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ABSTRACT

Research in the Stoltz group is centered around the development of novel tactics and
strategies for the synthesis of complex organic molecules. The Pd-catalyzed decarboxylative
asymmetric allylic alkylation of enolate nucleophiles is a cornerstone of our groups’ efforts
to develop methodologies that directly facilitate the synthesis of stereochemically complex
molecular building blocks. This thesis first focuses on our efforts to deepen our mechanistic
understanding of these transformations. We then employ our insights as a base from which
we expand the scope of the decarboxylative asymmetric allylic alkylation reaction, as well

as develop entirely novel reaction paradigms.
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CHAPTER 1

Mechanism of the Pd-catalyzed Asymmetric Allylic Alkylation: A

Comprehensive Quantum Mechanics Investigation

1.1 INTRODUCTION

The construction of chiral all-carbon quaternary centers remains a forefront challenge in
synthetic chemistry! Over the years, our group has pursued the development of the
decarboxylative asymmetric allylic alkylation reaction as a practical entry into these highly
sought-after structural motifs (Figure 1.1A).2 This approach has proved fruitful in
asymmetric synthesis,’ particularly in the early-stage preparation of chiral building blocks.
However, our efforts to further extend the scope of these transformations have highlighted
limitations of the current catalytic systems.* We recognize that a comprehensive
mechanistic understanding is crucial in our ability to address these shortcomings and to
realize general improvements. Owing to the interplay of several plausible inner- and outer-
sphere processes (Figure 1.1B), the unification of a comprehensive, stereochemically
complete mechanistic hypothesis has remained elusive for the Pd(PHOX) system.
Determination of inner- or outer-sphere nucleophilic attack through observation of
retention (outer-sphere) or inversion (inner-sphere) of stereochemistry when employing

chiral cyclic allyl electrophiles is not applicable as such substitution patterns are not

TThis research was performed under the co-advisory of Prof. William A. Goddard III. Portions of this chapter

have been reproduced with permission from Cusumano, A. Q.; Stoltz, B. M.; Goddard, W. A. IIl. J. Am.
Chem. Soc. 2020, 142, 13917-13933. © 2020 American Chemical Society.
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tolerated by the system at hand. Surprisingly, allylic alkylation with the PA(PHOX) system
demonstrates remarkable tolerance to exogenous water, with reaction yields and
enantioselectivity largely unaffected.® These results suggest that the presence of an
unbound enolate with a conjugate acid pK, significantly higher than that of water is
unlikely. Given the tolerance to water, an inner-sphere mechanism for C—C bond formation
is generally invoked for the PA(PHOX) system.

Figure 1.1. (A) Original report of the decarboxylative asymmetric allylic alkylation of
[Sketoesters by Stoltz.** (B) Inner- and outer-sphere allylic alkylation. (C) Isolation of
the catalyst resting state.” (D) This research.

A. Allylic alkylation of p-ketoesters to forge chiral all-carbon quaternary centers.??
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Chapter 1 — Mechanism of the Pd-catalyzed Asymmetric Allylic Alkylation: A 3
Comprehensive Quantum Mechanics Investigation

In contrast, mechanistic studies by Trost and coworkers with the bis-phosphine
(R,R)-ANDEN-phenyl ligand on related substrates suggest alkylation occurs via an outer-
sphere mechanism.® As anticipated with an ionic outer-sphere mechanism, highly charge
stabilized “soft” enolates perform well in these systems.’ Unlike the outer-sphere
conditions of Trost, the Pd(PHOX) catalytic manifold provides low levels of
enantioselectivity with stabilized enolate nucleophiles,*? yet the Pd(PHOX) system excels
with basic “hard” enolates, as well as substrates that contain heteroatoms.’

Key to the inner-sphere C—C bond formation hypothesis is the intermediacy of a
square planar C- or O-bound Pd" enolate complex. In our efforts to directly observe such
a species, our group isolated a unique n'-allyl Pd" carboxylate complex (3) from the
reaction of Pdx(dba)s, (S)---BuPHOX, and B-ketoester 1 (Figure 1.1C). The carboxylate
complex was determined to be the catalyst resting state, with decarboxylation as the rate-
limiting process (k= 1.58 x 10 s7! at 24 °C, corresponding to a free energy barrier of 21.2
kcal/mol).?

In addition to experimental studies, our groups have turned to quantum mechanics
(QM) calculations as a powerful tool to interrogate the mechanism of the stereoablative
transformation of (£)-1 to ($)-2.'° These investigations focused on post-decarboxylation
intermediates, and ultimately led to the discovery of a low energy pathway for inner-sphere
C—C bond formation via a seven-centered cyclic reductive elimination transition state
(Figure 1.1D). Analogous fully carbocyclic mechanisms have been proposed by Morken

and Echavarren.!' While these initial studies offer an invaluable knowledge base, the
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mechanism of decarboxylation and the precise origins of enantioinduction remained
unclear. To address these questions, we returned to computational and experimental studies.
During our group’s ongoing efforts to explore the mechanism, Sargent and coworkers
reported an all-DFT-based investigation of the PA(PHOX)-catalyzed transformation of 1
to 2.!2 Unfortunately, the computationally-derived barrier to decarboxylation was
significantly less than that of experiment, with the rate-limiting step as an isomerization to
a pre-decarboxylation intermediate. Nevertheless, other aspects of their study regarding
decarboxylation and C—C bond formation corroborate our computational and experimental
findings herein. Taken together, these studies bring an unprecedented level of clarity to the
mechanism of the decarboxylative asymmetric allylic alkylation reaction.

Herein, we outline a detailed QM investigation into each step of the reaction
mechanism: oxidative addition, decarboxylation, and C—C bond formation, revealing a
mechanistic picture that unites all current experimental observations, including
enantioinduction, reaction rate, identity of the catalyst resting state, enolate cross-over,
water tolerance, and solvent effects on the interplay between inner- and outer-sphere
pathways in the PHOX system (Figure 1.1D). To provide useful insight into factors
underlying enantiomeric selectivity, very high quantum mechanical accuracy is required.
Given this, we use this study as an opportunity to compare the efficacy of various modern
computational methods (density functional theory and localized coupled-cluster theory) in
the context of asymmetric Pd’/Pd" catalysis. Further experiments are carried out to explore

the mechanistic hypotheses derived from the ab initio calculations. Lastly, we address the
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shortcomings of the present state-of-the-art catalyst systems and offer theory-based insight
into future development.

1.2 COMPUTATIONAL METHODS

Density functional theory (DFT) geometry optimizations, energy, vibrational
frequency, and coupled-cluster calculations were performed using Orca version 4.1.2.13
Geometry optimizations were carried out with the BP86 generalized gradient
approximation (GGA) functional'* with Becke-Johnson damped D3 dispersion corrections
(herein referred to as D3).!> A mixed basis set was implemented, in which Pd is described
by the small core LANL2TZ(f) basis set with the Hay—Wadt effective core potential
(ECP),'¢ while the 6-31G(d) basis set was used on all other atoms. Key structures were
optimized at various levels of theory and compared to crystallographic data to ensure that
consistent results are obtained across multiple methodologies (see 1.5 Supporting
Information for details).

Triple-C quality single point calculations were carried out on all stationary points
with a variety of density functionals, including BP86-D3,'* B3LYP-D3,!” PBE0-D3,!8
M06," and DSD-BLYP-D32° with the def2-TZVP basis set?! on all atoms (including the
small core ECP28MWB pseudopotential?> on Pd). Corrections for solvation (THF or
otherwise as specified) were carried out for single point calculations with the implicit
Conductor-like Polarizable Continuum Model (CPCM).?3 Unless otherwise noted, all
energies reported are Gaog values from single point calculations at the MO06/def2-

TZVP/CPCM(THF) level of theory on BP86-D3/LANL2TZ(f)-6-31G(d) optimized
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geometries with thermodynamic corrections applied from frequency calculations obtained
at the optimization level of theory. The Quasi-RRHO method is applied to correct for the
breakdown of the harmonic oscillator approximation for low frequency vibrations.>* All
stationary points are characterized by the appropriate number of imaginary vibrational
modes (zero for optimized geometries and one for transition states). Intrinsic reaction
coordinate (IRC) analyses were carried out to ensure all transition states connect the
appropriate starting materials and products. Molecular illustrations were made from
CLYview.?

Additional single point calculations were performed on all optimized structures
with the domain based local pair natural orbital coupled-cluster (DLPNO-CCSD(T),
“NormalPNO” settings unless otherwise noted) method as described by Neese and
coworkers and as implemented in Orca (further details included in Supporting
Information).?® The cc-pVTZ basis set is used on all atoms in the DLPNO-CCSD(T)
calculations, with the SK-MCDHF-RSC effective core potential?’ on Pd. Throughout the
text, free energies calculated from electronic energies at the DLPNO-CCSD(T)/cc-
pVTZ/CPCM(THF) level of theory are provided in brackets next to the DFT
(M06/CPCM(THF)) values for comparison.

1.3 RESULTS

Our investigation began with the experimental observation of the [(PHOX)Pd(n'-
allyl)(RCO,)] complex (3) as the resting state of the catalyst (Figure 1.2). The structure of

this unusual n'-allyl complex was previously confirmed by X-ray crystallography while
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the solution phase behavior was studied by NMR spectroscopy.’ Importantly, 3 is
competent in the reaction, and affords the ketone product 2 from -ketoester 1 in similar
yield and enantioselectivity to that obtained from the catalytic transformation. Kinetic
studies revealed first order rate dependence of this process in 3,> with an overall rate
constant measured to be 1.58 x 107 s7! (at 24 °C in THF-ds). Given that loss of CO; is the
rate limiting step, the experimental AG* of decarboxylation is calculated to be 21.2
kcal/mol.

1.3.1 OXIDATIVE ADDITION

To better understand the role of the catalyst resting state (3) in the overall
mechanistic picture, we first sought to examine the mechanism of oxidative addition of
allyl B-ketoester 1 to the Pd°(PHOX) precatalyst. Oxidative addition of allyl acetate to Pd’
complexes is generally represented as directly generating the [L,Pd(n3-allyl)](OAc) ion
pair in situ in a reversible fashion.?® This prompted us to question whether oxidative
addition proceeds through a unique mechanism in which 3 is yielded directly, or if an
analogous [(PHOX)Pd(n3-allyl)]"(RCO2") ion pair (4) is first formed followed by rapid
equilibration to 3 (Figure 1.2A).

While the stereoablative transformation employs racemic substrate (1), the chiral
center is not directly involved but rather appended to the site of oxidative addition through
freely rotatable bonds. Hence, we expect comparable energies of the diastereomeric
transition states arising from both enantiomers of 1. Our initial explorations considered the

(S) enantiomer of 1, but the relevant oxidative addition pathways were also evaluated for
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(R)-1. A similar consideration is employed with regard to the orientation of the allyl
fragment in the n*~bound form. Here, the prefix endo describes the n*—(allyl) conformer
in which the apical carbon (i.e., C2) of the allyl group is cis to the ~-Bu group of the PHOX
ligand, and exo corresponds to the trans isomer. Experimentally the endo and exo isomers
were found to be nearly identical in energy. Both endo and exo geometries will be
considered. Unless otherwise stated, free energy comparisons are from the lowest energy
conformer.

Figure 1.2. (A) Four general classes of Pd’ allyl carboxylate oxidative addition
mechanisms (B) Stereoretentive three-centered (TS1), seven-centered (TS2), and syn

Sn2’-like (TS3) transition states.?

A. Oxidative addition mechanisms considered. B. Stereoretantive mechanisms (TS1-TS3).
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[a] Relative Gibbs free energies in kcal/mol (M06). Free energies derived from DLPNO-CCSD(T)
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Starting from olefin-bound Pd°(PHOX) complex 5, a variety of transition states that
achieve C—O bond cleavage were considered (Figure 1.2A). Three- (TS1)*-° and seven-
membered (TS2) cyclic transition states,*' as well as a syn conjugate displacement-type
mechanism (TS3) afford barrier heights greater than that of the rate-limiting step (AG* =
21.2 kcal/mol) (Figure 1.2B).°

Figure 1.3. Isomeric transition states for the anti displacement-type oxidative addition

mechanisms.?

N\ r a#
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[a] Relative Gibbs free energies in kcal/mol (M06). Free energies derived from DLPNO-CCSD(T)
calculations in brackets. Endo n’-allyl 4 is 0.3 [0.4] kcal/mol higher in energy than its exo isomer
depicted above.

Analogous to TS3, an anti displacement-type mechanism (TS4) via electrophilic

addition to Pd® presents a substantially lower barrier than that of the other pathways
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considered (Figure 1.3). Unlike TS3, in which C-O bond breaking occurs through the
filling of 6" (C-O) by the olefin-based n(C—C) orbital, TS4 achieves the same overall result
with direct overlap between 6" (C-O) and the Pd d(x?>-y?)-based HOMO.

Isomeric transition states are possible, in which the displacement event occurs trans
to either the nitrogen or phosphorus of the PHOX ligand. The abbreviations #-N and #-P
refer to C—O bond breaking occurring trans to N and trans to P, respectively. Here, we
assume free equilibration between the isomers of 5. Therefore, we consider the apparent
barrier height to be that of the lowest energy transition state from the lowest energy isomer
(*-N)-5.

From the corresponding olefin-bound Pd precursors (5), we found a barrier height
of 12.6 [11.2] kcal/mol for (z-P)-TS4. Interestingly, considerably lower energy pathways
were obtained for displacements ¢rans to nitrogen, with a barrier of 6.4 [4.8] kcal/mol for
(z-N)-TS4. A similar energetic preference for displacement trans to nitrogen is observed
across several DFT methods. Oxidative addition via these mechanisms leads directly to ion
pair 4. Additionally, as anticipated by experiment, the energy of endo and exo isomers of
4 were found to be nearly identical, with the exo-isomer favored by 0.3 [0.4] kcal/mol.
Henceforth, reference to TS4 will specifically refer to the lowest energy isomer, (¢-V)-TS4.

In summary, of the oxidative addition pathways considered, olefin binding,
followed by anti displacement (TS4) affords the lowest barrier height by a considerable
margin. The displacement is stereospecific to inversion of chirality with respect to that of

the leaving group, whereas the pathways involving a three-centered transition state (TS1),
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a seven-membered pericyclic transition state (TS2), or a syn conjugate displacement (TS3)
would be anticipated to retain the configuration of the carboxylate leaving group (when
substitution is present on the allyl terminus). We emphasize that consideration of each
mechanistic pathway is crucial in order to reliably interpret net inversion/retention of
stereochemistry as a general mechanistic probe in the Tsuji-Trost reaction.?
Furthermore, the two lowest energy pathways (direct/anti and conjugate/syn
displacement) directly afford ion pair 4 rather than 3 as the product of oxidative addition.
These results suggest that the observed n'-allyl catalyst resting state (3) is not the direct
product of oxidative addition but is generated through a subsequent equilibration from ion
pair 4. Curious as to the magnitude of the difference in energy between n'-allyl 3 and ion
pair 4, we compared the calculated free energies of the two isomeric complexes. In accord
with experiment, [(PHOX)Pd(n'-allyl)(RCO,)] (3) is computed to be favored over the
[(PHOX)Pd(n’~allyl)]"(RCO;") ion pair (4) by 5.4 kcal/mol (Figure 1.4). Single point
calculations with several other density functionals give rise to similar results (AG = 4.6 to
9.3 kcal/mol), showing that this outcome is not an artifact of the DFT functional. In
agreement with the DFT values, a difference in free energy of 5.2 kcal/mol favoring 3 over
4 is obtained at the DLPNO-CCSD(T) level of theory and is taken to be our reference value.
Interestingly, this trend appears not to be due to an extraneous effect of the -
ketocarboxylate leaving group, but rather a general feature of the Pd(PHOX) system with
allyl acetates. Control experiments have been previously reported by our group in which

the allyl B-ketoester was replaced with allyl acetate to similar effect.> The corresponding
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[(PHOX)Pd(n'-allyl)(OAc)] complex (6) was isolated and characterized by X-ray
crystallography and solution-phase NMR spectroscopy. Accordingly, the difference in free
energies between 6 and ion pair 7 was calculated to be 6.6 [6.0] kcal/mol, favoring the n'—
allyl form (Figure 1.4).

Figure 1.4. Relative free energies of constitutional isomers of n'— and n’-allyl Pd

complexes from masked enolate synthons, and acetate for comparison.?
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[a] Relative Gibbs free energies in kcal/mol (M06). Free energies derived from DLPNO-CCSD(T)

calculations in brackets.

We then sought to explore these trends for the allyl enol carbonate substrate class,?®
for which a crystal structure of the catalyst resting state has yet to be obtained. As with the
B-ketocarboxylates, the corresponding n'—allyl carbonate complex (8) was predicted to be
favored over the n’-allyl carbonate ion pair (9) (Figure 1.4). Calculations with the M06
density functional predict a 0.6 kcal/mol preference for the n!-allyl form, while DLPNO-
CCSD(T) theory refines the energy difference to 2.5 kcal/mol, still favoring the n'-allyl
form. Accordingly, 3'P NMR studies suggest the catalyst resting state may be an analogous

n'-allyl complex.® Taking experimental and theoretical results into account, we anticipate
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that the n'-allyl form similarly dominates the solution phase character of the catalyst
resting state.

Complexes 3, 4, 8, and 9, are constitutional isomers. Since the subsequent reaction
yields identical Pd enolate intermediates, we note that the enol carbonate substrate is
predicted to undergo a more exergonic reaction than the -ketocarboxylate isomer by ca.
10 kcal/mol. While investigation into the mechanism of decarboxylation of the enol
carbonates 8/9 lies outside the scope of this investigation, we postulate the following: If
the resting state of the catalyst in the enol carbonate system is described by 8/9 (analogous
to the carboxylates), and if the absolute energy of the barrier to decarboxylation is similar
to that of 3, then a significantly higher reaction rate is anticipated. We therefore wish to
highlight the design of the enolate synthon as one avenue by which future improvements
to the reaction rate may be achieved.

1.3.2 DECARBOXYLATION

We then sought to explore the mechanism through which decarboxylation occurs.
Loss of CO, was experimentally determined to be the rate-limiting step of catalyst
turnover.* Deriving inspiration from the canonical decarboxylation of B-ketocarboxylic
acids, we explored analogous cases for a Pd" B-ketocarboxylate (Figure 1.5). Two isomeric
square pyramidal transition states may be envisioned: one in which the carboxylate group
is apically bound to Pd (TSS5), and another with an equatorially bound carboxylate (TS6).
Alternatively, decarboxylation could occur through a Zwitterionic square planar complex

wherein the ketone of the B-ketocarboxylate is coordinated to n'-allyl Pd (TS14) or the
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analogous m'-allyl case (TS15). As noted previously, the minimum energy pathway
through oxidative addition directly affords ion pair 4, rather than the catalyst resting state
3. To explore the interconnectivity between these intermediates, as well as our postulated
decarboxylative pathways, we constructed the free energy network depicted in Scheme 1.1.
Beginning from the product of oxidative addition, ion pair 4, the catalyst resting state (3)
can be reached via square pyramidal intermediate 11 (a higher energy conformer of 3)
with an overall effective barrier of 4.3 [5.0] kcal/mol and AG of —5.4 [-5.2] kcal/mol
(Scheme 1.1).

Figure 1.5. (A) Experimentally-derived parameters for decarboxylation. (B)
Decarboxylation pathways considered.

A. Experimental rate and corresponding barrier for rate-limiting decarboxylation.
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Scheme 1.1. Free energy network from resting state 3 to decarboxylation pathways.*
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We then turned our attention to decarboxylation. Transition states TSS and TS6
require the square pyramidal precursors 10 and 11, respectively (Scheme 1.1). Sufficiently
low energy pathways connecting the resting state (3) to 10 and 11 are found.
Decarboxylation is observed only through transition states in which the carboxylate group
is poised axially on the six-membered ring, whether it be in a boat ((boat)-TS5) or chair

((chair)-TSS5). This may result from the C—CO»~ & orbital experiencing enhanced overlap
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with the n° of the ketone when occupying an axial position. While the chair conformers
dominate the equilibrium geometries of 10, both M06 and DLPNO-CCSD(T) methods
predict decarboxylation through (boat)-TSS5 to be lower in energy than (chair)-TSS by 1.8
and 2.8 kcal/mol, respectively. An apparent AG* value of 22.0 [26.8] kcal/mol is calculated
from resting state 3 to TSS5. We will henceforth refer to this sequence as decarboxylative
pathway 1.

While the barrier to decarboxylation via TS5 is quite low with respect to 10 (5.9
[9.9] kcal/mol), decarboxylation directly from 11 (via TS6) is not observed. This result is
not unexpected, since weak axial binding is generally observed in square planar d®
complexes (in the absence of w back bonding) by virtue of the filled, axially-oriented metal-
based d(z?) orbital, here of slight Pd-O o* character. Considering the role of the Pd" center
as a Lewis acid in promoting the decarboxylation, the weak axial binding of the ketone
carbonyl in 11 to the metal center results in a complex that is poorly predisposed to
decarboxylation. Furthermore, the LUMO of the square planar/square pyramidal d®
complexes are largely of metal-based d(x?>-y?) character. As such, compared to 11, the
equatorially-bound carbonyl of 10 exhibits greater overlap with the Pd-based LUMO,
allowing for more effective charge transfer to the electropositive metal center. This,
combined with the greater positive partial charge of the Pd center in 10 due to the weakly
bound axial carboxylate counterion, results in facile decarboxylation.

Analogous to the highly charge-separated cyclic form of 10, we were intrigued to

find an acyclic variant, 12, as a stable intermediate on the potential energy surface.
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Calculations reveal 12 equilibrates with resting state 3 via TS11-11-TS12—4-TS13
(Scheme 1.1). The highest barrier is that of TS13 at 14.0 [16.3] kcal/mol, with 12 at 12.7
[15.9] kcal/mol higher in energy than 3. As with 10, decarboxylation from 12 may then
occur with the carboxylate oriented axially in either a chair or boat conformer, with the
chair being lowest in energy (TS14). From 12, a barrier height of 4.4 [6.1] kcal/mol through
TS14 is found. With respect to resting state 3, the overall barrier to decarboxylation
through this pathway is 17.1 [22.0] kcal/mol. As with TSS, decarboxylation through this
route directly affords the n'-allyl O-bound Pd enolate (Re)-13 (a rotamer of (Si)-13). We
will henceforth denote this sequence as decarboxylative pathway 2.

We next envisioned the possibility for decarboxylation to occur directly from the
[n*—(allyl)Pd(PHOX)]"(RCO;") ion pair, 4. We will term this sequence decarboxylative
pathway 3. In pathway 3, the overall barrier height through decarboxylation was found to
be 17.5 [23.2] kcal/mol via the lowest energy conformer of TS15. Dissimilar to pathways
1 and 2, pathway 3 does not lead directly to (Re/Si)-13 but rather the n3-allyl isomer 14.
The relevance of this detail becomes apparent below in the free energy networks through
which C—C bond forming occurs (Scheme 1.3).

Loss of CO» is the overall rate determining step for pathways 1, 2, and 3. Of the
three, we found pathway 2 to have the lowest barrier at 17.1 [22.0] kcal/mol; however,
pathway 3 is comparable in energy, with a barrier height of 17.5 [23.2] kcal/mol, and the
difference between these pathways is likely within the accuracy of DFT. Single point

calculations with B3LYP-D3, PBEO-D3 and DSD-BLYP-D3 favor TS14 by 5.0, 2.0, and
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0.4 kcal/mol, respectively. Moreover, DLPNO-CCSD(T) calculations favor TS14 by 1.2
kcal/mol. Thus, we suggest an energetic preference for pathway 2. However, both
pathways 2 and 3 remain mechanistically relevant under the reaction conditions.

As previously mentioned, NMR experiments determined the rate constant of
decarboxylation of isolated 3 to be 1.58 x107 s7! at 24 °C, corresponding to AG* of 21.2
kcal/mol, which is consistent with the observed reaction time of a few hours. This
experimental data affords an opportunity to compare the computational methods utilized
in this study. Interestingly, all density functionals employed predict lower barriers than that
of experiment. The most accurate values are obtained with the global hybrid PBE0O-D3 and
the spin-component-scaled double-hybrid DSD-BLYP-D3, with calculated barriers of 20.2
kcal/mol and 18.6 kcal/mol, respectively. The popular B3LYP-D3 density functional
affords the least accurate AG* of 16.5 kcal/mol. With a barrier of 17.1 kcal/mol, M06 also
overestimates the rate of decarboxylation. High-quality coupled-cluster calculations with
DLPNO-CCSD(T) provide an accurate barrier height of 22.0 kcal/mol, within 1.0 kcal/mol
of experiment. Employing “TightPNO” cutoff criteria refines this value to 21.9 kcal/mol.

Since the dipole moment of TS15 (19.7 D) is large compared to that of TSS (12.2
D) and TS14 (13.6 D) (with M06/CPCM(THF)) we investigated the effect of solvation on
the relative free energy barriers of the three pathways. Experimentally, high yields and
enantioselectivities are observed across a variety of non-polar aprotic solvents, while yields

and enantioselectivities diminish in polar, aprotic solvents.*
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Figure 1.6. Structures of rate-limiting transition states for decarboxylation pathways

1-3 and apparent barriers as a qualitative function of solvation.*
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B-ketoacid (16-H).

Our initial efforts to assess solvent dependence focused on solvent effects from
single point calculations using the implicit Conductor-like Polarizable Continuum Model
(CPCM) for geometries optimized in the gas phase. As stated above, we found net barrier

heights of 17.1, 17.5, and 22.0 kcal/mol in THF (& = 7.3) for decarboxylation pathways 2,

3, and 1, respectively. Control computation experiments were carried out in which
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optimizations of select intermediates were additionally carried out in THF (see 1.5
Supporting Information), yielding similar results but with an even greater preference for
pathway 2.

In addition to THF (¢ = 7.3), we compared the barrier heights of the three
decarboxylative pathways in the less polar solvents toluene (¢ = 2.4) and diethyl ether (¢ =
4.3), along with the more polar DMF (& = 38.3). A clear trend arises in which a continuum
with a reduced charge permittivity (¢ < 8) favors pathway 2 (TS14), while pathway 3
(TS15) is preferred in solvents with higher dielectric constants (¢ > 8) (Figure 1.6).

Specifically, TS14 is 4.2 kcal/mol lower in energy than TS15 in toluene, compared
to a AAG* of 1.8 and 0.4 kcal/mol (favoring TS14) in Et;O and THF, respectively. In DMF,
pathway 3 is predicted to be most favorable, with TS15 1.3 kcal/mol lower in energy than
TS14. Furthermore, we found these trends to be a result of the simultaneous lowering of
the barrier of TS14 and raising that of TS15 with decreasing solvent polarity. For example,
AG?* of decarboxylation through TS14 with M06/def2-TZVP/CPCM(toluene) was found
to be 15.4 kcal/mol, compared to 17.1 kcal/mol in THF. Meanwhile, the barrier height to
TS15 is 19.6 kcal/mol in toluene, compared to 17.5 kcal/mol in THF. In conclusion, less
polar solvents afford greater selectivity for pathway 2 while lowering the overall barrier
height to decarboxylation through this pathway.

Since the polarizable continuum implicit solvation model considers electrostatics
as the sole component of solute-solvent interaction, it may be inadequate to quantitatively

capture all effects in the experimental solvent variations — particularly when comparing
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solutes with very different cavities. We expect the general trends to remain qualitatively
consistent with these findings, and thus, valuable for considerations in future reaction
development. Recently, a new CPCM model was developed and implemented in ORCA
(versions 5 and above) that employs a polarization charge density made of spherical
Gaussians, rather than point charges, spread over the surface of the solute cavity resulting
in a smoother potential. For future investigations, we recommend the use of this improved
Gaussian charge scheme (GCS) for geometry optimization and single-point energy
evaluation.

As racemic allyl B-ketoester 1 is employed in the stereoablative transformation, we
carried out an analogous investigation from the other diastereomer of 3, derived for the
(R)-1. A qualitatively similar situation is encountered (see 1.5 Supporting Information).

Previous mechanistic studies found both the reaction yield and product
enantioenrichment to be tolerant of super-stoichiometric equivalencies of water.> This
result formed the basis of evidence for an inner-sphere mechanism. Additionally, crossover
experiments with deuterium labeling of both the allyl fragment and enolate were performed.
Since nearly equal quantities of the crossed products were observed, the involvement of an
outer-sphere mechanism in which a solvated free enolate is indifferent to attacking either
the labeled or unlabeled n*-allyl complexes may be considered but is inconsistent with the
water-stability of the system. These results may also be accommodated within the inner-
sphere mechanistic hypothesis as well when considering the carboxylate/carbonate

intermediates are sufficiently stable to undergo exchange prior to decarboxylation.
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Scheme 1.2. Relative energy of select n'- and r—allyl intermediates.*
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For the B-ketocarboxylate intermediate, this mechanism appears to take place.
Comparing the difference in free energy between ion pair 4 and solvent separated ions 15
and 16, it is reasonable that free exchange between the carboxylate anion and Pd cation
may occur at a rate superseding that of decarboxylation (Scheme 1.2). Both inner and outer-
sphere mechanisms may thus accommodate the results of the crossover experiments.
Therefore, under these conditions, the observation of enolate/allyl electrophile crossover is
irrelevant to differentiation between the two mechanistic pathways.

With regard to water tolerance, we compared the barrier heights to decarboxylation
for the conjugate acid of B-ketocarboxylate 16 (16-H) via the canonical six-membered
cyclic transition state to those of the Pd-catalyzed pathways mentioned above. With AG* =
20.3 [26.1] kcal/mol for TS16, the lowest apparent barriers to decarboxylation remain those
involving the Pd catalyst (pathways 2 and 3). Furthermore, the lower pKa of 16-H
compared to water (ca. 10 units) affords a low effective concentration 16-H, and thus, a
substantially slower reaction than would be indicated from the relative AG* from 16-H is

expected. This offers an explanation as to why, in the PA(PHOX)-catalyzed systems, the
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decarboxylated but non-alkylated starting material is not observed. Hence, the
experimentally observed water tolerance is well explained for this system.
1.3.3 C-C BOND FORMATION VIA REDUCTIVE ELIMINATION

Given post-decarboxylation Pd enolate intermediates 14, (Re)-13, and (S7)-13, we
then sought to explore possible mechanisms for C(sp*)-C(sp?) bond formation. We further
exploit this opportunity to revise and expand upon previous investigations in this area.'’

Figure 1.7. Inner-sphere C—C bond forming transition states considered.
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First, inner-sphere mechanisms are considered. We envisioned four unique classes
of transition states through which reductive elimination may occur: (1) a three-membered
ring transition state from a C-bound Pd enolate (TS17), (2) a five-membered cyclic
transition state from a C—bound Pd enolate in which the carbon atom of the Pd enolate
migrates to the distal carbon of the n'-allyl fragment (TS18), (3) a five-membered ring
transition state from an O—bound Pd enolate in which the carbon atom of the enolate bonds
with the proximal carbon of the n'-allyl fragment (TS19), and (4) a seven-membered cyclic
transition state (TS20)* (Figure 1.7). Previous investigation suggests the isomerization
between oxygen and carbon-bound Pd enolates to be facile.!” Thus, we initially focused on

evaluating the barrier to the C(sp*)~C(sp®) bond forming event.
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Consistent with previous observations,!? three-centered transition state TS17 was
calculated to be intractably high in energy, with an apparent barrier of 33.7 [46.4] kcal/mol.
To determine whether a lower energy transition state could be found by expanding the ring
size, we considered the vinylogous case of the 5-centered transition state (TS18). However,
the planarity of the allyl fragment in the transition state mandates a still highly strained
five-membered ring. Despite our best efforts, a transition state fitting this connectivity was
never found on the PES, and any transformation similar would likely be intractably high in
energy. Next, we turn our attention to an alternative five-membered cyclic transition state,
TS19. Beginning from O-bound Pd enolate 13, the barrier to TS19 is found to be 32.6
[46.3] kcal/mol, and thus, likely not responsible for C—C bond formation.

Lastly, we considered the fully expanded seven-membered cyclic transition state,
TS20. Here, the seven-membered ring may adopt either a boat or chair conformer for both
Re and Si faces of the enolate. Additionally, the six-membered ring of the cyclohexanone
enolate fragment may adopt two unique half chair conformers, giving rise to eight total
transition states to be considered (Figure 1.8). Here, bond formation from the Re and Si
faces afford the S and R enantiomer of product, respectively. The prefixes chair/boat refer
to the conformation of the seven-membered ring, and axial/equatorial denote the half chair

geometry of the cyclic enolate (Figure 1.8A).
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Figure 1.8. (A) Reductive elimination from axial versus equatorial Pd enolate half-
chairs. (B) Lowest energy chair and boat conformers for each diastereomeric seven-

centered C—C bond forming transition state.’

A. Axial versus equatorial attack from Pd enolate half-chairs.
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Transition states that feature equatorial attack of the allyl fragment by the enolate

half chair are all higher in energy than their axial counterparts by 0.4 to 1.5 kcal/mol.

Henceforth, in our discussion the axial/equatorial suffix will be omitted with all references
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being to the favorable axial transition states. In comparison with the previously mentioned
inner-sphere transition states, all eight of the seven-membered cyclic transition states
(TS20) offer substantially lower barriers to C—C bond formation, with AG* ranging from
10.8 [18.5] to 15.1 [24.6] kcal/mol.

Figure 1.9. Structures of the two lowest energy diastereomeric transition states of

1520.°

(Re/chair)-TS20 (Si/boat)-TS20
AG* = 0.0 [0.0] AG#,o; = 1.3[1.9]

[a] Relative free energies given in kcal/mol from final electronic energies at the MO06/def2-

TZVP/CPCM(THF) level of theory with DLPNO-CCSD(T) values in brackets.

Experimentally, the (S)- enantiomer of the ~-BuPHOX ligand yields (§)-2-allyl-2-
methylcyclohexan-1-one ((§)-2) as the major product with 88% ee. At a reaction
temperature of 25 °C, this corresponds to an effective energetic difference of 1.6 kcal/mol
between the enantiodetermining transition states. From O-bound Pd enolate (Si/Re)-13, we
found the lowest energy difference between Re/Si diastereomeric transition states to be

(Re/chair)-TS20 and (Si/boat)-TS20, with barrier heights of 10.8 and 12.1 kcal/mol,
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respectively (AAG* = 1.3 [1.9] kcal/mol) (Figure 1.8B). This initial result is in good
agreement with the experimentally observed enantioselectivities.

Because reliably obtaining relative energies within a sub-kcal/mol error from QM
is challenging, we performed a variety of control calculational experiments. Single point
calculations on the BP86-D3/LANL2TZ(f)-6-31G(d) optimized geometries were carried
out with a suite of 15 density functionals, encompassing several classes of functionals.
Electronic energies obtained at the DLPNO-CCSD(T) level of theory (with both
NormalPNO and TightPNO settings) were employed for benchmarking. The four lower
energy axial conformations of TS20 (Figure 1.8B) were also optimized with a subset of
density functionals (with and without empirical dispersion corrections (D3)), followed by
single point calculations as previously described (see 1.5 Supporting Information). All
results from the control experiments correctly predict (Re/chair)-TS20 to be the overall
lowest energy transition sate, with (Si/boat)-TS20 as the lowest energy pathway for the
formation of the minor product (R)-2. Thus, we propose C—C bond formation via TS20 to
be the enantiodetermining step in the decarboxylative asymmetric allylic alkylation
reaction with the PA(PHOX) catalyst (Figure 1.9).

An investigation of a related system by our groups highlighted internal
rearrangements of a Pd enolate as a potential mechanism by which product
enantioselectivity is determined.!” Although outside the scope of that investigation, the
authors noted that a subsequent equilibration between (Si/Re) enolates may be facile. Thus,
a definite conclusion as to the origin of the enantioinduction was not drawn. Accordingly,

we found a facile interconversion between ($i)-13 and (Re)-13, with a rotational barrier
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several kcal/mol lower in energy than that of C—C bond formation (TS24) (vide infra,
Scheme 1.3). Therefore, the rate of kinetic quenching of intermediates ($i)-13 and (Re)-13
will not be sufficient to preserve any stereochemical induction of previous mechanistic
steps. A similar conclusion was posited by McPherson and coworkers.'?

Upon further examination, it becomes clear that in the case of the favored (Re)-
TS20 geometries, adverse interaction between the o-methyl substituent of the enolate
fragment and the #-Bu group of the PHOX ligand is minimal compared to the analogous
clash between the #-Bu group and the carbocyclic backbone of the enolate found in (87)-
TS20. The four atoms ligating Pd, along with the two carbon termini of the newly forming
6 (C—C) bond, are nearly coplanar (Figure 1.9). In the Si transition states, the resulting
steric clash between the ligand and substrate leads to a distorted chair/boat transition state
as well as deviation from square planarity at the Pd center. We performed a control
calculation in which the #-Bu group of the PHOX ligand was replaced with a hydrogen
atom, followed by subsequent transition state optimization. The optimized (Si)-des-t-Bu
transition state regained planarity resembling the favored (Re)-TS20 geometry. These
results suggest that the steric interaction from the carbocyclic scaffold and the #-Bu group
of the PHOX ligand, along with the accompanying distortion from square planarity, is the
primary origin of enantioinduction.

Although previous work suggests an inner-sphere mechanism to be prevalent, we
do not discount the possibility that a competing outer-sphere mechanism is also present. In

fact, with the PdA(PHOX) system, stabilized “soft” enolates generally remain competent in
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the reaction, albeit with substantially reduced enantioselectivities.* In the canonical Tsuji—
Trost allylic alkylation, differentiation between inner- and outer-sphere pathways is highly
reliant on the nature of the nucleophile,>* with hard nucleophiles proceeding through inner-
sphere attack and soft nucleophiles via outer-sphere mechanisms. As such, we hypothesize
that the poor enantioselectivities observed with stabilized enolates are likely the result of a
less selective outer-sphere mechanism dominating the C—C bond formation step. In an
effort to continue the development of this methodology to include previously inaccessible
substrate classes, we sought to explore the intricacies of the interplay between outer-sphere
and inner-sphere mechanisms.

From O-bound enolates (8i)-13 and (Re)-13, an associative displacement of the
enolate by the olefin of the allyl fragment ((Si/Re)-TS21) directly affords 14 (as two
inconsequential rotamers) (Scheme 1.3). Its noteworthy that 14 is also the product of
decarboxylation through TS15 (decarboxylative pathway 3) (Scheme 1.1). As expected, in
14, bonding between the axial enolate oxygen and Pd is dominated by electrostatic
attraction. Intermediate 14 presents a Pd—O bond length of 2.72 A and Léwden bond order
of 0.23, compared to the 2.08 A Pd—O bond length and bond order of 0.60 as observed in
(Re)-13. As such, disassociated ions 15 and 17 are comparable in free energy to 14. This
was found to be the lowest energy entry into the outer-sphere mechanistic space (Scheme

1.3).



Chapter 1 — Mechanism of the Pd-catalyzed Asymmetric Allylic Alkylation: A 30
Comprehensive Quantum Mechanics Investigation

Scheme 1.3. Various C-C bond forming pathways.*
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In considering C—C bond formation through an outer-sphere attack of enolate 17 on
the [n*—(allyl)Pd(PHOX)]" complex (15), we note that attack may occur either trans to N
or P, from the Si or Re face of the enolate, in both enolate half chairs, and to either exo- or
endo-allyl 15. Based on our previous findings, we considered only the enolate half chair
which gives rise to the favored axial attack. Here, we found six of the eight hypothesized
transition states for this outer-sphere process (TS22).

Unlike the inner-sphere transition states TS20, which give rise to AAG* of 1.3 [1.9]

kcal/mol between the lowest energy diastereomeric transition states, the outer-sphere
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transition states afford reduced selectivity. From transition states ($7)-TS22 and (Re)-TS22,
a AAG* of 0.6 [1.4] kcal/mol was calculated. We note that the presence of numerous nearly
degenerate rotameric transition states complicated obtaining accurate AAG* for this
pathway.

In addition to reactivity at the m-allyl carbon termini, nucleophilic attack at the
central carbon of the allyl fragment to afford palladacyclobutane species is known.3
Previous experimental and computational studies find the mode of reactivity to be highly
dependent on the o-donating/n-accepting nature of the ancillary ligand and the basicity of
the nucleophile. Palladacyclobutane complexes have been proposed as mechanistic
intermediates in palladium-mediated cyclopropanation reactions,® as well as isolated and
characterized by X-ray crystallography.?’

Of relevance to this work, we considered that 15 and 17 may combine in such a
way that the oxygen atom of 17 forms a covalent bond with the  carbon of the allyl
fragment to afford metallacyclobutane 18. The C—C = orbitals of the enolate fragment are
in potentially good overlap with the Pd-C " of the allyl terminus. Thus, we envisioned
intermediate 18 may be a competent precursor to the desired C—C bond formation via
(Si/Re)-TS23. IRC analysis reveals (Si/Re)-TS23 directly connects metallacyclobutane 18
and the complexed ketone product (R/S)-19 on the potential energy surface without the
intermittency of ion pair 15+17. Therefore, TS23 represents a C—C bond forming pathway

unique to that of TS22. Complex 18 is well poised for reductive elimination to form 19.
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The apparent barrier to this process (relative to enolate (87)-13) is 16.4 [20.5] and 16.1
[20.8] kcal/mol for (8§7)-TS23 and (Re)-TS23, respectively.

From analysis of the free energy network encompassing Pd enolates (S7)-13, (Re)-
13, and 14, with the accompanying C—C bond forming pathways, the following conclusions
are drawn:

1. Given facile rotation about the Pd—O and C—O o bonds in Pd enolates (Si)-13
and (Re)-13, preservation of stereochemical information through differentiation in energy
between prior diastereomeric transition states should largely be erased. We found the
rotational barrier from ($7)-13 to (Re)-13 to be 5.1 [6.6] kcal/mol (via TS24), whereas the
minimum energy barrier to C—C bond formation is 10.8 [18.5] kcal/mol. Therefore, the rate
of kinetic quenching of intermediates ($7)-13 and (Re)-13 will not be sufficient to preserve
any stereochemical induction from previous mechanistic steps. However, this feature of
the PES may be substrate specific and more extrapolated scaffolds may experience
rotational barriers similar to or greater than that of C—C bond formation.

2. The mechanism through which decarboxylation of the B-ketoester occurs plays
an important role in determining the predisposition for C—C bond formation to occur
through either an inner or outer-sphere process. As previously mentioned, decarboxylation
via TS5, TS14, and TS15, yield Pd enolates (S7)-13, (Re)-13, and 14, respectively. From
(Re/Si)-13, direct C—C bond formation through the inner-sphere transition states
(Re/chair)-TS20 or (Si/boat)-TS20 represent the lowest energy pathway to the product.

From (Re/Si)-13, the apparent barrier height to C—C bond formation via an outer-sphere
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mechanism corresponds to the isomerization of (Re/Si)-13 to the axially-bound enolate 14
via (Re/Si)-TS21, as (Re/Si)-TS21 are found to be higher in energy than the outer-sphere
C—C bond forming transition states (TS22). Therefore, decarboxylation through TSS or
TS14 (pathway 1 or 2) to directly afford (Re/Si)-13 carries a predisposition for inner-
sphere C—C bond formation.

Alternatively, decarboxylation via TS15 (pathways 3) directly leads to apical
enolate 14. When this is the case, C—C bond formation through both inner and outer-sphere
processes becomes highly competitive. From 14, the highest barrier to the outer-sphere
mechanism is that of the outer-sphere C—C bond forming event (TS22). While the barrier
heights for the inner-sphere C—C bond forming transition states are lower in energy than
those of the outer-sphere mechanism, the Pd enolate must first undergo an isomerization
from apically-bound 14 to square planar complexes (Re/Si)-13. In fact, the barrier heights
of these isomerizations (via (Re/Si)-TS21) are comparable to that of the outer-sphere C—C
bond formation. Therefore, less preference for the inner over outer-sphere mechanism is
expected for the case in which decarboxylation proceeds through TS15 (pathway 3).
Qualitatively similar results are obtained across a variety of density functional methods.

3. We previously discussed the effects of solvation on differentiating between
decarboxylative pathways. We find that nonpolar solvents such as toluene impose a large
preference for decarboxylation through the less polar TS14, while polar solvents result in
preference for the more charge-separated TS15. Given the similarities in the free energies
of the inner- and outer-sphere mechanisms, along with the experimentally observed solvent

dependencies described in the literature, an analogous investigation into the solvent effects
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on differentiation of the inner- and outer-sphere mechanistic pathways was carried out. For
the reasons described above, this investigation is qualitative in nature, highlighting the
expected reactivity trends.

First, we note the relative free energies between the low energy Pd enolates (Re/Si)-
13 and the transition states for their isomerization to 14 are independent of the continuum
dielectric constant (Table 1.1). However, the barrier for C—C bond formation via inner-
sphere TS20 demonstrates a dependence on solvent polarity in which less polar solvents
afford reduced barrier heights. As anticipated, the generation of solvent separated ions 15
and enolate 17 from 14 becomes increasingly unfavorable with decreasing dielectric
constant of the solvent. As the relative free energy of 15 and 17 increases dramatically in
nonpolar solvents, the outer-sphere C—C bond formation from the separate ions via TS22
is anticipated to become less prevalent. In contrast, solvation in a continuum with a high
dielectric constant favors the separate ions 15 and 17 over Pd enolate 14. The barriers to
outer-sphere C—C bond formation also decrease, now favoring an outer-sphere mechanism
from 14.

Taken together with the results for solvent effects on decarboxylation, we conclude
that in polar solvent, decarboxylation via TS15 is favored, affording intermediate 14. From
14, the minimum energy pathway to C—C bond formation is via a less enantioselective
outer-sphere mechanism (TS22). Conversely, nonpolar solvents favor loss of CO, through
TS14, yielding enolate (87)-13. Reductive elimination via the 7-membered pericyclic
transition state TS20 then ensues. Given the sensitivity of relative barrier heights to

changes in solvation, we highlight the need to consider both the mechanism of
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decarboxylation and that of the C—C bond forming pathways in determining the inner-
sphere or outer-sphere mechanism to be more favorable.

Table 1.1. Qualitative comparison of relative free energy barrier heights along

reductive elimination pathways.?

Intermediate PhMe Et,O THF DMF
(Re)-13 0.6 0.5 0.5 0.4
(Si)-13 0.0 0.0 0.0 0.0

14 8.8 9.3 9.5 9.8

15+17 332 17.5 9.2 -0.5
(Re)-TS21 13.5 13.5 13.5 13.6
(8i)-TS21 14.1 14.1 14.1 14.1
(Re/chair)-TS20 9.5 10.3 10.8 11.5
(Si/boat)-TS20 10.9 11.7 12.1 12.7
(endo/Re/t-P)-TS22 14.9° 13.9° 133 12.6
(exo0/Si/t-N)-TS22 16.0° 14.7° 13.9 12.9
(endo/Re/t-P)-TS23 19.8 17.8 16.6 15.1
(endo/Si/+-P)-TS23 19.1 17.2 16.1 14.8

[a] Relative free energies given in kcal/mol at the M06/def2-TZVP/CPCM(solvent) level of theory on

geometries obtained in the gas phase. [b] Barrier less than free energy of separated ions 15 and 17.
1.34 COMPLETE CATALYTIC CYCLE

Considering the findings for each step of the decarboxylative allylic alkylation
reaction, we now construct a mechanistic picture that unites theoretical and experimental

findings (Figure 1.10). First, the n-basic Pd°(PHOX) precatalyst coordinates to the olefin
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of the allyl B-ketoester starting material (1), followed by oxidative addition to form the
[Pd(PHOX)(n’~allyl)]"(RCO;") ion pair (4). Oxidative addition occurs trans to the
nitrogen of the PHOX ligand via direct displacement of the carboxylate leaving group
(TS4). Validation of this displacement-type mechanism supports the basis from which
previous claims have been made using inversion/retention of stereochemistry as a probe
for determination of inner versus outer-sphere mechanisms (when substitution on the allyl
terminus is present).®3? The mechanism of Béckvall was found to be unlikely for these
substrates.*! Furthermore, both enantiomers of the starting material have similar barriers to
oxidative addition. This is in accordance with experimental evidence that a kinetic
resolution of the allyl B-ketoester starting material is generally not observed to great
extent.®

Figure 1.10. Complete catalytic cycle for the inner-sphere allylic alkylation reaction.
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Ion pair 4 readily equilibrates to the more thermodynamically stable
[Pd(PHOX)(n'-allyl)(RCO2)] complex (3). Experiment and computation agree in
identifying 3 as the resting state of the catalyst. We further extend the analogous
comparison to that of the enol carbonate substrate class (8/9). Given the equilibration
between 3 and 4, along with the similar relative energies of the separated ions, we conclude
that observation of crossover products in deuterium labeling experiments does not
necessarily indicate an outer-sphere C—C bond forming mechanism, but rather is still
accommodated within the inner-sphere mechanistic hypothesis.? That is, charge-separated
ion pairs may undergo facile anion exchange to afford the observed cross-products.
Additionally, the pKy of the carboxylate/carbonate anions is such that quenching with water
to render an inactive or decomposed species is not anticipated, in accordance with the
observed water tolerance experiments.’

Subsequent loss of CO» occurs through one (or more) of three unique
decarboxylative transition states, each leading to a different Pd enolate intermediate. Our
investigation determines that ion pair 4 (the initial product of oxidative addition) is a
common intermediate along the two lowest energy pathways through decarboxylation.
Therefore, the catalyst resting state (3) is best described as an off-cycle intermediate
(Figure 1.11). In agreement with experiment, decarboxylation is determined here to be rate-
limiting. Furthermore, the calculated rate of decarboxylation (4.65 x10™* s7!, AG* = 21.9
kcal/mol) is in excellent agreement with that of experiment (1.58 x107 s7'; AG* = 21.2

kcal/mol).?
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Figure 1.11. Free energy profile of minimum energy pathway through full catalytic
cycle (green) as well as pathway for equilibration to off-cycle resting state 3
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From the four-coordinate Pd enolates (Re/Si)-13, the most facile pathway to C—C
bond formation is inner-sphere reductive elimination via a seven-membered pericyclic
transition state (TS20). We establish that this C—C bond forming event is the
enantiodetermining step (Figure 1.8). Calculated enantioselectivities agree with

experiment and are assessed across a variety of computational methods.
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We investigated the interplay of inner and outer-sphere mechanisms. In particular,
we assess effects of solvation on the differentiation of these two processes. The highly
enantioselective inner-sphere process is favored in nonpolar solvents, whereas the less
selective outer-sphere mechanisms become increasingly relevant in polar solvents. The
origin of this solvent dependence is two-fold. In addition to stabilization of charged
intermediates encountered in the outer-sphere processes, we find that increasingly polar
solvents favor decarboxylation via the formally charge-separated transition state TS15,
leading directly to the square pyramidal enolate complex 14. Above, we discuss the
implications of this in the context of a more facile entry into the outer-sphere mechanistic
space.
1.3.5 EXPERIMENT AND DISCUSSION

We then sought to experimentally evaluate the mechanistic predictions obtained in
our computational investigation. In the case of a-methyl allyl enol carbonate 8, prior
research reveals that the reaction rate is increased with the use of the more electron poor
(S)-(CF3)3-t-BuPHOX ligand.** While a similar trend for the analogous B-ketoester (1) may
be anticipated, reaction time course studies reveal that the same rate enhancement is not
observed (Figure 1.12). In fact, when the catalyst resting state (3), and both low energy
transition states responsible for decarboxylation (TS14 and TS15) are re-optimized with
the (S)-(CF3)3-t-BuPHOX ligand, the barrier to decarboxylation is calculated to be 22.2
kcal/mol (DLPNO-CCSD(T), TightPNO) — within error of the 21.9 kcal/mol (DLPNO-

CCSD(T), TightPNO) barrier height of the original system. This experiment further
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highlights the fidelity of the computational methods employed in this study in describing

the reactivity trends in the catalytic system.

Figure 1.12. Conversion of 1 to (S)-2 under standard reaction conditions.”
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[a] Conversion as determined by GC-FID with respect to tetradecane internal standard.

We prepared a-phenyl allyl B-ketoester substrate 20 to probe the interplay of inner
and outer-sphere processes (Figure 1.13). Compared to a-methylated B-ketoester 1, the
enolate derived from 20 experiences significant electronic stabilization through
conjugation. As anticipated from the discussion provided above, as well as prior
experimental trends, substrate 20 affords the desired product ($)-22 in 99% yield, however,
in a modest 23% ee. It is worth noting that the reduction in enantioselectivity is likely not
exclusively a consequence of steric interactions. A variety of sterically encumbered
substrates, which do not provide significant electronic stabilization, such as the analogous
o--Bu, a-Bn, a-prenyl, etc., compounds afford the corresponding allylic alkylation

products in 82-91% ee.>Error! Bookmark not defined. Furthermore, we compute a
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AAG* of 1.3 kcal/mol between the enantiodetermining inner-sphere transition states
derived from substrate 20 (corresponding to 80% ee at 25 °C). These results suggest that
an enantioselective inner-sphere pathway persists, however, under the standard reaction
conditions, the less selective outer-sphere mechanisms dominate.

Figure 1.13. [Effect of decarboxylation ~mechanism on  downstream

enantioselectivity.*

o
o _o J = o
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20 21 From 20: 99% conv., 23% ee (S)-22

From 21: 99% conv., 15% ee

[a] Enantiomeric excess determined by chiral SFC analysis.

In addition to a-phenyl B-ketoester 20, the corresponding o-phenyl allyl enol
carbonate (21) was also evaluated in the transformation (Figure 1.13). Interestingly, under
identical conditions to those employed with B-ketoester 20, enol carbonate 21 affords (S)-
22 in a reduced 15% ee, compared to 23% ee as obtained starting from 20.% After
decarboxylation, both 20 and 21 share access to the same network of enolate intermediates
(Scheme 1.3). However, by virtue of the differing mechanisms of decarboxylation, the
point at which the intermediates derived from each substrate enter the post-decarboxylation
mechanistic space is anticipated to vary. As prefaced by our computational investigation,
this may lead to altered levels of product enantioenrichment due to the resulting
predisposition for C—C bond formation to occur via inner- or outer-sphere mechanisms to

varying extent (vida supra). Naturally, differences in enantioselectivities based on enolate
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synthon (i.e., B-ketoester versus enol carbonate) are expected to be increasingly
pronounced in the case of stabilized enolates (20/21), for which an outer-sphere mechanism
is readily accessible. These results highlight the importance in considering the effect of the
mechanism of decarboxylation and subsequent behavior of enolate intermediates in the
overall enantioselectivity of the transformation.

With compound 20 in hand, we then sought to probe the effects of solvation and
ligand electronics on observed enantioselectivity (Figure 1.14). As previously mentioned,
the enantioselective inner-sphere pathway to C—C bond formation to ($)-22 is expected to
be largely outcompeted by less selective outer-sphere mechanisms. Our computational
investigations suggest that, for allyl B-ketoesters, inner-sphere mechanisms are favored by:
(1) disfavoring the charge-separated intermediates required for an outer-sphere approach,
and (2) favoring decarboxylative mechanisms that lead directly to n'-allyl square planar
palladium enolates (i.e., via decarboxylation pathways 1 and 2). Calculations further
predicted that this may be accomplished by utilizing nonpolar solvents, as well as through
the installation of electron withdrawing groups on the PHOX ligand framework.

Indeed, we observe an increase from 23 to 28% ee simply by implementing toluene
(e = 2.4) in place of THF (¢ = 7.3) as the reaction solvent (entries 1-2, Figure 1.14).
Utilizing the more electron poor (§)-(CF3)3-~-BuPHOX ligand in toluene (entry 3) and a
2:1 methylcyclohexane/toluene solvent mixture (¢ = 2.1), enantioselectivity was further
enhanced to 32% and 36% ee, respectively (entries 3—4). Given the initial improvements

from perturbations of ligand electronics and solvation alone, we suggest in silico high-
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throughput screening of ligands with different steric environments as a practical next step
in future developmental efforts.

Figure 1.14. Effect of solvation and ligand electronics on enantioselectivity.

0O _ o o}
Ph Pd,(dba); (2.5 mol %) Ph
o/\/ Ligand (6.25 mol %) W\ F R
Solvent, 25°C,12 h

Stablilized enolate

20 (S)-22 ‘ \C>
Entry Ligand Solvent [€] ee (%)? Yield 22(%)? AGeq® (R@P N—/
2 “t-Bu
1 (S)-+-BuPHOX THF [7.4] 23 99 1.8
2 (S)-+-BuPHOX PhMe [2.4] 28 9 24.0 R=H (S)-+-BuPHOX
3 (8)-(CF3);-+BuPHOX PhMe [2.4] 32 90 31.0 R = CF3 (S)-(CF3)3-+BuPHOX
4 (S)-(CF3);--BuPHOX 2:1 MeCy/PhMe [2.1] 36 69 35.2

Ph N/\P @ eo
AGeq \pd/ . I Ph N (S)--BuPHOX or

(I) N P (S)-(CF3)3-t-BuPHOX
Pu,, B\ Qs
CN'Pd—‘> X~

[a] Determined by chiral SFC analysis. [b] Determined by 'H NMR with respect to 1,3,5-
trimethoxybenzene as an internal standard. [c] Change in free energy (in kcal/mol, 1 M standard state)

from square pyramidal enolate to separated ions. [d] 34% of 20 remaining after 12 hours.

1.4 CONCLUSIONS

We report a detailed quantum mechanics investigation into the three mechanistic
steps (oxidative addition, decarboxylation, and reductive elimination) of the
decarboxylative asymmetric allylic alkylation with the Pd(PHOX) catalyst system.
Experiments were carried out to explore the mechanistic hypotheses derived from the ab
initio calculations.

Beginning with allyl B-ketoester 1, oxidative addition of Pd°(PHOX) proceeds
through pre-coordination of the olefin of the allyl fragment of 1 (to give 5), followed by an

Sn2-like electrophilic addition to Pd to yield the [(PHOX)Pd(n3-allyl)]"(RCO2") ion pair
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(4). Ton pair 4 then rapidly equilibrates to the catalyst resting state, [(PHOX)Pd(n'-
allyl)(RCO»)] (3). Complex 3 is best described as an off-cycle intermediate. Given the
equilibration between 3 and 4, along with the similar relative energies of the separated ions,
we corroborate that the results from our previously reported cross-over experiments are not
necessarily indicative of an outer-sphere mechanism, but still are accommodated within
the inner-sphere mechanistic hypothesis.

From the catalyst resting state (3), we find three dominant pathways (1, 2, and 3)
through which decarboxylation may occur. Each pathway leads to a unique palladium
enolate with the ability for subsequent interconversion between the three. However,
ensuing analysis of the C—C bond forming potential energy surface reveals that the enolates
derived from pathways 1 and 2 are more predisposed to undergo an inner-sphere C—C bond
formation via the seven-membered pericyclic transition state, TS20. On the other hand,
decarboxylation via pathway 3 directly affords square pyramidal enolate 14 which may
undergo a more facile dissociation and enter the outer-sphere mechanistic space.

We predict relative barrier heights among the decarboxylative and C(sp®)-C(sp?)
bond forming pathways to be highly solvent dependent. Decreasing solvent polarity favors
inner-sphere processes by destabilizing the ionic intermediates of the outer-sphere
mechanism, as well as promoting decarboxylation via Pathway 2. Decarboxylation is
determined to be rate-limiting in accordance with experiment. Furthermore, the calculated
decarboxylation rate constant in THF obtained with DLPNO-CCSD(T) (4.65x10~*s7!; AG*

= 21.9 kcal/mol) is in excellent agreement with that of experiment (1.58x1073 s7!; AG* =
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21.2 kcal/mol).* In comparison, the DFT methods applied in this study all predict a rate
constant 10°-107 times larger in magnitude (AG* = 12.5-18.9 kcal/mol) than
experimentally observed.

We considered several inner-sphere reductive elimination transition states. In
accordance with previous research in our group, the seven-membered, doubly-vinylogous
transition state (TS20)* provides the lowest energy pathway to C—C bond formation in
nonpolar solvents. We establish that the C(sp’)-C(sp’) bond forming event is the
enantiodetermining step. Calculated AAG* are in excellent agreement with experimentally
observed enantioselectivities and are assessed across a variety of computational methods.*
A model is proposed for the origin of the enantioinduction.

We also investigated outer-sphere processes, which we found to be competitive in
barrier height with the inner-sphere reactions, albeit slightly less favorable. Unlike the
inner-sphere transition states, however, severely degraded enantiocontrol is anticipated for
outer sphere mechanisms.

Additionally, enolate synthon design is highlighted as an area for future
development. Herein, we compare the relative thermodynamics of catalyst resting states
derived from different enolate precursors. From this, we suggest that in conjunction with
catalyst design, the development of more activated masked enolates may achieve a
desirable increase in reaction rate. With a complete mechanistic picture in hand, in silico
development may now accompany ensuing experimental efforts.

In order to evaluate the fidelity of the mechanistic hypotheses, a stabilized enolate

equivalent (20) was employed as a probe for inner and outer-sphere competition.
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Experimental results support the computation-based predictions in solvent trends as well
as effects of ligand substitution. Furthermore, comparison between 20 and 21 demonstrates
the intricacies in the equilibration of the palladium enolate intermediates as described
herein. While a-methyl ketone 1 is employed throughout the majority of this study as a
“standard” substrate, many of the experimentally observed trends mentioned throughout
the text remain consistent amongst more highly decorated heterocyclic scaffolds alike.
Thus, the conclusions presented herein are expected to serve as robust first-order
approximations to a broad variety of substrate classes.

Density functional theory and localized coupled-cluster theory are employed in this
study. We find the DLPNO-CCSD(T) method of Neese et. al. highly effective in obtaining
accurate barrier heights and thermodynamic relations.?® Thus, we recommend DLPNO-
CCSD(T) for routine use in future quantum mechanics-based investigations in asymmetric
catalysis.

These avenues of thought, coupled with the detailed mechanistic hypothesis
presented herein, provide a powerful tool in addressing the current limitations and aiding
in the future development of the decarboxylative asymmetric allylic alkylation reaction.
1.5 SUPPORTING INFORMATION

1.5.1 GENERAL COMPUTATIONAL DETAILS

Density functional theory calculations

All quantum mechanical calculations were performed with ORCA version 4.1 and

4.2.13 Unless otherwise noted, geometry optimizations were carried out with the BP86



Chapter 1 — Mechanism of the Pd-catalyzed Asymmetric Allylic Alkylation: A 47
Comprehensive Quantum Mechanics Investigation

generalized gradient approximation (GGA) functional'* [Becke *88 exchange functional
paired with the Perdew ’86 correlation functional] with Becke—Johnson damped D3
dispersion corrections (henceforth referred to as D3).!3 A mixed basis set was implemented,
in which palladium is described by the small core LANL2TZ(f) basis set with the Hay
Wadt effective core potential'® (ECP) [28 core electrons on Pd], and the 6-31G(d) basis set
was used on all other atoms. Thermal corrections (at 298 K) were calculated from the
unscaled vibrational frequencies at this level of theory. The Quasi-RRHO method was
applied to correct for the breakdown of the harmonic oscillator approximation for low
frequency vibrations.?* All stationary points are characterized by the appropriate number
of imaginary vibrational modes (zero for optimized geometries and one for transition
states). Intrinsic reaction coordinate (IRC) analyses were carried out to ensure all transition

states connect the appropriate starting materials and products.

Triple-( quality single point calculations were carried out on all stationary points

with the BP86-D3, B3LYP-D3,!” PBE0-D3,'® M06,' and DSD-BLYP-D3?° functionals
with the def2-TZVP basis set?’ on all atoms (with the small core ECP28MWB
pseudopotential?? on Pd). The Conductor-like Polarizable Continuum Model (CPCM)??
was employed in these single point calculations to include effects of solvation. Thermal
corrections obtained at the previous level of theory are then applied to these electronic
energies to obtain the reported free energies (Gaog). Calculated free energy changes are for
a 1 M standard state at 25 °C, apart from decarboxylation where CO; is given a standard

state of 1 atm.
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These methods encompass a range of functional classes, including GGA (BP86-
D3), hybrid GGA (B3LYP-D3), non-empirical hybrid GGA (PBE0-D3), hybrid meta-
GGA (MO06), and spin-component-scaled double hybrid (DSD-BLYP-D3), where effects
from dispersion are accounted for either in parameterization or empirically with ad-hoc
corrections. As the M06 density functional is parameterized to offer a suitable balance
between transition metals and main group elements, we report these energies in the text of
the manuscript. However, we encourage comparison of these results to those obtained with
the other methods. The values obtained from all quantum mechanical calculations are
included in the supporting excel file available online
(https://pubs.acs.org/doi/10.1021/jacs.0c06243 ?ref=pdf).

The resolution of identity (RI) and chain-of-spheres*’ (keyword = RIJCOSX)
approximations were utilized for coulomb and exchange integrals, respectively, where
applicable. Automatic generation of the auxiliary basis sets was employed (keyword =
AutoAux).*! The finest integration grid settings (Grid7, GridX9, NoFinalGrid) were
utilized in all calculations.

DLPNO-CCSD(T) Calculations

Additional single point calculations were performed on all optimized structured
with the domain based local pair natural orbital coupled-cluster (DLPNO-CCSD(T))
method as described by Neese et. al. and as implemented in ORCA.?® Here, we find the cc-
pVTZ basis set (with the corresponding cc-pVTZ/C and def2/] auxiliary basis sets), along
with the small core SK-MCDHF-RSC effective core potential?’ on Pd (i.e., the cc-pVTZ-

PP main basis set with cc-pVTZ-PP/C and def2/] auxiliary basis sets) with the
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“NormalPNO” cutoffs to offer an appropriate balance between cost and accuracy for
routine use. As before, the CPCM(THF) was employed to account for effects of solvation.
Thermal corrections obtained at the BP86-D3/LANL2TZ(f)—6-31G(d) are applied to the
DLPNO-CCSD(T)/cc-pVTZ/CPCM(THF) electronic energies to afford the corresponding
free energies. The “TightPNO” settings are employed to further refine correlation energy
for comparison of select structures.
Notes:
= Similar results are obtained with the def2-TZVP basis set in control experiments,
although we elected to employ Dunning’s cc-pVnZ family of basis sets for ease of
basis set extrapolation with further calculations should the need arise.
» “NormalPNO”: Tcuwpairs = 107, Teuno = 1x1072, Teupno = 3.33x1077, Teunvkn = 107
» “TightPNO”: Tcupairs = 107, Teuno = 5x1073, Tewpno = 1.00x1077, Teumkn = 1073
= “TightPNO” settings may be employed, however, the computational cost increases
dramatically. Thus, we have found an efficient approach is to perform routine single
point calculations with “NormalPNO” cutoffs, then refine these values for key
intermediates with the “TightPNO” settings.
» When CPCM implicit solvation is employed (ORCA 4), the Hartree—Fock reference
is optimized self-consistently with respect to the solvent reaction field, but the
subsequent optimization of the cluster amplitudes is not. [An alternative is to apply

AG(solv) from DFT calculations to a gas phase DLPNO-CCSD(T) energy.]
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1.5.2 INITIAL BENCHMARKING

We explore density functional and basis set dependence on the geometry optimization of
the Pd" resting state complex 3. These calculated geometries are then compared to that of
the recently reported crystallographic structure (CCDC 695531) (Table 1.2).°> While slight
discrepancies between crystallographic and solution phase structure may persist, we utilize
this data as a reference point to which we may calibrate our methodology, as well as explore
general trends in basis set and functional dependencies.

Table 1.2. Comparison of geometric parameters obtained from geometry

optimization with various functionals and basis sets.?

Resting state

~~
PN
Pd =
j o o
Me
7 0)\6
3 [X-ray]®
Basis Set ‘Functional Pd-P Pd-N | Pd-O | Pd-C d; MUE®* | MSE
Crystal XRD 2.189 | 2.133 | 2.136 | 2.055 | 4.687 - -

LANL2DZ[Pd]/6-31G(d) BP86-D3 2217 | 2201 | 2.159 | 2.082 | 4.610 | 3.65 3.65
LANL2TZ [Pd]/6-31G(d) BP86-D3 2213 | 2192 | 2.151 | 2.082 | 4.618 | 3.12 3.12
LANL2TZ(f) [Pd]/6-31G(d) | BP86-D3 2.206 | 2.148 | 2.107 | 2.067 | 4598 | 1.83 0.38

def2-TZVP [all atoms] BP86-D3 2,182 | 2136 | 2.111 | 2.070 | 4.632 1.25 -0.35
LANL2TZ(f) [Pd]/6-31G(d) | PBE-D3 2214 | 2162 | 2.117 | 2.069 | 4.701 2.17 1.22
LANL2TZ(f) [Pd]/6-31G(d) | TPSS-D3 2217 | 2.154 | 2.101 | 2.071 | 4.673 | 2.50 0.75
LANL2TZ(f) [Pd])/6-31G(d) | BLYP-D3 2233 | 2208 | 2.152 | 2.095 | 4.645 | 4.38 438
LANL2TZ(f) [Pd])/6-31G(d) | B3LYP-D3 | 2.228 | 2.209 | 2.134 | 2.066 | 4.683 | 3.20 3.10
LANL2TZ(f) [Pd])/6-31G(d) | B3PW-D3 2204 | 2.145 | 2.088 | 2.045 | 4.586 | 2.13 -0.78
LANL2TZ(f) [Pd]/6-31G(d) | PBE0-D3 2211 | 2.150 | 2.086 | 2.040 | 4.673 | 2.60 -0.65
LANL2TZ(f) [Pd]/6-31G(d) | TPSSh-D3 2215 | 2.153 | 2.091 | 2.059 | 4.653 | 2.37 0.12
[Pd]

LANL2TZ(f) [Pd)/6-31G(d) | wB97X-D3 | 2.226 | 2.179 | 2.097 | 2.033 | 4.612 | 2.75 -0.80
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LANL2DZ [Pd}/6-31G(d) B3LYP ‘ 2278 ‘ 2.234 ‘2.133 ‘ 2.079 ‘ 5.102‘ 5.43 ‘ 5.28 ‘

[a] Geometric parameters (Pd-X bond lengths, and d;) given in angstrom (A). MUE and MSE
(excluding d;) given in pm. Optimization carried out beginning from the known X-ray crystal

structure. [b] CCDC 695531 (ref. 5).
From these controls, the following trends are observed:

(1) Greatly reduced errors in Pd—X bond lengths with minimal increase in
computational cost are obtained by employing the larger triple-C quality basis set
with polarization functions, LANL2TZ(f), on Pd in place of the double-{
(LANL2DZ) basis set.

(2) The use of Becke-Johnson D3 damped dispersion corrections (-D3) in the
optimization greatly aids in capturing perturbations of the ligand geometry arising
from noncovalent interactions (see d1).

(3) Density functionals constructed with the Lee—Yang—Parr correlation functional
(BLYP, B3LYP) present elongated Pd—X bonds and are among the functionals with
the highest MUESs. This trend has been previously described in the literature!® and
has been attributed to the LYP functional underestimating correlation at the uniform
electron gas (UEG) limit.*?

Thus, for geometry optimization we employ the BP86 density functional with Becke—
Johnson damped dispersion corrections (BP86-D3), with a mixed basis set comprised of
the LANL2TZ(f) basis set on Pd with 6-31G(d) on all other atoms. We do not recommend
the use of the B3LYP/LANL2DZ—-6-31G(d) level of theory as is employed in select literature

investigations. We believe more suitable geometries may be obtained with D3BJ dispersion
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corrections and triple-¢ basis sets with polarization functions on the metal center. Apart
from B3LYP and BLYP, all other functionals evaluated perform comparably well.
1.5.3 DECARBOXYLATION AND CONTROL EXPERIMENTS

In order to obtain accurate barrier heights for the rate determining decarboxylative
step, geometry/transition state optimizations were also carried out with CPCM(THF) for
comparison to the structures optimized in the gas phase (Table 1.3).
Table 1.3. Decarboxylation barrier heights with geometries optimized in gas phase

and with CPCM(THF).?

Method (for

single point (boat/ax)- | (chair/ax)- | (exo/chair/ax)- | (boat/ax)- (chair/ax)- | (exo/chair/ax)-
caleulations) TS5 (gas) | TS14 (gas) TS15 (gas) TS5 (THF) | TS14 (THF) | TS15 (THF)
BP86-D3 16.5 12.5 16.4 15.1 11.5 217
B3LYP-D3 18.4° 16.5 21.5 19.2 15.4 277
PBEO0-D3 21.0° 18.9¢ 21.0 239 19.0 27.8
MO6 22.0 171 17.5 21.8 15.2 19.8
DSD- 20.6¢ 18.6 19.0 22.5 17.1 24.1
BLYP-D3

DLPNO- 26.8 22.0 23.2¢ 26.8 19.8 28.2
CCSD(T)°

[a] Comparison of barrier heights obtained across a variety of methods with geometries optimized in
gas phase and with CPCM(THF). Barrier heights given in kcal/mol from “Method”/def2-TZVP-
CPCM(THF)//BP86-D3/LANL2TZ(f)-6-31G(d) (with or without CPCM(THF)). [b] (chair/ax)-TS5. [c]
(boat/ax)-TS14. [d] (exo/boat/ax)-TS15. [e] Single point with the cc-pVTZ basis set (with SK-MCDHF-

RSC pseudopotential on Pd; i.e., cc-pVTZ-PP), “NormalPNO” settings.

For completeness, intermediates derived from the R enantiomer of starting material

1 were also investigated (Table 1.4). An analogous result was obtained. Note: Transition
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state geometries obtained with CPCM(THF) solvation were prone to an additional small
imaginary vibrational mode (<5 cm™') corresponding to a rocking of the ligand backbone.
With the point charge CPCM scheme these were unable to be eliminated, however they
bear no consequences on the final results.

Table 1.4. Decarboxylation barrier heights of complexes derived from the (R)

enantiomer of 1.2

Method (chair/ax)-TS14_diast2 | (exo/chair/ax)-TS15_ diast2
BP86-D3 12.3 18.5
B3LYP-D3 16.7 24.8
PBEO0-D3 21.0 25.5
MO6 174 21.5
DSD-BLYP-D3 18.8 23.1
DLPNO-CCSD(T)” 21.6 27.7

[a] Barrier heights reported in kcal/mol from single point calculations with the listed
functional/method, the def2-TZVP basis set on all atoms and CPCM(THF) on geometries obtained
with BP86-D3/LANL2TZ(f)-6-31G(d). [b] Single point with the cc-pVTZ basis set (with SK-MCDHF-

RSC pseudopotential on Pd; i.e., cc-pVTZ-PP) and “NormalPNO” settings.
1.5.4 PREDICTION OF ENANTIOSELECTIVITY

Given the challenge of calculating energies to within the sub-kcal/mol level of
accuracy required for accurate prediction of reaction enantioselectivity, we chose to
employ a variety of control experiments to assess the fidelity of our results. With
geometries obtained at the BP86-D3/LANL2TZ(f)-6-31G(d) level, we began by
evaluating single point energies with a variety of density functional methods (Table 1.5).

These methods include generalized gradient approximation (GGA), meta-GGA, hybrid
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meta-GGA, range-separated hybrid GGA, and double hybrid functionals. Similar trends in
relative free energies are obtained across each of the methods tested.
Table 1.5. Comparison of relative free energies obtained across a variety of density

functional methods.?

BP86-D3 | BLYP-D3 | revPBE-D3 | MO06-L | B3LYP-D3 | B3LYP-D3
(Re/chair/ax)-TS20 0.0 0.0 0.0 0.0 0.0 0.0
(Re/boat/ax)-TS20 54 6.0 53 42 6.1 5.7
(Re/chair/eq)-TS20 1.6 22 1.7 1.4 2.0 1.9
(Re/boat/eq)-TS20 55 53 5.0 43 5.6 52
(Si/chair/ax)-TS20 2.0 24 1.9 1.8 2.8 2.6
(Si/boat/ax)-TS20 1.0 0.8 0.9 0.3 1.1 1.0
(Si/chair/eq)-TS20 42 5.0 41 3.7 5.0 49
(Si/boat/eq)-TS20 32 34 2.9 2.6 3.6 34

PBEO0-D3 | TPSSh-D3 MO06 M06-2X | ®B97X-D3 | mPW2PLYP-D
(Re/chair/ax)-TS20 0.0 0.0 0.0 0.0 0.0 0.0
(Re/boat/ax)-TS20 52 5.9 3.6 43 6.1 5.1
(Re/chair/eq)-TS20 1.2 1.7 0.4 1.2 1.6 1.4
(Re/boat/eq)-TS20 5.6 5.8 4.0 4.4 5.8 5.8
(Si/chair/ax)-TS20 2.5 2.2 2.1 2.8 2.8 2.2
(Si/boat/ax)-TS20 1.5 1.0 1.3 1.0 0.9 1.9
(Si/chair/eq)-TS20 4.1 4.2 3.2 4.0 43 4.0
(Si/boat/eq)-TS20 3.5 33 2.8 2.8 3.0 4.1

PWPB95-D3 | DSD-BLYP-D3 | DSD-PBEP86-D3

(Re/chair/ax)-TS20 0.0 0.0 0.0
(Re/boat/ax)-TS20 5.5 5.1 5.0
(Re/chair/eq)-TS20 1.3 1.1 1.0

(Re/boat/eq)-TS20 5.5 5.6 5.6
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(Si/chair/ax)-TS20 24 22 2.1
(Si/boat/ax)-TS20 1.4 2.1 2.1
(Si/chair/eq)-TS20 3.9 3.8 3.6
(Si/boat/eq)-TS20 33 3.7 3.7

[a] Relative free energies reported in kcal/mol from single point calculations with the listed functional, the
def2-TZVP basis set on all atoms and CPCM(THF) on geometries obtained with BP86-D3/LANL2TZ(f)—6-
31G(d). [b] A mixed basis set consisting of LANL2TZ(f) on palladium and 6-311+G(d) on all other atoms

utilized.

Given the potentially significant role of noncovalent interactions in differentiating
the energy between diastereomeric transition states, we sought to further refine our
calculated AAG* by employing single point calculations with domain based local pair
natural orbital coupled-cluster theory (DLPNO-CCSD(T)) (Table 1.6). For these
calculations, we employ the cc-pVTZ basis set on all atoms, with the SK-MCDHF-RSC
relativistic effective core potential on palladium. Calculations are additionally carried out
with the “TightPNO” criteria for the two lowest energy diastereomeric transition states
found from calculations with the “NormalPNO” settings.

Under standard conditions at 25 °C, an enantiomeric excess of 88% is
experimentally observed, corresponding to an apparent AAG* of 1.6 kcal/mol. Comparing
the relative energies of only the two lowest energy diastereomeric transition states with
“NormalPNO” and “TightPNO” cutoffs affords a calculated AAG* of 2.3 and 1.9 kcal/mol,
respectively, corresponding to 96% ee and 92% ee. From a Boltzmann-weighted average

over unique transition states (with “NormalPNO”), 94% ee is calculated. These results are
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in good agreement with experimentally obtained values, and thus highlight the efficacy of
the DLPNO-CCSD(T) in the context of asymmetric catalysis.

Table 1.6. Comparison of relative free energies obtained at the DLPNO-CCSD(T)

level of theory.?

DLNO-CCSD(T)? | DLNO-CCSD(T) | DLNO-CCSD(T)
NormalPNO NormalPNO TightPNO
(Re/chair/ax)-TS20 0.0 0.0 0.0
(Re/boat/ax)-TS20 6.6 5.9 -
(Re/chair/eq)-TS20 1.4 1.0 -
(Re/boat/eq)-TS20 6.6 6.1 -
(Si/chair/ax)-TS20 3.0 2.8 -
(Si/boat/ax)-TS20 22 23 1.9
(Si/chair/eq)-TS20 4.5 4.0 -
(Si/boat/eq)-TS20 4.4 4.2 -

[a] Relative free energies reported in kcal/mol with DLPNO-CCSD(T)/cc-pVTZ-CPCM(THF)//BP86-

D3/LANL2TZ(f)-6-31G(d). *Using the def2-TZVP basis set on all atoms.

Further controls were carried out in which transition state optimizations were
carried out without D3 dispersion correction (Table 1.7), and with the B3LYP-D3 hybrid
functional (Table 1.8). Both of these trials offer similar overall results to those obtained
with BP86-D3 geometries.

Table 1.7. Optimization without D3 corrections (BP86).

MO6? DLNO-CCSD(T)*
(Re/chair/ax)-TS20 0.0 0.0
(Re/boat/ax)-TS20 44 5.9
(Re/chair/eq)-TS20 1.6 2.2
(Re/boat/eq)-TS20 53 6.7
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(Si/chair/ax)-TS20 2.6 1.8
(Si/boat/ax)-TS20 1.7 2.7
(Si/chair/eq)-TS20 4.2 4.3
(Si/boat/eq)-TS20 3.5 5.0

[a] Relative free energies reported in kcal/mol with geometries obtained with BP86/LANL2DZ—6-
31G(d). [b] Single point calculation with M06/def2-TZVP-CPCM(THF). [c] Single point calculation

with DLPNO-CCSD(T)/cc-pVTZ-CPCM(THF) with “NormalPNO” settings.

Table 1.8. Optimization with B3LYP-D3.*

MO6? DLNO-CCSD(T)*
(Re/chair/ax)-TS20 0.0 0.0
(Re/boat/ax)-TS20 2.8 3.7
(Si/chair/ax)-TS20 1.7 1.9
(Si/boat/ax)-TS20 1.5 23

[a] Relative free energies reported in kcal/mol with geometries obtained with B3LYP-D3/LANL2DZ-
6-31G(d). The four lowest energy “axial” transition states were considered here. [b] Single point
calculation with M06/def2-TZVP-CPCM(THF). [c] Single point calculation with DLPNO-CCSD(T)/cc-
pVTZ-CPCM(THF) with “NormalPNO” settings.
1.5.5 ADDITIONAL NOTES
Facile interconversion between (Re)-13 and (Si)-13

A previous computational investigation into the reaction mechanism of a truncated
system (beginning from enolate intermediates) highlights internal rearrangements of
palladium enolates prior to C—C bond formation as a possible origin of enantioinduction.?!
This hypothesis is dependent on kinetic quenching (rather than equilibration) of enolates
(Re)-13 and (8i)-13 by their corresponding C—C bond forming events. However, the

authors of that study recognize that a transition state leading to the facile equilibration of
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(Re/Si)-13 may exist, but do not explore further, leaving the origins of enantioinduction
unresolved. In this investigation, a low energy transition state connecting (Re)-13 and (5i)-
13 on the PES is found (TS24, AG* ~ 5 kcal/mol). TS24 is significantly lower in energy
than the next lowest transition states, which are those of C—C bond formation (TS20). Thus,
enolates (Re)-13 and (8i)-13 are expected to be in thermal equilibrium. Hence, internal
rearrangements of palladium enolates, followed by kinetic quenching via C—C bond
formation, is not responsible for enantioinduction.

Additional potentially lower energy transition states for the interconversion of (Re)-
13 and (Si)-13 likely persist, however are challenging to optimize given the flat nature of
the PES and conformational flexibility of the enolate fragment. It is worth noting that
highly decorated, sterically encumbered substrates may experience a barrier to enolate
equilibration similar or greater in magnitude to that of C—C bond formation. Should this be
the case, the mechanism of decarboxylation and/or choice of masked enolate synthon
would play a large role in the resultant product enantioselectivity. The pathways,
intermediates, and consideration described in this research provide a framework from
which this would be evaluated.
Trans Influence in Oxidative Addition

Our investigations into the mechanism of oxidative addition reveal the lowest
energy process for C—O bond cleavage to be that of an anti displacement-type of
mechanism (Figure 1.3). The lowest energy conformer of four unique transition states are

considered, in which displacement of the carboxylate leaving group occurs trans to either



Chapter 1 — Mechanism of the Pd-catalyzed Asymmetric Allylic Alkylation: A 59
Comprehensive Quantum Mechanics Investigation

the nitrogen (#-N) or phosphorus (#-P) of the PHOX ligand, with either exo or endo
approach of the allylic fragment.

Table 1.9. Relative free energies (in kcal/mol) of isomeric oxidative addition transition

states at various levels of theory.*

BP86-D3 | B3LYP-D3 | PBE0-D3 | M06 | DLPNO-CCSD(T)’
(ex0/t-N)-TS4 0.0 0.0 0.0 0.0 0.0
(endo/t-N)-TS4 1.4 2.0 1.9 2.3 2.7
(ex0/t-P)-TS4 59 7.6 73 75 9.3
(endo/t-P)-TS4 38 48 55 6.2 6.5

[a] Relative free energies reported in kcal/mol with geometries obtained with BP86-D3/LANL2TZ(f)—
6-31G(d). Single point calculation with def2-TZVP basis set on all atoms (def2-ECP on Pd) and
CPCM(THF). [b] Single point calculation with DLPNO-CCSD(T)/cc-pVTZ/CPCM(THF) with

“NormalPNO” settings.

An energetic preference of 3.8—6.5 kcal/mol is found for the #-N transition states across the
various levels of theory investigated (Table 1.9). While this may be in part due to steric
interactions between the carboxylate leaving group and the phenyl rings of the triaryl
phosphine ligand, we also consider electronic effects. In accordance with the anticipated
trans influence, elongated Pd—X bond lengths trans to phosphorus are observed (Figure
1.3). As a hypothesis for the origins of the preference for #-N transition states, we consider
the research of De Proft and co-workers,* who provide a ligand-field-based rational for
the trans influence in related square planar Pt(I) complexes. In brief, the authors suggest
the repulsion between a strong trans ligand (T) and the ligand trans to T (L) arises from

further hybridization (in unsymmetrical d® complexes) between the occupied 2a’ and
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virtual 3a” MOs (Figure 1.15) resulting in a net decrees in Pt—L -bonding character, and
thus, a longer bond length.

Figure 1.15. Select frontier MOs of a model Pt' complex highlighting potential
hybridization of 2a” and 3a’.
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In the case of the (PHOX)Pd complexes, we consider this effect may play a role in the
calculated preference for displacement frans to nitrogen. The reduced Pd—C(OCOR) bond
length in the #-N transitions states should be conducive to enhanced overlap with the 6*(C—
0), thus, facilitating displacement of the carboxylate leaving group.

Additional Computations for “Experiment and Discussion” Section of Manuscript
Experimentally, it was determined that for B-ketoester substrate 1, employing the more
electron poor (S)-(CF3)3---BuPHOX ligand in place of the standard (S)---BuPHOX ligand,
with otherwise identical reaction conditions, did not result in a significant change in
reaction rate. Computationally, an identical result was obtained. Henceforth, the suffix
“ CF3” denotes structures that are re-optimized using the (R)-(CF3)3--~-BuPHOX ligand.
The apparent barrier heights of the two lowest energy decarboxylation pathways (Pathways

2 and 3, see text) were then compared with both ligands at the DLPNO-CCSD(T) level of
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theory. Similar results are obtained with “NormalPNO” and “TightPNO” cutoffs (Table
1.10).
Table 1.10. Comparison of barrier heights to decarboxylation with the standard (S)-

t-BuPHOX and electron poor (S)-(CFs)s-t-BuPHOX ligands.*

TS14 TS15 TS14_CF3 TS15_CF;
NormalPNO 22.0 23.5 22.4 21.6
TightPNO 21.9 243 222 22.4

[a] Free energies reported in kcal/mol with geometries obtained with BP86-D3/LANL2TZ(f)—6-31G(d).

Single point calculation with DLPNO-CCSD(T)/cc-pVTZ-CPCM(THF).

In order to experimentally probe the interplay of inner- and outer-sphere
mechanistic pathways, we prepared a-phenyl B-ketoester 20 as well as the corresponding
enol carbonate 21. Highlighting the role of decarboxylative pathway on subsequent C—C
bond formation, compounds 20 and 21 both yield a-phenyl product 22, however with
differing degrees of enantioenrichment. In analogous fashion to intermediates derived from
substrate 1 (R = Me), the corresponding set of seven-membered pericyclic inner-sphere C—
C bond forming transition states (TS20_Ph) are considered. These initial results suggest
that inner-sphere C—C bond formation for these a-phenyl enolates may give rise to a similar
degree of product enantioenrichment as the a-methyl case (Table 1.11).

Table 1.11. Inner-sphere reductive elimination transition states with a-phenyl

substrate.

Transition State G(rel)

(Re/chair/axial)-TS20_Ph i 0.0
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(Re/chair/axial)-TS20 Ph_ii 1.3

(Re/boat/axial)-TS20_Ph i 4.9

(Re/boat/axial)-TS20_Ph_ii 3.6

(Si/chair/axial)-TS20_Ph i 4.1

(Si/chair/axial)-TS20_Ph_ii 4.1

(Si/boat/axial)-TS20_Ph i 1.3

(Si/boat/axial)-TS20_Ph _ii 1.3

[a] Relative free energies reported in kcal/mol from the MO06/def2-TZVP-CPCM(THF)//BP86-
D3/LANL2TZ(f)}-6-31G(d) level of theory. Note that Re and Si exchange compared to TS20 with a-

Me groups due to the priority of the Ph substituent.

1.5.6 EXPERIMENTAL PROCEDURES AND SPECTROSCOPIC DATA
o o PooAc U1 ey 9 pnd
0/\/ Hg(OAc), (0.11 equiv) _ o/\/
é)k 1.71 CHCly/pyridine @)L
40°C, 18 h
20

Allyl 2-0x0-1-phenylcyclohexane-1-carboxylate (20)

Compound 20 was prepared in following literature precedent.** To a flame dried flask
equipped with a stir bar under a nitrogen atmosphere were added phenylboronic acid (1.46
g, 12.1 mmol, 1.10 equiv), lead(IV) acetate (5.34 g, 12.1 mmol, 1.10 equiv), and mercury(II)
acetate (0.38 g, 1.21 mmol). The solids were dissolved in anhydrous chloroform (20 mL)
and the solution was heated to 40 °C. After one hour at 40 °C, a solution of allyl 2-
oxocyclohexane-1-carboxylate? (2.00 g, 11.0 mmol, 1.00 equiv) in pyridine (11.0 mL, 1.0
M) was added to the reaction, and stirring at 40 °C was continued for 18 hours. Upon

complete consumption of [-ketoester starting material, as determined by TLC (10%
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EtOAc/hexanes), the reaction mixture was let cool, then filtered through a plug of Celite®
washing with chloroform. The combined organic phase was washed with aqueous H>SO4
(3 M, 20 mL). The resulting aqueous layer was extracted twice with chloroform (20 mL).
The combined organic layer was once again washed with water (20 mL), dried over
anhydrous Na,SOg, filtered, and volatiles were removed in vacuo. The crude oil was
purified by flash column chromatography (10% EtOAc/hexanes) to afford 3-ketoester 20
(2.00 g, 70% yield) as a colorless oil, which solidifies to an amorphous solid upon
refrigeration.

'"H NMR (400 MHz, CDCl3): § 7.41 —7.35 (m, 2H), 7.34 — 7.29 (m, 1H), 7.27 — 7.23 (m,
2H), 5.86 (ddt, J=17.2, 10.5, 5.6 Hz, 1H), 5.25 - 5.17 (m, 2H), 4.65 (dq, /= 5.6, 1.5 Hz,
2H), 2.81 — 2.73 (m, 1H), 2.60 — 2.53 (m, 2H), 2.48 — 2.40 (m, 1H), 2.03 — 1.93 (m, 1H),
1.90 — 1.73 (m, 3H).

13C NMR (100 MHz, CDCl3): 5 206.8, 171.1, 136.6, 131.6, 128.6, 128.0, 127.8, 118.6,
66.7, 66.1, 40.8, 35.2,27.8, 22.1

IR (Neat Film, NaCl): 2989, 1714, 1434, 1214 cm™'.

HRMS (MM: FD+): m/z calc’d for CisH1sO3 [M]": 258.1256, found 258.1265.

o}
o _o o
R OJ\O/\/ Pd,(dba), (2.5 mol %) R
o \F or o Ligand (6.25 mol %) %
Solvent, 25 °C

General procedure for asymmetric allylic alkylation screening

The procedure for the Pd-catalyzed dicarboxylic allylic alkylation is followed as described

in our previous reports,>Errer! Bookmark not defined. Ty 5 pjtrogen filled glovebox, an oven dried
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vial is charged with a stir bar, tris(dibenzylideneacetone)dipalladium(0) (2.28 mg, 2.50
pmol), and ligand (6.25 pmol). Solvent (1.0 mL) is added, and the catalyst stock solution
is pre-stirred for 30 minutes at 25 °C. To a separate vial equipped with a stir bar is added a
solution of substrate (0.05 mmol) in solvent (1.0 mL, 0.05 M). To the solution of substrate
is added 0.50 mL of the pre-stirred catalyst stock solution [1.25 umol Pdx(dba)s, 3.13 pmol
ligand]. The reaction vessel is then sealed with electrical tape and removed from the
glovebox. Stirring is continued at 25 °C for 12 hours (unless otherwise noted). Volatiles
are then removed in vacuo and the product is purified by silica gel flash column

chromatography or preparatory-scale TLC.

0
Me
-~

(S)-2
(8)-2-allyl-2-methylcyclohexan-1-one ((S)-2)

Known compound — Spectral data matches that of prior literature reports.?Error! Bookmark not

defined.

TH NMR (500 MHz, CDCl5): & 5.69 (ddt, J = 16.2, 10.9, 7.4 Hz, 1H), 5.07 — 5.01 (m,
2H), 2.42 —2.33 (m, 3H), 2.23 (dd, J=13.8, 7.2 Hz, 1H), 1.91 — 1.67 (m, 5H), 1.64 — 1.55
(m, 1H), 1.07 (s, 3H).

Note: Compound is moderately volatile, and care should be exercised when removing

solvent in vacuo.
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o
Ph
-~

(S)-22
(8)-2-allyl-2-phenylcyclohexan-1-one ((S)-22)

Known compound — Spectral data matches that of prior literature reports.*’
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'TH NMR (500 MHz, CDCl3):  7.35 (t,J= 7.7 Hz, 2H), 7.26 — 7.22 (m, 1H), 7.15 (d, J =

7.5 Hz, 2H), 5.44 (dddd, /= 17.0, 10.2, 7.9, 6.7 Hz, 1H), 4.92 (d, J=10.2 Hz, 1H), 4.88

(d,J=17.0 Hz, 1H), 2.67 (dq, J = 14.4, 3.0 Hz, 1H), 2.51 (dd, J = 14.0, 6.7 Hz, 2H), 2.44

(dd, J = 14.0, 8.0 Hz, 2H), 2.38 — 2.26 (m, 2H), 1.99 — 1.91 (m, 1H), 1.83 — 1.63 (m, 4H).

SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):

minor = 3.31, major = 3.07.

Racemic 22:
mAU | A Ul 3
$ A
S (ggs@ _%oa“'
550 - 3 || &
| \?:3’ 'S
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450 -
400
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Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
e [====l=-==- [====- [====- [=====——- |
1 3.046 MF 0.0731 842.69116 192.14436 56.8607
2 3.287 FM 0.0768 639.33521 138.66087 43.1393
From [-ketoester 20:
mAU , >
] I\ Q)?;\ >
360 - &P &
] e? S
340 /¥ @@5
320 ‘ N
0 0 ‘
280 | ) o oo
260 -
240 | {
220 I
6 ‘ ‘ ‘05‘ ‘ ‘ 4 ‘ 1£‘ é ‘ ‘ ‘2% o é ‘ 3.5
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
e B === l=-== | === [ === [=======- |
1 3.169 MM 0.0760 269.91296 59.16746 61.6800
2 3.420 MF 0.0784 167.68944 35.64637 38.3200

From [-ketoester 20 with optimal conditions (entry 4 in Figure 1.14):

mAU 1
Oﬁ

N h N
a o o
clevia b
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o
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Figure A1.2. Infrared spectrum (Thin Film, NaCl) of compound 20.
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Figure A1.3. "C NMR (100 MHz, CDCl;) of compound 20.



CHAPTER 2

Analysis of the Pd [m2s + m2s + 02s + 02s] Pericyclic Reactiont

2.1 INTRODUCTION

Selectivity in pericyclic reactions is a tangible manifestation of the quantum
mechanical wave-like behavior of electrons. Bringing an acyclic system to a cyclic
transition state introduces constructive/destructive interferences amongst the spatial
wavefunctions of the component electrons, which are governed by orbital orthogonality
requirements as prescribed by the Pauli principle. With proper constructive overlaps, the
bond order of the transition state will match that of the reactant(s) and product(s) —i.e., net
covalent bonding is maintained through the transition state. Alternatively, destructive
interferences are incurred that do not allow for continual bonding —i.e., a covalent bonding
interaction is /ost, and the electronic configuration is that of a diradical. Several conceptual
frameworks are commonly employed to analyze the nature of bonding in pericyclic
transition states, though these are simply different projections of the same underlying
physics. These tools include orbital and state correlation diagrams, frontier molecular
orbital (FMO) theory, ! the orbital phase continuity principle ? in valence bonding

wavefunctions, and the concept of transition state (anti)aromaticity.?

Pericyclic reactivity is also commonplace in organometallic systems.* In fact, the

elementary step responsible for enantioinduction in the inner-sphere asymmetric Tsuji

tPerformed under the co-advisory of Prof. William A. Goddard III. This chapter has been reproduced with
permission from J. Am. Chem. Soc. 2020, 142, 19033-19039. © 2020 American Chemical Society.



Chapter 2 — Analysis of the Pd-catalyzed [n2s + m2s + 025 + 02s] Pericyclic Reaction 84

allylic alkylation is C—C bond formation through a synchronous, seven-membered
pericyclic transition state (TS20) (Figure 2.1A).° Since the original computational reports
by our groups® and others,” the relationship between this class of seven-membered
transition states to those of the canonical pericyclic reactions as described by Woodward
and Hoffmann is underexplored.® Exemplifying the peculiar nature of the reaction, an
analogous transformation in a system comprised of main group elements remains elusive.’
Given the key role of this seven-membered pericyclic process in asymmetric catalysis, we
sought to delineate the underlying reactivity paradigm that enables this unique

transformation (Figure 2.1B).

Figure 2.1. Seven-centered cyclic transition states in Pd catalysis.

A. Seven-membered transition state in C—C bond formation: B. This research: [n2s + n2s + 62s + 62s] reactions.

s
= HgP
HP /TN Facile HoP, 7N *pa—||
Pd RN Pd —_— )
NS

HP" Y HaP’ ‘x-«/'l HaP
X
26 (X = CHy) TS25 (X = CH,)
13 TS20 19 27(X =0) TS26 (X = 0) 28(X =CH,)
29 (X =0)
AG* =10.8 kcal/mol N +
AG =-22.5 kcal/mol N TN fo) =
Ois//\ % = OZS' i |— ;‘5; +
0’ \__ Symmetry- 07 e/ o —
23 forbidden TS24 24 25
2.2 RESULTS AND DISCUSSION

To obtain a general understanding of this bond forming event, we first examined an
analogous system comprised of main group elements, namely the reaction of diallyl sulfone
(23) to sulfur dioxide (24) and 1,5-hexadiene (25) (Figure 2.1B). If the geometry of the
seven-membered cheletropic transition state (TS24) is constrained to match that of TS20,
then a suprafacial relationship amongst the eight correlating orbitals with linear departure

of the chelefuge is mandated. Thus, the transformation of 23 to 24 + 25 is designated [n2s
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+ n2s + 62s + 62s] and the reverse as [0w2s + n2s + 12s + 62s]. With four suprafacial two-
electron terms, the ground-state pericyclic reaction of 23 to 24 + 25 is anticipated to be
symmetry-forbidden by the generalized Woodward-Hoffmann rules.® An identical
conclusion is reached for chelefuges such as CO and N> in the ground state.'® Given the
low thermal barriers with which the Pd-catalyzed transformations proceed (AG* = 10-20
kcal/mol),®> we became curious as to whether the transformation is similarly forbidden for

a L,Pd’-like chelefuge.

To uncover the electronic origins that enable the transition metal-mediated
pericyclic processes, we turned to ab initio Quantum Mechanics (QM) calculations.
Calculations were carried out with the ORCA ab initio package (see 2.4. Supporting
Information for full details).!' Complete active space self-consistent field (CASSCF)
theory is utilized to capture the multiconfigurational nature of the potential energy surface
(PES), where the (8,8) active space is defined to be the eight valence electrons in eight
correlating orbitals as described by orbital correlation diagrams. Dynamical correlation is
accounted for via N-electron valence state perturbation theory'? (NEVPT2) single point
calculations on the CASSCF wavefunctions. All geometry optimizations and frequency
calculations were carried out with the triple-( quality def2-TZVP basis set'? on all atoms
(with the small core ECP28MWB pseudopotential'* on Pd, i.e., 18 explicit electrons
including the 4s and 4p core electrons). For transition metal complexes with insignificant
multiconfigurational character, geometries were obtained with density functional theory
(DFT) (PBEO0-D3(BJ)/def2-TZVP) !5 followed by CASSCF/NEVPT2 single point

calculations with the def2-TZVPP basis set. Solvation was accounted for in single point
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Figure 2.2. (A) Orbital correlation diagram for the [w2s + m2s + 02s + 02s] quasi-

cheletropic reaction of diallyl sulfone.” (B) Sy

from diallyl sulfone 23.”

mmetry-forbidden C-C bond formation

A. Orbital correlation diagram for the [72s + n2s + 62s + 62s] reaction of diallyl sulfone:

Ground state O VS
symmetry-forbidden >s
[n2s + 125 +62s +62s] | 07 \_Z/
(hypothetical)
4b —
g -
3b —
2b 33 —.
[x C-C] [ C-C]
2b 4-}
E: !: i’ 2a %
4
1a 1b
[c S-C] [c S-C]

B. Ground state reaction of 23to 24 + 25:

Osd VAR " o\\s ™ o\\s. + -
// o\ 7 o? \/ o’ =
23: 0.0 (0.0) 24 +25:-10.2 (-7.0)
Avoided
l ! crossing > T
; 3
//\ o/ * N
e Ss —_— s
A\ 0"\ S

7528: 67.1 (51.2)

TS27: 58.4 (47.1) 30: 56.4 (49.7)

> O

3a
[z C-C]
— 3a
9 Y@
2a 2b
4'} Ta [ns; 4s] [S; pd

C. Electronic structure of diradical 30:

|¢)A> |¢‘S>
3 ——4% |gp——14b 2
4a — 4a —
2b _ﬂ_— 3a 2b _+ 3a
w4 .
o |t
o T g

[a] Select natural orbitals from the CAS(8,8) active space shown. [b] CASSCF-based free energy

estimates in kcal/mol with the NEVPT2 corrected values in parentheses.

calculation with the SMD model for THF.'¢ All
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energies reported are solvated free energies
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Beginning with main group analog diallyl sulfone (23), generation of symmetry-
adapted linear combinations of correlating valence orbitals under approximate C»
symmetry affords symmetric (@) and antisymmetric (b) sets of o/c (C-S) and n/n"(C—C)
orbitals (Figure 2.2A). Correlating these orbitals to those of the product implies an avoided
crossing along the ground sate potential energy surface (PES) as the diabatic state
describing 23, |®,), corresponds to a doubly excited state of the products. Likewise, a
single transition state connecting 23 to 24 + 25 was not found on the CASSCF potential
energy surface. Rather, a stepwise process involving singlet diradical intermediate 30 was
found (Figure 2.2B).!7 At this point, the ground state configuration interaction (CI) vector
possesses nearly equal contributions of configurations |®g) and |®,), leading to a
diradical index d = 98.0% (Figure 2.2C).!8 Calculations with multireference iterative
Difterence Dedicated CI (IDDCI) theory provide d = 95.4% and a singlet/triplet exchange

coupling constant (J) of 83 cm™.!°

In summary, the required crossing of the starting material (23) and product (24 +
25) diabatic ground states renders the concerted [n2s + n2s + o2s + ©2s] reaction
symmetry-forbidden. The ground state PES of 23 — 24 + 25 is characterized by a stepwise
mechanism involving weakly coupled diradical 30, with an overall AG* of >50 kcal/mol
— contrasting the low thermal barriers of Pd-catalyzed transformations (AG* = 10-20
kcal/mol).> Given this, we became curious as to whether the Pd-catalyzed transformation
is similarly symmetry-forbidden, proceeding through a low energy diradical
intermediate/state, or whether a unique set of symmetry elements describe the

transformation that conserves orbital symmetry through the reaction.
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In order to probe this hypothesis, we first considered the case of a simplified bis-
(n'-allyl)Pd" complex 26 (Figure 2.3A). Contrary to 23, we find a single low energy
transition state (TS25), with AG* =13.4 kcal/mol, on the spin-restricted DFT (PBEO-
D3(BJ)/def2-TZVP) PES connecting 26 to 28 (Figure 2.3B). We obtain a similar result for
(n'-allyl)Pd" enolate 27. We find that the ground-state single-determinant wavefunction
along the PES is stable with respect to symmetry breaking, suggesting a single closed-shell
singlet (CSS) configuration is dominant. The existence of a saddle point smoothly
connecting 26 to 28 on a PES derived from the CSS state of a single-determinant
wavefunction points to the absence of an avoided crossing. Moreover, this suggests that
simple DFT geometries should be reliable for these Pd complexes and will be used in the

following.

For comparison to the symmetry-forbidden transformation of 23 to 24 + 25, we
construct the corresponding orbital correlation diagram for the conversion of 26 to 28
(Figure 2.3A). The four occupied correlating orbitals of starting complex 6 are identical in
symmetry to those of diallyl sulfone 13 (two a and two b symmetry elements). However,
unlike the products of the thermally-forbidden reaction (24 + 25), complex 28 maintains
the symmetry of ground-state minimum 26. This is further evident in the composition of
the ground-state CASSCF wavefunction at TS25, with weights of 0.86 and 0.02 for the
dominant CSS configuration and second largest contributor, respectively. Note the absence
of configurations corresponding Zwitterionic states or mixing of ground and doubly excited
states describing a diradical configuration. Control experiments do not find evidence of

redox noninnocence of the PHOX ligand scaffold. Thus, our calculations suggest the Pd
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[n2s + 2s + 62s + 02s] reaction is symmetry-allowed. While introducing heteroatoms into
the system formally lowers the symmetry, this has no effect on the underlying physics.
Hence, the transformation of Pd" enolate complex 27 to 29 is also symmetry-allowed in

the ground-state (Figure 2.3B).

The symmetry of the lone pair-like orbital of the chelefuge differentiates between
the thermally-allowed and forbidden scenarios. In ground state SO, the lone pair occupies
a symmetric sp? valence orbital (2a in Figure 2.2A), whereas in 8/9, this corresponds to the
antisymmetric Pd-based d(x?>-y?) orbital (2b in Figure 2.3A). Thus, the eight-electron
seven-membered pericyclic transition is thermally-allowed in the case of Pd complexes 27,
29, and 13 by virtue of the parity of the d(x>~y?) orbital involved in ¢ bonding with the
organic scaffold (Figure 2.3C).2° Other metal-based d orbitals can be included in this
analysis but bear no consequence as these orbitals remain doubly occupied throughout the

transformation.

From the perspective of frontier molecular orbital (FMO) theory, the transformation
is readily interpreted as the (in)ability of the chelefuge HOMO/donor to constructively
interact with the antisymmetric LUMO/acceptor of the 1,5-hexadiene in the appropriate
geometry (Figure 2.4A). If constructive overlap is achieved, then net bonding is preserved
through the transition state and the reaction is symmetry-allowed.?’* This is the case for
the Pd-catalyzed transformation as the Pd-based d(x?>~y?) HOMO of hypothetical L,Pd°
chelefuge o bonds with the diene in a suprafacial/antaranodal fashion, i.e., with phase
inversion, constructively mixing with the diene LUMO (Figure 2.4A).2! This is not the case

for the symmetric nucleophile lone pair orbitals of SO, and CO.'°
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Figure 2.3. (A) Orbital correlation diagram for the pericyclic reaction of 26 to 28.
Select natural orbitals of CAS(8,8) wavefunction shown. (B) Free energy changes and
barriers (in kcal/mol). (C) Orbital topologies.

A. Orbital correlation diagram for the [n2s + 72s + 62s + 62s] reaction of bis-(n'-allyl)Pd! complex 26:
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[a] Free energies calculated using NEVPT2 electronic energies with thermal corrections and

geometries from DFT (PBEO-D3(B))). Full DFT energies in parenthesis.
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Figure 2.4. (A) FMO perspective of the [m2s + m2s + 02s + 02s] reaction. (B) Relevant
MOs from the CAS(8,8) active space that contribute to the aromaticity of TS25. (C)

NICS analysis of TS25 (green and red spheres denote negative and positive NICS

values).?
A. Reactivity paradigm from FMOs: Allowed Forbidden
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[a]l NICS values in ppm with sphere radius depicting magnitude of the shift (r = (|6ppm|)1/3).

It is well understood that concerted, symmetry-allowed pericyclic reactions proceed
through aromatic transition states.? Thus, if the Pd [n2s + n2s + 62s + 62s] reaction of 26
to 28 is indeed symmetry-allowed, then TS25 should be aromatic in nature. From analysis
of the active space MOs at TS2S5 we find elements of Craig—Mdbius-like aromaticity within
the 6 bonding framework.?? Of particular interest, the HOMO and HOMO-2 conform to a
MGobius topology with the Pd d(x?~y?) generating a phase inversion and an odd number of

nodes (1 and 3) along the ring (Figure 2.4B).23 To probe this suspected aromaticity, we
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employ the Nucleus-Independent Chemical Shift (NICS) method of Schleyer and
coworkers.?* A NICS(0) of —19.4 ppm is calculated at the geometric center of the seven-
membered ring of TS25, indicating aromaticity.?’ Likewise, a positive NICS is found at
various points along the external periphery. For enhanced visualization, the NICS at points

along 2D grids are displayed in Figure 2.4C.

A principal objective of our investigation is to relate electronic structure to intuitive
concepts in chemical bonding. As such, we sought to explore whether the Pd-catalyzed
[72s + n2s + o2s + o2s] transformation could be properly described by valence bonding
concepts such as the ubiquitous “arrow-pushing” formalism of Robinson and Ingold.?®
Given the single-configurational nature of the ground state density, the concept of bond
reorganization is addressed through analysis of Intrinsic Bonding Orbitals (IBOs) as
described by Knizia and co-workers.?” Previously, IBO analysis was implemented to
highlight “electron flow” through transition states, discern between classes of mechanisms,
and evaluate synchronicity of bond making/breaking in these events.?’” Generation of IBOs
proceeds through a Pipek—Mezey-style localization of Kohn—Sham orbitals where orbital
charge contribution to an atomic center is measured by Intrinsic Atomic Orbital (IAO)
charge.?’*® At no point in the localization are empirical concepts of valence bonding
introduced, yet IBOs correspond well to two-center two-electron bonds (or lone pairs) as
depicted in Lewis structures. IBOs of forming/breaking bonds at transition structures
generally resemble three-center two-electron bonds describing the transformation of one
localized bond to another. Hence, the progression of IBOs along a reaction coordinate

offers a connection to the “arrow-pushing” formalism of Robinson and Ingold. So long as
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the localized orbitals are adequately portrayed by a Lewis structure and the system is well
described by a single reference wavefunction then there is utility in such analysis.

IBO analysis was carried out with the full (PHOX)Pd enolate system (Figure 2.5).
Four IBOs (¢;) undergo significant displacement along the intrinsic reaction coordinate
(IRC) through 13—TS20—19.28 The first of these, ¢b;, corresponds to the localized m(C—
C) bond of the enolate fragment, which smoothly progresses to encapsulate the density of
the newly formed o(C—C) bond of the product. Likewise, ¢,, ¢35, and ¢, track the
transformations of n(C—C) — n(C-C)’, o(Pd—C) — n(Pd; d(x>-y?)),?° and c(Pd-O) —
n(C-0), respectively. Considering these transformations together reveals an intrinsic
directionality to the evolution of the local orbitals in the Pd-catalyzed [n2s + n2s + 62s +
o2s] reaction. Inspection of the relative magnitudes of net orbital displacement along the
IRC further suggests synchronicity in the bond making/breaking events of the [n2s + n2s
+ 02s + o2s] process (Figure 2.5). In accord with the initial reports of Knizia and co-
workers, we also find the localized IBOs obtained from the ground state densities closely
resemble valence orbitals as portrayed in simple Lewis structures. Thus, tracking the net
flow of electron density is carried out in the same valence bonding framework. The result
is a mechanism described by the synchronous movement of valence bonding electron pairs,
or more precisely, a first principles-derived “arrow-pushing” mechanism that accounts for

the net change in bonding along the reaction coordinate in a chemically intuitive orbital

basis (Figure 2.5).270¢
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Figure 2.5. IBO analysis the Pd [12s + m2s + 02s + 02s] reaction.
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2.3 CONCLUSIONS

In conclusion, we find the Pd-catalyzed [n2s + n2s + o2s + o2s] reaction to be
symmetry-allowed in the ground-state owing to phase inverting role of the Pd d(x*-y?)
orbital in the o bonding framework of the transition state. Insights from this investigation
are contextualized within the Woodward—Hoffmann rules, orbital correlation diagrams,
and FMO theory. As with prototypical thermally-allowed pericyclic reactions, we find the
Pd-catalyzed [n2s + n2s + 62s + o62s] reaction proceeds through an aromatic transition
state. Lastly, we describe a first principles-derived “arrow-pushing” mechanism from
analysis the transformation of IBOs along the reaction coordinate. These efforts highlight
the connection between ab initio electronic structure calculations and empirical bonding

concepts, thus, facilitating a natural conceptualization of chemical bonding in these unique

systems.
2.4 SUPPORTING INFORMATION
2.4.1 GENERAL COMPUTATIONAL DETAILS

All quantum mechanical calculations were performed with ORCA version 4.1 and
4.2.'"" Geometries of open-shell species (TS27, 30, and TS28) and their precursors (23, 24
and 25) were optimized with complete active space self-consistent field (CASSCF) theory.
The active space was defined as the correlating valence electrons and orbitals as obtained
by the corresponding orbital correlation diagrams (see below). The triple- quality def2-
TZVP basis set'® was used on all atoms. Further details on choice of active spaces are
provided below. Results obtained via broken-symmetry density functional theory (BS-DFT)

are provided below for comparison. For transition metal complexes with insignificant
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multiconfigurational character (26, 27, TS25, TS26, 28, and 29), geometries were obtained

from dispersion-corrected DFT. The PBEO global hybrid density functional'’ paired with

Becke—Johnson damped D3 dispersion corrections (henceforth referred to as PBE0-D3(BJ))
and the def2-TZVP basis set on all atoms was employed. The small-core ECP28MWB

pseudopotential'* was used on Pd (18 explicit electrons including the 4s and 4p core shells

are defined).

To account for dynamical correlation, N-electron valence state perturbation
theory'? (NEVPT2) single point calculations were carried out on all stationary points
(CASSCF and DFT geometries) from the corresponding CAS references. The strongly
contracted variant of NEVPT2 was employed. Solvation was accounted for in these single
point calculations with the SMD model for THF.'® In addition to single point calculations
with NEVPT2/def2-TZVPP/SMD(THF), for the compounds that were optimized with
PBEO-D3(BJ)/def2-TZVP, additional single point calculations were carried out with
PBEO-D3(BJ)/def2-TZVP/SMD(THF) for comparison.

Thermal corrections were obtained from the unscaled vibrational frequencies
computed at the level of theory employed for geometry optimization. The Quasi-RRHO
method 3° was applied to correct for the breakdown of the harmonic oscillator
approximation in low frequency vibrations. For CASSCF and DFT calculations these
frequencies were computed numerically and analytically, respectively. All stationary
points were characterized by the appropriate number of imaginary vibrational modes (zero
for optimized geometries and one for transition states). Intrinsic reaction coordinate (IRC)

analyses were carried out to ensure all transition states connect saddle points to the
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appropriate minima. Conformer searching was carried out manually and energies reported
are from lowest energy conformers. All energies reported in the manuscript are free
energies calculated at 298.15 K and at a 1 atm standard state. Applying thermal corrections
obtained at the optimization level of theory to the single point electronic energies (and
solvation free energies), final Gibbs free energies are accordingly:

Gisolv = E(el)S? + ZPE + E(vib) + E(rot) + E(trans) + ko T — TS + AG(solv)S?

The resolution of identity (RI) and chain-of-spheres3! (keyword = RIJCOSX)
approximations were utilized for coulomb and exchange integrals, respectively. Automatic
generation of auxiliary basis sets was employed (keyword = AutoAux).3? [Note that in
geometry optimization, frequency, and IRC calculations with CASSCF, the RI and COS
approximations were not used as they are not implemented with analytical (nuclear)
gradients in ORCA version 4.2.0]. The finest integration grid settings (Grid7, GridX9,
NoFinalGrid) were utilized in all calculations.

24.2 NEVPT2/CASSCF ACTIVE SPACE RESULTS

Unless otherwise specified, energies provided below are solvated CASSCF and
NEVPT2 free energies (in Hartree) with the def2-TZVP basis set and SMD implicit
solvation model for THF. Energies further refined with the def2-TZVPP basis set are
provided in the text and supporting excel document (nearly identical results were obtained).
Weights (C?) of the three configurations with the largest contributions to the ground state
CI coefficient vector are provided. The notation [2200] corresponds to a configuration with
double occupancy of the first and second MOs of the active space and zero occupancy of

the third and fourth active space MOs. Unless otherwise noted, active space MOs are
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depicted as the natural orbitals of the CAS wavefunction and are rendered with a contour
value of 0.07. Active spaces were chosen to include the correlating valence orbitals as
determined by the corresponding Woodward—-Hoffmann orbital correlation diagrams.® The
active space may be localized to confirm the correct active space compositions. Unless
otherwise specified, state-averaging was not employed, and results are that of the lowest
energy singlet state. Occupancy numbers are provided in parentheses next to MO numbers.
Orbital energy eigenvalues (from NEVPT2) are listed when the ordering of the active space

MOs by occupancy number is different than the ordering by energies.
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Figure 2.6. MCSCF active space orbitals and energies of complex 13.°

Ph Ph
NVER
Pd Me

—N" o

0\) “ut-Bu

13

CASSCF(8,8)
NEVPT2(8,8)

-2022.394386
-2030.146571

Weight

Configuration

0.87749
0.02871
0.02357

[22220000]
[21211010]
[22020200]

MO154 (0.10) MO155 (0.07) MO156 (0.07) MO157 (0.02)

[a] Geometry taken from reference 5 (BP86-D3/LANL2TZ(f)[Pd],6-31G(d)). Energies above are
CASSCF and NEVPT2 solvated electronic energies in Hartree. Orbital energy eigenvalues (by

ascending MO) in eV: -0.5516, -0.4294, -0.2868, —0.3067, 0.1907, 0.3014, 0.3116, 0.9729.

Isosurface level adjusted to 0.03 for ease of visualization.
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Figure 2.7. MCSCF active space orbitals and energies of TS20.*

$
Ph Ph

P /ﬁ\

Pd \ Me

—N" O\é
o\)""t—Bu

TS20

CASSCEF(8,8) -2022.358794
NEVPT2(8,8) -2030.135158

Weight Configuration
0.85071 [22220000]
0.03808 [22202000]
0.00849 [22111100]

MO152 (1.93) MO153 (1.85)

MO154 (0.14) MO155 (0.10) MO156 (0.06) MO157 (0.02)

[a] Geometry taken from reference 5 (BP86-D3/LANL2TZ(f)[Pd],6-31G(d)). Energies above are
CASSCF and NEVPT2 solvated electronic energies in Hartree. Orbital energy eigenvalues (by
ascending MO) in eV: -0.5101, -0.4084, -0.3196, —0.2322, 0.1617, 0.2167, 0.3781, 0.7215.

Isosurface level adjusted to 0.04 for ease of visualization.
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Figure 2.8. MCSCF active space orbitals and energies of complex 19.°
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CASSCEF(8,8) -2022.420396
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0.02896 [22020200]
0.02830 [22202000]

MO154 (0.09) MO155 (0.07) MO156 (0.02) MO157 (0.02)

[a] Geometry taken from reference 5 (BP86-D3/LANL2TZ(f)[Pd],6-31G(d)). Energies above are
CASSCF and NEVPT2 solvated electronic energies in Hartree. Orbital energy eigenvalues (by

ascending MO) in eV: -0.6097, -0.4323, -0.4795, —0.3032, 0.2540, 0.2951, 0.7745, 0.5139.

Isosurface level adjusted to 0.04 for ease of visualization.
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Figure 2.9. MCSCF active space orbitals and energies of diallyl sulfone 23.
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Figure 2.10. MCSCF active space orbitals and energies of TS27.
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Figure 2.11. MCSCF active space orbitals and energies of diradical 30.
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Figure 2.12. MCSCF active space orbitals and energies of TS28.
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Figure 2.13. MCSCF active space orbitals and energies of SO, (24).
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Figure 2.14. MCSCF active space orbitals and energies of (s-cis)-1,5-hexadiene

_

25 cis
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Weight Configuration
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¢ : ¢ : ‘:
MO23 (0.08) MO24 (0.08) MO25 (0.02)

[a] Active space orbitals for compound 25_cis. (Not visible at isosurface printed above: MO23 and
MO24 experience slight mixing with MO25 and MO20, respectively, such that the resulting orbital

energy eigenvalue for MO23 is lower than that of the symmetric MO24 (0.2332 eV and 0.2374 eV).
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Figure 2.15. MCSCF active space orbitals and energies of (s-trans)-1,5-hexadiene

~_

(25 trans).

25 trans
CASSCF(6,6)  -233.004232
NEVPT2(6,6) -234.022461

Weight Configuration
0.92057 [222000]
0.03724 [211110]
0.00985 [202200]

[

MO23 (0.08) MO24 (0.08)

(Y

MO20 (1.99) MO21 (1.92)

MO22 (1.92)

MO25 (0.00)*



Chapter 2 — Analysis of the Pd-catalyzed [n2s + m2s + 025 + 02s] Pericyclic Reaction

Figure 2.16. MCSCF active space orbitals and energies of complex 26.°
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[a] Active space orbitals for compound 26. Orbital energy eigenvalues (by ascending MO) in eV: —

0.4110, -0.4486, -0.3197, -0.3230, 0.1931, 0.2702, 0.3169, 0.6241. In this (low energy)

conformation, the antisymmetric Pd-L ¢* and the antisymmetric C-C m* symmetry adapted linear

combinations mix to give rise to MO50 and MO52.
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Figure 2.17. MCSCF active space orbitals and energies of complex 27.°

HP, /T N
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[a] Active space orbitals for compound 27. Orbital energy eigenvalues (by ascending MO) in eV: —
0.5622, -0.3144, -0.4403, -0.3213, 0.1826, 0.2975, 0.2983, 0.9742. In this conformation, the n'-
allyl ligand C-C T orbitals are nearly coplanar and further mix with the Pd-based d(x*~y*) (MO48-
MO51). If the active space is localized (Foster—Boys) the C-C m/m* and Pd-C o/c* may be separated

for ease of interpretation.
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Figure 2.18. MCSCF active space orbitals and energies of TS25.°

+
HaP, /777
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[a] Active space orbitals for compound TS25. Isosurface value adjusted to 0.04 for ease of

visualization. Orbital energy eigenvalues (by ascending MO) in eV: —0.4443, -0.4016, -0.3064, —

0.2400, 0.1574, 0.2046, 0.3684, 0.5126.
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Figure 2.19. MCSCF active space orbitals and energies of TS26.°
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[a] Active space orbitals for compound TS26. Isosurface value adjusted to 0.04 for ease of
visualization. Orbital energy eigenvalues (by ascending MO) in eV: —0.5448, -0.4209, -0.3126, —

0.2783, 0.1404, 0.2406, 0.3519, 0.7700.
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Figure 2.20. MCSCF active space orbitals and energies of 28.°
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[a] Active space orbitals for compound 28. Isosurface value adjusted to 0.04 for ease of visualization.
Orbital energy eigenvalues (by ascending MO) in eV: -0.6193, -0.4392, —0.3288, -0.3509, 0.2247,

0.2579, 0.8061, 0.4683.
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Figure 2.21. MCSCF active space orbitals and energies of 29.”
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[a] Active space orbitals for compound 29. Isosurface value adjusted to 0.06 for ease of visualization.
Orbital energy eigenvalues (by ascending MO) in eV: -0.6342, —0.4444, —0.3324, -0.5055, 0.2854,

0.2572, 0.8066, 0.4687.
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243 ADDITIONAL NOTES ON NEVPT2/CASSCF CALCULATIONS

The frozen core approximation was not used in the NEVPT2 calculations (keyword:
“!I NoFrozenCore”). Solvated free energies include the cavitation, dispersion, structure
(CDS) terms as calculated in the SMD model.'® Practical note to users: For efficiently
converging active spaces with weakly correlated valence-bond-like orbitals (such as the
C—C o/c*) in the starting complexes and products), we recommend use of the PMO virtual
orbital optimization feature in ORCA. A standard procedure involved converging the
MCSCF with an active space excluding the weakly correlating pair, localization of the
internal space, locating the valence bond orbital of interest, then optimization of a
corresponding virtual orbital (using the PMO methodology (RefMO)). Generally,
expanding the active space to include the natural orbital-like pair affords smoothly
convergence of the MCSCF.
244 DISCUSSION ON OTHER MAIN GROUP CHELEFUGES

In our investigation of the [n2s + n2s + 62s + 62s] reaction, we employ diallyl
sulfone (23) as a main group analog to bis(n'-allyl)Pd(PH3)2 complex 26. In addition to
SO,, CO and N are also viable main group chelefuges. Thus, the [n2s + n2s + 625 + 625]
reactions of hepta-1,6-dien-4-one or diallyl isodiazene may be considered. For these
scenarios, there are nine correlating valence orbitals — occupied by 10 valence electrons
(see Chapter 3 of reference 8). Both reactions are similarly symmetry forbidden. As a
representative example, the orbital correlation diagram for the reaction of hepta-1,6-dien-
4-one to CO and 1,5-hexadiene is provided below (Figure 2.22). In the general [n2s + n2s

+ 02s + c2a] reaction, we only consider linear departure/approach of the chelefuge due to
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the geometric/steric constraints of the seven-membered transition state. An exception to
this may be methylene carbene, which could possibly undergo the thermally allowed [n2s
+ m2s + o2s + oc2a)/[m2a + m2s + m2s + o©2s] reaction, ie., with non-linear
departure/approach of the carbene.

Figure 2.22. Orbital correlation diagram for the ground state symmetry-forbidden

[72s + 72s + o2s + o2s] extrusion of CO from hepta-1,6-dien-4-one.
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From the FMO perspective, it is important to note that the © systems of CO and N>

N\

Ha aH b

are of the correct symmetry to constructively interact with the diene LUMO (in its reactive
conformer), but these m orbitals ultimately correlate to lone pairs on O (in CO) and N (in

N») and thus cannot serve as the “donor” in the donor-acceptor relationship.
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2.4.5 EXCHANGE COUPLING IN DIRADICAL INTERMEDIATE 30

The RI and COS integral approximations were not used in calculations evaluating
exchange coupling. All computations were carried out in the gas phase. State averaging
over the relevant singlet and triplet diradical states was employed in CASSCEF calculations.
Results obtained with the minimal (2,2) active space, i.e., including only the local spin
centers, are provided for comparison. Hypothetical diradical species 30 is a metastable
intermediate on the singlet CAS(8,8) and BS-DFT (M = 0) potential energy surfaces. In
the case of BS-DFT, the diradical was found as an intermediate regardless of choice of
functional ((U)PBE0-D3(BJ), (U)PBE-D3(BJ), (U)M06-2X).3?

Exchange coupling interaction may be described through the phenomenological
Heisenberg—Dirac—van Vleck Hamiltonian®*:

ﬁHva = —2]§A§B

where S, and Sy are “local” spin operators on spin sites A and B. J is defined as the
exchange coupling constant. Thus, for the coupling of two spin-1/2 magnetic sites, J is

expressed as:

1
] = _E(ET_ES)

where E; and Eg are the energies of the triplet- and singlet-coupled diradical states,
respectively. When | > 0, i.e., E; < Ej, the interaction is termed ferromagnetic. Likewise,
J < 0 implies an antiferromagnetic coupling of the two spins. As a consequence of a single
determinant formulation, the broken-symmetry DFT solution of an open-shelled singlet

state is a mixture of the M, = 0 singlet and triplet states.> Thus, calculation of exchange
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coupling was performed after removal of spin contamination. The spin projection to the

“true” singlet energy was carried out via the Yamaguchi equation’®:

2

R T Wy T v

(Er — Eps)

As such, the J values we report via BS-DFT are calculated as:

ET - EBS
($2)r —(S?)ps

J=-

Single point calculations with SA-CAS(8,8) on the CAS(8,8) PES initially suggest
an antiferromagnetic coupling between the two spin-1/2 centers (J = —12.1 cm™) of 30.
However, inclusion of dynamical correlation via SC-NEVPT2, with the SA-CAS(8,8)
reference, reveals a weak ferromagnetic coupling (J = 3.2 cm™') (Table 2.1, entry 5). BS-
DFT single point calculations carried out on the CAS(8,8) geometry also suggest a singlet-
coupled diradical, with J = -38.9 cm™'. Conversely, DFT single point calculations at both
the high spin and broken-symmetry (BS-)DFT-optimized geometries suggest
ferromagnetism (Table 2.1, entries 9 and 10). Unsurprisingly, these data suggest the
treatment of dynamical electron correlation is crucial in obtaining qualitatively meaningful

results.
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Table 2.1. Calculation of spin exchange coupling constant (]) between spin centers

in 1,4-diradical 30.?

3.05A | Top view: Side view:

“% “
30 N

Method J(cm™)
1 SA-CAS(2,2) 59.1
2 SA-CAS(8,8) -12.1
3 SC-NEVPT2/SA-CAS(2,2) -14.1
4 FIC-NEVPT2/SA-CAS(2,2) -14.0
5 SC-NEVPT2/SA-CAS(8,8) 32
6 FIC-NEVPT2/SA-CAS(8,8) 7.0
7 IDDCI® 82.9
8 (U)PBE0-D3(BJ) -38.9
9 (U)PBEO-D3(BJ)’ 30.0
10 (U)PBE0-D3(BJ)* 37.0

[al Unless otherwise noted, performed on the singlet CAS(8,8)/def2-TZVP geometry 30. All
calculations above employ the def2-TZVP basis set on all atoms, no integral approximations, and are
carried out in the gas phase. Pictured above are the two natural orbitals in the CAS(8,8) active space
describing bonding and antibonding pairing in diradical 30. [b] IDDCI (see below) starting from the
SA-CAS(2,2) wavefunction. [c] BS-DFT single point calculation on CAS(8,8)/def2-TZVP geometry. [d]
Single point calculation on broken-symmetry (Mg =0) (U)PBEO-D3(B))/def2-TZVP optimized
geometry. [e] Single point calculation on high spin (S = 1) (U)PBEO-D3(BJ)/def2-TZVP optimized
geometry.

For a more rigorous treatment of static and dynamic correlation, multireference

calculations were carried out with the Iterative Difference Dedicated Configuration
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Interaction (IDDCI) method. 3’ The standard DDCI approach resembles that of an
uncontracted MRCI (singles and doubles), where completely inactive double excitations
are omitted. The reference states were defined to be the singlet and triplet diradical states.
The state-averaged CAS(2,2) wavefunction was taken to be the initial orbitals. The results
obtained with DDCI are highly depended on the choice of reference orbitals. To help
alleviate this starting orbital dependence and generally obtain more accurate results, we
employed the Iterative DDCI method (IDDCI) of Malrieu and coworkers.''® In IDDCI, an
iterative MO improvement strategy is utilized in which a DDCI calculation is first
converged, followed by construction of the state-averaged single-particle density matrix
and diagonalization to give a set of new set of state-averaged natural orbital-like MOs.
These MOs then serve as the starting orbital basis for a subsequent DDCI calculation. The
process is repeated until self-consistency (i.e., the energies of the states stabilize).

As implemented in the ORCA program, convergence of the calculated exchange
coupling constant and state energies is achieved with the parameters Tse1 = 1x107!! (default
1x107%) and Tpre = 1x107* (default 1x10~#). A sample input for the IDDCI calculation is
provided below:

! def2-TZVP NoPop Grid7 NoFinalGrid
! MORead VeryTightSCF Nolter AllowRHF

%base "SampleName"
%moinp "SampleStart.gbw"
%method

FrozenCore fc_ewin

end

% mrci
EWin -10,1000
CIType MRDDCI3
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Solver DIIS
UselVOs true
Tsel 1e-11
Tpre le-5
AllSingles true
DavidsonOpt none
NatOrblters 5
NewBlock 1 *
NRoots 1
refs cas(2,2) end
end
NewBlock 3 *
NRoots 1
refs cas(2,2) end
end
end

* xyzfile 0 1 Sample.xyz

Due to the rapid increase in computational cost with increase in the size of the active
space, we elected to employ the (2,2) active space consisting of the two local magnetic
orbitals. Calculations with the (8,8) active space were explored; however, it was found that
convergence of the exchange coupling constant and state energies was not fully achieved
with values of Tie that yield a reasonable computational cost. Thus, we suggest the results
obtained from the tightly converged (2,2) active space to be more robust. Note that the
results are qualitatively similar regardless — both (2,2) and (8,8) active spaces afford J >
0. After five iterations, the IDDCI(2,2) method converges to an exchange coupling constant
of 82.9 cm™ (Figure 2.23). These results are in accord with that of NEVPT2(8,8) and BS-
DFT, suggesting a triplet ground state of diradical 30.

In summary, the concerted ground state [n2s + n2s + 62s + 62s] reaction of diallyl

sulfone 23 to SO (24) and 1,5-hexadiene (25) is symmetry forbidden. Owing to the triplet
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ground state of diradical 30, the individual steps of the stepwise mechanism are formally
spin forbidden — granted the singlet and triplet states are nearly degenerate (AEt_s of ca.
0.5 kcal/mol) in the weakly coupled diradical.

Figure 2.23. Exchange coupling via IDDCI.*
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[a] Convergence of exchange coupling and state energies via iterative MO optimization in DDCI
(IDDCI).
2.4.6 REDOX INNOCENCE OF THE PHOX LIGAND

The general Pd-catalyzed [n2s + n2s + 62s + 62s] pericyclic reaction is symmetry
allowed without mandatory implication of ligand-based excited states/configurations.
However, in the case of PdA(PHOX) complexes, we sought to evaluate whether the © system
of the PHOX ligand is capable of facilitating the reductive elimination through ligand-
based redox activity. First, we note that the ground state densities obtained with PBEO-

D3(BJ)/def2-TZVP are stable with respect to spin symmetry breaking. Thus, at the DFT

level, the ground state along the reaction path 13 —» TS20 — 19 is well represented as a
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closed-shell singlet (CSS). Time-dependent density functional theory (TD-DFT)

calculations were then carried out on stationary points 13, TS20, and 19 at the PBEO-

D3(BJ)/def2-TZVP/SMD(THF) level of theory. The TD-DFT calculations suggest no low

energy excited states along the ground state PES. The lowest of these vertical transitions is

that of the 3(M/L—L) at TS20, which is calculated to be nearly 1.0 eV (Table 2.2). All

other excitations (M—M, L—M/L, etc.) are found to be > 2 eV. The PHOX n*-based

LUMO (Figure 2.24) serves as a common acceptor in each of the lowest energy transitions

in Table 2. These results suggest that redox contribution of the PHOX ligand along the

ground state PES is likely trivial.

Table 2.2. TD-DFT vertical excitations at stationary points 13, TS20, and 19.°

Singlet
Triplet

Excitation
L—->L
L—->L

13
Energy (eV)
1.463
1.014

TS20
Excitation  Energy (eV)
M/L - L 1.401
M/L - L 0.986

19
Excitation Energy (eV)
MLCT 2.264
MLCT 1.941

[a] Lowest energy TD-DFT vertical excitations with PBEO-D3(BJ)/def2-TZVP/SMD(THF) and adapted

triplets from the RKS reference. L = ligand, M = metal, M/L = mixed metal/ligand.
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Figure 2.24. Orbitals involved in the vertical transitions to the lowest energy singlet

and triplet excited states at TS20.

(M/LtoL)=1.40eV
(M/LtoL)=0.99eV

>

Pd/allyl/enolate-based HOMO PHOX n*-based LUMO
2.4.7 NUCLEUS INDEPENDENT CHEMICAL SHIFT CALCULATIONS

Calculations of Nucleus Independent Chemical Shift (NICS) were carried out in
order to probe the aromatic character of TS25. In this investigation, the formalism of
Schleyer and coworkers is followed.?* Reported NICS values are the negative of the
calculated isotropic chemical shift/shielding at the geometric center of the ring in question.
These calculations were carried out with the NMR module in ORCA. Calculations of NICS
were conducted in the gas phase at the PBE0-D3(BJ)/def2-TZVP level of theory. Gauge
independent atomic orbitals (GIAO) were used and the relevant one-electron and two-
electron integrals were evaluated analytically and with the RIJK approximation,
respectively. A ghost atom (“H:”, no nuclear charge nor electrons) was used to define a
point in space at which shielding was to be determined. A highly contracted basis (and
auxiliary basis) function was then assigned to the ghost atom. This procedure was used to
ensure the proper grid points were assigned to the point in space without significantly

perturbing the ground state density. Note that the results are independent of the chosen
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exponent as long as the exponent is large. For example, the following would be added to
the geometry block of an input file to define a point with cartesian coordinates (0.00, 1.00,
2.00):
H: 0.00 1.00 2.00 newgto S 1 1 1000000 1 end newauxJKgto S 1 1 2000000 1 end

Atthe PBEO-D3(BJ)/def2-TZVP level of theory, NICS values of —8.9 and 28.8 ppm
were obtained for benzene and cyclobutadiene, respectively. These controls are in good
agreement with literature values of —9.7 and 27.6 ppm (HF/6-31+G(d)).>* As described in
the text, an NICS value of —19.4 ppm is found at the geometric center of the seven-
membered ring of TS25 (Figure 2.4C). A NICS value of —19.4 ppm reveals a significant
diatropic ring current. Thus, TS25 is characterized as aromatic.?
2.4.8 INTRINSIC BONDING ORBITAL ANALYSIS

Analysis of the net flow of electron density through the Pd-catalyzed [n2s + n2s +
62s + o2s] pericyclic reaction was carried out by Intrinsic Bonding Orbital (IBO)

analysis.?” IBO analysis was carried out along the IRC describing 19 — TS20 — 19. SCF

densities were obtained at the M06/def2-TZVP/CPCM(THF) level of theory and on BP86-
D3(BJ)/LANL2TZ(f)[Pd]-6-31G(d) geometries, consistent with reference 5. Localization
of the SCF density, frame alignment, and calculation of IBO displacement were carried out
with the IBOView program. For further details of this procedure and additional discussion
of the relevant theory, see the seminal reports of Knizia and coworkers.?’ Note that results
are largely independent of choice in density functional, and qualitatively identical results

may be obtained with densities from an ab initio wavefunction method.
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CHAPTER 3

Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates?

3.1 INTRODUCTION

Enantioselective construction of all-carbon quaternary stereogenic centers
represents a central and ongoing challenge in synthetic organic chemistry. ' The
asymmetric allylic alkylation of enolate nucleophiles serves as a powerful strategy for
accessing such motifs.?

A unique aspect of the Pd-catalyzed allylic alkylation methods developed by our
group is the inner-sphere reductive elimination from a chiral O-bound Pd enolate
intermediate (32), yielding enantioenriched ketones (33) (Figure 3.1A).°-* This
intermediate is generated catalytically from achiral or racemic enolate precursors, such as
allyl enol carbonates® and B-ketoesters® (31). The Pd enolate is accessed in the absence of
a base, under neutral conditions, and in a regiospecific fashion. Conversely, canonical
conditions for enolate formation are plagued by regioselectivity challenges and typically
require the use of a strong base or Lewis acid. Given the inherent advantages of Pd enolates,
we sought to exploit their reactivity beyond simple allylic alkylations in more general
asymmetric transformations.

Highlighting the utility of this concept, our lab has demonstrated the

enantioselective protonation of Pd enolates as a valuable strategy to access ketones with

"This research was carried out with Flesch, K. N.; Chen, P.-J.; Strong, C. S. Portions of this chapter have
been reproduced with permission from Stoltz, et al. J. Am. Chem. Soc. 2023. In press. © 2023 American
Chemical Society.
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tertiary stereocenters (34).7 Building upon this success, we subsequently developed
methods to construct quaternary centers via enantioselective conjugate additions® (35) and
intramolecular aldol reactions (36).° Taken together, these advances underscore the
feasibility of employing Pd enolates as stereogenic nucleophiles.

Figure 3.1. (A) Examples of chiral Pd enolate reactivity. (B) Lithium base-promoted
intramolecular formal [4+2] cycloaddition. (C) Proposed asymmetric intramolecular

[4+2] reaction. (D) Divergent catalytic cycle.
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In a unique example of enolate reactivity, Fukumoto and coworkers reported a
formal [4+2] reaction from in situ generated conjugated lithium enolate 38, forging
tricyclic adduct 39 in a racemic fashion (Figure 3.1B).!° We envisioned that an analogous
asymmetric transformation would be tractable from a chiral, conjugated Pd enolate —
derived from the decarboxylation of unsaturated -ketoester 40a using an asymmetric
ligand on Pd (Figure 3.1C).

To realize this transformation, we sought to develop a conceptual framework based
on our mechanistic understanding to expand the general utility of the Pd enolate. As such,
we employed a strategy of divergent catalysis (Figure 3.1D), where deviation occurs at the
common Pd enolate (i.e., C, Figure 3.1D, cf. Scheme 3.1, vide infra), allowing for desired
alternative reactivity in the diverged cycle. Subsequent re-entry into the original catalytic
cycle turns over the catalyst allowing regeneration of the Pd enolate.

Applying this strategy of divergent catalysis, we developed a catalytic
decarboxylative asymmetric intramolecular [4+2] cycloaddition from conjugated Pd
enolates. Mechanistic studies including quantum mechanics calculations, Eyring analysis,
and KIE studies offer insights into the reaction mechanism. This transformation enables
access to tricyclic scaffolds bearing at least four contiguous stereocenters, at least one of
which is quaternary.

3.2 RESULTS AND DISCUSSION

3.2.1 REACTION DESIGN AND OPTIMIZATION

Employing unsaturated 3-ketoester 42 as a precursor for conjugated Pd enolate 43,

we hypothesized that the precedented allylic alkylation forming 44 could be interrupted by
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a [4+2] cycloaddition to generate 45 (Figure 3.2A). Alkylation of the transposed enolate
(45) would then turn over the catalyst and forge tricyclic product 46.
Figure 3.2. (A) General reactivity paradigm from Pd enolate 43. (B) Computed

substituent effects on the rate of C—C bond formation and successful application.”

A. Desired reactivity of chiral Pd enolate 43.
Allylic alkylation

BnO,C
o (o}
Pd,(dba)g /
OM (S)-+BuPHOX -
Nu,, .0
X _-CO,Bn ~Pd
CO, Cpf \/\
42 43
Divergent catalysis
Cycloadduct
C0,Bn
A £0;
| \ H ~ 0
N0 = N
Ty TP N
Ph,P N\/ """" > ’
";t 5 CN""Pd"“o
g =10
(S)-+BuPHOX PTTTSN co:lan
45 46

B. Modulating barrier to reductive elimination.

o o Pd,(dba), (2.5 mol %)
_— (S)-+BuPHOX (6.5 mol %)
L 7529 -
see
X _CO,Bn toluene, 60 °C X _CO,Bn

= k im. > K
42 Red. Elim. > K[442]

44
98% yield, 84% ee

t
, Entry R! R2 AGF ke (60 °C)
CN""Pd"R'o'*\ 1 H H 129 1
—Pdll T
P )\./ e 2 Ph H 165
R! 3 Me

4.0x10°°
Me 21.6 1.7x10°%
Model system (TS29)

o [o]
Pd,(dba); (2.5 mol %)
0 NZ"pn (S)-+-BuPHOX (6.5 mol %)
toluene, 120 °C o
X _-CO,Bn >99% conversion CO,Bn
47 = KRed. Elim. < Kpa42] 48

Complex mixture
[a] See 3.4 Supporting Information for computational details and discussion of other isomeric
transition states. Yield determined by '"H NMR with respect to 1,3,5-trimethoxybenzene as internal

standard. Enantiomeric excess determined by chiral SFC.
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Unfortunately, the rate direct allylic alkylation of enolate 43 supersedes the desired
divergent reactivity. Treatment of B-ketoester 42 under our standard conditions produces
ketone 44 in 98% yield and 84% ee (Figure 3.2B). This prompted us to redesign our exit
strategy (Figure 3.1D). Increasing the rate of the cycloaddition through modification of the
diene or dienophile could circumvent formation of premature allylic alkylation product 44
but would limit the generality of this transformation. Therefore, we sought to impede
alkylation through modification of the allyl moiety.

Computational investigation of a model system (TS29) suggested that introducing
terminal substitution on the allyl group raises the barrier to reductive elimination,
decreasing the rate of allylic alkylation (Figure 3.2B, see 3.4 Supporting Information for
computational details).'! For example, phenyl substitution (entry 2, Figure 3.2B) slows the
rate of inner-sphere reductive elimination by roughly three orders of magnitude. Inspired
by these computational results, we explored the efficacy of cinnamyl ester substrate 47 in
the transformation. In line with our hypothesis, the desired tricyclic core was observed (48),
albeit as a complex mixture of isomers — hampering the synthetic utility. To this end, we
sought to develop an alternative strategy for catalyst turnover that could potentially
simplify the product outcomes.

Building upon previous findings from our group, we sought to employ
stoichiometric acidic additives for catalyst turnover. The exogenous acid serves the dual
purpose of protonating the final enolate (analogous to 45) and turning over the catalyst by
trapping the cinnamyl group. Addition of 3,5-dimethylphenol® exclusively yielded

undesired protonation product 49a along with aryl ether 50 (Figure 3.3A). To our delight,
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replacing the phenol additive with 4-methylaniline afforded the desired endo [4+2]
cycloadduct (41a) as a single diastereomer in 83% yield and 88% ee.

Figure 3.3. (A) Sacrificial additives to enable catalyst turnover.® (B) Additive-free

reaction with prenyl ester 40a.”

A. Alternative catalyst turnover strategy.

o o
Pd,(dba)s (2.5 mol %) Q Ph
0 NF"pn (S)-+-BuPHOX (6.5 mol %) . |
3,5-dimethylphenol (1 equiv) 3
. _COzBn toluene, 60 °C CO,Bn OAr
72% yield, 50% ee 49a 50
47 (0.66 equiv)
o

o o Ph

Pd,(dba); (2.5 mol %)
07~ NA"pn (S)-+BuPHOX (6.5 mol %) ’ . |
4-methylaniline (1 equiv)
X _COzBn toluene, 60 °C H NRAr

83% yield, 88% ee COzBn 51
47 >20:1dr 41a (0.78 equiv)?

B. Additive-free catalyst turnover.

o o Me Q
Pd,(dba); (2.5 mol %)

b A Z
ov\Me (S)+BUPHOX (6.5 mol %) g’ . /\(

toluene, 60 °C

Me
X €0:Bn 83% yield, 87% ee H 52
>20:1 dr CO,Bn
40a 41a [Observed by

TH NMR]?

[a] Equivalents includes mixture of branched and linear constitutional isomers, as well as double-
alkylation of aniline. [b] Isoprene (52) observed in 0.94:1 ratio with 41a by '"H NMR (] Young tube,

toluene-ds).

Seeking to improve the reaction yield, the competency of B-ketoester 40a, derived
from the commodity chemical prenyl alcohol, was explored. According to our
computations, a substrate containing a di-substituted allyl fragment would be similarly
effective in hindering premature allylic alkylation by increasing the barrier to reductive

elimination (Figure 3.2B, entry 3). Perplexingly, while the desired tricyclic product was
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generated in 73% isolated yield and 88% ee, no alkylated 4-methylaniline (analogous to
51) was observed as a byproduct.

Table 3.1. Optimization of [4+2] reaction conditions.?

o (o}

o Me Pd,(dba); (2.5 mol %) H
0/\)\ Me (SFrBUPHOX (6.5 mol %) s’ .
toluene, 60 °C, 14 h
X _CO,Bn H |
COzBn BnO,C
40a 41a 49a
Entry Staiation o s Yield 412 (%)? ee 41a(%) Yield 49a(%)® ee 49a (%)
1 none 96 (83) 87 (87) - -
2 THF 86 81 - -
3 benzene 92 87 - -
4 1,4-dioxane 12 - 63 49
5 40°C 51 89 - -
6 (S)-(CF3)s-+-BuPHOX 12 89 66 62
7 (S)-(OMe);-+-BuPHOX 40 88 26 65
8 4-methylaniline (1 equiv) 93 (73) 87 (88) - -
9 4-methylaniline (2 equiv) 78 87 - -
10  3,5-dimethylphenol (1 equiv) (1] - 100 71
R

FY ot

(S)}+-BuPHOX R=CFy: (S)}(CFy)s-+BuPHOX
R = OMe: (S)-(OMe)-t+-BuPHOX

[a] Conditions: 0.02 mmol 40a, 2.5 mol % Pd,(dba);, 6.5 mol % ligand, in 1.0 mL of solvent (0.02
M). [b] Yields determined by 'H NMR with respect to 1,3,5-trimethoxybenzene as internal standard.

Isolated yields on 0.2 mmol scale in parentheses.

A control reaction excluding 4-methylaniline was carried out, and surprisingly,
desired product 41a was formed in 83% yield and 87% ee (Figure 3.3B). This suggests that
an alternative catalyst turnover mechanism is operative. Further NMR experiments
revealed the stoichiometric evolution of isoprene (52) accompanying formation of product
41a. Intrigued by this unexpected finding and clean reaction profile, we pursued

optimization of additive-free reaction conditions.



Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 143

The reaction proceeds in THF and benzene albeit in slightly diminished yield and
enantioselectivity (entries 2-3, Table 3.1). Employing 1,4-dioxane as the solvent,
protonation product 49a was obtained as the major product in 63% yield and 49% ee, while
cycloadduct 41a was observed in only 12% yield (entry 4, Table 3.1). Lowering the
temperature to 40 °C slightly improved the ee to 89% at the cost of decreased conversion
(entry 5, Table 3.1). Modification of the electronic properties of the PHOX ligand
deleteriously impacted the product distribution (entries 67, Table 3.1). Phenol and aniline
additives do not improve the reaction (entries 8—10, Table 3.1). Ultimately, optimized
reaction conditions were determined to be additive-free with (S)-~-BuPHOX in toluene at
60 °C. The reaction affords 41a, a bridged bicycle with a pendant fused ring, in 83%
isolated yield and 87% ee. The transformation allows for the simultaneous construction of
four contiguous stereocenters, including one all-carbon quaternary center. Gratifyingly, the
reaction can be performed with reduced catalyst loading (0.625 mol %) on 1.0 mmol scale
to afford 41a in 59% yield and 89% ee. The ability to efficiently construct these complex
building blocks on scale highlights the synthetic utility of this transformation.

3.2.2 PROPOSED MECHANISM

We sought to capitalize on these initial exciting results by constructing a
mechanistic framework to inform rational design. Based on our lab’s prior investigations
of Pd-catalyzed decarboxylative asymmetric allylic alkylation reactions, we propose that
oxidative addition of Pd° to B-ketoester 40a proceeds through complex 53 to afford the n'-
allyl carboxylate resting state 54 (Scheme 3.1).!? Rate-limiting decarboxylation ensues,

affording O-bound Pd enolate 55.%'? This chiral conjugated enolate then serves as the diene
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in a [4+2] cycloaddition (TS30) with the pendant dienophile to form tricyclic enolate 56.
Subsequent proton transfer would generate product 41a. Concomitant isoprene generation,
followed by ligand exchange, allows for re-entry into the original catalytic cycle at 53. We
posit that the formation of undesired ketone 49a arises from an off-cycle pathway, where
catalyst turnover occurs prior to cycloaddition via premature proton transfer to 55.

Scheme 3.1. Proposed divergent catalytic cycle. Undesired reaction pathways in grey.

o_o Me
o R AN = &5, \_CO,Bn
~A x
o o e
\P_d/ 40a 52

PN

me Pd
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O R 1. Oxidative
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;zz l Yo’ Pd\O o
i Me " Q Original
g gt Divergent : 5 R
Chemistry >: R? }—\\ Catalytic Me\/j o
Me N Cycle
Me \_/ Me

H
CO,Bn
41a

5. Ligand
Exchange
4. Proton
Transfer

58
Me 54
56 Reductive
Elimination
BnO,C 2. Decarboxylation
\5 (Rate-Limiting)
Nu.g .00
oy o
No, O P~ C0,Bn 2
C de Me /
P \/\r Me -
Me
M
7530 ° 55

3. Cycloaddition
(Enantiodetermining)

3.2.3 SUBSTRATE SCOPE
With a working mechanistic hypothesis in hand, we sought to draw further
mechanistic insights from substrate design, while simultaneously exploring limits of the

reaction. Considering the inverse relationship between diene ring size and Diels—Alder
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Table 3.2. Substrate scope of the [4+2] reaction.*

Substrate
o o Me
e
XN _-CO:R
R=Bn 40a
R=Et 40b

(o]

\

o Me
o/\)\ Me
X _CO,Bn
40c
(o] [o]

Me
0/\)\ Me

X _CO;Bn

40d

CO,Bn

409

Pd,(dba); (2.5 mol %)
(S)-+BuPHOX (6.5 mol %)

42% yield, 92% ee

toluene, 60 °C

Product(s)

(o}

H
CO,R
41a (endo)
83% vyield, 87% ee

41b (endo)
85% vyield, 88% ee

(o}

H
CO,Bn

41c (endo)
65% vyield, 65% ee

H
CO,Bn

41d (endo)
83% vyield, 97% ee

o]
o]
i HZ\L
H CO,Bn
CO,Bn
41e (endo) 49e

(not observed) 81% yield, 47% ee

[o}
0 4
i
H CO,Bn

CO,Bn

41f (endo) 49f
45% vyield, 51% ee

o
o
y HS\L
H
CO,Bn CO,Bn
41g (endo) 499
(not observed) 74% yield, 56% ee

Substrate

145

Product(s)

o
H]

41h (endo) 49h
(not observed) 33% vyield, 58% ee

o) o,
J
COH

CO,H

41i (endo)

49i
10, H 0,
(not observed) 80% vyield, 7% ee

(o]

S

H
COPh

41j (endo)
50% vyield, 87% ee

H
CO.Ph

i H
€0,Ph

H
CO,Ph
41k (endo) 41k’ (exo) 41k” (other)
82% vyield, 10.4:1.4:1 dr, 88% ee (endo)

(o}

S

H
CO,Mes

411 (endo)
90% yield, 89% ee

(o] o
*Hl 2

i H
C(O)NHP C(O)NHP

41m (endo)  41m’ (exo)
65% yield, 1.4:1 dr?
62% ee (endo), 62% ee (exo)

H
CO,Bn

41n (endo)
88% yield, 14.3:1 dr, 91% ee
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o

S O e
o
: Me
o :g O Me X _-C0,Bn H
X H : H 2
N > CO,Bn
/c> ° NJ(O OANJ( 40 41 (zd)
s s (endo,
o L / 69% yield, 83% ee
400 410 (endo) 410’ (exo) o o
92% yield, 1.1:1 dr o [o} Me
84% ee (endo), 79% ee (exo
DD
EtO X _-C02Bn Eto H Et0 H
s’ CO,Bn ¢0,Bn
[ O 40t 41t (endo) 41t (exo)
CO,Bn 89% yield, 2.6:1 dr?
85% ee (endo), 72% ee (exo0)
41p (endo)
81% yield, 28.4:1 drb, 72% ee o]
Me o
i /\)M\e \&/\/ . s’
Z X _-CO0,Bn H
o Me _ 2 CO,Bn
N rl i H 40u 41u (endo)
22% yield, >20:1 dr at *, 61% ee
CO,Bn
40q 41q (endo) 41q’ (exo)

92% yield, 1.6:1 dr
84% ee (endo), 29% ee (exo)

[o]

~! H
Me 'CO,Bn

41r (endo)
47% yield, 89% ee

[a] Conditions: 0.2 mmol 40a, 2.5 mol % Pd.(dba);, 6.5 mol % ligand, in toluene (10 mL, 0.02 M),
isolated yields, dr determined by '"H NMR analysis of reaction crude. [b] dr determined by isolated
yields of endo/exo products.

reaction rate '3 2, we explored whether this trend impacts the generality of our
transformation. However, with cyclopentyl diene derived from enone 40c, a decrease in
yield and ee, relative to six-membered parent substrate 40a, was noted (Table 3.2). In
comparison to smaller ring sizes, seven-membered cyclic dienes require increased
distortion energy to reach the desired transition state.!> Despite this, seven-membered ring
substrate 40d leads to a high yield and improved ee. Thus, this transformation represents a

powerful method to synthesize various challenging bicyclic cores.
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Figure 3.4. Eyring analysis of 41/49 product ratio for propylene and butylene

tethered substrates 40a and 40f.°

o)
o o Me
/\)\ Pd,(dba)s (2.5 mol %)
o Me  (S)-+BuPHOX (6.5 mol %) ’ .
PhMe, temperature
X _CO,Bn COHB n
n 250 BnO,C
40a(n=1) 41a 49a
40f(n=2) 41f 49¢
4.0 ; ; ' .
3.0
2.0
1.0
D)
=
= 00
E
]
1.0} ]
AAHE AAS*
o0t Substrate n (kcallmol)  (eu) J
m40a 1 7x1 143
8or md40f 2 71 20x2
40 1 1 1 1
22 2.4 26 2.8 3.0 3.2
1T x 103 (K
T(°C) 41a:49a  41f: 49f
60 - 1.5:1.0
80 87:1.0 1.0:1.0
100 59:1.0 1.0:22
120 34:1.0 1.0:2.8

[a] All data points collected in triplicate, error bars and ranges reflect a 95% confidence interval."

Reactions carried out on 0.02 mmol scale with product ratios determined by crude '"H NMR analysis.

The dienophile tether length was subsequently modulated to test its influence on
product distribution. The ethylene tethered substrate 40e yields solely the premature
protonation product 49e, likely due to insurmountable developing ring strain in the

cycloaddition transition state. In contrast to the propylene tethered substrate 40a, the
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butylene tethered substrate 40f leads to a near equal distribution of cycloadduct 41f (42%
yield) and prematurely protonation product 49f (45% yield). Following this trend, the
pentylene tethered substrate 40g leads only to protonation product 49g. Rationalizing this
phenomenon, we propose that lengthening the tether increases conformational flexibility
and imposes a greater entropic penalty to the highly organized [4+2] transition state. In
contrast, increased tether length is inconsequential to the protonation process, which does
not involve the dienophile.

Eyring analysis of product distributions from reactions of 40a and 40f further
supports the hypothesis of an entropic preference for the formation of 49a/f over 41a/f
(Figure 3.4). With 40a, cycloaddition (41a) is enthalpically favored (AAH* = 7 kcal/mol)
but entropically disfavored (AAS* = 14 eu) over protonation (49a). As anticipated,
increasing the tether length to four methylene units (40f) further increases the relative
entropic penalty for cycloaddition (AAS* = 20 eu), while the differential enthalpy of
activation remains similar (AAH* = 7 kcal/mol). Hence, entropy differences associated with
tether length lead to the formation of differential amounts of undesired ketones 49a and
49f.

We then surveyed the scope of functional groups that are tolerated in this reaction
(Table 3.2). The cycloaddition does not proceed in the absence of a m-acceptor (40h), and
carboxylic acid 40i exclusively affords undesired ketone 49i. To our delight, a variety of
functional groups are compatible, including ethyl ester 10b, phenyl ketone 10j, phenyl ester
40k, mesityl ester 401, N-hydroxyphthalimido (NHP) ester 40m, enecarbamate 40n, and

N-acyl oxazolidinone 400. Additionally, further conjugated cinnamic ester dienophile 40p
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affords tetracycle 41p. These results demonstrate the ability to tolerate varying dienophile
electronics, incorporate additional functional handles, and access alternate ring systems.

The majority of the substrate scope is reflective of a stereospecific process, yielding
only endo and exo diastereomers. We sought to exploit this property of the reaction to
access other diastereomers of 41a by employing (Z)-olefin dienophile 40q. Gratifyingly,
desired cycloadducts 41q (endo) and 41q’ (exo) are furnished in a 1.6:1 ratio with a 92%
combined yield, in 84% and 29% ee, respectively.

Further substitution patterns on the substrate were explored with the aim of
increasing the stereochemical complexity of the products. Trisubstituted benzyl ester
dienophile 40r furnished cycloadduct 41r, featuring two all-carbon quaternary centers, in
47% yield and 90% ee. 3-Methyl (40s) and B-ethoxy (40t) o, -unsaturated enones are also
competent substrates, forging additional tetrasubstituted bridgehead stereocenters. Finally,
we explored o-methyl substituted enone 40u. The corresponding product 41u was
produced, bearing five contiguous stereocenters in >20:1 dr.

In summary, the transformation described herein represents a versatile method for
the preparation of a variety of enantioenriched polycyclic scaffolds. Inspired by these
results, we sought to explore the origins of enantioinduction and the mechanism by which
catalyst turnover is achieved.

3.24 [4+2] CYCLOADDITION

In order to probe the origins of enantioinduction in the transformation, we first

aimed to elucidate the enantiodetermining step in the catalytic cycle. We hypothesized that

either the cycloaddition is irreversible and dictates the stereochemical outcome, or a
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reversible [4+2] is coupled to a subsequent enantiodetermining step. First, we
computationally evaluated the energetics of the [4+2] process. Cycloaddition directly from
conjugated enolate 55 to transposed enolate 56 via TS30 is achieved with a AG* 0f 9.8 and
AG of -22.3 kcal/mol (Figure 3.5A). The 32.1 kcal/mol barrier to the reverse process
renders the cycloaddition step irreversible under the reaction conditions. Hence, our
computations suggest that the cycloaddition step is enantiodetermining.

To assess this hypothesis experimentally, reaction product 41a was converted to its
corresponding prenyl enol carbonate 59. Under the standard reaction conditions, Pd°
undergoes oxidative addition to 59, and decarboxylation affords target common
intermediate 56 (Figure 3.5B).> When enantioenriched or racemic 59 is subjected to the
reaction conditions, cycloadduct 41a is obtained in high yield and identical enantiopurity
to that of the respective enol carbonate precursor (59) (Figure 3.5B). No stereochemical
resolution in product 41a is observed from racemic enol carbonate 59, indicating that a
post-cycloaddition process is not responsible for enantioinduction. In addition to verifying
the irreversibility of the cycloaddition step, these experiments also support the viability of
enolate 56 as an intermediate in the catalytic cycle (Scheme 3.1).

Considering the [4+2] cycloaddition as the enantiodetermining process, the origin
of enantioinduction in this step was investigated. As such, the lowest energy endo transition
states giving rise to each enantiomer of 41a were evaluated (Figure 3.5C). The minimum
energy pathway to each enantiomer of product features a transition state in which the
dienophile tether is syn to the #-Bu group of the PHOX ligand — in accord with prior

observations in inner-sphere allylic alkylation transition states.>'> From this orientation,
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Figure 3.5. (A) Computed barriers.” (B) Experimentally verifying irreversibility of the

C-C bond formation. (C) Origins of enantioinduction in the [4+2] cycloaddlition step.
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[a] Gibbs free energies in kcal/mol. See supporting information in section 3.4 for details.
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the dienophile preferentially approaches the externally-exposed enantiotopic face of the
diene to avoid steric clash between the benzyl ester and the phenyl groups of the PHOX
ligand scaffold (Figure 3.5C). A 1.6 kcal/mol preference for external (TS30) over internal
(TS31) approach is calculated, in accord with the experimentally observed 87% ee.'® The
major enantiomer of product (41a) predicted by computations matches that of the major
enantiomer obtained experimentally, as confirmed by vibrational circular dichroism (VCD)
spectroscopy (see 3.4 Supporting Information for details).

In summary, our investigations reveal C—C bond formation to be the
enantiodetermining step, with enantioselectivity achieved by biasing external over internal
dienophile approach (Figure 3.5).

3.2.5 CATALYST TURNOVER

Our [4+2] transformation is rendered catalytic by a unique reduction of Pd" to Pd’
that occurs concomitantly with formation of isoprene (52) and ketone 41a. This observation
motivated computational investigations to elucidate the catalyst turnover mechanism.

Of the numerous mechanisms explored, the minimum energy pathway involves
isomerization of 56 to an N-detached n-allyl Pd species (60) and subsequent inner-sphere
proton transfer (TS4) (Figure 3.6). Additionally, a pathway featuring outer-sphere proton
transfer (TS5) was found to be highly competitive for catalyst turnover. These two
processes present very similar free energy barriers of 22.3 and 22.4 kcal/mol, respectively,
which are readily surmountable at 60 °C. A single favored pathway is not identified as the
energy difference between the two mechanisms is within error of computations. In both

pathways, subsequent ligand exchange of isoprene (52) for starting material 40a completes
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the catalytic cycle. Analysis of Intrinsic Bonding Orbitals (IBOs)!” along the reaction
coordinate suggest these processes are best conceptualized as the transfer of a proton, rather
than a hydride, to the Pd enolate (see 3.4 Supporting Information for details).'® Analogous
mechanisms were found to be operative from pre-cycloaddition enolate 55, giving rise to
premature protonation product 49a.

Figure 3.6. Two lowest-energy pathways for catalyst turnover.?
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[a] Gibbs free energies in kcal/mol. See section 3.4 supporting information for details.
3.2.6 FURTHER MECHANISM-BASED DEVELOPMENTS

While this method allows access to a variety of complex scaffolds, premature
protonation remains an outstanding challenge we sought to address. As such, we aimed to

leverage our mechanistic insights surrounding this process to inhibit byproduct formation.
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Figure 3.7. (A) KIE study. (B) Prenyl ester modification.

A. Leveraging kinetic isotope effect (KIE) to slow proton transfer.?
o o CD, O 939% DP
/\)\ Pd,(dba)s (2.5 mol %) b . °
0 cD, (S)-t-BuPHOX (6.5 mol %) g‘

toluene, 60 °C, 14 h

+

Z CO,Bn H
CO,Bn
D-40f D-41f
66% yield, 91% ee,
1.6:1drat*

B. Modification of prenyl ester via cyclic and benzylic analogs.¢

o o o)
Pd,(dba); (2.5 mol %)

OR (S)-t-BuPHOX (6.5 mol %)
L +
toluene, 60 °C, 14 h

7 CO,Bn H
CO,Bn
41f
Entry R Yield 41f (%) ee 41f (%) Yield 49f (%)
Me
1 N\ (40f) 44 91 42
Me
2d ND (63) 25 92 44
3 jf\/o (64) 8 - 89
4 Z\VO (65) 63 92 21
5 ;{\/O (66) 48 92 46
Ph
6° j{\)\/ph (67) 14 9% 86

154

0 L)
p 64% Db
CO,Bn
D-49f

24% yield, 55% ee

49f

ee 49f (%)

40

46

48

44

38

60

[a] Conditions: 0.20 mmol D-40f, 2.5 mol % Pd,(dba)s;, 6.5 mol % ligand, in 10 mL of solvent (0.02

M). [b] Deuterium incorporation determined by HRMS. [c] Conditions: 0.02 mmol substrate, 2.5 mol %

Pd,(dba)s, 6.5 mol % ligand, in 1.0 mL of solvent (0.02 M). Yield determined by "H NMR with respect

to 1,3,5-trimethoxybenzene as internal standard. [d] 21% of allylic alkylation product was also

observed. [e] The corresponding benzylic diene was also observed (see 3.4 Supporting Information

for details).
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To that end, we turned our attention to butylene tethered substrate 40f given its
similar yield of desired 41f (44%) and byproduct 49f (42%). We envisioned favoring the
formation of 41f by modification of the ancillary prenyl moiety. By introducing a kinetic
isotope effect, we aimed to slow down the protonation processes. To our delight,
employing hexa-deutero prenyl ester D-40f (Figure 3.7A) increases the yield of desired
cycloadduct D-41f to 66%, with 91% ee.!” Next, cyclic analogs of the prenyl ester 40f were
prepared (Figure 3.7B). At one extreme, seven-membered exocycle 66 affords a product
distribution which closely mirrors that of parent substrate 40f (entry 5). Excitingly,
contracting the ring by one methylene (65) shifts the distribution favorably toward 41f
(entry 4, 3:1 ratio of 41f:49f). However, five- and four-membered exocycles (64 and 63),
as well as acyclic bis-benzylic allylic ester 67, afford unfavorable product distributions.

In summary, we find appropriate modification of the prenyl moiety to be effective
in suppressing deleterious side reactions. This is particularly important as the ring system
generated in this reaction is a scaffold relevant to natural product synthesis.

3.2.7 PRODUCT DERIVATIZATIONS

To assess the utility of the asymmetric intramolecular [4+2] products, we started
by altering the oxidation state of ketone 41a (Figure 3.8 A) through a 1,2-reduction, which
provided alcohol 68 in quantitative yield and in 1.5:1 dr. Subsequently, we explored ring
expansion strategies to incorporate heteroatoms and to furnish different ring systems
(Figure 3.8A). From ketone 41a, oxime condensation and subsequent Beckmann

rearrangement afforded lactam 69 as a single isomer in 56% yield over two steps.
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Analogously, Baeyer—Villiger oxidation furnished lactone 70 in 41% yield as a single
isomer.

Furthermore, the tricyclic cycloaddition products closely resemble many members
of the atisane family of diterpenoids (Figure 3.8B, 71-74). Therefore, reactions to further
functionalize these scaffolds were explored. First, hydrogenolysis followed by persulfate-
mediated radical decarboxylation of 41f afforded ketone 75 in 27% yield over two steps.?
We were delighted to find that the exo-cyclic methylene motif presented in both
crotogoudin (71) and campylopin (74) could be achieved through aldol condensations from
both 75 and 41f to yield crotogoudin-like enone 76 in 41% yield and analogous enone 77
in 26% yield.?! Enone 77 can be further functionalized through dihydroxylation to furnish
the primary and tertiary alcohol centers of the acochlearine (72) core in 13% yield and 10:1
dr (78).22 A wider spectrum of natural product cores could also be accessed through
oxidation at different sites of the tricyclic hydrocarbon backbone. For example, Riley
oxidation of 41f provided diketone 79 in 50% yield,?* which can then be selectively mono-
protected as acetal 80 in 41% yield.?* Further manipulations to the exposed ketone of 80
could yield spiramilactam B (73)-like oxidation patterns. To that end, directed C—H
oxidation following an oxime condensation of 41f yielded oxime 81 in 30% yield.
Deprotection of the oxime afforded the desired acetate on campylopin (74)-like tricycle 82
in 19% yield as a single diastereomer.?®> Overall, derivatization of the Diels—Alder product
41f allowed access to four natural product-like motifs, demonstrating the potential of

applying this transformation to asymmetric natural product syntheses.
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Figure 3.8. (A) Oxidation state alterations, ring system adjustments, and heteroatom

incorporation on 41a. (B) Reaction sequences to construct natural product-like cores.

A. Reactivity of Diels—Alder product 41a.

NaBH,, MeOH 68
- 99% yield
1,2-Reduction 1.5:1drat*
o]
1. NaOAc, NH,OH-HCI, MeOH
2. SOCl,, THF _ 69
= 56% yield
H Beckmann Rearrangement
CO,Bn
41a
m-CPBA, NaHCO3, CH,Cl, 70
41% yield

Baeyer-Villiger Oxidation

CO,Bn

B. Construction of natural product-like cores from asymmetric Diels—-Alder product 41f.
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3.3 CONCLUSIONS

We developed an asymmetric decarboxylative [4+2] cycloaddition employing a
key catalytically-generated chiral Pd enolate intermediate — analogous to those implicated
in inner-sphere allylic alkylation reactions. To enable this transformation, we first
systematically modified the allyl moiety to disfavor undesired allylic alkylation. This
allows the conjugated Pd enolate to engage in a [4+2] cycloaddition with a pendant
dienophile. Computational and experimental analysis supports the role of C—C bond
formation as the enantiodetermining step. Further computational investigation reveals that
the catalyst turnover occurs through a proton transfer from the prenyl group directly to the
transposed enolate, forming the desired product and releasing isoprene. Building upon
these mechanistic insights, we were able to further favor the desired [4+2] cycloaddition
over premature protonation for challenging substrates relevant to complex natural product
synthesis. In summary, our approach of divergent catalysis serves as a powerful framework
for rational design in asymmetric catalytic reactions. Studies applying this strategy more
broadly in other synthetically relevant transformations are currently underway.

3.4 SUPPORTING INFORMATION
3.4.1 MATERIALS AND METHODS

Unless otherwise stated, reactions were performed in flame-dried glassware under
an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by
passage through an activated alumina column under argon.?® Reaction progress was
monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and
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visualized by UV fluorescence quenching or KMnOs staining. Silicycle SiliaFlash® P60
Academic Silica gel (particle size 40-63 nm) was used for flash chromatography. '"H NMR
spectra were recorded on a Bruker 400 MHz spectrometer and are reported relative to
residual CHCI3 (8 7.26 ppm). '3C NMR spectra were recorded on a Bruker 400 MHz
spectrometer (100 MHz) and are reported relative to CHCl3 (8§ 77.16 ppm). 2H NMR
spectra were recorded on a Bruker 400 MHz (61 MHz) spectrometer and are reported
relative to residual CDCls (8 7.26 ppm). Data for 'H NMR are reported as follows: chemical
shift (6 ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported
as the peaks appear as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet,
sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet. Data for '3C
NMR are reported in terms of chemical shifts (6 ppm). Some reported spectra include
minor solvent impurities of water (& 1.56ppm), ethyl acetate (6 4.12, 2.05, 1.26 ppm),
methylene chloride (6 5.30 ppm), acetone (6 2.17 ppm), grease (6 1.26, 0.86 ppm), and/or
silicon grease (8 0.07 ppm), which do not impact product assignments. '3C NMR spectra
of deuterated compounds are complicated by the low intensity of peaks of deuterium-
substituted carbon atoms. IR spectra were obtained by use of a Perkin Elmer Spectrum
BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl
plates and reported in frequency of absorption (cm™). Optical rotations were measured
with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm
path-length cell. Analytical SFC was performed with a Mettler SFC supercritical CO»
analytical chromatography system utilizing Chiralpak (AD-H or IC) or Chiralcel (OD-H,

OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd.
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High resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral
Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in Field Desorption
(FD+) mode. Absolute stereochemical assignments were made by vibrational circular
dichroism analysis for select compounds with related compounds assigned by analogy.

Reagents were purchased from commercial sources and used as received unless
otherwise stated. Ligands were prepared according to literature procedures.?’

List of Abbreviations: ee — enantiomeric excess, SFC — supercritical fluid
chromatography, TLC — thin-layer chromatography, IPA — isopropanol, VCD — vibrational
circular dichroism.

3.4.2 EXPERIMENTAL PROCEDURES AND SPECTROSCOPIC DATA
Pd-Catalyzed Decarboxylative Cycloadditions

General Procedure A: Asymmetric Pd-Catalyzed Decarboxylative Cycloadditions.

o o Me o
/\)\ Pd,(dba); (2.5 mol %)
07 7 "Me (s)t+BuPHOX (6.5 mol %) %»
PhMe, 60 ° o
R X _-C02Bn e, 60°C R H'/n
n CO,Bn
40 41

In a nitrogen filled glovebox, an oven-dried 20 mL vial was charged with a stir bar,
Pd»(dba); (4.6 mg, 0.005 mmol, 2.5 mol %), (S)-t-BuPHOX (5.0 mg, 0.013 mmol, 6.5
mol %), and toluene (5 mL). The catalyst solution was stirred at 23 °C for 20 min. A
solution of substrate 40 (0.2 mmol, 1 equiv) in toluene (5 mL) was added to the vial. The
resultant solution was then heated to 60 °C for 14 h. The solution was then cooled to 23 °C

and concentrated under reduced pressure. The crude reaction mixture was loaded directly



Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 161

onto a flash column and the product (41) was isolated by silica gel flash column

chromatography.

benzyl (3aR,6R,7S,7aR)-4-oxooctahydro-3a,6-ethanoindene-7-carboxylate (41a)
Prepared from 40a following General Procedure A. Purification by flash column
chromatography (0-35% EtOAc/hexanes) afforded the title compound as a colorless oil
(49.7 mg, 0.167 mmol, 83% yield, 87% ee). Absolute and relative stereochemistry were
assigned by VCD (vida infra). 2D NMR studies independently confirm the relative
stereochemistry (vida infra).

'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.31 (m, 5H), 5.14 (d, J = 1.6 Hz, 2H), 2.54 (dt, J
=18.8, 2.3 Hz, 1H), 2.51 — 2.47 (m, 2H), 2.21 (dddd, J = 10.6, 8.7, 7.2, 1.7 Hz, 1H), 2.14
—2.04 (m, 3H), 1.86 (ddd, /=13.0, 11.1, 6.8 Hz, 1H), 1.81 — 1.72 (m, 2H), 1.70 — 1.52 (m,
3H), 1.44 (ddt, J=12.9, 10.9, 1.8 Hz, 1H), 1.22 (ddd, /= 13.9,9.2, 4.9 Hz, 1H).

13C NMR (100 MHz, CDCls): 6 215.1, 174.7, 136.0, 128.8, 128.5, 128.2, 66.7, 54.2, 47.5,
43.3,41.3,32.9,29.1,27.4, 26.5, 25.1, 22.6.

IR (Neat Film, NaCl): 2947, 2873, 1726, 1455, 1267, 1160 cm™'.

HRMS (MM: FD+): m/z calc’d for CioH2203 [M]*: 298.1564, found 298.1576.

Optical Rotation: [a]p?' —20.3 (¢ 1.00, CHCI3).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 4.21, major = 5.30
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(o]

Se

H
CO,Et
41b

ethyl (3aR,6R,7S,7aR)-4-oxooctahydro-3a,6-ethanoindene-7-carboxylate (41b)
Prepared from 40b following General Procedure A. Purification by flash column
chromatography (5-30% EtOAc/hexanes) afforded the title compound as a colorless oil
(39.9 mg, 0.169 mmol, 84% yield, 88% ee).

'H NMR (400 MHz, CDCl3): 6 4.15 (q, J = 7.1 Hz, 2H), 2.55 (dt, J = 18.8, 2.6 Hz, 1H),
2.49 — 2.44 (m, 1H), 2.42 (d, J = 8.6 Hz, 1H), 2.23 — 2.14 (m, 1H), 2.15 — 2.04 (m, 3H),
1.91 - 1.71 (m, 3H), 1.71 — 1.52 (m, 3H), 1.50 — 1.40 (m, 1H), 1.26 (t, /= 7.1 Hz, 3H),
1.21 (dt,J=9.2,4.9 Hz, 1H).

I3C NMR (100 MHz, CDCl3): § 215.2, 174.9, 60.8, 54.2,47.5,43.3,41.3,32.9,29.1,27 4,
26.5,25.1,22.6, 14.4.

IR (Neat Film, NaCl): 2947, 2873, 1725, 1270, 1170 cm™.

HRMS (MM: FD+): m/z calc’d for Ci14H2003 [M]*: 236.1412, found 236.1415.

Optical Rotation: [a]p?' —34.2 (¢ 1.00, CHCI3).

Enantiomeric excess determined by converting ethyl ester to benzyl ester through
saponification and Steglish esterification.

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 4.21, major = 5.30
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(o]

0

H
C02Bn
41c

benzyl (3aR,6R,7S,7aR)-4-oxooctahydro-3a,6-methanoindene-7-carboxylate (41c¢)
Prepared from 40c¢ following General Procedure A. Purification by flash column
chromatography (0-30% EtOAc/hexanes) afforded the title compound as a colorless oil
(37.0 mg, 0.130 mmol, 65% yield, 65% ee).

'"H NMR (400 MHz, CDCl3): § 7.42 — 7.29 (m, 5H), 5.13 (dd, J= 12.3, 7.9 Hz, 2H), 2.96
(t,J=4.2,1H),2.92 (ddd,J=5.2,3.7, 1.4, 1H), 2.42 —2.35 (m, 1H), 2.22 - 2.17 (m, 1H),
2.16 —2.05 (m, 3H), 1.95 (ddtd, /= 12.9, 8.4, 5.1, 2.2 Hz, 1H), 1.90 — 1.80 (m, 2H), 1.66
(dt,J=10.6, 1.6 Hz, 1H), 1.52 — 1.37 (m, 2H).

13C NMR (100 MHz, CDCls): 6 213.9, 173.3, 136.0, 128.8, 128.5, 128.3, 67.8, 66.6, 52.4,
48.5,41.8,40.6,40.5,32.2,27.5,22.1.

IR (Neat Film, NaCl): 2960, 2358, 1739, 1164, 730, 668 cm™'.

HRMS (MM: FD+): m/z calc’d for CisH2003 [M]*: 284.1414, found 284.1407.

Optical Rotation: [a]p?' +20.0 (¢ 1.00, CHCI3).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 3.97, major = 4.33.

benzyl (3aR,7R,85,8aR)-10-oxooctahydro-1/-3a,7-ethanoazulene-8-carboxylate (41d)
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Prepared from 40d following General Procedure A. Purification by flash column
chromatography (0-35% EtOAc/hexanes) afforded the title compound as a colorless oil
(51.8 mg, 0.166 mmol, 83% yield, 97% ee).

'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.31 (m, 5H), 5.16 (d, J = 12.4 Hz, 1H), 5.12 (d, J
=12.3 Hz, 1H), 2.70 — 2.63 (m, 2H), 2.64 — 2.56 (m, 1H), 2.25 (ddd, /= 18.5, 2.0, 1.0 Hz,
1H), 2.08 (td, J=10.5, 7.8 Hz, 1H), 2.03 — 1.94 (m, 1H), 1.93 - 1.79 (m, 3H), 1.78 — 1.60
(m, 4H), 1.59 — 1.43 (m, 4H).

13C NMR (100 MHz, CDCls): 6 215.7, 175.8, 136.0, 128.8, 128.5, 128.3, 66.7, 58.0, 50.2,
45.4,41.0,35.7, 33.6, 33.3, 32.0, 28.0, 21.8, 21.2.

IR (Neat Film, NaCl): 2934, 2873, 1727, 1713, 1455, 1161 cm™'.

HRMS (MM: FD+): m/z calc’d for C20H2403 [M+H]": 312.1720, found 312.1734.
Optical Rotation: [a]p?' +21.4 (¢ 1.00, CHCI3).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 4.70, major = 6.23.

benzyl (1S,2R,4aR,8aR)-4-oxooctahydro-2H-2,4a-ethanonaphthalene-1-carboxylate
(411).

Prepared from 40f following General Procedure A. Purification by flash column
chromatography (0-35% EtOAc/hexanes) afforded the title compound as a colorless oil

(26.3 mg, 0.084 mmol, 42% yield, 92% ee).
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'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.29 (m, 5H), 5.16 (d, J = 12.4 Hz, 1H), 5.10 (d, J
=12.2 Hz, 1H), 2.47 (dt, J = 17.0, 2.8 Hz, 2H), 2.28 — 2.19 (m, 2H), 2.14 (ddd, J = 19.7,
3.8, 1.8 Hz, 1H), 2.01 (dddd, J=11.8, 6.8, 4.5, 1.7 Hz, 1H), 1.87 (ddtd, /= 12.8, 4.5, 3.4,
1.6 Hz, 1H), 1.83 — 1.71 (m, 1H), 1.71 — 1.56 (m, 4H), 1.51 — 1.11 (m, SH).

13C NMR (100 MHz, CDCls): 6 216.3, 174.5, 136.0, 128.7, 128.4, 128.2, 66.7, 49.8, 45.1,
40.5,37.1, 30.9, 30.0, 28.9, 26.2, 25.6, 21.7, 21.1.

IR (Neat Film, NaCl): 2928, 2856, 1721, 1170 cm™'.

HRMS (MM: FD+): m/z calc’d for C20H2403 [M]*: 312.1720, found 312.1732.

Optical Rotation: [a]p?' —15.5 (¢ 1.00, CHCI3).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 4.70, major = 6.23.

S

H
(o) Ph
41j

(3aR,6R,7S,7aR)-7-benzoylhexahydro-3a,6-ethanoinden-4(1H)-one (41j)

Prepared from 40j following General Procedure A. Purification by flash column
chromatography (0-30% EtOAc/hexanes) afforded the title compound as a colorless oil
(27.1 mg, 0.101 mmol, 50% yield, 87% ee).

'"H NMR (400 MHz, CDCl3): § 7.97 — 7.94 (m, 2H), 7.61 — 7.56 (m, 1H), 7.51 — 7.46 (m,
2H), 3.42 (d,J=8.5Hz, 1H), 2.58 —=2.50 (m, 2H), 2.41 —2.38 (m, 1H), 2.16 (ddd, J=13.7,
11.1,6.2 Hz, 1H), 2.08 — 1.87 (m, 4H), 1.82 — 1.74 (m, 1H), 1.70 — 1.50 (m, 4H), 1.25 (ddd,

J=14.0,9.2,5.1 Hz, 1H).
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13C NMR (100 MHz, CDCl5): 6 214.9,201.0, 136.4, 133.4, 128.9, 128.5, 54.2, 49.4, 41 4,
40.8, 34.1, 28.9, 27.8, 26.5, 25.6, 22.7.

IR (Neat Film, NaCl): 2945, 2871, 1720, 1677, 1447, 1217 cm™'.

HRMS (MM: FD+): m/z calc’d for CisH2002 [M]*: 268.1463, found 268.1463.

Optical Rotation: [a]p?' —32.7 (¢ 1.00, CHCI3).

SFC conditions: 30% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 2.55, major = 3.40.

CO,Ph CO,Ph CO,Ph

41k 41k’ 41k”
(endo-trans) (exo-cis) (endo-cis)

phenyl (3aR,6R,7S,7aR)-4-0xooctahydro-3a,6-ethanoindene-7-carboxylate (41k, 41k’
and 41k”’)

Prepared from 40k following General Procedure A. Purification by flash column
chromatography (0-35% EtOAc/hexanes) afforded the title compound as a colorless oil
(47.2 mg, 0.166 mmol, 83% vyield, 14.8:1.6:1.0 endo-trans/endo-cis/exo-trans, 88% ee
(endo-trans)). Crude analysis by '"H NMR affords a 10.4:1.4:1.0 ratio of endo-trans/exo-
trans/endo-cis. The diastereomers were subsequently separated by preparative HPLC (15%
IPA/hexanes, 25 mL/min, Chiralpak AD-H column) for independent characterization.
Absolute and relative stereochemistry were assigned/confirmed by VCD where applicable
(vida infra) in addition to 2D NMR.

41k (endo-trans):
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'"H NMR (400 MHz, CDCl3): § 7.41 — 7.34 (m, 2H), 7.25 — 7.20 (m, 1H), 7.09 — 7.04 (m,
2H), 2.70 (d, J = 8.7 Hz, 1H), 2.67 — 2.60 (m, 2H), 2.31 (dddd, J = 10.6, 8.8, 7.3, 1.7 Hz,
1H), 2.23 - 2.09 (m, 3H), 1.97 - 1.76 (m, 3H), 1.67 (ddddd, J=13.5,11.1,9.0, 6.2, 4.5 Hz,
3H), 1.50 (ddt, J=12.5, 10.6, 1.7 Hz, 1H), 1.31 — 1.17 (m, 1H).

13C NMR (100 MHz, CDCl5): 6 214.8, 173.4,150.7, 129.6, 126.0, 121.5, 54.2, 47.5, 43 4,
41.2,32.9,29.1,27.3, 26.5, 25.0, 22.5.

IR (Neat Film, NaCl): 2948, 2872, 1750, 1721, 1592, 1492, 1192, 1144 cm™".

HRMS (MM: FD+): m/z calc’d for CisH2003 [M]*: 284.1412, found 284.1411.

Optical Rotation: [a]p?' —16.7 (¢ 0.20, CHCI3). (single major enantiomer of 11j)

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):
minor = 4.09, major = 6.08.

41k’ (exo-trans):

'"H NMR (400 MHz, CDCl3): § 7.39 — 7.34 (m, 2H), 7.25 — 7.19 (m, 1H), 7.06 — 7.01 (m,
2H), 3.30 (dt, J = 12.0, 2.3 Hz, 1H), 3.08 (dt, J = 19.5, 2.8 Hz, 1H), 2.58 (h, J = 2.8 Hz,
1H), 2.47 — 2.33 (m, 2H), 2.21 (dt, J=19.6, 2.4 Hz, 1H), 2.08 —2.01 (m, 2H), 1.93 - 1.71
(m, 5H), 1.70 — 1.59 (m, 1H), 1.04 (ddd, J=12.8, 11.4, 6.7 Hz, 1H).

13C NMR (100 MHz, CDCl3): 6 215.2, 171.8, 150.6, 129.6, 126.0, 121.7, 54.6, 45.8, 44.0,
40.1,31.4, 28.4,28.2,27.0,26.3, 21.8.

IR (CDCl; solution): 2951, 2870, 1751, 1717, 1194, 1163, 1146 cm™.

HRMS (MM: FD+): m/z calc’d for CisH2003 [M]*: 284.1412, found 284.1417.

41k’’ (endo-cis):
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'H NMR (400 MHz, CDCl3): & 7.43 — 7.36 (m, 2H), 7.27 — 7.22 (m, 1H), 7.12 — 7.07 (m,
2H), 2.76 — 2.67 (m, 1H), 2.58 (dt, J = 8.3, 1.7 Hz, 1H), 2.48 — 2.33 (m, 4H), 2.12 - 2.01
(m, 2H), 1.91 — 1.63 (m, 5H), 1.10 (ddd, J = 13.0, 11.2, 6.5 Hz, 1H), 1.01 (ddd, J = 12.4,
9.5,2.8 Hz, 1H).

13C NMR (100 MHz, CDCL): § 215.1, 172.9, 150.9, 129.6, 126.1, 121.6, 53.8, 49.4, 46.0,
44.2,32.7,32.0,28.6,27.4,22.6, 21.5.

IR (CDCl; solution): 2945, 2872, 1751, 1717, 1194, 1163, 1130 cm .

HRMS (MM: FD+): m/z calc’d for Ci1sH2003 [M]": 284.1412, found 284.1407.

mesityl (3aR,6R,7S,7aR)-4-oxooctahydro-3a,6-ethanoindene-7-carboxylate (411)
Prepared from 401 following General Procedure A. Purification by flash column
chromatography (0-35% EtOAc/hexanes) afforded the title compound as a colorless oil
(58.6 mg, 0.180 mmol, 90% yield, 89% ee).

'H NMR (400 MHz, CDCl): ) 6 6.87 (s, 2H), 2.75 (d, J = 8.8 Hz, 1H), 2.72 — 2.65 (m,
2H), 2.36 (dddd, /= 10.6, 8.9, 7.3, 1.6 Hz, 1H), 2.26 (s, 3H), 2.24 — 2.09 (m, 3H), 2.08 (s,
6H), 1.98 — 1.78 (m, 3H), 1.75 - 1.61 (m, 3H), 1.55 - 1.48 (m, 1H), 1.31 — 1.24 (m, 1H).
13C NMR (100 MHz, CDCl5): 6214.8,172.8, 145.9, 135.6, 129.5, 129.5, 54.2, 47.4, 43.5,
41.3,33.2,29.2,27.5,26.5, 25.1, 22.6, 20.9, 16.4.

IR (Neat Film, NaCl): 2946, 2873, 1747, 1723, 1485, 1458, 1189, 1137 cm™..

HRMS (MM: FD+): m/z calc’d for C21H2603 [M]": 326.1877, found 326.1886.



Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 169

Optical Rotation: [a]p?' —25.8 (¢ 1.00, CHCI3).
SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 4.06, major = 4.33.

o/\ NHP
4 1m
(endo) (exo)
1,3-dioxoisoindolin-2-yl (3aR,6R,7S,7aR)-4-0xooctahydro-3a,6-ethanoindene-7-

carboxylate (41m and 41m’)

Prepared from 40m following General Procedure A. Purification by flash column
chromatography (0-35% EtOAc/hexanes) afforded the title compounds as colorless oils
(Endo: 37.7 mg, 0.106 mmol, 53% yield, 62% ee; Exo: 8.6 mg, 0.024 mmol, 12% yield,
62% ee).

41m (endo):

'"H NMR (400 MHz, CDCl3): § 7.92 — 7.85 (m, 2H), 7.83 — 7.75 (m, 2H), 2.84 (dd, J =
8.7, 1.3 Hz, 1H), 2.71 (m, 1H), 2.64 (dt, /= 18.9, 2.5 Hz, 1H), 2.46 — 2.28 (m, 1H), 2.28 —
2.18 (m, 2H), 2.13 (m, 1H), 1.98 — 1.76 (m, 3H), 1.76 — 1.60 (m, 3H), 1.56 — 1.48 (m, 1H),
1.34-1.19 (m, 1H).

13C NMR (100 MHz, CDCl3): 6 214.0, 171.4, 162.1, 135.0, 129.0, 124.2, 54.1, 44.8, 43.3,
41.0,33.2,28.9,27.2,26.4,24.9,22.4.

IR (Neat Film, NaCl): 2948, 2873, 1782, 1742, 1718, 1466, 1362, 1185 cm™'.

HRMS (MM: FD+): m/z calc’d for C20H19NOs [M]": 353.1263, found 353.1251.
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Optical Rotation: [a]p?' —0.2 (¢ 1.00, CHCI3).

SFC conditions: 30% IPA, 2.5 mL/min, Chiralpak IC column, 1 =210 nm, tr (min): minor
=4.03, major = 3.00

41m’ (exo):

'"H NMR (400 MHz, CDCl3): 6 7.90 (dd, J = 5.5, 3.1 Hz, 2H), 7.81 (dd, J= 5.5, 3.1 Hz,
2H), 2.77 (tt, J = 3.9, 2.2 Hz, 1H), 2.73 (d, J = 8.4 Hz, 1H), 2.47 — 2.28 (m, 4H), 2.19 —
2.02 (m, 2H), 1.92 — 1.71 (m, 4H), 1.71 — 1.61 (m, 1H), 1.11 (ddd, J=13.1, 11.2, 6.6 Hz,
1H), 1.08 — 0.95 (m, 1H).

13C NMR (100 MHz, CDCl3): 6 214.2,170.8, 162.1, 135.0, 129.1, 124.2, 53.7, 46.7, 46.0,
44.1,32.9,31.8,28.4,27.2,22.5,21.2.

IR (Neat Film, NaCl): 2947, 2868, 1809, 1784, 1743, 1717, 1466, 1362, 1185 cm™'.
HRMS (MM: FD+): m/z calc’d for C20H19NOs [M]": 353.1263, found 353.1261.
Optical Rotation: [a]p?' —13.6 (¢ 0.81, CHCI3).

SFC conditions: 30% IPA, 2.5 mL/min, Chiralpak IC column, 1 =210 nm, tr (min): minor

=4.98, major = 4.29.

41n

dibenzyl (3aR,4R,5R,7aS)-7-oxooctahydro-5,7a-(epiminomethano)indene-4,9-

dicarboxylate (41n)
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Prepared from 40n following General Procedure A. Purification by flash column
chromatography (040 % EtOAc/hexanes) afforded the title compound as a colorless oil
(76.1 mg, 0.176 mmol, 88% yield, 14.3:1 endo/exo, 91% ee (endo)).

'"H NMR (400 MHz, CDCl3): § 7.35 (dd, J=7.1, 4.9 Hz, 10H), 5.21 — 5.07 (m, 4H), 4.90
—4.74 (m, 1H), 3.49 (dd, J = 12.1, 5.8 Hz, 1H), 3.40 — 3.27 (m, 1H), 2.88 (t, /= 8.9 Hz,
1H), 2.66 — 2.42 (m, 2H), 2.30 (p, J = 9.3 Hz, 1H), 2.23 — 2.10 (m, 2H), 1.91 — 1.56 (m,
3H), 1.33 — 1.14 (m, 1H).

13C NMR (100 MHz, CDCl3): § 210.1, 209.7, 172.2, 154.4, 136.3, 135.5, 128.9, 128.7,
128.7, 128.4, 128.4, 128.4, 128.3, 128.2, 128.1, 67.6, 67.2, 55.9, 55.8, 50.4, 50.0, 48.8,
48.6,45.7,45.6,42.6,42.6,41.7,41.6, 29.0, 28.9, 24.1, 22.9.

IR (Neat Film, NaCl): 3399, 2963, 2874, 2357, 1729, 1700, 1652, 1414, 1288, 1156, 1115,
748, 681 cm’!.

HRMS (MM: FD+): m/z calc’d for C26H27NOs [M]": 433.1889, found 433.1874.
Optical Rotation: [a]p?' —39.8 (¢ 0.75, CHCI).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, 1 = 210 nm, tr (min):

minor = 9.19, major = 11.59.

410 (endo) 410' (exo)
3-((3aR,6R,7S,7aR)-4-o0xooctahydro-3a,6-ethanoindene-7-carbonyl)oxazolidin-2-one

(410 and 410°)
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Prepared from 400 following General Procedure A. Purification by flash column
chromatography (0-90 % EtOAc/hexanes) afforded the title compound as a colorless oil
(51.2 mg, 0.185 mmol, 92% yield, 1.1:1 endo/exo (ratio from crude 'H NMR analysis), 84%
ee (endo), 79% ee (ex0)).

410 (endo):

'"H NMR (400 MHz, CDCl3): 6 4.43 (t,J = 8.1 Hz, 2H), 4.15 — 4.00 (m, 2H), 3.54 — 3.47
(m, 1H), 2.66 (ddd, J = 12.4, 8.3, 6.9 Hz, 1H), 2.52 — 2.25 (m, 4H), 1.92 — 1.68 (m, SH),
1.67 — 1.53 (m, 2H), 1.08 (ddd, J=12.9, 11.2, 6.4 Hz, 1H), 0.89 (tt, J=12.3, 9.5 Hz, 1H).
13C NMR (100 MHz, CDCl): 8 215.5, 173.8, 153.4, 62.1, 53.7, 48.3, 44.1, 44.0, 43.1,
33.8,31.3,28.7,27.3,22.8, 20.8.

IR (Neat Film, NaCl): 2942, 2867, 1775, 1714, 1693, 1387, 1267, 1222, 1040 cm™".
HRMS (MM: FD+): m/z calc’d for CisHioNO4 [M]": 277.1314, found 277.1321.
Optical Rotation: [a]p?' —39.5 (¢ 1.00, CHCI3).

SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):
minor = 4.15, major = 5.17.

410’ (exo):

'"H NMR (400 MHz, CDCl3): 6 4.43 (t,J= 8.1 Hz, 2H), 4.13 - 3.97 (m, 2H), 3.71 (d, J =
8.8 Hz, 1H), 2.59 — 2.41 (m, 2H), 2.35 (dd, J=3.5, 2.3 Hz, 1H), 2.19 — 1.84 (m, 5H), 1.81
—1.41 (m, 6H), 1.27 — 1.18 (m, 1H).

13C NMR (100 MHz, CDCls): § 214.9, 174.6, 153.5, 62.13, 54.1, 45.6, 43.1, 41.2, 40.6,
34.5,28.4,27.3,26.5,25.3,22.7.

IR (Neat Film, NaCl): 2949, 2872, 1775, 1718, 1692, 1387, 1221,1040, 759 cm™".
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HRMS (MM: FD+): m/z calc’d for CisH1oNOs [M]*: 277.1314, found 277.1317.
Optical Rotation: [a]p?' —5.8 (¢ 1.00, CHCI3).
SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 6.80, major = 6.38.

o]
H
COZBI'I
41p (endo) 41p’ (exo)
benzyl (BR,45,4a5,9a8)-1-0x0-1,2,3,4,4a,9-hexahydro-3,9a-ethanofluorene-4-

carboxylate (41p and 41p°)

Prepared from 40p following General Procedure A. Purification by flash column
chromatography (0-35% EtOAc/hexanes) afforded the title compounds as colorless oils
(Endo: 56.8 mg, 0.156 mmol, 78% yield, 72% ee; Exo: 2.0 mg, 5.48 umol, 3% yield).
41p (endo):

'"H NMR (400 MHz, CDCl3): 6 7.28 — 7.20 (m, 5H), 7.14 — 7.05 (m, 4H), 5.13 (d, /= 2.4
Hz, 2H), 3.53 (dd,J=9.4, 1.0 Hz, 1H), 3.16 (d, /= 15.7 Hz, 1H), 2.74 (dt,/=9.3, 1.1 Hz,
1H), 2.61 (dt, J = 18.8, 2.4 Hz, 1H), 2.51 (ttd, J = 3.5, 2.2, 1.1 Hz, 1H), 2.31 (d, J=15.8
Hz, 1H), 2.11 (ddd, J = 18.8, 3.5, 1.2 Hz, 1H), 1.70 — 1.56 (m, 2H), 1.54 — 1.45 (m, 1H),
1.42 - 1.34 (m, 1H).

13C NMR (100 MHz, CDCl3): 5 214.0, 174.6, 142.3, 140.6, 135.8, 128.8, 128.6, 128.4,
127.3,127.0, 125.5, 124.3, 67.1, 56.6, 47.8, 45.6, 42.1, 35.0, 33.2, 27.0, 24.8.

IR (Neat Film, NaCl): 2942, 2869, 1726, 1457, 1164 cm™".

HRMS (MM: FD+): m/z calc’d for C23H2203 [M+H]": 346.1564, found 346.1571.
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Optical Rotation: [a]p?' +1.4 (¢ 1.00, CHCl5).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):
minor = 6.74, major = 6.28.

41p’ (exo):

'"H NMR (400 MHz, CDCl):  7.41 — 7.34 (m, 5H), 7.24 (d, J= 7.1 Hz, 1H), 7.14 - 7.07
(m, 3H), 5.30 (d, /= 12.3 Hz, 1H), 5.25 (d, J=12.3 Hz, 1H), 3.85 (d, /=9.4 Hz, 1H), 3.46
(d, J=14.7 Hz, 1H), 2.75 (d, /= 9.3 Hz, 1H), 2.69 — 2.65 (m, 1H), 2.44 (d, J = 14.9 Hz,
1H), 2.37 (dd, J=18.7, 2.1 Hz, 1H), 2.19 (ddd, J = 18.6, 3.4, 2.1 Hz, 1H), 2.15 — 2.07 (m,
2H), 1.90 — 1.84 (m, 1H), 1.81 — 1.76 (m, 1H).

13C NMR (100 MHz, CDCl3): & 213.5, 174.0, 143.8, 142.7, 135.9, 128.8, 128.6, 128.4,
127.2, 126.6, 124.8, 122.5, 67.1, 56.4,49.9, 48.3, 44.1, 35.3, 31.9, 27.5, 21.8.

IR (Neat Film, NaCl): 2918, 1727, 1161 cm™.

HRMS (MM: FD+): m/z calc’d for C23H2,03 [M+H]"™: 346.1569, found 346.1568.

CO,Bn €0,Bn
41q (endo) 41q’ (exo)

benzyl (3aR,6R,7S,7aS)-4-0xooctahydro-3a,6-ethanoindene-7-carboxylate (41q and
41q’)

Prepared from 40q following General Procedure A. Purification by flash column
chromatography (0-35% EtOAc/hexanes) afforded the title compound as a colorless oil
(54.9 mg, 0.183 mmol, 92% yield, 1.6:1 endo/exo, 84% ee (endo), 29% ee (exo0)). The endo

(41q) and exo (41q’) diastereomers were subsequently separated by preparative TLC (25%
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EtOAc/hexanes) for independent characterization. Absolute and relative stereochemistry
were assigned/confirmed by VCD (see below).

41q (endo):

'"H NMR (400 MHz, CDCl3): § 7.39 — 7.31 (m, 5H), 5.13 — 5.02 (m, 2H), 3.10 — 2.99 (m,
2H), 2.47 (h, J=2.9 Hz, 1H), 2.36 — 2.21 (m, 2H), 2.15 (dt, J=19.3, 2.3 Hz, 1H), 1.86 —
1.63 (m, 6H), 1.56 — 1.48 (m, 1H), 1.06 — 0.92 (m, 2H).

13C NMR (100 MHz, CDCls): 6 215.5,172.9, 135.9, 128.7, 128.7, 128.5, 66.3, 54.4, 45.9,
44.0,40.2,31.4,28.3, 28.1, 27.0, 26.4, 21.8.

IR (Neat Film, NaCl): 2940, 2868, 1728, 1456, 1174, 1166, 1146 cm™".

HRMS (MM: FD+): m/z calc’d for Ci19H2,03 [M]*: 298.1564, found 298.1578.

Optical Rotation: [a]p?' —32.4 (¢ 1.00, CHCI).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):
minor = 5.44, major = 6.53.

41q’ (exo):

'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.31 (m, 5H), 5.14 (d, J = 12.3 Hz, 1H), 5.09 (d, J
=12.2 Hz, 1H), 3.01 (ddd, J=11.7,3.3, 1.4 Hz, 1H), 2.46 (h, J= 3.3 Hz, 1H), 2.35 -2.25
(m, 3H), 2.14 (tdd, J=11.6, 7.9, 1.6 Hz, 1H), 2.07 — 1.94 (m, 2H), 1.88 — 1.69 (m, 3H),
1.63 — 1.57 (m, 1H), 1.47 — 1.34 (m, 2H), 1.16 (ddd, J = 13.9, 9.1, 5.0 Hz, 1H).

13C NMR (100 MHz, CDCls): 6 215.5,173.1, 136.0, 128.8, 128.5, 128.5, 66.3, 53.6, 45 4,
42.7,41.2,32.0,26.4,25.3,24.4,22.3,21.8.

IR (Neat Film, NaCl): 2946, 2847, 1720, 1457, 1154 cm™.

HRMS (MM: FD+): m/z calc’d for C19H2203 [M]": 298.1564, found 298.1578.
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Optical Rotation: [a]p?' —5.1 (¢ 1.00, CHCI3).
SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak IC column, A =210 nm, tr (min): minor

=7.01, major = 7.42.

~ H

BnO,C Me

41r
benzyl (3aR,6R,7S,7aS)-7-methyl-4-oxooctahydro-3a,6-ethanoindene-7-carboxylate
(41r)
Prepared from 40r following General Procedure A. Purification by flash column
chromatography (0-30% EtOAc/hexanes) afforded the title compound as a colorless oil
(29.4 mg, 0.094 mmol, 47% yield, 89% ee).
'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.29 (m, 5H), 5.16 (d, J = 12.4 Hz, 1H), 5.10 (d, J
=12.4 Hz, 1H), 2.49 — 2.38 (m, 2H), 2.32 (dt, J=18.9, 2.8 Hz, 1H), 2.19 — 2.10 (m, 2H),
2.01 = 1.92 (m, 1H), 1.85 — 1.66 (m, 4H), 1.65 — 1.55 (m, 1H), 1.49 — 1.31 (m, 5H), 1.13
(ddd, J=14.5,9.1, 6.0 Hz, 1H).
13C NMR (100 MHz, CDCl3): 6 215.2, 177.8, 136.1, 128.7, 128.4, 128.0, 66.8, 54.37,
45.8,44.7,43.4,37.3,26.5,24.4,24.1,22.7,22.4, 20.8.
IR (Neat Film, NaCl): 2951, 2875, 1723, 1454, 1239, 1212, 1106 cm™".
HRMS (MM: FD+): m/z calc’d for C20H2403 [M]*: 312.1725, found 312.1732.
Optical Rotation: [a]p?' —15.3 (¢ 1.00, CHCI3).
SFC conditions: 40% IPA, 2.5 mL/min, Chiralpak IC column, A =210 nm, tr (min): minor

=2.68, major = 3.51.
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0

PSS e

H
CO,Bn
41s

benzyl (3aR,6R,7R,7aR)-6-methyl-4-oxooctahydro-3a,6-ethanoindene-7-carboxylate
(41s)

Prepared from 40s following General Procedure A. Purification by flash column
chromatography (0-25% EtOAc/hexanes) afforded the title compound as a colorless oil
(43.6 mg, 0.140 mmol, 69% yield, 83% ee).

'"H NMR (400 MHz, CDCl3): 6 7.42 — 7.29 (m, 5H), 5.13 (d, J = 1.1 Hz, 2H), 2.86 (dd, J
=18.5, 3.5 Hz, 1H), 2.37 (dd, J = 8.8, 1.4 Hz, 1H), 2.29 — 2.15 (m, 1H), 2.15 — 2.04 (m,
1H), 2.01 — 1.70 (m, 3H), 1.84 (dd, /=18.7, 1.4 Hz, 1H), 1.68 — 1.36 (m, 4H), 1.30 - 1.15
(m, 2H), 0.94 (s, 3H).

13C NMR (100 MHz, CDCls): 6 214.5,174.9, 135.9, 128.8, 128.5, 128.5, 66.7, 54.2, 52.6,
47.0,44.9, 38.0, 36.0, 28.7, 26.3, 26.0, 23.8, 22.8.

IR (Neat Film, NaCl): 2949, 2873, 1750, 1498, 1454, 1384, 1324, 1155, 1114, 977, 754,
698, 678, 556 cm™!.

HRMS (MM: FD+): m/z calc’d for C20H2403 [M]*: 312.1703, found 312.1720.

Optical Rotation: [a]p?' —68.2 (¢ 0.75, CHCI).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak IC column, A =210 nm, tr (min): minor

=10.23, major = 12.31.
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o} o}
EtO n EtO” ‘ i I

CO,Bn CO,Bn
41t (endo) 41t’ (exo)

benzyl (3aR,6S,7R,7aR)-6-ethoxy-4-oxooctahydro-3a,6-ethanoindene-7-carboxylate
(41t and 41¢°)

Prepared from 40t following General Procedure A. Purification by flash column
chromatography (0-50% EtOAc/hexanes) afforded the title compounds as colorless oils
(Endo: 44.0 mg, 0.128 mmol, 64% yield, 85% ee; Exo: 17.0 mg, 0.050 mmol, 25% yield,
72% ee). Absolute and relative stereochemistry were assigned/confirmed by VCD (see
below).

41t (endo):

'"H NMR (400 MHz, CDCl3): 8 7.38 — 7.28 (m, 5H), 5.16 (d, J= 1.5 Hz, 2H), 3.55 - 3.32
(m, 2H), 3.17 (dd, J = 18.5, 3.1 Hz, 1H), 2.86 (dd, J = 8.5, 1.5 Hz, 1H), 2.38 — 2.25 (m,
2H), 2.16 — 2.02 (m, 1H), 2.02 — 1.86 (m, 3H), 1.87 — 1.39 (m, 5H), 1.20 (ddd, J = 14.1,
9.1,5.1 Hz, 1H), 1.03 (t, J= 7.0 Hz, 3H).

13C NMR (100 MHz, CDCl5): 6 210.8, 173.7, 136.0, 128.7, 128.4, 128.3, 78.2, 66.8, 58.0,
54.2,51.9,45.1,45.1,30.7, 28.8, 25.8, 24.8, 22.9, 15.8.

IR (Neat Film, NaCl): 2944, 2875, 1726, 1458, 1390, 1320, 1282, 1153, 1110, 1039, 746,
700 cm',

HRMS (MM: FD+): m/z calc’d for C21H2604 [M]*: 342.1832, found 342.1826.

Optical Rotation: [a]p?' —47.4 (¢ 0.75, CHCI).
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SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):
minor = 4.73, major = 5.13.

41¢’° (exo):

'"H NMR (400 MHz, CDCl3):  7.42 — 7.28 (m, 5H), 5.19 (d, J= 1.1 Hz, 2H), 3.57 — 3.35
(m, 2H), 2.69 (dd, J=17.8, 1.7 Hz, 1H), 2.60 — 2.47 (m, 1H), 2.47 — 2.44 (m, 2H), 2.39 (ddd,
J=12.5,79,6.9 Hz, 1H), 2.28 (ddd, /= 13.5, 9.4, 4.6 Hz, 1H), 1.92 — 1.78 (m, 3H), 1.77
—1.66 (m, 1H), 1.67 — 1.58 (m, 1H), 1.11 (ddd, J=11.3, 6.6, 3.7 Hz, 1H), 1.03 (t, /= 6.9
Hz, 3H), 0.89 (tt, J=12.4, 9.6 Hz, 1H).

13C NMR (100 MHz, CDCls): 6 211.5,173.4, 136.0, 128.7, 128.4, 128.3, 66.9, 58.1, 54.1,
52.8,47.5,46.8,31,0,27.7, 26.5, 25.9, 23.1, 15.7.

IR (Neat Film, NaCl): 2946, 1721, 1451, 1390, 1328, 1154, 1117, 767, 698 cm™"'.
HRMS (MM: FD+): m/z calc’d for C21H2604 [M]*: 342.1833, found 342.1826.

Optical Rotation: [a]p?' +1.8 (c 0.75, CHCl5).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak IC column, A =210 nm, tr (min): minor

=3.29, major = 4.04.

benzyl (3aR,6R,7S,7aR)-5-methyl-4-oxooctahydro-3a,6-ethanoindene-7-carboxylate

(41u)
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Prepared from 40u following General Procedure A. Purification by flash column
chromatography (0-25% EtOAc/hexanes) afforded the title compound as a colorless oil
(13.6 mg, 0.044 mmol, 22% yield, 61% ee).
'H NMR (400 MHz, CDCl3): 8 7.39 — 7.32 (m, 5H), 5.14 (ddd, J = 17.8, 12.2 Hz, 2H),
2.61 (dd, J=3.7, 2.1 Hz, 1H), 2.45 — 2.30 (m, 3H), 2.21 — 2.06 (m, 4H), 1.90 — 1.63 (m,
3H), 1.61 — 1.35 (m, 2H), 1.32 - 1.16 (m, 1H), 0.97 (d, /= 7.7 Hz, 3H).
13C NMR (100 MHz, CDCl3): 6 217.7,174.8, 135.9, 128.7, 128.6, 128.5, 66.8, 54.2, 48.3,
46.9,42.2,38.1,29.7, 28.9, 26.6, 24.1, 22.5, 15.8.
IR (Neat Film, NaCl): 2943, 2873, 1718, 1455, 1197, 1171 em™'.
HRMS (MM: FD+): m/z calc’d for C20H2403 [M]*: 312.1725, found 312.1730.
Optical Rotation: [a]p?' +10.9 (¢ 0.75, CHCI3).
SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):
minor = 5.84, major = 5.43.
D
Se

H
COan

D-41f
benzyl (1S,2R.,4aR,8aR)-4-oxooctahydro-2H-2,4a-ethanonaphthalene-1-carboxylate-
3-d (D-41f)
Prepared from D-40f following General Procedure A. Purification by flash column
chromatography (0-30% EtOAc/hexanes) afforded the title compound as a colorless oil

(41.3 mg, 0.132 mmol, 66% yield, 91% ee).
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'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.30 (m, 5H), 5.16 (d, J = 12.4 Hz, 1H), 5.11 (d, J
=12.2 Hz, 1H), 2.51 — 2.41 (m, 1.6H), 2.36 — 2.10 (m, 2.7H), 2.02 (dddd, J = 11.8, 9.1,
5.3,2.9 Hz, 1H), 1.91 — 1.83 (m, 1H), 1.82 — 1.71 (m, 1H), 1.70 — 1.55 (m, 4H), 1.52 —
1.11 (m, SH).

13C NMR (100 MHz, CDCls): 6 216.4, 174.5, 136.0, 128.8, 128.4, 128.2, 77.5,77.2, 76.8,
66.7,49.9,45.1, 40.5, 37.1, 31.0, 30.9, 30.8, 30.0, 28.9, 26.2, 25.6, 21.8, 21.2.

*Partial deuteration complicates '3C NMR spectrum. Peaks are listed as they appear.

H NMR (61 MHz, CHCl:): 5 2.46, 2.14.

*Trace D-exchanged water observed in spectrum.

IR (Neat Film, NaCl): 2928, 2858, 1723, 1169 cm™'.

HRMS (MM: FD+): m/z calc’d for C20H23DO3 [M+H]": 313.1783, found 313.1795.
Optical Rotation: [a]p?' —21.3 (¢ 1.00, CHCI).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 5.07, major = 6.38.
o o 0

Pd,(dba); (2.5 mol %) .
o/\/ (S)--BuPHOX (6.5 mol %) SMNF
PhMe, 60 °C o
Xx_-C0:Bn X _-CO,Bn

98% yield, 84% ee
42 44

benzyl (S,E)-6-(1-allyl-2-oxocyclohex-3-en-1-yl)hex-2-enoate (44)
Prepared from 42 (0.02 mmol) following General Procedure A. Purification by preparatory
thin layer chromatography (25% EtOAc/hexanes) afforded the title compound as a

colorless oil (10.1 mg, 0.0196 mmol, 98% yield, 84 % ee).
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'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.29 (m, 5H), 6.97 (dt, J = 15.6, 6.9 Hz, 1H), 6.85
(dt, J=10.1, 3.9 Hz, 1H), 5.91 (dt, J=10.0, 2.0 Hz, 1H), 5.85 (dt, /= 15.7, 1.6 Hz, 1H),
5.69 (ddt, J = 16.6, 10.5, 7.3 Hz, 1H), 5.17 (s, 2H), 5.09 — 5.00 (m, 2H), 2.41 — 2.29 (m,
3H), 2.26 — 2.13 (m, 3H), 1.87 (t, J = 6.1 Hz, 2H), 1.63 — 1.23 (m, 4H).

13C NMR (100 MHz, CDCl3): § 202.9, 166.6, 149.6, 148.7, 136.3, 134.0, 129.0, 128.7,
128.3,128.3,121.4, 118.3, 66.2, 47.6, 39.1, 33.9, 32.9, 30.8, 23.1, 22.4.

IR (Neat Film, NaCl): 2936, 2358, 1718, 1669, 1262, 992 cm™'.

HRMS (MM: FD+): m/z calc’d for C2oH2603 [M]*: 338.1881, found 338.1877.

Optical Rotation: [a]p?' —0.69 (c 0.62, CHCI3).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak IC column, A =210 nm, tr (min): minor

=14.49, major = 11.94.

benzyl (E)-7-(1-(2-cyclobutylideneethyl)-2-oxocyclohex-3-en-1-yl)hept-2-
enoateenoate (83)

Prepared from 63 following General Procedure A, with the modification of being on 0.1
mmol scale. Purification by preparatory thin layer chromatography (20% EtOAc/hexanes)
afforded the title compound as a clear oil (2.4 mg, 0.006 mmol, 6% yield).

'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.29 (m, 5H), 6.99 (dt, J = 15.6, 6.9 Hz, 1H), 6.83

(dt, J=10.0, 3.9 Hz, 1H), 5.92 — 5.81 (m, 2H), 5.17 (s, 2H), 5.01 — 4.92 (m, 1H), 2.67 —
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2.54 (m, 3H), 2.40 — 2.30 (m, 2H), 2.27 — 1.99 (m, 4H), 1.96 — 1.82 (m, 3H), 1.63 — 1.49
(m, 3H), 1.49 — 1.36 (m, 3H), 1.32 — 1.13 (m, 2H).

13C NMR (100 MHz, CDCl): § 203.6, 166.6, 150.1, 148.5, 143.1, 136.3, 129.1, 128.7,
128.3, 128.3, 121.1, 115.4, 66.2, 48.3, 34.1, 33.1, 32.3, 31.2, 30.8, 29.6, 28.8, 23.6, 23.2,
17.1.

IR (Neat Film, NaCl): 2929, 1720, 1670, 1185 cm™.

HRMS (MM: FD+): m/z calc’d for Ca6H3203 [M]": 392.2351, found 392.2341.

Ph

\X/Ph

84
(2-vinylprop-1-ene-1,3-diyl)dibenzene (84)
Prepared from 67 following General Procedure A, with the modification of being on 0.1
mmol scale. Purification by flash column chromatography (0-35% EtOAc/hexanes)
afforded the title compound as a colorless oil (6.5 mg, 0.03 mmol, 29% yield).
'"H NMR (400 MHz, CDCl3): 6 7.39 - 7.18 (m, 11.5H), 6.91 — 6.80 (m, 1.15H), 6.56 (ddd,
J=174,10.8, 0.9 Hz, 0.15H), 6.45 (s, 1H), 5.42 — 5.33 (m, 1H), 5.19 — 5.13 (m, 1.15H),
5.11 = 5.06 (m, 0.15H), 3.90 (s, 0.3H), 3.73 (s, 2H).
*Isolated as an apparent 1:0.15 mixture of alkene isomers.
13C NMR (100 MHz, CDCl3): & 140.5, 140.2, 139.9, 137.7, 137.5, 137.3, 134.2, 133.8,
131.8, 129.6, 128.9, 128.8, 128.7, 128.5, 128.2, 128.2, 127.3, 127.0, 126.2, 126.1, 116.4,
114.8, 40.3, 33.2.
*Isolated as an apparent 1:0.15 mixture of alkene isomers.

IR (Neat Film, NaCl): 3060, 3023, 2919, 1601, 1493, 1455, 1165, 1074 cm™".
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HRMS (MM: FD+): m/z calc’d for Ci7H16 [M]": 220.1252, found 220.1257.
Preparation of Unsaturated B-Ketoester Starting Materials

General Procedure B: Horner—Wadsworth—Emmons Olefination

0o o
(o] (o] Me 11 (o] (o] Me
/\)\ (EtO)zp\)j\Rz /\)\
(o) Z “Me (1.1 equiv) _ o /0 Me
NaH (1.1 equiv)
R! Xo THF, 0 °C R X g2
n
85

To a suspension of NaH (60% by weight in mineral oil, 1.1 equiv) in THF (0.5 M) at 0 °C

was dropwise added a solution of the appropriate phosphonate ester (1.1 equiv) in THF
(1.0 M). Stirred at 0 °C was continued for 30 minutes. To the reaction was then dropwise
added a solution of aldehyde 85 (1.0 equiv) in THF (0.5 M). Upon complete consumption
of starting material (as determined by TLC), the reaction mixture was diluted with a
saturated solution of NaHCOj; and extracted with EtOAc (3x). The combined organic layers
were dried over NaxSQOs, filtered, and concentrated under reduced pressure. The product

(10) was purified by silica gel flash column chromatography.

(o} (o] Me
0/\)\ Me
X _CO,Bn
40a

3-methylbut-2-en-1-yl (£)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclohex-3-ene-
1-carboxylate (40a)

Prepared from 85 and benzyl 2-(diethoxyphosphoryl)acetate 2® following General
Procedure B. Purification by flash column chromatography (20% EtOAc/hexanes)

afforded the title compound as a colorless oil (0.410 g, 1.00 mmol, 67 % yield).
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'H NMR (400 MHz, CDCL): 5 7.38 — 7.29 (m, 5H), 6.98 (dt, /= 15.7, 6.9 Hz, 1H), 6.90
— 6.84 (m, 1H), 6.02 (ddd, J=10.1, 2.5, 1.5 Hz, 1H), 5.87 (dt, J = 15.6, 1.6 Hz, 1H), 5.31
—5.24 (m, 1H), 5.17 (s, 2H), 4.58 (dt, J = 7.2, 1.0 Hz, 2H), 2.55 — 2.41 (m, 2H), 2.37 —
2.27 (m, 1H),2.22 (qd, J="7.3, 1.6 Hz, 2H), 1.97 — 1.86 (m, 2H), 1.77 — 1.69 (m, 4H), 1.67
(d,J= 1.4 Hz, 3H), 1.55 — 1.38 (m, 2H).

13C NMR (100 MHz, CDCl): § 196.3, 171.6, 166.5, 149.3, 149.3, 139.7, 136.3, 129.4,
128.7, 128.3, 128.3, 121.5, 118.3, 66.2, 62.3, 57.0, 33.5, 32.7, 30.5, 25.8, 23.9, 23.2, 18.2.
IR (Neat Film, NaCl): 3034, 2938, 1723, 1684, 1653, 1455, 1384, 1246, 1174, 1166 cm~
1

HRMS (MM: FD+): m/z calc’d for C2sH300s [M]": 410.2088, found 410.2097.

0 (o} Me
0/\)\ Me
X _CO,Et
40b

3-methylbut-2-en-1-yl (£)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclohex-3-ene-
1-carboxylate (40b)

Prepared from 85 and ethyl 2-(diethoxyphosphoryl)acetate following General Procedure B.
Purification by flash column chromatography (20% EtOAc/hexanes) afforded the title
compound as a colorless oil (0.291 g, 0.835 mmol, 47 % yield).

'"H NMR (400 MHz, CDCl3): § 6.97 — 6.85 (m, 2H), 6.02 (ddd, /= 10.0, 2.6, 1.5 Hz, 1H),
5.81 (dt, J=15.6, 1.6 Hz, 1H), 5.31 — 5.24 (m, 1H), 4.64 — 4.54 (m, 2H), 4.18 (q, J="7.1

Hz, 2H), 2.55 — 2.41 (m, 2H), 2.37 — 2.27 (m, 1H), 2.21 (qd, J= 7.3, 1.6 Hz, 2H), 1.98 —
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1.87 (m, 2H), 1.78 — 1.69 (m, 4H), 1.68 (s, 3H), 1.55 — 1.37 (m, 2H), 1.28 (t, /= 7.1 Hz,
3H).

13C NMR (100 MHz, CDCl): § 196.3, 171.6, 166.8, 149.3, 148.5, 139.7, 129.4, 121.8,
118.3, 62.3, 60.3, 57.0, 33.5, 32.6, 30.5, 25.8, 23.9, 23.3, 18.2, 14.4.

IR (Neat Film, NaCl): 2934, 1714, 1682, 1168 cm™.

HRMS (MM: FD+): m/z calc’d for C20H23805 [M]": 348.1937, found 348.1943.

Me

OOA)\Me

O
N COan

40d

3-methylbut-2-en-1-yl  (£)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclohept-3-
ene-1-carboxylate (40d)

Prepared from cyclohept-2-en-1-one following General Procedures B—D. Note that
inseparable impurities plagued the B-ketoester and aldehyde intermediates. Fortunately,
these intermediates could be brought through the sequence in sub-optimal purity to still
afford the title compound 40d as a colorless oil (265 mg, 0.62 mmol, 3.2% yield from
cyclohept-2-en-1-one) after a final purification by flash column chromatography (20%
EtOAc/hexanes).

'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.30 (m, 5H), 6.97 (dt, J = 15.6, 6.9 Hz, 1H), 6.36
(ddd, J=12.3,5.5,3.9 Hz, 1H), 5.98 (ddd, J=12.3, 2.4, 1.4 Hz, 1H), 5.86 (dt, J = 15.6,
1.6 Hz, 1H), 5.28 (ddp, J = 8.6, 5.7, 1.4 Hz, 1H), 5.17 (s, 2H), 4.57 (d, J = 7.2 Hz, 2H),
2.47 -2.27 (m, 3H), 2.19 (qd, J= 7.2, 1.6 Hz, 2H), 1.99 — 1.79 (m, 3H), 1.77 — 1.69 (m,

4H), 1.69 — 1.61 (m, 4H), 1.43 — 1.32 (m, 2H).
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13C NMR (100 MHz, CDCl3): § 201.1, 172.9, 166.5, 149.3, 143.2, 139.7, 136.3, 131.6,
128.7,128.3, 128.3, 121.5, 118.2, 66.2, 63.9, 62.2, 36.5, 32.6, 32.3, 31.2, 25.8, 24.3, 23.0,
18.2.

IR (Neat Film, NaCl): 2927, 1720, 1686, 1453, 1162 cm™!.

HRMS (MM: FD+): m/z calc’d for Ca6H3205 [M]": 424.2244, found 424.2241.

o o Me
Zc0,Bn
40f
3-methylbut-2-en-1-yl  (£)-1-(7-(benzyloxy)-7-oxohept-5-en-1-yl)-2-oxocyclohex-3-
ene-1-carboxylate (40f)
Prepared from 86 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (15-20% EtOAc/hexanes)
afforded the title compound as a colorless oil (652 mg, 1.54 mmol, 69% yield).
'"H NMR (400 MHz, CDCl3): § 7.39 — 7.30 (m, 5H), 6.99 (ddd, J = 15.5, 7.3, 6.3 Hz, 1H),
6.90 — 6.84 (m, 1H), 6.01 (d, J=10.1 Hz, 1H), 5.85 (d, /= 15.6 Hz, 1H), 5.30 — 5.25 (m,
1H), 5.17 (s, 2H), 4.58 (d, /= 6.6 Hz, 2H), 2.55 — 2.40 (m, 2H), 2.36 — 2.26 (m, 1H), 2.24
—2.16 (m, 2H), 1.96 — 1.86 (m, 2H), 1.77 — 1.65 (m, 7H), 1.47 (p, /= 7.4 Hz, 2H), 1.38 —
1.24 (m, 2H).
13C NMR (100 MHz, CDCl3): & 196.2, 171.6, 166.5, 149.7, 149.2, 139.4, 136.2, 129.2,
128.6, 128.2,128.2, 121.1, 118.2, 66.0, 62.1, 56.9, 33.5, 32.0, 30.2, 28.4, 25.7, 24.2, 23.7,
18.1.

IR (Neat Film, NaCl): 2932, 2861, 1722, 1684, 1653, 1456, 1263, 1181 cm™..
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HRMS (MM: FD+): m/z calc’d for Ca6H3205 [M]": 424.2244, found 424.2247.

o o CD,

o/\%cns
Z

COQB n
D-40f

3-(methyl-d3)but-2-en-1-yl-4,4,4-d3 (E)-1-(7-(benzyloxy)-7-oxohept-5-en-1-yl)-2-
oxocyclohex-3-ene-1-carboxylate (D-40f)

Prepared from D-86 and benzyl 2-(diethoxyphosphoryl)acetate®® following General
Procedure B. Purification by flash column chromatography (15-20% EtOAc/hexanes)
afforded the title compound as a colorless oil (201 mg, 0.467 mmol, 48 % yield).

'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.30 (m, 5H), 6.99 (dt, J = 15.6, 6.9 Hz, 1H), 6.90
—6.85 (m, 1H), 6.01 (ddd, J=10.1, 2.6, 1.5 Hz, 1H), 5.85 (dt, /= 15.6, 1.5 Hz, 1H), 5.27
(t,J=7.1 Hz, 1H), 5.17 (s, 2H), 4.58 (dd, /= 7.2, 1.7 Hz, 2H), 2.55 — 2.41 (m, 2H), 2.36
—2.27 (m, 1H), 2.25 - 2.15 (m, 2H), 1.98 — 1.85 (m, 2H), 1.73 (ddd, J=13.6, 11.2, 5.3 Hz,
1H), 1.51 — 1.42 (m, 2H), 1.37 — 1.25 (m, 2H).

13C NMR (100 MHz, CDCl3): & 196.4, 171.7, 166.6, 149.8, 149.3, 139.4, 136.3, 129.4,
128.7,128.3,128.3, 121.2, 118.4, 66.2, 62.3, 57.0, 33.6, 32.2, 30.3, 28.5, 24.3, 23.9.

H NMR (61 MHz, CHCl:): 5 1.69, 1.65.

IR (Neat Film, NaCl): 2930, 1720, 1683, 1264, 1167 cm™.

HRMS (MM: FD+): m/z calc’d for C26H26DsOs [M]": 430.2621, found 430.2622.
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3-methylbut-2-en-1-yl (E)-1-(8-(benzyloxy)-8-oxooct-6-en-1-yl)-2-oxocyclohex-3-ene-
1-carboxylate (40g)

Prepared from 87 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (10-25% EtOAc/hexanes)
afforded the title compound as a colorless oil (773 mg, 1.76 mmol, 65 % yield).

'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.29 (m, 5H), 6.99 (dt, J = 15.6, 6.9 Hz, 1H), 6.89
—6.84 (m, 1H), 6.01 (ddd, J=10.0, 2.5, 1.5 Hz, 1H), 5.85 (dt, /= 15.6, 1.6 Hz, 1H), 5.28
(ddp, J=8.6,5.7, 1.4 Hz, 1H), 5.17 (s, 2H), 4.63 —4.53 (m, 2H), 2.55 — 2.40 (m, 2H), 2.36
—2.26 (m, 1H), 2.19 (qd, J="7.1, 1.6 Hz, 2H), 1.98 — 1.84 (m, 2H), 1.77 — 1.69 (m, 4H),
1.67 (s, 3H), 1.49 — 1.41 (m, 2H), 1.36 — 1.23 (m, 4H).

13C NMR (100 MHz, CDCl3): & 196.5, 171.7, 166.6, 150.1, 149.3, 139.5, 136.3, 129.4,
128.7,128.3,128.3, 121.2, 118.4, 66.2, 62.2, 57.1, 33.7, 32.3, 30.3, 29.6, 27.8, 25.8, 24.4,
23.9,18.2.

IR (Neat Film, NaCl): 2929, 2858, 1721, 1684, 1654, 1456, 1264, 1168 cm™'.

HRMS (MM: FD+): m/z calc’d for C27H3405 [M]": 438.2401, found 438.2396.

(o} (o} Me
o/\% Me
X _CO,Ph
40k

3-methylbut-2-en-1-yl (E)-2-0x0-1-(6-0x0-6-phenoxyhex-4-en-1-yl)cyclohex-3-ene-1-

carboxylate (40k)
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Prepared from 85 and benzyl 2-(diethoxyphosphoryl)acetate 2° following General
Procedure B. Purification by flash column chromatography (20% EtOAc/hexanes)
afforded the title compound as a colorless oil (409 mg, 1.03 mmol, 57 % yield).

'"H NMR (400 MHz, CDCl3): § 7.38 (t, J = 8.0 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.18 —
7.10 (m, 3H), 6.91 — 6.87 (m, 1H), 6.05 — 6.00 (m, 2H), 5.29 (tt, /= 7.1, 1.3 Hz, 1H), 4.61
(d, J=17.1 Hz, 2H), 2.56 — 2.44 (m, 2H), 2.37 — 2.27 (m, 3H), 2.00 — 1.92 (m, 2H), 1.82 —
1.73 (m, 4H), 1.69 (s, 3H), 1.63 — 1.46 (m, 2H).

13C NMR (100 MHz, CDCl3): § 196.3, 171.6, 165.1, 150.9, 150.9, 149.3, 139.7, 129.5,
129.4,125.8, 121.8, 121.1, 118.3, 62.4, 57.0, 33.6, 32.8, 30.5, 25.8, 23.9, 23.2, 18.2.

IR (Neat Film, NaCl): 2930, 1732, 1684, 1652, 1458, 1245, 1195 cm™.

HRMS (MM: FD+): m/z calc’d for C24H2305 [M]": 396.1931, found 396.1945.

O/\%\Me
XA _COsMes

401
3-methylbut-2-en-1-yl  (E)-1-(6-(mesityloxy)-6-oxohex-4-en-1-yl)-2-oxocyclohex-3-
ene-1-carboxylate (401)
Prepared from 85 and mesityl 2-(diethoxyphosphoryl)acetate 3 following General
Procedure B. Purification by flash column chromatography (20% EtOAc/hexanes)
afforded the title compound as a colorless oil (597 mg, 1.36 mmol, 76% yield).

'"H NMR (400 MHz, CDCl3): § 7.17 (dt, J=15.7, 6.8 Hz, 1H), 6.92 — 6.84 (m, 3H), 6.09

—6.01 (m, 2H), 5.32 — 5.26 (m, 1H), 4.61 (d, J = 5.6 Hz, 2H), 2.57 — 2.43 (m, 2H), 2.39 —
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2.27 (m, 3H), 2.26 (s, 3H), 2.09 (s, 6H), 2.01 — 1.92 (m, 2H), 1.79 (ddd, J = 13.6, 11.9, 4.8
Hz, 1H), 1.73 (s, 3H), 1.69 (s, 3H), 1.64 — 1.46 (m, 2H).

13C NMR (100 MHz, CDCl): § 196.3, 171.6, 164.6, 150.7, 149.3, 146.0, 139.7, 135.3,
130.0, 129.4, 129.3, 120.7, 118.3, 62.4, 57.0, 33.6, 32.8, 30.5, 25.8, 23.9, 23.2, 20.9, 18.2,
16.4.

IR (Neat Film, NaCl: 2920, 1733, 1684, 1458, 1248, 1192, 1140 cm .

HRMS (MM: FD+): m/z calc’d for C27H3405 [M]": 438.2401, found 438.2401.

(o] (o] Me
| P e
N CO,Bn
Cbz X 2
40n

1-benzyl 3-(3-methylbut-2-en-1-yl) (E)-3-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-4-oxo0-
3,4-dihydropyridine-1,3(2H)-dicarboxylate (40n)

Prepared from 88 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (20-30% EtOAc/hexanes)
afforded the title compound as a colorless oil (181.3 mg, 0.332 mmol, 55% yield).

'"H NMR (400 MHz, CDCl3): 6 7.79 (s, 1H), 7.44 — 7.28 (m, 10H), 6.94 (dt, J=15.5, 6.8
Hz, 1H), 5.85 (dt, J=15.7, 1.6 Hz, 1H), 5.42 — 5.21 (m, 4H), 5.17 (s, 2H), 4.67 —4.51 (m,
3H), 3.71 (d, J=13.6 Hz, 1H), 2.20 (q, /= 7.3 Hz, 2H), 2.07 - 1.92 (m, 1H), 1.69 — 1.58
(m, 1H), 1.71 (s, 3H), 1.66 (s, 3H), 1.49 — 1.40 (m, 2H).

13C NMR (100 MHz, CDCl3): & 190.5, 169.5, 166.4, 148.7, 142.7, 140.1, 136.2, 135.0,
129.0, 128.9, 128.7, 128.6, 128.4, 128.3, 121.7, 118.0, 106.5, 69.4, 66.2, 62.8, 55.3, 48.3,

32.4,31.3,25.8,23.0, 18.2.
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IR (Neat Film, NaCl): 2938, 2338, 1726, 1676, 1604, 1456, 1388, 1303, 1201, 975 cm™".

HRMS (MM: FD+): m/z calc’d for C32H3sNO7 [M]": 545.2414, found 545.2408.

400
3-methylbut-2-en-1-yl (E)-2-o0x0-1-(6-0x0-6-(2-0x00xazolidin-3-yl)hex-4-en-1-
yDcyclohex-3-ene-1-carboxylate (400)
Prepared from 85 and diethyl (2-oxo-2-(2-oxooxazolidin-3-yl)ethyl)phosphonate 3!
following General Procedure B. Purification by flash column chromatography (0-80%
EtOAc/hexanes) afforded the title compound as a colorless oil (275.1 mg, 0.706 mmol, 71%
yield).
'"H NMR (400 MHz, CDCl3): 6 7.23 (d, J=15.6 Hz, 1H), 7.12 (dt, J = 15.4, 6.7 Hz, 1H),
6.87 (ddd, J=17.8, 6.0, 3.9 Hz, 1H), 6.01 (dt, /= 10.3, 2.0 Hz, 1H), 5.28 (tt, J=7.2, 1.3
Hz, 1H), 4.62 — 4.54 (m, 2H), 4.41 (dd, J = 8.5, 7.6 Hz, 2H), 4.11 — 4.02 (m, 2H), 2.55 —
2.40 (m, 2H), 2.38 — 2.25 (m, 3H), 2.00 — 1.86 (m, 2H), 1.82 — 1.69 (m, 2H), 1.73 (s, 3H),
1.68 (s, 3H), 1.50 (dtd, J=17.3, 12.4, 7.6 Hz, 2H).
13C NMR (100 MHz, CDCl3): & 196.3, 171.6, 165.3, 153.6, 150.9, 149.4, 139.6, 129.3,
120.5, 118.3, 62.3, 62.2, 57.0, 42.8, 33.4, 33.1, 30.3, 25.8, 23.9, 23.3, 18.2.
IR (Neat Film, NaCl): 2927, 1774, 1724, 1684, 1636, 1385, 1359, 1222, 1042 cm™".

HRMS (MM: FD+): m/z calc’d for C21H27NOg [M]": 389.1838, found 389.1827.
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40r Me

3-methylbut-2-en-1-yl (E)-1-(6-(benzyloxy)-5-methyl-6-oxohex-4-en-1-yl)-2-
oxocyclohex-3-ene-1-carboxylate (40r)

Prepared from 85 and benzyl 2-(diethoxyphosphoryl)propanoate3? following General
Procedure B. Purification by flash column chromatography (0-30% EtOAc/hexanes)
afforded the title compound as a colorless oil (220 mg, 0.518 mmol, 29% yield).

'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.29 (m, 5H), 6.87 (dddd, J=10.1, 4.9, 3.0, 1.1 Hz,
1H), 6.78 (tq, J = 7.5, 1.5 Hz, 1H), 6.01 (ddd, J = 10.1, 2.5, 1.5 Hz, 1H), 5.31 — 5.24 (m,
1H), 5.18 (s, 2H), 4.58 (d, /= 6.9 Hz, 2H), 2.55 — 2.41 (m, 2H), 2.36 — 2.26 (m, 1H), 2.19
(qd, J=17.5, 1.1 Hz, 2H), 1.98 — 1.87 (m, 2H), 1.85 (s, 3H), 1.79 — 1.69 (m, 4H), 1.67 (s,
3H), 1.53 — 1.37 (m, 2H).

13C NMR (100 MHz, CDCl3): & 196.3, 171.6, 168.0, 149.3, 142.3, 139.6, 136.5, 129.3,
128.6, 128.2, 128.1, 128.1, 118.3, 66.3, 62.3, 57.0, 33.7, 30.4, 29.2, 25.8, 23.9, 23.9, 18.2,
12.6.

IR (Neat Film, NaCl): 2930, 1711, 1686, 1452, 1265, 1180 cm™'.

HRMS (MM: FD+): m/z calc’d for Ca6H3205 [M]": 424.2250, found 424.2250.
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3-methylbut-2-en-1-yl (E)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-4-methyl-2-
oxocyclohex-3-ene-1-carboxylate (40s)

Prepared from 89 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (15-20-25% EtOAc/hexanes)
afforded the title compound as a colorless oil (827.2 mg, 2.16 mmol, 64% yield).

'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.28 (m, 5H), 6.98 (dt, J = 15.6, 6.8 Hz, 1H), 5.87
(dq, J=2.7, 1.3 Hz, 1H), 5.86 (dt, J = 15.6, 1.6 Hz, 1H), 5.27 (tp, J= 7.1, 1.4 Hz, 1H),
5.16 (s, 2H), 4.64 — 4.51 (m, 2H), 2.52 — 2.36 (m, 2H), 2.28 — 2.14 (m, 3H), 1.98 — 1.83
(m, 5H), 1.72 (s, 4H), 1.67 (s, 3H), 1.54 — 1.34 (m, 2H).

13C NMR (100 MHz, CDCl3): & 195.9, 171.7, 166.5, 161.4, 149.3, 139.6, 136.3, 128.7,
128.3,128.3,126.1, 121.5, 118.4, 66.2, 62.3, 55.9, 33.5, 32.7, 30.2, 28.8, 25.8, 24.2, 23.3,
18.2.

IR (Neat Film, NaCl): 3032, 2938, 1723, 1674, 1438, 1379, 1264, 1212, 1168, 1013, 741,
698 cm'.

HRMS (MM: FD+): m/z calc’d for Ca6H3205 [M]": 424.2235, found 424.2244.

3-methylbut-2-en-1-yl (E)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-4-ethoxy-2-

oxocyclohex-3-ene-1-carboxylate (40t)
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Prepared from 90 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (30% EtOAc/hexanes)
afforded the title compound as a colorless oil (814.7 mg, 1.79 mmol, 88% yield).

'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.28 (m, 5H), 6.98 (dt, J = 15.6, 6.8 Hz, 1H), 5.86
(dt, J=15.7, 1.6 Hz, 1H), 5.34 (d, J = 1.2 Hz, 1H), 5.28 (dddt, J = 7.0, 5.6, 2.8, 1.4 Hz,
1H), 5.16 (s, 2H), 4.66 —4.52 (m, 2H), 3.89 (qd, J=7.1, 1.6 Hz, 2H), 2.61 (dddd, J=17.9,
10.1,4.9, 1.2 Hz, 1H), 2.46 — 2.27 (m, 2H), 2.21 (qd, J= 7.3, 1.6 Hz, 2H), 2.02 — 1.83 (m,
2H), 1.82 - 1.72 (m, 1H), 1.71 (s, 3H), 1.67 (s, 3H), 1.45 (dddd, /=13.3, 11.2, 6.4, 2.7 Hz,
2H), 1.35 (t, /= 7.0 Hz, 3H).

13C NMR (100 MHz, CDCl3): & 195.8, 176.6, 171.8, 166.5, 149.4, 139.5, 136.3, 128.7,
128.3,128.3,121.4, 118.5, 102.3, 66.2, 64.5, 62.3, 56.0, 33.8, 32.7, 28.7, 26.6, 25.8, 23.3,
18.2, 14.3.

IR (Neat Film, NaCl): 2939, 1721, 1655, 1608, 1446, 1380, 1314, 1242, 1190, 1026, 736
cm

HRMS (MM: FD+): m/z calc’d for C27H3406 [M]": 454.2349, found 454.2350.

3-methylbut-2-en-1-yl (E)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-3-methyl-2-

oxocyclohex-3-ene-1-carboxylate (40u)
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Prepared from 91 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (10-25% EtOAc/hexanes)
afforded the title compound as a colorless oil (1176.8 mg, 2.77 mmol, 71% yield).

'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.26 (m, 5H), 6.98 (dt, J = 15.6, 6.8 Hz, 1H), 6.59
(ddt,J=4.7, 3.1, 1.3 Hz, 1H), 5.87 (dt, J = 15.6, 1.6 Hz, 1H), 5.27 (tdq, J=7.1, 2.8, 1.5
Hz, 1H), 5.17 (s, 2H), 4.57 (d, J = 6.7 Hz, 2H), 2.50 — 2.36 (m, 2H), 2.33 — 2.16 (m, 3H),
1.98 — 1.83 (m, 2H), 1.78 (q, J = 1.7 Hz, 3H), 1.77 — 1.64 (m, 1H), 1.72 (s, 3H), 1.67 (s,
3H) 1.61 — 1.34 (m, 3H).

13C NMR (100 MHz, CDCl3): & 197.0, 171.9, 166.5, 149.4, 143.8, 139.6, 136.3, 135.4,
128.7,128.3, 128.3, 121.5, 118.3, 66.2, 62.2, 56.9, 33.6, 32.7, 30.9, 25.8, 23.6, 23.4, 18.2,
16.6.

IR (Neat Film, NaCl): 2921, 1721, 1677, 1450, 1377, 1248, 1168, 728 cm™'.

HRMS (MM: FD+): m/z calc’d for Ca6H3205 [M]": 424.2244, found 424.2244.

(0] (o]
OM
X _CO,Bn
42

allyl (£)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclohex-3-ene-1-carboxylate (42)
Prepared from 92 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (20-25% EtOAc/hexanes)
afforded the title compound as a colorless oil (599.1 mg, 1.41 mmol, 46% yield).

'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.26 (m, 5H), 6.98 (dt, J = 15.6, 6.9 Hz, 1H), 6.89

(dddd, J=10.1,4.8,3.1, 1.0 Hz, 1H), 6.03 (ddd, J=10.1, 2.5, 1.6 Hz, 1H), 5.93 - 5.77 (m,
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2H), 5.27 (dq, J=17.2, 1.5 Hz, 1H), 5.21 (dq, J = 10.4, 1.3 Hz, 1H), 5.17 (s, 2H), 4.60 (dq,
J=5.6, 1.6 Hz, 2H), 2.57 — 2.42 (m, 2H), 2.39 — 2.27 (m, 1H), 2.22 (qd, J= 7.3, 1.6 Hz,
2H), 2.02 — 1.87 (m, 2H), 1.77 (ddd, J = 13.7, 11.7, 5.2 Hz, 1H), 1.57 — 1.40 (m, 2H).

13C NMR (100 MHz, CDCl): § 196.0, 171.2, 166.5, 149.5, 149.1, 136.2, 131.7, 129.3,
128.7, 128.3, 128.3, 127.8, 127.1, 121.6, 118.7, 66.2, 65.9, 57.0, 33.4, 32.6, 30.3, 23.8,
23.2.

IR (Neat Film, NaCl): 2937, 2357, 1723, 1684, 1456, 1262, 1165, 992 cm .

HRMS (MM: FD+): m/z calc’d for C23H2705 [M]": 383.1871, found 383.1853.

cinnamyl 1-((E)-6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclohex-3-ene-1-
carboxylate (47)

Prepared from 93 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (20% EtOAc/hexanes)
afforded the title compound as a colorless oil (569 mg, 1.24 mmol, 67% yield).

'"H NMR (400 MHz, CDCl3): § 7.37 — 7.34 (m, 6H), 7.34 — 7.29 (m, 3H), 7.27 — 7.24 (m,
1H), 6.97 (dt, J=15.6, 6.9 Hz, 1H), 6.89 (dddd, J=10.1, 4.8, 3.1, 1.0 Hz, 1H), 6.62 (d, J
=159 Hz, 1H), 6.22 (dt, J=15.9, 6.4 Hz, 1H), 6.04 (ddd, /= 10.1, 2.5, 1.6 Hz, 1H), 5.86
(dt,J=15.7,1.6 Hz, 1H), 5.16 (s, 2H), 4.76 (dt, /= 6.4, 1.4 Hz, 2H), 2.56 — 2.45 (m, 2H),
2.37-2.28 (m, 1H), 2.22 (ddd, J=7.4, 7.4, 1.6 Hz, 2H), 1.95 (ddt, /= 16.8, 7.9, 5.7 Hz,

2H), 1.78 (ddd, J = 13.7, 11.7, 5.0 Hz, 1H), 1.56 — 1.42 (m, 2H).
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13C NMR (100 MHz, CDCl3): 5 196.0, 171.4, 166.5, 149.5, 149.1, 136.2, 136.2, 134.7,
129.3, 128.7, 128.7, 128.3, 128.3, 126.8, 122.6, 121.6, 66.2, 65.9, 57.0, 33.4, 32.6, 30.3,
23.8,23.2.

IR (Neat Film, NaCl): 3034, 2942, 1718, 1700, 1684, 1247, 1166 cm™!

HRMS (MM: FD+): m/z calc’d for C29H300s [M]": 458.2088, found 458.2082.

63
22-cyclobutylideneethyl (E)-1-(7-(benzyloxy)-7-oxohept-5-en-1-yl)-2-oxocyclohex-3-
ene-1-carboxylatecarboxylate (63)
Prepared from 94 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (5-60% EtOAc/hexanes)
afforded the title compound as a colorless oil (354 mg, 0.81 mmol, 39.8% yield).
'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.29 (m, 5H), 6.99 (dt, J = 14.9, 1.0 Hz, 1H), 6.91
—6.84 (m, 1H), 6.02 (d, /= 1.2 Hz, 1H), 5.86 (d, J=15.7 Hz, 1H), 5.24 — 5.13 (m, 3H),
4.51 —4.41 (m, 2H), 2.75 - 2.62 (m, 4H), 2.56 — 2.39 (m, 2H), 2.36 — 2.27 (m, 1H), 2.25 -
2.16 (m, 2H), 2.02 — 1.84 (m, 4H), 1.73 (ddd, /= 13.6, 11.2, 5.3 Hz, 1H), 1.47 (p, J=17.5
Hz, 2H), 1.40 — 1.23 (m, 2H).
13C NMR (100 MHz, CDCl3): 5 196.4, 171.6, 166.6, 149.8, 149.3, 148.8, 136.3, 129.4,
128.7,128.3,128.3, 121.2, 114.0, 66.2, 62.3, 57.1, 33.6, 32.2, 31.2, 30.3, 29.6, 28.5, 24.3,
23.9,17.1.

IR (Neat Film, NaCl): 2945, 1722, 1687, 1446, 1169 cm™'.
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HRMS (MM: FD+): m/z calc’d for C27H3205 [M]": 436.2250, found 436.2222.

LD
0/

2-cyclopentylideneethyl (E)-1-(7-(benzyloxy)-7-oxohept-5-en-1-yl)-2-oxocyclohex-3-
ene-1-carboxylate (64)

Prepared from 95 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (10-60% EtOAc/hexanes)
afforded the title compound as a colorless oil (1.40 g, 4.41 mmol, 38.9% yield).

'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.28 (m, 5H), 6.99 (dt, J = 15.6, 6.9 Hz, 1H), 6.91
—6.83 (m, 1H), 6.01 (ddd, J=10.1, 2.6, 1.5 Hz, 1H), 5.85 (dt, /= 15.6, 1.6 Hz, 1H), 5.37
(tp, J=17.0, 2.2 Hz, 1H), 5.17 (s, 2H), 4.60 — 4.53 (m, 2H), 2.56 — 2.39 (m, 2H), 2.37 —
2.15 (m, 7H), 1.98 — 1.85 (m, 2H), 1.78 — 1.54 (m, 5H), 1.53 — 1.41 (m, 2H), 1.40 — 1.22
(m, 2H).

13C NMR (100 MHz, CDCl3): & 196.4, 171.7, 166.6, 151.1, 149.8, 149.3, 136.3, 129.4,
128.7,128.3,128.3, 121.2, 113.8, 66.2, 63.7, 57.1, 33.9, 33.6, 32.2, 30.3, 29.0, 28.5, 26.4,
26.2,24.3,23.9.

IR (Neat Film, NaCl): 2946, 1719, 1686, 1457, 1165 cm™.

HRMS (MM: FD+): m/z calc’d for C2sH3405 [M]": 450.2406, found 450.2394.
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2-cyclohexylideneethyl (E)-1-(7-(benzyloxy)-7-oxohept-5-en-1-yl)-2-oxocyclohex-3-
ene-1-carboxylate (65)

Prepared from 96 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (10-60% EtOAc/hexanes)
afforded the title compound as a colorless oil (81 mg, 0.17 mmol, 32.9% yield).

'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.27 (m, 5H), 6.99 (dt, J = 15.6, 6.9 Hz, 1H), 6.87
(dddd, J=10.1, 5.2, 2.5, 1.1 Hz, 1H), 6.01 (ddd, J = 10.1, 2.6, 1.5 Hz, 1H), 5.85 (dt, J =
15.6,1.6 Hz, 1H), 5.23 (tp, J=7.3, 1.2 Hz, 1H), 5.17 (s, 2H), 4.59 (d, J=7.2 Hz, 2H), 2.56
—2.39 (m, 2H), 2.36 — 2.26 (m, 1H), 2.25 - 2.13 (m, 4H), 2.12 - 2.03 (m, 2H), 1.98 — 1.84
(m, 2H), 1.78 — 1.66 (m, 1H), 1.63 — 1.42 (m, 8H), 1.41 — 1.21 (m, 2H).

13C NMR (100 MHz, CDCl3): 5 196.4, 171.6, 166.6, 149.8, 149.3, 147.7, 136.3, 129.4,
128.7,128.3,128.3,121.2, 114.9, 66.2, 61.5, 57.0, 37.1, 33.6, 32.2, 30.4, 29.2, 28.5, 28.5,
279,26.7,24.3,23.9.

IR (Neat Film, NaCl): 2929, 2853, 1723, 1681, 1456, 1385, 1266, 1184 cm™'.

HRMS (MM: FD+): m/z calc’d for C290H3605 [M]": 464.2563, found 464.2543.

66
2-cycloheptylideneethyl (E)-1-(7-(benzyloxy)-7-oxohept-5-en-1-yl)-2-oxocyclohex-3-

ene-1-carboxylate (66)
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Prepared from 97 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (5-70% EtOAc/hexanes)
afforded the title compound as a colorless oil (135 mg, 0.28 mmol, 30% yield).

'"H NMR (400 MHz, CDCl3): 6 7.43 — 7.29 (m, 5H), 6.99 (dt, J = 15.7, 6.9 Hz, 1H), 6.91
—6.82 (m, 1H), 6.01 (ddd, /= 10.2, 2.6, 1.5 Hz, 1H), 5.85 (dt, /= 15.6, 1.6 Hz, 1H), 5.27
(tt,J=7.1,1.3 Hz, 1H), 5.17 (s, 2H), 4.59 (d, J= 7.1 Hz, 2H), 2.57 - 2.39 (m, 2H), 2.36 —
2.16 (m, 7H), 1.98 — 1.84 (m, 2H), 1.73 (ddd, /= 13.6, 11.3, 5.2 Hz, 1H), 1.61 — 1.43 (m,
10H), 1.31 (dddd, J=13.2, 11.8, 8.6, 6.2 Hz, 2H).

13C NMR (100 MHz, CDCl3): & 196.4, 171.7, 166.6, 149.8, 149.3, 149.0, 136.3, 129.4,
128.7,128.3,128.3, 121.2, 118.4, 66.2, 62.0, 57.0, 37.7, 33.6, 32.2, 30.4, 30.2, 29.8, 29.1,
28.9,28.5,27.3,24.3,23.9.

IR (Neat Film, NaCl): 2919, 2361, 1722, 1682, 1651, 1443, 1234, 1187 cm™".

HRMS (MM: FD+): m/z calc’d for C30H330s [M]": 478.2719, found 478.2716.

Ph

= Ph
(o)

_~__-0Bn
67
3-benzyl-4-phenylbut-2-en-1-yl (E)-1-(7-(benzyloxy)-7-oxohept-5-en-1-yl)-2-
oxocyclohex-3-ene-1-carboxylate (67)
Prepared from 98 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (5-70% EtOAc/hexanes)

afforded the title compound as a colorless oil (205 mg, 0.36 mmol, 39% yield).
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'H NMR (400 MHz, CDCls): § 7.39 — 7.24 (m, 9H), 7.23 — 7.17 (m, 2H), 7.09 (dd, J =
11.6, 7.3 Hz, 4H), 6.98 (dt, J = 15.6, 6.9 Hz, 1H), 6.89 — 6.80 (m, 1H), 6.02 (d, J = 10.1
Hz, 1H), 5.85 (d, J = 16.1 Hz, 1H), 5.51 (t, J = 7.2 Hz, 1H), 5.17 (s, 2H), 4.83 — 4.69 (m,
2H), 3.36 (s, 2H), 3.23 (s, 2H), 2.55 — 2.40 (m, 2H), 2.37 — 2.24 (m, 1H), 2.18 (q, J= 7.2
Hz, 2H), 2.00 — 1.85 (m, 2H), 1.75 (ddd, J = 13.5, 11.1, 5.2 Hz, 1H), 1.46 (p, J= 7.4 Hz,
1H), 1.38 — 1.22 (m, 2H).

13C NMR (100 MHz, CDCl): § 196.2, 171.6, 166.6, 149.8, 149.3, 144.8, 139.0, 138.8,
136.3, 129.4, 129.3, 128.8, 128.7, 128.7, 128.5, 128.3, 128.3, 126.5, 126.4, 121.7, 121.3,
66.2,61.9, 57.1,42.9, 35.8, 33.6, 32.1, 30.3, 28.5, 24.3, 23.9.

IR (Neat Film, NaCl): 3027, 2931, 1722, 1682, 1493, 1387, 1264, 1165 cm™.

HRMS (MM: FD+): m/z calc’d for C3sH40Os [M]": 576.2876, found 576.2857.

0 o

o o Me )l\/{a'\ Zn(OTf), (2.2 equiv) o o Me
/\)\ HO \ _OEt TMEDA (0.63 equiv) /\)\
0P e (1 equiv) OFt DBU (4 equiv) 0P e
o

THF,23°C, 18 h

85 40i
(E)-6-(1-(((3-methylbut-2-en-1-yl)oxy)carbonyl)-2-oxocyclohex-3-en-1-yl)hex-2-enoic
acid (40i)%

To a suspension of Zn(OTf), (6.6 mmol, 2.2 equiv) in THF (15 mL) was added
(diethoxyphosphinyl)acetic acid (3 mmol, 1 equiv), followed by the addition of TMEDA
(1.89 mmol, 0.63 equiv), DBU (12 mmol, 4 equiv), and then a solution of aldehyde 85 (3
mmol, 1 equiv) in THF (2 mL). The solution was stirred at 23 °C for 18 h, and the reaction
was diluted with 1 M HCl and extracted with dichloromethane (4x). The combined organic

layers were dried over Na>SQOs, filtered, and concentrated under reduced pressure.
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Purification by silica gel flash column chromatography (35% EtOAc/hexanes with 3%
AcOH) afforded the title compound as a white solid (137.4 mg, 0.43 mmol, 43% yield).
'"H NMR (400 MHz, CDCl3): 6 7.04 (dt, J = 15.7, 6.8 Hz, 1H), 6.93 — 6.84 (m, 1H), 6.03
(ddd, J=10.2, 2.6, 1.5 Hz, 1H), 5.83 (dt, /= 15.6, 1.6 Hz, 1H), 5.28 (tp, /= 7.2, 1.4 Hz,
1H), 4.66 — 4.53 (m, 2H), 2.58 — 2.40 (m, 2H), 2.37 — 2.28 (m, 1H), 2.25 (qd, J=7.3, 1.6
Hz, 2H), 1.98 — 1.87 (m, 2H), 1.80 — 1.68 (m, 1H), 1.73 (s, 3H), 1.68 (s, 3H), 1.61 — 1.37
(m, 3H).

13C NMR (100 MHz, CDCl3): & 196.3, 171.6, 170.2, 151.4, 149.3, 139.7, 129.4, 120.8,
118.3,62.4,57.0, 33.5, 32.7, 30.5, 25.8, 23.9, 23.1, 18.2.

IR (Neat Film, NaCl): 2929, 1725, 1694, 1424, 1384, 1236, 1171 cm™.

HRMS (MM: FD+): m/z calc’d for Ci1sH2405 [M]": 320.1624, found 320.1636.

NHP (2 equiv)
o o /\)M\e DMAP (1.1 equiv) o 9 Me
P~ NEt; (1.1 equiv) /\)\
CH,Cl,, 23°C,12h
N OH X NHP
40i 40m

3-methylbut-2-en-1-yl (£)-1-(6-((1,3-dioxoisoindolin-2-yl)oxy)-6-oxohex-4-en-1-yl)-2-

oxocyclohex-3-ene-1-carboxylate (40m)3

To a round bottom flask was added crude acid 40i (assumed quantitative yield from
previous reaction, I mmol, 1 equiv), DMAP (1.1 mmol, 1.1 equiv), NHP (2 mmol, 2 equiv),
dichloromethane (9.5 mL), and triethylamine (1.1 mmol, 1.1 equiv). EDC*HCI (1.1 mmol,
1.1 equiv) was then added under N, atmosphere in a single portion, and the reaction was
stirred vigorously at 23 °C for 12 h. The reaction mixture was diluted with dichloromethane

and washed with 0.5 N HCI, saturated aqueous NaHCO3, and brine. The combined organic
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layers were dried over NaxSO4 and concentrated under reduced pressure. Purification by
flash column chromatography (30-35% EtOAc/hexanes) afforded the title compound as a
colorless oil (109.6 mg, 0.48 mmol, 24% yield over two steps).

'H NMR (400 MHz, CDCl3): 8 7.96 — 7.84 (m, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.30
(dd, /=158, 6.7 Hz, 1H), 6.89 (dddd, /= 10.1, 4.9, 3.0, 1.1 Hz, 1H), 6.10 (dt, J = 15.8,
1.6 Hz, 1H), 6.04 (ddd, J=10.1, 2.5, 1.5 Hz, 1H), 5.29 (tdt, /= 5.7, 2.8, 1.4 Hz, 1H), 4.67
—4.55 (m, 2H), 2.58 — 2.40 (m, 2H), 2.35 (m, 3H), 2.03 — 1.89 (m, 2H), 1.87 — 1.74 (m,
1H), 1.74 (s, 3H), 1.69 (d, /= 1.3 Hz, 3H), 1.66 — 1.45 (m, 3H).

13C NMR (100 MHz, CDCl3): 5 196.2, 162.4, 162.2, 155.2, 149.3, 139.8, 134.8, 129.4,
129.1, 124.1, 118.3, 116.0, 62.4, 57.0, 33.5, 33.3, 30.6, 25.9, 23.9, 23.0, 18.3.

IR (Neat Film, NaCl): 1771, 1744, 1682, 1185 cm™'.

HRMS (MM: FD+): m/z calc’d for C26H27NO7 [M]": 465.1788, found 465.1779.

o)
O'dp OBn o o "
e
- o) Z “Me
0/\2\Me t-Bu .
K3P04 (2 equiv)
No MeCN, 0 to 25 °C =
COan
85 40q

3-methylbut-2-en-1-yl (£)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclohex-3-ene-
1-carboxylate (40q)

To a solution of benzyl 2-(bis(2-(tert-butyl)phenoxy)phosphoryl)acetate®> (890 mg, 1.80
mmol, 1.00 equiv) in MeCN (18 mL, 0.1 M) was added K>COs (783 mg, 3.69 mmol, 2.05
equiv). The reaction was cooled to 0 °C and a solution of 85 (500 mg, 1.80 mmol, 1.00

equiv) in MeCN (18 mL, 0.1 M) was dropwise added. The reaction was gradually warmed
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to 25 °C and stirring was continued until consumption of 85 as determined by TLC (around
16 h). The reaction mixture was filtered through a plug of Celite® to remove solids and
volatiles were removed in vacuo. Purification by flash column chromatography (0—40%
EtOAc/hexanes) afforded the title compound as a colorless oil (482 mg, 1.17 mmol, 65 %
yield).

'H NMR (400 MHz, CDCl3): & 7.39 — 7.29 (m, 5H), 6.90 — 6.84 (m, 1H), 6.24 (dt, J =
11.5, 7.4 Hz, 1H), 6.01 (ddd, J = 10.1, 2.5, 1.6 Hz, 1H), 5.83 (dt, J = 11.5, 1.7 Hz, 1H),
5.28 (ddp, J = 8.6, 5.7, 1.4 Hz, 1H), 5.15 (s, 2H), 4.59 (d, J = 7.2 Hz, 2H), 2.68 (qd, J =
7.4, 1.8 Hz, 2H), 2.53 — 2.41 (m, 2H), 2.35 — 2.26 (m, 1H), 1.98 — 1.87 (m, 2H), 1.79 —
1.71 (m, 4H), 1.67 (s, 3H), 1.52 — 1.37 (m, 2H).

13C NMR (100 MHz, CDCl3): & 196.4, 171.7, 166.2, 150.5, 149.3, 139.5, 136.3, 129.3,
128.7,128.3,128.3, 119.9, 118.4, 65.9, 62.3, 57.1, 33.4, 30.3, 29.4, 25.8, 24.2, 23.8, 18.2.
IR (Neat Film, NaCl): 2918, 1714, 1447, 1178, 1161 cm™.

HRMS (MM: FD+): m/z calc’d for C2sH300s [M]": 410.2093, found 410.2108.

o o Me 0 o o Me
-yl L
O/\% Me Ph > 0 = Me
DCE, 60 °C 0
o X Ph
85

40j

3-methylbut-2-en-1-yl  (E)-2-0x0-1-(6-0x0-6-phenylhex-4-en-1-yl)cyclohex-3-ene-1-
carboxylate (40j)

(2-0x0-2-phenylethyl)triphenylphosphonium bromide®® (996 mg, 2.16 mmol, 1.2 equiv)
was stirred in 26 mL of a 3:2 CH>Cl»/2 M aq. NaOH mixture for 30 minutes at 23 °C. The

layers were separated, and the aqueous layer was extracted twice with CH>Cl,. The
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combined organic layers were washed with brine, dried over Na>SOs, filtered, and solvent
was removed in vacuo. To a solution of this crude ylide in DCE (22 mL, 0.1 M) was added
aldehyde 85 (500 mg, 1.80 mmol, 1 equiv). The reaction was stirred at 65 °C for 36 hours.
Upon complete consumption of 85, as determined by TLC, volatiles were removed in
vacuo. Purification by flash column chromatography (30% EtOAc/hexanes) afforded the
title compound as a colorless oil (330 mg, 0.867 mmol, 48% yield).

'"H NMR (400 MHz, CDCl3): 8 7.95 — 7.90 (m, 2H), 7.60 — 7.51 (m, 1H), 7.46 (it, J = 6.8,
1.5 Hz, 2H), 7.02 (dt, J = 15.4, 6.7 Hz, 1H), 6.93 — 6.85 (m, 2H), 6.03 (ddd, J = 10.2, 2.6,
1.5 Hz, 1H), 5.30 - 5.25 (m, 1H), 4.59 (d, J=7.1 Hz, 2H), 2.55 — 2.43 (m, 2H), 2.38 — 2.27
(m, 3H), 2.01 — 1.91 (m, 2H), 1.80 (ddd, J = 13.6, 12.0, 4.7 Hz, 1H), 1.72 (s, 3H), 1.67 (s,
3H), 1.63 — 1.47 (m, 2H).

13C NMR (100 MHz, CDCl3): & 196.3, 191.0, 171.6, 149.3, 149.1, 139.7, 138.1, 132.8,
129.4,128.7, 128.7, 126.4, 118.3, 62.4, 57.0, 33.6, 33.2, 30.5, 25.8, 23.9, 23.4, 18.2.

IR (Neat Film, NaCl): 2931, 1724, 1671, 1619, 1447, 1229, 1177 cm’".

HRMS (MM: FD+): m/z calc’d for C24H23804 [M]": 380.1988, found 380.1982.
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Br

(o] (0] Me (1 .5 equiv)
/\/\ KHMDS (1.05 equiv) BlCls
o Me
18-crown-6 (1 equlv) benzene
THF, -78 to 45 °C
100

(EtO)ZP\)LOBn

(1.1 equiv)

NaH (1.1 equiv) >
THF, 0 °C

(2-((1-(((3-methylbut-2-en-1-yl)oxy)carbonyl)-2-oxocyclohex-3-en-1-
yDmethyl)phenyl)methylene diacetate (99)

An oven dried round bottom flask was charged with KHMDS (837 mg, 4.20 mmol, 1.05
equiv), 18-crown-6 (1.06 g, 4.00 mmol, 1.0 equiv), and THF (21 mL). The mixture was
cooled to —78 °C and a solution of enone 100 (830 mg, 4.00 mmol, 1.0 equiv) in THF (10
mL) was added. The reaction mixture was stirred for 15 minutes then (2-
(bromomethyl)phenyl)methylene diacetate®’” (1.86 g, 6.00 mmol, 1.5 equiv) was added in
a minimal amount of THF (ca 5 mL). The solution was slowly warmed to 45 °C and stirred
for 14 h. Upon complete consumption of starting material (as determined by TLC), the
solution was cooled to 23 °C, diluted with a saturated aqueous solution of NH4Cl, and the
reaction mixture was extracted thrice with EtOAc. The combined organic layers were dried
over NaSOs, filtered, and concentrated under reduced pressure. Purification by flash
column chromatography (20-60% EtOAc/hexanes) afforded the title compound as a

colorless oil (1.00 g, 2.33 mmol, 58% yield).
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'H NMR (400 MHz, CDCl3): 6 7.87 (s, 1H), 7.58 — 7.52 (m, 1H), 7.30 — 7.24 (m, 2H),
7.21 —7.16 (m, 1H), 6.88 — 6.82 (m, 1H), 6.07 (ddd, /= 10.1, 2.8, 1.3 Hz, 1H), 5.24 (ddq,
J=28.6,5.7,1.4 Hz 1H), 4.56 (d, J=7.2 Hz, 2H), 3.52 (d, /= 14.8 Hz, 1H), 3.45 (d, J =
14.8 Hz, 1H), 2.53 — 2.41 (m, 1H), 2.36 (dddd, J=13.6, 4.9, 2.6, 1.3 Hz, 1H), 2.29 - 2.19
(m, 1H), 2.12 (s, 3H), 2.10 (s, 3H), 1.86 (ddd, J = 13.6, 10.4, 5.3 Hz, 1H), 1.73 (s, 3H),
1.67 (s, 3H).

13C NMR (100 MHz, CDCl3): & 195.4, 171.1, 168.8, 168.8, 149.6, 139.7, 135.5, 134.9,
131.5,129.6,129.5,127.6,127.2,118.2, 88.4, 62.5, 58.2,34.2, 30.2, 25.9, 24.1, 21.0, 21.0,
18.2.

IR (Neat Film, NaCl): 2935, 1759, 1731, 1682, 1447, 1371, 1236, 1206 cm™".

HRMS (MM: FD+): m/z calc’d for C24H2307 [M]*: 428.1835, found 428.1833.
3-methylbut-2-en-1-yl  (£)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclohept-3-
ene-1-carboxylate (40p)

To a solution of diacetate 99 (500 mg, 1.17 mmol, 1 equiv) in benzene (11.7 mL, 0.1 M)
was added bismuth chloride (38 mg, 0.12 mmol, 0.1 equiv). The reaction mixture was
heated to 35 °C for 3 hours. Upon cooling to 25 °C, the reaction mixture was diluted with
water and the layers were separated. The aqueous layer was extracted twice with
chloroform. The combined organic layers were washed with brine, dried over Na>SOa4, and
volatiles were removed in vacuo. The crude aldehyde was used directly in the subsequent

Horner—Wadsworth—-Emmons olefination.
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To a suspension of NaH (52 mg, 1.29 mmol, 60% by weight in mineral oil, 1.1 equiv) in
THF (2.6 mL, 0.5 M) at 0 °C was dropwise added a solution of benzyl 2-
(diethoxyphosphoryl)acetate?® (369 mg, 1.29 mmol, 1.1 equiv) in THF (1.3 mL, 1.0 M).
Stirring at 0 °C was continued for 30 minutes. To the reaction was then dropwise added a
solution of the crude aldehyde in THF (2.4 mL, 0.5 M). Upon complete consumption of
starting material (as determined by TLC), the reaction mixture was diluted with a saturated
solution of NaHCO3; and extracted with EtOAc (3x). The combined organic layers were
dried over NaxSQg, filtered, and concentrated under reduced pressure. Purification by flash
column chromatography (5-40% EtOAc/hexanes) afforded the title compound as a
colorless oil (230 mg, 0.502 mmol, 43% yield).

'"H NMR (400 MHz, CDCl;): § 8.08 (d, J = 15.7 Hz, 1H), 7.57 (dd, J = 7.5, 1.9 Hz, 1H),
7.44 —7.31 (m, 5H), 7.27 — 7.17 (m, 3H), 6.85 — 6.80 (m, 1H), 6.40 (d, /= 15.7 Hz, 1H),
6.06 (ddd, J=10.1, 2.9, 1.2 Hz, 1H), 5.28 — 5.21 (m, 3H), 4.56 — 4.49 (m, 2H), 3.57 (d, J
=14.3 Hz, 1H), 3.31 (d, J= 14.4 Hz, 1H), 2.51 — 2.39 (m, 1H), 2.30 — 2.16 (m, 2H), 1.82
—1.70 (m, 4H), 1.65 (s, 3H).

13C NMR (100 MHz, CDCl3): & 195.1, 170.4, 166.7, 149.7, 143.2, 139.7, 136.7, 136.2,
134.7,132.1,130.0, 129.3,128.7, 128.4, 128.3, 127.5, 126.8,119.4, 118.2, 66.5, 62.5, 58 .4,
35.4,30.2,25.9,24.1, 18.2.

IR (Neat Film, NaCl): 3028, 2927, 1720, 1686, 1629, 1168 cm™'.

HRMS (MM: FD+): m/z calc’d for C29H300s [M]": 458.2088, found 458.2086.
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ﬂ o i‘-Bu\N
o EtO),P o} O o Me
I /\)M\e = \)J\OBn I /\)M\e J\ /\%\
. i | Ph
o = Me (1.1 equiv) o P Me Cl S| o Me
NaH (1.1 equiv) THF, -78 to 23 °C
o THF, 0°C X _CO,Bn 13% yield X _-C0,Bn
70% yield
101 oY 102 40c

3-methylbut-2-en-1-yl (E)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclopentane-
1-carboxylate (102)

Prepared from 101 and benzyl 2-(diethoxyphosphoryl)acetate’® following General
Procedure B. Purification by flash column chromatography (15% EtOAc/hexanes)
afforded the title compound as a colorless oil (1.40 g, 3.51 mmol, 70% yield).

'"H NMR (400 MHz, CDCl3): § 7.76 (dt, J = 5.6, 2.7 Hz, 1H), 7.42 — 7.26 (m, 5H), 6.95
(dt, J=15.6, 6.9 Hz, 1H), 6.16 (dt, /= 5.8, 2.2 Hz, 1H), 5.85 (dt, /= 15.6, 1.6 Hz, 1H),
5.27 (tdq, J=7.2,2.9, 1.5 Hz, 1H), 5.16 (s, 2H), 4.59 (d, /= 7.1 Hz, 2H), 3.33 — 3.19 (m,
1H), 2.68 — 2.51 (m, 1H), 2.21 (qd, J= 7.3, 1.6 Hz, 2H), 1.99 (ddd, J=13.7, 12.3, 4.5 Hz,
1H), 1.82 -1.70 (m, 1H), 1.73 (s, 3H), 1.67 (s, 3H), 1.53 — 1.23 (m, 3H).

13C NMR (100 MHz, CDCl3): § 205.7, 170.6, 166.4, 163.9, 148.9, 139.6, 136.2, 132.4,
128.7,128.4,128.3, 121.7, 118.3, 66.2, 62.7, 58.0, 39.5, 34.0, 32.4, 25.9, 23.2, 18.2.

IR (Neat Film, NaCl): 2932, 2356, 1715, 1263, 1164, 976, 754 cm™'.

HRMS (MM: FD+): m/z calc’d for C24H2805 [M]*: 396.1920, found 396.1931.
3-methylbut-2-en-1-yl  (£)-1-(6-(benzyloxy)-6-oxohex-4-en-1-yl)-2-oxocyclopent-3-
ene-1-carboxylate (40c¢)

A flame dried round bottom flask was charged with i-Pr,NH (0.35 mL, 2.5 mmol, 1.25
equiv) and THF (8.0 mL, 0.25 M). The solution was cooled to —78 °C and n-BuLi (0.96

mL, 2.4 mmol, 1.2 equiv) was added dropwise and the resultant solution was stirred for 30
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min. Ketoester 102 (797 mg, 2.00 mmol, 1.0 equiv) in THF (8.0 mL, 0.25 M) was added
dropwise and the mixture was stirred for 1 h. N-tert-Butylbenzenesulfinimidoyl chloride3®
(560.9 mg, 2.6 mmol, 1.3 equiv) in THF (4.0 mL, 0.5 M) was added dropwise and the
solution was slowly warmed to 23 °C. Upon complete consumption of starting material (as
determined by TLC), the reaction mixture was diluted with saturated aqueous NaHCO3
solution and extracted with EtcO (25 mL x 3). The combined organic layers were dried
with NaSOs, filtered, and concentrated under reduced pressure. The crude product was
purified by column chromatography (Si02, 0-40% EtOAc/Hexanes) to afford enone 40b
as a colorless oil (100 mg, 0.25 mmol, 13% yield).

'"H NMR (400 MHz, CDCl3): § 7.76 (dt, J = 5.6, 2.7 Hz, 1H), 7.42 — 7.26 (m, 5H), 6.95
(dt, J=15.6, 6.9 Hz, 1H), 6.16 (dt, J = 5.8, 2.2 Hz, 1H), 5.85 (dt, /= 15.6, 1.6 Hz, 1H),
5.27 (tdq, J=17.2,2.9, 1.5 Hz, 1H), 5.16 (s, 2H), 4.59 (d, /= 7.1 Hz, 2H), 3.33 — 3.19 (i,
1H), 2.68 — 2.51 (m, 1H), 2.21 (qd, J= 7.3, 1.6 Hz, 2H), 1.99 (ddd, J=13.7, 12.3, 4.5 Hz,
1H), 1.82 — 1.70 (m, 1H), 1.73 (s, 3H), 1.67 (s, 3H), 1.53 — 1.23 (m, 3H).

13C NMR (100 MHz, CDCl3): & 205.7, 170.6, 166.4, 163.9, 148.9, 139.6, 136.2, 132.4,
128.7, 128.4, 128.3, 121.7, 118.3, 66.2, 62.7, 58.0, 39.5, 34.0, 32.4, 25.9, 23.2, 18.2.

IR (Neat Film, NaCl): 2932, 2356, 1715, 1263, 1164, 976, 754 cm™'.

HRMS (MM: FD+): m/z calc’d for C24H2305 [M]": 396.1920, found 396.1931.

o (o} Me
EtO),P
/\)\ /\)\ o \)LOBn /\)\
(1 5 equw) 1.1 equlv) 0 Me
Et;N (01 equiv) NaH (1 1 equw)
DMF, 25°C = OBn

40e O



Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 212

3-methylbut-2-en-1-yl  (E)-1-(5-(benzyloxy)-5-oxopent-3-en-1-yl)-2-oxocyclohex-3-
ene-1-carboxylate (40e)

To a solution of enone 100 (1.04 g, 5.00 mmol, 1.0 equiv) in DMF (10 mL, 0.5 M) at 25°C
was added dropwise triethylamine (0.07 mL, 0.50 mmol, 0.1 equiv) followed by acrolein
(0.50 mL, 7.50 mmol, 1.5 equiv). Upon consumption of starting material (as determined
by TLC), the reaction mixture was diluted with water and extracted thrice with diethyl
ether. The combined organic layers were washed with water followed by brine, dried over
NaxSOs, and volatiles were removed in vacuo. The crude aldehyde was used directly in the
subsequent Horner—Wadsworth—Emmons olefination. To a suspension of NaH (132 mg,
3.30 mmol, 60% by weight in mineral oil, 1.1 equiv) in THF (6 mL, 0.5 M) at 0 °C was
dropwise added a solution of benzyl 2-(diethoxyphosphoryl)acetate (945 mg, 3.30 mmol,
1.1 equiv) in THF (3.0 mL, 1.0 M). Stirred at 0 °C was continued for 30 minutes. To the
reaction was then dropwise added a solution of the crude aldehyde in THF (6.0 mL, 0.5
M). Upon complete consumption of starting material (as determined by TLC), the reaction
mixture was diluted with a saturated solution of NaHCOs3 and extracted with EtOAc (3x).
The combined organic layers were dried over Na>SQOs, filtered, and concentrated under
reduced pressure. Purification by flash column chromatography (10-20% EtOAc/hexanes)
afforded the title compound as a colorless oil (490 mg, 1.24 mmol, 41% yield).

'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.29 (m, 5H), 6.99 (dt, J = 15.7, 6.8 Hz, 1H), 6.93
—6.84 (m, 1H), 6.03 (ddd, J=10.1, 2.5, 1.5 Hz, 1H), 5.88 (dt, /= 15.6, 1.6 Hz, 1H), 5.27
(ddt,J=7.2,5.8, 1.4 Hz, 1H), 5.17 (s, 2H), 4.59 (d, J=7.1 Hz, 2H), 2.56 — 2.41 (m, 2H),

2.38 - 2.13 (m, 3H), 2.08 — 1.81 (m, 3H), 1.73 (s, 3H), 1.67 (s, 3H).
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13C NMR (100 MHz, CDCl3): § 196.0, 171.4, 166.4, 149.3, 148.9, 139.9, 136.2, 129.4,
128.7,128.3,121.5, 118.2, 66.2, 62.4, 56.6, 32.2, 30.7, 27.6, 25.8, 23.8, 18.2.

IR (Neat Film, NaCl): 3032, 2934, 1737, 1681, 1445, 1384, 1265, 1175, 1137 cm™".
HRMS (MM: FD+): m/z calc’d for C24H2805 [M]*: 396.1937, found 396.1926.
Preparation of Aldehyde Precursors

General Procedure C: Alkylation of f-Ketoesters

Br
OEt

M KHMDS (1.05 equiv) /\)\ /\)\
0/\2\Me 18-crown-6 (1 equlv) Me 1M HC'(aq) Me
THF, -78 to 45 °C R acetone, 0 °C
R

An oven dried round bottom flask was charged with KHMDS (1.05 equiv), 18-crown-6
(1.0 equiv), and THF (0.2 M with respect to KHMDS). The mixture was cooled to —78 °C
and a solution of acyclated enone 100 (1.0 equiv) in THF (0.4 M) was added. The reaction
mixture was stirred for 15 minutes and then the appropriate alkyl bromide (1.5 equiv) was
added neat dropwise. The solution was slowly warmed to 45 °C and stirred for 14 h. Upon
complete consumption of starting material (as determined by TLC), the solution was cooled
to 23 °C, diluted with a saturated aqueous solution of NH4Cl and the reaction mixture was
extracted thrice with EtOAc. The combined organic layers were dried over Na>SOs, filtered,
and concentrated under reduced pressure to afford the crude diethyl acetal which was used
directly in the next step. A round bottom flask was charged with the crude acetal and
acetone (0.5 M), then cooled to 0 °C. Aqueous 1 M HCI (1:1 volume with respect to acetone)
was added and stirring was continued for 1 h. Upon complete consumption of starting

material (as determined by TLC), the reaction mixture was extracted with EtOAc (3x). The
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combined organic layers were washed with brine, dried over Na>SQOs, filtered, and
concentrated under reduced pressure. The crude product was purified by silica gel flash

column chromatography to afford the respective aldehyde product (85).

85
3-methylbut-2-en-1-yl 2-0x0-1-(4-oxobutyl)cyclohex-3-ene-1-carboxylate (85)
Prepared from 100 and 4-bromo-1,1-diethoxybutane®® following General Procedure C.
Purification by flash column chromatography (25% EtOAc/hexanes) afforded the title
compound as a colorless oil (1.81 g, 6.50 mmol, 49% yield).
'"H NMR (400 MHz, CDCl3): 6 9.75 (t,J= 1.5 Hz, 1H), 6.89 (dddd, J=10.1,4.4,3.1, 1.1
Hz, 1H), 6.02 (ddd, J = 10.1, 2.5, 1.6 Hz, 1H), 5.31 — 5.25 (m, 1H), 4.59 (d, J = 6.8 Hz,
2H), 2.55 — 2.43 (m, 4H), 2.39 — 2.30 (m, 1H), 2.02 — 1.94 (m, 1H), 1.89 (ddd, J=12.5,
11.7,4.5 Hz, 1H), 1.78 (dd, J=11.6,4.9 Hz, 1H), 1.73 (s, 3H), 1.71 — 1.59 (m, 5H)
13C NMR (100 MHz, CDCl): § 202.2, 196.2, 171.5, 149.5, 139.7, 129.3, 118.3, 62.4,
57.0,44.2,33.2,30.3,25.8,23.8, 18.2, 17.5.
IR (Neat Film, NaCl): 2942, 1732, 1716, 1456, 1180 cm™!

HRMS (MM: FD+): m/z calc’d for Ci1sH2204 [M]": 278.1518, found 278.1509.

(o} o Me
o/\)\ Me
_0
86

3-methylbut-2-en-1-yl 2-0x0-1-(5-oxopentyl)cyclohex-3-ene-1-carboxylate (86)
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Prepared from 100 and 5-bromo-1,1-diethoxypentane®® following General Procedure C.
Purification by flash column chromatography (10-25% EtOAc/hexanes) afforded the title
compound as a colorless oil (648 mg, 2.22 mmol, 38% yield).

'"H NMR (400 MHz, CDCl3): 6 9.75 (s, 1H), 6.91 — 6.84 (m, 1H), 6.01 (ddd, J=10.1, 2.6,
1.6 Hz, 1H), 5.27 (tdq, /= 7.1, 2.8, 1.4 Hz, 1H), 4.58 (d, /= 7.1 Hz, 2H), 2.54 — 2.40 (m,
4H), 2.36 — 2.27 (m, 1H), 1.98 — 1.86 (m, 2H), 1.78 — 1.60 (m, 10H), 1.40 — 1.26 (m, 2H).
13C NMR (100 MHz, CDCl): 5 202.6, 196.4, 171.7, 149.4, 139.6, 129.3, 118.3, 62.3,
57.0,43.7,33.6,30.4, 25.8, 24.3,23.8, 22.5, 18.2.

IR (Neat Film, NaCl): 2941, 1733, 1717, 1456, 1219 cm™

HRMS (MM: FD+): m/z calc’d for Ci1sH2204 [M]": 293.1747, found 293.1768.

o o CD;
o/\/\cn3
/0
D-86
3-(methyl-d3)but-2-en-1-yl-4,4,4-d3 2-ox0-1-(5-oxopentyl)cyclohex-3-ene-1-

carboxylate (D-86)

Prepared from D-100 and 5-bromo-1,1-diethoxypentane*® following General Procedure C.
Purification by flash column chromatography (10-25% EtOAc/hexanes) afforded the title
compound as a colorless oil (290 mg, 0.971 mmol, 42% yield).

'"H NMR (400 MHz, CDCl5): 6 9.75 (t,J = 1.7 Hz, 1H), 6.90 — 6.85 (m, 1H), 6.01 (ddd, J
=10.1,2.6,1.6 Hz, 1H), 5.27 (t, J=7.2 Hz, 1H), 4.58 (dd, J="7.2, 1.8 Hz, 2H), 2.55 - 2.41
(m, 4H), 2.36 — 2.26 (m, 1H), 1.97 — 1.86 (m, 2H), 1.74 (ddd, J=13.6, 11.6, 5.1 Hz, 1H),

1.68 — 1.60 (m, 2H), 1.40 — 1.24 (m, 2H).
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13C NMR (100 MHz, CDCl3): § 202.6, 196.4, 171.7, 149.4, 139.4, 129.3, 118.4, 62.3,
57.0,43.7,33.6, 30.4,24.3, 23.9, 22.5.

H NMR (61 MHz, CHCl3): 5 1.69, 1.65.

IR (Neat Film, NaCl): 2941, 1726, 1682, 1238, 1186 cm™!

HRMS (MM: FD+): m/z calc’d for C17H1sDsO4 [M]": 298.2051, found 298.2052.

(o) (o] Me

o/\)\ Me
N

o
87

3-methylbut-2-en-1-yl 2-0x0-1-(6-oxohexyl)cyclohex-3-ene-1-carboxylate (87)
Prepared from 100 and 6-bromo-1,1-diethoxyhexane®® following General Procedure C.
Purification by flash column chromatography (10-25% EtOAc/hexanes) afforded the title
compound as a colorless oil (838 mg, 2.73 mmol, 32% yield).

'"H NMR (400 MHz, CDCl5): 6 9.75 (t,J = 1.8 Hz, 1H), 6.90 — 6.85 (m, 1H), 6.01 (ddd, J
=10.0, 2.5, 1.5 Hz, 1H), 5.30 — 5.25 (m, 1H), 4.62 — 4.55 (m, 2H), 2.54 — 2.39 (m, 4H),
2.36 —2.27 (m, 1H), 1.98 — 1.84 (m, 2H), 1.73 (t, J = 1.2 Hz, 4H), 1.69 — 1.59 (m, 5H),
1.39 — 1.24 (m, 4H).

13C NMR (100 MHz, CDCl): 5 202.8, 196.5, 171.7, 149.3, 139.5, 129.4, 118.4, 62.3,
57.1,43.9, 33.6, 30.3, 29.6, 25.8, 24.4,23.9, 21.9, 18.2.

IR (Neat Film, NaCl): 2934, 2864, 1733, 1717, 1684, 1456, 1220 cm™!

HRMS (MM: FD+): m/z calc’d for Ci1sH2604 [M]": 306.1831, found 306.1854.
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cinnamyl 2-o0x0-1-(4-oxobutyl)cyclohex-3-ene-1-carboxylate (93)
Prepared from 103 and 4-bromo-1,1-diethoxybutane® following General Procedure C.
Purification by flash column chromatography (10-25% EtOAc/hexanes) afforded the title
compound as a colorless oil (0.607 g, 1.86 mmol, 49% yield).
'"H NMR (400 MHz, CDCl3): 6 9.74 (t, J = 1.5 Hz, 1H), 7.38 — 7.35 (m, 2H), 7.35 — 7.30
(m, 2H), 7.28 — 7.24 (m, 1H), 6.91 (dddd, J=10.1,4.3, 3.1, 1.1 Hz, 1H), 6.63 (dt, /J=16.0,
1.4 Hz, 1H), 6.23 (dt, /= 15.8, 6.4 Hz, 1H), 6.05 (ddd, /J=10.1, 2.4, 1.7 Hz, 1H), 4.77 (dt,
J=46.5, 1.1 Hz, 2H), 2.57 — 2.45 (m, 4H), 2.42 — 2.32 (m, 1H), 2.05 — 1.98 (m, 1H), 1.93
(ddd, J=13.2, 11.7, 5.1 Hz, 1H), 1.80 (ddd, J=13.2, 11.1, 5.5 Hz, 1H), 1.73 — 1.63 (m,
2H).
13C NMR (100 MHz, CDCl3): § 202.1, 196.0, 171.3, 149.7, 136.2, 134.7, 129.2, 128.8,
128.3, 126.8, 122.7, 66.0, 57.1, 44.1, 33.3, 30.1, 23.8, 17.5.
IR (Neat Film, NaCl): 2941, 1732, 1717, 1700, 1181, 734, 701 cm™

HRMS (MM: FD+): m/z calc’d for C20H2204 [M]": 326.1513, found 326.1510.

1-benzyl 3-(3-methylbut-2-en-1-yl) 4-0x0-3-(4-oxobutyl)-3,4-dihydropyridine-

1,3(2H)-dicarboxylate (88)
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Prepared from 104 and 4-bromo-1,1-diethoxybutane® following General Procedure C.
Purification by flash column chromatography (15-30% EtOAc/hexanes) afforded the title
compound as a colorless oil (603.9 mg, 1.46 mmol, 60% yield).

'"H NMR (400 MHz, CDCl3): 5 9.73 (t,J= 1.4 Hz, 1H), 7.80 (s, 1H), 7.40 (d, J = 3.5 Hz,
5H), 5.27 (m, 4H), 4.61 (m, 3H), 3.78 (d, /= 13.6 Hz, 1H), 2.45 (tt, /= 6.8, 1.7 Hz, 2H),
2.03 - 1.90 (m, 1H), 1.72 (s, 3H), 1.67 (s, 3H), 1.70 — 1.60 (m, 1H).

13C NMR (100 MHz, CDCl3): & 201.6, 190.5, 169.4, 142.7, 140.1, 135.0, 129.0, 128.9,
128.6, 118.0, 106.5, 69.4, 62.8, 55.4, 48.2,43.9,31.1, 25.8, 18.2, 17.2.

IR (Neat Film, NaCl): 2945, 2338, 1727, 1670, 1604, 1389, 1302, 1201, 932 cm™'.

HRMS (MM: FD+): m/z calc’d for C23H27NOg [M]": 413.1838, found 413.1852.

(o] (o) Me
/é{o//?)\ N
Me
o
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3-methylbut-2-en-1-yl  4-methyl-2-0x0-1-(4-oxobutyl)cyclohex-3-ene-1-carboxylate
(89)

Prepared from 105 and 4-bromo-1,1-diethoxybutane® following General Procedure C.
Purification by flash column chromatography (25-50% EtOAc/hexanes) afforded the title
compound as a colorless oil (1141.4 mg, 3.90 mmol, 78% yield).

'"H NMR (400 MHz, CDCl3): § 9.74 (s, 1H), 5.87 (dt, J = 2.6, 1.2 Hz, 1H), 5.27 (tp, J =
7.1,1.4 Hz, 1H), 4.58 (d, J=7.2 Hz, 2H), 2.45 (ddd, J= 8.0, 4.8, 1.7 Hz, 4H), 2.29 — 2.18

(m, 1H), 1.92 (s, 3H), 2.00 — 1.84 (m, 2H), 1.72 (s, 3H), 1.67 (s, 3H), 1.79 — 1.54 (m, 3H).
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13C NMR (100 MHz, CDCl3): § 202.2, 195.9, 171.7, 161.6, 139.6, 126.0, 118.3, 62.3,
56.0,44.2,33.2,30.0, 28.7, 25.8, 24.2, 18.2, 17.5.

IR (Neat Film, NaCl): 3426, 2936, 2730, 1725, 1672, 1637, 1440, 1380, 1348, 1311, 1272,
1233, 1214, 1177, 1104, 1050, 1016, 986, 939, 870, 842, 820, 776 cm™".

HRMS (MM: FD+): m/z calc’d for C17H2404 [M]": 292.1682, found 292.1669.

EtO

90
3-methylbut-2-en-1-yl  4-ethoxy-2-oxo0-1-(4-oxobutyl)cyclohex-3-ene-1-carboxylate
(90)
Prepared from 106 and 4-bromo-1,1-diethoxybutane®® following General Procedure C.
Purification by flash column chromatography (30—40% EtOAc/hexanes) afforded the title
compound as a colorless oil (653.2 mg, 2.03 mmol, 21% yield).
'"H NMR (400 MHz, CDCl3): $ 9.75 (t,J = 1.5 Hz, 1H), 5.34 (d, J= 1.1 Hz, 1H), 5.29 (tp,
J=17.2,1.4Hz 1H),4.66 —4.53 (m, 2H), 3.86 (q, /= 7.18, 2H), 2.61 (dddd, J=17.8, 10.3,
4.7, 1.3 Hz, 1H), 2.50 — 2.30 (m, 4H), 2.02 — 1.87 (m, 2H), 1.82 — 1.73 (m, 1H), 1.72 (s,
3H), 1.68 (s, 3H), 1.67 — 1.58 (m, 2H), 1.35 (t, /= 7.0 Hz, 3H).
13C NMR (100 MHz, CDCl): 6 201.9, 195.5, 176.5, 171.5, 139.1, 118.1, 101.9, 64.3,
62.0,55.7,43.9,33.1, 28.2,26.3,25.5,17.9, 17.2, 13.9.
IR (Neat Film, NaCl): 2939, 2728, 1723, 1659, 1608, 1447, 1380, 1315, 1242, 1179, 1108,
1027, 942, 816, 769 cm!.

HRMS (MM: FD+): m/z calc’d for Ci1sH260s [M]": 322.1790, found 322.1775.
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91
3-methylbut-2-en-1-yl  3-methyl-2-0x0-1-(4-oxobutyl)cyclohex-3-ene-1-carboxylate
o1
Prepared from 107 and 4-bromo-1,1-diethoxybutane® following General Procedure C.
Purification by flash column chromatography (15-20% EtOAc/hexanes) afforded the title
compound as a colorless oil (1.14 g, 3.90 mmol, 70% yield).
'"H NMR (400 MHz, CDCl3): 5 9.75 (s, 1H), 6.64 — 6.57 (m, 1H), 5.27 (tt,J= 7.1, 1.4 Hz,
1H), 4.64 —4.51 (m, 2H), 2.51 — 2.36 (m, 4H), 2.36 — 2.22 (m, 1H), 2.01 — 1.92 (m, 1H),
1.87 (m, 1H), 1.83-1.53 (m, 3H) 1.78 (s, 3H), 1.73 (s, 3H), 1.67 (d, J= 1.3 Hz, 3H).
13C NMR (100 MHz, CDCl): § 202.2, 196.9, 171.9, 143.9, 139.6, 135.3, 118.3, 62.2,
57.0,44.2,33.3,30.7,25.8, 23.5, 18.2, 17.7, 16.6.
IR (Neat Film, NaCl): 3500, 2925, 2333, 1725, 1681, 1449, 1361, 1182 cm™'.

HRMS (MM: FD+): m/z calc’d for C17H2404 [M]": 292.1680, found 292.1669.
o o

0/\/

o
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allyl 2-oxo0-1-(4-oxobutyl)cyclohex-3-ene-1-carboxylate (92)

40

Prepared from allyl 2-oxocyclohex-3-ene-1-carboxylate and 4-bromo-1,1-

diethoxybutane®* following General Procedure C. Purification by flash column
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chromatography (15-30% EtOAc/hexanes) afforded the title compound as a colorless oil
(773.2 mg, 3.09 mmol, 21% yield).

'"H NMR (400 MHz, CDCl3): 6 9.75 (t,J= 1.4 Hz, 1H), 6.91 (dddd, J=10.1,4.4,3.1, 1.1
Hz, 1H), 6.03 (dt, /= 10.1, 2.0 Hz, 1H), 5.86 (ddt, /= 17.1, 10.2, 5.6 Hz, 1H), 5.28 (dq, J
=17.2,1.6 Hz, 1H), 5.22 (dq, /= 10.4, 1.3 Hz, 1H), 4.60 (dq, /= 5.4, 1.6 Hz, 2H), 2.58 —
2.43 (m, 4H), 2.43 — 2.30 (m, 1H), 2.07 — 1.95 (m, 1H), 1.91 (ddd, J=13.2, 11.6, 5.2 Hz,
1H), 1.79 (ddd, J=13.2, 10.9, 5.6 Hz, 1H), 1.75 — 1.56 (m, 2H).

13C NMR (100 MHz, CDCl): & 202.1, 196.0, 171.2, 149.7, 131.7, 129.2, 118.7, 65.9,
57.1,44.1, 33.1, 30.1, 23.7, 17 4.

IR (Neat Film, NaCl): 2947, 2732, 1726, 1680, 1238, 1184 cm™'.

HRMS (MM: FD+): m/z calc’d for C14H1904 [M]": 251.1281, found 251.1278.

ANNNF
e .5 equiv,
. =
KHMDS (1.05 equiv 0 M
@XO/\)\W ( o ~ b{/\ e
18-crown-6 (1 equiv)
THF, -78 to 45 °C AN
1
00 40h

3-methylbut-2-en-1-yl 2-0x0-1-(pent-4-en-1-yl)cyclohex-3-ene-1-carboxylate (40h)
Prepared from 100 and 5-bromopent-1-ene following General Procedure C (without
hydrolysis step). Purification by flash column chromatography (0-20% EtOAc/hexanes)
afforded the title compound as a colorless oil (93.8 mg, 0.34 mmol, 23% yield).

'"H NMR (400 MHz, CDCl): 5 6.87 (dddd, J=10.1, 4.8, 3.1, 1.1 Hz, 1H), 6.01 (ddd, J =
10.1,2.5,1.6 Hz, 1H), 5.78 (ddt, J=16.9, 10.2, 6.6 Hz, 1H), 5.28 (tdq, /J="7.1,2.9, 1.4 Hz,
1H), 5.00 (dq, J=17.1, 1.6 Hz, 1H), 4.94 (ddt,J=10.2,2.2, 1.2 Hz, 1H), 4.59 (dd, /= 7.2,

3.7 Hz, 1H), 4.64 — 4.53 (m, 2H), 2.57 — 2.41 (m, 2H), 2.38 — 2.24 (m, 2H), 2.12 - 2.01 (m,
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2H), 2.00 — 1.86 (m, 2H), 1.77 — 1.69 (m, 1H), 1.73 (s, 3H), 1.68 (s, 3H), 1.51 — 1.28 (m,
2H).

13C NMR (100 MHz, CDCl): § 196.5, 171.7, 149.3, 139.5, 138.4, 129.4, 118.4, 114.9,
62.2,57.1,34.2,33.4,30.3, 25.8, 24.0, 23.9, 18.2.

IR (Neat Film, NaCl): 2928, 1726, 1683, 1440, 1383, 1186, 912 cm™.

HRMS (MM: FD+): m/z calc’d for C17H2403 [M]*: 276.1725, found 276.1718.

O o Me
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3-methylbut-2-en-1-yl 2-0x0-1-(4-oxobutyl)cyclopentane-1-carboxylate (101)
Prepared from 3-methylbut-2-en-1-yl 2-oxocyclopentane-1-carboxylate*! and 4-bromo-
1,1-diethoxybutane® following General Procedure C. Purification by flash column
chromatography (20-25% EtOAc/hexanes) afforded the title compound as a colorless oil
(1.86 g, 6.97 mmol, 87% yield).

'"H NMR (400 MHz, CDCl3): § 9.74 (t, J = 1.4 Hz, 1H), 5.29 (tp, J = 7.3, 1.4 Hz, 1H),
4.59 (d,J=17.2 Hz, 2H), 2.58 —=2.47 (m, 1H), 2.44 (tt,J= 7.0, 1.5 Hz, 2H), 2.44 — 2.36 (m,
1H), 2.31 — 2.18 (m, 1H), 2.11 — 1.85 (m, 4H), 1.74 (s, 3H), 1.68 (s, 3H), 1.67 — 1.48 (m,
3H).

13C NMR (100 MHz, CDCl3): 6 214.8,201.9, 171.0, 139.7, 118.2, 62.5, 60.4, 44.0, 38.0,
33.2,33.0,25.9,19.8, 18.2, 17.6.

IR (Neat Film, NaCl): 3456, 2954, 2724, 1745, 1721, 1446, 1406, 1384, 1154, 953 cm™'.

HRMS (MM: FD+): m/z calc’d for CisH2204 [M]": 266.1525, found 266.1513.
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2-cyclohexylideneethyl 2-0xo0-1-(5-oxopentyl)cyclohex-3-ene-1-carboxylate (96)
Prepared from 108 and 5-bromo-1,1-diethoxypentane®® following General Procedure C.
Purification by flash column chromatography (10-50% EtOAc/hexanes) afforded the title
compound as a colorless oil (177 mg, 0.53 mmol, 25% yield).
'"H NMR (400 MHz, CDCl3): 6 9.75 (t,J = 1.7 Hz, 1H), 6.93 — 6.83 (m, 1H), 6.02 (ddd, J
=10.1,2.6, 1.6 Hz, 1H), 5.23 (tt, /=7.2, 1.2 Hz, 1H), 4.60 (d, J= 7.2 Hz, 2H), 2.56 — 2.39
(m, 4H), 2.37 - 2.26 (m, 1H), 2.20 — 2.13 (m, 2H), 2.12 — 2.05 (m, 2H), 1.99 — 1.85 (m,
2H), 1.74 (ddd, J=13.6, 11.7, 5.0 Hz, 1H), 1.64 (p, J=7.5 Hz, 2H), 1.58 — 1.46 (m, 6H),
1.43 - 1.20 (m, 2H).
13C NMR (100 MHz, CDCl): 5 202.6, 196.4, 171.6, 149.3, 147.7, 129.4, 114.8, 61.5,
57.0,43.7,37.1, 33.6,30.4, 29.2, 28.5, 27.9, 26.7, 24.3, 23.9, 22.5.
IR (Neat Film, NaCl): 2929, 2858, 1731, 1446, 1170, 938 cm™'.

HRMS (MM: FD+): m/z calc’d for C20H2804 [M]": 332.1988, found 332.1991.
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2-cyclopentylideneethyl 2-oxo0-1-(5-oxopentyl)cyclohex-3-ene-1-carboxylate (95)
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Prepared from 109 and 5-bromo-1,1-diethoxypentane®® following General Procedure C.
Purification by flash column chromatography (10-60% EtOAc/hexanes) afforded the title
compound as a colorless oil (1.40 g, 4.40 mmol, 39% yield).

'"H NMR (400 MHz, CDCl3): 6 9.75 (t,J = 1.7 Hz, 3H), 6.92 — 6.83 (m, 1H), 6.02 (ddd, J
=10.1, 2.6, 1.6 Hz, 1H), 5.41 — 5.32 (m, 1H), 4.64 — 4.50 (m, 2H), 2.56 — 2.39 (m, 4H),
2.37-2.20 (m, 5H), 1.99 — 1.83 (m, 2H), 1.80 — 1.57 (m, 7H), 1.45 — 1.22 (m, 2H).

13C NMR (100 MHz, CDCl): 5 202.6, 196.4, 171.7, 151.1, 149.4, 129.4, 113.8, 63.8,
57.0,43.7,33.9, 33.6, 30.4, 29.0, 26.4, 26.2, 24.3, 23.9, 22.5.

IR (Neat Film, NaCl): 2947, 2725, 1729, 1697, 1456, 1356, 1215 cm™".

HRMS (MM: FD+): m/z calc’d for C19H2604 [M]": 318.1831, found 318.1809.

2-cyclobutylideneethyl 2-0x0-1-(5-oxopentyl)cyclohex-3-ene-1-carboxylate (94)
Prepared from 110 and 5-bromo-1,1-diethoxypentane®® following General Procedure C.
Purification by flash column chromatography (10-60% EtOAc/hexanes) afforded the title
compound as a colorless oil (649 mg, 2.13 mmol, 29% yield).

'"H NMR (400 MHz, CDCl3): 6 9.75 (t,J = 1.7 Hz, 1H), 6.94 — 6.83 (m, 1H), 6.02 (ddd, J
=10.1, 2.6, 1.5 Hz, 1H), 5.20 (tp, J="7.1,2.3 Hz, 1H), 4.46 (ddt, J="7.4,2.3, 1.1 Hz, 2H),
2.69 (dt, J=16.0, 8.4 Hz, 4H), 2.56 — 2.40 (m, 4H), 2.37 — 2.26 (m, 1H), 2.03 — 1.84 (m,

4H), 1.75 (ddd, J = 13.6, 11.6, 5.1 Hz, 1H), 1.64 (p, J = 7.5 Hz, 2H), 1.42 — 1.26 (m, 2H).
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13C NMR (100 MHz, CDCl3): § 202.6, 196.4, 171.6, 149.4, 148.9, 129.4, 114.0, 62.3,
57.0,43.7,33.6,31.2,30.4,29.6, 24.3, 23.9, 22.5, 17.1.
IR (Neat Film, NaCl): 2941, 1726, 1681, 1446, 1387, 1240, 1171, 1103 cm™.

HRMS (MM: FD+): m/z calc’d for Ci1sH2404 [M]": 304.1675, found 304.1677.

3-benzyl-4-phenylbut-2-en-1-yl  2-oxo0-1-(5-oxopentyl)cyclohex-3-ene-1-carboxylate
(98)

Prepared from 111 and 5-bromo-1,1-diethoxypentane®® following General Procedure C.
Purification by flash column chromatography (10-60% Et>O/hexanes) afforded the title
compound as a colorless oil (425 mg, 0.955 mmol, 18% yield).

'"H NMR (400 MHz, CDCl3): 5 9.73 (t,J= 1.7 Hz, 1H), 7.32 — 7.27 (m, 4H), 7.21 (tt, J =
7.5,2.3 Hz, 2H), 7.15—-7.03 (m, 4H), 6.90 — 6.82 (m, 1H), 6.02 (ddd, J=10.2,2.5, 1.6 Hz,
1H), 5.51 (d, J=7.4 Hz, 1H), 4.83 — 4.70 (m, 2H), 3.36 (s, 2H), 3.24 (s, 2H), 2.54 — 2.24
(m, 5H), 2.00 — 1.86 (m, 2H), 1.77 (ddd, J = 13.6, 11.6, 5.1 Hz, 1H), 1.63 (p, J= 7.5 Hz,
2H), 1.44 —1.22 (m, 2H).

13C NMR (100 MHz, CDCl3): § 202.5, 196.2, 171.6, 149.4, 144.8, 139.0, 138.8, 129.4,
129.3, 128.8, 128.7, 128.5, 126.5, 126.4, 121.7, 62.0, 57.0, 43.7, 42.9, 35.8, 33.6, 30.4,
24.3,23.9,22.5.

IR (Neat Film, NaCl): 2923, 1723, 1684, 1493, 1451, 1386, 1231 cm™.

HRMS (MM: FD+): m/z calc’d for C290H3,04 [M]": 444.2301, found 444.2300.
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2-cycloheptylideneethyl 2-0xo0-1-(5-oxopentyl)cyclohex-3-ene-1-carboxylate (97)
Prepared from 112 and 5-bromo-1,1-diethoxypentane®® following General Procedure C.
Purification by flash column chromatography (10-70% Et>O/hexanes) afforded the title
compound as a colorless oil (349 mg, 1.01 mmol, 15% yield).

'"H NMR (400 MHz, CDCl3): 6 9.75 (t,J = 1.7 Hz, 1H), 6.91 — 6.84 (m, 1H), 6.02 (ddd, J
=10.1,2.6, 1.6 Hz, 1H), 5.28 (tt, /J="7.1, 1.3 Hz, 1H), 4.60 (d, J= 7.1 Hz, 2H), 2.56 — 2.40
(m, 4H), 2.38 — 2.20 (m, 5H), 1.98 — 1.87 (m, 2H), 1.76 (ddd, J = 13.7, 12.0, 4.8 Hz, 1H),
1.65 (p, J =17.5 Hz, 2H), 1.57 (q, J = 5.4 Hz, 4H), 1.50 (dt, J = 5.2, 2.4 Hz, 4H), 1.42 —
1.27 (m, 2H).

13C NMR (100 MHz, CDCl): 5 202.6, 196.4, 171.7, 149.4, 149.0, 129.4, 118.4, 62.1,
57.0,43.7,37.7,33.6,30.4, 30.2, 29.8, 29.1, 28.9, 27.3, 24.3, 23.9, 22.5.

IR (Neat Film, NaCl): 2923, 2854, 1737, 1681, 1443, 1385, 1235, 1172 cm™".

HRMS (MM: FD+): m/z calc’d for C21H3004 [M]*: 346.2144, found 346.2139.

B-Ketoesters Synthesis

General Procedure D: Prenyl [-ketoesters Synthesis through Acylation

(o] (o] (o] Me
LDA i o /\2\
(1.1 equiv), THF, -78 °C R 0 Me
R then, (o] Me o
Né\ N JJ\O/\/\ Me 100
— (1.2 equiv)

-78t0 25°C
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A flame dried round bottom flask was charged with iProNH (1.1 equiv) and THF (1.75 M).
The solution was cooled to 0 °C and n-BuLi (2.5 M in hexanes, 1.05 equiv) was added
dropwise. The resultant solution was stirred for 30 min at 0 °C. The corresponding
cyclohexenone (1.0 equiv) in THF (1.25 M) was added dropwise and stirring was continued
at 0 °C for 30 minutes. The solution was cooled to —78 °C, and the appropriate N-acyl
imidazole (1.2 equiv) in THF (3.25 M) was added dropwise. After 2 h, the reaction was
gradually warmed to 23 °C and diluted with 2 M aqueous HCI until reaching a pH < 7. The
reaction mixture was extracted three times with EtOAc. The combined organic layers were
washed with brine, dried over Na>SQOs, filtered, and concentrated under reduced pressure.
The crude product was purified by flash silica gel column chromatography to afford the

corresponding acylated enone.

3-methylbut-2-en-1-yl 2-oxocyclohex-3-ene-1-carboxylate (100)
Prepared from 2-cyclohexen-l1-one and 3-methylbut-2-en-1-yl 1H-imidazole-1-

carboxylate #*

following General Procedure D. Purification by flash column
chromatography (25% EtOAc/hexanes) afforded the title compound as a colorless oil (6.65
g, 31.9 mmol, 41% yield).

'"H NMR (400 MHz, CDCl3): 6 7.02 — 6.97 (m, 1H), 6.07 (dt, J = 10.2, 2.0 Hz, 1H), 5.37
—5.32 (m, 1H), 4.65 (d, /= 7.1 Hz, 2H), 3.42 — 3.39 (m, 1H), 2.55 — 2.45 (m, 1H), 2.44 —

2.34 (m, 2H), 2.26 — 2.18 (m, 1H), 1.75 (s, 3H), 1.71 (s, 3H).
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13C NMR (100 MHz, CDCls): § 194.1, 170.2, 150.7, 139.6, 129.3, 118.4, 62.3, 53.6, 25.9,
25.8,24.5, 18.2.
IR (Neat Film, NaCl): 3033, 2934, 1736, 1682, 1447, 1387, 1302, 1233, 1159, 1123 cm™

1

HRMS (MM: FD+): m/z calc’d for C12H1603 [M]": 208.1099, found 208.1090.

D-100
3-(methyl-d3)but-2-en-1-yl-4,4,4-d3 2-oxocyclohex-3-ene-1-carboxylate (D-100)
Prepared from 2-cyclohexen-1-one and 3-(methyl-d3)but-2-en-1-yl-4,4,4-d3 1 H-imidazole-

4 following General Procedure D. Purification by flash column

1-carboxylate
chromatography (25% EtOAc/hexanes) afforded the title compound as a colorless oil (1.00
g, 4.67 mmol, 37% yield). Note that 1.0 equiv of the N-acyl imidazole can be employed.
'"H NMR (400 MHz, CDCls):  6.99 (dt, J=10.0, 3.7 Hz, 1H), 6.06 (dt, J= 10.2, 2.1 Hz,
1H), 5.34 (t, J=7.2 Hz, 1H), 4.65 (d, /= 7.2 Hz, 2H), 3.40 (dd, /=9.7, 5.0 Hz, 1H), 2.54
—2.44 (m, 1H), 2.44 — 2.32 (m, 2H), 2.22 (ddt, J = 13.7, 8.8, 3.0 Hz, 1H).

13C NMR (100 MHz, CDCls): 6 194.1, 170.2, 150.7, 139.4, 129.3, 118.4, 62.3, 53.6, 25.8,
24.5.

H NMR (61 MHz, CHCl3): 5 1.72, 1.67.

IR (Neat Film, NaCl): 2942, 1736, 1681, 1388, 1164 cm™!

HRMS (MM: FD+): m/z calc’d for C12H10DsO3 [M]": 214.1476, found 214.1476.
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0 (o)
é)‘\o/\/\%
103

cinnamyl 2-oxocyclohex-3-ene-1-carboxylate (103)

Prepared from 2-cyclohexen-1-one and cinnamyl 1H-imidazole-1-carboxylate*? following
General Procedure D. Purification by flash column chromatography (15-25%
EtOAc/hexanes) afforded the title compound as a colorless oil (0.98 g, 3.82 mmol, 39%
yield).

'"H NMR (400 MHz, CDCl3): § 7.40 — 7.37 (m, 2H), 7.34 — 7.30 (m, 2H), 7.28 — 7.24 (m,
1H), 7.01 (dt,J=10.3, 3.8 Hz, 1H), 6.67 (dt, J=15.9, 1.3 Hz, 1H), 6.29 (dt, J=15.9, 6.4
Hz, 1H), 6.09 (dt, /= 10.2, 2.0 Hz, 1H), 4.83 (d, J = 6.5 Hz, 2H), 3.47 (dd, J=10.2, 4.9
Hz, 1H), 2.57 - 2.47 (m, 1H), 2.47 — 2.34 (m, 2H), 2.28 — 2.21 (m, 1H).

13C NMR (100 MHz, CDCl3): & 193.9, 169.9, 150.8, 136.3, 134.6, 129.3, 128.7, 128.2,
126.8, 122.9, 65.9, 53.6, 25.8, 24.5.

IR (Neat Film, NaCl): 3024, 2940, 1734, 1676, 1304, 1223, 1157, 1123, 969 cm™'

HRMS (MM: FD+): m/z calc’d for CisHisNaO3 [M+Na]": 279.0997, found 279.0983.

(o] (o] Me

107
3-methylbut-2-en-1-yl 3-methyl-2-oxocyclohex-3-ene-1-carboxylate (107)
Prepared from 2-methylcyclohex-2-en-1-one* and 3-methylbut-2-en-1-yl 1H-imidazole-

1-carboxylate*” following General Procedure D. Purification by flash column
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chromatography (10-20% EtOAc/hexanes) afforded the title compound as a colorless oil
(1.09 g, 4.90 mmol, 23% yield).

'H NMR (400 MHz, CDCl):  6.78 — 6.69 (m, 1H), 5.35 (tdq, J = 7.2, 2.9, 1.5 Hz, 1H),
4.65(d,J=7.2Hz,2H),3.42-3.36 (m, 1H),2.48—2.11 (m, 5H), 1.79 (d, /= 1.6 Hz, 3H),
1.75 (s, 3H), 1.70 (s, 3H).

13C NMR (100 MHz, CDCls): 6 194.7, 170.6, 145.5, 139.5, 135.4, 118.5, 62.2, 53.8, 26.3,
25.9,24.6,18.2,16.2.

IR (Neat Film, NaCl): 2925, 1736, 1676, 1449, 1381, 1249, 1151 cm™.

HRMS (MM: FD+): m/z calc’d for C13H1s03 [M]": 222.1255, found 222.1251.

(o] (o] Me
/é)&o/\)\m
Me
105

3-methylbut-2-en-1-yl 4-methyl-2-oxocyclohex-3-ene-1-carboxylate (105)

Prepared from 3-methylcyclohex-2-en-1-one and 3-methylbut-2-en-1-yl 1H-imidazole-1-
carboxylate* following General Procedure D. Purification by flash column
chromatography (10-20% EtOAc/hexanes) afforded the title compound as a colorless oil
(2.95 g, 13.3 mmol, 17% yield).

'H NMR (400 MHz, CDCl3): 6 591 (h, J = 1.4 Hz, 1H), 5.35 (tp, J = 7.1, 1.6 Hz, 1H),
4.65 (d, J=7.2 Hz, 2H), 3.37 — 3.27 (m, 1H), 2.48 — 2.24 (m, 3H), 2.21 — 2.15 (m, 1H),
1.97 (s, 3H), 1.75 (d, J= 1.3 Hz, 3H), 1.70 (s, 3H).

13C NMR (100 MHz, CDCls): 6 193.9, 170.5, 163.0, 139.5, 126.0, 118.5, 62.3, 52.6, 29.5,

25.9,25.7,24.5, 18.2.
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IR (Neat Film, NaCl): 2938, 1732, 1668, 1632, 1434, 1378, 1357, 1302, 1246, 1216, 1170,
1152, 1018 cm™.

HRMS (MM: FD+): m/z calc’d for C13H1s03 [M]": 222.1257, found 222.1251.

(o] (o] Me
/@/\Lo/\)\ Me
EtO
106

3-methylbut-2-en-1-yl 4-ethoxy-2-oxocyclohex-3-ene-1-carboxylate (106)

Prepared from 3-ethoxycyclohex-2-en-1-one and 3-methylbut-2-en-1-yl 1H-imidazole-1-
carboxylate*” following General Procedure D. Purification by flash column
chromatography (25-30% EtOAc/hexanes) afforded the title compound as a colorless oil
(2.84 g,9.51 mmol, 19% yield).

'"H NMR (400 MHz, CDCl3): § 5.38 (s, 1H), 5.37 — 5.32 (m, 1H), 4.72 — 4.59 (m, 2H),
391 (qd, J=17.0, 2.3 Hz, 2H), 3.36 — 3.27 (m, 1H), 2.56 (ddd, J = 16.6, 6.2, 4.5 Hz, 1H),
2.47 —2.27 (m, 2H), 2.24 — 2.08 (m, 1H), 1.75 (s, 3H), 1.70 (s, 3H), 1.36 (t, /= 7.0 Hz,
3H).

13C NMR (100 MHz, CDCls): 6 194.0, 177.7,170.6, 139.4, 118.5, 102.3, 64.6, 62.3, 52.5,
27.5,25.9,24.3,18.2, 14.2.

IR (Neat Film, NaCl): 2980, 2357, 1730, 1648, 1605, 1380, 1192, 1026, 668 cm™'.

HRMS (MM: FD+): m/z calc’d for C14H2004 [M]": 252.1363, found 252.1356.

o
° NCJ\OMe o 9 0o o Me
(1.15 equiv) oMe  Zn° prenol 0/\)\ Me
> S e
l LDA (1.2 equiv) I PhMe, 120 °C |
N THF, -78 °C N N
Bz Bz Bz
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1-benzyl 3-methyl 4-0x0-3,4-dihydropyridine-1,3(2H)-dicarboxylate (113)

A flame dried round bottom flask was charged with i-Pr,NH (2.52 mL, 18.0 mmol, 1.2
equiv) and THF (167 mL, 0.1 M). The solution was cooled to —78 °C and n-BuLi (7.20 mL,
18.0 mmol, 1.2 equiv) was added dropwise. The resultant solution was slowly warmed to
0 °C over 1 h and then cooled to — 78 °C. The LDA solution was added dropwise to a
solution of 1-benzoyl-2,3-dihydropyridin-4(1H)-one* (3.47 g, 15.0 mmol, 1.0 equiv) in
THF (239 mL, 0.06 M) at —78 °C. The resultant solution was stirred for 1 h. Then methyl
cyanoformate (1.37 mL, 17.25 mmol, 1.15 equiv) was added dropwise. Upon complete
consumption of starting material (as determined by TLC), the reaction was diluted with a
saturated solution of NH4Cl and the product was extracted with EtOAc (3 x 200 mL). The
combined organic layers were dried over Na,SOyg, filtered, and concentrated under reduced
pressure. The crude product was purified by column chromatography (SiO2, 20-30%
EtOAc/Hexanes) to afford acylated enone 113 (1.17 g, 4.05 mmol, 27% yield).

'"H NMR (400 MHz, CDCl3): 6 7.88 (s, 1H), 7.39 (d, J = 2.3 Hz, 5H), 5.40 (s, 1H), 5.28
(s, 1H), 4.39 (dd, J=13.6, 8.9 Hz, 1H), 4.18 (dd, J=13.6, 5.4 Hz, 1H), 3.76 (s, 3H), 3.51
(dd, J=38.9,5.4 Hz, 1H).

13C NMR (100 MHz, CDCl3): 5 187.8, 168.2, 143.6, 134.8, 129.1, 128.9, 128.8, 128.7,
106.8, 69.6, 52.9, 50.6, 44.4.

IR (Neat Film, NaCl): 2952, 2332, 1734, 1670, 1601, 1388, 1293, 1213 cm™'.

HRMS (MM: FD+): m/z calc’d for CisHisNOs [M]": 289.0950, found 289.0948.
1-benzyl 3-(3-methylbut-2-en-1-yl) 4-0x0-3,4-dihydropyridine-1,3(2H)-dicarboxylate

(104)
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A flame dried round bottom flask equipped with a reflux condenser was charged with Zn°
dust (51.5 mg, 0.787 mmol, 0.2 equiv), acylated enone 113 (1.14 g, 3.40 mmol, 1.0 equiv),
and toluene (19.7 mL, 0.2 M). To the stirred solution, prenyl alcohol was added neat (2.00
mL, 19.68 mmol, 5.0 equiv). The resultant solution was heated to reflux for 3 days. The
solution was cooled to 23 °C, filtered through a celite plug and eluted with CH>Cl», and
concentrated under reduced pressure. The crude product was purified by column
chromatography (Si0z, 15-25% EtOAc/Hexanes) to afford acylated enone 104 (883 mg,
2.57 mmol, 65% yield).

'"H NMR (400 MHz, CDCl3): 5 7.86 (s, 1H), 7.39 (m, 5H), 5.39 (s, 1H), 5.32 (tp, J = 7.3,
1.4 Hz, 1H), 5.27 (s, 2H), 4.65 (dd, J = 7.3, 2.9 Hz, 2H), 4.38 (dd, J = 13.6, 8.9 Hz, 1H),
4.17 (dd, J=13.5,5.4 Hz, 1H), 3.48 (dd, J=9.1, 5.3 Hz, 1H), 1.74 (s, 3H), 1.69 (s, 3H).
13C NMR (100 MHz, CDCl3): 5 187.9, 167.8, 143.5, 140.1, 134.9, 129.0, 128.9, 128.8,
128.7, 118.0, 106.9, 69.5, 62.8, 50.8, 44.5, 25.9, 18.2.

IR (Neat Film, NaCl): 2965, 1727, 1676, 1599, 1388, 1293, 1209, 940 cm™'.

HRMS (MM: FD+): m/z calc’d for C1oH21HOs [M]": 343.1420, found 343.1420.
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General Procedure E: Substituted [3-Ketoesters Synthesis through Acylation*?

o
//\NJLN/\\

N N
\9’ \Q/ 0 R
R (2.0 equiv) /\)\
/\%\ <> N NJJ\O Z R
HO R THF/CH,Cl, 0t0 25°C

(o} (o} (o} R

LDA (1.05 equiv), THF,0°C OV\R
then, 0 R o

I~ L /\)\ 100
N R

\9’ (1.0 equiv)
-78to0 25 °C

To a solution of di(1H-imidazol-1-yl)methanone (2.0 equiv) in THF (2.0 M) at 0 °C was
added dropwise a solution of the corresponding alcohol (1.0 equiv) in CH>Cl, (1.0 M).
After 3 h, the reaction mixture was gradually warmed to 25 °C. Upon consumption of
starting material (as determined by TLC), the reaction mixture was concentrated under
reduced pressure then filtered through a silica plug and eluted with 50% EtOAc/Hexanes.
The resulting solution was concentrated under reduced pressure.

A flame dried round bottom flask was charged with iProNH (1.1 equiv) and THF (1.75 M).
The solution was cooled to 0 °C and n-BuLi (2.5 M in hexanes, 1.05 equiv) was added
dropwise. The resultant solution was stirred for 30 min at 0 °C. 2-cyclohexen-1-one (1.0
equiv) in THF (1.25 M) was added dropwise and stirring was continued at 0 °C for 30
minutes. The solution was cooled to —78 °C, and the corresponding crude 1H-imidazole-1-
carboxylate (1.2 equiv) in THF (3.25 M) was added dropwise. After 2 h, the reaction was
gradually warmed to 23 °C and diluted with 2 M aqueous HCI until reaching a pH < 7. The

reaction mixture was extracted three times with EtOAc. The combined organic layers were
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washed with brine, dried over Na>SOs, filtered, and concentrated under reduced pressure.
The crude product was purified by column chromatography to afford the corresponding

acylated enone.

2-cyclohexylideneethyl 2-oxocyclohex-3-ene-1-carboxylate (108)

Prepared from 2-cyclohexen-1-one and 2-cyclohexylideneethan-1-01* following General
Procedure E, with the modification of 1.5 equiv of di(1H-imidazol-1-yl)methanone and 1.2
equiv of 2-cyclohexylideneethyl 1H-imidazole-1-carboxylate being used. Purification by
flash column chromatography (5-30% EtOAc/hexanes) afforded the title compound as a
colorless oil (535 mg, 2.15 mmol, 28% yield).

'H NMR (400 MHz, CDCl3): 57.04 — 6.95 (m, 1H), 6.07 (dt, J = 10.1, 2.0 Hz, 1H), 5.29
(tt,J=7.2,1.2 Hz, 1H), 4.67 (d, ] = 7.2 Hz, 2H), 3.45 - 3.36 (m, 1H), 2.56 — 2.30 (m, 3H),
2.27-2.15 (m, 3H), 2.14 - 2.08 (m, 2H), 1.60 — 1.48 (m, 6H).

13C NMR (100 MHz, CDCls): 6 194.1, 170.2, 150.6, 147.5, 129.3, 115.0, 61.5, 53.6, 37.1,
29.2,28.5,27.9,26.7,25.8, 24.5.

IR (Neat Film, NaCl): 2930, 2852, 1735, 1683, 1447, 1388, 1298, 1169, 1122 cm™.

HRMS (MM: FD+): m/z calc’d for CisH2003 [M]": 248.1412, found 248.1418.

2-cyclopentylideneethyl 2-oxocyclohex-3-ene-1-carboxylate (109)
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Prepared from 2-cyclohexen-1-one and 2-cyclopentylideneethan-1-0l4¢ following General
Procedure E. Purification by flash column chromatography (5-50% EtOAc/hexanes)
afforded the title compound as a colorless oil (2.69 g, 11.46 mmol, 31.9% yield).

'"H NMR (400 MHz, CDCls): § 6.99 (dt, J=10.1, 3.8 Hz, 1H), 6.07 (dt, J= 10.2, 2.0 Hz,
1H), 5.50 — 5.40 (m, 1H), 4.64 (dt, J=7.2, 1.1 Hz, 2H), 3.45 — 3.37 (m, 1H), 2.57 — 2.15
(m, 8H), 1.75 — 1.58 (m, 4H).

13C NMR (100 MHz, CDCls): 6 194.1, 170.2, 151.2, 150.7, 129.3, 113.8, 63.8, 53.6, 34.0,
29.0,26.4, 26.2, 25.8, 24.5.

IR (Neat Film, NaCl): 2946, 2869, 1782, 1681, 1455, 1387, 1304, 1224, 1156 cm™.

HRMS (MM: FD+): m/z calc’d for C14H1303 [M]": 234.1256, found 234.1255.

2-cyclobutylideneethyl 2-oxocyclohex-3-ene-1-carboxylate (110)

Prepared from 2-cyclohexen-1-one and 2-cyclobutylideneethan-1-0l*7 following General
Procedure E. Purification by flash column chromatography (5-50% EtOAc/hexanes)
afforded the title compound as a colorless oil (2.02 g, 9.19 mmol, 31.7% yield).

'"H NMR (400 MHz, CDCl3): 5 7.00 (dt, J=10.1, 3.7 Hz, 1H), 6.07 (dt, J= 10.2, 2.0 Hz,
1H), 5.27 (tp, J = 6.9, 2.2 Hz, 1H), 4.53 (d, J = 7.2 Hz, 2H), 3.45 — 3.36 (m, 1H), 2.80 —
2.65 (m, 4H), 2.56 — 2.31 (m, 3H), 2.28 — 2.15 (m, 1H), 1.98 (p, J = 8.0 Hz, 2H).

13C NMR (100 MHz, CDCls): 6 194.1, 170.1, 150.7, 148.9, 129.3, 114.1, 62.3, 53.6, 31.2,
29.6,25.8,24.5,17.1.

IR (Neat Film, NaCl): 2947, 1737, 1681, 1457, 1397, 1301, 1229, 1163, 1123 cm ™.
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HRMS (MM: FD+): m/z calc’d for Ci13H1603 [M]": 220.1099, found 220.1093.

3-benzyl-4-phenylbut-2-en-1-yl 2-oxocyclohex-3-ene-1-carboxylate (111)

Prepared from 2-cyclohexen-1-one and 3-benzyl-4-phenylbut-2-en-1-0l 4 following
General Procedure E. Purification by flash column chromatography (5-50%
EtOAc/hexanes) afforded the title compound as a colorless oil (1.96 g, 5.43 mmol, 21.3%
yield).

'"H NMR (400 MHz, CDCl3):  7.33 — 7.25 (m, 4H), 7.24 — 7.18 (m, 2H), 7.17 — 7.07 (m,
4H), 7.03 - 6.97 (m, 1H), 6.08 (dt,J=10.1, 2.0 Hz, 1H), 5.59 (tt, /J="7.1, 1.1 Hz, 1H), 4.86
—4.80 (m, 2H), 3.48 —3.35 (m, 3H), 3.26 (s, 2H), 2.55 - 2.32 (m, 3H), 2.30 — 2.15 (m, 1H).
13C NMR (100 MHz, CDCl3): & 193.9, 170.1, 150.7, 144.4, 139.0, 138.9, 129.3, 129.3,
128.9, 128.7, 128.5, 126.5, 126.4, 121.9, 62.0, 53.6, 42.9, 35.9, 25.8, 24.5.

IR (Neat Film, NaCl): 3026, 2927, 1738, 1681, 1493, 1388, 1304, 1230, 1157, 1123 cm™
1

HRMS (MM: FD+): m/z calc’d for C24H2403 [M]": 360.1725, found 360.17302.

112

2-cycloheptylideneethyl 2-oxocyclohex-3-ene-1-carboxylate (112)
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Prepared from 2-cyclohexen-1-one and 2-cycloheptylideneethan-1-0l*® following General
Procedure E. Purification by flash column chromatography (5-50% EtOAc/hexanes)
afforded the title compound as a colorless oil (1.73 g, 5.43 mmol, 28.1% yield).

'"H NMR (400 MHz, CDCls):  6.99 (dt, J=10.0, 3.8 Hz, 1H), 6.07 (dt, J= 10.1, 2.0 Hz,
1H), 5.34 (tt, J= 7.1, 1.3 Hz, 1H), 4.66 (d, J = 7.0 Hz, 2H), 3.45 — 3.37 (m, 1H), 2.57 —
2.15 (m, 8H), 1.63 — 1.44 (m, 8H).

13C NMR (100 MHz, CDCls): 6 194.1, 170.2, 150.6, 148.8, 129.3, 118.5, 62.1, 53.6, 37.8,
30.2,29.9,29.1, 28.8, 27.3, 25.8, 24.5.

IR (Neat Film, NaCl): 2923, 2853, 1736, 1681, 1442, 1388, 1300, 1231, 1155, 1122, 1076
cm

HRMS (MM: FD+): m/z calc’d for C26H2203 [M]": 262.1569, found 262.1577.Protonated

Enone Byproducts
o 9 /\)M\e Pd,(dba); (2.5 mol %) 0
| o, *
07" e (S)-+-BuPHOX (6.5 mol %) _
3,5-dimethylphenol (1 equiv) P
X _CO,Bn PhMe, 60 °C C0,Bn
40a 49a

benzyl (R,E)-6-(2-oxocyclohex-3-en-1-yl)hex-2-enoate (49a)

In a nitrogen filled glovebox, an oven-dried 20 mL vial was charged with a stir bar,
Pd>(dba); (0.46 mg, 0.50 umol, 2.5 mol %), (S)--BuPHOX (0.50 mg, 1.3 pmol, 6.5 mol %),
and toluene (0.5 mL). The catalyst solution was stirred at 23 °C for 20 min. A solution of
substrate 40a (8.2 mg, 0.020 mmol, 1 equiv) and 3,5-dimethylphenol (2.4 mg, 0.020 mmol,
1 equiv) in toluene (0.5 mL) was added to the vial. The resultant solution was then heated

to 60 °C for 14 h. The solution was then cooled to 23 °C and concentrated under reduced
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pressure. NMR analysis of the crude reaction mixture affords an NMR yield of 100% (with
respect to 1,3,5-trimethoxybenzene as an internal standard). The sample was purified by
preparatory TLC (25% EtOAc/hexanes) to afford 49a (71% ee).

'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.29 (m, 5H), 7.01 (dt, J = 15.7, 6.9 Hz, 1H), 6.92
(dddd, /= 10.1, 4.5, 3.5, 0.9 Hz, 1H), 5.98 (ddd, J = 10.1, 2.3, 1.7 Hz, 1H), 5.88 (dt, J =
15.6, 1.6 Hz, 1H), 5.17 (s, 2H), 2.46 — 2.34 (m, 2H), 2.32 — 2.20 (m, 3H), 2.09 (dqd, J =
13.3, 4.8, 1.0 Hz, 1H), 1.89 — 1.80 (m, 1H), 1.75 (dddd, J = 13.3, 11.0, 8.4, 5.8 Hz, 1H),
1.55 - 1.35 (m, 3H).

13C NMR (100 MHz, CDCl3): 5 201.6, 166.6, 149.7, 149.6, 136.3, 129.7, 128.7, 128.3,
128.3,121.4, 66.2, 46.5, 32.5, 29.0, 28.0, 25.6, 25.3.

IR (Neat Film, NaCl): 2921, 1712, 1673, 1257 cm™'.

HRMS (MM: FD+): m/z calc’d for CioH2,03 [M]*: 298.1569, found 298.1565.

Optical Rotation: [a]p?' +3.5 (¢ 0.20, CHCls).

SFC conditions: 40% IPA, 2.5 mL/min, Chiralpak IC column, A =210 nm, tr (min): minor

=3.81, major = 4.34.

o)
Cﬁ
\k/\cozsn
49d

benzyl (R,E)-7-(2-oxocyclohex-3-en-1-yl)hept-2-enoate (49d)
Isolated as a byproduct from the reaction of 40d to 41d as a colorless oil (10.4 mg, 0.0332

mmol, 17% yield, 67% ee).
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"H NMR (400 MHz, CDCl3): § 7.32 — 7.22 (m, 5H), 6.93 (dt, J= 15.7, 6.9 Hz, 1H), 6.53
(ddd, J=12.0, 6.7, 4.0 Hz, 1H), 5.94 (ddd, J=11.9, 2.5, 0.9 Hz, 1H), 5.80 (dt, J = 15.6,
1.6 Hz, 1H), 5.10 (s, 3H), 2.59 — 2.49 (m, 1H), 2.42 — 2.25 (m, 2H), 2.14 (tdd, J= 7.7, 4.8,
1.4 Hz, 2H), 1.90 — 1.48 (m, 5H), 1.44 — 1.29 (m, 4H).

13C NMR (100 MHz, CDCl3): § 205.7, 166.5, 149.6, 146.0, 136.2, 132.8, 128.6, 128.2,
128.2,121.2,66.0, 51.7, 32.4, 31.1, 29.9, 29.5, 25.8, 25.4.

IR (Neat Film, NaCl): 2917, 1719, 1671, 1266, 1165 cm™.

HRMS (MM: FD+): m/z calc’d for C20H2403 [M]*: 312.1720, found 312.1734.

Optical Rotation: [a]p?' —0.6 (¢ 1.00, CHCI3).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

o)
H
@_““WCOZBn
49e

benzyl (S,E)-5-(2-oxocyclohex-3-en-1-yl)pent-2-enoate (49¢)

minor = 8.23, major = 7.63.

Isolated as the major byproduct from the reaction of 40e to 41e. Purification by flash
column chromatography (0-45% EtOAc/hexanes) afforded the title compound as a
colorless oil (46.1 mg, 0.16 mmol, 81% yield, 47% ee).

'"H NMR (400 MHz, CDCl3): 6 7.42 — 7.28 (m, 5H), 7.01 (dt, J = 15.6, 6.9 Hz, 1H), 6.92
(dddd, J = 10.0, 4.4, 3.6, 1.0 Hz, 1H), 5.98 (dt, J = 10.0, 2.0 Hz, 1H), 5.90 (dt, J = 15.7,
1.6 Hz, 1H), 5.17 (s, 2H), 2.44 — 2.24 (m, 5H), 2.15 — 1.96 (m, 2H), 1.82 — 1.69 (m, 1H),

1.62 — 1.44 (m, 1H).
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13C NMR (100 MHz, CDCl3): & 201.3, 166.5, 149.6, 149.4, 136.2, 129.7, 128.7, 128.3,
128.3, 121.6, 66.2, 45.9,29.7, 28.2, 27.8, 25.4.

IR (Neat Film, NaCl): 3032, 2932, 1719, 1675, 1455, 1386, 1265, 1171 cm™".

HRMS (MM: FD+): m/z calc’d for CisH2003 [M]*: 284.1412, found 284.1407.

Optical Rotation: [a]p?' +11.8 (¢ 1.00, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak AS-H column, A = 210 nm, tr (min):

minor = 5.69, major = 6.54.

(o)
H
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benzyl (R,E)-7-(2-oxocyclohex-3-en-1-yl)hept-2-enoate (49f)

Isolated as a byproduct from the reaction of 40f to 41f as a colorless oil (28.1 mg, 0.090
mmol, 45% yield, 51% ee). Absolute stereochemistry proposed based on VCD analysis
(vide infra).

'"H NMR (400 MHz, CDCl3): 6 7.42 — 7.29 (m, 5H), 7.00 (dt, J = 15.6, 6.9 Hz, 1H), 6.90
(dddd, J=10.0, 4.5, 3.5, 0.9 Hz, 1H), 5.97 (dt, J = 10.1, 2.0 Hz, 1H), 5.86 (dt, J = 15.6,
1.6 Hz, 1H), 5.17 (s, 2H), 2.42 — 2.33 (m, 2H), 2.29 — 2.18 (m, 3H), 2.08 (dqd, J = 13.3,
4.8,0.9 Hz, 1H), 1.88 — 1.80 (m, 1H), 1.78 — 1.69 (m, 1H), 1.52 — 1.29 (m, 5SH).

13C NMR (100 MHz, CDCl3): § 201.8, 166.6, 150.0, 149.5, 136.3, 129.6, 128.6, 128.3,
128.3,121.2, 66.1, 46.6, 32.2, 29.0, 28.2, 27.9, 26.6, 25.2.

IR (Neat Film, NaCl): 2927, 2859, 1716, 1675, 1652, 1262, 1172 cm™!

HRMS (MM: FD+): m/z calc’d for C20H2403 [M]*: 312.1725, found 312.1737.

Optical Rotation: [a]p?' +4.1 (¢ 1.00, CHCl5).



Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 242

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 7.77, major = 8.44.

0
D
o‘\\
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D-49f
benzyl (R,E)-7-(2-oxocyclohex-3-en-1-yl-1-d)hept-2-enoate (D-49f)
Isolated as a byproduct from the reaction of D-40f to D-41f as a colorless oil (14.9 mg,
0.0475 mmol, 24% yield, 55% ee).
'"H NMR (400 MHz, CDCl3): 6 7.39 — 7.29 (m, 5H), 7.00 (dt, J = 15.6, 7.0 Hz, 1H), 6.91
(dddd, J=10.1, 4.5, 3.5, 0.9 Hz, 1H), 5.97 (dddd, J=10.0, 2.3, 1.6, 0.6 Hz, 1H), 5.86 (dt,
J=15.6,1.6 Hz, 1H), 5.17 (s, 2H), 2.44 — 2.33 (m, 2H), 2.28 — 2.18 (m, 2.5H), 2.09 (ddt,
J=13.3,5.8,4.5 Hz, 1H), 1.87 — 1.70 (m, 2H), 1.53 — 1.27 (m, 5H).
13C NMR (100 MHz, CDCl3): & 201.9, 166.6, 150.0, 149.6, 129.7, 129.7, 128.7, 128.3,
128.3,121.2, 66.2, 46.6, 32.3, 29.0, 28.9, 28.2, 27.9, 27.8, 26.7, 26.6, 25.3, 25.2.
H NMR (61 MHz, CHCl3): & 2.25.
IR (Neat Film, NaCl): 2929, 2857, 1714, 1697, 1267, 1174 cm™'.
HRMS (MM: FD+): m/z calc’d for C20H23DO3 [M+H]": 313.1783, found 313.1788.
Optical Rotation: [a]p?' +5.8 (¢ 0.50, CHCls).
SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 7.96, major = 8.67.

(o]
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49g
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benzyl (R,E)-8-(2-oxocyclohex-3-en-1-yl)oct-2-enoate (49¢g)

Isolated as the major product from the reaction of 40g to 41g as a colorless oil (50.5 mg,
0.155 mmol, 77% yield, 56% ee).

'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.29 (m, 5H), 7.01 (dt, J = 15.6, 6.9 Hz, 1H), 6.91
(dddd, J=10.0, 4.5, 3.5, 0.9 Hz, 1H), 5.97 (dt, J = 10.0, 2.0 Hz, 1H), 5.86 (dt, J = 15.6,
1.6 Hz, 1H), 5.17 (s, 2H), 2.45 — 2.33 (m, 2H), 2.30 — 2.16 (m, 3H), 2.09 (dqd, J = 14.5,
5.0,0.9 Hz, 1H), 1.86 — 1.70 (m, 2H), 1.51 — 1.42 (m, 2H), 1.41 — 1.28 (m, 5H).

13C NMR (100 MHz, CDCl3): § 202.0, 166.7, 150.2, 149.5, 136.3, 129.7, 128.7, 128.3,
128.3, 121.1, 66.1, 46.6, 32.3, 29.3, 29.1, 28.0, 27.9, 26.8, 25.2.

IR (Neat Film, NaCl): 2927, 2859, 1718, 1677, 1555, 1450, 1257, 1165 cm™!

HRMS (MM: FD+): m/z calc’d for C21H2603 [M]*: 326.1877, found 326.1891.

Optical Rotation: [a]p?' +7.0 (c 1.00, CHCl5).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 9.70, major = 10.46.

o
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6-(pent-4-en-1-yl)cyclohex-2-en-1-one (49h)
Isolated as the major product from the reaction of 40h to 41h as a colorless oil. Purification
by flash column chromatography (0—-15% EtOAc/hexanes) afforded the title compound as

a colorless oil (11.0 mg, 0.067 mmol, 33% yield, 58% ee).
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'"H NMR (400 MHz, CDCl3): & 6.91 (dddd, J = 10.1, 4.4, 3.5, 0.9 Hz, 1H), 5.97 (dt, J =
10.0, 2.1 Hz, 1H), 5.81 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.01 (dq, J = 17.2, 1.8 Hz, 1H),
4.94 (dd, J = 10.1, 1.3 Hz, 1H), 2.45 — 2.24 (m, 3H), 2.16 — 1.98 (m, 2=3H), 1.95 — 1.69
(m, 2H), 1.55 — 1.31 (m, 3H).

13C NMR (100 MHz, CDCl3): § 202.0, 149.5, 138.8, 129.7, 114.7, 46.6, 34.0, 28.8, 27.9,
26.4,25.2.

IR (Neat Film, NaCl): 2925, 2859, 1677, 1639, 1456, 1387, 1215, 912 cm™.

HRMS (MM: FD+): m/z calc’d for C11H160 [M]": 164.1201, found 164.1201.

Optical Rotation: [a]p?' —111.5 (¢ 1.00, CHCl5).

SFC conditions: 3% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

(0]
H
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(E)-6-(2-oxocyclohex-3-en-1-yl)hex-2-enoic acid (49i)

minor =4.41, major =4.11.

Isolated as the major product from the reaction of 40i to 41i as a colorless oil. Purification
by flash column chromatography (35% EtOAc/hexanes with 3% AcOH) afforded the title
compound as a white solid (33.2 mg, 0.16 mmol, 80% yield, 9% ee).

'"H NMR (400 MHz, CDCl3): § 7.07 (dtd, J = 15.5, 7.0, 1.5 Hz, 1H), 6.97 — 6.87 (m, 1H),
5.98 (dq, J=10.1, 1.9 Hz, 1H), 5.84 (dt, J=15.6, 1.6 Hz, 1H), 2.49 — 2.35 (m, 2H), 2.34
—2.19 (m, 3H), 2.16 —2.04 (m, 1H), 1.92 — 1.81 (m, 1H), 1.81 — 1.70 (m, 1H), 1.63 — 1.48

(m, 2H), 1.48 — 1.35 (m, 1H).
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13C NMR (100 MHz, CDCl3): 6 201.7, 171.5,151.9, 149.7, 129.7, 120.9, 46.5, 32.5, 29.0,
28.0, 25.5.

IR (Neat Film, NaCl): 2928, 2857, 1731, 1454, 1155 cm™

HRMS (MM: FD+): m/z calc’d for Ci1o2H1703 [M]*: 209.1178, found 209.1168.

Optical Rotation: [a]p?' 2.2 (¢ 1.00, CHCl;).

SFC conditions: 30% IPA, 2.5 mL/min, Chiralpak IC column, 1 =210 nm, tr (min): minor

=3.30, major = 4.02
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49m
1,3-dioxoisoindolin-2-yl (£)-6-(2-oxocyclohex-3-en-1-yl)hex-2-enoate (49m)
Isolated as a byproduct product from the reaction of 40m to 41m as a colorless oil.
Purification by flash column chromatography (0-35% EtOAc/hexanes) afforded the title
compound as a white solid (7.7 mg, 0.022 mmol, 11% yield).
'"H NMR (400 MHz, CDCl3): 6 7.89 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J= 5.5, 3.1 Hz,
2H), 7.32 (dt, J=15.8, 6.9 Hz, 1H), 6.93 (dddd, J=10.1, 4.5, 3.5, 1.0 Hz, 1H), 6.10 (dt, J
=15.8, 1.6 Hz, 1H), 5.99 (ddd, J = 10.0, 2.3, 1.7 Hz, 1H), 2.50 — 2.25 (m, 5H), 2.12 (m,
1H), 1.95-1.84 (m, 1H), 1.78 (m, 1H), 1.59 (m, 2H), 1.45 (m, 1H).
13C NMR (100 MHz, CDCl3): § 201.5, 162.5, 162.2, 155.6, 149.7, 134.9, 129.7, 129.1,
124.1, 115.9, 46.5, 33.2, 29.1, 28.1, 25.4, 25.3.
IR (Neat Film, NaCl): 2931, 1770, 1745, 1673, 1466, 1360, 1186 cm™".

HRMS (MM: FD+): m/z calc’d for C20H19NOs [M]": 353.1263, found 353.1242.



Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 246

(o]
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benzyl (R,E)-2-methyl-6-(2-oxocyclohex-3-en-1-yl)hex-2-enoate (49r)

Isolated as a byproduct from the reaction of 40r to 41r as a colorless oil (23.2 mg, 0.0743
mmol, 37% yield, 59% ee).

'"H NMR (400 MHz, CDCl3): § 7.40 — 7.29 (m, 5H), 6.91 (dddd, J=10.1, 4.5, 3.5, 0.9 Hz,
1H), 6.81 (td,J=7.5, 1.5 Hz, 1H), 5.97 (dt, J=10.0, 1.9 Hz, 1H), 5.18 (s, 2H), 2.45 - 2.34
(m, 2H), 2.32 — 2.17 (m, 3H), 2.09 (dqd, J = 13.4, 4.9, 1.0 Hz, 1H), 1.90 — 1.81 (m, 4H),
1.80 —1.71 (m, 1H), 1.55 — 1.36 (m, 3H).

13C NMR (100 MHz, CDCl3): 5 201.7, 168.1, 149.6, 142.7, 136.6, 129.7, 128.6, 128.2,
128.1, 127.9, 66.3, 46.6, 29.2, 29.0, 28.0, 26.2, 25.2, 12.6.

IR (Neat Film, NaCl): 3033, 2932, 2861, 1710, 1677, 1256 cm™'.

HRMS (MM: FD+): m/z calc’d for C20H2403 [M]*: 312.1725, found 312.1729.

Optical Rotation: [a]p?' +8.6 (¢ 1.00, CHCl5).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

(0}
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benzyl (E)-6-(4-ethoxy-2-oxocyclohex-3-en-1-yl)hex-2-enoate (49t)

minor = 5.89, major = 6.22.

Isolated as a byproduct from the reaction of 40t to 41t as a colorless oil (5.2 mg, 0.015

mmol, 8% yield, 45% ee).
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'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.27 (m, 5H), 7.01 (dt, J = 15.6, 6.9 Hz, 1H), 5.87
(dt, J=15.6, 1.6 Hz, 1H), 5.31 (s, 1H), 5.17 (s, 2H), 3.88 (qd, J = 7.1, 1.4 Hz, 2H), 2.41
(dd, J=17.2,5.3 Hz, 2H), 2.29 — 2.13 (m, 3H), 2.06 (dq, /= 13.2, 5.2 Hz, 1H), 1.86 (ddt, J
=13.3, 11.1, 5.2 Hz, 1H), 1.78 — 1.64 (m, 1H), 1.59 — 1.37 (m, 3H), 1.35 (t, /= 7.0 Hz,
3H).

13C NMR (100 MHz, CDCl3): § 201.4, 176.9, 166.6, 149.7, 136.3, 128.7, 128.3, 128.3,
121.3,102.3, 66.1, 64.4,45.1, 32.5, 29.3, 28.2, 26.4, 25.7, 14.3.

IR (Neat Film, NaCl): 2919, 1718, 1648, 1605, 1456, 1377, 1260, 1190, 732 cm™'.
HRMS (MM: FD+): m/z calc’d for C21H2604 [M]*: 342.1828, found 342.1826.

Optical Rotation: [a]p?' —5.5 (¢ 0.34, CHCI).

SFC conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 10.17, major = 11.69.

(o]
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benzyl (E)-6-(3-methyl-2-oxocyclohex-3-en-1-yl)hex-2-enoate (49u)

Isolated as a byproduct from the reaction of 40u to 41u as a colorless oil (23.6 mg, 0.075
mmol, 37% yield, 46% ee).

'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.28 (m, 5H), 7.01 (dt, J = 15.5, 6.9 Hz, 1H), 6.71
—6.63 (m, 1H), 5.88 (dt,J=15.6, 1.6 Hz, 1H), 5.17 (s, 2H), 2.33 (ddq, /= 6.3, 4.8, 2.0 Hz,
2H), 2.29 — 2.19 (m, 3H), 2.10 — 2.01 (m, 1H), 1.88 — 1.77 (m, 1H), 1.76 (q, J = 1.7 Hz,

3H), 1.74 — 1.69 (m, 1H), 1.56 — 1.34 (m, 3H).
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13C NMR (100 MHz, CDCl): 5 201.9, 166.6, 149.8, 144.5, 136.3, 135.3, 128.68, 128.3,
128.3,121.3, 66.2, 46.6, 32.5,29.2, 28.4,25.7, 25.2, 16.3.

IR (Neat Film, NaCl): 2925, 1718, 1670, 1455, 1262, 1172, 1013 cm™.

HRMS (MM: FD+): m/z calc’d for C20H2403 [M]*: 312.1725, found 312.1721.

Optical Rotation: [a]p?' —14.7 (¢ 0.35, CHCI).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):
minor = 7.18, major = 7.62.

Product Derivatizations

0 OH
g’ NaBH, (2 equiv) g’
MeOH, 0°C, 10 min
H H
CO,Bn CO,Bn
41a 68

benzyl (3aR,6R,7S,7aR)-4-hydroxyoctahydro-3a,6-ethanoindene-7-carboxylate (68)

To a solution of ketone 41a (0.125 mmol, 1 equiv) in methanol (4.4 mL) was added NaBH4
(0.25 mmol, 2 equiv) at 0 °C. The reaction was allowed to stir for 10 min at 0 °C and then
was diluted with water. The aqueous layer was extracted with dichloromethane (3x), and
the combined organic layers were dried over Na>SOs. Concentration under reduced
pressure afforded the title compound as a colorless oil (37.6 mg, 0.125 mmol, 99% yield).
'H NMR (400 MHz, CDCl3): § 7.42 — 7.30 (m, 5H), 5.19 — 5.05 (m, 2H), 3.76 (dd, J =
8.9, 5.3 Hz, 0.4H, minor), 3.69 (dt, J= 8.9, 1.5 Hz, 0.6H, major), 2.35 —2.24 (m, 1H), 2.15
—1.95 (m, 2H), 1.95 — 1.83 (m, br, 1H), 1.83 — 1.56 (m, 6H), 1.53 — 1.23 (m, 5H), 1.15 —

1.01 (m, 1H).
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13C NMR (100 MHz, CDCl3): 5 175.8, 175.6, 136.3, 128.6, 128.2, 128.2, 128.0, 128.0,
75.6,70.3, 66.3, 66.3,49.21, 48.1, 44.5, 44.2,43.2, 36.8, 35.0, 34.9, 34.0, 30.5, 30.3, 30.1,
29.6, 29.0, 26.7, 26.3, 22.8, 22.8, 20.3.

IR (Neat Film, NaCl): 3438, 3032, 2942, 2865, 1730, 1455, 1162 cm™!

HRMS (MM: FD+): m/z calc’d for C19H2403 [M]": 300.1725, found 300.1730.

Optical Rotation: [a]p?' —31.1 (¢ 1.00, CHCI3).

(o]

HO
NaOAc (2.4 equiv) I
g’ NH,OH-HCI (1.17 equiv) g’

MeOH, reflux, 2 h

H H
CO,Bn CO,Bn
41a 114
benzyl (3aR,6R,7S,7aR, E)-4-(hydroxyimino)octahydro-3a,6-ethanoindene-7-

carboxylate (114)

To a stirred solution of ketone 41a (0.125 mmol, 1 equiv) in methanol (1.25 mL) was added
NaOAc (0.3 mmol, 2.4 equiv), NH>OH*HCI (0.15 mmol. 1.17 equiv), and water (0.05 mL).
The reaction was brought to reflux for 2 h and was subsequently cooled to 23 °C and
concentrated under reduced pressure. The crude mixture was then diluted with water and
extracted with EtOAc (3x), washed with a saturated aqueous solution of NaHCOj3 and brine,
dried with Na>SOs, and concentrated under reduced pressure. The material was used in the
next step without further purification assuming quantitative yield.

'"H NMR (400 MHz, CDCl3): § 7.42 —7.28 (m, 5H), 5.20 — 5.06 (m, 2H), 2.52 — 2.46 (m,
2H), 2.43 — 2.39 (m, 1H), 2.39 — 2.36 (m, 1H), 2.15 (dtd, /= 10.2, 8.2, 1.8 Hz, 1H), 2.07

(ddt, J=11.9, 8.3, 4.1 Hz, 1H), 1.98 (ddd, J= 13.0, 11.0, 8.0 Hz, 1H), 1.82 — 1.71 (m, 3H),
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1.67 (ddd,J=10.9,3.6, 1.8 Hz, 1H), 1.48 (dddd, /= 12.5,7.8, 6.5, 3.7 Hz, 2H), 1.36 (dddd,
J=23.6,11.1, 8.8, 2.6 Hz, 2H).

13C NMR (100 MHz, CDCls): 5 174.8, 165.4, 136.2, 128.7, 128.4, 128.2, 66.5, 48.2, 45.7,
44.4,30.6,29.2, 28.9, 28.1, 27.2, 25.5, 22.6.

IR (Neat Film, NaCl): 2945, 1731, 1161 cm™.

HRMS (MM: FD+): m/z calc’d for C1oH23NO3 [M]™: 313.1678, found 313.1676.

Optical Rotation: [a]p?' —22.0 (¢ 0.37, CHCI).

HO

~ N H
I ) o-__N

@’ SOCI, (5 equiv) i

THF,0°C, 3 h g H
H B
CO,Bn CO.Bn
114 69

benzyl (4R,58,5aR,8aR)-2-oxooctahydro-1/-4,8a-ethanocyclopenta|b]azepine-5-
carboxylate (69)

To a solution of 114 (0.125 mmol, 1 equiv) in THF (1.25 mL) at 0 °C was added a solution
of SOCIl, (0.625 mmol, 5 equiv) in THF (0.23 mL). The reaction was stirred for 3 h at 0
°C, followed by dilution with water. Aqueous solution NH4OH was added to the reaction
mixture until neutral, and the aqueous layer was extracted with dichloromethane (3x). The
combined organic layers were washed with water and brine, dried over Na,SOs4, and
concentrated under reduced pressure. Purification by flash column chromatography (35%
EtOAc/hexanes) afforded the title compound as a colorless oil (22 mg, 0.167 mmol, 56%

yield over two steps).



Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 251

'H NMR (400 MHz, CDCL): § 7.41 — 7.27 (m, 5H), 6.67 (s, 1H, br), 5.15 (q, J= 12.3 Hz,
2H), 2.73 (dt, J=18.1, 1.6 Hz, 1H), 2.62 (tdd, J=19.9, 8.0, 1.4 Hz, 1H), 2.48 (dd, J= 18.4,
6.9 Hz, 1H), 2.40 —2.32 (m, 2H), 2.29 - 2.16 (m, 1H), 1.95 (dtd, J=12.7, 8.7, 2.2 Hz, 1H),
1.82 — 1.62 (m, 7H), 1.62 — 1.52 (m, 1H), 1.44 — 1.30 (m, 1H).

13C NMR (100 MHz, CDCL): § 174.6, 174.2, 135.9, 128.8, 128.4, 128.3, 66.7, 59.9, 48.8,
48.5,39.2,33.3,31.1,29.8, 25.1, 23.3.

IR (Neat Film, NaCl): 3182, 3055, 2934, 1727, 1648, 1456, 1398, 1167 cm™.

HRMS (MM: FD+): m/z calc’d for C19H23NO3 [M]": 313.1678, found 313.1678.

Optical Rotation: [a]p?' —5.5 (¢ 0.89, CHCI3).

o
m-CPBA (1.2 equiv) D
g’ NaHCO, (2.9 equiv) \
CH,Cl,, 25°C,20h
H H

CO,Bn CO,Bn
41a 70

benzyl (4R,55,5aR,8aR)-2-0xooctahydro-4,8a-ethanocyclopenta[b]oxepine-5-
carboxylate (70)

To a solution ketone 41a (37 mg, 0.13 mmol, 1 equiv) in CH2Cl (1.25 mL, 0.1 M) at 0°C
was added NaHCOs; (30.8 mg, 0.37 mmol, 2.9 equiv). Subsequently, m-CPBA (31 mg,
0.15 mmol, 1.2 equiv) was added and the reaction was allowed to warm to 25 °C. Upon
complete consumption of starting material (as determined by TLC), the reaction mixture
was diluted with a saturated solution of Na»S;O3 and extracted with Et;O (3x). The
combined organic layers were washed with a saturated solution of NaHCO3 followed by

brine, dried over Na,;SOj4, and volatiles were removed in vacuo. Purification by preparatory
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thin layer chromatography (30% EtOAc/hexanes) afforded the title compound as a clear
oil (16 mg, 0.05 mmol, 41% yield).

'"H NMR (400 MHz, CDCl3): 6 7.43 — 7.29 (m, 5H), 5.22 — 5.10 (m, 2H), 2.97 (ddd, J =
19.0,2.5, 1.4 Hz, 1H), 2.83 — 2.61 (m, 2H), 2.41 — 2.32 (m, 2H), 2.28 — 2.09 (m, 3H), 2.05
—1.93 (m, 1H), 1.81 — 1.56 (m, 5H), 1.40 — 1.26 (m, 1H).

13C NMR (100 MHz, CDCl3): 6 173.9,172.9, 135.7, 128.8, 128.6, 128.3, 88.4, 66.9, 47.8,
46.5,39.6, 39.1, 32.8, 30.4, 29.7, 24.9, 22.7.

IR (Neat Film, NaCl): 2943, 2873, 1722, 1255, 1189, 1167 cm™'.

HRMS (MM: FD+): m/z calc’d for CioH2004 [M]*: 314.1518, found 314.1521.

Optical Rotation: [a]p?' —15.8 (¢ 1.00, CHCI3).

0 0 o
(NH,)2S,04 (3 equiv)

s‘ H; (1 atm), Pd/C @‘ 2,4,6-collidine (3 equiv)
MeOH, 23 °C, 18 h DMSO, 60 °C, 2 h s‘
H H H

CO,Bn COLH
41f 75

(28,4aR,8aR)-octahydro-2H-2,4a-ethanonaphthalen-9-one (75)

A vial containing ketone 41f (0.72 mmol, 1 equiv) and Pd/C (10 wt. % with 67% H>O,
0.072 mmol, 0.1 equiv) was evacuated and backfilled with H>. Methanol (1.06 mL) was
subsequently added, and the reaction was stirred at 23 °C overnight. The crude reaction
mixture was filtered through a silica plug and concentrated under reduced pressure to afford
the corresponding acid as a white solid, which was used without further purification.

To a solution of the crude acid (0.62 mmol, 1 equiv) in DMSO (1.24 mL) was added
(NH4)2S205 (1.86 mmol, 3 equiv) and 2,4,6-collidine (1.86 mmol, 3 equiv). The mixture

was purged with N> for 5 min and was subsequently sealed and heated to 60 °C for 2 h with
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stirring. The reaction mixture was diluted with dichloromethane, washed with brine (1x),
and the aqueous layer was extracted with dichloromethane (3x). The combined organic
layers were washed with brine (3x), dried over Na>SOs, and concentrated under reduced
pressure. Purification by flash column chromatography (15% EtOAc/hexanes) afforded the
title compound as a white solid (30.2 mg, 0.167 mmol, 27% yield).

'TH NMR (400 MHz, CDCl3): § 2.33 —2.21 (m, 3H), 2.13 — 2.07 (m, 1H), 1.93 (dddd, J =
13.3, 10.6, 3.8, 2.8 Hz, 1H), 1.75 — 1.58 (m, 6H), 1.53 (dd, J = 13.6, 4.0 Hz, 1H), 1.47 —
1.38 (m, 2H), 1.38 — 1.28 (m, 1H), 1.27 - 1.17 (m, 1H), 1.17 — 1.05 (m, 2H).

13C NMR (100 MHz, CDCl3): 6 218.6, 44.9, 43.9, 34.5, 34.1, 30.6, 29.0, 27.7, 25.9, 25.9,
21.8,21.4.

IR (Neat Film, NaCl): 2925, 1716 cm™

HRMS (MM: FI+): m/z calc’d for C12Hi30 [M]": 178.1358, found 178.1359.

Optical Rotation: [a]p?' —59.9 (¢ 0.89, CHCIs).

o]

1. HCO,Et (71.4 equiv) (o}
KHMDS (28 equiv)
s‘ PhMe, 70 °C, 16 h
2. HCHOyq
H THF, 50 °C, 4 h H

(25,4aR,8aR)-10-methyleneoctahydro-2H-2,4a-ethanonaphthalen-9-one (76)

To a solution of ketone 75 (0.056 mmol, 1 equiv) and ethyl formate (4 mmol, 71.4 equiv)
in toluene (3.2 mL) was added a solution of KHMDS (0.5 M in toluene, 1.6 mmol, 28
equiv) at 23 °C. The reaction mixture was stirred at 70 °C for 16 h. Upon cooling to 0 °C,
THF (6.4 mL) and formalin (37% in water, 3.2 mL) was added, and then the reaction was

heated to 50 °C for 4 h. The reaction mixture was diluted with a saturated aqueous solution
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of NH4Cl, extracted with EtOAc (3x), dried over Na;SOs4, and concentrated under reduced
pressure. Purification by preparatory thin layer chromatography (30% EtOAc/hexanes, 2x)
afforded the title compound as a yellow oil (4.4 mg, 0.023 mmol, 41% yield).

'"H NMR (400 MHz, CDCl3): 6 5.93 (d,J= 1.8 Hz, 1H), 5.15 (d, J= 1.8 Hz, 1H), 2.66 (p,
J=3.0 Hz, 1H), 2.39 — 2.19 (m, 1H), 1.98 (dddd, J = 13.2, 10.6, 3.9, 2.8 Hz, 1H), 1.81 —
1.61 (m, 6H), 1.51 — 1.42 (m, 2H), 1.41 — 1.31 (m, 2H), 1.23 — 1.15 (m, 2H), 1.11 (dt, J =
12.9, 3.6 Hz, 1H).

13C NMR (100 MHz, CDCl): § 205.3, 147.9, 116.3, 45.0, 36.1, 35.0, 34.7, 30.8, 29.0,
26.5,26.0,21.6, 21.3.

IR (Neat Film, NaCl): 2926, 2859, 1708, 1630, 1464, 1449 cm™'

HRMS (MM: FD+): m/z calc’d for Ci13HsO [M]": 190.1358, found 190.1353.

Optical Rotation: [a]p?' —34.2 (¢ 0.29, CHCI).

o 1. HCO,Et (71.4 equiv) (o]
KHMDS (28 equiv)

g‘ PhMe, 70 °C, 16 h g‘
2. HCHO g

THF,50°C,4 h

H H
CO,Bn CO,Et
41f 77

ethyl (15,25,4aR,8aR)-3-methylene-4-oxooctahydro-2H-2,4a-ethanonaphthalene-1-
carboxylate (77)

To a solution of 41f (0.192 mmol, 1 equiv) and ethyl formate (13.71 mmol, 71.4 equiv) in
toluene (11.1 mL) was added a solution of KHMDS (0.5 M in toluene, 5.49 mmol, 28 equiv)
at 23 °C. The reaction mixture was stirred at 70 °C for 16 h. Upon cooling to 0 °C, THF
(22.2 mL) and formalin (37% in water, 11.1 mL) was added, and then the reaction was

heated to 50 °C for 4 h. The reaction mixture was diluted with a saturated aqueous solution
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of NH4Cl, extracted with EtOAc (3x), dried over Na;SOs4, and concentrated under reduced
pressure. Purification by preparatory thin layer chromatography (30% EtOAc/hexanes, 2x)
afforded the title compound as a yellow oil (13.1 mg, 0.05 mmol, 26% yield).

'"H NMR (400 MHz, CDCl5): 6 5.99 (d, J= 1.7 Hz, 1H), 5.17 (d, J = 1.7 Hz, 1H), 4.21 —
4.01 (m, 2H), 3.04 (td, J= 3.1, 2.0 Hz, 1H), 2.27 (ddd, J = 14.2, 11.4, 5.4 Hz, 1H), 2.21
(dd, /= 6.8, 2.0 Hz, 1H), 2.01 (dddd, J=11.6, 6.5, 4.4, 1.7 Hz, 1H), 1.92 — 1.75 (m, 3H),
1.73 = 1.65 (m, 2H), 1.56 — 1.50 (m, 1H), 1.47 — 1.31 (m, 2H), 1.29 — 1.16 (m, 6H).

13C NMR (100 MHz, CDCls): § 203.7, 173.8, 144.3, 119.0, 60.8, 51.1, 45.0, 39.1, 37.2,
30.3,28.9,26.2,25.8,21.3,21.1, 14.4.

IR (Neat Film, NaCl): 2927, 2867, 1732, 1708, 1449, 1180 cm™'.

HRMS (MM: FD+): m/z calc’d for CisH2203 [M]*: 262.1569, found 262.1576.

Optical Rotation: [a]p?' —3.9 (c 0.38, CHCI).

0 0
HO
Ko0s0,;2H,0,NMO _ HO
acetone/H,0
H H
CO,Et CO,Et
77 78
ethyl (1R,25,4aR,8aR)-3-hydroxy-3-(hydroxymethyl)-4-oxooctahydro-2 H-2,4a-

ethanonaphthalene-1-carboxylate (78)

A flame dried vial was charged with enone 77 (14.7 mg, 0.056 mmol, 1 equiv) and acetone
(2.3 mL, 0.024 M) and water (0.6 mL, 0.094 M). NMO (50 wt. % in H2O) (23 pL, 0.112
mmol, 2 equiv) was added and the solution was cooled to 0 °C. K»OsO4:2H>0 (2.1 mg,
0.006 mmol, 0.1 equiv) was added to the solution. The resultant solution was slowly

warmed to 23 °C. Upon complete consumption of starting material (as determined by TLC),
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the reaction was quenched with a saturated solution of Na»S,03 and stirred for 30 min. The
mixture was then diluted with CH>Cl> and the product was extracted with CH>Cl, (2 x).
The combined organic layers were washed with brine, dried over Na>SQOs, filtered, and
concentrated under reduced pressure. Purification by preparatory thin layer
chromatography (50% EtOAc/hexanes) afforded the title compound as a colorless oil (2.1
mg, 0.007 mmol,13% yield, 10:1 dr). In the '"H NMR, peaks that correspond to the minor
diastereomer closely resemble the major diastereomer. dr was determine through
integration of '"H NMR peaks 2.69 ppm (major) and 2.96 ppm (minor).

'"H NMR (400 MHz, CDCl3): 6 4.15 (q,J = 7.1 Hz, 2H), 3.81 (dd, J = 11.8, 2.6 Hz, 1H),
3.54 (dd, J=11.9, 2.7 Hz, 1H), 2.71 — 2.67 (m, 1H), 2.38 — 2.24 (m, 2H), 2.10 (d, J=7.3
Hz, 1H), 1.94 — 1.64 (m, 7H), 1.47 — 1.18 (m, 9H).

I3C NMR (100 MHz, CDCl3): 5 218.4,174.8,75.8, 65.8, 61.0, 48.9,45.4,37.3,37.2,30.3,
28.3,25.6,22.5,21.0, 14.3.

IR (Neat Film, NaCl): 3468, 2930, 2355, 1716, 1197, 1033 cm™'.

HRMS (MM: FD+): m/z calc’d for CisH2405 [M]*: 296.1624, found 296.1619.

Optical Rotation: [a]p?' 2.1 (c 0.24, CHCl;).

o} o}
o)
g‘ Se0, (1.2 equiv) _ g‘
#I‘ AcOH, reflux, 19h #I‘
H H
CO,Bn CO,Bn
41f 79
benzyl (1R,2S5,4aR,8aR)-3,4-dioxooctahydro-2H-2,4a-ethanonaphthalene-1-

carboxylate (79)
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To a solution of 41f (0.064 mmol, 1 equiv) in glacial acetic acid (0.1 mL) was added SeO»
(0.077 mmol, 1.2 equiv). The reaction was brought to reflux for 19 h. After cooling to 23
°C, the reaction mixture was filtered and concentrated under reduced pressure. The
resulting crude mixture was dissolved in EtOAc and washed with water (5x), dried over
Na>SOs, and concentrated under reduced pressure. Purification by preparatory thin layer
chromatography (30% EtOAc/hexanes) afforded the title compound as a yellow oil (10.4
mg, 0.031 mmol, 48% yield).

'"H NMR (400 MHz, CDCl3): § 7.41 — 7.28 (m, 5H), 5.19 — 5.04 (m, 2H), 3.00 (m, 1H),
2.54 (dd, J=6.4, 2.3 Hz, 1H), 2.40 (ddd, J = 14.6, 10.3, 6.9 Hz, 1H), 2.02 (m, 3H), 1.80 —
1.69 (m, 2H), 1.68 — 1.50 (m, 3H), 1.48 — 1.38 (m, 1H), 1.33 (dt, J = 13.4, 3.5 Hz, 1H),
1.29 — 1.15 (m, 2H).

13C NMR (100 MHz, CDCl3): & 198.7, 196.1, 173.2, 135.4, 128.8, 128.6, 128.4, 67.4,
49.9, 48.0, 46.3, 37.9, 30.2, 28.3, 25.5, 22.7, 20.5, 20.2.

IR (Neat Film, NaCl): 2932, 2857, 1731, 1454, 1155 cm™.

HRMS (MM: FD+): m/z calc’d for C20H2204 [M]*: 326.1518, found 326.1532.

Optical Rotation: [a]p?' —49.2 (¢ 1.04, CHCI).

o o
) MeO
(o) HC(OMe); (38 equiv)
g‘ p-TSOH-H,0 (1 equiv) MeO g‘
MeOH, 40°C, 19h
H H
CO,Bn CO,Bn
79 80

benzyl (1R,25,4aR,8aR)-3,3-dimethoxy-4-oxooctahydro-2H-2,4a-ethanonaphthalene-

1-carboxylate (80)
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To a solution of diketone 79 (0.031 mmol, 1 equiv) in methanol (0.13 mL) was added
HC(OMe); (1.2 mmol, 38 equiv) and p-TsOH*H>O (0.031 mmol, 1 equiv). The reaction
was stirred for 19 h at 40 °C, followed by dilution with a saturated aqueous solution of
NaHCOs. The aqueous layer was extracted with EtOAc (4x), dried over Na,SO4, and
concentrated under reduced pressure. Purification by preparatory thin layer
chromatography (30% EtOAc/hexanes) afforded the title compound as a yellow oil (4.7
mg, 0.013 mmol, 41% yield).

'"H NMR (400 MHz, CDCl3): 6 7.42 — 7.29 (m, 5H), 5.26 (d, J = 12.3 Hz, 1H), 5.02 (d, J
=12.3 Hz, 1H), 3.20 (s, 3H), 3.06 (s, 3H), 2.93 (dt, /= 4.2, 2.2 Hz, 1H), 2.29 — 2.11 (m,
3H), 1.98 — 1.89 (m, 1H), 1.83 (dddd, J=13.8, 11.4, 6.7, 2.4 Hz, 1H), 1.70 — 1.58 (m, 4H),
1.54 (d,J=3.9 Hz, 1H), 1.31 (dd, J=10.8, 2.4 Hz, 1H), 1.27 — 1.19 (m, 3H).

13C NMR (100 MHz, CDCls): 6 209.0, 173.5, 136.5, 128.6, 128.5, 128.2, 97.4, 66.4, 50.4,
48.8,48.4,45.5,36.4,34.9,30.0, 29.1, 25.5, 23.1, 21.0, 21.0.

IR (Neat Film, NaCl): 2933, 2855, 1736, 1449, 1172 cm™!

HRMS (MM: FD+): m/z calc’d for C2oH2805 [M]*: 372.1937, found 372.1931.

Optical Rotation: [a]p?' —26.2 (¢ 0.42, CHCI).

HO_ AcO_
o] N N OAc
NaOAc (2.4 equiv) Pd(OAc), (0.05 equiv)
@‘ NH,OH-HCI (1.17 equiv) @‘ PhI(OAc), (3 equiv) g‘
T MeOH, reflux, 35h 1:1 ACOH/AC,0
H 100°C, 16 h H
CO,Bn CO,Bn ’ CO,Bn
41f 81
benzyl (18,2R,4a5,8aR,E)-5-acetoxy-4-(acetoxyimino)octahydro-2 H-2 ,4a-

ethanonaphthalene-1-carboxylate (81)
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To a stirred solution of ketone 41f (0.096 mmol, 1 equiv) in methanol (0.93 mL) was added
NaOAc (0.23 mmol, 2.4 equiv), NHOH*HCI (0.111 mmol, 1.17 equiv), and water (0.033
mL). The reaction was brought to reflux for 3.5 h and was subsequently cooled to 23 °C
and concentrated under reduced pressure. The crude mixture was then diluted with water
and extracted with EtOAc (3x), washed with a saturated aqueous solution of NaHCO3 and
brine, dried with Na>SOs, and concentrated under reduced pressure. The crude oxime was
dissolved in a 1:1 mixture of AcOH/Ac>O (0.78 mL). The reaction vessel was sealed and
stirred at 23 °C for 2 h. Pd(OAc): (0.0048 mmol, 0.05 equiv) and PhI(OAc), (0.288 mmol,
3 equiv) were subsequently added, and the reaction was heated to 100 °C for 16 h. The
reaction mixture was cooled to 23 °C, filtered through a silica plug, and the filtrate was
diluted with EtOAc. The organic layer was washed with a saturated solution of NaHCO3
until not acidic, washed with brine, dried over Na>SO4, and concentrated under reduced
pressure. Purification by preparatory thin layer chromatography (30% EtOAc/hexanes)
afforded the title compound (81) as a yellow oil (12.3 mg, 0.0288 mmol, 30% yield over
two steps).

'"H NMR (400 MHz, CDCl3): § 7.43 —7.27 (m, 5H), 5.31 — 5.20 (m, 1H), 5.20 — 5.02 (m,
2H), 2.62 (dt,J=20.2, 3.5 Hz, 1H), 2.40 — 2.29 (m, 2H), 2.27 - 2.17 (m, 1H), 2.14 (s, 3H),
2.02 (s, 3H), 1.89 (m, 1H), 1.83 — 1.69 (m, 4H), 1.62 (t, J = 2.8 Hz, 2H), 1.46 — 1.28 (m,
4H).

13C NMR (100 MHz, CDCl3): & 173.9, 170.6, 170.4, 168.9, 135.9, 128.8, 128.5, 128.2,
71.7,66.9,49.6,42.2,39.1, 29.5, 28.9, 28.6, 26.9, 25.5, 23.0, 21.4, 20.2, 16.7.

IR (Neat Film, NaCl): 2930, 1764, 1731, 1456, 1371, 1248, 1210 cm™.
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HRMS (MM: FD+): m/z calc’d for C24H20NOg [M]™: 427.1995, found 427.2017.

Optical Rotation: [a]p?' —27.6 (¢ 1.00, CHCI3).

AcO_
N OAc (o] OAc

K,COj3 (0.45 equiv)

g‘ NaHSOj; (3.5 equiv) @‘
MeOH, 23 °C to reflux
9h

H H
CO,Bn CO,Bn
81 82

benzyl (1S,2R,4aR,8aR)-5-acetoxy-4-oxooctahydro-2H-2,4a-ethanonaphthalene-1-
carboxylate (82)

To a solution of 81 (0.029 mmol, 1 equiv) in methanol (0.06 mL) in a loosely capped vial
was added K>COs (0.013 mmol, 0.45 equiv) at 23 °C in three portions over 6 h. NaHSO3
(0.1 mmol, 3.5 equiv) and water (0.06 mL) were subsequently added, and the vial was
sealed and heated to 80 °C for 3 h. The reaction mixture was diluted with CHCI;, rinsed
with 1 M HCI, and the aqueous layer was extracted with CHCl3 (3x). The combined organic
layers were neutralized with a saturated solution of NaHCO3, washed with brine, dried over
Na>SOs, and concentrated under reduced pressure. Purification by preparatory thin layer
chromatography (35% EtOAc/hexanes) afforded the title compound as a colorless oil (1.8
mg, 0.0056 mmol, 19% yield).

'"H NMR (400 MHz, CDCl3): § 7.41 — 7.30 (m, 5H), 5.19 — 5.06 (m, 3H), 2.48 (m, 1H),
2.41 (dt,J=19.2,2.8 Hz, 1H), 2.29 (dt, J= 6.9, 2.0 Hz, 1H), 2.16 — 2.04 (m, 3H), 1.98 (s,
3H), 1.94 — 1.89 (m, 1H), 1.87 — 1.79 (m, 3H), 1.78 — 1.73 (m, 1H), 1.71 (m, 2H), 1.46 —
1.29 (m, 3H).

13C NMR (100 MHz, CDCl3): § 212.2, 173.9, 170.2, 135.9, 128.8, 128.5, 128.3, 70.8,

66.9,49.4,48.5,40.5,37.9,30.7,29.0, 26.7, 25.8, 22.9, 21.3, 15.7.
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IR (Neat Film, NaCl): 2928, 1781, 1375, 1246, 1173 cm™.
HRMS (MM: FD+): m/z calc’d for C22H260s [M]*: 370.1780, found 370.1774.
Optical Rotation: [a]p?' —18.3 (¢ 0.18, CHCI3).

Preparation of Additional Compounds

(0]
KHMDS (1.0 equiv) /\)\
9 18-crown-6 (1.0 equiv) 0)1\0 Z Me
BF3'0Et2 (1 2 equiv)
Se, o D

H //\NJLO ZMe
CO,Bn N\;, COHBn
2
41a THF, —78°C, 2 h 59

benzyl (3aR,6R,7S,7aR)-4-oxooctahydro-3a,6-ethanoindene-7-carboxylate (59)*

To a solution of KHMDS (40 mg, 0.20 mmol, 1.0 equiv) and 18-crown-6 (53 mg, 0.20
mmol, 1 equiv) in THF (2.0 mL) at —78 °C was added a solution of 41a (60 mg, 0.20 mmol,
1 equiv). Stirring was continued at —78 °C for 30 minutes, then a pre-mixed solution of 3-
methylbut-2-en-1-yl 1 H-imidazole-1-carboxylate (43 mg, 0.24 mmol, 1.2 equiv) and boron
trifluoride diethyl etherate (30 uL, 0.24 mmol, 1.2 equiv) in THF (1.2 mL) was added
dropwise. After two additional hours of stirring at —78 °C, EtOAc and saturated aqueous
NH4Cl were added. The layers were separated, and the aqueous layer was extracted twice
with EtOAc. The combined organic layers were washed with brine, dried over Na>SOs,
filtered, and solvent was removed in vacuo. The crude mixture was purified by silica gel
flash column chromatography (0—40% EtOAc/hexanes) to afford enol carbonate 59 as a
colorless oil (44 mg, 0.11 mmol, 55% yield).

'"H NMR (400 MHz, CDCl3): 8 7.39 — 7.29 (m, 5H), 5.70 (d, J= 6.8 Hz, 1H), 5.42 - 5.36

(m, 1H), 5.09 (d, J = 3.6 Hz, 2H), 4.65 (d, J= 7.3 Hz, 2H), 3.08 — 2.96 (m, 1H), 2.25 (d, J



Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 262

=5.6 Hz, 1H), 2.07 — 1.97 (m, 2H), 1.91 — 1.79 (m, 3H), 1.77 (s, 3H), 1.73 (s, 3H), 1.63 —
1.54 (m, 2H), 1.52 — 1.38 (m, 3H), 1.35 - 1.28 (m, 1H).

13C NMR (100 MHz, CDCl3): & 174.9, 155.6, 153.5, 140.6, 136.4, 128.7, 128.2, 128.0,
117.9,112.8, 66.3, 65.3, 51.3, 48.1, 48.1, 35.5, 28.4, 28.4, 27.3, 25.9, 24.6, 22.8, 18.3.

IR (Neat Film, NaCl): 2953, 2870, 1754, 1735, 1241, 1226, 1150 cm™!

HRMS (MM: FD+): m/z calc’d for C2sH3005 [M]*: 410.2093, found 410.2094.

SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak IC column, A =210 nm, tr (min): minor
=3.05, major = 3.40.

4.4.3 DETERMINATION OF ABSOLUTE AND RELATIVE

STEREOCHEMISTRY BY VCD SPECTROSCOPY

Experimental Protocol: A solution of the compound of interest (50 mg/mL) in CDCl3; was
loaded into a front-loading SL-4 cell (International Crystal Laboratories) possessing BaF»
windows and a 100 mm path length. Infrared (IR) and VCD spectra were acquired on a
BioTools ChirallR-2X VCD spectrometer as a set of 24 one-hour blocks (24 blocks, 3120
scans per block) in dual PEM mode. A 15-minute acquisition of neat (+)-a-pinene control
yielded a VCD spectrum in agreement with literature spectra. IR and VCD spectra were
background corrected using a 30-minute block IR acquisition of the empty instrument
chamber under gentle N> purge, and were solvent corrected using a 16-hour (16 blocks,
3120 scans per block) IR/VCD acquisition of CDCIl; in the same 100 um BaF2 cell. The
reported spectra represent the result of block averaging.

Both enantiomers of compounds 41a, 41q, and 41q’ were prepared from the (S)

and (R) enantiomers of the ~-BuPHOX ligand. Data were collected for both enantiomers of
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compounds at identical concentration and the final reported VCD spectra are the half-
difference of the spectra of the compounds derived from the (S) minus (R) enantiomer of
ligand. Due to limited sample size, spectra of cycloadducts 41k’ and 41k’’ were collected
at concentrations of 11.7 and 9.3 mg/mL, respectively.

Computational Protocol: An arbitrarily chosen enantiomer of the compound of interest
was subjected to an exhaustive initial molecular mechanics-based conformational search
(OPLS 2005 force field, CHCls solvent, 10.0 kcal/mol cutoff, “Enhanced” torsional
sampling) as implemented in MacroModel program.>° The resulting ensemble of
conformers was subsequently optimized using the B3PW91 functional, cc-pVTZ(-f) basis,
and implicit PBF solvation model for chloroform using the Jaguar program.’! Harmonic
frequencies computed at the B3PW91/cc-pVTZ(-f)/PBF(chloroform) level were scaled by
0.98. The resultant structurally unique conformers possessing all positive Hessian
eigenvalues were Boltzmann weighted by relative free energy at 298.15 K. The predicted
IR and VCD frequencies and intensities of the retained conformers were convolved using
Lorentzian line shapes (y = 4 cm™') and summed using the respective Boltzmann weights
to yield the final predicted IR and VCD spectra. The predicted VCD of the opposite

enantiomer was generated by inversion of sign.
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Figure 3.9. Three diastereomers 41a, 41q, and 41q’ to be compared to spectra

computed from all eight possible stereoisomers.
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Figure 3.10. Comparison of experimental VCD and IR spectra for product 41a to

computed spectra for A_endo-trans.*
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[a] Experimental IR spectrum in good agreement with computed spectrum. Experimental VCD

spectrum for 41a is in excellent agreement with computed spectrum for ent-A_endo-trans.

Figure 3.11. Overlayed experimental and calculated VCD spectra for 41a — assigned

as ent-A_endo-trans.
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Figure 3.12. Comparison of experimental VCD and IR spectra for product 41a to

computed spectra for A_exo-trans.*
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[a] A shift of -3 cm™ along x-axis applied to computed spectra in fitting. Experimental data from 41a

do not match computed data of A_exo-trans.
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Figure 3.13. Comparison of experimental VCD and IR spectra for product 41a to

computed spectra for A_endo-cis.’
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[a] Experimental data from 41a do not match computed data of A_endo-cis.
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Figure 3.14. Comparison of experimental VCD and IR spectra for product 41a to

computed spectra for A_exo-cis.’
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[a] A shift of =3 cm-1 along x-axis applied to computed spectra in fitting. Experimental data from 41a

do not match computed data of A_exo-cis.
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Figure 3.15. Comparison of experimental VCD and IR spectra for product 41q to

computed spectra for A_endo-trans.*
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[a] A shift of +14 cm™ along x-axis applied to computed spectra in fitting. The IR spectrum of 41q
contains similar features to the calculated spectrum for A_endo-trans; however, the VCD spectrum
displays large discrepancies at 1174, 1152, 1330, 1076, and 992 cm™'. 41q is not assigned as A_endo-

trans.
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Figure 3.16. Comparison of experimental VCD and IR spectra for product 41q to

computed spectra for A_exo-trans.
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[a] Experimental data from 41q do not match computed data of A_exo-trans.
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Figure 3.17. Comparison of experimental VCD and IR spectra for product 41q to

computed spectra for A_endo-cis.
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[a] A shift of +5 cm™ along x-axis applied to computed spectra in fitting. The IR spectrum of 41q is in
good agreement with that of the computed IR spectrum of A_endo-cis. Experimental VCD spectrum

for 41q is in excellent agreement with computed spectrum for ent-A_endo-cis.

Figure 3.18. Overlayed experimental and calculated VCD spectra for 41q — assigned

as ent-A_endo-cis.

T

—— Experimental VCD
[ — Noise Ll

3.0 —— Computed VCD




Chapter 3 — Catalytic Asymmetric [4+2] Cycloaddition of Pd Enolates 272

Figure 3.19. Comparison of experimental VCD and IR spectra for product 41q to

computed spectra for A_exo-cis.’
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[a] Experimental data from 41q do not match computed data of A_exo-cis.
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Figure 3.20. Comparison of experimental VCD and IR spectra for product 41q’ to

computed spectra for A_endo-trans.*
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[a] The VCD spectrum was baseline-corrected with a shift of +7 cm™ along y-axis. Experimental data

from 41q’ do not match computed data of A_endo-trans.
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Figure 3.21. Comparison of experimental VCD and IR spectra for product 41q’ to

computed spectra for A_exo-trans.*
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[a] The VCD spectrum of 41q’ was baseline-corrected with a shift of +7 cm™ along y-axis. A shift of -
15 cm™ along x-axis applied to computed spectra in fitting. Experimental data from 41q’ do not match

computed data of A_exo-trans.
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Figure 3.22. Comparison of experimental VCD and IR spectra for product 41q’ to

computed spectra for A_endo-cis.’
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[a] The VCD spectrum of 41q" was baseline-corrected with a shift of +7 cm” along y-axis.

Experimental data from 41q’ do not match computed data of A_endo-cis.
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Figure 3.23. Comparison of experimental VCD and IR spectra for product 41q’ to

computed spectra for A_exo-cis.’
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[a] The VCD spectrum of 41q’ was baseline-corrected with a shift of +7 cm™ along y-axis. A shift of
+7 cm’ along x-axis applied to computed spectra in fitting. Experimental VCD spectrum for 41q’ is

in good agreement with computed spectrum for ent-A_exo-cis.

Figure 3.24. Overlayed experimental and calculated VCD spectra for 41q’ — assigned

as ent-A_exo-cis.
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Figure 3.25. Three diastereomers 41k, 41k’, and 41k” to be compared to spectra
computed from all eight possible stereoisomers.
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Figure 3.26. Experimental VCD and IR spectra for product 41k compared to

computed spectra for B_endo-trans.”
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[a] Experimental IR spectrum in good agreement with computed spectrum. Experimental VCD

spectrum for 41k is in excellent agreement with computed spectrum for B_endo-trans.

Figure 3.27. Overlayed experimental and calculated VCD spectra for 41k — assigned

as B_endo-trans.
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Figure 3.28. Experimental VCD and IR spectra for product 41k compared to

computed spectra for B_exo-trans.’

IR Spectra VCD Spectra
0.8 T T T 4 T T T
Experimental IR Experimental VCD
—— Computed IR —— Noise
0.7 |- B 2 A
wn
o
0.6 - B g 0
05F 1 2
@
o
g
So4f 1 4
o} 4 T T
K —— Computed VCD
< — ent-Computed VCD
0.3 1 |
wn
0.2 il o
g
0.1 4
0.0 I I I I I 4 . . . . .
1400 1300 1200 1100 1000 1400 1300 1200 1100 1000
cm™’ cm™!

[a] Experimental IR spectrum in good agreement with computed spectrum. However, VCD spectrum
contain key sign mismatches in regions around 1400 and 1100 cm™. Hence, 41k is not assigned as

B_exo-trans.
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Figure 3.29. Experimental VCD and IR spectra for product 41k compared to

computed spectra for B_endo-cis."
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[a] Experimental data do not match computed data and 41k is not assigned as B_endo-cis.
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Figure 3.30. Experimental VCD and IR spectra for product 41k compared to

computed spectra for B_exo-cis.’
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[a] Experimental data do not match computed data and 41k is not assigned as B_exo-cis.

Due to limited sample size (< 3 mg), useful VCD spectra of 41k’ were unable to be
obtained. Enantiomeric series was assigned by analogy to the 41a, 41q and 41q’ series.
The 1000-1500 cm™ region of the IR spectra are still analyzed to support relative

stereochemical assignments made by 2D NMR.
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Figure 3.31. Experimental IR spectrum for product 41k’ compared to computed

spectra for B_endo-trans (top left), B_exo-

B_exo-cis (bottom right).’
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[a] The trans relationship is supported, in accord with 2D NMR data. In contrast to endo-cis and exo-

cis, the computed IR spectra for both endo-trans and exo-trans are similar and do not offer key features

for distinguishing the two. Given the trans stereochemistry, with 41k known as B_endo-trans, 41k’ is

assigned as B_exo-trans with absolute stereochemistry assigned based on analogy to 41q'.
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Figure 3.32. Experimental VCD and IR spectra for product 41k” compared to

computed spectra for B_endo-trans.”
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[a] Experimental data do not match computed data and 41k” is not assigned as B_endo-trans.
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Figure 3.33. Experimental VCD and IR spectra for product 41k” compared to

computed spectra for B_exo-trans.’
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[a] Experimental data do not match computed data and 41k’ is not assigned as B_exo-trans.
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Figure 3.34. Experimental VCD and IR spectra for product 41k” compared to

computed spectra for B_endo-cis."
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[a] Experimental IR spectrum is in agreement with the computed spectrum of B_endo-cis. Assignment
of absolute stereochemistry is based the on the sign of the three most intense peaks in VCD spectrum,

1368, 1350, and 1085 cm™. These match B_endo-cis, the same enantiomeric series as 41k.

Figure 3.35. Overlayed experimental and calculated VCD spectra for 41k”” — assigned

as B_endo-cis.
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Figure 3.36. Experimental VCD and IR spectra for product 41k” compared to

computed spectra for B_exo-cis.*
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[a] Experimental data do not match computed data and 41k’ is not assigned as B_exo-cis.
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344 2D NMR ANALYSIS OF SELECT COMPOUNDS

Figure 3.37. 'H-"H COSY NMR spectrum of 41a (400 MHz, CDCl;).
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Figure 3.38. 'H-"C HSQC NMR spectrum of 41a (400 MHz, CDCl;).
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Figure 3.40. 'H-"H COSY NMR spectrum of 41p (400 MHz, CDCl;).
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Figure 3.42. 'H-"H NOESY NMR spectrum of 41p (400 MHz, CDCl;).
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Figure 3.43. 'H-"H COSY NMR spectrum of 41q (400 MHz, CDCl;).
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Figure 3.44. 'H-"C HSQC NMR spectrum of 41q (400 MHz, CDCl;).
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Figure 3.45. 'H-"H NOESY NMR spectrum of 41q (400 MHz, CDCl;).
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Figure 3.46. 'H-"H COSY NMR spectrum of 41q” (400 MHz, CDCl;).
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Figure 3.48. 'H-"H NOESY NMR spectrum of 41q” (400 MHz, CDCl;).
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3.4.5 GENERAL COMPUTATIONAL DETAILS

General Notes

All quantum mechanics calculations were carried out with the ORCA program.>?
Geometry optimizations, harmonic frequency calculations, and single-point energy
evaluations were carried out with density functional theory (DFT). The PBEO functional®
paired with Becke—Johnson damped D4 dispersion corrections®*, henceforth referred to as
PBEO0-D4, was used as it has proven a robust method for such systems in our prior studies.>”
For geometry optimization and harmonic frequency calculations, Pd is described by the
def2-TZVP basis set’® and the ECP28MWB small-core (18 explicit valence electrons)
quasi-relativistic pseudopotential,®” while C, H, N, and P are assigned the def2-SVP basis.

Diffuse functions are added to oxygen (ma-def2-SVP). Herein, we refer to this composite
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basis set as BS1. Geometry optimization and harmonic frequency calculations were carried
out with the CPCM implicit solvation model for toluene (PhMe, ¢ = 2.4). For all
calculations employing CPCM, surface charges are described by the improved Gaussian
charge scheme of Neese and coworkers with a scaled Van der Waals cavity (o= 1.2).5% All
Hessians were computed analytically. Stationary points are characterized by the correct
number of imaginary vibrational modes (zero for minima and one for saddle points).
Intrinsic reaction coordinate (IRC) analysis confirms the nature of transition states.>’
Cartesian coordinates of all optimized structures are included as “.xyz” files are available
online in a compressed in a zip file format.

Electronic energies are further refined with single-point calculations employing the
PBE0-D4 functional® and the def2-TZVPP basis set on all atoms (with the ECP28MWB
pseudopotential for Pd) with additional diffuse functions on O (ma-def2-TZVPP). This
mixed basis is henceforth referred to as BS2. Solvation was accounted for with CPCM as
mentioned above (PhMe, € = 2.4). Final Gibbs free energies were obtained by applying
thermodynamic corrections obtained at the optimization level of theory to these refined
electronic energies. Thermodynamic corrections from harmonic frequency calculations
employ the quasi-ridged rotor harmonic oscillator approach to correct for the breakdown
of the harmonic oscillator approximation at low vibrational frequencies.®' Note that free
energies are adjusted to a 1 M standard state. The translational (Stans) and rotational entropy
(Srot) contributions to the Gibbs free energy calculated for a complex in condensed phase
are ca. 40-60% of the values obtained assuming an ideal gas.®®> As suggested in the

literature, Swans and Srot obtained by ideal gas treatment are scaled by a factor of 0.5 to
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obtain the final condensed phase values.® Hence, the Gibbs free energy at 333.15 K is

calculated as:

1 1
solv — EeaB,l?szolv + ZPE + Etrans + Erot + Evib + ka -T (Sel + Svib + EStrans + Esrot>

+ AGO™*

The resolution of identity (RI) and Chain-of-Spheres (COS) approximations are
employed for efficient evaluation of Coulomb and exchange integrals, respectively.®* The
def2/J auxiliary basis® is employed for all atoms except oxygen, for which a suitable
auxiliary was obtained via the automatic generation algorithm in the ORCA program
(keyword: AutoAux). ®® Very fine grid settings are employed in all calculations
(optimization/frequency calculations: DefGrid2, single point calculations: DefGrid3).

Conformer searching was carried out for each stationary point using the meta-
dynamics-based CREST program (using GNF-FF) from the Grimme group. Duplicate
conformers were removed, and low energy conformers were subsequently optimized and
energies evaluated at the cheaper PBE(0-D4/def2-TZVP (Pd), ma-def2-SVP (O), def2-
SVP/CPCM(PhMe)//PBE-D4/def2-TZVP (Pd), ma-def2-SV(P) (O), def2-SV(P) level of
theory. The final low energy conformers were further optimized at the level of theory
mentioned prior. Note that for enantiodetermining transition states (such as TS2 and TS3)
conformer searching also explicitly includes rotation about the Pd—O-C—C(enolate)
dihedral, consideration of s-cis and s-trans ester conformations, as well as all permutations

of the considered stereochemical elements.
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Finally, conformational entropy ¢’ (entropy arising from multiple low energy
thermally populated conformers) is accounted for by the mixture of components model of

DeTar.%® Conformational entropy (Scons) is defined as:

Sconf = —R Z)(iln i)
where y; is the mole fraction (thermal population) of the i conformer based on its relative
free energy within the conformer ensemble. Given the computational demand for
computing free energies for large ensembles of conformers, y; was derived from the free
energies initially computed during the conformer screening process (PBE0-D4/def2-TZVP
(Pd), ma-def2-SVP (O), def2-SVP/CPCM(PhMe)//PBE-D4/def2-TZVP (Pd), ma-def2-
SV(P) (0), def2-SV(P))

Gfinal = G;olv - TSconf

For the systems at hand, values of T'S;,,f (at 333.15 K) can be on the order of

magnitude of a few kcal/mol.

Comparison of Barrier Heights to Inner-sphere Reductive Elimination

Employing cyclohexanone-derived Pd enolate as a model system (13, 116, 117), the barrier
to inner-sphere reductive elimination was investigated while varying substitution on the
allyl moiety (Figure 3.49). For further discussion on the seven-centered cyclic reductive

elimination process, see Chapters 1-2.
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Figure 3.49. Relative free energies for various inner-sphere reductive elimination

transition states from allyl (13), cinnamyl (116), and prenyl (117) complexes.*
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[a] Gibbs free energies in kcal/mol computed at the PBEO-D4/BS2/CPCM(PhMe)//PBEO-

D4/BS1/CPCM(PhMe) level of theory at 333.15 K.

Mechanism of Catalyst Turnover
Of all the sampled transition states, we found the outer-sphere and N-detached inner-sphere

pathways to be highly competitive and lowest in energy. Additional transition states were
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also explored, and the lowest energy pathway of each type of mechanism are shown in the

following table.

Figure 3.50. Relative free energies for various proton transfer transition states from

post-cycloaddition enolate 56.°
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B Tt Tt +

o | [Shdey
P’Pd/ o

TS35 TS36
Gy = 45.2 Gy =31.8

p-Hydride Elimination

/ o

7837 N 7538 7539
Girei = 64.5 Girei = 55.6 Gire1 = ~29-30

[a] Gibbs free energies in kcal/mol computed at the PBE0-D4/BS2/CPCM(PhMe)//PBEO-
D4/BS1/CPCM(PhMe) level of theory at 333.15 K.

Mechanism of Premature Protonation

Analogous to the catalyst turnover mechanism, N-detached inner-sphere pathways were
found to be lowest-energy for premature protonation. Of these transition states (TS40a and
TS40b) that would yield enantiomeric protonation products, the lowest-energy TS40a
provides the enantiomer consistent with the major reaction product. In addition, an outer-

sphere pathway (TS41) was also found to be competitive.
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Figure 3.51. Relative free energies for various proton transfer transition states from

pre-cycloaddition enolate 55.°
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Intrinsic Bonding Orbital (IBO) Analysis of Inner-sphere Proton Transfer
IBO analysis along the reaction coordinate of the N-detached inner-sphere proton transfer
to post-cycloaddition enolate confirms the role of prenyl as a proton source.

Figure 3.52. IBO analysis of N-detached inner-sphere mechanism and corresponding

derived arrow-pushing mechanism.

Derived Arrow-Pushing
Mechanism
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pKa Calculations and Thermodynamics of Outer-Sphere Proton Transfer
The pKa values of the m-allyl Pd complex 118 and ketones were calculated, and the results

verify that the proton transfers to both pre- and post-cycloaddition enolates are

thermodynamically favorable.
Figure 3.53. Computed pKa values of cationic r-allyl Pd complex 119 and ketones

49a and 41a.
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Enantiodetermining [4+2] cycloaddition

302

Figure 3.54. (A) Comparison of internal versus external dienophile approach to both

enantiotopic diene faces. (B) Select low energy conformers of TS31 (allyl isomers not

pictured). (C) Additional space-filling models for TS30 and TS31.
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Figure A2.2. Infrared spectrum (Thin Film, NaCl) of compound 41a.
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Figure A2.3. "C NMR (100 MHz, CDCl;) of compound 41a.
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Figure A2.5. Infrared spectrum (Thin Film, NaCl) of compound 41b.
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Figure A2.6. "C NMR (100 MHz, CDCl;) of compound 41b.
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Figure A2.8. Infrared spectrum (Thin Film, NaCl) of compound 41c.
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Figure A2.9. "C NMR (100 MHz, CDCl;) of compound 41c.
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Figure A2.14. Infrared spectrum (Thin Film, NaCl) of compound 41f.
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Figure A2.15. °C NMR (100 MHz, CDCl;) of compound 41f.
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Figure A2.17. Infrared spectrum (Thin Film, NaCl) of compound 41j.
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Figure A2.18. °C NMR (100 MHz, CDCl;) of compound 41j.
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Figure A2.20. Infrared spectrum (Thin Film, NaCl) of compound 41k.
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Figure A2.21. °C NMR (100 MHz, CDCl;) of compound 41k.
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Figure A2.23. Infrared spectrum (CDCl; solution) of compound 41k’.
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Figure A2.24. °C NMR (100 MHz, CDCl;) of compound 41k’.
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Figure A2.27. °C NMR (100 MHz, CDCl;) of compound 41k”".
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Figure A2.29. Infrared spectrum (Thin Film, NaCl) of compound 411.
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Figure A2.30. °C NMR (100 MHz, CDCl;) of compound 411.
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Figure A2.32. Infrared spectrum (Thin Film, NaCl) of compound 41m.
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Figure A2.33. °C NMR (100 MHz, CDCl;) of compound 41m.



338

Appendix 2 — Spectra Relevant to Chapter 3

© g punodwod Jo (F15dD ‘ZHW 00F) YN H, PE'TY 24n3ly

wdd

1 L L L L 1 L L L L 1 L L L L 1

0 T 4 € 14 S 9 L 8 6 0T

Ly

dHN(0)2
H




Appendix 2 — Spectra Relevant to Chapter 3 339

: | A A
|"J/ \r’ H‘ a'J 1||) \h\ ['U/ W H‘\Jr\ l,"[ \ J‘ J LV WI) (
/ l \ [ J \ {f\ f ! ‘III
o vl Lﬂ || d Lﬁ i \J
, \rﬁ | g V \(
| |
wT t-D: \(
|

cmel

Figure A2.35. Infrared spectrum (Thin Film, NaCl) of compound 41m’.
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Figure A2.36. °C NMR (100 MHz, CDCl;) of compound 41m".
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Figure A2.38. Infrared spectrum (Thin Film, NaCl) of compound 41n.

L AWt

T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0
ppm

Figure A2.39. °C NMR (100 MHz, CDCl;) of compound 41n.
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Figure A2.41. Infrared spectrum (Thin Film, NaCl) of compound 41o.
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Figure A2.42. °C NMR (100 MHz, CDCl;) of compound 41o.
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Figure A2.44. Infrared spectrum (Thin Film, NaCl) of compound 410’

| R S

T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0
ppm

Figure A2.45. °C NMR (100 MHz, CDCl;) of compound 410’.
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Figure A2.47. Infrared spectrum (Thin Film, NaCl) of compound 41p.
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Figure A2.48. °C NMR (100 MHz, CDCl;) of compound 41p.
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Figure A2.50. Infrared spectrum (Thin Film, NaCl) of compound 41p’.
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Figure A2.51. °C NMR (100 MHz, CDCl;) of compound 41p’.
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Figure A2.53. Infrared spectrum (Thin Film, NaCl) of compound 41q.
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Figure A2.54. °C NMR (100 MHz, CDCl;) of compound 41q.
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Figure A2.56. Infrared spectrum (Thin Film, NaCl) of compound 41q’.
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Figure A2.57. °C NMR (100 MHz, CDCl;) of compound 41q’.
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Figure A2.59. Infrared spectrum (Thin Film, NaCl) of compound 41r.
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Figure A2.60. °C NMR (100 MHz, CDCl;) of compound 41r.



356

Appendix 2 — Spectra Relevant to Chapter 3

's1p punodwod Jo (£15dD ‘ZHW 00%) YWN H, "L9°TV 24n3ly

wdd

14 € 14 S 9 A
S S S T S S S S U |

0T

N b




107
106
105
104

Appendix 2 — Spectra Relevant to Chapter 3
it 'J'
L PNt Mg e A { /
™ s -y
[ A

103
102
101
10

2 & 8 3 ¥

T

88 2

2 88 8 8

285888

| A}

|‘f

1200 1600

emel

lllll 240 2m 3000

Figure A2.62. Infrared spectrum (Thin Film, NaCl) of compound 41s.
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Figure A2.63. °C NMR (100 MHz, CDCl;) of compound 41s.
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Figure A2.65. Infrared spectrum (Thin Film, NaCl) of compound 41t.
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Figure A2.66. °C NMR (100 MHz, CDCl;) of compound 4Tt.
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Figure A2.68. Infrared spectrum (Thin Film, NaCl) of compound 41¢’.
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Figure A2.69. °C NMR (100 MHz, CDCl;) of compound 41¢’.
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Figure A2.71. Infrared spectrum (Thin Film, NaCl) of compound 41u.
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Figure A2.72. °C NMR (100 MHz, CDCl;) of compound 41u.
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Figure A2.74. Infrared spectrum (Thin Film, NaCl) of compound D-41f.
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Figure A2.75. °C NMR (100 MHz, CDCl;) of compound D-41f.
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Figure A2.76. °H NMR (61 MHz, CDCl;) of compound D-41f.



367

"t punodwod Jo (DD ‘ZHW 00¥) ¥WN H, "££°TV 24n8i4

wdd

n n n n n n n n n n n n n n n n n n n n n 1

9 L
. P TS R

ug®oo

Appendix 2 — Spectra Relevant to Chapter 3



Appendix 2 — Spectra Relevant to Chapter 3 368

™,

o~

[ i | ., /\\ \\' /
| p ( L,'.’f Y’\lu f \‘ S y
| TR

I AW
3 , } \ J \ \/

75

%94

400 340 3200 200 2400 200 1200 1600 1 1200 1000 200 6102
om !

Figure A2.78. Infrared spectrum (Thin Film, NaCl) of compound 44.
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Figure A2.79. °C NMR (100 MHz, CDCl;) of compound 44.
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Figure A2.81. Infrared spectrum (Thin Film, NaCl) of compound 40a.
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Figure A2.82. °C NMR (100 MHz, CDCl;) of compound 40a.
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Figure A2.84. Infrared spectrum
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Figure A2.85. °C NMR (100 MHz, CDCl;) of compound 40b.
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Figure A2.87. Infrared spectrum (Thin Film, NaCl) of compound 40c.
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Figure A2.88. °C NMR (100 MHz, CDCl;) of compound 40c.
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Figure A2.90. Infrared spectrum (Thin Film, NaCl) of compound 40d.
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Figure A2.91. °C NMR (100 MHz, CDCl;) of compound 40d.
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Figure A2.93. Infrared spectrum (Thin Film, NaCl) of compound 40e.
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Figure A2.94. °C NMR (100 MHz, CDCl;) of compound 40e.
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Figure A2.96. Infrared spectrum (Thin Film, NaCl) of compound 40f.
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Figure A2.97. °C NMR (100 MHz, CDCl;) of compound 40f.
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Figure A2.99. Infrared spectrum (Thin Film, NaCl) of compound D-40f.
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Figure A2.100. "C NMR (100 MHz, CDCl;) of compound D-40f.
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Figure A2.101. °’H NMR (61 MHz, CDCl;) of compound D-40f.
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Figure A2.103. Infrared spectrum (Thin Film, NaCl) of compound 40g.
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Figure A2.104. "C NMR (100 MHz, CDCl;) of compound 40g.
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Figure A2.106. Infrared spectrum (Thin Film, NaCl) of compound 40h.
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Figure A2.107. "C NMR (100 MHz, CDCl;) of compound 40h.
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Figure A2.109. Infrared spectrum (Thin Film, NaCl) of compound 40i.
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Figure A2.110. C NMR (100 MHz, CDCl;) of compound 40i.
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Figure A2.112. Infrared spectrum (Thin Film, NaCl) of compound 40.
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Figure A2.113. "C NMR (100 MHz, CDCl;) of compound 40j.
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Figure A2.115. Infrared spectrum (Thin Film, NaCl) of compound 40k.
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Figure A2.116. "C NMR (100 MHz, CDCl;) of compound 40k.
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Figure A2.118. Infrared spectrum (Thin Film, NaCl) of compound 40l.
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Figure A2.119. "C NMR (100 MHz, CDCl;) of compound 40l.
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Figure A2.121. Infrared spectrum (Thin Film, NaCl) of compound 40m.
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Figure A2.122. "C NMR (100 MHz, CDCl;) of compound 40m.
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Figure A2.124. Infrared spectrum (Thin Film, NaCl) of compound 40n.
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Figure A2.125. C NMR (100 MHz, CDCl;) of compound 40n.
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Figure A2.127. Infrared spectrum (Thin Film, NaCl) of compound 40o.
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Figure A2.128. "C NMR (100 MHz, CDCl;) of compound 40o.
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Figure A2.130. Infrared spectrum (Thin Film, NaCl) of compound 99.
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Figure A2.131. "C NMR (100 MHz, CDCl;) of compound 99.
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Figure A2.133. Infrared spectrum (Thin Film, NaCl) of compound 40p.
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Figure A2.134. C NMR (100 MHz, CDCl;) of compound 40p.
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Figure A2.136. Infrared spectrum (Thin Film, NaCl) of compound 40q.

i

T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0
ppm

Figure A2.137. "C NMR (100 MHz, CDCl;) of compound 40q.
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Figure A2.139. Infrared spectrum (Thin Film, NaCl) of compound 40r.
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Figure A2.140. "C NMR (100 MHz, CDCl;) of compound 40r.
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Figure A2.142. Infrared spectrum (Thin Film, NaCl) of compound 40s.
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Figure A2.143. "C NMR (100 MHz, CDCl;) of compound 40s.
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Figure A2.145. Infrared spectrum (Thin Film, NaCl) of compound 40t.
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Figure A2.146. "C NMR (100 MHz, CDCl;) of compound 40t.
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Figure A2.148. Infrared spectrum (Thin Film, NaCl) of compound 40u.
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Figure A2.149. "C NMR (100 MHz, CDCl;) of compound 40u.
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Figure A2.151. Infrared spectrum (Thin Film, NaCl) of compound 42.
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Figure A2.152. "C NMR (100 MHz, CDCl;) of compound 42.
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Figure A2.154. Infrared spectrum (Thin Film, NaCl) of compound 47.
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Figure A2.155. "C NMR (100 MHz, CDCl;) of compound 47.
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Figure A2.157. Infrared spectrum (Thin Film, NaCl) of compound 101.
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Figure A2.158. "C NMR (100 MHz, CDCl;) of compound 101.
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Figure A2.160. Infrared spectrum (Thin Film, NaCl) of compound 102.
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Figure A2.161. C NMR (100 MHz, CDCl;) of compound 102.
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Figure A2.163. Infrared spectrum (Thin Film, NaCl) of compound 85.
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Figure A2.164. C NMR (100 MHz, CDCl;) of compound 85.
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Figure A2.166. Infrared spectrum (Thin Film, NaCl) of compound 86.
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Figure A2.167. "C NMR (100 MHz, CDCl;) of compound 86.
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Figure A2.169. Infrared spectrum (Thin Film, NaCl) of compound D-86.
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Figure A2.170. "C NMR (100 MHz, CDCl;) of compound D-86.
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Figure A2.171.°H NMR (61 MHz, CHCl;) of compound D-86.
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Figure A2.173. Infrared spectrum (Thin Film, NaCl) of compound 87.
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Figure A2.174. C NMR (100 MHz, CDCl;) of compound 87.
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Figure A2.176. Infrared spectrum (Thin Film, NaCl) of compound 93.
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Figure A2.177. "C NMR (100 MHz, CDCl;) of compound 93.
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Figure A2.179. Infrared spectrum (Thin Film, NaCl) of compound 88.
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Figure A2.180. "C NMR (100 MHz, CDCl;) of compound 88.
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Figure A2.182. Infrared spectrum (Thin Film, NaCl) of compound 89.
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Figure A2.183. "C NMR (100 MHz, CDCl;) of compound 89.
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Figure A2.185. Infrared spectrum (Thin Film, NaCl) of compound 90.
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Figure A2.186. "C NMR (100 MHz, CDCl;) of compound 90.
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Figure A2.188. Infrared spectrum (Thin Film, NaCl) of compound 91.
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Figure A2.189. "C NMR (100 MHz, CDCl;) of compound 91.
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Figure A2.191. Infrared spectrum (Thin Film, NaCl) of compound 92.
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Figure A2.192. "C NMR (100 MHz, CDCl;) of compound 92.
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Figure A2.194. Infrared spectrum (Thin Film, NaCl) of compound 96.
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Figure A2.195. "C NMR (100 MHz, CDCl;) of compound 96.
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Figure A2.197. Infrared spectrum (Thin Film, NaCl) of compound 95.
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Figure A2.198. "C NMR (100 MHz, CDCl;) of compound 95.
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Figure A2.200. Infrared spectrum (Thin Film, NaCl) of compound 94.
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Figure A2.201. "C NMR (100 MHz, CDCl;) of compound 94.
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Figure A2.203. Infrared spectrum (Thin Film, NaCl) of compound 98.
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Figure A2.204. "C NMR (100 MHz, CDCl;) of compound 98.
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Figure A2.206. Infrared spectrum (Thin Film, NaCl) of compound 97.
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Figure A2.207. "C NMR (100 MHz, CDCl;) of compound 97.
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Figure A2.209. Infrared spectrum (Thin Film, NaCl) of compound 100.
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Figure A2.210. "C NMR (100 MHz, CDCl;) of compound 100.
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Figure A2.212. Infrared spectrum (Thin Film, NaCl) of compound D-100.
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Figure A2.213. "C NMR (100 MHz, CDCl;) of compound D-100.
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Figure A2.214.°H NMR (61 MHz, CHCl;) of compound D-100.
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Figure A2.216. Infrared spectrum (Thin Film, NaCl) of compound 103.
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Figure A2.217. "C NMR (100 MHz, CDCl;) of compound 103.
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Figure A2.219. Infrared spectrum (Thin Film, NaCl) of compound 107.
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Figure A2.220. "C NMR (100 MHz, CDCl;) of compound 107.
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Figure A2.222. Infrared spectrum (Thin Film, NaCl) of compound 105.
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Figure A2.223. C NMR (100 MHz, CDCl;) of compound 105.
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Figure A2.225. Infrared spectrum (Thin Film, NaCl) of compound 106.
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Figure A2.226. "C NMR (100 MHz, CDCl;) of compound 106.
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Figure A2.228. Infrared spectrum (Thin Film, NaCl) of compound 113.
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Figure A2.229. "C NMR (100 MHz, CDCl;) of compound 113.
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Figure A2.231. Infrared spectrum (Thin Film, NaCl) of compound 104.
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Figure A2.234. Infrared spectrum (Thin Film, NaCl) of compound 108.
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Figure A2.235. "C NMR (100 MHz, CDCl;) of compound 108.
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Figure A2.237. Infrared spectrum (Thin Film, NaCl) of compound 109.
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Figure A2.238. "C NMR (100 MHz, CDCl;) of compound 109.
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Figure A2.240. Infrared spectrum (Thin Film, NaCl) of compound 110.
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Figure A2.241. C NMR (100 MHz, CDCl;) of compound 110.
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Figure A2.243. Infrared spectrum (Thin Film, NaCl) of compound 111.
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Figure A2.244. "C NMR (100 MHz, CDCl;) of compound 111.
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Figure A2.246. Infrared spectrum (Thin Film, NaCl) of compound 112.
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Figure A2.247. "C NMR (100 MHz, CDCl;) of compound 112.
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Figure A2.249. Infrared spectrum (Thin Film, NaCl) of compound 49a.
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Figure A2.252. Infrared spectrum (Thin Film, NaCl) of compound 49e.
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Figure A2.253. "C NMR (100 MHz, CDCl;) of compound 49e.
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Figure A2.255. Infrared spectrum (Thin Film, NaCl) of compound 49f.
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Figure A2.256. "C NMR (100 MHz, CDCl;) of compound 49f.
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Figure A2.258. Infrared spectrum (Thin Film, NaCl) of compound D-49f.
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Figure A2.259. "C NMR (100 MHz, CDCl;) of compound D-49f.
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Figure A2.260.°H NMR (61 MHz, CHCl;) of compound D-49f.
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Figure A2.262. Infrared spectrum (Thin Film, NaCl) of compound 49g.

i

T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0
ppm

Figure A2.263. "C NMR (100 MHz, CDCl;) of compound 49g.
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Figure A2.265. Infrared spectrum (Thin Film, NaCl) of compound 49h.
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Figure A2.266. "C NMR (100 MHz, CDCl;) of compound 49h.
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Figure A2.268. Infrared spectrum (Thin Film, NaCl) of compound 49i.
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Figure A2.269. "C NMR (100 MHz, CDCl;) of compound 49i.
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Figure A2.271. Infrared spectrum (Thin Film, NaCl) of compound 83.
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Figure A2.274. Infrared spectrum (Thin Film, NaCl) of compound 84.
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Figure A2.275. "C NMR (100 MHz, CDCl;) of compound 84.
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Figure A2.277. Infrared spectrum (Thin Film, NaCl) of compound 59.
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Figure A2.278. "C NMR (100 MHz, CDCl;) of compound 59.
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Figure A2.280. Infrared spectrum (Thin Film, NaCl) of compound 63.

O 0

T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0
ppm

Figure A2.281. C NMR (100 MHz, CDCl;) of compound 63.
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Figure A2.283. Infrared spectrum (Thin Film, NaCl) of compound 64.
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Figure A2.284. "C NMR (100 MHz, CDCl;) of compound 64.
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Figure A2.286. Infrared spectrum (Thin Film, NaCl) of compound 65.
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Figure A2.287. "C NMR (100 MHz, CDCl;) of compound 65.
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Figure A2.289. Infrared spectrum (Thin Film, NaCl) of compound 66.
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Figure A2.290. "C NMR (100 MHz, CDCl;) of compound 66.
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Figure A2.292. Infrared spectrum (Thin Film, NaCl) of compound 67.
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Figure A2.293. "C NMR (100 MHz, CDCl;) of compound 67.
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Figure A2.295. Infrared spectrum (Thin Film, NaCl) of compound 68.
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Figure A2.296. "C NMR (100 MHz, CDCl;) of compound 68.
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Figure A2.298. Infrared spectrum (Thin Film, NaCl) of compound 114.
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Figure A2.299. "C NMR (100 MHz, CDCl;) of compound 114.
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Figure A2.301. Infrared spectrum (Thin Film, NaCl) of compound 69.
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Figure A2.302. "C NMR (100 MHz, CDCl;) of compound 69.
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Figure A2.305. "C NMR (100 MHz, CDCl;) of compound 70.
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Figure A2.307. Infrared spectrum (Thin Film, NaCl) of compound 75.
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Figure A2.308. "C NMR (100 MHz, CDCl;) of compound 75.




523

'9£ punodwod jo (§DAdD “ZHW 00%) YN H, ‘60€°TV N8ty

Appendix 2 — Spectra Relevant to Chapter 3

9.




Appendix 2 — Spectra Relevant to Chapter 3 524

r"lf /

ms }
1ma

920

74 . . . . . . . . . - . y
o 3500 320 500 2400 2m 1500 1500 a0 10 1000 0 oo
el
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Figure A2.311. "C NMR (100 MHz, CDCl;) of compound 76.
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Figure A2.314. "C NMR (100 MHz, CDCl;) of compound 77.
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Figure A2.319. Infrared spectrum (Thin Film, NaCl) of compound 79.
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Figure A2.320. "C NMR (100 MHz, CDCl;) of compound 79.
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Figure A2.322. Infrared spectrum (Thin Film, NaCl) of compound 80.
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Figure A2.323. "C NMR (100 MHz, CDCl;) of compound 80.
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Figure A2.325. Infrared spectrum (Thin Film, NaCl) of compound 81.
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Figure A2.326. "C NMR (100 MHz, CDCl;) of compound 81.
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Figure A2.328. Infrared spectrum (Thin Film, NaCl) of compound 82.
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Figure A2.329. "C NMR (100 MHz, CDCl;) of compound 82.




CHAPTER 4

Quantum Mechanics Investigations of the [2+2] Photocycloaddition in

the Synthesis of (-)-Scabrolide AT

4.1 INTRODUCTION

The [2+2] photocycloaddition serves as a powerful tool for the construction of
carbon—carbon and carbon-heteroatom bonds.! The versatility of this transformation has
led to numerous applications in the context of natural product synthesis,? particularly as
the four-membered cycloadducts can be further employed in ring expansion processes

through strain-release and C—C bond activation.’

In our recent total synthesis of (—)-scabrolide A (119), we sought to construct the 7-
membered ring in the natural product through an oxidation/fragmentation sequence from
cyclobutane 120. Intermediate 120 would be accessed through an intramolecular
photochemical [2+2] cycloaddition of an enone with a pendant vinyl silane (121) — derived
from 122 and 123 — to forge the [4-5] ring system (120) (Scheme 4.1A).* Surprisingly, the
desired [4-5] ring system (120) was not formed in this process; rather, a cis-fused [4—4]
product 124 was produced as the exclusive product (Scheme 4.1B). The observed
selectivity contrasts the “rule of five” generally attributed to enone-olefin cycloadditions,
wherein the formation of five-membered rings is considered to be kinetically facile.” As a

consequence of the undesirable reactivity, three additional steps to protect and

"This research was carried out with Zhang T. Y. Portions of this chapter have been reproduced with
permission from Stoltz, et al. J. Org. Chem. 2022, 87, 14115-14124. © 2023 American Chemical Society.
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subsequently deprotect the isopropenyl olefin had to be incorporated into the synthesis.
Rectifying the chemoselectivity of the [2+2] photocycloaddition from 121 would improve
material throughput, support future synthetic efforts, and enable derivative-based
biological studies.® To explore this issue, we employ quantum mechanical calculations to
understand the mechanism by which the unexpected product 124 is formed and uncover

the origins of chemo- and diastereoselectivity.

Scheme 4.1. Photochemical [2+2] approach to scabrolide A.

A. Retrosynthetic approach to (-)-scabrolide A (119):

HO o o
Men.] = 1) Oxidative fragmentation [2+2] Photo-
¢ 2) Tamao-Fleming cycloaddition
iMe,Ph
0 Me
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6 steps Me,, o
[Ref. 3] x o, -Me
. 1
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121 122 CO.H
B. Unexpected reactivity:
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Ho . © SiMe,Ph Mex.,
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4.2 COMPUTATIONAL METHODS

All quantum mechanics calculations were carried out with the Orca program.’
Geometries were optimized by density functional theory (DFT) using the B3LYP
functional® paired with Grimme’s D4 dispersion correction’® and the def2-SV(P) basis set.!’
Vibrational frequency calculations were carried out at the same level of theory for all
stationary points to verify their nature as minima or saddle points and to obtain thermal
Gibbs free energy corrections at 298 K. Intrinsic reaction coordinate (IRC) analysis was
performed to confirm that transition states lead to the appropriate minima.'' Additional
DFT single point calculations were carried out with the ®B97M-V functional'? and the
def2-TZVPP basis set with the SMD implicit solvation model for benzene. '3
Multiconfigurational single point calculations were carried out using complete active space
self-consistent field (CASSCF) theory, with subsequent treatment of dynamical correlation
by second order N-electron valence state perturbation theory (NEVPT2).'* For state-
averaged calculations, the Nakano quasi-degenerate (QD) formulation was employed.'>
These calculations employed the def2-TZVPP basis set with the SMD model for benzene.
The (8,8) active space (eight electrons and eight orbitals) was chosen to contain the enone
© system, the isopropenyl n/n* and the vinyl silane w/n*. The enone oxygen lone pair was
included to obtain the (10,9) active space where nm* states are relevant. Unless otherwise
specified, final Gibbs free energies are NEVPT2/def2-TZVPP/SMD(benzene) electronic
energies with thermodynamical corrections obtained from the optimization level of theory.

For full computational details, see section 4.5.
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4.3 RESULTS AND DISCUSSION

The mechanism of the enone-olefin [2+2] photocycloaddition has been the subject
of numerous theoretical and experimental investigations.'®!®-!” The general mechanism
begins with UVA irradiation to promote the n — ©* excitation of o,-unsaturated carbonyl
127 (Scheme 4.2, Step 1). The !(nn”) excited state undergoes intersystem crossing (ISC)
primarily to the 3(nn”) state (128 3(mn™)) (El Sayed’s rule).!® Occupation of the antibonding
n* orbital would then result in elongation of the C=0 and C=C bonds. For conformationally
flexible enones, the adiabatically relaxed 3(nn”) state leads to a torsion about the o and B
positions and typically becomes lower in energy than the *(nz") state. Prior studies
unambiguously determined that the first C—C bond formation occurs from triplet excited
states,'™!” preferentially from the 3(nn") state.!6® For intermolecular cases, the ensuing C—
C bond formation between the enone and olefin typically occurs via B-attack of the enone
(Scheme 4.2, Step 2), i.e., an attack by the less stabilized spin center, to afford a triplet 1,4-
diradical (3129). Half-lives of the 1,4-triplet diradicals intermediates have been measured
to range from 10 to 1,000 ns.'” Subsequent ISC to the corresponding singlet diradical
(1129) then enables either productive ring closure to form 131 or unproductive C-C
scission to return to enone 127 (Scheme 4.2, Steps 3 and 4). Weedon and coworkers find
that the intermediacy of a-radicals (sp?), such as 129, tends to favor C—C bond scission,

while ring closure is more likely with B-radicals (sp?), such as 1130.2°
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Scheme 4.2. Ceneral four-step mechanism for the olefin/e, f-unsaturated carbonyl
[2+2] photocycloaddition.

Ring o

[o]
o . ISC :.: closure
prattack A — RN —— R
1.n - * o) "CH, CH,

Q - v & 131
excitation R L \ 3129 1129
R ¢ 218Ct0mn") o 0 c-c Q
p H % Isc scission
-attack . °
127 s | carack RJl\(\CHz —> R CH, R
128 3(nn) oH, \ |

‘CH, z
3130 T =10-1,000 ns 1130 127
1. Photoexcitation + ISC 2. First bond formation 3. ISC to singlet diradical 4. Second bond formation
4.3.1 STEP 1: PHOTOEXCITATION

The [2+2] photocycloaddition of enone 121 (Scheme 4.1B) is achieved upon
irradiation with a standard UVA mercury vapor gas-discharge lamp (Amax ~ 350 nm). The
initial singlet n — 7* vertical excitation was calculated to be 3.96 eV (313 nm) (Scheme
4.3A) — in accord with known values for aliphatic cyclic enones.!'’® Energies of 3.73 and
4.01 eV were calculated for the vertical n — n* and 1 — m* excitations to the 3(nn*) and
3(nn") states, respectively, from the ground state minimum (121_Sy) (Scheme 4.3C).2! The
second lowest singlet excitation is significantly higher in energy at 7.45 eV and is of !(nn")
character.?? In accord with prior studies, the singlet n — ©* excitation is accessible under

UVA irradiation and is the excited state from which productive reactivity ensues.

Despite our best efforts, pervasive root-flipping made adiabatic optimization on the
(nmt") surface challenging. As such, we employed the optimized 3(nn*) geometry as a
surrogate for the '(nn") minimum.?® The resulting adiabatic excitation energies of 3.34 and
3.37 €V (77.0 and 81.1 kcal/mol) are obtained for the 3(nn") and !(nr") states, respectively.

Apart from elongation of the C(2)-O(1) and C(3)-C(4) bonds, the 3(nmn*) geometry is
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similar to that of the ground state enone (Scheme 4.3D). At the 121_!(nn*) stationary point,
the 3(nn") surface lies 4.8 kcal/mol above the '(nn*) surface. The *(nz") is the lowest energy
triplet state at the 121_So and 121_'(nz") stationary points (Scheme 4.3A); however, the
adiabatic 3(nn") excitation energies of simple enones are typically lower than that of the
3(nmt") state. Although it has been hypothesized that for highly rigid, cyclic systems the
3(nn") state may remain higher in energy,?* optimization of the 3(nn") state of 121 yields a
total adiabatic excitation energy of 3.26 eV (75.2 kcal/mol), 1.8 kcal/mol lower than the
3(nt") minimum despite the rigidity of the tricyclic core. Given its comparative
thermodynamic favorability, we hypothesized that the 3(nn”) surface can be readily
accessed from the initially excited '(nm”) state and account for the subsequent C—C bond
formation. Hence, we sought to further interrogate the interaction of the excited state
surfaces.

Beginning from the minimized 121 _!(nn*) geometry (still employing the 3(nzn")
minimum as a surrogate), the nuclear coordinates were relaxed with energies and forces
obtained from the 3(nn") surface.?® Single point calculations at the QD-NEVPT2 level of
theory were carried out at points along the optimization trajectory to plot the corresponding
energies of the '(nn), 3(nn*), and 3(nn") surfaces. Moving along the reaction coordinate,
the 3(nn") state energy decreases, with elongation of the C(2)-O(1) and C(3)-C(4) bonds
and subsequent twisting along the C(2)—C(3)—C(4)—C(5) dihedral (Scheme 4.3D). The nn*
states increase in energy as a result of these distortions, with the '(nn") crossing the 3(nr")
surface at C(2)-O(1) and C(3)-C(4) bond lengths of 1.33 and 1.45 A, respectively.?® Non-

zero spin-orbit coupling (SOC) between the '(nn”) and 3(nn”) states results in an avoided
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crossing with a barrier (E,) of 1.4 kcal/mol (Scheme 4.3B).?” In contrast to the !(nz") to
3(nn”) crossing, ISC from the '(nm*) state to the 3(nn’) state is symmetry-forbidden.'®
Additionally, non-productive phosphorescence from the 3(nn") state to the closed-shell
singlet ground state is symmetry-allowed and is anticipated to be rapid.'® In summary, an
n — w* transition at 3.96 ¢V (313 nm) followed by ISC to the 3(nn") surface yields
intermediate 121 _3(nn*) — which is 1.8 kcal/mol lower in energy than 121 3(na*) — poised

to undergo the first C—C bond formation.

Scheme 4.3. Photoexcitation of 121_So and conversion to reactive triplet diradical

121 3(nm).
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4.3.2 STEP 2: FIRST C-C BOND FORMATION

Triplet diradical 121 3(na*) may then undergo C—C bond formation with either of the
pendant olefins. A single reference approach such as DFT should provide a good
description of the triplet surface where the lowest triplet state is well isolated from other
excited states, as is the case for the 121 _3(zn”) (vide supra). Moreover, spin contamination
is generally minor.

As mentioned above, radical cyclizations during the first C—C bond formation may
occur from either the a or B positions (Scheme 4.2, Step 2). In the analogous reaction
between acrolein and ethylene, Houk and coworkers find a 3—4 kcal/mol preference for [3-
attack due to the greater stability of the resulting delocalized a-acyl radical.'®? In the system
at hand, B-attack may occur from the isopropenyl olefin in a 5-exo-trig fashion (TS44,
TS45) or the vinyl silane in a 4-exo-trig (TS46, TS47) fashion, respectively (Scheme
4.4A).?8 The corresponding 5-endo-trig and 6-endo-trig cyclizations that give rise to
spirocyclic 1,4-diradicals were also considered (see section 4.5). The cyclizations may
occur from either the Re or Si face of the enone in conjunction with either face of the olefin
(Schemes 4.7 and 4.8). In total, twelve diastereomeric transition states were considered for

the B-attack mechanism.

For reaction pathways involving a-attack, twelve diastereomeric transition states
were similarly derived from approach to either face of the enone with the isopropenyl olefin
in a 6-endo-trig (TS48, TS49) or 5-exo-trig cyclization (Scheme 4.7), or with the pendant

vinyl silane in a 7-endo-trig (TS50, TS51) or 6-exo-trig cyclization (Scheme 4.9).2° All
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diastereomeric transition states for a- and B-attack pathways were considered because the
new stereocenters forged from the [2+2] photocycloaddition will be ablated during the
ensuing synthetic transformations (oxidation and fragmentation, Scheme 4.1A). This
causes diastereomeric diradicals — such as 3132 and 3133 (Scheme 4.4A) — to eventually
give rise to the same [6—4—5] ring-containing synthetic intermediate. Therefore, only the
chemoselectivity — not the diastereoselectivity — of the first C—C bond formation is relevant
to the final synthetic outcome.

Given the vast number of energetically accessible conformers for each of the 24
relevant diastereomeric transition states, pre-screening with DFT ((U)wB97M-V/def2-
TZVPP/SMD(benzene)//(U)B3LYP-D4/def2-SV(P)) was carried out to efficiently
eliminate high energy pathways. The eight most relevant pathways are discussed below

(Scheme 4.4A) with additional discussion on alternative pathways in section 4.5.

During the course of our synthetic planning, we envisioned that the system would
preferentially undergo B-attack in a 5-exo-trig cyclization with the vinyl silane (TS44),
forging the 5-membered ring of a desirable cycloaddition adduct (*132). Approach of the
enone Si face to give 1,4-diradical intermediate 3132 is met with a barrier of 8.0 kcal/mol.
The analogous 5-exo-trig transition state corresponding to approach of the Re face (TS45)
was not found. Rather, diradical 3133 converts to 121_3(nn”) via a stepwise mechanism

from cycloheptyl diradical *125 (Scheme 4.4B).3°
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Scheme 4.4. Eight lowest energy reaction pathways from 121_*(mm).?

A. Eight lowest energy reaction pathways from triplet diradical 121_3(ntr*).
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find a saddle point corresponding to TS45 ultimately lead to TS52 connecting *125 to *133.
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Prior studies suggest that bond formation occurs from the 3(nn*) state rather than
along the higher energy 3(nn*) surface. Indeed, the *(nn") state is found to lie 1.69 eV (39.0
kcal/mol) above the 3(nn”) ground state triplet PES at the TS44 saddle point.>! At TS44,
3(nm”) character in the ground state triplet is negligible, contributing < 0.5% to the

configuration interaction (CI) wavefunction.

Surprisingly, a barrier of 5.2 kcal/mol was found for Re face B-attack in a 4-exo-
trig cyclization with the isopropenyl olefin (TS46), lower than that of the minimum energy
5-exo-trig pathway (TS44). Approaching from the Re face of the enone is favored (TS46),
with a AG* to Si face approach of 14.0 kcal/mol (TS47) (Scheme 4.4A). Unlike the
generation of cyclopentanes 3132 and 3133, the formation of both cyclobutane 1,4-
diradicals (*134 and *135) is thermodynamically unfavorable, with a change in reaction

free energy (AG) of 1.4 and 3.0 kcal/mol, respectively.

We then turned our attention to reaction pathways featuring a-attack of the triplet
enone diradical. Productive C—C bond formation may occur through either a 6-endo-trig or
7-endo-trig radical cyclization from either the Re or Si face of the enone (Scheme 4.4).3
Barriers of 3.0 and 5.0 kcal/mol were found for 6-endo-trig cyclization from the Re (TS48)
or Si face (TS49), respectively. Higher barriers were obtained for the 7-endo-trig
cyclization at 8.0 and 7.4 kcal/mol for approach from the Re (TS50) or Si face (TS51),
respectively. Triplet 1,4-diradical intermediates resulting from 6-endo-trig (*126) or 7-
endo-trig (3137) radical cyclization are lower in free energy than 121 _3(an”) by at least 13

kcal/mol.
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In summary, the global minimum energy pathway for the first C—C bond formation
from 121 3(nn") is via 6-endo-trig cyclization with the isopropenyl olefin to forge triplet
diradical *126. This process is accompanied by a AG* of 3.0 kcal/mol and a AG of —15.6
kcal/mol, relative to 121 _3(mn”). The transition state describing this minimum energy
pathway (TS48) resides on the 3(nn*) surface, with a vertical excitation energy of 1.96 eV
(45.2 kcal/mol) to the 3(nn") state. At TS48, 3(nn”) character in the ground state triplet is

negligible, contributing < 0.5% to the CI wavefunction.*?

Prior studies suggest that in photochemical [2+2] cycloadditions, the first C—C bond
formation on the triplet surface occurs irreversibly (i.e., before ISC).!>!® We found forward
and reverse barriers to C—C bond formation along the minimum energy pathway to be 3.0
and 18.6 kcal/mol, with rate constants at 298.15 K of 3.9 x10'° s! and 1.4 x10°! s7,
respectively. For simple enones, lifetimes of triplet 1,4-diradical intermediates derived
from [2+2] photocycloadditions are on the scale of 10 to 1,000 ns, i.e., unimolecular decay
rate constants are on the order of magnitude of 10° — 108 s7!.!° Thus, C—C bond formation
through TS48 is irreversible, with the reverse process (k ~ 107" s!) being outcompeted by
ISC (k ~ 10% — 10° s'). Meanwhile, productive bond formation (k ~ 10'° s) is anticipated
to be more rapid than ISC, and thus, proceeds on the triplet surface. Still, we consider the
effect of a competitive ISC. Starting from the 121 _3(nn”) geometry, optimization along the
ground state singlet surface smoothly affords the closed-shell singlet starting material
121_So. Hence, premature spin flip would lower the efficiency of the overall process but

likely does not lead to undesired reactivity.'®
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4.3.3 STEP 3: SECOND C-C BOND FORMATION

The first ring closure generates a triplet 1,4-diradical, which was shown to be
almost energetically degenerate with its singlet counterpart. The singlet-triplet gap for
diradical 126 is calculated to be less than 1 kcal/mol, favoring anti-ferromagnetically
coupled spins (Scheme 4.5).3* After ISC to the singlet 1,4-diradical surface, the system
undergoes relaxation to a stable diradical intermediate or a C—C bond cleavage to re-form
121 (Scheme 4.5). We hypothesized that the partitioning between the two outcomes
depends on the conformation of the 1,4-diradical at the point at which ISC occurs (Scheme
4.10).% Starting from the triplet diradical geometries of low-energy conformers, relaxation
of the nuclear coordinates on the broken-symmetry (Ms = 0) DFT (BS-DFT)?%37 surface
yields either singlet diradicals or enone 121. For diradical 126 (Scheme 4.5), five of the 14
lowest-energy conformers relaxed to enone 121 (including the globally lowest-energy
conformer), which accounts for 70% of the Boltzmann-weighted population of conformers.

As such, only 30% of the triplet diradical population will relax to stable singlet diradicals.*®

Unlike multi-configurational methods (such as NEVPT2/CASSCF), single-
determinantal methods (such as BS-DFT) are unable to properly describe open-shell singlet
states.>®3° Hence, we sought to compare the final energies calculated on the BS-DFT
potential energy surface (PES) to those from the NEVPT2 surface. We found significant
discrepancies in the BS-DFT and NEVPT2 PESs along the reaction coordinate of the
second C—C bond formation (see section 4.5), with BS-DFT calculations favoring a later

transition state than NEVPT2. Consequently, a more accurate barrier was derived from a
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PES obtained by calculating NEVPT2 electronic energies along the BS-DFT intrinsic

reaction coordinate (IRC) trajectory for the transition state in question.

Scheme 4.5. Predicted reactivity from diradical 126.

Predicted reactivity from 6-membered cyclic diradical 126
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Scheme 4.6. Predicted reactivity from diradical 125.

A. Predicted reactivity from 7-membered cyclic diradical 125
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B. [2+2] Photocycloaddition with masked isoprenyl olefin

1. hv (350 nm), PhH, 23 °C
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70% yield over 2 steps
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(1.7:1 dr at C(15))

[al Gibbs free energies (in kcal/mol) are calculated at the NEVPT2/def2-

TZVPP/SMD(benzene)//(U)B3LYP-D4/def2-SV(P) level of theory. —SiR; = SiMe,Ph.
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From the relaxed singlet diradical geometry, the second C—C bond formation could then
occur. For diradical 126, the formation of which is most facile during the first C—C bond
formation (Scheme 4.4), the open-shell singlet PES for its lowest-energy conformer
(Scheme 4.5) suggests that formation of the experimentally observed product 124 involves
a barrier of 1.8 kcal/mol via 'TS54. This is significantly lower than the 3.9 kcal/mol barrier
('TS54°) for the formation of the corresponding diastereomer 124" or the 3.7 kcal/mol
barrier ('TS53) for the reversion back to enone 121. This is consistent with exclusive

formation of product 6, as was observed experimentally.*

It was observed in the original synthesis of scabrolide A that protecting the
isopropenyl olefin as an epoxide (138) afforded the desired [6—4—5] ring system as the R
epimer at C(3) (139) (Scheme 4.6A). Analogously, we analyzed the open-shell singlet
surface for diradical 125, which would lead to the desired but experimentally non-observed
product 120 containing the [6—4—5] ring system with the same stereochemistry at C(3). Its
precursor triplet diradical 3125 is generated via 7-endo-trig cyclization (TS50) of
121 3(nn”) (Scheme 4.4A) and all of its low-energy conformers remained as stable singlet
diradicals after ISC (with a singlet-triplet gap of less than 1.0 kcal/mol). NEVPT2
calculations suggest a highly flat open-shell singlet PES around the diradical geometry,
with an approximately barrierless formation of target product 120 via 'TS56, or its
diastereomer 120’ via 'TS56°, or re-formation of enone 121 via 'TS55 (Scheme 4.6B).

The relative flat nature of the open-shell singlet PES introduces the possibility that
dynamical effects might dictate the partitioning of reaction pathways from diradicals 126

and '125. Ergo, ab initio molecular dynamics (AIMD) simulations were performed,
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beginning from optimized triplet-diradical geometries (see section 4.5). AIMD were
carried out with the PBE functional, as our controlled studies found that omission of
Hartree—Fock exchange leads to a more qualitatively correct open-shell singlet PES with
respect to NEVPT2 as a reference (Schemes 4.12 and 4.13). For 126, AIMD reveals an
equal partitioning of low-energy conformers between substrate regeneration and product
formation, which is qualitatively consistent with the distribution of outcomes from
relaxation of nuclear coordinates of low-energy conformers along the broken-symmetry
PES (Table 4.3). Similarly, AIMD trajectories suggest that the majority of the population
of diradical 1125 terminate as the desired product 120, while <1% affords substrate 121 or
diastereomer 120" (Table 4.4). These results suggest that dynamic effects on the singlet
surface are not significant and the aforementioned results from relaxation of nuclear

coordinates after the ISC are reliable.

In summary, our results demonstrate that if ISC from the triplet to the open-shell
singlet surface affords a stable singlet diradical, then the second C—C bond formation (ring
closure) will occur, albeit with variable efficiencies depending on the conformation of the
singlet diradical. Equipped with this understanding, we hypothesized that the desired
product 120 (or 120°) can be accessed, as long as formation of triplet diradical *125 is
favored during the first C—C bond formation.

4.3.4 COMPLETE MECHANISM

As aresult of these findings, we propose a mechanism that accounts for the chemo-

and diastereoselectivity in the unexpected formation of 124 from enone 121 (Figure 4.1).

The initial n — m* excitation followed by intersystem crossing (ISC) to the 3(nn*) state
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and geometric relaxation, characterized by twisting of the enone, affords triplet diradical
121 3(nn™) (Scheme 4.3). From 121 _3(an”), cyclizations can occur from a- or B-attack of
the enone triplet diradical with either the pendant isopropenyl olefin or vinyl silane.
Considering all modes of cyclization and Re/Si facial selectivity, a total of eight possible
ring-closed products are relevant (Scheme 4.4A). From 121 3(na*) the most kinetically
favorable of these pathways is a 6-endo-trig cyclization involving a-attack of the enone
onto the isopropenyl olefin to give 3126, with AG* of 3.0 kcal/mol (TS48, Scheme 4.4A)
and AAG? of 4.4 kcal/mol (relative to the second lowest activation barrier). This initial C—
C bond formation is thermodynamically favored by 15.6 kcal/mol. Experimentally derived
excited state lifetimes for related 3(nn”) 1,4-diradical intermediates range from 10 to 1,000
ns. As a result, the initial C—C bond formation is irreversible. ISC from 3126 affords the
corresponding singlet 1,4-diradical '126. Along the singlet surface, C—C bond cleavage to
regenerate 121 or radical recombination to forge a second C—C bond may occur to form
ring-closed species 124 or 124°. Given the flat nature of the singlet PES, the ultimate
outcome of ISC was found to be influenced by the conformation of the triplet diradical
prior to spin-flip. Relaxation to the ground state enone 121 was observed in a subset of
conformers accounting for approximately 70% of the Boltzmann population of the
conformer ensemble of *126. For the conformers that persisted as singlet diradicals, radical
recombination to forge experimentally observed product 124 is favored over formation of

124’ or 121 (Scheme 4.5).
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Figure 4.1. Complete mechanism describing formation of unexpected product 124
from the intramolecular [2+2] photocycloaddition of enone 121.
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4.4 CONCLUSIONS

We report a detailed quantum mechanics investigation of the mechanism of the
intramolecular enone-olefin [2+2] photocycloaddition employed in our recent synthesis of
(-)-scabrolide A (119). In our prior report, enone 121 was subjected to UV irradiation with
the intent to forge a [6—4—5] ring system, which upon oxidative ring opening, would afford
the fused [6—7] carbocyclic framework of (—)-scabrolide A (119). To our surprise, instead
of forming the desired [6—4-5] ring scaffold (i.e., 120), 121 undergoes an unexpected
cyclization to afford an undesired [6—4—4] ring system (i.e., 124). As a consequence of the
undesirable reactivity, three additional synthetic steps to mask and subsequently reveal the

isopropenyl olefin were incorporated into the synthesis.

Our QM calculations reveal that the preferential formation of the [6—4—4] ring
system is a result of a facile 6-endo-trig radical cyclization on the 3(nn”) surface,
outcompeting the alternative 7-endo-trig, 6-exo-trig, 5-exo/endo-trig, and 4-exo-trig
pathways. Analysis of the open-shell singlet surfaces describing the hypothetical 1,4-
diradical intermediates post-ISC reveals that C—C bond formation by radical recombination
is favorable in each case. Moreover, our study has showcased the practicality and accuracy
of combining ab initio wavefunction methods (CASSCF/NEVPT2) with DFT in modeling
multiconfigurational and multideterminental open-shell systems. This approach thus serves
as a model for future computational endeavors aiming at real-world systems involving

complex spin configurations.
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4.5 SUPPORTING INFORMATION
4.5.1 GENERAL COMPUTATIONAL DETAILS

All quantum mechanical calculations were performed with ORCA version 4.2.7 The

resolution of identity (RI) and chain-of-spheres

approximations were utilized for
Coulomb and exchange integrals, respectively, with the def2/J auxiliary basis set.*! Ultra-
fine integration grids were employed throughout (keywords: “Grid7 NoFinalGrid
GridX9”). The CYLview and Chimera*? programs were used to generate graphical images
in the main text.

DFT Calculations: Unless otherwise noted, geometry optimizations were carried
out with the B3LYP global hybrid generalized gradient approximation (GGA) functional®
with Grimme’s D4 dispersion corrections’ (henceforth referred to as B3LYP-D4) with the
def2-SV(P) basis set'” on all atoms. For open-shell species, unrestricted Kohn—Sham
orbitals were employed. Spin contamination is generally minor. Thermal corrections at
298.15 K were calculated from the unscaled vibrational frequencies at this level of theory.
The Quasi-RRHO method was applied to correct for the breakdown of the harmonic
oscillator approximation for low frequency vibrations. > All stationary points are
characterized by the appropriate number of imaginary vibrational modes (zero for
optimized geometries and one for transition states). Intrinsic reaction coordinate (IRC)
analyses were carried out to ensure all transition states connect the appropriate starting
materials and products.!' DFT electronic energies were further refined with the ®B97M-V

functional,'? def2-TZVPP basis set on all atoms, and the SMD implicit solvation model'3

for benzene. Outlying charge corrections were included in the final solvated energies. Final
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(DFT) Gibbs free energies were derived by applying thermodynamic corrections obtained
at the optimization level of theory to these refined electronic energies. While these DFT
energies are found to be reliable for high-spin (S = 1) intermediates where the nn* and n*
surfaces are well separated, multiconfigurational calculations (here, CASSCF/NEVPT2)
are employed for a more rigorous description of the electronic structure. However, DFT
remains a cost-effective tool for rapid evaluation/screening of conformers. Hence,
calculations at the (U)wB97M-V/def2-TZVPP/SMD(benzene)//(U)-B3LYP-D4/def2-
SV(P) level of theory were employed for exploring reactivity along the triplet nn* surface
(see Schemes 4.7-4.9).

CASSCF/NEVPT?2 Calculations: CASSCEF calculations were performed in order
to properly describe the multiconfigurational nature of the system in regions of state
crossings, as well as open-shell singlet intermediates. The active space is chosen to
incorporate the necessary bonding/anti-bonding orbitals. For enone 121_S,, this affords a
10 electron in 9 orbital active space [enone n/n* orbitals, isopropyl n/n*, vinyl silane m/m*,
carbonyl oxygen lone pair], henceforth abbreviated as (10,9). For intermediates where C—
C bonds are formed from reactivity of these m systems, the corresponding C—C s/s* are
included to maintain a consistent active space. The carbonyl oxygen lone pair of 121 and
its subsequent intermediates is included only when necessary (i.e., describing nmt* states),
as the lone pair is otherwise weakly correlated (occupation number > 1.999) leading to
convergence issues. Additional dynamical correlation is recovered by subsequent N-
Electron Valence State Perturbation Theory'* (NEVPT2) calculations using the CASSCF

wavefunction as a reference. For cases where state-averaged CASSCF wavefunctions are
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employed, the quasi-degenerate formalism of Nakano!> (QD-NEVPT2) was employed,
allowing for re-mixing of CI coefficients under the effect of dynamical correlation. Unless
otherwise notes, all energies in the main text are relative Gibbs free energies in kcal/mol
derived from electronic energies at the NEVPT2/def2-TZVPP/SMD(benzene) level of
theory with thermodynamic corrections from the (U)B3LYP/def2-SV(P) optimization
level.

Excited State Surfaces in Scheme 4.3.

The initial singlet n — * vertical excitation energy of 3.96 eV (313 nm) was
obtained from QD-NEVPT2-corrected CASSCF wavefunction with the (10,9) active space
with averaging over two triplets (nt* and nn*) and three singlet states (closed-shell singlet
(ground state), nt*, and nn*). Nearly identical results are obtained regardless of state
averaging scheme employed (see Table 4.1). From the ground state closed-shell singlet
(So), the singlet n = ©* (S1) and © — n* (S1) excitations are 3.96 and 7.45 eV, respectively

(Table S1).
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Table 4.1. Comparison of vertical excitation energies calculated at the 121_8, with

various state-averaging schemes.*

State 2 triplets 2 singlets 3 singlets : ::;ZIIZ:::
So - 0.00 [0.0] 0.00 [0.0] 0.00 [0.0]
S1 - 4.01[92.6] 3.99[92.0] 3.96 [91.4]
Sz - - 742 [171.2] 7.45[171.7]
T 0.00 [0.0] - - 3.73 [85.9]
T, 0.28 [6.6] - - 4.01[92.4]

[a] Calculations at the QD-NEVPT2/def2-TZVPP/SMD(benzene)//(U)B3LYP-D4/def2-SV(P) level of

theory with the (10,9) active space at 121_S,.

In order to calculate the energy difference between the 3(nn*) and 3(nn*) minima
(i.e., 121 _3(nm*) and 121 3(nm*)), single point calculations at the QD-NEVPT2/CASSCF
level of theory with state averaging (*(nn*) and *(nn*)) were carried out at the 121_3(nz*)
and 121 3(nm*) stationary points. State averaging was employed as at 121 _3(an*) the
carbonyl oxygen lone pair is not significantly correlated in the ground-state triplet at
121 3(mn*) (occupation number > 1.999). This results in convergence issues in orbital
optimization when included in the active space. Accordingly, the lowest triplet state at
121 _3(mm*) does not contain significant *(nn*) character and is well described by a single
configuration of n* character. Single point calculations with DFT ((U)wB97M-V/def2-
TZVPP/SMD(benzene)) also predict the 121_3(am*) minimum to be 1.8 kcal/mol lower in
energy than 121 _3(nm¥).

An analogous strategy was employed when calculating the vertical excitation

energies at the other relevant stationary points in Scheme 4.3 (121 _3(an*)), scheme 4.4



Chapter 4 — Quantum Mechanics Investigations of the [2+2] Photocycloaddition in the 561
Synthesis of (—)-Scabrolide A

(TS48), and when computing the vertical energy difference between *(nn*) and *(nn*) at
C—C bond forming transition states. For computing the energy difference between
stationary points with the same ground state (for example, AG* between 121 _3(zmn*) and
TS48, both with *(nn*) ground state), state-averaging is not employed.

Additional Stereochemical Considerations

In addition to the two 5-exo-trig B-attack pathways highlighted in the main
discussion (TS44 and TS45 in Scheme 4.4), two additional diastereomeric pathways (TS57
and TS58) are possible (Scheme 4.7). These pathways present higher barriers and are not
accessible given the estimated kinetics of ISC. Moreover, the ensuing ring closure (after
ISC) of the diradical intermediates would forge highly strained trans [4-5] fused ring
systems. Hence, even if triplet diradical intermediates 140 and 141 were formed, C—C bond
scission after ISC is anticipated, reforming starting material 121 _S,.

In analogy to the discussion above, two additional diastereomeric 4-exo-trig -
attack transition states are possible (TSS9 and TS60, Scheme 4.8). These pathways are
high in energy relative to the minimum energy pathways (Scheme 4.4) and are not
responsible for the observed reactivity. Moreover, the formation of the resulting
cyclobutane-containing products is accompanied by a positive change in free energy.

Hence, equilibration prior to ISC will preferentially reform 121 _3(an*).
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Scheme 4.7. All four diastereomeric 5-exo-trig [attack transition states and

products.*

AGF =117
AG =-10.1

AG¥ =n/a
AG =-12.1

121_3(mm*)

AGH=14.2
AG =-9.0

AG*=16.8
AG =-7.1

[a] All diradicals are in the triplet spin state. Gibbs free energies in kcal/mol from the (U)oB97M-

V/def2-TZVPP/SMD(benzene)//(U)B3LYP-D4/def2-SV(P) level of theory.
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Scheme 4.8. All four diastereomeric 4-exo-trig [Fattack transition states and products.

— AGF=11.8
AG =0.2
AG¥F=15.6
I AG=1.4
121_3mn*)
AG* =16.2
AG=0.8
| AGt=185
— N ¢ AG =25
PhMe,Si

TS60 143
[a] All diradicals are in the triplet spin state. Gibbs free energies in kcal/mol from the (U)oB97M-

V/def2-TZVPP/SMD(benzene)//(U)B3LYP-D4/def2-SV(P) level of theory.



Chapter 4 — Quantum Mechanics Investigations of the [2+2] Photocycloaddition in the 564

Synthesis of (—)-Scabrolide A

Scheme 4.9. All diastereomeric products for 6-exo-trig a-attack (144-147), 6-endo-

trig B-attack (148-149), 5-endo-trig f-attack (150-151), and 5-exo-trig a-attack

(152-155).°
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[a] All diradicals are in the triplet spin state. Gibbs free energies in kcal/mol from the (U)oB97M-

V/def2-TZVPP/SMD(benzene)//(U)B3LYP-D4/def2-SV(P) level of theory.

While the formation of cross adducts is not experimentally observed, the free
energy of triplet diradicals derived from 6-exo-trig a-attack (24-27), 6-endo-trig B-attack
(28-29), 5-endo-trig B-attack (30-31), and 5-exo-trig a-attack (32—35) were evaluated for
reference (Scheme 4.9). Wolf and Agosta have also previously found that substitution on

the internal carbon of pendant olefins leads to “straight” adducts rather than crossed

products.**
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Open-shell Singlet Potential Energy Surfaces

As the triplet diradical (such as 3126) undergoes a spin flip (ISC), whether it
geometrically relaxes to the stable open-shell singlet diradical (such as '126) or undergoes
C—C bond cleavage back to the substrate 121 may be influenced by conformation (Scheme
4.10).

Scheme 4.10. Conformational influence on outcome post-ISC.*

%126

Conformer j

3126

Conformer i

Energy

Diradical 1126

121_S,

Reaction coordinate

[a] Outcome of ISC would depend on the exact conformation of each conformer of triplet-spin
diradical (*126). This led to a partitioning between geometry relaxation to a stable diradical ('126), or

C-C bond cleavage to re-form substrate 121, as illustrated by the example of diradical 126.

Unfortunately, a single Slater determinant, as is used in DFT, does not afford a
proper spin eigenfunction for an open-shell singlet state. However, the broken-symmetry
formalism may be employed to obtain an Ms = 0 wavefunction with a qualitatively correct
character. While the resulting wavefunction is spin contaminated, the energy of the “pure”
singlet state can be estimated by a variety of spin projection methods. Here, we employ

that of Yamaguchi:*’
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When applying this approach to calculate barriers for C—C bond formation/cleavage from
the singlet diradical intermediates (1126, 1125, etc.), some spin-projected values resulted in
barriers of < 0 kcal/mol (Table 4.2). This indicates that the broken-symmetry (BS) DFT
PES may be qualitatively incorrect, i.e., stationary points on the BS-PES may not be
stationary points on the true singlet surface. To test this, single point calculations with
CASSCF/NEVPT2 were carried out along the IRC trajectories from the suspected saddle
points (as obtained by BS-DFT) (Scheme 4.11). While BS-DFT predicts TS11 to be a
stationary point between '8 and 6, the NEVPT2 PES reveals no well-defined saddle point,
and hence, AE(el)! ~ 0.0 kcal/mol.

While the relative energies along the BS-DFT PES are not necessarily accurate, the
molecular geometries obtained along the IRC describing the simple C-C bond
stretching/compressing should otherwise remain reliable. As such, a refined PES is derived
from single point calculations with CASSCF/NEVPT2 carried out along the IRC
trajectories from the saddle points as obtained by BS-DFT. AE(el) is then calculated from
this new PES and thermodynamical corrections are applied accordingly to obtain free

energy barriers (AG¥).
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Table 4.2. Free energy barriers to C—C bond formation/cleavage from '126.

%) PhMe,Si

3126 /126

Species AG* (kcalimol)

formed BS-DFT SP-BS-DFT QD-NEVPT2
124 5.0 A5 18
124' 6.6 18 3.9
121 6.5 25 3.7

[a] Significant discrepancies between broken-symmetry DFT (BS-DFT), spin-projected BS-DFT, and

QD-NEVPT2 calculations in the activation barrier for second C-C bond formation (TS54 and TS54’)

and reversion to substrate (TS53), as illustrated by the example of diradical 126. Single-point energies

were obtained using (U)B3LYP-D4/def2-SV(P) geometries at either the QD-NEVPT2/CASSCF/def2-

TZVPP/SMD(benzene) or (U)B3LYP-D4/def2-TZVPP/SMD(benzene) level of theory. For SP-BS-DFT,

Yamaguchi’s formula for spin projection was applied.
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Scheme 4.11. PESs generated from single point calculations along the BS-DFT IRC

trajectories of '126 to TS54 to 124.°

10

-10 A1

—— NEVPT2

Relative (electronic) Energy

20 A1
CASSCF
-30 A1
—8— B3LYP-D4
-40 T T T T T T ® 1
2.9 2.7 2.5 2.3 2.1 1.9 1.7 1.5

distance C(46) — C(62) (A)

[a] The CASSCF PES is included for comparison, but the NEVPT2 PES should be taken as reference.

Considering the relatively flat nature of many of the open-shell singlet potential
energy surfaces, we sought to explore by means of ab initio molecular dynamics (AIMD)
simulations whether dynamic effects play a role in the final product distributions. For the
system at hand, AIMD would not be practical at the CASSCF/NEVPT?2 level. Constrained
to DFT, we returned to the approach described above, now comparing the performance of
a variety of functionals to NEVPT2 references. This was carried out for the ring closure
step of diradicals 1126 (Scheme 4.12) and '125 (Scheme 4.13). These results show that the

PBE-D4 functional bears the best resemblance to the NEVPT2 potential energy surface.
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Employing the PBE-D4 functional, AIMD simulations were initiated from the
lowest energy conformers (within a 1.0 kcal/mol window) of *125 (Table 4.4) and 3126
(Table 4.3). AIMD simulations were propagated with a 1.0 fs timestep for up to 10 ps or
until a bond formation/cleavage occurred. A Berendsen thermostat was employed with a
time constant of 50 fs. Randomized initial velocities were set at 20 K, followed by a

temperature ramp to 298 K.
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Scheme 4.12. Comparison of performance in relaxed surface scan of ring closure of
diradical '126 to form observed but undesired product 124 of various DFT

functionals with respect to NEVPT2.*

R;Si
1126 TS54
—e— NEVPT2 —@— CASSCF >—B3LYP-D4 BLYP-D4 —e—PBED4
10 + —@—PBE0-D4 —e—11106-2X —e—11106-L —e—BP36-D4 —e— WBIT7X-D3

-5

-10

{kcal/mol)

G"g‘.’.‘

=20

=30 4

-35

-40 I I i 3 i i I I 3 I 3 I i
U T T T T T 1

15 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 24 2.5 2.6 2.7 2.8 2.9
d{C46-C62) {a.u.)

[a] Scans were performed from the lowest-energy conformer of '126. All single point energies were
calculated from each respective functional with the def2-TZVPP basis set and with the SMD(benzene)

implicit solvation.
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Scheme 4.13. Comparison of performance in relaxed surface scan of ring closure of
diradical '125 to form observed but undesired product 120 of various DFT

functionals with respect to NEVPT2.*

—e—NEVPT2 —@—BLYP-D4 B3LYP-D4 PBE-D4

10 +

20 =+

v (kcal/mol)

=)

30 =+

Energ

3 } 1 } I I } 1 } 3 } 3 I I I |
'5 0 T T T T T T T

15 16 17 1.8 1.9 20 21 22 23 24 25 26 27 28 29 3.0
d(C50-C66) (a.u.)
[a] Scans were performed from the lowest-energy conformer of "125. All single point energies were
calculated from each respective functional with the def2-TZVPP basis set and with the SMD(benzene)

implicit solvation.
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Table 4.3. Partitioning of five lowest-energy conformers of singlet diradical "126

between four outcomes based on picosecond-scale AIMD calculations.?

(o]
Me OH, Q Me”-OHtl 4

— > “‘Me

% PhMe,Si
126 124 121
Grel % Boltzmann
1 o, o, ’ o,
Conformer # (kcalimol) population % 1126 % 124 % 124 % 121

4 0.9 8.6 0 0 0 100
7 1.0 6.6 0 100 0 0
10 0.5 16.8 0 100 0 0
1 0.0 38.8 0 0 0 100
13 1.0 71 0 100 0 0
14 0.4 201 0 0 0 100

[a] Percent remaining as diradical 126, product 124 formation, diastereomer 124’ formation, and

substrate 121 formation. AIMD calculations were performed at (U)PBE-D4/def2-SV(P) level of theory.
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Table 4.4. Partitioning of five lowest-energy conformers of singlet diradical 125

between four outcomes based on picosecond-scale AIMD calculations.?

OH, O
meOHy @ |, SiMe,Ph Me,, |

L= o

SiMe,Ph
o &
[0} Me Me/%
1125 120
Grel % Boltzmann
1 o, o, s o,
Conformer # (kcallmol) population % 1125 % 120 % 120 % 121

4 0.00 28.8 32 68 0 0
7 0.84 6.9 10 80 0 5
8 0.37 15.4 25 75 0 0
1 0.50 12.3 35 65 0 0
13 0.01 28.4 23 77 0 0

[a] Percent remaining as diradical 125, product 120 formation, diastereomer 120’ formation, and

substrate 121 formation. AIMD calculations were performed at (U)PBE-D4/def2-SV(P) level of theory.
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CHAPTER 5

Development of a Branched-selective Asymmetric Allylic Alkylation of

Hard Pd-Enolate Nucleophiles.t

5.1 INTRODUCTION

The construction of chiral all-carbon quaternary centers featuring vicinal tertiary
stereocenters exemplifies a prevalent challenge in synthetic chemistry. We envisioned the
transition metal-catalyzed branched-selective allylic alkylation of prochiral hard enolate
nucleophiles as a promising strategy for accessing such motifs. However, a multitude of
challenges must be overcome, including regioselectivity in enolate formation, and regio-,
enantio-, and diastereoselectivity in the alkylation event.! Ir catalyst systems have proven
to be privileged for the branched-selective allylic alkylation of soft carbon nucleophiles.?
Extending this reactivity paradigm to hard, prochiral enolate nucleophiles has remained a
challenge.? To address this, Hartwig employed the in situ generation of Ba enolates to
enable the branched-selective allylic alkylation of a-tetralone nucleophiles (156) (Figure
5.1A).4 However, this approach is limited to select ketones due to the challenge of
regioselective deprotonation. Related transformations are subject to similar constraints.’
The Pd-catalyzed decarboxylative allylic alkylation of B-ketoesters represents a general,
regiospecific-at-nucleohile strategy for the asymmetric allylic alkylation of hard enolates

(Figure 5.1B).° However, canonical Pd-catalyzed decarboxylative allylic alkylation

T Unpublished research conducted with Dr. Stephen Sardini and Dr. Veronica Hubble
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employing tetrasubstituted nucleophiles and substituted allyl esters (158a) gives rise to
undesired regioselectivity, yielding linear alkylation products (159a) (Figure 5.1C).>’

Figure 5.1. Asymmetric allylic alkylation of tetrasubstituted enolate nucleophiles.

A. Ir-catalyzed branched-selective allylic alkylation of Ba enolates.

0 Ph"X"oco,Me 0 . P
Me [Ir] (2 mol %) _ —
Ba(Ot-Bu),, THF,5°C
83% yield
156 11:1 dr, 98% ee 157
(1.2 equiv)

B. Decarboxylative asymmetric allylic alkylation.
X
QL.

Qe O Pd,(dba)s; (2.5 mol %) 9 e
0/\/ (S)-t-BuPHOX (6.25 mol A:)‘ | WNF | 1 \
THF, 25 °C PhyP N\__/
85% yield, 88% ee “+Bu

(-1 (S)-2 (S)--BuPHOX (L1)

C. Standard Pd-catalyzed decarboxylative allylic alkylation of substituted allyl esters.?

o 0 Pd,(dba), (2.5 mol %) Q e

Me
S,S)-DACH-phenyl (6.5 mol % R
0" ZA"ph (5.5r phenyl ( )= R a
THF, 60 °C
1582 95% yield, 28% ee 159a
>20:1L/B = Linear-selective

D. This research: Branched-selective decarboxylative asymmetric allylic alkylation.

0 o o Rt ST
H — >20:1 dr, 94% ee
R1<J:‘)LO/\/\R3 RS - n‘{ﬁ/\/ ® Regiospecific
= Branched-selective
[a] Reaction conditions: 158a (0.05 mmol), Pdx(dba); (2.5 mol %), (S,S)-DACH-Ph (6.5 mol %), and
THF (2 mL) at 60 °C for 14 h. NMR yield determined with 1,3,5-trimethoxybenzene as an internal

standard. Enantioselectivity measured by chiral SFC analysis.

Aided by our prior mechanistic studies, we sought to favor the formation of
branched products through the design of ligands that bias key interactions in the inner-
sphere seven-membered reductive elimination transition state.® Ultimately, we achieve a
general approach to chiral all-carbon vicinal quaternary/tertiary stereocenters (Figure

5.1D). High diastereo- (>20:1) and enantioselectivity (>80% ee) are obtained, with the
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majority of products featuring >20:1 branched/linear selectivity. Subsequent derivatization
of these compounds highlights their utility as synthetic building blocks.
5.2 MECHANISM AND DEVELOPMENT

We began our investigation by considering the inner-sphere transition states that
lead to the formation of the desired branched (160a) and undesired linear (159a) products
from B-ketoester 158a (Figure 5.2A). The two lowest energy transition states leading to
linear (159a) and branched (160a) products are TS61 and TS62, respectively.
Unfortunately, with the prototypical (S)---BuPHOX ligand (LL1), linear TS61 is favored by
2.6 kcal/mol over its branched counterpart. Noting the proximity of the allyl substituent to
the phenyl group of the PHOX backbone (red arrows in TS61 at top of Figure 5.2A), we
explored di-ortho substitution of the ligand aryl groups as a means to disfavor TS61 by
sterics.” Accordingly, with (S)-Mes--BuPHOX (L2), TS62 now becomes favored over
TS61 by 3.5 kcal/mol. Enantioselectivity of the branched product (160a) from inner-sphere
reactivity is computed to remain high, with AAG* between diastercomeric transition states
of 2.4 and 3.9 kcal/mol with L1 and L2, respectively. Moreover, 2.5 and 1.2 kcal/mol
preferences for the chair-like over the boat-like transition states ensures good
diastereoselectivity. In summary, our preliminary in silico studies highlight that (1) ortho
substitution of the ligand arenes will introduce a bias for the desired branched product
(160a), and (2) a purely inner-sphere reaction will maintain both high diastereo- and

enantioselectivity.
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Figure 5.2. Computational studies and initial reaction development.

A. Mechanistic hypothesis.? B. Reaction optimization.?

3 o Ph (o}
o 0 el Pdy(dba), (25 mol %) we? Ve
’\ 0 AN ligand (6.5 mol %) % =
=N 0 Ph ——————— " » + Ph
ng---0% solvent, 60 °C
p—Pd: 0" ,pd -0%

é O/\V & \/\© 158a 160a 159a
é (branched) (linear)

TS61 TS62 Entry Ligand Solvent Yield B:L dr % ee

Linear Transition State (to 159a) Branch Transition State (to 160a) 1 (SF+-BUPHOX (L1) THF 54 1:21 21:1 12

= Exploit non-covalent interactions to favor TS62 2 (S)-t-BuPHOX (L1) PhMe 97 1:1.9 7.0:1 65

3 (S)(CFy)s-+BuPHOX (L3)  PhMe 86 1:1.4 14:1 80

TS61: (S)-+-BuPHOX (L1) TS61: (S)-Mes-t-BuPHOX (L2) 4 (SPMes-tBUPHOX (L2)  PhMe 28 14:1 1.9:1 s

®= @: 5 L4 PhMe 25 3.1:1 12:1 68

AGHg (L) =0.0 Me Me AGHq (L)=3.5 6 L5 PhMe 85 11:1 14:1 70

AG*.@ (B)=2.6 AG*rel (B)=0.0 7 L6 PhMe 78 1.7:1 16:1 82

Linear preferred B hed p " 8 L7 PhMe 62 5.9:1 >20:1 76

SESER Mo nenecpreleme 9° L7 PhMe 62 9.1:1 >20:1 82

Favorable Linear TS Disfavored Linear TS Ligand electronics ortho-Substitution

®=n L1
CF; L3

@
JOU el R @ @m

[a] Gibbs free energies in kcal/mol.'” [b] Reaction conditions: 158a (0.05 mmol), Pd,(dba); (2.5 mol

Potential edge—face interaction Sterics to disrupt aryl positioning

%), ligand (6.5 mol %), and solvent (2 mL) at 60 °C for 14 h. NMR yield determined with 1,3,5-
trimethoxybenzene as an internal standard. B:L and dr determined by crude '"H NMR analysis.

Enantioselectivity measured by chiral SFC analysis. [c] Isolated yield from 0.1 mmol of 158a at 50 °C.

Encouraged by the prospect of rational ligand design as a means to affect branched-
selective alkylation, we began our experimental investigations. As anticipated, subjecting
B-ketoester 158a to standard reaction conditions with (S)--~-BuPHOX (LL1) in THF afforded
the undesired linear isomer (159a) as the major reaction product with a branched-to-linear
ratio (B/L) of 1:2.1 (Figure 5.2B, entry 1). Surprisingly, the branched ketone (160a) was
furnished in poor enantio- and diastereoselectivity. Our computational studies found that
branched product formation from inner-sphere reductive elimination to proceed with both

high enantio- and diastereoselectivity. Hence, we suspected a deleterious outer-sphere
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mechanism to be competitive with said inner-sphere processes. To disfavor charge-
separated outer-sphere intermediates, a less polar solvent, such as toluene, and the electron-
poor (S)-(CF3)3--BuPHOX (L.3) ligand were explored. Under these conditions, the desired
branched product is obtained in 86% yield, 80% ee, and an improved 14:1 dr (entries 2-3).
As anticipated, regioselectivity remains poor, with a B/L ratio of 1:1.1. To improve
branched-selectivity, (S)-Mes-t-BuPHOX (L2) from our in silico studies was explored;
however, the electron rich nature of the ligand likely supports outer-sphere processes,
affording 160a in 6% ee and 1.9:1 dr (entry 4). Hence, a series of ligands that keep ortho
aryl substitution yet feature electron-withdrawing groups were evaluated (L4-L7, entries
5-8). Ultimately, o-trifluoromethylether-containing PHOX ligand L7 was found to be
optimal for the branched-selective allylic alkylation of 158a, affording the desired product
(160a) in 62% isolated yield, 82% ee, >20:1 dr, and in a 9.1:1 B/L ratio at 50 °C in toluene
(entry 9).
5.3 SUBSTRATE SCOPE

With respect to the scope of the transformation, substrates that incorporate o,3-
unsaturation led to a marked increase in the branched selectivity to 20:1 or greater (160b
and 160c¢) (Figure 5.3). We were delighted to find the increasingly electron-rich enolate
nucleophiles derived from synthetically useful vinylogous esters are well tolerated,
affording the corresponding products (160d-160h) in generally good yield, >20:1
B/L, >20:1 dr, and 82-87% ee. Both ligands L6 and L7 perform well for the vinylogous
ester substrate class. A vinylogous thioester was also explored, albeit reduced branched

selectivity was observed (160i). a-Enaminone-containing product 160j was obtained in
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lower yield but excellent diastereo- and enantioselectivity (>20:1 dr, 94% ee). We were
excited to observe that aliphatic substituted allyl electrophiles are competent coupling
partners. Crotyl alcohol-derived B-ketoester 158k affords enone 160k in 59% yield, 8.3:1
dr, and 73% ee, albeit with a diminished 2.5:1 B/L ratio. The reduction in branched
selectivity likely arises from the smaller steric profile of the methyl substituent, making
distinction between TS61 and TS62 more challenging. Employing a larger alkyl
substituent restores branched-selectivity (1601). Additionally, a-fluoro enolate
nucleophiles are highly competent substrates in this transformation. A variety of
fluorinated tetrasubstituted/tertiary vicinal stereocenter-containing products (160m—160q)
were furnished in generally good yield as predominantly a single isomer with high
enantioselectivity (82—-87% ee). Hence, the branched-selective decarboxylative allylic
alkylation described herein represents a powerful strategy to access diverse,

stereochemically rich building blocks.
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Figure 5.3. Substrate scope of branched-selective allylic alkylation.

QR sz(lc-il;a? 5(2.5 :'n;ol%)" o F?l"
07 N\ Rs (6.5 mol%) %
R! PhMe, 50 °C R!
158a—q 160a-q

Substrate scope for branched-selective allylic alkylation forging quaternary centers

160a
62% yield, 9.1:1 B/L
>20:1 dr, 82% ee

160e
70% yield¢, >20:1 B/L
>20:1 dr, 87% ee

PhS
160i
87% yield®, 7.5:1 B/L
>20:1 dr, 78% ee

P
Me 3
G

160b
51% yield, 20:1 B/L
>20:1 dr, 78% ee

EtO
CO,Me

160f
42% yield¢, >20:1 B/L
>20:1 dr, 84% ee

160j
30% yield9, 9.1:1 B/L
>20:1 dr, 94% ee

[o}

Ph
Me 3
/@/\/
Me

160c
70% yield, >20:1 B/L
>20:1 dr, 80% ee

EtO

1609
77% yield¢, >20:1 B/L
>20:1 dr, 84% ee

Me
160k
59% yield¢, 2.5:1 B/L
8.3:1dr, 73% ee

EtO

160d
70% yield, >20:1 B/L
>20:1 dr, 84% ee

0O Ph
Me 3
=

BnO

160h
70% yield¢, >20:1 B/L
>20:1 dr, 82% ee

1601
35% yield, >20:1 B/L
>20:1 dr, 82% ee

Vicinal stereocenters containing C-F bonds

160m 160n . 1c6£o
71% yield, >20:1 B/L 75% yield, >20:1 B/L 80% yield®®, >20:1 B/L
>20:1 dr, 85% ee >20:1 dr, 82% ee >20:1 dr, 87% ee

oB
o " 0 _ We
Me Me'
160p 160q

48% yield, >20:1 B/L

78% yield, 3.6:1 B/L
14:1 dr, 84% ee

4.5:1 dr, 87% ee

592

[a] Reaction conditions: 158 (0.1 mmol), Pdx(dba); (2.5 mol %), L7 (6.5 mol %), and toluene (4 mL)

at 50 °C for 14 h. [b] Pd>(pmdba); can be employed as a Pd source when dba is difficult to separate

from desired product. [c] L6 employed (comparable performance between L7 and L6). [d] L3

employed. [e] Reaction carried out at 60 °C.
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54 PRODUCT TRANSFORMATIONS

Derivatization of allylic alkylation products showcases the synthetic utility of these
building blocks. Stork—Danheiser ketone transposition of vinylogous ester 160d afforded
y-substituted o, B-unsaturated ketone 161. Selective olefin hydrogenation of 160d smoothly
furnishes vicinal stereocenter-containing product 162 in nearly quantitative yield. Wacker
oxidation of the terminal olefin of 160c¢ yielded ketone 163, now bearing a 1,4-
dioxygenation pattern.

Figure 5.4. Branched allylic alkylation product derivatizations.

Ph

0O Ph
Me 3 Me
N~ DIBAL-H, CH,Cl,, 0°C F
then, H,S0,, 23°C
EtO 0

o
160d 57% yield 161
o E
ﬁ/\/ _Ha(tatm), PaC /@jL
Ph
T meon,23°C
EtO
160d 99% yield 162
PdCl,, CuCl. o Ph
02 (21 atm)2 Me ¢ Me
DMF/HZO 60 °C !
30% yield Me
160c 163

5.5 CONCLUSIONS

We report the development of a branched-selective Pd-catalyzed decarboxylative
asymmetric allylic alkylation of hard enolate nucleophiles. Building on our prior studies
on the inner-sphere seven-centered reductive elimination, we derive a set of design
principles for rational ligand design that ultimately overturns the innate selectivity in prior
systems. The transformation employs readily accessible B-ketoester precursors to furnish

products containing vicinal all-carbon quaternary/tertiary stereocenters. Branched products
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are obtained in up to 80% yield, >20:1 dr, and 87% ee. Studies further expanding the utility
and scope of this transformation are underway and will be reported in due course.
5.6 SUPPORTING INFORMATION
5.6.1 MATERIALS AND METHODS

Unless otherwise stated, reactions were performed in flame-dried glassware under
an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by
passage through an activated alumina column under argon.'' Reaction progress was
monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was
performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and
visualized by UV fluorescence quenching or KMnOs staining. Silicycle SiliaFlash® P60
Academic Silica gel (particle size 40-63 nm) was used for flash chromatography. '"H NMR
spectra were recorded on a Bruker 400 MHz spectrometer and are reported relative to
residual CHCI3 (8 7.26 ppm). '3C NMR spectra were recorded on a Bruker 400 MHz
spectrometer (100 MHz) and are reported relative to CHCl3 (8§ 77.16 ppm). 2H NMR
spectra were recorded on a Bruker 400 MHz (61 MHz) spectrometer and are reported
relative to residual CDCls (8 7.26 ppm). Data for 'H NMR are reported as follows: chemical
shift (6 ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported
as the peaks appear as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet,
sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet. Data for '3C
NMR are reported in terms of chemical shifts (6 ppm). Some reported spectra include
minor solvent impurities of water (& 1.56ppm), ethyl acetate (6 4.12, 2.05, 1.26 ppm),

methylene chloride (6 5.30 ppm), acetone (6 2.17 ppm), grease (6 1.26, 0.86 ppm), and/or
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silicon grease (8 0.07 ppm), which do not impact product assignments. '3C NMR spectra
of deuterated compounds are complicated by the low intensity of peaks of deuterium-
substituted carbon atoms. IR spectra were obtained by use of a Perkin Elmer Spectrum
BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl
plates and reported in frequency of absorption (cm™). Optical rotations were measured
with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm
path-length cell. Analytical SFC was performed with a Mettler SFC supercritical CO»
analytical chromatography system utilizing Chiralpak (AD-H or IC) or Chiralcel (OD-H,
OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd.
High resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral
Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in Field Desorption
(FD+) mode. Absolute stereochemical assignments were made by vibrational circular
dichroism analysis for select compounds with related compounds assigned by analogy.

Reagents were purchased from commercial sources and used as received unless
otherwise stated. Ligands were prepared according to literature procedures.!?

List of Abbreviations: ee — enantiomeric excess, SFC — supercritical fluid
chromatography, TLC — thin-layer chromatography, IPA — isopropanol, VCD — vibrational

circular dichroism, pmdba — bis(4-methoxybenzylidene)acetone.
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5.6.2 EXPERIMENTAL PROCEDURES AND SPECTROSCOPIC DATA
Pd-Catalyzed Decarboxylative Asymmetric Allylic Alkylation

General Procedure A: Asymmetric Pd-Catalyzed Decarboxylative Allylic Alkylation.

ik s G
OM\R?' igand (6.5 mol%) - —
Ri/— PhMe, 50 °C Ry—
158 160

In a nitrogen filled glovebox, an oven-dried 1 dram vial was charged with a stir bar,
Pdz(dba); or Pdx(pmdba); (2.5 pmol, 2.5 mol %), ligand (0.0065 mmol, 6.5 mol %), and
toluene (1.0 mL). The catalyst solution was stirred at 23 °C for 20 min, then added to a
solution of substrate 158 in toluene (3 mL) in a 2 dram vial. The reaction vial was then
sealed with electrical tape, removed from the glovebox, and heated to 50 °C for 14 h. The
reaction mixture was let cool to ambient temperature, passed through a plug of silica gel,
and concentrated under reduced pressure. The crude reaction mixture was loaded directly

onto a flash column and the product (160) was isolated by silica gel flash column

P
Me 3
S

160a

chromatography.

(S)-2-methyl-2-((S)-1-phenylallyl)cyclohexan-1-one (160a)

Prepared from 158a (27.2 mg, 100 umol) following General Procedure A using
Pdx(pmdba); and L7. Purification by flash column chromatography (0-15%
EtOAc/hexanes) afforded the title compound as a colorless oil (14.2 mg, 62.2 umol, 62%

yield, 9.1:1 B/L, >20:1 dr (B), 82% ee(B)).
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*Crude 'H NMR analysis reveals a B/L of 5.6:1 prior to chromatography.

'"H NMR (400 MHz, CDCl3): § 7.35 — 7.28 (m, 2H), 7.25 — 7.19 (m, 3H), 6.21 — 6.07 (m,
1H), 5.09 — 5.03 (m, 2H), 3.93 (d, J = 9.4 Hz, 1H), 2.56 — 2.32 (m, 2H), 2.10 — 1.98 (m,
2H), 1.87 — 1.62 (m, 3H), 1.35 - 1.24 (m, 1H), 0.98 (s, 3H).

13C NMR (100 MHz, CDCls): 5 215.0, 140.0, 136.6, 129.8, 128.2, 126.9, 117.2, 53.0,
52.5,39.7,37.4,27.8,21.1, 19.6.

IR (Neat Film, NaCl): 3062, 3027, 2933, 2863, 1704, 1453, 1124 cm™.

HRMS (MM: El+): m/z calc’d for CisH200 [M]": 228.1514, found 228.1515.

Optical Rotation: [a]p?' —25.1 (¢ 1.00, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):

minor = 3.59, major = 2.81.

(o} Ph

Me =
@/\%

160b
(8)-6-methyl-6-((S)-1-phenylallyl)cyclohex-2-en-1-one (160b)
Prepared from 158b (27.2 mg, 1.00 mmol) following General Procedure A using
Pdx(pmdba); and L7. Purification by flash column chromatography (0-100%
CH:Clx/hexanes) afforded the title compound as a colorless oil (11.5 mg, 0.05 mmol, 51%
yield, 20:1 B/L, >20:1 dr (B), 78% ee(B)).
'"H NMR (400 MHz, CDCl3): 6 7.32 — 7.17 (m, 5H), 6.84 (dt, J = 10.0, 3.9 Hz, 1H), 6.20

(dt, J=16.8, 9.9 Hz, 1H), 5.91 (dt, /= 10.0, 2.1 Hz, 1H), 5.12 — 4.98 (m, 2H), 3.86 (d, J =
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9.7 Hz, 1H), 2.56 — 2.46 (m, 1H), 2.40 — 2.29 (m, 1H), 1.85 (dt, J= 13.8, 5.7 Hz, 1H), 1.73
(ddd, J=13.9,7.3, 5.5 Hz, 1H), 1.10 (s, 3H).

13C NMR (101 MHz, CDCl3): 5 203.0, 148.2, 140.8, 137.0, 129.8, 129.1, 128.1, 126.6,
117.4,52.9, 48.8,31.1, 23.4, 20.5.

IR (Neat Film, NaCl): 3028, 2935, 2343, 2357, 1699, 1670, 1636, 1387, 1222, 695 cm™".
HRMS [M+H]": m/z calc’d for Ci16H190: 227.14359, found 227.14317.

Optical Rotation: [a]p?? +39.0° (c 0.48, CHCI3).

SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):

(o] P
Me 3
ﬁ/\/
Me

160c

minor = 4.45, major = 4.08.

(8)-3,6-dimethyl-6-((5)-1-phenylallyl)cyclohex-2-en-1-one (160c)

Prepared from 158¢ (28.4 mg, 100 pmol) following General Procedure A using
Pdx(pmdba); and L7. Purification by flash column chromatography (0-20%
EtOAc/hexanes) afforded the title compound as a colorless oil (16.8 mg, 69.9 umol, 70%
yield, >20:1 B/L, >20:1 dr, 80% ee).

'"H NMR (400 MHz, CDCl3): 6 7.37 — 7.24 (m, 5H), 6.28 (dt, J = 16.8, 9.9 Hz, 1H), 5.83
(q, J=1.4Hz, 1H), 5.17 (dd, J=10.0, 1.8 Hz, 1H), 5.11 (ddd, /= 16.8, 1.8, 0.9 Hz, 1H),
3.94 (d,J=9.7Hz, 1H), 2.51 —2.42 (m, 1H), 2.37 - 2.28 (m, 1H), 1.98 (s, 3H), 1.92 (ddd,

J=13.8,6.9, 5.4 Hz, 1H), 1.78 (ddd, J = 13.8, 7.0, 5.4 Hz, 1H), 1.16 (s, 3H).
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13C NMR (100 MHz, CDCl3): § 202.8, 159.9, 141.0, 137.1, 129.8, 128.1, 126.5, 126.0,
117.4,53.1, 47.5, 30.9, 28.3, 24.1, 20.8.

IR (Neat Film, NaCl): 3062, 3028, 2969, 2932, 1663, 1637, 1452, 1377, 1213 cm™.
HRMS (MM: FD+): m/z calc’d for Ci17H200 [M]": 240.1514, found 240.1522.

Optical Rotation: [a]p?' +38.1 (¢ 1.00, CHCI3)

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, A = 210 nm, tr (min):

minor = 2.95, major = 3.31.

Ph

0
Me =
ij/v/
EtO

160d
(8)-3-ethoxy-6-methyl-6-((S)-1-phenylallyl)cyclohex-2-en-1-one (160d)

Prepared from 158d (31.4 mg, 100 umol) following General Procedure A using Pdx(dba);
and L7. Purification by flash column chromatography (0—40% EtOAc/hexanes) afforded
the title compound as a colorless oil (18.8 mg, 70 umol, 70% yield, >20:1 dr, 84% ee).
Ligand L6 afforded identical results.

'"H NMR (400 MHz, CDCl3): 6 7.28 — 7.16 (m, 5H), 6.23 (dt, J = 16.8, 9.9 Hz, 1H), 5.23
(s, 1H), 5.12 (dd, J=10.1, 1.8 Hz, 1H), 5.06 (ddd, J=16.8, 1.9, 0.9 Hz, 1H), 3.90 (d, J =
9.7 Hz, 1H), 3.87 (dd, J=17.0, 2.8 Hz, 1H), 3.83 (dd, J= 7.0, 2.7 Hz, 1H), 2.48 (ddd, J =
18.1, 7.0, 5.6 Hz, 1H), 2.44 — 2.34 (m, 1H), 1.87 (ddd, J = 13.4, 7.6, 5.6 Hz, 1H), 1.73 —
1.66 (m, 2H), 1.33 (t, /= 7.0 Hz, 3H), 1.11 (s, 3H).

13C NMR (100 MHz, CDCl3): § 202.8, 175.5, 141.2, 137.1, 129.8, 128.1, 126.5, 117.4,

102.0, 64.3, 53.5, 47.5, 29.5, 26.1, 21.3, 14.3.
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IR (Neat Film, NaCl): 2942, 1647, 1611, 1377, 1190 cm™.

HRMS (MM: FD+): m/z calc’d for CisH2202 [M]*: 270.1620, found 270.1628.

Optical Rotation: [a]p?' —1.3 (¢ 1.00, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 254 nm, tr (min):

minor = 2.70, major = 3.25.

[0} Ph

Et 3
Jﬁ‘jN/
EtO

160e
(8)-3-ethoxy-6-ethyl-6-((5)-1-phenylallyl)cyclohex-2-en-1-one (160¢)
Prepared from 158e (34.4 mg, 104 umol) following General Procedure A using Pdx(dba);
and L6. Purification by flash column chromatography (5-20% EtOAc/hexanes) afforded
the title compound as a colorless oil (21.0 mg, 74 umol, 70% yield, >20:1 dr, 87% ee).
'"H NMR (400 MHz, CDCl3): & 7.26 — 7.21 (m, 4H), 7.19 — 7.13 (m, 1H), 6.26 (dt, J =
16.8, 10.1 Hz, 1H), 5.22 (s, 1H), 5.14 — 5.07 (m, 2H), 4.02 (d, J = 10.0 Hz, 1H), 3.86 —
3.78 (m, 2H), 2.47 — 2.33 (m, 2H), 1.96 — 1.74 (m, 3H), 1.50 (dq, J = 14.5, 7.4 Hz, 1H),
1.31 (t,J=7.0 Hz, 3H), 0.83 (t, J= 7.4 Hz, 3H).
13C NMR (100 MHz, CDCl3): § 201.0, 175.2, 141.6, 137.0, 130.1, 128.0, 126.3, 117.3,
103.0, 64.2, 51.7, 50.7, 26.7, 26.3, 26.0, 14.3, 8.3.
IR (Neat Film, NaCl): 2978, 2937, 1650, 1612, 1380, 1189 cm™'.
HRMS (MM: ESI+): m/z calc’d for Ci9H250, [M+H]": 285.1849, found 285.1859.

Optical Rotation: [a]p?' +16.0 (¢ 1.00, CHCI3).
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SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 254 nm, tr (min):

minor = 2.93, major = 3.50.

(o} Ph

EtO

CO,Me
160f

methyl 3-((R)-4-ethoxy-2-0x0-1-((S)-1-phenylallyl)cyclohex-3-en-1-yl)propanoate
(160f)

Prepared from 158f (38.2 mg, 98.9 umol) following General Procedure A using Pdx(dba);
and L6. Purification by flash column chromatography (5-20% EtOAc/hexanes) afforded
the title compound as a colorless oil (14.3 mg, 41.8 pumol, 42% yield, >20:1 dr, 84% ee).
'"H NMR (400 MHz, CDCl3): & 7.26 — 7.20 (m, 4H), 7.18 — 7.13 (m, 1H), 6.25 (dt, J =
16.8, 10.1 Hz, 1H), 5.20 (s, 1H), 5.19 — 5.10 (m, 2H), 4.07 (d, J = 10.1 Hz, 1H), 3.86 —
3.77 (m, 2H), 3.63 (s, 3H), 2.52 —2.33 (m, 3H), 2.25 (ddd, /= 16.3, 11.4, 4.8 Hz, 1H), 2.00
(ddd, J=14.0, 11.5, 5.2 Hz, 1H), 1.95 - 1.79 (m, 3H), 1.31 (t, /= 7.0 Hz, 3H).

13C NMR (100 MHz, CDCl3): § 200.2, 175.3, 174.3, 141.0, 136.2, 130.0, 128.0, 126.4,
117.9,102.6, 64.2, 51.6, 51.0, 49.6, 28.3, 28.1, 27.0, 25.7, 14.1.

IR (Neat Film, NaCl): 2980, 2946, 1737, 1643, 1610, 1381, 1191 cm™.

HRMS (MM: ESI+): m/z calc’d for C21H2704 [M+H]": 343.1904, found 343.1909.
Optical Rotation: [a]p?' +24.6 (¢ 1.00, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 254 nm, tr (min):

minor = 2.54, major = 3.00.
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0 Ph

EtO

CN
160g

3-((S)-4-ethoxy-2-0x0-1-((S)-1-phenylallyl)cyclohex-3-en-1-yl)propanenitrile (160g)
Prepared from 158g (35.3 mg, 100 umol) following General Procedure A using Pd»(dba);
and L6. Purification by flash column chromatography (5—40% EtOAc/hexanes) afforded
the title compound as a colorless oil (23.9 mg, 77.2 umol, 77% yield, >20:1 B/L, >20:1 dr,
84% ee).

'"H NMR (400 MHz, CDCl3): § 7.29 — 7.23 (m, 2H), 7.19 (td, J = 7.8, 1.4 Hz, 3H), 6.23
(dt,J=16.9, 10.1 Hz, 1H), 5.24 (s, 1H), 5.20 (d, /= 10.2 Hz, 1H), 5.13 (d, /= 16.9 Hz,
1H), 3.97 (d, J=9.9 Hz, 1H), 3.89 — 3.80 (m, 2H), 2.51 — 2.39 (m, 3H), 2.28 — 2.12 (m,
2H), 1.93 - 1.76 (m, 3H), 1.33 (t, J=7.0 Hz, 3H).

13C NMR (100 MHz, CDCl3): & 199.5, 175.8, 140.2, 135.8, 129.8, 128.3, 126.9, 120.4,
118.5, 102.6, 64.6, 51.0, 49.8, 29.3,26.7, 25.7, 14.2, 12.1.

IR (Neat Film, NaCl): 2980, 2937, 2246, 1643, 1606, 1381, 1190 cm™.

HRMS (MM: ESI+): m/z calc’d for C20H2402N [M+H]": 310.1802, found 310.1804.
Optical Rotation: [a]p?' +13.1 (¢ 1.00, CHCI3).

SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 254 nm, tr (min):

minor = 2.06, major = 3.05.

(0} Ph

Me 3
Jﬁﬁ”v/
BnO

160h

(8)-3-(benzyloxy)-6-methyl-6-((S)-1-phenylallyl)cyclohex-2-en-1-one (160h)
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Prepared from 158h following General Procedure A using Pdx(dba); and L6. Purification
by flash column chromatography (0-40% EtOAc/hexanes) afforded the title compound as
a colorless oil (23.4 mg, 0.704 mmol, 70% yield, >20:1 dr, 82% ee).

'"H NMR (400 MHz, CDCl3): 6 7.42 — 7.32 (m, 5H), 7.30 — 7.24 (m, 4H), 7.19 (ddd, J =
8.4,5.3,2.2 Hz, 1H), 6.24 (dt, J=16.8, 9.9 Hz, 1H), 5.37 (s, 1H), 5.12 (dd, J=10.1, 1.9
Hz, 1H), 5.06 (d, J=16.8 Hz, 1H), 4.87 — 4.80 (m, 2H), 3.92 (d, /= 9.7 Hz, 1H), 2.55 (dt,
J=18.1, 6.1 Hz, 1H), 2.45 (ddd, J = 18.1, 7.5, 5.6 Hz, 1H), 1.91 (ddd, J=13.3, 7.6, 5.6
Hz, 1H), 1.73 (ddd, /= 13.7, 7.0, 5.6 Hz, 1H), 1.14 (s, 3H).

13C NMR (100 MHz, CDCl3): § 202.6, 175.0, 141.1, 137.0, 135.2, 129.8, 128.8, 128.7,
128.1, 128.0, 126.5, 117.5, 102.6, 70.5, 53.5, 47.6, 29.4, 26.1, 21.3.

IR (Neat Film, NaCl): 2932, 1652, 1610, 1362, 1186 cm™.

HRMS (MM: FD+): m/z calc’d for C23H2402 [M]*: 332.1776, found 332.1773.

Optical Rotation: [a]p?' —5.0 (¢ 1.00, CHCIs).

SFC conditions: 25% IPA, 2.5 mL/min, Chiralpak OD-H column, A = 254 nm, tr (min):

minor = 4.10, major = 3.72.

[0} Ph

Me
ﬁN/
PhS

160i
(8)-6-methyl-6-((S)-1-phenylallyl)-3-(phenylthio)cyclohex-2-en-1-one (160i)
Prepared from 158i following General Procedure A using Pd»(dba); and L6. Purification
by flash column chromatography (0-40% EtOAc/hexanes) afforded the title compound as

a colorless oil (29.2 mg, 0.873 mmol, 87% yield, 7.5:1 B/L, >20:1 dr, 78% ee).
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'"H NMR (400 MHz, CDCl5): & 7.47 — 7.38 (m, 5H), 7.27 — 7.18 (m, 5H), 6.18 (dt, J =
16.8,9.9 Hz, 1H), 5.37 (s, 1H), 5.11 (dd, /= 10.1, 1.9 Hz, 1H), 5.05 (d, /= 16.8 Hz, 1H),
391 (d, J=9.7 Hz, 1H), 2.63 — 2.46 (m, 2H), 1.94 (ddd, J=13.3, 7.7, 5.3 Hz, 1H), 1.78
(ddd, J=13.7,6.7,5.2 Hz, 1H), 1.11 (s, 3H).

13C NMR (100 MHz, CDCl3): & 199.3, 164.0, 143.5, 140.9, 136.8, 135.6, 130.2, 129.9,
129.8, 128.1, 126.5, 120.3, 117.6, 53.3, 47.9, 31.0, 27.2, 21.3.

IR (Neat Film, NaCl): 2927, 1650, 1579, 1212 cm™'.

HRMS (MM: FD+): m/z calc’d for C2o0H2,02S [M]*: 334.1391, found 334.1392.

Optical Rotation: [a]p?' —64.9 (¢ 1.00, CHCI3).

SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):

minor = 4.45, major = 4.08.

o/\ 0 _Ph

K/Nﬁ}v/

160j
(8)-6-methyl-2-morpholino-6-((S)-1-phenylallyl)cyclohex-2-en-1-one (160j)
Prepared from 158j following General Procedure A using Pdx(dba); and L3. Purification
by preparatory TLC (10% acetone/toluene) afforded the title compound as a colorless oil
(9.2 mg, 0.030 mmol, 30% yield, 9.1:1 B/L, >20:1 dr, 94% ee).
'"H NMR (400 MHz, C¢Ds): 6 7.18 — 7.16 (m, 3H), 7.14 — 7.08 (m, 2H), 7.06 — 7.01 (m,
1H), 6.13 (dt, J=16.8, 9.9 Hz, 1H), 5.24 (t,/=4.4 Hz, 1H), 4.98 — 4.90 (m, 2H), 3.90 (d,

J=9.6 Hz, 1H), 3.77 — 3.58 (m, 4H), 2.91 — 2.83 (m, 2H), 2.39 — 2.32 (m, 2H), 2.22 - 2.10
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(m, 1H), 1.96 — 1.84 (m, 1H), 1.61 (dt,J=13.8, 5.4 Hz, 1H), 1.33 (ddd, /= 13.8, 8.2, 5.6
Hz, 1H), 1.08 (s, 3H).

13C NMR (100 MHz, C¢D¢): 5 198.3, 146.3, 141.1, 137.6, 130.0, 128.2, 126.8, 121.6,
117.2,67.0, 53.4, 50.5, 49.4, 31.5, 22.0, 20.5.

IR (Neat Film, NaCl): 3027, 2928, 2853, 1681, 1615, 1450, 1263, 1210, 1119 cm™.
HRMS (MM: ESI+): m/z calc’d for C20H270.N [M+H]": 312.1958, found 312.1961.
Optical Rotation: [a]p?' +8.9 (c 0.90, CHCls).

SFC conditions: 30% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 280 nm, tr (min):

minor = 3.89, major = 2.05.

(o] Me

Me 3
ﬁN/
Me

160k

(8)-6-methyl-2-morpholino-6-((S)-1-phenylallyl)cyclohex-2-en-1-one (160Kk)

Prepared from 158k (0.094 mmol) following General Procedure A using Pd>(pmdba); and
L6. Purification by preparatory TLC (25% Et,O/hexanes) afforded the title compound as a
colorless oil (10.0 mg, 0.056 mmol, 59% yield, 2.5:1 B/L, 9.0:1 dr, 73% ee).

"H NMR (400 MHz, C¢D¢): 6 5.81 — 5.75 (m, 1.4H (linear + both branched)), 5.69 (ddd,
J=16.5,10.7, 8.4 Hz, 0.9H (branched)), 5.62 — 5.53 (m, 0.4H (linear)), 5.39 — 5.29 (m,
0.4H (linear)), 5.08 — 4.95 (m, 2H (branched major + branched minor)), 2.75 — 2.63 (m,
0.9H(branched major)), 2.64 — 2.56 (m, 0.1H (branched minor)), 2.31 — 2.21 (m, 3.6H),

2.01 (ddd, J=13.7, 7.3, 6.3 Hz, 1H), 1.95 — 1.87 (m, SH), 1.76 — 1.58 (m, 3.3H), 1.06 (s,
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1.2H(linear)), 0.99 (s, 2.7H(branched major)), 0.98 (s, 0.4H(branched minor)), 0.94 (d, J =
6.8 Hz, 2.7H(branched major)), 0.88 (d, /= 7.0 Hz, 0.4H(branched minor)).

13C NMR (100 MHz, CDCl3): & 204.0, 203.8, 160.5, 160.2, 140.4, 139.9, 126.8, 126.1,
125.8, 125.6, 125.5, 115.6, 115.4, 46.3, 46.0, 43.9, 41.6, 40.2, 33.8, 33.1, 31.9, 30.5, 29.8,
29.5,28.4,28.1,28.0,24.2,24.1,24.1,21.9,20.3, 18.1, 15.3, 14.4, 13.1.

IR (Neat Film, NaCl): 2965, 2930, 1666, 1638, 1433, 1378, 1213 cm™.

HRMS (MM: FI+): m/z calc’d for C12Hi30 [M]": 178.1358, found 178.1362.

Optical Rotation: [a]p?' +2.3 (¢ 1.00, CHCls).

SFC conditions: 4% IPA, 2.5 mL/min, Chiralpak IC column, A =210 nm, tg (min): minor
=7.16, major = 8.11.

o /OBn

Me
/@/\%
Me

160/

(8)-6-methyl-2-morpholino-6-((S)-1-phenylallyl)cyclohex-2-en-1-one (1601)

Prepared from 1581 (0.105 mmol) following General Procedure A using Pdx>(pmdba); and
L7. Purification by flash column chromatography (0-20% EtOAc/hexanes) afforded the
title compound as a colorless oil (10.6 mg, 0.037 mmol, 35% yield, >20:1 B/L, >20:1 dr,
82% ee).

'"H NMR (500 MHz, CDCl3): § 7.35 — 7.28 (m, 4H), 7.28 — 7.23 (m, 1H), 5.79 (s, 1H),
5.67 (dt,J=16.9, 9.9 Hz, 1H), 5.19 — 5.10 (m, 2H), 4.47 (d, J = 2.4 Hz, 2H), 3.57 — 3.40
(m, 2H), 2.97 (ddd, J=9.4, 7.4, 5.6 Hz, 1H), 2.37 — 2.17 (m, 2H), 2.08 — 1.97 (m, 1H),

1.91 (s, 3H), 1.70 — 1.61 (m, 2H), 1.02 (s, 3H).
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13C NMR (101 MHz, CDCl3): § 202.7, 159.9, 138.6, 136.0, 128.3, 127.5, 127.4, 125.9,
118.5,72.8,70.6, 48.1, 45.1, 29.7, 28.0, 24.1, 20.9.

IR (Neat Film, NaCl): 3026, 2918, 1665, 1453, 1214, 1096 cm™'.

HRMS (MM: ESI+): m/z calc’d for CioH2402 [M]*: 284.1766, found 284.1776.

Optical Rotation: [a]p?' +33.2 (¢ 1.05, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):

minor = 3.77, major = 2.81.

160m
(S)-2-fluoro-2-((S)-1-phenylallyl)cyclohexan-1-one (160m)
Prepared from 158m (28.6 mg, 103 umol) following General Procedure A using
Pdx(pmdba); and L7. Purification by flash column chromatography (0-15%
EtOAc/hexanes) afforded the title compound as a colorless crystalline solid (17.1 mg, 73.6
pmol, 71% yield, >20:1 B/L, >20:1 dr, 85% ee) as well as a fraction (1.5 mg, 6.5 umol, 6%
yield) containing mixed E/Z linear isomers with trace of the major diastereomer of the
branched isomer. Overall yield: 18.6 mg, 80.1 umol, 77% yield, 13:1 B/L, >20:1 dr (B),
85% ee (B)).
*Crude 'H NMR analysis reveals a B/L of 12.5:1 prior to chromatography.
'"H NMR (400 MHz, CDCl): 6 7.39 — 7.24 (m, 5H), 6.18 (ddd, J = 17.1, 10.3, 8.8 Hz,
1H), 5.12 (d, J=10.3 Hz, 1H), 5.08 (d, /= 17.1 Hz, 1H), 3.88 (dd, /= 32.4, 8.8 Hz, 1H),

2.71-2.63 (m, 1H), 2.54 — 2.45 (m, 1H), 2.06 — 1.98 (m, 1H), 1.86 — 1.68 (m, SH).
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*Trace isolated peaks of minor diastereomer (<5%) observed as 5.26 — 5.19 (m, 2H), 2.88
—2.75 (m, 2H), 2.43 — 2.30 (m, 2H). Others overlap with major diastereomer.

3C NMR (100 MHz, CDCls): § 207.5 (d, Je-r = 18.2 Hz), 137.9, 135.3 (d, Jc.r =5.4 Hz),
129.6 (d, J=2.6 Hz), 128.8, 127.5, 117.9, 100.7 (d, Jc—r = 194.8 Hz), 53.1 (d, Jc-r = 20.0
Hz), 40.3,36.7 (d, Jc.r = 21.7 Hz), 27.8, 22.2 (d, Jc-r = 9.1 Hz).

YF NMR (282 MHz, CDCl3): § —166.45 (d, J = 32.5 Hz).

IR (Neat Film, NaCl): 2948, 1724, 1454, 1047 cm™'.

HRMS (MM: El+): m/z calc’d for CisHi7OF [M]": 232.1263, found 232.1259.

Optical Rotation: [a]p?' —23.3 (¢ 1.00, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):

(S)-2-fluoro-2-((S)-1-phenylallyl)cyclohexan-1-one (160n)

minor = 3.23, major = 2.65.

Prepared from 158n (27.0 mg, 98.4 pmol) following General Procedure A using
Pdx(pmdba); and L7. Purification by flash column chromatography (0-20%
EtOAc/hexanes) afforded the title compound as a colorless oil (17.1 mg, 74.3 umol, 75%
yield, >20:1 B/L, >20:1 dr, 82% ee).

'TH NMR (400 MHz, CDCl3): 6 7.37 — 7.27 (m, 5H), 6.95 — 6.90 (m, 1H), 6.23 (ddd, J =
17.0, 10.1, 8.7 Hz, 1H), 6.06 (dddd, J = 10.0, 4.0, 2.8, 1.3 Hz, 1H), 5.11 (d, J = 10.1 Hz,
1H), 4.96 (d, J=17.0 Hz, 1H), 3.67 (dd, J=31.1, 8.7 Hz, 1H), 2.58 — 2.38 (m, 2H), 2.19

~2.07 (m, 1H), 2.00 — 1.92 (m, 1H).
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3C NMR (100 MHz, CDCl): § 195.6 (d, Jc-r = 17.2 Hz), 149.0, 138.5, 135.3 (d, Jo-r =
5.5 Hz), 129.2 (d, Jc-r = 2.8 Hz), 128.9, 128.2, 127.6, 118.0, 97.4 (d, Jc—r = 194.5 Hz),
53.0(d, Jcr=20.2 Hz),31.2 (d, Jcr=22.1 Hz), 25.1 (d, Jc.r = 11.3 Hz).

YF NMR (282 MHz, CDCl3): —168.84 (d, J=31.5 Hz).

IR (Neat Film, NaCl): 3031, 2922, 1695, 1489, 1452, 1425, 1383, 1219, 1060 cm™.
HRMS (MM: El+): m/z calc’d for CisHisOF [M]": 230.1107, found 230.1113.

Optical Rotation: [a]p?' +41.1 (¢ 1.00, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):

minor = 4.74, major = 3.92.

0 Ph

Pt
in'/v/
EtO

1600
(R)-3-ethoxy-6-fluoro-6-((S)-1-phenylallyl)cyclohex-2-en-1-one (1600)

Prepared from 1580 (31.8 mg, 100 umol) following General Procedure A using Pd»(dba);
and L6. Purification by flash column chromatography (5-20% EtOAc/hexanes) afforded
the title compound as a colorless oil (21.9 mg, 79.8 pumol, 80% yield, >20:1 dr, 87% ee).
'"H NMR (400 MHz, CDCl3): § 7.37 — 7.26 (m, 5H), 6.36 — 6.22 (m, 1H), 5.35 — 5.32 (m,
1H), 5.13 (d, J=10.2 Hz, 1H), 4.97 (d, J=17.0 Hz, 1H), 3.92 (q, J = 7.1 Hz, 2H), 3.71
(dd, J=29.7, 8.5 Hz, 1H), 2.61 — 2.50 (m, 1H), 2.45 —2.36 (m, 1H), 2.16 — 2.03 (m, 1H),
1.94 —1.85 (m, 1H), 1.38 (t, J="7.1 Hz, 3H).

13C NMR (100 MHz, CDCl3): 8 194.4 (d, Jcr = 18.1 Hz), 194.3, 175.6 (d, Jcr = 1.6 Hz),

138.8, 135.4 (d, Jcr = 5.6 Hz), 129.3 (d, Jcr = 2.5 Hz), 128.8, 127.5, 117.8, 100.8, 96.4
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(d, Jcr=191.3 Hz), 65.1, 53.3 (d, Jcr = 20.8 Hz), 29.3 (d, Jc r = 23.5 Hz), 27.2 (d, Jc F
=11.0 Hz), 14.2.

F NMR (282 MHz, CDCl): 6 —168.60— —168.67 (m, 1F).

IR (Neat Film, NaCl): 2981, 2938, 1672, 1603, 1379, 1243, 1193 cm™.

HRMS (MM: ESI+): m/z calc’d for Ci17H2002F [M+H]": 275.1442, found 275.1440.
Optical Rotation: [a]p?' —11.2 (¢ 0.70, CHCI3).

SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 254 nm, tr (min):

minor = 2.25, major = 2.58.

o _/OBn o OBn
F i F
ﬁN/ * g
Me Me
160p 160p_linear

(R)-6-((S)-1-(benzyloxy)but-3-en-2-yl)-6-fluoro-3-methylcyclohex-2-en-1-one (160p)
Prepared from 158p (36.0 mg, 108 umol) following General Procedure A using Pdx(dba);
and L7. Purification by flash column chromatography (0-30% EtOAc/hexanes) afforded
the branched product (160p) as a colorless oil (14.8 mg, 51.3 umol, 48% yield, 14.3:1 dr,
84% ee) and the (Z)-linear product (160p_linear) also as a colorless oil (2.9 mg, 10.1 pmol,
9% yield, >20:1 Z/E, 53% ee)). Overall yield: 17.7 mg, 61.4 umol, 57% yield, 5.1:1
B/L,>16.1 dr (B), 84% ee (B)).

*Crude 'H NMR analysis reveals a B/L of 5.6:1 and a dr (B) of 12.9:1 prior to

chromatography. In the tabulated NMR data for 160p, the minor diastereomer is denoted.

160p:
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'"H NMR (400 MHz, CDCl3): 6 7.36 — 7.27 (m, 5H), 5.88 — 5.74 (m, 2H), 5.34 — 5.24 (m,
0.15H(minor)), 5.17 (dd, J = 10.3, 1.7 Hz, 1H), 5.12 (d, J = 17.8 Hz, 1H), 4.50 (s, 2H),
4.45(d,J=11.8 Hz, 0.07H(minor)), 4.34 (d, /= 11.7 Hz, 0.07H(minor)), 3.76 (dd, /= 9.8,
6.7 Hz, 1H), 3.65 (dd, /= 9.6, 6.3 Hz, 0.07H(minor)), 3.52 (ddd, /= 9.8, 5.6, 0.9 Hz, 1H),
2.99 (ddt,J=21.4,9.2, 6.1 Hz, 1H), 2.91 — 2.82 (m, 0.07H(minor)), 2.53 — 2.33 (m, 3H),
2.26 —2.14 (m, 1H), 1.96 (s, 3H), 1.93 (s, 0.19H(minor)).

13C NMR (100 MHz, CDCls): 6 194.0 (d, Je-r=17.9 Hz), 162.3, 138.2, 133.8 (d, Jo-r =
4.6 Hz), 128.5, 127.8, 127.7, 125.1, 119.1, 95.6 (d, Jc-r = 185.9 Hz), 73.3, 69.7 (d, Jc-r =
5.7Hz),47.1 (d, Jc.r=21.4 Hz), 30.6 (d, Jcr=22.7 Hz), 29.6 (d, Jc r = 9.5 Hz), 24.2.
YF NMR (282 MHz, CDCl3): § —167.64 — —167.85 (m).

IR (Neat Film, NaCl): 2923, 1681, 1633, 1104 cm™'.

HRMS (MM: FD+): m/z calc’d for CisH2102F [M]*: 289.1604, found 289.1590.

Optical Rotation: [a]p?' —34.2 (¢ 1.00, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):
minor = 4.59, major = 3.43.

160p linear:

'TH NMR (400 MHz, CDCl3): § 7.37 — 7.27 (m, 5H), 5.89 — 5.80 (m, 2H), 5.66 (dddt, J =
11.2,8.4,6.9, 1.5 Hz, 1H), 4.54 — 4.48 (m, 2H), 4.13 — 4.08 (m, 1H), 4.09 — 4.00 (m, 1H),
2.68 —2.49 (m, 2H), 2.48 — 2.30 (m, 2H), 2.28 — 2.09 (m, 2H), 1.94 (s, 3H).

13C NMR (100 MHz, CDCls): 8 194.3 (d, Jcr = 17.9 Hz), 162.8, 138.3, 130.6, 128.6,
128.0, 127.8,125.5 (d, Jc.r=4.5 Hz), 124.9,93.9 (d, Jc-r = 183.0 Hz), 72.5, 65.8, 32.1 (d,

Jer=23.8 Hz), 31.6 (d, Jer = 22.9 Hz), 29.2 (d, Je_r = 9.0 Hz), 24.3.



Chapter 5 — Development of a Branched-selective Asymmetric Allylic Alkylation of Hard 612
Pd-Enolate Nucleophiles

F NMR (282 MHz, CDCl3): 6 -161.29 ——161.59 (m).

IR (Neat Film, NaCl): 2917, 1682, 1631, 1072 cm™.

HRMS (MM: FD+): m/z calc’d for CisH2102F [M]*: 289.1604, found 289.1597.
Optical Rotation: [a]p?' —5.3 (¢ 0.30, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak OJ-H column, A = 210 nm, tr (min):

F 3
JﬁjN/
Me

160q

minor = 6.68, major = 5.86.

(R)-3-ethoxy-6-fluoro-6-((S)-1-phenylallyl)cyclohex-2-en-1-one (160q)

Prepared from 158q (23.3 mg, 103 umol) following General Procedure A using
Pd>(pmdba); and L3. Purification by flash column chromatography (5-20% Et.O/hexanes)
afforded the title compound as a colorless oil (14.7 mg, 80.8 pumol, 78% yield, >20:1 dr,
87% ee). For further characterization, the mixture of isomers was subsequently purified by
C18 reverse-phase preparatory HPLC (40-65% MeCN/H;0O) to afford the major
diastereomer of 160q as a single isomer.

*Compound 160q was found to be volatile, avoid excessive exposure to high vacuum.
Yields are corrected for trace Et:0 in sample after purification.*

'"H NMR (400 MHz, CDCl3): § 5.93 — 5.83 (m, 2H), 5.10 — 5.01 (m, 2H), 2.91 — 2.74 (m,
1H), 2.47 (dt, J = 18.9, 5.6 Hz, 1H), 2.36 (dt, /= 19.0, 6.5 Hz, 1H), 2.29 — 2.18 (m, 2H),

1.97 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H).
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13C NMR (100 MHz, CDCl3): 194.3 (d, Jcr= 18.0 Hz), 162.0, 137.5, 125.4, 116.5, 95.8
(d, Jc-r = 184.7 Hz), 40.29 (d, Jc-r = 21.9 Hz), 30.5, 29.8, 29.5, 29.3, 29.2, 29.1, 14.2 (d,
Jcr=15.7 Hz).

F NMR (282 MHz, CDCl3): 6 —168.13—-168.31 (m, 1F).

IR (Neat Film, NaCl): 2919, 2849, 1681, 1633, 1434, 1380, 1225 cm™.

HRMS (MM: FI+): m/z calc’d for C11HisOF [M]": 182.1107, found 182.1107.

Optical Rotation: [a]p?' —32.3 (¢ 0.40, CHCI3).

SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak IC column, A =254 nm, tr (min): minor
=4.76, major = 5.45.

Synthesis of B-ketoester substrates (158a—158q)

General Procedure B: Alkylation of [-ketoesters.

o o K,CO3 (2 equiv) o R3 o
electrophile (2 equiv) )
2 -
R, OR acetone, 50 °C R4 OR
165a—xx 158a—q

To a solution of B-ketoester 165 (1 equiv) in acetone (0.5 M) is added anhydrous
K>COs (2 equiv), followed by the relevant electrophile (2 equiv). The reaction is heated to
50 °C and stirring is continued until complete consumption of starting material is observed
(typically 24-36 h). The reaction mixture is then filtered, and volatiles are removed in
vacuo. Purification by flash silica gel column chromatography affords the desired alkylated

B-ketoester.
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cinnamyl 1-methyl-2-oxocyclohexane-1-carboxylate (158a)

Prepared from cinnamyl 2-oxocyclohexane-1-carboxylate and methyl iodide following
General Procedure B. Purification by flash column chromatography (5-40%
EtOAc/hexanes) afforded the title compound as a colorless oil (0.458 g, 1.39 mmol, 84%
yield).

'"H NMR (600 MHz, CDCl3): § 7.45 —7.36 (m, 2H), 7.36 — 7.30 (m, 2H), 7.30 — 7.22 (m,
1H), 6.65 (d, J=15.9 Hz, 1H), 6.26 (dt, J=15.9, 6.5 Hz, 1H), 4.81 (ddd, /J=12.8,6.4, 1.2
Hz, 1H), 4.77 (ddd, J=12.8, 6.4, 1.2 Hz, 1H), 2.57 — 2.52 (m, 1H), 2.51 — 2.43 (m, 2H),
2.06 —1.98 (m, 1H), 1.79 — 1.61 (m, 3H), 1.53 — 1.44 (m, 1H), 1.33 (s, 3H).

13C NMR (101 MHz, CDCl3): § 208.3, 173.0, 136.2, 135.0, 128.8, 128.4, 126.8, 126.6,
65.9,57.4,40.8,38.4,27.6,22.8,21.4.

IR (Neat Film, NaCl): 2938, 1714, 1453 (m), 1142 (m), 961 (m) cm™'.

HRMS (MM: FD+): m/z calc’d for C17H2003 [M]": 272.1412, found 272.1410.

cinnamyl 1-methyl-2-oxocyclohex-3-ene-1-carboxylate (158b)

Prepared from cinnamyl 2-oxocyclohex-3-ene-1-carboxylate (prepared following General
Procedure D and used crude) and methyl iodide following General Procedure B.
Purification by flash column chromatography (5—40% EtOAc/hexanes) afforded the title
compound as a colorless oil (0.48 g, 1.78 mmol, 23% yield).

'"H NMR (400 MHz, CDCl3): 6 7.40 — 7.27 (m, 5H), 6.92 (dddd, J=10.1, 4.4, 3.3, 1.0 Hz,

1H), 6.62 (d, J=15.9 Hz, 1H), 6.23 (dt, J= 15.9, 6.3 Hz, 1H), 6.07 (ddd, J=10.1,2.4, 1.7
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Hz, 1H), 4.83 —4.70 (m, 2H), 2.57 — 2.43 (m, 2H), 2.40 — 2.30 (m, 1H), 1.92 (ddd, J = 14.6,
8.9, 5.2 Hz, 1H), 1.42 (s, 3H).

13C NMR (100 MHz, CDCl): § 197.0, 172.6, 149.6, 136.3, 134.5, 129.0, 128.8, 128.3,
126.8, 122.8, 65.9, 53.6, 33.5, 23.8, 20.8.

IR (Neat Film, NaCl): 3025, 1731, 1681, 1250, 1096 cm .

HRMS (MM: FD+): m/z calc’d for C17H 1303 [M]": 270.1256, found 270.1259.

cinnamyl 1,4-dimethyl-2-oxocyclohex-3-ene-1-carboxylate (158c)

Prepared from 165a and methyl iodide following General Procedure B. Purification by
flash column chromatography (15% EtOAc/hexanes) afforded the title compound as a
colorless oil (0.65 g, 2.1 mmol, 63% yield).

'"H NMR (600 MHz, CDCls): § 7.37 (d, J = 7.5 Hz, 2H), 7.31 (d, J = 7.4 Hz, 2H), 7.28 —
7.23 (m, 1H), 6.61 (d, J=15.8 Hz, 1H), 6.23 (dt, J=15.8, 6.4 Hz, 1H), 5.92 (s, 1H), 4.81
—4.70 (m, 2H), 2.51 (dt, J=13.3, 4.8 Hz, 1H), 2.48 —2.39 (m, 1H), 2.25 (dt, J=19.0, 5.3
Hz, 1H), 1.94 (s, 3H), 1.92 — 1.86 (m, 1H), 1.41 (s, 3H).

13C NMR (101 MHz, CDCl3): § 196.7, 172.8, 161.7, 136.3, 134.3, 128.7, 128.2, 126.8,
125.7,122.9, 65.8, 52.5, 33.3, 28.7, 24.3, 20.5.

IR (Neat Film, NaCl): 3026, 2935, 1731, 1668, 1448, 1253 cm™'.

HRMS (MM: ESI+): m/z calc’d for Ci1sH2303Na [M+Na]": 307.1305, found 307.1308.



Chapter 5 — Development of a Branched-selective Asymmetric Allylic Alkylation of Hard 616
Pd-Enolate Nucleophiles

cinnamyl 4-ethoxy-1-methyl-2-oxocyclohex-3-ene-1-carboxylate (158d)

Prepared from 165b and methyl iodide following General Procedure B. Purification by
flash column chromatography (10-50% EtOAc/hexanes) afforded the title compound as a
colorless oil (0.65 g, 2.1 mmol, 63% yield).

'"H NMR (400 MHz, CDCl3): § 7.38 — 7.25 (m, 5H), 6.62 (d, J = 15.9 Hz, 1H), 6.24 (dt, J
=15.9,6.3 Hz, 1H), 5.37 (s, 1H), 4.82 —-4.72 (m, 2H), 3.90 (q, /= 7.0 Hz, 2H), 2.61 —2.47
(m, 2H), 2.38 (dt,J=17.1, 5.3 Hz, 1H), 1.88 (ddd, /= 13.7, 8.5, 5.2 Hz, 1H), 1.43 (s, 3H),
1.34 (t,J=7.0 Hz, 3H).

13C NMR (100 MHz, CDCl3): 5 196.9, 176.7, 172.9, 136.3, 134.3, 128.7, 128.2, 126.8,
123.0, 101.9, 65.8, 64.6, 52.6, 31.9, 26.6, 20.7, 14.2.

IR (Neat Film, NaCl): 2980, 2942, 1731, 1656, 1606, 1377, 1250, 1195 cm™!.

HRMS (MM: FD+): m/z calc’d for C1oH2:04 [M]": 314.1518, found 314.1516.

EtO

cinnamyl 4-ethoxy-1-ethyl-2-oxocyclohex-3-ene-1-carboxylate (158e)
Prepared from 165b and ethyl iodide following General Procedure B. Purification by flash
column chromatography (5-40% EtOAc/hexanes) afforded the title compound as a

colorless oil (0.458 g, 1.39 mmol, 84% yield).
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'H NMR (400 MHz, CDCl3): § 7.38 — 7.35 (m, 2H), 7.33 — 7.29 (m, 2H), 7.27 — 7.23 (m,
1H), 6.62 (d, J= 15.9 Hz, 1H), 6.24 (dt, J= 15.8, 6.3 Hz, 1H), 5.36 (s, 1H), 4.77 (dd, J =
6.3, 1.4 Hz, 2H), 3.93 — 3.84 (m, 2H), 2.64 (dddd, J = 17.9, 9.8, 5.0, 1.2 Hz, 1H), 2.45 (dt,
J=13.3,5.0 Hz, 1H), 2.36 (dt, J= 17.9, 5.0 Hz, 1H), 2.13 — 2.01 (m, 1H), 1.93 (ddd, J =
13.3,9.6, 5.2 Hz, 1H), 1.83 (dq, J= 13.9, 7.5 Hz, 1H), 1.33 (t, J= 7.0 Hz, 3H), 0.92 (t, J =
7.5 Hz, 3H).

13C NMR (100 MHz, CDCl): § 196.0, 176.7, 171.8, 136.4, 134.3, 128.7, 128.2, 126.8,
123.1, 102.3, 65.7, 64.5, 56.5, 27.9, 27.1, 26.6, 14.2, 9.2.

IR (Neat Film, NaCl): 3025, 2979, 2938, 1728, 1659, 1603, 1446, 1378, 1235, 1186 cm
1

HRMS (MM: ESI+): m/z calc’d for C20H2504 [M+H]": 329.1747, found 329.1747.

[0} (o}

OV
EtO

002Me
158f

cinnamyl 4-ethoxy-1-(3-methoxy-3-oxopropyl)-2-oxocyclohex-3-ene-1-carboxylate
(158f)

Prepared from 165b and methyl acrylate following General Procedure B. Purification by
flash column chromatography (5-30% EtOAc/hexanes) afforded the title compound as a
colorless oil (0.48 g, 1.24 mmol, 75% yield).

'"H NMR (400 MHz, CDCl3): § 7.39 — 7.35 (m, 2H), 7.34 — 7.29 (m, 2H), 7.28 — 7.23 (m,
1H), 6.62 (d,J=15.9 Hz, 1H), 6.23 (dt, /= 15.9, 6.3 Hz, 1H), 5.36 (s, 1H), 4.82 —4.72 (m,

2H), 3.88 (qd, J=7.1, 2.0 Hz, 2H), 3.65 (s, 3H), 2.64 — 2.53 (m, 1H), 2.49 — 2.36 (m, 4H),
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2.33-2.25 (m, 1H), 2.13 (ddd, J = 13.9, 10.0, 6.1 Hz, 1H), 1.95 — 1.87 (m, 1H), 1.34 (¢t, J
=7.0 Hz, 3H).

13C NMR (100 MHz, CDCl): § 195.4, 176.6, 173.7, 171.5, 136.3, 134.6, 128.7, 128.2,
126.8, 122.8, 102.2, 66.0, 64.7, 55.4, 51.8, 29.8, 29.0, 28.9, 26.4, 14.2.

IR (Neat Film, NaCl): 2946, 1737, 1731, 1659, 1651, 1606, 1246, 1192 cm™".

HRMS (MM: ESI+): m/z calc’d for C22H2706 [M+H]": 387.1802, found 387.1806.

[0} (o}

O
EtO

CN
158g

cinnamyl 1-(2-cyanoethyl)-4-ethoxy-2-oxocyclohex-3-ene-1-carboxylate (158g)
Prepared from 165b and acrylonitrile following General Procedure B. Purification by flash
column chromatography (5-30% EtOAc/hexanes) afforded the title compound as a
colorless oil (349 mg, 0.987 mmol, 59% yield).

'"H NMR (400 MHz, CDCl3): § 7.40 — 7.27 (m, 5H), 6.64 (d, J = 15.9 Hz, 1H), 6.23 (dt, J
=15.9,6.5 Hz, 1H), 5.38 (s, 1H), 4.85 —4.74 (m, 2H), 3.96 — 3.86 (m, 2H), 2.65 — 2.39 (m,
5H), 2.31 -2.13 (m, 2H), 2.01 — 1.94 (m, 1H), 1.35 (t, /= 7.0 Hz, 3H).

13C NMR (100 MHz, CDCl3): 5 194.8, 176.9, 171.0, 136.1, 135.2, 128.8, 128.4, 126.8,
122.3,119.8, 102.2, 66.4, 64.9, 55.1, 30.0, 29.4, 26.4, 14.2, 13.4.

IR (Neat Film, NaCl): 2981, 2939, 1730, 1651, 1605, 1381, 1186 cm™".

HRMS (MM: EI+): m/z calc’d for C21H2304N [M]": 353.1629, found 353.1627.
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cinnamyl 4-(benzyloxy)-1-methyl-2-oxocyclohex-3-ene-1-carboxylate (158h)

Prepared from 165c¢ and methyl iodide following General Procedure B. Purification by
flash column chromatography (5-30% EtOAc/hexanes) afforded the title compound as a
colorless oil (179 mg, 0.475 mmol, 57% yield).

'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.26 (m, 10H), 6.63 (d, J= 15.9 Hz, 1H), 6.25 (dt,
J=15.9, 6.3 Hz, 1H), 5.52 (s, 1H), 4.89 (s, 2H), 4.83 — 4.72 (m, 2H), 2.65 (dddd, J = 17.6,
9.8,4.5, 1.1 Hz, 1H), 2.56 — 2.41 (m, 2H), 1.92 (ddd, J = 12.8, 8.8, 4.7 Hz, 1H), 1.44 (s,
3H).

13C NMR (100 MHz, CDCl3): 5 196.7, 176.4, 172.8, 136.3, 135.0, 134.4, 128.9, 128.8,
128.7,128.2, 128.0, 126.8, 123.0, 102.5, 70.8, 65.9, 52.6, 31.9, 26.6, 20.7.

IR (Neat Film, NaCl): 3027, 2935, 1730, 1659, 1607, 1251, 1189, 1170 cm™".

HRMS (MM: ESI+): m/z calc’d for C24H2404 [M]": 376.1675, found 376.1665.

(o} (o}
Me
ISR
PhS

158i
cinnamyl 1-methyl-2-0x0-4-(phenylthio)cyclohex-3-ene-1-carboxylate (158i)
Prepared from 165d and methyl iodide following General Procedure B. Purification by
flash column chromatography (5-30% EtOAc/hexanes) afforded the title compound as a
colorless oil (232 mg, 0.853 mmol, 62% yield).
'"H NMR (400 MHz, CDCl3): 8 7.46 — 7.27 (m, 10H), 6.62 (d, J= 15.9 Hz, 1H), 6.24 (dt,
J=15.9, 6.3 Hz, 1H), 5.52 (s, 1H), 4.81 (dd, /= 12.9, 6.3 Hz, 1H), 4.73 (dd, /=13.0, 6.3

Hz, 1H), 2.73 — 2.64 (m, 1H), 2.59 — 2.46 (m, 2H), 2.01 — 1.93 (m, 1H), 1.41 (s, 3H).
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13C NMR (100 MHz, CDCl3): § 193.3, 172.5, 165.9, 136.2, 135.5, 134.3, 130.3, 129.9,
128.6, 128.1, 127.8, 126.7, 122.7, 119.9, 65.8, 52.8, 33.6, 27.6, 20.4.
IR (Neat Film, NaCl): 2934, 1729, 1655, 1577, 1303, 1250, 1167, 1108 cm™'.

HRMS (MM: FD+): m/z calc’d for C23H2203S [M]*: 378.1290, found 378.1293.

™

o o
K/N Me
0" \A"ph

158)
cinnamyl 1-methyl-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (158i)
Prepared from 165e and methyl iodide following General Procedure B. Purification by
flash column chromatography (15-50% EtOAc/hexanes) afforded the title compound as a
colorless oil (0.43 g, 1.24 mmol, 81% yield).
'"H NMR (400 MHz, C¢Ds): 6 7.14 — 7.10 (m, 2H), 7.09 — 6.99 (m, 3H), 6.36 (d, J = 15.9
Hz, 1H), 6.00 (dt, J=15.9, 6.4 Hz, 1H), 5.17 (ddd, J=4.9, 3.5, 1.0 Hz, 1H), 4.56 (ddd, J
=12.9,6.5,1.4 Hz, 1H), 4.50 (ddd, J=12.8, 6.3, 1.4 Hz, 1H), 3.67 (ddd, J=11.2, 6.4, 3.0
Hz, 1H), 3.58 (ddd, J=11.2, 6.4, 2.9 Hz, 1H), 2.91 (ddd, J=11.5, 6.3, 2.9 Hz, 1H), 2.47
—2.30 (m, 4H), 1.92 — 1.81 (m, 1H), 1.53 — 1.46 (m, 1H), 1.45 (s, 3H).
13C NMR (100 MHz, C¢D¢): 5 192.8, 172.4, 146.9, 136.5, 134.7, 128.9, 128.6, 126.9,
123.0, 121.8, 66.9, 65.6, 54.4, 50.2, 33.3, 22.7, 20.9.
IR (Neat Film, NaCl): 2936, 2856, 1736, 1730, 1692, 1613, 1448 cm™".

HRMS (MM: ESI+): m/z calc’d for C21H2604N [M+H]": 356.1856, found 356.1867.
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(E)-but-2-en-1-yl 1,4-dimethyl-2-oxocyclohex-3-ene-1-carboxylate (158Kk)

Prepared from 165g and methyl iodide following General Procedure B. Purification by
flash column chromatography (5-25% EtOAc/hexanes) afforded the title compound as a
colorless oil (0.29 g, 1.30 mmol, 55% yield).

'"H NMR (400 MHz, CDCl5): 8 5.89 (s, 1H), 5.74 (dqt, J = 15.3, 6.5, 1.2 Hz, 1H), 5.57 —
5.47 (m, 1H), 4.56 —4.47 (m, 2H), 2.51 — 2.37 (m, 2H), 2.28 — 2.19 (m, 1H), 1.94 (s, 3H),
1.90 — 1.82 (m, 1H), 1.70 (d, /= 6.5 Hz, 3H), 1.37 (s, 3H).

13C NMR (100 MHz, CDCl3): 6 196.9, 172.8, 161.6, 131.4, 125.8, 124.8, 65.9, 52.4, 33.3,
28.7,24.3,20.4, 17.9.

IR (Neat Film, NaCl): 3027, 2938, 2917, 1730, 1679, 1636, 1440, 1250 cm™'.

HRMS (MM: ESI+): m/z calc’d for Ci13H1s03Na [M+Na]': 245.1148, found 245.1159.

OBn
(o] (o}
S
b)ko P
Me
1581

(Z)-4-(benzyloxy)but-2-en-1-yl 1,4-dimethyl-2-oxocyclohex-3-ene-1-carboxylate
(1581)
Prepared from 165f and methyl iodide following General Procedure B. Purification by flash
column chromatography (20% EtOAc/hexanes) afforded the title compound as a colorless
oil (361 mg, 1.1 mmol, 73% yield).
'"H NMR (500 MHz, CDCl3): 6 7.39 — 7.31 (m, 1H), 7.31 — 7.26 (m, 1H), 5.88 (q, J= 1.5
Hz, 1H), 5.80 (dtt, /= 11.2, 6.2, 1.4 Hz, 1H), 5.70 — 5.59 (m, 1H), 4.72 — 4.59 (m, 2H),

4.11 (ddd, J= 6.3, 1.6, 0.8 Hz, 1H), 2.47 (dt, J= 13.2, 5.1 Hz, 1H), 2.43 — 2.35 (m, 1H),
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2.24 (dt, J = 18.9, 5.2 Hz, 1H), 1.94 (d, J= 1.4 Hz, 1H), 1.87 (ddd, J = 13.2, 8.3, 5.1 Hz,
1H), 1.37 (s, 3H).

13C NMR (101 MHz, CDClL): § 196.6, 172.7, 161.6, 138.1, 131.2, 128.6, 127.9, 127.8,
126.4, 125.6, 72.6, 65.8, 61.1, 52.4, 33.2, 28.7, 24.3, 20.3.

IR (Neat Film, NaCl): 3031 (m), 2933 (m), 1731 (s), 1681 (s), 1454 (m), 1214 (m) cm ™.

HRMS (MM: ESI+): m/z calc’d for C20H2404Na [M+Na]": 351.1567, found 351.1565.

0 0 Selectfluor (1.1 equiv) 0 F 0
TiCl, (0.1 equiv)
OR? S > OR?
Ri— MeCN, 23 °C Ry—

General Procedure C: Fluorination of [ketoesters.

To a solution of B-ketoester (1 equiv) in anhydrous acetonitrile (0.2 M) at 23 °C is
added neat titanium(IV) chloride (0.1 equiv). After 5 minutes, Selectfluor® was added in
one portion. The reaction mixture is stirred at 23 °C until complete consumption of starting
material as observed by TLC (typically 2 hours). Water is then added, and the reaction
mixture is extracted three times with Et2O. The combined organic layers was washed with
saturated aqueous brine, dried over anhydrous sodium sulfate, and volatiles were removed
in vacuo. The crude reaction mixture was purified by silica gel flash column

chromatography to yield the desired a-fluoro-B-ketoester.

[0} [0}

F
@)&o/\/\%

158m

cinnamyl 1-fluoro-2-oxocyclohexane-1-carboxylate (158m)
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Prepared from cinnamyl 2-oxocyclohexane-1-carboxylate following General Procedure C.
Purification by flash column chromatography (5—40% EtOAc/hexanes) afforded the title
compound as a colorless oil (0.80 g, 2.9 mmol, 75% yield).

'"H NMR (400 MHz, CDCl3): 8 7.40 (d, J= 7.3 Hz, 2H), 7.37 — 7.29 (m, 2H), 7.29 — 7.26
(m, 1H), 6.70 (d, J=15.9 Hz, 1H), 6.29 (dt,J=15.9, 6.6 Hz, 1H), 4.89 (d, J = 6.5 Hz, 2H),
2.81-2.69 (m, 1H), 2.67 — 2.56 (m, 1H), 2.57 - 2.40 (m, 1H), 2.25-2.11 (m, 1H), 1.99 —
1.82 (m, 4H).

3C NMR (100 MHz, CDCl3): 5 201.9 (d, Jcr = 20.0 Hz), 166.9 (d, Jc r = 24.9 Hz), 136.0,
135.6,128.8,128.5,126.9, 121.9, 96.6 (d, Jcr = 197.2 Hz), 66.9, 39.7,36.2 (d, Jc-r = 21.7
Hz), 26.7, 21.0 (d, Jc—r = 5.7 Hz).

F NMR (282 MHz, CDCl3): § —160.82 (ddd, J = 21.5, 13.5, 5.1 Hz, 1F).

IR (Neat Film, NaCl): 2943, 1731, 1457, 1281 cm™

HRMS (MM: FD+): m/z calc’d for CisH1703F [M]": 276.1162, found 276.1165.

[0} [0}

F
@)‘\o/\/\m

158n
cinnamyl 1-fluoro-2-oxocyclohex-3-ene-1-carboxylate (158n)
Prepared from cinnamyl 2-oxocyclohex-3-ene-1-carboxylate (prepared following General
Procedure D and used crude) following General Procedure C. Purification by flash column
chromatography (0-20% EtOAc/hexanes) afforded the title compound as a colorless oil
(0.54 g, 2.0 mmol, 50% yield).
'"H NMR (400 MHz, CDCl3):  7.41 —7.37 (m, 2H), 7.35 — 7.30 (m, 2H), 7.30 — 7.26 (m,

1H), 7.10 (dt, J = 10.2, 4.0 Hz, 1H), 6.69 (d, J = 15.9 Hz, 1H), 6.27 (dt, J= 15.8, 6.5 Hz,
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1H), 6.18 (dq, J=10.2, 2.0 Hz, 1H), 4.94 — 4.84 (m, 2H), 2.72 — 2.58 (m, 3H), 2.48 — 2.39
(m, 1H).

13C NMR (100 MHz, CDCl): § 188.9 (d, J = 18.7 Hz), 167.0 (d, J = 25.9 Hz), 151.9,
135.9, 135.4, 128.7, 128.4, 127.7, 126.8, 121.8, 92.9 (d, J = 194.8 Hz), 66.8, 31.3 (d, J =
22.5 Hz), 23.3 (d, J=7.2 Hz).

YF NMR (282 MHz, CDCl3): § —164.30 (dd, J=22.8, 12.5 Hz).

IR (Neat Film, NaCl): 3027, 2940, 1759, 1693, 1265 cm™.

HRMS (MM: FD+): m/z calc’d for CisH1sO3F [M]": 274.1005, found 274.1004.

(o} (o}

F
ishas
EtO

1580
cinnamyl 4-ethoxy-1-fluoro-2-oxocyclohex-3-ene-1-carboxylate (1580)
Prepared from 165b following General Procedure C. Purification by flash column
chromatography (0-25% EtOAc/hexanes) afforded the title compound as a colorless oil
(0.16 g, 0.50 mmol, 31% yield).
'"H NMR (400 MHz, CDCl3): § 7.42 —7.35 (m, 2H), 7.36 — 7.27 (m, 2H), 7.31 — 7.22 (m,
2H), 6.68 (d, J = 15.9 Hz, 1H), 6.28 (dd, J = 16.0, 6.2 Hz, 1H), 5.46 (s, 1H), 4.94 — 4.85
(m, 2H), 3.97 (q,J=7.1 Hz, 2H), 2.72 — 2.53 (m, 3H), 2.44 — 2.33 (m, 1H), 1.38 (t, J=7.0
Hz, 3H).
13C NMR (100 MHz, CDCl3): 8 188.6 (d, Jc-r = 18.9 Hz), 178.2, 167.7 (d, Jc-r = 26.0
Hz), 136.1, 135.3, 128.7, 128.4, 126.9, 122.0, 101.0, 92.3 (d, Jc-r = 193.6 Hz), 66.8, 65.3,
29.7 (d, Jcr =23.0 Hz), 25.7 (d, Jc-r = 6.0 Hz), 14.2.

F NMR (282 MHz, CDCl3): § —163.76 — —163.93 (m).
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IR (Neat Film, NaCl): 2983, 2943, 1765, 1666, 1599, 1382, 1264 cm™!

HRMS (MM: ESI+): m/z calc’d for Ci1sH1904FNa [M+Na]": 341.1148, found 341.1158.

158p
(2)-4-(benzyloxy)but-2-en-1-yl 1-fluoro-4-methyl-2-oxocyclohex-3-ene-1-carboxylate
(158p)
Prepared from 165f following General Procedure C. Purification by flash column
chromatography (10-60% EtOAc/hexanes) afforded the title compound as a colorless oil
(0.39 g, 1.2 mmol, 75% yield).
'"H NMR (400 MHz, CDCl3): § 7.38 — 7.27 (m, 5H), 6.00 (s, 1H), 5.89 — 5.82 (m, 1H),
5.73 - 5.66 (m, 1H), 4.79 (d, J = 6.7 Hz, 2H), 4.51 (s, 2H), 4.13 (d, J = 6.2 Hz, 2H), 2.63
—2.33 (m, 4H), 2.03 (s, 3H).
BC NMR (100 MHz, CDCl3): 5 188.5 (d, Jc = 18.6 Hz), 167.4 (d, Jcr=25.8 Hz), 164.6,
138.1, 132.1, 128.6, 128.0, 127.9, 125.6, 124.7,92.2 (d, Jc.r = 194.0 Hz), 72.7, 65.8, 62.0,
31.1 (d, Jc—r =22.5 Hz), 28.0 (d, Jc_r = 6.5 Hz), 24.7.
F NMR (282 MHz, CDCl): § —165.21 (dd, J = 26.4, 12.0 Hz).
IR (Neat Film, NaCl): 2914, 1764, 1681, 1627, 1264, 1088 cm™'

HRMS (MM: ESI+): m/z calc’d for C1oH204F [M+H]": 333.1502, found 333.1491.

[0} o)

F
/@/U\o/\/\ Me
Me

158q

(E)-but-2-en-1-yl 1-fluoro-4-methyl-2-oxocyclohex-3-ene-1-carboxylate (158q)
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Prepared from 165g following General Procedure C. Purification by flash column
chromatography (10-60% EtOAc/hexanes) afforded the title compound as a colorless oil
(326 mg, 1.44 mmol, 60% yield).

'"H NMR (400 MHz, CDCl;5): 6 6.00 (s, 1H), 5.87 — 5.77 (m, 1H), 5.58 (dtq, J = 15.0, 6.7,
1.7 Hz, 1H), 4.64 (ddt, J=6.7, 2.5, 1.2 Hz, 2H), 2.65 — 2.49 (m, 3H), 2.43 — 2.33 (m, 1H),
2.03 (s, 3H), 1.72 (d, J = 6.5 Hz, 3H).

BC NMR (100 MHz, CDCl3): 6 188.7 (d, Jc = 18.6 Hz), 167.4 (d, Jcr=25.7 Hz), 164.5,
132.8,124.7,124.1,92.3 (d, Jc.r = 194.1 Hz), 67.0, 31.2 (d, Jc-r = 22.5 Hz), 28.2 (d, Jc-r
= 6.8 Hz), 24.6, 18.0.

YF NMR (282 MHz, CDCl3): § —165.04 (d, J=22.2 Hz).

IR (Neat Film, NaCl): 3029, 2940, 1760, 1681, 1631, 1436, 1271, 1263, 1019 cm™.

HRMS (MM: ESI+): m/z calc’d for C12H1503FNa [M+Na]": 249.0897, found 249.0901.

o) 0 o o
)]\ LDA (2 equiv)
_—m— 2
~ * NN TOR? ThRow2sc R OR
R \/I 1
—
(2.2 equiv) (1 equiv)

General Procedure D: [-ketoester synthesis through ketone acylation.

A flame dried round bottom flask was charged with iProNH (2.2 equiv) and THF (1.75 M).
The solution was cooled to 0 °C and n-BuLi (2.5 M in hexanes, 2.1 equiv) was added
dropwise. The resultant solution was stirred for 30 min at 0 °C. The corresponding
cyclohexenone (2.0 equiv) in THF (1.25 M) was added dropwise and stirring was continued
at 0 °C for 30 minutes. The solution was cooled to —78 °C, and the appropriate N-acyl

imidazole (1.0 equiv) in THF (3.25 M) was added dropwise. After 2 h, the reaction was
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gradually warmed to 23 °C and diluted with 2 M aqueous HCI until reaching a pH < 7. The
reaction mixture was extracted three times with EtOAc. The combined organic layers were
washed with brine, dried over Na>SOs, filtered, and concentrated under reduced pressure.
The crude product was purified by flash silica gel column chromatography to afford the

corresponding acylated enone.

(o} (o}

b)Lo/\/\ Ph
Me

165a
cinnamyl 4-methyl-2-oxocyclohex-3-ene-1-carboxylate (165a)
Prepared from 3-methylcyclohex-2-en-1-one and cinnamyl 1H-imidazole-1-carboxylate
following General Procedure D. Purification by flash column chromatography (20%
EtOAc/hexanes) afforded the title compound as a colorless oil (5.5 g, 20.3 mmol, 51%
yield).
'"H NMR (600 MHz, CDCl3): 6 7.42 — 7.36 (m, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.29 — 7.19
(m, 1H), 6.67 (d, J=15.8 Hz, 1H), 6.28 (dt,J=15.8, 6.4 Hz, 1H), 5.94 (d, /= 1.5 Hz, 1H),
4.82 (d, J=6.4 Hz, 2H), 3.46 — 3.28 (m, 1H), 2.49 — 2.25 (m, 4H), 2.25 — 2.17 (m, 1H),
1.97 (d, J= 1.2 Hz, 3H).
13C NMR (101 MHz, CDCl3): & 193.7, 170.2, 163.1, 136.3, 134.5, 128.7, 128.2, 126.8,
126.0, 123.0, 65.8, 52.7, 29.6, 25.6, 24.5.
IR (Neat Film, NaCl): 3026, 2935, 1737, 1666, 1445, 970 cm™'.

HRMS (MM: ESI+): m/z calc’d for C17H1303Na [M+Na]': 293.1148, found 293.1152.
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165b
cinnamyl 4-ethoxy-2-oxocyclohex-3-ene-1-carboxylate (165b)
Prepared from 3-ethoxycyclohex-2-en-1-one following General Procedure D. Purification
by flash column chromatography (10-60% EtOAc/hexanes) afforded the title compound
as a colorless oil (2.13 g, 7.09 mmol, 35% yield).
'"H NMR (400 MHz, CDCl3): 6 7.41 — 7.37 (m, 2H), 7.32 (tt, J= 6.5, 1.0 Hz, 2H), 7.28 —
7.23 (m, 1H), 6.67 (d, J=15.9 Hz, 1H), 6.29 (dt, J=15.9, 6.4 Hz, 1H), 5.40 (s, 1H), 4.82
(dd, J= 6.4, 1.4 Hz, 2H), 3.96 — 3.88 (m, 2H), 3.41 — 3.36 (m, 1H), 2.62 — 2.52 (m, 1H),
2.48 —2.33 (m, 2H), 2.25 - 2.15 (m, 2H), 1.37 (t, /= 7.0 Hz, 3H).
13C NMR (100 MHz, CDCl3): & 193.6, 177.6, 170.2, 136.2, 134.3, 128.6, 128.1, 126.7,
122.9,102.1, 65.8, 64.6, 52.4,27.4,24.2, 14.1.
IR (Neat Film, NaCl): 2980, 2942, 1736, 1654, 1602, 1380, 1192 cm™.

HRMS (MM: FD+): m/z calc’d for Ci1sH2004 [M]": 300.1362, found 300.1353.

0 0

fsane
BnO

165¢
cinnamyl 4-(benzyloxy)-2-oxocyclohex-3-ene-1-carboxylate (165c¢)
Prepared from 3-(benzyloxy)cyclohex-2-en-1-one following General Procedure D.
Purification by flash column chromatography (10-60% EtOAc/hexanes) afforded the title

compound as a colorless oil (0.79 g, 2.2 mmol, 22% yield).
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'H NMR (400 MHz, CDCL3): § 7.42 — 7.27 (m, 10H), 6.68 (d, J= 15.9 Hz, 1H), 6.29 (dt,
J=15.9, 6.4 Hz, 1H), 5.54 (s, 1H), 4.91 (d, J= 2.5 Hz, 2H), 4.83 (dd, J= 6.4, 1.3 Hz, 2H),
3.41 (dd, J= 9.0, 5.0 Hz, 1H), 2.65 (ddd, J = 17.5, 6.4, 5.0 Hz, 1H), 2.56 — 2.46 (m, 1H),
2.41 (dtd, J=13.7, 8.7, 5.0 Hz, 1H), 2.23 (ddt, J = 13.5, 6.6, 5.0 Hz, 1H).

13C NMR (100 MHz, CDCl): § 193.6, 177.3, 170.1, 136.2, 134.7, 134.4, 128.8, 128.7,
128.6, 128.1, 127.9, 126.7, 122.9, 102.8, 70.8, 65.8, 52.4, 27.4, 24.2.

IR (Neat Film, NaCl): 3030, 2942, 1736, 1657, 1603, 1362, 1186, 1150 cm™.

HRMS (MM: FD+): m/z calc’d for C23H2204 [M]": 362.1518, found 362.1510.

(o} (o}

Ioptde
PhS

165d
cinnamyl 2-o0x0-4-(phenylthio)cyclohex-3-ene-1-carboxylate (165d)
Prepared from 3-(phenylthio)cyclohex-2-en-1-one following General Procedure D.
Purification by flash column chromatography (10-60% EtOAc/hexanes) afforded the title
compound as a colorless oil (1.59 g, 4.36 mmol, 44% yield).
*trace 3-(phenylthio)cyclohex-2-en-1-one coeluted with 165d. The material can be carried
through alkylation and separated without issue*
'"H NMR (400 MHz, CDCl3): § 7.49 — 7.37 (m, 8H), 7.34 — 7.25 (m, 2H), 6.66 (d, J=15.9
Hz, 1H), 6.27 (dt, J=15.9, 6.3 Hz, 1H), 5.53 (s, 1H), 4.81 (dd, /= 6.4, 1.4 Hz, 2H), 3.41
(dd, J=9.3,4.9 Hz, 1H), 2.75 — 2.66 (m, 1H), 2.62 — 2.51 (m, 1H), 2.50 — 2.36 (m, 1H),
2.32-2.25 (m, 1H).
13C NMR (100 MHz, CDCl3): & 190.2, 169.9, 167.5, 136.3, 135.6, 134.5, 130.5, 130.1,

128.7,128.2, 127.7, 126.8, 122.9, 120.1, 65.9, 52.9, 28.6, 26.1.
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IR (Neat Film, NaCl): 3054, 2939, 1736, 1656, 1576, 1300, 1167, 1146 cm™".

HRMS (MM: FD+): m/z calc’d for C22H2003S [M]*: 364.1133, found 364.1133.

o/\ o o
K/N\b)LOMPh
165e

cinnamyl 3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (165¢)

Prepared from 2-morpholinocyclohex-2-en-1-one ! following General Procedure D.
Purification by flash column chromatography (30-60% EtOAc/hexanes) afforded the title
compound as a colorless oil (1.34 g, 3.92 mmol, 33% yield).

'"H NMR (400 MHz, C¢Ds): 6 7.16 — 7.13 (m, 2H), 7.10 — 6.98 (m, 3H), 6.43 (d, J = 15.9
Hz, 1H), 6.12 (dt,J=15.9, 6.4 Hz, 1H), 5.22 (t,J=4.5 Hz, 1H), 4.71 — 4.61 (m, 2H), 3.64
—3.56 (m, 4H), 3.28 (dd, J = 9.6, 4.6 Hz, 1H), 2.67 — 2.55 (m, 4H), 2.20 — 2.12 (m, 1H),
2.02 (dq,J=17.5,4.9,4.3 Hz, IH), 1.81 — 1.65 (m, 2H).

13C NMR (100 MHz, C¢D¢): 5 190.4, 169.7, 146.5, 136.7, 134.5, 128.8, 128.2, 127.0,
124.3, 123.4, 66.9, 65.6, 55.2, 50.3, 26.0, 23.6.

IR (Neat Film, NaCl): 3024, 2953, 2854, 1736, 1685, 1610, 1448, 1262, 1118 cm™.

HRMS (MM: ESI+): m/z calc’d for C20H2404N [M+H]": 342.1700, found 342.1710.

165f
(Z)-4-(benzyloxy)but-2-en-1-yl 4-methyl-2-oxocyclohex-3-ene-1-carboxylate (165f)
Prepared from 3-methylcyclohex-2-en-1-one and (Z)-4-(benzyloxy)but-2-en-1-yl 1H-

imidazole-1-carboxylate following General Procedure D. Purification by flash column
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chromatography (20% EtOAc/hexanes) afforded the title compound as a colorless oil (5.5
g, 20.3 mmol, 51% vyield). *Due to difficult separation, the NMR contains signals
associated with the starting material. However, this can be used in the next step without
consequence. *

'"H NMR (600 MHz, CDCl3): § 7.41 — 7.32 (m, 4H), 7.32 — 7.27 (m, 1H), 5.91 (t, J= 1.5
Hz, 1H), 5.86 — 5.78 (m, 1H), 5.76 — 5.63 (m, 1H), 4.72 (dd, J = 6.6, 1.3 Hz, 2H), 4.51 (s,
2H), 4.13 (dd, J= 6.2, 1.5 Hz, 2H), 3.40 — 3.21 (m, 1H), 2.48 — 2.25 (m, 5SH), 2.25 - 2.14
(m, 1H), 2.05 — 1.96 (m, 4H).

13C NMR (101 MHz, CDCl3): & 193.6, 170.2, 163.1, 138.1, 131.2, 128.6, 127.9, 127.8,
126.5, 126.0, 72.6, 65.8, 61.1, 52.6, 29.5, 25.6, 24.5.

IR (Neat Film, NaCl): 3457, 3031, 2936, 1738, 1667, 1453 cm™'.

HRMS (MM: ESI+): m/z calc’d for C1oH2204Na [M+Na]': 337.1410, found 337.1415.

(o) (o)

b)LOMMe
Me

165g
(E)-but-2-en-1-yl 4-methyl-2-oxocyclohex-3-ene-1-carboxylate (165g)
Prepared from 3-methylcyclohex-2-en-1-one following General Procedure D. Purification
by flash column chromatography (20-40% EtOAc/hexanes) afforded the title compound
as a colorless oil (1.98 g, 9.49 mmol, 63% yield).
'"H NMR (400 MHz, CDCl3): § 5.92 (q, /= 1.4 Hz, 1H), 5.84 — 5.74 (m, 1H), 5.63 — 5.54
(m, 1H), 4.58 (dt, /= 6.5, 1.1 Hz, 2H), 3.32 (dd, /=9.6, 5.1 Hz, 1H), 2.45 - 2.27 (m, 3H),

2.21-2.16 (m, 1H), 1.97 (s, 3H), 1.71 (dg, J= 6.5, 1.2 Hz, 3H).
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13C NMR (100 MHz, CDCl3): § 193.8, 170.2, 163.0, 131.7, 126.0, 124.9, 66.0, 52.6, 29.5,
25.6,24.5,17.9.
IR (Neat Film, NaCl): 3027, 2941, 1737, 1671, 1632, 1439, 1166, 1153 cm™".

HRMS (MM: ESI+): m/z calc’d for C12H1603Na [M+Na]": 231.0992, found 231.1000.

CF, CF,
Cul (15 mol%)
PH DMEDA (1.1 equiv)
o + z 5 Cs,CO; (3.0 equiv) o
R— >
\J ™ PhMe, 130 °C, 24 h b r\}\}
Br N—/ (1.3 equiv) = e :

“Bu N
General Procedure E: Preparation of Novel (S)-t-BuPHOX Ligands.
A flame-dried 3-neck round-bottom flask attached to a reflux condenser under nitrogen
atmosphere was charged with Cul (0.15 equiv). Anhydrous toluene (0.03 M) was added
followed by DMEDA (1.1 equiv), and the reaction mixture was stirred at ambient
temperature for 20 minutes. To the pre-stirred catalyst solution was added the requisite aryl
bromide (1.0 equiv), Cs2CO3 (3.0 equiv), and the aryl phosphine (1.3 equiv). Minimal
additional toluene was added to rinse any solids off the sides of the flask. The reaction
mixture was heated to reflux (ca. 130 °C) and stirred for a minimum of 21 h. Upon
completion, the reaction mixture was cooled to ambient temperature, filtered through a
pad of celite, and washed with CH,Cl. The filtrate was concentrated and purified by flash

silica gel column chromatography.

CF, CF, CF,
Cul (15 mol%)
0 DMEDA (1.1 equiv)
Cs,CO; (3.8 equi Ph,SiH
(o] + z 2P\H z 2 ( quw) > ° : 0 : °

\\7 R PhMe, 130°°C, 24 h P r\}J 241404gh P N‘J

Br N—/ X /lz\\o 4 to /|2 4

. . —_— —_— [
By (1.8 equiv) R N Bu R g Bu

General Procedure F': Preparation of Novel (S)-t-BuPHOX Ligands.



Chapter 5 — Development of a Branched-selective Asymmetric Allylic Alkylation of Hard 633
Pd-Enolate Nucleophiles

A flame-dried 3-neck round-bottom flask attached to a reflux condenser under nitrogen
atmosphere was charged with Cul (0.15 equiv). Anhydrous toluene (0.03 M) was added
followed by DMEDA (1.1 equiv), and the reaction mixture was stirred at ambient
temperature for 20 minutes. To the pre-stirred catalyst solution was added aryl bromide
(1.0 equiv), Cs2COs3 (3.8 equiv), and aryl phosphine oxide (1.8 equiv). Minimal additional
toluene was added to rinse any solids off the sides of the flask. The reaction mixture was
heated to reflux (ca. 130 °C) and stirred for a minimum of 21 h. Upon completion, the
reaction mixture was cooled to ambient temperature, filtered through a pad of celite, and
washed with CH>Cl,. The filtrate was concentrated and purified by flash silica gel column
chromatography.

The isolated phosphine oxide was placed in an oven-dried vial along with a magnetic stir
bar and degassed using an Argon balloon for 10 min. Ph>SiH; (1.2 mL, 6.5 mmol, 7.0 equiv)
was added to the reaction vial, which fully dissolved the phosphine oxide residue. The
reaction vial was then placed in a pre-heated oil bath at 140 °C and stirred until complete
reduction of phosphine oxide (typically 24-120 h). Once complete as determined by 3'P
NMR, the reaction was cooled to ambient temperature adsorbed onto silica gel then

purified by flash silica gel column chromatography.
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(8)-2-(2-(bis(2,6-difluorophenyl)phosphaneyl)-5-(trifluoromethyl)phenyl)-4-(zert-
butyl)-4,5-dihydrooxazole (L4)

Prepared from bis(2,6-difluorophenyl)phosphane (190 mg, 0.74 mmol, 1.2 equiv)
following General Procedure E. Purification by flash column chromatography (0-50%
CH:Clx/hexanes) afforded the title compound as a white solid (67 mg, 0.13 mmol, 20%
yield).

*Note: Ullmann coupling using the aryl phosphine oxide does not yield any product.

'"H NMR (300 MHz, CDCls):  8.23 (dd, J = 4.4, 2.0 Hz, 1H), 7.61 — 7.50 (m, 1H), 7.42
—7.26 (m, 3H), 6.83 (qd, /= 7.8, 2.3 Hz, 4H), 4.30 (dd, J=10.1, 8.5 Hz, 1H), 4.13 (t,J =
8.7 Hz, 1H), 3.94 (dd, /= 10.1, 8.9 Hz, 1H), 0.69 (s, 9H).

13C NMR (101 MHz, CDCl3): 8 165.8 (td, J = 9.0, 3.7 Hz), 163.3 (td, J = 9.0, 4.1 Hz),
161.2 (d, J=4.9 Hz), 140.9 (d, J = 28.6 Hz), 133.1, 132.1, 131.6 (dt, J = 28.6, 10.9 Hz),
130.5 (qd, J=33.2, 1.6 Hz), 128.0, 126.4 (q, /= 3.7 Hz), 126.2 — 126.0 (m), 125.3, 122.6,
119.8,114.7-113.3 (m), 111.9-111.2 (m), 68.9, 33.5, 25.8.

3P NMR (121 MHz, CDCl3): § —55.81 — —56.51 (m).

F NMR (282 MHz, CDCl3): § —62.83 ——62.88 (m, 3F), -100.06 ——100.19 (m, 1F), —

100.24 — —100.34 (m, 1F), —100.43 — ~100.54 (m, 1F), —~100.58 ——100.70 (m, 1F).
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IR (Neat Film, NaCl): 3080, 2958, 2907, 2870, 1657, 1607, 1574, 1454, 1326, 1228, 1176,
1131, 1083, 986, 784 cm™'.
HRMS (MM: ESI+): m/z calc’d for C26H21NOF7P [M]": 527.12490, found 527.12391.

Optical Rotation: [a]p?' +18.1° (¢ 0.10, CHCIs)

(8)-4-(tert-butyl)-2-(2-(di-o-tolylphosphaneyl)-5-(trifluoromethyl)phenyl)-4,5-
dihydrooxazole (L5)

Prepared from di-o-tolylphosphane (240 mg, 1.1 mmol, 1.3 equiv) following General
Procedure E. Purification by flash column chromatography (0-30% EtOAc/hexanes)
afforded the title compound as a tan solid (130 mg, 0.27 mmol, 31% yield).

'"H NMR (400 MHz, CDCl3): 6 8.21 (t, J = 2.7 Hz, 1H), 7.51 (dd, J = 8.1, 2.0 Hz, 1H),
7.26 —7.16 (m, 4H), 7.11 — 6.97 (m, 3H), 6.73 — 6.64 (m, 2H), 4.13 (dd, /= 10.1, 8.5 Hz,
1H), 4.04 (t,J=8.3 Hz, 1H), 3.94 (dd, /=10.1, 8.3 Hz, 1H), 2.38 (dd, /J=4.1, 1.7 Hz, 6H),
0.70 (s, 9H).

13C NMR (101 MHz, CDCl3): & 161.61, 143.48 — 143.01 (m), 142.75 (d, J = 27.4 Hz),
142.31 (d, J = 28.0 Hz), 135.93 — 135.60 (m), 134.81, 133.49, 133.26, 133.05, 130.85,
130.53, 130.25 (d, J = 4.9 Hz), 128.90 (d, J = 15.1 Hz), 126.81 (dq, J = 11.3, 3.7 Hz),
126.38 (d, /= 16.2 Hz), 125.30, 122.59, 68.63, 33.76, 25.79, 21.48, 21.25.

3P NMR (121 MHz, CDCl3): 5 -20.8 ().
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YF NMR (282 MHz, CDCl3): § —62.8 (s).

IR (Neat Film, NaCl): 3056, 2957, 2867, 2356, 1653, 1471, 1454, 1341, 1324, 1169, 1130,
1079, 970 cm™.

HRMS (MM: ESI+): m/z calc’d for CosH2oNOF3P [M+H]": 483.19389, found 483.19472.

Optical Rotation: [a]p??—55.4 ° (¢ 0.28, CHCI3).

(8)-2-(2-(bis(2-fluorophenyl)phosphaneyl)-5-(trifluoromethyl)phenyl)-4-(zert-butyl)-
4,5-dihydrooxazole (L6)

Prepared from bis(2-fluorophenyl)phosphine oxide (408 mg, 1.7 mmol, 1.8 equiv)
following General Procedure F. Purification by flash column chromatography (0-50%
EtOAc/hexanes) afforded the title compound as a white solid (408 mg, 0.81 mmol, 85%
yield).

'"H NMR (500 MHz, CDCl): 6 8.28 (t, J = 2.8 Hz, 1H), 7.59 (dd, J = 8.2, 2.0 Hz, 1H),
7.41 —7.32 (m, 2H), 7.20 (dd, J= 8.2, 3.0 Hz, 1H), 7.11 — 7.02 (m, 4H), 6.88 — 7.84 (m,
1H), 6.82 — 6.77 (m, 1H), 4.26 (dd, J = 10.1, 8.6 Hz, 1H), 4.12 (t, J = 8.6 Hz, 1H), 4.00
(dd, J=10.1, 8.6 Hz, 1H), 0.74 (s, 9H).

13C NMR (101 MHz, CDCls): § 165.7 (dd, J = 17.9, 16.1 Hz), 163.5 — 163.0 (m), 161.3,

141.6 (d, J=29.5 Hz), 135.0 — 134.8 (m), 134.7 — 134.4 (m), 132.3 (d, J=21.8 Hz), 131.4
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(dd, J=25.3, 8.3 Hz), 131.0 (d, J = 33.2 Hz), 127.0 (q, J = 3.7 Hz), 126.7 (t, J = 3.5 Hz),
125.2,124.8 (dd, J=9.7, 3.3 Hz), 124.4 — 123.7 (m), 122.5, 68.9, 33.7, 25.8.

3P NMR (121 MHz, CDCl3): & -32.10 (t, J = 63.2 Hz).

19F NMR (282 MHz, CDCl3): § —62.90 (s, 3F), —103.64 — —-103.88 (m, 1), -103.88 — —
104.11 (m, 1F).

IR (Neat Film, NaCl): 3069, 2956, 2357, 1654, 1469, 1324, 1170, 1132, 1081, 756 cm™".
HRMS (MM: ESI+): m/z calc’d for C26H23NOFsP [M+H]": 491.14374, found 491.14451.
Optical Rotation: [a]p??—20.5° (¢ 0.73, CHCl5).

CF3

(o]
)
P N
@2 =t-Bu
OCF.
8 L7

(8)-2-(2-(bis(2-(trifluoromethoxy)phenyl)phosphaneyl)-5-(trifluoromethyl)phenyl)-
4-(tert-butyl)-4,5-dihydrooxazole (L7)

Prepared from bis(2-(trifluoromethoxy)phenyl)phosphine oxide (700 mg, 1.9 mmol, 1.8
equiv) following General Procedure F. Purification by flash column chromatography (0—
50% EtOAc/hexanes) afforded the title compound as a tan solid (632 mg, 0.99 mmol, 94%
yield).

'"H NMR (300 MHz, CDCl3): § 8.25 — 8.23 (m, 1H), 7.62 — 7.50 (m, 1H), 7.45 — 7.37 (m,
2H), 7.31 - 7.27 (m, 2H), 7.20 — 7.14 (m, 2H), 7.03 (dd, J = 8.2, 2.7 Hz, 1H), 6.90 — 6.74
(m, 2H), 4.21 (dd, J=10.2, 8.5 Hz, 1H), 4.12 (t, /= 8.2 Hz, 1H), 3.98 (dd, J=10.2, 7.8

Hz, 1H), 0.71 (s, 9H).
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13C NMR (101 MHz, CDCly): 5 161.24, 151.82 (dd, J = 27.3, 19.9 Hz), 141.42 (d, J =
30.8 Hz), 135.41 (d, J= 2.8 Hz), 135.00, 134.49, 133.09 (d, J = 23.3 Hz), 131.50, 131.18,
130.94, 130.85, 130.66, 130.45 (d, J= 17.5 Hz), 130.23, 129.78 (d, J = 21.2 Hz), 128.00,
127.86 (d, J= 1.3 Hz), 126.95 — 126.41 (m), 125.16, 124.33 (d, J= 3.0 Hz), 122.45, 121.76
(d,J=3.0 Hz), 119.60, 119.27 — 119.01 (m), 116.60, 69.01, 33.82, 25.66.

31p NMR (121 MHz, CDCl3): § —27.4 (m).

15F NMR (282 MHz, CDCl): & —56.5 (s, 6F), —62.9 (s, 3F).

IR (Neat Film, NaCl): 3062, 2964, 2870, 2363, 2342, 1653, 1472, 1326, 1251, 1216, 1200,
1168, 1160, 1128, 1081 cm.

HRMS (MM: ESI+): m/z calc’d for CosHosNO3FoP [M+H]*: 623.12718, found 623.12455.

Optical Rotation: [a]p?' —20.3 ° (¢ 1.48, CHCI3).
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Figure A3.2. Infrared spectrum (Thin Film, NaCl) of compound 160a.
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Figure A3.5. Infrared spectrum (Thin Film, NaCl) of compound 160b.
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Figure A3.14. Infrared spectrum (Thin Film, NaCl) of compound 160e.
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Figure A3.20. Infrared spectrum (Thin Film, NaCl) of compound 160g.
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Figure A3.26. Infrared spectrum (Thin Film, NaCl) of compound 160i.

iom i M»«Lm ! ! Wwwnm bw H Mwwmwwwwww
T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0

ppm

Figure A3.27. °C NMR (100 MHz, CDCl;) of compound 160i.
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Figure A3.29. Infrared spectrum (Thin Film, NaCl) of compound 160j.
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Figure A3.30. °C NMR (100 MHz, CsDs) of compound 160j.
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Figure A3.32. Infrared spectrum (Thin Film, NaCl) of compound 160k.

Figure A3.33. "C NMR (100 MHz, CDCl;) of compound 160k.
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Figure A3.35. Infrared spectrum (Thin Film, NaCl) of compound 160l.
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Figure A3.36. °C NMR (100 MHz, CDCl;) of compound 160l.

ppm



669

w9 punodwod o (£1DaD ‘ZHN 00¥) YWN H, "LE'EY 2nSiy

wdd

€ 14 S 9 L 8 6 0T
S S T S T S S S R S S S R

Appendix 3 — Spectra Relevant to Chapter 5

i il

wog9i




Appendix 3 — Spectra Relevant to Chapter 5 670

25 7, M
R T P
. \)nh' \ JJL, WA

b‘w]’ _,-"\'"“M“““/\\ | /“"V‘m, /\\J\N‘ P /—A.,ﬂ,l“ﬂt Jl
| f H’ \ v MW M
! ol

| Py W) |
|

21 |

30 ‘ |

40000 3600 3200 22300 2400 2000 1200 1600 1400 1200 1000
emel

Figure A3.38. Infrared spectrum (Thin Film, NaCl) of compound 160m.
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Figure A3.39. °C NMR (100 MHz, CDCl;) of compound 160m.
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Figure A3.40. °F NMR (282 MHz, CDCl;) of compound 160m.
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Figure A3.42. Infrared spectrum (Thin Film, NaCl) of compound 160n.
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Figure A3.43. °C NMR (100 MHz, CDCl;) of compound 160n.
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Figure A3.44. °F NMR (282 MHz, CDCl;) of compound 160n.
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Figure A3.46. Infrared spectrum (Thin Film, NaCl) of compound 1600.
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Figure A3.47. °C NMR (100 MHz, CDCl;) of compound 160o.
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Figure A3.48. °F NMR (282 MHz, CDCl;) of compound 1600.
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Figure A3.50. Infrared spectrum (Thin Film, NaCl) of compound 160p.
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Figure A3.51. °C NMR (100 MHz, CDCl;) of compound 160p.
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Figure A3.52. "F NMR (282 MHz, CDCl;) of compound 160p.
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Figure A3.54. Infrared spectrum (Thin Film, NaCl) of compound 160p_linear.

MWWMWWWMWMW MO

T T T T
120 100 80 60
ppm

Figure A3.55. °C NMR (100 MHz, CDCl;) of compound 160p_linear.
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Figure A3.56. "’F NMR (282 MHz, CDCl;) of compound 160p_linear.
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Figure A3.59. Infrared spectrum (Thin Film, NaCl) of compound 160q.
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Figure A3.60. °C NMR (100 MHz, CDCl;) of compound 160q.
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Figure A3.61. °F NMR (282 MHz, CDCl;) of compound 160q.
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Figure A3.63. Infrared spectrum (Thin Film, NaCl) of compound 158a.

T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0
ppm

Figure A3.64. °C NMR (100 MHz, CDCl;) of compound 158a.
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Figure A3.66. Infrared spectrum (Thin Film, NaCl) of compound 158b.
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Figure A3.67. °C NMR (100 MHz, CDCl;) of compound 158b.
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Figure A3.69. Infrared spectrum (Thin Film, NaCl) of compound 158c.

_

T T T T T T T T T T T
200 180 160 140 120 100 80 60 40 20 0
ppm

Figure A3.70. °C NMR (100 MHz, CDCl;) of compound 158c.
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Figure A3.72. Infrared spectrum (Thin Film, NaCl) of compound 158d.
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Figure A3.73. °C NMR (100 MHz, CDCl;) of compound 158d.

695



696

Appendix 3 — Spectra Relevant to Chapter 5

991 punodwod Jo (3D ‘ZHW 00%) YWN H, "t EV 248y

wdd

€ 14 S
P S B S

=

9 VA 8 6 0T
L L L L L L L L L L L L L L L L L L L L L L L
9861
013
Ud /\/\O /:\@\
3
o (o]



Appendix 3 — Spectra Relevant to Chapter 5

wwwww

Figure A3.75. Infrared spectrum (Thin Film, NaCl) of compound 158e.
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Figure A3.76. °C NMR (100 MHz, CDCl;) of compound 158e.
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Figure A3.78. Infrared spectrum (Thin Film, NaCl) of compound 158f.
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Figure A3.79. °C NMR (100 MHz, CDCl;) of compound 158f.
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Figure A3.81. Infrared spectrum (Thin Film, NaCl) of compound 158g.
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Figure A3.82. °C NMR (100 MHz, CDCl;) of compound 158g.
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Figure A3.84. Infrared spectrum (Thin Film, NaCl) of compound 158h.
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Figure A3.85. °C NMR (100 MHz, CDCl;) of compound 158h.
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Figure A3.87. Infrared spectrum (Thin Film, NaCl) of compound 158i.
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Figure A3.88. °C NMR (100 MHz, CDCl;) of compound 158i.
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Figure A3.90. Infrared spectrum (Thin Film, NaCl) of compound 158j.
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Figure A3.91. ”C NMR (100 MHz, CsDs) of compound 158j.
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Figure A3.93. Infrared spectrum (Thin Film, NaCl) of compound 158k.
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Figure A3.94. °C NMR (100 MHz, CDCl;) of compound 158k.
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Figure A3.96. Infrared spectrum (Thin Film, NaCl) of compound 158l.
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Figure A3.97. °C NMR (100 MHz, CDCl;) of compound 158l.
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Figure A3.99. Infrared spectrum (Thin Film, NaCl) of compound 158m.
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Figure A3.100. "C NMR (100 MHz, CDCl;) of compound 158m.
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Figure A3.101. °F NMR (282 MHz, CDCl;) of compound 158m.
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Figure A3.103. Infrared spectrum (Thin Film, NaCl) of compound 158n.
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Figure A3.104. "C NMR (100 MHz, CDCl;) of compound 158n.
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Figure A3.105. °F NMR (282 MHz, CDCl;) of compound 158n.
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Figure A3.107. Infrared spectrum (Thin Film, NaCl) of compound 158o.
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Figure A3.108. "C NMR (100 MHz, CDCl;) of compound 158o0.
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Figure A3.109. °F NMR (282 MHz, CDCl;) of compound 158o0.
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Figure A3.111. Infrared spectrum (Thin Film, NaCl) of compound 158p.
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Figure A3.112. "C NMR (100 MHz, CDCl;) of compound 158p.
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Figure A3.113. °F NMR (282 MHz, CDCl;) of compound 158p.
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Figure A3.115. Infrared spectrum (Thin Film, NaCl) of compound 158q.
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Figure A3.116. "C NMR (100 MHz, CDCl;) of compound 158q.
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Figure A3.117. °F NMR (282 MHz, CDCl;) of compound 158q.
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Figure A3.119. Infrared spectrum (Thin Film, NaCl) of compound 165a.
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Figure A3.120. "C NMR (100 MHz, CDCl;) of compound 165a.
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Figure A3.122. Infrared spectrum (Thin Film, NaCl) of compound 165b
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Figure A3.123. "C NMR (100 MHz, CDCl;) of compound 165b.
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Figure A3.125. Infrared spectrum (Thin Film, NaCl) of compound 165c.
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Figure A3.126. "C NMR (100 MHz, CDCl;) of compound 165c.
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Figure A3.128. Infrared spectrum (Thin Film, NaCl) of compound 165d.
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Figure A3.129. "C NMR (100 MHz, CDCl;) of compound 165d.
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Figure A3.131. Infrared spectrum (Thin Film, NaCl) of compound 165e.
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Figure A3.132. "C NMR (100 MHz, CsDs) of compound 165e.



737

Appendix 3 — Spectra Relevant to Chapter 5

1 4

4§91 punodwod jo (§5dD “ZHW 00%) NN H,

wdd

1 1 s s s s 1

"€E1°EY 94n314

0T

.l

; : : :
% T

T




Appendix 3 — Spectra Relevant to Chapter 5 738

%T

400
40000 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 200 600.0

Figure A3.134. Infrared spectrum (Thin Film, NaCl) of compound 165f.
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Figure A3.135. "C NMR (100 MHz, CDCl;) of compound 165f.
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Figure A3.137. Infrared spectrum (Thin Film, NaCl) of compound 165g.
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Figure A3.138. "C NMR (100 MHz, CDCl;) of compound 165g.
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Figure A3.140. Infrared spectrum (Thin Film, NaCl) of compound L4.
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Figure A3.141. "C NMR (100 MHz, CDCl;) of compound L4.
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Figure A3.142. ”F NMR (282 MHz, CDCl;) of compound L4.
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Figure A3.143.°'P NMR (121 MHz, CDCl;) of compound L4.
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Figure A3.145. Infrared spectrum (Thin Film, NaCl) of compound LS.
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Figure A3.146. °C NMR (100 MHz, CDCl;) of compound L5.
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Figure A3.147. °F NMR (282 MHz, CDCl;) of compound L5.
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Figure A3.148.°'P NMR (121 MHz, CDCl;) of compound L5.



747

Appendix 3 — Spectra Relevant to Chapter 5

'97 punodwiod Jo (€302 ‘ZHN 00F) YWN H, ‘6¢L°EY 94ndiy

€

1

1

wdd

S
1

9 L 8 6 0T

1 L L L L 1

U

0



Appendix 3 — Spectra Relevant to Chapter 5 748

138
""\/‘vv..‘--““'—"’wv—\'-w‘.
1 i

2 “M'"Mwn&l-’\fm M-\‘"u’ Ao LY ";\\ [ W
- N/ TRy N T

- [ O
| i

100

40000 3500 m 2@ 2400 2000 120 1600 1400 1200 100 200

em-l

400

Figure A3.150. Infrared spectrum (Thin Film, NaCl) of compound L6.
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Figure A3.151. "C NMR (100 MHz, CDCl;) of compound L6.
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Figure A3.152. "F NMR (282 MHz, CDCl;) of compound L6.
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Figure A3.153.°'P NMR (121 MHz, CDCl;) of compound L6.
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Figure A3.155. Infrared spectrum (Thin Film, NaCl) of compound L7.
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Figure A3.156. °C NMR (100 MHz, CDCl;) of compound L7.
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Figure A3.157. °F NMR (282 MHz, CDCl;) of compound L7.
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Figure A3.158.°'P NMR (121 MHz, CDCl;) of compound L7.
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Table A4.1 Notebook cross-reference for Chapter 3.

Compound Notebook Ref. Compound Notebook Ref.
40a AQC3-189 41n KNF-3-043-B
40b AQCS5-245 410 KNF-2-221A
40c KNF-2-145 410’ KNF-2-221B
40d AQC4-33 41p AQC4-61
40e CS-1-153 41p° AQC4-181 p2
40f AQC4-274 41q AQC3-275 p2
40g AQC3-213 41r AQC4-69 pl
40h KNF-2-219 41s KNF-1-295
40i RC-1-99 41t KNF-2-161 A
40j AQC4-109 41¢ KNF-2-161 B
40k AQC3-263 41u KNF-2-229 C
401 AQC3-277 42 KNF-1-289
40m RC-1-75 44 KNF-1-293
40n KNF-3-033 47 AQC3-137
400 KNF-2-207 49a AQC3-229
40p AQC4-55 49e CS-1-163
40q AQC3-281 49f AQC4-19 p2
40r AQC4-67 49g AQC4-21
40s KNF-1-287 49h KNF-3-031
40t KNF-2-157 49i RC-I-119A
40u ED-2-043 63 CS-1-225
41a AQC3-291 64 CS-1-223
41b AQCS5-251 65 CS-1-183
41c KNF-2-151 66 CS-1-271
41d AQC4-35 pl 67 CS-1-257
41f AQC4-19 pl 68 RC-I-111
41j AQC4-117 69 RC-1-129
41k AQC3-265B p4 70 CS-I-51
41K’ AQC3-265B p3 75 RC-II-35

41k” AQC3-265B pl 76 RC-1I-39
411 AQC3-287 77 RC-11-41
41m RC-I-181A 78 KNF-3-177

41m’ RC-I-181A 79 RC-1-301
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D-40f AQC4-143
D-41f AQC4-153 pl
D-49f AQC4-153 p2
D-86 AQC4-139
D-100 AQC4-133

80 RC-11-67
81 RC-II-65
82 RC-11I-77
83 CS-1-229
84 CS-1-279
85 AQC3-187
86 AQC3-201
87 AQC3-203
89 KNF-1-283
90 KNF-2-155
92 KNF-1-275-B
93 AQC3-129
94 CS-1-217
95 CS-I-215
96 CS-1-179
97 CS-1-267
98 CS-1-249
99 AQC4-159
100 AQC3-183
101 KNF-2-121
102 KNF-2-123
103 AQC3-117
104 KNF-2-155
105 KNF-1-279
106 KNF-2-147
107 ED-2-035
108 CS-I-175
109 CS-1-203
110 CS-1-207
111 CS-1-237
112 CS-1-253
113 KNF-2-283
114 RC-I-113




Appendix 4 — Notebook Cross-Reference for New Compounds

Table A4.2 Notebook cross-reference for Chapter 5.

Compound Notebook Ref.
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Compound Notebook Ref.
165a SRS-III-16
165b AQCS5-37
165¢ AQCS5-111
165d AQC5-109
165e AQC6-83
165f SRS-III-30
165¢ AQC6-113
L4 VH-II-264
LS VH-II-195
L6 VH-II-281
L7 VH-II-291

158a SRS-11-294
158b AQCS5-65
158¢ SRS-III-128
158d AQC5-47
158e AQC5-193
158f AQC5-173
158¢g AQC5-235
158h AQCS5-117
158i AQCS5-115
158j AQC6-87
158k AQC6-123
1581 SRS-II1-31
158m AQCS5-41
158n AQCS5-67
1580 AQC5-153
158p AQC5-103
158q AQCS5-125
160a AQCS5-265
160b VH-II-197
160c¢ AQCS5-271
160d AQC5-143
160e AQC5-201
160f AQC5-181
160h AQC5-145
160i AQC5-147
160j AQC6-147
160k AQC6-151
1601 AQC6-151
160m AQCS5-267
160n AQCS5-269
1600 AQC5-171
160p AQCS5-257 pl
160p_linear AQC5-107B p2
160q AQC6-145 pl
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