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ABSTRACT

We study time-inhomogeneous random walks on finite groups in the case where each
random walk step need not be supported on a generating set of the group. When
the supports of the random walk steps satisfy a natural condition involving normal
subgroups of quotients of the group, we show that the random walk converges to the
uniform distribution on the group, and give bounds for the convergence rate using
spectral properties of the random walk steps. As applications, we prove a general
universality theorem for quotients of the free group on n generators as n — oo,
and another universality theorem for cokernels of random integer matrices with

dependent entries.
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Chapter 1
INTRODUCTION

The work in this thesis is motivated by a question in random group theory, but is of

independent interest to the study of random walks on groups.

Random walks on finite groups are well-studied in the reversible, time-homogeneous,
ergodic regime, where the random walk on a group G consists of a product
X1X5...X, for i.i.d. X; drawn from a distribution supported on a generating set
of G. Such random walks are known to converge to the uniform distribution 7 on G
exponentially quickly. Namely, if we denote by v, the distribution of X X5 ... X},
then

dTV(Vn’ ﬂ-) S O-H’

where o is the second-largest singular value of the Markov operator of the random
walk and dry denotes the total variation distance. See [Sal04] for an excellent

review of these kinds of walks.

Some of the niceness assumptions can also be relaxed; for instance, Saloff-Coste
and Zuniga [SZ07] studied convergence of time-inhomogeneous Markov chains,
including random walks on finite groups, in the case where each step of the random
walk is irreducible. In that case, if we denote by o7 the second-highest singular

value of the ith step,

n
dry(vy, ) < ﬂ o'
i=1

The main result of this paper is the following theorem, which extends part of [SZ07,
Theorem 3.5] to some time-inhomogeneous random walks where the measures

driving each step need not be irreducible:

Theorem 1.1. Let G be a finite group, and let 1, W, . . . , 4, be probability measures
on G. Foreach subgroup H of G, let Iy = {i | H = (supp u;)}. LetS be afinite set of

normal subgroups such that Iy is nonempty for each H € S. Write v, = g *- - - % .

Also, for each i, let o; be the second-largest singular value of *u; as an operator
on L?({supp u;)). Let r be the uniform distribution on G. Then if G = (Upes H),



there are constants cy > 0 depending only on G and H € S such that

o]

iely

dry (v, m) < Z CH

HeS

We prove a more general version of this result in Theorem 2.1.

In particular, if a time-inhomogeneous random walk on a finite group has steps
supported on enough normal subgroups, then it converges to the uniform distri-
bution on the group with an exponential rate controlled by subgroups that appear
infrequently or mix very slowly. Adding more probability measures to the convolu-
tion v, may not improve the convergence rate, but it never makes the bound worse
because convolution by a probability measure is non-expansive in the L norm. A
nice consequence of this is that Hy, ..., H; need not be an exhaustive list of every
normal subgroup for which Iy is nonempty. We take advantage of this fact in the

proof of Theorem 1.3, which is an application of this result.

The conditions of Theorem 1.1 can be weakened so that not all the subgroups H;
need to be normal (see Theorem 2.5), but see Example 2.6 for why some hypothesis
on the subgroups is necessary. Theorem 2.5 also gives quantitative bounds on the

constants.

Our main interest in developing this theorem is an application to the theory of random
groups. In the paper [LW20], Liu and Wood studied a class of Borel probability
measures y, on the set of isomorphism classes of profinite groups satisfying certain
finiteness conditions. Namely, y,, is the limit as n goes to infinity of the quotient of
the free profinite group £, by n + u random elements drawn from the Haar measure
on £,. The pushforward of u, by the abelianization map is defined for isomorphism
classes B of finite abelian groups by

(/Ju)ab(B) = {(k)_la

1 [0¢]
|B|*| Aut(B)] l_[

k=u+1

where ¢ denotes the Riemann zeta function.

The pushforward of uy under the map taking a group to the p-Sylow subgroup of
its abelianization (also known as the pro-p abelianization of wg) was conjectured
by Cohen and Lenstra [CL83] as a heuristic to describe the distribution of p-Sylow
subgroups of class groups of random imaginary quadratic number fields. Since then,
there has been some work done on extending this heuristic to non-abelian cases,
such as [BE11; BBH21; LWZ19].
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In the case of the abelianization of u,, Wood [Woo019] showed that the distribution in
fact arises as a limiting distribution for sequences of cokernels of random matrices.
Indeed, let (M), be a sequence with each M, a random n X (n + u) integer
matrix with independent entries. Wood showed that, under very weak conditions
on the distributions of the entries of the M,,, the distribution of the random group
Z" | M, (Z"*) converges weakly as n — oo to the abelianization of yu, for u > 0.
Nguyen and Wood [NW22] extended this to allow the conditions on the entries to
weaken with n. They also showed that, under the assumption of independent and
identically distributed entries, there is a stronger form of convergence to u,. The
phenomenon that the limiting distribution of Z" /M, (Z"*") is rather insensitive to

the distributions of the entries of M, is an example of universality.

Thus, Liu and Wood [LW20] ask whether the distributions of non-abelian groups
1, themselves or some pushforwards of them may be universal for large classes of
sequences of random groups, analogously to the universality result in [Woo19]. In

this paper we establish a universality class for p,,:

Theorem 1.2. Letu € Z. Forn=1,2,..., let F, be the free group on n generators
and let v, be a symmetric probability measure supported on the generators of F,,.

Suppose v, (x) > &/n for each generator x of F, for all n, and let {,, be a sequence of
n
nlogn

copy of €, steps of the v,-random walk on F,. Let H, be the normal subgroup of F,

integers such that —ooasn — oo, Fori=1,2,..., let X, ; be an independent

generated by X, 1, . .., Xy nyu. Then the distribution of F,,|H, converges weakly to
M-

Here, weak convergence refers to weak convergence in the topology on a set of
isomorphism classes of nice enough profinite groups defined in [LW20, Section 3].

We in fact prove a more general version of this theorem below (Theorem 3.1).

Theorem 1.2 relies on the observation that as £ — oo, the result of ¢ steps of a
random walk on a profinite group becomes Haar equidistributed. In fact, Liu and
Wood [LW20] showed that the random quotients of E, in the definition of U, can
be replaced by quotients of the free group F,, by n + u {-step simple random walks
on F,, if € is taken to infinity first and then n. More generally, the fact that random
walks on finite groups become uniformly distributed is the key fact that allows us to
prove universality results about g, and its pushforwards. In Section 3.2, we use the
random walk results from Chapter 2 to extend the result of [Woo19] to cokernels of

random matrices with dependent entries.
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In her 2022 ICM talk, Wood [Wo0023, Open Problem 3.10] asks if the universality

class of u, can be extended to cokernels of matrices with some dependent entries.
There are a few specific results in this direction. Most recently, Nguyen and Wood
[NW22, Theorem 1.1] show that the distribution g is universal for Laplacians of
Erd6s-Rényi random directed graphs. Friedman and Washington [FW89] showed
that the cokernels of the random matrices / — M, where M is drawn at random from
the multiplicative Haar measure on GLy,(Z),), approach pg as g — co. We are not
aware of any existing results showing universality of yu, for cokernels of broader
classes of random matrices with dependent columns. However, Wood showed
in [Wool4] that cokernels of random symmetric matrices also exhibit a different
universal limiting distribution under weak constraints. Thus, an open question is:
exactly how much and what kind of dependence is allowed among the entries of

random matrices before they are no longer in the universality class of y,,?

The main application of Theorem 1.1 in this paper is a generalization of the following
result, which extends the result of [Woo19] to matrices with some dependence in
their rows and columns. We introduce a regularity condition on matrices, (w, i, €)-
balanced. Generally, it means that the matrix can be written as a block matrix where
the blocks have height at most 4, width at most w, are all independent, and each
satisfy some regularity condition depending on &. The key detail is that the blocks
of the matrix may have dependent entries, as long as there is no dependence between

blocks. With this condition, we have:

Theorem 1.3. Let u > 0 be an integer. Let G be a finite abelian group and let a
be a multiple of the exponent of G. Let (wy),, (hy), be sequences of real numbers
such that w, = o(logn), h, = O(n'™®), and €, > n™" for some 0 < a < 1 and
0<B<al

For each integer n > 0, let M,, be an (wy, hy, g,)-balanced n X (n + u) random

matrix with entries in Z. Then the distribution of coker(M,,) converges weakly to u,

asn — oo,

1.1 Notation and Terminology

For a finite set S and p > 0, we use L”(S) to denote the space of signed measures
(equivalently, functions) on S, equipped with the norm ||f ||’z,, = Des | f($)]P.
For a point f € LP(S) and a compact set K C LP(S), we write dy»(f,K) =
infeex || f — gllLr. We denote by dry(u,v) the total variation distance between

probability measures u, v on S, given by dry(u, v) = maxycs |u(T) — v(T)|. Any
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measure u defines a linear convolution operator +u on LP(S) given by v > v s u.

For two finite or profinite groups G, G’, we write Hom(G, G”) for the set of (continu-
ous) group homomorphisms from G to G’ and Sur(G, G’) for the set of (continuous)
surjective group homomorphisms from G to G’. For a subset S C G, we denote
by (S) the (closed) subgroup of G generated by S and by (S)® the (closed) normal
subgroup of G generated by S.

We use P[:] for probability and E[-] for expectation. We denote by supp u the
support of a measure y.

If a random variable X has law u, we write X ~ pu.



Chapter 2

RANDOM WALKS

This chapter is devoted to proving a general result about equidistribution of time-
inhomogeneous random walks on finite groups. Section 2.1 states a simpler version
of the result and gives a geometric proof for it using contractions in Euclidean space.
Section 2.2 gives a stronger result (Theorem 2.5) with a less intuitive proof which
relates L? distance of measures on a group to the L? distances of their restrictions to
cosets in the group. We also introduce the machinery of quotient sequences, which

simplifies the process of applying Theorem 2.5.

2.1 Geometric Proof

In this subsection we prove the following theorem:

Theorem 2.1. Let G be a finite group, and let 1, o, . . . , 4, be probability measures
on G. For each subgroup H of G, let Iy = {i | H = (supp u;)}. Let Hy, ..., Hy be
normal subgroups with G = <U§‘.=1 Hj>. Write v, = uy * - - - * u,. Recall that i is

the uniform distribution on G.

Also, for each i, let o; be the second-largest singular value of +u; as an operator
on L*>({(supp u;)). Then there are constants c; > 0 depending only on G and
Hi,...,Hy such that

k
[V —7||;2 < ch 1_[ ail.
j=1

iely.
Hj

This result is also implied by Theorem 2.5, but the proof is instructive due to the
geometric intuition and some intermediate results also used in the proof of Theo-
rem 2.5. Throughout this subsection, fix the finite group G, subgroups Hy, ..., Hg,

and measures ui, ..., Uy.

Consider the space M = L*(G) of R-valued functions on G with the Euclidean
norm (think about these as signed measures). Since G is finite, M = RC. Let
Moy ={v e M| v(G) =0}. For each subgroup H < G, let My C M be the space
of functions on M which are constant on each left coset of H (i.e., for v € My and

g1.82 € G with g7' g2 € H, v(g1) = v(g2)).
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Let # C M be the set of signed measures v on G with v(G) = 1 and Py = PN My
for H < G. Notethat My =P —P = {v—-v' | v,v € P}. Also, note that if
H < G, then the normed space My is canonically isomorphic to L>(G/H) (by
sending v € My to the function sending gH to v(gH)), and Py maps to the set of

signed measures on G/H with total mass 1 under this isomorphism. Finally, note
that P = {x}.

Any measure y; on G acts by on M by convolution on the right. If y; is a probability

measure, the convolution operator M;(v) = v * y; also fixes P.

Say i € Ipy;. Itis well-known that if supp y; is not contained in a coset of a normal
subgroup of H , then the y;-random walk on H; converges to the uniform distribution
on H; (see, for example, [Sal04]). In general, M; induces a contraction on L2(H ;)
when Lz(Hj) is viewed as a subspace of M, i.e., ||M;v —V'||;2 < ||v = V|| for all
v,V € LZ(Hj). In addition, for any measures v, v’ on H; with v(H;) = v'(H;) we

have

v (il 2ay)) =V (il 2 ap)eza;) < oilly =V, (2.1)

The reason for this inequality is as follows. Convolution with any probability mea-
sure on H; fixes constant measures on H;. Hence, the largest eigenvalue of the
convolution operator M;|;2( H)) is 1, corresponding to the subspace of constant mea-
sures on H;. Moreover, (M;| Lz(Hj))* also acts by convolution with a probability
measure (fI;, given by f;(g) = ui(g™1)), so its largest eigenvalue is also 1, corre-
sponding to the same eigenspace. Hence, the largest singular value of M;]| L2(H))
is 1. The orthogonal complement of the subspace of constant measures on H; is
L*(H ) N My, the subspace of signed measures on H; with zero total mass. There-

fore, the operator norm (equivalently, the largest singular value) of the restriction
Mile(Hj)ﬂMo is g;j.
In particular, (2.1) holds when replacing H; by any left coset of H;, since multipli-

cation on the right by a random element of H fixes left cosets.

On G, the operator M; does not contract the distance between a probability measure
and =, but it does contract the distance between a measure and the subspace My i
The idea of the proof of Theorem 2.1 is that doing this for many different subspaces

My, can give convergence to 7.

To do this, we will need three short lemmas:
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Lemma 2.2. Let V be a finite-dimensional normed space (with norm | - |) and
W={veV]|l()==6W)="--=~() =0} avector subspace of V cut out by
k linear functions €;: V — R. Define d(x,W) = inf,cw |x — y|. Then there exist

constants ci,cy > 0 such that for all x € V,

k k

c1 ) 1G] < d(x, W) < c2 ) 1G],
i=1

i=1

Proof. The map L = ({1, ...,¢) is alinear map V — R¥ with ker L = W. By the
first isomorphism theorem for vector spaces, there is a vector space isomorphism
L:V/W = L(V). The L' norm on L(V) induces a norm || - l|; on V/W given
by [[v]|; = LI = 21{{:1 |€;(v)]|. Also, V/W inherits a normed space structure
from V with norm ||v||y = d(v, W). Since V/W is finite-dimensional, the norms

|| - ||; and || - ||y are equivalent. The result follows. O

Lemma 2.3. Let V be a finite-dimensional normed space as above and Wy, . .., W,
be subspaces of Vwith Wiy N ---NW, #@. Fori=1,...,r, say W; ={v € V|
lin =+ =, = 0} for linear functions €; ;: V — R. Then there exist constants

Cly...,Cr > 0 such that forallx €V,

dx,Win---nW,) <cidx,Wy)+---+c,dx,W,).

Proof. The subspace Wi N --- N W, is cut out by all of the functions ; ;: V — R.
Hence, by 2.2 there is a constant 06 > O such that forallx € V,

r ki
Ao, Win---nW,) < cgzz 16, ().

i=1 j=1

Similarly, for eachi =1, ..., r, there is a constant c; > 0 such that forall x € V,

ki
d(x, W) 2 ¢ )" 16 (x)].
=1

J
Combining these results gives us

~ d(x, W,
dx,Win---nW,) <¢, E (x—/,)’
c
i=1 i

C

U
o

which is the desired result with ¢; = .
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Lemma 2.4. Let G be a finite group and H < G be a subgroup. Let v € M.
Let v € My be the measure on G given by v(gh) = V(ﬁ{l'{) for h € H. Then
dp2(v, Mp) = |lv = 7|l 2.

Proof. We want to show that ¥ minimizes the distance ||v — 7| |iz among measures
in M. Identifying My with L?>(G/H), we have

dp(v, Mp)* = inf > " (v(gh) - p(e))”.
HEL*(G/H) g€G/H heH
Since the values u(g) can be chosen independently, this is equivalent to minimizing

each term 3¢, (v(gh) — u(g))? individually:

dp(v, Mp)*= - inf " (v(gh) - p(e))”.

heH

Since the mean of a finite collection of real numbers (here, {v(gh) | h € H})
minimizes the sum of squared deviations, the infimum above is attained when

u v(gh .
u(g) = Rt = X = v (gh).

In other words,

dp (v, Mp)* = > " (v(gh) = 7(gh))* = |lv = 7112,

g€G/H heH

Now we can combine these lemmas with (2.1) to prove Theorem 2.1.

Proof of Theorem 2.1. We bound the L? distance between the convolution v, and
n by bounding the L? distance between v, and span{n} = Mg in M. Note that
Mo L Mg; in particular, the affine space # is orthogonal to M. Hence, for
Vn € P, |lvin — 7l|p2 = dp2 (v, M). We will use Lemma 2.3 to bound d; 2 (v, Mg).

First, we claim that Mg = ﬂle Mp;. Indeed, clearly Mg € My for any subgroup
H < G. On the other hand, suppose v € ﬂle Mpy,. Fix g € G. Since G =
(Uf.:l Hj;), g can be written in the form g = hy ... h,, so that for each i there is a
Ji€{l,...,k} with h; € H;,. Fori =1,...,r, since e € H;,, both e and h; are
in Hj,,s0 hy...hj—y and hy ... h; are in the same left coset of H;,, hy ... h;_1Hj,.
Since v is constant on left cosets of H;,, v(hy...hj—1) = v(hi...h;). Applying
this argument inductively yields v(e) = v(hy ... hi) = v(g). Since this holds for all
g € G,v e Mg. Hence, Mg 2 ﬂ;‘.:] Mp, as desired.
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Now Lemma 2.3 tells us that there are constants c’l, e, c}c such that
k
dp2(va, M) < ) ¢idya (v, M),
J=1

So, we just need to bound the distance d;2(v,, Mp,) for each j. Fix some j €

{1,..., k}. We proceed by induction on n.
First, if 6o is the Dirac measure on the identity of G, we have d;2(60, Mu;) <

1
1 - 57 =160 — 7l 2.

Now suppose the claim holds for some fixed n. Let ¥, be the projection of v,, onto
MH]" SO that ||Vi’l - Vn”Lz = dLZ(VI’l’ MH])

There are two cases:

Suppose (supp py+1) # Hj, son+1 ¢ Iy,. Since the transition matrix of a Markov

chain is an L? contraction, ||V,+1 — ¥n * tns1llz2 < 11Va = Vall 2.

Now note that since H; is normal, its collections of left cosets and of right cosets
coincide, so v, is constant on each right coset of H; as well. Since multiplication by
arandom element of G permutes the right cosets of H;, v, * ,,1 remains constant

on right cosets of H, hence on left cosets. So v, * 41 € MHJ., and
dL2(Vn+l» MHJ) < ||Vn+1 - 17n * /Jn+1||L2 < ||Vn - 17n”L2 = sz(Vn» MHJ)

Now suppose (supp py+1) = Hj,son+1¢€ Iy,.

By Lemma 2.4, ¥|gp, is uniform on gH; with total mass v, (gH;). In particular,

ValgH, * Un+1lgh; = Valgn,. By (P(r)), this means
Vneilr2emy) = Val2gupllizny < onatllvaloen;) = Valzgupllizn;)
Note that for any v € M, [|v||12g) = deG/H_/ ||V|L2(gHj)||L2(gHj)- So,
Vne1 = Vallr2(6) < Onstllva = Vallr26)-
Hence,
dp2(Vart, Muy) < it = Valli2gy < Onstllve = Wulli2(6) = Onerdp2 (v, Mu,).

By induction, we get

1
di2(vn, Mu;) < (1 - E) l—[ o;.

iely.
Hj
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Combining these results for all j yields

k
v = 7ll2 = dp2(vm Ma) < 3 5 [ ] o).
j=1

2.2 Algebraic Proof

This subsection is devoted to proving a stronger version of Theorem 2.1:

Theorem 2.5. Let G be a finite group and suppose we have a sequence of groups
Hy,...,Hy,Gy,...,Gi and morphisms Qq, ..., Qxk, Ql, e, Qk as follows:

e We have Hy < G. Define G| = G/H\. The map Q is the canonical projection
G —» Gl.

® For j > 1, we have H; < G_y. Define G; = Gj_1/H;. The map Q; is the

canonical projection G;_1 - G.

e For j > 1, the map Qj: G — G is the composition Qj o Q1 0---0 Q.

Let uy, ..., u, be probability measures on G. Let v,, = uy * --- % u,. For each
J=1 ..k letl; ={i]| (supp(Q~j_1)*,u,-> = H;}. Let it be the uniform distribution
on G.

Fori € I}, let o; be the second largest singular value of the (0 j—1)«Mi-random walk
on H;. Then if G = {e} and each I; is nonempty, we have

k 0 k
||Vn_ﬂ||izsz% 1—[0',-2 :an]|H| HO'

j=1 i€l j=1 i€l

In the case where kK = 1 and H; = G, we recover the first part of [SZ07, Theorem
3.5]. It is not possible to fully remove the normality assumption, as the following

example shows:

Example 2.6. Consider the alternating group As. Recall that As is generated by
the 3-cycles (1 2 3),(1 2 4),(1 2 5). Consider the following three-step time-
inhomogeneous “random walk” on As: X\ is uniformly distributed on {(1 2 3)), X3
is uniformly distributed on {((1 2 4)), and X3 is uniformly distributed on {(1 2 5)).
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The step distributions 1, s, u3 on the respective cyclic groups all have second-
largest singular value zero. However, the product X\X>X3 is not uniformly dis-
tributed on As. Indeed, when X1X,X3 acts on the tuple (1,2,3,4,5), 3 can never
end up in the fourth or fifth position, whereas if X1X>X3 were uniform on As, 3
would end up in the fourth and fifth position with probability 1/5 each.

The proof of Theorem 2.5 relies on the following observation that L? distance
between a measure and the uniform measure on G can be decomposed “along” a

quotient.

Lemma 2.7. Let G be a finite group and H < G. Let it be the uniform distribution
on G and let u be any measure on G. Let P: G -» G/H be the set map sending
each element of G to the corresponding left coset of H. For each subset S C G, let

ﬂ'g be the uniform measure on S with total mass u(S). Then

1

2 _ 2 M2
k= 73y = TygplIPett = Pertlliagyy + 0y Wkl = gl ooy
gHeG/H
Proof. We have
=711, = D (1(0) = 1GI™)?
geG
= > D (=16
gHeG/H hegH
2
H H 1
- 23 - S5 - )
gHeG/H hegH
2
n(gH)
= 33 (w20
gHeG/H hegH
2
N (ﬂ(gH) _ L)
gHeG/H hegH |H| |G|

ﬂ(gH)) (ﬂ(gH) ~ L)

*2 ) Z(“(h)‘ )\ a6

gHeG/H hegH
We consider each of these three sums independently. First, notice that

H 2
>3 =LY = S s = 7

gHeG/H hegH gHeG/H
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Next, we have

p(gH) 1 a (u(gH) ~ L)Z
Z( ] |G|) = 2, W\ g

gHeG/H hegH gHeG/H
1 Z ( (oH) 1 )2
=T H 8T ) — -
|H| gHeG/H |G+ H]
Finally,

_u(gH)\ (pn(gH) 1
2 33 3 (=50 (5 - i)

gHeG/H hegH

B u(gH) 1 u(gH)
=2 ) ( ] ‘ﬁ) 2, H ==

gHeG/H hegH
p(gH) 1 )
=2 — | (u(gH) — u(gH))
HZ(;‘ ( |H|  |G]
gHeG/H
=0,
completing the proof. O

Combined with induction, this lemma allows us to prove the theorem:

Proof of Theorem 2.5. Let Hy = {e} and let Qg = idg.

We will prove the following statement by reverse induction on r:

. LG -1 )
100)vn = (@)l ) < D [ 7] (P(r))

Jj=r+l1 |Gr| i€l

When r = k, the right hand side of P(r) is 0, and since both (Q,).v, and (Q,).7
are the unique probability measure on G, = {e}, the left hand side is also 0, so P(r)
holds.

Now suppose P(r + 1) holds. We will show P(r) holds.

Since (Q,).7 is the uniform distribution on G,, Lemma 2.7 applied to G, and H,4

says

||(Qr)*vn - (Q ) 7T||L2(G ) ||(Qr+1)*vn - (Q~r+1)*ﬂ'||i2(gr+l)

w0 N0l = w5
gHr+1€G

1
| r+1|



14

By the inductive hypothesis,

G| -1 ,
1(Qrs1)svn = (Oret)eml[2 < — | |o-.
|Hr+l| " " ™ L2(Gre1) Z |Gr+1||Hr+1| iel; '

] =r+2

-y
= 0'

Jj=r+2 i€l;

(Q )*Vn
MeH, v ||L2(gH ) By

Lemma 2.4, this is precisely d;2((Q))sVn, Map,.,)?. Following the argument in the

Now consider the second term, >, 5 . G,., 1(0r)uval gHyut —

proof of Theorem 2.1, we get

A (Qr)* n
Z 1(@r)evalen... _ngﬂmv ||L2(gHr+1) (1 |Gr|) 1—[0-

gHr+1€Gr+l ZEI
Hence,
3 G- 1 2 1 2
1(Qr)evn - @)wmm—Ejﬁar 7i WAII%
j=r+2 i€l i€l
G Gr —1
e %) L]
Jj=r+2 " i€lrs1
Z |Gj| - n
Jj=r+1 r €l;

completing the induction. When r = 0, we get

k
|G| -1
v =l < Y ———1] | 77|
= UV
Jj= 1€l
O

Remark 2.8. We can use some inequalities to get a similar nice bound on the L' or

total variation distance.

e s . 1 2 1
Jensen’s inequality says that WHV” - 7r||L1 < @an 7T||L2,

wwmﬁ<2mm4)ﬂa

i€l

By subadditivity of square root,

k
lva =7l < D IG =1 [ v |-
j=1

iel;



Finally, using dpy(v,, ) = %||vn — || 1, we get

JZ:\/IGJ-I—I [ o]

i€l]

dry (vp, ) <

| =

Combining this remark with Theorem 2.1 yields Theorem 1.1.

15
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Chapter 3

RANDOM GROUPS

This chapter is devoted to showing universality results for certain kinds of random
groups, using the moment method of Wood. As a warm-up, Section 3.1 contains
a proof that the distributions y, from [LW?20] are universal for quotients of free
groups by random walks. The main result of this chapter is the proof in Section 3.2
applying the results from Chapter 2 to extend the argument of [Woo19] to cokernels

of random matrices with some dependence in the entries.

Liu and Wood [LW?20, Section 3] describe a topology on the set of isomorphism
classes of profinite groups satisfying a sufficiently nice property. In this section,
weak convergence of a sequence of random groups always means weak convergence
in this topology. We use only one fact about this topology, which is that weak

convergence in the topology is equivalent to convergence of moments.

Distributions on these kinds of profinite groups can be studied by analyzing their
moments. For a random group A and a group G, the G-moment of A is the expected
number of surjective homomorphisms from A to G, denoted E[# Sur(A, G)]. Sawin
[Saw20] showed that, provided the G-moments of A grow at most polynomially in
|G|, for any sequence of random profinite groups A,,, if lim, . E[# Sur(4,,G)] —
E[#Sur(A, G)] for an appropriate collection of finite groups G, then A, converge
weakly to A in the topology of [LW20, Section 3]. This was proved originally for
abelian groups in [Wool4], and an analogous statement is true more generally for
random objects in “diamond categories”, i.e., categories satisfying an analogue of

the diamond isomorphism theorem [SW22].

The measure yu,, defined by [LW20] has G-moment ﬁ for each finite group G. In

ﬁ for finite abelian G. To prove

that a sequence of random groups converges weakly to y,, it suffices to show that

their moments converge to ﬁ

particular, the abelianization of y, has moments

Here is a brief outline of the proof strategy used in [Woo19; NW22], and other work
to compute the moments of cokernels of random matrices, which we adapt to prove
our universality results. Let V,, be a free group (or free abelian group, free nilpotent
group, free profinite etc.) on n generators. Let Xj,,..., Xy, be some random

elements of V, (with m depending on n), and let H, = (X ,,..., Xm,n>V" be the
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(compact) normal subgroup generated by the X;,,. We are interested in finding the
moment at a finite group G of the random group V,,/H,. For example, in the case
of random matrix cokernels, V,, = Z" and X1 ,, . . ., X4, » are columns of a random

n X (n + u) matrix.

There is a one-to-one correspondence between surjections V,,/H,, — G and surjec-

tions V,, — G vanishing on H,. So,

E[#Sur(Va/Hy ) =E| > lh,ckers
feSur(V,,,G)

= Z E[ lHn Cker f]
feSur(V,,G)

= Z P[H, C ker f].

feSur(V,,G)

If the X; , are independent, then

m

P[H, C ker f] = ]_[ P[X;,, € ker f].
i=1
This independence is a crucial assumption of [NW22]. More generally, one can

consider the induced map f™: (V,)”™ — G™ and see that
P[H, Cker f] =P[f" (X1 ns---»Xmn) =0€ G"].

Thus, the problem translates to understanding random elements in the finite group
G™. There are roughly |G|" surjections V,, — G, so if f"(Xip, ..., Xmn) is close
to uniform in G™, then P[H,, C ker f] ~ ﬁ and E[#Sur(V,/H,,G)] = IGI% If
m = n+u, then in the limit we recover exactly the moments we want for convergence

to uy.

In the cases we consider, |G™| grows exponentially with n, so it is not obvious that
f™(Xin, ..., Xmn) should be anywhere close to uniform in G”. However, when
the X; , are close to independent, the problem reduces to showing closeness to the

uniform distribution in smaller groups, which is much more tractable.

There are two more key regularity issues that need to be addressed. The first is that
the X; , need to have nice enough distributions that their projections can be close to
independent. For example, if V,, = Z" and every component of X, ; is divisible by
a with probability 1, then for any group G with |G| = a, every surjection V,, —» G

descends to a surjection V,,/H,, — G, giving us more surjections than we want. In
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[NW22], and in this work, this worst-case example is avoided by demanding that

the X, ; satisfy some anti-concentration conditions.

There is also the problem of the map f. Most of the time (this will be formalized
later), f is sufficiently regular that the regularity of the X; , implies regularity of the
images f(X;,). However, this is not always the case. In [Wool4; Woo19], Wood
gets around this issue by splitting up surjections into nice “codes” and pathological
non-codes, and categorizing non-codes by how far they are from being codes. In
Section 3.1, the X,,; are sufficiently regular and this issue does not appear, but in
Section 3.2, we have to extend the approach of [Woo19] to work with dependent

relators.

3.1 Nonabelian Groups
This subsection is devoted to constructing a universality class for u,,, which is given

by the following theorem:

Theorem 3.1. Letu € Z. Forn =1,2, ..., Let F,, be the free group on n generators.
Fori,j=1,2,..., let u,; ; be probability measures on F, with p,; ;j(e) > 0 and
(Supp Un,i.j) = Fu. Let &, = inf; j»0 Milyesupp . ; Hni,j (X). Assume &, are positive

. . Lae2 .
integers such that lim,_,e 222 = oo for all i.

ogn
For each n, fori = 1,...,n+u, let X,; be a random element of F,, drawn from
Mnil * % Unjf, ;-

Let Ay, = F/{Xu1s---, Xn,nﬂ,)F". Then the distributions of the random groups A,

converge weakly to u, as n — oo.

Moreover, if each pi,; ; is symmetric (i.e., ftn; j(X) = [, (x~1) forallx € F,), then

Kngn —
logn

we only need that lim,,_,

In particular, suppose u,; ; is independent of i, j, supported on the generators of
F,, and symmetric. Then if there is some & > 0 such that &, > &/n for all n, we

recover Theorem 1.2.

To prove this theorem, we will work with moments. The argument is analogous
to some parts of the proof in [Wool9] that the abelianization of y, is universal
for abelian groups. First, we make an observation about the problem of finding

moments for a random quotient.
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Let V be a group and G be a finite group. Let Xy, X», ..., X,+, be independent
random elements of V, and let H = (X1, Xo, ..., Xpsu)". Say we want to count
E#Sur(V/H, G)).

There is a bijection between surjections V/H — G and surjections V — G vanishing
on H. So,

E[#Sur(V/H.G)] =E| Y lncker
feSur(V,G)

= Z E[1Hgkerf]
feSur(V,G)

= Z P[H C ker f].
feSur(V,G)

By independence,

n+u

E[#Sur(V/H,G)] = Z P[H C ker f] = Z l—[P[f(Xi):e].

feSur(V,G) feSur(V,G) i=1
3.1

This reduces the problem of computing moments to understanding the distribution of
the image of one random relator at a time. Since the random relators in Theorem 3.1
come from a random walk, their images in a finite group G also come from a random
walk, so should converge to a uniform distribution. The following lemma formalizes

this notion.

Lemma 3.2. Fix n. Let F,, be the free group on n generators. For j =1,2,..., let
uj be probability measures on F,, with j1;(e) > 0. Let & = inf j50 Minyesupp Mg (x).

Let € be a positive integer.

Let X be a random element of F,, drawn from uy * - - - % ue. Let G be a finite group

and let f: F, - G be a surjective homomorphism. Then

2
B0 =l - | < exp (~5727)

If each p; is symmetric, then the bound can be improved to exp (— £l )

IGI?

Proof. The expression ‘P[ f(X)=e€] - ﬁ‘ is bounded above by the L? distance
between the distribution of f(X) and the uniform distribution on G.
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Applying Theorem 2.5 (equivalently, [SZ07, Theorem 3.5]) and Remark 2.8 to the
pushforward fi (up = - - - * u,) yields

where o; is the second-largest singular value of the f;u;-random walk on G.

To bound o, let M; be the transition matrix for the f.u;-random walk. Then M]”.‘
is the transition matrix for the time-reversed random walk driven by (f.u;)". So,
M;M ;“ corresponds to taking one step from f.u;, then one step from the reversed

measure.
Since p;(e) > 0, supp(fuptj * (feptj)") 2 supp fiptj. Moreover,
min ok (fop)V) () > &2

xesupp(f*,uj*(f*}lj)v)(f K (f: 'uj) )(x)

By [Sal04, Theorem 6.2],
2
2c1-2
J D2
where D is the diameter of the Cayley graph of G with respect to the generating set

supp(fuptj * (fipej)"). In particular, D < |G|, so

< e 1 & < &
g; < - — < — < €X — .
J G2 21612 = P\ 216P

The result follows.

If u; is symmetric, then M; is symmetric and its eigenvalues coincide with its

singular values. Hence by [Sal04, Theorem 6.2] we get

O

To combine the error terms for each individual relator, we use a trick from [Woo019].
The following lemma is a more general restatement of [Wool9, Lemma 2.4], but

the proof is essentially the same.

Lemma 3.3. Let G be a finite group, yi, . .., Vn+u fixed elements of G, Y1, ..., Yy

independent random elements of G, and d > 0 such that for each i,

SdS 10#
|Gl|(n+u-1)

1
‘P[Yi =yi] - ﬁ
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Then | o \d
, n+u
PlY; = y; for all i] — Gl < Gt
Proof. This follows directly from [Woo19, Lemma 2.3]. O

From here, the proof of Theorem 3.1 is straightforward using moments.

Proof of Theorem 3.1. We want to apply Lemma 3.12.

el
Since l"g” — 00, &2f, — clogn — oo for all constants ¢ € R. Hence,

|G|e 2, \ |G|(n+u-1) |G|e g2, tlog(n4u—1)+1o |G|
X _ . = X n u —
2 2IGP log 2 2 2GR T &log2

-0
as n — oo. In particular, it is less than 1 for large enough n.

Lemma 3.2 says that for any surjection f: F,, — G,

‘ 1 G|

PLA(Xai) = €] < i
)=e] - —| < ——exp|- ,
Gl = 2 P26

so by Lemma 3.3, for large enough n,

P[f(X,;) =eforalll <i<n+u]—

C 3%&1
< + -
Gp e"p( 2|G|2)

for some constant C depending on |G| and u. In particular, since # Hom(F,,G) =
G[",

|G|n+u

‘E[# Sur(Fn/<Xn,1a ceey Xl’l,n+u>Fn’ G)] -

1

|n+u

= Z P[f(X,;) =eforall ] <i<n+u]|-
fESur(Fn,G) fEH()m(Fn’G) |

Z 1

n+u
feSur(F,,G) |

€:ln

21GP?

C
|Gln(n+u)exp |
feHom(F,,,G)\Sur(F,,G)
1
|G|n+u :

<C(n+ )ep( 8’%&1)
n+u)ex -
= 2
2|G| feHom(F,,G)\Sur(F,,G)

[Woo19] showed in Theorem 2.9 that ¥ repom(F,,6)\Sur(F,.G) IGI% — 0asn — oo,

g2t g2t
and since l"g" — oo asn — oo, C(n+ u)exp ( 2(&]’2) — 0 as n — oo. Hence,

1

nh_{?oE[# Sur(F,/{Xu.15- .- ,Xn,nm) ,G) = |G|”
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which is the G-moment for y,,. The theorem follows from [Saw20, Theorem 1.2].

If each u,,; ; 1s symmetric and abn o0 a5 n — oo, then the same result holds
Hn,i,j y logn

using the stronger bound in Lemma 3.2. O

3.2 Abelian Groups with Dependent Relations
In this section, y, will refer to the abelianized version for brevity. The goal of this

section is to prove the following theorem, which is also Theorem 1.3:

Theorem 3.4. Let u > 0 be an integer. Let G be a finite abelian group and let a
be a multiple of the exponent of G. Let (wy),, (hy), be sequences of real numbers
such that w, = o(logn), h, = O(n'~®), and €, > n™" for some 0 < @ < 1 and
0<B<al

For each integer n > 0, let M,, be an (wy, hy, g,)-balanced n X (n + u) random
matrix with entries in Z. Then the distribution of coker(M,,) converges weakly to u,

as n — oo,

To prove convergence results, we will use the moment method of Wood (see [Woo14;
Woo19]) as follows. Let Xi, X»,... be a sequence of random finitely generated
abelian groups and Y be a random finitely generated abelian group. Let a > 0 be
an integer and A the set of isomorphism classes of abelian groups with exponent

dividing A. If for every G € A we have
lim E[#Sur(X,, G)] = E[#Sur(Y,G)] < | A’ G|
then for every H € A we have

lim P[X, ® Z/aZ = H| =P|Y ® Z/aZ = H]

n—oo

[Woo19, Theorem 3.1]. If this holds for all choices of a, it should be understood

as weak convergence in the set of isomorphism classes of finitely generated abelian
groups with the topology generated by the open sets U, y = {X finitely generated abelian |
X ® Z/aZ = H}. Moreover, note that if Y ~ u,, then [Woo19, Lemma 3.2] gives

E[#Sur(Y, G)] = |G| ™.

Following this strategy, we will obtain Theorem 1.3 as a corollary of Theorem 3.18,
which states that if X, are the cokernels of n X (n + u) random matrices satisfying
appropriate conditions, then lim, E[# Sur(X,, G)] = |G|™.
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When X, is the cokernel of a random matrix, the problem of counting surjections
from X, into G can be attacked with combinatorics. Say X,, = Z"/N, where N is a
random subgroup of Z". Then surjections X,, — G are in bijection with surjections

Z"" — G which vanish on N. It follows from linearity of expectation that

E[#Sur(Z"/H,G)] = Z P[£(N) = 0].
feSur(z",G)
In the case of cokernels of random matrices, N is the subgroup generated by the
columns of the random matrix, viewed as elements of Z". Givenamap f: Z" — G,
we getamap f: (Z")" — G™ applying f to each component. Then, viewing M as
an element of (Z")™, we have that f(N) = 0if and only if /(M) = 0. Thus, we want
to bound the probabilities f(M) = 0. Past work that assumes random matrices with
independent entries (e.g., [Woo19]) has observed that if Z is a random tuple in Z"
with independent, sufficiently regular components, then for most f € Sur(Z", G),
the element f(Z) € G is close to uniformly distributed. Applying this independently
to each column allows us to compute P[ f(M) = 0]. In this work, we apply the same

principle to consider several columns of a random matrix at a time.

We will start by defining an appropriate notion of regularity for random matrices.

Balanced elements
The following definition captures the idea that a random element in a group is not

too concentrated in a particular coset.

Definition 3.5. Let G be a group. A G-valued random variable X is e-balanced if
for any proper subgroup H < G and element g € G, we have P[X € gH] < 1 —&.

This definition agrees with the definition for cyclic groups in [Woo19].

In this paper, we consider n X m integer matrices as elements of the abelian group
(Z™)™. For each subset E of {1,...,n} x{l,...,m}, we have a quotient map g
from (Z")™ onto Z3 given by taking the entries of a matrix indexed by pairs in S.
We say that a subset of the entries of a random matrix M with indices S is (jointly)

g-balanced if 75(M) is e-balanced in Z5.

The new definition of e-balanced has some desirable properties that help construct

new examples of e-balanced random variables.

Lemma 3.6. (/) If n: G — Q is a surjective homomorphism of groups and X is
g-balanced in G, then n(X) is e-balanced in Q.
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(2) If G, G’ are groups, X is e-balanced in G, Y is e-balanced in G’, and X and
Y are independent, then (X,Y) is e-balanced in G X G’.

Proof. (1) LetgK < Q be acoset of a proper subgroup of Q. We have 77! (¢K) =
Uger-1(9) gn'(K). Since r is surjective, 77! (K) is a proper subgroup of G
(orelse K = n(n~'(K)) = n(G) = Q). Now for any g, g’ € n7'(g), we have
n(g) =n(g’),sogg™ ! ekern c n71(K) and gn~'(K) = g’n ' (K). Hence,
if g € 771(q), we have 771 (¢K) = gn'(K), and this is a coset of a proper

subgroup of G. Since X is g-balanced,
P[n(X) € gK] <P[X e 7' (¢gK)] < 1 — &,
as desired.
(2) Let kH be a coset of a proper subgroup of G X G’. Note that
P[(X,Y) € kH] =P[(X,e) € (e, Y )kH] =P[(X,e) € (e, Y "HkHN(Gx{e})].

Recall that the intersection of two cosets in a group is either empty or a coset
of their intersection. In particular, (e, Y"1)kH N (G x {e}) is either empty or
a coset of a subgroup of G X {e}.

Thus there are two cases:

i. If (e,y " DkHN (G x {e}) € G x {e} forall y € G”:
Condition on Y = y for some fixed y € G’. Since X and Y are indepen-
dent,

P[(X,e) € (e,Y " YKkHN(Gx{e}) | Y = y] =P[(X, ¢) € (e,y HYkHN(Gx{e})].

Since (e, y " )kHN(Gx{e}) € Gx{e},either (e,y NkHN(Gx{e}) =
@ or (e,y " )kH N (G x {e}) is a coset of a proper subgroup of G x {e}.
In the former case, P[(X,e) € (e,y " )kH N (G x {e})] = 0. In the
latter case, notice that (X, e) is e-balanced in G X {e} by (1). Hence
P[(X,e) € (e,y HkHN (G x {e})] < 1 —&.

In both cases, P[(X,y) € kH] =P[(X,e) € (e,y " DkHN (G x {e})] <
1 — . Hence, we have

PL(X.Y) € kH] = Y P[(X.e) € (.Y )KH N (G x {e}) | Y = y|P[Y = y]
veG’

S(l—e)ZP[Y:y]

yeG’

=1-s.
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ii. If G x {e} C (e,y ")kH for some y € Y, then (e,e) € (e,y )kH,

so in particular (e, y~')kH is a subgroup of G X G’ and we must have
(e,y ")kH = H. We claim that H = G x H’ for some proper subgroup
H' of G'.

Indeed, let 7: G X G" — G’ be the projection and let H' = 7(H). On
one hand, clearly H C G X n(H). On the other, if (g, #") € G X H’, then
h' = n(g’, h) for some (g’,h) € H. Then (g, 1) = (g(g")~L,e)(g’, h).
Since (g(g’)"',e) € G x {e} C H, we have (g,#") € H. Hence
H = G x H'. Note that H' < G’, or else H = G X G’ is not a proper
subgroup.

Then

P[(X,Y) e kH]=P[Y e H'] <1 -e&.

Hence, in both cases we have P[(X,Y) € kH] < 1 — ¢ and since this holds
for every proper coset kH, we have that (X, Y) is balanced.

Note that Lemma 3.6 gives us a nice way to build up &-balanced matrices. If the
entries of a random matrix can be partitioned into independent subsets and each of
these subsets of the entries is jointly e-balanced, then the whole matrix is e-balanced.
For example, any matrix with independent, e-balanced entries (as in [Woo19]) is

e-balanced as a matrix.

When a random variable is e-balanced, we can get an upper bound on the associated

singular value.

Lemma 3.7. Suppose G is a finite group and X is e-balanced in G with distribution
. Let o be the second largest singular value of the operator *u on L>(G). Then

&
o < exp _2|G|3 .

Proof. Note that o is the square root of the second largest eigenvalue of the operator
wv = #pu (i L*>(G) — L*(G), where #/i is the adjoint to the operator *u, given
by fi(x) = u(—x). The operator *v is the transition operator for a random walk on

G, where each step is a difference of two independent copies of X.

In particular, note that this new random walk is time-reversible. By [Sal04, Theorem

6.2], for any symmetric generating set 2 of G, the eigenvalues of *u * (i are therefore
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bounded above by

where m = min,cx (u * (1)(x) and D is the diameter of the Cayley graph of (G, X).
In particular, D < |G|. Since v is symmetric, we can relax the assumption that X is
symmetric by taking ¥ U X! in the theorem. In that case, m stays the same but D

can only decrease.

The goal is to choose an appropriate X to bound m from below. Note that if X; and
X, are eg-balanced, then so is X X5 I (via conditioning on X3). In particular, v is

e-balanced.

We proceed iteratively. Having chosen xi, ..., x,-; (including the empty set n =
1), if (x1,...,x,—1) = G then we are done. Otherwise, since v is &-balanced,

v({x1,...,x4-1)) <1 —¢&. Choose

Xp = AIZMAX e\ (x,. . x, ) V(X)-

Since v({x1,...,x,-1)) < 1 —¢, we have v(G \ (x1,...,x,_1)) > &, so v(x,) >

E
s >
[G\{x1,....xn-1)] = 1G]

Hence we have m > ﬁ, SO

< /1 & <1 & < ex &
0 = ——= s 1- S - s
GP 216 = P\ 7216

as desired. O

Now we will use the e-balanced condition to give a regularity condition for matrices.

Definition 3.8. Let S be a finite set. A partition of S is a collection P =
{P1,...,Pr} C 25 suchthat S = P; LU P, U --- U Py and each P; is nonempty. We
say |P| = max; #P; and #P = k. If o € 21! write Uo for (g, S.

Note that #P - |P| > #S.

The next definition specifies the kinds of restrictions we will give for the matrices
in our universality class. The idea is that we can split up the columns of the matrix

and then the rows, so that the resulting sections of the matrix are e-balanced.

If Misannxm matrix, S = {s; < --- <s¢} C [n],and T = {t; < --- < tp} C [m],
then My r is the k X € matrix (Msi’tj)lsisk’lsjsf.
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Definition 3.9. An n X m random matrix M with entries in a ring R is (w, h, &)-
balanced if there is a partition @ = {Qi,...,Q,} of [m] and a partition P =
{P1,...,P¢} of [n] with |Q| < w, |P| < h, and such that each random matrix
Mp, o, is e-balanced in the additive abelian group (R*P1)#0j and the random matrices

Mp, o, are independent.

If |P| = |Q| = 1 then we recover the definition of e-balanced from [Woo19] and

other related work.

Bounds for most maps f
It turns out that (w, h, £)-balanced is a strong enough condition that we can get
bounds on P[ f(M) = 0] for the vast majority of maps f.

Definition 3.10. Let # = {Py, ..., P/} be a partition of [r] and G be a finite abelian
group. A function f: V — G is a P-code of distance w if for any oo C [#P] with
|Uo| <w,wehave f(V\us) =G.

To approximate P[f(M) = 0] for codes f, we will split the matrices M into
independent sets of columns. Each such set of r random columns gets mapped to
something close to uniform in G". The following lemma is analogous to [Woo19,

Lemma 2.1].

Lemma 3.11. Let n,r > 1 be integers. Let G be a finite abelian group and let a be
a multiple of the exponent of G. Let N be the number of subgroups of G. Let € > (0
and & > 0 be real numbers. Let V = (Z/aZ)". Let P = {P;} be a partition of [n]
with |P| = ¢. Let f € Hom(V, G) be a P-code of distance w.

Let M be an nXr random matrix in V" such that the matrices Mp, |, are independent

and e-balanced as random elements of ((Z/aZ)*")".

Letgy,...,gr € G. Then

wwmﬁwhwm%W““NWbﬁ%ﬁ)

Proof. Letey,...,e, be the standard generating set for V.

The idea is to treat (M) as a random walk in G". We have

4P
FM) =" f(Mp, ),
i=1
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where Mp, |, is interpreted as an e-balanced random element of (e; | j € P;)" =
((Z/aZ)*")", a subgroup of ((Z/aZ)")".

Let S={H <G| H= f(Mp,[,) for at least w/¢N values of i}. Since there are at
most N subgroups of G not in S, there are strictly fewer than w /¢ values of i such
that f(Mp, [,]) € S, and for these i we must have | | J; P;| < w. Since f is a -code
of distance w, it remains surjective if we discard all of these indices, which means
the images of the Mp, s with f(Mp, [,]) € S generate G. In other words, we have
(Uges H) = G. The subgroups in S will be the ones we use in the random walk,

applying Theorem 2.1.

By construction of S, for each H in S we have #/z > w/¢{N. By Lemma 3.6,
the steps f(Mp, [r]) are e-balanced, which means that by Lemma 3.7 we have
o < exp (—

of G").

W (using the fact that each f(Mp, [,]) is supported on a subgroup

Hence by Theorem 2.1 we have

Ew EW
Plf(M) = ey -G < -———— | <N -,
IPLf(M) = (g1 g)]-1G[™| [;:Sexp( 2€N|G|3r) exp( 2€N|G|3r)

as desired. O

To combine these estimates we will use a result which is a more general version of

Lemma 3.3:
Lemma 3.12. Let x1,...,Xx, > —1 be real numbers such that 3", max{0,x;} <
log?2. Then
m m
[ Ja+x)-1]<2> Ixl
i=1 i=1
and

m m m
Zmin{O,x,-} < 1_[(1 +x)—1< 2Zmax{0,x,~}.
i=1 i=1 i=1

Proof. The first statement follows from the second statement because max{0, x;} <

|x;| and min{0, x;} > —|x;|. So, we will show the second statement.

First, assume x; < O for all i. In that case,

m m
l_[(l +x;) = I+Zx,-.
i=1

i=1
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Next, assume x; > O for all i. Using the fact that 1 + x; < e/, we get
nm
n(l +x;) < e2i= ™,
i=1

We have ¢* — 1 =2x atx = 0 and %(ex— 1) < %(Zx) forx <log2,soe*—1<2x
for 0 < x < log2. Hence, if 3,7 x; < log2, thenexp (X7, x;) -1 <237, x..

Now consider the general case. By replacing each negative x; with zero, we can only
increase the product [T'Z, (1 +x;). On the other hand, by replacing each positive x;

with zero, we can only decrease it. Hence, for general x;, we get

m

m
Z min{0, x;} < (1 +min{0,x;}) — 1
i=1 1

i

E

< | [(T+x)-1
I

= I

m
(1 +max{0,x;})—-1< ZZmaX{O, Xi}.
i=1 i=1

IA

O

Applying this lemma with x; being the error in Lemma 3.11 multiplied by |G|

yields an estimate on the probability that the whole matrix maps to zero:

Lemma 3.13. Letu € Z. Let G be a finite abelian group and let a be a multiple of the
exponent of G. Let N be the number of subgroups of G. Let (Wy,)n, (hy)us (01)n> (En)n
be sequences of real numbers such that w, = o(logn), h, = O(n'~%), and &,6, >

n=*P for some 0 < B < a < 1.

For a natural number n, let V. = (Z/aZ)". Let M be an (wy, hy,, €,)-balanced
n X (n + u) random matrix with entries in Z/aZ. Let P be the row partition
associated to M and let f € Hom(V, G) be a P-code of distance né,,.

Then there are constants K, ¢,y > 0 depending only on G, a, B, and the sequence
h,, such that for all g1, ..., gnwu € G,
K exp(—cn?)

IPLf(M) = (g1, .-, 8n+u)] — IGIT"H] < G

Proof. Let P and Q be the row and column partitions for M as in the definition of
(Wn, hy, £,)-balanced. Let M; = M|, o, for eachi. Let gg, = (g; | j € Qi). By

independence,

PLF(M) = (815> gua)] = HP[f(Mi) = 20.]-
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For each i, let x; = |G|*¢P[ f(M;) = go,] — 1. By Lemma 3.11, we have

ne,o
| < NG#Qi __ "envn
il < NG| exp( VG

1)
< N|G|"" exp __ om0

2N h,|G|3"n
Hence we have

ne,oy,

log |x;| < log N +wylog|G| - —————.
g lxil <logN +w,log|G]| SN G

Since h, = O(n'~?) and ,6,, > n~**#, there is a constant C depending only on the
proportionality constant in 4, such that for large enough n we have Z 2 > Cphp-l

ngnén Cnﬁ
>
so that 57 =cise 2 sy G

Since w, = o(logn), for large enough n we have w, < Blogn o, that |G|? =

6log |G|
3w, log |G| B/2 nendn CcnPl?
en < nP’< and, for large enough n, SR |Gl 2 2N

Finally, since log N + w, log |G| = o(logn), we also have that for n large enough,

log |x;| < —%nﬁ/z and |x;| < exp (—é%nﬂ/z). In particular, for n large enough,

S C C
; |x;| < mexp (—mnﬁ/z) < nexp (—mnﬁ/z) < log?2.

By Lemma 3.12, we therefore have that for such n,

IGI™BLF (M) = (g1, -, guwu)] = 1] ﬂ GI"OPLf (M) = go,]1 - 1

Il
—_
—
+
&
~
L

C
<2 B2
= I’lCXp( 4Nn )
C C
=2n eXp (—@nﬁ/z) - eXp (—ﬁl’lﬁ/2) .

Since lim,,_, . 21 €xXp (—%nﬁ/ 2) = 0, the expression 2n exp (—%nﬁ/ 2) is uniformly
bounded above by some constant for all n > 0. Then the appropriate constant K can

be chosen so that
C
|GI"™™P[f(M) = (g1,-..,8mu)] — 1] < Kexp (—@nﬁ/z) ,

for all n, as desired. O
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Bounds for the rest of the maps

This gives results for the case when f is a code, but we still need to account
for non-codes. To do this, we will show that non-codes make up a negligible
proportion of all maps V — G and thus contribute only a small error term to the
sum E[# Sur(coker(M), G)]. However, it turns out that splitting maps into codes
and non-codes is not enough to get this bound. Instead, we will categorize non-codes

by how far they are from being codes.

Definition 3.14. The (P, §)-depth of f € Hom(V, G) is the maximal positive D
such that there is a oo C [#P] with | U o| < £(D)én such that D = [G : f(V\us)],
or 1 if there is no such D.

We can count the number of f that have given (P, §)-depth:

Lemma 3.15. If D > 1, then the number of f € Hom(V, G) of (P, 6)-depth D is at

most

n
K 2&’(D)5n G nD—n+€(D)6n’
(H’(D)(Sn] - 1) .
where K is the number of subgroups of G of index D.

Proof. For each f of (P,0d)-depth D, there is a o C [#%] as described above.
There must be some set S C [n] with #S = [€(D)oén] — 1 and Uo C S. There
are (ff( D)’im—l) choices of S, and for each choice of S, there are certainly at most
2#S = IUDINI=1 < DUDIN chojces of Uor. Since P is a partition, Uo uniquely

determines o, so there are at most 2¢(P)9" choices of o for each choice of S.

Now we count how many f of (¥, d)-depth D have each choice of o, so fix o.

There are a constant number of subgroups of G with index D, say K of them.

Fix a subgroup H of G with index D. We now count the number of f with
f(Mue) = H. There are at most |H|"" Y7l maps from V\ue to H, and for each
such map, there are at most |G|/ homomorphisms from V to G which restrict

appropriately. Hence, there are at most

|H|n—|U0'||G||U0'| — |G|n—|U0'|D—n+|U0'||G||UO'|
— |G|nD—n+|U0'| < |G|nD—n+|U0'| < |G|nD—n+€(D)6n

maps f with f(V\us,) = H. Combined with the counts of choices of o~ and subgroups

of G of index D, we get the lemma. O
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For non-codes, we do not get precise estimates on P[ f(M) = 0], but we can get

upper bounds.

Lemma 3.16. Let r > 1 be an integer. Let G be a finite abelian group and let a
be a multiple of the exponent of G. Let N be the number of subgroups of G. Let
g > 0and 6 > 0 be real numbers. LetV = (Z]/aZ)". Let P = {Pi,...,Py} bea
partition of [n] with |P| = €. Let f € Hom(V,G) have (P,6)-depth D > 1 with

[G: f(V)] <D.

Let M be an nXr random matrix in V" such that the matrices Mp, |, are independent

and e-balanced as random elements of ((Z]aZ)*")".

Then

PLf(M)=0] < (1-&) (D’lGl" +Nexp (‘zm(gfﬁcnw))

Proof. Since f has (P, §)-depth D, there is a o C [#P] with |U o | < £(D)dn such
that D = [G : f(M\us)]. Let f(V\us) =: H. Since [G : f(V)] < D, we cannot
have that o is empty.

Write f(M) = nga- f(MPj,[r]) + Zjeo- f(MPj,[V])' So,

PLf(M) =0] =P[f(M) € H]P

D F(Mp ) == F(Mp, ) | F(M) € H] :
Jjéo jeo

We bound the two probabilities on the right side separately. Note that since
2jeor f(Mp, () € H, we have f(M) € H exactly when 34, f(Mp, ;) € H.
Since [G : f(V)] < [G : H], there must be some i € o such that f(Mp, ()
reduces to a nonzero element of G/H. Conditioning on all other Mp, [, for k # i,

by the e-balanced assumption we have that

P[f(M) € Hl =P |f(Mp;) =~ ). f(Mp,;)) (mod H)|<1-&.
jeo\{k}
For the second probability, let #’ be the partition of [n] \ Uo induced by . Notice
that f1y,,,, is a ’-code of distance on. Indeed, suppose there is some 7 C [#P']
with || < 6n inducing some 7" C [#P] with f(Wy(sur)) # H. Then the image of

S (our) Would have degree strictly greater than D, contradicting maximality of D.

Now we can apply Lemma 3.11 to the submatrix M[,)\uc[-] and the code f mapping
itinto H". If N’ is the number of subgroups of H and ¢’ = |#’|, then conditioning
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on Mp, (] for j € o gives

_r , gon
P Zf(MPj,[r]) = —Zf(MPj,[r]) | f(M) e H| <|H|™" +N'exp (—W)
Jj&o jeo
<D'|G|"+Nexp|— son
= P\"aneco 16> |
and the lemma follows. O

Finally, we use Lemma 3.12 again to get a bound for the full n X (n + u) matrix:

Lemma3.17. Letu € Z. Let G be a finite abelian group and let a be a multiple of the
exponent of G. Let N be the number of subgroups of G. Let (Wp)n, (hn)ns (1)n» (€n)n
be sequences of real numbers such that w, = o(logn), h, = O(n'~%), and &,6, >

n=*P for some 0 < B < a < 1.

For a natural number n, let V = (Z/aZ)". Let M be an (w,, h,, &,)-balanced
n X n+u random matrix with entries in Z/a’Z. Let P be the row partition associated
to M and let f € Hom(V, G) have (P, 6,)-depth D > 1, with [G : f(V)] < D.

Then there is a constant K > 0 depending only on u, G, a, 8, and the sequences h,,
w,, such that for all n,

P[f(M)=0] < Kexp (—snl()’;

)D"|G|—".
n

Proof. Let Q be the column partition for M as in the definition of (wy, h,, &,)-
balanced. Let M; = M{,) o, for each i. By independence,

P[f(M) =0] = HP[f(M» = 0].

For each i, let x; = MPU(M-) = 0] — 1. By Lemma 3.16, we have
9 l 1_811 l . y . 9
0
max{0,x;} < N|G #i p~#0i exp | — M1EnOn
{ xl} | | p 2Nhn(D_]|G|)3#Q’
ne,o
< N|G|""D™nexp |- il
! P ( 2Nhn<D-1|G|>3Wn)

By the same argument as in the proof of Lemma 3.13, there is some constant C
depending only on & and the sequence 4, such that for large enough n (where “large

enough” depends on u, G, @, 8, and the sequences A, and w,), we have

m
C
Zmax{O,x,-} < nexp (—nﬂ/z) < log?2.
— 4N
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By Lemma 3.12, we therefore have that for such n,

(D—llGl)n+u _ _ m (D—llGl)#Qi B
WPU(M) =0]-1= BTP[f(Mi) =0]-1
= l_[(l +x) =1
i=1
< ZZmaX{O, xi}
i=1

C
< 2nexp (—mnﬁ/z)

C C
= 2nexp (—Wn'g/z) - exp (—ﬁnﬁ/z) .

Since lim,,_,o 211 €xp (—%nﬁ/ 2) = 0, the expression 27 exp (—%nﬂ/ 2) is uniformly

bounded above by some constant for all » > 0. Then the appropriate constant K’

can be chosen so that

(D—1|G|)n+u

) C
1o P[f(M)=0] -1 < K exp (—@nﬁ/z),

for all n. Hence we have
C
P[f(M) = 0] < D"™™|G|7"7"(1 — &,)"? (1 + K’ exp (—ﬁnﬂ/z))

C
< D™ G| exp(—£,#Q) (1 + K’ exp (—ﬁnﬁ/z))

< (K'+1)D"™™|G| """ exp(—&,#Q).

The lemma follows from the fact that for large enough n, we have w,, < logn, so

n_ n
#Q 2 W Z logn* o

Putting it all together

Finally, we can combine all these results to compute the limiting moments for
cokernels of (wy, h,, &,)-balanced random matrices. The most relevant part of this
proof is the part where we handle the non-codes. This will involve a careful choice

of the sequence ¢,,.

Theorem 3.18. Let u € Z. Let G be a finite abelian group and let a be a multiple
of the exponent of G. Let (wy),, (h,), be sequences of real numbers such that
wp = o(logn), h, = 0(n'~%), and €, > n™P for some 0 < @ < 1 and 0 < B < /2.
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Then there are c, K,y > 0 such that the following holds for every natural number
n large enough that it makes sense. Let M be an (w,, hy, €,)-balanced n X (n + u)

random matrix with entries in Z/aZ. Then

|E[# Sur(cok(M),G)] — |G|™| < Ke™"".

Proof. LetV = (Z/aZ)". As usual with this kind of approach, we want to estimate
2 resur(v,c) PLF(M) = 0]. Let £, Q be the row and column partitions witnessing

the (wy, h,, £,)-balancedness of M.

Let 6, = n~*/2. Note that then &,6, > n#~%/2 with -B—a/2 > —a, so §, satisfies
the conditions for Lemmas 3.13 and 3.17.

Just like in [Woo019, Theorem 2.9], we will allow K to change in each line as long

as it remains a constant depending only on a, u, @, 8, (hy)n, (Wy)n, G.

We have
‘E[# Sur(cok(M),G)] — Gl
1
=| 2, BFD=01-=5
feSur(V,G)
1
=| >, PlfM=01- >
G
feSur(V,G) feHom(V,G)
< > PLf(M)=0] - =0 &)
|G|
feSur(V,G)

f code of distance nd,

+ > ) PLF(M)=0] 3)

D>1 feSur(V,G)
DI|G]| £ of (P,5,)-depth D

1

D||G| feSur(V,G)
f of (P,6,)-depth D

1
|G|n+u

+
feHom(V,G)\Sur(V,G)

(&)

Wood showed that (4) is bounded above by Ke™°22 By Lemma 3.13, we can
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bound (1):

K exp(—cn”)
Z ‘P[f(M) =0] - |G|+ = Z W

feSur(V,G) feSur(V,G)

f code of distance nd,, f code of distance nd,
< |G|nKexp(—cn7)
|G|n+u
= K exp(—cn?).

To bound (2) and (3) we use Lemma 3.15. For each D > 1, there are at most

n p—
K(WD)nd - 1)2£(D)n6"|GI"D (D),
n

maps of (%, 6,)-depth D. A standard inequality says that (}) < (%)k, so for

[€(D)nd,] = 2 (which is the case for n large enough, independent of D)

n ne [¢(D)né,1-1
(rf(D>n6n1 - 1) = (ff(Dm(sn] - 1)
e \((P)non
< | —__
= (f(D)nan)

_ Qe £(D)né,
~uDys,
=exp (¢(D)nd, (1 +log2 —logf(D) —logd,)) .

Hence, the number of maps of (P, 6,,)-depth D is at most

4eD

t(D)

4€_D_10 0,| —nlogD
4e|G|
|2
t(1GJ)

K|G|"D™ exp (K(D)nén (log —log 6n)) = K|G|" exp (K(D)nén (log

< K|G|"exp (€(|G|)n(5n (10 —log 6n) —nlog 2)

Since lims_,pdlogd = 0 and 6, — 0 as n — oo, for large enough n (depending
only on 8 and |G|) we have £(|G|)d, (log delGl _ log 6n) < %log 2, which means

(G
that for large enough n,

I

D||G]| feSur(V,G)
f of (P,6,)-depth D

4e|G|
{(IG)

< Z K|G|™exp (€(|G|)n6n (log

G < P — log 5,,) - n10g2)

log?2
< ZKexp(— O§ n)

DI|G]

log 2
sKexp(— 02g n),
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bounding (3) as desired.

Finally, we need to bound (2). From Lemma 3.17, we have thatif f has (P, §,,)-depth
D,

P[f(M) = 0] < K exp (—gn " )D"lGl‘”,
logn
which means
4eD
P[f(M) =0] < Kexp |[£(D)nd, |log ¢ —logd,| — &, "
(D) logn

feSur(V,G)
f of (P,6,)-depth D

4e|G =5
SKexp(€(|G|)n1'“/2(log cl6l @ ) " )

| _
7acn T2 %" " Togn

Since 8 < /2, we have that n'~%/>(logn)? = 0(n'#), so

£(|G|)nt—/? (log ;1(e|lg|l) + % log n)

lim =0.

n—o0 nl—ﬁ/log n
Hence for large enough n (depending only on G, e, and 3), we have £(|G|)n'~%/? (log ?(jgl) + 5 log n) <

Lnl™F
2 logn

and

nl=p
Z P[f(M):O]SKexp(— )

feSur(V,G) 2 IOg n
f of (P,6,)-depth D

For the same reason, for n large enough (depending only on ) we have

1 _

> BIA(M)=0] < Kexp (—§n¥) ,
feSur(V,G)

f of (P,6,)-depth D

which means

'°|m

Z Z P[£(M) = 0] < K exp (—%nl

D>1 feSur(V,G)
D|IG| f of (P,6,)-depth D

)

giving us a bound on (2).

Finally, take ¢ and y appropriately to obtain the desired result. m|
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Chapter 4

PARTIAL RESULTS AND FUTURE WORK

In this chapter, we give some partial results toward proving a universality theorem for
random class-c nilpotent groups. Section 4.1 gives some formalism that simplifies
application of Theorem 2.5. In Section 4.2, we use this formalism to prove an
equidistribution result for nilpotent groups analogous to Lemmas 3.2 and 3.11.
Future work will attack the problem of bounding the error caused by non-codes in

the case of nilpotent groups.

4.1 Quotient Sequences
The result of Theorem 2.5 is quite powerful, but it is locked behind a technical

condition. In order to apply Theorem 2.5, we can abstract the condition to make it

IG,1-1
Gl

definition quite naturally captures the condition for the theorem.

easier to work with. Given the term

in the result of Theorem 2.5, the following

Definition 4.1. Let G be a group. A quotient sequence of length k is a sequence
Q0=(Qi:Gi-1— Gi)f=1 of surjections

G =G, 01 G () Ok-1 G Ok Gy

with Q;; = Qj0---0Q; and Q; = Q1. A subset S of G; is called sub-level j
with respect to Q if Q~,-’j(S) = {e} € G;. S is called level j with respect to Q if
0i-1,;(S) =kerQ;. Q is complete if Gy = {e}.

Remark 4.2. 1. If S is sub-level i, then S is also sub-level j for all j > i.
2. Each group has a unique trivial complete quotient sequence G — {e}.

3. Given a quotient sequence Q" of length € starting at G; and ending at G j;1,
Q can be refined by inserting Q" between G ; and G j41, yielding a quotient
sequence of length k + € — 1.

Lemma 4.3. Let Q: G = Gy — -+ — Gy be a quotient sequence. Let
Hy,...,Hy be normal subgroups of G; such that ker Q1 = (Ul].‘=1 H;). Then

there exists a quotient sequence

Q:G=Gy—-—>G;—>Gj/H - > Gjy = — Gy
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such that H; is level j + i for each i.

Proof. By Remark 4.2, it is enough to show this when Q is a one-step quotient

sequence Q1: G — G.

The idea is to inductively construct a quotient sequence for G out of the normal

subgroups H ;. This is possible because surjections preserve normality.

Given G = G,...,G, and maps Proeer Q) let G;'+1 = G}/Q}(HJ-H). Let Q;.H
be the natural projection and Q;. =0

4
Jj+l
Q’ of length k. By construction, H; is level j in this quotient sequence.

oQ~; These determine a quotient sequence

Observe that for each j, Hy, ..., H; C ker Q~;, since each level-i set is sub-level j for
J = i. In particular, Hy, ..., Hy C ker Q] . Since these subgroups generate ker O,
ker Q1 C ker Q. On the other hand, since each H; C kerQj, kerQ; = ker Ok.
This gives an isomorphism G = G, so Q” is a quotient sequence from G to G, as
desired. O

The language of quotient sequences allows for a much more concise rephrasing of
Theorem 2.5.

Theorem 4.4. (Theorem 2.5 with quotient sequences) Let G be a finite group and
0 = (Q,-)lf":1 be a complete quotient sequence of G. Let uy, ..., u, be probability
measures on G. Let v, = puy * -+ % u,. Foreach j = 1,...,k, let I; = {i |

supp u; is level j}. Let w be the uniform distribution on G.

Fori € I}, let o; be the second largest singular value of the (0 j—1)spi-random walk

onker Q. Then we have

k
2 G, -1 2
HV”_HHLZS;W nUi :

l€[j

To illustrate the use of quotient sequences to apply the results of Theorem 2.5/4.4,

we show how a stronger version of Theorem 2.1 follows from Theorem 4.4:

Corollary 4.5. (Theorem 2.1) Let G be a finite group, and let uy, 1o, ..., u, be
probability measures on G. For each subgroup H of G, let Iy = {i | H = (supp u;)}.
Let Hy, ..., Hy be normal subgroups with G = < f‘:l Hj>. Write v, = py - - - % .

Also, for each i, let o; be the second-largest singular value of *u; as an operator on

L% ({supp u;)). Then there are constants 0 < ¢ j<1- ﬁ depending only on G and
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Hi,...,Hy such that

k
(Vi —ﬂ||%2 < ch l_l 0'1-2 .
J=1

iely.
H;

Proof. By Lemma 4.3 applied to the trivial quotient sequence, the subgroups

Hy, ..., H; induce a complete quotient sequence Q for G.

Also, note that if (supp ;) = H;, then (supp(Qj—l)*,Ui> = Qj-](Hj) = kerQ;.
Hence, Ij = IHj-

Now we bound the second largest singular values of the (Q j-1)«M;-random walks,
which we will denote by o7/. Recall that o7 is the operator norm of (0 J=1)xMi
acting on the subspace of L?(ker Q ;) consisting of measures with zero total mass.
Let v be an arbitrary measure on ker Q; with zero total mass. Define a measure v
Ry A (L)) AN o -

on H; by v(h) = Tkt N Note that (Q;_1)«¥ = v, and ¥ has zero total mass.

: 5 2 2115112
In particular, ||V *,ui||L2(Hj) < 07 ||V||L2(H,~)'

‘We have

1911320, = D, 70

hEHj

-y

h/eH} heQ;_ll(h')ﬂHj
S s
_ ) 12
h/eH} heQ;—ll(h’)ﬂHj | ker Q]—l N Hjl
! 2
= = HV”Lz(kerQ«)'
|keer—lﬂHj| ;

On the other hand, for any signed measure u on H; we have, by Cauchy-Schwarz,

2

Qs attllpaery = D | Do m()

WeH, lzeQJT_ll(h’)ﬂH_,-
5 2
< |kerQ;-1 N H,| Z Z p(h)
WeH;, her‘._ll (W)NH;

= Iker 01 0 Hyl Ny
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Hence,

||V = (Qj—l)*/lilliz(keer) = 1(Q)-1)«(¥ * ﬂi)||%2(keer)

2

< |kerQ;_1 N H;| 1V pilly gy

~ 211112
< |kerQ; | NHj|o; ||v||L2(Hj)
2

L?(kerQ;)’

< a7l
which means o] < 0.
Hence, applying Theorem 4.4 yields

v = =} <Zk]—|Gf|_1 [ Jon? <i'G"1 [ o7
e G| VT4 6l ah

j:1 iEIj f€1j

4.2 Equidistribution on Nilpotent Groups
Given a group G, we say y1G := G, and for integers i > 1, v;G = [yi1G,G]. We
denote the i-step commutator [g1, [g2, [. .., [gn-1,&r]]1]] DY [g1,- -, &nl]-

We denote by Z" the free abelian group on n generators, F), the free group on n
generators, and N, := F, /y.+1F, the free nilpotent group of class ¢ on n generators.
Note that Ny, = Z". We say a generating set S of F, (respectively, N, ,) freely
generates F, (N, ,) if there is no nontrivial word in S that reduces to O (respectively,

every nontrivial word in § is a product of ¢ + 1-step commutators of words in §).

The universality result of [Woo19] for abelian groups relied on the use of coordinates
on abelian groups to construct a universality class. While in general groups do not
have well-defined coordinate constructions, it is possible to construct a sort of

independent coordinate system on torsion-free nilpotent groups.

The free nilpotent group N, , has a lower central series
Nc,n = 71Nc,n - 72Nc,n — ych,n - 7c‘+1NL‘,n = {e}

Each successive quotient y; N, ,/vi+1Nc,, is isomorphic to a free abelian group Z™
for some m. Thus, one can choose elements of y;N., whose projections freely
generate y;N.,/vi+1Nc,, as a free abelian group. One can choose these elements
to be i-step commutators in the generators of N.,. If ay,...,a, freely generate

N, as a free class-c nilpotent group, then an i-step commutator in ay, ..., a, is
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laj,,...,a;] = laj,la;,[...,[aj_,,a;]1]]. Then these elements uy,...,uy,
called a Maltsev basis for N, ,, generate N.,, and any element of N., can be
written uniquely in the form u)f '...u,". The numbers xi, . .., x,, are called Maltsev
coordinates.

For a free nilpotent group N., with given Maltsev basis uy, ..., u,, denote by
(X1, ..., Xn)m theelement u}' ... u,". If ¢ = 1, then the standard basis for N ,, = Z"

is a Maltsev basis. For more on Maltsev bases, see [CMZ17, Chapter 4.2].

The idea is to replace random integer vectors in [Woo19] with random vectors in the
Maltsev coordinates. For this, we will need another definition of codes that works

in non-abelian groups:

Definition 4.6. Let V = (S) be a group with a distinguished generating set S, and
let G be a group. We say that f € Hom(V, G) is an S-code of distance w (or a
code of distance w with respect to S) if for any 7 C S with #T < w, the restriction

flsvry: (S\T) — G is surjective.

If f is a code with respect to the free generators of N.,, then it is a code for each

successive quotient y;Nc ,/Vi+1N¢, in the following sense:

Lemma 4.7. Let V be a free nilpotent group of class ¢ on {uy,...,u,}. Let G
be a finite nilpotent group of class at most c. Let f: N., — H be a code of
distance w with respect to {aj, . . .,a,}. Then for each i, the map f induces a map
Jit ¥iNen/VistNew — viG/yvis1 G, which is a code of distance w[i with respect
to the i-step commutators in ay, . . .,a, that freely generate y;N¢,/Vis1Ncn as an

abelian group.

Proof. Let S; be the set of i-step commutators in aj, ..., a, that freely generate
YiNen/vVisiNen as an abelian group. Let 7; ¢ S; with #7; < w/i. Let T be
the set of generators of N., that appear in any i-step commutator in 7;. Each of
these commutators can include at most 7 distinct elements of S, so fewer than w/i

commutators include fewer than w distinct elements of S and #T < w.

Consider the subgroup W of N, generated by S \ 7. This is also a free nilpotent
group of class c¢. Also, y;W /v W is free abelian on the i-step basic commutators
of elements of S \ 7, so we can identify it with the subgroup of y;N,,/Vit1Nen
generated by images of the i-step basic commutators of elements of S. In particular,
YiW/vin W is a subgroup of (S; \ Ti) € yiV/yir1V.
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Since f is an S-code of distance w, f|w is surjective. In particular, the restriction
flyw: viW — v;GNH is surjective, since every element of y;G is an i-step commu-
tator of elements of G, hence an i-step commutator of elements in f(W), and hence
itselfin f(y;W). This means ( f|w);, the map y;W/y;x1W — ;G /vi+1G induced by
flw, is surjective. Butsince y;W /y;.1W is a subgroup of (S;\T;) € viNc¢.n/Yi+1Ncns
the induced map f|(s,\7;): (Si \ ;) € ¥iNen/Vie1Neyn — ¥iG/vis1 G is also surjec-

tive.

Hence, f; is a code of distance w/i. i

Finally, we use the quotient sequences formalism to prove that a random vector in

Maltsev coordinates maps to something close to uniform under a code.

Proposition 4.8. Let G be a finite nilpotent group of nilpotency class c. Let € > 0
and 6 > 0 be real numbers. Let n be a positive integer. Let S = S U S U --- =
{ur,...,un} be a Maltsev basis for N, consisting of commutators in the free
generators uy, . .., u,, where S; consists of i-step commutators. Let X1, ..., X,, be
g-balanced random integers valued in Z|k’Z, where k is a multiple of the exponent
of G, and write X = (X1, ..., Xm)u. Let f € Hom(N,,, G) be a code of distance
on with respect to S| = {uy,...,u,}, and let g be an element of G.

1
P(f(X)=g) - il |G| exp(—£dn/2c|G[*).
Proof. Let u; be the distribution of ulX" in N, ,, then X has distribution g * . .. .,
and f(X) has distribution fiu * -+ * fiu,. The goal is to apply Theorem 4.4
to this convolution. The bulk of the work for this proof goes into constructing an

appropriate complete quotient sequence to apply Theorem 4.4.

There is a natural complete quotient sequence for G of length ¢ given by
0:G=Gy— G/y.G — G/ye_1G — -+ — G|y2G — G/y1G = {e},

since ;G is a normal subgroup of G containing y;4+1G and therefore projects to a
normal subgroup of the quotient G/y;;1G.

The image in G/y;4+1G of the i-step commutator subgroup of G is central, since by
taking the quotient by all i + 1-step commutators, we force i-step commutators to
commute with everything in G /y;41G. In particular, for any i-step commutator x in

G, the cyclic subgroup generated by its image in G /y;4+1G is normal.
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For each i, let T} = {g € v,G | #(f~'(g) N S;) > 6n/i|G|}. Note that #f~1(T;) >

|S;| — on/i, since there are fewer than én/i elements of S; whose image is not in 7;.
Since f is a code of distance on, the induced map f;: ¥iN¢n/VisiNen = viG[vis1G
is a code of width én/i. Hence, the restriction of f; to the image of f~!(T;) is still
surjective. In other words, the images of the elements of 7; generate y;G/y;i+1G
inside G /yi+1G.

Hence, by Lemma 4.3, we can refine Q using the cyclic subgroups (g) < G/y;+1G
for g € T; for each i. This gives a quotient sequence Q' for G. By construction of
the 7;, we have |I;| > on/i|G| for each j.

Now applying Theorem 4.4, we get

1
P(f(X)=¢g) - ﬁ S| faptr # - % fuptm — 7|12
Ty U--UT, | Ty U--UT, |
< HO'IZ < Z rlO',' .
j=1 iel; j=1 iel;

By Lemma 3.7 and the fact that |/;| > 6, /i|G| > 6n/c|G|, we get

T U--UT, | [Ty U---UT, |
exp(—&dn/2¢|G|*

3
IA

1 i€l j=1
< |G| exp(—&én/2¢c|G[*),

~.
Il

and the result follows. O

4.3 Future Work

A major direction in our future work is to complete the universality results for
nilpotent matrices from the previous section. We are also interested in using the
machinery of codes to prove similar results about shorter random walks on the
free group. This will probably require some extension of Theorem 2.5 that allows
fewer subgroups to be normal. On the side of universality for cokernels of random
matrices, future work will involve extending Theorem 1.3 to strictly generalize the
result of [NW22], including eliminating the assumption of identical distributions in
[NW22].
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