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ABSTRACT

Autonomous ocean-exploring robots promise to significantly enhance the rate at
which we can explore ocean environments. However, the limited range and speed
of existing autonomous underwater vehicles (AUVs) are barriers to comprehensive
ocean exploration. To address these limitations, the work in this thesis investigates
strategies for improving the capabilities of existing AUVs, such as targeted sampling
and efficient navigation through background flows. Inspired by the ability of aquatic
animals to navigate via flow sensing, hydrodynamic cues are investigated as a
sensory input for accomplishing these feats of autonomous navigation using only
onboard sensors. First, reinforcement learning (RL) is investigated as an algorithm
for accomplishing efficient point-to-point navigation in simulated cylinder flow. The
algorithm entails inputting point measurements of flow quantities such as velocity
and vorticity into a deep neural network, which then determines a swimmer’s actions.
Using point velocity as the sensory input, the RL algorithm achieved a near 100%
success rate in reaching the target locations while approaching the time-efficiency of
optimal navigation trajectories. To test RL and flow-based navigation in a physical
setting, we next developed the Caltech autonomous reinforcement learning robot
(CARL), a palm-sized underwater robotic platform. As proof-of-concept analogy
for tracking hydrothermal vent plumes in the ocean, the robot was tasked with
locating the center of turbulent jet flows in a 13,000-liter water tank using data from
onboard pressure sensors. Using a navigation policy trained with RL in a simulated
flow environment, CARL successfully located the turbulent plumes at more than
twice the rate of random searching by detecting mean flow gradients with the onboard
pressure sensors. Lastly, combing both flow sensing and efficient navigation, the
accelerometer onboard CARL was used to sense and exploit the flow from a passing
vortex ring for energy-efficient propulsion. Body acceleration and rotation were
shown to be effective methods of indirect flow sensing, which enabled the energy-
efficient vortex ring surfing strategy. Throughout this work, efforts are made to
understand the governing physics behind the discovered navigation strategies to
generalize the results beyond a specific navigation problem, sensor type, or robotic
implementation.
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C h a p t e r 1

INTRODUCTION

1.1 Challenges in ocean exploration
There is a critical need for comprehensive sampling and exploration of the ocean.
In addition to representing 99% of habitable volume on Earth and a chief source
of food, transportation, and trade in the global economy (OECD, 2020), the ocean
plays a primary role in climate change through carbon sequestration (T. DeVries
et al., 2019). Detailed observations of the ocean and the biological processes within
are required at both high spatial and temporal resolution in order to understand the
ocean as it changes through the accelerating pace of climate change (Benway et al.,
2019). Yet, after centuries of effort, 80% of the seafloor remains unexplored (Wölfl
et al., 2019) and an estimated 90% of species biodiversity is unstudied (Reaka-
Kudla, 2001). While satellites and remote sensing can provide a wealth of data
for understanding oceanic properties, measurements of critical quantities such as
vertical profiles of salinity and temperature are only accessible via direct, in situ
measurements in the bulk of the ocean. For the same reason, maps of the seafloor
are poorer in resolution than those of the surface of Mars and Venus (Copley, 2014).

Autonomous underwater vehicles (AUVs) have emerged as a powerful tool at the
forefront of tackling this grand challenge of comprehensive ocean exploration. Fleets
of undersea gliders (Rudnick, 2016) and autonomous floats (Wong et al., 2020) can
sample large regions of the ocean without requiring expensive ship time and constant
communication to the surface. The spread of small autonomous robots is fueled by
the miniaturization of electronics, sensors, and energy-dense batteries, which have
dramatically reduced the cost and difficulty of developing such systems.

However, even with advances in low-cost AUVs, the challenge of comprehensive
ocean coverage appears insurmountable in the face of the overwhelmingly large
volume of the ocean, measuring 1.3 billion cubic kilometers (Charette and Smith,
2010). Even with a million AUVs distributed evenly through the ocean, each AUV
would be required to cover over 1,000 square kilometers of area and a kilometer in
depth (Xu and John Dabiri, 2022). In addition to spatial resolution, the movement
of water due to ocean currents and the changing pace of climate change necessitates
that the entire volume is sampled repeatedly in time (Benway et al., 2019). With
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limited range and speed, it may not be feasible to accomplish widespread coverage
of the ocean with current AUV technology (Zereik et al., 2018). New approaches are
needed to enable a better understanding of the ocean. At the same time as researchers
investigate new types of underwater robots (e.g., biohybrid AUVs (Xu and John
Dabiri, 2022)), this thesis investigates opportunities for intelligent maneuvering and
sensing to enhance the capabilities of existing and future AUVs.

1.2 Efficient navigation for enhancing AUV capabilities
The range and speed of ocean-exploring AUVs could be significantly improved
through more intelligent navigation algorithms. For example, one such approach
is the idea of targeted sampling, in which robots use information from onboard
sensors to actively seek out areas of scientific interest such as undersea thermal
vents, coastal upwelling fronts, or phytoplankton patches (Zhang, Ryan, et al.,
2019). For example, AUVs have used machine-vision algorithms to track animals
(Katĳa et al., 2021), chemical sensors to locate undersea thermal vents (Preston
et al., 2022), and salinity sensors to measure Gulf Stream salinity fronts (Zhang,
Yoder, et al., 2022). By actively steering towards areas of high scientific value,
AUVs can sample information-rich locations more quickly and better allocate their
limited energy supplies.

Another potential area for optimization is to take advantage of existing ocean currents
and background flows for efficient propulsion. Rather than fighting against these
currents, robots have the potential to save energy and gain speed by riding the
background flows naturally occurring throughout the ocean. In combination with
targeted sampling, better navigation algorithms have the potential to improve both
the speed and energy-efficiency of AUVs.

However, existing algorithms for accomplishing these techniques often require in-
formation that is not available to AUVs. For example, path planning algorithms
from control theory typically require full knowledge of the background flow field
to compute energy or time-efficient trajectories (Zermelo, 1931; Techy, 2011; Pe-
tres et al., 2007; Lolla et al., 2014). Not only is a full map of the background
flow often difficult or impossible to obtain in real time, but communication with
AUVs under the ocean surface is effectively blocked by the salt water. Without a
direct tether or acoustic link to the surface, meaningful amounts of data transfer
through the bulk of the ocean volume is virtually impossible with current tech-
nologies. Additionally, scientifically valuable targets in the ocean (e.g., plankton
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patches, salt-intrusion fronts) are constantly changing and being transported by the
ocean currents, which are themselves also changing in time. Somehow, autonomous
underwater robots must be equipped with a navigation strategy that can accomplish
target sampling and efficient navigation using only the information of the robot’s
immediate surroundings.

1.3 Looking to nature for inspiration: opportunities enabled by flow sensing
Nature offers a potential solution to help solve the problem of autonomous under-
water navigation: flow sensing. The ability to sense fluid flow is ubiquitous among
aquatic organisms and is used to accomplish a wide range of tasks to great ef-
fect, including tracking the wakes of prey in complete darkness (Pohlmann, Grasso,
and Breithaupt, 2001; Dehnhardt, Mauck, Hanke, et al., 2001), obstacle avoidance
(Oteiza et al., 2017), and following walls (Patton, Windsor, and Coombs, 2010).
These biological tasks could inspire similar functionalities in AUVs for targeted
sampling, such as detecting the wake signatures from physical obstacles or hy-
drothermal vents. Tracking these oceanic features with flow sensing also has the
benefit of functioning even when poor water visibility would otherwise obscure
visual tracking. Likewise, sensing local flow information could be used for efficient
navigation and path planning. For example, fish use flow sensing to station keep in
the wake behind obstacles (Liao, 2007) and for energy-efficient schooling behavior
(Weber et al., 2020).

Inspired by the potential of flow sensing in underwater robots, scientists and en-
gineers have developed bio-inspired flow sensors that mimic the function of their
biological counterparts (Ko, Lauder, and Nagpal, 2023). Examples include hair-like
sensors that mimic superficial neuromasts in fish lateral lines (Bora et al., 2018),
pressure sensors that mimic canal neuromasts (Zhai, Zheng, and Xie, 2021), and
sensors inspired by the geometry of sea lion whiskers (Zheng, Kamat, et al., 2021).

While these sensors have achieved high accuracy, interpreting flow measurements for
autonomous navigation remains an open challenge. Some studies have used potential
flow models to model the mapping between background flow and sensor inputs
(Dagamseh et al., 2013; Zheng, Wang, Xiong, et al., 2020) or heuristic strategies
for turning in response to flow information (Monthiller et al., 2022; Salumäe et al.,
2012). As will be discussed in the subsequent sections, reinforcement learning
(RL) is a new and promising technique for flow-based navigation (e.g., Reddy et
al., 2018). In general, however, unifying design principles for swimming strategy,
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sensor type, and sensor placement remain unclear. There is significant unrealized
potential for implementing onboard flow sensing for both targeted sampling and
efficient navigation.

1.4 Aims and objectives of the dissertation
Given the success of flow sensing in aquatic animals and the potential for robotic
applications, the aim of this thesis is as follows: how can autonomous underwater
robots use flow sensing to detect and exploit background fluid flows? This ques-
tion is addressed in this dissertation though a combination of computational and
experimental methods.

A main computational technique used in Chapters 2 and 3 is deep RL. Through
repeated interactions with an environment, an RL algorithm trains an agent to take
actions that maximize a reward function (Sutton et al., 2000). Deep RL utilizes deep
neural networks to represent the policy, which is the function that maps sensor inputs
to the actions of the agent. RL promises to discover navigation strategies from data
without the need for human fine-tuning. For example, by using a reward function
tailored to an ocean-exploration task, such as minimizing the time required to reach
a target, Chapter 2 demonstrates that deep RL can learn how to incorporate point
measurements of fluid properties such as velocity and vorticity for time-efficient
navigation through simulated cylinder flow. Appendix A.2 includes details of the
RL algorithm and its implementation.

While RL has the potential to help solve flow-based navigation problems, the appli-
cability of a trained neural network is limited if it does not generalize to real-world
systems. And in practice, policies learned in simulation often do not transfer to
physical robots due to sensor noise and unmodeled dynamics (Dulac-Arnold et al.,
2021), which often necessitates testing and additional training in physical robots
(Hasselmann et al., 2021). To address the need for experimental verification, a
significant contribution of this thesis is the development of the Caltech autonomous
reinforcement learning robot (CARL), a scratch-built underwater robotic platform
built to test RL and flow-based navigation in an experimental setting. In Chapter 3,
CARL is used to demonstrate the transfer of a learned policy for targeted sampling
of turbulent plumes into a physical robot and flow environment. Additionally, pres-
sure sensors are investigated as a low-cost, miniature flow sensor for applications in
flow-based navigation.
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Chapter 2 focuses on efficient navigation, and Chapter 3 focuses on onboard flow
sensing. As a synthesis of both sensing and navigation problems, Chapter 4 inves-
tigates using acceleration-based flow sensing to detect and exploit the flow from
a passing vortex ring for energy-efficient propulsion. Using an inexpensive (∼$5)
accelerometer, body acceleration is shown to be an effective means of sensing the
background flow acceleration, which provides sufficient information to maneuver
onto and “surf” vortex rings for forward propulsion.

More broadly, we seek to understand the fundamental physics principles that gener-
alize beyond a specific navigation problem, sensor type, or robotic implementation.
For example, in Chapter 2, variations of sensor noise, sensor type, and policy transfer
between flows are investigated to probe questions of robustness and generalizability.
In Chapter 3, the gradient-based mechanism of the trained policy is interrogated and
made interpretable using Shapley values (Lundberg and Lee, 2017), which enables
successful transfer to the physical robot while accounting for sensor noise. Addi-
tionally, limitations due to sensor noise are quantified by modeling sources of noise
and turbulence from the background flow. Finally, in Chapter 4, Lagrangian coher-
ent structures are used to explain the fluid mechanical principles behind exploiting
vortex rings for propulsion. Additionally, the background flow acceleration is used
to analytically model the flow signals sensed by CARL, and rotation is suggested as
an additional signal for detecting background vorticity.
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C h a p t e r 2

LEARNING EFFICIENT NAVIGATION IN VORTICAL FLOW
FIELDS

The contents of this chapter have been adapted from Gunnarson et al. (2021),
published in Nature Communications under the title “Learning efficient navigation
in vortical flow fields”. As the first author, Peter Gunnarson made the primary
contributions towards performing the research and data analysis. All authors de-
signed the research and were involved in discussions to interpret the results. Petros
Koumoutsakos developed the V-RACER algorithm. Guido Novati wrote the soft-
ware implementation of V-RACER. Ioannis Mandralis simulated the cylinder flow
field. Peter Gunnarson drafted the paper, and all authors helped edit and review.

Abstract
Efficient point-to-point navigation in the presence of a background flow field is
important for robotic applications such as ocean surveying. In such applications,
robots may only have knowledge of their immediate surroundings or be faced with
time-varying currents, which limits the use of optimal control techniques. Here,
we apply a recently introduced RL algorithm to discover time-efficient navigation
policies to steer a fixed-speed swimmer through unsteady two-dimensional flow
fields. The algorithm entails inputting environmental cues into a deep neural net-
work that determines the swimmer’s actions, and deploying Remember and Forget
Experience Replay. We find that the resulting swimmers successfully exploit the
background flow to reach the target, but that this success depends on the sensed
environmental cue. Surprisingly, a velocity sensing approach significantly outper-
formed a bio-mimetic vorticity sensing approach, and achieved a near 100% success
rate in reaching the target locations while approaching the time-efficiency of optimal
navigation trajectories.
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2.1 Introduction
Navigation in the presence of a background unsteady flow field is an important task in
a wide range of robotic applications, including ocean surveying (Weizhong Zhang
et al., 2008), monitoring of deep-sea animal communities (Kuhnz et al., 2020),
drone-based inspection and delivery in windy conditions (Guerrero and Bestaoui,
2013), and weather balloon station keeping (Bellemare et al., 2020). In such appli-
cations, robots must contend with unsteady fluid flows such as wind gusts or ocean
currents in order to survey specific locations and return useful measurements, often
autonomously. Ideally, robots would exploit these background currents to propel
themselves to their destinations more quickly or with lower energy expenditure

If the entire background flow field is known in advance, numerous algorithms exist
to accomplish optimal path planning, ranging from the classical Zermelo’s equation
from optimal control theory (Zermelo, 1931; Techy, 2011) to modern optimization
approaches (Panda et al., 2020; Kularatne, Bhattacharya, and Hsieh, 2018; Guerrero
and Bestaoui, 2013; Weizhong Zhang et al., 2008; Petres et al., 2007; Lolla et al.,
2014). However, measuring the entire flow field is often impractical, as ocean
and air currents can be difficult to measure and can change unpredictably. Robots
themselves can also significantly alter the surrounding flow field, for example,
when multi-rotors fly near obstacles (Shi et al., 2019) or during fish-like swimming
(Verma, Novati, and Koumoutsakos, 2018). Additionally, oceanic and flying robots
are increasingly operated autonomously and therefore do not have access to real-
time external information about incoming currents and gusts (e.g., (Fiorelli et al.,
2006; Caron et al., 2008)).

Instead, robots may need to rely on data from on-board sensors to react to the
surrounding flow field and navigate effectively. A bio-inspired approach is to
navigate using local flow information, for example, by sensing the local flow velocity
or pressure. Zebrafish appear to use their lateral line to sense the local flow velocity
and avoid obstacles by recognizing changes in the local vorticity due to boundary
layers (Oteiza et al., 2017). Some seal species can orient themselves and hunt in
total darkness by detecting currents with their whiskers (Dehnhardt, Mauck, and
Bleckmann, 1998). Additionally, a numerical study of fish schooling demonstrated
how surface pressure gradient and shear stress sensors on a downstream fish can
determine the locations of upstream fish, thus enabling energy-efficient schooling
behavior (Weber et al., 2020).

Reinforcement Learning (RL) offers a promising approach for replicating this feat
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of navigation from local flow information. In simulated environments, RL has
successfully discovered energy-efficient fish swimming (Gazzola, Hejazialhosseini,
and Koumoutsakos, 2014; Jiao et al., 2020) and schooling behavior (Verma, Novati,
and Koumoutsakos, 2018), as well as a time-efficient navigation policy for a repeated,
deterministic snapshot of turbulent flow using position information (Biferale et al.,
2019). In application, RL using local wind velocity estimates outperformed existing
methods for energy-efficient weather balloon station keeping (Bellemare et al., 2020)
and for replicating bird soaring (Reddy et al., 2018). Other methods exist for
navigating uncertainty in a partially known flow field such as fuzzy logic or adaptive
control methods (Panda et al., 2020). Finite-horizon model predictive control has
been also used to plan energy-efficient trajectories using partial knowledge of the
surrounding flow field (Krishna, Song, and Brunton, 2022). However, RL can be
applied generally to an unknown flow field without requiring human tuning for
specific scenarios.

The question remains, however, as to which environmental cues are most useful
for navigating through flow fields using RL. A biomimetic approach suggests that
sensing the vorticity could be beneficial (Oteiza et al., 2017); however, flow velocity,
pressure, or quantities derived thereof are also viable candidates for sensing.

In this work, we find that deep RL can indeed discover time-efficient, robust paths
through an unsteady, two-dimensional (2D) flow field using only local flow infor-
mation, where simpler strategies such as swimming towards the target largely fail
at the task. We find, however, that the success of the RL approach depends on the
type of flow information provided. Surprisingly, a RL swimmer equipped with lo-
cal velocity measurements dramatically outperforms the bio-mimetic local vorticity
approach. These results show that combining RL-based navigation with local flow
measurements can be a highly effective method for navigating through unsteady
flow, provided the appropriate flow quantities are used as inputs to the algorithm.

2.2 Results
2.2.1 Simulated navigation problem
As a testing environment for RL-based navigation, we pose the problem of nav-
igating across an unsteady von Kármán vortex street obtained by simulating 2D,
incompressible flow past a cylinder at a Reynolds number of 400. Other studies
have investigated optimal navigation through real ocean flows (Weizhong Zhang
et al., 2008), simulated turbulence (Biferale et al., 2019), and simple flows for which
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there exist exact optimal navigation solutions (Kularatne, Bhattacharya, and Hsieh,
2018). Here, we investigate the flow past a cylinder to retain greater interpretability
of learned navigation strategies while remaining a challenging, unsteady navigation
problem.

The swimmer is tasked with navigating from a starting point on one side of the
cylinder wake to within a small radius of a target point on the opposite side of the
wake region. For each episode, or attempt to swim to the target, a pair of start and
target positions are chosen randomly within disk regions as shown in Figure 2.1.

Additionally, the swimmer is assigned a random starting time in the vortex shed-
ding cycle. The spatial and temporal randomness prevent the RL algorithm from
speciously forming a one-to-one correspondence between the swimmer’s relative
position and the background flow, which would not reflect real-world navigation
scenarios (see Appendix A.1). All swimmers have access to their position relative
to the target (Δ𝑥, Δ𝑦) rather than their absolute position to further prevent the swim-
mer from relying on memorized locations of flow features during training. For this
reason, the start and target regions were chosen to be large relative to the width of
the cylinder wake.

For simplicity and training speed, we consider the swimmer to be a massless point
with a position X𝑛 = [𝑥, 𝑦] which advects with the time-dependent background flow
Uflow = [𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡)]. The swimmer can swim with a constant speed 𝑈swim

and can directly control its swimming direction 𝜃. These dynamics are discretized
with a time step Δ𝑡 = 0.3𝐷/𝑈∞ using a forward Euler scheme, where 𝐷 is the
cylinder diameter and 𝑈∞ is the freestream flow velocity:

X0 = Xstart, (2.1)

X𝑛+1 = X𝑛 + Δ𝑡 (𝑈swim [cos (𝜃), sin (𝜃)] + Uflow) . (2.2)

It is also possible to apply RL-based navigation with more complex dynamics,
including when the swimmer’s actions alter the background flow (Verma, Novati,
and Koumoutsakos, 2018).

We chose a swimming speed of 80% of the freestream speed 𝑈∞ to make the
navigation problem challenging, as the swimmer cannot overcome the local flow in
some regions of the domain. A slower speed (𝑈swim < 0.6𝑈∞) makes navigating
this flow largely intractable, while a swimming speed greater than the freestream
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Start
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Figure 2.1: Test navigation problem of navigating through unsteady cylinder flow.
Swimmers are initialized randomly inside the red disk and are assigned a random
target location inside the green disk. These regions of start and target points are 4𝐷
in diameter, and are located 5𝐷 downstream and centered 2.05𝐷 above and below
the cylinder. Additionally, each swimmer is initialized at a random time step in the
vortex shedding cycle. An episode is successful when a swimmer reaches within a
radius of 𝐷/6 around the target location.

(𝑈swim > 𝑈∞) would allow the swimmer to overcome the background flow and
easily reach the target.

2.2.2 Navigation using deep reinforcement learning
In RL, an agent acts according to a policy, which takes in the agent’s state 𝑠 as an
input and outputs an action 𝑎. Through repeated experiences with the surrounding
environment, the policy is trained so that the agent’s behavior maximizes a cumu-
lative reward. Here, the agent is a swimmer, the action is the swimming direction
𝜃, and we seek to determine how the performance of a learned navigation policy is
impacted by the type of flow information contained in the state.

To this end, we first consider a flow-blind swimmer as a baseline, which cannot
sense the surrounding flow and only has access to its position relative to the target
(𝑠 = {Δ𝑥,Δ𝑦}). Next, inspired by the vorticity-based navigation strategy of the
zebrafish (Oteiza et al., 2017), we consider a vorticity swimmer with access to the
local vorticity at the current and previous time step in order to sense changes in the
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local vorticity (𝑠 = {Δ𝑥,Δ𝑦, 𝜔𝑛, 𝜔𝑛−1). We also consider a velocity swimmer, which
has access to both components of the local background velocity (𝑠 = {Δ𝑥,Δ𝑦, 𝑢, 𝑣}).
Results for additional swimmers with different states are shown in Appendix A.3.
In a real robot, velocity sensing could be implemented via a variety of methods
including pitot tubes and hot wire or hot film anemometry. Local vorticity could be
computed from several velocity sensors. Not considered here are distributed sensing
schemes, such as distributed pressure or shear sensors, which can be effective for
flow sensing and identification (Weber et al., 2020). Coupling optimal flow sensor
distribution (e.g., Verma, Papadimitriou, et al., 2020) with the present RL navigation
method may be a fruitful, but computationally challenging, extension of this point-
swimmer proof of concept.

We employ deep RL for this navigation problem, in which the navigation policy is
expressed using a deep neural network. Previously, Biferale et al. (Biferale et al.,
2019) employed an actor-critic approach for RL-based navigation of a repeated,
deterministic snapshot of turbulent flow, which is similar to navigating a steady
flow field (see Appendix A.1). The policy was expressed using a basis function
architecture, requiring a coarse discretization of both the swimmer’s position and
swimming direction for computational feasibility. In contrast, V-RACER (Novati
and Koumoutsakos, 2019) is well suited for this navigation problem, as it is designed
for continuous problems and can accept additional sensory inputs with negligible
impact in computational complexity. A single 128×128 deep neural network is used
for the navigation policy, which accepts the swimmers state (i.e., flow information
and relative position) and outputs the swimming direction as continuous variables.
The network also outputs a Gaussian variance in the swimming direction to allow
for exploration during training. The policy network is randomly initialized and then
iteratively updated through repeated attempts to reach the target following the policy
gradient theorem (Sutton et al., 2000). V-RACER employs Remember and Forget
Experience Replay to reuse past experiences over multiple iterations to update the
swimmer’s policy in a stable and data-efficient manner. Additional details of the V-
RACER algorithm are shown in Appendix A.2. Results such as the success rate and
cumulative reward curves were averaged after training each swimmer five times.
This step helped ensure that differences in performance did not arise spuriously
from the random initialization of the policy network, as described in Henderson
et al. (2019).

At each time step, the swimmer receives a reward according to the reward function
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𝑟𝑛, which is designed to produce the desired behavior of navigating to the target.
We employ a similar reward function as Biferale et al. (2019):

𝑟𝑛 = −Δ𝑡 + 10
[ | |X𝑛−1 − Xtarget | |

𝑈swim
−
||X𝑛 − Xtarget | |

𝑈swim

]
+ bonus. (2.3)

The first term penalizes duration of an episode to encourage fast navigation to the
target. The second two terms give a reward when the swimmer is closer to the
target than it was in the previous time step. The final term is a bonus equal to
200 time units, or approximately 30 times the duration of a typical trajectory. The
bonus is awarded if the swimmer successfully reaches the target. Swimmers that
exit the simulation area or collide with the cylinder are treated as unsuccessful. The
second two terms are scaled by 10 to be on the same order of magnitude as the first
term, which we found significantly improved training speed and navigation success
rates. We also investigated a non-linear reward function, in which the second two
terms are the reciprocal of the distance to the target, however, it exhibited lower
performance. The RL algorithm seeks to maximize the total reward, which is the
sum of the reward function across all 𝑁 time steps in an episode:

𝑟total =

𝑁∑︁
𝑛=1

𝑟𝑛 = −𝑇f + 10
| |Xstart − Xtarget | |

𝑈swim
+ bonus. (2.4)

The evolution of 𝑟total during training for each swimmer is shown in Figure 2.2. All
RL swimmers were trained for 20,000 episodes.

The reward function can be tuned to optimize for specific objectives such as mini-
mum fuel consumption by including additional terms (e.g., (Buzzicotti et al., 2021)).
Here, the reward function acts to optimize for two objectives: minimal arrival time
to the target (−𝑇f) and maximum success rate of reaching the target (second two
terms). The ability of RL to achieve these two objectives is explored in the following
sections.

2.2.3 Success of RL navigation
After training, Deep RL discovered effective policies for navigating through this
unsteady flow. An example of a path discovered by the velocity RL swimmer is
shown in Figure 2.3. Because the swimming speed is less than the free-stream
velocity, the swimmer must utilize the wake region where it can exploit slower
background flow to swim upstream. Once sufficiently far upstream, the swimmer
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Figure 2.2: Evolution of the cumulative reward during training for the three RL
swimmers. The cumulative rewards for each episode are plotted as points, and a
moving average with a window of 201 episodes is plotted with a solid line. Because
the swimmer gains a bonus of 200 for reaching the target, successful episodes are
clustered around a reward of 200 while unsuccessful episodes are clustered below
zero.

can then steer towards the target. The plot of the swimming direction inside the wake
(Figure 2.3b) shows how the swimmer changes its swimming direction in response
to the background flow, enabling it to maintain its position inside the wake region
and target low-velocity regions.

a target

start

b

Figure 2.3: Example trajectory of the velocity RL swimmer. a Trajectory plotted in
a cylinder-fixed frame, showing the swimmer successfully navigate from its starting
location to the target.b Segment of this trajectory plotted in a wake-stationary frame
of reference on top of the background flow field, which highlights the swimmer
exploiting low-velocity regions in the cylinder wake to swim upstream. The swim-
ming direction is plotted at each time step along the trajectory, revealing that this
RL swimmer adjusts it swimming direction in response to the changing background
flow, enabling time-efficient navigation.

However, the ability of Deep RL to discover these effective navigation strategies de-
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pends on the type of local flow information included in the swimmer state. To illus-
trate this point, example trajectories and the average success rates of the flow-blind,
vorticity, and velocity RL swimmers are plotted in Figure 2.4, and are compared
with a naïve policy of simply swimming towards the target (𝜃naïve = tan−1 (Δ𝑦/Δ𝑥)).

A naïve policy of swimming towards the target is highly ineffective. Swimmers
employing this policy are swept away by the background flow, and reached the
target only 1.2% of the time on average. A RL approach, even without access to
flow information, is much more successful: the flow-blind swimmer reached the
target locations nearly 40% of the time.

Giving the RL swimmers access to local flow information increases the success
further: the vorticity RL swimmer averaged a 47.2% success rate. Surprisingly,
however, the velocity swimmer has a near 100% success rate, greatly outperforming
the zebrafish-inspired vorticity approach. With the right local flow information, it
appears that an RL approach can navigate nearly without fail through a complex,
unsteady flow field. However, the question remains as to why some flow properties
are more informative than others.

To better understand the difference between RL swimmers with access to different
flow properties, the swimming direction computed by each RL policy is plotted
over a grid of locations in Figure 2.5. The flow-blind swimmer does not react to
changes in the background flow field, although it does appear to learn the effect of
the mean background flow, possibly through correlation between the mean flow and
the relative position of the swimmer in the domain. This provides it an advantage
over the naïve swimmer. The vorticity swimmer adjusts its swimming direction
modestly in response to changes in the background flow, for example, by swimming
slightly upwards in counter-clockwise vortices and slightly downwards in clockwise
vortices. The velocity swimmer appears most sensitive to the background flow,
which may help it respond more effectively to changes in the background flow.

Station-keeping inside the wake region may be important for navigating through
this flow. In the upper right of the domain, the velocity swimmer learns to orient
downwards and back to the wake region, while the other swimmers swim futilely
towards the target. Because the vorticity depends on gradients in the background
flow, that property cannot be used to respond to flow fields that are spatially uniform.
These differences appear to explain many of the failed trajectories in Figure 2.4, in
which the flow-blind and vorticity swimmers are swept up and to the right by the
background flow. Other swimmers with partial access to the background flow fared



15

Naïve Swimmer
Success Rate: 1.3 ± 0.4%

Flow-Blind RL Swimmer
Success Rate: 39.4 ± 5.8%

Vorticity RL Swimmer
Success Rate: 47.2 ± 8.7%

Velocity RL Swimmer
Success Rate: 99.9 ± 0.1%

a b

c d

Figure 2.4: Average success rate with 30 example trajectories for each swimmer
type. Successful attempts to reach the target are green, while unsuccessful attempts
are red. (a) Naïve policy of swimming towards the target is rarely successful. (b)
The flow-blind RL swimmer navigates more effectively than the naïve swimmer. (c)
The vorticity RL swimmer is more successful than the flow-blind swimmer, showing
that sensing the local flow can improve RL-based navigation. (d) Surprisingly, the
velocity RL swimmer nearly always reaches the target using only the local flow
velocity. The stated success rates are averaged over 12,500 episodes and are shown
with one standard deviation arising from the five times each swimmer was trained.

similarly to the vorticity swimmer, further suggesting that sensing both velocity
components are required for best performance (see Appendix A.3).

While sensing of point vorticity is insufficient to detect spatially uniform flow fields,
it can be useful for distinguishing the vortical wake from the freestream flow. This
can explain why the vorticity swimmer performs better than the flow-blind swimmer.
A similar reasoning could apply to swimmers that sense other flow quantities such as
pressure or shear. Indeed, Alsalman et al. found that velocity sensors outperformed
vorticity sensors for neural network-based flow classification (Alsalman, Colvert,
and Kanso, 2018).

In addition to providing environmental cues, however, the background flow velocity
may be particularly important for navigation, as it affects the future state of the
swimmer. Because the flow advects the swimmers according to linear dynamics
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(Equation 2.2), the local velocity can exactly determine the swimmer’s position at
the next time step. This may explain the high navigation success of the velocity
swimmer, as it has the potential to accurately predict its next location. To be sure,
the Deep RL algorithm must still learn where the most advantageous next location
ought to be, as the flow velocity at the next time step is still unknown.

For real swimmers, vorticity may also affect the future state of the swimmer, for
example, by causing a swimmer to rotate in the flow (Colabrese et al., 2017) or by
altering boundary layers and skin friction drag (Verma, Novati, and Koumoutsakos,
2018). Real robots would also be subject to additional sources of complexity not
considered in this simplified simulation, which would make it more difficult to
determine a swimmer’s next position from local velocity measurements alone.

Naïve Swimmer Flow-Blind RL Swimmer

Vorticity RL Swimmer Velocity RL Swimmer

a b

c d

Figure 2.5: Swimming direction policy plotted across the domain for a fixed tar-
get (green circle) at a given time instant. (a) The naïve swimmer swims towards
the target. (b) The red outline highlights how the flow-blind swimmer navigates
irrespective of the background flow, while the vorticity swimmer (c) adjusts its
swimming direction modestly. (d) The velocity swimmer appears even more sensi-
tive to the unsteady background flow.

2.2.4 Comparison with optimal control
In addition to reaching the destination successfully, it is desirable to navigate to
the target while minimizing energy consumption or time spent traveling. Biferale
et al. (2019) demonstrated that RL can approach the performance of time-optimal
trajectories in steady flow for fixed start and target positions. Here, we find that this
result also holds for the more challenging problem of navigating unsteady flow with
variable start and target points.
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Assuming the swimmer reaches the target location, the only term in the cumula-
tive reward 𝑟total that depends on the swimmer’s trajectory is −𝑇f (Equation 2.4).
Therefore, maximizing the cumulative reward of a successful episode is equivalent
to finding the minimum time path to the target. Because the velocity RL swimmer
always reaches the target successfully, we compare the velocity RL swimmer to the
time-optimal swimmer derived from optimal control.

To find time-optimal paths through the flow, given knowledge of the full velocity
field at all times, we constructed a path planner that finds locally optimal paths
in two steps. First, a rapidly-exploring random tree algorithm (RRT) finds a set of
control inputs that drive the swimmer from the starting location to the target location,
typically non-optimally (LaValle and Kuffner, 2001). Then we apply constrained
gradient-descent optimization (i.e., the fmincon function in MATLAB) to minimize
the time step (and therefore overall time 𝑇f) of the trajectory while enforcing that the
swimmer starts at the starting point (Equation 2.1), obeys the dynamics at every time
step in the trajectory (Equation 2.2), and reaches the target (| |X𝑁 −Xtarget | | ≤ 𝐷/6).
The trajectories produced by this method are local minima, so the fastest trajectory
was chosen out of 100 runs and validated to be globally optimal by comparing it
with the output of the level set method described in Lolla et al. (Lolla et al., 2014)
computed using a MATLAB level set toolbox (Mitchell, 2008). Other algorithms
could also be used to find optimal trajectories for unsteady flow given knowledge of
the entire flow field (Kularatne, Bhattacharya, and Hsieh, 2018).

A comparison between RL and time-optimal navigation for three sets of start and
target points is shown in Figure 2.6. These points were chosen to represent a
range of short and long duration trajectories. Despite only having access to local
information, the RL trajectories are nearly as fast and qualitatively similar to the
optimal trajectories, which were generated with the advantage of having full global
knowledge of the flow field.

The surprisingly high performance of the RL approach compared to a global path
planner suggests that deep neural networks can, to some extent, approximate how
local flow at a particular time impacts navigation in the future. In other words, a
successful RL swimmer must simultaneously navigate and identify the approximate
current state of the environment using only a single flow measurement at one instant
in time at an unknown absolute location in the flow field. In comparison, the
optimal control approach relies on knowledge of the environment in advance. There
are limitations to the RL approach, however. For example, the optimal swimmer
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RL:      = 8.80
Optimal:      = 5.38

(39% faster)

RL:      = 18.4
Optimal:      = 15.4

(16% faster)

RL:      = 33.3
Optimal:      = 25.7

(23% faster)

Figure 2.6: Comparison between time-optimal and RL trajectories. Time-optimal
trajectories are shown in red and RL trajectories are shown in black. The RL
swimmer used the state 𝑠 = {Δ𝑥,Δ𝑦, 𝑢, 𝑣}. Time to reach the target 𝑇f is made
non-dimensional using the timescale 𝐷/𝑈∞.

on the right of Figure 2.6 enters the wake region at a different location than the RL
swimmer to avoid a high velocity region, which the RL swimmer may not have been
able to sense initially.

In addition to approaching the optimality of a global planner, RL navigation offers a
robustness advantage. As noted by Biferale et al. (2019), RL can be robust to small
changes in initial conditions. Here, we show that RL navigation can generalize to
a large area of initial and target conditions as well as random starting times in the
unsteady flow. Additionally, we found that the velocity RL swimmer is robust to
realistic amounts of sensor noise from turbulent fluctuations (see Appendix A.4).

In contrast, the optimal trajectories here are open loop: any disturbance or flow
measurement inaccuracy would prevent the swimmer from successfully navigating
the target. While robustness can be included with optimal control in other ways
(Panda et al., 2020), responding to changes in the surrounding environment is the
driving principle of this RL navigation policy. Indeed, the related algorithm of
imitation learning has been used for drone control by employing a neural network
to mimic an optimal flight path while reacting to local disturbances (Rivière et al.,
2020).

2.2.5 Policy Transfer to Double Gyre Flow
The RL swimmer showed robustness to large changes in the start and target positions,
and to realistic amounts of sensor noise (Appendix A.4). However, it is worth
considering if a learned navigation policy can transfer between different flow fields,
which would reduce the amount of training required for navigating a new flow field
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and increase the robustness of a swimmer to sudden changes in its environment.

Colabrese et al. (2017) demonstrated that an RL swimmer trained on a vortical
flow field can navigate successfully in a new, but topologically similar, flow field
without additional training. However, they noted that learned navigation strategies
may not transfer between dissimilar flows, thus requiring additional training to form
a new navigation strategy. Here, we consider if the learned policy for navigating the
cylinder flow can transfer to a double gyre flow, which is topologically dissimilar.

The double gyre flow is a 2D, unsteady, periodic flow field that is a simplified
representation of circulation patterns found frequently in the ocean (S. C. Shadden,
Lekien, and J. E. Marsden, 2005; Solomon and Gollub, 1988; Krishna, Song, and
Brunton, 2022). The velocity field is defined analytically in S. C. Shadden, Lekien,
and J. E. Marsden (2005), where all length units are non-dimensional (i.e., 𝐿 = 1).
Here, we used 𝐴 = 2/3𝑈swim, 𝜖 = 0.3, and 𝜔 = 20𝜋𝑈swim/3𝐿, which presents
a challenging navigation problem that is unsteady on a similar time scale as the
cylinder flow. Swimmers were started at a random time step in the right gyre and
are tasked with navigating to a randomly chosen target in the left gyre. The problem
setup is shown in Figure 2.7a.

To see if the learned RL policy transfers to the double gyre flow, two versions of the
velocity RL swimmer were tested: one trained on the unsteady cylinder flow and
one trained for the double gyre flow. Additionally, the naïve swimmer was included
for comparison. The success rates of these swimmers are shown in Figure 2.7b-d.

The learned policy for navigating the cylinder wake did not transfer effectively to
the double gyre flow, resulting in only a 4.1% average success rate (Figure 2.7C)
compared to the naïve swimmer’s 40.9% average success rate (Figure 2.7B). Poor
performance was also observed when the problem coordinates were rotated and
scaled to match the start and target regions of the cylinder flow navigation problem.

With training, however, new and effective navigation strategies can be learned. The
velocity RL swimmer trained on the double gyre flow achieved a high average success
rate of 87.4%, leveraging the background flow to escape the right gyre and navigate
to its target locations in the left gyre. These results suggest that learned policies
may indeed only transfer between similar flows, and that effective navigation in new
flow fields requires additional training. Additionally, while all investigations here
are in simulated flow environments, future studies may benefit from investigating
the transfer of learned behaviors between simulated and real environments, which
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Trained on Double Gyre
Success Rate: 87.4±3.1%

Trained on Cylinder Wake
Success Rate: 4.1±2.0%

Naïve Swimmer
Success Rate: 40.9±1.1%

0 2L

L

Target
Start

Double Gyre Navigation Problem

b

a

c d

Figure 2.7: RL navigation in the double gyre flow field. (a) Navigation problem
setup. The start and target regions are 𝐿/2 in diameter and located at (3𝐿/2, 𝐿/2)
and (𝐿/2, 𝐿/2), respectively. (b) A naïve policy achieves 40.9% success rate on
average. (c) The velocity RL swimmer trained on the cylinder wake navigates the
double gyre flow poorly, indicating its navigation policy did not generalize. (d)
After receiving training for the double gyre flow, the velocity RL swimmer is able
to adapt and navigate more effectively than either swimmer. As with the cylinder
flow, successful attempts to reach the target are green, while unsuccessful attempts
are red. An episode is successful when a swimmer reaches within a radius of
𝐿/50 around the target location. The stated success rates are averaged over 12,500
episodes and are shown with one standard deviation arising from the five times each
swimmer was trained.

can reduce in situ training time for physical robots.

2.3 Discussion
We have shown in this study how deep RL can discover robust and time-efficient
navigation policies which are improved by sensing local flow information. A bio-
inspired approach of sensing the local vorticity provided a modest increase in nav-
igation success over a position-only approach, but surprisingly the key to success
was discovered to lie in sensing the velocity field, which more directly determined
the future position of the swimmer. This suggests that RL coupled with an on-board
velocity sensor may be an effective tool for robot navigation. While the learned pol-
icy for navigating an unsteady cylinder wake did not transfer to a dissimilar double
gyre flow, additional training enabled the RL swimmer adapt to the new flow field.
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Future investigation is warranted to examine the extent to which the success of the
velocity approach extends to real-world scenarios, in which robots may face more
complex, 3D fluid flows, and be subject to non-linear dynamics and sensor errors.
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C h a p t e r 3

FISH-INSPIRED TRACKING OF UNDERWATER TURBULENT
PLUMES

The contents of this chapter have been adapted from Gunnarson and Dabiri (P. Gun-
narson and J.O. Dabiri, 2024), submitted to Bioinspiration and Biomimetics under
the title ”Fish-inspired tracking of underwater turbulent plumes.“ Peter Gunnarson
and John Dabiri conceived of the project. Peter Gunnarson conducted experiments.
Both authors analyzed results and wrote the paper.

Abstract
Autonomous ocean-exploring vehicles have begun to take advantage of onboard
sensor measurements of water properties such as salinity and temperature to locate
oceanic features in real time. Such targeted sampling strategies enable more rapid
study of ocean environments by actively steering towards areas of high scientific
value. Inspired by the ability of aquatic animals to navigate via flow sensing, this
work investigates hydrodynamic cues for accomplishing targeted sampling using a
palm-sized robotic swimmer. As proof-of-concept analogy for tracking hydrother-
mal vent plumes in the ocean, the robot is tasked with locating the center of turbulent
jet flows in a 13,000-liter water tank using data from onboard pressure sensors. To
learn a navigation strategy, we first implemented RL on a simulated version of the
robot navigating in proximity to turbulent jets. After training, the RL algorithm
discovered an effective strategy for locating the jets by following transverse velocity
gradients sensed by pressure sensors located on opposite sides of the robot. When
implemented on the physical robot, this gradient following strategy enabled the
robot to successfully locate the turbulent plumes at more than twice the rate of
random searching. Additionally, we found that navigation performance improved as
the distance between the pressure sensors increased, which can inform the design
of distributed flow sensors in ocean robots. Our results demonstrate the effective-
ness and limits of flow-based navigation for autonomously locating hydrodynamic
features of interest.
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3.1 Introduction
The ocean is critically under-explored and under-sampled. In response to the need
for increased ocean sampling, AUVs such as undersea gliders (Rudnick, 2016) and
autonomous floats (Wong et al., 2020) have become vital tools for in-situ sampling
of ocean environments. Autonomy lowers the cost of deploying an underwater
vehicle and enables exploration of larger swaths of the ocean volume by removing
the need for constant communication with the surface. However, the limited range
and speed of current AUVs are barriers to accomplishing widespread coverage of
the ocean (Zereik et al., 2018).

A promising technique for increasing the effectiveness of AUVs is targeted sampling,
in which robots actively seek out areas of scientific interest such as undersea thermal
vents, coastal upwelling fronts, or phytoplankton patches (Zhang, Ryan, et al., 2019).
Vehicles may use a variety of sensing methodologies for tracking areas of high
importance. For example, an AUV used cameras and a machine vision algorithm
to autonomously track animals in the midwater for hours at a time (Katĳa et al.,
2021). Another vehicle used chemical and turbidity measurements to autonomously
locate an undersea thermal vent (Preston et al., 2022). Salinity-sensing was used for
autonomously locating and mapping the boundary of a salinity-intrusion front from
the Gulf Stream (Zhang, Yoder, et al., 2022). By using onboard sensors to actively
steer towards areas of high scientific value, AUVs can sample information-rich
locations more quickly and better allocate their limited energy supplies.

A biology-inspired approach to seeking out targets underwater is to take advantage
of hydrodynamic cues present in ocean environments. For example, many aquatic
animals including sea lions and catfish can hunt by sensing the wakes left behind
by their prey (Pohlmann, Grasso, and Breithaupt, 2001; Dehnhardt, Mauck, Hanke,
et al., 2001). This ability to track animals without any visual information is advanta-
geous for predators. If implemented in underwater vehicles, flow sensing could be a
means to track oceanic features of interest when poor water and lighting conditions
would otherwise obscure visual tracking. Aquatic animals use flow sensing for a
variety of other tasks, including following walls (Patton, Windsor, and Coombs,
2010) and station keeping in the wake behind obstacles (Liao, 2007). Each of
these biological tasks could inspire similar functionalities in autonomous vehicles,
e.g., autonomous navigation along the seafloor and detecting wake signatures from
physical obstacles or hydrothermal vents (Germanovich et al., 2015).

Given the potential applications of flow sensing in underwater robots, significant
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effort has been dedicated to the development of bio-inspired flow sensors (Ko,
Lauder, and Nagpal, 2023). For example, engineers have developed various hair-
like sensors that mimic the flow-sensing mechanism of superficial neuromasts in fish
lateral lines (Bora et al., 2018). By measuring the deflection of micro-pillars, these
sensors can detect fluid shear and infer flow velocity. The undulatory geometry
of sea lion whiskers has also inspired the design of flow velocity sensors (Zheng,
Kamat, et al., 2021). In addition to velocity sensing, the pressure sensing function of
canal neuromasts in fish lateral lines has been mimicked using distributed pressure
sensors (Zhai, Zheng, and Xie, 2021).

In general, these flow sensors have achieved high accuracy and sensitivity, but
developing strategies to interpret these flow measurements for autonomous explo-
ration remains an active area of research. Idealized potential flow models, often
supplemented by empirical measurements or regression models, have been used for
tasks such as characterizing the free stream flow (L. DeVries et al., 2015), locat-
ing dipole sources (Dagamseh et al., 2013), swimming along walls (Yen and Guo,
2016), and vehicle state estimation (Zheng, Wang, Xiong, et al., 2020). In the
context of navigation for reaching a destination or finding flow features, a variety
of heuristic strategies have been studied, such as navigating using the local velocity
gradient (Monthiller et al., 2022); turning in the direction of maximum flow infor-
mation (Colvert, Liu, et al., 2020); balancing the signal of two sensors for rheotaxis
(Salumäe et al., 2012); and synchronizing swimming motion with the frequency of
a Kármán Wake (Jezov et al., 2012). Many of these studies indicate that gradient
detection with distributed flow sensors may be important for flow-based navigation
(see also Colvert, Chen, and Kanso, 2017; Oteiza et al., 2017; Reddy et al., 2018;
Weber et al., 2020), but unifying design principles remain unclear.

Recently, machine learning algorithms such as reinforcement learning (RL) have be-
come powerful tools for developing more complex flow-based navigation strategies.
RL has been used in simulated environments for locating the source of turbulent
odor plumes (Singh et al., 2023), following hydrodynamic trails behind simulated
fish (Hang et al., 2023), and for point-to-point navigation in vortical flows (Peter
Gunnarson et al., 2021). In a few cases, RL has been successfully applied to physical
robots for navigation in background flow fields, such as a glider that learned to ride
atmospheric thermals (Reddy et al., 2018) and an AUV that learned autonomous
underwater target tracking (Masmitja et al., 2023). However, the majority of RL
studies are performed in silico because of the high data gathering requirements, poor
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interpretability, and computational complexity of neural networks (Dulac-Arnold et
al., 2021; Masmitja et al., 2023). Indeed, a well-documented gap exists between
successfully applying RL in simulated environments and deploying it on real sys-
tems, perhaps due to noise and factors that are difficult to model in simulations
(Dulac-Arnold et al., 2021). Trials using physical robots are needed to validate RL
approaches before deployment in real-world scenarios (Hasselmann et al., 2021).

In this work, we introduce the Caltech autonomous reinforcement learning robot
(CARL), a palm-sized hardware and software platform for testing flow-based nav-
igation and RL in large, controlled underwater environments. The robot is made
from low-cost, off-the-shelf components and 3D-printed parts, and can swim au-
tonomously underwater. We mounted pressure sensors at four locations around
the robot to serve as flow sensors. As a proof-of-concept analogy for tracking hy-
drothermal vent plumes in the ocean, the robot was tasked with locating the center
of turbulent jet plumes in a large water tank. A schematic overview of CARL and
the tank environment is shown in Fig. 3.1.

To discover an effective navigation strategy, we implemented RL Hasselt, Guez, and
Silver, 2015 in a simulated version of the robot and tank environment (see Methods
for details). Using simulated pressure measurements as inputs to a neural network,
the RL algorithm successfully learned to locate the turbulent plumes. Calculating
a feature importance metric Lundberg and Lee, 2017 revealed that this navigation
strategy depended primarily on the lateral sensors, which provide information about
the transverse velocity gradient. Using this interpretation, we transferred a sim-
plified version of the navigation policy to the physical robot, taking into account
physical sensor noise. After transferring this policy onto the physical robot, CARL
located the turbulent plumes in the tank at more than double the rate of random
searching, demonstrating the effectiveness of flow sensing for autonomous naviga-
tion in a physical setting. Additionally, we found that the success rate and gradient
sensing ability depended greatly on the spacing of the physical sensors. An analysis
of the signal-to-noise ratio suggests that the sensor spacing may limit navigation
performance for physical swimmers. Our results demonstrate the effectiveness of
using simulation and physical experiments in tandem to design simple but effective
navigation strategies for deployment in real-world environments.
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Figure 3.1: Schematic of CARL and tank facility. (a) Schematic of CARL, showing
the arrangement of four pressure sensor pairs (see also panel (b)) an inertial mea-
surement unit (IMU), ten motors for propulsion, and a Teensy 4.1 microcontroller
for onboard processing. (b) Pressure sensors are arranged in pairs: a side-facing
pressure sensor measures the static pressure (𝑃𝑠), and a downward facing sensor
measures the stagnation pressure (𝑃0) from upwards flow. The difference in pres-
sure between these sensors (Δ𝑃 = 𝑃0 − 𝑃𝑠) can accurately measure flow velocity, as
shown in the right plot (see Methods for details). (c) CARL with a 2 cm scale bar.
(d) Tank facility with a human figure for scale. Three thrusters are arranged on the
bottom of the tank, which generate three vertical turbulent plumes. CARL swims
throughout the tank at a fixed depth of 30 cm below the water surface.
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3.2 Results
3.2.1 Flow sensing with pressure sensors
To test flow-based navigation in a physical robot, we developed CARL, an au-
tonomous underwater robotic platform. For onboard flow sensing, we mounted
eight pressure sensors (MS5803-02BA, TE Connectivity) at four locations around
CARL (Fig. 3.1a). We chose this piezo-resistive micro-electromechanical system
(MEMS) pressure sensor for its small size (6 mm diameter), low cost ($16), and
high precision (2.4 Pa resolution at 100 Hz). Additionally, the MS5803 sensors are
manufactured with a waterproof gel coating and are already deployed in the ocean
environments as depth sensors (Beddows and Mallon, 2018). Pressure sensors
mimicking the canal neuromasts of fish were selected due to their great mechanical
robustness and commercial availability compared to micro-pillar velocity sensors
that mimic superficial neuromasts. The convenience and performance of pressure
sensors makes them an attractive option for experimental studies: these sensors
and other piezo sensor arrays have been used in several previous works for flow
characterization and robot state estimation in quiescent flow (Zheng, Wang, Xiong,
et al., 2020; Venturelli et al., 2012; Asadnia et al., 2013).

We arranged the pressure sensors in pairs to form downward-facing Pitot tubes, in
which one sensor is exposed to impinging vertical flow and the other is shielded by
a 3D-printed cover (see Fig. 3.1b). In this arrangement, the difference in pressure
between the exposed and shielded sensors can be used to measure the upwards
flow velocity component at these four locations. We verified the accuracy of these
sensors for detecting steady flow in water channel test (see Methods).

Because the center of mass of CARL was located below the center of buoyancy, the
exposed pressure sensors maintained a downward-facing orientation while swim-
ming. The pressure sensors also functioned as depth sensors; while swimming,
CARL attempted to maintain a constant depth using a proportional integral deriva-
tive (PID) control loop running at 50 Hz using this depth measurement and the
vertically oriented motors (see Appendix B).

3.2.2 Navigation task and underwater testing environment
As a proof-of-concept analogy for tracking underwater thermal vents, which create
large, turbulent jet plumes with flow velocities on the order of 1 m s−1 (Germanovich
et al., 2015), we tasked CARL with locating the core of the turbulent jet plumes in a
1.8 m deep, 1.8 m wide, and 4.8 m long water tank. We mounted three thrusters (Blue
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Robotics T200) on the bottom of the tank, as shown in Fig. 3.1d. The three thrusters
were equally spaced 1.6 m apart along the centerline of the tank length, which created
three distinct turbulent plumes. The thrusters have a diameter of approximately 𝐷

= 10 cm, which was used as a reference length scale in the subsequent analysis. To
reduce the complexity of this navigation problem, CARL swam at a fixed depth of
30 cm, which is approximately 12𝐷 above the thrusters on the bottom of the tank.
At this depth, the turbulent plumes have a spread to a diameter of approximately 5𝐷,
which is significantly larger than the size of CARL. By swimming at a fixed depth,
the navigation problem becomes effectively two-dimensional, which simplifies the
possible action space for CARL. Additionally, onboard flow measurements are
minimally impacted by the motion of CARL because the flow due to horizontal
robot motion is perpendicular to the vertical flow-sensing orientation of the pressure
sensors. The downward facing orientation of the sensors enabled CARL to detect
flow from the upward-facing thrusters at the bottom of the tank and measure the
mean velocity profile of the plume (see Methods for details).

3.2.3 Learning a navigation policy in a simulated environment
To develop a navigation strategy for autonomously locating the turbulent jets, we
first trained a navigation policy using RL in a simulated environment (see Methods).
By training in a virtual environment, hyperparameters such as the reward function,
network size and action space could be rapidly tested and fine-tuned. For example,
our simulated environment trained using 600 episodes generated over the course
of several minutes, which would take several hours to accomplish with CARL in
the physical tank. We used the policy learned in simulation as a starting point to
design an interpretable and robust navigation policy that can function on the physical
version of CARL.

In the virtual environment, we modeled CARL as a massless point swimmer that
swam at a constant speed in a 2D plane to emulate swimming at a constant depth in
the physical tank. Because the mean flow of the jet was normal to the swimming
direction of CARL, we made the simplifying assumption that the trajectory of CARL
was unaffected by the surrounding flow field and vice-versa, which eliminated the
need to solve for the background flow field at each time step. The tank dimensions,
sensor spacing, swimming speed, and radius of the simulated swimmer were all
matched with their physical counterparts.

To train a navigation policy, we implemented the Double Deep Q-network (DDQN)
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RL algorithm (Hasselt, Guez, and Silver, 2015), which seeks to predict the Q-values,
i.e., the value of an action in a particular state, and selects the actions with the highest
predicted Q-values (see Methods for implementation details). For the state, we
used one time step of simulated pressure measurements (Δ𝑃front,Δ𝑃left,Δ𝑃back, and
Δ𝑃right as shown in Fig. 3.2a). In the physical CARL robot, pressure measurements
were time-averaged over 0.3 seconds to reduce sensor noise, and the navigation
policy also updated at this interval. This duration of averaging was chosen to
maximally reduce sensor noise without introducing an excessive delay in navigation.
For example, with a swimming speed of 20 cm s−1, it typically took CARL 2.5
seconds to cross the width of the turbulent plume.

To simulate these pressure measurements, we included four virtual sensors that
measured the square of the vertical velocity component of a simulated turbulent
jet flow field with Gaussian sensor noise scaled to approximate the noise of the
physical sensors. Details of the simulated flow field are shown in Methods. To
avoid simple memorization of the turbulent flow field by the neural network, the
simulation starting time and the starting location for CARL was randomized at the
start of each episode.

Both the virtual swimmer and CARL could swim in five possible directions as shown
in Fig. 3.2a. All actions included a component in the forward swimming direction
to ensure exploration of the tank environment. After eventually running into the side
walls of the tank, CARL turned around by a random angle and continued swimming.
Each collision with the walls of the tank constituted the start and end of an episode.

Initially, the swimmer selected between the five possible actions at each time step
with equal probability. After training on 600 episodes of exploration with random
actions, the swimmer navigated by choosing the action with the highest Q-value as
predicted by the neural network. For reproducibility, we trained the policy using ten
different initial random seeds. Details of the reward function and training procedure
are shown in Methods.

3.2.4 Navigation strategy learned in simulation
After training, we recorded the navigation success rate of the swimmer over 2,000
test episodes. As a baseline navigation policy for comparison, we used random
exploration, in which the swimmer swam in straight lines and turned around by a
random angle after colliding with the side walls of the tank.

Given the noise of the sensors, a flow may only be detectable if the swimmer is



30

within approximately 2.5𝐷 of a jet center, which comprises only 7% of the total
area of the tank (see Methods for details). To reject episodes in which the swimmer
never encountered a turbulent plume, we defined the navigation success rate as
the probability of successfully finding a jet center given that a turbulent plume
was encountered. For consistency with subsequent sections, we defined a plume
encounter as occurring if the difference in flow measured by any two sensors was
greater than twice the root-mean-square (RMS) of the sensor noise.

The results are plotted in Fig. 3.2e, and an example trajectory that shows the
simulated swimmer steering towards the center of a turbulent plume is plotted in Fig.
3.2d. Whereas random exploration resulted in a successful navigation rate of 14%,
the RL policy located the center of a jet in 34% of plume encounters. Using flow
sensing, the learned navigation policy significantly outperformed random searching.

To investigate how the learned policy uses sensor measurements to locate the plumes,
we computed SHAP (SHapley Additive exPlanations) values for each sensor. SHAP
values are based on Shapley values from game theory and quantify the contribution
of an input to a model to its output (Lundberg and Lee, 2017). In Fig. 3.2c, we plot
the mean absolute SHAP value for each sensor, which represents the importance of
each sensor averaged across all time steps of the test episodes. According to the
SHAP values, the left and right sensors contributed significantly more to the learned
policy than the front and back sensors.

To understand the relative importance of the left and right pressure sensor pairs, we
plotted the swimming direction versus the difference of the left and right sensors
(Δ𝑃right − Δ𝑃left) for every timestep in the 2,000 test episodes (Fig. 3.2b). From
this plot, the learned policy appears to involve turning in the direction of the sensor
experiencing higher flow. Given that the flow velocity is higher in the center of
a turbulent plume, navigation towards faster flow leads the robot to the center of
the turbulent plume. In situations where there is not a significant left-to-right
velocity gradient (i.e., Δ𝑃right − Δ𝑃left is close to zero), the learned policy does
not appear to strongly correlate with measurements from any of the four sensors.
Without a large gradient signal, the sensor inputs were dominated by turbulent
fluctuations and simulated sensor noise, and therefore no action had a detectable
advantage over any other. Because Δ𝑃right and Δ𝑃left measure vertical flow velocity
at two spatially separated locations, the difference between these two sensors can
be interpreted as representing a transverse velocity gradient, or a gradient in the
direction perpendicular to forward swimming. Since all actions were biased towards
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Figure 3.2: Navigation policy learned in simulation transfers to physical robot.
(a) A simulated version of CARL (Left) was modeled as a point swimmer with
distributed sensors that emulate those on CARL (Right). (b) Left: navigation policy
learned in simulated is plotted at each timestep, showing a clear dependence on the
transverse gradient (Δ𝑃right − Δ𝑃left). Right: a simplified version of the learned
policy captured the same behavior but was scaled to account for the physical sensor
noise (𝜎Δ𝑃 = 15 Pa). (c) The left and right sensors have the largest impact on the
learned swimming direction, as quantified by the SHAP values. Error bars are the
standard deviation from training with 10 random seeds. (d) Example successful
episodes in the simulated flow field (Left) and in the physical tank (Right). The
background wall behind the tank is blurred for readability. (e) Left: after training,
the simulated swimmer more than doubles the probability of locating a jet compared
to random exploration. Error bars represent the standard deviation of the success
rate after training with 10 random seeds. Right: using the RL-inspired policy,
CARL achieved a similar improvement in jet-finding performance. Error bars are
95% confidence intervals using the Wilson score interval (𝑁 = 340 and 365).



32

forward swimming, a velocity gradient in the front-back direction may be less
important: the swimmer will tend to explore in the forwards direction with random
swimming.

In summary, the virtual swimmer learned an effective navigation strategy for locating
the turbulent jet plumes, which depends primarily on the transverse velocity gradient.
However, it is not guaranteed that this policy generalizes to a physical robot with
noisy sensors and encountering a real-world turbulent flow. Therefore, we next
tested the learned policy in the physical tank using CARL.

3.2.5 Plume localization with the physical CARL
To test the gradient-based navigation strategy on the physical CARL robot, we
designed an “RL-inspired” navigation policy, which is a simplified version of the
policy learned in simulation that takes into account the sensor noise of the physical
pressure sensors. A plot of the RL-inspired policy is shown in Fig. 3.2b. In
summary, if the difference between the left and right sensors is less than two standard
deviations of the sensor noise, i.e., the signal-to-noise ratio (SNR) is less than two,
CARL swims straight forward. Otherwise, CARL swims in the direction of larger
transverse velocity gradient, as in the virtually-learned policy. The RL-inspired
policy was programmed with simple if-then statements, which is computationally
simple to evaluate onboard the microcontroller, particularly when compared to
evaluating the output of neural networks (see Section 3.4). Hang et al. (2023) also
used RL to handcraft a simple navigation policy for following hydrodynamic trails.
Here, we additionally take into account limitations of a physical robot such as sensor
noise and limited computation.

We conducted navigation tests in the physical tank to compare the RL-inspired
policy with random navigation. Because the physical CARL lacks knowledge of
its absolute position in the tank, we used depth as a proxy to determine successful
location of the turbulent plume. Specifically, when CARL entered the center of
the turbulent plume, the two diving motors on CARL were unable to overcome the
mean flow, and CARL was pushed upwards by several centimeters. This effect only
occurred in the center of the plume; in the edges of the turbulent plume the diving
motors were strong enough to maintain a constant depth. The change in depth also
served as a measurement of success that was independent of the flow sensors. The
start and end of each episode were marked by CARL colliding with the walls of the
tank, which was detected with the onboard IMU.
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An example successful trajectory is plotted in Fig. 3.2d. Initially, while the sensed
gradient was below the SNR threshold, CARL swam straight and explored the tank.
When CARL detected a gradient, CARL turned in the direction of the transverse
gradient in order to locate the plume above the labeled thruster.

The navigation results averaged over two hours of swimming in the tank for each
policy (approximately 350 episodes), are plotted in Fig. 3.2e. Random exploration
successfully located the jet center in 14% of plume encounters, while the RL-
inspired policy achieved a significantly higher success rate of 37%. By sensing a
transverse velocity gradient, CARL was able to locate turbulent jets autonomously.

3.2.6 Effect of sensor spacing on navigation performance
The learned navigation policy relied on detecting flow gradients using physically
separated flow sensors in the presence of sensor noise and turbulent fluctuations.
Therefore, the success of gradient-based navigation may be limited by the minimum
detectable gradient over the background noise floor. For example, the distance
between flow sensors (𝐿) may be an important design consideration, since a robot
with sensors spaced father apart may have a greater sensitivity to spatial gradients
in the background flow but may be unable to detect flow structures smaller than 𝐿.

To vary the minimum detectable gradient on CARL, we created two additional
sensor mounts with reduced distance between the pressure sensors (see Fig. 3.3a).
In general, flow structures of size 𝐿 or smaller may be undetected or spatially aliased
when sampled by two sensors. However, for this experimental setup, the mean flow
profile of the turbulent plume was significantly larger than CARL for all sensor
configurations (see Fig. 3.3b). Reducing the sensor separation therefore reduced
the difference in mean flow measured by the left and right sensors, negatively
impacting sensitivity to flow gradients. Because the navigation policy depends on
the inherent noise of the sensors which is independent of the sensor spacing or
background turbulence, we tested navigation performance using the same policy
for all three sensor mounts and compared the results with random exploration. For
each case, we recorded the navigation performance over two hours of swimming, or
approximately 350 episodes.

In Fig. 3.3c, we plot the plume detection rate, which we define as the chance
of detecting any gradient signal above two times the noise floor of the sensors
in a given episode. Since the swimming direction only changed if this threshold
was exceeded, the random and RL-inspired swimming behaviors are expected to
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Figure 3.3: Navigation performance depends on sensor spacing. (a) We created three
versions of CARL with sensors of varying spacing 𝐿. (b) At the swimming depth of
CARL, the mean profile of the turbulent plume is approximately 5𝐷, according to
flow measurements (see Methods). (c) The chance of CARL detecting a transverse
velocity gradient above the noise floor increased with sensor separation. (d) The
ability to locate a turbulent plume also increased with larger sensor separation. Error
bars indicate 95% confidence intervals using the Wilson score interval (𝑁 for each
data point ranges from 313 to 365).

be indistinguishable. The plume detection rate increased with a greater distance
between the sensors.

Additionally, we plot the navigation success rate in Fig. 3.3d. The success rate
significantly increased as the sensor spacing increases. In the case of the greatest
sensor spacing (𝐿/𝐷 = 1.2), the RL-inspired policy successfully located the jet
cores 37% of the time, compared with only 17% for the smallest sensor spacing
(𝐿/𝐷 = 0.4). As the sensors are placed more closely together, the navigation ability
became increasing similar to that of random exploration.
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The dependence of navigation success rate on sensor spacing may be explained
by the signal-to-noise ratio (SNR) of the measured flow gradient. Since CARL is
significantly smaller than the mean flow profile, we use a linear mean background
flow (i.e., d𝑈̄/d𝑥 is constant) to model the SNR. Because the pressure sensor pairs
measured the dynamic pressure of incoming flow (i.e., Fig. 3.1b), the gradient
signal used for navigation is equal to:

Δ𝑃right − Δ𝑃left =
1
2
𝜌

(
𝑈̄2

left − 𝑈̄
2
right

)
= 𝜌𝑈̄avg

d𝑈̄
d𝑥

𝐿 ,

where 𝑈̄avg is the average of 𝑈̄Left and 𝑈̄Right. According to this model, the signal
scales with 𝐿: farther apart sensors experience a greater velocity differential, and
therefore Δ𝑃right − Δ𝑃left scales with 𝐿. The inherent noise of the sensors was
fixed, depending only on the time-averaging window used. Noise from turbulent
fluctuations may vary spatially and temporally, but for simplicity, we assumed the
magnitude of turbulent fluctuations was similar for both sensors because CARL is
small relative to the size of the mean flow profile. Under these assumptions, the
signal is proportional to 𝐿 while the noise sources remain constant with sensor
spacing. This may explain the increase in navigation ability as the sensor spacing
increases and may also contribute to the plume detection rate.

Another potential effect is that farther apart sensors are more likely to encounter a
plume during straight-line swimming. During straight swimming, the area swept
out between the two sensors is proportional to 𝐿. Therefore, the chance of any sensor
encountering a plume will scale with 𝐿, provided that any relevant flow features are
not smaller than the distance between the sensors. Given that the turbulent plumes
only occupy 7% of the area of the tank, an increase in swept area may partially
explain the increased plume detection rate as the sensor spacing increases. However,
the navigation success rate should not depend on this effect, since it only counts
episodes in which a jet is already detected.

3.3 Discussion
The effectiveness of the learned navigation policy in both simulations and physical
experiments demonstrates the applicability of RL for solving flow-based navigation
problems and identifying useful hydrodynamic cues. In this study, the robot learned
to follow transverse flow gradients to localize the turbulent jet plumes. Applying
interpretability metrics to the policy learned in simulation enabled us to simplify
and adapt the learned policy for deployment in a physical robot, maintaining overall
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effectiveness while taking into account computational constraints and the noise of the
physical sensors. The success of CARL at locating turbulent plumes demonstrates
the potential for targeted sampling of real-world flow features with onboard flow
sensing.

The importance of the transverse velocity gradient suggests that onboard flow sen-
sors may provide higher utility when arranged perpendicular to the direction of
swimming. Such sensing arrangements are not uncommon in animals. For exam-
ple, zebrafish were shown to require flow sensing on both sides of their body in order
to detect flow gradients for avoiding walls (Oteiza et al., 2017). Swimming in the
direction of greater flow is similar to the turning strategy employed by Braitenberg
vehicles (Braitenberg, 1986; Salumäe et al., 2012) and a virtual robot that tracked
the wake behind simulated fish (Hang et al., 2023). While a turbulent plume is
qualitatively different than the vortex shedding wake produced by an animal, both
types of flows involve spreading wake-like structures and intermittent eddies. Future
work could investigate tracking vortex shedding dominated wakes in a physical tank.

The dependence of navigation performance on sensor spacing suggests that the
SNR is limiting for navigating via flow gradients. Therefore, the navigation strategy
employed by CARL may be most effective when mean flow gradients are significant,
such as in close proximity to a hydrothermal plume or the turbulent wake behind an
obstacle. In addition to using more accurate flow sensors, a larger separation between
sensors can improve the SNR, provided that the gradients of interest are larger than
the gap between sensors. Fish lateral lines often extend over the entire body, which
may be advantageous for increasing sensitivity to flow gradients. Additionally, using
an array of sensors to measure flow at many locations could provide additional
information for navigation. In fish, distributed flow sensing can indicate flow
direction and location of oscillating sources, e.g., other animals (Bleckmann and
Zelick, 2009).

Onboard distributed pressure sensing offers a convenient, low-cost, and low-power
method for measuring flow gradients. If deployed in an ocean environment, cali-
bration procedures such as those outlined in (Strokina et al., 2016) may be needed
to compensate for water temperature and atmospheric pressure variations to achieve
same flow-sensing accuracy as in lab studies. Additionally, CARL navigated us-
ing the transverse gradient, which was perpendicular to the motion of the robot.
Given the three-dimensional nature of underwater navigation in ocean environ-
ments, swimming may not be limited to directions normal to all onboard sensors,
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which may induce flow signals during swimming. Bio-inspired robots which swim
using undulatory motion also generate confounding flow signals from body motion.
If sensors readings are coupled with the swimmer’s motion, pre-calculated models
such as those used in (Akanyeti et al., 2013) could be implemented to disentangle
pressure signals from self-motion and external stimuli.

CARL located the turbulent plumes using only a single time step of pressure mea-
surements. However, several studies have shown that neural network architectures
with memory, such as Long Short-Term Memory (LSTM) networks, demonstrate
performance improvements for tasks such as locating the source of odor plumes
(Singh et al., 2023) and controlling the lift of a wing in turbulent conditions (Renn
and Gharib, 2022). Memory may be particularly useful in turbulent flows, which are
inherently intermittent and time-varying. Turbulent fluctuations could themselves
be a useful signal for navigation. For example, turbulent fluctuations have been
used as a signal for distinguishing between flows (Venturelli et al., 2012), and there
is evidence that aquatic animals sense intermittency at the edge of turbulent odor
plumes for locating the source of the plume (Michaelis et al., 2020). Other flow
signals, such as the static pressure or vorticity, are coupled with the flow velocity
and could be useful hydrodynamic cues for navigation (e.g., Hang et al., 2023). Ad-
ditionally, memory itself could be used for gradient sensing, since directionality can
be encoded in a time series (Kadakia et al., 2022). Finally, training using physically
collected data or directly onboard an underwater robot may improve performance
and allow for real-time adaptation to changing flow conditions.

3.4 Methods
3.4.2 Flow sensing with pressure sensors
We mounted pressure sensors at four locations on CARL, as shown in Fig. 3.1a-
b. The pressure sensors record an absolute pressure measurement, resulting in
a signal largely dominated by the hydrostatic pressure, which varies with depth.
However, taking the difference between the exposed and covered pressure sensors
effectively cancels out the hydrostatic pressure. Because CARL maintains an upright
orientation, the sensors maintain a constant depth relative to each other, requiring
only that an initial offset is subtracted at the beginning of each episode. The exposed
and covered pressure sensors at each location on CARL are mounted close together,
which reduces any change relative depth due to small wobbling motions during
swimming from the turbulent jets.
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Figure 3.4: Validating flow sensing in a water channel. (a) Schematic setup showing
CARL placed in the water channel to validate the flow sensors. Because flow is
horizontal, CARL is oriented left-to-right. (b) Illustration of the incoming flow and
location of the flow-facing and side-facing pressure sensors, which measure 𝑃0 and
𝑃𝑠, respectively.

To validate the flow sensing capabilities of these sensors, we mounted CARL hori-
zontally in a water channel and recorded the pressure from two sensors in steady flow
conditions with speeds ranging from approximately 11 cm s−1 to 49 cm s−1 (Fig.
3.4a). For this water channel test, one sensor was mounted on the side of CARL
and another sensor was mounted to point into the free stream flow as shown in Fig.
3.4b. In all other experiments, the sensors were arranged according to the Pitot-tube
arrangement previously described in Fig. 3.1. The initial offset was recorded for
each sensor in zero flow conditions and subtracted from subsequent measurements.

Because the exposed sensor is pointed into the freestream flow, it is expected to
experience stagnation flow and a pressure increase equal to the dynamic pressure,
1/2𝜌𝑈2. According to an idealized potential flow model with no body wake such
as the one used in (Zheng, Wang, Li, et al., 2020), a side-facing sensor should
experience a pressure decrease of approximately twice the dynamic pressure as the
flow accelerates over the body of the robot. Therefore, the difference in pressure
between the sensors, or Δ𝑃, is expected to equal 3/2𝜌𝑈2, or equivalently:

𝑈 = 𝐶

√︄
2Δ𝑃
𝜌

,

where 𝐶 is a Pitot tube calibration constant equal to
√︁

1/3. Using this equation, we
computed the measured velocity and compared it with the flow velocity of the water
channel in Fig. 3.1b. Using a fitted constant of 𝐶 =

√
0.301, which differs from
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the predicted constant by only 5%, the sensors were able to accurately measure the
freestream flow velocity, demonstrating the efficacy of these pressure sensors for
quantifying flow. In all free-swimming navigation experiments, the signals from the
sensors were left as pressure measurements to streamline onboard signal processing
and simplify the SNR analysis.

During free-swimming tests, the pressure sensors also functioned as depth sensors.
The depth was estimated by taking an average of the pressure measured by the four
side-facing sensors and applying the equation for the hydrostatic pressure of an
incompressible fluid:

ℎ = 𝑃s/𝜌𝑔

While the flow in the tank was not static, we estimate that the hydrostatic pressure at
the typical swimming depth of 30 cm was more than an order of magnitude greater
than dynamic pressure created by the highest measured flow impinging on CARL.

3.4.3 Flow measurement of the turbulent plumes
For comparison with the simulated jets, we measured the physical turbulent plumes
using particle image velocimetry (PIV). We seeded the tank with 100-micron silver-
coated hollow glass particles (AGSL150-30TRD, Potters Industries) and illuminated
a cross section of the jet with a 532 nm continuous-wave laser (6 watt, Laserglow
Technologies) and sheet-forming optical assembly (see Fig. 3.5a for the experimen-
tal setup). A high speed camera (Edgertronic SC2, Sanstreak Corp) with a fixed lens
(Nikon 50 mm f/1.8 D) recorded the flow at 200 frames per second for 15 seconds.
We processed the images in MATLAB using PIVlab (Thielicke and Sonntag, 2021).
We measured the flow at a range of throttle values from 15% to 100%, and plotted a
snapshot of the turbulent jet flow field at 75% throttle in Fig. 3.5c. Flow speeds of
the physical jet are on the order of 1 m s−1, and the flow is turbulent. The thrusters
were powered with a 12 V DC power adapter, and the speed was controlled via pulse
width modulation (PWM) outputted by a Teensy 4.1 microcontroller. During nav-
igation tests, the thruster operated at 35% throttle to generate a strong enough flow
to be detectable by CARL without being too strong as to greatly disrupt swimming.

To verify that the pressure sensors on CARL can detect the jet profile, we statically
mounted CARL in the tank at a depth of 30 cm and recorded the time-averaged
velocity at locations along the plume profile using the Pitot tube equation. The
time-averaged vertical flow speeds measured by the pressure sensors are compared
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Figure 3.5: Measurement and simulation of the turbulent plume. (a) PIV setup.
(b) Mean flow profile at a depth of 30 cm below the water surface (𝑧 ≈ 12𝐷) as
computed from PIV, a static traverse of CARL in the tank, and the simulated jet flow.
Velocity measurements from CARL are normalized by the centerline velocity from
PIV measurements (𝑈centerline ≈ 0.58 m s−1). The error band and error bars indicate
one standard deviation of the measured flow, which arises from the combination
of turbulent fluctuations and measurement noise. (c) Snapshot of the turbulent jet
PIV. Arrows are plotted to indicate flow direction and magnitude. Colors indicate
the magnitude of the vertical velocity component 𝑈. (d) Snapshot of the simulated
turbulent jet flow. Colors indicate the magnitude of the vertical velocity component
normalized by the velocity imposed at the jet outlet (𝑈Thruster). A dotted red line at
𝑧 = 12𝐷 indicates the depth of the mean profiles plotted in (b).
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with the mean flow profile measured with PIV in Fig. 3.5b and show good agreement.
This demonstrates that in a time-averaged sense, the flow sensors onboard CARL
can detect and measure the mean profile of the turbulent jet flow. Error bars on
the measurements from CARL indicate error due to the combination of turbulence
and inherent sensor noise, which highlights a limitation to the sensing abilities of
CARL for this flow field: if CARL is greater than ∼ 2.5𝐷 away from the center of
the plume, the noise is greater in magnitude than the mean flow.

3.4.4 Simulated turbulent jet flow
To generate a flow field for the simulated robot that models the turbulent jet flow in
the physical tank, we simulated the jet flow using a lattice Boltzmann solver with a
Smagorinsky-Lilly subgrid turbulence model (FluidX3D software Lehmann, 2023).
Taking advantage of the fact that the three thrusters are equally spaced in the tank, we
simulated one-third of the tank volume with one thruster. For simplicity, we applied
a no-slip condition to all boundaries including the free surface. The thruster was
modeled by enforcing a uniform velocity condition on a disk of magnitude 𝑈thruster

with the same dimensions as the thruster outlet and applying a jet Reynolds number
of 100,000 to approximately match the flow speeds found by PIV measurements
of the physical jet. The flow was simulated on a uniform 652 by 622 by 612 grid
on an NVIDIA RTX 3090 GPU, resulting in a grid cell size of Δ𝑥 ≈ 𝐷/36. We
generated 150 seconds of the turbulent jet flow, which is significantly longer than
it takes CARL to swim across the tank, and used a 2D slice of the vertical velocity
component at the swimming depth of CARL for training (see Fig. 3.2d). A snapshot
of the turbulent jet flow is shown in Fig. 3.5d and the mean profile is plotted in Fig.
3.5b, and show good agreement with PIV measurements of the physical jets.

3.4.5 Reinforcement learning algorithm
To train a navigation policy for the simulated swimmer, we implemented the Double
DQN algorithm (Hasselt, Guez, and Silver, 2015), which seeks to optimize the
actions of an agent to maximize a cumulative reward function. DDQN trains two
sets of weights in a neural network to predict the Q-values, i.e., the value of an
action in a particular state, and selects actions with higher predicted Q-values.
DDQN as implemented in this study is limited to discrete outputs, however, this
proved sufficient for the plume-finding task. For the Q-network, we used a two-
layer multi-layer perceptron network with 64 softsign neurons per layer, which has
been sufficiently expressive to solve flow-based navigation problems in previous
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work (Peter Gunnarson et al., 2021). Other RL algorithms may certainly provide
stability or data efficiency benefits for solving tasks involving fluids (Berger et al.,
2024), but because fluid-robot interactions are ignored in this simplified simulation,
exploring the environment is computationally inexpensive and thus data efficiency
is not critical.

The virtual CARL received a reward if the center of a jet was successfully reached,
which occurred if CARL swam within a diameter of 2𝐷 from the center of a
turbulent plume. In previous work for navigating in flow fields (Biferale et al., 2019;
Peter Gunnarson et al., 2021), intermediate rewards such as the change in distance
to the target were necessary to supply a consistent reward signal during training.
Untrained swimmers could not overcome the strong background flow and reach the
target, and would therefore not receive a reward signal without the inclusion of an
intermediate reward. Here, in the absence of strong currents that restrict swimming,
random exploration occasionally resulted in successfully finding the center of a
plume, therefore intermediate rewards were not required.

3.4.6 RL-inspired navigation policy
The RL-inspired navigation policy is described below in Algorithm 1. The RL-
inspired policy involves turning in the direction of the transverse velocity gradient,
as sensed by (Δ𝑃right − Δ𝑃left). If the transverse velocity gradient is less than twice
the RMS of the sensor noise (𝜎Δ𝑃), then CARL swims straight forward. This is
changed from the random swimming of the simulated policy, since straight swim-
ming still achieves random exploration of the tank, but induces fewer vibrations and
jittery motion in the physical robot compared with taking random actions. The sen-
sor noise was measured beforehand by recording the RMS value of (Δ𝑃right−Δ𝑃left)
while swimming in the tank with no flow from the thrusters.
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Algorithm 1 RL-inspired navigation protocol
1: while battery voltage > 3.5 V do
2: 1) Measure transverse gradient (Δ𝑃right − Δ𝑃left)
3: 2) Pick swimming direction 𝜃:
4: if Δ𝑃right − Δ𝑃left ≥ 3𝜎Δ𝑃 then
5: 𝜃 ← 75◦
6: else if 2𝜎Δ𝑃 ≤ Δ𝑃right − Δ𝑃left < 3𝜎Δ𝑃 then
7: 𝜃 ← 35◦
8: else if −2𝜎Δ𝑃 < Δ𝑃right − Δ𝑃left < 2𝜎Δ𝑃 then
9: 𝜃 ← 0◦

10: else if −3𝜎Δ𝑃 ≤ Δ𝑃right − Δ𝑃left < −2𝜎Δ𝑃 then
11: 𝜃 ← −35◦
12: else if Δ𝑃right − Δ𝑃left ≤ −3𝜎Δ𝑃 then
13: 𝜃 ← −75◦
14: end if
15: 3) Swim for one timestep with direction 𝜃

16: if CARL impacts tank wall then
17: Turn around by random angle between 90◦ and 270◦
18: Episode← Episode + 1
19: end if
20: end while
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C h a p t e r 4

SURFING VORTEX RINGS FOR ENERGY-EFFICIENT
PROPULSION

Abstract
Exploiting background fluid flows for propulsion has the potential to enhance both
the range and speed of AUVs. In this work, we demonstrate a novel strategy
involving surfing a vortex ring for energy-efficient propulsion. First, an autonomous
underwater robot used an onboard Inertial Measurement Unit (IMU) to sense the
motion induced by the passage of a vortex ring generated by a thruster in a 13,000-
liter water tank. In response to the sensed acceleration, an impulsive maneuver
entrained the robot into the material boundary of the vortex ring. After entrainment,
the robot was propelled across the tank without expending any additional energy or
control effort. Modeling the energy and momentum transfer between the robot and
the vortex ring reveals that the surfing strategy requires only one-fifth of the energy
that would otherwise be expended under self-propulsion without the vortex ring. We
then analyzed the controlled finite-time Lyapunov exponent field and corresponding
Lagrangian Coherent Structures to understand the initial entrainment process and the
sensitivity to the starting time and position of the surfing maneuver. Additionally,
body acceleration as sensed by the onboard IMU was found to correspond with the
acceleration of the background flow, and body rotation is suggested as a method for
measuring the vorticity of the vortex ring. This study serves as a proof-of-concept
demonstration of the potential for onboard inertial measurements to enable efficient
interaction with background fluid flows.
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4.1 Introduction
The ability to leverage background fluid flows for efficient propulsion has significant
implications for ocean-exploring vehicles. Rather than expending energy to swim
against ocean currents, AUVs may be able to significantly improve their range and
speed by maneuvering into unsteady background currents that push the robot towards
the desired destination (Inanc, S. Shadden, and J. Marsden, 2005; Rhoads, Mezić,
and Poje, 2013).

While underwater, AUVs typically lack communication with the surface or real time
knowledge of the full background flow field. Therefore, the challenge of efficient
navigation must be accomplished with onboard sensing, computation, and actuation.
Recent approaches for determining efficient navigation strategies using onboard
sensors have involved data-driven techniques such as Reinforcement Learning in a
variety of canonical and oceanic flow environments (e.g., Bellemare et al., 2020;
Hang et al., 2023; Peter Gunnarson et al., 2021; Masmitja et al., 2023; Reddy
et al., 2018; Krishna, Brunton, and Song, 2023). While powerful, these data-driven
navigation algorithms often lack verification in physical robotic systems, particularly
in ocean applications (Masmitja et al., 2023). To accomplish robotic sensing of
background flows, researchers have invented various onboard flow sensors, including
bio-inspired sensors (Ko, Lauder, and Nagpal, 2023; Bora et al., 2018; Zhai, Zheng,
and Xie, 2021). However, solving the combined problem of sensing the background
fluid flow with physical onboard sensors and then navigating intelligently in response
to those measurements, remains an active area of research.

A promising approach for sensing background flow is to infer it from inertial mea-
surements. For example, acceleration experienced by a robot may indicate the
presence and direction of a background current, which could be used for efficient
navigation. In nature, it has been observed that aquatic animals such as fish use their
vestibular system to detect body acceleration induced by background flows (Coombs
et al., 2014). In robotic applications, inertial measurements have the advantage of
being inexpensive to implement due to the ubiquity of micro-electromechanical
systems (MEMS) accelerometers. For example, IMUs are often already present on
many existing robots such as quadcopters for stabilization and inertial guidance.
Several studies have investigated using inertial data to infer background wind flows
in aerial vehicles. For example, the tilt of a robot can aid with the identification
of wind for more accurate maneuvering (O’Connell et al., 2022). The combina-
tion of vertical acceleration and roll in a remote-controlled airplane was used to
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autonomously detect and exploit atmospheric thermal currents (Reddy et al., 2018).
Additionally, micro aerial vehicles have been suggested as Lagrangian flow tracers
for atmospheric flow measurement (Simon et al., 2023). However, to the best of our
knowledge, combining onboard inertial data for efficient underwater navigation is a
relatively unexplored technique.

In this study, we demonstrate experimentally a strategy for exploiting passing vortex
rings for propulsion using inertial data as a sensory input. We tested the strategy
using CARL, a palm-size autonomous underwater robot (P. Gunnarson and J.O.
Dabiri, 2024). A thruster in a 13,000-liter water tank generated individual vortex
rings, which served as a repeatable background flow unit that CARL exploited for
forward propulsion. To detect both the presence and location of the vortex ring
relative to CARL, an inexpensive accelerometer (∼$5, MPU-6050) measured the
motion induced by a passing vortex ring. Equipped with the ability to determine
the relative location of the vortex ring, CARL executed a short burst maneuver in
the direction of sensed acceleration, which typically resulted in entrainment into
the vortex ring. After entrainment, CARL remained caught inside the vortex ring,
surfing the flow structure across the tank without the need for additional control
effort or propulsion.

By analyzing the transfer of energy and momentum from the vortex ring to CARL, we
find that the surfing strategy requires one-fifth of the energy consumption compared
with self-propulsion across the same distance at the same speed. Additionally,
the controlled finite-time Lyapunov exponent field provides an explanation of the
dynamics responsible for converting the small surfing maneuver into a long-distance,
energy-efficient trajectory. Lastly, body rotation is found to serve as an additional
indirect flow signal that can indicate background vorticity to further increase the
available knowledge of the background flow. This work demonstrates a flow-based
navigation strategy that closes the loop between sensing a background flow and
exploiting that flow with an efficient and targeted maneuver.

4.2 Experimental setup
As a testing environment, we used a portion of a 1.5 m deep, 1.8 m wide, and 4.8 m
long water tank (Figure 4.1). Vortex rings were generated by pulsing a thruster
(Blue Robotics T200) mounted on a wall of the tank pointing horizontally in the
𝑥-direction (see Figure 4.1). Details about the vortex generation and properties of
the resulting vortex rings are discussed in Appendix C.1. The thruster has a diameter
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of 𝐷 = 10 cm, which is used as the reference length scale for this study.

Laser Wide-angle FOV

High-speed
camera FOV

Thruster CARL

2.5 m

1.6 m

Laser

Wide-angle
FOV

High-speed
camera FOV

1.5 m
Thruster

CARL

(c) Top view

(a) Side view

(b) Tracking
 LED

2 cm

Figure 4.1: Experimental setup showing a side view (a) and top view (c) of the water
tank. (b) CARL with a 2 cm scale bar and the LED used to for position tracking. A
thruster mounted on a side wall of the tank (𝐷 = 10 cm) generates vortex rings (Γ/𝜈 ≈
200,000; 𝐿/𝐷 ≈ 3.6), which are detected and surfed by CARL. A wide-angle and
a high-speed camera are mounted above the tank and track the position of CARL
while simultaneously recording PIV measurements. A laser sheet illuminates the
horizontal 𝑥-𝑦 plane for PIV measurements. For some PIV recordings, the laser was
re-positioned to fully illuminate the entire FOV of the high-speed camera.

To test flow-based navigation in the water tank, we used CARL, a palm-sized, au-
tonomous underwater robotic platform (see Appendix B for details). CARL was
equipped with an onboard IMU (MPU-6050), which measured the linear acceler-
ation and angular velocity of CARL. For each trial, CARL began at the surface,
and was commanded to dive and maintain the same depth as the thruster. This
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effectively constrained the navigation problem to the 𝑥-𝑦 plane. A Proportional-
Integral-Derivative (PID) control loop ran onboard CARL at 50 Hz to control the
depth using two vertically oriented motors. The depth was estimated using the
hydrostatic pressure averaged from four onboard pressure sensors (MS5803-02BA,
TE Connectivity). Another PID loop fixed the orientation of CARL in the vertical
axis (𝑧-axis) using the angular velocity data from the onboard IMU.

We mounted two cameras above the tank, which both recorded the position of CARL
in the 𝑥-𝑦 plane and simultaneous Particle Image Velocimetry (PIV). The wide-angle
camera (Canon RP with an RF 16 mm F2.8 STM lens) recorded approximately half
of the area of the tank (2.5 by 1.6 meters) at a resolution of 1920 by 1080 pixels
at 59.94 frames per second. The high-speed camera (Edgertronic SC2, Sanstreak
Corp, with a Nikon 50 mm f/1.8 D lens) recorded a narrower field of view (FOV)
near the jet (0.4 by 0.5 meters; 1280 by 1024 pixels at 300 frames per second) to
better resolve the initial vortex formation and entrainment of CARL. The camera
positions and fields of view are shown in Figure 4.1.

To track the position of CARL in the tank, we added an LED to the top of CARL
(WS2812B RGB LED, ALITOVE) that changed from green to red at the start of
onboard data recording. The change in color served to synchronize the camera
position tracking with onboard measurements recorded by CARL. The position of
CARL was computed by thresholding the red color channel of each frame of video
and computing the “center-of-mass” of the result. Distortion corrections due to
refraction at the air-water interface are described in Appendix C.2. The thruster was
mounted approximately 0.56 meters below the free surface such that the generation
of vortex rings had little effect on the free surface of the tank. For PIV measurements,
we seeded the tank with 100-micron silver-coated hollow glass particles (AGSL150-
30TRD, Potters Industries) and illuminated the horizontal 𝑥-𝑦 plane in the tank with
a 532 nm continuous-wave laser (6 watt, Laserglow Technologies) and sheet-forming
optical assembly (see Figure 4.1).

At the start of each episode, CARL was manually piloted to a position approximately
3𝐷 downstream and 2𝐷 in the negative 𝑦 direction from the thruster (see Figure 4.5
for measured starting positions). CARL was then commanded to dive to the depth
of the thruster and began recording onboard data. At this starting position, CARL
was outside of the direct path of the vortex ring, but still close enough to sense the
effects of a passing vortex ring. After CARL reached the depth of the thruster, the
surfing policy described in the following section was activated, and the thruster was
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commanded to generate a vortex ring. After 12 seconds, CARL stopped recording
data and returned to the surface, which marked the end of an episode. The 12-second
duration was chosen such that CARL always remained within the field of view of
the wide-angle camera during an episode.

Throughout this study, time is normalized by the vortex formation time (𝑈 𝑝/𝐷,
Gharib, Rambod, and Karim Shariff, 1998), which is measured to be approximately 9
seconds. The Reynolds number (Γ/𝜈) and formation number (𝐿/𝐷) of the generated
vortex rings are approximately 200,000 and 3.6, respectively, which are discussed in
Appendix C.1. The time 𝑡 = 0 is defined by the origination of a vortex ring, which
is estimated by fitting a model shown in Figure 4.3.

4.3 Vortex ring surfing strategy
To use the vortex ring for propulsion, CARL was programmed with a simple but
effective policy: if the acceleration in the 𝑦-direction exceeded a threshold, CARL
would swim impulsively in the same direction as that sensed acceleration. After
this initial swimming maneuver, CARL entered the vortex ring, and was propelled
across the tank without requiring any additional control effort or energy expenditure.
It is important to highlight that this impulsive maneuver was perpendicular to the
direction of surfing motion; zero thrust contributed directly towards the forward
propulsion of CARL. An example trajectory and time-history of sensed acceleration
is plotted in Figure 4.2. By accomplishing both tasks of sensing and navigating
onto the vortex ring, CARL can autonomously exploit the background flow for
energy-efficient propulsion.

Next, we describe each step of the surfing strategy for the example episode shown
in Figure 4.2. As the vortex ring passed near CARL, CARL was pushed by the
flow surrounding the vortex ring. The resulting body acceleration was detected by
the onboard IMU (Figure 4.2c). For these experiments, the orientation of CARL
was fixed so that the coordinates of the reference frame onboard CARL matched
the coordinate system of the tank. Therefore, the sign of the acceleration in the
𝑦-direction indicated whether the vortex ring was to the left or right side of CARL.
If the 𝑦-acceleration exceeded a threshold of 0.5 m s−2, CARL swam at maximum
thrust for 0.3 seconds in the same direction as the sensed 𝑦-acceleration. This
impulsive maneuver was highly successful at entraining CARL into the vortex ring.
Additionally, the surfing strategy is fully autonomous, i.e., CARL had no prior
knowledge of where and when the vortex ring would propagate.
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Figure 4.2: Detecting and exploiting a vortex ring for propulsion. (a) Example
trajectory of CARL (green line) while surfing a vortex ring. Using a snapshot of
simultaneous PIV measurements, instantaneous streamlines are plotted in the lab
frame of reference and shaded by the vorticity to visualize the vortex ring. (b) Flow
streamlines are plotted in a reference frame translating with the vortex ring. The
trajectory of CARL is contained inside the lower half of the vortex ring and orbits
in the same direction as the local vorticity. (c) Linear acceleration signal sensed
by the IMU onboard CARL. The red line indicates the threshold used to detect the
presence of a vortex ring, which autonomously triggered an impulsive maneuver
(d) with the same sign as the sensed 𝑦-acceleration. After the impulsive maneuver,
CARL remained inside the vortex ring with no additional control effort or energy
expenditure. (e) The 𝑥 and 𝑦 components of acceleration orbit the origin, further
highlighting the circular motion of CARL induced by the vortex ring.

After successful entrainment, CARL traveled with the vortex ring across the tank,
which is visualized in Figure 4.2a. In Figure 4.2b, the trajectory of CARL and
the flow measured by PIV from the wide-angle camera are plotted in a frame of
reference traveling at the same speed as the vortex ring. While entrained inside the
vortex ring, CARL orbits the lower half of the vortex ring in a clockwise direction,
i.e., in the same direction as the local vorticity in that part of the vortex ring. In this
sense, the translation of CARL matches that of the surrounding fluid. Additionally,
the vorticity of the surrounding fluid may be expected to induce body rotation, but
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CARL maintains a constant heading using the onboard PID control loop.

While the navigation policy used in these experiments is simple, it highlights the
potential of combining onboard sensing and navigation for exploiting unsteady
background flows. Additionally, it is straightforward to extend this strategy beyond
sensing and swimming in only the 𝑦-direction. For example, both components of the
onboard acceleration clearly detect the motion induced by the vortex ring. Figure 2e
plots the 𝑥-component of acceleration versus the 𝑦-component. Before the vortex
ring is generated, the acceleration vector starts at the origin. When the vortex ring
passes, the acceleration increases to its maximum magnitude, and begins orbiting
the origin in a clockwise direction, which matches the sign of the nearby vorticity in
the vortex ring. After CARL is entrained into the vortex ring, the acceleration vector
continues to orbit the origin in the same clockwise direction, gradually decreasing
in magnitude as the vortex ring slows and diffuses. This circular motion can also
be seen in Figure 4.2c, in which the phase of the 𝑥 and 𝑦 acceleration appear offset
by roughly 90 degrees. In addition to linear acceleration, there are other types of
sensor measurements that could be used to detect the vortex ring. For example, the
potential for rotation and vorticity sensing is discussed in Section 4.9.

4.4 Repeatability and success rate
The autonomous surfing strategy is highly repeatable and successful. We recorded
the results of the surfing strategy over 37 episodes, and compared the resulting
trajectories with 26 episodes in which CARL took no action, and 46 episodes in
which CARL attempted to avoid the vortex ring (i.e., swam in the opposite direction
of sensed 𝑦-acceleration). These trajectories are plotted below in Figure 4.3.

For the surfing policy, in which CARL attempted to surf the vortex rings (Figure
4.3a), the location of the vortex ring was correctly identified in 81% percent of the
episodes. Successful identifications are visualized by the color of the trajectories:
blue trajectories indicate that CARL swam in the direction of the vortex ring; black
trajectories indicate that no vortex ring was detected; red trajectories indicate that
CARL swam away from the vortex ring (i.e., the sign of detected acceleration was in
the negative 𝑦-direction). Of those episodes in which the vortex ring was correctly
identified, CARL successfully swam into the vortex ring at a rate of 77%. In
summary, both tasks of sensing the vortex ring and navigating into the vortex ring
have high success rates with this acceleration-based surfing strategy.

For comparison, we also plot trajectories in which CARL was programmed to not
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Figure 4.3: Comparison of control strategies for exploiting or avoiding a passing
vortex ring. (a) Surfing policy (𝑁=37). Using the acceleration in the 𝑦-direction,
CARL correctly identified the presence and direction of the vortex rings in 81%
of trials, which triggered a swim maneuver towards the vortex rings (blue lines).
Of those correct identifications, CARL successfully surfed the vortex ring at a rate
of 77%. (b) CARL was commanded to take no action (𝑁=26), which results in
entrainment in 50% of episodes. (c) CARL was commanded to avoid the vortex
rings (𝑁=46). CARL correctly identified the location of the vortex ring with a rate
of 72%, resulting in a swim maneuver away from the vortex rings (red lines). The
avoidance maneuver successfully avoids entrainment in 100% of episodes.

take any action (Figure 4.3b) and to avoid the vortex ring (Figure 4.3c). As with the
surfing policy, the avoidance policy is highly effective: CARL correctly detects the
vortex ring in 72% of episodes and avoids the vortex ring in 100% of those episodes.

The inclusion of the avoidance policy is motivated for two reasons. For a navigation
task in the real world, flow structures may not necessarily propagate in the direction
of desired motion. In that case, it would be advantageous to avoid entrainment to
prevent motion in a counterproductive direction. Additionally, many animals such
as jellyfish employ vortex rings for prey capture (Peng and J. O. Dabiri, 2009). In
turn, these preys often exhibit escape maneuvers in response to deformation of the
surrounding flow, and thus it may be insightful to use these robotic experiments to
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probe questions of predator–prey interactions. The effectiveness of the avoidance
policy demonstrates that the surfing policy can be simply adjusted to test these
different behaviors of surfing or avoiding flow structures.

4.5 Energy savings and momentum transfer
Surfing on background flow structures has the potential to greatly reduce the energy
required for propulsion. In this section, we quantify the energy savings gained
by surfing vortex rings in our experiment and analyze the transfer of momentum
between the vortex ring and CARL.

To quantify the energy savings gained by vortex ring surfing, we compare the energy
required to surf a vortex ring to the energy required to travel the same distance under
self-propulsion. To surf the vortex ring, CARL swims at maximum thrust for 0.3
seconds, which accelerates CARL from rest to a speed of 𝑢impulse ≈ 24 cm s−1.
Afterwards, no energy is expended to maintain position inside the vortex ring. The
primary energy expenditure during this maneuver is the change in kinetic energy of
CARL required to accelerate CARL from rest:

𝐸surf =
1
2
𝑚CARL(1 + 𝛼𝑥𝑥)𝑢2

impulse ≈ 16.7 mJ, (4.1)

where 𝑚CARL is the mass of CARL (∼355 g) and 𝛼𝑥𝑥 is the added mass coefficient of
CARL in the direction of propulsion (∼0.63). To estimate the added mass coefficient,
we fit a prolate ellipsoid to the shape of CARL with a volume of equal to 𝑚CARL/𝜌
and used the analytical formula for added mass coefficients from Lamb (1932). The
speed 𝑢impulse was estimated by measuring the position of CARL while executing
an impulsive maneuver in quiescent flow.

To estimate the energy required to swim the same distance without the aid of the
vortex ring, we considered steady swimming at constant velocity. Under this condi-
tion, the primary energy expenditure is overcoming steady drag while swimming at
the speed 𝑢swim. To be a fair comparison, we assume that 𝑢swim is the same as the
average speed of the vortex ring, 𝑢vortex, over the duration of an episode. In other
words, this analysis considers the energy expended to swim the same distance in the
same amount of time as surfing the vortex ring:

𝐸self−propulsion =
1
2
𝜌𝑢2

vortex𝐶𝑑𝐴𝐿 ≈ 82.7 mJ, (4.2)
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where 𝐶𝑑 is the drag coefficient (∼1.1), 𝐴 is the frontal area of CARL (∼78.3 cm2),
and 𝐿 is the distance traveled during a surfing episode (∼ 1.32 m). The drag
coefficient was estimated by tracking the position of CARL while coasting after an
impulsive maneuver. Using these values, the energy saved by surfing the vortex ring
can be estimated:

𝐸self−propulsion/𝐸surf ≈ 4.9. (4.3)

By surfing the vortex ring, CARL requires approximately 4.9 times less energy
than would be expended to traverse the same distance under self-propulsion, clearly
demonstrating the potential for energy savings using background flow features.

To be sure, there is room for optimization for both cases of vortex surfing and self-
propulsion. For example, it may be possible to jump onto the vortex ring with a
significantly smaller impulsive maneuver depending on the initial position of CARL
relative to the vortex ring (see Section 4.6 for a discussion). Likewise, CARL
has a relatively high 𝐶𝑑 of 1.1, so the energy required for self-propulsion could
be significantly reduced through streamlining. However, our results demonstrate
that, for a given vehicle design, energy can be harvested from the background flow
by appropriately maneuvering in response to onboard detection of the background
flow. In the case of our experiments, the energy savings is significant. Additionally,
the thrust used for the impulsive surfing maneuver was directed in the 𝑦-direction,
perpendicular to the forward motion of CARL after entrainment into the vortex ring.
In this sense, none of the thrust generated by CARL during the impulsive maneuver
directly contributed towards forward propulsion; energy for forward propulsion was
derived from the surrounding flow.

To this point, it is important to note that the energy gained by exploiting vortex rings
for propulsion does not appear from thin air; energy must be extracted from the
vortex ring according to the conservation of energy. Therefore, we next consider
how the entrainment of CARL affects the velocity of the vortex ring. In Figure
4.4, the streamwise position of vortex rings with and without CARL are plotted as
a function of time. The position of the vortex rings was computed by measuring
the “center of mass” of the velocity magnitude from simultaneous PIV data taken
with the wide-angle camera. It is expected that the energy and therefore speed of
the vortex should be reduced by the entrainment of CARL, but within the error of
our measurements, the entrainment of CARL does not significantly alter the average
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trajectory of the vortex rings.
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Figure 4.4: Average trajectories of the vortex rings and CARL. The average trajectory
of the vortex ring propagating freely in the tank (black line, 𝑁 = 5) does not
significantly change when CARL is entrained (red line, 𝑁 = 3). This indicates that
the vortex rings do not significantly change speed if CARL is entrained, which is
consistent with an inelastic collision model (𝑚vortex/𝑚CARL ≈ 22). For comparison,
the average trajectory of CARL is plotted in green (𝑁 = 35). Whereas the duration
of the PIV data is limited by the extent of the laser sheet, the tracking LED on CARL
is visible for the entire duration of each trial. CARL is initially stationary, and then
is entrained by a vortex ring. After entrainment, the average trajectory of CARL
closely tracks the average vortex position (circular motion is averaged out between
trials). The Maxworthy model for vortex propagation (blue) is fitted to the average
CARL trajectory, and the intersection with 𝑥/𝐷 = 0 is used to define the time 𝑡 = 0.

To model the transfer of momentum between the vortex rings and CARL, we consider
an inelastic collision model, in which CARL and the vortex ring are treated as solid
bodies, and CARL travels with the vortex ring after “colliding” with the vortex ring.
To estimate the mass and added mass coefficient of the vortex ring (𝑚vortex ≈ 9.0 kg;
𝛼vortex
𝑥𝑥 ≈ 0.44), we fitted an oblate ellipsoid to the dividing streamline of the vortex

ring as measured by PIV from the high-speed camera. The change in speed of the
vortex is then simply due to conservation of momentum and energy through the
collision:

𝑢vortex,CARL

𝑢vortex
=

(
1 +

𝑚CARL(1 + 𝛼CARL
𝑥𝑥 )

𝑚vortex(1 + 𝛼vortex
𝑥𝑥 )

)−1

≈ 0.96. (4.4)
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Because the vortex ring is approximately 22 times as massive as CARL, the predicted
change in velocity of the vortex ring is only four percent, which explains the lack
of significant change in the trajectory of the vortex. While this model ignores the
motion of CARL inside the vortex ring, and it is a simplification to treat the vortex
ring and CARL as solid masses, the model underscores the point that the vortex
ring is much more massive than CARL and therefore is not significantly affected by
the entrainment of CARL. As another point of comparison, the total kinetic energy
of the vortex ring was estimated to be approximately 1.5 J (see Appendix C.1 for
details), which is roughly 23 times the energy saved by CARL when surfing the
vortex ring. If the vortex rings were significantly smaller, or the robot significantly
larger, one might expect the entrainment of the robot to alter the trajectory and
possibly formation of the vortex ring.

A related question is the maximum possible distance that CARL could surf until
the ring loses coherence, for example, through viscous diffusion or the growth
of instabilities. In Figure 4.4, a model for the trajectory of the vortex ring
(𝑥(𝑡) = 1/𝑐 ln(𝑐𝑢0 𝑡 + 1), Maxworthy, 1972) was fitted to the CARL trajectory
data, and shows good agreement with both the trajectory of CARL and the trajec-
tories of the vortex rings for all of the available data. Additionally, simultaneous
PIV measurements of CARL surfing the vortex ring show the presence of the vortex
ring for the entire FOV of the wide-angle camera. Therefore, it may be possible for
CARL to continue surfing the vortex rings for a longer duration than was recorded
with our experimental setup. After a sufficiently long duration, the vortex ring
may begin to break up or dissipate, although additional experiments are needed
to determine whether the entrainment of CARL would accelerate or impede this
process.

4.6 Connections with Lagrangian coherent structures
Tools from dynamical systems such as Lagrangian Coherent Structures (LCS) have
become popular for analyzing transport in fluid flows. LCS define material barriers
in fluid flow and have been used to analyze coastal flows (S. C. Shadden, Lekien,
and J. E. Marsden, 2005), the spread of pollution in the ocean (Lekien et al., 2005),
and prey capture during jellyfish feeding (Peng and J. O. Dabiri, 2009). Vortex rings
can be viewed a Lagrangian Coherent Structure in the sense that a vortex ring forms
a distinct region of transport of the fluid parcels inside the boundary of the vortex
ring.
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Additionally, researchers have drawn connections between LCS and optimal paths
through flow fields in the context of underwater robots. For example, Inanc, S.
Shadden, and J. Marsden (2005) observed that energy-efficient trajectories through
ocean currents in Monterey Bay coincided with the LCS of the background flow
(Inanc, S. Shadden, and J. Marsden, 2005). Taking this a step further, the LCS can
be used as a tool for generating optimal paths (Senatore and Ross, 2008). More
recently, Krishna et al. have shown that LCS can explain key characteristics of
optimal trajectory generation in fluid flows, such as the sensitivity of the optimal path
to initial conditions and cost functions (Krishna, Song, and Brunton, 2022; Krishna,
Brunton, and Song, 2023). In this section, we use LCS to better understand the
mechanisms underlying the vortex ring surfing strategy from a dynamical systems
point of view.

A common method of quantifying LCS is to compute the finite-time Lyapunov
exponent (FTLE), which measures the degree to which the paths of neighboring fluid
parcels diverge over a fixed time horizon. The FTLE is a scalar field whose ridges
correspond to transport barriers, and therefore also the boundaries of Lagrangian
coherent structures (S. C. Shadden, Lekien, and J. E. Marsden, 2005).

The first step to computing the FTLE field is to cast the fluid flow as a dynamical
system, in which a given fluid tracer particle with position x(𝑡) moves according to
the background flow:

¤x = u(x(𝑡), 𝑡). (4.5)

For a given point in the fluid domain, we can define the flow mapΦ𝑇
0 , which maps the

starting position of a particle to the position after being advected by the background
flow for a time 𝑇 :

Φ𝑇
0 : x(0) ↦→ x(0) +

∫ 𝑇

0
u(x(𝑡), 𝑡)d𝑡. (4.6)

To compute the flow map using PIV data, a grid of particles is initialized over
the measurement domain and advected according to the PIV flow field. Next, the
Jacobian of the flow map DΦ𝑇

0 is computed by applying finite differences to the flow
map of the grid of particles. In 2D, the computation is as follows:
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(DΦ𝑇
0 )𝑖, 𝑗 ≈


Δ𝑥𝑖 (𝑇)
Δ𝑥𝑖 (0)

Δ𝑥 𝑗 (𝑇)
Δ𝑦 𝑗 (0)

Δ𝑦𝑖 (𝑇)
Δ𝑥𝑖 (0)

Δ𝑦 𝑗 (𝑇)
Δ𝑦 𝑗 (0)


=


𝑥𝑖+1, 𝑗 (𝑇) − 𝑥𝑖−1, 𝑗 (𝑇)
𝑥𝑖+1, 𝑗 (0) − 𝑥𝑖−1, 𝑗 (0)

𝑥𝑖, 𝑗+1(𝑇) − 𝑥𝑖, 𝑗−1(𝑇)
𝑦𝑖, 𝑗+1(0) − 𝑦𝑖, 𝑗−1(0)

𝑦𝑖+1, 𝑗 (𝑇) − 𝑦𝑖−1, 𝑗 (𝑇)
𝑥𝑖+1, 𝑗 (0) − 𝑥𝑖−1, 𝑗 (0)

𝑦𝑖, 𝑗+1(𝑇) − 𝑦𝑖, 𝑗−1(𝑇)
𝑦𝑖, 𝑗+1(0) − 𝑦𝑖, 𝑗−1(0)

 ,
(4.7)

where 𝑖 and 𝑗 are the indices of a particle with position x𝑖, 𝑗 = [𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 ]. The flow
map Jacobian is then used to compute the Cauchy-Green deformation tensor:

Δ𝑖, 𝑗 = (DΦ𝑇
0 )
∗(DΦ𝑇

0 ), (4.8)

where ∗ denotes a matrix transpose. Finally, taking the logarithm of the maximum
eigenvalue of Δ𝑖, 𝑗 at every grid point generates the FTLE field:

𝜎𝑖, 𝑗 =
1
|𝑇 | log

√︃
𝜆max(Δ𝑖, 𝑗 ). (4.9)

LCS can be extracted by computing ridges of the FTLE field. In this study, we
simply threshold the value of the FTLE field to visualize coherent structures.

The concept of the FTLE field can be extended to incorporate the active motion of
swimmers or the inertia of particles in the flow. For example, this has been referred
to as the control FTLE (cFTLE, e.g., Krishna, Song, and Brunton, 2022) or particle
LCS (pLCS, e.g., Peng and J. O. Dabiri, 2009), where each fluid tracer is modeled
as moving according to the background flow and the swimmer’s self-propulsion. In
our case:

¤x = u(x(𝑡), 𝑡) + uCARL(𝑡), (4.10)

where uCARL(𝑡) is the motion due to CARL executing the impulsive surfing maneu-
ver. This model ignores coupling between CARL and the surrounding flow, and also
does not include the inertia of CARL, but offers qualitative insight into dynamics
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of this vortex surfing strategy. The cFTLE effectively shows transport boundaries
for the swimmer rather than just the surrounding fluid, which gives insight into the
swimmer trajectories and their sensitivity to initial conditions.

As an additional note, in the above formulae, particles are integrated forward in
time, which results in repelling LCS, or boundaries over which particle paths diverge.
Integrating particles backwards in time computes structures that are attracting, which
is of particular interest for the particle entrainment into vortex rings.

In Figure 4.5a, we plot the attracting and repelling LCS for a single vortex ring
on top of flow streamlines. As expected, the LCS delineates the boundary of the
vortex ring. Barring a small amount of viscous diffusion, particles inside the vortex
ring stay inside the vortex ring. Below in Figure 4.5d, we plot the starting points
of CARL in which CARL takes no action and drifts passively in the flow (i.e.,
¤x = u). The starting positions are shaded red if CARL was entrained into the vortex
ring. For unsteady flows such as the vortex rings in this study, the FTLE field is
time-dependent. Therefore, all FTLE computations are performed with an initial
time chosen to approximately match the location of the vortex ring with the CARL
starting positions plotted in the bottom row of Figure 4.5. The time interval of
integration (𝑇 = 0.5 s) was chosen to be of sufficient duration to reveal the LCS of
the vortex ring, while also not being so long that too many particles exited the PIV
domain.

To investigate the effects of the vortex surfing maneuver, we plot the cFTLE for
CARL swimming impulsively into the vortex ring (Figure 4.5b) and away from the
ring (Figure 4.5c). In these cases, the velocity of the swimmer uCARL is directly
copied from position data of CARL executing the impulsive surfing maneuver in the
appropriate direction.

Figures 4.5a and 4.5b show the impact of the surfing maneuver on the LCS. When
swimming into the vortex ring, the attracting region extends downwards in the
negative 𝑦 direction. Correspondingly, the percentage of starting points that are
captured by the vortex ring increases from 27% with passive swimming to 80% with
the surfing maneuver (Figure 4.5e). Conversely, when CARL executes a maneuver
to avoid the vortex ring (Figures 4.5b and 4.5c), the attracting cLCS shifts upwards,
while the repelling LCS moves downwards, and none of the starting locations are
entrained.

The starting positions for the vortex surfing case appear divided into two clusters,
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Entrained into vortex
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Figure 4.5: LCS may explain the positional dependence of entrainment. Top row:
computed from PIV measurements of a vortex ring, the forward time (red) and
backward time (blue) FTLE field is plotted for the undisturbed flow (a) and with
an impulsive maneuver towards (b) and away (c) the vortex ring that matches the
impulsive maneuvers performed by CARL. Streamlines of the undisturbed flow
in the vortex ring reference frame are plotted in the background for comparison.
Bottom row: starting locations of CARL, shaded red if CARL is entrained in the
vortex ring. If CARL moves passively, the LCS (a) matches the boundary of the
vortex ring, and the entrainment rate (b) is 26%. When swimming in the positive
𝑦 direction (b,e), the attracting LCS extends downward, and 63% of the starting
locations result in entrainment. When swimming in the negative 𝑦 direction (c,f),
the repelling LCS extends downward, and there are no starting locations that result
in entrainment.

with the entrained (red) points positioned closer to the jet. The pLCS appears to
explain this division: points lying within the attracting pLCS are entrained, while
points outside are not entrained. In this way, the LCS may both predict and explain
the effect of a given control policy on the entrainment and future trajectory of
a swimmer. Improved modeling of the inertia of the robot may enable further
quantitative comparisons (e.g., Peng and J. O. Dabiri, 2009).

The FTLE field also explains why a small impulsive maneuver from CARL can have
a large impact on final position and energy savings. At regions of high stretching,
one can achieve a large change in position for a small input. This idea has been
formalized throughout the FTLE literature by considering the effect of a small



61

perturbation in position, 𝜖 , on the flow map Φ(𝑥). Taking a Taylor expansion about
𝜖 = 0:

Φ(𝑥 + 𝜖) = Φ(𝑥) + DΦ(𝑥) · 𝜖 + O(𝜖2). (4.11)

If the flow map Jacobian DΦ(𝑥) is large, which is the case at the boundary of an
LCS or the ridge of an FTLE field, then to leading order, a small jump in position
(𝜖) can become amplified into a large change in the flow map. Surfing vortex rings
takes this idea to an extreme: a small jump across the boundary of the vortex ring
results in CARL being propelled across the tank, whereas without the perturbation,
CARL remains effectively stationary. Furthermore, because of the dot product in
the DΦ(𝑥) · 𝜖 term, the direction of 𝜖 matters: CARL must maneuver in the right
direction to either avoid or jump onto the vortex ring, depending on direction of
stretching in the background flow.

Additionally, Krishna, Song, and Brunton (2022) observed that for energy-efficient
trajectories, there are spikes in control effort and cost function that correlate with
LCS boundaries because of this amplification of small perturbations at LCS bound-
aries. Our experiments demonstrate this principle in practice: a small spike in thrust
near the LCS boundary of the vortex ring results in large energy savings for forward
propulsion.

4.7 Dependence on initial time and position
Lagrangian coherent structures help explain the sensitivity of trajectories to their
initial conditions, such as the starting position of CARL. However, in unsteady flow
fields, trajectories near boundaries of the LCS are also highly sensitive to the starting
time (Lekien et al., 2005). From the perspective of CARL in the lab frame (i.e.,
while stationary in quiescent fluid), a passing vortex ring is an unsteady flow field,
which implies that the final trajectory of CARL may be sensitive to both starting
position and the starting time of the surfing maneuver. Phrased more colloquially,
surfing a vortex ring involves being in the right place at the right time.

To illustrate the combined spatial and temporal dependence, several example CARL
trajectories are plotted in Figure 4.6. In panel (a), we plot an example trajectory in
which CARL successfully maneuvers into the vortex ring. On the left, the trajectory
of CARL is plotted in the vortex ring reference frame, which illustrates CARL
becoming entrained into the vortex ring after executing the surfing maneuver. On
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the right, it is apparent that CARL becomes entrained into the lower half of the
vortex ring, and remains below the 𝑦 axis.

A similarly successful surfing trajectory is plotted in Figure 4.6b. However, in this
example, CARL is entrained into the upper half of the vortex ring, and stays above
the 𝑦 axis after entrainment. This can be explained by the starting position of CARL
when the surfing maneuver is executed. Compared with example (a), CARL begins
closer to the centerline in example (b), and so the surfing maneuver carries CARL
farther upwards and into the top half of the vortex ring.

These two examples illustrate that the trajectory of CARL is sensitive to the initial
starting location near this region of high stretching at the vortex ring boundary.
Additionally, the top and bottom halves of the vortex ring can each be considered
distinct regions of material transport: CARL is either entrained into the top or
bottom half of the vortex ring, and remains there after entrainment. The division
between the top and bottom halves is faintly shown by the repelling LCS curves in
Figure 4.5a-c.

To illustrate the temporal sensitivity of the surfing maneuver, we plot an unsuccessful
trajectory in Figure 4.6c. Compared with the previous two examples, CARL begins
the surfing maneuver at a later time. Or equivalently, in the vortex ring reference
frame (left column of Figure 4.6), CARL begins the surfing maneuver farther to
the left, or farther downstream, compared with examples (a) and (b). As a result,
CARL executes the surfing maneuver too late and is not entrained into the vortex. In
other words, CARL must detect the vortex ring early enough to successfully become
entrained into the vortex ring. This idea is reflected in the pLCS in Figure 4.5b,
because the capture region expands both down and also slightly upstream of the
vortex ring.

The difference in maneuver starting time between the successful surfing examples
(a,b) and the ”too late“ example (c) is approximately half of the duration of the
maneuver, or about 0.15 seconds. The literal split-second time scale of the surfing
maneuver highlights the power of using an autonomous robotic system to exploit
background flow at these rapid time scales.
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Figure 4.6: Example trajectories illustrating the dependence of initial entrainment
on the starting position and time of the surfing maneuver. (a) Example trajectory
in which CARL successfully surfs the vortex ring. Left: the trajectory of CARL is
plotted against flow streamlines in the vortex ring reference frame, which shows the
initial entrainment. The portion of the trajectory in which CARL swims towards
the vortex ring is highlighted in red. Right: the full trajectory is plotted in the lab
frame, showing that CARL is entrained into the bottom half of the vortex ring. (b)
Example trajectory in which CARL is entrained into the top half of the vortex ring
due to the initial starting position being closer to the centerline of the vortex ring.
(c) Example trajectory in which CARL misses the vortex ring due to initiating the
surfing maneuver too late.
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startend

Avoidance
maneuver

(a) Avoiding the vortex ring (b) Passive drifting

Figure 4.7: Example trajectories of CARL avoiding entrainment into the vortex ring
either through an active avoidance maneuver (a) or passively drifting around the
vortex ring (b). Trajectories are plotted in the vortex ring reference frame against
streamlines in the vortex ring reference frame. Small oscillation in the trajectory of
CARL is apparent in panel (b) due to CARL wobbling after the vortex ring passes
by.

For completeness, we also plot two example trajectories in which CARL was com-
manded to avoid the vortex ring (Figure 4.7a) and one in which CARL drifted
passively (Figure 4.3b). In both cases, CARL begins and ends outside of the bound-
ary of the vortex ring.

4.8 Analysis of acceleration as a sensory input
As demonstrated in the previous section, the final trajectory of CARL is sensitive to
the timing and location of the surfing maneuver. For the experiments in this study,
the starting time of the maneuver is triggered by the 𝑦-component of the acceleration
as measured by the IMU onboard CARL (see Figure 4.2). Therefore, in this section,
we seek to model and understand how the acceleration is used as a signal to detect
the presence and location of a passing vortex ring.

To understand the acceleration of CARL as a vortex ring passes nearby, we first
examine the acceleration of idealized passive tracer particles using PIV measure-
ments of the vortex rings. While CARL is by no means an ideal tracer particle due
to having finite size and inertia, the acceleration of the background flow provides a
simple model of the acceleration induced by the passing vortex ring.

In Figure 4.8a, we plot D𝑣/D𝑡 computed from PIV measurements, which represents
the 𝑦-component of acceleration experienced by ideal tracer particles in the flow.
An ellipse is overlaid to indicate the approximate boundary of the vortex ring, since
this section considers only the signals initially sensed by CARL before deciding to
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maneuver, i.e., before entrainment. Streamlines in the vortex ring reference frame
are also plotted to show the direction of flow. Additionally, contours of +0.5 m s−2

and -0.5 m s−2 of D𝑣/D𝑡 are included for direct comparison with the acceleration
threshold used to trigger the surfing maneuver.

Upstream of the vortex ring, the streamlines bend away from the front edge of the
vortex ring boundary. As a result, upstream tracer particles initially experience an
acceleration away from the centerline as the vortex ring approaches. For example, in
Figure 4.8a, particles near region (1) experience a negative 𝑦-acceleration. Around
the top and bottom edges of the vortex ring, the streamlines curve the opposite
direction, resulting in a positive 𝑦-acceleration in region (2) that points towards the
vortex ring. Finally, near the rear of the vortex ring, the streamlines once again
curve away from the vortex ring, and the 𝑦-acceleration is negative in region (3).

For comparison, the 𝑦-acceleration recorded by CARL is plotted below in Figure 4.8c
during an episode in which CARL passively drifted as a vortex ring passed nearby
(e.g., Figure 4.3b). The recorded acceleration exhibits features that correspond to
regions of the PIV data. As the vortex ring initially approaches, CARL records
a small, negative 𝑦-acceleration. This corresponds to region (1) in the PIV data,
in which streamlines bend away from the front of the vortex ring. Next, CARL
experiences a large positive 𝑦-acceleration, which corresponds with region (2) in
the flow, as the trajectory of CARL curves around the vortex ring boundary. Finally,
the acceleration becomes negative again, which corresponds with region (3). It
may be that the acceleration sensed by CARL corresponds the curvature of the
streamlines bending around the vortex ring boundary.

To model the acceleration of CARL analytically, we consider Hill’s spherical vortex
model (Hill, 1894) and plot the resulting flow acceleration in Figure 4.8b. The radius
of the model vortex ring was set equal to the average of the estimated semi-major
and semi-minor axes of the physical vortex ring.

The regions of positive and negative acceleration plotted for the model vortex ring
match qualitatively the PIV data. For example, the contour of 0.5 ms−2 acceleration
encompassing region (2) in panel (a) also appears in the modeled vortex ring. Even
though the shape of the physical vortex ring is not circular, the overall trend of the
streamlines curving around the bubble of the vortex ring is the same.

In panels (d) and (f), the 𝑥 and 𝑦-acceleration are plotted for an ideal tracer particle
moving through the modeled flow. The trend of the particle acceleration in (d)
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(a) PIV data (b) Hill’s spherical vortex model

(c) CARL y-acceleration (d) Model y-acceleration
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Figure 4.8: Comparison between the measured and modeled acceleration signal
from a passing vortex ring. (a) The 𝑦-component of the material derivative is
plotted using PIV data of a vortex ring, indicating the acceleration experienced
by ideal fluid tracers. For example, particles in regions (1) and (3) experience
negative 𝑦-acceleration, while particles in region (2) experience larger and positive
𝑦-acceleration, potentially explaining the signals sensed by CARL. Contours of
+0.5 and -0.5 ms−2 are also plotted, which correspond to threshold used by CARL
to execute the surfing maneuver. An ellipse is overlaid to indicate the approximate
boundary of the vortex ring. (c) Acceleration in the 𝑦-direction sensed by CARL as
a vortex ring passes nearby. The spike in positive 𝑦-acceleration may correspond
to region (2) in the panel above, and is used to locate the vortex ring during a
surfing maneuver. (b) Hill’s spherical vortex model. The regions of positive and
negative acceleration agree with the PIV data qualitatively. Both components of
the acceleration of a ideal tracer particle traveling through the potential flow model
(d,f) qualitatively agree with the signal sensed by the IMU onboard CARL (c,e).
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and (f) matches the acceleration recorded by CARL in (c) and (e) qualitatively. In
summary, it appears that the acceleration experienced by CARL can be modeled by
considering the flow acceleration around the boundary of the vortex ring.

As a result, the vortex ring detection rates shown in Figure 4.3 can now be under-
stood. When CARL was commanded to execute the surfing policy, CARL correctly
identified the location of the vortex rings in 81% of episodes, which involved swim-
ming in the direction of sensed acceleration above the 0.5 m s−2 threshold. This
corresponds to sensing the large acceleration in region (2) of Figure 4.8a. In this
region, the 𝑦 acceleration points towards the vortex ring, and therefore the surfing
maneuver is also directed towards and into the vortex ring.

In 14% of episodes, CARL swam in the wrong direction (i.e., away from the vortex
ring), due to sensing the negative 𝑦 acceleration in region (1). The smaller size of this
negative 𝑦-acceleration region explains why the correct detections are more likely:
with random variations in the starting position, CARL will encounter the larger
region (2) more often than the smaller region (1). Additionally, in 5% of episodes,
the 𝑦-acceleration did not exceed the threshold value, and CARL did not execute a
surfing maneuver. These cases may correspond to being outside of either region (1)
or (2). In this way, the contours of acceleration may explain and potentially predict
the dependence of the sensed acceleration on the position of CARL relative to the
vortex ring.

Since the detection of the vortex ring depends on the flow outside of the vortex ring
boundary, the particular vortex ring model may not be of great importance. For a
vortex ring propagating in quiescent flow, the flow outside of the vortex ring is free
of vorticity, with the exception of a small trailing wake. Therefore, the flow upstream
and outside of the vortex ring can be modeled as potential flow, and indeed, the flow
outside Hill’s spherical vortex ring is identical to the potential flow past a sphere.
The trends in acceleration and the curvature of streamlines would be analogous for
various vortex ring models, or for that matter, the potential flow around a round
object.

Consequently, acceleration sensing in this context can considered a form of pres-
sure sensing. In the potential flow outside of the vortex ring boundary, the flow
acceleration is balanced by the pressure gradient:

Du
D𝑡

= −1
𝜌
∇𝑃. (4.12)
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Therefore, the acceleration experienced by an idealized tracer particle is directly
proportional to the pressure gradient in the background flow. For an object with
finite size such as CARL and in the absence of viscous forces, body acceleration
can be attributed to the pressure field integrated around the body of the object. In
this sense, acceleration sensing has a direct correspondence with pressure sensing.

An advantage of modeling the flow exterior to the vortex ring with potential flow
is that the pressure gradient, and therefore acceleration field, can be computed
analytically. Scaling laws can then be developed in order to better generalize
the surfing strategy, for example, by determining the required sensitivity of the
onboard accelerometer for a vortex ring of arbitrary size, speed, and relative distance.
To demonstrate, we compute the pressure field exterior to Hill’s spherical vortex
analytically using the velocity field and the Bernoulli equation:

𝑢𝑟

𝑈∞
=

(
1 −

(
𝑅

𝑟

)3
)

cos(𝜃), 𝑢𝜃

𝑈∞
= −

(
1 + 1

2

(
𝑅

𝑟

)3
)

sin(𝜃), 𝑟 ≥ 𝑅, (4.13)

𝑃 − 𝑃∞
1
2𝜌𝑈

2
∞

= 1 − |u|
2

𝑈2
∞

= −
(
𝑅

𝑟

)3 (
1 − 3 cos2(𝜃)

)
− 1

4

(
𝑅

𝑟

)6 (
1 + 3 cos2(𝜃)

)
, (4.14)

where 𝑃 is the static pressure, 𝑃∞ is free-stream pressure, 𝑈∞ is the propagation
speed of the spherical vortex, 𝑟 is the distance from the center of the vortex ring,
𝑅 is the radius of the spherical vortex, 𝜃 is the polar angle in spherical coordinates,
and 𝑢𝑟 and 𝑢𝜃 are the radial and polar components of velocity, respectively. From
this pressure field, two quantities of interested can be computed.

First, we compute the maximum flow acceleration, which predicts the largest accel-
eration signal that could be detected by the robot within this idealized model. The
maximum flow acceleration occurs on the sides of the vortex ring (𝑟 = 𝑅, 𝜃 = ±90◦),
which corresponds to the region of high acceleration in region (2) in Figure 4.8.
Taking the gradient of Equation 4.14:

1
𝜌
|∇𝑃 |max =

����Du
D𝑡

����
max

=
9
4
𝑈2
∞
𝑅

. (4.15)

For a vortex ring with a given radius 𝑅 and propagation speed 𝑈∞, this equation
provides a prediction of the maximum flow acceleration. Intuitively, this equation
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takes the form of a centripetal acceleration, since the flow acceleration around the
vortex ring is related to the streamline curvature. The maximum acceleration can
also be computed in terms of the circulation of the vortex ring. For Hill’s spherical
vortex model, the circulation is related to the propagation speed of the vortex ring
by Γ = 5𝑈∞𝑅. Therefore, the max acceleration can be expressed as:

����Du
D𝑡

����
max

=
9

100
Γ2

𝑅3 . (4.16)

These expressions for the maximum acceleration could be useful for designing the
sensing capabilities of robots. For example, a vortex ring that too large or too slow
may not be detectable for a given sensitivity to acceleration.

Another useful scaling to consider is the dependence of flow acceleration on distance
to the vortex ring. For example, if a robot is too far from a vortex ring, the
acceleration signal may be too weak to detect with onboard accelerometers. To
investigate this scaling, we consider the pressure gradient when the robot is far from
the vortex ring (𝑟 ≫ 𝑅):

1
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|∇𝑃 | =

����Du
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𝑅
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1 − 2 cos2(𝜃) + 5 cos4(𝜃). (4.17)

Therefore, the magnitude of the flow acceleration scales with distance to the vortex
ring according to:
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In other words, the acceleration signal decays proportional to 𝑟−4. The required
sensitivity of an onboard accelerometer therefore increases correspondingly with
distance from the vortex ring.

To be sure, interpreting body acceleration as a form of pressure sensing requires
several caveats. First, the inertia of CARL results in a lag between the motion of
CARL and the background flow, effectively low pass filtering temporal variations in
the pressure. To address this limitation, the robot’s acceleration could be estimated
using models of small particles with inertia (e.g., Maxey and Riley, 1983) or by
empirically modeling the inertia and drag forces on CARL. Second, the acceleration
of CARL represents the pressure integrated over the body of CARL, effectively
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averaging out any pressure fluctuations of a scale significantly less than the size of
CARL. To account for the finite size of CARL, the pressure field could be integrated
over a circular or spherical body that approximates the shape of CARL. However,
even with these caveats, the results in Figure 4.8 suggest that a potential flow model
and ideal tracer particles capture the dominant mechanisms behind the acceleration
signal sensed by CARL.

As an additional note, the use of body acceleration as a sensory input is complicated
by changes in the orientation of the robot. For example, any roll or pitch of CARL
results in a component of the gravity vector, which points nominally in the 𝑧-
direction, contributing to the acceleration in the 𝑥 or 𝑦-directions in the body frame
of reference. In Appendix C.3, we discuss corrections due to rotation of the body
frame of CARL, and verify the onboard acceleration measurements using position
data from the overhead cameras.

4.9 Body rotation and vorticity sensing
In addition to acceleration, another sensor input that could potentially aid in rec-
ognizing the vortex ring is body rotation due to vorticity in the background flow,
sensed via gyroscopes in the onboard IMU. For example, Reddy et al. (2018) used
the flow-induced rolling moment of a glider to sense shear caused by thermal plumes
in the atmosphere. In our experiments, CARL prevented body rotation about the
vertical (𝑧) axis using a PID feedback loop, which took the angular velocity from
the IMU as an input and outputted a rotational control signal to the thrusters. The
magnitude and direction of this rotational control signal, which we denote as 𝜏control,
was therefore correlated to the torque applied to CARL by the surrounding fluid. In
this section, we investigate the extent to which 𝜏control could be used to indirectly
sense vorticity in the background flow.

In Figure 4.9a, we plot the time-averaged vorticity (𝜔 = 1/𝑇
∫ 𝑇

0 𝜔d𝑡) computed from
PIV data of eight consecutive vortex rings (𝑇 = 96 s ≈ 937𝐷/𝑈 𝑝). Because the
vortex rings propagate across the tank in the 𝑥 direction, the time-averaged vorticity
is positive (counter-clockwise) above the 𝑦-axis, and negative (clockwise) below the
𝑦-axis. Since CARL blocks a portion of the laser sheet while entrained in the vortex
ring, this PIV data was taken without the presence of CARL. However, the analysis
in Section 4.5 suggests that it is reasonable to assume that the flow of the vortex
ring is largely unaffected by the entrainment of CARL. For comparison, trajectories
from 109 episodes of CARL surfing vortex rings are plotted in Figure 4.9b, with
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Figure 4.9: Correspondence between the time-averaged vorticity and the rotational
control applied to prevent CARL from rotating. (a) Time-averaged vorticity field
computed from eight consecutive vortex rings without the presence of CARL. (b)
Trajectories in which CARL surfed the vortex ring, shaded by the rotational control
signal (𝜏control) with the sign reversed for comparison with the vorticity in (a). The
sign of the rotational control signal corresponds with the direction of background
vorticity, suggesting that body rotation could be used as an additional signal for
detecting background flow structures.

the trajectories shaded by the rotational control signal commanded by CARL. The
sign of the control signal is flipped for more direct comparison with the background
vorticity, since the control signal opposes the rotation induced by the background
flow.

The sign of the rotational control signal appears to match the background vorticity,
typically being negative below the 𝑦-axis, and positive above the 𝑦-axis. This
suggests that the body rotation of CARL could be used to detect the presence of the
vortex ring, and the direction of the background vorticity. The rotational control
signal may therefore be useful as an additional flow measurement technique.

To see if 𝜏control coincides with the background vorticity quantitatively, the control
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Figure 4.10: Time history of 𝜏control and the maximum vorticity measured by simul-
taneous PIV for one example trajectory (a) and the averaged from an ensemble of
five trajectories (b). Both plots have the same relative scaling of 1.5 between the left
and right axes. Initially, there is a large discrepancy, but after the initial entrainment
into the vortex ring, the magnitude of the control signal and maximum vorticity are
in agreement and both decrease over time as the vortex ring reduces speed.

signal and maximum background vorticity are plotted as functions of time in Figure
4.10. Here, the maximum vorticity is computed using trials in which simultaneous
PIV is available. The maximum vorticity is taken from the unobstructed side of the
vortex (i.e., the half of the vortex ring not containing CARL).

Initially, the rotational control signal does not correspond well with the maximum
vorticity. However, after a short period of time corresponding with the initial
entrainment into the vortex ring, both 𝜏control and max(𝜔𝑧) are in agreement, slowly
decreasing with time as the vortex ring propagates and slows down. Therefore, in
addition to showing the sign of the background vorticity, it may be possible to use
𝜏control to reconstruct the background vorticity quantitatively.

The discrepancy at early times could be caused by several factors. First, CARL
likely exerts a large rotational control effort during the impulsive maneuver, since
the thrusters on opposite sides of CARL typically produce imbalanced forward
thrust. Second, the measured vorticity has sources of error at this early time because
the thruster casts a shadow in the region of CARL’s entrainment, and the resolution
of the wide-angle camera struggles to resolve the vortex when it is small in size.
Third, there may be vorticity generated as CARL interacts with the vortex ring
during entrainment. Future work could incorporate the effects of torque induced
by unequal thrust in the motors on CARL, as well as more detailed fluid-robot
interactions.
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4.10 Conclusions and future work
In this study, we implemented energy-efficient flow-based navigation in a physical
tank and robot. Using an onboard accelerometer, our robot successfully identified
and maneuvered onto vortex rings, exploiting the background fluid flow for a near
fivefold reduction in energy required for forward propulsion. These results demon-
strate the potential of accomplishing flow sensing using an inexpensive accelerom-
eter (∼$5), which can be found in countless drones, phones, and other consumer
devices. Additionally, simultaneous PIV measurements of the background flow and
tools such as the FTLE field give insight into the fluid mechanic principles underly-
ing the surfing strategy and entrainment of CARL. In summary, this study serves as
a proof-of-concept demonstration of the potential of onboard inertial measurements
to enable intelligent interaction with background fluid flows.

Both tasks of sensing and maneuvering could be explored further in several direc-
tions. First, an immediate extension of the current experimental setup would be to
utilize both components of acceleration as well as rotation to detect the vortex ring
with greater reliability. Additionally, the models of sensed acceleration in Section
4.8 could be tested systematically by more greatly varying the starting position of
CARL relative to the generated vortex rings, or by varying the initial depth of CARL
to test sensing in three dimensions. It may also be possible to complement onboard
inertial sensing with direct flow measurements from flow sensors (e.g. pressure
sensors) to resolve the higher-frequency temporal and spatial scales of the back-
ground flow that are filtered by the inertia and finite size of the robot. Connecting
body acceleration to the pressure gradient in the background flow could also facil-
itate comparisons with existing flow sensing literature. For example, studies have
investigated the ability of pressure sensors and aquatic animals to locate oscillating
spheres (e.g., Dehnhardt, Mauck, and Bleckmann, 1998; Dagamseh et al., 2013),
which is an unsteady version of the external flow in the spherical vortex model in
Section 4.8.

In addition to exploring the sensing problem, optimal maneuvering could be inves-
tigated. For swimming into the vortex ring, there may be trajectories more efficient
than the fixed-speed impulsive surfing maneuver used in this study, which would
further increase the energy advantage of surfing the vortex rings. Efficient trajec-
tories could be estimated in advance using path planning algorithms applied to the
vortex ring flow (Lolla et al., 2014) or learned using data-driven methods such as
RL (e.g., Chapters 2 and 3). Combining these tools of optimal maneuvering with
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the analytical model of the sensed acceleration could fully close the loop between
flow-based sensing and navigation.

In addition to optimizing the initial stage of jumping onto the vortex ring, there is
an opportunity to investigate path planning at the scale of the entire tank or fluid
domain. For example, if CARL were tasked with navigating to a particular location
rather than just downstream, it may be optimal to surf the vortex ring for a short
period of time, or even avoid it entirely, depending on the direction of the incoming
vortex ring relative to the location of the target. Such optimizations could be
performed over the Pareto front that defines tradeoffs between energy consumption
and minimal travel time for point-to-point navigation (Krishna, Song, and Brunton,
2022).

It is also important to generalize these results to other types of flows. A simple
extension to this work would be to investigate the coupling that may occur when
a generated vortex ring is equal or smaller in size than the robot. Additionally, it
would be useful to test navigation strategies in other flows that involve different
arrangements of vortical structures, such as a von Kármán vortex street, a turbulent
wake, or double gyre flow. Of particular practical application are flows found in
ocean environments. While vortex rings are found throughout nature in biological
propulsion and other processes, exploitable currents in the ocean may be more
turbulent and chaotic. However, vortical structures are often present within those
chaotic flows. By recognizing individual vortices via inertial measurements or
flow sensing, it may be possible to optimize over short time horizons and plan
energy-efficient paths.

In addition to underwater environments, this work could be extended to aerial appli-
cations. Uncrewed aerial vehicles such as quadcopters and drones are increasingly
tasked with flying in chaotic flow environments, in which gusts and vortical struc-
tures can be larger in scale than the robot (Watkins et al., 2020). In such cases,
optimizing the interaction between vortical structures may be useful for reducing
energy consumption or maintaining stable flight (Renn and Gharib, 2022). It is also
worth noting that many quadcopters use the identical accelerometer that is mounted
onboard CARL (MPU-6050), and so quadcopters may already be equipped with the
necessary sensor data in order to exploit the benefits of flow-based navigation.
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C h a p t e r 5

CONCLUSIONS

In this thesis, onboard flow sensing was investigated as a means to enhance the capa-
bilities of autonomous underwater robots through efficient navigation and targeted
sampling. The results are enabled through a multi-disciplinary approach com-
bining fluid mechanics, machine learning algorithms, and CARL, a scratch-built
autonomous robotic platform. By demonstrating methods for improved autonomy
in both simulated and physical environments, it is my hope that this work can con-
tribute to tools that will improve our collective knowledge of the ocean and enable
responsible stewardship of the future of our planet.

5.1 Summary of contributions
The studies in this thesis aimed to address the dual problem of flow-based sensing
and navigation using new tools of machine learning and robotics combined with
the fundamental fluid mechanics of the background flow. Chapter 2 focused on
the problem of efficient navigation using background flows, and demonstrated the
potential of deep RL to assimilate flow measurements for navigation in a simulated
sensing. Chapter 3 demonstrate how strategies learned in silico can be transferred to
a physical setting in generalizable manner that takes into account the sensor noise and
turbulence experienced by a real robotic swimmer. Lastly, Chapter 4 synthesized the
dual problem of sensing and navigation, demonstrating experimentally how onboard
sensors and autonomous maneuvers can effectively exploit a background flow for
energy efficient propulsion.

Specifically, Chapter 2 demonstrated that point measurements of flow quantities such
as velocity are sufficient to accomplish efficient point-to-point navigation in simu-
lated cylinder flow. RL was shown to be an effective algorithm for discovering such
flow-based navigation strategies without human fine-tuning. Additionally, multiple
sensor inputs were investigated, and velocity sensing outperformed the bio-inspired
vorticity sensing approach. Using only an instantaneous velocity measurement, the
virtual swimmer achieved a near 100% success rate in reaching the target locations
while approaching the time-efficiency of optimal navigation trajectories, even with
a swimming speed less than the free-stream flow speed.
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In Chapter 3, RL and flow-based navigation were investigated using a physical robot
and flow environment. Pressure sensors were tested as a low-cost, miniature flow
sensing methodology that was effective for tracking turbulent plumes in a physical
tank. By varying the spacing of flow sensors, the limits of the navigation approach
were modeled in terms of the noise of the sensors, turbulence in the background
flow, and strength of the mean flow gradient. Another contribution of Chapter 3 is
the use of interpretability metrics to understand the gradient-seeking principle of
the policy learned in simulation, which enabled transfer to the physical robot.

In Chapter 4, onboard inertial measurements were demonstrated as an effective
technique for sensing the presence and location of passing vortex rings, which
enabled a novel and energy-efficient surfing strategy. Many existing robots in the
air and underwater are equipped with onboard accelerometers for stabilization and
inertial guidance, suggesting the potential for sensing background flows without the
need for additional flow-sensing hardware. Using vortex rings as a repeatable flow
unit enabled the analysis of energy and momentum transfer between the vortex ring
and the robot, which could provide insight into the energetics of efficient navigation
in other flow environments. Additionally, body rotation was shown to be a potential
candidate for sensing background flow vorticity. Lastly, an analysis of LCS provided
a connection between the small surfing maneuver and the resulting large propulsive
benefit, which could aid with the discovery of navigation strategies across various
types of fluid flows.

Another important contribution of this thesis is CARL, a low-cost autonomous
underwater platform designed for investigating sensing and navigation strategies in
an experimental setting. In order to ensure reproducibility, and to disseminate the
lessons and techniques learned over years of designing CARL, the full design files,
code, and bill of materials are available at https://doi.org/10.22002/b291n-nx970.
Details about the construction of CARL are shown in Appendix B. There have
been seven major revisions to the design of CARL, and certainly there are many
opportunities for further improvement or alternative approaches to accomplish the
same goals. However, it is my hope that this design could aid other researchers in
investigating flow-based navigation in an experimental setting.

https://doi.org/10.22002/b291n-nx970
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5.2 Opportunities for further exploration
The results in this thesis have demonstrated the potential for onboard flow sensing
to enhance robotic exploration of underwater environments. However, there are a
number of opportunities for further exploration, which are detailed in this section.

Incorporating a time history of sensor measurements
In all experiments in this thesis, instantaneous flow measurements were sufficient
to accomplish proof-of-concept demonstrations, for example, one time step of pres-
sure measurements in Chapter 3 and the instantaneous acceleration in Chapter 4.
However, to realize the full potential of flow-based navigation, a time-history of
sensor measurements may provide a significant improvement. For example, the
inclusion of a time-history has consistently resulted in increased performance for
tasks involving machine learning and fluid mechanics, such as mitigating the effects
of wind gusts on the lift of a wing (Renn and Gharib, 2022), locating the source
of turbulent odor plumes (Singh et al., 2023), and learning fish schooling strate-
gies (Verma, Novati, and Koumoutsakos, 2018). A potential explanation for the
improvement in performance may be Takens’ embedding theorem (Takens, 1981),
which states that an under-observed chaotic dynamical system can be reconstructed
with a sufficiently long time-history of observations. For example, in the case of
onboard flow-sensing, the surrounding fluid system has an extremely large number
of effective degrees of freedom, but may only be observed by a handful of sensors.
To implement a time-history of measurements in an RL algorithm, researchers often
use specific network architectures, such as transformers or long short-term memory
(LSTM) networks (e.g. Verma, Novati, and Koumoutsakos, 2018), which explicitly
account for the sequential order of measurements. Another approach could be to
compute a real time spectrum of the sensor measurements, which could provide a
rich set of information in turbulent flows such as the turbulent plumes encountered
in Chapter 3. Additionally, system identification techniques such as Eigenmode Re-
alization or Koopman operator theory could potentially be used to identify models
of the system dynamics (Brunton et al., 2022), for example, enabling reduced order
models of the trajectory of CARL during encounters with the vortex rings in Chapter
4.

Distributed flow sensing
In addition to sampling a time-history of measurements, the accuracy and spatial
resolution of sensors could be increased. In Chapter 3, CARL used pressure mea-
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surements at four locations. Using more sensors may enable measurement of a
wider range of spatial scales and could be relevant to the fish-sensing literature, as
fish often have flow sensing arrayed across the entire lateral line (Verma, Papadim-
itriou, et al., 2020). Additionally, novel flow sensors could increase the sensitivity
of the strategies used in this thesis, for example, using micro-pillar arrays instead
of pressure sensors to detect turbulent flow in Chapter 3. Another approach is to
fully embrace the promise of machine learning algorithms to automatically assimi-
late information from a variety of sources without human fine-tuning. Perhaps that
could be beneficial for an underwater robot equipped with an array of many types of
flow sensors. However, on the other extreme, it is imperative that AUVs minimize
cost and complexity to enable cost-scalability for comprehensive ocean exploration
(Xu and John Dabiri, 2022). Therefore, determining the minimum set of sensor
measurements needed for effective navigation is a potential future direction. For all
experiments in this dissertation, low-cost sensors such as pressure sensors (∼$16)
and accelerometers (∼$5) were sufficient for proof-of-concept demonstrations, and
may be similarly effective in field tests in oceanic environments.

Extensions to other flow environments
In this thesis, four types of fluid flows were investigated: simulated cylinder flow,
simulated double gyre flow, turbulent jet flow, and isolated vortex rings. For in-
creased generalization and deployment in oceanic applications, it may be useful to
consider other flow environments. An immediate extension using the same exper-
imental facilities is to use multiple thrusters to generate flows in the tank, which
could include launching multiple vortex rings from several directions, or combining
vortex rings with turbulent plumes, and tasking a robot with distinguishing between
the two. As another example, the flow generated by a flapping fin could provide a
biologically relevant navigation problem for fish schooling or predator–prey inter-
actions (e.g., Hang et al., 2023). Additionally, it may be useful to consider flows
based directly on measurements of the ocean, such as large-scale eddies measured
from satellite data.

It is also worth noting that researchers have begun developing an open-source library
of fluid flows and problems for collaboration on data-driven modeling and control
(github.com/dynamicslab/hydrogym). Investigating flow-based navigation within a
standard library of fluid flows could enhance future collaboration and generalization
of results. Additionally, techniques such as LCS could be used as a tool to link
together results from different flows (for example, linking navigation in a vortex ring
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with double gyre flow in Chapter 4.)

Another important point of consideration is that oceanic environments are typically
stratified, which was not directly addressed by the experiments in this thesis. Strat-
ification can, for example, affect the spreading behavior of turbulent wakes and
plumes, as well as the dynamics of vortex rings and other vortical structures (e.g.,
Su, Wilhelmus, and Zenit, 2023).

Testing in other flows has the potential to encourage discovery of new navigation
strategies. For example, the discovery of the vortex ring surfing strategy in Chapter
4 was accidental. While testing whether CARL could sense vortex rings, it was
observed that under the right conditions, CARL would be carried across the tank by
the vortex ring. This inspired the idea to use onboard measurements to actively surf
on the vortex rings for propulsion. Exposing a robotic platform such as CARL to
a variety of other flow fields may similarly reveal unexpected navigation strategies.
Lastly, in order to map an unknown flow environment, it may prove useful to optimize
for the combined objective of efficient navigation and maximum observability of
the background fluid flow (Mei, Kutz, and Brunton, 2023).

Extensions to aerial vehicles
The primary motivation of this thesis is addressing the challenges of autonomous
underwater navigation. In underwater environments, robots are often under-actuated
while swimming against surrounding ocean currents, and must contend with flow
disturbances that are significantly larger than the vehicle. Aerial vehicles are increas-
ingly facing similar challenges, being tasked to navigate through highly turbulent
flow environments such as urban environments (e.g., O’Connell et al., 2022; Renn
and Gharib, 2022). For example, the flow from a single building may produce
structures larger in size than the vehicle (Scott Watkins, Ravi, and Loxton, 2009).
Experimental campaigns could be conducted in air that mirror the experiments in
this thesis. For example, a small drone could be exposed to incoming vortex rings,
which could directly connect with the results in Chapter 4.

Onboard training of machine learning algorithms
In the experiments in this thesis, the RL algorithms were all trained using simulated
data on a desktop computer. A natural extension, which was not implemented
in Chapter 3 due to time constraints, is to still train on a desktop computer, but
use data collected by the physical robot. Other robotic systems have been trained
using physically recorded data, which can better optimize for the specific noise and
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dynamics of the intended robot and environment (e.g., Renn and Gharib, 2022;
Masmitja et al., 2023; Dulac-Arnold et al., 2021).

However, a further extension, is to additionally train onboard the robot. To be sure,
adaptive control schemes have been studied and verified on aerial robots (O’Connell
et al., 2022). But for deep neural networks, training onboard a robot is typically
avoided, since a desktop computer can perform the task significantly more quickly
than the low-power microprocessors found onboard typical robots.

Autonomous navigation in the ocean presents a unique opportunity for this kind of
onboard learning. First, aerial vehicles demand fast timescales for decision making:
a millisecond-scale control error could result in a crash for an aerial drone, whereas
underwater vehicles can drift passively for hours, days, and even years without
catastrophic failure. Therefore, it is feasible to perform the requisite forward and
backward passes of neural networks onboard ocean vehicles at speeds significantly
slower than would be required for aerial drones. Second, while networks trained on
powerful computers can be easily transferred to terrestrial and aerial robots, com-
munication is extremely limited in the ocean, and any neural networks would need
to be pre-trained and communicated before deployment. Third, microprocessors
are now powerful enough to accomplish onboard training at small enough size and
power consumption to be relevant for ocean robots. For example, the Teensy 4.1
microcontroller used in CARL was tested to be able to perform several hundred for-
ward and back-propagations of a standard 128 by 128 MLP network every second,
using only one-half of a watt of power. Additionally, ocean robots often record data
for months or years at a time, which could satisfy the large data requirements of RL
algorithms.

Of course, a primary goal of this thesis is to learn strategies that generalize, and
can be transferred to different situations by taking into account the relevant physics.
However, by training directly onboard a robot, it may be possible to optimize for the
specific scenario encountered by a robot, such as the particular currents in a region
of the ocean, or the exact stratification and interaction between the robot and the
surrounding flow. Additionally, new algorithms such as SINDy-RL (Zolman et al.,
2024) may enable onboard learning with policies that are also interpretable.
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A p p e n d i x A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Navigation in steady flow
For navigating through an unsteady von Kármán vortex street, flow sensing appeared
critical for learning effective swimming strategies with RL. For navigating steady
flows with a fixed target, however, an RL-swimmer may be able to navigate simply by
forming a one-to-one correspondence between its position and the fixed background
flow field.

Consider the steady 2D flow past a cylinder at a Reynolds number of 40. Here, the
target position is fixed to be just downstream of the cylinder, and the swimmers are
started randomly throughout the entire domain with a swimming speed of 𝑈swim =

0.5𝑈∞ (see Figure A.2). Successful swimmers generally start close enough to the
cylinder to use the wake to navigate to the target, while unsuccessful swimmers
generally start too far away from the cylinder to reach the target before being swept
downstream.

We trained a flow-blind swimmer (𝑠 = {Δ𝑥,Δ𝑦}) and a vorticity swimmer (𝑠 =

{Δ𝑥,Δ𝑦, 𝜔𝑛, 𝜔𝑛−1}). Even though the flow-blind swimmer had no knowledge of the
background flow, it trained as quickly as the vorticity swimmer, which can be seen
in the evolution of the cumulative reward over training (Figure A.1).

Additionally, both swimmers were equally successful at reaching the target after
training, which is visualized by plotting the region of starting points from which the
swimmer can reach the target (Figure A.2). This region is computed by extracting
the ridges of the FTLE field (S. C. Shadden, Lekien, and J. E. Marsden, 2005) of
the flow field formed by the background flow plus the swimmer’s learned policy.

Because an RL swimmer can navigate steady flow with position alone, the unsteady
cylinder wake was chosen for testing flow sensing-based navigation. Additionally,
the starting time was randomized, as presenting a swimmer with a repeated, deter-
ministic snapshot of a flow field could also be navigable by memorizing the flow
based on position alone.
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Figure A.1: Evolution of the cumulative reward for a flow-blind swimmer and a
vorticity swimmer in steady flow past a cylinder. Because the background flow is
steady and the target location is fixed, both the flow-blind and vorticity swimmers
train at a similar rate.

Target

Vorticity RL 
Flow Blind RL
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Figure A.2: Success of a naïve swimmer, flow-blind RL swimmer, and vorticity RL
swimmer at navigating the steady flow past a cylinder. The plotted curves display
the right-hand (i.e., downstream) boundary of the region in which the swimmer
can reach the target. This region of attraction to the target is identical for both RL
swimmers, and larger than the region for the naïve swimmer. This implies that
in this steady flow field, both RL swimmers are equally successful at reaching the
target despite one swimmer lacking flow sensing abilities.

A.2 Reinforcement learning algorithm
We employed the V-RACER algorithm for training the deep RL swimmers using
the smarties framework. Some details of the algorithm are presented here, but a
complete description can be found in Novati and Koumoutsakos (2019).

The goal of V-RACER is to train the weights w of a neural network using experiences
with the environment. At each time-step 𝑡, the neural network takes in the agent’s
state 𝑠𝑡 as an input and outputs the mean action 𝜇w, standard deviation 𝜎w, and
value estimate 𝑣w. During training, the swimmer takes an action 𝑎𝑡 sampled from
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the normal distributionN(𝜇w, (𝜎w)2). The architecture of this deep neural network
is shown below in Figure A.3.

128x128

Figure A.3: Policy network used for deep RL with V-RACER. The state (e.g.,
𝑠 = {Δ𝑥,Δ𝑦, 𝜔𝑛, 𝜔𝑛−1}) is inputted into a deep neural network and the output is a
mean action 𝜇w, standard deviation 𝜎w, and value 𝑣w. During training, the swimmer
chooses a swimming angle by random sampling from a normal distribution: 𝜃 ∼
N(𝜇w, (𝜎w)2). After training, the mean action is selected (𝜃 = 𝜇w).

At every time step in an episode, the agent takes the action 𝑎𝑡 and stores information
such as the state (𝑠𝑡), reward information (𝑟𝑡 , 𝑉̂ tbc

𝑡 ), the current policy (𝜇𝑡 , 𝜎𝑡), and
action it took (𝑎𝑡) in the Replay Memory (RM). The number of recorded experiences
is kept to a fixed size: as new experiences are added, the oldest ones are forgotten.

To update the network’s weights and biases, experiences are sampled from the RM,
and a gradient is computed for each past experience according to two loss functions.
The value output 𝑣 of the neural network is trained using the following loss function,
which seeks to improve the neural network’s value estimate 𝑣w(𝑠𝑡) to better match
the estimated value from experiences 𝑉̂ 𝑡𝑏𝑐

𝑡 :

𝐿ret(𝑤) = 1
2

(
𝑣w(𝑠𝑡) − 𝑉̂ 𝑡𝑏𝑐

𝑡

)2
. (A.1)

The mean and standard deviation outputs (𝜇w and𝜎w) are trained using the following
loss function, which seeks to change the policy to improve on-policy returns:

𝐿off−PG(w) = −𝜌w
𝑡

(
𝑟𝑡+1 + 𝛾𝑉̂ 𝑡𝑏𝑐

𝑡+1 − 𝑣
w(𝑠𝑡)

)
, (A.2)

where the importance weight 𝜌w
𝑡 is the ratio of the probability of selecting 𝑎𝑡

given 𝑠𝑡 using the current policy 𝜋(· | 𝑠𝑡) ∼ N (𝜇w, (𝜎w
𝑡 )2) and the old policy

𝛽(· | 𝑠𝑡) ∼ N (𝜇𝑡 , 𝜎2
𝑡 ):

𝜌w
𝑡 =

𝜋w(𝑎𝑡 | 𝑠𝑡)
𝛽(𝑎𝑡 | 𝑠𝑡)

. (A.3)
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The estimate of the return 𝑉̂ 𝑡𝑏𝑐
𝑡 is calculated using a recursive formula starting at the

terminal time step 𝑁 of an episode in the RM and stepping backwards:

𝑉̂ 𝑡𝑏𝑐
𝑁 = 0, (A.4)

𝑉̂ 𝑡𝑏𝑐
𝑡 = 𝑣w(𝑠𝑡) +min{1, 𝜌w

𝑡 }
[
𝑟𝑡+1 + 𝛾𝑉̂ 𝑡𝑏𝑐

𝑡+1 − 𝑣
w(𝑠𝑡)

]
. (A.5)

The gradient estimate is then:

𝑔̂𝑡𝑖 =
𝜕𝐿ret

𝜕𝑣w ∇𝑣
w + 𝜕𝐿off−PG

𝜕𝜇w ∇𝜇w + 𝜕𝐿off−PG

𝜕𝜎w ∇𝜎w. (A.6)

If the old policy is too dissimilar from the current policy (1/𝑐𝑚𝑎𝑥 < 𝜌w
𝑡𝑖
< 𝑐𝑚𝑎𝑥),

𝑔̂𝑡𝑖 is set to zero. Additionally, this gradient estimate is mixed with a gradient that
points in the direction of the current policy to prevent the policy from changing too
greatly in an unstable manner:

𝑔̂𝑅𝑒𝐹−𝐸𝑅𝑡𝑖
= 𝜆𝑔̂𝑡𝑖 + (1 − 𝜆)∇𝐷KL(𝛽(· | 𝑠𝑡) | | 𝜋(· |, 𝑠𝑡)), (A.7)

where 𝐷KL is the Kullback–Leibler divergence, and 𝜆 is a chosen parameter. For
the RL swimmers, the neural network was updated using 𝑔̂𝑅𝑒𝐹−𝐸𝑅𝑡𝑖

at each time step.
Additional details, such as pseudocode, hyperparameters, and the scaling of the
neural network inputs are shown in Novati and Koumoutsakos (2019).

A network size of 128×128 was selected to ensure the network would be sufficiently
expressive to learn effective navigation strategies. To confirm that a 128×128 is
sufficiently expressive, we found that a network size of 64×64 was able to match the
performance of a 128×128 network, which can be see below in Figure A.4.

A.3 Additional RL swimmers
In addition to flow-blind, vorticity, and velocity RL swimmers, several other swim-
mers with different states were investigated. The u-velocity swimmer has access to
the only the 𝑥 component of the flow velocity (𝑠 = {Δ𝑥,Δ𝑦, 𝑢}). The transverse-
velocity swimmer has access to the component of the fluid velocity perpendicular
to the swimmer’s previous direction of travel (𝑠 = {Δ𝑥,Δ𝑦, 𝑢⊥, 𝑣⊥}). Finally, the
vorticity-velocity swimmer has access to the both the vorticity and velocity of the
fluid (𝑠 = {Δ𝑥,Δ𝑦, 𝜔𝑛, 𝜔𝑛−1, 𝑢, 𝑣}).
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Figure A.4: Evolution of the cumulative reward for a velocity swimmer with a
128×128 neural network and a 64×64 neural network, which shows that a 128×128
neural network is sufficiently large to express an effective swimming policy.

The success rate of all swimmers is plotted in Figure A.5. All swimmers with access
to partial-flow information (e.g., vorticity, one velocity component) have a slightly
higher success rate than the flow-blind swimmer. The two swimmers with access
to both components of the fluid velocity reach a nearly 100% success rate, and
the inclusion of vorticity in addition to the flow velocity did not appear to impact
training time.

Success
Rate

Naïve
Vorticity

Transverse

Velocity

Flow-Blind

Vorticity &

Velocity

Velocity

100%
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50%
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25%
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Figure A.5: Success rates of all investigated swimmers with various local sensing
schemes. The stated success rates are averaged over 12,500 episodes and are shown
with one standard deviation arising from the five times each swimmer was trained.

A.4 Sensor noise
All swimmers have thus far been presented noiseless measurements of the back-
ground flow and the swimmer’s position. In a biological context, such low-noise
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measurements may not be unreasonable: seals were reported to detect flow veloci-
ties as low as 245 microns per second using specially adapted whiskers (Dehnhardt,
Mauck, and Bleckmann, 1998). In robotic systems, however, measurement noise
could arise from a variety of sources, such as a measurement device itself, or from
small scale turbulence when navigating with background flow. Given that turbu-
lence is ubiquitous in real-world flows and the RL swimmers in the present study
rely on background flow measurements to navigate, we investigated how noise in
the flow measurements affects the success rate of RL swimmers. We found that the
velocity swimmer can be robust to realistic amounts of flow sensing noise.

To simulate flow measurement noise, an already trained velocity RL swimmer was
tasked with navigating across the unsteady cylinder wake with zero-mean Gaussian
noise added to both components of its velocity measurement. The standard deviation
of the velocity sensor noise, 𝜎sensor, was varied between 0 and 0.5 times 𝑈∞. The
success rates of the velocity swimmer for various amounts of noise are shown in
Figure A.6.

Success
Rate

100%

0%

50%

25%

75%

0% 10% 20% 30% 40% 50%

Figure A.6: Success rates of a velocity RL swimmer with various amounts of
zero-mean Gaussian noise added to its local velocity measurement (position mea-
surements were left noiseless). The stated success rates are averaged over 12,500
episodes and are shown with one standard deviation arising from the five times each
swimmer was trained.

The velocity RL swimmer demonstrated robustness to noise in its local velocity
measurement, showing little decrease in the success rate with a 𝜎sensor of up to
10% of the freestream flow velocity. With higher amounts of noise, the success
rate decreased, although the velocity swimmer can still navigate more successfully
than flow-blind swimmer even when 𝜎sensor reaches 40% of 𝑈∞. It is not surprising
that velocity measurements are less useful at this noise level, because the noise is
comparable to the measured signal.
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A convenient, albeit crude, metric for comparison with real fluid flows is the turbu-
lence intensity, defined as the ratio of the root-mean squared velocity fluctuations
over the mean velocity (𝑢rms/𝑈̄). While turbulence does not exactly follow a Gaus-
sian distribution (Jiménez, 2006) and not all scales of turbulence would be small
enough to appear as random fluctuations to a swimmer (Scott Watkins, Ravi, and
Loxton, 2009), we can compare the turbulence intensity of real flows to the random
noise added to the swimmer’s sensor readings.

Typical turbulence intensities used for the design of underwater autonomous vehicles
can range from 0.2% to 9% (Lidtke, Turnock, and Downes, 2016; Tian et al.,
2017). For tidal flows in the ocean, the turbulent intensity has been measured to be
approximately 12% to 13% (Milne et al., 2013) but could be higher near surface
waves or lower in the mid-ocean. For aerial vehicles, typical turbulence intensities
could range from 1.2% to 12.6% (Scott Watkins, Ravi, and Loxton, 2009). By
comparison, the RL swimmer has a minimal decrease in its success rate with a
similar magnitude of random noise in its velocity measurement. To be sure, the
turbulence intensity can range from zero to infinity depending on the presence
of a mean background current, and can vary in magnitude for different velocity
components (Scott Watkins, Ravi, and Loxton, 2009), so this comparison is only
a rough approximation of in situ noise levels. A physical implementation of RL
navigation with real-world noise would provide a more conclusive result, but it is
nevertheless promising that perfectly noiseless flow measurements are not required
for high navigation success in the simulated case.
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A p p e n d i x B

COMPONENTS AND CONSTRUCTION OF CARL

In this appendix, the components and construction of CARL are described. This
documentation will focus specifically on the most recent and robust version of CARL,
which was used for the experiments in Section 4. In addition to the information
contained here, the full design files, code, and bill of materials can be found at
https://doi.org/10.22002/b291n-nx970.

General overview of CARL
An overview of the main components of CARL is shown below in Figure B.1.
The hull was 3D printed using photopolymer resin, and other structural components
were 3D printed using Acrylonitrile Butadiene Styrene (ABS). The hull was approx-
imately 6 cm in diameter and 10 cm tall, and was weighted on the bottom to passively
stabilize the robot in its vertical orientation. The majority of electronic components
were housed inside the hull and accessible via a removable cap that formed a water-
tight seal with two O-rings. A Teensy 4.1 microcontroller provided onboard control
and computation, and data were stored onboard using a micro-SD card. A wireless
communication module (Songhe NRF24l01+ mini) was used to send and receive
commands and data from CARL while on the surface, using a corresponding Teensy
and wireless module that communicate with a computer over serial. Because the
water in the tank blocked wireless communication, CARL operated autonomously
while underwater. Additionally, an IMU (MPU-6050, TDK InvenSense) measured
acceleration and angular rotation rate for wall impact detection and active rotational
stabilization. A 12-watt-hour lithium-ion battery (Samsung 35E 18650) provided
power to the robot and was replaced after an hour of swimming in typical exper-
imental conditions. The electronic components were mounted on custom printed
circuit boards (PCBs).

For propulsion, CARL was equipped with ten brushed DC motors (Crazepony
615 17500KV) with corresponding propellers. The motors receive power from
the battery through H-bridge motor drivers (Texas Instruments DRV8833) and are
controlled using PWM signals from the Teensy microcontroller. The arrangement
of the motors is shown in Figure B.1. This arrangement of ten motors was chosen
to provide full control over translation in all three axes. Wires from all exterior

https://doi.org/10.22002/b291n-nx970
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electronic components were passed through the hull and sealed with epoxy.

2 cm
(a) (b)

Motors
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Pressure
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Boost converter Motor drivers

Figure B.1: General overview of the design of CARL. (a) Photograph of CARL
with a 2 cm scale bar. (b) Overview of the primary electronic systems inside CARL.

Hull design and waterproofing
The main hull of CARL was fully 3D-printed using photo-polymer resin (Siraya
Tech Fast ABS-Like 3D Printer Resin, Navy Grey) on a masked stereo-lithography
apparatus (MSLA) 3D-printer (Elegoo Mars Pro 2). Based on the experience of
designing CARL, it is strongly recommended to use resin 3D printing as opposed
to fused-deposition modeling (FDM) printing for waterproof enclosures.

The previous version of CARL used in Section 3 was printed using polylactic acid
(PLA) on a fused-deposition modeling printer (Voron 2.4). Small gaps between
layers in the print are inherent to the FDM printing process, and necessitated that
the entire hull be waterproofed with a coating of two-part epoxy. Additionally,
the relatively rough surface finish often resulted in small leaks through the double
O-ring shaft seal of the hull, in one case resulting in CARL sinking to the bottom
of the tank.

In contrast, the resin-printing processed used for the current version of CARL is
superior for two reasons. First, the printing process results in a fully watertight
surface without post-processing, since no gaps form between curing the layers of
resin in the printing process. Second, resin prints can easily achieve a highly smooth
surface finish, particularly when a flat face is aligned with the 𝑥𝑦 plane of the build
platform or the 𝑥𝑧 and 𝑦𝑧 planes of the pixels of the masking display of the printer.
With a smooth surface finish, O-real seals are highly effective. As a result, zero
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leaks occurred throughout all experiments and preliminary tests in Section 4. The
other 3D printed parts used on the exterior of CARL, such as the mounts for the
pressure sensors and motors, were typically printed in ABS plastic since they did
not need to be waterproof.

To enable easy access to the electronics inside the hull of CARL, the hull was
manufactured in two parts: the primary hull, and the hull cap. The two pieces are
threaded such that they can be twisted together, which engages an O-ring face seal.
To make it easier to open and close the two sections, particularly when slippery
with water after being in the tank, two 3D-printed wrenches are used to easily twist
apart or tighten the main hull and hull cap. This O-ring design and waterproofing
method was the most successful and robust by far, and resulted in zero leaks during
operation. The O-ring design is shown below in Figure B.2.

O-ring

O-ring

(a) (b)

Threads

Threads

(c)

Figure B.2: O-ring system used to seal the hull of CARL. (a) Photograph of the
main hull of CARL (top) and the hull cap (bottom), which screw together to form
a watertight seal. (b) Design of the O-ring face seal and threads. (c) 3D-printed
wrenches used to more easily open and close the hull of CARL.

Additionally, it was necessary to pass wires from the exterior of the hull to the
interior, such as wires for the motors and wires for the pressure sensors. To ac-
complish this, the wires passed through small holes in the hull, and the holes were
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sealed using two-part epoxy (see Figure B.3 for examples). Many ocean robots use
specially designed cable penetrators to pass wires through pressure vessels (e.g.,
AUVs designed by Blue Robotics). While highly robust for ocean environments
and high pressures, it was simpler, more cost effective, and more space-efficient to
simply seal the wire holes on CARL with epoxy. Because the resin used for the hull
of CARL was opaque, a small clear window was added to the top of CARL, printed
using ABS plastic. Epoxy was also used to seal this component.

(a)

(b)
(c)

Figure B.3: Clear epoxy was used to seal the holes left by wires penetrating the hull
of CARL. (a) A clear window was added to the top of CARL for the LED. (b) Motor
wires were sealed and passed through the hull of CARL using epoxy. (c) The wires
to the pressure sensors were sealed with epoxy.

Weight distribution and passive stability
The hull cap was weighted to shift the center of mass below the center of buoyancy,
which ensured passive roll and pitch stability. Any dense material, including loose
bolts and pieces of metal, could be used to add weight. However, tungsten putty, often
used in model cars and airplanes, was preferred due to its relatively high density,
the ease to which it can be shaped and pieces can be added and removed, and that it
attaches securely to the inside of the hull cap without adhesives. Additionally, for
fine-tuning the side-to-side position of the center of mass, a small amount of weight
was added to the outside pressure sensor mounting ring. Screws and washers were
used for this weight, and added manually until CARL floated without listing to one
side.

CARL was made positively buoyant such that in the event of a hardware failure or
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software bug, CARL would float to the surface for rescue. To dive to a certain depth,
two diving motors described in subsequent sections provided downward thrust. The
weight of CARL was adjusted so that the diving thrusters only needed to operate at
approximately 25% thrust to maintain a constant depth.

Central electronics package
The majority of electronics components, including the battery, microcontroller, and
wireless radio, were contained in the central electronics package inside the hull of
CARL. The battery was centrally located in this assembly for weight distribution.
Electronic components were mounted around a 3D printed structure and connected
together with custom printed circuit boards (PCBs, see the repository for design
files). The wireless radio was soldered on top of the electronics package to maxi-
mize reception while floating at the surface. An RGB LED was also mounted at the
top, and used for tracking with an overhead camera. The Teensy 4.1 microcontroller
provided all onboard computation, and the relevant code is uploaded to the reposi-
tory. A PSRAM module was soldered to the Teensy, which increased the onboard
memory capacity by 8 MB. After each episode in the tank, data were transferred
from memory to an onboard SD card in a binary format for quick transfer to a
computer. The Teensy was oriented such that the SD card could be easily accessed
after opening the hull cap of CARL. To make the USB port on the Teensy accessible
in this orientation, the ground, D+, and D- pins of the teensy were wired to pins on
the bottom of the electronics package. Communication with the pressure sensors
and accelerometer were accomplished over the I2C ports on the Teensy.

Power was provided to the Teensy through a 5 V boost converter, which steps the
3.7 V of the battery up to 5 V for the Vin pin on the Teensy. The voltage regulator
on the Teensy then steps this voltage down to 3.3 V, which was used as the power
source for the pressure sensors and accelerometer. The motors were controlled using
H-bridge drivers, which sourced power directly from the battery. It is recommended
that future versions of CARL use a driver with a higher maximum current capacity,
as the current version can sometimes be overloaded during swimming. The battery
voltage was recorded using an analog input pin on the Teensy, and communicated
wirelessly in the acknowledgment packets sent by the wireless radio so that the
battery voltage could be monitored during experiments.
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Motors and active stability
CARL was equipped with ten brushed DC motors (Crazepony 615 17500KV) with
corresponding propellers. Originally intended for propulsion in air, the propellers
were cut by hand to a diameter of 15 mm from the original diameter of 42 mm to
account for the higher torque required for operation in water. While not designed
for use in water, the motors operated without failure in the freshwater environment
of the tanks used in this dissertation.

Eight of the motors were arranged horizontally to enable translation in both hor-
izontal axes (front-back, left-right) and to control the rotation of the robot in the
vertical axis. A 50 Hz PID control loop running on the microcontroller read the
angular rate from the onboard IMU and controlled the rotation of the robot to ensure
straight swimming and accurate turning. Two propellers were mounted vertically
for diving. CARL was slightly positively buoyant and rises to the surface when
these two propellers are turned off. Another 50 Hz PID control loop ran in parallel
which controlled the depth of CARL. Using the measured pressure at the surface as
the reference pressure, the depth was estimated using the hydrostatic equation (h =
P/rho g).

Pressure sensors
Up to eight pressure sensors (MS5803-02BA, TE Connectivity) were mounted on
CARL for pressure sensing. Each pressure sensor was soldered to custom PCBs
with I2C translator chips, which allowed all pressure sensors to communicate over
the same I2C data lines. The pressure sensors were daisy-chained together and
wired through the hull to the I2C port in the central electronics package. Inside
the hull of CARL, the I2C wires were made using shielded cable, which eliminated
noise in the pressure measurements caused by electromagnetic interference from
the boost converter. For future versions of CARL, it is recommended to also
shield the wires external to CARL, as the surrounding water adds capacitance to
the I2C wires, which can interrupt communication. The pressure sensors come
with a waterproof gel coating for the sensor. To waterproof the surrounding PCB,
the pressure sensor was potted in two-part epoxy, which is shown below in Figure
B.4. As an additional note, for the differential pressure measurements performed in
Section 3, it is imperative that the side-facing and downward-facing sensors are as
close together as possible to reduce errors caused by body rotation, which changes
the relative hydrostatic pressure of the sensors.
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Figure B.4: Method for waterproofing the pressure sensors. (a) Photograph of a
pressure sensor pair with a 1 cm scale bar. (b) Schematic of the waterproofing
method, in which the printed circuit board was potted with clear epoxy.

Afterword
The design and development of CARL over nearly four years of my life has been
a challenging experience. There have been no shortage of frustrating days and
weeks with sensor failures, electromagnetic interference between components, mis-
takes in PCB design, broken 3D printers, misbehaving neural networks, the C++
programming language, and the near constant war against water ingress and leaks.
Nevertheless, the rewards of the end result has outweighed the difficulties of de-
velopment. What initially began as a toy submarine tested in my bathtub during
the height of the COVID-19 pandemic is now a robust experimental platform with
onboard flow sensing, autonomous navigation, reinforcement learning, and vortex-
ring-surfing capabilities. Since it may not have been appropriate to thank and
anthropomorphize a robot in the acknowledgments, I’ll will say it here: thank you
for everything, CARL.

“Another Hafu original!”

— Hafu, Mata Nui Online Game
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A p p e n d i x C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

C.1 Measurement of vortex ring properties
To measure the circulation of the vortex ring, we used PIV measurements of an
isolated vortex ring (i.e., without the presence of CARL) recorded by the high-
speed camera. The circulation was computed by integrating the vorticity field from
those PIV measurements:

Γ(𝑡) =
∫

𝜔 d𝑥d𝑟, (C.1)

where 𝑥 is the streamwise direction as defined in Figure 4.1, and 𝑟 is the distance
from the 𝑥-axis. Because the left edge of the FOV of the high-speed camera is
centered on the jet, the integration in Equation C.1 and the following equations are
averaged over the top and bottom halves of the field of view. Additionally, the raw
velocity vectors were filtered in time with a notch filter to eliminate noise due to
oscillations in laser intensity ( 𝑓laser ≈ 68.15 ± 0.15 Hz) and a moving average filter
with a window of 0.033 seconds to reduce high-frequency noise.

After the vortex ring was fully formed and separated from the thruster, we measured
the circulation to be approximately 0.21 m2s−1. The circulation normalized by
the kinematic viscosity 𝜈 can be considered a Reynolds number of the vortex ring
(Glezer, 1988), which here is measured to be Re = Γ/𝜈 ≈ 200, 000.

To define an appropriate time scale for the evolution of the vortex ring and the surfing
experiments, we use the non-dimensional formation time, defined as𝑈 𝑝𝑡/𝐷 (Gharib
et al. 1998), where 𝐷 is the diameter of the orifice producing the vortex ring, and
𝑈 𝑝 is the running mean of the fluid velocity exiting the thruster (𝑈 𝑝 = 1/𝑡

∫ 𝑡

0 𝑈𝑝d𝑡).
While 𝑈𝑝 can be directly measured in experiments that produce vortex rings with
a moving piston (e.g. Gharib, Rambod, and Karim Shariff, 1998), it is difficult to
accurately measure the flow velocities near the thruster exit. Therefore, we use a
slug model to estimate 𝑈𝑝, which assumes that the vorticity flux arises from a thin
boundary layer with freestream velocity 𝑈𝑝 (K. Shariff and Leonard, 1992):

dΓ
d𝑡
(𝑡) ≈ 1

2
𝑈2

𝑝 (𝑡). (C.2)



107

Using Equation C.2 and taking the finite difference of the measured circulation, We
measure a mean piston velocity of 0.98 m s−1, and a plot of the estimated piston
velocity over time is shown in Figure C.1. To generate a vortex, the thruster was
commanded to operate at maximum speed for 0.5 seconds, but due to the time
required to ramp up to that maximum speed, the jet velocity 𝑈𝑝 was non-zero for a
duration of approximately 0.36 seconds. We used that time interval to compute the
mean piston velocity. Using 𝑈 𝑝, we estimate the formation number to be 𝑈 𝑝𝑡/𝐷 ≈
3.61, which is within the typical range at which the vortex ring accumulates the
maximum possible circulation (Gharib, Rambod, and Karim Shariff, 1998).

To facilitate further comparison with existing vortex ring literature, we also com-
puted the non-dimensional energy of the vortex ring (Gharib, Rambod, and Karim
Shariff, 1998), which is defined as:

𝛼(𝑡) ≡ 𝐸

𝐼1/2Γ3/2 , (C.3)

where 𝐸 is the kinetic energy, 𝐼 is the impulse, and Γ is the circulation. These
quantities are computed from PIV measurements at each time step as follows:

𝐸 = 𝜋

∫
1
2
|u|2𝑟d𝑥d𝑟, 𝐼 = 𝜋

∫
𝜔𝑟2d𝑥d𝑟 (C.4)

with the density set to unity. The non-dimensional energy 𝛼 and piston velocity 𝑈𝑝

are plotted below in Figure C.1. In dimensional units and using 𝜌 = 1000 kg m−3

for water, the energy and impulse were measured to be 1.48 J and 4.48 kg m s−1,
respectively.
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Figure C.1: Properties of a vortex ring generated by the thruster, measured using
PIV from the high-speed camera. (a) Piston velocity estimated using a slug model.
(b) Non-dimensional energy.

C.2 Free surface distortion correction
Due to constrains with the size of the room and tank used for experiments, a camera
with a wide angle of view was positioned above the tank to track the positions
of CARL and record wide-field PIV measurements (see Figure 4.1). However, the
extreme FOV (107 degrees) resulted in significant “pincushion” image distortion due
to refraction at the air-water interface. In order to record accurate PIV measurements
and position data of CARL, we performed distortion correction on all images and
video captured by the wide angle camera.

Image distortion was measured by shining a laser pointer through the side walls of
the tank at the height of the thruster and at regular eight-inch intervals, using the
reflection from the opposite side of the tank to ensure the laser was perpendicular
and level. At each position, an image was taken, and then all images were combined
together to produce a grid of distorted lines (Figure C.2a). Using this combined
image, the optics compensation effect in Adobe After Effects was applied to produce
an undistorted image in which all laser lines were perpendicular and equally spaced
(Figure C.2b). The distortion correction was then applied to all recorded images
and video files from the wide-angle camera. The average distance between laser
lines was also used as a distance scale bar. The high-speed camera used a narrower
FOV (23 degrees diagonally), and so distortion corrections were not required.



109
(a) Before distortion correction

(b) After distortion correction

Figure C.2: Field of view of the wide-angle camera before correcting for refraction
at the air water interface (a) and after correction (b).

C.3 Effects of body tilt on accelerometer measurements
An important consideration for implementing onboard acceleration sensing is to
account for body rotation, such as roll and tilt of the robot. For example, when
CARL is entrained into the vortex ring, the combined effects of the surfing maneuver
and the vortex ring result in wobbling motion, which introduces a component of
the gravitational acceleration into the 𝑥 and 𝑦-acceleration in the body frame of the
robot.

To rotate the acceleration vector back into a fixed, lab frame of reference, the coor-
dinate system of a robot can be estimated at every instant in time using rotational
acceleration data. Accelerometers often are paired with three-axis gyroscope mea-
surements, which can be integrated to recover the orientation of the robot over time.
To compensate for drift due to offsets in the integrated angular acceleration, some
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IMUs also include a three-axis magnetometer, which uses Earth’s magnetic field
as an absolute orientation measurement. For the purposes of the experiments in
Chapter 4, which only lasted 12 seconds, it was sufficient to integrate the gyroscope
data directly with an offset measured at the start of each episode.

The differences between the acceleration in the body frame and lab fixed frame are
shown below in Figure C.3a and C.3b, respectively. To verify that the corrected
acceleration in (b) is accurate, the acceleration of CARL was computed from over-
head camera position measurements in panel (c), and shows good agreement. A
small amount of oscillation is present throughout the acceleration computed with
the overhead cameras due to position errors from small waves in the free surface of
the tank.
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Figure C.3: Validation of the acceleration measurements recorded by the IMU
onboard CARL. (a) Raw acceleration measured by the IMU onboard CARL in the
CARL body frame. (b) Onboard acceleration in a fixed frame, using integrated
gyroscope data to remove the tilt of the body frame. The onboard acceleration in
a fixed frame matches the acceleration calculated from trajectory data measured
recorded by the wide-angle camera (c). Because the center of mass of CARL
is located below the center of buoyancy, CARL often wobbles during forward
swimming or while near a vortex ring. This wobble is present in the raw acceleration
data (a), but is effectively removed by computing the acceleration in a fixed frame
of reference (b).
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