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ABSTRACT

Gene regulatory networks within cells modulate the expression of the genome in
response to signals and changing environmental conditions. Reconstructions of
gene regulatory networks can reveal the information processing and control prin-
ciples used by cells to maintain homeostasis and execute cell-state transitions. In
this thesis, we introduce a computational framework, D-SPIN, that generates quan-
titative models of gene regulatory networks from single-cell mRNA-seq datasets
collected across thousands of distinct perturbation conditions. D-SPIN models the
cell as a collection of interacting gene-expression programs, and constructs a prob-
abilistic model to infer regulatory interactions between gene-expression programs
and external perturbations. Using large Perturb-seq and drug-response datasets,
we demonstrate that D-SPIN models reveal the organization of cellular pathways,
sub-functions of macromolecular complexes, and the logic of cellular regulation of
transcription, translation, metabolism, and protein degradation in response to gene
knockdown perturbations. D-SPIN can also be applied to dissect drug response
mechanisms in heterogeneous cell populations, elucidating how combinations of
immunomodulatory drugs can induce novel cell states through additive recruitment
of gene expression programs. D-SPIN provides a computational framework for
constructing interpretable models of gene-regulatory networks to reveal principles

of cellular information processing and physiological control.
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Chapter 1

INTRODUCTION

The human genome encodes more than 30,000 genes, but a typical human cell
expresses only 5,000 genes at any given time (Consortium* et al., 2022). Gene reg-
ulatory networks within cells modulate gene expression based upon environmental
cues and the cell’s internal state (Bray, 1995; Regev and Shapiro, 2002, 2004;
Davidson, 2010b). In gene regulatory networks, transcription factors and associ-
ated regulatory proteins interact with one another and gene promoters to activate
or repress gene transcription (Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, and
Phillips, 2005; Davidson and Erwin, 2006; Davidson, 2010a). Gene regulatory net-
works play a central role in cellular decision-making processes (Kueh et al., 2013;
Yosef et al., 2013; Sivak and Thomson, 2014; Sokolik et al., 2015). However, we
have a limited understanding of the global logic encoded within gene regulatory

networks and the underlying principles of cellular information processing.

Global reconstruction of gene regulatory networks in E. coli, yeast, and sea urchin
embryos have revealed features of biological information processing, including net-
work modularity, recurring network motifs, and combinatorial logic through the as-
sembly of transcription factor complexes at gene promoters (Monod, 1949; Pardee,
Jacob, and Monod, 1959; T. I. Lee et al., 2002; Milo et al., 2002; Shen-Orr et al.,
2002; G. P. Wagner, Pavlicev, and Cheverud, 2007; Hnisz et al., 2013). However,
our understanding of the information-processing principles of gene regulatory net-
works is based on a limited number of network reconstructions performed on model
organisms over a limited range of physiological conditions. Even in E. coli, a large
fraction of genes have unknown regulators (Ireland et al., 2020). In metazoans, gene
network models have primarily focused on sub-circuits involved in specific processes
like T-cell activation, T-cell fate selection, and embryonic stem cell differentiation
(Kueh et al., 2013; Yosef et al., 2013; Sokolik et al., 2015). The comparative
analysis of gene regulatory network architectures across cell types, developmental
stages of an organism, and species therefore remains nascent, and there are very
few quantitative models of regulatory networks that can predict the response of a
cell to signals, genetic perturbations, or therapeutics. Cells simultaneously regulate
tens of different processes including transcription, metabolism, protein degradation,

and differentiation. How gene regulatory networks globally modulate core cellu-
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lar processes in parallel, in response to environmental conditions, remains poorly

understood.

Historically, gene regulatory network reconstruction and modeling have been con-
strained by the number of biochemical or genetic measurements required to re-
construct networks with hundreds to thousands of interacting protein components.
Classical biochemical approaches, for example, perform bottom-up gene network
reconstructions through pairwise binding measurements requiring order-M? bio-
chemical assays for a network with M components (Harbison et al., 2004; Maerkl
and Quake, 2007). Genetic approaches use a top-down strategy that infers gene reg-
ulatory network architecture from perturbation-response experiments where genes
are knocked down or protein activity is inhibited with small molecules. Perturba-
tion of one network component alters gene expression for subsets of genes; through
the top-down association of perturbations with responses, perturbation approaches
enable the identification of gene regulators, the organization of regulators into path-
ways, and the construction of integrated network models (Ferguson, Sternberg, and
Horvitz, 1987; L. S. Huang and Sternberg, 1995; Yuh, Bolouri, and Davidson, 1998;
Z. Hu, Killion, and Iyer, 2007). For global analysis of gene regulatory networks,
however, perturbation approaches require knocking out hundreds to thousands of
genes while monitoring transcription across thousands of genes. Historically, exper-
imental realization of genome-wide network reconstruction through genetic pertur-
bation has, like biochemistry, been limited by experimental scale when genes were

knocked out in bulk assays.

Developments in single-cell genomics and perturbation barcoding circumvent some
of the conventional limitations of perturbation-driven network reconstruction. Per-
turbation barcoding approaches, including Perturb-seq, click-tags, and MULTI-seq,
allow the transcriptional state of each cell in a cell population to be measured across
thousands of different genetic, signaling, and small molecule conditions (Dixit et
al., 2016; McGinnis et al., 2019; Gehring et al., 2020; Schraivogel et al., 2020;
Replogle et al., 2022). These experimental approaches identify the perturbation de-
livered to every single cell in a population while also measuring changes in the entire
transcriptome through single-cell mRNA-seq. Given that single-cell perturbation
measurements allow interrogation of a cell population’s response to thousands of
genetic, signaling, or small molecule perturbations, a core challenge is develop-
ing computational methods to integrate data from thousands of such experiments

into a gene regulatory network model that can classify perturbations, map the flow
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of information across a regulatory network, and predict cellular response to novel

perturbations.

In this thesis, I will present a mathematical modeling and network inference
framework, D-SPIN (Dimension-reduced Single-cell Perturbation Integration Net-
work), that constructs gene regulatory network models directly from single-cell
perturbation-response data. D-SPIN models the cell as a collection of interact-
ing gene-expression programs and constructs a probabilistic model, known as a
Markov random field or spin network, to infer regulatory interactions between gene-

expression programs and applied perturbations.

In Chapter 2, we develop the framework of D-SPIN from both the theoretical perspec-
tives and computational perspectives. Spin network models originated in statistical
physics and have been generalized and applied to a wide range of systems and appli-
cations through work on maximum entropy methods in physics and on associative
memory of Hopfield networks in machine learning (Jaynes, 1957; Hopfield, 1982).
To enable information integration in large datasets with thousands of conditions and
millions of single cells, D-SPIN exploits a natural factoring within the mathemat-
ical structure of Markov random fields inference to separate the learning problem
into inference of a unified regulatory network and perturbation responses. D-SPIN
can operate on single genes or gene-expression programs, and the program-level
description enables D-SPIN to derive a coarse-grained description of a cellular reg-
ulatory network. D-SPIN can accommodate a wide range of different perturbation
types including genetic perturbations, small molecules, signaling conditions, and

even physiological states of health and disease.

In Chapter 3, we demonstrate the unique advantages of perturbation-based network
inference by benchmarking the network reconstruction accuracies of D-SPIN on
synthetic datasets. In synthetic data, gene expression profiles are simulated from
known regulatory network models with differential equations, and the inferred net-
works are compared with the ground truth network architecture. On hematopoietic
stem cell development networks taken from biological literature (Krumsiek et al.,
2011; Pratapa et al., 2020), D-SPIN achieves state-of-the-art performance on net-
work inference accuracy. Moreover, through formal reasoning on the probabilistic
graphical model generated by D-SPIN, we identify how each network edge con-
tributes to the observed perturbation responses. On large synthetic networks with
up to a thousand nodes with random or modular edge connections, D-SPIN sur-

passes the inference accuracy of existing methods by a large margin. Conceptually,
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we demonstrate that the significant accuracy improvement is enabled by D-SPIN’s

intrinsic ability to incorporate perturbations into a unified network model.

In Chapters 4 and 5, we apply D-SPIN to construct gene regulatory network models
from experimental datasets with thousands of perturbations and millions of cells,
including two of the largest single-cell mRNA-seq datasets in existence: a genome-
wide Perturb-seq experiment on the K562 Chronic Myelogenous Leukemia cell line
(Replogle et al., 2022) and a new human immune cell drug-response experiment col-
lected in the Thomson lab. The integrated regulatory network models reveal global
organizing principles of cellular regulation and perturbation responses, including the
organizing principles of cellular pathways and networks of pathways used to main-
tain homeostasis in K562 cells in response to perturbation of core cellular processes
such as respiration, transcription, and translation. Applied to profile the response of
human immune cells to combinations of immunomodulatory drugs, D-SPIN models
demonstrate that drug combinations can generate novel cell states through additive

recruitment or superposition of drug-specific gene expression programs.

In the final chapter, we summarize and discuss insights derived from our research in
regulatory network models of single-cell perturbation profiling. Broadly, D-SPIN
provides a computational framework for large-scale modeling and comparative anal-
ysis of gene regulatory networks across cell types, physiological conditions, and
organisms. D-SPIN can become a discovery engine for converting the increasing
single-cell atlas datasets into mechanistic models of cellular regulation and pertur-
bation responses to advance our knowledge of principles of cellular function and

guide our control of biological systems.



Chapter 2

INFERRING A UNIFIED REGULATORY NETWORK MODEL
FROM SINGLE-CELL PERTURBATION DATA

2.1 Introduction

In this chapter, we develop mathematical and computational strategies to integrate
data across many different single-cell perturbation experiments into a gene regu-
latory network model that provides qualitative and quantitative insights into the
architecture of cellular pathways and regulatory strategies. D-SPIN solves the gene
regulatory network inference problem by constructing a probabilistic model that
encodes the distribution of transcriptional states within a cell population across a
set of perturbed conditions (Figure 2.1). D-SPIN can be applied to model cell popu-
lations perturbed by inputs including gene knockdown/activation, altered signaling
conditions, and disease states, as well as the treatment of small molecules or other

therapeutics.

Mathematically, D-SPIN builds a spin network model or Markov random field, which
can be interpreted as an interaction network. Spin-network models were initially
introduced in physics to study magnetic materials known as spin glasses, whose
properties emerge through positive and negative interactions between localized
magnetic moments or spins (Jaynes, 1957; Hopfield, 1982; Castellana and Bialek,
2014). In physics and machine learning, spin network models have been generalized
and applied to many different systems of interacting elements, including neural
networks, bird flocks, and proteins (Hopfield, 1982; Schneidman et al., 2006; Bialek
et al., 2012; Santhanam and Wainwright, 2012; Lang et al., 2014; Teschendorft and
Feinberg, 2021), and also to study the storage of memories in spin networks known

as Hopfield networks.

However, the application of spin network models in the single-cell context re-
mains limited due to the absence of an effective statistical inference framework that
can scale to large datasets, incorporate perturbations, and capture the information
contained in the entire cell state distribution measured in single-cell experiments.
D-SPIN exploits a factoring of the spin-network Hamiltonian to develop an efficient
computational procedure for inferring spin-network models from large single-cell

datasets with millions of cells and thousands of perturbation conditions.
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Figure 2.1: D-SPIN constructs unified gene regulatory network models from
single-cell mRNA-seq data collected across perturbation conditions. (A) D-
SPIN accepts as input single-cell mRNA-seq data from a cell population profiled
across a series of different perturbed experimental conditions such as genetic pertur-
bations, drug treatments, signaling conditions, or disease/healthy conditions. (B) To
reduce the dimensionality of the network-inference task and enhance interpretabil-
ity, D-SPIN extracts gene-expression programs from the data using orthogonal
non-negative matrix factorization. D-SPIN is also capable of constructing gene-
level networks with thousands of nodes using pseudolikelihood-based inference.
(C) D-SPIN then constructs a unified regulatory network J, whose edges repre-
sent inferred interactions between gene-expression programs. D-SPIN also infers
interactions between the network and applied perturbations. (D) Mathematically,
D-SPIN constructs the regulatory network model by inferring a probabilistic model
that encodes the probability of each transcriptional state in terms of an interaction
matrix J and sample-specific perturbation response vectors h(™). D-SPIN scales
to large datasets with millions of cells through a parallelized, maximum-likelihood
procedure. At each step of inference, D-SPIN generates model samples for each
perturbation condition in parallel, and then uses the difference between model and
data cross-correlation and mean to update the network weights J and each pertur-
bation response vector h(™.



2.2 Overview of D-SPIN framework

In general, spin network models consider a network of M interacting elements s;.
The goal of the framework is to construct a model that encodes the probability
P(s1,...,sy) of each potential configuration of the network of elements based
upon inferred interactions between elements, as quantified in a coupling matrix
J. In D-SPIN, s; is chosen to be three-state discrete variables in [—1, 0, 1] instead
of two-state variable in [—1,1] as is common in statistical physics. The three-
state representation is chosen to model intermediate levels of gene expression,
which can be functionally relevant for gene regulation and for improved quantitative
agreement between model and experimental cell state distributions (Section 2.3).
Similar discretization methods have been deployed to reduce noise and accommodate
nonlinear dependencies from the pioneering works in modeling gene expression
networks using microarray measurements (Friedman et al., 2000; Pe’er et al., 2001;
Zhou et al., 2019).

D-SPIN can be applied to model networks with thousands of individual genes. We
adopt an optimized inference algorithm for building gene-level networks where we
scale inference to networks that contain thousands of genes using the concept of
pseudolikelihood (Besag, 1974; Ravikumar, Wainwright, and Lafferty, 2010; Au-
rell and Ekeberg, 2012; Nguyen, Zecchina, and Berg, 2017). However, gene-level
networks with thousands of nodes are difficult to interpret. Therefore, in addition to
providing a scalable method for inferring D-SPIN models on individual genes, we
also design D-SPIN to construct reduced- or low-dimensional spin network models
by modeling interactions between gene programs, i.e., co-regulated groups of genes
(Segal, Shapira, et al., 2003; Rogueyv et al., 2008; X. Chen, S. Chen, and Thomson,
2022). Cells regulate their transcriptional state by modulating transcription factors
that impact sets of genes related to differentiation states, cellular pathways, and
core physiological processes. By focusing on gene expression programs, rather than
single genes, D-SPIN generates low-dimensional models of cellular regulation that
are interpretable and can be inferred from data through a computationally efficient
inference procedure. Building upon previously published work, D-SPIN contains
an automatic procedure for identifying co-regulated groups of genes (gene pro-
grams) from single-cell data, based on unsupervised orthogonal nonnegative matrix
factorization (0NMF) and phenotypic gene-program annotation (Figure 2.1 B, Sec-
tion 2.5)(Choi, 2008; Vavasis, 2010; Heimberg et al., 2016; S. Chen et al., 2020),
but can also accommodate pre-defined gene sets from prior biological knowledge
(Section 2.5).
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Following the extraction of gene-expression programs, D-SPIN applies a maximum
likelihood statistical inference procedure to infer a network of regulatory inter-
actions between gene programs and between programs and applied perturbations
(Figure 2.1 C). Regulatory interactions between gene programs are represented in an
interaction matrix J where each entry J;; quantifies the inferred interaction between
program 7 and j. Interactions between the regulatory network and perturbations are
encoded in a set of perturbation response vectors h(™ where hl(") quantifies the

interaction of the perturbation n with gene program :.

Following inference of J and h, D-SPIN models can be analyzed as network models
(undirected graphical models) that reveal regulatory connections between cellular
processes and identify interactions between applied perturbations and cellular gene-
expression programs (Figure 2.2). D-SPIN models can also be used to generate
the distribution of transcriptional states in a cell population under normal and per-
turbed conditions and to explain how interactions within a gene network lead to a
specific distribution of cell states in an experimental population. The models pro-
vide a computational strategy that can bridge geometric, cell clustering approaches
like Uniform Manifold Approximation and Projection (UMAP) with mechanistic
modeling approaches that seek to interpret changes in cell population structure in
terms of underlying regulatory interactions. Geometric embedding approaches like
UMAP, or even principal components analysis (PCA), can help identify shifts in
gene expression distributions within a cell population across conditions; however,
interpretation of such shifts in terms of genes and gene interactions remains a major
challenge (Chari and Pachter, 2023). D-SPIN provides a quantitative framework
that can reveal how perturbations to specific nodes of a network alter the distribu-
tion of transcriptional states in a cell population and, thus, alter the rendering of a
cell population in linear or non-linear embedding methods like PCA and UMAP,

respectively.

Compared with existing methods of regulatory network inference, D-SPIN has three
major advantages. First, D-SPIN integrates information from multiple perturbations
into a unified regulatory network model, significantly improving the network recon-
struction accuracy. Second, D-SPIN is generative and defines a complete proba-
bilistic distribution of all transcriptional states with a set of minimal parameters of
gene (program) interactions and perturbation bias, so that we can perform reasoning
on the network model. Third, D-SPIN is highly scalable with the number of cells

and conditions as the computation time scales linearly with cell number, and its



algebraic structure enables parallelized inference.
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Figure 2.2: D-SPIN yields a probabilistic model that can be interpreted as a
gene regulatory network. The D-SPIN model can be applied to (A) estimate the
distribution of transcriptional states defined by the regulatory network model under
a specific condition, (B) reveal principles of gene regulatory network organization,
including modularity and sub-network architecture, and (C) classify perturbations
into groups that reflect biological function.

2.3 Mathematical formulation of D-SPIN framework

The probabilistic graphical model we used in the formulation of D-SPIN originates
from the Ising model in statistical physics, also called a spin glass, spin network,
or Markov random field in different disciplines. Spin network models were initially
introduced to analyze phase transitions in magnetic materials known as spin glasses.
The spins interact with one another through a set of symmetric couplings and also
with an applied magnetic field which biases spins to point up or down. Following the
development of spin glass models, the maximum entropy formulation of statistical
mechanics revealed that spin network models provide the most general description
of a set of M objects that are interacting through pairwise interactions (Jaynes,
1957; Nguyen, Zecchina, and Berg, 2017).

Specifically, the model defines an energy function E(s) computes the effective
energy of a given transcriptional state s by balancing the influence of the regula-
tory network (encoded in J) and the perturbation-specific inputs (encoded in each
h(™). The discretized state vector s = [s1, 89, - ,8u], 5 € {—1,0,1}, where
M is the number of genes or gene programs. The resulting probability of a given

transcriptional state s is

1
P(s) = 7 exp[—FE(s; J, h™)] 2.1)
E(S; J, h(n)) = — Z Jijsisj - Z hl(n)SZ (22)

Z =3 exp[—E(s;J,h™)], (2.3)
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where I is the energy function and Z is a normalizing constant called partition
function. States with lower energies have higher probabilities; therefore, positive
interactions J;; > 0 promote s; and s; being simultaneously on or off, and negative
interactions promote the two variables being at different states. The bias vectors h;

increase probability of the variable s; being on (h; > 0) or off (h; < 0).

D-SPIN assumes that across perturbation conditions, the interaction network J stays
the same and the bias vector h(™ is modulated by each perturbation condition n to
activate different modes in the network and to produce different cellular transcription
state distributions. We train the model from data by gradient ascent of the log-

likelihood function.

log £(J, h™) Z S log P85 |, ™) (2.4)

n (n)
Ddld

We compute the gradient of the objective function as

610g£ N

) log Z}

8J

Data

N
%3 { B~ Towewl- B} @3)
" st

The first term is the sum s;s; over all experimental samples, and the second term

is a constant, which is the expectation of s;s; of the current model, defined by

the parameters J,h. We normalize the gradient by sample number to improve

numerical stability under a given step size. With similar derivation for 0 log £/0h;,

the gradients of the objective function have the following form.

0 log L 1 .

N Z ( ZSJ Data <Si5j>l(\/k2del) (2.6)
0 log L n .
S = (50 — (5i)ioa 2.7)

where <>](3?m is the average over the data of n-th conditions, and (->1(\?gdel is the expec-

tation on the distribution defined by current model parameters .J, h(™ . Therefore,
the modeling learning is essentially matching the cross-correlation (s;s;) and mean

(s;) between the model and data.

The model has some unique advantages:

1. From a statistical perspective, the spin network is the maximum entropy model

given the mean and pairwise cross-correlation of data (Nguyen, Zecchina, and
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Berg, 2017). Entropy describes how a distribution is “spread out" over all
possible states, and the principle of maximum entropy states that the best
model describing a system is the model that generates data distributions with
the maximum entropy while agreeing with relevant statistics of the data. Such
a model has no extra assumptions about the structure of the system apart from

the measured statistics.

2. From a computational perspective, the inference of the spin network, i.e.,
maximization of the log-likelihood function, is a concave problem where the
only local maximum is the global maximum (Section 2.5). Therefore, op-
timization techniques to avoid traps of local minimums are not necessary.
However, it is worth noting that the optimization is still a difficult NP-hard
problem in the field of computational complexity (Ravikumar, Wainwright,
and Lafferty, 2010), primarily due to the computational complexity of accurate
gradient estimation and large condition numbers from model identifiability
issues (Santhanam and Wainwright, 2012). Inferring the model across pertur-
bation conditions can mitigate these issues, and we computationally evaluated

the curvature of the inference problem in our dataset (Section 2.5).

3. From a physics perspective, the spin network is a Boltzmann distribution
defined by the energy of each state. The model can be connected to the distri-
bution of microscopic state in thermodynamics and dynamics of a microscopic

system under thermal noise (Section 2.5).

2.4 Computational methods for network inference in D-SPIN

Given single-cell gene-expression data collected from a series of perturbation con-
ditions, D-SPIN performs an optimization procedure through gradient ascent to
estimate model parameters J and h(™ (Figure 2.1 D). For spin network models,
the optimization procedure yields a closed-form optimization gradient as in Equa-
tion 2.6 2.7. At each step of model inference, the procedure samples the gradient
from the model for each perturbation condition and computes the update of the

regulatory network .J and each perturbation vector h (™.

In general, spin network model inference for a single condition is a convex optimiza-
tion problem, and we show in the supplementary information that the multi-condition
optimization problem solved by D-SPIN remains convex, so that the D-SPIN opti-
mization has a single unique solution (Section 2.5). As a statistical model, Fisher

information can be applied to quantify the uncertainty of edges in the D-SPIN
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model to guide interpretation and experimental design (Section 2.5) (Jiang, Sivak,
and Thomson, 2019). The D-SPIN inference procedure solves the full maximum
likelihood inference problem associated with spin-network inference. Therefore,
D-SPIN inference is distinct from the conventional Hebbian learning rule devel-
oped to encode memories in Hopfield networks, as applied in a pioneering study to
perform regulatory network inference from bulk microarray data (Hopfield, 1982;
Lang et al., 2014).

Numerically, various computational methods have been proposed to solve the spin
network inference problem (Nguyen, Zecchina, and Berg, 2017), and we adapt
three of the most accurate methods to the context of D-SPIN. Each method has its
advantages and specific niches depending on the problem setting, such as network

size, number of cells, and number of perturbation conditions.

Exact maximum likelihood inference For small networks, the probability distri-
bution P(s|J, h) can be explicitly computed, thus the exact gradient of J, h can
be computed using Equation 2.6 2.7. With the exact gradient, the optimization
problem can be solved using gradient ascent or other optimizers such as Momentum
or Adam (Kingma and Ba, 2014).

As the gradient estimation requires enumerating all possible states, the computa-
tional complexity scales exponentially with the number of nodes. Though exact,
the method is only applicable to small networks of around 10 nodes (3'° ~ 6 x 10*

states).

Markov Chain Monte Carlo (MCMC) maximum likelihood inference As the
gradient only requires computing the mean and cross-correlation of the samples,
we can approximate the complete distribution P(s|J,h) by sampling an empir-
ical distribution. Without evaluating the exact distribution, we can construct a
Markov Chain between states whose stationary distribution is P(s|J, h). Specif-
ically, we utilize the Gibbs sampling scheme. Starting from a random initial state
s = [s1,89,...,5u]|T, at each step we randomly take an index k in the M nodes,
and update the value of s, by its conditional distribution given all other nodes
P(sk|S1,- -y Sk—1,Sk+1,---»Sm, J, h). After a burn-in period of steps to allow the
Markov Chain to equilibrate, the sequence of samples is an empirical distribution
of P(s|J,h) and can be used to estimate the gradient Equation 2.6 2.7.

In each sampling step, computing the marginal distribution is of complexity O(M).
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For accurate cross-correlation estimation, the required number of samples scales as
O(M?), without considering the burn-in period of the MCMC process. Therefore
the overall computational complexity is at least O(M?). The MCMC method applies

to medium-sized networks up to 30 ~ 50 nodes.

Pseudolikelihood method The major challenge involved in scaling inference to
large networks is the partition function Z in the distribution P(s|J,h) which
involves exponentially many terms with the network size M. An alternative ap-
proximation method called pseudolikelihood was developed originally for spa-
tial statistics and adapted to spin network problems (Besag, 1974; Aurell and
Ekeberg, 2012; Nguyen, Zecchina, and Berg, 2017). Rather than performing
inference using the global likelihood function constrained by pairwise correla-
tions, pseudolikelihood methods consider the conditional probability distribution,
P(sg|s1, ..y Sk—1,Sk+1,--.,5n) for a single network component s; given data
about all other network components excluding s;. Parameter inference is performed
by maximizing the logarithm of a pseudolikelihood function, constructed as the
product of M single spin conditional likelihood functions, yielding a regression-
like problem. As an approximation to the likelihood function, pseudolikelihood
methods are computationally efficient and scalable. Model parameters estimated by
pseudolikelihood converge to the ground truth, with error decreasing exponentially
with sample size in theoretical analysis and numerical tests on classic spin network
models from physics (Ravikumar, Wainwright, and Lafferty, 2010; Aurell and Eke-
berg, 2012). Additionally, the framework achieves high accuracy in cases where
networks have strong interactions with local fields, and the number of data points
required to estimate network parameters scales logarithmically with the number
of network nodes (Ravikumar, Wainwright, and Lafferty, 2010). Pseudolikelihood
methods can also be applied to estimate directed interactions (Aurell and Ekeberg,
2012; Nguyen, Zecchina, and Berg, 2017). Pseudolikelihood-based inference meth-
ods enable scaling of D-SPIN to infer gene-level models in gene regulatory networks

with thousands of nodes.

Specifically, we denote s\, = [s1, ..., Sk—1,Sk+1,-- -, Su]|T as the state s except sj.
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The pseudolikelihood function for the inference problem of a single condition is

M
PseudoP(s|J, h) =[] P(sk|s\k,J, h)
k

M exp E(si, 8\, J, h)

1;[ Zre{fl,o,l} exp E(sp =1, S\, J, h)

ﬁ exp(skOk + spJik)

- exp(O + Jik) + 1+ exp(—=Oy + Jix)

(2.8)

where O = hy, + 3>, Jjrs; is the effective field conditioned on all other nodes
8\k. The pseudolikelihood function decouples the mutual dependence between
nodes, thus removing the exponentially complex partition function Z. As a cost,
the pseudolikelihood function in general does not sum to 1, and thus is not a
distribution; this is where the “pseudo" name comes from. The gradient for the log

pseudolikelihood objective function is

a‘CPseudo o a M @ 2J 1 @ 2J
8Jz~j7i¢j - aJZ] Z 5Kk + SkJkk — 108 Z exXp (T E+T k:k)

k re{-1,0,1}

exp(@k + Jk:k) — exp(—@k + Jk:k)

= 28;8; — 2.9
I ke%;j} exp(Of + Jik) + 1 + exp(—Ox + Jix) 29)

0 Lpseudo 9 exp(O + Jik) + exp(—Oy, + Jik)
= 5% — 2.10
8J“ Sz g exp(@k + Jkk) + 1 + exp(—@k + Jkk) ( )
a»C'Pseudo eXp(@k + Jkk’) - exp(_@k + Jkk) (2 11)

8h, - kZ:Z exp(@k + Jkk) + 1+ exp(—@k + Jkk) '

The computational complexity of the gradient computation scales with O(M?).
Also, note that the effective field ©, depends on each cell state s, so the gradient
computational scales with the total number of cells. Practically, the pseudolikelihood
method is highly scalable and even applies to networks of thousands of nodes. The
approximation of pseudolikelihood is more accurate when the number of samples is
high. However, typically the number of observed samples is far lower than the total
number of possible states (3*). Therefore exact maximum likelihood and MCMC

maximum likelihood are preferred when they are computationally feasible.

Furthermore, the form of pseudolikelihood is closely related to regression models,
enabling assigning directionality to the inferred network. The distribution of a single
node conditioned on all other nodes

exp(sk@k + S%Jkk)

P J,h) =
(skls\k, J, ) exp(Or + Jik) + 1 + exp(—Ox + Jix)

(2.12)
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can be interpreted as a regression problem, where we predict the state of the de-
pendent variable s, with other variables are predictors. The interactions J;; are
the coefficients of the regression problem. If gene A predicts gene B better than
B predicts A, this suggests a regulation direction of A to B. To compute the direc-
tional network, the gradient estimation Equation 2.9 can be simply replaced with an

asymmetric version of

OLpseudo Z exp (O + Jrx) — exp(—Oy + Jui)

2.13
OJijizj — exp(Ok + Jur) + 1+ exp(—0y, + Ji) (2.13)

Even though D-SPIN is capable of inferring a directed network, we focus our
analysis on undirected networks because directed networks cannot define a stationary
distribution on the data when time information is not supplied. In the context
of probabilistic graphical models, directed models are always constrained to be
acyclic, i.e., with no cycle. Such a constraint is reasonable in the field of causal
inference, where the circularity of causal relations is rare. However, in cellular
regulatory networks, feedback loops are prevalent to maintain homeostasis or signal
amplification. For example, regulatory network models of hematopoietic stem cell
differentiation contain several loops, such as Pul-Gatal-Gata2-Pul (Krumsiek et
al., 2011).

The acyclic constraint of directed probabilistic graphical models is fundamental, as
cycles in the conditional dependence between variables will produce inconsistent
distributions. As mentioned in the seminal work of Judea Pearl on causal infer-
ence (Pearl, 1987, 2022), even three cyclic dependent variables "will normally lead
to inconsistencies"”, and the acyclic constraint can ensure consistency of the distribu-
tions. Constructing distributions on even two mutually dependent variables requires
nontrivial constraints (Arnold and Press, 1989). Another approach to include direc-
tionality in regulatory network models is including explicit time dependence, which
also has limited application due to the lack of experimental approaches to measure
dynamical evolution of transcriptome profiles. Therefore, in the context of proba-
bilistic models of regulatory networks, undirected networks are a more appropriate

choice.

Parallelization of the inference
The form of the spin network model learning rules enables us to develop a highly
efficient and scalable training algorithm for D-SPIN by exploiting intrinsic paral-

lelization. Training of general graphical models requires estimating the gradient
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function for every data point separately, which is typically computationally exten-
sive. In contrast, in D-SPIN the gradient is pooled for each experimental condition,
and only depends on the mean (s;) and cross-correlation (s;s;) between gene pro-
grams in each condition. Consequently, the training of the network can be deployed
in parallel, with each computational thread computing the gradient based on the
mean and cross-correlation of a single experimental condition. This approach elim-
inates the need to estimate gradients on every data point separately (i.e., every cell’s
transcriptional state) and minimizes data communication cost by only requiring the
mean and cross-correlation to be exchanged during parallelization. Therefore, we
routinely use hundreds of CPU cores for the optimization, enabling efficient network
inference over large datasets. Practically, to avoid overfitting on a large number of
similar conditions, we estimate the network using a subset of experimental condi-
tions with balanced samples from different phenomenological condition groups and
utilize the inferred network to identify response vectors of each condition indepen-

dently.

Regularization of the inference

In statistical inference, it is common to leverage prior knowledge about the potential
form of the solution, a process known as regularization. Regularization nudges the
solution towards a preferred direction, which can also be interpreted as assigning a
prior distribution of the model parameters in the framework of Bayesian inference.
For example, ¢, (Lasso) regularization promotes sparsity of the solution, while ¢

(Ridge) regularization promotes solutions with smaller magnitudes.

Specifically in the D-SPIN framework, we sometimes have prior knowledge of per-
turbation action from the experimental design. For example, in single-cell profiling
of gene knockdown or activation, the response vector relative to control should have
a strong inhibition/activation at the target gene. Suppose we have an estimation
of the relative action of all the perturbations as h{™. Then we can infer shared
unperturbed single gene (program) activity h, and penalize the difference between

h(™) — hy and h(™ by ¢, norm. In this case, the objective function becomes

N N
log L(J,h™) =373 log P(s5|J, h™ ko) = A3 (R — hy — h™M)?,
n _(n) n

SData

(2.14)

where A is the strength of the regularization, representing the uncertainty of the

prior knowledge of the relative response estimation. For this objective function, the
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gradient of J stays the same and

olog 1 & " "

8h0 - N Z (<Si>]()a)ta - <5i>1(\/1(3del) (2.15)
Olog L n " . .

ey = (5006 — (5o = 2A(R = o — h{") 2.16)

2.5 Supplementary information

Key assumptions of D-SPIN

The D-SPIN framework is constructed based on the maximum entropy principle,
which selects the model that has the highest entropy while satisfying all the con-
straints of the system (Jaynes, 1957). Several key assumptions underpin the current
form of the model, and we discuss these assumptions, along with their biological

rationale and limitations.

A unified regulatory network under perturbations The core concept of D-SPIN
is that all different perturbation responses, or more generally, the single-cell data of
the same biological system collected under various conditions — such as including
signaling environment, genetic perturbations, drug treatments, and healthy/disease
conditions — share the same underlying regulatory network architecture, The pertur-
bations are presumed to only alter the activities of individual genes or gene programs
within the network, without changing the regulatory relationship between them. In
typical biological contexts of single-cell perturbation profiling such as genetic per-
turbations and drug treatments, this assumption is valid because these perturbations
target individual elements of the regulatory network by increasing/decreasing their
abundance or altering the molecular configuration for increased/decreased activities.

However, this assumption should be treated with care in scenarios where the changes
in cell state distributions are not induced by altered activities, but by changed
regulations. One specific example is the developmental processes, where epigenetic
changes are constantly reshaping the interactions in the system. This dynamic nature
of the regulatory network would require further detailed models of the network
change such as sparse modification on a core network, or a dynamic model that

evolves with time.

Discretizing gene and program expression levels The major reason for discretiz-
ing gene or gene program expression level is that the maximum entropy models for

continuous variables are Gaussian distributions, which only allow the existence of
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a single cell state. Mathematically, the probability density function of a Gaussian
distribution is a convex function, that for any two cell states s; and s-, their average
(s1 + s2)/2 is at least as probable as the two single cell states. However, in an im-
mune cell population, for example, the expression average of a T-cell and a myeloid

cell would not be a valid cell state.

There are a few potential choices of discretizing the expression level I: the number of
discretized states m and the choice between {—|m/2|, —|m/2] +1,...,|m/2] —
1, m/2]} or {0,1,...,m}. We choose to discretize ! into three states {—1,0,1}

due to the following reasons:

1. Larger m increases computational complexity, and makes the model closer to
a Gaussian distribution that has a single probability density maximum as we

discussed.

2. We find that m = 2 is insufficient to characterize phenomena in our drug
profiling experiments. We observed different levels of program activation
instead of on-and-off switching. For example, both glucocorticoid drugs
and immune inhibitors activate the program P22 M2 macrophage, but with

different expression levels.

3. The choice {—1,0, 1} is preferable because the self-interactions term .J;; has
more clear biological interpretations. Considering a single program only,
self-activation J;; > 0 is similar to a bi-stable switch produced by nonlinear
activation, where —1 and 1 states are preferable. Similarly, self-inhibition

Jii < 0 1s similar to negative feedback where the 0 state is preferable.

4. On the network inference benchmarking on synthetic networks, there is no
significant difference between the choice of {—1,0, 1} and {0, 1, 2}.

Partitioning genes into programs To reduce dimensionality, we group co-expressed
genes into programs to reduce computational complexity and enhance interoperabil-
ity. In the gene program discovery step, D-SPIN requires that gene programs be
non-overlapping subsets of genes. This constraint prevents confounding interac-
tions in the network, which could arise if genes were shared between programs.
For example, if gene A is shared between program X and Y, a positive interaction
identified between X and Y might merely reflect the influence of gene A in both

programs.
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In regulatory networks, key regulators such as transcription factors often play mul-
tiple roles in different pathways so the non-overlapping assumption might be unsuit-
able. However, the expression levels of these key regulators are typically lower than
their downstream effect genes. As the gene program discovery aims to reconstruct
the gene expression matrix with the reduced dimensionality, major gene components
in each program are generally composed of these downstream genes with highly spe-
cific physiological functions, therefore the non-overlapping partition remains valid.
To further explore the interactions between the key regulators with lower expres-
sion levels, it is recommended to construct single-gene level network models with
the scalable inference algorithm we provided. This approach discovered detailed
interactions between these regulators, complementing the global insights from the

program-level analysis.

General data processing pipelines

The D-SPIN framework utilizes single-cell transcriptional profiling data from mul-
tiple conditions to construct a regulatory network model based on the gene programs
identified, and the impacts of each perturbation to the network on the program level.
The framework consists of three stages: gene program discovery, regulatory network

model inference, and network analysis.

D-SPIN is compatible with different methods for gene program extraction, such as
unsupervised matrix decomposition, differential expression, gene set enrichment,
and manual curation. Users can also pre-assign a set of interesting single genes or
gene programs and let D-SPIN partition the remaining genes into gene programs.
For each gene program (set of genes {g;}), the expression level [ is determined by
the weighted average of genes in the set that best approximates the expression of
all genes in the set (Section 2.5). In our analysis, we use orthogonal non-negative

matrix factorization (0NMF) to partition genes into gene programs (Section 2.5).

For the regulatory network inference step, D-SPIN applies a discretized spin-network
modeling framework originating from statistical physics. The discretization can ac-
count for multiple different gene expression states while being resistant to counting
noise in single-cell data. Further, discretization naturally generates multiple sta-
ble states and accommodates multiple cell types within a population and with a
minimal interaction model, which can be interpreted as the steady state of a re-
action system with nonlinear activations (Section 2.5). The number of possible

states can be increased in a controlled way by changing the number of discretiza-
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tions. The original Ising model from statistical physics uses two discretized states
{—1,1}, while we elected to use three discretized states {—1,0, 1} for both better
interpretation and improved quantitative agreement between model and empirical
cell state distribution by including two different levels of gene program expression
(Section 2.3). In D-SPIN, each cell is represented as a state vector of gene programs
8 = [s1,80,- - ,8m],8 € {—1,0,1}*. Thus, D-SPIN serves as a probabilistic
graphical model of the observed distribution of cell states that can be interpreted as

a regulatory network.

D-SPIN’s improved network inference accuracy is achieved by integrating informa-
tion across multiple conditions, so as to capture different modes of the underlying
regulatory network. If a large proportion of experimental conditions have very
similar cell state distributions, the network inference would be biased towards such
dominating conditions. In such cases, we recommend only including a subset of
conditions that have different cell state distributions from each other to balance the

conditions used for inference.

The regulatory network and response vectors inferred by D-SPIN can help define
underlying principles of gene regulatory networks and identify classes of pertur-
bations based on response signatures. From the network perspective, biological
networks commonly exhibit a modular organization where the network contains a
set of strongly interacting subnetworks, each of which is associated with a spe-
cific biological function. We analyze D-SPIN regulatory networks with Leiden
community detection to identify modular subnetworks. Further, D-SPIN defines a
probabilistic distribution of cell states only through the pairwise interaction between
genes or gene programs, providing an interpretable framework for reasoning how
cell states are constructed by these interactions, for example, the contribution of

each network interaction to observed perturbation impacts.

From the perturbation perspective, the response vectors provide compact represen-
tations of the impact of perturbations on the network, enabling the clustering and
visualization of perturbation responses across multiple experimental batches with a
simple batch effect correction scheme. Due to the linear form of h in the model,
subtracting the response vector of the control sample calculates the up or downregu-
lation of each gene program relative to the control. As the response vectors quantify
the interactions between perturbations and the network that define the perturbation
responses, joint graph clustering of network and perturbations can be applied to

understand global perturbation action patterns and response strategies in the context
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of the regulatory network.

Proof of convexity of the inference problem

We prove the multi-condition/multi-h inference problem by D-SPIN is a convex
optimization problem. Specifically, the log-likelihood objective function is concave.
Therefore the only local optimum is the global optimum, and the solution to the

optimization problem is unique.

For a single condition, D-SPIN formulation is the same as the inverse Ising problem,
whose log-likelihood function is concave, and strictly concave if all coupling and
fields are finite. We follow the proof from a review (Nguyen, Zecchina, and Berg,
2017). We denote A = {J, h}, and Qx(s) = {s;s;, s;} for the model parameters

and the log-likelihood can be written as
log £=> MQr —log Z(N). (2.17)
k

The second derivative of the log-likelihood function follows

_ PlogL  Plogyaexpiy M@k 0 X, Qiexp X M@y

8)\1)\] N a)\’L)\j B a)\] Zs eXp Zk )‘ka
L Ds QiQexp Xy M@ (s Qi exp 3y AkQi) (X5 @ exp g ArCr)
s exp Tp MeQr (Zs exp X MQi)”
=(QiQ;) — (Q:)(Q;) - (2.18)
52

The negative matrix of second derivatives [/ = log L is positive semidefinite

T a2
because for any vector x,

2
o He = T((QQ) - Q)@ = { | Tenr - mau) ) >o.
ij k
(2.19)
Further, the matrix is positive definite if no observable (), has vanishing fluctuations,
which holds when all the couplings and fields are finite. Therefore the log-likelihood
function is strictly concave with finite couplings and fields, and the maximum

likelihood estimation is a convex optimization problem.

For the formulation of D-SPIN of multiple conditions, we prove the case with two
conditions and the proof of more conditions naturally follows. We start with proving

a lemma:

Lemma: Let Al, A2, B1, B2,C'1,C2 be matrices such that the block matrices

Al Bl A2 B2 .. . .
are both positive (semi)definite. Then the block
B1T (1 B27
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matrix
Al +A2 Bl B2

B1T cl1 0 (2.20)
B2t 0 C2

is also positive (semi)definite.

1A

Proof: For any test vector «, we denote * = |x,|, where each component is
€T3

compatible with the shape of A; + Az, C and Cs, then we have

Al+ A2 Bl B?2]
xT B1T Cl 0| x
B2T 0 (2

=] (A1 + As)xy + 22 Bixy + 2] Boxs + x5 Crxs + 3 Coxs
e ]T[a1 B !
i)

B1T C1
as both matrices are positive (semi)definite.

A2 B2
B2 (2

1A A U

+ (>)>0 (21

T2

€T3 T3

Similarly, we denote the parameter set A = {J, h(!) h(®'}, and the log-likelihood
function of the two conditions are log £V, log £(?), and the second order derivative

of the objective function follows

dlog £(1) dlog £  dlog M) dlog £

0Jidj 9JiJ; osnsY  on
O(log LY +log L?) dlog LT dlog LV 0
a>\1)\j v
dlog LT 0 dlog £
oJ;n'? Ohih;

which is the rearrangement of the block matrices of the second-order derivative of

the inverse Ising problem.

According to the lemma, the negative of the second-order derivative matrix is
positive semidefinite, and positive definite if all couplings and fields are finite.
This concludes our proof that the formulation of D-SPIN is a convex optimization

problem.

Quantification of the inference uncertainty
Even though the optimization problem of D-SPIN inference has a unique solution,

there is a possibility that there are other sub-optimal solutions that are distinct from
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the true solution but have similar values of the objective function. These alterna-
tive solutions are phenomenologically referred as “flat valleys" of the optimization
landscape, or “sloppy directions" of models. This flatness is quantified by Fisher
information, which is a metric describing the curvature in the space of a parametric
family of probability distributions. Large Fisher information indicates that small
changes in the model parameter cause great changes in the distribution, while small
Fisher information indicates that the distribution is insensitive to the parameter

changes.

The Fisher information and uncertainty of the inference are connected by the Cramér-
Rao bound, that for any unbiased estimator, the variance is lower bounded by the
inverse of the Fisher information. Specifically, the bound is achieved by efficient
estimators, and the maximum likelihood estimator is asymptotically efficient. There-
fore, estimating the Fisher information matrix of the inference problem provides an

estimation of the variance of the inferred network.

Specifically, using the same notation A = {J, h}, and Qi(s) = {s;s;, s;} as the
previous section the Fisher information matrix of a single condition can be computed

by definition

TO) =~ | 3310w PN | = B | 5 (Z 0 - lox 200 )
= (QiQr) — (Qi)(Qr) , (2.23)

which has exactly the same form as Equation 2.18 as the first linear term >_;, A\, Qs
vanishes under second order derivative. The bracket (-) is average over P(s|J, h),
which is not directly available but can be estimated by the empirical distribution

defined by samples. In practice, the Fisher information of a specific condition is

estimated by
Z(Jij, Jri) = (8i5jSkS1)pata — (5iS;)Data{SkS1) Data (2.24)
I<sz7 hk) = <8i3j5k>Data - <3i3j>Data<3k>Data (225)
I(hzv hk) = <5i3k>Data - <Si>Data<5k>Data7 (226)

where the bracket (-)p,, is average over all states in the data.

In the case of multiple samples, the overall Fisher information of the Fisher infor-

mation has a similar form as Equation 2.22. We also only write for two conditions
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for simplicity of notation.
(1) (2) (1) (2)
L5 T X I(J),h) L(5.m)
1
: Ip 0 (2.27)

As we have proved Z is positive definite when all couplings and fields are finite,

73,5y and Z(p, p) are all invertible. According to the Schur complement of the block

A
matrix M = , we have
A B| (M\C)! —(M\C)'BC! 2.28)
BT ¢| |-C'BT(M\C)™' C'4C'BY(M\C)'BCT| T T

where M\C' := A— BC~! BT is the Schur complement. Therefore the Cramér-Rao
bound of the network estimation for N conditions is

-1

N
— _ (n) (n) () +(n)
I(Jl,J) = [Z Chn (I(J,J) - I(J,h)I(h,h)I(J,II))] ; (2.29)

where C,, is the number of cells in the n-th condition. Specifically for each network
edge J;;, the diagonal term of the Cramér-Rao bound I(_Jjj i) quantifies the variance

of the inference uncertainty of the specific edge.

The inverse of Fisher information Z(}l ) is the covariance matrix of the inferred
network. Further, according to the Bernstein-von Mises theorem, the posterior

distribution of the inferred network will converge to a normal distribution
P(I{s}Y, ... {s}™) = N(Jo, I(4 ) (2.30)

where J) is the result of inference. Therefore, we can sample from the posterior for

alternative networks to validate the robustness of the inferred regulatory network.

Correspondence between D-SPIN and biochemical reaction systems

D-SPIN is closely connected to dynamical models of biochemical reactions as an
approximation of the steady state of a chemical reaction system with saturating non-
linear activation functions. For a biochemical reaction system with state = € RM,

the general dynamics can be written as



25

where p(X;,t) are the reactions and o (X, t) dW, is the stochastic noise. If the
stochastic noise can be assumed a constant o, then the state distribution P () follows
the Fokker-Planck equation
JP(x,t) N NY 9 o?
— = t)P(x,1)] P t 2.32
ot Z e PO+ 2. 2 5o |2 P D] 23D

i=1 i=1j5=1

Specifically, if the reaction term can be written as the derivative of a potential
function p;(x) = —0V (x)/0x;, the equation has a Boltzmann distribution as the
steady state solution for OP(x,t)/0t =0

1 —2V (x)

P(x) = — exp

7D (2.33)

where Z is the normalization constant. A typical example is a linear expansion near

the stable point of a dynamical system, where

0
j i i
This solution is a Gaussian distribution near the stable point (Sokolik et al., 2015;
S. Chen et al., 2020). Such models only have a single minimum in the convex
potential function, and are therefore not suitable for characterizing cell populations

with various stable cell types and cell states.

The potential function, i.e., energy function Equation 2.2 in D-SPIN, is in a sim-
ilar form to the Gaussian distribution as a second-order polynomial of variables.
However, the energy in D-SPIN is a function of discretized state variables, which
can be viewed as the discrete limit of composing the continuous state x; with a
saturating activation function s; = ¢(x;), for example, sigmoid function for a two-
state model. Given the potential function, the reaction term in the corresponding

dynamical model is

wi(x) = Z JijSis; — Zhisi) (2.35)

8@ r

= (x:) (O Jiyd(;) + i) (2.36)

The first term ¢(z;)" is the derivative of the activation function, which can be
approximated by a constant in the transition regime of the activation function, and
close to O at the saturating regime of the activation function. The corresponding

interpretation is that during the transition between states, the regulation received



26

by component ¢ is a linear function of the activation ¢(z;) of all other components
7. The nonlinearity is conceptually similar to the Hill function used in models of
genetic circuits and allows the existence of multiple stable states controlled by the

regulatory networks in the cell.

Gene program discovery by oNMF

We use orthogonal nonnegative matrix factorization (0NMF) for gene program
discovery because oNMF generates a set of programs that are mathematically con-
strained to provide a high-accuracy representation of transcriptional states in the
data but with no overlap between gene programs. Compared to typical matrix fac-
torization methods like PCA, oNMF applies two constraints to the gene programs:
non-negative weights and orthogonality. We used oNMF based on the following

considerations:

1. Linearity: To ensure the interpretability of the model, each gene program is a

linear combination of single genes

2. Non-negativity: The non-negative constraint avoids the ambiguity of inter-
preting negative weights, ensuring the programs are a set of co-expressed
genes. Specifically in the context of regulatory network models, negative
components in methods like PCA would complicate the interpretation of ac-

tivation and inhibition interaction between gene programs.

3. Orthogonality: The orthogonality constraint makes it easier to interpret
the data and aids model construction by forcing representations to be non-
overlapping. Each gene program can be interpreted as a set of biological
functions and each cell is represented by a collection of biological function
activities. Without orthogonality, each cell is likely to be represented by a
single program containing all genes expressed by the same cell type. Fur-
ther, in the context of D-SPIN, shared genes between gene programs would
cause confounding interactions between the programs. Therefore each gene

program should be completely independent: in other words, orthogonal.

The formulation of oONMF is, given a non-negative gene matrix X € Rn-celxn_gene

and a program number K, oNMF solves the following optimization problem.
.« . . - 2
minimize X —WH|% (2.37)

subjectto HHT =1, W;; >0, H;; >0
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where H € RE*n-gn¢ jg the gene program representation, W € R™-*K g the
cell state represented on the gene programs and || - ||% is the matrix Frobenius
norm. We implemented the iterative algorithm proposed in this study (Choi, 2008),
with W and H randomly initialized by uniform distribution on [0, 1]. The random
initialization of H is orthogonalized using singular value decomposition (SVD)
and takes absolute value before the start of iteration; we use 500 iterations in the

computation by default.

According to the mathematical formulation of oNMF, the influence of each gene
and cell state on the objective function is determined by the norm of the reconstruc-
tion error. To improve the discovery of gene programs, we utilized the following

strategies to balance the contributions from each gene and cell state:

1. CV-based gene filtering.
We noted that genes with high expression levels tended to have greater variance
than typically expected under Poisson distribution coefficient-of-variation
(CV) filtering. Consequently, these genes often encode proteins involved
in multiple housekeeping programs in the oONMF. Using a zero-inflated Pois-
son distribution for CV filtering, we accounted for the higher variance induced
by dropouts, enabling better gene selection. We also removed genes that are
expressed in a tiny fraction of cells in gene filtering, as genes with close to 0

expressions are not informative and risk introducing extra noise.

2. Gene normalization by standard deviation.
Genes with high variance contribute more to the reconstruction error and
can thus dominate the oONMF gene program discovery. To mitigate this, we
divided the expression of each gene by its standard deviation across cells,
ensuring that each gene contributed equally. The expression of genes with
only a few non-zero entries may be disproportionately large after the scaling.
Ideally, such genes should be filtered out during gene filtering, but they can
also be removed by setting a cap of the scaling factor, for example, no more

than 5 times increase.

3. Cell-state balancing by cell clusters.
The gene program discovery will be dominated by reconstructing a specific
cell state if that state constitutes a large proportion of the cell population. To
address this, we used class-balance strategies frequently applied in machine

learning practices. Specifically, we balanced different cell states by sub-
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sampling cells based on cell clusters obtained by clustering or gene markers.
We employed two different schemes: (1) Equal-sample balancing: to identify
gene programs that are only expressed in a small fraction of the cell population,
we sampled an equal number of cells from each cell cluster. (2) Square-
root balancing: in machine learning, we found that taking samples from
each data category proportional to the square root of the category size was
effective (Mikolov et al., 2013). Similarly, we took samples from each cell

cluster proportional to the square root of the cell number in that cluster.

The exact solution of non-negative matrix factorization is an NP-hard problem
(Vavasis, 2010). But there are heuristic approximations of oNMF by iterative
matrix update, and the solution varies with random initialization. Therefore, we
run oNMF with different random seeds and compute a consensus gene program
decomposition. For example, we take each row of H across different random seed
repeats, and perform K-means clustering to compute the consensus composition of
each gene program. The gene programs can be annotated with a combination of
bioinformatics databases including DAVID, Enrichr, and String-db (Kuleshov et al.,
2016; Szklarczyk et al., 2021; Sherman et al., 2022), and also manual lookup.

Evaluating gene program expression and discretization

A gene program is defined as a set of genes that co-express across the conditions in
single-cell transcriptional profiling. Gene programs can either be identified through
unsupervised learning techniques, such as oONMF (Section 2.5), or prior biological
knowledge. In the D-SPIN framework, the expression level of gene program k of
cell ¢ is described by the variable S;; € {—1,0,1}. To transform the expression
matrix of genes in the program into the discretized value for each cell, two steps are
performed consecutively: computing a continuous weighted average of expression

level L;i, and discretizing into three levels.

Weighted average To reduce noise and to synthesize the expression of all genes
in the program, the continuous expression level across all cells I, = L. ; should be a
weighted average of genes in the program. Denote the gene matrix as (7, the index of
genes in program k as {g®)} (which is the index of nonzero elements in k-th row of
H in the context of oONMF), the gene expression of cell ¢ on the program is G; ¢/}

The optimal weight w, ) and the expression level L, that best characterize the gene
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expression as the solution to the optimization problem

min Y Y (Gigywy — Wy Lix)? (2.38)

w (k) Lik TS
which is summing over the error of reconstructing the gene expression with I, and
weight w ) of every gene in the program. This is essentially a 1-component non-
negative matrix factorization (NMF) problem and has mature implementations in

Python scikit-learn packages.

Discretization Various methods have been empirically used to partition continu-
ous expression into discrete levels, such as using percentiles or standard deviations.
Discretization with K-means was found to perform well (Pe’er et al., 2001) and
have a clear interpretation of minimizing the variance inside each expression level
category. The 3-state K-means minimize the following objective function for each

gene program k across all cells indexed by ¢

Hgl.in Z Z ||L1k - Mean{Lik|Sik = ’I“}H2
o re{-1,0,1} Six=r

re{-1,0,1}
which is assigning —1, 0, 1 to each of \S;; so to minimize the variance of L;; inside
each group of cells classified by S;;. The K-means clustering also has mature

implementations in Python scikit-learn packages.

Selection of gene program number in oONMF

The selection of the number of gene programs is a trade-off between model ex-
pressive power, computational complexity, and model interpretability. The optimal
choice of program number typically hinges on the specific requirements of the appli-
cation scenario. In the context of single-cell transcriptional profiling, the number of
gene programs is typically set to 10 ~ 40, depending on the desired resolution of the
gene matrix decomposition. To aid in this decision, various model selection criteria
have been proposed to facilitate this choice, among which the Bayesian information

criterion (BIC) and elbow method are widely used examples.

BIC is derived from maximizing the model evidence P(Data|Model), where a
penalty factor of the model dimension arises when integrating the parameter prior
distribution over the whole parameter space (Hastie et al., 2009). Specifically, BIC

1s defined by maximized model log-likelihood £ with a linear penalty term of model
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dimension.
BIC = klogn — 2log £, (2.40)

where £ is the model dimension and n is the number of samples. Models with lower

BIC are more preferred.

As oNMF is not a probabilistic model by definition, BIC is not directly applicable.
However, we can model the residue of the gene expression matrix after the oONMF
fitting. In general, if the model error can be described as independent and identically

distributed normal distribution variables,

R nooq (z; — &) L (g — )
og ogl?[ N exp 952 nlogo —nlog v2m + % 552 ,
(2.41)

where z; and Z; are data and model fitting, o is the standard deviation of the
error. As o for a model is generally unknown and estimated from data, we have
o? = Y"(z; — 2;)?/n. Therefore the BIC is

BIC = klogn — nlogo® + C = klogn — nlog(RSS/n) + C, (2.42)

where C'is a constant independent of model choice and RSS = > (z — ) is the
residual sum of squares. Motivated by this form, in oONMF we can use the matrix
Frobenius norm of the fitting residual as R.S'S, number of cells as n, and number of

programs as k to compute BIC to help to decide the number of gene programs.

Aside from statistical criteria like the BIC, the elbow method provides a heuristic
approach to estimate the number of gene programs required in the oNMF. This
method involves plotting a relevant cost function or objective function against the
number of gene programs and looking for a point in the plot where the rate of

changes drastically alters, resembling an “elbow".

Gene matrices of single-cell profiling are known to be especially noisy; therefore
traditional metrics such as model-explained variance may not be effective in re-
vealing the elbow point. Instead, we use the number of genes that significantly
correlate with corresponding gene programs as a more robust objective function.
To consider the effect of noise, we can evaluate the pairwise gene-gene correlation
as a reference distribution, which has a standard deviation in the order of 0.05 in
our datasets. The correlation threshold between genes and programs can be set as
30 or 40 of the gene-gene correlations. Additionally, various methods (including
MAGIC) have been proposed to denoise the gene expression matrix (Van Dijk et al.,

2018). After denoising, both gene-gene correlation and gene-program correlation
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drastically increase, allowing us to use a high correlation threshold, such as 0.5.
These refined approaches would facilitate the decision of gene program numbers in
D-SPIN.
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Chapter 3

BENCHMARKING AND ANALYZING THE INFERRED
REGULATORY NETWORKS

3.1 Introduction

The regulatory networks are vital in theoretical biology, as they dictate plausi-
ble cell states and provide system-level explanations of information processing in
cellular functions. The advancement of single-cell technologies provides unique
opportunities to decode the regulatory network by depicting the cell states and their
transitions with unprecedented resolution and data richness including differentiation,
signal response, and disease progression. Multiplexed screening enables massive
perturbation profiling at the single-cell level, including the knockdown of every sin-
gle gene and activation of every transcriptional factor (Dixit et al., 2016; McGinnis
et al., 2019; Replogle et al., 2022; Joung et al., 2023). As single-cell technologies
advance, there is an increasing need for modeling frameworks to convert atlas-
type databases into insights into the regulatory mechanisms of cellular functions.
Nonetheless, current analyses are often limited to associating each perturbation with
specific phenotypes and classifying perturbation. The critical challenge is to decode
the regulatory network controlling these responses from thousands of perturbations

and millions of cells.

From the early development of genomics with microarray and bulk sequencing
to the current technologies of single-cell profiling, various computation methods
have been proposed to identify regulatory relationships between genes. One major
category of these methods infers regulations based on gene coexpression patterns,
with various measures and mathematical models used. One early popular method
was ARACNE, which selects regulatory interactions based on mutual information
(MI) between genes and eliminates indirect interactions by data processing inequal-
ity (Margolin et al., 2006). Similarly, PIDC improved the pairwise MI measure with
partial information decomposition to consider multiple variables together (Chan,
Stumpf, and Babtie, 2017). Regression-based methods such as GENIE3 and GRN-
Boost2 predict the expression of one gene with other genes, and higher prediction
power indicates stronger interactions between the genes (Huynh-Thu et al., 2010;

Moerman et al., 2019). There are also methods that use dynamical models where
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time information is present such as SCODE (Matsumoto et al., 2017). Another
category of methods enhances the inference with context-dependent biological in-
formation such as transcriptional factor (TF) binding, specifically searching for
TF binding motifs in the promoter region of the candidate target genes, such as
SCENIC (Aibar et al., 2017). The technology of single-cell ATAC-seq also facili-
tates the identification of activating TF binding sites by profiling the accessibility of
chromatin regions on the genome. Methods like SCENIC+ and CellOracle were de-
veloped to leverage these multiomics measurements for improved network inference
accuracy (Bravo Gonzdlez-Blas et al., 2023; Kamimoto et al., 2023). Although
TF-DNA binding is one of the major gene regulatory mechanisms, many other
regulatory mechanisms play important roles in cells including protein-protein inter-
action, kinase phosphorylation in signal transduction, and small molecule protein
binding. The dependence on TF-motif-predicted interactions introduces limitations

compared to coexpression-based network inference methods.

However, two significant challenges persist with the regulatory network inference
on large-scale single-cell profiling data. Perturbations are widely used in genetics
to uncover casual interactions from correlations, it is yet unclear whether pertur-
bations are beneficial for large-scale network inference, and how the perturbation
information can be formally incorporated into the network inference. Moreover, in
existing analysis methods, the inferred regulatory networks are rarely connected to
the observed cell states, namely how cell states are defined through the regulation
between genes. Bridging the gap will lead to insight and control strategies for the
organization of cell states, and open broad therapeutic applications from modulating

the inflammatory response to advancing immunotherapy of cancer.

In this chapter, we show that the unique architecture of D-SPIN enables integrating
information from multiple perturbation conditions to achieve high network infer-
ence accuracy and build a complete probabilistic model of cell states. With a
benchmarking framework that can simulate single-cell data from Boolean regu-
latory relationships (Pratapa et al., 2020), we show D-SPIN achieves improved
accuracy on a synthetic hematopoietic stem cell (HSC) network model over PIDC,
GRNBoost2, and GENIE3, which are top-performers in the benchmarking study.
Further, the probabilistic model built by D-SPIN connects the network with the
distribution of altered cell states under perturbation, enabling us to develop a for-
mal reasoning framework to evaluate how each individual edge contributes to the

observed perturbation responses. Furthermore, the superior accuracy of D-SPIN
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Figure 3.1: HSC network model generates various cell state distributions un-
der perturbations. (A) HSC regulatory network model (Krumsiek et al., 2011)
contains 11 transcription factors (TFs) that interact through activation (blue) and
repression (red) to modulate the differentiation of HSCs into different cell types. (B)
Example simulated gene-expression profile heatmaps generated using a published
computational framework BEELINE from the network across a series of simulated
single-gene knockdown and activation conditions. (C) Heatmap shows average TF
expression of seven clusters of cell states generated across all simulated conditions.
Each cluster is annotated with its TF expression pattern based on the biological
context of the HSC network model (Krumsiek et al., 2011). All simulated cell states
and clusters are visualized in the UMAP embedding.

extends to large networks with hundreds to a thousand nodes. D-SPIN outperforms
existing methods by a large margin on two types of synthetic networks, modular
networks, and Erdds-Rényi (ER) random networks (0.67 vs. 0.45 and 0.70 vs.
0.39 edge prediction accuracy). The improved accuracy of D-SPIN is enabled by
integrating perturbation information into a unified network model, and the accuracy

continues to rise with the increased number of perturbations.
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3.2 State-of-the-art performance in inferring an HSC regulatory network
model
To evaluate the accuracy of D-SPIN in performing network inference, we first applied
D-SPIN to reconstruct and analyze a model of the hematopoietic stem cell (HSC)
differentiation network using the network simulation and benchmarking framework
BEELINE (Pratapa et al., 2020). The HSC network has two major groups of
regulatory genes. The first group includes the transcription factor Pul, control-
ling granulocyte/monocyte differentiation, and the second group includes Gatal,
controlling megakaryocyte/erythrocyte differentiation (Krumsiek et al., 2011)(Fig-
ure 3.1 A). BEELINE simulates single-cell transcription data from biologically
identified regulatory networks by generating and simulating ordinary differential
equation (ODE) models with stochastic noise. BEELINE also includes existing net-
work inference methods for benchmark accuracy evaluation. We used the BEELINE
framework to generate synthetic gene-expression profiles from the HSC network for
22 perturbation conditions, encompassing knockdown/activation of each network
node individually by turning down/up the transcription rate (Figures 3.1 BC, Sec-
tion 3.5). For interpretation of the data we used the known biological functions
of each transcription factor to classify the single-cell expression profiles into seven
different cell state designations, including monocytes (Mono), granulocytes (Gran),

erythrocytes (Ery) and megakaryocytes (Mega) (Krumsiek et al., 2011).

We applied D-SPIN to reconstruct a gene regulatory network model from the sim-
ulated data and compared the accuracy of the D-SPIN model to three different
network reconstruction methods (PIDC, GRNBoost2, and GENIE3) that were the
top performers in the BEELINE benchmarking study (Pratapa et al., 2020). We
applied D-SPIN to generate a single network model encoded in the gene interaction
matrix J and generate perturbation vectors h(™ for each perturbation condition
(Figure 3.2 A, Figure 3.3 A). We applied the algorithms to individual genes, rather
than gene programs, given the relatively compact size (11 nodes) of the HSC net-
work used in the BEELINE benchmarking evaluation. Each method generates a set
of inferred edges and provides confidence/importance estimates for each edge. We
compared the methods by considering the accuracy of the top 10 and top 20 edges
identified by each method.

On the simulated network reconstruction task, D-SPIN consistently achieved higher
performance than comparable methods, primarily due to the natural way in which

D-SPIN can accommodate perturbation data. For D-SPIN, on average 0.96 of the top
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Figure 3.2: D-SPIN achieves state-of-the-art network inference accuracy and
reveals network-level mechanisms of cell fate modulation by transcription fac-
tor perturbations. (A) Network diagram shows the inferred unified regulatory
network model by D-SPIN that encodes inferred interactions between TFs as an in-
teraction graph. Edges with diamond markers in the network show D-SPIN inferred
perturbation vectors that estimate how knockdown or activation of TFs (e.g., Gatal
knockdown) impacts the regulatory network through up- or downregulation of TFs.
(B) Diagram of the true network and inferred regulatory networks by D-SPIN and
other state-of-the-art methods including PIDC, GRNBoost2, and GENIE3 (Pratapa
et al., 2020). The inference accuracy is quantified by the box plot of the accuracy
of the top 10 and 20 inferred edges across 10 random repeats of parameters in
differential equation simulation using BEELINE. The ground truth network has a
total of 20 edges.
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Figure 3.2: (Continued) (C) (left) UMAP embedding comparisons of simulated
single-cell data by BEELINE and state distributions generated by D-SPIN models for
control and Pul activation/knockdown. (right) Bar plots quantify the proportion of
HSC-derived cell types in each condition from simulated data and D-SPIN models.
(Bottom) Cosine similarity between cell state distributions of data and model. D-
SPIN models generate cell-state distribution highly consistent with simulated data
by applying perturbations to the underlying network. (D) (top) Network diagram and
(bottom) UMAP embedding of three different perturbations that generate increased
monocyte population. The D-SPIN model reveals network edges that mediate the
response of the network to different perturbations through the application of a
formal reasoning framework to the regulatory network model. Both Pul activation
and knockdown of Cebpa or Gfil generate increased monocyte states by directly
interacting with monocyte genes or indirectly through the interaction between Gfil
and EgrNab.

10 edges found by the model were correct across inference runs, as compared to 0.6,
0.77, and 0.7 for PIDC, GRNBoost2, and GENIE3, respectively. For D-SPIN, 0.75
of the top 20 edges were correct, compared with 0.625, 0.645, and 0.665 for PIDC,
GRNBoost2, and GENIE3, respectively (Figure 3.2 B). The inference algorithm
of D-SPIN is crucial to its accuracy improvement, as the Hebbian learning rule in
Hopfield networks (Hopfield, 1982; Lang et al., 2014) only has 0.55 accuracy on
the top 20 edges. In one example of D-SPIN outperforming existing methods, the
networks inferred by PIDC, GRNBoost2, and GENIE3 all identified strong spurious
activating interactions inside the Mega-Ery gene module. For example, Scl-Fogl
is predicted as one of the strongest edges in PIDC, GRNBoost2 and GENIE3 with
weights 1.17, 1.34, and 1.70, while D-SPIN assigns an average weight of 0.35 to
the edge and ranks it 24th. Similarly, Scl-Eklf is ranked within the top-12 edges
in other methods with weights 0.99, 0.76, and 0.71, while D-SPIN assigns weight
0.4 to the edge and ranks it 22nd. D-SPIN reveals the central regulatory role of
Gatal by significantly reducing the weights of these false positive edges. D-SPIN
also removed spurious inhibitory interactions between the two major groups of
genes (Mono-Gran module and Mega-Ery module) from the edge predictions, e.g.,
Pul-Eklf or Pul-Flil, revealing the actual regulatory target of Pul. When spurious
edges occurred, they were similar across the different inference frameworks: all
four methods identified spurious edges in strongly connected regions of the HSC
network, struggling to separate direct versus indirect connections. However, for
D-SPIN uniquely, spurious edges can be further reduced through the sampling of
higher-order perturbations. By including additional 96 double-gene perturbations,
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D-SPIN achieves 100% accuracy on the top 10 edges and improves the accuracy of
the top 20 edges from 0.75 to 0.81 (Figure 3.3 B).

Additionally, D-SPIN also achieves superior accuracy in inferring a directed network
model using pseudolikelihood (Figure 3.3 C). The directed HSC network has 26
edges; the top 26 predicted edges of D-SPIN have an accuracy of 0.73, outperforming
the other three methods (PIDC, GRNBoost2, and GENIE3) with accuracies of
0.41, 0.47, and 0.53, respectively. Despite the strength of D-SPIN in directed
network inference, we focus our analysis on undirected networks due to the inherent
challenge in defining consistent directed network models using steady-state cell state
distributions (Section 2.4) (Pearl, 2022).

3.3 D-SPIN constructs an interpretable, generative model of HSC perturba-
tion response
D-SPIN is a probabilistic, generative model that can generate the distribution of tran-
scriptional states in a cell population subjected to a perturbation. In contrast, most
existing network inference methods are not generative and use either regression or
information-theoretic measures to identify and list candidate gene interactions (Prat-
apa et al., 2020). For the HSC network, the distribution generated by the D-SPIN
model is highly concordant with the data distribution across all perturbation condi-
tions, as visualized by the UMAP embedding and cell state distribution comparison
(Figure 3.2 C, Figure 3.3 D). Quantitatively, the cell state distributions by D-SPIN
are all above 96% cosine similarity with the simulated data. The quantitative agree-
ment is especially remarkable as D-SPIN is a minimal and interpretable model that
encodes each network interaction with a single signed strength parameter. Thus, for
the HSC network, D-SPIN constructs a quantitative model of how the cell population
is generated by the underlying gene regulatory network. We can apply the model to
compute quantitative statements of gene expression change induced by each pertur-
bation and to analyze the role of potential gene-gene interactions in mediating the

perturbation response of the regulatory network.

As generative probabilistic models, D-SPIN models can be analyzed to gain insight
into how edges within a D-SPIN network mediate the response to applied pertur-
bations. We developed a formal framework to determine how the knockdown or
activation of specific nodes in the network might impact the distribution of cell
states generated by the regulatory network and to define how individual edges con-

tribute to the perturbation response of the network (Section 3.5). Specifically, for
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Figure 3.3: D-SPIN identifies perturbation responses and reproduces perturbed
cell state distributions (A) Heatmaps indicating (left) applied perturbations to
the network; (middle) perturbation response inferred by D-SPIN (right) marginal
distribution changes of single genes. The heatmaps demonstrate that the D-SPIN
response vectors can identify the applied perturbations and quantify their impact
on single genes. The only discrepancy of inferred perturbation occurs on Gata2
knockdown, potentially because Gata?2 is a transient regulator in the network, having
low expression in differentiated cell states. (B) Bar plots quantify network inference
accuracy of D-SPIN with combinatorial perturbations on top-predicted 10 and 20
edges. D-SPIN achieves further accuracy improvements with additional 96 double-
gene perturbations, with exact top 10 predictions and 0.805 accuracy in the top 20
predictions.
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Figure 3.3: (Continued) (C) Bar plots quantify the directed network inference
accuracy of D-SPIN on top-predicted 13 and 26 edges where the ground truth
network has 26 directed edges. D-SPIN is capable of inferring a directed network, as
detailed in Section 2.4, with superior accuracy (0.73 on top 26 edges) compared with
existing methods (0.41, 0.47, 0.53 on top 26 edges). (D) UMAP embedding of cell
state distributions of (blue) simulated data by BEELINE and (orange) D-SPIN model
distributions across all single-gene knockdown/activation perturbations. The D-
SPIN model accurately generates cell-state distributions with the regulatory network
and each perturbation across all these conditions.

a perturbation h, we define the marginal activity hy, of each gene k to be the ratio
between the marginal probability of the node k being expressed P(s; = 1 given h)
or silenced P(sy = —1 given h). Then we evaluate the influence of every edge
J;; in the network on hy, to generate an edge sensitivity score €(.J;;, k), which is the
change of marginal activity hi before and after hypothetical deletion of edge J;;
from the network model. The edge sensitivity score allows us to rank the importance
of network edges in modulating the response of the network to the knockdown or

activation of a specific gene.

For example, in both the D-SPIN model and training data, the knockdown of the
transcription factor Pul results in a complete loss of monocyte cell states and an
increase in granulocyte cell states (Figure 3.2 C). The formal reasoning framework
can provide insight into network edges that mediate the response of the network
to Pul knockdown and the resulting change in population structure. According to
the node marginal distribution and edge sensitivity analysis, under Pul knockdown
the marginal activity of EgrNab and cJun decrease by -12.9 and -6.4. This is
primarily induced by the positive interactions of Pul-EgrNab and Pul-cJun with the
edge sensitivity score ¢(Pul-EgrNab, EgrNab) = —4.4 and ¢(Pul-cJun, cJun) =
—3.2 (Figure 3.4 (i)). Pul, EgrNab, and cJun are expressed in the monocyte
state (Krumsiek et al., 2011), and the repression of these genes corresponds to
the loss of the monocyte cell state. Conversely, under Pul knockdown, Gfil and
Cebpa, genes expressed in granulocyte cell state (Krumsiek et al., 2011), have
an increased marginal activity by 3.0 and 2.9, respectively, corresponding to the
increased granulocyte cell states. Edge sensitivity scores show that the expression
of Gfil and Cebpa is impacted both by the positive interactions of Pul-Gfil and Pul-
Cebpa and by the negative interaction of Gfil-EgrNab. For Gfil, Gfil-EgrNab has a
stronger impact of ¢(Gfil-EgrNab, Gfil) = 4.7 compared with ¢(Pul-Gfil, Gfil) =
—2.6. Theresponse of Cebpa is also primarily induced by the edge Gfil-EgrNab with
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Figure 3.4: Edge sensitivity analysis reveals network-level mechanisms of cell
state modulations. Network diagrams visualize edge sensitivity analysis in D-SPIN
showing how each network edge positively (blue) or negatively (red) contributes to
the marginal distribution change of the gene of interest under a clamped perturbation,
as detailed in Section 3.5. Network nodes are colored by the upregulation or
downregulation of their activities defined by marginal distributions, and edges are
colored by their contribution to the activity of the node of interest. For example,
panel (B) shows under Pul knockdown, the upregulation of Gfil is most significantly
positively contributed by the edge EgrNab-Gfil.

¢(Gfil-EgrNab, EgrNab) = 4.3 compared with ¢(Pul-EgrNab, EgrNab) = —3.9
(Figures 3.4 (ii)(iii)). The Mega-Ery module (Eklf, Fogl, Gatal, Scl, and Flil)
is affected by both the negative interaction with Pul (which is downregulated)

and Cebpa (which is unregulated), and the overall marginal activities exhibit weak
inhibition (-0.7, -1.5, -2.6, -1.3, -1.4).

As another example of formal reasoning, in both simulated data and the D-SPIN
model, both Pul activation and the knockdown of either Cebpa or Gfil individually
lead to an increased prevalence of monocyte cell states, but with different inferred
network mechanisms (Figure 3.2 D). Activating Pul causes the increase in marginal
activity for other monocyte genes, EgrNab and cJun, by 2.4 and 2.8 which is mediated
by the network edges Pul-EgrNab and Pul-cJun, with edge sensitivity scores of 4.4
and 3.1. Alternately, Gfil has both positive and negative interactions with monocyte
genes (Pul, EgrNab, and cJun), and edge sensitivity analysis on Pul under the Gfil
knockdown condition shows that the negative edge Gfil-EgrNab has a stronger effect
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on Pul with score ¢(Gfil-EgrNab, Pul) = 2.8 compared with the positive edge Gfil-

Pul with a score €(Gfil-Pul, Pul) = —2.6. Moreover, the marginal activities of
monocyte genes Pul, EgrNab, and cJun under Gfil knockdown increase by 3.0, 2.4,
and 2.7, leading to an increased monocyte population (Figure 3.4 (iv)). Similarly,
under Cebpa knockdown, the marginal activity of Gfil is strongly decreased by -
6.4, which is primarily due to the interaction of Cebpa-Gfil with an edge sensitivity
score of -6.3, therefore leading to a similar cell state change as in Gfil knockdown
(Figure 3.4 (v)). Pul activation induces increased monocyte states through the
positive interactions Pul-EgrNab and Pul-cJun, while increased monocyte states in
Cebpa or Gfil knockdown are mediated by the negative edge Gfi-EgrNab. Therefore
similar cell-state distribution change of increased monocyte states can be achieved

by two different network-level mechanisms in the D-SPIN model.

Thus, D-SPIN, using simulated data, can infer an accurate and generative regulatory
network model of a single-cell population by integrating information across pertur-
bation conditions. The D-SPIN model can be analyzed through formal reasoning—
as in this example of tracking monocyte and granulocyte cell state distributions—to
hypothesize network edges and network-level mechanisms that might be important
for determining how the structure of a cell population shifts when individual net-
work nodes are perturbed. The D-SPIN model demonstrates how activation of Pul
and knockdown of Cepba can engage two different sets of network edges to increase
the prevalence of monocyte cell states. The inferred regulatory network reveals
functional interactions between regulatory genes and provides a map of how the
distribution of cell states in the underlying HSC cell population is generated through

interactions between internal regulators.

3.4 D-SPIN achieves superior accuracy in large-scale regulatory network in-
ference
To demonstrate the versatility of D-SPIN, we expanded the validation to infer the
structure of large-scale simulated networks with hundreds to a thousand nodes,
where we performed network inference using pseudolikelihood-based methods (Sec-
tion 2.4). We explored two distinct network architectures: highly modular networks
and Erdds-Rényi (ER) random networks (Figure 3.5 A, Figure 3.6 A). The modu-
lar networks are characterized by activating interactions between genes inside the
same module, and inhibitory interactions between neighboring modules. Modular
networks contain key structural properties of biological gene regulatory networks,

where modules of coexpressed genes often perform coherent functions; further,
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modular networks present challenges for network inference procedures because
gene coexpression makes it difficult to define the precise regulators that control
module activation and inhibition (Hartwell et al., 1999; Segal, Shapira, et al., 2003;
G. P. Wagner, Pavlicev, and Cheverud, 2007; Jiang, Sivak, and Thomson, 2019).
In ER networks, each gene has the same probability of interacting with any other
gene; ER networks are considered the most general statistical model for generating
unstructured random networks (Watts and Strogatz, 1998; Newman, 2018) and are

often used for benchmarking inference methods.

Theoretical results (Gutenkunst et al., 2007; Machta et al., 2013; Jiang, Sivak, and
Thomson, 2019) demonstrate that the inference of biological regulatory network
models can be complicated by parameter degeneracy, where a set of network models
can be consistent with a single set of measurements. Perturbations can be applied
to break such degeneracy by driving a regulatory network into configurations that
expose differences between network architectures that might generate very similar
cell state distributions in an unperturbed context (Jiang, Sivak, and Thomson, 2019).
Unlike many existing gene regulatory network inference methods, D-SPIN can
naturally integrate and synthesize information collected across many perturbation
experiments into a single network model, so that D-SPIN can exploit the information
provided by perturbation experiments to increase the accuracy of model inference.
As perturbation design for large networks remains an open challenge, we applied
random perturbations to each network, where the perturbations are independent,

normally distributed random variables on each network node (Section 3.5).

In numerical tests, we found that D-SPIN’s ability to integrate information from
perturbations allows the algorithm to surpass the accuracy of other inference methods
and to achieve increasing accuracy with increasing numbers of network perturbation
experiments (Figure 3.5 B, Figure 3.6 B). The accuracy of network inference is
measured by the accuracy of top K edge predictions, where K is the number of
edges in the ground truth network. Without perturbation, the top /K edge accuracy of
D-SPIN is around 0.5, similar to existing methods such as PIDC, GRNBoost2, and
GENIE3. However, when perturbation conditions are included, D-SPIN’s accuracy
increases while the accuracy of other methods remains constant. By including
800 normally distributed, random perturbations, the accuracy of top K predictions
rises from 0.51 to 0.67 on modular networks (Figure 3.5 C), and 0.40 to 0.70
on random networks (Figure 3.6 C). More significantly, the accuracy of top K /4

predictions rises from 0.57 to 0.93 on modular networks and from 0.59 to 0.93 on
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A 250-node modular network
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Figure 3.5: D-SPIN achieves superior accuracy on large modular networks
with up to a thousand nodes. (A) (top) Network diagram of an example 250-node
modular network with five mutually inhibiting modules and (bottom) simulated
single-cell data from the network for evaluating the accuracy and scalability of net-
work inference. (B) Diagrams of the inferred network of different methods as in
(top) subnetwork of correct-inferred edges and (bottom) adjacency matrices with
true positives, false positives, and false negatives. D-SPIN achieves superior accu-
racy compared to existing methods (C) The network inference accuracies are plotted
with the number of perturbations in 10 randomly generated modular networks. The
accuracy of D-SPIN continuously increases with perturbation number while other
methods do not improve or slightly decrease. (D) Bar plots quantify the network
inference accuracy of modular networks with different sizes of 125, 250, 500, and
1000 under 800 perturbations in 10 random repeats. D-SPIN achieves significantly
increased accuracy compared with other methods across network sizes.
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random networks. In contrast to the increased inference accuracy with perturbation
number for D-SPIN, applying the alternative network inference methods (PIDC,
GRNBoost2, GENIE3) to each perturbation condition and averaging the results
does not increase the accuracy of inference and even slightly decreases the accuracy
(Figure 3.5 C, Figure 3.6 C).

We also noticed that in both types of networks, existing methods have much lower
accuracy on negative edges. For example, in the modular networks, the average
accuracy of PIDC, GRNBoost2, and GENIE3 are all 0.53 on positive interactions,
but are 0.37, 0.35, and 0.36, respectively on negative interactions. In D-SPIN
with perturbations, the average accuracy is 0.7 on positive edges and 0.8 on negative
edges. These results suggest that inhibitory interactions are more difficult to identify
and require combining information from different perturbations to discover (Jiang,
Sivak, and Thomson, 2019).

Furthermore, the superior accuracy of D-SPIN scales to networks with up to a
thousand genes, the largest-sized network that we could test within BEELINE.
We performed a similar edge accuracy analysis on modular networks and random
networks with sizes of 125, 250, 500, and 1,000 genes, and observed significant
accuracy superiority of D-SPIN compared with other methods. On 1,000-node
modular networks, the average top K /4 and top K accuracy of D-SPIN is 0.92 and
0.67, while for PIDC, GRNBoost, and GENIE3, respectively, the top K /4 accuracy
are 0.59, 0.66, 0.65, and the top K accuracy are 0.47, 0.51, 0.48 (Figure 3.5 D). On
1,000-node random networks, the average top /K /4 and top K accuracy of D-SPIN
is 0.93 and 0.70, while for the other three methods, the top K /4 accuracy are 0.58,
0.62, 0.60, and the top K accuracy are 0.38, 0.40, 0.38, respectively (Figure 3.6 D).

D-SPIN exhibits linear scaling of computation time with cell number

The unique model architecture and training algorithm of D-SPIN enables it to
efficiently process large datasets containing hundreds of thousands of cells. The
inference in D-SPIN is formulated as an optimization problem and can be solved
in batches, thus circumventing the need to handle large matrix operations; as a
result, the computation time of D-SPIN only increases linearly with the number
of cells. We accessed the scalability of different network inference methods with
the number of cells (Figure 3.6 E, Section 3.5). We evaluated the running time
of D-SPIN, PIDC, GRNBoost2, and GENIE3 with 250-node Erdds-Rényi (ER)
random networks, with cell numbers ranging from 250 to 256,000. While PIDC
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A 250-node random network
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Figure 3.6: D-SPIN achieves superior accuracy on large random Erdds-Rényi
networks with up to a thousand nodes. (A) (top) (top) Network diagram of an
example 250-node Erdds-Rényi (ER) network with equal probability of activating
(blue) and inhibiting (red) edges and (bottom) simulated single-cell data from the
network for evaluating the accuracy and scalability of network inference. (B)
Diagrams of the inferred network of different methods as in (top) subnetwork of
correct-inferred edges and (bottom) adjacency matrices with true positives, false
positives, and false negatives. D-SPIN achieves superior accuracy compared to
existing methods (C) The network inference accuracies are plotted with the number
of perturbations in 10 randomly generated modular networks. The accuracy of
D-SPIN continuously increases with perturbation number while other methods do
not improve or slightly decrease. (D) Bar plots quantify the network inference
accuracy of modular networks with different sizes of 125, 250, 500, and 1000 under
800 perturbations in 10 random repeats. D-SPIN achieves significantly increased
accuracy compared with other methods across network sizes.
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initially outpaced other methods at lower cell numbers, D-SPIN became the fastest
method for datasets exceeding 16,000 cells, a number most current single-cell studies
surpass. Remarkably, at 256,000 cells, D-SPIN finished in 6 hours on 2 CPU cores,

while all other methods could not finish within a week.

3.5 Supplementary information

Simulations of the HSC network

The BEELINE framework provides a systematic tool to simulate single-gene ex-
pression data from Boolean regulatory networks and to benchmark the accuracy of
network inference methods (Pratapa et al., 2020). Our simulation and evaluation
mostly followed the formulation and code of BEELINE, but we complemented the
framework with the simulation of gene knockdown and activation perturbations.
BEELINE simulates the following stochastic differential equation (SDE) models of

gene expression.

0} e () — bl + s, G
A Y N 62)
AW, = N (0, h) (3.3)

where [z;] and [p;] are mRNA and protein concentration of the gene 7, m; and r is the
mRNA and protein production rate, f(R;) is the regulatory term determined by the
network, [, and [, are mRNA and protein degradation rate, s is thermal noise strength,
W, is the Wiener process representing thermal noises, and A is simulation time step.
The default parameter values are m; = 20, [, = 10,7 = 10,[, = 1,5 = 10. Att =0
all nRNA concentrations [z;] are initialized as 1, and all protein concentrations [p;]
are initialized as 0. Specifically, the mRNA default initial concentration 1 in the
current BEELINE framework (v1.0) is different from 0.01 used in the version (v0.1)
presented by the BEELINE paper (Pratapa et al., 2020), possibly for improved

numerical stability.

To model the impact of gene knockdown and activation, we included two extra
terms into the dynamics of mRNA: e;, representing a constant external mRNA
production not regulated by the network, and (3;, representing the proportion that the
mRNA production rate is suppressed in addition to the network regulation. After
the modification the dynamics of the mRNA is

dlz;]
dt

= ¢ + B f (R:) — L[] + s/ [z] AW, (3.4)
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Without perturbation, we have e; = 0, 5; = 1.

In single-gene and double-gene knockdown simulation, we used 3; = 0.2 for the
reduced mRNA production rate. In single gene activation simulation, we set e¢; =
15, corresponding to 0.75 of the expression of fully activated genes. For double
perturbations, we found that higher external activation was required to drive the
network, and we used e; = 22.5 for gene activation in double perturbations. We
simulated 2,000 cells for control conditions and 500 cells for each perturbation

condition.

We simulated the system under 10 different sets of randomly sampled parameters.
Each time the parameters m;, [, [,, 7 were assigned by the formula oD, where D
represents the default value of the parameter and « is a random factor sampled from
a truncated Gaussian distribution (mean = 1, std = 0.1, truncation to [0.9, 1.1]).
The same type of parameters of all genes were set to the same value for numerical
stability. We clustered the cell states and computed the UMAP embedding of
the discretized simulated data with D-SPIN-generated samples for visualization,
and annotated each cluster based on the research that proposed the HSC network
model (Krumsiek et al., 2011).

To compare the network reconstruction accuracy with other methods, including
PIDC, GRNBoost2, and GENIE3, we ran the Docker images of the three methods
provided by the BEELINE framework. As the three methods do not explicitly model
the impact of perturbations, we ran these methods independently on control and each
perturbation condition and computed the average score of each network edge as the

overall inferred network.

Clamping analysis of node marginal distribution and edge sensitivity

As a generative model of transcriptional state distribution, D-SPIN allows us to
develop a procedure to compute perturbation impact on the marginal distribution
of a node in the network, as well as the contribution of each interaction edge to
the marginal distribution. The procedure allows us to identify critical interactions
in the network that determine a specific perturbation response so that we can make
quantitative statements about how cell state distribution and perturbation response

are determined by the regulatory network.

To quantify the marginal distribution change of each node 7, we define an effective

marginal activity ﬁZ(J , h) by the ratio between the node being on (s; = 1) and the
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node being off (s; = —1) in the marginal distribution P(s;|J, h)

A P(s; = 1|J,h)

(3.5)

where positive h; indicates the node being activated and negative h; indicates the
node being repressed. The definition is rationalized by parametrizing the complete

three-state marginal distribution of node 7 by an effective 1-node D-SPIN model

1 o ~
P(s;) = 7 exp(Js? + h;si) (3.6)
whose analytical solution is /; = slog P(s; = 1)/P(s; = —1), and we drop the

constant coefficient for simplicity. As h; is defined as a linear term inside the energy
function, the difference of /; between conditions represents the relative activation

or inhibition of a node.

To quantify the contribution of each edge to the marginal distribution change, we
compare the marginal distribution with and without the edge of interest. The edge
sensitivity of .Ji; to node 7 is defined as the marginal activity h; change after removing
the edge Jj,; from the network. Specifically, we define a clamped network J (s, —0)
where Jy; is set to 0 while all other edges remain the same, and compute the marginal

activity fLZ(J (setJy=0), Pv) of node i. The edge sensitivity e(kl, 7) is thus defined by

e(kl,i|J, h) = hi(J, h) — hi(J w0y, B)

P(Si = ].lJ h) P(SZ = 1|J(setJ :0),h)
—] ) —1 kil 3.7
B P(s = k) B Pl = AT h) O

With the HSC network example, we demonstrate how this procedure identifies the
impact of Pul knock-down on the node Gfil, and which network edge contributes
to the change of Gfil. D-SPIN infers the network J, response vector h, without
perturbation and h under Pul knock-down. Without perturbation, by marginalizing
the full distribution P(s|J, hg), we have

P(Gfil = —1) = 0.884, P(Gfil = 1) = 0.024, thus hy = —3.60.

Similarly, under Pul knock-down, marginalizing the complete distribution P(s|.J, hg)

gives
P(Gfil = —1) = 0.381, P(Gfil = 1) = 0.216, thus h = —0.566.

Therefore Pul knock-down has an overall impact of 3.04 activation on Gfil. For

edge sensitivity, take the edge Gfil-EgrNab, for example. After clamping the edge to
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0, the complete distribution P(S|J (s Gfii-EgrNab = 0), F) has an marginal distribution
of

P(Gfil = —1) = 0.904, P(Gfil = 1) = 0.004, thus /(e Gai1-EgNan=0) = —5.26 .

Therefore the edge sensitivity e(Gfil-EgrNab, Gfil) = h— ﬁ(setgﬁ 1-EgrNab—0) = 4.69.
The edge Gfil-EgrNab has a high contribution in activating the node Gfil. The
contribution of other edges can be computed similarly, and the top contributing
edges to Gfil under Pul knock-down are Gfil-EgrNab 4.69, Cebpa-Gfil -2.85,
Gfil-Pul -2.60 and Gfil-cJun 2.31.

Simulation of large synthetic networks
To assess the accuracy and scalability of D-SPIN, we constructed two distinct sets
of large regulatory network models, each comprising networks with 125, 250, 500,

and 1000 nodes. These models represent two major categories of networks:

1. Modular Networks: These networks are organized into modules, character-
ized by activating interactions inside each module and inhibitory interactions
between modules. Consequently, gene expression of these networks also ex-
hibits a modular pattern, where genes within the same module are more likely

to be activated at the same time.

2. Random Networks: One of the most representative random networks are
Erdds-Rényi models (ER models). These networks are completely random
in nature, where each node has the same probability of interacting with any

other node.

Specifically, in our construction of modular networks, the networks contain ()
modules that form a loop by connecting neighboring modules on a circle. The
average module size is set to around 50 nodes, and the total number of modules
should be an odd number to allow the pattern of alternatively activated modules
on the loop. Therefore the module numbers @) for 125, 250, 500, and 1000-node
networks are, respectively, 3, 5, 11, and 21. The exact number of nodes in each
module is determined by sampling Poisson random numbers, with the distribution
expectation being the expected module size. Within each module, each node has
a 0.5 probability of being assigned as a core node. Each core node has a 0.0375
probability of activating another node in the same module, and a 0.05 probability

of inhibiting another core node in neighboring modules. Each non-core node has
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a 0.0125 probability of activating another node in the same module. Besides,
following the structure of the classical toggle switch architecture, all inhibitory
interactions are symmetric, and core nodes that have inhibitory interactions also

have self-activating interactions.

The construction of a random network is straightforward. To ensure the same
average degree of network nodes across different network sizes, each node has a
1.25/M probability to activate any other nodes and 1.25/M probability to inhibit
any other nodes, where M is the number of nodes in the network. We ensure the
network is fully connected by regenerating the network with a different random seed

when the network has a disconnected structure.

Using these synthetic networks, we simulated the dynamics of each model with
our modified BEELINE framework. Given the complexity and scope limitations
of designing combinatorial perturbations on large networks, we opted for random
perturbations, where each node was subject to a random perturbation following a
truncated Gaussian distribution. For each node 7, the perturbation »; was taken from
a Gaussian distribution with a mean of 0, a standard deviation of 0.4 and truncated to
[—1,1]. These perturbations dictated the biochemical parameters in the simulation
by
20h7 R} >0, 14+ A hf <O,

€ = Bi = (3.8)
0 <o 0 B> 0.

< i 2
For a perturbation h! = 1, the strength of external activation is the same as the
strongest internal expression in the network. For a perturbation 2} = —1, the gene
1 is completely deactivated. Therefore this perturbation assignment covered a spec-
trum of perturbation actions for accessing the capability of D-SPIN in constructing

regulatory networks from perturbations.

Benchmarking time consumption with cell number

To assess the scalability of each method relative to cell number, we performed time
benchmarks for D-SPIN together with PIDC, GENIE3, and GRNBoost2, using the
dataset of 10 different random repeats of 250-node Erdds-Rényi networks from
Section 3.5. Specifically for D-SPIN, the gradient evaluations were performed
by batches for efficient computation, with each batch containing 2,000 cells. For
PIDC, GENIE3, and GRNBoost2, we used the Docker images of the three methods
provided by the BEELINE framework. The analyses were performed on the Caltech
Resnick cluster, with each task taking 2 cores and 48G memory. The longest running
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time of each task was 7 days. The time of unfinished tasks was interpolated using
the running time of the same methods with smaller cell numbers using the function

y = Az® 4 C in the log-log space.
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Chapter 4

DISSECTING HOMEOSTASIS MAINTENANCE STRATEGIES
FROM GENOME-WIDE PERTURB-SEQ

4.1 Introduction

The remarkable ability of cells to maintain homeostasis in response to external
stimuli and perturbations is fundamental to their survival. Theories and models of
such robustness have been established from various biological processes including
chemotaxis, cell cycle, and development control, with design principles discov-
ered (Stelling et al., 2004). However, our knowledge of the robustness is largely
focused on specific functions controlled by local biomolecular circuits, while how
the global organization of the regulatory network maintains the homeostasis of the
cell remains unclear due to the lack of systematic experimental profiling and formal

modeling frameworks.

Classic research in genetics has demonstrated that gene perturbation experiments
can be used to reconstruct the architecture of gene regulatory networks by observing
how the knockdown/activation of individual genes impacts the expression or activity
of other genes (Ferguson, Sternberg, and Horvitz, 1987; L. S. Huang and Sternberg,
1995; Yuh, Bolouri, and Davidson, 1998; Z. Hu, Killion, and Iyer, 2007). Moreover,
the cells being viable after perturbation provides operating examples of homeosta-
sis maintenance of cell states. One common mechanism is genetic redundancy,
where the loss of a gene function can be compensated by another gene with partial
overlap of functions, typically homologs (Nowak et al., 1997; Kafri, Springer, and
Pilpel, 2009). Nonetheless, the inhibition or activation of certain genes can induce
global state transitions of cells, even completely reprogram the cell fate such as
induced pluripotent stem cells by the Yamanaka factors Myc, Oct3/4, Sox2, and
Klf4 (Takahashi and Yamanaka, 2006). It is yet unclear how the strategies of lo-
cal redundancy and global state transition are deployed by the cellular regulatory

networks to maintain homeostasis under perturbations.

The development of Perturb-seq enables highly parallelized profiling of gene per-
turbation effect at the transcriptome level. Perturb-seq introduces a large library of
guide RNAs into a cell population, where each guide RNA targets a specific gene
for editing via the CRISPR/Cas9 system. The identities of received perturbation
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are simultaneously read out through single-cell mRNA sequencing (Dixit et al.,
2016; Schraivogel et al., 2020; Replogle et al., 2022). Perturb-seq experiments can
interrogate the impact of thousands of distinct gene knockdowns on cellular gene
expression in parallel. D-SPIN provides a computational framework for the integra-
tion of data from thousands of perturbation experiments into a unified regulatory
network model to generate insights into the architecture of cellular information flow

and interactions between pathways.

In this chapter, we apply D-SPIN to dissect the response to gene knockdowns of a
cancerous cell line, K562 cells. With a public dataset of genome-wide Perturb-seq,
we build a global regulatory network model of the cell and partition the identified
perturbation response into groups. The perturbation response groups reveal the
organization of cellular pathways and the function partitioning of molecular complex
subunits. Moreover, the regulatory network model suggests global strategies of
homeostasis maintenance, where the loss of a gene function is compensated by the
upregulation of another gene function that is not directly associated. Such long-range
regulation suggests the existence of cellular information-processing mechanisms
that sense the encountered stress, and coordinate other physiological functions to

respond.

4.2 Constructing a regulatory network model from genome-wide Perturb-seq
data

We used D-SPIN to construct a gene regulatory network model using data from
a genome-wide Perturb-seq experiment that used CRISPRi to knock down genes
in the human chronic myelogenous leukemia (CML) K562 cell line (Replogle et
al., 2022). K562 is an erythrocyte precursor cell line with a BCR-ABL mutation,
derived from a CML patient (C. B. Lozzio and B. B. Lozzio, 1975; Heisterkamp et
al., 1983). In the genome-wide Perturb-seq experiment, 9,867 genes were knocked
down individually across 2 million single cells using CRISPRi. Prior to D-SPIN
analysis, we pre-processed the data to identify guide RNAs that have an impact on the
K562-cell transcriptional state (Section 4.6). Guide RNA perturbation impact varies
(Figure 4.1 A): 70.5% of perturbations had fewer than 10 differentially expressed
genes (DEGs), 14.7% had 10-100 DEGs, and 14.8% had more than 100 DEGs.
There is also great variation in the number of collected cells: 20.3% of perturbations
had fewer than 100 cells collected.

To assess the network reconstruction quality of D-SPIN, we compared the network
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Figure 4.1: D-SPIN generates a regulatory network model from genome-
wide Perturb-seq data that reveals the organization of cellular pathways. (A)
Schematics of the experiments of the genome-wide Perturb-seq dataset (Replogle
et al., 2022). (i) 9,867 gene knockdown perturbations are individually delivered
to ~2M human K562 cells using guide RNAs. (ii) Scatter plots of the number of
differentially expressed genes (DEGs) and the number of cells that passed quality
filtering for each perturbation. D-SPIN model construction was applied to 3,136
perturbations that induced more than 10 DEGs with more than 20 cells. (iii) The
D-SPIN model constructs a unified regulatory network model and inferred interac-
tions between each perturbation and the network, which classify gene-knockdown
perturbations into groups. (B) Network diagram shows the inferred regulatory net-
work model (J matrix) between 30 gene-expression programs (P1-P30, circles), as
well as the interactions between programs and 40 groups of gene-knockdown pertur-
bations (G1-G40, diamond) encoded in response vectors (h vectors). Interactions
are rendered as positive (blue) or negative (red) edges with thickness scales with
the strength of interactions. (left box) Gene programs are functionally annotated
through gene ontology annotation tools (Kuleshov et al., 2016; Szklarczyk et al.,
2021; Sherman et al., 2022) and manual lookup. (C) (top) Network diagram of
the regulatory network model by D-SPIN exhibits modular structure with tightly-
connected subnetworks. The seven network modules can be assigned physiological
functions based on the gene programs they encompass. (bottom) The histogram
quantifies the distribution of all network edges (J matrix entries) and edges in-
side the same module. Edges inside modules are mostly positive interactions and
contain the majority of strong positive interactions in the network. (D) Bubble
plot shows enriched cellular pathways in gene ontology and KEGG pathway from
databases (Sherman et al., 2022) for each guide RNA group where bubble size repre-
sents the percentage of enriched guides in the group. Gene targets in the same guide
group identified by D-SPIN are involved in similar pathways or potentially have in-
teractions, revealing associations between pathways, such as (arrow pointer)protein
transport genes AKIRIN2 and IPO9 that were recently found to (inset schematics)
mediate the import of proteasome into the nucleus (Almeida et al., 2021).
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inference with independent biological measurements from ChIP-seq databases (Z.-P.
Liuetal.,2015; Han et al., 2018; Garcia-Alonso et al., 2019). Chip-seq data measure
the binding of transcription factors (TFs) to target gene promoters and have been
used in the literature to assess the quality of inferred gene regulatory network
models. We applied a gene selection procedure from the BEELINE benchmarking
framework (Pratapa et al., 2020) where we selected two gene subsets TFs+500 and
TFs+1000 that contain filtered TFs and the top 500 or 1000 highly variable genes,
respectively (Section 4.6). We reconstructed the single-gene regulatory networks
and compared the networks with TF-target regulation data obtained from ChIP-
seq databases (Figure 4.2 A, Section 4.6). The correspondence between inferred
networks and ChIP-seq data is quantified by the early precision rate (EPR), which
measures the proportion of inferred edges that can be associated with a TF binding
event detected by ChIP-seq among the top K predictions, relative to the expectation
of a random predictor. K is set to the total number of TF-target interactions in the
ChIP-seq database. D-SPIN achieves leading correspondence with ChIP-seq data
compared with other methods, with top K" EPRs of 4.48 and 4.36 for the TFs+500
and TFs+1000 datasets, respectively, compared to 2.88 and 2.68 in PIDC, 3.58 and
3.92 in GRNBoost2, and 3.39 and 3.13 in GENIE3.

Interpreting a single-gene network with hundreds or thousands of nodes can be
complex. To increase the interpretability of the D-SPIN model, we construct a
regulatory network model at the gene-program level to reveal the global architec-
ture and logic of the regulatory network implied by transcriptional changes induced
across a large number of gene knockdown experiments. Transcriptome-scale gene
expression changes in response to gene knockdown perturbation reflect how cells
coordinate the activities of major cellular functions to maintain homeostasis under
the stress induced by gene knockdowns. To reveal the global architecture of pertur-
bation responses, we focused on 3,138 gene-knockdown perturbations that are each
associated with more than 10 deferentially expressed genes (DEGs)(Section 4.6).
We coarse-grained the transcriptional profile into 30 gene programs, a number in-
formed by both the Bayesian information criterion (BIC) and the elbow method,
to balance the model’s representative power and complexity (Hastie et al., 2009)
(Section 2.5). With 30 gene programs, 93.2% of the selected highly variable genes
have a correlation larger than 0.5, with their corresponding gene programs in the
gene matrix denoised by data diffusion (Figures 4.3 AB) (Van Dijk et al., 2018).

The extracted gene programs reflect both general cell biology and lineage-specific
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Figure 4.2: Evaluating single-gene network; D-SPIN reconstructs cell-cycle
states. (A) Correspondence of D-SPIN and CHIP-seq data for single-gene network
inference on two networks, TFs+500 and TFs+1000, derived from the Perturb-seq
dataset. The correspondence is quantified early precision ratio, the fraction of top-
inferred edges that can be associated with a known transcriptional factor (TF)-target
binding data from ChIP-seq database compared with a random predictor, as detailed
in Section 4.6. D-SPIN achieves better correspondence with ChIP-seq data on
single-gene regulatory network inference compared with existing methods.
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Figure 4.2: (Continued) (B) Heatmaps of gene expression and discretized gene
program level for (left) control samples of non-targeting guide RNAs and (right)
knockdown of the large or small ribosome subunits. The expression of each gene
is normalized by its maximum expression and capped at 0.8 for visualization. The
heatmaps demonstrate that discretized gene programs characterize and denoise ma-
jor expression patterns in the gene matrix. (right box) Gene programs are func-
tionally annotated through gene ontology annotation tools (Kuleshov et al., 2016;
Sherman et al., 2022) and manual lookup. (C) Histogram showing the number of
responding gene programs for each gene knockdown perturbation on a linear scale
and (inset) log scale. The responding program number is exponentially distributed,
suggesting that perturbations influencing a large number of perturbations are rel-
atively rare. (D) (left-top) UMAP embedding of cell-cycle-related gene programs
in control samples exhibits a circular structure. The clusters of cell-cycle states
are annotated and ordered based on the gene program expression and sequential
positions on the UMAP. (left-bottom) Network diagram of the D-SPIN cell-cycle
network, which is taken as the subnetwork of 6 cell-cycle programs from the full
30-program network. (right-top) Heatmaps of cell-cycle programs for cell states
from the Perturb-seq control samples and (right-bottom) the D-SPIN model under
the control condition. The heatmaps demonstrate that D-SPIN reconstructs the
distribution of cell states associated with cell cycle progression from the 6-node
subnetwork. (E) The distribution of cell-cycle states in generated data from the
D-SPIN model and experimental Perturb-seq control samples. The distribution
generated by D-SPIN quantitatively agrees with the data distribution with an 11%
mean error.

gene programs that are specific to the biology of K562 cells (Figure 4.1 B, Fig-
ure 4.2 B). We annotate the gene programs with a combination of bioinformatic
databases including DAVID, Enrichr, and manual lookup (Kuleshov et al., 2016;
Szklarczyk et al., 2021; Sherman et al., 2022). Through oNMF, we extracted a se-
ries of programs that are enriched for genes involved in specific core cell processes
including transcription, translation, DNA replication, mitosis, and RNA processing.
D-SPIN also identified lineage-specific programs including an erythroid-specific
program with hemoglobin (HBG1, HBG2, HGZ) and glycophorin (GYPA, GYPB,
GYPE) genes, as well as two myeloid-associated programs with phagosome/actin-
organization (ACTB, ACTGI1, ARPC3) and immune-response (LAPTMS, VASP,
RAC?2) genes, respectively, which agrees with the multi-lineage potential of K562
cells (Figure 4.1 B).

Given the set of 30 gene programs, D-SPIN generated a gene regulatory network
model that provides a wiring diagram of K562 internal regulation and the response

of the K562 regulatory network to gene knockdown perturbations (Figure 4.1 B,
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Figure 4.3: The choice of gene-program number; Uncertainty of the inferred
network. (A) Bayesian information criterion (BIC) of the gene program decompo-
sition as a function of gene program number. 30 is the optimal program number
that minimizes BIC when the effective sample size is 20k cells. (B) The proportion
of genes that have a high correlation with their corresponding gene programs as a
function of gene program number. For raw data (without application of MAGIC), a
high correlation is defined as exceeding 4 standard deviations of gene-gene corre-
lation distribution. In the denoised data by MAGIC (Van Dijk et al., 2018), a high
correlation is defined as larger than 0.5. The plot shows that 30 programs is an
elbow point of information gain, as detailed in Section 2.5. (C) (left) Uncertainty of
inferred network interactions as a function of interaction strength quantified by the
standard deviation among alternative network solutions, as detailed in Section 2.5.
The uncertainty is generally below 0.02 and much lower compared with interaction
strengths. (right) Histogram showing the proportion of edge agreement between
alternative solutions of the D-SPIN network inference problem. Alternative solu-
tions are obtained by sampling from the Bayesian posterior distribution given the
experimental data, as detailed in Section 2.5. Alternative solutions of D-SPIN are
highly consistent with the inferred network, with typically more than 98% of the
edges being in the same category of activation, inhibition, and non-interacting.

Figure 4.2 C). The network construction took fewer than 8 hours with parallelization
on 500 CPU cores. The D-SPIN network contains gene programs as nodes, and in-
teractions between gene programs as edges that represent inferred interactions. The
inferred network has low edge uncertainty quantified by Fisher information, as edge
uncertainties are generally below 0.02 while strong interaction strengths are above
1. More than 98% of edges remain structurally stable when resampled from the
posterior distribution of networks that represent near-optimal solutions to the net-
work inference problem (Figure 4.3 C, Section 2.5). D-SPIN identified 84 positive
and 21 negative interactions between gene programs, corresponding respectively
to 19.3% and 4.8% of all gene-program pairs. The D-SPIN regulatory network
reconstruction contains a set of sub-networks or modules of gene programs that in-

teract with one another through dense positive (blue) interactions (Figures 4.1 BC).
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We automatically decomposed the D-SPIN network into seven modules through
the Leiden community detection algorithm, and the module partition is robust to
the hyperparameter choice (Traag, Waltman, and Van Eck, 2019) (Section 4.6).
Each identified module reflects a core cellular function, including transcription,

translation, protein-degradation, and cell-cycle-related functions.

The network contains a set of negative interactions between gene programs that are
expressed in distinct cellular states. The strongest negative interaction is between
gene programs expressed at different stages of mitosis. For example, the P29
Spindle microtubule has negative interactions with both P25 DNA replication and
P27 Histone. The strong interactions inside the cell-cycle sub-network of P25-
P30 are able to reconstruct the transcription state distribution during cell cycle
progression (Figures 4.2 DE). We also find strong negative interactions between
distinct stress-response programs, P23 Unfolded protein response, and P2 Lysosome.
The Unfolded protein response program consists of heat-shock protein (HSP90OABI,
HSPDI1, HSP90AAT) and other molecular chaperones (CCT8, CCT3, CCTS5 genes),
while the Lysosome program contains genes involved in lysosome genesis (PSAP,
ASAHI, PLD3). We also observe negative interactions between P4 Erythroid and
P6 Phagosome, where the phagosome is an innate immune response mounted by
macrophages and other myeloid cell types (H.-J. Lee et al., 2020). The negative
interaction between the Erythroid and Phagosome programs is consistent with the
presence of two mutually exclusive differentiation paths that lead to erythroid and

myeloid cell fates.

4.3 D-SPIN reconstructs the architecture of core cellular pathways

In addition to inferring the structure of the core K562 gene regulatory network,
D-SPIN also inferred interactions between each gene program and each gene knock-
down perturbation. The interactions between perturbations and gene programs are
represented by perturbation response vectors h(™). The entries of h(™) represent pos-
itive or negative interactions between perturbations and individual gene programs.
The response vectors can be represented as directed edges that connect perturbations

to the core regulatory network (Figure 4.1 B).

Similarly to the grouping of the K562 gene regulatory network into interacting gene
modules, we grouped gene knockdown perturbations into a set of 40 perturbation
classes that we refer to as G1-G40 (Guide RNA group 1 through 40) through un-
supervised Leiden clustering of the h(™ vectors (Section 4.6). Gene knockdowns
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within the same guide cluster have similar perturbation responses, suggesting that
these genes are involved in the same pathway or have potential interactions. Iden-
tified clusters reflect the pathway-level organization in the K562 cell, revealing
both well-known cell biology and more novel or cryptic organization of pathways
(Figure 4.1 D). Individual guide clusters are enriched for specific cell-biological
functions, including DNA replication, the MAPK signaling pathway, and RNA
degradation (Figure 4.1 D).

The guide clusters also provide detailed information regarding the more granular
structure of cellular pathways. For example, the components of the proteasome core
particle (20S proteasome) fall into a single perturbation cluster (G3). In addition
to these proteasome components, group G3 also contains genes involved in protein
transport, including AKIRIN2 and IPO9 (Figure 4.1 D), two protein components
recently associated with the import of the proteasome into the cell nucleus through
biochemical and genetic assays. In fact, in recent work, AKIRIN2 was found to
directly bind to fully assembled 20S proteasomes to mediate their nuclear import
with the nuclear import factor IPO9 (Almeida et al., 2021). This finding is consistent
with the grouping of AKIRIN2 and IPO9 with proteasome components in the D-
SPIN perturbation response clusters. Similarly, the D-SPIN guide clusters group
the gene C7orf26 with the integrator subunits INTS10, INTS13 and INTS 14, a key
result of the original Perturb-seq study (Replogle et al., 2022).

Thus, analysis of the perturbation response vectors inferred by D-SPIN provides a
strategy for generating hypotheses regarding the architecture of core cellular path-
ways directly from single-cell mRNA-seq data. D-SPIN-generated hypotheses can,
then, motivate biochemical experimental validation. We highlight the example of
the proteasome and AKIRIN2/IPO9, as well as C7orf26 and integrator, to demon-
strate that D-SPIN response vectors are consistent with two regulatory associations
that were only recently validated through biochemical experiments in the literature
(Almeida et al., 2021; Replogle et al., 2022).

4.4 Generating hypotheses for macromolecular complex sub-functions

Macromolecular complexes like the ribosome, the proteasome, the spliceosome,
and the integrator complex play a critical role in cell physiology and gene regulation
(Beltrao, Cagney, and Krogan, 2010). Protein complexes can often exist in different
configurations with different combinations of subunits. Defining the functional role

of individual proteins within a complex and how protein components work together
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Figure 4.4: D-SPIN reveals potential function partitions for molecular complex
subunits. (A) UMAP embedding of response vectors of each guide RNA where
guides are colored by the major biological function that they are associated with.
The UMAP is partitioned into regions corresponding to major cellular pathways
including transcription, translation, respiration, and cell cycle. (B) The panel plots
the regulatory coherence of macromolecular complex subunits, quantified by the
average cosine similarity between the perturbation response vectors over all pairs
of subunits. In high-coherence complexes, knockdowns of different subunits have
similar interactions with the regulatory network encoded by the response vectors, as
(top inset) visualized for an example complex in the PCA space of all response vec-
tors. In low-coherence complexes, knockdowns of different subunits have different
interactions with the regulatory network, as (bottom inset) shown in PCA for an ex-
ample complex. The incoherence suggests distinct functions for complex subunits,
(C) Diagrams of response vectors for subunits of the ribosome, proteasome, and
integrator complexes, where diamond markers are targets of gene knockdowns and
circle markers are gene programs of perturbation response. (left) The ribosome has
a coherent signature where all subunits have similar inferred interactions with gene
programs as encoded in response vectors, while (right) the proteasome and integra-
tor each have signatures of sub-functionalization. In the example of proteasome,
low coherence is observed as only a subset of subunits have an interaction on a gene
program (PS5, P6), or even display opposite interactions on a gene program (P1).
The subunit partitions based on response vectors agree with the known structural
partitions of the complexes, such as core and regulatory particles of the proteasome.
Recently discovered genes AKIRIN2, IPO9, and C70rf26 are correctly grouped with
the complex components that they interact with.
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to achieve function is an important question in cell biology. Further, detailed insight
into the architecture of specific proteins within protein complexes can identify
therapeutic targets and has been a major focus in studying protein complexes in
diseases including HIV, SARS-CoV-2, and cancer (Jaeger et al., 2012; D. E. Gordon
et al., 2020; M. Kim et al., 2021; Belinda Wang et al., 2024). Single-cell mRNA-
seq experiments can provide insight into the functional roles of proteins within
macromolecular complexes to provide hypotheses that can be studied in detailed but
technically challenging biochemical experiments, including affinity purification and

mass spectrometry (Hiatt et al., 2022).

Therefore, we used D-SPIN to gain insight into sub-functions of complex compo-
nents by comparing cosine similarity between the response vectors k"™ for compo-
nents of known complexes in the CORUM database (Giurgiu et al., 2019). When
subunits of a complex interact to achieve a common function, disruption of indi-
vidual subunits will disrupt that common function, leading to high cosine similarity
between subunit response vectors that approaches 1. When complexes can achieve
distinct functions through combinations of distinct protein components, the knock-
down of these components will generate different responses and the average cosine
similarity approaches 0, which is the random expectation. We compiled a list of
46 core cellular complexes from the CORUM database by filtering out complexes
that are not present in the dataset and merging variants of the same complex (Sec-
tion 4.6). For each complex in the list, we defined a coherence score by computing
the average cosine similarity between response vectors, h(™), for all pairs of complex
subunits (Section 4.6).

Across the 46 complexes in the CORUM database, our analysis revealed a wide
range of coherence scores across different complexes, ranging from a low coherence
score of 0.01 for the large Drosha complex to a high coherence of 0.73 for the mito-
chondrial large ribosome (Figure 4.4 B, Figure 4.5 A). Notably, complexes that play
critical roles in specific biological functions including translation and metabolism,
such as the mitochondrial ribosome, ribosome, exosome, DNA repair, and respi-
ratory chain, exhibited the highest coherence scores. In contrast, complexes with
known regulatory roles, including the large Drosha complex, DGCR8 complex,
ALL-1 supercomplex (involved in chromatin regulation), the ATAC complex (his-
tone acetyltransferase), and spliceosome all had lower coherence scores below 0.25.
The low-coherence complexes are involved in versatile regulatory roles in epigenetic

regulation and microRNA and mRNA processing. D-SPIN provides a list of the
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candidate cellular sub-processes (gene programs) that are controlled by individual
sub-units of each macromolecular regulatory complex, providing a specific frame-
work for generating experimental hypotheses to determine how modulation of the
subunit composition of these macromolecular regulatory complexes might enable

the complex to achieve a range of regulatory functions.

As an example, the ribosome behaves as a coherent complex; the knockdown of
individual genes in the large or small ribosome subunit has a similar impact on
D-SPIN gene programs, as illustrated by the monochromatic edge connections
between subunit perturbations and gene programs in the interaction diagram (Fig-
ure 4.4 C). Perturbations to ribosome subunits activate protein degradation-related
gene programs including P2 Lysosome, P3 Endosome, and P20 P21 Proteasome.
The perturbations inhibit ribosome programs, P1 Mitochondria, P19 Endoplasmic
reticulum, P23 Unfolded protein response, and P24 Oxidation. Thus, perturbing
any ribosome subunits induces the cell into a stress response state with upregulated

protein degradation and inhibition of protein production and secretion processes.

Unlike the ribosome, the proteasome and integrator behave as low-coherence com-
plexes, and have response vectors that split subunits into smaller sub-groups that
have distinct inferred interactions with downstream gene expression programs. The
integrator complex subunits are partitioned into four sub-groups that agree with
the original Perturb-seq study (Figure 4.4 C): an INTS10-13-14-C70rf26 module, a
cleavage module (INTS3, INTS4, INTS8, INTS11), and two shoulder and backbone
modules (INTS2, INTSS5, INTS7, INTSS8; INTS1, INTS6, INTS12). Knockdown of
the cleavage module activates P21 Proteasome and inhibits P22 rRNA processing,
P18 Nuclear transport, P24 Oxidation, and P5 Lipid metabolism, while knockdown
of the shoulder and backbone modules activates P4 Erythroid and P7 Innate immu-
nity and inhibits P21 Proteasome, P28 Chromosome segregation, P17 RNA splicing,

and P13 Ribosome programs.

Similarly, the proteasome complex subunits are split into two groups of core par-
ticles (20S proteasome) (PSMA6, PSMB1, PSMB3, PSMB6; PSMA2, PSMA?7,
PSMB2, PSMB7) and two regulatory particles (PSMC3, PSMC3, PSMC3, PSMD2,
PSMD6; PSMD4, PSMD13). D-SPIN finds that the knockdown of proteasome sub-
unit PSMC6 (also known as TBP7 and Rpt4) has a negative impact on respiration;
this result is consistent with the finding that PSMC6 interacts with mitochondrial
proteins including TRAP1 in the endoplasmic reticulum to assist the folding of mito-

chondrial proteins (Amoroso et al., 2012). We also identified signatures of protein
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complex sub-modules in the large Drosha complex, ALL-1 histone methyltrans-
ferase complex, and splicesome E complex. This indicates that specific subgroups
of these complexes have different regulatory roles in controlling downstream gene
expression programs. For example, the response vectors of spliceosome E com-
plex subunits split into four sub-modules. Example genes in the four sub-modules
(M1-M4) include heterogeneous nuclear ribonucleoproteins (hnRNPs)(M1), small
nuclear ribonucleoprotein particles (snRNPs)(M?2), core splicing factors (M3), and
serine/arginine-rich (SR) proteins (M4) (Figure 4.5 B). Different sub-modules can
induce opposite perturbation responses on the same gene program: MI activates
P1 Respiration while M4 inhibits P1; M1 and M4 activate P4 Erythroid while M2
inhibits P4. These results demonstrate that the response vectors reveal the impacts
of genetic perturbations, and provide a compact signature for identifying functional

partitioning of molecular complexes.

4.5 Coarse-grained D-SPIN models provide insight into global perturbation
response strategies
All cells must regulate a large number of internal processes (e.g., transcription,
translation, cell cycle, metabolism, and differentiation) to maintain homeostasis
in response to damage and perturbation. Understanding how cells control their
physiological state is essential for an integrated understanding of cell regulation,
but it remains poorly understood due to the lack of global integrated models. The
D-SPIN gene-program model (Figure 4.1 B) allows us to analyze the distributed
regulation of core cellular processes in response to gene knockdown perturbations,

a form of cellular damage.

While the D-SPIN model is compact, we find that the model can be simplified
further through an automated coarse-graining strategy based on graph clustering
(Figure 4.6 A) that reduces the D-SPIN network by grouping gene programs into
sets that we call modules and single gene perturbations into perturbation clusters.
We call this strategy network coarse-graining because of its similarity to coarse-
graining strategies in physical models, which group strongly correlated degrees of
freedom into a single variable to aid computation and interpretation. The coarse-
graining strategy produces a minimal network that we analyze to reveal four classes
of stress-response strategies, patterns of gene activation, and inhibition generated
by the cell when specific cellular processes are disrupted. The four strategies are

consistent with the hyperparameter choice of the graph clustering (Section 4.6).
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Figure 4.5: Extended examples of molecular complex partitions identified by D-
SPIN. (A) Full plot of regulatory coherence of macromolecular complex subunits
of the 46 filtered molecular complexes in the CORUM database (Giurgiu et al.,
2019). Inlow-coherence complexes, knockdowns of different subunits have different
interactions with the regulatory network, suggesting distinct functions for complex
subunits. (B) Diagrams of response vectors, for example, incoherent molecular
complexes that have signatures of sub-functionalization. The subunits of (i) large
Drosha complex and (ii) ALL-1 supercomplex are partitioned into three groups.
The subunits of (iii) spliceosome E complex are partitioned into four groups.
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Figure 4.6: Coarse-graining of D-SPIN network model identifies global pertur-
bation response strategies in K562 cells for distinct classes of gene knockdowns.
(A) Diagram of network coarse-graining by grouping gene programs into seven iden-
tified gene program modules and grouping guide RNA classes into four identified
strategies. The resulting coarse-grained model enables global analysis of cellular
regulatory responses. (B) Violin plots of averaged perturbation response vectors on
programs in guide groups in each response strategy. K562 cells contain four distinct
classes of global response strategies, and we name each strategy by the upregulated
characteristic biological function.
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The D-SPIN-identified regulatory strategies suggest non-trivial forms of homeo-
static regulation. We find that each strategy features the upregulation of a major
biological function and downregulation of other functions; the only exception is
that in the fourth strategy, both metabolism and degradation are upregulated (Fig-
ure 4.6 B). The upregulation indicates that the cell compensates for the loss of
a gene by upregulating a potentially compensating cellular function. The upreg-
ulation suggests the existence of active regulatory feedback within the regulatory
network under the applied perturbations to maintain homeostasis. Therefore, the four
global response strategies are named by the characteristic program upregulation as
metabolism upregulation, transcription upregulation, translation upregulation, and
degradation upregulation. In general, the K562 cells may be capable of mounting a
wide range of homeostatic response strategies, but D-SPIN identified the four high-
lighted strategies given the specific experimental conditions in which the Perturb-seq

experiment was performed.

For example, in the “translation upregulation” response strategy, perturbation to
components impacting translation initiation (G28) leads to upregulation of transla-
tion and downregulation of protein degradation, suggesting that the cell compensates
for decreased translational flux through a regulatory response that both upregulates
translation and downregulates processes that degrade proteins. Interestingly, pertur-
bations to ribosome subunits and ribosomal rRNA (G38, G39, G40) production lead
to a distinct response where the cell downregulates translation while upregulating
protein degradation, suggesting a cellular attempt to contain the impact of unassem-
bled ribosome subunits and damaged proteins (Figure 4.7 A). The program-level
perturbation responses are confirmed at the single-gene level. Under the knockdown
of translation initiation factors (EIF2B1, EIF3H, EIF4G2), all ribosome subunits
are coherently upregulated and proteasome subunits are coherently downregulated,
as quantified by the Z-score relative to the control distribution of non-targeting
guide RNAs (Figure 4.7 B). Similarly, the knockdown of single large/small ribo-
some subunits or ribosome genesis genes (FCF1, RIOK1, POP1) induces coherent

downregulation of all ribosome subunits and upregulation of proteasome subunits.

The regulatory strategies also provide insight into the flow of information in the
cell. The compensatory functions are typically not directly associated with the gene
being knocked down, suggesting long-range regulation or coupling between seem-
ingly distinct processes. For example, a large proportion of metabolism upregulation

responses are induced by perturbations to transcription processes, including RNA
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Figure 4.7: Response strategies exhibit as coherent up and down-regulation of
genes of relevant functions. (A) Violin plots show gene program expression under
knockdown of example pathway components relative to the control samples where a
non-targeting guide RNA is introduced to cells. The upregulated biological function
typically is distinct from the genes being perturbed. For example, when RNA
polymerase is knocked down, cells generate the metabolism upregulation response,
where the cell upregulates metabolism and downregulates transcription, translation,

and degradation.

As a second example, when ribosome subunits are knocked

down, cells upregulate protein degradation and metabolism while downregulating
translation.
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Figure 4.7: (Continued) (B) Violin plots show the single-cell mRNA expression
distribution for ribosome and proteasome subunits under knockdown of example
genes in translation upregulation and degradation upregulation strategies relative
to control samples. The gene-program level response strategies are reflected at the
single-gene level. For example, when respiration-related gene COX17 or COX7C are
knocked down, all ribosome subunit genes are upregulated and proteasome subunit
genes are downregulated. (C) Gene-expression heatmap showing the upregulation
(blue) or downregulation (red) of representative genes in all gene programs to
the knockdown of individual genes in a series of cellular pathways relative to
control samples. The program-level response strategies are shown as coherent
upregulation/downregulation patterns of single genes in gene programs.

polymerase (G9, G22), Transcription Factor IID, NELF complex (G10), and me-
diator (G16). The knockdown of these genes leads to upregulation of metabolism,
and downregulation of transcription, translation, and degradation. It has been found
that transcription stress would induce an elevated ATP pool and rewired metabolism
states (Milanese et al., 2019). As another example, the COP9 signalosome (CSN)
is a protein complex involved in the deubiquitination and deneddylation of proteins.
Knockdown of components including COPS2, COPS4, and COPS6 leads to up-
regulation of the phagosome and downregulation of protein-degradation machinery
(Figure 4.7 C). As another example, the knockdown of mTOR signaling components
(which control cell growth) leads to the upregulation of ribosomal programs in a

translation upregulation response.

These results demonstrate that D-SPIN-generated regulatory networks provide in-
sights into global control strategies used by cells to regulate a distributed set of
processes to achieve homeostasis in response to various forms of internal damage.
Knockdown of translation initiation factors and ribosome subunits both affect the
translation process, while the cells employ two distinct strategies (translation up-
regulation vs. degradation upregulation) to maintain homeostasis, indicating the
presence of a cellular sensing and information processing mechanism to distinguish
and respond to different causes of stress. The correspondence between gene function
damage and compensatory functions may lead to new therapeutic strategies, such
as combinatorial inhibition of both a gene function and its associated compensatory
pathways, for example, for improved killing of cancer cells. Such combinatorial
strategies can be difficult to design due to the exponentially large space of poten-
tial combinatorial genetic interventions. Conceptually, the global perspective of

D-SPIN illuminates classes of regulatory strategies, suggesting that compensatory
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mechanisms and information flow between cellular processes that might otherwise
not be connected, thereby providing insights into principles of information process-

ing and homeostatic control.

4.6 Supplementary information

Filtering, normalization, and clustering of the Perturb-seq dataset

The Perturb-seq dataset is a genome-wide screening study where every single gene is
knocked down individually (Replogle et al., 2022). In Perturb-seq, a library of guide
RNA:ss is introduced by lentiviral transduction into engineered cells that express the
dCAS9 CRISPRI effector, after which single RNA sequencing (scRNA-seq) is con-
ducted to simultaneously read out the transcription profile and guide RNA for each
cell. Because guide RNA transfection is a stochastic process, the number of cells
receiving each perturbation varies vastly. Here, the dataset contains perturbations
with a sample size ranging from 2 to 2,000 cells. To reduce noise introduced by
the small sample size, we excluded perturbations with fewer than 20 cells (metadata
entry “number of cells (filtered)"), which represented 92 perturbations, 0.86% of all

perturbations.

More than half of the perturbations do not yield significant single gene-level expres-
sion changes (apart from the perturbed gene), possibly due to genome redundancies
that ensure the robustness of cellular activities, and that some genes may not func-
tion in the profiled experimental condition. To avoid the model overfitting the
measurement noise on these perturbations with no significant effect, we excluded
perturbations with fewer than 10 differentially expressed genes (metadata entry
“Number of DEGs (anderson-darling)"), which represented 7,523 perturbations,
70.5% of all perturbations. Similarly, we only selected a subset of the 585 con-
trol samples with non-targeting guide RNAs to avoid overfitting on measurement
noise. We selected control samples that were labeled as core control (metadata entry
“core_control") and had no fewer than 200 collected cells (metadata entry “number
of cells (filtered)"). In total, we selected 3,136 perturbation conditions and 105

control conditions.

Normalization of single-cell gene expression data is required because (1) the total
number of transcripts captured for each cell can vary from 1,000 to 100,000 due
to technical variability in reagents and library preparation steps, and (2) transcript
expression levels across genes can span five orders of magnitude. We normalized

the raw counts for each cell by the total counts detected in each cell, times a scaling
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factor that is roughly the median of the total counts of transcripts in a cell. We used
the scaling factor 10* as the target total count, that is, computing g; = 10**g;/ >, g;
for every cell, where g; is the count of gene . We also used a log transformation to
mitigate the great variety of expression levels across genes ¢/ = log(g;+1). Except
for gene filtering, all the following analysis was performed on the log-transformed
data.

Due to biological noise, measurement noise, and gene drop-out, genes that have
constant expression across cells do not contribute to biological impact, but only
increase noise in the data. Therefore, single-cell data analyses are performed on a
subset of genes that have different expression levels across cells, i.e., highly variable
genes. Here, we developed a highly variable gene filtering model adapted from the
coefficient-of-variation (CV) filtering using the zero-inflated Poisson distribution or
negative binomial distribution as the statistics of gene counts. In both distributions,
the variance has a AX? + BX form of dependence with the mean so the resulting
filtering procedure is identical. The model was motivated by our observation that
genes with high expression generally have higher CV than the prediction of the
Poisson model, and can be explained by the heterogeneous RNA counts in the
cell population or drop-out during sequencing. Drop-out means every gene count
has a random probability of being mistakenly sampled as 0, which is also called
zero inflation in statistics. For notation simplicity, we derive the filtering using the
zero-inflated Poisson distribution. For a zero-inflated Poisson distribution,
T+ (1—me?, ifzx=0,

P(X =)= 4.1)
(1—me\*/z!, ifz >0,

where ) is the parameter of Poisson distribution and 7 is the probability of drop-out
or zero inflation. The mean and CV of the distribution is
pw=(1—mA (4.2)

o \/1+7TM/(1—7T)
po N

The zero-inflated Poisson distribution suggests another type of log CV (y) - log

4.3)

mean () relationship where the expected log CV is higher than the prediction of a

Poisson model for high-expression genes.

1
y=—5 |r—log(1+ < T expa) (4.4)
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Therefore, we followed the form of the equation and obtained the empirical log CV
- log mean relationship by curve fitting (scipy.optimize.curve_fit) of the following

function
§=—k(z—log(l+mexpx))+b 4.5)

where we denoted 7/(1 — ) into a single parameter 7 for numerical stability. The
genes are ranked by log CV — ¢, the difference between log CV and curve fitting. A

higher value indicates that the gene is more variable.

We selected highly variable genes as the union of the following three sets: (1) we
performed the Wilcoxon test of log-transformed data for each guide RNA and control
(sc.tl.rank_genes_groups) and selected the top 10 differentially expressed genes for
each guide that passed p < 0.05 under Bonferroni multi-test correction (we selected
fewer than 10 if no enough genes pass the test), (2) the top 1,000 highly variable
genes selected by our zero-inflated Poisson CV filtering, and (3) for comparison
with the original Perturb-seq study, we included the genes that appeared in the gene
programs in the original Perturb-seq study. In total, we selected 3,273 genes for the

analysis using the D-SPIN framework.

To visualize and cluster single cells in the Perturb-seq dataset, we corrected the
batch effect by constructing latent representations with scVI on raw gene counts
(dispersion="gene-batch’, n_latent=10, n_layers=2, max_epoch=20, batch_size=2048)
(Lopezetal.,2018). We constructed a 15-nearest-neighbor graph (scanpy.pp. neigh-
bors) on the latent representation and computed Leiden clustering for cell clusters
(scanpy.tl.leiden). As K562 is a purified cell line, it contains primarily a single cell
type. Thus, the UMAP embedding of the cell population is a circular structure,
representing the progression of the cell cycle, which is less relevant to the study of
perturbation responses. Therefore, we only show the UMAP embedding on con-
trol samples along with D-SPIN-generated samples using cell-cycle-associated gene

programs (Section 5.6).

oNMF decomposition of single-cell dataset

In the Perturb-seq study, we used a subset of 10° single cells, with the Square-root
balancing scheme in Section 2.5 for the Leiden cluster of cell states. In the Perturb-
seq study, we ran oNMF 100 times with KX = 30 with different random seeds and

computed a consensus gene program set by K-means.
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Evaluating single-gene network reconstruction with ChIP-seq data

To further assess the performance of D-SPIN on regulatory network reconstruc-
tion with biological measurement datasets, we applied different network inference
methods to the genome-wide Perturb-seq dataset, and compared the results with
biological validations obtained from ChIP-seq data. Chip-seq data measure the
binding of transcription factors (TFs) to target gene promoters and have been used
in the literature to assess the quality of inferred gene regulatory network models.
We evaluate the correspondence between inferred network and ChIP-seq data by
the number of inferred edges that can be associated with a measured TF-target gene

binding event.

Specifically, we generated two datasets from the Perturb-seq data, similar to the
BEELINE framework (Pratapa et al., 2020), labeled as TFs+500 and TFs+1000. We
selected TFs that expressed in over 5% of cells and the top 500 or 1000 differentially
expressed genes that were identified with the zero-inflated Poisson distribution
model we developed (Section 4.6). We only included genes that had corresponding

knockdown perturbation conditions that satisfied the following criteria.

1. More than 20 cells collected (metadata entry “number of cells (filtered)”).

2. More than two differentially expressed genes identified (metadata entry “Num-
ber of DEGs (anderson-darling)”).

3. Aknockdown efficiency exceeding 5% (metadata entry “percent knockdown").

Additionally, we incorporated 46 control conditions with non-targeting guide RNA,
with a minimum of 250 cells each. After filtering, the TFs+500 dataset comprised
103k cells, 421 genes, and 467 conditions, while the TFs+1000 dataset included
150k cells, 624 genes, and 670 conditions.

For existing network inference methods, considering the scalability challenges faced
by PIDC, GENIE3 and GRNBoost2 with datasets exceeding 100k cells, as previously
benchmarked in Section 3.5, we divided the cells into approximately 2k-cell chunks.
Each method was then applied to these chunks independently, with the resulting

networks averaged to produce an overall inference.

For D-SPIN, we partitioned the data based on each perturbation condition. We did
not partition by condition for other methods, because many perturbation conditions

only had a few tens of cells, which would be insufficient for their network inference.
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D-SPIN can handle perturbations with small cell numbers as information is shared
through inferring a unified regulatory network. As we knew the target of each
knockdown perturbation, we used the prior A7 = —3 for the knockdown target
genes. We used pseudolikelihood inference because of the large network size.
We applied ¢; regularization on the network with \; = 5e — 3, and perturbation
prior regularization with A = 0.5. Compared with the inference of the large
synthetic network (Section 2.4), we used a smaller perturbation prior regularization
coeflicient, as the effect of experimental single-gene knockdown is more noisy and

uncertain.

The inferred networks were compared with processed ChIP-seq data of TF-target in-
teractions from human ChIP-seq datasets. We used the interactions from DoRothEA
(Garcia-Alonsoetal., 2019), RegNetwork (Z.-P. Liu et al., 2015), and TRRUST (Han
et al., 2018), which were integrated together by the BEELINE framework. As the
ChIP-seq data only contained TF-target regulations, we removed all inferred interac-
tions between non-TF genes, which was consistent with the BEELINE framework.
The correspondence with ChIP-seq data is quantified by the early precision rate
(EPR), which measures the proportion of inferred edges that can be associated with
a TF binding event detected by ChIP-seq among the top K predictions, relative to
the expectation of a random predictor. K is set to the total number of TF-target

interactions in the ChIP-seq database.

Discovering regulatory networks modules and clustering perturbation responses
To gain insight into the structure and modular organization of the regulatory net-
works inferred by D-SPIN, we applied the Leiden algorithm for graph community
detection to the inferred networks. The Leiden algorithm identifies densely con-
nected subnetworks, or communities, by optimizing a modularity score that reflects
the density of positive interactions within communities compared to a random net-
work. For networks with both positive and negative interactions, the following score
function is employed (Traag, Waltman, and Van Eck, 2019).

Q=Q()—-Q()-) (4.6)
1

kik;
Qi=5-2 [(Jij —7 2mJ> 5(%%‘)] (4.7)
2y

where the regulatory network is split into J, for positive and J_ for negative

interactions. In the score function (), m is the sum of all edge weights, k; denotes

the sum of weights for edges connected to node i, c¢; is the community to which ¢
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belongs, and -y is the resolution parameter. We set v = 2 to achieve a finer resolution
of module discovery, while the presented result is robust with a range of v from
1.05 to 2.5. The Leiden algorithm partitions the network into distinct communities,

whose biological functions were inferred from the gene programs they contained.

In addition to analyzing the network architecture analysis, we also clustered the
perturbation response vectors to uncover interaction patterns between perturbations
and the network. In general, we computed relative response h for each h by
subtracting the average h of control samples. Effective perturbations were then

selected by comparing with the distribution of relative responses in control samples.

In the Perturb-seq dataset, we selected 1,755 effective perturbations with p < 0.05
under Bonferroni multi-test correction using non-targeting guide RNA as null dis-
tribution. We clustered perturbations into groups, because the perturbation impacts
are noisy due to the low cell number in each condition and varying knockdown
efficiencies. We used the Leiden algorithm for better clustering of the noisy per-
turbation responses. We built an 8-nearest-neighborhood graph and ran Leiden
algorithms with resolution v = 3 to partition the perturbation response vectors into
40 groups. The relative responses of guide groups were defined as the average

relative responses in the group.

Automated identification of regulatory strategies and network coarse-graining
The response vectors can further reveal the information processing of the regulatory
network by elucidating how perturbation responses are organized across network
modules. The response vectors not only identify perturbation impacts on individual
programs, but also provide a global view of how cells respond to the stress induced by
the perturbation. To further consolidate perturbation groups, typical measures such
as Euclidean distance are not sufficient, as each gene program is not an independent
dimension but interacts closely with other gene programs through the regulatory
network. Therefore, we used a graph clustering strategy to integrate information of

program interactions into the clustering.

Specifically, we built an extended network by also including perturbations as nodes
of the network. The extended network encompassed both interactions between
gene programs and interactions between perturbation and programs. Formally, the

adjacency matrix of the extended network is

J [hy, by, ..

Jxt = | = =
o, bag, T 0

, (4.8)
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where h is the average relative response for each perturbation group defined in
Section 4.6. We then ran the Leiden algorithm on the extended network to detect
perturbations that had similar impacts at the network level. In Leiden algorithms,
modules of gene programs were fixed, and we only partitioned the perturbations.
Perturbations were partitioned into the same community if they influenced gene
programs that play analogous roles within the regulatory network. We set v = 1
in the Leiden algorithm, while the algorithm always generates four perturbation
clusters for v from 0.5 to 2.5, and the presented cluster assignment result is robust

with a range of v from 0.9 to 1.45.

Through graph clustering, perturbation groups were assigned to modules in the reg-
ulatory network. Based on the score function Equation 4.7 of the Leiden algorithm,
this suggested that the perturbations predominantly activated gene programs within
the module and were more likely to inhibit the gene programs outside the module.
Conceptually, this correspondence between perturbations and modules established
a connection of homeostasis regulation logic, that the cell upregulated the gene pro-
grams in the module in response to the loss of function caused by the perturbations.
Therefore, we named the global strategy of perturbation responses according to the
gene module that the perturbations were grouped with. For example, perturbations
that were assigned to the Translation module were named “Translation up-regulation

strategy".

We further visualized the global organization of biological functions and perturba-
tion response strategies with a minimal network derived from the D-SPIN model by
coarse-graining. In this simplified representation, both gene program modules and
response strategies were condensed into single network nodes, as programs in the
same module mostly have positive interactions inside and collectively contribute to a
specific biological function. In the minimal network, the interactions between mod-
ules were determined by the most significant positive or negative interactions across
their constituent gene programs. Similarly, the sign of the interaction between a gene
module and a perturbation strategy was based on whether the activating or inhibiting
interactions were stronger on average across the constituent gene programs and per-
turbation groups, and the strength is the average strength. As a visualization tool, the
minimal network spotlighted the major response strategies employed by the network.
For example, the impairment of translation machinery induced downregulation of

the Translation module and upregulation of the Degradation module.
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Coherence of molecular complexes in CORUM

To obtain a comprehensive list of molecular complexes whose subunit knockdown
effects were captured by the Perturb-seq dataset, we filtered the list of protein
complexes in the CORUM database (Giurgiu et al., 2019) by two criteria: (1) each
complex should have no fewer than 10 subunits, and (2) at least 2/3 of subunits
are contained in our filtered list of guide RNA, as in Section 4.6. Due to the
presence of closely related complexes with many shared subunits in the database,
we constructed a similarity graph using the overlap of subunits as edges. Through
clustering, we distilled these into 46 distinct categories, and selected the most

representative complex from each class that had the greatest number of subunits.

To assess the consistency of perturbation effects on subunits of each complex, we
computed a coherence score as the average cosine similarity across all pairs of
subunit perturbation response vectors.
2 hT-h,
coherence = > =
NN = 1) =5 [[hil[[h]]

4.9)

where N denotes the number of subunits in the complex, and h; represents the

relative response vector for knockdown of subunit .

The clustering of perturbation response vectors further revealed functional partitions
of subunits within molecular complexes. Selecting an optimal number of clusters
does not have a universal rule and is inherently subjective based on the context of
the analysis. Among various metrics available to guide this choice, we employed
the Silhouette score, which evaluates clustering quality based on the average dis-
tances within clusters and between neighboring clusters. A higher Silhouette score

indicates a better quality of clustering.

For each complex, we performed K-means clustering, with the number of clusters
K ranging from 2 to 15, and calculated the Silhouette score for each. We considered
a complex to exhibit distinct functional subunit groups if the peak Silhouette score
was reached for a K larger than 3. Examples of molecular complexes that exhib-
ited modular organization included Proteasome, Integrator, Large Drosha complex,
ALL-1 complex, and Spliceosome E complex, as presented in Figure 4.4 C and
Figure 4.5 B.



80
Chapter 5

ANALYZING IMMUNOMODULATORY DRUG AND
COMBINATION ACTION ON HUMAN IMMUNE CELL
POPULATION

5.1 Introduction

The rational programming of the human immune system is a major goal for the
treatment of diseases including cancer, auto-immunity, and neurodegeneration (Mar-
rack, Kappler, and Kotzin, 2001; De Visser, Eichten, and Coussens, 2006; Labzin,
Heneka, and Latz, 2018). The human immune system is composed of a diversity
of cell types (T-cells, macrophages, and B-cells), and each cell type adopts spe-
cialized sub-states of signaling and gene expression in response to environmental
cues. In diseases including cancer and auto-immunity individual cell types includ-
ing macrophages and T-cells can become locked into aberrant states of immune
suppression or hyper-activation that actually drive disease progression. Signal-
ing interactions between cell types reinforce aberrant immune states and generate a
major obstacle for the treatment of conditions like hyper-inflammation and immuno-
therapy resistance cancer. An ability to reprogram immune cell populations between
states of activation and suppression using combinations of drugs and other thera-
peutics could allow the rational design of therapeutic strategies for conditions that
currently defy treatment. However, immune state programming remains challenging
because we lack a detailed understanding of how drugs and other therapeutics act

on the large diversity of different cell states that execute immune function.

Single-cell genomics methods now enable full transcriptome profiling of heteroge-
neous cell populations across large numbers of therapeutic interventions (Adamson
et al., 2016; Dixit et al., 2016; Subramanian et al., 2017; S. Chen et al., 2020;
McFarland et al., 2020; Srivatsan et al., 2020; Burkhardt et al., 2021; Replogle
et al., 2022). Single-cell mRNA-seq measurements can quantify how a drug alters
the transcriptional state of individual cell types, and also reveal how drug action
across many cell types rebalances the abundance of different cell states in an im-
mune population. However, conventional single-cell data analysis methods typically
focus on cell-state identification and differential gene expression and do not allow

the construction of quantitative and predictive models that will be required for ra-
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tional therapeutic design. Immune state programming will require data modeling
frameworks that can dissect and predict therapeutic responses in a heterogeneous

cell population across thousands of expressed genes cell types.

Conceptually, quantitative models might reveal principles that simplify the bio-
logical interpretation of combinatorial drug responses while also aiding rational
treatment design. For example, previous work has demonstrated that combinations
of drugs can induce additive responses on protein expression and dynamics (Geva-
Zatorsky et al., 2010) where additivity means that the response of a specific gene to
a drug combination can be predicted as a simple linear combination of single drug
effects. The concept of drug additivity has also enabled the identification of non-
additive drug responses (Yeh, Tschumi, and Kishony, 2006; Nichols et al., 2011).
Non-additive drug responses are associated with interactions between pathways tar-
geted by individual drugs, and therefore, reveal points of information integration
in cellular regulatory networks. While principles like drug additivity have been
explored for small numbers of genes and relatively simple phenotypes like growth
rate, drug response principles at the transcriptome scale in diverse cell populations

remain poorly understood.

In order to develop an experimental, conceptual, and mathematical framework for
rational programming of the immune cell population, we combined large-scale
single-cell genomics with a physics-inspired mathematical modeling framework to
dissect combinatorial drug responses at the transcriptome scale in the human im-
mune system. Using multiplexed single-cell mRNA-seq, we profile the state of 1.5
million human immune cells responding to more than 500 different immunomod-
ulatory drugs alone and in combination. We constructed a mathematical model
that predicts the transcriptome scale response of individual cell types including
macrophages, T-cells, and B-cells while also predicting how drugs re-balance the
relative proportion of cell types and, thus, alter population structure. The model
reveals that combinatorial drug responses can be predicted as emerging as linear
and non-linear combinations of single drug responses on individual gene expression
programs. Our model quantitatively predicts the progression of a heterogeneous
immune cell population between states of activation, inhibition, and rest across drug
combinations allowing us to predict optimal drug doses for immune state control.
Broadly, our work provides an experimental and mathematical foundation for the
design of therapeutic strategies that can rationally reprogram the state of the human

immune system.
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Figure 5.1: Experimental system of drug profiling in T-cell-induced immune
activation. (A) Schematic of the experiment design for profiling drug responses on
T-cell-mediated immune activation. Peripheral blood mononuclear cells (PBMCs)
were harvested from a human donor. The cell population was treated by anti-
CD3/CD28 antibodies that specifically activate T-cells and immunomodulatory
drugs drawn from a library. The cell population was profiled after 24 hours of
drug and antibody treatment. (B) (top) PCA projections derived from a 30-hour
time-course experiment of T-cell-mediated immune activation, where samples were
taken every 30 minutes for single-cell mRNA-seq. (bottom) The plot shows the
time courses of the proportion of activated and resting cells in each cell type with
example activation gene markers. T-cell reaches activated states first in 2 hrs and
myeloid cell activation lasts 16 hrs.

5.2 Modeling immunomodulatory drug responses in primary human immune
cells

D-SPIN models can contribute to the design of therapeutic strategies by providing

global insights into how different underlying cell types respond to a given small

molecule or other therapeutic intervention. Given the role of the human immune

system in many diseases, we applied D-SPIN to dissect the response of human

immune cells to a library of small-molecule immunomodulatory drugs. We devel-

oped an experimental dataset in which we applied single-cell mRNA-seq to profile
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A CONTROL +CD3/CD28

Figure 5.2: Immunostaining validates CD3/CD28 antibody does not activate
monocyte alone. (A) Immunostaining of primary human monocytes cultured in
CD3/CD28 antibody (25 uL./mL cells), IFNG (5 ng/mL), GMCSF (5 ng/mL), MCSF
(5 ng/mL), or TNFA (5 ng/mL). The monocyte activation marker GBP1 is only
expressed under IFNG activation. The results show that anti-CD3/CD28 antibody
does not activate monocytes alone, and the observed monocyte activation in the
PBMC is due to signaling between cell types.

the response of human immune cells to 502 different immunomodulatory drugs.
Our experimental system was designed to probe the impact of drug modulation
on a cell population undergoing T-cell driven hyper-activation, as is observed in
auto-immune and hyperinflammatory states (Jamilloux et al., 2019; Fajgenbaum
and June, 2020). We cultured a heterogeneous population of primary donor-derived
human immune cells (peripheral blood mononucleated cells, PBMC) that contain
T-cells, B-cells, myeloid cells, and NK-cells. T-cells were activated using T-cell re-
ceptor antibodies anti-CD3/CD28 (Figure 5.1 A, Figure 5.2 A, Section 5.6), leading
to the activation of macrophage, B-cell, and NK-cell cell types (Figure 5.1 B, Fig-
ures 5.3 A-C, Section 5.6). We applied the system to analyze the action of different

immunomodulatory drugs on the activation of the immune cell population.

Single-cell mMRNA-seq was used to measure the effect of the 502 immunomodulatory
small molecules on T-cell-driven-immune activation. The drug library contains a
diverse set of small molecules targeting pathways including mTOR, MAPK, gluco-
corticoids, JAK/STAT, and histone deacetylases (HDAC) (Figure 5.4 A). The library
contains drugs used for treating auto-immune disease (e.g., Tacrolimus, Budesonide,
Tofacitinib) as well as FDA-approved anti-cancer drugs (e.g., Bosutinib, Crizotinib).
We added each compound at 1 pM at the same time as the anti-CD3/CD28 antibody,
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Figure 5.3: Timecourse of T-cell mediated immune activation shows various
dynamics of inflammatory and signaling genes. (A) UMAP embeddings of
example time points in the 30-hour time-course experiment of T-cell-mediated
immune activation, where samples were taken every 30 minutes for single-cell
mRNA-seq. The immune population gradually moves from the resting state to the
activated state. (B) Signaling gene expression over time for select signaling genes
in four cell types. Expression is normalized by the mean expression across the time
course. Many signaling genes are immediately upregulated in T-cells after antibody
activation, while in myeloid cells signaling genes such as IL27, and CXCL11 are
upregulated after a few hours, showing rich dynamics of communications between
different cell types.
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Figure 5.3: (Continued) (C) The dynamics of gene markers for immune activation
in each major cell type. The color-shaded range is the 10th and 90th percentile of
gene expression. After T-cell activation by the anti-CD3/CD28 antibody, major cell
types in PBMC are activated with different time dynamics.
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Figure 5.4: Large-scale drug profiling revealed a diversity of immune cell states
under the modulation of 502 small molecule drugs. (A) The histogram of classes
of profiled drugs shows the selected drugs have a variety of biochemical properties
and target pathways. (B) UMAP embedding of 1.5 million filtered single cells
obtained from the drug profiling experiments (Lopez et al., 2018). In the profiled
cell population we identified 32 cell states in the major cell types of T-, B-, NK, and
myeloid cells, and each cell state is curated by marker genes and gene differential
expression. (C) UMAP embedding of the resting control cell population (without
antibody activation) and activated cell population. The resting and activated cell
states compose the major partition on the UMAP.

and profiled the cell population using single-cell mRNA-seq at 24 hours (Holthaus
et al., 2018; McGinnis et al., 2019). For additional context, we also profiled drug
responses in resting cell populations without CD3/CD28 activation for a subset of
drugs. In total, we profiled 1.5 million single cells in resting and activated condi-
tions, with over 1,200 total conditions and 31 different immune cell states, including
4 CD4 T-cell states, 10 CD8 T-cell states, an NK-cell state, 4 B-cell states, and 8
myeloid cell states (Figures 5.4 BC, Figure 5.5 A, Section 5.6).

Using the single-cell mRNA-seq data, we applied D-SPIN to construct a regula-
tory network model of the cell population and the interactions of individual small
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Figure 5.5: Expression of cell-typing markers in each major cell type. (A) The
heatmap shows the Z-score of gene expression for cell type markers. Marker genes
are identified by differential expression analysis of each Leiden cluster. The Z-score
is computed from the mean marker gene expression in each Leiden cluster compared
to the mean and standard deviation in all the cells of the same major cell type (T-cell,
Mpyeloid, B-cell, and others).

molecules with the network to drive the observed drug impacts. The heterogeneous
population contains various immune cell types as well as resting, activated, and
drug-specific states. We applied D-SPIN in an unsupervised manner, using the
algorithm to construct a single, integrated regulatory network model that can cap-
ture all cell types and cell states by pairwise interactions between gene-expression

programs and interactions between gene programs and applied drugs.

For network construction, we chose 30 gene programs as informed by both the
Bayesian information criterion (BIC) and the elbow method on gene information
capturing (Hastie et al., 2009) (Figure 5.6 A, Section 2.5). With 30 gene programs,
89.0% of the selected highly variable genes have correlations larger than 0.5 with

corresponding gene programs in the gene matrix denoised by data diffusion (Van
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Figure 5.6: The choice of gene-program number; Uncertainty of the inferred
network. (A) Bayesian information criterion (BIC) of the gene program decompo-
sition as a function of gene program number. 30 is the optimal program number
that minimizes BIC when the effective sample size is 15k cells. (B) The propor-
tion of genes that have a high correlation with their corresponding gene programs
as a function of gene program number. In raw data, a high correlation is defined
as exceeding 3 standard deviations of gene-gene correlation distribution. In the
denoised data by MAGIC (Van Dijk et al., 2018), a high correlation is defined as
larger than 0.5. The plot shows that 30 programs is an elbow point of information
gain, as detailed in Section 2.5. (C) (left) Uncertainty of inferred network inter-
actions as a function of interaction strength quantified by the standard deviation
among alternative network solutions, as detailed in Section 2.5. The uncertainty is
generally below 0.06 and much lower compared with interaction strengths. (right)
Histogram showing the proportion of edge agreement between alternative solutions
of the D-SPIN network inference problem. Alternative solutions are obtained by
sampling from the Bayesian posterior distribution given the experimental data, as
detailed in Section 2.5. Alternative solutions of D-SPIN are highly consistent with
the inferred network, with typically more than 97% of the edges being in the same
category of activation, inhibition, and non-interacting.

Dijk et al., 2018). We performed oNMF with seeding to include drug-specific
programs, and the programs were sufficient to describe the transcriptional state
of all cells in the population (Figures 5.8 AB, Section 5.6). The decomposition
yielded known T-cell and macrophage gene-expression programs, including T-cell
resting (P5) and activation programs (P7), macrophage anti-inflammatory (P22 M2
macrophage), pathogen response (P27), antigen presentation (P19), and global cell-
state programs for T-cells (P6), B-cells (P15), NK cells (P14), and myeloid cells
(P20). The function of each program was annotated by a combination of informatics
databases (Kuleshov et al., 2016; Szklarczyk et al., 2021; Sherman et al., 2022) and
manual annotation, and subsequently validated on a single-cell atlas of human

immune cells (Dominguez Conde et al., 2022).

Using the experimental data and the gene expression programs, D-SPIN inferred a
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single interaction network J and a set of drug-specific response vectors h(™ across
all treatment conditions (Figure 5.7 A). The inferred network has low uncertainty, as
edge uncertainties are generally below (.06, while strong interactions have strength
above 1. Further, more than 97% of edges remain structurally stable when resampled
from the posterior distribution of near-optimal networks (Figure 5.6 C, Section 2.5).
Like the K562 cell network, the immunomodulatory drug-response network has
a distinct modular structure, with a set of core network modules composed of
tightly interacting gene programs (Figure 5.7 A, Figure 5.8 C). The inside-module
interactions are mostly positive and account for 76.2% of strong activating edges in
the network with strength larger than 1. The modules in the drug data contain groups
of gene programs that are expressed together in individual cell types. For example, a
module corresponding to anti-inflammatory myeloid cells contains P21 Monocyte,
P22 M2 macrophage, and P23 Myeloid growth and a network hub P20 Myeloid
cell. Similarly, in T-cells, another module containing P11 Granzyme K T-cell, P12
T-cell cytotoxicity, P13 Effector CD8 T-cell, and P14 NK cell corresponds to the
population of CD8 T cells and NK cells. In the D-SPIN model, negative interactions
primarily occur between gene programs expressed in different cell types, e.g., P2
T-cell maintenance and P19 Antigen presentation, as antigen presentation happens

in B-cells and myeloid cells but not T-cells (Figure 5.7 A).

As a maximum entropy model with a minimal number of parameters, the D-SPIN
model only contains a total of 465 network interaction parameters and 30 parameters
for each drug condition. However, it can generate samples that are consistent with
all profiling experiments of 502 drugs (Section 5.6). Qualitatively, we found visual
similarity between the distribution generated by the D-SPIN model on the UMAP
embedding and cell state distributions (Figure 5.7 B). Quantitatively, we computed
the cosine similarity between the model and data distribution on cell states, and in
92.4 % of the samples the model is > 90% similar to data (Figure 5.7 C). The cell
state distributions produced by D-SPIN also exhibit significantly higher similarity
with data distributions compared to the reference distribution obtained by pooling all
experimental conditions together to reflect the relative abundance of cell types (“‘all
samples" in Figure 5.7 C). The drugs with lower cosine similarity tended to be
drugs that drove the cell population into a few highly specialized cell states, like the
proteasome-inhibitor Bortezomib, which produced a strong signature of cell stress in
all cells. For these drugs, the D-SPIN model produced a cell-population distribution
that had a qualitative agreement with the data but differed quantitatively, likely due
to the extremely focused cell type distribution for these drugs. To further access the
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Figure 5.7: D-SPIN derives a drug-response network model from human im-
munomodulatory drug-response single-cell mRNA-seq profiling experiments.
(A) Network diagram shows the inferred regulatory network model between 30 gene
programs (P1-P30, circles), as well as interactions between programs and seven drug
classes (diamonds) identified by D-SPIN through clustering the response vectors.
In the network rendering, each program is positioned on the UM AP schematic upon
the cell state where the program is highly expressed. (right box) Gene programs
are functionally annotated through gene ontology annotation tools (Kuleshov et al.,
2016; Szklarczyk et al., 2021; Sherman et al., 2022) and manual lookup. (B) (left)
UMAP embeddings of experimental cell state distribution compared with the state
distribution generated by the D-SPIN model in example conditions including acti-
vated control, Tacrolimus treatment, and Vorinostat treatment. (right) Line plots
quantify the distribution of cell states of experimental data and D-SPIN models in
each example condition. The dashed line in cell state distribution is uniform distri-
bution as reference. D-SPIN models agree well with experimental data in the control
and Tacrolimus-treated samples. The model fits less well in the Vorinostat-treated
sample but still captures qualitative features of the distribution.
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Figure 5.7: (Continued) (C) Scatter plots show cosine similarity between experi-
mental data and cell-state distributions generated by D-SPIN, compared with two
reference null models. One null model is a uniform distribution over cell states, and
the other null model is pooling all cells from samples of all experimental conditions
to reflect the relative abundance of cell states. The cosine similarities between cell
state distributions of D-SPIN models and experimental data are higher than 0.9 for
92.4% of conditions.

distributions generated by the D-SPIN model, we employed several other metrics
for comparing high-dimensional distributions. Specifically, the errors between data
and model for the sample mean and cross-correlation by D-SPIN are, respectively,
3.9% and 7.2% compared to the uniform distribution over all possible states, and
the optimal transport distance by D-SPIN distributions is 12.4% of the uniform
distribution as a distribution-wise metric (Figure 5.9 A). At the single-state level, the
probabilities of states in D-SPIN models correlate with the empirical probabilities
of states in experimental data with a correlation of 0.54, 0.58, and 0.48 in example
conditions of activated control, Tacrolimus treatment and Vorinostat treatment; the
probabilities are not in exact numerical agreement due to the entire high-dimensional
space of 33 ~ 10'* states being far under-sampled by the thousands of cells in each

condition in the experimental data (Figure 5.9 B, Section 5.6).

5.3 Classification of small molecules using D-SPIN

In addition to the regulatory network model, D-SPIN also inferred a perturbation re-
sponse vector h(™ that quantifies interactions between each drug and the regulatory
network. By comparing the inferred response vector with control experiments, we
identified 70 out of 502 drugs that had statistically significant interactions with the
core gene network (Section 4.6). Moreover, as in the case of the Perturb-seq data,
we applied clustering to group drugs into a set of seven classes, including strong in-
hibitor, weak inhibitor I, weak inhibitor II, glucocorticoid, M1 macrophage inducer,
epigenetic regulator, and toxicant, based on their interactions with the underlying
regulatory network (Figure 5.7 A, Figure 5.10 A). We named the classes by analyzing
the structure of the cell population induced by drugs within the class. In addition to
inducing similar transcriptional responses in the underlying cell population, the drug
classes identified by clustering of D-SPIN perturbation response vectors, in many

cases, belong to specific chemical families with common mechanisms of action.

Three of the seven drug classes are drugs that inhibit activation of the immune-cell

population (Figure 5.10 A, Figure 5.12 A), leaving T-, B-, and myeloid cells in the
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Figure 5.8: Examples of gene program discretization and gene program visu-
alization on immune cell population UMAP. (A) Heatmaps of gene expression
and discretized gene program level on (left) activated control population (middle)
resting control population, and (right) T-cell receptor activation with Halcinonide
treatment. The expression of each gene is normalized by its maximum expression
and capped at 0.8 for visualization. The heatmaps demonstrate that discretized gene
programs characterize and denoise major expression patterns in the gene matrix.
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Figure 5.8: (Continued) (B) UMAP rendering of the expression level of each gene
program. Each cell is colored by its expression level on the gene program. The
expression level is normalized by the 95th percentile for visualization only. The
plots demonstrate that gene programs are specifically expressed by certain cell
states, which are localized in separate regions on the UMAP. (C) (top) Network
diagram of the regulatory network model by D-SPIN exhibits modular structure
with tightly connected subnetworks. The eight network modules correspond to
major cell types or cell type functions in the PBMC population, such as T-cells,
B-cells, and myeloid cells. (bottom) The histogram quantifies the distribution of all
network edges (J matrix entries) and edges inside the same module. Edges inside
modules are mostly positive interactions and contain the majority of strong positive
interactions in the network.

resting state, including drugs we classified as strong inhibitors, weak inhibitor I, and
weak inhibitor II. Across these drug classes, analysis of cell state distributions and
UMAP visualizations indicate that these drugs block the transition of T-, B-, and
myeloid cell types to the activated state, shifting the balance of the cell population to
resting cell states, but acting with a spectrum of inhibition strengths (Figures 5.10 B-
D). Very strong inhibitors, including the immunosuppressive drug Tacrolimus and
the cancer drug Dasatinib, completely block the activation of T-cells and myeloid
cells, inducing a cell population with a similar cell-state profile to unstimulated
PBMC population (Figure 5.10 D). Weak inhibitors, such as Temsirolimus, only
slightly bias the cell population towards resting states, compared with the activated

control population.

The individual drugs that fall into the inhibitor drug classes act on a variety of
molecular targets and signaling pathways (Wishart et al., 2006; Skuta et al., 2017)
(Figure 5.11 A). The strong-inhibitor class targets include JAK (Tofacitinib, Cerdu-
latinib, Ruxolitinib), BCR-ABL and Src family kinases (Bosutinib, Dasatinib), and
calcineurin (Cyclosporine, Tacrolimus), which are all pathways downstream of T-
cell receptor signaling. The drugs in the weak inhibitor I class target another group
of receptors including ALK (Crizotinib), FLT3 (Sunitinib), and various growth-
factor receptors (Crizotinib, Sunitinib, Nilotinib, Tivozanib). The drugs in the weak
inhibitor II class target protein kinases including mTOR (Everolimus, Temsirolimus,
Sirolimus) and ATR (Elimusertib). Broadly, the analysis suggests that inhibition can
be achieved via a range of distinct biochemical pathways and mechanisms. However,
the strongest inhibitors in our data have a high affinity for signaling molecules im-
mediately downstream of T-cell receptor activation, including the Src family kinase
Lck.
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Figure 5.9: D-SPIN generates cell state distributions that are highly similar to
experimental data under various metrics. (A) Scatter plots of evaluating how the
experimental data distribution is different from the D-SPIN model distribution and
two reference null distributions by (i) Euclidean distance between the average of
gene program expression, (ii) Frobenius norm of the difference between the cross-
correlation of gene program expression, and (iii) Optimal transport distance of
probability distributions. The two null distributions are (gray) uniform distribution
over all states and (green) the distribution of pooling samples from all experimental
conditions to reflect relative cell type abundance, as detailed in Section 5.6. Across
all experimental conditions, the distributions defined by D-SPIN quantitatively agree
better with the data distribution compared with the two reference distributions. (B)
Scatter plot comparisons between state distributions of experimental data and the
D-SPIN model. Even though the experimental observations are sparse samples of
a few thousand cells in the total 3° ~ 2 x 10'* possible states, the probabilities
of empirical distribution and D-SPIN model probabilities are moderately correlated
with correlation 0.54, 0.58, and 0.48. The plot shows that high-probability states in
the D-SPIN model are also high-probability states in experimental data.
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Figure 5.10: Drug response vectors identified by D-SPIN group drug into cate-
gories of phenotypic class. (A) Diagrams of response vectors inferred by D-SPIN,
for example, drugs show positive/negative interactions between the drug and gene-
expression programs as blue/red edges. Edge thickness scales with interaction
strength. Gene program names for all diagrams are indicated at the bottom of the
plot. D-SPIN identifies 7 phenotypical classes of drugs based on their response
vectors.
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Figure 5.10: (Continued) (B) UMAP embeddings of immune cell population after
treatment of antibody and example drugs from different classes. The top row shows
5 immune inhibitors with decreasing strength from left to right, from complete
suppression of immune activation (Dasatinib) to slightly increased resting cell pop-
ulation (Temsirolimus). The bottom row shows 4 example drugs that each induce
novel cell states distinct from both the resting and activated control cell population.
Cell state distribution of the activated control population (bottom-right) is shown
for comparison. Using response vectors, D-SPIN identifies immune inhibitors with
a spectrum of strengths and drugs that produce novel cell states. (C) Scatter plot
visualizes the response vectors of identified effective drugs that are statistically
different from control in the space of leading principal components (PCs). Each
drug is colored by its drug class. (D) Bubble plots show cell-subtype distributions
induced by selected drugs as well as the control cell population. Bubbles have sizes
scaling with the proportion in the population, and are colored by major cell types and
resting/activated classification. With decreasing inhibitor strength, the proportion
of the activated immune-cell population (deep colors) gradually increases. Some
drugs induce cell states that are different from both resting- and activated-control
populations.

While many of the drugs in our dataset have been previously reported as immunosup-
pressive, including well-known drugs such as Tacrolimus, our single-cell profiling
measurements and D-SPIN analysis organized the drugs into a quantitative series and
provided a single integrated framework for comparing drug action at the transcrip-
tome scale across a large number of inhibitors with different chemical mechanisms
of action. Specifically, immunomodulatory drugs vary in the breadth and specificity
with which they interact with biochemical targets, and a therapeutic question is to
understand how differences in biochemical preferences translate into transcriptional
changes and thus differences in therapeutic response (Schwartz et al., 2017; Zhou
et al., 2019; Van de Sande et al., 2023). Our dataset provides the opportunity to
perform a detailed comparison between the effects of drugs with the same primary
target but different breadth and specificity of secondary targets. Thus, the single-
cell assay and D-SPIN model together can identify phenotypic patterns that capture

potential differences in the outcome of drug action (Figure 5.11 A).

To quantify and rank the strength of immune inhibition by drugs, we computed an
inhibitor strength for each immune inhibitor drug by projecting the D-SPIN drug
response vector onto the leading singular vector of all inhibitors in our dataset (Fig-
ure 5.12 C, Section 5.6). The resulting quantification of inhibitor strength, when
combined with information on biochemical targets (Figure 5.11 A), revealed po-

tential principles of immunosuppression. For example, a specific set of BCR-ABL
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targets and pathways.

kinase inhibitors (Dasatinib, Bosutinib) developed for the treatment of leukemia

generated strong inhibition with strengths of 6.57 and 4.61, while another set of
BCR-ABL inhibitors, including Nilotinib, fall into the weak-inhibitor class with
a strength of 1.67. Biochemically, the BCR-ABL strong inhibitors can be dis-
tinguished from the BCR-ABL weak inhibitors by their increased Lck/Src kinase

specificity (Figure 5.11 A). The Lck kinase is a central signaling node directly

downstream of T-cell receptor activation. Similarly, both as strong inhibitors, the

Janus Kinase (JAK) inhibitor Cerdulatinib has a stronger inhibitory strength of
5.31 than the FDA-approved anti-inflammatory JAK inhibitor Tofacitinib with a
strength of 3.75. While both drugs have JAK as their primary target, Cerdulatinib
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Figure 5.12: D-SPIN identifies phenotypical classes of drug categories and
strength of immune inhibitors. (A) Heatmap of drug relative response vectors
inferred by D-SPIN. The relative response vectors are defined as the change of drug
response vector over control samples. D-SPIN identifies 70 effective drugs on the
immune population that have statistically significantly different relative response
vectors from control samples, as detailed in Section 5.6. We group these drugs
into seven phenotypical classes: strong inhibitor, weak inhibitor I, weak inhibitor
I, glucocorticoid, M1 macrophage inducer, epigenetic modifier, and toxicant. (B)
UMAP embeddings of example drugs from each class. Drugs in the same phenotyp-
ical class identified by D-SPIN exhibit similar cell population shifts on the UMAP
embedding, while the cell population states vary greatly between different classes.
(C) Strength of immune inhibition of all D-SPIN-identified immune inhibitors. In-
hibitor strengths are computed by projecting the relative response vector towards
the leading singular vector of all inhibitors, as detailed in Section 5.6.

also targets the kinase SYK. Therefore, the response vectors generated by D-SPIN,
when combined with data on drug-target binding (Figure 5.11 A), allowed us to
identify potential signaling nodes like Lck and SYK that differentiate the transcrip-
tional responses of otherwise related drugs like the JAK inhibitors Cerdulatinib and
Tofacitinib (Schwartz et al., 2017).

Beyond the strong and weak inhibitors, D-SPIN identifies a class of drugs that con-
tains glucocorticoids (GCs), steroid-derived small molecules that activate the gluco-
corticoid receptor (Figures 5.10 A-D). The GC class of drugs includes well-known
immunosuppressive drugs including Halcinonide, Budesonide, Triamcinolone, and
Dexamethasone. The GCs generate a population response that is similar to the strong
inhibitors like Dasatinib. However, the two classes of drugs also have important
differences in their interaction with the D-SPIN regulatory network. Specifically, D-
SPIN infers that the GCs not only inhibit activation programs in T-cells and myeloid
cells, but also activate a specific immunosuppressive gene program in macrophages.
The program is named P22 M2 macrophages, as it contains genes associated with
the immunosuppressive M2 macrophage including CD163 (Y.-C. Liu et al., 2014;
Desgeorges et al., 2019). Therefore, D-SPIN infers important differences in the
immunosuppressive effect of GCs and other inhibitors. GCs have weaker suppres-
sion of programs associated with chemokine secretion (P25), but induce the M2
macrophage program that is more weakly activated by drugs in the strong-inhibitor

classes.

In addition to the suppressive drug classes, D-SPIN also identifies a group of drugs

that induce the activation of inflammatory, pathogen-responsive M1 macrophages.
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The class includes small-molecule activators of Toll-like receptors, receptors in
macrophages that sense the presence of pathogens and whose activation induces
an innate immune response. The M1 macrophage inducer class contains TLR7
agonists (Vesatolimod, Resiquimod) and TLR8 agonists (Motolimod, Resiquimod),
and produces macrophage states related to host defense that highly express P27
Pathogen response and P29 Metallothionein.

Finally, D-SPIN identifies two classes of drugs, which we call epigenetic modi-
fiers and toxicants, that the model associates with activated cell-stress programs.
Toxicants include the proteasome inhibitor Bortezomib, potent non-selective hi-
stone deacetylase inhibitor Panobinostat, and DNA topoisomerase inhibitor 10-
Hydroxycamptothecin. Toxicants strongly activate the P30 Stress response and have
mostly inhibitory interactions with other gene programs, especially generic cell type
programs such as P6 T cell, P20 Myeloid cell, and P4 Lymphocyte. The epigenetic-
modifiers class consists of histone deacetylases (HDAC) inhibitors which generate
an epigenetically disrupted T-cell state (CD8_Tepi) that has elevated expression of
histone-related genes such as histone component genes and DNA topoisomerase
TOP2A.

5.4 Drug combinations that generate hyper-suppression

Immunomodulatory drugs are often used in combinations, and drug combinations
could in principle be used to tune the transcriptional cell-state distribution of the
immune cell population to meet therapeutic goals. However, the design of drug
combinations at the transcriptome scale is challenging due to a large number of
potential drug-gene interactions. D-SPIN models provide a framework to compare
the action of individual drugs on gene expression programs within the regulatory
network in order to identify drug combinations with potentially useful therapeutic

applications.

Therefore, we selected 10 drugs from different drug classes identified by D-SPIN,
profiled all pairwise combinations experimentally, and applied D-SPIN to interpret
the mechanisms of combination action (Figure 5.13 A). By comparing the D-SPIN
inferred response vectors of drug combination with single drugs, we found that
most of the drug interactions are additive or subadditive on the gene program level
where the effect of drug combination is equal to, or slightly weaker than, the linear
sum of single drug effect. Other types of drug interaction include dominant (single

drugs have different effects on the gene program and the combination follows one
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Figure 5.13: Drug combination profiling discovers novel cell states. (A) UMAP
embeddings of selected single drugs and pairwise drug combinations. We per-
formed pair-wise drug combination profiling for 12 selected drugs (8 shown here)
from different categories. (a). Strong inhibitor: broad-spectrum kinase inhibitor
Dasatinib, BCR-ABL, and Src tyrosine kinase inhibitor Bosutinib, SYK/JAK kinase
inhibitor Cerdulatinib, calcineurin phosphatase inhibitor Tacrolimus; (b). Weak in-
hibitor: mTOR kinase inhibitor Temsirolimus; (c). Glucocorticoid: Halcinonide;
(d). MI-macrophage inducer: Motolimod; (e). Epigenetic modifier: Vorinostat,
Belinostat; (f). Toxicant: Bortezomib; (g). Others: Forsythin, Naproxen sodium.
Forsythin and Naproxen cause the loss of macrophage population in single-drug
profiling, which is not observed in repeats in drug combination profiling.

of them), synergistic (the combination is stronger than the linear sum of single
drug effects), and antagonistic (the combination is weaker than each single drug
effect). Quantitatively, 83.0% of drug interactions are additive or subadditive on
gene programs, 9.4% are dominant, 6.2% are synergistic, and 1.4% are antagonistic
(Section 5.6). The additive interactions between drugs can recruit a combination of
transcriptional programs from single drugs, creating novel cell states or population

states, especially between drugs that have distinct impacts.

To determine how the additivity between single drugs on different programs gener-

ates novel biological outcomes, we first investigated the network-level similarities
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and differences between glucocorticoids (GCs) and strong inhibitors. In our exper-
iments, GC action on the D-SPIN regulatory network was similar to the action of
strong inhibitors, with both classes of drugs suppressing the activation of T-cells,
macrophages, B-cells, and NK-cells. However, GCs induce weaker suppression,
allowing cells to activate inflammatory cytokines, including CXCL10 and CXCL11
in the P25 compliment/chemokine program, whereas strong inhibitors, including
the Src family inhibitor Dasatinib, strongly suppress these cytokine programs. GCs
uniquely induce an M2 macrophage gene-expression program, which could be useful
in some therapeutic settings, due to the expression of anti-inflammatory signaling
molecules. The difference in impact between GCs and strong inhibitors is seen in
the comparison of the inferred interactions with the network of the GC Halcinonide
with the inhibitor Dasatinib (Figure 5.15 B). Gene programs P22 M2 Macrophage,
P25 Complement/chemokine, and P21 Monocyte are induced or repressed more

strongly by one drug than the other.

Therefore, we investigated whether combinations of glucocorticoids and strong in-
hibitors could induce both the M2 macrophage activation and cytokine-repression
effects, by performing single-cell nRNA-seq on cell populations treated with the glu-
cocorticoid Halcinonide in combination with the strong inhibitor Dasatinib across
a range of doses (Figure 5.16 A). We used D-SPIN to analyze the impact of the
drug combination on the regulatory network and underlying cell population. We
found that the drug combination induces both the strong immune suppression of
Dasatinib as well as the induction of M2 macrophage gene-expression programs
for a specific range of concentrations (Figures 5.15 BC). The response vectors for
the drug combinations show that the impact of Dasatinib and Halcinonide are ad-
ditive at the gene-program level across combinations of different concentrations.
The response vectors for the drug combination indicate significantly higher P22 M2
macrophage induction than the single drug effect of either Dasatinib or Halcinonide
(Figure 5.15 D), while also exhibiting increased suppression of P24 Inflammatory
macrophage over the single drugs. The response vectors also maintain strong acti-
vation of the resting program P21 Monocyte. However, the combinatorial responses
do not exceed the sum of individual drug effects, so we classify the effect as additive
or subadditive rather than synergistic. Similarly, on T-cell programs, the drug com-
bination causes a subadditive activation on P5 Resting maintenance, and additive
inhibition on P7 T-cell activation and P12 T-cell cytotoxicity (Figure 5.15 A).

The combination of Dasatinib and Halcinonide, therefore, generated a hyper-repressed
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Figure 5.14: Two drug combinations generate novel cell states distinct from
single drugs. (A) UMAP embeddings of activated control, single-drug-treated, and
drug-combination-treated cell population, with arrows indicating different myeloid
cell state changes. The drug combination induces a novel macrophage state that
occupies a distinct region on the UMAP. (B) UMAP embedding of cell states of the
two drug dosage titration experiments, Dasatinib plus Halcinonide and Tacrolimus
plus Motolimod. Cell states are colored by major cell types and resting/activated
classification. (bottom) UMAP rendering of example myeloid programs, where cells
are colored by the expression level of each gene program. (C) UMAP embeddings
of activated control, single-drug-treated, and drug-combination-treated cell popu-
lation, with arrows indicating different cell state changes. The drug combination
induces a novel cell population state with inhibited T-cell states and Motolimod-
induced-like myeloid states.

cell population with a repressed T-cell population and a macrophage cell population
with activation of both resting myeloid program P21 and M2 macrophage program
P22 (Figure 5.14 B). The modulation is monotonic with doses as reflected on the
response vectors, and manipulation of the drug doses allowed conversion of the
cell population from activated to intermediate suppression (resting-like) to hyper-
repressed M2 macrophage-like states (Figures 5.14 CD, Figure 5.16 C, Section 5.6).
Conceptually, by combining the two drugs, we are effectively able to fine-tune the
transcriptional state of the macrophage population by exploiting a superposition
interaction. Here, the drug combination recruits a combination of gene-expression
programs in a dose-dependent fashion, which is also observed in a previous study
performed at the single-protein level (Geva-Zatorsky et al., 2010).
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Figure 5.15: The combination of Dasatinib and Halcinonide produces novel
cell states with coherent superposition. (A) (left) Schematic diagram of coher-
ent superposition where the single drugs both have activation/inhibition effects on
downstream gene programs and the combination drug response is the superposition
of single drug effects. (middle) Diagram of response vectors for Dasatinib and
Halcinonide alone and their combination. The two single drugs and their combi-
nation have coherent effects on gene programs by activating/inhibiting the same
set of programs. (right) Scatter plots compare the response vectors on each gene
program for Dasatinib and Halcinonide. The two drugs have a high coherence score
(0.63) quantified by the cosine similarity, but different strengths of interactions with
gene programs. (B) Scatter plots of the response vectors on each gene program for
the drug combination and maximum response strength of two single drugs. The
combination responses on gene programs are a superposition of single-drug re-
sponses, as they are generally higher than the maximum strength of the single-drug
responses. (C) (top) Diagram of response vectors for two single drugs and their
combination on most impacted myeloid programs under different dosages. The
combination response is a superposition of coherent single-drug interactions across
dosages. (bottom) UMAP embeddings of myeloid states for each drug combination
dosage. The novel macrophage state is induced by a combination of gene program
recruitment of single drugs. (D) Surface plot shows response vectors on program
P22 under different dosage combinations, where dots are from experimental data
and the surface is spline interpolation. On the program, each single drug response
exhibits a sigmoid-shaped curve with the logarithm concentration but with differ-
ent saturating strengths, and the combination response is approximately the sum of
the two sigmoid-shared single drug responses, showing the signature of superposi-
tion/additivity.
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Figure 5.16: Drug dosage combination profiling reveals phase diagrams of drug
combination effect. (A) UMAP embeddings of dosage combination profiling of
Dasatinib plus Halcinonide. The two drugs create a Monocyte-like resting myeloid
population at a medium level of combination (10 nM Dasatinib, 1 nM Halcinon-
ide) and a novel combinatorial myeloid state expressing both Monocyte and M2
macrophage gene programs. On T-cells, the drug combination also produces in-
hibited T-cell states. (B) UMAP embeddings of dosage combination profiling of
Tacrolimus plus Motolimod. The drug combination produces myeloid states that
are similar to Motolimod-induced pathogen-responding myeloid states, and inter-
mediate T-cell states that have gene program expression signatures of both drugs.
(C) The phase diagram of myeloid states under different drug dosage combinations
of Dasatinib and Halcinonide depicted by D-SPIN. The phase diagram is computed
by evaluating the likelihood of each reference cell state (activated macrophage, M2
macrophage, etc.) at different dosage combinations using spline interpolation of
response vectors of profiled dosages as detailed in Section 5.6. At a low dosage
of Dasatinib, the myeloid state transitions from the activated macrophage state to
the M2 macrophage state as the Halcinonide dosage increases. At high dosages of
Dasatinib, increasing Halcinonide dosage produces monocyte-like, inhibited mono-
cyte, and M2-like monocyte states.
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Figure 5.16: (Continued) (D) The phase diagram of myeloid states under differ-
ent drug dosage combinations of Tacrolimus and Motolimod depicted by D-SPIN.
The phase diagram shows the dominance of Motolimod-induced pathogen-response
macrophage states over Tacrolimus-induced monocyte-like states.

5.5 Drug combinations that activate the innate immune system while repress-
ing T-cell activation
In a variety of therapeutic settings, it can be advantageous to modulate the balance be-
tween adaptive (T-cell-driven) and innate (macrophage-driven) immune responses.
For example, T-cell responses may react adversely with transplanted organs and
are therefore suppressed in transplant patients. Unfortunately, infections become a
significant cause of mortality as a result of immunosuppression. Thus, the induction
of an innate immune response in the background of immunosuppression provides a
strategy for combating infection (Jay A Fishman and Rubin, 1998; J. Fishman, 2017;
Pereira et al., 2020). To understand whether D-SPIN could be applied to tune the
balance between different immune cell states at the population level, we use D-SPIN
model-identified M1 macrophage-inducing small molecule Motolimod, as well as
standard immunosuppressive small molecules, including Tacrolimus, which are re-
vealed to be mostly incoherent with Motolimod in their impact on the underlying
gene regulatory network (Figure 5.17 A). Specifically, the global cosine similarity
between Motolimod and Tacrolimus responses was only 0.01 and the two drugs are
biased to impact T-cell (Tacrolimus) or macrophage (Motolimod) gene-expression
programs, with Tacrolimus activating resting T-cell programs and Motolimod acti-

vating a pathogen-responsive macrophage program, P27 (Figure 5.17 B).

To exploit the incoherence between Tacrolimus and Motolimod, we added the drugs
in combination across a series of doses, applied single-cell mRNA-seq to profile
the resulting cell population, and analyzed the combinatorial drug response with
D-SPIN (Figure 5.16 B). D-SPIN identifies a concentration regime (Figure 5.14 C,
Figure 5.16 D) in which the cell population contains activated macrophages with
activated pathogen response program P27 while maintaining T-cell repression with
inhibited T-cell activation program P5, with higher than 1000 nM Motolimod and
higher than 100 nM Tacrolimus (Figure 5.17 C). Specifically, the two single drugs
have different impacts on myeloid programs: Tacrolimus activates the resting pro-
gram P21 Monocyte, and Motolimod activates the pathogen response programs P27.
The drug combination exhibits non-additive, dominant interactions on the programs

P21, where the combination follows the no-effect of Motolimod instead of the acti-
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Figure 5.17: The combination of Tacrolimus and Motolimod produces novel cell
states with incoherent dominance. (A) (left) Schematic diagram of incoherent
dominance where the single drugs have different activation/inhibition effects on
gene programs and the combination response is dominated by one of the single
drugs. (middle) Diagram of response vectors for Tacrolimus and Motolimod alone
and their combination. The two drugs have incoherent effects as they activate/inhibit
different sets of gene programs, and the combination effects follow one of the single
drugs. (right) Scatter plots compare the incoherent response vectors of the two
drugs with a low coherence score (0.01). (B) Scatter plots of the difference between
combination response and two single drug responses. On myeloid and B-cells, the
response is more similar to, therefore dominated by Motolimod. On T-cells, some
programs are dominated by Tacrolimus and some are dominated by Motolimod. (C)
(top) Diagram of response vectors for two single drugs and their combination on
most impacted myeloid programs under different dosages. At high concentrations
of Motolimod, the activations of Tacrolimus on P21 and P22 are dominated by
the no-effect of Motolimod. (bottom) UMAP embeddings of myeloid states for
each drug combination dosage. The dominance of Motolimod over Tacrolimus on
myeloid programs induces myeloid states similar to the effect of Motolimod alone.
(D) Surface plot shows response vectors on (left) program P21 and (right) program
P27 under different dosage combinations. On the program P21, the activation effect
of Tacrolimus is abolished by increasing the dosage of Motolimod. On the program
P27, the activation of Motolimod is not influenced by the dosage of Tacrolimus.
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vation of Tacrolimus (Figure 5.17 D). The non-additive interactions are important
because Motolimod’s dominance over Tacrolimus on P21 leads to the pathogen-
responding M1 macrophage state, similar to the state induced by Motolimod alone.
Conceptually, the Motolimod and Tacrolimus drug combination demonstrates that
drugs impacting separate cell types can be combined to tune the structure of an

immune cell population.

5.6 Supplementary information

High-throughput drug perturbation experiments on PBMCs

All high-throughput drug perturbation experiments were performed in cell-repellent
treated 96-well plates (Greiner Bio-One 07-000-640). We selected the drug library
from the SelleckChem Immunology and Inflammation-related library (L4100), or
the FDA-approved drug library (L2000), which were supplied at a stock concen-
tration of 10mM. The layout for drugs and/or drug combinations for each 96-well
plate was pre-defined before starting the experiment. The final working concen-
trations for drugs varied between 0.01 nM to 10 uM. To stimulate PBMCs into an
activated state, some wells included the use of ImmunoCult Human CD3/CD28 T
Cell Activator (Stemcell Technologies 10971), which was used at the commercially
recommended final concentration of 5 uL./200 uL. After completing drug dilutions,
we dispensed drugs into a 96-well plate layout, loaded 200,000 PBMCs into each
well, and cultured for 24 hours in a tissue culture incubator at 37 °C and 5% CO2.
All working drug dilutions and cell suspensions were prepared in RPMI-1640 +
1% Pen/strep + 10% FBS. The final concentration of DMSO within these experi-
ments was always below 0.1%, which has been shown to produce minimal effects

on immune cell activation (Holthaus et al., 2018).

High-throughput single-cell profiling using sample multiplexing techniques

After 24 hours of drug exposure, we harvested cells for single-cell profiling. Cells
were enzymatically dissociated into a single-cell suspension and multiplexed using
MULTI-seq lipid-modified oligos (McGinnis et al., 2019). One experiment (MULT-
19) was performed using 10X Chromium Cellplex Kit (1000261), and manufacturer
protocols were followed. Although plates were treated to be cell repellent, acti-
vation of certain cell types within the PBMC mixture can produce strong adhesive
tendencies to the plate and each other. Thus, we enzymatically digested both the cell
suspension and the plate surface with 100 uL of TrypLE (Thermo Fisher 12604021)

to ensure the complete recovery of all cells. Briefly, the digestion was performed
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as follows: Using a multichannel pipette, all cells from each plate were transferred
to a conical V-bottom 96-well plate (Thermo Fisher 249935), and then 100 uL of
TrypLE was added to each well of the original plate and kept at room temperature.
The conical V-bottom well plate, which contains the cells originally in suspension,
was centrifuged at 400 rcf for 4 minutes. The supernatant was removed, and 100
uL. of TrypLE was added to each well of pelleted cells and triturated gently. Both
the original plate and the v-bottom plate were then incubated at 37 °C for 2 min-
utes simultaneously. After checking that any adherent cells were removed from the
original plate, the cells in each plate were triturated and pooled back together. Cells
were then labeled with MULTI-seq lipid-modified oligos according to the original
protocol (McGinnis et al., 2019) and profiled using the 10x Chromium 3’ chemistry
(v3.1, PN-1000121) or using the HT version (HT Kit v3.1, 1000370). Cells were
super-loaded onto each lane of a Chromium chip at 25,000-40,000 cells per lane,
or onto a Chromium HT chip at 60,000 cells/lane. Sample tags were purified and
amplified according to the MULTI-seq procedure or according to manufacturer in-
structions for Cellplex. Libraries were sequenced using Illumina Novaseq S4 chips
at the UCSF CAT Sequencing facility to a target depth of 40,000 transcriptome
reads/cell barcode and 5000 sample tag reads/cell barcode. Cells that were multiply
labeled by sample tags were computationally removed from the analysis.

Time-course profiling of T-cell mediated immune activation

A reverse time course of CD3/CD28 T Cell Activator was performed using a Tecan
Evo robot (Caltech Protein Expression Center). Briefly, cryopreserved PBMCs
from healthy donors were thawed and rested for 16 hours as described above. Cells
were then pelleted and dissociated with gentle trituration and seeded into 96-well
plates at 200,000 cells/well in 150 uLL of RPMI-1640 + 10% FBS + 1% P/S. The
cells were then brought to a Tecan Freedom Evo2 liquid handling robot, which
was programmed to dispense CD3/CD28 activator into each well at 30-minute
intervals for 30 hours. The CD3/CD28 activator was diluted 1:10 in RPMI-1640
+ 1% Pen/strep + 10% FBS, and 50 uL of the dilution was added at each time
point. One well which did not receive any activator served as timepoint 0. Between
dispenses, the plate was held in an onboard incubator at 37 °C and 5% CO2. After
the conclusion of the time course, cells were immediately harvested for single-cell

profiling using multiplexing tags (MULTI-seq) as described above.
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Alignment and de-multiplexing

We used the Cell Ranger software (10x Genomics) to align single-cell RNA se-
quencing reads to the transcriptome. For experiment batches MULT-6, 7, 8, 9,
10, 12, 13, 14, 15, 16, TC, we used Cell Ranger 3.1.0. For experiment batches
MULT-17, and 18, we used Cell Ranger 5.0.1. For experiment batches MULT-19
and MULT-20, we used Cell Ranger 6.1.2. The 10x Genomics hg19-1.2.0 genome

build was used as a reference transcriptome.

Except for MULT-19, where we used the 10X Cellplex pipeline to demultiplex
the conditions of each cell, we used a custom Python pipeline to assign cells to
each condition based on the sequenced tags following the pipeline in MULTI-seq
(McGinnis et al., 2019).

Filtering, normalization, and clustering of the drug profiling dataset

The single-cell gene expression normalization in the drug profiling dataset is gener-
ally identical to the Perturb-seq dataset. We normalized the raw counts by each cell
with the same scaling factor 10, and gene expressions were log-transformed for the

following analyses except for the highly variable gene selection.

The highly variable gene selection was based on the zero-inflated Poisson expression
model we developed (Section 4.6). The drug profiling dataset contains (1) a large
dataset of single drug and drug combination profiling (Drug Profiling) and (2) a
dataset of follow-up drug dosage combinations (Dosage Combination). The gene
filtering was performed on the Drug Profiling dataset, and Dosage Combination
follows the same filtering. To avoid noise in low-expression genes, we excluded
genes that only expressed in fewer than 0.1% of the cells in the Drug Profiling
dataset. (In the Perturb-seq dataset, the low-expression genes were already filtered
out by the authors in the published data). We selected 3,287 highly-variable genes
in the remaining genes, which is log 10(1.1) above the curve fitting Equation 4.5 for

the zero-inflated Poisson distribution model.

Collected single-cell profiling data have batch effects across experiments, likely due
to variations in cell culture conditions and technical differences across sequencing
machine runs. To visualize, cluster, and cell type single-cells in the Drug Profiling
dataset, we corrected batch effects by constructing latent representations on raw
gene counts of 5,000 selected genes (scanpy.pp.highly_variable_genes) with scVI
(dispersion="gene-batch’, n_latent=10, n_layers=2, max_epoch=200, batch_size=5120)
(Lopezetal., 2018). We constructed a 15-nearest-neighbor graph (scanpy.pp.neighbors)
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on the latent representation, computed Leiden clustering for cell clusters
(scanpy.tl.leiden), and conducted UM AP embedding for visualization (scanpy.tl.umap).
The cell subtype identities of each Leiden cluster were annotated manually by com-
paring the most significant up-regulated genes of the cluster with the remaining
cells. We removed three clusters that mostly came from the experimental batch
“MULT-6" and were putatively cell debris, as they expressed the maternal effect
gene OOEP and disrupted transcriptional states were present. We also excluded red
blood cells (RBC) and plasma B-cells for D-SPIN analysis, as they are small and
isolated cell populations with distinct transcriptional profiles.

The Dosage Combination dataset followed the same normalization and logarithm
transformation pre-processing. We visualized the data by batch effect correc-
tion with scVI (dispersion="gene-batch’, n_latent=10, n_layers=2, max_epoch=100,
batch_size=5120) followed by the same neighborhood graph, Leiden clustering, and
UMAP embedding procedures.

oNMF decomposition of single-cell dataset

In the drug profiling study, we used a subset of 3.3 x 10° single cells using the
equal-balancing scheme, sampling 1,000 single cells from each Leiden cluster of
cell states. In drug profiling data, the sampling scheme was to better capture gene
programs in drug-specific cell states that composed a small proportion of all the cells.
In the drug profiling study, as specific drug-induced cell states were a small fraction
of the whole dataset, we increased the resolution of oONMF to K’ = 50. During
preliminary runs of oONMF, we identified drug-specific response programs such as
Pathogen response and Stress response. We then manually curated random seeding
to select the oONMF decomposition that included these target gene programs. We
then combined the 50 programs into 30 by merging programs with similar biological

functions and distribution of cell-subtype expression.

Embedding and comparison of D-SPIN and data distributions

To access the alignment between samples generated from D-SPIN and experimental
data (or synthetic data as in Section 3.5 and Section 3.5), we employed several
measures, including UMAP, cell state distributions, distribution moments, optimal

transport and exact probability distribution.

For small networks, the number of possible states s was relatively small and the
distribution defined by D-SPIN could be explicitly computed, such as the HSC
network and the cell-cycle subnetwork of the Perturb-seq data. We directly took
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samples from the D-SPIN distributions, computed joint embedding of D-SPIN
samples and experimental data with UMAP, and computed Leiden clustering on the
nearest-neighborhood graph obtained during the computation of UMAP. As states
in the model are discretized states [—1, 0, 1], to avoid the neighborhood graph being
disconnected due to frequent states forming cliques between themselves, we added

a Gaussian noise on sample states with zero mean and 0.1 standard deviation.

For larger networks, the total 3" possible states were impossible to enumerate,
and the network encompassed a more complex landscape of cell states, such as
the network of the drug profiling dataset. For a comprehensive evaluation of state
distribution by D-SPIN and experimental data, we sampled 10° samples by MCMC
(Section 2.4) for each experimental condition as an empirical distribution of the

D-SPIN model, and performed the following analysis.

1. UMAP embeddings of samples from the D-SPIN model. In the drug pro-
filing dataset, there were more than 1,000 conditions and the total number
of D-SPIN-generated states was more than 10° (10° for each condition) and
intractable for joint UMAP embedding. Therefore, we projected the states
generated by D-SPIN to the batch-corrected UMAP of the experimental data
with over 1 million cells (Section 5.6). Specifically, for each D-SPIN sample,
we mapped it to the nearest neighbor of the discretized states in the experimen-
tal data. In the case of multiple nearest neighbors, the probability was evenly
distributed between these cells. In this way, the 10° samples from D-SPIN
for each condition defined a distribution over the entire observed dataset, and
could be visualized on the UMAP. We sampled 10° cells from the distribution
to render the UMAP for D-SPIN samples.

2. Similarity of distribution on cell subtypes. The projected distribution over the
whole dataset also defined a distribution over the cell subtypes as the clusters
in the UMAP embedding. We computed the cosine similarity between cell
subtype distributions of experimental data and the D-SPIN model for each
condition. For reference comparison, we also defined two null distributions of
cell state: the first null distribution is the uniform distribution over all possible
states in the discrete space of [—1,0, 1], the second null distribution is the
uniform distribution over the drug profiling dataset by pooling all conditions

together to reflect the relative cell type abundance.
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3. Gene program expression mean and cross-correlation. The first- and second-
order moments of distributions are their fundamental characteristics. We
computed the Euclidean (Frobenius) norm of the difference between the mean
(cross-correlation) of the experimental data and D-SPIN model and presented
in Figures 5.9 A(i)(ii)

4. Optimal transport (OT) distance between experimental data and D-SPIN
model. OT offers a robust method to quantify the distance between two prob-
ability distributions, taking into account the underlying geometry of the data
space. For computational tractability, we computed the entropy-regularized
Sinkhorn OT distance with Python package POT (pot.sinkhorn(reg=0.5)) be-
tween experimental data and D-SPIN model distributions and presented in
Figure 5.9 A(iii). Specifically, as the samples of the D-SPIN model were ob-
tained through MCMC, they were highly noisy at the single-state level. States
that appeared only once or twice were likely by chance and led to skewed
representations of the true distributions. This noise could be mitigated with
neighborhood projection or distribution average in previous metrics, but had
large impacts on state-level distribution comparisons such as OT. Therefore
we filtered out states in the D-SPIN model that appeared fewer than 5 times,
which were roughly half of the 10° samples.

5. Direct state probability comparison. We further directly compared the prob-
ability of each single state, presented as scatter plots as in Figure 5.9 B. The
probability of the D-SPIN model also filtered out states that appeared fewer

than 5 times, as in optimal transport distance computation.

Discovering regulatory networks modules and clustering perturbation responses
In the drug profiling dataset, due to some batches only having a single control
sample, a unified statistical test for the significance of perturbation response vectors
is not viable. We scored each drug by the negative log probability density function at
h of a multivariate Gaussian distribution with zero mean and diagonal covariance.
The covariance was determined by the variance of control samples of the same
experimental batch if there were more than one control sample, otherwise by the
variance of all control samples in the dataset. We selected 158 candidate drugs with
a score above 20, and performed K-means clustering with 20 clusters. We found
that some drug clusters were putative experimental batch effects, as these contained

biochemically different drugs from the same experimental batch. We also removed
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the drug cluster where a complete loss of macrophage population was observed, as
the loss of macrophage population was not reproducible in other experiments, and
likely resulted from cell adhesion to the culture plate. The remaining drug clusters
were then manually reviewed and consolidated based on their biological impacts,

resulting in 70 drugs in seven major categories.

Identification of drug target and potency from database

The drug target information was obtained by querying the probes & drugs database
(Skuta et al., 2017). Repetitive entries in the database were consolidated with
manual annotations. The primary target of drugs is based on Drug Bank (Wishart

et al., 2006) as well as manual lookups.

Computing strength of immune inhibitors

The strength of immune inhibitors in the D-SPIN model is quantified by projecting
each inhibitor’s relative response vector h onto a principal direction, denoted by e
with the expression Strength = h -e. The principal direction, e, is derived from
the leading left singular vector of the matrix composed of stacked relative response
vectors [iLl, fLQ, ... | from all immune inhibitors, including strong inhibitors, weak
inhibitors I, and weak inhibitors II. The leading singular vector, determined through
singular value decomposition (SVD), captures the primary axis of variance of the
inhibitor response vectors. Essentially, it represents the consensus direction of gene

program combinations that all immune inhibitors act on.

Categories of drug interactions on gene program level

We define five major types of drug interactions on the gene-program level: additive,
subadditive, dominant, synergistic, and antagonistic. Denoting the response of two
single drugs and drug combinations on a specific gene program as hq, ho, h., we
classify different drug interactions based on the sign and magnitude of the single
drug and combination responses. We define a tolerance o = 0.5, and the sign of a

response h is defined as the sign after soft thresholding
-1 ifh < —§,
sgn(h) =<0 if —6<h <4, (5.1)
1 ifh>0.
Additive interactions are defined as

he — hy — ha| < 6 (5.2)
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Otherwise, if the two drug responses have the same sign sgn (hy) sgn (hy) > 0, we
assume h; > 0, hy > 0 for notation simplicity and the situation of hl < 0,hy < 0
naturally follows. The interactions are defined by

synergistic  if h. > max(hy, ho) + 9
interaction = q antagonistic if h. < min(hy, hy) — & (5.3)

subadditive ~ min(hq, hy) — 0 < h. < max(hy, he) + 6

If the two drug responses have opposite signs sgn (h;)sgn (hy) < 0, we assume

hi > 0, he < 0, h. >= 0 for notation simplicity. The interactions are defined by

synergistic if h, > hy + 0
interaction = < dominant ifhl =6 <h.<hy+46 (5.4)

subadditive 0 < h. < h; — 0

If the two drug responses both have sign 0, the interactions are defined by

‘ ‘ subadditive if sgn (h.) =0
interaction = (5.5)
synergistic  if sgn (h.) # 0
Lastly, if only one of the drug responses has sign 0, we assume h; > 0, sgn (hg) =0

for notation simplicity. The interactions are defined by

dominance if sgn(h.) =0
) ) synergistic  if h. > hy +0
interaction = (5.6)
antagonistic if h. < hl —9

subadditive ifhl —0 < h. < h;+6

Coherence between drug responses

To evaluate the similarity in responses induced by the two drugs, we analyzed both
global coherence and program-level coherence. The global coherence was defined
by the cosine similarity between the relative response vector of the two drugs, that
coherence = h] - hy/||hi||||h2||. The program-level coherence was determined by
comparing the sign of perturbation effect on each gene program. If the relative
response vectors of the two single drugs share the same sign on a gene program, the
two drugs are coherent on the program. Conversely, opposite signs indicate they are

incoherent on the program.
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Phase diagrams of dosages of drug combination

The regulatory network of the D-SPIN model is able to convert response vectors
into distributions of cell states, therefore enabling the interpolation of cell state
transitions between experimental conditions. In the dosage combination experi-
ments with Dasatinib and Halcinonide, we observed the transition between activated
macrophage states, monocyte-like resting states, and combinatorial states with both
M?2 and monocyte transcriptional programs. We used D-SPIN to depict the transi-
tions between the different cell states induced by the change in drug combination

dosages.

To precisely tailor the regulatory networks controlling cell state changes in drug
dosage combinations, we exclusively used samples from two drug dosage combi-
nation experiments to fit a regulatory network J and response vectors h. These
experiments, including Dasatinib and Halcinonide in one and Tacrolimus and Mo-
tolimod in the other, spanned a range of dosages and provided a rich dataset to
explore the effect of drug dosage combinations. The first experiment included vary-
ing concentrations of Dasatinib and Halcinonide in the following dosages: Dasatinib
at 0.1, 1, 10, 100, and 1000 nM, and Halcinonide at 0.01, 0.1, 1, 10, 100, and 1000
nM. The second experiment included a similar dosage design, using Tacrolimus
(dosages of 0.1, 1, 10, 100, and 1000 nM), and Motolimod (dosages of 1, 10, 100,
1000, and 10000 nM). In both experiments, we profiled all combinations of these

two drug dosages.

To elucidate the modulation of cell states with drug combinations, we constructed
a phase diagram of cell states by estimating the average log-likelihood of major cell
subtypes under every drug dosage combination. For any given drug combination
concentration (¢, ¢;), we interpolated the response vector h(cy, ¢2) (MATLAB fit
‘thinplateinterp’) and evaluated the score u of the target cell subtype as the average

log-likelihood of individual states { } et s

1

u = -
fareet # { S }Target

Then, we used softmax across all target cell subtypes to compute the estimated
likelihood of each state

> log P(s; J, h(cy, ) (5.7)

{ S }Target

€xp UTarget i
Zi €XP UTarget i

(5.8)

Ptargeti =

and rendered the phase diagram by the target state with the largest probability as
presented in Figures 5.16 CD.
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In the analysis of Dasatinib and Halcinonide combinations, we distinguished five
myeloid states of interest, including (a) Activated macrophage: activated control,
(b) Monocyte-like: resting control, (¢) M2 macrophage: 1000 nM Halcinonide,
(d) Inhibited monocyte: 1000 nM Dasatinib, and (e) M2-like monocyte: 1000 nM
Dasatinib plus 1000 nM Halcinonide. Similarly, in the analysis of Tacrolimus and
Motolimod combinations, we investigated three target myeloid states: (a) Activated
macrophage: activated control, (b) Monocyte-like: 1000 nM Tacrolimus, and (c)

Pathogen-response macrophage: 10000 nM Motolimod.
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Chapter 6

CONCLUSIONS AND DISCUSSIONS

Here, we introduce D-SPIN, a probabilistic modeling framework, that constructs
quantitative, generative models for gene regulatory networks from large-scale single-
cell mRNA-seq datasets collected from cell populations across a series of perturba-
tion conditions. The D-SPIN framework is general and can be applied to study the
response of cells to genetic perturbations, small molecules, and signaling conditions.
D-SPIN models can be treated both as network models that are analyzed using the
tools of graph theory as well as complete probabilistic models that can predict the
structure of a cell population across a series of different conditions. The mathemat-
ical structure of D-SPIN allowed us to develop a computationally efficient, parallel
inference procedure that can be run on hundreds of CPU cores to perform network
inference on datasets with thousands of perturbations and millions of cells. Our work
establishes an interpretable model framework for transcriptome-scale perturbation
datasets. The D-SPIN framework is a maximum-entropy modeling framework
adapted from the analysis of systems in condensed-matter physics (Jaynes, 1957).
D-SPIN provides a low-dimensional, compact yet predictive framework for analyz-
ing population-level effects in single-cell data through a regulatory network model.
Biologically, we apply D-SPIN to generate global insights into network-level mech-
anisms of cellular homeostasis, to define hypotheses regarding the sub-functions
of protein complexes, to demonstrate the additive logic of combinatorial drug re-
sponses at the transcriptome scale, and thus to develop a framework for applying the
additivity of immunomodulatory drugs to program immune cell-states and immune

population structure.

Single-cell mRNA-seq methods enable large-scale perturbation response studies
across cell types and organisms. D-SPIN provides a computational framework
for integrating information from such studies into regulatory network models that
can be analyzed and compared to reveal principles of cellular regulation. We
have demonstrated that D-SPIN provides insight into damage response strategies
in K562 cells. Stress response strategies play a role in many diseases including
cancer, and diseases of ageing and degeneration. Further, cell response strategies
change over the lifetime of organisms and also over evolutionary time scales. Our

understanding of gene regulatory network architecture, logic, and evolution has
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been limited by the limited number of network reconstructions that exist. D-SPIN
provides a framework to construct, analyze, and compare regulatory networks to

understand how they change over time.

Cells are distributed control systems that modulate many internal processes to
maintain homeostasis and execute cell-fate transitions. However, the principles
of distributed control at the transcriptome scale are poorly understood. D-SPIN
models help reveal the principles of distributed control. We show that K562 cells
mount a set of regulatory responses when different internal processes are perturbed
through gene knockdown. The response strategies point to a broadly distributed
control where long-range information flow between distinct cellular processes, such
as coherent up or downregulation of proteasome/ribosome subunits under ribosome
subunit knockdown, points to the presence of sensing and controlling mechanisms
in the cell. Identifying these feedback control points with combinatorial knockdown

screening may lead to the discovery of new regulators or regulating mechanisms.

D-SPIN can also assist the design of interventions that modulate networks and cell
states. We showed that D-SPIN can be applied to a model of the HSC network
to construct strategies for controlling the differentiation of a stem cell population.
D-SPIN also reveals how small molecules and small-molecule combinations can
generate novel cell states and population structures, suggesting that D-SPIN could
be used to study a broader set of interventions in both stem cells and immune
cell populations. In both cases, a major goal is to control the distribution of cell
states in a cell population, such as generating a specific set of progeny from stem
cells or modulating the state of the immune system in cancer or autoimmunity.
D-SPIN can uncover non-intuitive connections between different cellular processes,
revealing how drugs might recruit a set of gene programs to generate a particular
cell state. While this principle has been studied on a small scale for a small number
of drugs (Geva-Zatorsky et al., 2010), our results suggest that such principles of

super-position might hold at the transcriptome scale.

In our analysis of drug responses, we demonstrate that drug combinations can act
through coherent and incoherent superpositions to generate novel cell states. In
both cases, drugs act in combination to recruit a combination of gene-expression
programs within a single-cell type (Dasatinib and Halcinonide) or across a cell
population (Motolimod and Tacrolimus). Superposition refers to the ability of drug
combinations to function additively, resulting in the union of the gene-expression

programs, each activated by the individual drugs. D-SPIN enables us to dissect
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these combinatorial mechanisms and interpret them through the inferred D-SPIN
regulatory network and its interaction with drug response vectors. The results
provide a conceptual framework for interpreting and predicting the effect of drug
combinations. Although we have shown that additivity alone is insufficient to
accurately predict combinatorial response due to the presence of non-additive inter-
actions, it could still serve as a guide to narrow down potential drug-combination
targets for therapeutic objectives. Additivity could arise from the modularity of
gene-regulatory circuits, such that different pathways impact gene expression lev-
els independently. Further work is needed to reveal the specific conditions where
additivity holds or breaks down (Geva-Zatorsky et al., 2010).

The program-level or module-level description has been widely used in literature
to provide interpretable insights into cellular regulation, but mainly from the view
of the differential expression of single modules (Segal, Shapira, et al., 2003; Segal,
Friedman, et al., 2004; Amit et al., 2009). D-SPIN extends the program-level de-
scription by inferring interactions between programs. By representing the cell as
a set of interacting programs, D-SPIN allows us to gain insight into the informa-
tion flow between core cellular processes like transcription, translation, and protein
degradation in response to single-gene knockdowns, as well as how therapeutic
interventions combine additively to recruit modules of immune function (mono-
cyte and M2 macrophage programs) to create novel cell states. How program-level
regulation is implemented through biomolecular interactions is a future topic of re-
search, which D-SPIN can facilitate as we show that D-SPIN can identify regulators
of inhibition between mutually repressing modules by incorporating perturbations.

The predictive power of D-SPIN and the connection between inferred interactions
and biochemical interactions within the cell could be further enhanced by inte-
grating data from other single-cell measurement modalities like ATAC-seq, known
regulatory interactions, as well as predicted biochemical interactions. For exam-
ple, single-cell ATAC-seq measures chromatin accessibility along the genome in
single cells, providing information about the accessibility of transcription factor
(TF) binding sites. Single-cell ATAC-seq data and transcription factor binding
predictions can be combined with transcriptional profiling to identify TF-target in-
teractions such as in methods like SCENIC+ and CellOracle (Bravo Gonzalez-Blas
et al., 2023; Kamimoto et al., 2023). CellOracle in particular predicts the response
of transcription factor regulatory networks to TF perturbations by integrating TF

motif binding predictions with ATAC-seq data and linear regression. As D-SPIN
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is a statistical model, measured or predicted TF-target interactions can be included
as a prior distribution during network inference, enhancing the model accuracy
while still remaining flexible for biological contexts not dominantly controlled by
TF-target interactions, such as signal transduction in T-cells. Further, techniques
from deep neural networks and statistical learning have been used to learn repre-
sentations and predict the result of perturbation experiments, and future versions
of D-SPIN could apply neural networks to construct energy functions that include
higher-order interactions between more than two components and more realistic
concentration-dependent regulatory functions (Lotfollahi, F. A. Wolf, and Theis,
2019; Dong et al., 2023; Lotfollahi, Klimovskaia Susmelj, et al., 2023; Roohani,
K. Huang, and Leskovec, 2023). Incorporating more comprehensive terms into the
energy function in Equation 2.2 would enhance model fitting and predictive power,
while the trade-off with model interpretability would be an important topic of further

research.

D-SPIN’s connection with spin network models provides insights into the funda-
mental nature of cellular regulation. The spin network model is an equilibrium
model used to study physical systems at or near thermal equilibrium. Theoretically,
D-SPIN depicts the cell population as a collection of points residing in an energy
landscape that can be tilted by the perturbation vector to shift the distribution of
cell states in a cell population. Energy-landscape models represent a highly simpli-
fied class of dynamical systems, as their behavior can be captured within a single
energy (potential) function. Equilibrium spin network models have been used to
study a much broader range of systems that are far from thermal equilibrium, in-
cluding neural networks and bird flocks (Hopfield, 1982; Schneidman et al., 2006;
Bialek et al., 2012). However, it remains unclear why equilibrium models can yield
such significant predictive power for strongly non-equilibrium systems. The abil-
ity of equilibrium models to produce low-error reconstructions of cell population
gene-expression states suggests that cells, in certain situations, may be effectively
modeled as equilibrium systems driven through various configurations by a bias-
ing drive. Such models have been demonstrated for cell-fate regulation and might
represent a simplifying principle (Sokolik et al., 2015). The ability to model a
cell as an equilibrium system driven through different states presents a powerful
simplification, as also explored in other chemical systems, offering a potential path
toward more global theories of gene regulation (Bintu, Buchler, Garcia, Gerland,
Hwa, Kondev, Kuhlman, et al., 2005; Gunawardena, 2012).
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The D-SPIN framework has important current limitations that represent targets for
extension in future work, although these possibilities fall beyond the scope of the
present study. First, for simplicity and interpretability, D-SPIN only considers
pairwise interactions between genes or gene programs in the network. These inter-
actions correspond to the second-order terms in the energy function. For enhanced
accuracy and predictive capabilities, the inclusion of higher-order multi-body inter-
actions is a viable future modification. Second, D-SPIN is an equilibrium model
and does not account for the dynamics of the system. Spin network models have
natural extensions that incorporate dynamics, and studies of spin glass dynamics
have been important in condensed matter physics (Glauber, 1963; Sompolinsky
and Zippelius, 1982; Fisher and Huse, 1988). Incorporating temporal dynamics
would also allow the inclusion of directed edges, as directed network models in
general cannot define consistent stationary distributions when the network contains
feedback loops (Pearl, 1987; Arnold and Press, 1989; Pearl, 2022). Third, D-SPIN
assumes that the interactions within the core regulatory network J are not altered
by the perturbations, which is a reasonable approximation in perturbation response
scenarios such as gene knockdown or small molecule action. However, in scenarios
such as cellular differentiation or disease progression, the regulatory network may
undergo changes under different conditions due to shifts in epigenetic regulation.
Epigenetic reorganization can be included in future versions of D-SPIN by allowing

interactions encoded in J to also be condition-dependent.
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