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ABSTRACT

As human beings interact with the world, we sample it, build representations of its underlying
structure, and subsequently use that knowledge for future reasoning - also called modeling the
world. This model is generative, allowing our knowledge of the world to influence our
perception and in extreme cases induce perception in the absence of any external stimulus. This
phenomenon called mental imagery is a remarkable cognitive ability that allows us to remember
previous experiences, imagine new ones, make plans, and solve problems. In the visual domain,
our ability to generate visual percepts without external stimulation is the basis of our memory
for experiences, as episodic memories are simply a subset of all possible experiences we could
imagine. Animal studies have yielded rich insight into bottom-up visual processing, from the
first discovery of neurons that respond to complex objects like faces to determining the precise
code for general objects in macaque inferotemporal (IT) cortex. However, the neural
mechanisms of internally generated top-down processing have been much more elusive. Here
we present findings on the mechanisms of visual imagery at single neuron resolution. We
approached deciphering visual imagery by first laying out coding principles for object perception
and then directly comparing responses during viewing to subsequent imagery of those images.
We recorded 384 visually responsive neurons in inferotemporal (IT) cortex of 12 epilepsy
patients as they viewed and subsequently imagined carefully parametrized visual objects. We
verified that neurons in I'T cortex are ‘axis tuned’, i.e. as in macaques they represent visual objects
by encoding specific axes that span a high dimensional object feature space. 218/384 visually
responsive neurons (~58%) were axis tuned, and the axis model explained more variance than
other models tested. Armed with this code for visual objects we examined neural responses
during pure imagery in the same neurons. We demonstrate robust reactivation of individual
neurons across the brain (~35% of neurons across the brain and ~50% of neurons in IT cortex)
and a recapitulation of viewing stimulus preference during pure visual imagery in I'T. By first
uncovering the code for visual objects and examining it during imagery, we demonstrate that
neurons in IT cortex subserve visual imagery by reinstating visual context. This study marks the
first detailed exploration of visual perception and imagery in the human brain.
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Chapter 1

INTRODUCTION

Intelligent beings possess an internal model of the world. This model is developed through active
interactions with the environment and is evident at a very young age. In humans, various
psychological studies have demonstrated that infants just a few months of age have thoughts
structured around both the intuitive physics governing objects and their interactions'™, and the
intuitive psychology enabling inference of an agent’s goals™. This model is also generative,
influencing perception by filling in the gaps left by sparse data®"' and allowing for imagination
of new possibilities, experiences, or outcomes in the absence of any sense data. Such a model,
while present in other intelligent species such as crows”'* and chimpanzees*"™", is highly
enriched and extended in humans.

We claim that modelling the world involves 3 key steps, the first being core object recognition.
It is impossible to model the world without knowing what is in it. Therefore, an understanding
of model building necessarily requires an understanding of how we segment the world into the
objects and agents we interact with, remember, dream about, and refer to. Humans are primarily
visual creatures with a large swath of the primate brain being dedicated to the processing of
visual information'®. Thus, in most people this parsing of the wotld occurs in the visual domain.

The second step to building a model of the world is developing an understanding of all possible
interactions of objects and agents (within and between groups), the aforementioned ‘intuitive
physics’ and ‘intuitive psychology’ respectively”. Even from a very young age humans can
understand how objects relate to each other and imagine various possible outcomes concerning
object interaction. For example, we understand that a jenga tower which is top-heavy is less
stable than one that is not. If we were told it got pushed from a given angle, we could predict
which way it would fall and which pieces might hit the ground first. This is made possible by the
fact that our model is generative, allowing us to integrate our knowledge of intuitive physics with
our current sense data and use it to generate a hypothetical updated state of the jenga tower in
the next instant (or the previous one). The same logic applies to agents, we can infer someone
else’s intentions just from their actions because we have knowledge of how intentions relate to
actions. For example, if your friend ignores you as they walk by you on the street you can
generate many possible explanations for the action: they were distracted and didn’t notice you,
they are upset with you, they didn’t recognize you, etc.

Finally, the third step is to learn language and use language to learn everything else that does not
have an obvious physical manifestation®””. Essentially our model of the world is a bridge
between the targets of perception, the substrates of action planning, and the substrates of
language. In order to understand how we develop this model we claim that we need to investigate
the neural mechanisms of all 3 of the previously outlined steps and isolate the generative
processes that make them fast, flexible, and learnable with low training data.
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This thesis presents an attempt to understand how human beings form such a model of the
world by tackling step 1 of model building: core object recognition and the top down, generative
processes that make it fast, flexible, and reliable even when the sensory data is noisy and
ambiguous. Our investigations have focused on a region of the brain on the underside of the
temporal lobe called inferotemporal (IT) cortex as this region has been shown over many
decades to subserve visual object perception in macaques and humans'®*, with lesions to it
causing profound agnosias® .

Our vision is an active process that goes far beyond pattern recognition. Visual perception is a
closed loop that includes both feedforward and feedback (or bottom-up and top-down)
pathways wherein an incoming image is broken down into a feature representation via the
feedforward visual pathway, and the feedback pathway then attempts to synthesize the input
image from its initial feedforward representation”". Essentially our visual perception is a form
of inference wherein we fit an internal model to external reality that aids in the assighment of
labels to objects. Mathematically, our internal models’ influence on our perception can be
codified as a prior in a Bayesian inference paradigm®’.

Take an input reaching the eyes or an image description ‘I’ and the scene that caused that input
‘s’, our brains are trying to compute P(s | I) or the most probable scene description that gave
rise to the observed I, which using Bayes’ rule can be computed by

P P
P(sII)z%

Here P(I) ate the image regulatities which arise from the similarity between natural scenes like
the statistics of edges and the distribution of contrasts. P(I |s) is the probability of the image
features given the state of the scene (or the likelihood’ of the image features) and P(s) is

probability of the scene before perceiving the image features (or the ‘prior” — given by the
model).

Mental imagery is an extreme case of top-down processing in which the visualization of an object
occurs in the absence of any viewed features, providing an excellent experimental paradigm to
isolate the neural signature of a top-down signal. Animal studies have yielded rich insight into
bottom-up processing of objects from the first discovery of individual neurons™ and functionally
connected patches™ that respond to whole complex objects, to determining the precise code for
faces™ and general objects™ in inferotemporal (I'T) cortex. However, the neural mechanisms of
internally generated top-down processing have been much more elusive, largely due to the
immense difficulty involved in training an animal to reliably and repeatedly generate a specific
mental image.

Thus, humans are the ideal test subjects in which to isolate this generative pathway as we can
use language as a powerful tool to manipulate imagination. However, most previous studies of
mental imagery in humans have been limited by an inability to record individual neurons as
humans carry out mental imagery tasks. The proxies recorded by noninvasive imaging

techniques have complicated relationships to underlying neural activity’”* and have very low



3
spatial resolution. For example, a single fMRI voxel contains tens of thousands of neurons but
a plethora of animal electrophysiology studies have shown that neighboring neurons, spaced less
than on hundredth of a millimeter apart, can have very different response properties.

Neurosurgical patients implanted to detect the location of their focal epilepsy provide a rare
glimpse into the human brain at high resolution®™. Such settings have been leveraged to
investigate visual responses to objects in I'T cortex” ~ with one even demonstrating reactivation
of visually responsive neurons during imagery’’. However, the precise code for visual objects
and whether that code is respected during imagery has remained unknown until this writing.

Working in these clinical settings takes great care and an understanding that the patients’ needs
always come first. Given the difficulty in obtaining this data and the value it holds, Chapter II is
a brief outline of how we start with continuous voltage traces recorded in the patient room
during an experiment and end with claims about how individual neurons are modulated by task
variables. In Chapter III we discuss findings pertaining to the code for visual objects in human
IT cortex. We record 431 individual neurons in 12 patients as they view 500 carefully
parametrized objects with highly varied features and use this data to examine the bottom-up
code for visual objects. Chapter IV then ventures into the unknown territory of purely top-down
processing: visual imagery. We record 173 individual neurons across 5 patients as they viewed
and subsequently imagined a subset of the 500 objects used to investigate the visual code. We
find robust reactivation of neurons across the brain, though a particularly large fraction of
visually responsive neurons in I'T cortex reactivated (~50%) in a manner that respected the visual
code. In Chapter V we summarize the main findings of the thesis and briefly discuss future
experiments that are underway to target steps 2 (contextual modulation of sensory
representations) and 3 (language encoding) of model building respectively.
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Chapter 11

SCIENTIFIC OPPORTUNISM:
Neurosurgical patients provide a rare glimpse into the human mind at high
resolution.

The human brain has been studied (largely indirectly) with intense fascination for a very
long time. Our minds and the brains that give rise to them are the basis of everything
we experience in life. Our percepts, thoughts, intentions, feelings, and actions are all
governed by the electrical activity of neurons in the brain. Thus, an understanding of the
complex phenomena that make up the human condition necessarily requires an
understanding of the neural activity that accompanies them.

Most of our understanding of how individual neurons work, or how they work in
concert to give rise to behavior stems from causal manipulations of neural circuitry in
animal models. While these have shed light on a plethora of behavioral phenomena,
there remain a few out-of-reach frontiers that require a deep dive into the human brain
such as language, imagination, or the subjective feeling of a conscious percept (qualia)
to name a few.

Until very recently our best techniques for studying the human brain lacked the
spatiotemporal resolution required to make direct inference about how individual
neurons subserve complex phenomena. The proxies being recorded via non-invasive
imaging techniques have complicated relationships to neural signals and often remain
pootly understood . However, neurosurgical patients being treated for ailments such as
brain tumors, Parkinson’s disease, or focal epilepsy provide the opportunity to peer into
the human brain at high resolution® which in turn allows for a deeper understanding of
the phenomena that make us human.

Overview of electrodes used:

This thesis will exclusively focus on data collected from patients implanted to localize
their focal epilepsy. During their treatment process patients are implanted with stereo-
EEG depth electrodes that consist of macroscopic electrode contacts along the shank
and microwires that protrude from the end of the electrode®™’ (Figure 2.1A). These
microwires have a very high impedance (50-500k(}) and thus allow for the recording of
individual action potentials. The high sampling rate is necessary as sampling rates below
16khz can miss important aspects of individual action potential waveforms’. Upon
implantation patients stay in the epilepsy monitoring unit for several days until they have
enough seizures to allow the clinical team to discern the location of their seizure foci via
the activity pattern on the electrodes. All the findings in this thesis are made possible by
patients consenting to do experiments during this period, and for that the scientific
community owes them a debt we will never be able to repay.
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Figure 2.1. Research modification to clinical electrodes allow for recording of individual neurons in the
human brain.

(A) A photograph of the micro-macro depth electrodes used during epilepsy monitoring. Named as such
due to the presence of macro contacts (low impedance) to record over large areas for seizure
detection, and microwires (high impedance) that pass through the inner shaft and protrude out of the
end that can detect individual action potentials.

(B) Extracellular potential of a reconstructed human neuron from the middle temporal gyrus (Cell ID
569844159 in https://celltypes.brain-map.org). The shape of the extracellular action potential that would
be recorded from various locations relative to the cell body are overlayed at those locations. The rapid
decay of amplitude is noteworthy. Adapted from Mosher et al. 2020; Meisenhelter & Rutishauser, 2022.

(C) Post-operative MRI of a patient showing the localization of depth electrodes in the medial frontal
cortex. The blue arrow marks the most medial macro contact and the red arrow marks the location of
the microwires. Adapted from Fu & Rutishauser, 2023.

The patient room, stimulus presentation, and data
acquisition

All tasks were implemented on Dell laptop with a 15 inch screen using Matlab’s
psychtoolbox’. The stimulus presentation computer is connected to the data acquisition
system via a TTL cable (Figure 2.2B) and the tasks are programmed to include TTL
pulses at meaningful points to make possible the alignment of neural data with the
various task phases later. The data acquisition system used is the Atlas system from
Neuralynx Inc. Signals from the microwires are amplified on the head with small pre-
amplifiers that attach to the microelectrode and monitored broadband (0.1 — 9khz
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bandpass filter) throughout the experiment session. All parsing of the continuous data
into a list of putative neurons and the timestamps of their action potentials (also called
‘spikes’) occurs offline after the experiment is complete. The methodology for such data
processing or ‘spike sorting’ is briefly reviewed in the next section.
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Figure 2.2. The patient room.

(A) A photograph of a patient undergoing testing. Stimuli are presented on a 15-inch Dell laptop, which
is connected to the Atlas recording system via a transistor-transistor logic (TTL) cable to
synchronize the stimulus presentation with the neural data.

(B) Schematic of the set up used to record simultaneous intracranial EEG and single neuron activity
from epilepsy patients. Adapted from Fu & Rutishauser, 2023.

Parsing continuous voltage traces into meaningful units of
information: basics of spike sorting

This section provides a technical perspective on all the procedures required for an
experiment to succeed in providing scientific insight after the acquisition of continuously
sampled data from the microwires. Notably, this section pertains to the time after data
has been stored by acquisition system.

The microwires described eatlier record extracellular voltage at a particular pointin space
as a function of time. This signal is well known to be a superposition of the currents
generated by synaptic events, action potentials, and even antidromic action potentials’.
As such, decomposing the extracellular signal into the components that give rise to it is
a very difficult problem. However, the occurrence of action potentials near the tip of
the microwires leads to the waveform being clearly distinguishable from the background
voltage and with a high enough sampling rate one can distinguish different neurons via
differences in the recorded waveforms. In rodents it is estimated that electrodes can
distinguish extracellular spikes from neurons located as far as 140pm away from the tip
of the electrode®. At the time of this thesis writing there are very few quantitative studies
of the relationship between spike amplitude/shape and distance to the electrode in the
human brain. The few that do exist rely on the fitting of multicompartment models to
in-vitro whole cell recordings and using those to predict the shapes of extracellular
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waveforms as a function of electrode position™"". To calibrate these models to ground
truth one would need to record intracellularly and extracellularly from various positions
around the neuron simultaneously, which is impossible zz-vivo and has not been
attempted in human tissue zz-vitro to our knowledge at this time. These detailed analyses
have been cartied out in rodents'>"” and since the size of neurons in rodents and humans
are roughly the same it is reasonable to assume that the basic properties of extracellular
recordings are applicable to human neurophysiology as well’.

The pipeline for assigning spikes to putative neurons begins with filtering the signal to
remove low frequency content from the raw trace, followed by spike detection via
thresholding the filtered signal, and finally a template matching process to cluster similar
waveforms as having come from a single putative neuron. At this stage it is important
to note that this is an under constrained inference problem and there are many possible
solutions. As such many algorithms have been developed to sort spikes ranging from
manual to fully automatic", with each new one comparing its performance to the ones
before it'**.

Filtering

Given that individual action potentials are characterized by a large but transient spike in
voltage, thresholding is a key step in the spike detection process. In order to ensure that
such thresholding captures only action potentials and not any other fluctuations in the
extracellular voltage the first step in most spike sorting approaches is to filter the data to
remove all low frequency content (< 300hz) from the raw trace (Figure 2.3A). Note that
for analyses done offline it is important to not filter while the experiment is being done
as this filtering introduces distortions in the waveform®', this can be avoided offline by
using a zero-phase non causal digital filter”. All analysis described in this thesis was
conducted offline after the experiment session concluded.

Spike detection

The simplest way to detect spikes is by thresholding the bandpass filtered signal.
However, as the amplitude of spikes is a function of distance from the electrode tip
some recorded neurons have amplitudes that are closer to the noise floor and may be
missed in such cases.

As such, a few other techniques have been developed to more effectively detect spikes.
Some involve using the energy of the signal' ™, others use wavelet based methods', with
more recent approaches even using neural networks'. In the former case, the signal is
convolved with a rectangular kernel that has the approximate width of a spike (1ms).
The kernel acts as a matched filter that will suppress events of differing widths while
amplifying events of a similar width. This energy signal is then thresholded to detect
spikes'” (Figure 2.3A, bottom panel). Early implementations of the latter wavelet-based
methods used wavelets from well-studied families like the bior family that resemble spike
waveforms while other more modern methods opt to learn the best basis in an
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unsupervised manner®. Wavelets yield better detection compared to simple
rectangular kernels used”° by the former energy-signal methods though these methods
are much more computationally expensive’.

Choosing an appropriate detection method based on the circumstances of the
experiment such as the need to detect spikes online vs offline, power requirements,
computational cost, and detection performance is crucial to the success of experiments
in clinical settings and an important responsibility as the data is a real gift and all possible
bits of information need to be gleaned from it. All neurons reported in this thesis were
detected and sorted using the Osort algorithm'” which uses energy signal methods for
spike detection. After detection, spikes are alighed to a common reference frame so their
shapes can be compared to all other waveforms detected on a given wire before
clustering of waveforms into putative neurons (sorting) is completed.

Spike sorting

The relative position of the tip of the electrode and the cell body of the neuron directly
affects the ion flow that the electrode will detect and thus shape of the detected
waveform>~" (Figure 2.1B). Spike sorting aims to identify features that maximally
separate waveforms from different neurons and cluster similar spikes that likely arose
from the same neuron in an unsupervised manner. The most commonly used feature is
the shape of the waveform, wherein spikes are either represented as points in an N-
dimensional space where N is the number of samples that make up the waveform or as
points in some lower dimensional space that captures most of the variance. Such lower
dimensional spaces are built utilizing dimensionality reduction techniques such as
principal component analysis (PCA).

Once spike features have been identified and parametrized, unsupervised partitioning of
the space is done to separate waveforms from different putative neurons. Some
approaches make assumptions about the underlying distribution of the data while others
rely purely on heuristics computed directly from the data. The Osort algorithm used in
this thesis was originally written to run online so it detects each incoming spike and
assigns it to a cluster immediately, computing a distance metric between clusters to keep
track of the different ones automatically.
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Figure 2.3. Decomposing extracellular signals into action potentials from putative neurons. Adapted
from Minhxa et al., 2018.
(A) (Top) Example broadband recording from a single microwire (channel) in the human amygdala with
bipolar referencing. (Middle) Same broadband signal bandpass filtered between 300-3000hz.
(Bottom) The signal used for spike detection by Osort: the local energy computed using a 1ms
kernel (roughly the width of an action potential) which amplifies all actional potential-like events and
suppresses broader fluctuations greatly increasing the signal-to-noise of action potentials with
respect to baseline.
(B) The two putative single neurons detected on this channel.

Quality metrics

The problem of identifying which action potential came from which neuron is a very
challenging problem without a single best solution. Due to such inherent uncertainty all
spike sorting approaches rely on the computation of various other quantitative metrics
to assess the quality of sorting, and to delineate artifacts and neuronal spikes. These
metrics can broadly be separated into two categories: single unit measures and
comparisons between different units.

Single unit measures

These measures include the mean waveform, the spike times, and their derivatives. In
the case of the mean waveform one also examines its variance and its signal-to-noise
ratio (SNR). In the case of spike times useful derivative metrics include the distribution
of the inter-spike interval (ISI) and the autocorrelation of spike times.

The SNR for a spike quantifies how different the waveform is from the background. It
is useful to compute this for all spikes and then examine the variance of the SNR across
all spikes in a given cluster. A large variance could imply the clustering of waveforms
from multiple neurons or the inclusion of artifacts.

Osort clusters spikes based purely on properties of the waveform, thus the distribution
of ISI is an independent metric that can be used to evaluate the sorting result. In
particular, the refractory period of neurons should result in a dip in the autocorrelation
of spike times® and very short ISIs (< 3ms) should be rare in a well isolated unit™.
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Separability of multiple units

Determining whether two units are truly distinct is difficult to do based on the
waveforms alone. Osort implements a projection test to provide evidence of two units
being separate. The projection test is based on the observation that, for two units to be
statistically separable there needs to be a minimum distance between them that is a
function of the amount of background noise®. If two units are separated by less than
the required distance, it does not necessarily mean they are not different but that they
cannot be distinguished at that level of noise. The projection test is a pairwise mettic
that defines the distance between a pair of units as a multiple of this minimally
distinguishable distance. On average this is seen to be a fairly high number (> 10)* so
setting a reasonable cutoff for this value (in this work we used 5) aids in determining
whether two clusters should be considered different or not.

All spike sorting algorithms require a manual curation of the clusters generated, and
occasional post processing before the final putative neurons from the recorded channels
are chosen.

Inference:

After sorting is complete, we are left with a collection of putative neurons recorded in
that session and for each neuron, a list of times at which it fired an action potential. That
list of times is aligned to the relevant task phases via comparison to the time stamps of
the TTL pulses sent to the Atlas acquisition system during the experiment which allows
us to subsequently infer the activity of each neuron in relation to task variables.

Discussion:

The confluence of advances in electrode fabrication, surgical techniques to safely
implant those electrodes, and computer systems for data collection, processing, and
storage have resulted in neurosurgical patients providing a glimpse into the inner
workings of the human mind at unprecedented resolution.

Working in such a clinical setting takes a lot of care, and an understanding that the
patient’s needs always come first. These patients show a lot of kindness and grace in
times of immense personal difficulty to undergo testing that allows us to uncover the
neural mechanisms of complex phenomena that were previously out of reach.

In this Chapter we have briefly described the mechanics of recording and processing
electrophysiological data from the human brain. This is meant to provide the reader with
a general overview of how we start with continuously recorded voltage traces and end
with claims about the activity of individual neurons in response to task conditions. This
should place the results in the next Chapters in the appropriate context but is in no way
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meant to be comprehensive. For a more detailed description of each of the topics
covered here please see Chapter 6 in reference’.



15

References:

10.

11.

Logothetis, N.K. (2002). The neural basis of the blood-oxygen-level-dependent
functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 357,1003-1037.

Buzsiaki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular
fields and currents--EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 73, 407—
420.

Engel, AK., Moll, CK.E., Fried, I, and Ojemann, G.A. (2005). Invasive
recordings from the human brain: clinical insights and beyond. Nat. Rev. Neurosci.
6, 35-47.

Fried, I, Wilson, C.L., Maidment, N.T., Engel, J., Jr, Behnke, E., Fields, T.A.,
MacDonald, K.A., Morrow, ].W., and Ackerson, L. (1999). Cerebral microdialysis
combined with single-neuron and electroencephalographic recording in
neurosurgical patients. Technical note. J. Neurosurg. 97, 697-705.

Fried, I., Rutishauser, U., Cerf, M., and Kreiman, G. (2014). Single Neuron Studies
of the Human Brain: Probing Cognition (MIT Press).

Misra, A., Burke, J.F., Ramayya, A.G., Jacobs, J., Sperling, M.R., Moxon, K.A.,
Kahana, M.J., Evans, J.J., and Sharan, A.D. (2014). Methods for implantation of
micro-wire bundles and optimization of single/multi-unit recordings from human
mesial temporal lobe. J. Neural Eng. 77, 026013.

Brainard, D.H. (1997). The Psychophysics Toolbox. Spat. Vis. 70, 433—4306.

Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nat. Neurosci. 7,
446-451.

Mosher, C.P., Wei, Y., Kaminski, J., Nandi, A., Mamelak, A.N., Anastassiou, C.A.,
and Rutishauser, U. (2020). Cellular Classes in the Human Brain Revealed In Vivo
by Heartbeat-Related Modulation of the Extracellular Action Potential Waveform.
Cell Rep. 30, 3536-3551.¢6.

Nandi, A., Chartrand, T., Van Geit, W., Buchin, A., Yao, Z., Lee, S.Y., Wei, Y.,
Kalmbach, B., Lee, B., Lein, E., et al. (2022). Single-neuron models linking

electrophysiology, morphology, and transcriptomics across cortical cell types. Cell
Rep. 41, 111659.

Gold, C., Henze, D.A., Koch, C., and Buzsaki, G. (2006). On the origin of the
extracellular action potential waveform: A modeling study. J. Neurophysiol. 95,
3113-3128.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

16
Gold, C., Henze, D.A., and Koch, C. (2007). Using extracellular action potential
recordings to constrain compartmental models. J. Comput. Neurosci. 23, 39-58.

Chung, J.E., Magland, J.F., Barnett, A.H., Tolosa, V.M., Tooker, A.C., Lee, K.Y,
Shah, K.G., Felix, S.H., Frank, L.M., and Greengard, L.F. (2017). A Fully
Automated Approach to Spike Sorting. Neuron 95, 1381-1394.¢6.

Lewicki, M.S. (1998). A review of methods for spike sorting: the detection and
classification of neural action potentials. Network 9, R53-78.

Pouzat, C., Mazor, O., and Laurent, G. (2002). Using noise signature to optimize
spike-sorting and to assess neuronal classification quality. J. Neurosci. Methods
122, 43-57.

Quiroga, R.Q., Nadasdy, Z., and Ben-Shaul, Y. (2004). Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering. Neural
Comput. 76, 1661-1687.

Rutishauser, U., Schuman, E.M., and Mamelak, A.N. (2006). Online detection and
sorting of extracellularly recorded action potentials in human medial temporal lobe
recordings, in vivo. J. Neurosci. Methods 754, 204-224.

Gibson, S.P. (2012). Neural Spike Sorting in Hardware: From Theory to Practice.

Radmanesh, M., Rezaei, A.A., Jalili, M., Hashemi, A., and Goudarzi, M.M. (2022).
Online spike sorting via deep contractive autoencoder. Neural Netw. 755, 39-49.

Lee, J.H., Catlson, D.E., Shokri Razaghi, H., Yao, W., Goetz, G.A., Hagen, E.,
Batty, E., Chichilnisky, E.]., Einevoll, G.T., and Paninski, L. (2017). YASS: yet
another spike sorter. Adv. Neural Inf. Process. Syst. 30.

Quian Quiroga, R. (2009). What is the real shape of extracellular spikes? J.
Neurosci. Methods 777, 194-198.

Minxha, J., Mamelak, A.N., and Rutishauser, U. (2018). Surgical and
electrophysiological techniques for single-neuron recordings in human epilepsy
patients. Extracellular recording.

Choi, J.H., Jung, HK.,, and Kim, T. (2006). A new action potential detector using
the MTEO and its effects on spike sorting systems at low signal-to-noise ratios.
IEEE Trans. Biomed. Eng. 53, 738-7406.

Shalchyan, V., Jensen, W., and Farina, D. (2012). Spike detection and clustering
with unsupervised wavelet optimization in extracellular neural recordings. IEEE
Trans. Biomed. Eng. 59, 2576-2585.



25.

26.

27.

28.

29.

17
Nenadic, Z., and Burdick, J.W. (2005). Spike detection using the continuous
wavelet transform. IEEE Trans. Biomed. Eng. 52, 74-87.

Wiltschko, A.B., Gage, G.]., and Berke, ].D. (2008). Wavelet filtering before spike
detection preserves waveform shape and enhances single-unit discrimination. J.
Neurosci. Methods 773, 34—40.

Meisenhelter, S., and Rutishauser, U. (2022). Probing the human brain at single-
neuron resolution with high-density cortical recordings. Neuron 770, 2353-2355.

Gabbiani, F., and Koch, C. (1998). Principles of spike train analysis. Methods in
neuronal modeling 72, 313-360.

Rutishauser, U., Schuman, E.M., and Mamelak, A.N. (2008). Activity of human
hippocampal and amygdala neurons during retrieval of declarative memories. Proc.
Natl. Acad. Sci. U. S. A. 705, 329-334.



18
Chapter 111

VISION:
The feedforward code for visual objects in the human brain

Introduction:

This thesis presents work attempting to make inroads into the problem of how
intelligent beings model the world around them. A crucial first step to modeling the
world is knowing what objects are in it!, a fact that is easy to appreciate as objects are
what we interact with, remember, refer to, and dream about. The wotk described in this
Chapter is concerned with this first stage of model building — core object recognition.
Consistent with the computational complexity of this problem and its central role in
experience, a large swath of the primate temporal lobe — inferotemporal (IT) cortex —
is dedicated to this problem’, with lesions to this area causing specific visual agnosias
including prosopagnosia.

A long-standing challenge in visual neuroscience has been to understand how I'T cortex
encodes the identity of a complex visual object, a problem that until recently did not
have any clear solution, with some even positing that an explicit model of I'T neurons
may be impossible to achieve’. However recent work in macaques has demonstrated an
explicit code for faces* and subsequently general objects® in IT. In this coding scheme
neurons act as linear projectors, projecting incoming stimuli parametrized as points in a
continuous high dimensional feature space onto specific preferred axes. These axes are
defined by the weightings of a small set of independent parameters spanning the object
space.

However, while object recognition in macaque IT has been the subject of such detailed
scrutiny, next to nothing is known about how human I'T neurons encode visual objects.
Two eatlier explorations report face and other category selective neurons in the fusiform
face area (FFA)®" with a third finding that the change in features caused by changing
facial expression modulates face cell responses®. While these findings highlight that the
answer to how we perform object recognition lies in the responses of I'T neurons just as
it does in monkeys, they shed very little light on the precise code for objects.

In this Chapter we present findings related to the neural code for visual objects in human
IT cortex. Using the techniques described in Chapter II we record the responses of
several hundred neurons in human IT cortex to a large, diverse set of visual objects. We
find that the code for object encoding is the same as in macaques, and that the activity
of deep layers of convolutional neural networks trained to perform object classification
explain a significant and roughly similar amount of variance in I'T responses.
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Results:

Neurons in IT cortex show diverse visual response profiles

We began our exploration into how human IT neurons encode visual objects by
recording responses of those neurons to a large number of objects with varying features
using a rapid screening task. Patients sequentially viewed a series of 500 images (4
repetitions each for a total of 2000 total trials), occasionally answering a catch question
that appeared at random intervals and pertained to the image that came just before the
question. Images stayed on screen for 250ms and the inter trial interval was jittered
between 100-150ms (Figure 3.1A). Despite the rapid presentation rate, patients generally
got most of the catch questions correct indicating that the stimuli were carefully attended
to (Figure 3.1E).

We recorded 431 IT neurons in 42 sessions across 12 patients. Visual responsivity was
assessed on a trial-by-trial basis using a Poisson burst metric’ that detects the precise
time during the trial at which the spike rate departs significantly from baseline. Out of
the 431 neurons recorded 384 were found to have significantly increased responses upon
onset of visual stimulus. Human I'T neurons had an average response latency of 132 +/-
1.18ms and showed a number of different response profiles, including canonically
described category neurons (Figure 3.1F, left), anti-category neurons (Figure 3.1C),
neurons characterized by an initial suppression of activity (Figure 3.1F, middle), and
neurons that distinguish categories via a latency code (Figure 3.1F, right).

A computational scheme to parametrize visual objects

Despite establishing that human I'T neurons (somewhat predictably) show robust and
reliable visual responses, the question of how they encode specific features of objects
remains open. In order to solve this problem, it is necessary to precisely map between a
quantitative description of the features of a given object and the precise firing pattern it
elicits in IT. In other words, matching the responses of neurons to object features is
impossible without a computational scheme to parametrize the features. Thankfully,
deep networks trained to do object classification do exactly this, performing
classification by keeping track of the shape and appearance of the inputted object’.
Thus, one can take a pre-trained deep network used for object classification such as
AlexNet", pass in a stimulus image and use the unit activations of one of the fully-
connected layers (eg. fc0) as a quantitative description of the image features.

Armed with this powerful solution we could describe arbitrarily shaped, complex visual
objects as points in a high dimensional feature space. Now the question to pursue is —
how does the neural activity map onto such a space?

At this point it is important to note that this is not a new problem in systems
neuroscience. Since the very first discovery of neurons that respond more strongly to
whole, complex objects like faces than to simple edges in the primate brain'', attempts
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Figure 3.1. Screening task elicits robust visual responses in human IT.

(A) (Top row) Example stimuli used in screening task. All images were grayscale and had no
background. Images were displayed on a stimulus computer 1 meter away and subtended 6-7 visual
degrees. (Bottom) Schematic of screening task utilized. Background subtracted images were
displayed on a gray screen for 250ms with the inter-trial interval jittered between 100-150ms at
random intervals (min interval: 1 trial, max interval: 80 trials) a yes-no catch question would appear
pertaining to the image that came just before it.

(B) Recording locations of the 18 microwire bundles (left and right) that contained at least one well
isolated neuron in human IT cortex across all 12 patients. See Montreal Neurological Institute
coordinates in Table 3.1. Each dot represents the location of one microwire bundle (8 channels).

(C) An example neuron recorded during screening. This neuron was responsive to all categories except
faces. The computed response latency is 161ms.

(D) Distribution of response latencies for all 384 visually responsive IT neurons. Human IT neurons have
a mean response latency of 132.5ms.

(E) Summary of catch question responses for all sessions, grouped by patient. On average patients
answered catch questions correctly despite the rapid stimulus presentation, implying the stimuli
were closely attended to.

(F) Neurons in human IT cortex show diverse response profiles. (Left) A strong category selective
neuron, showing a lower response to any of the non-preferred categories. (Middle) A response
profile characterized by an initial suppression of activity. (Right) A neuron that distinguishes it's
preferred from non-preferred category using a latency code along with a rate code.
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have been made to systematically analyze their activity =~ in order to uncover the
relationship between complex features and neural firing rates. However, it took the
combination of advances in computation and the discovery of anatomically defined,
functionally connected face patches'*" for the answer to eventually be uncovered in the
ptimate brain a few decades later™.

12,13

As the field grappled with this question multiple theories for how neural activity mapped
onto high dimensional feature spaces were put forward in the intervening years. One of
them being an ‘exemplar based” model, which posits that object recognition is subserved
by units tuned to specific exemplars, i.e. points in object space, and that responses of
such units to objects further and further away from the exemplar would decrease
monotonically as a function of that distance in feature space'®". The other being an axis
model, wherein units are tuned not to specific points but specific directions in feature
space such that the response of a unit to an incoming stimulus is a function of how far
along the units preferred direction that stimulus is'". As time went by evidence for the
axis model mounted, with the exemplar model being unable to explain certain
psychological effects like the caricature effect’ and the finding that primate I'T neurons
showed ramp shaped tuning to feature values”.

Eventually the axis model was verified as the computational scheme by which neurons
in IT cortex of macaques were responding to incoming faces* by showing that the
neuron’s firing rate was a function of projection value of the incoming stimulus onto its
preferred axis, examining the tuning along an orthogonal axis and demonstrating that it
was flat, and finally generating stimuli along a neurons preferred and orthogonal axes
and demonstrating a methodical increase in firing rate along the preferred axis and no
increase along the orthogonal axes™. Though what about human IT neurons?

Human IT neurons are tuned to specific axes in object space

We find that human IT neurons use the exact same coding scheme as macaque IT
neurons, showing a monotonically increasing firing rate to stimuli that were further along
their preferred axes while having the same firing rate to images along an axis orthogonal
to their preferred axis. An example neuron showing axis tuning can be seen in Figure
3.2C-E. Individual neurons are considered axis tuned if in addition to expected tuning
along both axes the correlation between projection value onto the preferred axis and
firing rate is significant as compared to a shuffle distribution. We find that a majority
(~57%) of visually responsive neurons are significantly axis tuned (Figure 3.2B&H).

Axis tuning also made clear the response pattern of some previously confusing neurons,
an example of which is shown in Figure 3.2C. This neuron seemed to have a strong
category response, however it also appeared to respond strongly to specific stimuli in
other categories (see rows highlighted in yellow, Figure 3.2C). Indeed, when the neurons
most and least preferred stimuli are examined (Figure 3.2D) it becomes apparent that
there is no semantic label capable of cleanly delineating between the two. However,
when examining the projection value of those stimuli the pattern becomes clear: there
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Figure 3.2. Axis tuning in human IT neurons.

(A)

(B)

©)

D)
(E)

(F)

(G)
(H)

Schematic of the stimulus parametrization and axis computation procedure. Individual stimuli are
parametrized as points in a high dimensional feature space that is built from the unit activations of
AlexNet'’s fc6 layer. Neurons’ preferred axes are computed in this space by projecting the features
onto the mean subtracted responses leading to a large null space for each neuron.

Population summary showing the ramp tuning of 218/384 visually responsive units. (Left) Plot
showing the increase in normalized response of each neuron as distance along the preferred axis
increases. (Right) Corresponding plot for the principal orthogonal axis (orthogonal axis capturing
the most variation) showing no change at all in response as a function of distance.

The axis model helps explain previously confusing neuronal tuning. Category tuning has long
been used to study visually responsive neurons in the human brain. However, we recorded
neurons that had robust category responses at first glance but more complicated responses when
examined further. (C1) An example neuron with confusing category tuning. A closer look at its
raster betrays robust responses to a few out of category objects (highlighted by yellow box).

The top (most preferred) and bottom (least preferred) stimuli for the neuron shown in (C), no
semantic category can cleanly delineate between them.

Axis plot for the same neuron. The 2D scatter plot is a plot of all stimuli projected onto the
preferred and orthogonal axes and colored by the neuron’s response. The top line plot is the
binned firing rate for all stimuli as one moves along the preferred axis. The side (vertical) line plot
is the same binned firing rate for the orthogonal axis. The top left inset shows the correlation of
projection value along the preferred axis and firing rate (red line) as compared to a shuffled
distribution.

Examining the projection values of the previously mentioned top and bottom stimuli (shown in D)
reveals a systematic relationship between the two.

The axis model explains much more variance than the category label in human IT neurons.

A chart showing the distribution of axis tuned and visually responsive neurons out of all neurons
recorded.
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is a linear relationship between the firing rate and the projection value. At a population

level, this plays out via the axis model explaining much more variance than the category
label (Figure 3.2G).

If neurons in IT are indeed axis tuned that implies their responses can be approximated
as a linear combination of object features, with the slopes of the ramps corresponding

to the weights’. Then for a population of neurons R=C-F + C_o) where R is the
response vector of the different neurons, C is the weight matrix, I is the vector of object
feature values, and C, is the offset vector. If this is the case, then by simply inverting this

equation one should be able to linearly decode the object features from the population
activity™ >,
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Figure 3.3. Decoding object features via linear regression.

(A) Diagram illustrating decoding model. We used responses to all but one object (500-1 = 499) to
determine the transformation between responses and feature values by linear regression, before
using that transformation to predict the feature values of the held out object. Adapted from Chang &
Tsao, 2017.

(B) Model predictions using human IT data are plotted against the actual feature values for the first (left)
and second (right) dimensions of object space.

(C) Decoding accuracy as a function of the number of distractor objects drawn randomly from the
stimulus set using two different distance metrics (Euclidean distance & Cosine similarity). For each
model, different sets of features were first linearly decoded from population responses, then the
distances between decoded and actual features in each feature space were computed to determine
decoding accuracy. The black dashed line represents the decoding accuracy one would expect by
chance.

(D) Distribution of normalized distances between reconstructed feature vectors and the best-possible
reconstructed feature vectors for 437/500 images (see methods) to quantify decoding accuracy
across the population. The normalized distance takes into account the fact that the object images
used for reconstruction did not include any of the object images shown to the patients. A normalized
distance of 1 means the reconstruction found the best solution possible.

(E) Images were split into tertiles based on normalized distance. Examples of the reconstructions in the
first tertile (top row), second (middle row), and third (bottom row) as compared to the original
stimulus images being reconstructed.
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We used this fact to decode object identity using the responses of the neurons. We
used leave-one-out cross-validation to learn the linear transform that maps responses to
features (Figure 3.3A). The representation turned out to be quite rich, containing a lot
of information about object identity allowing objects to be identified among many
distractors (Figure 3.3C). As a proxy for ‘reconstructing’ the object we searched a large
auxiliary object database for the object with the feature vector closest to that decoded
from the neural activity. A normalized distance in feature space between the best
possible and actual reconstruction (see methods) was computed to quantify the decoding
accuracy across all stimuli. For 437/500 images the normalized distance was very small
(< 4), implying that the neural responses captured many of the fine feature details of the
original objects, which was verified via side-by-side comparisons of the original images
with the ‘reconstructions’ (Figure 3.3D).

Finally, to hand the axis model its sternest test we ran a ‘closed-loop’ synthetic image
screen (see methods). We used the morning session to perform our object screen and
compute axes for all neurons recorded, then used a pre-trained GAN specifically
designed to invert the responses of AlexNet™ to systematically generate images
corresponding to evenly spaced points along both the preferred and orthogonal axes.
We then returned to the patient room for an afternoon session and rescreened with the
synthetic images added to the original stimulus set. Neurons recorded in the morning
and afternoon are matched offline using an algorithm that checks for similarity in
selectivity, waveform shape, burst index, response latency, and significance in axis tuning
(see methods).

In such an experiment the axis model makes two testable predictions: the first is that
one should see a monotonic increase in firing rate for images sampled along the
preferred axis (and no change along an orthogonal axis), and the second is that if one
generates images that go beyond the maximum projection value of the original stimulus
images these should serve as ‘super-stimuli’ driving the neuron to a higher firing rate
than any of the stimulus images™. In fact, if one samples a grid of images in the space
spanned by the preferred axis and the principal orthogonal axis one should see changes
in tuning only in objects varied along the preferred axis. Both predictions were verified
in our data. For a given neuron, the most preferred stimulus with the highest projection
value and highest response was a t-shirt (Figure 3. 4A), while the least preferred stimulus
was a helicopter. The corresponding super-stimulus and anti-stimulus are shown and, as
expected, bear striking resemblance to the most and least preferred stimulus images. The
axis plot with synthetic stimuli overlaid (preferred axis — yellow, orthogonal axis — green)
demonstrates the expected monotonic increase along the preferred axis and no increase
along the orthogonal axis (Figure 3.4B). Moreover, this plot clearly shows that the firing
rate to the synthetic stimuli with larger projection values than the stimulus images are
substantially higher only along the preferred axis. Figure 3.4D shows an axis plot for the
same neuron, only plotting the grid of synthetic images sampled in the space spanned
by the preferred and orthogonal axes (Figure 3.4C) showing tuning only along the
preferred axis, and nearly identical responses to images varied along the orthogonal axis.
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Figure 3.4. Generating super stimuli for an IT neuron using the axis model and a GAN.

(A)

©)
D)

Schematic illustrating the generation of super stimuli. For a given neuron, images were parametrized
via AlexNet'’s fc6 layer, then points are evenly sampled along the preferred and orthogonal axes
ensuring that the max projection value of the chosen points exceeds the max projection value along
both axes of the stimulus images. These feature vectors are subsequently fed into a GAN trained to
invert AlexNet's responses to generate the synthetic images.

Axis plot of an example neuron showing the positions of generated stimuli sampled along the
preferred axis (yellow) and orthogonal axis (green) relative to the other stimulus images. The
maximum and minimum projection valued images are displayed along each axis. The vertical and
horizontal line plots are the binned firing rate of the stimulus images as one moves along each axis
with the generated images overlaid on top. The systematic increase along the preferred axis with an
almost identical response to all images along the orthogonal axis is clearly visible.

To give the axis model its sternest test we sampled a grid of images at even intervals in the space
spanned by the preferred and orthogonal axes.

Axis plot of the neuron showing tuning to only changes in images along the preferred axis.
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Axis code is independent of the specific convolutional network used to
parametrize stimuli

A key ingredient to these results about neurons being linear projectors in feature space
is the space itself. If one does PCA directly one the pixels, something that has been
attempted for faces many times we get a seties of ‘eigen faces™? that bear little
resemblance to the actual face. Hence if the construction of the high dimensional feature
space is the crucial step it begs the question: is there something special about the latent
space of AlexNet? Are the axis tuning results an artifact of the specific network used to
parametrize the objects? Nowadays there exist a plethora of deep convolutional neural
network models that are capable of performing object recognition at or beyond human

capability”’.

We set out to compare several such models for object recognition. Particularly, their
ability to explain the response of neurons in IT to general objects. The models tested
include AlexNet", both VGG-16 and 19%, VGG-Face”, the eigen object model, and 4
CORNet models™". These particular models were chosen as they have very good object
recognition capabilities, and all parametrize objects in different ways. The eigen object
model is a parallel to the eigen face model referenced eatlier consisting of principal
components analysis done on the pixel-level representation of the images. AlexNet,
VGG-16/19, and the CORNet family of networks are trained to classify images into
1000 object categories with varying architectures. AlexNet has an 8 layer structure with
5 convolutional and 3 fully connected layers. VGG-16 and 19 have 16 and 19 layers
respectively with 3 fully connected layers and the rest being convolutional layers. VGG
models are also known for leveraging the smallest possible receptive field in their
convolutional layers (3x3). The CORNet family of networks consists of 4 networks:
CORNet-Z being purely feedforward; CORNet-R including some recurrence which has
been shown to be essential for object recognition in the primate visual system™;
CORNet-RT has the same structure as R but includes ‘biological unrolling” wherein the
input at time t+1 in layer n is the same as input to layer n-1 at time t so that information
flows through the layers sequentially’”’; and finally CORNet-S, which is the most
complicated of architectures including recurrent and skip connections between the
layers™. Despite the individual differences all 4 networks have architectures inspired by
the primate visual system with layers corresponding to V1, V2, V4, and IT. VGG-Face
has the same architecture as VGG-16 but is trained to identify 2622 celebrities.
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AlexNet (Krizhevsky et al., 2012)

Eigen Object Model (Sirovich & Kirby, 1987)

VGG-16 (Simonyan & Zisserman, 2015)

VGG-19 (Simonyan & Zisserman, 2015)

VGG-Face (Parkhi et al., 2015)

CORNet-Z (Kubilius et al., 2018)

CORNet-R/RT (Kubilius et al., 2018)
CORNet-S (Kubilius et al., 2019)
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Figure 3.5. Comparing how well various models explained human IT responses to object images.

(A) The 500 grayscale stimulus images used in the screening task (taken from www.freepngs.com)
were parametrized using 8 different models from 4 different model families (AlexNet, the eigen
object model, VGG, and CORNet). The same number of features were extracted from units of the
different models using principal components analysis (PCA for comparison).

(B) Responses from IT neurons were recorded as patients viewed these objects 4 times each. For
recording locations and task schematic see Figure 3. 1.

(C) The explained variances for each model after 50 features were extracted using PCA. For each
neuron, explained variance was normalized by the explainable variance (see methods). Error bars
represent SEM for the recorded neurons. The eigen model, VGG-Face, and CORNet-Z performed
worse than the other models with no significant differences between the rest.

(D) The various models were compared with respect to how well they could predict the neuronal
responses or the object features. In both cases a leave-one-out procedure was used to learn and
test the transformation between responses and features. (D1) To quantify encoding error for
example, for each object we compared predicted responses to individual objects in the neural state
space to the actual responses to that object and a distractor object. If the angle between the
predicted response and the actual response was smaller than the angle between the predicted
response and the distractor the encoding was considered correct. To quantify decoding error, we
reversed the roles of the neural responses and the object features and decoded object features
before comparing the decoded features to the actual features for a given object and a distractor
object.

(E) Encoding error across all models.

(F) Decoding error across all models. The eigen model, VGG-Face, and the purely feedforward
CORNet-Z had larger encoding/decoding errors than the other models, consistent with them
explaining less variance as well.


http://www.freepngs.com/
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To quantify the ability of each network to explain human IT responses we learnt a
linear mapping between the features of each model and the neural responses™. As we
did in our earlier axis tuning computations and to avoid overfitting we reduced
dimensionality of the feature representations via principal-component analysis (PCA)
yielding M features for each object and model. In our main analyses M=50, we used
leave-one-out cross validation and for each neuron fit the responses of N-1 images to
the M features via linear regression before predicting the response of the neuron to the
Nth image using the same linear transform. The explained variance by the linear
transform was used as an initial measure of goodness-of-fit. Beyond this we also
computed the encoding and decoding error for each neuron with every model. Encoding
error is computed as follows: the observed population vector to each object was
compared to the predicted population response vector and the observed population
response vector to a random other object in the set. If the angle between the observed
and predicted response to the chosen object was smaller than the angle between the
predicted response and the distractor, the prediction was considered correct (Figure
3.5D). Decoding error is computed via the same method except the feature vector of
the object is predicted from the neural responses. In other words, the role of the neural
responses and the model features is reversed (see methods). A model is considered to
explain neural responses well if it has high explained variance and low
encoding/decoding etror. We found that with the exception of VGG-Face and the eigen
object model that performed significantly worse, there was no significant difference in
explained variance between the models (Figure 3.5C; AlexNet vs VGG-Face, p =
2.2825e-07; AlexNet vs eigen model, p = 3.8617¢-21). The most complicated CORNet,
CORNet-S got the absolute highest values and the purely feedforward CORNet-Z got
the lowest though the differences are not significant (p = 0.2182).

Up to this point, for comparing the deep feedforward models (AlexNet and VGG) we
have used the unit activations of fc6 before ReLu, allowing the unit activations to contain
negative numbers. An opinion in the field is that it is better to use activations in the fully
connected layers after ReLu as this seems more biologically plausible owing to the
impossibility of a negative neural firing rate. A layer-by-layer comparison finds that for
AlexNet and the VGG-object networks found no significant difference in model
performance between either of the last fully connected layers before or after ReLLu
(Figure 3.S1), however a comparison between the 4 layers of the CORNet family shows
a large difference between the layers with the ultimate layer corresponding to I'T showing
the highest performance by far (Figure 3.81).
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Discussion:

We present the first exploration of object recognition at single neuron resolution in
human IT cortex. In this Chapter we have provided a detailed outline of the previous
work done on core object recognition at single neuron resolution in macaques, discussed
innovations in arbitrary object parametrization (via deep networks trained to do object
classification), made clear that the former two points fogether were required to make this
study possible, and finally that human IT neurons use exactly the same axis code as
macaques to represent visual objects.

Since the discovery of the fusiform face area in humans™ a hotly debated topic in the
field has been whether faces, given their social importance are ‘special’. In other words,
is the machinery for processing faces in humans more specialized than that for general
objects? This notion is supported by behavioral expetiments of face recognition® (see
box 1 in reference), however our results suggest that at the apperceptive level wherein
features are stitched together to create a percept this is not the case. Further studies will
be required to assess whether this holds at the associative level too.

That being said, the real value of this work lies in the future studies it makes possible.
Mental imagery has been the subject of intense scrutiny for many decades and
popularized by the so-called ‘imagery debate’ between psychologists Steven Kosslyn and
Zenon Pylyshyn (amongst others) about whether mental imagery relied on depictive
(pictorial; with a structure similar to sensory perception) or propositional
representations™. Our current results on the feedforward representation of visual objects
provide a vessel one can use to charter unknown territory: the single neuron mechanisms
of visual imagery.
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Methods:

Participants

Patients with drug-resistant epilepsy

12 patients with drug-resistant epilepsy volunteered for this study and gave their
informed consent. The institutional review board of Cedars-Sinai Medical Center
approved all protocols. The task was conducted while patients stayed in the hospital
after implantation of depth electrodes for monitoring seizures. The location of the
implanted electrodes was solely determined by clinical needs. The neural results were
analyzed across all 12 patients.

Task

Screening

Patients viewed a set of 500 object stimuli with varying features (taken from
www.freepngs.com) 4 times each for a total of 2000 trials in a shuffled order. Each image
stayed on screen for 250ms and the inter-trial interval consisting of a blank screen was
jittered between 100-150ms. The task was punctuated with yes/no ‘catch’ questions
pertaining to the image that came right before the question requiring the patients to pay
close attention in order to answer them correctly. Catch questions occurred between 2
to 80 trials after the previous one. Patients responded to the questions using a RB-844
response pad (https://cedrus.com/rb_series/). During the synthetic image screens, the
synthetic images would be added to the original stimulus set and the task parameters
remained unchanged.

Electrophysiology

We recorded broadband signals from inferotemporal cortex in addition to the standard
epileptic targets (amygdala, hippocampus, anterior cingulate cortex, pre-supplementary
motor area, and orbitofrontal cortex) using micro-macro electrodes manufactured by
Ad-Tech (https://adtechmedical.com/epilepsy#depth-electrodes). All analyses pertain
to signals recorded on the 8 microwires protruding from the end of the electrode and
sampled at 32khz.

Spike sorting and quality metrics

Signals were bandpass filtered offline in the range of 300-3000hz with a zero phase lag
filter before spike detection. Spike detection was carried out by the semiautomated
template matching algorithm Osort". The spike quality mettics returned by the
algorithm were examined before final clusters were curated.


http://www.freepngs.com/
https://cedrus.com/rb_series/
https://adtechmedical.com/epilepsy#depth-electrodes
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Electrode localization

Electrode localization was based on postoperative MRI/computed tomography (CT)
scans. We co-registered postoperative and preoperative MRIs using Freesurfer’s
mri_robust_register". To summarize recording locations across participants we aligned
each participant’s preoperative scan to the CITI168 template brain in MNI152
coordinates® using a concatenation of an affine transformation and symmetric image
normalization (SyN) diffeomorphic transform®. The MNI coordinates of the
microwires from a given electrode shank were marked as one location. MNI coordinates
of microwires with putative neurons detected from all participants were plotted on a
template brain for visualization (Figure 3.1B).

Data Analyses

Visual responsiveness classification and response latency
computation

We computed such a single trial latency by using a Poisson spike-train analysis. This
method detects points of time in which the observed inter-spike intervals (ISI) deviate
significantly from that assumed by a constant-rate Poisson process. This is done by
maximizing a Poisson surprise index’. The firing rate of the neuron during the inter-trial
interval was used to set the baseline rate for the Poisson process. Spikes from a window
of 50-350ms after stimulus onset were included. The statistical threshold for detecting
onset was p < 0.001. The response latency of the neuron was taken to be the average
latency across all responsive trials. A neuron was considered visually responsive if it
satisfied the following criteria: either one of the groups had a response that was 3.5
standard deviations above baseline (category neurons) or the response to a single
stimulus was 10 standard deviations above baseline (sparse, concept neuron-like coding)
and the average firing rate during the stimulus presentation period was above 0.5hz.

Axis computation
Preferred axis

The preferred axis of each neuron was computed using the spike triggered average
(STA). The neural response vector was computed by binning spikes elicited by each
stimulus in a 250ms window starting from the response latency of the neuron —
necessarily restricting analysis to visually responsive neurons.

Once the neural response vector was computed the STA is defined as:

Psta = (F_ f)F
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where 7 is the 1 x n neural response vector to n objects, 7 is the mean firing rate, and
F is an n x d matrix of features with each row corresponding to the features for a given
object.

Principal orthogonal axis

The orthogonal axis seen in all plots is the principal orthogonal axis. This is defined as
the axis orthogonal to the preferred axis along which there is the most variation. For
each neuron, the preferred axis was computed. The component along the preferred axis
(P) was subsequently subtracted from all object feature vectors in I leaving a matrix of

orthogonal feature vectors. Succinctly, for a given feature vector f; in feature space we
computed

—— — — P
fa-1 = fa- (fa - Z)P
|P|
Then principal component analysis was performed on this set of n vectors fq.1, and the
first principal component is chosen as the principal orthogonal axis.

Quantifying significance of axis tuning

For each neuron after the preferred axis was computed we examined the correlation
between the firing rate response to the stimuli and their projection value along the
preferred axis. This correlation value was recomputed after shuffling the features (1000
repetitions) and the original value was compared to this bootstrap distribution. If the
original value was greater than 99% of the shuffled values the neuron was considered
axis tuned.

Decoding analysis

We find that neurons in human I'T cortex are performing linear projection onto specific
preferred axis in object space. As such, their responses can be well modeled by the
equation

—

R=C-F +C,
where Ri is the populatlon response vector to a given image, C is the weight matrix for

different neurons, Fi is the vector of object feature values, and C is the offset vectot.
Thus the decoding analysis was carried out by inverting this equation giving us

F=R-C'+C,
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We used the responses of all but one of the objects (500 — 1 = 499) to fit C' and C’,,.

These were then plugged into the equation to predict the feature vector of the last object.
Decoding accuracy was quantified by randomly selecting a subset of object images that
included the actual feature vector of the decoded object from the total set of 500 and
compared their feature vectors to the predicted feature vector of the decoded object by
Euclidean distance or cosine similarity. If the actual feature vector closest to the
predicted feature vector is of the object being decoded (‘target’) the decoding is
considered correct. This procedure is repeated 100 times for each of the 500 images with
a varying number of distractors to get an aggregate measure of decoding accuracy (Figure

3.3C).
Object ‘reconstruction’

To generate images that reflect the features encoded in the neural responses we gathered
images from an auxiliary database and passed 17,856 background free images through
AlexNet. The images were then projected into the space built by the 500 stimulus
objects. None of these ~18k images had been shown to the patients. For each stimulus
image the feature vector decoded from the neural activity was compared to the feature
vectors of the large stimulus set. The object in the large image set with the smallest
Euclidean distance to the decoded feature vector was considered the ‘reconstruction’ of
that stimulus image’.

To account for the fact that the large object set did not contain any images shown to the
patients, which sets a limit on how good the reconstruction can be, we computed a
‘normalized distance’ to quantify the reconstruction accuracy for each object. We
defined the normalized reconstruction distance for an image as

|Vrecon - Voriginal |

Normalized distance =
|Vbest possible recon ~ Voriginall

whete Viecon 1s the feature vector reconstructed from neuronal responses, Voriginar 19
the feature vector of the image presented to the patients, and Vyest possibie recon 18 the
feature vector of the best possible reconstruction (image in the large set with the closest
distance to Vorigina1)- A normalized distance of 1 means the decoded image is the best
reconstruction possible.

Generation of synthetic stimuli

The axis model provides a very clear relationship between images and responses for
individual neurons. In essence, images with increasing projection values onto a neuron’s
preferred axis will show increasing firing rates. This implies that if one computes a
neuron’s preferred axis and then evenly samples points along it and generates images
from those points, those images will elicit systematically increasing responses from the
neuron. This also implies that if one generates an image from a point further along the
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axis than any of the stimulus images used to compute the neurons axis, that image will
act as a super stimulus and drive the neuron to a higher firing rate than any of the
stimulus images.

To test these predictions we ran the screening task in one session, computed the axes
for the neurons recorded, sampled points along the preferred and orthogonal axes and
fed those vectors back into a pre-trained GAN® to generate the synthetic stimuli. We
then went back to the patient room and re-ran the screening task with the synthetic
images added in. The neurons from the morning and afternoon were matched (see
below) and the responses of the neurons to the synthetic stimuli were recorded.

Matching neurons from morning and afternoon sessions

Given the nature of recording neurons in a clinical setting wherein you can only record
a few neurons at a time it is common practice to run a screening task in the morning in
order to determine the stimuli that drive those particular neurons before using those
stimuli in other tasks related to decision making, memory, etc. In such cases it is always
assumed that you are recording from the same neuron a few hours later but how can
you be sure?

One way to convince yourself of this is to re-run the same screen in the afternoon and
assess the selectivity of the neuron. However, if you have multiple neurons having
roughly similar selectivity this method is inadequate by itself. In order to meet this
challenge we examined multiple features of the neurons recorded in the morning and
afternoon. Our algorithm would compute the selectivity vector (rank ordered list of
stimulus number for the neuron), the waveform, the burst index which is a measure of
how many bursts per unit time the neuron discharges*’, the computed response latency
of the neuron, and whether or not the neuron was axis tuned (binary variable). The
selectivity vectors were compared using cosine distance (matlab’s ‘pdist’ function), and
the waveforms by Euclidean distance.

Each neuron in the morning session was compared to all neurons in the afternoon
session that were in the same region (left or right I'T) and had the same binary value of
‘axis tuned or not’. The afternoon neurons were then rank ordered in every category
with first place in a given category giving an afternoon neuron a score of p where p =
number of afternoon neurons being compared to the one morning neuron, second place
giving a score of p-1 all the way until the last place neuron in a given category receiving
a score of 1. The scores of all afternoon neurons were then summed and the algorithm
would assign the afternoon neuron with the max score to be the morning neurons
‘match’. This procedure is then repeated in the reverse direction, i.e. each afternoon
neuron is compared to all morning neurons. Pairs that were bijective were automatically
returned as ‘matches’ and all others were marked out for manual curation. Manual
curation was carried out by examining the shape of the peri-stimulus time histogram of
the category response of both neurons.
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Model comparisons

Extraction of features from stimulus images

Each stimulus image was fed into one of the following models to extract the
corresponding features:

Eigen object model:

PCA was performed on the original images of the 500 stimulus objects and the top 50
PCs were extracted to compare with other models.

AlexNet:

We used a pre-trained MATLAB implementation of AlexNet (download the Deep
Learning Toolbox and use ‘net = alexnet’). This is an 8 layer deep convolutional neural
network with 5 convolutional layers and 3 fully connected layers, trained to classify
images into 1000 object categories.

VGG Family:

We used pre-trained MATLAB implementations of VGG-16, a 16 layer deep
convolutional neural network that contains 16 layers with 13 convolutional layers and 3
fully connected layers trained to classify images into 1000 object categories™, VGG-Face
which has the same structure as VGG-16 but is trained to recognize the faces of 2622
celebrities®, and VGG-19 that has 19 layers (16 convolutional and 3 fully connected)
trained on the same task as VGG-16.

CORNet Family:

We used a pre-trained PyTorch implementation of CORNet. The CORNet family
contains 3 architectures: CORNet-Z, CORNet-R, and CORNet-S. Each architecture
includes 4 main layers that correspond to V1, V2, V4, and IT. CORnet-Z is the simplest
model and is purely feedforward. CORNet-R takes the otherwise feedforward network
and introduces recurrent dynamics within each area. CORNet-S is the most complex
containing within area recurrent connections, skip connections and the most
convolutional layers. Our plots include a CORNet-RT plot which refers to a version of
CORNet-R that does biological temporal unrolling™ (see fig 2 in reference).

The parameters of AlexNet and VGG can be gotten form MATLAB’s Deep Learning
Toolbox. The CORNets were downloaded from
(https://github.com/dicarlolab/CORnet).
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Explained variance computation

To quantify the explained variance for each neuron, a leave-one-out cross validation
approach was used. The responses to 499 objects were used to fit a linear regression
model using the PCs of the features, and the response of this neuron to the left out
object were predicted using the same linear transform. In this manner we could produce
a predicted response for all images. Note that the computation of variance explained by
the category label was done in this manner as well, replacing the PC features with the
vector of category labels.

To set an upper bound for the explained variance different trials of responses to the
stimuli were randomly split into two halves. The Pearson correlation (r) between the
average responses from two half-splits across images was calculated and corrected using
the Spearman-Brown correction:

_ 2r
1+

)

r

The square of 1’ was considered the upper bound or explainable variance.

The reported tesults are the ratio of explained to explainable variance in the 183/218
axis tuned neurons that had a > 10% explainable variance.

Encoding/Decoding error computation

For the encoding analysis, the response of each neuron was first zscored, then the same
procedure as the explained variance computation was followed to obtain a predicted
response to every single object. To quantify prediction accuracy, we examined the angle
between the predicted population response to each object and its actual population
response (target) or the population response to a different object (distractor). If the angle
between the predicted response vector and the distractor was smaller than the angle
between the predicted response vector and the target this was counted as an error.
Overall encoding error was quantified as the average errors across 1000 pairs of target
and distractor objects.

For the decoding analysis we used exactly the same procedure, however the roles of the
neural responses and the object features were reversed. We first normalized each
dimension of object features to have zero mean and unit variance, then for each image
using a leave-one-out procedure to fit a linear transform using the responses to 499
images and then predicting the features of the left out image. Decoding error was
computed as the average decoding error across all target and distractor pairs in feature
space.
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Figure 3.S1. Comparing explained variance, encoding, and decoding error across layers of
the various models. Related to Figure 3.5.

(A) Explained variance for the two fully connected layers pre and post relu in AlexNet,
VGG-Face, VGG-16, VGG-19 and for the output layers of V1, V2, V4, and IT layers in
the CORNets. While the performance across the fully connected layers is similar and
not affected by RelLu activation, the performance varies greatly across the 4 layers in
the CORNets with IT outperforming the other layers substantially.

(B) Encoding error across the different layers, results are consistent with the explained
variance.

(C) Decoding error across the different layers.



P71CS N/A 35.18, -28.91, -17.37

P73CS N/A 36.06,-38.29,-13.78 F 61
P75CS N/A 34.12, -55.84, -11.08 F -
P76CS N/A 34.96, -43.33, -24.04 F 26
P77CS -41.26,-46.26,-15.39  34.03, -40.86, -20.00 F -
P78CS N/A 28.78, -38.95, -5.94 F -
P79CS -31.19,-28.97,-24.28  47.59,-29.77,-24.81 F 44
P80CS -39.73,-40.46,-16.97  37.15,-49.70,-12.93 F 25
P81CS -33.27,-61.10, -13.95 29.14,-61.91, -7.52 F -
P82CS -36.95,-40.17,-17.92  40.58, -42.64,-17.30 M 43
P84CS -31.36,-46.56,-16.80  35.91,-31.69, -25.32 M 60
P85CS -39.76,-41.34,-24.80  37.07,-40.40, -32.26 F 66

Table 3.1. MNI coordinates of microwire bundles and associated patient metadata. Related to
Figure 3.1.

In cases where details are not known (for example, age) they are left blank. Multiple patients only got
right posterior temporal electrodes and are thus labeled ‘N/A’ on the left. The coordinate labeled in red is
one from where we recorded 0 responsive units.
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Chapter I

IMAGINATION:
Reactivation of the feedforward code for visual objects

Introduction:

Chapter I1II focused on uncovering the precise code for visual objects — understanding
how we convert visible object features into mental representations. However, our
internal model enables the opposite transformation as well — to generate sensory
percepts starting from mental representations. This remarkable cognitive ability, known
as mental imagety, allows us to imagine new sensations and experiences'?, remember
old ones’, make plans’, and make sense of sparse data in sensation, action, or language™.
For example, blurry black dots moving in a line are likely ants if I am standing 6 feet tall
but are likely cars on a highway if I am 10,000 feet in the air. In a clinical setting,
uncontrolled mental imagery could contribute to post-traumatic stress disorder” while

being able to detect imagery could help reveal conscious awateness in locked-in patients®.

Given its far reaching consequences mental imagery has been studied with intense
fascination for many decades"”". While mental imagery can cover all five senses and
even emotional states, visual imagery research has tended to dominate as is also the case
with perception research’. This is understandable, as a large part of the primate brain is
dedicated to visual processing in line with its importance to our lives'* a point re-iterated
in the last Chapter. Animal studies and the work described in Chapter I1I have together
yielded rich insight into the bottom up processing of visual objects"™"’, however the
neural mechanisms of visual imagery have remained much more elusive.

This is due to animal studies being hampered by the inability to instruct animals to
reliably and repeatedly generate a mental image and previous studies in human subjects,
even those recording individual neurons™”', being hampered by the code for visual
objects being unknown. In the same manner that we cannot appreciate the magic of
Shakespeare without first understanding basic English, we need to first understand the
visual code for objects before we can attempt to unpack how they are imagined.

In this study, armed with a detailed understanding of the feedforward code for visual
objects in human brain (described in Chapter III) and the ability to record individual
neurons in human I'T with high fidelity (described in Chapter II) we present new findings
on the neural mechanisms of visual imagery, namely that it is remarkably similar to visual
perception and that activation during imagery at the single neuron level is not localized
to any one hemisphere or region.
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Results:

A long standing hypothesis in the field has been that long term memories are stored in
the same cortical populations that encode sensoty stimuli** and therefore sensory
neurons subserve imagery by reinstating sensory context. In particular, it has been
proposed that visual memory is supported by the activity of neurons in IT cortex™”
though a detailed understanding of how widespread this reactivation is or whether the
reactivation is structured in a manner that respects the visual code is unknown.

Neurons in IT cortex reactivate during imagery

We recorded 173 I'T neurons in 11 sessions across 5 patients during a cued imagery task
(Figure 4.1A). The imagery task involved patients viewing and subsequently visualizing
from memory 6-8 visual objects (see methods). Out of the 173 neurons recorded 147
were found to be visually responsive via Poisson burst metric* (see Chapter III
methods), and 92 were axis tuned.

We find robust reactivation of neurons in human IT cortex upon imagery. As in vision,
neurons showed a diverse range of reactivation profiles during imagery, some
reactivating sparsely to a specific stimulus (Figure 4.1B) others reactivating to imagery
of multiple stimuli in a graded manner (Figure 4.1E), and a few that were highly active
during imagery but did not participate in visual perception (Figure 4.1D) as predicted by
early studies of patients with brain damage that displayed intact imagery despite
profound visual agnosia which indicates a shared but not identical mechanism for both®~
¥, We find that a substantial minority of neurons (75/173, 43%) are active duting
imagery (see methods).
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Figure 4.1. Cued Imagery task reveals robust reactivation of IT neurons.

(A)

(B)

©)

(D)
(E)
(F)

Schematic of the cued imagery task utilized. 6-8 of the background subtracted grayscale screening
images were utilized, with 2 images used per trial. Each trial consisted of an ‘encoding’ period where
patients viewed the stimuli multiple times each, a ‘distraction’ period wherein patients did a visual
search for 30s, and finally a cued imagery period where patients would visualize each image 4 times
for 5s each in an alternating fashion prompted verbally by the experimenter.

Recording locations of the 8 microwire bundles (left and right) that contained at least one well
isolated neuron in human IT cortex across all 5 patients. See Montreal Neurological Institute
coordinates in Table 1. Each dot represents the location of one microwire bundle (8 channels).

As in viewing, neurons in human IT cortex show diverse response during imagery. An example
neuron reactivating during imagery. This neuron’s preferred stimulus was the laptop during encoding
(left column) and it reactivated robustly during imagery of the laptop (right column).

A small number of neurons recorded were quiet during encoding but strongly active during imagery.
Example of an axis tuned unit that reactivated to multiple stimuli in a graded manner during imagery.
Distribution of neurons recorded that were active during imagery of objects.
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Reactivation occurs in a structured manner that recapitulates sensory
context

In order to truly understand mental imagery it is necessary to compare mental
representations of visual objects to a concrete mechanism for sensory processing. In
Chapter I1I we presented the axis model as a model for object recognition in human IT
neurons. Thus, in order to compare representations it was necessary to establish axis
tuning in the recorded neurons, sample stimuli in a principled way that have specific
response differences in viewing, and investigate whether or not those firing rate
differences are preserved when the same stimuli are imagined.

Our workflow to accomplish this goal was as follows: a morning screening session was
conducted using the 500 object images that had varied features (see Chapter III
methods), axes were computed for the axis tuned neurons, then for an exemplar neuron
3-4 pairs of stimuli were chosen that had increasing projection value along the neurons
preferred axis (Figure 4.2). Each pair had roughly similar projection value onto the
preferred axis but were spread out along the orthogonal axis. Note that the stimuli would
be spread out in perfect pairs for only one exemplar neuron, however pooling the
positions of all imagined stimuli across patients demonstrates a substantial spread across
both axes nonetheless (Figure 4.3E). The axis model would predict that during viewing
stimuli spread across the orthogonal axis would elicit roughly the same response from
the neuron but along the preferred axis there would be a systematic increase in response
as a function of the projection value which was verified (Figure 4.2C&E). We find that
same structured response plays out during imagery. Individual neuron examples can be
seen in Figure 4.2B-E. Examining the population of axis tuned neurons recorded during
imagery finds a significant correlation between projection value onto the neurons’
preferred axes and responses during imagery with no such correlation along the
orthogonal axes (Figure 4.3B&C). Lastly, the distribution of correlation coefficients
between viewing and imagery in axis tuned neurons that reactivated during imagery
shows a high average value (0.38; Figure 4.3A) with 21/44 reactive neurons being
significantly correlated as compared to a shuffled distribution (p < 0.05). Taken together
these findings indicate that neurons in human I'T cortex support mental imagery through
a substantial minority of those active in viewing reinstating sensory context during

imagery.



47

Morning session Afternoon session

!

Firing Rate (Hz)

000 S0 0 500 1000 1500
time (ms)

Image ON

Trials (re-ordered)

Viewing
Imagery

i
Al
NEL

H
£
&
£

s
6
4
2
ol

o - )
e
EN

Imagination
end

'
i
'
1
'
|
'
[l
]

1
1000 2000 3000 4000 5000
33

s+ Viewing
25~ Imagery
32
i
3
< 1 Il 1 I -1
AN ™ [ | ] | |

W@ ¢ [P

Figure 4.2. Neurons in IT cortex reactivate in a structured manner that recapitulates visual context.

(A)

(B)
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D)
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Schematic of the workflow used to investigate structured reactivation. A morning screening session
was conducted wherein axis tuned neurons were identified. 6-8 stimuli were chosen that had some
spread along the preferred and principal orthogonal axes, then the cued imagery task was carried
out in the afternoon followed by another screening session, which would help to match the neurons
recorded in the morning and afternoon sessions.

An axis plot for an example neuron showing the 6 stimuli chosen for cued imagery.

The responses of the neuron in (B) during encoding/viewing (left column) and imagery (right
column). The bottom panel shows average spike counts for viewing and imagery of the stimuli,
arranged in order of increasing projection value along the preferred axis.

Axis plot for another example neuron demonstrating reactivation in a manner similar to visual
context. Overall, 44/92 axis unted neurons reactivated during imagery.

Responses of the neuron in (D) during encoding and imagery. The neurons response aligns with the
projection value onto the preferred axis.
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Responses in IT neurons during imagery capture the feature details of
objects

In Chapter III we discussed how if neurons in I'T are indeed acting as linear projectors
in feature space then their responses can be approximated by a linear combination of
object features and that by inverting the equation we were able to decode object features
using the neurons’ responses. If neurons are indeed respecting the visual code then in
principle we should be able to decode the features of the imagined objects using the
same method.

We attempted to decode the fine feature details of the objects being imagined using the
responses of the axis tuned IT neurons during imagery. We used leave-one-out cross
validation to learn the linear transform between the imagined responses and the features
(Figure 4.4A). We reduced the number of features to be less than the number of neurons
simultaneously recorded in each session (to keep the polynomial well-conditioned) and
the representations were impressively rich allowing the objects imagined in a given
session to be identified amongst many distractors (Figure 4.4B). We subsequently
attempted to ‘reconstruct’ objects by searching a large auxiliary object database for the
objects with the feature vector closest to that decoded from neural activity. A normalized
distance in feature space between the best possible reconstruction and actual
reconstruction pooled across all sessions (see methods) was computed to quantify the
decoding accuracy and can be seen in Figure 4.4C. The model performed remarkably
well — with low normalized distances and the reconstructions capturing the fine feature
details of the objects imagined (Figure 4.4D).
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Figure 4.3. Decoding imagined object features via linear regression

(A) Diagram illustrating decoding model. We used responses to all but one object to determine the
transformation between imagined responses and feature values by linear regression, before using
that transformation to predict the feature values of the held out object.

(B) Decoding accuracy as a function of the number of distractor objects drawn randomly from the
stimulus set. For each model, different sets of features were first linearly decoded from population
responses, then the distances between decoded and actual features in each feature space were
computed to determine decoding accuracy. The black dashed line represents the decoding accuracy
one would expect by chance. Instead of decoding 50 features for each object as we did in viewing we
reduced the number of dimensions to 5 in order to keep the polynomial well conditioned. Each line
corresponds to the simultaneously recorded neurons in each session.

(C) Distribution of normalized distances between reconstructed feature vectors and the best-possible
reconstructed feature vectors for the visualized images (see methods) to quantify decoding accuracy
across the population. The normalized distance takes into account the fact that the object images
used for reconstruction did not include any of the object images shown to the patients. A normalized
distance of 1 means the reconstruction found the best solution possible.

(D) Images were split into tertiles based on normalized distance. Examples of the reconstructions in the
first tertile (top row), second (middle row) and third (bottom row) as compared to the original stimulus
images being reconstructed.

A note on the heterogeneity of mental representations across people

There is a large body of evidence to support the notion that the subjective vividness of
visual imagery varies greatly between individuals"'’®, with some individuals
demonstrating a complete inability to generate a mental image (aphantasia)® while others
have photorealistic mental images (hyperphantasia). Moreover, various neuroimaging
studies have shown differences in fMRI bold signals — both intensity in early visual
areas™ and functional connectivity between areas'”' — between subjects that reported
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different amounts of vividness in imagery. Eventually growing evidence of these
differences led to the conclusion that examining mental imagery at the group level with
the current tools (fMRI and psychophysics) was not appropriate — leading to the end
of the imagery debate®”. It is natural at this point to wonder why the debate went on
for as long as it did, given that an understanding of these differences dates all the way
back to the 1800s*, though that particular cutiosity is beyond the scope of this thesis.
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Figure 4.4. Population summary of reactivated IT neurons
Distribution of correlation coefficients between viewing and imagery for neurons that reactivated. The
responses to each stimulus in encoding and imagery were average across trials and the Pearson
correlation coefficient was computed between those 2 vectors for each neuron.

(B1) Population summary showing that axis tuning is respected during imagination in all 44 neurons
that reactivated and (B2) that the correlation between imagined firing rates and projection value is
significant when compared to a shuffled distribution.
C1 and C2 are the same as B1 and B2 but for the principal orthogonal axis.

(D1) CDF of correlation between projection value and firing rate for the preferred axis (red) and
orthogonal axis (blue) during screening and (D2) during imagery. There is no correlation between them
along the orthogonal axis but a strong correlation along the preferred axis in both cases.

Plot showing the overall spread of chosen stimuli for imagery across all recorded neurons. There is a
reasonable spread between the preferred and orthogonal axes.
VVIQ scores of the 4/5 patients that responded to the VVIQ questionnaire. All patients recorded from
in this study were ‘hyperphantasic’. The survey is now conducted before any experiment sessions,
however for the first 2 patients it had to be filled out retroactively and we were unable to get in contact

(A)

(B)

(©)
D)

(E)
(F)

with the very first one.

1 2 4 5

3
Patient #
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In order to understand whether there is a correlation between the data discussed here
and subjective vividness 4/5 patients also completed the Vividness of Visual Imagery
Questionnaire (VVIQ)*, a standard in the cognitive science field for mapping out
subjective vividness of mental images. These responses were recorded in person starting
with the 3 patient in this study, and attempts to retroactively collect responses were
unsuccessful in one patient. Remarkably, all the patients discussed here had very high
scores in the vividness scale, with every single one of them falling into the
‘hyperphantasic’ category (Figure 4.3F). Even the one left out patient who did not fill
out the VVIQ is a visual artist and had reported very clear visualization capabilities
during the experiment sessions. Thus, it is important to admit that perhaps the strong
recapitulation of sensory context demonstrated in this Chapter might be restricted to
those with very strong visual imagery capabilities.

Reactivation across other brain regions

Previous neuroimaging studies that conducted detailed investigations of visual imagery
identified a few regions that seemingly support imagery including frontal regions, the
ventral temporal cortex, parietal regions, and early visual areas (V1)"? and reported a
strong hemispheric asymmetry with the left hemisphere being the dominant driver of
our imagery capabilities™******". However, this is inconsistent with our current findings
at the single neuron level. In fact, we find that re-doing the analyses summarized in
Figure 4.3 for left and right I'T neurons separately shows that the results hold in both
hemispheres independently (Figure 4.51).

Lastly, despite the purported localization of human visual imagery capabilities to specific
regions we find robust activations during imagery in at least some neurons in every single
region we recorded from with a seemingly even distribution of reactive neurons in both
hemispheres (Table 4.2). In total across all regions, we recorded 366/1019 imagery
neurons. As in IT, we observed a wide variety of reactivation responses with some
neurons showing an increase in firing rate that was selective for specific stimuli (Figure
4.4A1, A2), others showing non-selective increases in response during imagery (Figure
4.4A4), and some surprisingly being initially suppressed by imagery (Figure 4.4A3). The
interpretation of these brain wide imagery activations and their response diversity is left
to future studies.
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Figure 4.5. Neurons activate across the brain during imagery.

(A) Examples of the diverse responses recorded from neurons across the brain during imagery. (A1) A
neuron in the right amygdala showing robust activity during imagery. (A2) Neuron in the right centro-
medial nucleus of the thalamus. (A3) Neuron in the left amygdala that showed an initial suppression
of activity during imagery. (A4) Neuron in the left pre-supplementary motor area showing a non-
selective increase in activity during imagery.

(B) Two example neurons recorded simultaneously, one in the left orbitofrontal cortex (left) and one in
left IT (right) that were active during the imagery of a piano. The IT neuron is the same as the one
shown in Figure 2D&E. Analyses to determine functional connectivity are underway.

(C) Distribution of the total number of neurons across the brain that were active during imagery. For a
detailed breakdown per region and hemisphere see Table 2.

Discussion:

Our internal model being generative has lots of consequences. It allows us to generate
percepts in the absence of any external stimuli which supports fast and flexible learning
via simulation of outcomes*®, visual inference in cases where the data is uncertain,
planning and exploration of new sensations, and is the basis of all of our memory for
experiences. The long-standing hypothesis in the field was that sensory areas sub serve
imagery by reinstating sensory context. However while this was seen in many
neuroimaging studies"'*”, the evidence at single neuron resolution was slim restricted to
demonstrating the reactivation of a few neurons™?.

We address both of these limitations by recording a large number of neurons in IT
cortex, mapping out the feedforward code for visual objects and demonstrate the
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reactivation of this code during imagery. We find a substantial number of neurons
(75/173 total, 44/92 axis tuned) reactivate during imagery in a manner that respects the
visual code, as evidenced by the high correlation between viewed and imagined
responses (Figure 4.3A). In the case of axis tuned neurons we see that the axis code is
respected during imagery as well (Figure 4.3) indicating that reactivation is strong and
structured.

At this stage it is important to point out that a lot of the results detailed in this Chapter
rest on the quantitative method for computing activity during imagery and thus labeling
an IT neuron ‘reactive’. Current methods have treated individual stimuli as categories
and computed reactivation in a manner that tracks a large increase in mean firing rate
across the imagination period or a differential activation of the various stimuli during
imagery. These methods do not allow us to analyze reactivation on an individual trial
level. Moreover, this Chapter conspicuously lacks connectivity analyses, i.e. attempts to
determine the origin of top down signals that would trigger such reactivation in IT.
Further analyses in both domains are underway.

Regardless, we have provided concrete proof of the generative visual pathway, and
demonstrated its interaction with the feedforward one. This constitutes an important
first step to understanding many complex phenomena that are important to us — like
the representation of individual episodic memories — that have been out of reach until
now.
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Methods:

Participants

Patients with drug-resistant epilepsy

5 patients with drug-resistant epilepsy volunteered for this study and gave their informed
consent. The institutional review board of Cedars-Sinai Medical Center approved all
protocols. The task was conducted while patients stayed in the hospital after
implantation of depth electrodes for monitoring seizures. The location of the implanted
electrodes was solely determined by clinical needs. The neural results were analyzed
across all 5 patients.

Task

Screening

Patients viewed a set of 500 object stimuli with varying features (taken from
www.freepngs.com) 4 times each for a total of 2000 trials in a shuffled order. Each image
stayed on screen for 250ms and the inter-trial interval consisting of a blank screen was
jittered between 100-150ms. The task was punctuated with yes/no ‘catch’ questions
pertaining to the image that came right before the question requiring the patients to pay
close attention in order to answer them correctly. Catch questions occurred between 2
to 80 trials after the previous one. Patients responded to the questions using a RB-844
response pad (https://cedrus.com/rb_seties/).

Cued Imagery

Patients viewed a set of 6-8 object stimuli chosen from the 500 used for screening (taken
from www.freepngs.com). Each trial focused on 2 images and had an encoding period,
a visual search distraction period, and a cued imagery period. During encoding patients
would see the 2 images 4 times each in a shuffled order. Each image stayed on screen
for 1.5s and the inter-image interval was 500-800ms. After this encoding period a visual
search puzzle was presented (puzzles created by artist Gergely Dudas
https://thedudolf.blogspot.com/) and stayed on screen for 30s. After reporting via
button press whether or not they were able to find the object in the puzzle, patients
began the cued imagery period. During cued imagery patients would close their eyes and
imagine the stimuli in the trial in an alternating fashion for 4 repetitions of 5s each (40s
continuous imagery period). Patients were cued to switch every 5s by verbal cue. After
the imagery period patients would begin the next trial via button press when ready. Every
image was present in 2 trials, leading to 8 repetitions of both encoding and imagery for
each image.



http://www.freepngs.com/
https://cedrus.com/rb_series/
http://www.freepngs.com/
https://thedudolf.blogspot.com/
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Workflow

To examine the interaction between imagery and the feedforward code for objects we
structured our experiment days as follows:

A morning session was conducted to identify axis tuned neurons. Then 6-8 stimuli were
chosen for the imagery task that had some spread along both the preferred and
orthogonal axes. For an exemplar neuron, they were chosen in pairs such that each pair
had increasing projection values along the preferred axis but the within-pair images only
differed along the orthogonal axis. Note that for the other neurons that had axes
pointing in different directions in object space the stimuli did not end up nicely spread
out in pairs — however on average we got good spread along both axes (Figure 4.3E).

After axis tuned neurons were identified and the stimuli chosen we conducted the cued
imagery task, followed by another screening session immediately after. The second

screening was used match the neurons from the morning and afternoon sessions (see
Chapter IIT methods).

Electrophysiology

We recorded broadband signals from inferotemporal cortex in addition to the standard
epileptic targets (amygdala, hippocampus, anterior cingulate cortex, pre-supplementary
motor area, and orbitofrontal cortex) using micro-macro electrodes manufactured by
Ad-Tech (https://adtechmedical.com/epilepsy#depth-electrodes). All analyses pertain
to signals recorded on the 8 microwires protruding from the end of the electrode and
sampled at 32khz.

Spike sorting and quality metrics

Signals were bandpass filtered offline in the range of 300-3000hz with a zero phase lag
filter before spike detection. Spike detection was carried out by the semiautomated
template matching algorithm Osort". The spike quality metrics returned by the
algorithm were examined before final clusters were curated.

Electrode localization

Electrode localization was based on postoperative MRI/computed tomography (CT)
scans. We co-registered postoperative and preoperative MRIs using Freesurfer’s
mri_robust_register". To summarize recording locations across participants we aligned
each participant’s preoperative scan to the CITI168 template brain in MNI152
coordinates” using a concatenation of an affine transformation and symmetric image
normalization (SyN) diffeomorphic transform®. The MNI coordinates of the
microwires from a given electrode shank were marked as one location. MNI coordinates
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of microwires with putative neurons detected from all participants were plotted on a
template brain for visualization (Figure 4.1B).

Data Analyses

Reactivation metric

An important part of the work described in this Chapter is identifying neurons that
reactivate. As such it is important to have a quantitative measure for ‘reactivation’. For
our data we identified reactivated neurons as follows: we first computed the neurons
baseline firing rate then set a threshold 2 standard deviations above it. If a neuron during
imagery had an average value above that threshold for any stimulus or a 1 way ANOVA
between the groups during imagery was significant (p < 0.05) the neuron was considered
active during imagery.

Correlation of viewed and imagined responses

For neurons that were active during imagery we computed the correlation between
viewed and imagined responses. To compute the viewed response to each stimulus, we
computed the neurons response latency via a Poisson burst method (see Chapter II1
methods), then collected spikes in a window of 500ms after the response onset of the
neuron and averaged across repetitions of a given stimulus. To compute the imagined
response we simply averaged the response across the 5s time period for every trial and
further averaged across repetitions of a given stimulus. The Pearson correlation (r) was
then computed between these 2 vectors.

Vividness of Visual Imagery Questionnaire (VVIQ)

The VVIQ was taken from https://davidfmarks.net/vividness-of-visual-imagery-
questionnaire-vviq/. For patients 3-5 the questionnaire was printed out and taken to the
patient room the day before experiments, and the patients attempted the various imagery
tests and filled out the questionnaire with the help of the experimenter. For patients 1-
2 a link to an online version was emailed to them and patient 2 wrote back with their
scofes.

Decoding analysis

In Chapter II we find that neurons in human IT cortex are performing linear projection
onto specific preferred axis in object space during viewing. As the correlation between
projection value onto these axes and imagined firing rates was significant (Figure 4.3,
Figure 4.S1) we assume neurons are doing the same linear projection during imagery. As
such, their responses can be well modeled by the equation


https://davidfmarks.net/vividness-of-visual-imagery-questionnaire-vviq/
https://davidfmarks.net/vividness-of-visual-imagery-questionnaire-vviq/
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—

R=C-F + ¢,

where Ri is the populatlon response vector to a given image, C is the weight matrix for

different neurons, Fi is the vector of object feature values and C is the offset vectot.
Thus the decoding analysis was carried out by inverting this equation giving us

F=R-C'+C,

We used the responses of all but one of the objects imagined in a given session (6/8 —

1 =5/7) to fit C' and C',. These were then plugged into the equation to predict the
feature vector of the last object. Decoding accuracy was quantified by randomly selecting
a subset of object images that included the actual feature vector of the decoded object
from the total set of 500 used for screening and compared their feature vectors to the
predicted feature vector of the decoded object by Euclidean distance. If the actual
feature vector closest to the predicted feature vector is of the object being decoded
(‘target’) the decoding is considered correct. This procedure is repeated 100 times for
each of the 6 or 8 images with a varying number of distractors to get an aggregate
measure of decoding accuracy (Figure 4.4B). Note that these analyses had to be done in
a session-by-session manner as the stimuli imagined during each session were different,
thus each line in Figure 4.4B corresponds to a different session. The number of feature
dimensions for this analysis was reduced from 50 to 5 in order to keep the polynomial
well-conditioned (number of simultaneously recorded neurons > number of feature
dimensions to be decoded).

Object ‘reconstruction’

To generate images that reflect the features encoded in the neural responses we gathered
images from an auxiliary database and passed 17,856 background free images through
AlexNet. The images were then projected into the space built by the 500 stimulus
objects. None of these ~18k images had been shown to or imagined by the patients. For
each stimulus image the feature vector decoded from the neural activity was compared
to the feature vectors of the large stimulus set. The object in the large image set with the
smallest Euclidean distance to the decoded feature vector was considered the
‘reconstruction’ of that imagined image'.

To account for the fact that the large object set did not contain any images shown to the
patients, which sets a limit on how good the reconstruction can be, we computed a
‘normalized distance’ to quantify the reconstruction accuracy for each object. We
defined the normalized reconstruction distance for an image as

|Vrecon - Voriginal |

Normalized distance =
|Vbest possible recon ~ Voriginall
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where Vigcon is the feature vector reconstructed from neuronal responses, Voriginai
is the feature vector of the image presented to the patients, and Vyest possibie recon 19
the feature vector of the best possible reconstruction (image in the large set with the
closest distance to Vyriginar)- A normalized distance of 1 means the decoded image is
the best reconstruction possible. As with the earlier decoding, this analysis was done in

a session-by-session basis and the normalized distances computed for each session were
pooled together to make Figure 4.4C.
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Figure 4.S1. Recapitulation of visual code occurs independently in both hemispheres
(A, B, C) Results showing that axis tuning is respected during imagination for all left IT reactivated
neurons.

(Di E, F)
(A)

(B)
©)

(D)
(E)
(F)

Same as A, B, C but for all right IT reactivated neurons.
(Top) Heat plot showing the normalized response of neurons as a function of increasing projection
value along the preferred axis (Bottom) The correlation between projection value on the preferred axis
and firing rate as compared to a shuffled distribution.
Same as (A). But along the orthogonal axis.
(Top) Plot showing the overall spread of imagined stimuli along the preferred and orthogonal axes for
all left IT neurons. (Bottom) CDFs of projection value and firing rate for both axes showing a significant
right shift for the CDF of the preferred axis
Same as A for reactivated right IT neurons.
Same as B for reactivated right IT neurons
Same as C for reactivated right IT neurons



Patient ID

P76CS

P79CS

P80CS

P84CS

P85CS

LIT(x,y, z)
N/A
-31.19, -28.97, -24.28
-39.73, -40.46, -16.97
-31.36, -46.56, -16.80

-39.76, -41.34, -24.80

RIT (x, y, 2)
34.96, -43.33, -24.04
47.59, -29.77, -24.81
37.15, -49.70, -12.93
35.91, -31.69, -25.32

37.07,-40.40, -32.26

6
s | e
F 26

F 44
F 25
M 60
F 66

Table 4.1. MNI coordinates of microwire bundles and associated patient metadata. Related to Figure

4.1.

The first patient tested only got right posterior temporal electrodes and is thus labeled ‘N/A’ on the left. The
coordinate labelled in red is one where we got 0 responsive units.

4
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Left Right Right
(imagery) (total) (imagery)
ACC 99 37 49 19

Pre-SMA

AMY

HIPP

CMT

OFC

AINS

60

125

73

33

96

86

25

31

14

11

40

39

55 25
132 55
58 11
46 16
16 6

87 36

Table 4.2. Distribution of recorded and reactivated neurons in each area. Related to Figure 4.5.
We see robust reactivation of neurons in all recorded brain areas, with even distribution across left and right

IT.
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Chapter 1V

CONCLUSIONS AND FUTURE DIRECTIONS:

Summary of main findings:

In this thesis, we present the first detailed exploration of IT cortex at single neuron
resolution in the human brain. We build on earlier studies that demonstrate robust
responses to visual objects in IT cortex'™ and reactivation of those neurons' during
imagery, sampling a large number of neurons in I'T (431) and systematically comparing
their responses during the viewing of a large number of objects with varied features. We
find that human IT neurons encode specific axes in a high dimensional feature space,
similar to macaques®’. We discuss the importance of advances in deep learning for object
classification in building said high dimensional spaces — allowing for the
parametrization of arbitrary objects. We lay out several experiments and analyses that
verify the axis model. We show that tuning along the orthogonal axis in feature space is
flat. We use the axis model along with a pre-trained GAN® to 1) generate stimuli in the
space spanned by the encoded and orthogonal axis and show that tuning only changes
in directions parallel to the preferred axis and 2) generate super stimuli and drive the
neurons higher than any of the stimulus images. We also demonstrate that while
parametrization of the visual objects is essential for the axis model to work, the specific
deep convolutional network used to parametrize the images does not affect the results.

Finally, armed with these feedforward coding principles for general objects we
investigated single neuron mechanisms of visual imagery. Once again, we recorded a
large number of I'T neurons (173), verified the axis coding model in these neurons during
viewing, and immediately after recorded responses as a subset of those objects (6-8)
were imagined. We find robust and structured reactivation of IT neurons during
imagery. A substantial minority of recorded IT neurons were active during imagery
(43%0) with an even larger minority of axis tuned I'T neurons reactivating (48%). We find
that the responses to different objects recapitulate the visual responses in axis tuned
neurons, with the correlation of imagined firing rate and projection value being
significant along the encoded axes and insignificant along the orthogonal axes. We use
this recapitulation of visual context to decode object features in the midst of several
distractors using the same methods as in viewing, and even attempt to ‘reconstruct’
imagined objects by comparing decoded object features to the best possible
reconstructions using a large image set (~18k images) that was not used in any
experiments. We show that the imagined firing rates capture fine feature details of the
objects in question. Finally we note that while previous imaging studies would suggest
laterality in the temporal lobe™" and reactivation of a specific fronto-temporal network
during imagery'' we observed no laterality effects in I'T and robust activity of at least
some neurons in every single recorded region — underlining the importance for single
neuron investigations of complex phenomena.
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Future directions:

Delving further into single neuron mechanisms of imagery:

Connectivity analyses:

This thesis leads to several follow-up questions, a few of which are discussed in the next
section. However, one obvious one is as follows: If one sees robust reactivation of
neurons all across the brain during imagery where does the signal originate from? What
is the source of the top-down trigger that causes other areas (particularly I'T) to be active
during imagery? How does the activity across these regions (or a subset of them) support
imagery?

Coordinated neural activity across spatially disparate regions plays a vital role in
supporting the complex behaviors we seek to understand. There are many techniques to
characterize such coupling such as cross-correlation, cross-frequency coupling, or
coherence'”.

Cross-correlation

Examining correlations between neurons during a behavior is the simplest way to try
and understand how that population of neurons comes together to support that
behavior (in our case, imagery). Correlations can also provide information about the
functional architecture of a given circuit such as the retina", or between cortical areas'
as experimental evidence accumulated over many years finds that neurons close to each
other with similar tuning have higher correlations™"* implying that correlations reflect
co-fluctuations in the responses of restricted subsets of neurons rather than global

fluctuations affecting all neurons'’.

We will examine the cross correlation between neurons in I'T cortex during both viewing
and imagery to gain a better understanding of how regions are communicating with each
other during these behaviors.

Spike field coherence

Coherence is a measure of the phase relationship between two oscillatory signals'>* but
can also be used to assess the relationship between an oscillatory signal (typically LFP)
and neural spike trains®. It allows researchers to investigate the enhanced
synchronization of neuronal groups activated by a given stimulus or behavior in addition
to the increase in neuronal firing rate to the same™. Such enhanced synchronization of
specific neuronal groups is thought to increase the output onto their postsynaptic target
neurons and impose a structured activation pattern® aiding in multi-scale
communication between areas” . The added dimension investigation of a temporal
code provides has shed light on many important phenomena in the past such as the
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effects of selective attention™”’, memory™, or even the precise coding of position via
29-33

theta phase precession in the rodent navigation system

2227

We will attempt to leverage the temporal as well as rate codes of neurons in IT to
understand the origin of the top down signal that triggers reactivation by using pairwise
phase consistency, which is a circular statistic similar to SFC but not biased by exact
number of trials in a condition or the exact number of spikes of a neuron™.

Modification of sensory representations by context: effects of familiarity

In a natural environment context guides the use of sensory representations for
appropriate action. For example, how to react to someone walking up to you in a
restaurant will be affected by whether they are familiar or not, implying that the visual
information needs to interact with the contextual variable of familiarity. Behavioral
studies have shown that while people are much better at recognizing familiar faces in a
blurry or cluttered context than unfamiliar ones™ the placement of familiar faces in

unexpected contexts makes them more difficult to recognize™.

This begs the question, does the contextual variable affect behavior by directly altering
the visual representation or is the interaction of the sensory and contextual variables
handled elsewhere? Patient H.M. famously could not form new memories but retained
all his old ones after having both hippocampi removed” leading to a long-standing
hypothesis in the field that long term memories are stored in cortical neurons. Armed
with the code for visual objects we will attempt to uncover the network level code for
visual memory by examining interaction of memory signals with the axis code in both
viewing and imagery.

Task overview

Patients are interviewed about their interests in order to identify people (mostly
celebrities) that are familiar to them. After said interview, a set of 100 familiar faces is
compiled and added to the previously used screening set of 500 objects. An fMRI
localizer is used to determine the location of face selective patches in I'T cortex of each
patient (Figure 5.1A). The screening task described in Chapter I1I is conducted as usual,
once axis tuned neurons have been found in a given session we will carry out the cued
imagery task described in Chapter IV using a subset of familiar faces and low level
feature matched unfamiliar faces.

In macaques, neurons in the anterior medial and perirhinal face patches represent
familiar faces in a distinct long-latency subspace that is rotated relative to the short-
latency subspace used to represent the physical, context-free structure of a face. We will
observe the response dynamics in human fusiform face area neurons during viewing to
see if familiarity affects the I'T axis code in the same way as macaques. After developing
a detailed understanding of how the visual code is affected we will examine responses
during imagery in an attempt to corroborate or disprove the hypothesis that the
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imagined responses will load onto the familiar subspace at shorter latency, i.e. in an
opposite order to viewing.

Preliminary results

We report that our targeting procedure was successful, yielding 33 face selective neurons
out of the 52 total I'T neurons recorded (~63%) from 3 sessions with the first patient
(Figure 5.1).

We find that face-selective neurons in the FFA are strongly modulated by familiarity in
both directions, with some neurons showing a marked increase in firing rate to familiar
faces (Figure 5.2A left vs right) while others show a substantially lower response to
familiar faces (Figure 5.2A left vs right). We also see canonical face-selective neurons
that are agnostic to whether a face was familiar or not.
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Figure 5.1. Face localizer used to target FFA.

(A) Schematic of the block design face localizer used to target fusiform face area (FFA). Blocks of face,
body, hand, fruit, and object images were interleaved with blocks of scrambled images for a total of
32 blocks per round.

(B) (left) Coronal section of MRI showing FFA targeting in an example patient. (middle, right) Recording
locations of the microwire bundles that yielded at least 1 responsive unit. The locations that were
fMRI targeted are colored orange.

(C) Example face selective unit from the same example patient referred to in (B).

(D) Population summary of all the neurons recorded in a single session from the example patient. The
neuron in (C) is the top row in this panel.
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Discussion

Previous accounts of I'T neuron responses in familiarity vary. A previous study with a
single neuron® shows a decreased tesponse to familiar faces, while a comprehensive
macaque study investigating the interaction of familiarity with the axis code™ finds that
familiar faces are represented in a different Jong-latency subspace that is rotated with
respect to familiar faces. It remains to be seen whether the same holds for human IT
neurons, however the clear modulation of IT neuron responses to familiarity lends
credence to the notion that familiarity alters the visual code directly.

An important caveat to these results is that this particular patient is on the spectrum.
Expanding the dataset will be necessary before general claims of face memory in humans
can be made.
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Figure 5.2. FFA neurons show responses modulated by familiarity.

(A)

(B)
©)

Example face-selective neuron in the FFA showing a markedly increased response to familiar
faces. (left) The PSTH of the neuron with familiar faces included. (right) PSTH of the same neuron
without familiar faces included.

Example face-selective neuron in the FFA of the same patient that was agnostic to whether a face
was familiar or not.

Example face-selective neuron in the FFA that showed a reduced response to familiar faces.
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Delving into other aspects of model formation:

As referenced in Chapter I of this thesis, forming a model involves three essential steps:
parsing the world into its component parts, i.e. the objects and agents that make up the
world, understanding all possible relationships between those parts — called intuitive
physics and intuitive psychology in cognitive science” — and finally learning and using
language to learn everything else that does not have an obvious physical
manifestation**"".

Thus, understanding how we model the world necessarily requires an understanding of
language encoding. Language allows us to sculpt the minds of others and our own into
arbitrary (often task relevant) configurations without trial-and-error learning. This is
often used to distinguish between animals that are #ainable and humans that are
programmable”. 'This jump from trainable to programmable constitutes a large leap in the
way we learn, interact, and transmit knowledge. It is important to note here that one
does not need language to learn certain complex concepts (for example, justice or
fairness) though communicating them becomes almost infinitely harder. As such we are
now attempting to understand language encoding in the human brain. Do we find single
neurons responses to abstract concepts like justice? Do neurons in the brain track the
semantic peaks or the main point in a continuous narrativer

Task overview

6 Patients listened to 6 stories 6 times each with a free recall component in between
(after 3 listens of each story) and at the end (Figure 5.3A). The stories used were from
the StoryCrop database (https://storycorps.org/) and wete chosen to be short (~30s)
with only one major event being described in each story.

Preliminary results

We recorded 430 individual neurons across all brain areas (Table 5.1) We find 3 broad
categories of responses in the human brain. The first category is neurons that represent
auditory boundaries in the story for example, when a new person starts speaking, when
the audio switches from conversation to laughter, or even the beginning and end of the
story. The second category is neurons that encode the ‘semantic peak’ of the story. As
mentioned eatlier these stories were chosen to be short and communicate a single event
or answer a single question. We find neurons that respond in a time-locked manner
when the main point has been communicated. The final category are neurons that
respond to individual words and phrases mainly in the memory centers of the brain
(medial temporal lobe) potentially implying that those words and phrases are triggering
imagery of concepts in the brain — something that is essential to a lot of learning and
communication*"**. Examples of the latter 2 types can be seen in Figure 5.3B&C.


https://storycorps.org/
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Figure 5.3. Individual neurons record salient timepoints during story listening.

(A) Schematic of the task. Patients listened to 7 stories 3 times each before performing free
recall. This structure was repeated twice.

(B) Neuron in the left amygdala of an example patient responding in a time-locked manner to
the phrase ‘sexually aware’. The transcript is overlayed on the PSTH. The words arranged
vertically to save space, with each alternating white/blue bar indicating how long that
particular word lasted. Red bars indicate pauses in speech. The phrase occurs twice in the
story and neuron responds to both implying a response to the phrase as opposed to simply
a saliency effect.

(C) Neuron in the medial frontal cortex (pre-SMA) of an example patient showing a strong ERP
to the ‘ah-ha’ moment in a story. The story describes someone attempting to solve a
communication problem and the ERP is time-locked to the moment they are successful.
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Discussion

The discovery of neurons that are parsing various aspects of continuous narratives with
complex concepts discussed in them was very encouraging. It implies that a model of
semantic encoding can be reached by detailed investigation of how neural activity maps
onto semantic spaces. This is a direction we intend to pursue further.

ACC 33 40
Pre-SMA 38 27
AMY il 82
HIPP 21 46
PHG 16 -

OFC 28 43
IT 2 3

Table 5.1. Distribution of recorded neurons in each area during the stories task. Related to
Figure 5.3.
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