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ABSTRACT

It has been known for a couple decades, based on extensive experimental, theoretical
and numerical studies, that a flat slender nanoscale viscous film in the absence of gravity
always undergoes early time linear instability when subject to electrical or thermocapillary
forces. The patterns resulting from a uniform transverse electric or thermal field resemble
clusters of small rounded protrusions whose early time dynamics have been described by
linear stability analysis of the governing fourth-order nonlinear interface equation – the
so-called thin film equation. However, the pattern formation process beyond early times
generates larger amplitude protrusions prone to coalescence or an Oswald-like ripening of
adjacent formations which destroy the pattern uniformity. Introduction of film interface
modulation by external spatially periodic modulation offers a superior method for this
type of lithographic patterning. The resulting linear and nonlinear response of the liquid
layer can be tuned to corral the evolution of the liquid interface into periodic arrays
containing identical components in certain parameter range. Conditions for achieving
high-fidelity patterns are still not fully understood, however, rendering such technique
not yet fully utilized in practical applications.

To that end, we have conducted a number of analytical and numerical studies which elu-
cidate various regimes leading to high-fidelity patterning by external spatial and temporal
modulation. We focus on a single layer of viscous liquid film on a solid substrate which
is described by the thin film equation derived under the long wavelength approximation.
We first study the linear stability of periodic non-uniform stationary states subject to
electrostatic stress and find that the necessary conditions for achieving stable states in
1D are the mass-limitation or saturation with a system-confining boundary (touching
the mask) in order to suppress the coalescence and Ostwald-like-ripening modes. In 2D,
stationary ridges are only achieved by saturation with a system-confining boundary in
order to suppress its breakup. Time-dependent simulations further reveal inaccessible
stationary states due to large electrode separation or large applied voltage. Exploratory
studies on system subject to temperature gradient shows that the coalescence mode be-
comes unstable over a wider range of parameters due to thermocapillary stress. These
findings result in phase diagrams relating the spatial modulation amplitude and elec-
tric Weber number or Marangoni number to the conditions for high-fidelity patterns
which cannot be explained simply by matching the patterning and intrinsic instability
wavelengths as previously claimed in literature.

We then turn to the optimal control of electrohydrodynamic thin film patterning where
the optimal strategy in deforming a flat film toward a desired shape is determined. A
computational framework is derived which allows us to study the open-loop terminal
control problem for thin liquid film. The approach allows us to quantify the best-
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possible outcome only constrained by the underlying physical mechanisms, and better
understand the limitations of thin film patterning in relation to the choice of target
shapes and system parameters. The impact of imperfect engineering and methods of
mitigations are also discussed, which should prove useful to soft lithography and other
applications.
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NOMENCLATURE AND NOTATIONS

List of Acronyms
c.c.: complex conjugate

h.o.t.: higher-order terms

ss (as subscript): stationary state

vdw (as subscript): van der Waals

DFT: discrete Fourier transform

EHD: electrohydrodynamic

FDM: finite difference method

FEM: finite element method

LSA: linear stability analysis

LWA: long-wave(length) approximation

ODE: ordinary differential equation

PDE: partial differential equation

TC: thermocapillary

WNA: weakly-nonlinear analysis

List of Nomenclature
free surface: the interface between the liquid and the passive gas (typically air) mathe-
matically denotes as h(x, t) or H(X, τ)

in-plane: the ‘horizontal’ (or x− y) direction of the system parallel to the substrate

out-of-plane: the ‘vertical’ (or z) direction of the system perpendicular to the substrate

(un-)modulated: experimental configuration with constant separation between mask and
substrate, temperature and applied voltage

mask: plate above the air and liquid, also referred to as ‘bottom plate’ or ‘bottom
electrode’

substrate: supporting plate below the liquid, also referred to as ‘bottom plate’ or ‘bottom
electrode’
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List of Commonly Used Symbols
β: growth rate (of a particular mode)

d0 (D0): mean separation between the mask and substrate in dimensional (dimension-
less) unit

ϵ = h0/h0: small aspect ratio parameter used in LWA

ε: (relative) electric permittivity

γ: surface tension of the liquid

Γ: dimensionless surface tension variation

kc (Kc): critical wave number from linear stability analysis in dimensional (dimension-
less) unit

km (Km): fastest-growing wave number from linear stability analysis in dimensional
(dimensionless) unit

kp (Kp): patterning wave number in dimensional (dimensionless) unit

λm (Λm): fastest-growing wavelength in dimensional (dimensionless) unit

λp (Λp): patterning wavelength in dimensional (dimensionless) unit

Π: dimensionless external pressure (e.g., disjoining pressure, electrostatic stress, etc.)

ϱ: modulation amplitude

ρ: liquid density

τ : dimensionless time

τf : final or terminal time for numerical simulation

Υ: regularization parameter for optimal control (in Chapter 7)

ξ: system or control variable to be modulated (e.g., mask topography, applied voltage,
imposed temperatures, etc.)
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C h a p t e r 1

INTRODUCTION

1.1 Thin Film Flows
Thin film flows are ubiquitous in nature and industry. For example, in biology they
manifest as the spreading and evaporation of blood [1]. In geophysics, many phenomena
ranging from the transport of oil and gas, rock formation to the storage of CO2 can be
modeled as gravity-driven thin film flows [144]. Other examples include the (de)wetting
of liquid films and droplets [9], spin coating in micro/nano-fabrication, the sliding motion
of droplets on a window pane [89], or even the mathematical modeling of making
pancakes [10]. All these examples feature a freely deformable interface separating the
liquid from the surrounding medium, and are capable of displaying complex nonlinear
behavior and many interesting pattern formation phenomena.

On the most exciting applications involving thin film flows is the patterning of thin
polymer films for micro/nano-fabrication. Chou and coworkers [16, 17] first reported
the experimental observation of the spontaneous formation of periodic pillar arrays in a
thin layer of heated polymer film, using an experimental setup similar to the schematic
shown in Fig. 1.1 where a polymer film is situated between two parallel plates. It inspired
many subsequent studies to investigate the patterning of submicron film with external
forces using a similar configuration, and two common approaches involve the use of
electric or thermal fields as the driving force to deform the liquid film.

Consider a liquid film situated between two parallel plates bounded by air from above
as shown in Fig. 1.1. If the two parallel plates are held at different voltages as shown in
Fig. 1.1(a), an electric field is created, and the electrostatic force acting on the bound
charge or free charge at the free surface of the liquid film can deform the liquid film
to develop peak-like structures. This forms the basis of electrohydrodynamic (EHD)
patterning first experimentally demonstrated by Schäffer et al. [103]. Similarly, when
the two parallel plates are held at different temperatures as shown in Fig. 1.1(b), a
temperature gradient is present at the free surface of the liquid film. This results in a
surface tension gradient due to the temperature-dependence of surface tension, which
then deforms the liquid film via a shear stress. This forms the basis of thermocapillary
(TC) patterning first experimentally demonstrated by Schäffer et al. [100]. Experimental
demonstrations of EHD or TC patterning typically use melted layer of polymer film
with submicron thickness, and the resulting patterns typical exhibit lateral feature size
of the order of microns or tens of microns, though submicron feature size has also
been demonstrated. The typical scales and experimental parameters for EHD and TC



2

V
d0

h0

≈λm

A

B

Thot

Tcold

≈λm

A

B

= λp

electrohydrodynamic (EHD) thermocapillary (TC)

w/ patterned mask (EHD or TC)

(a) (b)

(c)

Figure 1.1: Schematic of liquid thin film patterning. A liquid film (typically polymer
film) shown as gray region is placed between two parallel plates with an air layer above
it. (a) In electrohydrodynamic (EHD) patterning, a thin liquid film is subject to an
external electric field generated by two electrodes held at different electric potentials with
potential difference V , and the free surface is deformed by the resulting electrostatic
stress. Point A of the liquid film is closer to the top plate and experiences a larger
electrostatic stress than point B which leads to subsequent runaway growth of the
protrusion. (b) In thermocapillary (TC) patterning, the top and bottom plates are
kept at temperature Thot and Tcold, respectively, where Thot > Tcold. Point B has
a lower temperature than point A because it is closer to the top cold plate. Due to
thermocapillary effect, the surface tension at point B is larger than at point A which
drives fluid flow toward that region. The initial length scale of the developed patterns
is the fastest growing wavelength λm predicted by linear stability analysis. (c) In both
EHD and TC patterning, a patterned mask with a periodicity of λp is typically employed
to impose a spatially inhomogeneous external fields to control the pattern formation in
the liquid film. The mean film thickness h0, mean separation between the plates d0 are
indicated in (a).
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Table 1.1: Typical values of the experimental parameters extracted from selected studies
in EHD/TC patterning: (1) Figure 2, 3 and Table 1 in [104]; (2) Figure 1, 5, 6, 7, 9
and 10 in [128]; (3) Table 1 and 2 in [52]; (4) Table I in [36].

Physical quantity Symbol Unit Values
Mean film thickness h0 nm 93 − 125 [104]

78 − 125 [128]
140 − 400 [52]
95 − 390 [36]

Mean separation between d0 µm 0.23 − 1.73 [104]
top plate (mask) and 0.2 − 0.5 [128]

bottom electrode (substrate) 1.1 − 1.8 [52]
0.6 − 2.2 [36]

Mean separation between D0 = d0/h0 – 2.3 − 14.4 [104]
top plate (mask) and 1.67 − 4.00 [128]

bottom electrode (substrate) 2.7 − 10.8 [52]
(dimensionless) 2.0 − 14.1 [36]
Applied voltage V V 30 − 50 [104]

10 − 80 [128]
40 − 100 [52]

Temperature of hot substrate Thot
◦C 90 − 100 [36]

Temperature of cold substrate Tcold
◦C 69 − 89 [36]

Temperature difference ∆T ◦C 9.8 − 25.8 [36]
Fastest-growing wavelength λm µm 1.5 − 37 [104]

(predicted from linear 1.5 − 7.9 [128]
stability analysis) 8.2 − 36.5 [52]

29.1 − 73.2 [36]
Patterning wavelength λp µm 1.2 − 5.3 [128]

6 − 15 [52]
Modulation strength ϱ – 0 − 0.37 [52]

patterning are summarized in Table 1.1. Other mechanisms for deforming the liquid film,
such as the combination of both electrostatics and thermocapillarity [21], and solutal-
Marangoni effect where the surface tension of a photosensitive polymer is varied from
exposure to UV light [58], have also been studied for patterning liquid film.

Both electrohydrodynamics and thermocapillarity have been studied for decades, and
their earliest manifestations can be traced back to more than a century ago. Taylor
[115] pointed out that Gilbert was likely the first to demonstrate an EHD instability in
his work De Magnete in 1600, while Taylor himself also contributed many pioneering
studies on electrified liquid [114]. Bénard’s original experiment on heated liquid film in
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1900 showed the pattern formation of convection cells, and subsequent analysis showed
that this effect, which was originally attributed to buoyancy-driven convection in what
is known as Rayleigh-Bénard convection, was likely due to thermocapillary effect in
what is known as the Bénard-Marangoni instability [63, Section 12.H]. The utilization
of these hydrodynamic instabilities for thin film patterning and micro/nano-fabrication
only become feasible and widespread since the early 2000s, decades after their initial
discovery, thanks to the advancement in experimental techniques that allow access to
thin films with submicron thickness. At the submicron scale, gravitational force which is
usually stabilizing becomes negligible compared to surface forces due to the large surface-
area-to-volume ratio. For the configuration shown in Fig. 1.1, the close proximity of the
two plates also allows the creation of very large electric or thermal fields, resulting in very
large surface forces which can overcome the stabilizing effect of surface tension. This
results in an instability where noise present in the system leads to a spatially varying
surface force (e.g., electrostatics or thermocapillarity) which deforms the liquid film.
Variation in local film thickness further enhances the effect of the surface force, leading to
a runaway process where the peak-like structures formed by the liquid film keep growing
until terminated by other processes like contact with the top plate. The initial length
scale of the patterns is found to agree with the fastest growing wavelength λm predicted
from linear stability analysis, and λm reflects the competition between the stabilizing
capillarity and destabilizing external forces due to electrostatics or thermocapillarity.
Since λm depends on the physical properties of the liquid film as well as other adjustable
process parameters like the applied voltage or temperature difference, the length scale
of the patterns becomes controllable.

The thin film used in experiments is usually polymer film (e.g., Polystyrene or PMMA)
heated above the glass transition temperature. This polymer melt, once deformed to
certain shape by the external forces, can be solidified in-situ by removal of heating or
photochemical process, resulting in patterned micro structures as solid at the end. This
type of ‘soft’ lithographic techniques offer many advantages compared to conventional
techniques such as photolithography as it only involves one single step, is contactless,
and is capable of making molecularly smooth and curved surfaces, making it a particularly
attractive technique in the broader field of soft lithography [12, 25, 27, 135]. Proof-of-
concept studies using EHD patterning for device fabrication include the fabrication of
microlens arrays [55, 64–67, 69], optical waveguides [67, 70, 71] and cell substrates [122],
as well as in sensing [46, 72], microfiltration [61] and fog collection [87]. Fabrication
of microlens arrays using TC patterning have also been demonstrated [30, 75], see, for
example, Fig. 1.2(b).
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200 min 400 min

50 μm

(a)

(b)

Figure 1.2: Images showing the pattern formation in thermocapillary (TC) patterning.
(a) Optical images showing variation in surface reflectivity due to emergent fluid protru-
sions in TC patterning with flat plates. Images demonstrate significant nonuniformity in
pattern pitch, shape, and height. (b) Scanning electron micrograph showing a solidified
square microlens array resulting from a spatially periodically modulated thermal field
enforced by a patterned colder substrate. Here, an initial 150-nm polymer melt film is
exposed to an upper thin cold disk patterned by a square array of cylindrical pins with
pitch 50 µm, pin diameter 5 µm and pin length 1.6 µm. Published as Fig. 1(b) and
(c) in Ref [15] courtesy of S. M. Troian and E. McLeod.

1.2 Challenges of Thin Liquid Film Patterning
1.2.1 Limitations of relying on instability
Despite the seeming elegance of relying on an intrinsic hydrodynamic instability to gen-
erate periodic arrays, there remain notable challenges for both EHD and TC patterning.
The first difficulty stems from the very mechanism sustaining protrusion growth. Since
taller peaks always advance more rapidly toward the upper plate, initial configurations
marked by any disparities in film thickness, however small, will rapidly incur dispari-
ties in peak heights, shape and pitch. Non-uniformities, such as those shown in Fig.
1.2(a), are traceable to variations in initial film thickness incurred either during initial
film preparation, deposition and annealing or dewetting and pooling events which can
be difficult to control experimentally [15].

A second difficulty is related to achieving a reduction in the array pitch. For EHD pat-
terning, while λm can be reduced by increasing the applied voltage, dielectric breakdown
limits the maximum dielectric field strength achievable, and hence the extent of which
λm can be reduced [62]. In TC patterning, λm scales with ∆T−1/2 where ∆T is the
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applied temperature difference. Generation of large vertical thermal gradient requires
the parallel plates to be placed in very close proximity (few microns or fewer), but such
close proximity causes effective cooling of the warmer substrate which tends to diminish
the temperature difference ∆T . These limitations restrict the typical length scale to the
orders of micron or even tens of micron, which are too large for applications requiring
sub-micron resolution.

1.2.2 High-fidelity patterns with external spatial modulation
In order to improve pattern uniformity, reduce feature size, or even achieve patterns with
specific morphology such as stripes or Cartesian arrays, researchers commonly design a
heterogeneous external fields with an imposed patterning wavelength λp which is most
often achieved by the use of patterned mask as shown in Fig. 1.1(c). The spatially
periodic modulation of the external electric or thermal field increases the surface forces
for deforming the liquid film, and can potentially lead to rapid and synchronous formation
of highly uniform periodic arrays.

However, whether the liquid film develops high-fidelity patterns conforming to the ex-
ternal spatial modulation still depends on how various system parameters are chosen.
An example can be seen from numerical simulation in Fig. 1.3 showing how a liquid
film develops ridges which later break up under the use of topographically patterned
mask with stripe-like patterns. Despite numerous studies in literature addressing the
use of spatial modulation into the pattern formation of liquid film, the conditions for
developing high-fidelity patterns are not fully understood beyond the simple matching
of λp ≈ λm which only works for a limited range of system parameters.

1.2.3 Needs for optimal control
Even if high fidelity patterns can reliably be formed, for example, the liquid film develops
patterns matching that imprinted on the patterned mask or the spatially modulated
external fields, the precise control of the out-of-plane profile of the liquid film is still
required for application purposes. For example, the curvature of the lenses in a microlens
array (e.g. see Fig. 1.2(b)) affects the focal length and other focusing properties of the
lenses. The ridges shown in Fig. 1.3 can also be used as optical waveguides, in which
case the light confinement strongly depends on the cross sections of the ridges. However,
such control remains difficult to achieve, and there is a lack of studies in literature which
address the optimal control of thin film patterning.

1.3 Objectives
The objective of this thesis is to address these two fundamental challenges in the pat-
terning of thin liquid film with electric and thermal fields. The first part of the thesis
addresses the so-called ‘forward problem’ where the response of the liquid film to an
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Figure 1.3: Schematic showing the evolution of a liquid film in EHD patterning under
topographically patterned mask (top electrode). The liquid film initially develops ridges
(left subplot) that follow the shape of the mask. As time progresses (left to right), the
ridges break up into column-like structures that have different morphology compared to
the top electrode. Studying the conditions for forming high-fidelity patterns, in this case
ridges that sustain for a sufficiently long time, is a key challenge in thin film patterning
and is one of the objectives of this thesis.

externally imposed periodic modulation, e.g., a spatially inhomogeneous external fields
due to topographically patterned top plate, is studied in detail. Specifically, we study
how the shapes and stability of non-uniform stationary states depend on the spatial
dimension of the system and different keys system parameters, as well as the dynamics
of the liquid film in the presence of external modulation. The second part of the the-
sis addresses the so-called ‘inverse problem’ where the objective is to find the optimal
control strategies to achieve a specific shape with the liquid film, and the fundamental
limitations in liquid film patterning under an optimal control framework.

The studies presented in this thesis are conducted mainly through numerical simulations
of the so-called ‘thin film equation’, which is an evolution type nonlinear partial differ-
ential equation (PDE) governing the local film thickness, derived under long wavelength
approximation [85]. Analytical study of the thin film equation subject to external spatial
modulation is also carried out whenever possible under certain limit of small modulation
amplitude. The aim of the present study is to employ various well-developed techniques
in dynamical systems to study the spatiotemporal response of a pattern-forming system
with huge potential applications yet with limited studies on how the underlying physics
mechanisms can be fully harnessed to achieve high-fidelity patterns needed for actual
adoption. The results presented in this thesis will provide a more intuitive understanding
regarding the destabilization mechanism, as well as more quantitative design principles
in the selection of system parameters in achieving high-fidelity patterns in liquid thin
film patterning which should be of interest to the broader community of both theorists
and experimentalists.
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1.4 Outline and Key Findings
In Chapter 2, we provide the derivation of the governing thin film equation from first
principles, and discuss how various physical effects are coupled to the hydrodynamics of
the liquid film.

In Chapter 3, we introduce the linear stability analysis (LSA), which is a widely used
technique for studying the stability of dynamical systems.

In Chapter 4, we discuss the numerical methods, especially the spatial discretization of
the thin film equation, the time stepping scheme for solving time-dependent simulations,
and the pseudo-arclength continuation method for solving non-linear equations. These
numerical tools will be used throughout the thesis.

In Chapter 5, we study the forward problem of EHD patterning under the so-called
perfect dielectric model. Since shear stress is absent in the problem, it simplifies the
governing equation for stationary state, and we specifically focus on the role of normal
stress on the free surface of the liquid. The results in this chapter lead to the following
key findings:

• The Ostwald ripening mode is the dominant destabilization mechanism in EHD
patterning when electrode separation is not to small.

• The Ostwald ripening mode can be suppressed by the presence of thin precursor
film which leads to quasi-stationary states, and can only be truly stabilized via
contact with the patterned mask.

• The stable stationary states for ridges may not be accessible for an initially flat
liquid film for sufficiently large electrode separation or applied voltage.

In Chapter 6, we study the forward problem of TC patterning. Specifically, we focus on
the role of shear stress and how different phenomena are brought about compared to
the case of EHD patterning without shear stress. The results in this chapter show that
for TC patterning, the protrusions mainly destabilize via the coalescence mode whose
stability appear to depend sensitively on the topography of the patterned mask when
contact is established.

In Chapter 7, we introduce the general mathematical formulation for solving the inverse
problem in liquid thin film patterning. Numerical results are presented for the termi-
nal control problem in EHD patterning, focusing on the following areas regarding the
realization of high-fidelity patterns:

• How the minimum achievable deviation representing the best case scenario de-
pends on different system parameters and the target shapes.
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• How imperfect control in the form of fabrication imperfection for the patterned
mask affects the final liquid film shape and the methods of mitigations.

Finally, in Chapter 8, we summarize the main findings of the thesis.
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C h a p t e r 2

GOVERNING EQUATIONS

In this section, the derivation of the governing thin film equation is derived from first prin-
ciple under the so-called long wavelength approximation (LWA). Note that the derivation
presented here rely on techniques which have been covered in many standard texts such
as Leal [63], Deen [26] and Oron et al. [85], and have been applied to study many
problems involving thin liquid films in the literature. See the reviews by Oron et al. [85]
and Craster and Matar [22] for an extensive list of studies utilizing LWA. The aim of
presenting the derivation in full is for completeness and to address the specific choice of
scalings and non-dimensionalization adopted in this thesis which may be different from
other similar studies. Symbols, notations and terminology are also introduced along the
derivation.

The system under investigation is shown in Fig. 2.1 where a single layer of thin viscous
Newtonian fluid is supported from below by a substrate, confined from above by an
inviscid fluid layer (typically air) and a mask. Throughout this thesis, the substrate is
also referred to as ‘bottom plate’ or ‘bottom electrode’ interchangeably, while the mask
is also referred to as ‘top plate’ or ‘top electrode’. Note that the mask may be featureless
or topographically patterned.

Section 2.1 presents the derivation leading up to Eq. (2.49) which governs the hydro-
dynamics of the thin liquid film irrespective of the presence of other external physical
effects which are studied in this thesis. Section 2.2 provides a short discussion of the
gradient flow formulation of Eq. (2.49). Finally, the coupling of the hydrodynamics to
different physical effects, including electrostatics and thermocapillarity, is discussed in
Section 2.3. This completes the full derivation of the relevant governing equation used
throughout this thesis.

2.1 Hydrodynamics
2.1.1 Dimensional governing equations
Table 2.1 summarizes the typical values of different material constants relevant to thin
film patterning for polystyrene and air.
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Figure 2.1: Schematic of a thin film patterning system. Notations are labeled in (a)
dimensional and (b) dimensionless units. Gray shaded region denotes the liquid film with
density ρ and dynamic viscosity µ. The mean film thickness is h0 and mean separation
between mask and substrate is d0. Local film thickness is h(x, t). The initial corrugation
developed by the liquid film has length scale equal to either fastest-growing wavelength
λm or imposed patterning wavelength λp. The unit vector normal to the free surface
of the liquid film is denoted by n̂. Uppercase letters shown in (b) denote dimensionless
quantities whose definitions and scalings are described in section 2.1.2 and summarized
in Table 2.2.
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Table 2.1: Typical values of material properties relevant to EHD/TC patterning for polystyrene and air.

Property Symbol Unit Polystyrene Air (350 K) [a] Air (400 K) [a]

Density ρ kg/m3 1040 – 1065 [b] 0.5664 0.5243
Dynamic viscosity µ Pa · s 1 – 8000 [c] 3.101 × 10−5 3.261 × 10−5

Relative Permittivity εr – 2.49 – 2.55 [b] ≈ 1 ≈ 1
Thermal conductivity k̂ W/(m · K) 0.128 [d] 0.04721 0.05015
Specific heat capacity cp J/(kg · K) 1720 [e] 1056 1069

Prandtl Number Pr = cpµ/k̂ – 104 − 108 0.6937 0.6948
Surface tension γ N/m 0.0292 – 0.0314 [f] – –

Thermocapillary coefficient γT N/(m · K) (6.5 − 7.7) × 10−5 [g] – –
Hamaker constant A J 2.2 × 10−20 h – –

Glass transition temperature Tg K 373 [b] – –
a Table A–9 in [14].
b Page 830 in [73] for amorphous polystyrene.
c Estimated from Figure 7 in [124] for temperature between 64◦C−167◦C where µ/(Pa · s) spans between exp(0)

and exp(9).
d Page 834 in [73] for T = 373 K.
e Table 5.2 in [125] for ‘liquid’ polystyrene.
f Page 834 in [73] for polystyrene at T = 423 K with molecular weights between 1700 and 44000 g/mol.
g Page 834 in [73].
h From measurement in [105] for air/polystyrene/SiO system assuming the dimensional disjoining pressure is

defined as ϖvdw = A/6πh3. The annealing temperature was reported to be between 50◦C and 100◦C.
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2.1.1.1 Equations in the Bulk

The hydrodynamics in the bulk of an incompressible liquid film is governed by the
continuity equation 1 enforcing mass conservation

∇ · u = ∇∥ · u∥ + ∂w

∂z
= ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (2.1)

and the Navier-Stokes equation 2 enforcing momentum conservation

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇·
↔
T −∇ϖext, (2.2)

where ρ is the density of the liquid film, ϖext is the body force potential in unit of energy
per unit volume which can represent contribution from gravity (see Section 2.3.4) or
intermolecular interactions (see Section 2.3.3), u(x, y, z, t) is the velocity vector defined
as

u = u(x, y, z, t)êx + v(x, y, z, t)êy + w(x, y, z, t)êz = u∥ + wêz, (2.3a)

u∥ = u(x, y, z, t)êx + v(x, y, z, t)êy, (2.3b)

and the gradient operator ∇ is defined as

∇ = ∂

∂x
êx + ∂

∂y
êy + ∂

∂z
êz, ∇∥ = ∂

∂x
êx + ∂

∂y
êy, (2.4)

Note that the notation êi denotes unit vector along the i direction, and the subscript
‘∥’ in both u∥ and ∇∥ denote the x − y or ‘in-plane’ direction. The stress tensor

↔
T is

given by

↔
T= −p

↔
I +2µ

↔
E +

↔
M,

↔
E= 1

2
[
∇u + (∇u)T

]
, (2.5)

where p(x, y, z, t) is the fluid pressure,
↔
I is the identity matrix, µ is the viscosity of the

liquid film,
↔
E is the rate-of-strain tensor and

↔
M is the Maxwell stress tensor 3. Note that

1The general continuity equation is ∂ρ/∂t + ∇ · (ρu) = 0, which reduces to Eq. (2.1) for incom-
pressible fluid where ρ is a constant.

2The derivation of the Navier-Stokes equation can be found in textbooks such as [63, Chapter 2C,
2H, 2I] and [26, Chapter 5.3].

3The derivation presented in the rest of this chapter still holds even when the stress tensor
↔
M

represents other physical effects not related to electromagnetic phenomena, as long as the condition
∇·

↔
M= 0 holds.
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the constitutive relation given by Eq. (2.5) holds for a Newtonian fluid, which is local,
instantaneous, isotropic, homogeneous and has a local viscous stress which is a linear
function of the local rate of strain 4. For a fluid with a constant relative permittivity
in the absence of free charge, it can be shown that ∇·

↔
M= 0 (see Section 2.3.2.2),

i.e., electrostatic effects are absent in the governing equations in the bulk, though the
coupling with hydrodynamics still occurs through the interfacial boundary conditions.
Eq. (2.2) is then simplified to

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∇2u − ∇ϖext. (2.6)

2.1.1.2 Boundary Conditions

For the boundary conditions, we first consider the velocity at the substrate (i.e., bottom
plate) at z = 0. Imposing the usual no-slip and no-penetration conditions at the
substrate, we have

no-slip: u∥ = (u, v) = 0, at z = 0, (2.7)

no-penetration: u · êz = w = 0, at z = 0. (2.8)

At the free surface z = h(x, y, t) separating the liquid film and ambient gas, we have
the stress balance condition 5

n̂ · (
↔
Ta −

↔
Tb) + ∇sγ − γ(∇ · n̂)n̂ = 0 at z = h(x, y, t). (2.9)

Here,
↔
Ta and

↔
Tb denote the stress tensor associated with the upper gas layer (‘a’ for

‘air’ or ‘above’) and the bottom liquid film (‘b’ for ‘bottom’) respectively, n̂ is the unit
normal vector pointing outward from the liquid film toward the ambient gas (from ‘b’
to ‘a’) as shown in Fig. 2.1(a), ∇s is the surface gradient (see Appendix A.3.2), γ is
the surface tension, and ∇ · n̂ is the curvature (see Appendix A.3.3).

In this thesis, the hydrodynamics of the ambient gas is neglected, i.e.,
↔
Ea= 0. To

simplify notations, we introduce the stress vector ϖM associated with the (Maxwell)
stress tensor

↔
M defined as:

4It can be shown that the most general form of stress tensor for a Newtonian fluid (neglecting the
contribution from external field) is

↔
T= (−p + λ tr

↔
E)I + 2µ

↔
E, where λ + (2/3) is the bulk viscosity.

For an incompressible fluid, tr
↔
E= ∇ · u = 0. See Chapter 2H of [63] or Chapter 5.6 of [26] for a more

in-depth discussion on the viscous stress tensor.
5Eq. (2.9) appears as Eq. (2-134) in [63] with the substitution T →

↔
Ta and

↔
T→ T̂b, as well as

Eq. (5.7-8) in [26] with the substitution s(n̂)|2 → n̂·
↔
Ta and s(n̂)|1 → n̂·

↔
Tb. Note that Leal is not

consistent with convention of T · n̂ versus n̂ · T.
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ϖM = n̂ · (
↔
Ma −

↔
Mb) = ϖ

(n)
M n̂ + ϖ

(t)
M , (2.10a)

ϖ
(n)
M = ϖM · n̂, (2.10b)

ϖ
(t)
M =

∑
i

ϖ
(ti)
M t̂i, ϖ

(ti)
M = ϖM · t̂i, (2.10c)

where t̂i (with i = 1 or 2) is the unit tangent vector orthogonal to n̂ (see Appendix
A.3.1). Further dropping the subscript ‘b’ in

↔
Eb for brevity, the stress balance in the

direction normal to the free surface is given by

p− 2µ n̂·
↔
E ·n̂ +ϖ

(n)
M − γ∇ · n̂ = 0 at z = h(x, y, t), (2.11)

and the stress balance in the direction tangent to the free surface is given by

−2µ n̂·
↔
E ·̂ti +ϖ

(ti)
M + t̂i · ∇sγ = 0 at z = h(x, y, t). (2.12)

The curvature term in Eq. (2.11) represents surface tension effect, while the ∇sγ term in
Eq. (2.12) represents shear flow driven by surface tension gradient known as Marangoni
effect. We assume the liquid film is a perfect dielectric and there is no free charge residing
at the free surface at z = h. As shown in Section 2.3.2.3, ϖ(ti)

M = n̂·(
↔
Ma −

↔
Mb)· t̂i = 0

for perfect dielectric, but we retain ϖ(ti)
M for the sake of completeness and only drop the

term at the very end.

Finally, we have the kinematic condition 6

∂h

∂t
+ u∥ · ∇∥h = w at z = h(x, y, t). (2.13)

2.1.1.3 Derivation of the ∂h/∂t Conservation Equation

To obtain a more tractable equation for describing the free surface h(x, y, t) from the
full sets of governing equations and boundary conditions, we first perform the following
algebraic manipulations:

w|z=h = w|z=h − w|z=0 =
∫ z=h

z=0

∂w

∂z
dz = −

∫ z=h

z=0
∇∥ · u∥ dz. (2.14)

6Following the discussion in Chapter 2M in [63], consider a scalar function F (x, y, z, t) = z −
h(x, y, t). In the absence of interfacial mass transfer, the time derivative following any material point
on the free surface is zero, which gives ∂F/∂t + u · ∇F = 0. Using the relations ∂F/∂t = −∂h/∂t and
∇F = −∂h/∂x êx − ∂h/∂y êy + êz gives Eq. (2.13).
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The first and third equality result from the use of no-penetration condition given by
Eq. (2.8) and the continuity equation given by Eq. (2.1), respectively.

Using the Leibniz integral rule which in 1D is given by [26, Eq. (A.5-8)]

∂

∂x

∫ b(x)

a(x)
f(x, t)dt = f(x, b(x)) ∂b

∂x
− f(x, a(x))∂a

∂x
+
∫ b(x)

a(x)

∂f

∂x
dt, (2.15)

we can re-write the last term of Eq. (2.14) (with x → x, t → z, a(x) → 0, b(x) → h(x),
f(x, t) → u∥(x, z)) as

∫ z=h

z=0
∇∥ · u∥ dz = ∇∥ ·

∫ z=h

z=0
u∥ dz − ∇∥h · u∥|z=h. (2.16)

Finally, using the kinematic equation given by Eq. (2.13), we arrive at the following
general equation

∂h

∂t
+ ∇∥ ·

(∫ z=h

z=0
u∥dz

)
= 0, (2.17)

which is simply a kinematic condition with mass conservation enforced for a domain
with a free boundary at z = h(x, y, t) and holds under fairly general conditions 7.

To gain more intuition of Eq. (2.17), consider a short time interval ∆t and a short
segment of length ∆x in 1D. Suppose the local film thickness changes by ∆h due to
incoming flux, then the change in mass equals ∆m = ρ∆x∆h. The incoming fluid at x
equals ρ(ūh)|x∆t, where ū =

∫
udz is the height-averaged velocity, while the outgoing

fluid at x + ∆x equals ρ(ūh)|x+∆x∆t. Equating the change in mass to the incom-
ing/outgoing fluid gives ρ∆x∆h = ρ [(ūh)|x − (ūh)|x+∆x] ∆t. As (∆t,∆x,∆h) → 0,
we recover the 1D version of Eq. (2.17).

The problem has now been turned into the determination of u∥, which in general requires
solving the full Navier-Stokes equation with the appropriate boundary conditions, but can
be simplified for liquid thin film patterning by using the long wavelength approximation
to be discussed next.

2.1.2 Dimensionless governing equations
Here, we derive the dimensionless governing equation used for modeling liquid thin film
phenomena throughout this thesis. The final equation given by Eq. (2.49) is sum-
marized at the end of this subsection along with some general discussions of the as-
sumptions and limitations. Table 2.2 summarizes all the dimensional and dimensionless

7Eq. (2.17) is derived by only assuming mass conservation (for an incompressible fluid), no-
penetration condition at the substrate and no mass loss at the free surface. It also holds for the
more general Navier slip boundary condition.
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variables used in this thesis, Table 2.3 summarizes the characteristic scales used for
non-dimensionalization, and Table 2.4 summarizes different dimensionless groups and
quantities which appear after non-dimensionalization.

Table 2.2: Dimensional and dimensionless variables for different physical quantities.

Variable Dimensional Symbol Dimensionless Symbol

Local film thickness h H = h/h0

Vertical coordinate z Z = z/h0

Horizontal coordinate (x, y) (X,Y ) = (x, y)/l0
x = x êx + y êy X = Xêx + Y êy

Spatial derivatives ∇ = ∇∥ + ∂

∂z
êz ∇∗ = ∇∗

∥ + ∂

∂Z
êz

∇∥ = ∂

∂x
êx + ∂

∂y
êy ∇∗

∥ = ∂

∂X
êx + ∂

∂Y
êy

∇∗
∥ = h0

ϵ
∇∥,

∂

∂Z
= h0

∂

∂z

Voltage V Ψ = V/V0

Temperature T Θ = (T − Tcold)/∆T

Lateral velocity (u, v) (U, V ) = (u, v)/u0

u∥ = uêx + vêy U∥ = U êx + V êy

Vertical velocity w W = w/ϵu0

Time t τ = t/t0

Pressure p P = p/p0

Surface tension variation γ − γ0 Γ = (γ − γ0)/∆γ

2.1.2.1 Non-dimensionalization using Long Wavelength Approximation

The variables and governing equations introduced in the previous section are non-
dimensionalized under the assumption of long wavelength approximation (LWA) 8 that
the typical length scale in the horizontal or ‘in-plane’ direction is much longer than that
in the vertical or ‘out-of-plane’ direction. The derivation presented in this section closely
follows the review by Oron et al. [85]. Additional references can be found in the more
recent review by Craster and Matar [22] or the textbook by Leal [63, Chapter 6A].

Uppercase letters and symbols are used to denote dimensionless quantities, and the
subscript ‘0‘ (e.g., h0, l0, t0, etc.) is used to denote dimensional quantities for non-

8It is also known as lubrication approximation, long wavelength approximation or slender-gap ap-
proximation in the literature.
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Table 2.3: Typical values of the characteristic scales used in non-dimensionalization.
Each data entry reported in the studies quoted in Table 1.1 to used to estimate the
characteristic scales, and the resulting spread of the characteristic scales are reported
in this table.

Variable Symbol Unit Typical Values

Vertical coordinate h0 nm 78 − 400

Lateral coordinate l0 (= λm/2 or λp/2) µm 0.6 − 36.6

Voltage V0 V 10 − 100

Temperature ∆T = Thot − Tcold K 9.8 − 25.8

Time t0 = l0
u0

= µl40
h3

0γ0
s 7500 − 3 × 105

Lateral velocity[a] u0= ϵ3γ0
µ

= h3
0γ0
l30µ

m/s 8 × 10−11 − 2 × 10−9

Pressure[b] p0 = µu0
ϵh0

= h0γ0
l20

Pa 5 − 33

Surface tension γ0 N/m 0.03 − 0.036

Surface tension variation[c] ∆γ = µu0
ϵ

= h2
0γ0
l20

N/m 0.0006 − 0.002

Expressions highlighted in blue are typical scalings employed under LWA [85], while those
highlighted in red are obtained after substituting the specific choice of u0 = ϵ3γ0/µ, see
Chapter 2.1.2.3.

a Velocity scale u0 is obtained by balancing capillary and viscous stress in normal stress
boundary condition.

b Pressure scale p0 is obtained by balancing the viscous term and pressure gradient term
in the Navier-Stokes equation along the horizontal direction.

c Surface tension variation scale ∆γ is obtained by balancing the Marangoni term and the
viscous shear stress term in the tangential stress boundary condition.
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Table 2.4: Typical values of the dimensionless numbers relevant to EHD/TC pattern-
ing under LWA. Each data entry reported in the studies quoted in Table 1.1 to used
to estimate the dimensionless numbers, and the resulting spread of the dimensionless
numbers are reported in this table.

Name Physical meaning Expression Values

Lubrication ϵ = h0/l0 0.005 − 0.2

Reynolds inertial force
viscous force Re = ρu0h0

µ
O(10−16 − 10−8)

Capillary viscous forces
capillary force Ca = µu0

ϵ3γ0
1 (a)

Marangoni thermocapillary force
viscous force Ma = ϵγT ∆T

µu0

Marangoni (a) thermocapillary force
capillary force M = Ma × Ca = γT ∆T

ϵ2γ0
O(101 − 104)

Electric Weber electrostatic force
viscous force We = ϵε0V

2
0

µu0h0

Electric Weber (a) electrostatic force
capillary force W = We × Ca = ε0V

2
0

ϵ2γ0h0
O(102 − 105)

Bond gravitational force
capillary force B = ρgh2

0
ϵ2γ0

= ρgl20
γ0

O(10−7 − 10−4)

Hamaker intermolecular force
capillary force A = A

ϵ26πγ0h2
0

O(10−5 − 10−1)

Prandtl momentum diffusivity
thermal diffusivity Pr = µ/ρ

k̂/cpρ
= cpµ

k̂
O(100 − 108) [b]

a After substitution of u0 given by Eq. (2.48).
b Air: 0.69 − 0.72 for temperature between 50◦C and 200◦C; Polystyrene: O(104 − 108),

see footnote in Table 2.1 for details on estimation of viscosity.

dimensionalization.

The mean film thickness h0 is used as the characteristic vertical scale and can be
experimentally measured. The symbol l0 is used to denote the characteristic horizontal
scale, which is either the fastest-growing wavelength λm

9 in the absence of any spatial
modulation as shown in Fig. 1.1(a)-(b), or the externally imposed patterning wavelength
λp which is assumed to be known. The dimensionless coordinates are

(X,Y ) = (x, y)
l0

= ϵ
(x, y)
h0

, (Z,H) = (z, h)
h0

, (2.18)

while the dimensionless gradient operators denoted by the asterisk (∗) is
9In both EHD and TC patterning, λm is determined by the mean film thickness h0, material’s

properties and other adjustable experimental parameters (see section 3.1.3), and is therefore assumed
to be a known quantity for a given set of parameters.
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∇∗ =
(
∂

∂X
,
∂

∂Y
,
∂

∂Z

)
=
(
l0
∂

∂x
, l0

∂

∂y
, h0

∂

∂z

)
= h0

(1
ϵ

∂

∂x
,
1
ϵ

∂

∂y
,
∂

∂z

)
, (2.19)

The symbol ϵ = h0/l0 is reserved to denote the small aspect ratio in LWA. It will be
shown later that ϵ2 ≪ 1 is required for LWA to hold. Referring to Fig. 2.1, the vertical
lengths scale as O(1), while the horizontal lengths scale as O(1/ϵ).

Let u0 and w0 denote the characteristic horizontal and vertical velocity scale which will
be specified later in Section 2.1.2.3. The dimensionless velocity is

U = U∥ +W êz, U∥ = U êx + V êy, U∥ =
u∥
u0
, W = w

u0
. (2.20)

The continuity equation given by Eq. (2.1) is non-dimensionalized to

u0
l0

∇∗
∥U∥ + w0

h0

∂W

∂Z
= 0. (2.21)

Since both terms should be of the same order, and ∇∗
∥U∥ and ∂W/∂Z are assumed to

be O(1) after non-dimensionalization, we can fix the vertical velocity scale w0 as follow:

w0 = h0
l0
u0 = ϵu0. (2.22)

The characteristic time t0 is determined from the lateral fluidic motion, i.e., t0 = l0/u0,
and so the dimensionless time τ and the time derivative ∂/∂τ are

τ = t

l0/u0
= ϵu0t

h0
,

∂

∂τ
= h0
ϵu0

∂

∂t
. (2.23)

The characteristic pressure scale p0 is used to non-dimensionalize the pressure p and
external body force potential ϖext. Introducing the notation P̄ = P + Πext = p0(p +
ϖext), the Navier-Stokes equation given by Eq. (2.6) becomes

ϵ
ρu2

0
h0

(
∂U∥
∂τ

+ U∥ · ∇∗
∥U∥ +W

∂U∥
∂Z

)
= −ϵp0

h0
∇∗

∥P̄ + µu0
h2

0

[
ϵ2∇∗2

∥ U∥ +
∂2U∥
∂Z2

]
,

(2.24)

ϵ3
ρu2

0
h0

(
∂W

∂τ
+ U∥ · ∇∗

∥W +W
∂W

∂Z

)
= −p0

h0

∂P̄

∂Z
+ ϵ2µu0

h2
0

(
ϵ2∇∗2

∥ W + ∂2W

∂Z2

)
,

(2.25)
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On the left-hand side, we can identify the Reynolds number as Re = ρu0h0/µ, and for
typical experimental conditions applicable to thin film patterning, Re ≪ 1 (see Table
2.4 on page 19). The inertial term of the left-hand side can thus be safely neglected.
On the right-hand side, balancing horizontal pressure gradient ∇∗

∥P̄ and the dominant
viscous stress term ∂2U∥/∂Z

2 leads to

O
(
ϵp0
h0

)
= O

(
µu0
h2

0

)
=⇒ p0 = µu0

ϵh0
. (2.26)

Note that the pressure should be retained in either Eq. (2.24) or Eq. (2.25) whatever
the scaling turns out to be. The other alternative would be choosing p0 such that the
pressure gradient ∂P̄ /∂Z and viscous term ∂2W/∂Z2 is balanced instead. However,
this leads to an inconsistency [63] in the resulting equations, and hence Eq. (2.26) is
the only appropriate choice for choosing the pressure scale. Assuming ϵ2 ≪ 1, the
dimensionless Navier-Stokes equation becomes

∇∗
∥P̄ =

∂2U∥
∂Z2 ,

∂P̄

∂Z
= 0,

(2.27)

(2.28)

which together with the continuity equation

∇∗
∥U∥ + ∂W

∂Z
= 0 (2.29)

govern the hydrodynamics in the bulk of the liquid film. The dimensionless pressure and
body force potential can also be written as

(P,Πext) = (p,ϖext)
p0

= ϵh0
µu0

(p,ϖext). (2.30)

Next, we begin to non-dimensionalize the boundary conditions. The no-slip (Eq. (2.7))
and no-penetration (Eq. (2.8)) conditions are non-dimensionalized to

U = (U, V,W ) = 0, at Z = 0. (2.31)

For the stress balance condition, we first simplify the unit normal and tangent vectors
n̂ and t̂:
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n̂ =
−ϵ∇∗

∥H + êz√
1 +

∣∣∣ϵ∇∗
∥H
∣∣∣2 =

(
−ϵ∂H
∂X

êx − ϵ
∂H

∂Y
êy + êz

) [
1 + O(ϵ2)

]
, (2.32a)

t̂x =
(

êx + ϵ
∂H

∂X
êz

) [
1 + O(ϵ2)

]
, (2.32b)

t̂y =
(

êy + ϵ
∂H

∂Y
êz

) [
1 + O(ϵ2)

]
, (2.32c)

and the rate-of-strain tensor
↔
E:

2
↔
E= u0

h0


2ϵ ∂U
∂X

ϵ

(
∂U

∂Y
+ ∂V

∂X

)
∂U

∂Z
+ ϵ2

∂W

∂X

ϵ

(
∂U

∂Y
+ ∂V

∂X

)
2ϵ∂V
∂Y

∂V

∂Z
+ ϵ2

∂W

∂Y
∂U

∂Z
+ ϵ2

∂W

∂X

∂V

∂Z
+ ϵ2

∂W

∂Y
2ϵ∂W
∂Z


. (2.33)

We also assume the surface tension can be expressed as

γ = γ0 + γ∆Γ, (2.34)

where γ0 and γ∆ represent the typical values of the total surface tension and the change
in surface tension due to Marangoni effect, respectively. Note that the dimensionless
surface tension variation is Γ, and the dimensional surface tension variation |γ∆Γ| is
typically much smaller than γ0.

The stress balance conditions given in Eq. (2.11) are (2.12) are non-dimensionalized to

P + ϵh0
µu0

ϖ
(n)
M − 2ϵ2

[
∂W

∂Z
− ∇∗

∥H ·
∂U∥
∂Z

+ O(ϵ2)
]

+ ϵ3γ0
µu0

(
1 + γ∆

γ0
Γ
)

∇∗2
∥ H

[
1 + O(ϵ2)

]
= 0. at Z = H (2.35)

−
[
∂U∥
∂Z

+ O(ϵ2)
]

+ h0
µu0

ϖ
(t)
M + ϵγ∆

µu0
∇∗

∥Γ = 0. at Z = H (2.36)

Appropriate scalings need to be chosen in order to retain the relevant terms to leading
order. For the external forcing associated with the stress tensor

↔
M, balancing the P

term and ϖ(n)
M term in Eq. (2.35) and the ∂U∥/∂Z term and ϖ

(t)
M term in Eq. (2.36)

give the following scalings [85]:
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(Π(n)
M ,Π

(t)
M ) = h0

µu0
(ϵϖ(n)

M ,ϖ
(t)
M ). (2.37)

Note that ϖ(n)
M and ϖ

(t)
M are scaled differently by a factor of ϵ under LWA. In order to

retain the surface tension effect in Eq. (2.35), we assume O(ϵ3γ0/µu0) = 1. Similarly,
to retain the Marangoni effect in Eq. (2.36), we assume O(ϵγ∆/µu0) = 1.

The dimensionless surface tension variation Γ and the characteristic scale γ∆ are then
given by

γ∆ = µu0
ϵ
, Γ = ϵ(γ − γ0)

µu0
, (2.38)

We introduce the capillary number Ca, the Marangoni number Ma, and the correspond-
ing rescaled numbers denoted by an overhead bar which are assumed to be O(1):

Ca = µu0
γ0

, Ma = γ∆
µu0

, Ca = Ca
ϵ3

= µu0
ϵ3γ0

, Ma = ϵMa = ϵγ∆
µu0

. (2.39)

Note that the Γ term in Eq. (2.35) (highlighted in red) becomes γ∆/γ0 = ϵ2Ca and
hence can be neglected. Dropping other O(ϵ2) terms (highlighted in red) in the viscous
stress and curvature, Eq. (2.35) and (2.36) become

P + Π(n)
M + 1

Ca
∇∗

∥H = 0, at Z = H,

−
∂U∥
∂Z

+ Π
(t)
M + Ma ∇∗

∥Γ = 0, at Z = H.

(2.40)

(2.41)

Finally, Eq. (2.17) is non-dimensionalized to

∂H

∂τ
+ ∇∗

∥ ·
[∫ H

0
U∥dZ

]
= 0, (2.42)

which is exact and always holds regardless of whether LWA is used.

2.1.2.2 Determination of U∥

We are now ready to solve the boxed governing equations to obtain an approximate
expression for U∥ under LWA. First, Eq. (2.28) implies P̄ = P̄ (X) is independent of Z.
We can therefore integrate Eq. (2.27) along Z twice to obtain

U∥ = 1
2∇∗

∥P̄ Z2 + α1Z + α0, (2.43)
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where αi(X,Y ) (i = 0, 1) are integration constants which are determined by the bound-
ary conditions given in Eq. (2.41) and (2.31). We can then solve for U∥ to obtain

U∥ = Z

[1
2∇∗

∥P (Z − 2H) + Ma∇∗
∥Γ + Π

(t)
M

]
. (2.44)

While not necessary for the subsequent derivation, here we provide the expression for
the vertical velocity W for completeness by using the continuity equation:

W = −
∫ Z

0
∇∗

∥ · U∥dZ

= Z2

6
[
∇∗2

∥ P (3H − Z) + 3∇∗
∥P · ∇∥H − 3∇∗

∥ ·
(
Ma∇∗

∥Γ + Π
(t)
M

)]
. (2.45)

Finally, Eq. (2.44) is integrated from Z = 0 to Z = H and then substituted into
Eq. (2.42), giving

∂H

∂τ
+ ∇∗

∥ ·
[
−H3

3 ∇∗
∥P̄ + H2

2
(
∇∗

∥Γ + Π
(t)
M

)]
= 0, (2.46)

where P̄ is obtained from Eq. (2.40):

P̄ = P + Πext = (P + Πext)|Z=H = − 1
Ca

∇∗2
∥ H − Π(n)

M + Πext|Z=H . (2.47)

2.1.2.3 Choice of horizontal velocity scale u0

In order to maintain consistent form of the governing equation regardless of the dominant
physical effects (electrostatics for EHD pattering or thermocapillarity for TC patterning),
we scale the velocity by balancing the viscous force and the surface tension force, both
of which are always present for the parameters of interest in this thesis. This amounts
to setting the rescaled Capillary number, which is simply the ratio of viscous force
and surface tension force under LWA, to unity, i.e., Ca = 1. This gives the following
expression of u0

u0 = ϵ3γ0
µ

= h3
0γ0
l30µ

. (2.48)

This choice of u0 is also mathematically equivalent to rescaling the dimensionless time
by absorbing Ca into the definition of τ in Eq. (2.46), thus reducing the number of
dimensionless groups by one. The other dimensionless groups which enter Eq. (2.46)
through Φ|Z=H , ΠM and Γ become the ratio of the corresponding physical force to
surface tension force under this specific choice of u0.
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2.1.3 Summary of governing thin film equation
The governing thin film equation for a single viscous incompressible Newtonian liquid
layer on a flat substrate used throughout this thesis can be expressed as

∂H

∂τ
= ∇∗

∥ ·
[
M⊥(H)∇∗

∥P̄ −M∥(H)∇∗
∥Γ
]
,

P̄ = −∇∗2
∥ H − Π,

M⊥(H) = H3

3 , M∥(H) = H2

2 ,

(2.49)

where M⊥(H) and M∥(H) are the two mobility factors associated with the normal
(subscript ‘⊥’) and tangential (subscript ‘∥’) direction with respect to the free surface.
The specific forms of the two mobility factors are derived assuming no-slip conditions
hold at the bottom substrate and neglecting the hydrodynamics in the upper gas layer.

Additional physical phenomena enter Eq. (2.49) through the external pressure term Π or
the Marangoni term Γ, and we will consider electrostatics ΠEM under perfect dielectric
model (Section 2.3.2), thermocapillarity ΠTC with thermal conduction (Section 2.3.1),
van-der Waals interaction Πvdw (Section 2.3.3) and gravity Πgravity (Section 2.3.4)
which are given by

Π = ΠEM + Πvdw + Πgravity, Γ = ΓTC

ΠEM = Wεr(εr − 1)Ψ2
∆

2 [H + εr(D −H)]2
, (2.50a)

Πvdw = A
( 1
H3 − 1

(D −H)3

)
, (2.50b)

Πgravity = −BH, (2.50c)

ΓTC = −M [κHΘcold + (D −H)Θhot]
D − (1 − κ)H . (2.50d)

The derivations of Eq. (2.50) and the physical meanings of different symbols and terms
are discussed in Section 2.3. Note that since pressure arising from both body force (e.g.,
gravity) and surface force (electrostatics) can be treated similarly inside P̄ , we no longer
distinguish between the two and simply use the general symbol Π to represent external
pressure acting on the free surface which is not due to capillarity.

Certain assumptions can be relaxed, or more complicated physical phenomena can be
considered, if appropriate modifications to Eq. (2.49) are made. Here we briefly discuss
a few common cases:
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1. Navier-slip at z = 0: If we allow a slip length at the bottom substrate such that
u∥ ∝ ∂u∥/∂z at z = 0, both mobility factors M⊥(H) and M∥(H) are modified
to the form M⊥(H) = H3/3 + βslipH

2 and M∥(H) = H2/2 + βslipH where βslip

is the slip coefficient [85].

2. Temperature dependent viscosity µ = µ(T ): The viscosity of polymers, which
are the fluids commonly used in EHD and TC patterning, is highly temperature
dependent. Its effect can be incorporated which results in more complicated forms
for the mobility factors, see, for example, Ref [85, Section G].

3. Viscous fluid in the upper layer: If the passive gas layer is replaced by a viscous
fluid such that its hydrodynamics cannot be ignored, the mobility factors become
a function of H, D and the viscosities of the two fluids.

4. Topographically patterned substrate: If the bottom substrate is not flat but topo-
graphically patterned with shape given by Z = S(X), and the free surface position
is Z = H(X, τ) + S(X), then P̄ contains an additional term ∇∗2

∥ S which is the
pressure gradient caused by the uneven substrate profile.

5. Electric or/and thermal fields generated from different configurations: If we have a
different system configuration, such as the absence of the top plate, ΠEM and ΓTC

will have different expressions depending on the actual physics. For example, if a
liquid film is subject to convective cooling, then ΓTC is derived with Newton’s law
of cooling as the boundary condition. Eq. (2.49) still holds as long as individual
terms in Π and Γ only depend on H, other systems’ variables such as D(X) and
materials’ constants.

It can be seen that more general conditions or additional physical phenomena can be
handled in a relatively straightforward manner despite the focus of this thesis being
EHD and TC patterning. One main requirement is that H(X, τ) is the only state vari-
able describing the system, and additional state variables such as the electric potential
and temperature have to be expressed in terms of H via some sort of approximations.
Examples where additional state variables are required, including multi-layer films, or
the presence of particles like surfactants or free charges, cannot be handled by simple
modification of terms in Eq. (2.49) and so fall outside the scope of this thesis.

2.2 Gradient Flow Formulation
Mitlin [76] first showed that the interface equation describing thin film dewetting, which
has the same form as Eq. (2.49) without shear stress, can be expressed in the following
form
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∂H

∂τ
= ∇∥ ·

[
M⊥(H)∇∥

(
δF [H]
δH

)]
, (2.51)

where F [H] is an energy functional defined as

F [H] =
∫

Ω

[1
2

∣∣∣∇∥H
∣∣∣2 + Φ(H)

]
dX. (2.52)

Eq. (2.51) is known as the gradient flow, and offers some advantages from a modeling
perspective: it may offer better flexibility in incorporating energy functional to represent
additional physical effects and it can be obtained via the Onsager variational principle
[116]. Here, Eq. (2.51) is used to demonstrate an important fact that the free energy
is a non-increasing function with time, and lay the foundation for latter discussion from
an energy perspective.

Expand H = H + δH1 where δ ≪ 1, the energy functional becomes

F [H + δH1] =
∫

Ω

1
2
[
∇∥(H + δH1)

]2
+ Φ(H + δH1)dX

=
∫

Ω

[1
2

(∣∣∣∇∥H
∣∣∣2 + 2δ∇∥H · ∇∥H1 + Φ(H) + dΦ

dHδH1

)]
dX + O(δ2)

= F [H] + δ

∫
Ω

(
−∇2

∥H + dΦ
dH

)
H1 dX + O(δ2). (2.53)

The functional derivative of F is

δF [H]
δH

= −∇∗2
∥ H + dΦ

dH = −∇∗2
∥ H − Π, (2.54)

where the Π = −dΦ/dH is the generalized external pressure, and Φ can be interpreted
as the energy density (energy per unit area). The form of Φ depends on the specific
physical effects and are discussed in Section 2.3. Inspection of Eq. (2.49) shows that it
automatically satisfies the form of Eq. (2.51) and (2.54) when there is no shear stress,
i.e., ∇∗

∥Γ = 0. For the case of TC patterning where the Marangoni term is present,
expressing Eq. (2.49) in the form of Eq. (2.51) is possible when the system is not spatially
modulated (see Section 2.3.1.3).

Suppose the governing thin film equation can indeed be cast in the form of Eq. (2.51).
We first investigate the time evolution of the free energy, i.e., dF/dτ . When the only
time-dependent quantity of the system is the shape of the liquid film H(X, τ), we have
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dF [H]
dτ = d

dτ

∫
Ω

[1
2 |∇∥H|2 + Φ(H)

]
dX

=
∫

Ω

[
∇∥H · d

dτ (∇∥H) + dΦ
dH

∂H

∂τ

]
dX. (2.55)

Using Green’s first identity which is given by

∫
Ω

(
∇ψ · ∇ϕ+ ψ∇2ϕ

)
dV =

∫
∂Ω
ψ (∇ϕ · n̂) dS (2.56)

for any general vector fields ϕ(x⃗) and ψ(x⃗) (not to be confused with the Φ(H) we have
above).

Exchange the order of ∇∥ and d/dτ in the first term, and apply the Green’s first identity
with ϕ = H and ψ = ∂H/∂τ , we have

∫
Ω

∇∥H · d
dτ (∇∥H)dX =

∫
Ω

∇∥H · ∇∥

(
∂H

∂τ

)
dX = −

∫
Ω

(
∂H

∂τ
∇2

∥H

)
dX (2.57)

where the boundary term vanishes if we impose periodic boundary condition or the
Neumann boundary condition (∇∥H = 0 along ∂Ω).

Therefore, we have

dF [H]
dτ =

∫
Ω

(
−∇2

∥H + ∂Φ
∂H

)
∂H

∂τ
dX

=
∫

Ω

(
−∇2

∥H + ∂Φ
∂H

)
∇∥ ·

[
M(H)

(
−∇2

∥H + ∂Φ
∂H

)]
dX

= −
∫

Ω
M(H)

∣∣∣∣∇∥

(
−∇2

∥H + dΦ
dH

)∣∣∣∣2 dX ≤ 0. (2.58)

The last line is obtained via integration by parts. The boundary term vanishes if we
impose the periodic boundary condition or the no flux boundary condition. Hence, the
Lyapunov free energy functional is a non-increasing function with time.

2.3 Coupling with Other Physical Effects
In this section, we discuss how different physical phenomena relevant to EHD or TC
patterning can be incorporated into Eq. (2.49) through the external pressure Π or the
surface tension variation Γ.
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2.3.1 Thermocapillarity
Since surface tension varies with temperature, the Marangoni term ∇∗

∥Γ in Eq. (2.46)
can become significant when there is a temperature gradient along the free surface. Here
we follow the derivation in Dietzel and Troian [29] to arrive at dimensionless Marangoni
term ∇∗

∥Γ given by Eq. (2.72).

2.3.1.1 Dimensional Governing Equations

The temperature T is governed by the energy equation given by [85]

ρα cp,α

(
∂Tα

∂t
+ ui · ∇Tα

)
= k̂α∇2Tα, α = a (air), b (liquid), (2.59)

where ρα is the density, cp,α is the specific heat capacity at constant pressure, and k̂α

is the thermal conductivity 10 of the fluid α where α = a refers to the upper layer of
passive gas and α = b refers to the bottom layer of fluid. Note that while hydrodynamics
is neglected in the passive gas layer, i.e., uα = 0 for α = a, heat transfer still occurs in
both top and bottom layers. The boundary conditions are

Ta(z = d) = Tcold(x), (2.60)

Tb(z = 0) = Thot(x), (2.61)

Ta(z = h) = Tb(z = h), (2.62)

k̂a n̂ · ∇Ta(z = h) = k̂b n̂ · ∇Tb(z = h), (2.63)

where n̂ is again the unit vector normal to the free surface at z = h. We allow the mask
topography d and both Tcold and Thot to be functions of the horizontal coordinates x to
take into account spatially modulated mask topography and temperatures of the plates.

2.3.1.2 Dimensionless Governing Equations

Defining the dimensionless temperature Θ as

Θ = T − Tcold
Thot − Tcold

= T − Tcold
∆T , (2.64)

where ∆T ≡ mean(Thot−Tcold) is the mean temperature difference, and non-dimensionalizing
the spatial scales through the LWA given by Eq. (2.18), Eq. (2.59) becomes

10In this thesis, k (with and without subscripts) generally refers to wave number except in this section
where k̂ refers to thermal conductivity. k̂α does not appear in the rest of this thesis where dimensionless
quantities are mostly used.
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ϵRe Pra

(
∂Θa

∂τ
+ U∥ · ∇∗

∥Θa +W
∂Θa

∂Z

)
= ϵ2∇∗2

∥ Θa + ∂2Θa

∂Z2 , (2.65a)

ϵRe Prb
ρa

ρb

µb

µa

∂Θb

∂τ
= ϵ2∇∗2

∥ Θb + ∂2Θb

∂Z2 , (2.65b)

where Prα = (µαcp,α/k̂α) is the Prandtl number for fluid α and is a material constant.
As shown in Table 2.1 and 2.4, Pra = O(1), Prb = O(104−108), Re = O(10−16−10−8),
ϵ = O(10−3 −10−1), ρa/ρb = O(10−3) and µb/µa = O(105 −108). Therefore, the left-
hand side of both Eq. (2.65) can be neglected under typical conditions for TC patterning.
The energy equation can then be simplified to a 1D Laplace equation

∂2Θα

∂Z2 = 0, α = a, b, (2.66)

with the boundary conditions

Θa(Z = D) = Θcold, (2.67a)

Θa(Z = 0) = Θhot, (2.67b)

Θa(Z = H) = Θb(Z = H), (2.67c)

κ
∂Θa(Z = H)

∂Z
= ∂Θb(Z = H)

∂Z
, (2.67d)

where κ = k̂a/k̂b is the ratio of thermal conductivity. Using the general solution to 1D
Laplace equation given in Appendix A.4, we can solve for the Θi:

Θa(X, Z) = Θcold + Θhot − Θcold
D − (1 − κ)H (D − Z), (2.68)

Θb(X, Z) = Θhot − κ(Θhot − Θcold)
D − (1 − κ)H Z. (2.69)

Note that the Z dependence of Θi comes directly from the 1D Laplace equation given in
Eq. (2.66), while its X dependence comes from H(X, τ), D(X), Θhot(X) and Θcold(X).
The temperature at the free surface Z = H (hereafter called ‘surface temperature’) Θs

is

Θs(X) ≡ Θ(X, Z = H) = κHΘcold + (D −H)Θhot
D − (1 − κ)H . (2.70)

To relate the temperature to the Marangoni term in Eq. (2.46), we assume the surface
tension decreases linearly with temperature as
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γ(Ts) = γ0 − γT (Ts − Tcold) = γ0 − γT ∆T Θs, (2.71)

where γ0 is the reference surface tension evaluated at T = Tcold, γT = |∂γ/∂T |, and
∂γ/∂T < 0 for most common materials. We can thus identify γ∆ = γT ∆T as the
surface tension variation. The Marangoni term in Eq. (2.46) becomes

∇∗
∥Γ = −M∇∗

∥Θs = −M∇∗
∥

[
κHΘcold + (D −H)Θhot

D − (1 − κ)H

]
, (2.72)

where the dimensionless number M is the rescaled Marangoni number with u0 given by
Eq. (2.48):

M = Ca × Ma = µu0
ϵ3γ0

× ϵγT ∆T
µu0

= γT ∆T
ϵ2γ0

. (2.73)

Throughout the rest of this thesis, M is simply referred to as the Marangoni number,
which is the ratio between the thermocapillary stress and stabilizing capillary stress,
and is a key control parameter in TC patterning. Variation in M corresponds naturally
to variation in temperature difference ∆T under fixed material’s properties and length
scales (h0 and l0). If van der Waals’ interaction (see Section 2.3.3) is also neglected,
then variation in M can also be achieved by varying the patterning wavelength l0 = λp

while keeping ∆T and other parameters fixed.

2.3.1.3 Gradient Flow formulation for TC Patterning

It is possible to express Eq. (2.49) with ∇∗
∥Γ given by Eq. (2.72) as long as all lateral

variation in Γ comes from H(X, τ) only, i.e., D, Θhot and Θcold are all constants. The
derivation given here follows [29, 146] closely.

We need to express the shear stress term as

M∥(H)∇∗
∥Γ = M⊥(H)

[
M∥(H)
M⊥(H)∇∥Γ∗

]
= M⊥(H)∇∥ΠTC(H), (2.74)

where M⊥(H) = H3/3, M∥(H) = H2/2 and Γ = −MΘs(H) is given by Eq. (2.72)
with D = D0, Θhot = 1 and Θcold = 0. Using the substitution χ = (κ − 1)/D0, ΠTC

for simplifying expressions, we obtain:
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M∥(H)
M⊥(H)∇∗

∥Γ = −3M
2H

∂Θs

∂H
∇∥H

= 3M
2H

κD0

[D0 + (κ− 1)H]2
∇∥H

= 3Mκ

2D0

1
H(1 + χH)2 ∇∥H

= 3Mκ

2D0

[ 1
H

− χ

1 + χH
− χ

(1 + χH)2

]
∇∥H

= 3Mκ

2D0
∇∥

[
log

(
H

1 + χH

)
+ 1

1 + χH

]
. (2.75)

Therefore, the governing thin film equation for TC patterning (with constant electrode
separation D0 and temperature difference) can indeed be expressed in the general form
of gradient flow given by Eq. (2.49) provided that generalized pressure Π = ΠTC in
Eq. (2.54) is given by

ΠTC = 3Mκ

2D0

[
log

(
H

1 + χH

)
+ 1

1 + χH

]
, (2.76)

and the energy density ΦTC is

ΦTC = −3Mκ

2D0
H log

(
H

1 + χH

)
. (2.77)

Note that the expression of Lyapunov energy functional given by Eq. (2.76) was recently
used by Yang et al. [138] to deduce the stability of stationary states in TC patterning
with patterned mask (i.e., D = D(X)). However, recasting the thin film equation into
the form of Eq. (2.51) using Eq. (2.77) results in an additional term containing spatial
variation in D(X). We have yet to successfully formulate the gradient flow equation
for TC patterning with spatially modulated D(X), Θhot(X) or Θcold(X), and are not
aware of any rigorous proof in literature whether such formulation is possible.

2.3.1.4 Other temperature models

The governing equations described in this section applies to thermal conduction where
the temperature gradient is imposed by maintaining the mask and substrate at different
temperatures. In an ‘open’ configuration where the liquid film is heated from below
by the substrate without the top mask, a more appropriate boundary condition is New-
ton’s law of cooling applied at the free surface which has been extensively discussed in
literature [85].
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2.3.2 Electrostatics
2.3.2.1 Dimensional Governing Equations

In the case of EHD patterning when an external electric field is applied, the ‘leaky
dielectric model’ [99] is commonly used to describe the electrostatics of the system.
Under the leaky dielectric model, all charges are depleted from the bulk region along the
particle trajectories due to the small charge relaxation time and reside on the fluid-gas
interface. In this thesis, we specialize to the case where the fluid and the passive gas
are both considered as perfect dielectric with zero electrical conductivity. From here
onwards, ‘EHD pattering’ will be synonymous with the ‘perfect dielectric model’ which
has no shear stress as will be demonstrated in Section 2.3.2.3, though it should be
stressed that the results presented in this thesis are only special case of the more general
leaky dielectric model. Under the ‘perfect dielectric model’, there is no free charge in
the system, and only bound charges reside on the free surface. Gauss’ law and Faraday’s
law for the electric field E become

∇ × E = 0, ∇ · (εE) = 0, (2.78)

where ε 11 is the electrical permittivity. The Maxwell stress tensor
↔
M becomes

↔
M= ε

(
EE − 1

2 |E|2
↔
I
)
. (2.79)

To obtain the electric field E = −∇V , we need to solve for the electric potential V
which is governed by Laplace equation

∇2Vα = 0, where α = a, b, (2.80)

with the boundary conditions

Va(z = d) = V∆(x), (2.81a)

Vb(z = 0) = 0, (2.81b)

Va(z = h) = Vb(z = h), (2.81c)

εa n̂ · ∇Va(z = h) = εb n̂ · ∇Vb(z = h), (2.81d)

As it will become apparent later, it is the square of the potential difference between
the two electrodes that matter, and so without loss of generality we simply ground the

11In this thesis, the symbol ε is used exclusively to denote electrical permittivity, while ϵ(= h0/l0) is
used to denote the small aspect ratio in LWA. Notice the typographical difference between ε and ϵ.
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bottom electrode and set V = V∆ (where subscript ∆ denotes the difference) as the
electric potential at the top electrode. Similar to TC patterning, we let both d(x) and
V∆(x) be functions of x to take into account spatially modulated mask topography and
voltage difference.

2.3.2.2 Proof of ∇·
↔
M= 0 in the bulk

We first show that ∇·
↔
M= 0 in the bulk of the medium in the absence of free charge.

Using Einstein’s notation where Mij and Ej denote the individual component of the
Maxwell stress tensor and electric field, we have

(∇·
↔
M)j = ∂iMij = ∂i

[
ε(EiEj − 1

2E
2δij)

]
= ����∂i(εEi)Ej + εEi(∂iEj) − ε

2∂j(EiEi)

= εEi(∂iEj − ∂jEi) = 0, (2.82)

where in the second line ∂i(εEi) = ∇ · (εE) = 0 due to Gauss’ law, and in the third
line the terms inside the parenthesis is zero due to the cross product in Faraday’s law.
Therefore, the electrostatic effect does not manifest in the hydrodynamics of the bulk
through the Navier-Stokes equation. However, it does couple with the hydrodynamics
through the stress boundary condition at z = h.

2.3.2.3 Derivation of normal and shear electrostatic stress

To evaluate the electrostatic stress ϖ(n)
M = n̂ · (

↔
Ma −

↔
Mb) · n̂ in the normal stress

balance given by Eq. (2.11), we first evaluate n̂·
↔
Mα ·n̂ as follow:

n̂·
↔
Mα ·n̂ = εα n̂ ·

(
EαEα − 1

2Eα · Eα

)
· n̂

= εα

(n̂ · Eα)(Eα · n̂) − 1
2

(Eα · n̂)2 +
∑

i=1,2
(Eα · t̂i)2


= εα

2

(Eα · n̂)2 −
∑

i=1,2
(Eα · t̂i)2

 . (2.83)

Across the free surface at z = h, the tangential component of the electric field Eα · t̂i

is continuous. Using En,α and Et,α to denote the normal and tangential component of
electric field in medium α, ϖ(n)

M becomes
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ϖ
(n)
M = n̂ · (

↔
Ma −

↔
Mb) · n̂

= εa

2
(
E2

n,a − E2
t,a

)
− εb

2
(
E2

n,b − E2
t,b

)
= (εb − εa)

2

(
εb

εa
E2

t,b + E2
n,b

)
. (2.84)

For the shear stress condition in Eq. (2.12), we first evaluate t̂·
↔
Mα ·n̂ as follow:

t̂·
↔
Mα ·n̂ = εα t̂ ·

[
EαEα − 1

2(Eα · Eα)
↔
I
]

· n̂ (2.85)

= εα(̂t · Eα)(Eα · n̂) − εα

2 |Eα|2����(̂t · n̂) = (̂t · Eα)(εαEα · n̂). (2.86)

Since both Et,α = Eα · t̂ and En,α = Eα · n̂ are continuous across the free surface,
electrostatic effects exert no shear stress at the free surface at z = h:

ϖ
(ti)
M = t̂i · (

↔
Ma −

↔
Mb) · n̂ = Et(εaEn,a − εbEn,b) = 0. (2.87)

In the more general leaky dielectric model where free surface charge resides at z = h,
the boundary condition for En becomes εaEn,a −εbEn,b = σ where σ is the free surface
charge density. Therefore, ϖ(n)

M in Eq. (2.84) will contain an extra term, and ϖ
(t)
M in

Eq. (2.87) becomes ϖ
(t)
M = σEt.

2.3.2.4 Dimensionless Governing Equations

In order to obtain an analytical expression for the electric potential V , and hence the
electrostatic stressϖ(n)

M given by Eq. (2.84), we again assume the electric potential varies
much more slowly along the lateral direction than the vertical direction, and apply LWA.
Define the dimensionless electric potential Ψ as

Ψ = V

V0
, (2.88)

where V0 = mean(V∆) is the mean potential difference between the top and bottom
electrodes. To leading order in ϵ, the dimensionless Laplace equation is

∂2Ψα

∂Z2 = 0, α = a, b, (2.89)

with the boundary conditions
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Ψa(Z = D) = Ψ∆, (2.90a)

Ψa(Z = 0) = 0, (2.90b)

Ψa(Z = H) = Ψb(Z = H), (2.90c)
∂Ψa(Z = H)

∂Z
= εr

∂Ψb(Z = H)
∂Z

, (2.90d)

where εr = εb/εa is the ratio of electrical permittivity. When the passive gas layer is air
where εa ≈ ε0, εr is simply the relative permittivity of the liquid layer.

Using the general solution to 1D Laplace equation given in Appendix A.4, the electric
potential in each medium is

Ψa = Ψ∆
H + εr(D −H) [H + εr(Z −H)] , Ψb = Ψ∆

H + εr(D −H)Z. (2.91)

The normal and tangential components of the electric field are

En = E · n̂ = −V0
h0

[
∂Ψ
∂Z

+ O(ϵ2)
]
, (2.92a)

Et = E · t̂i= −V0
h0

[
ϵ

(
∇∗

∥Ψ + ∇∗
∥H

∂Ψ
∂Z

)
· êi + O(ϵ3)

]
, i = x, y. (2.92b)

Since it is E2
n and E2

t which enter the normal stress in Eq. (2.84), the tangential term E2
t

is O(ϵ2) compared to the normal term E2
n, so only the normal component of the electric

field is retained to leading order in Eq. (2.84), and the dimensionless electrostatic stress
Π(n)

M becomes

Π(n)
M = ΠEM = ϵh0ϖ

(n)
M

µu0
= ϵε0V

2
0

2µu0h0

{
εr(εr − 1)Ψ2

∆
[H + εr(D −H)]2 + O(ϵ2)

}
, (2.93)

where we assume εa ≈ ε0 which is valid for most gases. Introduce the electric Weber
number We and the rescaled electric Weber number We under LWA as follow

We = ε0V
2

0
µu0h0

, We = ϵWe = ϵε0V
2

0
µu0h0

, (2.94)

where we assume We = O(1) such that electrostatic effects are retained in the normal
stress condition. After the substitution of u0 given in Eq. (2.48), Π(n)

M becomes
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Π(n)
M = ΠEM = W εr(εr − 1)Ψ2

∆
[H + εr(D −H)]2 , (2.95)

where the dimensionless number is

W = Ca × We = ε0V
2

0
ϵ2γ0h0

. (2.96)

Throughout the rest of this thesis, W is simply referred to as the Weber number, which
is the ratio between the destabilizing electrostatic stress and stabilizing capillary stress,
and is a key control parameter in EHD patterning. It is analogous to the Marangoni
number M in TC patterning in that it represents the destabilizing strength to deform
the free surface of the liquid film.

Variation in W corresponds naturally to variation in the applied voltage difference V0

under fixed material’s properties and length scales (h0 and l0). If van der Waals’ inter-
action (see Section 2.3.3) is also neglected, then variation in W can also be achieved by
varying the patterning wavelength l0 = λp while keeping V0 and other parameters fixed.

2.3.2.5 Electrostatic energy

The electrostatic energy ΦEM in the gradient flow formulation given by Eq. (2.51) can
be obtained via straightforward integration of ΠEM:

ΦEM = −
∫

ΠEM(H)dH = −W
2

εrΨ2
∆

H + εr(D −H) . (2.97)

Eq. (2.97) can also be obtained by considering the electrostatic energy stored in a
system which consists of two capacitors connected in series. As a crude approximation,
we assume the free surface at z = h as parallel to the top and bottom electrodes,
and treat the liquid film and the air layer as two separate capacitors. The capacitance
per unit area of two parallel plates separated by a medium with electric permittivity ε
with thickness l is simply ε/l. The capacitance of the air layer and the liquid layer are
Cair = εa/(d− h) and Cliq = εbεr/h, respectively. The total capacitance of the system
Ctotal is

1
Ctotal

= 1
Cair

+ 1
Cliq

=⇒ Ctotal = εaεb

εah+ εb(d− h) . (2.98)

Using the expression of the electrostatic energy ϕEM = CV 2
0 /2 and non-dimensionalizing

the resulting expression gives Eq. (2.97).
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2.3.2.6 Other models for electrostatics

The results presented in this section LWA is satisfied in both the liquid layer and the air
gap. When the top electrode is very far away and the air gap distance is comparable to
the characteristic lateral scale, i.e., (d0 −h0)/l0 = O(1), LWA can no longer be applied
to the air layer. This case was studied in [121] in detail, and the electrostatic stress
involves the Hilbert transform of ∇∗

∥H. Under LSA, this gives rise to a destabilizing
term |K|2K in the dispersion relation (see Section 3.1), instead of the K2 term for the
present case of thin air gap.

2.3.3 Intermolecular interactions
Intermolecular interactions typically become important when the film thickness is smaller
than about 100 nm. For a polymer thin film on top of a solid substrate, the van der
Waals’ interaction is often the dominant intermolecular interaction. Although it is a
body force in nature, it appears only when materials are separated by at least two
interfaces, and is therefore often treated as an interfacial effect [63]. Van der Waals’
interaction can be incorporated into the pressure balance condition given by Eq. (2.11)
via the (dimensional) disjoining pressure φvdw

φvdw(h) = A

6πh3 , (2.99)

where A is the Hamaker constant with a typical magnitude of about 10−20J. Positive
A denotes repelling surfaces or thin film wetting, while negative A denotes attracting
surfaces or thin film dewetting 12. Non-dimensionalizing Eq. (2.99) using the character-
istic pressure scale p0, and including an additional term for modeling the van der Waals’
interaction between the liquid-air interface and the air-solid interface at the top mask,
gives the following dimensionless disjoining pressure

Πvdw(H) = A
[ 1
H3 − 1

(D −H)3

]
, (2.100)

where A is the dimensionless Hamaker constant representing the ratio of van der Waals’
force to capillary force given by

A = A

6πh3
0p0

= A

6πh3
0

ϵh0
µu0

= A

6πϵ2γ0h2
0

= Al20
6πγ0h4

0
. (2.101)

In general, the Hamaker constants for the mask and substrate need not be the same,
but they are assumed to be equal due to a lack of accurate measurement in literature,

12Note that the sign convention for the disjoining pressure varies between different studies. Here we
adopt the sign convention used in Ref [9, 22].
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and their specific values do not affect the general dynamics of the liquid film [132]. A
positive A is chosen for both interactions at the mask and substrate, because under
many experimental conditions the mask is dewetting to the polymer while the substrate
is wetting to the hydrophobic polymer [132]. The inclusion of repulsive intermolecular
interaction also prevents liquid film rupture at the substrate H → 0 and contact with
the mask (H → D). This is known as the ‘precursor film‘ model is also one of the
common methods in literature to relieve the dynamical singularity near moving contact
line [9].

While other forms of intermolecular interactions are possible and may be more appro-
priate for certain materials, they are outside the scope of this thesis. Interested readers
can consult the review [9] and references therein for a more detailed discussion.

Similar to ΦEM, the energy functional associated to van der Waals’ interaction Φvdw

can be obtained via integration of Eq. (2.100):

Φvdw = −
∫

Πvdw(H)dH = A
2

[ 1
H2 + 1

(D −H)2

]
. (2.102)

2.3.4 Gravity
Suppose gravity points vertically downward, i.e., ϖext = ϖgravity = ρgz, such that
−∇ϖgravity = −ρgêz.

The dimensionless stress is

Πgravity(Z) = −ϖgravity(z)
p0

= − ρgz

µu0/ϵh0
= −ϵρgh2

0Z

µu0

Eq.(2.48)−−−−−→ ρgh2
0

ϵ2γ0
Z = −BZ,

(2.103)

where the rescaled Bond number is given by

B = ρgh2
0

ϵ2γ0
= ρgl20

γ0
, (2.104)

and the minus sign comes from the definition of Π̄ in Eq. (2.47). Gravity is al-
ways stabilizing when it points downward, and destabilizing (the pressure becomes
Πgravity(Z) = BH) when it points upward which is the case of free-hanging film.

As shown in Appendix 2.4, B ∼ O(10−7 − 10−4) for typical experimental parameters
with polystyrene. Since Πgravity(Z = H) = BH, and H ∼ O(1), the gravity term is
always much smaller than the destabilizing terms from electrostatics or thermocapillarity
as well as the van der Waals’ term when H → 0. Therefore, gravity is neglected in the
rest of this thesis, and its inclusion is not expected to have any qualitative effects on
the stability and dynamics of the liquid film under the regimes of interest.
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C h a p t e r 3

LINEAR STABILITY ANALYSIS

In this chapter, we review the basics of linear stability analysis (LSA) which is used to
study the stability of stationary states 1. LSA is covered in many standard texts on
dynamical systems, see, for example, Cross and Greenside [24].

The general form of the governing thin film equation derived in chapter 2 is restated
below for easier reference:

∂H

∂τ
= ∇∥ ·

[
M⊥(H)∇∥P̄ −M∥(H)∇∥Γ

]
, (3.1)

P̄ = −∇2
∥H − Π,

M⊥(H) = H3

3 , M∥(H) = H2

2 .

Note that the asterisk (∗) in the dimensionless gradient operator ∇∥ = (∂X , ∂Y ) has
been dropped for brevity. The external stress in the normal direction Π and the dimen-
sionless surface tension gradient Γ are given in Eq. (2.50), but their exact mathematical
expressions do not matter in this chapter except in section 3.1.3 where the fastest-
growing wavelengths in dimensional unit for specific systems are derived.

We first discuss the use of LSA to study ‘un-modulated’ system in section 3.1 where the
mask and other system variables (e.g. applied voltage and temperature) are all spatially
uniform, and a flat film satisfies the governing equation for stationary state. In section
3.2, we extend the LSA to study ‘modulated’ system where the mask or other system
variables are spatially modulated such that a non-uniform film film is needed to satisfy
the stationary state equations. Results presented in chapter 5 and 6 are heavily based
on the LSA presented in this chapter.

3.1 Linear Stability Analysis (LSA) of Uniform Stationary States
3.1.1 Basic Theory
In EHD and TC patterning, we refer to the system as ‘unmodulated’ when the system
(excluding the liquid film) is spatially homogeneous without spatial variation – the bot-
tom and top plates have constant separation D0, and their voltage or temperature are

1In this thesis, ‘stationary state’ simply refers to time-independent liquid-air interface, i.e., ∂H/∂τ =
0, with no implications on what the underlying physics mechanisms are. Other dependent variables of
the actual system such as velocity (which under LWA depend explicitly on H) is not necessarily zero
depending on the physical effects involved.
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held constant spatially and temporally. Then, both the external stress Π and surface
tension variation Γ are only functions of the free surface shape H(X, τ), i.e., Π = Π(H)
and Γ = Γ(H), and any spatial variations in Π and Γ are solely due to spatial varia-
tion in H(X, τ). The stationary state Hss (subscript ‘ss’ stands for stationary state) of
the liquid film (i.e., ∂Hss/∂τ = 0) in the unmodulated case is simply a flat film with
constant thickness:

Hss(X) = const. = 1, (3.2)

where the choice of unity reflects the use of mean film thickness h0 as the characteristic
vertical scale.

To investigate whether such a stationary state is stable, i.e., whether infinitesimal per-
turbation to the stationary state grows or decays, we use the substitution H(X, τ) =
1 + δH1(X, τ) where δ ≪ 1 to solve Eq. (3.1). Expanding the resulting expression in
δ, we obtain the following equation to leading order in δ:

O(δ) : ∂H1
∂τ

= −M⊥(Hss)
[
∇4

∥H1 + Π′(Hss)∇2
∥H1

]
−M∥(Hss)Γ′(Hss)∇2

∥H1, (3.3)

where M⊥(Hss), M∥(Hss), Π′(Hss) = dΠ(Hss)/dH and Γ′(Hss) = dΓ(Hss)/dH are all
evaluated at the base state of H = Hss = 1 and are constants in the unmodulated case.
Derivatives of Π and Γ with respect to H are listed in Appendix B. Eq. (3.3) can be
re-written in the following form for reasons which will become apparent later:

∂H1
∂τ

= −M⊥(Hss)
[
∇4

∥H1 +K2
c ∇2

∥H1
]
, (3.4)

where Kc is given by

K2
c = Π′(Hss) + M∥(Hss)

M⊥(Hss)
Γ′(Hss). (3.5)

Eq. (3.4) can be solved using separation of variables with the substitution H1(X, τ) =
G(τ)F (X), which results in the two ordinary differential equations (ODEs)

dG
dτ = β, M⊥(Hss)

[
∇4

∥F +K2
c ∇2

∥F
]

+ βF = 0, (3.6)

where β is a constant to be determined. Solving the first equation gives G(τ) ∝ eβτ .
The second equation can be solved for F using the trial solution F (X) = eiK·X as long
as the following equation known as the ‘dispersion relation’ is satisfied:
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Figure 3.1: Dispersion relation of type II instability described by Eq. (3.7). (a) Dispersion
β(K) for fixed W. The critical wave number Kc, fastest-growing wave number Km and
the maximum growth rate βm are indicated. (b) Dispersion β(K) for (i) W > Wc, (ii)
W = Wc and W < Wc. The critical electric Weber number Wc is defined according to
Eq. (3.15a) for a given patterning wave number Kp.

β = M⊥(Hss)K2(K2
c −K2), (3.7)

where K = (Kx,Ky) is the wave vector with magnitude K = |K|. Note that the
general solution of F (X) can be written as a linear combination of e±iK·X and e±K·X

(with four unknown coefficients satisfying the four boundary conditions resulted from
the fourth-order derivative). Since we only deal with periodic boundary conditions
in the spatial domain for X in this thesis, e±K·X is discarded as it does not sat-
isfy the imposed boundary conditions. Therefore, the general solution for H1(X, τ)
is H1(X, τ) = c1e

iK·X+β(K)τ + c2e
−iK·X+β(K)τ . As customary in literature, we can

simply write down the expansion for H as H(X, τ) = 1 + δeiK·X + c.c. where c.c.
denotes complex conjugate since H(X, τ) is a real quantity.

We note that the operator in Eq. (3.6) is self-adjoint when periodic boundary condition
or Neumann boundary condition is imposed, and so the eigenvalue β given by Eq. (3.7)
is real.

The above analysis tells us that around the stationary state of a flat film, infinitesimal
perturbation with wave number K have growth rate β(K) given by Eq. (3.7), where
Kc is the ‘critical’ or ‘cutoff’ wave number with β(Kc) = 0. When K > Kc, β(K) < 0
and so the perturbation decays and vice versa. Dispersion relation given by Eq. (3.7)
is known as ‘type-II’ instability 2 and is shown in Fig. 3.1(a). The quartic term in

2This classification of instability into type I, II and III was proposed by Cross and Hohenberg [23].
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Eq. (3.7) reflects the contribution of surface tension, which is always negative and
hence stabilizing. The quadratic term in Eq. (3.7) is positive (for positive K2

c which is
satisfied under typical conditions examined in this thesis) and has a destabilizing effect
due to the external fields (e.g., electric or thermal fields). At small K, the destabilizing
(K2) term dominates, while at large K the stabilizing capillary (K4) term dominates.
The maximum growth rate βmax can be computed by solving dβ(Km)/dK = 0, where
Km is the ‘most unstable’ or ‘fastest-growing’ wave number given by

Km = Kc√
2

= 1√
2

√
Π′(Hss) + M∥(Hss)

M⊥(Hss)
Γ′(Hss). (3.8)

The smallest possible wave number present in the system is Kmin = 2π/L where L
is the lateral extent of the liquid film, which in dimensional unit is typically of the
order O(10 − 100µm) for most experimental studies reported in literature. On the
other hand, the dimensional critical wavelength λc = 2π/kc is typically of the order of
O(1 − 10µm). Since Kmin < Kc, there is always perturbation present in the system
which can destabilize the liquid film. Therefore, an initially flat liquid film is said to
be always linearly unstable, and develops corrugations with initial characteristic spacing
Λm = 2π/Km (or in dimensional unit λm = 2π/km) since the mode with K = Km has
the largest growth rate.

3.1.2 Critical wave number Kc for EHD/TC patterning
The dimensionless critical wave number Kc for EHD and TC patterning can be obtained
by substituting the appropriate expressions for the normal stress Π(H) and surface
tension variation Γ(H) into Eq. (3.5), evaluated at the base state of the unmodulated
system where H(X) = 1, D(X) = D0, Ψ∆(X) = 1, Θhot(X) = 1 and Θcold(X) = 0.
The van der Waals’ term is negligible compared to either the electrostatic stress or
thermocapillary stress when the liquid film free surface is far from the top and bottom
plates (because we are interested in the base state of a flat film). For EHD patterning
where there is no shear stress, Kc is given by

EHD: Kc =

√
∂ΠEM(H = 1)

∂H
=
√

Wεr(εr − 1)2

[1 + εr(D0 − 1)]3
, (3.9)

while for TC patterning which has an additional contribution from shear stress, Kc is
given by

Recently Frohoff-Hülsmann and Thiele [40] generalized the classification into eight types based on (i)
large-scale vs small-scale instability, (ii) stationary vs oscillatory instability, and (iii) instability with and
without conservation laws.
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TC: Kc =
√
M∥(H = 1)
M⊥(H = 1)

∂Γ(H = 1)TC
∂H

=
√

3MκD0

2 (D0 + κ− 1)2 . (3.10)

3.1.3 Fastest-growing wavelength in EHD/TC patterning
For the specific case of EHD and TC patterning, the dimensional fastest growing
wavelength λm can be obtained from Eq. (3.8) by setting λm as the characteris-
tic lateral length scale, i.e., l0 = λm. Under this choice of scaling, Km = 2π and
ϵ = h0/l0 = h0/λm. Using the expressions for Π′(H) and Γ′(H) given in Appendix B,
and the definitions of W = ε0V

2
0 /ϵ

2γ0h0 and M = γT ∆T/ϵ2γ0, we can solve for λm:

λm = 2πh0

 2γ0
ε0V

2
0

h0

(εr − 1)2εr

[1 + εr(D0 − 1)]3 + 3γT ∆T
2

κrD0
(D0 + κ− 1)2


1/2

, (3.11)

where the dimensionless version of Eq. (3.11) was first derived in [21]. For the special
case when only one of EHD or TC effects are present, Eq. (3.11) is simplified to

EHD: λm = 2πh0

√
2γ0h0[1 + εr(d0/h0 − 1)]3

ε0V 2
0 εr(εr − 1)2 , (3.12)

for EHD patterning [104], and

TC: λm = 2πh0

√
4γ0h0

3γT ∆Tκrd0

(
d0
h0

+ κ− 1
)
. (3.13)

for TC patterning [29]. The effects of varying different material constants or experi-
mental parameters can be revealed upon inspection of Eq. (3.12) and (3.13). Increasing
the surface tension γ0 increases λm because surface tension is stabilizing. Increasing
the destabilizing forces, such as the applied voltage difference V0 for EHD patterning,
or the temperature difference ∆T in TC patterning, decreases λm as expected. Notice
that λm ∝ 1/

√
∆T and so increasing temperature generally cannot reduce λm by a

sizeable amount. Increasing V0 appears to have a more noticeable effect because the
electrostatic stress scales as V 2

0 . However, it should be aware that dielectric breakdown
may occur for sufficiently large electric field strength [62], and the model described by
Eq. (3.1) is no longer valid when that happens.

The effects of varying different parameters on λm were studied in detail in [104] for
EHD patterning and [29] for TC patterning and is not discussed any further here.
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3.1.4 Critical bifurcation parameters Wc and Mc for fixed patterning wave
number K = Kp

The critical or cut-off wave number Kc given by Eq. (3.5) determines whether pertur-
bation with a given wave number K grows or decays, and Kc is defined for a given set
of parameters appearing in the governing equation including W and M. In this thesis,
we focus on the effects of external spatial modulation in a periodic system. This results
in two effects: (1) there is an imposed periodicity on the system with patterning wave
number Kp, and (2) the allowable wave numbers in the system are discretized to integer
multiples of the smallest wave numbers dictated by the system size. One key objective
is to determine how the spatiotemporal dynamics of the liquid film depends on param-
eters such as W and M. Therefore, it is more appropriate to define the critical electric
Weber number Wc or Marangoni number Mc for a given patterning wave number Kp

as follow:

EHD: K2
p = ∂Π(Hss; W = Wc)

∂H
, (3.14a)

TC: K2
p = M∥(Hss)

M⊥(Hss)
∂Γ(Hss; M = Mc)

∂H
. (3.14b)

Note that van der Waals’ forces are neglected, and only and electrostatic stress and the
thermocapillary stress terms are kept for EHD and TC patterning, respectively. We can
then solve for

EHD: Wc = K2
p

[1 + εr(D0 − 1)]3

εr(εr − 1)2 , (3.15a)

TC: Mc =
2K2

p

3
(D0 + κ− 1)2

κD0
. (3.15b)

Fig. 3.1(b) shows the dispersion relations β(K) for three different cases of (i) Wc > W,
(ii) Wc = W and (iii) Wc < W. The case for TC patterning is qualitatively similar with
W and Wc replaced by M and Mc respectively. When W > Wc, perturbations with
wave number K = Kp grow because β(Kp) > 0 and vice versa for W < Wc.

Note that Eq. (3.15) only depends on materials’ parameters (εr or κ) and the mean
electrode separation D0 for fixed Kp, and larger D0 leads to larger Wc and Mc. Since
both the electric field strength and temperature (both governed by 1D Laplace equation)
along the liquid film free surface become weaker as D0 is increased, in order to maintain
the same level of electrostatic or thermocapillary stress, the applied voltage (related to
W) or the imposed temperature difference (related to M) must be increased accordingly
for larger D0.
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3.2 Linear Stability Analysis of Periodic Non-Uniform Stationary States
When the system is ‘modulated’, i.e., when the top or bottom plate is topographically
(e.g., see Fig. 1.1) or chemically patterned, or the applied voltage or temperature differ-
ence across the top and bottom plates are spatially or/and temporally modulated, then
the stationary state Hss(X) becomes spatially non-uniform which satisfies the following
equation

∇∥ ·
{
M⊥(Hss)∇∥

[
∇2

∥Hss + Π(Hss)
]}

= 0, (3.16)

subject to the additional constraint mean(Hss) = 1 due to volume conservation. LSA
can be done by following the same approach as in the last section except the coefficients
in the linearized equation given by Eq. (3.3) also become spatially varying. Using the
substitution H(X, τ) = Hss(X)+δH1(X)eβτ , the linearized thin film equation becomes

βH1 = −∇∥ ·
{
M⊥(Hss)∇∥

[
∇2

∥H1 + ∂Π(Hss)
∂H

H1

]
+M ′

⊥(Hss)H1∇∥
[
∇2

∥Hss + Π(Hss)
]

+M∥(Hss)∇∥

[
∂Γ(Hss)
∂H

H1

]
+M ′

∥(Hss)H1∇∥Γ(Hss)
}
. (3.17)

Since Hss(X) and at least one other system variable (e.g., D(X), or Ψ∆(X)) is spatially
non-uniform, the mobility factors M⊥(Hss) and M∥(Hss), the external pressures Π and
surface tension Γ, as well as their derivatives with respect to H, all depend on X.
Eq. (3.17) is an eigenvalue problem where the eigenvalue β is the growth rate for the
corresponding eigenmode H1(X).

3.2.1 Introduction of auxiliary variable P
In general Eq. (3.17) has to be solved numerically, and the spatial discretization for the all
the variables is discussed in details in Chapter 4. We found from numerical experiments
that the numerical convergence when solving the system of nonlinear equation is more
easily achieved if we introduce the total pressure P as a separate auxiliary variable
alongside H. Specifically, the governing equations become

fs1(H,P ) = ∂H

∂τ
− ∇∥ ·

[
M⊥(H)∇∥P −M∥(H)∇∥Γ

]
= 0, (3.18a)

fs2(H,P ) = P + ∇2
∥H + Π = 0. (3.18b)

The stationary state equations become
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fs1(Hss, Pss) = ∇∥ ·
[
M⊥(Hss)∇∥Pss −M∥(Hss)∇∥Γ

]
= 0, (3.19a)

fs2(Hss, Pss) = Pss + ∇2
∥Hss + Π(Hss) = 0, (3.19b)

and the linearized thin film equation becomes

(
1 0
0 0

)
∂

∂τ

(
H1

P1

)
=


∂fs1(Hss, Pss)

∂H

∂fs1(Hss, Pss)
∂P

∂fs2(Hss, Pss)
∂H

∂fs2(Hss, Pss)
∂P


(
H1

P1

)
, (3.20)

where the entries in the Jacobian are given by

∂fs1(Hss, Pss)
∂H

H1 = ∇∥ ·
{
∂M⊥(Hss)

∂H
∇∥Pss − ∂M∥(Hss)

∂H
∇∥Γ

}
−M∥(Hss)∇∥

[
∂Γ(Hss)
∂H

H1

]
(3.21a)

∂fs1(Hss, Pss)
∂P

P1 = ∇∥ ·
[
M⊥(Hss)∇∥P1

]
(3.21b)

∂fs2(Hss, Pss)
∂H

H1 =
[
∇2

∥ + ∂Π(Hss)
∂H

]
H1 (3.21c)

∂fs2(Hss, Pss)
∂P

P1 = IP1. (3.21d)

Eq. (3.20) represents a generalized eigenvalue problem with a singular mass matrix on
the left hand side. It should be stressed that both Eq. (3.17) and Eq. (3.20) are valid
formulations of the LSA for non-uniform stationary states, and Eq. (3.20) is preferred in
Chapters 5 and 6 only because of the simpler mathematical expressions and better nu-
merical accuracy. More details regarding the solution procedure for solving the equations
are discussed in Chapter 4.

In Chapters 5 and 6, we will study extensively the effects of periodic spatial modulations,
and Eq. (3.20) can be simplified to different forms depending on whether the spatial
modulation is one-dimensional (e.g. Fig. 3.2(a)) or two-dimensional (e.g., Fig. 3.2(b))
which will be discussed next.

3.2.2 Stripes
When the spatial modulation is one-dimensional, e.g., the patterned mask consists of
stripe-like pattern similar to Fig. 3.2(a) with periodicity Λp and corresponding wave
number Kp = 2π/Λp along the X direction, the stationary states Hss(X) and all the
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Figure 3.2: Schematic of the form of spatial modulation studied in this thesis. (a) One-
dimensional modulation with periodicity Λp along the X direction. The spatial profile is
sinusoidal. (b) Two-dimensional modulation with periodicity Λp along both the X and
Y directions. The spatial profile is given by cos(2πXΛp) + cos(2πY/Λp) and looks like
an egg carton.

coefficients appearing in the linearized thin film equation become periodic along X, e.g.
Hss(X,Y ) = Hss(X+ Λp, Y ). In order to study the stability against perturbations with
arbitrary wavenumber K = (Kx,Ky), we can apply Bloch’s theorem [8] which was first
used to study electrons in a spatially periodic crystalline lattice. There is a similar theory
commonly known as the Floquet theory [38] in the study of time-periodic states in ODE.
From here onwards, we refer to such analysis as Floquet-Bloch (FB) analysis. It turns
out the eigenstate H1 can be expressed as [24, Section 4.2]

H1(X, τ) = H1(X)eβ(K)τ = Ĥ1(X)eiK·Xeβ(K)τ , (3.22)

where Ĥ1(X) = Ĥ1(X+Λp) has the same periodicity along X. Observe that if Ĥ1(X)
is periodic in X with wave number Kp, then the function Ĥ1(X)eimKpX is also periodic
in X with wave number Kp for any integer m. The Bloch state given in Eq. (3.22) for
a given wave number K = (Kx,Ky) can then be expressed in terms of another Bloch
state with wave number (Kx −mKp,Ky):

Ĥ1(X)eiK·X =
[
Ĥ1(X)eimKpX

]
ei[(Kx−mKp)X+KyY ]. (3.23)

This allows us to restrict the wave number Kx to the following range

−Kp

2 < Kx ≤ Kp

2 , (3.24)

while the wave number Ky is unrestricted and can take any value. Substituting the
expansion given in Eq. (3.22) into Eq. (3.20), and noting that functions of Hss (such as
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M⊥(Hss), Π(Hss)) are periodic functions in X with vanishing spatial derivatives along
the Y direction, we obtain the following generalized eigenvalue problem for Ĥ1 and P̂1:

β

(
1 0
0 0

)(
Ĥ1

P̂1

)
=
(
f1H f1P

f2H f2P

)(
Ĥ1

P̂1

)
, (3.25)

where the coefficients of the Jacobian are evaluated at the stationary states of H = Hss

and P = Pss, and are given by

f1HĤ1 =
[
M ′

⊥(Hss)
∂Pss
∂X

−M ′
∥(Hss)

∂Γ(Hss)
∂X

−M∥(Hss)
∂Γ′(Hss)
∂X

]
Ĥ1

+
{
M ′

⊥(Hss)
∂Pss
∂X

−M ′
∥(Hss)

∂Γ(Hss)
∂X

−M∥(Hss)
∂Γ(Hss)
∂X

− ∂

∂X

[
M∥(Hss)Γ′(Hss)

]}( ∂

∂X
+ iKx

)
Ĥ1

−M∥(Hss)Γ′(Hss)
(
∂

∂X
+ iKx

)2
Ĥ1, (3.26a)

f1P P̂1 = ∂

∂X

[
M⊥(Hss)

∂P̂1
∂X

]
−K2

yM⊥(Hss)P̂1, (3.26b)

f2HĤ1 =
[(

∂

∂X
+ iKx

)2
−K2

y

]
Ĥ1, (3.26c)

f2P P̂1 = IP̂1. (3.26d)

3.2.3 Cartesian arrays
For 2D periodic patterns arranged in a Cartesian array as shown in Fig. 3.2(b), the
above analysis can be extended in a similar way to the Y direction. The eigenstate
Ĥ1 = Ĥ1(X,Y ) is now a periodic function of X and Y , and both wave numbers Kx

and Ky are restricted to an interval of Kp.
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C h a p t e r 4

NUMERICAL METHODS

This chapter provides the implementation details of the two main numerical approaches
employed in this thesis – (1) solving the systems of nonlinear equations representing the
stationary states and the associated linear stability which will be used in Chapters 5 and
6, and (2) direct numerical simulations of the time-dependent thin film equation which
will be used in chapter 5 to 7. The numerical methods covered in this chapter have
been well developed, and we simply present the specific technical details relevant to
the simulations implemented in this thesis without going to the rigorous theory behind
them.

4.1 Spatial Discretization
When solving for the stationary states, the governing equations given by ∂H/∂τ = 0
are discretized in space, resulting in a system of nonlinear equations to be solved. When
solving for the time-dependent evolution of the liquid film, the thin film equation is
discretized in space, resulting in a system of coupled ODEs where time τ is the only
independent variable. The ODEs can then be solved using different standard ODE
solvers implemented in various scientific computing packages. For most numerical results
presented in this thesis, the finite difference method (FDM) is used to discretize the
spatial derivatives in the governing equations except in Chapter 6.5 where finite element
method (FEM) is used to discretize the spatial derivatives of the stationary equations
for TC patterning.

A 2D Cartesian domain has size Lx × Ly such that 0 ≤ X ≤ Lx and 0 ≤ Y ≤
Ly. Each dimension is discretized into Nx and Ny uniform intervals with size ∆x
such that the grid points are located at X = X0, X1, X2, . . . XNx−1, XNx and Y =
Y0, Y1, Y2, . . . YNy−1, YNy . Periodic boundary conditions are imposed so that X0 = XNx

and Y0 = YNy . Introduce the notation (Xm, Yn) = (m∆X,n∆X) where m,n ∈ N.
Note that the domain size (Lx, Ly) and the number of grid points (Nx, Ny) are always
chosen such the grid size has the same value ∆X along both dimensions unless otherwise
specified.

When the system is spatially modulated with dimensionless patterning wavelength Λp

(e.g., see Fig. 3.2), the domain size (Lx, Ly) is always integer multiples of Λp to ensure
it can accommodate complete cycles under periodic boundary condition.
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4.1.1 Finite difference method (FDM)
Let u = u(X,Y ) denote the dependent variable to be solved (not to be confused
with horizontal velocity), and define um,n = u(Xm, Yn). The following fourth-ordered
centered schemes for spatial derivatives are used [39]:

du(Xn)
dX = 1

∆X

( 1
12un−2 − 2

3un−1 + 2
3un+1 − 1

12un+2

)
, (4.1a)

d2u(Xn)
dX2 = 1

∆X2

(
− 1

12un−2 + 4
3un−1 − 5

2un + 4
3un+1 − 1

12un+2

)
, (4.1b)

d3u(Xn)
dX3 = 1

∆X3

(1
8un−3 − un−2 + 13

8 un−1 − 13
8 un+1 + un+2 − 1

8un+3

)
, (4.1c)

Let D(n)
X = ∂n/∂Xn denotes the finite difference operator for the nth derivatives defined

in Eq. (4.1). Define Hm,n = H(Xm, Yn), Pm,n = P (Xm, Yn) = P (Hm,n,Πm,n),
Πm,n = Π(Hm,n) and Γm,n = Γ(Hm,n). The right hand side of the thin film equation
given by Eq. (2.49) can be approximated by the following finite difference scheme in 1D:

∂H(xn)
∂τ

≈ −D(1)
X

{
M⊥(Hn)

(
D(3)

X Hn + D(1)
X Πn

)
+M∥(Hn)D(1)

X Γn

}
, (4.2)

and in 2D:

∂H(Xm, Yn)
∂τ

≈ D(1)
X

[
M⊥(Hn)D(1)

X Pn +M∥(Hn)D(1)
X Γn

]
+ D(1)

Y

[
M⊥(Hn)D(1)

Y Pn +M∥(Hn)D(1)
Y Γn

]
, (4.3a)

Pn = −
(
D(2)

X + D(2)
Y

)
Hn − Π(Hn). (4.3b)

The stationary equations given by Eq. (3.19) can be discretized similarly. For example,
1D stationary states are given by:

D(1)
X

[
M⊥(Hn)D(1)

X Pn +M∥(Hn)D(1)
X Γn

]
= 0, (4.4a)

Pn + D(2)
X Hn + Π(Hn) = 0. (4.4b)

Note that after introducing the pressure P as an explicit dependent variable, the maxi-
mum order of differentiation becomes two.

The correctness of the implementation of the FDM has been tested in two different
ways. First, various periodic test functions are defined using sinusoidal functions. Their
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derivatives are computed using FDM using different grid size ∆X, and the results are
compared with the exact analytical solutions. Second, the liquid film shape H(X) and
the mask topography D(X) are represented by different periodic test functions. The
corresponding ∂H/∂τ is computed numerically using FDM with different grid size ∆X,
and the results are compared with the exact results obtained via automatic differentiation
with the Julia package ForwardDiff.jl. Both tests show the expected fourth order
convergence. The run time of each function call also grows linearly with the number of
grid points used as expected.

4.1.2 Finite element method (FEM)
Finite element method (FEM) is an alternative to FDM for spatial discretization. Here
we provide a brief overview of the method without going into the technicality with
functional analysis. Interested readers can consult standard textbooks such as Ref [123,
chapter 4] for more in-depth discussion. Consider the following equation

[
c(x)u′(x)

]′ + a(x)u(x) = f(x) (4.5)

defined within an interval given by 0 ≤ x ≤ L. Multiplying the equation by a suitable
test function ϕj(x) and integrating the resulting expression using integration by parts,
we have

[ϕj(x)c(x)u′(x)]x=L
x=0 − ⟨ϕ′

j(x), c(x)u′(x)⟩ + ⟨ϕj(x), a(x)u(x)⟩ = ⟨ϕj(x), f(x)⟩, (4.6)

where the notation ⟨u, v⟩ =
∫ L

0 u(x)v(x)dx denotes the inner product. Eq. (4.6) is
known as the ‘weak-form’ of Eq. (4.5). If we further suppose u(x) =

∑
i uiϕi(x)

and impose periodic boundary conditions on all the variables and test functions (e.g.,
u(x = 0) = u(x = L)) such that the boundary term in Eq. (4.6) vanishes, Eq. (4.5)
becomes a system of equations given by

∑
i

ui

[
−⟨c(x)ϕ′

i(x), ϕ′
j(x)⟩ + ⟨a(x)ϕi(x), ϕj(x)⟩

]
− ⟨f(x), ϕj(x)⟩ = 0. (4.7)

FEM lowers the maximum differentiation order from two to one, so the differentiabil-
ity requirement for u(x) can be relaxed. Using the expansion H(X) =

∑
i hiϕi(X)

and P (X) =
∑

i piϕi(X), the stationary state equations given by Eq. (3.19) can be
discretized using FEM to
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∑
i

pi⟨M⊥(hi)ϕ′
i(X), ϕ′

j(X)⟩ + ⟨M∥(hi)
dΓ(hi)

dX ,ϕj(X)⟩ = 0, (4.8a)

∑
i

pi⟨ϕi(X), ϕj(X)⟩ −
∑

i

hi⟨ϕ′
i(X), ϕ′

j(X)⟩ + Π(hi)ϕj = 0. (4.8b)

Note that the coefficients such as M⊥(hi), M∥(hi), Π(hi) and Γ(hi) are all non-linear
functions of the dependent variable H(X), and their values at the nodes are estimated
by interpolation. Regarding the test functions ϕj(X), the simplest linear elements are
used due to its simpler implementation, and also because it appears slightly more robust
to convergence compared to quadratic elements when solving for the stationary states.

4.2 Time-dependent Simulations
4.2.1 Time-stepping
All time-dependent simulations of the thin film equation are carried out using the
DifferentialEquations.jl package [90] in Julia [5]. FDM is used for spatial dis-
cretization (Eq. (4.2) for 1D and (4.3) for 2D), which results in a set of stiff coupled
ODEs. Among the recommended stiff ODE solvers provided by DifferentialEquations.jl,
the FBDF solver which is a variant of the well-known backward differentiation formula
(BDF) with fixed-leading coefficient is selected for time-stepping, and its specific imple-
mentation follows closely the commonly used ode15i function in MATLAB [108].

Other solvers supported by the package recommended for solving large stiff ODEs in-
cluding QNDF, QBDF and Kvaerno5 have also been tested on certain custom benchmark
tests (see Section 4.2.3), and the results have been compared against each other. The
FBDF solver was chosen due to its more robust convergence properties as some of the
other solvers may occasionally require excessively large number of time steps (and hence
long computational time) in certain tests. However, despite the difference in computa-
tional time, the numerical solutions obtained with different solvers do agree with each
other, i.e., the plots of H(X, τ) all collapse on the same line.

The volume conservation property is also checked to ensure the accuracy of the numerical
results. With the FBDF solver, |mean[H(. . . , τf )] − 1| ≲ 10−10 for all simulations where
τf is the simulation end time.

A relative tolerance of 10−6 and absolute tolerance of 10−9 for time-stepping were found
to be sufficient to ensure convergence.

4.2.2 Domain size and initial conditions
Throughout this thesis, two different settings of domain size and initial conditions are
commonly used, and they are summarized as follow:
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Setting A: Single protrusion with flat initial film

The system size is defined as −Λp/2 ≤ X ≤ +Λp/2 in 1D and −Λp/2 ≤ X,Y ≤ +Λp/2
in 2D where Λp is the dimensionless patterning wavelength (e.g. see Fig. 3.2) such that
the spatial domain supports one period of the imposed spatial modulation. The initial
condition is a perfectly flat film of H(X, τ = 0) = 1. This setting can be used to
obtain the stationary state from H(X, τf ) via time-dependent simulation by setting a
large terminal time τf .

Setting B: Multiple protrusions with rough initial film

The system size is Lx = rxΛp in 1D and (Lx, Ly) = (rxΛp, ryΛp) in 2D where rx and
ry are integers. A larger spatial domain is used since many nonlinear phenomena involve
multiple protrusions and ridges, so it is important to have a spatial domain large enough
so that long wavelength modes are present. A roughened film described by the following
equation is used as the initial condition

Hm,n(τ = 0) = H(Xm, Yn, τ = 0) = 1 + σrand × randn(m,n), (4.9)

where randn(m,n) returns a pseudo-random number drawn from a normal distribution
with unit variance and zero mean, and σrand ≪ 1 is the random perturbation amplitude.
In order to test whether a given stationary state is actually accessible from an initially
flat film (but subject to various sources of noise such as thermal fluctuation), and
to test the stability of a developed non-uniform stationary state, we add a nonzero
random perturbation to the initial condition. This allows different unstable modes to
be triggered without relying on numerical noise to be built up, so a smaller simulation
time can be used while capturing most phenomena of interest. The noise amplitude is
typically set to σrand = 10−2 for the results presented in this thesis. Simulations with
different noise amplitude (10−3 ≤ σrand ≤ 0.05) show that unstable stationary states
destabilize over a shorter time scale, consistent with the fact that the unstable modes
have larger initial amplitudes to begin with. We have also tried using different random
initial conditions, such as replacing the normal distribution by a uniform distribution, or
using a Fourier series to represent H(X, τ = 0) where the Fourier coefficients are drawn
from a normal or uniform distribution, and no qualitative difference in the results have
been observed. There was also other numerical studies on how using a colored noise
spectrum for the initial film roughness affect subsequent dewetting and rupture time of
the liquid film [110]. However, a detailed analysis of the effects of the initial condition
on the subsequent dynamics is beyond the scope of this work. Eq. (4.9) is used as the
initial condition because it is one of the simplest choice possible and is also commonly
used in other similar studies in literature.
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We also note that the subsequent dynamics of the liquid film is deterministic 1 for
a given initial condition given by Eq. (4.9). In order to obtain representative results,
multiple time-dependent simulations are typically conducted, each with a different initial
condition generated by a random number generator initialized with a different random
seed, and quantities averaged across multiple simulations are reported.

4.2.3 Numerical testing
In order to ensure the numerical solutions to H(X, τ) converge to the true solutions
(which are often unknown) and are accurate, the following tests were carried out to
validate the implementation of the time-dependent simulations of the thin film equation:

1. Comparison with LSA with a flat mask (see Section 3.1):

a) H(X, τ) is obtained by using a sinusoidal function H(X, τ = 0) = 1 +
10−3 cos(2πX/Lx) as the initial condition, and the simulation is terminated
when the change in amplitude |H(X, τ) − 1| exceeds a certain threshold
which is kept very small to ensure the dynamics of the liquid film stays
approximately within the linear regime. The growth rate β(K) is computed,
and K is varied by changing the domain size Lx.

b) H(X, τ) is obtained with setting B (large spatial domain with random initial
condition) under a flat mask, and the corresponding growth rate is com-
puted from the discrete Fourier transform (DFT) (see Appendix A.5). The
averaged growth rate β(K) from 50 independent realizations (each seeded
with a different random seed to generate different roughened film as initial
condition) are computed.

The numerically computed growth rate β(K) from both methods agrees with the
theoretical prediction given by Eq. (3.7) up to at least K ≈ 1.3Kc for test (a).
For test (b), the numerically computed growth rate β(K) also agrees with the
theoretical prediction up to K ≈ 1.1Kc beyond which the (negative) growth rate
appears to saturate. This might be related to numerical errors as those stable short
wavelength modes with large negative growth rates decay to very small values.
They are not expected to significantly affect the results presented in this thesis
where we are mostly interested in the unstable long wavelength modes.

2. Different initial conditions H(X, τ = 0) and mask topography D(X) are used
when solving H(X, τ). The numerical error for the solution H(X, τf ; ∆X) ob-
tained with a particular grid size ∆X is estimated by computing the RMS error
Erms and maximum error Emax given by

1Studies incorporating thermal fluctuations and other stochastic effects into the thin film equation
(resulting in a stochastic PDE) [32, 50, 143] reported qualitative differences due to stochastic effects only
for ultra thin films with nanometer thickness which is unusual in the context of EHD or TC patterning.
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Erms = mean
[
|H(X, τf ; ∆X) −H(X, τf ; ∆X/2)|2

]
, (4.10a)

Emax = max [|H(X, τf ; ∆X) −H(X, τf ; ∆X/2)|] . (4.10b)

Both the RMS and maximum error shows the expected fourth order convergence
consistent with the fourth order centered finite difference scheme used.

Regarding numerical accuracy, a grid size of ∆X = Λp/128 in 1D is sufficient
to obtain a numerical solution where both the RMS and maximum errors are
O(10−6 − 10−5) in most test cases. The actual achievable error is problem-
dependent: generally speaking if the liquid film exhibits large deformation where
the free surface H(X, τ) approaches either the substrate or the mask, or when
phenomena involving multiple protrusions such as coalescence are involved, the
resulting errors are larger. For 2D, a bigger grid size of ∆X = Λp/64 or Λp/32 is
used due to much longer computational time in 2D, and the resulting numerical
error is O(10−5 − 10−3).

3. The solutions obtained with DifferentialEquations.jl using ∆X = Λp/64
for certain 2D tests showing large liquid film deformation are also benchmarked
against solutions obtained with the commercial software COMSOL Multiphysics®
v6.0 [20] using finite element method (with quadratic Lagrange element, maximum
element size of ∆X = Λp/256 and PARDISO solver for time-stepping). The
results show an RMS deviation of Erms = O(10−5 − 10−4) between the two.

The largest deviation from the ‘true’ solution (obtained with finer grid size) usually
occurs in the region where the liquid film touches the mask, i.e., when the air gap
min(D − H) is small. Results presented in Section 5.4 show that the smallest vertical
length scales in the problem, the air gap min(D −H) and the precursor film thickness
min(H) when the liquid film exhibits large deformation are both usually of the order of
O(0.01). This is significantly larger than the errors of O(10−6 − 10−4) reported above
from the numerical benchmark tests, showing that the numerical results presented in
this work are accurate enough for the problems of interest.

4.3 Stationary states
When solving for the stationary states (and possibly the associated stability), the dis-
cretized equations become a system of nonlinear equations to be solved. The initial
guess for the stationary state is obtained by solving the time-dependent thin film equa-
tion using setting A described in Section 4.2.2 with a large τf so that the liquid film
approaches a stationary state. The resulting H(X, τf ) is then used as the initial guess
for the stationary state, which is solved using standard techniques such as Newton’s
method coupled to the pseuedo-arclength continuation described below.
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4.3.1 Pseudo-arclength continuation (PALC)
Pseudo-arclength continuation is a numerical technique for solving systems of (nonlinear)
equations as a function of a specified parameter. This technique is used in Chapter 5
and 6 to study how stationary states and their stability change as a parameter (e.g. D0

or W) is varied. Here we provide a brief overview of its principles. The presentation
follows closely the one given in Ref [123, Chapter 3] and [92, Chapter 5.2].

Let u ∈ Rn denote the vector of the dependent variable to be solved, and λ as a
parameter of the governing equation 2. The discretized stationary state equation is

F(u, λ) = 0, F : Rn × R → Rn, (4.11)

Expanding F(u, λ) around a known solution (u0, λ0), we have

0 = F(u, λ) = F(u0, λ0)︸ ︷︷ ︸
=0

+ Fu(u0, λ0)︸ ︷︷ ︸
=F(0)

u

(u − u0) + Fλ(u0, λ0)︸ ︷︷ ︸
=F(0)

λ

(λ− λ0) + h.o.t. (4.12)

where ‘h.o.t.’ denotes higher order terms in u − u0 and λ− λ0. In a typical parameter
sweep, once F(u0, λ0) is solved, the solution u for the new parameter λ can be obtained
by solving Eq. (4.12) using methods such as gradient descent or Newton’s method.
However, the Jacobian Fu becomes singular at the turning point, which corresponds
to the point with infinite slope in the λ − u plane. Alternative technique such as the
pseudo-arclength continuation (PALC) needs to be used in order to trace the full family
of solutions beyond the turning point.

PALC works by introducing an additional parameter s that parametrizes the solution
branch, i.e., u = u(s) and λ = λ(s), and solve for both u and λ as s is varied.
As λ becomes a new dependent variable, an additional equation is required alongside
Eq. (4.11). The tangent vector τ (0) is defined at s = s0 as follow:

τ (0) =
(
τ

(0)
u , τ

(0)
λ

)
=
(
u′(s0), λ′(s0)

)
= d

ds (u(s), λ(s)) |s=s0 , (4.13)

The projection of the new solution at (u(s), λ(s)) along the tangent vector τ (0) has
length s− s0, and can be represented mathematically as follow:

τ (0) · (u − u0, λ− λ0) = s− s0. (4.14)
2Not to be confused with dimensional wavelength in other parts of this thesis which also uses the

symbol λ. The symbol λ represents a general parameter only in this short subsection on PALC.



58

Eq. (4.14) can now be incorporated with Eq. (4.11) to give the following expanded
equation to be solved:

G(u, λ; s) =
(

F(u, λ)
τ

(0)
u · (u − u0) + τ

(0)
λ (λ− λ0) − (s− s0)

)
=
(
0

0

)
. (4.15)

Differentiating F(u, λ) = 0 with respect to s gives the following equation for τ (0):

0 = d
dsF(u(s0), λ(s0)) = F(0)

u u′(s0) + F(0)
λ λ′(s0) =

[
F(0)

u |F(0)
λ

]
τ (0), (4.16)

where
[
F(0)

u |F(0)
λ

]
is the extended Jacobian. The tangent vector τ (0) for the current

value of s0 can be obtained by first solving

F(0)
u ũ = −F(0)

λ , (4.17)

and then setting

τ (0) =
(
τ

(0)
u , τ

(0)
λ

)
= ± (ũ, 1)√

ũ · ũ + 1
, (4.18)

where the sign should be chosen by requiring τ (0) · τ (0)
prev > 0 where τ

(0)
prev is the tangent

vector at the previous step of s. This allows the parameter λ to pass through a turning
point by following the same direction of traversal along the path.

Once τ (0) is determined, (u(s), λ(s)) at the new step s = s0 + ∆s can be solved
iteratively using Newton’s method:

(
u(k+1), λk

)
=
(
u(k), λk

)
+ (∆u,∆λ) (4.19)

where (∆u,∆λ) is obtained by solving

(
Fu(u(k), λk) Fλ(u(k), λk)

τ
(0)
u τ

(0)
λ

)(
∆u
∆λ

)
= −

(
F(u(k), λk)

τ
(0)
u · (u(k) − u(0)) + τ

(0)
λ (λk − λ0) − ∆s

)
(4.20)

with u(0) = u(s0) and λ0 = λ(s0) as the starting initial guess.
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The exact turning point can be further refined by solving the following extended system
[123, see Chapter 3.6.1]


F(u, λ)

Fu(u, λ)ϕ
⟨ϕ,ϕ⟩ − 1

 = 0, (4.21)

where the dependent variable now becomes (u,ϕ, λ) ∈ R2n+1. We can track the locus
of the turning point as another parameter different from λ is varied by appending the
last equation of Eq. (4.15) into Eq. (4.21). This is known as a codimension two fold
point continuation, and will be used in Chapters 5 and 6 to study how the maximum
growth rate (represented by a fold point) changes as two parameters are varied.

4.3.2 Computational details
The system of nonlinear equations obtained after discretizing the stationary equa-
tions solved numerically using Newton’s method implemented in the Julia package
BifurcationKit.jl [126] with an error tolerance 3 of 10−8 as the condition for con-
vergence. Numerical continuation of the solutions is performed using the PALC imple-
mented in BifurcationKit.jl where the step size ds (∼ O(10−3 − 10−1)) is chosen
based on trial-and-error to ensure a continuous solution branch can be obtained suc-
cessfully.

As briefly mentioned in the beginning of this chapter, FDM is used for spatial discretiza-
tion when solving for the stationary states in EHD patterning when shear stress is absent.
For the stationary states in TC patterning when shear stress is present, FEM is used for
spatial discretization instead for two reasons: (1) fewer difficulties in numerical conver-
gence are encountered using FEM than FDM; (2) FEM appears to give more ‘accurate’
solutions when comparing certain derived quantities from the numerical solutions. For
example, mean(Hss) = 1 and mean(H1) = 0 due to volume conservation, and parity
of H1 implies either the real or imaginary part of the complex Fourier coefficients of
H1 (obtained using DFT) should vanish. By checking how close these quantities are to
their expected values (either 1 or 0), we can quantify the numerical accuracy achieved
with different spatial discretization schemes without knowing the true solution. While
the reasons leading to these two observation are not fully understood, we suspect it
is due to the lower order of differentiation (one in FEM instead of two in FDM). For
stationary states in EHD patterning, however, we find no significant difference in the
numerical accuracy and convergence performance between FDM and FEM when solv-

3The error tolerance used in the package defaults to the l2 norm given by (
∑N

i
r[i]2)1/2 where r[i]

is the residual vector at index i, and N is the length of the vector.
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ing for the stationary states and their stability, and so FDM is used due to its simpler
implementation.

The stationary states and the associated eigenvalues and eigenstates computed using
BifurcationKit.jl with our implemented spatial discretization scheme have been
compared to solutions obtained with the commercial software COMSOL Multiphysics®
v6.0 [20] using finite element method (with quadratic Lagrange element and maximum
element size of ∆X = Λp/256) for the case where liquid film deformation is not too
large (i.e., not touching the substrate or substrate). The results show an RMS deviation
of O(10−4) which is order of magnitude smaller than the smallest vertical length scale
typically encountered (O(10−2) for minimum film thickness or air gap thickness when
the liquid film touches either the mask or substrate). COMSOL is not actually used
for computing the numerical solutions presented in this work because of the difficulty in
interfacing with external packages for PALC and further analysis.
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C h a p t e r 5

HIGH FIDELITY PATTERNS UNDER ELECTROSTATIC STRESS

5.1 Introduction
We begin this chapter by providing a brief overview of the literature on EHD patterning,
focusing on the use of external spatial modulation to improve pattern fidelity. We then
state the equation and form of spatial modulation to be studied mathematically, and
give a brief outline of the chapter.

5.1.1 Literature review
Schäffer et al. [103] first demonstrated that the interface between a polymer and air can
be destabilized by an external electric field transverse to the interface. Shortly after this
seminal work, subsequent studies focus on understanding the underlying mechanisms of
the instability and the initial stage of the pattern formation process. The LSA of the thin
film equation (see Section 3.1) has been employed to study the onset of instability [104]
under the perfect dielectric model, and its prediction of the fastest growing wavelength
λm yields quantitative agreement with experimental measurements [104]. Additional
physical effects and more complicated models including multiple viscous fluids, non-
Newtonian or conducting fluids have also been studied using LSA. Interested readers
can consult the extensive list of references in the review by Wu and Russel [134].

As already mentioned in Chapter 1, the patterns formed by the electrostatic instability
lack spatial uniformity. This is because according to the dispersion relation given by
Eq. (3.7), a range of different modes around K = Km are excited, so a single well-
defined length scale does not necessarily manifest. Besides, predictions of LSA only
apply to the early stage of the pattern formation process where the amplitude of the
perturbation is small. When the amplitude of the patterns become large, nonlinear
terms in the governing thin film equation can no longer be neglected, and subsequent
nonlinear processes such as coalescence of neighboring protrusions can ruin the spatial
uniformity of the patterns. The initial pattern morphology is also mostly hexagonal,
which was explained by Wu et al. [132] using a weakly nonlinear analysis to show that
the hexagonal mode has faster initial growth rates than the modes which correspond to
Cartesian arrays or stripes.

In order to improve the spatial uniformity, reduce the feature size and to control the
morphology of the patterns, researchers typically modulate the electric field, which is
most commonly achieved experimentally using a topographically patterned mask (e.g.,
see Fig. 1.1(c)). Since protrusions are formed in the region of the largest gradient of
electrostatic stress, the liquid film is expected to develop protrusions underneath the
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regions with smaller electrode separation, resulting in patterns with higher degree of
spatial uniformity. Numerous studies have attempted to address how heterogeneous
electric field affects the shape of a single layer of viscous thin film, and they are can
be classified into two main categories – (1) studying the stationary states and their
corresponding stability, and (2) studying the spatiotemporal evolution of the liquid film
through direct numerical simulations of an evolution type equation.

The spatial profile and stability of stationary states under a heterogeneous electric field
have been studied in Ref [52, 136, 137, 139, 142] numerically. By considering the normal
stress balance, Yeoh et al. [142] and Yang et al. [136, 137] observed a critical threshold
in the parameters which dictates whether the liquid film developed ‘stable’ non-uniform
patterns without contacting the electrodes. Yeoh et al. [142] specifically studied sinu-
soidally modulated applied voltage, while Yang et al. [136, 137] studied topographically
patterned mask. Yang et al. [139] later applied numerical continuation technique un-
der LWA and discovered hysteresis of the liquid film shape as the applied voltage was
varied. Heier et al. [52] also studied the conditions for forming stable stationary states
analytically using an energy argument with experimental verification. All these studies
[52, 136, 137, 139, 142] focused on a single protrusion or ridge developed by the liquid
film, and the ‘stability’ they considered only refer to whether electrostatic pressure can
be balanced by capillarity to form protrusions without touching either the mask or sub-
strate. Stability against other nonlinear phenomena such as coalescence which involves
fluid flow between neighboring protrusions and have been observed in experiments [133]
or in simulations [131] were not taken into account. Besides, whether an initially flat
liquid film does evolve to the predicted stationary state in the first place has also not
been addressed in detail.

The other approach involves the direct numerical simulation of the thin film equation
derived under LWA [85] for a system with a topographically patterned mask [3, 56, 86,
112, 127, 132]. Studies involving the use of topographically or chemically patterned
substrate have also been conducted [3, 112]. Ref [3, 112, 127, 132] have studied the
spatiotemporal evolution of the liquid film under selected parameters, and concluded that
matching the fastest-growing wavelength λm of the system with the externally imposed
patterning wavelength λp (see Fig. 1.1(c)) is required in order for the liquid film to
develop patterns with the same periodicity as the patterns imposed on the patterned
mask or substrate, and subsequent experimental studies [127, 133] reported qualitatively
similar results. More recently, varying the ratio between the patterning and instability
time scales using ultra high voltage was also investigated numerically and experimentally
and showed some promising results [56, 86] regarding the formation of high fidelity
patterns. However, the simulations conducted in these studies often only cover a small
range of parameters out of a large parameter space, so the predictive capability of those
results in unexplored parameters is expected to be very limited since the underlying
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pattern formation phenomena are highly nonlinear. More in-depth understanding of the
pattern formation process, especially the destabilization mechanism and the conditions
for achieving stable patterns, are also lacking.

In view of the limitations of prior studies in literature, we aim to provide a more com-
prehensive understanding of the pattern formation process in viscous liquid film under
external periodic spatial modulation in the electric fields. We focus mainly on one-
dimensional spatial modulation which results in parallel ridges formed by the liquid film,
but also provide preliminary studies on two-dimensional spatial modulation at the end.
We first revisit the stationary states of a single ridge and their stability, and demonstrate
that the critical threshold separating stationary states with small and large deformation
[52, 136, 137, 139, 142] can be be explained analytical by a weakly-nonlinear analysis
using multi-scale expansion close to the onset of instability. We then study the stability
of the multiple ridges taking into account phenomena such as coalescence and Ostwald
ripening using LSA, and present stability phase diagrams showing the parameters for
forming stable patterns. Finally, we also investigate the dynamics of liquid film via
direct numerical simulation of the thin film equation to corroborate the results on the
stability of stationary states, and to determine whether the non-uniform stationary states
are accessible for an initially flat liquid film.

5.1.2 Problem statement
The governing equation for EHD patterning is re-stated below for convenience:

∂H

∂τ
= ∇∥ ·

{
M(H)∇∥P

}
= −∇∥ ·

{
M(H)∇∥

[
∇2

∥H + Π(H, ξ)
]}
, (5.1)

where M(H) = H3/3 is the mobility factor (the subscript ‘⊥’ has been dropped since
shear stress is absent and there is only one mobility factor), P = −∇2

∥H − Π is the
total pressure, Π is the external pressure due to electrostatic and van der Waals’ effects,
and the asterisk (∗) for the dimensionless in-plane gradient operator has been dropped
for brevity. The symbol ξ is a label which denotes the system variable being spatially
modulated from this chapter onwards: for EHD patterning, we focus on either topo-
graphically patterning the top electrode, i.e., ξ = D(X), or spatially modulating the
applied voltage, i.e., ξ = Ψ∆(X). Specifically, we consider the following form of spatial
modulation:

ξ = D : D(X) = D0 [1 + ϱg(X)] , (5.2a)

ξ = Ψ∆ : Ψ∆(X) = 1 + ϱg(X), (5.2b)
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where ϱ is the modulation strength 1, D0 is the mean electrode separation, and g(X)
is the patterning function given by

1D sinusoidal: g(X) = cos(2πX/Λp), (5.3a)

1D rectangular: g(X) = rect(X) = tanh
[
X − wrect
lrect

]
tanh

[
X + wrect
lrect

]
, (5.3b)

2D egg carton: g(X,Y ) = 1
2 [cos(2πX/Λp) + cos(2πY/Λp)] . (5.3c)

Note that the modulation variable can be expressed in the general form ξ = ξ0(1 + ϱg)
where ξ0 = D0 or 1 depending on the actual type of spatial modulation. The patterning
wavelength is Λp. The parameter wrect in Eq. (5.3b) is the width of rectangular step,
while lrect controls how steep the slope of the step is. In actual simulations where the
spatial domain Lx = nΛp spans multiple repetitions of the periodicity (i.e., setting B
described in chapter 4.2.2), Eq. (5.3b) is turned to a periodic function by first restricting
X to −Λp/2 ≤ X ≤ Λp/2 and then repeating the function defined within one unit cell
n times periodically.

We are interested in studying how the liquid film responds to external spatial modulation
described by Eq. (5.2) and (5.3), including the stationary states and their stability, as
well as the dynamic evolution toward the stationary states from an initially flat film.

5.1.3 Outline
In Section 5.2, we study analytically the spatiotemporal dynamics of the liquid film sub-
ject to 1D sinusoidal modulation given by Eq. (5.3a) under the limits of small amplitude
modulation (ϱ ≪ 1) using a linear analysis and near the onset of instability (W ≈ Wc)
using a weakly-nonlinear analysis. The results from weakly-nonlinear analysis suggest a
critical threshold in W separating small and large deformation of the liquid film, which
quantitatively explain previous results in Ref [52, 136, 137, 139, 142]. In Section 5.3,
we simplify the equations governing the stationary states and the associated stability
first given in Chapter 3 for EHD patterning where the stationary state pressure becomes
a constant. In Section 5.4, we present the numerical results for stationary states by
successively introducing different physical effects and complexity. We then complete the
chapter by discussing the implications of the results in Section 5.5 and summarizing the
main findings in Section 5.6. Section 5.7 contains the derivations of a few equations
shown in Section 5.2.

1Not to be confused with the liquid density ρ in Chapter 2. Notice the typographical difference
between ϱ and ρ.
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5.2 Analytical Results
We first attempt to study the stationary states and their stability analytically in order to
gain more physical insights. Specifically, we look at two cases: when ϱ ≪ 1 and when
W ≈ Wc.

In this chapter, the electric Weber number W is often presented as the ratio W/Wc:

Wc = K2
p

[1 + εr(D0 − 1)]3

εr(εr − 1)2 , Wr ≡ W
Wc

= Wεr(εr − 1)2

K2
p [1 + εr(D0 − 1)]3

, (5.4)

where Wc (first introduced in Chapter 3.1.4) is only a function of D0 when Kp and
εr are held fixed. The parameters are also often reported using ratios of wavelength or
wave number in literature, and they are related to Wr via

Wr = W
Wc

=
(
Kc

Kp

)2

= 1
2

(
Km

Kp

)2

= 2
(
λp

λm

)2
, (5.5)

where λp is the dimensional patterning wavelength, and λm is the dimensional fastest-
growing wavelength under LWA given by Eq. (3.12).

5.2.1 Linear theory under small modulation strength (ϱ ≪ 1)
When the modulation amplitude ϱ ≪ 1 is small, we can obtain analytical approximation
to H(X, τ). Assume the spatially modulated system variable ξ (representing either D
or Ψ∆) is given by Eq. (5.3a), i.e., ξ(X) = ξ0 [1 + ϱ cos(KpX)]. Using the ansatz
H(X, τ) = 1 + ϱH1(X, τ) + O(ϱ2), Eq. (5.1) can be linearized to give

∂H1
∂τ

= −M(1)
[
K2

c

∂2H1
∂X2 + ∂4H1

∂X4

]
+M(1)K2

pξ0
∂Π(1, ξ0)

∂ξ
cos(KpX), (5.6)

where M(1) = 1/3 is the mobility factor evaluated at the base state of a flat film,
and ∂Π(1, ξ0)/∂ξ is given in Appendix B. Periodic boundary conditions H(−Lx/2, τ) =
H(Lx/2, τ) are imposed, and we assume the spatial domain is Lx = NΛp = 2πN/Kp

for integer values of N . The initial condition of H1 has the following general form

H1(X, τ = 0) =
∑

n

[an cos(KnX) + bn sin(KnX)] , (5.7)

where Kn = 2πn/Lx. As shown in Section 5.7.1, the general solution of H1(X, τ)
under the given boundary conditions and initial conditions is



66

H1(X, τ) =
∑

n

[an cos(KnX) + bn sin(KnX)] eβ(Kn)τ

+ ξ0
K2

p −K2
c

∂Π(1, ξ0)
∂ξ

cos(KpX)
[
1 − eβ(Kp)τ

]
, (5.8)

where β(K) is the dispersion relation for the un-modulated case given by Eq. (3.7). The
solution to H1(X, τ) consists of the homogeneous solution (first line) due to the intrinsic
EHD instability and the particular solution (second line) due to the spatial modulation
imposed on the system. If Kp > Kc and β(Kn) < 0, then the liquid film saturates with
deformation amplitude given by

∆Hlin ≡ max[H(τ → ∞) − 1] = ϱξ0
K2

p −K2
c

∣∣∣∣∂Π(1, ξ0)
∂ξ

∣∣∣∣ (5.9)

=


ϱD0

K2
p −K2

c

Wε2
r(εr − 1)

[1 + εr(D0 − 1)]3
= ϱD0Wεr

|W − Wc|(εr − 1) , if ξ = D

ϱ

K2
p −K2

c

Wεr(εr − 1)
[1 + εr(D0 − 1)]2

= ϱW [1 + εr(D0 − 1)]
|W − Wc|(εr − 1) , if ξ = Ψ∆

and the characteristic time scale for achieving the stationary state is given by

τp = 1
|β(Kp)| . (5.10)

Note that Eq. (5.9), which has been derived without assuming the specific type of spatial
modulation, encompasses previous results in literature studying specific type of spatial
modulation 2. Eq. (5.9) has also been expressed in terms of wave numbers (Kc and
Kp) or the electric Weber numbers (W or Wc) for topographically patterned mask or
spatially modulated applied voltage, respectively. The van-der Waals’ contribution to Π
is assumed to be negligible since the free surface is far from either electrode when the
liquid film develops small amplitude deformation.

Since we are interested in large scale periodic patterns, the system size is many times
larger than the patterning wave wavelength so that multiple periods of the imposed
patterns on the mask are present. Since the smallest wave number allowed in the
system is Kmin = 2π/Lx where Lx = NΛp for integer values of N , whenever N >

Kp/Kc =
√

Wc/W which is usually satisfied, then there is at least one mode with
2For modulation in applied voltage (ξ = Ψ∆(X)), it agrees with Eq. (16) in Yeoh et al. [142] if we

take the limit k → 0 under LWA. For modulation in electrode topography (ξ = D(X)), it agrees with
Eq. (6) in Heier et al. [52] and Eq. (22) in Yang et al. [136] after appropriate algebraic manipulation of
the expressions.
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positive growth rate (i.e., β(Kmin) > 0). Therefore, in practice an initially flat liquid
film subject to random perturbation does not develop stable sinusoidal deformation given
by Eq. (5.8). However, the time scale for destabilization which is characterized by β(K)
for the unstable modes K might be long enough compared to τp, and so for practical
purposes the patterns developed by the liquid film may still be retained for patterning
purposes.

5.2.2 Multi-scale expansion near W ≈ Wc

The linear analysis presented in Section 5.2.1 no longer holds as Kp → Kc, or as
W → Wc. In order to study the behavior of the liquid film near the critical point where
W ≈ Wc, we need to perform a multi-scale expansion around Wc. The multi-scale
expansion has been employed to study the rupture of free-standing film [33] and liquid
film on patterned substrate [57] near the bifurcation point, and here we apply the multi-
scale expansion to study liquid thin film in the context for lithographic patterning. We
briefly summarize the scalings employed in the expansion and state the final amplitude
equation which is used to obtain various physical insights. Detailed derivation justifying
the proposed scalings is provided in Section 5.7.2.

We assume the spatially modulated variable is ξ(X) = ξ0 [1 + ϱ cos(KpX)], where ξ is
a label representing either electrode topography D or the applied voltage difference Ψ∆.
We expand the liquid film shape as H(X, τ) = 1+δH1(X, τ)+δ2H2(X, τ)+· · · with the
scaling δ3 = ϱ ≪ 1. We further expand the electric Weber number as W = Wc +δ2W2,
and introduce the slow time τ2 = δ2τ . The scalings for W and τ can be deduced from
the multi-scale expansion without spatial modulation, and the scaling δ3 = ϱ is required
in order for the effect of spatial modulation to appear in the final amplitude equation
we seek. From the O(δ) expansion, the leading order solution is

H1(X, τ) = a1(τ2) cos(KpX), (5.11)

where the amplitude a1(τ2) satisfies the following amplitude equation which comes from
the solvability condition in the O(δ3) expansion:

da1
dτ2

= fwnl(a1; W2) = c3a
3
1 + c1W2a1 + c0, (5.12)

with the coefficients given by
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c3 = 1
24M(1)

( ∂2Π
∂H2

)2

+ 3K2
p

∂3Π
∂H3

 = 15W2
c (εr − 1)4(εr − 1)2ε2

r

8 [1 + εr(D0 − 1)]8
, (5.13a)

c1 = M(1)K2
p

∂2Π
∂H∂W

= K2
p

εr(εr − 1)2

[1 + εr(D0 − 1)]3
, (5.13b)

c0 = M(1)K2
p ξ0

∂Π
∂ξ

. (5.13c)

Note that all derivatives of Π in Eq. (5.13) are evaluated at H = 1, ξ = ξ0 and
W = Wc, and their full expressions are given in Appendix B. The expressions after
the second equality in Eq. (5.13)(a) and (b) are obtained by neglecting van-der Waals’
interactions since their contribution to Π is much smaller than electrostatic stress for a
flat liquid film under the parameters investigated. For the case of uniform patterning
without spatial modulation, i.e., ξ(X) = ξ0 = const., we simply set c0 = 0 because the
c0 term arises from spatial modulation in the derivation of Eq. (5.12).

The stationary states can be obtained by solving fwna(a1; W2) = 0, while the stability
is determined by the sign of the Jacobian (positive for unstable and negative for stable)
given by

∂fwna
∂a1

= 3c3a
2
1 + c1W2. (5.14)

Fig. 5.2.2 shows the stationary solutions (da1/dτ2 = 0) to Eq. (5.12). The unmodulated
case (i.e., without spatial modulation) is shown in Fig. 5.2.2(a) which depicts a subcrit-
ical pitchfork bifurcation. Solid lines denote the stationary states obtained by solving
da1/dτ2 = 0 (Eq. (5.12)). When W2 > 0, i.e., W > Wc, the trivial stationary state
is unstable and no stable non-trivial stationary state can be formed. This is consistent
with the LSA carried out in Chapter 3.1 where the growth rate β is positive whenever
W > Wc (see Fig. 3.1(b)). When W2 < 0, i.e., W < Wc, the unstable branch bifur-
cates into two unstable branch with nonzero amplitude, and a stable branch with zero
amplitude. The stable branch represents the parameter range where the electrostatic
stress is insufficient to overcome the capillary stress, and so the flat liquid film does not
develop any corrugations.

When the mask is topographically patterned (i.e., ξ = D(X)), the bifurcation diagram
is shown in Fig. 5.2.2(b) which depicts an imperfect supercritical pitchfork bifurcation
with two distinct branches. The stable branch with nonzero amplitude only exists when
W2 < W∗

2 , where W∗
2 and the corresponding amplitude a∗

1 can be determined by solving
fwna(a∗

1; W∗
2 ) = 0 and ∂fwna(a∗

1; W∗
2 )/∂a1 = 0 simultaneously, giving
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Figure 5.1: Bifurcation diagram under the weakly-nonlinear analysis of a liquid film with
(a) flat mask (c0 = 0) and (b) spatially modulated mask (ξ = D(X) and c0 ̸= 0).
Parameters: D0 = 2.5, εr = 2.5, ξ = D(X). Colored lines denote numerical solution
to da1/dτ2 = 0 given by Eq. (5.12). Green color denotes stable branch while red color
denotes unstable branch. The fold point given by Eq. (5.15) which separates the stable
and unstable branch in (b) is indicated by the black circle marker.

W∗
2 = −sign(c1c3) 3

|c1|

(
c2

0|c3|
4

)1/3

, a∗
1 = sign(c0c3)

( |c0|
2|c3|

)1/3
. (5.15)

This implies W = Wc + δ2W2 cannot exceed the threshold Wc + δ2W∗
2 for stable sta-

tionary states to form. Physically speaking, the stationary state is stable when capillarity
can balance the electrostatic stress. When W is large enough, the electrostatic stress
is too strong for the capillarity to balance if the liquid film deformation is small. In this
case, pressure balance can only be satisfied by having large deformation for the liquid
film whose shape can no longer be described by a linear or weakly-nonlinear theory 3.
The negative phase for the amplitude of the stable branch is consistent with the fact
that the liquid film attains a maximum at the valley of the patterned electrode. If the

3This corresponds to the large deformation case when W > Wf1 described later in Section 5.4.2.
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applied voltage Ψ∆ is modulated instead, then c0 ∝ ∂Π/∂ξ > 0, and the bifurcation
diagram shown in Fig. 5.2.2(b) is reflected along the horizontal a1 = 0 axis, giving a
stable branch with positive amplitude.

Since ϱ = δ3 and W = Wc + δ2W2, we can define the critical modulation strength ϱ∗
wna

for a given W as

ϱ∗
wna =

∣∣∣∣Wc − W
W∗

2

∣∣∣∣3/2
. (5.16)

For any given W < Wc, when ϱ > ϱ∗
wna, the stationary state given by solving Eq. (5.12)

is unstable under the weakly-nonlinear analysis. On the other hand, when ϱ < ϱ∗
wna, the

liquid film adopts a stable stationary state with deformation amplitude given by solving
fwna(a1) = 0.

5.3 Numerical Methods for Studying Stability
5.3.1 Stationary state conditions and stability
In EHD patterning under the perfect dielectric model, there is no shear stress or lateral
driving force in the system. This simplifies the stationary equations given by Eq. (3.19).
Integrating Eq. (3.19)(a) along X once yields an integration constant which is zero
because the net flux into the integration region should vanish when there is no shear
stress or lateral driving. Further integration of the resulting expression along X yields
the following equation

Pss = −∇∥Hss − Π(Hss, ξ) = const. (5.17)

where Pss is the second integration constant representing the total pressure at stationary
state. Eq. (5.17) is supplemented by another equation enforcing conservation of mass

∫
Ω
Hss(X)dX =

∫
Ω

dX = |Ω|. (5.18)

Note that when the liquid film reaches stationary state in EHD patterning, there is
no flow within the liquid film. This can be seen from the horizontal velocity given
by Eq. (2.44) where ∇∥Pss = 0, and Γ = Π

(t)
M = 0. The stationary state is also

independent of the mobility factor M(H) since the capillary and electrostatic pressure
(as well as disjoining pressure from van der Waals’ effect) act in the direction normal
to the liquid film surface and no shear is involved. This implies the stationary shapes
remain unchanged even when different physics are involved as long as their effects only
manifest through the mobility factor, for example, when the upper gas layer become a
viscous fluid, or if slip is involved at the fluid-substrate interface.
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As discussed out in Chapter 3.2, the stability of an arbitrary non-uniform stationary
states can be determined by solving the eigenvalue problem given by Eq. (3.17) with the
expansion H(X, τ) = Hss(X)+δH1(X, τ), or the generalized eigenvalue problem given
by Eq. (3.20) by introducing an additional auxiliary variable P to solve for alongside H.
When shear stress is absent and the stationary state condition is solely determined by
Eq. (5.17) and (5.18), we can simplify the expression of the eigenvalue problems using
the fact that ∇∥

[
∇2

∥Hss + Π(Hss, ξ)
]

= ∇∥Pss = 0 and Γ = 0. Eq. (3.17) becomes

βH1 = −∇∥ ·
{
M ′

⊥(Hss)H1∇∥
[
∇2

∥Hss + Π(Hss)
]}
, (5.19)

and similarly Eq. (3.20) becomes

βH1 = ∇∥ ·
[
M(Hss)∇∥P1

]
, (5.20a)

0 = P1 +
[
∇2

∥ + ∂Π(Hss)
∂H

]
H1. (5.20b)

The split variable approach given by Eq. (5.20) is chosen for all the numerical results
presented in this chapter due to better numerical accuracy as already discussed in chapter
4.1. Note that unlikely the shape of the stationary states, the stability does depend on
the mobility factor since it involves fluid flow.

For 1D spatial modulation given by either Eq. (5.3a) or (5.3b), the stability of the sta-
tionary states in a 1D system (i.e., invariant along Y direction) defined as −Λp/2 ≤
X ≤ Λp/2 can be studied using Bloch analysis introduced in Chapter 3.2 with the substi-
tution H(X, τ) = Hss(X) + δĤ1(X)eiKxX+βτ and P (X, τ) = Pss + δP̂1(X)eiKxX+βτ

where −Kp/2 < Kx ≤ Kp/2. Eq. (5.20) becomes

βĤ1 = ∂M(Hss)
∂X

(
∂

∂X
+ iKx

)
P̂1 +M(Hss)

(
∂

∂X
+ iKx

)2
P̂1, (5.21a)

0 = P̂1 +
[
∂Π(Hss)
∂H

+
(
∂

∂X
+ iKx

)2]
Ĥ1. (5.21b)

Eq. (5.21) can also be obtained by setting Ky = 0, Γ = 0 and Pss = const. in Eq. (3.26).

In a 2D system where the liquid film can vary along the Y direction, both Kx and
Ky can be nonzero. As it will be shown in Section 5.4, the stability of parallel ridges
in 1D is usually determined by the eigenmodes involving two neighboring ridges which
correspond to Kx = Kp/2. In order to simplify the problem in 2D, we instead consider
an enlarged spatial domain with Lx = 2Λp supporting two parallel ridges, and focus on
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the perturbation along the Y direction. Using H(X,Y, τ) = Hss(X)+δH1(X)eiKyY +βτ

[13, 117] and P (X,Y, τ) = Pss + δP1(X)eiKyY +βτ . Eq. (5.20) becomes

βH1 = ∂M(Hss)
∂X

∂P1
∂X

+M(Hss)
(
∂2

∂X2 −K2
y

)
P1, (5.22a)

0 = P1 +
[
∂2

∂X2 −K2
y + ∂Π(Hss)

∂H

]
H1. (5.22b)

When solving either Eq. (5.21) or (5.22), either the growth rate β or the wavenumber
Kx (or Ky) is held fixed, and the other becomes a dependent variable to be solved. An
extra equation is needed, which comes from the constraint of

∫
|H1|2dX which fixed

the norm of the eigenmodes.

5.3.2 Numerical methods
The numerical methods used for solving the stationary equations and time-dependent
thin film equation are discussed in Chapter 4. Below we discuss a few specifics for the
EHD patterning problem in this chapter.

5.3.2.1 Stationary states

For a given set of parameters (D0, ϱ, W), an initial guess for the 1D stationary state
Hss(X) is obtained by first solving the time-dependent thin film equation given by
Eq. (5.1) with the initial condition H(X, τ = 0) = 1 in a 1D system with Lx = Λp = 2
(see Section 4.2). The final time is fixed at τf = 10 such that ∂H(X, τf )/∂τ ≈ 0, so
H(X, τf ) becomes the initial guess for the numerical solutions to the stationary equa-
tions which consist of Eq. (5.17) and (5.18). The discretized nonlinear equations are
solved using Newton’s method implemented in the Julia package BifurcationKit.jl

[126]. In order to determine the growth rates β and the eigenmodes H1(X), Eq. (5.21)
and the additional constraint of

∫
|H1|2dX = 1 are incorporated to the set of nonlin-

ear equations to be solved. Once the stationary solution (and possibly the associated
eigenmodes and growth rate) for a given set of parameters is obtained, the PALC im-
plemented in BifurcationKit.jl [126] is then employed to obtain the other solutions
as one of the parameters (e.g., D0, ϱ or W) is varied.

5.3.2.2 Time-dependent simulations of Eq. (5.1)

Eq. (5.1) is solved numerically using method of lines as described in Section 4.2. When
studying the interactions among the protrusions formed in the liquid film, a large system
size is used to ensure long wavelength modes are present. For 1D simulations presented
in Section 5.4.3, Lx = 16Λp; for 2D simulations presented in Section 5.4.4, (Lx, Ly) =
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(4Λp, 6Λp) for parallel ridges and (Lx, Ly) = (4Λp, 4Λp) for ‘egg carton’ modulation.
The initial condition is H(X, τ) = 1 + 0.01 × randn(X), where randn(X) is a random
number generator which returns a sample from the standard normal distribution.

To quantify the deviation of the liquid film shape from the stationary state, we introduce
the (instantaneous) RMS deviation Erms(τ) and shifted deviation Eshifted(τ) defined as

Erms(τ) = 1
|Ω|

∫
Ω

[H(X,Y, τ) −Hss(X)]2 dX, (5.23a)

Eshifted(τ) = 1
|Ω|

∫
Ω

[H(X,Y, τ) −H(X − Λp, Y, τ)]2 dX (5.23b)

The RMS deviation Erms(τ) measures the deviation of the liquid film shape away from
the given stationary state Hss(X), while the shifted deviation Eshifted(τ) measures the
difference between neighboring ridges. For cases when the liquid film shows relatively
large deviation away from the stationary state, if Eshifted(τ) remains small, then the
liquid film may still exhibit high fidelity patterns which are of practical interests.

The stability of the liquid film can be quantified by Erms(τf ) and Eshifted(τf ), where
the simulation final time τf is set to a value much larger than the initial time scale for
developing the patterns in the first place. For both 1D and 2D simulations presented
in Section 5.4, τf = 20τmax. Since τmax = 1/β(K = Km) is typically larger than
the patterning time scale τp required to develop non-uniform pattern, 20τmax is long
enough to both ensure the liquid film has reached stationary state if the state is indeed
accessible, and if so study the stability of such stationary state.

5.4 Numerical Results
All the numerical results are presented in this section. The parameters are fixed at
εr = 2.5, A = 10−3 and Λp = 2 (Kp = π) 4 unless otherwise specified. For rectangular
modulation given by Eq. (5.3b), wrect = 0.5 and lrect = 0.02 unless otherwise specified.
The main parameters to be varied are D0, ϱ and W 5.



74

X
−1.0 −0.5 0.0 0.5 1.0

H
ss
(X
)

0.0

0.5

1.0

1.5

D0=1.5

X
−1.0 −0.5 0.0 0.5 1.0

H
ss
(X
)

0.0

0.5

1.0

1.5

2.0

2.5

D0=2.5

X
−1.0 −0.5 0.0 0.5 1.0

H
ss
(X
)

0.0

1.0

2.0

3.0

4.0 D0=4.5

(a)

(b)

(c)

Wr
1.10
1.50
2.00

Wr
1.10
1.50
2.00

Wr
1.10
1.78
1.79

Figure 5.2: Stationary states Hss(X) obtained with flat top electrode (ϱ = 0) for (a)
D0 = 1.5, (b) D0 = 2.5 and (c) D0 = 4.5. Different colors represent different Wr

indicated in the legend.



75

D0
2 3 4 5 6

W
r

1.0

1.5

2.0

2.5

D0
2 3 4 5 6

W
r

1.0

1.5

2.0

2.5

D0
2 3 4 5 6

W
r

1.0

1.5

2.0

2.5
m
in
(H

ss
)

0.25

0.50

0.75

m
ax
(H

ss
)

2.00

3.00

4.00

5.00

m
in
(D

0−
H
ss
)

1.00

2.00

3.00

4.00

(a)

(b)

(c)

Figure 5.3: Parametric diagram of stationary states Hss(X) obtained with flat mask
(ϱ = 0) against different D0 and Wr. The heat map color represents (a) the minimum
liquid film thickness min(Hss), (b) the maximum liquid film thickness max(Hss) and (c)
the minimum air gap thickness min(D0 −Hss). Colored cross symbols in (c) correspond
to the parameters of Hss(X) shown in Fig. 5.2. White vertical dashed lines in all plots
separates the three different regimes of stationary states described in the text.
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5.4.1 Single ridge with flat electrode (ϱ = 0)
We first review the results for un-modulated system (flat mask with ϱ = 0) 6 which
forms the basis for subsequent discussion on patterned mask (ϱ > 0). The two main
parameters to be varied are the mean electrode separation D0 and the electric Weber
number W (∝ V 2

0 ). Results from LSA and weakly-nonlinear analysis show that Hss = 1
is stable whenever W < Wc (Wr < 1). Therefore, to obtain non-uniform stationary
states, we focus on W > Wc (Wr > 1).

We can classify the liquid film shape into three different regimes depending on D0,
and the stationary shapes for three different D0 corresponding to the three regimes are
shown in Fig. 5.2. In all three regimes, larger W results in larger electrostatic stress to
deform the liquid film which develops protrusions with taller height (e.g., for D0 = 4.5)
or larger contact area with the mask (e.g. for D0 = 1.5 and 2.5) if it touches the top.
The three regimes are also separated by the white dashed lines in Fig. 5.3. When the
minimum film thickness shown in Fig. 5.3(a) is very small, i.e., min(Hss) ∼ O(10−2),
the region between neighboring protrusions or ridges, known as the ‘precursor film’, is
very thin. It does not go to zero due to the repulsive van-der Waals’ interaction. On
the other hand, when the minimum air gap thickness shown in Fig. 5.3(c) is very small,
i.e., min(D0 −Hss) ∼ O(10−2), the liquid film ‘touches’ the mask. The separation does
not go to zero again due to the repulsive van-der Waals’ interaction.

The first regime (D0 ≲ 2.0) is characterized by a very small minimum air gap thickness
min(D0 − Hss) and relatively large minimum liquid film thickness min(Hss). The sta-
tionary state is limited by the geometric constraint imposed by mask, and corresponds to
the ‘high fill ratio limit’ described in Ref [131]. In the second regime (2.0 ≲ D0 ≲ 3.0),
both min(Hss) and min(D0 − Hss) are small. The liquid touches the top mask and
develops a thin precursor layer near the substrate. In the third regime (D0 ≳ 3.0), the
liquid film has a thin precursor layer near the substrate, but only touches the top when
Wr exceed a certain threshold for a given D0. This is apparent from both Fig. 5.3(b) and
(c) by the large contrast in color showing the maximum film height and the minimum
air gap thickness.

To study the stability of the non-uniform stationary state with a single protrusion against
4The characteristic lateral length scale is set at l0 = λp/2, hence Λp = 2. With this choice of

scaling, for a system with Lx = Λp which consists of a single ridge, the spatial domain varies between
−1 ≤ X ≤ +1.

5When using PALC to obtain the numerical solutions of the stationary states and eigenmodes, Wr

is the actual variable being varied. For the parameters investigated in this chapter, 0 < Wr ≲ 3. If
W is varied instead, the parameter to be varied can span O(101 − 103) which is more challenging for
numerical convergence when D0 is large, and more fine-tuning of the step size in PALC is needed.

6Wu et al. [131] first studied the stationary states for EHD patterning without spatial modulation
where instead of varying the strength of Maxwell stress W and the electrode separation D0, they chose
the length of the system size as well as the mean film thickness as the parameters to be varied due to
a different choice of scalings adopted in that paper.
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pressure balance, Eq. (5.21) is solved numerically with Kx = Ky = 0. Eq. (5.21) with
Kx = Ky = 0 always supports a translation mode H1 ∝ ∂Hss/∂X with zero eigenvalue
(β = 0). This mode is also the eigenmode with the largest growth rate computed
numerically, so the system is marginally stable since max(β) = 0. When the mask
is patterned, the translational symmetry is broken, and β becomes increasingly more
negative as ϱ increases.

It can be seen that when stationary state is achieved, the liquid film has to fulfill at
least either one of the following conditions: (1) very thin precursor film thickness (small
min(Hss)) or very thin air gap thickness (small min(D0 −Hss)). For the first condition,
the mobility factor M(H) at the precursor film near the substrate is very small, thus
fluid flow within the film encounters large resistance. These states can be considered
‘mass-limited’ as they are unable to grow any further due to difficulty in transporting
extra fluid near the precursor film. For the second condition, the liquid film is touching
the top, and so further growth of protrusion is suppressed by the geometric confinement
of the system. Thus it may be more appropriate to label such states as ‘saturated’ states
since the liquid film has a tendency to grow further if not constrained by the mask.

5.4.2 Single ridge with patterned electrode (ϱ > 0)
5.4.2.1 Variation in W

We next study how patterned mask (ϱ > 0) affects the non-uniform stationary states
in a 1D system with Lx = Λp. Once the stationary solution for one particular set of
parameters are obtained, the solutions for other parameters can be obtained efficiently
using PALC as described in Section 4.3.1.

It should be pointed out that the stationary states we describe here are not the only
possible stationary states. In certain parameter range, other stationary states may exist
but those are unstable stables not accessible for a flat liquid film. For example, those
states may form protrusions in the region with the largest electrode separation which
are unphysical. Those states are not discussed in this chapter.

Fig. 5.4(a) shows the maximum and minimum of the stationary states as a function of
Wr for D0 = 2.5 obtained via PALC. The red dashed line shows the result when A =
0, i.e., no repulsive van-der Waals interaction is present. The deformation amplitude
increases with Wr until Wr = Wf1 when it encounters a fold bifurcation (also known as
saddle-node bifurcation), and continuation of the solution branch beyond the fold point
becomes possible by using PALC. The solution branch is eventually terminated when
either min(Hss) → 0 for relatively large D0 or max(Hss) → D0(1 − ϱ) for relatively
small D0. The former corresponds to film rupture and the latter corresponds to contact
with mask. When repulsive van-der Waals interaction is introduced, i.e., A > 0, then
the solution branch can be further continued in PALC beyond the second fold bifurcation
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Figure 5.4: Effects of varying Wr on stationary states’ amplitudes and stability for
ϱ = 0.05 and D0 = 2.5. (a) The maximum and minimum of the liquid film thickness at
stationary state (max(Hss) and max(Hss)) against Wr for (i) A = 0 (red dashed lines)
and (ii) A = 10−3 (blue solid lines) The two fold points at Wr = Wf1 and Wf2 are
indicated by vertical dashed lines. The three colored symbols indicate the parameters
for the liquid film shapes shown in Fig. 5.5(a). (b) Growth rate β for the (i) translation
mode (green) and (ii) unstable mode for vertical growth/shrinkage (pink) against Wr

at Wr = Wf2 to obtain the top solution branch where the liquid film is touching the
top mask and form saturated state. It can thus be concluded that the top branch
shown in Fig. 5.4(a) for A = 10−3 (blue solid line) can only exist under the presence
of intermolecular interaction which prevents film rupture or contact with the substrate
and mask. The presence of two fold bifurcations also implies the liquid film develops
different stationary states when Wf2 < Wr < Wf1 depending on how Wr is varied. For
example, when Wr is increased from zero, the liquid film likely settles into the small
deformation state, while if Wr is decreased from a large value above Wf1, the liquid film
likely maintains a large deformation state until Wr is smaller than Wf2. This hysteresis
phenomenon was first reported in Ref [139]. From now on we focus solely on the case
of A > 0. Detailed parametric studies on how variations in different parameters (e.g.
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h0, γ, εr) affect the fold bifurcation can be found in Ref [136, 137, 139] and are not
discussed any further in this study.

Regarding the stability of stationary states Hss(X), the translation mode remains stable
for all Wr which can be seen in Fig. 5.4(b). However, another eigenstate representing
vertical growth or shrinkage can become unstable in part of the solution branch between
Wf2 and Wf1. To further understand the region between Wf2 < Wr < Wf1, the three
stationary states (two stable, one unstable) for Wr = 0.64 are shown in Fig. 5.5(a).
The unstable stationary state either grows or decays in amplitude until it reaches one
of the other two stable stationary states. The stable translation and unstable growth
mode are also shown in Fig. 5.5(b). The unstable stationary state superimposed with
the two eigenmodes are shown in Fig. 5.5(c) to better visualize how subsequent fluid
flow changes the liquid film shape.

Finally, we also list the Lyapunov free energy F given by Eq. (2.52) in the figure caption
for the three stationary states in Fig. 5.5(a). Notice that the middle unstable stationary
state indeed has the largest F and hence is a local maximum, while the other two stable
stationary states have smaller F , and mode showing large deformation and contact with
the mask is the global minimum in F . The stability has also been studied in Ref [139]
using a heuristic energy argument, and here the same conclusion regarding stability is
reached using LSA.

Similar qualitative behaviors, namely the existence of two fold points and a general
increase in deformation height against Wr, are also observed for system with larger
electrode separation D0. Larger D0 requires larger Wr for the liquid film to approach
the patterned mask (min(D − Hss) → 0) because more fluid needs to be displaced
from the thinned region toward the protrusion tip to reach the patterned mask, which
is located further away from the liquid film for large D0.

5.4.2.2 Variation in ϱ

Next, we investigate the effects of varying the modulation amplitude ϱ. Fig. 5.6(a) shows
the structure height max(H) − min(H) against Wr obtained via PALC for different ϱ.
As ϱ increases, the interval Wf2 ≤ W ≤ Wf1 which supports three stationary states
decreases until no fold bifurcations occur. A fold point continuation can be performed at
one of the fold points shown in Fig. 5.6(a), with ϱ as the second continuation parameter,
and the result is shown in Fig. 5.6(b). The first fold point Wf1 emerges from Wr = 1
at ϱ = 0 as expected since Wr = 1 is the bifurcation parameter separating flat and
non-uniform stationary states at ϱ = 0. As ϱ increases, both fold points approach each
other and eventually form a cusp. When ϱ exceeds the value at the cusp, e.g. ϱ = 0.4
in Fig. 5.6(a), the structure height always increases with Wr and no fold bifurcation
exists.
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Figure 5.6: Effects of varying the modulation strength ϱ on the amplitudes and bifurca-
tions of the stationary states for D0 = 2.5. (a) Structure height max(Hss) − min(Hss)
against Wr for different modulation amplitude ϱ. Arrow indicates results for increasing
ϱ. (b) The cusp bifurcation exhibited by the two fold points Wf1 (upper branch) and
Wf2 (lower branch) as ϱ is varied. Pink dashed line is the weakly-nonlinear prediction
given by Eq. (5.16).

The prediction of the critical modulation amplitude ϱ∗
wna given by Eq. (5.16) from

weakly-nonlinear analysis is also plotted in Fig. 5.6(b) for comparison. It can be seen
that it agrees with the exact numerical solution reasonably well when Wr ≈ 1 (i.e.,
W ≈ Wc). As Wr deviates from 1 (i.e., W deviates from Wc), the agreement worsens
as expected because the assumption W ≈ Wc no longer holds.

5.4.2.3 Comparison with analytical theory

Here we compare the analytical results derived in Section 5.2 to the exact numerical
solutions. The structure height max(Hss) − min(Hss) against Wr for D0 = 2.5 and
ϱ = 0.01 obtained via PALC is shown as black solid in Fig. 5.7(a) for reference. The linear
solution 2∆Hlin from Eq. (5.9) is shown as yellow dash-dotted line and shows excellent
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Figure 5.7: Comparison of the structure height (max(Hss) − min(Hss)) against Wr

calculated by different methods. Parameters: D0 = 2.5, ϱ = 0.01. (i) exact numerical
solution (black solid line) by solving Eq. (5.17), (ii) linear approximation (orange dash-
dotted line) by solving Eq. (5.9), (iii) weakly-nonlinear approximation (red dotted line)
by solving Eq. (5.12), and (iv) nonlinear approximation (green dash line) by solving
Eq. (5.24). The magnified view near the first fold point is shown in (b).

agreement with the exact numerical solution when ∆Hlin is small. As Wr → 1, ∆Hlin

diverges since the linear theory does not predict the existence of fold point as W → Wf1

and ∆Hlin can increase without bound.

The weakly-nonlinear solution derived from solving Eq. (5.12) is shown as red dotted
line. It predicts the first fold point reasonably well for small ϱ as already discussed
in Fig. (5.2.2). Surprisingly, it predicts the amplitude more accurately for the unstable
middle branch than the bottom stable branch, though which solution branch shows better
agreement seems to depend on the value of D0, as well as the bifurcation parameter
chosen for the multi-scale expansion (e.g., expanding Kp instead of W).

We also consider a simplified non-linear estimate of the deformation amplitude which was
first carried out in [57]. For a patterned mask given by D(X) = D0 [1 + ϱ cos(KpX)],
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we can approximate the liquid film shape as H(X) ≈ 1 − ∆H cos(KpX). Equating the
stationary state condition given by Eq. (5.17) at the liquid film maximum and minimum
gives

−K2
p∆H + Π(H+, D−) = K2

p∆H + Π(H−, D+), (5.24)

where H± = 1 ± ∆H and D± = D0(1 ± ϱ) are the maximum and minimum values of
the liquid film and patterned mask.

Eq. (5.24) is solved using PALC, and the corresponding structure height 2∆H is shown
in Fig. 5.7 as green dash line. It predicts the presence of both fold points with reasonably
good accuracy for the first fold point at Wr = Wf1, showing that a simple consideration
of pressure balance is sufficient to elucidate the qualitative features of how the ∆H
varies with Wr. It fails to accurately predict the structure height for the upper stable
branch, because the assumption of a sinusoidal shape limits the maximum deformation
amplitude to 1 and the actual stationary state shapes differ considerably from the simple
assumption of sinusoidal shape.

5.4.3 Multiple ridges in 1D system
In the previous section, we studied the stationary states and stability of the liquid film
in a system with size Lx = Λp, neglecting any possible interactions involving multiple
protrusions. In this section, we first study the instability of a 1D system with size
Lx = Λp against perturbations with different wave number Kx by solving Eq. (5.21)
with Ky = 0. Phenomena involving multiple protrusions such as coalescence can be
taken into account by allowing Kx to vary between 0 and Kp/2. We then perform
time-dependent simulations of Eq. (5.1) in a large system with Lx = 16Λp to study the
spatiotemporal evolution of a liquid film supporting multiple protrusions.

5.4.3.1 Dispersion relations β(Kx)

By solving Eq. (5.21) and varying Kx using PALC, the dispersion relation β(Kx) for
increasing Wr at fixed D0 = 2.5 and ϱ = 0.05 is shown in Fig. 5.8. Fig. 5.8(a) and
(b) show dispersion relations of the two most unstable modes. The single protrusion
case studied in Section 5.4.2 corresponds to setting Kx = 0, and it can immediately be
seen that while β(Kx = 0) is non-positive for all Wr for both modes, β(Kx > 0) can
become positive for certain values of Wr and Kx, showing that even if a single protrusion
is stable against vertical growth or shrinkage by considering pressure balance, it can
still go unstable due to interactions with neighboring protrusions. Due to symmetry,
β(Kx) = β(−Kx), so the other half of the dispersion diagram is not shown.

The first mode shown in Fig. 5.8(a) is similar to type II instability for flat mask at small
Wr except β(Kx = Kp/2) attains a local extremum due to the imposed periodicity.
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Figure 5.8: Floquet-Bloch LSA of a 1D system with size Lx = Λp for D0 = 2.5
and ϱ = 0.05. (a)-(b): The dispersion relation β(Kx) for different Wr obtained by
solving Eq. (5.21) for the two most unstable modes. (c): The eigenmode H1(X) =
Re[Ĥ1(X)eiKxX ] for Kx = Kp/2 and Wr = 0.5 for the Ostwald ripening mode (left
column in cyan) and the coalescence mode (right column in purple). (d): The stationary
state Hss(X) (black solid line) superimposed with the eigenmodes Hss(X)+0.04H1(X)
(colored dashed lines) for the Ostwald ripening mode (left column in cyan) and the
coalescence mode (right column in purple). Arrows indicate the movement of the two
protrusions. For both (c) and (d), the spatial domain is extended to Lx = 2Λp for
visualizing the eigenmodes.
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For Wr = 0.15, β attains maximum at Kx ≈ 0.3Kp, suggesting that the most unstable
mode involves interactions involving ∼ 3 protrusions. As Wr increases, max(β) also
increases and the corresponding fastest growing wave number shifts toward Kp/2. This
suggests the most unstable mode for sufficiently large Wr involves interaction with the
nearest neighboring protrusion. When Wr is further increased to 0.7, β(Kx) ≤ 0 for all
Kx, which imply that a large enough Wr can stabilize the stationary state.

The second most unstable mode shown in Fig. 5.8(b) always has a negative growth rate
at Kx = 0, and β increases with Kx until it attains maximum at Kx = Kp/2. Similar
to the first mode, max(β) becomes larger as Wr increases, until a large enough Wr is
achieved when β(Kx) < 0 for all Kx.

To understand the physical mechanism of the two modes, their eigenstates H1(X) at
Wr = 0.5 and Kx = Kp/2 are shown in Fig. 5.8(c). The stationary states superimposed
with the eigenmodes, i.e., Hss(X) + 0.1H1(X), are plotted in Fig. 5.8(d) to illustrate
the movement of the protrusions. We can see that the first mode shown in the left
column corresponds to one protrusion growing in size at the expense of the neighboring
one, which is analogous to the phenomenon of Ostwald ripening 7. The second mode
shown in the right column corresponds to both protrusions approaching each other to
coalescence or merge mid-way between the two 8. We note that the dispersion relations
β(Kx) shown in Fig. 5.8(a) and (b) do not always strictly correspond to Ostwald ripening
and coalescence modes, respectively. When Kx = Kp/2, the two modes are swapped
at Wr = 0.6 and 0.64 because the two dispersion curves cross at intermediate value of
Kx. It is also difficult to draw a direct analogy to Ostwald ripening and coalescence
involving two protrusions when Kx < Kp/2 because the corresponding length scale
of the mode given by 2π/Kx involves more than two protrusions. Nevertheless, the
Ostwald ripening and coalescence modes involving two protrusions (i.e., at Kx = Kp/2)
provide an intuitive picture of the fundamental destabilization mechanism when more
than one protrusion is present.

5.4.3.2 Stability phase diagram

Next, we study the conditions for achieving high fidelity patterns and present the results
as a phase diagram by finding the values of Wr and ϱ where max(β) ≤ 0. The results
shown in Fig. 5.9 and 5.11 consist of three different types of information:

7The original phenomenon of Ostwald ripening refers to a two-phase mixture where the second phase
is dispersed in a matrix. The total energy of the system can be decreased by increasing the size scale
(i.e., decreasing the total interfacial area) of the second phase [129]. Many pattern-forming systems
[11, 45, 131] show qualitatively similar phenomenon where the size of a protrusion or mesa increases
at the expense of neighboring one, and have borrowed the term ‘Ostwald ripening’ to describe such
phenomena. The term ‘mass competition’ is also sometimes used in literature to describe this mode.

8Also sometimes called ‘collision’ mode in literature.
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1. The background grayscale heatmap shows the minimum liquid film thickness
min(Hss) and the minimum air gap thickness min(D −Hss). It tells us whether
the ridges formed by the liquid film touches the mask as indicated by small
min(D −Hss) or develops very thin precursor as indicated by small min(Hss).

2. The lines represent the contours where the local extremum at β(Kx = Kp/2)
reaches zero for the two most unstable modes illustrated in Fig. 5.8. They are
obtained using the method outlined in Ref [54] and is briefly summarized as follow:

We begin with an ‘inverted’ dispersion relation where instead of solving for β(Kx)
as in Fig. 5.8(a), we solve for Kx(β) by treating β as the independent variable
(i.e., the parameter to be varied in PALC) and the wave number Kx as the
dependent variable when solving for the set of nonlinear equations consisting of
Eq. (5.17) and (5.21). The maximum in the dispersion relation β(Kx) shown
in Fig. 5.8(a) and 5.13(a) then becomes a fold point when expressed as Kx(β),
and the corresponding independent variable represents the maximum growth rate
β = max(β). A fold point continuation can then be performed at such fold point,
varying β as the first parameter and W as the second parameter. When the results
are expressed as β(W), we can then find the value of W when β (i.e., max(β))
approaches a small number β = βzero where |βzero| ≪ 1 (typically 10−5). A
second fold point continuation is performed by fixing β = βzero, varying W as
the first parameter and ϱ as the second parameter. The corresponding W and ϱ
of the solution branch are then plotted in the phase diagram, and they represent
solutions with max(β) = βzero ≈ 0. The maximum growth rate is positive on one
side of the contour, and negative on the other side.

For the coalescence mode, max(β) always occurs at Kx = Kp/2, so tracking the
local extremum at β(Kx = Kp/2) is equivalent to tracking the maximum growth
rate, and the purple line truly represents the stability threshold. For the Ostwald-
ripening mode, we find that tracking the local extremum at Kx = Kp/2, which
is not necessarily equal to the global maximum for small Wr, seems to less likely
lead to numerical convergence issue when performing PALC. As a result, the cyan
line strictly represents the parameters for β(Kx = Kp/2) = 0, but for sufficiently
large Wr, it does approximates the stability threshold.

3. The symbols are the results of time-dependent simulation grouped into four cat-
egories depending on the stability and pattern fidelity of the non-uniform shapes
formed by the liquid film:

• Inaccessible: Erms(τ) ≥ 0.01 ∀ 0 ≤ τ ≤ τf

An initially flat (but randomly perturbed) liquid film never evolves into the
predicted stationary state, i.e., the initial state of the liquid film does not fall
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within the basin of attraction of the stationary state.

• Stable: Erms(τf ) ≤ 0.01
The liquid film does evolve into the predicted stationary state, and remain at
such state up to τf . While this does not necessarily prove that the stationary
state is asymptotically stable at very late time since the arbitrarily chosen τf

may not be large enough, it does show that a high fidelity pattern can be
obtained at a time relatively long compared to the initial time for forming
patterns.

• Unstable: Erms(τ) ≤ 0.01 for some τ , but Erms(τf ) ≥ 0.01.
The liquid film does evolve into the predicted stationary state, but destabilize
at some later time which results in large RMS deviation at time τf . This
corresponds to a saddle point in the high-dimensional solution space where it
is stable along certain directions (e.g., from initially flat film to non-uniform
stationary state) but unstable along the others (e.g., from non-uniform sta-
tionary states with the same periodicity as the patterned mask to some other
states with coalescenced protrusions).

Note that the above classification is only based on the liquid film shape at a finite
time τ = τf = 20 × τmax from time dependent simulations with a specific size of
the spatial domain and initial condition given by Eq. (4.9).

Small D0 (D0 = 2.5) Fig. 5.9 shows the stability phase diagram for 1D sinusoidal
modulation in a 1D spatial domain for D0 = 2.5. We can roughly divide the phase
diagram into two regions: the small deformation regime (dark background color) and
the large deformation regime (light background color). The small deformation regime
is characterized by large precursor film thickness between neighboring ridges (i.e., large
min(Hss)) and large air gap above the ridges (i.e., large min(D−Hss)), while the large
deformation regime is characterized by small air gap and small precursor film thickness
(except at large ϱ where geometric constraint prevents the thinning of liquid film).

The purple solid line represents the stability contour for the coalescence mode computed
by PALC where max(β) = 0. Parameters inside the enclosed region have max(β) > 0
and hence unstable, while those outside are stable. The cyan solid line represents the
stability contour for the Ostwald ripening mode where β(Kx = Kp/2) = 0. The
region below the bottom branch (i.e., small Wr) is unstable as β(Kx) > 0 for some
nonzero 0 < Kx < Kp (e.g., Wr = 0.15 in Fig. 5.8(a)). This represents destabilization
via interactions involving multiple protrusions. The region enclosed by the cyan line
represents parameters where β(Kx = Kp/2) > 0 (e.g., Wr = 0.5 in Fig. 5.8(a)),
which corresponds to Ostwald ripening with two neighboring protrusions and is also
unstable. The region above the top branch corresponds to the stable region where
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Figure 5.9: Stability phase diagram for 1D system with D0 = 2.5. Cyan and pur-
ple lines denote Ostwald ripening and coalescence modes with β(Kx = Kp/2) = 0
computed by PALC. Background heat map colors represents (a) minimum liquid film
thickness min(Hss) and (b) minimum air gap thickness min(D − Hss) in logarithmic
scale. Symbols denote unstable (orange square) and stable (green circle) states eval-
uated at τ = τf = 20τmax. The phases are classified based on min(Erms(τ)) and
Erms(τf ) (see main text for descriptions) averaged across 5 independent realizations for
each parameter. Note that the state at ϱ = 0.05 and Wr = 0.8 is classified as inacces-
sible within the time frame of the simulation because it takes a very long time for the
liquid film to reach the stationary state which is located very close to the fold point at
Wr = Wf1.



89

β(Kx) < 0 ∀ Kx (e.g., Wr = 0.7 in Fig. 5.8(a)). We can see that since the region
enclosed by the purple line mostly resides within the region enclosed by the cyan line,
the stability is mainly governed by the Ostwald ripening mode except at the very small
region near (ϱ,Wr) = (0.15, 0.35) where the coalescence mode is unstable while Ostwald
ripening mode is stable. The top branch of the cyan line also divides the small and large
deformation regimes depicted by the grayscale heatmap. This shows that for the Ostwald
ripening mode to be stable requires liquid film contact with the patterned mask.

To further study the nonlinear dynamics of the liquid film and corroborate the results of
LSA, Eq. (5.1) is solved numerically with a randomly perturbed flat film as the initial
condition in a large 1D domain with Lx = 16Λp. The symbols show the classification of
the state of the liquid film based on Erms(τ) averaged across five independent realizations
for each set of (ϱ,Wr). The ‘stable’ states only occur for the large deformation regime,
while the ‘unstable’ states fall into the small deformation regime. Fig. 5.10 shows two
particular examples with ϱ = 0.1 but different Wr: (a) one below and (b) one above
the cyan line. When Wr = 0.4, the liquid film develops ridges with amplitude of roughly
0.3, and the ridges then destabilize via the Ostwald-ripening mode where some ridges
grow in size while neighboring ones shrink. Also notice that the positions of the ridges,
i.e., the X coordinate of the liquid film maximum, remain the same at all time. If two
neighboring ridges destabilize via coalescence mode instead, then new ridges will be
formed between the two original ridges. For Wr = 0.55, the liquid film develops ridges
with large deformation that touch the top patterned mask, and high fidelity pattern is
maintained throughout the whole simulation.

Combining the results from both LSA and time-dependent simulations shows that for
relatively small electrode separation (D0 = 2.5), the necessary condition for obtaining
high fidelity patterns is for the liquid film to develop large deformation and touch the
patterned mask such that the liquid film can no longer grow any further. As noted
previously, these states are more appropriately described as ‘saturated states’ due to the
constraint on the allowable space to grow.

Large D0 (D0 = 5.0) The stability phase diagram for a system with larger electrode
separation, i.e., D0 = 5.0, is shown in Fig. 5.11. The region enclosed by the purple
line is the unstable parameter range for the coalescence mode, and is qualitatively very
similar to that for D0 = 2.5. The cyan line is the contour where β(Kx = Kp/2) = 10−2

for the Ostwald ripening mode. in the region enclosed by the cyan line, the maximum
growth rate of the Ostwald ripening is 10−2 > max(β) > 0. Outside the top branch of
the cyan line (i.e., for large Wr), the maximum growth rate becomes negative. Fig. 5.12
shows the spatiotemporal evolution of the liquid film for ϱ = 0.2 but different Wr. We
can classify the phase diagram into roughly three regions:
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Figure 5.10: Selected snapshots of liquid film shape H(X, τ) at τ = 0.2, 3, 4, 10 for (a)
Wr = 0.4 and (b) Wr = 0.55. Parameters: D0 = 2.5, ϱ = 0.1, Lx = 16Λp = 32.
In the top figure of (a), (b) and (c), solid lines with different colors represent H(X, τ)
at different time. The bottom figure of (a), (b) and (c) shows the ‘bird-eye’ view of
the liquid film’s spatiotemporal evolution. The colored horizontal dash lines indicate the
time where the liquid film shape is shown in (a) and (b). Note that only half of spatial
domain is shown.

1. The first regime corresponds to stationary states with small deformation with
relatively thick precursor film (i.e., large min(Hss) in Fig. 5.11(a)) and does not
touch the patterned mask (i.e., large min(D−Hss) in Fig. 5.11(b)). The orange
square symbols in that region show that the liquid film shape at H(X, τf ) is
classified as unstable because of the large RMS deviation signifying significant
departure from the stationary shapes. Fig. 5.12(a) shows an example with ϱ = 0.2
and Wr = 0.25. The liquid film develops ridges with amplitude of roughly 0.7,
but then destabilizes via the Ostwald-ripening mode at a later time and shows
noticeable deviation from the stationary state at τ = 34.

2. The second regime corresponds to stationary states with large deformation that
do not touch the patterned mask. This is the region enclosed by the cyan line
with small min(Hss) and large min(D − Hss). While the maximum growth rate
for the Ostwald ripening mode is still positive (but smaller than 10−2), time-
dependent simulations show that liquid film shape H(X, τf ) still closely resembles
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Figure 5.11: Stability phase diagram for 1D system with D0 = 5.0. Purple line de-
notes coalescence mode with β(Kx = Kp/2) = 0, while cyan line denotes Ostwald
ripening mode with β(Kx = Kp/2) = 10−2. Background heat map colors repre-
sents (a) minimum liquid film thickness min(Hss) and (b) minimum air gap thickness
min(D − Hss) in logarithmic scale. Symbols denote inaccessible (red cross), unstable
(orange square), stable (green circle) and ‘high fidelity’ (light green circle) states eval-
uated at τ = τf = 20τmax. The phases are classified based on min[Erms(τ)], Erms(τf )
and Eshifted(τf ) (see main text for descriptions) averaged across 5 independent realiza-
tions for each parameter.
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the stationary state shapes with Erms(τf ) < 0.01. Fig. 5.12(b) shows an example
with ϱ = 0.2 and Wr = 0.4. The liquid film develops ridges with large deformation
and a very thinned layer of precursor film between neighboring ridges. The patterns
persist for a long time up to τ = 34, which is significantly longer than the time
scale of O(0.1) that it takes to develop the ridges in the first place. Thus, the
stationary states in the regime can still be classified as at least ‘quasi-stable’ with
the possibility of being solidified in experiments. If the numerical simulation is run
for a longer time, the protrusions again destabilize via Ostwald ripening mode,
though it occurs at a much longer time scale (e.g., τ ∼ O(103 − 104)) compared
to the time for forming the protrusions in the first place.

3. The third regime corresponds to stationary states with large deformation that does
touch the patterned mask. This is region above the top branch of the cyan line with
small min(Hss) and small min(D−Hss). Time dependent simulations show that
an initially flat (but randomly perturbed) liquid film evolves toward the predicted
stationary state where the dark green circle symbols denote Erms(τf ) < 0.01.

The light green circle symbols denote states where Erms(τf ) > 0.01 but Eshifted(τf ) <
0.01. They are classified as ‘high-fidelity’ in the phase diagram as it takes a long
time to reach the stationary states (hence the large Erms(τf )), but they still exhibit
high degree of spatial uniformity as indicated by the small Eshifted(τf ). Fig. 5.12(c)
shows an example with ϱ = 0.2 and Wr = 0.8, and (d) is a magnified view of
(c). It is clear that up to τ = 34, the ridges developed by the liquid film still
exhibits high degree of spatial uniformity, but further inspection of the precursor
film region in Fig. 5.12(d) shows that it takes a much longer time scale for the
liquid film to reach the stationary state with a flattened profile. This explains
the relatively large Erms(τf ) for some parameters in this regime despite the over-
all patterns still exhibiting high pattern fidelity. These are also the truly stable
(saturated) states where the protrusions persist up to at least τ ∼ O(104) from
time-dependent simulations with much larger τf . This is consistent with the fact
that the Ostwald ripening mode is stable.

While the results from LSA and time-dependent simulations with much longer τf (not
shown here) suggest contact with the patterned mask is still required for the Ostwald
ripening mode to become truly stable (max(β) < 0), when combined with the results
of time-dependent simulations, the necessary condition for the liquid film to form quasi-
stable patterns whose shape can be maintained up to a long time for relatively large
electrode separation (D0 = 5.0) is the thinning of the precursor film layer. This can be
understood by the small mobility factor in the thinned region which inhibits fluid flow
among neighboring protrusions necessary for destabilization. As previously mentioned,
these stationary states may be more accurately described as ‘mass-limited’ states since
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Figure 5.12: Selected snapshots of liquid film shape H(X, τ) obtained with large elec-
trode separation. Parameters: D0 = 2.5, ϱ = 0.2, Lx = 16Λp = 32. (a) Wr = 0.25,
(b) Wr = 0.4 and (c) Wr = 0.8. In the top figure of (a), (b) and (c), solid lines with
different colors represent H(X, τ) at different time. The bottom figure of (a), (b) and
(c) shows the ‘bird-eye’ view of the liquid film’s spatiotemporal evolution. Note that
only half of spatial domain is shown. (d) is a magnified view of (c) near the thinned
precursor film region.
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further growth of the ridges is limited by the supply of fluid near the thinned precursor
layer.

5.4.4 Multiple ridges in 2D system
In this section, the stability of parallel stripes are studied in a full 2D system by allowing
the liquid film to vary along the Y direction, H = H(X,Y, τ).

5.4.4.1 Dispersion relation β(Ky)

The dispersion relation β(Kx) shown in Fig. 5.8 suggests that stability is usually deter-
mined at relatively large Wr where the maximum growth rate occurs at Kx = Kp/2.
This corresponds to interactions involving only two ridges in a system with size 2Λp.
Building upon this observation, we study the stability of the stationary states against
perturbations along the Y direction (with nonzero Ky) by analyzing a simplified sys-
tem of two parallel ridges in a 2D system with size Lx = 2Λp and Kx = 0. While a
2D periodic system with two ridges is inherently different from a much larger system
with many ridges that is commonly studied experimentally, studying such a simplified
system involving only two ridges still provides valuable insights into the stability of two
neighboring ridges and forms the basis for more complicated phenomena, but at a much
lower computational cost.

By solving Eq. (5.17) and (5.17) for Lx = 2Λp, we can obtain the four most unstable
modes which are the symmetric/asymmetric varicose and zigzag modes. Their dispersion
relations β(Ky) for D0 = 2.5, Wr = 0.5 and ϱ = 0.05 are shown in Fig. 5.13(a), and a
schematic showing the shapes of the eigenmodes are shown in Fig. 5.13(b).

The varicose mode corresponds to the breakup of the ridges into droplet-like struc-
tures, and neighboring ridges are in-phase (anti-phase) with each other in the symmet-
ric (asymmetric) mode. Similar break-up phenomena have also been reported for liquid
film dewetting dominated by van-der Waals’ interactions [31, 54, 117], and comparison
to the classic Rayleigh-Plateau instability for free-standing liquid jet [91] has also been
drawn in those studies. The symmetric varicose mode has a dispersion relation qualita-
tively similar to the type-II instability for flat electrode, and it always has zero eigenvalue
at β(Ky = 0) = 0. Such zero eigenmode does not exist in a strictly 1D system because
mean(H1) ̸= 0 and so volume conservation is violated. In a 2D system, however, the
eigenmode has the form H1(X,Y ) ∝ eiKyY , so integration along the Y direction allows
volume conservation to be satisfied. For the asymmetric varicose mode, β(Ky) > 0 for
small D0, and at Ky = 0, it is equivalent to the Ostwald ripening mode discussed in
Section 5.4.3 corresponding to the transfer of fluid from one ridge to the other. For large
D0 and sufficiently large Wr, the thickness of the precursor film between two neighbor-
ing ridges becomes very small and the two ridges can be considered independent of
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eigenmodes.
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each other. In such case, β(Ky = 0) → 0 for the asymmetric varicose mode, and the
dispersion relations of both the symmetric and asymmetric varicose modes become the
same.

For the zigzag modes, at Ky = 0, the symmetric (asymmetric) mode corresponds
to the translation and coalescence modes discussed in 5.4.2. The symmetric zigzag
mode which emerges from the translational invariance is always stable due to symmetry
breaking when ϱ > 0. For the asymmetric zigzag mode, its growth rate appears to be
always maximized at Ky = 0 and decreases with Ky.

5.4.4.2 Stability Phase Diagram

Here we present the stability phase diagram for the 2D system shown in Fig. 5.14
and 5.16 which are similar to their 1D counterparts shown in Fig. 5.9 and 5.11. The
background heatmaps showing min(Hss) and min(D−Hss) remain unchanged since the
stationary states Hss(X) are the same. However, the symbols and lines now represent
something slightly different:

1. The lines now represent the parameters where maximum growth rate for selected
unstable modes shown in Fig. 5.13 become zero, i.e., max[β(Ky)] = 0. Note that
these modes correspond to two parallel ridges only.

The stability contour for the asymmetric zigzag mode is the same as 1D coales-
cence mode, because the growth rate for 1D coalescence mode is always maximized
at Kx = Kp/2 which corresponds to the asymmetric zigzag mode for two ridges
with Kx = 0. Results with two parallel ridges further show that the growth rate
is maximized at Ky = 0. Since it is equivalent to the coalescence mode in 1D
system, it is not further explored here for parallel ridges in 2D system.

2. The symbols now represent the phase of the liquid film H(X,Y, τf ) in 2D sim-
ulations with (Lx, Ly) = (4Λp, 6Λp) and τf = 20τmax. The classification of the
phases are the same as in the 1D case.

Comparison between the 2D results shown in Fig. 5.14 and 5.16 and the 1D results
shown in Fig. 5.9 and 5.11 reveals the differences brought up by an extra dimension
along the Y direction.

Small D0 (D0 = 2.5) The stability phase diagram for D0 = 2.5 is shown in Fig. 5.14.
The stability contour of the symmetric varicose mode (black solid line) encompasses all
the other unstable modes and is the deciding factor for stability for two parallel ridges.
Furthermore, inspection of H1(X) for the symmetric varicose mode from Fig. 5.13(b)
clearly shows that the both ridges are subject to the same effects and so we can simply
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Figure 5.14: Stability phase diagram for 2D system with D0 = 2.5. Black solid line
and cyan dash line denote symmetric and asymmetric varicose mode for two parallel
ridges with max(β) = 10−5 computed by PALC. Background heat map colors rep-
resents (a) minimum liquid film thickness min(Hss) and (b) minimum air gap thick-
ness min(D − Hss) (same as in Fig. 5.9). Symbols denote (a) RMS deviation and
(b) maximum deviation given by Eq. (5.23) for 2D time-dependent simulation with
(Lx, Ly) = (4Λp, 6Λp) and τf = 20τmax. The value represents averaged quantity across
3 independent realizations for each parameter.



98

consider a single ridge while studying the symmetric varicose mode. This implies the
stability of the system is not affected whether there exists one or two ridges. The black
solid line also separates the small and large deformation regimes, which shows that
having large deformation is a necessary condition for the symmetric varicose mode to
be stable, i.e., max[β(Ky)] ≤ 0. Symbols representing 2D direct numerical simulation
results also show that ‘stable’ stationary states (i.e., Erms(τf ) ≤ 0.01) only occurs in
the large deformation regime. This shows that necessary condition for an initially flat
liquid film to evolve toward the stationary state is by touching the patterned mask, and
is the same for both 1D and 2D for D0 = 2.5.

One notable difference compared to the 1D case is that for small ϱ and large Wr that
lies in the large deformation regime, there is a cluster of states classified as ‘inaccessible’
where Erms(τ) never reaches below 0.01 within the time frame of the simulation. This is
because as the liquid film forms ridges that keep growing upward, they break up before
establishing contact with the patterned mask. An example is shown in Fig. 5.15 for
ϱ = 0.1 and Wr = 0.8. Undulation along the top of the ridges can be seen at τ = 0.08
which then destabilize into disjointed ridges. This phenomenon can be explained as
follow: a larger Wr results in larger electrostatic stress, and balancing such destabilizing
stress by capillarity becomes more difficult. On the other hand, a small ϱ results in larger
electrode separation in the region where the liquid film forms protrusions, so it takes
longer time for the liquid film to establish contact with the patterned mask, which in
turn makes it more susceptible to destabilization due to electrostatic stress. Therefore,
as liquid film is forming those parallel ridges, those ridges are more like to breakup into
isolated ridges or column-like structures.

Large D0 (D0 = 5.0) The case for D0 = 5.0 is shown in Fig. 5.16. There are two
notable differences when compared to the 1D case shown in Fig. 5.11. The first is that
for ridges with large deformation but not touching the patterned mask (i.e., the region
enclosed by the cyan line in Fig. 5.11 with small min(Hss) and large min(D − Hss)),
2D direct numerical simulations show that they are no longer ‘stable’. This can be
explained by the fact that fluid can now flow freely along the Y direction in 2D which
was previously held constant in 1D, so fluid reorganization along the ridges to form
column-like structures is possible in 2D. This is also consistent with the fact that varicose
modes are unstable with large maximum growth rate at nonzero Ky, while in 1D the
Ostwald ripening mode (corresponding to asymmetric varicose mode with Ky = 0) has
a very small growth rate. Therefore, the necessary condition for forming high fidelity
patterns, i.e., having Erms(τf ) ≤ 0.01, for D0 = 5.0 appears to be forming saturated
states which touch the mask.

The other difference is that many states are now classified as ‘inaccessible’ as Erms(τ)
never drops below the threshold of 0.01. Accessible stationary states are only obtained
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Figure 5.15: Selected snapshots of liquid film shape H(X,Y, τ) at τ = 0.02, 0.05, 0.08,
0.3. Parameters: D0 = 2.5, Wr = 0.8, ϱ = 0.1, (Lx, Ly) = (4Λp, 6Λp) = (8, 12).

in the bottom right region of the diagrams with large ϱ and small Wr. Large ϱ leads
to smaller electrode separation in the region where ridges form so the growth of ridges
only need to cover a shorter distance, and small Wr has smaller electrostatic stress so
the ridges are less susceptible to amplification of tiny perturbation by the destabilizing
electrostatic stress.

5.4.4.3 Effects of different parameters and modulations on symmetric
varicose mode

We next investigate how variations in different parameters and mask topographies affect
the stability of a single ridge. We focus on the symmetric varicose mode since it is the
deciding factor for stability in ridges.

Variation in D0 Fig. 5.17 shows the stability contours for the symmetric varicose
modes for different shapes of D(X): sinusoidal modulation given by Eq. (5.3a) and
rectangular modulation given by Eq. (5.3b). Regions above the contours (i.e., large
Wr) represent the stable parameter range, which requires the liquid film to establish
contact with the patterned mask based on our previous discussion. For both types of
spatial modulations, larger D0 results in larger Wr for the same ϱ in order to ensure
stability. This is because with a larger electrode separation, more fluid needs to be
transported to the top of the ridges to reach the patterned mask, and this requires
larger electrostatic stress, and hence larger Wr.

When D0 ≥ 3.0, the stability contours for both sinusoidal and rectangular modulations
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Figure 5.16: Stability phase diagram for 2D system with D0 = 5.0. Black solid line
and cyan dash line denote symmetric and asymmetric varicose mode for two parallel
ridges with max(β) = 10−5 computed by PALC. Background heat map colors rep-
resents (a) minimum liquid film thickness min(Hss) and (b) minimum air gap thick-
ness min(D − Hss) (same as in Fig. 5.9). Symbols denote (a) RMS deviation and
(b) maximum deviation given by Eq. (5.23) for 2D time-dependent simulation with
(Lx, Ly) = (4Λp, 6Λp) and τf = 20τmax. The value represents averaged quantity across
3 independent realizations for each parameter.
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Figure 5.17: Influence of D0 on the stability phase diagram for sinusoidal (Eq. (5.3a))
and rectangular (Eq. (5.3b)) modulation in mask topography (ξ = D). Solid (dashed)
lines denote the stability contour for the symmetric varicose mode for sinusoidal (step-
like) modulation, while different colors represent different values of D0. Inset shows
the stability contours for the symmetric varicose, asymmetric varicose and asymmetric
zigzag modes for sinusoidal modulation with D0 = 2.0.

are qualitatively similar. This is because as D0 increases, the effects of the specific
topography of the patterned mask on the resulting spatial profile of the electrostatic
stress becomes less important. ForD0 = 2.0, however, there is a new unstable parameter
range in the phase diagram which corresponds to large ϱ and Wr. The inset further
shows the stability contours for the asymmetric varicose and asymmetric zigzag modes
for D0 = 2.0, and it can be seen that the asymmetric zigzag mode is also unstable. The
emergence of this new unstable parameter range can be explained by the large contact
area of the liquid film with the patterned mask when ϱ and Wr are both large. Because
of the sinusoidal topography of the mask, the liquid film exhibits two local maxima
on near the patterned mask on either side, and it is easy for the fluid to flow from
one protrusion to the other via the asymmetric zigzag (i.e., coalescence) mode as the
mobility factor M(H) remains high throughout the whole liquid film when D0 is small.

Variation in mask topography (lrect) In order to further investigate the effects of
mask topography on the stability phase diagram, the parameter lrect in Eq. (5.3b) which
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Figure 5.18: Influence of lrect on the stability phase diagram for step-like (Eq. (5.3b))
modulation in mask topography (ξ = D). The main plot shows the stability contours
for the symmetric varicose mode for D0 = 2.0. Arrow indicates increasing values of
lrect which is represented by different colors. The left inset shows g(X) = rect(X) for
different lrect. The right inset shows the stability contours for the symmetric varicose
mode for D0 = 5.0.

controls the slope of the step-like modulation profile is varied. The stability contours
for different lrect are shown in Fig. 5.18. The left inset shows the modulation function
g(X) given by Eq. (5.3b) for different lrect, and it can be seen that larger lrect gives
a shape that better resemble a sinusoidal shape, while smaller lrect gives a shape that
approximates a step-like function. As lrect increases, the corresponding stability contour
also shows the emergence of the unstable parameter range shown in Fig. (5.17) for
D0 = 2.0. In contrast, the stability contours are quantitatively very similar for D0 = 5.0
regardless of lrect. This further supports the claim that the mask topography can have
profound influence on the stability for small D0 in the parameter range where the liquid
film shows large contact area with the patterned mask.

Variation in dimensionless Hamaker constant A Fig. 5.19 shows effect of varying
the dimensionless Hamaker constant A. For D0 = 2.0, increasing A has a stabilizing
effect which reduces the unstable parameter range as shown in Fig. 5.19(a). For larger
D0, the effect is again very minimal as shown in Fig. 5.19(b).



103

ϱ
0.0 0.1 0.2 0.3 0.4

Wr

0.0

0.5

1.0

1.5

D0 = 2.0

ϱ
0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

2.5

D0 = 5.0

0.002 0.003
0.004 0.005
0.010 0.020
0.030

0.002
0.030

Figure 5.19: Influence of A on the stability phase diagram for sinusoidal modulation
in mask topography for (a) D0 = 2.0 and (b) D0 = 5.0. Different colors represent
different values of A labeled in the legend. Gray arrow in (a) indicates increasing A.

ϱ
0.0 0.5 1.0

Wr

0.0

0.5

1.0

1.5
D0 = 2.0

ϱ
0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0
D0 = 5.0(a) (b)

Wf1, Wf2
symmetric varicose
asymmetric varicose
asymmetric zigzag

symmetric varicose
asymmetric varicose
asymmetric zigzag

Figure 5.20: Stability phase diagrams for sinusoidal modulation in applied voltage (ξ =
Ψ∆) for (a) D0 = 2.0 and (b) D0 = 5.0. Lines with different colors and line styles
correspond to different modes as indicated in the legend.

Modulation in applied voltage (ξ = Ψ∆) Fig. 5.20 shows the stability phase dia-
gram for sinusoidal modulation in the applied voltage, i.e., Ψ∆(X) = 1 + ϱ cos(KpX).
Compared to modulation in D(X), ϱ can extend to much larger value because it is no
longer related to the geometric constraint as in the case for ξ = D. No turning points
in the stability contours have been numerically found up to ϱ = 1.0, though the large
spatial variation in the applied voltage resulted form such large ϱ may invalidate the
LWA. The qualitative features of the stability contours of different modes are similar to
modulation in D(X) shown in previous figures.
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5.4.5 2D array of protrusions with egg carton modulation
In this section, we present initial exploratory study on 2D spatial modulation in the mask
topography using Eq. (5.3c) where the modulation function is given by an ‘egg carton’
shape as shown in Fig. 3.2(b). For parallel ridges studied in the previous section, the
stability in a 1D system is very different from that in a 2D system as fluid flow along the
Y direction can destabilize the ridges unless the ridges have established contact with
the patterned mask. For egg carton pattern, however, it has an imposed periodicity
along both X and Y directions, so intuitively we expect the fluid flow and stability to
resemble more closely the results from Section 5.4.3 for ridges in a 1D system since the
patterned mask is sinusoidally modulated in both X and Y directions.

D0 = 2.5 Fig. 5.21 shows the stability phase diagram for 2D egg carton modulation
in D(X) with D0 = 2.5. The heat map colors represent (a) the minimum liquid film
thickness min(Hss) and (b) the minimum air gap thickness min(D − Hss). We can
still classify the stationary states as having either small or large deformation which is
evident from the two distinct background colors in Fig. 5.21(b). However, the minimum
film thickness min(Hss) is not necessarily small for the large deformation regime due
to the small electrode separation and the topography of the mask shaped as an egg
carton. The cyan solid line denotes the fold points at W = Wf1 and Wf2 computed
via PALC. The upper branch denotes the first fold point at W = Wf1 and coincides
with the abrupt change in color shown in Fig. 5.21(b) indicating transition from small
to large deformation as expected.

The symbols represent the various phases based on comparing H(X,Y, τf ) and the
stationary states. Stationary states with small ϱ and large Wr are again classified as
inaccessible as min[Erms(τ)] ≥ 0.01. Other stationary states, while accessible, are mostly
unstable except those obtained with relatively large ϱ. While min(Hss) given by Fig. 5.21
is relatively large which means fluid flow between neighboring protrusions is relatively
unimpeded due to the large mobility factor, ‘stable’ states (i.e., Erms(τf ) ≤ 0.01) is still
possible with strong electrostatic stress and small electrode separation at the position of
the protrusions which ensure the protrusions are strongly pinned to the patterned mask.

D0 = 5.0 The case for relatively large electrode separation of D0 = 5 is shown in
Fig. 5.22. The two distinct background colors of the heatmap of min(Hss) and min(D−
Hss) shows that the stationary states can again be classified as having either small
or large deformation. In the large deformation regime, the precursor film thickness
is ∼ O(0.01) when Wr ≳ 0.4. Apart from isolated parameters near the fold points
indicated by the cyan solid line, most states in the large deformation regime are classified
as ‘stable’ while those in the small deformation regimes are ‘unstable’.

The results suggest the sufficient condition for achieving high fidelity patterns is for the
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Figure 5.21: Stability phase diagram for egg carton modulation given by Eq. (5.3c)
for patterned mask with D0 = 2.5. The background heatmap color shows (a) the
minimum liquid film thickness min(Hss) and (b) the minimum air gap thickness min(D−
Hss). Symbols denote the RMS deviation and maximum deviation for time-dependent
simulations evaluated with Lx = Lx = 4Λp = 8 at τ = 20τmax, each averaged across 5
independent realizations. Cyan solid line denotes the fold points Wf1 and Wf2 computed
via PALC.
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Figure 5.22: Stability phase diagram for egg carton modulation given by Eq. (5.3c)
for patterned mask with D0 = 5.0. The background heatmap color shows (a) the
minimum liquid film thickness min(Hss) and (b) the minimum air gap thickness min(D−
Hss). Symbols denote the RMS deviation and maximum deviation for time-dependent
simulations evaluated with Lx = Lx = 4Λp = 8 at τ = 20τmax, each averaged across 5
independent realizations. Cyan solid line denotes the fold points Wf1 and Wf2 computed
via PALC.
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liquid film to form protrusions with large deformations and small precursor film thickness,
although more definitive conclusions cannot be drawn before exploring wider range of
parameters as well as performing Floquet-Bloch LSA similar to those for parallel ridges.

5.5 Discussion
It appears a thin viscous film can only form a ‘stable’ (or at least ‘quasi-stable’) stationary
state when fluid flow is suppressed by either fluid depletion at the precursor layer or
geometric constraint imposed by the mask, i.e., at least one of the liquid-air interface is
at close proximity with the electrode. A ‘true’ stable steady state where the free surface
does not approach either the substrate or mask has not been found in this study, which
is not a surprise given the nature of the runaway growth of protrusions when subject
to electrostatic stress. One important limitation of this study is that as the air gap
thickness decreases, the electric field strength also increases, and dielectric breakdown
may occur [62] in which Eq. (5.1) becomes invalid. Therefore, the precise determination
of stationary states and the associated stability when air gap thickness becomes small
may require further treatment beyond the scope of this work in certain parameter range
involving very small electrode separation and very large applied voltage.

One area of future study is to investigate quasi-steady states where the liquid film
develops non-uniform patterns that while asymptotically unstable, can still be maintained
for a long time before the patterns show substantial deviation away from the stationary
states. Such quasi-steady states mainly correspond to those ‘unstable’ stables in the
small deformation regime shown in Fig. 5.14 and 5.16, and are of practical interests
since the non-uniform shapes can potentially be retained via solidification of the liquid
film by cooling or photochemical reactions. Intuitively thinking, we expect these quasi-
steady to occur when Wr is relatively small so that the destabilizing Maxwell stress is
not too strong. This leads to a trade-off between stability of the patterns and the aspect
ratio of the protrusions or ridges where large aspect ratio features are usually considered
more desirable in a lithographic context (and also more challenging to obtain). However,
executing this strategy experimentally requires a precise determination of the dimensional
characteristic time scale t0 = l40µ/h

3
0γ which depends on the viscosity µ that is known

to be highly temperature dependent.

In numerical studies into the spatiotemporal evolution of the liquid film, the quasi-steady
time scale is also highly dependent on the magnitude of the unstable mode present in
the system, which is usually seeded in the initial condition of the liquid film via a random
function similar to Eq. (4.9). Comparison among different studies become very difficult
since the initial power spectrum of the liquid film is seldom reported with sufficient
details as that depends on the amplitude of the initial perturbation σrand, the grid size
∆X and the size of the spatial domain Lx. As an example, recent results on rapid EHD
patterning via ultra-high voltage [86] show early sign of ridge break-up (see Fig. S4(b)
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in Ref [86] for simulations with λm/λp = 5) despite its potential to achieve high-fidelity
patterns. Such breakup phenomena often go un-noticed because the simulations were
terminated prematurely. Therefore, more detailed studies on the dynamic evolution of
the liquid film in forming quasi-steady states are needed in order to assess the feasibility
of utilizing quasi-steady states in practice.

Finally, we comment on the conditions for obtaining high fidelity patterns which many
previous studies have looked at. The most commonly mentioned rule of thumb is match-
ing λp ≈ λm, which according to Eq. (5.5) gives Wr = 2, i.e., in the large deformation
regime. For 1D spatial modulation, the ridges formed will likely breakup into column-
like structures before the liquid film can establish contact with the patterned mask. In
fact, having λp < λc (i.e., Wr < 1) seems to be more favorable to achieve quasi-steady
states or accessible saturated states when ϱ and D0 are also chosen appropriately. For
2D spatial modulation, however, the imposed periodicity along the Y direction might
help to reinforce the pattern length scale via some resonant-like phenomena if λm and
λp are matched appropriately. While more studies are still needed to arrive at a more
definitive rule for obtaining high fidelity patterns, the results presented in all the phase
diagrams in this chapter clearly shows that stable or quasi-stable patterns depend on the
system geometry including electrode separation D0, and modulation amplitude ϱ, as well
as electric Weber number W (which is related to the ratio λp/λm), all of which affect
the stability and basin of attraction of the stationary states and cannot be accurately
described by a simple matching rule between λp and λm alone.

5.6 Conclusion
In this chapter, the shapes and stability of non-uniform stationary states formed by a
single layer of viscous thin film subject to a heterogeneous electric field are studied.
Time-dependent simulation of Eq. (5.1) is also carried out to study the dynamics of the
liquid film and whether the liquid film conforms to the imposed pattern on the mask.

For a single ridge without interactions with neighboring ridges, pressure balance results
in two fold bifurcations for small modulation amplitude ϱ. The presence of the first fold
point at Wr = Wf1 which has been previously reported in literature can be quantitatively
explained by a weakly-nonlinear analysis described in Section 5.2.2 in the limit of W →
Wc.

When interactions with neighboring protrusions are allowed, it is found that stable sta-
tionary states in the case of single ridge can become unstable due to Ostwald ripening
and coalescence modes in a 1D system supporting multiple ridges. The Ostwald ripening
is the dominant destabilization mode because it has a larger growth rate and the un-
stable mode spans a larger region in the parameter space. In a 1D system, the Ostwald
ripening mode can be suppressed by having thin precursor layers among protrusions,
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leading to the formation of quasi-stable patterns which persist for a long time. the Ost-
wald ripening mode can only be truly stabilized by contact with the patterned mask. In
a 2D system where Y direction is no longer invariant, contact with the patterned mask
becomes a necessary condition for the liquid film to form stable stationary ridges, and
the ridges can still break up into ridges before establishing contact with the patterned
mask.

These results provide further physical insights into the stabilization mechanism in EHD
patterning for forming stripes, as well as practical design rules in the form of stability
phase diagram which we hope can stimulate further experimental work in this interesting
area.

5.7 Derivations and Proofs for Chapter 5
This section presents the derivations to certain results in this Chapter 5 which can be
skipped on a first reading. Note that lowercase letters are often used (in this section
only) for brevity.

5.7.1 General solution to the linearized thin film equation
In this section, we derive the general solution to the following equation

∂u

∂t
= −M

[
∂4u

∂x4 + k2
c

∂2u

∂x2

]
+ f(x), (5.25)

where M and kc are constants representing the mobility factor and critical wave number
in the thin film equation.

The boundary conditions are

u(x = 0, t) = u(x = L, t), f(x = 0) = f(x = L), (5.26)

and the initial condition for u(x, t) is

u(x, t = 0) =
∞∑

n=1
[an cos (2πnx/L) + bn sin (2πnx/L)] , (5.27)

Define kmin = 2π/L, kn = nkmin, the patterning periodicity λp, kp = 2π/λp, and
assume kp = Nkmin, or alternatively L = Nλp, for integer values of N .

Since u(x, t) and f(x) are periodic functions, they can be expressed in terms of Fourier
series:
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u(x, t) =
∞∑

n=1
[uc,n(t) cos(knx) + us,n(t) sin(kxx)] , (5.28a)

f(x) =
∑
m

[fc,m cos(mkpx) + fs,m sin(mkpx)] . (5.28b)

The coefficients fα,n (i = s, c) are assumed to be known since it is the external forcing
we impose on the system. Substituting Eq. (5.28) into Eq. (5.25) gives

∞∑
n=1

{[duc,n

dt +M(h0)
(
−k2

ck
2
n + k4

n

)
uc,n − fc,mδmN,n

]
cos(knx)

+
[dus,n

dt +M(h0)
(
−k2

ck
2
n + k4

n

)
us,n − fs,mδmN,n

]
sin(knx)

}
= 0, (5.29)

where δmN,n is the Kronecker delta to handle the difference in fundamental frequency
in u(x, t) and f(x). Applying the orthonormality condition for the Fourier coefficients
and using the dispersion relation defined by Eq. (3.7), Eq. (5.29) can be rewritten as

duα,n

dt = β(kn)uα,n + fα,mδmN,n, (5.30)

where β(kn) = M(1)k2
c (k2

c − k2
n) is the growth rate of the mode with k = kn = nkmin.

Using the method of integrating factor, we can solve for uα,n:

uα,n(t) = uα,n(t = 0)eβ(kn)t + eβ(kn)t
∫ t

0
fα,mδmN,ne

−β(kn)sds

= uα,n(t = 0)eβ(kn)t − fα,mδmN,n

β(kn)
[
1 − eβ(kn)t

]
. (5.31)

In this thesis, we consider spatial forcing f(x) expressed in the following form

f(x) =
∑
m

fm cos(mkpx). (5.32)

The general solution of u(x, t) for f(x) given by Eq. (5.32) can then be expressed as

u(x, t) =
∑

n

[an cos(knx) + bn sin(knx)] eβ(kn)t

−
∑
m

fm

β(mkp)
[
1 − eβ(mkp)t

]
cos(mkpx). (5.33)
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For EHD patterning where the linearized thin film equation is given by Eq. (5.6), the
general solution given by Eq. (5.8) can be obtained using the following substitutions in
Eq. (5.33):

u(x, t) → H1(X, τ), M → M(1), kc → Kc, kp → Kp,

f1 → M(1)K2
pξ0

∂Π(1, ξ0)
∂ξ

.

we substitute u(x, t) → H1(X, τ), M → M(1), f1 → M(1)K2
pξ0∂Π/∂ξ into Eq. (5.33):

H1(X, τ) = ξ0
∂Π
∂ξ

1
K2

p −K2
c

[
1 − eβ(Kp)τ

]
cos(KpX) (5.34)

5.7.2 Derivation of amplitude equation via multi-scale expansion
While the method of multiscale expansion is a well-known technique, and it has been
applied to study different hydrodynamic problems governed by the thin film equations in
literature, we find that the specific scalings were often stated without much elaboration
or justification, and to the best of our knowledge those studies often did not incorporate
spatial modulation except Ref [57]. In this section, we present the complete derivation
leading up to the amplitude equation given by Eq. (5.35) for completeness and to justify
the scalings used in literature. The derivation largely follows that presented in Ref [88].

We consider the following thin film equation

∂h

∂t
= f(h, ξ;R) = −∇ ·

{
M(h)∇

[
∇2h+ Π(h, ξ;R)

]}
, (5.35)

where lowercase letters are used for brevity, ξ is a label to denote the quantity being
spatially modulated, and R is the control parameter which represents the electric Weber
number W in the main text, though in principle it can represent any other parameters
in the equation such as the relative permittivity εr or the patterning wave number kp

as in Ref [15, 57].

Let Rc denote the parameter value at bifurcation, i.e., f(h, ξ;Rc) = 0. To investigate
the behavior of the system near the bifurcation R = Rc, we can perform a multi-scale
expansion near Rc with the following expansions:

R = Rc + δR1 + δ2R2 + · · · , (5.36a)

h = h0 + δh1(x, t) + δ2h2(x, t) + · · · . (5.36b)

A hierarchy of time scales tk = δkt are introduced such that the time derivative becomes
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∂

∂t
= ∂

∂t0
+ δ

∂

∂t1
+ δ2 ∂

∂t2
+ · · · . (5.37)

We also introduce the following notations for simplifying the expressions:

Πh = ∂Π
∂h

= k2
p, Πhh = ∂2Π

∂h2 , Πhhh = ∂3Π
∂h3 ,

Πξ = ∂Π
∂ξ

, ΠhR = ∂2Π
∂h∂R

(5.38)

Note that all the above expressions are evaluated at h = h0, ξ = ξ0 and R = Rc, and
are simply constants.

5.7.2.1 Without spatial modulation: ξ(x) = ξ0

We first consider the case without spatial modulation, i.e., ξ = ξ0 is spatially constant.
Substituting the expansions given in Eq. (5.36) and (5.37) to Eq. (5.35), to O(δ) we
recover f(h0, ξ0;Rc) = 0, which is simply the bifurcation condition.

To O(δ), we obtain

∂h1
∂t0

= −M(h0)
(
∂4h1
∂x4 + k2

p

∂2h1
∂x2

)
= L(h1), (5.39)

where L is the linear operator representing the RHS of Eq. (5.39). Suppose h1 ∼ eikpx.
The solution to Eq. (5.39) when |R−Rc| is large, i.e., when kp is far from kc, is

h1(t0) ∼ h1(t0 = 0)eβ(kp)t0 . (5.40)

The summation term in Ref [15, Eq. (29)] basically generalizes Eq. (5.40) to a Fourier
sum under periodic boundary condition. This is also the O(δe−4π2t) term in Ref [33,
Eq. (36)].

Since we are interested in studying the bifurcation near the critical point R = Rc,
we look for solutions satisfying Lh1 = 0 (i.e., on the bifurcation or ‘center’ manifold
where the eigenvalue vanishes) whose dynamics needs to be determined by a nonlinear
amplitude equation to be obtained in higher order expansion of δ [88, see text between
Eq. (7) and (8)]. The solution of h1 becomes

h1 = a1(t1, t2, . . . ) cos [kpx+ θ1(t1, t2, . . . )] . (5.41)

To O(δ2), we have



113

∂h1
∂t1

+ ∂h2
∂t0

= −M(h0)
(
∂4h2
∂x4 + k2

p

∂2h2
∂x2

)
−M(h0)ΠhRR1

∂2h1
∂x2

−M(h0)Πhh

[(
∂h1
∂x

)2
+ h1

∂2h1
∂x2

]
−M ′(h0)

[
Πh

(
∂h1
∂x

)2

+ ∂h1
∂x

∂3h1
∂x3 + h1

(
k2

p

∂2h1
∂x2 + ∂4h1

∂x4

)]
. (5.42)

We require h2 to remain stationary on the fast time scale t0, otherwise it may outgrow
h1 at long times [88, see text before Eq.(10)]. This leads to ∂h2/∂t0 = 0. Substituting
the general solution of h1 given by Eq. (5.41) into Eq. (5.42), we obtain

∂h1
∂t1

= Lh2 +M(h0)k2
pΠhRR1a1 cos(kpx+ θ1)

+M(h0)k2
pΠhha

2
1 cos[2(kpx+ θ1)] (5.43)

We need to impose a set of solvability conditions in order to solve for h2. It can be
shown using Fredholm alternative that parts of the inhomogeneous term which projects
on the principle harmonic of the mode, i.e., cos(kpx) and sin(kpx), contribute to the
solvability condition. Operationally, we need to set the coefficients of all sin(kpx) and
cos(kpx) terms in Eq. (5.43) to zero, which are resulted from the ∂h1/∂t1 and ΠhR

terms:

∂a1
∂t1

= M(h0)k2
pΠhRR1a1, (5.44a)

∂θ1
∂t1

= 0. (5.44b)

The solutions to Eq. (5.44) are

a1(t1) = a1(0) exp[M(h0)k2
pΠhRR1t1], (5.45a)

θ(t1) = const. (5.45b)

Recall that t1 = δt0, R = Rc + δR1 + O(δ2), and ΠhR = ∂2Π/∂h∂R evaluated at
R = Rc, the exponent in Eq. (5.45a) can be re-expressed as
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M(h0)k2
pΠhRR1t1 = M(h0)k2

p

∂

∂R

[
∂Π(h0, ξ0;Rc)

∂h

] [
R−Rc + O(δ2)

]
t0

= M(h0)k2
p

[
∂Π(h0, ξ0;R)

∂h
− ∂Π(h0, ξ0;Rc)

∂h
+ O(δ2)

]
t0 + O(δ2)

= M(h0)k2
p(k2

c − k2
p)t0 + O(δ2)

= β(kp)t0 + O(δ2). (5.46)

To leading order, we simply recover the dispersion relation from the amplitude equation
for a1, and so we gain nothing new about the nonlinear behavior at the bifurcation
manifold. This shows that we need to continue the expansion to higher order, i.e., to
O(δ3), in order to obtain the desired (nonlinear) amplitude equation for a1. As explained
in [88, see Section 2.2.3], in order to continue the expansion, we restrict the parametric
deviation in such a way that the dependence on t1 be suppressed. Therefore, we set
R1 = 0 from now on.

Setting R1 = 0 and dropping the t1 dependence, there is no secular terms in the
equation, and we can solve for h2:

h2(x, t2) = a2(t2) cos [kpx+ θ2(t2)] + Πhh

12k2
p

a1(t2)2 cos[2(kpx+ θ2(t2))]. (5.47)

To O(δ3), after substituting the expressions of h1(x, t2) and h2(x, t2), we obtain

∂h1
∂t2

= Lh3 + M(h0)
12 a3

1 cos(kpx+ θ1)
{

[−4 + 9 cos(2kpx+ 2θ1)] Π2
hh

+ 3k2
p [−1 + 3 cos(2kpx+ 2θ1)] Πhhh

}
+ k2

pa1M(h0) [2a2 cos(2kpx+ θ1 + θ2)Πhh +R2 cos(kpx+ θ1)ΠhR] . (5.48)

The solvability conditions are

∂θ1
∂t2

= 0, (5.49a)

∂a1
∂t2

= M(h0)k2
p

[
1
24

(
Π2

hh

k2
p

+ 3Πhhh

)
a3

1 + ΠhRR2a1

]
. (5.49b)

Eq. (5.49) is the required nonlinear amplitude equation for a1(t2). There are a few
important results from this: (1) t2 = δ2t0 is the slow time appropriate for the problem,
and (2) R = Rc +δ2R2 is the expansion appropriate for the bifurcation parameter. This
justifies the scaling used in previous studies including Ref [15, 33, 57, 93].
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5.7.2.2 With spatial modulation: ξ(x) = ξ0[1 + ϱ cos(kpx)]

Next, we consider the case of having spatial modulation to the system. Let ξ =
ξ0 [1 + ϱ cos(kpx)] be the spatially modulated variable in the system. Since the ampli-
tude equation comes from the O(δ3) term, we can intuitively set ϱ = δ3 in anticipation
of having the effect of spatial modulation at O(δ3). This scaling can also be deduced
from Eq. (5.8) once we accept the t = δ2t2 and R = Rc +δ2R2 (e.g., W = Wc +δ2W2)
scalings:

∆hlin ∼ ϱ

|W − Wc|
= ϱ

δ2W2
∼ δh1. (5.50)

In order for the amplitude ∆hlin derived under the linear analysis to match the leading
order term in the multiscale expansion δh1 as W → Wc, we need ϱ/δ2 ∼ δ, which
requires ϱ = δ3.

The methodology for deriving the amplitude equation is the same as that without spatial
modulation except now the pressure Π = Π(h, ξ;R) also depends on a spatially varying
ξ(x). This results in the following extra term while doing expansion around Π(h0, ξ0;Rc):

Π = · · · + δ3∂Π(h0, ξ0;Rc)
∂ξ

ξ0 cos(kpx) + . . . , (5.51)

and when substituted into the governing equation, we get the following extra term in
the O(δ3) expansion:

M(h0)k2
pξ0Πξ cos(kpx) (5.52)

Eq. (5.48) then becomes

∂h1
∂t2

= Lh3 + M(h0)
12 a3

1 cos(kpx+ θ1)
{

[−4 + 9 cos(2kpx+ 2θ1)] Π2
hh

+ 3k2
p [−1 + 3 cos(2kpx+ 2θ1)] Πhhh

}
+M(h0)k2

pξ0Πξ cos(kpx)

+ k2
pa1M(h0)

[
2a2 cos(2kpx+ θ1 + θ2)Πhh +R2 cos(kpx+ θ1)ΠhR

]
, (5.53)

where the highlighted term is due to spatial modulation. The solvability conditions
become
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∂θ1
∂t2

= 0, (5.54)

∂a1
∂t2

= M(h0)k2
p

[
1
24

(
Π2

hh

k2
p

+ 3Πhhh

)
a3

1 + ΠhRR2a1 + ξ0Πξ

]
. (5.55)

Note that since ∂θ1
∂t2

= 0, we can simply set θ1 = const. = 0 without loss of general-
ity. The solvability condition then becomes the coefficient of the cos(kpx) term. The
amplitude equation can be re-written as

∂a1
∂t2

= fwnl(a1;R2) = c3a
3
1 + c1R2a1 + c0, (5.56)

where the coefficients are given by Eq. (5.13).
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C h a p t e r 6

HIGH FIDELITY PATTERNS UNDER THERMOCAPILLARY STRESS

6.1 Introduction
We begin this chapter by providing a brief overview of the literature on TC patterning,
especially on the use of external spatial modulation in improving pattern fidelity. We
then state the equation and form of spatial modulation to be studied mathematically,
and give a brief outline of the chapter.

6.1.1 Literature review
Over two decades ago, Schäffer and co-workers [100–102] reported observation of local-
ized arrays of micro protrusions in an initially flat molten polymeric nanofilm exposed to
a large temperature gradient. They proposed that these formations develop in response
to a long wavelength instability due to gradients in acoustic phonon radiation pressure
within the film. However, their experimental measurements and results turned out to
be difficult to interpret. For example, the actual experimental setup consisted of a tilted
plate geometry while the theoretical prediction requires the plates to be parallel. In
addition, the measurements of the patterns’ length scales were taken at the final time
once peak heights had contacted the opposing cold substrate where fluid reorganiza-
tion and solidification upon contact with the cold substrate likely further altered the
patterns due to physical effects not incorporated into the model, while the predictions
of the linear stability model are strictly predicated on early time growth to ensure only
small amplitude deformation of an initial flat film.

Some years later, a different mechanism was proposed based on a long wavelength
thermocapillary instability [28, 29]. Experiments [36, 37, 74] designed to better accord
with key assumptions of that model were also conducted. Detailed measurements of the
array pitch and peak growth rates at early times were found to be in good agreement with
predictions of a LSA describing the competition between destabilizing thermocapillary
forces and the stabilizing capillary forces. More recent theoretical work examining late
time dynamics in the nonlinear regime has also demonstrated how fluid protrusions driven
by significant thermocapillary stresses will sharpen in time due to a self-similar runaway
process [146] which leads to cusp-like shapes.

Having established the physical origin of the destabilizing mechanism, recent studies
turn to how the liquid film evolves when heated non-uniformly. For example, Nazaripoor
et al. [79] studied the dynamics of liquid film in forming ridges with topographically
patterned mask and substrate. They also investigated the use of both thermocapillary
and electric effects in patterning liquid film [80–82] and found that the inclusion of
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thermocapillary effects leads to patterns with smaller feature size but more susceptible
to lateral motions compared to the base case of EHD patterning alone. However,
simulations were only conducted for very few parameters, so it is difficult to generalize
the findings to a broader parameter range similar to the literature in EHD patterning. On
the other hand, Yang et al. [138] also studied the 1D stationary states of the liquid film
under topographically patterned mask and discovered fold bifurcations in the stationary
state shape against variation in the Marangoni number M 1. However, they incorrectly
applied the expression of the Lyapunov free energy for uniform heating to the case of
non-uniform heating (see discussion in Section 2.3.1.3) when studying the stability of the
liquid film, and interactions with neighboring protrusions were also neglected. Direct
numerical simulations of the full Navier-Stokes equation without invoking LWA have
also been performed [78, 111, 140, 141]. However, these studies only focused on the
1D periodic patterns with identical shapes for all protrusions, and phenomena such as
coalescence and Ostwald ripening involving multiple protrusions were not investigated
likely due to the high computational cost associated with running the simulations in a
large spatial domain while taking into account the large disparity in time scales associated
with different stages of the pattern formation process.

Apart from TC patterning with a setup which consists of two parallel plates held at
different temperatures, we also mention the experimental study by Eshel et al. [34] which
utilized thermocapillary effect to pattern silicone oil using UV lamp to make microlenses.
For applications other than microfabrication, Frumkin and coworkers [41–43] studied the
transport of droplets in a similar setup to ours (Fig. 1.1(b)) using spatially modulated
temperature of the substrate in the form of thermal traveling waves.

In view of the limited studies in literature dealing with non-uniform heating in TC
patterning, we follow a similar approach as in Chapter 5 to study the stationary states
and dynamics of the liquid film subject to periodic spatial modulation in the temperature
profile. We specifically focus on the role of thermocapillary stress and compare the
differences between TC and EHD patterning.

6.1.2 Problem statement
The governing equation for TC patterning is re-stated below for convenience:

∂H

∂τ
= ∇∥ ·

{
M⊥(H)∇∥P −M∥(H)∇∥Γ(H, ξ)

}
= −∇∥ ·

{
M⊥(H)∇∥

[
∇2

∥H + Πvdw(H, ξ)
]

+M∥(H)∇∥Γ(H, ξ)
}
, (6.1)

where M⊥(H) = H3/3 and M∥(H) = H2/2 are the mobility factors associated with
the flux due to normal stress and shear stress, P = −∇2

∥H − Πvdw is the total pressure,
1Similar bifurcation phenomena have been thoroughly discussed in chapter 5.4.2 for EHD patterning.
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Πvdw is the disjoining pressure due to van der Waals’ effects, and asterisk (∗) for
the dimensionless in-plane gradient operator has been dropped for brevity. While the
governing equations for both TC and EHD patterning (see Eq. (5.1)) possess an external
pressure term Π inside P , in TC patterning fluid flow is mainly driven by the Marangoni
term ∇∥Γ which is absent in EHD patterning. The overall effects of Π are much weaker
compared to the Marangoni term and is only significant when the liquid film is at the
immediate vicinity of the mask or substrate.

Similar to chapter 5, the symbol ξ represents the control or process variable being
spatially modulated. For TC patterning, it can be either topographically patterning
the top electrode (ξ = D(X)), spatially modulating the temperature of the cold mask
(ξ = Θcold(X)) or the hot substrate cold mask (ξ = Θhot(X)), which are depicted in
Fig. 6.1. Specifically, we consider the following form of spatial modulation:

ξ = D : D(X) = D0 [1 + ϱg(X)] , (6.2a)

ξ = Θhot : Θhot(X) = 1 + ϱg(X), (6.2b)

ξ = Θcold : Θcold(X) = ϱg(X). (6.2c)

We only study 1D spatial modulation given by Eq. (5.3a) or (5.3b) in this chapter. 2D
spatial modulation (e.g. egg carton shape described by Eq. (5.3c)(c)) is not considered
due to limitation in time.

6.1.3 Outline
In Section 6.2, we summarize the main analytical results for TC patterning for the
same analysis done in chapter 5.2. In Section 6.3, we summarize the main equations
for stationary states in TC patterning and the numerical methods for computing the
solutions. In Section 6.4, we discuss in detail the simulation results of the thin film
equation for selected parameters to illustrate the spatiotemporal evolution of the liquid
film in developing small versus large deformations. In Section 6.5, we study the stability
of the non-uniform stationary states via LSA of two parallel ridges and time-dependent
simulations and present the results in the form of stability phase diagram similar to
those shown in chapter 5.4 for EHD patterning. Finally, we complete this chapter with
a discussion in Section 6.6 and a conclusion in Section 6.7.

6.2 Analytical Results
Similar to Section 5.2, we first perform analytical analysis of Eq. (6.1) under the limits
of small modulation strength ϱ ≪ 1 and near the onset of instability when M → Mc.
The methodology is similar to that carried out in Section 5.2, so we only focus on
highlighting the differences between TC and EHD patterning.
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Case 1 (ξ = D)

Case 2 (ξ = Θhot)

Case 3 (ξ = Θcold)

Shape modulation of colder boundary (mask)

Thermal modulation of warmer boundary (substrate)

Thermal modulation of colder boundary (mask)

x

z

Figure 6.1: Schematic diagram showing the three types of spatially periodic thermal
modulation examined in this work. Darker stripes signify cooler regions of modulated
boundaries. Published as Fig. 2 in Ref [15].

In this chapter, the Marangoni number M is often represented as the ratio M/Mc:

Mc =
2K2

p

3
(D0 + κ− 1)2

κD0
, Mr ≡ M

Mc
= MκD0

(D0 + κ− 1)2 , (6.3)

where Mc (first introduced in Section 3.1.4) is only a function of D0 when Kp and
κ are held fixed. The parameters are also often reported using ratios of wavelength or
wave number in literature, and they are related to Mr via

Mr = M
Mc

=
(
Kc

Kp

)2

= 1
2

(
Km

Kp

)2

= 2
(
λp

λm

)2
, (6.4)

where λp is the dimensional patterning wavelength, and λm is fastest-growing wavelength
under LWA given by Eq. (3.13).

6.2.1 Linear theory under small modulation strength ϱ ≪ 1
When the 1D spatial modulation is given in the form ξ(X) = ξ0 [1 + ϱ cos(KpX)] where
ϱ ≪ 1 is small, we can expand the liquid film thickness as H(X, τ) = 1 + ϱH1(X) +
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O(ϱ2). Since we only look for solutions where |ϱH1| is small, the liquid film shape is
far from either the mask or substrate so the effects of Πvdw are negligible in the linear
analysis. Setting Πvdw = 0, Eq. (6.1) can be linearized to give

∂H1
∂τ

= −M⊥(1)
[
K2

c

∂2H1
∂X2 + ∂4H1

∂X4

]
+M∥(1)K2

pξ0
∂Γ(1, ξ0)

∂ξ
cos(KpX), (6.5)

which has the same form as Eq. (5.6) for EHD patterning except the expression of
the forcing term is different: it now originates from thermocapillary stress and involves
∂Γ/∂ξ whose expression for different types of spatial modulations is given in Appendix
B Table B.2. Following the same method described in Section 5.7.1 to solve Eq. (6.5),
or simply using the substitution ∂Π/∂ξ → [M∥(1)/M⊥(1)]∂Γ/∂ξ, we can obtain the
following general solution for H1(X, τ) in TC patterning:

H1(X, τ) =
∑

n

[an cos(KnX) + bn sin(KnX)] eβ(Kn)τ

+ M∥(1)ξ0
M⊥(1)(K2

p −K2
c )
∂Γ(1, ξ0)

∂ξ
cos(KpX)

[
1 − eβ(Kp)τ

]
. (6.6)

If Kp > Kc and β(Kn) < 0 ∀ Kn = 2πn/Lx, the liquid film develops sinusoidal
corrugation with the amplitude

∆Hlin ≡ max[H(τ → ∞) − 1] = ϱM∥(1)ξ0
M⊥(1)(K2

p −K2
c )

∣∣∣∣∂Γ(1, ξ0)
∂ξ

∣∣∣∣ (6.7)

=



ϱK2
c

K2
p −K2

c

if ξ = D

ϱ

K2
p −K2

c

Mκ

D0 + κ− 1 if ξ = Θhot

ϱ

K2
p −K2

c

M(D0 − 1)
D0 + κ− 1 if ξ = Θcold

and the characteristic time for developing the patterns is τp = 1/|β(Kp)| which is the
same as Eq. (5.10) for EHD patterning.

6.2.2 Multi-scale expansion near M ≈ Mc

As Kp → Kc, or similarly as M → Mc, the solution given by Eq. (6.7) diverges, and the
linear theory carried out in Section 6.2.1 no longer holds as the deformation amplitude is
no longer small. We can carry out a multi-scale expansion near M = Mc using similar
scalings as in Section 5.2.2 except the bifurcation parameter is now M = Mc + δ2M2.
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Expand the liquid film as H(X, τ) = 1 + δH1(X, τ) + δ2H2(X, τ) + · · · , introduce a
slow time as τ2 = δ2τ , and expand the spatially modulated process variable as ξ =
ξ0
[
1 + δ3 cos(KpX)

]
, we have the same leading order solution as in Eq. (5.11)

H1(X, τ) = a1(τ2) cos(KpX), (6.8)

where the amplitude a1(τ2) satisfies an amplitude equation with the same form as in
Eq. (5.12):

da1
dτ2

= fwnl(a1; M2) = c3a
3
1 + c1M2a1 + c0, (6.9)

but with different coefficients which are now given by 2

c3 = K4
p

2D2
0 + 45(D0/3 + κ− 1)2

72 [D0 + κ− 1]2
, (6.10a)

c1 = K2
pM∥(1) ∂2Γ

∂H∂M
= −K2

pM∥(1) D0 − 1
D0 + κ− 1 , (6.10b)

c0 = K2
pM∥(1)ξ0

∂Γ
∂ξ
. (6.10c)

There exists a critical modulation amplitude ϱ∗ given by:

ϱ∗
wna =

∣∣∣∣Mc − M
M∗

2

∣∣∣∣3/2
. (6.11)

For fixed M, the liquid film develops stable sinusoidal corrugation for ϱ < ϱ∗. When
ϱ > ϱ∗, the capillary stress can no longer balance the thermocapillary stress, and so
the liquid film exhibits large deformation with a shape that differs from the sinusoidal
corrugation substantially.

6.3 Numerical Methods for Studying Stability
Unlike EHD patterning under the perfect dielectric model where the stationary equation
can be reduced to Eq. (5.17) which simply states that the fluidic pressure is a constant,
in TC patterning the stationary pressure Pss(X) is no longer a constant due to the
addition of shear stress, and the full stationary equations given by Eq. (3.19) needs to
be solved which are repeated below for convenience:

2In Ref [15], the expansion parameter is the wave number where Kp = (1+δ2K2)Kc. The coefficient
c1 in the resulting amplitude equation are different, but c3 and c0 are the same (see Eq. (35)-(36) in
Ref [15]).



123

∇∥ ·
[
M⊥(Hss)∇∥Pss −M∥(Hss)∇∥Γ

]
= 0, (6.12a)

Pss + ∇2
∥Hss + Π(Hss) = 0, (6.12b)

Unlike EHD patterning where the stationary states do not depend on the mobility factors,
here in TC patterning the stationary states depend on both mobility factors M⊥(H)
and M∥(H) since shear stress is present and there is flow within the liquid film. For
a 1D spatial domain with Nx grid points, Eq. (6.12) constitutes 2Nx equations in
2Nx unknowns. In order to enforce volume conservation, one of the equations for
Eq. (6.12)(a) is replaced by the equation mean[Hss(X)] = 1. To study the stability of
the ridges against perturbation along the Y direction, we can perform LSA by solving
the following generalized eigenvalue problem

β

(
1 0
0 0

)(
Ĥ1

P̂1

)
=
(
f1H f1P

f2H f2P

)(
Ĥ1

P̂1

)
, (6.13a)

f1HĤ1 =
[
M ′

⊥(Hss)
∂Pss
∂X

−M ′
∥(Hss)

∂Γ(Hss)
∂X

−M∥(Hss)
∂Γ′(Hss)
∂X

]
Ĥ1

+
{
M ′

⊥(Hss)
∂Pss
∂X

−M ′
∥(Hss)

∂Γ(Hss)
∂X

−M∥(Hss)
∂Γ(Hss)
∂X

− ∂

∂X

[
M∥(Hss)Γ′(Hss)

]}∂Ĥ1
∂X

−M∥(Hss)Γ′(Hss)
∂2Ĥ1
∂X2 , (6.13b)

f1P P̂1 = ∂

∂X

[
M⊥(Hss)

∂P̂1
∂X

]
−K2

yM⊥(Hss)P̂1, (6.13c)

f2HĤ1 =
[
∂2

∂X2 −K2
y

]
Ĥ1, (6.13d)

f2P P̂1 = IP̂1. (6.13e)

where the coefficients of the Jacobian are Eq. (3.26) with Kx = 0. Eq. (6.13) can also
be obtained from Eq. (3.26) by setting Kx = 0. As there are two additional unknowns
β and Ky in Eq. (6.13), one of them needs to be held fixed (or varied as an independent
variable in PALC) with the other becoming one of the dependent variable to be solved.
An extra equation is obtained from

∫
|H1|2dX = 1 in order constrain the norm of the

eigenmodes.

Eq. (6.12) and (6.13) are solved numerically using Newton’s method coupled with PALC
implemented in the Julia package BifurcationKit.jl [126] as described in Chapter 4.



124

Linear elements with element size ∆X = Λp/128 are used for spatial discretization. The
time-dependent thin film equation given by Eq. (6.1) using with grid size ∆X = Λp/128
in 1D and ∆X = Λp/32 in 2D. The size of the spatial domain varies for different
simulations which will be specified.

6.4 Numerical Results for 1D Ridges with D0 = 5
In this section, we present and describe in detail the simulation results for modulated
system with D0 = 5.0 from Ref [15]. Eq. (6.1) is solved numerically with D0 = 5.0,
κ = 0.25, A = 0, Λp = 1 (Kp = 2π) 3 and Lx = 64Λp. The initial condition is

H(Xn, τ = 0) = 1 + 10−3 × randn(Xn), (6.14)

where randn(Xn) returns a random number drawn from a standard normal distribution
and Xn are the coordinates of the discretized grid points. For each set of parameters, the
simulation is repeated 50 times, each initialized with a different random initial condition.

Identification of those normal modes that dominate fluid response during growth allowed
determination of various physical mechanisms responsible for structure formation during
different stages of the patterning process. To that end, spectral analysis was based on
the norm N(K/Kp, τ) of the DFT of the interface displacement according to

N(K/Kp, τ)
∣∣∣ =

∣∣∣∣∣
N−1∑
n=0

[
H(Xn, τ) − 1

]
e−2πi(n/N)(K/Kp)

∣∣∣∣∣ . (6.15)

The wave number with the fastest growth rate computed by Floquet-Bloch analysis
given by Eq. (6.13) is denoted by Qmax, i.e., β(Qmax) = max(β).

First studied by Yang et al. [138], the deformation amplitude of the non-uniform sta-
tionary states under spatial modulation increases with Mr and exhibits bifurcations
similar to that shown in Fig. 5.4 for EHD patterning where the liquid film either displays
small or large deformation depending on whether Mr is below or above the fold point
Mf1 (analogous to Wf1 for EHD patterning). We will show how the liquid film evolves
for both small and large amplitude deformation under spatial modulation in the mask
topography and substrate temperature.
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Figure 6.2: Evolution dynamics of liquid film with topographically patterned mask.
Parameters: Kp/Kc = 1.2 (Mr = 0.6944), ϱ = 0.1, D0 = 5.0. (a) Evolu-
tion of H(X, τ) at τ = 0.05, 0.1, 0.115, 0.125, 0.14, 0.2 (partial domain shown). (b)
Plan view of structure formation in (a). Lighter colors signify thicker regions of
film. (c) Time traces of H(X, τ) at selected locations: dark curves (purple) sig-
nify values at Xi = −7.5,−6.5, . . . + 6.5,+7.5; light curves (orange) signify values
at Xi = −8.0,−7.0,−6.0, . . . + 6.0,+7.0,+8.0. (d) DFT values from Eq. (6.15) for
the run in (a) – inset shows same results on a log-linear scale. Vertical dashed lines
signify values Qmax/Kp = 0.5 (dashed green) and Km/Kp = 0.58926 (dashed black).
(e) Average DFT values based on 50 independent runs initialized by Eq. (6.14) – inset
shows same results on a log-linear scale. Curves Km, Kp and Qmax in (c) repre-
sent average DFT values extracted from (e). (f) Modal growth rates β(Kx/Kp) from
Eq. (6.13) for a noise-free periodic state and from DFT results initialized by Eq. (6.14)
for 0.04 ≤ τ ≤ 0.06 (shaded region in (c)). Published as Fig. 6 in Ref [15].
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6.4.1 Topographically patterned mask
6.4.1.1 Small amplitude deformation

We begin with the case where the liquid film develops ridges with relatively small defor-
mation which does not touch the mask or substrate.

Shown in Fig. 6.2 are results for ϱ = 0.10. Figure 6.2(a) depicts the evolution of multiple
protrusions advancing toward the colder sinusoidal boundary. The vertical dashed lines
(blue) represent those points of the initial liquid film which are relatively cooler than
adjacent regions due to their proximity to the overhangs of the cold boundary. After
initial growth, several of the liquid protrusions undergo binary coalescence producing
taller structures whose tips on average no longer align with the dashed lines since the
coalesced shapes can no longer sustain the pitch enforced by the external modulation.
Were the growth process solely controlled by thermocapillary forces without mitigation
from capillary forces, then these tips would advance in alignment with the vertical lines.
The fact this does not occur reflects the inherent competition between thermocapillary
and capillary forces, which varies in time. Figure 6.2(b) shows a plan view of the evolving
film thickness in (a). While for τ < 0.10 the array appears to be spatially periodic,
uniformity is lost for τ > 0.10 whereupon numerous pairs of protrusions coalesce into
single taller protrusions with corresponding faster growth than nearby formations. Such
coalescence events lead to final state array configurations which are highly non-uniform
and characterized by a larger average pitch than externally prescribed.

Fig. 6.2(c) depicts time traces of the run in (a). After initiation of film deformation,
the system settles into a quasi-steady periodic state dominated by the Kp mode which
persists for some time. The curves labeled Km and Qmax (fastest growing mode from
coalescence events) indicate corresponding results extracted from (e). This quasi-steady
configuration represents the resonant-like state approximated by Eq. (6.6) (as τ → ∞).
The formation of such a uniform, small amplitude periodic state suggests that modu-
lated thermocapillary patterning of thin films offers a high fidelity replication technique
(provided the pattern can be solidified in-situ during this stationary period). The results
in Fig. 6.2(c) indicate that this state eventually becomes unstable to coalescence events
in response to interactions induced by a noisy initial condition and interference of the Kp

and Qmax modes. Once the majority of peaks have coalesced into pairs, further growth
is considerably restrained by the large viscous stresses which develop in the interstitial
regions due to progressively more rapid thinning.

Shown in Fig. 6.2(d) are the DFT values obtained from Eq. (6.15) for the run in (a).
3The results presented in this section (Fig. 6.2-6.5) came from Ref [15] whose choice of characteristic

length scale l0 = λp differs slightly from the rest of the thesis by a factor of two. This leads to Λp = 1
and Kp = 2π instead of Λp = 2 and Kp = π as in the rest of the thesis. The results can be rescaled to
match the scalings employed in the rest of this thesis by H(X, τ) → H(2X, 16τ) and M → 4M. Note
that Mr remains the same when M is scaled accordingly.
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The average DFT results in Fig. 6.2(e) more clearly highlight the broadband response
with the development of significant peaks at Qmax, Kp and its higher harmonics. These
results, coupled with the modal curves shown in (c), indicate that while the spectral
coefficient for Kp remains strong over time, there develops a comparable contribution
from Qmax as well. Film coarsening from coalescence, however, ultimately generates a
final state marked by considerable non-uniformity in peak height and pitch.

Shown in Fig. 6.2(f) is a comparison of modal growth rates extracted from the DFT
analysis for 0.04 ≤ τ ≤ 0.06 along with the predictions for β(Kx) given by Eq. (6.13) for
a noise-free steady periodic base state. In this run, the symmetry about Kx/Kp = 0.50
reflects the periodicity of the underlying Bloch wave in Eq. (3.22) which must satisfy
Ĥ1(X) = Ĥ1(X + Λp). The results confirm unstable growth for 0 < Kx/Kp < 1,
affirming the observed transition in (c) from a quasi-steady periodic state to a non-
uniform final state. The deviations between the eigenvalues β(Kx) and the DFT results
underscore the influence of noisy initial conditions. These deviations, which increase
significantly as Kx approaches Kp, evidence faster growth rates than estimated from a
noise-free initial condition.

6.4.1.2 Large amplitude deformation

The behavior just described contrasts significantly with that for ϱ = 0.25 > ϱ∗
wna. As

evident in Fig. 6.3(a), here the profiles manifest rather perfect registration with the
external pitch with strong uniformity in peak amplitude and shape for all times. The
liquid tips advance in synchrony and align with the vertical dashed lines denoting the
coldest points of the initial liquid film. The plan view in (b) highlights strong uniformity
in growth with no evidence of coalescence despite the noisy initial condition. The
corresponding time traces in Fig. 6.3(c) neatly collapse onto two curves – the upper one
showing peak heights and the lower one the valleys between peaks. The curve marked
Kp exactly follows the evolution of peak heights. The film patterning process rapidly
approaches its asymptotic periodic configuration without formation of any intermediate,
small amplitude periodic state nor subsequent coalesced state. Instead, the DFD results
in Figs. 6.3(d) and (e) confirm growth dominated by Kp that is practically uninfluenced
by noise, the effects of which only become visible in the inset image. This example shows
that for ϱ > ϱ∗ and Mr < 1, external modulation is very effective in synchronizing rapid
growth despite the presence of small amplitude noise in the initial condition.

The results in Fig. 6.3(f) contrast modal growth values from Eq. (3.7) for β(K) based
on a noise-free initial condition with results extracted from the DFT analysis for 0 ≤
τ ≤ 0.005 based on a noisy initial condition. The discrepancies in values increase
with increasing Kx and becomes significantly larger as Kx → Kp. Capillary forces are
therefore not as effective in suppressing thermocapillary growth in thin films subject to a
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Figure 6.3: Evolution dynamics of liquid film with topographically patterned mask.
Parameters: Kp/Kc = 1.2 (Mr = 0.6944), ϱ = 0.25 > ϱ∗, D0 = 5.0. (a) Evo-
lution of H(X, τ) at τ = 0.005, 0.01, 0.02, 0.05, 0.4 (partial domain shown). (b)
Plan view of structure formation in (a). Lighter colors signify thicker regions of
film. (c) Time traces of H(X, τ) at selected locations: dark curves (purple) sig-
nify values at Xi = −7.5,−6.5, . . . + 6.5,+7.5; light curves (orange) signify values
at Xi = −8.0,−7.0,−6.0, . . . + 6.0,+7.0,+8.0. (d) DFT values obtained from Eq.
(6.15) for the run in (a) – inset shows same results on a log-linear scale. Vertical dashed
line (black): Km given by Eq. (3.8). (e) Average DFT values based on 50 independent
runs initialized by Eq. (6.14) – inset shows same results on a log-linear scale. Curve
Kp in (c) represents average DFT values extracted from (e). (f) Modal growth rates
β(Kx/Kp) from linear theory given by Eq. (3.7) and numerically computed growth rate
from DFT results initialized by Eq. (6.14) for 0 ≤ τ ≤ 0.005 (shaded region in (c)).
Published as Fig. 7 in Ref [15].
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small degree of noise. Once again, the influence of noise and resonant excitation effects
near Kp appears to increase instability growth rates.

6.4.2 Spatially modulated substrate temperature
As shown in Fig. 6.1, external modulation can also be enforced with flat and parallel
boundaries, one of which is subject to spatially periodic thermal modulation. We dis-
cuss next a couple of examples for spatially modulated substrate temperature given by
Θhot(X) = 1 + ϱ cos(KpX). As before, we seek guidelines on imprinting films with
a finer pitch than accessible to unmodulated systems and here examine systems with
Kp/Kc = 3.0 and ϱ = 0.1 and 0.4.

6.4.2.1 Small amplitude deformation

Shown in Fig. 6.4 are results of simulations conducted with Kp/Kc = 3.0 (Mr = 0.111)
and ϱ = 0.10. The colored horizontal strip shown at the bottom of the image in (a)
depicts the periodic thermal modulation of the warmer substrate – the darkest segments
(red) and corresponding vertical dashed lines signify the hottest points of the substrate.
At early times, the liquid film, now in direct contact with the modulated boundary,
undergoes rapid thinning in the vicinity of the hottest points due to the thermocapillary
effect, which draws fluid away from the warmer and toward the cooler regions. As time
progresses the majority of protrusions undergo coalescence to form fewer and taller peaks.
The final configuration resembles a highly irregular array with significant non-uniformity
in peak height, shape and pitch. The plan view in (b) and time traces in (c) illustrate
more clearly the immediate formation of a quasi-steady periodic state dominated by the
mode Kp which persists for a prolonged period in time. The evolution time scales in this
example are about an order of magnitude larger than those in Figs. 6.2 and 6.3 since
here Mr is about a factor 6.25 smaller. The time traces and DFT results in Fig. 6.4(c)
confirm that the intermediate time periodic state and spectral coefficient of the Kp

mode track closely together in time. Eventually, the growth of the unstable mode Qmax

overcomes influence from the Kp mode which undergoes continual decay. This behavior
is also evident from the full DFT data in (d), which shows the dominance of Kp at early
and intermediate times and that of Qmax at late times. The small contribution from
Km at very early times quickly decays away. The average DFT profiles in (e) highlight
this exchange in modal response even more clearly.

The results in Fig. 6.4(f) show the modal growth rates β(Q/Kp) from Eq. (6.13) for a
noise-free periodic state along with DFT results for 0.20 ≤ τ ≤ 0.40 initialized by the
noisy condition in Eq. (6.14). The growth rates are everywhere positive over the entire
range 0 < Kx/Kp < 1.0 indicating that the quasi-steady periodic state is unstable to
coalescence events. Surprisingly, despite the presence of white noise, the agreement
between the DFT based results and Eq. (6.13) is remarkably good and likely due to
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Figure 6.4: Evolution dynamics of liquid film with modulated substrate tempera-
ture. Parameters: Kp/Kc = 3.0 (Mr = 0.111), ϱ = 0.1, D0 = 5.0. (a)
Evolution of H(X, τ) at τ = 0.5, 1.5, 1.7, 1.8, 1.9, 2.5 (partial domain shown). (b)
Plan view of structure formation in (a). Lighter colors signify thicker regions of
film. (c) Time traces of H(X, τ) at selected locations: dark curves (purple) signify
values at Xi = −7.5,−6.5, . . . + 6.5,+7.5; light curves (orange) signify values at
Xi = −8.0,−7.0,−6.0, . . . + 6.0,+7.0,+8.0. (d) DFT values from Eq. (6.15) for
the run in (a) – inset shows same results on a log-linear scale. Vertical dashed lines
signify Km/Kp = 0.23570 (black) and Qmax/Kp = 0.365 (green). (e) Average DFT
values based on 50 independent runs initialized by Eq. (6.14) – inset shows same results
on a log-linear scale. Curves Km, Kp and Qmax in (c) represent average DFT values
extracted from (e). (f) Modal growth rates β(Kx/Kp) from Eq. (6.13) for a noise-free
periodic state and from DFT results initialized by Eq. (6.14) for 0.20 ≤ τ ≤ 0.40
(shaded region in (c)). Error bars from multiple simulations are not visible since they
are smaller than the marker diameter. Published as Fig. 10 in Ref [15].
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two reasons. The first is that the liquid film is in direct contact with the thermally
modulated boundary, which affords more direct external control. In addition, the ratio
Kp/Kc is fairly large so as to suppress any effects from underlying resonant excitations
which occur for smaller values of that ratio.

6.4.2.2 Large amplitude deformation

The behavior shown in Fig. 6.5 for ϱ = 0.40 contrasts sharply with that in Fig. 6.4
for smaller modulation amplitude. Despite that the Marangoni number M = 42.257
is much smaller than in all the other examples shown in Figs. 6.2 – 6.3, the fluid
undergoes rapid formation of highly uniform arrays with larger amplitude that are in
excellent registry with the externally prescribed pitch. The plan view in (b) highlights
the persistence of the array regularity, which as evident in Fig. 6.5(c), is controlled by
the external modulation wave number Kp. The results in Figs. 6.5 (d) and (e) indicate
dominance of the Kp mode with hardly any influence from its higher harmonics and no
indication of the mode Km. This example confirms that external thermal modulation
enforced by direct contact of the film with the modulated boundary allows superior
control over the pitch and shape of the final periodic state.

The results in Fig. 6.5(f) contrast the modal growth rates for β(Kx/Kp) from Eq. (3.7)
for a noise-free initial condition with results from DFT analysis for 0 ≤ τ 0.005 based on a
noisy initial condition. The values β(Kx/Kp) are positive over the range 0 < Kx/Kp <

0.328125, with a maximum near the point (Kx/Kp = 0.234375, β = 1.6032396). The
symmetry about Kx/Kp = 0.50 is simply related to the periodicity of the underlying
Bloch wave. The mean value of the DFT results is in excellent agreement with the
theoretical prediction predicated on a noise-free initial condition. These results indicate
that the large value of Kp/Kc = 3.0 prevents any resonant excitation effects from
setting in and allows capillary forces to dampen growth rates at larger wave numbers,
just as occurs in the idealized analysis with noise-free initial conditions.

6.5 Stability Results for Ridges
After illustrating the spatiotemporal dynamics of the liquid film for a few selected pa-
rameters with D0 = 5.0 in the previous section, here we turn to study the stationary
states and the associated stability for a much wider range of parameters by presenting
the results in the form of phase diagram similar to those shown in Section 5.4.

The parameters for all the simulations presented in this section are fixed at κ = 0.25,
A = 10−3, Λp = 2 (Kp = π) and τf = 20τmax unless otherwise specified.

We attempt to address the problem of high fidelity pattern formation again using two
approaches: LSA of two parallel ridges and the time-dependent simulations of Eq. (6.1)
in a large spatial domain which supports the development of multiple ridges. For LSA,
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Figure 6.5: Evolution dynamics of liquid film with modulated substrate temperature.
Parameters: Kp/Kc = 3.0 (Mr = 0.111), ϱ = 0.4, D0 = 5.0. (a) Evolution
of H(X, τ) at τ = 0.001, 0.002, 0.004, 0.007, 0.02, 0.5 (partial domain shown). (b)
Plan view of structure formation in (a). Lighter colors signify thicker regions of
film. (c) Time traces of H(X, τ) at selected locations: dark curves (purple) signify
values at Xi = −7.5,−6.5, . . . + 6.5,+7.5; light curves (orange) signify values at
Xi = −8.0,−7.0,−6.0, . . . + 6.0,+7.0,+8.0. (d) DFT values from Eq. (6.15) for
the run in (a) – inset shows same results on a log-linear scale. Vertical dashed line:
Km/Kp = 0.23570 (black). (e) Average DFT values based on 50 independent runs
initialized by Eq. (6.14) – inset shows same results on a log-linear scale. Curve Kp in
(c) represents average DFT values extracted from (e). (f) Modal growth rates β(K/Kp)
from Eq. (3.7) for a noise-free initial condition and from DFT results initialized by Eq.
(6.14) for 0 ≤ τ ≤ 0.005 (shaded region in (c)). Published as Fig. 11 in Ref [15].
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we proceed directly to the analysis of two parallel ridges by probing the response of the
four most unstable modes (symmetric/asymmetric varicose/zigzag modes as shown in
Fig. 5.13(b)) to perturbation with wave number Ky. We skip the the Floquet-Bloch
analysis with nonzero Kx having already studied a similar system for EHD patterning in
Chapter 5 and discovered that stability in 1D is usually decided at Kx = Kp/2 which
involves the interactions between two ridges. For the time-dependent simulations, we
again study 1D and 2D system separately to understand the differences between the two
spatial dimensions – one of which (X) is periodic and the other (Y ) is not.

6.5.1 Sinusoidal modulation in mask topography
We start with studying 1D sinusoidal modulation in the mask topography given by
D(X) = D0 [1 + ϱ cos(KpX)]. Similar to Section 5.4.3.2 (see page 85 for details),
the results presented mainly involve (1) minimum precursor and air gap thickness as
the background heatmap, (2) stability contours obtained with PALC which represent
parameters where max[β(Ky)] = 0 for the four most unstable modes in a system with
two parallel ridges, and (3) phase of the liquid film based on Erms(τf ), min[Erms(τ)] and
Eshifted(τf ) from time-dependent simulations.

6.5.1.1 1D system

We first investigate whether high fidelity patterns can be formed in a 1D system for two
different electrode separations: D0 = 3 and D0 = 5.

Fig. 6.6 shows the results for D0 = 3. The background gray scale heat map (in loga-
rithmic scale for better visualization) shows the minimum film and air gap thickness of
the stationary states. The sharp transition in color originating from Mr ≈ 1.0 shows
the bifurcation in the deformation amplitude. In the large deformation amplitude case
(i.e., large Mr with light background color), min(Hss) is small, which implies the pre-
cursor film thickness between neighboring ridges is very thin. However, the air gap
min(D−Hss) is not necessarily small especially for small ϱ where the minimum air gap
thickness is O(10−1). As ϱ increases, the separation between the mask and substrate
decreases in the region where ridges are formed, and the top of the ridges become closer
to the patterned mask.

The symbols show that all parameters in the small deformation regime are ‘unstable’
when inspected at τ = 20τmax. Even in the large deformation regime, the majority of
the stationary states under investigated are still unstable or even inaccessible, except
those with small ϱ and large Wr which do not touch the patterned mask. This shows
that for the specific case of sinusoidally modulated mask topography with D0 = 3.0,
contact with the patterned mask does not lead to high fidelity patterns as in the case
for EHD patterning.
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Figure 6.6: Stability phase diagram based on time-dependent simulations for sinusoidal
modulation in D(X) with D0 = 3.0. Background grayscale heat map represents (a)
minimum film thickness min(Hss) and (b) minimum air gap thickness min(D−Hss) in
logarithmic scale. Symbols represent the phase of the stationary states according to the
criteria in section 5.4.3.2 on page 85, where Erms(τ) and Eshifted(τ) are averaged across
10 independent realizations evaluated at τ = 20τmax for 1D time dependent simulations
with Lx = 16Λp.

Fig. 6.7 shows the results for D0 = 5.0. From the background gray scale colors, in the
large deformation regime (i.e., large Mr with light background color) the stationary state
has very thin precursor film thickness min(Hss), but does not establish contact with the
patterned mask except for ϱ ≳ 0.35. More stationary states over a broader parameter
range in the large deformation regime are classified as ‘stable’ (i.e., Erms(τf ) < 0.01) or
‘high fidelity’ (Eshifted(τf ) < 0.01), and they all have relatively large air gap thickness.
This again suggests the conditions for forming high fidelity patterns to be having large
deformations with small precursor film thickness without touching the top.

6.5.1.2 2D system

Next, we turn to 2D system and study the stability by first considering the LSA of two
parallel ridges, then the time-dependent simulations in a large 2D spatial domain.

The stability contours for the (a)symmetric varicose modes and zigzag modes com-
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Figure 6.7: Stability phase diagram based on time-dependent simulations for sinusoidal
modulation in D(X) with D0 = 5.0. Background grayscale heat map represents (a)
minimum film thickness min(Hss) and (b) minimum air gap thickness min(D−Hss) in
logarithmic scale. Symbols represent the phase of the stationary states according to the
criteria in Section 5.4.3.2 on page 85, where Erms(τ) and Eshifted(τ) are averaged across
10 independent realizations evaluated at τ = 20τmax for 1D time dependent simulations
with Lx = 16Λp.

puted using PALC are shown in Fig. 6.8(a) and (b), respectively, for D0 = 3.0. The
shaded region bounded by the colored line represents the unstable parameter range where
max[β(Ky)] > 0. For comparison with EHD patterning, the stability contours for the
(a)symmetric varicose modes can be found in Fig. 5.14 and 5.16, while the asymmetric
zigzag mode can be found in Fig. 5.9 and 5.11 (as the 1D coalescence mode). A couple
similarities and differences can be observed and they are summarized below:

• The symmetric varicose mode (black/gray in Fig. 6.8(a)) is unstable under the
investigated range of ϱ and Mr except a narrow stable range between 0.1 < ϱ <

0.32 and Mr > 0.6. This is qualitatively different from that in EHD patterning
where the symmetric varicose mode is stable for large ϱ and Wr (i.e., upper right
half of Fig. 5.14 and 5.16).

• The asymmetric varicose mode (blue in Fig. 6.8(a)) is qualitatively similar to that
in EHD patterning where it has a bounded unstable parameter region. It is stable
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Figure 6.8: Stability phase diagram for four major modes in TC patterning for sinusoidal
modulation in D(X) with D0 = 3.0. (a) Symmetric (black/gray) and asymmetric (blue)
varicose modes. (b) Symmetric (red) and asymmetric (green) zigzag modes. Solid lines
represent contours with | max(β)| ≤ 10−3. Shaded region represents unstable parameter
range for the corresponding mode. Dashed orange line represents the fold points Mf1
and Mf2.

for large ϱ and Mr, and also for the small Mr below the bottom branch of the
stability contour where the thermocapillary stress is relatively weak.

• Symmetric zigzag mode (green in Fig. 6.8(b)) is unstable for sufficiently large Mr

and ϱ, i.e., the upper right region of the diagram, which is drastically different
from the case in EHD patterning where the symmetric zigzag mode is always
stable regardless of ϱ and Wr within the range of parameters investigated. The
dispersion relation β(Ky) (not shown) is always maximized at Ky = 0 which
corresponds to the translation mode in a 1D system.

• The asymmetric zigzag mode (red in Fig. 6.8(b)) is also unstable for a large range
of parameters except for large Mr and small ϱ in the top left region of the diagram,
as well as the bottom region with small Mr. The dispersion relation β(Ky) (not
shown) is always maximized at Ky = 0 which corresponds to the coalescence of
two neighboring ridges at halfway point.

The results from Fig. 6.8 explain why all the stable states in Fig. 6.6 are clustered
in top left corner: the asymmetric zigzag mode, which is equivalent to the 1D coa-
lescence mode, is only stable in that small region with large Mr and small ϱ. Note
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Figure 6.9: Time-dependent simulation results of Eq. (6.1). Parameters: D0 = 3.0,
(Lx, Ly) = (4Λp, 6Λp), τf = 20τmax. (a) Symbols represent the phase of the station-
ary states according to the criteria in Section 5.4.3.2 on page 85, where Erms(τ) and
Eshifted(τ) are averaged across 3 independent realizations. Background color represents
the minimum film thickness min(Hss). The red and black solid lines are the stability
contours for the asymmetric zigzag and symmetric varicose modes from Fig. 6.8 respec-
tively.(b) One particular realization of the liquid film shape H(X,Y ) for ϱ = 0.15 and
Mr = 0.8 evaluated at the time where the Erms(τ) is the smallest.

that the symmetric varicose mode does not exist in a 1D system as it violates volume
conservation.

The stable parameter range for the symmetric varicose mode is also plotted in Fig. 6.8(b)
as black dash line. It is clear that the stable parameter range of the symmetric varicose
mode and the zigzag modes do not overlap, hence two parallel ridges under sinusoidally
modulated mask is unstable for all ϱ and Mr investigated in a 2D system where the
liquid film can vary along the Y direction. This is in contrast to the EHD patterning
where for all the parameters investigated, there is always certain parameter range leading
to stable stationary states.

Next, we turn to 2D time-dependent simulations of Eq. (6.1) with (Lx, Ly) = (4Λp, 6Λp),
and the results are shown in Fig. 6.9(a). Consistent with the results in Fig. 6.8 that
no stable stationary state is achievable for two parallel ridges, no high fidelity patterns
can be sustained up to τ = 20τmax as the ridges destabilize for all the parameters in-
vestigated. Fig. 6.9(b) shows an example of the liquid film at the time where Erms(τ) is
minimized for ϱ = 0.15 and Mr = 0.8. Careful inspection of the figure shows that width
and height of the ridges are not uniform but instead show early sign of destabilization
via the varicose mode. This gives an example of the inaccessible states where the ridges
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Figure 6.10: Time-dependent simulation results of Eq. (6.1). Parameters: D0 = 5.0,
(Lx, Ly) = (4Λp, 6Λp), τf = 20τmax. (a) Markers represent the minimum achievable
RMS deviation averaged across 3 independent realizations. Background color represents
the minimum film thickness min(Hss). (b) One particular realization of the liquid
film shape H(X,Y ) for ϱ = 0.15 and Mr = 0.8 evaluated at the time where the
instantaneous RMS deviation is the smallest. (c) The quasi-steady time scale τqs as
a function of Mr and ϱ averaged across 3 independent realizations. (d) The ratio
τp = 1/|β(Kp)| using the same results as (c).

destabilize before the film reaches the predicted stationary state for small ϱ and large
Mr.

Fig. 6.10 shows the results for 2D time dependent simulations for D0 = 5. The results
are qualitatively similar to those shown in 6.9 for D0 = 3, suggesting that the general
trends observed hold for different electrode separations.

6.5.2 Rectangular modulation in mask topography
Next, we study the rectangular modulation in D(X) given by Eq. (5.3b) with wrect = 0.5
and lrect = 0.02. Its shape is shown in the inset of Fig. 5.18. Compared to a sinusoidally
patterned mask, the rectangular modulation results in a flat surface in the region closest
to the tip of the ridges.

6.5.2.1 Stability for two parallel ridges

Fig. 6.11 shows the stability contours and the corresponding unstable parameters for the
four fundamental modes of two parallel stripes with D0 = 3.0. Comparison with Fig. 6.8
for sinusoidal modulation reveals a few similarities and differences. First, symmetric and
asymmetric varicose modes as well as the asymmetric zigzag modes have topologically
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Figure 6.11: Stability phase diagram for four major modes in TC patterning for rectan-
gular modulation (Eq. (5.3b) with lrect = 0.02) in D(X) with D0 = 3.0. (a) Symmetric
(black/gray) and asymmetric (blue) varicose modes. (b) Symmetric (red) and asymmet-
ric (green) zigzag modes. Solid lines represent contours with | max(β)| ≤ 10−3. Shaded
region represents unstable parameter range for the corresponding mode. Dashed orange
line represents the fold points Mf1 and Mf2.

similar stable and unstable regions in the parameter space, but the symmetric varicose
and asymmetric zigzag modes both exhibit much larger stable regions than that for
sinusoidal modulation, resulting in region of the parameter space (center top region)
where both modes are stable. Second, the symmetric zigzag mode which is not shown
in Fig. 6.11 is now stable for all parameters investigated. This is in stark contrast to
the case of sinusoidal modulation where the symmetric zigzag mode is unstable for large
Mr and ϱ.

6.5.2.2 Time dependent simulations in 1D

Fig. 6.12 shows the stability phase diagram where the symbols denote the phase of the
stationary states evaluated at the final time τf . ‘Stable’ stationary states occur in the
stable region for the coalescence mode (i.e., above the red solid line), and whether it
touches the patterned mask no longer affects the stability as long as the precursor film
thickness remains thin.

The results for rectangular modulation in mask topography for D0 = 3.0 suggests that
the sufficient condition for obtaining high fidelity patterns in 1D are simply having thin
precursor film thickness regardless of contact with the patterned mask.
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Figure 6.12: Stability phase diagram based on time-dependent simulations for rectan-
gular modulation (Eq. (5.3b) with lrect = 0.02) in D(X) with D0 = 3.0. Background
grayscale heat map represents (a) minimum film thickness min(Hss) and (b) minimum
air gap thickness min(D−Hss) in logarithmic scale. Symbols represent the phase of the
stationary states according to the criteria in Section 5.4.3.2 on page 85, where Erms(τ)
and Eshifted(τ) are averaged across 10 independent realizations evaluated at τ = 20τmax
for 1D time dependent simulations with Lx = 16Λp. Solid red line represents the sta-
bility contour for the asymmetric zigzag mode (equivalent to 1D coalescence mode).

6.6 Discussion
Marangoni effect due to thermocapillarity results in a shear stress which drives fluid to
flow even at stationary state. In contrast to EHD patterning (under perfect dielectric
model) where the electrostatic stress pulls the free surface of the liquid film in the normal
direction, here the thermocapillary stress pulls the free surface in the lateral direction.
When the protrusions or the ridges contact the patterned mask, they are no longer
‘pinned’ upward to the mask as in EHD patterning but instead have a tendency to flow
laterally. This intuitive picture is consistent with the stability results for two parallel
ridges shown in Fig. 6.8 and 6.11 where the zigzag modes become unstable over a larger
parameter range. The ridges also destabilize mainly via coalescence of neighboring
ridges, which is different from EHD patterning where the ridges destabilize via Ostwald-
ripening. This is apparent from inspecting Fig. 6.2 and 6.4 where the neighboring ridges
merge and form larger ridges in between the original position of the smaller ridges,
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while in EHD patterning we see the growth of ridges at the same position drawing
fluid from neighboring ridges. The results are also consistent with previous numerical
studies on EHD-TC combined patterning [80, 82] which reported the lateral movement
of protrusions due to the addition of thermocapillary effect.

The precise shape of the topographically patterned mask also deserves more attention
in future studies as it appears to have a major role in determining the stability of the
ridges when they contact the patterned mask. This can be seen by comparing the
results of sinusoidal and rectangular modulation in mask topography shown in Fig. 6.8
and 6.11 where difference in the mask topography significantly alters the stability of
the zigzag modes. Another instance of this is in EHD patterning for relatively small
electrode separation of D0 = 2.0 shown in Fig. 5.17. In that case, when sinusoidally
modulated mask is used, the asymmetric zigzag mode becomes unstable for certain
parameters where a large portion of the stationary state is in contact with the patterned
mask. The stability of such stationary states with small D0 may depend sensitively on
the direction of the force acting on the free surface, and hence the precise shape of the
mask topography.

Finally, for ridges with small deformation amplitude, while they are linearly unstable,
results from time-dependent simulations shown in Fig. 6.2-6.5 clearly show that time
scale for destabilization can be relatively long compared to the initial time scale for
forming patterns. Similar to EHD patterning, such quasi-steady states deserve more
thorough study in future works as they may provide a window of opportunity for external
intervention to solidify the film and retain high fidelity patterns in practice.

6.7 Conclusion
In TC patterning where the liquid film is deformed by thermocapillary stress, linear and
weakly-nonlinear theory arrive at the same governing equation as in EHD patterning.
This gives qualitatively similar results on the deformation amplitude of a single ridge
where there exists small and large deformation regimes as the modulation amplitude ϱ
and the dimensionless number for the destabilizing effect Mr are varied.

In a 1D system, contact with the patterned mask no longer guarantees stable stationary
states because the zigzag modes can become unstable for certain topography of the
patterned mask, while thinning of the precursor layer between neighboring ridges appears
to be sufficient for forming stable mass-limited patterns when the zigzag modes remain
stable. In 2D, premature breakup of ridges results in inaccessible states similar to those
in EHD patterning. However, time-dependent simulation results suggest quasi-steady
states may still be achievable for a wide range of parameters.
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C h a p t e r 7

OPTIMAL CONTROL OF ELECTROHYDRODYNAMIC PATTERNING

7.1 Background and Motivation
Despite the huge potential applications of thin liquid film patterning including the EHD
and TC patterning discussed in Chapters 5 and 6, more widespread development and
adoption of the technology are limited because of the inherent difficulty in precisely
controlling the shape of the liquid film for device fabrication. Most previous studies in
literature as well as Chapters 5 and 6 of this thesis focus on what we call the ‘direct’ or
‘forward’ problems which focus on how changes to the material properties or experimen-
tal conditions affect the resulting spatiotemporal evolution of the liquid film. However,
this approach falls short in addressing the needs for lithographic purposes, where we are
often interested in finding the optimal strategies, such as designing the electrode shape
or the applying suitable voltage signal, for controlling the spatiotemporal evolution of
the liquid film toward a predetermined shape dictated by the intended functionality of
the device. It is difficult, if not impossible, to determine the optimal spatiotemporal
profiles of these control variables for shaping the liquid film by trial and error or by
generalizing the results from studying the direct problems due to the highly nonlinear
nature of the resulting dynamics of the liquid film. This motivates us to apply opti-
mal control techniques in studying the optimal strategy of shaping liquid film toward
arbitrary shapes.

Here we first review recent literature on the control of free surface flow in thin liquid
film, focusing on systems governed by nonlinear parabolic-type PDEs similar to the ones
studied in this thesis. We focus on studies trying to control the shape of the free surface
H(X, τ) to match a specific target shape, such as a uniform flat film, non-uniform film
and traveling wave solutions. The control of more general hydrodynamic system can be
found in Gunzburger [51], while the inverse problem in free surface flow was reviewed
in Sellier [106].

The most straight forward approach to the control of the liquid film shape is to solve
the inverse problem of the unknown control variable from the stationary equation using
the target shape as the given free surface shape, i.e., finding the control variables (such
as mask topography) which solve ∂Htarget/∂τ = 0 where Htarget is the target shape we
want the liquid film to evolve into. For example, Sellier and Panda [107] studied the
required substrate topography in order for a gravity-driven thin liquid film to match an
intended shape, while Eshel et al. [34] studied the required substrate temperature profile
in a variant of thermocapillary patterning for shaping the liquid film to fabricate different
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optical elements like diffraction gratings with very small aspect ratio. This approach,
however, assumes the target shape is a stationary state and neglects the dynamics of
the liquid film, which can become highly nonlinear when the target shape has large
deformation.

The second type of study focuses on the use of feedback in stabilizing the liquid film
toward specific shapes not necessarily spatially uniform, and the control signal usually
scales with deviation of the liquid film or other quantities such as surface temperature
away from their target values. This includes the study by Or et al. [84] on the suppression
of long wave Bénard-Marangoni instability by controlling the substrate temperature,
and more recently those by Samoilova and Nepomnyashchy [95–98] on the control of
oscillatory instability in Marangoni convection. The suppression of evaporatively driven
instabilities by spatially non-uniform radiative heating was studied in Grigoriev [49].
The suppression of contact line instability in a thermally driven liquid film was studied
theoretically in Grigoriev [48] and experimentally in Garnier et al. [44]. Finally, for a
liquid film falling down an inclined plane under gravity, the feedback control using fluid
injection and removal at the substrate was also studied in Cimpeanu et al. [19], Holroyd
et al. [53], and Thompson et al. [118] where the effect of inertia was included (i.e.,
nonzero Reynolds number).

We are often interested in the optimal control problem, where the optimal control
strategy is determined through minimizing an appropriately chosen metric involving the
intended outcome, i.e., how close we can bring the liquid film shape to the intended
target shape, and the cost of control. The optimal control problem of a thin liquid film
subject to only capillarity was studied in Klein and Prohl [60] where the control was
treated as an external mass-conserving flux. Boujo and Sellier [10] studied the optimal
substrate kinematics in order to flatten a gravity driven liquid film, taking into account
solidification which was modeled using a temperature-dependent viscosity, but neglecting
capillarity. Lunz [68] studied the optimal substrate temperature gradient to suppress any
free surface deformation for a liquid film flowing down an inclined substrate heated from
below by considering only the stationary problem. Wray et al. [130] studied the optimal
applied voltage for controlling a liquid film toward arbitrary shape, taking into account
inertia. Biswal et al. [7] studied the optimal boundary flux for a liquid film flowing down
a cylindrical fiber. In the context of fluid-based microfabrication, Stanley et al. [113]
studied the optimal control of a patterning technique based on solutal-Marangoni effect
where the surface tension depends on the concentration of photosensitive solutes. The
optimized photomask, which in turn controls the initial concentration of the solutes, was
determined using the genetic algorithm such that the contour of the protrusion developed
by the liquid film, as opposed to the whole free surface, matched the intended shape.
We also mention the study by Shankar et al. [109] on the optimal transport of an active
sessile droplet which can be modeled using a thin-film-like equation. A comparison of
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the above mentioned studies involving the control of liquid film shape is summarized in
Table 7.1.

It is also worth noting that many systems of thin liquid film, such as gravity-driven liquid
film flowing down an included plane, can be reduced under weakly-nonlinear analysis to
the well-known Kuramoto-Sivashinsky (KS) equation whose feedback control was first
studied in Armaou and Christofides [2] and Christofides [18]. More recent studies could
be found in Gomes et al. [47] and Tomlin et al. [119] and references therein.

Despite the extensive literature related to the control of thin liquid film, to the best
of our knowledge, the inverse problem or the optimal control of either EHD or TC
patterning studied in this thesis has not been investigated. While there are several
similar studies in literature on optimal control, there are limitations which restrict their
applicability to EHD or TC patterning: Eshel et al. [34] and Lunz [68] only studied the
stationary problem where the target shape is either flat or has features with very shallow
corrugation, while Wray et al. [130] considered only a perfectly conducting liquid in the
regime where gravity and inertia are important, both of which can be safely neglected
for EHD or TC patterning. In Boujo and Sellier [10], capillarity was neglected, while
in Klein and Prohl [60], an appropriate destabilization term from normal or shear stress
was absent. In Biswal et al. [7], the control was implemented as boundary flux which is
not suitable for EHD or TC patterning, and the form of the governing equation does not
allow spatially modulated boundaries. Given the importance of accurate shape control
to fully utilize the potential of EHD and TC patterning and the lack of literature in
addressing this issue, here we provide an in-depth study of the relevant optimal control
problem.

In Ref [145], the open-loop terminal control of EHD patterning was formulated as a
PDE-constrained optimization problem under the long-wavelength approximation [22,
85], and the optimal mask topography for evolving the liquid film to a prescribed heart-
shaped structure was computed using the adjoint method. Only the liquid film shape
at the final or ‘terminal’ time was considered, because the solidification of the liquid
film often occurs at a much faster time scale than the evolution of the liquid film, and
its shape at the terminal time can be quenched experimentally by simply removing the
heat source to the polymer film or photochemical treatment.

In this paper, we build upon the preliminary study in Ref [145] to consider both spa-
tial and temporal controls using either the patterned electrode or voltage profile as
the control variable. A comprehensive parametric study was conducted to analyze how
different applied voltage, processing time, target shapes, regularization as well as rough-
ening of the optimized mask topography affect the final achievable liquid film shape.
The motivation of this study is twofold: (1) to provide a computational framework for
computing the optimal control variable (e.g., the topography of the patterned mask or
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the spatiotemporal profile of the imposed voltage or temperature difference) in order to
shape the liquid film into a given target shape, which is an example of the more general
fourth-order parabolic-type nonlinear PDE, and (2) to conduct a comprehensive study
on how changes in different variables and parameters affect the optimal control of liquid
thin film patterning, which in turn provide further insights into the limitations of liquid
thin film patterning and conditions for obtaining high fidelity patterns.

The outline of the remainder of this article is organized as follow. We first state the
problem mathematically in Section 7.2, and then formulate the optimal control frame-
work in Section 7.3 applicable to both EHD and TC patterning, as well as both terminal
and regulation control. In Section 7.4, we present the numerical results for optimization,
specializing to the case of terminal control in EHD patterning. Finally, in Section 7.5
we summarize the results and discuss a few limitations and possible extensions.
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Control Strategy / Variable
Sellier and Panda [107] ✓ ✓ ✓ Substrate topography

Eshel et al. [34] ✓ ✓ ✓ ✓ Substrate temperature
Or et al. [84] ✓ ✓ ✓ ✓ Substrate temperature

Samoilova and
Nepomnyashch [95–98] ✓ ✓ ✓ ✓ Substrate heat flux

Grigoriev [49] ✓ ✓ ✓ ✓ ✓ Substrate temperature
Grigoriev [48] ✓ ✓ ✓ Substrate temperature

Thompson et al. [118]
Cimpeanu et al. [19]
Holroyd et al. [53]

✓ ✓ ✓ ✓
fluid injection &

removal at substrate

Klein and Prohl [60] ✓ ✓ external mass-conserving flux
Boujo and Sellier [10] ✓ ✓ ✓ substrate rotation kinematics

Lunz [68] ✓ ✓ ✓ ✓ ✓ substrate temperature gradient
Shankar et al. [109] ✓ ✓ ✓ elongated active units

Wray et al. [130] ✓ ✓ ✓ ✓ ✓ applied voltage
Biswal et al. [7] ✓ ✓ ✓ boundary flux

Stanley et al. [113] ✓ ✓ ✓ initial solute concentration

Table 7.1: Summary of different studies on the control of thin liquid film.
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7.2 Problem Statement
7.2.1 Governing equation
We first recall the governing equation for EDH or TC patterning, which has the following
general form

∂H

∂τ
= ∇∥ ·

{
−M⊥(H)∇∥

[
∇2

∥H + Π(H, ξ)
]

+M∥(H)∇∥Γ(H, ξ)
}
, (7.1)

Π(H, ξ) = A
[ 1
H3 − 1

(D −H)3

]
+ Wεr(εr − 1)Ψ2

∆
2 [H + εr(D −H)]2

,

Γ(H, ξ) = −M [κHΘcold + (D −H)Θhot]
D − (1 − κ)H ,

where M⊥(H) = H3/3 and M∥(H) = H2/2 are the mobility factors associated with
normal and shear stress, Π(H, ξ) includes van-der-Waals interaction and electrostatic
pressure, and Γ(H, ξ) is the dimensionless surface tension which varies with temperature
at the free surface at Z = H. The control variable ξ(X, τ) represents any general control
strategies.

7.2.2 Examples of physical implementation of control
The following are examples of physical implementations of the control ξ(X, τ) most
relevant to EHD and TC patterning:

1. Topographically patterning the mask (or substrate): ξ = D(X)

2. Changing the applied voltage (spatially or/and temporally): ξ = Ψ∆(X, τ)

3. Changing the temperature at the mask electrodes or substrates: ξ = Θhot(X, τ)
or Θcold(X, τ)

4. Chemically patterning the substrate, i.e., changing the wettability: ξ = A(X, τ)

The optimal control formalism presented in Section 7.3 does not depend on the specific
details of how the control is implemented, and alternative strategies not listed above can
also be used, provided that the control variable enters the governing Eq. (7.1) through
the pressure Π or/and the surface tension Γ term only. Control ξ appearing as an external
source term or the mobility factors, for instance, cannot be directly handled using the
present formalism by simple substitutions into the derived mathematical expressions,
though it can be easily generalized to cover those other cases.
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7.2.3 Cost function
The present objective is to control the liquid film shape H(X, τ) towards some given
target states, either at the final time τf towards Hterm(X), or across a time interval
0 ≤ τ ≤ τf towards Hreg(X, τ). We would also like to minimize the mean-squared
deviation Ems by applying some control ξ(X, τ) at minimal cost — usually in terms
of the energy cost, or the gradients of the control which can represent the engineering
difficulties. Therefore, we define the objective functional as

J (H, ξ) = Υterm
2|Ω|

∫
Ω

[H(X, τf ) −Hterm(X)]2 dX

+ Υreg
2|Ω|

∫ τf

0

∫
Ω
ς(τ) [H(X, τ) −Hreg(X, τ)]2 dX dτ + R(ξ), (7.2)

where J is a functional of the liquid film shape H(X, τ) and the control variable ξ(X, τ),
and consists of the following terms:

1. Mean-squared deviation of H away from Hterm(X) at τ = τf (terminal control).

2. Mean-squared deviation of H away from Hreg(X) weighted by ς(τ) across the
whole duration(regulation control).

3. Regularization R(ξ) measuring the ‘cost’ of control ξ(X, τ).

The constants Υterm,Υterm ≥ 0 control the relative importance between terminal and
regulation control. The specific case for terminal control, which will be discussed in
detail in Section 7.4, can be obtained by setting Υterm = 1 and Υreg = 0. The function
ς(τ) in the regulation control provides additional flexibility, for example, we can set ς(τ)
as a weighting function which slowly increases from 0 to 1 which allows less emphasis
on the initial transient phase and Hreg to have greater importance at late time.

7.2.4 Fourier representation of control variable
In order to simplify the calculation, the control variable is assumed to be separable, i.e.,
ξ(X, τ) = ξX(X)ξY (Y )ξτ (τ), where ξX(X), ξY (Y ) and ξτ (τ) can each be expressed
as a Fourier series:

ξX(X) =
nx∑

m=0

[
am cos

(2πmX
Lx

)
+ bm sin

(2πmX
Lx

)]
, (7.3a)

and similarly for ξY (Y ) and ξτ (τ). The control variable ξ(X, τ) can then be expressed
as follow
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ξ(X,Y, τ) =
nx∑

m=0

ny∑
n=−ny

nt∑
r=−nt

{
amnr cos

[
2π
(
m
X

Lx
+ n

Y

Ly
+ r

τ

τf

)]

+ bmnr sin
[
2π
(
m
X

Lx
+ n

Y

Ly
+ r

τ

τf

)]}
, (7.4)

where Lx = 2 and Ly = 2 is the size of the (dimensionless) domain along X and
Y direction1. Therefore, the control variable becomes a set of Fourier coefficients
c = {amnr, bmnr}. The use of Fourier series for the spatial part of ξ(X, τ) follows
naturally the use of periodic boundary condition imposed on the spatial domain. The
evolution of the liquid film and hence the control variable need not be time periodic,
but requiring ξ(τ = 0) = ξ(τ = τf ) simplifies the expressions for the gradient dJ /dξ
due to cancellation of the boundary term resulted from integration by part in τ . In
addition, we find from numerical experiments that having time-periodic control helps
achieve convergence during optimization, and prevents large variation of ξ, i.e., large
∂ξ/∂τ , near τ = 0 and τ = τf . Therefore, time-periodic control is assumed in this
study.

7.2.5 Regularization
The following form of the regularization R(ξ) is used:

R(ξ) = R1(ξ) + R2(ξ),

R1(ξ) = 1
2|Ω|τf

∫ τf

0

∫
Ω

[
Υ1
(
∇∥ξ

)2
+ Υt

(
∂ξ

∂τ

)2]
dX dτ, (7.5a)

R2(ξ) = Υ2

2 [mean(ξ) − ξref ]2
. (7.5b)

The non-negative constants Υ1, Υt and Υ2 control the relative importance of each
regularization term relative to the deviation term in the cost functional J .

The R1 term penalizes control with large spatial and/or temporal gradient, which repre-
sents, for example, engineering difficulties in fabricating patterned mask with very steep
sidewalls, or in realizing rapidly changing voltage signal. Penalizing the ∇∥ξ also helps
ensure the validity of LWA which neglects the second derivative of the external fields
(e.g. voltage or temperature) along the horizontal direction.

The R2 term prevents the control from approaching the reference level ξref . This is
useful, for example, when the control represents the patterned mask, i.e., ξ = D(X),

1In this chapter, we set l0 = λp/2 as the characteristic horizontal length scale so that the dimen-
sionless patterning wavelength is Λp = 2. With a spatial domain which supports one unit of the periodic
structure, we have Lx = Ly = 2.
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and we want to prevent the mask from being too close to the liquid free surface. As
shown in Section 7.4.2.5, the combination of both R1 and R2 terms allows a wide
variety of patterned mask to be realized, some of which are less susceptible to fabrication
imperfect.

When the control variable is represented by Eq. (7.4), the regularization terms become

R1(c) = π2
nx∑

m=0

ny∑
n=−ny

nt∑
r=−nt

(
Υ1
L2

x

m2 + Υ1
L2

y

n2 + Υt

τ2
f

r2
)(

a2
mnr + b2

mnr

)
, (7.6a)

R2(c) = Υ2

2 (a0 − ξref)2 . (7.6b)

7.2.6 PDE constraint
We would like to find the control variable ξ(X, τ) which minimizes the objective func-
tional J subject to the PDE constraint given by Eq. (7.1):

min
ξ(X,τ)

J subject to Eq. (7.1). (7.7)

Many common optimization algorithms require the gradient of J with respect to ξ, i.e.,
dJ /dξ, for computing the descent direction. While the gradient can be computed using
finite difference, it is not numerically tractable since ξ(X, τ) is a function and its degree
of freedom is of the same order as the number of grid points or/and time steps used
for discretizing Eq. (7.1). Gradient-free methods, such the genetic algorithm or other
evolutionary-type algorithms used in Shankar et al. [109] and Stanley et al. [113], may
also not be practical due to the high computational cost of evaluating of J many times
to explore the parameter space. In this chapter, we use the formal Lagrange method
[120], or more commonly known as the method of Lagrange multiplier, for solving the
optimization problem given in Eq. (7.7). The method leads to an efficient computation
of the gradient by solving only two PDEs — the original governing PDE and the so-called
adjoint equation, regardless of the degree of freedom in ξ(X, τ).

7.3 Optimal Control Formalism
7.3.1 Optimality conditions
We note that the formal Lagrange method [120, see Sections 2.10 and 5.10] presented in
this section allows us to derive the correct form of the gradient, but it is not mathemat-
ically rigorous as there are no general theorems addressing various technicalities, such as
the existence of solutions and the differentiability of J , when the PDE constraint has
the specific form of Eq. (7.1). We are not aware of any recent studies on addressing
these technicalities except Klein and Prohl [60] who proved some results on the existence
of optimal control for the thin film equation with only the fourth-order capillarity term.
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We do not aim to address these technicalities in this chapter. Instead, we simply derive
the gradient assuming such an optimal control exists, and provide numerical evidence
in Section 7.4 to show that the liquid film can indeed be controlled toward the target
states under fairly general conditions.

The PDE constraint in Eq. (7.1) can be incorporated to the objective functional J ,
resulting in the following Lagrangian L

L(H,Λ, ξ) = J (H, ξ) −
∫ τf

0

∫
Ω

Λ
[
∂H

∂τ
− f(H, ξ)

]
dX dt, (7.8)

where Λ(X, τ) is the Lagrange multiplier, also known as the ‘adjoint variable’, enforcing
the PDE constraint, and f(H, ξ) is the right hand side of Eq. (7.1). The constrained op-
timization stated in Eq. (7.7) now becomes an unconstrained minimization of Eq. (7.8).

The derivative of a general functional F (h) is denoted as [120, Chapter 2.6]

δF (H;χ) = ∂F (H)
∂H

χ = lim
δ→0

F (H + δχ) − F (H)
δ

, (7.9)

where δF (H;χ) is known as the directional derivative of F at H along the direction χ.
If the limit exists for all χ, then ∂F/∂H is known as the Gâteaux derivative of F at H.
It can be proved [94, see Theorems 1–2] that if the Gâteaux derivative exists at H and
is continuous at H, then the Fréchet derivative exists and is identical to the Gâteaux
derivative.

Let (H̄, Λ̄, ξ̄) denote the optimal values of (H,Λ, ξ). First order necessary condition
requires the derivatives of L with respect to the state variable H, the adjoint variable
Λ and the control variable ξ vanish at the optimal points:

δL(H̄, Λ̄, ξ̄; Λ − Λ̄) = 0, (7.10a)

δL(H̄, Λ̄, ξ̄;H − H̄) = 0, (7.10b)

δL(H̄, Λ̄, ξ̄; ξ − ξ̄) ≥ 0. (7.10c)

Eq. (7.10a) results in the governing PDE given by Eq. (7.1), also known as the forward
equation. Eq. (7.10b) results in the so-called adjoint equation which we will derive in
Section 7.3.2. Eq. (7.10c) is a variational inequality which must be satisfied by the
optimal control ξ̄. To formally obtain the gradient of the objective functional, we first
define the reduced objective functional as J (ξ) = J (H(ξ), ξ) where H = H(ξ) is the
solution to Eq. (7.1) for a given control ξ. The gradient of J with respect to the control
ξ is given by [120, Section 2.10 Remarks (ii)]
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dJ (ξ)
dξ = ∂L(H,Λ, ξ)

∂ξ
, (7.11)

where H = H(ξ) and Λ = Λ(ξ). Eq. (7.11) can also be obtained heuristically by
considering the total derivative of L [10]:

dL
dξ = ∂L

∂ξ
+ ∂L
∂H

∂h

∂ξ
+ ∂L
∂Λ

∂Λ
∂ξ
. (7.12)

When the first two optimality conditions given by Eq. (7.10a) and (7.10b) are satisfied,
∂L/∂H = ∂L/∂Λ = 0. Furthermore, when the governing PDE given in Eq. (7.1) is
satisfied, then L = J by construction. Therefore, dJ /dξ = dL/dξ = ∂L/∂ξ.

7.3.2 Derivation of adjoint equation
In this section, we derive the adjoint equation, which is given by Eq. (7.26) at the end
of this section.

Using the substitution H = H̄ + δχ, where χ(X, τ) is an arbitrary function and δ ≪ 1,
Eq. (7.10b) can be evaluated by expanding L around H̄:

L(H̄ + δχ, Λ̄, ξ̄) = J (H̄ + δχ, ξ̄) −
∫ τf

0

∫
Ω

Λ̄
[
∂(H̄ + δχ)

∂τ
− f(H̄ + δχ, ξ̄)

]
dX dτ.

(7.13)

We expand each term in Eq. (7.13) around the optimal solutions (H̄, Λ̄, ξ̄) one-by-one.
Starting with J , we have

[
(H̄ + δχ)|τ=τf

−Hterm
]2

=
(
H̄|τ=τf

−Hterm
)2

+ 2δ
(
H̄|τ=τf

−Hterm
)
χ|τ=τf

+ O(δ2)
(7.14a)[

(H̄ + δχ) −Hreg
]2

=
(
H̄ −Hreg

)2
+ 2δ

(
H̄ −Hreg

)
χ+ O(δ2) (7.14b)

Expanding J (H̄ + δχ, ξ̄), and using Eq. (7.14):
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J (H̄ + δχ, ξ̄)

= Υterm
2|Ω|

∫
Ω

[
(H̄ + δχ)|τ=τf

−Hterm
]2

dX

+ Υreg
2|Ω|

∫ τf

0

∫
Ω
ς
[
H̄ + δχ−Hreg

]2
dX dτ + R(ξ̄)

= J (H̄, ξ̄) + δ

{
Υterm

|Ω|

∫
Ω

(
H̄|τ=τf

−Hterm
)
χ|τ=τf

dX

+ Υreg
|Ω|

∫ τf

0

∫
Ω
ς(H̄ −Hreg)χ dX dτ

}
+ O(δ2). (7.15)

Next, for the term enforcing the PDE constraint, we can expand the nonlinear function
as f(H̄+ δχ, ξ̄) = f(H̄, ξ̄)+ δfh(H̄, ξ̄)χ+O(δ2) where fh is the Jacobian given below:

fh(H̄, ξ̄)χ = −∇∥ ·
{
M⊥(H̄)∇∥

[
∇2

∥χ+ ∂Π(H̄, ξ̄)
∂H

χ

]

+ ∂M⊥(H̄)
∂H

∇∥
[
∇2

∥H̄ + Π(H̄, ξ̄)
]
χ

+M∥(H̄)∇∥

[
∂Γ(H̄, ξ̄)
∂H

χ

]
+ ∂M∥(H̄)

∂H
∇∥Γ(H̄, ξ̄)χ

}
. (7.16)

The PDE constraint term becomes

∫ τf

0

∫
Ω

Λ̄
{
∂H̄

∂τ
+ δ

∂χ

∂τ
−
[
f(H̄, ξ̄) + δfh(H̄, ξ̄)χ+ O(δ2)

]}
dX dτ

=
∫ τf

0

∫
Ω

Λ̄
[
∂H̄

∂τ
− f(H̄, ξ̄)

]
dX dτ + δ

∫ τf

0

∫
Ω

Λ̄
[
∂χ

∂τ
− fh(H̄, ξ̄)χ

]
dX dτ + O(δ2)

(7.17)

We then apply integration by part in the time integral for the term involving ∂χ̄/∂τ :

∫ τf

0

∫
Ω

(
Λ̄∂χ
∂τ

)
dX dτ =

∫
Ω

{[
Λ̄χ
]τ=τf

τ=0
−
∫ τf

0
χ
∂Λ̄
∂τ

dτ
}

dX

=
∫

Ω

(
Λ̄|τ=τf

χ|τ=τf
−
∫ τf

0
χ
∂Λ̄
∂τ

dτ
)

dX, (7.18)

where we use the fact that χ|τ=0 = 0 since the initial condition H(X, 0) = H̄(X, 0) +
δχ(X, 0) should remain unchanged. The full expression of the term involving the Jaco-
bian fh is
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∫
Ω

Λ̄
[
fh(H̄, ξ̄)χ

]
dX = −

∫
Ω

Λ̄∇∥ ·
{
M⊥(H̄)∇3

∥χ

+M⊥(H̄)∇∥

[
∂Π(H̄, ξ̄)
∂H

χ

]
+ ∂M⊥(H̄)

∂H
∇∥
[
∇2

∥H̄ + Π(H̄, ξ̄)
]
χ

+M∥(H̄)∇∥

[
∂Γ(H̄, ξ̄)
∂H

χ

]
+ ∂M∥(H̄)

∂H
∇∥Γ(H̄, ξ̄)χ

}
dX. (7.19)

In order to proceed, we need to separate the arbitrary function χ(X, τ) from the linear
operator fh in Eq. (7.19), which can be done using integration by parts. For the term
on the first line of the right hand side of Eq. (7.19), we have

∫
Ω

Λ̄∇∥ ·
[
M⊥(H̄)∇3

∥χ
]

dX = −
∫

Ω
∇∥Λ̄ ·

[
M⊥(H̄)∇3

∥χ
]

dX

=
∫

Ω
∇∥ ·

[
M⊥(H̄)∇∥Λ̄

]
∇2

∥χ dX

= −
∫

Ω
∇∥
{

∇∥ ·
[
M⊥(H̄)∇∥Λ̄

]}
· ∇∥χ dX

=
∫

Ω
∇2

∥

{
∇∥ ·

[
M⊥(H̄)∇∥Λ̄

]}
χ dX. (7.20)

For the second line of the right hand side of Eq. (7.19), we have:

∫
Ω

Λ̄∇∥ ·
{
M⊥(H̄)∇∥

[
∂Π(H̄, ξ̄)
∂H

χ

]
+ ∂M⊥(H̄)

∂H
∇∥
[
∇2

∥H̄ + Π(H̄, ξ̄)
]
χ

}
dX

= −
∫

Ω
∇∥Λ̄ ·

{
M⊥(H̄)∇∥

[
∂Π(H̄, ξ̄)
∂H

χ

]
+ ∂M⊥(H̄)

∂H
∇∥
[
∇2

∥H̄ + Π(H̄, ξ̄)
]
χ

}
dX

=
∫

Ω

{
∇∥ ·

[
M⊥(H̄)∇∥Λ̄

] ∂Π(H̄, ξ̄)
∂H

− ∂M⊥(H̄)
∂H

∇∥Λ̄ · ∇∥
[
∇2

∥H̄ + Π(H̄, ξ̄)
]}

χ dX

(7.21)

The third line of the right hand side of Eq. (7.19) is similar to the second line:

∫
Ω

Λ̄∇∥ ·
{
M∥(H̄)∇∥

[
∂Γ(H̄, ξ̄)
∂H

χ

]
+ ∂M∥(H̄)

∂H
∇∥Γ(H̄, ξ̄)χ

}
dX

=
∫

Ω

{
∇∥ ·

[
M∥(H̄)∇∥Λ̄

] ∂Γ(H̄, ξ̄)
∂H

− ∂M∥(H̄)
∂H

∇∥Λ̄ · ∇∥Γ(H̄, ξ̄)
}
χ dX (7.22)

Note that all boundary terms arising from integration by parts vanish due to the use of
periodic boundary conditions. The same also holds when Neumann boundary conditions
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(i.e., requiring ∇∥Λ̄ = 0 on the boundary) are applied instead. Combining Eq. (7.20),
(7.21) and (7.22), Eq. (7.19) becomes

∫
Ω

Λ̄
[
fh(H̄, ξ̄)χ

]
dX =

∫
Ω
χ
[
f †

h(H̄, ξ̄)Λ̄
]

dX

= −
∫

Ω
χ

{[
∇2

∥ + ∂Π(H̄, ξ̄)
∂H

]
∇∥ ·

[
M⊥(H̄)∇∥Λ̄

]
− ∂M⊥(H̄)

∂H
∇∥Λ̄ · ∇∥

[
∇2

∥H̄ + Π(H̄, ξ̄)
]

+ ∇∥ ·
[
M∥(H̄)∇∥Λ̄

] ∂Γ(H̄, ξ̄)
∂H

− ∂M∥(H̄)
∂H

∇∥Λ̄ · ∇∥Γ(H̄, ξ̄)
}

dX, (7.23)

where the terms inside the curly parenthesis is equal to f †
h(H̄, ξ̄)Λ̄, and χ is now sepa-

rated. Using Eq. (7.15), (7.17), (7.18) and (7.23), Eq. (7.13) becomes

L(H̄ + δχ, Λ̄, ξ̄) − L(H̄, Λ̄, ξ̄)

= δ

{
Υterm

|Ω|

∫
Ω

(
H̄|τ=τf

−Hterm
)
χ|τ=τf

dX + Υreg
|Ω|

∫ τf

0

∫
Ω
ς(H̄ −Hreg)χ dX dτ

−
∫

Ω

(
Λ̄|τ=τf

χ|τ=τf
−
∫ τf

0
χ
∂Λ̄
∂τ

dτ
)

dX +
∫ τf

0

∫
Ω

[
f †

h(H̄, ξ̄)Λ̄
]
χ dX dτ

}
+ O(δ2)

= δ

{∫
Ω

[Υterm
|Ω|

(
H̄|τ=τf

−Hterm
)

− Λ̄|τ=τf

]
χ|τ=τf

dX

+
∫ τf

0

∫
Ω

[
∂Λ̄
∂τ

+ f †
h(H̄, ξ̄)Λ̄ + Υreg

|Ω|
ς(H̄ −Hreg)

]
χ dX dτ

}
+ O(δ2). (7.24)

Since χ(X, τ) is arbitrary, the first variation of L with respect to H vanishes only when
terms inside the two square parentheses in Eq. (7.24) each vanish. This results in the
following equations

∂Λ̄(X, τ)
∂τ

+ f †
h(H̄, ξ̄)Λ̄(X, τ) + Υreg

|Ω|

[
H̄(X, τ) −Hreg(X, τ)

]
ς(τ) = 0, (7.25a)

Λ̄(X, τ = τf ) = Υterm
|Ω|

[
H̄(X, τ = τf ) −Hterm(X)

]
, (7.25b)

where the so-called adjoint equation (which is solved backward in time) and the corre-
sponding terminal condition come from the terms highlighted in blue and red, respec-
tively, in Eq. (7.24). We can see that terminal control results in the terminal condition
for the adjoint variable, while regulation control results in an additional source term in
the adjoint equation.
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Introducing τ ′ = τf − τ and substituting the full expression of f †
h given in Eq. (7.23),

Eq. (7.25) becomes

∂Λ̄(X, τ ′)
∂τ ′ = −

[
∇2

∥ + ∂Π(H̄, ξ̄)
∂H

]
∇∥ ·

[
M⊥(H̄)∇∥Λ̄

]
+ ∂M⊥(H̄)

∂H
∇∥Λ̄ · ∇∥

[
∇2

∥H̄ + Π(H̄, ξ̄)
]

− ∇∥ ·
[
M∥(H̄)∇∥Λ̄

] ∂Γ(H̄, ξ̄)
∂H

+ ∂M∥(H̄)
∂H

∇∥Λ̄ · ∇∥Γ(H̄, ξ̄)

− Υreg
|Ω|

[
H̄(X, τf − τ ′) −Hreg(X, τf − τ ′)

]
ς(τf − τ ′), (7.26a)

Λ̄(X, τ ′ = 0) = Υterm
|Ω|

[
H̄(X, τf − τ ′) −Hterm(X)

]
, (7.26b)

which is now solved forward in time τ ′. Eq. (7.26) is the actual PDE solved numerically
when computing the gradient.

7.3.3 Gradient
The expression of the gradient dJ /dξ depends on how the control variable ξ is repre-
sented.

The derivation of the gradient dJ /dξ is similar to that of the adjoint equation in Section
7.3.2. Using the substitution c = c̄ + δc̃, where c̄ is the vector of the optimal Fourier
coefficients, and c̃ is the perturbation vector, we can expand L as follow:

L(H̄, Λ̄, c̄ + δc̃) = J (H̄, c̄ + δc̃) −
∫ τf

0

∫
Ω

Λ̄
[
∂H̄

∂τ
− f(H̄, c̄ + δc̃)

]
dX dτ. (7.27)

The expansion of f is

f(H̄, c̄ + δc̃) = ∇∥ ·
{

−M⊥(H)∇∥
[
∇2

∥H + Π(H̄, c̄ + δc̃)
]

+M∥(H̄)∇∥Γ(H̄, c̄ + δc̃)
}

= f(H̄, c̄) + δ∇∥ ·
{

−M⊥(H̄)∇∥

[
∂Π(H̄, ξ̄)

∂ξ

∂ξ

∂c c̃
]

+M∥(H̄)∇∥

[
∂Γ(H̄, ξ̄)

∂ξ

∂ξ

∂c c̃
]}

+ O(δ2), (7.28)

where chain rule is used to differentiate Π and Γ with respect to ξ = ξ(c). Performing
integration by parts twice, we have
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∫
Ω

Λ̄∇∥ ·
{

−M⊥(H̄)∇∥

[
∂Π(H̄, ξ̄)

∂ξ

∂ξ

∂c c̃
]

+M∥(H̄)∇∥

[
∂Γ(H̄, ξ̄)

∂ξ

∂ξ

∂c c̃
]}

dX

=
∫

Ω

{
−∇∥ ·

[
M⊥(H̄)∇∥Λ̄

] ∂Π(H̄, ξ̄)
∂ξ

+ ∇∥ ·
[
M∥(H̄)∇∥Λ̄

] ∂Γ(H̄, ξ̄)
∂ξ

}
∂ξ

∂c c̃ dX

=
∫

Ω
f †

ξ (H̄, ξ̄)∂ξ
∂c
dX c̃, (7.29)

where the terms inside the curly parenthesis on the second line (highlighted in blue)
equals f †

ξ (H̄, ξ̄). For the cost functional J , since its only dependence on ξ (i.e., c)
comes via R(ξ), its expansion around c̄ is

J (H̄, c̃) = J (H̄, c̄) + δ
∂R(c̄)
∂c

c̃ + O(δ2). (7.30)

Substituting Eq. (7.28), (7.29) and (7.30) into Eq. (7.27), we obtain the gradient:

dJ
dc = ∂L

∂c = ∂R
∂c +

∫ τf

0

∫
Ω
f †

ξ (H̄, ξ̄)∂ξ
∂c dX dτ. (7.31)

The derivative ∂R/∂c in Eq. (7.31) is obtained by differentiating Eq. (7.6) with respect
to the specified Fourier coefficients:

∂R0
∂amnr

= Γ0
2 ×

2(a000 − ξ0) if m = m = r = 0,

amnr otherwise,
, (7.32a)

∂R0
∂bmnr

= Γ0
2 bmnr. (7.32b)

∂R1
∂amnr

= 2π2
(

Υ1
L2

x

m2 + Υ1
L2

y

n2 + Υt

τ2
f

r2
)
amnr, (7.33a)

∂R1
∂amnr

= 2π2
(

Γ1x

L2
x

m2 + Γ1x

L2
y

n2 + Γ1t

τ2
f

r2
)
bmnr. (7.33b)

∂R2
∂c

=


− Υ2

[a000 − ξref ]3
c = a000,

0 otherwise
(7.34)

The derivative ∂ξ/∂c is obtained by differentiating Eq. (7.4) with respect to the specified
Fourier coefficient, e.g., ∂ξ/∂amnr = cos [2π(mx/Lx + ny/Ly + rτ/τf )].
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7.3.4 Solution procedure
The cost functional J can be minimized iteratively using gradient-based optimization
methods where the gradient dJ /dξ is obtained by computing Eq. (7.31). The numerical
algorithm is summarized in Algorithm 1.

Algorithm 1: Adjoint-based optimization of control variable ξ
Input: Initial guess (iteration k = 0) for control variable ξk as a set of Fourier

coefficients
Output: Optimal control variable ξopt
Parameter: absolute tolerance abstol = 10−6, relative tolerance reltol = 10−4

/* For convergence check or termination */
while true do

Given ξk, solve Eq. (7.1) to obtain Hk(X, τ) ;
Given ξk and Hk, solve Eq. (7.2) to obtain cost function Jk = J (Hk, ξk) ;
Given ξk and Hk, solve Eq. (7.26) to obtain Λk(X, τ) ;
Given ξk, Hk and Λk, solve Eq. (7.31) to obtain gradient (dJ /d/ξ)k ;
if Jk ≤ abstol or |Jk − Jk−1|/Jk ≤ reltol then

ξopt = ξk ;
return ξopt ;

else
Obtain ξk+1 with a gradient-based method using (dJ /dξ)k;
Repeat computation of Hk+1, Jk+1 and Λk+1 until convergence

Note that at each iteration, only two PDEs need to be solved, namely the forward and
adjoint equations.

7.4 Numerical Results for Terminal Control
In this section, we present the numerical results for the terminal control problem for
EHD patterning. Regulation control as well as optimal control for TC patterning are
not studied due to time constraint, but is an interesting topic for future work.

7.4.1 Details of numerical simulations
7.4.1.1 Numerical Methods

Solving ∂H/∂τ and ∂Λ/∂τ Both the forward and adjoint equations given by Eq. (7.1)
and (7.26), respectively, are solved numerically using the solvers and settings described
in section 4.2. Specifically, ‘setting A’ is used where the system size is −1 ≤ X ≤ +1 for
1D system, and −1 ≤ X,Y ≤ +1 for 2D system. The initial condition for the forward
problem is a perfectly flat film, i.e., H(X, τ = 0) = 1, while the initial condition for
the adjoint problem is given by Eq. (7.26b). The grid size used for numerical simulation
is ∆X/Lx = 1/128 for 1D system, and ∆X/Lx = ∆Y/Ly = 1/64 for 2D system.
With this grid size, the numerical error from spatial discretization is estimated to be
O(10−5) by comparing the solution H(X, τf ) obtained with ∆X/Lx = 1/128 and
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∆X/Lx = 1/256 (i.e., half the grid size).

For the actual minimization of the cost functional J , the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm implemented in the Julia package Optim.jl

[77] is used. L-BFGS algorithm is a quasi-Newton method where the Hessian is approx-
imated by the gradient information. Note that L-BFGS algorithm only returns a local
minimum instead of the global minimum. Details can be found in classic optimization
textbooks such as [83].

At each iteration, typically 2 to 4 evaluations of J and dJ /dξ are required in order
to compute the line-search direction and step size. Convergence is typically achieved
within 200 iterations, and the convergence criteria is as follow:

1. J ≤ abstol = 10−6: The cost functional is sufficiently minimized where Erms ∼
O(10−3) is achieved. Note that without regularization, this corresponds to a liquid
film deviation of O(10−3) away from the target shape Hterm(X), which is order of
magnitude smaller than the estimated numerical error of O(10−5). Setting an even
smaller absolute tolerance for convergence does not give meaningful improvement
since the deviation will become comparable to the numerical error. Such ‘optimal’
solution is also unlikely to be realized in practice due to the presence of noise and
other uncertainties in a real system.

2. |Jk − Jk−1|/Jk ≤ reltol = 10−4: The relative change in the cost functional
between successive iteration k and k−1 is sufficiently small. The solution has likely
reached a local minimum, and further iterations are unlikely to yield significant
improvement.

Initial guess for ξ(X, τ) In the absence of any rigorous mathematical proof, the cost
functional J given by Eq. (7.2) is not expected to be convex due to the highly nonlinear
nature of the PDE constraint. As a result, the high-dimensional solution space may
possess many local minima. The choice of initial guess becomes very important as it
can affect whether a sufficiently ‘good’ solution (see Section 7.4.1.3) can be obtained.

All the results presented in the subsequent section uses a constant function as the initial
guess (ξk=0 in Algorithm 1), i.e., ξk=0 = D0 when optimizing the mask topography or
ξk=0 = 1 when optimizing the profile of the applied voltage, because it is the simplest
possible choice without requiring any prior knowledge of the possible form of the control,
and alternative initial guess does not appear to offer better optimization results. When
optimizing the mask topography, sinusoidal shapes with different amplitudes and phase
have been tested as the initial guess, and the optimizer always converge to the same final
solution. A featureless electrode with different mean separation has also been tested
as the initial guess, and it is found that the mean separation of the final optimal mask
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Figure 7.1: Schematic of the hyperbolic lens as the target shape Hterm in (a) 1D and
(b) 2D. The lens radius and sag height are labeled as R0 and ∆H.

correlates with that of the initial guess. Nevertheless, the values of the minimized cost
function J are very similar regardless of the initial guess and the corresponding solution
of the optimal mask. This shows that despite the presence of multiple local minima in
the solution space, they all have roughly the same values.

When optimizing the electrode topography, the initial guess D0 can neither be too large
nor too small, otherwise the initial guess might not fall within the basin of attraction
in the solution space which results in convergence failure at the first few iterations. In
order to ensure a reasonable starting value for the electrode separation, D0 is chosen
via the relation W = Wc where the Maxwell stress should neither be too small nor too
large. This choice is found to be very robust to a wide range of W and τf based on
results from numerical experiments. Increasing the regularization parameters Υ1, Υt or
Υ2 is also found to make the computed optimal control variable much less dependent
on the initial guess, likely because regularization makes the optimization problem less
ill-posed.

7.4.1.2 Target shape

For proof-of-concept demonstration, we consider an aspheric lens shown in Fig. 7.1 as
the target terminal shape. The center is shaped as a hyperbola for the region |X| ≤ R0,
and is flat in the periphery. The central hyperbolic lens has radius R0 and sag height
∆H, and is described by the following analytical expression:

Hlens(X) =

z0 − a
√

1 + |X|2, if |X| ≤ R0,

Hmin, if |X| > R0,
(7.35)
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where the constant a is determined by the condition ∆H ≡ Hlens(|X| = 0)−Hlens(|X| =
R0):

a = ∆H√
1 +R2

0 − 1
, (7.36)

the constant z0 is determined by volume conservation mean[Hterm(X)] = 1 and differs
in a 1D domain (i.e., a line) and 2D domain (i.e., a square):

1D: z0 = 1 + a

2 sinh−1(R0) − a(R0 − 2)
2

√
1 +R2

0, (7.37a)

2D: z0 = 1 + 1
12

[√
1 +R2

0

(
12 − πR2

0

)
+ 2π

(√
1 +R2

0 − 1
)]

, (7.37b)

and the constant Hmin can be determined once a and z0 are known:

Hmin ≡ Hlens(|X| = R0) = z0 − a
√

1 +R2
0. (7.38)

Note that the thickness of the base Hmin differ in 1D and 2D for the same lens radius
R0 and sag height ∆H. The symbol Hlens and Hterm will be used interchangeably,
but it should be stressed that the target terminal shape does not need to be a lens but
can be any arbitrary shape. The specific lens given by Eq. (7.35) is chosen because it
can be shown using Fermat’s principle of least action that an object placed at infinity
can be focused without spherical aberration by a hyperbolic lens shown in Fig. 7.1.
Therefore, this presents an interesting example with potential applications in optics,
and the presence of both flat and curved segments also makes it a challenging target
shape for the control problem as it will be shown in the results section.

7.4.1.3 Metrics for quantifying deviations

In order to quantify the optimization results, we define the deviation between the liquid
film and the target shape Hdev

Hdev(X) = H(X, τf ) −Hterm(X), (7.39)

as well as the (root-)mean-squared deviation

Ems = 1
|Ω|

∫
Ω

[Hdev(X)]2 dX, Erms =
√

Ems, (7.40a)

Emax = max |Hdev(X)| . (7.40b)
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We also use the subscript ‘opt’ (which stands for optimal) to denote the final converged
optimal control variable, e.g., ξopt, Dopt and Ψopt.

7.4.1.4 Parameters

Unless otherwise specified, the parameters are fixed at εr = 2.5, A = 10−3, W = 2000,
τf = 0.01, R0 = 0.875, ∆H = 1.0, and Υ1 = Υ2 = Υt = 0. For optimization in mask
topography, i.e., ξ = D(X), nx = 16 (and nt = 0) Fourier terms are used to represent
the control variable given by Eq. (7.4). For optimization in the time-dependent voltage,
i.e., ξ = Ψ∆(τ), nt = 1 and nx = 0 Fourier terms are used. Different parameters are
varied in different sections with the remaining parameters kept at the base values given
here.

7.4.2 Optimization in mask topography: ξ = D(X)
7.4.2.1 Detailed analysis of base parameters

We first analyze the optimization results for the base case (R0 = 0.0875, ∆H = 1.0,
W = 2000, τf = 0.01, Υ1 = Υ2 = 0 and nx = 16) in detail, before investigating the
effects of varying different parameters in latter sections.

Qualitative features of optimal mask The optimal mask shape Dopt(X) computed
for W = 2000, τf = 0.01, Υ1 = Υ2 = 0 and nx = 16 (for a 1D target lens with
R0 = 0.875 and ∆H = 1.0) is shown in Fig. 7.2(a) in orange line (right axis). A smaller
electrode separation, i.e., smaller D(X), results in larger electric field (under constant
voltage), and hence larger magnitude of Maxwell stress acting on the liquid surface.
Since the direction of Maxwell stress points upward (when the upper gas layer has a
smaller relative permittivity than the liquid film), a smaller local electrode separation is
needed in region where the liquid film is expected to attain larger local thickness. This
explains the smaller electrode separation near the middle region of |X| ≲ R0 where
the protrusion of the lens is formed. The rapid change in electrode separation near the
edge, notably the rise at |X| = R0 and fall at |X| = 1, is needed in order to maintain a
flat surface in R0 ≤ |X| ≤ 1. As shown in Section 7.4.2.2, these features become less
pronounced when the sharp junction at |X| = R0 is rounded.

Optimal shaping strategy At early time (τ = 0.05τf ), the liquid film forms two
protrusions near |X| ≈ 0.8, while the center region remains relatively flat. The protruded
region continues growing upward and inward while drawing liquid from the region near
|X| = 1, eventually forming the final aspheric lens shape via the merging of two local
maxima. The lateral flow is driven by the large pressure gradient ∇P caused by the
large gradient in Maxwell stress as a result of the electrode topography.
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Figure 7.2: Optimization of mask topography for 1D lens with R0 = 0.875 and ∆H =
1.0. Parameters: W = 2000, τf = 0.01, Υ1 = Υ2 = Υt = 0, nx = 16. (a) The
target lens shape Hterm(X) (left axis) and the corresponding optimal mask topography
Dopt(X) (right axis). (b) Liquid film shape H(X, τ) at different time τ . Arrow indicates
direction of increasing time. Inset shows the magnified view near X = R0. (c) Final
deviationHdev(X) ≡ H(X, τf )−Hterm(X). Vertical dashed lines in all subplots indicate
|X| = R0.
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Figure 7.3: The normalized discrete Fourier transform (DFT) of the liquid film. (a) The
DFT of the liquid film |DFT{H − 1}| at selected time corresponding to those shown in
Fig. 7.2(b). (b) The DFT of the liquid film H(X, τ)−1, the optimal mask Dopt(X) and
the target shape Hterm(X) in logarithmic scale. Note that the DFT given by Eq. A.23
is multiplied by the factor 2/Nx where Nx = 128 is the number of grid points so that
the final quantities represent the Fourier coefficients of the underlying periodic function.

It is interesting to see that the optimal strategy of obtaining the aspheric lens is via
forming two smaller bumps away from the center, and then merging the two by inward
flow, instead of pulling from the center at the beginning which might be what intuition
suggests.

Qualitative features of final deviation The final deviation Hdev(X) = H(X, τf ) −
Hterm(X) is shown in Fig. 7.2(c). The oscillations present in |X| ≤ R0 for Hdev(X)
are the result of the spatial oscillations of the Maxwell stress imposed by the optimal
mask which show similar oscillation patterns. The largest deviation occurs at |X| = R0

where the liquid film fails to conform to the sudden change in curvature in the given
target lens shape. Parametric studies on varying R0 and ∆H (see Section 7.4.2.3) and
varying W and τf (see Section 7.4.2.4) confirms the occurrence of the largest deviation
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at |X| = R0 to be rather general irrespective of parameters.

Spatiotemporal evolution in Fourier space In order to study how different spectral
components evolve in time, Fig. 7.3 shows (the magnitude of) the DFT of the liquid
film H(X, τ), the target shape Hterm(X) and the optimal mask Dopt(X) where the
DFT is defined in Appendix A.5.

Fig. 7.3(a) shows the DFT of the liquid film at different times corresponding to those
in Fig. 7.2(b). At early times (τ = 0.05τf ), the peak at K = 2π corresponds to the
formation of two smaller protrusions shown in Fig. 7.2(b), while at late time the peak
at K = π corresponds to one large protrusion representing the hyperbolic lens at the
center. Fig. 7.3(b) shows the DFT of the liquid film shape at τ = 0.05τf and τ = τf ,
the optimal mask and target lens shape in logarithmic scale. Good agreement between
the spectral profile for 5π ≲ K ≲ 10π has already been established at τ = 0.05τf , while
matching the smaller K components is accomplished between the intermediate and late
time through the coalescence of smaller protrusions. There is noticeable discrepancy in
matching the large K components (K ≳ 15π), which cannot be improved even if more
Fourier terms (i.e., increasing nx) are incorporated into the representation of Dopt(X) in
Eq. (7.4). This corresponds to features smaller than 0.13 in real space, which matches
the length of the flat segment between 0.875 ≤ X ≤ 1. The spectral profile of the
optimal mask (orange unfilled diamonds) show some qualitative resemblance to that of
the target lens, but more quantitative relation between the two is not currently known.

The early time growth of the K = 2π mode may also suggest the optimal shaping
of the liquid film is achieved mainly via the nonlinear growth rather than the intrinsic
electrostatic instability. For reference, the cut-off wave number Kc given by Eq. (3.5)
estimated for parallel electrodes (D(X) = const. ≈ min[Dopt(X)]) is indicated by the
vertical dashed line in Fig. 7.3. The modes which are predicted to be linearly stable
by LSA for flat electrodes (e.g., K = 2π, 3π, etc.) actually grow faster than the
unstable mode with K = π at early time. While the stability of a mode in a system
with featureless electrode does not necessarily imply stability in a system with patterned
electrode, the fact that the mode we suspect to be most unstable only grows significantly
at later time suggests the intrinsic instability plays a rather minor role in the optimal
shaping of liquid film.

7.4.2.2 Effects of varying target lens: Smoothing sharp junction

In this section, we study the effects of varying the shape of the target hyperbolic lens.
The target lens studied in the previous section has a sharp junction at |X| = R0. To
study the effects of having a smoothed junction on the optimization results, a Gaussian
kernel K is applied to the target shape Hterm via the operation
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H̃term[i] =
∑

j

Hterm[i+ j]K[j], (7.41)

where the notation Hterm[i] = Hterm(Xi) denotes the value at the grid point X = Xi

after spatial discretization. The Gaussian kernel is parameterized by the smoothing
width σ, and Fig. 7.4(a) shows the target lens after the application of the Gaussian
kernel with different σ. Larger σ results in a smoother transition at |X| = R0, and
σ = 0 corresponds to no smoothing. Note that the region in |X| ≤ R0 no longer has
the exact shape of a hyperbola for nonzero σ.

The corresponding optimal mask Dopt(X) for the three specific target lenses are shown
in Fig. 7.4(b). It can be seen that the amplitudes of the oscillations in the central region
|X| ≲ R0 are reduced as σ increases. The rapid change in electrode topography in
|X| ≳ R0 is also less pronounced, and the overall electrode topography has a smoother
profile. The final deviation Hdev(X) as shown in Fig. 7.4(c) shows similar magnitude
for the three cases in the central region, but the large deviation at |X| = R0 for the un-
smoothed case of σ = 0 is greatly reduced. Further inspection of the Fourier transform
of the rounded target lens (not shown here) shows that the magnitude of the large K
components corresponding to small feature size are greatly reduced, making it easier to
match the spectral profiles of the liquid film shape to that of the target shape. This
is consistent with the intuitive expectation that if no sharp features are present in the
desired target shapes, the corresponding optimal mask adopts a much smoother profiles.

7.4.2.3 Variation in lens radius R0 and sag height ∆H

We next investigate the influence of varying the lens radius R0 and sag height ∆H of
the 1D target lens on the optimization of the mask topography D(X) while keeping
other parameters the same at W = 2000, τf = 0.01, Υ1 = Υt = Υ2 = 0 and nx = 16.

The RMS deviation Erms achieved after optimization as a function of R0 and ∆H is
shown in Fig. 7.5(a). Erms is generally smaller when the aspect ratio ∆H/R0 is smaller
(bottom right purple region of the plot) and vice versa. This provides a quantitative
verification of the intuition that it is generally easier to shape the liquid film to form
protrusions or features with smaller aspect ratio. The maximum deviation Emax is shown
in Fig. 7.5(b), which shows a very similar qualitative trend to that of Erms except the
numerical values are usually 4 to 6 times larger. The X coordinate where the final
deviation magnitude is at maximum, i.e., XE where |Hdev(X = XE)| = Emax, is shown
in Fig. 7.5(c). There is a clear trend that XE = R0 regardless of the values of R0 and
∆H. This shows that the large deviation at |X| = R0 seen in Fig. 7.2(c) is fairly general
even when the geometry of the target shape changes.
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Figure 7.5: Influence of changing the sag height ∆H and the lens radius R0 of the 1D
target lens on the optimization results. Parameters: W = 2000, τf = 0.01, Υ1 = Υ2 =
Υt = 0, nx = 16. (a) The RMS deviation Erms. (b) The maximum deviation Emax. (c)
The X-coordinate XE where the Hdev(X) is maximized.

The observations seen in Fig. 7.5 also appears when different W (2000 ≤ W ≤ 10000)
and τf (0.005 ≤ τf ≤ 0.02) are used, as well as for both spatial and spatiotemporal
voltage control, i.e., ξ = Ψ∆(X) or ξ = Ψ∆(X, τ). This shows that the general trend
seen in Fig. 7.5 is quite general over a wide range of parameters and also holds for
different types of control.

7.4.2.4 Variation in W and τf

We next investigate the effects of varying W and τf on the optimization of the mask
topography D(X) while keeping other parameters the same at R0 = 0.875, ∆H = 1.0,
Υ1 = Υt = Υ2 = 0 and nx = 16.

The RMS deviation Erms achieved as a function of W and τf is shown in Fig. 7.6(a).
The colored (gray-scale) region shows the range of W and τf where Erms ≤ 0.01
(Erms ≥ 0.01). Relatively small RMS deviation of Erms ≤ 0.005 is achievable for
W ≳ 103, and the acceptable range of W (∝ V 2

0 where V0 is the dimensional applied
voltage) spans more than an order of magnitude. Fig. 7.6(b) shows the mean electrode
separation of the corresponding optimal mask mean[Dopt(X)], which generally increases
with W. This implies if the applied voltage is fixed at a larger value, the optimization
automatically selects a mask profile with larger average separation to balance out the
increase in applied voltage to keep the electric field strength and thus the Maxwell stress
within a preferred range.

For each given W, small Erms is achieved when τf is neither too large nor too small, e.g.,
when W = 2000, 0.005 ≲ τf ≲ 0.1 for Erms ≤ 0.004. When τf is smaller, there is less
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time to shape the liquid film into the required final shape, and so the required gradient
in the mask topography ∇Dopt(X), and thus the Maxwell stress, needs to be larger for
more ‘aggressive’ shaping of the liquid film. This can be seen in Fig. 7.6(c) which shows∫

|∇Dopt(X)|2dX as a measure of the spatial gradient present in the optimal mask,
which is generally larger for smaller τf . When τf is too small, there is insufficient time
to shape the liquid film despite the large gradient in Maxwell stress externally imposed
on the liquid film by the electrode configuration. On the other hand, when τf is very
large, large gradient in Maxwell stress from the patterned electrode is no longer needed,
and the mask topography approaches a flat electrode. The time scale associated with
the growth of liquid film cannot greatly exceed the time scale for natural instability
under flat electrodes given by 1/β(Km). Using the values of mean[Dopt(X)] and W
shown in Fig. 7.6 as an estimate for D0 and W in Eq. (3.7) gives 1/β(Km) ≈ O(0.1)
as the approximate instability time scale, which is an order of magnitude larger than the
optimal τf which is O(0.01).

The gray scale region in Fig. 7.6(a) corresponds to relatively large Erms, due to insuf-
ficient time (i.e., small τf ) for liquid shaping or/and insufficient Maxwell stress (i.e.,
small W) to appropriately deform the liquid film. This presents an example where the
electrode topography computed by the optimization algorithm does not necessarily lead
to good agreement between the liquid film and the target shape due to limitations in
the underlying physics.

7.4.2.5 Variation in regularization parameters

Variation in Υ1 We first study the effects of varying Υ1, keeping Υ2 = 0. Fig. 7.7(a)
shows the values of cost function J , regularization term R1, RMS deviation Erms and
maximum deviation Emax achieved after optimization as a function of Υ1, all of which
generally increase with Υ1. Fig. 7.7(b) shows the maximum, minimum and mean value
of the optimal mask Dopt(X), as well as

∫
|Dopt(X)|2dX, the quantity being penalized

in the R1 regularization term, and four quantities generally decrease with Υ1. Fig. 7.7(c)
shows the actual profile of the optimal mask Dopt(X) for selected values of Υ1. The
optimal mask Dopt(X) has qualitatively similar shape regardless of Υ1: a relatively flat
middle region with smaller local electrode separation, and rapid change in topography
near |X| = R0. However, as Υ1 is increased, the overall profile is ‘squeezed’ vertically
and becomes smoother, with fewer oscillations in the middle section and a more gentle
change in local electrode separation near |X| = R0.

The trends observed in Fig. 7.7 can be explained as follow: as Υ1 increases, the quantity∫
|Dopt(X)|2dX tends to become smaller in order to prevent the R1 from being too

large. This reduces the large spatial variation present in Dopt(X) and results in the
smoother profiles seen in Fig. 7.7(c). In order to compensate for the loss in Maxwell
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stress gradient due to a smoother mask topography, the optimal shape and the position
of the mask is closer to the liquid film so that the average Maxwell stress strength
is larger, which explains the overall trend shown in Fig. 7.7(b). Besides, the smoother
optimal mask profile resulted from larger Υ1 also leads to less effective liquid film shaping
due to the smaller Maxwell stress gradient exerted on the liquid film surface, leading to
larger Erms, Emax and J as shown in Fig. 7.7(a).

Variation in Υ2 Next, we study the effects of varying Υ2, keeping Υ1 = 10−5. A
nonzero Υ1 is needed to prevent the optimal mask from having unacceptably large
maximum as Υ2 is increased.

Fig. 7.8(a) shows the value of cost function J , regularization terms R1 and R2, as well
as the RMS deviation Erms and maximum deviation Emax as Υ2 is increased. The overall
trend is similar to that shown in Fig. 7.7(a) when Υ1 is varied instead. Fig. 7.8(b) shows
the maximum, mean and minimum value of the optimal mask Dopt(X) against Υ2, while
Fig. 7.8(c) shows the optimal mask Dopt(X) for selected Υ2. As Υ2 is increased, the
mean value of the optimal mask increases as expected, since the R2 regularization
penalizes mask topography which is close to the reference point ξref = max[Hterm(X)].
The minimum and maximum value of Dopt(X) also increase accordingly. As the mask
becomes further away from the liquid film, its spatial profile acquires a slightly larger
gradient to restore the overall Maxwell stress gradient for shaping the liquid film, leading
to the small increase in R1 as shown in Fig. 7.8(a).

7.4.3 Optimization results for roughened mask topography
All the previous results assume the control variable ξ, which is the mask topography
D(X), can be engineered precisely. That is seldom achieved in practice, especially
for the optimal mask shown in Fig. 7.2(a) which possess many sophisticated features
at very small length scale. In this section, the effects of imperfect fabrication of the
optimal mask on the final deviation Hdev(X) are discussed. Two methods to mitigate
such effects are also explored: in Section 7.4.3.2 using the regularization to adjust the
optimal mask shape, and in Section 7.4.5 using temporal control.

7.4.3.1 Illustration of roughened mask

A roughened mask is obtained by adding a random perturbation term to the computed
optimal mask Dopt(X):
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D(X) = Dopt(X) + η0D̃√
N

N∑
n=1

[
an cos(nπX) + bn sin(nπX)

]
, (7.42)

D̃ =
√

1
|Ω|

∫
Ω

{Dopt(X) − mean[Dopt(X)]}2 dX,

where η0 is the perturbation amplitude, an and bn are random numbers drawn from
a uniform distribution between −1 and +1, N = 20 is number of perturbation terms
used, and D̃ is a measure of the spread in height of the optimal mask so that the added
perturbation scales with the vertical span of the optimal mask.

The liquid film shape H(X, τ) is solved with the roughened mask D(X) = Dopt(X) +
η(X) in 50 independent realizations where each realization is seeded with a different
random seed for generating with coefficients {an, bn}, resulting in a different perturba-
tion η(X) and thus different mask topography D(X). The resulting Erms can then be
computed with H(X, τf ) for each roughened mask, and the median Erms indicates the
characteristic RMS deviation we can expect in a more realistic setting where the exact
topography of optimal mask cannot be fabricated precisely.

Examples of roughened masks are shown in Fig. 7.9(a). The red solid line denotes
one particular realization of the roughened mask with η0 = 0.1, while the pink shaded
region shows the span of all 50 independent realizations of roughened masks. For ease
of comparison, the ideal smooth mask (the same mask topography shown in Fig. 7.2(a))
is shown in blue solid line.

The final deviation Hdev(X) resulted from the use of roughened masks are shown in
Fig. 7.9(b). Red solid line and pink shaded region correspond to Hdev(X) achieved using
the roughened masks shown in Fig. (7.9)(a), respectively. The region where largest
deviation occurs changes from |X| = R0 in the ideal smooth mask case to a relatively
uniform region in the middle where |X| ≤ R0. This is because the Maxwell stress is
the largest in the middle for pulling the liquid film upward, and tiny perturbation to the
optimal Maxwell stress profile can significantly change the spatiotemporal evolution of
the liquid film. For comparison, Hdev(X) for an ideal smooth mask is shown in blue
solid line in Fig. 7.9(b).

Fig. 7.9(c) shows the median of the RMS deviation using roughened masks as a function
of W and τf (each parameter repeated with 50 independent realizations), with the
remaining parameters the same as those in Fig. 7.6. Comparison between Fig. 7.6(a)
and Fig. 7.9(c) shows that with the introduction of surface roughening with magnitude
η0 = 0.1 to the optimal mask, the resulting Erms increase by close to an order of
magnitude across different values of W and τf . The smallest possible Erms is achieved
with large W, probably because of the larger separation between mask and substrate
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pography on the final deviation. (Parameters: R0 = 0.875, ∆H = 1.0, W = 2000,
τf = 0.01) (a) The first row shows the RMS deviation, while (b) the second row
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roughened mask with η0 = 0.1. The third column (iii) shows the ratio between the
second and first column, where larger values indicate greater effect of the introduction
of surface roughening to the optimal mask.

(see Fig. 7.6(b)) so the perturbation to the Maxwell stress is smoothed out over longer
distances.

7.4.3.2 Mitigation of fabrication imperfection via regularization

A mask topography which is less susceptible to fabrication imperfection can be obtained
by adjusting the regularization parameters. Fig. 7.10 shows the optimization results
for the same set of parameters (R0 = 0.875, ∆H = 1.0, W = 2000, τf = 0.01) but
with different Υ1 and Υ2. The first column shows Erms and Emax for the ideal smooth
mask with η0 = 0. Consistent with the results presented in Section 7.4.2.5, smaller Υ1

and Υ2 (lower left corner) result in smaller deviation due to less constraint placed on
Dopt(X). The second column shows the median of Erms and Emax from 50 independent
realizations where the roughened mask given by Eq. (7.42) with η0 = 0.1 is used. While
the absolute values of both Erms and Emax increase across all choices of (Υ1,Υ2) due
to the presence of imperfections on the roughened mask, smaller deviations are now
achieved with larger Υ1 and Υ2 (upper right corner). The third column of Fig. 7.10
shows the ratio of deviations between the case of roughened mask and ideal smooth
mask, and smaller values suggest the presence of surface roughening due to fabrication
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imperfection has less impact on the final liquid film shape. It is clear that with larger
values of Υ1 and Υ2, the effect of mask topography roughening due to fabrication
imperfection is less pronounced.

Fig. 7.11 compares the effects of fabrication imperfection for the mask obtained without
regularization (left column) and with regularization (right column). The one without
regularization (Υ1 = Υ2 = 0) is the same as that shown in Fig. 7.9(a)-(b), while the one
with regularization (Υ1 = 10−5, Υ2 = 2.5 × 10−3) corresponds to a mask topography
more robust to fabrication imperfection based on the general trend observed in Fig. 7.10.
The optimal mask shown in Fig. 7.11(d) has a smoother profile, and the absence of sharp
features located at |X| = 1 due to the R1 term penalizing large ∇∥Dopt. The resulting
final liquid film shape H(X, τf ) shown in Fig. 7.11(e) and the final deviation Hdev(X)
shown in Fig. 7.11(f) also display smaller deviation relative to the base case shown in
7.11(c). The numerical values in the second row correspond to the RMS deviation Erms

and maximum deviation Emax, while the numerical values in the third row correspond
to the lower quartile, median and upper quartile of Erms and Emax computed from all 50
independent realizations. Comparison of these numerical values of Erms and Emax clearly
show that the performance of the optimal mask computed with appropriate choice of Υ1

and Υ2 deteriorate by a smaller extent when the fabrication is not perfect and surface
roughening is present. The general rule for choosing the best regularization parameters
is not currently known and likely depends on other parameters like W and τf as well as
the given target shape Hterm(X).

7.4.4 Optimization of mask topography for 2D lens
All previous results shown in Sections 7.4 and 7.4.3 are based on a target shape in a
1D domain, i.e., Hterm(X) = Hlens(X). In this section, we study the optimization of
mask topography for a hyperbolic lens with R0 = 0.875 and ∆H = 1.0 in a 2D square
domain. Note that the thickness of the flat region in |X| ≥ R0 is slightly different than
the 1D lens studied in Section 7.4.2.1 because of the change in spatial domain.

Fig. 7.12(a) shows the liquid film shape at selected time under the use of the optimal
mask. The liquid film evolves very similarly to the 1D case: it first develops a rim shaped
like a volcano in the periphery, which then slowly grows inward and upward to merge
into a single bigger protrusion at the center.

Fig. 7.12(b) and (c) show 3D and 2D projection of the final deviation Hdev(X), and
Fig. 7.12(d) shows the 1D cut along Y = 0 and Y = X. The largest deviation again
occurs at |X| = R0, and the deviation in the central region of |X| ≤ R0 is generally
smaller than that in |X| > R0. Compared to the 1D case shown in Fig. 7.2(c), both
Erms and Emax are slightly larger, and the deviation magnitude in the region |X| = R0

also appear slightly larger. Given that there are two principal curvatures in a 2D lens,
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Figure 7.11: Comparison of the effects of mask roughening due to fabrication imper-
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Figure 7.12: Optimization of mask topography for 2D lens with R0 = 0.875 and ∆H =
1.0. Parameters: W = 2000, τf = 0.01, Υ1 = Υ2 = Υt = 0, nx = 16. (a) The
liquid film shape at (i) τ = τf/4, (ii) τ = τf/2 and (iii) τ = τf . (b)–(c): The 3D and
2D projection of the final deviation Hdev(X). (d) The 1D cross-section (indicated by
dashed lines in (c)) of the final deviation along Y = 0 (black) and Y = X (orange).
(e)–(f): The 3D and 2D projection of the optimal mask Dopt(X) after optimization.
(g) The 1D cross-section (indicated by dashed lines in (c)) of the optimal mask along
Y = 0 (black) and Y = X (orange).
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larger electrostatic stress is needed to deform the liquid film into a 2D lens than a 1D
lens (which is simply a 1D ‘ridge’ in the X − Y plane), and larger deviation may be
resulted.

Fig. 7.12(e) and (f) show the 3D and 2D projection of the optimal mask Dopt(X), and
Fig. 7.12(g) shows the 1D cut along Y = 0 and Y = X. Similar to the 1D case, the local
electrode separation is smaller near the center, but changes rapidly near |X| = R0. The
main qualitative difference lies at the boundary of the square domain where the electrode
separation at the four corners (X,Y ) = (±1,±1) is larger than that at (X,Y ) = (0,±1)
and (X,Y ) = (±1, 0). While this specific shape might present additional challenges to
mask fabrication, it is needed in order to maintain a flat horizontal surface in the liquid
film where the inter-lens separation along the Y = 0 and Y = X directions are different
by a factor of

√
2 when the lenses are arranged in a rectilinear manner. If the lenses are

arranged in a hexagonal array where the inter-lens separation is the same, we expect the
optimal mask topography to appear closer to an axisymmetric shape with less variation
in height along the boundary of each unit cell.

7.4.5 Optimization in applied voltage with patterned mask
We now turn to the optimization of the applied voltage, i.e., ξ = Ψ∆, for shaping the
liquid film toward a 1D target shape. Preliminary results of the more general case of
spatiotemporal control ξ = Ψ∆(X, τ) shows no qualitative differences to the general
trends observed in Fig. 7.5 and 7.6, so we do not discuss those results any further.
Instead, we focus on the use of time-dependent voltage Ψ∆(τ) as a method to mitigate
the effects of roughened mask discussed in Section 7.4.3, and to provide additional
flexibility in shaping liquid film toward different target shapes with the same experimental
setup. Note that a spatially varying electrode D = D(X) is still needed even though
it is no longer the control variable to be optimized, otherwise ∂H/∂τ = 0 at τ = 0
because ∇∥Π = 0.

7.4.5.1 Mitigation of fabrication imperfection in roughened mask

For each of the roughened electrode D(X) = Dopt(X)+η(X) represented in Fig. 7.9(a)
for R0 = 0.875, ∆H = 1.0, W = 2000 and τf = 0.01, the optimal control problem
is solved again where ξ = Ψ(τ) becomes the new control variable and D(X) is a fixed
variable in the external pressure Π. Fig. 7.13(a) shows the optimal temporal profile of
the applied voltage Ψopt(τ) with nt = 1 and Υt = 10−8 when the roughened electrode
shown in Fig. 7.9(a) in solid red line is used. The effects of varying Υt is similar to that
of the spatial analog Υ1: increasing Υt leads to smoother Ψopt(τ) with more gentle
gradient in time. Υt = 10−8 is chosen to prevent excessively large variation in Ψopt(τ)
that is encountered when Υt = 0 (not shown). nt ≈ 1 is found to be sufficient for
convergence when Υt = 10−8.
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Figure 7.13: Illustration of temporal control in reducing the negative effects of surface
roughening in the mask topography due to fabrication imperfection. Parameters: R0 =
0.875, ∆H = 1.0, W = 2000, τf = 0.01, Υt = 10−8, nt = 1. (a) The optimal
voltage Ψopt(τ) used to correct the particular roughened mask shown in red line in
Fig. 7.9(b). (b) The liquid film shape at τ/τf = 0.2, 0.4, 0.6, 0.8 and 1.0 without (red)
and with (green) temporal control for one particular realization of roughened mask. (c)
Comparison of the final deviation Hdev(X) for different cases: blue line shows the case
for perfectly smooth mask (η0 = 0); red (green) line shows the case with roughened
mask given by D(X) = Dopt(X) + η(X) without (with) temporal control; red (green)
shade shows the span of 50 independent realizations without (with) temporal control.
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The final deviations Hdev(X) achieved with and without voltage temporal control are
shown in Fig. 7.13(b). The blue solid line (perfect electrode), red solid line (one in-
stance of roughened electrode) and pink shades (spans of all roughened electrodes)
are reproduced from Fig. 7.9(b) for ease of comparison. The newly added green solid
line denotes Hdev(X) obtained for the same roughened electrode shown in solid red line
(Fig. 7.9(a)), but with the optimal voltage profile shown in Fig. 7.13(a) as extra control.
The pale green shades denote the span of Hdev(X) for all 50 independent realizations,
each under additional optimal voltage control. An overall decrease in Hdev(X) can be
observed when comparing the red and green solid line, as well as the pink and pale green
shaded regions.

Having a time-dependent voltage Ψ(τ) scales the whole spatial profile of the Maxwell
stress by a time-dependent scaling factor. It is interesting to see how continuously
changing this overall scaling factor can provide additional control of the liquid film
towards the desired target shape. This strategy of using Ψ(τ) has been tested for
0.01 ≤ τf ≤ 0.05 and 2000 ≤ W ≤ 104, and both the spread and median of Erms are
reduced under temporal voltage control for all the parameters investigated, showing the
use of voltage temporal control as a viable strategy to improve the optimal control of
EHD patterning.

7.4.5.2 Realizing different lens sag height with time-dependent voltage

The other use of time-varying voltage is to obtain different liquid shapes using the
same patterned mask. Since the applied voltage can be controlled digitally, this allows
different target shapes to be realized using the same experimental setup as the patterned
mask whose spatial profile is assumed to be fixed once fabricated does not need to be
switched.

Fig. 7.14 shows the results of using the same patterned mask shown in Fig. 7.11(d) (blue
solid line) to obtain hyperbolic lens with the same lens radius R0 = 0.875 but different
sag height ∆H. The optimal voltage profile Ψopt(τ) is shown in the top row, the
liquid film shape at selected times are shown in the middle row, and the final deviation
Hdev(X) is shown in the bottom row. The left, middle and right column corresponds
to ∆H = 0.5, 0.75 and 1.0, respectively. Larger ∆H requires larger deformation of the
liquid film, so the corresponding optimal voltage also shows a larger average value in
order to provide the necessary Maxwell stress to shape the liquid film. While the final
deviation remains small for all three cases, it should be emphasized that since they share
the same lens radius, the required spatial profile of the control variable is expected to
be similar except for the overall scaling factor, which can easily be achieved by changing
the temporal profile of the applied voltage. Applying the same strategy to other target
shapes with different lens radius might be more challenging with less impressive results
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Figure 7.14: Demonstration of using temporal voltage control in conjunction with the
patterned mask shown in Fig. 7.11(d) to obtain aspheric lens with different sag height
∆H. Parameters: R0 = 0.875, W = 2000, τf = 0.01, Υt = 10−8, nt = 1. The top row
shows the optimal voltage profile Ψopt(τ). The middle row shows the liquid film shape
at τ = τf/4, τf/2, 3τf/4, τf . The bottom row shows the final deviation Hdev(X). The
left, middle and right column corresponds to ∆H = 0.5, 0.75 and 1.0 respectively.
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(i.e., larger Erms and Emax).

7.5 Discussion
In this chapter, the optimal control of EHD patterning is studied where the cost func-
tional J given by Eq. (7.2) is minimized under the constraint of the governing PDE
given by Eq. (7.1) derived under LWA, using the adjoint-based formalism presented in
sSection 7.3.2 to derive the required gradient. The optimal mask topography Dopt(X)
or the applied voltage Ψ∆(τ) is determined such that the liquid film evolves toward
the prescribed target shape within a specified time interval τf . Satisfactory results ex-
emplified by the small deviation between the liquid film shape and given target shape
(Erms ≲ 0.01) are achievable over a wide range of parameters as shown in Fig. 7.5 and
7.6, showing the success of the proposed optimal control framework. The algorithm fails
to return a feasible optimal control (i.e., unacceptably large Erms) only when the actual
process involved is challenging to realize due to limitations in the underlying physics,
for example when the given processing time τf or the strength of electrostatic pressure
W is too small (see bottom left of region in Fig. 7.6(a)), or when the aspect ratio of
target lens is very large (see top left of Fig. 7.5) which requires very large surface forces
to deform the liquid film.

Furthermore, by investigating the optimal control problem, we can arrive at a few general
observations or principles, including:

1. Larger deviation (i.e., larger Erms), and hence more challenging liquid thin film pat-
terning, for target shapes having features with large aspect ratio (Section 7.4.2.3)
or abrupt change in curvature (Section 7.4.2.2).

2. The occurrence of maximum deviation at the region with largest change in cur-
vature, i.e., Emax = |Hdev(|X| = R0)|

3. The optimal shaping strategy appears to be the initial development of smaller
features followed by their coalescence into the final desired protrusion for the given
target shape of a hyperbolic lens in both 1D (Section 7.4.2.1) and 2D (Section
7.4.4).

While these principles may not be too surprising, and may be inferred from many previous
studies on the forward problem, it is difficult to arrive at those principles in a definitive
way when the optimal control variable and the resulting spatiotemporal evolution of the
liquid film are not known, something which can only be determined by studying the
optimal control as is performed in this study.

While the lack of feedback might pose additional challenges for controlling a highly
nonlinear system, the results shown in Section 7.4.3 show that in the particular case



185

of imperfect fabrication of patterned electrode, it is possible to systematically mitigate
the undesirable effects of imperfect realization of the control variable by designing an
optimal mask with regularization (Section 7.4.2.5), or using time-dependent applied
voltage (Section 7.4.5). Studying the regulation control problem where the deviation
from target shape distributed over the whole duration is taken into consideration, and
the inclusion of feedback will be worthwhile directions for future study.

It is also worth mentioning that the effects of imperfect fabrication of the mask to-
pography explored in Section 7.4.3 might be overestimated, as the ∂2V/∂x2 term is
the Laplace equation governing the electric potential V is neglected under LWA. Rein-
stating such term will smooth out the electric potential along the horizontal direction,
and hence the perturbation to the gradient of Maxwell stress. On the other hand, this
also implies the liquid shaping capability of the original Maxwell stress profile is also
overestimated, and so the sophisticated features seen in certain optimal masks, like the
one in Fig. 7.2(a), are likely less effective in inducing large Maxwell stress in reality. It
would be interesting to see how incorporating higher order correction to the Maxwell
stress Π [130] changes the spatial profile of the control variables.

Finally, it should be pointed out that the cost function J in Eq. (7.2) and the regulariza-
tion in Eq. (7.5) are intended for proof-of-concept demonstration. It might be preferable
to incorporate other measures of deviation which are more suited for the intended func-
tionality or purposes of the target shape. For instance, we may introduce deviation in
the curvature ∇2H instead of the local deviation Hdev(X) in Eq. (7.2) when we want
to fabricate optimal elements like lenses. The current optimal control formalism can
also be generalized to handle different form of the control (where the control variable
does not directly enter through the pressure Π), different boundary conditions (e.g.,
pinned liquid film), or even additional physical effects. One example is in preventing
dielectric breakdown [62] by constraining the maximum electric field strength through
the regularization term.
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C h a p t e r 8

MAIN FINDINGS AND CONCLUDING PERSPECTIVES

This work studies analytically and numerically the use of spatially modulated external
fields to pattern thin liquid films. While spatial modulation results in non-uniform
stationary states which render many analytical analysis difficult to carry out, certain
linear and weakly-nonlinear techniques can still be applied to gain physical insights about
the stress balance and bifurcation in deformation amplitudes. To study the stability
and dynamics of the liquid film outside the linear and weakly-nonlinear regime, two
main approaches are used: linear stability analysis via solving a generalized eigenvalue
problem, and direct numerical simulations of the thin film equation. The majority of
Chapters 5 and 6 focus on the shapes and stability of ridges, and a few findings and
remarks are summarized below:

1. For both EHD and TC patterning, the shapes of the ridges fall into either small or
large deformation regimes which can be explained by a weakly-nonlinear analysis
taking into account the balance of capillarity and the stress due to external fields.

2. In a 1D system, quasi-stable stationary states are achieved by mass limitation
(through the thinning of precursor film), and truly stable stationary states can be
achieved by saturation (through contact with the patterned mask).

3. In a 2D system, breakup of ridges is possible due to fluid flow along the Y direction
which can only be suppressed by saturation.

4. The topography of the patterned mask can have profound influence on the stability
of ridges by altering the stability of the zigzag modes.

5. Certain stationary states predicted to be stable from LSA are not accessible from
a flat film.

In Chapter 7, optimal control techniques are also used to study the inverse problem of
thin film patterning to arrive at the optimal mask topography or voltage profile that can
optimally steer the liquid film toward a desired shape. The proposed optimal control
framework successfully returns appropriate mask topography or voltage profile which
allows the given target shape to be realized through shaping the liquid film over a
wide range of system parameters. The minimum achievable deviation also allows us to
understand the regime where liquid thin film patterning is less effective.



187

One key recurring theme throughout this thesis is the competition and trade-off of
different physical effects. For example, it is found that stable patterns are achieved by
inhibiting fluid flow through the thinning of precursor film or geometric confinement
by the system (i.e., top plate). Large external field strengths are usually required to
sufficiently deform the liquid film into forming protrusions with thin precursor layer or
touching the mask. However, such large field strengths can also lead to premature
breakup of ridges before they reach the stationary states which are predicted to touch
the top and are stable. Thermocapillarity also provides additional shear stress to deform
the liquid film so that smaller feature size are achievable, but the fluid is also more likely
to destabilize along the lateral direction via zigzag modes. Contact between the liquid
film and the mask suppresses further growth of the protrusions or ridges, but may also
results in additional unstable zigzag modes especially when the mask topography are
curved. Finally, in the context of optimal control, small scale features in the control
variables lead to smaller deviation between the final liquid film shape and the target
shape, but also make the control more susceptible to imperfect realization. The results
presented in this work provides not only qualitative but also quantitative understanding
of these trade-offs, which can be used to better guide the design of thin film patterning
systems.

Finally, while this thesis focuses on the patterning of non-conducting thin liquid film with
electrostatic or thermocapillary effects for lithographic applications, the results obtained
may also be applicable to other systems subject to vastly different physical effects. As
an example, in EHD patterning when both the liquid and gas layers are highly electrically
conducting, the system may be reducible to the form of Eq. (2.46) where both normal
and shear stresses due to electrostatics [59] are present. While the functional form of the
dimensionless surface tension gradient is different from the one due to thermocapillary
stress, both possess similar functional form for the numerator and denominator, so the
qualitative findings presented in this work might somewhat generalize to those systems.
Chapter 2.1.3 also discusses different straightforward extensions of the current thin film
model to include more complex physical effects. The generalizability of the results
obtained in this thesis to other systems is a topic for future research.
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A p p e n d i x A

MATHEMATICS PRELIMINARY

A.1 Tensor Calculus
In this section, the conventions of taking the gradient or divergence of a vector or tensor
are given, which follow those adopted in standard textbooks such as [63] and [26]. The
‘del’ operator ∇ is represented in Cartesian coordinates as

∇ = ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3
=
∑

i

êi
∂

∂xi
, (A.1)

where ê1 = êx = x̂, ê2 = êy = ŷ and ê3 = êz = ẑ are the unit vectors in the x1 = x,
x2 = y and x3 = z directions, respectively.

A vector v can be represented in Cartesian coordinates as

v = v1ê1 + v2ê2 + v3ê3 =
3∑
i

viêi, (A.2)

and a tensor T can be represented in Cartesian coordinates as

T =
∑

i

∑
j

Tij êiêj =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 . (A.3)

The gradient of a scalar ϕ is simply

∇ϕ = ∂ϕ

∂x1
ê1 + ∂ϕ

∂x2
ê2 + ∂ϕ

∂x3
ê3 =

∑
i

∂ϕ

∂xi
, (A.4)

while the gradient of a vector v is a tensor given by

∇v =
∑

i

∑
j

∂vj

∂xi
êiêj =



∂v1
∂x1

∂v2
∂x1

∂v3
∂x1

∂v1
∂x2

∂v2
∂x2

∂v3
∂x2

∂v1
∂x3

∂v2
∂x3

∂v3
∂x3


. (A.5)

The divergence of a vector v is a scalar given by
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∇ · v = ∂v1
∂x1

+ ∂v2
∂x2

+ ∂v3
∂x3

=
∑

i

∂vi

∂xi
, (A.6)

while the divergence of a tensor T is a vector given by

∇ · T =
∑

i

∑
j

∂Tij

∂xi
êj . (A.7)

In Einstein notation, the above relations can be written compactly as

∇ϕ = ∂iϕ, ∇v = ∂ivj , ∇ · v = ∂ivi, ∇ · T = ∂iTij . (A.8)

Note that the alternative convention of ∇v = ∂jvi and ∇ · T = ∂jTij are used in some
other sources, including the software Mathematica (version 12.2).

A.2 Stress Tensor
Tij represents the stress in the xj-coordinate direction on a plane perpendicular to the
xi coordinate. For example, Tyx is the force per unit area in the x̂ direction on a plane
perpendicular to the ŷ axis. The stress vector t is defined as the force per unit area on
the surface, and is given by

t(n̂) = n̂ ·
∑

i

∑
j

Tij êiêj = n̂ · T (tj = niTij). (A.9)

The above convention is adopted in [63], [26] and [6]. Note that in some other sources
such as [4] and [35, Chapter 31-6], Tij is defined the other way round, i.e., the i-
component of the force exerted across a plane perpendicular to the êj axis, and the
stress vector is defined as ti = Tijnj .

A.3 Useful Mathematical Relations
A.3.1 Unit normal and tangent
The unit normal vector at a surface defined as z = h(x, y) is given by

n̂ = −∂xh x̂ − ∂yh ŷ + ẑ√
1 + (∂xh)2 + (∂yh)2

=
−∇∥h+ ẑ√
1 + |∇∥h|2

. (A.10)

In 3D, there are infinitely many pairs of unit tangent vectors t̂i for i = x, y satisfying
t̂i · n̂ = 0 and t̂i · t̂j = δij . The following is one particular choice

t̂x = x̂ + ∂xh ẑ√
1 + (∂xh)2 , t̂y = −(∂xh)(∂yh)x̂ + [1 + (∂xh)2]ŷ + ∂yh ẑ√

1 + (∂xh)2
√

1 + (∂xh)2 + (∂yh)2
, (A.11)
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which are obtained by letting t̂x = (a, 0, c) and t̂y = (d, e, f) and solving the five
unknowns with five equations t̂x · n̂ = 0, t̂y · n̂ = 0, t̂x · t̂y = 0, |̂tx| = 1 and |̂ty| = 1.
The relation t̂x · ŷ = 0 is imposed so that the expressions in 3D are consistent with
those in 2D when ∂h/∂y = 0.

With the choice of t̂i given by Eq. (A.11), t̂i · ∇s is given by

t̂x · ∇s = 1√
1 + h2

x

∂

∂x
, (A.12a)

t̂y · ∇s = 1√
(1 + h2

x)(1 + h2
y + h2

x)

[
−hxhy

∂

∂x
+ (1 + h2

x) ∂
∂y

]
. (A.12b)

In 2D, only t̂x · ∇s survives and t̂y · ∇s = 0.

A.3.2 Surface gradient ∇s

The surface gradient ∇s = (I − n̂n̂) · ∇ acting along a surface defined as z = h(x, y)
is given by [26, see Eq. (A.8-18)]

∇s = 1
|∇∥h|2

{[(
1 + h2

y

)
x̂ − hxhyŷ + hxẑ

] ∂
∂x

+
[
−hxhyx̂ +

(
1 + h2

x

)
ŷ + hyẑ

] ∂
∂y

}
,

(A.13)

where hx = ∂h/∂x, hy = ∂h/∂y, and |∇∥h|2 = 1 + h2
x + h2

y. For a 2D system where
h = h(x), ∂h/∂y = 0, and Eq. (A.13) becomes

∇s = x̂ + (∂xh)ẑ
1 + (∂xh)2

∂

∂x
. (A.14)

A.3.3 Curvature
The mean curvature H is defined as [26, see Eq. (A.8-22)]

H = −1
2∇s · n̂. (A.15)

It can be shown (using Mathematica) that ∇s · n̂ = ∇ · n̂ in both 2D and 3D. For a
surface defined by z = h(x, y), H is given by [26, Eq. (A.8-23)]

2H = −∇s · n̂ = −
−hyy(1 + h2

x) + 2hxhyhxy − hxx(1 + h2
y)(

1 + h2
x + h2

y

)3/2 (A.16)

In 2D where z = h(x), Eq. (A.16) is simplified to [26, Eq. (A.8-24)]
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2H = −∇s · n̂ = hxx

(1 + h2
x)3/2 . (A.17)

As an example, the curvature of a cylinder of radius R with the surface defined as
z =

√
R2 − x2 and a sphere with z =

√
R2 − x2 − y2 are given by

H = − 1
2R (cylinder), H = − 1

R
(sphere). (A.18)

Curvature defined using Eq. (A.15) follows the sign convention where H < 0 when êz

points away from the local center of curvature, and H > 0 when êz points toward the
local center of curvature. For a general closed surface, H < 0 when the outward unit
normal n̂ points away from the local center of curvature and vice versa.

A.4 Solution to 1D Laplace Equation
In this section, the general solution to the 1D Laplace equation for a system with
two subdomains is given. Lowercase letters and symbols are used for brevity, and the
scalar field ϕi(x, z) can represent either the electric potential (in EHD patterning) or
temperature (in TC patterning):

∂2ϕi

∂z2 = 0, i = 1, 2, (A.19)

with the following boundary conditions

ϕ1(z = d) = ua, (A.20a)

ϕ2(z = 0) = ub, (A.20b)

ϕ1(z = h) = ϕ2(z = h), (A.20c)

c1
∂ϕ1(z = h)

∂z
= c2

∂ϕ2(z = h)
∂z

, (A.20d)

where ci are scalars representing either the relative electric permittivity εi or the thermal
conductivity k̂i. Using the following trial solutions which already satisfy the first two
boundary conditions

ϕ1(z) = ua + α1(z − d), ϕ2(z) = ub + α2z, (A.21)

we can solve for αi by imposing the last two boundary conditions. The solution is given
by
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α1 = c2(ϕa − ϕb)
c1h+ c2(d− h) , α2 = c1(ϕa − ϕb)

c1h+ c2(d− h) . (A.22)

Note that strictly speaking ϕi only depends on z, though in this thesis we let h = h(x)
and the boundary conditions d = d(x), ua = ua(x) and ub = ub(x) to be all general
functions of x. As a result, the coefficients αi = αi(x) as well as the scalar fields
ϕi = ϕ(x, z) also depend on x through h(x) and the boundary conditions at z = 0 and
z = d.

A.5 Discrete Fourier Transform (DFT)
For a vector H = {H[1], H[2], . . . ,H[N ]} of length N (which may represent for example
the liquid film shape after spatial discretization), its DFT is defined as

DFT{H}[k] =
N∑

j=1
H[j]e−2πi(j−1)(k−1). (A.23)

Eq. (A.23) assumes the vector starts at index 1, and follows convention used in many
scientific software including Python scipy.fft, MATLAB fft and Julia FFTW.jl.
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A p p e n d i x B

SUMMARY OF DERIVATIVES AND INTEGRALS OF Π AND Γ

In this appendix, we summarize the mathematical expressions involving the external
pressure Π and surface tension Γ, including their derivatives and integrals with respect
to different variables.

Specifically, we consider Π and Γ given by the following forms:

ΠEM = Wεr(εr − 1)Ψ2
∆

2 [H + εr(D −H)]2
,

Πvdw = A
[ 1
H3 − 1

(D −H)3

]
,

ΓTC = −M [κHΘcold + (D −H)Θhot]
D + (κ− 1)H

The derivatives of the above variables with respect to film thickness H are shown in
Table B.1; their derivatives with respect to the different process variables (which can
be spatially modulated) are shown in Table B.2; their integrals with respect to H which
give the energy densities are given in Table B.3.

Table B.1: Derivatives with respect to film thickness H. The symbol of Ξ represents
either ΠEM, Πvdw, or ΓTC. The shorthand notation for temperature difference is ∆Θ ≡
Θhot − Θcold.

Ξ = ΠEM Ξ = Πvdw Ξ = ΓTC

∂Ξ
∂H

Wεr(εr − 1)2Ψ2
∆

[H + εr(D −H)]3
−3A

[ 1
H4 − 1

(D −H)4

] MκD∆Θ
[D + (κ− 1)H]2

∂2Ξ
∂H2

3Wεr(εr − 1)3Ψ2
∆

[H + εr(D −H)]4
12A

[ 1
H5 − 1

(D −H)5

] 2MκD(κ− 1)∆Θ
[D + (κ− 1)H]3

∂3Ξ
∂H3

12Wεr(εr − 1)4Ψ2
∆

[H + εr(D −H)]5
−60A

[ 1
H6 − 1

(D −H)6

] 6MκD(κ− 1)2∆Θ
[D + (κ− 1)H]4
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Table B.2: Derivatives with respect to process variable ξ, i.e., ∂Ξ/∂ξ, where Ξ stands
for either ΠEM, Πvdw or ΓTC, and ξ stands for either D, Ψ∆, Θhot or Θcold. The
shorthand notation for temperature difference is ∆Θ ≡ Θhot −Θcold. These expressions
are used in Chapters 5, 6 and 7 for certain results related to spatial modulation and
optimal control.

ξ Ξ = ΠEM Ξ = Πvdw Ξ = ΓTC

D : ∂Ξ
∂D

−Wε2
r(εr − 1)Ψ2

∆
[H + εr(D −H)]3

3A
(D −H)4

−MκH∆Θ
[D + (κ− 1)H]2

Ψ∆ : ∂Ξ
∂Ψ∆

Wεr(εr − 1)Ψ∆

[H + εr(D −H)]2
- -

Θcold : ∂Ξ
∂Θcold

- - −MκH

D + (κ− 1)H

Θhot : ∂Ξ
∂Θhot

- - −M(D −H)
D + (κ− 1)H

Table B.3: The energy density Φ(H) associated with the respective physical effects
given by ΠEM, Πvdw and ΓTC in the energy functional given by Eq. (2.52). Note that
the expression for ΦTC is only applicable for constant separation between mask and
substrate, i.e., D = D0 = const.

ΦEM −W
2

εrΨ2
∆

H + εr(D −H)

Φvdw
A
2

[ 1
H2 + 1

(D −H)2

]

ΦTC −3Mκ

2D0
H log

[
H

1 + (κ− 1)H/D0

]
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