑇-odd.
This would be a 𝑃,𝑇 violating effect—exactly what we are searching for!

Finally, as was mentioned earlier, the effective Hamiltonian approach can also be
generalized for polyatomic molecules, eliminating the components of ®𝐺ℓ that couple
outside of our vibronic subspace to other vibrational states. When tracing out𝐺⊥, we
obtain additional effective terms that can contribute just like the effective operators
obtained by tracing out 𝐿⊥. However, the scale of the contribution from ®𝐺ℓ effects
is typically smaller compared to spin-orbit effects. For example, there is usually not
a strong coupling of ℓ and 𝛴. However, this is not always the case, particularly if
ℓ is actually mixed with Λ, resulting in effective spin-orbit interactions, as we shall
see in the bending mode of YbOH in Ch. 4. Finally, we note different effective
Hamiltonians are useful for different molecular states and bases. For example, we
will use a different Hamiltonian to describe a Hund’s case (b) molecule with little
to no spin-orbit interactions, compared to a Hund’s case (a) molecule with strong
spin-orbit. Further, we will have additional terms when dealing with bending modes
of polyatomics, or spin-spin interactions in triplet systems.

2.2.3 Parity Doubling
Many molecules contain states of both parities, P = ±, with the same values of

rotational angular momenta. As we saw in Ch. 1, in Hund’s case (a) these states can
be written as: ���𝐽, 𝑀,P = ±

〉
=

1
√

2

(���𝐽, 𝑃, 𝑀〉
± (−1)𝑝

���𝐽,−𝑃, 𝑀〉)
. (2.34)

Here, (−1)𝑝 represents a 𝐽 dependent phase factor, given by the action of the
parity operator P|𝐽, 𝑃, 𝑀⟩ = (−1)𝑝 |𝐽,−𝑃, 𝑀⟩. We discuss this phase factor in
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Appendix A, Sec. A.2, and in this thesis we take 𝑝 = 𝐽 − 𝑆 − ℓ for Hund’s case (a)
and 𝑝 = 𝑁 − ℓ for Hund’s case (b).

We now provide an explanation for how such eigenstates arise from the effective
Hamiltonian constructed in the un-symmetrized case (a) or case (b) basis states
given in Table 2.2. Recall that in the construction of the effective Hamiltonian, we
traced out terms involving 𝐿±. While doing so, we saw that terms like 𝐽+𝐿− and
𝐿+𝑆− can combine to give us 𝐽+𝑆− terms, which really are just the spin-rotation
interaction, ®𝐽 · ®𝑆. In the full Hamiltonian, such a term encodes the combined effect
of an operator proportional to 𝐽+𝐿+𝐿−𝑆−. However, we also saw that we could
combine 𝐽+𝐿− and 𝐿−𝑆+ terms. This now gives us the combined effect of 𝐽+𝐿2

−𝑆+.
For a state 𝑖 in 𝜓 (0) with Λ = 1, such an operator would connect us back to a state
𝑗 in 𝜓 (0) with Λ′ = −Λ = −1. We see the interaction has flipped Λ! If all the other
terms in the Hamiltonian respect the degeneracy ±Λ, it is clear that the off-diagonal
matrix elements that connect Λ↔ −Λ will therefore lift the ±Λ degeneracy, and the
resulting eigenstates will be symmetric and anti-symmetric superpositions of ±Λ.
If we generalize Λ→ 𝑃, we see this is exactly the sort of mechanism that can give
us the symmetrized parity state shown earlier. These states are also referred to as
Wang combinations in the literature.

Therefore, the breaking of projection degeneracy, the degeneracy of±𝑃,±Λ,±ℓ,
±𝛴, . . ., is caused by parity doubling terms in the effective Hamiltonian that mix the
opposite projections with each other. These effective operators are actually encoding
mixings with other electronic or vibrational states outside of our subspace. At second
order, we will always get interactions that can flip an integer projection, i.e., we can
take 𝑃 = 1→ −1. However, the situation can be more complicated if we consider for
example 𝑃 = 2, as now we require four effective operators to connect with 𝑃′ = −2.
Therefore, the parity doubling is much weaker in higher magnitudes of projection
quantum numbers. Furthermore, the situation is complicated when 𝛴 is half integer.
In a 2Π1/2 electronic state, we can connect 𝑃 = Ω = 1/2→ −1/2 by interactions that
flip Λ = 1 → −1 and also flip 𝛴 = −1/2 → 1/2. These interactions involve spin-
orbit interactions with nearby 2Σ perturbing states. However, if we now consider
a 2Π3/2 state, we see such an interaction cannot take us from Ω = 3/2 → −3/2.
Instead, we actually require the combination of two effective Hamiltonian terms.
The first is an effective ΔΛ = 2, ΔΣ = 0 interaction that is generated by rotational
terms coupling outside of our subspace, and within our subspace has the effect of
coupling 2Π3/2 and 2Π1/2 states. The second is the parity-preserving ®𝐽 · ®𝑆 term of
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the rotational Hamiltonian in eq. 2.32, which has Δ𝛴 = 1 and ΔΛ = 0. As a result,
through two effective Hamiltonian terms, effectively a four operator interaction, we
can mix ΔΩ = 3, causing a much smaller parity splitting in the Ω = 3/2 states
compared to the Ω = 1/2 states.

Parity doubling is discussed further in Ref. [39], in particular Sections 7.4.5 and
9.7.1. Additionally, Ref. [165] discusses parity doubling in 3Π states, Ref. [166]
discusses parity doubling in Δ electronic states, and Refs. [162, 167] have some
discussion of parity doubling effects that combine from rotation and vibrational
angular momenta. We also discuss vibrational angular momenta doubling in Ch. 4,
Sec. 4.2.

Finally, in the same way we generate parity doubling from the effective Hamil-
tonian, so too can we generate parity-dependent Zeeman interactions. These terms
are manifestations of ®𝐵 · ®𝐿 terms that combine in the effective Hamiltonian with
various internal interactions involving ®𝐿, from spin-orbit to rotation to hyperfine.
Such parity dependent magnetic effects result in a g-factor that depends on parity.
A similar effect can be achieved from parity dependent spin-rotation terms in the
effective Hamiltonian, which we will encounter in Ch. 4, Sec. 4.2. Refs. [39, 164]
discuss parity dependent magnetic interactions further.

We make a note on the phase convention of the (−1)𝑝 term introduced at the
beginning of this section. We discuss phase conventions in detail in Appendix A,
Sec. A.2. Essentially, parity doubling is generated by off-diagonal matrix elements,
and the phase of off-diagonal matrix elements does not impact the eigenvalues we
obtain from diagonalization. However, what the phase does control is the phase of
the symmetric and anti-symmetric parity combinations of the case (a) or case (b)
states. One can see this very simply by diagonalizing a 2 × 2 toy Hamiltonian with
degenerate diagonal terms and non-zero off-diagonal terms. When the off-diagonal
terms are positive, the lower-energy eigenvector is the anti-symmetric combination of
our basis states. Continuing, this means the phase factor of (−1)𝑝 in the symmetrized
parity states is connected to the phase factor of the parity doubling operators that
flip angular momentum projections. With the phase 𝑝 = 𝐽 − 𝑆 − ℓ in case (a) and
𝑝 = 𝑁 − ℓ in case (b), the operators that flip Λ → −Λ and ℓ → −ℓ have opposite
phase conventions [151, 159, 168, 169]:

⟨Λ = ±1|𝑒±2𝑖𝜃 |Λ = ∓1⟩ = −1 (2.35)

⟨ℓ = ±1|𝑒±2𝑖𝜙 |ℓ = ∓1⟩ = 1. (2.36)
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Here, 𝜃 is the azimuthal electronic angle, with |Λ⟩ ∝ 𝑒𝑖Λ𝜃 , and 𝜙 is the azimuthal
bending angle, with |𝑣, ℓ⟩ ∝ 𝑒𝑖ℓ𝜙. By writing the wavefunctions in terms of their
phase angles, we see how the operators above flip angular momenta. We derive
these relations in Appendix A.

2.2.4 Renner-Teller Effects
In linear molecules with both ℓ ≠ 0 and Λ ≠ 0, there will be couplings between

the bending motion and the electronic angular momentum, referred to as Renner-
Teller interactions. These interactions are discussed extensively in Refs. [129, 135,
140, 151, 155], which is not an exhaustive list by any means. We will discuss
Renner-Teller interactions further in Ch. 4, Sec. 4.3.2. In this section, we provide a
heuristic overview on how these interactions arise physically.

Intuitively, Renner-Teller (RT) couplings can be understood as arising from the
electrostatic interaction between the electron charge distribution and the electric
dipole moment induced by the bending molecule [129, 151, 170, 171]. We restrict
our consideration to a single electron, with azimuthal angle 𝜃, orbiting a bending
molecule, with bending azimuthal angle 𝜙 defining the plane that the bent molecule
lies in. The interaction between the electron and the molecule depends on the
relative angle (𝜃 − 𝜙). For small displacements of the bending normal coordinate
𝑞2, it is standard to perform a double Taylor expansion in 𝑞2 and cos 𝜃 − 𝜙. Often
the terms with only 𝑞2 depedence are dropped, as they are the same for all rotational
states, and are absorbed into the overall vibrational energy origin. The remaining
Hamiltonian is then given by [129, 151]:

𝐻𝑅𝑇 = 𝑉11𝑞2 cos (𝜃 − 𝜙) +𝑉22𝑞
2
2 cos2 (𝜃 − 𝜙) + . . . (2.37)

Here, we have introduce the dipolar RT parameter, 𝑉11, and the quadrupolar RT
parameter, 𝑉22. In Hirota [129], these parameters are given in terms of the physical
electron coordinates, such as distance from 𝑛̂, nuclear charge, etc. Meanwhile,
Brown [151, 156] provides interpretations of these constants in terms of effective
Hamiltonian parameters. We note that while we have presented RT effects as
electrostatic effects in the linear molecule limit, the RT effect was considered as
arising from Coriolis interactions in the bent molecule limit in Ref. [172], and both
approaches are identical.

To better understand the above Hamiltonian, we can rewrite it as follows:

𝐻𝑅𝑇 =
𝑉11

2
𝑞2(𝑒𝑖(𝜃−𝜙) + 𝑒−𝑖(𝜃−𝜙)) +

𝑉22

4
𝑞2

2(𝑒
𝑖2(𝜃−𝜙) + 𝑒−𝑖2(𝜃−𝜙)) + . . . (2.38)
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We now immediately recognize the exponential operators that raise and lower ℓ
and Λ. We see that the dipolar interaction has operators of the form 𝐿±𝑞∓, while
the quadrupolar interaction has operators of the form 𝐿2

±𝑞
2
∓. The quadrupolar

Hamiltonian can directly act within our effective Hamiltonian subspace, acting as
a parity doubling term. Meanwhile, the dipolar term encodes mixings of ℓ and Λ,
such that only their combination 𝐾 is conserved. If we consider a bending mode in
a 2Π electronic state, we see the dipolar operator connects us to 2Σ and 2Δ states.
As the molecule bends, Λ is no longer integer valued, and instead our electronic
wavefunction is mixed with other Λ states by the electrostatic interaction with the
dipole moment of the bending molecule. This is what provides weak transition
strength to Δℓ ≠ 0 transitions, as we will see in Ch. 4, Sec. 4.2. Finally, we note that
since the dipolar terms take us out of the effective Hamiltonian subspace, they must
be traced out. The result is that the dipolar interaction 𝑉11 will also contribute to an
effective Hamiltonian operator that looks just like the quadrupolar term. Therefore,
the overall Renner-Teller effect in the effective Hamiltonian is a combination of both
dipolar and quadrupolar effects.

The resulting contribution of RT effects to the effective Hamiltonian is given
by [151, 159]:

𝐻𝑅𝑇 =
1
2
𝜖𝜔2

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
+ 𝑔𝐾 (𝐺𝑧 + 𝐿𝑧)𝐿𝑧

+ 1
2
𝜖𝜔2,𝐷

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
®𝑁2.

(2.39)

Here, 𝜃 is the electronic azimuthal coordinate, and 𝑞± are dimensionless raising and
lowering operators for the vibrational angular momentum ®𝐺ℓ, with matrix elements
available in the literature [129, 143, 151, 173]. The term 𝜖𝜔2 is the Renner-Teller
coupling strength, which can be related to 𝑉11 and 𝑉22, 𝑔𝐾 is a correction derived
by Brown [156] that encodes the change in Λ caused by bending-induced mixing
with other electronic states, and we note 𝐺𝑧 = ℓ and 𝐿𝑧 = Λ. Finally, 𝜖𝜔2,𝐷 is
the centrifugal correction to the Renner-Teller interaction, derived by Brown [159],
which we do not consider further but have included for completeness.

We now discuss RT effects from a symmetry perspective. For a linear molecule
in the 𝐶∞ symmetry group, the electronic wavefunction is symmetric under all ro-
tations around the molecule 𝑧 axis. This is natural for the cylindrical symmetry of
the molecule, and this enforces the conservation of Λ as a good quantum number
(in the absence of spin-orbit). When Λ ≠ 0, the wavefunction is doubly degenerate
between the values ±Λ. However, once the molecule bends, the cylindrical symme-
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try is broken, lifting the electronic degeneracy. For a bent XYZ triatomic molecule,
the symmetry group is now 𝐶𝑠, and the electronic state splits into two electronic
states of differing symmetries. In the language of group theory, the two electronic
states have 𝐴′ and 𝐴′′ symmetry, corresponding to the electronic wavefunction be-
ing symmetric and anti-symmetric, respectively, about reflection in the 𝑥, 𝑧 plane
(i.e., the plane of the bending molecule). The splitting of the electronic degeneracy
corresponds to a splitting of the harmonic bending potential into two curves, 𝑉 ′ and
𝑉 ′′.

For small displacements of the bending normal coordinate 𝑞2, the bending
potential remains harmonic, and the Renner-Teller interactions are in the 10 − 100
cm−1 scale. The two curves are degenerate at 𝑞 = 0, when cylindrical symmetry is
restored. We can write the harmonic bending potential in the absence of RT effects
as𝑉0 = 1

2 𝑘2𝑞2, with 𝑘2 a harmonic force constant. Upon turning on RT interactions,
this curve is split into two potentials, written as 𝑉 ′, 𝑉 ′′ = 𝑉0(1 ± 𝜖), with 𝜖 the RT
parameter given above, and 1 ± 𝜖 corresponding to the symmetric (𝑉 ′) and anti-
symmetric (𝑉 ′′) electronic states. Each potential now has its own force constant, 𝑘′

and 𝑘′′. In terms of these force constants, we can write the 𝜖 RT parameter as:

𝜖 =
𝑘′ − 𝑘′′
𝑘′ + 𝑘′′ . (2.40)

We see that when 𝜖 < 0, as it is in the triatomic molecules we consider, it means
the electronic state that is symmetric upon reflection in the bending plane is lower
in energy.

Finally, we provide relations for 𝜖 , 𝑘′, and 𝑘′′, in terms of the 2nd order RT
contribution12, 𝜖1, form the dipolar 𝑉11 parameter, and the first order contribution
𝜖2 from the quadrupolar 𝑉22 parameter. These relations are given in Refs. [129,
151, 172]. We reproduce them here, noting that our form 𝐻𝑅𝑇 is expressed in terms
of dimensionless coordinates 𝑞. Furthermore, In terms of the harmonic bending

12There can be some confusion as to the use of 𝜖1 vs. 𝜖 (1) in the literature. The subscript
version represents the dipolar contribtuion, while the superscript version represents the 1st order
contribution, which is actually the quadrupolar term, i.e., 𝜖2 = 𝜖 (1) and vice versa.
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frequency 𝜔2 we have:

𝜖𝜔2 = (𝜖1 + 𝜖2)𝜔2 (2.41)

𝜖2𝜔2 = ⟨𝜂 |𝑉22 |𝜂⟩ (2.42)

𝜖1𝜔2 = −
∑︁
𝜂⊂Σ
(−1)𝑠 |⟨𝜂 |𝑉11 |𝜂′⟩|2

2Δ𝐸

(
1 +

( 𝜔2

Δ𝐸

)2
)

(2.43)

𝑔𝐾 =
𝜔2

4

∑︁
𝜂⊂Σ,Δ

(−1)𝑝 |⟨𝜂 |𝑉11 |𝜂′⟩|2
(Δ𝐸)2

. (2.44)

Here 𝜂 and 𝜂′ represent different electronic states. We have defined Δ𝐸 = 𝐸 (𝜂′) −
𝐸 (𝜂). In the sum over Σ states, 𝑠 = 0 for Σ+ states and 𝑠 = 1 for Σ− states. Further,
in the sum over Σ,Δ states, 𝑝 = 0 for Σ states and 𝑝 = 1 for Δ states. We note
that Ref. [172] disagrees on the form of eq. 2.42 compared to Refs. [129, 151]. In
Ref. [172], the authors write 𝜖 = (𝜖1 + 𝜖2) (1 + 𝜖1)−1. Ref. [172] also has slightly
different forms for the other equations as well. They do, however, provide a form
for the anharmonic correction 𝑔22 in terms of 𝜖1 and 𝜖2.
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3
Producing Cold Molecules

There’s always a bigger fish.

–Qui-Gon Jinn

3.1 Introduction
This chapter overviews the production, study, control, and applications of cold

molecular beams. First, we motivate the need to produce cold samples of molecules.
Then, in Section 3.2, we discuss the primary workhorse of our experiments, the
cryogenic buffer gas beam (CBGB). We provide both specific details on the beam
source used for much of this thesis, as well as providing an overview of relevant
information on cryogenic buffer gas cooling. We also provide a discussion of beam
diagnostics, namely absorption and fluorescence spectroscopy, including relevant
equations.

Then, in Section 3.3, we discuss novel work performed in this thesis on driv-
ing chemical reactions with laser excitation. This results in an order of magnitude
enhancement of the molecular yield in our CBGBs. We characterize the chem-
ical enhancement in detail, and discuss applications. Optically driven chemical
enhancement is an invaluable tool in our lab and in other labs working with cold
alkaline-earth (like) metal hydroxide molecules.
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Figure 3.1: Visualization of rigid rotor Botlzmann probabilities at various tempera-
tures. The rotor energy is given by 𝐵𝑁 (𝑁 +1) with 𝐵 = 10 GHz, and the occupation
fraction is the fraction of the total population in a given 𝑁 , taking into account the
2𝑁 + 1 degeneracy of each level. The inset in the upper left is a zoom in on the
lowest rotational states with population plotted on a linear scale. By cooling down
to 5 K, we have order unity population in the lowest rotational levels.

3.1.1 Molecules are Entropically Hard
The presence of molecular degrees of freedom, namely rotation and vibration,

mean that molecules typically have more entropy than atoms, by virtue of having
a higher density of states. This introduces the need for additional steps to remove
entropy from the molecular system to concentrate population and enable coherent
quantum manipulation. For example, experiments with cold atoms typically begin
with an oven source or dispenser, which is heated to ∼500 − 1, 000 K to produce
an effusive source of hot atoms. Since electronic degrees of freedom in atoms
are typically at energy scales of order ∼ℎ × 10, 000 K, the majority of the atoms
produced are in the absolute ground state, allowing for the now standard pipeline of
laser cooling, slowing, and magneto-optical trapping to proceed.

In contrast, a molecular oven source will produce molecules distributed among
numerous rotational states and a few vibrational states. For example, we can
consider a sample of rigid rotors at 1,000 K, with a rotational constant 𝐵 ∼
ℎ× 10 GHz ∼ 𝑘𝐵 × 0.5 K. We calculate occupation probabilities using the standard
Boltzmann probability distribution, 𝑃(𝑁) = 𝑔(𝑁)𝑒−𝐵𝑁 (𝑁+1)/(𝑘𝐵𝑇)/𝑍 , where 𝑍 is the
partition function, and 𝑔(𝑁) = 2𝑁 + 1 is the orientation degeneracy for a given 𝑁
level. Neglecting vibration, a 1,000 K sample would have peak occupation of around
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𝑁 = 44 and a large tail occupation up to 𝑁 = 100. In general, a sample with popula-
tion distributed from 𝑁 = 0 to 𝑁 = 𝑁max will occupy

∑𝑁max
𝑁=0 (2𝑁 + 1) = (𝑁max + 1)2

sublevels. When population is spread amongst so many levels, i.e., the entropy is
high, it becomes difficult to perform state resolved quantum operations with ade-
quate signal to noise ratio. For 𝑇 = 1, 000 K, population is spread amongst quantity
∼104 levels; for𝑇 = 300 K, ∼ 103 levels; and for𝑇 = 5 K, ∼50 levels. A comparison
of Boltzmann populations for cryogenic, room temperature, and oven temperatures
is given in Fig. 3.1.

Furthermore, when producing molecules, we must contend with chemistry.
Many species of interest for optical cycling and precision measurements involve
molecules with unpaired valence electrons in anti-bonding orbitals, referred to as
free radicals by chemists. These molecules will have very low vapor pressure
in equilibrium and cannot be easily sourced, for example from a commercial gas
cylinder. Instead, free radicals must be formed by chemical reactions.

Older spectroscopy papers studied molecules in a heated oven, boiling off a solid
reactant while simultaneously introducing reagent gas for reactions. Subsequent
chemistry typically exhibits chemiluminiscence, sometimes at atomic transition
wavelengths. Spectroscopists realized that chemistry can be made more favorable
by introducing a high-voltage discharge, or by using laser excitation on an atomic
transition. This concept of excited state chemistry formed the basis for techniques
for improving molecule production that we will describe later in this chapter.

An alternative technique to oven chemistry is to produce the molecules in a high
temperature (𝑇 > 1, 000 K) plasma formed by focusing a nanosecond pulsed laser
onto a solid target, known as laser ablation. The targets are typically either a solid
piece of metal ablated in the presence of a reagent gas, or a pressed powder target
containing all molecular constituents. This is the approach we will use to produce
molecules in all subsequent discussions and chapters. However, after formation,
the molecules must be cooled further, both for high-resolution spectroscopy, and for
coherent quantum control.

There are currently two primary methods for producing cold (∼1−10 K) samples
of free radicals: supersonic expansion and cryogenic buffer gas cooling. Both
methods are typically used to produce cold molecular beams as a starting point
for a wide variety of experiments, from spectroscopy to quantum control. In this
thesis, we will be concerned primarily with cryogenic buffer gas cooling. Though
we will only review it briefly, supersonic expansion is an effective method for
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producing cold beams of free radicals [174–176], and is the method of choice for
many spectroscopists1.

A great deal of science has been done using supersonic beams, such as molecular
spectroscopy and collisional studies. Supersonic beams are formed by pulsing a
vacuum valve in a vacuum chamber, with the line upstream of the valve filled with
(usually) room temperature gas at some pressure. Often the pulse of gas is an inert,
monatomic carrier gas, i.e., a Noble gas, and the expansion occurs presence of laser
ablation to produce free radicals of interest. If the valve diameter is much larger
than the mean free path of the expanding gas, there will be many collisions during
the expansion, forming a supersonic jet. This process has three consequences: 1)
the velocity is boosted to ∼300 − 500 m/s and the velocity distribution narrows,
as a result of the quadratic velocity scaling of kinetic energy2, 2) A majority of
the gas is directed along the center line, resulting in much higher intensity than
an effusive beam, and 3) The supersonic expansion is approximately isentropic,
meaning the internal degrees of freedom are in equilibrium with the translational
degrees of freedom, which are cooled by expansion and boosting. Supersonic beams
operating at room temperature achieve rotational temperatures in the 5− 20 K range
and vibrational temperatures in the 30 − 100 K range. Vibrational cooling is less
efficient, a fact that we will encounter again with cryogenic buffer gas beams.

Supersonic beams require good electronics timing and the right pulsed valve,
but can have the advantage of rapid prototyping, owing to the room temperature
beam line and modest vacuum requirements. This makes them ideally suited to
spectroscopy, including high-resolution and/or dispersed laser-induced fluorescence
studies, double-resonance rf/microwave/optical techniques, and Stark/Zeeman spec-
troscopy. Nonetheless, their fast forward velocity and ∼10 K internal temperature
means they are not the best suited for precision measurements, molecular laser-
cooling, and coherent quantum manipulation. To produce slow and bright beams of
free radicals, we instead work with cryogenic buffer gas beams.

3.2 Cryogenic Buffer Gas Beam Sources
Cryogenic buffer gas beam (CBGB) sources are a versatile and essential start-

ing point for many cold molecule experiments [178], including precision measure-
1For example, our collaborator Tim Steimle has used supersonic sources to characterize countless

numbers of small molecules.
2The same energy (temperature) distribution will have a much narrower velocity width at higher

velocities: 𝛿𝐸 ≈ 𝑚𝑣𝛿𝑣, which was recently used to perform spectroscopy on hot and fast radioactive
beams of molecules [177].
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ments [11, 100, 179] and ultracold molecule production through direct laser cool-
ing [104, 108, 180–185]. While CBGBs are reviewed in detail in the literature [178,
184], I will provide a brief summary here.

CBGB sources produce bright, slow molecular beams that are both translation-
ally (𝑇) and internally cold (𝑇𝑖𝑛𝑡), typically with temperatures of 𝑇 ≈ 𝑇𝑖𝑛𝑡 ≈ 4 K. In
such sources, the molecular species of interest is introduced into a cryogenic cell
containing a density-tuned, inert buffer gas (nearly always He or Ne). The species
of interest is introduced via either a heated fill-line or laser ablation of a solid target.
The resulting hot molecules, typically introduced at 𝑇 > 1, 000 K, are subsequently
cooled by collisions with the buffer gas. Once thermalized, the molecular species is
entrained within the cell in the buffer gas flow, and carried out of the cell through an
aperture, forming a beam. Alternatively, the cell can be completely closed, allowing
for long interaction times and isolation of the molecular sample, which can be useful
when dealing with a radioactive species or when trying to recapture gas, i.e., 3He.
The cryogenic buffer gas cooling method is quite generic and can be applied to
many species, from atoms to small bio-molecules [186], including highly reactive
or refractory species.

In the lab we have two CBGB sources, the 4 K (a.k.a. “orange”) beam source
and the 1 K (a.k.a. “red”) beam source, as well as a closed cryogenic buffer gas
cell, known as the “mini-fridge.” The work in this thesis performed at Caltech was
primarily performed in the 4 K source. Details of the source design and construction,
including technical drawings, are presented in Nick Pilgram’s thesis [161]. My
main focus here will be on providing a heuristic discussion of the 4 K source and its
operation.

3.2.1 The 4 K Source
A photo of the 4 K CBGB source is shown in Fig. 3.2, with relevant components

labeled. The source is inspired by the ACME experiment [41], and follows general
design principles that are reasonably well established for CBGBs. The 4 K source
consists of a copper3 cell that is cryogenically cooled4 to ∼4 K, and surrounded
by radiation shields. The shields provide insulation from blackbody radiation at
300 K, which generates a 460 W/m2 heat load. The entire 300 K vacuum chamber is
mounted to an aluminum 80-20 structure. To help reduce vibration noise from the

3The alloy should be C10100 for optimal thermal conductivity at cryogenic temperatures.
4We use a Cryomech PT415 pulse tube cooler, with a cooling capacity of 1.5 W/K at 4 K and

40 W/K at 45 K.
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Figure 3.2: A photo of the 4 K CBGB source with labeled components. This photo
was taken after the cryo-pumping upgrades described in the section on cryopumping.
The cell sits in the middle of the photo, anchored with vertical bars to the top of
the 4 K shields, which is connected to the cold head (not visible). See main text for
more details.

top-heavy structure, we fill the legs of the 3×1.5-in2 80-20 struts with copper-coated
lead shot. This improved the vibration noise of the experiment considerably.

From outside in, after the 300 K vacuum chamber, we have the 50 K aluminum
shields, which are hung from the 300 K top plate via stainless steel threaded rods to
help isolate from the mechanical vibrations of the cold head. To provide a thermal
connection, the 50 K shields are connected via copper braids to the 50 K cold head5.
This cooling stage has over an order of magnitude more cooling power compared
to the 4 K stage, and can sink the blackbody heat load. To increase reflectivity
and reduce thermal loads, the radiation shields are covered in a layer of aluminized
mylar superinsulation. The 50 K shields have windows on the side plates that allow
for optical access to the cell, and the front 50 K plate has a 3/8-in diameter hole
that collimates the molecular beam exiting the source. Inside the 50 K shields,
we have the 4 K copper6 shields, which are also suspended from the 50 K shields

5Not the most accurate name, as it actually cools down to 40 K.
6Also C10100.
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via threaded stainless steel rods, and thermally anchored to the 4 K cold head via
copper braids. The 4 K side plates (removed for the photo) do not have windows,
but instead have a 3 × 2-in2 open area for optical access. To deal with the issue of
differential thermal contraction, all parts that cool down to cryogenic temperatures
are held together with brass screws and Belleville washers. The copper threads are
helicoiled to prevent them from stripping.

The cell was designed in a modular fashion, which allows for design changes
and length adjustments. Here we describe the “final” iteration that was used for
much of the work in Chapters 4 and 5. The cell is essentially an 0.5-in diameter
bore inside a series of modular copper blocks connected together to form a single
cylindrical volume. The cell parts are sandwiched together with Belleville washers
and brass nuts on stainless steel threaded rods running down the cell length. From
back to front, the cell components are as follows, with each part characterized by the
length it adds to the cell volume. First, we have the gas inlet, consisting of a 0.125-in
diameter copper tube braised on to a copper plate with a matching entrance hole
for the gas. Then there is a 0.125-in spacer, followed by a 0.125-in diffuser plate
that helps even the He flow distribution. Then we have a 0.5-in spacer, followed
by a 1-in long ablation stage, which also has 0.75-in diameter ports on the sides.
On one side port, we mount the targets, which are glued onto a copper plate with
Stycast 2850 FT Black with catalyst 24 LV, and are described in detail in a later
section. The reverse port from the targets provides optical access for the pulsed
laser used to ablate the targets. Ablation is described later, and for now we simply
mention the ablation laser enters through a non-AR coated window, mounted on a
copper tube (“snorkel”) that helps reduce the amount of material deposited on the
window. Following the ablation stage, we have a 0.5-in spacer, and then a 0.5-in
wide absorption window stage, which has 0.25-in diameter ports for optical access,
where we mount 0.5-in diameter windows. Finally, there is the front plate, which
adds 0.1875-in of length to the cell, and terminates in a 5-mm diameter aperture.
The total length of the cell, excluding the He diffuser stage, is nominally 2.6875 in.

We are able to run the source cold for months at a time without needing to warm
up. When the targets are sufficiently spent, we warm up the source. Once warm, we
replace the targets, as well as the ablation window, as it becomes opaque and coated
with ablated material over the course of normal operation, in spite of the snorkel.
The absorption windows can be cleaned with solvent and re-used a few times before
needing replacement. We also perform a simple clean the inside of the cell, which
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Figure 3.3: The beam extension downstream from the CBGB source. This photo
was taken with many electronics, optics, and detectors removed.

is often covered in powder resulting from target ablation. Using heaters to warm
up, if all the parts are ready in advance, the entire warmup and cooldown procedure
can take a few days at most.

3.2.1.1 The Beam Extension

After the molecules leave the cell, they encounter a 4 K conical skimmer 1.875 in
downstream, with a 0.25-in diameter collimating hole. Following the skimmer, the
molecules travel another 2.625 in before encountering the 50 K collimating hole,
with 0.375-in diameter. Then the molecules travel another ≈2 in before exiting
the 300 K vacuum chamber entirely. The front plate of the 300 K chamber has
a KF50 port for a 70 L/s turbo pump to pump out background gas. After the
work described in this thesis, we installed an ion-sweeper at the exit of the 300 K
chamber7. Following the 300 K vacuum chamber, there is a gate valve that can be
used to isolate the CBGB source from the downstream beamline, also known as the
beam extension.

The beam extension is where much of the work described in Chs. 4 and 5 was
performed. A photo of the beam extension is shown in Fig. 3.3. The molecules
travel ballistically down the beam extension through a series of vacuum chambers
assembled by KF50 connections. The ability to probe the molecules upstream and
downstream in the beam is very useful for both spectroscopy and coherent control.

7Essentially a pair of wires with a voltage applied across them used to deflect ions.
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The beam extension is modular and has undergone multiple iterations over the course
of the experiment. Here we describe the setup used for much of the work described
in Chs. 4 and 5. We note that at the time of writing, the beam extension has been
disassembled, to be replaced with an upstream pumping region (using the KF50
octagon described below) followed by the MQM science chamber.

After the gate valve, the molecules encounter a six-way KF50 cross, with the
cross center at a distance of ≈42 cm downstream from the cell aperture. The cross
has optical axis with AR-coated windows along one of the arm axes transverse to
the molecule beam. The windows are mounted with a custom mount8. The final
arm axis (up/down) has a window on the top for fluorescence collection, and the
bottom is connected to a 300 L/s turbo9.

Following the six-way cross, the molecules then enter the octagon, essentially
an 8-way KF50 cross10. The octagon center is located ≈60 cm downstream from
the cell. The octagon has 4 arm axes transverse to the molecule beam, with one of
the arm axes in the up/down direction, and the other 3 axes contained in a plane
orthogonal to the up/down axis. The bottom port is connected to a 70 L/s turbo pump,
and the top port has a feedthrough for a 19-mm diameter light pipe for fluorescence
collection. The remaining 3 arms provide optical access for perpendicular probing of
the molecule beam as well as 45◦probes, which are useful for Doppler measurements.

The entire beam extension is supported by an aluminum 80-20 structure, which
is secured to the 80-20 structure holding up the source via connections at two points.
This structure is also useful for mounting optical breadboards, mounting equipment,
and securing the vacuum chamber when performing modifications.

3.2.2 Buffer Gas Dynamics
The buffer gas dynamics inside and in front of the cell can have drastic effects

on the properties and yield of a CBGB source. In this thesis, we will focus on the
use of helium buffer gas in sources near 4 K. We note that CBGB sources have
also been operated with neon, for example in the ACME experiment. Refs. [41,
179] have detailed discussions on the difference between helium and neon sources.
For our purposes, the primary differences are two-fold: 1) helium CBGB sources

8The windows sit on an aluminum flange, essentially a KF50 stub with a hole in the center. The
flange also has a radial o-ring groove that houses an o-ring that creates a seal against the window
glass. The window is pressed down onto the o-ring by a 3-D printed plastic clamp held with fasteners
that screws into the aluminum flange.

9Agilent TwisTorr 304 FS
10The part was made by ANCORP
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can achieve lower temperatures and forward velocities, and 2) while neon simply
freezes when contacting a cold surfaces, helium gas does not freeze, and instead can
be adsorbed by porous materials.

As a function of the gas flow through the cell, CBGB sources can operate in
three flow regimes: nearly effusive, intermediate, and hydrodynamic. These regimes
are characterized by the number of collisions within roughly one aperture diameter
distance from the aperture. For on few (<1) collisions on average, the beam produced
from the aperture is effusive, and samples the thermal velocity of the molecules
inside the cell. While such beams are slow, the fraction of molecules exiting the cell
can be low, and the subsequent beam has large divergence. Meanwhile, when there
are many (≫1) collisions, the gas flow is fluid-like, and the beam is hydrodynamic.
In this regime, the beam velocity is boosted by collisions at the aperture, and
saturates at a supersonic velocity of ∼200 m/s. This boosting can also result in
expansion cooling [179], which can further cool the rotational distribution of the
molecules. This expansion cooling is what allows neon sources that run at hotter
temperatures (i.e., ∼15 K) to achieve cold rotational temperatures, comparable to
helium sources (i.e., ∼5 K). Finally, in the intermediate regime, there are ∼1 − 10
buffer gas collisions on average near the aperture, and the flow cannot be easily
modeled. There has been some progress in using computational simulations to
model gas flow in this intermediate regime [187]. In this work, we typically operate
with intermediate regime gas flows.

For a cell with an exit aperture, the helium density can be approximated by
making a steady state assumption, see Ref. [178] for equations. Typically we operate
with gas flows in the regime of 3 standard cubic centimeters per minute (SCCM)
(1 SCCM= 4.5×1017 atoms/sec [178]), and with a 5 mm diameter aperture, resulting
in typical He densities on the order of ∼1015/cm3. At this density, the mean free path
of the species of interest is ∼0.1 mm, and after about ∼100 collisions, the molecules
thermalize translationally and rotationally. Therefore the buffer gas cell dimensions
are typically at least ∼1 cm.

The helium density inside the cell must be high enough to thermalize the
molecules after ablation. If the density is too low, the majority of molecules formed
by ablation will rapidly expand without stopping, eventually colliding with the cell
walls. The few molecules that survive will be hot and fast. Conversely, if the
density is too high, a few undesired dynamics occur. First, the focused ablation
laser can form a plasma that dissipates energy and shields the target from ablation,
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known as plasma shielding [188, 189]. Second, the high helium density prevents the
expansion of the initial ablation plume, limiting the spatial extent of the molecules.
Detailed investigation of ablation and thermalization dynamics in a closed buffer
gas cell were performed in Ref. [190].

Finally, with too much helium gas, the ablation energy can “ring up” the cell,
causing the propagation of helium pressure waves. A quick estimate indicates that
the speed of sound of helium at 4 K is ∼118 m/s. For a 3-in long cell, this results
in a fundamental longitudinal mode with a ∼1 ms period. This sloshing of the
helium gas can result in a modulation of the output beam intensity at roughly this
timescale. We have observed this multi-pulse behavior when ablating at energies
> 30 mJ/pulse. Typically, the first molecular pulses that exit are fastest, and the last
pulse to exit is the slowest, having interacted with the buffer gas for longer time.

We note the assumption of steady state does not hold in helium based CBGBs
operating with porous targets, for example pressed powder targets. In such sources,
it has been observed that helium can be cryo-pumped, a.k.a. adsorbed, by the target.
This is supported by two pieces of evidence: 1) in open buffer gas cells (that is,
cells with an exit aperture), if helium is flowed for some time, and then stopped,
molecular beams may still be produced when ablating without gas flow [41, 184].
In our source, such beams without gas flow persist for ∼10 shots or so before the
signal degrades significantly. This effect is not observed if, after flowing gas, the
cell is heated up to above the desorption temperature of helium (∼10 K) before being
cooled back down and ablated. 2) In experiments with closed buffer gas cells, when
the cell is loaded with helium gas in the presence of porous targets, the pressure
will drop as the helium gas is adsorbed by the target. Subsequent ablation of the
target liberates the adsorbed helium. This has been observed in Ref. [190] and in
experiments in our lab with the mini-fridge.

The cell geometry and aperture characterize an extraction time, roughly the time
scale for molecules to leave the cell. The net flow of the buffer gas inside our 0.5-in
diameter cell has a velocity on the order of ∼30 m/s, which can be estimated from
conservation of flux inside the cell compared to flux outside by the aperture, where
the velocity is ∼200 m/s. We can then approximate the extraction time as the time
it takes the molecules to travel down the cell to the aperture, roughly ∼1 ms for the
dimensions of our cell (∼1.5-in distance from ablation to aperture). We can also use
the extraction time to characterize the spatial extent of the CBGB. Assuming a 200
m/s velocity upon leaving the cell, this gives a spatial extent of ∼20 cm, possibly
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more if the extraction time is increased. We note for larger cells, the extraction time
can be longer, ∼ 10 ms or more, which can result in ∼1 m long beams.

The extraction rate must be balanced with the thermalization and diffusion times
of the molecules. The diffusion time refers to the timescale for diffusion to the walls,
which results in loss. If the diffusion time is too short, the molecules will hit the cell
wall before being extracted. But if the extraction time is too short, the molecules may
not properly thermalize. For our cell geometry, the extraction fraction is roughly
on the order of 10 − 20%. We note all of these estimates are subject to caveats and
deviations, given the complicated nature of the buffer gas dynamics.

We now consider the divergence and velocity distribution of the molecules
exiting the cell. These quantities are discussed in detail in Ref. [178, 179, 191], here
we simply provide estimates and values. The forward velocity distribution can be
characterized as a 1D Maxwell-Boltzmann distribution, with an estimated FWHM
of Δ𝑣∥ ≈ 30 m/s for YbOH at 4 K. Meanwhile, the transverse velocity spread can
be larger as a result of collisions by the aperture, with Δ𝑣⊥ ≈ 60 − 80 m/s in the
flow regimes we consider. Finally a crucial figure of merit is the angular spread and
divergence of the beam, which, in the intermediate flow regime, can be less than an
effusive or supersonic beam. We expect an angular FWHM of Δ𝜃 ≈ 35◦, resulting
in a solid angle of ΔΩ ≈ 0.3 sr. We can use this quantity to estimate the loss from
beam divergence downstream as follows. We model the aperture as a point source,
and we estimate the distance to the “science region” of the beamline as 0.5 m. Then
a 1 cm laser beam will probe a solid angle that is approximately 10−3 times smaller
than that at the aperture, resulting in roughly 3 orders of magnitude of loss from
beam divergence.

Finally, the molecule-helium collision process is characterized by the cross-
section for elastic and inelastic collisions. However, vibrational degrees of freedom
have significantly smaller inelastic cross-section, and therefore vibrational thermal-
ization occurs inefficiently and slowly [192]. In CBGB sources, the molecules are
often extracted out of the cell by the helium flow before the vibration can thermal-
ize, and the vibrational populations are therefore athermal, with distributions on the
order of 300 K or more. The existence of excited vibrational population can be
beneficial for the study and spectroscopy of vibrational states in molecules.
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3.2.2.1 Background Gas and Cryopumping

The brightness of a CBGB source is strongly dependent on the vacuum environment
after leaving the cell. Since we are flowing buffer gas constantly, residual gas atoms
present after the cell can knock molecules out of the beam. This was investigated
in simulations [193], where it was found that this effect particularly harms slow
velocity classes, which take longer to travel the same distance. To deal with this
problem, in helium CBGB sources the region outside the cell is filled with charcoal
surfaces at 4 K. The charcoal is epoxied to sanded copper plates using Stycast
2850 FT. The charcoal is very porous, and serves as a reservoir that can adsorb and
trap helium gas, acting as a pump at cold temperatures. Eventually, these charcoal
“sorbs” can fill up with helium, and must then be heated to above ∼10 K. At such
temperatures the sorbs will release their trapped helium, which can be pumped out
with standard vacuum pumps. This procedure is known as desorbing, and must be
performed occasionally to refresh the cryo-pumping capacity of the sorbs.

As we continued to work on the 4 K source, we realized the importance of
background gas collisions on beam signals downstream. When operating with
approximately 280 in2 of charcoal surfaces, a 70 L/s turbo pump11 downstream in
the beamline, and a gauge in the beamline reading a pressure of 1 − 7 × 10−7 Torr
when flowing 1−9 SCCM in the cell, we saw loss of molecule fluorescence ∼50 cm
downstream that scaled linearly with the increased gas flow. An increase in gas
flow from 1 to 3 SCCM roughly resulted in a factor of 2 loss in fluorescence signal
downstream.

As a result, we performed a significant upgrade on our CBGB source. We first
installed a series of 8 sorb fins, shown in Fig. 3.4. These copper fins are covered
with charcoal on both sides (attached with Stycast), significantly increasing both
the surface area for cryo-pumping and the overall capacity for storing helium. The
installed fins represent an additional surface area of ≈312 in2. The fins are mounted
such that the charcoal faces are parallel to the molecular beam axis. Finally, we
replaced the sorbs by the 4 K collimator with a skimmer (a metal cone facing toward
the buffer gas cell). The sorbs had been completely coated in dust that we could not
remove; instead of constantly replacing the collimator sorbs, we instead opted for a
skimmer, which has no charcoal, and simply provides an angled surface to redirect
gas12.

11Agilent TwisTorr 84 FS.
12Note that Helium surface dynamics are non-trivial at low temperatures. There is a high change
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Figure 3.4: A photo of the charcoal sorb fins after installation. The fins are mounted
to the bottom of the 4 K radiation shields. The cell is visible, along with the exit
aperture and the ablation snorkel, which is used to prevent the ablation plume from
coating the ablation window. Charcoal sorbs on the sides of the 4 K chamber are
also visible.

Additionally, we must efficiently pump out helium that makes it out of the 4 K
stage, as it no longer experiences cryo-pumping. If this helium is trapped between
the beam box layers and the vacuum chamber, it can collide with and attenuate
the molecular beam. Therefore, we installed an additional 70 L/s turbo pump on
the front plate of our 300 K stage. This turbo has the added benefit of preventing
back-flow into the vacuum chamber when cryo-pumping is active. Prior to the
installation of this turbo, the vacuum chamber was pumped on with a dry scroll
pump13. Because cryo-pumping is extremely effective at pulling vacuum, the scroll
was exposed to a very low vacuum, and was unable to maintain the compression
ratio with the exhaust at atmosphere. Air would back-flow through the scroll pump
into the vacuum, causing ice to form on our windows. Installing a turbo, backed

the incident Helium adsorbs to the cryogenic surface [194], and can later be desorbed with a non-
trivial angular distribution [194].

13Agilent IDP-10.
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by the scroll pump, directly on the source, solved this problem, as the turbo can
maintain the compression ratio between the cryo-pumped chamber and the scroll
inlet.

After performing the sorb upgrade and turbo upgrade, the molecular signals in
the beamline no longer degraded with increased gas flow. The pressure gauge on
the beam extension reads ∼1 × 10−7 Torr, even when flowing up to 9 SCCM of gas.
Not only did our overall fluorescence signals increase, but we can now vary the gas
flow, which impacts properties such as buffer gas density inside the cell, extraction
of molecules out of the cell, and beam velocity.

3.2.3 Ablation Targets and Chemistry
Modeling cryogenic buffer gas sources with laser ablation is a hard problem.

The plasma dynamics alone are an active field of research [188, 189, 195–198], with
shockwave speeds reaching up to 50 km/s and plasma energies on the order of 104

K. In our source, we ablate with a pulsed, nanosecond Nd:YAG laser14, frequency
doubled to 532 nm. The pulse energy can be varied from 1 mJ up to ∼50 − 100
mJ, with a repetition rate as high as 50 Hz, though we often operate with < 10 Hz,
both to avoid excess heating of the cell from the ablation, and due to constraints of
other equipment, such as mechanical shutters. We typically focus the laser from a
∼6-mm collimated beam using a 300 − 400-mm lens, resulting in a ∼100-µm spot
size, limited primarily by aberrations. For molecular beam production, optimizing
ablation targets can result in significantly improved yield and consistency. Typically,
metals, sintered ceramics, and high-density targets ablate well, while soft or crumbly
targets tend to rapidly degrade in ablation yield [193, 199, 200]. Yb metal is a great
ablation target and often used to characterize CBGB performance. Other metals,
like Sr or Ba, can oxidize quickly, which can result in rapid target deterioration.
Ablation yield typically increases with pulse energy, up to a point. Further, targets
with lower melting and/or boiling points experience more melting/boiling in the
wings of the intensity distribution of the ablation laser. This can result in more
material removed per pulse [189]. However, ablation yield eventually plateaus due
to plasma shielding effects, where the focused laser creates a plasma in front of the
target that reduces the efficiency of energy transfer from the laser to the surface [188,
189].

To produce YbOH molecules, we ablate pressed powder targets containing Yb,
14Big-Sky/Quantel YAG laser from Anderson Lasers.
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Figure 3.5: Some examples of targets we have used for ablation. (a) Yb metal
target with stoichiometric Yb+Yb(OH)3 targets, the bottom one having been cold
sintered (see main text for details). (b) Targets after ablation. Pale coloration occurs
from oxidization. (c) Target used for double ablation tests. In addition to the Yb
and Yb + Yb(OH)3 targets, this plate has a well sealed off with kapton and stycast.
Inside the well is water containing gold nanoparticles that possibly help with 532
nm absorption. (d) In addition to the usual Yb and Yb + Yb(OH)3 targets, this plate
had a mixture of Yb + polyvinyl alcohol, the target on the right.

O, and H atoms. The targets are formed by first mixing Yb powder (200 mesh,
ground and passed through 230 mesh) with Yb(OH)3 powder (ground/milled and
passed through 230 mesh). The powders are combined, often with the addition of
4% polyethylene glycol (PEG 8000) by mass acting as a binder, and pressed in an
8-mm hydraulic die press with 6 metric tons of pressing force for ≳15 minutes.
The press and the target are lubricated with dry molybdenum spray. We found
YbOH target yield improved by nearly an order of magnitude when mixing Yb
and Yb(OH)3 to achieve a stoichiometric Yb:OH ratio, compared to targets that are
predominantly Yb(OH)3. Ablation yield can exhibit significant variation from shot
to shot on the same targe location, as well as when comparing different locations.
Overall, the ablation signal decays over time, with pressed powder targets decaying
more quickly (each spot provides ∼ 1,000 shots) compared to metal targets. In
another experiment in the lab, the addition of Yb powder improved the ablation
consistency of potassium salt targets used to produce K atoms, suggesting Yb metal
can be used to stabilize target performance.

We have experimented with various recipes, and typically find similar results
amongst different targets. To produce YbOH, we have tested targets with polyvinyl
alcohol, telluric acid, D-sorbital, aluminum hydroxide, and epsom salt, and all have
worked to some degree. Some photos of targets are shown in Fig. 3.5. Target testing
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can be challenging due to the slow turn around with cryogenic sources and the
large parameter space for investigation, including target composition, pulse energy,
repetition rate, ablation focus, etc. We have found that for our pressed Yb targets,
there is typically an onset of YbOH production after an energy threshold of ∼15
mJ/pulse. This is possibly tied to the energy threshold required to produce significant
energized excited states in the ablation plume, and/or possibly related to the melting
dynamics of the ablated surface.

3.2.3.1 Heated Fill Line

Metal ablation is generally superior to pressed target ablation [193, 200], motivating
the introduction of reagents not via laser ablation, but via a heated fill line. The
ablation yield and consistency of metal targets is excellent, particularly for Yb metal.
Further, with metal targets the ablation energy can be lowered to 5 − 10 mJ/pulse,
which can help reduce the beam velocity for applications such as laser cooling.
To produce molecules, a heated fill line can be connected to the cell and used to
flow in reagent gases that must be held at high temperature to have sufficient vapor
pressure. Examples include water [108, 200] and methanol [106, 139] for hydroxide
production, or SF6 [184, 193] for fluoride production.

There are a few drawbacks to use of a heated fill line. Difficulties include the
thermal engineering challenges of having a >250 K gas line running through <50 K
cryogenic regions. It is therefore helpful to have the heated fill line follow a path
that is separate from the rest of the gas lines and electronics. The heated fill line
must have heaters along its length, used to keep the temperature high. Some thermal
engineering is required to make sure the rigid connection of the cell to the heated
fill line is thermally insulating, and this is typically achieved with teflon spacers.
Nonetheless, operation of a heated fill line typically raises cell temperatures by∼1 K.
This can also be a challenge for systems designed to reach 1 K or lower, which can
be sensitive to added heat loads. The heated fill line nozzle is inserted through a
hole in the cell that has a much wider diameter and does not contact the fill line. The
nozzle must not stick too far into the cell such that its tip freezes over, but also not
be too recessed such that an ice bridge can form from the nozzle to the hole in the
cell. Diagnosing such issues at cryogenic temperatures is also difficult, requiring
constant warmup and cooldown cycles. Finally, the reagents that are flowed into the
cell coat the walls of the cell, creating a layer of ice or snow after a week or so of
operation [139, 184]. This ice is correlated with a speed up of the molecular beam,
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requiring a warmup and cooldown cycle to remove the ice and return the beam to
its original properties.

We attempted to install a heated fill line in our source, but it ended up being less
effective in our source compared to working with pressed targets instead. Briefly,
we designed an 0.75-in diameter cell, with the inner bore expanded to allow for the
introduction of both a heated fill line and a helium gas line into the cell. Around
this time, we ran into significant cell failures that caused the production of both
YbOH molecules and Yb atoms to be uncharacteristically weak. For example, our
Yb absorption signals, which typically are optically thick when probing the 3P1

line (∼99% absorption, see Sec. 3.2.4.2), were noticeably weaker with 10 − 50%
absorption, depending on ambient conditions. YbOH signals, which are ∼10% or
more (depending on the rotational line) in our 0.5-in cell, were ≲1% in size with
the 0.75-in cell. Some possible failure mechanisms were investigated, and we did
indeed find braise joint leaks in the He gas line, but even still we were unable to
make the 0.75-in diameter cell work.

We suspect the issue was related to insufficient Helium gas density. It is possible
we had a leak at the connection of the He line to the cell, which we could not leak
test. Furthermore, it is possible there were additional leaks at cell connections or
the windows that resulted in loss of He density. In all of our cell designs on the
4 K source, the windows are mounted to the cell by pressing the glass against a
kapton “gasket” on the copper surface, and the modular cell parts are “sealed” by
pressing them together with nuts and Belleville washers on threaded rods, with
apiezon grease applied between the surfaces. We note that leak tests on closed cells
in our lab have shown that these sealing methods are inadequate to hold vacuum,
and can be leaky at the >10−6 mbar L/s level. Only by using indium seals can we
lower this leak rate to ≲ 10−9 mbar L/s. Though there have been no detailed studies
of the effect of leaky vs sealed cells, there is anecdotal evidence that the puff of
desorbed He liberated by ablation has an impact on the cell dynamics, and such a
puff could have different non-equilibrium densities depending on how leak-tight the
cell is. It is also possible that a He film forms on the surfaces at low temperature,
further increasing sensitivity to leaks. Unfortunately we can offer no conclusions
from our experience with the 0.75-in cell, only conjectures.

When we returned to the 0.5-in cell design, we were able to recover our typical
Yb and YbOH signals. To install a heated fill line, we then replaced the spacer
upstream of the ablation region with an inlet for the heated fill line, with the nozzle
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spraying gas into the cell at an angle. We tested this configuration with methanol
reagent, and we were able to observe molecule production. However, the signals
were noticeably weaker than those from the mixed powder targets, so we abandoned
the heated fill line. The reason for weaker signals could be due to issues with our
heated fill line design. For example, the heated fill line passed through much of
the 4 K and 50 K stages, causing 1 K additional heat load when operated, which
can reduce signals. Furthermore, due to space constraints, our heated fill line had a
large bend right before the cell, instead of coming in straight, which could affect the
flow. Finally, we note the aspect ratio of our cell design (≈ 1 × 5) is quite different
from those in other experiments using heated fill lines (closer to 1 × 1) [106, 139,
193, 200].

3.2.3.2 Cold Sintering

Target density is correlated with improved yield and target consistency. Some exper-
iments have had success in creating ceramic targets for ablation via sintering [201].
Typically, sintering involves raising the temperature of a sample to ∼1,000 K or
higher to transform a pressed powder into a dense ceramic. We attempted sintering
tests15 of YbOH early on, but after heating beyond 300◦ C, the targets showed some
weight loss, with one target dissolving slightly. X-ray diffraction analysis indicated
one target formed a new Yb2O3 phase. We surmised that the hydroxide breaks apart
at high temperatures and is driven off, resulting in weight loss and the formation of
oxide phases. Therefore, high temperature sintering is not useful for M-OH targets.

Recently, a technique has been developed in materials science called cold sin-
tering [202–208]. The basic idea of cold sintering is to heat the target to ≲ 300◦ C
while applying pressure either in an open or closed environment. Often an aqueous
solution is added to promote diffusion and re-arrangement, such as water. There are
also variants, such as flash sintering which utilizes electric current [209, 210], or
hydroflux sintering using ionic salts with sparing quantities of water to depress their
melting point [211]. A recent demonstration of cold sintering produced a dense
pellet of 𝛾-AlOOH after starting with aluminum hydroxide percursor [212].

We have experimented with cold sintering by adding ∼10 − 40% by mass of
water to the target mixture before pressing, and wrapping the die press in heating
tape to bring the temperature to 150−200 ◦C when pressing. If the pressed material

15Thanks to Xiaomei Zeng and Katherine Faber for assistance with the sintering tests and subse-
quent analysis.
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is sufficiently aqueous, we use tape to cover the cracks in the press and prevent the
liquid from spilling out. The resulting targets have improved density compared to the
un-sintered case, and anecdotally have better ablation yield consistency, particularly
at high (≳40 mJ/pulse) ablation energies. More investigation is needed to determine
optimal target recipes and techniques.

3.2.3.3 Double Ablation

Another approach is to ablate two separate targets containing constituents of the
molecule of interest, known as “double ablation.” For example, instead of using a
heated fill line to introduce water and produce YbOH, one can co-ablate a Yb metal
target and another target containing hydroxides. This can be useful if the metal is
difficult to obtain in powder form to make mixed targets with, for example for trace
or radioactive species. In our lab, tests in other experiments show that co-ablation of
metal and solid hydroxide targets is effective at producing molecules, with similar
yields compared to ablation of a single mixed target. Separating metal and reagant
targets can also be useful for studying reaction dynamics, for example by varying
relative ablation powers, or delaying one shot relative to the other if they are sourced
from separate lasers. Alternatively, double ablation can be performed with a single
YAG laser, split with a beam splitter into two paths with different alignments. For
optimal molecular yield, the power balance in double ablation must be adjusted by
monitoring production signals.

We have also experimented with frozen ice targets to produce water in the cell
for double ablation. If water can be sealed in a well in the target plate, then when
the plate is cooled down, the water freezes and can be ablated. The target well was
formed by drilling a hole in a copper plate, sanding it down, filling it with water
containg gold nanoparticles that absorb 532 nm light16, and sealing the hole with
a combination of kapton (polyamide) tape and stycast 2850 FT at the edges of the
tape. The target is shown in Fig. 3.5. Though this maintained a seal that retained
water even after pulling a modest vacuum, the kapton did slightly buldge, and the
target was not weighed to assess material loss.

We were able to successfully produce YbOH molecules when co-ablating a
Yb metal target and the frozen water target. The overall yield was a factor of
∼5 − 10× worse for water + metal ablation, compared to typical stochiometric
pressed powder abaltion yields. Nonetheless the scheme worked, and has potential

16Water has poor absorption at 532 nm otherwise.
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room for improvement; for example, the water can be covered with gold foil to create
a stronger seal, and the target can be frozen in advance, before pulling a vacuum. A
thermo-electric cooler (TEC) mounted to the back of the target plate could be used
to keep the water frozen during pump out and initial cooldown. Further testing is
needed to improving ablation yield and consistency with frozen liquid targets.

3.2.4 Diagnostics
When operating a CBGB source, we want to monitor and study molecule

production and beam properties. There are two primary ways of obtaining signals
from the CBGB—absorption and fluorescence spectroscopy. Here we provide a
brief overview of these two approaches. Absorption measurements are most useful
in the cell or in front of the cell, and can be related to molecule density in a
relatively straightforward manner. Fluorescence spectroscopy, on the other hand,
is better suited for measurements downstream in the beam, and can have excellent
signal-to-noise ratio (SNR).

All of our diagnostic tools involve studying the interaction of light with the
atoms or molecules. Therefore it is useful to first introduce some relevant quantities
related to excitation and decay rates, and cross sections.

3.2.4.1 Decay Rates, Branching Ratios, and Cross Sections

This section will follow Refs. [131, 213, 214]. We note that Ref. [131] is in
cgs units17, while Ref. [213] uses a different reduced matrix element convention18.
Throughout this section, we discuss orientation averaging, which consists of aver-
aging over initial state orientations (a.k.a. 𝑀 sublevels) and summing over final
state orientations. We use double primes to indicate ground state quantum numbers,
and single primes to indicate the excited state. We will denote orientation averaged
quantities with a tilde, e.g., 𝜎̃. This is in contrast to quantities without a tilde,
e.g., 𝜎, which refer to a situation where we do not assume spherical symmetry and
therefore perform no additional sums or averages.

In the dipole (a.k.a. E1) approximation for describing the light-matter interac-
tion, the spatial gradient of the light field over the extent of the atom or molecule
is neglected. As a result, the interaction operator can be written as 𝐻𝑖𝑛𝑡 = − ®𝑑 · ®𝐸 ,
where 𝑑 is the transition dipole moment operator and 𝐸 is the ambient or applied

17To convert to SI, we take 𝑑2
cgs → 𝑑2

SI/(4𝜋𝜖0)
18We follow the definition in Ref. [39].
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oscillating electric field. Technically, the interaction is − ®𝑑 · ®𝐸 for photon emission,
and − ®𝑑 · ®𝐸∗ for photon absorption [67, 215, 216].

We begin by considering a single component of the dipole operator, written
𝑇1
𝑝 (𝑑) in spherical tensor notation, which couples to a single spherical component

of the light polarization vector. This situation corresponds to polarized emission,
|𝑒, 𝐽′, 𝑀′⟩⇝ |𝑔, 𝐽′′, 𝑀′′⟩, where we do not perform any averages or sums over initial
or final 𝑀 sublevels. In this case, the decay rate for the polarization component 𝑝
is given by [131, 213, 215–217]:

𝛾𝑖 𝑗 =
𝜔3

0
3𝜋𝜖0ℏ𝑐3 |⟨𝑔, 𝑖 |𝑇

1
𝑝 (𝑑) |𝑒, 𝑗⟩|2 (3.1)

where we have introduced the abbreviated labels 𝑖 = 𝑔, 𝐽′′, 𝑀′′ and 𝑗 = 𝑒, 𝐽′, 𝑀′.
Here, 𝜔0 represents the transition frequency of the decay in question.

We can also define the branching ratio specific to the 𝑀 sublevels of interest as
follows:

𝑟𝑖 𝑗 =
|⟨𝑔, 𝑖 |𝑇1

𝑝 (𝑑) |𝑒, 𝑗⟩|2

|⟨𝑔 | |𝑇1(𝑑) | |𝑒⟩|2
=
|⟨𝑔, 𝑖 |𝑇1

𝑝 (𝑑) |𝑒, 𝑗⟩|2

𝐷2
𝑔𝑒

. (3.2)

The factor in the denominator is the 𝐽-independent reduced matrix element19 for
𝑇1(𝑑) that couples 𝑔 and 𝑒, which we have written as 𝐷𝑔𝑒. This is related to the
𝐽-dependent reduced matrix element by ⟨𝑔, 𝐽′′| |𝑇1(𝑑) | |𝑒, 𝐽′⟩ = 𝑐(𝐽′′, 𝐽′)𝐷𝑔𝑒, where
𝑐(𝐽′′, 𝐽′) is a coefficient obtained from angular momentum algebra (see Appendix A
for details). For molecules, 𝐷𝑔𝑒 corresponds to the reduced matrix element in the
molecule frame,𝑇1

𝑞 (𝑑). The quantity 𝑟𝑖 𝑗 describes the branching for 𝑖 ← 𝑗 , although
since the matrix element is squared, the order of the label makes little difference.

We now consider performing an orientation average by averaging over initial
states (𝑀′ for emission), summing over final states (𝑀′′), and summing over all
polarizations (p). This corresponds to spontaneous emission for an excited, unpo-
larized atom or molecule emitting in all directions, |𝑒, 𝐽′⟩ ⇝ |𝑔, 𝐽′′⟩. Though we
do not consider hyperfine structure for now, the approach in this section can be gen-
eralized. We expand eq. 3.1 using the Wigner-Eckart theorem, and the subsequent
sum over 𝑀 , 𝑀′, and 𝑝 allows us to simplify the Wigner 3j-symbols using their
orthogonality relations [39]. We therefore have:

𝛾̃𝐽′′,𝐽′ =
∑︁

𝑀 ′′,𝑀 ′,𝑝

𝛾𝑖 𝑗

2𝐽′ + 1
=

𝜔3
0

3𝜋𝜖0ℏ𝑐3
|⟨𝑔, 𝐽′′| |𝑇1(𝑑) | |𝑒, 𝐽′⟩|2

2𝐽′ + 1
. (3.3)

19Note the reduced matrix element satisfies the property (𝐷𝑔𝑒)∗ = (−1)𝐽 ′−𝐽 ′′𝐷𝑒𝑔, see Ref. [131]
and Ref. [130].
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This form agrees with Refs. [131, 213, 215, 216]. Here we have assumed 𝜔3
𝑖 𝑗
≈ 𝜔3

0
for all ground and excited states in consideration. The orientation averaged quantity
𝛾̃𝐽′′𝐽′ is often referred to as the partial width of a transition. The factor of (2𝐽′+1)−1

arises from the average over initial states. Alternatively, we can derive eq. 3.3 in the
following way: we fix a given initial state 𝑀′, and sum 𝛾𝑖 𝑗 over the final state 𝑀′′

and the polarizations 𝑝. The orthogonality of the 3j-symbols then gives 1/(2𝐽′+1),
and since there is no preferred excited state orientation for spontaneous emission,
this applies equally to all excited 𝑀′ levels, and we obtain the same result as eq. 3.3.
Finally, we note that the quantity 𝑆 =

∑
𝑀 ′′,𝑀 ′,𝑝 |⟨𝑔, 𝑖 |𝑇1

𝑝 (𝑑) |𝑒, 𝑗⟩|2 is often referred
to as the “line strength” of a transition.

Often in the case of molecules and CBGBs, there are multiple 𝐽′′ states, and we
are interested in unpolarized branching ratios. Analogous to eq. 3.2, we define the
orientation averaged rotational branching ratio, 𝑟, as:

𝑟𝐽′′,𝐽′ =
|⟨𝑔, 𝐽′′

𝑖
| |𝑑 | |𝑒, 𝐽′⟩|2

(2𝐽′ + 1)𝐷2
𝑔𝑒

. (3.4)

The orientation averaged branching ratios are normalized such that
∑
𝐽′′ 𝑟𝐽′,𝐽′′ = 1.

In terms of 𝑟 and 𝐷𝑔𝑒, we may rewrite the partial width as:

𝛾̃𝐽′𝐽′′ =
𝜔3

0
3𝜋𝜖0ℏ𝑐3 𝑟𝐽

′,𝐽′′𝐷
2
𝑔𝑒 . (3.5)

If we now take the sum over all 𝐽′′, we obtain the following formula for the total
radiative decay rate of the excited state, in the absence of vibrational branching:

𝛾 =
∑︁
𝐽′′
𝛾̃𝐽′𝐽′′ =

𝜔3
0

3𝜋𝜖0ℏ𝑐3𝐷
2
𝑔𝑒 . (3.6)

This also agrees with Refs. [131, 213], as well as Ref. [217], where TDMs were
determined for YbOH. After summing over all ground states, we see the total decay
rate looks like that of a two-level system with transition dipole moment 𝐷𝑔𝑒. The
individual rates can therefore be parameterized in as 𝛾𝑖 𝑗 = 𝑟𝑖 𝑗𝛾, and similarly for
𝛾̃𝐽′𝐽′′ . This means we can treat our multi-level system as a two-level system scaled
by the appropriate branching ratio.

If we expand our discussion to include multiple vibrational states as well then
we must scale 𝑟 by the Franck-Condon factors of the vibrational transitions involved.
We note that if the vibrational transitions have very different frequencies, the ap-
proximation𝜔3

𝑖 𝑗
≈ 𝜔3

0 may no longer hold20, and we have to consider a sum over𝜔3
𝑖 𝑗

20For example, for YbOH, considering just 𝑣′1 = 0⇝ 𝑣′′1 = 0, 1, we have 𝜔3
𝑣′′=1/𝜔

3
𝑣′′=0 ≈ 0.92.
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values. If we are just interested in a partial width, we can simply scale the partial
width of interest by the vibrational branching ratio. If we want the total width, the
sum in eq. 3.6 must be expanded to include a sum over vibrational ground states 𝑣′′

as well. An example of calculations with vibronic TDMs can be found in Ref. [217].

Now that we have discussed emission, we consider absorption when applying
resonant light onto the atom or molecule in question. We can describe the light as
having intensity 𝐼 = 1

2𝜖0𝑐𝐸
2
0 , where 𝐸0 is the amplitude of the applied field. We

wish to describe the interaction between the light and the species in terms of an
interaction cross section 𝜎(𝜔). We first consider the case of resonance. The cross
section can be written as follows [131]:

𝜎 =
𝑊𝑒𝑔

Φ
. (3.7)

Here,𝑊𝑒𝑔 is the excitation rate for stimulated absorption and Φ = 𝐼/(ℏ𝜔0) is flux of
photons. From time-reversal symmetry,𝑊𝑒𝑔 = 𝑊𝑔𝑒 for just one ground and excited
state. Without performing an orientation average,𝑊𝑒𝑔 on resonance can be obtained
from Fermi’s Golden Rule [131] as:

𝑊 𝑗𝑖 =
1
𝛾tot

|⟨𝑔, 𝑖 |𝑇1
𝑝 (𝑑) |𝑒, 𝑗⟩|2𝐸2

0

ℏ2 =
1
𝛾tot

𝑟𝑖 𝑗
𝐷2
𝑔𝑒𝐸

2
0

ℏ2 =
Ω2
𝑖 𝑗

𝛾tot
(3.8)

where we have introduced the Rabi frequency, defined as Ω = 𝐸0𝑑𝑖 𝑗/ℏ, and 𝑑𝑖 𝑗 =
𝑟𝑖 𝑗𝐷𝑔𝑒 = ⟨𝑖 |𝑇1

𝑝 (𝑑) | 𝑗⟩ is the matrix element connecting the state 𝑖 to 𝑗 . The matrix
element is defined for a given polarization of the laser light that selects out the TDM
component 𝑝. We note eq. 3.8 also agrees with the form given in Ref. [214] (there,
𝑊𝑒𝑔 is written as 𝑅).

The cross section on resonance, without orientation averaging, is then obtained
by substituting 3.8 into 3.7. We obtain:

𝜎0,𝑖 𝑗 =
2
𝜖0ℏ𝑐

𝜔0

𝛾tot
𝑟𝑖 𝑗𝐷

2
𝑔𝑒 . (3.9)

This form agrees with the Appendix of Ref. [218].

Meanwhile, the orientation averaged form of𝑊𝑔𝑒, denoted with a tilde, is given
by [131]:

𝑊̃𝐽′𝐽′′ =
1
𝛾tot

(2𝐽′ + 1)
3(2𝐽′′ + 1) 𝑟𝐽

′′𝐽′
𝐷2
𝑔𝑒𝐸

2
0

ℏ2 . (3.10)

The extra degeneracy factors arise from various averages over ground and excited
state sublevels. We note that we still have 𝑊̃𝑒𝑔 = 𝑊̃𝑔𝑒, shown in Ref. [131]. We
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substitute 3.10 into 3.7, and simplify with 3.5 to obtain:

𝜎̃0,𝐽′′𝐽′ =
𝜆2

2𝜋
2𝐽′ + 1
2𝐽′′ + 1

𝛾𝐽′′𝐽′

𝛾tot
(3.11)

which is the same form as Ref. [131].

We note that eqs. 3.9 and 3.11 hold for situations where 𝛾tot describes a total
Lorentzian width that can receives contributions from multiple decay pathways,
power broadening, or pressure broadening. The cross sections also hold for higher
order transitions (M1, E2, etc.).

The cross sections here are derived for the resonant case. For off-resonant
interactions, the cross section generalizes to have a frequency dependence, charac-
terized by a lineshape function, 𝑔(𝜔 − 𝜔0) = 𝑔(Δ), with units of inverse frequency.
Here Δ is the detuning of the laser light from the resonance. We can normalize
the lineshape such that

∫
𝑔(𝜔 − 𝜔0)d𝜔 = 1. We can derive the general form by

noting the derivation in the resonant case from Ref. [131] involved multiplication
by 𝑔𝐿 (0) = 2/(𝜋𝛾tot), where 𝑔𝐿 (Δ) is a Lorentzian lineshape. Therefore we can
multiply by 𝑔(Δ)/𝑔𝐿 (0) to obtain the general lineshape.

Without orientation averaging, we obtain:

𝜎0,𝑖 𝑗 (Δ) =
𝜋𝜔0

𝜖0ℏ𝑐
𝑟𝑖 𝑗𝐷

2
𝑔𝑒 𝑔(Δ). (3.12)

For the orientation averaged cross section, we obtain:

𝜎̃0,𝐽′′𝐽′ (Δ) =
𝜆2

4
2𝐽′ + 1
2𝐽′′ + 1

𝛾𝐽′′𝐽′ 𝑔(Δ). (3.13)

Since 𝑔(Δ) is normalized, the integral of the cross section is always constant,
which explains why the resonant value decreases with increasing width. When the
natural linewidth dominates, 𝑔(Δ) is a normalized Lorentzian, and the resonant
value reduces to eq. 3.11. We note that in some cases, it may be convenient to
introduce the lineshape function, denoted 𝑔̂(Δ), with a different normalization, such
that 𝑔̂(0) = 1. This allows everything to be expressed in terms of the resonant cross
section, i.e., 𝜎(Δ) = 𝜎0 𝑔̂(Δ).

Often we are interested in the scenario where we are dominated by Doppler
broadening. In such a case, the distribution of resonance frequencies is given by a
Gaussian function:

𝑔𝐷 (𝜔 − 𝜔0) =
1

Γstd,𝐷
√

2𝜋
𝑒
−(𝜔−𝜔0)2/(2Γ2

std,𝐷) . (3.14)
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Here, we have written the Doppler “width” as a standard deviation. This can be
converted to FWHM by ΓFWHM = 2

√
2 ln 2Γstd. The Doppler standard deviation is

given by [131]:

Γstd,𝐷 =
𝜔0

𝑐

√︂
𝑘𝐵𝑇

𝑀
(3.15)

where 𝑀 is the mass of the species and 𝑇 is its temperature. For YbOH at 4 K, the
Doppler width is approximately ΓFWHM,𝐷/2𝜋 ≈ 54 MHz. However, we will find
the lines are broader than this in the cell, partially a result of unresolved hyperfine
structure.

We consider power broadening in a later section discussing fluorescence signals.
In the case when multiple broadening mechanism are at an equivalent scale, we must
represent the total lineshape as a convolution of the various lineshapes involved.
In the case when the two mechanisms are Doppler and radiative broadening, the
convolution of a Lorentzian with a Gaussian results in a Voigt distribution.

3.2.4.2 Absorption

Absorption spectroscopy measures the attenuation of laser radiation passing through
a cloud of absorbing molecules (or atoms). The probability of a photon interacting
with a molecule is encoded in the cross section 𝜎(𝜔 − 𝜔0), where 𝜔 is the laser
frequency and 𝜔0 is the separation of two energy levels interest. The cross section
is maximized when the laser is on resonance with a transition, and the width of the
cross-section is influenced by a combination of environmental and internal factors.
Mechanisms that increase (“broaden”) the cross-section width in CBGB sources are
usually Doppler broadening (∼1− 100 MHz), radiative linewidths (∼ 10 MHz), and
power broadening (0− 100 MHz). Inhomogeneous electric and magnetic fields can
also result in broadening, but we will not discuss that here. Details about cross
sections are given in the previous section.

Interaction with a resonant photon can result in stimulated absorption or stim-
ulated emission in the molecules. These two processes can be thought of as a
time-reversal pair (𝑎 and 𝑎† in a quantum picture), although we caution that this
analogy is not technically exact due to differences in level degeneracies. Nonethe-
less, the two processes can be identified with the Einstein 𝐵 coefficient. Indeed, in
the absence of decoherence mechanisms, the cycle of emission and absorption is
analogous to Rabi oscillations.
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For stimulated absorption, a laser photon is incident on a molecule initially
in a ground state. The energy and momentum of the photon is transferred to the
molecule, promoting it to an excited state. This process can only occur if there
are ground state molecules present. The cross section for such a process is given
by eq. 3.11 for the case independent of 𝑀 sublevels, and by eq. 3.9 for the case
dependent on 𝑀 sublevels.

If the laser propagates along the 𝑥-axis, absorption causes attenuation of the laser
beam when measured at a location 𝐼 (𝑥 + 𝑑𝑥) compared to 𝐼 (𝑥). The absorption, 𝑑𝐼,
depends on the number density of absorbers in their ground state, 𝑛𝑔, their frequency
dependent cross section 𝜎𝑒𝑔 (𝜔), and the flux of incident photons, 𝐼. Explicitly, we
have:

d𝐼 = −𝑛𝑔𝜎𝑒𝑔 (𝜔)𝐼d𝑥 (3.16)

where the sign indicates the intensity is attenuating as it passes through the sample.
If we make the assumption that the absorber density is uniform, we can integrate
the above equation over some length 𝑙, and then exponentiate, to obtain

𝐼 = 𝐼0𝑒
−𝑛𝑔𝜎𝑒𝑔𝑙 . (3.17)

This equation is sometimes referred to as the Beer-Lambert law. Here, 𝐼 is the
intensity transmitted through the absorbing sample, and 𝐼0 is a reference intensity
before encountering the sample. The quantity 𝑂𝐷 = 𝑛𝜎𝑙 is often known as the
optical depth (OD). Note that the optical depth is a logarithmic quantity, and can be
related to the “linear” absorption fraction 𝐼/𝐼0 by 𝑂𝐷 = log (𝐼0/𝐼). In the limit of
small absorption, this can be expanded as𝑂𝐷 ≈ 1− 𝐼/𝐼0, and the absorption fraction
is linear in the number density of absorbers. We note all of these relationships hold
for power of a transmitted laser beam as well.

On the other hand, if OD approaches 1, a majority of the light will be attenuated,
and the sample is said to be “optically thick.” In this regime, the transmitted intensity
is exponentially small, making it critical to calibrate any zero offsets of the detector
used to measure the transmitted light. Furthermore, the sensitivity 𝑑𝐼/𝑑 (𝑂𝐷)
is exponentially small, running into the limits of detector sensitivity. Therefore,
absorption measurements are not very useful with optically thick samples. Often
this is not an issue in practice if your goal is to make large quantities of a species of
interest.

For stimulated emission, a laser photon is incident on a molecule initially in
the excited state. The interaction with the light causes the molecule to emit an
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identical photon in energy and momentum, and the molecule transitions to a ground
state. This process can only occur if there are excited molecules present. Using
similar arguments to those for absorption, the effect of stimulated emission can be
encapsulated as

𝐼 = 𝐼0𝑒
𝑛𝑒𝜎𝑔𝑒𝑙 . (3.18)

Here, the intensity increases proportional to the number of excited state molecules 𝑛𝑒.
This is the same mechanism responsible for lasers, which leverage non-equilibrium
𝑛𝑒 (“pumped gain media”) to amplify light.

Two crucial factors remain: there are a finite number of absorbers present in a
sample, and the excited state has a finite lifetime. The finite number of absorbers
means a sample can be “saturated,” and we shall run into this in the discussion of
fluorescence as well. Consider a case where we perform absorption with what is
initially a low light intensity. Most of the absorbers remain in the ground state,
and their occasional excitation causes attentuation of the transmitted light according
to eq. 3.17. As we increase the flux of the incident light, we increase the number
of absorbers promoted to the excited state. Now, the transmission of the light is
described by both stimulated absorption and emission:

𝐼 = 𝐼0𝑒
(𝑛𝑒𝜎𝑔𝑒−𝑛𝑔𝜎𝑒𝑔)𝑙 . (3.19)

When 𝑛𝑔𝜎𝑒𝑔 ≈ 𝑛𝑒𝜎𝑔𝑒, then an incident photon is just as likely to encounter an excited
state molecule compared to a ground state molecule. This will result in stimulated
emission occuring at the same rate as absorption, increasing the transmitted light
and counter-acting the attenuation. In the limit of very high photon flux, the two
rates are balanced, and the absorption signal can disappear. We note that, from the
previous section, 𝜎𝑒𝑔 = 𝜎𝑔𝑒.

In practice, because the excited state can decay, population will naturally return
from excited states to ground states. If the transition under consideration is “open,”
the excited state can decay to other ground states unaddressed by the laser. This
population is lost, having been optically pumped to a dark state with large detuning
to the excitation laser21. On the other hand, if the transition is “closed” and all decays
are addressed, then in steady state the molecules are distributed equally amoung the
the ground and excited states. This has important consequences for molecule laser
cooling, when we almost always have more ground states than excited states–even

21This is in contrast to coherent dark states, where the detuning can be small, but the state is dark
as a result of interference.
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population distribution results in a smaller overall excited state fraction [115]. In
the limit of high incident light flux, where the stimulated absorption/emission rate
is much faster than the excited decay rate, the molecules are just as likely to be in the
ground or excited state. Just as in the case of high photon intensity without decay,
the transmitted light is unattenuated. In this case, the addition of excited state decay
scrambles the phase of the excitation/de-excitation cycle throughout the sample.

We typically use absorption spectroscopy to monitor production of atoms and
molecules in our CBGB sources. We measure absorption both inside the buffer gas
cell and just in front of the buffer gas cell. For atomic species, densities can be high
enough in the beam to perform absorption measurements downstream as well. We
operate in the low saturation intensity (𝑠 ≪ 1) limit to ensure the OD is linear in the
ground state number density.

The absorption signals we obtain are time-dependent, and vary as the molecular
cloud moves across the probe beam. Often we wish to integrate the signal to obtain
a total number of molecules. If we assume the number density 𝑛 is uniform across
the length of the probe beam, then at a time 𝑡, the number of absorbers seen by the
laser in a time increment d𝑡 is given by d𝑁 = 𝐴𝑎𝑏𝑠𝑣𝑛(𝑡)d𝑡, where 𝐴𝑎𝑏𝑠 is the total
area of the absorber cloud, for example the cross sectional area of the cell, and 𝑣 is
the speed of the absorbers moving through the laser. We can integrate this over the
duration of the molecule pulse, from 𝑡𝑖 to 𝑡 𝑓 , to obtain the total number of absorbers
interrogated:

𝑁𝑡𝑜𝑡 =
𝐴𝑎𝑏𝑠𝑣

𝜎𝑒𝑔𝑙

∫ 𝑡 𝑓

𝑡𝑖

d𝑡 𝑂𝐷 (𝑡). (3.20)

We will often refer to the quantity
∫

d𝑡 𝑂𝐷 (𝑡) as the integrated OD.

Since absorption is a fractional effect, it is robust to losses incurred along the
beam path, such as from finite reflections or beam divergence/clipping. However,
the sensitivity of absorption for measuring small signals is limited by the intensity
noise of the transmitted background intensity.

To give some perspective on signal sizes, consider absorption of a 1 cm path
length, with the Doppler broadened cross section for a strong transition on the order
of ∼10−14 m2 for atoms and ∼10−15 m2 for molecules. Consider a photodetector
with a dynamic range of 3 orders of magnitude, in other words a detector that can
measure signals up to 5 V with 5 mV resolution. This is roughly the situation we
have with standard photodiodes in lab. Such a detector is limited to measuring
0.1% fractional absorption, which corresponds to a number density of 107 − 108
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cm−3. Achieving even this limit requires reducing both electronics noise and laser
intensity noise to < 0.1%. Furthermore, since our beam sources produce pulses of
molecules, the absorption signal is pulsed with typical timescales in the ∼1− 10 ms
range. This means we are most sensitive to intensity noise ≲ 1 kHz, which can be
caused by mechanical vibrations, polarization noise (converted to amplitude noise
by birefringent optics), or electronics noise in the signal chain.

A simple solution to improving the sensitivity of an absorption measurement is
to perform multipass absorption, reflecting the laser beam many times through the
sample before measuring attenuation. In the spectroscopy community, Herriott cells
are used for such a purpose. Another approach is saturated absorption spectroscopy,
which can be combined with lock-in techniques. This forms the basis of a setup
used in our lab to calibrate absolute laser wavelength by comparing to co-recorded
iodine spectra [219]. In general, lock-in techniques are powerful, as they encode
the signal at a carrier frequency 𝑓𝑐 ≫ kHz. This often moves the signal out of
the bandwidth of significant 1/ 𝑓 noise, allowing for improved SNR. This is the
basis of the frequency-modulated (FM) absorption technique, which was led by
Nick Pilgram in our lab to perform sensitive absorption spectroscopy on vibrational
excited states in a buffer gas cell [220]. The details of FM absorption are provided
in his thesis [161] and in Refs. [221–225].

3.2.4.3 Fluorescence

As we discussed in the previous section, DC absorption spectroscopy is limited in
sensitivity, and works best with a strong line and/or high number density. When the
molecules enter the beam extension, the densities are reduced by nearly three orders
of magnitude from the beam divergence, and therefore absorption spectroscopy no
longer has adequate SNR. It is possible that sensitive absorption spectroscopy [220]
could still observe the molecules downstream, but instead we turn to fluorescence
spectroscopy, which has certain advantages over FM absorption, such as reduced
complexity and easier interpretation.

Fluorescence spectroscopy is the process of using a laser to excite the molecules,
and subsequently collecting the fluorescence decays, also known as laser-induced
fluorescence (LIF). LIF detection can be very sensitive, a result of both the ∼10%
quantum efficiency of photon multiplier tubes (PMTs), as well as the ability to
eliminate backgrounds by measuring LIF at a different wavelength than the excitation
light. Such a scheme is referred to as off-diagonal detection, and is commonplace
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in molecules, as excited states can decay to other vibrational levels separated by
≳10 nm or more. Typically the excitation and signal light is separated by a series
of filters22. Usually, fluorescence collection efficiencies are on the order of a few
percent in our setups, with the possibility of reaching order ∼10% when using large
in vacuum collection optics.

We can estimate the SNR capability of fluorescence detection as follows. As-
sume we have effectively filtered out the excitation light and our SNR is detector
limited. A typical PMT model we utilize is a Hamamatsu H13543-300, with a spec
of ∼0.2 nA of RMS current noise when operated with a cathode to anode gain of
2 × 106. The PMT has a radiant cathode sensitivity of ∼40 mA/W at the 577 nm, a
wavelength of interest for YbOH. Therefore the PMT current noise can be translated
to an RMS photon intensity noise of ∼2.5 fW, or equivalently a noise of ∼10 photons
at this wavelength for a ∼1 ms temporal pulse of molecules with constant scattering
rate. Typical fluorescence collection efficiencies are on the order of ∼1% of all
emitted photons, and assuming each molecule only emits one detected photon, we
obtain a molecule number noise floor of ≈1,000 molecules. Of course, there will be
other non-idealities in the system, such as added noise from electronics, or non-ideal
filtering resulting in the appearance of laser intensity noise, but this rough estimate
shows the power of fluorescence detection.

Fluorescence from a closed optical cycle has two characteristic regimes, charac-
terized by the balance between the excitation rate, which depends on light intensity,
and the decay rate, which is constant23. When illuminating a species with resonant
light, if the intensity is “low enough,” the LIF signal will increase linearly with
increasing intensity. This is the regime when the decay rate is much faster than
the excitation rate. However, as we increase the intensity further, at some point re-
sponse of the system becomes non-linear or saturated, and the LIF signal no longer
increases. In this case the excitation rate matches or exceeds the decay rate, and the
population is balanced between ground and excited states. As was mentioned in the
absorption section, an incident photon is just as likely to stimulate emission than to
be absorbed.

Actually, there are two mechanisms for saturation of fluorescence. All of the
preceding discussion is relevant to atoms or molecules with closed optical cycles.
However, as we often encounter with molecules, the excited state can decay to

22It is best to use a combination of both interference and colored glass filters.
23Unless the density of states is engineered. See the Purcell effect for details.
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ground states unaddressed by the laser. In such a case, if the ground states are long-
lived, they represent loss, the fluorescence will saturate as a result of the molecules
being optically pumped away. Ref. [214] investigated the interplay of these two
fluorescence mechanisms in the saturation of CaF fluorescence.

For quantitative analysis, we first consider the case of a closed optical cycle.
It is convenient to define the saturation parameter on resonance, 𝑠0, that allows us
to characterize the cross over from linear to non-linear behavior of the atoms or
molecules. The saturation parameter is defined by the relation 𝑠0 = 𝐼/𝐼𝑠 = 2Ω2/𝛾2.
Here, 𝐼𝑠 is the saturation intensity, and Ω = Ω𝑖 𝑗 = 𝐸0𝑑𝑖 𝑗/ℏ, and 𝑑𝑖 𝑗 = ⟨𝑖 |𝑇1

𝑝 (𝑑) | 𝑗⟩ is
the matrix element connecting the state 𝑖 to 𝑗 for a given polarization of the laser light
that selects out the TDM component 𝑝. We may write ℏ2Ω2 = 𝑟𝑖 𝑗𝐷

2
𝑒𝑔𝐸

2
0 , where 𝑟𝑖 𝑗

can generically include vibrational branching. Further, by writing 𝐸2
0 = 2𝐼/(𝑐𝜖0),

we can use eq. 3.6 to solve for 𝐼𝑠, obtaining:

𝐼𝑠,𝑖 𝑗 =
𝜋ℎ𝑐

3𝜆3𝜏

1
𝑟𝑖 𝑗
. (3.21)

Here, 𝑟𝑖 𝑗 is the branching ratio for the 𝑗 → 𝑖 transition, including both rotational
and vibrational branching. As a sanity check, it makes sense that 𝑟𝑖 𝑗 is in the
denominator, as it means we must drive with more intensity before we saturate
a transition with weak branching. The orientation averaged (i.e., summed over 𝑀
sublevels) form of eq. 3.21 is obtained by substituting 𝑟𝑖 𝑗 → 𝑟𝐽′′𝐽′ (2𝐽′+1)/(2𝐽′′+1).
We note the factor of 3 in the denominator of eq. 3.21 can be confusing–it arises
from the fact that the total decay rate is averaged over orientations, but the excitation
rate is not. Finally, we can connect eq. 3.21 to the saturation intensity for an ideal
two level system with excited lifetime 𝜏 as follows: 𝐼𝑠 = 𝐼𝑠,𝑖 𝑗𝑟𝑖 𝑗 .

The scattering rate of the molecules (or atoms), 𝑅, is directly proportional to the
excited state population, 𝑅 = 𝛾𝜌𝑒𝑒. Here, 𝛾 = 1/𝜏 is the decay rate of the excited
state summed over all ground levels. Since we are interested in timescales longer
than 𝜏 ∼ 20 ns, we employ a steady state approximation. If we were interested in the
coherences of the system, we would need to use optical Bloch equations, see Ch. 5.
In steady state, we can write 𝜌𝑒𝑒 in terms of the detuning Δ = 𝜔 − 𝜔0 as follows:

𝜌𝑒𝑒 =
𝑠0/2

1 + 𝑠0 + 4Δ2/𝛾2 (3.22)

=
𝑠(Δ)/2

1 + 𝑠(Δ) (3.23)

=
𝑠0/2

1 + 𝑠0

1
1 + 4Δ2/𝛾2

𝑝

. (3.24)
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We have written 𝜌𝑒𝑒 in three equivalent forms to highlight different aspects. In
eq. 3.23, we have defined the frequency dependent saturation parameter, 𝑠(Δ) =
𝑠0/(1 + 4Δ2/𝛾2). Meanwhile in eq. 3.24, we have defined 𝛾𝑝 = 𝛾

√
1 + 𝑠0, which is

known as the power broadened width. We note the equations provided here must
be modified in the case of multiple ground states coupled to multiple excited states,
as is the case with molecular laser cooling, see Refs. [115, 226] for details.

We now consider some limits of interest. We see that on resonance, Δ = 0, for
𝑠0 ≪ 1, we have 𝜌𝑒𝑒 ∝ 𝑠0, and the excited state fraction (and therefore the scattering
rate) is linear with intensity. The intermediate value of 𝑠0 = 1 characterizes the cross
over to saturation, and corresponds to 𝑅 = 𝛾/4. At the other limit, with 𝑠0 → ∞,
we have 𝜌𝑒𝑒 = 1/2, and the excited state fraction is independent of intensity. The
value of 1/2 can be understood intuitively as the atom or molecule being driven so
rapidly that it spends equal amounts of time in the ground and excited states. As a
result, the scattering rate on resonance will also saturate to 𝑅 = 𝛾/2. Off-resonance,
however, the width will increase as 𝛾𝑝 ∝

√
𝑠0. The population off-resonance can

still saturate at 𝑅 ≈ 𝛾/2, provided we have Δ2 ≪ 𝛾2𝑠0.

Now we consider the mechanism of saturation resulting from loss to “dark states”
not addressed by the excitation laser, referred to as loss-induced saturation. If dark
state decays occur with probability 𝑝, and the molecules interact with the laser for
total time 𝑇 , then we are dominated by loss-induced saturation when 𝑅𝑇 ≫ 1/𝑝.
For a molecule with ≈10% decays out of the cycling manifold and a lifetime of
𝜏 = 20 ns, we will encounter saturation for 𝑇 ≫ 400 ns, which is quite a short
period of time, equivalent to 80 µm of travel for a 200 m/s fast molecular beam.
Loss-induced saturation has the effect of increasing the width of a fluorescence
lineshape, as even off-resonance molecules potentially do not require many scatters
before they are pumped out. For a beam, loss-induced fluorescence can be modeled
by a rate equation model that incorporates information about molecule travel time
and laser intensity distributions, as was done in Ref. [214].

Finally, we note fluorescence measurements can be used to characterize atomic
or molecular velocities using the Doppler shift. Consider a molecule, traveling with
velocity ®𝑣, that encounters laser light at frequency𝜔0 and described by a wavevector
®𝑘 . In the frame moving with the molecule, the laser radiation appears shifted in
frequency according to according to:

𝜔 = 𝜔0 − ®𝑘 · ®𝑣. (3.25)
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Here, if 𝜔 is given in angular frequency, we have 𝑘 = 2𝜋/𝜆, and if we work
instead with linear frequency, then 𝑘 = 1/𝜆. For a molecule moving at 200 m/s
with 𝜆 = 577 nm, we see the maximum scale of the Doppler shift is ∼350 MHz.
The Doppler shift is used in atoms and molecules to perform cooling, by red-
detuning the excitation laser such that photons with counter-propagating momentum
are preferentially absorbed. For a detailed review of molecular laser cooling, see
Ref. [115].

The Doppler shift of a resonance can be used to determine the velocity of a
CBGB. Naively, one might send the laser beam counter-propagating to the molecular
beam to achieve the maximum Doppler shift scaling with velocity. However, this
is not practical for a molecule beam, as the light will interact with the molecules
usptream and optically pump them into dark states, long before the molecules reach
the photon detector. Pusling the laser beam is difficult given for large spatial extent
(∼1 m) of the molecualr beam. Even for atoms with closed cycles, longitudinal
Doppler probes are also not ideal, as the laser beam can cause slowing, interferring
with the interpretation of velocity. Therefore, we use probes with ®𝑘 at 45◦relative to
the CBGB in order to characterize velocities. While this reduces the Doppler shift
by 1/

√
2, it has the benefit of having a well defined interaction region.

3.3 Order of Magnitude Improvement in Molecule Production
The work in this section was previously published in Ref. [227].

Molecular experiments with CBGB sources are limited by the achievable molec-
ular flux, and stand to benefit from generic methods to make more cold molecules.
In this section, we discuss a method for achieving an order of magnitude increase in
the molecular yield from a CBGB source by using laser light to excite a metal atom
precursor. Specifically, we greatly increase the yield of polyatomic YbOH from our
CBGB source by resonantly driving the 1S0 →3P1 atomic Yb transition inside the
buffer gas cell. The metastable 3P1 state has a lifetime of 𝜏 ≈ 871 ns [228], long
enough for the atoms to engage in reactive collisions before radiatively decaying,
while also short enough to allow for rapid laser excitation. Our results establish laser-
induced chemical enhancement via metastable excited states as a promising tool for
significantly improving the production of cold molecules in CBGB sources, with
significant implications for a broad range of precision measurement experiments.



106

3.3.1 Excited State Chemistry
The study of reactive collisions involving excited species is a very active area

within the chemical physics community. Depending on the species, promoting
reactants to excited states can considerably modify the reaction dynamics and the
product state distributions [229–231], with consequences for a wide range of fields,
from astrophysics [232–234] to atmospheric chemistry [235–237]. In many cases,
the additional energy made available by electronic excitation of reactants can convert
an endothermic reaction to an exothermic one. Additionally, the reaction mechanism
on the excited potential energy surface can differ considerably from the mechanism
for ground state reactants. As a result, excited states can access more pathways and
transition states that yield the product of interest, as was seen in a recent study of
Be+ reactions [238].

In addition to modifying chemical yield, excited state chemistry has been used
to study the collisional physics of atoms and molecules. In the case of atoms
isoelectronic to Yb, such as Ca, Sr, Ba, and Hg, excitation of reactants to metastable
states was used for molecular spectroscopy [239, 240] and investigations of reactions
in ovens or beams with gases such as SF6 [230, 241], H2 [241, 242], H2O [243–
245], H2O2 [246, 247], alcohols [230, 243, 245], halogens [230, 241], halogenated
alkanes [230, 242, 248–250], and hydrogen halides [230, 241, 248, 251, 252]. More
recently, the ability to trap and cool species to ultracold temperatures has enabled
research of reaction dynamics between excited ions, atoms, and molecules [238,
253–255].

Here, we considered the the chemistry between Yb, in both the ground and
metastable 3P state, reacting with H2O and H2O2, two reactants likely produced dur-
ing laser ablation of solid targets containing Yb(OH)3 [256–258]. These reactants
are also of interest as they can be flowed into the cell via a capillary [108, 259].
Finally, previous studies with analogous metallic atoms, such as Ca, Sr, and Ba,
reacting with H2O and H2O2 [244–247] have shown that the reaction of the ground
state alkaline-earth atoms leads mostly to formation of the metal oxides, whereas
the metastable atoms produce the metal hydroxides.

We first provide a simple thermochemistry estimate of the importance of excited
state chemistry. Consider the reaction Δ𝐸 + Yb(1S0) + H2O → YbOH(2Σ) +H,
motivated by the use of water as CBGB reagent introduced via a heated fill line. Here,
Δ𝐸 is the energy difference of the reaction, with Δ𝐸 > 0 indicating an endothermic
reaction, and Δ𝐸 < 0 an exothermic reaction. In Ref. [260], the dissociation energy
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of the Yb-OH bond was experimentally determined to be 322 ± 12 kJ/mol 3.3 eV,
and the atomic heat of formation for YbOH was determined to be 746±12 kJ/mol =
7.7 eV. We can compute Δ𝐸 either by taking the difference between initial and final
heats of formation, or by considering the energy required to break and form bonds.
We take the latter approach, though the two approaches typically agree, as they
should.

Bond dissociation energies can be found in the Argonne Active Thermochem-
ical Tables online database24, and also in an old NIST reference [261]. The
H2O → H + OH process has Δ𝐸 = 5.1 eV. The net energy required to break
the H2O bond and form YbOH is then endothermic, Δ = 1.8 eV = 14500 cm−1.
This motivates the use to promote Yb to the3P1 excited state, which has ≈18000
cm−1 of energy, enough to make the reaction exothermic. We note the 1P1 state
also provides enough energy in theory, however we suspect the short lifetime of the
excited state is too fast compared to the mean time between collisions in the buffer
gas cell. We were not able to observe enhancement when using ∼5 mW of 1P1 laser
power.

Performing a similar analysis for H2O2 + Yb(1S0)→ YbOH(2Σ)+OH, we find
Δ𝐸 = −1.2 eV, and the reaction is exothermic. Clearly the choice of reagent matters
considerably. However hydrogen peroxide is somewhat impractical–it has 5 times
lower vapor pressure than water at 25◦C, it thermally decomposes when heated, and
it is difficult to work with at high concentrations.

To investigate more quantitatively, our chemistry collaborators, Svetlana Ko-
tochigova and Jacek Kłos, performed quantum chemistry calculations of electronic
structure and molecular dynamics. Their calculations show the back of the envelope
estimates hold some merit. We direct the reader to our paper for the full details [227].
Here we provide an overview of the results.

Critical points on the high-dimensional potential energy surface of the reacting
states are shown in correlation diagrams given in Fig. 3.6 and Fig. 3.7, obtained with
Density Functional Theory (DFT) techniques. The intermediate complexes formed
along the reaction paths of Yb(1S)+H2O/H2O2 and Yb(3P)+H2O/H2O2 correspond
to minima or saddle points, and are referred to as transition states.

The calculations demonstrate that the reaction between a ground state Yb(1S)
atom and an H2O molecule is endothermic, requiring 𝐸/ℎ𝑐 = 12020 cm−1 of relative

24 https://atct.anl.gov/

https://atct.anl.gov/


108

Figure 3.6: Energy profile for the Yb(1S)+H2O and Yb(3P)+H2O reactions leading
to YbOH(𝑋̃2Σ+)+H(2S) products calculated calculated with DFT and drawn with
Gauss View 5. The molecular models represent the system geometries at critical
points, and were drawn in the Gauss View 5 program. The Yb, O, and H atoms are
represented by green, red and white spheres, respectively. Solid and dashed lines
connecting the atoms correspond to 𝜎 bonds and temporary connections the transi-
tion states, respectively. These calculations are performed by Svetlana Kotochigova
and Jacek Kłos, and are published in Ref. [227].
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Figure 3.7: Energies and molecular geometries at critical points for
the Yb(1S)+H2O2 collision and Yb(3P)+H2O2 reaction leading to either
YbO(𝑋1Σ+)+OH(𝑋2Π) and YbOH(𝑋̃2Σ+)+H calculated with DFT and drawn with
Gauss View 5. The Yb, O, and H atoms are represented by green, red and white
spheres, respectively. Solid and dashed lines connecting the atoms correspond to 𝜎
bonds and temporary connections the transition states, respectively. These calcula-
tions are performed by Svetlana Kotochigova and Jacek Kłos, and are published in
Ref. [227].
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kinetic energy to proceed and form the product YbOH(𝑋̃2Σ+)+H(2S). Secondly, this
singlet potential energy surface has a transition state, or saddle point, that lies at
8741 cm−1 above the entrance channel. It separates a local minimum corresponding
to a symmetric-top molecule, where none of the bonds within H2O are significantly
affected by Yb, and the global minimum, where one of the hydrogen atoms has
broken from the water molecule and the Yb atom is inserted.

In contrast, the collision between the excited Yb(3P) state and H2O is exothermic
by 5760 cm−1. Moreover, the corresponding triplet potential energy surface has a
transition state that lies below its asymptotic channel energies. Such a submerged
reaction barrier is indicative of large reaction rates. For both singlet and triplet
channels, the product YbO+H2 is energetically inaccessible, lying 27233 cm−1

above the Yb(1S)+H2O reaction channel.

We now consider the relevant spin singlet and triplet Yb+H2O2 reactions. For
both Yb(1S)+H2O2 and Yb(3P)+H2O2 collisions, the product molecules have a lower
electronic energy than the initial reactants. In fact, both YbO(𝑋1Σ+) + H2O and
YbOH(𝑋̃2Σ+) + OH(𝑋2Π) products are energetically accessible, in contrast to the
reaction with H2O.

The relative kinetic energy of the product molecules is significantly larger than
that for the product in the Yb(3P)+H2O reaction. The transition state on the spin
singlet potential surface is submerged, and its global minimum corresponds to a
deeply-bound (OH)-Yb-(OH) molecule. We thus expect strong reactivity along this
pathway. Finally, the calculations did not find a transition state on the spin triplet
surface, and spin conservation implies that only YbOH(𝑋̃2Σ+) + OH(𝑋2Π) can be
formed. However, we note that strong spin-orbit coupling is expected due to the
large proton number of the Yb nucleus, and this will break spin conservation.

Our collaborators additionally performed classical Born-Oppenheimer Molec-
ular Dynamics (BOMD) [262] calculations to investigate reaction kinetics. The
simulations show that the Yb(1S)+H2O system forms a YbH2O complex, without
reacting and producing YbOH product molecules. For the Yb(3P)+H2O collision,
the HYbOH intermediate forms immediately, after which the hydrogen atom at-
tached to the Yb quickly flies away, leaving the YbOH product. The simulations
are in agreement with previous studies of Ca(3P), Sr(3P), and Ba(1D) reacting with
H2O and preferentially forming metal hydroxides [244, 245].

Meanwhile, for the Yb(1S)+H2O2 simulations, we observe YbO and H2O prod-
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ucts, which have the lowest internal energy. The Yb(1S)+H2O2 reaction occurs 4
times more slowly than Yb(3P) reacting with H2O2. This contrast may indicate a
difference in reaction mechanism between the two atomic states, which was previ-
ously suggested in prior work studying reactions of Ca and Sr with H2O2 [246, 247].
Many more trajectories initialized with Yb(1S)+H2O2 are needed to determine the
branching ratio between the YbO and YbOH products, which were both found to
form.

As a qualitative aside, we have experimentally looked for YbO and YbOCH3

production in our source when ablating pressed Yb+Yb(OH)3 targets and simulta-
neously exciting the Yb atoms to the 3P1 state. From absorption measurements in
cell, we estimate that our yields are ≳ 100× lower for YbO and YbOCH3 compared
to YbOH.

3.3.2 Enhancement Tests
We now discuss experimental tests of optically driven chemical enhancement to

produce YbOH molecules. First, we describe the specific configuration of the 4 K
source used for this work. Then we move on to describing the various parameters we
varied and optimized. First, we discuss the tests of the properties of the enhancement
laser: geometry, frequency, power, and timing. Then we examine properties of the
cryogenic buffer gas cell environment: gas flow and YAG energy. We then move on
to gauging the effect of the enhancement on rotation, vibration, and velocity. We
then investigate the effect of varying the Yb isotope that is optically excited. We
conclude with applications of the technique.

3.3.2.1 Apparatus

As discussed earlier, the source consists of a cryogenically cooled copper cell at
∼4 K, depicted in Figure 3.8, which has an internal cylindrical bore with a diameter
of 12.7 mm and a length of ∼70 mm. The cell has windows that allow optical
access for laser ablation and absorption spectroscopy. Helium buffer gas enters the
cell through a fill line at one end of the cell, and exits at the other end through
an aperture 5 mm in diameter. The source is typically operated with a helium
flow rate of 3 SCCM, equivalent to a steady-state helium density in the cell of
∼ 2 × 1015 cm−3 [178].

YbOH molecules are produced by laser ablation of a solid target with a pulsed
nanosecond Nd:YAG laser at 532 nm. Unless stated otherwise, the data in this
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(b)

(c) (a)T~4 K

Yb+Yb(OH)₃ YbOH

He

Absorption probes

Figure 3.8: Depictions of the enhancement light geometries investigated. The
enhancement light is depicted by the thick green arrows. The thin arrows indicate
the absorption probes, which are fixed in position. (a) Transverse geometry: the
enhancement light is introduced through a window ∼ 25 mm away from the ablation
target and ∼ 12 mm away from the cell aperture. (b) Longitudinal geometry: the
enhancement light is introduced through the cell aperture. (c) Collinear geometry:
the enhancement light is sent through the ablation window, collinear with the YAG
pulse.

section were taken with ∼ 15 mJ of energy at a repetition rate of 1-3 Hz. The
enhancement persists at repetition rates up to 10 Hz, though above this repetition
rate the cell temperature begins to increase. The data were obtained from targets of
pressed Yb(OH)3 powder in a stoichiometric mixture with Yb powder, described in
Section 3.2. The behavior of the laser-induced enhancement was found to be similar
for variety of other targets with slightly different compositions. From such targets,
a single ablation shot typically produces ∼1014 thermalized Yb atoms25, orders of
magnitude more than typical yields of molecular YbOH.

We can provide a basic picture of the in-cell dynamic based on previous
work [179, 190]. At the helium densities considered here, the ablated material
(atoms molecules, and reactants) ballistically expands to fill the cell in the first ∼ 𝜇s
after ablation. Buffer gas collisions then thermalize the molecules in ≲ 1 ms, and
carry them out of the cell, through the aperture. At the flow rates considered here,
roughly ∼10% of the molecules are extracted, with the rest lost to the cell walls.

To study molecular production, we use a 577 nm laser to perform absorption
spectroscopy on the 𝑄𝑄11(2) line of the 𝑋̃2Σ+(000) → 𝐴̃2Π1/2(000) transition in
174YbOH. Here, (𝑣1𝑣2𝑣3) denote the vibrational quanta in the Yb-O stretch, O bend,
and O-H stretch, respectively. For 174YbOH transitions, we use the labeling scheme
described in Refs. [263, 264], as well as in Sec 4.1.3. The laser light is produced
by doubling a 1154 nm ECDL using a PPLN waveguide. Absorption of the probe
was used to determine the number density of molecules both inside the cell and

25We produce so many atoms this is a difficult number to gauge, as the absorption is optically
thick. This estimate was based on looking at less abundant isotpologues of Yb.
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Figure 3.9: Log scale absorption spectroscopy of YbOH density in the 𝑁 = 2,
𝑋̃2Σ+(000) state, both in-cell and front-of-cell. This data was taken with the
enhancement light in the transverse geometry. (a): In-cell un-enhanced yield of
4 × 1010 molecules, enhanced yield of 3 × 1011 molecules. (b): Front-of-cell un-
enhanced yield of 7 × 109 molecules, enhanced yield of 8 × 1010 molecules. The
difference in noise floors can be attributed to different photodiodes operating with
different gains.

immediately in front of the cell aperture. Unless stated otherwise, Yb refers to
174Yb for both atomic Yb and YbOH.

To enhance the production of molecules, we excite the 556 nm 1S0 → 3P1

transition in atomic Yb. The light is derived by sum-frequency generation of a CW
Ti:Saph with a 1550 nm fiber laser, and has a linewidth of < 50 kHz 26. The light is
pulsed on and off with a combination of an acousto-optical modulator (AOM) and
mechanical shutter, allowing us to study the effect of the excitation timing relative to
the ablation pulse. The mechanical shutter passes the light into the cell ∼4 ms before
the ablation pulse, and blocks the light again ∼8 ms after the ablation, in order to
keep the cell from being heated unnecessarily. The AOM is used in conjunction with
the shutter to perform more precise measurements of the effects of pulse timing,
to be discussed later. The shutter stays closed for every other molecule pulse, in
order to normalize against drifts in molecular yield as the ablation spot degrades.
Specifically, when ablating the same spot over time, we observe a decay in molecular
yield, which has been previously observed in other CBGB sources [178, 191, 265],

26Sirah Mattise Ti:Saph and NKT ADJUSTIK+BOOSTIK combined in a Sirah MixTrain.
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particularly when ablating pressed targets made from mixed powders [180]. This
decay is present for both enhanced and unenhanced molecular pulses.

To determine the molecular yield inside the cell and the molecular flux leaving
the cell, we integrate the optical depth (OD) over the duration of the resulting ∼ ms
long molecule pulse. We compute the enhancement factor, or fractional increase
in the number of molecules, by taking the ratio of the integrated OD with and
without the enhancement light. Since the probe light is always fixed at the same
molecule transition, common factors such as cross section divide out, making the
OD ratio directly sensitive to changes in molecule number density induced by the
enhancement light. When ablating a single spot over time, the enhancement factor
does not exhibit the same decay present in the absolute molecular yield.

Typically, in-cell YbOH population in the 𝑁 = 2, 𝑋̃2Σ+(000) state was en-
hanced from ∼1010 to ∼1011, with front-of-cell numbers similarly enhanced, from
∼109 to ∼1010 molecules. Figure 3.9 shows a representative absorption signal from
a single ablation shot, both with and without the enhancement light present. The en-
hancement factor depends on a number of parameters, such as laser power, detuning,
timing, and geometry, which we will now discuss.

3.3.2.2 Geometry

We investigated three geometries for introducing the enhancement light into the
cell, indicated in Figure 3.8. The 556 nm light was typically collimated to a beam
diameter of ∼ 2.5 mm.

The largest enhancement signals were observed when the light was sent through
the window in the cell used for absorption spectroscopy, shown in Figure 3.8(a).
For a given target, the enhancement effect was repeatable for different ablation
sites. For the second geometry, shown in Figure 3.8(b), the light entered the cell
longitudinally through the circular, 5 mm diameter cell aperture. The resulting
enhancement magnitude was reduced by a factor of ∼2, with the effect somewhat
independent of the ablation site. In the final geometry involved the enhancement
light overlapped with the path of the ablation laser, shown in Figure 3.8(c). When
compared to the aforementioned geometries, this collinear geometry resulted in
smaller and less consistent enhancement.

Unless stated otherwise, the data in the rest of this section, and in fact this
entire thesis, are from the first geometry, with the enhancement light sent through
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the spectroscopy window. Note that in this configuration, excited state atoms and
reactions should be present only in the region where the laser is propagating, due
to their short radiative lifetimes relative to the timescales associated with the buffer
gas flow.

3.3.2.3 Frequency

To characterize the frequency dependence of the enhancement, we scanned the
enhancement laser frequency across the atomic Yb line while monitoring the YbOH
yield with a resonant absorption probe. The resulting enhancement magnitude for
such scans at varied powers is shown in Figure 3.10, demonstrating the resonant
nature of the enhancement. Since we apply sufficient laser power to power broaden
the transition by an amount comparable to the Doppler broadening, we successfully
fit the shape to a Voigt distribution. The extracted full-widths-at-half-maximum
(FWHM), obtained from frequency scans in the longitudinal geometry, are plotted
against enhancement power in the inset of Figure 3.10.

The observed enhancement widths indicate a broader reactant Yb frequency dis-
tribution than that expected from Doppler broadening at∼4 K and power broadening
from ∼200 mW of resonant light. A similarly broad distribution is observed from
low intensity scans of the atomic line shape alone, shown for example in Fig. 3.11.
At ablation energies of ∼15 mJ, the first < 1 ms of the Yb absorption trace con-
tribute to significant broadening, indicating the presence of an early, athermal Yb
population [190]. The remaining population present after 1 ms are consistent with
a Doppler broadening at 𝑇 ∼ 4 K. Because the enhancement light can excite this
early athermal Yb population, we expect the atoms to react, providing the addi-
tional broadening we observe in the enhancement line shape. A typical value for
the FWHM of a Doppler-broadened Yb atomic absorption line (in the limit of low
saturation parameter) is ∼ 70 MHz if the athermal component is excluded. Mean-
while the athermal features have ∼250 MHz FWHM, corresponding to a Doppler
temperature of ∼60 K.

3.3.2.4 Power

The enhancement factor has a nonlinear dependence on the power of the enhance-
ment light. This relationship is illustrated in Figure 3.12, showing the transition
of the enhancement magnitude from linear behavior at low powers to saturation
at high power. The crossover typically occurs between 100 and 300 mW for a
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Figure 3.10: Enhancement line shapes, data taken with the longitudinal geome-
try. Left: Frequency scans and Voigt fits, demonstrating the variation of YbOH
enhancement with detuning of the Yb laser at different powers. Right: Full widths
at half maximum for the enhancement line shape as a function of the power sent into
the cell. The Doppler width for the Yb atomic transition averaged over the entire
ablation pulse is ∼150 MHz.
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The solid blue line is the integrated OD obtained by integrating signals > 1 ms after
ablation. The dashed orange line is the integrated OD obtained by integrating from
0 to 1 ms. The athermal nature of the early Yb population is immediately apparent
in the large linewidths. The YAG energy here was approximately 15 mJ/pulse.
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at different times relative to ablation. The y-axis is the fraction of enhancement that
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∼ 2.5 mm beam, corresponding to an intensity range of ∼ 10 W/cm2. Such be-
havior is indicative of driving an optical resonance, and supports a simple model
where the enhancement magnitude is proportional to the steady state excited Yb
population. Notice that this cross-over intensity is considerably higher than the
saturation intensity of the transition (0.14 mW/cm2), which is due to the fact that
the transition is Doppler broadened [131]. We expect the effect to saturate when
the power broadening is comparable to the Doppler broadening [131]. The power
broadened radiative width is 𝛾𝑡𝑜𝑡 ≈ 𝛾𝑟𝑎𝑑

√
𝑠, where 𝛾𝑟𝑎𝑑 ≈ 180 kHz is the natural

width and 𝑠 is the saturation parameter. The broadened width becomes comparable
to the Doppler width 𝛿𝐷 ≈ 70 MHz when 𝑠 ≈ (𝛿𝐷/𝛾𝑟𝑎𝑑)2 ≈ 105, or 𝐼 ≈ 10 W/cm2,
consistent with our measurements.

3.3.2.5 Timing

By using an AOM switch to pulse the atomic transition light for sub-ms duration, we
determined the majority of the enhancement occurs in the first few ms after ablation,
corresponding to the duration when the cell is filled with atomic Yb. Data from
timing tests is shown in Fig. 3.13. The pulses have 0.5 ms width, and are switched
on at a variable time relative to ablation.

Notably, the enhancement is largest ∼1 ms after the ablation, after the hot
atoms have thermalized with the buffer gas. This observation, combined with the
effect of geometry on enhancement, provides evidence that the enhancement occurs
throughout the cell, rather than immediately in the region of the ablation plume.
Furthermore, we observe a small revival in enhancement at late times, possibly
indicative of pressure waves propagating through the cell.

3.3.2.6 Gas Flow

The enhancement magnitude was not found to have any significant dependence on
He flow into cell, which was varied from 1 to 10 SCCM, equivalent to varying
the stagnation He density in the cell from 6 × 1014 to 6 × 1015cm−3 [178]. The
enhancement magnitude was unaffected by the ablation energy used in the ablation
pulse, which was varied from 5 to 25 mJ/pulse. In fact, for low ablation energies,
YbOH was observed only with the aid of enhancement, as long as the ablation energy
was above the threshold necessary to produce atomic Yb. This is encouraging for
laser-cooling experiments, where lower energy ablation is useful for producing slow
beams of molecules [182].
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3.3.2.7 Rotational Distribution

We also investigated the effect of the enhancement light on the population of YbOH
in different internal states. Since the energy scales of the chemical reactions involved
are on the order of ∼10,000 cm−1, much larger than those of molecular vibration
(∼100 − 1000 cm−1) or rotation (∼0.1 − 1 cm−1), we expect that the molecules
created by chemical reactions will populate many rotational and vibrational states
after decaying to the ground electronic state. These distributions have been studied
in excited state reactions producing molecules containing Ca and Sr, and they
support the expectation that the released energy is distributed among the internal
modes [245, 247].

Because rotational state-changing cross sections between molecules and helium
are comparable to elastic collision cross sections [178], we expect this broad rota-
tional distribution to rapidly thermalize in the buffer gas cell. By measuring the
enhancement on 𝑄𝑄11(𝑁) transitions that address different rotational levels in the
ground vibronic state, we indeed observe such rotational thermalization, as shown
in Figure 3.14(a). Each rotational transition demonstrates approximately the same
enhancement, indicating that the rotational distribution is essentially unchanged by
the increased chemical production.

3.3.2.8 Velocity Properties

Since buffer gas collisions are also effective at thermalizing translational degrees
of freedom, we expect the enhanced and un-enhanced molecule beams to have
similar velocity properties. We verified this by monitoring the transverse velocity
distribution of YbOH exiting the cell using an absorption probe in front of the
cell aperture. The width of the resulting line shapes did not exhibit a measurable
difference with and without the enhancement. Similarly, we monitored Doppler
shifted fluorescence of the molecular beam ∼ 60 cm downstream, after a series of
collimating apertures, and found the both the mean and width of the forward velocity
distribution were unaffected by the enhanced molecular yield.

Intriguingly, we have noticed that the enhanced YbOH pulse usually arrives at
the PMT later than the atomic Yb pulse produced from the ablation. We attribute this
to the fact that a majority of the enhancement occurs ∼1 ms after ablation, which
means the enhanced molecules leave the cell later than the Yb atoms produced
immediately upon ablation.
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?

Figure 3.14: Enhancement of rotational and vibrational states in 174YbOH, and
hypefine states of 173YbOH. Error bars represent the standard deviation of measured
enhancement factors. (a), (b): Enhancement of 174YbOH as a function of ground
state rotational level (a) and ground state vibrational level (b). The rotational
population was probed using 𝑄𝑄11(𝑁) lines. (𝑣1𝑣2𝑣3) denote the vibrational quanta
in the Yb-O stretch, O bend, and O-H stretch, respectively. The (000) data point
is an average of the 𝑁 = 0 through 𝑁 = 4 rotational enhancements. The excited
vibrational population was probed with diagonal transitions to the 𝐴̃ state with
Δ𝑣1,2 = 0. We note the (020) transition assignment is not definitive, hence the
question mark. (c): Enhancement of the molecular hyperfine levels in the odd
173YbOH isotopologue, resulting from driving 𝐹 = 5/2→ 𝐹′ hyperfine transitions
in atomic 173Yb. The molecular quantum number 𝐺 results from coupling of 𝑆 to
𝐼𝑌𝑏, 𝐺 = 𝑆 + 𝐼𝑌𝑏.

3.3.2.9 Vibrational Distribution

Conversely, vibration-quenching cross sections are typically smaller than those for
other degrees of freedom, resulting in observations of non-thermal vibrational dis-
tributions in CBGB sources [178, 192, 266]. The efficiency of vibrational thermal-
ization can vary for different molecular species, as well as for different modes of the
same molecule [192]. In our source, we observe non-thermal vibrational distribu-
tions, probed by absorption of diagonal transitions (Δ𝑣 = 0) from excited vibrational
states in 𝑋̃ to the same vibrational state in 𝐴̃. We used the 𝑋̃ (100) → 𝐴̃(100) line
at 17378.58 cm−1 to probe the Yb-O stretch mode. Without enhancement, the
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population we observe in the 𝑋̃ (100) state ∼ 1 ms after ablation corresponds to a
temperature of 𝑇𝑣1 ≈ 280 K, in agreement with observations of athermal vibration
in a recent study of SrOH in a closed cell [192].

Additionally, we used a line at 17345.09 cm−1 to attempt to probe the population
in the excited bending mode. In Ref. [227], we tentatively assigned this line as
𝑋̃ (010) → 𝐴̃(010), which we now know is an incorrect assignment (see Ch. 4,
Sec. 4.3.1). This line is currently unknown, though we can possibly re-assign it to
a transition originating from 𝑋̃ (020), see Ch. 4, Sec. 4.4 for details.

The vibrationally excited molecule population in the cell was also significantly
enhanced by laser excitation of Yb. In Figure 3.14(b) we compare the enhancement
for the (000), (100), and (020)? vibrational levels of the 𝑋̃ ground electronic
state. We find the enhancement factor to be consistent across these vibrational
states, indicating buffer gas collisions do not efficiently quench the vibrational
states populated by the excited state chemistry. Enhanced yield in vibrational
states can be desirable, as excited vibrational levels may have little population in a
typical beam source, but are required for laser cooling, spectroscopy, and precision
measurements [17]. Furthermore, these vibrational populations can be easily “re-
pumped” back into the ground state, e.g., using the same lasers that would already
be available for laser cooling, resulting in further increases to beam brightness.

Indeed, we utilize the enhanced vibrational population to characterize the bend-
ing mode in Ch. 4. The enhanced vibrational population was also used for FM
absorption spectroscopy of repumping transitions performed in our lab [220].

3.3.2.10 Studies with Different Isotopologues

Finally, we characterize the enhancement in the 173YbOH isotopologue, which has
high sensitivity to the symmetry-violating nuclear Magnetic Quadrupole Moment
(NMQM)[17, 267], by investigating the enhancement of different 173YbOH hy-
perfine states when driving hyperfine transitions in atomic 173Yb (𝐼 = 5/2). The
results are shown in Figure 3.14(c). We separately drive each of the three 1S0 → 3P1

hyperfine transitions in 173Yb (𝐹 = 5/2→ 𝐹′ = 3/2, 5/2, 7/2) and monitor the en-
hancement in either the𝐺 = 2 or𝐺 = 3 hyperfine state of 173YbOH. Here, analogous
to the case of 173YbF [268], the coupled angular momentum𝐺 = 𝑆+ 𝐼Yb results from
the strong electric quadrupole interaction between the Yb-centered electron, with
spin 𝑆 = 1/2, and the non-spherical Yb nucleus, with spin 𝐼Yb = 5/2. The molecule
population was probed via absorption spectroscopy on the 𝑂𝑃12(2) and 𝑂𝑃13(2)
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lines of the 𝑋̃ → 𝐴̃ transition, where we label the odd isotopologue transitions
using the convention from Ref. [268].

The enhancement in the 𝐺 = 2 and 𝐺 = 3 states is equivalent for each
driven 173Yb hyperfine transition, which is expected in a thermalized ensem-
ble. While thermalization should also result in enhancement independent of
the excited hyperfine 𝐹′ state driven in 173Yb, we find smaller enhancement for
𝐹′ = 3/2 compared to 𝐹′ = 5/2 and 𝐹′ = 7/2. We attribute this to overlap of the
173Yb(𝐹 = 5/2 → 𝐹′ = 3/2) transition with the 171Yb(𝐹 = 1/2 → 𝐹′ = 3/2)
transition, which differ by ∼ 3 MHz [269], much less than the Doppler broadening
in the cell. This overlap can explain lower enhancement rates, as the production of
171YbOH will deplete the available population of other reactants.

We used the isotope selectivity of the enhancement to perform spectroscopy on
the odd isotopologues of YbOH, presented in Refs. [124, 157]. While driving the 3P1

line in various isotopes, we noticed that we observe cross-isotope enhancement as
well. That is, when we drive the 3P1 transition in one isotope, we observe a resonant
enhancement of YbOH population in not just the corresponding isotopologue, but
also other isotopologues as well. The enhancement factor of other isotopologues
is less by approximately ∼2-3×. We attribute this cross-isotope enhancement to
excitation transfer via collisions between different Yb isotopes, though this warrants
further study.

3.3.3 Applications
By driving an electronic transition from Yb(1S0) to Yb(3P1), we have demon-

strated significantly improved yield of molecular YbOH from a CBGB source. The
resonant nature of the effect, as well as saturation at high power, confirms that the
excited atomic population is responsible for the observed enhancement. Further-
more, we found that the cryogenic buffer gas environment is well suited to cooling
the products from the resulting exothermic reactions. Buffer gas collisions effec-
tively thermalized the translational and rotational energies of the resulting product
molecules, while still maintaining an athermal vibrational population, which is
useful for many applications.

By performing computational studies, we are able to provide insight into the
reaction channels made possible by excited Yb(3P) atoms. From our DFT simula-
tions, we conclude that when Yb is in its ground state, only collisions with H2O2

produce ground state YbOH molecules. When Yb is excited to its triplet metastable
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state, collisions with both H2O and H2O2 react to form ground state YbOH.

Our approach suggests a number of new directions for both improvements
to molecular yield in future experiments and continued studies of cold chemical
reactions. From our studies of geometry and timing, the enhancement can occur
throughout the cell and over the entire duration of the molecular pulse, suggesting
an optimal arrangement where the cell is evenly illuminated with resonant light.
This could for example be achieved by shining the light onto a high scatter surface,
or introducing the light into the cell using a fiber with large NA.

Although we used only a solid precursor in the studies presented here, another
approach is to use reactant gases flowed into the buffer gas cell via a capillary [108,
180, 182, 259]. These molecular precursors react with ablated metal, providing
a way to tune the reactant species. While the enhancement we report here is a
compound effect, possibly involving several different reactants formed in ablation,
our calculations suggest the possibility of finding the optimal reactant and optimal
excited states for both the atom and molecule. Additionally, compared to using
mixed targets, metal ablation can provide more consistent signals with slower de-
cay [180]. Finally, enhancing reaction rates would allow for reduction of ablation
energy without also compromising molecular flux.

While we have restricted our measurements to YbOH, it is likely that this
method can be used to enhance CBGB production of many interesting species,
both diatomic and polyatomic. The chemical similarity of Yb with alkaline earth
atoms, and the success of excited state chemical reactions producing a variety of
Ca-, Sr-, and Ba- molecules with numerous ligands [240, 244, 245], suggests that
CBGBs of alkaline-earth atoms with monovalent and ionic bonds (conveniently,
those which can be generically laser cooled [113]) could benefit from this approach.
Note, however, that the power requirements become higher for lighter species, since
the radiative width of the metastable states arises from spin-orbit coupling, which
is larger in heavier species [270]. Nonetheless, resonant excitation of the metal
precursor could be especially helpful for experiments with rare isotopes where
efficiency is critical, such as radioactive 225Ra, which is a component of molecules
with extremely high sensitivity to physics BSM [271, 272], or 26Al, which is of
astrophysical relevance [273]. While we have mostly focused on alkaline-earth
or similar metals, CBGBs of other molecules of experimental importance, such
as ThO [11], may also benefit from this approach by exciting the metal [274] or
oxygen [241] produced in the ablation to a reactive, metastable state.
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In addition to increasing CBGB yield, chemical enhancement can also serve as
a resource for spectroscopy of dynamics inside the buffer gas cell. The dependence
of the molecular yield on the application of enhancement light at a specific time
and place can help study the distribution of the reactive dynamics in the cell.
When compounded with probes monitoring the flux exiting the cell, or monitoring
fluorescence downstream, this allows for study of beam properties, conditioned
on where or when the molecules were produced. The ability to perform such
spectroscopy could aid in understanding and optimizing buffer gas cell geometries.

Our enhancement method can also be used to disentangle complex spectroscopic
data by comparing enhanced and normal spectral features, taking into account the
enhancement dependence on the excited atomic state, as well as the molecular vi-
brational, rotational, and hyperfine state. Indeed, we have used this very technique
to perform odd isotopologue YbOH spectroscopy in our lab [124, 157]. As another
example, the spectra of hypermetallic species [275] could be uniquely distinguished
from other molecules by their dependence on the chemical enhancement of the
individual metal centers. Additionally, because the molecules resulting from en-
hancement can possibly populate vibrational states non-thermally, yet still yield
translationally cold beams, enhancement is be useful for studying transitions out
of excited vibrational modes, as we do in Chapter 4. The increased vibrational
population is favorable for studies of vibration-quenching collisions in cryogenic
environments [192].

Finally, for precision measurements relying on CBGBs, increased molecular
flux directly translates to increased sensitivity to new, symmetry-violating physics
beyond the Standard Model. Specifically, the enhancement we demonstrate for both
the 174YbOH and 173YbOH isotopologues are directly applicable to experiments
sensitive to new physics in both the leptonic and hadronic sectors [17, 267, 276–
278].
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YbOH Spectroscopy

In my experience, there’s no such
thing as luck.

–Obi-Wan Kenobi

This chapter covers work done on the molecular spectroscopy of YbOH, in the
service of precision measurements. In order to perform precision measurements on
a molecule, we need to understand the molecule’s energy levels and their behavior
in electric and magnetic fields. This allows us to implement and calibrate our
measurement, essentially testing for new physics by comparing to the physics we can
model, e.g. electromagnetism. Though first principles theoretical treatments have
increasingly impressive accuracy, they still fall short of the 10−8 precision needed
to transitions at optical linewidths, let alone for precision measurements, which
have ≲mHz sensitivity. Therefore, we turn to experimental molecular spectroscopy
techniques to understand and model the behavior of the molecule, both in free field
as a prerequisite, and in electromagnetic fields.

Additionally, high resolution spectroscopy is also a prerequisite to laser cooling
and slowing molecules, which can aid future measurements. In order to establish a
nearly closed optical cycle, we must understand the branching of spontaneous decays
from the excited cycling state(s) to the various metastable and ground states present.
This can involve identifying decays at anywhere from the 10−1 to 10−5 level, with
higher precision required for applications requiring more photon scatters, such as
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optical slowing or magneto-optical trapping. To repump the decays, we must first
spectroscopically identify, at 10−8 or better frequency precision, all the relevant
rotational and hyperfine transitions involved. The states are then repumped with
either laser radiation, as is the case for unwanted vibrational decays, or microwave
radiation, as is the case for unwanted parity decays (i.e., two photon decays, see
YO [279] for details).

In this chapter, we present spectroscopy efforts to enable precision measure-
ments with YbOH molecules. In particular, we focus on the “science state”—
the doubly-degenerate bending mode, denoted 𝑋̃2Σ+(010). We often abbreviate
𝑋̃2Σ+(010) as 𝑋̃ (010). We present a complete characterization of the science state
at high-resolution, including its behavior in electromagnetic fields. Additionally, we
characterize the bending mode in the electronic excited state, denoted 𝐴̃2Π1/2(010),
which we will often abbreviate to 𝐴̃(010). We identify a case of a spectroscopic
𝐾-resonance in 𝐴̃(010) state, use the excited state to optically pump into 𝑋̃ (010),
and determine 𝑋̃ (010) → 𝐴̃(010) transitions useful for manipulating and probing
the science state. The work in this chapter enables us to perform prototype Ramsey
interferometry measurements in YbOH in the next chapter, Ch. 5.

The 𝑋̃ (010) work presented in this section was published in Ref. [280]. The
𝐴̃(010) work is not currently published.

4.1 YbOH Overview
In this section we give a brief summary of the spectroscopic characterization

of YbOH performed by others. We present the structure of the ground electronic,
ground vibrational state, denoted 𝑋̃ (000). We also present the Stark and Zeeman
parameters for 𝑋̃ (000). We then present a brief overview of the excited state
structure of YbOH. We then summarize the prospects for photon cycling in YbOH.

4.1.1 Ground States
The 𝑋̃ state was studied at microwave resolution using the PPMODR technique

in Ref. [281], and at optical resolution with laser induced fluorescence [264]. The
optical study also determined Stark and Zeeman tuning parameters. We show the
low-𝑁 structure of 𝑋̃ (000) in Figure 4.1. The ground state of YbOH is best described
by a Hund’s case (b) basis, owing to the absence of spin-orbit coupling (Λ = 0).
The structure is similar to that of isoelectric diatomic fluorides, such as YbF or SrF,
with the exception of the ligand hyperfine structure, which is much smaller in the
hydroxides. Similar to YbF, YbOH exhibits a negative spin-rotation constant in the
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Figure 4.1: Diagram of the rotational structure in the 𝑋̃2Σ+(000) (left) and
𝑋̃2Σ+(010) (right) states of YbOH. The different values of 𝑁 are first split by the
rotational energy, 𝐵 ∼ 7.5 GHz. For 𝑋̃ (000), the value of 𝑁 uniquely determines the
state parity. Then, on a smaller scale, the spin-rotation interaction, parameterized
by 𝛾 ∼ −100 MHz, causes splittings of different 𝐽 levels. In the 𝑋̃ (010) state, we
have an additional fine structure, given by parity-doubling Coriolis interactions on
the 20 MHz scale. For brevity, we have not included asymmetries that occur in
the parity splittings. Finally, hyperfine couplings between 𝐼 and 𝑆 cause ∼4 MHz
splittings for different values of 𝐹. We note that 𝑋̃ (000) goes through a hyperfine
“resonance”, such that the ordering of hyperfine states reverses between 𝑁 = 1 and
𝑁 = 2. Such a reversal does not occur in 𝑋̃ (010), owing to the different internuclear
orientations of the spins in the symmetric top like bending mode compared to the
linear rotor-like absolute ground state.
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ground state, owing to perturbations from low-lying levels, discussed in Sec. 4.4.

The vibrational structure of the 𝑋̃ electronic manifold has been characterized in
dispersed laser induced fluorescence (DLIF) measurements [144] at ∼5 cm−1 accu-
racy. The location of the optical cycling states (i.e., 𝑁′′ = 1) has been determined
at high-resolution (∼10 MHz) in the following ground states [106, 139, 220, 280]:
𝑋̃ (000), 𝑋̃ (100), 𝑋̃ (200), 𝑋̃ (0200), 𝑋̃ (010),and 𝑋̃ (300).

We are most interested in the bending mode, the 𝑋̃2Σ+(010) state, abbreviated
as 𝑋̃ (010). A schematic level structure of this state is given in Fig. 4.1. We note
the major difference between 𝑋̃ (000) and 𝑋̃ (010) is the parity doubling structure
in the bending mode. In the bending mode, we now have two opposite parities for
identical values of 𝑁 and 𝐽. This additional degree of freedom associated with the
molecular orientation will prove very useful in Ch. 5, Sec. 5.4, when we use applied
fields to engineer useful quantum states for EDM measurements.

4.1.2 Excited States
The 2Π electronic excited state is split by spin-orbit into anΩ = 1/2 andΩ = 3/2

manifold. Only theΩ = 1/2 component has been definitively assigned, having being
identified at 17323.5 cm−1 (577.2 nm) above the ground state. Characterization of
the 𝐴̃2Π1/2(000) state, including Stark and Zeeman tuning, was performed in an
optical study of a supersonic molecular beam [264]. The Zeeman constants of the
excited state were further refined in a subsequent work [282]. In Ref. [217], the
lifetime of the 𝐴̃ state was found to be 𝜏 = 20(2) ns. The 𝑋̃ (000) → 𝐴̃2Π1/2(000)
transition is often referred to as the “origin” band.

In addition to the 𝐴̃2Π1/2(000) excited state, survey DLIF spectroscopy of
YbOH identified numerous other transitions [217]. Many of these transitions were
either tentatively assigned or not assigned at all, owing to the complicated and
congested spectrum. Later work showed the YbOH bands near 17640 cm−1 and
17680 cm−1 may have be overlapped with features from YbOCH3. In this chapter
we have investigated and determined the nature of the [17.33] band1, assigning it
to the 𝑋̃2Σ+(010) → 𝐴̃2Π1/2(010) transition. We also conducted high-resolution
spectroscopy of the [17.68] and [17.64]2 bands, but we were not able to perform a
conclusive assignment. Our investigations cast doubt on the ground state of these

1The bands are labeled with a notation corresponding to their energy in cm−1/1000, i.e., the
origin band at 17323 cm−1 would be called the [17.32] band.

2This band was assigned as two separate features ([17.637] and [17.643]) in Ref. [217], but it is
possible one band was YbOCH3 contaminant.
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bands being 𝑋̃ (000), and are detailed further in Ref. [161]. Some of the many
unassigned YbOH bands are thought to arise from excited states with holes in the
inner 4 𝑓 shell. Further discussion of unassigned bands and the general state of
YbOH spectroscopy, including 4 𝑓 states, is provided at the end of this chapter.

4.1.3 Transition Notation
We denote rotational lines with notation similar to Ref. [264]. Ground state

quantum numbers are denoted with a double prime, e.g. 𝑁′′, and excited states
with a single prime, e.g. 𝐽′. We define Δ𝐽 = 𝐽′ − 𝐽′′ and similarly for Δ𝑁 . The
most general notation is to label transitions according to their value of Δ𝐽, such
that Δ𝐽 = −1, 0, 1 maps on to Δ𝐽 = 𝑃,𝑄, 𝑅. This can be extended to |Δ𝐽 | > 1 by
continuing along the alphabet (i.e., Δ𝐽 = 2/−2 → 𝑆/𝑂). The Δ𝐽 label, combined
with information about either 𝐽′′ or 𝐽′, provides us information about the excited
state as well.

Furthermore, molecules that have non-zero electron spin, such as YbOH, will
have multiple 𝐽 states for a given rotational manifold. These 𝐽 levels group them-
selves differently depending on if we are in Hund’s case (a) or Hund’s case (b).
Restricting our attention to doublet molecules (𝑆=1/2), we can introduce the pattern
forming label 𝐹𝑖 = 1, 2, applicable in both case (a) and case (b). The notation 𝐹𝑖 is
used for historical reasons, and is not to be confused with the grand total angular
momentum 𝐹. In Hund’s case (b), the value 𝐹𝑖 labels the spin rotation component
of a state—𝐹𝑖 = 1 corresponds to the state with 𝐽 = 𝑁 + 𝑆, while 𝐹𝑖 = 2 corresponds
to the state with 𝐽 = 𝑁 − 𝑆. Meanwhile, in Hund’s case (a), the value of 𝐹𝑖 denotes
the spin-orbit component of a state, with 𝐹𝑖 = 1 corresponding to |Ω| = |Λ| − |𝛴 |,
e.g. Ω = 1/2 for the YbOH 𝐴̃ state, and 𝐹𝑖 = 2 corresponding to |Ω| = |Λ| + |𝛴 |.
The values of 𝐹𝑖 can be generalized to label higher spin states.

In molecules such as YbOH, we often deal with transitions from a Hund’s case
(b) ground state to a Hund’s case (a) excited state. These transitions are labeled with
the following notation:

Δ𝑁Δ𝐽𝐹′
𝑖
,𝐹′′

𝑖
(𝑁′′) (4.1)

where we have introduced the relevant quantities previously. Even though 𝑁′ is not
a good number, we obtain Δ𝑁 by associating 𝑁′ = 0 with 𝐽′ = 1/2 (which only
exists in 𝐹𝑖 = 1), 𝑁′ = 1 with 𝐽′ = 3/2, etc. Example lines and their quantum
numbers can be found in Ref. [264].

In the above notation, the parity of the lines is determined by the rotational
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level of the ground state, 𝑁′′. This works for ground states without parity doubling,
where the state parity is given by (−1)𝑁 for a Σ+ state. However, we also encounter
ground states with parity doubling, such as the bending mode, in which case 𝑁′′

alone is insufficient for determining the parity of the involved states. Therefore, for
labeling transitions out of 𝑋̃ (010), we adopt a modified labeling scheme, given by:

Δ𝑁Δ𝐽P
′′

𝐹′
𝑖
,𝐹′′

𝑖
(𝑁′′). (4.2)

Here, we have added the subscript P′′ = ±, which denotes the ground state parity
explicitly.

4.2 The Science State
After the YbOH vibrational structure was analyzed in medium-resolution dis-

persed laser induced flourescence (DLIF) [144], we were able to use the reported
location of 𝑋̃ (010), 319(5) cm−1, as a starting point for high-resolution optical stud-
ies. We realized that we can directly probe the 𝑋̃ (010) state by driving the reverse
of the laser cooling leakage transition back to the 𝐴̃ state. This transition has the
added benefit of giving mostly off-diagonal decays to the blue of the excitation light,
which is very easy to separate with interference filters. The transition is nominally
“forbidden”, but can still be driven with enough laser power.

In YbOH, the 𝐴̃(000) ⇝ 𝑋̃ (010) decay has a vibrational branching ratio of
𝑟010 = 0.054(4)% [144], and the lifetime of the 𝐴̃2Π1/2 state is 𝜏 = 20(2) ns [217].
The excited state population primarily decays to the vibrational ground state, 𝑋̃ (000),
with 𝑟000 = 89.44% branching. Therefore, in our experiment, the fluorescence signal
will saturate after roughly one photon scatter as the molecules are optically pumped
out of the bending mode and mostly into the ground state. With a ∼1 mm Gaussian
laser beam intersecting a ∼200 m/s molecular beam, we can estimate the saturation
parameter required for a single photon scatter as 𝑠 ≈ 1 × 10−2. Using eq. 3.21 for
the saturation intensity, and estimating the rotational branching at 1/3, we compute
an intensity of 𝐼 ≈ 300 mW/cm2 required to optically pump the forbidden transition
𝑋̃ (010) → 𝐴̃(000). For a 1 mm diameter Gaussian laser beam, this requires ≳ 1 mW
of optical power. While this simple estimate neglects experimental imperfections,
it shows that the power requirements needed to produce fluorescence on such a
forbidden line are feasible.
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4.2.1 Apparatus
The cryogenic buffer gas beam (CBGB) apparatus is shown in Fig. 4.2a, and is

described in Ch. 3, Sec. 3.2. We emphasize that we increase YbOH yield by around
an order of magnitude by exciting atomic Yb to the excited 3𝑃1 state, as described
in Ch. 3, Sec. 3.3. Specifically, this technique significantly increases the quantity of
YbOH in excited vibrational states, including the 𝑋̃ (010) state, whose population is
increased by a factor of ∼10.

A few milliseconds after ablation, the He gas flow extracts the molecules out
of the cell through the aperture. Molecule density is monitored both in the cell
and outside the cell aperture with 577 nm absorption probes resonant with the
𝑅𝑅11(0) line of the 𝑋̃ (000) → 𝐴̃(000) transition at 17325.0365 cm−1 [264]. The
extracted beam is rotationally and translationally cold, but can have significant
excited vibrational population, a result of inefficient vibrational thermalization from
buffer gas collisions [192]. This provides a significant advantage, as we obtain
∼109 molecules exiting the cell in the excited bending mode as a result. The
molecular beam is collimated by a 6.4 mm diameter skimmer 4.8 cm downstream
from the cell aperture, a 9.5 mm diameter hole 11.4 cm downstream from the cell
aperture, and a 5 mm diameter hole 23.7 cm downstream from the cell aperture.
The beam travels at 150 − 200 m/s toward the laser-induced fluorescence (LIF)
measurement region located ∼60 cm downstream from the cell. The region is
pumped by multiple turbomolecular pumps, and typical pressures when flowing He
gas are 1 − 5 × 10−7 Torr.

Downstream in the LIF region, molecules in the 𝑋̃ (010) bending mode are
excited by a 588 nm laser resonant with the nominally forbidden 𝑋̃ (010) → 𝐴̃(000)
transition. The laser beam, with a ∼1 mm diameter and ∼40 mW of power, is sent
perpendicular to the molecular beam (see Fig 4.2a) through windows at Brewster’s
angle. The resulting 577 nm fluorescence from decays to the 𝑋̃ (000) state is
collected with a 19.4 mm diameter fused-quartz light pipe. A 25.4 mm diameter,
19 mm focal length retroreflecting concave mirror opposite the light pipe improves
collection efficiency. We filter out the 588 nm scattered background light using a
combination of interference and colored glass filters on the exit of the light pipe,
obtaining a signal-to-noise ratio of >10. The fluorescence signal is incident on a
photomultiplier tube (PMT) module (Hamamatsu H13543-300), and the resulting
photocurrent is amplified with a 10−8 A/V trans-impedance amplifier with a 1.5 kHz
low pass filter.
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To obtain the field-free spectrum, we scan the 588 nm probe laser and record
its frequency using a wavelength meter (HighFinesse WS7-30) with an absolute
accuracy of 30 MHz and a measurement resolution of 1 MHz. To improve the abso-
lute accuracy, we use the probe light to co-record sub-Doppler I2 spectra, obtained
with amplitude modulated saturated absorption spectroscopy [219]. Calibration of
the laser frequency using the I2 spectra results in one standard deviation error of
2.35 MHz in absolute frequency accuracy.

Figure 4.2b shows typical absorption and LIF signals obtained in a single shot.
The LIF signal size typically varies from shot to shot due to ablation yield fluc-
tuations. To construct the field-free spectrum, we scan the laser at approximately
1-2 MHz per shot, average the LIF signal for 4 shots, integrate over the molecule
pulse duration, and plot the data against the calibrated probe frequency. The ob-
served peaks are fit well by a Lorentzian function, with fitting errors < 3 MHz. For
the Stark and Zeeman spectra, we step the laser in 3 MHz increments, and average
the LIF signal for 10 shots at each step.

For Stark spectroscopy, we use two indium tin oxide (ITO) coated glass plates
separated by a 4.99(3) mm gap to apply fields up to 265 V/cm in the LIF region.
Before entering the field region, the molecular beam is further collimated with a
3 mm hole in a grounded aluminum plate. The molecules traveling through the ITO
plates are then excited by the 588 nm laser (see Fig. 4.2a). The resulting fluorescence
is collected through the glass plates with the setup described earlier. For Zeeman
spectroscopy, we generate magnetic fields of 0 − 70 Gauss using two pairs of wire
coils outside the vacuum chamber (see Fig. 4.2a). The two coil pairs have a diameter
of 21.4 cm with 500 windings each, and are each symmetrically spaced from the
LIF region with distances of 7.5(1) cm and 11.3(1) cm to the molecules.

4.2.2 Modeling and Theory
We model the ground 𝑋̃ (010) state using a Hund’s case (b) effective Hamiltonian

describing a 2Π vibronic state. This approach has provided an accurate description
of the vibrational bending modes in other metal hydroxide molecules, such as
CaOH and SrOH in optical [147] and millimeter wave [283] studies. The lack of
first-order spin-orbit interaction means the electron spin 𝑆 is largely independent of
the internuclear axis, and therefore both Σ and 𝑃 are undefined. Hund’s case (b)
is the natural basis, with 𝑁 and its projection ℓ as good quantum numbers. The
spin-rotation interaction then couples 𝑁 with 𝑆 to form well-defined 𝐽. Higher-order
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Figure 4.2: Experimental schematic of the 𝑋̃ (010) → 𝐴̃(000) spectroscopy. (a)
YbOH molecules are produced in the 4 K cryogenic buffer gas cell (brown box)
by laser ablation (dark green triangle) of a solid pressed target. The molecules are
thermalized by collisions with He buffer gas continuously flowed into the cell. The
production of YbOH is enhanced by exciting Yb atoms using a laser (light green
line) resonant with the 1𝑆0 → 3𝑃1 atomic Yb transition. Some of the molecules are
produced in the 𝑋̃ (010) bending mode. The molecules are entrained in the He gas
flow and extracted out of the cell. We detect the molecule number density in the 𝑋̃
state via absorption spectroscopy (yellow lines) both in the cell (i) and in front of
the cell (ii). The molecular beam is collimated by a skimmer and collimators before
entering the probe region with electric and magnetic fields. We apply magnetic fields
using coils outside the vacuum chamber, and apply electric fields using ITO coated
glass electrodes inside the vacuum chamber. In the center of the fields, molecules
in the 𝑋̃ (010) state are excited by a laser (orange line) and their fluorescence is
collected through a light pipe to a PMT (iii). (b) Sample signals from the CBGB.
(i) In-cell absorption on the 𝑅𝑅11(0) line of YbOH 𝑋̃ (000) → 𝐴̃(000). The peak
optical depth corresponds to a molecule density of ∼5×109 cm−3 in the 𝑋̃ (000),
𝑁 = 0 state. (ii) Front of cell absorption on the same 𝑅𝑅11(0) line. The peak optical
depth corresponds to a molecule density of ∼2×109 cm−3. (iii) Fluorescence after
excitation of the bending mode on a strong 𝑋̃ (010) → 𝐴̃(000) line. The integrated
signal corresponds to ∼8300 photons detected on the PMT.
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perturbations give rise to the ℓ-doubling interaction, and the 𝑋̃ eigenstates of good
parity are written as:

|ℓ; 𝑁, 𝑆, 𝐽, 𝑀,P = ±⟩ = 1
√

2
( |ℓ; 𝑁, 𝑆, 𝐽, 𝑀⟩ ± (−1)𝑝𝑏 | − ℓ; 𝑁, 𝑆, 𝐽, 𝑀⟩). (4.3)

The phase factor in Hund’s case (b) is defined as 𝑝𝑏 = (−1)𝑁−ℓ. The additional
factor of ℓ = 1 means the action of the parity operator on a singly excited bending
mode is similar to that of a Σ− electronic state. We discuss this phase convention
in detail in Ch. 2, Sec. A.2. Here, we note this convention has been used in the
literature [129, 151, 167–169], though the choice is not universal. The parity phase
and the sign of the ℓ-doubling Hamiltonian (which we take to match the Λ-doubling
Hamiltonian) together determine if the lowest energy eigenstate of the effective
Hamiltonian has positive or negative parity.

We use an effective Hamiltonian for the 𝑋̃ (010) state given by

𝐻𝑋̃ (010) = 𝐵( ®𝑁2 − ℓ2) + 𝛾( ®𝑁 · ®𝑆 − 𝑁𝑧𝑆𝑧) + 𝛾𝐺𝑁𝑧𝑆𝑧

+ 𝑝𝐺
2

(
𝑁+𝑆+𝑒

−𝑖2𝜙 + 𝑁−𝑆−𝑒𝑖2𝜙
)
− 𝑞𝐺

2

(
𝑁2
+𝑒
−𝑖2𝜙 + 𝑁2

−𝑒
𝑖2𝜙

)
.

(4.4)

This form was first derived in Ref. [162] and is presented in detail in Refs. [159,
168, 169]. Here, all subscripts on angular momenta (𝑧,±) denote molecule-frame
quantities. The azimuthal angle of the bending nuclear framework is given by
𝜙. The first term gives the rotational energy of a symmetric top. The next two
terms describe the spin-rotation interaction coupling 𝑁 and 𝑆 to form 𝐽. The
last two terms describe ℓ-type parity doubling caused by terms off-diagonal in the
vibrational angular momentum𝐺, and cause splittings of opposite parity states. For
convenience, the spherical tensor [39] form of the Hamiltonian is provided below.
Note the 𝑝 and 𝑞 subscripts denote lab frame and molecule frame components,
respectively.

𝐻𝑋̃ = 𝑇0 + 𝐵(𝑁2 − ℓ2) + 𝛾
(
𝑁 · 𝑆 − 𝑇1

𝑞=0(𝑁)𝑇
1
𝑞=0(𝑆)

)
+ 𝛾𝐺𝑇1

𝑞=0(𝑁)𝑇
1
𝑞=0(𝑆) +

∑︁
𝑞=±1

𝑒−2𝑖𝑞𝜙
(
𝑝𝐺𝑇

2
2𝑞 (𝑁, 𝑆) − 𝑞𝐺𝑇

2
2𝑞 (𝑁, 𝑁)

)
.

(4.5)

For the spin-rotation interaction we have modified the usual expression, 𝛾𝑁 · 𝑆, by
subtracting 𝛾𝑁𝑧𝑆𝑧 to account for the bending motion. This modification is crucial
for accurate description of low-𝑁 spectra. For linear molecules with 𝑁𝑧 = 0, the
spin-rotation term 𝑁 · 𝑆 implicitly only contains contributions from 𝑁𝑥𝑆𝑥 and 𝑁𝑦𝑆𝑦.
However for a bending molecule, since 𝑁𝑧 ≠ 0, we explicitly subtract away 𝑁𝑧𝑆𝑧.
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The effect of this modification is only noticeable at low 𝑁 , and further information
is provided in Appendix A.6 of Ref. [139].

Other perturbations can reintroduce the 𝑁𝑧𝑆𝑧 term, referred to as axial spin-
rotation, into the Hamiltonian. The term is labeled in the literature with the coeffi-
cient 𝛾′ [162] or 𝛾𝐺 [159, 169], in this work we use the latter label. The first order
contribution to 𝛾𝐺 arises from magnetic dipole interactions [163] and is negligible
for the Yb-centered electron in YbOH. At higher order, a combination of vibronic
coupling and spin-orbit interactions can contribute to 𝛾𝐺 by mixing states with Π

electronic character, as observed in NCO [284], CCH [285], and FeCO [286].

In Eq. 4.4, the 𝑞𝐺 parity-doubling term is standard for a bending molecule
in a 2Σ electronic state. This term arises from Coriolis effects at second order,
similar to the 𝑞 term in Λ-doubling. The 𝑝𝐺 term, also in analogy with Λ-doubling,
is equivalent to a parity-dependent spin-rotation interaction. Owing to the weak
coupling of the spin to the internuclear axis in Σ electronic states, this term is small
and has only been observed in submillimeter spectroscopy of metal hydroxides [283,
287], ZnCN [288], and CrCN [289]. As with 𝛾𝐺 , this term receives higher-order
contributions from vibronic mixing with electronic Π states.

We are using a sign convention for the ℓ-type doubling Hamiltonian outlined
by Brown [159, 167], where the ℓ-type doubling Hamiltonian mirrors that used
for Λ-doubling. However matrix elements of ℓ involve different phases than Λ.
As a result of the (−1)ℓ factor in our parity phase, we have the matrix elements
⟨ℓ = ±1|𝑒±2𝑖𝜙 |ℓ′ = ∓1⟩ = 1, differing from the azimuthal matrix elements for Λ-
doubling. Matrix elements and complete details of the effective Hamiltonian and
conventions used are provided in Appendix A.

We construct the predicted spectrum by first separately diagonalizing the ef-
fective Hamiltonians for the ground and excited states. The Hamiltonian basis is
truncated at 𝑁′′ = 6 for the 𝑋̃ (010) state and 𝐽′ = 15/2 for the 𝐴̃ state. Following
Ref. [264], we include the 𝑃 = 3/2 manifold when diagonalizing 𝐴̃. After obtaining
eigenvectors and eigenvalues, we convert all eigenvectors to Hund’s case (a) and
compute matrix elements of the transition dipole moment (TDM) operator. Details
of the TDM operator are given in section 4.2.3.3 and in Appendix A. For transitions
with non-zero TDM, we compute the line position by taking the difference of excited
and ground eigenvalues.
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*

** *

Figure 4.3: Field-free spectrum over a ∼9 cm−1 range. Orange upper part is
experimental observation and blue lower part is theory prediction. Prediction is
using effective model detailed in section 4.2.3.3 with coefficients (𝑐𝜇 = 0.28, 𝑐𝜅 =
−0.49, 𝑐𝐵 = 0.83) and a temperature of𝑇 = 2 K. Lines marked with * are unassigned
and could arise from other isotopologues or bands.

4.2.3 Results
4.2.3.1 Field-Free Spectrum

The observed spectrum (Fig 4.3) exhibits large splittings that match the excited
state Λ-doubling and rotational separation. We perform combination-difference
tests [39] with these splittings to obtain initial quantum number assignments of
transitions. With these assignments, we compute initial guesses for the 𝐵, 𝛾, and
𝑞𝐺 Hamiltonian parameters for the 𝑋̃ (010) state. Using these values and fixing the
excited state parameters, we construct a predicted spectrum and perform further line
assignments. With this analysis, we determined the need for additional parameters
𝑝𝐺 and 𝛾𝐺 to accurately describe the full spectrum.

Without the 𝑝𝐺 term, various 𝑅 and 𝑃 branch features deviate from the predic-
tion by a magnitude >20 MHz, much larger than our frequency error. Specifically,
in the region scanned in Fig. 4.3, without 𝑝𝐺 , lines with significant residuals are:
𝑅𝑅+11(2),

𝑅𝑅−11(3),
𝑂𝑃+12(4),

𝑃𝑄+12(5), and 𝑃𝑃+11(5). The magnitude and parity be-
havior of these residuals cannot be explained by centrifugal distortion, but can be
explained by a parity-dependent spin-rotation interaction, namely 𝑝𝐺 . By introduc-
ing 𝑝𝐺 into the prediction, all of these residuals are reduced to values commensurate
with the experimental error. Furthermore, using the fit value of 𝑝𝐺 , we predicted
and found the 𝑅𝑅+11(4) and 𝑅𝑅−11(5) lines (not visible in Fig. 4.3). These additional
lines are added to the final fit and confirm the need for a 𝑝𝐺 term to accurately model
the full spectrum.
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Table 4.1: Spectroscopic parameters for the low-lying vibra-
tional states of the 𝑋̃2Σ+ manifold. The 𝑋̃ (010) parameters are
obtained from the current work.

Parameter 𝑋̃ (000) [290] 𝑋̃ (010) 𝑋̃ (100) [264]
𝑇0/cm−1 0 319.90901(6) 529.3269(3)
𝐵/MHz 7348.4005(3) 7328.64(15) 7305.37(24)
𝛾/MHz −81.15(6) −88.7(9) −110.6(21)
𝛾𝐺 /MHz − 16(2) −
𝑞𝐺 /MHz − −12.0(2) −
𝑝𝐺 /MHz − −11(1) −

Unlike 𝑝𝐺 , the 𝛾𝐺 term does not scale with 𝑁′′. However, we find this term
necessary to describe the 𝑁′′ = 1 structure, which was crucial for accurate Stark and
Zeeman analysis in section 4.2.3.2. In particular, we recorded multiple field-free
calibration scans of the 𝑄𝑄+11(1) and 𝑄𝑅+12(1) lines. Since these lines share the same
excited state, their separation is insensitive to error in the 𝐴̃ state parameters. We
use the separation of these lines to determine the 𝑁′′ = 1+ spin-rotation splitting to
be 61.8(20) MHz, and we add this value as an additional data point for our analysis.
By including the 𝛾𝐺 term in the spectral prediction, were we obtain an accurate
prediction of the 𝑁′′ = 1+ splitting commensurate with our measurement error.

In total, we assigned 38 of the observed lines to 39 transitions originating from
the 𝑁′′ = 1 through 𝑁′′ = 5 levels of the 𝑋̃ (010) state. Note the 𝑄𝑅−12(1) and
𝑃𝑄−12(5) lines are overlapped. To obtain optimal effective Hamiltonian parameters,
we vary the 𝑋̃ (010) state parameters and hold fixed the 𝐴̃ state parameters to the
values given in Ref. [264]. We construct predicted spectra and perform nonlinear
least-squares minimization of the residuals between the observed and predicted
positions of all 39 assigned lines and the 𝑁′′ = 1+ spin-rotation splitting. A full list
of lines and assignments is provided in Appendix D.

The best fit parameters are presented in Table 4.1. The fit residuals have a
standard deviation of 6.1 MHz, consistent to order unity with the error reported in
the previous optical study of the 𝐴̃ state [264]. The rotational and spin rotational
𝑋̃ (010) parameters are in good agreement with those for 𝑋̃ (000) and 𝑋̃ (100), also
collected in Table 4.1. The location of the origin 𝑇0 is in excellent agreement
with previous dispersed fluorescence studies [144, 217]. The rotational constant
𝐵 decreases in 𝑋̃ (010) as a result of vibrational corrections. The increasingly
negative spin-rotation parameter 𝛾 between the three vibrational states is a result of
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second order spin-orbit perturbations from low-lying electronic states with 4f 136s2

electronic configuration for the Yb centered electron, known as “4f hole” states [290,
291].

Vibronic mixing with electronic 2Π states can also explain the observed 𝛾𝐺 and
𝑝𝐺 parameters, which are not typical for the bending mode of an isolated electronic
2Σ state. Vibronic mixing exchanges ℓ and Λ while preserving 𝐾 . As a result, the
𝑋̃ (010) state can acquire some Λ > 0 electronic character, inheriting spin-orbit and
Λ-doubling interactions from neighboring 2Π states. Specifically, in the effective
Hamiltonian, these interactions can arise at third-order via a combination of linear
vibronic coupling and spin-orbit effects. This term was first described by Brown
in the context of spin-orbit corrections to electronic 2Π states as a result of mixing
with other 2Σ or 2Δ states [156]. Neighboring states that can contribute to 𝛾𝐺 and
𝑝𝐺 include both the 𝐴̃ manifold and the 4f hole states. The exact nature of the
4f hole states and their vibronic mixing in YbOH is currently unknown and merits
further study. However, their proximity to the ground state and their large spin-
orbit interactions could explain the significant magnitude of 𝑝𝐺 and 𝛾𝐺 in YbOH
compared to other metal hydroxides [283].

The ℓ-type doubling parameter 𝑞𝐺 is a similar magnitude to that of other metal-
hydroxide 𝑋̃ (010) states [147, 283], and is in agreement with a recent theoretical
calculation [292]. The parameter 𝑞𝐺 can be interpreted in terms of the Coriolis
coupling constants of a triatomic molecule [147, 154]:

𝑞𝐺 = −(𝑣2 + 1) 𝐵
2

𝜔2

(
1 +

∑︁
𝑛=1,3

𝜁2
2𝑛

4𝜔2
2

𝜔2
𝑛 − 𝜔2

2

)
. (4.6)

Here, 𝑣2 is the number of quanta in the bending vibration 𝜔2, and 𝜁2𝑛 is the
Coriolis coupling constant between the bending mode and the 𝑣𝑛 stretch modes. To
estimate 𝜁21, we can estimate the value of 𝜔3 (O-H stretch) using the CaOH value
of 3778 cm−1 [293], and we set 𝑣2 = 1, 𝜔2 ≈ 𝑇0, and 𝜔1 ≈ 529.3 cm−1 [264].
Furthermore, we can use the relationship 𝜁2

21 + 𝜁
2
23 = 1 [154] to eliminate 𝜁2

23. Using
our values of 𝐵 and 𝑞𝐺 , we then obtain a value of 𝜁21 ≈ 0.137, slightly smaller than
in CaOH (0.1969) [147] and SrOH (0.179) [294]. This is likely due to the break
down of the harmonic approximation 𝜔2 ≈ 𝑇0 and the approximation of 𝐵𝑒 ≈ 𝐵.
Further work is needed for a complete vibrational characterization.

Using the parameters obtained from our analysis, we construct a field-free level
diagram for the 𝑁 = 1 manifold of the 𝑋̃ (010) state, shown in Figure 4.4. As
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−pG − 2qG

≈35 MHz

−3/4 (γ ＋ γG) ＋ pG/4 ＋ 2qG

≈28 MHz

pG/2 − 2qG

≈19 MHz

Figure 4.4: Field-free level structure of the 𝑁 = 1 manifold in the 𝑋̃ (010) state.
States are arranged vertically by energy and horizontally by their 𝑀𝐹 angular mo-
mentum projection. States are labeled in the parity basis. The hyperfine structure
was not resolved in our work, and is instead approximated using parameters from a
study of the 𝑋̃ state [290].

stated previously, 𝑁 = 1 is the lowest rotational manifold in the 𝑋̃ (010) state, as
we always have | ®𝑁 · 𝑛̂| = 1. Due to their small parity splittings, 𝑁 = 1 states
are easily polarized, making them useful for precision measurements [17]. The
effect of the parity-dependent spin-rotation term, 𝑝𝐺 , is apparent in the asymmetric
parity-doubling of the 𝐽 = 1/2 and 𝐽 = 3/2 manifolds. Though we are not sensitive
to hyperfine splittings, for completeness we have included the H hyperfine structure
using the parameters obtained for the 𝑋̃ state in a previous study [290]. The hyperfine
structure is not expected to change significantly in the bending mode.

The recorded spectrum has lines present that could not be assigned with
combination-differences using the 𝐴̃(000) structure, and are not observed in the
prediction using the best-fit parameters. The lines are marked with * in Fig. 4.3.
We conclude that some of these lines are indeed from 174YbOH by comparing their
chemical enhancement [227] when using 1𝑆0 → 3𝑃1 transitions for different Yb
isotopes. These lines could be unthermalized rotational states, or possibly another
overlapping Δℓ = ±1 band, such as the 𝑋̃2Σ+(020,20) → 𝐴̃2Π1/2(010) bands.

The additional 𝛾𝐺 and 𝑝𝐺 terms mean that we can draw an analogy between
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picturing 𝑋̃ (010) as a dynamically bending linear molecule and a bent asymmetric
molecule. We detail this correspondence further in Appendix C, and use it to make
estimates of the bending angle 𝜃 indicating the displacement of the H atom from
the internuclear axis3. Our rough estimates indicate 𝜃 ≈ 20◦ − 30◦. We caution
that these Cartesian estimates do not correspond to large deviations of the normal
coordinate 𝑞2, which is expected to remain harmonic.

4.2.3.2 Stark and Zeeman Spectra

After fitting the molecular structure with the field-free spectrum, we study the Stark
and Zeeman spectra of the molecule in the presence of static (DC) electric and
magnetic fields, using the experimental setup described in 4.2.1. We obtain the
spectra by scanning the 588 nm probe laser across two lines corresponding to the
field-free 𝑁′′ = 1+ → 𝐽′ = 3

2
− transition, 𝑄𝑄+11(1) and 𝑄𝑅+12(1). The applied DC

fields point along 𝑧, while the laser polarization is along 𝑥. Spectra are taken with
the E-field varied from 0 − 264 V/cm and with the applied B-field varied from
0 − 70 G. Calibration spectra are taken with 𝐸𝑍 = 0 V/cm and 𝐵𝑍 < 0.5 G, and
the observed line positions are compared to the I2-corrected field-free positions to
calibrate for frequency offsets.

The lines of interest are relatively well-isolated from other features, and the
small 𝑁′′ = 1 parity doubling allows us to enter the linear stark regime with modest
laboratory fields ≳100 V/cm. Since the parity splittings of the excited 𝐴̃2Π1/2 state
are >13 GHz, and its molecule frame dipole moment is 𝐷Ã = 0.43(10) D [264],
at the fields we consider the excited state Stark shifts are negligible. Furthermore,
given our frequency resolution and the natural linewidth, we are only sensitive to
the isotropic interaction of 𝐵𝑍 with the electron spin magnetic moment. Curl-type
relationships [168] estimate anisotropic spin interactions at 6 × 10−3𝜇𝐵, and the
nuclear magnetic moment is also suppressed at a similar level, with both effects
giving shifts below our resolution.

To obtain energy levels and predicted lines, we fix the field-free parameters
and diagonalize the combined Stark, Zeeman, and field-free Hamiltonian. We
obtain optimal estimates for free Stark and Zeeman parameters by least-squares
minimization of the residuals between observed and predicted line positions.

3We define 𝜃 as the deviation from linearity, i.e., 𝜃 = 0 is the nominally linear YbOH configura-
tion.
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1/2+
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3/2−

3/2−

1/2−

JN = 1

QQ11(1)+ QR12(1)+

Figure 4.5: Zeeman spectroscopy of the 𝑋̃ (010) state. The main plot shows
the transition frequency shift (with subtracted offset) in a magnetic field, the blue
lines are optimized model predictions, and the orange circles are experimental
measurements. Error bars are 1-𝜎 measured peak widths, set by a combination
of radiative broadening and unresolved hyperfine structure, limiting the ability to
resolve closely-spaced lines. Lower subplots are slices of the spectra at various
magnetic field values, with experimental data in orange and predicted line locations
indicated with vertical dashed blue lines. On the left, we show the field-free level
structure of the transitions studied.

Both ground and excited levels are magnetically sensitive. The Zeeman shifts of
the 𝐴̃2Π1/2(000) and 𝑋̃2Σ+(000) states were previously studied at similar magnetic
field strengths in Ref. [264], and recently at high fields (∼1 T) in Ref. [282].
Following these references, we use the following effective Zeeman Hamiltonians for
the ground and excited states:

𝐻𝑍𝑒𝑒
𝑋 = 𝑔𝑆𝜇𝐵𝑆𝑍𝐵𝑍 (4.7a)

𝐻𝑍𝑒𝑒
𝐴 = 𝑔′𝑆𝜇𝐵𝑆𝑍𝐵𝑍 + 𝑔𝐿𝐿𝑍𝐵𝑍 + 𝑔

′
𝑙𝜇𝐵

(
𝑒−2𝑖𝜃𝑆+𝐵+ + 𝑒2𝑖𝜃𝑆−𝐵−

)
. (4.7b)

Here, 𝑍 refers to the lab-frame projection, ± refer to the molecule frame projections,
and 𝜃 is the electronic azimuthal coordinate. For the excited state, we use the values
from Ref. [282], fixing 𝑔′

𝑆
= 1.860, 𝑔𝐿 = 1.0, and 𝑔′

𝑙
= −0.724. For the ground state,

we allow 𝑔𝑆 to vary in the fits to find an effective value that accurately describes the
Zeeman shifts. While we do not include them here, at higher resolution or at higher
field values, additional terms are expected to contribute in the effective Zeeman
Hamiltonian, including terms associated with the bending angular momentum [168].
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Increasing Line Strength

1/2+

3/2+

3/2−

3/2−

1/2−

JN = 1

QQ11(1)+ QR12(1)+

Figure 4.6: Stark spectroscopy of the 𝑋̃ (010) state. The main plot shows the
transition frequency shift (with subtracted offset) in an electric field, the blue lines are
optimized model predictions, and the orange circles are experimental measurements.
The blue color gradient represents parity forbidden transitions that gain strength at
finite electric field. Error bars are 1-𝜎 peak widths, set by a combination of radiative
broadening and unresolved hyperfine structure, limiting the ability to resolve closely-
spaced lines. Lower subplots are slices of the spectra at various electric field values,
with experimental data in orange and predicted line locations indicated with vertical
dashed blue lines. On the left, we show the field-free level structure of the transitions
studied.

The Zeeman fits prefer a value of 𝑔𝑆 = 2.07(2), deviating from the free electron
g-factor of 2.0023. The experimental Zeeman shifts and the prediction from the
optimized model are shown in Fig. 4.5. Corrections to 𝑔𝑆 can arise from mixing
involving other states with different Zeeman tuning. For example, the Zeeman shifts
of the 𝐴̃ state were fit to 𝑔′

𝑆
= 1.860 in a recent high-field study [282], owing to

perturbing 4f 136s2 states. Since we observe perturbations from these 4f states in the
field-free structure of the 𝑋̃ (010) state, it is natural to also find their effects in the
Zeeman shifts. Furthermore, the 4f states are split into a higher energy spin-orbit
anti-aligned manifold and a lower energy spin-orbit aligned manifold [291]. Due
to energy proximity, while 𝐴̃ predominantly interacts with the 4f hole anti-aligned
manifold, 𝑋̃ (010) will be perturbed more strongly by the aligned manifold. The
difference in electron orientation of the two spin-orbit 4f manifolds can explain the
difference between 𝑋̃ (010) and 𝐴̃ in the sign of the deviation of 𝑔𝑆 from its nominal
value.
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To describe the Stark shifts, for the both ground and excited states we use the
Hamiltonian 𝐻𝐸 = − ®𝐷mol · ®𝐸 . The molecule frame dipole moment 𝐷mol is kept as
a free parameter, and obtained from spectra where 𝐸𝑍 is scanned with 𝐵𝑍 < 0.5 G.
The optimal fit value is 𝐷mol = 2.16(1) D = 1.09 ℎ MHz/(V/cm). This value is in
good agreement with the measured 𝑋̃ (000) dipole moment of 1.9(2) D. In Figure
4.6, we plot the theoretical prediction based on the optimal fit against the observed
line positions.

The Stark shifts confirm the assignment of the 𝑋̃ (010) state and demonstrate the
orientation control afforded by parity doublets. In the bending mode, the projection
of the molecular axis on the lab-frame4 𝑍̂-axis is given by 𝑛̂ · 𝑍̂ =

( ®𝑁 · ®𝑍) ( ®𝑁 ·𝑛̂)
𝑁 (𝑁+1) ∝ 𝑀𝑁ℓ.

For field-free states, ⟨𝑀𝑁ℓ⟩ = 0, and the molecule is unpolarized. In the presence
of an electric field fully mixing parity doublets, the Stark shifts are linear, and the
eigenstates are diagonal in the the decoupled basis |ℓ;𝑀𝑁 , 𝑀𝑆⟩. In this regime,
the levels split into 2𝑁 + 1 dipole moment orientations pointing along 𝑀𝑁 ℓ

𝑁 (𝑁+1) , and
splittings within each orientation manifold are due to the spin-rotation interaction.

4.2.3.3 Perturbations and Quantum Interference

Since the 𝐴̃ state has been previously fully characterized [264], the assignment of
energy levels in 𝑋̃ (010) is fairly straightforward using the effective Hamiltonian
approach. However, because this transition is nominally forbidden, interpreting the
line intensities is a challenge. Electric dipole (E1) transitions involving Δℓ ≠ 0 are
forbidden in the Condon approximation, which separates electronic and vibrational
degrees of freedom [135, 295]. These nominally forbidden vibronic transitions
have been observed spectroscopically in many species of linear triatomic molecules,
including NCO [296], NCS [297], MgNC [298], CaOH [147, 299, 300], SrOH [294,
301, 302], and YbOH [217], though modeling of the intensities is less common.

These transitions borrow intensity from E1-allowed bands through a combina-
tion of vibronic and spin-orbit perturbations [143, 144]. Branching ratios involving
forbidden vibronic transitions in YbOH were measured in a previous study [144]
examining dispersed fluorescence from the 𝐴̃(000) state, with resolution at the 10−5

level. The experimentally observed vibrational branching was in good agreement
with a theoretical study published in the same work [144]. While these transitions

4As always, we use 𝑋̂, 𝑌 , 𝑍̂ to denote lab-frame axes and 𝑥, 𝑦̂, 𝑧 to denote the molecule-frame.
The molecule 𝑧 axis and dipole moment 𝐷mol both point from O to Yb.
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are of interest as leakage channels for photon cycling, they can also be a resource
for spectroscopy, as we show in the current work.

The observed spectrum exhibits anomalous rotational line intensities, with cer-
tain transitions completely missing at our level of sensitivity. For example, de-
spite their expected thermal occupation (𝑁′′ ≤ 3), the 𝑃𝑄+12(1),

𝑃𝑃+11(2),
𝑄𝑄+11(2),

𝑃𝑃−11(3),
𝑄𝑃−11(3), and 𝑄𝑅−12(3) lines are missing (see Appendix C for a full list of

lines). Anomalous line intensities for forbidden transitions have been previously
observed in other molecules with vibronic mixing [147, 294, 298, 300, 301]. By
considering the intensity-borrowing that gives transition strength to these forbid-
den transitions, we develop a model that qualitatively explains the observed line
strengths.

In an E1 transition, the transition strength is proportional to the square of the
transition dipole moment between the ground and excited state, |⟨𝐴̃|𝑇1

𝑝 (𝑑) | 𝑋̃⟩|2. We
are using spherical tensor notation, where 𝑝 denotes the component of the spherical
tensor in the lab-frame and 𝑞 in the molecule-frame. Using a WignerD matrix, we
can write the lab frame dipole moment in terms of its molecule frame projections:
𝑇1
𝑝 (𝑑) =

∑
𝑞D

(1)
𝑝,𝑞 (𝜔)∗𝑇1

𝑞 (𝑑). In the E1 approximation, ΔΣ = 0, and the molecule-
frame projection 𝑞 of the transition dipole moment determines the selection rule for
Λ. The perpendicular 𝑞 = ±1 components drive ΔΛ = ±1 transitions, for example
the allowed 𝐴̃− 𝑋̃ band, while parallel 𝑞 = 0 component drives ΔΛ = 0, for example
the allowed 𝐵̃ − 𝑋̃ band.

In the limit of very large vibronic interaction, Λ and ℓ are fully mixed, and one
might consider the 𝑋̃ (010) → 𝐴̃(000) transition as a vibronic 2Π − 2Π parallel
band, with Δ𝐾 = 0. In reality, the vibronic mixing is perturbative in the ground and
excited states, and Λ and ℓ are well-defined. As a result, the observed line intensities
are completely inconsistent with a solely parallel transition model.

Instead, we model the 𝑋̃ (010) → 𝐴̃(000) transition as a mixture of perpendic-
ular and parallel bands. We consider the effects of vibronic perturbations with the
selection rule Δℓ = ±1, which can result in intensity borrowing. At first order, we
have the dipolar Renner-Teller (RT) Hamiltonian, also referred to as Herzberg-Teller
coupling [129, 151, 296],

𝐻𝑅𝑇 =
𝑉11

2

(
𝐿+𝑞−𝑒

𝑖(𝜃−𝜙) + 𝐿−𝑞+𝑒−𝑖(𝜃−𝜙)
)
. (4.8)

This interaction is a form of linear vibronic coupling [303]. Here,𝑉11 parameterizes
the interaction strength, 𝜃 is the electronic azimuthal coordinate, 𝜙 is the bending
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azimuthal coordinate as before, 𝐿± is a raising/lowering operator with ΔΛ = ±1,
and 𝑞± is a dimensionless raising/lowering operator with Δℓ = ±1. Physically, this
interaction can be interpreted as the electrostatic interaction between the displaced
bending dipole moment and the electron cloud. The interaction preserves the
composite projection number 𝐾 = Λ + ℓ.

At second order, the dipolar RT Hamiltonian can combine with the perpendicular
spin-orbit Hamiltonian,

𝐻𝑆𝑂 =
𝐴⊥
2
(𝐿+𝑆− + 𝐿−𝑆+) (4.9)

where 𝐿± is defined as before, 𝐴⊥ is the off-diagonal spin-orbit coupling, and 𝑆± is
the raising/lowering operator with ΔΣ = ±1. The combination of 𝐻 (1)

𝑅𝑇
× 𝐻⊥

𝑆𝑂
is an

effective interaction with terms 𝑞±𝑆∓. This interaction has Δ𝐾 = −ΔΣ = ±1, but
preserves the total angular momentum projection number 𝑃 = Λ + Σ + ℓ.

Denote the unperturbed excited state as | 𝐴̃2Π1/2(000)⟩0 and the true, perturbed
eigenstate as | 𝐴̃2Π1/2(000)⟩. We can then expand the perturbed eigenstate in terms
of dominant ℓ = 1 vibronic contributions [143, 144]:

| 𝐴̃2Π1/2(000)⟩ ∝
| 𝐴̃2Π1/2(000)⟩0 + 𝑐𝜇 |𝜇2Σ

(+)
1/2(010)⟩0 + 𝑐𝜅 |𝜅2Σ

(−)
1/2 (010)⟩0 + 𝑐𝐵 |𝐵̃2Π(010)⟩0.

(4.10)
The perturbative coefficients 𝑐𝜇, 𝑐𝜅, 𝑐𝐵 represent the relative admixture of the
intensity-borrowing states. The relevant states and perturbations are shown schemat-
ically in Fig. 4.7. The 𝜇2Σ

(+)
1/2 state is the 𝑃 = 1/2 component of the Ω = 1/2,

𝑣2 = 1, 𝐴̃ manifold, and the 𝜅2Σ
(−)
1/2 state is the 𝑃 = 1/2 component in the Ω = 3/2,

𝑣2 = 1, 𝐴̃ manifold. These two states are connected to 𝐴̃2Π1/2(000) by the second-
order perturbation 𝐻𝑅𝑇 × 𝐻𝑆𝑂 . The 𝐵̃2Π vibronic state is the 𝑣2 = 1 component of
the 𝐵̃2Σ+1/2 electronic state, and is connected to 𝐴̃2Π1/2(000) state via the first-order
perturbation 𝐻𝑅𝑇 .

Each of these perturbing states contribute to different molecule-frame compo-
nents of the transition dipole moment (TDM). For example, the transition 𝑋̃2Π →
𝐵̃2Π is generated by the 𝑞 = 0, 𝑧 component of the TDM, with Δ𝐾 = Δ𝑃 = 0.
The other transitions to 𝜇 and 𝜅 have Π → Σ vibronic character, and couple via
the 𝑞 = ±1, 𝑥, 𝑦 TDM components. The perturbing 𝜇 and 𝜅 states have opposite
spin orientation compared to the original 𝐴̃2Π1/2 state. This means the intensity-
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Figure 4.7: Level schematic for relevant states and perturbations in YbOH. Levels
are labeled by their vibronic term symbol. We detect the 𝑋̃ (010) bending state
(which is a vibronic 2Π state) by laser excitation (orange line) up to the 𝐴̃2Π1/2(000)
state and observe the fluorescence from decays to the ground 𝑋̃ (000) state (yellow
wavy line). This excitation is a forbidden E1 transition, however, it acquires intensity
by mixing of the excited 𝐴̃2Π1/2(000) state with other |ℓ | = 1 states. Mixing with
𝐵̃(010) occurs via first-order (blue) Renner-Teller (RT) interactions, and mixing
with the 𝜇, 𝜅(010) states occurs via second-order (purple) cross terms between RT
and spin-orbit (SO) (red) interactions. Not shown for simplicity are similar SO
interactions between 𝐴̃2Π1/2(000) and 𝐵̃(000) and similar RT interactions between
𝜇, 𝜅(010) and 𝐵̃(000), which also contribute to state mixing.

borrowing states have mixed spin projection Σ, and the ΔΣ = 0 selection rule is not
well-defined.

The transition was modeled by first diagonalizing the 𝐴̃2Π1/2(000) and 𝑋̃2Σ(010)
states separately to obtain the level positions of both states. The eigenstates of
𝑋̃ (010) are best described by Hund’s case (b) wavefunctions, while the eigenstates
of 𝐴̃ are described by Hund’s case (a) wavefunctions. To calculate transitions, we
convert between the two cases using the following formula from Brown [160]:

|𝑁, 𝐾, 𝑆, 𝐽, 𝑀⟩ =
∑︁
Σ,𝑃

(−1)𝑁−𝑆+𝑃
√

2𝑁 + 1

(
𝐽 𝑆 𝑁

𝑃 −Σ −𝐾

)
|𝑆, Σ; 𝐽, 𝑃, 𝑀⟩. (4.11)
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Here, 𝑃 = Λ + Σ + ℓ, and 𝐾 = Λ + ℓ. Note this form is equivalent to that given by
Hirota in Ref. [129].

Next, to evaluate the TDM, we perform a change of basis to transform the
𝐴̃2Π1/2(000) effective Hamiltonian eigenvectors into eigenvectors of the admixed
states with |ℓ | = 1. The change of basis from must use appropriate selection
rules for vibronic mixing and preserve parity. The states of interest with |ℓ | = 1
are 𝐴̃𝜇2Σ

(+)
1/2(010), 𝐴̃𝜅2Σ

(−)
1/2 (010), and 𝐵̃2Π(010), where we are using vibronic

term symbols 2𝑆+1𝐾𝑃. Each eigenvector of 𝐴̃(000) is transformed into a linear
combination of eigenvectors from the admixed states, with amplitudes 𝑐𝜇, 𝑐𝜅, 𝑐𝐵.

The mixing between 𝐴̃2Π1/2(000) and 𝐵̃2Π(010) occurs at first order due to
𝐻𝑅𝑇 . Since this interaction preserves 𝐾 and 𝑃, it simply exchanges one quanta
between ℓ and Λ. Since 𝐴̃2Π1/2(000) has 𝑃 = 1/2, we only consider mixing other
𝑃 = 1/2 states. We perform the following change of basis:

⟨𝐵̃(010),Λ = 0, ℓ, Σ, 𝑃 | 𝐴̃(000),Λ′, ℓ′ = 0, Σ′, 𝑃′ = ±1/2⟩
= 𝛿ℓ,Λ′𝛿𝑃,𝑃′𝛿Σ,Σ′ (−1)𝑃−1/2 (4.12)

Note the phase factor (−1)𝑃−1/2 is explicitly included to preserve parity5. This factor
accounts for the extra (−1)ℓ phase factor in the parity of an ℓ ≠ 0 state compared to
an ℓ = 0 state. This basis transformation can be succinctly represented in the space
of a single 𝐽 state and ±𝑃 states as being proportional to the Pauli matrix 𝜎𝑧.

The admixture of the 𝜇 and 𝜅 states occurs via a second-order combination of
𝐻𝑅𝑇 and 𝐻𝑆𝑂 . These interactions preserve 𝑃 but can change 𝐾 . For 𝜇(010) we
obtain the following change of basis:

⟨𝜇(010),Λ, ℓ, Σ, 𝑃 | 𝐴̃(000),Λ′, ℓ′ = 0, Σ′, 𝑃′ = ±1/2⟩
= 𝛿Λ,−Λ′𝛿ℓ,Λ′𝛿Σ,−Σ′ (−1)𝑃−1/2 (4.13)

And for 𝜅(010):

⟨𝜅(010),Λ, ℓ, Σ, 𝑃 | 𝐴̃(000),Λ′, ℓ′ = 0, Σ′, 𝑃′ = ±1/2⟩
= 𝛿Λ,Λ′𝛿ℓ,−Λ′𝛿Σ,−Σ′ (−1)𝑃−1/2.

(4.14)

We note that all of these change of basis formulae can be derived from the
Hamiltonian if we write the Herztberg-Teller interaction as ∝ sin (𝜃 − 𝜙). Instead of
using imaginary numbers, we have instead opted to encode the hermitian conjugate’s
sign flip by hand to preserve the state parity.

5This factor is only valid for 𝑃 = 1/2.
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The total TDM is the sum over the individual TDMs evaluated between 𝑋̃ (010)
and the intensity-borrowing states. The transition dipole moment (TDM) matrix
element is evaluated in Hund’s case (a):

⟨ℓ;Λ; 𝑆, Σ; 𝐽, 𝑃, 𝑀 |𝑇1
𝑝 (𝑑) |ℓ′;Λ′; 𝑆, Σ′; 𝐽′, 𝑃′, 𝑀′⟩

= 𝛿Σ,Σ′𝛿ℓ,ℓ′

× (−1)𝐽−𝑀
(

𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
×

√︁
(2𝐽 + 1) (2𝐽′ + 1) (−1)𝐽−𝑀

×
∑︁
𝑞

(
𝐽 1 𝐽′

−𝑃 𝑞 𝑃′

)
𝛿Λ,Λ′+𝑞

× ⟨Λ| |𝑇1
𝑞 (𝑑) | |Λ′⟩.

(4.15)

The last term is the reduced matrix element encoding the transition dipole integral
between two electronic states. The Δℓ = 0 selection rule is explicit in the above
matrix element. This means we can only drive 𝑋̃ (010) to admixtures in 𝐴̃(000)
with |ℓ | = 1. These admixed states provide the transition intensity and non-zero
transition dipole moment. To obtain the transition intensity, the TDM is squared
after the sum, allowing TDMs from different states to interfere with each other. This
interference is the source of the anomalous line intensities.

After changing basis to states with |ℓ | = 1, we compute the transition dipole
matrix element using equation 4.15. The transition amplitudes for the different
state admixtures are added together, and the resulting interference depends on the
mixing coefficients 𝑐𝜇, 𝑐𝜅, 𝑐𝐵. Finally, to obtain relative intensities, we square the
total transition amplitude.

The mixing coefficients, 𝑐𝜇, 𝑐𝜅, 𝑐𝐵 could not be modeled with a deperturbation
Hamiltonian, since neither the 𝜇, 𝜅, or 𝐵̃ state have been extensively studied or
modeled, and both states are expected to be affected by perturbations from nearby
states with 4f 136s2 Yb character [291]. Instead, the mixing coefficients are kept
as free parameters and their ratios were fit to the experimentally observed, relative
field-free intensities. For the intensity fits, the rotational temperature is fixed at𝑇 = 2
K (the molecule beam is cooled by expansion out of the cell aperture), and since only
relative intensities were fit, the 𝑐𝐵 parameter is held fixed. The normalized best fit
mixing coefficients are found to be (𝑐𝜇, 𝑐𝜅, 𝑐𝐵) = (0.28,−0.49, 0.83). This implies
∼69% of the ℓ = 1 character in 𝐴̃2Π1/2(000) arises from mixing with 𝐵̃(010),
∼24% from 𝜅(010), and ∼7% from 𝜇(010). This is in good agreement with recent
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theory work on intensity borrowing in YbOH, which attributed 70% of the intensity
borrowing to mixing with 𝐵̃(010) [144]. However, it is important to note that due
to interference effects, relative amplitudes of the coefficients, not their squares, are
important for determining rotational line intensities.

We find that using these parameters to model the transition provides good
qualitative understanding of the observed spectrum, as evidenced by the theory
and experiment comparison in Figure 4.3. Further studies of the excited state
perturbations would be required to improve the fit; however, as the exact intensities
are not critical for future experiments with this molecule, this model is sufficient to
provide physical understanding of the intensities and behavior of this transition.

4.2.4 Summary
In this work, we performed high-resolution optical spectroscopy on the rovi-

brationally forbidden 𝑋̃2Σ+(010) → 𝐴̃2Π1/2(000) transition of 174YbOH. In total,
we observed 39 transitions out of low rotational states with 𝑁′′ ≤ 5. The 𝑋̃ (010)
structure is well-described by a Hund’s case (b) 2Π effective Hamiltonian, and the
ℓ-type parity doubling is described by two constants, 𝑞ℓ = −12.0(2) MHz and
𝑝ℓ = −11(1) MHz. We modeled the anomalous line intensities of the forbidden
band with mixing coefficients representing vibronic perturbations in the excited
state. The anomalous intensities arise from quantum interference between TDMs
from the perturbing 𝐵̃(010), 𝜇(010), and 𝜅(010) states. From the Zeeman spectra,
we found the magnetic tuning of 𝑋̃ (010) is consistent with an effective isotropic
electron spin g-factor, 𝑔𝑆 = 2.07(2). From the Stark spectra, we extracted the
molecule-frame dipole moment of 2.16(1) D. These values are in good agreement
with the parameters of the 𝑋̃ state.

In our study, the hyperfine structure and higher-order Zeeman g-factors were
unresolved. Our work provides a basis for future studies with narrow-linewidth
methods, such as RF, microwave, and two-photon spectroscopy, to precisely deter-
mine these properties.

This work is an essential step towards measurements of CP-violating physics in
YbOH [17], as well as other metal hydroxide molecules proposed for CP violation
and parity violation searches that utilize the parity doublets in the bending mode.
We showed the 𝑋̃ (010) state ℓ-doubling offers spectroscopically resolvable states
of molecule polarization pointing along, against, and perpendicular to the applied
electric field, over a wide range of field values. This orientation control over the
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dipole moment offers robust systematic error rejection without compromising laser
cooling. The combination of these features make linear polyatomics a promising
platform for new physics searches. With our measured data, we can compute
the EDM sensitivity, which is proportional to the electron spin projection on the
internuclear axis, Σ. We find a local maximum value of ⟨Σ⟩ = 0.40 in the 𝑁 =

1, 𝐽 = 1
2
+ state at 𝐸 = 101 V/cm, similar to what was predicted in prior theoretical

work [117, 139]. Furthermore, understanding the structure of 174YbOH is a step
toward characterizing the more complicated structure of the odd isotopologues
171YbOH and 173YbOH, which have sensitivity to parity violation [304] and hadronic
CP violation [57], respectively.

Lastly, our determination of the 𝑋̃ (010) location and structure is crucial for
understanding the complicated excited state structure in YbOH. For example, with
our knowledge of the bending frequency, we can tentatively assign the unknown
[17.33] band in Ref. [217] to the 𝑋̃2Σ+(010) → 𝐴̃2Π1/2(010) band. This would
put the excited 𝐴̃2Π1/2(010) manifold at approximately 17652 cm−1. This state is
an excellent candidate for optically pumping population from 𝑋̃ into 𝑋̃ (010), an
important step for signal-to-noise-ratio improvements in precision measurements
using the bending mode. Furthermore, the location of 𝑋̃ (010) is necessary for the
determination of repumping pathways for laser cooling, slowing, and trapping of
YbOH, toward next-generation CP violation searches.

4.3 The Bending Excited State
4.3.1 Introduction

With the ground state bending mode characterized, we moved on to finding
optical pumping pathways to further populate the state and perform coherent manip-
ulations. Since YbOH has fairly diagonal FCFs, the majority of spontaneous decays
conserve the vibrational state, i.e., ∼90% of decays satisfy Δ𝑣1,2,3 = 0. This makes
the bending states of the 𝐴̃2Π1/2 manifold ideal for optical pumping from 𝑋̃ (000)
into the ground bending state, 𝑋̃ (010). In related fashion, the bend-to-bend tran-
sitions will have strong optical TDMs, greatly aiding our 𝑋̃ (010) state preparation
and readout efforts in Ch. 5 Sec. 5.3. In particular, we are interested in the Ω = 1/2
excited states with 𝑣2 = 1, |ℓ | = 1. We will often abbreviate the label 𝐴̃2Π1/2(010)
to just 𝐴̃(010), with the understanding that we are not discussing the |Ω| = 3/2
states.

The interactions of orbital electronic angular momentum 𝐿 with vibrational
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angular momentum ℓ, known as Renner-Teller [170] (RT) or vibronic interactions,
are the subject of many experimental and theoretical works. As the molecule
bends, Λ can deviate from integer values, though in practice we set |Λ| = 1 and
consider RT effects as perturbative corrections. RT interactions are discussed in
various molecular physics textbooks, including: Herzberg [295, 305], Hirota [129],
Bunker and Jensen [140], Demotroder [135], and Duxbury [306], to name a few.
Additionally, Ref. [307] provides an excellent historical review on the Renner-Teller
effect.

For experimentalists working with effective Hamiltonians, we will provide an
overview of useful references here. First, Ref. [151] by Brown provides both a
pedagogical overview and a concise summary of the relevant information. Brown
originally derived the effective Hamiltonian for RT effects in Ref. [156], and added
centrifugal effects in Ref [159]. Brown and Jørgenson provide a detailed discussion
of the RT effect in Ref. [173], including a comparison of multiple approaches to the
problem. Jungen and Merer also provide extensive discussion in Ref. [308], where
they model RT effects with both linear and bent molecule limits. Anharmonic effects
are considered in Refs. [309] and [172].

For theorists performing first principles calculations, vibronic coupling refers
to derivative couplings in the Hamiltonian, 𝜕𝐻𝑒/𝜕𝑞, where 𝑞 is a normal vibra-
tional coordinate, and 𝐻𝑒 is the electronic Hamiltonian [135]. This interaction is
non-adiabatic, i.e., couples the electronic and nuclear degrees of freedom, and is
neglected under the Born-Oppenheimer approximation. For calculations with vi-
bronic coupling, theorists use quasi-adiabatic states and the KDC Hamiltonian, first
presented in Ref. [303]. This formalism was used in Ref. [144] to perform first
principles vibronic calculations for M-OH molecules and obtain predictions for vi-
brational branching ratios. Furthermore, we also note the theory work of Refs. [310,
311], where the authors derive a vibronic spin-orbit term that can couple ℓ and 𝛴, in
other words mixing Ω = 1/2 and Ω = 3/2. They argue this effect is most prominent
in when spin-orbit and vibrational splittings are approximately equal, such as in
the GeCH molecule [312]. In the effective Hamiltonian picture, this interaction is
referred to as a Sears resonance [312]. Since our |Ω| states are well separated in
YbOH, we do not concern ourselves with this interaction, but we mention it for
completeness.

Often it is useful to consult papers where effective Hamiltonians were used
to model experimental molecular spectra. RT effects have been studied in many
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Figure 4.8: Level diagram showing the splittings of a 2Π electronic state in 𝑣2 = 0, 1
vibrational states. We label states with vibronic term symbol notation, 2𝑆+1𝐾𝑃. The
spin-orbit strength is 𝐴, and the Renner-Teller (RT) interaction is given by 𝜖 . Dotted
lines show the correlation of states as spin-orbit and RT interactions are turned on
and off. We choose to show 𝜖 < 0 and 𝐴 > 0 to match the sign of these parameters
in the M-OH molecules we consider. Diagram adapted from Ref. [295]. Thanks to
Jane Panangaden for helping make the diagram.

molecules, and here we provide a brief list of possibly useful references: CuCl2 [313],
BS2 [314], BO2 [315], CO2 [316], CaOH [147, 317], SrOH [301, 318], GeCH [312],
SiCH [319], NCS [320], NCO [171, 321], NCN [169], CCN [168], CaCCH [322],
and HCCS [323]. Many of these papers provide effective Hamiltonians. In particu-
lar, while we focus on 𝑣2 = 1, we note Ref. [321] has effective Hamiltonians (written
with analytic matrix elements) for arbitrary 𝑣2. Meanwhile Ref. [312] “shows their
work” when constructing the effective Hamiltonian, which can be instructive.

In the 𝑣2 = 1 manifold, RT interactions couple Λ and ℓ together to form the
composite projection 𝐾 = Λ + ℓ = ®𝑁 · 𝑛̂. If we add spin-orbit coupling, then it is
useful to consider the total projection 𝑃 = Λ + ℓ + 𝛴 = ®𝐽 · 𝑛̂. If we just consider
interactions within the 𝑣2 = 1 manifold, then 𝑃 is a good quantum number. However,
we shall see that parity doubling interactions can mix both 𝐾 and 𝑃 values. This
makes sense, as parity doubling in the effective Hamiltonian actually encodes off-
diagonal interactions with other vibrational or electronic manifolds, which generally
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have different projection quantum numbers.

In Figure 4.8, we provide a schematic diagram of the energy levels of a 𝑆 = 1/2,
|Λ| = 1 electronic state in both 𝑣2 = 0 and 𝑣2 = 1 vibrational states. We label
states with vibronic term symbol notation, 2𝑆+1𝐾𝑃, with 𝐾 = Σ,Π,Δ,Φ, . . .. The
spin-orbit interaction strength is given by 𝐴, and the RT interaction is parameterized
by the constant 𝜖 . The behavior of the 𝑣2 = 0 manifold is familiar to us from
the 𝐴̃(000) state. Meanwhile, in the 𝑣2 = 1 manifold, with just Renner-Teller
coupling active, we obtain three vibronic states: 2Σ+, 2Σ−, and 2Δ. Here, the Σ±

label distinguishes 𝐾 = 0 states obtained by a symmetric (+) or anti-symmetric (−)
combination of states with Λ = −ℓ. Adding spin-orbit causes the 2Δ state to split
intoΩ = 1/2, 𝑃 = 3/2 andΩ = 3/2, 𝑃 = 5/2 components. Spin-orbit also mixes the
Σ± states, causing them to transition from case (b) to case (a) such that the ± label
is no longer appropriate. Instead, these states are denoted as 𝜇2Σ

(+)
1/2 and 𝜅2Σ

(−)
1/2,

though often we will drop the (±) superscript. We note Fig. 4.8 is drawn for 𝜖 < 0,
which is the case for M-OH molecules. This sign causes the 2Σ+ state to be lower
in energy than 2Σ−. For 𝜖 > 0, the energy ordering of the 2Σ± states is reversed.

4.3.2 Modeling Renner-Teller Effects
We will model the states using the Hund’s case (a), parity-symmetrized basis:���Λ; 𝑣2, ℓ; 𝑆, Σ; 𝐽, 𝑃, 𝑀,P = ±

〉
=

1
√

2

(���Λ; ℓ;Σ; 𝐽, 𝑃, 𝑀
〉
± (−1)𝑝𝑎

��� − Λ;−ℓ;−Σ; 𝐽,−𝑃, 𝑀
〉)
.

(4.16)
Here, P = ± refers to positive/negative parity, and the Hund’s case (a) parity phase
factor is given by 𝑝𝑎 = 𝐽 − 𝑆 − ℓ, in accordance with the phase conventions of
Hirota [129] and Brown [151, 159]. This phase factor has consequences the matrix
elements that raise or lower ℓ, and therefore parity doubling parameters.

Since we have three projections (ΛℓΣ) and each projection can take on two
oppositely signed values, we will have to deal with 8 levels. To stay consistent, we
will write states using a rule where the first state in superposition of eq. 4.16 has
Λ = 1. Then we can write all the other quantum numbers if we know the 𝐾 value of



153

the state. For example, the |Ω| = 1/2 states are written as:���2Δ3/2,P = ±
〉
=

1
√

2

(���Λ = 1; ℓ = 1;Σ = −1
2

; 𝑃 =
3
2

〉
± (−1)𝑝𝑎

���Λ = −1; ℓ = −1;Σ =
1
2

; 𝑃 = −3
2

〉)
(4.17)���𝜇2Σ−1/2,P = ±

〉
=

1
√

2

(���Λ = 1; ℓ = −1;Σ = −1
2

; 𝑃 = −1
2

〉
± (−1)𝑝𝑎

���Λ = −1; ℓ = 1;Σ =
1
2

; 𝑃 =
1
2

〉)
.

(4.18)
Here, we have explicitly written the 𝜇 state as 2Σ−1/2. This notation makes it clear
the (−1)𝑝𝑎 phase factor is on the 𝑃 > 0 ket, unlike the case in 2Δ when (−1)𝑝𝑎
multiplies the 𝑃 < 0 ket.

For completeness, we mention that our method of writing states needs mod-
ification if we consider other 𝑣2 states. For 𝑣2 = 1, the |𝐾 | > 0 states all have
|𝐾 | = |ℓ | + |Λ|. In the literature, these states are referred to as “unique” states [151].
However, if we were to consider higher 𝑣2, for example 𝑣2 = 3, we could have states
with |𝐾 | > 0 that are written |𝐾 | = |ℓ | − |Λ|. In such a case, thinking again in the
example of 𝑣2 = 3, we have two ways of writing |𝐾 | = 2, one as |ℓ2 | − |Λ| with
|ℓ2 | = 3, and the other as |ℓ1 | + |Λ| with |ℓ1 | = 1. To distinguish these two states in
general, we can modify our rule to write ℓ1 states with Λ = 1 in the first ket of the
superposition (the one not multiplied by the parity phase), and write the ℓ2 states
with Λ = −1 as the first ket in the superposition.

As stated earlier, the effective Hamiltonian for the Renner-Teller effect was first
derived by Brown in 1977 [156], and subsequently refined upon in later contempo-
rary works [151, 159] that provide comprehensive summaries. The Renner-Teller
interaction contributes the following terms to the effective Hamiltonian:

𝐻𝑅𝑇 =
1
2
𝜖𝜔2

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
+ 𝑔𝐾 (𝐺𝑧 + 𝐿𝑧)𝐿𝑧 +

1
2
𝜖𝜔2,𝐷

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
®𝑁2

(4.19)
Here, 𝜃 is the electronic azimuthal coordinate, and 𝑞± are dimensionless raising and
lowering operators for the vibrational angular momentum 𝐺, with matrix elements
available in the literature [129, 143, 151, 173]. The term 𝜖𝜔2 is the Renner-Teller
coupling term derived originally by Renner [170], 𝑔𝐾 is a correction derived by
Brown [156] that encodes the change in Λ caused by bending-induced mixing
with other electronic states, and 𝜖𝜔2,𝐷 is the centrifugal correction to the Renner-
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Teller interaction [159], which we do not consider further but have included for
completeness.

The 𝜖𝜔2 term in 𝐻𝑅𝑇 has the following selection rules: ΔΛ = −Δℓ = ±2,Δ𝑣2 =

0,±2,Δ𝐾 = 0,ΔΣ = 0,Δ𝑃 = 0. From these selection rules, it is clear that for
a 2Π(010) state, the RT interaction within a 𝑣2 manifold only has non-zero off-
diagonal matrix elements among the 𝐾 = 0 states. There will be matrix elements
connecting to other vibrational states, and these can be taken into account using
perturbation theory for |𝜖 | ≪ 1 (i.e., in the harmonic approximation, anharmonic
correcitons are discussed elsewhere [309]). Refs. [151, 156, 312] discuss effective
Hamiltonian perturbation theory for RT effects in detail.

The main parameters that define our vibronic state are the spin-orbit splitting
𝐴, harmonic bending energy 𝜔2, and Renner-Teller parameter 𝜖 . For YbOH, we
are interested in the regime when 𝐴 ≫ |𝜖𝜔2 |. This is the case for certain tri-
atomic molecules studied in the literature–CaOH [147], SrOH [301], GeCH [312],
CuCl2 [313], OCS+ [324], BrCN+ [325–329], and ICN+ [330, 331]. In these
molecules, the vibronic states are split by the Renner-Teller interaction and grouped
by common values of |Ω|. In particular, both BrCN+ and ICN+ additionally satisfy
𝐴 > 𝜔2, which means spin-orbit effects must be considered at zeroth order in the
derivation of the effective Hamiltonian, when considering off-diagonal vibrational
perturbations. The two |Ω| groups essentially become separate electronic states,
and the vibronic states are pushed together and heavily mixed by the parity-doubling
interactions, with 𝐾 no longer a good quantum number.

We can gain further insight by considering an effective Hamiltonian matrix
derived by Brown and coworkers considering spin-orbit at zeroth order, explicitly
presented in analytic form Refs. [313] and [151]. The same effective Hamiltonian
is presented in operator form in Refs. [168, 169]. We note that Ref. [313], ± refers
to 𝑒/ 𝑓 parity [332], while in Ref. [151], ± refers to overall parity. As an aside, for
perturbative spin-orbit, analytic formulae are given in Ref. [315]. We reproduce the
effective Hamiltonian matrix for strong spin-orbit below in Table 4.2, correcting for
minor typos, but dropping all centrifugal distortion terms for convenience. For the
origin, we replace 2𝜔 with 𝑇0 + 𝜔, where 𝑇0 is the origin of the 𝐴̃(000) manifold,
including zero-point harmonic energy. The Hamiltonian is block diagonal in 𝐽

in the absence of hyperfine effects. Because no state can exist with |𝑃 | > 𝐽, the
Hamiltonian is 2x2 for 𝐽 = 1/2, 3x3 for 𝐽 = 3/2, and 4x4 for 𝐽 ≥ 5/2.

We now discuss the matrix elements. As expected, the diagonal energies receive
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(2𝑆+1)𝐾𝑃

Λ, ℓ, Σ,±

2Δ5/2
1, 1, 1/2

2Δ3/2
1, 1,−1/2

𝜅2Σ1/2
1,−1, 1/2

𝜇2Σ−1/2
1,−1,−1/2

2Δ5/2
1, 1, 1/2

𝑇0 + 𝜔 + 2𝑔𝐾

− 3(𝜖𝜔)2
2(2𝜔 − 𝐴)

+ 𝐴
2
+ 𝐵(𝑧 − 4)

−(𝑧 − 3) 1
2𝐵∗ −𝑞𝐺

2
(𝑧2 − 𝑧) 1

2
±(−1)𝑝𝑎 𝑞𝑒

2
×(𝑧2 − 3𝑧) 1

2

2Δ3/2
1, 1,−1/2

𝑇0 + 𝜔 + 2𝑔𝐾

− 3(𝜖𝜔)2
2(2𝜔 + 𝐴)

− 𝐴
2
− 𝛾 + 𝐵𝑧

± (−1)𝑝 𝑞𝑒
2

× (𝑧2 + 𝑧) 1
2

+ 𝑝𝐺 + 2𝑞𝐺
2

𝑧
1
2

∓ (−1)𝑝

× 𝑝𝑒 + 2𝑞𝑒
2

𝑧
1
2

− 𝑞𝐺
2
(𝑧2 + 𝑧) 1

2

𝜅2Σ1/2
1,−1, 1/2

𝑇0 + 𝜔

− (𝜖𝜔)2
2(2𝜔 − 𝐴)

+ 𝐴
2
+ 𝐵(𝑧 + 2)

− (𝑧 + 1)1/2𝐵∗

∓ (−1)𝑝𝜖corr𝜔

𝜇2Σ−1/2
1,−1,−1/2

𝑇0 + 𝜔

− (𝜖𝜔)2
2(2𝜔 + 𝐴)

− 𝐴
2
− 𝛾

+ 𝐵(𝑧 + 2)

Table 4.2: The effective Hamiltonian within the 𝐴̃(010) manifold. The matrix is
symmetric about the diagonal. For 𝐽 = 1/2, the matrix is only the bottom right
2x2 block and for 𝐽 = 3/2, only the bottom right 3x3 block. The upper/lower
signs refer to ± overall parity. The parity phase is 𝑝 = 𝐽 − 𝑆 − ℓ. For brevity we
write: 𝑧 = (𝐽 + 1/2)2 − 1 = 𝐽 (𝐽 + 1) − 3/4; 𝐵∗ = 𝐵 − 𝛾/2; 𝜔 = 𝜔2; and
𝜖corr = 𝜖

(
1 + (𝜖𝜔)

2

4
8𝜔2−6𝐴2

(4𝜔2−𝐴2)2

)
.

dominant contributions from spin-orbit 𝐴, and the 𝑔𝐾 term offsets the origin of the
2Δ states. The terms with 2𝜔 ± 𝐴 in the denominator contribute to the Δ and Σ

splittings within each |Ω| manifold. To estimate this splitting, we first note that we
expect YbOH to have similar vibronic coupling strength to CaOH [144], providing
an estimate of 𝜖 ∼ −0.1. The value of 𝑔𝐾 is harder to approximate, as it encodes
mixings with distant Δ and Σ electronic states that occur as the molecule bends.
In CaOH, 𝑔𝐾 ≈ 0.5 cm−1 [147], but in other molecules with nearby perturbers,
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it has been observed to be larger, 𝑔𝐾 ∼ 10 cm−1 [312, 319]. It is likely the 𝑔𝐾
value of YbOH is influenced by mixing with 4 𝑓 states as well as the 𝐵̃Σ+1/2 state.
Nonetheless, by taking 𝑔𝐾 ∼ 0.5 cm−1 and 𝐴 ∼ 1350 cm−1, we find that the splitting
of vibronic states is approximated as 𝐸ΔΣ ∼ −10−2𝜖𝜔2 + 2𝑔𝐾 ≲ 1 cm−1 for large
spin-orbit coupling. However, when the Δ and Σ vibronic states are pushed so close
together, they will be mixed by any interaction that can couple them at the ∼ 0.01−1
cm−1 level, namely rotation and parity-doubling/coriolis effects. We must therefore
investigate the off diagonal entries of 4.2.

The off-diagonal elements of the matrix encode interactions that can flip molecule
frame angular momentum projections, as discussed in Ch. 2, Sec. 2.2.3. When these
interactions couple the two reversed projections (i.e., +Λ and −Λ) of a parity state,
we obtain parity factors of (−1)𝑝 and factors of ∓ arising from the phase convention
for matrix elements of the electronic angle 𝑒2𝑖𝜃 . The term 𝐵∗ = 𝐵 − 𝛾/2 arises
from the ®𝐽 · ®𝑆 spin-uncoupling terms from both the rotational and spin-rotational
Hamiltonians. The remaining terms of interest are all the 𝑝 and 𝑞 parity-doubling
terms, as well as the off-diagonal Renner-Teller coupling 𝜖corr𝜔2, which also has
parity dependence. Note, both references [151, 313] have minor typos in the expres-
sion for 𝜖corr, which is a sort of spin-orbit correction the Renner-Teller parameter
(analogous to the Renner-Teller correction to spin-orbit in the perturbative spin-orbit
treatment). The effect of this correction is minor, as for large 𝐴, we have 𝜖corr ≈ 1.

The parity-doubling effects are grouped into purely rotational effects, repre-
sented by 𝑞𝐺 and 𝑞𝑒, and spin-orbit-rotational effects, represented by 𝑝𝐺 and 𝑝𝑒 in
case (b) and the combination 𝑝+2𝑞 in case (a). All of these terms arise at second or-
der in the effective Hamiltonian and involve couplings to a different electronic state
and back. In the limit of mixing with a unique perturber, the Curl relations relate the
scale of the two effects by 𝑞 ∼ 𝑝𝐵/𝐴 [167], noting that the 𝑝 effects are dominant
with large spin-orbit. For this reason, and because we focus on the |Ω| = 1/2
manifold, we can neglect the 2Δ5/2 state, which is only coupled off-diagonally by 𝑞
terms.

All parity doubling Hamiltonians have Δ𝐽 = 0 selection rules. We are most
interested in the electronic doubling 𝐻Λ, given by:

𝐻Λ =
1
2
(𝑝𝑒 + 2𝑞𝑒)

(
𝐽+𝑆+𝑒

−2𝑖𝜃 + 𝐽−𝑆−𝑒2𝑖𝜃
)
− 𝑞𝑒

2

(
𝐽2
+𝑒
−2𝑖𝜃 + 𝐽2

−𝑒
2𝑖𝜃

)
= (𝑝𝑒 + 2𝑞𝑒)

∑︁
𝑞=±1

𝑒−2𝑖𝑞𝜃𝑇2
2𝑞 (𝐽, 𝑆) − 𝑞𝑒

∑︁
𝑞=±1

𝑒−2𝑖𝑞𝜃𝑇2
2𝑞 (𝐽, 𝐽)

(4.20)
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where 𝑞 = ±1 subscripts are in the moelcule frame, 𝜃 is the azimuthal electronical
angle, and the second line is written with spherical tensor notation. Recall terms
such as 𝑒±2𝑖𝜃 are raising/lowering operators for the angular momentum 𝐿𝑧 = −𝑖 𝜕𝜕𝜃 .
Further, 𝐻Λ has the following selection rules [147]: Δℓ = 0,ΔΛ = ±2,ΔΣ = 0,∓1,
andΔ𝑃 = ±2,±1. We note the pairs of selection rules correspond to the two different
Λ-doubling interactions, purely rotational (𝐽2

+) and spin-orbit-rotational (𝐽+𝑆+).

The vibrational doubling Hamiltonian, 𝐻ℓ, can be obtained eq. 4.20 by making
the following replacements: 𝑝𝑒 → 𝑝𝐺 , 𝑞𝑒 → 𝑞𝐺 , 𝜃 → 𝜃. As a result, 𝐻ℓ has similar
selection rules [147]: Δℓ = ±2,ΔΛ = 0,ΔΣ = 0,∓1, and Δ𝑃 = ±2,±1. Once again,
the pairs of selection rules refer to the two different doubling interactions, 𝑞𝐺 and
𝑝𝐺 + 2𝑞𝐺 type6.

To be explicit, in this section, we use the phase conventions from Refs. [39, 151,
159, 168, 169]:

⟨Λ = ±1|𝑒±2𝑖𝜃 |Λ = ∓1⟩ = −1 (4.21)

⟨ℓ = ±1|𝑒±2𝑖𝜙 |ℓ = ∓1⟩ = 1. (4.22)

By examining the selection rules and Table 4.2, we see both Λ-type and ℓ-type
doubling can mix the 2Σ and 2Δ states, in what is called a “𝐾-resonance” in the
literature. 𝐾-resonances have been observed previously in many of the molecules
mentioned earlier in this section. These resonances can manifest as level repulsion
or even avoided-level crossings. The full 𝐾-resonance Hamiltonian, 𝐻𝐾 = 𝐻Λ +𝐻ℓ,
has many off-diagonal couplings, requiring full diagonalization of the effective
Hamiltonian.

We consider the scale of the parity splittings of levels in 𝐴̃(010), which can
provide information on the degree of 𝐾-resonance present. An isolated |𝑃 | > 1
state, such as the 2Δ3/2 state, is expected to have small parity splitting, as the
doubling interactions we consider have Δ𝑃 = ±2,±1 selection rules. Therefore,
any parity interaction with |Δ𝑃 | > 2, which is required to connect 𝑃 and −𝑃 levels
with |𝑃 | > 1, must occur at second order in the effective Hamiltonian7 or higher.
Incidentally, this provides an intuitive understanding of why parity splittings are
small in a spin-orbit split, electronic 2Π3/2 state (𝐸3/2± ≲MHz). In such a case, the

6We use the 𝐺 subscript to maintain consistency with Sec. 4.2, and with Refs. [151, 169, 333].
In Ref. [147], the subscript 𝑣 is used instead.

7Note that effective Hamiltonian terms like𝐻Λ or𝐻ℓ are already themselves actually higher-order
combinations of other interactions in the full molecular Hamiltonian.
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𝑃 = 3/2 state must be connected to 𝑃 = −3/2 via the 2Π1/2 state, and the coupling is
mediated by 𝑞𝑒 and 𝐵. This provides an overall parity splitting of Δ𝐸3/2± ∼ 𝑞𝑒𝐵/𝐴.
We can compare this to the 𝑝𝑒 dominated parity splitting of the 𝑃 = 1/2 state
by recalling the approximate relation 𝑞𝑒 ∝ 𝑝𝑒𝐵/𝐴 [39]. Therefore, the Δ𝐸3/2±

splitting is smaller than the Δ𝐸1/2± splitting by a factor of 𝐵2/𝐴2 ≲ 10−7. By the
same logic, if the vibronic 2Δ3/2 state is isolated, its parity splitting is expected to
be quite small, with relevant contributions to become parity-dependence in other
off-diagonal couplings, or in neglected higher order terms, such as the centrifugal
Renner-Teller correction [159].

The parity splitting of the 𝜇 and 𝜅 2Σ1/2 states also arises from off-diagonal
terms, but is expected to be larger than for the 2Δ states. Consider the case of
𝐽 = 1/2, when we only have the 2Σ − 1/2 states active in the model. The primary8

parity-dependent contribution arises from the ∓(−1)𝑝𝜖corr𝜔2 term mixing the two
Σ states. Depending on the sign, 𝐵∗ ≈ 𝐵 adds constructively or destructively. This
provides a rough scale for the parity splitting:

Δ𝐸± ≈
(𝐵 + 𝜖𝜔2)2

𝐴
− (𝐵 − 𝜖𝜔2)2

𝐴

= 4
𝐵𝜖𝜔2

𝐴
.

(4.23)

For YbOH, this splitting is expected to be∼ 700 MHz, which is spectrally resolvable,
and results in very different dc polarizability when compared to the case of <MHz
splitting. Therefore the parity splitting of the levels we observe can give us insight
into the degree of mixing present between different vibronic levels. Crucially, the
𝐽 = 1/2 Σ states cannot be mixed with Δ states, as the parity couplings satisfy
Δ𝐽 = 0 and the states must satisfy 𝐽 ≥ |𝐽 · 𝑛̂| = |𝑃 |.

Since we are spin-orbit dominated, the 𝑝𝑒 + 2𝑞𝑒 electronic Λ doubling term is
primarily responsible for the 𝐾 mixing of the |Ω| = 1/2 manifold. This was the case
in CaOH [147] and SrOH [301], where the vibronic states are initially separated by
∼ 10 cm−1, and have an avoided level crossing at higher 𝐽. However, in YbOH,
the vibronic levels are expected to be much closer. In the 𝑣2 = 0 state of YbOH,
we have 𝑝𝑒 + 2𝑞𝑒 ≈ −0.44 cm−1 (−13 GHz), which is of the same order of the Δ

and Σ state splitting we estimated earlier. If the vibronic levels are right on top of
each other, they will be fully mixed for all 𝐽. Intuitively, we can think of this new
state configuration as having ⟨|𝐾 |⟩ ≈ 1. In such a case the energies look like that

8There is explicit diagonal parity-dependence in the centrifugal distortion term 𝜖𝜔2𝐷 . This term
is ∼ 10−3 cm−1 in CaOH, so we do not consider it further.
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of a case (b) 2Π state, with both 𝑃 = 3/2 and 𝑃 = 1/2 components present. We
can think of the combination of spin-orbit and rotational effects, encapsulated in
𝐻Λ, as “quenching” the electronic angular momentum, resulting in only the bending
degree of freedom. This is similar in spirit to the case of asymmetric molecules,
where the electronic angular momentum can be smaller than its maximum possible
projection due to anisotropic spin-rotation and spin-orbit effects [123]. We will
discuss K-resonances further when we examine the energy level structure observed
in the experiment.

4.3.3 Apparatus
The setup is similar to that described in Sec. 4.2.1, with an identical CBGB

source. However, the beamline now has two interaction regions, an upstream
“pump” region, to deplete the ground state, and a donwstream “probe” region, to
probe the depletion. After the collimated molecule beam exits the source, it enters
the pump region: a 6-way KF50 cross, ∼40 cm downstream from the cell aperture.
There, the molecules encounter the pump beam, which travels transverse to the
molecule beam, is cylindrically shaped (∼1 × 3 mm), and is retroreflected with
orthogonal polarization. The fluorescence is monitored using a stack of collection
optics mounted 125 mm away from the molecules, outside the vacuum chamber.

After being pumped, molecules then travel further downstream to the probe
region ∼60 cm away from the cell. The region is a KF50 octagon, the same from
Sec. 4.2.1. As described there, the molecules first travel through a metal collimator
plate before entering an interaction region between two ITO-coated glass electrodes.
We can also apply magnetic fields to this region using coils mounted outside the
vacuum chamber. The molecules in the interaction region encounter a probe laser
(∼1 mm diameter, single pass), and their fluorescence is collected with an in-vacuum
light pipe and an in-vacuum retroreflecting mirror.

In both regions, the collected fluorescence passes through optical filter stacks
consisting of both interference and colored glass filters, before arriving at a Hama-
matsu H13543 PMT module. The filters are setup to detect light off-diagonally,
as there is too much on-diagonal light scatter. In the pump region, the PMT pho-
tocurrent is amplified and low pass filtered with an SRS SR570 current preamplifier,
while in the probe region, the photocurrent is amplified and low pass filtered with a
Pluto Instruments PCG-380F current preamplifier.

The setup was designed to look for correlated fluorescence. Typically, the
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Pump Probe

YbOH
beam

(000) (000)
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Figure 4.9: Schematic diagram of the beamline used for pump probe experiments
to study the 𝑋̃ (000) → 𝐴̃(010) transition. Upstream, the pump light is scanned.
Downstream, the probe light monitors a single rotational level in 𝑋̃ (000). If the
pump laser hits a resonance, we will see fluorescence in the pump region. Fur-
thermore, if the pump addresses the same ground state as the probe, then we will
observe correlated loss of the probe fluorescence.

upstream pump beam is scanned, while the downstream probe is held fixed on a line
of interest. Correlation of increased upstream fluorescence with loss of downstream
fluorescence indicates both transitions share a common ground state.

4.3.4 Observations
We began by searching for the 𝑋̃2Σ+ → 𝐴̃2Π1/2(010) transition in the upstream

pump region. Depletion caused by the pump was probed downstream using the
𝑋̃2Σ+− 𝐴̃2Π1/2(000) transition at 577 nm and detecting the off diagonal fluorescence
to (100) at 595 nm. The schematic setup is shown in Figure 4.9.

Though the excited 𝐴̃2Π1/2(010) state had not yet been assigned, we were able
to estimate its location. Motivated by the similarity of the spectra for the [17.33]
band and the origin band, we assigned the [17.33] transition to 𝑋̃2Σ+(010) →
𝐴̃2Π1/2(010). This was previously assigned as a transition out of 𝑋̃2Σ+ [217]. With
our reassignemnt, and using the origin of the 𝑋̃2Σ+(010) state determined in this
work, we were able to estimate the location of the excited 𝐴̃2Π1/2(010) state to be
∼17652 cm−1. We used a Sirah MixTrain to generate the required 567 nm light, and
the fluorescence collection filters were chosen to detect off diagonal fluorescence at
577 nm, corresponding to 𝐴̃2Π1/2(010) ⇝ 𝑋̃2Σ+(010) decays.
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The first scan immediately found two strong lines near 17652.14 cm−1, shown
in Figure 4.10. These lines were split by ∼ 122 MHz, matching the 𝑁′′ = 1
spin-rotation splitting in 𝑋̃ (000). This splitting provided strong evidence that we
had observed transitions originating from the ground state. This assignment was
verified by observing depletion of the 𝑁′′ = 1 states of 𝑋̃ (000), downstream in the
probe region, only when the pump was on resonance. Note that depletion was only
observed after increasing power in the pump beam from ∼ 10 mW to ∼ 100 mW,
indicative of the forbidden nature of the non-bend to bend transition. A similar
set of lines, split again by the 𝑁′′ = 1 spin-rotation splitting, were also found near
17651.37 cm−1, shown in Figure 4.10. Further depletion tests confirmed these lines
also originated from 𝑁′′ = 1 in 𝑋̃ .

Since the observed lines originate from 𝑁′′ = 1−, consisting of both a 𝐽′′ = 1/2−

and 𝐽′′ = 3/2− state, the excited state must be either 𝐽′ = 1/2+ or 𝐽′ = 3/2+, in
accordance to the parity selection rule and the Δ𝐽 = ±1, 0 selection rule9. To
identify the excited state 𝐽 quantum number, we searched for a 𝑃 line that could only
arise from a 𝐽′′ = 5/2− → 𝐽′ = 3/2+ transition. Since the levels of the 𝑋̃ state are
well known, searching for this 𝑃 line is simply a matter of detuning the pump laser by
the energy difference between 𝑁′′ = 3, 𝐽′′ = 5/2− state and the 𝑁′′ = 1, 𝐽′′ = 3/2−

state.

To our surprise, we observed 𝑃 lines corresponding to both the excited state
of the 17652.14 cm−1 lines and the excited state of the 17651.37 cm−1 lines. The
ground state assignment of these 𝑃 lines was confirmed by observing depletion
of an 𝑁′′ = 3, 𝐽′′ = 5/2− probe downstream. This meant we had observed two
𝐽′ = 3/2+ excited states, separated by ∼23 GHz. The large energy separation rules
out the possibility that these two states arise from hyperfine mixing of 𝐽. Since each
vibronic state should only have one state with a given 𝐽 and parity, we arrived at the
conclusion that we had observed the 𝐽′ = 3/2+ components of two separate vibronic
states, namely the 𝜇2Σ

(+)
1/2 and 2Δ3/2 states in the 𝐴̃2Π1/2(010) manifold. Such an

arrangement of 2Σ and 2Δ vibronic states, separated by ≲ 1 cm−1, may arise in the
context of large spin-orbit coupling and relatively weak Renner-Teller coupling.

The pump-probe technique that we used to identify the 𝐴̃2Π1/2(010), 𝐽′ = 3/2+

states was readily applicable to the rest of the 𝑋̃2Σ+ → 𝐴̃2Π1/2(010) band. A benefit
of this approach is that it is agnostic to the vibronic character of the excited states. The

9We do not consider Δ𝐽 = ±2 transitions in the even isotopologues, as they would only receive
strength from weak mixing from the distant hydrogen hyperfine interaction. In the odd isotopologues,
large hyperfine mixing from the Yb nuclear spin makes the appropriate selection rule Δ𝐹 = ±1, 0.
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Figure 4.10: Sample LIF spectra obtained from excitation of the 𝑋̃ (000) → 𝐴̃(010)
transition. a) The two largest features correspond to 𝑄11(1) and 𝑅12(1) lines
addressing the upper 𝐽′ = 3/2+ state. b) The two largest features correspond to a
second pair of 𝑄11(1) and 𝑅12(1) lines addressing the lower 𝐽′ = 3/2+ state.
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Figure 4.11: Sample depletion spectra obtained from pump-probe spectroscopy.
The upstream pump laser is scanned over the 𝑋̃ (000) → 𝐴̃(010) features shown in
Fig. 4.10b, with LIF plotted in blue. Meanwhile, the downstream probe is fixed on
a 𝑋̃ (000) → 𝐴(000) line probing 𝑁′′ = 1, 𝐽′′ = 1/2−, with LIF plotted in orange.
The depletion signal at 17651.37 cm−1 shows both pump and probe share a common
ground state.
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downstream probe was parked on a known 𝑋̃2Σ+ → 𝐴̃2Π1/2(000) transition, usually
in the 𝑄 branch for technical convenience. Meanwhile, the upstream 𝑋̃2Σ+ →
𝐴̃2Π1/2(010) pump was scanned across lines of interest. LIF was monitored from
both the upstream pump and downstream probe regions. Downstream depletion
correlated with upstream signal provides a definitive assignment of the ground state.
An example of a depletion spectrum is shown in Fig. 4.11.

The observed lines and their assignments are presented in Table 4.3. Definitive
excited assignments were made for excited states where all three 𝑃, 𝑄, and 𝑅 lines
were observed. However, the lack of observation of one of these lines cannot
be interpreted as an indication that such a line does not exist. The TDM for the
unobserved line could simply be weak due to transition interference from intensity
borrowing, as was seen in the 𝑋̃2Σ+(010) → 𝐴̃2Π1/2(000) spectrum. Nonetheless,
many lines could be definitively assigned. In Table 4.3, we also show the 𝐴̃(010)
state energy obtained by subtracting the energy of the 𝑋̃ (000) from the observed
transition energy.

When the 𝐴̃2Π1/2(010) energies are plotted (Fig. 4.13, a clear rotational struc-
ture is present. By comparing the expected rotational constant (𝐵 ∼ 0.25 cm−1

∼ 7.5 GHz) to the observed energies, we can refine our initial 𝐽 assignments for
ambiguous lines. State assignments in Tab. 4.3 marked with an asterisk (∗) represent
assignments made based on rotational pattern matching, as opposed to definitive
assignment based on observation of all three 𝑃,𝑄, 𝑅 features. Our dataset therefore
consists of 10 levels, 5 of each parity, with 2x degeneracy of a given parity for
𝐽 > 1/2.

The parity doublet structure of the excited state is on the scale of ∼ 500 MHz
(0.017 cm-1) for all observed states. While this is in contrast to what would naively
be expected for an isolated 𝑃 = 3/2 state, it is in good agreement with the ∼ 700
MHz parity doubling scale estimated earlier in Sec. 4.3.2. The fact that all observed
levels indicate similar parity splitting is further indication of the strong mixing
between Δ and Σ vibronic states.

4.3.5 Hamiltonian Fit and Discussion
With the location of 10 levels in 𝐴̃2Π1/2(010) known to ∼0.001 cm−1 (30 MHz)

precision, we move on to modeling the state by fitting to the effective Hamiltonian
in Table 4.2. First, we reduce the number of fit parameters, using approximations
and constraints informed by trends in other similar molecules. We fix 𝑝𝑒 to the
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Table 4.3: Characterized 𝑋̃2Σ+(000) − 𝐴̃2Π1/2(010) lines. Wavenumber readings
are taken obtained from a HighFinesse WS7-30 wavemeter, which has an absolute
frequency error of 0.001 cm−1. Lines are grouped by common excited state. The
excited state energy is obtained by adding the observed transition wavenumber with
the energy of the 𝑋̃2Σ+ ground state, which obtained from exact diagonalization
without hyperfine. The final excited state energy is reported as an average of the
excited state energies obtained from all common lines. The variation of the energy
obtained from each line is on the order of ∼0.0005 cm−1 or less. The “Evidence”
column reports the basis behind the ground state assignment. “Depletion” means
the ground state was observed to be depleted by the transition of interest. “Splitting”
means the splitting of the transition from other lines matches the energy splitting
expected in the ground state.

Observed Line (cm−1) 𝑁′′, 𝐽′′,P′′ 𝐽′,P′ Excited State (cm−1) Evidence
17 650.9630 1, 3/2,− 1/2∗, + 17651.4518 Splitting
17 650.9588 1, 1/2,− 1/2∗, + Splitting

17 649.9938 1, 1/2,− 1/2∗,− 17 651.4685 Depletion

17 651.8464 0, 1/2, +
3/2,− 17651.8466

Depletion
17 650.3787 2, 5/2, + Depletion
17 650.3719 2, 3/2, + Splitting

17 651.3741 1, 3/2,−
3/2, + 17651.8628

Depletion
17 651.3700 1, 1/2,− Depletion
17 648.9158 3, 5/2,− Depletion

17 652.6182 0, 1/2, + 3/2∗,− 17 652.6182 Depletion

17 652.1465 1, 3/2,−
3/2, + 17652.6353

Depletion
17 652.1424 1, 1/2,− Depletion
17 649.6884 3, 5/2,− Depletion

17 649.9157 3, 5/2,−
5/2, + 17652.8624

Depletion
17 649.9251 3, 7/2,− Splitting
17 652.3733 1, 3/2,− Splitting

17 651.4165 2, 5/2, +
5/2,− 17652.8845

Depletion
17 651.4096 2, 3/2, + Depletion
17 647.9756 4, 7/2, + Depletion

17 653.6298 1, 3/2,−
5/2, + 17654.1210

Depletion
17 649.9251 3, 5/2,− Splitting
17 652.3733 3, 7/2,− Splitting

17 651.6782 2, 5/2, + 5/2∗,− 17654.1462 Splitting
17 650.6716 2, 3/2, + Splitting

* The excited state assignment is more tentative in the case when multiple lines are not observed,
in which case the assignment is marked with an asterisk ∗.
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Table 4.4: Effective Hamiltonian parameters used to model
the 𝐴̃(010) state of YbOH. See main text for details.

Parameter∗ YbOH 𝐴̃(010)
𝜔2 327.83(1)
𝐴 1350†
𝐵 0.2527(5)
𝑔𝐾 0.22(1)
𝜖 −0.066(7)
𝜖𝜔2 −21.6(11)
𝑝𝑒 −0.4378†
𝑞𝑒 0†
𝑝𝐺 −0.46(8)
𝑞𝐺 0†
𝛾 0†

∗ All parameters are given in cm−1, except for 𝜖 , which is unitless.
Parentheses represent 2𝜎 errors (68% confidence interval). 𝜖𝜔2 is
obtained by multiplication and propagation of errors.

† These values were fixed, see main text for details.

value obtained for the 𝐴̃2Π1/2(000) state, 𝑝𝑒 = −0.4378 cm−1. This approximation
holds well in both CaOH [147] and SrOH [301]. However, while most references fix
𝑝𝐺 = 0, we do not, as we generically expect 𝑝𝐺 ≠ 0 in 𝐴̃(010), considering we found
𝑝𝐺 ≠ 0 in 𝑋̃ (010). Further, by inspection of the effective Hamiltonian, we see the 𝑞𝐺
and 𝑞𝑒 terms have independent contributions only between theΩ = 3/2 andΩ = 1/2
manifolds. Since our measurements are only of the Ω = 1/2 manifold, the effects of
𝑞𝑒 and 𝑞𝐺 are drowned out by 𝑝𝑒 and 𝑝𝐺 terms, and therefore we set 𝑞𝑒 = 𝑞𝐺 = 0.
For 𝑞𝑒, this approximation is justified by the unique perturber relation [39, 167],
𝑞𝑒 ≈ 𝑝𝑒𝐵/𝐴 ≈ 2 × 10−4𝑝𝑒, which is beyond our level of sensitivity. For 𝑞𝐺 ,
the approximation is justified by the small value of 𝑞𝐺 = −0.0004 cm−1 obtained
for the 𝑋̃ (010) state. In general we expect 𝑞𝐺 to be similarly small in 𝐴̃(010) as
it arises predominantly from Coriolis effects that only depend on the vibrational
state [147, 167, 301]. As is usual for YbOH, we fix 𝐴 = 1350 cm−1, and we also fix
𝑇0 = 17998.5875 cm−1, corresponding to the 𝐴̃2Π1/2(000) origin10 [264]. Finally,
we fix 𝛾 = 0, which is justified by the form of the Hamiltonian in Table 4.2, where
the effects of 𝛾 are largely indistinguishable from 𝐵 and origin offsets. Empirically,
the predictions were not very sensitive to 𝛾, justifying our approximation.

The remaining fit parameters are then 𝜔2, 𝜖 , 𝐵, 𝑔𝐾 , and 𝑝𝐺 . For initial values
10This is in the 𝑅2 formalism, see Ref. [39] 7.5.3 for details.
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of the parameters, we used 𝜔2 = 330, we approximate 𝑝𝐺 = 𝑝𝐸 , and the rest of
the initial values were taken either from CaOH 𝐴̃(010) (𝜖, 𝑔𝐾) or YbOH 𝐴̃(000)
(𝐵, 𝛾). With these initial values, we use Nelder-Mead optimization to determine
a first set of fit parameters, and then use those parameters as initial values for
Levenberg-Marquardt non-linear least-squares fitting to obtain final parameters.

The fits are able to accurately model the observed energy levels with a residual
standard deviation of ≈0.0012 cm−1 (36 MHz), in good agreement with the experi-
mental errors. However, due to our limited dataset and many fit parameters, there are
strong correlations (> 90%) between 𝜔2, 𝜖 , and 𝑔𝐾 , moderate correlation (∼60%)
of those parameters with 𝑝𝐺 , and little correlation (∼15%) with 𝐵. While the strong
correlations could be removed by fixing 𝜔2, we decided not to, as this results in
parameter uncertainties that were unreasonably small. Instead, in Fig. 4.12, we pro-
vide a plot of parameter confidence intervals, obtained from F-tests. The confidence
intervals show the correlated nature of the parameters and provide a sense of our
true uncertainties. As we will discuss, all of the parameter intervals correspond to
physically reasonable values.

From the final fits, we obtain the parameter values shown in Table 4.4. A
comparison of the model energy levels and the observed experimental energy levels
is shown in Figure 4.13. Our value of 𝜖𝜔2 ≈ −22 cm−1 is in good agreement with the
CaOH value of−36 cm−1 [147] and the SrOH value of−31 cm−1 [301]. The Renner-
Teller coupling is expected to decrease with increasing mass [147, 151]. According
to the supplemental information of Ref. [144], the vibronic couplings (⟨ 𝜕𝐻𝑒

𝜕𝑞
⟩) are of

similar size when comparing CaOH to YbOH. However, the separation of vibronic
states increases with larger spin-orbit, and therefore we receive weaker contributions
to the effective Hamiltonian parameters from mixing with other vibronic states.

The value of 𝜔2 ≈ 328 cm−1 is in good agreement with the frequency in the
𝑋̃ (010) state, where we found 𝜔2 ≈ 320 cm−1. We note in our approximate treat-
ment, we have not distinguished between harmonic and overall bending frequencies.
In general, the bending frequency will receive anharmonic contributions, neglected
here. A good discussion can be found in Ref. [309], and further Ch. 7 of Ref. [317]
discusses various calculations of harmonic and anharmonic frequencies for CaOH.

Using 𝜖𝜔2 ≈ −22 cm−1, we can estimate the scale of mixings between the
𝑋̃ (010) and 𝐴̃(000) states. These mixings were relevant for the earlier discussion
(Sec. 4.2) of perturbations to 𝑋̃ (010). For example, contributions to axial spin-
rotation, 𝛾𝐺 , can occur at third order: 𝛾𝐺 ∼ (𝜖𝜔2)2𝐴/(Δ𝐸ΠΣ)2 ∼ 0.002 cm−1
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(65 MHz). This is slightly too large to explain the observed value, but we note
the Renner-Teller parameter 𝜖 actually receives two contributions in the effective
Hamiltonian [143, 173, 200, 312, 319, 334]: 𝜖 ≈ 𝜖1 + 𝜖2. These are the dipolar (𝜖1)
and quadrupolar (𝜖2) contributions11. In CaOH, both of these terms were found to
both be negative [200], and we expect a similar situation here. Only the dipolar 𝜖1

term is responsible forΣ−Π mixing. This means we expect our earlier estimate using
𝜖𝜔 to be too high. Further, its very possible there are multiple states contributing
to the the axial spin-rotation effect, for example the 4 𝑓 states. On the other hand,
application of a similar estimate to obtain 𝑝𝐺 from third order contributions of 𝑝𝑒
is wildly inaccurate, as 𝐴 ≫ 𝑝𝑒. However, it is possible 𝑝𝐺 receives contributions
from 4 𝑓 mixing as well, which can have very different matrix elements than what
we estimate with 𝜖𝜔2.

Finally, we can set 𝐻𝐾 = 0 in the model, essentially turning off the 𝐾 resonance.
This allows us to visualize the effects of the K-resonance. In Figure 4.14, compare
the actual and deperturbed eigenvalues of the effective Hamiltonian. As we can see,
the deperturbed Σ and Δ states are near degenrate. Turning on 𝐻𝐾 mixes and splits
the levels, with separation roughly given by Δ𝐸 ≈ (𝑝𝑒 + 2𝑞𝑒) (𝐽 (𝐽 + 1) − 3/4)1/2.

To very good approximation, the resulting eigenstates are full mixtures of 2Δ

and 2Σ, and as alluded to earlier, the mixed eigenstates have ⟨|𝐾 |⟩ = 1. The
resulting level pattern is similar to that of a case (b) 2Π state, with large scale
rotational structure characterized by 𝑁 , and smaller scale spin-rotational splittings
characterized by 𝐽. The “emergent” spin rotation splitting, on the order of 𝛾 ∼ 0.3
cm−1 for the states we observe, is set by the combination of Λ-type doubling and
overall rotation, very reminiscent of quenching of electronic angular momentum in
non-linear polyatomic molecules [123]. We can compare this emergent 𝛾 value to an
estimate of the contribution to the spin-rotation parameter in the 𝐴̃2Π1/2 state from
second order mixing with the 𝐵̃2Σ+ state, given in [39], eq. 7.122. Using 602 cm−1

for the spin-orbit matrix element [144], 3152 cm−1 for the splitting between 𝐴̃2Π1/2

and 𝐵̃ [335], and using the pure precession hypothesis to evaluate 𝐿2
⊥ ∼ 𝜆(𝜆+1) = 2,

we obtain 𝛾 ∼ 0.38 cm−1. This is reasonable agreement, especially if we recall the
spin-rotation splitting is 3

4𝛾 for a bending 𝑁 = 1 state.

To make the energy structure manifest for mixed vibronic character, we con-
sider just the |Ω| = 1/2 matrix elements in 4.2, obtaining a 2x2 matrix for all

11There can be some confusion, as some references instead use 𝜖 (2) to instead refer to the dipolar
contribution, since this term contributes to the effective Hamiltonian at 2nd order, and vice versa for
𝜖 (1) . Also, Ref. [172] has an extra factor of (1 + 𝜖1)−1, as mentioned at the end of Ch. 2.
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𝐽 > 1/2. We neglect the contributions at second order and higher from mixing
with the distant |Ω| = 3/2 states; these contributions can be taken into account
via perturbation theory, if necessary. Then, we rewrite the 2x2 matrix in terms
of a new basis, |2Δ3/2⟩ ± (−1)𝑝 |𝜇2Σ1/2⟩, implemented with the unitary matrix

𝑈 = 1√
2

(
1 1
(−1)𝑝 −(−1)𝑝

)
. Finally, we drop 𝑞𝐺 , owing to its smaller magnitude

compared to 𝑝𝑒 + 2𝑞𝑒. We then have:

𝐻eff = 𝐸0 + 𝐵𝐽 (𝐽 + 1)

+
©­­­­«
∓ 𝑝𝑒 + 2𝑞𝑒

2

(
𝐽 (𝐽 + 1) − 3

4

) 1
2

𝑔𝐾 − 𝐵 −
(𝜖𝜔)2

2(2𝜔 + 𝐴)

𝑔𝐾 − 𝐵 −
(𝜖𝜔)2

2(2𝜔 + 𝐴) ± 𝑝𝑒 + 2𝑞𝑒
2

(
𝐽 (𝐽 + 1) − 3

4

) 1
2

ª®®®®¬
(4.24)

where 𝐸0 = 𝑇0+𝜔− 𝐴
2 +𝑔𝐾 +

𝐵
4 −𝛾−

(𝜖𝜔)2
2𝜔+𝐴 , and the upper/lower signs refer to overall

parity. Now the Λ doubling terms contribute to the splitting of the two states, while
the Renner-Teller effects cause mixing that attempts to restore the original vibronic
basis. Using our fit parameters, we see the off-diagonal elements are fixed at ∼ −0.3
cm−1 magnitude, while the on-diagonal elements scale like (𝑝𝑒+2𝑞𝑒)

√︁
𝐽2 + 𝐽 − 3/4,

which becomes ∼ (𝑝𝑒 + 2𝑞𝑒) (𝐽 + 1/2) for large 𝐽.

In conclusion, the 𝐴̃(010) level of YbOH exhibits a rich and unique structure.
To our knowledge, this is the first observation of a 𝐾-resonance severe enough that
it changes the energy level pattern from case (a) to case (b). Using an effective
Hamiltonian model, we have been able to provide an approximate, physical picture
of the 𝐴̃(010) state behavior, though further investigation is need to confirm our
spectroscopic interpretation. In particular, it would help to identify higher 𝐽 lines,
and to determine the location of the Ω = 3/2 manifold.

4.3.6 Bend to Bend Transitions
With the excited state energies characterized to reasonable accuracy, we moved

on to identifying diagonal Δ𝑣2 = 0 transitions out of 𝑋̃ (010). This band, designated
𝑋̃2Σ+(010) → 𝐴̃2Π1/2(010), is useful for bending mode manipulation. Due to the
quasi-diagonal FCFs, the vibrational potential energy surface is similar between
𝑋̃ and 𝐴̃2Π1/2. Therefore the diagonal 𝑋̃ (010) → 𝐴̃(010) band shares many
characteristics in common with its 𝑋̃ (000) → 𝐴̃(000) counterpart. The wavelength
of the 𝑋̃ (010) transition is only 0.3 nm away from the 𝑋̃ (000) transition, allowing us
to use the same lasers to generate diagonal 𝛿𝑣2 = 0 light. Furthermore, fluorescence
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Figure 4.15: Schematic of the beamline used for tests of optical pumping into
the 𝑋̃ (010) state and characterization of 𝑋̃ (010) → 𝐴̃(010) lines. Upstream, the
molecules are pumped out of 𝑋̃ (000) through the excited 𝐴̃(010) state, decaying
into 𝑋̃ (010). Downstream, we probe the increased fluorescence in the 𝑋̃ (010) state
using the diagonal transition to 𝐴̃(010).

decays are expected to be roughly similar: ∼ 90% of decays should have Δ𝑣2 = 0
and∼ 9% should have Δ𝑣2 = 1, with the remaining 1% emitted to many possible
states [144, 217].

We obtained 𝑋̃ (010) → 𝐴̃(010) line predictions by subtracting the 𝑋̃ (010)
energies (obtained via diagonalization) from the 𝐴̃(010) energies listed in Table 4.3.
The resulting lines for the lowest 𝑁′′ states are around 17331 − 17332 cm−1. This
is right where the so-called [17.33] band was observed in Ref. [217]—however, it
had previously been assigned as a transition from 𝑋̃ (000) to an unknown excited
state. Our work definitively re-assigns this band as originating from 𝑋̃ (010). Both
Refs. [217, 335] have also observed features further blue around 17338 cm−1 and
17345 cm−1. These could possibly be diagonal transitions involving 𝑣′′2 = 2 or
higher states.

The apparatus is the same as that described in Sec. 4.3.3. In Figure 4.15, we
provide a schematic diagram of the beamline. We now tune the upstream pump
laser to the 𝑋̃ → 𝐴̃(010) transition at 567 nm, detecting off diagonal decays to
𝑋̃ (010) at 577 nm. This optically pumps molecules from the ground state into
the bending mode. Then in downstream region, we tune the probe laser to the
𝑋̃ (010) → 𝐴̃(010) transition at 577 nm, detecting off diagonal 595 nm decays to
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Figure 4.16: Sample LIF spectrum obtained from excitation of the 𝑋̃ (010) →
𝐴̃(010) transition, driving the 𝐽 = 1/2, 3/2 components of 𝑁′′ = 1− to the lower
𝐽′ = 3/2+ state. The zero frequency offset is 17331.7093 cm−1, and the line centers
are fit to be 17331.7083 cm−1 and 17331.7098 cm−1. a) Optical pumping into
the bending mode is visible by comparing the blue (pump on) and orange (pump
off) signals. The salmon lines are two Lorentzian fits. The optical pumping is
performed with 265 mW of power, retroreflected, on the 𝑋̃ (000) → 𝐴̃(010) line at
17651.3740 cm−1, addressing the lower (𝑁′ = 1) 𝐽′ = 3/2+ state. As mentioned in
the main text, the probe power of 465 µW in 1.1 mm diameter beam results in power
broadening. b) The same spectrum taken with smaller frequency steps and 70 µW
power. The optical pumping light is always on, and the salmon line is once again a
two Lorentzian fit.

the 𝑋̃ (110) state (see Ref. [144] for vibrational energies). Because we know the
energies of all states involved—𝑋̃ (000), 𝑋̃ (010), and 𝐴̃(010)—we did not need to
take extensive spectra, and simply performed 100 MHz scale scans to confirm the
line positions at high resolution.

We were able to identify multiple transitions from 𝑁′′ = 1, 2 in 𝑋̃ (010) up
to 𝐽′ = 1/2, 3/2 in 𝐴̃(010). The lines exhibit anomalous intensities that can be
attributed to TDM interference caused by the 𝐾 resonance. All transitions visible
above the noise floor were found close to their predictions, giving faith in the excited
state energies and assignments. In this pump-probe configuration, we can alternate
pump on/off to characterize the optical pumping into 𝑋̃ (010).

In Fig. 4.16(a), we show an example of a scan over the 𝑁′′ = 1− spin-rotation
features when exciting up to the 𝐽′ = 3/2+ in the “𝑁′ = 1” manifold. We compare
signals with and without 265 mW (before retro-reflection) of optical pumping light
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upstream. The optical pumping on 𝑋̃ (000) → 𝐴̃(010) causes an increase of ∼8x
in the 𝑋̃ (010) population. The two spin-rotation features are blended, in part due
to the small parity doubling, and in part due to power broadening by the 465 µW
downstream probe (𝐼0 ≈ 98 mW/cm2, 𝑠 ∼ 20 for 𝐼𝑠 ≈ 5 mW/cm2). On the
other hand, the spectrum in Fig. 4.16(b) is taken with a 70 µW beam (𝐼0 ≈ 14
mW/cm2, 𝑠 ∼ 3), and the spin-rotation splitting is resolved to be 44.7 ± 3 MHz,
another confirmation of the bending mode spectroscopy. The apparently low (∼10
mW/cm2) saturation intensity matches that for the diagonal 𝑋̃ (000) → 𝐴̃(000)
transition, which is another confirmation of the transition assignment. The low
power requirements for saturation are a demonstration of the strong optical TDMs
afforded by quasi-diagonal FCFs.

To further study the saturation intensity, we can fix the pump and probe fre-
quencies at resonant values, and scan the pump power. The resulting data is shown
in Fig. 4.17(a). The probe line here is fixed 17331.4810 cm−1, corresponding to the
𝑁′′ = 1, 𝐽′′ = 1/2− → 𝐽′ = 3/2+ transition for the “𝑁′ = 2” manifold. We compare
optical pumping results when addressing both the upper 𝑁′ = 2, 𝐽 = 3/2+ state, and
the lower 𝑁′ = 1, 𝐽′ = 3/2+ state. Optical pumping into the bending mode is clearly
visible, with the effect saturating around ∼100 mW, corresponding to 𝐼 ∼ 4 W/cm2.
We note the pumping efficiency varies with the 𝐽′ state used. Furthermore, the
transitions with larger bending mode pumping efficiency can actually demonstrate
less overall LIF from the pump beam, shown in Fig 4.17(b). This can be understood
due to different branching ratios and TDMs of the excited states.

The optical pumping we demonstrate will be an invaluable tool for experiments
using YbOH. We note that the pumping efficiency can be further optimized with
technical modifications. Increasing the number of laser passes will increase the
interaction time and aid pumping efficiencies. Furthermore, applying microwaves
in the pumping region can mix rotational states and increase the quantity of pumped
molecules, a technique that was applied in ThO [67].

We also briefly performed Stark spectroscopy on the 𝑋̃ (010) → 𝐴(010) tran-
sition, using the same apparatus outlined in Sec. 4.2.1. We specifically examined
the lines shown in Fig. 4.16 at different DC electric field values, up to 244 V/cm.
The Stark behavior matched the spectra taken on the 𝑋̃ (010) → 𝐴̃(000) band in
Sec. 4.2.3.2. This is a confirmation that the excited state parity splittings are some-
what large. For example, using the 0.43 D dipole moment of 𝐴̃(000), and estimating
the parity splitting of 𝐴̃(010) at Δ𝐸 ≈ 500 MHz, we find the second order energy
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Figure 4.17: Saturation signals obtained by fixing the laser frequencies on a pump-
probe pair of lines and scanning the pump power. In both plots, the probe was fixed
on the 𝑁′′ = 1, 𝐽′′ = 1/2− → 𝐽′ = 3/2+, 𝑁′ = 2 transition of the 𝑋̃ (010) → 𝐴̃(010)
band, while the pump was varied. In both plots, orange squares (blue circles) indicate
the pump addresses the upper, 𝑁′ = 2 (lower, 𝑁′ = 1) 𝐽′ = 3/2+ state in 𝐴̃(010).
a) The ratio of pump on vs pump off population probed in the bending mode. The
different excited states for pumping have different pumping efficiencies and saturate
to different values. b) The fluorescence detected in the pump region when driving the
𝑋̃ (000) → 𝐴̃(010) transitions at 17651.3740 cm−1 (lower) and 17652.1465 cm−1

(upper). The traces indicate both a difference in saturation intensity and saturation
fluorescence.

shift from the 𝐸 = 244 V/cm applied field to be (𝐷mol𝐸/2)2/Δ𝐸 ∼ 1 MHz, too
small for us to resolve.

4.3.7 Transition Dipole Moments
While studying the optical pumping, we observed significant variation of the

rotational branching ratios describing 𝐴̃(010) decays to 𝑋̃ (010). For example,
some excited states resulted in little to no pumping into 𝑁′′ = 1, while others
exhibited no pumping into 𝑁′′ = 2. This is a result of transition dipole moment
(TDM) interference from the 𝐾 mixing of the excited vibronic states. Determination
of TDMs on the 𝑋̃ (010) → 𝐴(010) transition is of importance to science state
preparation and readout schemes. Therefore we performed an investigation of the
optical pumping efficiency of various 𝐴̃(010) levels. Our characterization is not
exhaustive, as the goal of our work is not a detailed determination of exact TDMs,
but rather a heuristic understanding of useful transitions for optical pumping and
science state control.
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The lines we investigated are shown in Table 4.5. Typically, the pump was
parked on a given excited state, driving 𝑋̃ (000) → 𝐴̃(010), and the probe scanned
across the 𝑋̃ (010) → 𝐴̃(010) line. By sitting on the same probe and comparing
different excited states, we can qualitatively assess which excited state has stronger
TDMs with the ground state in question. In this way, we use the decay strength from
𝐴̃(010) obtain TDM estimates for transitions that we have not explicitly observed
in excitation on the probe spectrum (those marked with ∗ in the table).

Some interesting patterns emerge in the TDMs. First, we observe that the
Δ𝐽 = 0 lines addressing 𝐽′ = 1/2± are completely missing. These lines were not
observed in either probe fluorescence or optical pumping. Actually, the explanation
for these missing lines is somewhat straightforward, given the 𝐽′ = 1/2 states are
pure 2Σ1/2 vibronic states, as the 2Δ3/2 and 2Δ5/2 states cannot support 𝐽 = 1/2.
Therefore, we can consider the matrix elements for the transition in a straightforward
manner. The ground state can be parameterized in Hund’s case a) as symmetric and
anti-symmetric combinations of case a) states:���𝑋̃ (010), 𝑁′′ = 1, 𝐽′′ =

1
2
,P = ±

〉
=

1
√

2

(���ℓ = 1, Σ = −1
2
, 𝑃 =

1
2

〉
± (−1)𝑝

���ℓ = −1, Σ =
1
2
, 𝑃 = −1

2

〉)
.

(4.25)

Here, we use ± to denote the state parity, with the parity phase given by 𝑝. We have
also suppressed Λ = 0 in the kets for brevity. The excited state can be written in a
similar fashion:���𝜇2Σ1/2(010), 𝐽′ = 1

2
,P = ±

〉
=

1
√

2

(���Λ = 1, ℓ = −1, Σ = −1
2
, 𝑃 = −1

2

〉
± (−1)𝑝

���Λ = −1, ℓ = 1, Σ =
1
2
, 𝑃 =

1
2

〉)
.

(4.26)
Note we always must have |Ω| = 1/2, as we are dealing with a strongly spin-orbit
coupled molecule. Finally, because we are considering a Δ𝐽 = 0 transition, the two
𝑝 phase factors are identical, and we can drop the (−1)𝑝 factor.

Now we consider the selection rules for E1 transitions. The parity selection
rule couples + ↔ − parity states. We will also have 𝛿Σ′Σ′′ = 𝛿ℓ′ℓ′′ = 0, owing to
the properties of the TDM operator in the approximation of separated electronic,
vibrational, and spin degrees of freedom. To evaluate the selection rules on Λ,
recall the matrix element in the molecule frame, ⟨Λ′|𝑇1

𝑞 (𝑑) |Λ′′⟩, is nonzero only if
Λ′ − Λ′′ = 𝑞. In other words, the transverse TDM components (𝑑𝑥 , 𝑑𝑦) generate
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Table 4.5: Characterized 𝑋̃2Σ+(010) − 𝐴̃2Π1/2(010) lines. Wavenumber readings
are taken obtained from a HighFinesse WS7-30 wavemeter, which has an absolute
frequency error of 0.001 cm−1. Lines are grouped by ground 𝑁′′ manifold and
excited 𝐽′ manifold. The excited states are also labeled by their emergent 𝑁′ value
(see main text). The qualitative TDM characterization has the following meanings:
“Strong” means the ground state population downstream was increased by optical
pumping upstream on a 𝑋̃ (000) → 𝐴̃(010) transition addressing 𝐽′; “Weak” means
the ground state population was not significantly increased by pumping; “Moderate”
characterizes an intermediate pumping efficiency regime; “Unclear” means the data
was inconclusive or not taken in our study; “Missing” means the probe line was
looked for but not observed. Missing line frequencies are explicitly denoted with −.

Observed Line∗ (cm−1) 𝑁′′, 𝐽′′,P′′ 𝑁′, 𝐽′,P′ TDM Strength
17 331.2998 1, 3/2,− 1, 1/2, + Strong

− 1, 1/2,− 1, 1/2, + Missing
17 331.3145 1, 3/2, + 1, 1/2,− Unclear

− 1, 1/2, + 1, 1/2,− Missing

17 331.7098 1, 3/2,− 1, 3/2, + Strong
17 331.7083 1, 1/2,− 1, 3/2, + Strong
17 331.6929 1, 3/2, + 1, 3/2,− Strong
17 331.6908 1, 1/2, + 1, 3/2,− Strong

− 1, 3/2,− 2, 3/2, + Missing
17 332.4810 1, 1/2,− 2, 3/2, + Moderate
17332.4650∗ 1, 3/2, + 2, 3/2,− Weak
17332.4630∗ 1, 1/2, + 2, 3/2,− Weak

17330.7187∗ 2, 5/2, + 1, 3/2,− Unclear
17330.7130∗ 2, 3/2, + 1, 3/2,− Unclear
17330.7329∗ 2, 5/2,− 1, 3/2, + Weak
17330.7265∗ 2, 3/2,− 1, 3/2, + Weak

17 331.4900 2, 5/2, + 2, 3/2,− Strong
17 331.4845 2, 3/2, + 2, 3/2,− Strong
17 331.5048 2, 5/2,− 2, 3/2, + Strong
17 331.4984 2, 3/2,− 2, 3/2, + Strong

* Lines marked with ∗ are theory values. The lines are not necessarily missing, but simply were
not searched for.
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perpendicular bands with ΔΛ = ±1, and 𝑑𝑧 generates parallel bands with ΔΛ = 0.
Since we are considering a transition from Λ′′ = 0 → Λ′ = ±1, we are coupling
to the perpendicular components of the molecule frame TDM. Finally, from the
rotation of 𝑇1(𝑑) from the lab frame into the molecule frame, we obtain a 3j-symbol
that constrains Δ𝑃 = ΔΛ (we could have also derived this by noting Σ and ℓ do not
change).

Now we consider the possible transitions. We could try, for example, to couple
𝑃′′ = ±1/2 → 𝑃′ = ∓1/2 states. However, we observe that this would involve
coupling ℓ′′ = ±1→ ℓ′ = ∓1 states, which is explicitly forbidden for an E1 transition.
Therefore, within the E1 selection rule, the transition 𝐽′′ = 1/2→ 𝐽′ = 1/2 for the
𝑋̃ (010) → 𝜇2Σ1/2(010) band is forbidden. We can see this clearly by considering
a quantum number Ωℓ = ℓ +Σ, which is invariant under E1 transitions, and captures
the spin-bending alignment of a state. The excited state has |Ω′

ℓ
| = 3/2, while the

ground state has |Ω′′
ℓ
| = 1/2. Because the two states have opposite spin-bending

alignment, they cannot be connected by an E1 transition. Further, we can surmise the
𝐽′′ = 1/2→ 𝐽′ = 1/2 transition should be allowed when addressing the 𝜅2Σ1/2(010)
excited state, which has ℓ and Λ flipped, and therefore has |Ωℓ | = 1/2.

The remaining TDMs for 𝐽′ > 1/2 are more complicated, as we must now
consider 𝐾-mixing between the Σ and Δ vibronic states, which will also mix |Ωℓ |.
We consider the excited state as admixtures of 2Σ−1/2 and 2Δ3/2, which can be
treated as a coupled two level system, with superposition eigenstates characterized
by a mixing angle 𝜃 [213]. For resonant 𝐾-mixing, cos 𝜃 ≈ 1/

√
2, and we have:���𝐴̃2Π1/2(010), 𝐽, (±),±

〉
=

1
√

2

(���2Σ−1/2,±
〉
(±)

���2Δ3/2
〉)

=
1
2

(���Λ = 1, ℓ = −1, Σ = −1
2

〉
±

���Λ = −1, ℓ = 1, Σ =
1
2

〉)
(±)1

2

(���Λ = 1, ℓ = 1, Σ = −1
2

〉
±

���Λ = −1, ℓ = −1, Σ =
1
2

〉)
.

(4.27)
Here, we use (±) to denote the phase of the 𝐾 mixture, which is determined by the
Λ-doubling interaction. Meanwhile ± without parentheses denotes the rotationless
𝑒/ 𝑓 parity of the state [332], where 𝑒 states are + combinations and 𝑓 states are −
combinations. We have used the convention where all states are written with Λ = 1
as the first element of the superposition [151]. We note these states are reminiscent
of the states of a Hund’s case (b) ket, |𝑁𝑆𝐽𝐾⟩, written in terms of Hund’s case (a).
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We can make this more manifest by rewriting the states using Ω = Λ + Σ.���𝐴̃2Π1/2(010), 𝐽, (±),±
〉
=

1
2

(���ℓ = −1,Ω =
1
2

〉
± (±)

���ℓ = −1,Ω = −1
2

〉)
± 1

2

(���ℓ = 1,Ω = −1
2

〉
± (±)

���ℓ = 1,Ω =
1
2

〉)
.

(4.28)

The spin-orbit coupling is so strong that the vibronic 𝑃 = 1/2, 3/2 states are mixed
and the state actually resembles a case (b) 2Π state, which has both orientations Ω
relative to ℓ. Indeed, if we write out the bending ground state, we see it has a similar
form:���𝑋̃2Σ+(010), 𝑁, 𝐽,±

〉
=

1
2

(
𝛼

���ℓ = 1, Σ =
1
2

〉
+ 𝛽

���ℓ = 1, Σ = −1
2

〉)
± 1

2

(
𝛼

���ℓ = −1, Σ = −1
2

〉
+ 𝛽

���ℓ = −1, Σ =
1
2

〉) (4.29)

Here, 𝛼 and 𝛽 are the real, normalized coefficients obtained form the Hund’s case
(a) to (b) unitary basis change, and generically depend on 𝑁, 𝐽, ℓ, Σ,Λ [129, 156].
The relative phase of 𝛼 and 𝛽, along with their magnitudes, encodes the difference
between the 𝑁 = 𝐽 − 𝑆 and 𝑁 = 𝐽 + 𝑆 components of a given 𝐽 state. We can see
the (±) mixing phase mimics the effect of the relative sign between 𝛼 and 𝛽, and
maps on to the extra quantum number 𝑁 in the case (b) limit.

While our resonant mixing assumption results in equal admixtures of the two
vibronic states, the coefficients 𝛼 and 𝛽 are generically not of the same magnitude
for a given case (b) state. For example, a 𝑁 = 1, 𝐽 = 3/2 state contains more 𝑃 = 3/2
admixture than the 𝑁 = 2, 𝐽 = 3/2 state, which can be intuitively understood as
a consequence of spin-rotation alignment or anti-alignment. If the eigenstates are
equal vibronic mixtures, then the transition will not exactly follow Hund’s case (b)
patterns. For example, for a 2Π(𝑏) −2 Π(𝑏) transition, Herzberg [336] mentions
an approximate selection rule, Δ𝑁 = Δ𝐽. This selection rule results from the fact
that an E1 transition cannot flip a spin, so the spin-rotation state is preserved, and 𝐽
only changes when 𝑁 does. However, we are dealing with a perpendicular transition
that nonetheless approaches a case (b) limit, and therefore we do not expect such a
selection rule to hold. In particular, if spin-orbit is large, we cannot distinguish 𝐿
from 𝑆, and we do not have the same notion of a “spin-flip.”
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Empirically, we find there is a Δ𝑁 = 0 selection rule. This can be rationalized in
the following way—in a transition, the photon angular momentum is transmitted to
the electron orbit, while the bending rotation remains decoupled. Unfortunately, we
did not take sufficient data to make further inferences. In particular data on whether
or not such a selection rule holds for higher 𝑁 states would be interesting. We are
confident that with further investigation, the transition interference in the excited
bending mode can be accurately modeled.

4.4 The State of YbOH
The YbOH spectroscopy necessary to perform a precision measurement of 𝑃,𝑇

violation in a beam has been completed. Nonethless, there still remain several
outstanding spectroscopic questions regarding YbOH. Further investigation of these
questions will be necessary to enable efficient laser cooling and magneto-optical
trapping of YbOH for the next-generation of new physics searches. In this section,
we outline the outstanding spectroscopic questions in YbOH.

4.4.1 4f States and Laser Cooling Prospects
YbF and YbOH are both affected by the existence of states corresponding to an

electron being excited out of the inner-shell 4 𝑓 orbital localized on the Yb atom. The
study of these so-called 4 𝑓 hole states is underway in YbF [291, 337]. These states
both perturb the excited states and provide leakage pathways for optical cycling.
In YbOH, evidence for perturbation from 4 𝑓 states is present in many aspects of
the spectroscopy already summarized, such as negative ground state spin-rotation
constants [281], congested excited state spectra, with some states having ∼100 ns
lifetimes [217], and the value of 𝑔𝑆 = 1.86 for the effective electron g-factor in the
𝐴̃2Π1/2(000) state [282].

The existence of 4 𝑓 hole states can be intuitively connected to the electronic
configurations of the Yb+ ion. In ligand field theory [137, 138], Yb containing
molecules can be modeled as Yb+ X− (X=F, OH, etc.), with the atomic 6𝑠 valence
electron remaining localized on Yb. The ground state configuration of the Yb+ ion
is 2𝑆1/2, and there is an excited state 2𝑃1/2 with opposite parity, analogous to the
𝑋̃ and 𝐴̃ states. However, the Yb+ ion also has metastable states that arise from
the 4 𝑓 136𝑠2 configuration, with term symbols 2𝐹𝐽𝑒 , with two spin-orbit states with
electronic angular momentum 𝐽𝑒 = 5/2, 7/2, split by ∼10000 cm−1. These are
the ionic counterpart to the 4 𝑓 states in YbF and YbOH. We also note there are
more 4 𝑓 states in the Yb+ ion, corresponding to 4 𝑓 136𝑠5𝑑 excitations (as well as
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6𝑠6𝑝, 5𝑑2, etc.). It is not currently known where such configurations are located in
the molecule.

The ligand electric field splits the 𝐽𝑒 = 5/2 manifold into |Ω| = 1/2, 3/2,
and 5/2 states, each separated by ∼1000 cm−1. Because we are now discussing a
valence hole, the spin-orbit interaction has opposite sign compared to the 𝐴̃ states,
and therefore the anti-aligned 𝐽𝑒 = 5/2 is higher in energy. These 𝐽𝑒 = 5/2 states
are expected to overlap with the “normal” (i.e., E1 allowed) excited states in the
region ranging from 17600 − 20000 cm−1. One such perturbing state has already
been identified in YbOH at 17731 cm−1, denoted as [17.73] [217]. The 𝐽𝑒 = 5/2
states in YbF have been characterized more thoroughly, summarized in a recent
deperturbation analysis [291]. We expect their findings to generalize to YbOH,
which would mean the 𝐴̃ and 𝐵̃ states are mixed with 4 𝑓 states by a two-electron
interaction with magnitude of roughly 50 − 100 cm−1. Further, there is the added
extra complexity of the bending modes in YbOH, which result in a higher density
of states, and in the possibility of vibronic mixing with the 4 𝑓 states, which can mix
Ω.

The lower 𝐽𝑒 = 7/2 manifold is also split by the ligand field into |Ω| =
1/2, 3/2, 5/2, and 7/2 states. These states are expected to lie in the ∼7500 −
10000 cm−1 range, which means they can be directly populated by decays from
𝐴̃2Π1/2(000). The intensity borrowing for this decay is primarily caused by mixing
of the 𝐽𝑒 = 7/2 states with the 𝑋̃ manifold [291]. These low-lying leakage states
have lifetimes in the ∼1−10 ms range, too slow to wait for population to decay back
down to 𝑋̃ (000). However optically pumping these states is also a challenge, as
transitions back to the manifold of 𝐴̃ and 𝐵̃ states are two-electron transitions with
weak transition dipole moments.

Currently, decays to the 4 𝑓 manifold are expected to arise at the ∼0.05% level,
limiting photon cycling of YbF and YbOH molecules to 1− 2× 103 photon scatters.
While this is insufficient for laser cooling, slowing, and magneto-optical trapping,
it is still adequate for 2D cooling [106], as well as for cycling in state preparation
and readout. Therefore, in the medium term, beam experiments utilizing YbOH
will be able to leverage optical cycling techniques to increase beam density, reduce
divergence, and perform efficient state preparation/readout. However, in the long
term, characterization of repumping schemes for the 4 𝑓 states is necessary to realize
precision measurements on laser-cooled and trapped YbOH molecules. Depending
on the strength of the repumping transition, significant laser power may be necessary,
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although we note that weaker decay branches in the optical cycle do not need to be
saturated in order to achieve adequate repumping.

Methods that can be used to identify the low-lying, 𝐽𝑒 = 7/2 manifold of 4 𝑓
states include:

1) Detection of DLIF from decays that populate the 4 𝑓 states. For example,
decays from the 𝐴̃2Π1/2(000) manifold are expected to populate 4 𝑓 states with
∼ 0.05% branching. Detecting this scale of DLIF is additionally challenging as
quantum efficiencies for cameras are typically worse in the infrared. Nonetheless,
the Doyle group at Harvard has observed12 a weak 𝐴̃2Π1/2(000) DLIF feature
at 1033 nm, corresponding to decays populating a low-lying 4 𝑓 state. Based
on comparisons with theory, this decay is thought to be down to the Ω = 1/2
state, but the vibrational level is unclear. For YbF, the DLIF method was used to
observe 4 𝑓 states in Ref. [337]. They proceeded by first exciting to high-lying,
4 𝑓 character electronic states around 31000 − 33000 cm−1, and then detecting
subsequent visible wavelength fluorescence, which has higher camera efficiency.
While the ionization energy in YbOH is lower, a similar approach could still work by
monitoring fluorescence from a high-lying excited state with 4 𝑓 character, pushing
the decays of interest into visible wavelengths.

2) Direct detection of transitions involving 4 𝑓 states using FM absorption spec-
troscopy. FM absorption techniques can significantly increase the absorption de-
tection threshold [220, 222] with standard experiments reaching sensitivities on the
order of 10−4, and advanced techniques pushing sensitivities to 10−6 [225, 338].
Infrared laser generation and detection technology is well developed, large molecu-
lar densities are present in the cell, and multi-pass absorption can help boost signal
sizes. The standard approach would be to look for transitions from 𝑋̃ (000) → 4 𝑓 .
Alternatively, it is possible there is enough natural 4 𝑓 population in the cell, after
laser ablation and enhancement, to search for transitions from 4 𝑓 states up to a
known excited state, such as 𝐴̃ or 𝐵̃.

3) Optical cycling to populate 4 𝑓 states, and then performing direct LIF detection
of 4 𝑓 repumping transitions. This typically would occur in a beam. First the
molecules undergo optical cycling upstream. After sufficient interaction time, they
will decay to the unaddressed 4 𝑓 states. Then, downstream, a repump laser is
scanned across a possible transition from 4 𝑓 states to some excited state. Upon
successful repumping, the 4 𝑓 population returns to the ground state, and cycling

12This information was obtained in a private communication with Alex Frenett.
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can be performed again further downstream. This technique has been used to
determine repumpers in YbOH [139] and CaOH [200], and is most effective when
the rough location of the line is already known (to < 10 cm−1). Direct detection of
absorption has advantages is in contrast with optical cycling techniques; for example,
in YbOH, pumping into the 4 𝑓 states would require ∼ 7 lasers.

4.4.2 Unassigned Bands
In this section, we overview the many transitions that have been observed in

YbOH in the range from 17300 − 19000 cm−1. Ref. [217] performed initial survey
spectroscopy with DLIF and excited state lifetime measurements. Meanwhile, in
Ref. [335], REMPI spectroscopy was used to distinguish YbOH features from over-
lapped YbOCH3 lines, and to perform spectroscopy on YbOD. In both references,
the transitions are labeled according to their wavenumber in cm−1, divided by 1000.
For example, the 𝑋̃ − 𝐴̃ band at 17323 cm−1 would be labeled as [17.32].

Transitions between the 𝑋̃ and 𝐴̃ vibrational manifolds can be grouped into
various frequency ranges according to the change in vibrational quantum numbers.
In an approximately harmonic approximation, Δ𝑣1 = Δ𝑣2 = 0 transitions are found
in the∼17300−17400 cm−1range. Meanwhile, Δ𝑣1 = 1 transitions are found around
17900 cm−1, and Δ𝑣2 = 1 transitions around ∼17600− 17700 cm−1, and so on. The
proximity of different transitions with the same Δ𝑣 indicates roughly similar ground
and excited state vibrational energies, which is related to the diagonal nature of the
FCFs.

We begin discussion of the states of YbOH with the [17.73] state. This is
an Ω = 1/2 excited state at 17731 cm−1 that has been identified to have signifi-
cant 4 𝑓 character [217]. The assignment is made both due to its ∼5 times longer
lifetime compared to the 𝐴̃2Π1/2(000) state, and due to its rotational splittings in
high-resolution spectra13. This state has also been successfully used for repump-
ing population during laser cooling [106], confirming its assignment. Finally, this
state was observed in a recent REMPI study [335], which studied the spectra of
YbOD. The replacement of H with D, known as deuteration, can help better un-
derstand vibrational structure, with prior application in CaOH/CaOD [147] and
GeCH/GeCD [312]. Continuing, the YbOD spectra in Ref. [335] exhibited a feature
shifted to the blue by 6 cm−1. This shift was taken as an indication that the state
does not have significant bending content. For comparison, the origin band is also

13Private communication with Tim Steimle.
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shifted by a small amount upon deuteration, roughly 5 cm−1 to the red [335].

At Caltech, we have performed high-resolution FM spectroscopy on two unas-
signed bands, denoted [17.64] and [17.68]. These bands were observed in both
Ref. [217] and Ref. [335]. Our characterization of these bands, including observed
transition frequencies, is provided in Ref. [161]. We were unable to correlate these
bands to the ground 𝑋̃ (000) state using depletion tests. However, we mention a
few relevant observations. First, the [17.68] spectra exhibits a significant gap in the
center of the spectra, ∼1 cm−1 wide. This could correspond to a Σ − Σ transition,
which is expected to have a “𝑄 gap” with size given by 4𝐵′, where 𝐵′ is the excited
state rotational constant. Furthermore, Ref. [335] found the [17.68] transition was
blue-shifted by 19 cm−1, and concluded the state does not have significant bending
content.

In Ref. [335], the deuterated counterpart to the [17.64] transition could not be
observed at all. The authors of Ref. [335] postulate this could mean the [17.64]
excited state has bending character. As they explain, it is possible the band bor-
rows intensity in YbOH via an accidental near-degeneracy that is not present in
YbOD. Here, we expand on their explanation. The bending frequency shift upon
deuteration for an XY-H molecule is given in Ref [312], which is in turn taken from
Herzberg [305]. The ratio is:

𝜔2,D

𝜔2,H
=

√√√√√ 𝑟2
YbO
𝑚𝐷
+ 𝜉

𝑟2
YbO
𝑚H
+ 𝜉

(4.30)

𝜉 =
𝑟2

OH
𝑚Yb
+ (𝑟YbO + 𝑟OH)2

𝑚O
. (4.31)

Using the parameters for the YbOH ground state [290], we obtain 𝜔𝐷/𝜔𝐻 = 0.748.
Note this is similar to the naive scaling of the reduced mass as 1/

√
2. We can therefore

use the 𝜔2 value of YbOH to estimate the YbOD value as 𝜔2,D ≈ 240 cm−1. In
addition to changing the vibrational ladder spacings, deuteration also affects zero
point energies. For diagonal 𝛿𝑣2 = 0 transitions, the effect of deuteration is largely
common mode between the ground and excited states, which is why the origin shift is
only ∼5 cm−1. However, if the transition in question is off-diagonal, with Δ𝑣2 = ±1,
then we expect deuteration to have a significant effect. If the ground state has larger
𝑣2 than the excited state, then the transition should shift to the blue by ∼80 cm−1.
On the other hand, if the excited state has larger 𝑣2, then the transition will shift to
the red by roughly the same amount. In the spectra of Ref. [335], the region 80 cm−1
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to the blue is explicitly shown as having no features. However, the region to the red
is not shown. If the deuterated shift were to pull the transition 80 cm−1 to the red,
this would mean the [17.68] is a 𝛿𝑣2 = +1 line that connects to an excited state with
1 more bending quanta than the ground state. These arguments also give us reason
to believe that the transitions in Ref. [335] observed with relatively small deuterated
shifts are likely Δ𝑣2 = 0.

We briefly mention two other bands here that have observed in our source
at Caltech. We have observed lines in high-resolution in the following ranges:
17345 − 17346 cm−1, denoted [17.34] and 17394 − 17395 cm−1, denoted [17.39].
Originally, the [17.34] was thought to be the 𝑋̃ (010) → 𝐴̃(010) line, though now we
know that is definitely not the case. This could instead by another diagonal transition
involving other bending ground and excited states. Meanwhile, the [17.39] band
was originally thought to be the 𝑋̃ (010) → [17.73] transition. However, with our
determination of the bending mode frequency, such a band should instead be at
17411 cm−1, which makes the [17.39] assignment a mystery. We note the [17.39]
band has a 𝑄-branch like structure, and the absorption signal was experimentally
found to saturate with a saturation intensity of≈88 mW/cm2. This is∼10× is weaker
than the origin band, indicating this excited state could have mixed 4 𝑓 character.

We also mention two more un-assigned transitions from Ref. [217]: the weak
[17.71] band, and a reasonably strong transition at 17900 cm−1, labeled [17.90]. The
only information we have about [17.71] is that it is weak and has a long vibrational
progression in the DLIF. On the other hand, the [17.90] transition is very close
to the 𝑋̃ (000) → 𝐴̃(100) band at 17908 cm−1, and was observed to have similar
lifetimes and DLIF as the 𝐴̃(100) state. This transition was not observed in the
deuterated spectra of Ref. [335], attributed to the signal being below the noise floor.
Nonetheless, the observation of the [17.90] band so close to the Δ𝑣1 = 1 line out of
𝑋̃ (000) could indicate [17.90] is also a Δ𝑣1 = 1 transition, but originating instead
out of 𝑋 (100).

Additionally, another excited state has been observed in fluorescence at ∼18577
cm−1 [339]. This state has been attributed to have Ω = 3/2 character, suggesting
assignment as the 2Π3/2 component of the 𝐴̃ state. This would put the spin-orbit
splitting at ∼1254 cm−1. However, Zeeman tuning indicates a reduced g-factor from
expectation [339], indicating the possibility of mixing with another state, possibly
a Δ3/2 state with 4 𝑓 character. This band is overlapped with excitation of the [557]
band in YbF (labeled according to different convention) [291, 340].
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Figure 4.18: An energy level diagram of the lowest lying bending levels of the 𝑋̃ ,
𝐴̃, and [17.73](Ω = 1/2) manifolds. Diagram not to scale. The splitting of 𝑋̃ (020)
indicates the anharmonic splitting of the ℓ = 0, 2 levels. Lines marked with “?” are
potential re-assignments. See main text for details.

Recently, the 𝐵̃2Σ+1/2(000) state was observed in REMPI spectroscopy [337].
The origin of the state was found to be 20473 cm−1, and the lifetime was 31(5) ns.
The state was perturbed, limiting the accuracy of the medium-resolution spectral fit.

4.4.3 Reassignment
Here, we suggest an avenue for re-assignment of the YbOH excited state spec-

trum. We focus on the interpretation of the [17.34], [17.39], [17.64], [17.68], and
[17.71] features. We propose these transitions arise out of the excited bending
modes of 𝑋̃2Σ+. Indeed, this was the case with the previously unknown [17.33]
band. Further, we propose the excited state they connect to is a mixture of bending
states with combined 𝐴̃2Π1/2(020) and [17.73](010) character.

The situation is illustrated schematically in Fig. 4.18. For now, we only consider
bending modes, so we abbreviate (0𝑣20) as simply 𝑣2. The 𝑣2 = 0 origin of 𝐴̃2Π1/2
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is located at 17323 cm−1. In this chapter, we identified the 𝑣2 = 1 state of 𝐴̃2Π1/2 at
17651 cm−1. Naturally, the 𝑣2 = 2 state should be located higher by approximately
one quanta, at approximately ∼17980 cm−1. This state will be split into three
Ω = 1/2 vibronic components [295], designated 𝜇2Π1/2, 𝜇2Π3/2, and 2Φ5/2. The
origins of the states can be understood as follows: the Φ state is the “stretched”
configuration corresponding to ℓ = 2 and Λ = 1 fully aligned. We can also imagine
an anti-aligned state with with ℓ = 2 and Λ = −1, giving us 2Π3/2 by virtue of our
Ω = 3/2 restriction. To obtain the 2Π1/2 state, recall that the two bending quanta
in 𝑣2 = 2 can be anti-aligned as well14, which gives us ℓ = 0. In such a case, our
vibronic state just looks like the 2Π1/2 origin, except shifted up by the vibrational
energy 2𝜔2.

We expect all of the 𝐴̃2Π1/2(020) states to be scattered around ∼17960 −
18000 cm−1. Incidentally, this range is overlapped with the very strong 3𝑃1 atomic
Yb feature at 17992 cm−1. Atomic Yb emission was a contaminant in the DLIF
taken in Ref. [217]. As a result, it is very possible that any blue YbOH decays near
the Yb line would have been drowned out and missed. Therefore we suggest retaking
the YbOH excited state spectrum in the 17960 − 18000 cm−1 region, making sure
to account for Yb emission.

Now we consider the [17.73], Ω = 1/2 perturbing state with a hole in the
4 𝑓 orbital. Though Λ is not a good quantum number in Hund’s case (c), this
state can be thought of as deriving from the 2Π1/2 configuration. The origin of this
state is at 17731 cm−1. The first excited bending state, very naively, would be at
∼ 17731 + 330 = 18061. Recall in YbF, the interaction that mixes 4 𝑓 states with
the 𝐴̃ manifold has ∼100 cm−1 strength. Since YbOH is isoelectronic to YbF, we
expect a similar coupling strength. Therefore the 𝐴̃2Π1/2(020) manifold will be
perturbed by the 𝑣2 = 1 states of [17.73]. Further, we note if we think of [17.73] as
a 2Π1/2 state, then in 𝑣2 = 1 we obtain two states, 2Σ1/2 and 2Δ3/2. Of course, since
Λ is strongly mixed in 4 𝑓 states, we will also have some mixture of Λ = Δ and Φ as
well.

We therefore expect a total of 5 vibronic states in the approximate region given
by ∼17950 − 18050 cm−1. Three states derive from 𝐴̃, 𝑣2 = 2, while two derive
form [17.73], 𝑣2 = 1. The mixing between these vibrational manifolds means 𝑣2

is no longer well-defined. As a result, if we consider driving transitions to these
14“Projection quanta” must always be aligned or anti-aligned with the internuclear axis, unlike

an ordinary 𝐽 = 1 that has an 𝑀 = 0 projection.



188

vibronic states from the ground 𝑣′′2 = 1, 2 states, we expect transition strength for
both Δ𝑣2 = 0 and Δ𝑣2 = 1. This would explain why the transitions from 𝑣′′2 = 0
would be weak in comparison.

Earlier in Sec. 4.3.1, we mentioned Refs. [310, 311] had developed a theoretical
treatment of the Renner-Teller effect that includes a linear relativistic coupling
term. They connected their term to the mixing interaction causing Sears resonances
in experimental studies of GeCH [312]. A Sears resonance refers to an effective
operator of the form 𝑞±𝑆∓, where± denote the usual ladder operators in the molecule
frame, 𝑞 is the normal coordinate of the bending mode, and 𝑆 is the electron spin.
Effectively, the form of this interaction mimics the 𝐿±𝑆± form of the transverse
spin-orbit interaction, but with the bending angular momentum instead. This makes
sense in the relativistic limit, as we can no longer distinguish Λ from 𝛴, and we
are already familiar with 𝐿±𝑞∓ terms from the dipolar Renner-Teller Hamiltonian.
The coupling of 𝛴 and ℓ preserves 𝑃, so the interaction will occur when states with
the same 𝑃 come near degeneracy. In GeCH, this happens when the manifolds
separated by Δ𝑣2 = ±1 are pushed together by the spin-orbit interaction. However,
in YbOH, this can occur due to the overlap of two different vibrational manifolds in
two separate electronic states, 𝐴̃2Π1/2 and [17.73]. Therefore we expect relativistic
vibronic mixing between [17.73]2Δ3/2 ↔ 𝐴̃𝜇2Π3/2 and [17.73]2Σ1/2 ↔ 𝐴̃𝜇2Π1/2.
This is on top of whatever resonances and mixings may occur within the vibronic
manifolds of a given electronic state, such as the 𝐾-resonance we observed in
𝐴̃2Π1/2(010).

We now consider the lowest ground states with excited bending vibration,
𝑋̃ (010) (𝐸 = 320 cm−1, experiment), 𝑋̃ (0200) (𝐸 = 627 cm−1, experiment), and
𝑋̃ (0220) (𝐸 = 654 cm−1, theory). If we perform combination differences of these
vibrational levels with the transition frequencies of the [17.64], [17.68], [17.71],
[17.34], and [17.39] bands, we notice a pattern. If the [17.64], [17.68], and [17.71]
bands originate from 𝑋̃ (010), their true excited state origins (compared to the ab-
solute ground state) are at 17960 cm−1, 18000 cm−1, and 18030 cm−1. This is right
in the region where the 𝐴̃2Π1/2(020) manifold and [17.73] (010) manifolds are ex-
pected to lie. Additionally, if the [17.34] and [17.39] bands are taken to originate
from 𝑋̃ (0200), their origins are then at 17972 cm−1 and 18021 cm−1. Once again
this is the region of interest with the 𝑣2 = 2 and 𝑣2 = 1 overlap. It is very possible
that all of these bands are addressing a cluster of states near ∼18000 cm−1, which
was not observed in the original DLIF studies due to Yb atom contaminant.
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We caution that this discussion is speculative. Nonetheless, if we can better
determine the location of the 𝐴̃2Π1/2(020) manifold, we can begin the task of de-
perturbing the 4 𝑓 state mixing in YbOH, similar to that which has been done in
YbF [291]. The spectra of YbOH is interesting in its own right from a spectroscopy
perspective, owing to strong mixings and the emergence of new patterns and de-
grees of freedom, much as we saw with orbital angular momenutm quenching in the
𝐴̃2Π1/2(010) 𝐾-resonance. Addititionally, the deperturbation of YbOH is an im-
portant step toward repumping the 4 𝑓 state decays, and eventually trapping YbOH
molecules for EDM measurements with orders-of-magnitude improved sensitivity
to BSM physics.
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5
State Preparation and

Measurement

Now this is podracing!

–Anakin Skywalker

5.1 Introduction
In this chapter, we discuss the development of state preparation and readout

schemes for precision measurements on linear polyatomic molecules. Any quantum
precision measurement experiment requires such protocols. As usual, molecules
present unique challenges for coherent control, but also they provide numerous
additional handles for control that are lacking in atoms. In particular, arguably the
most important handle afforded by molecules is control over the orientation of the
body-fixed rotation of the molecule. Indeed, this is the primary draw of working
with polyatomics—the projection of angular momentum on the internuclear axis
provides natural opposite parity states. As a result of angular momentum coupling,
the internuclear axis can be coupled to external fields, allowing for manipulation,
control, and state engineering.

We begin with an introduction of relevant concepts for precision measurements
with molecules. In Section 5.1.1, we first overview of two essential techniques for
performing quantum measurements, namely Rabi and Ramsey interferometry. We
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then briefly review the schemes used by existing molecule experiments, namely
ACME [11] and JILA [10], to perform state preparation and readout.

In Section 5.2 we move on to describing initial state preparation tests in YbOH
using coherent population trapping (CPT). We first overview the connection of CPT
to dark states. We discuss difficulties with CPT that arise when working with species
with unresolved hyperfine structure in the ground and excited states. We demonstrate
a method for circumventing this issue by using circularly polarized light to perform
spin precession in the 𝑋̃ (000) ground state of YbOH.

Then, in Section 5.3, we present state preparation and readout tests performed
on the 𝑋̃ (010) state in YbOH. For these tests, we use two-photon resonances, which
encompass both resonant CPT and detuned Raman transitions. We demonstrate the
power of two-photon transitions by performing hyperfine resolved spectroscopy on
the 𝑁 = 1 manifold of the 𝑋̃ (010) state. Finally, we conclude by using two-photon
transitions to perform Ramsey interferometry in the 𝑋̃ (010) state in the presence
of a magnetic field. The results of this section can be immediately generalized to
precision measurements of 𝑃,𝑇 violating physics in YbOH.

Finally, in Section 5.4, we present prototype electron EDM (eEDM) sensitive
measurements in optically trapped CaOH. For these results, we collaborate with the
Doyle group at Harvard. Trapped polyatomic molecules are particularly promising
avenue for next-generation searches for 𝑃,𝑇 violation. We prepare ultracold CaOH
molecules in a single quantum state, polarize them in an electric field, and use
microwaves to perform Ramsey interferometry in an eEDM sensitive state. To
extend the coherence time of the measurement, we utilize eEDM sensitive states
with tunable, near-zero magnetic field sensitivity. Such “zero 𝑔-factor” states are
generic in polyatomic molecules with parity doubling. Our results demonstrate the
power of quantum state engineering for EDM searches, and provide a clear pathway
towards orders-of-magnitude improved experimental sensitivity to 𝑃,𝑇 violating
physics.

5.1.1 Rabi and Ramsey Interferometry
There are two techniques primary techniques for perfomring measurements

of the frequency difference between two quantum mechanical levels: Rabi and
Ramsey measurements. We breifly review these techniques, with a focus on Ramsey
measurements.

We consider a two-level system. We note in advance that some of the factors
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of 2 in our discussion will need to be modified to deal with an arbitrary multi-level
system, see Ref. [67] for details. Proceeding, we denote the states |0⟩ and |1⟩, with
the bare Hamiltonian 𝐻0 = −1

2𝜔01𝜎𝑧. We wish to measure the frequency splitting
𝜔01. In both Ramsey and Rabi schemes, we have two tools available: the action
of unitary operators that couple |0⟩ ↔ |1⟩, and the ability to perform projective
measurements in the {|0⟩, |1⟩} basis. As a result of our ability to perform projective
measurements, we can generically take the initial state to be |0⟩. The special case of
𝜔01 ∼ 𝜏−1 is that of spin precession measurements. In general, when 𝜔01 ≫ 𝜏−1,
we have a situation analogous to that in atomic clocks. The difference is simply
whether the spin precession occurs in the lab frame (precession) or rotating frame
(clocks). In practice this distinction is not consequential, and we may refer to time
evolution in either case as “precession.”

In the Rabi scheme, we apply a near-resonant AC coupling at a frequency
𝜔 = 𝜔01 +Δ, where we have defined the detuning Δ. The Hamiltonian is now given
by

𝐻 = 𝐻0 + 𝐻𝑖𝑛𝑡 = −
1
2
𝜔01𝜎𝑧 +

1
2
𝑒−𝑖𝜔𝑡Ω𝜎𝑦 (5.1)

with Ω the Rabi frequency for the drive oscillating at frequency 𝜔. We have chosen
the phase of Ω such that it aligns along 𝜎𝑦 for convenience. In the frame rotating at
𝜔, the Hamiltonian becomes

𝐻𝑅 = −1
2
Δ𝜎𝑧 +

1
2
Ω𝜎𝑦 . (5.2)

We can either solve the time-dependent Schrodinger equation for |𝜓(𝑡 = 0)⟩, or
we can diagonalize 𝐻𝑅 and expand |𝜓(𝑡 = 0)⟩ in terms of eigenstates with time
evolution given by an energy dependent phase factor. Either way, we find that the
population undergoes Rabi oscillations between the two states, |0⟩ ↔ |1⟩. In the
Bloch sphere, we can think of the state vector as undergoing rotations about some
vector with polar angle 𝜃 = arctan (Ω/Δ). This reduces to 𝜃 = 𝜋/2 in the resonant
limit, indicating rotations about the 𝑦 axis of the Bloch sphere (the choice of rotation
axis is arbitrary and determined by the drive phase).

We stop applying the coupling after an interaction time 𝜏, and then perform
a projective measurement of |𝜓(𝑡 = 𝜏)⟩ in the |0⟩, |1⟩ basis. The probability of
measuring the population in state |1⟩ is given by [213]:

𝑃1(Δ, 𝜏) =
Ω2

Ω̃2
sin2

(
Ω̃𝜏

2

)
(5.3)
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where we have defined the generalized Rabi frequency Ω̃ =
√
Ω2 + Δ2. The function

defined by eq. 5.3 is plotted in Fig. 5.1 as a function of Δ. The width of the
lineshape is given by ∼ Ω, and the oscillations of 𝑃1 that occur with varying Δ

are known as Rabi fringes. Various inhomogeneities and imperfections will result
in broadening of this Rabi lineshape. For an EDM measurement, we perform a
differential measurement, and so we care about the slope of the lineshape.

To elaborate further, we write 𝜔01 → 𝜔01 ± 𝜖 , where 𝜖 ≪ 𝜔01 represents a
small energy shift we would like to measure, such as an EDM shift. The ± sign
represents our ability to reverse the EDM interaction. If we keep the frequency of
the coupling interaction fixed at 𝜔, then the EDM shift shows up as modifications
to the detuning, which we parameterize as Δ ∓ 𝜖 . We are therefore interested in the
population difference represented by 𝛿𝑃1 = 𝑃1(Δ + 𝜖, 𝜏) − 𝑃1(Δ − 𝜖, 𝜏). For small
𝜖 , this is essentially the derivative, scaled by 𝜖 , and we can write the measurement
sensitivity as 𝜖 |𝜕𝑃1/𝜕Δ|. We have written the absolute value to indicate we are
agnostic about the sign of the ±𝜖 shift.

To maximize measurement sensitivity, we want to choose the drive detuning
such that we are sitting on one of the Rabi fringes where the slope is large. We
choose Ω𝜏 = 𝜋, which corresponds to a single “Rabi flop” on resonance. This
turns out to maximize the slope, and is technically convenient as we do not have to
deal with dispersion from many Rabi flops. The sensitivity is then maximized by
detuning the drive by Δ ∼ Ω.

There are some drawbacks to the Rabi measurement scheme, however. The
applied fields are always on during the interaction time, and so the measurement is
sensitive to fluctuations of Ω and Δ in the bandwidth given by 1/𝜏. For long 𝜏, we
become more and more sensitive to 1/ 𝑓 noise. Maintaining homogeneity in Δ is a
matter of controlling ambient fields and field sensitivities, and we will have to deal
with this in the Ramsey scheme as well. However, maintaining Ω, which is often the
coupling of an oscillating field, can be challenging, as it requires control over the
amplitude and polarization of an oscillating field. Further, near resonant fields such
as Ω can cause light-shifts of the transition we wish to measure, compounding the
results. Finally, when 𝜔01 ≈ 𝜏−1 as in the case of spin precession measurements,
we may be hard pressed to find amplitude stable sources of oscillating fields at
frequencies of ∼1 kHz for a beam and ≲1 Hz for a trap.

In the scheme of Ramsey interferometry, we no longer apply the resonant
coupling during the interaction time 𝜏, and the measurement is said to “happen
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in the dark.” Instead, we split the application of the resonant field to two short
“Ramsey” pulses, with pulse time 𝑡𝑝 ≪ 𝜏. One pulse begins the measurement at
𝑡 = 0, and one pulse ends the measurement at 𝑡 = 𝜏.

As with before, the molecules begin in state |0⟩. At 𝑡 = 0, we apply the first
Ramsey pulse, turning on the same resonant coupling 𝐻𝑖𝑛𝑡 ∝ 𝜎𝑦 as before, and
performing the same transformation into the rotating frame. Unlike the Rabi case,
we choose the drive frequency 𝜔 to be close to resonance, Δ/𝜔01 ≪ 1, and we
optimize the pulse strength, Ω, such that Ω𝑡𝑝 = 𝜋/2. This implements a 𝜋/2-pulse,
a rotation of the state from |0⟩ to the superposition |𝜓⟩ = 1√

2
( |0⟩ + |1⟩). In the Bloch

sphere, the rotation occurs about the 𝑦 axis. We note we can choose the phase of
the initial superposition with the appropriate choice of the Ω drive phase.

As an aside, we note that the intial preparation Ramsey pulse need not be
a dynamic 𝜋/2-pulse. In the case of the ACME experiment, for example, the
preparation pulse is instead a projection of the state onto a basis of optical bright
and dark states. After a few photon scatters, the bright state is pumped out, and
the remaining dark state can be used for Ramsey measurements. We will further
discuss such a scheme later in this chapter.

With the initial Ramsey pulse over, the molecules now evolve according to 𝐻0

alone. In the lab frame, the superposition |𝜓⟩ undergoes oscillations at the 𝜔01

frequency, with time evolution given by:

|𝜓(𝑡)⟩ = |0⟩ + 𝑒
−𝑖𝜔01𝑡 |1⟩
√

2
. (5.4)

Here we have used the global phase invariance of quantum mechanics to rewrite
the phase evolution all on the |1⟩ for convenience. This is where a spin precession
measurement diverges from a clock measurement. For spin precession, we recall
𝜔01 ≈ 𝜏−1, and we seek to measure the phase accrued in the lab frame. In the
case of a clock, however, 𝜔01 ≫ 𝜏−1, and the state |𝜓(𝑡)⟩ evolves rapidly in the lab
frame. In such a case, the drive phase, which is initially coincident with |𝜓(0)⟩, is
also rotating, but at a frequency 𝜔.

Therefore, by transforming into in the frame rotating at 𝜔, the time evolution is
determined by the detuning instead:

|𝜓(𝑡)⟩𝑅 =
|0⟩ + 𝑒−𝑖Δ𝑡 |1⟩
√

2
(5.5)

where we use the subscript 𝑅 to explicitly denote the rotating frame. We see that
the rotating frame allows us to simplify the picture of the dynamics. In general, the
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evolution of the state is governed by the detuning Δ, which can be controlled in the
experiment to good degree. If we somehow have Δ = 0, then the state actually does
not undergo phase evolution in the rotating frame at all!

Now, after 𝑡 = 𝜏, we re-apply the same 𝜋/2-pulse as we did in the prep Ramsey
beam, denoted as the readout Ramsey pulse. We then perform a projective measure-
ment in the |0⟩, |1⟩ basis. For zero detuning, the prep 𝜋/2 and readout 𝜋/2 pulses
combine to transfer all population to the |1⟩ state.

For small non-zero detuning, such that the Ramsey pulses are still approximately
good 𝜋/2 pulses, |𝜓(𝜏)⟩𝑅 is rotated in the Bloch sphere by an angle 𝜙 = Δ𝜏 relative
to its starting point along 𝑥. If the drive is taken to be along the 𝑦 axis of the
rotating frame Bloch sphere, then we see it can only rotate the component of
|𝜓(𝜏)⟩𝑅 that remains along the on the 𝑥 axis. For example, when Δ𝑡 = ±𝜋/2,
the readout pulse does not rotate the state at all. Generalizing, we see the readout
Ramsey pulse therefore maps the projection remaining along |𝜓(0)⟩ onto the |0⟩, |1⟩.
We can compute the probability of measuring |1⟩ by considering the projection
|⟨𝜓(0) |𝜓(𝜏)⟩|2 = cos2 Δ𝑡/2.

For the case of arbitrary detuning Δ, we can generalize these arguments to
obtain:

𝑃1(Δ, 𝑡𝑝, 𝜏) = 4
Ω2

Ω̃2
sin2

(
Ω̃𝑡𝑝

2

) [
cos

(
Δ𝜏

2

)
cos

(
Ω̃𝑡𝑝

2

)
− Δ

Ω̃
sin

(
Δ𝜏

2

)
sin

(
Ω̃𝑡𝑝

2

)]2

(5.6)
where we have defined Ω̃ =

√
Δ2 +Ω2 as before, 𝑡𝑝 are the Ramsey pulse times,

and 𝜏 is the interaction time. We will find it convenient to parameterize the ratio of
pulse time to interaction time, 𝑡𝑝 = 𝜂𝜏. For a 200 m/s molecule beam with 𝜏 = 1 ms
and a 1 cm pulse region, we have 𝜂 ≈ 0.05.

We compare the Ramsey and Rabi lineshapes, plotted in Fig. 5.1 as a function
of Δ 𝜏. The Ramsey lineshape 𝜂 = 0.1, a conservative estimate. We note both
measurements have zero slope at zero detuning, requiring us to move off resonance to
obtain differential sensitivity. This can be achieved either by purposefully applying
a detuning to 𝜔, or, unique to the Ramsey case, by applying a 𝜋/2 phase shift to
the readout Ramsey pulse compared to the prep Ramsey pulse. Additionally, we
can see the Ramsey lineshape has many more fringes available for measurement
compared to the Rabi lineshape. The Ramsey lineshape is noticeably plotted on
a different detuning scale than the Rabi lineshape–the Δ scaling, and therefore the
width of the overall Ramsey feature, is set by the size of 𝜂, the ratio of the pulse
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Figure 5.1: Rabi and Ramsey lineshapes, plotted as a function of unitless detuning
Δ𝜏, where 𝜏 is the interaction time. For the Rabi lineshape, we fix the condition
Ω𝑅𝑎𝑏𝜏 = 𝜋. For the Ramsey case, we fix Ω𝑅𝑎𝑚𝑡𝑝 = 𝜋/2, and set 𝜏 = 𝜂𝑡𝑝, with
𝜂 = 0.1. Plots (a) and (b) are with no velocity dispersion. For plots (c) and (d),
we add velocity dispersion given by 𝜎𝑣/𝑣 = 0.1, which is a conservative estimate.
Dispersion is modeled by random sampling from a Gaussian distribution. We use
light shading to indicate 1-𝜎 variation of the readout signal.
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time to the interaction time. At very large Δ, the contrast decreases, as now the
Ramsey pulses barely rotate the state. However, we caution that the picture changes
if we incorporate velocity dispersion, which impacts Ramsey measurements more
significantly than Rabi measurements.

So far, our discussion has been generic to a beam or a trap, and now we discuss
differences in the two approaches. In a beam, we must contend with spatial field
inhomogeneities, velocity dispersion, and finite molecule pulse width. Our beams
are characterized by mean velocity 𝑣 ∼ 200 m/s and dispersion 𝜎𝑣 ∼ 10 m/s, with
interaction times of order 𝜏 ∼ 1 ms. Further, the molecular beam itself is ≳20 cm
long, making it challenging to pulse on/off state preparation and readout–instead, we
must apply our operations in a continuous-wave fashion, manipulating the molecules
as they fly through radiation fields. The case of a trap is more straightforward, as
we can simply pulse on and off state manipulations. Also, it is easier to control
ambient fields in a trap than a beam, owing to the much smaller spatial extent of the
trap (≲ mm3).

We focus on velocity dispersion, which causes a variation of the interaction
time 𝛿𝜏 = −𝜏𝛿𝑣/𝑣 in both Rabi and Ramsey cases. In the Ramsey case, velocity
dispersion will also result in similar variation of 𝑡𝑝, though this effect will be minor
in comparison. We model this dispersion by sampling values for 𝛿𝜏 taken from a
Gaussian distribution with variance 𝜎𝑣/𝑣 = 0.1, which we note is a conservative
estimate for a CBGB1. The effects of velocity dispersion are shown in Fig. 5.1. The
Rabi shape is only slightly broadened, while the Ramsey shape changes significantly.
For large detunings, the measurement results have large spread, and upon averaging
the fringes are reduced in size. We can understand the loss of fringe contrast as
resulting from dephasing, which will be significant when Δ𝛿𝜏 ≳ 𝜋.

Finally, in Fig. 5.2, we directly compare the two methods on the same detuning
scale using equal interaction times2. Even with the velocity dispersion, the line-
shapes are not affected significantly near the resonance. Furthermore, the Ramsey
slope is clearly larger than the Rabi slope, resulting in improved measurement sen-
sitivity. In passing, we mention the spin-echo technique [213, 341], which can be
used to improve sensitivity to dispersion in a Ramsey measurement.

The choice of Rabi or Ramsey is unique to each experiment. In the discussion
1Our velocity dispersion is closer to 𝜎𝑣/𝑣 ≈ 0.05.
2For equal 𝜏, we obtain the relationship between the optimal Rabi rates as Ω𝑅𝑎𝑚𝑠𝑒𝑦 =

Ω𝑅𝑎𝑏𝑖/(2𝜂).
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Figure 5.2: A comparison of Rabi and Ramsey lineshapes Rabi and Ramsey line-
shapes, plotted as a function of unitless detuning Δ𝜏. We use the same parameters
as Fig. 5.1 and explicitly set the interaction times equal. (a) Rabi and Ramsey line-
shapes with velocity dispersion 𝜎𝑣/𝑣 = 0.1, which is a conservative estimate. The
line widths indicating 1-𝜎 variation. (b) Derivatives of the lineshapes, representing
differential sensitivities, normalized by the maximum value of the Rabi sensitivity.
With dispersion, the maximum Ramsey sensitivity is ≈0.54 and the maximum Rabi
sensitivity is ≈0.29.

presented in this section, we see that Ramsey is more sensitive, but only by a factor
of order unity. Finally, in our analysis, we have neglected another, intrinsic source of
noise–quantum projection noise (QPN), which is discussed in Ch. 1. Unless we use
entangled states [342], the precision of a phase measurement with either Ramsey or
Rabi will scale like 𝑁−1/2, where 𝑁 is the number of independent measurements.

5.1.2 Molecular EDM Experiments
To measure an EDM in any system, experiments proceed by first applying an

electric field to the system in question, breaking parity symmetry. As discussed
in Ch. 1, this is necessary to make the 𝑃 violating EDM shifts observable. The
free-field Hamiltonian 𝐻 commutes with the parity operator P, and therefore EDM
shifts, which are parity-odd, vanish in free-field. This can be seen, for example, by
explicitly writing a given parity state in Hund’s case (a), where it forms superposition
of ±Σ states (Σ = 𝑆 · 𝑛̂), which have opposite EDM shifts and cancel. By mixing
these projection states, we break parity symmetry and create states of the molecule
with well defined orientation in the lab frame. In solid state systems [343], this
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polarization occurs via the crystal lattice, while in molecular gas measurements, we
typically apply an external electric field.

The choice of “science state” in a molecule is motivated by the desire for good
EDM sensitivity as well as favorable molecular structure. The 3Δ1 states in ThO and
HfF+, for example, both provide two important features: 1) the states have g-factor
cancellation arising from the anti-alignment of Λ and Σ, resulting in 𝑔 ∼ 𝜇𝐵/50. 2)
The states have small parity-doublets from the Ω-doubling, with the parity splitting
measured to be≈400 kHz in the lowest 𝐽 = 1 state of ThO [344]. The parity doublets
allows for full polarization in low fields, as well as control over the sign of the EDM
interaction (Σ) without changing external fields. Both of these features have proven
crucial for state-of-the-art EDM measurements [10, 11, 17].

In the Advanced Cold Molecule Experiment (ACME), an eEDM measurement
is performed via Ramsey interferometry on opposite electron spin states in a beam
of polarized ThO molecules in the metastable 𝐻3Δ1 state. Details can be found else-
where [11, 41, 67, 100]. Here, we focus on the state preparation and measurement
scheme to motivate our work with YbOH.

The molecule beam flies downstream, passing through various laser beams and
electromagnetic fields, implementing a sequence of preparation, measurement, and
readout. The molecules begin in the 𝑋1Σ ground state and are first optically pumped
into the 𝐻3Δ1 state, similar to how we have to populate the science state in metal
hydroxides with optical pumping. Then, the molecule beam enters an interaction
region with magnetic and electric fields pointing along 𝑍̂ , and lasers beams in two
regions, one for preparation usptream, and the other downstream for readout.

The EDM measurement state in the ACME experiment is a superposition of
𝑀 = ±1 levels in a 𝐽 = 1 state with well-defined molecule dipole orientation. This
superposition is sensitive to 𝑇 violating effects, which shift ±𝑀 levels oppositely.
We may write the state as

|𝜓(𝜙)⟩ = 1
√

2

(
|𝑀 = 1⟩ + 𝑒𝑖𝜙 |𝑀 = −1⟩

)
. (5.7)

The quantization axis here is taken to lie along 𝑍̂ , in the direction of the applied
polarizing electric field. The ACME experiment works in the basis [67] given
by |𝑋⟩ B |𝜓(0)⟩ and |𝑌⟩ B |𝜓(𝜋)⟩. In the language of angular momentum
polarization, |𝑋/𝑌⟩ is an aligned state, lying in a plane containing 𝑍̂ and one
of 𝑋̂ or 𝑌 , depending on the ± sign. In Figure 5.3, we visualize these states
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Figure 5.3: The angular momentum probability distribution for the |𝑋⟩ and |𝑌⟩
states used for the ACME measurement, see main text for details. The distributions
are plots of ⟨𝐽, 𝐽 (𝜃, 𝜙) |𝜌 |𝐽, 𝐽 (𝜃, 𝜙) = 𝐽⟩, where 𝑀 (𝜃, 𝜙) = 𝐽 describes the state
with maximum projection in an arbitrary direction. Figures are made using the
AtomicDensityMatrix package in Mathematica.

using the angular momentum probability surfaces, discussed in Appendix E. These
visualizations plot the probability distribution for measuring the maximum angular
momentum projection along a given quantization axis.

The effect of the EDM is to create a differential phase in the superposition,
proportional to the splitting of the T-reversed ±𝑀 states. In terms of the angular
momentum distribution, an EDM means the electric field of the molecule, pointing
along 𝑍̂ , causes rotation of the probability distribution about 𝑍̂ . The T-violating
nature of the EDM is immediately apparent, as a magnetic field applied along 𝑍̂ will
also cause the same rotation of the superposition state. We see the superposition of
time-reverse states offers insensitivity to electric field shifts, at the cost of “maximal”
magnetic field sensitivity. Of course, the suppression of the g-factor in the 𝐻3Δ1

state aids in this aspect [345].

With the spin precession scheme occuring in the space of ±𝑀 states, the only
thing remaining is to prepare and readout such an aligned state in a Ramsey style
measurement. The ACME experiment prepares the superposition state implement-
ing Coherent Population Trapping (CPT) with linearly polarized light. We discuss
CPT in detail later in Sec. 5.1.3. Here, we will intuitively explain the connection of
linear polarization to the distributions in Fig. 5.3.



201

Consider the application of 𝑍̂ polarized light on a 𝐽′′ = 1 → 𝐽′ = 1 transition.
Due to the selection rules from the Wigner-Eckart theorem, the 𝑀′′ = 0 ground state
is not coupled to the excited state and is a dark state (the photon’s momentum must
go somewhere!). On the other hand, the 𝑀 = ±1 are coupled to the excited state
and are optically pumped away. If we visualize the angular momentum probability
surface of just the 𝑀 = 0 state that remains, we see it looks exactly like the surfaces
in Fig. 5.3, except rotated such that the torus lies in the 𝑋̂𝑌 plane. This makes
sense, as 𝑀 = 0 should have no probability density along 𝑍̂ . Due to rotational
invariance, this means the |𝑋⟩ and |𝑌⟩ states are also dark states generated by the
application of linearly polarized light, but this time light polarized perpendicular to
the quantization axis. The linear polarization axis runs through the center of the
torii, determining the angle of the dark state superposition. We can think of the light
polarization as coupling to all co-aligned transition dipoles, pumping them away
and leaving behind dark states that lie perpendicular to the polarization axis.

The ACME experiment begins with the |𝑋⟩ state, prepared by the application
of 𝑌 polarized light3 As spin precession occurs, the applied bias magnetic field
rotates the angular momentum distribution along 𝑍̂ , and the state |𝑋⟩ goes from
being aligned in the 𝑋̂ 𝑍̂ plane to aligned the 𝑌 𝑍̂ plane, transforming into |𝑌⟩. Now,
application of the same linearly polarized 𝑌 light will project the formerly dark
superposition partially onto the bright state, causing the emission of fluorescence
containing information about the precession phase. As a technical detail, the ACME
experiment rapidly switches the polarization of the readout beam, ensuring each
molecule is illuminated by both polarization and allowing for normalized readout
in each shot.

In summary, the ACME experiment implements a Ramsey measurement us-
ing CPT for state preparation and readout. The JILA experiment performs state
preparation in an entirely different way, essentially using a rotating electric field
to implement 𝜋/2-pulses that prepare an EDM sensitive superposition [346]. The
Ramsey measurement then proceeds as usual. We do not discuss their scheme fur-
ther, as it leverages aspects unique to their experiment. We do however note there is
an equivalent scheme in a non-rotating frame, using transverse DC magnetic fields
to engineer higher order couplings that implement 𝜋/2 pulses between states of
interest, discussed further in Ref [70].

Naturally, we first attempted to perform state preparation using CPT in YbOH.
3𝑌 light generating |𝑋⟩ makes sense if we remember |𝑋⟩ is dark to 𝑌 .



202

However, we soon ran into difficulties from that are absent in ThO and other similar
diatomics. The issues in particular stem from the unresolved hyperfine structure
in M-OH molecules. Before we can discuss our results, we first overview CPT in
detail.

5.1.3 CPT and Dark States
First, we present a more detailed quantum mechanical treatment of CPT. We

consider a system with multiple ground and/or excited states. The concept of a
rotating frame for a two level system can be generalized to a multi-level system
by appropriate choice of the rotation matrix [347]. In general, each state in the
Hamiltonian can be transformed into a state rotating at some arbitrary frequency
𝜔𝑅, which does not necessarily have to be the same for the different states. It is often
most convenient to chose the values of 𝜔𝑅 to coincide with the optical frequencies
of the lasers in the problem, removing the time dependence associated with fast
oscillations.

When laser light drives a resonant atomic or molecular transition, depending
on the couplings and degeneracy of the ground |𝑔⟩ and excited |𝑒⟩ states, it is
possible to obtain dark states, denoted |𝐷⟩. Remarkably, despite the presence of
resonant radiation, such states are decoupled from the excited state: ⟨𝑒 |𝐻 |𝐷⟩ = 0.
As we shall see, this decoupling occurs as a result of interference between transition
amplitudes from different ground states to a common excited state. Because of the
requirement of common couplings, dark states arise when the number of degenerate
ground states is greater than the number of degenerate excited states, 𝑛𝑔 > 𝑛𝑒. In
some cases, depending on the couplings of ground and excited states, we can also
have dark states when 𝑛𝑔 = 𝑛𝑒. Finally, when 𝑛𝑒 > 𝑛𝑔, all ground states are coupled
to excited states, and all eigenstates are “bright states,” denoted |𝐵⟩.

Dark states provide a resource4 for quantum control via coherent population
trapping (CPT) [350]. By projecting a mixed state onto a dark/bright basis, we
can purify the mixed state by pumping out the bright states and retaining the dark
states. In addition to its use in state preparation for the ACME experiment, CPT is
used in many different atomic physics experiments [351–356]. CPT in multi-level
atomic systems is discussed in detail in Refs. [357–364]. Further, Refs. [365–369]
discuss/demonstrate CPT using elliptically polarized light, which could possibly
be applied to advanced CPT schemes in molecules to deal with the issues we will

4In contrast, dark states are an issue for optical cycling in molecules, see Refs. [348, 349].
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Figure 5.4: A schematic diagram describing coherent population trapping. On
the left, we have two ground states |𝑔1⟩, |𝑔2⟩, connected to the excited state |𝑒⟩ by
arbitrary TDMs. We can perform a change of ground state basis (detailed in the main
text) to transform to the optically bright/dark basis, shown on the right. The bright
state |𝐵⟩ is coupled to the excited state, while the dark state |𝐷⟩ is not. Excited state
decays can either repopulate the bright/dark manifold, or they can decay to different
level manifolds dark to the laser, represented by |𝜂⟩.

encounter in this section. Dark states also form the foundation for certain adiabatic
transfer techniques, such as Stimulated Adiabatic Rapid Passage (STIRAP) [370,
371].

We provide a heuristic derivation of dark states in a 3 level system. Consider aΛ
system, with ground states |𝑔1⟩.|𝑔2⟩, and excited state |𝑒⟩, shown in Figure Ṡuppose
we couple the ground and excited states with resonant radiation described by cou-
pling matrix elements Ω1 and Ω2. If we write the dark state in terms of arbitrary
coefficients, |𝐷⟩ = 𝑐1 |𝑔1⟩ +𝑐2 |𝑔2⟩, we can then consider the condition ⟨𝑒 |𝐻 |𝐷⟩ = 0,
where the Hamiltonian 𝐻 includes the light couplings. In the rotating frame, we
find that |𝐷⟩ is dark if the coefficients satisfy 𝑐1Ω1 + 𝑐2Ω2 = 0. We can now write
the dark state as:

|𝐷⟩ = Ω2 |𝑔1⟩ −Ω1 |𝑔2⟩√︃
Ω2

1 +Ω
2
2

. (5.8)

If the coupling strengths are taken to be equal in magnitude, then the dark state is an
equal superposition of the ground states. In general, such a superposition dark state
is referred to as a coherent dark state. By switching the relative sign of Ω1 and Ω2,
we can change the phase of the coherent dark state, a useful trick employed by the
ACME experiment. If we take Ω1 ≫ Ω2, then we see the dark state is dominated
by |𝑔2⟩, and vice versa if Ω1 ≪ Ω2. In any event, we can always perform a unitary
change of basis from the 𝑔1, 𝑔2 basis into the 𝐷, 𝐵 basis, where 𝐵 is the bright
superposition with opposite phase compared to 𝐷. In such a basis, the dark state is
explicitly decoupled from the excited state.

We take a moment to examine in further detail the couplingsΩ. Explicitly, these
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Figure 5.5: Schematic diagram describing CPT linkages in multi-level transitions.
Laser couplings are indicated with full red and dashed green arrows to clearly
indicate the various linkages. In both cases the light is transversely polarized.
Rotating to 𝑍̂ polarization makes the dark states self-evident. (a) A 𝐽 = 3/2→ 3/2
transition. In this case we do not have any dark states. (b) A 𝐽 = 2 → 𝐽 = 1
transition. Now we have two dark states. The first results from the “M” linkage,
indicated with red arrows. The other dark state results from the Λ linkage, indicated
with green dashed arrows.

couplings are Rabi rates, written as ℏΩ𝑖 𝑗 = ⟨𝑖 | ®𝑑 · ®𝐸 | 𝑗⟩, where ®𝐸 is the oscillating
electric field. Expanding the dot product in the spherical tensor basis and pulling out
®𝐸 , we have ℏΩ =

∑
𝑝 (−1)𝑝 ⟨𝑖 |𝑇1

𝑝 (𝑑) | 𝑗⟩𝑇1
−𝑝 (𝐸). We therefore see that the phase of

the coupling arises from two sources: the transition dipole moment (TDM) matrix
element connecting the two states, and the phase of the applied AC laser field, which
is connected to the polarization of the light. This will be an important distinction
later, when we consider the formation of multiple simultaneous Λ-systems with the
same light polarization but different TDMs.

We now expand our discussion from a 3 level system to a case with multiple
ground states coupled to multiple excited states, with 𝑛𝑔 < 𝑛𝑒. As an example, we
consider a 𝐽 = 2 → 1 system driven by 𝑋̂ polarized light, shown in Figure 5.5(b).
We now have have two independent “linkages”—a Λ system between 𝑀 = ±1 in
the ground state, and an “M” system between 𝑀 = ±2, 0 in the ground state. The
Λ-system is the same linkage we encountered earlier. Meanwhile, the dark states
in the M system are superpositions of all the involved ground states. We note we
could have also reached these conclusions by rotating our basis to make our light 𝑍̂
polarized.

Earlier, we pointed out that the condition 𝑛𝑔 = 𝑛𝑒 requires specific care. Con-
sider a 𝐽 = 1→ 𝐽 = 1 transition. Recall from Sec. 5.1.2, if we apply light linearly
polarized along 𝑍̂ , we now have a single 𝑀 = 0 dark state as a result of selection
rules. However, we now consider another 𝑛𝑔 = 𝑛𝑒 system, this time a 𝐽 = 3/2→ 3/2
transition, indicated in Fig. 5.5(a). We can see that for either 𝑍̂ or 𝑋̂ light, all ground
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states are coupled to multiple excited states, and therefore there will be no dark
states with linearly polarized light. On the other hand, circularly polarized 𝜎± light
has trivial dark states, as we shall see later. In general, the existence of dark states
with 𝑛𝑔 = 𝑛𝑒 requires care in the analysis5. Finally, it is straightforward to show that
when 𝑛𝑒 > 𝑛𝑔, there are no dark states.

For multi-level systems, we see the linkages increase in complexity. For more
complicated systems, we can always take the “brute force” approach to finding the
dark states by directly diagonalizing the full Hamiltonian of our system, keeping
track of all the various TDM phases. However, direct diagonalization has difficulty
treating degenerate states, requiring us to add small detunings to enforce the 𝑀
sublevel basis. An alternative approach is to use the Morris-Shore transformation,
which is a generic method for converting a 𝑛𝑔 → 𝑛𝑒 excitation into a series of bright
and dark states. This approach is discussed further in Refs. [349, 357, 373].

We conclude with a discussion of CPT when the ground state degeneracy is
lifted. We consider the scenario from Fig. 5.4, but now we imagine the ground
states degeneracy is lifted by a splitting Δ𝐸𝑔1,𝑔2 = Δ. As with before, we couple
the two ground states to 𝑒 with a shared laser beam at a single frequency. If our
laser is resonant with 𝑔1 ↔ 𝑒, then it will be detuned from 𝑔2 ↔ 𝑒 by the splitting
Δ. If we rotate into the bright/dark basis, we find once again that the dark state
with interfering transition amplitudes is not coupled to 𝑒 by the laser interaction.
However, in the frame rotating at the laser frequency, the detuningΔ couples the dark
state to the bright state6. Essentially, the dark state now contains some excited state
admixture, proportional to Δ/Ω. We refer to such a dark state as a gray state. For
the states we consider, Δ is often caused by hyperfine splittings. Finally, we note that
in the above discussion, a single laser field was used to couple both ground states.
If we have one laser field resonantly addressing just 𝑔1 and another resonant laser
field addressing just 𝑔2, the dark state is stabilized, as there are no detunings from
the rotating frames of the independently chosen frequencies. However, if cross-
excitation is possible, we will need to consider the possibility of “off-resonant”
scattering of one state by the laser resonant with the other state. Generalization of
the Morris-Shore transformation to dark states with weak detunings is discussed in

5In reality there is no such thing as a pure 𝐽 = 3/2 system that interacts with a photon, as half
integer angular momenta can always be traced back to electronic or nuclear spins that are decoupled
from the light in the E1 approximation. This point is discussed further in Ref. [372], and we return
to it later. Finally, we also note that the E1 approximation of a decoupled spin can break down with
strong spin-orbit coupling.

6This is identical to the mechanism for magnetic remixing of dark states [348].
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Ref. [374].

So far, all of our discussion has invovled individual, optically resolved levels.
However, this is distinctly not the case in M-OH molecules.

5.1.4 Unresolved Hyperfine Structure
In alkaline-earth(-like) hydroxides, if the metal atom has no nuclear spin, the

only hyperfine structure arises from the distant hydrogen nucleus. In YbOH, the
Yb to H distance is ∼3 Å, and since the valence electron is Yb-centered, the
resulting hyperfine effects are suppressed. In fact, spectroscopic confirmation of
small hyperfine in hydroxides was initially used as a confirmation of the metal-
localized nature of the valence electron orbital [375].

Note that in this section, we only consider the hyperfine interaction with the
hydrogen in the -OH ligand. This means we consider even isotopologues, e.g.,
174YbOH. The Yb hyperfine structure of the odd isotopologues of YbOH is resolved
and has been characterized in Ref. [157]. For weak hyperfine interactions in 2Σ+

states, the hyperfine interaction is generically given by:

𝐻hyp = 𝑏𝐹 ®𝐼 · ®𝑆 +
𝑐

3

(
3𝐼𝑧𝑆𝑧 − ®𝐼 · 𝑆

)
. (5.9)

The full hyperfine Hamiltonian includes additional terms not relevant here but dis-
cussed in Ch. 2. The Fermi contact interaction strength, 𝑏𝐹 , is proportional to the
magnitude of the electron wave function overlap at the hydrogen nucleus, |𝜓(𝑟𝐻) |2.
For YbOH, SrOH, and CaOH, 𝑏𝐹 has been measured to be 4.80 MHz [290],
1.67 MHz [376], and 2.60 MHz [375], resulting in splittings smaller than the typical
excited state linewidths (∼8 MHz). Therefore the hyperfine structure is optically
unresolved, and these constants are obtained by using a combination of optical-radio-
frequency or optical-microwave double resonance techniques. The other relevant
interaction is the dipolar hyperfine term, 𝑐, is measured in the same references to be
2.46/1.67/2.05 MHz. In general, the angular momentum matrix elements associated
with 𝑐 are smaller than those for 𝑏𝐹 . By contrast, in a diatomic molecule such as
YbF, the 19𝐹 nucleus (𝐼 = 1/2) is closer to the metal-centered electron, and con-
sequently the hyperfine structure is much larger. For example, in the ground state
of YbF, the hyperfine parameters are 𝑏𝐹 = 170 MHz and 𝑐 = 85 MHz [377], with
similarly large values in CaF and SrF [378].

On the other hand, in both the hydroxides and fluorides considered, the excited
state hyperfine structure is very small, and there are not many reliable measurements.
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The smaller interaction is a result of the electron being further polarized away from
the bonding region (and therefore away from the other nuclei). This is also reflected
in the smaller excited state molecular frame dipole moments. In the ionic picture,
the molecule can be thought of as Yb+ OH−. Upon excitation, if the negatively
charged valence electron is polarized further toward Yb+, the dipole moment will
be lowered, as is observed (𝐷𝑋 = 1.9 D→ 𝐷𝐴 = 0.43 D). In CaF, the lowest lying
excited states were found to have a hyperfine splitting of 4.8 ± 1.1 MHz [214], but
there has not been a full characterization. In YbOH, the excited state hyperfine
splitting is unknown and expected to be even smaller, owing to the larger Yb to H
distance.

The unresolved hyperfine in hydroxides means the selection rules for transitions
follows a Δ𝐽 = ±1, 0 pattern, even though the states are technically characterized
by 𝐹. The hyperfine interaction causes very weak 𝐽 mixing, which results in very
small intensity borrowing for Δ𝐽 = ±2 transitions. Magnetic tuning beyond ∼ 1 G
uncouples the electron spin from the hyperfine interaction and the Zeeman shifts
deviate from linear behavior, which has consequences for accurate modeling of
magneto-optical trapping [120]. For photon cycling and calculations of effective
scattering rates, the unresolved hyperfine is also important for state counting.

The inability to optically resolve the hyperfine structure is a challenge for coher-
ent quantum control and precision measurement. Typically, coherent operations are
performed after collecting population into one or two quantum states. This reduces
entropy and increases SNR. For example, recent work with CaF in optical tweez-
ers [379, 380] proceeds first by using lasers to optically pump into the 𝐹 = 0, 𝑁 = 0
state. Such a scheme is not possible in metal hydroxides as the ground state hyper-
fine is unresolved. Furthermore, because the excited state structure is unresolved,
selective optical depletion of the ground state is not possible. In Sec. 5.4, we utilize
microwaves to prepare a pure initial state.

Finally, the unresolved hyperfine structure has drastic consequences for CPT,
causing destructive interference of dark states. This interference effect was first
studied experimentally in Ref. [381]. There, the authors investigated CPT with lin-
early polarized light on the 𝐷1 line (𝐽 = 1/2→ 1/2) of 87Rb in a room temperature
buffer gas cell. The excited 2𝑃1/2 state has a ∼800 MHz hyperfine splitting7, and
their experiment had 540 MHz Doppler broadening. When operating with a detun-

7Note there is a typo in the paper when describing the excited state hyperfine splitting. The
correct values can be found at https://steck.us/alkalidata/rubidium87numbers.1.6.pdf.

https://steck.us/alkalidata/rubidium87numbers.1.6.pdf
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ing approximately half way between the two excited states, the authors observed a
40 times weaker CPT resonance when using a lin ∥ lin polarization configuration
compared to a using a 𝜎-𝜎 configuration.

We too shall encounter the issue of destructive hyperfine interference when
performing CPT on YbOH molecules. Later, we will also show that CPT can still
be achieved if we make the correct choice of polarization and excited state. In
these cases, just like Ref. [381], we will see the strength of the CPT resonance is
polarization sensitive.

5.2 Initial State Preparation Tests
5.2.1 CPT Difficulties

We initially attempted to perform prototype spin precession in 𝑋̃2Σ+(000)
using the same scheme as ACME, described in Sec. 5.1.2. We used two linearly
polarized laser beams, one for Ramsey prep, one for Ramsey read out, focused
down to ∼300 µm spots separated by 3 mm. Both beams were resonant with the
𝑋̃2Σ+(000) → 𝐴̃2Π1/2(000) transition, specifically driving the 𝑄𝑄11(0) transition.
The prep beam was intended to project the states onto a bright dark basis, and the
read out beam would project either on the same or different basis, depending on the
relative angle between prep and readout polarizations.

The ambient magnetic field in the precession region was reduced to ∼ 10 mG
using 3 axis square coil pairs and homemade magnetic shielding. The shielding
consisted of mumetal plates cut with scissors and mounted on a mini-8020 frame
around the vacuum chamber, which is a KF50 six way cross. Strips of metglas were
taped and wrapped around the mumetal to cover up gaps and improve the shielding
performance. A photo of the setup is shown in Fig. 5.6.

The magnetic field magnitude was calibrated with a magnetometer8 when the
vacuum chamber was vented. Additionally, when under vacuum, we were able to
use atomic Yb atoms in our CBGB to zero the magnetic field. Specifically, we
used the directional Hanle effect in the excited 3𝑃1 state [382]. Briefly, the Hanle
effect [383, 384] uses the rotation of angular momentum polarization, either in the
ground or excited state, to perform magnetometry [385, 386] or to measure life-
times/decoherence rates. Incidentally, Hanle effect has actually been used to study
the magnetic fields of the sun [387]. Semiclassically, the Hanle effect in the excited
state understood as the magnetic rotation of the excited state angular momentum,

8AlphaLab Inc. MR3
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Figure 5.6: A photo of the home-made magnetic shielding around the six-way KF50
cross. See main text for details.

manifested in spatial and polarization anisotropy of the decay fluorescence. We
note that Ref. [388] compares the Hanle effect with other atomic magnetometry
techniques, which may also find use in CBGBs. For further details on the magnetic
calibration using the Hanle effect, see Appendix B. In summary, we were able to
use Yb atoms to calibrate our residual fields down to ≲10 mG.

Nonetheless, we were unable to observe spin precession using linearly polarized
light. In addition to controlling stray fields, we tried focusing the precession laser
beams to increase intensity and reduce the effect of optical pumping in the beam
intensity tails. We also designed an optical setup to selectively detect fluorescence
from solely the readout beam. We used off-the-shelf lenses to focus the fluorescence
light into a 400 𝜇m multimode fiber, which was fed into a photomultiplier tube
(PMT). Using this setup, we were able to observe ∼60% depletion of the readout
fluorescence when the prep beam was unblocked. This depletion was independent
of the polarization angle between the readout and prep beams, which indicates a lack
of coherent population trapping. Instead, the depletion is attributable to standard
optical pumping of molecules out of the 𝐽′′ = 1/2 state.
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Figure 5.7: A schematic diagram of the ground and excited states in the 𝐽′′ = 1/2→
𝐽′ = 1/2 transition driven by linearly polarized light. We consider two bases that
both describe equivalent physics. (a) Excitation by transversely polarized light in the
quantization axis defining 𝑀𝐹 . (b) Performing a basis rotation, we can consider a
rotated quantization axis defining 𝑀′

𝐹
. Now the excitation light is parallel polarized,

showing all ground states are coupled to a unique excited state.

Upon further examination, we realized that the unresolved hyperfine structure
of the excited state was interfering with the formation of dark states. To understand
this effect, we consider the case of dark states formed by linearly polarized light
exciting the 𝑄𝑄11(0) line. This is a 𝐹′′ = 0, 1→ 𝐹′ = 0, 1 transition. The situation
is shown schematically in Figure 5.7. Since the linewidth of optical excitation is
larger than the hyperfine splitting, all allowed hyperfine transitions are excited.

First, consider the case where the light is 𝑍̂ polarized and we have excitation ofΠ-
type transitions, shown in Fig. 5.7(b). The selection rules forbid 𝑀′′ = 0→ 𝑀′ = 0
transitions unless Δ𝐹 ≠ 0. Therefore the 𝑀 = ±1 states are excited and optically
pumped away. Meanwhile the 𝐹′′ = 0 state is excited only to 𝐹′ = 1, 𝑀′ = 0, and
similarly the 𝐹′′ = 1, 𝑀′′ = 0 is excited only to 𝐹′ = 1, 𝑀′ = 0. Each ground state
therefore is connected to an excited state that can decay elsewhere, causing optical
pumping out of the 𝐽 = 1/2 ground state. Even if the excited molecule decays
back to the same manifold, it can be re-excited, and after a few scatters will almost
certainly be pumped elsewhere. As long as the magnetic field splitting is small
compared to optical linewidths, we are justified in the choice of quantization axis
along the light polarization. However, it is instructive to consider the problem in a
rotated quantization axis as well.

Consider now the case when the light is 𝑋̂ polarized, and the excited transitions
are a linear combination of 𝜎+ and 𝜎− transitions, shown in Fig. 5.7(a). The 𝑀′′ = 0
ground state is excited to a linear superposition of 𝑀′ = ±1 excited states. This
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Figure 5.8: A schematic diagram of the ground and excited states in the 𝐽′′ = 1/2→
𝐽′ = 1/2 transition driven by transverse polarized light. The hyperfine states are
written in the decoupled |𝑀𝐽 , 𝑀𝐼⟩ basis. In this basis, E1 selection rules enforce
Δ𝑀𝐼 = 0, and with transverse polarization we have Δ𝑀𝐽 = ±1. The TDM phase
for optical coupling depends on the excited state Clebsch-Gordan coefficients. We
have colored the excitation laser according to the TDM phase, where red is positive
and blue is negative. We see the two Λ systems have opposite relative phase on the
two excitation arms, resulting in destructive interference of dark states.

superposition promptly decays in ∼ 20 ns, resulting in optical pumping and loss.
However, the 𝑀′′ = ±1 states can connect to the same 𝑀′ = 0 excited state. Because
of the unresolved excited state hyperfine, both the 𝐹′ = 1 and 𝐹′ = 0 are coupled to
the 𝑀′′ = ±1 ground states, forming two distinct Λ-systems. For an isolated 𝐹′ = 1
or 𝐹′ = 0 excited state, this would result in coherent population trapping in a dark
state, as there are more ground states.

However, when both excited states are simultaneously addressed, the two Λ sys-
tems have orthogonal dark states. This is a result of the Clebsch-Gordan coefficients
used to couple 𝐽 and 𝐼 together to form 𝐹. We can see this by writing the states in
the decoupled 𝑀𝐽 , 𝑀𝐼 basis, shown in Figure 5.8. The Clebsch-Gordan coefficients
tell us the 𝑀𝐹 = 0 components of the singlet 𝐹 = 0 and triplet 𝐹 = 1 manifolds
must be written with an opposite relative sign. This sign controls the relative phase
of the TDMs in the two Λ-systems, which in turn controls the dark state phase, see
Sec. 5.1.3 for details. In this case, the dark state of one Λ-system is the bright state
of the other Λ-system, and the dark states are destabilized. As a result of destructive
interference, all states are bright. This sign difference is generic to hyperfine𝑀𝐹 = 0
states, and persists even in the presence of an electric field.

Magnetic fields will mix and split the 𝑀𝐹 = 0 states, but this is usually incon-
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venient for spin precession measurements. Still, we can consider the application of
a magnetic field strong enough to decouple the hyperfine structure by mixing the
excited 𝑀′

𝐹
= 0 states and increasing their separation. To avoid optical excitation,

the splitting needs to be increased to > 20 MHz. This requires >15 G magnetic
fields, causing rapid spin precession. While this is hard to measure with “DC”
spin precession, we could in principle use clock methods. However, the transition
dipole moments used to form coherent dark states also lose their 𝑇-symmetry, re-
quiring finely tuned elliptical beam polarizations to achieve balanced superposition
amplitudes.

One solution is to use optical dressing of an excited state with a separate ground
state to split the excited states with light shifts. However, in YbOH and other metal
hydroxides, the inability to optical address individual hyperfine ground states causes
further complications with such a scheme. Any transition with Δ𝐽 = ±1 will have
at least two pairs of hyperfine states coupled by an optical laser, resulting in level
separations of the excited state given by differential light shifts. This requires large
amounts of power to sufficiently split the levels, and if the beams are off resonant,
the effect is even more difficult to achieve.

Another effect we have neglected is the existence of so-called gray states, intro-
duced in Sec. 5.1.3. These are dark states created from superpositions of states with
differing laser detunings. For example, a single power broadened laser can address
multiple unresolved ground states, coupling them to a shared excited state. These
unresolved hyperfine states nonetheless have some energy splitting, and this hyper-
fine splitting causes a rotation of the dark state into the bright state. The hyperfine
interaction performs remixing, much as applied magnetic fields remix dark states
for molecular laser cooling experiments. The instability of these dark states is why
we refer to them as gray states.

We see that unresolved hyperfine structure limits the coherences that can be
generated or observed using conventional techniques. In Ref. [372], this result
was formalized using the theory of density matrix polarization moments. The
authors considered single photon methods for producing atomic polarization, namely
depopulation pumping (i.e., absorption removing population from certain ground
states) and repopulation pumping (i.e., decay returning population to certain ground
states). Unresolved hyperfine structure places limits on the atomic polarization that
can be produced with lasers at “low power.” Somewhat intuitively, polarization
moments are limited by electronic angular momentum. In the case of molecules,
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this corresponds to 𝐽. We note there is a key distinction with molecules—while
atoms can reach a steady state optical pumping configuration, in molecules if there
is any excited state coupling for a ground state, it will eventually scatter into a dark
vibrational state and be lost (unless we apply repumping light).

According to Ref. [372], the limit on ground state polarization moments de-
pends on the method used. Depopulation pumping with unresolved excited state
hyperfine structure is limited to produce moments with rank 𝜅 ≤ 2𝐽′′ (i.e., limited
by ground state 𝐽). Meanwhile repopulation pumping with unresolved ground state
hyperfine structure is limited to produce moments with rank 𝜅 ≤ 2𝐽′ (i.e., limited by
excited state 𝐽). Furthermore, because a photon is a spin-1 particle, a single photon
process can change polarization moments by |Δ𝜅 | ≤ 2. Additionally, fluorescence
and absorption detection methods are limited by unresolved hyperfine structure.
Absorption is limited by unresolved excited state hyperfine to only detect moments
with 𝜅 ≤ 2𝐽′′, while regardless of resolved hyperfine, fluorescence is limited to
detecting moments with 𝜅 ≤ 2𝐽′ and 𝜅 ≤ 2. Note the second restriction on fluores-
cence arises from the spin-1 nature of the photon and the single photon nature of
spontaneous decay.

YbOH has unresolved hyperfine structure in the both ground and excited states,
and both depopulation and repopulation pumping are thus limited. Note, CPT
can be considered a form of depopulation pumping (limited by unresolved excited
hyperfine), as the initial mixed state is polarized by pumping out the bright state. For
the 𝑄𝑄11(0) we tried for initial testing, both ground and excited states have 𝐽 = 1/2,
and therefore we can only produce rank 1 (orientation) moments with any type of
pumping. The CPT scheme from ACME requires the creation of rank 2 (alignment)
moments. For further information on orientation vs alignment, see Appendix E for
details.

We can now consider states with higher 𝐽. For example, we can drive 𝐽′′ =
3/2 → 𝐽′ = 1/2, 3/2, 5/2, corresponding to 𝑃, 𝑄, and 𝑅 lines. We note the
arguments we make are actually generic to any 𝐽. For the 𝑅 lines, the number of
excited states outnumbers the number of ground states, and there are no dark states
generically. Meanwhile, for a 𝑃 line, with linearly polarized light there is optical
pumping into the stretched states, which are manifestly dark to the laser. We now
consider the 𝑄 line. Due to the selection rule preventing 𝑀′′ = 0 ↛ 𝑀′ = 0 for
Δ𝐹 = 0, the 𝑀′′ = 0 states are pumped out by the |Δ𝐹 | = 1 transitions. Similarly,
the stretched states are also pumped out. Meanwhile, the non-stretched states can
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be considered in a manifold of 4 states, two ground, two excited. Whether or not
we obtain dark states now depends on the nature of the TDMs involved. It turns
out such a transition actually does have dark states in the |𝑀 | = 1 states, as the
excited state TDMs have the same relative phase. Due to the hyperfine splitting,
these states are gray states, and the differential laser detuning will cause differential
phase evolution that turns the dark state bright.

We can generalize this analysis by examining the matrix element for optical
TDMs. We approximate the states as having 𝐽 as a perfect quantum number. Such
an approximation works well in our case when 𝐽 mixing is weak and the hyperfine
is unresolved. Since we only care about differential properties within a 𝐽 manifold,
we also ignore all quantum numbers comprising 𝐽. In this case, the treatment of
atoms and molecules proceeds identically. We then write the TDM as follows:

⟨𝐽𝐼𝐹𝑀 |𝑇1
𝑝 (𝑑) |𝐽′𝐼𝐹′𝑀′⟩ =

× (−1)𝐹−𝑀
(
𝐹 1 𝐹′

−𝑀 𝑝 𝑀′

)
× (−1)𝐹′+𝐽+𝐼+1

√︁
(2𝐹 + 1) (2𝐹′ + 1)

{
𝐽′ 𝐹′ 𝐼

𝐹 𝐽 1

}
× ⟨𝐽 | |𝑇1(𝑑) | |𝐽⟩.

(5.10)
Here, the reduced matrix element ⟨𝐽 | |𝑇1(𝑑) | |𝐽⟩ encodes all TDM properties that
are identical for all hyperfine states under consideration, including transformations
into the molecule’s rotating frame.

5.2.2 Spin Precession with Circularly Polarized Light
We have seen that CPT schemes can encounter difficulties with unresolved

hyperfine structure. Therefore, we next turned to measuring spin precession using
angular momentum orientation instead of alignment (see Appendix E for details).
We were inspired by Ref. [389], which used circular polarization to perform spin
precession of a beam of Lithium atoms in a ficticious magnetic field generated by
off-resonant laser light.

The application of circularly polarized light can optically pump molecules into
a stretched state, which can be intuited as a transfer of angular momentum from the
light to the molecules. Consider a 𝜎+ transition on a 𝑄 line. The 𝑀′′ = 𝐽 stretched
state is dark to the excitation laser, while all other ground states are addressed. For
an atomic sample, the excited population can rain back down and continue to be
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Figure 5.9: Oriented states used to implement spin precession using circularly
polarized light. The notation 𝑀𝑌 = 𝐹 ·𝑌 indicates our quantization axis is along 𝑌 .
These states are dark states of 𝜎± beams, and rotate into each other by the action of
transverse magnetic fields along 𝑋̂ or 𝑍̂ .

pumped in a closed cycle until it is transferred to the stretched state. However, in
a molecule most of the polarization occurs via depopulation, as excited molecules
tend to decay elsewhere after one or two scatters. In any event, for the molecules
remaining, the final state is a pure stretched state, which is dark on a 𝑄 line. We
now show to this dark state can be used for spin precession.

We consider the following coordinate frame: the molecule beam propagates
along the +𝑋̂ direction, the light is right hand circularly polarized along +𝑌 , and the
magnetic field points along the +𝑍̂ axis. Consider light resonant with the 𝑄𝑄11(0)
line. To understand the optical pumping of the light, we consider a quantization axis
aligned along +𝑌 . By conservation of angular momentum, this drives 𝜎+ transitions
with Δ𝑀𝑌 = 1, and addresses both the 𝐹 = 0 and 𝐹 = 1 ground states. After a few
light scatters, population is concentrated in the dark 𝑀𝑌 = 𝐹 ·𝑌 = +1 stretched state.

The angular momentum probability surface for this stretched state is shown in
Figure 5.9. As expected, the state exhibits orientation along 𝑌 . Since magnetic
fields cause rotation of angular momentum polarization, fields along 𝑌 have no
effect due to distribution’s 𝑌 symmetry. Another way to say this is the magnetic
field interaction is diagonal in the 𝑀𝑌 basis and simply causes phase evolution.
However, as we saw in the Hanle effect, transverse fields can rotate the polarization
distribution. The situation here is analogous: the 𝐵𝑍 field rotates our stretched state.
After half a Larmour period, the polarization will point along −𝑌 , and the state has
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been rotated to the 𝑀𝑌 = −1 stretched state, shown also in Fig. 5.9. In between, the
state amplitude is distributed among the non-stretched states.

By using left or right hand circular light to drive 𝜎+ or 𝜎− transitions, the
population can be effectively projected onto a bright/dark basis consisting of one of
the stretched states as the dark state. In a sense, our measurement scheme is a form
of magnetically sensitive optical dichroism. This scheme allows us to implement
a precession similar to that of the ACME experiment described earlier. However,
unlike the aligned ACME state, our oriented spin states precess at half the frequency.
As we shall see, this is because we are measuring the energy difference relative to
the 𝑀 = 0 state.

We provide a more quantitative picture of the 𝐵𝑍 dynamics in Figure 5.10. First,
we begin with the 𝑀𝑌 = +1 state, and rotate our quantization axis to point along 𝑍̂ .
We implement this using a Wigner D-matrix, D ((𝐹))

𝑀,𝑀 ′ (𝜔), where 𝜔 = (0, 𝜋2 ,
𝜋
2 ). The

𝑀𝑌 = 1 state in the 𝑀𝑍 basis at time 𝑡 = 0 is given by:

|𝜓(𝑡 = 0)⟩ = |𝑀𝑌 = 1⟩ = 1
2
|𝑀𝑍 = −1⟩ − 1

√
2
|𝑀𝑍 = 0⟩ + 1

2
|𝑀𝑍 = 1⟩ (5.11)

Now, we consider the application of the magnetic field, which generates time evolu-
tion according to the operator𝑈 = 𝑒−𝑖𝐻𝑡 . Since 𝐵𝑍 is diagonal in the 𝑀𝑍 basis, time
evolution just consists of phase evolution at the Larmour frequency, 𝜔𝐵 = 𝑔𝜇𝐵𝑀𝑍 ,
where 𝑔 is the 𝑔-factor of the state. After half a period, 𝜏 = 𝜋/𝜔𝐵, has passed, the
state is now given by:

|𝜓(𝑡 = 𝜏)⟩ = −1
2
|𝑀𝑍 = −1⟩ − 1

√
2
|𝑀𝑍 = 0⟩ − 1

2
|𝑀𝑍 = 1⟩. (5.12)

Crucially, the relative phase between the the 𝑀𝑍 = ±1 and 𝑀𝑍 = 0 states have
reversed. We now rotate the time evolved state back to the 𝑀𝑌 basis using the
inverse Wigner rotation, D ((𝐹))

𝑀,𝑀 ′ (−𝜔). The time evolved state now maps on to the
𝑀𝑌 = −1 state, |𝜓(𝑡 = 𝜏)⟩ = |𝑀𝑌 = −1⟩. If we had instead considered 𝜋/2
precession in the 𝑍̂ frame, we would have had an imaginary phase relative phase,
which maps on to the state pointing along 𝑋̂ . We have now reached the same
conclusion on the dynamics via two separate paths: one by using basis rotations
of angular momentum states, and by considering dynamics of angular momentum
probability distributions.

5.2.3 Experimental Tests with Circularly Polarized Light
We now describe experimental tests. The experimental schematic is shown in

Figure 5.11. The experiment takes place 40 cm downstream from the cryogenic
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Figure 5.10: Schematic diagram of dynamics with the circularly polarized spin
precession scheme. The left side of the diagram has𝑌 as the quantization axis, while
the right side has 𝑍̂ as the quantization axis. (i) The molecules are initially optically
pumped into |𝑀𝑌 = 1⟩ using 𝜎+ light. We work with a𝑄 line, and therefore 𝑀𝑌 = 1
is dark to 𝜎+. (ii) With a Wigner rotation, we can write |𝑀𝑌 = 1⟩ in a rotated basis
as a superposition of 𝑀𝑍 = −1, 0, +1 states. (iii) In the 𝑍̂ frame, the application
of a 𝐵𝑍 magnetic field causes the 𝑀𝑍 levels to split by the Larmour frequency
𝜔𝐵 = 𝑔𝜇𝐵𝑀𝑍 , where 𝑔 is the state 𝑔-factor. (iv) Alternatively, in the 𝑌 frame,
the 𝐵𝑍 field is transverse and causes Δ𝑀𝑌 = ±1 couplings that move population
between states. (v) After half a Larmour period, in the 𝑍̂ frame, the two 𝑀𝑍 = ±1
have reversed their sign relative to the 𝑀𝑍 = 0 state. (vi) In the 𝑌 frame, which can
be obtained from (v) by an inverse Wigner rotation or directly time-evolved from
(iv), we see the state has now evolved into the |𝑀𝑌 = −1⟩ configuration. The spin
has now reversed direction, and this state can now be probed by 𝜎+ light.

buffer gas cell. The magnetic field is generated by 3-axis pairs of square coils able
to generate fields up to ∼1 G. The prep and readout beams are sent along the +𝑌
axis, and they are separated in the +𝑋̂ direction by 1-5 mm. The two beams are split
with a non-polarizing 50/50 beam splitter, separately focused with a 1000 mm focal
length lenses, and recombined in another non-polarizing beam splitter. Adjustment
of one beam path relative to the other allows for precise positioning of the two
beams.

By setting up two circularly polarized laser beams along the molecule beam
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path, the upstream laser beam acts as a preparation beam, while the downstream
laser beam is the readout beam. Since the sample begins as unpolarized, the
initial fluorescence of the prep beam is independent of polarization. After being
polarized, the oriented molecules may or may not precess, depending on the 𝐵𝑧
field magnitude. Upon encountering the readout beam, the molecules are projected
onto the bright/dark stretched state basis. If the readout and prep handedness are
the same, then the readout beam projects back on the initial stretched state. If the
handedness is different, the readout beam probes the oppositely oriented stretched
state. Therefore, the fluorescence of the readout beam has oscillatory dependence
on the magnitude of 𝐵𝑧. Specifically, projection of the final population on the initial
state is given by:

|⟨𝜓(𝑡) |𝑀𝑌 = 1⟩|2 = cos4 𝜔𝐵𝑡

2
. (5.13)

The non-sinusoidal form is a result of the population dispersing throughout the
non-stretched states, before rephasing at the stretched state. For states with 𝐹 ≫ 1,
the population spends a large extent of time in other non-stretched states before
rephasing.

The circularly polarized spin precession data is shown in Figure 5.12. To obtain
the data, we switch the readout beam on and off for alternate shots, and plot the ratio
of the fluorescence. This accounts for the constant prep beam fluorescence, which
is relatively similar for adjacent shots (especially after averaging). If we use 𝑔 = 2,
which is accurate for a stretched state, we obtain a precession time of 𝜏 = 14.8 µs.
For a 200 m/s beam, this corresponds to a ≈3 mm precession length.

Thus far, all of the presented data was taken with the 𝑋̃ (000) ground state. This
state behaves like a diatomic molecule, and in particular requires fields > 1 kV/cm to
obtain appreciable Stark shifts. Therefore, we did not perform circularly polarized
spin precession in the presence of an electric field on the 𝑋̃ (000) state. However,
there are technical reasons that make such a spin precession scheme challenging.

Primarily, the Stark effect from the electric field will shift levels according to
their value of |𝑀 |, causing rapid phase evolution of 𝑀 = ±1 states with respect to
𝑀 = 0. In the angular momentum probability picture, the 𝐸 field results in rapid
inversions of the stretched state through the origin, on top of the slow rotation from
the magnetic field. If we average over these oscillations, the oriented state looks
more like an aligned state that points in both directions. This rotating state still
generates an oscillating fluorescence signal, but with reduced contrast. Finally, all
of these discussion apply only to integer states: for half-integer states, the lack of an
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Figure 5.11: A diagram detailing the circular polarization spin precession scheme.
(a) A level diagram of the𝑄 line is shown schematically in the 𝑀𝑌 basis. The green
arrows indicate optical pumping into the stretched state by 𝜎+ light propagating
along 𝑌 . (b) Schematic diagram of the beam line, with the 𝑍̂ axis coming out of
the page. The molecules exit the CBGB, enter the magnetically shielded region,
and encounter the prep beam. Then, they precess freely for ≈ 25 µs before being
probed by the readout beam. We have shown the prep and readout beams with the
same polarization, but they can in principle be made opposite to change the spin
precession phase, similar to the ACME polarization switch.

Figure 5.12: Spin precession data obtained using oriented stretched states. Here, the
prep and readout beams both had the same circular polarization handedness. The
y-axis plots the ratio of the fluorescence with and without the readout beam. When
𝐵 ≈ 0, the initial dark state does not precess and remains dark, and the fluorescence
ratio is at a minimum. As we vary the magnetic field, the stretched state is rotated
into bright states, which can fluoresce and give us signals.The functional form of
the fit is cos4 𝜔𝐵/2 + 𝜙, where 𝜔 = 𝑔𝜇𝐵𝜏/2. Using 𝑔 = 2, we obtain 𝜏 = 14.8 µs.
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𝑀 = 0 state means the Stark oscillations do not fully wash out the state orientation.
Nonetheless, a reduction in contrast still occurs. In theory, with a fast enough
detection setup, one could use the Stark modulation of the fluorescence signal to
perform a lock-in measurement. However, this is not practical for a beam, so we did
not pursue it further.

After taking the data shown in this section, we discovered and characterized the
𝑋̃ (010) bending mode in YbOH [280]. Therefore, all of the following data is from
tests in the 𝑋̃ (010) state.

5.3 Ramsey Interferometry in a YbOH Beam
In this section, we discuss Ramsey tests performed using two-photon schemes.

All of these measurements are performed in the 𝑋̃ (010) state of YbOH using
population in the CBGB present after chemical enhancement [227].

An alternative to “projection-based” state preparation schemes, such as coherent
population trapping (CPT), is to resonantly prepare superpositions using 𝜋/2 pulses
between states of interest. This requires coupling between two states in the bending
mode that can be switched on and off. Ideally, this coupling can select out single
states, can be localized to specific regions in the beamline, and is continuous-wave
in nature.

Coupling can be performed with radi-frequency radiation, microwave radia-
tion, or two-photon optical radiation. Each technique has its associated advantages
and disadvantages. Microwave radiation is primarily used in Section 5.4, which
discusses prototype measurements in a trap. For a beam, microwaves can be chal-
lenging in terms of obtaining spatial and polarization homogeneity over the long
molecule cloud, while also preventing leakage into the interaction region for Ram-
sey measurements. The CeNTreX experiment, a search for T-violation in 205TlF
molecules [390] uses microwaves for adiabatic state transfer pulses, but not for
preparing the Ramsey states for measurement. For Ramsey state preparation, they
use radio-frequency (RF) magnetic fields, which we discuss in Sec. 5.3.1.

Finally, we introduce optical two-photon methods, which include both resonant
processes, like CPT, as well as detuned processes, such as Raman transitions. The
benefit of optical two-photon approaches is that the light can be very well localized
spatially, the polarization can be well controlled, and there are many technologies
available for modulating light and applying sidebands. We performed extensive work
with two-photon transitions in YbOH. In Sec. 5.3.3.2, we lay out the foundations for
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simulating two-photon physics using master equations. In Sec. 5.3.3.2 we present
tests implementing two-photon CPT in a YbOH beam. In Sec. 5.3.5 we present tests
driving two-photon detuned Raman transitions in a YbOH beam. We also use the
resulting two-photon spectra to determine the hyperfine constants of the 𝑋̃ (010),
𝑁 = 1 state. Finally, in Sec. 5.3.6, we use detuned Raman transitions to implement
Ramsey interferometry on single quantum states in YbOH. We conclude with an
outlook on performing EDM sensitive measurements in YbOH.

5.3.1 Radio-Frequency Electric Field Tests
When using radio-frequency (RF) techniques, the radiation is usually generated

in the near-field regime. For example, RF radiation can be engineered by applying
time-varying voltages or currents to antennae such as plates or coils, which can also
source DC fields. This was the method used by the YbF beam experiment [391].
In both YbF and TlF, magnetic RF radiation is used to drive transitions between
same parity states. In molecules with ∼MHz parity doubling, such as bending
modes of polyatomics, we can also use ∼MHz RF electric fields to drive transitions
between opposite parity states. We note the selection rules for electric dipole RF
transitions varies for polarized molecules compared to non-polarized molecules.
Specifically, polarized molecules with lab frame orientation ⟨𝑀𝑁𝐾⟩ = 1 can only
be strongly coupled to 𝑀𝑁 = 0 states via transverse RF radiation, as parallel RF
radiation coupling for oriented molecules is suppressed. Additionally, flipping the
orientation to ⟨𝑀𝑁⟩ = −1 requires coupling via the intermediate 𝑀𝑁 = 0 states.
Such transitions can be driven by multiphoton RF techniques [392, 393].

We briefly looked for RF transitions among 𝑋̃ (010) levels our beam source.
Using the same apparatus reported for the bending mode Stark spectroscopy in
Ch. 4, Sec. 4.2.1, we applied an RF drive to the Stark electrodes, corresponding to
𝑉𝑟𝑚𝑠 ≈ 3.5 V/cm. When the molecules passed through the RF field, they were simul-
taneously excited by a laser resonant with the 𝑄𝑄11(1) line of the 𝑋̃ (010) → 𝐴̃(000)
transition, and we collect the resulting LIF. Interpreting signals with simultaneous
drives is challenging, as it depends on the ratio of the two drives. For very strong
RF drive, we expect the molecule states to be dressed by the RF field, resulting in
Autler-Townes splitting9 of the optical line. We are not in this regime, however,
and rather we expect the RF to mix parity states, which would have the effect of
increasing LIF.

9Incidentally first observed in bending modes of triatomic molecules! See Ref. [394].
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We observed a correlated increase in molecular fluorescence by ∼18% when
driving the RF drive at 25.53 MHz. At the time we did not have an assignment for
this RF resonance, though now we believe this might have been the 𝐽 = 3/2+, 𝐹 =

2 ↔ 𝐽 = 1/2−, 𝐹 = 1 resonance, in agreement with the ground state of the optical
transition.

We then tried amplifying the RF drive into the plates, generating an RF ampli-
tude of∼15 V/cm. In this configuration, by contrast, we observed∼50% depletion of
the molecule LIF, correlated with the RF drive being on. The depletion was broadly
located around 30 MHz with at least ∼1 MHz width, though our RF signal gener-
ator was limited to a maximum frequency of 30.2 MHz. At the time, we thought
this might be strong Autler-Townes splitting causing the optical resonances to shift.
The RF correlated LIF depletion was observed when probing both 𝐽′′ = 1/2+ and
𝐽′′ = 3/2± ground states of the bending mode. However, after replacing the wire
pair sourcing the RF with coax cable, we were unable to recover the effect. We sus-
pect stray inductances from the wire pair may have been causing resonant behavior,
driving the fields with large amplitude rf.

Having encountered difficulty with the repeatability and interpretation of direct
RF driving, we turned instead to two-photon Raman transitions. In a way, the optical
two-photon scheme generates an effective RF field via the beat note of two optical
frequencies. However the two techniques have very different selection rules, as we
shall see.

5.3.2 Apparatus
5.3.2.1 Beamline

We performed two-photon transition tests on the 4 K source, performing both pro-
jective CPT tests and detuned Raman transition tests. YbOH beams were produced
with the cell and source design described in Ch. 4, Sec. 4.2.1, as well as earlier in
Ch. 3, Sec. 3.2. We describe now the setup for the beam extension for these tests.

After the 4 K CBGB source, we have two downstream interaction regions. Let
𝑋 denote the distance from the cell aperture along the molecule beam axis. In the
lab, this physically corresponds to the North/South axis. The cell aperture is at
𝑋 = 0. The first, the “upstream” region of the beam extension is a six-way KF50
cross centered at 𝑋 ≈ 42 cm. The interior of the cross and all arms are blackened
with Alion MH2200 paint. The transverse arms of the cross run parallel to the
ground (𝑌 axis, East/West) and perpendicular to the ground (𝑍̂ axis, Top/Bottom).
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Figure 5.13: A photo of the beamline used for the two-photon tests. The molecule
beam exits the beam source on the right and travels toward the left. The region
wrapped in magnetic shielding contains the upstream KF50 cross and the 3-axis
square magnetic field coils, and is where the two-photon tests occur. The downstream
octagon is where we perform state readout and collect LIF. The 6 inch scale indicated
is approximate.

The −𝑍̂ arm of the cross adapts to CF 6-in, connecting to a 300 L/s turbo pump10,
and the +𝑍̂ arm of the cross terminates in a KF50 window. Attached to this window
is a collection optics stack that sends light through spectral filters into a PMT. The
collection optics were optimized for 125 mm distance with an NA of ≈0.2. The ±𝑌
arms of the cross are adapted from KF50 to KF40 and connected to KF40 nipples
terminated in AR-coated windows.

The upstream cross is surrounded by a cubic frame made from mini-8020 parts.
The cube has 16.3 cm side length, making it roughly the same size as the six way
cross. Each cube face is wound with square coils with 3 windings for each coil. The
coil pairs allow for 3-axis control of the magnetic field inside the cross. To help
with passive stability, the cubic frame is surrounded by mumetal plates, cut to size
with shears, and attached to XE25 framing with clamps made from L-brackets. This
mumetal functions as rudimentary magnetic shielding, particularly assisting with
variations from lab activity and drift. To improve the shielding, we wrapped the
mumetal with metglas strips, to help cover gaps and to provide magnetic continuity
between the cube faces. With a magnetometer, we verified that the internal field
was at the ≲ 20 mG level. Fig. 5.13 shows photo of the shielding on the beamline.

10Agilent TwisTorr 304 FS.
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ψ1 ψ2

Figure 5.14: A schematic of the two-photon experiments performed in this section.
In the first stage, the population in 𝜓1 = |𝑁 = 1, 𝐽 = 1/2+⟩ is depleted using
𝑋̃ (010) → 𝐴̃(000) light. Then, the molecules encounter the two-photon light,
in either CPT or detuned Raman configurations. When the two-photon resonance
matches the spin-rotation splitting, there is population transfer from 𝜓2 = |𝑁 =

1, 𝐽 = 3/2+⟩ to 𝜓1. In the final stage, the population revival in 𝜓1 is readout with
the same light that was used for depletion, and we collect the fluorescence.

We performed field-free tests of both two-photon Raman transitions and CPT
in a 174YbOH molecular beam. Both schemes share similarities in setup and
apparatus—the main difference is simply the one-photon detuning and the optimal
powers involved. All tests were performed on the 𝑋̃ (010) state, using the athermal
vibrational population present after laser enhancement. Absorption tests in front
of cell on the 𝑋̃ (010) → 𝐴̃(010) line at 17331.7130 cm−1 indicate that ∼4 × 109

bending mode molecules exit the cell each shot.

A schematic of the beamline is shown in Fig. 5.14. To summarize, we pro-
vide a brief overview before diving into details. First, the molecules encounter
𝑋̃ (010) → 𝐴̃(000) light that depletes a specific hyperfine-spin-rotation level in
𝑋̃ (010) with parity P, denoted 𝜓1 = |P, 𝑁𝐽𝐹⟩. Then, we apply two-photon light
on the 𝑋̃ (010) → 𝐴̃(010) transition to couple 𝜓1 ↔ 𝜓2, where 𝜓2 = |P, 𝑁𝐽′𝐹′⟩
is a different hyperfine-spin-rotation level in 𝑋̃ (010). Either via diabatic projection
(a.k.a CPT) or detuned Raman Rabi oscillations, population will be transferred from
𝜓2 to 𝜓1. Finally, at the end of the experiment, we measure the 𝜓1 population via
LIF, using a ∼10% pickoff of the upstream depletion light.

In detail, consider two spin-rotation manifolds, 𝐽 = 𝑁±1/2, in a given rotational
state 𝑁 , denoted 𝜓1 and 𝜓2. The two-photon resonances we wish to study are
essentially couplings between𝜓1 and𝜓2, causing population transfer. If the coupling
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is unitary, which it is in the absence of spontaneous emission, the reverse process will
also occur, and we have 𝜓1 ↔ 𝜓2. This means measurements of population contrast
are limited by the population difference between 𝜓1 and 𝜓2. Since spin-rotation
states are separated by ∼ 100 MHz, they will have similar thermal occupation at the
temperatures we consider (∼ 1 K), and we must instead rely on optical pumping to
first prepare an ensemble with large population imbalance between 𝜓1 and 𝜓2.

Since we can optically resolve the levels 𝜓1 and 𝜓2, we can selectively deplete
just one level with a resonant laser beam. We consider depletion of 𝜓1, achieved
by driving the 𝑋̃ (010) → 𝐴̃(000) transition using resonant light at 588 nm. To
avoid optical dark states or gray states (see Sec. 5.1.3), we use an 𝑅 line to perform
pumping. We further ensure that the 𝜓1 depletion line is not power broadened to
the point where pumping of 𝜓2 also occurs, though this was not a regime we could
access with the laser power available, given the nominally forbidden nature of the
transition. We use cylindrical lenses to expand the beam in the vertical direction
transverse to the molecule beam, ensuring we address a majority of the molecules.
The laser beam travels along 𝑌 , and has a diameter of ∼ 3 mm in the vertical 𝑍
direction and ∼ 1 mm in the 𝑋 direction, which is the direction of the molecule
beam forward velocity.

After achieving population imbalance between 𝜓1 and 𝜓2, we apply light down-
stream to drive the two-photon resonance. This couples 𝜓1 ↔ 𝜓2 and causes Rabi
oscillations between the levels. After the molecules leave the two-photon light, they
travel downstream to the detection region, where a pickoff of the 588 nm light is
used to probe the initially depleted level, 𝜓1. Rabi oscillations can cause a revival
of population in 𝜓1, which is detected in the LIF obtained in the detection region.
If the depletion is efficient and the Rabi oscillations are coherent, the variation of
population in 𝜓1 can be nearly 100% of the total population. In practice, experi-
mental imperfections reduce contrast; for example, the depletion power is limited,
there is velocity dispersion of the molecules, etc. For initial tests, decoherence is
not a concern—even if the oscillations decohere quickly, there will still be an overall
population transfer from 𝜓2 → 𝜓1 as population is split between the two manifolds.
Finally, by using a shutter to block and unblock the two-photon light in subsequent
shots, even small population signals can be observed.

The two-photon light, either sourced by the EOM or AOMs, is fiber coupled
over to the experiment with a PM fiber. After launching the beam, we use cylindrical
beam shaping optics to expand the beam to roughly a 3 mm by 1 mm shape, and we
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use metal mirrors to ensure the polarization state of the light remains unperturbed.
We also installed a mechanical shutter to turn the light on and off, which was useful
for initial tests before optimizing SNR. The two-photon light intersects the molecules
downstream of the depletion light, but still inside the six way cross. Since the two-
photon light is at 577 nm, we wanted to separate it from the detection region in the
octagon, where we look for 577 nm decays after probing the 𝑋̃ (010) → 𝐴̃2Π1/2(000)
transition.

5.3.2.2 Generating Two-Photon Light

We performed tests with two-photon light generated from both AOMs and EOMs.
In both setups, we begin with a Raman fiber amplifier (RFA) that amplifies a
seed laser operating at 1154 nm. When doubled with SHG, this turns into 577
nm light near relevant lines in 𝑋̃2Σ+(010) → 𝐴̃2Π1/2(010). For the EOM setup,
we used in-fiber EOMs11 inserted in the fiber path from the 1154 nm IR seed
and the RFA. The modulation of the seed is directly mapped over to the RFA
output. When the amplifier IR light is passed through an SHG crystal, the sideband
frequencies do not change, but the modulation depth is doubled. This can be shown
mathematically [395] but also understood intuitively—the SHG crystal is like a
mixer, generating photons by multiplying any two sidebands (including the carrier).
As a result, we optimize the EOM power by using a scanning cavity to examine a
pickoff of the 577 nm light exiting the doubler.

For the AOM setup, we do not modulate the IR seed, and instead work directly
with the 577 nm visible output of the SHG crystal, referred to as the VRFA output
(visible RFA). This light is fiber coupled and sent to an optics breadboard with two
AOMs, labeled 1 and 2. As the names suggest, AOM 1 generates laser beam 𝐿1
primarily addressing 𝜓1, and AOM 2 generates 𝐿2 primarily addressing 𝜓2.

The AOM optics setup is shown in Fig. 5.15. The light is split with a polarizing
beam-splitter (PBS) and sent through two arms, one containing AOM 1 in a single
pass configuration, resulting in a frequency shift 𝑓1, the other containing AOM 2
in a double pass configuration, resulting in a frequency shift 2 𝑓2. The resulting
beams are then recombined with a non-polarizing 50/50 beam-splitter (BS) and
coupled into an optical fiber, to be sent over to the experiment. We use separate half
waveplates (HWPs) on the A and B paths to independently adjust the polarization
of each beam. A final HWP at the fiber couple, combined with separate quarter

11 EOSPACE PM-0S5-10-PFA-PFA-1154-UL-SOP125mW.
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Figure 5.15: The annotated acousto-optic modulator (AOM) setup used to generate
two-photon light. White arrows label optical path directions for the double-pass
setup. Parts are labeled as follows: VRFA, visible Raman fiber amplifier; HWP,
half waveplate; QWP, quarter waveplate; PBS polarizing beam-splitter; BS, 50/50
beam-splitter; H/V, horizontal/vertical polarization; L/R, left/right handed circular
polarization. See main text for details. We thank Yi Zeng for setting up the
breadboard.

waveplates (QWPs) for each beam to remove ellipticity, allows us to perform effective
polarization alignmnent to the fiber.

By tuning the diffraction order used, we can generate sidebands separated by
| 𝑓1+2 𝑓2 | or | 𝑓1−2 𝑓2 |, allowing us to overcome limitations on AOM dynamic range.
Further, the double pass configuration of AOM B allows us to scan 𝑓2 without
significantly changing the beam pointing. Our AOMs have a 100 MHz center and
25 MHz bandwidth. To generate sidebands seprarated by ∼ 60 MHz, the scale
of 𝑁 = 1+ spin-rotation splittings, we use 𝑓1 = −120 MHz, and 𝑓2 = −90 MHz,
resulting frequency splittings of | 𝑓1 − 2 𝑓2 | = 60 MHz.

The double pass AOM 2 setup is implemented with standard techniques [396].
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In brief, the light incident on AOM 2 is linearly polarized by a PBS. The first
order diffracted beam exiting AOM 2 passes through a QWP, transforming linear
polarization to circular. The beam is then focused with a 30 mm lens onto a retro-
reflecting flat mirror, creating a cat-eye retro-reflector that is robust to variations in
beam pointing. Another variation of this scheme is to center the AOM at the focus of
a Keplerian telescope. In either setup, the retro-reflected beam has reversed circular
polarization, which is converted to opposite linear polarization by the second pass
through the QWP before re-entering AOM 2. Upon exiting and diffracting once
again, this beam is now shifted by 2 𝑓2, and, because the polarization is opposite, is
now reflected by the initial PBS and separated from the input beam.

The setup alignment is optimized at a central value 𝑓2,0. We characterized the
power variations about this central value by scanning 𝑓2 and monitoring the power
out of the fiber couple. We were able to fit the power efficiency to a Gaussian
curve with a FWHM of ≈17.5 MHz. Since the two-photon frequency difference
is proportional to 2 𝑓2, this results in a two-photon scan range with a FWHM of
≈35 MHz. This setup can be further improved by using a curved retro-reflecting
mirror, and with other improvements detailed elsewhere [396]. We note for the
𝑁 = 1 measurements detailed in Sec. 5.3.4, we had not yet implemented the lens for
the double pass setup, and therefore our two-photon frequency efficiency range was
limited to a FWHM of ≈5.8 MHz.

5.3.3 Two-Photon Physics
A two-photon transition essentially uses the beat note formed by two interfering

lasers to drive a transition in an atom or molecule. In the E1 dipole approximation,
single photon transitions are parity odd, and therefore two-photon transitions can
only connect same parity states. Conveniently, the parity dependent spin-rotation
term 𝑝𝐺 in the 𝑋̃ (010)Hamiltonian ensures transitions correspond to the two parities
are not overlapped. Additionally, two-photon transitions also have different 𝐹 and
𝑀 selection rules—transitions can now occur with |Δ𝐹 | = 2 and |Δ𝑀 | = 2. These
selection rules can be derived by considering the selection rules of two back-to-back
single-photon transitions.

Two-photon transitions are not limited by the excited state lifetime, making
it possible to obtain very-high resolution spectra and address individual hyperfine
states. The width of the two-photon resonance can depend on many factors, such as
power-broadening, background field variation and inhomogeneity, and time-of-flight
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broadening. In practice, since fields in the region were limited to the ∼10 mG level,
at lower powers the resolution is limited primarily by time-of-flight broadening,
which is on the order of ∼200 kHz for a 200 m/s molecule beam traversing a 1 mm
wide laser beam. This is narrow enough to resolve the hydrogen hyperfine structure
common to metal hydroxides, which is on the order of 1− 10 MHz for low-𝑁 states.

For the discussion to follow, we will find it useful to introduce a toy model
consisting of a three level Λ-system, shown in Fig. 5.16a. The ground states, 𝜓1 and
𝜓2, will be typically taken to represent the two same parity spin-rotation states of
𝑋̃ (010) in a single 𝑁 manifold. The excited state represents an excited state 𝐽′ in
𝐴̃(010) with opposite parity to the ground states. In our toy model, we have drawn
two lasers, 𝐿1 and 𝐿2 addressing 𝜓1 and 𝜓2. While this is accurate for the AOM
scheme, in the EOM scheme there will generically be more frequencies, shown in
Fig. 5.16b, and discussed later. Continuing in the AOM picture, we define the one
photon detuning Δ as Δ = 𝜔𝐿2 −𝜔𝑒2, where 𝜔𝑒2 is the resonant transition energy to
excite 𝜓2. Meanwhile, the two-photon detuning is defined as 𝛿 = 𝜔𝐿2 − 𝜔𝐿1 − 𝜔12,
where 𝜔12 is the energy difference between 𝜓1 and 𝜓2. This definition of the
two-photon detuning is convenient as the two-photon resonance occurs at 𝛿 = 0.
However, in the experiment we control the value 𝛿′ = 𝜔𝐿1 − 𝜔𝐿2, and so later we
will switch to this definition of the two-photon detuning.

In Ref. [397], the authors show that in the limit of large Δ, the three level system
in Fig. 5.16(a) can be reduced to a two level system described by the following
effective Hamiltonian in frame rotating at 𝜔12:

𝐻̃eff/ℏ =

(
−𝛿/2 − |Ω1 |2

4Δ −Ω∗eff

−Ωeff 𝛿/2 − |Ω2 |2
4Δ

)
. (5.14)

On the diagonals we have the AC Stark shifts, and on the off-diagonals we have
coupling driven by Ωeff, the effective Raman Rabi frequency, given by:

Ωeff =
Ω∗1Ω2

4Δ
. (5.15)

We can estimate the power needed to drive two-photon transitions. We assume
Ω1 = Ω2 = Ω, and write Ω = 𝛾

√︁
𝑟𝑖 𝑗 𝑠/2, where 𝑟𝑖 𝑗 is the branching ratio for the

transition, defined in eq. 3.2. We approximate 𝑟𝑖 𝑗 ∼ 1/2 and use 𝐼𝑠 ≈ 5 mW/cm2

as in YbOH. With Δ = 2𝜋 × 1 GHz, we obtain Ωeff ≈ 𝑠 × 2𝜋 × 2.4 kHz. We
see we need to operate with 𝑠 ≈ 80 to obtain Ωeff ≈ 200 kHz, on the order of the
time of flight broadening. Luckily, we are working with quasi-diagonal FCFs on a
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Figure 5.16: Three level toy models for AOM and EOM two-photon setups. The
two ground states are 𝜓1 and 𝜓2, split by 𝜔12, and the excited state is 𝑒, separated
from the ground states be 𝜔𝑒2 and 𝜔𝑒1. (a) With an AOM, we generate two laser
beams, 𝐿1 and 𝐿2, that can address either ground state. The one photon detuning is
given by Δ = 𝜔𝐿2 − 𝜔𝑒2 , and the two-photon detuning is 𝛿 = 𝜔𝐿2 − 𝜔𝐿1 − 𝜔12. (b)
With an EOM, we generate three frequencies: the carrier𝜔0, and two sidebands𝜔+1
and 𝜔−1. The diagram shows the resonant two-photon case when |𝜔0 −𝜔±1 | = 𝜔12.
On resonance, we have two separate two-photon linkages, 𝜔0𝜔−1 and 𝜔+1𝜔0. The
relative phase of -1 between the sidebands results in destructive interference of the
total 𝜓1 ↔ 𝜓2 transition amplitude, see main text for details. (b) is adapted from
Ref. [398]

strong transition, so we can achieve this saturation parameter with ∼12 mW in each
sideband for a 1 mm × 3 mm cylindrical beam.

To generate the two-photon light, we need to create coherent sidebands in the
frequency spectrum of the laser. Two approaches were available to us: electro-optic
modulators (EOMs) and acousto-optic modulators (AOMs). Though both have
advantages and disadvantages, we ran into two key distinctions that made AOMs
more favorable to EOMs for generating two-photon light. First, the AOM produces
a sideband that has a different 𝑘 vector from the carrier, allowing independent
control of the two polarizations, while the EOM produces two or more sidebands,
all with the same 𝑘 vector as the carrier, and same polarization properties. Second,
the EOM produces positive and negative sidebands symmetric about the carrier,
with a phase relationship of (−1)𝑛 between the 𝑛th and −𝑛th sideband. This phase
relationship results in destructive interference between the various carrier-sideband
combinations that satisfy the two-photon resonance.
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5.3.3.1 EOM Interference

Destructive interference when using an EOM to implement a two-photon transition
is discussed in detail in Refs. [398, 399]. Consider an electric field oscillating at 𝜔0

subject to sinusoidal phase modulation with modulation index 𝛽:

𝐸 (𝑡) = 𝐸0 cos (𝜔0𝑡 + 𝛽 sin𝜔𝑡) = 𝐸0

2
𝑒𝑖(𝜔0𝑡+𝛽 sin𝜔𝑡) + c.c. (5.16)

We now drop the 𝜔0 oscillation as well as the complex conjugate term, equivalent to
performing a rotating frame transformation and rotating wave approximation. We
can expand the remaining exponetial using the Jacobi-Anger expansion as follows:

𝐸0

2
𝑒𝑖𝛽 sin (𝜔𝑡) =

𝐸0

2

∞∑︁
𝑛=−∞

𝐽𝑛 (𝛽)𝑒𝑖𝑛𝜔𝑡 . (5.17)

The sum describes sidebands separated by 𝜔, where each sideband amplitude is
proportional to 𝐽𝑛 (𝛽), which is a Bessel function of the first kind. We can then
define a Rabi frequency for each sideband as ℏΩ𝑛 = 𝐷𝑒𝑔𝐸0𝐽𝑛 (𝛽). For now we
ignore branching ratios and complex phases. In the case when sideband 𝑛 and 𝑛′

form a two-photon resonance at (𝑛 − 𝑛′)𝜔, we can then write the effective Rabi
frequency as Ω𝑛,𝑛′ = Ω𝑛Ω𝑛′/(4Δ).

First, we consider the case with low modulation depth, where the prominent sig-
nals are the carrier (𝑛 = 0) and first order sidebands (𝑛 = ±1). When the modulation
frequency is resonant with the ground state splitting, we have the situation shown in
Fig. 5.16b. We see there are two separate two-photon resonances that can occur, and
we write the total transition amplitude as Ωtot = Ω0,−1 + Ω0,+1. Now, we recall that
Ω𝑛 ∝ 𝐽𝑛 (𝛽), and 𝐽𝑛 (𝛽) = (−1)𝑛𝐽−𝑛 (𝛽). Therefore the two terms contributing to Ωtot

are opposite in phase, causing destructive interference of the transition amplitude.
To see how severe the cancellation is, we write Ω+1 = −Ω−1 = Ω1, and expand the
transition amplitude:

Ωtot =
Ω0Ω1

4Δ
− Ω0Ω1

4(Δ + 𝜔12)
(5.18)

=
𝜔12

Δ + 𝜔12

Ω0Ω1

4Δ
. (5.19)

We see that the effective Rabi frequency is supressed by the ratio𝜔12/Δ forΔ ≪ 𝜔12.

We now revisit our earlier power estimate. We take Δ = 2𝜋 × 1 GHz and
𝜔12 ∼ 2𝜋 × 100 MHz, which means our effective two-photon frequency is now at
least 10× weaker. Furthermore, if we increase the power, we have to contend with
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more off-resonant scattering. Normally, the scattering rate scales with intensity as
𝑅𝑠𝑐 ∝ 𝐼/Δ2, while Ωeff ∝ 𝐼/Δ, and we can just move to larger detuning to improve
the ratio Ωeff/𝑅𝑠𝑐. However, with EOM interference, the extra factor of 𝜔/Δ in
eq. 5.18 now means Ωeff ∝ 𝐼/Δ2 has the same detuning dependence as 𝑅𝑠𝑐, and we
no longer win by going to larger detuning.

This interference can motivate us to try driving two-photon transitions with
larger frequency spacings, for example by modulating at 𝜔mod/2, such that the
+1,−1 sidebands form a resonance. However, we recall that the sideband intensities
are given by Bessel functions 𝐽𝑛 (𝛽). As we increase 𝛽 to make the |𝑛| = 1 sidebands
larger, appreciable |𝑛| = 2 sideband intensity will form. Therefore, we will also
have resonances that form between the 0,±2 sidebands, and these resonances have
opposite phase to the +1,−1 sideband resonance, resulting in further destructive
interference.

Mathematically, one can show that no matter what sidebands we use, as long
as the amplitudes are given by eq. 5.17, there will be destructive interference. The
relatively straightforward proof is provided in Appendix F of Ref. [399]. The end
result is the following statement:

∞∑︁
𝑛=−∞

𝐽𝑛 (𝛽)𝐽𝑛′ (𝛽) = 𝛿𝑛,𝑛′ (5.20)

where 𝛿𝑛,𝑛′ is the Kronecker-Delta function. The cross terms represent amplitude
modulation at (𝑛 − 𝑛′)𝜔, and they vanish because we are performing pure phase
modulation. As we showed earlier, the cancellation is not complete, as the sum we
consider is also weighted in the denominator by the detuning Δ, which will have
small variation for different sideband combinations. However, the cancellation is
still severe, and we cannot improve the situation by using higher order sidebands.

In Ref. [398], the authors circumvent this issue by separating the𝜔0 carrier with
interferometric techniques, and deliberately applying an extra frequency shift to just
𝜔0 before recombining with the sidebands. Meanwhile, in Ref. [395], the authors
present three methods: one uses a Mach-Zender interferometer to add differential
phase shift, the second approach purposefully introduces sideband asymmetry by
parking on the efficiency slope of a SHG gain curve, and the third approach uses a
cavity to filter out unwanted sidebands. We note the second approach is very similar
to our setup, where we perform phase modulation before a doubling crystal. Finally,
in Ref. [399], the authors use a dispersive element to convert phase modulation to
amplitude modulation.
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As shown in the references above, we can circumvent the interference issue if
we purposefully introduce amplitude modulation into the problem, equivalent to
breaking the symmetry of the EOM sidebands. Asymmetric sidebands are actually
somewhat common and usually unwanted, and can result from driving an EOM with
harmonics of the modulation frequency. Therefore, we can purposefully drive the
EOM with additional tones at harmonic frequencies, adjusting their amplitude and
phase by optimizing for asymmetry in the sideband spectrum.

In the experiment, we tried performing detuned Raman transitions using two-
photon light derived from an EOM. We were unable to see any effect at low powers,
thought at sufficiently high power we did see some weak signals correlated with
the EOM being on. Unfortunately the SNR was very poor and the power required
was >100 mW, resulting in noticeable off-resonant scattering at a detuning of 1
GHz. Finally, we tried generating asymmetric sidebands by driving the EOM with
a waveform at 2𝜔 in addition to 𝜔. By adjusting the amplitude and phase of the two
waveforms, we were able to create a 1:4 asymmetry ratio of 𝑛 and −𝑛 sidebands.
However, because we did not use a doubler but instead used two different output
channels, we had relative frequency offsets between our 𝜔 and 2𝜔 tones that caused
sideband asymmetry drift over timescales of seconds.

Even if the destructive interference from opposite phase sidebands was not an
issue, EOMs are still limited to generate sidebands with identical polarization to
the carrier12. This can result in interference issues when combined with unresolved
hyperfine structure. We previously encountered this issue in Sec. 5.2, where for
certain transitions, hyperfine doubling destabilized dark states.

In both AOM and EOM based approaches, hyperfine doubling results in two
contributions to the two-photon transition amplitude, one from each excited 𝐹 state
for a given 𝑀𝐹 . The specific TDM couplings depend on Wigner-6j and 3j symbols.
The two hyperfine contributions generally have opposite sign, though not opposite
magnitude, and this has different consequences for CPT compared to detuned Raman
transitions. For CPT, the dark states are proportional to the transition amplitudes
and their phases. The presence of two oppositely signed two-photon couplings
means there is wavefunction overlap with the bright state of one coupling and the
dark state of the other coupling, resulting in optical pumping and loss. This is the
same mechanism that is detailed in Sec. 5.2. Meanwhile, in the case of detuned

12There are clever and complicated techniques that can be leveraged to split a carrier and its
sidebands, see Ref. [398] which used this to avoid EOM interference.
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Raman transitions, the transition amplitudes for the different two-photon paths are
added together. Because the matrix elements between Δ𝐹 = −1, 0, +1 states are
generically different, there is not an exact cancellation of transition amplitudes, and
the total amplitude can retain a decent fraction of its nominal value.

Further, CPT can still be pursued if there is no hyperfine doubling in the excited
state. This is the case whenever addressing transitions to stretched excited states,
as they correspond to a unique 𝑀𝐼 = 𝐼 · 𝑍̂ configuration in the decoupled nuclear
spin basis. The existence of a single, unique excited state means only one dark
state forms, and is orthogonal to any other bright states. Indeed, later we achieve a
successful CPT resonance using an EOM to couple stretched states. Stretched states
also do not have order unity reduction of the transition amplitude in detuned Raman
transitions. In order to leverage stretched excited states for two-photon resonances,
we must consider the level degeneracies of the ground and excited states, as well as
the optical linkages formed by our polarizations of choice.

5.3.3.2 Master Equation Simulations

In addition to experimental tests, we model the two-photon dynamics using a Lind-
blad master equation (a.k.a. optical Bloch equations), implemented in QuTiP13.
For specific details on modeling dynamics with master equations, see Ch. 4 of
Ref. [349] as well as Refs. [120, 400, 401]. Master equations are powerful tools
that allow us to combine unitary dynamics (entropy preserving) with dissipative
dynamics (entropy increasing). In our case, unitary dynamics are implemented by
optical couplings, while dissipation results from spontaneous emission. Therefore
a master equation describes the evolution of a density matrix 𝜌, which can describe
both coherent superpositions and statistical mixtures. Though we do not pursue
it here, the master equation approach can also be generalized to generate quantum
state trajectories [402].

The Lindblad master equation describes the time evolution of the density matrix
𝜌 subject to both coherent operations and dissipation. The master equation is given
by [213, 402]:

d𝜌
d𝑡

= − 𝑖
ℏ
[𝐻, 𝜌] +

∑︁
𝑖 𝑗

𝛾𝑖 𝑗D[𝑐𝑖 𝑗 ]𝜌. (5.21)

The master equation is the same in the rotating frame14, so long as we substitute 𝐻̃
13 https://qutip.org/
14Diagonal values of 𝜌 and 𝜌̃ are also the same, but the off-diagonal entries can be different.

https://qutip.org/
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for 𝐻 and 𝜌̃ for 𝜌. The commutator [𝐻, 𝜌] generates unitary dynamics, while the
“superoperator” D generates dissipative dynamics. Meanwhile, the sum is taken
over the ground states 𝑖 and excited states 𝑗 , with the partial width 𝛾𝑖 𝑗 given in
eq. 3.1. The operator 𝑐𝑖 𝑗 = |𝑖⟩⟨ 𝑗 | represents the multi-level equivalent of 𝜎− that
transfers population from 𝑒⇝ 𝑔. Finally, the dissipation superoperatorD is defined
as D[𝑐]𝜌 = 𝑐𝜌𝑐† − 1

2 {𝑐
†𝑐, 𝜌}, where {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 is the anti-commutator.

To represent the ground state manifold, we use the eigenstates obtained by
diagonalizing the 𝑋̃ (010) effective Hamiltonian obtained in Ch. 4. To model the
excited state, we use the eigenstates obtained by diagonalization of the 𝐴̃2Π1/2(000)
state, and when calculating the E1 TDM, we substitute Λ → ℓ, i.e., we treat the
state as a 2Π1/2 vibronic state where Λ and ℓ are indistinguishable. In such an
approximation, transitions are generated by the parallel 𝑇1

𝑞=0(𝑑) component of the
molecule frame transition dipole. This is not strictly accurate, as we know from Ch. 4
that the E1 transition up to 𝐴̃ should couple via 𝑇1

𝑞=±1(𝑑) components. Nonetheless,
accurate modeling of the bend-to-bend TDMs is significantly complicated by the 𝐾-
resonance, and was beyond the scope of our work. Further, the approximation is not
necessarily a bad one considering the 𝐾-resonance makes the 𝐴̃(010) state look like
a 2Π(b) state. We will refer to our approximated state as 𝐴̃(010) for convenience,
though the reader should remember we are not treating the exact TDMs with detail.

For the coherent dynamics, we use a total Hamiltonian consisting of the eigen-
values of direct diagonalization on the diagonals, and the computed TDMs for the
off diagonals. We setup the problem in a basis containing all 𝑋̃ (010) states of parity
P in a single rotational manifold 𝑁 , including all 𝐽, 𝐹, 𝑀 states. For the excited
states, we include in the basis all 𝐴̃(010) states of opposite parity, P′ = −P, in a
single excited state 𝐽′manifold, including hyperfine parameters that are deliberately
set to be ∼100× smaller than the 𝑋̃ (000) hyperfine.

We treat the two-photon light generated by the AOMs as consisting of two light
fields, 𝜖1𝐸1 cos (𝜔𝐿1𝑡) and 𝜖2𝐸2 cos (𝜔𝐿2𝑡), where 𝐸𝑖 is the electric field amplitude
and 𝜖𝑖 is the polarization. We take 𝐿1 to address 𝜓1, the ground 𝐽 manifold that
is initially depleted. Then 𝐿2 addresses the undepleted ground manifold 𝜓2. The
two-photon detuning is given by 𝛿 = 𝜔𝐿2 − 𝜔𝐿1, and the one photon detuning is
given by Δ = 𝜔𝐿2 −𝜔𝑒𝜓1 , where 𝜔𝑒𝜓1 is the transition energy from the excited state
to the 𝜓1 manifold. Fig. 5.17 shows a schematic of relevant transitions and levels
when considering the 𝑁 = 1 ground state manifold.

Transition dipole moments are written asΩ(𝑖)𝑔𝑒 = ⟨𝑔 |𝑇1(𝑑) ·𝑇1(𝜖𝑖) |𝑒⟩𝐸𝑖/ℏ, where
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𝑖 denotes 𝐿1, 𝐿2, and 𝑒, 𝑔 denote arbitrary ground and excited states. We connect
Ω to experiment via the saturation parameter, 𝑠 = 𝐼/𝐼𝑠 = 2Ω2/𝛾2, where 𝛾 = 1/𝜏
and 𝐼𝑠 = 𝜋ℎ𝑐

3𝜆3𝜏
. Rewriting in terms of branching ratios the line strength 𝑚𝑖 𝑗 =

⟨𝑖 |𝑇1
𝑝 (𝑑) | 𝑗⟩/𝐷𝑒𝑔, we have Ω𝑒𝑔 = 𝛾𝑚𝑖 𝑗

√︁
𝑠/2. We note that the saturation parameters

should be interpreted very approximately, as we do not model the Gaussian extent
of the laser beam, nor do we know the excited state TDMs accurately.

Suppressing 𝑀 sublevels and hyperfine quantum numbers for convenience, we
can write the Hamiltonian in a basis given by{���𝑒, 𝐽′〉, ���𝜓1, 𝐽1

〉
,

���𝜓2, 𝐽2

〉}
. (5.22)

We transform into the rotating frame defined by 𝑅 = 𝑒𝑖𝜉𝑡 , with 𝜉 a diagonal matrix
with diagonal entries given by {𝜔𝐿2, 𝛿, 0}. In this choice of rotating frame15, the
𝐽1 spin-rotation manifold energy is defined relative to frame rotating at the two-
photon frequency 𝛿. We also define the spin-rotation splitting as 𝐸𝑆𝑅 as the energy
separation between 𝐽1 and 𝐽2. We can then write the rotating frame Hamiltonian as:

𝐻̃ =

©­­­«
−Δ 1

2Ω
(1)
𝐽′𝐽1
+ 1

2𝑒
−𝑖𝛿𝑡Ω(2)

𝐽′𝐽2
1
2𝑒
𝑖𝛿𝑡Ω

(1)
𝐽′𝐽1
+ 1

2Ω
(2)
𝐽′𝐽2

h.c. −𝛿 + 𝐸𝑆𝑅 0
h.c. h.c. 0

ª®®®¬ . (5.23)

where h.c. denotes Hermitian conjugate of the upper half diagonal. For convenience,
have taken the Rabi frequencies Ω to be real, as we only consider light linearly
polarized along 𝑍̂ and 𝑋̂ . The form of the Hamiltonian sheds some light on how
detuned Raman transitions work.

To generalize the above matrix to the full basis, one can add the hyperfine
energies to the diagonal elements, and take into account the hyperfine state quantum
numbers when computing the Rabi frequency matrix elements. Finally, we note
with the 𝑋̃ (010) parameters from Ch. 4, there are two separate values of 𝐸𝑆𝑅 in
𝑁 = 1, one for each parity, calculated to be 𝐸 (−)

𝑆𝑅
= 45.3 MHz and 𝐸 (+)

𝑆𝑅
= 62.1 MHz.

Finally, we implement a few phenomenological additions to the simulations.
First, we add an extra ground state that is uncoupled by coherent manipulations, but
can be populated by excited state decays. This “dump” state is meant to model leak-
age to other vibrational states dark to the laser, and its branching ratio is obtained by
assuming the Δ𝑣 = 0 decay from 𝐴̃(010) has the same vibrational branching ratio

15An alternative parameterization is {𝜔𝐿2, 𝛿, 0}, which is easier for comparison to the effective
Hamiltonian eigenvalues, as the diagonal entries are just state energies.
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(89.44%) as the equivalent decay from 𝐴̃(000) [144, 217]. Secondly, to phenomeno-
logically model Doppler broadening of the excited state, for CPT simulations only
we add excited state dephasing using

∑
𝐽 𝛾𝐷D[𝑑 𝑗 ]𝜌, where 𝛾𝐷 is the Doppler width

(∼10 MHz) and 𝑑 𝑗 = | 𝑗⟩⟨ 𝑗 | is the excited state projector. This can be thought of as
the multi-level equivalent of a 𝜎𝑧 dephasing operator, which eliminates off-diagonal
coherences. This approximation is fine so long as we are not interested in coherent
physics on time scales shorter than the excited state lifetime. Otherwise we must av-
erage the master equation solutions over one-photon detuning values (the sidebands
are co-propagating and the two-photon detuning is Doppler free).

Simulations are performed with a 1.2 ns timestep. Such a short timestep is
necessary because we are directly simulating the phase oscillation of the off-diagonal
matrix elements, which have a period of 𝐸−1

𝑆𝑅
≈ 17 ns. On one hand, this allows

us to use the same simulation for resonant CPT and detuned Raman processes, just
changing the one photon detuning. If we were just interested in detumed Raman
transitions, we could have instead developed an effective model that eliminates the
excited state in favor of an effective two-photon Rabi rate. See Ref. [397] for a
discussion of what “eliminating” the excited state means.

5.3.4 Two-Photon CPT Tests
First, we performed experiments on resonance, using transition interference

between the two AOM sidebands to implement coherent population trapping (CPT).
We label the two laser sidebands as 𝐿1, addressing the depleted state 𝜓1, and
𝐿2, addressing the undepleted state 𝜓2. The two-photon detuning is given by
𝛿 = 𝜔𝐿2 − 𝜔𝐿1, the one photon detuning is given by Δ = 𝜔𝐿2 − 𝜔𝑒𝜓2 , and the
spin-rotation splitting is given by 𝐸𝑆𝑅. See the previous section for details on
notation.

To understand how a dark state can result in population transfer, we imagine the
bright and dark states are given by |𝐵/𝐷⟩ ∝ |𝜓1⟩ ± |𝜓2⟩. Now we expand the initial
state, 𝜓2, in the bright/dark basis, as |𝜓2⟩ ∝ |𝐵⟩ − |𝐷⟩. As the molecule enters the
light field, the coupling |𝐵⟩ → |𝑒⟩ increases, while |𝐷⟩ remains dark. After a few
photon scatters, the bright state is pumped away, but the dark state remains, and
the population is spread between 𝜓1 and 𝜓2. We can also think of the transitions
between the two ground states as occurring via stimulated absorption followed by
stimulated emission.

In the experiment, we fix 𝜔𝐿2 on resonance, Δ ≈ 0, and we scan 𝜔𝐿1 by varying
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Figure 5.17: A schematic diagram of the 𝑋̃ (010) and 𝐴̃(010) states involved in the
two-photon experiments with orthogonal polarizations. The diagram is applicable
to both CPT and detuned Raman transitions. Here, we show the case of |𝜓1⟩ = |𝐽 =
1/2+⟩ and |𝜓2⟩ = |𝐽 = 3/2+⟩. The two AOM sidebands are 𝐿1 and 𝐿2, and we
indicate the one photon detuning Δ and the two-photon detuning 𝛿 (see main text
for more details). Here, we have only shown one of the possible linkages between
𝐹 = 2 and 𝐹 = 1. In general there will also be linkages involving 𝐹 = 2, 𝑀𝐹 = ±1
states, not shown.

the AOM drive. We can adjust the relative polarization angle between 𝐿1 and 𝐿2
using a half waveplate, as detailed in the apparatus section. Based on the issues
with hyperfine interference discussed in Sec. 5.2, we expect that if 𝐿1 and 𝐿2
are both polarized along the same direction, we will have destabilized dark states.
We can see this by choosing the polarization direction to be 𝑍̂ , which makes the
hyperfine interference clear. On the other hand, we expect that with orthogonal
polarizations, dark states will exist. We can obtain these conclusions by examining
the linkages (two-photon resonances) formed by the two optical couplings, shown
in Fig. 5.17. If a linkage has more ground states than excited states, then a dark state
will exist. If the number of states is equal between ground and excited, then given
the hyperfine doubling, we expect the dark states to be destabilized by resonant
bright state scattering via the hyperfine doubled excited state.

We first investigated CPT resonance for the 𝑁 = 1,P = +1 manifold of the
ground state, where we identify |𝜓1⟩ = |𝐽 = 1/2⟩ and |𝜓2⟩ = |𝐽 = 3/2⟩. We deplete
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Figure 5.18: Coherent population trapping (CPT) features obtained with Δ = 0
scanning the two-photon frequency 𝛿 across the 𝑁 = 1+ spin-rotation splitting. The
signal is the population read out from the 𝐽 = 1/2 level, denoted 𝜓1 in the main
text. All model curves are calculated with 𝑠1 = 0.5, 𝑠2 = 10, taking into account
the AOM scanning efficiency with 𝜎 = 2.5 MHz, and using a 10 MHz excited
state Doppler broadened width. Both data curves have slopes due to target decay
and heating. (a) CPT signals obtained with perpendicular polarization on the two
sidebands 𝐿1 and 𝐿2. The feature in the middle is a dark state formed by connecting
𝐽 = 3/2, 𝐹2 = 2 ↔ 𝐽 = 1/2, 𝐹 = 1. (b) The CPT feature is absent when using
parallel polarization on 𝐿1 and 𝐿2, a result of hyperfine interference.

the 𝐽 = 1/2 manifold using the strong 𝑄𝑅+12(1) line of the 𝑋̃ (010) → 𝐴̃(000)
transition. The two-photon laser 𝐿2 is fixed on the transition from 𝑋̃ (010), 𝐽 = 3/2
up to 𝐴̃(010), specifically the lower 𝐽′ = 3/2+ state (“𝑁′ = 1”) of 𝐴̃(010) at
17331.7010 cm−1. We then scan the frequency of 𝜔𝐿1 via by changing the RF
frequency driving our double-pass AOM detailed earlier in the apparatus section.
Figure 5.18(a) shows both data and theory for the CPT resonance with perpen-
dicular polarizations for 𝐿1 and 𝐿2. The lineshape is similar to that obtained in
electromagnetically-induced transparency. We note the CPT data shown was taken
with a limited AOM double-pass configuration, resulting in extinction of 𝐿1 power
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when 55 MHz < 𝛿 < 65 MHz, see the apparatus Section 5.3.2.2 for details. The
theory curves take into account this power variation. We now explain the general
lineshape of the feature.

When 𝜔𝐿1 is far off resonance (or extinguished), there is no two-photon res-
onance. Instead, we will only have a “one-photon resonance” from 𝜔𝐿2, which
optically pumps population from 𝜓2 to 𝜓1 via the pathway 𝜓2 → 𝑒 ⇝ 𝜓1. In our
downstream probe of 𝜓1 shown in Fig. 5.18, this looks like an increase in population
compared to when 𝜔𝐿2 is blocked. Now we consider the case when 𝜔𝐿1 is detuned
from the 𝜓1 resonance (and therefore from the two-photon resonance) by ≳ 1 MHz.
The interference of 𝐿1 and 𝐿2 results in a dark state, but it is not stable. In the frame
rotating at 𝐸𝑆𝑅, the dark state phase is oscillating at a frequency 𝐸𝑆𝑅 − 𝛿 ≳ 1 MHz,
and therefore within 1 µm or faster it transforms to a bright state that is pumped out
by the lasers. Therefore, any population that decays into 𝜓1 via optical pumping will
inevitably be pumped back out, and we see the signal representing the 𝜓1 population
drops accordingly. This large dip should be as wide as the total width of the one
photon fluorescence feature, but in the experiment we are limited by loss of 𝐿1
power as we scan 𝛿. Finally, in the middle of the large depletion dip, we see a
narrow feature, corresponding to the two-photon CPT resonance. The interference
between 𝐿1 and 𝐿2 is on resonance with the spin-rotation splitting, 𝐸𝑆𝑅 − 𝛿 ≈ 0,
and therefore the dark state phases remain stable in the frame rotating at 𝛿. We note
that we can also observe the population in the 𝐽 = 3/2, 𝜓2 state in the simulations,
which indicates the exact opposite lineshape—a wide one photon pumping feature
corresponding to increased 𝜓2 population, and a series of narrow CPT resonant dips
corresponding to dark state transfer to 𝜓1.

The simulations agree with the data well, although they require us to modify
the saturation parameters 𝑠1 and 𝑠2 from the naive expectation. This should not be a
surprise, considering we do not know the exact excited state TDMs. The simulations
indicate the other hyperfine components are buried under the noise floor of the
depletion signal, combined with the loss of light from technical imperfections in the
initial AOM setup.

We now discuss the width of the feature. Since magnetic fields in the region are
controlled down to≲30 mG levels, this can give a Zeeman broadened width of at most
50 kHz. In the absence of power broadening, we expect the dominant contribution
to the width to be time-of-flight broadening. The molecules are traveling at 200 m/s,
and the laser beam is ∼1 mm wide, resulting in a 𝑡𝑇𝑂𝐹 = 5 µs time-of-flight, and
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a broadening of ∼𝑡−1
𝑇𝑂𝐹

= 200 kHz. We can intuitively understand time-of-flight
broadening as limiting the number oscillations, experienced by the molecules, of
the RF beat note between the two sidebands. The width observed in the data is
larger than expected, possibly due to uncompensated stray fields.

The data in Fig. 5.18(a) was taken with balanced power in both sidebands,
approximately 500 µW split between both beams. Using 𝐼𝑠 = 5.4 mW/cm2, as is
the case for the 𝑋̃ (000) − 𝐴̃(000) band in YbOH, this would nominally correspond
to 𝑠 ≈ 1.5. However, the middle CPT feature is too strong to be explained by such
a value in the simulations. We note this discrepancy could be due to 𝑠1 being lower
as a result of the AOM fiber couple issues mentoned earlier.

We also studied the effect of varying the power in the beams. Generically, the
dark states that form are may be as Ω2 |𝜓1⟩ − Ω1 |𝜓2⟩ assuming all positive Ω. We
therefore see that we can increase the amount of population returned to 𝜓1 (and
therefore the contrast of the CPT lineshape) by increasing the intensity of the 𝐿2
laser addressing 𝜓2. Finally, due to the fact that 𝐸𝑆𝑅 ≈ 6𝛾, where 𝛾 is the radiative
linewidth, if we increase the power of either beam such that 𝐸𝑆𝑅 ∼ 𝛾

√
1 + 𝑠, then the

power broadened resonance results in off-resonant scattering of 𝜓1 by 𝐿2 and vice-
versa, which can destroy the dark state via optical pumping. Indeed, if we increase
the powers too high, we observe loss of the CPT resonance in the experiment.

We also investigated the configuration where both AOM sidebands have the
same polarization orientation. The data and simulation results for parallel optical
polarizations are shown in Fig. 5.18(b). While the depletion dip is still present, we
see the CPT resonance has been reduced to below the noise floor. As discussed
earlier, this is a result of hyperfine doubling in the excited state, which is easiest
to see if we consider both beams as 𝑍̂ polarized, and thus the lasers only connect
states with Δ𝑀𝐹 = 0. Then there are two excited hyperfine states that each form
a Λ-system for a given pair of ground 𝑀𝐹 states. The dark state of one system
is the bright state of the other, and resulting in optical pumping and depletion of
the dark state. The only excited states sublevels without hyperfine doubling are the
𝑀′
𝐹
= ±2 stretched states, and these cannot connect via Δ𝑀𝐹 = 0 transition to both

spin-rotation manifolds in the ground state, as only 𝐽 = 3/2 has 𝑀𝐹 = ±2 stretched
states.

Though we do not go into detail here, we additionally performed two-photon
CPT on the 𝑁 = 2,P = +1 manifold of the 𝑋̃ (010) state. Now we identify
|𝜓1⟩ = |𝑁 = 2, 𝐽 = 3/2−⟩ and |𝜓2⟩ = |𝑁 = 2, 𝐽 = 5/2−⟩. We performed upstream
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depletion and downstream probing with the 𝑄𝑅−12(2) line of the 𝑋̃ (010) → 𝐴̃(010)
transition. For the two-photon light, we couple to the upper 𝐽′ = 3/2+ state (𝑁 = 2)
in 𝐴̃(010). The resonant line corresponding to the 𝐽′′ = 5/2− → 𝐽′ = 3/2+

transition is located at approximately 17331.5050 cm−1. The spin rotation splitting
in 𝑁 = 1− is 192.5 MHz, which was too far for our AOMs.

For the 𝑁 = 2 CPT tests, we generated the two-photon light using an EOM.
Since we are on resonance (Δ = 0), we do not have to worry about the destructive
interference discussed earlier. Further, we now have stretched 𝑀′

𝐹
= ±2 states in

the excited 𝐽′ = 3/2 state. These levels can be connected via 𝑍̂ polarized light to
the 𝑀𝐹 = ±2 levels avialable in both ground states 𝜓1 and 𝜓2. Therefore, we expect
to have have dark states in spite of the hyperfine doubling. Indeed, we successfully
observed a CPT feature, similar to those seen for 𝑁 = 1, when using an EOM with
parallel polarizations.

A benefit of the CPT approach is that the resonance is not subject to light shifts.
Unfortunately, CPT occurs in the presence of a one-photon background dip with a
center value that depends on the one photon detuning Δ. Therefore frequency noise
on the laser causes variation of the one photon depletion background, making small
hyperfine features difficult to distinguish. We therefore moved on to try detuned
two-photon Raman transitions, which are background free at the expense of light
shifts.

5.3.5 Two-Photon Detuned Raman Spectroscopy
In the detuned Raman case, we operate with non-zero one-photon detuning

Δ = 2𝜋 × 1 GHz. This should suppress the scattering rate by a factor of ∼𝛾2(1 +
𝑠)/(4Δ2) ≈ 10−5 × (1 + 𝑠) compared to the resonance. However, we will now
have light shifts, also known as AC Stark shifts. These shifts originate from the
off-resonant, “dispersive” interaction of the transition dipole with the oscillating
field, and we discuss them in detail later in this section.

To perform the experiment, we fix 𝜔𝐿2 and scan 𝜔𝐿1 over the two-photon reso-
nance by varying the AOM RF drive frequency16. The two-photon resonances will
be split by hyperfine structure, and on resonance the coupling 𝜓1 ↔ 𝜓2 causes Rabi
oscillations. As we vary the power in the two-photon beams, we vary the number
of oscillations undergone for a single velocity class. In general, the population
will be spread between 𝜓1 and 𝜓2, and we will observe revival of 𝜓1 population

16By this point we improved the AOM scanning using the lens described in Sec. 5.3.2.2
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Figure 5.19: Detuned Raman transitions between 𝑁 = 1, 𝐽2 = 3/2+ and 𝑁 = 1, 𝐽1 =

1/2+ hyperfine states, driven by perpendicular two-photon beams. The hyperfine
transitions are labeled as 𝐹2 ↔ 𝐹1. The inset in the top right shows a diagram of the
levels involved, not to scale. The data correspond to the LIF signal characterizing
population revival in 𝜓1. The two-photon laser beam has 22.5 mW of total power
split evenly between both sidebands. The beam is cylindrical with 𝑑𝑋 = 2 mm along
the molecule travel direction and 𝑑𝑍 = 5.2 mm along the transverse direction. Model
curves are obtained using 𝑠1 = 𝑠2 = 220, and 𝑏𝐹 = 4.07 MHz and 𝑐 = 3.49 MHz, see
main text for details. The model curve is offset by 700 kHz to account for unknown
light shifts and inaccuracies in the optically determined spin-rotation parameters.

downstream. Similar to the CPT case, we expect the resonances to be time of flight
broadened.

In Fig. 5.19, we show both experimental and simulation results for detuned two-
photon Raman resonances of the 𝑁 = 1,P = +1 manifold, using perpendicularly
polarized sidebands to drive transitions between spin rotation states. We can clearly
resolve the hyperfine structure of the 𝑋̃ (010) bending mode. We distinguish the
two hyperfine 𝐹 = 1 levels by writing 𝐹 = 1+ for the upper level in 𝐽 = 1/2 and
𝐹 = 1− for the lower level in 𝐽 = 3/2. We assign the four peaks as corresponding
to all possible 𝜓2, 𝐹 ↔ 𝜓1, 𝐹 features: 2 ↔ 1+, 2 ↔ 0, 1− ↔ 1+, and 1− ↔ 0.
To perform the assignment of the hyperfine levels, we use an initial guess based
on the 𝑋̃ (000) hyperfine parameters. The observed transition frequencies and their
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Table 5.1: Observed 𝑋̃ (010)− 𝑋̃ (010), 𝑁 = 1 spin-rotation-hyperfine lines obtained
from detuned Raman spectroscopy. Radiofrequency (RF) values correspond to two-
photon resonances, and are obtained from Lorentzian peak fits of data. We use
𝐹 = 1± to denote the upper/lower 𝐹 = 1 state in the 𝑁 = 1 manifold. Parentheses
are 2-𝜎 errors.

Observed Line (MHz) 𝐽′′, 𝐹′′,P′′ 𝐽′, 𝐹′,P′

60.42(14) 3/2, 2, + 1/2, 1+, +
62.40(10) 3/2, 2, + 1/2, 0, +
63.29(13) 3/2, 1−, + 1/2, 1+, +
65.40(10) 3/2, 1−, + 1/2, 0, +
43.48(12) 3/2, 2,− 1/2, 1+,−
45.50(23) 3/2, 2,− 1/2, 0,−
46.30(15) 3/2, 1−,− 1/2, 1+,−
48.50(17) 3/2, 1−,− 1/2, 0,−

assignments are given in Table 5.1.

We note Δ𝐹 = 2 transitions are possible because we are performing a two-
photon transition, and each photon can give us Δ𝐹 = 1. However, we add that in
the parallel polarization case, the 1− ↔ 0 transition has zero amplitude, owing to
the 𝑀 = 0 selection rule on 1 → 1 transitions. To perform the assignment of the
hyperfine levels, we use an initial guess based on the 𝑋̃ (000) hyperfine parameters.
This is a good initial guess, as constants of the weak hyperfine interaction from the
H spin are expected to be similar for states in the same electronic manifold.

We also performed similar two-photon spectroscopy in the 𝑁 = 1,P = −1
manifold. Because 𝐸𝑆𝑅 is now smaller by ≈17 MHz, we had to slightly tweak
our AOM setup to be centered at 𝐸 (−)

𝑆𝑅
≈ 43 MHz. The fact that we saw the

negative parity two-photon transitions here is another testament to the accuracy of
the 𝑋̃ (010) spectroscopy in Ch. 4. We were able to identify the equivalent four
hyperfine transitions in the negative parity level as well, shown in Table 5.1.

In general, the SNR was worse when operating with the negative parity 𝑁 = 1
manifold compared to the positive parity manifold. This is attributable to parity-
dependent nature of the intensity borrowing that gives strength to the 𝑋̃ (010) →
𝐴̃(000) transitions we use for depletion and signal readout. The 𝑄𝑅−12(1) line is too
weak for depletion pumping, so instead we used the 𝑅𝑅−11(1) transition, and depleted
the 𝐽 = 3/2− level, which becomes our equivalent of 𝜓1. In that case, the 𝜓2 level
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is 𝐽 = 1/2−, and because this has lower degeneracy and therefore less population,
we had weaker readout signals.

As the intensity of the two-photon light is increased, the off-resonant dispersive
interaction generates light shifts that modify the energies of the levels of interest.
The light shift is given as:

𝛿𝐿𝑆 =
Ω2

4Δ
= 𝑟𝑖 𝑗 𝑠

𝛾2

8Δ
≈ 𝑟𝑖 𝑗 𝑠 × 8 kHz × 2𝜋 (5.24)

where we have used the relationships for Ω that we discuss in the simulation dis-
cussion in Sec. 5.21. Further, the light shifts can be decomposed into shifts that
are common for all levels of a given 𝑁 and shifts that are differential among levels
with different 𝐽. We are insensitive to shifts common to all states, and the shifts
differential in 𝐽 simply change the 𝛿 location of the center of mass of the lines. The
hyperfine splittings we measure will however be sensitive to shifts that are differen-
tial among the hyperfine levels. In analogy to differential AC Stark shifts in a trap,
the differential light shifts will be smaller by a factor of differences in branching
ratios 𝑟𝑖 𝑗 , which are determined by subtracting various Clebsch-Gordan coefficients.

Experimentally, we can measure AC Stark shifts by monitoring the frequency
of a two-photon resonance as a function of light intensity. Specifically, we studied
absolute frequency shifts of the 𝐹 = 2 ↔ 1+ transition as a function of total two-
photon light power balanced between 𝐿1 and 𝐿2. This transition is sensitive to
𝐽-dependent and 𝐹-dependent shifts. The AC Stark shifts were found to depend
linearly on the total laser beam power, as expected from eq. 5.24. The shifts for
the P = +1 level are −2.6(7) kHz/mW, while the shifts for the P = −1 level are
−2.0(8) kHz/mW, and in both cases parentheses denote 2-𝜎 error bars. The laser
beam is cylindrical, with diameters 𝑑𝑋 ≈ 2 mm and 𝑑𝑍 ≈ 5.2 mm. The data in
Fig. 5.19 was taken with 22.5 mW in both sidebands, resulting in ∼50 kHz shifts.
So long as we do not operate in the significantly power broadened regime, we see
that our line uncertainties are dominated by the time-of-flight broadening and target
decay, compared to differential AC Stark shifts.

Finally, we can use the measured hyperfine splittings and uncertainties (𝜎 ∼
100 kHz) to determine the hyperfine parameters of the 𝑋̃ (010) state. We only
fit the line splittings17, not the line locations, and therefore we are insensitive to
𝐽-differential AC Stark shifts. At our level of resolution, we do not find evidence

17Even if we fit 𝐽 splittings, we find the 𝑝𝐺 and 𝛾𝐺 parameters from Ch. 4 are optimized to values
within their reported error bars.
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for parity-dependent hyperfine effects, i.e., the Frosch and Foley 𝑑 term[39]. The
least-squares fit obtains the following optimal hyperfine parameters for 𝑋̃ (010):
𝑏𝐹 = 4.07(18) MHz and 𝑐 = 3.49(38) MHz, where 2-𝜎 uncertainties are given
in parentheses. The fit residuals are 𝜎𝑆𝑇𝐷 = 86 kHz, and the reduced chi-squared
is 𝜒2

𝑟 = 1.07. The residuals are in good agreement with our uncertainty from
time-of-flight broadening.

We can compare the 𝑋̃ (010) parameters to the parameters of the 𝑋̃ (000) state,
which will allow us to estimate the bend angle of the H atom. Hyperfine pa-
rameters for 𝑋̃ (000) were obtained in Ref. [290], with 𝑏𝐹 = 4.80(18) MHz and
𝑐 = 2.46(48) MHz. Upon excitation of the bending mode, 𝑏𝐹 decreases by 15%,
while 𝑐 increases by 42%. A similar pattern was observed in the hyperfine parame-
ters of 𝑋̃ (010) in CaOH in Ref. [403].

The reduction of 𝑏𝐹 implies the valence electron has proportionally less prob-
ability density at the distant H nucleus in the bending mode. This could be due to
the displacement of the H nucleus away from the internuclear axis. On the other
hand, the 𝑐 value is somewhat significantly larger in the bending mode. This term
encodes the isotropic dipole-dipole interaction, and in the molecule frame, we can
write it as [39, 157]:

𝑐 ∝
〈3 cos 𝜃2 − 1

𝑟3

〉
(5.25)

Here, 𝑟 is the magnitude of the separation between the electron and nuclear spin, and
𝜃 is the angle18 between the separation ®𝑟 and the internuclear axis. For the bending
mode, we expect 𝜃 to increase slightly, but we note this will be accompanied by
a decrease in 𝑟 as the H nucleus is closer to the Yb nucleus in the bent molecule.
In Appendix C, we estimate the effect of bending angle on the variation of the 𝑐
parameter with a simple model, and find the results inconclusive. Nonetheless, the
observation of an increase of the bending 𝑐 value in both CaOH and YbOH 𝑋̃ (010)
indicates the bending atom is displaced from the internuclear axis.

With a solid understanding of both resonant and detuned two-photon processes
in the bending mode, we moved on to perform tests of Ramsey interference, described
in the next section.

5.3.6 Ramsey Tests
With field-free tests of two-photon transitions complete, we next performed

proof-of-principle Ramsey interferometry between two specific levels in 𝑋̃ (010).
18Caution, this is not the bending H angle!
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Figure 5.20: A schematic diagram of the 𝑋̃ (010) and 𝐴̃(010) states involved in the
Ramsey interferometry tests with 𝐵𝑍 = 320 mG. Level positions are representative
only and not to scale. The states of interest, 𝑀𝐹 = 2 and 𝑀𝐹 = 1, are detailed in
the main text, and their total 𝑔-factors (in terms of 𝜇𝐵) are also indicated. The other
states are off-resonant and/or depleted. The two AOM sidebands are 𝐿1 and 𝐿2,
and with polarizations 𝑋̂ and 𝑍̂ , respectively. Levels are labeled according to their
free-field quantum numbers.

For this test, the specific states we targeted were |𝜓1⟩ = |𝑁 = 1, 𝐽 = 1/2+, 𝐹 =

1, 𝑀𝐹 = 1⟩ and |𝜓2⟩ = |𝑁 = 1, 𝐽 = 3/2+, 𝐹 = 2, 𝑀𝐹 = 2⟩. Application of a
bias field of 𝐵𝑍 ≈ 320 mG lifts the Zeeman degeneracy of the 𝑀𝐹 states by the
shift Δ𝐸 = 𝑔𝐹𝑀𝐹𝜇𝐵𝐵𝑍 B 𝑔𝜇𝐵𝐵𝑍 , while still remaining in the coupled basis with
linear Zeeman shifts. A level diagram showing the states of interest is provided in
Figure 5.20.

The 𝑔𝐹-factor of the 𝜓2 state is given by 𝑔𝐹 ≈ 1/2, while the 𝜓1 state has
𝑔𝐹 ≈ −1/3, resulting in a total differential 𝑔-factor of 𝑔total ≈ −4/3, where we
have absorbed the factors of 𝑀𝐹 . We note the exact values obtained from diago-
nalization19 differ slightly, a result of hyperfine mixing, 𝐵𝑍 mixing, and the value
𝑔𝑆 = 2.07. Due to the opposite g-factor sign, the two-photon resonance between 𝜓1

and 𝜓2 is always the lowest frequency resonance, and can be isolated from other res-
onances with magnetic tuning. Interference with overlapping resonances is an issue

19At 320 mG (0 mG), we obtain 𝑔𝐹 = 0.517 (𝑔𝐹 = 0.517) for𝜓2, and 𝑔𝐹 = −0.302 (𝑔𝐹 = −0.317)
for 𝜓1.
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if looking at the opposite 𝐹 = 2, 𝑀𝐹 = −2 and 𝐹 = 1, 𝑀𝐹 = −1 resonance. In such
a case, since the magnetic shifts are on the same order as the ground state hyperfine
splittings, multiple transitions to other 𝑀𝐹 states can cause transition interference,
causing Fano lineshapes.

Another advantage of using the 𝑀𝐹 = 2 stretched state in 𝐹 = 2 is our ability
to increase this state’s population using optical pumping. By applying light linearly
polarized along 𝑍̂ and resonant with a 𝑃 line (Δ𝐽 = −1) of the 𝑋̃ (010) → 𝐴̃(010)
transition, we can optically pump population into a mixed state of the stretched
𝐹 = 2, 𝑀 = ±2 states. Essentially, we are using light to produce angular momentum
polarization alignment, so we will refer to this as “polarization pumping.” Since
the excited state branching is not fully understood, there is likely a combination of
increased stretched state population from decays, as well as depletion of population
from the middle 𝑀 states. The polarization pumping not only provides increased
SNR, but also reduces congestion of the two-photon spectra obtained in the presence
of Zeeman shifts.

We implemented polarization pumping using an infrared external cavity diode
laser that is frequency doubled to 577 nm in a waveguide SHG module. The light
is resonant with the 𝑋̃ (010) → 𝐴̃(010) band, and the excited state can decay back
to the bending mode—therefore, we perform this pumping step before depleting
𝜓1. The pumping light addresses the 𝐽′′ = 3/2+ → 𝐽′ = 1/2− transition located
at 17331.3143 cm−1. The line location was optimized by looking for 𝐽′′ = 3/2+

depletion downstream. The polarization of the pumping light was optimized by
rotating the linear light polarization and maximizing the magnitude of the two-
photon resonance corresponding to transitions out of the stretched 𝑀𝐹 = 2 state.

A full schematic of the Ramsey beamline is shown in Figure 5.21. The molecules
first encounter optical pumping light, followed by depletion light, a prep Ramsey
pulse, a variable distance for time evolution, a readout Ramsey pulse, and finally
a probe laser. To perform Ramsey interferometry, we use a 90 degree prism to
retroreflect the two-photon light back through the molecule beam, displaced by some
distance in the 𝑋̂ axis (the axis collinear with the molecular beam). This means
our two Ramsey beams naturally have relatively balanced powers. By mounting
the prism on a micrometer stage, we can adjust the distance between the initial
and retroreflected beams, which implement the prep and readout Ramsey pulses,
respectively. The molecule beam velocity converts this distance to an interaction
time, 𝜏. Figure 5.22 shows a photograph of the laser beams exiting the window
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Figure 5.21: A schematic of the two-photon experiments performed in this section.
In the Depletion stage, we first apply polarization pumping to collect population in
|𝜓2⟩ = |𝐽 = 3/2+, 𝐹 = 2, 𝑀 = 2⟩. Then, we apply depletion pumping to deplete
|𝜓1⟩ = |𝐽 = 1/2+, 𝐹 = 1, 𝑀 = 1⟩. Next, in the Prep stage, we apply a 𝜋/2 pulse
between𝜓1 and𝜓2 using a detuned two-photon transition. After a free evolution time
𝜏, we then apply another 𝜋/2 pulse in the Readout stage, mapping the superposition
phase evolution onto 𝜓1 and 𝜓2 populations. Finally, in the Probe stage we use
resonant light to probe the 𝜓1 population.

Figure 5.22: A photo of the laser beams used to perform Ramsey interferome-
try. The beams are cylindrically shaped to cover the entire molecular beam. The
molecules first encounter polarization pumping, followed by depletion, and then
Ramsey beams. See main text for details. Readout is not pictured. The retroreflect-
ing prism used to generate the second Ramsey beam is visible.
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on the vacuum chamber. All experimental stages are visible except for the final
population readout, which is performed downstream.

The Ramsey sequence follows the general outline discussed in Section 5.1.1.
The first Ramsey beam the molecules encounter implements a 𝜋/2 pulse, mapping
the initial |𝐹 = 2, 𝑀 = 2⟩ population onto the supersuperposition state ∝ |𝐹 =

2, 𝑀 = 2⟩ + |𝐹 = 1, 𝑀 = 1⟩. As the molecules cross the distance from the first
beam to the second beam, the superposition phase evolves under the influence of
the applied magnetic field. The detuning between the magnetically tuned molecular
energy splitting 𝜔12 and the two-photon frequency 𝛿 causes spin precession in the
rotating frame, given by 𝜔 = 𝛿 − 𝜔12. If we parameterize 𝜔12 = 𝜔

(0)
12 + 𝑔tot𝜇𝐵𝐵𝑍 ,

where 𝜔(0)12 is the free-field frequency, we may write 𝜔 = 𝛿′ − 𝑔tot𝜇𝐵𝐵𝑍 , where
𝛿′ = 𝛿 − 𝜔(0)12 . The precession time is ∼50 µs for molecules traveling a distance
of distance of ∼1 cm with ∼200 m/s velocity. Note that the velocity dispersion
in the molecular beam will cause variation in precession time, as discussed in
Section 5.1.1.

Upon re-encountering the retro-reflected two-photon beam, the molecules un-
dergo another 𝜋/2 pulse, and the superposition phase is mapped back onto pop-
ulations in the 𝑀𝐹 sublevels. Due to the cyclical nature of phase evolution, the
populations of 𝑀𝐹 = 1 and 𝑀𝐹 = 2 will oscillate as the precession time or fre-
quency are varied, as given in eq. 5.6. By using the micrometer stage to adjust
the distance between the two Ramsey beams, we effectively change the spin preces-
sion time for each velocity class. We can also scan the RF frequency driving the
two-photon AOM, effectively varying the detuning in the rotating frame.

After the molecules exit the second Ramsey beam, they travel downstream to
the detection region in the KF50 octagon. The detection here is similar to what
has been detailed in previous sections. The molecules encounter a pick-off of the
588 nm depletion light, this time acting as a fluorescence probe of the population
in |𝜓1⟩ = 𝐽′′ = 1/2+, including the oscillating population in |𝐹 = 1, 𝑀𝐹 = 1⟩. We
collect LIF emitted at 577 nm using the same setup described previously.

To optimize the Ramsey pulses, we first block the return Ramsey beam. In this
configuration, the readout fluorescence is proportional to the population transfer
from 𝑀𝐹 = 1 to 𝑀𝐹 = 2. The overall total power of the Ramsey light was varied
while monitoring the detection fluorescence, and the final Ramsey power fixed at the
halfway point between the fluorescence minimum and maximum. This value was
13.5 mW in both sidbenads, and the laser beam was cylindrical with with diameters
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𝑑𝑋 ≈ 2 mm and 𝑑𝑍 ≈ 5.2 mm.

The optimization of 𝜋/2-pulses is complicated by AC Stark shifts characterized
in the previous section. If the two-photon frequency is fixed and the power scanned,
these shifts cause an effective detuning that modifies the Rabi frequency of the
𝜋/2-pulse. However, due to velocity dispersion, there will always be a variation
of the 𝜋/2-pulse interaction time, limiting the utility of pulse optimization in the
prototype apparatus.

We observed a clear spin precession signal by varying the distance between the
two Ramsey beams. Figure 5.23 shows the spin precession signals for different time-
of-flight velocity groups, with Ramsey oscillations clearly visible. We use time-of-
flight to select different velocity classes. In detail, the molecule pulse has extended
temporal width, in our case a total of 6 ms. By restricting our analysis region to
1 ms wide time windows, we only analyze signals from molecules that arrived in
that window, acting as a velocity filter. Unfortunately, because molecules exit the
cell at different times, multiple velocity classes can have the same arrival time.
However, we can also estimate the exit time of the molecular pulse by examining
the absorption data taken in front of the cell. Both the absorption upstream and
fluorescence downstream have similar temporal profiles; by matching their pulse
shapes, we can assign each class of arrival times a corresponding exit time from the
cell. By taking the difference between arrival time and exit time, we obtain the total
time of flight, which is converted to velocity using the 60 cm distance from the cell
to the detection region.

We then use the velocity class values to convert the ∼1 cm Ramsey distance
to a variable Ramsey evolution time, obtaining the plots shown in Fig. 5.23. The
slowest molecules undergo more oscillations than the fastest molecules, as expected.
Further, we see the detuning is independent of velocity, as expected. The best fit
precession frequencies, 𝑓 = 𝜔/2𝜋, agree among all the velocity classes, with a
mean value of 𝑓 = 71.5 ± 1.1 kHz. Additionally, we see the phases of the sinusoid
fits vary with velocity. This is expected, as different velocity classes are rotated by
different angles during the initial and final Ramsey pulses.

In addition to scanning the spin precession time, we can also fix the interaction
distance and scan the two-photon RF frequency. Since we are changing the detun-
ing, this is equivalent to scanning the magnetic field. The resulting interference
lineshapes are plotted in Figure 5.24. The signals clearly show multiple Ramsey
fringes, and are very similar to the two level system model results in Sec. 5.1.1,
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Figure 5.23: Ramsey oscillations for various velocity classes in the molecular beam,
denoted 𝑣. The time axis is obtained from 𝑑/𝑣, where 𝑑 is the spacing between
Ramsey beams. Error bars are 1-𝜎 standard deviations of the data. The data are fit
to a sinusoid with frequency 𝑓 , representing the detuning, included above each plot,
along with standard fit errors.
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Fig. 5.1. Over the whole 4 ms wide molecular pulse, shown in inset 5.24(ii), veloc-
ity dispersion washes out the fringes after a few oscillations. On the other hand, if
we select a 1 ms wide arrival window of molecules centered at 200 m/s, we observe
coherent oscillations even at larger detunings, shown in the main plot of Fig. 5.24(ii).
If we compare different velocity classes, the middle peak at 𝑓0 = 59.536 MHz does
not shift, indicating it corresponds to the true resonance. Finally, the inset 5.24(i)
zooms in on the region near the resonance, where we fit the data to eq. 5.6, with
velocity dispersion included by random sampling from a Gaussian distribution. The
fit parameters are provided in the figure caption, and their values barely deviate from
our expectations. For example, the micrometer position corresponds to a 9.1 mm
evolution distance, giving us a 46 µs precession time for 200 m/s molecules. The
fit indicates values closer to 42 µs are more accurate, which is nonetheless excellent
agreement. Similarly, the fit favors a velocity dispersion of 𝜎𝑣 = 13.2 m/s, in line
with our expectation of CBGBs [178], and a pulse interaction time of 4.2 µs, in
excellent agreement with our estimates of ≈1 mm FWHM Ramsey beams.

Finally, we were unable to observe CPT on the 𝐹 = 2, 𝑀𝐹 = 2↔ 𝐹 = 1, 𝑀𝐹 = 1
two-photon resonance with this setup. In general, the SNR was worse for CPT tests,
as we must deal with the background from “one photon” depletion. Furthermore,
there are technical issues that may have prevented CPT. For example, the bias
magnetic field may have not been exactly aligned to the light polarization axis. In
such a case, the dark state fidelity can be compromised by scattering from unwanted
polarization components. An equivalent model for transverse fields is that they can
couple nearby levels, causing the dark state to mix with bright levels. In principle,
such a problem could be solved with elliptically polarized beams, but that was
beyond the scope of our work.

These experiments demonstrated the power of two-photon transitions for high-
resolution Ramsey interferometry and precision spectroscopy in a molecular beam.
We showed that the velocity dispersion in the beam does not wash out contrast,
and with time of flight selection we can observe the differences in precession
time. Further, the local nature of two-photon manipulation allows for well-defined
preparation and readout regions, and by using a bending excited state, our power
requirements (∼10-20 mW) are reasonable.
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Figure 5.24: Ramsey interferometry on the 𝐹 = 2, 𝑀𝐹 = 2 ↔ 𝐹 = 1, 𝑀𝐹 = 1
transition. The main plot shows data from a 1 ms wide arrival window of molecules
with 200 m/s mean velocity. (i) A zoom in on the region near zero detuning. Data
given by orange markers with error bars representing standard error. The blue
line is a fit using eq. 5.6 with velocity averaging. Parameters are center frequency
𝑓0 = 59.536 MHz, interaction time 𝜏 = 41.7 µs, Ω𝑡𝑝 = 𝜋/2, 𝑡𝑝 = 𝜏/10, and
𝜎𝑣 = 13.2 m/s. (ii) The interference lineshape obtained by integrating all arrival
times over the 4 ms wide pulse. Fewer fringes are visible due to larger velocity
dispersion.
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5.3.7 Outlook
We have achieved coherent control of polyatomic molecules using two-photon

resonances. We demonstrate both resonant CPT effects and detuned Raman tran-
sitions, and we use the latter to perform Ramsey interferometry on spin-rotation-
hyperfine states. Our results have excellent agreement with simulations and mod-
eling. We note that throughout our tests, quasi-diagonal FCFs were useful for
performing state manipulation and readout. Our results are immediately applicable
to searches for 𝑃,𝑇 violating moments in YbOH, such as the electron EDM search in
174YbOH [17], nuclear Schiff moment or parity violation searches [404] in 171YbOH,
and the nuclear magnetic quadrupole moment (MQM) search in 173YbOH [57,
405–407]. Further, our results are generally useful to the broad class of polyatomic
molecules that follow the M-OH motif, including SrOH [302] and RaOH [272, 408].

The next step from this work is to perform Ramsey interferometry in an electric
field 𝐸𝑍 , which would constitute a 𝑃,𝑇-violation-sensitive signal. There are a
few choices for Ramsey states 𝜓1 and 𝜓2. One possibility is to use two stretched
states with the same 𝑀𝐹 but opposite molecule orientations 𝑀𝑁ℓ. Such states are
maximally sensitive to variations of the electric field, but polarize quickly, offer
good 𝑃𝑇 violating sensitivities, and are easy to populate with optical pumping.
By performing measurements in both ±𝑀𝐹 states, we can disentangle electric field
fluctuations from 𝑃,𝑇 violating effects. The details of implementation will depend
on the excited states available, and their polarization regime in the presence of an
E-field. For example, if both ground and excited states are fully polarized, then we
must consider Δ𝑀𝑁 selection rules. Finally, if there are stretched states available in
the excited state, we can use CPT methods for state preparation and readout, as well
as detuned Raman transitions.

Another option is to use so-called zero 𝑔-factor states, which are time-reversal
pairs of 𝑀𝐹 = ±1 states with highly suppressed magnetic sensitivity and large 𝑃,𝑇
violating sensitivity, discussed in detail in the upcoming section. In 174YbOH, we
expect zero 𝑔-factor states to generically exist in 𝑁 = 1 at 45 V/cm (𝐽 = 1/2−, 𝐹 = 1)
and 62 V/cm (𝐽 = 3/2−, 𝐹 = 2), as well as in 𝑁 = 2 at 299 V/cm (𝐽 = 3/2+, 𝐹 = 1),
318 V/cm (𝐽 = 3/2+, 𝐹 = 2), 350 V/cm (𝐽 = 5/2−, 𝐹 = 3), and 372 V/cm
(𝐽 = 5/2+). Preparation could be performed by a combination of optical pumping
into stretched states and two-photon transitions to 𝑀𝐹 = 0 states, followed by
two-photon transfer to 𝑀𝐹 = ±1 states.

Zero 𝑔-factor states are an example of state engineering using applied fields. In
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Ref. [124], we showed that one can also use external fields to engineer favorable
transitions with noise insensitivity and 𝑃𝑇 violating sensitivity. In the various
isotpologues of YbOH, there are many field-insensitive transitions possible, and we
direct the reader to Ref. [124] for more details.

5.4 Prototype Measurement with Trapped CaOH Molecules
Parts of this section are adapted from Ref. [403]. This work was performed

as part of the PolyEDM collaboration with the Doyle group at Harvard. I spent
2 months working on-site on the project, and continued collaborating virtually for
approximately 6 months afterwards.

5.4.1 Overview
Trapped molecules have many advantages for measurements—the most obvious

is the increased coherence time, which is on the order of ≳ 1 s. Another benefit to
a trap is easier requirements on field control, as uniformity must be achieved over a
small volume ≲ 1 mm3. A third benefit is the lack of velocity dispersion, providing
the ability to apply pulses of optical, microwave, or RF radiation with well defined
interaction time. Furthermore, particularly for microwave and RF radiation, there
is no concern about the fields leaking into later steps of the experiment, unlike a
beam where spatial leakage of a field to different parts of the beamline corresponds
to temporal leakage of operations in the sequence. Finally, trapping molecules also
provides the possibility of using quantum control and entanglement techniques to
improve EDM measurements.

In this Section, we report coherent control of individual quantum states in a
polyatomic molecule, calcium monohydroxide (CaOH), and use these techniques to
demonstrate a method for searching for the electron electric dipole moment (eEDM).
The method starts with preparing ultracold, optically trapped CaOH molecules in
a single hyperfine level, after which a static electric field is applied to polarize the
molecules. The strength of the polarizing electric field is tuned to obtain near-zero
𝑔-factor spin states, which have strongly suppressed sensitivity to magnetic field
noise while retaining eEDM sensitivity. Microwave pulses are applied to create
a coherent superposition of these zero g-factor spin states that precess under the
influence of an external magnetic field. The precession phase is then read out by a
combination of microwave pulses and optical cycling.

We observe spin precession over a range of electric and magnetic fields and
characterize the current limitations to the coherence time of the measurement. With
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Figure 5.25: Schematic diagram of the CaOH experimental apparatus at Harvard.
First, molecules are produced in a 2 stage buffer gas cell by laser ablation of a solid
Ca target in the presence of He buffer gas flow. A heated fill line introduced H2O
reagents, and chemical enhancement light stimulates reactions that form CaOH.
The molecules exit the cell in a beam, are slowed by lasers, and are trapped in
an RF magneto-optical trap (MOT). The molecules are cooled further via sub-
Doppler methods, and then loaded into an optical dipole trap (ODT). In the ODT,
the molecules are polarized by an electric field, and we perform spin precession
using microwave pulse sequences. The left half of the diagram (CBGB, slowing,
MOT) was adapted from the CaOH team.

readily attainable experimental parameters, coherence times on the order of the
state lifetime (>100 ms) could be realistically achieved. We therefore realize the
key components of an eEDM measurement in this system. Although the light
mass of CaOH precludes a competitive eEDM measurement [408], the protocol
demonstrated here is directly transferable to heavier laser-cooled alkaline earth
monohydroxides with identical internal level structures, such as SrOH, YbOH, and
RaOH, which have significantly enhanced sensitivity to the eEDM [17, 105, 106,
272, 408].

Current EDM bounds rely on specific states in diatomic molecules that have an
unusually small g-factor, reducing sensitivity to stray magnetic fields [100, 101].
However, CaOH, like other laser-coolable molecules with structure amenable to
eEDM searches [17, 113, 272, 409], has a single valence electron, which results in
large magnetic g-factors. In the prototype measurement discussed here, we engineer
reduced magnetic sensitivity by using an applied electric field 𝐸𝑍 to tune 𝑀𝑆 to a
zero-crossing, while maintaining significant eEDM sensitivity Σ. This technique is
generic to polyatomic molecules with parity-doublets.
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5.4.2 CaOH Apparatus
The CaOH apparatus at Harvard is described in detail in Refs. [108, 200], and

here we summarize relevant details. A basic schematic of the experiment is shown
in Figure The experiment starts with a CBGB source cooled to 2 K. The buffer gas
cell design is a two-stage cell [410], consisting of a “production” cell where ablation
and thermalization occur, and a “slowing” cell, which can help reduce the velocity
of the resulting molecular beam. While the 4 K cell at Caltech has a rectangular
aspect ratio, the CaOH cell is close to a square aspect ratio, with 1-in diameter.
Finally, the cell has a ∼ 5 mm diameter hole in the back to allow the slowing beams
to exit without adding additional heat load. Chemical reactions are enhanced [227]
by sending ∼800 mW of light into the cell resonant with the 1𝑆0 → 3𝑃1 transition
in Ca atoms20.

After exiting the second stage of the cell, the molecules encounter slowing
light, which is switched on at an optimized time. This light contains primary
cycling light (the 𝑋̃ (000) → 𝐴̃(000) transition) and 11 repumping transitions to
return vibrational decays to the optical cycle [108]. The repumps are all spectrally
broadened with EOMs to address all velocity classes, and polarization modulated at
roughly ∼MHz time scale by Pockels cells, to help remix dark states. Downstream
is the stainless steel MOT chamber with an RF MOT setup [120, 193, 411]. In the
CaOH experiment at Harvard [108], approximately 20,000 molecules are trapped in
the MOT, with an RMS size of 0.75 mm and peak number density of 3×106/cm3.
We note the MOT magnetic RF coils will later be repurposed to apply electric fields
to polarize the molecules. In the MOT, the molecules are at ∼1 mK.

The temperature can be lowered further using sub-Doppler cooling meth-
ods [115, 120, 400, 412–417]. The CaOH experiment uses two sub-Doppler
techniques [109] that are in general complicated and difficult to model. The first
technique is Λ-enhanced gray molasses cooling [418–421], which utilizes counter
propagating lasers to engineer two-photon resonances that result in velocity selec-

20Additionally, during testing, it was found that pre-firing the target with a separate infrared laser,
in advance of the ablation, helped with source signal and velocity stability when going to longer
repetition rates. This is attributed to desorption of helium by the pre-fired laser, as the optimal time
scale for prefiring is approximately after one or two cell emptying times. The removal of helium via
pre-firing is thought to help reduce the background gas present that can boost the molecular beam as
it exits the aperture. On the 4 K experiment at Caltech, we tested pre-firing with the enhancement
laser, and it had little impact on molecular production. On the 1 K experiment at Caltech, pre-firing
improved signals by a factor of a factor of a few. It is possible the differences are related to cell
geometry, temperature, or the helium dynamics of the cell. For example, the emptying times in the
4 K cell are much faster (∼1 ms) than the 1 K cell (∼10 ms).
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tive dark states [412, 416, 417]. Slow and cold molecules are trapped in dark states,
while hot and fast molecules perform non-adiabatic transitions to bright states and
are further cooled. In CaOH, this technique lowers the free space temperature
to 50 µK, and is primarily limited by off-resonant scattering. Next, the cooling
light is switched to a different sub-Doppler configuration called single frequency
cooling [422], which also relies on dark states. This technique further reduces the
scattering rate, resulting in a minimum free space temperature of 20 µK.

Next, the molecules are transferred to an optical dipole trap (ODT) [423].
ODTs are preferable to MOTs, as they apply conservative forces and do not involve
constant spontaneous emission. In the CaOH experiment, the ODT is generated by
focusing 15 W of off-resonant, 1064 nm light down to a 25 µm waist. Since the
laser is red-detuned from relevant electronic transitions, it will generate attractive
light shifts at its intensity maxima. Essentially the red-detuned ODT generates an
induced dipole that follows the oscillations of the laser field. The ODT loading is
performed with the sub-Doppler cooling light still activewhich actually assists with
loading molecules into the trap [420, 421]. Further, the cooling light can be used
to non-destructively image the molecules (i.e., without losing them from the trap),
allowing for shot-to-shot normalization and post-selection.

The ODT light will generally cause differential AC Stark shifts of the molecule
levels, similar to the light shifts we encountered with detuned Raman transitions.
AC Stark shifts can be calculated using the electric polarizability tensor 𝛼, given by:

←→𝛼 =
2
ℏ

∑︁
𝑗≠𝜓

𝜔𝐽
®𝑑 | 𝑗⟩⟨ 𝑗 |
𝜔2
𝑗
− 𝜔2

(5.26)

where 𝜓 is the ground state of interest, 𝜔 is the frequency of the ODT light, and
the sum runs over all excited states 𝑗 . The light shifts are given by the following
Hamiltonian:

𝐻𝐿𝑆 = −
1
2
®𝐸 (𝑡) · ←→𝛼 · ®𝐸 (𝑡). (5.27)

In general, there will be scalar (rank 0), vector (rank 1), and tensor (rank 2) shifts.
The scalar shifts are common mode and used to trap the molecules in the 12 MHz
deep ODT (the differential shifts are typically 1-10% of this value). The vector shifts
arise only in the presence of circular light, and they generate ficticious magnetic
fields along the 𝑘 vector of the light. We will operate with linearly polarized beams,
so we ignore this term. Finally, tensor shifts will mimic quadratic Stark shifts from
induced dipole moments, shifting ±𝑀 states identically. The formula for scalar and
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tensor light shifts can be recast into a useful spherical tensor form:

𝐻𝐿𝑆 = −
1
4

∑︁
𝑘=0,2

𝑇 𝑘 (𝛼) · 𝑇 𝑘 (𝐸, 𝐸) (5.28)

where we have excluded 𝑘 = 1 vector light shifts from the sum as their term requires
more care. For details on AC Stark shifts and their calculation, we direct the reader
to Refs. [424, 425].

Approximately 300 molecules are trapped in the ODT after loading for 80 ms
with cooling light [109]. The peak density is 3×109/cm3, and the in-trap temperature
is 57 µK. This temperature is higher than cooling in free space, as the AC Stark
shifts destabilize the dark states that enable effective sub-Doppler cooling.

Finally, when holding the molecules at such low temperature for close to a
second, we have to contend with thermal blackbody radiation and the natural lifetime
of the 𝑋̃ (010) state. Ref. [426] discusses these effects in a detailed investigation
of the lifetime of polyatomic molecules in an ODT. They find 300 K blackbody
effects limit the total bending mode lifetime at the ∼1 s level. They also measure
the lifetime from spontaneous emission alone to be 𝜏 = 720 ms in CaOH.

5.4.3 State Preparation
The ODT is linearly polarized and its polarization vector ®𝜖ODT defines the

𝑍̂ axis, along which we also apply magnetic and electric fields, ®𝐵 = 𝐵𝑍 𝑍̂ and
®𝐸 = 𝐸𝑍 𝑍̂ , respectively, as depicted in Figure 1(a). We first non-destructively image
the molecules in the ODT for 10 ms as normalization against variation in the number
of trapped molecules. The molecules are then optically pumped into the 𝑁 = 1−

levels of the 𝑋̃2Σ+(010) vibrational bending mode [109] (Figure 1(c)), and the trap
depth is adiabatically lowered by 3.5× to reduce the effect of AC Stark shifts from
the trap light and to lower the temperature of the molecules to 34 𝜇K. Any molecules
that were not pumped into 𝑁 = 1− levels of the bending mode are heated out of the
trap with a pulse of resonant laser light.

Once the ODT is loaded, the molecule population is in the 𝑁 = 1− manifold of
the 𝑋̃2Σ+(000) state. Population transfer to the 𝑋̃2Σ+(010) state proceeds by optical
cycling with one repumper removed [109]. In detail, the sub-Doppler cooling light
is turned on with only the 𝑁′′ = 1− repumper addressing 𝑋̃2Σ+(010) is turned off.
We note there is also a repumper addressing 𝑋̃2Σ+(010) 𝑁′′ = 2− that stays on.
This repumper is required because the excited state in cycling is always 𝐽′ = 1/2+ in
character, therefore E1 decays are only permitted to ground states with 𝐽′′ = 1/2−
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Figure 5.26: Information about the zero 𝑔-factor experiment at Harvard University.
(a) A geometric picture of the bending molecule at the zero g-factor crossing,
showing the electron spin ( ®𝑆) has a finite projection on the molecule axis (𝑛̂), giving
eEDM sensitivity. However, the electron spin ( ®𝑆) is orthogonal to the magnetic
field ( ®𝐵), resulting in suppressed magnetic field insensitivity. (b) The magnetic
sensitivity (upper plot) and eEDM sensitivity (lower plot) for a pair of zero g-factor
states (𝑁 = 1, 𝐽 = 1/2+, 𝐹 = 1, 𝑀𝐹 = ±1) are shown as a function of the applied
electric field. (c) Experimental sequence to prepare the eEDM sensitive state. First,
the molecules are pumped into a single quantum state (𝑁 = 1, 𝐽 = 1/2−, 𝐹 = 0)
with a combination of microwave drives and optical pumping (I). Next, a microwave
𝜋-pulse drives the molecules into the 𝑁 = 2, 𝐽 = 3/2−, 𝐹 = 2, 𝑀𝐹 = 0 state (II).
Lastly, the eEDM measurement state is prepared as a coherent superposition of
the 𝑁 = 1, 𝐽 = 1/2−, 𝐹 = 1 𝑀𝐹 = ±1 states with a microwave 𝜋-pulse (III). The
states which are optically detectable with the detection light are shown in black,
while those not addressed by the detection light are in gray. Figure reproduced from
Ref. [403].

and 3/2− character. For ground states with parity doubling, such as bending modes,
this means both 𝑁′′ = 1− and 𝑁′′ = 2, 𝐽′′ = 3/2− manifolds must be addressed
during cycling.

Transfer to the bending mode proceeds within 1200 photon scatters, equivalent
to ∼26 ms at the single frequency scattering rate. The decay pathways into the
bending mode are ∼80% through the excited 𝐴̃ state and ∼20% through the excited
𝐵̃ state. We calculate the rotational branching ratio of the decays to the states within
𝑁 = 1 as 21.6% to 𝐽 = 3/2− and 78% to 𝐽 = 1/2−.

Following transfer to the 𝑋̃2Σ+(010) (𝑁 = 1−) state, the molecular population
is initially spread across twelve hyperfine Zeeman sublevels in the spin-rotation
components 𝐽 = 1/2 and 𝐽 = 3/2. The mixed state describing the ensemble
has statistical weights given by the rotational branching of the excited states. To



262

perform coherent quantum operations, the initial density matrix must be purified.
A dissipative process is required to decrease the entropy of the density matrix,
and the simplest approach is to use optical pumping, either to remove unwanted
population, and/or to gather population in a single state. We also seek a scheme
that requires minimal photon scatters, as each photon recoil imparts ∼500 nK of
energy. In experiments with trapped diatomic metal fluorides, such as CaF, the
hyperfine structure is optically resolved, and pumping proceeds by addressing all
states but 𝐹 = 0. In metal hydroxides hyperfine structure is not optically resolvable,
as discussed in Sec. 5.2. If we solely address 𝐽 = 3/2− optically, we would still leave
population spread out over the 𝑀𝐹 sublevels in 𝐽′′ = 1/2−, 𝐹′′ = 1, 0. Additionally,
the two spin-rotation states in 𝑁 = 1 are separated by ≈2.5× the optical linewidth,
making off-resonant pumping difficult to avoid.

By adding in microwaves to couple the molecules between rotational states,
we solve our problems. Microwave linewidths are significantly narrower compared
to optical linewidths, often dominated by power broadening. Therefore, with mi-
crowaves we can separately resolve the hyperfine states. Further, since microwaves
couple population to another rotational state, we can perform our optical pumping
there, without worrying about off-resonant excitation of 𝑁 = 1. We note there is no
𝑁 = 0 state as we have |ℓ | = 1. The nearest rotational level, 𝑁 = 2, is 40 GHz away.

To prepare the molecules in a single hyperfine state, we use a combination of
optical pumping and microwave pulses, as shown in Figure 5.26(c). We first apply
microwaves from the (𝑁 = 1, 𝐽 = 3/2−) state up to the (𝑁 = 2, 𝐽 = 3/2−) state. As
this transition is parity-forbidden, we apply a small electric field 𝐸𝑍 = 7.5 V/cm to
slightly mix the parity of the 𝑁 = 1 levels and provide transition strength. From the
𝑁 = 2 state, we drive an optical transition to the excited 𝐴̃2Π(010)𝜅2Σ(−) , 𝐽 = 1/2+

state. This state predominately decays to both 𝐹 = 0 (the target state) and 𝐹 = 1 states
in the 𝑁 = 1, 𝐽 = 1/2− manifold. After 3 ms of optical pumping, the microwaves
are switched to drive the accumulated 𝑁 = 1, 𝐽 = 1/2−, 𝐹 = 1 population to the
same 𝑁 = 2, 𝐽 = 3/2− state in 𝑋̃ (010), where they are excited by the optical light
and pumped into the target 𝐹 = 0 state. Once this optical pumping sequence is
complete, we adiabatically ramp the electric field to 𝐸𝑍 =150 V/cm to significantly
mix parity, then drive population up to the 𝑁 = 2, 𝐽 = 3/2−, 𝐹 = 2, 𝑀 = 0 state with
a microwave 𝜋-pulse (Figure 5.26(c)(II)). We clean out any remaining population in
the 𝑁 = 1 state with a depletion laser that resonantly drives population to undetected
rotational levels.
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Figure 5.27: Electric field tuning of 𝑁 = 1 zero g-factor states near 𝐵𝑍 = 0 in the
absence of trap shifts. Blue lines denote 𝑀𝐹 = +1 states and red lines 𝑀𝐹 = −1.
Solid traces denote the 𝐽 = 1/2 state pair and dashed traces denote the 𝐽 = 3/2 pair.
The dotted vertical lines mark the electric field value of the zero g-factor crossing
without trap shifts, ≈60.5 V/cm for 𝐽 = 1/2 and ≈64.4 V/cm for 𝐽 = 3/2. Grayed
out traces are other states in the 𝑁 = 1 manifold. (a) The g-factor 𝑔𝑆𝜇𝐵⟨𝑀𝑆⟩ as a
function of the applied electric field. (b) eEDM sensitivity ⟨Σ⟩ as a function of the
applied electric field. A consequence of the Hund’s case (b) coupling scheme is that
Σ asymptotes to a maximum magnitude of 𝑆/(𝑁 (𝑁 + 1)) = 1/4 for fields where the
parity doublets are fully mixed but rotational mixing is negligible [117]. For fields
where 𝐽 is not fully mixed, some states can exhibit |Σ | > 1/4. Figure reproduced
from Ref. [403].

5.4.4 Engineering Zero g-Factor States
In 2Σ electronic states of linear polyatomic molecules, the spin-rotation inter-

action, 𝛾 ®𝑁 · ®𝑆, couples the molecular rotation 𝑁 and the electron spin 𝑆 to form the
total angular momentum 𝐽. These states are well described in the Hund’s case (b)
coupled basis. An applied electric field 𝐸𝑍 will interact with the molecular-frame
electric dipole moment 𝜇𝐸 , connecting states with opposite parity, Δ𝑀𝐹 = 0, and
Δ𝐽 ≤ 1. When 𝜇𝐸𝐸𝑍 ≫ 𝛾, 𝑁 and 𝑆 are uncoupled and well described by their
lab frame projections 𝑀𝑁 and 𝑀𝑆. However, in the intermediate field regime with
𝜇𝐸𝐸𝑍 ∼ 𝛾, the molecular eigenstates are mixed in both the Hund’s case (b) coupled
basis and the decoupled basis. 𝑀𝐹 remains a good quantum number in the absence
of transverse fields. In this regime, 𝑀𝐹 ≠ 0 states with ⟨𝑀𝑆⟩ = 0 can arise at specific
field values. These states have no first order electron spin magnetic sensitivity, and,
unlike 𝑀𝐹 = 0 clock states, have large eEDM sensitivity near 𝐵𝑍 = 0. We refer to
these states as zero g-factor states [17].

Zero g-factor states arise from avoided level crossings as free field states are
mixed by the electric field. One of the crossing states has ⟨𝑀𝑆⟩ < 0, the other
state has ⟨𝑀𝑆⟩ > 0, and both have mixed 𝑀𝑁 . The spin-rotation interaction couples
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the states and lifts the crossing degeneracy, resulting in eigenstates that are super-
positions of electron spin up and down with ⟨𝑀𝑆⟩ = 0, while retaining non-zero
molecular orientation with ⟨𝑛̂⟩ = ⟨𝑀𝑁ℓ⟩ ≠ 0. The lab frame projection of 𝑛̂ ensures
that the eEDM interaction in the molecule frame does not rotationally average away,
i.e., the eEDM shifts are diagonal.

Zero g-factor states are generically present in the Stark tuning of polyatomic
molecules. The reduction of symmetry in a polyatomic molecule allows for rotation
about the internuclear axis, resulting in closely spaced doublets of opposite parity.
When these doublets are mixed by an applied electric field, they split into 2𝑁 + 1
groups of levels representing the values of the molecular orientation ⟨𝑀𝑁ℓ⟩. For
each 𝑁 manifold with parity doubling, avoided level crossings generically occur
between an 𝑀𝑁ℓ = ±1 Stark manifold and an 𝑀𝑁ℓ = 0 Stark manifold.

In diatomic molecules without parity-doubling, the existence of zero g-factor
states requires an inverted spin rotation structure (𝛾 < 0), such that the two 𝐽 states
are tuned closer to each other by an electric field. For example, the YbF molecule
(𝛾 = −13.4 MHz [377, 427]) has zero g-factor states at 𝐸 ≈ 866 V/cm in the 𝑁 = 1
manifold, while CaF does not. However, since |𝛾 |/𝐵 ≪ 1 for most 2Σ diatomic
molecules, the electric fields that mix spin-rotation states are much less than those
that polarize the molecule. Therefore, zero g-factor states occur when the molecule
has negligible lab-frame polarization, limiting eEDM sensitivity. For example, the
aforementioned states in YbF have |⟨Σ⟩| ≈ 0.006, which is ∼3% the value of Σ in
the zero 𝑔-factor states used in this work.

To locate zero g-factor crossings and calculate eEDM sensitivities, we model
the 𝑋̃ (010) level structure using an effective Hamiltonian approach [39, 129, 162]:
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𝐻eff = 𝐻Rot + 𝐻SR + 𝐻ℓ + 𝐻Hyp + 𝐻Zeeman + 𝐻Stark + 𝐻ODT (5.29a)

𝐻Rot = 𝐵
(
®𝑁2 − ℓ2

)
(5.29b)

𝐻SR = 𝛾

(
®𝑁 · ®𝑆 − 𝑁𝑧𝑆𝑧

)
(5.29c)

𝐻ℓ = −𝑞ℓ
(
𝑁2
+𝑒
−𝑖2𝜙 + 𝑁2

−𝑒
𝑖2𝜙

)
(5.29d)

𝐻Hyp = 𝑏𝐹 ®𝐼 · ®𝑆 +
𝑐

3

(
3𝐼𝑧𝑆𝑧 − ®𝐼 · ®𝑆

)
(5.29e)

𝐻Zeeman = 𝑔𝑆𝜇𝐵𝐵𝑍𝑆𝑍 (5.29f)

𝐻Stark = −𝜇𝑍𝐸𝑍 (5.29g)

𝐻ODT = − ®𝑑 · ®𝐸ODT. (5.29h)

Here, we use a similar Hamilton as Ref. [146]. 𝐻Rot is the rotational energy;
𝐻SR is the spin-rotation interaction accurate for low-𝑁 bending mode levels, with
𝑧 defined in the molecule frame; 𝐻ℓ is the ℓ-type doubling Hamiltonian, with ±
defined in the molecule frame, 𝜙 as the nuclear bending coordinate, and using
the same phase convention as Ref. [159]; 𝐻Hyp is the hyperfine Fermi-contact
and dipolar spin interactions, defined in the molecule frame; 𝐻Zeeman describes
the interaction of the electron spin magnetic moment with the lab-frame magnetic
field; 𝐻Stark is the interaction of the 𝑍-component of molecule-frame electric dipole
moment 𝜇𝐸 with the lab frame DC electric field, 𝐸𝑍 ; and 𝐻ODT is the interaction
of the molecular dipole moment operator ®𝑑 with the electric field of the ODT laser,
®𝐸ODT = E0/2(𝜖ODT𝑒

−𝑖𝜔𝑡 + c.c.).

To evaluate the molecule frame matrix elements, we follow the techniques
outlined in Refs. [39, 129] to transform into the lab frame. The field-free Hamiltonian
parameters are taken from Ref. [147], except for the hyperfine parameters, which
were determined by the observed line positions to be 𝑏𝐹 = 2.45 MHz and 𝑐 = 2.6
MHz, similar to those of the 𝑋̃ (000) state [375]. We use the same dipole moment,
|𝜇 | = 1.47 D, as the 𝑋̃ (000) state, determined in Ref. [428]. Matrix elements of
𝐻ODT are calculated following Ref. [424] using the 1064 nm dynamic polarizabilities
reported in Ref. [109].

For all calculations discussed the ODT is polarized along the laboratory 𝑍 axis
and the molecules sit at a fixed trap depth of 160 𝜇K (corresponding to the average
trap intensity seen by the molecules in the experiment). As detailed in the main text,
when the trapping light is aligned with 𝐸𝑍 , it acts like a weak electric field, shifting
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the zero g-factor crossing by ∼ 1 V/cm from the field-free value. If the trapping
light polarization is rotated relative to 𝐸𝑍 , tensor light shifts can couple states with
Δ𝑀𝐹 = ±2 or ±1 (the linearity of the light ensures there are no Δ𝑀𝐹 = ±1 vector
shifts) [424]. The effects of this coupling are similar to those of transverse magnetic
fields, which we discuss below.

In the current work, we ignore nuclear and rotational Zeeman effects. Specif-
ically, the magnetic sensitivity of CaOH receives small contributions from nuclear
spin of the H atom and the rotational magnetic moment of both the electrons and the
nuclear framework. While they have not yet been fully characterized, all of these
effects will contribute at the 10−3𝜇𝐵 level or less. These additional g-factors do
not depend strongly on the applied electric field, and result in a small shift of the
zero g-factor crossing location. Future work characterizing rotational magnetic mo-
ments of 𝑋̃ (010) states of laser-coolable metal hydroxides can enable more accurate
predictions of zero g-factor field values.

In CaOH, each rotational state 𝑁 supports multiple 𝑀 = ±1 pairs of zero
g-factor states. The states at finite electric field can be labeled in terms of their
adiabatically correlated zero-field quantum numbers |𝑁, 𝐽′, 𝐹, 𝑀⟩. In the presence
of trap shifts, the zero g-factor states for 𝑁 = 1 occur at 𝐸 = 59.6 V/cm for
|𝐽 = 1/2+, 𝐹 = 1, 𝑀 = ±1⟩ and at 𝐸 = 64.1 V/cm for |𝐽 = 3/2+, 𝐹 = 1, 𝑀 = ±1⟩.
The 𝐽 = 1/2, 𝑀 = 1 state is a superposition of 47% 𝑀𝑁ℓ = −1, 50% 𝑀𝑁ℓ = 0, and
3% 𝑀𝑁ℓ = 1, while the 𝐽 = 3/2, 𝑀 = 1 state is 43% 𝑀𝑁ℓ = −1, 48% 𝑀𝑁 = 0, and
9% 𝑀𝑁ℓ = 1. Both states are weak-electric-field seekers, yet the opposite molecule
frame orientation of the spin results in differences in the value of Σ and the g-factor
slope. For CaOH, the magnetic sensitivity and eEDM sensitivity of 𝑁 = 1 zero
g-factor states are shown in Fig. 5.27.

By diagonalizing 𝐻eff over a grid of (𝐸𝑍 , 𝐵𝑍 ) values, we can obtain 2D plots
of g-factors and eEDM sensitivities shown in Fig. 5.28. For generality, we consider
the molecular structure in the absence of trap shifts. Using the 𝑍-symmetry of
the Hamiltonian, we separately diagonalize each 𝑀𝐹 block to avoid degeneracies
at 𝐵𝑍 = 0. Continuous 2D surfaces for eigenvalues and eigenvectors are obtained
by ordering eigenstates at each value of (𝐸, 𝐵) according to their adiabatically
correlated free field state. The application of an external magnetic field parallel
to the electric field results in ⟨𝑀𝑆⟩ ≠ 0 for an individual zero g-factor state, but
the differential value between a zero g-factor pair can still have Δ⟨𝑀𝑆⟩ = 0. This
differential value means the superposition of a zero g-factor pair can maintain
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Figure 5.28: Full electric and magnetic characterization of zero g-factor states
in the 𝑁 = 1 manifold of CaOH, without trap shifts. (a, b) 2D plots of
the effective g-factor difference between two 𝑀 = ±1 states, defined by 𝑔eff =

𝑔𝑆𝜇𝐵 (⟨𝑀𝑆⟩𝑀=+1 − ⟨𝑀𝑆⟩𝑀=−1). The plotted g-factor is normalized by 𝑔𝑆𝜇𝐵. The
black line represents the contour where the 𝑀 = ±1 levels are nominally degener-
ate. (c, d) 2D plots of the eEDM sensitivity, ⟨Σ⟩𝑀=+1 − ⟨Σ⟩𝑀=−1. The black line
represents the 𝑔eff = 0 contour.

magnetic insensitivity and EDM sensitivity over a range of fields, for example up to
∼5 G for the 𝐽 = 1/2, 𝑁 = 1 pair.

The procedure we use here for identifying zero g-factor states can be generically
extended to searching for favorable transitions between states with differing eEDM
sensitivities, similar to what has been already demonstrated in a recent proposal
to search for ultra-light dark matter using SrOH [146]. In addition, there are also
fields of 𝐵𝑍 ≈ 10 − 20 G and 𝐸𝑍 ≈ 0 where opposite parity states are tuned to
near degeneracy. This is the field regime that has been proposed for precision
measurements of parity-violation in optically trapped polyatomic molecules [304].

We note that zero g-factor pairs also occur in 𝑁 = 2−. The crossings occur
around 400 − 500 V/cm for states correlated with the negative parity manifold.
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Figure 5.29: Zoomed in diagram of the zero 𝑔-factor manifold and its transverse
couplings. (a) Stark shifts for the 𝑁 = 1 states in CaOH. The 𝐽 = 1/2+ zero g-factor
states are shown with a solid green line, while the 𝐽 = 3/2+ zero g-factor states are
indicated with a dashed green line. All other levels are grayed out. A vertical dotted
line indicates the location of the 𝐽 = 1/2+ zero g-factor crossing. (b) A zoomed
in level diagram of the 𝐽 = 1/2+ zero g-factor hyperfine manifold. The bias field
splitting 𝑔eff𝐵𝑍 is not to scale. Transverse field couplings are shown with double
sided arrows, with blue (red) indicating negative (positive) 𝑆𝑋 matrix element.

Since many interactions increase in magnitude with larger 𝑁 , the overall electric
field scale of the intermediate regime increases. Additionally, the robustness of
zero g-factor states also improves, with some pairs able to maintain Δ⟨𝑀𝑆⟩ = 0 for
magnetic fields up to 40 G. These 𝑁 = 2 pairs also have non-zero eEDM sensitivity
for a wide range of magnetic field values.

5.4.4.1 Transverse Field Sensitivity

We now expand our discussion to include the effect of transverse magnetic fields.
Their effects can be modeled by adding 𝐵𝑋𝑆𝑋 and 𝐵𝑌𝑆𝑌 terms to the effective
Hamiltonian, which have the selection rule Δ𝑀𝐹 = ±1. For this discussion, we
focus on the level structure of the 𝑁 = 1, 𝐽 = 1/2+ manifold in CaOH near the zero
g-factor crossing at 60.5 V/cm in the absence of trap shifts, shown in Figure 5.29.
We note if there were no nuclear spin 𝐼, the two zero g-factor states would be
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𝑀𝐽 = ±1/2 states separated by Δ𝑀 = 1. In such a case these degenerate states
would be directly sensitive to transverse fields at first order, thereby reducing the
g-factor suppression.

Due to the hyperfine structure from the nuclear spin of the H atom in CaOH,
the degenerate 𝑀𝐹 = ±1 states in a zero g-factor pair are coupled by second order
transverse field interactions. These interactions are mediated via the𝑀𝐹 = 0± states,
where ± denotes the upper or lower states. Using a Schrieffer–Wolff (a.k.a. Van-
Vleck) transformation, we can express the effective Hamiltonian matrix for second
order coupling between the 𝑀𝐹 = ±1 states. We write the states as |𝑀𝐹⟩, and for
convenience we take the transverse field to point along 𝑋:

𝐻+1,−1 = −(𝑔𝑆𝜇𝐵𝐵𝑋)2
(
⟨−1|𝑆𝑋 |0+⟩⟨0+ |𝑆𝑋 | + 1⟩

Δ𝐸0+
+ ⟨−1|𝑆𝑋 |0−⟩⟨0− |𝑆𝑋 | + 1⟩

Δ𝐸0−

)
.

(5.30)
Here, Δ𝐸0± is the energy difference of the 𝑀𝐹 = 0± levels from the 𝑀𝐹 = ±1 levels.
Our model provides the following values: ⟨0− |𝑆𝑋 | + 1⟩ = ⟨0− |𝑆𝑋 | − 1⟩ = −0.18,
⟨0+ |𝑆𝑋 | + 1⟩ = −0.16, and ⟨0+ |𝑆𝑋 | − 1⟩ = 0.16. The difference in sign is a result
of Clebsh-Gordon coefficient phases, and only the relative phase is relevant. We
also have Δ𝐸0+ = 0.98 MHz and Δ𝐸0− = −0.54 MHz. The combination of phases
precludes the possibility of destructive interference. With these parameters and
defining 𝑔⊥ = 𝐻+1,−1/𝐵𝑋 , then eqn. 5.30 evaluates to (𝑔𝑆𝜇𝐵𝐵𝑋)2(0.086/MHz) ≈
(0.68 MHz/G2)𝐵2

𝑋
. Our model estimates the transverse sensitivity at 𝐵𝑋 ∼ 1 mG

to be 𝑔⊥𝜇𝐵 ∼ 7 × 10−4 MHz/G, of the same order as the neglected nuclear and
rotational Zeeman terms. The suppressed transverse field sensitivity bounds the
magnitude of 𝐵𝑍 , which must be large enough to define a quantization axis for the
spin, 𝑔eff𝐵𝑍 ≫ 𝑔⊥𝐵⊥.

5.4.4.2 Imperfect Field Reversal

We briefly present a systematic effect involving non-reversing fields in eEDM mea-
surements with zero g-factor states and discuss methods for its mitigation. The
electric field dependence of 𝑔eff can mimic an eEDM signal when combined with
other systematic effects, very much like in 3Δ1 molecules [11, 101]. When the sign of
𝐸𝑍 is switched, a non-reversing electric field 𝐸NR will cause a g-factor difference of
𝑔NR = (d𝑔eff/d𝐸𝑍 )𝐸NR. This will give an additional spin precession signal 𝑔NR𝐵𝑍 .
By perfectly reversing 𝐵𝑍 as well, this precession signal can be distinguished from a
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true EDM signal. However, if there is also a non-reversing magnetic field 𝐵NR, there
will still be a residual EDM signal given by (d𝑔/d𝐸)𝐸NR𝐵NR. Using the measured
slope of ∼0.03 (MHz/G)/(V/cm), and using conservative estimates of 𝐸NR ∼ 1
mV/cm and 𝐵NR ∼ 1 𝜇G, we obtain an estimate precession frequency of ∼30 𝜇Hz.
While this is an order of magnitude smaller than the statistical error for the current
best eEDM measurement measurement [67], it is still desirable to devise methods
to reduce the effect further.

Performing eEDM measurements at different zero g-factor states can help sup-
press systematic errors resulting from the above mechanism. For example, the
𝑁 = 1, 𝐽 = 3/2 zero crossing has a different magnitude for Σ, which can be used to
distinguish a true eEDM from a systematic effect. Both 𝑁 = 1 crossings are only
separated by ∼4 V/cm. Furthermore, the zero g-factor states in 𝑁 = 2− can also
be used for systematic checks, as they additionally offer different 𝑔eff vs 𝐸𝑍 slopes
as well as different Σ values. The 𝑁 = 2− states can be populated directly by the
photon-cycling used to pump into the bending mode.

5.4.5 Ramsey Measurements with Zero g-Factor States
In eEDM measurements with polarized molecules, the electron spin ®𝑆 precesses

under the influence of an external magnetic field 𝐵𝑍 and the internal electric field
of the molecule, Eeff, which can be large due to relativistic effects. Time evolution
is described by the Hamiltonian

𝐻 = 𝑔𝑆𝜇𝐵𝐵𝑍 ®𝑆 · 𝑍̂ − 𝑑𝑒Eeff ®𝑆 · 𝑛̂
= 𝑔𝑆𝜇𝐵𝐵𝑍𝑀𝑆 − 𝑑𝑒EeffΣ. (5.31)

Here, 𝑔𝑆 ≈ 2 is the electron spin g-factor, 𝜇𝐵 is the Bohr magneton, 𝐵𝑍 points along
the lab 𝑍̂ axis, and the internal field Eeff points along the molecule’s internuclear
axis 𝑛̂. We define the quantities 𝑀𝑆 = ®𝑆 · 𝑍̂ and Σ = ®𝑆 · 𝑛̂ to describe the electron’s
magnetic sensitivity and EDM sensitivity, respectively. The effect of the eEDM can
be isolated by switching the orientation of the applied magnetic field or, alternatively,
by switching internal states to change the sign of 𝑀𝑆 or Σ. Performing both switches
is a powerful technique for suppressing systematic errors [11, 101].

To perform spin precession in the eEDM sensitive state, we first adiabatically
ramp the electric field to a value 𝐸𝑍 , then turn on a small bias magnetic field 𝐵𝑍 .
We measure the electron spin precession frequency using a procedure analogous
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to Ramsey spectroscopy [11, 100]. The molecules are prepared by driving a 𝜋-
pulse (2.5 𝜇s), with microwaves linearly polarized along the lab 𝑋̂ axis, into the
“bright” superposition state |𝐵⟩ = ( |𝑀 = 1⟩ + |𝑀 = −1⟩)/

√
2 within the 𝑁 =

1, 𝐽 = 1/2+, 𝐹 = 1, 𝑀 = ±1 eEDM sensitive manifold (Figure 5.26(c)). The state
begins to oscillate between the bright state and the “dark” state |𝐷⟩ = ( |𝑀 =

1⟩ − |𝑀 = −1⟩)/
√

2 at a rate 𝜔SP = 𝜇eff𝐵𝑍 , where the effective magnetic moment
𝜇eff = 𝜇𝐵𝑔eff = 𝑔𝑆𝜇𝐵 (⟨𝑀𝑆⟩𝑀=1 − ⟨𝑀𝑆⟩𝑀=−1) is tuned via the applied electric field
𝐸Z (Figure 5.26(b)). The contribution from the 𝑑𝑒Eeff term in eqn. 5.31 is negligible
in CaOH, but could be measured in heavier molecules with much larger Eeff. After
a given time, a second 𝜋-pulse is applied to stop spin precession and transfer the
bright state to the optically detectable 𝑁 = 2, 𝐽 = 3/2− level. Once the electric field
is ramped down, the population remaining in the eEDM manifold, which has the
opposite parity, is not optically detectable. We then image the ODT again and take
the ratio of the first and second images. At long spin precession times (> 10 ms),
losses from background gas collisions (∼1 sec), blackbody excitation (∼1 sec), and
the spontaneous lifetime of the bending mode (∼0.7 sec) lead to an overall loss of
signal, as characterized in Ref. [109]. This effect is mitigated with a fixed duration
between the first and second images, making the loss independent of the precession
time.

To map out the location of the zero g-factor crossing, we perform spin precession
measurements at a fixed magnetic field 𝐵𝑍 = 110 mG for different electric fields. The
spin precession frequency corresponds to an effective g-factor at that electric field.
We find that the zero g-factor crossing within the 𝑁 = 1, 𝐽 = 1/2+, 𝐹 = 1, 𝑀 = ±1
eEDM manifold occurs at an electric field of 59.6 V/cm, in agreement with theory
calculations described in the Supplemental Material. We note that there is another
zero g-factor crossing for the 𝑁 = 1, 𝐽 = 3/2+, 𝐹 = 1 manifold at ≈ 64 V/cm,
which has a smaller eEDM sensitivity but the opposite slope of 𝑔eff vs. 𝐸𝑍 , thereby
providing a powerful resource to reject systematic errors related to imperfect field
reversals. We emphasize that while the location of these crossings is dependent
on the structure of a specific molecule, their existence is generic in polyatomic
molecules, which naturally have parity-doublet structure [17].

A critical component of the spin precession measurement is the coherence
time, which sets the sensitivity of an eEDM search. We characterize two dominant
limitations that wash out oscillations at long times. Variations in the spin precession
frequency can be linearly expanded as 𝛿𝜔SP = 𝜇eff(𝛿𝐵𝑍 ) + (𝛿𝜇eff)𝐵𝑍 . The first
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term describes magnetic field noise and drift of the applied bias field, given by 𝛿𝐵𝑍 .
The second term describes noise and drifts in the 𝑔-factor, 𝛿𝑔eff, which can arise
from instability in the applied electric field, 𝐸𝑍 , or from AC Stark shifts (described
below). Drifts in the bias electric field 𝐸𝑍 are found to be negligible in the apparatus.

Decoherence due to magnetic field noise, 𝛿𝐵𝑍 , is independent of the applied
magnetic field but is proportional to 𝜇eff, and can be mitigated by operating near
the zero g-factor crossing. At an electric field of 90 V/cm, corresponding to a
large magnetic moment of 𝜇eff = 1.0 MHz/G, we realize a magnetic field noise-
limited coherence time of 0.5 ms at 𝐵𝑍 ≈ 15 mG. At an electric field of 61.5 V/cm,
corresponding to 𝜇eff = 0.06 MHz/G, much closer to the zero g-factor location, we
find a coherence time of 4 ms at the same 𝐵𝑍 .

At higher magnetic fields, the primary limitation to the coherence time is due to
AC stark shifts from the optical trapping light. The intense 𝑍-polarized ODT light
leads to a shift in the electric field at which the zero g-factor crossing occurs. Due
to the finite temperature of the molecules within the trap, they will explore different
intensities of trap light and hence have different values of 𝑔eff. The spread 𝛿𝑔eff

causes variation of 𝜔SP, which leads to decoherence. In contrast to the magnetic
field noise term, this effect is independent of the electric field 𝐸𝑍 but decreases
monotonically with 𝐵𝑍 , which scales the frequency sensitivity to g-factor variations,
𝛿𝜔SP = 𝐵𝑍𝛿𝜇eff. The effect of g-factor broadening is insensitive to the exact value
of 𝑔eff. Decoherence due to AC Stark shifts can be reduced by cooling the molecules
to lower temperatures or by decreasing 𝐵𝑍 . The bias magnetic field can be reduced
arbitrarily far until either transverse magnetic fields or magnetic field noise become
dominant. From the decoherence rates measured in this work, it is expected that AC
Stark shift-limited coherence times∼1 s could be achieved at bias fields of 𝐵𝑍 ∼ 100
𝜇G. If the molecules could be cooled to a temperature significantly less than the
trap depth, this effect would be greatly reduced. Additionally, since the 𝛿𝑔eff term is
scaled by 𝐵𝑍 , this decoherence can also be reduced by lowering the magnetic field.
As the bias magnetic field is reduced, however, the effect of unwanted transverse
magnetic fields is increased.

When transverse magnetic fields are dominant, the electron will be quantized
along the transverse axis and there is minimal spin precession by the bias 𝐵𝑍 field.
The transverse coupling results in eigenstates given by ( |𝑀𝐹 = 1⟩ ± 𝑒𝑖𝜙 |𝑀𝐹 =

−1⟩)/
√

2, where the phase 𝜙 is set by the direction of ®𝐵 in the transverse plane. If
𝜙 = 0 or 𝜋, only one of these states is bright to the 𝑋̂-polarized state preparation
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microwaves, which means the initial state is stationary under the transverse fields.
For all other orientations, the transverse field causes spin precession with varying
contrast, depending on the specific value of 𝜙.

We are able to use transverse spin precesion to measure and zero transverse
fields to the mG level. We do so by operating with minimal bias field 𝐵𝑍 ≈ 0 and
operating 𝐸𝑍 near the zero g-factor crossing, such that 𝑔eff𝐵𝑍 < 𝑔⊥𝐵⊥. We then
apply a small transverse magnetic field to perform transverse spin precession. Here,
the dynamics are dominated by the transverse fields rather than the 𝑍 fields. We
obtain field zeros by iteratively minimizing the precession frequency by tuning the
bias fields 𝐵𝑋 and 𝐵𝑌 .

It is expected that the longest achievable coherence times will occur for very
small g-factors, 𝑔eff ≈ 0, and very small bias fields, 𝐵𝑍 ≈ 0. Minimizing 𝐵𝑍

requires reducing the effects of both magnetic field noise and transverse magnetic
fields to well below the level of the bias field energy shifts. We cancel the transverse
magnetic fields to below 1 mG by maximizing the spin precession period under
the influence of transverse 𝐵 fields only, and actively monitor and feedback on the
magnetic field along each axis to minimize noise and drifts in 𝐵𝑍 . Note that the
stainless steel vacuum chamber has no magnetic shielding, leading to high levels
of magnetic field noise which would not be present in an apparatus designed for an
eEDM search. Even under these conditions, we achieve a coherence time of 30 ms
at an electric field of 60.3 V/cm (corresponding to 𝜇eff = 0.02 MHz/G) and a bias
field of 𝐵𝑍 ≈ 2 mG. However, at such a low bias field, the molecules are sensitive
to 60 Hz magnetic field noise present in the unshielded apparatus, which is on the
same order as the bias field. Since the experiment is phase stable with respect to the
AC line frequency, this 60 Hz magnetic field fluctuation causes a time-dependent
spin precession frequency. Nevertheless, our prototype experiment confirms that
long coherence times are possible, and any future eEDM experiment would have
magnetic shielding that would greatly suppress nefarious magnetic fields from the
environment. Such shielding could readily enable coherence times exceeding that
of the ∼ 0.5 s lifetime of the bending modes of similar linear polyatomic molecules
with larger eEDM sensitivity [109].

5.4.6 Conclusion
In summary, we have realized coherent control of optically trapped polyatomic

molecules and demonstrated a realistic experimental roadmap for future eEDM mea-
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surements. By leveraging the unique features of the quantum levels in polyatomic
molecules, we achieve a coherence time of 30 ms for paramagnetic molecules in a
stainless steel chamber with no magnetic shielding. With common shielding tech-
niques employed in past EDM experiments, there is a clear path to reducing stray
fields and extending coherence times to > 100 ms. At such a level, the dominant
limitation becomes the finite lifetime of the bending mode [109]. Even longer co-
herence times are possible with the right choice of parity doublet states, as found in
symmetric or asymmetric top molecules [17, 107, 123, 429].

Following our established roadmap with heavier trapped polyatomic molecules
has the potential to provide orders-of-magnitude improvements to current bounds
on T violating physics. Using the 𝑋̃ (010) study of YbOH from Sec. 4.2, we
have identified similar 𝑁 = 1 zero g-factor states for eEDM measurements with
significantly improved sensitivity. In addition to the g-factor tuning demonstrated in
this work, polyatomic molecules provide the ability to reverse the sign of Σ without
reversing 𝑀𝑆 - a crucial feature of recent experiments that have greatly improved
the limit on the eEDM [10, 11]. For example, in the 𝑁 = 1 manifold of CaOH, there
is another zero g-factor crossing at a nearby electric field value, with 69% smaller
values of Σ and opposite sign. Since the ratio of eEDM sensitivity to g-factor vs.
𝐸𝑍 slope differs between these two crossings, measurements at both points could
be used to suppress systematics due to non-reversing fields coupling to the electric
field dependence of the g-factor [11].

We have provided the first experimental demonstration of the advantages of the
rich level structure of polyatomic molecules for precision measurements. While we
have focused here on spin precession with 𝑇-reversed states (𝑀 = ±1), many levels
of interest can be favorably engineered for precision measurement experiments. In
a recent proposal [304], parity-doublets, magnetically tuned to degeneracy in opti-
cally trapped polyatomic molecules, were shown to be advantageous for searches for
parity violating physics. In another recent work [146], a microwave clock between
rovibrational states in SrOH was proposed as a sensitive probe of ultra-light dark
matter, utilizing transitions tuned to electric and/or magnetic insensitivity. Finally,
in Ref. [124], we show that EDM sensitive transitions with reduced sensitivity to
stray fields can be engineered with application of external fields. In these proposals,
and now experimentally demonstrated in our work, coherent control and state engi-
neering in polyatomic molecules can mitigate systematic errors and enable robust
searches for new physics.
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Conclusions

Do, or do not. There is no try.

–Yoda

6.1 Overview of Results
This thesis has made major advances to the platform of polyatomic molecules

for new physics searches. In polyatomic molecules, angular momentum states 𝐽 are
characterized by a projection in the molecule frame, 𝐾 , and a projection in the lab
frame, 𝑀 . Both of these projections are odd under time-reversal (𝑇), while the 𝐾
projection internal to the molecule is odd under parity reversal (𝑃). Therefore, the
oriented states of polyatomic molecules offer us intrinsic control over both the 𝑃-
odd and 𝑇-odd degrees of freedom of the system. This is useful when engineering
differential measurements to search for effects that violate symmetries, allowing
us to perform numerous systematic checks by reversing and reorienting the 𝑃,𝑇
violating signal (internal co-magnetometry). Indeed, parity doublets are a key
feature behind both the ACME and JILA experiments that currently set the best
bounds on a possible 𝑃,𝑇 violating electron electric dipole moment. The power
of polyatomic molecules is they can generically combine the parity doublet feature
with laser cooling.

Our work focused on YbOH, a linear triatomic molecule with significant new
physics sensitivity owing to the heavy Yb nucleus. We have shown that polyatomic
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YbOH molecules can be produced in large quantities at low temperatures. By
optically exciting reactant atoms, we were able to chemically enhance our molecular
yield by an order of magnitude [227]. With this chemical enhancement light, our
cryogenic buffer gas beam (CBGB) source produces ∼ 1011 ground state YbOH
molecules inside the cell at ∼4 K. The buffer gas flow extracts ∼ 1010 molecules into
a beam traveling at ∼200 m/s. Downstream in the beam, we can interrogate ∼ 107

molecules per pulse, with repetition rates up to 10 Hz. Additionally, our CBGB
has natural 𝑋̃ (010) science state population, with about 106 molecules downstream,
without optical pumping.

Before we began this work, YbOH had only been characterized in a high tem-
perature study from 2001 [430], with many speculative assignments. In this work,
we made significant spectroscopy progress, essentially determining all the neces-
sary spectroscopic information to perform precision measurements with YbOH. We
fully characterized the science state of YbOH, the 𝑋̃2Σ+(010) fundamental bending
mode of the ground state [280]. We determined effective Hamiltonian parameters
that allow us to accurately model the quantum levels of the 𝑋̃ (010) state, in both
free-field and in the presence of applied electromagnetic fields. In particular, our
study of level tuning by the electric fields illustrates the orientation control over the
𝑃,𝑇 violating interactions that is afforded by polyatomic molecules. Furthermore,
we also characterized the 𝐴̃(010) bending excited state of YbOH. This state shows a
rich interplay of spin-orbit and vibronic interactions that results in an emergent level
pattern reminiscent of a bent molecule with quenched orbital electronic angular
momentum. Finally, we determined optimal states to use for optical pumping into
𝑋̃ (010) and for coherently manipulating quantum states in 𝑋̃ (010).

We also made significant progress in state preparation and readout schemes
for precision measurements with polyatomic molecules. We demonstrated coherent
quantum control of YbOH using detuned two-photon transitions, and on the way
we re-discovered lessons in atomic physics regarding destructive interference from
unresolved hyperfine structure. We showed that control issues related to unresolved
hyperfine can be overcome with the appropriate choice of laser polarizations and op-
tical sideband generation scheme. Using our spectroscopy knowledge, we were able
to perform a prototype Ramsey interferometry sequence, measuring spin precession
between individual quantum states in the presence of a magnetic field. The next
step beyond this work is to generalize our Ramsey interferometry protocol to YbOH
molecules in the presence of a polarizing electric field. Achieving this milestone
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would finalize the transition of the YbOH experiment from the prototyping phase to
the precision measurement phase.

This work is also broadly applicable beyond YbOH to other linear triatomic
molecules useful for precision measurements, such as SrOH [302] and RaOH [272,
431]. The laser induced chemical enhancement we demonstrate is expected to apply
to both SrOH and RaOH, given it works for YbOH and CaOH. Further, the path we
laid for science state spectroscopy will be the same for other hydroxides. Finally,
the two-photon techniques we demonstrate can be generalized to other polyatomic
molecules as well, as we do not need to worry about fine-tuning of frequencies.

Additionally, as part of the PolyEDM collaboration, we performed a proof-
of-principle Ramsey measurement of ultracold, optically trapped CaOH molecules
in the 𝑋̃ (010) science state. This work demonstrated the power afforded by laser
cooling and trapping polyatomic molecules for precision emasurements. We showed
that the parity doublet structure of polyatomic molecules generically gives rise to
zero 𝑔-factor states with magnetic insensitivity while still retaining new physics
sensitivity. We have found these states also exist in YbOH and other linear triatomic
molecules. In CaOH, we used zero 𝑔-factor states to achieve a nearly 70× reduction
of magnetic sensitivity compared to the electron’s typical 𝑔-factor. In a magnetically
unshielded stainless steel chamber, we were able to reach coherence times of order
30 ms, with clear next steps for improvement.

Zero 𝑔-factor states are just the tip of the iceberg when it comes to quantum state
enegineering of polyatomic molecules precision measurements. In Ref. [124], we
showed that we can generically find transitions in polyatomc and diatomic molecules
that have favorable magnetic and electric insensitivities. These transitions arise
with the application of increasing electric field, as the molecular angular momenta
transition from being internally coupled to being decoupled and aligned along the
external field. These field insensitive transitions can be driven with RF, microwave,
of two-photon techniques, and can retain strong sensitivity to 𝑃,𝑇 violating effects.

Field insensitive transitions are a generalization of EDM measurements to the
rotating frame. The EDM causes differential evolution of ±𝑀 states relative to an
oscillating reference clock or drive. When we perform a Ramsey measurement, we
work in a rotated basis, where the diagonal EDM shifts now become off-diagonal
couplings between spin precession states. EDMs also cause off-diagonal couplings
in free field. As a result, we can imagine working in a rotated basis, taking super-
positions of opposite parity states.
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In free field, the eigenstates are symmetrized, |𝐽𝑀 ± P⟩, and have well defined
parity. Therefore, EDM matrix elements are present on the off diagonals of the
Hamiltonian connecting opposite parity states, ⟨𝐽𝑀±P|𝐻𝑃𝑇 |𝐽𝑀∓P⟩ = 𝐸𝑃𝑇 . This
is similar to the matrix element for the ordinary molecule frame dipole interaction,
𝐻𝐸 = ®𝐷 · ®𝐸lab, with the difference being the behavior of 𝐻𝑃𝑇 under time-reversal.
On the other hand, in the presence of an electric field, the parity basis is mixed, and
we instead consider the un-symmetrized symmetric top wavefunctions, |𝐽𝐾𝑀⟩. In
this basis the EDM is diagonal: ⟨𝐽 ± 𝐾𝑀 |𝐻𝑃𝑇 |𝐽 ± 𝐾𝑀⟩ = ±𝐸𝑃𝑇 .

By the Wigner-Eckart theorem, the EDM matrix elements connect Δ𝑀 = 0
and Δ𝐽 = 0, and induce a small, 𝑃,𝑇 violating permanent dipole moment in free
field. The 𝑇 odd behavior of the EDM appears when we compare +𝑀𝐾 and −𝑀𝐾
states, which have opposite 𝑃𝑇-odd coupling matrix element. It is also instructive to
consider the diagonal EDM matrix element 𝐻𝑃𝑇 , as well as the Stark interaction 𝐻𝐸 ,
in the decoupled basis, defined by 𝑀𝑁 , 𝑀𝑆, and 𝐾 . We have 𝐻𝑃𝑇 ∝ 𝑀𝑁𝑀𝑆𝐾 , while
𝐻𝐸 ∝ 𝑀𝑁𝐾 . Since only 𝐾 flips under a parity transformation, both matrix elements
are 𝑃-odd. However, since 𝐾 and 𝑀 flip under a time-reversal transformation, we
see only the EDM interaction is also 𝑇-odd. In a sense, an EDM measurement is
observing the T-odd interference between the parity-odd couplings, 𝐻𝑃𝑇 and 𝐻𝐸 .

In free field, the effect of the EDM coupling between opposite parity states is
suppressed by the overall parity splitting𝜔P of the molecule. However, in the frame
rotating at the parity energy splitting, denoted 𝜔P , the EDM interaction could be
observed as a coupling in the rotating frame. The catch is that the spin, which is
defined in the lab-frame, must also be brought into the rotating frame, such that
the EDM interaction does not average out. This is similar to Ref. [69], where the
authors propose a rotating frame measurement between hyperfine states driven by an
RF magnetic field, with the molecule orientation adiabatically following an applied
in phase RF electric field. One can also consider the electric field analogue of this
technique, where an RF electric field prepares an opposite parity superposition, and
adiabatic following of an RF magnetic field brings the spin into the rotating frame.
Such a scheme could have the benefit of not requiring DC electric fields, and only
being sensitive to noise in the rotating frame.

6.2 Outlook for YbOH
The odd isotopologue 173YbOH can support a nuclear magnetic quadrupole

moment (NMQM) on the Yb nucleus with 𝐼 = 3/2. The NMQM provides us an
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avenue for sensitivity to hadronic 𝑃,𝑇 violating physics in paramagnetic systems.
Aside from special cases of octupole deformed nuclei, the NMQM is expected to
provide a stronger symmetry violating signal than the nuclear Schiff moment, which
is partially screened. Currently, the best limit on the MQM of a nucleus is from a
measurement of atomic Cs performed in 1989 [432], corresponding to a 95% upper
limit of M < 2.6 × 10−7𝜇𝑁𝑅Cs = 1.5 × 10−44 A m3 = 3 × 10−3𝜇𝑄 . In the last
equality we have defined the nuclear unit for an MQM, 𝜇𝑄 = fm 𝜇𝑁 .

In our lab, a science beamline is currently under construction to perform a
measurement of the NMQM in 173YbOH. All of the parts have been designed,
ordered, assembled, and tested. The electric field plates, fluorescence collection
optics, and beamline layout are detailed in Appendix F. The three layers of magnetic
shields for the experiment have also been assembled, complete with degaussing
electronics. Initial shielding tests indicate a shielding factor of > 100, with the
measurement thus far limited primarily by magnetometer zero offsets. Progress is
now underway to assemble the beamline within the magnetic shielding. Once closed
up, the beamline will allow us to perform Ramsey measurements with a coherence
time of 𝜏 = 1 ms, limited only by time-of-flight across the 20 cm long interaction
region.

We now estimate the new physics sensitivity of YbOH measurements in our
apparatus in the near future. With an optimized source using enriched isotope targets
and optical pumping, but also taking into account finite state preparation efficiencies,
we assume have available ∼106 bending mode 173YbOH molecules downstream in
the beam in a single quantum state. Furthermore, we assume 20% optics collection
efficiency and 10% PMT efficiency, resulting in 𝑁meas = 2 × 104. We additionally
assume a repetition rate of 10 Hz and a coherence time of 𝜏 = 1 ms. Furthermore,
we estimate the differential NMQM energy shift as as Δ𝐸 = ℎ𝑊MM × 0.2 [407].
From Refs. [267, 406], we have 𝑊𝑀 ≈ −1.07 × 1033 Hz/(e cm2)/c = −2.3 ×
1044 Hz/(A m3) = −1.13 × 106 Hz/𝜇𝑄 . We can then calculate the MQM sensitivity
using the quantum projection noise limit:

𝛿M =
ℏ

2(0.2 × ℎ𝑊M)𝜏
√︁
𝑁𝑝𝑅𝑝𝑇𝑡𝑜𝑡

(6.1)

For the estimates given above, we obtain 𝛿M ≈ 1.4 × 10−50 A m3/
√︁

day = 2.7 ×
10−9 𝜇𝑄/

√︁
day. We see that we can improve on the Cs limit quite drastically. Even

with just 1 hour of data taking, we stand to beat the Cs limit by nearly 6 orders of
magnitude.
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Since Yb and Cs are different nuclei, such a comparison is not quite accurate.
Rather, we must consider the sensitivity of the Yb nucleus to potential 𝑃,𝑇 violating
effects, as discussed in Ref. [267]. There, the authors considered the magnitude of a
NMQM in 173YbOH originating from two different 𝑃,𝑇 violating hadronic effects:
the QCD vacuum angle, M(𝜃) = 𝜃 × 0.95𝜇𝑄 , and the difference in up and down
quark chromo-EDMs, M(𝑑) = 3.1𝜇𝐵 × (𝑑𝑢 − 𝑑𝑝). On the other hand, current
limits [433] are given by |𝜃 | < 2.4 × 10−10 and |𝑑𝑢 − 𝑑𝑝 | < 6 × 10−27 cm. Putting
all of these together, in YbOH 𝑃,𝑇 violating effects should result in values no
larger than M(𝜃) < 2.3 × 10−10 𝜇𝑄 and M(𝑑) < 3.4 × 10−10 𝜇𝑄 . Therefore
we see our 1 day sensitivity is about an order of magnitude away from being
competative with existing limits. While the estimates given have been approximate,
they provide excellent motivation to pursue a measurement in 173YbOH. We note we
have not discussed potential improvements that could help increase sensitivity, such
as implementing laser cooling to reduce beam divergence, using laser slowing to
increase the interaction time, and using optical cycling for efficient state preparation
and readout.
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Matrix Elements

I should think that you Jedi would
have more respect for the
difference between knowledge
and...wisdom.

–Dexter Jettster

In this section we provide some helpful information for factorizing and eval-
uating matrix elements of composite angular momenta in rotating molecules. We
follow Brown and Carrington [39] and Hirota [129] primarily, and rely on some of
the basic molecular structure discussions from Ch. 2.

A.1 Basis States
The basis vectors are labeled by a series of quantum numbers, which describe

the eigenvalue of an associated operator. The basis vectors are tensor products
across the electronic, vibrational, and rotational degrees of freedom:

|𝜓elec⟩ ⊗ |𝜓vib⟩ ⊗ |𝜓rot⟩. (A.1)

The electronic state is approximated by a sum over the spherical harmonics:

|𝜓elec⟩ = |Λ⟩ =
∑︁
𝐿

𝐹𝐿𝑌𝐿,Λ(𝜃, 𝜙). (A.2)
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Here, 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋) are spherical coordinates angles defined in the
molecule frame, and 𝐹𝐿 are wavefunction amplitudes. For example, a Σ+ state can
be a linear combination of 𝑐1𝑠𝜎 + 𝑐2𝑝𝜎 + . . . with amplitudes 𝑐1, 𝑐2, etc.

For a linear triatomic molecule, the vibrational state is written as:

|𝜓vib⟩ = |𝑣1, 𝑣
ℓ
2, 𝑣3⟩ = |𝑣1⟩ ⊗ |𝑣2, ℓ⟩ ⊗ |𝑣3⟩. (A.3)

The states of the symmetric stretching vibrations, 𝑣1 and 𝑣3, are described, to first
order, by the 1-D harmonic oscillator wavefunctions. Meanwhile, the eigenstates
of the 2-D harmonic oscillator wavefunction are provided in Ch 2, Sec. 2.1.7. The
relevant form is given by:

|𝑣2, ℓ⟩ =
1
√

2𝜋
𝑒𝑖ℓ𝜙Ψ𝑣2,ℓ (𝑞). (A.4)

Here, ℓ = ®𝐺 · 𝑛̂, and 𝑞 = 𝑞2 =
√︃
𝑞2

2𝑥 + 𝑞
2
2𝑦, where (𝑞2𝑥 , 𝑞2𝑦) are the dimensionless

normal coordinates of the bending mode, and 𝜙 = tan−1(𝑞2/𝑞1) is the bending
angle associated with the normal mode. The function Ψ𝑣2,ℓ is given in the main text.
Using the phase convention 𝛿ℓ = 0 (see Sec. A.2), we have Ψ𝑣2,ℓ = Ψ𝑣2,−ℓ.

Finally, the rotational state is given in term of the symmetric top wavefunctions.
The choice of symmetric top wavefunction depends on the Hund’s case in use. For
Hund’s case (a), we have:

|𝜓rot⟩(a) = |𝑆, 𝛴⟩ ⊗ |𝐽, 𝑃, 𝑀⟩ (A.5)

where 𝑃 = Σ +Λ + ℓ = ®𝐽 · 𝑛̂, and the spin 𝛴 = ®𝑆 · 𝑛̂ is defined in the molecule frame.
The projection 𝑀 = 𝐽 · 𝑍̂ is defined in the lab frame. We note 𝐽 and all angular
momenta containing 𝐽 have anomalous commutation relations when evaluated in
the molecule frame, while 𝑆 is not anomalous.

For Hund’s case (b), we instead have the symmetric top states |𝑁, 𝑀𝑁 , 𝐾⟩, with
𝐾 = Λ + ℓ = ®𝑁 · 𝑛̂ for linear molecules. This state is then coupled (using Clebsch-
Gordan coefficients) to the space-fixed (a.k.a. defined in the lab frame) spin state
|𝑆, 𝑀𝑆⟩ to obtain the Hund’s case (b) states [160]:

|𝜓rot⟩(b) = |𝑁, 𝐾, 𝑆, 𝐽, 𝑀⟩

=
∑︁

𝑀𝑁 ,𝑀𝑆

(−1)𝑁−𝑆+𝑀
√

2𝐽 + 1

(
𝑁 𝑆 𝐽

𝑀𝑁 𝑀𝑆 −𝑀

)
|𝑁, 𝑀𝑁 , 𝐾⟩|𝑆, 𝑀𝑆⟩.

(A.6)
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The molecule frame components of 𝑁 and all angular momenta containing 𝑁 have
anomalous commutation relations.

Special care must be taken when converting between the two bases, as the
molecule frame defined components of ®𝑁 and ®𝑆 do not commute in case (b). The
conversion is derived in Ref. [160], and we provide it here for reference:

|𝑁, 𝐾, 𝑆, 𝐽, 𝑀⟩ =
∑︁
Σ,𝑃

(−1)𝑁−𝑆+𝑃
√

2𝑁 + 1

(
𝐽 𝑆 𝑁

𝑃 −Σ −𝐾

)
|𝑆, Σ⟩|𝐽, 𝑃, 𝑀⟩. (A.7)

Nuclear spins can be added using standard coupling of angular momenta with
Clebsch-Gordan coefficients. Their molecule frame quantities are never anomalous.
The total angular momentum is then generically written as 𝐹. For example, in
Hund’s case (b𝛽S), we have:

|𝑁, 𝐾, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀⟩ = (−1) 𝐼−𝐽+𝑀
√

2𝐹 + 1

×
∑︁
𝑀𝐽 ,𝑀𝐼

(
𝐽 𝐼 𝐹

𝑀𝐽 𝑀𝐼 −𝑀𝐹

)
|𝑁, 𝐾, 𝑆, 𝐽, 𝑀𝐽⟩|𝐼, 𝑀𝐼⟩.

(A.8)

A.2 Parity, Time-Reversal, and Phase Conventions
We now describe the symmetry properties of molecular states transforming

under discrete symmetries of Parity (P) and Time-reversal (T ) symmetries1. These
transformation properties are very useful, not only for symmetry violation searches,
but also to understand the behavior the molecular state in general. In particular,
the electric dipole operator, involved in electronic transitions as well as the Stark
effect, is P odd. Throughout this section, we deal with various choices of phase
conventions, resulting in factors such as 𝑒𝑖𝛿. We note these phases 𝛿 are always
chosen such that the factor is real (𝛿 = 𝑛𝜋, 𝑛 integer), and they only affect the off-
diagonal matrix elements. Therefore the phases have no impact on the eigenenergies,
however they can change the phase of Hamiltonian parameters or relative phases of
wavefunctions.

A.2.1 Parity
We begin the total molecular state, given in Hund’s case (a) by:

ΨΛ,ℓ,𝛴,𝑃 = |Λ; 𝑣, ℓ; 𝑆, 𝛴; 𝐽, 𝑃, 𝑀⟩. (A.9)
1We denote these operations with different scripts to help distinguish from other symbols we use

in this section.
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Later we can generalize to include the hyperfine spins. Generalization to Hund’s
case (b) is performed by dropping the 𝑆, 𝛴 ket and performing the replacements
𝑃→ 𝐾 , 𝐽 → 𝑁 .

First, we discuss the behavior ofΨ under a parity transformation,P : 𝑓 (𝑋,𝑌, 𝑍) →
𝑓 (−𝑋,−𝑌,−𝑍), where 𝑓 is a function of the space-fixed axes 𝑋,𝑌, 𝑍 . This operator
is also referred to as space-fixed inversion, denoted 𝐸∗. For this section, we will use
𝐸∗ to avoid confusing the projection quantum number 𝑃 with the parity operator
P. Continuing, we have a few properties of the parity operation: first, (𝐸∗)2 = 1,
which means for a state of well-defined parity, 𝐸∗Ψ = ±Ψ. Further, we notice that
we can obtain 𝐸∗ by first reflecting about a plane in space, and then rotating by 𝜋
about an axis perpendicular to the reflection plane. In the language of group theory,
we can write 𝐸∗ = 𝜎𝑖 𝑗𝑅𝑘 (𝜋), where 𝜎 is the reflection through the plane defined by
axes 𝑖, 𝑗 , and 𝑅𝑘 (𝜋) is a 𝜋 rotation about the third axis 𝑘 . Often, we are interested
in the effect of 𝐸∗ on the molecule frame wavefunctions, which are functions of the
molecule frame 𝑓 (𝑥, 𝑦, 𝑧), and naturally have the symmetry axis 𝑛̂ = 𝑧. We note
that while the angular momenta ®𝐽 are invariant under 𝐸∗, their projections on 𝑛̂
will generically flip under 𝐸∗, as 𝑛̂ is parity odd. The action of 𝐸∗ is to reflect the
electronic and vibrational coordinates about a plane containing 𝑛̂, and then rotate
the molecule frame by 𝜋 about an axis perpendicular to the reflection plane.

At this point we pause to note there are multiple conventions for defining
the action of 𝐸∗ on molecular states. One convention, followed by Brown and
Carrington [39] and Hirota [129], is to define 𝐸∗ = 𝜎𝑥𝑧𝑅𝑦 (𝜋). This is the convention
we use in this thesis, and is also used in Ref. [149]. These authors show that the
effect of 𝐸∗ on the Euler angles defining the molecule frame is given by (𝜙, 𝜃, 𝜉) 𝐸∗−−→
(𝜋 + 𝜙, 𝜋 − 𝜃, 𝜋 − 𝜉). Further, they go on to show that for a function 𝑓 defined in the
molecule frame, such as the electronic or vibrational wavefunction, 𝐸∗ is equivalent
to 𝑓 (𝑥, 𝑦, 𝑧) 𝐸∗−−→ 𝑓 (𝑥,−, 𝑦, 𝑧). Since these authors are interested in the behavior of
the internal molecule frame wavefunctions, which do not depend on the orientation
of the molecule frame, these authors just consider the action of𝜎𝑥𝑧 when considering
𝐸∗.

Meanwhile, there is a separate convention given in Bunker and Jensen [140] and
Zare [130]. In this convention, 𝐸∗ = 𝜎𝑦𝑧𝑅𝑥 (𝜋). The resulting effect on functions of

the molecule frame axes is given by 𝑓 (𝑥, 𝑦, 𝑧) 𝐸∗−−→ 𝑓 (−𝑥, 𝑦, 𝑧). We do not use this
convention, but provide it for completeness.

We now present how the individual molecular wavefunction components trans-
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form under 𝐸∗. First, we begin with the symmetric top wavefunction |𝐽, 𝑃, 𝑀⟩. The
most general form of the transformation includes a phase factor 𝑒𝑖𝑃𝛿𝑃 , which we
will return to shortly. In general we have [39, 129, 140, 149, 152, 153, 434, 435]:

𝑅𝑥 (𝜋) |𝐽, 𝑃, 𝑀⟩ = (−1)𝐽𝑒−2𝑖𝑃𝛿𝑃 |𝐽,−𝑃, 𝑀⟩ (A.10)

𝑅𝑦 (𝜋) |𝐽, 𝑃, 𝑀⟩ = (−1)𝐽−𝑃𝑒−2𝑖𝑃𝛿𝑃 |𝐽,−𝑃, 𝑀⟩. (A.11)

We see that 𝑀 does not change, as ®𝐽 is parity even (see Ch. 1) and remains fixed
in space. However, since 𝑛̂ is just a vector, it will reverse under 𝐸∗, and causing
the projection 𝑃 to also reverse. Now we discuss the phase convention 𝛿𝑃. This
phase is related to the convention used to define the symmetric top wavefunctions
and the action of the ladder operators 𝐽𝑋,𝑌 in the lab frame and 𝐽𝑥,𝑦 in the molecule
frame. The overwhelmingly accepted phase choice is that the matrix elements of
𝐽𝑋 and 𝐽𝑥 are real and positive, known as the Condon and Shortley phase, which
takes 𝛿𝑃 = 0. We use this phase choice everywhere in this thesis. As a result,
since we use 𝑅𝑦 (𝜋), we have the following behavior under space-fixed inversion:

|𝐽, 𝑃, 𝑀⟩ 𝐸∗−−→ (−1)𝐽−𝑃 |𝐽,−𝑃, 𝑀⟩, agreeing with Refs. [39, 129].

Now we move on to considering the transformation properties of the vibrational
state |𝑣, ℓ⟩ under 𝐸∗. We follow closely the discussion in Refs. [129, 148, 149,
152, 153, 434]. We note that Ref. [149] is very helpful, but unfortunately defines
the vibrational ladder operators containing both 𝑞 and 𝑝 with an extra factor of ∓𝑖
compared to all other references. Continuing, the action of 𝐸∗ is equivalent to just
considering the reflection of the vibrational coordinates in a plane containing 𝑛̂. We
therefore have:

𝜎𝑥𝑧 |𝑣, ℓ⟩ = 𝑒−2𝑖ℓ𝛿ℓ |𝑣,−ℓ⟩
𝜎𝑦𝑧 |𝑣, ℓ⟩ = −𝑒−2𝑖ℓ𝛿ℓ |𝑣,−ℓ⟩.

(A.12)

Here we have introduced the the phase factor 𝛿ℓ = 𝑛𝜋/2 for 𝑛 integer2. This phase
factor has consequences for the raising and lowering operators 𝑞± as well. In this
thesis, we follow Brown [151] and Hirota [129], who take 𝛿ℓ = 0. As a result, using
𝜎𝑥𝑧 for space-fixed inversion, we have 𝐸∗ |𝑣, ℓ⟩ = |𝑣,−ℓ⟩.

Continuing, we finally consider the effect of 𝐸∗ on |𝑆, 𝛴⟩ and |Λ⟩. Following
Refs. [39, 129, 130], we have:

𝜎𝑥𝑧 |𝑆, 𝛴⟩ = (−1)𝑆−𝛴 |𝑆,−𝛴⟩
𝜎𝑦𝑧 |𝑆, 𝛴⟩ = (−1)𝑆 |𝑆,−𝛴⟩

(A.13)

2Comparing to the notation in Ref. [149], we have 2𝛿ℓ = 𝜉 − 𝜂 − 𝜋.
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where we have used the Condon and Shortley phase convention. Finally, for |Λ⟩, we
follow Refs. [39, 129], where the Λ wavefunction is written as a sum over spherical
harmonics. This results in the following transformation properties under 𝐸∗:

𝜎𝑥𝑧 |Λ⟩ = (−1)𝑠+Λ |𝑆,−Λ⟩
𝜎𝑦𝑧 |𝑆, 𝛴⟩ = (−1)𝑠 |𝑆,−Λ⟩

(A.14)

where 𝑠 = 1 for Σ− states and 𝑠 = 0 for all other states.

Putting everything together, and taking 𝛿𝑃 = 0 but leaving 𝛿ℓ, we obtain the full
behavior of Ψ under space-fixed inversion 𝐸∗ = 𝜎𝑥𝑧𝑅𝑦 (𝜋) as [39, 129, 434]:

𝐸∗ΨΛ,ℓ,𝛴,𝑃 = (−1)𝐽−𝑃 (−1)𝑆−𝛴 (−1)Λ+𝑠𝑒−2𝑖ℓ𝛿ℓΨ−Λ,−ℓ,−𝛴,−𝑃

= (−1)𝐽−𝑆−ℓ+𝑠Ψ−Λ,−ℓ,−𝛴,−𝑃
(A.15)

where in the second line we write 𝑃 = 𝛴 + ℓ + Λ, set 𝛿ℓ = 0, and using 𝑆 = |𝛴 |, we
rewrite 𝑆 − 2𝛴 = −𝑆. This is the parity phase factor we use throughout this thesis,
and is used by Brown [151] and Hirota [129]. Unfortunately, this choice means the
definition of parity changes upon exciting odd number of ℓ quanta, and interactions
that cause Δℓ = ±1 will mix symmetric and anti-symmetric parity superpositions,
which we deal with in Ch. 4, Sec. 4.2. An alternative parity convention that does
not mix symmetric and anti-symmetric levels is provided in Ref. [434]. The authors
there propose taking 𝛿ℓ = 𝜋/2, which would cancel the extra factor of ℓ in the
phase factor, making the definition of parity independent of of ℓ. However, we
note that such a choice would modify the behavior of the 𝑞± matrix elements. We
end our parity discussion by noting that the behavior of the wavefunction under a
parity transformation is intimately related to the sign of off-diagonal parity doubling
operators that can flip projection quantum numbers and cause parity splittings. We
return to this point in Sec. 2.2.3.

A.2.2 Time-Reversal
Now we briefly mention the transformation properties under time-reversal, T .

Often, this operator is written as 𝜃 in the literature. We note thatT is anti-unitary [19,
130, 133, 135, 140, 152, 435], which means it performs complex conjugation. For
a general angular momentum state |𝐽, 𝑀⟩, we have [133, 140, 436]:

T |𝐽, 𝑀⟩ = (−1)𝑀 |𝐽,−𝑀⟩ (A.16)

T 2 |𝐽, 𝑀⟩ = (−1)2𝑀 |𝐽, 𝑀⟩. (A.17)
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These results can be applied to both |𝑆, 𝛴⟩ and |Λ⟩. We see that half-integer angular
momenta have T 2 = −1, while integer angular momenta have T 2 = +1. We note
there is a phase choice hidden here for half-integer systems, and the general form
is actually given by T |𝐽, 𝑀⟩ = 𝜂𝑇 (−1)𝐽−𝑀 |𝐽,−𝑀⟩. Authors take 𝜂𝑇 = 𝑖2𝐽 to
establish correspondence with the integer case, where T |𝐽, 𝑀⟩ = (−1)𝑀 |𝐽,−𝑀⟩,
which can be derived from the properties of the spherical harmonics upon complex
conjugation. An alternative choice is 𝜂𝑇 = 1, which results in the phase factor
(−1)𝐽−𝑀 . In the end the difference is just a factor of (−1)𝐽 .

For the symmetric top wavefunctions, both 𝑃 and 𝑀 reverse under T , giving
us [39, 152, 435, 436]:

T |𝐽, 𝑃, 𝑀⟩ = (−1)𝑀−𝑃𝑒2𝑖𝐽𝜂𝐽 |𝐽,−𝑃,−𝑀⟩. (A.18)

We note there is yet another phase choice made here, the factor of 𝜂𝐽 . Following
Brown and Carrington [39], we always choose 𝜂𝐽 = 0.

Finally, for the vibrational state, we have [152, 435]:

T |𝑣, ℓ⟩ = 𝑒2𝑖𝑣𝛿𝑣 |𝑣,−ℓ⟩ (A.19)

where we have encountered another phase factor, 𝛿𝑣. It turns out both 𝛿𝑣 and 𝛿ℓ
determine the phase relations of the 𝑞± ladder operators [149, 152]. Our choice
of 𝛿ℓ = 0 and use of real, positive 𝑞± matrix elements means we take 𝛿𝑣 = 0 as
well, and so T |𝑣, ℓ⟩ = |𝑣,−ℓ⟩. If we were to follow the alternative phase convention
in Ref. [434] with 𝛿ℓ = 𝜋/2, we would also have to take 𝛿𝑣 = 𝜋/2 to ensure the
action of the 𝐹±(±) vibrational ladder operators are real. This would also have the
consequence of adding a (−1)𝑣 phase factor in the time-reversal of |𝑣, ℓ⟩. We do not
follow this convention, but mention it for completeness.

Finally, we mention the time-reversal property of spherical tensor operators
𝑇 𝑘𝑝 (𝐴), with 𝐴 some operator, which is derived in Ref. [130] by considering the
Hermitian conjugate (𝑇 𝑘𝑞 )†. We obtain:

T𝑇 𝑘𝑝 (𝐴)T = (−1)𝑝𝑇 𝑘−𝑝 (𝐴). (A.20)

We see the spherical tensors transform analogously to the spherical harmonics under
T . This shows that raising and lowering ladder operators are not Hermitian, as they
transform into each other under T . This also gives us an intuition for the anomalous
commutation relations of the molecule, where 𝐽 (𝑚𝑜𝑙)± seem to be reversed in their
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behavior. In the fixed lab frame, we see the molecule rotating one way, but in the
fixed molecule frame, the lab seems to rotate in the opposite direction. Finally, Zare
shows that the above relation implies ⟨𝐽 | |𝑇 𝑘 | |𝐽′⟩∗ = (−1)𝐽′−𝐽 ⟨𝐽′| |𝑇 𝑘 | |𝐽⟩.

A.2.3 Electronic Parity Doubling
There is an accepted convention forΛ-doubling, which was laid out by Mulliken

and Christy [437]. The convention is reiterated by Brown in [165] and Brown and
Carrington in [39]. This convention is given by

⟨Λ = ±1|𝑒±2𝑖𝜙𝑒 |Λ′ = ∓1⟩ = −1 × 𝛿Λ,Λ′±2. (A.21)

Here, 𝑒±𝑖𝜙𝑒 is a raising/lowering operator with 𝜙𝑒 the azimuthal angle of the elec-
trons. In this convention, a positive 𝑞𝑒 electronicΛ-doubling parameter in a 1Π state
corresponds to the (−1)𝐽 parity level lying above the (−1)𝐽+1 parity level. In other
words, the + parity state is below the − parity state for 𝐽 = 1. In the YbOH 𝐴̃ state,
𝑝𝑒 + 2𝑞𝑒 is negative, and the − parity state is below the + parity state. This phase
choice also manifests in the signs of the Λ-doubling Hamiltonian. When written in
Hund’s case (a), the 𝐽±𝑆± terms have a positive prefactor, and the 𝐽±𝐽± terms have
a negative prefactor. For this work, we drop the 𝐽±𝐽± term in 𝐴̃ as its contribution
is negligible.

Now we derive the Λ phase convention, following arguments from [129] and
[39]. We begin by expanding |Λ⟩ in terms of spherical harmonics:

|Λ⟩ =
∑︁
𝐿

𝐹𝐿𝑌𝐿Λ(𝜃𝑒, 𝜙𝑒) =
∑︁
𝐿

𝐹𝐿√
2𝜋
𝑒𝑖Λ𝜙𝑒Θ𝐿Λ(𝜃𝑒). (A.22)

Here,
∑
𝐿 |𝐹𝐿 |2 = 1, and Θ𝐿Λ(𝜃𝑒) is proportional to the associated Legendre func-

tions 𝑃Λ
𝐿
(cos 𝜃𝑒).

Θ𝑙,𝑚 (𝜃) = (−1)𝑚
√︄

2𝑙 + 1
2
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃

𝑚
𝑙 (cos 𝜃) for 𝑚 ≥ 0

= (−1)𝑚Θ𝑙,−𝑚 (𝜃) for 𝑚 < 0.

(A.23)

Note the function Θ𝐿Λ satisfies Θ𝐿,−|Λ| = (−1)ΛΘ𝐿,|Λ|. This is the origin of this
specific phase-convention.
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Now we can evaluate the left hand side of eqn. A.21

⟨Λ|𝑒±2𝑖𝜙𝑒 |Λ′⟩ =
∫

sin 𝜃𝑒d𝜃𝑒d𝜙𝑒
∑︁
𝐿,𝐿′

𝐹∗𝐿𝐹𝐿′𝑌𝐿Λ(𝜃𝑒, 𝜙𝑒)∗𝑒±2𝑖𝜙𝑒𝑌𝐿′Λ′ (𝜃𝑒, 𝜙𝑒)

=
∑︁
𝐿,𝐿′

𝐹∗𝐿𝐹𝐿′𝛿Λ,Λ′±2

∫
sin 𝜃𝑒d𝜃𝑒 (−1)Λ′±2Θ𝐿,−Λ′∓2(𝜃𝑒)Θ𝐿′,Λ′ (𝜃𝑒)

(A.24)

where we substitute 𝑌𝐿,Λ(𝜃𝑒, 𝜙𝑒)∗ = (−1)Λ𝑌𝐿,−Λ(𝜃𝑒, 𝜙𝑒) and performed the 𝜙𝑒 inte-
gral taking advantage of the orthogonality of exponential functions.

Now we simplify the integrand by noting we are interested in Λ = ±1,Λ′ = ∓1.
This allows us to write−Λ′∓2 = Λ′. Then the remaining 𝜃𝑒 integral can be performed
by using the orthogonality relations of the associated Legendre polynomials, which
results in

⟨Λ = ±1|𝑒±2𝑖𝜙𝑒 |Λ′ = ∓1⟩ = 𝛿Λ,Λ′±2
∑︁
𝐿

|𝐹𝐿 |2(−1)Λ′ = −1 × 𝛿Λ,Λ′±2 (A.25)

where we have substituted |Λ| = 1 in the last line and used the fact that |𝐹𝐿 |2 is
normalized.

We also note that the behavior of 𝑌𝐿Λ upon the transformation Λ → −Λ gives
the parity properties of |Λ⟩. The action of space-fixed inversion, i.e. the parity
operator P, is equivalent to a reflection 𝜎𝑥𝑧 of the 𝑥𝑧 plane of the molecule. This
can be derived by considering the effect of space-fixed inversion on the Euler angles
relating the molecule and lab frames. Therefore we have:

P𝑌𝐿,Λ(𝜃𝑒, 𝜙𝑒) = 𝜎𝑥𝑧𝑌𝐿,Λ(𝜃𝑒, 𝜙𝑒)
= 𝑌𝐿,Λ(𝜃𝑒, 2𝜋 − 𝜙𝑒)
= 𝑌𝐿,Λ(𝜃𝑒, 𝜙𝑒)∗

= (−1)Λ𝑌𝐿,−Λ(𝜃𝑒, 𝜙𝑒).

(A.26)

This recovers the result P|Λ⟩ = (−1)Λ | − Λ⟩ (note a Σ− state has an extra factor of
(−1) that we do not consider).

For the full parity of the rotational wavefunction, the action of P must also
be computed on the spin and rotational wavefunctions, which also reverse the
projection quantum numbers and contribute parity phases of (−1)𝑆−Σ and (−1)𝐽−Ω

respectively. The combination of all phase factors gives the complete case (a) parity
phase without bending motion: (−1)Λ+𝑆−Σ+𝐽−Ω = (−1)𝐽−𝑆, where we have used
|Σ | = 𝑆 and Ω = Λ + Σ to simplify the exponent.
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A.2.4 Vibrational Parity Doubling
For the derivation of the parity phase and matrix elements involving ℓ, we follow

Ref. [129], which uses the vibrational phase conventions established by by Di Lauro
and Mills [148].

The wavefunction for an isotropic 2D harmonic oscillator may be written as:

|𝑣2, ℓ⟩ =
1
√

2𝜋
𝑒𝑖ℓ𝜙𝑛Ψ𝑣2,ℓ (𝑞). (A.27)

Here, 𝑞 =

√︃
𝑞2

1 + 𝑞
2
2, where (𝑞1, 𝑞2) are the dimensionless, doubly-degenerate nor-

mal coordinates of the bending mode, and 𝜙𝑛 = tan−1(𝑞2/𝑞1) is the azimuthal angle
of the bending nuclear framework. The function Ψ𝑣2,ℓ is given by [148]:

Ψ𝑣,ℓ (𝑞) = (−1) (𝑣+|ℓ |)/2𝑁𝑣,ℓ𝑞 |ℓ |𝑒−𝑞
2/2𝐿 |ℓ |(𝑣+|ℓ |)/2(𝑞

2). (A.28)

Here, 𝑁𝑣,ℓ is a normalization factor and 𝐿𝑘𝑛 (𝑥) is an associated Laguerre polynomial.

The function satisfies 𝜎𝑥𝑧Ψ𝑣2,|ℓ | = 𝑒
−2𝑖ℓ𝛿ℓΨ𝑣2,−|ℓ |. We now take 𝛿ℓ = 0 to obtain

the result at the end of this section. If we were to take 𝛿ℓ = 𝜋/2, we would instead
obtain the same result as for Λ doubling.

With 𝛿ℓ = 0 and Ψ𝑣2,|ℓ | = Ψ𝑣2,−|ℓ |, we now consider the matrix elements between
ℓ = ±1 states:

⟨ℓ |𝑒±2𝑖𝜙𝑛 |ℓ′⟩ =
∫

d𝑞d𝜙
1

2𝜋
𝑒−𝑖ℓ𝜙𝑛Ψ𝑣,ℓ (𝑞)𝑒±2𝑖𝜙𝑛𝑒𝑖ℓ

′𝜙𝑛Ψ𝑣,ℓ′ (𝑞). (A.29)

The integration bounds are taken for 𝑞 ≥ 0 and 2𝜋 > 𝑞 ≥ 0. The 𝜙𝑛 integral
is evaluated with the orthogonality of complex exponential functions and enforces
𝛿ℓ,ℓ′+2.

Restricting our attention to ℓ = ±1 states, the Ψ𝑣,ℓ (𝑞) functions depend only on
|ℓ |, and do not add an additional phase. As a result we can evaluate the remaining d𝑞
integral using the orthogonality relations of the associated Laguerre polynomials.
We are left with

⟨ℓ |𝑒±2𝑖𝜙𝑛 |ℓ′⟩ = 1 × 𝛿ℓ,ℓ′±2. (A.30)

The difference between parity phase factors for ℓ andΛ can be traced to the difference
in phase between Ψ𝑣ℓ (𝑞) and Θ𝐿Λ(𝜃𝑒) upon space-fixed inversion. By considering
the behavior of the wavefunctions under 𝜙𝑛 → 2𝜋 − 𝜙𝑛, we see the radial 𝑞 part is
unaffected, giving us P|𝑣2, ℓ⟩ = |𝑣2,−ℓ⟩. When combined with rotational and spin
parity phase factors, we then obtain the complete parity phase (−1)𝐽−𝑆−ℓ.
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A.3 Additional Effective Hamiltonian Details
A.3.1 N and R Formalisms

The next discussion is inspired by Section 7.5.3 of Ref. [39]. In the effective
Hamiltonian picture, we sometimes use 𝑅 to represent the rotation of the molecules.
However, 𝑅 contains matrix elements of 𝐿⊥ and 𝐿2

⊥, as well as 𝐺ℓ⊥ and 𝐺2
ℓ⊥.

Using the effective Hamiltonian, we can deal with the 𝐿⊥ like terms, and in practice
spectroscopists simply drop the 𝐿2

⊥ like terms. This is called the “𝑅2 formalism.”
Another approach is also possible, called the “𝑁2 formalism.” Once we have
performed a transformation to an effective Hamiltonian, we can instead consider
®𝑁 = ®𝐽 − ®𝑆, which has no contributions from 𝐿 or 𝐺ℓ, and therefore all the matrix
elements act within our subspace 𝜓 (0) . The rotational Hamiltonian in Hund’s case
(b) then becomes just 𝐵 ®𝑁2, while in case (a) we have 𝐵( ®𝐽 − ®𝑆)2.

The two formalisms describe equivalent physics. However, their energy origins
differ, as a result of different offsets from the rotational Hamiltonian. This means
there are also differences in the centrifugal correction terms as well between the two
formalisms. Consider the case (a) rotation Hamiltonian, 𝐵( ®𝐽 − ®𝑆)2. If we expand
this out, we obtain almost the same form as the 𝑅2 approach in eq. 2.32, if we drop
the 𝐿⊥ and 𝐿2

⊥ terms in the 𝑅2 approach. However, we see there is still a different
energy offset between the two formulations. Specifically, in the ®𝑁2 formulation,
we have a rotational energy offset of −2𝐽𝑧𝑆𝑧, while in the ®𝑅2 formulation the offset
is −2𝐽2

𝑧 − 2𝛴2 = −2𝐽𝑧𝑆𝑧 − (𝐿𝑧 + 𝐺ℓ𝑧)2. Therefore, the two Hamiltonians differ in
their electronic origins by the value −(𝐿𝑧 + 𝐺ℓ𝑧)2 = −𝐾2. We can connect the two
formalisms by writing ®𝑅 = 𝑁𝑥𝑥 + 𝑁𝑦 𝑦̂ + (𝑁𝑧 −𝐾)𝑧. For formulae on how to convert
the centrifugal and higher distortion parameters between the two approaches, see
Ref. [39], Sec. 7.5.3.

In this thesis, we use the 𝑅2 formalism. This is primarily because the paper
performing spectroscopy on the YbOH origin band, 𝑋̃2Σ+(000) → 𝐴̃2Π1/2(000),
used the 𝑅2 form, with matrix elements3 taken from the Appendix of Ref. [438]. As
an aside, we note the 𝑅2 formalism in case (b) generates a rotational Hamiltonian of
the form 𝐵( ®𝑁2 − 𝐾2), which satisfyingly correlates with the form of the symmetric
top Hamiltonian in eq. 2.17.

3Note there is a typo in the 𝐻sr matrix element in the Appendix. The authors have written
𝛴2 − 𝑆(𝑆 + 1), but the correct form is Ω𝛴 − 𝑆(𝑆 + 1) for a diatomic. For a 2Σ state with Ω = 𝛴, the
typo has no effect.
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A.3.2 Pure Precession
Here we describe a method for estimating the off-diagonal matrix elements of

𝐿𝑥 and 𝐿𝑦, known as the Van Vleck pure precession hypothesis [39]. Essentially,
if our molecular orbital has strong atomic character, we can think of the electronic
wavefunction as a linear combination of spherical harmonics, |Λ⟩ = ∑

𝐿 𝑐𝐿𝑌𝐿,Λ,
with coefficients 𝑐𝐿 . These spherical harmonics are taken to represent atomic
orbitals with principle quantum number 𝑛, angular momentum 𝑙, and projection
𝜆. In such a case, the matrix elements of 𝐿⊥ can be approximated as 𝑙± |𝑛, 𝑙, 𝜆⟩ =√︁
𝑙 (𝑙 + 1) − 𝜆(𝜆±)||𝑛, 𝑙, 𝜆 ± 1⟩. The pure precession hypothesis has been shown to

be a reasonable approximation in CaOH [147], SrOH [301], and even non-linear
CaNH2 [439]; it is no coincidence that such atom-like electronic orbitals have been
found to be laser-coolable. We note the pure precession approximation will always
break down at some level, and it is least applicable is when there is significant
mixing of the electronic configuration of the molecule.

A.3.3 Hamiltonian Transformations
The mathematical formulation of the effective Hamiltonian derivation is that

of degenerate perturbation theory with a Hamiltonian 𝐻 = 𝐻 (0) + 𝑉 , with 𝑉 a
perturbation. In a sense, we consider all of the states within 𝜓 (0) to be a degenerate
subspace governed by 𝐻 (0) , and consider couplings by 𝑉 to states outside of our
subspace at various orders of perturbation theory. The external subspaces are labeled
as𝜓 (𝛼) . The procedure is detailed in Ref. [39], Ch. 7, and is reproduced in Ref. [161].
The degenerate perturbation theory approach is equivalent up to third order with the
contact transformation approach, also referred to as Van Vleck transformations [39],
or Schrieffer-Wolff transformations. Essentially, these transformations all amount
to performing a unitary transformation on the Hamiltonian given by𝑈 = 𝑒𝑖𝑆, where
𝑆 is Hermitian, and can be chosen such that the transformed Hamiltonian is only has
diagonal matrix elements of 𝑉 to first order. By repeated application of unitaries
𝑒𝑖𝑆𝑛 , we can chose the 𝑆𝑛 such that the Hamiltonian is diagonal in 𝑉 up to order 𝑛.
We denote the various orders of the Hamiltonian after the contact transformations as
𝐻̃1, 𝐻̃2, . . .. Matrix elements of these transformed Hamiltonians have the following
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forms [39] between two states 𝑖, 𝑗 within 𝜓 (0):

⟨𝜓 (0) , 𝑖 |𝐻̃0 |𝜓 (0) , 𝑗⟩ = 𝐸 (0) (A.31)

⟨𝜓 (0) , 𝑖 |𝐻̃1 |𝜓 (0) , 𝑗⟩ = ⟨𝜓 (0) , 𝑖 |𝑉 |𝜓 (0) , 𝑗⟩ (A.32)

⟨𝜓 (0) , 𝑖 |𝐻̃2 |𝜓 (0) , 𝑗⟩ =
∑︁

𝜓 (𝛼)≠𝜓 (0)

∑︁
𝑘

⟨𝜓 (0) , 𝑖 |𝑉 |𝜓 (𝛼) , 𝑘⟩⟨𝜓 (𝛼) , 𝑘 |𝑉 |𝜓 (0) , 𝑗⟩
𝐸 (0) − 𝐸 (𝛼)

. (A.33)

Here, 𝐸 (0) is the vibronic origin of 𝜓 (0) , only dependent on the electronic and
vibrational state, while 𝐸 (𝛼) is the vibronic origin of a distant state 𝜓 (𝛼) that perturbs
our subspace of interest. The index 𝑘 labels states in other subspaces. We note that
𝑉 can contain many different terms that can all contribute cross-interactions. In
other words, for 𝑉 =

∑
𝑚 𝑉𝑚, at second order we must consider ⟨𝑉𝑚⟩⟨𝑉𝑛⟩ for all 𝑚

and 𝑛. The third order and higher forms can be found in Ch. 7 of Ref. [39].

A.4 Evaluating Matrix Elements
Matrix elements are most easily evaluated for spherical tensor operators. These

operators can be defined in the lab frame, denoted with a subscript 𝑝 (𝑇 𝑘𝑝 ) or the
molecule frame, denoted with subscript 𝑞 (𝑇 𝑘𝑞 ). For operators involving anomalous
commutation, such as ®𝐽 or ®𝑁 , we evaluate the operator in the lab frame. Depending
on our basis, operators involving spin are more easily evaluated in the lab or molecule
frame. To transform between the two frames for some operator 𝐴, we use the
following formulae:

𝑇 𝑘𝑝 (𝐴) =
∑︁
𝑞

D (𝑘)𝑝,𝑞 (𝜔)∗𝑇 𝑘𝑞 (𝐴)

𝑇 𝑘𝑞 (𝐴) =
∑︁
𝑝

(−1)𝑝−𝑞D (𝑘)−𝑝,−𝑞 (𝜔)∗𝑇 𝑘𝑝 (𝐴)

= (−1)𝑞
∑︁
𝑝

(−1)𝑝D (𝑘)−𝑝,−𝑞 (𝜔)∗𝑇 𝑘−𝑝 (𝐴)

= (−1)𝑞D (𝑘).,−𝑞 (𝜔)∗ · 𝑇 𝑘 (𝐴).

(A.34)

In the last line, we have introduced notation D (𝑘).,−𝑞 (𝜔)∗, which represents a tensor
that is reduced in the lab-frame and not the molecule-frame. This notation informs
us that the dot product sum is taken over the lab components, 𝑝. Writing the
Wigner rotation as a dot product is useful when dealing with Hamiltonian operators
expressed in the molecule frame.

Every matrix element begins unfactorized in both lab and molecule frames. The
first step is to use the Wigner-Eckart theorem to factorize out the lab frame angular
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momentum projection, 𝑀 . For example, if the total angular momentum is 𝐹, for
any arbitrary operator, we have:

⟨. . . , 𝐹, 𝑀 |𝑇 𝑘𝑝 (𝐴1, 𝐴2, . . .) |𝐹′, 𝑀′, . . .⟩ =

(−1)𝐹−𝑀
(
𝐹 𝑘 𝐹′

−𝑀 𝑝 −𝑀′

)
⟨. . . , 𝐹 | |𝑇 𝑘 (𝐴1, 𝐴2, . . .) | |𝐹′, . . .⟩

(A.35)

Here, ⟨. . . 𝐹 | |𝑇 𝑘 | |𝐹′ . . .⟩ is the reduced matrix element, which does not dependent
on 𝑀 . The selection rules of the 3j symbol are useful for determining the action of
an operator at a glance. For example, rank 𝑘 > 0 can mix Δ𝐹 ≠ 0. In free-field,
we have rotational symmetry, which means 𝐹 is conserved and the 𝑀 sublevels are
degenerate. Therefore, all free-field matrix element operators are scalars, 𝑘 = 0,
and represented as dot products. The molecule frame quantities are given as dot
products with the D-matrices, as written above. Dot products can be written as a
rank 𝑘 = 0 composite spherical tensor operator:

𝑇
𝑘12=0
𝑝=0 (𝐴1, 𝐴2) =

(−1)𝑘
√

2𝑘 + 1
𝑇 𝑘 (𝐴1) · 𝑇 𝑘 (𝐴2) (A.36)

The dot product is the rank 𝑘 = 0 example of a composite spherical tensor
operator. Such operators can be constructed from other operators using Clebsch-
Gordan coefficients, essentially analogous to coupling two angular momenta. The
formula for their construction is given in Brown and Carrington eq. 5.165. The
equivalent formula in Hirota (tab. 2.4, 2) has a typo in the 3j symbol’s lower row.

The Wigner-Eckart theorem can be used for any rank to factorize the 𝑀 depen-
dence of the operator. For a rank 𝑘 = 0 operator such as the dot product, the form
after the Wigner-Eckart theorem can be simplified further:

⟨. . . 𝐹, 𝑀 |𝑇 𝑘=0
𝑝=0 (𝐴1, 𝐴2) | . . . 𝐹′, 𝑀′⟩ = (−1)𝐹−𝑀

(
𝐹 0 𝐹′

−𝑀 0 𝑀′

)
= 𝛿𝐹,𝐹′𝛿𝑀,𝑀 ′

1
√

2𝐹 + 1
× ⟨. . . 𝐹 | |𝑇0(𝐴1, 𝐴2) | |𝐹′ . . .⟩

(A.37)

Where we have expanded the Wigner 3j symbol using its analytic form. We have
simplified (−1)2𝐹−2𝑀 = 1, as even though 𝐹 and 𝑀 can be half-integer, their
difference is always an integer, and such a phase factor squared is always positive.
In general, we have to be careful with half-integer angular momenta in phase factors,
which can arise when coupling 𝐼 or 𝑆. Some quantities are always integer valued,



334

such as anything to do with orbital angular momentum: 𝑁 , Λ, ℓ. Also the rank 𝑘 of
a spherical tensor operator is an integer.

When the spin 𝑆 is defined in the molecule frame (Hund’s case (a)), we can also
use the Wigner-Eckart theorem to evaluate the spin matrix elements in the molecule
frame, as the operators 𝑇1(𝑆)𝑞=±1 follow normal commutation relations. Applying
the Wigner-Eckart theorem on the spin in the molecule frame factorizes out the
dependence of the projection 𝛴. As always, we caution that a similar evaluation of
the molecule frame𝑇1

𝑞=±1(𝐽) operators will give the wrong answer due to anomalous
commutation. The solution for these operators is to transform them to the lab-frame.

When we apply electromagnetic fields, we break the rotational symmetry of
space. If the fields are only in one direction, we can take that direction to be the 𝑍̂
axis. The operators can be generically of higher rank, 𝑘 ≥ 1. By the Wigner-Eckart
theorem, higher rank operators can mix 𝐹. However, if we maintain cylindrical
symmetry about 𝑍̂ , the projection of our applied field is always 𝑝 = 0, and the
operators will not mix 𝑀 . Only when we have field projections 𝑝 ≠ 0 do we also
mix 𝑀 sublevels.

Now that we have factored out the 𝑀 sublevel dependence, all that is left is
to deal with the reduced matrix element. Eventually, we want to arrive at the
form ⟨𝐽𝑖 | |𝑇 𝑘 (𝐴𝑖) | |𝐽′𝑖 ⟩, where the subscript indicates the operator 𝐴𝑖 acts on 𝐽𝑖.
However, often the angular momentum states are composite states of coupled angular
momenta, and look like: | (𝐽1, 𝐽2)𝐽3, . . . (𝐽𝑖, 𝐽 𝑗 )𝐽𝑘 . . .⟩. In order to evaluate an
operator acting on an 𝐽𝑖, we must first factor out the dependence on 𝐽𝑘 . To factorize
these matrix elements, we use tools from angular momentum algebra.

1) Matrix elements of a composite tensor operator acting on two different
systems (Brown and Carrington eq. 5.169, Hirota tab. 2.4, 6ii). One system is 𝐽1

with operator 𝐴1, the other is 𝐽2 with operator 𝐴2, and the total angular momentum
is ®𝐽3 = ®𝐽1 + ®𝐽2, and the combiend operator is 𝑇 𝑘12(𝐴1, 𝐴2) = 𝑇 𝑘1 (𝐴1) × 𝑇 𝑘2 (𝐴2).
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The factorization is then given by:

⟨𝐽1, 𝐽2, 𝐽12 | |𝑇 𝑘12(𝐴1, 𝐴2) | |𝐽′1, 𝐽
′
2, 𝐽
′
12⟩ =√︃

(2𝐽12 + 1) (2𝐽′12 + 1) (2𝑘12 + 1)

×


𝐽12 𝐽′12 𝑘12

𝐽1 𝐽′1 𝑘1

𝐽2 𝐽′2 𝑘2


× ⟨𝐽1 | |𝑇 𝑘1 (𝐴1) | |𝐽′1⟩⟨𝐽2 | |𝑇 𝑘2 (𝐴2) | |𝐽′2⟩.

(A.38)
This formula uses the Wigner 9j symbol (see Ref. [39], Ch. 5), which, like the 3j
and 6j symbols, is just a way of keeping track of Clebsch-Gordan coefficients and
angular momentum coupling. Many other formulae can be obtained from eq. A.38,
as the 9j symbol reduces to a 6j symbol when one of its arguments is zero (see
Brown and Carrington eq. 5.94). When comparing formulae, we emphasize it is
important to be aware that the 3j, 6j, and 9j symbols have certain symmetries that
allow for certain interchanges of rows and columns–for details, see Ref. [39].

2) The Spectator Theorem (Brown and Carrington eq. 5.174, Hirota tab. 2.4,
iv), a name first coined in Ref. [440]. This formula factorizes a matrix element that
only acts on one component of a coupled angular momentum, for example 𝐴1 acting
only on 𝐽1. The formula can be obtained4 by setting 𝑇 𝑘2 (𝐴2) = 1 and 𝑘2 = 0 in
eq. A.38. The spectator theorem for 𝐴1 is given by:

⟨𝐽1, 𝐽2, 𝐽12 | |𝑇 𝑘 (𝐴1) | |𝐽′1𝐽
′
2𝐽
′
12⟩ = 𝛿𝐽2,𝐽

′
2
(−1)𝐽′12+𝐽1+𝐽2+𝑘

√︃
(2𝐽12 + 1) (2𝐽′12 + 1)

×
{
𝐽′1 𝐽′12 𝐽2

𝐽12 𝐽1 𝑘

}
⟨𝐽1 | |𝑇 𝑘 (𝐴1) | |𝐽1⟩

(A.39)
On the other hand, if the operator of interest is 𝐴2, and acts on 𝐽2, we instead have
(Brown and Carrington eq. 5.175, Hirota tab. 2.4, iv):

⟨𝐽1, 𝐽2, 𝐽12 | |𝑇 𝑘 (𝐴2) | |𝐽′1𝐽
′
2𝐽
′
12⟩ = 𝛿𝐽1,𝐽

′
2
(−1)𝐽12+𝐽1+𝐽′2+𝑘

√︃
(2𝐽12 + 1) (2𝐽′12 + 1)

×
{
𝐽′2 𝐽′12 𝐽1

𝐽12 𝐽2 𝑘

}
⟨𝐽2 | |𝑇 𝑘 (𝐴2) | |𝐽2⟩

(A.40)
Notice the difference in phase factor compared to the 𝐽1 case. This distinction is
important when combining multiple terms that act on different components of the

4The reduced matrix element for 1 is given by ⟨ 𝑗 | |1| | 𝑗 ′⟩ = 𝛿 𝑗 , 𝑗′
√︁

2 𝑗 + 1.
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coupled angular momentum, i.e. studying the Zeeman effect in hyperfine coupled
states. As long as we are always consistent with which angular momenta is 𝐽1 and
which is 𝐽2, the order of coupling does not matter for the end result.

3) Matrix element of a dot product acting on two different systems (Brown and
Carrington eq. 5.140). This is the special case of eq. A.38 with 𝑘12 = 0 and keeping
track of the difference in normalization between 𝑇0(𝐴1, 𝐴2) and 𝑇 𝑘 (𝐴1) · 𝑇 𝑘 (𝐴2).
The formula is given by:

⟨𝐽1, 𝐽2, 𝐽12 | |𝑇 𝑘 (𝐴1) · 𝑇 𝑘 (𝐴2) | |𝐽′1, 𝐽
′
2, 𝐽
′
12⟩ =

𝛿𝐽12,𝐽
′
12

√︁
2𝐽12 + 1(−1)𝐽′1+𝐽2+𝐽12

{
𝐽′1 𝐽′2 𝐽

𝐽2 𝐽1 𝑘

}
× ⟨𝐽1 | |𝑇 𝑘 (𝐴1) | |𝐽′1⟩⟨𝐽2 | |𝑇 𝑘 (𝐴2) | |𝐽′2⟩.

(A.41)

We can combine this equation with the Wigner-Eckart theorem (eq. A.41) to obtain
the same formula as Brown and Carrington eq. 5.173.

4) Matrix element of a composite tensor operator formed from non-commuting
operators acting on the same system (Brown and Carrington eq. 5.142, Hirota tab.
2.4, 6i). So far we have worked with operators 𝐴1 and 𝐴2 acting on separate systems,
which commute with each other. However, sometimes we must work with coupled
operators 𝑇 𝑘1 (𝐴1) and 𝑇 𝑘2 (𝐵1), which both act on the same subsystem 𝐽, and may
not commute with each other. We can use the following formula to factorize the
matrix element:

⟨𝐽 | |𝑇 𝑘 (𝐴1, 𝐵1) | |𝐽′⟩ =
√

2𝑘 + 1(−1)𝐽+𝐽′+𝑘
∑︁
𝜂′′,𝐽′′

{
𝑘1 𝑘2 𝑘

𝐽 𝐽′ 𝐽′′

}
⟨𝜂, 𝐽 | |𝑇 𝑘1 (𝐴1) | |𝜂′′, 𝐽′′⟩⟨𝜂′′, 𝐽′′| |𝑇 𝑘2 (𝐵1) | |𝜂′, 𝐽′⟩

(A.42)

Here, 𝜂 represents all other quantum numbers. This formula can be used in combi-
nation with the spectator theorem to deal with 𝑇 𝑘 (𝐴1, 𝐵1) acting on one part (𝐽1) of
a combined angular momentum (𝐽3). We caution the reader from using Brown and
Carrington eq. 5.177, which seems to be missing the extra factors from the spectator
theorem. However, using the normalization of the dot product as a tensor operator
and simplifying the 6j symbols analytically (Appendix D of Ref. [39]), we obtain
Brown and Carrington eq. 5.178 by combining Wigner-Eckart, Spectator Theorem,
and eq. A.42.
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5) Switching the coupling scheme of a composite operator. Often it is useful to
rewrite a composite operator in terms of a different coupling scheme. We imagine
we have three spherical tensor operators,𝑇1(𝐴),𝑇1(𝐵), and𝑇2(𝐶). These operators
can be combined to form a scalar 𝑘 = 0 composite operator in multiple ways, which
can be related to each other as follows:

𝑇2(𝐶) · 𝑇2(𝐴, 𝐵) = −
√︂

5
3
𝑇1(𝐴) · 𝑇1(𝐶2, 𝐵) (A.43)

Here, 𝑇1(𝐶2, 𝐵) is the rank 1 tensor formed by coupling 𝑇2(𝐶) and 𝑇1(𝐵). This
result is derived in Brown and Carrington eq. 8.459. We use this relationship
when evaluating hyperfine matrix elements, as well as matrix elements involving
the MQM [70].

6) Evaluating reduced matrix elements. The goal of factorizing the matrix
element is to obtain terms of the form ⟨𝐽 | |𝑇 𝑘 (𝐽) | |𝐽′⟩, with 𝐽 an arbitrary angular
momentum. These terms can be evaluated by looking up their form, given for
arbitrary 𝑘 in Brown and Carrington eq. 5.134. However it is instructive to run
through the derivation of the reduced matrix element (provided in both Brown and
Carrington and Hirota), for example for 𝑇1(𝐽). Using the Wigner-Eckart theorem,
we have:

⟨𝐽, 𝑀 |𝑇1
𝑝 (𝐽) |𝐽′, 𝑀′⟩ = (−1)𝐽−𝑀

(
𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
⟨𝐽 | |𝑇 𝑘 (𝐽) | |𝐽′⟩. (A.44)

We now consider the specific case when 𝑝 = 0, where the operator becomes
𝑇1

0 (𝐽) = 𝐽𝑍 . Our states are eigenstates of 𝐽𝑍 , so we can evaluate the matrix element
as ⟨𝐽, 𝑀 |𝐽𝑍 |𝐽′, 𝑀′⟩ = 𝛿𝐽,𝐽′𝛿𝑀.𝑀 ′𝑀 . Setting this equal to the form obtained from the
Wigner-Eckart theorem, simplifying the 3j with analytic formulae (see Appendix C
of Ref. [39]), we can then solve for the reduced matrix element as:

⟨𝐽 | |𝑇1(𝐽) | |𝐽′⟩ = 𝛿𝐽,𝐽′
√︁
𝐽 (𝐽 + 1) (2𝐽 + 1). (A.45)

This approach can be generalized to higher rank 𝑘 . For example, for 𝑇2(𝐽), we
obtain:

⟨𝐽 | |𝑇2(𝐽) | |𝐽′⟩ = 𝛿𝐽,𝐽′
(2𝐽 − 1)𝐽

√
6

(
𝐽 2 𝐽

𝐽 0 𝐽

) . (A.46)

Deriving reduced matrix elements shows how the unfactorized matrix element
for all 2𝑘 + 1 components of a spherical tensor operator is proportional to a single
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value, the matrix element of the operator along the 𝑍̂ axis. This allows for the matrix
element of different operators, 𝐴 and 𝐵, to be related by the ratio of their reduced
matrix elements, known as the replacement theorem (see Brown and Carrington
eq. 5.135).

Finally, we will often encounter the reduced matrix element of the Wigner D-
matrix,D (𝑘)𝑝,𝑞 (𝜔)∗. The D-matrix acts on both the lab and molecule frame projections
of the symmetric top state. Since we have used the Wigner-Eckart theorem to
factorize out the 𝑀 dependence, the matrix element is written as ⟨𝐽, 𝑃 | |D (𝑘).,𝑞 | |𝐽′, 𝑃⟩
and is referred to as “reduced in the lab-frame” [440]. Here, 𝑃 = ®𝐽 · 𝑛̂, and indicates
the molecule-frame projection of the symmetric top wavefunction. The reduced
matrix element is given by (Brown and Carrington eq. 5.186):

⟨𝐽, 𝑃 | |D (𝑘).,𝑞 | |𝐽′, 𝑃′⟩ = (−1)𝐽−𝑃
√︁
(2𝐽 + 1) (2𝐽′ + 1)

(
𝐽 𝑘 𝐽′

−𝑃 𝑞 𝑃′

)
. (A.47)

Here we have provided the reduced matrix element for Hund’s case (a) symmetric
top states. The form for Hund’s case (b) is analogous, and obtained by replacing
𝐽 → 𝑁 and 𝑃→ 𝐾 .

A.5 Sample Matrix Elements
This section provides a non-exhaustive list of some sample matrix elements.

We use the phase factors detailed in the earlier section on phase conventions. Many
other matrix elements can be found in Brown and Carrington [39], Hirota [129],
and the Appendix of Ref. [438].

A.5.1 Without Hyperfine
The following matrix elements are given without hyperfine structure in Hund’s

case (b), which is relevant for the 𝑋̃ (010) bending mode with optical resolution.

The operator associated with 𝛾𝐺 , axial spin-rotation:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇1
𝑞=0(𝑁)𝑇

1
𝑞=0(𝑆) |ℓ

′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= 𝛿𝐽,𝐽′𝛿𝑁,𝑁 ′𝛿𝑀,𝑀 ′𝛿ℓ,ℓ′ × ℓ

× (−1)𝐽+𝑁 ′+𝑆
{
𝑁 𝑆 𝐽

𝑆 𝑁 1

}
× (−1)𝑁−ℓ

(
𝑁 1 𝑁

−ℓ 0 ℓ

)
(2𝑁 + 1)

×
√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.48)
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The operator associated with 𝑝𝐺 , parity-dependent spin-rotation:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇2
2𝑞 (𝑁, 𝑆)𝑒

−2𝑖𝑞𝜙 |ℓ′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= 𝛿𝐽,𝐽′𝛿𝑁,𝑁 ′𝛿𝑀,𝑀 ′𝛿ℓ,ℓ′+2𝑞

× (−1)𝐽+𝑁+𝑆
√︂

5
2

{
𝑁 𝑆 𝐽

𝑆 𝑁 1

}
×

√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

×
√

3

{
2 1 1
𝑁 𝑁 𝑁

} √︁
𝑁 (𝑁 + 1) (2𝑁 + 1)

× (−1)𝑁−ℓ
(
𝑁 2 𝑁

−ℓ 2𝑞 ℓ

)
(2𝑁 + 1)

×
√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.49)

The operator associated with 𝑞𝐺 , rotational ℓ-doubling:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇2
2𝑞 (𝑁, 𝑁)𝑒

−2𝑖𝑞𝜙 |ℓ′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= 𝛿𝐽,𝐽′𝛿𝑁,𝑁 ′𝛿𝑀,𝑀 ′𝛿ℓ,ℓ′+2𝑞

× (−1)𝐽+𝑁+𝑆
{
𝑁 𝐽 𝑆

𝐽 𝑁 0

}
×
√

5

{
2 2 0
𝑁 𝑁 𝑁

}
× 1

2
√

6

√︁
(2𝑁 − 1) (2𝑁) (2𝑁 + 1) (2𝑁 + 2) (2𝑁 + 3)

× (−1)𝑁−ℓ
(
𝑁 2 𝑁

−ℓ 2𝑞 ℓ

)
(2𝑁 + 1)

(A.50)

The operator associated with the lab-frame projection molecule frame dipole
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moment (𝐷mol = ⟨ℓ; 𝑁 | |𝑇1
𝑞=0(𝑑) | |ℓ; 𝑁⟩), useful for Stark shifts:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇1
𝑝 (𝑑) |ℓ′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= (−1)𝐽−𝑀
(

𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
× (−1)𝐽′+𝑁+𝑆+1

√︁
(2𝐽 + 1) (2𝐽′ + 1)

{
𝑁′ 𝐽′ 𝑆

𝐽 𝑁 1

}
× (−1)𝑁−ℓ

√︁
(2𝑁 + 1) (2𝑁′ + 1)

(
𝑁 1 𝑁′

−ℓ 0 ℓ′

)
× ⟨ℓ; 𝑁 | |𝑇1

𝑞=0(𝑑) | |ℓ; 𝑁⟩

(A.51)

The operator associated with the lab-frame projection of the spin, useful for
Zeeman shifts:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇1
𝑝 (𝑆) |ℓ′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= 𝛿ℓ,ℓ′ (−1)𝐽−𝑀
(

𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
× (−1)𝐽+𝑁+𝑆+1

√︁
(2𝐽 + 1) (2𝐽′ + 1)

{
𝑆 𝐽′ 𝑁

𝐽 𝑆 1

}
×

√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.52)

The following matrix element is given in Hund’s case (a), and describes the
electronic Λ-doubling term, 𝑝𝑒 + 2𝑞𝑒:

⟨Λ; 𝑆, Σ; 𝐽,Ω, 𝑀 |𝑒2𝑖𝑞𝜃𝑇2
2𝑞 (𝐽, 𝑆) |Λ

′; 𝑆, Σ′; 𝐽′,Ω′, 𝑀′⟩

= 𝛿𝐽,𝐽′𝛿𝑀,𝑀 ′𝛿Λ+2𝑞,Λ′

× (−1)𝐽−Ω
(
𝐽 1 𝐽

−Ω −𝑞 Ω′

) √︁
𝐽 (𝐽 + 1) (2𝐽 + 1)

× (−1)𝑆−Σ
(
𝑆 1 𝑆

−Σ 𝑞 Σ′

) √︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.53)

Finally, we reproduce the Hund’s case (a) formula for the transition dipole
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moment (TDM) in the E1 (dipole) approximation:

⟨ℓ;Λ; 𝑆, Σ; 𝐽, 𝑃, 𝑀 |𝑇1
𝑝 (𝑑) |ℓ′;Λ′; 𝑆, Σ′; 𝐽′, 𝑃′, 𝑀′⟩

= 𝛿Σ,Σ′𝛿ℓ,ℓ′

× (−1)𝐽−𝑀
(

𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
×

√︁
(2𝐽 + 1) (2𝐽′ + 1) (−1)𝐽−𝑀

×
∑︁
𝑞

(
𝐽 1 𝐽′

−𝑃 𝑞 𝑃′

)
𝛿Λ,Λ′+𝑞

× ⟨Λ| |𝑇1
𝑞 (𝑑) | |Λ′⟩

(A.54)

The last term is the reduced matrix element encoding the transition dipole integral
between two electronic states.

A.5.2 With Hyperfine
We provide some example matrix elements in Hund’s case (b𝛽J), relevant to

hyperfine interactions. When evaluating these matrix elements, we emphasize we
must be consistent with the order of coupling 𝑁 and 𝑆 to form 𝐽.

The matrix element for the Fermi contact interaction, proportional to the con-
stant 𝑏𝐹 :

⟨𝐾; 𝑁, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀 |𝑇1(𝐼) · 𝑇1(𝑆) |𝐾′; 𝑁′, 𝑆, 𝐽′, 𝐼, 𝐹′, 𝑀′⟩ =
𝛿𝐹,𝐹′𝛿𝑀,𝑀 ′𝛿𝑁,𝑁 ′𝛿𝐾,𝐾 ′

× (−1)𝐽′+𝐹+𝐼
{
𝐽′ 𝐼 𝐹

𝐼 𝐽 1

}
× (−1)𝐽+𝑁+𝑆+1

√︁
(2𝐽′ + 1) (2𝐽 + 1)

{
𝑆 𝐽′ 𝑁

𝐽 𝑆 1

}
×

√︁
𝑆(𝑆 + 1) (2𝑆 + 1)𝐼 (𝐼 + 1) (2𝐼 + 1)

(A.55)

The matrix element for the isotropic electron spin-nuclear spin dipolar interac-
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tion, proportional to the constant 𝑐:

⟨𝐾; 𝑁, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀 |𝑇2
𝑞=0(𝐼, 𝑆) |𝐾

′; 𝑁′, 𝑆, 𝐽′, 𝐼, 𝐹′, 𝑀′⟩ =

− 𝛿𝐹,𝐹′𝛿𝑀,𝑀 ′
√︂

5
3
(−1)𝐹+𝐼+𝐽+𝑁−𝐾

{
𝐼 𝐽′ 𝐹

𝐽 𝐼 1

}
×

√︁
(2𝐼 + 1) (𝐼 + 1)𝐼

√︁
(2𝑆 + 1) (𝑆 + 1)𝑆

×
√︁

3(2𝐽 + 1) (2𝐽′ + 1)


𝑆 𝑁′ 𝐽′

1 2 1
𝑆 𝑁 𝐽


×

(
𝑁 2 𝑁′

−𝐾 0 𝐾′

) √︁
(2𝑁 + 1) (2𝑁′ + 1)

(A.56)

We note the electron spin magnitude 𝑆 and nuclear spin magnitude 𝐼 do not change
in the effective Hamiltonian for a single vibronic state.

The matrix element for the electron spin projection on the lab-frame, useful for
modeling the Zeeman interaction:

⟨𝐾; 𝑁, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀 |𝑇1
𝑝=0(𝑆) |𝐾

′; 𝑁′, 𝑆, 𝐽′, 𝐼, 𝐹′, 𝑀′⟩ =

= 𝛿𝐾,𝐾 ′𝛿𝑀,𝑀 ′𝛿𝑁,𝑁 ′ (−1)𝐹−𝑀
(
𝐹 1 𝐹′

−𝑀 0 𝑀′

)
× (−1)𝐹′+𝐽+𝐼+1

√︁
(2𝐹 + 1) (2𝐹′ + 1)

{
𝐽′ 𝐹′ 𝐼

𝐹 𝐽 1

}
× (−1)𝐽+𝑁+𝑆+1

√︁
(2𝐽 + 1) (2𝐽′ + 1)

{
𝑆 𝐽′ 𝑁

𝐽 𝑆 1

}
×

√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.57)

And finally, the matrix element for the molecule frame dipole moment projection
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on the lab-frame, useful for modeling Stark shifts:

⟨𝐾; 𝑁, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀 |𝑇1
𝑝=0(𝑑) |𝐾

′; 𝑁′, 𝑆, 𝐽′, 𝐼, 𝐹′, 𝑀′⟩ =

= 𝛿𝐾,𝐾 ′𝛿𝑀,𝑀 ′ (−1)𝐹−𝑀
(
𝐹 1 𝐹′

−𝑀 0 𝑀′

)
× (−1)𝐹′+𝐽+𝐼+1

√︁
(2𝐹 + 1) (2𝐹′ + 1)

{
𝐽′ 𝐹′ 𝐼

𝐹 𝐽 1

}
× (−1)𝐽′+𝑁+𝑆+1

√︁
(2𝐽 + 1) (2𝐽′ + 1)

{
𝑁′ 𝐽′ 𝑆

𝐽 𝑁 1

}
× (−1)𝑁−𝐾

√︁
(2𝑁 + 1) (2𝑁′ + 1)

(
𝑁 1 𝑁′

−𝐾 0 𝐾′

)
(A.58)
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ix B
Magnetic Field Calibration with

the Hanle Effect

Well if droids could think, there’d
be none of us here, would there?

–Obi-Wan Kenobi

We often wish to characterize and calibrate the magnetic field magnitude in
the beamline. We do this by both measuring the field with a magnetometer when
the vacuum chamber is vented, and by using the response of atomic Yb in the
cryogenic buffer gas beam (CBGB). Specifically, we use the Hanle effect in the
excited 3𝑃1 state. Briefly, the Hanle effect uses the rotation of angular momentum
polarization, either in the ground or excited state, to perform magnetometry [382,
385]. Semiclassically, the excited state Hanle effect can be thought of as observing
the magnetic rotation of the excited state magnetic dipole using the spatial and
polarization anisotropy of the decay fluorescence. Therefore, as we will see, excited
state magnetometry is limited in resolution by the excited state lifetime.

To perform magnetometry, we first excite Yb atoms on the 1𝑆0 →3 𝑃1 transition,
with a ∼870 ns lifetime. The even isotopes of Yb lack hyperfine structure in their
ground state, and the population initially begins entirely in a pure 𝐽 = 0, 𝑀 = 0
state. Therefore the polarization of the excitation light uniquely determines the
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excited state sublevel. By time reversal symmetry, the polarization of the decay
fluorescence is also indicative of the excited state sublevel.

Consider excitation with linearly polarized light. In the quantization axis aligned
with the light, the atom is excited to the 𝐽 = 1, 𝑀 = 0 sublevel. In the language of
density matrix polarization moments, the excited state has angular momentum align-
ment. Since the 3𝑃1 state has a ≈ 1.5𝜇𝐵 magnetic dipole moment, this alignment
can interact with ambient magnetic fields.

Magnetic fields along the excitation light polarization only cause phase evolution
of the excited state. This phase has no physical impact in the case we consider here.
However, magnetic fields transverse to the light polarization axis couple states
with Δ𝑀 = ±1, causing population transfer to other 𝑀 levels. In the angular
momentum probability surface picture, magnetic fields cause angular momentum
rotation about the field axis, which can rotate the transition dipole and change the
allowed fluorescence decays.

Due to the existence of a single 𝑀 = 0 ground state, the excited 𝑀 = 0 and
𝑀 = ±1 levels exhibit significantly different angular fluorescence distributions.
In particular, the 𝑀 = 0 excited state can only decay by emission of linearly
polarized photon. The emission pattern for a Δ𝑀 = 0 decay mirrors that of a
linearly oscillating charge. We can semi-classically understand this connection by
considering the superposition of an 𝑠 and 𝑝𝑧 atomic orbitals, with projection 𝑀 = 0
for both states. The resulting superposition has an oscillating dipole moment, which
generates optical radiation. In particular, there is no emission along the transition
dipole oscillation axis, as light can only have transverse polarization. In the case
of the radiating atom, the excited 𝑀 = 0 state does not emit fluorescence along the
quantization axis, which we have chosen to coincide with the light polarization axis.

In the absence of ambient magnetic fields, a PMT or camera placed along the axis
of the light polarization should not detect any fluorescence photons. It is important
to emphasize this effect is particularly clear in the special case of states with a single
ground state. For example, the odd isotopes of Yb have additional ground states due
to nuclear spin orientation, and so the value of Δ𝑀 for fluorescence decays is not
as tightly constrained. This effect is important to consider when performing isotope
spectroscopy on Yb atoms, as well as other 1𝑆0 states without hyperfine structure.

The presence of transverse fields causes the excited state angular momentum
polarization to rotate before decaying. This rotation, equivalently population transfer
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to other 𝑀 ≠ 0 states, makes possible the emission of fluorescence along the axis
of the excitation light polarization. Therefore, when exciting an 𝑀 = 0 state, the
magnitude of fluorescence detected by a PMT along the excitation polarization axis
serves as a proxy for the strength of transverse magnetic fields.

The sensitivity of this method is proportional to the lifetime and magnetic
moment of the excited state. The magnetic interaction sets a timescale for Lamor
precession of the excited state, 𝜔𝐿 = 𝑔𝜇𝐵𝐵. If this timescale is shorter than the
excited state radiative decay rate, 𝛾 = 1/𝜏, the fluorescence decays will not be very
sensitive to the magnetic field. On the other hand, if the field interaction is too fast,
𝜔𝐿 ≫ 𝛾, the oscillating excited states will dephase due to the variation in the exact
decay times, and the fluorescence becomes de-polarized. When 𝜔𝐿 ∼ 𝛾, we can
observe magnetic rotation of the excited state in the fluorescence polarization.

In the directional Hanle effect, we observe a fluorescence feature as we scan the
applied magnetic field. The feature is described by a Lorentzian with a full-width
half maximum (FWHM) of [382, 385]

𝐵FWHM =
𝛾

𝜔𝐿
=

1
𝜏𝑔𝜇𝐵

. (B.1)

Therefore, with longer lifetimes or with larger g-factors, we can achieve more
sensitive magnetometry. However, for a beam experiment, if the lifetime is too long,
the atoms will travel an appreciable distance while in the excited state, sampling a
large and inhomogenous ambient field distribution.

For Yb, the ∼870 ns lifetime of the 3𝑃1 state and the g-factor 𝑔 = 1.5 means
the FWHM of the Hanle feature is 𝐵 ≈ 87 mG. In practice, the center of this Hanle
feature can be determined to an accuracy of roughly ∼10 mG.



347

A
p

p
e

n
d

ix C
Bending Angle Estimates

Luke, you’re going to find that
many of the truths we cling to
depend greatly on our own point of
view.

–Obi-Wan Kenobi

C.1 From Parity Doubling
As mentioned in Ch. 4, the additional 𝛾𝐺 and 𝑝𝐺 terms describing 𝑋̃ (010)

mean that we can draw an analogy between picturing 𝑋̃ (010) as a dynamically
bending linear molecule and a bent asymmetric molecule. This correspondence
is possible in cases with significant vibronic mixing, and is detailed in Ref. [441],
where HCCN in the 𝑣5 bending mode was modeled as an asymmetric rotor. Ignoring
centrifugal corrections, we have the following correspondence: 𝐵 → 1

2 (𝐵𝑏 + 𝐵𝑐),
𝑞𝐺 → −1

2 (𝐵𝑏 − 𝐵𝑐), 𝛾𝐺 → 𝜖𝑎𝑎, 𝛾 → 1
2 (𝜖𝑏𝑏 + 𝜖𝑐𝑐), 𝑝𝐺 →

1
2 (𝜖𝑏𝑏 − 𝜖𝑐𝑐). Here, 𝜖𝛼𝛽

is the generalized spin-rotation tensor, 𝐵𝑏 and 𝐵𝑐 represent the rotational constants
of the 𝑏 and 𝑐 axes of the asymmetric rotor, with 𝑐 = 𝑦 pointing out of the plane of
the bent molecule and 𝑏 = 𝑥 pointing perpendicular to the Yb-O bond and in the
plane of the bent molecule. The remaining axis 𝑎 is identified with the 𝑧 axis of the
molecule, pointing along the Yb-O bond.

Using this correspondence, we can estimate the H bending angle 𝜃 relative to
the Yb-O bond. We define this angle as the deviation from linearity, i.e. 𝜃 = 0 is
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the nominally linear YbOH configuration.

First, we fix 𝑟YbO = 2.0397 Å and 𝑟OH = 0.9270 Å as in the ground 𝑋̃ (000)
state [290], and we assume the O atom does not bend. These approximations treat the
bonds as infinitely stiff, which is reasonable for the O-H bond with high stretching
frequency, but will likely breakdown for the Yb-O bond. We then construct and
diagonalize the moment of inertia tensor for the three masses, and solve for the value
of 𝜃 that satisfies 𝑞𝐺 = −1

2 (𝐵𝑏 − 𝐵𝑐). We obtain ⟨𝜃⟩ ≈ 32◦ for the bending angle in
YbOH 𝑋̃ (010).

Alternatively, the bending angle can be approximated by equating the vibrational
bending energy of the linear molecule to the rotational energy about the 𝑎 = 𝑧 axis
of a nearly prolate bent rotor: 𝜔2 ≈ 2𝐵𝑎. Making the harmonic approximation
𝜔2 ≈ 𝑇0 and diagonalizing the moment of inertia tensor, we obtain ⟨𝜃⟩ ≈ 22◦.

These two approximations provide a picture of bending YbOH with ⟨𝜃⟩ ≈
22◦−32◦. In comparison, in CaOH approximating the bending potential as harmonic
and using the Virial theorem, we obtain a bending angle of ⟨𝜃⟩ ≈ 10◦ [147]. We
note that in all of these cases, a large bending angle may not correspond to a large
normal coordinate deviation 𝑞–that is, the potential is expected to remain harmonic.

C.2 From Hyperfine
We use the value obtained in Ch. 5, 𝑐(010) = 3.49(38) MHz, and the value from

Ref. [290], 𝑐(000) = 2.46(48) MHz, with parentheses indicating 2-𝜎 error bars.
Recall the 𝑐 term can be written as [39, 157]:

𝑐 ∝
〈3 cos 𝜃′2 − 1

𝑟3

〉
(C.1)

Here, 𝑟 is the separation between the electron and nuclear spin, and 𝜃′ is the
angle between the separation vector and the internuclear axis. We use a prime to
distinguish this angle from the bending angle, 𝜃.

To make an estimate, we fix the bond lengths and assume the bending motion
only consists of only the H bending off axis. We will parameterize the bending
angle relative to the internuclear axis as 𝜃, where 𝜃 = 0 corresponds to the linear
limit. Further, we assume the electron spin is fixed at the Yb nucleus. We can then
compute the ratio of 𝑐 values as:

𝑐(010)
𝑐(000)

≈
(𝑟YbO + 𝑟OH)3

(
4𝑟2

YbO + 𝑟
2
OH + 8𝑟YbO𝑟OH cos 𝜃 + 3𝑟2

OH cos (2𝜃)
)

4
(
𝑟2

YbO + 𝑟
2
OH + 2𝑟YbO𝑟OH cos 𝜃

)5/2 (C.2)
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We fix the bond lengths to the 𝑋̃ (000) values1 from Ref. [290], which are 𝑟Yb−O =

2.0397 Å and 𝑟O−H = 0.9270 Å. Using the experimentally determined ratio 𝑐(010)/𝑐(000) ≈
1.42 ± 0.18, we obtain 𝜃 ≈ 75◦+10◦

−15◦ . This corresponds to quite a significant bending
angle, and we caution the reader from interpreting this number further. Clearly our
approximations of stiff bonds and non-bending O atom are breaking down.

1Only the Yb-O bond distance is determined from data. The O-H bond distance is assumed to
be the same as BaOH.
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ix D
Line List

What about the Droid attack on the
Wookiees?

–Ki-Adi-Mundi

D.1 Science State Lines
The lines are listed in Tables D.1 and D.2. Transition notation is given in

Sec. 4.1.3.
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Table D.1: Observed lines, ground states quantum numbers (𝑁′′, 𝐽′′,P′′), excited
states quantum numbers (𝐽′,P′), observed positions, and residuals of 𝑋̃2Σ+(010) →
𝐴̃2Π1/2(000) band of YbOH. Line notation is described in Sec. 4.1.3. There are
in total 38 lines assigned to 39 transitions as the 𝑄𝑅−12(1) and 𝑃𝑄−12(5) lines are
overlapped. The 𝑅 lines are on the next page. The fit residual is 6.1 MHz.

Line 𝑁′′, 𝐽′′,P′′ 𝐽′,P′ Obs. (cm−1) Obs. - Calc. (MHz)
𝑂𝑃+12 2, 3/2, + 1/2, − 17002.4883 4.4

3, 5/2, + 3/2, − 17002.4312 −7.4
4, 7/2, + 5/2, − 17000.6512 −2.7

𝑂𝑃−12 2, 3/2, − 1/2, + 17002.9232 −0.1
3, 5/2, − 3/2, + 17001.5614 14.9

𝑃𝑃+11 1, 3/2, + 1/2, − 17003.4683 −0.2
3, 7/2, + 5/2, − 17002.6114 1.7
5, 11/2, + 9/2, − 17001.8212 12.2

𝑃𝑃−11 1, 3/2, − 1/2, + 17003.9070 −2.2
2, 5/2, − 3/2, + 17003.0314 −3.6
4, 9/2, − 7/2, + 17002.2076 −4.8

𝑃𝑄+12 2, 3/2, + 3/2, − 17003.9039 −8.8
3, 5/2, + 5/2, − 17002.6012 −5.8
5, 9/2, + 9/2, − 17001.8046 12.7

𝑃𝑄−12 1, 1/2, − 1/2, + 17003.9053 −5.8
2, 3/2, − 3/2, + 17003.0250 −5.0
3, 5/2, − 5/2, + 17003.9208 −5.3
5, 9/2, − 9/2, + 17004.0076 13.3

𝑄𝑄+11 1, 3/2, + 3/2, − 17004.8846 3.3
3, 7/2, + 7/2, − 17005.9150 −13.0
5, 11/2, + 11/2, − 17007.0123 −3.5

𝑄𝑄−11 1, 3/2, − 3/2, + 17004.0091 5.5
2, 5/2, − 5/2, + 17005.3917 −0.7
4, 9/2, − 9/2, + 17006.4556 −1.6
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Table D.2: Observed lines, ground states quantum numbers (𝑁′′, 𝐽′′,P′′), excited
states quantum numbers (𝐽′,P′), observed positions, and residuals of 𝑋̃2Σ+(010) →
𝐴̃2Π1/2(000) band of YbOH. There are in total 38 lines assigned to 39 transitions
as the 𝑄𝑅−12(1) and 𝑃𝑄−12(5) lines are overlapped. The 𝑃 and 𝑄 lines are on the
previous page. The fit residual is 6.1 MHz.

Line 𝑁′′, 𝐽′′,P′′ 𝐽′,P′ Obs. (cm−1) Obs. - Calc. (MHz)
𝑄𝑅+12 1, 1/2, + 3/2, − 17004.8824 1.3

2, 3/2, + 5/2, − 17004.0743 5.1
3, 5/2, + 7/2, − 17005.9052 −5.8

𝑄𝑅−12 1, 1/2, − 3/2, + 17004.0076 7.3
2, 3/2, − 5/2, + 17005.3853 0.9
4, 7/2, − 9/2, + 17006.4421 −6.9

𝑅𝑅+11 1, 3/2, + 5/2, − 17005.0543 −1.5
2, 5/2, + 7/2, − 17007.3837 −0.7
3, 7/2, + 9/2, − 17006.2215 2.3
4, 9/2, + 11/2, − 17009.4646 −2.9

𝑅𝑅−11 1, 3/2, − 5/2, + 17006.3695 12.7
2, 5/2, − 7/2, + 17005.6298 6.1
3, 7/2, − 9/2, + 17008.4157 3.7
4, 9/2, − 11/2, + 17006.8298 −0.6
5, 11/2, − 13/2, + 17010.5312 −0.9
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ix E
Polarization Moments

Chewie! Take the professor in the
back and plug him into the
hyperdrive.

–Han Solo

This discussion follows Ref. [216]. Angular momentum polarization refers to
the creation of an anisotropic distribution for the direction of an angular momentum
𝐽 in space. For now, consider a single 𝐽 level with degenerate sublevels, 𝑀 . The
molecular state is described by a density matrix:

𝜌 = 𝜌𝑖 𝑗

∑︁
𝑖 𝑗

|𝐽, 𝑀𝑖⟩⟨𝐽, 𝑀 𝑗 | (E.1)

Note, we use a density matrix to allow us to incorporate coherent and incoherent
polarization, in other words to consider both pure and mixed states. We also note
that the density matrix can be represented in real space as an angular distribution,
𝜌(𝜃, 𝜙). Physically, such a distribution encodes the probability of measuring the
angular momentum 𝐽 pointing along a given direction, (𝜃, 𝜙).

The state vectors |𝐽, 𝑀⟩ transform under rotations according to the Wigner D-
matrices, typically as trigonometric functions of the Euler rotation angles. Naturally,
we can instead cast the density matrix in terms of spherical tensor operators, which
transform in a standard manner under rotations (in particular, 𝑧 rotations just add a
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phase). This is equivalent to performing a multipole expansion of the density matrix
𝜌(𝜃, 𝜙). The density matrix can therefore be written in a spherical form:

𝜌𝑘𝑞 ∝
𝐽∑︁

𝑀𝑖 ,𝑀 𝑗=−𝐽
⟨𝐽, 𝑀𝑖; 𝑘, 𝑞 |𝐽𝑀 𝑗 ⟩𝜌𝑖 𝑗 (E.2)

The various 𝜌𝑘𝑞 components in the multipole expansion of the density matrix
are referred to as the polarization moments. The interpretation of these moments is
useful in understanding angular momentum polarization.

Consider first the lowest order multipole, 𝜌0
0. This is proportional to the total

population summed over all the 𝑀 states; essentially the scaled trace of the density
matrix. If a molecular state occupies an equal distribution of all 𝑀 , the angular
momentum distribution is isotropic as the spherical harmonics are complete. This
is referred to as an unpolarized sample, and it only has non-zero 𝜌0

0.

The next multipole, 𝜌1
𝑞, describes the angular momentum orientation. An ori-

ented angular momentum behaves like a single headed arrow, in analogy with a mag-
netic dipole moment: if the angular momentum is fixed to an associated magnetic
dipole moment, a non-zero orientation is analogous to a non-zero magnetization, i.e.
there is some axis 𝑛 with ⟨𝐽𝑛⟩ ≠ 0. The quantity 𝜌1

0 describes longitudinal orienta-
tion, while the 𝜌1

±1 components describe transverse orientations. Typically, oriented
states can be formed by absorption/optical pumping of a sample using circularly
polarized light, the polarization vector of which can be naturally decomposed into
a spherical basis.

The last multipole we will consider is 𝜌2
𝑞, which describes the angular momen-

tum alignment (also referred to as a quadrupole moment). Whereas orientation
describes a vector direction in space, alignment describes a plane in space along
which the angular momentum probability is distributed, and an aligned angular
momentum behaves like a double headed arrow. Alignment describes population in
equal mixtures of ±𝑀 sublevels, while orientation describes an asymmetry in the
𝑀 population distribution. The superposition state used by the ACME and JILA
experiments is a state with non-zero alignment but zero orientation: in other words
for some axis 𝑛, ⟨𝐽𝑛⟩ = 0, but ⟨𝐽2

𝑛⟩ ≠ 0.

There are of course higher order moments, but for our purposes we will not
consider them. We will only note that the existence of a given rank 𝑘 of angular
momentum polarization requires coherence between states separated by Δ𝑀 = 𝑘
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when written in any rotated frame. This is another way to think of the multipole
moments: they characterize the spatial coherence of angular momentum states that
is invariant under rotation.

Finally, we often visualize the density matrix using an angular momentum prob-
ability surface. This 3-D probability surface is defined as 𝑃𝜌 (𝜃, 𝜙) = ⟨𝐽, 𝑀(𝜃,𝜙) =
𝐽 |𝜌(𝜃, 𝜙) |𝐽, 𝑀(𝜃,𝜙) = 𝐽⟩, where 𝑀(𝜃,𝜙) = ®𝐽 · 𝑟, where 𝑟 is the unit vector pointing
along (𝜃, 𝜙). This expectation value represents the probability of measuring the
largest possible angular momentum projection, 𝐽, pointing along a given direction
𝑟. The distribution 𝑃𝜌 provides powerful, intuitive insight into the behavior of
angular momenta under applied fields. For example, a magnetic field simply rotates
𝑃𝜌 about the field axis. Meanwhile electric fields cause inversion of any orientation
in 𝑃𝜌, and converting angular momentum orientation to alignment. Further details
can be found in Ref. [216].
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ix F
MQM Science Chamber Designs

Who’s more foolish, the fool or the
fool who follows him?

–Obi-Wan Kenobi

In this appendix we provide information about the science chamber made to
perform measurements of the nuclear magnetic quadrupole moment (NMQM) in
173YbOH.

F.1 Layout
The science chamber is constructed by connecting together two 9x9x9 inch,

IdealVacuum modular, cubic vacuum chambers. Each cube consists of an aluminum
frame with titanium helicoils, and each exterior face of the frame has an aluminum
plate attached with titanium fasteners and sealed with an o-ring. Some plates
have feedthroughs to allow for molecule beam access, optical access, and electrical
access. The use of titanium fasteners and helicoils ensures no residual magnetism1.
Unlike most of the prototype vacuum chambers used in this thesis, the interior of
the MQM science chamber is not painted black with Alion MH2200, as it contains
manganese ferrite and is measurably magnetic.

An annotated render of the chamber design is shown in Figure F.1. We provide
1We initially tried brass C260 fasteners, which are also non-magnetic, but Yuiki Takahashi and

Chi Zhang found the chamber was leaky.
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IdealVac Plate

Collimator
Plate
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Plate
Adapter

Exterior PEEK 
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ITO-Coated
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Interior Copper
Guard Ring

Top Collection
Optics

Bottom
Collection

Optics

PEEK
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Spacer
Rod

Optics
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Figure F.1: Annotated render of a cut-away view of the MQM science chamber.
The molecule beam travels from left to right. Unless stated otherwise, all parts
are aluminum 6061 construction. The bottom collection optics retroreflects the
fluorescence light. The top collection optics focuses the light into a light pipe, not
pictured.

information here on the components inside the science chamber, namely the electric
field plates and the fluorescence collection optics.

The field plates themselves are Pilkington Optiwhite glass, with dimensions
4-inch wide, 12-inch long, and 0.118-inch (3 mm) thick. One side of the plates is
coated with a ∼30.2 nm layer of Indium Tin Oxide (ITO), which is a conductor. The
ITO layer has a specified sheet resistance of 100 Ω. According to the manufacturer,
Delta Technologies, the ITO transmission is ≈87% around 577 nm. The conductor
sides of the plates are separated by 1 inch in the design.

To secure the plates, they are sandwiched between an interior and exterior guard
ring. The interior guard ring is of copper construction. Since copper can oxidize,
the copper is coated with a 1 µ-inch thick layer of gold2. The gold-coated interior
guard ring presents a smooth conductive surface for the molecule beam passing
through the chamber3. The ITO side of the glass plate rests on the lip of the interior
guard ring, and is secured via PEEK set screws pushing down on the non-conductive
glass side. The set screws are threaded through the PEEK exterior guard ring.

2Coating performed by AOTCO inc. with no intermediate nickel layer.
3We avoid line of sight from the molecules to insulating surfaces, which can build up patch

potentials.
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The PEEK exterior guard ring is attached to the interior guard ring via PEEK
fasteners that screw into the copper. We used PEEK for the exterior guard ring
construction to avoid large fields at corners and near the collection optics. Other
than the set screws securing the glass, there is no direct contact of the PEEK exterior
guard ring with the glass plate. While most of the fasteners connecting the interior
and exterior guard rings are PEEK, at least two fasteners per plate are titanium,
providing a conductive path that allows us to apply voltages to the ITO glass and
separately monitor the voltage.

The exterior guard ring has threaded holes on the sides used to connect and
affix the guard ring to the chamber. On the short sides of the exterior guard ring,
we attach a PEEK holder using titanium fasteners. Initially, we used vented PEEK
fasteners, but the PEEK on PEEK contact was too slippery and did not provide
sufficient rigidity. Since the titanium fasteners are not vented, we vented the threads
by drilling small vent holes into the top of the PEEK guard ring4. The PEEK
holders have counterbored holes for spacer rods to fix the distance between the two
plates, as well as support rods holding up the entire two-plate apparatus. For these
connections, we also reverted to titanium fasteners, and added vent holes in the
spacer and support rods after the fact.

The spacer rods and the PEEK holders set the interior distance between the two
ITO coated plates to be 1 inch. The PEEK holders have a handedness (left/right),
owing to the different diameters of the support and spacer rods; the spacer rods are
connected to the exterior holes, while the support rods are connected to the interior
holes. The support rods have fillets to reduce stray electric fields from corners,
and are designed to center the molecule beam between the two glass plates. The
support rods connect to the hole pattern of the IdealVac chamber via PEEK set
screws threading into aluminum adapter plates, which have 1/8-inch thickness.

In the front of the plate assembly, the molecule beam is collimated by a col-
limating plate with a 3/8-inch diameter collimating hole. The hole is countersunk
to redirect colliding gas particles away from the interaction region. The collimator
plate is attached via slotted holes to commercial aluminum shaft collars that clamp
onto the spacer rods. The combination of slotted holes and movable shaft collars
allow the adjustments of the collimator position.

While the plates are separated by a 1-inch vertical distance, the clear space
between the plates is limited to 0.75 inch by the interior guard rings. This clear

4The holes are not shown in the technical drawing. They were made with a no. 50 drill bit.
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aperture allows us to send laser beams, through the gap between the plates, to
prepare and readout the molecules. There are two regions for transverse laser
access, separated by a horizontal distance of 9 inches. For a 200 m/s molecule
beam, this gives us a coherence time of ≈1.1 ms.

In the downstream optical region, we will readout the molecules with laser-
induced fluorescence. We have two collection optics stacks to collect as much of
the fluorescence as possible. All lenses are anti-reflection (AR)-coated. The bottom
optics stack5 consists of a 𝑓 = 52 mm aspheric lens with a 50 mm diameter, and
an 𝑓 = 150 mm concave retro-reflecting mirror with a 75 mm diameter. The aim
of the bottom stack is to reflect fluorescence back through the top optics stack.
The top optics stack6 consists of the same 𝑓 = 52 mm asphere, but followed by
two 75-inch diameter plano-convex lenses, a 𝑓 = 100 mm lens and a 𝑓 = 85 mm
lens. The lenses focus the collected fluorescence into a 3/4-inch diameter light
pipe (not shown), which transports the light out of the chamber and eventually to a
photo-multiplier tube.

The aspheric lenses are held in a custom PEEK lens tube, secured via EPO-TEK
302-3M optical epoxy. We use PEEK for this lens tube to reduce stray electric fields
that would arise when bringing metal parts close to the field plates. The flat face
of the aspheric lens is 3.5 mm away from the exterior face of the glass plates. The
PEEK lens tube is then secured to a commercial, aluminum lens tube7 with 3-inch
diameter. The aluminum lens tube is unanodized to prevent trapped volumes. The
PEEK lens tube and the rest of the optics are secured inside the aluminum lens tube
using anodized retaining rings, which prevent galling with the unanodized threads.
Small holes are drilled into the side of the aluminum lens tube to prevent trapped
volumes. The 3-inch lens tube is connected to IdealVacuum chamber using two
unanodized aluminum adapters8, followed by a custom, 1/8-inch thick aluminum
adapter to connect to the IdealVac plate hole pattern. This adapter is similar to that
used to connect the support rod to the chamber.

To simulate the collection optics performance, we use the ray-tracing software
LightTools. Optics part designs are obtained either from the internal LightTools
library or by downloading 3-D CAD files from vendors and setting the appropriate

5Asphere: CVI LAG-52.0-33.0-C -SLMF-400-700; Mirror: ThorLabs CM750-150-E02.
6Asphere: CVI LAG-52.0-33.0-C -SLMF-400-700; PCX lenses: ThorLabs LA1238-A, Thor-

Labs LA1740-A.
7ThorLabs SM3L20, unanodized. The retaining rings are SM3RR.
8ThorLabs SM3A2 and SM2F1.



360

Figure F.2: Simulations of the fluorescence collection setup for the science cham-
ber. Simulations were performed using LightTools. The diagram here only shows
transmitted and totally-internally reflected rays. See main text for details.

materials composition to obtain the correct index of refraction. We model the
molecules as a uniform cylindrical volume of emitters, with 3/8-inch diameter and
3/8-inch length, representing the size of the laser beam cross section with the
molecular beam. The collection efficiency is defined as the fraction of emitted rays
that make it to the exit face of the 3/4-in diameter light pipe. Simulations indicate
the collection efficiency is 19.4% with an optimal light pipe distance of 24.6 mm,
measured from the light pipe entrance face to the flat side of the LA1740-A lens
in the top collection optics stack9. The final simulations track both transmitted
and reflected rays, and include quarter-wave AR coating, Fresnel losses, finite
ITO transmission with angle dependence10 and finite apertures from the lens tube
mounting. Without the retro-reflecting optics, the simulated efficiency is 13.6%.
We can compare these values to the efficiencies for collecting the fluorescence from
a point source, which are 22.1% with the retro-reflector and 14.4% without. Sample
simulation results are shown in Figure F.2

F.2 Technical Drawings

9Alternatively, a distance of 7.3 mm (in the exterior direction) from the face of the IdealVacuum
frame.

10We use the internal LightTools coating library to model the ITO surface, which has ∼82%
transmission on normal incidence at 577 nm.
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Figure F.6: Design of the right-handed PEEK holder connecting the exterior guard
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for details.
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Figure F.9: Design of the top collection optics stack. Light pipe not shown. ll lens
tubes are not black anodized. See main text for details.
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Figure F.10: Design of the bottom retro-reflecting optics stack. See main text for
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Figure F.12: Design of the aluminum adapter plates connecting the support rods to
the IdealVac chamber hole pattern (top, E-field plate adapter), and connecting the
optics stacks to the IdealVac chamber hole pattern (bottom, optics adapter). See
main text for details.
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