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ABSTRACT

We extend the pseudorandomness of random walks on expander graphs using the
sticky random walk. Building on the works of [Coh+22] and [GK21], [GV22] re-
cently showed that expander random walks can fool all symmetric functions in total
variation distance (TVD) upto an $ (_( ?

min 5 )
$ (?)) error in total variation distance,

where _ is the second largest eigenvalue of the expander, ? is the size of the arbitrary
alphabet used to label the vertices, and min 5 = min1∈[?] 51, where 51 is the fraction
of vertices labeled 1 in the graph. [GV22] conjectures that the dependency on the
( ?

min 5 )
$ (?) term is not tight.

In this paper, we resolve the conjecture in the affirmative for a family of expanders.
We present a generalization of [GK21]’s sticky random walk for which [GV22]
predicts a TVD upper bound of $ (_?$ (?)) using a Fourier-analytic approach. For
this family of graphs, we use a combinatorial approach involving the Krawtchouk
functions used in [GK21] to derive a strengthened TVD of $ (_). Furthermore,
we present equivalencies between the generalized sticky random walk, and, using
linear-algebraic techniques, show that the generalized sticky random walk is an
infinite family of expander graphs.
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C h a p t e r 1

INTRODUCTION

1.1 Preliminaries: Notation and Convention
This section describes the basic notation that is used throughout this report.

For any = ∈ N, let [=] = {1, ..., =} and Z= = {0, ..., = − 1}. Let [=]: denote : copies
of elements in [=], and let Z:= denote : copies of elements in Z=. Furthermore, let([=]
:

)
denote the set of all :-sized subsets of [=], which has cardinality

(=
:

)
. For any

=, let the Hamming cube of dimension = be a graph � = (+, �) with vertex set
+ = {0, 1}= and edge-set � = {(D, E) : D and E differ exactly in one coordinate}.

Figure 1: Hamming cube of dimension 3

For any =-bit strings G1 and G2, let 3Hamming(G1, G2) denote the Hamming distance
between G1 and G2, which is the minimal number of edges needed to reach G2 from
G1 on the Hamming cube of dimension =. For any =-bit string B, let |B | denote
the Hamming weight (the Hamming distance between B and 0=) of B. Intuitively,
the Hamming weight of a a bit-string counts its number of 1’s. Similarly, let |B |8
denote the number of 8’s in B. We generalize the notion of counting the number
of occurrences of any character j ∈ Z? for ? ≥ 2 with the symmetric function
Σ(G) : Z=? → Z

?
= , where Σ(G) is a vector that counts the number of occurrences

of each j ∈ Z?. Specifically, for all j ∈ Z? and for all G ∈ Z=?, we write that
[Σ(G)]j = |{8 ∈ G : G8 = j}| = |G |j.

Let Ber(@) denote the Bernoulli distribution on {0, 1}, such that if - ∼ Ber(@),
then Pr[- = 1] = @ and Pr[- = 0] = 1 − @. Next, let Bin(=, 1/2) denote the
binomial distribution of

∑=
8=1 18 with independent choices of 18 ∼ Ber(1/2). Let

U=
? = U[{0, . . . , ?−1}]= denote = samples of the uniform distribution on Z?, where
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for each sample, each character is sampled with probability 1/?. Then, [Σ(U=
?)]0

reports the number of 0’s in an =-bit sample from the uniform distribution on Z?.

Furthermore, we write that G ∈ � if G is an element of �, and G ∈* � if G is an
element chosen uniformly randomly from �. Finally, we use � to denote the com-
plement of a set � ⊆ Ω, and for any two sets �, � ⊆ Ω, we define their symmetric
difference �Δ� as (� ∩ �) ∪ (� ∩ �).

1.2 Pseudorandomness and derandomizing BPP
Is randomness a special computational resource? Randomness can be viewed as a
resource for algorithms to employ as part of its procedure. Some well-known ran-
domized algorithms include theMiller-Rabin protocol [Mil75][Rab80] for primality
testing and Karger’s algorithm [KS96] for finding the min-cut of a graph. The set
of all decision problems that are solvable by randomized algorithms in polynomial
time is captured in the large complexity class BPP.

Definition 1 (BPP). A language L is said to be in BPP (bounded-error probabilistic
polynomial time) if and only if there exists a probabilistic polynomial-time (PPT)
Turing machine A for which, G ∈ L implies that Pr[A(G) = 1] ≥ 2/3 and G ∉ L
implies that Pr[A(G) = 1] < 1/3. In words, L ∈ BPP implies the existence of a PPT
Turing machine that can correctly decide the membership of strings in the language
with probability atleast 2/3.

BPP is a robust complexity class because the choice of error probability to be atmost
1/3 is arbitrary. For an input G ∈ {0, 1}=, any error probability in the range of [0, 1

2 −
1

poly(n) ) yields the same set of decision problems, since running the probabilistic
algorithm polynomially many times and taking the majority result causes the error
to decrease to 0 exponentially by the Chernoff bound [Vad13][Lez01].

Definition 2 (P). A language L is said to be in P if and only if there exists a
deterministic polynomial-time Turing machine A for which G ∈ L implies that A(G)
accepts and G ∉ L implies that A(G) rejects.

Clearly, all problems contained in P are also in BPP. However, it is not currently
known whether there is a definite random advantage for all polynomial-time prob-
lems since the number of problems that have been thought to be in BPP but not P
has decreased over the years. Can any problem in BPP be derandomized so that it is
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solvable by a deterministic polynomial time algorithm? It is conjectured that BPP
= P, and resolving it is a major open problem in theoretical computer science.

To digress, it is worthwhile to note the important milestone in 2004 by [AKS04] of
derandomizing the language of prime numbers which showed PRIMES ∈ P.

Derandomization is the process of transforming a randomized algorithm into a
deterministic algorithm. Oftentimes, this happens by creating a vastly different
algorithm. However, promising methods aim to replace a true source of random
bits with an efficient deterministic source that amplifies a limited initial amount of
randomness. Such sources are said to be pseudorandom sources if they can ‘fool’
tests computed by various families of functions.

Definition 3 (Fooling Tests). A test-function T is n-fooled by a pseudorandom
function 6 : - → [=] if the statistical distance between the distributions T(6(-))
and 5 (*), where* is the uniform distribution on [=], is less than n .

Promising derandomization techniques include using pseudorandom generators
(PRGs) and expander graphs. This thesis is focused on the pseudorandomness
of random walks on expander graphs.

1.3 Expander Graphs
We first provide the necessary linear algebraic terminology for studying expander
graphs. We consider a graph � = (+, �), where |+ | = = and |� | = <. Then:

Definition 4 (Adjacency Matrix). The adjacency matrix � of � is an = × = matrix
such that �8 9 = 1 if (8, 9) ∈ � , and 0 otherwise.

Definition 5 (Degree Matrix). The degree of E ∈ + (denoted 3E) is the number of
nodes in � connected to E. The degree matrix � of � is an = × = matrix such that
�8 9 = 1/38 if 8 = 9 and 0 otherwise.

Definition 6 (Normalized Adjacency Matrix). The normalized adjacency matrix of
� is the matrixA := �−1/2��−1/2, where � is the adjacency matrix from definition
4 and � is the degree matrix from definition 5.

As a remark, since A is a real symmetric matrix, the spectral theorem implies that
A has = real eigenvalues and = real eigenvectors.
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Lemma 1.3.1. Without loss of generality, let _1 ≥ · · · ≥ _= be the = eigenvalues
of A, where A is the normalized adjacency matrix (from definition 6) of a graph
� = (+, �). Then, 1 = _1 ≥ _2 ≥ · · · ≥ _= ≥ −1. We provide a proof of lemma
1.3.1 in A. We define 1 − _2 as the spectral gap of graph �.

Armed with the knowledge of the characteristics of eigenvalues ofA, we now study
the (multiple) definitions of expander graphs. Recall that a graph � is connected if
and only if _2 < 1. Since _2 < 1 enforces that � is connected, smaller values of _2

(or larger spectral gaps) correspond to stronger notions of connectivity.

Informally, an expander graph is a sparse graph with good connectivity properties.
A graph is said to be sparse if it does not contain many edges, and is said to have
good connectivity properties if the only way to disconnect a component from the
graph is to remove many edges. These (seemingly contradictory) properties give
rise to (indeed, explicit) constructions of expanders and the following definitions of
expansion of a graph �.

Definition 7 (Sparsest Cut). Let ((,+ − () be a partition of the vertex set + , and let
� ((,+ − () = {(D, E) ∈ � : D ∈ (, E ∈ + − (}. Then, the sparsity of the cut is:

q(() :=
� ((,+ − ()
|� | ·

(
|( | · |+ − ( |
|+ |2/2

)−1

The sparsest cut of a graph � is then:

q(�) := min
(⊆+ :(≠∅,(≠+

q(()

Intuitively, q(�) is the minimal ratio between the fraction of edges that need to be
removed from � to disconnect ( and + − ( and the fraction of pairs of vertices that
would be disconnected with such an edge removal.

The sparsest cut measure in definition 7 of a graph� = (+, �) is very closely related
to the measure of edge expansion provided below in definition 8.

Definition 8 (Edge Expansion). If � is a d-regular graph (each vertex has 3 neigh-
bors), then the edge expansion of a cut ((,+ − () is given by:

ℎ(() :=
� ((,+ − ()

3 ·min{|( |, |+ − ( |}
The edge expansion ℎ(�) of � is then:

ℎ(�) := min
(⊆+ :(≠∅,(≠+

ℎ(()
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Intuitively, ℎ(�) is the smallest ratio between the number of edges between two cuts
of � and the number of edges incident on the smaller cut.

Definition 9 (Vertex Expansion). A graph � is said to be a ( , �) vertex expander
if ∀( ⊆ + where |( | ≤  , such that |{(D, E) ∈ � : D ∈ (}| ≥ � · |( |, as defined in
[Vad13].

Note that the notions of edge and vertex expansion in 8 and 9 are closely related.

The connectedness of a graph can also be measured by how well a random walk on
the graph converges to the stationary distribution, as mentioned in [Vad13]. This is
typically characterized by the second largest eigenvalue of the normalized adjacency
matrix A provided in definition 6.

Definition 10 (Spectral Expansion). For D = (1/=, . . . , 1/=) ∈ R=, the uniform
distribution on [=], and probability distributions c ∈ [0, 1]=, the spectral expansion
of a graph � = (+, �) is _(�), which is characterized by:

_(�) := _2(A(�)) := min
c

‖c" − D‖
‖c − D‖ = min

G⊥D
‖G" ‖
‖G‖

Informally, a lower _(�) indicates a stronger connectivity property of �.

These notions of expansion are agree are very strongly related. For instance, we
direct the reader to Theorems 4.6 and 4.9 in [Vad13] which show an equivalence
between vertex expansion and spectral expansion. We state them here (without
proof) for convenience.

Theorem 4.6 of [Vad13]: (spectral expansion =⇒ vertex expansion). If � is a
regular graph with spectral expansion _, for _ ∈ [0, 1], then ∀U ∈ [0, 1], � is an
(=/2, 2 − _) vertex expander.

Theorem 4.9 of [Vad13]: (vertex expansion =⇒ spectral expansion). ∀X > 0, � >

0, if � is a �-regular (=/2, 1 + X) vertex expander, then ∃_ > 0 such that � has
spectral expansion _. Here, we can take _ = 1 −Ω((X/�)2).

Further, the celebrated Cheeger inequalities provide a relationship between edge
expansion and spectral expansion. As before, we state the Cheeger inequality and
direct the reader to the excellent expanders survey by Hoory, Linial, andWigderson,
[HLW06], for the proof of the theorem.

Definition 11 (Cheeger’s Inequality). Let � = (+, �) be an undirected 3-regular
graph and let _ = _(�) be the spectral expansion of �, given by the second
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smallest eigenvalue of its normalized adjacency matrixA(�). Further, let the edge
expansion of the graph be denoted ℎ(�). Then, Cheeger’s inequality states that:

1
2
_3 ≤ ℎ(�) ≤ 3

√
2_

Corollary 1.3.1.1. Asa consequence ofCheeger’s inequality, we also see the relation
between the sparsest cutmeasure and the edge expansionmeasure, given by: q(�) ≤
ℎ(�) ≤ 2q(�), where � = (+, �) is a 3-regular graph.

Given these (largely equivalent) definitions of expander graphs, we observe that
graphs with good expansion properties also have good connectivity properties. For
instance, note the following lemma proven in [Tre11].

Lemma 1.3.2. Let � = (+, �) be a 3-regular graph with edge expansion ℎ. If
any n < ℎ fraction of edges are removed from �, then the graph has a connected
component that spans atleast 1− n/2ℎ fraction of the vertices. We include the proof
of this lemma for convenience in A.

1.3.1. Good Expander Graphs

We now turn to the question of what is a good expander graph. A family of constant
degree expanders is a family of graphs {�=}=≥3 where each �= is a 3-regular graph
on = vertices, and there is an absolute constant _(�) ≤ _ for each =. We next look
at the following theorem by Alon and Boppana in [Fri03].

Lemma 1.3.3. For every constant 3 ∈ N, any 3-regular graph � = (+, �) satisfies
_(�) ≥ 2

√
3 − 1/3 − >(1), where the >(1) term vanishes as =→∞. We provide a

proof of the Alon-Boppana bound in [Fri03] for convenience in A.

It is fascinating to note that there exist several explicit constructions of 3-regular
graphs� = (+, �) forwhich_(�) < 2

√
3 − 1/3 (see [Lub17][BT11][SS96][RVW04]

of expander graphs). Such graphs which saturate the Alon-Boppana bound in lemma
1.3.3 are called Ramanujan graphs. We provide some explicit examples of interest-
ing expander graph constructions (most of which are number-theoretic), and direct
the reader to sources for proofs of their expansion properties.

Construction 1: (Discrete Torus Expanders). The first known explicit construc-
tion of expanders is from Margulis’ construction in [Mar75], where � = (+, �)
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with vertex set + = Z2
< and a vertex (G, H) ∈ + is adjacent to the following vertices

(G ± H, H), (G ± (H + 1), H), (G, H ± (G + 1)), (G, H ± (G + 1)). Here, all operations are
done modulo <. Further, {�=}= is an expander family of constant degree 8 with
expansion Ω(1).

Construction 2: (p-cycle with inverse chords). The next explicit construction of
an expander we present from [GG81] is the graph� = (+, �) with vertex set+ = Z?
(for ? prime), where the edges connect each node G with nodes G + 1, G − 1, and G−1.
As before, the arithmetic is mod ?, and 0−1 is set to 0.

Construction 3: (Ramanujan graphs). We now provide an explicit construction
of a Ramanujan graph as described in [LPS88]. Let � = (+, �) be a graph where
+ = F@ ∪ {∞}. Here, F@ is the finite field of prime order @ such that @ ≡ 1 (mod 4)
(and one extra node representing ∞). The edges in this graph connect each node
I ∈ + with all I′ ∈ + of form:

I′ =
(00 + 808)I + (02 + 803)
(−02 + 803)I + (00 − 801)

Here, 00, 01, 02, 03 ∈ Z such that 02
0 + 0

2
1 + 0

2
2 + 0

2
3 = ?, 00 is odd and positive,

and 01, 02, 03 are even, for some fixed prime ? ≠ @ such that ? ≡ 1 (mod 4), @ is
a square modulo ? and 8 ∈ F@ such that 82 = −1 (mod @). Needless to say, this
construction is an optimal spectral expander as it saturates the Alon-Boppana bound
in lemma 1.3.3 for strong expander graphs.

1.3.2. Properties of Expanders

Expanders have many unique properties (see [Rei05][RVW04][BT11]). A key
property of expander graphs is the expander mixing lemma. In a random graph
with constant degree 3, the number of edges between any two sets ( and ) is
approximately 3

=
|( | |) |. Intuitively, expanders with a spectral expansion constant of

_(�) closer to 0 display properties of random graphs, and mimic this property as
well. We show this below.

Lemma 1.3.4 (Expander Mixing Lemma). Let � = (+, �) with |+ | = =, |� | = <
be a 3-regular graph with spectral expansion constant _. Then, for any subsets (, )
of the vertex-set + , we have that:����� ((, )) − 3 |( | |) |=

���� ≤ _√|( | |) |
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We defer the proof of this lemma to A.

Another property of expander graphs is that random walks on expanders mix
quickly, which means that they converge very quickly to the uniform distribu-
tion. To formalize this notion, observe that the normalized adjacency matrix
�−1/2��−1/2 of a graph � is a homogeneous stochastic matrix (each row sums
to 1 and the coefficients are positive). Therefore, we can define a random walk
on an expander graph by selecting -0 ∈* + and letting -: ∼ # (-:−1), where
Pr[-: = E] = (�−1/2��−1/2)-: ,E. For convenience, we denote " := �−1/2��−1/2

the random-walk matrix of �.

Definition 12 (Irreducible Markov Chain). A homogeneous matrix is irreducible if
and only if ∃= such that ∀8, 9 ∈ + : Pr[-= = 8 |-0 = 9] > 0.

Definition 13 (Invariant Probability Distribution). Let c ∈ R= where c8 ≥ 0 and∑
E∈+ cE = 1. Then, a probability distribution on + is called an invariant or

stationary probability distribution if ∀E ∈ +:

cE =
∑
D∈+

cD"D,E ⇐⇒ c = c"

Note that our homogeneous stochastic matrix " is irreducible and, thus, has an
invariant probability distribution c. Since random walks on expanders mix very
well, it must be the case that c is very close to the uniform distribution on [=]
(and it is, and we shall prove it shortly). For now, though, note that an exciting
implication of this is that expander walks have good randomness properties not just
for the final vertex in the sequence, but for the sequence of vertices itself, which
displays characteristics of uniform independent samples of + .

Lemma 1.3.5 (Expander Hitting Lemma). Let � = (+, �) with |+ | = =, |� | = < be
a 3-regular graph with spectral expansion constant _. Then, for any � ⊆ + such
that |� | = (1 − X)=, the probability that a random walk -1, -2, . . . , -C of C − 1 steps
starting at a uniformly random vertex of � completely stays inside � is given by:

Pr[-8 ∈ �,∀8 ∈ [C]] ≤ (1 − X(1 − _))C−1

We defer the proof of this lemma to A.

So, expander graphs are undirected spectral sparsifiers of the clique with high
expansion properties, and they are among the most useful combinatorial objects in
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theoretical computer science due to their numerous applications (some of which we
shall present in the subsequent subsection). For a good expander graph that saturates
the Alon-Boppana bound from [Fri03], the spectrum (_1, . . . , _=) approximates the
spectrum of the complete graph, which makes expanders a sparsification of the
clique. As described before, random walks on expanders mix very quickly. We state
Gilman’s [Gil98] result which uses the Chernoff bound to quantify the mixing rate.

Lemma 1.3.6 (Expander-Walk Chernoff Bound (Gilman)). For graph � = (+, �),
let -0, . . . , -C−1 denote a sequence of vertices obtained from a C-step -walk on an
expander graph�. For any function 5 : [=] → {0, 1}, let the stationary distribution
of � be c( 5 ) := limC→∞

1
C

∑C−1
8=0 5 (-8). The expander-walk Chernoff bound [Gil98]

states that ∀Y > 0,

Pr

[�����1C C−1∑
8=0

5 (-8) − c( 5 )
����� ≥ _ + Y

]
≤ 24−Ω(Y

2C)

Equivalently, we can write that ∀Y > 0:

Pr

[�����1C C−1∑
8=0

5 (-8) − c( 5 )
����� ≥ Y

]
≤ 24−Ω((_−Y)

2C)

We refer the reader to [HLW06][Kom+02][RR17] for a proof of the expander-
walk Chernoff bound. An important direct consequence of the expander Chernoff
bound is that the mixing time of a 3-regular expander graph on = vertices is atmost
$ (log =).

The expander hitting lemma and the expander mixing lemma imply a number of
combinatorial consequences for any 3-regular graph � = (+, �) where |+ | =
=, |� | = <. We state some of them below and refer the reader to [Vad13] for proofs.

Corollary 1.3.6.1. The chromatic number j(�) is atleast (2 − _)/(1 − _).

Corollary 1.3.6.2. The diameter of � is $ (log1/_ =).

Corollary 1.3.6.3. The size of the largest independent set U(�) is atmost =(1−_)2−_ .

1.3.3. Applications of Expanders

Expander graphs have intriguingly ubiquitous applications. They were studied for
the purpose of constructing fault-tolerant networks in [INW94], where if a small
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number of channels (edges) broke down, the system could be made to be still largely
intact due to its good connectivity properties if it were modeled as an expander.
More recently, they have been used in representation learning theoretic settings (see
[DLV22]) to create graph neural networks that can propagate information to train
models more efficiently. In coding theory, expander codes (created from linear
bipartite expanders - see [Alo86]) are the only known construction (see [SS96])
of asymptotically good error-correcting codes which can be decoded in linear time
when a constant fraction of symbols are in error.

More recent works that combine ideas from combinatorial topology and algebraic
geometry have also led to the exciting study of high dimensional expanders (HDX)
which are pure simplicial complexes (hypergraphs that are downwards closed under
containment) where the 1-skeletons are spectral expanders and the links exhibit
good expansion properties. We direct the reader to [Con19] and [GK23].

One of the most important applications of expanders (which is the topic of this
thesis) is on derandomization and in pseudorandomness. Suppose that there is a
randomized algorithm for a language ! using = bits such that: If a string G ∈ !,
then the algorithm accepts with probability 1. If a string G ∉ !, then the algorithm
rejects with probability atleast 1/2. Our goal is to reduce the error probability of
the algorithm.

If we repeat the algorithm C times then the error probability goes down to 1/2C , which
is ideal. However, the number of random bits used by the algorithm is then equal to
=C, which is very large. One work around is to “reuse the randomness by weakening
our independent choices to correlated choices on an expander graph” [Gur20]. If
we start at a random vertex in � (which is a random number in {0, . . . , =} which
uses log = random bits) and pick random neighbors of E, then since a good expander
has degree 3 = $ (1) and since we need log 3 = $ (1) bits, we can continue this
process till we pick C vertices overall, and the overall number of random bits that we
would need would be equal to log =+$ (C). Further, by the expander mixing lemma,
for C � $ (log =) the sequence of vertices will still be extremely close to uniformly
random. Comparing with previous methods for error reduction, we present the table
from [Vad13]:

Furthermore, the number of random bits required to take C independent samples from
a function 6 is$ (C log =), but sampling via expander randomwalks only necessitates
log = + $ (C) many random bits. So, a random walk on an expander graph provides
a derandomized approximation for a random walk on a complete graph with self-
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Number of Repetitions Number of Random Bits
Independent Repetitions $ (C) $ (C=)
Pairwise Independent Repetitions $ (2C) $ (C + =)
Expander Walks $ (C) log = +$ (C)

Table 1.1: Comparing with previous methods for error reduction

loops. This makes expander graphs invaluable in the field of pseudorandomness.
Consider the C-step expander random walk which generates a sequence of vertices
E0, . . . , EC−1. We are then interested in the degree to which (E0, . . . , EC−1) “fools”
classes of test functions, where the definition of fooling is consistent with what is
provided in definition 3.

A major goal of this work is to obtain tight error bounds in the approximation of true
random bits with bits supplies from an expander randomwalk. From definition 3, an
expander random walk fools a test-function 5 if 5 (-0, . . . , -C−1) has approximately
the same distribution regardless of whether the vertices are sampled from a random
walk on an expander, or independently and uniformly at random (which is the same
as a randomwalk on a complete graph with self-loops). The goal of this thesis seeks
to find strong bounds on the extent to which expander random walks fool various
classes of test functions 5 .

1.4 RandomWalks on Expander Graphs
Arecent line ofwork started in [Ta-17]which led to [GK21][CPT21][Coh+22][BCG20]
[GV22] has shown that random walks on expanders with second largest eigenvalue
_ fool various functions upto an$ (_) error in total variational distance. For the rest
of the introduction, we provide an overview of [GK21] and [GV22].

If an arbitrary half of vertices of an expander-graph� = (+, �)with |+ | = =, |� | = <
are marked, then the expander-walk Chernoff bound says that, for an =-step random
walk, the number of marked vertices visited is strongly concentrated at =/2. In [Ta-
17], Ta-Shma proved that the parity function is fooled by expander random walks
by showing that the parity of the number of visited marked nodes has exponentially
small bias. To analyze this more rigorously, we define the statistical distance (which
is essential for our notion of fooling) as the total variation distance 3TV or TVD.

Definition 14 (Total Variation Distance (TVD)). Given a measure space (Ω, F , `)
and a f-algebra A ⊆ F , the total variational distance 3TV(`1, `2) between prob-
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ability measures `1, `2 : F → R is

3TV(`1, `2) = sup
�∈A
|`1(�) − `2(�) |

Similarly, the ℓ1 distance between `1 and `2 is defined as 3ℓ1 (`1, `2) = 23TV(`1, `2).
Additionally, for countable Ω and A = 2Ω, we have 3ℓ1 (`1, `2) =

∑
G∈Ω |`1(G) −

`2(G) |. Transitively,

3TV(`1, `2) =
1
2

∑
G∈Ω
|`1(G) − `2(G) |

Recall [Gil98]’s result about the expander Chernoff bound in lemma 1.3.6. An
alternative, but equivalent, formulation of the result is that if _ is small enough, then
for every � ⊆ + , the number of times we visit � in a random walk of length C in an
expander random walk is very close to the expected value, and the probability that
the expander random walk deviates from the expected value of the number of times
� is visited is very similar to the probability that C truly random variables deviate
from the expected value. [Ta-17] compared the parity of the number of times an
expander random walk fell into set � with the parity of the number of times a truly
random variable’s realization is contained in � and showed that the distributions
were also almost identical.

Lemma 1.4.1 (Ta-Shma). Let (0 be the parity of the number of times an expander
random walk of length C hit � and (1 be the parity of the number of times a
uniformly random sequence of variables realized a value contained in �. Then, for
n0 = 0.8, V = 0.01, and small _ such that n0 + 2V + 2_ < 0.9:

TVD((0, (1) = (n0 + 2V + 2_) bC/2c

For convenience, we restate Ta-Shma’s proof of lemma 1.4.1 in Chapter A.

Ta-Shma’s breakthrough construction of optimal n-balanced codes [Ta-17] which
showed that expander random walk can fool the extremely sensitive parity function
led to an exciting series of work in [GK21] [GV22] which generalizes [Ta-17]’s
result to all symmetric functions and a broad class of test functions including per-
mutation branching programs, read-only branching programs, ��0, and decision
trees.
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1.5 Pseudorandomness against Symmetric Functions
The success in showing that expander random walks could fool the parity function
gave rise to the question of what other functions could be fooled. One general
candidate of functions are symmetric functions. Informally, even though an ex-
pander random walk mixes very well, each adjacent vertex in the random walk
sequence is extremely correlated. Therefore, since symmetric functions loose all
information about the order of vertices, it is unable to capture these local correlations
and therefore cannot distinguish between an expander random walk and a uniform
distribution.

[GK21] proved that the TVD between the weight distribution of the sticky random
walk and the binomial distribution is Θ(_), and goes on to prove results that sticky
random walks fools the majority and parity function. We summarize some of
their proof methodologies and describe our work which extends this in Chapter
2. [CPT21] and its follow-up work [Coh+22] study the arbitrary expander graph
� with a balanced binary labeling on its vertices using Fourier analysis on Z=2 to
prove that expander random-walks fool all symmetric functions with Θ(_) error,
and conclude by showing that test-functions computed by AC0 circuits are fooled by
expander randomwalks with a constant spectral gap. Finally, in 2022, Golowich and
Vadhan’s breakthrough paper [GV22] on the pseudorandomness of expander graphs
showed that, for any ?-ary labeling of its vertices, expander random walks fool tests
computed by all symmetric functions and permutation-branching programs upto an
Ω(_) and$ (_?$ (?)) error, using Fourier analysis on Z. We summarize some of the
proof methods of [GK21] and [GV22] below.

Definition 15 (Symmetric Functions). A function 5 on C variables is symmetric if
5 (G1, G2, . . . , GC) = 5 (Gc(1) , Gc(2) , . . . , Gc(C)), for any permutation c ∈ (C .

This motivates the work in [GK21] (Pseudobinomiality of the Sticky Random
Walk) which studies whether expander random walks can fool symmetric func-
tions. [GK21] studies the canonical expander graph, the sticky random walk on two
vertices, which is a modified uniform-probability Markov chain with an additional
probability, _, of staying at the same vertex for the next time-step, since it a useful
proxy for studying expander random walks.

We rigorously define the sticky random walks now.

Definition 16. The Sticky Random Walk ((=, _) is a distribution on =-bit strings
that represent =-step walks on a Markov chain with states {0, 1} such that for each
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B ∼ ((=, _), Pr[B8+1 = 1 |B8 = 1] = 1+_
2 , for 1 ∈ {0, 1}, and B1 ∼ Ber(1/2) such that

Pr[B1 = 0] = Pr[B1 = 1] = 1
2 . As _→ 0, the distribution of strings from the Markov

chain converges to the distribution of = independent coin-flips.

0 1

1−_
2

1+_
F

1+_
2

1−_
2

Figure 2: The Markov chain of the sticky random walk ((=, _).

1.5.1. Proof Methodology of Pseudobinomiality of the Sticky RandomWalk

[GK21] defines the Krawtchouk functions as an orthogonal basis for functions from
Z=+1 → R. They use them to decompose the TVD into separate orthogonal terms
which are individually bounded by the expected-value of the Krawtchouk function.

Definition 17 (Krawtchouk Functions). The Krawtchouk function  : : Z=+1 → R,
for ℓ ∈ Z=+1 and an arbitrary =-bit string U for |U | = ℓ, is

 : (ℓ) =
∑

H∈{0,1}=
|H |=:

(−1)U·H =
:∑
C=0
(−1)C

(
ℓ

C

) (
= − ℓ
: − 9

)
Lemma 1.5.1 (Orthogonality of the Krawtchouk function).

〈 A ,  B〉 = E
1∼Bin(=, 12 )

[ A (1) B (1)] =


0, A ≠ B(=
B

)
, A = B

We provide a proof of lemma 1.5.1 in A. Since the Krawtchouk functions are
orthogonal, any 5 : Z=+1 → R has an expansion 5 (ℓ) = ∑=

:=0 5̂ (:) : (ℓ), where for
: ∈ Z=+1, the expansion coefficient 5̂ (:) is 5̂ (:) = 1

(=:)
· E1∈Bin(=, 12 ) [ 5 (1) : (1)].

[GK21] then defines a ratio function ?(ℓ), where ? : Z=+1 → R, which is used to
compute the total variation distance (TVD).

Corollary 1.5.1.1 (Krawtchouk invariance). The Krawtchouk function is invariant
against choices of U which satisfy |U | = ℓ. This statement is proven in [Sam98].

E
|! |=:

Fixed �∈Z=?
|�|=ℓ

[(−1)�·�] = E
|! |=:

Random �′∈Z=?
|�′ |=ℓ

[(−1)�′·�]
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Definition 18 (Probability ratio function). We let the injective probability ratio
mapping ? :Z=+1 ↦→R be defined as ?(ℓ)=PrB∼( [|B | = ℓ]/(

(=
ℓ

)
2−=). Intuitively, ?(ℓ)

is a ratio of the probability that a sticky random walk has a hamming weight of ℓ to
the probability that = samples from the uniform distribution on {0, 1} yield ℓ 0s.

Lemma 1.5.2. For ?(ℓ) = PrB∼( [|B | = ℓ]/(
(=
ℓ

)
2−=), the expansion coefficient is

?̂(:) = 1/
(=
:

)
· EB∼( [ : ( |B |)]. This implies for B ∼ ((=, _), we must have that

Pr[|B | = ℓ] = 1/2= ·∑=
:=0  ℓ (:) E[ : ( |B |)]. We refer the reader to [GK21] for the

proof of this result.

To compute the TVD between the binomial probability distribution and sticky
random walk distribution of the Hamming weight of a string sampled, [GK21] uses
the convexity of the expected value operator to show that:

TVD =
1
2

=∑
ℓ=0

���� Pr[|B | = ℓ] −
(
=

ℓ

)
2−=

���� ≤ √
E

1∼Bin(=,1/2)
[(?(1) − 1)2]

Following this, some algebraic manipulation leads to the following lemma.

Lemma 1.5.3. The TVD of the hamming weights between the sticky random walk
and the binomial distribution is:

TVD ≤
=∑
:=1

?̂(:)2
(
=

:

)
=

=∑
:=1

1(=
:

) E[ : ( |B |)]2
To compute the expectation of the Krawtchouk function, [GK21] defines the shift
of a subset.

Definition 19 (Shift of Subsets). For even-sized subsets � ⊆ [=], where � = 01 <

· · · < 0< are the elements of � in increasing order, define shift : �→ R as:

shift(A) =
|�|/2∑
8=1
(028 − 028−1)

This definition is handy in lemmas 1.5.4 and 1.5.5 in [GK21].

Lemma1.5.4. For any � ⊆ [=], we have thatE [∏8∈� (−1)B8 ] =


0 |�| odd

_shift(A) |�| even
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The proof for the above lemma involves defining a new re-parameterized random
variable to model transitions between the sticky randomwalk, using the definition of
the expectation, and considering each term in the ensuing expression. We similarly
refer the reader to [GK21] for a proof of this statement. This lemma then lends itself
to lemma 1.5.5 which states the expectation of the Krawtchouk function.

Lemma 1.5.5. The expectation of the Krawtchouk function is given by:

E[ : ( |B |)] =


0 : odd∑
)∈( [=]: ) _

shift(A) : even
=


0 : odd∑=−:/2
<=:/2

( <−1
:/2−1

) (=−<
:/2

)
_< : even

The first equality in the above lemma follows by definition, and the second equality
is shown by a counting argument which shows that the number of subsets ) ∈

([=]
2:

)
with shift(T) = m is

(<−1
:−1

) (=−<
:

)
. Then, substituting the result of lemma 1.5.4 into

lemma 1.5.3 using algebraic manipulation and some standard inequalities yields that
TVD ≤ $ (_) when _ < 0.16.

This TVD bound shows that the Hamming weight counting function is fooled by the
sticky random walk. [GK21] goes on to show that TVD ≥ Ω(_) using a calculation
of the moments and the central limit theorem, which we do not consider further.
We will revisit these proof methods when we summarize our proof for a TVD upper
bound for a generalized @-ary sticky random walk.

[CPT21][Coh+22] then used Fourier analysis to expand this result. Specifically,
they showed that test functions computed by AC0 circuits and symmetric functions
are fooled by the random walks on the full expander random walk, but only for
balanced binary labelings. This culminated in the work of [GV22].

Proof Methodology of Pseudorandomness of Expander RandomWalks for
Symmetric Functions and Permutation Branching Programs

Theseworks culminate in [GV22]which establishes that randomwalks on expanders
where the vertices are labeled from an arbitrary alphabet [?] = {1, . . . , ?} where
51 is the fraction of vertices labeled 1 for any 1 ∈ [?], can fool symmetric func-
tions (upto an $ (_(?/min1∈[?])$ (?)) error) and permutation branching programs.
Specifically, we are interested in the result concerning symmetric function which
we restate below.
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Lemma 1.5.6. Fooling symmetric functions (Corollary 4 of [GV22]). For all
integers C ≥ 1 and ? ≥ 2, let� = (�8)1≤8≤C−1 be a sequence of _-spectral expanders
on a shared vertex set + with labeling val :+→[?] that assigns each label 1 ∈ [?]
to 51-fraction of the vertices. Then, for any label 1, we have that the total variation
distance between the number of 1’s seen in the expander random walk and the
uniform distribution on [?] has the following bound (where [Σ(/)1] counts the
number of occurrences of 1 in /) is:

TVD( [Σ(RWC
G)]1, [Σ(* [3])]1) ≤ $

((
?

min1∈[?] 51

)$ (?)
· _

)
We present some of the proof ideas here, while leaving some lemmas in Chapter A.

We first introduce the following notation from [GV22]. Consider a graph sequence
G = (�1, . . . , � C−1) on a common set of vertices + , and let the random vari-
able RWC

G denote the C-step random walk on + , where the 8’th step is taken on
graph �8. Let the vertex labeling be val :+ → Z3 such that val(E0, . . . , EC−1) =
(val(E0), . . . , val(EC−1)). Next, let G be a sequence of _-expanders and J denote
the complete graph with self-loops. Then, let Σ : ZZC−1

3
→ ZZ3

C+1 denote the histogram
function where (Σ0)1 = |{8 ∈ ZC : 08 = 1}|. By noting that all symmetric functions
factor through Σ, [GV22] studies the strongly generalized problem of bounding the
TVD between Σ(val(RWC

G)) and Σ(val(RWC
J )).

Lemma 1.5.7 (Theorem 18 of [GV22]). . Fix regular graph sequences G =

(�8)1≤8≤C−1 and G′ = (�′
8
)1≤8≤C−1 on a common set of vertices where for all

8 ≠ D, 1 ≤ D, C − 1, �8 = �′
8
with _(�) = _(�′) ≤ 1/100. For a fixed label-

ing binary labeling that assigns labels 0 and 1 to ?0 and ?1 fraction of vertices
respectively, we have that for any 2 > 0,∑

9∈ZC :| 9−?1C |≥2
| Pr[Σ(val(RWC

G)) = (C − 9 , 9)] − Pr[Σ(val(RWC
G′)) = (C − 9 , 9)] |

≤ 40004−2
2/8C ·

‖�′D − �D‖
C

Intuitively, lemma 1.5.7 bounds the probability that a vertex labeled 1 is visited 2
more times than the expected number in G, relative to G′, by the normed difference
‖�D − �′D‖ and a decreasing exponential function of 2. Corollary 19 in [GV22]
shows that lemma 1.5.7 yields a TVD between Σ(val(RWC

G)) and the binomial
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distribution. Setting G′ = � and letting G be a _-spectral expander yields:∑
9∈ZC :| 9−?1C |≥2

| Pr[Σ(val(RWC
G)) = (C − 9 , 9)] − Pr[Σ(val(RWC

G′)) = (C − 9 , 9)] |

≤ 4000_4−2
2/8C

The proof of lemma 1.5.7 (theorem 18) relies on theorem 20 and lemma 23 from
[GV22] which we state here and prove in Chapter A.

Lemma 1.5.8 (Theorem 20 of [GV22]). Let the vector denote 6 the ℓ1 norm of the
difference in distributions we are considering:

6 = (Pr[Σ(val(RWC
G′) = (C− 9 , 9))]−Pr[Σ(val(RWC

G) = (C− 9 , 9))]) 9∈ZC ∈ {−1, 1}ZC

Next, extend 6 to the (countably) infinite (and normalized) vector 6BA for B = ±1, 0 ≤
A ≤ 1

2 , and s6 9 = 0 for 9 ∉ ZC+1, 6(BA) = (4BA ( 9−?1C6 9 ) 9∈Z ∈ RZ. Then,

‖6(BA) ‖ ≤ ‖�D − �′D‖ · ?0?14
2?0?1CA

2 ·min
{
44,

22A2

(?0?1C)1/4
+ 70
(?0?1C)5/4

}
Lemma 1.5.9 (Lemma 23 of [GV22]). For : ≥ 0, let

(+: = { 9 ∈ ZC : :
√
?0?1C ≤ 9 − ?1C ≤ (: + 1)

√
?0?1C}

(−: = { 9 ∈ ZC : (: + 1)
√
?0?1C ≤ 9 − ?1C ≤ −:

√
?0?1C}

Then, set B = ±1, A > 0. For 9 ∈ ZC , we have that

|6 9 | ≤ 4−BA ( 9−?1C) · ‖6(BA) ‖

and for ?0?1C ≥ 1, we have that

‖6(B
:
‖1 ≤

√
2(?0?1C)1/44−A:

√
?0?1C · ‖6(BA) ‖

[GV22] goes on to show similar bounds for tests computed by permutation branch-
ing programs, which extends Braverman’s result [BCG20] for read-once branching
programs.

1.6 Pseudorandomness against AC0 circuits
As a digression, the main results of [CPT21] and the follow-up work [Coh+22] are
superseded in [GV22]. However, [Coh+22] does prove a result of expander random
walks fooling test functions beyond symmetric functions using a Fourier analytic
approach. Specifically, we present theorem 1.5 in [Coh+22] and refer the reader to
the original paper for a proof.
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Lemma 1.6.1. For every function 5 : {0, 1}C → {0, 1}, let the total variation dis-
tance between 5 when applied to a uniform distribution and an expander random
walk with spectral expansion constant _ be denoted by Y_ ( 5 ). Then, if 5 is com-
putable by a size-s depth-d circuit, then Y_ ( 5 ) = $ (

√
_ · (log B)2(3−1)). Further,

Y_ ( 5 ) = $ (
√
_ · DT( 5 )2), where DT( 5 ) denotes the decision tree complexity of 5 .

Two consequences of lemma 1.6.1 in [Coh+22] are that 1) any test-function in the
complexity class AC0 is fooled by an expander random walk, any class of functions
with a bounded Fourier tail ([Tal17]) are fooled by expander random walks. This
leaves us at our current state of the pseudorandomness of expander random walks.
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C h a p t e r 2

PSEUDORANDOMNESS WITH ARBITRARY LABELS: STICKY
RANDOMWALK

Recall theorem 18 of [GV22] (presented in lemma 1.5.6) which says that:

TVD( [Σ(RWC
G)]1, [Σ(* [3])]1) ≤ $

((
?

min1∈[?] 51

)$ (?)
· _

)
[GV22] asks whether the ( ?

min1∈[?] 51 )
$ (?) dependence in the upper bound of the

total variation distance is tight.

Contributions. In this paper, we answer in the negative for a family of graphs.
Specifically, we present a family of generalized sticky random walks (where the
alphabet size can be arbitrarily large), where we find that the optimal TVD is $ (_),
for _ < 0.27, whereas lemma 1.5.6 in [GV22] predicts a bound of $ (_?2?), which
provides evidence that the ( ?

min1∈[?] 51
)$ (?) factor is not tight. Further, [GK21]

studied the sticky random walk because it was an “essential step” to understanding
the full expander random walk - specifically, theorem 4 in [GK21] shows that every
_-parameterized sticky random walk is bĳective with a corresponding expander
graph. We extend their result in lemma 2.4.2 by showing that our generalized sticky
random walk (parameterized by _ and ? also correspond to expander graphs with a
linearly-reduced spectral expansion of _?. We then show that our generalized sticky
randomwalk reduces from [GK21]’s two-vertex sticky randomwalk in lemma 2.4.1.
Finally, in Appendix B we provide a novel alternate treatment of the Krawtchouk
functions into the complex domain which can be used to attain an $ (_??) bound
on the TVD.

SRW ERW G-SRW G-ERW Method
[GK21] X × × × Krawtchouk Functions
[Coh+22] X X × × Fourier on Z3
[GV22] X X × Almost Fourier on Z
Our work X × X × Generalized Krawtchouk Functions

Table 2.1: Comparing our work with previous works. Here, SRW denotes sticky
random walk, ERW denotes expander random walk, G- denotes generalized, and a
X at the corresponding location implies a result of an optimal $ (_) bound.
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2.1 Generalizing the Sticky RandomWalk
We consider the case where the vertices of the sticky random walk (SRW) can
be labeled with an arbitrary alphabet Z?, since a decomposition of the vertex-set
+ = {0, . . . , ? − 1} = +1 t ... t +@ for @ ≥ 2, could allow us to model random
walks where the probability of transitioning between different states is asymmetric,
while allowing us to study the pseudorandomness of random walks on graphs with
vertices with more complex labelings which has already been explored in [GV22].
This section generalizes the sticky random walk on ? characters, and provides the
context for bounding the total variation distance between the sticky random walk
and U=

?.

Definition 20 (The generalized sticky randomwalk). The generalized sticky random
walk ((=, ?, _) is an =-step long, ?-symbol walk on aMarkov chain with ? states Z?
labeled as vertices on a complete graph with self-loops �?, where B0 ∈* Z? and at
each subsequent step, we either stick to the same state with probability 1

?
+ (?−1)_,

or change to any other state with uniform probability 1
?
− _. So, for instance,

comparing ((=, 4, _) to ((=, 4, 0) = *=
4 (the uniform random walk on 4 vertices)

yields the following Markov chain graphs:

Figure 3: Markov chains of the generalized sticky random walk on 4 states and the
uniform distribution on 4 states. The figure on the left corresponds to ((=, 4, _),
the _-biased sticky random walk on four vertices, and the figure on the right
corresponds ((=, 4, 0) = *=

4 , the unbiased random walk on four vertices.

Proposition 1 (Probability Invariance Under Permutations). For any G1, G2 ∈ Z=?, we
have Pr[G1] = Pr[G2] iff | (8, 8 + 1) | such that (G1)8 = (G1)8+1 is equal to | ( 9 , 9 + 1) |
such that (G2) 9 = (G2) 9+1. This can be shown by considering the products of
conditional probabilities on each state. A slight weakening of this statement is that
for any permutation c such that c : Z? → Z?, we must have that Pr[G1...G=] =
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Pr[c(G1)...c(G=)]. Consider the case of ? = 2. Then, the lemma yields that
Pr(G) = Pr(Ḡ), which says that inverting the labels of a string from the sticky
random walk does not change its probability. This proposition extends the same
argument to all ? ∈ N for ? ≥ 2.

Proposition 2 (Krawtchouk Orthogonality). The orthogonality of the Krawtchouk
function  : (ℓ) implies that for any function 5 : Z=+1 → R, there exists a unique
expansion 5 (ℓ) =

=∑
:=0

5̂ (:) : (ℓ), where for 0 ≤ : ≤ =,

5̂ (:) = E
[(
=

:

)
5 (1) : (1)

]
Definition 21 (Probability ratio). Let @ : Z=+1 → R, where @(ℓ) =

Pr
B∼(
[|B |0=ℓ]

(=ℓ) (?−1)=−ℓ ?
=.

Intuitively, @(ℓ) is the ratio of the probability of getting a string with ℓ 0s from the
generalized sticky random walk ((=, _, ?) to the probability of getting a string with
ℓ 0s from U=

?.

Lemma 2.1.1. [Krawtchouk coefficient of the probability ratio] Expanding @(ℓ)
through the Krawtchouk function expansion in Proposition 2s yields that:

@̂(:) = 1(=
:

)
(? − 1)=−:

E
B∼((=,?,_)

[ : ( |B |0)]

We provide a proof of this lemma in A.

Lemma 2.1.2. For B ∈ ((=, ?, _), we have that

Pr[|B |0 = ℓ] =
1
?=

=∑
:=0

 ℓ (:) E
B∼((=,?,_)

[ : ( |B |0)]

We provide a proof of lemma 2.1.2 in A.

Therefore, we observe that to compute Pr[|B |0 = ℓ], it is imperative to calculate the
expected value of the Krawtchouk function. Section 2.2 is devoted to computing
EB∼((=,?,_) [ : ( |B |0)].

2.2 Expected Value of the Krawtchouk Function
We first generalize the shift function from definition 19.

Definition 22 (Shift Function). Given any set ) ⊆ [=] such that |) | = : , let
01 < ... < 0: be the elements of ) in increasing order. Then, for any 2 ∈ Z?, let

shift2 ()) =
b|:−2 |/?c∑
8=0

(02+8? − 02+8?−1)
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Then, for any 2 such that : mod ? = −2, and for any 3 ∈ Z=+1, let q2 (3) denote
the number of subsets of [=] of size : such that shift2 ()) = 3. Note that for any
C ≤ 0, 0C = 0.

Lemma 2.2.1. The expected value of the Krawtchouk function is given by:

E[ : ( |B |0)] =


(? − 1)=−:

=−:∑
3=:

q0(3)_3 , if 2 = : mod ? ≡ 0

0, if 2 = : mod ? . 0

We provide a proof of this lemma in A.

Lemma 2.2.2. For 2 ∈ N where 0 ≤ 2 ≤ ?, and for 3 ∈ N where : ≤ 3 ≤ = − : ,
the number of :-sized subsets of [=] that satisfy shift2 ()) = 3 is:

q2 (3) =
1
?:

∑
)∈( [=]: )

shift2 ())=3

1 =
1
?:

(
3 − 1

b |:−2 |
?−1 c − 1

) (
= − 3
b |:−2 |
?−1 c

)

We provide a proof of this lemma in A

Corollary 2.2.2.1. By combining the results from lemmas 2.2.1 and 2.2.2, we have
that the expectation of the Krawtchouk function is:

E[ : ( |B |0)] =


1
?:

=−:∑
3=:

( 3−1
b :
?−1 c−1

) ( =−3
b :
?−1 c

)
_3 , if : mod ? ≡ 0

0, if : mod ? . 0

Thus, having computed E[ : ( |B |0)], we are now prepared to upper-bound the total
variation distance between [Σ(((=, ?, _))]0 and [Σ(U=

?)]0.

2.3 Upper Bound for the Total Variation Distance
We devote this chapter to deriving an optimal upper bound of the total variation
distance of $ (_).

Lemma 2.3.1. The total variational distance between the generalized sticky random
walk on ? vertices and the uniform distribution on ? states is given by:

TVD( [Σ(((=, ?, _))]0, [Σ(U=
?)]0) =

1
2
E

1∼U=?
[|@(1) − 1|]
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We provide a proof of this lemma in A.

Corollary 2.3.1.1. The total variational distance between the generalized sticky
random walk and the uniform distribution on ? states has the following upper bound
as a result of the convexity of the expected value operator:

TVD( [Σ(((=, ?, _))]0, [Σ(U=
?)]0) ≤

1
2

√
E

1∼[Σ(U=?)]0
[@(1) − 1]2

We then see how lemmas 2.1.1, 2.2.1, and 2.3.1 interact in the below lemma and proof
methodology which utilizes the reciprocity relation of the Krawtchouk functions.

Lemma 2.3.2. For : ≤ = and for 1 ∼ [Σ(U=
?)]0, we have that

E
1∼[Σ(U=?)]0

[@(1) − 1]2 =
=∑
:=1

E[ : ( |B |0)]2(=
:

)
(? − 1)=−:

Proof. We know that @(1) has a unique Krawtchouk expansion, where the coef-
ficients on each Krawtchouk basis are given by Proposition 2. So, we observe
that:

E
1∼[Σ(U=?)]0

[@(1) − 1]2 = E
1∼[Σ(U=?)]0

[( =∑
:=0

@̂(:) : (1) − 1
)2]

Then, recall that @̂(:) = E[ : ( |B |0)]
(=:) (?−1)=−: . So, @̂(0) =

E[ 0 ( |B |0)]
(?−1)= = 1

(?−1)= . Similarly, by

the definition of the Krawtchouk function and the reciprocity relation  : (ℓ)
(=:) (?−1)=−: =

 B (ℓ)
(=B) (?−1)=−B , we have that  0(1) =  = (1) = (?−1)=. Therefore, @̂(0) 0(1) = 1.
Hence, the above equation simplifies to:

E
1∼[Σ(U=?)]0

[@(1) − 1]2 = E
1∼[Σ(U=?)]0

[( =∑
:=1

@̂(:) : (1)
)2]

Since the generalized Krawtchouk functions are orthogonal (as proven in lemma
1.5.1), the product of the non-diagonal entries in the above term all evaluate to 0.
Thus, counting the residuals, we have that the square of the summation is just the
summation of the squared terms that it contains. Thus, exploiting the orthogonality
of the generalized Krawtchouk functions and the linearity of the expectations, we
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write that:

E
1∼[Σ(U=?)]0

[@(1) − 1]2 = E
1∼[Σ(U=?)]0

[
=∑
:=1

@̂(:)2 : (1)2
]

=

=∑
:=1

@̂(:)2 E
1∼[Σ(U=?)]0

[ : (1)2] (linearity of expectations)

=

=∑
:=1

E[ : ( |B |0)]2(=
:

)2(? − 1)2=−2:
· E
1∼[Σ(U=?)]0

[ : (1)2]

Finally, we use lemma 1.5.1 to write E
1∼[Σ(U=?)]0

[ : (1)2] as 〈 : ,  :〉 =
(=
:

)
.

E
1∼[Σ(U=?)]0

[@(1) − 1]2 =
=∑
:=1

(=
:

)
E[ : ( |B |0)]2(=

:

)2(? − 1)2=−2:
=

=∑
:=1

E[ : ( |B |0)]2(=
:

)
(? − 1)2=−2:

�

Finally, we prove the total variation distance bound between the hamming weight
distribution of the generalized sticky distribution and the uniform distribution.

Theorem 2.3.3. For _ ≤ 0.27,

TVD( [Σ(((=, ?, _))]0, [Σ(U=
?)]0) ≤ $ (_)

Proof. Substituting the result of Corollary 2.3.1.1 into the equation derived in lemma
2.3.2, and scaling the indexes of the summation, we have that:

E
1∼[Σ(U=?)]0

[@(1) − 1]2 =
=/?∑
:=1

1( =
?:

)
(?−1)2=−2?:

( =−?:∑
3=?:

1
?:

(
3 − 1
b : ?
?−1c − 1

) (
= − 3
b : ?
?−1c

)
_3

)2

=
1
?2:

=/?∑
:=1

1( =
?:

)
(?−1)2=−2?:

( =−?:∑
3=?:

(
3 − 1
b :

1− 1
?

c − 1

) (
= − 3
b :

1− 1
?

c

)
_3

)2

≤ 1
?2:

=/?∑
:=1

(=
:

)2( =
?:

)
(?−1)2=−2?:

( =−?:∑
3=?:

(
3 − 1
: − 1

)
_3

)2

≤ 1
?2:

=/?∑
:=1

(=
:

)2( =
?:

) ( =−?:∑
3=?:

(
3 − 1
: − 1

)
_3

)2
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Note the following generating function relation that ( G
1−G )

: =
∑
<≥:

(<−1
:−1

)
G<. Then,

E
1∼[Σ(*=?)]0

[@(1) − 1]2 ≤ 1
?2:

=/?∑
:=1

(=
:

)2( =
?:

) ( _

1 − _

)2:

≤ 1
?2:

=/?∑
:=1

(
?:

=

) ?: (
4=

:

)2: (
_

1 − _

)2:
(We prove this in section A.0.1)

=

=/?∑
:=1

(
?:

=

) ?:−2: (
4_

1 − _

)2:

≤
=/?∑
:=1

(
4_

1 − _

)2:
≤ $ (_2), (for _ ≤ 1

1 + 4 by geometric sums)

Therefore, for _ ≤ 1
1+4 ≈ 0.27, we have that the total variation distance is atmost√

E
1∼[Σ(U=?)]0

[?(1) − 1]2 ≤ $ (_). �

Proof Strengths and Limitations:

When _ > 0.27, our proof method fails to provide the desired $ (_) total variation
distance since

∑=/?
:=1(

4_
1−_ )

2: does not converge and goes to ∞. We do, however,
reach a higher lower-bound on the radius of convergence (_ ≤ 0.27) than [GK21]’s
_ ≤ 0.16 and [GV22]’s more general result but which is only valid for _ < 0.01 and
a fixed ? in their interpretation of their$ (_?$ (?)) result, whereas our methodology
allows us to remove the dependency of ? in the total variation distance (though only
for the generalized sticky random walk). We conjecture that _ ≤ 0.27 is not the
optimal radius of convergence for the generalized sticky random walk and leave this
as an open problem for future research directions in this topic to resolve.
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2.4 Generalized Sticky RandomWalk Markov Chain is an Expander
In this section, we present and prove some equivalence properties between the
generalized families of sticky random walks and show that the generalized sticky
random walk is also an expander graph.

Lemma 2.4.1. Let ? be the number of vertices in the generalized sticky random
walk. Then, for all ? mod : ≡ 0, ((=, ?, _) reduces from ((=, :, ?_(1 − 1

:
)).

Proof. Consider a generalized sticky random walk which details an irreducible
homogeneous Markov chain on ? states where the probability of staying at the same
state is 1

?
+ (? − 1)_ and the probability of switching states is 1

?
− _. Then, consider

a ’grouped’ random-walk, for a grouping of states+ = [?] = +0 u · · · u+:−1, where
+8 contains an arbitrary selection of ?/: vertices and where ? mod : ≡ 0. Then,
((=, ?, _) details an =-step long randomwalk on the generalized sticky randomwalk.
Then, we note that the probability that the current state of the grouped random walk
stays at itself must be ( 1

:
+ (?−1)_) + ( 1

?
−_) ( ?

:
−1) = 1

:
+ ?_(1− 1

:
). Here, the first

term comes from the probability of any state � in the sticky random walk staying at
itself, and the second term comes from the probability that any other vertex in the
same group as � transitions to � . Since this is true for any of the grouped vertex,
we conclude that our grouping of the random walk yields a sticky random walk on
: vertices and bias ?_(1 − 1

:
), which completes the reduction. �

Lemma 2.4.2. Every generalized sticky random walk ((=, ?, _) corresponds to a
=-step long random walk on a ?_-spectral expander with ? vertices.

Proof. We first extend Definition 45 of the sticky random walk matrix in [GV22].
For subsets �, � ∈ [?], let ��,� ∈ R�×� denote the matrix with all entries equal
to 1
|�| . Then, for _ ∈ [0, 1], let �_,? ∈ R?×? denote the generalized sticky random

walk matrix. Then, by definition, we write that:

�_,? = (1 − _)J+,+ + ?_I{=×=}

Then, note that ‖�=×=‖2 is 1, as it acts as � on the orthogonal subspaces R of R?.
Therefore, _(�_,?) ≤ ?_ since the eigenvector of �_,? is orthogonal to �+,+ and so
�_,?a = ((1 − _)JE,E + ?_�{=×=})a = (1 − _)JE,Ea + ?_�{=×=}a = ?_a. The opposite
inequality comes from the fact that =−1

=
®1{20} − 1

=

∑?−1
8=1
®1{28} ∈ ®1⊥ is an eigenvector

of �_,? with eigenvalue ?_, which proves the theorem. �
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A p p e n d i x A

PROOF OF INTRODUCTORY THEOREMS

Lemma 1.3.1: Without loss of generality, let _1 ≥ · · · ≥ _= be the = eigenvalues of
A. Then, 1 = _1 ≥ · · · ≥ _= = −1.

Proof. We show this by considering the Laplacian L of the graph � defined by:

L = � − �−1/2��−1/2

We then show the equivalent statement that if _1 ≥ · · · ≥ _= are the = eigenvalues
of A, then

0 = _1 ≥ · · · ≥ _= = −2

We first show that 0 is an eigenvalue of the Laplacian L with eigenvector �1/2®1,
where ®1 is the all-ones vector of length =. Observe that:

L(�1/2®1) = �−1/2(� − �)�−1/2�1/2®1 = �−1/2(� − �)®1 = 0

The last equality holds because ®1 is an eigenvector of (� − �) which corresponds
to an eigenvalue of 0. Thus, 0 is an eigenvalue of L. To show that 0 is a minimal
eigenvalue of L, note that since L is symmetric and positive semidefinite (PSD),
we must have that:

_1 := inf
G∈R=:‖G‖=1

G)LG

So, for an arbitrary E ∈ R=, observe that:

E)LE = E) (1 − �−1/2��−1/2)E

=
∑
8∈+

E2
8 −

∑
(8, 9)∈�

2E8E 9√
383 9

=
∑
(8, 9)∈�

(
E8√
38
−

E 9√
3 9

)2

≥ 0

Thus, _1 = infG∈R=:‖G‖=1 G
)LG ≥ 0.
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For the other direction, we observe (by the PSDofL) that G) (1−�−1/2��−1/2)G ≥ 0
implies _= ≤ 2 as shown below:

−G)�−1/2��−1/2G ≤ G)G =⇒ G) �G − G)�−1/2��−1/2G ≤ 2G)G

Factorizing, we get that:

G) (� − �−1/2��−1/2)G
G)G

:=
G)LG
G)G

≤ 2 =⇒ G)LG ≤ 2

Thus, each eigenvalue is bounded above by 2. So, _= ≤ 2, which proves the
claim. �
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Lemma 1.3.2: Let � = (+, �) be a 3-regular graph with edge expansion ℎ. If
any n < ℎ fraction of edges are removed from �, then the graph has a connected
component that spans atleast 1 − n/2ℎ fraction of the vertices.

Proof adapted from [Tre11]. Let �′ ⊆ � be an any subset of ≤ n |� | = n3 |+ |/2
edges that an adversary may wish to remove from the graph.Let �1, . . . , �< be
the connected components of the graph (+, � − �′) ordered (WLOG) such that
|�1 | ≥ |�2 | ≥ · · · ≥ |�< |. Observe that:

|�′| ≥ 1
2

∑
8≠ 9

� (�8, � 9 ) =
1
2

∑
8

� (�8, + − �8)

Then, |�1 | > |+ |/2, since |�1 | ≤ |+ |/2 would imply that |�′| ≥ 1
2
∑
8 3ℎ |�8 | =

3ℎ |+ |/2, which is impossible if ℎ > n . If |�1 | ≥ |+ |/2, we define ( := �2 ∪
· · · ∪ �<. Then, |�′| ≥ � (�1, () ≥ 3ℎ |( |, which implies |( | ≤ n

2ℎ |+ | and so
�1 ≥ (1 − n/2ℎ) |+ |. This proves our claim. �

Lemma 1.3.3: For every constant 3 ∈ N, any 3-regular graph � = (+, �) satisfies
_(�) ≥ 2

√
3 − 1/3 − >(1), where the >(1) term vanishes as =→∞.

Proof adapted from [Vad13]. Let � be a regular undirected graph and )3 be the
infinite 3-regular tree. For a graph � and ℓ ∈ N, let ?ℓ (�) denote the probability
that if we choose a random vertex E ∈ � and do a random walk of length 2ℓ, we end
back at vertex E. Then, we first observe that ?ℓ (�) ≥ ?ℓ ()3). Second, note that
?ℓ ()3) ≥ �ℓ (3−1)ℓ/32ℓ. Here, �ℓ is the Catalan number, which equals the number
of properly parenthesized strings of length 2ℓ. This last inequality holds because in
the worst case, the random walk goes ℓ steps away from E and back, where at each
vertex there are 3 − 1 branches possible in the 3-regular tree. Here, there are atmost
32ℓ possible choices of paths. Finally, given an exact path, the number of ways in
which the vertex could get to a vertex ℓ steps away is exactly �ℓ, the ℓth Catalan
number.

Since the trace of the matrix L is the sum of its eigenvalues, the 2ℓ’th transition
matrix has sum of eigenvalues exactly =?ℓ (�). We can bound this from above by
1 + (= − 1)_2ℓ. Then, using the fact that �ℓ =

(2ℓ
ℓ

)
/(ℓ + 1), we get that _(�) ≥

2
√
3 − 1/3 − >(1). �
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Lemma 1.3.4 (Expander Mixing Lemma): Let � = (+, �) with |+ | = =, |� | = <
be a 3-regular graph with spectral expansion constant _. Then, for any subsets (, )
of the vertex-set + , we have that:����� ((, )) − 3 |( | |) |=

���� ≤ _√|( | |) |
Proof. Let 1( be the indicator vector of the set ( and 1) be the indicator vector of
the set ) , where:

(1() 9 =


0, 9 ∉ (

1, 9 ∈ (
and (1) ) 9 =


0, 9 ∉ )

1, 9 ∈ )

Let D = (1/=, . . . , 1/=). Let 1( = |( |D + E1, 1) = |) |D + E2. Then, observe that
〈E1, D〉 = 〈E2, D〉 = 0. Also:

‖E1‖ =
√
(= − |( |)/=2 + |( | (1 + =2 − 2/=) =

√
1/= + |( | − 2|( |/= ≤

√
|( |

‖E2‖ =
√
(= − |) |)/=2 + |) | (1 + =2 − 2/=) =

√
1/= + |) | − 2|) |/= ≤

√
|) |

Note that the number of edges between ( and ) is exactly (1()) �1) . Then:

� ((, )) = (1()) �1) = ( |( |D) + E)1 )�( |) |D + E2)

=
3 |( | |) |
=
+ 3 |) |E)1D + |( |D

) �E2 + E)1 �E2

=
3 |( | |) |
=
+ E)1 �E2

So, subtracting, we have that:����� ((, )) − 3 |( | |) |=

���� = E)1 �E2

≤ ‖E1‖‖�E2‖ (Cauchy Schwartz)

≤ ‖E1‖_‖E2‖
≤ _

√
|( |

√
|) |

This yields the claim. �
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Lemma 1.3.5 [Expander Hitting Lemma]. Let � = (+, �) with |+ | = =, |� | = < be
a 3-regular graph with spectral expansion constant _. Then, for any � ⊆ + such
that |� | = (1 − X)=, the probability that a random walk -1, -2, . . . , -C of C − 1 steps
starting at a uniformly random vertex of � completely stays inside � is given by:

Pr[-8 ∈ �,∀8 ∈ [C]] ≤ (1 − X(1 − _))C−1

Proof adapted from [Gur20]. Let " be the random walk matrix of the graph �
and let % be the projection matrix that zeroes out all the indices not in � such that
%8 9 = 1{8= 9 ,8∈�}. So, the probability that all the C vertices of a random walk are in �
is equal to:

Pr[+8 ∈ �,∀8 ∈ [C]] = ‖%"%" . . . %"%D‖1

Then, by Cauchy Schwartz (and since %2 = %), we write that:

‖(%"%)C−1%D‖1 ≤
√
=‖(%"%)C−1%D‖

We then bound the largest absolute value of the eigenvalues of %"%. Let a =
max‖G‖=1 G

)%"%G. Let H = %G. We then have that a = H)"H, where H = H‖ + H⊥

such that H‖ = UD and 〈H⊥, H‖〉 = 0. Note that ‖H‖ ‖2 + ‖H⊥‖2 = ‖H‖2 ≤ ‖G‖2 = 1.
Then, H‖ = UD, where U = 〈H, 1〉. Thus, ‖H‖ ‖2 = 1

=
〈H, 1〉2 ≤ (1 − X)‖H‖2. So:

a = H)"H = (H‖) + H⊥) )" (H‖ + H⊥)
≤ (1 − _)‖H‖ ‖2 + _‖H‖2

≤ 1 − X(1 − _)

So, it must then be the case that:

‖(%"%)C−1%D‖1 ≤
√
=‖(%"%)C−1%D‖ ≤

√
=(1 − X(1 − _))C−1‖%D‖

≤
√

1 − X(1 − X(1 − _))C−1

≤ (1 − X(1 − _))C−1

This proves the claim. �
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Lemma 1.4.1 [Ta-Shma]. Let (0 be the parity of the number of times an expander
random walk of length C hit � and (1 be the parity of the number of times a
uniformly random sequence of variables realized a value contained in �. Then, for
n0 = 0.8, V = 0.01, and small _ such that n0 + 2V + 2_ < 0.9:

TVD((0, (1) = (n0 + 2V + 2_) bC/2c

Proof adapted from [Ta-17]. LetV be a vector space with dim(V) = |+ | = =′ and
identify an element E ∈ + with a basis vector ®E ∈ V. We will use this basis to
define �, the linear operator of a random walk in �. Now, let Υ be a distribution
over {0, 1}: . For a linear test U ∈ {0, 1}: , let:

BiasU (Υ) =
���� Pr
B∈Υ
(〈U, B〉 = 0) − Pr

B∈Υ
[〈0, B〉 = 1]

����
Then, Bias(Υ) = maxU≠∅ BiasU (Υ). We say that Υ is n-based if Bias(Υ) ≤ n . Now,
let U = (U1, . . . , U: ) ∈ {0, 1}: be a test-set that maximizes BiasU (Υ) and let (0, (1

be the corresponding partitions of [=′], such that (1 = {E ∈ [=′] : 〈/ (E) |U〉 =
1}. Then, define Π0 and Π1, where Π1 is the projection on the vector space of
span({®E |E ∈ (1}). We let Π = Π0 − Π1. Then, sample a random walk on an
expander. Let ?4E4= ((1) be the probability that a sampled path (E0, . . . , EC) visits (1

an even number of times, and ?>33 ((1) for an odd number of times. Then, observe
the following:

1) BiasU (Υ) = | EE0,...,EC [(−1)⊕
C
9=0〈/ (E 9 ),U〉] | = |?4E4= ((1) − ?>33 ((1) |.

2) ?4E4= ((1) − ?>33 ((1) =
∑
10,...,1C∈{0,1} (−1)10+···+1)C1†Π1C� . . .Π12�Π11�Π101

because paths that fall an even number of times into (1 contribute 1 while the other
paths contribute −1. Then, by the distributive law, this must be identically equal to
1†(∑1C∈{0,1} (−1)1CΠ1C )� . . . (

∑
10∈{0,1} (−1)10Π10)1 = 1†(Π�)CΠ1.

3) Let E ∈ V such that ‖E‖ = 1 and E = E⊥ + E‖ . Then since �E‖ = E‖ = ‖E‖ ‖1:

‖Π�Π�E‖ ≤ ‖Π�Π�E⊥‖ + ‖Π�Π�E‖ ‖ ≤ ‖Π� (Π1)‖ ‖ + ‖Π� (Π1)⊥‖ + ‖�E⊥‖

≤ ‖(Π1)‖ ‖ + 2_ =
| |(0 | − |(1 | |

=
+ 2_ ≤ n0 + 2V + 2_

The last inequality arises from letting Υ0 be n0-biased and noting that = − =′ ≤ V=.
4) |?4E4= ((1) − ?>33 ((1) | = |1†(Π�)CΠ1| ≤ ‖(Π�)C ‖ ≤ ‖(Π�)2‖ bC/2c ≤ (n0 + 2V +
2_) bC/2c . For large enough C, this term goes to 0, which is identical to the Chernoff
result for the uniform random variables. This proves the claim. �
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Lemma 17. Orthogonality of the Krawtchouk functions:

〈 A ,  B〉 = E
1∼Bin(=, 12 )

[ A (1) B (1)] =


0 if A ≠ B(=
B

)
if A = B

Proof. We provide a probabilistic interpretation of the Krawtchouk function as
demonstrated in [Sam98]. Fix � ∈

([=]
ℓ

)
, � ∈*

([=]
B

)
, and choose � ∈*

([=]
A

)
. Then,

 B (ℓ) =
(
=

B

)
E[(−1) |�∩�|],  A (ℓ) =

(
=

A

)
E[(−1) |�∩� |]

The inner product of  A and  B is then:

〈 A ,  B〉 =
(
=

A

) (
=

B

)
E[(−1) |�∩� |] E[(−1) |�∩� |]

=

(
=

A

) (
=

B

)
E[(−1) |�∩� | (−1) |�∩� |] (A, B, and C are independent)

If � ≠ �, then E[(−1) |�∩� | (−1) |�∩� | |� ≠ �] = 0, since for each G ∈ �Δ�, we
could either have G ∈ � or G ∉ �, which contributes a +1 or -1 (or vice versa)
(respectively) to the expectation. So, the expected value must be 0. Conversely, if
� = �, then it must be the case that A = B, which occurs with probability 1(=

B

) . So,
E[(−1) |�∩� | (−1) |�∩� |] = E[(−1)2|�∩� |] = 1

(=B)
. This yields that

〈 A ,  B〉 =


0 if A ≠ B(=
B

)
if A = B

�
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Lemma 1.5.6 [Fooling Symmetric Functions]. For all integers C ≥ 1 and ? ≥ 2,
let � = (�8)1≤8≤C−1 be a sequence of _-spectral expanders on a shared vertex set
+ with labeling val :+→ [?] that assigns each label 1 ∈ [?] to 51-fraction of the
vertices. Then, for any label 1, we have that the total variation distance between
the number of 1’s seen in the expander random walk and the uniform distribution
on [?] has the following bound (where [Σ(/)1] counts the number of occurrences
of 1 in /) is:

TVD( [Σ(RWC
G)]1, [Σ(* [3])]1) ≤ $

((
?

min1∈[?] 51

)$ (?)
· _

)

Proof adapted from [GV22]. Consider the case ?0?1C < 1. Then, for 9 ∈ ZC , we
have that:

|6 9 | ≤ 44 ·
‖�D − �′D‖

C
· 42A2−BA ( 9−?1C)

This expression is minimized when setting A = 1
2 and B = sgn( 9 − ?1C). Summing

over all 9 : | 9 − ?1C | ≥ 2 gives:∑
9∈ZC :| 9−?1C |≥2

|6 9 | ≤ 88 ·
‖�′D − �D‖

C
· 4

1/2−2/2

1 − 4−1/2 ≤ 40004−2
2/8C ·

‖�′D − �D‖
C

A similar method shows an equivalent result for ?0?1C ≥ 1, which thus proves
lemma 1.5.7 (theorem 18).

The proof of lemma 1.5.8 (Theorem 20), in turn, gets to the heart of the proof
methodologies used in the paper, since it involves a Fourier-analytic component.
We will fulfil this by providing a high-level overview of the (auxiliary) proof of
lemma 1.5.8. To do this, we re-tell [GV22]’s description of the Fourier group on
Z. Let (1 = R/2c Z with ℓ2 norm ‖ 5 ‖ =

√∫ c

−c | 5 (\) |2d\/2c and use [Ahm+19]’s
formulation of the singular-value approximation.

Let ℓ2(Z) and ℓ2((1) represent the subspaces of CZ and C(1 (resp.) that contain all
elements of finite ℓ2 norm. Then, the Fourier transform of Z is the map F : ℓ2(Z) →
ℓ2((1) such that the Fourier transform of ℎ ∈ ℓ2(Z), denoted F ℎ = ℎ̂ ∈ ℓ2((1),
is given by ℎ̂(\) = ∑

9∈Z ℎ 94
−8\ 9 . It can also be expressed in terms of the Fourier

characters j\ = (48\ 9 ) 9∈Z ∈ CZ as ℎ̂(\) = j∗\ℎ. The central idea for lemma 1.5.8 is
that the ℓ2 norm is preserved under the Fourier transform, and so, ‖6(BA) ‖ = ‖6̂(BA) ‖.
The last component needed for this proof is theorem 25 from [GV22] which is a
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linear-algebraic result that bounds |6̂(BA) | as follows:

|6̂(AB | ≤ 4 · ‖�′D − �D‖ · ?0?1 ·
(
4A2 + 3

2
\2

)
· 4?0?1C (2A2−\2/20)

Then, to prove lemma 1.5.8, [GV22] uses the result from theorem 25 above.

‖6(BA) ‖ = ‖6̂(BA) ‖ =

√∫ ∞

−∞
|6̂(BA) (\) |2 d\

2c

≤ 4
√

2‖�′D − �D‖?0?14
2?0?1CA

2

(
4A2

√∫ c

−c
4−?0?1C\2/10 d\

2c
+

√∫ c

−c

9
4
\44−?0?1C\2/10 d\

2c

)
From here, bounding the inequality further with different standard results yields the
result for 1.5.8. The big-picture idea of this proof is the notion that the ℓ2 norm
is preserved under the Fourier transform which relates the quantity to the ℓ1 norm
which can also, in turn, be bounded. �

Lemma 2.1.1. [Krawtchouk coefficient of the probability ratio] Expanding @(ℓ)
through the Krawtchouk function expansion in Proposition 3.2 yields that:

@̂(:) = 1(=
:

)
(? − 1)=−:

E
B∼((=,?,_)

[ : ( |B |0)]

Proof. Writing the expected value of  : ( |B |0) using @(1) and  : (1), we get:

@̂(:) = 1(=
:

)
(? − 1)=−:

=∑
1=0

(
=

1

)
(? − 1)=−1

?=
@(1) : (1)

=
1(=

:

)
(? − 1)=−:

=∑
1=0

Pr
B∼((=,?,_)

[|B |0 = 1] : (1) (substituting @(1))

=
1(=

:

)
(? − 1)=−:

E
B∼((=,?,_)

[ : ( |B |0)] (by definition of E
B∈((=,?,_)

[ : ( |B |0)])

�

Lemma 2.1.2. For B ∈ ((=, ?, _), we have that

Pr[|B |0 = ℓ] =
1
?=

=∑
:=0

 ℓ (:) E
B∼((=,?,_)

[ : ( |B |0)]
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Proof. Writing out Pr[|B |0 = ℓ] in terms of the probability ratio @(ℓ), we get:

Pr[|B |0 = ℓ] =
(=
ℓ

)
(? − 1)=−ℓ

?=
@(ℓ)

=

(=
ℓ

)
(? − 1)=−ℓ

?=

=∑
:=0

@̂(:) : (ℓ) (Krawtchouk expansion of @(ℓ))

=

(=
ℓ

)
(? − 1)=−ℓ

?=

=∑
:=0

 : (ℓ)(=
:

)
(? − 1)=−:

E[ : ( |B |0)] (Lemma 3.1)

=
1
?=

=∑
:=0

(=
ℓ

)(=
:

) (? − 1)=−ℓ
(? − 1)=−:

E[ : ( |B |0)] : (ℓ)

=
1
?=

=∑
:=0

 ℓ (:) E
B∼((=,?,_)

[ : ( |B |0)] (By the reciprocity relation)

�

Lemma 2.2.1 . The expected value of the Krawtchouk function is given by:

E[ : ( |B |0)] =


(? − 1)=−:

=−:∑
3=:

q0(3)_3 , if 2 = : mod ? ≡ 0

0, if 2 = : mod ? . 0

Proof. By the formula of expected values, we have that:

E[ : ( |B |0)] =
∑

B∼((=,?,_)
Pr[B]

∑
H∈Z=2
|H |0=:

(−1)H·B

=
∑

B∼((=,?,_)
Pr[B]

∑
H∈Z=2
|H |0=:

(−1)
=∑
8=1
H8 ·B8

=
∑

B∼((=,?,_)
Pr[B]

∑
H∈Z=2
|H |0=:

=∏
8=1
(−1)H8 ·B8

We note then that the dot-product on the exponent of (−1) only takes the summation
of the element-wise product of U and H for positions on H that are strictly non-zero.
Therefore, we can rewrite the summation by considering the indices corresponding
to locations of non-zeros in H, and instead take the summation of the dot-product
along these indices. So, for ) = {01 < ... < 0=−: }, we have that:

E[ : ( |B |0)] =
∑

B∼((=,?,_)
Pr[B]

∑
)∈( [=]=−:)

∏
8∈)
(−1)B8
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Further, choosing a ) ∈
( [=]
=−:

)
implies a choice of ) =

([=]
:

)
= [=] \ ) . Hence, the

summation reduces to:

E[ : ( |B |0)] =
∑

B∼((=,?,_)
Pr[B]

∑
)∈( [=]: )

∏
8∈)

(−1)B8

=
∑

)∈( [=]: )
E

B∼((=,?,_)

[∏
8∈)

(−1)B8
]

(definition of expectations)

Next, observe that the sticky randomwalk is aMarkov chain where (−1)B8 = (−1)B8−1

with probability 1/? + (?−1)_). So, we can instead model the transitions of strings
from the sticky randomwalk as randomvariables D, where D1 is uniformly distributed
inZ? and for 8 ≥ 2, D8 is uniformly distributed on (1−_)* [Z?]+_ ·10. To provide an
intuition for this refactorization, (1−_)* [Z?] is the ’base’ probability of switching
to any vertex and _ is the additional probability of staying on the same vertex.

Then, since B8 =
∑
8∈)

∑8
9=1 D 9 , we write that:

E
B∈((=,?,_)

[∏
8∈)

(−1)B8
]
= E
B∈((=,?,_)

[
(−1)

∑
8∈)

8∑
9=1
D 9

]
=

0=−:∏
9=1

E
B∈((=,?,_)

[
(−1)

∑
8∈) ;8≥ 9

D 9
]

(independence of D 9 ’s)

When 9 = 1, we get that:

E

[
(−1)

∑
8∈) ;8≥1

D1
]
= E[(−1) |) |D1]

=


1, if |) | mod ? ≡ 0

0, otherwise

Conversely, when 9 ≥ 2, let )9 = {8 ∈ ) ; 8 ≥ 9}. Then,

E

[
(−1)

∑
8∈) ;8≥ 9

D 9
]
= E[(−1) |) 9 |D 9 ]

=


1, if |)9 | mod ? ≡ 0

E[(−1)D 9 ], otherwise

Next, observe that for 9 ≥ 2, E[(−1)D 9 ] = _.
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Proof. To show this, we write the expression for D 9 , 9 ≥ 2 in the exponent and take
the expected value of (−1)D 9 .

E[(−1)D 9 ] = E[(−1) (1−_)* [Z?]+_·10] (since D 9 ∼ (1 − _)* [Z?] + _ · 10)

=

?−1∑
:=0
(−1): Pr[D 9 = :] (definition of expectation)

= (−1)0 Pr[D 9 = 0] + (−1)1 Pr[D 9 = 1] + ... + (−1)?−1 Pr[D 9 = ? − 1]

=

(
1
?
+ _

(
? − 1
?

))
−

(
1
?
− _
?

)
+ ... + (−1)?−1

(
1
?
− _
?

)
=

1
?

?−1∑
:=0
(−1): − _

?

?−1∑
:=0
(−1): + _(−1)0 = _

�

Then, for : mod ? ≡ 0, we have that:

E[ : ( |B |0)] =
∑

)∈( [=]: )
E

B∼((=,?,_)

[∏
8∈)

(−1)B8
]

=
∑

)∈( [=]: )

∏
8∈)

E
B∼((=,?,_)

[(−1)B8 ] (independence of (−1)B8 )

=
∑

)∈( [=]: )

0=−:∏
9=1

_ (since |) | = 0=−: )

=
∑

)∈( [=]: )
_0=−:

We then parameterize the summation over every possible value of the shift of T (for
: mod ? ≡ 0), where the shift function is given in Definition 22.

E[ : ( |B |0)] =
=−:∑
3=:

( ∑
)∈( [=]: )

shift0(T)=d

1
)
_3

=

=−:∑
3=:

q0(3)_3

This yields the claim. �
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Lemma 2.2.2. For 2 ∈ N where 0 ≤ 2 ≤ ?, and for 3 ∈ N where : ≤ 3 ≤ = − : ,
the number of :-sized subsets of [=] that satisfy shift2 ()) = 3 is:

q2 (3) =
1
?:

∑
)∈( [=]: )

shift2 ())=3

1 =
1
?:

(
3 − 1

b |:−2 |
?−1 c − 1

) (
= − 3
b |:−2 |
?−1 c

)

Proof. To determine q2 (3), we count the total number of ways to choose 01 <

02<...<0: such that the lengths of the intervals (02 − 02−1) + (02+? − 02+?−1) +
(02+2? − 02+2?−1) + ... = 3, where for any 9 ≤ 0, 0 9 = 0. To do this, we combine
each element-wise interval (02+8?, 02+8?−1) to form a contiguous interval of length
3 (starting from 02−1 = 0). The remaining contiguous region that excludes these
intervals must then have a length of = − 3. We then abstract the number of ways
to count 01 < ... < 0: by counting the number of intervals that have a length of
3 when combined, such that the remaining intervals have a length = − 3. From a
length of 3−1 (accounting for 00 = 0), we need to select intervals that form a length
of b|: − 2 |/(? − 1)c − 1 since they represent the number of choices of elements
of ) that are index-separated by ?. Similarly, from a length of = − 3, we need to
select intervals that form a length of b|: − 2 |/(? − 1)c possible intervals, since they
represent every other element of ) . This second constraint is to ensure that the
total length of the intervals chosen is exactly =. Finally, we divide by the maximum
number of repetitions to prevent duplicates, which is ?: . Hence, we write that:∑

)∈( [=]: )
shift2 ())=3

1 =
(

3 − 1
b |:−2 |
?−1 c − 1

) (
= − 3
b |:−2 |
?−1 c

)

Therefore,

q2 (3) =
1
?:

∑
)∈( [=]: )

shift2 ())=3

1 =
1
?:

(
3 − 1

b |:−2 |
?−1 c − 1

) (
= − 3
b |:−2 |
?−1 c

)
�

Lemma 2.3.1. The total variational distance between the generalized sticky random
walk on ? vertices and the uniform distribution on ? states is given by:

TVD( [Σ(((=, ?, _))]0, [Σ(U=
?)]0) =

1
2
E

1∼U=?
[|@(1) − 1|]
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Proof. We write the expression of the total variation distance between the =-step
sticky random walk on ? states and =-samples from the uniform distribution on ?
states. This then yields:

TVD( [Σ(((=, ?, _))]0, [Σ(U=
?)]0) =

1
2

=∑
ℓ=0

���� Pr[|B |0 = ℓ] −
(=
ℓ

)
(? − 1)=−ℓ

?=

����
=

1
2

=∑
ℓ=0

����(=ℓ)@(ℓ) (? − 1)=−ℓ
?=

−
(=
ℓ

)
(? − 1)=−ℓ

?=

����
=

1
2

=∑
ℓ=0

�����
(=
ℓ

)
?=
(? − 1)=−ℓ (@(ℓ) − 1)

�����
=

1
2

=∑
ℓ=0
|Pr[ℓ] (@(ℓ) − 1) |

=
1
2

E
1∼[Σ(U=?)]0

[|@(1) − 1|]

�

Lemma A.0.1. For 1 ≤ : ≤ =
?
, we can bound (

=
:)2
( =?:)
≤ ( =4

:
)2: · ( ?:

=
)?: .

Proof. We use the bound that ( =
:
): ≤

(=
:

)
< ( =4

:
): . This gives us that (

=
:)2
( =?:)
≤ (

=4
:
)2:

( =
?:
)?: .

Simplifying it yields that ( =4
:
)2: · ( ?:

=
)?: , which proves the claim. �
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A p p e n d i x B

PROOF OF THEOREMS IN CHAPTER 2

In this section of the Appendix, we present a generalization of the Krawtchouk
polynomials into the complex domain that yields an elegant method of analysis for
bounding the total variation distance of [Σ(((=, ?, _))]0 and [Σ(U?

= )]0, but only for
when ? is a prime number. For the generalized sticky random walk, this method
yields an upper-bound on TVD( [Σ(((=, ?, _))]0, [Σ(U?

= )]0) of $ (_?$ (?)), which
matches the upper-bound derived in Corollary 4 of [GV22] through Fourier-analytic
means, which the body of our paper shows to be suboptimal when the size of the
alphabet used is allow to increase asymptotically. Nonetheless, we include a proof
of this generalization to present our novel treatment of the Krawtchouk function.

Definition 23. Given any set (: ⊆ [=] with cardinality |(: | = : , let E(: denote a
bit-string in {0, 1}= such that for each 8 ∈ (: , (E(: )8 = 0 and for each 8 ∈ [=] \ (: ,
(E(: )8 = 1. Similarly, given the context of a prior prime number ?, let F(: denote
a string in Z=? where for each 8 ∈ (: , (F(: )8 = 0, and for each 8 ∈ [=] \ (: ,
(F(: )8 ∈ [? − 1].

Definition 24. Let� denote the “zero distribution”where for any ℓ ∈ [=], Pr[� = ℓ]
denotes the probability that a string B ∈ Z=? has ℓ zeros. Specifically, Pr[� = ℓ] =
(=ℓ) (?−1)=−ℓ

?=
, since there are

(=
ℓ

)
ways to select the locations for the ℓ 0s in a string of

length =, and (? − 1)=−ℓ to populate the other = − : locations with characters from
[? − 1].

Definition 25. For ? ≥ 2, let l? denote the ?Cℎ primitive root of unity if it satisfies
(l?)? = 1, and if there does not exist @ ∈ N where @ < ? such that (l?)@ = 1.
Specifically, the multiplicative order of the ?Cℎ primitive root of unity must be ?.
Then, for 1 ≤ : < ?, we must have that

?−1∑
9=0
(l?): 9 = l: ·0? + l: ·1? + ... + l

: ·(?−1)
? = 0

Proof. Given l?? = 1, it is clear that for : < ?, (l:?)? = 1. Thus, (l:?)? − 1 = 0 =
(l:? − 1) (l: ·0? + l: ·1? + ... + l

: ·(?−1)
? ). Since l:? ≠ 1 as l? is a primitive root of

unity, we must have that l: ·0? +l: ·1? + ... +l
: ·(?−1)
? = 0, which proves the claim. �
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Definition 26. For all ? ∈ N, consider l?, the p-th principal root of unity. Then,
the generalized Krawtchouk function  : (ℓ), for any U where U has ℓ 0s and = − ℓ
1s, is defined as:

 : (ℓ) =
∑
H∈Z=?
|H |0=:

(l?)U·H

Lemma B.0.1. Orthogonality of the generalized Krawtchouk function: The gen-
eralized Krawtchouk functions form an orthogonal basis of the functions mapping
Z=+1 → R (for the distribution � as described in Definition 24 with respect to the
inner product 〈 5 , 6〉 = E

1∼�
[ 5 (1)6(1)].

〈 A ,  B〉 =


0, if A ≠ B(=
A

)
(? − 1)=−A , if A = B

Proof. In a similar vein to the proof of lemma 1.5.1, we start by providing a
probabilistic interpretation of the generalized Krawtchouk function. Fix � ∈

([=]
ℓ

)
,

and choose � ∈*
([=]
A

)
and � ∈*

([=]
B

)
. This is equivalent to fixing a string E�ℓ ∈ Z=?

where |E�ℓ |0 = ℓ and (E�ℓ )C = 0 for all C ∈ �, and randomly choosing F�A , F�B ∈ Z=?
where |F�A |0 = A and |F�B |0 = B. Then,

 B (ℓ) =
(
=

B

)
(? − 1)=−BE�A [l

〈E�ℓ ,F�A 〉
? ],  A (ℓ) =

(
=

A

)
(? − 1)=−A E

�B
[l〈E�ℓ ,F�B 〉? ]

The inner product of  A and  B (with respect to the probability distribution �) is
then:

〈 A ,  B〉 =
=∑
ℓ=0

Pr[ℓ] A (ℓ) B (ℓ)

=

=∑
ℓ=0

(
=

ℓ

) (
=

A

) (
=

B

)
(? − 1)=−ℓ

?=
(? − 1)2=−B−A E

�A
[l〈E�ℓ ,F�A 〉? ] E

�B
[l〈E�ℓ ,F�B 〉? ]

=

(
=

A

) (
=

B

)
(? − 1)2=−B−A

?=

=∑
ℓ=0

(
=

ℓ

)
(? − 1)=−ℓ E

�A ,�B
[l〈E�ℓ ,F�A 〉−〈E�ℓ ,F�B 〉? ]

=

(
=

A

) (
=

B

)
(? − 1)2=−B−A

?=

=∑
ℓ=0

(
=

ℓ

)
(? − 1)=−ℓ E

�A ,�B
[l〈E�ℓ ,F�A −F�B 〉 mod ?

? ]

The second-last line follows by the independence of �, �, �, and the last line in the
derivation follows by the bilinearity of the inner product. If A ≠ B, then �A ≠ �B and
E[l〈E�ℓ ,F�A −F�B 〉 mod ?

? ] = E[l〈E�ℓ ,F�A 〉 mod ?

? ] since the distribution of � − � is
uniformly random (as are the distributions of � and �). Therefore, the distribution
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of � −� must be indistinguishable from the distribution of � under the expectation
operator. Additionally, E[l〈�,�〉 mod ?

? ] = ∑?

9=0 l
: 9
? = 0. If � = �, (which is only

when A = B), the associated probability of it occurring must be 1
(=A) (?−1)=−A .

In this case, 〈 A ,  B〉 =
(=
B

) (=
A

)
(? − 1)2=−A−B E[l〈�,0〉] =

(=
B

)
(? − 1)=−A .

E
1∼�
[ A (1) B (1)] =


0, if A ≠ B(=
A

)
(? − 1)=−A , if A = B

�

Lemma B.0.2. The generalized Krawtchouk function  : (ℓ) is invariant against
choices of U ∈ {0, 1}=, where |U |0 = ℓ. Specifically, we have that for a fixed � ∈ Z=?
where |� |0 = : , that

E
Fixed �∈Z=2
|�|0=ℓ

[l〈�,�〉? ] = E
Random �′∈Z=2
|�′ |0=ℓ

[l〈�
′,�〉

? ]

Proof. The problem is equivalent to showing that

l
〈�,�〉
? · 1

E
�′
[l〈�

′,�〉
? ]

= l
〈�,�〉
? · E

�′

[
1

l
〈�′,�〉
?

]
?
= 1

By the independence of �, �′, and �, the problem reduces to showing that

E
�′

[
l
〈�,�〉
?

l
〈�′,�〉
?

]
= E
�′
[l〈�−�

′,�〉
? ] ?

= 1

Since �′ is uniformly random in Z=2, � − �
′ must also be uniformly random for a

fixed �. So, the problem reduces further to showing (under the same conditions of
� and �′) that E[l〈�

′,�〉
? ] ?

= 1. Since
∑?

9=0 l
: 9
? = 0 from definition 24, we must have

that
∑?−1
9=0 l

: 9
? = 1. Thus, E[l〈�

′,�〉
? ] = ∑?−1

9=0 l
: 9
? = 1, which proves the claim. �

Corollary B.0.2.1. The orthogonality of the generalized Krawtchouk function im-
plies a reciprocity relation:

 : (ℓ)(=
:

)
(? − 1)=−:

=
 B (ℓ)(=

B

)
(? − 1)=−B
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Wenowprovide a brief calculation for the expectation of the generalizedKrawtchouk
function, since it is necessary for bounding the total variational distance between
[Σ(((=, ?, _))]0 and [Σ(*=

?)]0.

Definition 27. Given any set ) ⊆ [=] such that |) | = : , let 01 < ... < 0: be the
elements of ) in increasing order. Then, for any 2 ∈ Z?, let

shift2 ()) =
b|:−2 |/?c∑
8=0

(02+8? − 02+8?−1)

Then, for any 2 such that : mod ? = −2, and for any 3 ∈ Z=+1, let q2 (3) denote
the number of subsets of [=] of size : such that shift2 ()) = 3. Note that for any
C ≤ 0, 0C = 0.

Lemma B.0.3. The expectation of the Krawtchouk function is:

E[ : ( |B |0)] =


(? − 1)=−:

=−:∑
3=:

q0(3)_3 , 2 = : mod ? ≡ 0

0, 2 = : mod ? . 0

Proof.

E[ : ( |B |0)] =
∑

B∼((=,?,_)
Pr[B]

∑
H∈Z=?
|H |0=:

l
H·B
?

=
∑

B∼((=,?,_)
Pr[B]

∑
H∈Z=?
|H |0=:

l

=∑
8=1
H8 ·B8

?

=
∑

B∼((=,?,_)
Pr[B]

∑
H∈Z=?
|H |0=:

=∏
8=1

l
H8 ·B8
?

The dot-product on the exponent of l only takes the summation of the element-
wise product of U and H for positions on H that are non-zero. We can rewrite this
summation by considering the location of non-zero terms in H. So, for ) = {01 <

... < 0=−: }:

E[ : ( |B |0)] =
∑

B∼((=,?,_)
Pr[B]

∑
)∈( [=]=−:)

∑
V∈[?−1]=−:

∏
8∈)

l
V8B8
?
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Further, choosing a ) ∈
( [=]
=−:

)
implies a choice of ) =

([=]
:

)
= [=] \ ) . Hence, the

summation reduces to:

E[ : ( |B |0)] =
∑

B∼((=,?,_)
Pr[B]

∑
)∈( [=]: )

∑
V∈[?−1]=−:

∏
8∈)

l
V8B8
?

=
∑

)∈( [=]: )

∑
V∈[?−1]=−:

E
B∼((=,?,_)

[∏
8∈)

l
V8B8
?

]

Next, observe that the sticky random walk is a Markov chain where lB8? = lB8−1
? with

probability 1
?
+ (? − 1)_. We can instead model the transitions of strings from the

sticky random walk as random variables D, where D1 is uniformly distributed in Z?
and for 8 ≥ 2, D8 is uniformly distributed on (1 − _)* [Z?] + _ · 10. Intuitively,
_ is the additional probability of staying on the same vertex. So, for each B ∼ (,
we refactor B to B̃ = {B̃1, ..., B̃=}, where B̃8 = 1{B8 ≠ 0}. Note then that since V8 is
uniformly random in [?−1], that V8B8 mod ?, and therefore V8 B̃8 mod ? must also
be uniformly random in [?−1]. Therefore, V8 B̃8 and V8B8 are both uniformly random
in [? − 1] and have the same distributions. Hence, we write that:

E
V,B

[∏
8∈)

l
V8B8
?

]
= E
V,B

[∏
8∈)

l
V8 B̃8
?

]
= E
V,B

[
l

∑
8∈)

V8
8∑
9=1
D 9

?

]
=

0=−:∏
9=1
E
V,B

[
l

∑
8∈) ;8≥ 9

V8D 9

?

]
Since D 9 is random, the distribution of V8D 9 mod ? must also be random, and
therefore indistinguishable from the distribution of D 9 . Therefore, V8D 9 mod ? and
D 9 mod ? are invariant under the expectation of its exponentiation under l?. So:

E
V,B

[∏
8∈)

l
V8B8
?

]
=

0=−:∏
9=1
E

[
l

∑
8∈) ;8≥ 9

D 9

?

]
When 9 = 1, the above definition directly implies that:

E

[
l

∑
8∈) ;8≥1

D1

?

]
= E[l |) |D1

? ] =


1, if |) | mod ? ≡ 0

0, otherwise
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Conversely, when 9 ≥ 2, let )9 = {8 ∈ ) ; 8 ≥ 9}. Then,

E

[
l

∑
8∈) ;8≥ 9

D 9

?

]
= E[l |) 9 |D 9? ] =


1, if |)9 | mod ? ≡ 0

E[lD 9? ], otherwise

Next, observe that for 9 ≥ 2, E[lD 9? ] = _.

Proof. We write D 9 in terms of our refactoring and take the expectation:

E[lD 9? ] = E[l
(1−_)* [Z?]+_·10
? ] =

?−1∑
:=0

l:? Pr[D 9 = :]

= l0
? Pr[D 9 = 0] + l1

? Pr[D 9 = 1] + ... + l?−1
? Pr[D 9 = ? − 1]

= l0
?

(
1
?
+ _

(
? − 1
?

))
+ l1

?

(
1
?
− _
?

)
+ ... + l?−1

?

(
1
?
− _
?

)
=

1
?

?−1∑
:=0

l:? −
_

?

?−1∑
:=0

l:? + _l0
?

= _

�

Then, for : mod ? ≡ 0, we have that

E[ : ( |B |0)] =
∑

)∈( [=]: )

∑
V∈[?−1]=−:

E
B∼(

[∏
8∈)

l
V8B8
?

]
= (?−1)=−:

∑
)∈( [=]: )

E
B∼(

V∈[?−1]=−:

[∏
8∈)

l
V8B8
?

]
= (?−1)=−:

∑
)∈( [=]: )

0=−:∏
9=1

_

= (?−1)=−:
∑

)∈( [=]: )
_0=−:

We then parameterize the summation over every possible value of the shift of T (for
: mod ? ≡ 0):

E[ : ( |B |0)] = (?−1)=−:
=−:∑
3=:

( ∑
)∈( [=]: )

shift0(T)=d

1
)
_3 = (?−1)=−:

=−:∑
3=:

q0(3)_3

This yields the claim.
�
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Lemma B.0.4. For 2 ∈ N where 0 ≤ 2 ≤ ?, and for 3 ∈ N where : ≤ 3 ≤ = − : ,
the number of :-sized subsets of [=] that satisfy shift2 ()) = 3 is:

q2 (3) =
∑

)∈( [=]: )
shift2 ())=3

1 =
(

3 − 1
b |:−2 |
?−1 c − 1

) (
= − 3
b |:−2 |
?−1 c

)

Proof. To determine q2 (3), we count the total number of ways to choose 01 <

02 < ... < 0: such that (02 − 02−1) + (02+? − 02+?−1) + (02+2? − 02+2?−1) + ... = 3,
where for any 9 ≤ 0, 0 9 = 0. To do this, we combine each element-wise interval
(02+8?, 02+8?−1) to form a contiguous interval of length 3 (starting from 02−1 = 0).
The remaining contiguous region that excludes these intervals must then have a
length of = − 3. We then abstract the number of ways to count 01 < ... < 0: by
counting the number of intervals that have a length of 3 when combined, such that
the remaining intervals have a length = − 3.

From a length of 3 − 1 (accounting for 00 = 0), we need to select intervals that
form a length of b|: − 2 |/(? − 1)c −1 since they represent the number of choices of
elements of ) that are index-separated by ?. Similarly, from a length of = − 3, we
need to select intervals that form a length of b|: − 2 |/(? − 1)c possible intervals,
since they represent every other element of ) . This second constraint is to ensure
that the total length of the intervals chosen is exactly =. Hence, we write that:

q2 (3) =
∑

)∈( [=]: )
shift2 ())=3

1 =
(

3 − 1
b |:−2 |
?−1 c − 1

) (
= − 3
b |:−2 |
?−1 c

)
�

Corollary B.0.4.1. By combining the results from lemmas B.0.3 and B.0.4, we have
that the expectation of the Krawtchouk function is:

E[ : ( |B |0)] =


(? − 1)=−:

=−:∑
3=:

( 3−1
b :
?−1 c−1

) ( =−3
b :
?−1 c

)
_3 , : mod ? ≡ 0

0, : mod ? . 0

Proposition 3. The orthogonality of the generalized Krawtchouk function  : (ℓ) in
B.0.1 implies that for any function 5 : Z=+1 → R, there exists a unique expansion
5 (ℓ) =

=∑
:=0

5̂ (:) : (ℓ), where for 0 ≤ : ≤ =,

5̂ (:) =
E

1∼[Σ(*=?)]0
[ 5 (1) : (1)](=

:

)
(? − 1)=−:
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Definition 28. Let @ : Z=+1 → R, where @(ℓ) =
Pr

B∼( (=,?,_)
[|B |0=ℓ]

(=ℓ) (?−1)=−ℓ ?=. Intuitively, @(ℓ)
is the ratio of the probability of getting a string with ℓ 0s from the sticky random
walk ((=, _, ?) to the probability of getting a string with ℓ 0s from the uniformly
random distribution.

LemmaB.0.5. Expanding @(ℓ) through the generalizedKrawtchouk function yields
that:

@̂(:) = 1(=
:

)
(? − 1)=−:

E
B∼((=,?,_)

[ : ( |B |0)]

Proof.

@̂(:) = 1(=
:

)
(? − 1)=−:

=∑
1=0

(
=

1

)
(? − 1)=−1

?=
@(1) : (1)

=
1(=

:

)
(? − 1)=−:

=∑
1=0

Pr
B∼((=,?,_)

[|B |0 = 1] : (1)

=
1(=

:

)
(? − 1)=−:

E
B∼((=,?,_)

[ : ( |B |0)]

�

Lemma B.0.6. For B ∈ ((=, ?, _), we have that

Pr[|B |0 = ℓ] =
1
?=

=∑
:=0

 ℓ (:) E
B∼((=,?,_)

[ : ( |B |0)]

Proof.

Pr[|B |0 = ℓ] =
(=
ℓ

)
(? − 1)=−ℓ

?=
@(ℓ)

=

(=
ℓ

)
(? − 1)=−ℓ

?=

=∑
:=0

@̂(:) : (ℓ)

=

(=
ℓ

)
(? − 1)=−ℓ

?=

=∑
:=0

 : (ℓ)(=
:

)
(? − 1)=−:

E[ : ( |B |0)]

=
1
?=

=∑
:=0

(=
ℓ

)(=
:

) (? − 1)=−ℓ
(? − 1)=−:

E[ : ( |B |0)] : (ℓ)

=
1
?=

=∑
:=0

 ℓ (:) E
B∼((=,?,_)

[ : ( |B |0)] (By the reciprocity relation in B.0.2.1

�
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Lemma B.0.7. The total variational distance between the =-step generalized sticky
random walk on ? vertices and the =-round uniform distribution on ? states is:

TVD( [Σ(((=, ?, _))]0, [Σ(*=
?)]0) =

1
2

E
1∼[Σ(*=?)]0

[|?(1) − 1|]

Proof.

TVD( [Σ(((=, ?, _))]0, [Σ(*=
?)]0) =

1
2

=∑
ℓ=0

���� Pr[|B |0 = ℓ] −
(=
ℓ

)
(? − 1)=−ℓ

?=

����
=

1
2

=∑
ℓ=0

����(=ℓ)@(ℓ) (? − 1)=−ℓ
?=

−
(=
ℓ

)
(? − 1)=−ℓ

?=

����
=

1
2

=∑
ℓ=0

���� (=ℓ)?= (? − 1)=−ℓ (@(ℓ) − 1)
����

=
1
2

E
1∼[Σ(*=?)]0

[|@(1) − 1|]

�

Claim. The total variational distance between the generalized sticky random walk
and the multinomial distribution has the following upper bound as a result of
convexity:

TVD( [Σ(((=, ?, _))]0, [Σ(U=
?)]0) ≤

1
2

√
E

1∼[Σ(U=?)]0
[@(1) − 1]2

Lemma B.0.8. For : ≤ = and for 1 ∼ [Σ(*=
?)]0, we have that

E
1∼[Σ(*=?)]0

[@(1) − 1]2 =
=∑
:=1

E[ : ( |B |0)]2(=
:

)
(? − 1)=−:

Proof.

E
1∼[Σ(*=?)]0

[@(1) − 1]2 = E
1∼[Σ(*=?)]0

[( =∑
:=0

@̂(:) : (1) − 1
)2]

Recall that @̂(:) = E[ : ( |B |0)]
(=:) (?−1)=−: . So, @̂(0) = E[ 0 ( |B |0)]

(?−1)= = 1
(?−1)= . Similarly, by the

definition of the Krawtchouk function and the reciprocity relation  : (ℓ)
(=:) (?−1)=−: =
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 B (ℓ)

(=B) (?−1)=−B , we have that  0(1) =  = (1) = (?−1)=. Therefore, @̂(0) 0(1) = 1.
Thus, the above equation simplifies to:

E
1∼[Σ(*=?)]0

[@(1) − 1]2 = E
1∼[Σ(*=?)]0

[( =∑
:=1

@̂(:) : (1)
)2]

Since the generalized Krawtchouk functions are orthogonal (as proven in B.0.1),
the non-diagonal products evaluate to 0. So, the square of the summation is just the
summation of the squared terms that it contains. Thus, exploiting the orthogonality
of the generalized Krawtchouk functions and the linearity of the expectations, we
write:

E
1∼[Σ(*=?)]0

[@(1) − 1]2 = E
1∼[Σ(*=?)]0

[ =∑
:=1

@̂(:)2 : (1)2
]

=

=∑
:=1

@̂(:)2 E
1∼[Σ(*=?)]0

[ : (1)2]

=

=∑
:=1

E[ : ( |B |0)]2(=
:

)2(? − 1)2=−2:
· E
1∼[Σ(*=?)]0

[ : (1)2]

Finally, we use lemmaB.0.1 towrite E
1∼[Σ(*=?)]0

[ : (1)2] as 〈 : ,  :〉 =
(=
:

)
(?−1)=−: .

E
1∼[Σ(*=?)]0

[@(1) − 1]2 =
=∑
:=1

E[ : ( |B |0)]2(=
:

)2(? − 1)2=−2:

(
=

:

)
(? − 1)=−:

=

=∑
:=1

E[ : ( |B |0)]2(=
:

)
(? − 1)=−:

�

Theorem B.0.9. For _ ≤ 1
1+4 ,

TVD( [Σ(((=, ?, _))]0, [Σ(U=
?)]0) ≤

√
E
1∼"
[?(1) − 1]2 ≤ $ (_??)

Proof. Substituting the result of B.0.6 into the equation derived in B.0.8, and scaling
the indexes of the summation, we have that:

E
1∼[Σ(*=?)]0

[@(1) − 1]2 =
=/?∑
:=1

1( =
?:

)
(?−1)=−?:

(
(?−1)=−?:

=−?:∑
3=?:

(
3 − 1
b : ?
?−1c − 1

) (
= − 3
b : ?
?−1c

)
_3

)2

=

=/?∑
:=1

(?−1)=−?:( =
?:

) ( =−?:∑
3=?:

(
3 − 1
b :

1− 1
?
c − 1

) (
= − 3
b :

1− 1
?

c

)
_3

)2

≤
=/?∑
:=1
(?−1)=−?:

(=
:

)2( =
?:

) ( =−?:∑
3=?:

(
3 − 1
: − 1

)
_3

)2
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Note the following generating function relation that ( G
1−G )

: =
∑
<≥:

(<−1
:−1

)
G<. Then,

E
1∼[Σ(*=?)]0

[@(1) − 1]2 ≤
=/?∑
:=1
(? − 1)=−?:

(=
:

)2( =
?:

) ( _

1 − _

)2:

≤
=/?∑
:=1
(?−1)=−?:

(
?:

=

) ?: (
4=

:

)2: (
_

1 − _

)2:
(From claim A.0.1)

=

=/?∑
:=1
(?−1)=−?:

(
?:

=

) ?:−2: (
?4_

1 − _

)2:

≤ ?2?
=/?∑
:=1

(
4_

1 − _

)2:

≤ ?2?$ (_2), for _ ≤ 1
1 + 4

Therefore, for _ ≤ 1
1+4 , we have that

TVD( [Σ(((=, ?, _))]0, [Σ(U=
?)]0) ≤

√
E
1∼"
[?(1) − 1]2 ≤ $ (_?$ (?))

�

This method shows that the total variation distance between the =-step generalized
sticky randomwalk on ? vertices and the =-ary samples from the uniformdistribution
on Z? is $ (_?$ (?)), which matches the more general result predicted in [GV22].
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