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ABSTRACT 

Humans are the most capable cognitive generalists to walk the earth. They have a 
remarkable capacity for flexibility reallocating cognitive resources to rapidly acquire and 
execute an effectively infinite number of tasks. By utilizing the opportunity to record single-
neuron activity in the frontal and temporal lobes of awake, behaving neurosurgical patients, 
we aim to elucidate the principles by which task representations are organized at the neural-
circuit level to give rise to flexible cognition and behavior. 

Our research program consists of four inter-related projects, each of which seeks to 
clarify the content, format, and single-neuron implementation of the representations that 
underlie different aspects of cognition and behavior that are uniquely human. In the first 
project, we demonstrate that the emergence of disentangled task representations in the 
hippocampus correlates with the ability of an individual to discover and perform inference 
on the state of latent context variables in their environment. In the second project, we describe 
differences in the temporal stability of instructed task representations in the hippocampus 
and medial frontal cortex, and show that they rely on persistent activity of single-neurons 
that lasts for 1-2 orders of magnitude longer than is typically studied in working-memory 
tasks. In the third project, we study the neural mechanisms of task-switching costs, and show 
that the state of medial frontal cortical context-representing neurons immediately following 
instructions is predictive of switching cost. In the fourth project, we evaluate the extent to 
which frontal cortical task representations inherit the compositional structure of natural 
language, and attempt to predict the neural representation of novel tasks as patients perform 
zero-shot generalization in a large task space.  

Together, these projects constitute a first step in understanding the neural 
computations that underlie cognitive processing used by humans to solve complex, multi-
task environments.  
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C h a p t e r  1  

Motivation 
 

Flexible neurons support flexible behavior. 
Why did nature bother to wire up so much telencephalon with such an intricate 

architecture? Why are we, as humans and animals, not simply an amalgamation of delay 
lines and lookup tables that allow for the appropriate action to be deployed slightly later than 
the onset of a given external stimulus? After all, we could just feel hypothalamic, act basal 
ganglionic, and observe superior tectonic could we not? Why go through the painstaking 
effort of wiring up so much brain to compute in such exotic and multifaceted ways? The 
trouble here (I suspect) is that the world changes, and rather quickly at that. The parts of our 
nervous system that are close to the sensory or motor periphery have wonderfully short time 
constants, implemented through cellular hardware, that allow them to receive the sensory 
world and control motor effectors with millisecond-precision; a fact that reflects the intrinsic 
timescales on which our reciprocal control of the world exists at the lowest level. However, 
as our distance from the periphery increases, measured in number of synaptic jumps, we find 
in general that the timescale of self-similarity of neural activity increases considerably. If we 
were to compare the time constant of the autocorrelation of spike trains discharged from a 
retinal ganglion cell (τms = 5)1 and a neuron deep in the primate frontal cortex (τms = 350)2, 
we find that their ratio is of the order of 102. The former is calibrated to process changes in 
visual scenes that are known to occur on the timescale of milliseconds. Thus, the existence 
of the former coupled with the presence of the latter suggests the need for cellular hardware 
in the brain that responds to changes in the world occurring on timescales of the order of ~1s 
(or longer, as we will see later on). Incidentally, the fact that many higher cognitive behaviors 
exhibited by humans (e.g. abstraction, inference, and instructed task switching to name a 
random few) occur on these timescales, coupled with the fact that lesions to parts of the brain 
with these long-τ neurons lead to deficits in the aforementioned behaviors3, tantalizes the 
prospect of studying such neurons to better understand the neural computations that underlie 
flexible human cognition.  

Apart from the matter of intrinsic timescale, there is the matter of dynamic 
reconfiguration of activity to accommodate different computations. Neurons that lie close to 
the sensory or motor periphery appear, by all accounts, to retain a certain amount of stability 
in their responses to different kinds of external stimuli or the production of different kinds of 
actions respectively. This is likely because the computations that these neurons perform are 
intrinsically tied to the physical properties of the end-organs to which they are synapsed. The 
receptive field and tuning properties of a bipolar cell in the retina are largely determined by 
the small number of photoreceptors to which it is synapsed, their physical location on the 
retina, and the opsins in those photoreceptors that determine the wavelength of light to which 
the photoreceptors are sensitive. The response properties that the bipolar cell inherits from 
these photoreceptors are thus largely immutable (modulo some non-canonical modulation 
that we will not consider here) as a function of the demands of the organism. That is to say, 
this bipolar cell will not suddenly begin responding to light arriving at a different part of the 
retina, or at a different frequency in the visible spectrum, even if that signal were crucial for 
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the animal’s survival. Correspondingly, an α-motor neuron in the spinal cord that is 
responsible for contraction of a specific muscle fiber can modulate its gain to a certain degree, 
but it will not change its tuning to cause the recruitment of different fibers (at least not on the 
timescale of seconds). Thus, to a rough, first-order approximation, and at the risk of upsetting 
those who work on peripheral sensory and motor plasticity, I contend that the peripheral 
nervous system at interface with end-organs acts as a largely static array of sensors that 
accept high-dimensional signals, and acts as a largely static array of effectors that generate 
low(er) dimensional output signals. If we take this to be true: that both the input and output 
of the system are pinned in their computations, then how is it possible that humans can adapt 
to and overcome such a wide range of challenges so rapidly and systematically? Clearly, 
somewhere between the input and the output, there must exist some neural substrate that 
exhibits dynamic change in its computation, in its response to external stimuli and internal 
states, to support the massive cognitive behavioral repertoire that humans possess. We have 
now squeezed the object of study between the sensory input and the motor output (the most 
generous bound possible), but the observation that proximity to the boundary leads to an 
increase in stability further suggests that the further from the periphery we are, the more 
flexible and task-dependent neuronal responses might be. After all, without an end-organ to 
tie one down, one might be free to explore neural state space. The reality of the matter is that 
being electrochemically coupled to ~104 synaptic partners also creates neural response inertia 
(i.e. reduces dimensionality), but we’ll also ignore this for now. Thus, we have some 
preliminary logic on which to ground the idea that looking deep within the human brain, far 
from the sensory periphery, can lead us to identify the neurons that are involved in generating 
the interesting cognitive behaviors we’d like to study. 

Let’s consider the counterfactual for a moment. If the world were standing still, and 
the generative factors that give rise to our environment remained immutable, then there 
would be no need to flexibly adapt one’s behavior on any timescale. One could simply learn 
the optimal policy for behavior once, independently of the training time, and apply that policy 
comfortably with an infinite time horizon. However, the timescale upon which our 
environment seems to change in a way that is relevant for the decisions of an animal and its 
subsequent survival can frequently be measured in units of seconds or minutes; considerably 
faster than infinity. Furthermore, an accurate characterization of the state of the environment 
frequently depends on taking a guess, or making an inference, about that which is not directly 
available in the sensory input. Perhaps the relevant information was encountered at some 
point in the past, either explicitly or implicitly, and the information yielded by those past 
observations needs to be persistently represented in some form so that it can be used by the 
organism to acquire a tasty snack, avoid a predator, appropriately answer an email, or any 
one of a myriad of tasks that befell organisms in the proximal and distal past.  

Adapting rapidly to a changing environment involves two practically interrelated, but 
technically dissociable behavioral processes that humans exhibit, and whose neural 
computational underpinnings will be studied herein: switching and learning. The process of 
switching involves an animal systematically altering behavior according to a different, but 
already known, set of state-action contingencies. Note: here “state” is a general term that 
refers to the current state of the environment, including both overt variables sampled through 
the senses and latent variables whose values are inferred, and the internal state of the animal. 
Typically, an animal might be prompted to exhibit a switch in behavior as a result of some 



 3
external signal or perturbation. In this case, we assume that the animal doing the switching 
does not necessarily need to re-learn state-action contingencies as it changes its behavior. 
One can imagine various situations where an animal alternates between two well-learned sets 
of behaviors, such as a squirrel alternating between foraging for food and scanning its 
environment for predators, or a graduate student alternating between writing a dissertation 
and browsing social media. In either case, the same peripheral sensors and effectors are 
rapidly reconfigured and brought to bear on generally similar environments in radically 
different ways. Extensive reconfiguration of neural resources within the brain is likely 
needed to support such rapid and flexible cognitive alternation. Now, let us consider the 
situation where the animal must also learn new state-action contingencies in its environment. 

Animals learn about their environment in many different ways that can generally be 
binned into one of three different categories: trial-and-error (or experiential) learning, 
observational learning, and instructed learning. While most animals can be said to exhibit 
some form of experiential learning, this kind of learning is incredibly slow and inefficient, 
particularly when the state-action space an animal must explore is high dimensional and the 
animal does not have strong priors to constrain its search through the space such that it must 
exhaustively sample an exponentially growing space4. Observational learning, though 
interesting in its own right and potentially involving many computationally complex 
processes including social inference and the representation of self and other, will not be 
considered here. The final learning category, instructed learning, is unique to humans as far 
as we know. As a learning mechanism, it is incredibly efficient since exploration of the state-
action space collapses from exponentially costly to solvable in constant time given exact 
specifications provided in a code, such as natural language, that is mutually comprehensible 
by the instructor and the student. 

Suffice it to say that, when a transmitter of information can appear and specify states 
to identify and actions to perform with an arbitrary degree of time cost and complexity, 
particularly when language is involved, the degree of cognitive, and thus behavioral 
flexibility that must be exhibited is immense. Even the morphologically simple instruction 
requesting that the receiver retrieves a set of items: “Go get me X1, X2, and X3.” supports an 
upper bound N3 potential sets of instructions, where N is the number of nouns in the English 
language. Webster’s dictionary reported 470,000 word entries in 1993 and if we estimate that 
even 1% of these are nouns referencing-valid, retrievable objects (the true fraction is almost 
assuredly higher), the space of 3-item retrieval instructions contains more than 1011 possible 
requests, many of which could be comprehended and fulfilled by a human immediately. Even 
statements to the tune of “Go get an MD, a PhD, and neurosurgical board certification.” can 
be comprehended and executed, though with considerable effort and ongoing sleep 
deprivation on the part of the receiver. Furthermore, the obvious exponential scaling of the 
space with N, coupled with the clear ability of humans to retrieve increasingly large sets of 
arbitrary items, suggests that the high degree of behavioral flexibility is supported by internal 
computational machinery that is more complex than a simple lookup table as proposed 
earlier, which would exhibit very poor scaling properties if naively implemented.  

The point of all these examples is to emphasize that within animals, and within 
humans in particular, some physical hardware must be present that implements 
computational processes that allow for sensation and action to be steered in a very deliberate 
and efficient way to handle the dynamic complexities of the world. We have strong logical 
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priors to suggest that such processes are implemented in the brain as described in the 
previous paragraphs. However, we also have strong tangible experimental evidence. Much 
of the clinical and basic neuroscientific and psychological research that has been performed 
over the last century or so has, in some way, sought to contribute to the corpus of knowledge 
that documents and accounts for the neurological underpinnings of complex human 
cognition. The worlds of neurology and neurosurgery have been particularly productive and 
contributory in this regard since patients with both focal and generalized lesions, generated 
either (naturally) pathologically or iatrogenically, will present with very stark cognitive 
deficits that have been historically described as deficits in attention, complex planning, 
emotional regulation, episodic memory formation, etc…5 While these terms are historically 
loaded and do not necessarily map onto individual groups of neurons or neural circuits, the 
causal impingement on regions deep in the frontal, temporal, and parietal lobes of the brain 
leading to profound deficits in cognition that leave much of sensory and motor processing 
intact provides evidence to suggest that neurons in these regions, though not demonstrably 
sufficient, are at least necessarily involved in the computations that generate the interesting 
suite of higher cognitive behaviors in humans that we would like to study. 

However, when it comes to understanding the neural computation performed in the 
human brain in service of these flexible behavior at the level of spiking neural activity, we 
continue to be profoundly ignorant; a state of affairs that I assuredly will not be able to change 
by the end of this thesis. In fairness to those who have come before me, and for whom I now 
work, our field, that of systematic basic science for understanding computing in the human 
brain at the single-neuron level, has only existed for approximately 20 years. High 
throughput single-neuron recordings in the human brain were simply not performed until the 
turn of the millenium6,7, and to this day, we continue to perform experiments that allow us to 
record 1-3 neurons at a time intra-operatively from the brain of an awake behaving patient8. 
In fact, I am about to go participate in my last such recording during my PhD as I sit here, 
writing this text. Though the process of recording neurons with individual tungsten 
electrodes has served animal neurophysiologists well in the past, such an approach, as it is 
limited by ethical and practical constraints in the human brain, is likely not the way forward 
for understanding how networks of neurons in the human brain compute in service of 
behavior. A detailed understanding of the neural computations that underly much of human 
cognitive flexibility remains thus elusive. There exist many features of flexible cognition 
which are uniquely and prominently instantiated in the human. With the advent of 
widespread single-neuron recordings from within the brains of awake, behaving 
neurosurgical patients, the opportunity now exists to obviate model systems for the human 
brain, and to study the neural computations underlying flexible behavior in the most capable 
cognitive generalist present on earth. In the following sections, I will discuss in greater detail 
specific aspects of human cognition that will be the subject of study in this thesis, and I will 
further motivate the experimental and computational tools through which that study has 
transpired.  
 
Our scientific and clinical advantage 
When trying to make sense of a complex, dynamical system with many degrees of freedom, 
one might wonder what the “best” level of description might be for trying to understand the 
inner workings of that system. The normative account of levels here might depend on one’s 
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objectives. For example, in the realm of thermodynamics, one might rely on analyses of 
probability distributions over microstates using tools from statistical mechanics to develop 
understanding at the fundamental level at which matter is organized. However, if one’s 
objective is to build a steam engine, then designing and building from first principles seems 
rather abusive. Instead, one might begin by leveraging the ideal gas law or some relaxation 
thereof, to design the basic specifications according to realistically tolerable temperatures, 
pressures, and the energy to be extracted. These equations, which provide a meso-scale level 
of description for a thermodynamic system, were initially described phenomenologically by 
synthesizing empirical gas laws that relate pressure, temperature, volume, etc.., and though 
they might not exactly mechanistically specify the exact state of molecules in the studied 
material at any point in time, the high level abstraction these equations provide is useful for 
understanding how thermodynamic systems behave at spatial scales that humans directly 
encounter with their natural senses, and is useful for generating physically realizable 
solutions to problems humans encounter in the world. It is possible that this correct level of 
description for useful analysis and control of neural networks is neural state space analysis, 
where the activity of each individual neuron in a recorded population defines an axis in a 
state space, the state of the neural population is defined and represented by points in this state 
space, and information about the external environment (e.g. a task) is read out from this state 
space using linear decoders, approximating the perspective of a downstream neuron. This 
general approach has been productive for furthering understanding about computations 
performed by networks of neurons in the brains of animals in recent history9. 

However, such lines of analysis are only productive if one has the capability to record 
from a large number of neurons within the brain of an awake, behaving human. Historically, 
such access to the human brain simply did not exist. The last 20 years have seen the 
development and widespread deployment of chronically-implantable electrodes within the 
brains of neurosurgical patients being treated for pharmacologically intractable epilepsy. 
These Behnke-Fried electrodes are comprised of a clinical stereo-EEG electrode with a 
hollow core that allows for the passage of high-impedance microelectrodes through the 
clinical electrode and into the distal brain tissue6. Much literature is available on the 
implantation and recording procedures induced by Behnke-Fried electrodes, and so I will not 
dwell on the matter much here. In brief, these electrodes allow for the simultaneous recording 
of: sEEG signal through the low-impedance clinical macroelectrodes located along the 
electrode shaft, and local field potentials and single-unit spiking activity through the high-
impedance microelectrodes (microwires) protruding from the distal end of the electrode 
shaft. It should be noted here that, for recording units, each Behnke-Fried electrode provides 
8 microwires that splay into the brain parenchyma and away from each other, yielding a 
maximum of 8 channels of 1-D voltage recordings that are processed and spike sorted 
independently. How, then, is it possible to achieve wide-spread, high-throughput recording 
of unit activity with so few channels? The answer lies in the clinical demands of the Phase II 
epilepsy patients treated at Cedars-Sinai Medical Center (CSMC). Through a longstanding 
collaboration with CSMC, we at Caltech have the unique privilege to work alongside a 
clinical neurological and neurosurgical team that is incredibly thorough and systematic in 
their recording from the brains of epilepsy patients. These same patients are kind and 
generous enough to be willing to volunteer their time and their brains such that we might 
deepen our understanding of how the human brain computes in service of behavior. Our hope 
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is that, through this work, we can eventually create enough useful, robust knowledge that 
allows for the explanation and prediction of neural activity in the brain such that that 
knowledge might be then leveraged in turn to develop treatments and therapies for 
individuals who have lost or are in the process of losing the higher cognitive functions we 
aim to study through our research.  

Given the relatively short history of our field, and the near-infinite number of 
behaviors that humans can generate, we have no shortage of directions in which to steer and 
find ourselves at the frontier of what is known about how the brain implements and 
manipulates representations at the level of populations of single neurons to generate flexible 
cognitive behaviors. Thus, we will proceed by proposing four different, but interrelated 
projects, each of which explores a different aspect of the human ability to rapidly adapt ones 
behavior in complex environments with changing task rules.  

In the first project, we demonstrate that the emergence of disentangled task 
representations in the hippocampus correlates with the ability of an individual to discover 
and perform inference on the state of latent context variables in their environment. In the 
second project, we describe differences in the temporal stability of instructed task 
representations in the hippocampus and medial frontal cortex, and show that they rely on 
persistent activity of single-neurons that lasts for 1-2 orders of magnitude longer than is 
typically studied in working-memory tasks. In the third project, we study the neural 
mechanisms of task-switching costs, and show that the state of medial frontal cortical 
context-representing neurons immediately following instructions is predictive of switching 
cost. In the fourth project, we evaluate the extent to which frontal cortical task representations 
inherit the compositional structure of natural language, and attempt to predict the neural 
representation of novel tasks as patients perform zero-shot generalization in a large task 
space.   
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C h a p t e r  2  

Abstract representations emerge in human hippocampal neurons 
during inference behavior 

 
Abstract:  
Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central 
to this capacity is the ability to form high-level, abstract representations that take advantage of 
regularities in the world to support generalization1. However, little is known about how these 
representations are encoded in populations of neurons, how they emerge through learning, and how 
they relate to behavior2,3. Here, we characterized the representational geometry of populations of 
neurons (single-units) recorded in the hippocampus, amygdala, medial frontal cortex, and ventral 
temporal cortex of neurosurgical patients performing an inferential reasoning task. We find that only 
the neural representations formed in the hippocampus simultaneously encode multiple task variables 
in an abstract, or disentangled, format. This representational geometry is uniquely observed after 
patients learn to perform inference, and consists of disentangled directly observable and discovered 
latent task variables. Learning to perform inference by trial and error or through verbal instructions 
led to the formation of hippocampal representations with similar geometric properties. The observed 
relation between representational format and inference behavior suggests that abstract/disentangled 
representational geometries are important for complex cognition.  
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Introduction:  
Humans have a remarkable capacity to make inferences about hidden states that describe 

their environment3–5 and use this information to adjust their behavior. One core cognitive function 
that enables us to perform inference is the construction of abstract representations of the 
environment5–7. Abstraction is a process through which relevant shared structure in the environment 
is compressed and summarized, while superfluous details are discarded or represented so that they 
do not interfere with the relevant ones8,9. This process often leads to the discovery of latent variables 
that parsimoniously describe the environment. By performing inference on the value of these 
variables, frequently from partial information, the appropriate actions for a given context can rapidly 
be deployed5,10, thereby generalizing from past experience to novel situations. For example, a latent 
variable specifying being in a left- or right-driving nation can be used by a pedestrian to infer which 
way to look for oncoming traffic when crossing a road, even in the absence of a sensory cue such as 
traffic moving in that pedestrian’s field of view, and when crossing roads they have never before 
encountered, for example in the countryside after visiting only cities. Through abstraction, the 
common, underlying structure of the world is represented in a way that facilitates adaptive behavior. 

What would be the signature of an abstract neural representation that enables this kind of 
adaptive behavior? The simplest form of abstraction is one in which all the irrelevant information is 
discarded. For example, when the representation of pedestrian crossings in a left-driving nation is a 
unique pattern of neural activity that is always the same regardless of other sensory details (e.g. 
whether it is in an urban or rural area). A distinct pattern of activity represents all crossings in a right-
driving nation (see Fig. 2.1a). This type of invariant, clustered representation is dissociated from 
specific instances, matching the way abstraction is defined in everyday language (see e.g. 
dictionaries like Webster). This type of abstract representation has also been proposed in 
neuroscience and studied in fMRI experiments by measuring clustering11. However, this kind of 
invariance is rarely observed in the brain, and this definition of abstract representation is too 
restrictive, failing to capture and explain much of the geometry of neural representations. 

For this reason, a more general geometric definition of what an abstract representation is has 
recently been proposed12. For example, the disentangled geometry shown in Fig. 2.1b encodes two 
variables that characterize each crossing: the first one says whether the crossing is in a left or right-
driving nation, while the second one expresses whether it is in a city or countryside. The two 
variables are represented along orthogonal directions. This non-trivial geometrical arrangement 
entails the existence of two subspaces in which the representation of each encoded variable is 
invariant (i.e. it does not depend on the value of  the other variable). Indeed, when projecting along 
the green axis, we recover the geometry of Fig. 2.1a, for which the information about city or 
countryside is discarded. The advantage of this representation is that in the original space, that 
information is not lost, and actually, when projecting along the red axis, it is the only information 
that is represented, making the representation of city/countryside invariant with respect to the nation.  

The reason why we care about this type of invariance is that it has important computational 
properties: it allows a simple linear readout to generalize to novel situations. For example, imagine 
we train a linear classifier to respond with “look left” in a right-driving nation and “look right” in a 
left-driving nation. However, we train it only on urban pedestrian crossings. Thanks to the 
representational geometry, this classifier would also work in rural areas, which are new to the 
classifier (we assume that the geometry has been learned from other experiences in urban and rural 
areas). As this out-of-distribution form of generalization is the property of the geometries in Fig. 
2.1a and 1b that we consider important, we will use it as the defining characteristic of an abstract 
representation: a representation of a particular variable is abstract if a linear decoder trained to report 
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the value of that variable can generalize to novel conditions. The novel conditions are defined by the 
values of other variables. Representations with these properties have been observed in monkeys12–

14, in rodents15,16 and in artificial neural networks11,16,17. Are these abstract representations also 
observed in the human brain? How do they form? Do they matter for behavior? At the level of 
neuronal activity, the answers to such questions have remained elusive. Prior research has implicated 
the hippocampus in the implementation of abstraction and inference-related computations, both 
through neuroimaging in humans during tasks that require abstraction and generalization10,17–19, and 
through neurophysiology in rodents and non-human primates engaged in tasks with abstract spatial 
and non-spatial components12,20–24. To date, relatively few studies have explored the role that the 
geometry of task variable representations plays in shaping computation in the human brain at the 
single neuron level25,26, and no study has, to our knowledge, reported the emergence and 
manipulation of this geometry on the short timescales that would be required for rapid learning in 
humans.  

We recorded the activity of populations of neurons in the brains of awake, behaving epilepsy 
patients to study the emergence of abstract representations. Patients performed a reversal learning 
task with two latent contexts, each requiring different responses to the same stimuli. We find that as 
patients learned to perform inference on the latent context, an abstract representation of context 
emerged in the hippocampus. Importantly, the emergence of the abstract context variable was 
correlated with an individual’s ability to rapidly perform inference on the state of the latent variable 
context and was absent during error trials. Furthermore, we found that this abstract hippocampal 
context representation could emerge in two ways: by learning through experience and through verbal 
instructions informing patients about the latent structure of the task. 

 
Results: 
Humans perform inference in a context dependent task.  

Patients viewed a sequence of images and indicated for each whether they thought that the 
associated action was a “left” or “right” button press on a button box (Fig. 2.1c). Subjects discovered 
from the feedback provided after each response what the correct response is for a given image. There 
were two possible fixed mappings (“Stimulus-Response-Outcome/SRO maps”, see Fig. 2.1e) 
between each of the four stimuli, the associated correct response (Left/Right button press), and 
monetary reward given for a correct response (25¢ or 5¢). Which of the two fixed mappings should 
be used depended on which context a given trial was in (Fig. 2.1d,e, Context 1 or 2). The two contexts 
alternated every 15-32 trials. Context was a latent variable that had to be inferred by subjects because 
no information was provided on the screen on which context was presently active or whether it had 
changed. Critically, the two stimulus-response maps are systematically related: all stimulus-response 
pairings are inverted between the two contexts (see Fig. 2.1e). With this design, an individual 
performing inference can detect a change in latent context after receiving feedback that their response 
was incorrect in a single trial and immediately update their stimulus-response associations for the 
remaining stimuli even though they have not yet been encountered in the new context. We refer to 
the trials in which a given stimulus is encountered for the first time following a covert context switch 
as inference trials and to the remaining trials as non-inference trials. 

Patients (17 total, see Table 1) completed 42 sessions (180-320 trials/session, 10-16 
blocks/session) of the task, typically in pairs of two back-to-back sessions on the same recording day 
(mean = 2.4 sessions per day, min = 2, max = 4, see Table 1). Novel stimuli were used in every 
session, thus requiring patients to re-learn the SRO maps through trial and error at the start of every 
session. Of the 42 sessions, 6 were excluded from analysis due to at-chance performance in non-
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inference trials (Binomial Test, 𝑝 > 0.05). Performance on non-inference trials was well above 
chance for the remaining 36 sessions (Fig. 2.E1a,b). Each of the 36 included sessions was classified 
as either a “Inference Present” or “Inference Absent” session depending on whether the patient 
performed significantly above chance on the first of the three possible inference trials occurring after 
context switches (Fig. 2.1f, timepoint 2).  

Our task is designed such that by performing inference, patients can respond correctly the 
first time they see an image in a new context following the initial error trial (seen as significantly 
below chance performance in Fig. 2.1f at timepoint 1). This can be achieved by patients flexibly 
updating the currently active SRO map immediately after encountering an error, thereby allowing 
them to perform accurately for the remaining three stimuli that had not yet been seen in the new 
context. We took accuracy on the first of these three opportunities (the first inference trial) following 
a context switch as the behavioral signature of successful behavioral inference (timepoint 2 in Fig. 
2.1f, Binomial Test,  𝑝 < 0.05). Block-wise estimates of task performance for inference absent (Fig. 
2.E1e) and inference present (Fig. 2.E1f) sessions reveal that during inference absent sessions, 
patients exhibit poor inference performance after every context switch throughout the task, although 
the performance at the end of every block is high. In contrast, during inference present sessions, 
inference performance rapidly rose over the first few blocks and remained high throughout the 
duration of the session (Fig. 2.E1f). Note that within a given session, the two latent contexts had 
identical stimuli, responses, and outcomes; the only difference was which stimulus was associated 
with which response and outcome. Correspondingly, subject-level accuracies (Fig. 2.E1c) and 
reaction times (Fig. 2.E1d) for the two contexts (arbitrarily labeled 1 and 2 across sessions) were not 
significantly different, indicating that there was no systematic performance bias for one of the two 
contexts. 

When first performing the task, patients were told that they needed to learn arbitrary 
stimulus-response associations that would change over time, but were not informed about the latent 
contexts and their related structure. Sessions were recorded in back-to-back pairs (Session One/Two, 
Fig. 2.E1i inset) with verbal instructions (see Methods) detailing the latent structure of the task 
provided during the inter-session period (mean length of break = 241 s, range 102-524s), which was 
considerably shorter than the sessions themselves (mean = 1154 s, range 898-1900s). Importantly, 
the session following the verbal instructions required re-learning the SRO maps for new stimuli. We 
considered whether patients could discover the latent task structure before receiving instructions, 
and if not, whether verbal instructions successfully shaped behavior. Patients were split into three 
groups: A “post-instruction inference” group, which is composed of patients who did not perform 
inference during the first session and who did perform inference during the second session (5 
patients, 10 sessions, Fig. 2.E1g); An “inference not exhibited” group, which were patients who did 
not perform inference during both Session One and Two (4 patients, 8 sessions, Fig. 2.E1h); and a 
“pre-instruction inference” group, which were patients who exhibited inference behavior during both 
Session One and Two (3 patients, 6 sessions, Fig. 2.E1i). Only patients who performed accurately in 
non-inference trials in both Session One and Two were included in one of these three groups (Fig. 
2.E1g-i, “last”; 5 patients excluded, see Table 1). For each subject, no sessions after the first two 
were considered for this analysis. Thus, patients exhibited a variety of inference behaviors. Below, 
we contrast the neural representations between these groups of patients to examine how instructions 
shape neural representations on short timescales. 

 
Electrophysiology and analysis approach 
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Neural data recorded over the 36 (of 42) included sessions yielded 2694 (of 3124) well 
isolated single-units, henceforth neurons, distributed across the hippocampus (HPC, 494 neurons), 
amygdala (AMY, 889 neurons), pre-supplementary motor area (preSMA, 269 neurons), dorsal 
anterior cingulate cortex (dACC, 310 neurons), ventromedial prefrontal cortex (vmPFC, 463 
neurons), and ventral temporal cortex (VTC, 269 neurons) (Fig. 2.1g,k). Only well isolated neurons 
as assessed by spike sorting quality metrics were included (see methods). Action potentials 
discharged by these neurons were counted during two 1s long trial epochs: during the baseline period 
(base, -1s to 0s prior to stimulus onset), and during the stimulus period (stim, 0.2s to 1.2s after 
stimulus onset). For the stimulus period, since patients would sometimes respond before 1.2s 
(reaction time = 1.08 ± 0.04s over sessions), we determined that 75.15% of all spikes occurred before 
a response was provided across all recorded neurons, indicating that analyses performed with these 
spike counts predominantly, but not exclusively, reflect pre-decision processing.  

Single neuron responses during the two analysis periods were heterogeneous. During the 
stimulus period, some neurons exhibited selectivity to one or several of the four variables stimulus 
identity, response, (predicted) outcome, and context (Fig. 2.1h-j and Fig. 2.E1j show example 
neurons tuned to response and context). Other neurons were modulated by combinations of these 
variables (Fig. 2.1j, example neuron tuned to conjunction of stimulus and context). Across all brain 
areas, 54% of units (1447/2694) were tuned to task variables, with 26% of units (706/2694) 
exhibiting only interaction effects, 17% (449/2694) exhibiting only main effects, and 11% 
(292/2694) exhibiting both when fitting a 3-Way ANOVA for Response, Context, and Outcome 
(Fig. 2.1l, RCO column, chance = 135/2694 units, factor significance at 𝑝 < 0.05, Fig. 2.E1t shows 
each brain area separately). When neurons were separated into those recorded from inference absent 
and inference present sessions, 5-15% of neurons were significantly tuned for each of the main and 
interaction effects of the 3-Way ANOVA, with significant reductions in the proportion of neurons 
tuned to Outcome, Response x Context, and Response x Context x Outcome ( 𝑝ை = 0.0007, 𝑝ோ௫஼ =
0.0395, 𝑝ோ௫஼௫ை = 0.0048, two sample z-test) in inference present sessions compared to inference 
absent sessions (Fig. 2.E1q). Similar analyses conducted on a separate 2-Way ANOVA for Stimulus 
Identity and Context (Fig. 2.1l, SC column, Fig. 2.E1r, 𝑝ௌ = 0.0165, two sample z-test comparing 
inference absent with inference present sessions, Fig. 2.E1u shows each brain area separately), and 
for Stimulus Identity and Response (Fig. 2.1l, SR column,  Fig. 2.E1s, 𝑝ௌ = 0.0287), revealed a 
significant decrease in the fraction of neurons tuned to Stimulus Identity in inference present 
compared to inference absent sessions, again with no significant changes in the proportion of neurons 
coding for Context, Response, or interactions. These findings indicate diverse tuning to many task 
variables simultaneously across all brain regions.  

 
Measures of Neural Population Geometry 

Given the heterogenous nature of the response pattern at the single neuron level (also see 
Fig. 2.E1k-p,t-u), we adopted a population-level approach performed on neural pseudopopulations 
constructed by pooling neurons across patients and sessions (see Methods). This approach allows us 
to assess which variables are encoded in distributed neural activity patterns, considering also the 
correlations of the neural responses across multiple conditions. Most importantly, it enables us to 
examine how these variables are represented and, in particular, to study the geometry of neural 
representations, which we use to define abstract representations (see the Introduction). In our task, 
the geometry of a representation is defined by the arrangement of the eight points in the activity 
space that represent the experimental conditions. Low dimensional disentangled geometries (e.g., 
when the eight points define a cube) would be abstract because they confer the ability to cross-
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generalize to a linear readout. For example, consider a simplified situation with three neurons (the 
axes) and two stimuli in two contexts (Fig. 2.2a-c). Imagine that the 4 points (2 per context) are 
arranged on a relatively low dimensional square (the maximal dimensionality for 4 points is 3), with 
the context encoded along one side and stimulus along one of the two orthogonal sides (Fig. 2.2a). 
Then, a linear decoder for stimulus (A vs B), trained only on context 1 conditions, can readily 
generalize to the context 2 (Fig. 2.2b). This ability to generalize is due to the particular arrangement 
of the points, which make the stimulus coding direction in the two contexts parallel to each other 
(Fig. 2.2c). Moreover, context and stimulus are represented in orthogonal subspaces, and hence, they 
are called disentangled variables27,28. In the square example, the ability of a linear decoder to 
generalize across conditions (cross-condition generalization or CCGP) also applies to the variable 
context (i.e. a context decoder trained on stimulus A conditions will generalize to stimulus B 
conditions). As discussed in the introduction, we use CCGP as the defining characteristic of an 
abstract representation of a variable.  

Notice that if the 4 points of the example are at random locations in the activity space defining 
a tetrahedron, the representation is “unstructured” and does not have any of the generalization 
properties described. On the other hand, these high dimensional representations allow a linear 
readout to separate (or shatter) the points in any arbitrary way, and hence confer to the readout the 
flexibility to implement any possible task. We refer to the number of ways the points can be separated 
into two groups by a linear decoder (dichotomies) as shattering dimensionality12,29. Recorded neural 
representations can have both the generalization properties of the abstract representations and the 
flexibility of the high dimensional representations12. 

We compared the representational geometry between inference absent and inference present 
sessions for neural pseudopopulations of all recorded neurons in each brain area. Analyses were 
performed on all variables defined by “balanced dichotomies”, which are constructed by splitting 
the 8 task conditions into two groups of 4 conditions (Fig. 2.1b, E2, and 2d). To perform the analysis 
in an unbiased manner, we did not consider only the variables defining the task but all the variables 
that correspond to the 35 possible dichotomies of the 8 conditions (see Fig. 2.2d and E2 for an 
illustration of the dichotomies that correspond to specific task variables, Table 2; we refer to these 
as named dichotomies). The dichotomies corresponding to latent context, behaviorally relevant 
stimulus grouping (stim pair), and parity, which measures the degree of non-linear interactions of 
variables in the neural population. These variables are the most important for interpreting subsequent 
results, and are shown in Fig. 2.2d.  

For each of the dichotomies, we computed the decoding accuracy, which tells us whether the 
corresponding variable is encoded, and the CCGP, which indicates whether the representation of that 
variable is disentangled from other variables. Both decoding accuracy and CCGP are reported in a 
cross-validated manner by training and testing decoders on single trials. We complemented this 
single-trial analysis with a third metric called the Parallelism Score. The Parallelism Score measures 
the cosine similarity of the coding directions of a specific variable. The coding directions are 
estimated using the average activity for each condition. A high Parallelism Score indicates that the 
variable is represented in an abstract format. The Parallelism Score is a direct geometrical measure 
that focuses on the structure of the representation (the CCGP also depends on the noise and its shape). 

 
Hippocampal neural geometry correlates with inference behavior. 
We first examined the decodability of each balanced dichotomy in different brain areas for sessions 
where inference was present and sessions where inference was absent. Following stimulus onset, the 
hippocampal neural population exhibited a significant increase in average decodability across all 
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balanced dichotomies in inference present sessions relative to inference absent sessions, defined as 
an increase in shattering dimensionality (Fig. 2e, inference absent vs present, 0.57 vs 0.62, 𝑝ோௌ =
2.7𝑥10ିଷ , Ranksum over dichotomies). Latent context (Fig. 2.2e, red, inference absent vs. present 
𝑝ோௌ = 2.9𝑥10ିଶ଻, 𝑝஺௕௦௘௡௧ = 0.12 , 𝑝௉௥௘௦௘௡௧ = 5.1𝑥10ିହ ; 𝑝஺௕௦௘௡௧  and 𝑝௉௥௘௦௘௡௧  are significance 
tests vs. chance and 𝑝ோௌ is a pairwise comparison between inference absent and inference present 
sessions) and stim pair (Fig. 2.2e, purple, inference absent vs. present, 𝑝ோௌ = 5.0𝑥10ିଶ଻, 𝑝஺௕௦௘௡௧ =
0.015, 𝑝௉௥௘௦௘௡௧ = 7.9𝑥10ି଻) emerged as the most strongly decodable named dichotomies in the 
inference present sessions. The stim pair dichotomy corresponds to the grouping of stimulus 
identities that elicit the same response (D&B vs. A&C), a relationship that remains the same across 
both contexts (Fig. 2.2d). This difference in representation between inference absent and inference 
present sessions is unique to HPC, as no other recorded region exhibited a significant change in 
decodability of the variable context (Fig. 2.2g, red). Rather, in vmPFC, stim pair (Fig. 2.2g, purple, 
inference absent vs. present, 𝑝ோௌ = 6.9𝑥10ିଶ଴, 𝑝஺௕௦௘௡௧ = 0.21, 𝑝௉௥௘௦௘௡௧ = 0.0097 ) and in 
preSMA, response (Fig. 2.2g, green, inference absent vs. present, 𝑝ோௌ = 5.2𝑥10ିଵଷ, 𝑝஺௕௦௘௡௧ =
0.091, 𝑝௉௥௘௦௘௡௧ = 0.0057) increased significantly in decodability in inference present compared to 
inference absent sessions, as expected (see discussion). The stim pair variable was also significantly 
decodable in AMY both during inference absent and present sessions, with no significant difference 
between the two (Fig. 2.2g, purple, inference absent vs. present, 𝑝ோௌ = 0.88, 𝑝஺௕௦௘௡௧ =
0.0016, 𝑝௉௥௘௦௘௡௧ = 0.0018).  

The expressiveness of a neural representation can be quantified by the decodability of 
dichotomies that probe for non-linear interactions of variables in the population. The parity 
dichotomy (Fig. 2.2d, orange) is only decodable if variables are encoded with a high degree of non-
linear interactions in a neural population (see methods). We observed that in the hippocampus but 
not in other brain areas, parity decodability increased significantly in inference present relative to 
the inference absent sessions (Fig. 2.2e, orange, inference absent vs. present, 𝑝ோௌ =
1.5𝑥10ିଶଵ, 𝑝஺௕௦௘௡௧ = 0.27, 𝑝௉௥௘௦௘௡௧ = 0.0055) . Generalizing this finding, dividing different 
dichotomies into increasing levels of “difficulty”, with more difficult dichotomies requiring stronger 
non-linear interactions of task variables, reveals that average decoding accuracy is highest for the 
most difficult dichotomies in the hippocampus (Fig. 2.E5). Together, these findings suggest that non-
linearities in the hippocampal population response in the inference present relative to the inference 
absent sessions led to an increase in the number of dichotomies that could be decoded by a linear 
decoder. Notably, only the hippocampus exhibited significant parity decodability (Fig. 2.2g, orange, 
all 𝑝 > 0.05), a significant increase in shattering dimensionality (Fig. 2.2g, all 𝑝ோௌ > 0.05), and the 
emergence of multiple, simultaneously decodable dichotomies between inference absent and 
inference present sessions.  

We next examined the format of the decodable named dichotomies (context, stim pair, 
parity). During the stim period, CCGP (Fig. 2.2f, E3d) was significantly elevated for both the context 
(Fig. 2.2f, red, inference absent vs. present, 𝑝ோௌ = 2.0𝑥10ିଶ଼, 𝑝஺௕௦௘௡௧ = 0.51, 𝑝௉௥௘௦௘௡௧ = 0.02) 
and stim pair (Fig. 2.2f, purple, inference absent vs. present, 𝑝ோௌ = 2.0𝑥10ିଶ , 𝑝஺௕௦௘௡௧ =
0.17, 𝑝௉௥௘௦௘௡௧ = 0.0011) variables in inference present but not in inference absent sessions. In 
addition, the Parallelism Score was significantly larger than expected by chance for the variables 
context and stim pair in the inference present but not inference absent sessions (Fig. 2.E3g, red, 
𝑝஺௕௦௘௡௧ = 0.55, 𝑝௉௥௘௦௘௡௧ = 1.4𝑥10ିଵହ 𝑎𝑛𝑑 Fig. 2.E3g, purple, 𝑝஺௕௦௘௡௧ = 0.17, 𝑝௉௥௘௦௘௡௧ =
1.7𝑥10ି଼). Elevated CCGP was also observed for the stim pair variable in vmPFC during inference 
present and not inference absent sessions (Fig. 2.E3a, purple, 𝑝஺௕௦௘௡௧ = 0.45, 𝑝௉௥௘௦௘௡௧ = 0.014), 
the response variable in preSMA (Fig. 2.E3a, green, 𝑝஺௕௦௘௡௧ = 0.050, 𝑝௉௥௘௦௘௡௧ = 0.0010), and the 
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stim pair variable in AMY during both inference absent and inference present sessions (Fig. 2.E3a, 
purple, 𝑝஺௕௦௘௡௧ = 0.050, 𝑝௉௥௘௦௘௡௧ = 0.039). Taken together, the increased CCGP and Parallelism 
Score values in inference present relative to inference absent sessions indicate that the context and 
stim pair variables are both simultaneously represented in an abstract format in the hippocampus in 
sessions where inference behavior was observed. These two variables were not represented in an 
abstract format when inference is absent. While other task variables were also represented in an 
abstract format in other brain regions, only the hippocampus simultaneously represented these two 
variables in an abstract format (Fig. 2.E3a,b). These two disentangled variables are thus represented 
in approximately orthogonal subspaces. 

We also conducted a parallel analysis during the pre-stimulus baseline (Fig. 2.2, inset), 
analyzing the geometry of persistent representations of the previous trial. We found that context 
alone was encoded in an abstract format in the hippocampus only in sessions in which subjects could 
perform inference (Fig. 2.2h,i; Supplement S.1). This finding indicates that the hippocampal context 
representation was persistently maintained in an abstract format across trial epochs.  

Lastly, we examined whether the geometry of the context representation was preserved such 
that context decoding could generalize across different inference present sessions. To do so, we 
aligned the geometries in the two sessions to each other in neural state space using a subset of task 
conditions and then examined whether decoding context generalized from one session to the other 
on held-out conditions (see methods). This analysis revealed high context parallelism between 
random subsets of different inference sessions during both the baseline and stimulus periods (Fig. 
2.E3z, aa). Such cross-session context parallelism was not found when performing the same analysis 
for the inference absent sessions (Fig. 2.E3ab, ac). This indicates that the geometry of the 
hippocampal context representation generalizes across inference sessions. 

The changes in hippocampal neural geometry are summarized in Fig. 2.2j, which shows a 
3D MDS plot of the hippocampal neural data in inference absent (left) and present (right) sessions, 
with hypothetical linear boundaries (black lines) showing the separating hyperplanes for context and 
stim-pair, the two disentangled variables. 

 
Hippocampal representation of context is absent in error trials 

We next asked whether the presence of context as an abstract variable was associated with 
trial-level performance. To examine this question, we compared the decodability and geometry of 
all dichotomies between correct and incorrect (error) trials in sessions where patients exhibited 
inference. The first trial of every block was excluded from this analysis due to being necessarily 
incorrect by design (see Fig. 2.1d, trial 1). Contrasting correct with error trials, we found that 
shattering dimensionality was significantly higher in correct trials in the stimulus period (Fig. 2.E3e, 
inference present vs. inference present (error), 0.59 vs 0.54, 𝑝ோௌ = 0.0048), as was decodability of 
the parity dichotomy (Fig. 2.E3e, inference present vs. inference present (error), orange, 𝑝ோௌ =
0.029 ). Furthermore, the dichotomies context and stimulus pairing were significantly more 
decodable in correct compared to incorrect trials (Fig. 2.E3e, inference present vs. inference present 
(error), red, 𝑝ோௌ = 1.2𝑥10ିଶ଴, purple, 𝑝ோௌ = 1.0𝑥10ିଽ ). Furthermore, Parallelism Score for 
context but not other variables was significantly elevated in correct trials but not in incorrect trials 
(Fig. 2.E3f, red, inference present vs. inference present (error), 𝑝௉௥௘௦௘௡௧ =
1.1𝑥10ିଵ଺, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) =  0.083 ) in inference present sessions. Similarly, the baseline 
representation of context also showed this effect, being decodable during correct trials but not during 
incorrect trials (Fig. 2.E3i, red, inference present vs. inference present (error),  𝑝ோௌ =
3.5𝑥10ିଵ , 𝑝௉௥௘௦௘௡௧ = 0.012, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 0.47). The baseline shattering dimensionality did 
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not significantly differ between correct and error trials (0.52 vs 0.51, 𝑝ோௌ = 0.31). Context was 
present in an abstract format only in correct trials based on the Parallelism Score for context being 
significantly larger than chance during correct but not incorrect trials (Fig. 2.E3j, red, inference 
present correct vs. error  𝑝௉௥௘௦௘௡௧ = 0, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 0.94 ). The lack of decodability and 
parallelism of context in the baseline immediately prior to an incorrect trial indicates that the 
geometry of the representation at baseline is correlated with correct behavior in the upcoming trial. 
Together, these findings demonstrate that both the content and format of the hippocampal neural 
representation are correlated with behavior on a trial-by-trial basis. This effect is present during the 
stim period in incorrect trials, where shattering dimensionality, context decodability, and context 
Parallelism Score significantly decreased. This effect is also present during the baseline period, 
where a reduction in the decodability and parallelism of the context variable is associated with an 
error in an upcoming trial. 

 
Controls for univariately tuned neurons, seizure-onset zones, and non-inference performance 

We performed three sets of control analyses. First, to determine the relationship of our 
population-level findings to classical (univariate) tuning, we repeated our analyses after removing 
subsets of neurons from the population. We removed neurons with significant main effects in a (i) a 
2x2x2 ANOVA for Response, Context, and Outcome, and (ii) a 4x2 ANOVA for Stimulus Identity 
and Context (Supplement 2.S.2). In both analyses, context remained significantly decodable and in 
an abstract format. Also, as expected, in (ii), stimulus pair representations were no longer decodable. 
These control analyses indicate that the abstract representation of context in the hippocampus did 
not arise only due to the emergence of classically context tuned neurons. Rather, context was 
represented by broadly distributed context modulation at the level of the population. 

Second, to assess whether our results were influenced by pathology, we repeated our analysis 
after excluding hippocampal neurons that were located within clinically confirmed seizure onset 
zones (Supplement 2.S.3). We found no quantitative changes in our results, suggesting that 
hippocampal pathology did not influence our results. 

Lastly, we examined whether our results were sensitive to behavioral accuracy in non-
inference trials (Fig. 2.1d, trial indicated as ‘last’). We repeated our analysis in a subset of inference 
absent and inference present sessions that were chosen such that non-inference trial performance was 
matched (Supplement 2.S.4). This control analysis revealed no qualitative changes in our results, 
suggesting that differences in non-inference trial performance cannot explain our results.   

 
Abstraction of stimulus coding across contexts uniquely increases in the hippocampus 

Individual hippocampal neurons in humans prominently encode the identity of visual 
stimuli30. Visually tuned neurons, whose firing rate is strongly modulated by the identity of presented 
images, are an example of such encoding31. We therefore next asked how the variable context, which 
we show above is encoded in the hippocampus, interacts with stimulus identity. As the four visual 
stimuli do not share any apparent structure, we do not expect to observe any interesting structured 
geometry when all the stimuli are studied together. For this reason, we studied the geometry of  pairs 
of stimuli (e.g. stimulus A vs B) in the two contexts. We focused on HPC and the ventral temporal 
cortex (VTC). VTC neurons were strongly modulated by stimulus identity (see below)32,33, but 
context was not decodable at the level of the balanced dichotomy analysis (baseline period: Fig. 
2.E3u, red; compare with Fig. 2.2h; stimulus period: Fig. 2.E3v, red, compare with Fig. 2.2e). 

First, we verified that neurons in both areas encoded the identity of the four stimuli presented. 
This was the case in both hippocampus and VTC: 109/494 (22%) of neurons in hippocampus (Fig. 
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2.3a, 2.E6g,h show examples) and 195/269 (73%) of neurons in VTC (Fig. 2.3d, 2.E6i,j show 
examples) were significantly modulated by stimulus identity following stimulus onset (1x4 
ANOVA, p < 0.05). Similarly to hippocampus, at the population level, VTC neurons encoded 
stimulus identity-related balanced dichotomies in an abstract format (Fig. 2.E3u-y, purple, brown, 
pink, 𝑝஺௕௦௘௡௧/௉௥௘௦௘௡௧ < 10ିଵ଴ ). Furthermore, error trial analysis revealed that stimulus-related 
dichotomies were also decodable during errors in VTC (Fig. 2.E3y, purple, brown, pink, 
𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) <  10ିଵ଴). This finding contrasts with the hippocampus (compare to Fig. 2.E3e, 
stim pair AC vs. BD dichotomy) and is consistent with the idea that neurons in VTC veridically 
represented the stimulus viewed on the screen by the patient during both correct and error trials.  

We next conducted a geometric stimulus-pair analysis to study the interaction of stimulus 
identity and context coding in the same neural population. The stimulus-pair analysis was designed 
to detect the presence of simultaneous abstract coding of stimulus identity across contexts and 
abstract coding of context across stimuli (see Fig. 2.E6a-f for illustration). 

The average stimulus decoding accuracy across all stimulus pairs in the hippocampus did not 
differ significantly between inference absent and inference present sessions (0.73 vs. 0.76; Fig. 
2.E6m, 𝑝ோௌ = 0.13, RankSum over stimulus pairs), indicating that the decodability of stimulus 
information was not different when patients could perform inference vs. when they could not. In 
contrast, the geometry of the stimulus representation became disentangled from context: both the 
stimulus CCGP (Fig. 2.3b, 𝑝ோௌ = 0.041) and stimulus Parallelism Score (Fig. 2.3c, 𝑝ோௌ = 0.040) 
were significantly increased in inference present compared to inference absent sessions. This means 
that a decoder trained to differentiate between stimulus A and B in one context generalized better to 
the other context in inference present compared to inference absent sessions (and vice-versa). This 
finding suggests that the stimulus responses reorganized with respect to the emerging context 
variable. Note that context was not decodable in inference absent sessions as a balanced dichotomy 
(Fig. 2.2e, red). Nevertheless, stimulus decoders did not generalize well across the two contexts in 
inference absent sessions. This result indicates that context did modulate stimulus representations in 
the hippocampus, but in a way that was entangled with stimulus identity in inference absent sessions 
(see below). This effect was specific to the hippocampus: in VTC, the neural population geometry 
was unchanged, as indicated by no significant differences in stimulus decodability (Fig. 2.E6n, 
𝑝ோௌ = 0.15), stimulus CCGP (Fig. 2.3e, 𝑝ோௌ = 0.15) and stimulus Parallelism Score (Fig. 2.3f, 
𝑝ோௌ = 0.39) between inference absent and inference present sessions. In VTC, CCGP was high even 
in the inference absent session, indicating that shifts in context did not modulate stimulus identity 
representations like in the hippocampus.These analyses demonstrate that the representational 
geometry for stimulus identity in hippocampus becomes significantly more structured across 
contexts in inference present sessions compared to inference absent sessions in a manner that reflects 
an abstract format. 

We next turned our attention to the generalization of the context code across stimuli. The 
presence of abstract coding for one variable (stimulus identity) does not necessarily imply that the 
other variable is also present in an abstract format, though we do have evidence that this is the case 
in hippocampus from the CCGP and Parallelism Score analysis over balanced dichotomies (Fig. 
2.2f, E4g). Context decoding analysis conducted over stimuli (e.g. considering only trials with 
stimuli A&B shown, decode context) in hippocampus revealed that context was decodable for many 
stimuli both during inference absent and inference present sessions, without a significant difference 
between the two (0.63 vs. 0.67; Fig. 2.E7a, 𝑝ோௌ = 0.065). However, despite being decodable, 
context encoding during inference absent sessions was not in an abstract format for stimulus pairs as 
indicated by low context CCGP (Fig. 2.3g, 𝑝஺௕௦௘௡௧ > 0.10 for all stim pairs) and low context 
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Parallelism Score (Fig. 2.3h, 𝑝஺௕௦௘௡௧ > 0.17 for all stim pairs except for AB, where 𝑝஺௕௦௘௡௧ =
0.033) values that were not significantly greater than chance. In contrast, in inference present 
sessions, both context CCGP (Fig. 2.3g, 𝑝ோௌ =  0.012) and context Parallelism Score (Fig. 2.3h, 
𝑝ோௌ = 0.015) increased significantly relative to the inference absent group. This finding indicates 
that context emerged as an abstract variable at the level of individual stimulus pairs in the 
hippocampus.  

We next contrast these findings with VTC. While context was decodable from some stimulus 
pairs during inference absent and inference present sessions (Fig. 2.E7b, 𝑝஺௕௦௘௡௧  ∈ (0.013, 0.074), 
𝑝௉௥௘௦௘௡௧  ∈ (0.020, 0.081)  for all stim pairs), there was no significant change in context 
decodability between inference absent to inference present sessions (Fig. 2.E7b, 𝑝ோௌ = 0.18 ). 
Rather, there was a significant decrease in context CCGP (Fig. 2.E7c, 𝑝ோௌ = 0.026 ) and no 
significant difference in context Parallelism Score (Fig. 2.E7d, 𝑝ோௌ = 0.39) from inference absent 
to inference present. Together, these findings indicate that in the hippocampus, the context variable 
in the inference present sessions is in an abstract format because context coding directions become 
aligned (i.e. parallel) across stimuli. For VTC, on the other hand, the lack of an abstract context 
representation across stimulus identities in both inference absent and inference present sessions 
suggests that context, though decodable for individual stimulus pairs, is not organized in an abstract 
format and does not meaningfully correlate with inference behavior.  

In summary, these findings indicate that the emergence of context as an abstract variable in 
the hippocampus when patients can perform inference is coupled with the reorganization of stimulus 
representations so they are also more disentangled, thereby forming a jointly abstracted code for 
stimuli and context. This transformation of the representation is visible directly in the data when 
projecting the neural representations in 3 dimensions using Multidimensional Scaling (Fig. 2.3i, 
2.E8, Supplementary Video 1). This reorganization occurs without the encoding of additional 
stimulus information since individual stimuli are equally decodable in the presence or absence of 
inference behavior. This change in geometry relies on the encoding of context in an abstract format 
and is unique to hippocampus. In contrast, we found no systematic reorganization of stimulus 
representations in VTC. 

 
How neural population geometry changes are implemented in hippocampal neural activity 

We next examined what aspects of neuronal activity changed in the hippocampus to give rise 
to the abstract neural representations that we observed (i.e. the representations with elevated CCGP). 
We considered the following non-mutually exclusive possibilities (Fig. 2.4a-d). (i) The distances 
between conditions in state space could increase (Fig. 2.4a vs. Fig. 2.4b), either as a result of 
increased firing rate of variable-coding neurons, an increase in the fraction of tuned neurons, or an 
increase in the depth of tuning of these neurons. (ii) The variance of the population response 
projected along the coding direction could decrease (Fig. 2.4c). (iii) Parallelism could increase due 
to increases in the consistency of firing rate modulation in response to one variable over values of 
another (Fig. 2.4d). 

We first examined whether mean firing rates across all recorded neurons differed between 
inference absent and inference present sessions in the hippocampus. The firing rate across conditions 
decreased from 3.37±0.13 to 1.36±0.03 Hz, a 60% reduction on average during the stimulus period 
(Fig. 2.4e, 𝑝ோௌ = 8.3𝑥10ିହ). Firing rates were also reduced during the baseline period (3.29±0.09 
to 1.38±0.02 Hz, 58% reduction, Fig. 2.E9q). This firing rate reduction was unique to the 
hippocampus , with every other recorded region exhibiting no significant differences or increases in 
firing rate between inference absent and inference present during the stimulus (Fig. 2.E9c) and 
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baseline periods (Fig. 2.E9r). Further analysis revealed a small number of inference absent sessions 
with high firing rate that biased the mean inference absent firing rate. Repeated geometric analysis 
after removing these sessions (Fig. 2.E9x) revealed a more modest 32% firing rate difference 
(1.67±0.05 to 1.13±0.03 Hz, Fig. 2.E9y). Excluding these sessions did not alter the geometric results 
(Fig. 2.E9z-ab).  

The firing rate reduction led to a decrease in the average distance between class centroids 
(separation) across all dichotomies in inference present sessions (5.77 ± 0.22 to 4.17 ± 0.07 
Hz, 𝑝ோௌ = 2.9𝑥10ି଼, Fig. 2.4g). However, the centroid distance for a single dichotomy, the context 
dichotomy, increased from inference absent to inference present sessions (4.3 vs 5.0 Hz, 𝑝஺௕௦௘௡௧ =
0.87, 𝑝௉௥௘௦௘௡௧ = 0.076, 𝑝௱஽௜௦௧ = 0.040, Fig. 2.4g, h, E9h). In fact, context was the dichotomy with 
the largest change in distance in firing rate space when comparing the inference present and inference 
absent conditions (Fig. 2.4h). This isolated significant rise in context separability was not seen in 
any of the other recorded areas during the stimulus period (Fig. 2.E9a,b). Similarly, during the 
baseline period, the distance between context centroids decreased the least in the hippocampus (5.6 
vs 5.0 Hz, 𝑝஺௕௦௘௡௧ = 0. 68 , 𝑝௉௥௘௦௘௡௧ = 0.0007, 𝑝௱஽௜௦௧ = 0.027, Fig. 2.4j,k) despite the significant 
decrease in distance over all dichotomies that was also observed here due to the firing rate reduction 
(5.85±0.08 to 4.25±0.04 Hz,  𝑝ோௌ = 6.5𝑥10ିଵଷ, Fig. 2.4j).  

Next, we assessed changes in the variability of the population response along the coding 
direction of each dichotomy. The variance along the coding direction of neuronal responses in the 
hippocampus decreased for all dichotomies in inference present when compared to inference absent 
sessions during both the stimulus period (2.51 ± 0.16 vs. 1.53 ± 0.06, 𝑝ோௌ = 6.5𝑥10ିଵଷ, Fig. 2.4i) 
and the baseline period (2.49 ± 0.09 vs. 1.58 ± 0.02, 𝑝ோௌ = 6.5𝑥10ିଵଷ, Fig. 2.E9k,l). However, this 
decrease could be a simple consequence of the reduction in firing rates under the assumption of 
Poisson statistics. We conducted a condition-wise Fano-factor analysis to assess whether the 
variance reduction was beyond that expected for the reduction in firing rates. This analysis revealed 
no significant differences in Fano factors between inference absent and inference present sessions 
during the stimulus period (1.39±0.22 vs 1.36±0.14 , 𝑝ோௌ = 0.99, Fig. 2.4f) and the baseline period 
(1.61±0.26 vs 1.45±0.11, 𝑝ோௌ = 0.19). Together, these two findings suggest that the decrease in 
variance along dichotomy coding directions is explained by the decreases in firing rate.  

Though the increase in distances between dichotomy centroids for context appears to be a 
distributed, population-level phenomenon (see Fig. 2.E4a-e), we sought to determine if a signature 
of this increase could be detected in the tuning of individual neurons (Supplement 2.S.5). We found 
that the proportion of neurons exhibiting univariate context tuning increased from inference absent 
to inference present sessions, thus partially explaining the increased representational distance. 
However, the hippocampal population geometry did not exclusively rely on these neurons because 
after excluding all neurons with significant univariate coding, we found no qualitative change in the 
population geometry (Fig. 2.E4). Furthermore, the reduction in hippocampal firing rate from 
inference absent to present sessions did not bias any geometric measure determined through a firing 
rate distribution-matched control analysis (Fig. 2.E9s-w).  

Finally, we examined the tuning of individual neurons to investigate what gave rise to the 
increases in parallelism for context across stimuli that we observed (see Fig. 2.E7e-h for examples). 
A stimulus-tuned neuron also modulated by context could do so consistently across all stimuli (e.g. 
firing rate increased for all stimuli), or inconsistently (e.g. firing rate increased for some stimuli and 
decreased for others). Neurons consistently modulated by context would increase context parallelism 
as their responses would be compatible with those of linear mixed selectivity neurons. Thus, we 
quantified the consistency in the direction with which stimulus representations were modulated 
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(firing rate increased or decreased) across contexts for stimulus-identity tuned neurons. Context 
modulation consistency is computed for each neuron, and can take on values between 0 and 4, with 
0 indicating no consistency in modulation and 4 indicating all stimuli exhibit the same firing rate 
modulation direction between contexts (see Methods for details). We find a significant increase in 
the consistency of context modulation in the hippocampus from inference absent to inference present 
sessions (Fig. 2.4l, E6i, 1.8±0.2 vs 2.9±0.3, 𝑝ோௌ = 0.0049). This effect was specific to hippocampus 
: in VTC, this metric decreased significantly (Fig. 2.E6i, 2.6±0.3 vs 1.6±0.2, 𝑝ோௌ = 0.0039). These 
findings indicate that, for the hippocampus, context parallelism arises in part due to an increase in 
the consistency with which the firing rates of stimulus-tuned neurons are modulated by context. 

The changes in neural state space responses for hippocampus are summarized in Fig. 2.4m, 
and feature aspects of our previous hypotheses: (i) condition averages for context increase in 
separation despite relaxing towards the origin (decrease in firing rate), (ii) are accompanied by 
decreases in variance along the coding direction, and (iii) neurons become increasingly consistent 
(parallel) in their modulation across stimulus and context dimensions. Together, these changes 
explain the implementation of the context coding dimension in the hippocampal representation and 
how it can emerge as a simultaneous, linearly encoded variable alongside stimulus identity.  

 
Context representations outside of the Hippocampus.  

The only other area of the brain that we examined in which we found a representation of 
latent context that correlated with inference behavior was in the dACC, but only during the baseline 
and not the stimulus period (Supplement 2.S.6). Interestingly, context emerged in the task 
representation through a different implementation strategy, namely an increase in firing rates rather 
than a decrease as in the hippocampus. 

 
Verbal instruction induces the representation of context in an abstract format.  

In all analyses discussed thus far, we compared sessions in which patients performed 
inference (inference present) with those in which patients did not (inference absent), without regard 
to  how patients transitioned from inference absent to inference present. We provided verbal 
instructions detailing the latent task structure after Session One (Fig. 2.5, inset) to all patients, 
allowing us to examine whether instructions lead to changes in neural representations and behavior 
in an immediately following session (Session Two). As shown above, patients were divided into 
three types based on behavior: those who exhibited inference behavior in the very first session (pre-
instruction inference), those who did so after being given verbal instructions (post-instruction 
inference), and those who did not perform inference even after being provided with verbal 
instructions (inference not-exhibited). We next compared the neural representation of context 
between these three groups of patients.  

 The instructions provided to these three groups were identical, and all patients 
acknowledged receipt of the instructions. All included patients responded with high accuracy on 
non-inference trials before and after being given instructions, indicating that they understood the task 
and learned the SRO maps. The principal difference between the post-instruction (Fig. 2.5a, 
2.E10a,b) and inference not-exhibited (Fig. 2.5a, 2.E10h,i) groups is their ability to perform 
inference following the verbal instructions, with both groups performing the task accurately 
otherwise. The pre-instruction inference group, on the other hand, exhibited above-chance inference 
performance during both Session One and Two (Fig. 2.5a, 2.E10o,p). 

In the post-instruction inference group, context was decodable in the HPC during the 
stimulus period on correct trials in the session following the verbal instructions (Fig. 2.5b, 𝑝ை௡௘ =
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0.17, 𝑝்௪௢ = 0.016, 𝑝ோௌ = 3.1𝑥10ିଵ ). This representation of context was in an abstract format, as 
indicated by significant increases in both CCGP (Fig. 2.E10c; 𝑝ை௡௘ = 0.28, 𝑝்௪௢ = 0.047, 𝑝ோௌ =
8.4𝑥10ିଵ଺ ) and Parallelism Score (Fig. 2.E10d; 𝑝ை௡௘ =  0.023, 𝑝்௪௢ = 1.2𝑥10ି଺ ). Successful 
performance in the task was associated with context being represented abstractly in HPC, as both the 
decodability (Fig. 2.5b, 𝑝்௪௢ (௘௥௥௢௥) = 0.99, Session Two correct vs error, 𝑝ோௌ = 4.3𝑥10ିଶ଴) and 
Parallelism Score (Fig. 2.E10d, 𝑝்௪௢ (௘௥௥௢௥) = 1.1𝑥10ିସ ) of context decreased significantly on 
error trials in Session Two. Context was also encoded in an abstract format during the baseline period 
in the same performance dependent manner as context in the stimulus period (Fig. 2.E10e-g). At the 
single neuron level, this effect  can be appreciated by an increase in the proportion of neurons that 
are significantly linearly tuned to context (𝑝 < 0.05, one-way ANOVA for context) during both the 
stimulus (8% (6/75 neurons) vs. 18% (17/93 neurons), 𝑝 = 0.027) and baseline (7% (5/75 neurons) 
vs. 16% (15/93 neurons), 𝑝 = 0.029) periods in Session Two compared to Session One (Fig. 2.5f 
shows an example). Thus, the ability of post-instruction group patients to perform inference 
following instructions was associated with the rapid emergence of an abstract context variable in 
their hippocampus.  

In contrast to the post-instruction inference group, in patients in the inference not-exhibited 
group, context was not encoded by HPC neurons during the stimulus (Fig. 2.5c, E10j,k, all 
𝑝ை௡௘/்௪௢ >  0.05) or the baseline (Fig. 2.E10l-n all 𝑝ை௡௘/்௪௢ >  0.05) periods in Session Two. 
Furthermore, there was no significant change in tuning to context at the single-neuron level in the 
hippocampus of patients in this group both during the stimulus period (6% Session One vs 6% 
Session Two, 𝑝 = 0.41) and the baseline period (8% Session One vs 5% Session Two, 𝑝 = 0.27). 
These data indicate that receiving verbal instructions describing the latent context alone is 
insufficient to generate an abstract context representation in the hippocampus. Instead, context was 
only represented abstractly in the subset of subjects that productively applied the instructions to 
change their inference behavior.  

For the pre-instruction inference patient group, context was already decodable during Session 
One (Fig. 2.5d, 𝑝ை௡௘ = 0.014), and dropped slightly below significance (𝑝்௪௢ = 0.17) during 
Session Two, likely due to the small number of patients and neurons present in this analysis. The 
CCGP was not significant (Fig. 2.E10q, 𝑝ை௡௘ = 0.21, 𝑝்௪௢ = 0.31), but the Parallelism Score in 
both Sessions One and Two was significant and near the top of the dichotomy rank order in both 
cases (Fig. 2.E10r, 𝑝ை௡௘ = 1.5𝑥10ିଽ, 𝑝்௪௢ = 1.7𝑥10ି଺). This finding suggests that the context 
variable these patients learned experientially during Session One (before the instructions) was in an 
abstract format as assessed by Parallelism Score, and that receiving the instructions did not 
significantly alter the behavior or the neural geometry of the context representation. A similar trend 
was observed with the baseline context representation for these patients (Fig. 2.E10s-u). Note that 
such discrepancies between CCGP and Parallelism Score are not unexpected since, when less data 
is available (fewer neurons, decreased firing rates), single trial measures (Decoding, CCGP) become 
less sensitive to representational structure than measures that operate on condition averages 
(Parallelism Score). 

We also examined firing rate changes of hippocampal neurons separately for the post-
instruction inference, pre-instruction inference, and inference not-exhibited groups (Fig. 2.E10v). 
This analysis revealed significant reductions in firing rate across all conditions from Session One to 
Session Two for the post-instruction inference patients alone (-0.39 ± 0.15 Hz, 𝑝௉௢௦௧ିூ௡௦௧௥௨௖௧௜ =
1.4𝑥10ିସ), confirming that reductions in hippocampal firing rate in the same neurons recorded 
across adjacent sessions were associated with increases in inference performance. With a cell-by-
cell comparison, 22/46 neurons (48%) show a significant decrease in firing rate with an average 
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reduction of 1.3 Hz. Hippocampal neurons from the inference not-exhibited group showed an 
increase in firing rate (0.10 ± 0.04 Hz, 𝑝ே௢௧ିா௫௛௜௕௜௧௘ = 1.2𝑥10ିସ) and pre-instruction inference 
group firing rates did not significantly change (0.06 ± 0.08 Hz, 𝑝௉௥௘ିூ௡௦௧௥௨௖௧௜௢ = 0.08).  

Lastly, we compared the geometry of the context representations formed by each of these 
patient groups using the Parallelism Score (balancing number of neurons, see methods). Parallelism 
Score for context increased significantly in the post-instruction inference group, from levels not 
different from chance during Session One (𝑝ை௡௘,௉௢௦௧ି௜௡௦௧ = 0.20, Fig. 2.5e) to a level comparable 
to the pre-instruction inference group during Session Two ( 𝑝்௪௢,௉௢௦௧ି௜௡௦௧ =

0.0028, 𝑝்௪௢,௉௥௘ି௜௡௦௧ = 0.0035, Fig. 2.5e). The Parallelism Score in the pre-instruction inference 
group, on the other hand, did not change significantly and was already above chance in Session One. 
This finding suggests that hippocampal neurons in the pre-instruction inference group carried an 
abstract representation of context before receiving high-level instructions, and retained that geometry 
after receiving instructions. On the other hand, hippocampal neurons in the post-instruction inference 
group did not encode an abstract representation of context before receiving instructions. During 
Session Two, subjects in the post-instruction inference group could perform inference, and neurons 
in their hippocampus started to encode a task representation whose geometry resembled that of the 
pre-instruction group. This result indicates that a similar representational geometry can be 
constructed through either experience or instruction. Lastly, subjects in the inference not-exhibited 
group could not leverage the information provided in the instructions to perform inference, and 
accordingly, their hippocampi never encoded an abstract representation of context.  
   
Discussion 

The ability to perform inference in our task was associated with the hippocampus forming 
an abstract representation of the environment. This representation encoded stimulus identity and 
latent context in approximately orthogonal subspaces, was behaviorally relevant on the level of 
individual trials, and emerged with learning (Fig. 2.2, 2.3). To implement this representation, the 
context coding directions for different visual stimuli became more parallel, the distance between 
contexts in neural state space increased, and the overall variance in firing was reduced due to a 
reduction in mean firing rates (Fig. 2.4). This representation could emerge quickly, with some 
patients spontaneously learning the latent task structure during their first session and others 
exhibiting abstract representations within minutes of receiving verbal instructions explaining the task 
structure despite having no previous experience before the data shown here was recorded (Fig. 2.5). 
Abstract representations of context and stimulus identity following stimulus onset were only present 
in the hippocampus and not in the other brain areas we examined. Together, this data reveals that 
hippocampal population codes can be restructured by learning and verbal instructions within minutes 
to support inference in a new task.  

How can a neural or biological network efficiently encode multiple variables 
simultaneously12,34? One solution is to encode variables in an abstract format so they can be re-used 
in novel situations to facilitate generalization and compositionality27,35–39. Here, we show that in the 
human brain, such a disentangled representation emerged as a function of learning to perform 
inference in our task. The format by which latent context and stimulus identity were represented was 
predictive of the ability to perform behavioral generalization that relies on contextual inference. 
Crucially, patients performed well on non-inference trials in all sessions included in the analysis, 
indicating that they understood the task and successfully learned the stimulus-response associations 
in both contexts. Therefore, the difference between the inference present and absent sessions was 
only in whether they performed inference following the covert context switch (Fig. 2.1f). For those 
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sessions where patients did not perform inference, there was no systematic relationship between 
context coding vectors across stimuli. For sessions where patients performed inference, there was 
alignment of the context coding direction across stimuli (making them parallel), indicating that the 
context variable had been disentangled from the stimulus identity variable in the hippocampi of these 
patients (Fig. 2.2j, 2.3i). As a result, the two variables became disentangled, thereby allowing for 
generalization. This representation was implemented by the hippocampus using a broadly distributed 
code as evidenced by the high context parallelism score (Fig. 2.E3f,g,j,n), and the lack of reliance 
on univariately tuned context neurons to generate the abstract context representation (Fig. 2.E4a-j, 
Supplement 2.S.2). Thus, the geometry we study here did not trivially arise from classically tuned 
neurons. 

Inferential reasoning is thought to rely on cognitive maps, which have been observed in the 
hippocampus and other parts of the brain20,40–44 . Cognitive maps are thought to underlie inferential 
reasoning in various complex cognitive and spatial domains3,10,40,41,45,46. However, little is known 
about how maps for cognitive spaces emerge at the cellular level in the human brain as a function of 
learning. Here, we show that a cognitive map that organizes stimulus identity and latent context in 
an ordered manner emerges in the hippocampus. The cognitive map emerges because task states in 
one context, indexed by stimulus identity, become systematically related to the corresponding task 
states in the other context through a dedicated context coding direction that is disentangled from 
stimulus identity (Fig. 2.3b,c,g-i). Furthermore, the relational codes between task states (stimuli) in 
each context are preserved across contexts.  

Hippocampal cognitive maps observed in other studies are often different from those that we 
observed. Indeed,  the encoded variables are observed to non-linearly interact, which is a signature 
of high dimensional representations. These representations are believed to be the result of a 
decorrelation of the neural representations (recoding) that is aimed at maximizing memory 
capacity47–49. This form of pre-processing leads to widely observed response properties, like those 
of place cells50. However, there is some evidence of hippocampal neurons that encode one task 
variable independently of others16,22,51–56. In these studies, no correspondence was shown between 
different representational geometries in the hippocampus and differences in behavior. Here, the task 
representations generated when patients cannot perform inference (but can still perform the task) are 
systematically different from the abstract hippocampal representations of context and stimulus 
identity that correlate with inference behavior12. Finally, it is important to stress that we also observed 
an increase in the shattering dimensionality, which has been in shown in other studies to be 
compatible with the low dimensionality of disentangled representations12,16. 

We found stimulus identity codes in brain regions other than the hippocampus, but these mostly 
lacked reorganization as a function of learning to perform inference. This code stability is 
particularly salient in the ventral temporal cortex, a region analogous to macaque IT cortex, in which 
neurons construct a high-level representation of visual stimuli57–59. Some studies conducting unit 
recordings in this general region in humans show that neurons exhibit strong tuning to stimulus 
identity60. We similarly find that VTC neurons encode visual stimulus identity (Fig. 2.3d-f, 2.E6n). 
However, these responses were not modulated by latent context in a systematic manner. As a result, 
despite being decodable for some individual stimulus pairs, context was not represented in an 
abstract format. Rather, in VTC, context was only weakly decodable for a subset of the stimuli, 
context decodability did not change between inference absent and inference present sessions (Fig. 
2.E7b,c), and stimulus identity geometry was not reorganized relative to context in inference present 
sessions (Fig. 2.3e,f). Our study therefore shows that disentangled context-stimulus representations 
emerged in the hippocampus, but not in the upstream visually responsive region VTC.   
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Apart from the hippocampus, abstract representations also emerged in two other brain areas we 
studied: stim-pair and response representations emerging in the vmPFC and preSMA, respectively 
(Fig. 2.2g, 2.E3a). While interesting in their own right, these variables were the only encoded 
variables in each respective region, thus preventing us from studying the geometry of multiple 
simultaneously abstract variables in these two areas. The hippocampus was also not unique in its 
representation of context. A weaker representation of context was also found in the dACC, but only 
during the baseline period. This finding aligns with work implicating the dACC in the representation 
of task rules and task sets 61–66. Following stimulus onset, however, dACC did not contain a 
representation of latent context (Fig. 2.2g). In contrast, previous studies in tasks with explicitly cued 
context switches25,26,67,68 find that neurons in the medial frontal cortex (dACC and preSMA) are 
tuned to task context following stimulus onset. We hypothesize that this might be due to differences 
in task demands: context switches were uncued in our task and had to be inferred from outcomes. It 
remains an open question to examine whether cued vs. inferred context switches engage different 
mechanisms of switching between contexts and/or different context encoding schemes in the 
hippocampus.  

The focus of our study was to examine how representations of context, stimulus identity, 
response, and predicted outcome change as a function of learning. In a prior study in macaques12, 
the representation of the same variables in two very well trained animals was examined in HPC, 
dlPFC, and ACC in a similar task after the completion of training. Several notable differences exist 
between the two studies. First, context was encoded in an abstract format at baseline and was 
decodable after stimulus onset in all three brain areas examined in the macaques. In contrast, in 
humans, context is only strongly decodable in the HPC. We hypothesize that the wide-spread 
encoding of context in the macaque study was due to the extensive training the animals received 
before recordings commenced. In contrast, our patients had no prior task experience. It is possible 
that early on during learning, latent context representations are present only in the hippocampus and 
are propagated to the cortex (dACC) with extensive task experience. This hypothesis is supported 
by prominent direct and indirect projections from the hippocampus to dACC in primates69–71, and 
flexible, context-dependent interactions between medial frontal cortical neurons and hippocampal 
outputs25,72. Second, the human hippocampus exhibited abstract stimulus representations, unlike the 
abstract response or “choice” representation in the macaques (in the interval during the presentation 
of the stimulus). Notably, the abstract stimulus pair and response dichotomies are constructed such 
that high CCGP for one will necessarily lead to below-chance CCGP for the other, which was indeed 
the case for both our study (high stim pair, low response) and the primate study (low stim pair, high 
response). One potential reason for these differences is a species difference: human HPC neurons 
are strongly modulated by the identity and semantic category of presented images25,30,73–75, making 
it natural to organize representations of context relative to this existing representation. Similarly, 
representations of choices are not prominent in the human HPC25. Another potential reason is a 
difference in task construction: our task employed semantically identifiable images, whereas the 
prior experiment with macaques used fractals. Third, unlike macaque HPC, human HPC did not 
encode predicted outcome. We note that in our task, outcome prediction was not necessary to 
perform the task because context switches were signaled by the accuracy of the response (correct or 
incorrect), which was independent of predicted outcome received for a correct response. 
Furthermore, all possible task-states were uniquely indexable using stimulus identity and context, 
rendering outcome prediction representation unnecessary for unambiguously defining the current 
task state. Finally, another possibility is that the reward for the macaques (juice volume) was more 
motivationally salient than the small monetary reward (25¢ or 5¢) patients received. We hypothesize 
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that these reasons obviated the need for a predictive representation of outcome to complete the task 
in our patients. It remains an important question whether representations similar to those seen in 
macaques emerge in the other brain areas we examined following extensive training. Our data 
indicates that on short experiential timescales, the human hippocampus generates a representation 
that encodes the minimum set of variables required to solve the task.  

In our study, verbal instructions resulted in changes in hippocampal task representations that 
correlated with behavioral changes. The emergence of this representation in the session immediately 
following the instructions in the post-instruction inference group is correlated with their newfound 
ability to perform inference and suggests that hippocampal representations can be modified on the 
timescale of minutes through verbal instructions (Fig. 2.5). This change in representation is 
qualitatively different from the standard neurophysiological approach of studying the emergence of 
a “learning set”, wherein a low-dimensional representation of abstract task structure emerges slowly 
over days through trial-and-error learning 52,76,77.  Our finding of similar representational structure in 
the hippocampus in subjects who learned spontaneously and those who only learned after receiving 
verbal instructions suggests that both ways of learning can potentially lead to the same solution in 
terms of  neural representations. In complex, high-dimensional environments, learning abstract 
representations through trial and error becomes exponentially costly (the curse of dimensionality), 
and instructions can be used to steer attention towards previously undiscovered latent structure that 
can be explicitly represented and utilized for behavior. The process of instruction-dependent 
restructuring of hippocampal representations is likely cortical-dependent, given the role of the cortex 
in language comprehension, but the exact mechanism by which this process occurs remains to be 
explored36,78. Our findings suggest that when high-level instructions successfully alter behavior, 
underlying neural representations can be rapidly modified to resemble one learned through 
experience. However, in our experiment, pre and post-instruction inference groups were mutually 
exclusive and we did not assign subjects to either group by design. Further experiments are needed 
to directly test how, if any, differences exist between experientially learned and instructed task 
representations. 
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Methods:  
 
Participants: The study participants were 17 adult patients who were implanted with depth 
electrodes for seizure monitoring as part of an evaluation for treatment for drug -resistant epilepsy 
(see Table 1). 14 were monitored at Cedars-Sinai Medical Center (CSMC) and the other 3 were 
monitored at Toronto Western Hospital (TWH). All patients provided informed consent and 
volunteered to participate in this study. All research protocols were approved by the institutional 
review boards of CSMC, TWH, and the California Institute of Technology.  
 
Psychophysical Task and Behavior: Participants performed a serial reversal learning task. There 
were two possible static stimulus-response-outcome (SRO) maps, each of which was active in one 
of the two possible contexts. Context was latent and switches between context were uncued. Each 
recording session consisted of 280-320 trials grouped into 10-16 blocks of variable size (15-32 
trials/block) with block transitions corresponding to a change in the latent context. Each trial 
consisted of a blank baseline screen, stimulus presentation, speeded response from the participant, 
followed by feedback after a brief delay (Fig. 2.1a). Responses were either “left” or “right” in every 
trial. In each session, stimuli were four unique images, each chosen from a different semantic 
category (human, macaque, fruit, car). If a patient performed multiple sessions, new images not seen 
before by the patient were chosen for each session. The task was implemented in MATLAB (The 
Mathworks, Inc., Natick, MA) using PsychToolbox-379. Images were presented on a laptop 
positioned in front of the patient and subtended approximately 10 degrees of visual arc (300 px2, 
1024x768 screen resolution, 15.6 inch (40 cm) monitor, 50 cm viewing distance). Patients provided 
responses using a binary response box (RB-844, Cedrus Inc.). 

Receipt of reward in a given trial was contingent on the accuracy of the response provided. 
In each trial, either a high or low reward  (25¢ or 5¢) was given if the response was correct, and no 
reward (0¢) if incorrect. Whether a given trial resulted in high or low reward if the response was 
correct was determined by the fixed SRO map (see Fig. 2.1c). Stimulus-response associations were 
constructed such that two out of four images (randomly selected) were assigned one response and 
the other two images were assigned the other (e.g. human and fruit = left, macaque and car = right). 
Thus, in each context, each stimulus was uniquely specified by a combination of its correct response 
(left/right) and reward value (high/low). Crucially, the SRO maps of the two possible contexts were 
constructed so that they were the opposite of each other from the point of view of the associated 
response (Fig. 2.1c). To fully orthogonalize also associated reward, half of the reward values stayed 
the same and the others switched. This structured relationship of stimuli across contexts led to the 
full orthogonalization of the response, context, and reward variables (Fig. 2.1b-c). Crucially, the 
stimulus-response map inversion across contexts provided the opportunity for patients to perform 
inferential reasoning about the current state of the SRO map, and therefore the latent context.    

Since rewards were provided deterministically, participants could switch context upon 
receiving a single error. Therefore, if patients performed inference, they should be able to respond 
correctly after receiving a single error. The behavioral signature of inferential reasoning was thus the 
accuracy in the trials that occurred immediately after the first error trial. Specifically, we took a 
participant’s performance on the first instance of each of the three remaining stimuli in the new 
context is to measure a participants inference capabilities.  

Patients completed multiple sessions of the task, in each of which new stimuli were chosen. 
After completion of the first session, the experimenter provided a standardized description of the 
latent contexts and SRO reversal to the patient (see below). These instructions were given regardless 
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of how well the patient performed in the immediately preceding session. After this brief interlude, 
the participants completed the task again with a novel set of four stimuli.  
 
Instructions given to patients: 
---------------------- Instruction set 1 (before first session) ----------------------- 
In this task, we will show you a series of images, 4 of them in total. Your objective is to learn the 
correct response for each image (either left or right). In the beginning, you will not know what the 
correct answer is, so take a guess. The correct answer for an image may occasionally change, so pay 
close attention. For every correct answer you will receive a reward of either 25 or 5 cents. For an 
incorrect answer you will receive 0 cents. This is real money that you will receive before you leave 
the hospital in the form of a gift card to your favorite place (ex. Starbucks). You will have the 
opportunity to take a break halfway through.  
----------------------- Instruction set 2 (before second session) ----------------------- 
You may have noticed that some images have the same correct response and some images have the 
same reward. Even when the correct response changes, they usually change together. In this 
experiment, we are going to try a different strategy. Pay attention to which images go together (i.e. 
have the same correct response and similar reward). This should make it a lot easier to perform the 
task. To make the task a little more difficult, now the correct response for each image will change a 
little more frequently. 
 
Behavioral Control: We administered a control version of the task identical to the ‘first session’ 
described above to n=49 participants recruited on Amazon Mechanical Turk (MTurk). We then used 
this data to calibrate the difficulty of the task. A majority (~75%) of the control subjects demonstrated 
proper inference performance, and the remaining 25% demonstrating slow updating of SROs after a 
context switch, consistent with a behavioral strategy where each stimulus is updated independently 
(see Fig. 2.E1a). 
 
Electrophysiology: Electrode Placement and Recording: Extracellular electrophysiological 
recordings were conducted using microwires embedded within hybrid depth-electrodes (AdTech 
Medical Inc.). The patients we recruited for this study had electrodes implanted in at least the 
hippocampus, as well as in addition subsets of amygdala, dACC, pre-SMA, vmPFC, and VTC as 
determined by clinical needs (see Table 1). Implant locations were often bilateral but some patients 
only had unilateral implants as indicated by clinical needs. Broadband potentials (0.1Hz – 9kHz) 
were recorded continuously from every microwire at a sampling rate of 32kHz (ATLAS system, 
Neuralynx Inc.). All patients included in the study had well isolated single neuron(s) in at least one 
of the brain areas of interest.  
 
Electrode Localization: Electrode localization was conducted using a combination of pre-operative 
MRI and post-operative CT using standard alignment procedures as previously described25,67. 
Electrode locations were co-registered to the to the MNI152-aligned CIT168 probabilistic atlas80 for 
standardized location reporting and visualization. Placement of electrodes in gray matter was 
confirmed through visual inspection of subject-specific CT/MRI alignment, and not through 
visualization on the atlas.  
 
Spike Detection and Sorting: Raw electric potentials were filtered with a zero-phase lag filter with 
a 300Hz-3kHz passband. Spikes were detected and sorted using the OSort software package81. All 
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spike sorting outcomes were manually inspected and putative single-units were isolated and used in 
all subsequent analyses. We evaluated the quality of isolated neurons quantitatively using our 
standard set of metrics73,82,83 including proportion of inter-spike interval violations < 3ms, signal-to-
noise ratio of the waveform, projection distance between pairs of isolated clusters, and isolation 
distance of each cluster relative to all other detected spikes. 
 
Selection of Neurons, Trials, and Analysis Periods: Activity of neurons was considered during 
two epochs throughout each trial: the baseline period (base), defined as -1s to 0s preceding stimulus 
onset on each trial, and the stimulus period (stim), defined as 0.2s to 1.2s following stimulus onset 
on each trial. Spikes were counted for every neuron on every trial during each of these two analysis 
periods. The resulting firing rate vectors were used for all encoding and decoding analyses. Tests of 
single-neuron selectivity were conducted using N-way ANOVAs with significance at P < 0.05, 
where N was either 2 for models of stim id (A, B, C, D) and context (1, 2), or 3 for models including 
outcome (High, Low), response (Left, Right), and context (1, 2). All variables were categorical, and 
all models were fit with all available interaction terms included.   
 
Population analysis – decoding: Single-trial population decoding analysis was performed on 
pseudo-populations of neurons assembled across all neurons recorded across all patients. We pooled 
across sessions within each anatomically specified recording area as described previously25,26. We 
aggregated neurons across subjects into a pseudo-population that consists of all neurons recorded in 
a given brain area, which allows us to examine populations of several hundred neurons in humans 
despite inability to record this many neurons simultaneously. This analysis approach is possible 
because all subjects performed exactly the same task, so that conditions could be matched across all 
relevant variables for a given trial in the pseudo-population (For example, trial 1 might be context 1, 
correct response, stimulus A, response right, outcome high). The justification for using this approach 
is three-fold. First, independent population codes, in which the information that each neuron provides 
can be characterized by its own tuning curve, can be understood by recording one neuron at a time 
and aggregating them for analysis84. This is the type of code we are examining. Second, we seek to 
establish the content and structure of information that is reliably present in a given brain area across 
subjects. This can only be achieved by recording in many subjects. Third, in most instances, decoding 
from pseudo-populations yields the same results than from simultaneously recorded neurons85,86. 
Results between the two approaches can differ when noise correlations are considered, which can 
have complex effects on the geometry of the underlying representation84. Here, noise correlations 
are not the topic of interest. Noise correlations are present for the subgroups of neurons in the pseudo-
population that were recorded simultaneously. To avoid potential effects of these remaining noise 
correlations, we removed them by randomly scrambling the order of trials for every neuron included 
in the pseudo-population (as we have described before25,26).“ 
Decoding was conducted using support vector machines (SVM) with a linear kernel and L2 
regularization as implement in matlab’s fitcsvm function. No hyperparameter optimization was 
performed. All decoding accuracies are reported for decoding accuracy for individual trials. 
Decoding accuracy is estimated out-of-sample using 5-fold cross-validation unless otherwise 
specified (e.g. cross-condition generalization). Many of the decoding analyses in this work consist 
of grouping sets of distinct task conditions into classes, then training an SVM to discriminate 
between those two groups of conditions. Neurons included in the analysis were required to have at 
least K correct trials of every unique condition in order to be included in the analysis (K = 15 trials 
unless otherwise stated). To construct the pseudopopulation, we then randomly sampled K trials 
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from every unique condition and divided those trials into the groups required for the current decoding 
analysis for every neuron independently. Randomly sampling correct trials in this way allowed us to 
destroy noise-correlations that might create locally correlated sub-spaces from neurons recorded in 
the same area and session25.  

To account for the variance in decoding performance that arose from this random sub-
sampling procedure, all reported decoding accuracies are the average resulting from 1000 iterations 
of sub-sampling and decoder evaluation. A similar trial balancing and sub-sampling procedure was 
conducted for all analyses that report decoding accuracy on incorrect trials, but with K = 1 
trial/condition required as incorrect for the neuron to be included in analysis. Various other analyses 
conducted throughout this work, including representation geometry measures, centroid distances, 
and coding direction variances, all rely on this procedure of balanced correct and incorrect trial sub-
sampling, and averaging over 1000 iterations of the computed metric to study the relationships 
between task conditions in an unbiased manner. All reported values have been computed with this 
approach unless otherwise stated. 

 
Construction of Balanced Dichotomies: Our task has 8 possible states (Fig. 2.1b). We 
characterized how neurons represented this task space by assessing how a decoder could differentate 
between all possible “balanced dichotomies” of these 8 task conditions (Fig. 2.1b). The set of all 
possible balanced dichotomies is defined by all possible ways by which the 8 unique conditions can 
be split into two groups containing 4 of the conditions each (e.g. 4 points in context 1 vs 4 points in 
context 2 is the context dichotomy). There are 35 possible balanced dichotomies (nchoosek(8,4)/2). 
Some of the possible balanced dichotomies are easily interpretable because they correspond to 
variables that were manipulated in the task. We refer to these balanced dichotomies as the “named 
dichotomies”, which are: context, response, outcome, stimulus pair (stim pair), and parity. These 
dichotomies are shown individually in Fig. 2.E2. The stim pair dichotomy corresponds to the 
grouping of stimuli for which the response is the same in either context (A&C vs. D&B; see Fig. 
2.E2). The parity dichotomy is the balanced dichotomy with the maximal non-linear interaction 
between the task variables (Fig. 2.E2).  
  
Defining decoding difficulty of dichotomies: We quantify the relative degree of non-linear variable 
interactions needed by a neural population to classify a given dichotomy using a difficulty metric 
that rates dichotomies that require proximal task conditions to be placed on opposite sides of the 
decision boundary as more difficult. Note that proximity of task conditions in task space here is 
defined with respect to the variables that were manipulated to construct the task space. The 
conditions corresponding to (Response L, Outcome Low, Context 1) and (Response L, Outcome 
Low, Context 2) are proximal since their task specifications differ by a single variable (hamming 
distance 1) whereas (Response L, Outcome Low, Context 1) and (Response R, Outcome High, 
Context 2) are distal since their task specifications differ by all three variables (hamming distance 
3). With this perspective, we can systematically grade the degree of non-linearity required to decode 
a given dichotomy with high accuracy as a function of the number of adjacent task conditions that 
are on opposite sides of the classification boundary for that dichotomy. For a set of 8 conditions 
specified by 3 binary variables, this corresponds to the number of adjacent vertices on the cube 
defined by the variables that are in opposing classes (See Fig. 2.E5a). We define this number as the 
“difficulty” for a given dichotomy, and can compute it directly for every one of the 35 balanced 
dichotomies. The smallest realizable dichotomy difficulty is 4, and corresponds only to named 
dichotomies that align with the axis of one of the three binary variables used to specify the task space. 
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The largest realizable dichotomy is 12, and this corresponds to the parity dichotomy since the 
dichotomy difficulty (number of adjacent conditions with opposing class membership) is maximized 
in this dichotomy by definition. All remaining dichotomies lie between these two extremes in 
difficulty, and computing average decoding accuracy over dichotomies of increasing difficulty gives 
a sensitive readout of the degree of non-linear task variable interaction present in a neural population. 
 
Geometric Analysis of Balanced Dichotomies: We used three measures to quantify the geometric 
structure of the neural representation12: shattering dimensionality, cross-condition generalization 
performance (CCGP), and parallelism score.  

Shattering Dimensionality is defined as the average decoding accuracy across all balanced 
dichotomies. It is an index of the expressiveness of a representation, as representations with higher 
Shattering Dimensionality allow more dichotomies to be decoded. The content of a representation is 
assessed by considering which balanced dichotomies are individually decodable better than expected 
by chance.  

 CCGP assesses the extent to which training a decoder on one set of conditions generalized 
to decoding a separate set of conditions. Note that to compute CCGP, all trials from a set of 
conditions are held out from the training data, which is different from the “leave-one-out” type 
decoding used to estimate Shattering Dimensionality. The remaining held-in conditions are used to 
train the decoder, and performance is then evaluated on the held-out conditions (trial-by-trial 
performance). The CCGP for a given balanced dichotomy is the average over all possible 16 
combinations of held-out conditions on either side of the dichotomy boundary. One of the 4 
conditions on each side of the dichotomy are used for testing, whereas the remaining three on each 
side of the dichotomy are used for training. For each of the 16 possible train/test splits, the decoder 
is trained on all correct trials from the remaining six conditions, and performance is evaluated on the 
two held-out conditions.  

Parallelism Score assesses how coding directions for one variable are related to each other 
across values of other variables in a decoder agnostic manner. The Parallelism Score is defined for 
every balanced dichotomy as the cosine of the angle between two coding vectors pointing from 
conditions in one class to conditions in the other for a given dichotomy. These vectors are computed 
by selecting four conditions (two on either side of the dichotomy), computing the normalized vector 
difference between the mean population response for each of the two pairs, then computing the 
cosine between said coding vectors.This procedure is repeated for all possible pairs of coding 
vectors, and the average over all cosines is reported. Since the correct way of “pairing” conditions 
on either side of the dichotomy is not known a-priori, we compute the cosine average for all possible 
configurations of pairing conditions on either side of the dichotomy, then report the Parallelism Score 
as the maximum average cosine value over configurations. 
 
Null distribution for geometric measures: We used two approaches to construct null distributions 
for significance testing of the geometric measures Shattering Dimensionality, CCGP, and 
Parallelism Score.  

For the Shattering Dimensionality and decoding accuracy of individual dichotomies, the null 
distribution was constructed by shuffling trial labels between the two classes on either side of each 
dichotomy prior to training and testing the decoder. After shuffling the order of the trial labels, the 
identical procedures for training and testing were employed. This way of constructing the null 
distribution destroys the information content of the neural population while preserving single-neuron 
properties such as mean firing rate and variance.  
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For the CCGP and Parallelism Score, we employed a geometric null distribution12. Prior to 
training, we randomly swapped the responses of pairs of neurons within a given condition. For 
example, for one task condition, all of neuron 1’s responses are assigned to neuron 2 and all of neuron 
2’s responses are assigned to neuron 1, for another task condition, all of neuron 1’s responses are 
assigned to neuron 3, etc…). This way of randomly shuffling entire condition responses leads to the 
situation where neural population response statistics by-condition are held constant, but the 
systematic cross-condition relationships that exist for a given neuron are destroyed. This way of 
shuffling creates a maximally high dimensional representation, thereby establishing a conservative 
null distribution for the geometric measures CCGP and Parallelism Score.  

 
Neural Geometry Alignment Analysis: To answer the question of whether the geometry of a 
variable was common across different groups of sessions, we aligned representations between two 
neural state spaces. Each state space is formed by non-overlapping sets of neurons, and the two 
spaces are aligned using subsets of task conditions. A cross-session-group parallelism score was then 
computed by applying the same alignment to a pair of held-out conditions, one on either side of the 
current dichotomy boundary. Alignment and cross-group comparisons were performed in a space 
derived using dimensionality reduction (6 dimensions). For a given dichotomy, two groups of 
sessions with N and M neurons were aligned by applying SVD to the firing-rate normalized 
condition averages of all but two of the eight task conditions, one on either side of the dichotomy 
boundary. The top six singular vectors corresponding to the non-zero singular values from each 
session group were then used as projection matrices to embed the condition averages from each 
session group in a 6-dimensional space. Alignment between the two groups of sessions, in the 6-
dimensional space, was then performed by computing the average coding vector crossing the 
dichotomy boundary for each session group, with the vector difference between these two coding 
vectors defining the “transformation” between the two embedding spaces. To compare whether 
coding directions generalize between the two groups of sessions, we then used the data from the two 
remaining held out conditions (in both session groups). We first projected these data points into the 
same 6-dimensional embedding spaces and computed the coding vectors between the two in each 
embedding space. We then applied the transformation vector to the coding vector in the first 
embedding space, thereby transforming it into the coordinate system of the second session groups. 
Within the second session group embedding space, we then computed  the cosine similarity between 
the transformed coding vector from the first session group and the coding vector from the second 
session group to examine whether the two were parallel (if so, the coding vectors generalize). We 
repeated this procedure for each of the other three pairs of conditions being the held-out pair, thereby 
estimating the vector transformation of each pair of conditions independently. The average cosine 
similarity was then computed over the held-out pairs. All possible configurations of conditions 
aligned on either side of the dichotomy boundary are considered (24 in this case), and the maximum 
cosine similarity over configurations is returned as the parallelism score for that dichotomy (plotted 
as ‘cross-half’ in Fig. 2.E3z). As a control, we also computed the parallelism score for held-out 
conditions within the same embedding space without performing cross-session alignment (plotted 
as ‘half-split’ in Fig. 2.E3z). Note that the differences in both the average parallelism score and the 
null distribution when comparing within-session and across-session parallelism are expected 
behavior and arise from the increased expressive power of the cross-sesion approach due to fitting 
transformation vectors in a relatively low-dimensional (6D) space. This step is not performed for the 
within-session control since there is no need to align neural activity to its own embedding space. 
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Multi-Dimensional Scaling: Low-dimensional visualization of neural state spaces was achieved 
using multi-dimensional scaling (MDS) performed on matrices of condition-averaged neural 
responses. Pair-wise 33idscale33 distances between condition averages were initially computed in 
N-dimensional neural state space, where N is the number of neurons used to construct the space. 
Pairwise distances were then used to compute either a 2-dimensional or 3-dimensional representation 
of the condition averages using the “33idscale” method in Matlab. In figures where two different 
MDS plots are shown side-by-side, canonical correlation analysis was used to align the axes of the 
two dimensionally reduced neural state spaces. This approach was necessary since, in general, neural 
state spaces constructed with different sets of neurons were being compared. We note that we use 
MDS only to summarize and visualizing high-dimensional neural representations. All conclusions 
drawn are based on geometric measures computed in the original full neural state space.  
Analysis of Incorrect Trials: For determining decoding accuracy for trials in which subjects 
provided an incorrect response (“error trials”), decoders were trained and evaluated out of sample 
on all correct trials in inference absent and inference present sessions (denoted as “inference absent” 
and “inference present” trials respectively). The accuracy of the decoder was then evaluated on the 
left out error trials in the inference present sessions (denoted as “inference present (error)” trials) that 
were balanced by task condition. Neurons from sessions without at least one incorrect trial for each 
of the 8 conditions were excluded. We did not estimate CCGP separately for correct and incorrect 
trials. The Parallelism Score was estimated using only correct trials for inference present and 
inference absent. For inference present (error), parallelism was computed using one coding vector 
(difference between two conditions) from correct trials and one coding vector from incorrect trials. 
All other aspects of the Parallelism Score calculation remained as described earlier. The very first 
trial after a context switch was excluded from analysis (it was incorrect but by design, as the subject 
cannot know when a context switch occurred). 

  
Stimulus Identity Geometry Analysis (Fig. 2.3): We repeated the geometric analysis described 
above for subsets of trials to examine specifically how the two variables context and stimulus interact 
with each other. To do so, we considered each possible pair of stimuli (AB, AC, AD, BC, BD, CD) 
separately. For each stimulus pair, we then examine the ability to decode and the structure of the 
underlying representation for two variables: stimulus identity (see Table 3) and context (see Table 
4).  

For stimulus identity, what is decoded is whether the stimulus identity is the first or second 
possible identity in each pair (i.e. “A vs. B” for the AB pair). Stimulus CCGP (Fig. 2.3b,e) is 
calculated by training a decoder to decide “A vs. B” in context 1 and testing the decoder in context 
2 and vice-versa (the CCGP is the average between these two decoders). Stimulus Parallelism Score 
(Fig. 2.3c,f) is the angle between the two coding vectors “A vs. B” in context 1 and 2.  

For context, decoding accuracy is estimated by training two decoders to decide “Context 1 
vs. Context 2” for each of the two stimuli in a stimulus pair. The reported decoding accuracy is the 
average between these two decoders (Fig. 2.E7a,b). For example, for the stimulus pair AB, one such 
decoder each is trained for all “A” trials and all “B” trials. Context CCGP (Fig. 2.3g, 2.E7c) is 
calculated by training a decoder to differentiate between Context 1 and 2 based on the trials in the 
first identity of the pair, and tested in the second pair and vice-versa. The reported Context CCGP 
value for a given stimulus pair is the average between the two. Similarly, context Parallelism Score 
(Fig. 2.3h, 2.E7d) is the angle between the two coding vectors Context 1 vs. Context 2 estimated 
separately for the first and second stimulus in a pair.   
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Distance/Variance Analysis (Fig. 2.4): We computed a series of metrics to quantify aspects of the 
population response that changed between inference absent and inference present sessions. We used 
(i) the firing rate, (ii) distance in neural state space between classes for balanced dichotomies and 
stimulus dichotomies (dichotomy distance), (iii) variance of neural spiking projected along the 
coding directions for those dichotomies (coding direction variance), and (iv) the condition-wise fano 
factor.  
Firing rate (Fig. 2.4e) was the mean firing rate averaged across all neurons during the stimulus 
period, reported separately for correct trials of every unique task condition. Values reported during 
the baseline (Fig. 2.E9q,r) are computed with an identical procedure using firing rates from before 
1s prior to stimulus onset. 

Dichotomy distance (Fig. 2.4g,h,j,k) was defined as the Euclidean distance in neural state 
space between the centroids of the two classes on either side of the decision boundary for that 
dichotomy. Centroids were computed by constructing the average response vector for each class 
using a balanced number of correct trials from every condition included in each class through a 
resampling procedure (described below). Null distributions reported for dichotomy distances are 
geometric null distributions.  

Coding direction variance (Fig. 2.4i) was computed for a given balanced dichotomy by 
projecting individual held-out trials onto the coding vector of the decoder trained to differentiate 
between the two groups of the balanced dichotomy being evaluated. The coding direction was 
estimated by training a linear decoder on all trials except eight (one from each condition either side 
of the dichotomy). The vector of weights estimated by the decoder (one for each neuron) was 
normalized to unit magnitude to estimate the coding vector. The projection of the left out trial onto 
this coding vector was than calculated using the dot product. This process was repeated 1000 times, 
generating a distribution of single trial projections onto the coding vector for each dichotomy. The 
variance of the distribution of 1000 projected data point was then computed and reported as the 
variance for a given balanced dichotomy (Fig. 2.4i).  

The condition-wise Fano factor (Fig. 2.4f) was computed separately for each neuron. We 
used all correct trials for a given balanced dichotomy to estimate the mean firing rate and standard 
deviation and then took the ratio between the two to calculate the Fano factor for each neuron. 
Reported fano factors are the average of all fano factors across all neurons from that area/behavioral 
condition. Fano factors are computed by-condition since grouping trials across conditions could lead 
to task variable coding (signal) contaminating the fano-factor measurement, which should ideally 
only reflect trial-by-trial variation around the mean for approximately poisson-distributed firing 
rates. 

The context-modulation consistency (Fig. 2.4l) was also computed separately for each 
neuron. Context modulation consistency is the tendency for a neuron’s firing rate to shift consistently 
(increase or decrease) to encode context across stimuli. For each neuron, it was computed by 
deteriming the sign of the difference (+/-) between the mean firing rate for a given stimulus between 
the two contexts, and summing the number of stimuli that exhibit the same modulation (either 
increase or decrease) across the two contexts. This consistency can take on values between 0 
(increase in firing rate to encode context for half of the stimuli, decrease in firing rate for the other 
half) and 4 (either increase or decrease in firing rate for all four stimuli). 
 
Bootstrap Re-sampled Estimation of Measures and Null Distributions: All the measures 
described in the preceding sections were estimated using a trial and neuron-based re-sampling 
wmethod. This resampling strategy was used to assure that every measure reported is comparable 
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between a set of conditions by assuring that the same number of neurons and data points are used to 
train and test classifiers. Metrics were re-computed 1000 times with resampling and all null 
distributions were computed with 1000 iterations of shuffling and re-computing. Plotted boundaries 
of null distributions correspond to the 5th and 95th percentiles as sestimated from the 1000 repetitions.  
A single iteration of the re-sampling estimation procedure proceeds as follows. For all analyses that 
involved a comparison of a metric between two behavioral conditions (inference absent vs. inference 
present or Session One vs Session Two), the same number of neurons was included in both 
conditions by on a region by region basis. For a neuron to be included, at least 15 correct trials for 
each of the 8 unique task conditions had to exist (120 correct trials total). Across patients, the number 
of correct trials per condition varied: min = 10.9 ± 1.3 trials/condition, mean = 25.0 ± 0.6 
trials/condition, max = 39.6 ± 1.2 trials/condition (mean ± s.e.m.). After identifying the neurons that 
met this inclusion criteria, an equal number were randomly sampled from both behavioral conditions. 
The number of considered neurons was set to the number of neurons available in the smallest group.  

When constructing feature matrices for decoding, 15 trials were randomly selected from each 
unique condition that was included in the given analysis. Trial order was shuffled independently for 
every neuron within condition to destroy potential noise correlations between neurons that were 
simultaneously recorded. For decoding and Shattering Dimensionality, out-of-sample accuracy was 
estimated with 5-fold cross validation. For generalization analyses (CCGP), all trials were used in 
training since performance is evaluated on entirely held-out conditions. For vector-based measures 
(dichotomy distance, variance, Parallelism Score), all trials in relevant conditions were used to 
compute condition centroids. In the case of variance estimation, all trials except one on either side 
of the dichotomy boundary were used to learn the coding axis, then the held-out trials were projected 
onto the coding axis. As previously stated, these procedures were repeated 1000 times with 
independent random seeds to ensure independent random sampling of neurons and trials across 
iterations.  
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Figures: 
 

 
Figure 2.1. Task, behavior, recording locations, and single-neuron tuning. (a-b) Illustration of 
two possible definitions of abstraction. (a) Abstraction defined as clustering. Only nation, but not 
geographical area, is preserved. (b) Abstraction defined as generalization. Both geographical area 
and nation is preserved orthogonally to each other, facilitating left-right looking generalization 
(blue plane) without discarding geographic area information. (c) The task consisted of variable-
length blocks (15-32 trials) that alternated between two latent contexts (red and blue). Context 
changes (red arrows) were covert. Trials consisted of a pre-stimulus baseline followed by stimulus 
presentation during which patients executed the associated response (left or right button press) in a 
speeded manner. After button press, the stimulus was replaced with a fixation cross, followed by 
the outcome (either high/low reward or incorrect) was presented after a fixed 0.5s delay. (d) 
Illustration of the task structure. Each stimulus (A-D) is associated with a single correct response 
and results in either a high or low reward if the correct response is given. All stimulus-response 
relationships are inverted between context 1 (blue) and 2 (orange).  This visualization is reflective 
of the disentangled structure of the task variables, and does not necessarily reflect how neurons 
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will organize their responses in neural state-space to each of these conditions. (e) Example images 
(left) associated with the stimuli A-D. Note: stimuli A and B are masked due to copyright. These 
associations are randomized for every session. (f) Task performance split by whether inference was 
present or absent on the first inference trial following context switches in a given session. Sessions 
where inference performance was significantly above chance (22 sessions, 𝑝 < 0.05, Binomial 
Test on inference trial 1) were deemed “inference present” (blue), and those where inference 
performance was not above chance (14 sessions, 𝑝 > 0.05, Binomial Test on inference trial 1) 
were considered “inference absent” (red). Plot shows performance on the last trial before the 
context switch, the first trial after the context switch, and for the remaining three inference trials 
averaged over all trials in each session (mean ± s.e.m. across sessions). Dashed line marks chance. 
Black box indicates inference trial 1. (g) Electrode locations. Each dot corresponds to a single 
microwire-bundle. Locations are shown on the same hemisphere (right) for visualization purposes 
only. Shown are pre-Supplementary Motor Area (preSMA, purple), dorsal Anterior Cingulate 
Cortex (dACC, blue), ventromedial Prefrontal Cortex (vmPFC, green), Hippocampus (HPC, red), 
Amygdala (AMY, yellow), and Ventral Temporal Cortex (VTC, teal). (h-j) PSTH of three 
example neurons that encode response (h), context (i), and mixtures of stimulus id and context (j). 
Stimulus onset occurs at time 0. Black points above PSTH indicate times where 1-way ANOVA 
over the plotted task variables was significant (p < 0.05). (k) Number of single units recorded 
across all brain areas (3124 neurons recorded in total). (l) Number of single units across all brain 
areas exhibiting significant Main effects or interaction effects (n-way ANOVA with interactions, p 
< 0.05, see methods) to at least one of the principal task variables (R = Response, C = Context, O = 
Outcome, S = Stimulus ID) or to combinations of variables. A unit is linearly tuned if it has at least 
one significant main effect, and non-linearly tuned if it has at least one significant interaction term 
in the ANOVA model.  
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Figure 2.2. Emergence of multiple abstract variables in hippocampus supports inference. 
(a) Simplified example of a neural state space where each axis is the firing rate of one neuron. Points 
correspond to the response of the neurons to different task states, i.e. two stimuli (green and orange) 
that elicit two responses (R and L) in two contexts. Note the coding vectors for response and context 
(black arrows) are not aligned with the axes as each neuron might respond to mixtures of variables. 
The axes of this state space differ from those shown in Fig. 2.1b, with the latter being defined by 
experimenter-selected variables rather than neural firing rates.   
(b) Example of cross-condition generalization. A decoder is trained to classify context only on 
response “R” conditions (green) and is evaluated on its ability to decode context on response “L” 
conditions (purple). If context is represented in an abstract format (i.e. disentangled from response), 
then the decoder should generalize to the held-out response condition, yielding a high cross-
condition generalization performance (CCGP) for context.  
(c) Example of context parallelism. Coding vectors for context (gray arrows) are parallel, indicating 
that the coding direction for context is identical for different responses, and thus that context and 
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response are disentangled. Details for computing the Parallelism Score of a balanced dichotomy 
with 8 conditions are provided in the methods.  
(d) Balanced dichotomies of task conditions that correspond to important task variables, including 
context (red), behaviorally-relevant stimulus grouping (stim pair, purple), and parity (orange). Class 
labels for binary classification are indicated with green and magenta. Class assignment is arbitrary, 
and labels can be inverted without loss of generality. See Fig. 2.E2 for a complete account of labeled 
balanced dichotomies. 
(e-g) During the stimulus presentation period, context (red) and stimulus pair (purple) become 
decodable in inference present sessions in the HPC. Context is encoded in an abstract format. 
Decoding accuracy (e) and CCGP (f) are shown for all 35 balanced dichotomies during the stimulus 
period (0.2 to 1.2 s following stimulus onset, see inset). A subset of the dichotomies are named 
(color code) because they represent task specific variables (see Fig. 2.E2). Swarm plots for decoding 
accuracy and CCGP are light circles and dark circles respectively. Shattering dimensionality 
(average dichotomy decodability) is shown with horizontal black lines. Gray bars denote the 5th-95th 
percentile of the shuffle-null distribution for decoding accuracy and geometric null distribution for 
CCGP. Stars denote named dichotomies that are above chance in inference present sessions and are 
significantly different from their corresponding inference absent value (𝑝ோௌ < 0.05/35, Ranksum 
Test, Bonferroni corrected for multiple comparisons across all dichotomies).  
(g) Identical analysis to (e) showing decodability of balanced dichotomies from neurons recorded in 
other brain regions (except VTC, which is shown in Fig. 2.E3).  
(h-i) Same as (e,f), but for spikes counted during the baseline period prior to stimulus onset. Context 
(red) becomes decodable in inference present sessions and is in an abstract format. Trials are labeled 
according to the current trial.  Decoding accuracy (h) and CCGP (i) computed in HPC for all 
balanced dichotomies with spikes counted during the pre-stimulus baseline period (-1 to 0s prior to 
stimulus onset, see inset). All plotting conventions identical to those in (e-g), except Baseline 
analysis is conducted with task variables from previous trial.  
(j) Three-dimensional projections of hippocampal neural responses to task conditions during the 
stimulus period in inference absent (left) and present (right) sessions generated by performing Multi-
Dimensional Scaling on neural data. Points correspond to unique task conditions identified by the 
associated stimulus and context color consistent with Fig. 2.1b. Hypothetical decoders for stim pair 
and context are shown for schematic purposes (black lines).  
Note: all reported geometric measures, decoding accuracies, or angles are the average of 1000 runs 
with condition-wise trial resampling as described in the methods. All null distributions are 
constructed from 1000 iterations of shuffled trial-resampling using either trial-label shuffling 
(shuffle null) or random rotations designed to destroy low-dimensional structure (geometric null). 
Also, neuron counts are balanced between inference absent and inference present sessions for every 
brain area to ensure that dimensionally-sensitive values (e.g. vector angles, decoding accuracies, 
etc..) are directly comparable. See methods for details. 
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Figure 2.3.  Stimulus representations become structured around context with inference in 
HPC but not VTC.  
(a-c) Responses in HPC following stimulus onset carry information about stimulus identity. (a) 
Example PSTH of a neuron in the HPC that encoded stimulus identity.  
(b,c) Stimulus geometry across contexts, with geometric analysis conducted over pairs of stimuli in 
each context. Data points shown correspond to different stimulus pairs (color coded, see right for 
legend). Significance of differences is tested using RankSum comparing inference absent and present 
over all stimulus pairs (* indicates 𝑝 < 0.05, n.s. otherwise). All other conventions identical to those 
in Fig. 2.2. 
(b) CCGP (𝑝ோௌ = 0.041)  and (c) parallelism score (𝑝ோௌ = 0.040)  for stimulus coding across 
contexts significantly increased in inference present compared to inference absent sessions.  
(d-f) Same as (a-c), but for VTC.  
(d) CCGP (𝑝ோௌ = 0.15) and (e) parallelism score (𝑝ோௌ = 0.39) for stimulus coding across contexts 
does not differ significantly between inference absent and inference present sessions.  
(g-h) Context encoding across stimulus pairs for HPC. Plotting conventions are identical to those in 
panels (b-c). (g) CCGP for context across stimuli (𝑝ோௌ = 0.012)  and (h) parallelism score for 
context coding vectors between pairs of stimuli (𝑝ோௌ = 0.015) both significantly increase from 
inference absent to inference present sessions.  
(i) Changes in neural geometry in HPC. MDS of condition-averaged responses of all recorded HPC 
neurons shown for inference absent (left) and inference present (right) sessions. Colored points are 
average population vector responses to a stimulus (point color) in each context (plane color). Stimuli 
of the same identity in either context are connected by a line of the same color. Abstract coding of 
stimulus across contexts (solid arrows) and context across stimuli (dashed arrows) are highlighted 
for a randomly selected pair of stimuli (C and D). This data in this plot is identical to Fig. 2.2j. 
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Figure 2.4. Firing rate properties underlying the observed changes of population-level 
hippocampal neural geometry. 
(a-d) Illustration of different hypothesized firing rate pattern changes that could give rise to the 
observed population level geometry changes. The four different hypotheses are illustrated with two 
stimuli (A and B), each present in two different contexts (blue and red). Condition responses are 
defined by the firing rates of two hypothetical neurons. The solid-colored points represent the 
condition average for each stimulus and the larger shaded circles represent the trial-by-trial variation 
of the two neurons for each context. Gray arrows signify changes that have occurred in inference 
present plots (b-d) relative to the inference absent plot (a).  
These response of the neurons to the stimuli during inference absent sessions (a) can be shaped by 
(b) increasing the distance between the context centroids, (c) decreasing the variance along the 
coding direction in the absence of changes in distance, or (d) straightening the neural responses 
without changing distances/variances so that the geometry becomes more orthogonalized.  
(e) Changes in hippocampal firing rate from inference absent to present sessions. Points correspond 
to the average firing rate over neurons in the HPC for each of 8 unique task conditions, and are 
colored according to stimulus identity in that condition (e.g. task condition 𝐶1௅

ି describes: stimulus 
𝐶, context 1, outcome −, response 𝐿). Neuronal firing rates were lower during inference present 
compared to inference absent sessions (𝑝ோௌ = 8.3𝑥10ିହ, RankSum over conditions).  
(f) Same as (e), but for condition-wise fano factors. Fano factor (FF) here is computed as the ratio of 
the condition-wise variance and the condition-averaged firing rate, computed by neuron and 
averaged over neurons. Points correspond to average FF over all hippocampal neurons. There was 
no significant difference (RankSum over conditions between inference absent and present sessions, 
𝑝ோௌ = 0.99). 
(g) Population distances between centroids for all 35 balanced dichotomies. The colored connected 
points represent distances for the named dichotomies indicated in the legend to the right. Gray bars 
indicate the 5th-95th percentile of the geometric null distribution. Across all dichotomies, distances 
decreases from inference absent to present (𝑝ோௌ = 2.9𝑥10ି଼, RankSum over dichotomies).  
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(h) Context alone is the only dichotomy whose distance significantly increases from inference absent 
to present (red, 𝑝௱஽௜௦௧ = 0.040). The null distribution shown in (h) is the distribution of differences 
between the inference present and inference absent null distributions shown in (g).  
(i) Average variance projected along the coding direction decreased on average between inference 
absent and inference present sessions (𝑝ோௌ = 6.5𝑥10ିଵ ). Variance was computed in a cross-
validated manner (see methods) resulting in a distribution of trial-by-trial population activity along 
each dichotomy coding direction from which the coding variance was computed. The 5th-95th 
percentile of the geometric null distribution was also used here for the null distribution.  
(j,k) Same as (g,h), but for spike counts during the baseline period and grouping trials by task state 
of the previous trial. Distance was significantly reduced across all dichotomies (j, 𝑝ோௌ = 6.4𝑥10ିଵ , 
RankSum over dichotomies) and context alone exhibits a distance reduction that is smaller than 
would be expected by chance (k, red, 𝑝௱஽௜௦ = 0.027) 
(j) Change in the consistency of context-modulation for stimuli averaged over all neurons in HPC. 
Greater context modulation consistency for individual neurons results in greater parallelism score 
for context at the population level. HPC neurons on average exhibit a significant increase in context 
modulation consistency between inference absent and inference present sessions (𝑝ோௌ = 0.0039) 
during the stimulus period.  
(m) Illustration of implementational changes to neural state space using the conventions introduced 
in (a-d). We find that, when comparing inference absent with inference present sessions, that (i) 
context dichotomy distance increased (indicated by the increased distance between the red and blue 
shaded circles),  (ii) variance decreased due to a reduction in firing rate (indicated by decreased 
shaded circle radius and movement towards the origin of state space), and (iii) an increase in the 
consistency of stimulus modulation across contexts (indicated by lines becoming parallel). 
 
  



 43

Figure 2.5. Abstract hippocampal representation of context is present following successful 
verbal instructions about latent context.  
(a) Behavioral performance on the first inference trial shown for three separate groups of peri-
instruction sessions where patients exhibited inference either after receiving high-level instruction 
(post-instruction inference), before receiving high-level instruction (pre-instruction inference), or 
who were never able to exhibit inference (inference not-exhibited). The session before and after 
high-level instructions are labeled as Session One (red) and Session Two (blue) respectively (See 
inset). Data are identical to the black-boxed data in Fig. 2.E1g-h. 
(b,c,d) Encoding of context in the stimulus period in Sessions One during correct trials (One), 
Session Two correct trials (Two) and Session Two error trials (Two (error)). The first trial following 
a switch is excluded from this analysis. * indicates 𝑝 < 0.05 against null in any column of a given 
geometric measure plot, and n.s. otherwise. (inset) Schematic of the recording procedure, showing 
Sessions One and Two shaded in gray (30 min duration), with a 4 minute inter-session break (mean 
duration = 241 s, range 102-524s) during which instructions detailing task structure were provided.  
(b) Context emerges as significantly decodable in Session Two but not Session One in the post-
instruction inference group in a task-performance-dependent manner ( 𝑝ை௡௘ = 0.17 , 𝑝்௪௢ =
0.016, 𝑝ோௌ = 3.1𝑥10ିଵଽ, 𝑝்௪௢ (௘௥௥௢௥) = 0.99). (c) Context is not significantly decodable in the 
inference not-exhibited group neither Session one nor two (𝑝ை௡௘ = 0.44 , 𝑝்௪௢ = 0.42). (d) Context 
is decodable in the Pre-instruction inference group (𝑝ை௡௘ = 0.014, 𝑝்௪௢ = 0.17).  
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(e) Summary of changes in parallelism score for context for all three session groups (pre-instruction 
green, post-instruction orange, not-exhibited purple). Neuron counts are sub-sampled to match 
across all groups so that parallelism score values are directly comparable. Significant increase in 
context parallelism score from session one to two is indicated for the post-instruction inference group 
( 𝑝௉௢௦௧ିூ௡௦௧௥௨௖௧ ,ை௡௘ = 0.20, 𝑝௉௢௦௧ିூ௡௦௧௥௨௖௧ ,்௪௢ = 0.0028) , but not for the inference not-
exhibited  (𝑝ே௢௧ିா௫௛௜௕௜௧௘ ,ை௡௘/்௪௢ < 0.5) and pre-instruction inference (𝑝௉௥௘ିூ௡௦௧௥௨௖௧ ,ை௡௘/்௪௢ <

0.005) groups.   
(f) Example hippocampal neuron with univariate context encoding in the session after (bottom) but 
not before (top) instructions. (one-way ANOVA, 𝑝ை௡௘ = 0.40, 𝑝்௪௢ = 0.010 ). 
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Extended Data Figures: 

Figure 2.E1. Task behavior and single-neuron responses across all recorded regions.  
(a) Task performance on individual sessions from 49 control subjects recruited through an online 
platform (Amazon MTurk). Accuracy is reported as an average for each subject over all non-
inference trials (left) and inference trials (right). The horizontal gray dashed line corresponds to 
chance (50%). This task variant is equivalent to the first session of the task encountered by patients 
where they were given general instructions about learning stimulus-response mappings, but were not 
informed of the latent task structure. Subjects exhibited a variety of behaviors, with 46/49 subjects 
performing above chance on non-inference trials, indicating that the SRO maps were generally 
learnable despite the wide variation in performance on inference trials. 
(b) Patients exhibited high accuracy on non-inference (baseline) trials. Each dot corresponds to the 
average non-inference trial performance over a single session. Black dashed line indicates chance. 
Only sessions where patients exhibited above-chance accuracy on non-inference trials are shown 
(36/42 sessions, 𝑝 < 0.05, Binomial Test on all non-inference trials). 
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(c) Non-inference performance for context 1 is plotted against context 2 for each of the 36 sessions 
included in the analysis. Error bars correspond to SEM computed over blocks. The diagonal gray 
dashed line indicates identical block performance (y=x). The reported p-value is computed by paired 
t-test between the mean accuracies for Context 1 and Context 2 across all sessions.  
(d) Same as (c), but with reaction time (RT), computed as time from stimulus onset to button press 
for every trial. Mean RT’s are also computed by block. 
(e-f) Task performance as a function of time in the task for the (e) inference absence and (f) inference 
present groups. Shown is the accuracy for the last non-inference trial before a switch (black) and the 
first inference trial after a switch (gray). Accuracy is shown block-by-block averaged over a 3-block 
window (mean ± s.e.m. across sessions). 
(g-i) Behavioral performance plot similar to Fig. 1E. Plot shows performance on the last trial before 
the context switch, the first trial after the context switch, and for the first inference trial (Trial 2) 
averaged over all trials in each session (mean ± s.e.m. across sessions). Dashed line marks chance. 
Red and blue lines correspond to session performance before and after instructions detailing latent 
context are provided.  
(g) This plot shows performance for the post-instruction inference session group – did not exhibit 
significant inference performance during Session One (before high-level instruction), but did exhibit 
inference performance during Session Two (following instruction, see Inset). First inference trial 
performance (block box) was used to classify patients, so difference significance is not computed. 
All trials where Session One/Two performance difference was insignificant (𝑝 > 0.05) are shown 
with n.s.  
(h) Same as (g), but for the inference not-exhibited session group – did not exhibit significant 
inference performance during either Session One or Two. 
(i) Same as (g), but for the pre-instruction inference session group – exhibited significant inference 
performance during both pre-instruction and post-instruction sessions.  
(j) Example hippocampal neuron that encodes stimulus identity. Raster trials are reordered based on 
stimulus identity, and sorted by reaction time therein (black curves). Stimulus onset occurs at time 
0. Black points above PSTH indicate times where 1-way ANOVA over the plotted task variables 
was significant (p < 0.05). 
 (k) Normalized activity for all neurons recorded from the hippocampus is plotted as a heat map by 
region after computing the trial-averaged response to each unique condition (8 total, specified by 
unique Response-Context-Outcome combinations). Z-scored firing rates are computed from 0.2s to 
1.2s after stimulus onset for every trial. Each row of the heat map corresponds to the activity of a 
single neuron, and columns correspond to each of the 8 conditions. Neurons are ordered such that 
adjacent rows (neurons) are maximally correlated in 8-dimensional condition response space. This 
approach would allow for modular tuning to visibly emerge in the heat map if groups of neurons 
were clustered in their response profiles. Clearly, the responses here are very diverse. 
(l) Same as (G), but for amygdala.  
(m) Same as (G), but for ventral temporal cortex.  
(n) Same as (G), but for dorsal anterior cingulate cortex.  
(o) Same as (G), but for pre-supplementary motor area.  
(p) Same as (G), but for ventromedial prefrontal cortex. 
(q) Percentage of neurons across all areas that exhibit tuning to each of the three binary variables 
manipulated in the experiment. Tuning was assessed by fitting either a 2x2x2 (Response-Context-
Outcome) ANOVA for every individual neuron’s firing rate during a 1s window during the stimulus 
presentation period. Significant neurons were counted as p < 0.05 for main effects (Linear) or 
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interaction effects (Nonlinear) involving the stated variables. Significance in the change of 
percentage of neurons exhibiting modulation to each factor is determined via z-test, where “*” 
indicates p < 0.05, “***” indicates p < 0.005, and “n.s.” indicates “not significant”. 
(r) Same analysis as (q), but for a 4x2 ANOVA for stimulus identity and context.   
(s) Same analysis as (q), but for a 4x2 ANOVA for stimulus identity and response.   
(t) Same analysis as Fig. 2.1j, but with percentages of tuned neurons shown separately for each 
region. Single-neuron tuning identified here using 3-Way ANOVA (Response x Context x 
Outcome), corresponding to column 1 (RCO) of Fig. 2.1j. 
(u) Same as (t), but single-neuron tuning identified here using 2-Way ANOVA (Stimulus ID x 
Context), corresponding to column 2 (SC) of Fig. 2.1j.  
Note: the corresponding analysis between stimulus identity and outcome cannot be conducted since 
those variables are correlated by task construction.  
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Figure 2.E2. Visual representation of all named balanced dichotomies.  

Named balanced dichotomies correspond to condition splits that have clearly interpretable 
meaning with respect to the construction of the task when evaluating the decodability or 
disentanglement (Cross Condition Generalization Performance, Parallelism Score) for that 
dichotomy. For example, the context dichotomy (top left), arises from assigning all conditions for 
context = 1 to one class and all conditions for which context = 2 to the other class. Performing binary 
classification on neural responses with trial labels arranged in this way corresponds to decoding 
context from the neural population. The specific assignment of class labels 1 and 2 is arbitrary, and 
inverting the labels still corresponds to the same meaning for the dichotomy. All named dichotomies 
shown here are color coded to reflect their value in all Shattering Dimensionality, CCGP, and 
Parallelism Score plots, and this color code remains consistent throughout the paper whenever 
balanced dichotomies are considered.  

The “stim pair” dichotomy corresponds to the special split of stimulus identities where the 
stimuli that have the same response in each context are grouped together (e.g. Stimuli A and C have 
Response L in Context 1 and Response R in Context 2, v.v. for Stimuli B and D). There are more 
balanced dichotomies that correspond to splits of stimulus identity (AB vs CD and AD vs BC). High 
decodability of any one of these balanced dichotomies reflects stimulus-id coding in the neural 
population.  

The “parity” dichotomy is another special dichotomy that corresponds to the most difficult, 
or non-linear, dichotomy that can be constructed, and high decodability of this dichotomy is a 
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signature of a high-dimensional representation. The term parity is in reference to the fact that, if task 
states were represented as 3-bit binary words where each bit corresponds to the value of the response, 
context, and outcome variable that describes the state (e.g. 000 for Left, Context 1, Low, 111 for 
Right, Context 2, High), then one class of the parity dichotomy corresponds to all states with an even 
number of ones, and the other class corresponds to all states with an odd number of ones. Note, for 
this dichotomy, no node of a given class shares an edge with another node of the same class. If one 
views the faces of the cube, one can see that the standard 2D XOR dichotomy between class 1 and 
2 is present on every face. The notion of parity, can be generalized to arbitrarily many dimensions. 
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Figure 2.E3. Additional geometric analysis during stimulus processing and baseline periods. 
(a) Cross-condition generalization performance (CCGP) reported for other regions over balanced 
dichotomies. Each dot corresponds to the CCGP for a single dichotomy. The reported values are 
averages over 1000 repetitions of resampling of trials and neurons as described in the methods. For 
every region, the left column corresponds to inference absent sessions and the right column to 
inference present sessions. Colored lines are drawn to connect values for named dichotomies in 
inference absent and present sessions using the standard color-coding scheme. The gray background 
bars indicate the 5th (bottom) to 95th (top) percentile of the null distribution. Note that the null 
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distribution differs by area due to the different number of neurons present in each area. Significant 
named dichotomies are marked when the dichotomies are: above 95th pctle of null in inference 
present (i.e. significantly above chance during inference), significantly different between inference 
absent and present (RankSum p < 0.01/35, Bonferroni corrected for balanced dichotomies). 
Significant increases were observed in vmPFC for stim pair (purple, 𝑝஺௕௦௘௡௧ = 0.45, 𝑝௉௥௘௦௘௡௧ =
0.014) and preSMA for response (green, 𝑝஺௕௦௘௡௧ = 0.045, 𝑝௉௥௘௦௘௡௧ = 0.0010). Note that stim pair 
CCGP in AMY was above chance for both inference absent and present sessions (purple, 𝑝஺௕௦௘௡௧ =
0.050, 𝑝௉௥௘௦௘௡௧ = 0.039). 
(b) Same as (a), but for Parallelism Score. Significant increases in Parallelism Score were present 
for stim pair in amygdala (purple, 𝑝஺௕௦௘௡௧ = 1.3𝑥10ିସ, 𝑝௉௥௘௦௘௡௧ = 9.0𝑥10ି଼) and context in the 
dorsal anterior cingulate (red, 𝑝஺௕௦௘௡௧ = 0.99, 𝑝௉௥௘௦௘௡௧ = 3.8𝑥10ିଵଶ).   
(c) Change in decoding accuracy computed as Inference present – Inference absent for every 
balanced dichotomy. The gray shaded bar again indicates 5th-95th pctle of null, which is populated 
by computing the difference for 1000 random pairs of dichotomies in the null distributions of the 
inference present and inference absent sessions computed separately. In general, the null distribution 
for any difference plot is computed by drawing such samples from the inference absent and present 
null distributions of the associated area and metric (e.g. the null distribution here is computed using 
the inference present and absent nulls in Fig. 2.2e, the null distribution for Fig. 2.E3d is computed 
from Fig. 2.2f, the null distribution for Fig. 2.E3h is computed from Fig. 2.E3g, etc…). 
(d) Same as (c), but for changes in CCGP from inference absent to present.  
(e,f) Following stimulus onset, context (red) is not decodable (e) and not in an abstract format (f) in 
incorrect trials occurring during inference present sessions. Decoding accuracy and parallelism 
scores are estimated separately during correct and error trials in inference present sessions (inference 
present and present (error), respectively) and in correct trials only during inference absent sessions 
(absent). Horizontal black bars indicate shattering dimensionality (average over dichotomies). Stars 
denote named dichotomies that are above chance in the inference present trials and are significantly 
different from their corresponding inference absent value (𝑝 < 0.05/35, Ranksum Test, Bonferroni 
multiple comparison corrected across dichotomies).  
 (g) Parallelism score plot for hippocampus in inference absent and present sessions. Coloring, 
plotting, and significance conventions are identical to those used for Decoding Accuracy and CCGP 
plots (e.g. Fig. 2.2c,d). Null distribution here (gray background bars) is computed using the 
geometric null, the same procedure as CCGP. We note that the 5th and 95th pctle of null is quite 
narrow since the rotation procedure used to generate the null distribution produces approximately 
orthogonal coding vectors in high dimensional spaces. Here, context was significantly elevated in 
inference present compared to absent sessions (red, 𝑝஺௕௦௘௡௧ = 0.55, 𝑝௉௥௘௦௘௡௧ = 1.4𝑥10ିଵହ), as was 
stim pair (purple, 𝑝஺௕௦௘௡௧ = 0.17, 𝑝௉௥௘௦௘௡௧ = 1.7𝑥10ି଼). 
(h) Same as (C), but for changes in Parallelism Score from inference absent to present sessions. 
(i,j) Same as (e,f), but estimated for spikes counted during the baseline period and task states from 
previous trial. Note: inference present values here are slightly lower than the values reported in Fig. 
2.2 because additional neurons were removed by subsampling to equalize the number of neurons 
used for both correct and error trials. 
(k) Decoding accuracy reported for regions other than hippocampus, analogous to Fig. 2.2g, but for 
the baseline period instead of the stimulus period. Additionally, trial labels here correspond to the 
conditions (Response, Context, Outcome) encountered during the previous trial. Details regarding 
the reported decoding accuracies and null distributions are identical to those described in Fig. 2.2e. 
Decoding accuracy for all balanced dichotomies is reported for the inference absent (Left) and 



 52

inference present (right) conditions, with color-coded lines for named dichotomies connecting dots 
for each region. Significant increase from inference absent to present was observed in dACC for 
context (red, 𝑝஺௕௦௘௡௧ = 0.37, 𝑝௉௥௘௦௘௡௧ = 0.049) . No significant changes in shattering 
dimensionality were present (inference absent vs inference present 𝑝ோௌ > 0.05 for all areas). 
(l) Change in decoding accuracy for all balanced dichotomies in hippocampus associated with the 
presence of inference, again computed during the baseline period. Procedure for all reported 
accuracies and null distribution construction identical to that described in Fig. 2.E3c, except that the 
analysis used baseline firing rates and condition labels from the previous trial instead of the current 
trial. Here, context is the only balanced dichotomy whose increase in decodability is significantly 
above null. 
(m) Change in cross-condition generalization performance (CCGP) for all balanced dichotomies in 
hippocampus. See Fig. 2.E3x for plotting details. Context is also the only dichotomy for which the 
CCGP rises significantly more than the 95th pctle of the geometric null distribution. 
(n) Parallelism score for hippocampus. Plot is analogous to Fig. 2.E3e, but computed during the 
baseline with previous trial labels instead of during the stimulus with current trial labels. Context is 
the only named dichotomy for which the Parallelism Score increased to significance above the 
geometric null in the inference present condition. (red, 𝑝஺௕௦௘௡௧ = 0.37, 𝑝௉௥௘௦௘௡௧ = 1.2𝑥10ିଵ଴) 
(o) Same as (c,d), but for parallelism score. Context is the only named dichotomy to increase 
significantly in inference present sessions, and the other un-named dichotomies that also 
significantly rise are correlated with context.  
(p) CCGP for balanced dichotomies in the dorsal anterior cingulate cortex (dACC). Associated 
decoding accuracy for balanced dichotomies in inference absent and present sessions shown in (k). 
Here in the dACC, context (red, 𝑝஺௕௦௘௡௧ = 0.26, 𝑝௉௥௘௦௘௡௧ = 0.018) is also found to be in an abstract 
format. 
(q) Parallelism score for balanced dichotomies in the dACC. Here, context (red, 𝑝஺௕௦௘௡௧ =
0.18, 𝑝௉௥௘௦௘௡௧ = 0.013) emerges as significant in inference present sessions.  
(r) Change in decoding accuracy for balanced dichotomies in dACC with inference. The associated 
plot for inference absent and present is in (k). Though context is the dichotomy with the greatest 
increase in decoding accuracy, it is still below the null 95th pctle in this case. 
(s) Same as (m), but for CCGP. Here, context is also the dichotomy with the greatest increase, but 
is still below null 95th pctle. 
(t) Same as (n), but for Parallelism Score. Increase in Parallelism Score for parity is notably 
significant (𝑝௱ = 0.0016). Context also significantly increases (𝑝௱ = 0.026).  
(u-y) Ventral temporal cortex (VTC) strongly encodes high-level features of visual stimuli, 
necessitating the introduction of two new dichotomies that capture stimulus identity, while not 
directly corresponding to any of the principal manipulated variables in the task (Response, Context, 
Outcome). The AB vs CD and AD vs BC dichotomies are “stimulus” dichotomies in that they 
represent systematic differences in coding between unrelated stimuli arbitrarily paired together, 
unlike the AC vs BD dichotomy which pairs stimulus identities for which responses are identical 
across the two contexts. That is, A/C response is L in Context 1 and R in Context 2, and v.v. B/D 
response is R in Context 1 and L in Context 2. These are the images whose correct responses “switch 
together” across contexts. Note that the new stimulus dichotomies are correlated with other named 
dichotomies: AB vs CD is correlated with outcome and AD vs BC is correlated with the parity 
dichotomy. Thus, high AB vs CD decodability will lead to increased outcome decodability. 
However, CCGP is robust to these dichotomy correlations, and will be low for correlated 
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dichotomies even if decodability is increased. These three dichotomies (AB vs CD, AC vs BD, and 
AD vs BC) are particularly relevant to vtc given its strong stimulus representations. 
(u) Dichotomy decodability during pre-stimulus baseline. None of the balanced dichotomies are 
decodable during inference absent or present ( 𝑝 > 0.05  for all dichotomies). Shattering 
dimensionality does not significantly differ between inference absent and present sessions (0.50 vs 
0.51, 𝑝ோௌ =0.34). 
(v) Dichotomy decodability during the stimulus presentation period. All three named stimulus 
dichotomies are highly decodable both during inference absent and inference present sessions. 
Correlated dichotomies also demonstrated above-chance decodability. Horizontal black bars indicate 
shattering dimensionality (inference absent vs present, 0.66 vs 0.70, 𝑝ோௌ = 0.0056). Dichotomies: 
purple, 𝑝஺௕௦௘௡௧ = 6.8𝑥10ିଵ , 𝑝௉௥௘௦௘௡௧ = 6.6𝑥10ିଵସ , brown, 𝑝஺௕௦௘௡௧ = 2.2𝑥10ିଽ, 𝑝௉௥௘௦௘௡௧ =
6.0𝑥10ିଵସ, pink,𝑝஺௕௦௘௡௧ = 1.1𝑥10ିଵଷ, 𝑝௉௥௘௦௘௡௧ = 6.7𝑥10ିଵସ. Notably, context is not significantly 
decodable in either inference absent or inference present sessions (red, 𝑝஺௕௦௘௡௧ = 0.24, 𝑝௉௥௘௦௘௡௧ =
0.38).  
(w) Dichotomy CCGP for VTC during the stimulus presentation period. Two stimulus dichotomies 
are in an abstract format in inference absent and all three are in an abstract format in inference present 
(purple, 𝑝஺௕௦௘௡௧ = 0.0054, 𝑝௉௥௘௦௘௡௧ = 0.00 36, brown, 𝑝஺௕௦௘௡௧ = 0.057, 𝑝௉௥௘௦௘௡௧ = 0.0029 , 
pink, 𝑝஺௕௦௘௡௧ = 0.0030, 𝑝௉௥௘௦௘௡௧ = 0.0032). All remaining dichotomy CCGP values are at chance 
apart from response and context, which are significantly below chance in inference present sessions 
(green, 𝑝஺௕௦௘௡௧ = 0.93, 𝑝௉௥௘௦௘௡௧ = 0.96, red, 𝑝஺௕௦௘௡௧ = 0.84, 𝑝௉௥௘௦௘௡௧ = 0.94).  
(x) Dichotomy Parallelism Score for VTC during the stimulus presentation period. Again, two 
stimulus dichotomies are in an abstract format in inference absent sessions, and all three are in an 
abstract format in inference present sessions (purple, 𝑝஺௕௦௘௡௧ = 0, 𝑝௉௥௘௦௘௡௧ = 4.3𝑥10ିଵଷ, brown, 
𝑝஺௕௦௘௡௧ = 0.73, 𝑝௉௥௘௦௘௡௧ = 0, pink, 𝑝஺௕௦௘௡௧ = 0, 𝑝௉௥௘௦௘௡௧ = 5.9𝑥10ି଻). 
(y) Dichotomy decodability analysis for incorrect trials during the stimulus presentation period. 
Decoders are trained on correct trials and evaluated on error trials (balanced by condition) in 
inference present sessions. Plotting conventions are identical to those described in Fig. 2.E3f. Note 
that all three stimulus identity-related dichotomies are still highly significantly decodable during 
error trials in inference present sessions (purple, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 7.8𝑥10ିଵଵ , brown, 
𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 1.1𝑥10ିଵଷ , pink, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 8.7𝑥10ିଵଵ ) and shattering dimensionality 
does not decrease (black bar, inference present vs present (error), 0.67 vs. 0.66, 𝑝ோௌ = 0.65). 
(z) Parallelism score for context computed during the stimulus period for random half-splits of the 
inference present sessions (Left, Middle column, 11 sessions in each half). Cross-half context 
parallelism is also computed through cross-session neural geometry alignment (Right Column, see 
Methods). Baseline context parallelism is significantly above chance within each half and across 
halves (𝑝ு௔௟௙ିௌ௣௟௜௧ ை௡௘ = 0.0081, 𝑝ு௔௟௙ିௌ௣௟௜௧ ்௪௢ = 0.0098, 𝑝஼௥௢௦௦ିு௔௟௙ = 0.033). 
(aa) Same as (z), but for the baseline period. Stimulus context parallelism is again significantly above 
chance within each half and across halves ( 𝑝ு௔௟௙ିௌ௣௟௜௧ ை௡௘ = 0.0029, 𝑝ு௔௟௙ିௌ௣௟௜௧ ்௪௢ =

0.0022, 𝑝஼௥௢௦௦ିு௔௟௙ = 0.010). 
(ab) Same as (z), but for the inference absent sessions (7 sessions in each half) during the stimulus 
period. 
(ac) Same as (ab), but for the baseline period. 
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Figure 2.E4. Additional control analyses for Hippocampal representational geometry.  
Identical analysis to the main geometric analysis shown in Fig. 2.2, except that hippocampal neurons 
are excluded from the analysis with the following criteria: in (a-j), neurons with significant linear 
tuning for Context, Response, or Outcome (2x2x2 ANOVA, Any Main Effect p < 0.01), and in (k-
m), neurons with significant linear tuning for Stimulus Identity or Context (4x2 ANOVA, Any Main 
Effect p < 0.01).  

Using the 3-Way ANOVA applied neuron-by-neuron, 455/494 neurons were retained for the 
stimulus period analysis (a-c) and 458/494 neurons were retained for the baseline period analysis (d-
f). All primary results for changes in hippocampal geometry were recapitulated apart from 
decodability of the parity dichotomy during the stimulus period (a).  
(a) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.36, 𝑝௉௥௘௦௘௡௧ = 0.0001, 𝑝ோௌ = 1.6𝑥10ିଷଵ ). Stim pair 
decodability (purple, 𝑝஺௕௦௘௡௧ = 0.078, 𝑝௉௥௘௦௘௡௧ = 4.2𝑥10ିହ, 𝑝ோௌ = 6.6𝑥10ିଷଵ ). Shattering 
dimensionality (black, 0.54 vs. 0.58, 𝑝ோௌ = 0.0012) during the stimulus presentation. 
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(b) Context CCGP (red, 𝑝஺௕௦௘௡௧ = 0.63, 𝑝௉௥௘௦௘௡௧ = 0.0016, 𝑝ோௌ = 5.2𝑥10ିଷସ). Stim pair CCGP 
(purple, 𝑝஺௕௦௘௡௧ = 0.17, 𝑝௉௥௘௦௘௡௧ = 0.00095, 𝑝ோௌ = 5.3𝑥10ିଷସ) during the stimulus presentation. 
(c) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 0.40, 𝑝௉௥௘௦௘௡௧ = 3.7𝑥10ିଵଷ). Stim pair Parallelism 
Score (purple, 𝑝஺௕௦௘௡௧ = 0.83, 𝑝௉௥௘௦௘௡௧ = 1.2𝑥10ି଻) during the stimulus presentation. 
(d) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.36, 𝑝௉௥௘௦௘௡௧ = 0.0029, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 0.64, 𝑝ோௌ =

1.5𝑥10ିଶ ). Stim pair decodability (purple, 𝑝஺௕௦௘௡௧ = 0.071, 𝑝௉௥௘௦௘௡௧ =
0.0021, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 0.062, 𝑝ோௌ = 2.0𝑥10ିହ ). Shattering dimensionality (black, inference 
present vs present (error), 0.56 vs. 0.55, 𝑝ோௌ = 0.62) during the stimulus presentation. 
(e) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 0.40, 𝑝௉௥௘௦௘௡௧ = 4.6𝑥10ିଵହ, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) =

0.012) during the stimulus presentation. 
(f) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.37, 𝑝௉௥௘௦௘௡௧ = 0.013, 𝑝ோௌ = 2.2𝑥10ିଶ ) during the 
baseline. Shattering dimensionality (black, 0.50 vs. 0.52, 𝑝ோௌ = 0.036) during the baseline.  
(g) Context CCGP (red, 𝑝஺௕௦௘௡௧ = 0.31, 𝑝௉௥௘௦௘௡௧ = 0.0044, 𝑝ோௌ = 1.9𝑥10ିଷ ) during the 
baseline. 
(h) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 0.12, 𝑝௉௥௘௦௘௡௧ =0.0055) during the baseline. 
(i) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.55, 𝑝௉௥௘௦௘௡௧ = 0.12, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 0.37) during the 
baseline. Shattering dimensionality (black, inference present vs present (error), 0.51 vs. 0.49, 𝑝ோௌ =
0.030) during the baseline. 
(j) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 0.66, 𝑝௉௥௘௦௘௡௧ = 8.5𝑥10ିଽ, 𝑝௉௥௘௦௘௡௧ (௘௥௥௢௥) = 0.30) 
during the baseline. 

Using the 2-Way ANOVA applied neuron-by-neuron, 412/494 neurons were retained for the 
stimulus period analysis (k-m). The stim-pair dichotomy is no longer decodable after removal of all 
stimulus-identity tuned neurons, but context is still present in an abstract format. 
(k) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.38, 𝑝௉௥௘௦௘௡௧ = 0.0088, 𝑝ோௌ = 4.1𝑥10ିଶ଼), Shattering 
dimensionality (black, 0.53 vs. 0.53, 𝑝ோௌ = 0.69) during the stimulus presentation. 
(l) Context CCGP (red, 𝑝஺௕௦௘௡௧ = 0.51, 𝑝௉௥௘௦௘௡௧ = 6.0𝑥10ିସ, 𝑝ோௌ = 2.5𝑥10ିଷସ ) during the 
stimulus presentation. 
(m) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 0.77, 𝑝௉௥௘௦௘௡௧ = 2.3𝑥10ି଺ ) during the stimulus 
presentation. 
(n-s) Seizure onset zone exclusion analysis. Identical analysis to the main geometric analysis shown 
in Fig. 2.2, except that hippocampal neurons neurons recorded in seizure onset zones (SOZs, post-
hoc identification) were removed. 410/494 neurons were retained for analysis. The exclusion 
neurons recorded from SOZ hippocampi led to the full hippocampal geometric analysis being 
effectively identical to that reported in Fig. 2.2, with every significant named dichotomy increase 
during stimulus (n-p) and baseline (q-s) periods being recapitulated in the absence of SOZ 
hippocampal neurons.  
(n) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.12, 𝑝௉௥௘௦௘௡௧ = 0.00044, 𝑝ோௌ = 1.0𝑥10ିଶ଺). Stim pair 
decodability (purple, 𝑝஺௕௦௘௡௧ = 0.034, 𝑝௉௥௘௦௘௡௧ = 2.0𝑥10ି଻, 𝑝ோௌ = 3.5𝑥10ିଷଶ ). Parity 
decodability (purple, 𝑝஺௕௦௘௡௧ = 0.74, 𝑝௉௥௘௦௘௡௧ = 0.019, 𝑝ோௌ = 2.4𝑥10ିଷ଴ ). Shattering 
dimensionality (black, 0.54 vs. 0.62, 𝑝ோௌ = 4.6𝑥10ି଺) during the stimulus period. 
(o) Context CCGP (red, 𝑝஺௕௦௘௡௧ = 0.74, 𝑝௉௥௘௦௘௡௧ = 0.019, 𝑝ோௌ = 1.1𝑥10ିଷଵ ). Stim pair CCGP 
(purple, 𝑝஺௕௦௘௡௧ = 0.084, 𝑝௉௥௘௦௘௡௧ = 2.7𝑥10ିହ, 𝑝ோௌ = 1.2𝑥10ିଷଷ) during the stimulus period.  
(p) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 3.5𝑥10ି଻, 𝑝௉௥௘௦௘௡௧ = 0). Stim pair Parallelism Score 
(purple, 𝑝஺௕௦௘௡௧ = 0.027, 𝑝௉௥௘௦௘௡௧ = 1.6𝑥10ି଻) during the stimulus period. 
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(q) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.35, 𝑝௉௥௘௦௘௡௧ = 0.0025, 𝑝ோௌ = 1.1𝑥10ିଷ଴). Shattering 
dimensionality (black, 0.50 vs. 0.53, 𝑝ோௌ = 0.0013) during the baseline. 
(r) Context CCGP (red, 𝑝஺௕௦௘௡௧ = 0.20, 𝑝௉௥௘௦௘௡௧ = 0.00018, 𝑝ோௌ = 2.5𝑥10ିଷସ).  
(s) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 0.0022, 𝑝௉௥௘௦௘௡௧ = 2.0𝑥10ିହ). 
(t-z) Non-inference performance control analysis. Identical analysis to the main geometric analysis 
shown in Fig. 2.2, except that inference absent and inference present sessions were distribution-
matched for non-inference trial performance. Pairs of inference absent and inference present sessions 
with at most 7.5% difference in non-inference trial performance were selected, prioritizing sessions 
with more hippocampal neurons. This matching process yielded 10 inference absent sessions (152 
neurons) and 10 inference present sessions (187 neurons) whose average non-inference 
performances did not statistically significantly differ (92.8% v.s. 94.7%, 𝑝ோௌ = 0.58, RankSum over 
sessions). All main geometric findings were recapitulated for the stimulus (t-v) and baseline (w-y) 
periods.  
(t) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.12, 𝑝௉௥௘௦௘௡௧ = 0.00051, 𝑝ோௌ = 7.6𝑥10ି଻ ). Stim pair 
decodability (purple, 𝑝஺௕௦௘௡௧ = 0.014, 𝑝௉௥௘௦௘௡௧ = 1.2𝑥10ିହ, 𝑝ோௌ = 3.3𝑥10ି଻ ). Parity 
decodability (purple, 𝑝஺௕௦௘௡௧ = 0.27, 𝑝௉௥௘௦௘௡௧ = 0.057, 𝑝ோௌ = 5.6𝑥10ିହ ). Shattering 
dimensionality (black, 0.57 vs. 0.58, 𝑝ோௌ = 0.26) during the stimulus period. 
(u) Context CCGP (red, 𝑝஺௕௦௘௡௧ = 0.52, 𝑝௉௥௘௦௘௡௧ = 0.044, 𝑝ோௌ = 6.7𝑥10ି଼ ). Stim pair CCGP 
(purple, 𝑝஺௕௦௘௡௧ = 0.17, 𝑝௉௥௘௦௘௡௧ = 0.0021, 𝑝ோௌ = 6.7𝑥10ି଼) during the stimulus period.  
(v) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 0.54, 𝑝௉௥௘௦௘௡௧ = 0 ). Stim pair Parallelism Score 
(purple, 𝑝஺௕௦௘௡௧ = 0.15, 𝑝௉௥௘௦௘௡௧ = 2.7𝑥10ିଵହ) during the stimulus period. 
(w) Context decodability (red, 𝑝஺௕௦௘௡௧ = 0.32, 𝑝௉௥௘௦௘௡௧ = 0.0036, 𝑝ோௌ = 4.4𝑥10ି଻ ). Shattering 
dimensionality (black, 0.51 vs. 0.52, 𝑝ோௌ = 0.64) during the baseline. 
(x) Context CCGP (red, 𝑝஺௕௦௘௡௧ = 0.27, 𝑝௉௥௘௦௘௡௧ = 0.0013, 𝑝ோௌ = 6.7𝑥10ି଼) during the baseline.  
(y) Context Parallelism Score (red, 𝑝஺௕௦௘௡௧ = 0.015, 𝑝௉௥௘௦௘௡௧ = 0). 
(z) Distribution-matched behavior shown using conventions from Fig. 2.1, 2.E1. 
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Figure 2.E5. Effect of inference and errors on shattering dimensionality as a function of 
dichotomy difficulty. 

The signature for a high-dimensional representation is a greater degree of non-linear mixing 
of task variables. “Dichotomy difficulty” is a systematic measure that quantifies the relative amount 
of non-linear interaction of task variables needed in a population of neurons to make a given 
dichotomy decodable (see methods for detailed description). (a) Example schematics of dichotomies 
of increasing difficulty. The cubes here represent different unique task conditions realized by three 
binary variables, and node coloring represents membership of a condition to one of two arbitrary 
classes assigned for the purposes of dichotomy decoding (identical to Fig. 2.E2). Note: the difficulty 
4 dichotomy corresponds to context and difficulty 12 dichotomy corresponds to parity (Fig. 2.E2). 
(b-g) Decoding accuracy as a function of dichotomy difficulty for different regions. Reported values 
(mean +/- SEM) are computed over dichotomy decoding accuracies, where the average decoding 
accuracy for each dichotomy is computed with 1000 repetitions of re-sampled estimation (see 
methods). The blue, red, and green curves correspond to correct inference absent trials, correct 
inference present trials, and inference present error trials respectively. Black dashed lines indicate 
chance level (50% for binary decoding), horizontal black lines indicate the 5th and 95th pctle of the 
null distribution. P-values are computed by conducting a one-way ANOVA over dichotomies 
independently for every dichotomy difficulty (Bonferroni MCC).  This value is not meaningfully 
computable for difficulty 12, which contains a single dichotomy (the parity dichotomy), and is 
therefore not reported. Hippocampus alone (b) exhibits an increase in decoding accuracy from 
inference absent to inference present sessions, with more difficulty dichotomies rising above 95th 
pctle null in inference present sessions. A collapse in representational dimensionality on error trials 
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(purple curves) is present in the hippocampus (b), and is also present in other areas, most prominently 
in the ventral temporal cortex (d) and the amygdala (e).  
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Figure 2.E6. Cross-condition generalization performance for stimulus identity and context 
defined over stimulus pairs.  

To fully disentangle and study the interaction between stimulus coding and context, 
geometric analysis of balanced dichotomies must be replaced by new analyses that are defined for 
pairs of individual stimuli, thus allowing for the study of stimulus coding un-ambiguously without 
arbitrarily grouping together stimuli as is necessary in the balanced dichotomy approach. When 
considering a pair of stimuli (e.g. A and B) across two contexts (e.g. 1 and 2), there are four possible 
task conditions (A1, B1, A2, B2). On these points, stimulus (A1A2 vs B1B2) and context (A1B1 vs 
A2B2) can be decoded in a straightforward manner, but is not informative about the format in which 
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stimulus and context are encoded. The CCGP for stimulus across contexts (a-c) and for context 
across stimuli (d-f) provide information about the structure of the two variables and how they 
interact.  

Consider within-context training/testing. The procedure is summarized in (a), which shows 
a linear decoder (blue bar) trained between stimuli A and B in context 1 (blue + and – correspond to 
class labels for training). The decoder is then generalized to context 2, where stimulus identity is 
decoded (red bar, + and – for class labels). This procedure is broken down step-by-step for training 
in (b) and testing in (c). In addition, arrows showing persistent stimulus and context coding vectors 
(black/dashed arrows) have been drawn alongside the vector orthogonal to the hyperplane learned 
during train/test (colored arrow passing through the bar). Note that, for this formulation of Stimulus 
CCGP, the stimulus coding vector and the normal vector to the hyperplane are parallel in (b) and 
(c). Thus, in cases with high within-context train/test Stimulus CCGP, stimulus information is 
present in an abstract format across contexts.   

The same procedures for computing CCGP can be applied for studying the format of context 
organizing across pairs of stimuli (d-f), with schematic details identical to those described above for 
Stimulus CCGP. Here, high Context CCGP indicates that context is encoded abstractly across the 
different stimuli.  
(g-j) Rasters and PSTHs of example neurons from hippocampus (g,h) and ventral temporal cortex 
(i,j) showing tuning for stimulus identity. Plotting conventions identical to those used in Fig. 2.E1j. 
(k) Average distances between stimulus representations in hippocampus (HPC) in inference absent 
and inference present sessions. All plotted points correspond to named, interpretable groups of 
conditions defined by pairs of stimuli presented in both contexts. For example, the green dot in 
“inference absent” indicates the average distance (~5.1Hz) between the condition centroids for 
stimulus A and stimulus D (averaged over contexts). Distance is computed as Euclidean distance 
between the stimulus centroids, each of which is an N (# of neurons) dimensional vector of average 
firing rates during stimulus presentation. Neuron counts are balanced between inference absent and 
inference present sessions to allow for direct distance comparisons. Null distributions here are 
geometric nulls, and are identical to those used for CCGP and Parallelism Score. Significance of the 
difference between inference absent and inference present session inter-stimulus distances is 
established by RankSum test computed over stimulus pairs, and n.s. indicates p > 0.05.  
(l) Same as (k), but for VTC. 
(m) Decodability of stimuli also did not significantly change between inference absent and inference 
present for HPC. Here, decoding accuracies are reported for each unique pair of stimuli with 1000 
repetitions of trial sub-sampling. Null distributions are constructed with trial-label shuffling, and the 
gray bars correspond to the boundary of the 5th to 95th pctle of the null. Significance of the difference 
between inference absent and inference present decodability is also established by Ranksum test over 
average decoding accuracies and n.s. indicates p > 0.05. 
(n) Same as (n), but for VTC. 
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Figure 2.E7. Additional context CCGP analysis over stimulus pairs for hippocampus and 
ventral temporal cortex (stimulus period).  
Change in context decoding accuracy from inference absent to inference present sessions evaluated 
over individual stimulus pairs is shown for the hippocampus (a) and ventral temporal cortex (b). 
Individual points correspond to context decoding accuracy averaged over 1000 repetitions of 
decoding/CCGP/Parallelism Score estimation with trial re-sampling.  
(c) and (d) show Context CCGP and Context Parallelism Score over stimuli for VTC. Analogous 
plots for HPC are Fig. 2.3g,h.  
Two exemplar neurons are shown, one from HPC (e,g) and one from VTC (f,h) that feature both 
stimulus tuning and context modulation. Plotting conventions are identical to previous raster/psth 
plots apart from the colors and conditions plotted, which here are two stimuli (A and B) in the two 
contexts. Responses to task conditions for the two neurons are summarized in (g,h), which show 
mean ± s.e.m. firing rates by condition for spikes counted on individual trials during the stimulus 
period (0.2s to 1.2s after stimulus onset). The same trials used to compute (g) and (h) are shown in 
(e) and (f) respectively, and condition colors are matched between the two sets of plots. Black arrows 
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indicate the direction in which the firing rate for a stimulus is modulated by a shift in context. The 
HPC neuron (g) shows consistent modulation by context since both arrows point downward, whereas 
the VTC neuron (h) shows inconsistent modulation by context since one arrow points downwards 
and the other points upward. 
(i) Change in the consistency of context-modulation for stimuli averaged over all neurons in VTC 
and HPC. Context modulation consistency is the tendency for a neuron’s firing rate to shift 
consistently (increase or decrease) to encode context across stimuli. This consistency can take on 
values between 0 (increase in firing rate to encode context for half of the stimuli, decrease in firing 
rate for the other half) and 4 (either increase or decrease in firing rate for all four stimuli). An 
interaction effect is observed between context modulation consistency for HPC neurons and VTC 
neurons in inference absent and inference present sessions in the absence of main effects (2 x 2 
ANOVA, 𝑝஺௥௘௔ = 0.36 , 𝑝ூ௡௙௘௥௘௡௖௘ = 0.64 , 𝑝௫ = 4.5𝑥10ିହ ), revealing significant increases in 
context modulation consistency in HPC from inference absent to present with concurrent decreases 
in VTC. 
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Figure 2.E8. Hippocampal MDS plots summarizing changes in stimulus and context geometry.  

MDS plots analogous to that shown in Fig. 2.3i, but plotted in 2D for individual stimulus 
pairs. Colored points represent the mean condition response of all HPC neurons during inference 
absent or inference present sessions to a given stimulus in a given context. Stimuli are color coded 
according to identity (e.g. in A, green points are condition responses to stimulus A and orange points 
are condition responses to stimulus B), and are connected by a line of the same color to reflect the 
context coding direction for that stimulus. Stimuli in the same context are connected by shaded lines 
that are blue for context 1 and red for context 2. Since MDS here was conducted independently for 
inference absent and inference present, individual MDS axes are not directly comparable, but the 
relative distances are comparable since the number of neurons is matched between inference absent 
and present, and both are reduced to the same number of MDS dimensions (Ndim = 2). Condition 
averages are computed using only correct trials. Evidence of disentangling of context and stimulus 
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identity is present across most stimulus pairs, with the notable exception of the B/D stimulus pair 
(e), which is perfectly correlated with outcome and therefore cannot be dissociated from outcome 
using CCGP. The emergence of quadrilaterals with approximately parallel sides for all other stimulus 
pairs (a-d, f) is a signature of disentangling of stimulus identity and context.   
(g) Changes in neural geometry in HPC. MDS of condition-averaged responses of all recorded HPC 
neurons shown for inference absent (left) and inference present (right) sessions. All plotting 
conventions are identical to those in (a-f), except MDS was applied with Ndim = 3, and three stimuli 
(A,B,D) are plotted simultaneously. Black arrows on the inference present plot highlight parallel 
coding of stimuli across the two context planes. 
(h,i) MDS plots of HPC condition-averaged responses shown for context 1(h) and context 2 (i) 
separately. Axes are directly comparable here between inference absent and present due to alignment 
via CCA prior to plotting. Note that the stimulus geometry in each context is a tetrahedral (maximal 
dimensionality, unstructured) regardless of the presence or absence of inference behavior.   
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Figure 2.E9. Implementation of geometric changes in hippocampal representation.  
(a-j) Stimulus period analysis. 
(a) Distances between centroids for balanced dichotomies shown for all regions other than HPC. 
Plotting conventions are identical to those used in Fig. 2.4g. Note: neuron counts were only balanced 
across inference absent/present within-region, so distances in different regions are computed in 
spaces with different dimensionality and are therefore not meaningfully comparable. Significant 
change in average dichotomy separation determined through Bonferroni MCC RankSum where * 
indicates 𝑝 < 0.05, and n.s. otherwise.   
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(b) Changes in inter-centroid distance for balanced dichotomies. Points in these plots are the 
differences between inference present and absent distances shown in (a). No distances for named 
dichotomies increased or decreased more than would be expected by chance (outside 5th-95th pctle 
null).  
(c) Firing rates for individual task conditions (8 total) for all regions other than HPC. Plotting 
conventions identical to those used in Fig. 2.4e. Task conditions are color coded based on the identity 
of the presented stimulus (same as Fig. 2.1b. 2.4e,f). Significant change in average dichotomy 
separation determined through Bonferroni MCC RankSum where * indicates 𝑝 < 0.05, and n.s. 
otherwise.   
Changes in hippocampal single-neuron tuning quantified by 3-way ANOVA (Response, Context, 
Outcome) with interactions. Significant factors (p < 0.05) were identified for every neuron and 
averages of both the number of factors per neuron (d) and the depth of tuning of those factors 
quantified through -ANOVA F-Statistic) (f) reported (mean ± s.e.m. across neurons) for the 
inference absent (red) and inference present (blue) sessions. Significance of difference between 
inference absent and present sessions for both the number of factors (𝐝, 𝑝ோௌ = 0.041) and the tuning 
strength (𝐟, 𝑝ோௌ = 0.027) was assessed by RankSum test over neurons between the two groups, and 
“*” indicates 𝑝ோௌ < 0.05. 
(e) same as (d), but for all regions other than HPC. 
(g) same as (f), but for all regions other than HPC. 
(h) The change in the distribution of trials projected along the coding direction for context was 
visualized during inference absent (above) and inference present (below) sessions. The red and blue 
histograms are the distribution of projected trials from context 1 and 2 respectively, with the red and 
blue vertical lines indicating the mean of each distribution. Positive and negative values for 
projection were arbitrarily established by computing the coding vector as (context 1 – context 2).   
(i) Plot showing the fraction of hippocampal neurons that exhibit task selectivity for inference absent 
(red) and inference present (blue) sessions. Selectivity is determined independently for every neuron 
using a 4x2 ANOVA (Stimulus Identity, Context), with a per-factor significance threshold of 𝑝 <
0.05. Significant differences in tuned fractions between inference absent and inference present 
assessed with z-test. (j) Plot showing the fraction of hippocampal neurons that exhibit task selectivity 
for inference absent (red) and present (blue) sessions. Selectivity is determined independently for 
every neuron using a 4x2 ANOVA (Stimulus Identity, Context), with a per-factor significance 
threshold of 𝑝 < 0.05 . Significant differences in tuned fractions between inference absent and 
present sessions assessed with z-test. 
(j) same as (i), but for VTC. 
(k-r) Stimulus period analysis. 
(k) Average variance of individual trials projected onto the coding direction for every dichotomy. 
Plotting conventions identical to those in Fig. 2.4i. Average variance along coding directions 
decreased significantly between inference absent and inference present sessions (𝑝ோௌ = 6.5𝑥10ିଵଷ, 
RankSum over dichotomies). 
(l) Changes in variance between inference present and inference absent for all dichotomies shown in 
(k). No named dichotomies fall outside the 5th-95th pctle of the null distribution. 
(m) Population distance between dichotomy centroids for dACC at baseline. All plotting 
conventions identical to those used in Fig. 2.4g. Average distance between dichotomy centroids 
increased when comparing inference absent to inference present sessions ( 𝑝ோௌ = 2.9𝑥10ି଼ , 
RankSum over dichotomies). Notably, context centroids emerged as significantly separated in 
inference present sessions than expected by chance (𝑝஺௕௦௘௡௧ = 0.48, 𝑝௉௥௘௦௘௡௧ = 0.0065) 
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(n) Changes in distance between inference present and inference absent sessions for all dichotomies 
shown in (m). Context alone (red, 𝑝௱ = 0.047) exhibited a greater increase in distance than expected 
by chance.   
(o) Same as (k), but for projective variance in dACC during the baseline. Average variance along 
coding directions increased significantly between inference absent and present sessions (𝑝ோௌ =
6.0𝑥10ିଷ, RankSum over dichotomies). 
(p) Same as (l), but for differences in dACC variance during the baseline computed using (o).   
(q) Baseline firing rate averaged by condition (8 total) for the hippocampus. Plotting conventions 
are identical to those in Fig. 2.4e. Reduction from inference absent to inference present sessions is 
significant (𝑝 < 0.05, RankSum over conditions).  
(r) Baseline firing rates averaged by condition for all regions other than hippocampus. Significance 
of change in firing rate also assessed by RankSum over conditions (“*” indicates 𝑝 < 0.05, n.s. 
otherwise). Note: most regions (apart from AMY) exhibit slight, but significant increases in baseline 
firing rate during in inference present compared with inference absent.  
(s-w) Stimulus period firing rate distribution-matched control analysis.  
(s) eCDF of mean stimulus firing rate over all hippocampal neurons in the inference absent (gray) 
and inference present (black) sessions, as well as randomly thinned inference absent firing rates that 
distribution-match the inference present firing rates (orange).   
(t) Mean stimulus firing rates over neurons reported by condition for inference absent, inference 
present, and distribution-matched inference absent firing rates. * indicates 𝑝 < 0.05 for RankSum 
over conditions, and n.s. otherwise.  
(u-w) Neural geometry measures compared for inference absent, inference present, and distribution-
matched inference absent sessions. All plotting conventions for decoding accuracy (u), CCGP (v), 
and Parallelism Score (w) are identical to those used in Fig. 2.E2,3. No meaningful differences are 
present between inference absent and distribution-matched inference absent for any 
dichotomy/metric.  
(x-ab) Stimulus period firing rate control analysis excluding high-hippocampal-firing-rate sessions.  
(x) eCDF of mean hippocampal firing rate over inference absent (gray) and inference present (black) 
sessions. Each point in the distribution corresponds to the mean hippocampal firing rate over all 
neurons in a single session. Vertical dashed line indicates 3Hz threshold. Hippocampal neurons from 
all inference absent and inference present sessions above this threshold were excluded from analysis 
shown in (y-ab). 131/169 inference absent neurons (10/14 sessions) and 318/325 inference present 
neurons (21/22 sessions) are retained. 
(y) Same as (t), but computed using all sessions with mean hippocampal firing rate < 3Hz.  
(z-ab) Neural geometry measures re-computed excluding hippocampal neurons from high-firing-
rate sessions. No meaningful differences apart from above-chance context Parallelism Score in 
inference absent sessions (Fig. 2.E9ab, red, 𝑝஺௕௦௘௡௧ = 2.2𝑥10ି଼).   
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Figure 2.E10. Additional analysis of the effect of instructions on hippocampal neural geometry.  
(a-g) Additional behavior and neural analysis for the post-instruction inference session group. 
Behavioral plots (a,b) are similar to those shown in Fig. 2.E1e,f, except Session One (a) and Session 
Two (b) plots show performance over time for sessions recorded immediately preceding and 
immediately following verbal instructions describing latent task structure. Performance is shown for 
non-inference trials (black) and inference trials (gray). Average performance is computed as a 
moving average with a 3-block window on the last three trials before a context switch (non-
inference) and on the first inference trial after a switch (inference). Error bars are standard errors 
computed over subjects. Chance performance is indicated with the dashed line at y = 0.5.  
Geometric measures shown are computed over balanced dichotomies, and are plotted using the same 
conventions as discussed previously (see Fig. 2.2, methods for details), except for the left and right 
columns of each plot correspond to Session One and Session Two hippocampal neural geometry 
respectively. Only context is plotted as a named dichotomy for visual clarity. 
(c) CCGP (context, red, 𝑝ை௡௘ = 0.27, 𝑝்௪௢ = 0.046, 𝑝ோௌ = 1.4𝑥10ିଷଵ) and (d) Parallelism Score 
(context, red, 𝑝ை௡௘ = 0.029, 𝑝்௪௢ = 3.5𝑥10ି଺, 𝑝்௪௢ (௘௥௥௢௥) = 0.0028 ) for the post-instruction 
inference group during the stimulus period.  
(e) Decoding accuracy (context, red, 𝑝ை௡௘ = 0.35, 𝑝்௪௢ = 0.0014, 𝑝்௪௢ (௘௥௥௢௥) = 0.55, 𝑝ோௌ =

1.4𝑥10ିଶ଴ ), (f) CCGP (context, red, 𝑝ை௡௘ = 0.33, 𝑝்௪௢ = 0.0037, 𝑝ோௌ = 3.0𝑥10ିଷ ), and (g) 
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Parallelism Score (context, red, 𝑝ை௡௘ = 0.017, 𝑝்௪௢ = 7.5𝑥10ି଼, 𝑝்௪௢ (௘௥௥௢௥) = 0.40 ) for the 
post-instruction inference group during the baseline period.   
(h-n) Same as (a-g), but for the session group where patients never exhibited inference (inference 
not-exhibited).   
(j) CCGP (context, red, 𝑝ை௡௘ = 0.56, 𝑝்௪௢ = 0.39, 𝑝ோௌ = 0.004 ) and (k) Parallelism Score 
(context, red, 𝑝ை௡௘ = 0.81, 𝑝்௪௢ = 0.95) for the inference not-exhibited group during the stimulus 
period.  
(l) Decoding accuracy (context, red, 𝑝ை௡௘ = 0.45, 𝑝்௪௢ = 0.45, 𝑝ோௌ = 0.68), (m) CCGP (context, 
red, 𝑝ை௡௘ = 0.45, 𝑝்௪௢ = 0.47, 𝑝ோௌ = 0.15 ), and (n) Parallelism Score (context, red, 𝑝ை௡௘ =
0.93, 𝑝்௪௢ = 0.30) for the inference not-exhibited group during the baseline period.   
(o-u) Same as (a-g), but for the session group where patients exhibited inference from Session One, 
before they were explicitly instructed about the latent task structure (pre-instruction inference).   
(q) CCGP (context, red, 𝑝ை௡௘ = 0.23, 𝑝்௪௢ = 0.19, 𝑝ோௌ = 0.0045 ) and (r) Parallelism Score 
(context, red, 𝑝ை௡௘ = 6.3𝑥10ି଼, 𝑝்௪௢ = 4.5𝑥10ି଻,) for the pre-instruction inference group during 
the stimulus period.  
(s) Decoding accuracy (context, red, 𝑝ை௡௘ = 0.37, 𝑝்௪௢ = 0.47, 𝑝ோௌ = 0.036), (t) CCGP (context, 
red, 𝑝ை௡௘ = 0.30, 𝑝்௪௢ = 0.50, 𝑝ோௌ = 5.9𝑥10ି଻), and (u) Parallelism Score (context, red, 𝑝ை௡௘ =
1.7𝑥10ିହ, 𝑝்௪௢ = 0.029) for the pre-instruction inference group during the baseline period.   
(v) Changes in hippocampal firing rates for the 3 different sub-groups of session pairs. Firing rate 
changes here are computed during the stimulus presentation period (0.2s to 1.2s after stim onset) 
from consecutive Session One and Session Twos. Points are average changes in condition-averaged 
firing rates (8 unique conditions). Changes in firing rate that significantly differed from zero (t-test, 
𝑝 < 0.05/3) are indicated with a “*”. Post-instruction inference group alone exhibited significant 
decrease in firing rate. Inference not-exhibited group exhibited an increase in firing rate. 
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Table 2.S1. Tabulation of Patients, Sessions, Behavior, and Neurons.  
Summary of patient information, the number of sessions performed, the behavioral classification at 
the patient and session level, and the number of recorded neurons per region per session. Patient 
behavior is defined with respect to instances of high-level verbal instructions (see Fig. 2.5), where: 
Pre – “pre-instruction inference achieved”, NE – “Inference not exhibited”, post – “post-instruction 
inference achieved”, and N/A – “did not qualify for analysis”. Session behavior is defined with 
respect to performance on the first available inference trial, where: IA – “inference absent”, IP – 
“inference present”, X – “at or below chance non-inference performance”.   
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Table 2.S2. Definition of all balanced dichotomies.  
Class assignment and name of all 35 balanced dichotomies used in geometric balanced dichotomy 
analysis. Dichotomies where the name is “N/A” do not have a clear interpretation with respect to 
task construction. Identity of the task conditions participating in the balanced dichotomies is shown 
to the right. 
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Table 2.S3. Definition of all stimulus dichotomies.  
Task condition assignment for stimulus dichotomies. These dichotomies are used in Fig. 2.3b,c,e,f 
and associated supplements whenever there is a reference to “Stimulus CCGP” or “Stimulus 
Parallelism Score”. Partial and full correlations with other task variables are noted for each stimulus 
dichotomy.  
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Table 2.S4. Definition of all context dichotomies.  
Task condition assignment for context dichotomies. These dichotomies are used in Fig. 2.3g,h and 
associated supplements whenever there is a reference to “Context CCGP” or “Context Parallelism 
Score”. Partial and full correlations with other task variables are noted for each context dichotomy.  
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Supplementary Sections 
2.S.1 Hippocampus encodes context abstractly at baseline during inference sessions. 

We analyzed the baseline period preceding stimulus onset (Fig. 2.2, inset) to study the 
geometry of task representations that might persist from the previous trial (all labels were defined 
by the prior just completed trial for this analysis). Context was encoded as an abstract variable in the 
HPC in inference present and not in inference absent sessions. Unlike the stim epoch, context was 
the only named dichotomy to emerge as significantly decodable at baseline in the HPC for inference 
present sessions (Fig. 2.2h, red, inference absent vs. present, 𝑝ோௌ = 1.1𝑥10ିଷଷ, 𝑝஺௕௦௘௡௧ =
0.35, 𝑝௉௥௘௦௘௡௧ = 6.4𝑥10ିହ, E3l), indicating that any task condition information from the previous 
trial other than the context (i.e. outcome, response) was not significantly decodable from the 
population during this epoch. Nevertheless, the shattering dimensionality significantly increased in 
inference present compared to inference absent sessions (0.51 vs 0.53, 𝑝ோ௔௡௞ௌ௨௠ = 0.0079), which 
is attributable to the rise in decodability of context and context correlated dichotomies. Context 
during baseline was also encoded abstractly as shown by the increase in CCGP (Fig. 2.2i, 2.E3m, 
red, Inference absent vs present, 𝑝ோௌ = 2.4𝑥10ିଷସ  , 𝑝஺௕௦௘௡௧ = 0.45, 𝑝௉௥௘௦௘௡௧ = 7.7𝑥10ି଺ ) and 
Parallelism Score (Fig. 2.E3n,o, red, 𝑝஺௕௦௘௡௧ = 0.37, 𝑝௉௥௘௦௘௡௧ = 1.2𝑥10ିଵ଴). These results indicate 
that an abstract representation of context that persisted from the previous trial also emerged in the 
hippocampus in sessions where patients performed inference.  
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2.S.2 Hippocampal context representation does not rely on classically tuned neurons 
To determine whether the geometric findings presented here arose as a consequence of strong 

classical (univariate linear) tuning, two ablation analyses were conducted in which all neurons that 
had significant univariate linear tuning to at least one task variable were excluded and all geometric 
measures were re-computed. In the first analysis, neurons tuned to one or several of response, reward, 
or context (3-Way ANOVA, any main effect p < 0.01) were excluded. Of the 494 neurons in HPC, 
41 were excluded for exhibiting classic tuning prior to recomputing all measures. Qualitatively, 
findings remained largely unchanged by the exclusion of this population of specialized neurons (Fig. 
2.E4a-e). The Parity dichotomy was no longer decodable above chance in inference present sessions 
(Fig. 2.E4a, orange, 𝑝௉௥௘௦௘௡௧ = 0.056), but the rise in Shattering Dimensionality (average over 
dichotomies) was still present (Fig. 2.E4a, 𝑝ோௌ = 0.0012, Ranksum over dichotomies). A similar 
analysis was also conducted for the baseline representation of context, and again the findings 
qualitatively remained unchanged (Fig. 2.E4f-j). Note that, although the decodability of context at 
baseline during inference present sessions did decrease in significance when conducting the error 
trial analysis (Fig. 2.E4i, red, 𝑝௉௥௘௦௘௡௧ = 0.12), it was still significantly increased compared to 
inference absent sessions ( 𝑝ோௌ = 5.7𝑥10ିଵ ) and was significantly reduced in error trials 
(𝑝௉௥௘௦௘௡௧ = 0.37, inference present correct vs error, 𝑝ோௌ = 0.0002). In the second analysis, neurons 
tuned to stimulus identity or context (2-Way ANOVA, any main effect p < 0.01) were excluded. In 
this analysis, 82 neurons were excluded, leading to a loss of decodability of stimulus dichotomies 
due to the removal of visually-selective neurons as expected (Fig. 2.E4k-m). Context, however, 
remained decodable and present in an abstract format. Together, these analyses indicate that the 
abstract context representation in the hippocampus is a highly distributed variable whose geometry 
is not a simple consequence of strong univariate tuning of a small population of “context” neurons. 
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2.S.3 Hippocampal context and stimulus representations are not driven by SOZ neurons 
To ensure that the reported findings were not influenced by pathology, in a further control 

analysis we excluded all HPC neurons (86/494) recorded from electrodes that were clinically 
identified to reside in medial temporal seizure onset zones (SOZs). Repeating our analyses on the 
neurons that remain revealed that results were qualitatively unchanged (Fig. 2.E4n-s), though the 
parallelism for context was now significantly above chance during inference absent sessions for both 
the stimulus (Fig. 2.E4p, red, 𝑝஺௕௦௘௡௧ = 3.5𝑥10ି଻ ) and baseline (Fig. 2.E4s, red, 𝑝஺௕௦௘௡௧ =
0.0022) periods. These findings suggest that neurons residing in hippocampal tissue with high 
disease burden do not meaningfully contribute to the task representation17, thereby leading to 
marginally increased representation strength once these neurons are removed (note that the 
decodability and CCGP for context in inference absent sessions are still not significantly different 
from chance, confirming our finding).  
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2.S.4 Hippocampal representations are not driven by differences in non-inference trial performance 
To ensure that the reported geometric findings in the hippocampus did not arise due to non-

inference performance differences between inference absent and inference present sessions, an 
additional control analysis was performed where the non-inference trial performance of included 
sessions was distribution-matched between sessions where inference was absent and present. Pairs 
of inference absent and inference present sessions with at most 7.5% difference in non-inference trial 
performance were selected, prioritizing sessions with more hippocampal neurons. This matching 
process yielded 10 inference absent sessions (152 HPC neurons) and 10 inference present sessions 
(187 HPC neurons) whose average non-inference performances did not statistically significantly 
differ (92.8% v.s. 94.7%, 𝑝ோௌ = 0.58, RankSum over sessions, Fig. 2.E4z). All main geometric 
findings were recapitulated using this session split during both the stimulus (Fig. 2.E4t-v) and 
baseline (Fig. 2.E4w-y) periods, indicating that the learning-dependent changes in the hippocampal 
representational geometry we observe cannot be explained by differences in non-inference trial 
performance. 
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2.S.5 Changes in hippocampal single-neuron tuning explain changes in representation with inference 
To determine if changes in univariate tuning could partially explain the observed changes in 

the hippocampal representation from inference absent to inference present sessions, average tuning 
properties of single neurons were computed. Both the number of significant factors (main effects or 
interactions) per neuron (3-way ANOVA – Response, Context, Outcome, p < 0.05) and the tuning 
strength of neurons for those significant factors indexed by the F-statistic of those ANOVA factors 
were significantly elevated in inference present compared to inference absent (Fig. 2.E9d, 𝑝ோௌ =
0.010, 2.E9f, 𝑝ோௌ = 0.0089). These effects were only observed in HPC, with either no change or a 
decrease in tuning observed in the other areas except for a significant increase in vmPFC (Fig. 
2.E9e). We also separately considered the linear and non-linear (interaction) terms for the 4 
(Stimulus) x 2 (Context) ANOVA and found that, while the fraction of hippocampal neurons 
exhibiting significant (p < 0.05, Main Effect) stimulus identity tuning significantly decreased from 
absent to present inference sessions (Fig. 2.E9i, 21.3% vs. 19.1% of neurons, 𝑝 = 0.002), the 
fraction of neurons exhibiting significant context tuning increased (Fig. 2.E9i, 9.5% vs. 15.7% of 
neurons, 𝑝 = 2.2𝑥10ି଺), which could also partially explain the increase in centroid distance and 
resultant context decodability. Such “context neurons”, however, cannot account for this effect fully 
as their removal from the pseudopopulation does not qualitatively alter the hippocampal population 
geometry (Fig. 2.E4). As a control, this analysis was also performed for VTC neurons, in which we 
did not find a significant difference in the percentage of neurons with univariate context tuning (Fig. 
2.E9j).  
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2.S.6 Context representations outside of the hippocampus 
The dorsal Anterior Cingulate Cortex (dACC) was the only other region to exhibit significant 

changes in its latent context representation as a function of patients’ ability to perform inference. 
However, this context representation was limited to the baseline period, since geometric analysis for 
the stimulus period revealed an absence of significant context decodability and CCGP in inference 
absent and inference present sessions (Fig. 2.2g, 2.E3a). However, the Parallelism Score for context 
in the dACC did increase significantly (Fig. 2.E3b, red, inference absent vs. inference present, 
 𝑝ோௌ = 2.4𝑥10ିଵଽ, 𝑝஺௕௦௘௡௧ = 0.99, 𝑝௉௥௘௦௘௡௧ = 3.8𝑥10ିଵ ), reflecting an increase in context 
parallelism in condition averages that was not detectable with the other metrics (which are based on 
single trial decoding). 

During the baseline, however, context also emerged as the only decodable dichotomy in 
inference present sessions in the dACC (Fig. 2.E3k, red, 𝑝஺௕௦௘௡௧ = 0.37, 𝑝௉௥௘௦௘௡௧ = 0.049). We 
found this context variable was also represented in an abstract format, emerging as the dichotomy 
with the highest CCGP (Fig. 2.E3p,s, red, 𝑝஺௕௦௘௡௧ = 0.26, 𝑝௉௥௘௦௘௡௧ = 0.018) and Parallelism Score 
(Fig. 2.E3q,t, red, 𝑝஺௕௦௘௡௧ = 0.18, 𝑝௉௥௘௦௘௡௧ = 0.013) in inference present sessions, while being at 
chance for both metrics in inference absent sessions. As in HPC, the lack of decodability for previous 
trial outcome and response suggests that any variables encoded at earlier epochs during the previous 
trial (e.g. post-reply delay or outcome) were extinguished from the population by the onset time of 
the current baseline epoch.  

Analysis of dichotomy centroid distances during the baseline period revealed context also 
emerged as the dichotomy with the greatest separation in the dACC during inference present session 
trials (3.9 vs. 5.7 Hz, 𝑝஺௕௦௘௡௧ = 0.48, 𝑝௉௥௘௦௘௡௧ = 0.0065, 𝑝௱஽௜௦௧ = 0.046, Fig. 2.E9m,n). However, 
this implementation of the context representation was achieved through significant increases in 
condition-wise firing rates (Fig. 2.E9r, dACC inference absent vs inference present, 𝑝ோௌ = 0.049) 
as opposed to the firing rate decrease observed in the hippocampus. Together, these analyses indicate 
that a weak, but nonetheless significant, representation of latent context encoded in an abstract format 
also emerged in the dACC, and that this variable was accommodated in the representation through a 
different implementational strategy. 
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C h a p t e r  3  

 Temporally static and dynamic neural representations in human 
hippocampus and medial frontal cortex support persistent behavior  

 
Abstract: Humans are capable of conducting tasks for extended periods of time after receiving a 
single instance of instruction. Such behavior necessitates active maintenance of a representation of 
task context that can dynamically shift as cognitive resources are updated in service of new goals. 
While previous studies have implicated both the medial frontal cortex and the anterior hippocampus 
in representations of task context, the implementation of that representation at the level of single 
neurons in the human brain remains an open question, particularly when context is not re-cued trial 
by trial and must be internally maintained over the course of minutes, far-exceeding the timescale 
considered by previous neural models of persistent activity. To clarify which encoding strategies are 
used by neurons in two medial frontal cortical structures: the dorsal anterior cingulate (dACC), pre-
supplementary motor area (preSMA), and in the anterior hippocampus (HPC), we conducted single-
neuron recordings in epilepsy patients who were instructed to alternate between cognitive tasks in 
two different experimental settings. In the first experiment, we recorded 970 neurons in 13 patients 
(33 sessions, dACC = 329, preSMA = 438, HPC = 203). We find a strong dissociation in coding 
strategy between these regions. HPC exhibits a temporally dynamic code, lacking neurons that stably 
encode individual task contexts independently of the progression of time through the experiment, 
thus leading to a population code for context that rapidly orthogonalizes. dACC and preSMA on the 
other hand stably encode task context over many minutes both during baseline and stimulus 
processing at the level of single units, leading to a population code that strongly generalizes across 
time throughout the experiment. To determine if temporal stability is an intrinsic property of the 
neurons in each region, we analyzed a second experiment which shared block- and trial-level 
structure with the first experiment, but featured very different trial-level task demands. In this 
experiment (17 patients, 42 sessions, 499 HPC neurons), we found that the hippocampal task context 
representation had stabilized, exhibiting comparable cross-temporal generalization properties to 
dACC and preSMA in the first experiment. These findings call attention to an intermediate-temporal 
scale upon which persistent single-neuron activity in the human brain gives rise to representations 
of task context variables, and indicates that the temporal stability of these representations is not an 
immutable region-specific property, but rather changes as a function of task demands. 
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Introduction:  
Humans can engage in persistent behavior for extended periods that can be many orders of 

magnitude longer in duration than the stimuli that triggered them. For example, a single question 
conveyed over the course of several seconds could lead to a 2-minute trip to the kitchen to fetch 
some water, or a 20-minute quest to find lost keys depending on the nature of the posed question. To 
support temporally extended behavior, the human brain encodes a representation of the task or the 
environmental state that was signaled, either directly or indirectly, by the stimulus in question1–5. 
Here, we refer to such high-level, behavior-constraining variables as task context variables, whose 
value determines or modifies the actions deployed in response to many different sensory stimuli. 
Such task context variables can also contain information related to goals or targets, which typically 
specify individual stimuli or environmental states which must be attained. A task context variable 
may be specified directly by external stimuli, either symbolically or through language-based 
instruction6,7, or it may be induced implicitly by the temporal statistics of the environment 8–10. In 
the latter case, changes in context can also be inferred from feedback11–14. In either case, the state of 
the task context variable must be persistently represented in the brain to constrain behavior long after 
the stimulus signaling the change in task context has been removed. Numerous regions in the human 
frontal and temporal lobe have been implicated in the representation of such context variables15–25, 
but many questions related to the implementation of these variables at the level of single-neuron 
activity remain open. 

What computationally advantageous properties should these task context representations 
have to support flexible behavior? One potential property of these representations that has been given 
little attention is the degree of cross-temporal stability they exhibit on the timescale at which human 
behavior typically persists. There are many computational advantages for neurally representing task-
relevant variables in a temporally static format, including facilitation of generalizing behavior 
flexibly across arbitrarily longer periods of time26,27, and for generalizing behavior to new stimuli28. 
These advantages need to be balanced against the storage capacity benefits conferred by a dynamic 
code that evolves over time29,30. Considerable research has been dedicated to studying the presence 
of static and dynamic coding on the timescale of seconds in individual trials during working memory 
tasks31, particularly in the human brain32–34, and to the study of changes in neural tuning through 
representational drift on the timescale of days to weeks35. However, the neural underpinnings of 
persistent behavior on the timescale of ~1-10min, an interval which incidentally contains the average 
duration for human sustained attention on a task (~400s), remains elusive36. Here, we ask whether 
there are stable representation of task context that persist for many minutes after instructions have 
been given. We examine where in the brain such representations exist and how they are implemented 
at the level of single neurons. 

Various brain structures in the frontal and temporal lobes are known to represent task context 
(task sets), but little is known about the temporal stability of such representations over minutes. Two 
structures in the medial frontal cortex (MFC), namely the dorsal Anterior Cingulate Cortex (dACC) 
and the pre-Supplementary Motor Area (preSMA) have been studied extensively for their role in 
flexible, temporally extended behaviors37. The dACC has been described as a “storage buffer” for 
the persistent representation of task context variables that mediate the behavioral policy deployed in 
a given environment38. The preSMA is also critical for the task-dependent selection of appropriate 
actions and the mediation of switching between action sets39, both of which occur in a temporally 
extended manner. For explicitly instructed tasks, where MFC structures are known to causally 
mediate persistent behavior40,41, one might hypothesize that task context representations emerge 
immediately following instruction and persist in a temporally static rate code in neurons until a new 
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task is instructed, potentially several minutes later. This hypothesis has never formally been tested. 
In the temporal lobe, there is also considerable evidence that the hippocampus forms representations 
of task context variables when constructing a cognitive map of the environment, mixing 
combinations of context variables and stimuli of different modalities that are behaviorally relevant 
in that environment. In recent work, we have demonstrated that an explicit representation of context 
emerges in hippocampal neurons as subjects learn to perform inference on a latent context variable 
whose state was never overtly signaled12. Notably, in this task, a context representation was almost 
entirely absent from the medial frontal cortex, raising the question of how the hippocampal 
implementation of a task context variable differs between this and other experiments where context 
representations are prominent in MFC. 

In the hippocampus, the encoding of static task contexts must also be balanced against 
simultaneously present dynamic firing patterns that are thought to support episodic memory and 
allow for the readout of other variables such as the passage of time. At the single neuron level, the 
presence of time cells and ramp cells, whose activity simultaneously codes for the passage of time 
across several timescales ranging from milliseconds to hours, has been documented in several 
species including humans42–45. At the population level, evidence of dynamically coding for the 
continual passage of time is thought to be important for episodically fingerprinting continuous 
sensory experience46. These hippocampal neural dynamics form a “temporal context” that is 
reinstated during episodic recall of temporally remote memories47. How hippocampal neurons fulfill 
this computational role of representing a continually changing temporal context while 
simultaneously representing a temporally static and repeatedly encountered task context remains an 
open question. 

Here, we ask the question of how the hippocampus and medial frontal cortex can 
simultaneously accommodate static and dynamic representations of task context variables of 
different kinds. We re-analyzed single neuron recordings from two experiments that jointly allow us 
to examine different aspects of this question. In both experiments, subjects dynamically change their 
responses to visual stimuli as a function of a high level contextual variable6,12. Based on the first 
experiment, we here show that the task context representation is implemented in a region-specific 
manner, with hippocampal neurons representing context in a manner that dynamically reorganizes 
itself across time throughout the experiment, thereby simultaneously multiplexing global temporal 
information and task context information. This encoding strategy stands in contrast to the dorsal 
Anterior Cingulate Cortex (dACC) and pre-supplementary motor area (preSMA) whose neurons 
encode a static task context representation that generalizes across time. Based on the second 
experiment, we then show that the temporally dynamic code for context is not always present in the 
hippocampus. Rather, we find that the hippocampal context representation exhibits considerable 
temporal stability in this second experiment across time throughout the experiment, notably in the 
absence of a simultaneous context representation in dACC and preSMA. Together, our findings 
provide insight into the implementation strategies used by different frontal and temporal brain 
structures to persistently represent task context variables that are needed to guide behavior over long 
time periods, and raise questions about the flexibility of that implementation as a function of task 
demands.        
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Methods:  
 
Participants: The study participants were adult patients being surgically evaluated for invasive 
treatment of drug-resistant epilepsy (see Table 1). These patients were treated at Cedars-Sinai 
Medical Center (CSMC) and Toronto Western Hospital (TWH). All patients provided informed 
consent and subsequently volunteered to participate in this study. All research protocols were 
reviewed and approved by the institutional review boards of CSMC, TWH, and the California 
Institute of Technology.  
 
Experiment 1:  

One group of 13 patients (see Table 1) performed 33 sessions of an experiment that required 
alternation between two task contexts, one requiring semantic categorization of visual stimuli 
(categorization task), and the other requiring recognition memory of those same stimuli (memory 
task). Patients performed eight blocks of 40 trials, with the required task alternating between 
categorization and memory across consecutive blocks. Patients always began with categorization for 
the first block of the session. Text-based instructions for the required task in the current block were 
provided at the start of each block, and were not re-cued until the next block thus requiring patients 
to persistently remember the current task being executed. Patients could spend as much time as 
needed on instruction screens, and voluntarily proceeded into every new block after reading the 
instructions. Both tasks were formulated as binary (yes/no) questions of the form: “Is this an image 
of an X?” for the categorization task, where X was one of four unique semantic categories, and “Have 
you seen this image before?” for the memory task. The number of new and old images of each 
semantic category were balanced in each block to prevent response biases and to facilitate balanced 
decoding analyses. Individual trials consisted of a jittered pre-stimulus baseline (1s to 2s) followed 
by image presentation for a variable amount of time until the patient’s response for that trial was 
provided. Patients provided trial responses using either a left/right button press on a CEDRUS binary 
response box or by saccade left/right to indicate True/False for each trial. The response modality was 
randomized over blocks and was re-cued every 20 trials. Following the response, the stimulus was 
removed from the screen and the baseline period for the next trial was initiated. Trial-by-trial 
feedback was not provided.  

 
Experiment 1 Control Variant: 
A control variant of the experiment described above, which was designed to disentangle stimulus 
processing from decision variables and motor plans, was utilized for a fraction of the sessions (5/13 
patients, 6/33 sessions). In this variant, instead of being allowed to respond freely as soon as the 
image appeared on the screen, images were presented for a fixed interval (1s), then trial responses 
were allowed after a jittered delay (0.5s to 1.5s) when a response cue appeared on the screen. These 
task variations were uniformly applied to all trials, and thus could not have generated a bias in the 
representation of one task condition over another. Furthermore, none of the analyses shown here 
were performed on a response-aligned time window. Nevertheless, the core analyses in this work 
were re-conducted on neural pseudopopulations constructed exclusively from these control sessions, 
and all findings were re-capitulated (See Fig. 3.S4).  
 
Experiment 2:  
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A separate group of patients 17 patients (see Table 1) performed 42 sessions of a second 
experiment (180-320 trials/session, 10-16 blocks/session) that shared key structural elements with 
the first experiment both at the trial level and at the block level that allowed for direct comparison 
of neurophysiological task responses across the two experiments. In sessions of this experiment, 
patients learned arbitrary stimulus-response-outcome (SRO) associations for four unique stimuli 
arbitrarily associated with either a left or right button press in one of two latent contexts. The contexts 
were related in that the required response for each stimulus was inverted between the two contexts 
(e.g. stimulus A was associated with left button press in context 1 and right button press in context 
2, etc..). Blocks consisted of 15-32 trials in a given context before a covert switch to the other context. 
Trials consisted of a pre-stimulus baseline (1.5s to 2.5s), followed by a speeded response (left/right 
button press) provided with the onset of the stimulus, and the presentation of an outcome (either 
reward or “incorrect”) for 1s following a fixed 0.5s delay. Rewards were provided deterministically 
such that, if a patient had learned the SRO map in a given context and suddenly encountered an 
incorrect trial, this was an unambiguous signal that the state of the latent context variable had 
changed. Patients could learn to perform inference on the state of the latent context variable such 
that, after a single incorrect trial, patients could infer that the context had changed and update all 
stimulus-response associations in accordance with the new context.   
 
Cross-Experiment Comparison:  
The two experiments considered here share a considerable amount of structure that facilitates cross-
task comparison. Both experiments contained a binary task context variable that was designed to 
elicit different responses for the same stimuli depending on the state of the context variable. Both 
experiments have a blocked structure such that the context variable varies slowly with time, and 
many trials must be completed in a given block before the context changes. The current context is 
not re-cued in either experiment, with explicit instructions being provided once at the beginning of 
each block in experiment 1 and never being provided in experiment 2, thus requiring a persistent 
representation of task context in both experiments to achieve high performance. Trial structure is 
also very similar between the two experiments. In both cases, trials consist of a pre-stimulus baseline 
where a single gray fixation cross is present on the screen for ~2s. Trial onset is marked by the 
appearance of a single image subtending ~10 visual degrees. The image is removed when the patient 
provides a response for that stimulus in accordance with the currently instated context. Responses 
were formulated as binary in both experiments for all task contexts, with the Categorization and 
Memory tasks in experiment 1 formulated as yes/no questions and the two latent contexts in 
experiment 2 requiring left/right button presses. Thus, for the time periods analyzed here including 
baseline (-1s to 0s prior to stimulus onset) and stimulus processing (0.2s to 1.2s following stimulus 
onset), patients were engaged in cognitive tasks with roughly similar structure and comparable 
cognitive demands. Elaboration of the differences between these experiments and associated 
limitations is provided in the discussion. 
 
Electrophysiology:  
Electrode Placement and Recording: Extracellular electrophysiological recordings were conducted 
using microwires embedded within hybrid depth-electrodes (AdTech Medical Inc.) implanted 
bilaterally into the hippocampus, amygdala, dorsal anterior cingulate cortex, pre-supplementary 
motor area, ventromedial prefrontal cortex, in addition to variable unilateral or bilateral electrodes 
in ventral temporal cortex as determined by clinical needs. Broadband potentials (0.1Hz – 9kHz) 
were recorded continuously from every microwire at a sampling rate of 32kHz (ATLAS system, 
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Neuralynx Inc.). All subjects included in the study exhibited voltage waveforms consistent with 
well-isolated single-neuron action potentials in at least one implanted microwire. 
Electrode Localization: Electrode localization was conducted using a combination of pre-operative 
MRI and post-operative CT using standard alignment procedures as previously described6. Electrode 
locations were also co-registered to the to the MNI152-aligned CIT168 probabilistic atlas48 for 
standardized location reporting and visualization. Placement of electrodes in gray matter was 
confirmed through visual inspection of subject-specific CT/MRI alignment, and not through 
visualization on the atlas.  
 
Spike Detection and Sorting: Raw electric potentials were filtered with a zero-phase lag filter with 
a 300Hz-3kHz passband. Spikes were detected and sorted using the OSort software package49. All 
spike sorting outcomes were manually inspected and putative single-units were isolated and used in 
all subsequent analyses. All processing and analysis of neural data was performed using MATLAB 
(The Mathworks, Inc., Natick, MA). 
 
Analysis Periods, Single-Neuron Tuning, and Construction of Pseudo-populations:  

All analyses were conducted on firing rates of neurons computed during two trial epochs the 
baseline period (base), defined as -1s to 0s preceding stimulus onset on each trial, and the stimulus 
period (stim), defined as 0.2s to 1.2s following stimulus onset on each trial. Firing rate vectors for 
every neuron were constructed during both trial periods. 

Single-neuron tuning properties were assessed using univariate and multivariate ANOVAs 
applied to the firing rate vectors for each neuron independently unless otherwise stated. Task context 
was encoded as a categorical variable with two levels for both experiments. Semantic image category 
in experiment 1 and stimulus identity in experiment 2 were encoded as categorical variables with 
four levels. Any references to depth-of-tuning of a neuron for one of these variables or their 
interaction (e.g. Context x Stimulus identity) refer to the F-value of the variable in question when 
the ANOVA is performed on the trial-level firing rate vectors either during the stimulus or baseline 
periods. Note: all ANOVA analyses were performed using spikes counted during correct trials for 
the stimulus period and during baselines preceding correct trials. For some control analyses, an 
ANOVA F-statistics distribution matching procedure is also performed between neurons recorded 
in different regions. To match F-statistic distributions, valid pairs of neurons were identified, one 
from each region, whose F-statistics for the context variable were within 0.1. The candidate pair was 
removed from the pool of available neurons, and another pair was selected until no more valid pairs 
were present, at which time all remaining neurons were excluded from the subsequent distribution-
matched analysis. This procedure creates two populations of neurons, one for each region 
participating in the balancing procedure, whose ANOVA F-statistic distributions are statistically 
indistinguishable.  

Firing rate vectors including all trials for single neurons were concatenated to create neural 
pseudo-population matrices of dimension (# of trials x # of neurons) on which all subsequent 
decoding analyses were performed. These pseudo-populations only consisted of neurons that 
exhibited at least 0.1Hz firing rate averaged over the entire recording session. Repeated recording 
sessions of a given experiment with a given subject were typically separated by several days, and 
neurons recorded during these repeated sessions were treated as independent neurons in the 
pseudopopulation. No stimuli or stimulus-response pairings were ever re-used in repeated recording 
sessions for either experiment, thus preventing potential behavioral and neural confounds related to 
recognition memory signals across recording sessions.  
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Trial-Balanced Decoding Analysis:  
Decoding analyses were performed using a linear support vector machine, and all decoding 
accuracies are reported out-of-sample using 5-fold cross-validation unless otherwise specified (e.g. 
cross-condition generalization). Model fitting was performed using the “templateSVM” with a linear 
kernel and the “fitecoc” model-fitting methods from the Stats toolbox of Matlab 2021b. Trial-
balanced decoding of a task variable was conducted by concatenating firing rate vectors for neurons 
in a given region to construct firing rate matrices, i.e. the pseudopopulation response matrix, with 
dimensions KT x N, where K is the number of conditions (typically 2 apart from image category 
decoding, where there were 4 categories), T is the number of correct trials per condition, and N is 
the number of neurons. Neurons were excluded from the pseudopopulation if they there were fewer 
than 15 correct trials per condition in that recorded session. Neurons with more than the minimum 
number of correct trials had their trials randomly sub-sampled so that the number of correct trials per 
feature and per condition could be matched prior to decoding. To account for the presence of noise 
correlations between simultaneously recorded neurons, trials were also shuffled independently for 
each neuron within-condition prior to decoder fitting. To account sub-sampling and randomization 
bias, the trial sub-sampling and within-condition shuffling procedure were repeated 250 times, with 
reported decoding accuracies being the average over these repeats. All error bars shown are standard 
deviations over the distribution of decoding accuracies unless otherwise specified. Null distributions 
for decoding analyses were constructed by shuffling condition labels and reporting out-of-sample 
decoding performance, again with 250 repetitions. The significance of individual decoding 
accuracies was determined by reporting the p-value of the average decoding accuracy against the 
gaussian maximum likelihood fit of the null distribution. The significance of the difference between 
decoding accuracies (e.g. between two areas) was determined by reporting the p-value of the true 
difference against a null distribution of the difference constructed by computing all pair-wise 
differences between points in the null distributions for each of the two decoding accuracies being 
considered.   
 
 
Decoder Cross-Condition Generalization:  

Generalization analyses for decoders are performed by training a decoder to discriminate 
between two states of a variable in one condition and testing whether that decoder performs above 
chance in discriminating the same variable states in another condition. Critically, in order for such 
analysis to be performed, the variable in question must un-ambiguously be specified in the source 
condition (on which training is performed), and the target conditions (on which testing, or 
generalization is performed). In the case of task context, this generalization performance was 
performed over trial phases (baseline/stimulus), block phases (first block half/second block half), 
and over experiment phases (block pairs). Furthermore, generalization analysis requires that the 
training and testing feature spaces are aligned. In this case, the requirement of a minimum number 
of 15 correct trials per neuron per condition was also independently applied to the source and target 
conditions for these generalization analyses. For example, if training a context decoder on blocks 
1/2 and testing on blocks 3/4, a neuron must have at least 15 correct trials per context in blocks 1/2 
and 3/4 independently. Neurons that did not meet these criteria separately for both source and target 
conditions were excluded from the analysis. Since in a generalization analysis, decoding accuracy is 
out-of-sample by construction, cross-validation was not used, and all available trials were used for 
training and testing. However, since trial sub-sampling and within-condition shuffling were also 



 93

employed here, generalization decoding accuracies were also reported as the average over 250 
repetitions.   

To control for the amount of task variable information available to a decoder during training, 
a generalization index is reported that normalizes the performance of the decoder in the generalized 
conditions to the out-of-sample performance of the decoder in the training conditions. Specifically, 
the generalization index is computed as: 

𝑔𝑖 =  
𝑔 − 𝑐𝑙

𝑡 − 𝑐𝑙
 

where 𝑔 = mean performance over all instances of generalization for all trained decoders, 𝑡 = mean 
out-of-sample training performance for all decoders, 𝑐𝑙  = chance level. For example, when 
computing the generalization index for context decoders over block pairs, for the 8 blocks, 𝑡 is the 
average over training performance of 4 context decoders, 𝑔 is the average performance over 12 
instances of generalization (note: generalization performance of decoders is not necessarily 
symmetric), and chance level is 0.5.  
 
Coding Vector Angles: 
The coding vectors used in all angle analyses are the β coefficients of decoders trained to decode 
task variables, typically task context, in different phases of each experiment. These coefficients are 
the weights returned by the SVM model fitting procedure. They reflect the relative contribution of 
each feature (neuron) to the decoder, with better-tuned neurons to the variable in question being 
assigned higher magnitude coefficients. The coefficients are also signed to reflect which of the 
conditions that feature prefers (e.g. the context assigned to +1 or -1 for binary classification). Class 
label assignment for classification was kept constant to allow for decoder generalization and 
meaningful estimation of the angle between coding vectors for different decoders. Angles between 
coding vectors were computed in by applying the definition of the dot product in N-dimensional 
neural state spaces, where N was the number of neurons included in the given analysis. N was 
matched for all regions within a given analysis so that angles reported in the same plot were directly 
comparable, and not computed using vectors with different dimensions. All angles between coding 
vectors were reported as the average over the 250 repetitions of decoder estimation described above. 
Null distributions were constructed by pooling together all possible pair-wise angles between 
shuffle-null decoders trained as described in the “Trial-Balanced Decoding Analysis” section. 
Angles are computed between: context decoders trained on different block pairs, context decoders 
trained on the baseline and stimulus processing periods, and image category decoders trained on 
different block pairs. In all these cases, the same neurons are used as the features in the two decoders 
between which the angle is being computed, so the neural state spaces are aligned by construction 
and the angle between coding vectors is readily interpretable as an overlap in the coding direction 
for the variable being decoded.  
 
Population Vector Autocorrelation:  
The trial-level autocorrelation of the neural population in each region was estimated computing the 
Pearson correlation between population vectors for every pair of trials present in each experiment. 
For experiment 1, all trials were included in this analysis leading to 3202

 dimensional autocorrelation 
matrices. Population vectors here were sub-sampled to match the smallest number of neurons 
available in any region as previously described so that correlation values were directly comparable 
across regions. For experiment 2, since block lengths were randomized for every block in every 
session, all blocks were sub-sampled in length to match the smallest available number of trials in a 
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given block. Re-sampled estimation of population vector autocorrelation for this experiment was 
simultaneously performed over neurons and trials-in-block. Reported autocorrelation heat maps are 
an average over 250 repetitions of re-sampled estimation, and are convolved with a 2D Gaussian 
filter with a standard deviation of 1 for visualization purposes. All subsequent analysis on population 
autocorrelations was performed on the un-smoothed maps. Block-wise decorrelation curves are 
computed by taking the average pairwise correlation between all trials within the same block for 
block distance 0, average pairwise correlation between all trials one block apart for block distance 
1, and so on. On-diagonal correlations (trial with itself) are ignored to prevent artificial inflation of 
block distance – correlation. Even and odd block distances are colored differently to reflect the fact 
that even block distances correspond to trial-level correlations within the same task context and odd 
block distances correspond to trial-level correlations between different task contexts, since task 
contexts alternated at the block level in both experiments.  

Two metrics are further derived from these curves: the decorrelation rate and the relative 
context modulation. The decorrelation rate for the neural population in each region was quantified 
by performing linear regression on the decorrelation curves and reporting the absolute value of the 
estimated slope. This slope was always negative for all neural populations and time periods 
considered as there was no instance in which the self-similarity of a neural population increased over 
time. The decorrelation rate is reported in units of 𝑏𝑙𝑜𝑐𝑘ିଵ since the slope is an estimate of the 
change in linear correlation of the population (unitless) divided by the block distance, which is 
measured in units of blocks by definition. The relative context modulation is defined as the average 
absolute difference in linear correlation between trials 0 blocks apart and trials 1 block apart, 
normalized by the decorrelation rate. Since the absolute block 0-1 difference is also computed in 
units of 𝑏𝑙𝑜𝑐𝑘ିଵ, the relative context modulation is a unitless quantity that reports the effect of re-
cuing task context on a population of neurons, normalized to the baseline tendency for that neural 
population to decorrelate over time. A relative context modulation of 1 indicates that the change in 
representation experienced by a neural population over the timespan of a block due to intrinsic 
decorrelation and due to explicit cueing of a different task are equivalent, with values greater than 1 
and less than 1 indicating dominance of task-recuing effects and intrinsic decorrelation respectively. 
Reported values for both the decorrelation rate and the relative context modulation are averages over 
the 250 repetitions of re-sampled autocorrelation estimation, and error bars are s.e.m. over these 
repetitions. 
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Results:  
 
The hippocampal context representation is temporally dynamic, whereas MFC is static. 

In the first experiment we analyzed (henceforth Experiment 1), neurosurgical patients 
completed a blocked, context-dependent decision making task. Patients answered binary “Yes vs. 
No” decisions for each image shown according to the currently active context (Fig. 3.1A). The two 
task contexts required answering either a semantic categorization question (“Is the image a member 
of category X?”) or a recognition memory question (“Have you seen this image before?”). These 
task contexts were explicitly provided to patients once at the beginning of every block, and needed 
to be remembered by the patient for the ensuing 40 trials in the block (lasting 115.85s ± 4.31s, mean 
± s.e.m. over blocks). That is, successfully perfomring this task required working memory for the 
task context for up to 2 minutes. Patients completed 320 trials (8 blocks) in each session of this 
experiment, which lasted on average 1100.0s ± 37.1s (mean ± s.e.m. over sessions). The first block 
was always a categorization block and every ensuing block alternated between memory and 
categorization (Fig. 3.1A, bottom). Each trial consisted of a pre-stimulus baseline, followed by 
presentation of the stimulus, which was displayed until patients provided a response. Trial-by-trial 
feedback was not provided. Patients (n = 13) performed sessions (n = 33) of this experiment with 
high accuracy (83.6% ± 1.1%, mean ± s.e.m. over sessions) and with rapid trial-level response times 
relative to stimulus onset for each trial (1.34s ± 0.10s, mean ± s.e.m. over trials). Extensive 
experimental details and behavioral analyses have been provided in our previous work6.  

The activity of 970 single neurons was recorded from the Hippocampus (HPC, 203 neurons), 
dorsal Anterior Cingulate Cortex (dACC, 329 neurons), and pre-Supplementary Motor Area 
(preSMA, 438 neurons) across all sessions (Fig. 3.1B,C). Neurons were differentially responsive to 
several of the high level cognitive variables within the experiment, including task context and 
semantic image category (example HPC neurons shown in Fig. 3.1D,E). Univariate tuning analysis 
performed on firing rates estimated during the baseline (-1s to 0s prior to stimulus onset) and stimulus 
presentation (0.2s to 1.2s after stimulus onset) revealed above-chance tuning to task context during 
the baseline, and task context, image category, and interactions in all three considered brain regions 
(Fig. 3.1F, p < 0.05, full 2-Way ANOVA for context and category during stimulus, 1-Way ANOVA 
for context during baseline). Additional example neurons encoding task context during the baseline 
and stimulus periods from all three regions are shown in Fig. 3.S1. Thus, at the single-neuron level, 
there are neurons whose firing rate is significantly modulated by the instructed task context on 
average across the entire experiment during both stimulus processing and baseline periods. 

To investigate the dynamics of task context representations across the entire duration of a 
block (~2 mins) and the entire task (~20 mins), we first conducted population-level analysis. We 
constructed pseudopopulations of neurons in each region pooled across sessions, and trained linear 
SVMs to decode task context on individual trials during the stimulus and baseline periods (Fig. 3.2A, 
inset, see Methods for details). Task context was significantly decodable in HPC 
( 60.3% 𝑏𝑎𝑠𝑒, 𝑝௕௔௦௘ = 0.007, 71.5% 𝑠𝑡𝑖𝑚, 𝑝௦௧௜௠ = 9.5𝑥10ି଺ ), dACC ( 83.9% 𝑏𝑎𝑠𝑒, 𝑝௕௔௦௘ =
1.4𝑥10ିଵଷ,  91.7% 𝑠𝑡𝑖𝑚, 𝑝௦௧௜௠ = 0 ), and preSMA( 82.9% 𝑏𝑎𝑠𝑒, 𝑝௕௔௦௘ =
6.1𝑥10ିଵହ,  99.9% 𝑠𝑡𝑖𝑚, 𝑝௦௧௜௠ = 0). All reported p-values are computed against a null distribution 
of retrained, trial-label shuffled decoders, only correct trials were used for decoder training/testing, 
and all decoders were matched for number of neurons and number of trials per condition through 
random sub-sampling unless otherwise specified.  

Since the above analysis relied on pooling trials across the duration of each session, we next 
asked how stable the representation of task context was throughout each session. If the representation 
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were static, decoders trained to discriminate task context during one part of the experimental session 
should generalize to other parts of the session. If, on the other hand, the task context representation 
were dynamic, then context decoders trained in one part of the session should perform poorly when 
generalized to other parts of the session. Context decoders were trained on adjacent block pairs, each 
of which contained one task context due to the alternating structure of the experiment. Generalization 
to increasingly distant block pairs reveals a locally decodable context variable that does not 
generalize across time during stimulus processing in HPC (Fig. 3.2B; as indicated by higher on-
diagonal vs. off-diagonal decoding accuracy). In contrast, the code for context in preSMA (Fig. 3.2C) 
and dACC (Fig. 3.2D) generalized well across time, with high decoding accuracy both on and off-
diagonal (see below for quantification).  

We quantified the relative degree of cross-temporal decoder generalization by computing a 
generalization index that captures decoder generalization performance normalized by cross-
validated testing performance on the same period of time (see Methods). For the cross-temporal 
analysis, a generalization index of 0 indicates that none of the encoding of the task context variable 
in the training blocks is present in the blocks to which the decoder was generalized. A generalization 
index of 1, on the other hand, indicates that the context variable is as decodable in the generalized 
blocks as it was in the training blocks. Generalization index analysis revealed that both dACC (Fig. 
3.2E, blue vs red, 𝑝 < 0.001, Permutation test) and preSMA (Fig. 3.2E, blue vs red, 𝑝 < 0.001, 
Permutation test) exhibited significantly greater cross-temporal context generalization than the HPC.    

Since high decoder performance could, in principle, be driven by a small number of well-
tuned neurons, we also computed the angle between context coding vectors in each block pair. We 
define the coding vector here to be the normal vector to the hyperplane learned by each decoder 
during training. In this analysis all neurons have equal weight, making it insensitive to tuning of only 
a small subset of neurons. We find that pairs of context coding vectors between any two block pairs 
significantly differ from orthogonal both during the stimulus period for dACC (Fig. 3.2F, blue, 76.5º, 
𝑝 < 0.001 against shuffle null) and preSMA (Fig. 3.2F, green, 59.0º, 𝑝 < 0.001 against shuffle 
null), indicating significant context coding vector alignment across block pairs. In HPC, on the other 
hand, context coding vector angles did not significantly differ from orthogonal across block pairs 
(Fig. 3.2F, red, 88.5º, 𝑝 = 0.46 against shuffle null). Note that angles here are computed in a 150-
dimensional space constructed by sub-sampling neurons randomly over iterations. All of the above 
cross-temporal context generalization findings were also present during the baseline period for the 
three regions (Fig. 3.S2), with the notable exception that the cross-block pair generalization index 
did not significantly differ between dACC and preSMA (Fig. 3.S2D, blue vs green).   

Together, these findings indicate that the code for task context is dynamic in the HPC. In 
contrast, in the MFC, context coding is static. What about the neuronal responses in the HPC causes 
the code to be dynamic? One possibility is that individual HPC neurons do not reliably represent a 
given task context throughout a session. This stands in contrast to preSMA and dACC, where 
generalizing context decoders imply that single neurons in these regions represent task context with 
a more static rate code. To test this prediction, we fit 2-Way ANOVAs on every neuron individually 
with two categorical regressors for block number and task context. We reasoned that for activity of 
neurons supporting cross-temporal generalization, the main effect of task context would explain 
more variance than the block number main effect (and vice versa for neurons supporting a dynamic 
code). We therefore next compared the amount of variance explained by the two main effects (ΔF-
statistic, see methods). Variance in single-neuron responses in the hippocampus was on average 
better explained by the block-specific regressor during both stimulus (Fig. 3.2G, red,  𝑝 = 0.017, 
Student’s t-test) and baseline (Fig. 3.S2F, red,  𝑝 = 0.02, Student’s t-test) periods. In dACC and 
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preSMA, on the other hand, the task-context regressor explained significantly more variance during 
the stimulus (Fig. 3.2G,  𝑝௚௥௘௘௡,  𝑝௕௟௨௘ < 0.001 ), but not during the baseline (Fig. 3.S2F, 
 𝑝௚௥௘௘௡,  𝑝௕௟௨௘ > 0.0 1) period, though the general trend remained. Thus, the cross-block pair 
generalization pattern in these regions can be accounted for by different encoding strategies at the 
level of single-units. These differences in encoding strategy can be directly visualized by plotting 
rasters and PSTHs of neurons spanning entire blocks, revealing that dACC (e.g. Fig. 3.2H, 3.S3A) 
and preSMA (e.g. Fig. 3.2I, 3.S3B,C) neurons exhibit task context modulated firing that persists for 
the duration of entire blocks, while such features are absent from HPC neurons (e.g. Fig. 3.S3D-F). 

These analyses together indicate that, while instructed task context is decodable in neural 
populations in frontal and temporal brain structures, the implementation of that context 
representation varies considerably. While medial frontal cortical context representations generalize 
across time, the task context representation in the hippocampus appears to reorganize dramatically 
across time to the point that it is orthogonalized at adjacent timepoints separated by the span of a few 
minutes. 

 
Control analyses for context and image category representations. 

The dynamic code for task context on the timescale of blocks in the hippocampus raised 
several questions we next addressed. First, were shifts in the context representation over time  driven 
by abrupt changes at the beginning of each block, leaving a static context representation within each 
block? Alternatively, were there within-block changes in the context representation that could lead 
to context code orthogonalization even within a given block? Second, can the temporal 
stability/instability of the context representation in different regions can be explained by tuning 
strength differences of single-neurons and/or by recording instability? 

To address the first question, we performed a block-half decoding and generalization analysis 
where decoders for task context were trained using data from the first half and second half of every 
block, then evaluated on the second half and first half respectively. If the hippocampal context 
representation exhibited within-block dynamics, then first- and second-block half decoders should 
fail to generalize. If, however, the context-code remains static within individual blocks, then a 
context decoder trained on the first block half should do approximately equally well on the second 
block half (and vice versa from second to first). We find that for HPC, dACC, and preSMA, context 
decoders trained on one block half generalized well to the other block half during both the stimulus 
period (Fig. 3.S4A-C) and the baseline period (Fig. 3.S4D-F). The block-half generalization indices 
were close to 1 for all three regions (Fig. 3.S4C,F). This data indicates that the context code within-
block is stable for all three regions, suggesting that the dynamic code is due to changes that occur at 
the transition between blocks. 

Next, to address the possibility that representational stability in the MFC arose due to neurons 
in dACC and preSMA being more strongly univariately tuned to task context to begin with, we 
matched the distribution of single neuron ANOVA F-statistics for the main effect of context across 
the three regions before re-computing cross-block pair context decoding (see Methods for details). 
Following distribution matching, 174 neurons remained in each area for the subsequent cross-block 
pair analysis. This analysis revealed that the cross-block pair generalization indices for context 
remain qualitatively unchanged for the three regions during both the stimulus (Fig. 3.S4G,H) and 
baseline (Fig. 3.S4I,J) periods, and thus that the stability of the context code in dACC and preSMA 
cannot be explained by stronger univariate context coding at the level of single neurons. 

To demonstrate that the temporal stability of the context code in each region was robust to 
variation in trial and block duration within the experiment, we also re-conducted the cross-block pair 
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stability analysis in isolation on the subset of neurons recorded during sessions where a control 
variant of this experiment was used (6 sessions, 36 HPC, 75 dACC, 87 preSMA neurons). This 
variant required patients to wait for a 0.5-1.5-second period following stimulus offset and until the 
onset of a response cue to provide their response to each trial. This change was applied to both 
categorization and memory trials. For these experimental sessions, mean trial duration was 2.47s ± 
0.04s (vs 1.08s ± 0.05s in non-control session) and mean block duration was 162.54s ± 1.83s (vs 
105.47s ± 2.23s in non-control sessions). We reasoned that the ~250% increase in trial duration and 
~60% increase in block duration might encourage stabilization of the hippocampal context 
representation as context-appropriate behavior needed to be maintained over even longer periods. 
Analysis of this data revealed, again, that dACC and preSMA exhibited significantly greater cross-
block pair context stability both during stimulus (Fig. 3.S4K) and baseline (Fig. 3.S4L) periods, so 
the modifications in the control variant of experiment 1 did not qualitatively affect the temporal 
stability of the task context representation present in the three regions.  

To address the question of recording stability, we analyze the geometry of a second task 
variable, image category, that is known from other work to be encoded by HPC neurons in a static 
manner7,32,33. We thus examined the temporal stability of the encoding of category as a control. To 
do so, we conduct an identical cross-block pair generalization analysis, but decoding image category. 
If the image category code, which is simultaneously encoded alongside the task context 
representation during stimulus processing, also appears to reorganize across block pairs, then the 
lack of decoder generalization shown here could trivially arise due to recording instability in the 
hippocampus. However, we find that image category was decodable from all three regions, most 
prominently in the HPC (59.5%, 𝑝 = 0, against shuffle null; chance=25%, Fig. 3.S5A,B). The 
image category code was uniquely static in the hippocampus, with a significantly greater 
generalization index than MFC (Fig. 3.S5C-F), and significantly overlapping image category coding 
vectors between adjacent block pairs (Fig. 3.S5G). Furthermore, the image category coding vectors 
were orthogonal to the context coding vector during the stimulus period in all three regions (Fig. 
3.S5H). This analysis shows that, in the same group of neurons, image category is encoded in a static 
manner without reorganization over time. Thus, the temporally dynamic encoding present in the 
same group of neurons is a property specifically of the task context variable.  

Taken together, these analyses suggest that the code for context is relatively static within a 
given block in all regions including the hippocampus. In contrast, the code for context changes across 
consecutive block pairs in the hippocampus, and this effect cannot be explained by weaker context 
tuning at the level of single-neurons, or by an overall lack of recording stability as other 
simultaneously encoded task variables did exhibit cross-temporal stability.   
 
Hippocampal neural population exhibits faster temporal dynamics than MFC. 
The hippocampus is frequently studied for its role in contributing to episodic memory through the 
representation of temporal context46,47,50. One way temporal context representations are implemented 
is through slow, gradual drifts in neural population activity within the hippocampus. We next asked 
whether such slowly changing temporal context representations were present in our data, and if so, 
how they were related to our finding of the encoding of task context. To do so, we examined neural 
population dynamics with single-trial resolution over the timescale of the experiment (~20 mins) in 
a decoder-agnostic manner. The autocorrelation of the population response (see methods) revealed 
a striking pattern: during the stimulus period, the HPC neural population response gradually and 
continually decorrelated as indicated by positive near-diagonal population vector correlations and 
increasingly negative correlations with increasing trial distance (Fig. 3.3A). The preSMA, on the 



 99

other hand, exhibited a checkerboard-like autocorrelation pattern, with alternating groups of trials 
corresponding to individual blocks exhibiting positive within-context correlation and negative 
across-context correlation at trial-lags spanning the entire experiment (Fig. 3.3C). A qualitatively 
similar checkerboard pattern emerged in the dACC population-vector autocorrelation (Fig. 3.S6E). 
The same analysis performed during the baseline revealed qualitatively similar, but less visually 
pronounced results in all three areas (Fig. 3.S6A,C,G). These plots qualitatively track their respective 
cross-temporal generalization plots in Fig. 3.2, 3.S2, and were reproducible in a single patient 
(P44CS) who happened to provide enough simultaneously recorded neurons (37 HPC, 62 preSMA) 
such that the analysis could be performed for some regions. 
Using the population-vector autocorrelation plots, we computed block-averaged autocorrelation 
curves (decorrelation curves) for each region, which plots the average correlation of pairs of trials as 
a function of the block distance of those trials, with 0 indicating trials in the same block, and so on 
(see Methods). These decorrelation curves show that the population response decorrelated in all brain 
areas (Fig. 3.3B,D) during both the stimulus and baseline period (see Fig. 3.S6 for dACC). Thus, all 
three regions exhibit some degree of gradual decorrelation in their context representation at the 
population level. However, the HPC neural population decorrelated (see methods) significantly more 
rapidly than the dACC and preSMA during both the stimulus and baseline periods (Fig. 3.3E, red vs 
green and red vs blue,  𝑝௦௧௜௠ < 0.001, 𝑝௕௔௦௘ < 0.001  RankSum). In contrast, in the MFC, 
decorrelation speed did not differ significantly between dACC and preSMA (Fig. 3.3E, blue vs 
green,  𝑝௦௧௜௠ > 0.05, 𝑝௕௔௦௘ > 0.05 RankSum). We also repeated the estimation of decorrelation rate 
separately for blocks in which the task was the categorization or memory task. This revealed that 
that decorrelation rate was not significantly different between the categorization and memory task 
contexts for any region during both stimulus and baseline periods (Fig. 3.S6I-N, blue vs red, all 𝑝 >
0.05 RankSum). Thus, while there were systematic differences in the decorrelation rate between 
HPC and MFC, these differences did not depend on the specific task being performed at any 
individual point during the experiment. 

Did the gradual decorrelation in the hippocampal neural population cause the temporally 
dynamic context code we found? If so, the task context representation of blocks of the same task 
(two blocks apart) would be twice as decorrelated as the representation of the opposite task (one 
block apart). To test whether this was the case, we computed the relative context modulation, which 
we defined as the average reduction in correlation from block distance 0 to block distance 1 
normalized by the decorrelation rate. Relative context modulation is a unitless indicator of the degree 
to which explicit changes in task context shift the neural representation while accounting for 
simultaneously occurring decorrelation (see Methods for details). We found that all three areas 
significantly differed from each other in their relative context modulation, with the preSMA and 
dACC exhibiting stronger context modulation effect (Fig. 3.3F, green, RCM = 20.0, blue, RCM = 
12.8) and the HPC exhibiting the weakest effect (Fig. 3.3F, red, RCM = 3.2). These values indicate 
that the effect of task context switching is ~3 times greater at driving changes in the HPC neural 
population as intrinsic decorrelation, whereas in medial frontal cortical structures the task-switching 
is ~10-20 times stronger. A similar qualitative pattern was observed during the baseline, but with the 
dACC exhibiting greater relative context modulation than the preSMA (Fig. 3.S6O). Thus, while the 
decorrelation rate of the hippocampal neural population is high, it exists alongside an even larger 
task context encoding effect. Decorrelation alone can therefore not explain the cross-temporal 
context instability we find in our data in the HPC.  

These population-level autocorrelation analyses demonstrate that, while on short timescales 
within a block, all regions show a high degree of self-similarity, the hippocampus decorrelates more 
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rapidly and is less consistently modulated than the medial frontal cortex by the re-entry into 
previously encountered task contexts.  
 
The dACC context representation generalizes between stimulus and baseline periods. 
The context representations present in HPC, dACC, and preSMA during the baseline and stimulus 
periods share many properties with respect to their long-range (experiment-level) temporal 
dynamics, but the relationship between the two remains unclear at the timescale of a single trial (~2 
seconds). Jointly tuned context neurons during the stimulus and baseline that retain their task 
selectivity (e.g. Fig. 4A), would support a context code that generalizes between the two trial periods. 
However, a plethora of context-tuning properties is present including neurons that are context tuned 
in one trial period and not the other (e.g. Fig. 3.S1A-D), and neurons that invert their preferred task 
between trial periods (e.g. Fig. 3.S1E-F). Thus, to clarify the relationship between the baseline and 
stimulus context codes, we directly compare the two at the population level. 
We first compared the fraction of neurons that were jointly context tuned during the baseline and 
stimulus periods using separate 1-Way ANOVAs for context (p < 0.05 significance) in each time 
period. The fraction of jointly tuned neurons was greater than would be expected by chance in all 
areas (Fig. 3.4B, purple, HPC = 18.0%, dACC = 19.1%, preSMA = 15.8%, all  𝑝 < 0.05 using 
Fisher’s Exact Test). We next performed cross-trial period generalization analysis using decoders 
trained for context between the baseline and stimulus. Mean generalization decoding accuracy, 
reported as an average over baseline-to-stimulus and stimulus-to-baseline generalization, was 
significantly above chance for all three regions (Fig. 3.4C,  𝑝 < 0.001 against Shuffle Null). When 
computing the generalization index, we found that the dACC was significantly greater than HPC 
(Fig. 3.4D, blue vs red, 𝑝 < 0.05, permutation test) and preSMA (Fig. 3.4D, blue vs green,  𝑝 <
0.0 5, permutation test), indicating that dACC exhibited the most temporally stable context 
representation within the span of a trial. This finding was further confirmed by the angle analysis 
performed between the baseline and stimulus context decoders, which revealed that only dACC 
context coding vectors significantly differed from orthogonal (Fig. 3.4E, blue,  𝑝 = 0.0005, against 
shuffle null), whereas HPC (Fig. 3.4E, red,  𝑝 = 0.02, against shuffle null) and preSMA (Fig. 3.4E, 
green,  𝑝 = 0.02 , against shuffle null) context coding vectors weakly significantly differ from 
orthogonality when comparing baseline and stimulus. Together, these findings indicate that, while 
there may be some shared neural substrate between the baseline and stimulus context representations 
in all three areas, the dACC uniquely features a context representation that generalizes on the within-
trial timescale, a property that separates it electrophysiologically from being grouped with the 
preSMA. In the hippocampus, the high baseline-stimulus generalization index indicates that the task 
context representation is largely common between these two time periods.   
 
The hippocampal context representation stabilizes under different experimental conditions. 

Is the temporal stability of context representations in the brain an immutable property 
intrinsic to each region, or can it vary as a function of experimental setting? Our analysis indicates 
that, within a given experiment, the temporal stability of the context representations does not change 
across alternating tasks (Fig. 3.S6I-N). Does this trend hold true in the limit of a completely different 
experiment? We next examined data from a second experiment (experiment 2) that, though 
structurally similar to experiment 1 (baseline, stimulus periods, blocks of trials, changing context, 
binary responses to visual stimuli, etc…), featured several key design differences that place 
processing demands on the hippocampus that differed significantly from experiment 1. 
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In experiment 2, patients were rewarded for providing correct binary responses to visual 
stimuli, with the specific stimulus-response associations learned through trial and error. There were 
two latent contexts, each specified by a different stimulus-response-outcome map, that alternated 
covertly in a blocked manner, and patients learned to perform inference on the current context 
through outcome signals provided after every trial (Fig. 3.5A). No explicit context-switching 
instructions were provided during experiment 2 sessions. Both experiments featured a binary context 
variable, block structure of similar trial length, a stimulus-identity related variable with four levels, 
and comparable baseline and stimulus trial periods on which single-neuron and population-level 
analyses could be performed. These commonalities in the trial-level and block-level structure 
between experiment 2 and 1 allow for a direct comparison of the encoding strategy employed by the 
brain at the single-neuron level to represent task-context variables of different kinds that are present 
in different experimental settings (see Methods, Discussion for detailed description of similarities 
and differences). 

In experiment 2, 17 patients completed 42 sessions (180-320 trials/session, 10-16 
blocks/session), with novel stimuli and stimulus-response-outcome maps that needed to be re-
learned at the start of each session. Of these, only sessions where patients exhibited a significant 
behavioral signature of performing inference on the state of the latent context following covert 
context switches were considered for analysis. We only considered hippocampal neurons here 
because our prior work shows that latent context is only represented in the hippocampus (and not the 
MFC) during both the stimulus and baseline periods in this experiment (see 12). Based on these 
constraints, 325/499 recorded HPC neurons from 12/17 patients in 19/42 sessions of experiment 2 
were included for analysis. HPC neurons exhibited tuning to context during both the baseline (1-
Way ANOVA, p < 0.05 significance, example in Fig. 3.S8A), and to context and stimulus identity 
during the stimulus period (2-Way ANOVA with interactions, p < 0.05 significance, examples in 
Fig. 3.S8A,B). The percentage of HPC neurons tuned to context and stimulus identity was not 
significantly different across the two experiments (Fig. 3.S8C, base context, 10.3 vs 13.2%, p = 0.32, 
stim context, 22.1 vs 16.3%, p = 0.09, stimulus identity, 17.2 vs 18.5%, p = 0.72, Chi-square test). 
Furthermore, the average ANOVA F-statistic for tuned neurons to context during the baseline or 
stimulus period was not significantly different between the two experiments (Fig. 
3.S8D , 𝑝௕௔௦௘, 𝑝௦௧௜௠ > 0.05 , RankSum over neurons). These analyses indicate that single 
hippocampal neurons generally exhibited similar univariate tuning properties across the two matched 
trial periods in the two experiments considered here.  

To compare the population-level context code employed by the hippocampus in the two 
experiments, balanced decoding analysis was once again performed during the baseline and stimulus 
periods of both experiments while matching the number of neurons and correct trials per condition 
across the two experiments. Task context was significantly decodable from the hippocampus in all 
four conditions (Fig. 3.5D,  𝑝௕௔௦௘ = 0.009,  𝑝௦௧௜ = 1.6𝑥10ି଺,  𝑝௕௔௦௘ = 9.4𝑥10ି଻,  𝑝௦௧௜௠ଶ =
3.7𝑥10ିହ, using shuffle null distribution). Decodability of context from Exp 1 stimulus, Exp 2 
stimulus, and Exp 2 baseline all did not differ significantly from each other ( 𝑝௦௧௜௠ଵ,௕௔௦௘ > 0.05, 
 𝑝௦௧௜௠ ,௦௧௜௠ଶ > 0.05,  𝑝௕௔௦௘ଶ,௦௧௜௠ > 0.05, Permutation Test).  

Cross-temporal context decoder generalization (Fig. 3.S8E-H) and subsequent generalization 
index analysis revealed significantly greater generalization indices in experiment 2 when comparing 
baseline (Fig. 3.5E, baseline, red vs red,  𝑝 < 0.01, permutation test) and stimulus (Fig. 3.5E, 
stimulus, blue vs blue 𝑝 < 0.01, permutation test) across experiments respectively. Notably, cross-
temporal generalization indices for context during the stimulus period are greater in experiment 2 
despite the fact that univariate tuning to context was significantly greater on average at the single-
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unit level in experiment 1 (Fig. 3.S8D), and context decoding accuracy did not significantly differ 
between the two (Fig. 3.5D, stimulus, blue vs blue 𝑝 > 0.05, permutation test). These analyses 
indicate that, from a decoding standpoint, the hippocampal code for context is significantly more 
temporally stable across blocks in experiment 2 compared to experiment 1 during both stimulus and 
baseline periods, and these effects do not arise from a greater number or more strongly univariately 
context tuned neurons in experiment 2.  

The increased cross-temporal stability of the hippocampal context representation in 
experiment 2 suggests that the self-similarity of the neural representation is increased at longer 
timescales when compared to experiment 1. This prediction was formally tested by performing 
population-vector autocorrelation analysis on both experiments and comparing both the 
decorrelation rate and the relative context modulation as was previously performed in experiment 1. 
These analyses revealed that the hippocampal decorrelation rate was significantly slower in 
experiment 2 than in experiment 1 during both the stimulus and baseline periods (Fig. 3.5F, 3.S8I-
L). The relative context modulation was also significantly elevated in experiment 2 compared to 
experiment 1 during both the stimulus (Fig. 3.5G) and baseline (Fig. 3.S8N) periods. Taken together 
with the cross-temporal decoding analyses, these findings indicate that the hippocampal neural 
population was significantly more stable, exhibiting less decorrelation over the timescale of the 
experiment and maintaining a more stable representation of the task context. 

Given the decodability of context during both the stimulus and baseline periods of 
experiment 2, we next compared the format between the two time periods through baseline/stimulus 
context decoder generalization analyses. We found that the context baseline-stimulus generalization 
index was significantly greater for the hippocampus in experiment 2 than in experiment 1 (Fig. 3.5G, 
Exp 1 vs Exp 2, 𝑝 = 3.9𝑥10ିସ RankSum), with coding vectors that deviated significantly from 
orthogonality (90 deg) for the experiment 2 and weakly in experiment 1(Fig. 3.2G, angle vs. chance 
𝑝ா௫௣ ଵ = 0.036, 𝑝ா௫௣ ଶ = 3𝑥10ିସ ). These findings suggest that the persistent representation of 
context generalizes across time periods within an individual trial in experiment 2. Thus, taken 
together, these analyses indicate that the latent context variable in experiment 2 is encoded in in a 
more temporally stable manner simultaneously at the timescale of a single trial (~2s) and at the 
timescale of the experiment (~20min) in the hippocampal representation.  
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Discussion: 
The encoding strategies employed by different regions in the human frontal and temporal 

lobe can vary considerably for even simple, binary cognitive task variables whose representation 
must be persistently maintained to support behavior on long timescales. Here, we have demonstrated 
that neural populations in the human medial frontal cortex form a temporally stable representation 
of instructed task context that persists over many minutes in the absence of re-cuing both during 
baseline periods and stimulus processing periods (Fig. 3.2). The hippocampus, on the other hand, 
employs several surprising implementational strategies at the level of single-neurons to encode a 
representation of task context. We have shown that representations of instructed task context are 
encoded dynamically in the hippocampus when considering relatively long (~30 minute) time 
periods of persistent behavior, unlike the temporally static task context representations present in the 
medial frontal cortex (Fig. 3.2). Dynamic changes in task context encoding occurred rapidly at task 
boundaries with stable coding within blocks (Fig. 3.S4), and is not an artefact of weakly tuned 
neurons (Fig. 3.S4). Also it is not a result of recording instability, as the image category is stably 
encoded across the task in the HPC (Fig. 3.S5). While neurons in all areas were found to exhibit 
decorrelation over experiment time-scales (Fig. 3.3), the effect was slower in medial frontal cortex, 
with MFC neurons being statically modulated by task context across blocks (Fig. 3.2, 3.3, 3.S3) and 
across trial periods (Fig. 3.4), unlike the hippocampus. A temporally dynamic context representation 
is not an immutable feature of hippocampal neurons, however, as under different experimental 
conditions, the hippocampal context representation simultaneously stabilized across trial periods and 
across experimental blocks (Fig. 3.5). 

 
Medial frontal cortical neurons representing task context 

Medial frontal cortical structures in the primate brain have long been appreciated for their 
role in maintaining representations of task context variables that support persistent behaviors. 
However, previous single-neuron studies in non-human primates frequently provide task context 
cues on a trial-by-trial basis, thus obviating the need to maintain the instructed variable beyond a 
single trial. Various computational models have been proposed that account for the static and 
dynamic codes employed by these frontal cortical neurons, but again only apply to the dynamics for 
a single trial on the timescale of 1-2 seconds. Here, subjects maintained an instructed task context 
over many 10’s of trials and many minutes without re-cuing. In experiment 1, we demonstrated that 
the encoding structure for instructed task context shares many commonalities between neurons in 
the two regions, including cross-temporal stability of the context representation across long 
experimental periods during both stimulus and baseline, a slow rate of population-level decorrelation 
over time within-context, and a relatively large degree of neural population modulation with context 
re-cuing. There are clear computational advantages for a network to employ such a static context 
representation, most notably the ability of a downstream region to read out the current task context 
arbitrarily long after the cue has been provided. Thus, the presence of medial frontal cortical context 
representations that generalizes across arbitrarily long and variable time periods could facilitate the 
ability of the individual to flexibly maintain persistent behavior accordingly. Various neural network 
architectures employed over the last decade, including different kinds of recurrent neural networks 
and transformer-based networks51,52, famously struggle with generalization to sequence lengths 
outside of their training distribution, a flaw which could be ameliorated by encouraging the learning 
of temporally disentangled representations similar to those we observe in the medial frontal cortex. 
We note that, in experiment 1, even though the block length was predictable, the long block length 
(40 trials) and the lack of end-of-block anticipatory behavioral effects suggests that patients were not 
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actively keeping track of their progress through each block, and were prepared to continue 
responding appropriately beyond 40 trials.  

What mechanism could allow for a neural code of task context to be persistently maintained 
for such long periods of time? Note that assuming a spike train autocorrelation time constant τs = 
350msec for MFC53, the ratio to the average block duration B/τs, during which the context 
representation was stable, is on the order of 300 (450 for the control variant) in experiment 1. Various 
circuit-level mechanisms, including recurrent excitation and short-term synaptic plasticity54,55, do 
provide potential explanations for the increased window of temporal integration exhibited by primate 
frontal cortical neurons, and account for both static and dynamic codes those neurons exhibit. 
However, these models and analyses are limited to the duration of single-trials in working memory 
tasks, and representations of task context variables do not need to be maintained for more than 2-3 
seconds during those delays. Neurons in some of these models can exhibit long time constants (up 
to 4 seconds in Area 24)56, but it is unclear if such models can explain task variable coding activity 
that persists 2 orders of magnitude longer. Our work here calls attention to the lack of neural circuit-
level models that are matched to this intermediate timescale of instructed human behavior and 
persistent neural activity.   

In several cognitive tasks, neurons recorded in the dACC and preSMA of humans have been 
found to respond similarly to task variables, and are summarily grouped for population-level 
analysis. Here, one feature in which these two regions strongly diverge is their degree of baseline-
stimulus context generalization, with dACC neurons exhibiting considerably greater context coding 
direction alignment between the two trial periods when compared to preSMA. These findings 
support the role of the dACC as a temporal storage buffer for context variables that influence 
behavior in a temporally extended way, since one might expect that a storage buffer would need to 
stably encode the variable it has buffered to facilitate flexible readout. When specifically compared 
to the preSMA, the difference in temporal stability of the context code across trial phases could result 
from intrinsic differences in recurrent excitation and spike train autocorrelation of neurons in these 
regions, which have been observed to be longer in the Anterior Cingulate Cortex when compared to 
more caudal frontal cortical regions53,55,57. The lack of baseline-stimulus context generalization could 
also arise from fundamental differences in circuit-level computation in the preSMA that lead to 
stronger non-linear interactions between persistently maintained context variables and incoming 
stimulus information, as choice signals were observed to be more prominent in the preSMA than 
dACC in our previous work6. More extensive psychophysical experimentation and widespread 
frontal cortical recording is needed to provide answers for such questions. 

 
The logic underlying static and dynamic hippocampal codes for task variables  

The cognitive map formed by hippocampal neurons has been extensively studied for its 
encoding of a wide variety of variables in support of flexible behavior. Here, we considered variables 
that can be split into two different categories: task context variables, which determine the appropriate 
response for many different stimuli, and stimulus variables, which encode identity or category 
information about a currently presented visual stimulus. The task context variables in these 
experiments also differed from stimulus variables in that their value was not re-cued trial by trial, 
and needed to be remembered for many minutes at a time in order to complete both experiments. 
We mainly focused our analysis on the hippocampal representation of task context variables, and 
found that the code for task context in experiment 1 was dynamic, orthogonalizing over time as 
patients transitioned between task contexts across blocks. This feature of the task context code stands 
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in contrast to the temporally static codes observed in MFC, and despite the fact task context was 
significantly decodable in all three regions.  

Given the computational benefits of a temporally static representation discussed in the 
previous section, why would the hippocampus employ such a different code for task context? Several 
non-mutually exclusive potential explanations exist. First, it is possible that the presence of static 
MFC task context codes could obviate the need for temporal stability in the hippocampal context 
representation. If a static code persists elsewhere, the hippocampus is free to return to its “default” 
state of internally generated cell assembly sequences, which do not cross-temporally generalize43. 
This explanation could also account for the increased cross-temporal stability in the hippocampal 
context code observed in experiment 2, in which frontal cortical context representations were largely 
absent12. A related explanation pertains to the task context explicitly being signaled in experiment 1, 
whereas in experiment 2 context was a latent variable whose state was inferred through feedback. 
The hippocampus is known to support various kinds of inference behaviors in animals11,58–60, and 
bilateral temporal lobectomy patients are unable to perform tasks with inferred rules such as the 
Wisconsin Card Sorting Task61, which is similar to experiment 2. Clearly, these patients are 
nonetheless able to encode and follow language-based instructions similarly to experiment 1. Thus, 
the hippocampal context representation may stabilize across time specifically when it is needed to 
support persistent behavior, i.e. when the task context variables are latent and must be inferred and 
are not persistently encoded elsewhere in the brain.  

The hippocampus plays a prominent role in memory formation, and the presence of episodic 
memory demands in experiment 1 could create a demand for the hippocampus to encode the passage 
of time, i.e. the current temporal context, alongside the instructed contexts in experiment 1. In 
experiment 1, the activity of single hippocampal neurons was better accounted for by block-specific 
tuning, and as a population the neurons exhibited continual decorrelation on the timescale of minutes 
that was comparable in magnitude to the effect of switching tasks between blocks (hippocampal 
RCM = 3.2).  The encoding of time in the human hippocampus is achieved at the single-neuron level 
through time cells and ramp cells42, and at the population level by sequential firing of these neurons 
so that the passage of an interval of time can be decoded from these neurons by a downstream 
readout. Furthermore, our group has previously demonstrated that temporal context reinstatement 
effects are present in hippocampal neurons47. Here, the hippocampus multiplexed temporal context 
information with task context information such that both variables were simultaneously decodable 
from the same neural population, possibly reflecting the association of multiple behaviorally relevant 
high-level context variables62. Such temporal context encoding may have been absent from 
experiment 2 due to the small number of stimulus-response associations to be remembered and the 
lack of behavioral demand to perform episodic recall. Unfortunately, the data and experiments here 
are unable to arbitrate between the above potential explanations for the differences in task context 
representations across the three areas, and new experiments are needed to address these points as 
well as other potential confounding factors (see Experimental Limitations). Nevertheless, 
characterizing the differences in task context encoding strategy employed by the hippocampus across 
different experiments and when compared to MFC is an important first step in characterizing unique 
properties of the hippocampal cognitive map.  

What strategies are employed by the hippocampus for organizing the simultaneous 
representation of task context variables and stimulus variables in the same neural state space? 
Evidence from modern systems neuroscience points towards the hippocampus simultaneously 
exhibiting high and low dimensional properties in its state space representation of the environment, 
where combinations of these variables are mixed to varying degrees, allowing for flexible readout 
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for many downstream tasks while retaining some advantageous geometric properties that allow for 
generalization of one variable across others11,12,63,64. Here, we have demonstrated in two different 
experiments that hippocampal representations of stimulus variables are orthogonally encoded with 
respect to the blocked task context variables and the passage of time. Could the segregation of 
stimulus and context variables into orthogonal subspaces be a general feature of hippocampal 
representations? Place-field-like coding across conjunctions of variables is frequently seen in the 
hippocampal representations of rodents and  non-human primates, arguing against this segregation 
as a general property of the hippocampus65–67. However, this may strictly be a property of human 
hippocampal representations, and the disentangling of stimulus and context codes may underlie the 
rapid learning and generalization behaviors exhibited by humans when compared to other 
species11,12,68. 

 
Experimental Limitations 
Several features of the experiments and data used in this study limit our ability to draw conclusions 
about the cause of observed differences in neural activity, particularly in the hippocampus. The 
comparison between the two experiments shown here relies on similarities in high-level structure 
(i.e. same number of stimulus categories, blocked contexts, trial structure, etc…), but there are many 
salient differences between the two that could have contributed to the differences in task context 
representation that we observed. The first difference is the increased block length (40 trials/block, 8 
blocks) and fully predictable context switches in experiment 1 compared to shorter blocks and more 
frequent, un-predictable switches in experiment 2 (15-32 trials/block, 10-16 blocks). More frequent, 
less predictable switches in environmental context variables could encourage a disentangled, or 
compositional hippocampal task representation, including disentangling from the passage of time 
throughout the experiment. The second difference relates to the language-based prompting of task 
contexts in experiment 1 and not experiment 2. Language-based instructions are invariant by 
construction, and support the emergence of systematically structured frontal cortical BOLD fMRI 
responses that have been studied extensively69,70. It is possible that the presence of such structured 
representations in the cortex obviates the need for forming such structured representations in the 
hippocampus for cortex to subsequently read out, which would not be possible in experiment 2 since 
the two contexts in that case have no associated language-based prompts. Third, the need to perform 
inference on the current state of the context through feedback in experiment 2, a behavioral process 
for which the hippocampus is thought to be necessary, might also encourage context stabilization 
across time. The fourth difference is the behavioral demand for episodic recall in experiment 1 and 
not in experiment 2. The behavioral pressure to reinstate many distinct old images could have 
encouraged the tracking and mixing of temporal context with the task context representation in 
experiment 1, unlike experiment 2 where memory of stimulus-response associations was needed, but 
not episodic recall per se. Fifth, the continual presentation of new images in addition to old images 
in experiment 1 could also have influenced the decorrelation rate, as each task block is more 
episodically distinct by virtue of encountering novel stimuli, whereas in experiment 2 the same four 
stimuli were used throughout each session. A sixth consideration for the data analyzed here is that 
the patients groups that completed the two experiments were strictly non-overlapping, with 
recordings for experiment 2 commencing several months after those for experiment 1 had concluded. 
Even though electrodes were implanted in the same general location of the anterior hippocampus 
using the same modern standard-of-care surgical procedure, individual differences between the two 
patient groups could still correlate with the mean difference in hippocampal neuronal activity 
observed between the two experiments.  
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We were also unable to perform temporal context reinstatement analysis in experiment 1 for 
two reasons. First, the lack of patient confidence ratings and the repeated presentation of “old” 
stimuli. In previous work47, we utilized trial-level confidence rating to disambiguate memory task 
trials that were solved through episodic recollection instead of familiarity, which could also be used 
to complete the memory task without episodic recall. Here, patients did not give trial-level 
confidence ratings, preventing us using this approach to identify instances where the hippocampal 
temporal context might have been reinstated. Second, the repeated presentation of “old” images, 
once each in both the categorization and memory blocks, creates an ambiguity as to which episode 
of previous presentation is being recalled in the event of episodic recall. For example, during block 
8, a patient might be recalling their having seen the image in block 7, or in block 1, and different 
patients might recall presentations of the same image from different blocks when answering a given 
trial. Thus, both single-patient and pseudopopulation approaches to temporal context reinstatement 
analyses are confounded here.  

 
Conclusion and Future Directions 
In this work, we leveraged the existence of large, pre-existing human single-neuron datasets recorded 
from neurosurgical patients performing different, but structurally well-aligned, psychophysical 
experiments to study differences in task variable encoding employed by the hippocampus, dACC, 
and preSMA. Our findings indicate that, in experiment 1, the same high-level task context variable 
can vary considerably in its encoding structure over time depending on the region being considered. 
In experiment 2, the hippocampus was the sole region to explicitly encode a latent context variable, 
with the representation of that variable becoming stabilized at multiple timescales. Of course, these 
findings weakly specify a small fraction of logic that governs the encoding strategies used by these 
regions for different context variables in complex environments with changing task demands. 
Experiments that require simultaneous encoding of multiple task context variables, all of which 
contribute equally to instantaneous task demands, and that vary in their re-cuing rate, predictability, 
and need for episodic recall, are needed to further clarify the principles used by the hippocampus 
and the frontal cortex to encode task context variables in different conditions. 
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Figures: 

 
Figure 3.1. Single neurons are tuned to task variables during instructed task switching.  
(A) The first experiment consisted of eight blocks of 40 trials where the task context alternated 
between a categorization task and a recognition memory task. Text-based instructions were provided 
to patients only once at the start of each block but applied for all trials until the next set of instructions. 
Tasks were formulated as yes-no questions in response to presented stimuli. Trials consisted of a 
pre-stimulus baseline with a central fixation cross, followed by the presentation of a single stimulus 
(image) to which the patient would respond yes or no according to the current task in a speeded 
manner. Following the response, the stimulus was removed from the screen, and the next trial would 
commence after a jittered delay (1-2s). No trial-by-trial performance feedback was provided.   
(B) Electrode locations for the pre-Supplementary Motor Area (preSMA, green), dorsal Anterior 
Cingulate Cortex (dACC, blue), and anterior hippocampus (HPC, red). Each dot corresponds to the 
implant site of a microwire bundle for a single patient. All implants were bilateral and electrodes are 
shown on the same hemisphere for visualization purposes. 
(C) Number of single units recorded across the three brain areas (970 neurons total, dACC, blue = 
329, preSMA, green = 438, HPC, red = 203).  
(D-E) Example PSTHs of neurons recorded in HPC that are differentially selective for task context 
(D) and semantic category of the visual stimulus (E) during stimulus presentation throughout the 
task. Stimulus onset occurs at time 0. Black points above the PSTH indicate times where a sliding-
window 1-way ANOVA (250 msec width) over the considered task variables was significant (p < 
0.05). 
(F) Percentage of neurons that exhibit tuning to task variables during the Baseline (-1 to 0s prior to 
stimulus onset) and Stimulus periods (0.2 to 1.2 following stimulus onset). Neurons are considered 
tuned during the stimulus period to either a main effect (context – green, category – orange), or the 
interaction (orange) if the associated factor in a 2x4 ANOVA (Context x Category) was significant 
(p<0.05). Baseline tuning is limited to a 1-way ANOVA for context since the visual stimulus is not 
yet present. Horizontal dashed line indicates chance level. Vertical line marks the boundary between 
Baseline and Stimulus.  
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Figure 3.2. Task context representation temporally generalizes in MFC, not in Hippocampus  
(A) Context decoding accuracy during the baseline (gray) and stimulus (black) periods (see inset) 
using correct trials from the entire experiment. Black horizontal lines indicate 95th percentile of null 
distribution. Chance decoding accuracy is 0.5 (two contexts).  
(B-D) Cross-temporal decoding plots indicating the out-of-sample decoding accuracy of decoders 
trained to decode context from correct trials in adjacent block pairs during the stimulus period. X-
axis indicates which block pairs are used to train the context decoder, and y-axis indicates the block 
pairs on which the decoder is evaluated. On-diagonal decoding accuracies (train/test on same block 
pair) are reported with 5-fold cross validation. Off-diagonal decoding accuracies use all available 
trials for training and testing. The colormap shown for dACC (D) also applies for HPC (B) and 
preSMA (C).   
(E) Generalization index (see methods) computed for the cross-temporal generalization of context 
decoding across block pairs. Index values range from 0 to 1, indicating no generalization and perfect 
generalization of context coding respectively. P-values are computed using Wilcoxon Rank-sum test. 
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(F) Angles computed between vectors normal to the hyperplanes of the block-pair context decoders. 
Angles here were estimated in an n = 150-dimensional space to facilitate direct comparison of angle 
values between regions. The mean angle averaged over all pairs of decoders is reported for HPC 
(red), dACC (blue), and preSMA (green). The null distribution (gray) is populated by the angle 
between randomly selected pairs of trial-shuffled context decoders.  
(G) Comparison of ANOVA F-statistics fit using block number and task context in single-neurons. 
Values are reported are mean ± s.e.m. ΔF-statistic computed over neurons. P-values are computed 
using a two-sided t-test.   
(H) Example raster (above) and PSTH (below) for a neuron in the dACC that exhibited persistent 
firing rate context modulation throughout entire blocks. An individual row in the raster (above) 
corresponds to the activity of a single neuron plotted for a block. Each point corresponds to one spike 
discharged by the neuron. Black stars indicate stimulus onset times. Blocks are re-ordered according 
to task context (categorization = blue, memory = red), and are aligned to the stimulus onset time of 
the first trial in each block. PSTH (below) shows mean firing rate computed over blocks.  
(I) Same as (H), but for a neuron in preSMA. 
Note: All instances of plots with squares and error bars indicate mean ± s.e.m. of the computed 
metric (e.g. decoding accuracy, generalization index, etc…) over 250 iterations of bootstrapped re-
sampling unless otherwise specified (see methods). Null distributions were also computed with 250 
iterations of trial-label shuffling followed by re-computing the metric in question. 
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Figure 3.3. Hippocampal neural population exhibits temporal decorrelation. 
(A) Hippocampal population-vector autocorrelation matrix showing Pearson correlation for all 
possible pairs of trials. Correlations are computed between pseudo-population firing rate vectors 
computed for each trial. Diagonal values are removed for visualization purposes. Matrix shown here 
is an average over 250 iterations of sub-sampled estimation to match the number of neurons between 
regions.  
(B) Mean cross-block correlation computed over all possible pairs of trials that are in increasingly 
distant blocks for hippocampal neurons. For example, Block Distance 0 reports the average 
population-vector correlation between all pairs of trials in the same block, Block Distance 1 reports 
the average correlation between all pairs of trials exactly one block apart, etc. Even block distances 
correspond to blocks of the same task (light red), odd block distances correspond to blocks of the 
opposite task (light blue). Values are reported as mean ± s.e.m. over trial pairs.  
(C,D) Same as (A,B), but for pre-SMA. 
(E) Baseline vs Stimulus population decorrelation rate plotted for each of the three regions. 
Decorrelation rate is estimated as the absolute value of the slope of the least-square fit to the cross-
block decorrelation curves, e.g. shown in (B) and (D). All slopes were negative, so increasing values 
indicate increasing rate of decorrelation with block distance. Circles and error bars correspond to 
mean and s.e.m. decorrelation rate computed over iterations of neuron sub-sampling.   
 (F) Relative context modulation (cross-context correlation difference normalized by decorrelation 
rate) reported for the three areas during the stimulus period. Values are reported as mean ± s.e.m. 
over iterations of decorrelation curve estimation. P-values are computed by permutation test. 
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Figure 3.4. Task context representations generalize between baseline and stimulus periods.  
(A) Example PSTH of a neuron in dACC that exhibits context tuning during the baseline period 
(Time < 0s) and during the stimulus period (Time > 0s). Vertical dashed line indicates stimulus onset. 
Blue and red curves indicate mean ± s.e.m. firing rate over categorization and memory task trials 
respectively. Black horizontal line indicates time period where firing rate significantly differs 
between contexts (1-Way ANOVA, p<0.05).  
(B) Fraction of context-tuned neurons determined using 1-Way ANOVA for context during the 
baseline (base) and stimulus (stim) periods. Neurons are considered context tuned if p<0.05 for either 
base or stim. Neurons are either context modulated only during baseline (gray), only during the 
stimulus period (black), or during both (overlap, purple). 
(C) Decoding accuracy averaged over both baseline trained/stimulus tested and stimulus 
trained/baseline tested context decoders. Error bars indicate s.e.m. as previously described. 
Horizontal black lines are 95th percentile of null distribution. 
(D) Generalization index for baseline-stimulus context generalization. Values here are computed 
using the baseline/stimulus context generalization shown in (C), and the within-stimulus and within-
baseline context decoding accuracy reported in Fig. 3.2A. Values reported are mean ± s.e.m. 
generalization index computed for Hippocampus (red), dorsal Anterior Cingulate Cortex (blue), and 
pre-Supplementary Motor Area (preSMA). P-values are computed using Wilcoxon Rank-sum test. 
(E) Angles between the baseline and stimulus context-decoding hyperplanes. Plotting conventions 
identical to Fig. 3.2C. 
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Figure 3.5. Hippocampal context representation temporally stabilizes when context is latent. 
(A) Experiment 2 consisted of blocks of 15-32 trials where a latent context variable was specified 
by arbitrary, deterministic stimulus-response-outcome associations. Trials consisted of a pre-
stimulus baseline with a central fixation cross, followed by the presentation of a single stimulus 
(image) to which the patient would respond with a “Left” or “Right” button press according to the 
current stimulus and context in a speeded manner. Changes in context were covert, but could be 
inferred from feedback provided during the “outcome” or feedback screen of every trial. Following 
feedback, the next trial would commence after a jittered delay (1.5-2.5s).  
(B) Electrode locations for the anterior hippocampus (HPC, red). Plotting conventions identical to 
Fig. 3.1B. 
(C) Number of single units recorded in the anterior Hippocampus (HPC, red = 499 neurons).  
(D) Context decoding accuracy from HPC during the baseline (gray) and stimulus (black) periods 
(see inset) using correct trials from Experiment 1 (left) and Experiment 2 (right). Black horizontal 
lines indicate 95th percentile of null distribution. Chance decoding accuracy is 0.5 (two contexts). 
Values are reported as mean ± s.e.m. 
(E) Cross-temporal context generalization index reported for Experiment 1 (left) and Experiment 2 
(right). Values reported are mean ± s.e.m. generalization index computed for the baseline (red) and 
stimulus (blue) periods of each task. P-values are computed by permutation test. 
Cross-temporal decoding plots for task context computed across experimental halves instead of 
across block-pairs are shown for during the baseline (F,G) and stimulus (H,I) periods for the two 
experiments. 
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(J) Baseline vs Stimulus population decorrelation rate reported for Experiment 1 (orange) and 
Experiment 2 (teal). Values are reported as mean ± s.e.m. in each dimension. Dashed line indicates 
y=x. 
(K) Relative context modulation reported for the hippocampus during the stimulus period of 
experiments 1 and 2. Values are reported as mean ± s.e.m. over iterations of decorrelation curve 
estimation. P-value is computed by permutation test. 
(L) Baseline-stimulus context generalization index reported for Experiment 1 (orange) and 
Experiment 2 (teal). Values are reported as mean ± s.e.m. P-value is computed by permutation test. 
(M) Angles between the baseline and stimulus context-decoding hyperplanes for Experiment 1 
(orange) and Experiment 2 (teal). Plotting conventions identical to Fig. 3.2C. 
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Supplementary Figures: 

 
Figure 3.S1. Example neurons recorded in Task 1 that exhibit context tuning during stimulus 
and baseline periods.  
(A) Example raster (above) and PSTH (below) for a neuron in anterior hippocampus (HPC) that was 
context-tuned during the stimulus presentation period. Trials in the raster are re-ordered according 
to task context (categorization = blue, memory = red), and are sorted according to reaction time 
therein, as indicated by the black curves on the right. Vertical dashed line denotes stimulus onset. 
PSTH shows mean ± s.e.m. firing rate computed over trials. The black dots above the plot indicate 
time periods where firing rate significantly differs between contexts (1-Way ANOVA, p<0.05). 
(B) PSTH shown for a different neuron in HPC that exhibited significant context tuning during the 
baseline period prior to stimulus onset (i.e. to the left of the vertical dashed line). 
(C,D) Same as (A,B), but for dorsal Anterior Cingulate Cortex (dACC). 
(E,F) Same as (C,D), but for pre-Supplementary Motor Area (preSMA). 
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Figure 3.S2. Temporal generalization of task context representation during the baseline 
period. 
(A-C) Cross-temporal decoding plots for task context computed during the baseline period (-1s to 
0s prior to stimulus onset). X-axis indicates which block pairs are used to train the context decoder, 
and y-axis indicates the block pairs on which the decoder is evaluated. Plots are shown for HPC (A), 
dACC (B), preSMA (C).  Plotting conventions identical to those in Fig. 3.2B-D. 
(D) Generalization index computed during the baseline for the cross-temporal generalization of 
context decoding across block pairs. Plotting conventions identical to those in Fig. 3.2E. P-values 
are computed by permutation test. 
(E) Angles computed between vectors normal to the hyperplanes of the baseline block-pair context 
decoders. Plotting conventions identical to those in Fig. 3.2F.  
(F) Single-unit model comparison of ANOVA F-statistics for block number vs task context. Plotting 
conventions identical to those in Fig. 3.2G.  
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Figure 3.S3. Single-unit rasters/PSTHs showing persistent activity over entire blocks.   
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(A) Example raster (above) and PSTH (below) for a neuron in the dorsal Anterior Cingulate Cortex 
(dACC) that exhibited persistent firing rate context modulation throughout entire blocks. An 
individual row in the raster (above) corresponds to the activity of a single neuron plotted for a block. 
Each point corresponds to one spike. Black stars indicate stimulus onset times. Blocks are re-ordered 
according to task context (categorization = blue, memory = red), and are aligned to the stimulus 
onset time of the first trial in each block. PSTH (below) shows mean firing rate computed over 
blocks. Since block durations differ, due to randomization of inter-trial intervals and variability in 
patient responses, a blocks ceases to contribute to PSTH after the final spike in that block is 
discharged.  
(B-C) Same as (A), but for pre-SMA. 
(D-F) Same as (A), but for HPC. 
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Figure 3.S4. Control analyses for temporal generalization of context representation. 
(A) Task context decoding during the stimulus processing period using the first-half (fh, red) and 
second-half (sh, blue) of every block pair to demonstrate within-block context decoding stability. 
Plots show mean decoding accuracy ± s.e.m. over bootstrap iterations. Horizontal black lines indicate 
95th percentile of shuffle null.  
(B) Same as (A), but for generalization decoding accuracy of the context decoder from the first block 
half to the second block half (fh2sh, red) and from the second block half to the first block half (sh2fh, 
blue). 
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(C)  Generalization index computed for context decoding across block-halves. Plots show mean ± 
s.e.m. block-half generalization index computed over bootstrap iterations for HPC (red), dACC 
(blue), and pre-SMA (green).  
(D-F) Same as (A-C), but for context decoders trained and tested during the baseline period. 

(G-J) Cross-temporal generalization analysis control with ANOVA F-Statistic distribution matching 
between regions to ensure that increased temporal stability is not simply a consequence of stronger 
univariate context tuning at the single-unit level. eCDF of single-unit ANOVA F-statistics for each 
area are shown during the stimulus (G) and baseline (I) periods after performing distribution 
matching. Note: eCDFs for different regions are not clearly visible on the plots since they are 
practically identical after distribution matching. Cross-temporal generalization indices for the 
stimulus (H) and baseline (J) are recomputed using the matched distributions and presented as mean 
± s.e.m. over bootstrap iterations for HPC (red), dACC (blue), and pre-SMA (green). 

(K-L) Cross-temporal generalization index for context computed on the control task variant where 
the trial response was given after a fixed delay instead of in a speeded manner. Plots show mean ± 
s.e.m. cross-temporal generalization index computed over bootstrap iterations for HPC (red), dACC 
(blue), and pre-SMA (green). Analysis is shown for both the stimulus period (K) and the baseline 
period (L).  
Note: all p-values reported in this figure are computed by permutation test. 
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Figure 3.S5. Hippocampal stimulus representation generalizes across time.  
(A) Decoding accuracy for semantic category of the presented stimulus during the stimulus period 
(0.2s to 1.2s following stimulus onset). Chance is 25% (4 categories). Plot shows mean decoding 
accuracy ± s.e.m. computed over bootstrap iterations. Horizontal black lines indicate 95th percentile 
of shuffle null.  
(B) Example PSTHs for a single neuron exhibiting stable category selectivity (Category 1 preferred) 
plotted separately for every block pair in the experiment. All plotting conventions identical to those 
used for PSTHs in Fig. 3.S1. 
(C-E) Cross-temporal decoding plots indicating decoding accuracy for decoders trained to decode 
image category from correct trials in adjacent block pairs during the stimulus period. All plotting 
conventions are identical to those in Fig. 3.2D. Cross-temporal decoding of image category is 
reported for HPC (C), dACC (D), and preSMA (E). 
(F) Cross-temporal generalization index for image category computed using decoding accuracies 
reported in (C-E). Plot shows mean decoding accuracy ± s.e.m. computed over bootstrap iterations 
for HPC (red), dACC (blue), and preSMA (red). P-values are computed by permutation test. 
(G) Angles computed between vectors normal to the hyperplanes of image category decoders for 
different block pairs. All plotting conventions are identical to those used in Fig. 3.2C.  
(H) Angles computed between vectors normal to the hyperplanes of image category decoders and 
the stimulus period context decoders for each region. All plotting conventions are identical to those 
used in Fig. 3.2C.  
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Figure 3.S6. Additional population-vector autocorrelation analyses.  
(A-H) Trial-wise population vector autocorrelation plots and cross-block correlation curves shown 
for HPC during baseline (A,B), preSMA during baseline (C,D), and for the dACC during both 
stimulus (E,F) and baseline (G,H) periods. All plotting conventions identical to those used in Fig. 
3.3. 
(I-N) Cross-block correlation curves reported separately for the categorization task (red) and the 
memory task (blue). Note in this case, since tasks always alternate, only even block distances can be 
computed and reported since there is no task block that is an odd number of blocks away from a 
block of the same task. All other plotting conventions identical to those used in Fig. 3.3B,D.  
Task-specific cross-block decorrelation curves are shown for the stimulus and baseline periods 
respectively in HPC (I, J), preSMA (K, L), and dACC (M, N). 
(O) Relative context modulation reported for the three areas during the baseline period. Values are 
reported as mean ± s.e.m. over iterations of decorrelation curve estimation. P-values are computed 
by permutation test. 
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Figure 3.S7. Single-subject recapitulation of temporal decorrelation effect.  
Recapitulation of area-dependent temporal decorrelation effect in neurons recorded in a single 
subject (P44CS). Trial-wise population vector autocorrelation plots and cross-block correlation 
curves are shown for HPC during stimulus (A,B) and baseline (C,D) periods and for preSMA during 
stimulus (E,F) and baseline (G,H) periods. All plotting conventions identical to those used in Fig. 
3.3. 
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Figure 3.S8. Single-unit properties and cross-temporal context decoding for Experiment 2.  
(A-B) Example PSTHs of two hippocampal neurons recorded from patients performing experiment 
2. Neurons were modulated by the latent context variable (A) and by the identity of the stimulus 
presented on the screen (B). Plotting conventions identical to those used in Fig. 3.S1. 
(C) Percentage of hippocampal neurons that exhibit tuning to task variables during the Baseline 
(base, -1 to 0s prior to stimulus onset) and Stimulus periods (stim, 0.2 to 1.2 following stimulus 
onset). “Context” and “Stimulus” correspond to the task context variable and stimulus variable as 
applicable to each of the two experiments. 2-way (context x stimulus) ANOVAs are performed on 
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firing rates for single neurons, where context and stimulus correspond to 2-level and 4-level 
categorical regressors respectively in both experiments. All other plotting conventions identical to 
those used in Fig. 3.1F. 
(D) ANOVA F-statistics for task context main effects shown for single neurons recorded in 
experiment 1 (left) and experiment 2 (right) during the baseline (red) and stimulus (blue) periods. 
Reported values are mean F-Statistic ± s.e.m. computed over neurons. P-values are computed by 
permutation test, and n.s. indicates p > 0.05.  
Cross-temporal decoding plots for image category in experiment 1 (E) and stimulus identity in 
experiment 2 (F) across experimental halves are shown for during the stimulus period. 
(G) Cross-temporal generalization index for the image category decoders reported for Experiment 1 
(left) and stimulus identity decoders reported for Experiment 2 (right). Values reported are mean ± 
s.e.m. generalization index computed for the baseline (red) and stimulus (blue) periods of each task. 
P-values are computed by permutation test. 
(H) Angles computed between vectors normal to the hyperplanes of the image category decoder and 
the stimulus period context decoder in experiment 1 (orange), and of the stimulus ID decoder and 
the stimulus period context decoder in experiment 2 (teal). All plotting conventions are identical to 
those used in Fig. 3.2C.  
Cross-block correlation curves computed during the baseline (I) and stimulus (J) periods for 
experiment 1. Plots here are computed using the same data as those shown in Fig. 3.3B and S5A. 
(K,L) Same as (I,J) but for Experiment 2. 
(M) Distribution of all pair-wise inter-electro de distances within hemisphere computed within each 
experiment and pooled across the two experiment (Within Exp) and computed between all electrode 
pairs across the two experiments (Across Exp). Distances are reported as median with lower and 
upper error bars indicating 10th and 90th percentile respectively.  
(N) Relative context modulation reported for the hippocampus during the baseline period of 
experiments 1 and 2. Values are reported as mean ± s.e.m. over iterations of decorrelation curve 
estimation. P-value is computed by permutation test. ** indicates p < 0.001.  
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Table S1. Tabulation of Patients, Behavior, and Neurons.  
Summary of patient information, the number of sessions performed for each experiment, the 
behavioral classification at the session level for experiment 2, and the number of recorded neurons 
per region per session. Patient behavior in experiment 2 is defined with respect to instances of high-
level verbal instructions, where: Pre – “pre-instruction inference achieved”, NE – “Inference not 
exhibited”, post – “post-instruction inference achieved”, and N/A – “did not qualify for analysis”. 
Session behavior is defined with respect to performance on the first available inference trial, where: 
IA – “inference absent”, IP – “inference present”, X – “at or below chance non-inference 
performance”. Such definitions of patient behavior do not apply to experiment 1, and are listed as 
“N/A”. 
  



 127

Bibliography 
1. Badre, D. & Nee, D. E. Frontal Cortex and the Hierarchical Control of Behavior. Trends in Cognitive 
Sciences 22, 170–188 (2018). 

2. Duncan, J., Emslie, H., Williams, P., Johnson, R. & Freer, C. Intelligence and the Frontal Lobe: The 
Organization of Goal-Directed Behavior. Cognitive Psychology 30, 257–303 (1996). 

3. Miller, E. K. & Cohen, J. D. An Integrative Theory of Prefrontal Cortex Function. Annual Review of 
Neuroscience 24, 167–202 (2001). 

4. Fuster, J. M. The Prefrontal Cortex—An Update: Time Is of the Essence. Neuron 30, 319–333 (2001). 

5. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal 
cortex. Science 302, 1181–1185 (2003). 

6. Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of memory-
based choice representations by human medial-frontal cortex. Science 368, eaba3313 (2020). 

7. Rutishauser, U. et al. Representation of retrieval confidence by single neurons in the human medial 
temporal lobe. Nat Neurosci 18, 1041–1050 (2015). 

8. Niv, Y. Learning task-state representations. Nat Neurosci 22, 1544–1553 (2019). 

9. Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Current Opinion in 
Neurobiology 20, 251–256 (2010). 

10. Collins, A. G. E. & Frank, M. J. Cognitive control over learning: creating, clustering, and generalizing 
task-set structure. Psychol Rev 120, 190–229 (2013). 

11. Bernardi, S. et al. The Geometry of Abstraction in the Hippocampus and Prefrontal Cortex. Cell 183, 
954-967.e21 (2020). 

12. Courellis, H. S. et al. Abstract representations emerge in human hippocampal neurons during 
inference behavior. 2023.11.10.566490 Preprint at https://doi.org/10.1101/2023.11.10.566490 (2023). 

13. Saez, A., Rigotti, M., Ostojic, S., Fusi, S. & Salzman, C. D. Abstract Context Representations in 
Primate Amygdala and Prefrontal Cortex. Neuron 87, 869–881 (2015). 

14. Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 
364, eaav8911 (2019). 

15. Jamali, M. et al. Single-neuronal predictions of others’ beliefs in humans. Nature 591, 610–614 
(2021). 

16. Khanna, A. R. et al. Single-neuronal elements of speech production in humans. Nature 626, 603–610 
(2024). 

17. Smith, E. H. et al. Widespread temporal coding of cognitive control in the human prefrontal cortex. 
Nat Neurosci 22, 1883–1891 (2019). 

18. Wang, S., Mamelak, A. N., Adolphs, R. & Rutishauser, U. Abstract goal representation in visual 
search by neurons in the human pre-supplementary motor area. Brain 142, 3530–3549 (2019). 

19. Sheth, S. A. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural 
adaptation. Nature 488, 218–221 (2012). 

20. Aponik-Gremillion, L. et al. Distinct population and single-neuron selectivity for executive and 
episodic processing in human dorsal posterior cingulate. eLife 11, e80722 (2022). 



 128

21. Kragel, J. E. et al. Distinct cortical systems reinstate the content and context of episodic memories. 
Nat Commun 12, 4444 (2021). 

22. Qasim, S. E. et al. Memory retrieval modulates spatial tuning of single neurons in the human 
entorhinal cortex. Nat Neurosci 22, 2078–2086 (2019). 

23. Donoghue, T. et al. Single neurons in the human medial temporal lobe flexibly shift representations 
across spatial and memory tasks. Hippocampus 33, 600–615 (2023). 

24. Aquino, T. G., Courellis, H., Mamelak, A. N., Rutishauser, U. & O′Doherty, J. P. Encoding of 
Predictive Associations in Human Prefrontal and Medial Temporal Neurons During Pavlovian Appetitive 
Conditioning. J. Neurosci. 44, (2024). 

25. Fu, Z. et al. The geometry of domain-general performance monitoring in the human medial frontal 
cortex. Science 376, eabm9922 (2022). 

26. Cueva, C. J. et al. Low-dimensional dynamics for working memory and time encoding. Proceedings 
of the National Academy of Sciences 117, 23021–23032 (2020). 

27. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical 
responses. Nat Neurosci 21, 102–110 (2018). 

28. Vaidya, A. R., Jones, H. M., Castillo, J. & Badre, D. Neural representation of abstract task structure 
during generalization. eLife 10, e63226 (2021). 

29. Stokes, M. G. et al. Dynamic Coding for Cognitive Control in Prefrontal Cortex. Neuron 78, 364–375 
(2013). 

30.Stroud, J. P., Watanabe, K., Suzuki, T., Stokes, M. G. & Lengyel, M. Optimal information loading into 
working memory explains dynamic coding in the prefrontal cortex. Proceedings of the National Academy 
of Sciences 120, e2307991120 (2023). 

31.Wang, X.-J. 50 years of mnemonic persistent activity: quo vadis? Trends in Neurosciences 44, 888–
902 (2021). 

32.Daume, J. et al. Control of working memory by phase–amplitude coupling of human hippocampal 
neurons. Nature 1–9 (2024) doi:10.1038/s41586-024-07309-z. 

33.Kamiński, J. et al. Persistently active neurons in human medial frontal and medial temporal lobe 
support working memory. Nat Neurosci 20, 590–601 (2017). 

34.Kamiński, J., Brzezicka, A., Mamelak, A. N. & Rutishauser, U. Combined Phase-Rate Coding by 
Persistently Active Neurons as a Mechanism for Maintaining Multiple Items in Working Memory in 
Humans. Neuron 106, 256-264.e3 (2020). 

35.Rule, M. E., O’Leary, T. & Harvey, C. D. Causes and consequences of representational drift. Current 
Opinion in Neurobiology 58, 141–147 (2019). 

36.Simon, A. J. et al. Quantifying attention span across the lifespan. Front Cognit 2, 1207428 (2023). 

37.Buckley, M. J. et al. Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial 
and Prefrontal Regions. Science 325, 52–58 (2009). 

38.Heilbronner, S. R. & Hayden, B. Y. Dorsal Anterior Cingulate Cortex: A Bottom-Up View. Annual 
Review of Neuroscience 39, 149–170 (2016). 



 129

39.Nachev, P., Wydell, H., O’Neill, K., Husain, M. & Kennard, C. The role of the pre-supplementary 
motor area in the control of action. Neuroimage 36, T155–T163 (2007). 

40.Szczepanski, S. M. & Knight, R. T. Insights into Human Behavior from Lesions to the Prefrontal 
Cortex. Neuron 83, 1002–1018 (2014). 

41.Gläscher, J. et al. Lesion mapping of cognitive control and value-based decision making in the 
prefrontal cortex. Proceedings of the National Academy of Sciences 109, 14681–14686 (2012). 

42.Umbach, G. et al. Time cells in the human hippocampus and entorhinal cortex support episodic 
memory. Proceedings of the National Academy of Sciences 117, 28463–28474 (2020). 

43.Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally generated cell assembly 
sequences in the rat hippocampus. Science 321, 1322–1327 (2008). 

44.MacDonald, C. J., Lepage, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal ‘time cells’ bridge the 
gap in memory for discontiguous events. Neuron 71, 737–749 (2011). 

45.Bright, I. M. et al. A temporal record of the past with a spectrum of time constants in the monkey 
entorhinal cortex. Proc Natl Acad Sci U S A 117, 20274–20283 (2020). 

46.Howard, M. W. & Kahana, M. J. A Distributed Representation of Temporal Context. Journal of 
Mathematical Psychology 46, 269–299 (2002). 

47.Folkerts, S., Rutishauser, U. & Howard, M. W. Human Episodic Memory Retrieval Is Accompanied 
by a Neural Contiguity Effect. J. Neurosci. 38, 4200–4211 (2018). 

48.Tyszka, J. M. & Pauli, W. M. In vivo delineation of subdivisions of the human amygdaloid complex in 
a high-resolution group template. Human Brain Mapping 37, 3979–3998 (2016). 

49.Rutishauser, U., Schuman, E. M. & Mamelak, A. N. Online detection and sorting of extracellularly 
recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods 154, 
204–224 (2006). 

50.Howard, M. W. et al. A Unified Mathematical Framework for Coding Time, Space, and Sequences in 
the Hippocampal Region. J. Neurosci. 34, 4692–4707 (2014). 

51.Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Comput. 9, 1735–1780 (1997). 

52.Zhou, Y. et al. Transformers Can Achieve Length Generalization But Not Robustly. Preprint at 
https://doi.org/10.48550/arXiv.2402.09371 (2024). 

53.Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat Neurosci 17, 1661–
1663 (2014). 

54.Masse, N. Y., Yang, G. R., Song, H. F., Wang, X.-J. & Freedman, D. J. Circuit mechanisms for the 
maintenance and manipulation of information in working memory. Nat Neurosci 22, 1159–1167 (2019). 

55.Wang, X.-J. Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed 
Cognition. Annual Review of Neuroscience 45, 533–560 (2022). 

56.Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H. & Wang, X.-J. A Large-Scale Circuit 
Mechanism for Hierarchical Dynamical Processing in the Primate Cortex. Neuron 88, 419–431 (2015). 

57.Gao, R., van den Brink, R. L., Pfeffer, T. & Voytek, B. Neuronal timescales are functionally dynamic 
and shaped by cortical microarchitecture. eLife 9, e61277 (2020). 



 130

58.Dusek, J. A. & Eichenbaum, H. The hippocampus and memory for orderly stimulus relations. 
Proceedings of the National Academy of Sciences 94, 7109–7114 (1997). 

59.Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot 
imagine new experiences. Proceedings of the National Academy of Sciences 104, 1726–1731 (2007). 

60.Goudar, V. et al. Comparing rapid rule-learning strategies in humans and monkeys. bioRxiv 
2023.01.10.523416 (2023) doi:10.1101/2023.01.10.523416. 

61.Stefanacci, L., Buffalo, E. A., Schmolck, H. & Squire, L. R. Profound Amnesia After Damage to the 
Medial Temporal Lobe: A Neuroanatomical and Neuropsychological Profile of Patient E. P. J. Neurosci. 
20, 7024–7036 (2000). 

62.Eichenbaum, H. On the Integration of Space, Time, and Memory. Neuron 95, 1007–1018 (2017). 

63.Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. 
Current Opinion in Neurobiology 37, 66–74 (2016). 

64.Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–
590 (2013). 

65.Nieh, E. H. et al. Geometry of abstract learned knowledge in the hippocampus. Nature 595, 80–84 
(2021). 

66.Knudsen, E. B. & Wallis, J. D. Hippocampal neurons construct a map of an abstract value space. Cell 
184, 4640-4650.e10 (2021). 

67.Gulli, R. A. et al. Context-dependent representations of objects and space in the primate hippocampus 
during virtual navigation. Nat Neurosci 23, 103–112 (2020). 

68.Goudar, V. et al. Comparing rapid rule-learning strategies in humans and monkeys. 
2023.01.10.523416 Preprint at https://doi.org/10.1101/2023.01.10.523416 (2023). 

69.Ito, T. & Murray, J. D. Multitask representations in the human cortex transform along a sensory-to-
motor hierarchy. Nat Neurosci 26, 306–315 (2023). 

70.Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 
16, 1348–1355 (2013). 

 



 131

C h a p t e r  4  

Fast and slow features of instructed human cognition  
 

Motivation:  
The human ability to specify and perform tasks on the basis of instructions correlates with 

simultaneous apparent benefits and drawbacks in behavior, the neural underpinnings of which have 
largely never been explored at the level of single neuron activity within the brain. The clear benefit 
is an acceleration in the rate of learning and task acquisition that humans exhibit, brought on by the 
ability to exactly specify a new task to be performed, and obviating the need to learn iteratively 
through trial and error, observation, or reinforcement. This “fast” feature of human cognition is 
thought to be supported by the ability to compositionally synthesize new tasks using natural 
language. A non-obvious drawback is the fact that switching from one task to another that has just 
been specified leads to a uniquely human penalty in the ability to perform that new task for a short 
period of time following switching. This “slow” feature of human cognition has been termed the 
“task switching cost” and appears to be a uniquely human phenomenon associated with engaging 
with new tasks in the world. In this chapter, I will develop two separate experiments, each designed 
to study one of these two features of instructed human cognition. Elements of each of these cognitive 
features can be appreciated in both experiments, but I will focus on key aspects of the psychophysical 
task structure, patient behavior, and neural activity that will allow us to gain some unique insights 
about both of these processes using the experimental and computational suite of tools I have 
introduced in the previous chapters of this thesis. Due to the strong overlap in methodology, I will 
only clarify methods and experimental details that are novel with respect to the previous chapters 
and experiments. 
 
The Slow Feature: Geometry of task representations in human frontal cortical neurons is 
predictive of task switch costs 
 
Introduction:  
The process of switching between tasks occurs countless times throughout the day for an individual. 
Every instance of switching is accompanied by a cost, a decrease in task accuracy and/or speed 
immediately after switching that rapidly fades away1. Though this switch cost is reducible when 
preparatory time is given after instructions, an irreducible switch cost is always present the first time 
one engages in a task when switching from a different task. The presence of switch costs in animals 
is debated, being absent from some species entirely, but is a prominent aspect of human cognition2–

4. The neural mechanisms that generate switch costs remain unknown and are hotly debated. Theories 
center around two possible causes: reconfiguration and lingering activity (inertia) related to the prior 
task1. Some evidence from intracranial recordings exists supporting these proposed explanations5,6, 
which indicate a key role of the medial frontal cortex (MFC). However, the neurophysiological basis 
of switch costs remains elusive.  

To arbitrate between different theories of switch costs, we recorded the activity of large 
populations of single neurons in the MFC of neurosurgical patients performing a task with frequent 
instructed switching. We find that the task context representations immediately following and far 
from a switch exist in orthogonal subspaces composed of non-overlapping populations of neurons. 
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The task representation in the latter subspace persistently encoding the previous task is predictive of 
switch costs. 
 
Methods: 
 
Experimental Design:  
Subjects alternated between two possible tasks: categorization (e.g. “Is this an image of X?”, where 
X is the target category), and memory (e.g. “Have you seen this image before?”) (Fig. 4.1a). Each 
experiment consisted of 48 blocks of 8 trials. Task instructions were given once at the start of each 
block, and needed to be remembered for the ensuing 8 trials (Fig. 4.1b). All questions were yes/no 
questions, with subjects answering as quickly as possible. We refer to the question being answered 
as the context for that block, either Categorization (Cat) or Memory (Mem). Images belonged to one 
of two categories (fruits, faces), with some repeated (“old”) and some shown the first time, resulting 
in 8 total possible conditions (Fig. 4.1c). A balanced number of trials of each condition were present 
in every block and at every trial number across blocks. Switch costs were operationalized as the 
excess time taken to complete the first trial after switching tasks. For each block, patients control 
when to proceed from the instruction screen to the first trial (Fig. 4.1a), such that they are sufficiently 
prepared and the behavioral cost present during Trial 1 after a switch is the irreducible switch cost. 
 
Neural Signal Recording and Processing:  
Patients with pharmacologically intractable epilepsy were implanted with Behnke-Fried electrodes 
7 that allowed for recording of single-unit activity from medial frontal cortical (MFC) structures 
including the dorsal anterior cingulate (dACC) and pre-supplementary motor area (preSMA) (Fig. 
4.1d). Unit activity from these regions was isolated using standard spike sorting techniques8. Spikes 
were counted during two time periods: baseline (-1 to 0 s prior to stimulus onset) and stimulus (0.2 
to 1.2s after stimulus onset). “Trial 1” baseline spikes are recorded after a patient has read the 
instructions and pressed a button initiating a block, but has not yet performed the task instructed for 
that block. 
 
Results: 
 
Baseline context representations emerge in orthogonal subspaces following instructions. 
Data recorded recorded over 56 sessions (n = 35 patients) yielded 757 well isolated neurons. 
Switching costs were robust for both tasks (Fig. 4.2a, each line is a session), with Trial 1 after an 
instruction screen on average 40% slower than the average block RT. We decoded task context from 
spikes counted during the baseline period and found context to be robustly decodable from activity 
of MFC neurons during Trials 4-8 after a switch (Fig. 4.2b, left, decoder trained on Trials 4-8). 
However, this decoder (henceforth steady-state subspace) did not generalize to decode activity in 
Trial 1. Yet, context was decodable from Trial 1 when training and testing a decoder during Trial 1 
only (Fig. 4.2b, right, red). Conversely, the Trial 1 decoder failed to generalize to Trials 4-8, with 
context decodability in the subspace identified by this decoder (henceforth switch subspace) falling 
to chance after Trial 3 post-switch. These two context coding subspaces were orthogonal (Fig. 4.2c) 
by virtue of being largely non-overlapping populations of neurons (Fig. 4.2d,e).  
 
 
Context decodabiltiy in both subspaces is predictive of task switch costs on upcoming trials. 
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Greater context decodabiltiy in both subspaces predicted faster RT (lower switch cost) on the 
upcoming trial (Fig. 4.2f). On slow trials, the context of the previous block was decodable from 
dACC as indicated by below-chance decoding (Fig. 4.2f, right). 
 
Stimulus and context representations show evidence of reconfiguration during switch trials. 
Representational geometry was quantified during the stimulus period by performing SD and CCGP 
analysis on Trials 4-8 (Stay) and Trial 1 (Switch). All three stimulus properties (context, novelty, 
category) were decodable on Stay trials in both dACC and preSMA (Fig. 4.3a). However, dACC 
alone exhibited a significant decrease in SD (Fig. 4.3a, black line) and CCGP for context (Fig. 4.3b, 
red) on switch trials. The mis-configuration of the dACC representation on Switch trials is visualized 
in Fig. 4.3c,d by performing multi-dimensional scaling (MDS) on condition-averaged neural activity 
from dACC alone. The systematically structured Stay trial representation (Fig. 4.3c) is contrasted 
with the relatively disorganized Switch trial representation (Fig. 4.3d). 
 
Discussion: 
 
Both the task-set inertia and reconfiguration theories are consistent with aspects of our data. Baseline 
and stimulus period task representations in the MFC undergo reconfiguration following switch trials, 
and previous-context decodability is correlated with higher switch costs (inertia). Further analysis is 
needed to explore switch cost prediction during the stimulus period, switch-trial response conflicts, 
and to clarify the effect of practice, which can reduce switch costs. 
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Figures: 

  
Figure 4.1. A task for studying switch costs in humans: task design, behavior, and neurons. 
(a) Illustration of trial structure. Following an instruction screen, trials consisted of a pre-stimulus 
baseline followed by stimulus presentation during which patients answered yes or no (left or right 
button press) in a speeded manner according to the current stimulus and context. No trial-level 
feedback was provided, and patients immediately proceeded to the next baseline. (b) Illustration of 
the block structure. Task context alternated every 8 trials, and the experiment consisted of 48 blocks 
(384 trials total). (c) Illustration of task state space structure. Stimuli from two categories (faces and 
fruit), that either had or had not been previously encountered by the patient in earlier trials (old and 
new) were presented in a balanced manner in each of the two contexts (categorization and memory). 
This visualization is reflective of the disentangled structure of the task variables, and does not 
necessarily reflect how neurons will organize their responses in neural state-space to each of these 
conditions. (d) Reaction time on switch (left) and stay (right) trials shown for all sessions and 
averaged over trials. * indicates p<0.05 with ranksum test over sessions. (e) Accuracy computed for 
different trial positions in each block separately for the categorization (blue) and memory (red) tasks. 
Points and error bars represent mean ± s.e.m. over sessions. n.s. indicates p>0.05 between Trial 1 
accuracy (switch trial) and all other trials for both tasks using ranksum test over sessions. Black 
dashed line indicates chance performance. (f) Reaction time computed for different trial positions in 
each block separately for the categorization (blue) and memory (red) tasks. Points and error bars 
represent mean ± s.e.m. over sessions. * indicates p<0.005 between Trial 1 reaction time and all 
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other trials for both tasks using ranksum test over sessions. (g) Switch cost reported as a function of 
session number for categorization (blue) and memory (red). Points and error bars represent mean ± 
s.e.m. over sessions. * indicates p<0.005 using ranksum test over sessions. (h) Distribution of switch 
costs for all sessions shown for categorization (blue) and memory (red). Switch costs here are 
reported as % of average non-switch reaction time. (i) Electrode locations. Each dot corresponds to 
a single microwire-bundle. Locations are shown on the same hemisphere for visualization purposes 
only. Shown are pre-Supplementary Motor Area (preSMA, red) and dorsal Anterior Cingulate 
Cortex (dACC, blue). Total number of neurons recorded in each region is shown in the bar graph to 
the right (841 total). (j) Number of single units across brain areas exhibiting significant Main effects 
or interaction effects (n-way ANOVA with interactions, p < 0.05, see methods) to at least one of the 
principal task variables or to combinations of variables during three different 1-s time windows 
throughout the experiment: instruction encoding, baseline, and stimulus periods. Time windows are 
shown in the inset above.  
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Figure 4.2. Baseline representations of context in preSMA and dACC. 
(a) Baseline context decoder trained on Trials 4-8 (right) and on Trial 1 (left) after task switching. 
Circles indicate cross-validated training performance and squares indicate generalization 
performance to held-out trials. 99th pctle of shuffle null distribution shown in gray. Decoder 
performance is color coded according to region, with dACC in blue, preSMA in red, and MFC (both 
dACC and preSMA) in purple. (b) Angle between context coding vectors computed from Trial 1 
and Trial 4-8 decoders. Gray histogram indicates shuffle null. (c) Scatter plot of single-neuron 
importance index (β) for Trial 1 and Trial 4-8 decoders in the preSMA only. Each black dot 
corresponds to one neuron. Neurons in the top 20% for Trial 1 decoder (red), Trial 4-8 decoder 
(blue), or both (green) are circled. (e) Example PSTHs of neurons contributing to each of the context 
decoders. Conventions for PSTH plotting are identical to those used in previous chapters. 
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Figure 4.3. Baseline context representations correlate with the degree of switch cost.  
(a) Correlation of baseline context representations and Trial 1 reaction time (switch cost) for the 
preSMA context decoder trained on Trial 1 (left) and the dACC context decoder trained on Trials 
4-8 (right). Fast, medium, and slow switch trial decoding performance is highlighted with a black, 
gray, and white outline respectively. Decoder performance for the preSMA is cross-validated. Gray 
rectangles indicate 5th-95th pctle of shuffle null distribution. Performance below 0.5 indicates 
significant decoding of the other context (e.g. neurons significantly representing the memory task 
while the patient performs the categorization task). (b) Schematic illustrating the decoder-based 
findings shown in (a). Horizontal black lines represent context-decoder hyperplanes in neural state 
space, and arrows represent normal vectors. The schematic illustrates the neural state 
representation of the Categorization task during the trial 1 baseline as it correlates with the degree 
of switch cost (white, gray, black, for slow, mid, fast) on the upcoming trial.   
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Figure 4.4. Stimulus period context and stimulus representations. (a) Reduction in decodability 
of task-relevant dichotomies and reduction of shattering dimensionality on switch trials compared to 
stay trials in the dACC (left). This effect is absent from the preSMA (right). (b) CCGP of context 
representation significantly reduced on switch trials in dACC. Dimensionality reduction of dACC 
neural responses using MDS during stay (c) and switch (d) trials. Plotting conventions used here are 
identical to those used for geometric measure plots in Chapter 2.  
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The Fast Feature: Task representations in frontal cortical neurons inherit the compositional 
structure of natural language and facilitate zero-shot generalization.  
 
Introduction:  

Humans are the only species on planet earth that can learn arbitrarily complex, novel tasks 
in (nearly) constant time. Given certain constraints on the nature of the task, namely that it is 
specified using natural language that is comprehensible to the receiver, and is composed of elements, 
either states to recognize or actions to perform, that are meaningful and familiar to the receiver 
through past experience, the time cost incurred grows with the length of the message, in words, as 
codified by natural language, and the time it takes the transmitter to state it1. That is to say, the speed 
at which humans learn new instructed tasks is strongly supported by the compositional structure of 
language, and the usage of a basis set of states and actions that can be recombined to specify a task 
that an individual has never before performed, but can immediately execute accurately on the first 
try. In the parlance of machine learning, the novel, linguistically specified task lies outside of the 
training distribution of the receiver, but the receiver can nonetheless generalize to this novel data 
distribution zero-shot (i.e. without first observing any examples), as opposed to one- or few- shot 
learning where one or several example solutions to the new task are first provided. Thus, humans 
have the ability to perform “compositional generalization” with tasks, that is, to synthesize novel 
tasks compositionally through language and to immediately perform them with high accuracy. 

As humans, we might take such capabilities for granted given how integrated they are with 
our everyday lives. However, compared to a non-human primate, which might take many thousands 
of trials over the course of several months to learn a psychophysical task, a human can acquire that 
same task with a 60-second instruction screen. Modern state-of-the art reinforcement learning based 
networks can be trained to play video-games with super-human performance, but again our sample-
efficiency exceeds these systems by many orders of magnitude provided we have a one to two minute 
explanation from a friend before we hop into a game on our Atari64. Furthermore, after having 
learned to play a game, a brief set of instructions, such as “Now try to get the lowest score you can 
without dying!” or “Try to end each level on a score that is divisible by 10!” can systematically and 
radically alter our behavior without needing to re-learn how to play the game from scratch2.  

The ability to compose novel rules and tasks to accelerate learning and constrain behavior 
must have some underlying neurophysiological substrate in the human brain. The debate regarding 
how systematic and rule-like the systematic compositionality exhibited by human thought and 
language dates back to Fodor and Pylyshyn, and earlier1,3. Furthermore, novel evidence suggests that 
certain kinds of neural networks trained under specific meta-learning frameworks and compositional 
objective functions can indeed perform human-like compositional generalization4. It has been 
speculated that the ability to generate compositionally structured behavior is supported by underlying 
neural representations that they themselves are also compositional5–7. The argument proceeds as 
follows: states and actions that adopt a vector-representation through the activity of a population of 
neurons (either biological or artificial) can be composed through vector addition such that the 
representation of a completely novel set of instructions or rules can be accurately decoded by linear 
downstream readouts because it contains the vector-additive sum of all of the individual attributes 
for which decoders already exist. The behavioral advantage of such disentangled, or abstract, 
representations in human neurons was expounded in Chapter 2, albeit for a combination of stimulus 
and latent context variables, the latter of which was specified through instruction in some cases, but 
that needed to be learned experientially in every session. Similar abstract representations have been 
observed at the level of single-neurons and neural populations in other regions in the frontal, 
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temporal, and parietal lobes under various cognitive task demands, and in each case the 
compositional structure of the stimulus, task context, and action representations create a situation 
where the neural response to a specific set of held-out task states is predictable provided one can 
train a linear decoder on the remaining conditions5,8–11. Representations of variables implemented in 
this manner are quantifiably abstract, and having multiple, jointly abstract variables encoded in 
neural state space is the hallmark of a compositional representation. The seeming ubiquity of such 
representations at the single-neuron level in the human brain in a variety of non-linguistically 
specified experimental settings (e.g. stimulus identity, familiarity, error and conflict, etc…) invites 
the question of whether such representations would arise for natural-language based rules that are 
compositionally specified by construction, and if the emergence of such representations correlates 
with the speed at which humans can generalize to novel tasks.   

In the field of machine learning, the utility of learning low-dimensional, disentangled 
representations of high-dimensional input signals for both discriminative and generative tasks has 
successful history12. Furthermore, it has long been appreciated that standard feedforward neural 
networks, recurrent networks13, and transformer-based models14 trained large amounts of natural 
language data under various objectives all form internal representations that are structured in such a 
way as to reflect semantic relationships through systematic geometric relationships in vector-
embeddings. Recurrent neural networks trained to perform many cognitive tasks simultaneously also 
learn internal representations that rely on modules of neurons that are compositionally activated in 
service of new tasks that share elements with previously learned tasks15.  

To investigate the neurophysiological basis of instruction-based zero-shot generalization in 
humans, and to probe for the presence, study the format, and determine the behavioral relevance of 
compositional task representations in the human brain, we recorded the activity of populations of 
neurons in the brains of awake, behaving epilepsy patients who explored a large task space defined 
by combinatorically-specified task rules. We find that neurons in the frontal cortex form a 
compositional representation of the instructed task rules that mimics the compositional structure of 
the natural language prompts. We demonstrate that individual task rules with hierarchically nested 
compositional structure can be simultaneous encoded in a jointly abstract format as patients 
generalize to novel task rule combinations. Furthermore, by leveraging a recording opportunity in a 
single bilingual patient, we develop evidence that the same task rule representation can be induced 
in a manner that is invariant to the language used to specify the rules. 
 
Methods: 
 
Experimental Design:  
A task involving compositionally specified task contexts was constructed using the framework of 
Boolean operations performed on the Target category membership of pairs of images. The task 
context, i.e. the combination of rules enacted at any given time, was determined by three task rules 
that uniquely specified one of 16 possible task contexts. The location of each rule on the instruction 
screen, name of the rule, and possible values of the rule are as follows: Top Row, Target Rule, 
(ALIVE, FLY). Middle Row, Boolean Rule, (AND, NAND, OR, NOR). Bottom Row, Motor Rule, 
LEFT, RIGHT). The total number of Instructions were provided once at the beginning of each block 
(Fig. 4.5a, Left) Patients responded to begin each block. Trials (Fig. 4.5a, Right) consisted of a pre-
stimulus baseline (baseline) followed by the first stimulus presentation (stim 1, 1s), a brief, jittered 
delay (1-1.5s), and then the second stimulus (stim 2, RT) at which point the patients provided a 
response. Trial-level feedback was provided after another brief delay. Blocks consisted of 6 trials, 
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and task contexts were presented once for every traversal of task space, which was a sequence of 16 
blocks. Each experiment consisted of 4 full passes of task space (Fig. 4.5b). Thus, patients completed 
384 trials during a standard session of this experiment. An illustration of the task state space structure 
is shown in Fig. 4.5c. Individual points represent unique task contexts specified by combinations of 
Target, Boolean, and Motor rules, unlike similar schematics in previous chapters where points 
corresponded to trial states specified by both context-level and stimulus-level variables. The top right 
corner of the red square (ALIVE, AND, RIGHT) corresponds to the task context shown on the 
instruction screen in Fig. 4.5a. Each of the two stimuli presented in a trial was drawn from one of 
four semantic categories: planes, birds, cars, and humans. Target rule memberships were defined 
such that humans and birds are ALIVE, and birds and planes can FLY (Fig. 4.5d). Boolean task rules 
were also codified using number counting and equality/inequality comparisons for ease of 
learnability for the patients. Note, however, that the relational structure of the Boolean operators in 
their native task construction space (Fig. 4.5e) differs from the relational structure realized through 
number counting (Fig. 4.5f). A second variant of the task with Boolean task rules codified using 
natural language (Fig. 4.5g) was also administered in some cases.  
 
For one patient, in order to increase the accessibility of the task, a reduced variant was constructed 
that consisted of 160 trials. This variant featured only the Boolean and Target rules, with block 
lengths increased to 20 trials, and had a single pass through task space instead of four. These 
reductions were deemed necessary in order to accommodate the patient, and reduce completion time 
of the task so that back-to-back sessions could be run continuously. Data from this patient were 
excluded from all major analyses apart from Fig. 4.10.  
 
Neural Signal Recording and Processing:  
Patients with pharmacologically intractable epilepsy were implanted with Behnke-Fried electrodes 
16 that allowed for recording of single-unit activity frontal and temporal lobe structures including the 
ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate (dACC), pre-supplementary 
motor area (preSMA), hippocampus, amygdala, and ventral temporal cortex (VTC). Unit activity 
from these regions was isolated using standard spike sorting techniques17. Spikes were counted 
during five time periods: baseline (-1 to 0 s prior to stimulus 1 onset), stim 1 (0 to 1s after stimulus 
1 onset), delay (-0.75s to 0s prior to stimulus 2 onset), stim 2 (0 to 1s after stimulus 2 onset), and 
response (-1s to 0s prior to patient response).  
 
Results: 
 
Patients can perform zero-shot generalization in a compositionally-constructed task space. 
The full experiment was completed in 15 sessions (n = 7 patients), with an additional 3 sessions of 
the limited variant of the task being collected from a single patient. The following results all pertain 
to the full experiment sessions unless otherwise specified. Patients performed significantly above 
chance throughout all blocks of the task, with an average performance of 91.1% ± 0.5% (Fig. 4.6a, 
mean ± s.e.m. over blocks). Patients also exhibited a learning effect in their reaction time (Fig. 4.6b), 
which decreased significantly from 0.92 ± 0.42 on the first block to -0.15 ± 0.08 on the 16th block 
(mean ± s.e.m. over sessions) with z-scored reaction times within session (p<0.05 Ranksum between 
blocks). Absolute reaction times were on average 1.77s ± 0.20s (mean ± s.e.m. over sessions). No 
significant trend in accuracy was detected as a function of block number over the experiment on 
average (p=0.4, Linear Model, accuracy vs block nr). However, a significant effect was present in 
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the reaction time (p=1.4x10-5, Linear Model, reaction time vs block nr), indicating that patients did 
exhibit some amount of trial-level learning as they increased experience with the task. However, that 
learning was purely related to speed of task execution and not ability to accurately perform the task, 
as no trends in accuracy were present. 
In order to specifically quantify the zero-shot generalization performance of the patients, we also 
performed analysis on blocks 5-16 in isolation. Despite using different stimuli between the tutorial 
and full task, the tutorial provides experience for the first four task contexts (blocks), thus obviating 
claims related to zero-practice generalization for these blocks in particular. We compare the accuracy 
and reaction time of blocks 5-16, henceforth generalization blocks, to the remainder of the 
experiment (blocks 17-64, henceforth repeated blocks), which constitutes 3 repeated traversals of 
the entire task space. Average task performance during generalization blocks did not significantly 
differ from task performance during repetition blocks (92.6%±0.9% vs 91.2%±0.5%, p=0.16 
Ranksum over sessions). However, average z-scored reaction time did significantly differ between 
generalization and repetition blocks (0.06±0.03 vs -0.06±0.02, p=0.0068 Ranksum over sessions), 
with reaction time on generalization blocks being slower. 
Patients also exhibited a significant switch cost in their reaction time (Fig. 4.6c, p=0.0040, Linear 
Model, reaction time vs trial nr) and not in their accuracy (Fig. 4.6d, p=0.87, Linear Model, accuracy 
vs trial nr), consistent with the switch-cost behavior exhibited in the experiments shown in previous 
sections.  
Together, we take these findings to indicate that, while patients may be slower in their responses 
early in the experiment and early in trials following a switch, consistent with standard cognitive 
effects related to task practice and switch costs, they are able to perform zero-shot generalization in 
our compositional task with high accuracy. 
 
Single neurons in the frontal and temporal lobe exhibit mixed responses to task variables. 
Neural recordings were performed during the 15 sessions, yielding 1020 well isolated neurons across 
all brain areas including vmPFC (148), dACC (117), preSMA (186), amygdala (227), hippocampus 
(184), and VTC (158). For the purposes of subsequent geometric analyses, neurons from vmPFC, 
dACC, and preSMA are grouped together under the label “frontal cortex” (henceforth FC), with 
locations of microelectrode recordings indicated in Fig. 4.7a. Thus, the total number of FC neurons 
participating in all analyses henceforth is 451. Medial temporal lobe (MTL) will be used to refer to 
neurons from the hippocampus and amygdala (411 neurons). Univariate analyses performed on spike 
counts in each of the 5 time periods described earlier indicate that between 40 and 50% of FC neurons 
exhibit significant Main effects or interaction effects (3-way ANOVA with interactions, p < 0.05 for 
any term) to at least one of the task rule variables (Target, Boolean, Motor) or to combinations of 
those variables. A unit is linearly tuned if it has at least one significant main effect, and non-linearly 
tuned if it has at least one significant interaction term in the ANOVA model. Example neurons 
linearly tuned to Target (Fig. 4.7d), Motor (Fig. 4.7e), and Boolean (Fig. 4.7f-h) are shown. This 
tuning contrasts to classical stimulus tuning, such as visual category tuning while stimuli are being 
presented or during the inter-stimulus delay period (example hippocampal visual category neuron 
shown in Fig. 4.7c). 
 
Category-tuned neurons in the MTL are conditionally modulated by the Target rule. 
In addition to task rule tuning in the frontal cortex, a large proportion of MTL neurons exhibit image 
category tuning during the stim 1 (27.7%), delay (12.1%), and stim 2 (29.8%) periods, consistent 
with many previous single-neuron studies recording from these regions (1x4 ANOVA for image 
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category, p<0.05 for significant neurons). However, a new class of neuron that modulates its 
categorical stimulus response as a function of the currently instantiated Target rule was also detected 
(2-way ANOVA for image category and Target rule, p<0.05 interaction effect for significant 
neurons). These neurons were also present throughout stim 1 (13.2%) and stim 2 (11.3%) periods. 
Such neurons had previously not been observed in migrating categorization-rule tasks with changing 
semantic target categories, but prominently feature in the MTL of patients performing this task. 
Examples of such neurons are shown in Fig. 4.8. It is noted that target-conditional category responses 
are observed even for neurons preferring categories whose Target membership does not change 
between the two Target levels. For example, Fig. 4.8a shows a bird-preferring neuron modulated by 
Target = FLY and Target = ALIVE despite the category not crossing the Target membership 
boundary. This example is contrasted with Fig. 4.8c which shows a face-preferring neuron 
modulated by Target, and Target membership of this category does change between ALIVE (yes) 
and FLY (no).   
 
Frontal cortical neurons form a compositional representation of Boolean and Target rules. 
Initial decoding analyses were performed to establish the presence of task rule information at the 
level of the neural population in FC. Decoding of unique task contexts (1/16) was performed, and 
demonstrated above-chance decodability during all experimental time periods (Fig. 4.9a), ranging 
from 15%-21% (chance = 6.25%). To quantify the representational format of the Boolean rule, we 
first perform a geometric analysis over the three possible dichotomies, corresponding the target 
number, equality, and SAT-0/1 as described in the methods. All three dichotomies were significantly 
decodable (Fig. 4.9b, left), and the CCGP (Fig. 4.9b, middle) and parallelism score (Fig. 4.9b, right) 
together suggest that the Boolean task rule representation is organized in a 2-dimensional 
configuration around the Equality and SAT variables, as evidenced by the significantly elevated 
parallelism and CCGP. In that case, target number would exhibit negative parallelism/below chance 
CCGP, and this is indeed what the analysis reveals. Given this organization of the Boolean task rule, 
we can next collapse this 2-dimensional space into a single dimension by marginalizing over one of 
the two significant dichotomies (selecting the Equality axis to retain as described in the methods), 
thus creating a binary Boolean task rule variable that can be incorporated into a full 35-balanced 
dichotomy geometric analysis during all time periods when combined with the Target rule and the 
Motor rule.  
Performing the full balanced dichotomy analysis in Boolean-Target-Motor task rule space reveals 
significant decodability of the Boolean rule (Fig. 4.9c, green) and the Target rule (Fig. 4.9c, blue) 
simultaneously, most prominently during the stim 2 period. High parity decodability (Fig. 4.9c, 
purple) during this period is a signature of non-linear distortions in the representation. However, 
CCGP (Fig. 4.9d) and Parallelism score (Fig. 4.9e) analysis reveal that the Boolean and Target rules 
are in an abstract format. That is, they exist simultaneously in the FC neural state space, and are 
disentangled in a manner consistent with a linearly compositional representation of task rules. A 
representation of the Motor task rule is absent from this population of neurons.  
Taken together, the analysis of Boolean task rule structure in Fig. 4.9b and the balanced dichotomy 
analysis in Fig. 4.9c-e indicate that the representation of Boolean task rules is 2-dimensional, and is 
disentangled form a third, 1-dimensional, simultaneous representation of the Target task rule during 
the stim 2 period. These findings are summarized in the schematic shown in Fig. 4.9f, which clarifies 
the relational structure of the different task contexts.  
 
The geometry of the task representation is invariant to language in one bilingual patient. 
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In a single patient who was raised in a home speaking both English and Spanish, the opportunity 
arose to perform back-to-back sessions of this experiment in each of the two languages in which this 
patient was proficient. The compositional structure of all task rules, including the relational structure 
of the Boolean operators codified as number counting rules, is preserved between English and 
Spanish, allowing for direct comparison of neural representations when identical tasks with 
approximately identical linguistic structure (e.g. Fig. 4.10a) across the two languages. For technical 
reasons (see methods, discussion), a smaller number of trials and task contexts were provided to this 
patient in the two sessions. Nevertheless, an analysis of the Boolean task rule geometry during the 
baseline period (Fig. 4.10b) revealed that the relational structure of the Boolean task rule was 
preserved, being a 2-dimensional space organized around the target number and SAT-0/1 variables 
in both the English and Spanish variants of this task. Thus, the same relational task structure emerges 
in the frontal cortical task context representation of a bilingual patient independently of the language 
used to specify the tasks.  
 
 
Discussion: 
 
Thus, we have preliminary evidence suggesting that neurons in the human frontal cortex generate a 
compositional representation of novel task rules throughout the process of instructed learning, 
inheriting the structure of the language prompts that are used to specify them. The compositional 
representation in FC demonstrated here departs sharply from those studied in the previous chapter 
since no part of the representation relied on dimensions generated by stimuli that were available in 
the sensory input stream of the patient. Task rules were presented once during the encoding screen 
of each block, and the subsequent compositional representation of task context that formed relied 
purely on the internally-maintained persistent representation of those rules by neurons across many 
intervening trial phases until the next instruction block. It should also be noted that the task context 
representation was not purely disentangled around the linguistic structure of the natural language 
prompt. In particular, during the stim 2 period, the emergence of the contingency representation18 
(SAT-0/1) as an organizing variable for the Boolean rule instead of the target number reflects a 
structured representation of task states according to a state-predictive model of the environment 
rather than a representation strictly structured around linguistic input. The presence of such 
organization during both the stim 2 period (Fig. 4.9b) and the baseline period (Fig. 4.10).  Indicates 
that this organization persists regardless of whether the patient is in the process of making a 
decision, and provides evidence against the idea that a rehearsed phonological loop of the task rule 
alone is structuring the FC task representation.  

A panoply of questions remain related to the specific representational geometry adopted by 
the FC and MTL in this experiment. First, and foremost, a much larger corpus of data needs to be 
collected. Currently, grouping neurons across all FC regions creates a neural state space that is 
assuredly not available to any reasonable downstream readout in the brain. Segregated contribution 
to this compositional task context representation by neurons in different regions of FC remains to 
be clarified.  
 A second, pressing line of inquiry relates specifically to the task context representation 
formed as patients are generalizing to truly novel task contexts during generalization blocks (5-16). 
The vast majority of the trials contributing to the representation geometry analyses performed here 
were repeated blocks, and thus the geometries we describe could only be emerging after a 
significant amount of exposure to the task (e.g. in the second half), and could not contribute to the 
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ability of a patient to zero-shot generalize at the beginning of the experiment. That behavior could 
be subserved by a different representation that is masked by the overwhelming amount of repeated 
block data that is contributed to the analysis. More careful time-resolved analysis across blocks 
during the generalization blocks and comparison to repeated blocks is needed to clarify this point. 
 A third line of inquiry relates to the natural language parametrization of the Boolean task. 
Several sessions of this variant have been collected and were included in the above analysis, but 
only for the balanced dichotomy analysis over all three task rules. These sessions were included 
since the process of marginalizing the Boolean task rules over the “Equality” axis in the number 
counting parametrization (Fig. 4.5f) is equivalent to marginalizing over the “Negation” axis in the 
natural language parametrization (Fig. 4.5g). Of course, the one component of task construction 
space that this collapse does not take into account is the fact that the Boolean task rules seem to be 
organized around the contingency representation, which groups the diagonals together in the 
number counting parametrization but not in the natural language variant (something I have realized 
just now as I am writing this). Collapsing the contingency representation (Parity dichotomy in 
boolean operator space) injects signal on both sides of the categorization boundary in the collapsed 
condition, and is likely problematic for the full geometric analysis. More data needs to be collected 
on the natural language variant and the Boolean rule geometry needs to be clarified therein before I 
try to draw more conclusions on the collapsed analysis of the full task context representation. It is 
possible that in order to do the alignment across Boolean variants I need to reparametrize one of 
the spaces around the contingency dichotomy before marginalizing one of the two dimensions out.  
 A fourth line of inquiry corresponds to the dynamics exhibited by the task context 
representation across trial phases. Task-context related signals are clearly present throughout all 
time periods in the experiment (Fig. 4.9a), and signatures of representation re-coding across time 
periods is already evident in Fig. 4.9c-e, where the representation transiently reorganizes around a 
different variable that forces the target category rule to exhibit below-chance CCGP and 
parallelism, followed by rapid re-emergence during the stim 2 period. Characterizing these step-
wise transformations in the context code, the emergence of the contingency representation, and 
how these representations correlate trial-by-trial with accuracy and reaction time of patients can 
provide critical insights into the sequence of representations the frontal cortex adopts during 
sequential decision making, moving us in the direction of beginning to unravel the algorithms 
employed by the human brain to solve general, arbitrarily complex tasks.  

Another exciting line of inquiry relates to the presence of conditional category responses in 
MTL neurons. Conditional category responses in the hippocampus imply presence of non-linearly 
distorted population codes for stimulus and context in the MTL. This prospect represents a 
departure from the strongly disentangled compositional rule code present in the FC, and requires a 
more extensive geometric analysis performed in stimulus x context space as opposed to simply 
performing analysis on task context representations while implicitly (through single-trial 
resampling) or explicitly (through condition averaging) removing stimulus information as was 
done for the geometric analysis of task context we performed in the FC here. The prior absence of 
such conjunctive context/stimulus codes could have several potential explanations, including the 
lack of repeated sampling of target categories9,19, unlike the current experiment where the same 
Target rule is revisited many times, and that target categories in prior experiments were the image 
categories themselves (e.g. the target category might have been “person” or “plane”) rather than a 
set of high-level attributes that need to be extracted and may or may not cause the image category 
to cross the target classification boundary. The increased task complexity with respect to 
categorizing the image category may be necessary to encourage the formation of nonlinear 
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stimulus x target representations that could facilitate solving this migrating target-classification 
problem. Further exploration of these neurons, and the neurons in VTC which do exhibit some 
amount of context-modulation as demonstrated in Chapter 2, constitutes an immediate next step in 
the study of stimulus representations in the human brain and how they interact with task context to 
generate decisions. 

The final line of inquiry considered here relates to the bilingual patient and the 
generalizability of those findings. While exciting, they must be interpreted with caution due to the 
pathology unique to this patient. This patient had significant portions of both frontal lobes resected 
in previous surgeries, and exhibited very long instruction encoding times and response times as a 
result. The reduction in trial count, removal of the Motor rule, and extension of stimulus 
presentation times to 2s were all necessary measures to facilitate the completion of this task by the 
patient. Nevertheless, this patient was able to complete hundreds of trials of this experiment with 
high accuracy across both English and Spanish variants. While I believe it unlikely that the 
baseline context representation adopting the same geometry in both languages to be a feature of 
this patient’s pathology, repeated testing in at least one more brain is needed to increase confidence 
in the validity of these findings. The situation is complicated further by the fact that, while constant 
at the level of the population, it appears that individual FC neurons shift their tuning to task 
variables across the two flanking sessions (data not shown). As an internal control, MTL and VTC 
neurons do not change stimulus tuning upon restarting the experiment with a different language. 
Additional control experiments that involved flanking recording sessions recorded in another 
patient suggest, albeit weakly, that this phenomenon was not unique to the bilingual patient, and 
that single neurons tuned to persistently-encoded task variables might reorganize their tuning 
whenever a new experiment is commenced, even if that experiment is identical to the experiment 
that was just completed. How and if the neurons do indeed change their tuning over task rules 
while preserving population-level geometry is yet another question that requires more data to be 
answered. In short, additional neurons are required to get to the bottom of all this nonsense 
(perhaps on the part of the researcher).  

Nevertheless, the analysis and findings presented here constitute a first step in uncovering 
the logic by which the brain organizes its representation of arbitrarily complex tasks, specified by 
natural language, that enable zero-shot generalization.  
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Figures: 

 

Figure 4.5. Design of a compositionally structured task that induces a large task space. 
(a) Illustration of trial structure. Instruction screens consisted of three task rules that uniquely 
specified one of 16 possible task contexts (Top Row/Target Rule/2 Levels, Middle Row/Boolean 
Rule/4 Levels, Bottom Row/Motor Rule/2 Levels). Patients responded to begin each block. Trials 
consisted of a pre-stimulus baseline (baseline) followed by the first stimulus presentation (stim 1, 
1s), a brief, jittered delay (1-1.5s), and then the second stimulus (stim 2, RT) at which point the 
patients provided a response. Trial-level feedback was provided after another brief delay. (b) 
Illustration of the block structure. Blocks consisted of 6 trials, and task contexts were presented once 
for every traversal of task space, which was a sequence of 16 blocks. Each experiment consisted of 
4 full passes of task space (c) Illustration of task state space structure. Individual points here represent 
unique task contexts specified by combinations of Target, Boolean, and Motor rules, unlike similar 
schematics in previous chapters where points corresponded to trial states specified by both context-
level and stimulus-level variables. The top right corner of the red square (ALIVE, AND, RIGHT) 
corresponds to the task context shown on the instruction screen in (a). Linear ordering of rules along 
the Boolean dimension is arbitrary, for visualization purposes, and does not represent an expected 
relational structure in neural state space. (d) Schematic of image categories encountered throughout 
the task and their Target rule membership. (e-g) Mapping of Boolean rule to operations that are 
easily comprehensible by patients. (e) Ground truth relational structure of Boolean operators shown 
in a fictitious rule-construction space. (f) Boolean operations can be mapped onto number counting 
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and equality/inequality evaluations that are readily comprehensible, but with a relational structure 
that differs from the ground-truth rule construction space shown in (e). Note: green and purple (OR, 
>0 and NOR, =0 respectively) have switched positions in (f) compared to (e). (g) Another realization 
of the same Boolean task rules using natural language prompts. Note that the relational structure of 
this task construction space is identical to (e).  
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Figure 4.6. Patient performance on compositional task. 
(a) Task accuracy is averaged over all trials-in-block and shown across all blocks. Points and error 
bars correspond to mean and s.e.m. performed over sessions. Data from 7 patients and 15 sessions 
is shown. Horizontal dashed line indicates chance performance (50%). (b) Same as (a), but for 
trial-level reaction time z-scored within-session then averaged across sessions. Reaction time (c) 
and accuracy (d) also shown as a function of trial-in-block. Values are averaged for a given trial 
across all blocks, then mean and s.e.m. are reported across sessions.     
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Figure 4.7. Single neuron responses to task rules and stimuli. 
(a) Electrode locations. Each dot corresponds to a single microwire-bundle. Locations are shown 
on the same hemisphere for visualization purposes only. All electrodes from the preSMA, dACC, 
and vmPFC are colored green and collectively labeled as “Frontal Cortex”. (b) Fraction of single 
units in frontal cortex exhibiting significant Main effects or interaction effects (3-way ANOVA 
with interactions, p < 0.05) to at least one of the task rule variables (Boolean, Target, Motor Rule) 
or to combinations of variables. A unit is linearly tuned if it has at least one significant main effect, 
and non-linearly tuned if it has at least one significant interaction term in the ANOVA model. 
Horizontal dashed line indicates chance (5%). (c) Example rasters and PSTHs for a single 
category-tuned neuron with human faces as its preferred category. Stim 1 (left) and Delay (middle) 
column trials are organized according to the category of Stim 1. Stim 2 (right) trials are organized 
according to the category of Stim 2. Stim 1 is aligned to stim 1 onset. Delay and stim 2 plots are 
both aligned to stim 2 onset. All plotting conventions are identical to previous rasters and PSTHs. 
(d-f) PSTHs of other example neurons exhibiting task rule tuning during different trial periods. (d) 
Neuron tuned to Target rule during stim 2. (e) Neuron tuned to Motor rule during stim 2. (f) 
Neuron tuned to Boolean rule during stim 2. (g) Neuron tuned to Boolean rule during stim 1. (h) 
Neuron tuned to Boolean rule during stim 2.  
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Figure 4.8. Example hippocampal neurons exhibiting conditional category responses. 
PSTHs of example hippocampal neurons exhibiting image category responses that are modulated by 
the current target rule in the task context. (a) The neuron is selectively responsive to birds, and is 
differentially modulated by categorizing birds as ALIVE (blue) or FLY (yellow). (b) Another neuron 
that differentially responds to cars under the same target rule manipulation: ALIVE (orange) and 
FLY (purple). Note: for (a) and (b), the image category does not cross the target rule classification 
boundary (i.e. birds are ALIVE and can FLY, cars are not ALIVE and cannot FLY). (c) A third 
neuron that differentially responds to human faces conditioned on the target rule (ALIVE, blue and 
FLY, yellow). In this case, the image category does cross the target rule classification boundary (i.e. 
humans are ALIVE, but cannot FLY). All PSTHs shown here are from the stim 2 presentation trial 
period. All plotting conventions are identical to previous PSTHs. 
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Figure 4.9. The geometry of frontal cortical task rule representations is compositional. 
(a) Decoding of current task context. Points and error bars indicate mean and s.e.m. over single-trial 
bootstrap resampling per-context as described in the methods. Horizontal black lines indicate 95th 
pctle of shuffle null distribution. Chance performance is 0.0625 (1/16 possible task contexts). 
Decoding accuracy is reported for different trial time periods indicated on the x-axis. (b) Geometry 
of Boolean task rules analyzed using Boolean rule dichotomies only during the stim 2 presentation 
period. Decoding accuracy (left), CCGP (middle), and parallelism score (right) are computed for all 
three such dichotomies using frontal cortical neurons. Dichotomies are color coded by meaning. 
Gray shading indicates 5th-95th percentile of shuffle-null distribution. (c-e) Balanced dichotomy 
analysis performed over all task rules, with decoding accuracy (c), CCGP (d), and parallelism score 
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(e) shown for all trial periods before the response in trial. All plotting conventions identical to those 
used in Chapter 2. Note: Target rule (Alive/Fly, blue) and Boolean task rule (green) are 
simultaneously encoded and disentangled in the stim 2 period. (f) Synthesis of geometric findings 
from (b-e). Target category rule (Alive/Fly) and Boolean task rules are disentangled by analysis in 
(c-e), and the Boolean task rules are organized in a 2-dimensional space with SAT and 
Equality/Inequality disentangled organizing variables within the Boolean task rule subspace.   
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Figure 4.10. Geometry of rule representation is language-invariant in one bilingual patient. 
(a) Identical task structure to that administered in English, but with all text (including instructions 
and verbal facilitation from experimenter) provided in Spanish for one bilingual patient. Back-to-
back recording of the Spanish and English variant were performed, ensuring retention of the same 
population of neurons to facilitate comparison. (b) Parallelism score computed for Boolean task rule 
dichotomies. Parallelism for each dichotomy (each point) during the baseline period is shown for the 
Spanish session (left) and English session (right). Horizontal black line marks 0 parallelism, with 
dichotomies above the line indicating disentangling of those variables.  
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C h a p t e r  5  

Parting Thoughts 
As those before me have stated, it is quite common that, after a decade or more of walking along a 
straight line, a traveler will have grown to absolutely despise the straightness of that line. The purpose 
of this discussion is to summarily complain about the line’s straightness.   
 
First and foremost, I believe that discovery science performed to deepen understanding of neural 
computation in the human brain as it relates to behavior will continue to be of utmost importance in 
the coming years. The fund of knowledge available on the inner workings of the brain, let alone the 
suite of tools to productively intervene to restore or augment function is laughably poor. The 
engineering approach of principles-based construction of physical solutions to problems only works 
in the context of an abundance of robust, rigorously tested principles that accurately describe and 
predict, at some spatial and temporal scale of description, the behavior of complex systems. We are 
nowhere close to this level of understanding for the human brain, particularly in the realm of complex 
cognition.    
 
So, if we are not close, have I at least succeeded, through this work, in bringing us a bit closer? Let 
us take stock of our results over the last several chapters of content in concise format. 
Abstraction – Codifying abstract variables in the environment explicitly in one’s hippocampal 
representation enables the use of those variables to rapidly update behavior. This can be achieved 
through experience or through instruction. 
Checkerboard – Disentangling task representations from the passage of time facilitates temporally 
extended, persistent behavior. Which specific regions do this temporally-disentangled representing 
might vary as a function of task demands.  
Rapid Switch – Neurons not being properly configured and exhibiting inertia after reading 
instructions can predict one’s switch cost with 1.59 bits of precision, despite having arbitrary 
amounts of time to prepare.  
Compositional – The compositional structure of arbitrary language-specified task rules is inherited 
by frontal cortical neurons during zero-shot generalization, though there appear to be limits to this 
structure when the geometry of language conflicts with the geometry of state-action relationships. 
  
Many watts of electrical power, neurons in the brains of patients as well as my own, US dollars, and 
of course years of my life were sacrificed to reduce uncertainty about the world such that the above 
sentences could accurately be placed into print. However, the fact of the matter is that after all of this 
experimentation and analysis, this information can still not be productively used to improve the life 
of any one of the patients who were so generous to lend me their time and their brains. This fact is 
hardly surprising considering our understanding of human brain computation in complex, cognitive, 
multi-task environments is quite literally only a few years old. The time scale on which this 
knowledge will begin to yield tangible benefit to patients on a scale beyond one-of experimental 
implants should probably still be measured in decades, and there are many limitations which need to 
be overcome both in practice and in principle before that goal is realized. A veritable lifetime of 
effort is needed to realize that goal, and that is, in fact, the plan.  


