CaltechTHESIS
A Caltech Library Service

On Arithmetic Invariants of Special Families of K3-Type Surfaces

Citation

Can, Tran Thanh Trung (2024) On Arithmetic Invariants of Special Families of K3-Type Surfaces. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/z5mc-g704. https://resolver.caltech.edu/CaltechTHESIS:06022024-205427263

Abstract

This thesis studies applications of Shimura varieties in positive characteristic to questions on arithmetic invariants of special families of K3-type surfaces.

The first main result determines the Newton polygons and Artin invariants of 144 special families of K3-type surfaces. The second is a refinement of a conjecture of Serre for K3 surfaces over number field.

Item Type: Thesis (Dissertation (Ph.D.))
Subject Keywords: Arithmetic geometry
Degree Grantor: California Institute of Technology
Division: Physics, Mathematics and Astronomy
Major Option: Mathematics
Thesis Availability: Public (worldwide access)
Research Advisor(s):
  • Mantovan, Elena
Thesis Committee:
  • Graber, Thomas B. (chair)
  • Flach, Matthias
  • Zhao, Roy
  • Mantovan, Elena
Defense Date: 15 May 2024
Record Number: CaltechTHESIS:06022024-205427263
Persistent URL: https://resolver.caltech.edu/CaltechTHESIS:06022024-205427263
DOI: 10.7907/z5mc-g704
ORCID:
Author ORCID
Can, Tran Thanh Trung 0000-0002-2043-3335
Default Usage Policy: No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code: 16471
Collection: CaltechTHESIS
Deposited By: Tran Thanh Trung Can
Deposited On: 03 Jun 2024 23:48
Last Modified: 12 Jun 2024 22:38

Thesis Files

[img] PDF - Final Version
See Usage Policy.

479kB

Repository Staff Only: item control page