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ABSTRACT

Markov Chain Monte Carlo algorithms are indispensable in classical thermodynamic
simulation, perhaps due to their mathematical simplicity, algorithmic efficiency, and
physical origin. In particular, Glauber dynamics is a detailed-balanced continuous-
time Markov chain that fixes the Gibbs distribution and also serves as a mathematically
succinct model of classical thermalization. In this thesis, we proposed a quantum
computation analog of Glauber dynamics that is exactly detailed balanced yet
algorithmic efficient, inherits the locality of the target Hamiltonian, and resembles
Davies’-like generators physically derived from a weak system-bath coupling. We
hope our proposal will serve as a quantum algorithm for quantum thermodynamic
simulation and a model of open system thermalization where a suitable construction
has been lacking for noncommuting Hamiltonians.
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NOMENCLATURE

Davies’ generator. A Lindbladian rigorously derived for a system interacting weakly
with a thermal bath. It satisfies detailed balance exactly and has played the role
of Glauber dynamics in finite-sizes and commuting systems but is unphysical
for general noncommuting many-body systems. Today, there are a few
modernized proposals of Davies’ like generators, but they all violate detailed
balance in general.

Detailed balance condition. A key condition in the design and analysis of Markov
chains that prescribes a desired stationary state. This condition requires that
the mass exchange between two configurations at stationarity cancels each
other.

Gibbs state. A quantum state that is a mixture of energy eigenstates with a Boltzmann
weight. It is often assumed that a quantum system will eventually arrive at
such a state at the same temperature as the bath.

Glauber dynamics. A continuous-time classical Markov that satisfies detailed
balance regarding the classical Gibbs distribution. For both numerical and
analytic purposes, it is often the go-to dynamical model for classical systems
interacting with a thermal bath.

Ground states. The set of minimal energy eigenstates of a Hamiltonian matrix. A
Gibbs state at infinitely low temperature would be a mixture of ground states.

Lindbladian. A continuous-time Markovian process acting on quantum states, also
known as Liouvillian, or master equation. Such effective description often
arises from an open system coupled to a bath but may be considered in its
own right.

Markov chain. A discrete-time or continuous-time stochastic process where the
future is only correlated to the past through the present. Often they can be
implemented efficiently on a classical computer to sample from a desired
distribution, and is also called Markov Chain Monte Carlo as an algorithmic
method.

Phase transition. A phenomenon describing a qualitative change in the physical
properties of a system depending on the parameters such as magnetic field or
temperature. Such transition can be static in terms of ground or thermal state
properties (e.g., long-range correlations) or dynamic in terms of the behavior
of an associated Linbladian (e.g., mixing times).

Quantum algorithms. Algorithms that run on quantum computers, often described
in terms of quantum gates.
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Quantum computational advantage. An advantage of quantum computers over
classical computers for certain classes of problems. Currently, the quantum
hardware is limited in quality and scale, so most evidence is theoretical.

Quantum computers. Computers that can act quantum gates on qubits given
classical instructions. In this thesis, we will assume them to be fault-tolerant
so that we can execute quantum algorithms with high precision.

Quantum Gibbs sampling. A quantum algorithm simulating a Quantum Markov
chain (continuous or discrete time) whose stationary state is the Quantum
Gibbs state.

Quantum many-body physics. Quantum phenomena emerging from systems with
many degrees of freedom, contrasting with few-body systems. Often, complex,
unexpected behavior can occur, but it is very challenging to solve analytically
or numerically.

Quantum simulation. Simulation of a naturally appearing or artificial quantum
system with a quantum computer that allows us to extract its physical properties
in a programmable, controllable way.

Thermal bath. A large quantum system with a characteristic temperature with
Markovian properties.

Thermal state. The state describing a quantum system in equilibrium with a thermal
bath. Although broadly defined, this can sometimes mean the quantum Gibbs
state.
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C h a p t e r 1

INTRODUCTION

We often take for granted that a quantum system without isolation eventually arrives
at the thermal state, or the Gibbs state; at low enough temperatures, the system must
be in its ground state. This dogma dictates a static view we reason about the physical
properties of quantum systems, from atoms to materials to chemicals. First, we
write down a Hamiltonian operator; second, we solve the eigenvalue problem. This
mathematical paradigm has led to the exact solution for the orbitals and spectrum of
simple atomic and molecular systems. In the many-body case, while Schrodinger
equations become too complex to solve analytically, an arsenal of classical simulation
methods has been developed, such as density functional theory [89], tensor network
(e.g., [145, 177]), and quantum Monte Carlo [34], that gives a remarkably detailed
understanding of phase transitions, ground and thermal state properties, and reaction
rates. However, typically, all these classical methods break down in their own
ways in the presence of strong quantum correlation, from heavy nuclei, high-𝑇𝑐
superconductors, to catalysts.

Recently, a new type of computer that runs on the laws of quantum mechanics,
quantum computers, has gathered significant interest among physicists and computer
scientists. Hopefully, future quantum computers could offer new lenses into an
even broader array of quantum many-body problems that are otherwise classically
intractable. Nevertheless, decades of search for particular physical systems where
quantum computers can significantly outperform classical methods have been
inconclusive. The challenge is that current devices are limited in their sizes and
quality, leading the community to rely heavily on a theoretical proof of quantum
computational advantage. From computational complexity theory, however, the
standard many-body ground-state problem as formulated is generally intractable even
for quantum computers (QMA-hard, as a quantum analog of NP-hard) [101]. Even
though such worst-case pessimism may not apply to physically relevant quantum
systems, it foreshadows that the search for provable quantum advantage in ground-
state problems might not be clear-cut. Indeed, the efficacy of most existing quantum
algorithm proposals for low-temperature physics (e.g., [14, 30, 36, 107]) relies on
additional assumptions that are not always easy to verify and have been challenged in
numerical studies [108]. Even though quantum simulation is commonly regarded as a
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“killer application” where quantum computers may significantly accelerate scientific
discovery, still today, there has not been a go-to quantum algorithm for preparing
ground states or thermal states. Shor’s factoring algorithm from 1994 [159] remains
a concrete, stand-alone example of an end-to-end, practical quantum computational
advantage, while many other proposals [83] have later found efficient classical
solutions [165].

A motivation for this thesis is to offer a fresh perspective on the quantum simulation
problem. Conceptually, this requires confronting the fundamental “static” view
of thermodynamics and shifting towards a more physically motivated “dynamical”
formulation. This draws a parallel to the development of classical Markov chain
Monte Carlo (MCMC) algorithms that allow for direct dynamical simulation of
thermal fluctuations due to a bath, except that designing a truly quantum MCMC
algorithm faced additional conceptual challenges rooted in quantum mechanics.
These two physical and computational veins of pursuit and challenges come to a
confluence: a new Nature-inspired quantum algorithmic principle for simulation of
low-temperature physics—quantum Gibbs sampling.

1.1 Nature’s cooling process
Take a step back; there is a living example of a large-scale quantum algorithm for
low-temperature physics that we encounter every day for a wide range of systems:
refrigerators. Our experimental colleagues routinely cool their devices by lowering
the temperature of their dilution fridges and laser coolers, through which they observe
Bose-Einstein condensation, superconducting phase transitions, and the emergence
of nontrivial correlation in graphene. If any of the above quantum mechanical
phenomena could be systematically and efficiently reproduced in programmable
quantum computers, no one should doubt their practical usefulness as a quantum
simulator. Therefore, a quantum algorithm that effectively simulates Nature’s cooling
process should already be sufficient for quantum simulation purposes, in order to
reproduce physical phenomena appearing in natural thermodynamic environments.
Indeed, why should we be bothered that quantum computers cannot prepare QMA-
hard ground states if these high-complexity states never appear in Nature?

From an algorithmic designer’s view, Nature’s cooling scheme has features rarely
seen in usual quantum algorithms: it follows a macroscopic thermodynamic principle
yet works universally for various systems and baths, and it is agnostic to initial state
and noises, while standard quantum algorithms are often very structured and prone
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to errors. It is tempting to speculate that extracting the essential working principle
behind cooling could lead to a new quantum algorithmic paradigm that inherits and
even improves its efficacy.

Nevertheless, it has been nontrivial to obtain a mathematically simple but physically
adequate description of the cooling process. From first principles, a quantum
system interacting with a thermal environment is yet another many-body Schrodinger
equation with substantial degrees of freedom; one can certainly simulate or solve the
global Hamiltonian evolution [168], but that might be overkill for understanding the
system alone, which is often much smaller than the bath. To minimize the complexity
of such open system dynamics, physicists often introduce a master equation, or a
Lindbladian, that aims to capture the effect of a bath by a much simpler continuous-
time Markovian process acting upon the system (e.g., [29, 150]). However, the
seminal Davies’ generator from 1974 [56, 58], albeit simple, is derived assuming the
system to be coupled infinitely weakly to an infinitely large Markovian thermal bath.
Shockingly, even in modern versions of Davies-like Lindbladians [121, 134] that
adhere to realistic system-bath assumptions, there has not been a proof of convergence
to the thermal state for general noncommuting Hamiltonians, or provably correct
quantum algorithms that precisely simulate such Lindbladians. Even though there
has been a great volume of open system literature, quantitative arguments beyond
single-qubits appear relatively rare, and we will have to lay out algorithmic and
analytic primitives ourselves (see chapter 2).

1.2 Markov Chain Monte Carlo algorithms
Taking another step back, there is an algorithm that simulates classical thermody-
namics in almost all the ways we wished for quantum: Markov Chain Monte Carlo
(MCMC) algorithms, one of the most versatile yet simple algorithmic principles
ever devised. For any target distribution — for example the Gibbs distribution of an
Ising magnet — the Metropolis-Hastings algorithm [86, 130] prescribes a Markov
Chain that samples from the distribution and gives estimates for statistical properties
without explicitly storing the full probability distribution. The key ingredient of this
recipe is the detailed balance condition, which simultaneously ensures that the target
distribution is stationary and leads to a powerful framework to study their convergence
time (the so-called mixing time), through a mathematically well-established quantity
called the spectral gap (see, e.g., [110]). Remarkably, detailed balance admits very
efficient algorithmic implementations, as simple as local spin updates in Ising models.
Seventy years since its debut, today, Markov Chain Monte Carlo as an algorithmic
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principle continues to apply to newly emerging problems beyond physics, from
biology to artificial intelligence.

For our purpose, we should not only view MCMC methods as a purely algorithmic
construct but also as a succinct mathematical model of Nature’s cooling process.
Most notably, Glauber dynamics [75] is a continuous-time classical Markov chain that
can be traced to Davies’ generator (for classical Hamiltonians). Even though Glauber
dynamics surely does not capture all nuances of open system physics (e.g., quantum
mechanical and non-Markovian effects of the bath), the combination of desirable
algorithmic and analytic features has nevertheless led to a comprehensive picture of
dynamic phase transitions (in thermalization and in complexity) for classical spin
systems, including magnets and spin glasses.

If quantum computing will play a likewise revolutionary role in quantum thermody-
namics, one naturally speculates that a suitable “quantum MCMC” algorithm will
have an equally important and enduring impact as the classical case. Nonetheless,
early attempts have been compounded by obstacles rooted in quantum mechanics.
To see this, consider the following Metropolis-style procedure [167] on the energy
eigenbasis: suppose we start with an energy eigenstate and apply a unitary update. If
the energy decreases, we wish to “accept” this move; otherwise, we “reject” this move
with a prescribed probability. However, this is in tension with (1) the no-cloning
theorem (to return to the previous quantum state without keeping many copies) and
(2) the energy-time uncertainty principle (to know confidently whether energy has
increased or decreased). The first issue turns out to be a technical problem tied to
discrete-time quantum Markov Chains and automatically resolves in continuous-time
settings (i.e., Lindbladians) [149, 160, 168]. Nevertheless, the uncertainty in energy
has remained a fundamental threat to quantum detailed balance, and existing work
has failed to retain both the exactness of quantum detailed balance (the basis for
modern Markov chain analysis) and finite energy resolution (inversely proportional
to the time for Hamiltonian simulation, the dominant cost in most quantum sim-
ulation algorithms). Perhaps due to the lack of a simple “go-to” proposal that
matches the features of classical Glauber dynamics, the potential impact of Quantum
MCMC algorithms has mainly been under the shadows for the quantum computing
community—see chapter 2 for a detailed account for literature.
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1.3 Main result
In this thesis, we propose a quantum Markov Chain Monte Carlo algorithm that can
also be regarded as a succinct mathematical model of open system thermalization.
For any Hamiltonian of interest, we construct a Lindbladian, a continuous-time
quantum Markov chain with the following combination of desirable features akin to
Glauber’s:

• Exact Quantum Detailed balance. The Lindbladian satisfies quantum detailed
balance exactly. Therefore, the quantum Gibbs is a stationary state of the
Lindbladian. This allows for clean mathematical reasoning and systematically
extends the formalism and techniques developed in classical and commuting
cases for mixing time (e.g., [31, 96, 124]). From a quantum algorithm
perspective, detailed balance is also naturally compatible with the quantum
walk formalism [164], giving a coherent algorithm for the “purified” Gibbs
state.

• Efficient simulation. The Lindbladian dynamics can be efficiently simulated
on a quantum computer, as long as the Hamiltonian dynamic can be simulated
for a time depending on the temperature. We expect the simulation cost to be
asymptotically optimal (up to polylogarithms).

• Quasi-locality. For lattice Hamiltonians, the Lindbladian decomposes into a
sum over (quasi)-local Lindbladians, with locality depending on the temperature
(and polylogarithmically on other parameters, such as the precision and system
size). Remarkably, each local Lindbladian is defined by local Hamiltonian
patches, avoids global Hamiltonian simulation, and may lead to qualitatively
better resource estimate.

• Physical origins. The Lindbladian takes a similar form as Davies’-like
generator and reduces to Davie’s generator (and hence Glauber dynamics for
classical Hamiltonians) in certain parameter regimes.

That is, our construction circumvents the aforementioned challenges and retains the
celebrated features of classical MCMC algorithms that fueled its widespread impact.
We expect our new construction to readily signify a multitude of new directions:

• A provable quantum simulation algorithm. There has been a flourishing
industry to study spectral gap and mixing time of classical Markov chains
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(e.g., [110]). In some cases, a sharp theoretical proof of algorithmic efficiency
can even be obtained. Our construction gives a well-defined, quasi-local, and
detail-balanced map that enables such a study in noncommuting Hamiltonians.
Indeed, recently, rapid mixing in lattice Hamiltonians at high temperatures
has been proved using our Lindbladian [153]. In chapter 4, we also use the
established framework to give implicit evidence of quantum advantage for
the “coolable” states through a dedicated mixing time analysis. We hope that
new theoretical proof enabled in the quantum case could “unstick” the current
inconclusive status of quantum advantage in quantum simulation by unveiling
new provably efficient instances.

• A dynamics angle to quantum Gibbs states. The mixing time of the
Lindbladian is deeply connected to the correlation and complexity of quantum
Gibbs states. It was a celebrated result in classical Gibbs sampling that
rapid mixing coincides with the decay of Gibbs correlation [124], and only
recently has the equivalence been extended to some commuting quantum
Hamiltonians [31, 96]. Our newly defined map gives a new dynamic angle to
rigorously study intricate quantum correlation, such as the area-law, conditional
mutual information, and topological order, in non-commuting Gibbs states.

• A self-contained model of open system thermodynamics. As a quantum
analog of Glauber dynamics, the physical origin of our construction gives a
succinct model of open-system physics. Our Lindbladian enables a precise
definition of dynamical thermal phase transitions associated with the mixing
time. Traditionally, quantum statistical mechanics have largely focused on
static properties (e.g., divergence of correlation length as an indicator of phase
transitions), but we argue that a dynamical picture might yield new physics
that is not visible in the statics. Related concepts include metastable states, the
energy landscape, quantum spin glass, and self-correcting quantum memories,
whose precise formulation for noncommuting Hamiltonian has also been
lacking (see chapter 4). The explicit form of our Lindbladian also enables
direct numerical studies regarding the above notions.

To reiterate, given the celebrated theoretical and empirical triumph of Markov chain
Monte Carlo methods and its successors over the past 70 years, quantum Gibbs
sampling could serve similar roles in quantum computing. Especially given the
current skepticism on the practical applicability of quantum computers, we aspire to
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bring hope to the community by initiating a new wave of directions covering theory,
experiment, numerics, and application. The remaining chapters of the thesis are
organized as follows.

In chapter 2, we introduce the algorithmic and theoretic foundation for the simulation
and analysis of a family of Davies-like Lindbladians (not necessarily detailed-
balanced). The main algorithmic result is a black-box simulation algorithm for
Davies-like Lindbladians (in fact any Lindbladians with substantially large Kraus
rank) and the operator Fourier transform, a subroutine that decomposes any operator
according to the changes in energy (akin to how phase estimation decomposes the
states by its energies). The main analytic result is that Nature’s cooling process,
modeled by the existing Davies’-like Lindbladian, indeed converges to approximate
Gibbs states; we introduce and prove a notion of approximate detailed balance that
depends on the temperature, Hamiltonian simulation time, and the mixing time for
the Lindbladian.

In chapter 3, we give the advertised detailed balanced Lindbladian as a particular
instance of the Davies’-like family introduced in chapter 2, whose analytic and
algorithmic properties are largely inherited and improved. The new key insight is a
recipe for a coherent term in addition to the dissipation part that perfectly cancels out
deviations from quantum detailed balance. With exact detailed balance, the proof
of Gibbs stationarity is immediate, and the Lindbladian naturally corresponds to a
parent Hamiltonian (akin to the quantum walk operator for classical Markov chains)
that allows for preparation for the purified Gibbs state. We do not know where there
is a qualitative distinction from Davies’-like Lindbladians introduced in chapter 2.

In chapter 4, we provide implicit evidence of quantum advantage in cooling by
showing that Nature’s cooling process is just as powerful as universal quantum
computation. In particular, we construct a family of 2D Hamiltonians whose ground
states encode arbitrary polynomial-time quantum computations, and the associated
Davies’-like Lindbladian converges to the ground state in polynomial time. Therefore,
there are instances of ground state problems that are quantumly easy and classically
hard unless 𝐵𝑄𝑃 = 𝐵𝑃𝑃 (roughly, unless classical computers can efficiently simulate
all decision problems solvable with quantum computations). To study the mixing
times, we introduce the idea of quantum local minima, which attempts to capture an
energy landscape associated with the cooling process. Technically, the results are
proven for physically derived Davies-like Lindbladian building upon the framework
from chapter 2, but we expect an even faster convergence to hold with better
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parameters for the Lindbladian with exact detailed balance from chapter 3.
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C h a p t e r 2

ALGORITHMIC PRIMITIVES FOR QUANTUM THERMAL
STATE PREPARATION

2.1 Introduction
How do we prepare quantum Gibbs or ground states on a quantum computer? This
initial state preparation problem appears as the obstacle for simulating quantum
systems [68, 116]– a popular candidate for practical quantum advantage. This
mystery has its roots in the seemingly contradictory teachings of computer science
and physics: computational complexity theory tells us that few-body Hamiltonian
ground states are generally QMA-hard to prepare [4, 76, 101] and thus are likely
intractable in general even for quantum computers; on the contrary, thermodynamics
asserts that physical systems interacting with a thermal bath are naturally in the
thermal states or ground states. How do we draw an appropriate boundary between
the two cases?

Practically, recent end-to-end industry resource estimates (e.g., [14, 30, 37, 107])
of quantum simulation rely on initial state preparation assumptions1, exposing our
ignorance of the complexity of practically relevant states. Often, practitioners turn to
heuristic algorithms such as the Variational Quantum Eigensolver (see, e.g., [169])
or the adiabatic algorithm (see, e.g., [7, 64]), yet each with concerns for practicality.
The former suffers from the so-called Barren Plateau phenomena [128], and its
scalability has been debated; the latter requires a gapped adiabatic path, which
appears nontrivial in recent large-scale numerical studies for quantum chemistry
applications [108]. So far, there is a thin consensus on a ‘go-to’ ground state or
thermal state quantum algorithm that could work in practice.

This work approaches the state preparation problem via Quantum Gibbs samplers. In
physics language, this is closely related to open system dynamics where the system
of interest is coupled to a thermal bath (see, e.g., [152]). Here, the conceptual
boundary is blurred between the underlying physical process and the algorithm [168].
If a system thermalizes in nature and our physical model is accurate, we expect the
associated quantum Gibbs sampler to converge quickly (i.e., the mixing time or the

1More precisely, they assume the existence of trial states with good overlap with the ground state
so that running phase estimation provably works [114]. See also [70].
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inverse-spectral gap is small); conversely, proving the latter also gives a rigorous
formulation of open-system thermodynamics. This complements the mainstream
formulation of closed-system thermodynamics via the Eigenstate Thermalization
Hypothesis (see, e.g., [62]), where theoretical progress has been elusive. Practically,
our general analysis for open system thermalization could be relevant to analog
quantum simulators for Gibbs sampling, although our presentation mainly focuses
on fault-tolerant quantum computers.

In computer science language, quantum Gibbs samplers are the quantum analogs of
classical Markov chain Monte Carlo (MCMC) algorithms, most notably Metropolis
sampling (see, e.g., [110]). They proved to be an indispensable pillar in classical
computer science, both theoretically and practically, for computational physics and,
more recently, optimization problems and machine learning. In a nutshell, the simple
yet general idea is a (discrete or continuous) Markov chain whose unique fixed point
yields the target distribution 𝜋 (a vector with positive entries); given the energy 𝐸𝑠
as a function of the configuration 𝑠, the Markov chain’s transition matrix 𝑴 satisfies

𝑴𝜋 = 𝜋 where 𝜋𝑠 :=
e−𝛽𝐸𝑠∑
𝑠 e−𝛽𝐸𝑠

for each 𝑠 at temperature
1
𝛽
.

The algorithmic cost for preparing a sample from the Gibbs distribution 𝜋 scales
directly with the mixing time, the number of iterations such that any initial conjugation
converges to the stationary distribution 𝜋. The mixing time can be unpredictable and
vary wildly depending on the specific problems (e.g., [110]). Theoretically, rapid
mixing can sometimes be proven under suitable assumptions, most notably in lattice
Ising models assuming exponential decay of Gibbs state correlation (see, e.g., [124]).
Practically, even when mixing time estimates are elusive, MCMC algorithms often
serve as a starting point for more sophisticated algorithms. Given the triumphant
impact of classical Gibbs sampling, we argue that Quantum Gibbs samplers have
been thus far underexplored in the community and will likely play a central role
when more robust quantum computers become available. Indeed, in addition to
quantum simulation, quantum Gibbs sampling has been identified as a key subroutine
in solving semidefinite programs (SDPs) [11, 27] and quantum machine learning [9].
To clarify, we will focus on quantum Hamiltonians; quantum algorithms for classical
Gibbs states are not in the scope of this work.2

2Quantum Gibbs sampler for fast-forwardable Hamiltonian (including commuting Hamiltonians)
is already well-defined since one can effectively apply phase estimation to exponential accuracy [167,
180]. The challenges we confront in this work are rooted in the noncommutativity.
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To set the stage for quantum Gibbs sampling, we shall review the classical cousins,
which we consider the seminal Metropolis-Hastings algorithm (see, e.g., [110]) as
a representative. This algorithm iterates a discrete-time Markov chain as follows:
apply a random “jump” (or “update,” “move”) 𝑨𝑎 with probability 𝑝(𝑎) (Figure 2.1).
If the energy decreases, accept the move, otherwise accept only with probability
e−𝛽𝜔 (i.e., rejecting the move with probability 1 − e−𝛽𝜔), where 𝜔 being the energy
gain. This can be described as a stochastic matrix over pairs of configurations 𝑠′𝑠

𝑴𝑠′𝑠 :=
∑︁
𝑎∈𝐴

𝑝(𝑎)𝛾(𝐸𝑠′ − 𝐸𝑠)𝑨𝑎𝑠′𝑠︸                          ︷︷                          ︸
“Accept”

+ 𝑹𝑠′𝑠𝛿𝑠′𝑠︸  ︷︷  ︸
“Reject”

where 𝛾(𝜔) := min(1, e−𝛽𝜔),

(2.1)

and 𝑨𝑎
𝑠′𝑠 are stochastic matrices corresponding to each move (e.g., flipping one of the

spins). The matrix elements are weighted by the Metropolis factor 𝛾(𝜔) depending
on the energy change. Importantly, the particular function satisfies a particular
symmetry (Figure 2.1), known as the detailed balance condition

𝛾(𝜔)/𝛾(−𝜔) = e−𝛽𝜔 such that 𝑴𝑠′𝑠𝜋𝑠 = 𝜋𝑠′𝑴𝑠′𝑠 for each 𝑠, 𝑠′. (2.2)

Detailed balance ensures that the Gibbs state 𝜋 is a fixed point of the Markov chain
𝑴𝜋 = 𝜋. The rejection part 𝑹𝑠′𝑠 is a diagonal matrix determined by the probability
preserving constraints. Similarly, one may define a continuous-time Markov chain
generator

𝑳𝑠′𝑠 :=
∑︁
𝑎∈𝐴

𝑝(𝑎)

©­­­­­­«
𝛾(𝐸𝑠′ − 𝐸𝑠)𝑨𝑎𝑠′𝑠︸              ︷︷              ︸

“transition”

− 𝛿𝑠′𝑠
∑︁
𝑠′′
𝛾(𝐸𝑠′′ − 𝐸𝑠)𝑨𝑎𝑠′′𝑠︸                          ︷︷                          ︸

“decay”

ª®®®®®®¬
for each 𝑠, 𝑠′.

(2.3)

The second term ensures that the generated semi-group e𝑳𝑡 preserves probability.
The operators 𝑨𝑎 can be arbitrary nonnegative matrices and need not be stochastic.

While classical Markov chain Monte Carlo methods have been theoretically and
practically mature, the quantum analogs are still in their infancy. The study of
Quantum Gibbs sampling currently faces fundamental challenges; surprisingly, even
a satisfactory map has not been appropriately defined for general noncommutative
Hamiltonians. As the very first step, we need to algorithmically design a quantum
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* Also, (continuous-time) Glauber dynamics [’63]
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Figure 2.1: The Metropolis-Hastings algorithm iterates a Markov chain to sample
from the Gibbs distribution. Each step begins with a (random) jump: if the energy
decreases, accept; if the energy increases, accept with a carefully chosen probability.
Otherwise, reject the move. Remarkably, detailed balance can be enforced in a “lazy”
manner via rejection sampling without storing the whole matrix.

analog of Markov chain generator3 L𝛽, a Lindbladian, [181] whose (unique) fixed
point is the quantum Gibbs state 𝝆𝛽. More precisely, given a Hamiltonian 𝑯 and an
inverse temperature 𝛽

design L𝛽 such that eL𝛽𝑡 [𝝆𝛽] = 𝝆𝛽 where 𝝆𝛽 := e−𝛽𝑯/Tr(e−𝛽𝑯)(2.4)

for any 𝑡 > 0. Subsequently, we may begin studying the properties of the proposed
Lindbladian, especially the mixing time. This work aims to lay the foundation for the
first challenge. The second challenge was partially addressed in Ref. [38] using more
primitive Gibbs samplers. Unlike the classical case, the construction of quantum
Gibbs samplers is nontrivial due to imprecise energy estimates for noncommuting
Hamiltonians (i.e., the energy-time uncertainty principle); the fixed point would not
be exactly the Gibbs state (2.4). Previous attempts [38, 167, 168, 180, 186] have
their shortcomings, which we discuss in more detail in section 2.1 and Table 2.1.
Our work, in parallel with the recent paper [149], provides the first implementable
Lindbladian for Gibbs sampling, with provable guarantees and without unrealistic
assumptions. To do so, we introduce a robust analytic framework, which additionally
applies to physical Lindbladians derived in open systems and to coherent Gibbs
samplers with Szegedy-type speedups.

Our particular construction draws inspiration from thermalization in nature. As the
starting point, a system in thermal contact with a bath can be effectively described
by the so-called Davies generator in the Schrödinger Picture in a specific (weak-

3We focus on the infinitesimal generators for simplicity. One may alternatively consider discrete
quantum channels, also known as completely-positive-trace-preserving (CPTP) maps.
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coupling/infinite-time) limit ([56, 58, 152], and see [134] for a modern discussion)

LD𝑎𝑣𝑖𝑒𝑠 (𝝆) =
∑︁
𝑎∈𝐴

∑︁
𝜈∈𝐵

𝛾(𝜈)
©­­­­­«
𝑨𝑎𝜈𝝆(𝑨𝑎𝜈︸    ︷︷    ︸)†
“transition”

− 1
2
((𝑨𝑎𝜈)†𝑨𝑎𝜈𝝆 + 𝝆(𝑨𝑎𝜈)†𝑨𝑎𝜈)︸                              ︷︷                              ︸

“decay”

ª®®®®®¬
, (2.5)

where {𝑨𝑎}𝑎∈𝐴 are the set of “quantum” jumps and 𝜈 ∈ 𝐵 := spec(𝑯) − spec(𝑯)
are the Bohr frequencies, the set of energy differences of the Hamiltonian. This
resembles its classical Markov chain cousin (2.3), featuring two terms: transition
and decay rates. Since we work with density operators 𝝆 instead of probability
vectors, the input 𝝆 must be formally sandwiched by operators on the left and right.
However, if the input states are diagonal in the energy basis and the energy levels
are nondegenerate, then the Davies’ generator can be faithfully represented as a
continuous-time Markov chain (2.3) on the energy eigenstates by literally replacing

𝑠→ |𝜓𝑖⟩⟨𝜓𝑖 |,

𝑨𝑎𝑠′𝑠 →
��⟨𝜓𝑖 |𝑨𝑎��𝜓 𝑗 〉��2 where 𝑯 =

∑︁
𝑖

𝐸𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |. (2.6)

A concrete physical example is a geometrically local Hamiltonian on a lattice.
The jump operators 𝑨𝑎 can be one-body Pauli operators on each lattice site, and
the cardinality of jumps scales with the system size |𝐴| ∝ 𝑛. Of course, Davies’
generator is merely an instance of many possible Lindbladian one can write down
(see section 2.2), which generally may not come from thermodynamics.

In (2.5), the quantum mechanical transition rate 𝑨𝑎𝜈 is defined as

𝑨𝑎𝜈 :=
∑︁

𝐸𝑖−𝐸 𝑗=𝜈

𝑷𝐸𝑖
𝑨𝑎𝑷𝐸 𝑗

for each Bohr frequency 𝜈 ∈ 𝐵,

where 𝑷𝐸 denotes energy eigenspace projectors associated with energy 𝐸 (Figure 2.2).
In general, the dynamics can be inherently quantum-mechanical when the energy
subspaces are degenerate; the quantum transition can include coherent rotations
within the subspaces 𝑷𝐸 .

The function 𝛾(𝜔) depends on the physical model of the bath. Under physical
assumptions (thermal bath and Markovianity), the heating transitions are penalized
by a Boltzmann factor relative to the cooling transitions4 𝛾(𝜔) = e−𝜔𝛽𝛾(−𝜔).

4The sign convention we use (here and also for Fourier Transforms) might differ from that of
other works in the open systems literature.
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Âa(!)

<latexit sha1_base64="foWJbvZj7WGdq9NdzxfjEKwnO48="></latexit>
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Figure 2.2: (Up) Davies’ generator gives a continuous-time Markov generator on
the energy spectrum (assuming the Hamiltonian is nondegenerate and the input
state is diagonal in the energy basis.). The transitions are weighted by 𝛾(𝜔): the
heating transitions (red) are suppressed by a Boltzmann factor relative to the cooling
transitions (blue), entailing detailed balance. The operator 𝑨𝑎𝜈 contains the transitions
with energy difference 𝜈, which requires an infinite-time Fourier Transform. (Down)
Our Lindbladian Gibbs sampler can be considered a “semi-classical” random walk
where nearby Bohr-frequencies 𝜔 ± O(𝜎−1

𝑡 ) cannot be distinguished. The operator
Fourier Transform 𝑨̂𝑎 (𝜔) contains a band of transitions. This breaks the detailed
balance condition; the fixed point deviates from the Gibbs state.

Mathematically, this ensures that the Davies’ generator LD𝑎𝑣𝑖𝑒𝑠 satisfies the quantum
detailed balance condition (section 2.2) with respect to the Gibbs state 𝝆𝛽, implying
that 𝝆𝛽 is a fixed point (2.4). At first glance, the above properties of Davies
generators (2.5) seem to qualify for a Quantum Gibbs sampler (2.4) - if we were able
to simulate it efficiently.

Unfortunately, the generator (2.5) is generally nonphysical because isolating an exact
energy transition 𝜈 requires an infinite-time Fourier Transform5 over Heisenberg
evolution

𝑨𝑎𝜈 ∝
∫ ∞

−∞
e−i𝜔𝑡ei𝑯𝑡𝑨𝑎e−i𝑯𝑡︸        ︷︷        ︸

𝑨𝑎 (𝑡):=

d𝑡 for each 𝑎 ∈ 𝐴 and 𝜈 ∈ 𝐵.

5With the exception when the Hamiltonian spectrum takes well-separated discrete values with
(roughly) known locations.
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This allows the Davies generator to decohere arbitrary close Bohr frequencies 𝜔, 𝜔′.
This contradicts the energy-time uncertainty principle, requiring the runtime to scale
inversely with the level spacing, which generally can be exponentially small in the
system size 𝑛. Unfortunately, at shorter times, the resulting fuzziness of energy
resolution breaks detailed balance, which has been central to the analysis of (both
classical and quantum) Markov chains. Many finite-time versions of the Davies
generator have been proposed to capture more realistic physical settings [38, 121, 134,
150]. Yet, to the best of our knowledge, no Lindbladian arising from a finite-time
Fourier Transform has been proven to have a fixed point close to the Gibbs state.6

Quantum Gibbs sampling algorithms face analogous technical challenges due to a
limited algorithmic runtime. Here, the energy-time uncertainty principle incarnates
as the statistical uncertainty of the energy measurement via quantum phase estimation.
Several works [148, 180] evade this issue by imposing a convenient rounding promise
on the Hamiltonian, requiring its spectrum to be disjoint from certain specific ranges
of energy. Such a rounding promise is not physically motivated and does not hold in
general but allows for rigorous performance guarantees for Gibbs samplers using
boosted phase estimation. Very recently, Ref. [149] circumvents the need for a
rounding promise by randomly alternating the phase estimation mesh, but this comes
at a high additional algorithmic cost with potentially worsened mixing time due to
forbidding certain transitions and seems distant from the physical origins of quantum
Gibbs samplers.

In this work, we present quantum Gibbs sampling algorithms inspired by thermaliza-
tion in Nature. In particular, our construction is a “smoothed” version of the Davies’
generator (2.5). The first algorithm simulates a Lindbladian whose fixed point is
approximately a quantum Gibbs state; the second algorithm further “quantizes” the
Lindbladian to prepare the purified Gibbs state and features a quadratic Szegedy-type
speedup. Our algorithms are efficient and comparatively simple to implement while
having a provable performance guarantee. The key ingredient in our algorithmic
design is to use the weighted operator Fourier Transform for the Lindblad operators

𝑨̂𝑎 (𝜔) = 1
√

2𝜋

∫ ∞

−∞
e−i𝜔𝑡 𝑓 (𝑡)𝑨𝑎 (𝑡)d𝑡 for each 𝑎 ∈ 𝐴 and 𝜔 ∈ R. (2.7)

In practice, we use a discrete Fourier Transform (which will be denoted by 𝑨̂𝑎 (𝜔̄)
for discrete frequency label 𝜔̄). Still, for conceptual simplicity, we focus on

6Ref. [38] gives a nonCPTP generator that does have approximately a Gibbs fixed point.
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the continuous case in the introduction. Unlike in ordinary phase estimation
where boosting usually adopts median-of-means tricks [138], we weigh the Fourier
Transform by a Gaussian distribution 𝑓 (𝑡) with a tunable width 𝜎𝑡 . Consequently,
the Fourier Transform remains a Gaussian, achieving an analog of a boosted phase
estimation with uncertainty 𝜔 ± O(𝜎−1

𝑡 ).

To give performance guarantees for our construction, our main analytic insight is to
define a notion of approximate detailed balance (see section 2.7)

𝝆1/4
𝛽
L† [𝝆−1/4

𝛽
𝑶𝝆−1/4

𝛽
]𝝆1/4

𝛽
≈ 𝝆−1/4

𝛽
L[𝝆1/4

𝛽
𝑶𝝆1/4

𝛽
]𝝆−1/4

𝛽
for each operator 𝑶

to handle energy uncertainty. In the exact case, this is the quantum generalization
of classical detailed balance, where the distribution becomes an operator, and the
Markov transition matrix becomes a superoperator.

Our construction and analysis of the Gibbs sampler are physically inspired insofar as
it closely resembles the Davies generator of Eqn. (2.5), but we do not know whether it
can be derived in some physical limit from a weak system-bath coupling. Incidentally,
starting from a microscopic system-bath interaction, a recent proposal [121, 134]
specifically derives from first principles a Lindbladian with Lindblad operators

𝑨̂𝑎 (𝜔) :∝
∫ 𝑇/2

−𝑇/2
e−i𝜔𝑡𝑨𝑎 (𝑡)d𝑡 for each 𝑎 ∈ 𝐴 and 𝜔 ∈ R.

Here, the Fourier Transform time-scale 𝑇 sets the energy uncertainty 𝜔 ± O(𝑇−1);
the fixed point will not be exactly the Gibbs state. Using our new analytic framework,
we show that this Lindbladian derived in Refs. [121, 134] has a stationary state close
to the Gibbs state. To the best of our knowledge, our work completes the first general
proof of many-body Gibbs states in the open system setting (assuming a reasonably
short mixing time).

The runtime of both our algorithms has simple dependence on the mixing time
or spectral gap of the Lindbladian. In general, the gap will depend sensitively on
the details of the physical system, and its calculation for specific Hamiltonians is
beyond the scope of this work. We refer to Refs. [31, 38, 96, 97] and references
therein for a more detailed discussion of mixing times (and spectral gaps) for various
Hamiltonian and Lindbladians. At an intuitive level, we expect the Lindbladian for
lattice systems with jump operators on each site to have a constant local Lindbladian
gap7 independent of the volume at high enough temperatures or within the same

7The local gap, in our normalization, is defined as 𝑛 ·𝜆g𝑎𝑝 (L), where 𝜆g𝑎𝑝 (L) is the Lindbladian
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phase. In practice, we believe that quantum Gibbs sampling algorithms will be
employed on a case-by-case basis in combination with various heuristics, as is the
case with classical Monte Carlo algorithms.

Existing work
The first attempt at designing a quantum algorithm for Gibbs sampling with per-update
efficiency guarantees is the quantum Metropolis algorithm [167], as a quantum analog
of (2.1). The main guiding principle is to “do Metropolis sampling over the energy
spectrum” in the spirit of (2.6). To do so, we need two quantitative changes due to
quantum mechanics, one algorithmic and one analytic: algorithmically, one needs a
subroutine to “reject” a quantum state back to the same energy. Classically, one can
clone the configuration 𝑠 before the update. Quantumly, however, we cannot clone the
(unknown) quantum state and must be careful not to collapse the quantum state due to
energy measurement. Ref. [167] handles this issue using the Mariott-Watrous [123]
algorithm (or the “rewinding” technique in quantum Cryptography). Crucially, this
algorithmic subroutine preserves probability, drawing a distinction from imaginary
time evolution or post-selection, but this comes with its limitation and significantly
complicates the algorithm. Second, energy measurements based on quantum phase
estimation have a finite resolution inversely proportional to the runtime 𝛿𝐸 ∼ 1/𝑇 .
Consequently, the detailed balance condition may not generally hold, and one needs
to prove that the fixed point remains approximately the Gibbs state.

The technical results of [167] contain three approaches based on different phase
estimation subroutines: (i) assuming perfect phase estimation (with performance
guarantee but with an exponential Hamiltonian simulation time); (ii) un-boosted
phase estimation (without performance guarantees); (iii) boosted shift-invariant phase
estimation (with performance guarantees).8 Unfortunately, we recently realized
that such a boosted, shift-invariant phase estimation (see section 2.13) is provably
impossible;9 we do not know whether Quantum Metropolis sampling [167], as stated
explicitly, actually works in practice. The quantum metropolis is regarded as an
important theoretical milestone, but due to its complicated form (especially due
to the rejection subroutine), the particular algorithm largely serves as a high-level
inspiration.

eigenvalue gap and 𝑛 is the system size. A parallel version of the algorithm could, in principle, gain
this 𝑛 factor in the circuit depth. Also, the Lindbladian gap should not be confused with the energy
gap of the Hamiltonian, which is not directly relevant to Gibbs sampling at nonvanishing temperatures.

8The approximate detailed balance argument was later completed in [38].
9The authors [167] communicated with us that there might be ways to fix their algorithm.



18

From a physical point of view, one may implement Nature’s quantum algorithm [168]
by emulating the global system-bath interaction. However, this black-box approach
is a double-edged sword: indeed, this method should work as well as Nature, but as
we know from open system thermodynamics, nonasymptotic results are extremely
challenging without liberal use of approximations [152, 168], rendering the result
qualitative but not quantitative. (For example, it is elusive how big of a bath is needed
for the desired accuracy.) Recently, Ref. [38, 134, 160] took the physics inspirations
seriously and quantitatively studied a system-bath interaction from scratch. Ref. [134]
revisits the text-book open system derivation and extracts a nonasymptotic version of
Davies’ generator with explicit error bounds and without unphysical limits. However,
it was not known whether the derived Lindbladian has the Gibbs state as the stationary
state; ref. [38] was the first provably polynomial-time algorithm for Gibbs state
assuming a reasonably short mixing time, although it assumes good control of the
bath and its error bounds are large polynomials and impractical to apply; ref. [160] is
conceptually similar to [38] but focuses more on near-term feasibility. Technically,
its accuracy guarantees require the Eigenstate Thermalization Hypothesis, which
significantly simplifies the analysis. Unfortunately, both cases [38, 160] failed to
extract a Lindbladian (the generators are not completely positive). In some sense, this
motivates us to give a unifying conceptual and analytic perspective on this subject.

Coherent quantum Metropolis sampling [186] is a natural generalization of quantum
Metropolis sampling [167] that further gives a quadratic runtime speedup by invoking
Szegedy’s quantum walk strategy [164]. Since the dissipative map is quantized as
a Hermitian operator, one cannot evolve a semi-group but requires an additional
quantum simulated annealing step [161] (a particular adiabatic state preparation along
temperatures) to prepare the purified Gibbs state; see section 2.12. Unfortunately,
Ref. [186] assumes perfect phase estimation and a nondegenerate Hamiltonian
spectrum, and it was unclear how one incorporates imperfect phase estimation in
such a coherent algorithm. Ref. [180] improves and generalizes their result but still
makes an unphysical rounding promise assumption: the Hamiltonian spectrum has
periodic gaps to amplify phase estimation.

Perhaps inspired by the rounding promise, the recent related work [149] proposes an
algorithm that implements a Lindbladian that also provably has approximately Gibbs
fixed point using randomized rounding. Their approach is quite different in nature
from ours, and they are not known to enjoy the quadratic speedup. Randomized
rounding seems to incur large resource overhead (See Table 2.17) and substantially
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departs from the physical origin of these ideas.

Our Lindbladian Gibbs samplers build upon the literature for open system simula-
tion [49] as well as the coherent Gibbs sampler of [180]. In both cases, we remove the
need for any unphysical assumption (e.g., especially the rounding promise) yet still
maintain a simple error bound. This is made possible by identifying the right choice
of jump operators in terms of discrete Fourier Transform and refining the analytic
technical tool introduced in [38] (nonasymptotic bounds for secular approximation)10.
In a nutshell, it seems the “right” approach to quantum Gibbs sampling is to simulate
a (continuous-time) Lindbladian, which Nature implements by default, instead of
a (discrete-time) Metropolis-Hastings style quantum channel. The rejection step is
handled automatically for any Lindbladians. We leave for future work to simplify
the rejection step in quantum Metropolis sampling [167] or to design a discrete-time
channel with provable guarantees.11 We further note a general distinction between
coherent Gibbs samplers and Lindbladian Gibbs samplers regarding obtaining the
fixed point. The former relies on the gap of the Lindbladian staying open along the
entire adiabatic path from high to low temperature 0→ 𝛽, while the latter (e.g., our
construction or [149]) does not. Thus, the two algorithmic costs are not directly
comparable. Empirical intuition from classical Gibbs sampling suggests that for
“simple problems” where the gaps remain largely open throughout the phase of
interest, adiabatic and direct sampling methods perform similarly. However, for
strongly frustrated systems like spin glasses, adiabatic heuristics are the go-to Monte
Carlo method. It is tempting to speculate that the same will be true in the quantum
Gibbs sampling case, which lends itself well to our approach.

In addition to Monte Carlo style algorithms, other thermal state preparation algorithms
based on quite different principles also exist; we briefly summarize their gate
complexities in Table 2.1. We only discuss methods where quantitative arguments
are possible and pay less attention to heuristic approaches such as variational
circuits [51, 125, 158, 184, 188]), energy filtering assuming good initial states, and
heuristic quantum assisted Monte Carlo [119, 157].

10Some preliminary version of approximate detailed balance was discussed in an earlier version
of [38] regarding quantum Metropolis sampling. That part was completely removed after the authors
realized the phase estimation assumption was impossible as stated (section 2.13).

11For Lindbladians, the designer has the freedom to choose arbitrary Lindblad operators, and
the decay part automatically guarantees trace-preserving. However, it is more challenging to design
quantum channels as the trace-preserving condition seems less flexible. Indeed, Quantum Metropolis
Sampling [167] had to invoke Mariot-Wattrous-style rewinding [123] multiple times to ensure
probability is preserved, which unfortunately increases the complexity of the algorithm.
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Outline and main results
Our discussion features the following Lindbladian in the Schrödinger picture

L𝛽 [𝝆] :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝛾(𝜔)

(
𝑨̂𝑎 (𝜔)𝝆𝑨̂𝑎 (𝜔)† − 1

2
{
𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔), 𝝆

})
d𝜔 (2.8)

with the anti-commutator {𝑨, 𝑩} = 𝑨𝑩 + 𝑩𝑨. We can read out the set of Lindblad
operators

{
√︁
𝛾(𝜔) 𝑨̂𝑎 (𝜔)}𝑎∈𝐴,𝜔∈R where 𝑨̂𝑎 (𝜔) :=

1
√

2𝜋

∫ ∞

−∞
e−i𝜔𝑡 𝑓 (𝑡)𝑨𝑎 (𝑡)d𝑡.(2.9)

In particular, all Lindbladians we consider in this work, natural or algorithmic,
satisfies the following symmetry and normalization conditions:

• The set of jump operators 𝑨𝑎, which “drives” the transition, can be arbitrary
(and often depends on the Hamiltonian) as long as the set contains their adjoints

{𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴} and ∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥ ≤ 1. (2.10)

Indeed, classical Metropolis sampling often starts with a reversible Markov
chain to algorithmic impose the detailed balance condition; the quantum analog
is the adjoint condition. Single-site Pauli operators (which are individually self-
adjoint) are handy choices, but few-body operators with arbitrary connectivity
are certainly permissible12. The normalization is natural for block-encoding
the set of jump operators (Definition 2.1.2 and (2.27)). For example, choosing
single-site Paulis as jump operators requires dividing them by

√︁
|𝐴| (where

|𝐴| is the cardinality of the set) to fulfill the normalization requirement.13

• The Fourier Transform in the time domain is weighted by a filter function 𝑓 (𝑡)
that is real and ℓ2-normalized

𝑓 ∗(𝑡) = 𝑓 (𝑡) for 𝑡 ∈ R and ∥ 𝑓 ∥22 :=
∫ ∞

−∞
| 𝑓 (𝑡) |2d𝑡 = 1. (2.11)

Sometimes, we drop the subscript by ∥ 𝑓 ∥ = ∥ 𝑓 ∥2. The real constraint serves a
purpose similar to reversibility in classical Gibbs sampling. When considering
discrete Fourier Transforms (which is necessary for implementation), we adapt
the corresponding (discrete) normalization

∑
𝑡∈𝑆𝑡0 | 𝑓 (𝑡) |

2 = 1.
12In fact, the ability to perform carefully chosen (often not natural) jumps is what empowers

classical Gibbs sampling algorithms, e.g., cluster updates.
13This is slightly different from the physical setting where each jump has operator norm ∥𝑨𝑎∥ = 1.

There, the “strength” of the Lindbladian (2.13) scales with the number of jumps |𝐴|.
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• The transition weight 𝛾(𝜔) can be any function satisfying the KMS condition
and the bound

𝛾(𝜔)/𝛾(−𝜔) = e−𝛽𝜔 and 0 ≤ 𝛾(𝜔) ≤ 1 for fixed 𝛽 and each 𝜔 ∈ R.
(2.12)

This coincides with the classical recipe for detailed balance (2.2). Natural
choices include the Metropolis weight 𝛾(𝜔) = min(1, e−𝛽𝜔) or the (smoother)
Glauber dynamics weight 𝛾(𝜔) = (e𝛽𝜔 + 1)−1.

To summarize, the above list of symmetry conditions is the key to ensuring (approx-
imate) detailed balance; the above normalization choices are not only natural for
implementation but also conveniently ensures that the “strength” of the Lindbladian
is normalized

∥L𝛽∥1−1 ≤ 2 (2.13)

in the superoperator 1-1 norm.

Lindbladians from Nature

Before we discuss Gibbs sampling algorithms, we first address the fundamental
question: why do Gibbs states faithfully capture physical systems in thermal
equilibrium? In physics, the quantum Gibbs state is often imposed without rigorous
justification. As a mathematical physics result, we complete the first proof of open
system thermodynamics: the Gibbs state is indeed approximately the fixed point of
Lindbladians governing open system dynamics.

Of course, this further requires a rigorous derivation of Lindbladian from reasonable
open system assumptions; this is not the intention of this work, but thankfully, this
has been worked out under a Markovian, weak-coupling assumption [134]. All we
need as a black box is that it indeed satisfies the constraints we imposed (2.10),(2.11),
and (2.12). For simplicity, we have omitted the Hamiltonian part of the Lindbladian
and focus only on the dissipative part; see section 2.9 for the complete results.

Theorem 2.1.1 (Gibbs state is thermodynamic). Any L𝛽 satisfying the symmetry
and normalization conditions (2.10),(2.11), and (2.12) with the particular weight
function

𝑓 (𝑡) = 1(𝑡 ≤ |𝑇 |/2)
√
𝑇
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has an approximate Gibbs fixed point

∥𝝆 𝑓 𝑖𝑥 (L𝛽) − 𝝆𝛽∥1 ≤ O
(√︂

𝛽

𝑇
𝑡𝑚𝑖𝑥 (L𝛽)

)
. (2.14)

In particular, (dropping the Hamiltonian term and under suitable normalization)
such a Lindbladian can arise from a system (with Hamiltonian 𝑯) interacting weakly
with a Markovian bath (with inverse temperature 𝛽) through jump operators 𝑨𝑎.

The above introduces the notion of mixing time for Linbladians: the time scale for
which any pair of initial states become indistinguishable. Of course, the physical
interpretation of this time scale depends on how the Lindbladian is normalized; for
our cases, we conveniently have that ∥L𝛽∥1−1 ≤ 2 (2.13).

Definition 2.1.1 (Lindbladian mixing time). For any Lindbladian L, we define the
mixing time 𝑡𝑚𝑖𝑥 (L) in the Schrödinger picture to be the shortest time for which

eL𝑡𝑚𝑖𝑥 [𝝆 − 𝝆′]




1 ≤

1
2
∥𝝆 − 𝝆′∥1 for any states 𝝆, 𝝆′.

Theorem 2.1.1 states that the approximation of Gibbs state degrades at a low
temperature, a poor energy resolution (i.e., a short Fourier Transform time 𝑇), or a
long mixing time. While the parameters 𝛽, 𝑇 are tunable parameters; the mixing time
is generally Hamiltonian dependent. Still, one may obtain a bound using additional
assumptions (such as the decay of correlation of commuting Hamiltonian Gibbs
states [16, 96] or the Eigenstate Thermalization Hypothesis [38, 160]), empirical
intuition, or conversion from a numerically-obtained spectral gap (Proposition 2.2.3).

Assuming some grasp of the mixing time, how large should the time scale 𝑇 get to
obtain a Gibbs sample? Roughly, according to the error bound (2.14), the time 𝑇
should scale with the mixing time by

𝑇 ∼ 𝛽𝑡2𝑚𝑖𝑥/𝜖2.

More carefully, the RHS (2.14) does not obviously permit a solution for the desired
accuracy 𝜖 (similarly for Theorem 2.1.3 and Theorem 2.1.4). Indeed, the mixing time
𝑡𝑚𝑖𝑥 can generally depend on other parameters, especially the width 𝑇 ; heuristically,
one may guess that the mixing time 𝑡𝑚𝑖𝑥 depends mildly on the width 𝑇 , but we leave
a careful analysis for future works. An optimistic instance is when the Eigenstate
Thermalization Hypothesis holds, and the mixing time at finite energy resolution can
be related to the infinite resolution (𝑇 →∞) case [38, 160], which can be calculated.
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The main analytic challenge to prove Theorem 2.1.1 is how to control the convergence
and fixed point of Lindbladians without exact detailed balance. Our technical
contribution is to formulate an approximate detailed balance condition using the
appropriate superoperator norm


𝝆1/4

𝛽
L† [𝝆−1/4

𝛽
· 𝝆−1/4

𝛽
]𝝆1/4

𝛽
− 𝝆−1/4

𝛽
L[𝝆1/4

𝛽
· 𝝆1/4

𝛽
]𝝆−1/4

𝛽





2−2
. (2.15)

The above two superoperators are each other’s adjoints, and thus, the above quantifies
the magnitude of certain anti-Hermitian component of the Lindbladian under
similarity transformation. Indeed, traditionally, the detailed balance condition is
convenient as it effectively reduces the mixing time of superoperators to the spectral
theory of Hermitian operators, which is conceptually and technically more transparent.
Our observation is that the consequences of detailed balance, including Gibbs fixed
point and spectral bounds on mixing time, are remarkably stable against perturbation.
Much ink is devoted to bound (2.15), which is yet another technical challenge.
Indeed, we are inverting the Gibbs state, which has exponentially small weights.
The energy uncertainty in the Fourier Transforms 𝑨̂𝑎 (𝜔) could potentially blow
up (2.15). In response, we further introduce an intermediate Lindbladian by applying
a rigorous secular approximation (related to the rotating wave approximation), such
that transitions with large energy deviation are truncated.

𝑨̂𝑎 (𝜔) ≈ 𝑺̂𝑎 (𝜔) such that ⟨𝜓𝑖 |𝑺̂𝑎 (𝜔)
��𝜓 𝑗 〉 = 0 whenever

��(𝐸𝑖 − 𝐸 𝑗 ) − 𝜔�� ≫ 0.

The secular approximation interplays nicely with the operator Fourier Transform and
should be widely applicable in the rigorous, nonasymptotic analysis of open-system
Lindbladians.

Conceptually, there are two opposite ways to understand Theorem 2.1.1: pessimisti-
cally, the Gibbs state may not be physical if the mixing time is too long, and we might
have to simulate the natural Lindbladian to understand its fixed point; optimistically,
if the Gibbs state is indeed physical, we might ignore its physical origin and take
a short-cut to design even more efficient Gibbs sampling algorithms. The two
perspectives are individually addressed in the following sections.

Simulating Nature

Taking a step back from Gibbs sampling, how do we simulate open system dynamics
in nature? This boils down to the task of Lindbladian simulation, which has been
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studied largely restricted to the black-box setting [49]. However, we have an explicit
Lindbladian in mind to simulate. As a result, we had to modify existing black-box
input models to capture our Lindbladian (2.9); this also inspires us to design even
more efficient Lindbladian simulation algorithm for our access model. First, we
define how we want our Lindbladian to be block-encoded.

Definition 2.1.2 (Block-encoding of a Lindbladian). Given a purely irreversible
Lindbladian

L[𝝆] :=
∑︁
𝑗∈𝐽

(
𝑳 𝑗 𝝆𝑳

†
𝑗
− 1

2
𝑳†
𝑗
𝑳 𝑗 𝝆 −

1
2
𝝆𝑳†

𝑗
𝑳 𝑗

)
,

we say that a matrix14 𝑼 is a block-encoding of the Lindblad operators {𝑳 𝑗 } 𝑗∈𝐽 if 15

(
〈
0𝑏

�� ⊗ 𝑰) ·𝑼 · ( |0𝑐⟩ ⊗ 𝑰) =
∑︁
𝑗∈𝐽
| 𝑗⟩ ⊗ 𝑳 𝑗 for 𝑏, 𝑐 ∈ N.

Indeed, because of the many Lindblad operators 𝑗 ∈ 𝐽, other access models are
certainly valid (e.g., given block-encoding for each Lindblad operator 𝑳 𝑗 [49, 112]).
Nevertheless, Definition 2.1.2 interplays nicely with our Lindbladian (especially
the operator Fourier Transform) and the following efficient Lindbladian simulation
algorithm.

Theorem 2.1.2 (Linear-time Lindbladian simulation, simplified). Suppose 𝑼 is a
unitary block-encoding of the Lindbladian L as in Definition 2.1.2. Let 𝑡 > 1 and
𝜖 ≤ 1/2, then we can simulate the map e𝑡L to error 𝜖 in diamond norm using

O
((
𝑐 + log( 𝑡

𝜖
)
)

log( 𝑡
𝜖
)
)

(resettable) ancilla qubits,

Õ(𝑡) (controlled) uses of 𝑼 and 𝑼†,

and Õ(𝑡 (𝑐 + 1)) other two-qubit gates.

See Theorem 2.3.2 for the complete result and Theorem 2.3.1 for a simpler algorithm
with suboptimal asymptotic scaling. Compared with the best existing results as
sum-of-norm

∑
𝑗∈𝐽 ∥𝑳†𝑗𝑳 𝑗 ∥, we achieve a strictly better scaling with the norm-of-

sum ∥∑ 𝑗∈𝐽 𝑳
†
𝑗
𝑳 𝑗 ∥ when the Lindblad operators are altogether block-encoded as

14For implementation purposes𝑼 will be a unitary quantum circuit, but we also consider nonunitary
block-encodings for the sake of analysis.

15In the first register, we could use any orthonormal basis, sticking to computational basis elements
| 𝑗⟩ is just for ease of presentation. Intuitively, one can think about 𝑏 as the number of ancilla qubits
used for implementing the operators 𝑳 𝑗 , while typically 𝑎 − 𝑏 ≈ log |𝐽 |.
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in Definition 2.1.2; if we are only given block-encodings for each Lindblad operators,
we can always convert them to our input model (Definition 2.1.2) and recover the
existing scaling

∑
𝑗∈𝐽 ∥𝑳†𝑗𝑳 𝑗 ∥.

It remains to create a unitary block-encoding (Definition 2.1.2) for our particular
Lindblad operators (2.9). Since our algorithms run on discrete qubits, our imple-
mentation requires discretizing the operator Fourier Transform, with a change of the
notation

𝑨̂𝑎 (𝜔) → 𝑨̂𝑎 (𝜔̄) :=
∑︁
𝑡∈𝑆𝑡0

e−i𝜔̄𝑡 𝑓 (𝑡)𝑨𝑎 (𝑡) for each 𝑎 ∈ 𝐴 and 𝜔̄ ∈ 𝑆𝜔0 .

(2.16)
The discretized frequency and time labels 𝜔 → 𝜔̄ ∈ 𝑆𝜔0 = {0,±𝜔0, · · · } and
𝑡 → 𝑡 ∈ 𝑆𝑡0 = {0,±𝑡0, · · · } corresponds to the discrete Fourier Transform (section 2.5)
using a finite grid of size 𝑁 =

��𝑆𝜔0

�� = ��𝑆𝑡0 ��, which can be stored using ⌈log(𝑁)⌉
additional ancillas.16 While the discretization parameters are needed for explicit
algorithmic implementation, conceptually, they merely incur logarithmic overhead
in the runtime and ancillas (section 2.8). We may now concretely present our
algorithmic goal: efficiently construct a block-encoding in the form

(
〈
0𝑏

�� ⊗ 𝐼)𝑼( |0𝑐⟩ ⊗ 𝐼) = ∑︁
𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |𝜔̄, 𝑎⟩ ⊗ 𝑨̂𝑎 (𝜔̄). (2.17)

Lemma 2.1.1 (Efficient block-encoding). In the setting of Theorem 2.1.1, a unitary
block-encoding 𝑼 for the (discretized) Lindblad operators (2.17) can be created
using one query of 𝑷𝒓𝒆 𝒑, 𝑾, 𝑽 𝑗𝑢𝑚𝑝, 𝑸𝑭𝑻, and

O(𝑇) (controlled) Ham. sim. time for 𝑯

𝑛 + 1 + ⌈log2( |𝐴|)⌉ + ⌈log2(𝑁)⌉ (resettable) qubits.

See Lemma 2.3.1 for the explicit construction. In perceivable usage, we expect the
number of Fourier labels registers 𝑁 to scale polynomially with all other parameters
(section 2.8)

𝑁 ∼ Poly(𝑛, 𝛽, ∥𝑯∥, 𝑇, 𝜖−1, 𝑡, |𝐴|)

for a good approximation for the continuous Fourier Transform (2.9). Morally, our
algorithm extracts the essential functionality of a Markovian bath (which naively

16We require 𝑁𝜔0 ≥ 4∥𝑯∥ + 2/𝛽 to store all possible energy transitions.
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may require a substantial number of qubits to implement [38, 160]) by merely
polylogarithmic resettable ancillas.

To make the simulation cost transparent, we list the main circuit components required
for implementation: the controlled Hamiltonian simulation∑︁

𝑡∈𝑆𝑡0

|𝑡⟩⟨𝑡 | ⊗ 𝑒±i𝑡𝑯,

the unitary for preparing the filter function in superposition

𝑷𝒓𝒆 𝒑 :
��0̄〉 → | 𝑓 ⟩ :=

∑︁
𝑡∈𝑆𝑡0

𝑓 (𝑡) |𝑡⟩,

the controlled rotation for transition weights

𝑾 :=
∑︁
𝜔̄∈𝑆𝜔0

( √︁
𝛾(𝜔̄) −

√︁
1 − 𝛾(𝜔̄)√︁

1 − 𝛾(𝜔̄)
√︁
𝛾(𝜔̄)

)
⊗ |𝜔̄⟩⟨𝜔̄|,

the quantum Fourier Transform 𝑸𝑭𝑻, and the block-encoding 𝑽 𝑗𝑢𝑚𝑝 of the jump
operators

∑
𝑎∈𝐴 |𝑎⟩ ⊗ 𝑨𝑎. In practice, synthesizing the above incurs additional

overhead but should be treated as an independent subroutine to study (see section 2.3);
we expect Hamiltonian simulation to be the dominant source of cost, which we
present17 by the accumulated time for the (controlled) unitaries ei𝑯𝑡 .

The key idea behind implement the unitary block-encoding (2.17) is the operator
Fourier Transform (section 2.3) as an alternative to phase estimation (Figure 2.5)

F [·] : | 𝑓 ⟩ ⊗ 𝑶 →
∑̄︁
𝜔

|𝜔̄⟩ ⊗ 𝑶𝜔̄

which is physically motivated, compatible with our analytic framework, and leads to
simple explicit circuits.

Improving Nature

Suppose our goal is to prepare the Gibbs state, then according to Theorem 2.1.1
and Lemma 2.1.1 we may algorithmically simulate the physical Lindbladian till the
mixing time. However, the Fourier Transform occurring in Nature (Theorem 2.1.1),
in fact, has a “heavy tail” in the frequency domain; this uncertainty in energy may
significantly contribute to the Gibbs state error. With full algorithmic freedom, can

17To obtain the end-to-end gate complexity, one should specify a Hamiltonian simulation subroutine
(e.g.,[44, 116, 117]).
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we do better? In this section, we simply tweak the Lindbladian by considering a
nicer Fourier Transform weight

𝑓 (𝑡) ∝ e
− 𝑡2

4𝜎2
𝑡 with Gaussian width 𝜎𝑡 .

The width sets the Hamiltonian simulation time scale ∼ 𝜎𝑡 and the energy resolution
∼ 𝜎−1

𝑡 . The Gaussian distribution is particularly nice as it enjoys sharp concentration
in both time and frequency domains; in principle, other normalized functions are
also permissible, such as Kaiser-window functions [20, 127], as long as they can be
efficiently generated in superposition

∑
𝑡∈𝑆𝑡0 | 𝑓 (𝑡)⟩, but we will stick to Gaussians for

simplicity.

Theorem 2.1.3 (Approximate Gibbs fixed point). Any Lindbladian L𝛽 (2.8) satis-
fying the symmetry and normalization conditions (2.10),(2.11), and (2.12) with the
normalized Gaussian weight

𝑓 (𝑡) ∝ e
− 𝑡2

4𝜎2
𝑡

has an approximate Gibbs fixed point

∥𝝆 𝑓 𝑖𝑥 (L𝛽) − 𝝆𝛽∥1 = Õ
(
𝛽

𝜎𝑡
𝑡𝑚𝑖𝑥 (L𝛽)

)
.

See section 2.2 for the proof. We briefly present the analogous block-encoding costs;
the Gaussian width 𝜎𝑡 plays a similar role as the time scale 𝑇 , and Gaussians exhibit
a better scaling than (2.14) due to its sharp concentration.

Lemma 2.1.2 (Efficient block-encoding). In the setting of Theorem 2.1.3, a unitary
block-encoding 𝑼 for the (suitably discretized) Lindblad operators (2.17) can be
constructed using one query each to 𝑷𝒓𝒆 𝒑, 𝑾, 𝑽 𝑗𝑢𝑚𝑝, 𝑸𝑭𝑻, and

Õ(𝜎𝑡) (controlled) Ham. sim. time for 𝑯

𝑛 + 1 + ⌈log2( |𝐴|)⌉ + ⌈log2(𝑁)⌉ (resettable) qubits.

See Lemma 2.3.1 for the explicit construction (which is essentially the same circuit
leading to Lemma 2.1.1) and the required 𝑁 to ensure a good discretization error
(section 2.8). Therefore, the Gaussian width merely needs to scale as

𝜎𝑡 ∼ 𝛽𝑡𝑚𝑖𝑥/𝜖

to prepare a Gibbs sample; see Table 2.1 for the total cost.
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Quantum-walk speedup

With full algorithmic freedom, we may further depart from physics and seek a Szegedy-
type speedup by considering a coherent representation of the Lindbladian [164,
180].18 Inheriting the notation of (2.8), we consider the following discriminant proxy:

D𝛽 :=
∑︁
𝑎∈𝐴

∫ √︁
𝛾(𝜔)𝛾(−𝜔) 𝑨̂𝑎 (𝜔) ⊗ 𝑨̂𝑎∗(𝜔)

− 𝛾(𝜔)
2

(
𝑨𝑎 (𝜔)† 𝑨̂𝑎 (𝜔) ⊗ 𝑰 + 𝑰 ⊗ 𝑨̂𝑎 (𝜔)†∗ 𝑨̂𝑎 (𝜔)∗

)
d𝜔. (2.18)

The superscript 𝑶∗ denotes the entry-wise complex conjugation. Indeed, as required
by the quantum walk formalism, this operator is Hermitian (Corollary 2.3.2)

(D𝛽)† = (D𝛽) assuming symmetries (2.10), (2.11).

Analogously to the discriminant of classical Markov chains, the discriminant proxy
is approximately the Davies-type Lindbladian (2.8) superoperator conjugated by
the Gibbs state (section 2.3) but vectorized into an operator (section 2.3). This
construction comes at the cost of duplicating the Hilbert space but, as a bonus,
provides access to the following canonical purification of the Gibbs state��√𝝆𝛽〉 ∝∑︁

𝑖

e−𝛽𝐸𝑖/2 |𝜓𝑖⟩ ⊗
��𝜓∗𝑖 〉 where 𝑯 =

∑︁
𝑖

𝐸𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |

as the (approximate) top eigenvector of D𝛽. The superscript
��𝜓∗
𝑖

〉
denotes entrywise

complex conjugate in the computational basis19. If the Hamiltonian is diagonal in the
computation basis, this is essentially equivalent to the purified classical distribution.
For general Hamiltonians, the state

��√𝝆𝛽〉 is also known as the thermofield double
state in quantum gravity (see, e.g., [122]). Taking a partial trace recovers the Gibbs
state, but the purification can sometimes be more useful, e.g., for efficient verification
by a swap test or faster evaluation of observables (see, e.g., [102]).

Theorem 2.1.4 (Approximate purified Gibbs state). Instantiate the Lindbladian
parameters of Theorem 2.1.3 with Gaussian width 𝜎𝑡 for the corresponding discrimi-
nant proxy D𝛽 (2.18). Then, the leading eigenvector

��𝜆1(D𝛽)
〉

well-approximates
the Gibbs state

∥
��𝜆1(D𝛽)

〉
−

��𝝆𝛽〉∥ = Õ (
𝛽

𝜎𝑡

1
𝜆𝑔𝑎𝑝 (D𝛽)

)
.

The quantity 𝜆𝑔𝑎𝑝 (D𝛽) := 𝜆1(D𝛽) − 𝜆2(D𝛽) is the spectral gap.
18For convenience, we define the discriminant such that it is shifted by the identity matrix compared

to definitions in earlier work.
19The above purified state is independent of which basis one applies complex conjugation to.
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See section 2.3 for the proof of Theorem 2.1.4. The top-eigenvector error resembles
the Lindbladian case (Theorem 2.1.3) with the mixing time 𝑡𝑚𝑖𝑥 (L𝛽) replaced by
the inverse spectral gap 𝜆−1

𝑔𝑎𝑝 (D𝛽). Though, unlike its Lindbladian cousin L𝛽, the
discriminant proxy D𝛽 does not generate a semi-group and does not by itself prepare
its gapped eigenvector; we need to additionally perform quantum simulated annealing
(section 2.12), which is basically adiabatic state preparation supplemented with a
natural adiabatic path from high to low temperature 0 < 𝛽′ < 𝛽. This additional step
uses

∼ (adiabatic path length) 𝛽∥𝑯∥ × (worst root-inverse-gap)
√︃
𝜆−1
𝑔𝑎𝑝

queries to block-encodings of 𝑰 + D𝛽′ across values of 𝛽′. In other words, the
quantum-walk speedup against Lindbladians boils down to replacing the mixing
time by 𝑡𝑚𝑖𝑥 → 𝛽∥𝑯∥

√︃
𝜆−1
𝑔𝑎𝑝; this speedup comes with the cost of doubling the

number of qubits 𝑛 → 2𝑛. Of course, to perform adiabatic state preparation, we
must algorithmically construct the block-encoding for 𝑰 + D𝛽.

Lemma 2.1.3 (Efficient block-encoding). In the setting of Theorem 2.1.4, a unitary
block-encoding of 𝑰 +D𝛽 can be constructed up to 𝜖 spectral norm error using O(1)
query each to 𝑷𝒓𝒆 𝒑, 𝑾, 𝑽 𝑗𝑢𝑚𝑝, 𝑸𝑭𝑻, 𝑭, 𝑷, and

Õ(𝜎𝑡) (controlled) Ham. sim. time for 𝑯

2𝑛 + ⌈log2( |𝐴|)⌉ + Õ(1) (resettable) qubits.

See Proposition 2.3.5 for the circuit for Lemma 2.1.3. In the above, we have
implicitly chosen the appropriate discretization 𝑁 (section 2.8). Note that to obtain a
quantum-walk speedup, we made use of two additional (low-cost) circuit components
(see section 2.3): the reflection on energy

𝑭 :=
∑︁
𝜔̄∈𝑆𝜔0

|−𝜔̄⟩⟨𝜔̄ |

and a permutation of the jump operator labels

𝑷 :=
∑︁
𝑎∈𝐴
|𝑎′⟩⟨𝑎 | where 𝑨𝑎

′
= (𝑨𝑎)† for each 𝑎 ∈ 𝐴.

To grasp the algorithmic cost, we roughly expect the width along the adiabatic path
to scale as

𝜎𝑡 (𝛽′) ∼
𝛽′

𝜖′𝜆𝑔𝑎𝑝 (D𝛽′)
for 𝜖′-approximated

��√𝜌𝛽′〉;
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see Table 2.1 and section 2.12 for an quantitative accumulated cost for the adiabatic
algorithm.

The remainder of the main text is organized by the analytic (section 2.2) and the
algorithmic parts (section 2.3). We begin the analytic exposition by reviewing basic
facts circling detailed balance and mixing time, and then introduce consequences
of approximate detailed balance. The algorithmic arguments include black-box
Lindbladian simulation and a general recipe to quantize a Lindbladian. These
abstract algorithms can be understood assuming merely block-encodings for the
Lindblad operator, whose explicit circuit construction is laid out in section 2.3. We
conclude the main text by highlighting plausible future directions in section 2.4.

The appendices are organized as follows. We begin with the supporting details
for our key analytic and algorithmic argument: section 2.5 discusses properties of
the operator Fourier Transform and the secular approximation; section 2.7 proves
approximate detailed balance for the constructed Lindbladians L𝛽 and discriminant
proxies D𝛽.

The rest of the appendices consist of isolated topics. section 2.8 discusses the
relation between continuous Fourier Transforms, which is conceptually simple, and
the discrete Fourier Transform, which we implement. Fortunately, the rule of thumb
is that the Fourier Transform register merely needs to be poly-logarithmic for a small
discretization error. section 2.9 discusses Lindbladians arising from a microscopic
open system derivation and prove their fixed point accuracy; this requires a moderate
generalization of the main analytic framework. section 2.10 is devoted to supporting
approximate detailed balance (section 2.2), especially on perturbation theory for
nonHermitian matrices; these facts tend to be intuitively akin to the Hermitian case
but we include the (nonstandard) proofs for completeness. section 2.12 reviews
quantum simulated annealing in a modern quantum algorithm language, which we
largely employ as a black box.

2.2 Approximate stationarity of the Gibbs state
We begin our analysis of the generator in Eqn. (2.8) by recalling some general
properties of detailed balance Lindbladians before introducing the key notion of
approximate detailed balance. At the heart of classical Markov chain Monte Carlo
algorithms is a rapid mixing Markov chain whose fixed point yields the desired
distribution. In the quantum setting, central to our discussion is the generator of
a quantum dynamical semi-group [29, 182], the Lindbladian in the Schrödinger
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Picture

L[𝝆] = −i[𝑯, 𝝆] +
∑︁
𝑗∈𝐽

(
𝑳 𝑗 𝝆𝑳

†
𝑗
− 1

2
{𝑳†

𝑗
𝑳 𝑗 , 𝝆}

)
parameterized by a set of Lindblad operators {𝑳 𝑗 } 𝑗∈𝐽 and a Hermitian matrix 𝑯.
Mathematically, the above elegant form encompasses all possible Lindbladians,
including, but not restricted to, those arising from a microscopic system-bath
derivation. In particular, from an algorithmic perspective, we enjoy the additional
freedom of choosing favorable Lindblad operators 𝑳 𝑗 with the hope that

1. the Lindbladian can be implemented efficiently,

2. the fixed point is unique and yields the desired state 𝝆𝛽, and

3. the Lindbladian converges rapidly.

The above summarizes the desirable criteria for a quantum Gibbs sampler.20 The
convergence depends on the particular Hamiltonian of interest and is generally
nontrivial to analyze. Fortunately, the detailed balance condition enables systematic
analysis of quantum dynamical semi-groups, similarly to how detailed balance is
central in analyzing classical Markov chains (see, e.g., [110]).

Definition 2.2.1 (Detailed balance condition). For a normalized, full-rank state
𝝆 ≻ 0, we say that an endomorphism L satisfies 𝝆-detailed balance whenever the
associated discriminant is self-adjoint with respect to 𝝆, i.e.,

D(𝝆,L) := 𝝆−1/4L[𝝆1/4 · 𝝆1/4]𝝆−1/4.

= 𝝆1/4L† [𝝆−1/4 · 𝝆−1/4]𝝆1/4 = D(𝝆,L)†.

In the above definition (and in the rest of the paper), we define the adjoint of a
superoperator with respect to the Hilbert-Schmidt inner product ⟨𝑿,𝒀⟩𝐻𝑆 = Tr(𝑿†𝒀).
Explicitly,

C[·] =
∑︁
𝑗

𝛼 𝑗 𝑨 𝑗 [·]𝑩 𝑗 implies C† [·] =
∑︁
𝑗

𝛼∗𝑗 𝑨
†
𝑗
[·]𝑩†

𝑗
for any 𝑨 𝑗 , 𝑩 𝑗

since Tr(𝑿†C[𝒀]) = Tr(𝑿†
∑︁
𝑗

𝛼 𝑗 𝑨 𝑗𝒀𝑩 𝑗 ) = Tr((
∑︁
𝑗

𝛼∗𝑗 𝑨
†
𝑗
𝑿𝑩†

𝑗
)†𝒀) = Tr[

(
C†(𝑿)

)†
𝒀] .

(2.19)
20One can certainly consider discrete-time quantum channels [167] as Gibbs sampler candidates.

However, the continuous-time Lindbladian, inspired by physics, appears technically nicer for our
purposes.
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This will be revisited when defining the vectorization (section 2.3). In particular,
the superoperator adjoint for Lindbladians coincides with converting between the
Heisenberg and Schrödinger pictures

Tr[𝝆L† [𝑶]] = Tr[L[𝝆]𝑶] for each 𝝆 ⪰ 0 and 𝑶

using that 𝝆† = 𝝆 and that Lindbladians L[𝝆] = (L[𝝆])† preserves Hermiticity.

Analogously to the classical case, the detailed balance condition considers a similarity
transformation according to the target distribution weights 𝝆.21 The detailed balance
condition brings about two desirable properties. First, it ensures that the state 𝝆 is a
fixed point (Point 2).

Proposition 2.2.1 (Gibbs fixed point [166]). If a superoperator L generates a
trace-preserving map and satisfies 𝝆-detailed balance, then it annihilates the state
L[𝝆] = 0, or equivalently, D(𝝆,L)[√𝝆] = 0.

Proof. We know that the infiniestimal exponential map e𝜀L [·] = [·] + 𝜀L[·] +
O

(
𝜀2) [·] is trace-preserving, thus the leading order term must satisfy L† [𝑰] = 0.

Therefore,

0 = 𝝆1/4L† [𝑰]𝝆1/4 = D(𝝆,L)† [√𝝆] = D(𝝆,L)[√𝝆]

using 𝝆-detailed balance in the last equality. ■

Second, it relates the Lindbladian mixing time to the spectral gap (Point 3). We only
state the following result here but later prove a qualitatively more robust statement in
Proposition 2.2.3 applicable to the approximate case.

Proposition 2.2.2 (Mixing time from spectral gap [97]). If a Lindbladian L satisfies
𝝆-detailed balance, then

𝑡𝑚𝑖𝑥 (L) ≤
ln(2∥𝝆−1/2∥)
𝜆𝑔𝑎𝑝 (L)

,

where 𝜆𝑔𝑎𝑝 (L) is the eigenvalue gap of the Lindbladian, and the mixing time 𝑡𝑚𝑖𝑥 is
the smallest time for which

eL𝑡𝑚𝑖𝑥 [𝝆1 − 𝝆2]




1 ≤

1
2
∥𝝆1 − 𝝆2∥1 for any states 𝝆1, 𝝆2.

21Technically, an alternative definition of detailed balance may distribute the power somewhat
arbitrarily 𝝆𝑠 [·]𝝆1/2−𝑠 , but we stick to the symmetric case 𝝆1/4 [·]𝝆1/4 for simplicity.



33

The analysis of a superoperator gap 𝜆𝑔𝑎𝑝 (L) is perhaps more tractable than the
mixing time 𝑡𝑚𝑖𝑥 but still nontrivial and instance specific.22 Otherwise, we see that
the detailed balance condition readily addresses two criteria (Point 2 and Point 3) for
Gibbs samplers.

Approximate detailed balance
Unfortunately, we do not know of general efficient constructions of quantum Gibbs
samplers satisfying the detailed balance condition exactly (Point 1)23; this is rooted
in the energy-time uncertainty principle where quantum algorithms only access the
energies of a quantum system approximately. As our main technical contribution,
we formulate the 𝜖-approximate detailed balance condition that addresses all three
requirements for a quantum Gibbs sampler.

Definition 2.2.2 (Approximate detailed balance condition). For any Lindbladian
L and full-rank state 𝝆, take a similarity transformation and decompose into the
Hermitian and the anti-Hermitian parts

D(𝝆,L) = 𝝆−1/4L[𝝆1/4 · 𝝆1/4]𝝆−1/4 = H(𝝆,L) + A(𝝆,L).
D(𝝆,L)† = 𝝆1/4L† [𝝆−1/4 · 𝝆−1/4]𝝆1/4 = H(𝝆,L) − A(𝝆,L)

We say the Lindbladian L satisfies the 𝜖-approximate 𝝆-detailed balance condition
if the anti-Hermitian part A is small

1
2


D(𝝆,L) − D(𝝆,L)†

2−2 = ∥A(𝝆,L)∥2−2 ≤ 𝜖 .

If the anti-Hermitian part vanishes, we recover the exact detailed balance condition
D(𝝆,L)† = D(𝝆,L). If not, we show that the fixed point still approximates the
state 𝝆 (Point 2).

Corollary 2.2.1 (Fixed point accuracy). If a LindbladianL satisfies the 𝜖-approximate
𝝆-detailed balance condition, then its fixed point 𝝆 𝑓 𝑖𝑥 (L) deviates from 𝝆 by at most

∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆∥1 ≤ 20𝑡𝑚𝑖𝑥 (L)𝜖 .

See section 2.10 for the proof. We see that the error bound deteriorates if the map
has a large anti-Hermitian component A or if the Lindbladian mixes slowly.24 The

22For the experts, the gap may not give the tightest possible mixing time bounds; techniques
beyond gap-based bounds typically require proving a Log-Sobolev inequality, which can be very
challenging in the noncommuting cases.

23This problem is resolved in a follow-up work [42].
24We actually prove a stronger statement in section 2.10 that gives a bound in terms of the gap

𝜆𝑔𝑎𝑝 (H) of the Hermitian part.
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anti-Hermitian component involves the inverse Gibbs state 𝝆−1, and might be difficult
to bound directly. As a remedy, it is helpful to introduce an intermediate Lindbladian
L′ for which approximate detailed balance is easier to show. In that case, we can
write

∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆∥1 ≤ ∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆 𝑓 𝑖𝑥 (L′)∥1 + ∥𝝆 𝑓 𝑖𝑥 (L′) − 𝝆∥1.

The first term on the RHS does not directly involve the inverse 𝝆−1 and can be
controlled by a Lindbladian perturbation bound as follows.

Lemma 2.2.1 (Fixed point difference). For any two Lindbladians L1 and L2, the
difference of their fixed points (in the Schrödinger picture) is bounded by

∥𝝆 𝑓 𝑖𝑥 (L1) − 𝝆 𝑓 𝑖𝑥 (L2)∥1 ≤ 4∥L1 − L2∥1−1 · 𝑡𝑚𝑖𝑥 (L1).

See section 2.10 for the proof. Conveniently, even without detailed balance, the
mixing time 𝑡𝑚𝑖𝑥 remains controlled by spectral properties of the Hermitian part
(addressing Point 3):

Proposition 2.2.3 (Mixing time from Hermitian gap). For any Lindbladian L and a
full-rank state 𝝆, suppose the self-adjoint componentH = H(𝝆,L) satisfies

𝜆1(H)
𝜆𝑔𝑎𝑝 (H)

≤ 1
100

, then 𝑡𝑚𝑖𝑥 (L) ≤ 3
ln(3∥𝝆−1/2∥)
𝜆𝑔𝑎𝑝 (H)

.

See section 2.10 for the proof. In particular, the top eigenvalue can be bounded
by the anti-Hermitian part 𝜆1(H) ≤ ∥A∥2−2 for any Lindbladian (2.76); therefore,
it remains to provide an efficient construction of the Lindbladian (section 2.3) and
prove approximate detailed balance (section 2.7).

Proof of fixed point correctness (Theorem 2.1.3)
We are now in a position to prove our first main theorem: the proximity of the
stationary state 𝝆 𝑓 𝑖𝑥 to the Gibbs state 𝝆𝛽. Most of the technical definitions and
lemmata are relegated to Appendix 2.6. Here, we address the essential features of the
proof together with some essential tools. The main technical argument introduces an
intermediate Lindbladian L𝑠𝑒𝑐

∥𝝆 𝑓 𝑖𝑥 (L𝛽) − 𝝆𝛽∥1 ≤ ∥𝝆 𝑓 𝑖𝑥 (L𝛽) − 𝝆 𝑓 𝑖𝑥 (L𝑠𝑒𝑐)∥1 + ∥𝝆 𝑓 𝑖𝑥 (L𝑠𝑒𝑐) − 𝝆𝛽∥1

and uses the fixed point error bounds (Lemma 2.2.1) for the first term and (Proposi-
tion 2.10.3) for the second term.
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The first error arises from the secular approximation (section 2.6), defined by
truncating the transitions in the frequency domain

𝑨̂𝑎 (𝜔̄) → 𝑺̂𝑎 (𝜔̄) such that ⟨𝜓𝑖 |𝑺̂𝑎 (𝜔̄)
��𝜓 𝑗 〉 = 0 whenever

��(𝐸𝑖 − 𝐸 𝑗 ) − 𝜔̄�� > 𝜇̄
for a tunable truncation parameter 𝜇̄. See (2.41), (2.45) for the precise definition of
the secular approximated jump operators 𝑺̂𝑎 (𝜔̄). The purpose of this truncation is
to ensure approximate detailed balance: conjugating L𝑠𝑒𝑐 with the Gibbs state 𝝆,
as required in comparing with the similarity transformation, remains well-behaved
(section 2.6). The truncation parameter 𝜇̄ is not physical but rather a proof artifact.
Intuitively, our choice of Gaussian weight ensures its Fourier Transform to remain
(approximately) another Gaussian (see section 2.6), which has a rapidly decaying tail.
Thus, we expect the error from truncating the Gaussian tail to be small whenever
𝜇̄ ≳ 𝜎−1

𝑡 . Thus, with the Gaussian weight, the secular approximation incurs a mild
error; this error becomes more severe with the step-function weights given by nature,
whose Fourier Transform has a heavy tail (Proposition 2.6.6).

The second error is the most technical part, showing that the secular-approximated
operator L𝑠𝑒𝑐 satisfies approximate detailed balance (See section 2.7). We highlight
the full technical statement as follows.

Lemma 2.2.2 (Approximate detailed balance). Consider a Lindbladian in the
following form

L =
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄) [·] 𝑺̂𝑎 (𝜔̄)† − 𝛾(𝜔̄)
2
{𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄), ·},

where 𝛾(𝜔̄)/𝛾(−𝜔̄) = e−𝛽𝜔̄ for each 𝜔̄ ∈ 𝑆𝜔0 . Suppose there exists 𝜇̄ ≤ 𝛽−1 such
that the operators satisfy

⟨𝜓𝑖 |𝑺̂𝑎 (𝜔̄)
��𝜓 𝑗 〉 = 0 whenever

��(𝐸𝑖 − 𝐸 𝑗 ) − 𝜔̄�� > 𝜇̄
for the eigenvalue decomposition of 𝑯 =

∑
𝑗 𝐸 𝑗 |𝜓 𝑗 ⟩⟨𝜓 𝑗 |, and there is a permutation

𝑷 : 𝑎 → 𝑎′ such that 𝑺̂𝑎 (𝜔̄)† = 𝑺̂𝑎
′ (−𝜔̄) for each 𝑎, 𝜔̄. Then, for the Gibbs state

𝝆 = e−𝛽𝑯/Tr[e−𝛽𝑯] we have

1
2


D(𝝆,L) − D(𝝆,L)†

2−2 ≤ O

©­«𝛽𝜇̄∥
∑︁
𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)∥ª®¬.
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The above is a simplified version of Lemma 2.7.3, which we prove in section 2.7.
Our normalization further simplifies the RHS to O(𝛽𝜇̄). We now combine the above
estimates to prove Theorem 2.1.3.

Proof of Theorem 2.1.3. While Theorem 2.1.3 is stated in the continuum limit
𝑁 → ∞ (2.8), we give general error bounds at finite 𝑁 (2.21) and then take the
𝑁 →∞ limit (2.8). Introduce the secular-approximated Lindblad operator L𝑠𝑒𝑐 to
bound the fixed point error

∥𝝆 𝑓 𝑖𝑥 (L𝛽) − 𝝆𝛽∥1
≤ ∥𝝆 𝑓 𝑖𝑥 (L𝛽) − 𝝆 𝑓 𝑖𝑥 (L𝑠𝑒𝑐)∥1 + ∥𝝆 𝑓 𝑖𝑥 (L𝑠𝑒𝑐) − 𝝆𝛽∥1
≤ 2∥L𝛽 − L𝑠𝑒𝑐∥1−1𝑡𝑚𝑖𝑥 (L𝛽) + 10



D(𝝆,L𝑠𝑒𝑐) − D(𝝆,L𝑠𝑒𝑐)†

𝑡𝑚𝑖𝑥 (L𝑠𝑒𝑐)
≤ O

((
∥L𝛽 − L𝑠𝑒𝑐∥1−1 +



D(𝝆,L𝑠𝑒𝑐) − D(𝝆,L𝑠𝑒𝑐)†

)𝑡𝑚𝑖𝑥 (L𝛽)) . (2.20)

The second inequality uses Lemma 2.2.1 for the first term and Corollary 2.2.1 for the
last term. The third inequality is that 𝑡𝑚𝑖𝑥 (L𝑠𝑒𝑐) ≤ 𝑡𝑚𝑖𝑥 (L𝛽)

⌈
ln(1/2)

ln(1/2+𝑡𝑚𝑖𝑥 (L𝛽)∥L𝛽−L𝑠𝑒𝑐 ∥1−1)

⌉
(Proposition 2.10.4), which further simplifies to 𝑡𝑚𝑖𝑥 (L𝑠𝑒𝑐) = O(𝑡𝑚𝑖𝑥 (L𝛽)) since
we must have ∥L𝛽 − L𝑠𝑒𝑐∥1−1𝑡𝑚𝑖𝑥 (L𝛽) = O(1) otherwise the trace distance bound
becomes vacuous.

Now, we evaluate approximate detailed balance (Lemma 2.2.2) and the secular
approximation error using Lemma 2.6.2, Proposition 2.6.7, and that the Gaussian tail
in the time domain is bounded directly by

√︃∑
|𝑡 |≥𝑇 | 𝑓 (𝑡) |2 = O(

√︁
𝑇/𝜎𝑡

−1
e−𝑇2/4𝜎2

𝑡 )

(2.20) ≤ O
((
𝑇𝜔̄0 + e−𝑇

2/4𝜎2
𝑡 + e−𝑁

2𝑡20/16𝜎2
𝑡 + e−𝑁

2𝜔2
0𝜎

2
𝑡 /2 + e−𝜇̄

2𝜎2
𝑡 + 𝛽𝜇̄

)
· 𝑡𝑚𝑖𝑥 (L𝛽)

)
≤ O

(
(𝜎𝑡𝜔0

√︁
log(1/(𝜎𝑡𝜔0)) +

𝛽

𝜎𝑡

√︁
log(𝜎𝑡/𝛽) + e−𝑁

2𝜔2
0𝜎

2
𝑡 /2) · 𝑡𝑚𝑖𝑥 (L𝛽)

)
.

The second inequality chooses the free parameter 𝑇 = 2𝜎𝑡
√︁

ln(1/(𝜎𝑡𝜔0)) and
𝜇̄ =

𝛽

𝜎𝑡

√︁
ln(𝜎𝑡/𝛽) and uses that e−𝑁2𝑡20/16𝜎2

𝑡 = e−𝜋2/4𝜔2
0𝜎

2
𝑡 = O(𝜎𝑡𝜔0

√︁
log(1/(𝜎𝑡𝜔0)))

to simplify the expression. For the continuum case (2.21), we have the simpler bound

∥𝝆 𝑓 𝑖𝑥 (L𝛽) − 𝝆𝛽∥1 = O
(
𝛽

𝜎𝑡

√︁
log(𝜎𝑡/𝛽) · 𝑡𝑚𝑖𝑥 (L𝛽)

)
if 𝑁𝜔0 →∞, 𝜔0 → 0,

where discretization parameter 𝜔0 and 𝑁 disappears in the continuum limit. ■
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2.3 Quantum algorithms for Gibbs sampling
In this section, we present two algorithms for approximately preparing the Gibbs
state 𝝆𝛽, both of which are inspired by the dynamical semi-group generated by the
Lindbladian L𝛽. This first algorithm, which we call the incoherent Gibbs sampling
algorithm, directly simulates the time evolution eL𝛽𝑡 by introducing ancillas. The
second, which we call the coherent Gibbs sampling algorithm, is a Szegedy-type
quantum walk algorithm. It enables implementing an orthogonal projector onto the
coherent Gibbs state |√𝝆𝛽⟩⟨

√
𝝆𝛽 | with a quadratic speedup with respect to the real

spectral gap of the generator L𝛽. This projector can then be used in conjunction with
simulated annealing (section 2.12) to prepare the purified Gibbs state.

In the circuit constructions, we will extensively use the following rotation gates

𝒀𝜃 := e−i arcsin
√
𝜃𝒀 =

(√
1 − 𝜃 −

√
𝜃√

𝜃
√

1 − 𝜃

)
with the Pauli-Y matrix 𝒀 =

(
0 −i
i 0

)
.

Our quantum Gibbs sampling algorithms
We describe two Lindbladian simulation algorithms: the first exhibits Trotter-like
scaling and repeatedly uses a simple (randomized) and weak-measurement gadget
(Theorem 2.3.1, Corollary 2.3.1); the second is inspired by [49] and has asymptotically
almost optimal scaling with time and error Theorem 2.3.2 but requiring a more
involved circuit and slightly more ancilla qubits. Both arguments are general as they
assume merely a block-encoding of the Lindbladian (Definition 2.1.2); the particular
block-encoding for our proposed Gibbs sampler is constructed explicitly in another
section (section 2.3).

Further, we “quantize” the Lindbladians and present coherent Gibbs sampling
algorithms that prepare the (canonical) purification of an approximate Gibbs state
via simulated annealing (section 2.12). The procedure assumes that we have a
block-encoding of the discriminant matrix of our Lindbladian, which then enables a
Szegedy-type quadratic speedup in the simulation time. However, the total speedup
is only sub-quadratic on the gap dependence because of the cost to block-encode the
discriminant matrix.

Incoherent Lindbladian simulation algorithms

Guided by [49], we propose two different implementation methods for incoherent
(trajectory-based) simulation of the Lindbladians that describe our Gibbs sampler.
The first method is based on a product formula and repeatedly uses a weak mea-
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surement scheme25 for implementing a small time step. The resulting scaling is
analogous to the performance of “vanilla” Trotter-based Hamiltonian simulation:
the complexity for an 𝜖-accurate-time-𝑡 Lindbladian evolution scales as 𝑡2/𝜖 . Our
weak measurement scheme gives rise to simple and low-depth circuits for simulating
Lindbladians given block-encoding access.

The usefulness of weak measurements should come as no surprise, as they are
also extremely helpful in other noncommutative state preparation tasks as well (see,
e.g., [72]), and the very recent independent work of [53]. The common theme in
these applications is the exploitation of some quantum Zeno-like effect,26 but on a
higher level, these applications also show some conceptual differences. We leave it
for future work to explore whether there is a more fundamental connection between
our weak measurement scheme and that of [53, 72].

The second method is based on the algorithm of [49], which achieves a close-
to-optimal scaling with respect to time and accuracy. Although the asymptotical
complexity is much improved, the corresponding circuits are more complicated as
they use a linear combination of unitaries (LCU), oblivious amplitude amplification,
and advanced “compression” techniques. We leave it to future work to determine
how the two schemes perform in practice.

For both algorithms, it suffices to assume that a purely irreversible Lindbladian
without the Hamiltonian term L[·] = ∑

𝑗∈𝐽 𝑳 𝑗 [·]𝑳†𝑗 −
1
2 {𝑳

†
𝑗
𝑳 𝑗 , ·} is provided in the

form of a “block-encoding” (i.e., dilation) as Definition 2.1.2.27 In particular, recall
25Our weak measurement scheme is very similar to the short-time evolution by the auxiliary

Hamiltonian 𝐽 utilized in [49]; however, our approach is a bit more direct and made it clear that a
block-encoding of the jump operators suffices as input.

26In our case, the quantum Zeno-like effect is manifest in the quadratically reduced amplitude of
|0𝑐 ⊥⟩ in (2.22).

27Recent work [112, 113] assumes the Lindbladian jumps are individually block-encoded while
we assume the entire set of jumps is encoded in a single unitary. We give strictly better complexity
for simulating Lindbladians under this input model, which holds for our Gibbs sampling algorithm
and that of [149] (leading to direct improvement for the latter). Remarkably, even if the jumps
are individually block-encoded [112, 113], these can be converted to our input model. Still, even
accounting for the conversion overhead, we recover (up to polylogarithmic factors) their complexity
for Lindbladian simulation. The main innovation here seems to be the generalization of the input
model, as the earlier Lindbladian simulation algorithms also seem to work [176] under this more
general input assumption.
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our proposed Lindbladian Gibbs sampler (as discretization of (2.8))

L𝛽 :=
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(𝜔̄)
(
𝑨̂𝑎 (𝜔̄) [·] 𝑨̂𝑎 (𝜔̄)† − 1

2
{ 𝑨̂𝑎 (𝜔̄)† 𝑨̂𝑎 (𝜔̄), ·}

)
(2.21)

with Lindblad operators {
√︁
𝛾(𝜔̄) 𝑨̂𝑎 (𝜔̄)}𝑎∈𝐴,𝜔̄∈R,

and its block-encoding can be found in Eqn. 2.41 in section 2.3. However, working
with abstract block encodings makes our simulation results general and also simplifies
our presentation and proofs, as the operator Fourier Transform naturally fits this
definition (Figure 2.4). Our weak-measurement scheme is not only simple but also
improves, e.g., the sparse Lindbladian simulation algorithm of [43, Theorem 9].28
Also, the lower bound on the “total evolution time” for simple iterative circuits in
[49] suggests that the performance of similar schemes may be optimal.

|0⟩ 𝒀𝛿

discard / reset
��0𝑏〉

𝑼 𝑼†
��0𝑐−𝑏〉

𝝆 ≈ e𝛿L[𝝆]

Figure 2.3: Quantum circuit implementation of an approximate 𝛿-time step via a
weak measurement scheme. The scheme can be extended to general Lindbladians
that include the coherence term −i[𝑯, 𝝆] by applying O(𝛿2)-precise Hamiltonian
time-evolution for time 𝛿 on the system register before the above circuit is applied.
For example, one could use Trotterized time-evolution. (In case ∥𝑯∥ > 1, the entire
Lindbladian should be first scaled down by a factor of ∥𝑯∥.)

Theorem 2.3.1 (Weak-measurement for incoherent Lindbladian simulation). Suppose
𝑼 is a block-encoding of the purely irreversible Lindbladian L as in Definition 2.1.2.
We can simulate the action of the superoperator e𝑡L to precision 𝜖 in diamond norm
using

𝑐 + 1 (resettable) ancilla qubits,

O
(
𝑡2/𝜖

)
(controlled) uses of 𝑼,𝑼†,

and O
(
(𝑏 + 1)𝑡2/𝜖

)
other two-qubit gates.

28Indeed, the complexity is improved by about a factor of 𝑘4, where 𝑘 is the sparsity.
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Proof. We can simulate an approximate 𝛿-time step by L using the following
weak-measurement scheme displayed in Figure 2.3.

1. Apply 𝑼.

2. Append an ancilla qubit in state |0⟩ and rotate it with angle arcsin
√
𝛿 controlled

on the
��0𝑏〉 state (indicating the successful application of a jump).

3. Apply 𝑼† controlled on the ancilla qubit being 0.

4. Measure and discard all but the system register.

Assuming the system register is in the pure state |𝜓⟩, this circuit 𝑪 acts as follows:

|0⟩ · |0𝑐⟩|𝜓⟩
(1)
→ |0⟩ ·𝑼 |0𝑐⟩|𝜓⟩
(2)
→

(√
1 − 𝛿 |0⟩ +

√
𝛿 |1⟩

)
·
(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩ + |0⟩ · (𝑰 − |0𝑏⟩⟨0𝑏 | ⊗ 𝑰)𝑼 |0𝑐⟩|𝜓⟩

= |0⟩ ·𝑼 |0𝑐⟩|𝜓⟩ +
√
𝛿 |1⟩ ·

��0𝑏〉(〈0𝑏
�� ⊗ 𝑰)𝑼 |0𝑐⟩|𝜓⟩︸                  ︷︷                  ︸
|𝜓′0⟩:=

− (1 −
√

1 − 𝛿) |0⟩ ·
(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩

(3)
→ |0⟩ · |0𝑐⟩|𝜓⟩ +

√
𝛿 |1⟩ ·

��0𝑏〉��𝜓′0〉 − (1 − √1 − 𝛿) |0⟩ ·𝑼†
(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩

= |0⟩ · |0𝑐⟩|𝜓⟩ +
√
𝛿 |1⟩ ·

��0𝑏〉��𝜓′0〉
− (1 −

√
1 − 𝛿) |0⟩ · |0𝑐⟩(⟨0𝑐 | ⊗ 𝑰)𝑼†(

��0𝑏〉 ⊗ 𝑰) · (
〈
0𝑏

�� ⊗ 𝑰)𝑼 |0𝑐⟩|𝜓⟩

− (1 −
√

1 − 𝛿) |0⟩ · (𝑰 − |0𝑐⟩⟨0𝑐 | ⊗ 𝑰)𝑼†
(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩

= |0⟩ · |0𝑐⟩
©­­­­«
𝑰 − (1 −

√
1 − 𝛿)︸          ︷︷          ︸

𝛿
2 +O(𝛿2)

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗

ª®®®®¬
|𝜓⟩

+
√
𝛿 |1⟩ ·

��0𝑏〉 ∑︁
𝑗∈𝐽
| 𝑗⟩𝑳 𝑗 |𝜓⟩ − (1 −

√
1 − 𝛿)︸          ︷︷          ︸

𝛿
2 +O(𝛿2)

|0⟩ · |0𝑐 ⊥⟩, (2.22)

where |0𝑐 ⊥⟩ is some quantum state such that ∥|0𝑐 ⊥⟩∥ ≤ 1 and (⟨0𝑐 | ⊗ 𝑰) · |0𝑐 ⊥⟩ = 0.
Tracing out the first 𝑎 + 1 qubits, we get that the resulting state is O

(
𝛿2)-close to the

desired state. Indeed, let |𝜓′⟩ denote the final state above in (2.22); we now show that

∥(I + 𝛿L)[|𝜓⟩⟨𝜓 |] − Tr𝑐+1 [|𝜓′⟩⟨𝜓′|] ∥1 = O
(
𝛿2

)
(2.23)
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by observing that

Tr𝑐+1 [|𝜓′⟩⟨𝜓′|]

= Tr𝑐
[
(⟨0| ⊗ 𝑰) · |𝜓′⟩⟨𝜓′| · ( |0⟩ ⊗ 𝑰)

]
+ Tr𝑐

[
(⟨1| ⊗ 𝑰) · |𝜓′⟩⟨𝜓′| · ( |1⟩ ⊗ 𝑰)

]
= (

〈
0𝑐+1

�� ⊗ 𝑰) · |𝜓′⟩⟨𝜓′| · (
��0𝑐+1〉 ⊗ 𝑰)

+ Tr𝑐
[
(⟨0| ⊗ 𝑰 − |0𝑐⟩⟨0𝑐 |) · |𝜓′⟩⟨𝜓′| · ( |0⟩ ⊗ 𝑰 − |0𝑐⟩⟨0𝑐 |)

]
+ 𝛿

∑︁
𝑗∈𝐽

𝑳 𝑗 |𝜓⟩⟨𝜓 |𝑳†𝑗

=

(
𝑰 − 𝛿

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗 + O

(
𝛿2

))
|𝜓⟩⟨𝜓 |

(
𝑰 − 𝛿

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗 + O

(
𝛿2

))
+ O

(
𝛿2

)
Tr𝑐 |0𝑐 ⊥⟩⟨0𝑐 ⊥| + 𝛿

∑︁
𝑗∈𝐽

𝑳 𝑗 |𝜓⟩⟨𝜓 |𝑳†𝑗

= |𝜓⟩⟨𝜓 | + 𝛿
∑︁
𝑗∈𝐽

𝑳 𝑗 |𝜓⟩⟨𝜓 |𝑳†𝑗 −
𝛿

2

{∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗 , |𝜓⟩⟨𝜓 |

}
+ O

(
𝛿2

)
= (I + 𝛿L)[|𝜓⟩⟨𝜓 |] + O

(
𝛿2

)
.

Convexity implies (2.23) also holds for mixed input states. To extend to the diamond
norm, observe that L[·] ⊗ 𝑰[·] 𝑰 has Lindblad operators 𝑳 𝑗 ⊗ 𝑰 and therefore𝑼 ⊗ 𝑰 is
a block-encoding for L[·] ⊗ 𝑰[·] 𝑰. This implies that the trace-norm bound of (2.23)
holds with respect to L[·] ⊗ 𝑰[·] 𝑰 as well, and so we can conclude that

(I + 𝛿L)[·] − Tr𝑐+1𝑪

[
|0𝑐+1⟩⟨0𝑐+1 | ⊗ ·

]
𝑪†




^
= O

(
𝛿2

)
. (2.24)

The triangle inequality then implies that the implemented map is O
(
𝛿2)-close in

diamond distance to e𝛿L , since ∥(I + 𝛿L) − e𝛿L ∥^ = O
(
𝛿2) as shown by, e.g., [49,

Appendix B].29

Choosing 𝛿 = Θ( 𝜖
𝑡
) ensures that the error in a single time-step is bounded by O

(
𝜖2

𝑡2

)
,

and repeating the process Θ( 𝑡2
𝜖
)-times induces an error that is bounded by 𝜖 for the

entire time-𝑡 evolution. The complexity is then Θ( 𝑡2
𝜖
)-times the cost of implementing

the circuit in Figure 2.3. ■

In addition to purely irreversible Lindbladian, as noted below (Figure 2.3), the above
weak measurement scheme can be amended with the Hamiltonian evolution term.

29Here we implicitly used the fact that a block-encoded Lindbladian has norm at most one.
This follows from the observation that ∥∑ 𝑗∈𝐽 𝑳†

𝑗
𝑳 𝑗 ∥ ≤ 1, which is a direct consequence of

Proposition 2.3.1.
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In our Gibbs sampling algorithm, the original random process typically proceeds
by a random “jump” operator 𝑨𝑎 for a uniformly random 𝑎 ∈ 𝐴. We then obtain
the final generators by applying the operator Fourier Transform to these “jump”
operators. Naïvely applying our weak measurement scheme to such a Lindbladian
would require us to use all the “jump” operators in each iteration. However, we
show in the next corollary that it suffices to randomly pick a single “jump” operator
in each iteration. In some situations, we could hope for further improvement by
parallelization of these jumps if their operator Fourier Transform remains localized.

Corollary 2.3.1 (Improved randomized simulation for convex combinations of
Lindbladians). Suppose that a purely irreversible Lindbladian L[·] = ∑

𝑖 𝑝𝑖L𝑖 [·]
is a convex combination of the purely irreversible Lindbladians L𝑖 [·] which are
given by their respective block-encodings. In Theorem 2.3.1, we can replace each
weak-measurement gadget for L[·] by an independently sampled weak-measurement
gadget for L𝑖 [·] according to the distribution 𝑝𝑖 while keeping the same asymptotic
iteration count O

(
𝑡2/𝜖

)
.

Proof. It suffices to show that

∥e𝛿L [·] −
∑︁
𝑖

𝑝𝑖Tr𝑐+1𝑪𝑖
(
|0𝑐+1⟩⟨0𝑐+1 | ⊗ [·]

)
𝑪†
𝑖
∥^= O

(
𝛿2

)
. (2.25)

From (2.24) we know that the weak measurement gadget 𝑪𝑖 in Figure 2.3 for L†
𝑖
[·]

satisfies

∥(I + 𝛿L𝑖) [·] − Tr𝑐+1𝑪𝑖
(
|0𝑐+1⟩⟨0𝑐+1 | ⊗ [·]

)
𝑪†
𝑖
∥^ = O

(
𝛿2

)
.

By linearity and the triangle inequality, it follows that

∥(I + 𝛿
∑︁
𝑖

𝑝𝑖L𝑖) [·] −
∑︁
𝑖

𝑝𝑖Tr𝑐+1𝑪𝑖
(
|0𝑐+1⟩⟨0𝑐+1 | ⊗ [·]

)
𝑪†
𝑖
∥^ = O

(
𝛿2

)
.

Since ∥(I + 𝛿L) − e𝛿L ∥^= O
(
𝛿2) , by the triangle inequality, we get the sought

inequality in (2.25). ■

Now, we turn to our second incoherent simulation result that is roughly based on the
algorithm of [49] but contains further improvements and fixes. We obtain improved
complexity because we assume that the Lindbladian is provided via a block-encoding,
while effectively [49] construct a (potentially suboptimal) block-encoding within their
algorithm. Their complexity depends on

∑
𝑗∈𝐽 ∥𝑳†𝑗𝑳 𝑗 ∥, while our algorithm can in
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principle achieve a dependence like ∥∑ 𝑗∈𝐽 𝑳
†
𝑗
𝑳 𝑗 ∥ when an efficient block-encoding

is provided — which is the case for our explicit block-encodings outlined in the
next section (section 2.3). To our knowledge, this is the first Lindbladian simulation
algorithm that achieves both near-linear time dependence and a complexity that
scales with ∥∑ 𝑗∈𝐽 𝑳

†
𝑗
𝑳 𝑗 ∥. Note that this improvement looks similar to how [12]

improved over [92] on the complexity of estimating multiple expectation values, but
the techniques are very different. Here, the improvement stems from the following
efficient block-encoding construction.

Proposition 2.3.1. Given a block-encoding of a Lindbladian (Definition 2.1.2), we
get a block-encoding of∑︁

𝑗∈𝐽
𝑳†
𝑗
𝑳 𝑗 via 𝑽 := (𝒀1

2
⊗ 𝑼†) ·

(
2|0𝑏+1⟩⟨0𝑏+1 | ⊗ 𝑰 − 𝑰

)
· (𝒀1

2
⊗ 𝑼),

where |±⟩ := ( |0⟩ ± |1⟩)/
√

2.

Proof. We calculate

(
〈
0𝑐+1

�� ⊗ 𝑰) · 𝑽 · (
��0𝑐+1〉 ⊗ 𝑰)

=

(
⟨−| ⊗ (⟨0𝑐 | ⊗ 𝑰)𝑼†

)
·
(
2|0𝑏+1⟩⟨0𝑏+1 | ⊗ 𝑰 − 𝑰

)
·
(
|+⟩ ⊗ 𝑼( |0𝑐⟩ ⊗ 𝑰)

)
=

(
⟨−| ⊗ (⟨0𝑐 | ⊗ 𝑰)𝑼†

)
·
(
2|0𝑏+1⟩⟨0𝑏+1 | ⊗ 𝑰

)
·
(
|+⟩ ⊗ 𝑼( |0𝑐⟩ ⊗ 𝑰)

)
= (⟨0𝑐 | ⊗ 𝑰) ·𝑼† · ( |0𝑏⟩⟨0𝑏 | ⊗ 𝑰) ·𝑼 · ( |0𝑐⟩ ⊗ 𝑰)

=

(∑︁
𝑗∈𝐽
⟨ 𝑗 | ⊗ 𝑳†

𝑗

) (∑︁
𝑗 ′∈𝐽
| 𝑗 ′⟩ ⊗ 𝑳 𝑗 ′

)
=

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗 . ■

This block-encoding construction and the following generic Lindbladian simulation
algorithm answers an open question30 recently posed by Rall, Wang, and Woc-
jan [149], and can significantly improve their complexity. Although we do not use
the above block-encoding explicitly, this observation is implicitly used in our weak
measurement schemes (Figure 2.3-Figure 2.10) that enable us to prove the following
result, whose proof is presented in section 2.11.

Theorem 2.3.2 (Compressed incoherent Lindbladian simulation algorithm). Suppose
𝑼 is a block-encoding of the Lindblad operators of a purely irreversible Lindbladian

30See [149, Section 7] “That one special Kraus operator involves all the 𝐿 𝑗 ’s. Does there exist any
special treatment of this special Kraus operator so that we can leverage the special structure of the
oracle

∑
𝑗 | 𝑗⟩ ⊗ 𝐿 𝑗 to get rid of the O(𝑚) dependence?”
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L as in Definition 2.1.2. Let 𝜖 ≤ 1/2, then we can simulate the action of the
superoperator e𝑡L to precision 𝜖 in diamond norm using

O((𝑐 + log((𝑡 + 1)/𝜖)) log((𝑡 + 1)/𝜖)) (resettable) ancilla qubits,

O
(
(𝑡 + 1) log((𝑡 + 1)/𝜖)

log log((𝑡 + 1)/𝜖)

)
(controlled) uses of 𝑼 and 𝑼†,

and O((𝑡 + 1) (𝑐 + 1)polylog((𝑡 + 1)/𝜖)) other two-qubit gates.

If the Lindbladian has a coherent part −i[𝑯, 𝝆], and we have access to a block-
encoding of 𝑯 = (⟨0𝑐 |⊗𝑰)𝑽 ( |0𝑐⟩⊗𝑰), then we can simulate e𝑡L withO

(
(𝑡 + 1) log((𝑡+1)/𝜖)

log log((𝑡+1)/𝜖)

)
additional (controlled) uses of 𝑽 and 𝑽†.

Crucially, the complexity scales almost linearly with time 𝑡 and poly-logarithmic with
the precision 𝜖 while using very few ancillas, representing a large asymptotic speedup
compared to the 𝑡2/𝜖 complexity of the weak-measurement scheme (Theorem 2.3.1).

Coherent Lindbladian simulation algorithms

With a quantum computer, we further ask for a coherent Gibbs sampler that outputs
the purified distribution (

��√𝝆𝛽〉 ∝ ∑
𝑖 e−𝛽𝐸𝑖/2 |𝜓𝑖⟩ ⊗

��𝜓∗
𝑖

〉
) on two copies of the Hilbert

space. A desirable coherent Gibbs sampler should satisfy the following conditions:

1. A Hermitian operator C can be efficiently block-encoded on the duplicated
Hilbert space,

2. its top-eigenvector is unique and yields the purified state
��√𝝆〉

, and

3. there exists an adiabatic path of operators C(𝑠) whose top-eigenvalue-gap
remains open.

A general coherent Gibbs sampler may not refer to an existing Lindbladian. However,
a natural candidate of the operator C is to take the vectorized discriminant D(𝝆,L)†

associated with a detailed balance Lindbladian (Definition 2.2.1), as how one
quantizes classical Markov chains [166]. Formally, we define vectorization of a
superoperator by31

C[·] =
∑︁
𝑗

𝛼 𝑗 𝑨 𝑗 [·]𝑩 𝑗 → C =
∑︁
𝑗

𝛼 𝑗 𝑨 𝑗 ⊗ 𝑩𝑇𝑗 (vectorization),

31One might be tempted to use 𝑩† instead in the vectorization, but that definition leads to
inconsistencies. Indeed, if we would use 𝑩† for vectorization then the two different representations of
the scalar 1 ⊗ 1 = 1 = i ⊗ −i would lead to different vectorizations ±1.
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where 𝑩𝑇
𝑗

denotes the transpose of the matrix 𝑩 𝑗 in the computational basis |𝑖⟩. We
use curly fontsC for superoperators and bold fontsC for the vectorized superoperators
(which is, a matrix).32 For a matrix 𝑨, let us denote its vectorized (or purified)
version by

|𝑨⟩ := (𝐼 ⊗ 𝑇−1)𝑨 (purification)

using the “transpose” map 𝑇 |𝑖⟩ = ⟨𝑖 |. This automatically ensures the correctness of
the fixed point (Point 2).

Proposition 2.3.2. For any full-rank state 𝝆 and any Lindbladian L, we have that
D(𝝆,L)†

��√𝝆〉
= 0. Further, if L satisfies 𝝆-detailed balance, we also have that

D(𝝆,L)
��√𝝆〉

= 0.

The above follows from a direct calculation using that any Lindbladian is trace-
preserving L† [𝑰] = 0. However, to turn the above into the advertised efficient
algorithm (Theorem 2.1.4), we need two key components reminiscent of the incoherent
case. First, we need a proxy for the discriminant with efficient block-encoding. As
we mentioned (2.18), we consider

D𝛽 =
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄)𝛾(−𝜔̄) 𝑨̂𝑎 (𝜔̄) ⊗ 𝑨̂𝑎 (𝜔̄)∗ (2.26)

− 𝛾(𝜔̄)
2

(
𝑨̂𝑎 (𝜔̄)† 𝑨̂𝑎 (𝜔̄) ⊗ 𝑰 + 𝑰 ⊗ 𝑨̂𝑎 (𝜔̄)∗† 𝑨̂𝑎 (𝜔̄)∗

)
as a proxy for D(𝝆,L𝛽)†,

where the 𝑨̂𝑎 (𝜔̄) are the same operator Fourier Transforms as in the incoherent
case (2.7); the block-encoding for D can be obtained given the block-encoding for
𝑨̂𝑎 (𝜔̄) (section 2.3). The map is self-adjoint D𝛽 = D

†
𝛽

due to Hermiticity 𝑨𝑎 = 𝑨𝑎†

and properties of weighted Fourier Transform (section 2.5). More carefully, we do not
implement exactly the discriminant D𝛽, but merely an approximation Di𝑚𝑝𝑙 ≈ D𝛽

due to additional implementation errors for the Gaussian weight and truncation errors
for the Gaussian tail.

Second, we need to formulate a notion of approximate detailed balance for the above
discriminant proxy.

32Note that C† is well defined. The (matrix) adjoint of the vectorized operator is
∑

𝑗 𝛼
∗
𝑗
𝑨†

𝑗
⊗ 𝑩∗

𝑗
.

On the other hand, the superoperator adjoint C† [·] is
∑

𝑗 𝛼
∗
𝑗
𝑨†

𝑗
[·]𝑩†

𝑗
(2.19), whose vectorization is

then the same
∑

𝑗 𝛼
∗
𝑗
𝑨†

𝑗
⊗ 𝑩∗

𝑗
.
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Definition 2.3.1 (𝜖-Discriminant proxy). We say a Hermitian matrix D is an
𝜖-discriminant proxy for Lindbladian L and a full-rank state 𝝆 if

∥D − D(𝝆,L)†∥ ≤ 𝜖 .

Indeed, this implies approximate detailed balance D(𝝆,L)† ≈ D(𝝆,L) for the
Lindbladian L by taking the adjoints. We can think of Definition 2.3.1 as a different
form of the approximate detailed balance condition (Definition 2.2.2) that controls
the top eigenvector error up to the spectral gap (Point 2).

Proposition 2.3.3 (Fixed point error). Suppose a gapped Hermitian operator D is
an 𝜖-discriminant proxy for a Lindbladian L and a full-rank state 𝝆. Then, its top
eigenvector is approximately the purified state

��√𝝆〉


|𝜆1(D)⟩ −

��√𝝆〉

 ≤ 4
√

2
𝜖

𝜆𝑔𝑎𝑝 (D)
.

Here, the gap dependence naturally arises from eigenvalue (Corollary 2.10.1) and
eigenvector perturbation (Proposition 2.10.2) arguments. Unlike Lindbladians, the
cost for preparing the coherent Gibbs state scales directly with the gap via quantum
simulated annealing; the mixing time of the original Lindbladian is not linked directly
to the algorithmic cost.

Thirdly, the block-encoding by itself does not prepare the desired top eigenvector,
unlike a Lindbladian; this additionally requires a standard subroutine called quantum
simulated annealing [179, 186]: adiabatically change the inverse temperature from
𝛽′ = 0→ 𝛽′ = 𝛽. The algorithmic cost is associated with the gaps along the adiabatic
path [24]; see section 2.12.

Explicit block-encodings
In this section, we lay out the circuit ingredients to construct the advertised
Lindbladians L𝛽 and discriminants D𝛽. First, we show how to construct a block-
encoding of the discretized Lindbladian with Lindblad operators (2.16) from a
block-encoding of the jump operators 𝑨𝑎. Then, we further construct a block-
encoding of the corresponding discriminant proxy - with the additional assumption
that the set of jump operators is self-adjoint ({𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴}) and
the Fourier weight function 𝑓 is real. It is not surprising that implementing the
discriminant proxy requires more symmetry constraints, as its definition already
implicitly draws from these symmetries.
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Block-encoding L𝛽

For both incoherent algorithms (Theorem 2.3.1,Theorem 2.3.2), we have assumed
that a purely-irreversible Lindbladian L[·] = ∑

𝑗∈𝐽 𝑳 𝑗 [·]𝑳†𝑗 + {𝑳
†
𝑗
𝑳 𝑗 , ·} is given by

a unitary block-encoding 𝑼 (Definition 2.1.2). Here, we construct a block-encoding
unitary 𝑼 for the advertised Lindblad operators

√︁
𝛾(𝜔̄) 𝑨̂𝑎 (𝜔̄) labeled by 𝑎, 𝜔̄:∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |𝜔̄⟩ ⊗ |𝑎⟩ ⊗ 𝑨̂𝑎 (𝜔̄)

for the advertised Lindbladian (discretization of (2.8), recap of (2.21)) .

L𝛽 :=
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(𝜔̄)
(
𝑨̂𝑎 (𝜔̄) [·] 𝑨̂𝑎 (𝜔̄)† − 1

2
{ 𝑨̂𝑎 (𝜔̄)† 𝑨̂𝑎 (𝜔̄), ·}

)
.

We begin by laying out the registers explicitly, including the additional ancillae for
block-encoding.

registers: |0⟩︸︷︷︸
Boltz. weight

⊗ |𝜔̄⟩︸︷︷︸
Bohr freq.

⊗
��0𝑏〉︸︷︷︸

block. enc. anc.

⊗ |𝑎⟩︸︷︷︸
jump

⊗ 𝑨̂𝑎 (𝜔̄)︸ ︷︷ ︸
system

From right to left, the registers individually correspond to: the physical system of
interest; the jump labels |𝑎⟩ and additional ancillae to accommodate block-encoding
access (indicating successful application by the all-zero state

��0𝑏〉); the frequency
register is dedicated to the operator Fourier Transform, storing the weight | 𝑓 ⟩ or
the Bohr frequencies |𝜔̄⟩; finally, an ancilla qubit for storing the Bohr-frequency
dependent Boltzmann weights in the amplitudes

√︁
𝛾(𝜔̄) |0⟩ +

√︁
1 − 𝛾(𝜔̄) |1⟩.

We specify the discrete Fourier Transform parameters that determine the dimension
of the Bohr frequency register as follows. The Fourier frequencies 𝜔̄ and times 𝑡 are
integer multiples of 𝜔0 and 𝑡0 respectively such that

𝜔0𝑡0 =
2𝜋
𝑁
, and 𝑆⌈𝑁⌋ :=

{
− ⌈(𝑁 − 1)/2⌉, . . . ,−1, 0, 1, . . . , ⌊(𝑁 − 1)/2⌋

}
,

and 𝑆
⌈𝑁⌋
𝜔0 := 𝜔0 · 𝑆⌈𝑁⌋ , 𝑆

⌈𝑁⌋
𝑡0

:= 𝑡0 · 𝑆⌈𝑁⌋ .

We use a “bar” to denote discretized variables; the (Bohr) frequency register takes
values 𝜔̄ ∈ 𝑆𝜔0 . To implement the Fourier Transform when 𝑁 = 2𝑛, we specify the
signed binary representation for the integers 𝑆⌈𝑁⌋ as follows:

10𝑛−1, . . . , 1𝑛 for each − 𝑁/2, . . . ,−1,

0𝑛, . . . , 01𝑛−1 for each 0, 1, . . . , 𝑁/2 − 1.
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|0⟩ 𝒀1−𝛾(𝜔̄) |0⟩��0̄〉 𝑷𝒓𝒆 𝒑 QFT |𝜔̄⟩

��0𝑏〉
𝑽 𝑗 𝑝

��0𝑏〉��0𝑐−𝑏〉 |𝑎⟩

𝝆 e−i𝑯𝑡 ei𝑯𝑡 𝛾(𝜔̄) 𝑨̂𝑎 (𝜔̄)𝝆𝑨̂𝑎 (𝜔̄)†

Figure 2.4: Circuit 𝑼 for block-encoding the Lindbladian. Practically, if we use
the simpler weak-measurement-based simulation (Theorem 2.3.1), then by Corol-
lary 2.3.1, we can use a single randomly chosen Lindblad operator 𝑨𝑎 at a time.
Moreover, if 𝑨𝑎 is unitary, we can simply replace𝑽 𝑗𝑢𝑚𝑝 with 𝑨𝑎, implying 𝑏 = 𝑐 = 0,
i.e., the third and the forth registers can be omitted, thus 𝑛 + ⌈log(𝑁)⌉ + 2 qubits
suffice to simulate the Lindbladian eL𝑡 .

Where it does not cause confusion we will drop ⌈𝑁⌋ from the superscript and will
simply write 𝜔̄ ∈ 𝑆𝜔0 and 𝑡 ∈ 𝑆𝑡0 . We will set the value of 𝑁 and 𝜔0 such that the
Bohr frequencies 𝐵 = spec(𝑯) − spec(𝑯) are contained within the range of energies

∥𝑯∥ ≤ 𝑁
2
𝜔0.

The only “physical” energy scale in the above is the Hamiltonian strength ∥𝑯∥.
Indeed, setting the scale to 𝑁 requires only log(𝑁) qubits in the readout register. The
circuit consists of the following ingredients, each acting on some appropriate subset
of the registers:

• Block-encoding𝑽 𝑗𝑢𝑚𝑝 of the jump operators 𝑨𝑎 in the form of Definition 2.1.2:

(
〈
0𝑏

�� ⊗ 𝑰𝑎 ⊗ 𝑰𝑠𝑦𝑠)] · 𝑽 𝑗𝑢𝑚𝑝 · ( |0𝑐⟩ ⊗ 𝑰𝑠𝑦𝑠) =
∑︁
𝑎∈𝐴
|𝑎⟩ ⊗ 𝑨𝑎 . (2.27)

The operators 𝑨𝑎 need not be self-adjoint nor proportional to a unitary. Still,
one may conveniently choose

√︁
|𝐴|𝑨𝑎 to be unitary for all 𝑎 ∈ 𝐴, (e.g.,

few-body unitary operators). Then, we can set 𝑏 = 0 and choose

𝑽 𝑗𝑢𝑚𝑝 =

(∑︁
𝑎∈𝐴
|𝑎⟩⟨𝑎 | ⊗ 𝑨𝑎

)
· (𝑩 ⊗ 𝑰𝑠𝑦𝑠) where 𝑩 |0𝑐⟩ =

∑︁
𝑎∈𝐴

|𝑎⟩√︁
|𝐴|

.(2.28)
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Note that implementing the Lindbladian does not require the set of jump oper-
ators to contain the adjoints {𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴}; this assumption
is only used for approximate detailed balance and the fixed point correctness
(Theorem 2.1.3).

• Controlled Hamiltonian simulation∑︁
𝑡∈𝑆𝑡0

|𝑡⟩⟨𝑡 | ⊗ 𝑒±i𝑡𝑯 .

• Quantum Fourier Transform

𝑸𝑭𝑻𝑁 : |𝑡⟩ → 1
√
𝑁

∑︁
𝜔̄∈𝑆𝜔0

e−i𝜔̄𝑡 |𝜔̄⟩.

• State preparation unitary for the Fourier Transform weights, acting on the
frequency register

𝑷𝒓𝒆 𝒑 𝑓 such that 𝑷𝒓𝒆 𝒑 𝑓
��0̄〉 = | 𝑓 ⟩.

Naturally, the weight 𝑓 (𝑡) as amplitudes of a state is normalized∑︁
𝑡∈𝑆𝑡0

| 𝑓 (𝑡) |2 = 1.

It could be, e.g., an easily preparable step function or a Gaussian whose tail
decays rapidly. Gaussian states are attractive because they are relatively easy
to prepare [127], but as a matter of fact, any other so-called window function
could be used, such as the Kaiser-window [20, 127] potentially providing
further overhead improvements.

• Controlled filter for the Boltzmann factors acting on the frequency register and
the Boltzmann weight register

𝑾 :=
∑︁
𝜔̄∈𝑆𝜔0

𝒀1−𝛾(𝜔̄) ⊗ |𝜔̄⟩⟨𝜔̄ | where 0 ≤ 𝛾(𝜔̄) ≤ 1 and 𝛾(𝜔̄) = 𝛾(−𝜔̄)e−𝛽𝜔̄.

The constraint 0 ≤ 𝛾(𝜔̄) ≤ 1 ensures the matrix 𝒀1−𝛾(𝜔̄) is unitary; the
symmetry (i.e., the KMS condition) 𝛾(𝜔̄) = 𝛾(−𝜔̄)e−𝛽𝜔̄ gives lower weights
for “heating” transitions and is closely related to the detailed balance condition.
Important examples of weight functions are

(Metropolis) 𝛾(𝜔̄) = min(1, e−𝛽𝜔̄) and (Glauber) 𝛾(𝜔̄) = 1
e𝛽𝜔̄ + 1

,
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which both reduce to the step function in the 𝛽 → ∞ limit. Note that
the range of energy labels 𝜔̄ is finite; we choose a large energy readout
range 𝑁𝜔0 ≥ 4∥𝑯∥ + 2

𝛽
to ensure all possible transitions are covered by the

discretization range (after secular approximation 𝜇 ≤ 1
𝛽
). We may generally

synthesize the controlled filter from elementary gates at cost33

(polynomial degree of 𝛾) × Poly(log(𝑁), log(1/𝜖)),

which is Õ(1 + 𝛽∥𝑯∥) for the Glauber weight. For the Metropolis weight, one
can achieve the same scaling by manually switching between 1 and e−𝛽𝜔̄ at
𝜔̄ = 0. In principle, since we are merely controlling a qubit, we may directly
implement any efficient computable function (perhaps with terrible overhead).

Further, combining the controlled Hamiltonian simulation and Quantum Fourier
Transform yields the advertised operator Fourier Transform (Figure 2.5) acting on
the frequency and system register 34

F [·] : | 𝑓 (𝑡)⟩ ⊗ 𝑶 →
∑︁
𝜔̄∈𝑆𝜔0

|𝜔̄⟩ ⊗ 𝑶̂ 𝑓 (𝜔̄)

where 𝑶̂ 𝑓 (𝜔̄) :=
1
√
𝑁

∑︁
𝑡∈𝑆𝑡0

e−i𝜔̄𝑡 𝑓 (𝑡)𝑶 (𝑡) and 𝑶 (𝑡) := ei𝑯𝑡𝑶e−i𝑯𝑡 .

See section 2.5 for basic properties of the operator Fourier Transform. Our imple-
mentation is inspired by, but differs from [180]; they sandwich the jump operators
with phase estimation and its inverse. The operator picture, inspired by physics, is
more natural and tangible. Our construction allows for flexibility in the choice of the
weight function 𝑓 (𝑡).

As shown in Figure 2.4, we assemble the above ingredients to obtain the unitary 𝑼

such that

𝑼(𝑰 ⊗
��0̄〉 ⊗ 𝑰𝑽) = (𝑾 ⊗ 𝑰𝑽) ·

(
𝑰 ⊗ F [𝑷𝒓𝒆 𝒑 𝑓

��0̄〉 ⊗ 𝑽 𝑗𝑢𝑚𝑝]) , (2.29)

where 𝑰 is the single qubit identity and 𝑰𝑽 is the identity on the registers on which
𝑽 𝑗𝑢𝑚𝑝 acts. As described in Footnote 34, intuitively speaking, we only apply the
operator Fourier Transform on the “system” register; indeed, in the corresponding



51��0̄〉 𝑷𝒓𝒆 𝒑 𝑸𝑭𝑻 |𝜔̄⟩

𝝆 e−i𝑯𝑡 𝑶 ei𝑯𝑡 𝑶𝜔̄𝝆(𝑶𝜔̄)†

Figure 2.5: Circuit for operator Fourier Transform F for an operator 𝑶 acting on
the system 𝝆. Of course, in our use, the operator may also act nontrivially on other
ancillas.

circuit (Figure 2.5), the jump label register |𝑎⟩ and the block-encoding ancillae
��0𝑏〉

is only affected by 𝑽 𝑗𝑢𝑚𝑝.

Lemma 2.3.1 (Explicit Block-encoding). The untiary 𝑼 in (2.29) gives a block-
encoding for our Lindbladian (2.8)(

⟨0| ⊗ 𝑰𝜔̄ ⊗
〈
0𝑏

�� ⊗ 𝑰𝑎 ⊗ 𝑰𝑠𝑦𝑠
)
·𝑼 ·

(
|0⟩ ⊗

��0̄〉 ⊗ |0𝑐⟩ ⊗ 𝑰𝑠𝑦𝑠
)

=
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |𝜔̄⟩ ⊗ |𝑎⟩ ⊗ 𝑨̂𝑎𝑓 (𝜔̄). (2.30)

Proof.

(LHS of (2.30))

=

(
⟨0| ⊗ 𝑰𝜔̄ ⊗

〈
0𝑏

�� ⊗ 𝑰𝑎 ⊗ 𝑰𝑠𝑦𝑠
)
· (𝑾 ⊗ 𝑰𝑽) ·

(
|0⟩ ⊗ F [| 𝑓 ⟩ ⊗ 𝑽 𝑗𝑢𝑚𝑝]

(
|0𝑐⟩ ⊗ 𝑰𝑠𝑦𝑠

) )
(by (2.29))

= ((⟨0| ⊗ 𝑰𝜔̄)𝑾 ( |0⟩ ⊗ 𝑰𝜔̄) ⊗ 𝑰𝑎 ⊗ 𝑰𝑠𝑦𝑠) ·
((
𝑰𝜔̄ ⊗

〈
0𝑏

�� ⊗ 𝑰𝑎 ⊗ 𝑰𝑠𝑦𝑠
)
F [| 𝑓 ⟩ ⊗ 𝑽 𝑗𝑢𝑚𝑝]

(
|0𝑐⟩ ⊗ 𝑰𝑠𝑦𝑠

) )
=

∑︁
𝑎∈𝐴,𝜔̄∈𝑆𝜔0

(⟨0|𝒀1−𝛾(𝜔̄) |0⟩ ⊗ |𝜔̄⟩⟨𝜔̄| ⊗ 𝑰𝑎 ⊗ 𝑰𝑠𝑦𝑠) · (F [| 𝑓 ⟩ ⊗ |𝑎⟩ ⊗ 𝑨𝑎])

(by (2.27) and Figure 2.5)

=
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |𝜔̄⟩ ⊗ |𝑎⟩ ⊗ 𝑨̂𝑎𝑓 (𝜔̄). (by OFT and controlled filter) ■

33By first applying controlled Hamiltonian simulation for 𝒀 rotation
∑

𝜔̄ ei( 𝜔̄/2∥𝑯 ∥ )𝒀 ⊗ |𝜔̄⟩⟨𝜔̄ |
and then apply QSVT to map 𝜔̄/2∥𝑯∥ → arcsin(

√︁
1 − 𝛾(𝜔̄)). This is reminiscent of [79].

34If the operator 𝑶 maps between larger Hilbert spaces than 𝑯, we formally extend its action
trivially so that 𝑶 (𝑡) = (𝑰 ⊗ ei𝑯 𝑡 )𝑶 (𝑰′ ⊗ e−i𝑯 𝑡 ). Of course, this formal extension does not incur any
additional cost.
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Block-encoding D𝛽

We now describe the explicit and efficient circuit that implements the advertised
vectorized discriminant proxy (discretization of (2.18), recap of (2.26))

D𝛽 =
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄)𝛾(−𝜔̄) 𝑨̂𝑎 (𝜔̄) ⊗ 𝑨̂𝑎 (𝜔̄)∗

− 𝛾(𝜔̄)
2

(
𝑨̂𝑎 (𝜔̄)† 𝑨̂𝑎 (𝜔̄) ⊗ 𝑰 + 𝑰 ⊗ 𝑨̂𝑎 (𝜔̄)∗† 𝑨̂𝑎 (𝜔̄)∗

)
,

assuming that the set of jump operators is self-adjoint in the sense that {𝑨𝑎 : 𝑎 ∈
𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴} and the Fourier weight function 𝑓 is real. Combining the circuit
with simulated annealing then leads to the advertised quadratic speedup.

Our discriminant proxy and its block-encoding is an instantiation of the following
general construct that is self-adjoint as a superoperator (and hence Hermitian after
vectorization)35.

Proposition 2.3.4 (Self-adjoint discriminant proxies). Given a purely irreversible
Lindbladian with Lindblad operators 𝑳 𝑗 for 𝑗 ∈ 𝐽, and a permutation 𝑷 : 𝑗 → 𝑗 ′ on
the set 𝐽, the following superoperator (and hence its vectorization) is self-adjoint:

D(𝑷, {𝑳 𝑗 }) :=
1
2

∑︁
𝑗∈𝐽

𝑳 𝑗 [·]𝑳†𝑗 ′ + 𝑳
†
𝑗
[·]𝑳 𝑗 ′ − {𝑳†𝑗𝑳 𝑗 , ·},

D(𝑷, {𝑳 𝑗 }) =
1
2

∑︁
𝑗∈𝐽

𝑳 𝑗 ⊗ 𝑳∗†
𝑗 ′ + 𝑳

†
𝑗
⊗ 𝑳∗𝑗 ′ − 𝑳†

𝑗
𝑳 𝑗 ⊗ 𝑰 − 𝑰 ⊗ 𝑳∗†

𝑗
𝑳∗𝑗 .

Proof.
D(𝑷, {𝑳 𝑗 })† =

1
2

∑︁
𝑗∈𝐽

𝑳†
𝑗
[·]𝑳 𝑗 ′ + 𝑳 𝑗 [·]𝑳†𝑗 ′ − {𝑳

†
𝑗
𝑳 𝑗 , ·} = D(𝑷, {𝑳 𝑗 }). ■

The vectorization is hence also self-adjoint.

Corollary 2.3.2. If 𝑓 is real (2.11) and the set of jump operators is self-adjoint (2.10),
then the discriminant proxy (2.26) is Hermitian.

Proof. Due to footnote 32, it suffices to verify that the superoperator is self-adjoint:
This follows from Proposition 2.3.4 by setting the permutation 𝑷 : (𝜔̄, 𝑎) → (−𝜔̄, 𝑎′)

35If we additionally have
∑

𝑗∈𝐽
1
2 𝑳 𝑗 ⊗ 𝑳∗†

𝑗′ +
1
2 𝑳
†
𝑗′ ⊗ 𝑳∗

𝑗
≈ ∑

𝑗∈𝐽

(
𝝆−

1
4 ⊗ (𝝆∗)− 1

4

)
𝑳 𝑗 ⊗

𝑳∗
𝑗

(
𝝆

1
4 ⊗ (𝝆∗) 1

4

)
and

∑
𝑗∈𝐽 𝑳†

𝑗
𝑳 𝑗 ≈

∑
𝑗∈𝐽 𝝆

1
4 𝑳†

𝑗
𝑳 𝑗𝝆

− 1
4 , then the resulting discriminant proxy

D is close to the discriminant D(𝝆,L)†. This is exactly what we show in 2.6 for the discriminant
proxy (2.26).
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such that 𝑨𝑎† = 𝑨𝑎
′ and using the operator Fourier Transform property 𝑨̂𝑎

′ (−𝜔̄)† =
ˆ𝑨𝑎′†(𝜔̄) for real weight 𝑓 (2.39), implying that 𝑨̂𝑎 (𝜔̄) ⊗ 𝑨̂𝑎

′ (−𝜔̄)†∗ = 𝑨̂𝑎 (𝜔̄) ⊗
𝑨̂𝑎 (𝜔̄)∗ = 𝑨̂𝑎

′ (−𝜔̄)† ⊗ 𝑨̂𝑎 (𝜔̄)∗. ■

Now that we have verified the symmetries of the desired discriminant proxy, we
move on to our explicit construction. By the standard quantum walk recipe [164],
we design an isometry and a reflection such that

𝑰 + D(𝑷, {𝑳 𝑗 }) = 𝑻
′†𝑹𝑻′,

which is block-encoded as in Figure 2.6.

Proposition 2.3.5 (A block-encoding for discriminant proxies). Using the notation
of Proposition 2.3.4, let

𝑹 := 𝑰 − (𝑰 ⊗ 𝚷) + 𝒁 ⊗ |0𝑏′⟩⟨0𝑏′ | ⊗ 𝑷 ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑰𝑠𝑦𝑠′︸                                    ︷︷                                    ︸
=:𝑹0

where 𝚷 := |0𝑏′⟩⟨0𝑏′ | ⊗ 𝑰𝐽 ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑰𝑠𝑦𝑠′ ,

and 𝒁 is the Pauli-Z operator such that 𝒁 |±⟩ = |∓⟩ for |±⟩ := ( |0⟩ ± |1⟩)/
√

2. If 𝑼
is a unitary block-encoding of the Lindbladian such that(

⟨0𝑏′ | ⊗ 𝑰𝐽 ⊗ 𝑰𝑠𝑦𝑠
)
·𝑼 ·

(
|0𝑐′⟩ ⊗ 𝑰𝑠𝑦𝑠

)
=
∑︁
𝑗∈𝐽
| 𝑗⟩ ⊗ 𝑳 𝑗 ,

then, we obtain a block encoding for the (shifted) discriminant proxy(
⟨0𝑐′+1 | ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑰𝑠𝑦𝑠′

)
·𝑼D(𝑷,{𝑳 𝑗 }) ·

(
|0𝑐′+1⟩ ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑰𝑠𝑦𝑠′

)
= 𝑰 + D(𝑷, {𝑳 𝑗 }).

using

𝑼D(𝑷,{𝑳 𝑗 }) := 𝑼
′† · 𝑹 ·𝑼′ where 𝑼′ =

(
|+⟩⟨+| ⊗ 𝑼 ⊗ 𝑰𝑠𝑦𝑠′ + |−⟩⟨−| ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑼∗

)

and the unitary 𝑼∗ is the conjugate of 𝑼 but acting on a copy of the system register
(𝑠𝑦𝑠′).

Proof. Consider the isometries 𝑻 := 𝑼( |0𝑐′⟩ ⊗ 𝑰𝑠𝑦𝑠) and 𝑻∗ := 𝑼∗( |0𝑐′⟩ ⊗ 𝑰𝑠𝑦𝑠′), and

𝑻′ := 𝑼′
(
|0𝑐′+1⟩ ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑰𝑠𝑦𝑠′

)
=

1
√

2
(
|+⟩ ⊗ 𝑻 ⊗ 𝑰𝑠𝑦𝑠′ + |−⟩ ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑻∗

)
.
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To understand the product 𝑻 ′†𝑹𝑻′, we first calculate (𝑰 ⊗ 𝚷)𝑻′ and 𝑹0𝑻
′:

(𝑰 ⊗ 𝚷)𝑻′ = 1
√

2

∑︁
𝑗∈𝐽
|+⟩ ⊗ |0𝑏′⟩ ⊗ | 𝑗⟩ ⊗ 𝑳 𝑗 ⊗ 𝑰𝑠𝑦𝑠′

+ 1
√

2

∑︁
𝑗∈𝐽
|−⟩ ⊗ |0𝑏′⟩ ⊗ | 𝑗⟩ ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑳∗𝑗 , (2.31)

𝑹0𝑻
′ =

1
√

2

∑︁
𝑗∈𝐽
|−⟩ ⊗ |0𝑏′⟩ ⊗ | 𝑗 ′⟩ ⊗ 𝑳 𝑗 ⊗ 𝑰𝑠𝑦𝑠′

+ 1
√

2

∑︁
𝑗∈𝐽
|+⟩ ⊗ |0𝑏′⟩ ⊗ | 𝑗 ′⟩ ⊗ 𝑰𝑠𝑦𝑠 ⊗ 𝑳∗𝑗 , (2.32)

using the bit-flip 𝒁 (+ ↔ −), and the permutation 𝑷 ( 𝑗 ↔ 𝑗 ′). Finally, we get that

𝑻
′†𝑹𝑻′ = 𝑻

′†𝑰𝑻′ − 𝑻 ′†(𝑰 ⊗ 𝚷)𝑻′ + 𝑻 ′†𝑹0𝑻
′

= 𝑰 − 𝑻 ′†(𝑰 ⊗ 𝚷) · (𝑰 ⊗ 𝚷)𝑻′ + 𝑻 ′†(𝑰 ⊗ 𝚷) · 𝑹0𝑻
′

(since (𝑰 ⊗ 𝚷)𝑹0 = 𝑹0)

= 𝑰 − 1
2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗 ⊗ 𝑰𝑠𝑦𝑠′ + 𝑰𝑠𝑦𝑠 ⊗ 𝑳∗†

𝑗
𝑳∗𝑗 +

1
2

∑︁
𝑗∈𝐽

𝑳 𝑗 ⊗ 𝑳∗†
𝑗 ′ + 𝑳

†
𝑗 ′ ⊗ 𝑳∗𝑗

(by (2.31)-(2.32))

= 𝑰 + D(𝑷, {𝑳 𝑗 }). ■

Specializing the above recipe for (2.26) yields a block-encoding of D𝛽 using the
following ingredients:

• A unitary block-encoding for the Lindbladian(
⟨0𝑏′ | ⊗ 𝑰𝜔̄ ⊗ 𝑰𝑎 ⊗ 𝑰𝑠𝑦𝑠

)
·𝑼 ·

(
|0𝑐′⟩ ⊗ 𝑰𝑠𝑦𝑠

)
=

∑︁
𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |𝜔̄⟩ ⊗ |𝑎⟩ ⊗ 𝑨̂𝑎 (𝜔̄).

An example would be the block-encoding (2.30) instantiating the parameters
𝑏′ = 𝑏 + 1 and |0𝑐′⟩ =

��0𝑐+1〉��0̄〉 after appropriately rearranging the registers.

• Negation on the Bohr frequency register

𝑭 :=
∑︁
𝜔̄∈𝑆𝜔0

|−𝜔̄⟩⟨𝜔̄| such that 𝑭2 = 𝑰𝜔̄.

• Permutation (involution) of the jump operator labels

𝑷 :=
∑︁
𝑎∈𝐴
|𝑎′⟩⟨𝑎 | where 𝑨𝑎

′
= (𝑨𝑎)† for each 𝑎 ∈ 𝐴. (2.33)
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|0⟩

𝑼
′

𝒁

𝑼
′†

⟨0|��0𝑏+1〉 〈
0𝑏+1

����0𝑐−𝑏〉 𝑷
〈
0𝑐−𝑏

����0̄〉 〈
0̄
��

sys
sys’

Figure 2.6: Circuit 𝑼′†𝑹𝑼′ for block-encoding the discriminant in the fashion of
Szegedy quantum walk.

Note that if the jump operators are Hermitian, e.g., Pauli matrices, then we
can simply take the permutation to be the identity 𝑷 = 𝑰𝑎.

To reiterate, compared to the incoherent case, the discriminant proxy can be
implemented with two extra unitaries 𝑭 and 𝑷, an additional copy of the system
register (which we denoted by 𝑠𝑦𝑠𝑡𝑒𝑚′), and an additional ancilla qubit.

registers: |±⟩︸︷︷︸
𝑻/𝑻∗ selector

⊗ |0𝑏′⟩︸︷︷︸
block. enc. anc.

⊗ |𝜔̄⟩︸︷︷︸
Bohr freq.

⊗ |𝑎⟩︸︷︷︸
jump

⊗ 𝑨̂𝑎 (𝜔̄)︸ ︷︷ ︸
system

⊗ 𝑨𝑎 (𝜔̄)∗︸  ︷︷  ︸
system’

If we combine the constructions of section 2.3-section 2.3, we can see that the number
of qubits is

#𝑞𝑢𝑏𝑖𝑡𝑠 = 2𝑛 + ⌈log2(𝑁)⌉ + 𝑐 + 2,

coming from the two copies of the system register, the frequency register, the ancillae
for the block-encoding of the jumps, and one additional ancillae introduced in each of
section 2.3-section 2.3. When the normalized jump operators

√︁
|𝐴|𝑨𝑎 are unitaries,

we can have 𝑐 as small as ⌈log2( |𝐴|)⌉; see for example (2.28).

Proof of coherent Gibbs sampler (Theorem 2.1.4)

In this section, we prove guarantees for our coherent Gibbs sampler (Theorem 2.1.4)
in a similar vein as the Lindbladian case (Theorem 2.1.3). The required lemmas and
propositions are analogous but refer to the spectral gap instead of the mixing time.
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Proof of Theorem 2.1.4. We present general bounds on finite 𝑁 (2.26) and then take
the large 𝑁 limit for the continuum (2.18). We bound the eigenvector distance by the
operator norm bounds (Proposition 2.10.1, Proposition 2.10.2 and Proposition 2.3.3):
secular approximation error (Lemma 2.6.2 and Proposition 2.6.7), and discriminant
proxy (Lemma 2.7.3 and D𝑠𝑒𝑐 = D†𝑠𝑒𝑐)36

∥
��𝜆1(D𝛽)

〉
−

��√𝝆〉
∥ ≤

6∥D𝛽 − D(𝝆,L𝑠𝑒𝑐)†∥
𝜆𝑔𝑎𝑝 (D𝛽)

≤ 6
𝜆𝑔𝑎𝑝 (D𝛽)

(
∥D𝛽 − D𝑠𝑒𝑐∥ + ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)†∥

)
≤ O

(
(e−𝑁2𝜔2

0𝜎
2
𝑡 /2 + e−𝑁2𝑡20/16𝜎2

𝑡 + e−𝜇̄2𝜎2
𝑡 + e−𝑇2/4𝜎2

𝑡 + 𝜔0𝑇) + 𝛽𝜇̄
𝜆𝑔𝑎𝑝 (D𝛽)

)

≤ O
(
𝜎𝑡𝜔0

√︁
log(1/(𝜎𝑡𝜔0)) + (𝛽/𝜎𝑡)

√︁
log(𝜎𝑡/𝛽) + e−𝑁2𝜔2

0𝜎
2
𝑡 /2

𝜆𝑔𝑎𝑝 (D𝛽)

)
.

The fourth inequality chooses the free parameter 𝑇 = 2𝜎𝑡
√︁

ln(1/(𝜎𝑡𝜔0)) and
𝜇̄ =

𝛽

𝜎𝑡

√︃
ln( 𝜎𝑡

𝛽
) and uses that e−𝑁2𝑡20/16𝜎2

𝑡 = e−𝜋2/4𝜔2
0𝜎

2
𝑡 = O(𝜎𝑡𝜔0

√︁
log(1/(𝜎𝑡𝜔0)))

to reduce the expression.

In the continuum limit (2.18), the discretization parameters 𝜔0 and 𝑁 disappear, and
the RHS becomes

∥
��𝜆1(D𝛽)

〉
−

��√𝝆〉
∥ = O

(
𝛽

𝜎𝑡

√︁
log(𝜎𝑡/𝛽)
𝜆𝑔𝑎𝑝 (D𝛽)

)
by taking the limit 𝑁𝜔0 →∞, 𝜔0 → 0. ■

Note the user only chooses the time limit 𝑇 , Gaussian width 𝜎𝑡 , and the Discrete
Fourier Transform resolution𝜔0 and the number of points 𝑁; the truncation parameter
𝜇̄ only appears implicitly in the analysis of secular approximation. Compared with the
fixed point error for Lindbladians (section 2.2), the Hermiticity and gap substantially
simplifies the analysis.

Metropolis sampling with arbitrary spectral target weights
Looking beyond sampling Gibbs states 𝝆 ∝ ∑

𝑖 e−𝛽𝐸𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |, we may modify the
circuit to sample from arbitrary weight function 𝝆 ∝ ∑

𝑖 𝑝(𝐸𝑖) |𝜓𝑖⟩⟨𝜓𝑖 | that could be
36Here, we implicitly assume that D𝑖𝑚𝑝𝑙 is Hermitian, which holds for example if 𝑹 in the

block-encoding is implemented exactly.



57��0̄〉 𝑷𝒓𝒆 𝒑− 𝑸𝑭𝑻
��𝐸̄2

〉
��0̄〉 𝑷𝒓𝒆 𝒑 𝑸𝑭𝑻

��𝐸̄1
〉

𝝆 e−i𝑯𝑡 𝑶 ei𝑯𝑡 𝑶 𝑓 ,𝐸̄2,𝐸̄1𝝆(𝑶 𝑓 ,𝐸̄2,𝐸̄1)
†

Figure 2.7: The circuit for two-sided operator Fourier Transform. The gate 𝒑𝒓𝒆 𝒑−
prepares the flipped function 𝑓−(𝑡) = 𝑓 (−𝑡). Unlike the one-sided version (Figure 2.5),
now we cannot understand the expression by Heisenberg evolution; this is, in spirit,
more similar to doing two consecutive phase estimations.

useful in other contexts. We reserve this section to point out the required ingredients
and adaptations; we will stick to Gibbs sampling for the rest of the paper, but our
coherent and incoherent algorithms should also apply in the general setting.

Instead of applying the operator Fourier Transform for the Bohr frequencies (the
energy differences), sampling from arbitrary weight requires accessing both energies
before and after the jump, resembling [149, 167, 180]. The appropriate Lindbladian
takes the following form:

L𝑔𝑒𝑛𝑒𝑟𝑎𝑙 [𝝆] :=
∑︁

𝑎∈𝐴,𝐸̄2,𝐸̄1∈𝑆𝜔0

𝛾(𝐸̄2, 𝐸̄1)
(
𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1)𝝆𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1)† −

1
2
{ 𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1)† 𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1), 𝝆}

)
.

(2.34)

To implement a block-encoding of the above Lindbladian, we need different Fourier
Transform components and a controlled filter for the two-argument Metropolis
weight.

• Phase estimation isometry (in the Schrödinger picture)

Φ 𝑓 :=
1
√
𝑁

∑︁
𝐸̄∈𝑆𝜔0

∑︁
𝑡∈𝑆𝑡0

𝑓 (𝑡)
��𝐸̄〉
⊗ e−i(𝐸̄−𝑯)𝑡 .

This circumvents the impossibility results as it does not take the shift-invariant
form (section 2.13).
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• Two-sided operator Fourier Transform (section 2.3)

F [| 𝑓2⟩ ⊗ | 𝑓1⟩ ⊗ 𝑶] := (Φ 𝑓2 ⊗ 𝑰𝐸̄1) ◦ (𝑰𝐸̄1 ⊗ 𝑶) ◦Φ 𝑓1

=
∑︁

𝐸̄2,𝐸̄1∈𝑆𝜔0

��𝐸̄2
〉
⊗

��𝐸̄1
〉
⊗ 𝑶̂ 𝑓1, 𝑓2 (𝐸̄2, 𝐸̄1),

where 𝑶̂ 𝑓1, 𝑓2 (𝐸̄2, 𝐸̄1) :=
1
𝑁

∑︁
𝑡2,𝑡1∈𝑆𝑡0

𝑓2(𝑡2) 𝑓1(𝑡1)e−i(𝐸̄2−𝑯)𝑡2𝑶e−i(𝐸̄1−𝑯)𝑡1 .

In our particular case, we set 𝑓1(𝑡) = 𝑓 (𝑡) and 𝑓2(𝑡) = 𝑓 (−𝑡) =: 𝑓−(𝑡) for a
normalized function 𝑓 to get

𝑶 𝑓 , 𝑓− (𝐸̄2, 𝐸̄1) =
1
𝑁

∑︁
𝑡2,𝑡1∈𝑆𝑡0

𝑓 (−𝑡2) 𝑓 (𝑡1)e−i(𝐸̄2−𝑯)𝑡2𝑶e−i(𝐸̄1−𝑯)𝑡1 (2.35)

which will be short-handed by 𝑶 𝑓 ,𝐸̄2,𝐸̄1 . This construction is reminiscent
of [180], but it does not require a rounding promise.

• Controlled filter for the Metropolis weight

𝑾 :=
∑︁

𝐸̄2,𝐸̄1∈𝑆𝜔0

𝒀1−𝛾(𝐸̄2,𝐸̄1) ⊗ |𝐸̄2⟩⟨𝐸̄2 | ⊗ |𝐸̄1⟩⟨𝐸̄1 |

such that 0 ≤ 𝛾(𝐸̄2, 𝐸̄1) ≤ 1 and
𝛾(𝐸̄2, 𝐸̄1)
𝛾(𝐸̄1, 𝐸̄2)

=
𝑝(𝐸̄2)
𝑝(𝐸̄1)

.

The ratio constraint ensures approximate detailed balance.

If the set of jump operators is self-adjoint and 𝑓 is real, we may construct a valid
Hermitian discriminant proxy as outlined in Proposition 2.3.4 — the corresponding
involution is SWAP ⊗ 𝑷, where SWAP acts on the two phase estimation registers,
and 𝑷 is a permutation as in (2.33). This construction yields a discriminant proxy
analogous to (2.26) due to the following “skew symmetry” of the two-sided operator
Fourier Transform. We also include the two-index version of operator Parseval’s
identity.

Proposition 2.3.6 (Parseval’s identity). For a set of matrices 𝑨𝑎 ∈ C𝑛×𝑛, consider
their two-sided discrete Fourier Transform weighted by a complex-valued function
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𝑓 : 𝑆𝑡0 → C as in (2.35). Then, 𝑨̂𝑎
𝑓
(𝐸̄2, 𝐸̄1)† = (𝑨𝑎†) 𝑓 ∗ (𝐸̄2, 𝐸̄1), and∑︁

𝑎∈𝐴

∑︁
𝐸̄1,𝐸̄2∈𝑆𝜔0

𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1)† 𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1) = ∥ 𝑓 ∥22
∑︁
𝑡1∈𝑆𝑡0

| 𝑓 (𝑡1) |2e−i𝑯𝑡1 𝑨𝑎†𝑨𝑎ei𝑯𝑡1

⪯ ∥ 𝑓 ∥42∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥ · 𝑰 and∑︁
𝑎∈𝐴

∑︁
𝐸̄1,𝐸̄2∈𝑆𝜔0

𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1) 𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1)† = ∥ 𝑓 ∥22
∑︁
𝑎∈𝐴

∑︁
𝑡2∈𝑆𝑡0

| 𝑓 (𝑡2) |2ei𝑯𝑡2 𝑨𝑎𝑨𝑎†e−i𝑯𝑡2

⪯ ∥ 𝑓 ∥42∥
∑︁
𝑎∈𝐴

𝑨𝑎𝑨𝑎†∥ · 𝑰.

Proof. For each 𝑎 ∈ 𝐴, we have

𝑨̂𝑎𝑓 (𝐸̄2, 𝐸̄1)† = ©­« 1
𝑁

∑︁
𝑡2,𝑡1∈𝑆𝑡0

𝑓 (−𝑡2) 𝑓 (𝑡1)e−i(𝐸̄2−𝑯)𝑡2 𝑨𝑎e−i(𝐸̄1−𝑯)𝑡1ª®¬
†

=
©­« 1
𝑁

∑︁
𝑡2,𝑡1∈𝑆𝑡0

𝑓 (𝑡2) 𝑓 (𝑡1)ei(𝐸̄2−𝑯)𝑡2 𝑨𝑎e−i(𝐸̄1−𝑯)𝑡1ª®¬
†

=
1
𝑁

∑︁
𝑡2,𝑡1∈𝑆𝑡0

𝑓 (𝑡2)∗ 𝑓 (𝑡1)∗ei(𝐸̄1−𝑯)𝑡1 𝑨𝑎†e−i(𝐸̄2−𝑯)𝑡2 = (𝑨𝑎†) 𝑓 ∗ (𝐸̄2, 𝐸̄1).

■

Our analytic arguments (section 2.5, section 2.7) can be adapted to the above
Lindbladian (2.34) and discriminant variant, but we will stick to the operator Fourier
Transform for simplicity throughout the paper.

2.4 Discussion
Our work aimed to lay the algorithmic and analytic foundation for Monte Carlo-style
Quantum Gibbs samplers. We have presented families of efficiently implementable
algorithms for Gibbs sampling in terms of Lindbladians with guarantees for fixed-
point accuracy. We have confronted technical issues from energy uncertainty (which
have haunted quantum Gibbs sampling algorithms for a decade) by highlighting a key
algorithmic component, the operator Fourier Transform, and introducing a general
analytic framework: the secular approximation and approximate detailed balance.
These arguments are compatible with the Szegedy-type speedup and preparation of
the purified Gibbs state.

Our construction is conceptually simple as it draws inspiration from the physical mech-
anism of open-system thermalization, especially the Davies’ generator. Conversely,
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our argument completes the first proof of Gibbs state stationarity for physically
derived Lindbladians, especially the coarse-grained master equations [121, 134].
Potentially, this could lead to proposals of quantum Gibbs samplers on analog
quantum simulators. Still, our analysis is restricted to the open system setting where
the bath is Markovian by assumption; we hope the precise statement in the open
system settings inspires further insight toward closed-system thermodynamics.

Would quantum Gibbs samplers be the ultimate solution to the ground state preparation
problem by setting 𝛽 ≫ 1? Our work only answers the first half of this problem
by writing down some candidate Lindbladians with a provably accurate Gibbs fixed
point and efficient simulation algorithm. Still, the missing piece of the puzzle is
the mixing time (or the spectral gap) of the proposed Lindbladians. A scientifically
informative first step is to directly benchmark the performance of quantum Gibbs
samplers numerically for viable system sizes. This would give concrete estimates of
the realistic costs of quantum simulation. From a mathematical physics perspective,
there have been efforts to prove rapid mixing [16, 31] (convergence at a logarithmic
depth log(𝑛)) of Quantum Gibbs samplers for lattice Hamiltonian in the spirit of
classical Ising models [124]. There, most results have been restricted to commuting
Hamiltonians due to the lack of a satisfactory formulation of noncommuting Gibbs
samplers, which this work provides37. As a direct implication of this work, we
provide a candidate algorithm for preparing a gapped ground state at a potentially very
low depth: simply setting the Gaussian width to be 𝜎𝑡 ∼ Õ( 1

Δ𝑔𝑎𝑝
) and 𝛽 = Õ( 1

Δ𝑔𝑎𝑝
)

ensures the ground state to be approximately the common kernel of Õ( 1
Δ𝑔𝑎𝑝
)-local

Lindbladians38.

From a complexity perspective, quantum Gibbs samplers provide a new dynamic angle
to study the complexity of thermal states and even ground states. Indeed, existing
complexity results for gapped ground states, especially the area law, have beaten the
static properties to death (local gap, decay of correlation, etc.). Conceptually, these
approaches neglect the instinctive experimental origin of ground states: cool the
system in a fridge. It would be curious to bridge this thermodynamics process to the
area-law literature (e.g., [10, 84, 106]). Practically, we hope noncommuting Gibbs
samplers will inspire new tensor network algorithms or even new ansatz, which could
lead to a better grasp of 2D gapped physics.

37The followup work [42] gives an even nicer noncommutative Gibbs sampler with exact detailed
balance.

38This observation was later exploited in [61] for ground state preparation.
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2.5 Appendix:Operator Fourier Transform: properties and error bounds
In this section, we study properties of the operator Fourier Transform. Given a
Hamiltonian 𝑯, an operator 𝑨, and a complex-valued function 𝑓 : R→ C, let

𝑨̂ 𝑓 (𝜔̄) :=
1
√
𝑁

∑︁
𝑡∈𝑆𝑡0

e−i𝜔̄𝑡 𝑓 (𝑡)𝑨(𝑡) where 𝑨(𝑡) := ei𝑯𝑡𝑨e−i𝑯𝑡 . (2.36)

Note the normalization 1√
𝑁

. The transformed operators 𝑨̂ 𝑓 (𝜔̄) satisfy the desirable
exact symmetry of a standard Fourier Transform as well as an operator version of
Parseval’s identity.

Proposition 2.5.1 (Symmetry and operator Parseval’s identity). For a set of matrices
{𝑨𝑎}𝑎∈𝐴 and a Hamiltonian 𝑯, consider their discrete operator Fourier Transform
weighted by a complex-valued function 𝑓 : 𝑆𝑡0 → C as in (2.36). Then, the symmetry
holds 𝑨̂𝑎

𝑓
(𝜔̄)† = (𝑨𝑎†) 𝑓 ∗ (−𝜔̄), moreover∑︁

𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

𝑨̂𝑎𝑓 (𝜔̄)
† 𝑨̂𝑎𝑓 (𝜔̄) =

∑︁
𝑎∈𝐴

∑︁
𝑡∈𝑆𝑡0

| 𝑓 (𝑡) |2ei𝑯𝑡𝑨𝑎†𝑨𝑎e−i𝑯𝑡 ⪯ ∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥∥ 𝑓 ∥22 · 𝑰 and

(2.37)∑︁
𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

𝑨̂𝑎𝑓 (𝜔̄) 𝑨̂
𝑎
𝑓 (𝜔̄)

† =
∑︁
𝑎∈𝐴

∑︁
𝑡∈𝑆𝑡0

| 𝑓 (𝑡) |2ei𝑯𝑡𝑨𝑎𝑨𝑎†e−i𝑯𝑡 ⪯ ∥
∑︁
𝑎∈𝐴

𝑨𝑎𝑨𝑎†∥∥ 𝑓 ∥22 · 𝑰.

(2.38)

For our Lindbladian Gibbs samplers, the weights will be normalized
∑
𝑡∈𝑆𝑡0 | 𝑓 (𝑡) |

2 = 1,
which means that they can be implemented by amplitudes of a state. In the special
case

∑
𝑎∈𝐴 𝑨𝑎†𝑨𝑎 = 𝑰 (i.e., these operators can be interpreted as a quantum channel),

then the inequality (2.37) hold with equality, and as a consequence, the operators
resolve the identity

∑
𝑎∈𝐴

∑
𝜔̄∈𝑆𝜔0

𝑨̂𝑎
𝑓
(𝜔̄)† 𝑨̂𝑎

𝑓
(𝜔̄) = 𝑰.
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Proof. First observe that by definition

𝑨̂𝑎𝑓 (𝜔̄)
† =

1
√
𝑁

∑︁
𝑡∈𝑆𝑡0

ei𝜔̄𝑡 𝑓 ∗(𝑡) (𝑨𝑎 (𝑡))† (2.39)

=
1
√
𝑁

∑︁
𝑡∈𝑆𝑡0

ei𝜔̄𝑡 𝑓 ∗(𝑡)𝑨𝑎†(𝑡) = (𝑨𝑎†) 𝑓 ∗,−𝜔̄.

Next, we prove (2.37) by direct computation as follows∑︁
𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

𝑨̂𝑎𝑓 (𝜔̄)
† 𝑨̂𝑎𝑓 (𝜔̄) =

∑︁
𝑎∈𝐴

1
𝑁

∑︁
𝜔̄∈𝑆𝜔0

∑︁
𝑡′∈𝑆𝑡0

ei𝜔̄𝑡′ 𝑓 ∗(𝑡)𝑨𝑎 (𝑡′)†
∑︁
𝑡∈𝑆𝑡0

e−i𝜔̄𝑡 𝑓 (𝑡)𝑨𝑎 (𝑡)

=
∑︁
𝑎∈𝐴

∑︁
𝑡∈𝑆𝑡0

| 𝑓 (𝑡) |2𝑨𝑎 (𝑡)†𝑨𝑎 (𝑡)

=
∑︁
𝑎∈𝐴

∑︁
𝑡∈𝑆𝑡0

| 𝑓 (𝑡) |2ei𝑯𝑡𝑨𝑎†𝑨𝑎e−i𝑯𝑡

⪯ ∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥
∑︁
𝑡∈𝑆𝑡0

| 𝑓 (𝑡) |2ei𝑯𝑡 𝑰e−i𝑯𝑡

= 𝑰 · ∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥
∑︁
𝑡∈𝑆𝑡0

| 𝑓 (𝑡) |2.

The second equality uses the Fourier representation of the discrete delta function∑︁
𝜔̄∈𝑆𝜔0

e−i𝜔̄(𝑡−𝑡′) = 𝑁𝛿𝑡,𝑡′ . (2.40)

The proof of (2.38) is completely analogous. ■

We also include the analogous analysis in the continuum limit where the discretization
parameter 𝑁 disappears. We will assume throughout that the weight function 𝑓

is square integrable, i.e., 𝑓 ∈ ℓ2(R). In the continuous case, the operator Fourier
Transform is a matrix-valued function, and to emphasize this, we change the notation
to 𝑨̂ 𝑓 (𝜔̄) → 𝑨̂ 𝑓 (𝜔). We could directly copy the above proof; however, arguing
about the Dirac delta function in the continuous case is tricky. We resolve this by
relying on Parseval-Plancherel’s identity.

For studying the operator Fourier Transform, it is useful to decompose the operator
according to the Bohr frequencies

ei𝑯𝑡𝑨e−i𝑯𝑡 =
∑︁

𝜈∈𝐵(𝑯)
ei𝜈𝑡𝑨𝜈, (2.41)

where 𝑨𝜈 :=
∑︁

𝐸2−𝐸1=𝜈

𝑷𝐸2 𝑨𝑷𝐸1 satisfies that (𝑨𝜈)† = (𝑨†)−𝜈,
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where 𝑷𝐸 denotes the orthogonal projector onto the subspace spanned by energy
𝐸 eigenstates of 𝑯. If 𝑓 ∈ ℓ1(R), using this decomposition, we can conveniently
express the operator Fourier Transform as follows

𝑨̂ 𝑓 (𝜔) =
1
√

2𝜋

∫ ∞

−∞
e−i𝜔𝑡 𝑓 (𝑡)ei𝑯𝑡𝑨e−i𝑯𝑡d𝑡

=
1
√

2𝜋

∫ ∞

−∞
e−i𝜔𝑡 𝑓 (𝑡)ei𝑯𝑡

∑︁
𝜈∈𝐵(𝑯)

𝑨𝜈e−i𝑯𝑡d𝑡

=
∑︁

𝜈∈𝐵(𝑯)

1
√

2𝜋

∫ ∞

−∞
e−i(𝜔−𝜈)𝑡 𝑓 (𝑡)𝑨𝜈d𝑡 =

∑︁
𝜈∈𝐵(𝑯)

𝑓 (𝜔 − 𝜈)𝑨𝜈, (2.42)

where 𝑓 (𝜔) = 1√
2𝜋

∫ ∞
−∞ 𝑓 (𝑡)e

−i𝜔𝑡d𝑡 is the Fourier Transform of the weight function
𝑓 (𝑡). More generally, if 𝑓 ∈ ℓ2(R), then we use (2.42) as the definition of the
operator Fourier Transform because the Fourier Transform uniquely extends to a
unitary map F : ℓ2(R) → ℓ2(R).

Proposition 2.5.2 (Symmetry and operator Parseval’s identity). For a set of matrices
{𝑨𝑎}𝑎∈𝐴 and a Hamiltonian 𝑯, consider their continuous operator Fourier Transform
weighted by a complex-valued function 𝑓 ∈ ℓ2(R)

𝑨̂𝑎𝑓 (𝜔) :=
∑︁

𝜈∈𝐵(𝑯)
𝑓 (𝜔 − 𝜈)𝑨𝑎𝜈 ,

then ( 𝑨̂𝑎
𝑓
(𝜔))† = (𝑨𝑎†) 𝑓 ∗ (−𝜔), moreover∑︁

𝑎∈𝐴

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔)

† 𝑨̂𝑎𝑓 (𝜔)d𝜔 =
∑︁
𝑎∈𝐴

∫ ∞

−∞
| 𝑓 (𝑡) |2ei𝑯𝑡𝑨𝑎†𝑨𝑎e−i𝑯𝑡d𝑡 ⪯ ∥ 𝑓 ∥22∥

∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥ · 𝑰, and

(2.43)∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔)𝑨𝑎 𝑓 (𝜔)

†d𝜔 =
∑︁
𝑎∈𝐴

∫ ∞

−∞
| 𝑓 (𝑡) |2ei𝑯𝑡𝑨𝑎𝑨𝑎†e−i𝑯𝑡d𝑡 ⪯ ∥ 𝑓 ∥22∥

∑︁
𝑎∈𝐴

𝑨𝑎𝑨𝑎†∥ · 𝑰.

(2.44)

Similarly as before, if
∑
𝑎∈𝐴 𝑨𝑎†𝑨𝑎 = 𝑰, then the inequality (2.43) hold with equality.

Proof. First observe that by definition

𝑨̂𝑎𝑓 (𝜔)
† =

∑︁
𝜈∈𝐵(𝑯)

( 𝑓 (𝜔 − 𝜈))∗(𝑨𝑎𝜈)†

=
∑︁

𝜈∈𝐵(𝑯)
𝑓̂ ∗(𝜈 − 𝜔) (𝑨𝑎†)−𝐸

=
∑︁

−𝜈∈𝐵(𝑯)
𝑓̂ ∗(−𝜔 − 𝜈) (𝑨𝑎†)𝜈 = 𝑨𝑎† 𝑓 ∗ (−𝜔).
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Next, we prove (2.43) by direct computation as follows:∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔)

† 𝑨̂𝑎𝑓 (𝜔)d𝜔 =
∑︁
𝑎∈𝐴

∫ ∞

−∞

∑︁
𝜈∈𝐵(𝑯)

(𝑨𝑎𝜈)†( 𝑓 (𝜔 − 𝜈))∗
∑︁

𝜈′∈𝐵(𝑯)
𝑓 (𝜔 − 𝜈′)𝑨𝑎𝜈′d𝜔

(by definition)

=
∑︁
𝑎∈𝐴

∑︁
𝜈,𝜈′∈𝐵(𝑯)

(𝑨𝑎𝜈)†𝑨𝑎𝜈′
∫ ∞

−∞
( 𝑓 (𝜔))∗ 𝑓 (𝜔 − (𝜈′ − 𝜈))d𝜔

(shift 𝜔→ 𝜔 − 𝜈 and use |𝐵 | ≤ ∞)

=
∑︁
𝑎∈𝐴

∑︁
𝜈′′∈𝐵(𝑯)

(𝑨𝑎†𝑨𝑎)𝜈′′
∫ ∞

−∞
( 𝑓 (𝜔))∗ 𝑓 (𝜔 − 𝜈′′)d𝜔

(by the definition of 𝑨𝑎𝜈)

=
∑︁
𝑎∈𝐴

∑︁
𝜈′′∈𝐵(𝑯)

(𝑨𝑎†𝑨𝑎)𝜈′′
∫ ∞

−∞
( 𝑓 (𝑡))∗ 𝑓 (𝑡)ei𝜈′′𝑡d𝑡

(since F is unitary)

=
∑︁
𝑎∈𝐴

∑︁
𝜈′′∈𝐵(𝑯)

∫ ∞

−∞
| 𝑓 (𝑡) |2ei𝑯𝑡 (𝑨𝑎†𝑨𝑎)𝜈′′e−i𝑯𝑡d𝑡

(as in (2.42))

=
∑︁
𝑎∈𝐴

∫ ∞

−∞
| 𝑓 (𝑡) |2ei𝑯𝑡𝑨𝑎†𝑨𝑎e−i𝑯𝑡d𝑡

(since |𝐵(𝑯) | ≤ ∞)

⪯ ∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥
∫ ∞

−∞
| 𝑓 (𝑡) |2ei𝑯𝑡 𝑰e−i𝑯𝑡d𝑡

(since
∑
𝑎∈𝐴 𝑨𝑎†𝑨𝑎 ⪯ ∥∑𝑎∈𝐴 𝑨𝑎†𝑨𝑎∥𝑰)

= 𝑰 · ∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥
∫ ∞

−∞
| 𝑓 (𝑡) |2d𝑡.

The proof of (2.44) is completely analogous.39 ■

2.6 Appendix:Nonasymptotic secular approximation
In this section, we define the secular approximation of the Fourier Transformed
operators 𝑨̂ 𝑓 (𝜔̄) and analyze the resulting error. The secular approximation
applies truncation to the Fourier-transformed operators in the frequency domain
by suppressing Bohr frequencies 𝜈 ∈ 𝐵(𝑯) that deviate substantially from the
frequency label 𝜔 via some filter function 𝑠 ∈ ℓ∞(R). For example truncation at

39Intuitively speaking the fourth line can be viewed as consequence of the Fourier representation
of the Dirac delta distribution

∫ ∞
−∞ ei𝜔𝑡d𝜔 = 2𝜋𝛿(𝑡), analogous to (2.40). Not introducing delta

functions makes the proof completely general.
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Figure 2.8: Left: the weight as the step function. Right: An illustration for the Fourier
Transformed amplitudes 𝑨𝜔̄ =

∑
𝜈∈𝑆𝜔0

𝑨𝜈 𝑓 (𝜔̄ − 𝜈) =
∑
𝜈∈𝑆𝜔0

𝑨𝜈
ei(𝜈− 𝜔̄)𝑇−e−i(𝜈− 𝜔̄)𝑇

ei(𝜈− 𝜔̄)𝑡0−1
for Bohr frequency 𝜈 given the energy label 𝜔̄. The expression coincides with the
phase estimation profile. It peaks near energy 𝜈 = 𝜔̄ with a width ∼ 𝑇−1 and decays
polynomially. The profile in absolute value oscillates (blue), but we also display the
norm bound to guide the eye (black). The secular approximation truncates the profile
at an energy 𝜇̄ far in the tail 𝜇̄ ≫ 𝑇−1.

energy difference 𝜇 can be achieved by setting 𝑠(𝜔) := 1( |𝜔| < 𝜇) and defining the
following secular-approximated operators as follows:

𝑺̂ 𝑓 ,𝑠 (𝜔) :=
∑︁

𝜈∈𝐵(𝑯)
𝑓 (𝜔 − 𝜈)𝑠(𝜔 − 𝜈)𝑨𝜈 . (2.45)

We will sometimes consider alternative filter functions 𝑠 : R→ C, so we will treat
general 𝑠 throughout our discussion.

The key observation in our analysis is that due to the definition of the operator Fourier
Transform (2.42) we have

𝑺̂ 𝑓 ,𝑠 (𝜔) = 𝑨̂ 𝑓𝑠 (𝜔),

where 𝑓𝑠 = F −1( 𝑓 · 𝑠) is the inverse Fourier Transform of the function 𝑓 (𝜔)𝑠(𝜔).
Furthermore, this also implies that

𝑨̂ 𝑓 (𝜔) − 𝑺̂ 𝑓 ,𝑠 (𝜔) = 𝑨̂ 𝑓− 𝑓𝑠 (𝜔),

where 𝑓 − 𝑓𝑠 = 𝑓1−𝑠 is the inverse Fourier Transform of the function 𝑓 (𝜔) (1− 𝑠(𝜔)).
The significance of this equation is that it enables us to bound the error induced by
the secular approximation via bounding the tail ∥ 𝑓 (𝜔) (1 − 𝑠(𝜔))∥2.

Proposition 2.6.1. If 𝑓 (𝑡) is real and 𝑠(𝑡) is real and even, then 𝑓𝑠 (𝑡) is real.
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Proof. If 𝑓 is real, then 𝑓 has an even real and odd imaginary part, which remains
true for 𝑓 · 𝑠, and therefore F −1( 𝑓 · 𝑠) is real as well.40 ■

Analogously, we define the secular approximation for the discrete Fourier Transform
as

𝑺̂ 𝑓 ,𝑠 (𝜔̄) :=
∑︁

𝜈∈𝐵(𝑯)
F̄

(
𝑓 (𝑡) · ei𝜈𝑡

)
(𝜔̄) · 𝑠(𝜔̄ − 𝜈)𝑨𝜈,

where F̄ denotes the discrete Fourier Transform. In case 𝜈 is an integer multiple of
the base frequency 𝜔0 of F̄ , then F̄

(
𝑓 (𝑡) · e(i𝜈𝑡)

)
(𝜔̄) above simplifies to 𝑓 (𝜔̄ − 𝜈) =

F̄ ( 𝑓 ) (𝜔̄ − 𝜈). Indeed, the discrete Fourier Transform 𝑓 is only defined at points
𝜔̄ ∈ 𝑆𝜔0 , and thus translation by some value 𝜈 which is not an integer multiple of 𝜔0

can cause troubles.

The simple analysis working nicely in the continuous case can be directly translated
to the discrete case if all the Bohr frequencies are multiples of the base frequency
𝜔0 of F̄ , i.e., 𝐵 ⊂ 𝜔0Z. This is the reason why we introduce a slightly rounded
Hamiltonian in the analysis of the secular approximation.

Proposition 2.6.2 (Truncation via modifying weight function). Let 𝑓 : 𝑆𝑡0 → C
and 𝑠 : 𝑆𝜔0 → C and suppose that 𝐵(𝑯) ⊂ 𝜔0Z, then the secular-approximated
operator can be represented as plain operator Fourier Transform corresponding to a
perturbed weight function

𝑺̂ 𝑓 ,𝑠 (𝜔̄) = 𝑨̂ 𝑓𝑠 (𝜔̄),

where 𝑓𝑠 (𝜔̄) is the inverse discrete Fourier Transform of the function 𝑓 (𝜔̄)𝑠(𝜔̄) and
𝑓 (𝜔̄) := 1√

𝑁

∑
𝑡∈𝑆𝑡0 e−i𝜔̄𝑡 𝑓 (𝑡).

40If we work with the discrete Fourier Transform, and 𝑁 is even, then −𝜔0 · 𝑁/2 (or −𝑡0 · 𝑁/2 if
we work in the time domain) should be treated as its own inverse due to reasons of parity and modular
arithmetic. In particular an even function can take arbitrary value on −𝜔0 · 𝑁/2, but an odd function
must be 0, similarly to how such functions must behave on 0.
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Proof.

𝑺̂ 𝑓 ,𝑠 (𝜔̄) =
∑︁

𝜈̄∈𝐵(𝑯)
𝑓 (𝜔̄ − 𝜈̄) · 𝑠(𝜔̄ − 𝜈̄)𝑨𝜈̄

=
∑︁

𝜈̄∈𝐵(𝑯)
𝑓𝑠 (𝜔̄ − 𝜈̄)𝑨𝜈̄

=
∑︁

𝜈̄∈𝐵(𝑯)

1
√
𝑁

∑︁
𝑡∈𝑆𝑡0

e−i(𝜔̄−𝜈)𝑡 𝑓𝑠 (𝑡)𝑨𝜈̄

=
1
√
𝑁

∑︁
𝑡∈𝑆𝑡0

e−i𝜔̄𝑡 𝑓𝑠 (𝑡)𝑨(𝑡).

The last equality recombines the Bohr frequencies
∑
𝜈̄∈𝐵(𝑯) ei𝜈̄𝑡𝑨𝜈̄ = 𝑨(𝑡) analo-

gously to (2.42). ■

To reiterate, the condition 𝐵 ⊆ 𝜔0Z need not hold for the original Hamiltonian 𝑯.
Proceeding with the discretized Hamiltonian 𝑯̄ introduces a small additive error.41
We present error bounds for both the Lindbladian and our discriminant proxy.

Lemma 2.6.1 (Perturbation bounds). Let 𝑓 , 𝑓 ′ ∈ C𝑆𝑡0 , and 𝛾 ∈ C𝑆𝜔0 such that
∥ 𝑓 ∥2, ∥ 𝑓 ′∥2, ∥𝛾∥∞ ≤ 1. If ∥∑𝑎∈𝐴 𝑨𝑎†𝑨𝑎∥ ≤ 1, then for every 𝑇 > 0 and 𝑓𝑇 (𝑡) :=
𝑓 (𝑡)1( |𝑡 | ≤ 𝑇) we have that

∥
∑︁

𝜔̄∈𝑆𝜔0 ,𝑎∈𝐴

√︁
𝛾(𝜔̄) |𝜔̄, 𝑎⟩⟨0̄| ⊗ 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄) −

√︁
𝛾(𝜔̄) |𝜔̄, 𝑎⟩⟨0̄| ⊗ 𝑨̂𝑎( 𝑓 ′,𝑯′) (𝜔̄)∥

≤ ∥ 𝑓 − 𝑓𝑇 ∥2 + ∥ 𝑓𝑇 − 𝑓 ′∥2 + 2𝑇 ∥𝑯 − 𝑯′∥.

Proof. This directly follows from the (not necessarily unitary) block-encoding
construction of Figure 2.5-Figure 2.4 and triangle inequalities. Indeed, for any
function 𝑔 ∈ C𝑆𝑡0 let 𝑷𝒓𝒆 𝒑𝑔 := |𝑔⟩⟨0̄| and let 𝑩(𝑔,𝑯) denote the block-encoding given
by Figure 2.4 when setting 𝑷𝒓𝒆 𝒑 ← 𝑷𝒓𝒆 𝒑𝑔, 𝑽 𝑗 𝑝 ←

∑
𝑎 |𝑎⟩ ⊗ 𝑨𝑎, and using the

Hamiltonian 𝑯. Then, we have that

∥𝑩(𝑔,𝑯) − 𝑩( 𝑓𝑇 ,𝑯′) ∥ ≤ ∥𝑩(𝑔,𝑯) − 𝑩( 𝑓𝑇 ,𝑯) ∥ + ∥𝑩( 𝑓𝑇 ,𝑯) − 𝑩( 𝑓𝑇 ,𝑯′) ∥
≤ ∥𝑔 − 𝑓𝑇 ∥2∥𝑽 𝑗 𝑝 ∥ + 2𝑇 ∥𝑯 − 𝑯′∥∥𝑽 𝑗 𝑝 ∥
≤ ∥𝑔 − 𝑓𝑇 ∥2 + 2𝑇 ∥𝑯 − 𝑯′∥.

41This differs from the unphysical rounding assumption [180] where the Hamiltonian needs to
have “large” gaps in the spectrum. Here, 𝜔0 is not related to the resolution of energy estimates but
rather the discretization of the register.
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Using the above inequality twice, we obtain the desired result

∥
∑︁

𝜔̄∈𝑆𝜔0 ,𝑎∈𝐴

√︁
𝛾(𝜔̄) |𝜔̄, 𝑎⟩⟨0̄| ⊗

(
𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄) − 𝑨̂𝑎( 𝑓 ′,𝑯′) (𝜔̄)

)
∥

= ∥𝑩( 𝑓 ,𝑯) − 𝑩( 𝑓 ′,𝑯′) ∥
≤ ∥𝑩( 𝑓 ,𝑯) − 𝑩( 𝑓𝑇 ,𝑯′) ∥ + ∥𝑩( 𝑓𝑇 ,𝑯′) − 𝑩( 𝑓 ′,𝑯′) ∥
≤ ∥ 𝑓 − 𝑓𝑇 ∥2 + ∥ 𝑓𝑇 − 𝑓 ′∥2 + 2𝑇 ∥𝑯 − 𝑯′∥. ■

Corollary 2.6.1 (Perturbation bounds on Lindbladians and discriminant proxies).
Consider

L̄( 𝑓 ,𝑯) :=
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(𝜔̄)
(
𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄) [·] 𝑨̂

𝑎
( 𝑓 ,𝑯) (𝜔̄)

† − 1
2
{ 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄)

† 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄), ·}
)
, and

D̄( 𝑓 ,𝑯) :=
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄)𝛾(−𝜔̄) 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄) ⊗ 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄)

∗

− 𝛾(𝜔̄)
2

(
𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄)

† 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄) ⊗ 𝑰 + 𝑰 ⊗ 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄)
∗† 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔̄)

∗
)
.

Assuming the conditions and the notation of Lemma 2.6.1 hold, we have

∥L̄( 𝑓 ,𝑯) − L̄( 𝑓 ′,𝑯′) ∥1−1 ≤ 4(∥ 𝑓 − 𝑓𝑇 ∥2 + ∥ 𝑓𝑇 − 𝑓 ′∥2 + 2𝑇 ∥𝑯 − 𝑯′∥).

Further assuming the symmetry and normalization conditions (2.10),(2.11) are
satisfied by 𝑓 , 𝑓 ′ and {𝑨𝑎 : 𝑎 ∈ 𝐴}, we have

∥D̄( 𝑓 ,𝑯) − D̄( 𝑓 ′,𝑯′) ∥ ≤ 4(∥ 𝑓 − 𝑓𝑇 ∥2 + ∥ 𝑓𝑇 − 𝑓 ′∥2 + 2𝑇 ∥𝑯 − 𝑯′∥).

Proof. The superoperator L( 𝑓 ,𝑯) acts as follows:

L̄( 𝑓 ,𝑯) [𝝆]

= Tr𝑎,𝜔̄
©­«

∑︁
𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |𝜔̄, 𝑎⟩⟨0̄| 𝑨̂𝑎 (𝜔̄)ª®¬|0̄⟩⟨0̄| ⊗ 𝝆

©­«
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |0̄⟩⟨𝜔̄, 𝑎 | 𝑨̂𝑎 (𝜔̄)†ª®¬


− 1

2
Tr0̄

©­«
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |0̄⟩⟨𝜔̄, 𝑎 | 𝑨̂𝑎 (𝜔̄)†ª®¬©­«

∑︁
𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄) |𝜔̄, 𝑎⟩⟨0̄| 𝑨̂𝑎 (𝜔̄)ª®¬, |0̄⟩⟨0̄| ⊗ 𝝆

.
The conclusion about ∥L̄( 𝑓 ,𝑯) − L̄( 𝑓 ′,𝑯′) ∥1−1 follows from Lemma 2.6.1 using the
triangle and Hölder inequalities and that taking partial trace contracts trace-distance.
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The proof of Proposition 2.3.5 shows that if 𝑩 is a (nonunitary) block-encoding of
L̄( 𝑓 ,𝑯) , then 𝑩

′†·(𝑹−𝑰)·𝑩′ is a block-encoding of D̄( 𝑓 ,𝑯) . Since ∥ 𝑓 ∥2, ∥ 𝑓 ′∥2, ∥𝛾∥∞ ≤
1 without loss of generality we can assume ∥𝑩′∥ ≤ 1, which together with
∥𝑹 − 𝑰∥ ≤ 2 implies the bound on ∥D̄( 𝑓 ,𝑯) − D̄( 𝑓 ′,𝑯′) ∥ via a triangle inequal-
ity. ■

Note that under the conditions of Theorem 2.8.1, the same bounds also hold in
the continuous case, as can be shown by a limit argument using the results of
Theorem 2.8.1.

Corollary 2.6.2 (Perturbation bounds on continuous Lindbladians and discriminant
proxies). Consider

L( 𝑓 ,𝑯) :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝛾(𝜔)

(
𝑨̂𝑎( 𝑓 ,𝑯) (𝜔) [·] 𝑨̂

𝑎
( 𝑓 ,𝑯) (𝜔)

† − 1
2
{ 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔)

† 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔), ·}
)
d𝜔, and

D( 𝑓 ,𝑯) :=
∑︁
𝑎∈𝐴

∫ ∞

−∞

√︁
𝛾(𝜔)𝛾(−𝜔) 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔) ⊗ 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔)

∗

− 𝛾(𝜔)
2

(
𝑨̂𝑎( 𝑓 ,𝑯) (𝜔)

† 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔) ⊗ 𝑰 + 𝑰 ⊗ 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔)
∗† 𝑨̂𝑎( 𝑓 ,𝑯) (𝜔)

∗
)
d𝜔.

If 𝛾 ∈ ℓ∞(R), 𝑓 ∈ ℓ2(R), and 𝛾, 𝑓 are continuous almost everywhere (i.e., the set of
points of discontinuity has measure zero) while 𝑓 is bounded on every finite interval,
then assuming the conditions and the notation of Lemma 2.6.1 hold, we have

L( 𝑓 ,𝑯) − L( 𝑓 ′,𝑯′)

1−1 ≤ 4(∥ 𝑓 − 𝑓𝑇 ∥2 + ∥ 𝑓𝑇 − 𝑓 ′∥2 + 2𝑇 ∥𝑯 − 𝑯′∥).

Further assuming the symmetry and normalization conditions (2.10),(2.11) are
satisfied by 𝑓 , 𝑓 ′ and {𝑨𝑎 : 𝑎 ∈ 𝐴}, we have

∥D( 𝑓 ,𝑯) − D( 𝑓 ′,𝑯′) ∥ ≤ 4(∥ 𝑓 − 𝑓𝑇 ∥2 + ∥ 𝑓𝑇 − 𝑓 ′∥2 + 2𝑇 ∥𝑯 − 𝑯′∥).

Proof. The objectsL( 𝑓 ,𝑯) ,L( 𝑓 ′,𝑯′) ,D( 𝑓 ,𝑯) ,D( 𝑓 ,𝑯) can be obtained as limits of their
respective discretizations L̄( 𝑓 ,𝑯) , L̄( 𝑓 ′,𝑯′) , D̄( 𝑓 ,𝑯) , D̄( 𝑓 ,𝑯) as per Theorem 2.8.1,
for which the discretized versions of these bounds hold due to Corollary 2.6.2.
As shown in the proof of Theorem 2.8.1, if a function 𝑔 ∈ ℓ2(R) is continu-
ous almost everywhere while also bounded on every finite interval, then ∥𝑔∥22 =

lim𝐾→∞ lim𝑁→∞
∑
𝑡∈𝑆⌈𝑁 ⌋𝑡0

|𝑔̄𝐾 (𝑡) |2, where 𝑡0 =
√︁

2𝜋/𝑁 and 𝑔̄𝐾 (𝑡) =
√
𝑡0𝑔(𝑡)1( |𝑡 | ≤

𝐾), therefore the RHS of the discretized bounds also converge to their continuous
counterpart implying the validity of the continuous versions of these bounds. ■
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Lemma 2.6.2 (Secular approximation). Let ∥𝛾∥∞ ≤ 1, and consider the Lindbladian
L𝛽 (2.21) and discriminant D𝛽 (2.26) with 𝑨̂𝑎 (𝜔̄) being the operator Fourier
Transforms of 𝑨𝑎 with 𝑯 and their secular approximations

L𝑠𝑒𝑐 [·] =
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(𝜔̄)
(
𝑺̂𝑎 (𝜔̄) [·] 𝑺̂𝑎 (𝜔̄)† − 1

2
{𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄), ·}

)
,

D𝑠𝑒𝑐 =
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄)𝛾(−𝜔̄) 𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗

− 𝛾(𝜔̄)
2

(
𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄) ⊗ 𝑰 + 𝑰 ⊗ 𝑺̂𝑎 (𝜔̄)†∗𝑺̂𝑎 (𝜔̄)∗

)
,

with the operators

𝑺̂𝑎 (𝜔̄) :=
∑︁

𝜈̄∈𝐵(𝑯̄)
𝑓𝑠 (𝜔̄ − 𝜈̄)𝑨𝑎𝜈̄ where 𝑓𝑠 (𝜔̄) := 𝑓 (𝜔̄) · 1( |𝜔̄ | < 𝑚𝜔0)

defined by the discretized Hamiltonian 𝑯̄ and cut-off frequency 𝑚𝜔0. If ∥ 𝑓 ∥2 ≤ 1
and ∥∑𝑎∈𝐴 𝑨𝑎†𝑨𝑎∥ ≤ 1, then for every 𝑇 > 0 and 𝑓𝑇 (𝑡) := 𝑓 (𝑡)1( |𝑡 | ≤ 𝑇), we have

L𝛽 − L𝑠𝑒𝑐

1−1 ≤ 4∥ 𝑓 − 𝑓𝑠∥2 + 8∥ 𝑓 − 𝑓𝑇 ∥2 + 4𝑇𝜔0.

Moreover, assuming the symmetry and normalization conditions (2.10),(2.11), we
have D𝑠𝑒𝑐 = D

†
𝑠𝑒𝑐 and

∥D𝛽 − D𝑠𝑒𝑐∥ ≤ 4∥ 𝑓 − 𝑓𝑠∥2 + 8∥ 𝑓 − 𝑓𝑇 ∥2 + 4𝑇𝜔0.

The truncation introduces an error scaling with the tail in the frequency domain,
while the last two error terms arise from discretizing the Hamiltonian spectrum
𝑯 → 𝑯̄ for discrete Fourier Transforms; this is more of a technical artifact and
merely introduces a minor error shrinking with finer Fourier frequency resolution
𝜔0.

Proof. Since the secular approximation amounts to changing the real function and
discretizing the Hamiltonian, i.e., L𝑠𝑒𝑐 = L( 𝑓𝑠 ,𝑯̄) we can apply Corollary 2.6.1. The
final bound follows using the observation that ∥𝑯 − 𝑯̄∥ ≤ 𝜔0/2, and ∥ 𝑓 − 𝑓𝑠∥ =
∥ 𝑓 − 𝑓𝑠∥ since the discrete Fourier Transformation is unitary.

Finally, since D𝑠𝑒𝑐 = D( 𝑓𝑠 ,𝑯̄) we have that D𝑠𝑒𝑐 is self-adjoint due to Proposi-
tion 2.6.1 and Corollary 2.3.2. ■

Taking the continuum limit further simplifies the expression.
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Lemma 2.6.3 (Secular approximation in the continuum). Let ∥𝛾∥∞ ≤ 1, and
consider the Lindbladian L𝛽 (2.21) and discriminant D𝛽 (2.26) with 𝑨̂𝑎 (𝜔) being
the operator Fourier Transforms of 𝑨𝑎 with 𝑯 and their secular approximations

L𝑠𝑒𝑐 [·] =
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝛾(𝜔)

(
𝑺̂𝑎 (𝜔) [·] 𝑺̂𝑎 (𝜔)† − 1

2
{𝑺̂𝑎 (𝜔)†𝑺̂𝑎 (𝜔), ·}

)
d𝜔,

D𝑠𝑒𝑐 =
∑︁
𝑎∈𝐴

∫ ∞

−∞

√︁
𝛾(𝜔)𝛾(−𝜔) 𝑺̂𝑎 (𝜔) ⊗ 𝑺̂𝑎 (𝜔)∗

− 𝛾(𝜔)
2

(
𝑺̂𝑎 (𝜔)†𝑺̂𝑎 (𝜔) ⊗ 𝑰 + 𝑰 ⊗ 𝑺̂𝑎 (𝜔)†∗𝑺̂𝑎 (𝜔)∗

)
d𝜔,

with the operators

𝑺̂𝑎 (𝜔) :=
∑︁

𝜈∈𝐵(𝑯)
𝑓𝑠 (𝜔 − 𝜈)𝑨𝑎𝜈 where 𝑓𝑠 (𝜔) := 𝑓 (𝜔) · 1( |𝜔| < 𝜇).

If ∥ 𝑓 ∥2 ≤ 1 and ∥∑𝑎∈𝐴 𝑨𝑎†𝑨𝑎∥ ≤ 1, then,

L𝛽 − L𝑠𝑒𝑐

1−1 ≤ 4∥ 𝑓 − 𝑓𝑠∥2

Moreover, assuming the symmetry and normalization conditions (2.10),(2.11), we
have D𝑠𝑒𝑐 = D

†
𝑠𝑒𝑐 and

∥D𝛽 − D𝑠𝑒𝑐∥ ≤ 4∥ 𝑓 − 𝑓𝑠∥2.

Let us quickly note that the above argument controls the implementation error
for truncating the Hamiltonian simulation. Indeed, in practice, we will only
implement Hamiltonian simulation up to time 𝑇 , and this is perfectly accounted for
by Lemma 2.6.1,Corollary 2.6.1 by setting 𝑓 ′ = 𝑓𝑇 and 𝑯′ = 𝑯.

Uniform weights
Consider the simplest Fourier Transform with uniform weights

𝑨̂ 𝑓 (𝜔̄) :=
1√︁

2𝑁𝑇/𝑡0

∑︁
−𝑇≤𝑡<𝑇

e−i𝜔̄𝑡𝑨(𝑡).

Proposition 2.6.3 (Preparing uniform weights). Suppose that 𝑇/𝑡0 = 2𝑘 . Then, the
state ∑̄︁

𝑡

𝑓 (𝑡) |𝑡⟩ for 𝑓 (𝑡) = 1√︁
2𝑇/𝑡0

·


1 if − 𝑇 ≤ 𝑡 < 𝑇

0 else.

can be prepared using 𝑘 + 1 Hadamard gates and 𝑛 − 𝑘 − 1 CNOT gates.
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Proof. Prepare with the GHZ state on the first 𝑛 − 𝑘 qubits using 1 Hadamard gate
and 𝑛 − 𝑘 − 1 CNOT gates

1
√

2

(��1𝑛−𝑘〉 + ��0𝑛−𝑘〉)��0𝑘〉
and then apply Hadamard gates on the last 𝑘 qubits. ■

Since the weights are real 𝑓 (𝑡) = 𝑓 ∗(𝑡) and normalized
∑
𝑡∈𝑆𝑡0 | 𝑓 (𝑡) |

2 = 1, the
transformed operator satisfies the properties listed in Proposition 2.5.1.

Gaussian ansatz
Instead of the plain Fourier Transform, consider the Gaussian-weighted Fourier
Transform

𝑨̂ 𝑓 (𝜔̄) :=
1
√
𝑁

∑︁
𝑡∈𝑆𝑡0

e−i𝜔̄𝑡 𝑓 (𝑡)𝑨(𝑡) for 𝑓 (𝑡) :=
1√︂∑

𝑡∈𝑆𝑡0 e
− 𝑡2

2𝜎2
𝑡

∑︁
𝑡∈𝑆𝑡0

e
− 𝑡2

4𝜎2
𝑡 |𝑡⟩.

Again, since the weight is real 𝑓 (𝑡) = 𝑓 ∗(𝑡) and normalized
∫ ∞
−∞ | 𝑓 (𝑡) |

2d𝑡 = 1, the
transformed operator satisfies the symmetry properties listed in Proposition 2.5.1. To
implement the above operator, we just need to prepare the initial state approximately.

Proposition 2.6.4 (Preparing a truncated Gaussian state [127]). Suppose (𝑁𝑡0)2/16𝜎2
𝑡 ≥

log(1/𝜖). Then, the state

1√︂∑
𝑡∈𝑆𝑡0 e

− 𝑡2
2𝜎2

𝑡

∑︁
𝑡∈𝑆𝑡0

e
− 𝑡2

4𝜎2
𝑡 |𝑡⟩

can be prepared using O(𝑛 log(1/𝜖)5/4) gates up to error 𝜖 .

The main advantage of using a Gaussian weight is that its Fourier Transform remains
a Gaussian, which has a rapidly decaying tail. Indeed, for the continuous Gaussian,
we can evaluate the Gaussian integral by completing the square

1√︃
𝜎𝑡
√

2𝜋

∫ ∞

−∞
e−i𝜔𝑡e

− 𝑡2

4𝜎2
𝑡 d𝑡 =

√︃
𝜎𝑡
√

2𝜋e−𝜔
2𝜎2

𝑡 .

The uncertainty in energy is inversely proportional to the uncertainty in time 𝜎−1
𝑡 , as

a manifestation of the energy-time uncertainty principle.
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Discretizing continuous functions via periodic summation
It is not obvious how to carefully derive bounds on the discretization errors that
appear in the Riemann sums of the discrete Fourier Transform, as the Fourier phases
are highly oscillatory. Nevertheless, the discrete Fourier Transform remains Gaussian,
up to a well-controlled error.

Proposition 2.6.5 (DFT of Gaussian). There is a choice of parameter (𝑁𝑡0)2/𝜎2
𝑡 =

Ω(log(1/𝜖)) and (𝑁𝜔0)2𝜎2
𝑡 = Ω(log(1/𝜖)) such that the discrete Fourier Transform

for

𝑓 (𝑡) = 1√︂∑
𝑡∈𝑆𝑡0 e

− 𝑡2
2𝜎2

𝑡

e
− 𝑡2

4𝜎2
𝑡 is approximately

1√︃∑
𝜔̄∈𝑆𝜔0

e−𝜔̄2𝜎2
𝑡

e−𝜔̄
2𝜎2

𝑡

up to error O( 1
𝑁𝑡0𝜎𝑡

e−𝑁2𝑣2
0𝜎

2
𝑡 /2 + 1

𝑁𝑡0/𝜎𝑡 e
−𝑁2𝑡20/16𝜎2

𝑡 ) in 2-norm.

To relate the continuous Fourier Transform to the discrete one, we apply the
discretization to a continuous-variable function after periodic summation. This is
related to the Poisson Summation Formula [190, Chapter II §13], but pushes the idea
one step further to the realm of discrete Fourier Transform. Similar ideas are used,
e.g., in lattice cryptography (c.f., [151]), but we include a self-contained treatment
for completeness.

To state the following general result, we introduce the notation ℓ1(R) for (Lebesque)
integrable R→ C functions.

Fact 2.6.1. Consider the Fourier Transform 𝑓 (𝜔) := 1√
2𝜋

∫ ∞
−∞ e−i𝜔𝑡 𝑓 (𝑡)d𝑡 of a

function 𝑓 ∈ ℓ1(R). Suppose that a “wrapped around” version of 𝑓 can be
defined such that 𝑝(𝑡) =

∑∞
𝑛=−∞ 𝑓 (𝑡 + 𝑛𝑁𝑡0) for almost every 𝑡 ∈ R (i.e., the

set of points where the equality does not hold has Lebesgue measure 0), 𝑝(𝑡) is
continuous at every 𝑡 ∈ 𝑆𝑡0 and Riemann integrable on the interval [−𝑁2 𝑡0,

𝑁
2 𝑡0].

If the sequence 𝑘 · 𝑓 (𝑘𝜔0) : 𝑘 ∈ Z is bounded in absolute value, then the limit
𝑝(𝜔̄) := lim𝐵→∞

∑𝐵
ℓ=−𝐵 𝑓 (𝜔̄ + ℓ𝑁𝜔0) exists for every 𝜔̄ ∈ 𝑆𝜔0 and 𝑝(𝜔̄) is the

discrete Fourier Transform of 𝑝(𝑡), i.e.,

𝑝(𝜔̄) = 𝑡0√
2𝜋

∑︁
𝑡∈𝑆𝑡0

e−i𝜔̄𝑡 𝑝(𝑡).
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Proof. For every 𝜔 ∈ 𝜔0 · Z we have that

𝑓 (𝜔) = 1
√

2𝜋

∫ ∞

−∞
e−i𝜔𝑡 𝑓 (𝑡)d𝑡 (since 𝑓 ∈ ℓ1(R))

=
1
√

2𝜋

∞∑︁
𝑛=−∞

∫ 𝑁
2 𝑡0

− 𝑁
2 𝑡0

e−i𝜔(𝑡+𝑛𝑁𝑡0) 𝑓 (𝑡 + 𝑛𝑁𝑡0)d𝑡

(by Fubini’s theorem since 𝑓 ∈ ℓ1(R))

=
1
√

2𝜋

∞∑︁
𝑛=−∞

∫ 𝑁
2 𝑡0

− 𝑁
2 𝑡0

e−i𝜔𝑡 𝑓 (𝑡 + 𝑛𝑁𝑡0)d𝑡 (since 𝜔 ∈ 𝜔0 · Z and 𝜔0𝑡0 = 2𝜋
𝑁

)

=
1
√

2𝜋

∫ 𝑁
2 𝑡0

− 𝑁
2 𝑡0

∞∑︁
𝑛=−∞

e−i𝜔𝑡 𝑓 (𝑡 + 𝑛𝑁𝑡0)d𝑡

(by Fubini’s theorem since 𝑓 ∈ ℓ1(R))

=
1
√

2𝜋

∫ 𝑁
2 𝑡0

− 𝑁
2 𝑡0

e−i𝜔𝑡 𝑝(𝑡)d𝑡. (since 𝑝(𝑡) = ∑∞
𝑛=−∞ 𝑓 (𝑡 + 𝑛𝑁𝑡0) a.s.)

The above equality means that 𝑐𝑘 :=
√

2𝜋
𝑁𝑡0
· 𝑓 (𝑘 · 𝜔0) is the Fourier series of 𝑝(𝑡).

Since 𝑝 is Riemann integrable on the interval [−𝑁2 𝑡0,
𝑁
2 𝑡0], continuous at every

𝑡 ∈ 𝑆𝑡0 point and 𝑘 · 𝑐𝑘 is bounded by assumption, we have for all 𝑡 ∈ 𝑆𝑡0 that

𝑝(𝑡) = lim
𝐵→∞

𝐵∑︁
𝑘=−𝐵

𝑐𝑘ei𝑡𝑘𝜔0 (due to [105, Theorem 15.3])

= lim
𝐵→∞

𝐵𝑁∑︁
𝑘=−𝐵𝑁

𝑐𝑘ei𝑡𝑘𝜔0

= lim
𝐵→∞

𝐵𝑁+⌊(𝑁−1)/2⌋∑︁
𝑘=−𝐵𝑁−⌈(𝑁−1)/2⌉

𝑐𝑘ei𝑡𝑘𝜔0 (since |𝑐𝑘 | = O
(

1
𝑘

)
)

= lim
𝐵→∞

𝐵∑︁
ℓ=−𝐵

⌊(𝑁−1)/2⌋∑︁
𝑗=−⌈(𝑁−1)/2⌉

𝑐ℓ𝑁+ 𝑗ei𝑡 (ℓ𝑁+ 𝑗)𝜔0 (set 𝑘 = ℓ𝑁 + 𝑗)

= lim
𝐵→∞

𝐵∑︁
ℓ=−𝐵

∑︁
𝜔̄∈𝑆𝜔0

√
2𝜋
𝑁𝑡0

𝑓 (ℓ𝑁𝜔0 + 𝜔̄)ei𝑡𝜔̄.

(set 𝜔̄ = 𝑗𝜔0; use 𝑡 ∈ 𝑡0 · Z and 𝜔0𝑡0 = 2𝜋
𝑁

)
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<latexit sha1_base64="/DQ4XnesXJ9Z1PH/gWZB1p5YDGQ="></latexit>

⇠ 1

|E � !|

<latexit sha1_base64="HwiqrWG/70k+r2EGMAC/0SPJDFw="></latexit>

µ̄0

<latexit sha1_base64="gK6yNjUAoaJnQzdmwrRE6OuhiaE="></latexit>

O(t�1
QPE)

<latexit sha1_base64="gK6yNjUAoaJnQzdmwrRE6OuhiaE="></latexit>

O(t�1
QPE)

<latexit sha1_base64="8nMmsIZisDv1p/hMjDrYYGEU6OM="></latexit>

!̄ <latexit sha1_base64="EE7LAL7yPPgH+eeSyfHpvs/i0/I="></latexit>!0

<latexit sha1_base64="IM9PC3FYWJueGLfA5IAUZsk3R9c="></latexit>

!̄ + µ̄

<latexit sha1_base64="EE7LAL7yPPgH+eeSyfHpvs/i0/I="></latexit>!0

<latexit sha1_base64="qDkQ6YR3fvnY9V483RKwFrRcT0s=">AAAOUnichZfLcts2FIbppJfUjV27XXbDqcYzSaf2SJo06SYzsWn5fpFtSXZtyh6QgiSMwcuAIBoNw75Cn6bb9iW66at0VZCQTBhHbbgRcL7/4HKInxS9mJKE1+t/Lzx5+smnn33+7IvFL58vLX+1svp1L4lS5uOuH9GIXXkowZSEuMsJp/gqZhgFHsWX3r1T8EuBWUKisMMnMe4HaBSSIfERl6G7lZduQgIX32br7mmAR+gFv8vi8SS/bX5wvaiI2OutD7fNl/ndSq2+US8vGzYa00bNml7tu9WlVXcQ+WmAQ+5TlCQ3jXrM+xlinPgU54uLbprgGPn3aIQzFCTJJPByey1AfJyYrAjOYzcpH/7Uz0gYpxyHvpRINkypzSO72K89IAz7nE5kA/mMyKltf4wY8rmsytxZHq/LC2RgzdanLKsuC36fvOUsxT/YiNIylrz1aIr72VhOzBgeykxjMIbuMc8X1/RgiLhHvGKWNeR5DItFl+EQ/+JHQYDCQeYK7OeZWyzE1cPOpowWK/YRzTZzk25pdAtQRB2NOybfmlHPg9DZ1lK3AW1ptAUGblUDA+jsaKk7gO5qdBfQPY3uAbqv0X1ADzR6AOihRg8BPdLoEaDHGj0G9ESjJ6BUJ1WpAHROtdRTQNsabYOB29XAADpnWuoZSD2rUgF0zrXUc5B6XqUC6FxoqReAdjTaAbSr0S6gPY32AL3U6CWgVxq9AvRnW8OyY/JrDV8/pt8Xro4TKRCIyQahUVg8LR4NIDZL20NvC6QAAmBLAeB34SngAeAoAEwuthUA/hYtBYB7xY4CwLhiVwHgWbGnALCr2FcAOFUcKABMKg4VAP4URwoAa4pjBYArxYkCwHPiVAFgN9FWAJhJnCkArCLOFQBGEBcKAA+IjgLg+IuuAuDki54C4NCLSwXAeRdXCoCjLsqjLgk85eJakWsAEjIKpgfVdlXHkHiVBjEpEnNVgo2j2TBFMzffj8UdpnjIjbyixIyMxhwYywvT6ZyubBlp4xKOEZ8HvVkiJMHDmAGE5VuihE5xENce09YMAk+pv2AzrDqGZIBGo1z9YJYbO6XFGaA9zMzisAKwOUD+WeSEkPym0c9UWcuQe49ZuF7faP6I338satcatqo8FH00bG4vjFhQLsYtFmtntUZuu3PWHSths69SslozvyvEc4aLdVmjkDVNGdV09P+Ew2p9lax86rPySQhuCEVeovQeGY1UvdSmHvrmWh4yqgqrDK1qc5av5fTMnDkFxPnDurG5S5KGhFecmJyR/4TyTcdZRTsM4Diik0rQLnpghElcKYqOKejogs4cAWLyyfJ+qoliueTAlrFfi6BLSUB4YqaQQV7K5K9BLtJYm67smfeZhIPiGyuabd2Tjy95GOVHVMP8ZIKNXnOj8Xrj1dmr2rut6efUM+tb6zvrhdWw3ljvrD2rbXUt3/rN+t36w/pz6a+lf5YXlp8q6ZOFac431qNr+fm/uFdz9w==</latexit>

⇠ e�⌦(t2phy|!̄�E|2)

<latexit sha1_base64="8nMmsIZisDv1p/hMjDrYYGEU6OM="></latexit>

!̄

<latexit sha1_base64="AN6hNtYVujl45CVaDfDsBabFMaE="></latexit>

f!̄�E

<latexit sha1_base64="8nMmsIZisDv1p/hMjDrYYGEU6OM="></latexit>

!̄
<latexit sha1_base64="JN1tWmp3eokyvRsD817HF0U4ZzM="></latexit>

!̄ + µ̄0
<latexit sha1_base64="dtarvXYF+rcQgO8BaY6yywvHBQU=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi94q2A9IQtlst+3SzSbsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8KJXCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNkmmGW+xRCa6G1HDpVC8hQIl76aa0ziSvBONb2d+54lrIxL1iJOUhzEdKjEQjKKV/CCiOg9UNu25vWrNrbtzkFXiFaQGBZq96lfQT1gWc4VMUmN8z00xzKlGwSSfVoLM8JSyMR1y31JFY27CfH7ylJxZpU8GibalkMzV3xM5jY2ZxJHtjCmOzLI3E//z/AwHN2EuVJohV2yxaJBJggmZ/U/6QnOGcmIJZVrYWwkbUU0Z2pQqNgRv+eVV0r6oe1f1y4fLWuO+iKMMJ3AK5+DBNTTgDprQAgYJPMMrvDnovDjvzseiteQUM8fwB87nD1FGkU8=</latexit>

⌫̄0

<latexit sha1_base64="YurFt7rSa8O4uVzwv5dCdS/XOME=">AAAOMXichZfLbuM2FIY109s0rdtJu+xGqBFgWrSBbUw7sxlgEsW5X5zEdjKJjICUaZsIdQFFsRMI6lN0275En2Z2Rbd9iVKiHTE8bkcbk+f7Dy9H/CULJ4ymotV69+jxBx9+9PEnTz5d+ezzxhdfPl39apjGGQ/IIIhZzC8xSgmjERkIKhi5TDhBIWbkAt96Jb+QhKc0jvriLiGjEE0jOqEBEip0NXnmY8RzUXx387TZWm9Vlwsb7Xmj6cyv3s1qY9Ufx0EWkkgEDKXpdbuViFGOuKABI8XKip+lJEHBLZqSHIVpehfiwl0LkZilNiuDy9h1JiYvRzmNkkyQKFASxSYZc0Xslttxx5STQLA71UABp2pqN5ghjgKhNr10lofrwqEKrLnmlFVRVT1v01eCZ+QHFzFWxdJXmGVklM/UxJyTicq0BuPolohiZc0MRkhgistZ1hDGnMgVn5OI/BLEYYiice5LEhS5Xy7EN8PehoqWKw4QyzcKm24adBNQxDyDezbfXFCMIfS2jNQtQLsG7YKBu/XAAHrbRuo2oDsG3QF016C7gO4ZdA/QfYPuA3pg0ANADw16COiRQY8APTboMSjVcV0qAL0TI/UE0J5Be2DgXj0wgN6pkXoKUk/rVAC9MyP1DKSe1akAeudG6jmgfYP2AR0YdADo0KBDQC8MegHopUEvAX3jGlh1bH5l4KuH9PvS1UmqBBJx1aAsjsqnxYMB5EZle+htiTRAAGxqAPwusQYYAE8DYHK5pQHwt+xqANwrtzUAxpU7GgDPyl0NgF3lngbAqXJfA2BSeaAB8Kc81ABYUx5pAFwpjzUAnpMnGgC7yZ4GwEzyVANgFXmmATCCPNcAeED2NQDHXw40ACdfDjUAh15eaADOu7zUABx1WR11ReApl1eaXAGQ0mk4P6iurzuWBNca9R/DXaTYA/FZvBimbBb2+7G8w4xMhJVXlpjT6UwAY+Eom8/pq5aVNqvgDIllEC8SIQnvxwwhrN4SFfTKg7j2kHYXEHgKxyGZLgrk644lGaPptNA/hBfWTll5BtiQcLs4vAR8CVD/BQWltLhuj3Jd1irk3xIe/dha7/xE3r4v6jbbrq48FL03bG8vinlYLcYvF+vmzXbh+kvWnWhhZ6RT8manuCnFS4ZLTFm7lHVsGTN07P+Ek3p9tax66vPqSQhuCEM41XpMp1NdL72p+769lvuMusI6w6jakuUbOUM7Z0kBSXG/bmLvkmYRFTWnNuf0P6F60wle0z4HOInZXS3olT0wwl1SK8qOLeibgv4SAeLqyfJ2rokTteTQVbFfy6DPaEhFaqfQcVHJ1K9FzrPEmK7q2feZRuPyEypebB2rx5c6jOojqm1/MsHGsLPe/nn9+enz5uvN+efUE+cb51vnmdN2XjivnV2n5wycwImc35zfnT8afzbeNf5q/K2ljx/Nc752HlyNf/4FtPxqNQ==</latexit>

f(t̄)

<latexit sha1_base64="8nMmsIZisDv1p/hMjDrYYGEU6OM=">AAAOLnichZfZbuM2FIY1022a1u2kveyNUMNAUbSBHUyXmwEmUfbVSbxNIiMgZdomTC2gKHYMQ32H3rYv0acp0Iuit32MUqIdMTxuRzcmz/cfLkf8JQsnjKai2fzzydN33n3v/Q+efbjx0ce1Tz59vvlZL40zHpBuELOYDzBKCaMR6QoqGBkknKAQM9LHM6/gfUl4SuOoI+YJGYZoEtExDZBQob6P45BM0P3zenOrWV4ubLSWjbqzvNr3m7VNfxQHWUgiETCUpnetZiKGC8QFDRjJNzb8LCUJCmZoQhYoTNN5iHO3ESIxTW1WBNexu0yMfxwuaJRkgkSBkig2zpgrYrfYizuinASCzVUDBZyqqd1gijgKhNrx2lkerwuHKtBwzSnLiqpiztKXgmfkGxcxVsbSl5hlZLiYqok5J2OVaQ3G0YyIfKNhBiMkMMXFLA2EMSdyw+ckIj8FcRiiaLTwJQnyhV8sxDfD3o6KFisOEFvs5DbdNeguoIh5BvdsvruiGEPo7Rmpe4DuG3QfDLxfDQygd2CkHgB6aNBDQI8MegTosUGPAT0x6AmgpwY9BfTMoGeAnhv0HNALg16AUl1UpQLQuzRSLwFtG7QNBm5XAwPoXRmpVyD1qkoF0Ls2Uq9B6nWVCqB3Y6TeANoxaAfQrkG7gPYM2gO0b9A+oAODDgB97RpYdWx+a+Dbx/TrwtVJqgQScdWgLI6Kp8WjAeROaXvobYk0QADsagD8LrEGGABPA2ByuacB8Lfc1wC4Vx5oAIwrDzUAnpVHGgC7ymMNgFPliQbApPJUA+BPeaYBsKY81wC4Ul5oADwnLzUAdpNtDYCZ5JUGwCryWgNgBHmjAfCA7GgAjr/sagBOvuxpAA697GsAzrscaACOuiyPuiLwlMtbTW4BSOkkXB5U19cdS4IrDeJKJNeqJJ/Gq2GKZm6/H4s7zMhYWHlFiTmdTAUwFo6y5Zy+allp0xJOkVgH8SoRkvBhzBDC8i1RQq84iI3HdH8Fgaf0X68V1h1LMkKTSa5/CM+tnbLiDLAe4XZxeAH4GqD+CApKaX7XGi50WcuQPyM8+ra5tf0defO2qFtvubryUPTWsL29KOZhuRi/WKy7qLdy11+z7kQLt4c6ZVHfzu8L8ZrhElPWKmTbtowZOvZ/wnG1vkpWPvV5+SQEN4QhnGo9ppOJrpfe1EPfXstDRlVhnWFUbc3yjZyenbOmgCR/WDexd0mziIqKU5tz+p9QvekEr2iHA5zEbF4J2kUPjDBPKkXRsQUdU9BZI0BcPVneLDVxopYcuir2cxH0GQ2pSO0UOspLmfq1yE2WGNOVPfs+02hUfD/Fq61j9fhSh1F9RLXsTybY6G1vtb7fenH1ov5qd/k59cz5wvnS+cppOT84r5wjp+10ncCZOb84vzq/1X6v/VH7q/a3lj59ssz53Hl01f75F1pMaSo=</latexit>

!̄

<latexit sha1_base64="YurFt7rSa8O4uVzwv5dCdS/XOME="></latexit>

f(t̄)

<latexit sha1_base64="J4hS5wfaPO6eO/TG2lgsuopfS8Q="></latexit>

T/2

<latexit sha1_base64="oih6/ecb/Lc1aIPKOrXOBmgPQxY="></latexit>

O(
1

T
)

<latexit sha1_base64="2icggz2WPJ34ndHusq0JS+7oF10="></latexit>

t0

<latexit sha1_base64="J4hS5wfaPO6eO/TG2lgsuopfS8Q="></latexit>

T/2

<latexit sha1_base64="2icggz2WPJ34ndHusq0JS+7oF10="></latexit>

t0

<latexit sha1_base64="IM9PC3FYWJueGLfA5IAUZsk3R9c=">AAAOM3ichZfZbuM2FIY1022a1u2kveyNUCNA0SWwg+lyM8Akyr46iZc0kRGQMm0ToRZQFDuBoT5Gb9uX6MMUvSt623coKdoRw+N2dGPyfP/hcsRfsnDGaC5arT+ePH3r7Xfefe/Z+ysffNj46OPnq5/087TgEelFKUv5FUY5YTQhPUEFI1cZJyjGjAzwXaD5QBKe0zTpivuMDGM0SeiYRkioUBjiNCYT9FWI4+L2ebO13qouHzba80bTm1+d29XGajhKoyImiYgYyvObdisTwxnigkaMlCsrYZGTDEV3aEJmKM7z+xiX/lqMxDR3mQ4uYzeFGP8wnNEkKwRJIiVRbFwwX6S+3pA/opxEgt2rBoo4VVP70RRxFAm17aWzPF4XjlVgzbenrMqqKnqXvxS8IF/7iLEqlr/ErCDD2VRNzDkZq0xnMI7uiChX1uxgggSmWM+yhjDmRK6EnCTkpyiNY5SMZqEkUTkL9UJCOxxsqqhecYTYbLN06ZZFtwBFLLB44PKtBcUYwmDbSt0GdMeiO2DgnXpgAINdK3UX0D2L7gG6b9F9QA8segDooUUPAT2y6BGgxxY9BvTEoieAnlr0FJTqtC4VgMGZlXoGaMeiHTBwpx4YwODcSj0Hqed1KoDBhZV6AVIv6lQAg0sr9RLQrkW7gPYs2gO0b9E+oAOLDgC9sugVoD/6FlYdl19b+Pox/VK7OsuVQCKuGpSliX5aPBpAbla2h96WyAAEwJYBwO8SG4ABCAwAJpfbBgB/yx0DgHvlrgHAuHLPAOBZuW8AsKs8MAA4VR4aAEwqjwwA/pTHBgBryhMDgCvlqQHAc/LMAGA32TEAmEmeGwCsIi8MAEaQlwYAD8iuAeD4y54B4OTLvgHg0MuBAeC8yysDwFGX1VFXBJ5yeW3INQA5ncTzg+qHpuNIcK1BXInkUpXk03QxjG6W7vtR32FGxsLJ0yXmdDIVwFg4KeZzhqrlpE0rOEViGcSLREjihzFjCKu3RAUDfRDXHtOdBQSeMv+/Fth0HMkITSal+SG8dHbK9BlgfcLd4nAN+BKg/g0KSml50x7OTFmrUHhHePJNa33jW/L6TVG/2fZN5aHojWF3e0nK42oxoV6sP2u2Sz9csu7MCDeGJmXW3ChvtXjJcJkta2vZhitjlo79n3Bcr6+WVU99Xj0JwQ1hCOdGj+lkYuplNvXQd9fykFFX2GRYVVuyfCun7+YsKSApH9ZN3F3SIqGi5tTlnP4nVG86wWva5QBnKbuvBR3dAyPcZ7VCd1xB1xZ0lwgQV0+W13NNmqklx76K/ayDIaMxFbmbQkdlJVO/DrksMmu6qufeZ5qM9EdUutg6Vo8vdRjVR1Tb/WSCjf7Gevu79RfnL5qvtuafU8+8z7zPvS+8tve998rb9zpez4u8zPvF+9X7rfF748/GX42/jfTpk3nOp96jq/HPvxEWayc=</latexit>

!̄ + µ̄

<latexit sha1_base64="q+5rjnFmNbj9VST23/QMT1xz210="></latexit>

t

<latexit sha1_base64="q+5rjnFmNbj9VST23/QMT1xz210="></latexit>

t

<latexit sha1_base64="ivVOOxcOoeGzsE3VCRcrwKvsQNo="></latexit>

⇠ e�⌦(T 2|!̄�⌫|2)

<latexit sha1_base64="rlS27gFwpbYGVT7p1Jn6nby4d5U="></latexit>

f̂(!̄ � ⌫)

<latexit sha1_base64="rlS27gFwpbYGVT7p1Jn6nby4d5U="></latexit>

f̂(!̄ � ⌫)

<latexit sha1_base64="QPR8sVIBNPgF42dpyS2kYumnN6M="></latexit>

⇠ 1

|!̄ � ⌫|
<latexit sha1_base64="qJVUOHSM9hpCm3uSHow9M47lD+4="></latexit>⌫

<latexit sha1_base64="qJVUOHSM9hpCm3uSHow9M47lD+4="></latexit>⌫

Figure 2.9: Left: the weight function as (approximately) the Gaussian distribution
but truncated at 𝑇 . Right: An illustration for the Fourier Transformed amplitudes,
which is also (approximately) Gaussian. It peaks near energy 𝜈 = 𝜔̄ with a width
∼ 𝑇−1 and decays exponentially. The secular approximation truncates the profile at
an energy 𝜇̄ in the tail 𝜇̄ ∼ 𝑇−1.

Finally, for all 𝜔̄′ ∈ 𝑆𝜔0 we have

𝑡0√
2𝜋

∑︁
𝑡∈𝑆𝑡0

e−i𝑡𝜔̄′ 𝑝(𝑡) =
∑︁
𝑡∈𝑆𝑡0

e−i𝑡𝜔̄′ lim
𝐵→∞

𝐵∑︁
ℓ=−𝐵

∑︁
𝜔̄∈𝑆𝜔0

1
𝑁
𝑓 (𝜔̄ + ℓ𝑁𝜔0)ei𝑡𝜔̄

= lim
𝐵→∞

𝐵∑︁
ℓ=−𝐵

∑︁
𝜔̄∈𝑆𝜔0

1
𝑁
𝑓 (𝜔̄ + ℓ𝑁𝜔0)

∑︁
𝑡∈𝑆𝑡0

e−i𝑡𝜔̄′ei𝑡𝜔̄

= lim
𝐵→∞

𝐵∑︁
ℓ=−𝐵

𝑓 (𝜔̄′ + ℓ𝑁𝜔0)(
since

∑
𝑡∈𝑆𝑡0 ei𝑡 (𝜔̄−𝜔̄′) = 𝑁 · 𝛿𝜔̄,𝜔̄′

)
= 𝑝(𝜔̄′). ■

Using the above, we prove Proposition 2.6.5.

Proof of Proposition 2.6.5. Apply Fact 2.6.1 for the Gaussian 𝑓 (𝑡) =
√︁
𝑔𝜎 (𝑡) =

1√
𝜎𝑡
√

2𝜋
e
− 𝑡2

4𝜎2
𝑡 . The problem reduces to implementing the periodic sum 𝑝(𝑡) (Fig-

ure 2.9) approximately. Up to a small error from the Gaussian tail, we may only
keep the centered Gaussian (𝑛 = 0) as long as the Gaussian is largely confined
in the window for both the time domain (𝑁𝑡0)2 ≫ 𝜎2

𝑡 and frequency domain
(𝑁𝜔0)2 ≫ 𝜎2

𝑡 . ■

Tail bounds
We evaluate the tail bounds that appear in the analysis of the secular approximation.
First, we consider the case of the uniform weights whose Fourier Transform has a
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heavy tail impacting the accuracy.

Proposition 2.6.6 (Tail bound for uniform weights). Let 𝑓 (𝑡) := 1(−𝑇≤𝑡<𝑇)√
2𝑇/𝑡0

ei𝜈𝑡 . Then,

its discrete Fourier Transform is

𝑓 (𝜔̄) = 1√︁
2𝑇𝑁/𝑡0

ei(𝜈−𝜔̄)𝑇 − e−i(𝜈−𝜔̄)𝑇

ei(𝜈−𝜔̄)𝑡0 − 1

with a tail bound ∑︁
|𝜔̄|>𝑚𝜔0

�� 𝑓 (𝜔̄)��2 ≤ 𝜋

2𝑚𝜔0𝑇
.

Proof. The Fourier Transform gives a geometric series with ratio ei(𝜈−𝜔̄)𝑡

1
√
𝑁

∑︁
𝑡∈𝑆𝑡0

e−i𝜔̄𝑡 𝑓 (𝑡) = 1√︁
2𝑇𝑁/𝑡0

∑︁
−𝑇≤𝑡<𝑇

ei(𝜈−𝜔̄)𝑡 =
1√︁

2𝑇𝑁/𝑡0
ei(𝜈−𝜔̄)𝑇 − e−i(𝜈−𝜔̄)𝑇

ei(𝜈−𝜔̄)𝑡0 − 1
.

This function scales inversely with 𝜔̄∑︁
|𝜔̄|>𝑚𝜔0

�� 𝑓 (𝜔̄)��2 ≤ 1
2𝑁𝑇/𝑡0

∑︁
|𝜔̄|>𝑚𝜔0

4��ei𝜔̄𝑡0 − 1
��2

≤ 𝑡0
2𝑁𝑇

∑︁
|𝜔̄|>𝑚𝜔0

𝜋2

(𝜔̄𝑡0)2
(since

��ei𝑥 − 1
�� ≥ 2

𝜋
|𝑥 | for 𝑥 ∈ [−𝜋, 𝜋])

≤ 𝜋2

𝑁𝑇𝑡0𝜔
2
0

∞∑︁
𝑛=𝑚+1

1
𝑛2

≤ 𝜋

2𝑇𝜔0

∞∑︁
𝑛=𝑚+1

1
𝑛(𝑛 − 1) (since 𝜔0𝑡0 = 2𝜋

𝑁
)

=
𝜋

2𝑚𝜔0𝑇
. ■

In retrospect, it is very important that we consider the 2-norm of the tail here; the
1-norm would be divergent.

Now, we consider Gaussians, which have a rapidly decaying tail, greatly improving
the accuracy.

Proposition 2.6.7 (Tail bound for Gaussian weights). For the function 𝑓 (𝑡) =

(∑𝑡∈𝑆𝑡0 e
− 𝑡2

2𝜎2
𝑡 )−1/2e

− 𝑡2

4𝜎2
𝑡 , the Fourier-transformed tail satisfies√√√√√ ∑︁

𝜔̄∈𝑆⌈𝑁 ⌋𝜔0
| 𝜔̄ | ≥ 𝜇̄

�� 𝑓 (𝜔̄)��2 ≤ O (
1

√
𝑁𝜔0𝜎𝑡

e−𝑁
2𝜔2

0𝜎
2
𝑡 /2 + 1√︁

𝑁𝑡0/𝜎𝑡
e−𝑁

2𝑡20/16𝜎2
𝑡 + 1
√
𝜇̄𝜎𝑡

e−𝜇̄
2𝜎2

𝑡

)
.
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Proof. By Proposition 2.6.5, the discrete Fourier Transform 𝑓 (𝜔̄) is approximately
1∑

𝜔̄∈𝑆𝜔0
e− 𝜔̄2𝜎2

𝑡

e−2𝜔̄2𝜎2
𝑡 up to error O( 1√

𝑁𝜔0𝜎𝑡
e−𝑁2𝑣2

0𝜎
2
𝑡 /2 + 1√

𝑁𝑡0/𝜎𝑡
e−𝑁2𝑡20/16𝜎2

𝑡 ). We

then control the tail bound
1∑

𝜔̄∈𝑆𝜔0
e−𝜔̄2𝜎2

𝑡

∑︁
|𝜔̄|≥𝜇̄

e−2𝜔̄2𝜎2
𝑡 = O( 1

𝜇̄𝜎𝑡
e−2𝜇̄2𝜎2

𝑡 ). ■

2.7 Appendix:Proving approximate detailed balance
In this section, we prove approximate detailed balance (or discriminant proxy) for the
constructed discriminant. It amounts to controlling the error arising from Boltzmann
factors due to the finite resolution of the operator Fourier Transform.

A simpler but weaker bound
We begin with a simpler but weaker bound. This will be enough for the Gaussian-
damped discriminant due to its rapidly decaying tail. We can bootstrap this weaker
bound using a more careful truncation scheme for the special case of uniform weight
(which has a heavy tail) as shown in section 2.7. To prove our error bound, we
introduce two useful technical lemmas.

Lemma 2.7.1 (Norm bound on block-band matrices). Let 𝑉𝑖 ⊆ H and𝑊𝑖 ⊆ H ′ be
systems of mutually orthogonal subspaces ofH andH ′ respectively. If 𝑴 =

⊕
𝑖 𝑩𝑖

where 𝑩𝑖 : 𝑉𝑖 → 𝑊𝑖, then ∥𝑴∥ = max𝑖 ∥𝑩𝑖∥.

Proof. We can get a singular value decomposition of 𝑴 by taking singular value
decompositions of each 𝑩𝑖 and then merging them. Since ∥𝑴∥ is the largest singular
value, we get the claimed equality. ■

Lemma 2.7.2 (Norm bounds on sums of tensor products of matrices). Let |𝐼 | ≤ ∞
and 𝑨𝑖 ∈ C𝑛×𝑚, 𝑩𝑖 ∈ C𝑛

′×𝑚′ for each 𝑖 ∈ 𝐼, then

∥
∑︁
𝑖∈𝐼

𝑨𝑖 [·]𝑩†𝑖 ∥2−2 = ∥
∑︁
𝑖∈𝐼

𝑨𝑖 ⊗ 𝑩∗∥ ≤
√︄
∥
∑︁
𝑖∈𝐼

𝑨𝑖𝑨
†
𝑖
∥∥

∑︁
𝑖∈𝐼

𝑩†
𝑖
𝑩𝑖∥.

Proof. Define the maps

𝑽 :=
∑︁
𝑖∈𝐼

𝑨𝑖 ⊗ 𝑰 ⊗ ⟨𝑖 | and 𝑼 :=
∑︁
𝑖∈𝐼

𝑰 ⊗ 𝑩∗ ⊗ |𝑖⟩, then

∥
∑︁
𝑖∈𝐼

𝑨𝑖 ⊗ 𝑩∗∥ = ∥𝑽𝑼∥ ≤ ∥𝑽∥∥𝑼∥ ≤ ∥
∑︁
𝑖∈𝐼

𝑨𝑖𝑨
†
𝑖
∥1/2∥

∑︁
𝑖∈𝐼

𝑩∗†𝑩∗∥1/2.

Take complex conjugate to conclude the proof. ■
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Lemma 2.7.3 (Secular approximation gives discriminant proxy). Consider the
following discriminant proxy and a closely related Lindbladian

D𝑠𝑒𝑐 :=
∑︁
𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄)𝛾(−𝜔̄) 𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗

− 𝛾(𝜔̄)
2

(
𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄) ⊗ 𝑰 + 𝑰 ⊗ 𝑺̂𝑎 (𝜔̄)†∗𝑺̂𝑎 (𝜔̄)∗

)
,

L𝑠𝑒𝑐 =
∑︁
𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄) [·] 𝑺̂𝑎 (𝜔̄)† − 𝛾(𝜔̄)
2
{𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄), ·},

such that the nonnegative weights satisfy42

𝛾(𝜔̄)/𝛾(−𝜔̄) = e−𝛽𝜔̄ or 𝛾(𝜔̄) = 𝛾(−𝜔̄) = 0 for each 𝜔̄ ∈ 𝑆𝜔0 . (2.46)

Suppose the operators satisfy that

⟨𝜓𝑖 |𝑺̂𝑎 (𝜔̄)
��𝜓 𝑗 〉 = 0 whenever

��(𝐸𝑖 − 𝐸 𝑗 ) − 𝜔̄�� > 𝜇̄ (2.47)

for the eigenvalue decomposition of 𝑯 =
∑
𝑗 𝐸 𝑗 |𝜓 𝑗 ⟩⟨𝜓 𝑗 |. Then, for any 𝛽, 𝜇̄ > 0

such that 𝛽𝜇̄ ≤ 1 and the Gibbs state 𝝆 = e−𝛽𝑯/Tr[e−𝛽𝑯],

∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)∥

≤ 𝛽𝜇̄
√︄
∥

∑︁
𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)∥

©­«7
√︄
∥

∑︁
𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)∥ + 125
√︄
∥

∑︁
𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(−𝜔̄) 𝑺̂𝑎 (𝜔̄) 𝑺̂𝑎 (𝜔̄)†∥ª®¬,
where D(𝝆,L𝑠𝑒𝑐) is the vectorization of D(𝝆,L𝑠𝑒𝑐). Finally, if there is a permuta-
tion 𝑷 : 𝑎 → 𝑎′ such that42

√︁
𝛾(−𝜔̄) 𝑺̂𝑎 (𝜔̄)† =

√︁
𝛾(−𝜔̄) 𝑺̂𝑎′ (−𝜔̄) for each 𝑎 and 𝜔̄,

then we have that D𝑠𝑒𝑐 = D†𝑠𝑒𝑐 and that

∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)†∥ = ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)∥ ≤ 132𝛽𝜇̄∥
∑︁
𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)∥.

42Potentially allowing zero values of 𝛾(𝜔̄) = 𝛾(−𝜔̄) = 0 might be needed for dealing with the
case when 𝑁 is even and therefore the smallest label in 𝑆𝜔0 would be its own inverse (due to parity
and the modulo arithmetic of 𝑆𝜔0). Also note that if 𝑺̂𝑎 (𝜔̄) = 𝑺𝑎

− 𝜔̄ = 0 for all 𝑎 ∈ 𝐴, then we can
assume without loss of generality that the corresponding weight is 𝛾(𝜔̄) = 𝛾(−𝜔̄) = 0.
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This also quickly leads to approximate detailed balance for Lindbladians (Lemma 2.2.2)
by a triangle inequality

D(𝝆,L𝑠𝑒𝑐) − D(𝝆,L𝑠𝑒𝑐)†

2−2 ≤ ∥D(𝝆,L𝑠𝑒𝑐) − D𝑠𝑒𝑐∥2−2 + ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)†∥2−2

= ∥D(𝝆,L𝑠𝑒𝑐) − D𝑠𝑒𝑐∥ + ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)†∥.

Note that the term ∥∑𝑎,𝜔̄ 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)∥ can be thought of as the “strength” of the
interaction, and in our case can be simply bounded by 1 due to Proposition 2.5.1 as
follows:

∥
∑︁
𝑎,𝜔̄

𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)∥ = ∥
∑︁
𝑎,𝜔̄

(
𝑨𝑎𝑓𝑠𝑒𝑐 (𝜔̄)

)†
𝑨𝑎𝑓𝑠𝑒𝑐 (𝜔̄)∥ = ∥

∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥ · ∥ | 𝑓𝑠𝑒𝑐⟩∥2 ≤ 1.

Proof of Lemma 2.7.3. Our proof adapts from the strategy of [38] for dealing with
approximate detailed balance. First, let us define projectors that partition the spectrum
per truncation frequency 𝜇̄ as follows:

𝑷𝑖 :=
∑︁

𝑗 :
𝐸𝑗

𝜇̄
∈[(𝑖− 1

2 ),(𝑖+
1
2 ))

|𝜓 𝑗 ⟩⟨𝜓 𝑗 | for each 𝑖 ∈ Z such that
∑︁
𝑖

𝑷𝑖 = 𝑰 and 𝑷𝑖𝑯 = 𝑯𝑷𝑖 .

In other words, these projectors provide a resolution of the identity, and moreover,
they commute with 𝑯. We proceed by decomposing the difference of the operators
D𝑠𝑒𝑐 − D′ as follows:

D𝑠𝑒𝑐 − D
′ =

𝛿A:=︷                                                                                                       ︸︸                                                                                                       ︷∑︁
𝑎,𝜔̄

√︁
𝛾(𝜔̄)𝛾(−𝜔̄) 𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗ − 𝛾(𝜔̄)𝝆−1/4𝑺̂𝑎 (𝜔̄)𝝆1/4 ⊗ 𝝆∗−1/4𝑺̂𝑎 (𝜔̄)∗𝝆∗1/4

+
∑︁
𝑎,𝜔̄

𝛾(𝜔̄)
2

(
𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄) ⊗ 𝑰 − 𝝆−1/4𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)𝝆1/4 ⊗ 𝑰

)
︸                                                                           ︷︷                                                                           ︸

1
2 𝛿R⊗𝑰:=

+
∑︁
𝑎,𝜔̄

𝛾(𝜔̄)
2

(
𝑰 ⊗ 𝑺̂𝑎 (𝜔̄)†∗𝑺̂𝑎 (𝜔̄)∗ − 𝑰 ⊗ 𝝆∗−1/4𝑺̂𝑎 (𝜔̄)∗†𝑺̂𝑎 (𝜔̄)∗𝝆∗1/4

)
︸                                                                                   ︷︷                                                                                   ︸

1
2 𝑰⊗𝛿R

∗=

.

(2.48)



80

By the triangle inequality we have that ∥D𝑠𝑒𝑐 − D′∥ ≤ ∥𝛿A∥ + 1
2 ∥𝛿R ⊗ 𝑰∥ +

1
2 ∥𝑰 ⊗ 𝛿R

∗∥ = ∥𝛿A∥ + ∥𝛿R∥. Now, we bound the above two terms individually,
starting from the term ∥𝛿R∥. Our proof crucially relies on the fact that the frequency
label of 𝑺̂𝑎 (𝜔̄) closely approximates the true Bohr frequency, up to the truncation
frequency 𝜇̄ as expressed by (2.47). This implies that 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄) roughly preserves
energy that

⟨𝜓𝑖 |𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)
��𝜓 𝑗 〉 = 0 whenever

��𝐸𝑖 − 𝐸 𝑗 �� > 2𝜇̄.

Indeed,

⟨𝜓𝑖 |𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)
��𝜓 𝑗 〉 = ∑︁

𝑘

⟨𝜓𝑖 |𝑺̂𝑎 (𝜔̄)† |𝜓𝑘⟩⟨𝜓𝑘 |𝑺̂𝑎 (𝜔̄)
��𝜓 𝑗 〉

=
∑︁

𝑘 : | (𝐸𝑘−𝐸𝑖)−𝜔̄|≤𝜇̄&
| (𝐸𝑘−𝐸 𝑗 )−𝜔̄|≤𝜇̄

⟨𝜓𝑖 |𝑺̂𝑎 (𝜔̄)† |𝜓𝑘⟩⟨𝜓𝑘 |𝑺̂𝑎 (𝜔̄)
��𝜓 𝑗 〉,

(due to (2.47))

since
��𝐸𝑖 − 𝐸 𝑗 �� = ��(𝐸𝑘 − 𝐸 𝑗 ) − 𝜔̄ − ((𝐸𝑘 − 𝐸𝑖) − 𝜔̄)�� ≤ ��(𝐸𝑘 − 𝐸 𝑗 ) − 𝜔̄��+|(𝐸𝑘 − 𝐸𝑖) − 𝜔̄|,

meaning that the above summands can only be nonzero when
��𝐸𝑖 − 𝐸 𝑗 �� ≤ 2𝜇̄. This

observation enables us to introduce the following decomposition

𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄) =
∑︁
𝑖, 𝑗

𝑷𝑖 𝑺̂
𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)𝑷 𝑗 =

2∑︁
ℓ=−2

∑︁
𝑖

𝑷𝑖 𝑺̂
𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)𝑷𝑖+ℓ .(2.49)

Let us define 𝛿𝑯 𝑗 := 𝛽

4 (𝑷 𝑗𝑯𝑷 𝑗 − 𝑗 𝜇̄𝑷 𝑗 ) and 𝛿𝑯 :=
∑
𝑗 𝛿𝑯 𝑗 . Since 𝑯 and 𝑷 𝑗

commute and 𝑷 𝑗 = 𝑷2
𝑗

we have

𝝆∓
1
4 𝑷 𝑗 = 𝑷 𝑗 𝝆

∓ 1
4 = (Tr(e−𝛽𝑯))± 1

4 · e±
𝛽𝜇̄

4 𝑗𝑷 𝑗e±𝛿𝑯 . (2.50)

We use (2.49)-(2.50) to exploit the “approximate energy preservation” of the operator
𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄) as follows:

𝝆−1/4𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)𝝆1/4 =

2∑︁
ℓ=−2

∑︁
𝑖

𝝆−1/4𝑷𝑖+ℓ 𝑺̂
𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)𝑷𝑖𝝆1/4

=

2∑︁
ℓ=−2

∑︁
𝑖

e
𝛽𝜇̄

4 ℓ𝑷𝑖+ℓe𝛿𝑯 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)e−𝛿𝑯𝑷𝑖 . (2.51)
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Let us define 𝑺′ :=
∑
𝑎,𝜔̄ 𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄), then we get the following bound on

∥𝛿R∥:

∥𝛿R∥ =





∑︁
𝑎,𝜔̄

𝛾(𝜔̄)
(
𝝆−1/4𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)𝝆1/4 − 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)

)




 (by (2.48))

=






∑︁
𝑎,𝜔̄

𝛾(𝜔̄)
( 2∑︁
ℓ=−2

∑︁
𝑖

e
𝛽𝜇̄

4 ℓ𝑷𝑖+ℓe𝛿𝑯 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)e−𝛿𝑯𝑷𝑖 − 𝑷𝑖+ℓ 𝑺̂
𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)𝑷𝑖

)





(by (2.49)-(2.51))

≤
2∑︁

ℓ=−2






∑︁
𝑖

𝑷𝑖+ℓ
∑︁
𝑎,𝜔̄

𝛾(𝜔̄)
(
e

𝛽𝜇̄

4 ℓe𝛿𝑯 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)e−𝛿𝑯 − 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)
)
𝑷𝑖







(by triangle inequality)

=

2∑︁
ℓ=−2

max
𝑖






𝑷𝑖+ℓ ∑︁
𝑎,𝜔̄

𝛾(𝜔̄)
(
e

𝛽𝜇̄

4 ℓe𝛿𝑯 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)e−𝛿𝑯 − 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)
)
𝑷𝑖






.
(by Lemma 2.7.1)

We may now drop the project 𝑷𝑖 and 𝑷𝑖+ℓ and simplify via elementary bounds.

(𝑐𝑜𝑛𝑡′𝑑) ≤
2∑︁

ℓ=−2




e(𝛿𝑯−
𝛽𝜇̄

4 ℓ𝑰)𝑺′e−𝛿𝑯 − 𝑺′





≤
2∑︁

ℓ=−2




e(𝛿𝑯−
𝛽𝜇̄

4 ℓ𝑰)𝑺′e−𝛿𝑯 − 𝑺′e−𝛿𝑯



 + 

𝑺′e−𝛿𝑯 − 𝑺′




≤

2∑︁
ℓ=−2
∥e(𝛿𝑯−

𝛽𝜇̄

4 ℓ𝑰) − 𝑰∥∥𝑺′∥∥e−𝛿𝑯∥ + ∥𝑺′∥


e−𝛿𝑯 − 𝑰




≤ ∥𝑺′∥

2∑︁
ℓ=−2
∥2𝛿𝑯 − 𝛽𝜇̄

2
ℓ𝑰∥(1 + ∥2𝛿𝑯∥) + ∥2𝛿𝑯∥

(since |e𝑥 − 1| ≤ 2|𝑥 | for |𝑥 | ≤ 5
4 )

≤ ∥𝑺′∥
2∑︁

ℓ=−2
𝛽𝜇̄

(
1
4
+ |ℓ |

2

) (
1 + 𝛽𝜇̄

4

)
+ 𝛽𝜇̄

4

(since ∥𝛿𝑯∥ ≤ 𝛽𝜇̄

8 and 𝛽𝜇̄ ≤ 1)

≤ 7𝛽𝜇̄∥𝑺′∥.

Next, we bound 𝛿A in a similar fashion. The expression will be more cumbersome
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because of the double Hilbert spaces. Decompose 𝛿A =
∑
𝑎∈𝐴 𝛿A

𝑎, where

𝛿A𝑎 :=
∑︁
𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄)𝛾(−𝜔̄)︸           ︷︷           ︸
𝛾̊(𝜔̄):=

𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗ −
∑︁
𝜔̄∈𝑆𝜔0

𝛾(𝜔̄)𝝆−1/4𝑺̂𝑎 (𝜔̄)𝝆1/4 ⊗ 𝝆∗−1/4𝑺̂𝑎 (𝜔̄)∗𝝆∗1/4

(by (2.46))
=

∑︁
𝜔̄∈𝑆𝜔0

𝛾̊(𝜔̄) 𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗ − 𝛾̊(𝜔̄)e−
𝛽

2 𝜔̄𝝆−1/4𝑺̂𝑎 (𝜔̄)𝝆1/4 ⊗ 𝝆∗−1/4𝑺̂𝑎 (𝜔̄)∗𝝆∗1/4.

(2.52)

Let ⌊𝜔̄⌉ denote the rounding of 𝜔̄
𝜇̄

to the closest integer, and suppose that 𝑷𝑖 𝑺̂𝑎 (𝜔̄)𝑷 𝑗 ≠
0. Then, there must exist some |𝜓𝑖⟩,

��𝜓 𝑗 〉 eigenvectors in the images of 𝑷𝑖, 𝑷 𝑗

respectively such that ⟨𝜓𝑖 |𝑺̂𝑎 (𝜔̄)
��𝜓 𝑗 〉 ≠ 0. Due to (2.47) we have that |𝐸𝑖−𝐸 𝑗−𝜔̄ | ≤ 𝜇̄.

Then |𝑖− 𝑗 − ⌊𝜔̄⌉ | ≤ |𝑖− 𝐸𝑖

𝜇̄
| + | 𝐸 𝑗

𝜇̄
− 𝑗 | + | 𝜔̄

𝜇̄
− ⌊𝜔̄⌉ | + | 𝐸𝑖

𝜇̄
− 𝐸 𝑗

𝜇̄
− 𝜔̄
𝜇̄
| ≤ 1

2 +
1
2 +

1
2 +1 < 3,

thus we can define a bisection analogously to (2.49) as follows:

𝑺̂𝑎 (𝜔̄) =
∑︁
𝑖, 𝑗

𝑷𝑖 𝑺̂
𝑎 (𝜔̄)𝑷 𝑗 =

∑︁
𝑖, 𝑗 : |𝑖− 𝑗−⌊𝜔̄⌉ |<3

𝑷𝑖 𝑺̂
𝑎 (𝜔̄)𝑷 𝑗 =

2∑︁
ℓ=−2

∑︁
𝑖

𝑷𝑖 𝑺̂
𝑎 (𝜔̄)𝑷𝑖−⌊𝜔̄⌉+ℓ,

which leads to the following “tensor-slicing” assuming that 𝑷𝑛 and 𝑴𝑚 commute:

𝑴1𝑺̂
𝑎 (𝜔̄)𝑴2 ⊗ 𝑴∗3 𝑺̂

𝑎 (𝜔̄)∗𝑴∗4

=

2∑︁
ℓ,ℓ′=−2

∑︁
𝑖, 𝑗

(𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑴1𝑺̂

𝑎 (𝜔̄)𝑴2 ⊗ 𝑴∗3 𝑺̂
𝑎 (𝜔̄)∗𝑴∗4

)
(𝑷 𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗

𝑗+𝑖−⌊𝜔̄⌉+ℓ′).

Using this we get the following decomposition analogously to (2.51) by expressing
𝝆−1/4𝑺̂𝑎 (𝜔̄)𝝆1/4 via (2.52) and (2.50)

𝛿A𝑎 =

2∑︁
ℓ,ℓ′=−2

∑︁
𝑖

𝛿A𝑎
𝑖,ℓ,ℓ′ =

2∑︁
ℓ,ℓ′=−2

∑︁
𝑖∑︁

𝑗 ,𝜔̄

𝛾̊(𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗ − e

𝛽𝜇̄

2 (⌊𝜔̄⌉−
𝜔̄
𝜇̄
− ℓ+ℓ′

2 )e𝛿𝑯 𝑺̂𝑎 (𝜔̄)e−𝛿𝑯⊗e𝛿𝑯
∗
𝑺̂𝑎 (𝜔̄)∗e−𝛿𝑯∗

)
· (𝑷 𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗

𝑗+𝑖−⌊𝜔̄⌉+ℓ′).

Since | 𝜔̄
𝜇̄
− ⌊𝜔̄⌉ | ≤ 1

2 and |ℓ |, |ℓ′| ≤ 2, we have that | ⌊𝜔̄⌉ − 𝜔̄
𝜇̄
− ℓ+ℓ′

2 | ≤
5
2 and therefore

the above factor is close to 1:

|e
𝛽𝜇̄

2 (⌊𝜔̄⌉−
𝜔̄
𝜇̄
− ℓ+ℓ′

2 ) − 1| ≤ 𝛽𝜇̄
����⌊𝜔̄⌉ − 𝜔̄𝜇̄ − ℓ + ℓ′2

���� ≤ 5
2
𝛽𝜇̄. (2.53)
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At this point, it seems intuitively clear that the error coming from the Boltzmann
factor is small. However, we need to argue how the sum over 𝑗 does not blow up the
error. We proceed by using the triangle inequality over ℓ, ℓ′ and then Lemma 2.7.1
over 𝑖 to get that

∥𝛿A∥ = ∥
∑︁
𝑎∈𝐴

𝛿A𝑎∥ ≤ 52 max
𝑖,ℓ,ℓ′






∑︁
𝑎

𝛿A𝑎
𝑖,ℓ,ℓ′︸       ︷︷       ︸

𝛿A𝑖,ℓ,ℓ′ :=






.

The key for bounding the norm of 𝛿A𝑖,ℓ,ℓ′ is applying Lemma 2.7.2 to estimate the
following for some weights 𝛼(𝜔̄):

∥
∑︁
𝑗 ,𝑎,𝜔̄

𝛼(𝜔̄)𝛾̊(𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗

)
(𝑷 𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗

𝑗+𝑖−⌊𝜔̄⌉+ℓ′)∥
2

= ∥
∑︁
𝑗 ,𝑎,𝜔̄

𝛼(𝜔̄)𝑷 𝑗
√︁
𝛾(−𝜔̄) 𝑺̂𝑎 (𝜔̄)𝑷 𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗𝑗+𝑖

√︁
𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄)∗𝑷∗

𝑗+𝑖−⌊𝜔̄⌉+ℓ′ ∥
2

≤ ∥
∑︁
𝑗 ,𝑎,𝜔̄

|𝛼(𝜔̄) |2𝛾(−𝜔̄)𝑷 𝑗 𝑺̂𝑎 (𝜔̄)𝑷 𝑗−⌊𝜔̄⌉+ℓ 𝑺̂𝑎 (𝜔̄)†︸                       ︷︷                       ︸
⪯∑𝑘 𝑺̂

𝑎 (𝜔̄)𝑷𝑘 𝑺̂𝑎 (𝜔̄)†=𝑺̂𝑎 (𝜔̄) 𝑺̂𝑎 (𝜔̄)†

𝑷 𝑗 ∥

· ∥
∑︁
𝑗 ,𝑎,𝜔̄

𝛾(𝜔̄)𝑷 𝑗+𝑖−⌊𝜔̄⌉+ℓ′ 𝑺̂𝑎 (𝜔̄)†𝑷 𝑗+𝑖 𝑺̂𝑎 (𝜔̄)︸                 ︷︷                 ︸
⪯𝑺̂𝑎 (𝜔̄)† 𝑺̂𝑎 (𝜔̄)

𝑷 𝑗+𝑖−⌊𝜔̄⌉+ℓ′ ∥ (by Lemma 2.7.2)

≤ ∥𝛼∥2∞






∑︁
𝑗

𝑷 𝑗
∑︁
𝑎,𝜔̄

𝛾(−𝜔̄) 𝑺̂𝑎 (𝜔̄) 𝑺̂𝑎 (𝜔̄)†︸                          ︷︷                          ︸
𝑺′′:=

𝑷 𝑗












∑︁

𝑗

𝑷 𝑗
∑︁
𝑎,𝜔̄

𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄)︸                       ︷︷                       ︸
=𝑺′

𝑷 𝑗







since 0 ⪯ 𝑨 ⪯ 𝑩⇒ ∥𝑨∥ ≤ ∥𝑩∥

= ∥𝛼∥2∞max
𝑗 ′′




𝑷 𝑗 ′′𝑺′′𝑷 𝑗 ′′


 ·max
𝑗 ′




𝑷 𝑗 ′𝑺′𝑷 𝑗 ′


︸                                        ︷︷                                        ︸
due to Lemma 2.7.1

≤ ∥𝛼∥2∞∥𝑺′∥∥𝑺′′∥. (2.54)

Let us introduce a telescoping sum 𝛿A𝑖,ℓ,ℓ′ =
∑3
𝑠=1 𝛿A

(𝑠)
𝑖,ℓ,ℓ′ , where 𝛾̊ℓ,ℓ′ (𝜔̄) :=

e
𝛽𝜇̄

2 (⌊𝜔̄⌉−
𝜔̄
𝜇̄
− ℓ+ℓ′

2 ) 𝛾̊(𝜔̄) and

𝛿A
(1)
𝑖,ℓ,ℓ′

:=
∑︁
𝑗 ,𝑎,𝜔̄

𝛾̊(𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗ − e

𝛽𝜇̄

2 (⌊𝜔̄⌉−
𝜔̄
𝜇̄
− ℓ+ℓ′

2 ) 𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗
)
(𝑷∗

𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗
𝑗+𝑖−⌊𝜔̄⌉+ℓ′),
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𝛿A
(2)
𝑖,ℓ,ℓ′

:=
∑︁
𝑗 ,𝑎,𝜔̄

𝛾̊ℓ,ℓ′ (𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗ − e−𝛿𝑯 𝑺̂𝑎 (𝜔̄) ⊗ e−𝛿𝑯

∗
𝑺̂𝑎 (𝜔̄)∗

)
(𝑷∗

𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗
𝑗+𝑖−⌊𝜔̄⌉+ℓ′),

𝛿A
(3)
𝑖,ℓ,ℓ′ :=

∑︁
𝑗 ,𝑎,𝜔̄

𝛾̊ℓ,ℓ′ (𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
e−𝛿𝑯 𝑺̂𝑎 (𝜔̄) ⊗ e−𝛿𝑯

∗
𝑺̂𝑎 (𝜔̄)∗ − e−𝛿𝑯 𝑺̂𝑎 (𝜔̄)e𝛿𝑯 ⊗ e−𝛿𝑯

∗
𝑺̂𝑎 (𝜔̄)∗e𝛿𝑯∗

)
(𝑷∗

𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗
𝑗+𝑖−⌊𝜔̄⌉+ℓ′).

Due to (2.53) we can bound ∥𝛿A (1)
𝑖,ℓ,ℓ′ ∥ ≤

5
2 𝛽𝜇̄

√︁
∥𝑺′∥∥𝑺′′∥ via (2.54). For bounding

∥𝛿A (2)
𝑖,ℓ,ℓ′ ∥ observe that

∥𝛿A (2)
𝑖,ℓ,ℓ′ ∥

= ∥
∑︁
𝑗 ,𝑎,𝜔̄

𝛾̊ℓ,ℓ′ (𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗ − e−𝛿𝑯 𝑺̂𝑎 (𝜔̄) ⊗ e−𝛿𝑯

∗
𝑺̂𝑎 (𝜔̄)∗

)
(𝑷∗

𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗
𝑗+𝑖−⌊𝜔̄⌉+ℓ′)∥

= ∥(𝑰 ⊗ 𝑰 − e−𝛿𝑯 ⊗ e−𝛿𝑯
∗)

∑︁
𝑗 ,𝜔̄

𝛾̊ℓ,ℓ′ (𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗

)
(𝑷∗

𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗
𝑗+𝑖−⌊𝜔̄⌉+ℓ′)∥

≤ ∥𝑰 ⊗ 𝑰 − e−𝛿𝑯 ⊗ e−𝛿𝑯
∗ ∥︸                         ︷︷                         ︸

≤ 2
7 𝛽𝜇̄ since ∥𝛿𝑯∥≤ 𝛽𝜇̄

8

∥
∑︁
𝑗 ,𝜔̄

𝛾̊ℓ,ℓ′ (𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗

)
(𝑷∗

𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗
𝑗+𝑖−⌊𝜔̄⌉+ℓ′)∥︸                                                                                        ︷︷                                                                                        ︸

≤(1+ 5
2 𝛽𝜇̄)
√
∥𝑺′∥∥𝑺′′∥ due to (2.53) and (2.54)

≤ 𝛽𝜇̄
√︁
∥𝑺′∥∥𝑺′′∥.
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Analogously we can bound ∥𝛿A (3)
𝑖,ℓ,ℓ′ ∥ as follows:

∥𝛿A (3)
𝑖,ℓ,ℓ′ ∥

= ∥(e−𝛿𝑯 ⊗ e−𝛿𝑯
∗)

∑︁
𝑗 ,𝜔̄

𝛾̊ℓ,ℓ′ (𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗

)
(𝑷∗

𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗
𝑗+𝑖−⌊𝜔̄⌉+ℓ′)

(𝑰 ⊗ 𝑰 − e𝛿𝑯 ⊗ e𝛿𝑯
∗)∥

≤ ∥e−𝛿𝑯 ⊗ e−𝛿𝑯
∗ ∥︸              ︷︷              ︸

≤1+ 2
7 𝛽𝜇̄

∥
∑︁
𝑗 ,𝜔̄

𝛾̊ℓ,ℓ′ (𝜔̄) (𝑷 𝑗 ⊗ 𝑷∗𝑗+𝑖)
(
𝑺̂𝑎 (𝜔̄) ⊗ 𝑺̂𝑎 (𝜔̄)∗

)
(𝑷∗

𝑗−⌊𝜔̄⌉+ℓ ⊗ 𝑷∗
𝑗+𝑖−⌊𝜔̄⌉+ℓ′)∥︸                                                                                        ︷︷                                                                                        ︸

≤(1+ 5
2 𝛽𝜇̄)
√
∥𝑺′∥∥𝑺′′∥ due to (2.53) and (2.54)

∥𝑰 ⊗ 𝑰 − e−𝛿𝑯 ⊗ e−𝛿𝑯
∗ ∥︸                         ︷︷                         ︸

≤ 2
7 𝛽𝜇̄ since ∥𝛿𝑯∥≤ 𝛽𝜇̄

8

≤ 3
2
𝛽𝜇̄

√︁
∥𝑺′∥∥𝑺′′∥.

Putting everything together, we get that

∥𝛿A∥ ≤ 25 max
𝑖,ℓ,ℓ′
∥𝛿A𝑖,ℓ,ℓ′ ∥ ≤ 25 max

𝑖,ℓ,ℓ′

(
∥𝛿A (1)

𝑖,ℓ,ℓ′ ∥ + ∥𝛿A
(2)
𝑖,ℓ,ℓ′ ∥ + ∥𝛿A

(3)
𝑖,ℓ,ℓ′ ∥

)
≤ 125𝛽𝜇̄

√︁
∥𝑺′∥∥𝑺′′∥,

which concludes the proof for the first bound.

Finally, if
√︁
𝛾(−𝜔̄) 𝑺̂𝑎 (𝜔̄)† =

√︁
𝛾(−𝜔̄) 𝑺̂𝑎′ (−𝜔̄), then 𝑺′ = 𝑺′′ and D𝑠𝑒𝑐 = D†𝑠𝑒𝑐, so

we easily get the other bound

∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)†∥ = ∥D𝑠𝑒𝑐 − D(𝝆,L†𝑠𝑒𝑐)∥2−2 = ∥D†𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)∥2−2

= ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)∥2−2 = ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)∥ ≤ 132𝛽𝜇̄∥𝑺′∥.
■

Bootstrapping the secular approximation
Lemma 2.7.4 (Bootstrapping the secular approximation). Consider the decom-
position 𝑓 =

∑
𝑗∈𝐽 𝑓 𝑗 of the weight function, where 𝑓 𝑗 : 𝑆𝑡0 → C, and let 𝜇 𝑗 :=

min
{
𝜇 ≥ 0: ∥ 𝑓 𝑗 (𝜔) · 1( |𝜔 | > 𝜇)∥ = 0

}
. If the Hamiltonian 𝑯̄ has discretized spec-

trum so that 𝐵 ⊂ 𝜔0Z, 𝛽𝜇 𝑗 ≤ 1, max𝜔̄∈𝐵, 𝑗∈𝐽 𝜔̄ + 𝜇 𝑗 =: 𝜈 ∈ 𝑆𝜔0 , 𝛾 : 𝑆𝜔0 → R+ is
such that 𝛾(𝜔̄)/𝛾(−𝜔̄) = e−𝛽𝜔̄ for all 𝜔̄ ∈ [−𝜈, 𝜈] ∩ 𝑆𝜔0 , and the set of jumps is
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self-adjoint {𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴}, then43

∥D 𝑓 − D(𝝆,L 𝑓 )†∥ = ∥D 𝑓 − D(𝝆,L 𝑓 )∥ ≤
∑︁
𝑖∈𝐽
∥ 𝑓𝑖∥𝜇𝑖

∑︁
𝑗∈𝐽
∥ 𝑓 𝑗 ∥∥𝛾∥∞1056𝛽∥

∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥,

where 𝝆 = e−𝛽𝑯/Tr[e−𝛽𝑯],

D 𝑓 := 𝑰[·] 𝑰 +
∑︁

𝑎,𝜔̄∈𝑆𝜔0

√︁
𝛾(𝜔̄)𝛾(−𝜔̄) 𝑨̂𝑎𝑓 (𝜔̄) [·] 𝑨̂

𝑎
𝑓 (𝜔̄)

† − 𝛾(𝜔̄)
2
{ 𝑨̂𝑎𝑓 (𝜔̄)

† 𝑨̂𝑎𝑓 (𝜔̄), ·}, and

L 𝑓 :=
∑︁

𝑎∈𝐴,𝜔̄∈𝑆𝜔0

𝛾(𝜔̄) 𝑨̂𝑎𝑓 (𝜔̄) [·] 𝑨̂
𝑎
𝑓 (𝜔̄)

† − 𝛾(𝜔̄)
2
{ 𝑨̂𝑎𝑓 (𝜔̄)

† 𝑨̂𝑎𝑓 (𝜔̄), ·}.

Proof. The proof builds on the following “polarization” identity: for all 𝑴𝑖 matrices
and 𝑐1, 𝑐2 ∈ R

𝑴1 ★𝑴4 + 𝑴2 ★𝑴3 =
𝑐1𝑐2

2

∑︁
𝑠=±1

𝑠

(
𝑴1
𝑐1
+ 𝑠𝑴2

𝑐2

)
★

(
𝑴3
𝑐1
+ 𝑠𝑴4

𝑐2

)
,

where★ stands for any operation that is distributive with +, e.g., matrix product★ = ·
or tensor product ★ = ⊗.

Due to the linearity of the operator Fourier Transform, we have that 𝑨̂𝑎
𝑓
(𝜔̄) =∑

𝑗∈𝐽 𝑨
𝑎
𝑓 𝑗 ,𝜔̄

and consequently

D 𝑓 =
∑︁
𝑖, 𝑗∈𝐽

(
1 −

𝛿𝑖 𝑗

2

) ∥ 𝑓𝑖∥∥ 𝑓 𝑗 ∥
2

∑︁
𝑠=±1

𝑠D 𝑓𝑖
∥ 𝑓𝑖 ∥
+𝑠

𝑓 𝑗

∥ 𝑓 𝑗 ∥
,

D(𝝆,L 𝑓 ) =
∑︁
𝑖, 𝑗∈𝐽

(
1 −

𝛿𝑖 𝑗

2

) ∥ 𝑓𝑖∥∥ 𝑓 𝑗 ∥
2

∑︁
𝑠=±1

𝑠D(𝝆,L 𝑓𝑖
∥ 𝑓𝑖 ∥
+𝑠

𝑓 𝑗

∥ 𝑓 𝑗 ∥
).

Due to the properties of the operator Fourier Transform (Proposition 2.5.1), we have
that

∥
∑︁
𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

𝛾(𝜔̄)𝑨𝑎𝑔 (𝜔̄)† 𝑨̂𝑎𝑔 (𝜔̄)∥ ≤ ∥𝛾∥∞∥
∑︁
𝑎∈𝐴

∑︁
𝜔̄∈𝑆𝜔0

𝑨𝑎𝑔 (𝜔̄)† 𝑨̂𝑎𝑔 (𝜔̄)∥

= ∥
∑︁
𝑎∈𝐴

∑︁
𝑡∈𝑆𝑡0

|𝑔(𝑡) |2ei𝑯̄𝑡𝑨𝑎†𝑨𝑎e−i𝑯̄𝑡 ∥ ≤ ∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥∥𝑔∥2,

43Note that here we use notation D 𝑓 , L 𝑓 instead of D𝛽 , L𝛽 to spell out the dependence on 𝑓

instead of 𝛽.
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since ∥ 𝑓𝑖
∥ 𝑓𝑖 ∥ + 𝑠

𝑓 𝑗
∥ 𝑓 𝑗 ∥ ∥ ≤ 2, 𝛽𝜇 𝑗 ≤ 1 for all 𝑗 ∈ 𝐽, and42 𝜈 ∈ 𝑆𝜔0 (i.e., no wrapping

around), by Lemma 2.7.3 we get

∥D 𝑓𝑖
∥ 𝑓𝑖 ∥
+𝑠

𝑓 𝑗

∥ 𝑓 𝑗 ∥
− D(𝝆,L 𝑓𝑖

∥ 𝑓𝑖 ∥
+𝑠

𝑓 𝑗

∥ 𝑓 𝑗 ∥
)∥

≤ max{𝜇𝑖, 𝜇 𝑗 }∥𝛾∥∞4𝛽
√︄
∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥©­«7
√︄
∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥ + 125
√︄
∥
∑︁
𝑎∈𝐴

𝑨𝑎𝑨𝑎†∥ª®¬
≤ max{𝜇𝑖, 𝜇 𝑗 }∥𝛾∥∞528𝛽∥

∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥︸                         ︷︷                         ︸
𝐾:=

.

The second line uses that {𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴} thus ∥∑𝑎∈𝐴 𝑨𝑎†𝑨𝑎∥ =
∥∑𝑎∈𝐴 𝑨𝑎𝑨𝑎†∥.

Finally, by the triangle inequality, we get that

∥D 𝑓 − D(𝝆,L 𝑓 )∥ ≤
∑︁
𝑖, 𝑗∈𝐽

(
1 −

𝛿𝑖 𝑗

2

) ∥ 𝑓𝑖∥∥ 𝑓 𝑗 ∥
2

∑︁
𝑠=±1
∥D 𝑓𝑖

∥ 𝑓𝑖 ∥
+𝑠

𝑓 𝑗

∥ 𝑓 𝑗 ∥
− D(𝝆,L 𝑓𝑖

∥ 𝑓𝑖 ∥
+𝑠

𝑓 𝑗

∥ 𝑓 𝑗 ∥
)∥

≤
∑︁
𝑖, 𝑗∈𝐽

(
1 −

𝛿𝑖 𝑗

2

)
∥ 𝑓𝑖∥∥ 𝑓 𝑗 ∥max{𝜇𝑖, 𝜇 𝑗 }𝐾

≤
∑︁
𝑖, 𝑗∈𝐽
∥ 𝑓𝑖∥∥ 𝑓 𝑗 ∥(𝜇𝑖 + 𝜇 𝑗 )𝐾

= 2
∑︁
𝑖∈𝐽
∥ 𝑓𝑖∥𝜇𝑖

∑︁
𝑗∈𝐽
∥ 𝑓 𝑗 ∥𝐾. ■

Corollary 2.7.1 (Improved bounds for uniform weights). In the setting of Lemma 2.7.4,
consider the uniform weight function 𝑓 (𝑡) =

√︃
𝑡0
2𝑇1(−𝑇 ≤ 𝑡 < 𝑇) and the secular

approximation with 𝑠(𝜔̄) = 1( |𝜔̄| ≤ 𝜇) for some 𝜇 ≥ 𝜋/𝑇 , then

∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)†∥ = ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)∥ = O
(
𝛽∥𝛾∥∞

√︂
𝜇

𝑇
∥
∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎∥
)
.

Proof. Let 𝑓𝑠 := F ∗−1( 𝑓 · 𝑠); by Proposition 2.6.2, we know that D𝑠𝑒𝑐 can be
obtained by utilizing the weight function 𝑓𝑠.

We decompose 𝑠 into exponentially increasing intervals. We set 𝑠0 := 1( |𝜔̄ | ≤ 𝜋/𝑇)
and

𝑠 𝑗 := 1(4 𝑗−1𝜋/𝑇 < |𝜔̄| ≤ min{4 𝑗𝜋/𝑇, 𝜇}) ∀ 𝑗 ∈ Z+.
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Let 𝑓 𝑗 := F ∗−1( 𝑓 · 𝑠 𝑗 ); since 𝑠 =
∑⌈log4 (𝜇𝑇/𝜋)⌉
𝑗=0 𝑠 𝑗 we have 𝑓𝑠 =

∑⌈log4 (𝜇𝑇/𝜋)⌉
𝑗=0 𝑓 𝑗 .

Observe that due to Proposition 2.6.6

∥ 𝑓 𝑗 ∥ = ∥ 𝑓 · 𝑠 𝑗 ∥ ≤ ∥ 𝑓 · 1(4 𝑗−1𝜋/𝑇 < |𝜔̄|) ∥ ≤
√︁

41− 𝑗 = 21− 𝑗 , and thus
∑︁
𝑗

∥ 𝑓 𝑗 ∥ ≤ 4.

The result follows from Lemma 2.7.4 since 𝑓 𝑗 = 𝑓 · 𝑠 𝑗 and by the definition of 𝑠 𝑗 we
have 𝜇 𝑗 ≤ 4 𝑗𝜋/𝑇 and thus

⌈log4 (𝜇𝑇/𝜋)⌉∑︁
𝑗=0

∥ 𝑓 𝑗 ∥𝜇 𝑗 ≤
⌈log4 (𝜇𝑇/𝜋)⌉∑︁

𝑗=0

2𝜋
𝑇

2 𝑗 ≤ 4𝜋
𝑇

2⌈log4 (𝜇𝑇/𝜋)⌉ ≤ 8𝜋
𝑇

2log4 (𝜇𝑇/𝜋)

=
8𝜋
𝑇

√︁
𝜇𝑇/𝜋 = 8

√︂
𝜋𝜇

𝑇
.

■

Fourier Transform with uniform weights
For simpler implementation, we can also work with the Fourier Transform with
uniform weight (which is not smooth), leading to slightly worse bounds than the
Gaussian damped case of Theorem 2.1.3.

Theorem 2.7.1 (Uniform weight for Fourier Transform). Consider the discriminant
proxy D𝜷 (2.26) with the plain Fourier Transform 𝑨̂𝑎 (𝜔̄) :∝ ∑

−𝑇≤𝑡<𝑇 𝑨𝑎 (𝑡)e−i𝜔̄𝑡 .
Let 𝜈 := 1

𝛽
+ max𝜔∈𝐵 𝜔 such that 𝜈 ≤ max𝜔̄∈𝑆𝜔0

, 𝛾 : 𝑆𝜔0 → R+ is such that
𝛾(𝜔̄)/𝛾(−𝜔̄) = e−𝛽𝜔̄ for all 𝜔̄ ∈ [−𝜈, 𝜈] ∩ 𝑆𝜔0 and the set of jumps are self-adjoint
and normalized (2.10), then the (normalized) top eigenvector approximates the
purified Gibbs state

��√𝝆𝛽〉 such that



��𝜆1(D𝛽

〉
) −

��√𝝆𝛽〉

 ≤ O (
1

𝜆𝑔𝑎𝑝 (D𝛽)
(𝜔0𝑇 +

√︂
𝛽

𝑇
)
)
.

The block-encoding for the discriminant proxy can be implemented exactly using
Hamiltonian simulation time O(𝑇) using the construction outlined in section 2.3-
section 2.3.

Even though with a worse asymptotic bound, the plain Fourier Transform is simpler
to implement and closer to thermalization in nature (section 2.9). The proof is even
simpler than the Gaussian case, partly because D = D𝑖𝑚𝑝𝑙 as the uniform weights
can be prepared exactly.
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Proof of Theorem 2.7.1. We can assume without loss of generality that 𝑇/𝛽 ≥ 𝜋,
since otherwise, the bound is vacuous. We bound the eigenvector distance by
the operator norm using Proposition 2.3.3 and recall the secular approximation
(Lemma 2.6.2, Proposition 2.6.6) and the improved bounds on approximate detailed
balance (Corollary 2.7.1):

��𝜆1(D𝛽)

〉
−

��√𝝆〉

 ≤ 6


D𝛽 − D(𝝆,L𝑠𝑒𝑐)†




𝜆𝑔𝑎𝑝 (D𝛽)

≤ 6
𝜆𝑔𝑎𝑝 (D𝛽)

(
∥D𝛽 − D𝑠𝑒𝑐∥ + ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)†∥

)
≤ O

(
1

𝜆𝑔𝑎𝑝 (D𝛽)
(𝜔0𝑇 +

1
√
𝜇𝑇
+ 𝛽

√︂
𝜇

𝑇
)
)

(now set 𝜇 := 1/𝛽)

≤ O
(

1
𝜆𝑔𝑎𝑝 (D𝛽)

(𝜔0𝑇 +
√︂
𝛽

𝑇
)
)
. ■

Unfortunately, the above result suggests that the Hamiltonian simulation time needs
to scale with the inverse gap squared 𝜆−2

𝑔𝑎𝑝; we do not know if better bounds are
possible.

2.8 Appendix:Discretization error for Lindbladians and discriminant proxies
In this appendix, we bound the discretization error for continuous Lindbladians. We
use the notation established in section 2.5. In addition, for a function 𝑓 : R→ C, by
F̄ ( 𝑓 (𝑡)), we mean the discrete Fourier Transform of the vector obtained by evaluating
𝑓 at the points 𝑡 ∈ 𝑆⌈𝑁⌋𝑡0

. Also, we define the “discretized” version 𝑓 (𝑡) :=
√
𝑡0 𝑓 (𝑡)

with a natural rescaling.

We begin with a seemingly loose bound that will, however, be sufficient.

Lemma 2.8.1. If 𝑓 , 𝑔, ℎ ∈ ℓ2(R) and 𝛾 ∈ ℓ∞(R), then for any norm |||·|||, we have
that�������
�������
�������
∫ ∞

−∞
𝛾(𝜔) 𝑨̂ 𝑓 (𝜔)† ★ 𝑨̂ 𝑓 (𝜔)d𝜔 −

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝑔(𝜔̄) 𝑨̂ℎ (𝜔̄)† ★ 𝑨̂ℎ (𝜔̄)

�������
�������
�������

≤
∑︁
𝜈,𝜈′∈𝐵

������(𝑨𝜈)† ★ 𝑨𝜈′
�������������

∫ ∞

−∞
𝛾(𝜔) 𝑓 ∗(𝜔−𝜈) 𝑓 (𝜔−𝜈′)d𝜔 −

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝑔(𝜔̄)F̄
(
ℎ(𝑡) · e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(
ℎ(𝑡) · e(i𝜈′𝑡)

)
(𝜔̄)

�������,
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where ★ stands for any operation that is distributive with +, e.g., matrix product
★ = · or tensor product ★ = ⊗.

Directly applying the above for the original Hamiltonian 𝑯 suffers from the number
of the Bohr frequencies |𝐵(𝑯) |, which can generally scale with the Hilbert space
dimension if the eigenvalue differences are nondegenerate. However, we will see that
the above becomes sufficiently stringent if we consider a rounded Hamiltonian 𝑯̄,
substantially reducing the number of distinct Bohr frequencies

��𝐵(𝑯̄)�� while staying
close to the original Hamiltonian 𝑯.

Proof. We use the defining decomposition of the continuous operator Fourier
Transform from Proposition 2.5.2

𝑨̂ 𝑓 (𝜔) =
∑︁
𝜈∈𝐵

𝑓 (𝜔 − 𝜈)𝑨𝜈,

and its discrete counterpart

𝑨̂ℎ (𝜔̄) =
∑︁
𝜈∈𝐵
F̄

(
ℎ(𝑡) · ei𝜈𝑡

)
(𝜔̄)𝑨𝜈,

where F̄ denotes the discrete Fourier Transform defined via F̄ (ℎ(𝑡)) (𝜔̄) = 1√
𝑁

∑
𝑡∈𝑆⌈𝑁 ⌋𝑡0

ℎ(𝑡)e−i𝜔̄𝑡 ,

where 𝑡0 = 2𝜋
𝑁𝜔0

.

Due to the distributivity of + and ★we have∫ ∞

−∞
𝛾(𝜔) 𝑨̂ 𝑓 (𝜔)† ★ 𝑨̂ 𝑓 (𝜔)d𝜔 −

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝑔(𝜔̄) 𝑨̂ℎ (𝜔̄)† ★ 𝑨̂ℎ (𝜔̄)

=
∑︁
𝜈,𝜈′∈𝐵

(𝑨𝜈)† ★ 𝑨𝜈′

©­­«
∫ ∞

−∞
𝛾(𝜔) 𝑓 ∗(𝜔−𝜈) 𝑓 (𝜔−𝜈′)d𝜔 −

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝑔(𝜔̄)F̄
(
ℎ(𝑡) · e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(
ℎ(𝑡) · e(i𝜈′𝑡)

)
(𝜔̄)

ª®®¬.
We conclude the proof by using the triangle inequality. ■

We proceed by controlling the discretization error for the scalar integral. To do
so, we also need to regularize the filter function and the transition weight 𝛾(𝜔) by
truncations

𝑓𝑇 (𝑡) := 𝑓 (𝑡) · 1(𝑡 ∈ [−𝑇/2, 𝑇/2))
𝛾𝑊 (𝜔) := 𝛾(𝜔) · 1(𝜔 ∈ [−𝑊/2,𝑊/2)) .
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Lemma 2.8.2 (Discretization error bounds for the integral). Let F̄ denote the discrete
Fourier Transform with parameters 𝑁, 𝜔0, 𝑡0 and consider 𝑓 ∈ ℓ2(R) and 𝛾 ∈ ℓ∞(R)
with truncation parameters 𝑇,𝑊 satisfying 𝑁 ≥ 𝑇/𝑡0 ∈ Z and 𝑁 ≥ 𝑊/𝜔0 ∈ Z.
Then, for each 𝜈, 𝜈′ ∈ [−𝐾, 𝐾],��������
∫ ∞

−∞
𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′)︸                             ︷︷                             ︸

𝑔(𝜔):=

d𝜔 −
∑︁

𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾𝑊 (𝜔̄)F̄
(√
𝑡0 𝑓𝑇 (𝑡) · e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(√
𝑡0 𝑓𝑇 (𝑡) · e(i𝜈

′𝑡)
)
(𝜔̄)

�������� ≤ 𝜖
holds provided the following conditions: 44∑︁

𝑘∈Z
𝜔0∥𝑔(𝜔) − 𝑔(𝑘𝜔0)∥ [𝑘𝜔0,(𝑘+1)𝜔0) ≤

𝜖

2
, (2.55)

and∑︁
𝑡∈𝑆⌈𝑁 ⌋𝑡0

𝑡0∥ 𝑓𝑇 (𝑡) − 𝑓𝑇 (𝑡)∥ [𝑡,𝑡+𝑡0) ≤ 𝛿, 𝑡0∥ 𝑓𝑇 (𝑡)∥∞𝑇 (𝑊 + 𝐾) ≤ 𝛿, ∥ 𝑓 − 𝑓𝑇 ∥1 ≤ (
√

2𝜋 − 2)𝛿,

(2.56)

where 𝛿 = min
(

𝜖
4𝑊 ∥𝛾𝑊 ∥∞ (∥ 𝑓 ∥1+1) , 2

)
.45

Proof. By (2.55) we have that�����∫R 𝑔(𝜔)d𝜔 −∑︁
𝑘∈Z

𝑔(𝑘𝜔0)𝜔0

����� ≤∑︁
𝑘∈Z

�����∫ (𝑘+1)𝜔0

𝑘𝜔0

𝑔(𝜔) − 𝑔(𝑘𝜔0)d𝜔
����� (2.57)

≤
∑︁
𝑘∈Z

𝜔0∥𝑔(𝜔) − 𝑔(𝑘𝜔0)∥ [𝑘𝜔0,(𝑘+1)𝜔0) ≤
𝜖

2
.

44Note that the definition of 𝑔(𝜔) depends on the values 𝜈, 𝜈′, however we do not explicitly indicate
this dependence for ease of notation.

45Note that in case 𝑁 is odd in order to match the spacing of the grid 𝑆⌈𝑁 ⌋ , the intervals
[𝑘𝜔0, (𝑘 + 1)𝜔0) should be changed to [(𝑘 − 1

2 )𝜔0, (𝑘 + 1
2 )𝜔0) and analogously the endpoints of

[𝑡, 𝑡 + 𝑡0) should be shifted to 𝑡 ± 𝑡0/2.
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Also observe that due to (2.56) we have for all 𝜔 ∈ R that∑︁
𝑡∈𝑆⌈𝑁 ⌋𝑡0

𝑡0∥ 𝑓𝑇 (𝑡)e−i𝜔𝑡 − 𝑓𝑇 (𝑡)e−i𝜔𝑡 ∥ [𝑡,𝑡+𝑡0)

≤
∑︁
𝑡∈𝑆⌈𝑁 ⌋𝑡0

𝑡0∥ 𝑓𝑇 (𝑡)e−i𝜔𝑡 − 𝑓𝑇 (𝑡)e−i𝜔𝑡 ∥ [𝑡,𝑡+𝑡0) + 𝑡0∥ 𝑓𝑇 (𝑡)e−i𝜔𝑡 − 𝑓𝑇 (𝑡)e−i𝜔𝑡 ∥ [𝑡,𝑡+𝑡0)

≤
∑︁
𝑡∈𝑆⌈𝑁 ⌋𝑡0

𝑡0∥ 𝑓𝑇 (𝑡) − 𝑓𝑇 (𝑡)∥ [𝑡,𝑡+𝑡0) + 𝑡0 | 𝑓𝑇 (𝑡) |∥e−i𝜔𝑡 − e−i𝜔𝑡 ∥ [𝑡,𝑡+𝑡0)

≤
∑︁
𝑡∈𝑆⌈𝑁 ⌋𝑡0

𝑡0∥ 𝑓𝑇 (𝑡) − 𝑓𝑇 (𝑡)∥ [𝑡,𝑡+𝑡0) + 𝑡0 | 𝑓𝑇 (𝑡) |𝑡0 |𝜔|

≤ 𝛿 + 𝑡0∥ 𝑓𝑇 (𝑡)∥∞𝑇 |𝜔|.

Next we define ˜̂
𝑓𝑇 (𝜔) := 𝑡0√

2𝜋

∑
𝑡∈𝑆𝑡0 𝑓𝑇 (𝑡)e

−i𝜔𝑡 . The above two inequalities imply
similarly to (2.57) that for all 𝜔 satisfying |𝜔 | ≤ 𝑊 + 𝐾 we have

| ˜̂
𝑓𝑇 (𝜔) − 𝑓 (𝜔) | ≤

���� ˜̂
𝑓𝑇 (𝜔) −

1
√

2𝜋

∫
𝑓𝑇 (𝑡)e−i𝜔𝑡d𝑡

���� + ���� 1
√

2𝜋

∫
( 𝑓𝑇 (𝑡) − 𝑓 (𝑡))e−i𝜔𝑡d𝑡

����
≤

∑︁
𝑡∈𝑆𝑡0

����� 𝑡0√2𝜋
𝑓𝑇 (𝑡)e−i𝜔𝑡 − 1

√
2𝜋

∫ 𝑡+𝑡0

𝑡

𝑓𝑇 (𝑡)e−i𝜔𝑡d𝑡

����� + (√2𝜋 − 2) 𝛿
√

2𝜋

=
1
√

2𝜋

∑︁
𝑡∈𝑆𝑡0

�����∫ 𝑡+𝑡0

𝑡

𝑓𝑇 (𝑡)e−i𝜔𝑡 − 𝑓𝑇 (𝑡)e−i𝜔𝑡d𝑡

����� + (√2𝜋 − 2) 𝛿
√

2𝜋

≤ 2𝛿
√

2𝜋
+ (
√

2𝜋 − 2) 𝛿
√

2𝜋

= 𝛿 = min
(

𝜖

4𝑊 ∥𝛾𝑊 ∥∞(∥ 𝑓 ∥1 + 1) , 2
)
. (2.58)

Let 𝑔̃(𝜔) := 𝛾𝑊 (𝜔) ˜̂
𝑓 ∗
𝑇
(𝜔 − 𝜈) ˜̂

𝑓𝑇 (𝜔 − 𝜈′). Considering that |𝜈 |, |𝜈′| ≤ 𝐾 we get that
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for all 𝜔 ∈ R

|𝑔(𝜔) − 𝑔̃(𝜔) |
≤ |𝛾𝑊 (𝜔) |(
| 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′) − 𝑓 ∗(𝜔 − 𝜈) ˜̂

𝑓𝑇 (𝜔 − 𝜈′) | + | 𝑓 ∗(𝜔 − 𝜈) ˜̂
𝑓𝑇 (𝜔 − 𝜈′) − ˜̂

𝑓 ∗𝑇 (𝜔 − 𝜈)
˜̂
𝑓𝑇 (𝜔 − 𝜈′) |

)
= |𝛾𝑊 (𝜔) |

(
| 𝑓 ∗(𝜔 − 𝜈) | | 𝑓 (𝜔 − 𝜈′) − ˜̂

𝑓𝑇 (𝜔 − 𝜈′) | + | 𝑓 ∗(𝜔 − 𝜈) − ˜̂
𝑓 ∗𝑇 (𝜔 − 𝜈) | |

˜̂
𝑓𝑇 (𝜔 − 𝜈′) |

)
≤ 𝛿 |𝛾𝑊 (𝜔) |

(
| 𝑓 ∗(𝜔 − 𝜈) | + | ˜̂

𝑓𝑇 (𝜔 − 𝜈′) |
)

(by (2.58))

≤ 𝛿 |𝛾𝑊 (𝜔) |
(
| 𝑓 ∗(𝜔 − 𝜈) | + | 𝑓 (𝜔 − 𝜈′) | + | ˜̂

𝑓𝑇 (𝜔 − 𝜈′) − 𝑓 (𝜔 − 𝜈′) |
)

≤ 𝛿 |𝛾𝑊 (𝜔) | (2∥ 𝑓 ∥1 + 2) (by (2.58))

≤ 𝜖

2𝑊
. (by (2.58))

This implies�����∑︁
𝑘∈Z

𝜔0(𝑔(𝑘𝜔0) − 𝑔̃(𝑘𝜔0))
����� ≤ 𝜔0

∑︁
𝑘∈Z
|𝑔(𝑘𝜔0) − 𝑔̃(𝑘𝜔0) | ≤

∑︁
𝑘∈Z

𝑘𝜔0∈[−𝑊/2,𝑊/2)

𝜖𝜔0
2𝑊
≤ 𝜖

2
,

(2.59)

showing that�����∫R 𝑔(𝜔)d𝜔 −∑︁
𝑘∈Z

𝜔0𝑔̃(𝑘𝜔0)
�����

=

�����∫R 𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′)d𝜔 −∑︁
𝑘∈Z

𝜔0𝛾𝑊 (𝑘𝜔0) ˜̂
𝑓 ∗𝑇 (𝑘𝜔0 − 𝜈) ˜̂

𝑓𝑇 (𝑘𝜔0 − 𝜈′)
�����

≤
�����∫R 𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′)d𝜔 −∑︁

𝑘∈Z
𝜔0𝛾𝑊 (𝑘𝜔0) 𝑓 ∗(𝑘𝜔0 − 𝜈) 𝑓 (𝑘𝜔0 − 𝜈′)

�����
+

�����𝜔0
∑︁
𝑘∈Z

𝛾𝑊 (𝑘𝜔0) 𝑓 ∗(𝑘𝜔0 − 𝜈) 𝑓 (𝑘𝜔0 − 𝜈′) − 𝛾𝑊 (𝑘𝜔0) ˜̂
𝑓 ∗𝑇 (𝑘𝜔0 − 𝜈) ˜̂

𝑓𝑇 (𝑘𝜔0 − 𝜈′)
�����

≤ 𝜖 . (by (2.57) and (2.59))
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We conclude the proof by observing that due to𝑊 ≤ 𝑁𝜔0, 𝑇 ≤ 𝑁𝑡0, and 𝜔0𝑡0
2𝜋 = 1

𝑁

we have∑︁
𝑘∈Z

𝜔0𝑔̃(𝑘𝜔0) = 𝜔0
∑︁
𝜔̄∈Z𝜔0

𝛾𝑊 (𝜔̄) ˜̂
𝑓 ∗𝑇 (𝜔̄ − 𝜈)

˜̂
𝑓𝑇 (𝜔̄ − 𝜈′)

=
𝜔0𝑡

2
0

2𝜋

∑︁
𝜔̄∈Z𝜔0

𝛾𝑊 (𝜔̄)©­«
∑︁
𝑡∈Z𝑡0

𝑓𝑇 (𝑡)e−i(𝜔̄−𝜈)𝑡ª®¬
∗©­«

∑︁
𝑡∈Z𝑡0

𝑓𝑇 (𝑡)e−i(𝜔̄−𝜈′)𝑡ª®¬
=

1
𝑁

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾𝑊 (𝜔̄)
©­­«

∑︁
𝑡∈𝑆⌈𝑁 ⌋𝑡0

√
𝑡0 𝑓𝑇 (𝑡)ei𝜈𝑡e−i𝜔̄𝑡ª®®¬

∗©­­«
∑︁
𝑡∈𝑆⌈𝑁 ⌋𝑡0

√
𝑡0 𝑓𝑇 (𝑡)ei𝜈′𝑡e−i𝜔̄𝑡ª®®¬

=
∑︁

𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾𝑊 (𝜔̄)F̄
(√
𝑡0 𝑓𝑇 (𝑡) · e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(√
𝑡0 𝑓𝑇 (𝑡) · e(i𝜈

′𝑡)
)
(𝜔̄).

■

As a sanity check, the above implies that the discretized Lindbladian convergences to
the continuum in the limit.

Theorem 2.8.1 (Discretizations converge to the continuum). If 𝛾 ∈ ℓ∞(R), 𝑓 ∈ ℓ2(R),
and 𝛾, 𝑓 are continuous almost everywhere (i.e., the set of points of discontinuity
has measure zero) while 𝑓 is bounded on every finite interval, then

lim
𝑊,𝑇→∞

lim
𝑁→∞

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾𝑊 (𝜔̄)
(
𝑨̂ 𝑓𝑇
(𝜔̄)† [·] 𝑨̂ 𝑓𝑇

(𝜔̄) − 1
2
{ 𝑨̂ 𝑓𝑇

(𝜔̄)† 𝑨̂ 𝑓𝑇
(𝜔̄), ·}

)
=

∫ ∞

−∞
𝛾(𝜔)

(
𝑨̂ 𝑓 (𝜔)† [·] 𝑨̂ 𝑓 (𝜔) −

1
2
{ 𝑨̂ 𝑓 (𝜔)† 𝑨̂ 𝑓 (𝜔), ·}

)
d𝜔,

and if 𝛾 ≥ 0, then also

lim
𝑊,𝑇→∞

lim
𝑁→∞

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

√︁
𝛾𝑊 (𝜔̄)𝛾𝑊 (−𝜔̄) 𝑨̂ 𝑓𝑇

(𝜔̄) ⊗ 𝑨̂ 𝑓𝑇
(𝜔̄)∗

− 𝛾(𝜔̄)
2

(
𝑨̂ 𝑓𝑇
(𝜔̄)† 𝑨̂ 𝑓𝑇

(𝜔̄) ⊗ 𝑰 + 𝑰 ⊗ 𝑨̂ 𝑓𝑇
(𝜔̄)†∗ 𝑨̂ 𝑓𝑇

(𝜔̄)∗
)

=

∫ ∞

−∞

√︁
𝛾(𝜔)𝛾(−𝜔) 𝑨̂ 𝑓 (𝜔) ⊗ 𝑨̂ 𝑓 (𝜔)∗

− 𝛾(𝜔)
2

(
𝑨̂ 𝑓 (𝜔)† 𝑨̂ 𝑓 (𝜔) ⊗ 𝑰 + 𝑰 ⊗ 𝑨̂ 𝑓 (𝜔)†∗ 𝑨̂ 𝑓 (𝜔)∗

)
d𝜔,

where 𝜔0 = 𝑡0 =
√︁

2𝜋/𝑁 and 𝑓𝑇 (𝑡) :=
√
𝑡0 𝑓𝑇 (𝑡).
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Proof. Due to Lemma 2.8.1, it suffices to prove for all 𝜈, 𝜈′ ∈ 𝐵 that

lim
𝑊,𝑇→∞

lim
𝑁→∞

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾𝑊 (𝜔̄)F̄
(
𝑓𝑇 (𝑡) · e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(
𝑓𝑇 (𝑡) · e(i𝜈

′𝑡)
)
(𝜔̄)

=

∫ ∞

−∞
𝛾(𝜔) 𝑓 ∗(𝜔−𝜈) 𝑓 (𝜔−𝜈′)d𝜔,

lim
𝑊,𝑇→∞

lim
𝑁→∞

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

√︁
𝛾𝑊 (𝜔̄)𝛾𝑊 (−𝜔̄)F̄

(
𝑓𝑇 (𝑡) · e(i𝜈𝑡)

)
(𝜔̄)F̄

(
𝑓𝑇 (𝑡) · e(i𝜈

′𝑡)
)∗
(𝜔̄)

=

∫ ∞

−∞

√︁
𝛾(𝜔)𝛾(−𝜔) 𝑓 (𝜔−𝜈) 𝑓 ∗(𝜔−𝜈′)d𝜔. (2.60)

Since 𝑓 ∈ ℓ2(R), we have 𝑓 ∈ ℓ2(R) and therefore by Hölder’s inequality we get that
𝛾(𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′) ∈ ℓ1(R), which then implies∫ ∞

−∞
𝛾(𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′)d𝜔 = lim

𝑊→∞

∫ 𝑊

−𝑊
𝛾(𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′)d𝜔.

Since 𝑓 = lim𝑇→∞ 𝑓𝑇 , Parseval’s Theorem implies 𝑓 = lim𝑇→∞ 𝑓𝑇 and so by Hölder’s
inequality we get∫ 𝑊

−𝑊
𝛾(𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′)d𝜔 = lim

𝑇→∞

∫ 𝑊

−𝑊
𝛾(𝜔) 𝑓 ∗𝑇 (𝜔 − 𝜈) 𝑓𝑇 (𝜔 − 𝜈′)d𝜔.

As 𝑓𝑇 is bounded, continuous almost everywhere, and has compact support, the
Lebesgue-Vitali Theorem [137, 154, Theorem 11.33] implies that it is Riemann
integrable. Therefore, 𝑓𝑇 is bounded and continuous which similarly implies that
𝑔(𝜔) := 𝛾𝑊 (𝜔) 𝑓 ∗𝑇 (𝜔 − 𝜈) 𝑓𝑇 (𝜔 − 𝜈′) is Riemann integrable on [−𝑊,𝑊].

Since 𝑓 ← 𝑓𝑇 , lim𝑁→0 𝜔0 = lim𝑁→0 𝑡0 = 0, and 𝑓𝑇 (𝑡), 𝑔(𝜔) are Riemann integrable
(c.f. [48, Theorem 8.26.]), for every 𝜖 > 0 (2.55)-(2.56) are satisfied for large enough
𝑁 . Thus Lemma 2.8.2 implies that∫ 𝑊

−𝑊
𝛾(𝜔) 𝑓 ∗𝑇 (𝜔 − 𝜈) 𝑓𝑇 (𝜔 − 𝜈′)d𝜔 = lim

𝑁→∞

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾𝑊 (𝜔̄)F̄
(
𝑓𝑇 (𝑡) · e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(
𝑓𝑇 (𝑡) · e(i𝜈

′𝑡)
)
(𝜔̄).

Equation (2.60) can be analogously proven after replacing 𝛾(𝜔) with
√︁
𝛾(𝜔)𝛾(−𝜔)

throughout the argument. ■

We believe that a similar result can be shown for any 𝛾 ∈ ℓ∞(R), 𝑓 ∈ ℓ2(R) without
the other assumptions in Theorem 2.8.1 by applying a further approximation with
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the help of mollifiers. While such an asymptotic result is conceptually elegant,
for quantum algorithm implementation, we need quantitative, nonasymptotic error
bounds for the particular functions we encounter.

Proposition 2.8.1 (Discretization error of Lindbladians and discriminant proxies). In
the setting of Lemma 2.8.2, assume continuity and boundedness assumption for 𝑓 , 𝛾
as in Theorem 2.8.1 with normalization ∥𝛾∥∞, ∥ 𝑓 ∥2 ≤ 1. Consider a single jump
operator 𝑨 with ∥𝑨∥ ≤ 1, assume that 𝛾(𝜔) and

√︁
𝛾(𝜔)𝛾(−𝜔) are 𝐶-Lipschitz

continuous, 𝑓 is (𝐷 · ∥ 𝑓 ∥∞)-Lipschitz continuous, 𝑓𝑇 is (𝐿 · ∥ 𝑓𝑇 ∥∞)-Lipschitz
continuous on [−𝑇/2, 𝑇/2), and assume the following conditions:

∥ 𝑓𝑇 − 𝑓 ∥2 ≤
𝜖

64
,

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝑡0

𝑡0 | 𝑓 (𝑡) − 𝑓𝑇 (𝑡) |2 ≤
( 𝜖
64

)2
,

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝑡0

𝑡0 | 𝑓 (𝑡) |2 ≤ 1

∫ ∞

−∞
| 𝑓 (𝜔)1( |𝜔| ≥ 𝑊 − 2∥𝑯∥) |2d𝜔 ≤ 𝜖

8
(

256∥𝑯∥𝑇
𝜖
+ 1

)2 ,
and ∥ 𝑓 − 𝑓𝑇 ∥1 ≤ (

√
2𝜋 − 2)𝛿 for 𝛿 = min

(
𝜖

32
(

256∥𝑯 ∥𝑇
𝜖
+1

)2
𝑊 (∥ 𝑓 ∥1+1)

, 2
)
, and

𝑡0 ≤
𝛿

𝑇 ∥ 𝑓𝑇 ∥∞
min

(
1

𝑊 + 2∥𝑯∥ ,
1
𝐿

)
,

𝜔0 ≤
𝜖

16
·min

©­­«
1

8𝑇
,

1

𝑊 (𝐶 + 2𝐷)∥ 𝑓 ∥2∞
(

256∥𝑯∥𝑇
𝜖
+ 1

)2 ª®®¬. (2.61)

Then, in the notation of Corollary 2.6.1-2.6.2,

∥L( 𝑓 ,𝑯) − L̄ (𝑊)( 𝑓 ,𝑯) ∥1−1 ≤ 𝜖, ∥D( 𝑓 ,𝑯) − D̄
(𝑊)
( 𝑓 ,𝑯) ∥ ≤ 𝜖,

where the discretized Lindbladian and discriminant proxy uses 𝛾𝑊 (𝜔) instead of
𝛾(𝜔). Moreover, if∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

���F̄ (
𝑓 (𝑡)e(i𝜈′𝑡)

)
(𝜔̄)1( |𝜔̄| ≥ 𝑊)

���2 ≤ 𝜖

8
(

256∥𝑯∥𝑇
𝜖
+ 1

)2 for each |𝜈 | ≤ 2∥𝑯∥,

(2.62)

then

∥L( 𝑓 ,𝑯) − L̄( 𝑓 ,𝑯) ∥1−1 ≤ 𝜖, ∥D( 𝑓 ,𝑯) − D̄( 𝑓 ,𝑯) ∥ ≤ 𝜖 .
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Proof. Let 𝑯̄ be the Hamiltonian obtained by rounding the spectrum of 𝑯 (down
in absolute value) to Z𝜂; this is crucial before we invoke Lemma 2.8.1. Our proof
proceeds using the following triangle inequalities:

∥L( 𝑓 ,𝑯) − L̃( 𝑓 ,𝑯) ∥1−1 ≤ ∥L( 𝑓 ,𝑯) − L( 𝑓 ,𝑯̄) ∥1−1 + ∥L( 𝑓 ,𝑯̄) − L̃( 𝑓 ,𝑯̄) ∥1−1 + ∥L̃( 𝑓 ,𝑯̄) − L̃( 𝑓 ,𝑯) ∥1−1

∥D( 𝑓 ,𝑯) − D̃( 𝑓 ,𝑯) ∥ ≤ ∥D( 𝑓 ,𝑯) − D( 𝑓 ,𝑯̄) ∥ + ∥D( 𝑓 ,𝑯̄) − D̃( 𝑓 ,𝑯̄) ∥ + ∥D̃( 𝑓 ,𝑯̄) − D̃( 𝑓 ,𝑯) ∥,

where L̃( 𝑓 ,𝑯) stands for either L̄ (𝑊)( 𝑓 ,𝑯) or L̄( 𝑓 ,𝑯) and D̃( 𝑓 ,𝑯) for either D̄
(𝑊)
( 𝑓 ,𝑯) or

D̄( 𝑓 ,𝑯) .

Choosing 𝜂 := 𝜖
64𝑇 , we get by Corollary 2.6.2 that

∥L( 𝑓 ,𝑯) − L( 𝑓 ,𝑯̄) ∥1−1 ≤ ∥L( 𝑓 ,𝑯) − L( 𝑓𝑇 ,𝑯̄) ∥1−1 + ∥L( 𝑓𝑇 ,𝑯̄) − L( 𝑓 ,𝑯̄) ∥1−1

≤ 8(𝑇𝜂 + ∥ 𝑓𝑇 − 𝑓 ∥2) ≤
𝜖

8
,

∥D( 𝑓 ,𝑯) − D( 𝑓 ,𝑯̄) ∥ ≤ ∥D( 𝑓 ,𝑯) − D( 𝑓𝑇 ,𝑯̄) ∥ + ∥D( 𝑓𝑇 ,𝑯̄) − D( 𝑓 ,𝑯̄) ∥

≤ 8(𝑇𝜂 + ∥ 𝑓𝑇 − 𝑓 ∥2) ≤
𝜖

8
,

and similarly by Corollary 2.6.1 that

∥L̃( 𝑓 ,𝑯) − L̃( 𝑓 ,𝑯̄) ∥1−1 ≤ ∥L̃( 𝑓 ,𝑯) − L̃( 𝑓𝑇 ,𝑯̄) ∥1−1 + ∥L̃( 𝑓𝑇 ,𝑯̄) − L̃( 𝑓 ,𝑯̄) ∥1−1 ≤
𝜖

8
,

∥D̃( 𝑓 ,𝑯) − D̃( 𝑓 ,𝑯̄) ∥ ≤ ∥D̃( 𝑓 ,𝑯) − D̃( 𝑓𝑇 ,𝑯̄) ∥ + ∥D̃( 𝑓𝑇 ,𝑯̄) − D̃( 𝑓 ,𝑯̄) ∥ ≤
𝜖

8
.

Therefore, it suffices to show that ∥L( 𝑓 ,𝑯̄) − L̃( 𝑓 ,𝑯̄) ∥1−1, ∥D( 𝑓 ,𝑯̄) − D̃( 𝑓 ,𝑯̄) ∥ ≤ 3𝜖
4 .

Let 𝛾̃ be either 𝛾 or 𝛾𝑊 matching the definition of L̃, and D̃. We apply Lemma 2.8.1
with ★ = ·𝝆· and ★ = ·, showing that the difference between the discrete and
continuous generators ∥L( 𝑓 ,𝑯̄) − L̃( 𝑓 ,𝑯̄) ∥1−1, ∥D( 𝑓 ,𝑯̄) − D̃( 𝑓 ,𝑯̄) ∥ can be bounded
by

2
(
256∥𝑯∥𝑇

𝜖
+ 1

)2�������
∫ ∞

−∞
𝛾(𝜔) 𝑓 ∗(𝜔−𝜈) 𝑓 (𝜔−𝜈′)d𝜔 −

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾̃(𝜔̄)F̄
(
𝑓𝑇 (𝑡) · e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(
𝑓𝑇 (𝑡) · e(i𝜈

′𝑡)
)
(𝜔̄)

�������,
(2.63)

since the number of Bohr frequencies for the discretized Hamiltonian 𝑯̄ satisfies��𝐵(𝑯̄)�� ≤ 4∥𝑯̄∥
𝜂
+ 1 ≤ 4∥𝑯∥

𝜂
+ 1 =

256∥𝑯∥𝑇
𝜖
+ 1.
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We further bound ∥L( 𝑓 ,𝑯̄) − L̃( 𝑓 ,𝑯̄) ∥1−1 in three steps according to the following
triangle inequality:�������
∫ ∞

−∞
𝛾(𝜔) 𝑓 ∗(𝜔−𝜈) 𝑓 (𝜔−𝜈′)d𝜔 −

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾̃(𝜔̄)F̄
(
𝑓 (𝑡)e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(
𝑓 (𝑡)e(i𝜈′𝑡)

)
(𝜔̄)

�������
≤

����∫ ∞

−∞
𝛾(𝜔) 𝑓 ∗(𝜔−𝜈) 𝑓 (𝜔−𝜈′)d𝜔 −

∫ ∞

−∞
𝛾𝑊 (𝜔) 𝑓 ∗(𝜔−𝜈) 𝑓 (𝜔−𝜈′)d𝜔

���� (2.64)

+

�������
∫ ∞

−∞
𝛾𝑊 (𝜔) 𝑓 ∗(𝜔−𝜈) 𝑓 (𝜔−𝜈′)d𝜔 −

∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

𝛾𝑊 (𝜔̄)F̄
(
𝑓 (𝑡)e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(
𝑓 (𝑡)e(i𝜈′𝑡)

)
(𝜔̄)

�������.
(2.65)

+

�������
∑︁

𝜔̄∈𝑆⌈𝑁 ⌋𝜔0

(𝛾𝑊 (𝜔̄) − 𝛾̃(𝜔̄))F̄
(
𝑓 (𝑡)e(i𝜈𝑡)

)∗
(𝜔̄)F̄

(
𝑓 (𝑡)e(i𝜈′𝑡)

)
(𝜔̄)

�������. (2.66)

Considering that |𝜈 |, |𝜈′| ≤ 2∥𝑯∥ and using Hölder’s inequality, we can see that
truncation at threshold 𝑊 introduces error ≤ 𝜖

8
(

256∥𝑯 ∥𝑇
𝜖
+1

)2 ≤ 𝜖

8|𝐵(𝑯̄) |2 in (2.64),

inducing no more than 𝜖
4 error in (2.63). If 𝛾̃ := 𝛾, and (2.62) holds, then the

analogous argument shows the same bound for (2.66).

We complete our proof by showing that (2.65) is bounded by 𝜖

8
(

256∥𝑯 ∥𝑇
𝜖
+1

)2 , by

applying Lemma 2.8.2, i.e., showing that (2.55)-(2.56) are fulfilled. In Lemma 2.8.2
we set 𝐾 = 2∥𝑯∥ and our accuracy goal 𝜖 ← 𝜖

8
(

256∥𝑯 ∥𝑇
𝜖
+1

)2 . To bound (2.55) we

observe that

𝑔(𝜔) := 𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓 (𝜔 − 𝜈′)

is (𝐶 + 2𝐷)∥ 𝑓 ∥2∞-Lipschitz continuous:

|𝑔(𝜔 + 𝛿) − 𝑔(𝜔) |
≤

��𝛾𝑊 (𝜔 + 𝛿) 𝑓 ∗(𝜔 + 𝛿 − 𝜈) 𝑓𝑇 (𝜔 + 𝛿 − 𝜈′) − 𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 + 𝛿 − 𝜈) 𝑓𝑇 (𝜔 + 𝛿 − 𝜈′)��
+

��𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 + 𝛿 − 𝜈) 𝑓𝑇 (𝜔 + 𝛿 − 𝜈′) − 𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓𝑇 (𝜔 + 𝛿 − 𝜈′)��
+

��𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓𝑇 (𝜔 + 𝛿 − 𝜈′) − 𝛾𝑊 (𝜔) 𝑓 ∗(𝜔 − 𝜈) 𝑓𝑇 (𝜔 − 𝜈′)��
≤(𝐶 + 2𝐷)∥ 𝑓 ∥2∞ · 𝛿,

therefore by (2.61) we can upper bound the left-hand side of (2.55) as

𝑊𝜔0(𝐶 + 2𝐷)∥ 𝑓 ∥2∞ ≤
𝜖

16
( 256∥𝑯∥𝑇

𝜖
+ 1

)2 .
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Now observe that due to the (𝐿 · ∥ 𝑓𝑇 ∥∞)-Lipschitz continuity of 𝑓𝑇 we have∑︁
𝑡∈𝑆⌈𝑁 ⌋𝑡0

𝑡0∥ 𝑓𝑇 (𝑡) − 𝑓𝑇 (𝑡)∥ [𝑡,𝑡+𝑡0) ≤
∑︁

𝑡∈𝑆⌈𝑁 ⌋𝑡0
∩[−𝑇/2,𝑇/2)

𝑡20 (𝐿 · ∥ 𝑓𝑇 ∥∞) = 𝑇𝑡0(𝐿 · ∥ 𝑓𝑇 ∥∞) ≤ 𝛿.

Repeating the above argument replacing 𝛾(𝜔) by
√︁
𝛾(𝜔)𝛾(−𝜔) proves the same

bound for ∥D( 𝑓 ,𝑯̄) − D̃( 𝑓 ,𝑯̄) ∥. ■

Lemma 2.8.3. Both functions 𝛾𝐺 (𝜔) := (e4𝛽𝜔+1)−1 and 𝛾𝑀 (𝜔) := min(1, e−𝛽𝜔) are
𝛽-Lipschitz continuous for all 𝛽 ≥ 0. Moreover,

√︁
𝛾𝐺 (𝜔)𝛾𝐺 (−𝜔) and

√︁
𝛾𝑀 (𝜔)𝛾𝑀 (−𝜔)

are 𝛽

2 -Lipschitz continuous for all 𝛽 ≥ 0.

Proof. A simple calculation shows that the absolute value of the derivative of
(e4𝛽𝜔 + 1)−1 is largest at 0, where it is 𝛽, therefore it is 𝛽-Lipschitz continuous.
Similarly, since min(1, e−𝛽𝜔) is continuous, and the absolute value of the (right)
derivative of min(1, e−𝛽𝜔) is bounded by 𝛽 for every 𝜔 ∈ R, it is also 𝛽-Lipschitz
continuous. Similar elementary calculation shows the 𝛽

2 -Lipschitz continuity of√︁
𝛾𝐺 (𝜔)𝛾𝐺 (−𝜔) and

√︁
𝛾𝑀 (𝜔)𝛾𝑀 (−𝜔). ■

Note that since we apply our generic bound Proposition 2.8.1 to the following nice
functions, we get rather loose estimates of 𝑁 , which are certainly off by polynomial
factors from the tight values. However, since algorithmically, we only pay (poly-
)logarithmic cost in 𝑁 , the looseness of our bounds probably only results in constant
overheads.

Corollary 2.8.1 (Discretization error of “finite-time” Davies generators). Let 𝑓 (𝑡) =√︃
1
𝑇
1(𝑡 ∈ [−𝑇/2, 𝑇/2)) and 𝜖 > 0. Assuming the normalization condition (2.10),

if ∥𝛾∥∞ ≤ 1 and
√︁
𝛾(𝜔)𝛾(−𝜔) are 𝛽-Lipschitz continuous (e.g., Metropolis or

Glauber), ∥𝛾∥∞ ≤ 1, then setting 𝑁 = 2𝑛 for 𝑛 = Θ

(
log

(
2|𝐴| (∥𝑯∥+1) (𝑇+1) (𝛽+1)

𝜖

))
with

appropriate constants ensures that

∥L( 𝑓 ,𝑯) − L̄( 𝑓 ,𝑯) ∥1−1 ≤ 𝜖, ∥D( 𝑓 ,𝑯) − D̄( 𝑓 ,𝑯) ∥ ≤ 𝜖 .

where 𝜔0 = 2
𝑇

√︃
2𝜋

(𝐶+1)𝑁 , 𝑡0 = 𝑇
2

√︃
2𝜋(𝐶+1)

𝑁
.

Proof. We use Proposition 2.8.1 for each 𝑨𝑎 setting 𝜖′← 𝜖
|𝐴| to prove the claim. First

observe that 𝑓𝑇 = 𝑓 , and ∥ 𝑓 ∥2 = 1 =
∑
𝜔̄∈𝑆⌈𝑁 ⌋𝑡0

𝑡0 | 𝑓 (𝑡) |2 = 1. As 𝑓 (𝑤) = sinc(𝑇𝜔/2),
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and | sinc(𝑇𝜔/2) | ≤ 1, and | 𝜔d𝜔 sinc(𝑇𝜔/2) | ≤ 𝑇/4 we get that 𝐷 ≤ 𝑇
4 and trivially

𝐿 = 0.

Let us recall the tail bound on the discrete Fourier Transform from Proposition 2.6.6∑︁
|𝜔̄|>𝑚𝜔0

���F̄ (
𝑓 (𝑡) · e(i𝜈𝑡)

)
(𝜔̄ − 𝜈)

���2 ≤ 𝜋

𝑇𝑚𝜔0
.

Similar bound holds for the continuous Fourier Transform 𝑓 (𝜔) =
√︃

𝑇
2𝜋 sinc(𝑇𝜔/2)

of the uniform weight function:∫ ∞

−∞
| 𝑓 (𝜔)1( |𝜔| ≥ 𝑊) |2d𝜔 ≤ 𝜋

𝑇𝑊
,

so choosing𝑊 := Θ

((
(∥𝑯∥+1) (𝑇+1)

𝜖 ′

)3)
≥ 2∥𝑯∥ + 8𝜋 𝑇

𝜖 ′

(
256∥𝑯∥𝑇

𝜖 ′ + 1
)2

ensures the nec-

essary tail bounds. Therefore it is easy to see that setting𝑁 = Θ

((
|𝐴| (∥𝑯∥+1) (𝑇+1) (𝛽+1)

𝜖

)O(1))
satisfies all requirements of Proposition 2.8.1. ■

Corollary 2.8.2 (Discretization error of Gaussian Lindbladians and discriminant

proxies). Let 𝑓 (𝑡) = 1√
𝜎
√

2𝜋
𝑒
− 𝑡2

4𝜎2 and 𝜖 > 0. Assuming the normalization condition

(2.10), if ∥𝛾∥∞ ≤ 1 and
√︁
𝛾(𝜔)𝛾(−𝜔) are 𝛽-Lipschitz continuous (e.g., Metropolis

or Glauber), , then setting 𝑁 = 2𝑛 for 𝑛 = Θ

(
log

(
2|𝐴| (∥𝑯∥+1) (𝜎+1/𝜎) (𝛽+1)

𝜖

))
with

appropriate constants ensures

∥L( 𝑓 ,𝑯) − L̄( 𝑓 ,𝑯) ∥1−1 ≤ 𝜖, ∥D( 𝑓 ,𝑯) − D̄( 𝑓 ,𝑯) ∥ ≤ 𝜖,

where 𝜔0 = 1
𝜎

√︃
2𝜋
𝑁

, 𝑡0 = 𝜎

√︃
2𝜋
𝑁

.

Proof. We use Proposition 2.8.1 for each 𝑨𝑎 setting 𝜖 ′ ← 𝜖
|𝐴| to prove the claim.

First observe that ∥ 𝑓 ∥2 = 1 and since 𝑡0 = O(𝜎) we have∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝑡0

𝑡0 | 𝑓 (𝑡) |2 = Θ(1). (2.67)

As 𝑓 (𝑤) =
√︂
𝜎

√︃
2
𝜋
𝑒−𝜎

2𝜔2 , we also get | 𝜔d𝜔 𝑓 (𝑤) |/∥ 𝑓 ∥∞ ≤ 𝜎, so 𝐷 ≤ 𝜎. Since

∥ 𝑓 ∥∞ = ∥ 𝑓𝑇 ∥∞ and | 𝜔d𝑡 𝑓 (𝑡) |/∥ 𝑓 ∥∞ ≤
1

2𝜎 , we get 𝐿 ≤ 1
2𝜎 .

Standard Gaussian tail bound tells us that

∥ 𝑓 − 𝑓𝑇 ∥22 ≤
2

𝑇
√

2𝜋
𝑒
− 𝑇2

2𝜎2 ,
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from which it follows that∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝑡0

𝑡0 | 𝑓 (𝑡) − 𝑓𝑇 (𝑡) |2 ≤
(

2
𝑇
√

2𝜋
+ 2𝑡0
𝜎
√

2𝜋

)
𝑒
− 𝑇2

2𝜎2 ,

implying that it suffices to choose 𝑇 = Θ

(
𝜎
√︁

log(1/𝜖′) + 1
)
.

By (2.67) and Proposition 2.6.7 the Fourier-transformed tail satisfies√√√√√√ ∑︁
𝜔̄∈𝑆⌈𝑁 ⌋𝜔0
| 𝜔̄ | ≥𝑊

��� ˆ̄𝑓 (𝜔̄)
���2 ≤ O (

1
√
𝑁𝜔0𝜎

e−𝑁
2𝜔2

0𝜎
2/2 + 1√︁

𝑁𝑡0/𝜎
e−𝑁

2𝑡20/16𝜎2 + 1
√
𝑊𝜎

e−𝑊
2𝜎2

)
,

so it suffices to choose𝑁 = Ω

((√︁
log(1/𝜖′) + 1

))
and𝑊 = Θ

(
1
𝜎

√︁
log(1/𝜖′) + 1 + 2∥𝑯∥

)
.

Therefore, it is easy to see that setting 𝑁 = Θ

((
|𝐴| (∥𝑯∥+1) (𝜎+1/𝜎) (𝛽+1)

𝜖

)O(1))
satisfies

all requirements of Proposition 2.8.1. ■

2.9 Appendix:Implications for Lindbladians from system-bath interaction
Our algorithmic constructions are closely related to their physical origins, and the
analytic framework conversely sheds light on the thermalization of open quantum
systems. Under physical assumptions, one can microscopically derive a Lindbladian
for a system coupled weakly to a bath (See, e.g., [152]). Among many candidates [56,
58, 139, 150, 170], we mainly focus on the Coarsed Grained Master Equation [121,
134] that enjoys transparent nonasymptotic error bounds and nicely connects to our
algorithmic construction. Recall

L(𝐶𝐺𝑀𝐸) [𝝆] := −i[𝑯𝐿𝑆, 𝝆] +
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝛾(𝜔)

(
𝑨̂𝑎 (𝜔)𝝆𝑨𝑎 (𝜔)† − 1

2
{𝑨𝑎 (𝜔)† 𝑨̂𝑎 (𝜔), 𝝆}

)
d𝜔

(2.68)

=: L𝑢𝑛𝑖 [𝝆] + L𝑑𝑖𝑠𝑠 [𝝆]

and the correlation function 𝛾(𝜔) satisfying the symmetry 𝛾(𝜔)/𝛾(−𝜔) = e−𝛽𝜔.
The Lamb-shift term 46

𝑯𝐿𝑆 :=
∑︁
𝑎∈𝐴

i
2
√

2𝜋𝑇

∫ 𝑇/2

−𝑇/2

∫ 𝑇/2

−𝑇/2
sgn(𝑡1 − 𝑡2)𝑐(𝑡2 − 𝑡1)𝑨𝑎†(𝑡2)𝑨𝑎 (𝑡1)d𝑡2d𝑡1(2.69)

46Compared with [134, Eq.24], the factor of 1√
2𝜋

is due to our Fourier Transform convention.
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depends on the inverse Fourier Transform 𝑐(𝑡) of 𝛾(𝜔), i.e.,

𝑐(𝑡) = 1
√

2𝜋

∫ ∞

−∞
𝛾(𝜔)ei𝜔𝑡d𝜔.

Let us also impose the normalization convention

∥𝑐∥1 ≤
√

2𝜋 (2.70)

which also controls the frequency domain by ∥𝛾∥∞ ≤ ∥𝑐∥1√
2𝜋
≤ 1. Nicely, the strength

of the Lamb-shift term is also suitably normalized:

Lemma 2.9.1 (Norm of Lamb-shift term). For 𝑯𝐿𝑆 as in (2.69),

∥𝑯𝐿𝑆∥ ≤
∥𝑐∥1
2
√

2𝜋






∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎






.
For our normalization conventions (Eq. (2.10), Eq. (2.70)), the RHS would be 1

2 ,
which is comparable to the super-operator norm of the dissipative part (2.13).

Note that if 𝑐(𝑡) is sufficiently smooth (for example, 𝑙-Lipschitz continuous with a not
too large 𝑙), and we can efficiently prepare discretized states proportional to

√︁
|𝑐(𝑡) |

and 𝑐(𝑡)√
|𝑐(𝑡) |

, then we can get a block-encoding of a good approximation of 𝑯𝐿𝑆

1√
2𝜋

∫ 𝑇

−𝑇 |𝑐(𝑡) |d𝑡
by using Hamiltonian simulation time O(𝑇). The key is to prepare states proportional
to

√︁
|𝑐(𝑡2 − 𝑡1) | and 𝑐(𝑡2−𝑡1)√

|𝑐(𝑡2−𝑡1) |
over the domain [−𝑇/2, 𝑇/2] × [−𝑇/2, 𝑇/2]. This

can be done by first preparing a uniform superposition over discretized values of
𝑡1 on the interval [−𝑇/2, 𝑇/2], and also a state proportional to

√︁
|𝑐(𝑡2) | on the

interval [−𝑇,𝑇]. This is a product state, but then we add the first variable to
the second 𝑡2 ← 𝑡2 + 𝑡1 (which we implement in superposition on the register
containing the discretized values of 𝑡2). The resulting new variables 𝑡1, 𝑡2 restricted
to the domain [−𝑇/2, 𝑇/2] × [−𝑇/2, 𝑇/2] have the desired amplitudes. The case of
𝑐(𝑡2−𝑡1)√
|𝑐(𝑡2−𝑡1) |

is completely analogous. Now the block-encoding is simple: prepare a state

proportional 𝑐(𝑡2−𝑡1)√
|𝑐(𝑡2−𝑡1) |

|𝑡1⟩|𝑡2⟩, apply sgn(𝑡2 − 𝑡1)𝑨𝑎 (𝑡2)𝑨𝑎 (𝑡1) and finally unprepare

the state proportional to
√︁
|𝑐(𝑡2 − 𝑡1) | |𝑡1⟩|𝑡2⟩ (run the preparation in reverse). This

block-encoding ensures that we can accurately simulate the above Master Equation
using Theorem 2.3.2.

Compared with our algorithmic construction, the CGME differs in the following
ways. First, it contains a unitary part L𝑢𝑛𝑖, especially the Lamb-shift term 𝑯𝐿𝑆. This
requires additional technical tools to handle, so we temporarily drop this term and
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postpone its discussion to section 2.9. The second difference is less essential: instead
of discrete Fourier Transforms, the Kraus operators are labeled by continuous Bohr
frequencies with appropriate normalizations.

𝑨̂(𝜔) :=
√︂

1
2𝜋𝑇

∫ 𝑇/2

−𝑇/2
e−i𝜔𝑡𝑨(𝑡)d𝑡 =

√︂
1

2𝜋𝑇

∑︁
𝜈∈𝐵(𝑯)

𝑨𝜈
e−i(𝜔−𝜈)𝑇/2 − ei(𝜔−𝜈)𝑇/2

i𝜔
.

Note the Fourier Transform convention. The time scale 𝑇 depends on parameters of
the open system, such as the bath correlation function and the coupling strength [134];
in our error bounds, we will keep 𝑇 as a tunable abstract parameter.

Still, using a similar argument for analyzing the algorithm, we control the fixed
point error for the Lindbladian. In fact, the bounds and the presentation simplify as
discretization errors vanish. The main idea is to introduce the secular approximation
(using notations in section 4.15)

L𝑠𝑒𝑐 :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝛾(𝜔)

(
𝑺̂𝑎 (𝜔) [·]𝑺𝑎 (𝜔)† − 1

2
{𝑺𝑎 (𝜔)†𝑺̂𝑎 (𝜔), ·}

)
d𝜔. (2.71)

Theorem 2.9.1 (Fixed point of the dissipative part). The dissipative part of
the CGME Lindbladian (2.68) (satisfying normalization and symmetry condi-
tions (2.10),(2.12),(2.70)), has an approximate Gibbs fixed point

∥𝝆 𝑓 𝑖𝑥 (L𝑑𝑖𝑠𝑠) − 𝝆𝛽∥1 ≤ O
(√︂

𝛽

𝑇
𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠)

)
.

Since the proof structure is analogous, we present the altogether bounds and derive
them in the following sections.

Proof. Telescope for the fixed points

∥𝝆 𝑓 𝑖𝑥 (L𝑑𝑖𝑠𝑠) − 𝝆𝛽∥1 ≤ ∥𝝆 𝑓 𝑖𝑥 (L𝑑𝑖𝑠𝑠) − 𝝆 𝑓 𝑖𝑥 (L𝑠𝑒𝑐)∥1 + ∥𝝆 𝑓 𝑖𝑥 (L𝑠𝑒𝑐) − 𝝆𝛽∥1

≤ O
((
∥L − L𝑠𝑒𝑐∥1−1 +



D(𝝆,L𝑠𝑒𝑐) − D(𝝆,L𝑠𝑒𝑐)†

2−2

)
𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠)

)
≤ O

((
1
√
𝜇𝑇
+ 𝛽

√︂
𝜇

𝑇

)
𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠)

)
.

The second inequality uses identical arguments as (2.20) from the proof of Theo-
rem 2.1.3. The third inequality plugs in bounds for the secular approximation (the
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continuous case is the limit of the discrete case (Lemma 2.6.2)) and approximate
detailed balance (Proposition 2.9.1). Optimize the free parameter 𝜇 = 1

𝛽
to conclude

the proof. ■

The mixing time can be bounded by the gap (Proposition 2.2.3) if needed, but for
conceptual simplicity, we stuck to the mixing time for the main presentation.

Bounds for approximate detailed balance
Here, we show approximate detailed balance for the Lindbladian of interest L𝑠𝑒𝑐.

Proposition 2.9.1 (Approximate detailed balance). Suppose the secular approxima-
tion for L(𝐶𝐺𝑀𝐸) (2.71) is truncated at energy 𝜇. Then,

1
2


D(𝝆,L𝑠𝑒𝑐) − D(𝝆,L𝑠𝑒𝑐)†

2−2 ≤ O

(
𝛽

√︂
𝜇

𝑇

)
.

Proof. We simply telescope by inserting the algorithmically constructed discriminant
D𝑠𝑒𝑐 (Corollary 2.7.1)

D(𝝆,L𝑠𝑒𝑐) − D(𝝆,L𝑠𝑒𝑐)†

2−2 ≤ ∥D(𝝆,L𝑠𝑒𝑐) − D𝑠𝑒𝑐∥2−2 + ∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)†∥2−2

≤ 2∥D𝑠𝑒𝑐 − D(𝝆,L𝑠𝑒𝑐)∥2−2.

The last inequality uses that D𝑠𝑒𝑐 = D†𝑠𝑒𝑐 and that ∥A∥2−2 = ∥A†∥2−2. Note that
the algorithmic discussion considered discrete energy labels, so we have to take a
continuum limit for the bilinear sum47∑︁

𝜔̄∈𝑆𝜔0

𝛾(𝜔̄) 𝑺̂𝑎 (𝜔̄)†𝑺̂𝑎 (𝜔̄) →
∫ ∞

−∞
𝛾(𝜔) 𝑺̂𝑎†(𝜔) 𝑺̂𝑎 (𝜔)d𝜔.

Indeed, the bound does not depend on the discretization scale. ■

Effects of the Lamb-shift term
In this section, we include the unitary part of the CGME generator. The resulting
bounds now depend on two mixing times, and we do not have a desirable conversion
between the two mixing times. Still, one can upper bound both via the spectral gap
of the Hermitian part of the dissipative partH𝑑𝑖𝑠𝑠.

47Formally speaking, the correctness in this limit can be derived by using our discrete results and
taking their limit as in 2.8.1.
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Theorem 2.9.2 (Fixed point of CGME). For the full CGME generator (2.68), which
satisfy the symmetry and normalization conditions (2.10),(2.11),(2.12),(2.70), we
have that

∥𝝆 𝑓 𝑖𝑥 (L𝐶𝐺𝑀𝐸 ) − 𝝆𝛽∥1 ≤ O
(√︂

𝛽

𝑇
(𝑡𝑚𝑖𝑥 (L𝐶𝐺𝑀𝐸 ) + 𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠))

)
.

We have already calculated the errors for the dissipative part; here we only study
errors for the Lamb-shift term as in the following sections and combine them at
section 2.9. The strategy is similar; we discretize the Hamiltonian, truncate the
operator via the secular approximation, and then argue that the resulting operator
nearly commutes with the Gibbs state

𝑯𝐿𝑆 ≈ 𝑯𝐿𝑆,𝑠𝑒𝑐 ≈
√
𝝆𝑯𝐿𝑆,𝑠𝑒𝑐

√
𝝆−1

.

Formally, we introduce the intermediate constructs

L𝑠𝑒𝑐 := L𝑢𝑛𝑖,𝑠𝑒𝑐 + L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐 and L′ :=
√
𝝆(L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐 − L𝑢𝑛𝑖,𝑠𝑒𝑐) [

√
𝝆−1 · √𝝆−1]√𝝆,

where L𝑢𝑛𝑖,𝑠𝑒𝑐 := −i[𝑯 + 𝑯𝐿𝑆,𝑠𝑒𝑐, ·] .

Note that in L′ we had to manually flip the sign of the coherent part to ensure
L𝑠𝑒𝑐 ≈ L′. One may add any coherent term −i[𝑽, ·] as long as [𝑽, 𝝆] = 0 (most
notably the Hamiltonian 𝑯); it would not contribute to the error bounds.

Secular approximation for the Lamb-shift

Rewrite the integral by change-of-variable 𝑠 := 𝑡2 − 𝑡1 and apply the secular
approximation to the inner integral

𝑯𝐿𝑆 :=
i

2𝑇

∫ 𝑇

−𝑇
sgn(−𝑠)𝐶 (𝑠)

(∫ min(𝑇/2−𝑠,𝑇/2)

max(−𝑇/2,−𝑇/2−𝑠)

(∑︁
𝑎∈𝐴

𝑨𝑎†(𝑠)𝑨𝑎
)
(𝑡1)d𝑡1

)
d𝑠

The secular approximation in this context differs from the one we used for the bilinear
expressions (Lemma 2.6.3). We define and analyze the error as follows, inspired
by [40].

Lemma 2.9.2 (Secular approximation for time average). Consider an operator 𝑨

and a Hermitian operator 𝑯. Then, for any unitarily invariant norm ∥·∥∗ and times
𝑡1, 𝑡2, there exists a secular approximated operator 𝑺𝜇 such that〈

𝜓 𝑗
��𝑺𝜇 |𝜓𝑖⟩ = 0 if

��𝐸𝑖 − 𝐸 𝑗 �� ≤ 𝜇
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and 



∫ 𝑡2

𝑡1

ei𝑯𝑠𝑨e−i𝑯𝑠d𝑠 − 𝑺𝜇






∗
≤ O

(
∥𝑨∥∗

1 + log( 1
𝜇 |𝑡2−𝑡1 | )
𝜇

)
.

See section 2.9 for the proof. Intuitively, the time average
∫ 𝑡2
𝑡1

𝑨(𝑠)d𝑠 weakens the
off-diagonal entries (in the 𝑯 eigenbasis) with a large Bohr frequency. Dropping
them incurs an error depending on the truncation value 𝜇.

Applying the secular approximation for the Lamb-shift Hamiltonian yields the
following bound.

Corollary 2.9.1 (Secular approximation for the Lamb-shift term). In the setting
of Theorem 2.9.2, the exists a Hermitian operator 𝑯𝐿𝑆,𝑠𝑒𝑐 such that〈

𝜓 𝑗
��𝑯𝐿𝑆,𝑠𝑒𝑐 |𝜓𝑖⟩ = 0 if

��𝐸𝑖 − 𝐸 𝑗 �� ≤ 𝜇
and

∥𝑯𝐿𝑆 − 𝑯𝐿𝑆,𝑠𝑒𝑐∥ = Õ
(
∥∑𝑎∈𝐴 𝑨𝑎†𝑨𝑎∥

𝜇𝑇

∫ 𝑇

−𝑇
|𝐶 (𝑠) |d𝑠

)
= Õ

(
1
𝜇𝑇

)
.

Proof. Apply secular approximation to the inner integral (which depends on 𝑠) to
obtain

𝑯𝐿𝑆,𝑠𝑒𝑐 :=
i

2𝑇

∫ 𝑇

−𝑇
sgn(−𝑠)𝐶 (𝑠)𝑺(𝑠)𝜇 d𝑠

and calculate

∥𝑯𝐿𝑆 − 𝑯𝐿𝑆,𝑠𝑒𝑐∥ ≤
1

2𝑇

∫ 𝑇

−𝑇
|𝐶 (𝑠) |






∫ min(𝑇/2−𝑠,𝑇/2)

max(−𝑇/2,−𝑇/2−𝑠)
(
∑︁
𝑎∈𝐴

𝑨𝑎†(𝑠)𝑨𝑎) (𝑡1)d𝑡1 − 𝑺(𝑠)𝜇






d𝑠.

Use the secular approximation (Lemma 2.9.2) for the integral over 𝑡1 to conclude the
proof. ■

Approximate detailed balance

Thirdly, we also control the error for approximate detailed balance.

Lemma 2.9.3 (Apprximate detailed balance for the unitary part). In the setting
of Theorem 2.9.2, if 𝛽𝜇 ≤ 1,


L†𝑢𝑛𝑖 + √𝝆L𝑢𝑛𝑖 [√𝝆−1 · √𝝆−1]√𝝆





2−2
≤ Õ

(
𝛽𝜇

∫ 𝑇

−𝑇
|𝐶 (𝑠) | d𝑠

)
= Õ(𝛽𝜇).
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We present the superoperator form to feed into our existing fixed-point analysis. Still,
the calculation essentially reduces to the operator norm. We will need the following
proposition, whose proof is reminiscent of the arguments (section 2.7) analyzing the
𝛿R part of Lemma 2.7.3.

Proposition 2.9.2. Suppose an operator 𝑨 satisfies

⟨𝐸𝑖 |𝑨
��𝐸 𝑗 〉 = 0 whenever

��𝐸𝑖 − 𝐸 𝑗 �� ≤ 𝜇
and 𝛽𝜇 ≤ 1, then

∥𝑨 − √𝝆𝑨√𝝆−1∥ = O(∥𝑨∥𝛽𝜇).

Proof. Consider nearby energy projectors at energy resolution 𝜇.

𝑰 =
∑︁
𝑎∈Z

𝑷𝑎𝜇 where 𝑷𝑎𝜇 :=
∑︁

(𝑎+ 1
2 )𝜇>𝐸≥(𝑎−

1
2 )𝜇

𝑷𝐸 .

Then, the matrix 𝑨 is tri-block-diagonal 𝑨 = 𝑼 + 𝑳 + 𝑫 with blocks labeled by
integer multiples of 𝜇. For the lower-diagonal-blocks 𝑳 =

∑
𝑎 𝑷(𝑎+1)𝜇𝑨𝑷𝑎𝜇, we

evaluate the commutator for each term

𝑷(𝑎+1)𝜇𝑨𝑷𝑎𝜇 −
√
𝝆𝑷(𝑎+1)𝜇𝑨𝑷𝑎𝜇

√
𝝆−1

= 𝑷(𝑎+1)𝜇𝑨𝑷𝑎𝜇 − e−𝛽𝑯
′/2𝑷(𝑎+1)𝜇𝑨𝑷𝑎𝜇e𝛽𝑯

′/2,

where

𝑯′ = 𝑯 − (𝑎 + 1
2
)𝑰 such that ∥𝑯′∥ ≤ 𝜇.

Therefore,

∥𝑳 − √𝝆𝑳√𝝆−1∥ ≤ max
𝑎
∥𝑷(𝑎+1)𝜇𝑨𝑷𝑎𝜇 −

√
𝝆𝑷(𝑎+1)𝜇𝑨𝑷𝑎𝜇

√
𝝆−1∥

(By Lemma 2.7.1)

= O(𝛽𝜇). (By |e𝑥 − 1| ≤ 2|𝑥 | for |𝑥 | ≤ 1)

The bounds on 𝑫 and 𝑼 are analogous. ■

Proof of Lemma 2.9.3. Expand

L†
𝑢𝑛𝑖
[𝑨] + √𝝆L𝑢𝑛𝑖 [

√
𝝆−1𝑨

√
𝝆−1]√𝝆

= i𝑯𝐿𝑆,𝑠𝑒𝑐𝑨 − i𝑨𝑯𝐿𝑆,𝑠𝑒𝑐 − i
√
𝝆𝑯𝐿𝑆,𝑠𝑒𝑐

√
𝝆−1𝑨 + i𝑨

√
𝝆−1𝑯𝐿𝑆,𝑠𝑒𝑐

√
𝝆

= i
(
𝑯𝐿𝑆,𝑠𝑒𝑐 −

√
𝝆𝑯𝐿𝑆,𝑠𝑒𝑐

√
𝝆−1

)
𝑨 − i𝑨

(
𝑯𝐿𝑆,𝑠𝑒𝑐 −

√
𝝆−1𝑯𝐿𝑆,𝑠𝑒𝑐

√
𝝆
)
.
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The Hamiltonian term 𝐻 disappears because it commutes with the Gibbs state. Now,
Holder’s inequality reduces the superoperator norm to the operator norm, which can
be controlled by Proposition 2.9.2


𝑯𝐿𝑆,𝑠𝑒𝑐 −

√
𝝆𝑯𝐿𝑆,𝑠𝑒𝑐

√
𝝆−1




 ≤ O(∥𝑯𝐿𝑆,𝑠𝑒𝑐∥𝛽𝜇) = O
(
(∥𝑯𝐿𝑆∥ + ∥𝑯𝐿𝑆 − 𝑯𝐿𝑆,𝑠𝑒𝑐∥)𝛽𝜇

)
Use Corollary 2.9.1 and Lemma 2.9.2 to conclude the proof. ■

Altogether: Proof of fixed point correctness (Theorem 2.9.2)
We now put together the error bounds for the full CGME Lindbladian.

Proof of Theorem 2.9.2. Recall the bound on the fixed point error

∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆∥1
= ∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆 𝑓 𝑖𝑥 (L𝑠𝑒𝑐)∥1 + ∥𝝆 𝑓 𝑖𝑥 (L𝑠𝑒𝑐) − 𝝆 𝑓 𝑖𝑥 (L′)∥1

≤ O
(
∥L − L𝑠𝑒𝑐∥1−1𝑡𝑚𝑖𝑥 (L) +

∥D(𝝆,L𝑠𝑒𝑐) − D(𝝆,L′)∥2−2
𝜍−2(D(𝝆,L𝑠𝑒𝑐))

)
≤ O

(
∥L − L𝑠𝑒𝑐∥1−1𝑡𝑚𝑖𝑥 (L) +



L𝑑𝑖𝑠𝑠 − L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐

1−1𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠)

+
(
∥D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐) + D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐)†∥2−2 + ∥D(𝝆,L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐) − D(𝝆,L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐)†∥2−2

)
𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠)

)
,

(2.72)

where we compare the fixed points of L𝑠𝑒𝑐 and L′ by eigenvector perturbation
(Proposition 2.10.2, noting that L𝑠𝑒𝑐 contains an eigenvalue zero as it generates a
CPTP map; L′ has the Gibbs state as its fixed point, which has eigenvalue zero). The
third inequality bound the singular value by the mixing time: apply Fan-Hoffman [21,
Proposition III.5.1] and use perturbation bounds for sorted singular values

2𝜍−2(D(𝝆,L𝑠𝑒𝑐)) ≥ 𝜍−2

(
D(𝝆,L𝑠𝑒𝑐) + D(𝝆,L𝑠𝑒𝑐)†

)
≥ 𝜆2

(
D(𝝆,L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐) + D(𝝆,L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐)†

)
−



D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐) + D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐)†

2−2

≥ Ω( 1
𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐)

) −


D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐) + D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐)†

2−2

≥ Ω( 1
𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠)

) −


D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐) + D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐)†

2−2.(2.73)



109

The rest are analogous to (2.20), except that we have to manually include the term

L𝑑𝑖𝑠𝑠 − L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐

1−1𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠) to ensure Eqn. (2.73) holds.

By secular approximation with truncation energy 𝜇 and 𝜇′ (which will be set to
different values to minimize the error bounds),

∥𝑯𝐿𝑆 − 𝑯𝐿𝑆,𝑠𝑒𝑐∥ = Õ(
1
𝜇𝑇
) and ∥L𝑑𝑖𝑠𝑠 − L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐∥1−1 = O( 1

√
𝜇′𝑇
)

which combines to

∥L − L𝑠𝑒𝑐∥1−1 =


i[𝑯𝐿𝑆, ·] + L𝑑𝑖𝑠𝑠 − i[𝑯𝐿𝑆,𝑠𝑒𝑐, ·] − L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐




1−1

= Õ
(

1
𝑇𝜇
+ 1
√
𝜇′𝑇

)
.

The second inequality reduces the superoperator norm ∥·∥1−1 to operator norm by
∥𝑨𝝆∥1 ≤ ∥𝑨∥∥𝝆∥1. Next, we combine the approximate detailed balance-type errors
from the Lamb-shift term (Lemma 2.9.3) and the dissipative term (Proposition 2.9.1)

∥D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐) + D(𝝆,L𝑢𝑛𝑖,𝑠𝑒𝑐)†∥2−2 + ∥D(𝝆,L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐) − D(𝝆,L𝑑𝑖𝑠𝑠,𝑠𝑒𝑐)†∥2−2

= Õ
(
𝛽𝜇 + 𝛽

√︂
𝜇′

𝑇

)
.

Altogether, choose 𝜇 =

√︃
1
𝛽𝑇
≤ 1

𝛽
and 𝜇′ = 1

𝛽
so that

(2.72) ≤ Õ
(
max(𝑡𝑚𝑖𝑥 (L), 𝑡𝑚𝑖𝑥 (L𝑑𝑖𝑠𝑠)) ·

√︂
𝛽

𝑇

)
,

which concludes the proof.

■

Proof for secular approximation for time average (Lemma 2.9.2)
Intuitively, we want to truncate the Bohr frequency far from zero. Unfortunately, the
sharp truncation from section 4.15 does not seem to work here because the truncation
error is related to the 1-norm ∥ 𝑓 ∥1 (instead of 2-norm ∥ 𝑓 ∥2). The 1-norm is more
delicate to handle, forcing us to smoothly truncate the tail and explicitly evaluate the
Fourier Transform in the time domain. Pictorially, the time domain function becomes
a smeared version of the sharp window function 1( |𝑡 | ≤ 𝑇) where the discontinuity
is smoothed out due to convolution with a smooth bump function.
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Proof of Lemma 2.9.2. Without loss of generality, we can conjugate with time
evolution to shift the integral so that 𝑡2 = −𝑡1 = 𝑇/2. Let 𝑓 (𝑡) = 1( |𝑡 | ≤ 𝑇/2), then

1
√

2𝜋

∫ 𝑇/2

−𝑇/2
𝑨(𝑠)d𝑠 = 1

√
2𝜋

∫ ∞

−∞
𝑓 (𝑠)𝑨(𝑠)d𝑠 =

∑︁
𝜈

𝑨𝜈 𝑓 (−𝜈)

with 𝑓 (𝜔) = e−i𝜔𝑇/2−ei𝜔𝑇/2
√

2𝜋𝜔
. Let us truncate the frequency domain function

1
√

2𝜋

∫ ∞

−∞
(𝑏 ∗ 𝑓 ) (𝑠)𝑨(𝑠)d𝑠 =

∑︁
𝜈

𝑨𝜈 𝑏̂ · 𝑓 (−𝜈) =: 𝑺𝜇

by multiplying with a carefully chosen smooth bump function

𝑏̂(𝑥) :=


0 if |𝑥 | ≥ 𝜇

1 if 𝑥 = 0

≤ 1 else

.

Then, for any unitarily invariant norm,




∫ 𝑇/2

−𝑇/2
𝑨(𝑠)d𝑠 − 𝑺𝜇







∗

≤ 1
√

2𝜋
∥ 𝑓 − 𝑏 ∗ 𝑓 ∥1

=
1
√

2𝜋

(∫
𝑊𝑐

𝜖

( 𝑓 − 𝑏 ∗ 𝑓 ) (𝑡)d𝑡 +
∫
𝑊𝜖

( 𝑓 − 𝑏 ∗ 𝑓 ) (𝑡)d𝑡
)

(2.74)

≤ O
(

1
𝜇
+

1 + log( 1
𝜇𝑇
)

𝜇

)
.

The second equality separately evaluates the integral around 𝜖-balls near ±𝑇

𝑊𝜖 := [𝑇
2
− 𝜖, 𝑇

2
+ 𝜖] ∪ [−𝑇

2
− 𝜖,−𝑇

2
+ 𝜖] for 𝜖 =

1
𝜇
.

For each 𝑡 ∈ 𝑊𝑐
𝜖 , the convolution is point-wise close to the original value∫ ∞

−∞
𝑓 (𝑡 − 𝑠)𝑏(𝑠)d𝑠 − 𝑓 (𝑡) = 𝑓 (𝑡)

(∫ ∞

−∞
𝑏(𝑠)d𝑠 − 1

)
+ 𝑟 (𝜇 |𝑡 − 𝑇 |)

up to an error 𝑟 (𝑥) falling super-polynomially with |𝑥 |. Thus, the integral over
𝑊𝑐
𝜖 (2.74) is then bounded by

2
∫
|𝑡−𝑇 |≥𝜇

|𝑟 (𝜇 |𝑡 − 𝑇 |) |d𝑡 = 4
𝜇

∫ ∞

1
|𝑟 (𝑥) |d𝑥 = O( 1

𝜇
).
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The main error arises from the sharp edge at ±𝑇 ; we invoke general norm bounds
∥ 𝑓 ∥∞ = 1 and

∥𝑏 ∗ 𝑓 ∥∞ ≤
1
√

2𝜋
∥𝑏̂ · 𝑓 ∥1

≤ 1
√

2𝜋

(∫ 1/𝑇

−1/𝑇

�� 𝑓 (𝜔)��d𝜔 + (∫ 𝜇

1/𝑇
+
∫ −1/𝑇

−𝜇
)
�� 𝑓 (𝜔)��d𝜔)

(By ∥𝑏̂∥ ≤ 1 )

= O
(
1 + log( 1

𝜇𝑇
)
)

(By
�� 𝑓 (𝜔)�� ≤ min( 𝑇√

2𝜋
, 1√

2𝜋𝜔
) )

and integrate over𝑊𝜖 to obtain the bound. ■

2.10 Appendix:Spectral bounds and mixing times
In this section, we present missing proofs for lemmas and propositions. While
some arguments are standard and included merely for completeness, controlling the
spectrum of nearly Hermitian matrices requires a substantial linear algebraic argument.
We begin with eigenvalue and eigenvector perturbation theory (section 2.10), which
is crucial for establishing mixing time bounds (section 2.10) and the correctness of
fixed points (section 2.10).

Perturbation bounds for eigenvalues and eigenvectors
In this section, we present some useful bounds for eigenvalue and eigenvector
perturbation.

Proposition 2.10.1 (Bauer-Fike Theorem with multiplicity, cf. [21, Theorem VI.3.3
& Problem VI.8.6]). Perturb a normal matrix 𝑵 by an arbitrary matrix 𝑨. Then,
the spectrum of 𝑵 and 𝑵 + 𝑨 are ∥𝑨∥-close to each other:

Spec(𝑵 + 𝑨) ⊂ ∪𝑠∈Spec(𝑵)𝐷 (𝑠, ∥𝑨∥), and

Spec(𝑵) ⊂ ∪𝑠∈Spec(𝑵+𝑨)𝐷 (𝑠, ∥𝑨∥), where 𝐷 (𝑠, 𝜖) = {𝑧 ∈ C : |𝑧 − 𝑠 | ≤ 𝜖}.

Moreover, the connected components of ∪𝑠∈Spec(𝑵)𝐷 (𝑠, ∥𝑨∥) contain an equal
number of eigeinvalues of 𝑵 and 𝑵 + 𝑨 when counted with algebraic multiplicity.

Proof. The first half of the statement is the Bauer-Fike Theorem [21, Theorem
VI.3.3]. To study the number of eigenvalues per connected component, we consider
an interpolation path

𝑿 (𝑡) = 𝑵 + 𝑡𝑨 for 0 ≤ 𝑡 ≤ 1.
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The Bauer-Fike Theorem applied to 𝑵 + 𝑡𝑨 implies for every 0 ≤ 𝑡 ≤ 1 that

Spec(𝑿 (𝑡)) ⊂ ∪𝑠∈Spec(𝑵)𝐷 (𝑠, 𝑡∥𝑨∥) ⊂ ∪𝑠∈Spec(𝑵)𝐷 (𝑠, ∥𝑨∥).

Then, by continuity of eigenvalues along the path, cf. [21, Corollary VI.1.6], no
eigenvalues enter or exit the connected components of∪𝑠∈Spec(𝑵)𝐷 (𝑠, ∥𝑨∥), therefore
their number (counted with algebraic multiplicity) is the same for 𝑿 (0) = 𝑵 and
𝑿 (1) = 𝑵 + 𝑨. ■

Corollary 2.10.1 (Eigenvalue perturbation for discriminants). If D is Hermitian and
has norm bounded by ∥D∥ ≤ 1, and D′ has a right eigenvector |𝜓⟩ with eigenvalue
1, then the top eigenvalue of D satisfies

|𝜆1(D) − 1| ≤ ∥D − D
′∥.

Eigenvector perturbation bounds

Intuitively, perturbing a matrix yields small changes in eigenvectors with well-
isolated eigenvalues — we prove this below rigorously under suitable but quite
general conditions using a simple linear algebraic argument.

Proposition 2.10.2 (Eigenvector perturbation). Perturb a matrix 𝑴 by another matrix
𝑨. Let |𝑣⟩ be a normalized right eigenvector 𝑴 |𝑣⟩ = 𝜆 |𝑣⟩, and 𝜆′ an eigenvalue
of 𝑴 + 𝑨. Then the corresponding right eigenvector (𝑴 + 𝑨) |𝑣′⟩ = 𝜆′|𝑣′⟩ can be
normalized such that

⟨𝑣 |𝑣⟩ = ⟨𝑣′|𝑣′⟩ = 1 and ∥|𝑣′⟩ − |𝑣⟩∥ ≤ 2
√

2(∥𝑨∥ + |𝜆′ − 𝜆 |)
𝜍−2(𝑴 − 𝜆𝑰)

,

where 𝜍−2(·) denotes the second-smallest singular value (with multiplicity). Due
to Fan-Hoffman [21, Proposition III.5.1] the singular value 𝜍−2(𝑴 − 𝜆𝑰) ≥
−𝜆2

(
𝑴+𝑴†

2 − Re(𝜆)𝑰
)

can be bounded in terms of the Hermitian part.

Proof. We can assume without loss of generality that |𝑣′⟩ ∝ |𝑣⟩+𝜖 |𝑣⊥⟩ for 𝜖 ∈ [0,∞)
and ⟨𝑣⊥ |𝑣⊥⟩ = 1, yielding

(𝑴 + 𝑨) ( |𝑣⟩ + 𝜖
��𝑣⊥〉) =

⇕
𝜆′𝑰( |𝑣⟩ + 𝜖

��𝑣⊥〉)
𝑨( |𝑣⟩ + 𝜖

��𝑣⊥〉) + (𝑴 − 𝜆′𝑰) |𝑣⟩ = 𝜖 (𝜆′𝑰 − 𝑴)
��𝑣⊥〉.
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Taking the norms above on both sides and defining 𝜅 := |𝜆′ − 𝜆 | we get

𝜖 =
∥𝑨( |𝑣⟩ + 𝜖 |𝑣⊥⟩) + (𝜆 − 𝜆′) |𝑣⟩∥

∥(𝑴 − 𝜆′𝑰) |𝑣⊥⟩∥ ≤
⇓
(1 + 𝜖)∥𝑨∥ + 𝜅
𝜍−2(𝑴 − 𝜆𝑰) − 𝜅

𝜖 ≤ ∥𝑨∥ + 𝜅
𝜍−2(𝑴 − 𝜆𝑰) − ∥𝑨∥ − 𝜅

=
∥𝑨∥ + 𝜅

𝜍−2(𝑴 − 𝜆𝑰)
· 1

1 − ∥𝑨∥+𝜅
𝜍−2 (𝑴−𝜆𝑰)

. (2.75)

The last inequality is a rearrangement. The first inequality uses the triangle
inequality for the numerator, and for the denominator that ∥(𝑴 − 𝜆′𝑰) |𝑣⊥⟩∥ ≥
∥(𝑴 − 𝜆𝑰) |𝑣⊥⟩∥ − ∥(𝜆′ − 𝜆)𝑰 |𝑣⊥⟩∥ = ∥(𝑴 − 𝜆𝑰) |𝑣⊥⟩∥ − 𝜅 and

∥(𝑴 − 𝜆𝑰)
��𝑣⊥〉∥ ≥ 𝜍−2(𝑴 − 𝜆𝑰).

We conclude by setting the appropriate normalization |𝑣′⟩ = 1√
1+𝜖2 ( |𝑣⟩ + 𝜖 |𝑣

⊥⟩) and
utilizing the above bound (2.75):

∥|𝑣⟩ − |𝑣′⟩∥ = 1
√

1 + 𝜖2
∥
√︁

1 + 𝜖2 |𝑣⟩ − (|𝑣⟩ + 𝜖
��𝑣⊥〉)∥

=

√︃
(
√

1 + 𝜖2 − 1)2 + 𝜖2

√
1 + 𝜖2

≤
√

2𝜖 ≤ min

(
√

2,
2
√

2(∥𝑨∥ + 𝜅)
𝜍−2(𝑴 − 𝜆′𝑰)

)
.

The first inequality uses
√

1 + 𝜖2 − 1 ≤ 𝜖 . The last inequality uses that the bound
is vacuous at ∥|𝑣⟩ − |𝑣′⟩∥ ≤

√
2 and combines (2.75) with the elementary estimate

∀𝑥 ∈ [0, 1/2] :
√

2 𝑥
1−𝑥 ≤ 2

√
2𝑥 after substituting 𝑥 ← ∥𝑨∥+𝜅

𝜍−2 (𝑴−𝜆𝑰) . ■

When we apply the above perturbation bound for a Hermitian 𝑴, we can set 𝜆 to be the
top eigenvalue such that 𝜍−2(𝑴 − 𝜆𝑰) will be the gap 𝜆𝑔𝑎𝑝 (𝑴) = 𝜆1(𝑴) − 𝜆2(𝑴).
In that case, Proposition 2.10.1 guarantees the existence of a nearby eigenvalue 𝜆′ of
𝑴 + 𝑨 such that |𝜆′ − 𝜆 | ≤ ∥𝑨∥. When we handle the Lamb-shift term, we need
to consider a nonHermitian 𝑴. There, bounding eigenvalue perturbation is not
generally obvious, so we will simply assume that there is a nearby eigenvalue 𝜆′ of
𝑴 + 𝑨.

Approximate detailed balance implies approximately correct fixed point
When detailed balance holds approximately for 𝝆, we still expect the fixed point to
be approximately 𝝆; we provide a proof of this in this section, which relies on the
matrix perturbation results (section 2.10). Recall that in section 2.2, we defined the
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Hermitian and anti-Hermitian parts (under similarity transformation) as follows:

D(𝝆,L) = 𝝆−1/4L[𝝆1/4 · 𝝆1/4]𝝆−1/4 = H +A,
D(𝝆,L)† = 𝝆1/4L† [𝝆−1/4 · 𝝆−1/4]𝝆1/4 = H −A.

Observe that D(𝝆,L)† [√𝝆] = 0, but it needs not be the case for D(𝝆,L), which
we care about.

We recall some facts: every Lindbladian satisfies that Spec(L) ⊆ {𝑧 ∈ C : Re(𝑧) ≤
0} [181, Proposition 6.1]. As D(𝝆,L)† [√𝝆] = 0 we also have that 0 is an element
of the spectrums Spec(D(𝝆,L)†), Spec(D(𝝆,L)). Since D(𝝆,L) is defined by
a similarity transformation we have that Spec(L) = Spec(D(𝝆,L)) and due to
Proposition 2.10.1 this implies

|𝜆1(H)| ≤ ∥A∥2−2. (2.76)

Proposition 2.10.3 (Fixed point accuracy). Suppose a Lindbladian L satisfies the
𝜖-approximate 𝝆-detailed balance condition. If 𝜆𝑔𝑎𝑝 (H) > 2𝜖 , then there is a unique
state as its fixed point 𝝆 𝑓 𝑖𝑥 (L) ≻ 0 and its deviation from 𝝆 is bounded by

𝝆 𝑓 𝑖𝑥 (L) − 𝝆




1 ≤

14𝜖
𝜆𝑔𝑎𝑝 (H)

.

The RHS indicates that the fixed point accuracy may deteriorate if the map has a
large anti-Hermitian component or if the gap closes.

Proof. Every CPTP map has at least a stationary state [181, Theorem 6.11], and thus
there is a fixed point 𝝆 𝑓 𝑖𝑥 (L) ⪰ 0 of unit trace. The condition 𝜆𝑔𝑎𝑝 (H) > 2∥A∥2−2

translates to 𝜆2(H) < −∥A∥2−2 implying that 0 has algebraic multiplicity 1 in
Spec(D(𝝆,L)) due to Proposition 2.10.1, which then proves the uniqueness of the
fixed point.

By our eigenvector perturbation bound (Proposition 2.10.2), we get that there is a
matrix 𝑹 of unit Frobenius norm in the kernel of D(𝝆,L) such that

∥√𝝆 − 𝑹∥2 ≤
4
√

2∥A∥2−2
−𝜆2(H)

,

where we used that the Frobenius norm of a matrix is equal to the Euclidean norm of
its vectorization ∥𝑨∥2 = ∥|𝑨⟩∥ . This in turn means that 𝝆1/4𝑹𝝆1/4 is in the kernel
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of L, thus 𝝆 𝑓 𝑖𝑥 (L) = 𝝆1/4𝑹𝝆1/4/Tr(𝝆1/4𝑹𝝆1/4), moreover

∥𝝆1/4𝑹𝝆1/4 − 𝝆 𝑓 𝑖𝑥 (L)∥1 =

���Tr(𝝆1/4𝑹𝝆1/4) − 1
���∥𝝆 𝑓 𝑖𝑥 (L)∥1

=

���Tr(𝝆1/4𝑹𝝆1/4 − 𝝆)
��� ≤ ∥𝝆1/4𝑹𝝆1/4 − 𝝆∥1,

where in the last step we used the trace-norm inequality |Tr(𝑨) | ≤ ∥𝑨∥1. We can
further bound

∥𝝆1/4𝑹𝝆1/4 − 𝝆∥1 = ∥𝝆1/4(𝑹 − √𝝆)𝝆1/4∥1 ≤ ∥𝝆1/4∥24 ·


𝑹 − √𝝆

2 = ∥𝑹 − √𝝆∥2,

where we used Hölder’s inequality ∥𝑩𝑨𝑩∥1 ≤ ∥𝑩∥24∥𝑨∥2. Combining the above
three inequalities, we get

∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆∥1 ≤ ∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆1/4𝑹𝝆1/4∥1 + ∥𝝆1/4𝑹𝝆1/4 − 𝝆∥1

≤ 2∥𝑹 − √𝝆∥2 ≤
8
√

2∥A∥2−2
−𝜆2(H)

.

Finally, we convert 𝜆2 to 𝜆𝑔𝑎𝑝 in the above bound. Due to (2.76) we have −𝜆2(H) =
𝜆𝑔𝑎𝑝 (H) − 𝜆1(H) ≥ 𝜆𝑔𝑎𝑝 (H) − ∥A∥2−2 so we can further bound the above by
8
√

2∥A∥2−2/(𝜆𝑔𝑎𝑝 (H) − ∥A∥2−2). But this bound is vacuous at ∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆∥1 ≤
2, i.e., when 𝜆𝑔𝑎𝑝 (H) < (4

√
2 + 1)∥A∥2−2. If 𝜆𝑔𝑎𝑝 (H) ≥ (4

√
2 + 1)∥A∥2−2, then

𝜆𝑔𝑎𝑝 (H) − ∥A∥2−2 ≥ 4
√

2
4
√

2+1
𝜆𝑔𝑎𝑝 (H), yielding

∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆∥1 ≤
(8
√

2 + 2)∥A∥2−2
𝜆𝑔𝑎𝑝 (H)

. ■

Corollary 2.2.1 (Fixed point accuracy). If a LindbladianL satisfies the 𝜖-approximate
𝝆-detailed balance condition, then its fixed point 𝝆 𝑓 𝑖𝑥 (L) deviates from 𝝆 by at most

∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆∥1 ≤ 20𝑡𝑚𝑖𝑥 (L)𝜖 .

Proof. In the proof of Proposition 2.10.3 we got the ultimate bound by converting 𝜆2

to 𝜆𝑔𝑎𝑝 by the observation −𝜆2(H) ≥ 𝜆𝑔𝑎𝑝 (H) − ∥A∥2−2. Due to Proposition 2.10.1
the same bound −𝜆2(H) ≥ 𝜆Re(𝑔𝑎𝑝) (L) − ∥A∥2−2 also holds for 𝜆Re(𝑔𝑎𝑝) (L) (c.f.
Proposition 2.10.5) since 0 is an eigenvalue of L. Hence the conversion combined
with Proposition 2.10.5 shows

∥𝝆 𝑓 𝑖𝑥 (L) − 𝝆∥1 ≤
(8
√

2 + 2)∥A∥2−2
𝜆Re(𝑔𝑎𝑝) (L)

≤ (8
√

2 + 2)∥A∥2−2
ln(2) 𝑡𝑚𝑖𝑥 (L). ■
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Perturbation bounds for Lindbladians regarding gaps and mixing times
This section provides proof for scattered statements circling spectral gaps and
mixing time. Most results are standard, except maybe the most technical result
(Lemma 2.10.2).

Lemma 2.2.1 (Fixed point difference). For any two Lindbladians L1 and L2, the
difference of their fixed points (in the Schrödinger picture) is bounded by

∥𝝆 𝑓 𝑖𝑥 (L1) − 𝝆 𝑓 𝑖𝑥 (L2)∥1 ≤ 4∥L1 − L2∥1−1 · 𝑡𝑚𝑖𝑥 (L1).

Proof. We begin by recalling Duhamel’s identity. We use its integral form derived
in, e.g., [81, Eq. (40)]:

e𝑨 − e𝑩 =

∫ 1

0
e𝑠𝑨(𝑨 − 𝑩)e(1−𝑠)𝑩d𝑠.

We apply the above identity with 𝑨← 𝑡L1, 𝑩 ← 𝑡L2 and take the 1 − 1 operator
norm on both sides

∥e𝑡L1 − e𝑡L2 ∥1−1 ≤
∫ 1

0
∥e𝑠𝑡L1 (𝑡L1 − 𝑡L2)e(1−𝑠)𝑡L2 ∥1−1d𝑠

≤ 𝑡
∫ 1

0
∥e𝑠𝑡L1 ∥1−1∥𝑡L1 − 𝑡L2∥1−1∥e(1−𝑠)𝑡L2 ∥1−1d𝑠 = 𝑡∥L1 − L2∥1−1.

(2.77)

The last equality uses that e𝑥L is a CPTP map and so ∥e𝑥L ∥1−1 = 1 [181, Theorem
8.16].48

Now, let 𝝆1 := 𝝆 𝑓 𝑖𝑥 (L1), 𝝆2 := 𝝆 𝑓 𝑖𝑥 (L2), and 𝑡𝑚𝑖𝑥 := 𝑡𝑚𝑖𝑥 (L†1). Then

∥𝝆1 − 𝝆2∥1 =


eL1·𝑡𝑚𝑖𝑥 [𝝆1] − eL2𝑡𝑚𝑖𝑥 [𝝆2]




1

≤


eL1·𝑡𝑚𝑖𝑥 [𝝆1] − eL1𝑡𝑚𝑖𝑥 [𝝆2]




1 +



eL1𝑡𝑚𝑖𝑥 [𝝆2] − eL2𝑡𝑚𝑖𝑥 [𝝆2]




1

≤ 1
2
· ∥𝝆1 − 𝝆2∥1 + 2𝑡𝑚𝑖𝑥 ∥L1 − L2∥1−1. (2.78)

The second inequality follows from (2.77) and that ∥𝝆1 − 𝝆2∥1 ≤ 2. Rearrange
(2.78) to conclude the proof. ■

Proposition 2.10.4 (Mixing time difference). The mixing times of two Lindbladians
L1, L2 are related by

𝑡𝑚𝑖𝑥 (L2) ≤ 𝑡𝑚𝑖𝑥 (L1)
⌈

ln(1/2)
ln(1/2 + 𝑡𝑚𝑖𝑥 (L1)∥L1 − L2∥1−1)

⌉
if 𝑡𝑚𝑖𝑥 (L1)∥L1 − L2∥1−1 <

1
2
.

48Here, by the 1 − 1 norm, we mean the 1 − 1 norm of the operators restricted to the subspace of
Hermitian matrices.
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Proof. Let 𝑡𝑚𝑖𝑥 := 𝑡𝑚𝑖𝑥 (L1) and 𝑹 be a traceless Hermitian matrix with ∥𝑹∥1 = 1
maximizing ∥eL2𝑡𝑚𝑖𝑥 [𝑹] ∥1, then

∥eL2𝑡𝑚𝑖𝑥 [𝑹] ∥1 ≤ ∥eL1𝑡𝑚𝑖𝑥 [𝑹] ∥1 + ∥eL2𝑡𝑚𝑖𝑥 [𝑹] − eL1𝑡𝑚𝑖𝑥 [𝑹] ∥1

≤ 1
2
∥𝑹∥1 + 𝑡𝑚𝑖𝑥 ∥L1 − L2∥1−1∥𝑹∥1 =

(
1
2
+ 𝑡𝑚𝑖𝑥 ∥L1 − L2∥1−1

)
∥𝑹∥1.

The second inequality follows from (2.77). Set 𝑹 = 𝝆1 − 𝝆2, rearrange, and take the
logarithm to conclude. ■

Relating the mixing time to the spectral gap using exact detailed balance

The mixing time of a general Lindbladian may be difficult to analyze. Fortunately,
many handy bounds exist, especially circling the spectral gap when detailed balance
holds.

Proposition 2.2.2 (Mixing time from spectral gap [97]). If a Lindbladian L satisfies
𝝆-detailed balance, then

𝑡𝑚𝑖𝑥 (L) ≤
ln(2∥𝝆−1/2∥)
𝜆𝑔𝑎𝑝 (L)

,

where 𝜆𝑔𝑎𝑝 (L) is the eigenvalue gap of the Lindbladian, and the mixing time 𝑡𝑚𝑖𝑥 is
the smallest time for which

eL𝑡𝑚𝑖𝑥 [𝝆1 − 𝝆2]




1 ≤

1
2
∥𝝆1 − 𝝆2∥1 for any states 𝝆1, 𝝆2.

Proof. Write 𝑹 = 𝝆1 − 𝝆2, then

eL𝑡 [𝑹]




1 =




𝝆1/4eD𝑡 [𝝆−1/4𝑹𝝆−1/4]𝝆1/4





1

≤



𝝆1/4





4
·



eD𝑡 [𝝆−1/4𝑹𝝆−1/4]





2
·



𝝆1/4





4

≤ e−𝜆𝑔𝑎𝑝 (H)𝑡



𝝆−1/4𝑹𝝆−1/4





2

≤ e−𝜆𝑔𝑎𝑝 (H)𝑡 ∥𝝆−1/4∥2∥𝑹∥2
≤ e−𝜆𝑔𝑎𝑝 (H)𝑡 ∥𝝆−1/4∥2∥𝑹∥1
= e−𝜆𝑔𝑎𝑝 (L

†)𝑡 ∥𝝆−1/2∥∥𝑹∥1.

The first inequality uses Hölder’s inequality. The second inequality uses the
orthogonality to the leading eigenvector such that Tr[√𝝆 ·𝝆−1/4𝑹𝝆−1/4] = Tr[𝑹] = 0.
Take the logarithm to conclude the proof. ■
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Relating the mixing time to the Hermitian gap (and approximate detailed
balance)

Proposition 2.10.5 (Spectral gap from mixing time). For any Lindbladian L, let
−𝜆Re(𝑔𝑎𝑝) (L) be the second largest real part in its spectrum (counted by algebraic
multiplicity), then

𝜆𝑔𝑎𝑝 (H) + 2∥A∥2−2 ≥ ∥A∥2−2 − 𝜆2(H) ≥ 𝜆Re(𝑔𝑎𝑝) (L) ≥
ln(2)
𝑡𝑚𝑖𝑥 (L)

.

Moreover, if 𝜆Re(𝑔𝑎𝑝) (L) ≥ 2∥A∥2−2, then there is unique eigenvalue 𝜆1(H) ≥
−∥A∥2−2 and

𝜆𝑔𝑎𝑝 (H) + 2∥A∥2−2 ≥ ∥A∥2−2 − 𝜆2(H) ≥ 𝜆Re(𝑔𝑎𝑝) (L). (2.79)

Proof. We know any Lindbladian has at least a stationary state of eigenvalue 0, and
each eigenvalue which has no real part has a trivial Jordan block [181, Theorem
6.11 & Proposition 6.2]. Therefore, if 𝜆Re(𝑔𝑎𝑝) (L) = 0, then 𝑡𝑚𝑖𝑥 (L) = ∞. If
𝜆Re(𝑔𝑎𝑝) (L) > 0, take any eigenvalue 𝜆 such that −𝜆Re(𝑔𝑎𝑝) (L) = Re(𝜆), and let 𝑹
be a corresponding right eigenvector of L, which is then necessarily traceless. We
can assume without loss of generality that the Hermitian part 𝑹𝐻 := (𝑹 + 𝑹†)/2 is
nonzero (otherwise, we can just take 𝑹 ← i𝑹). Since L is Hermiticity preserving,
we get that 𝑹𝐻 is also a right eigenvector with eigenvalue 𝜆. For 𝑡 < ln(2)

𝜆Re(𝑔𝑎𝑝) (L) we
have

∥eL𝑡 [𝑹𝐻] ∥1 =
��e𝜆𝑡 �� · ∥𝑹𝐻 ∥1 > 1

2
∥𝑹𝐻 ∥1

implying that

𝑡𝑚𝑖𝑥 (L) ≥
ln(2)

𝜆Re(𝑔𝑎𝑝) (L)
.

We conclude using Bauer-Fike Proposition 2.10.1 to show 𝜆Re(𝑔𝑎𝑝) (L) ≤ −𝜆2(H) +
∥A∥2−2, combined with (2.76). ■

What if the detailed balance condition is violated? In the worst case, the conversion
from spectral gap to mixing time can be poor. However, the Lindbladians we consider
are “sufficiently” detailed balanced so that essentially the same consequences hold.
The following two scenarios cover our main use cases

D(𝝆,L) = H +A where ∥A∥2−2 ≪ 𝜆𝑔𝑎𝑝 (H),
(approximate detailed balance)

or 𝜆1(H) ≪ 𝜆𝑔𝑎𝑝 (H). (nonperturbative A)
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The first case should be understood as nonHermitian eigenvalue perturbation,
consistent with the framework of approximate detailed balance. The second case is
less intuitive, as the anti-Hermitian part can be arbitrarily large. Intriguingly, the
spectral properties of the Hermitian partH suffice to control convergence even in
the presence of a large perturbationH +A. In fact, the second case is strictly more
general since 𝜆1(H) ≤ ∥A∥2−2 (2.76), therefore we will only analyze the second
scenario. Intuitively, when the Lindbladian is exactly detailed balanced A = 0, we
have that 𝜆1(H) = 0; the 𝜆1(H) ≪ 𝜆𝑔𝑎𝑝 (H) condition is essentially the requirement
that 𝜆1(H) ≈ 0 in spite of a large anti-hermitian component ∥A∥2−2 ≫ 0. Before
proving our result, we need a few lemmas.

Lemma 2.10.1 (Norm of matrix exponential). For a Hermitian matrix 𝑯 and an
anti-Hermitian matrix 𝑩, we have

∥e(𝑯+𝑩)𝑡 ∥ ≤ e𝜆1 (𝑯)𝑡 for each 𝑡 ≥ 0.

If 𝑩 is an arbitrary matrix, we alternatively get ∥e(𝑯+𝑩)𝑡 ∥ ≤ e(𝜆1 (𝑯)+∥𝑩∥)𝑡 .

Proof. The claim follows from the Trotter representation of exponential and triangle
inequality

∥e(𝑯+𝑩)𝑡 ∥ = ∥ lim
𝑟→∞

(
e𝑯/𝑟e𝑩/𝑟

)𝑟𝑡
∥= lim

𝑟→∞
∥
(
e𝑯/𝑟e𝑩/𝑟

)𝑟𝑡
∥ ≤ lim inf

𝑟→∞

(
∥e𝑯/𝑟 ∥∥e𝑩/𝑟 ∥

)𝑟𝑡
= lim inf

𝑟→∞

(
∥e𝑯/𝑟 ∥

)𝑟𝑡
= e𝜆1 (𝑯)𝑡 ,

where we used that e𝑩/𝑟 is unitary so that ∥e𝑩/𝑟 ∥ = 1. The second claim follows
from isolating the Hermitian part 1

2 (𝑩 + 𝑩
†), whose norm is bounded by ∥𝑩∥. ■

Lemma 2.10.2 (Hermitian gap controls decay). Consider a Hermitian matrix 𝑯 and
an anti-Hermitian 𝑨.
If

𝑟 :=
𝜆1(𝑯)
𝜆𝑔𝑎𝑝 (𝑯)

≤ 1
100

,

and 𝑯 + 𝑨 has an eigenvalue 0 with left and right eigenvectors

⟨𝐿 | (𝑯 + 𝑨) = 0 and (𝑯 + 𝑨) |𝑅⟩ = 0,

then 


e(𝑯+𝑨)𝑡 (𝑰 − 𝑷0)



 ≤ 3

2
exp

(
𝜆2(𝑯)𝑡

2

)
where 𝑷0 :=

1
⟨𝐿 |𝑅⟩ |𝑅⟩⟨𝐿 |.
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Intuitively speaking, the conditions above ensure that even if the anti-Hermitian 𝑨 is
large, it mainly introduces “rotations” and the spectral properties of 𝑯 still guarantee
fast convergence to 𝑷0.

Proof. Let |𝜓1⟩ be the eigenvector of 𝑯 corresponding to its top eigenvalue 𝜆1(𝑯).
We can assume without loss of generality that ⟨𝐿 |, |𝑅⟩, and |𝜓1⟩ have unit norm

∥|𝜓1⟩∥ = ∥⟨𝐿 |∥ = ∥|𝑅⟩∥ = 1,

and we are free to choose the phase of these vectors as the projector 𝑷0 is invariant
under changing the phase of ⟨𝐿 |, |𝑅⟩. The guiding intuition behind the proof is that
if 𝑟 is small, then (up to a phase)

|𝐿⟩ ≈ |𝜓1⟩ ≈ |𝑅⟩.

To show this, take the real part of ⟨𝑅 | (𝑯 + 𝑨) |𝑅⟩ = 0 to obtain49

⟨𝑅 |𝑯 |𝑅⟩ = 0 = 𝜆1(𝑯) |⟨𝑅 |𝜓1⟩|2 +
∑︁
𝑖=2

𝜆𝑖 (𝑯) |⟨𝑅 |𝜓𝑖⟩|2

≤ 𝜆1 |⟨𝑅 |𝜓1⟩|2 + 𝜆2(1 − |⟨𝑅 |𝜓1⟩|2),

implying 1 − |⟨𝑅 |𝜓1⟩|2 ≤
𝜆1(𝑯)
𝜆𝑔𝑎𝑝 (𝑯)

= 𝑟,

and thus ∥|𝑅⟩ − |𝜓1⟩∥ ≤ 1.01
√
𝑟,

where in the last step, we assumed without loss of generality that the phase of
|𝑅⟩ is such that ⟨𝑅 |𝜓1⟩ is nonnegative real, so we get ⟨𝑅 |𝜓1⟩ = cos(𝜃) for some
𝜃 ∈ [0, 𝜋/2]. Then sin(𝜃) ≤

√
𝑟, and since for every 𝜃 ∈ [0, arcsin(1/10)] we have

1 − cos(𝜃) ≤ sin(𝜃)/10, we get the norm bound 101
100 sin(𝜃) ≤ 101

100
√
𝑟. Similarly,

⟨𝐿 | (𝑯 + 𝑨) |𝐿⟩ = 0 implies ∥|𝐿⟩ − |𝜓1⟩∥ ≤ 1.01
√
𝑟.

As a direct consequence, using that
√
𝑟 ≤ 1/10, we get

|⟨𝐿 |𝑅⟩ − 1| = |⟨𝐿 |𝑅⟩ − ⟨𝜓1 |𝜓1⟩| ≤ |⟨𝐿 |𝑅⟩ − ⟨𝐿 |𝜓1⟩| + |⟨𝐿 |𝜓1⟩ − ⟨𝜓1 |𝜓1⟩|

≤ ∥|𝑅⟩ − |𝜓1⟩∥ + ∥|𝐿⟩ − |𝜓1⟩∥ ≤ 2.02
√
𝑟 ≤ 1

4
,

and similarly that���� 1
⟨𝐿 |𝑅⟩ − 1

���� = ����1 − ⟨𝐿 |𝑅⟩⟨𝐿 |𝑅⟩

���� ≤ 4
3
|1 − ⟨𝐿 |𝑅⟩| ≤ 2.73

√
𝑟.

49Note thatℜ(⟨𝑅 | (𝑯 + 𝑨) |𝑅⟩) = 0 implies 𝜆1 (𝑯) ≥ 0, and therefore 𝑟 ≥ 0. This then further
implies 𝜆2 (𝑯) ≤ 0 due to 𝑟 ≤ 0.01.
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Therefore,

∥𝑷0 − |𝜓1⟩⟨𝜓1 |∥ ≤ ∥
|𝑅⟩⟨𝐿 |
⟨𝐿 |𝑅⟩ − |𝑅⟩⟨𝐿 |∥ + ∥|𝑅⟩⟨𝐿 | − |𝑅⟩⟨𝜓1 |∥ + ∥|𝑅⟩⟨𝜓1 | − |𝜓1⟩⟨𝜓1 |∥

=

���� 1
⟨𝐿 |𝑅⟩ − 1

���� + ∥|𝐿⟩ − |𝜓1⟩∥ + ∥|𝑅⟩ − |𝜓1⟩∥ ≤ 4.75
√
𝑟. (2.80)

We will use the following properties of the projector 𝑷0; one can easily see that it
commutes with (𝑯 + 𝑨):

𝑷0(𝑯 + 𝑨) = 1
⟨𝐿 |𝑅⟩ |𝑅⟩⟨𝐿 | (𝑯 + 𝑨) = 0 = (𝑯 + 𝑨)𝑷0, (2.81)

and since it is a projector, it satisfies the algebraic identity

𝑷0(𝑰 − 𝑷0) = 0 so that e𝑥𝑷0 (𝑰 − 𝑷0) = 𝑰 − 𝑷0 for any 𝑥 ∈ C. (2.82)

The above properties streamline the rest of the proof of our bound

∥e(𝑯+𝑨)𝑡 (𝑰 − 𝑷0)∥ = ∥e(𝑯+𝑨)𝑡 · e−𝜆𝑔𝑎𝑝 (𝑯)𝑷0𝑡 (𝑰 − 𝑷0)∥ (by (2.82))

= ∥e(𝑯+𝑨−𝜆𝑔𝑎𝑝 (𝑯)𝑷0)𝑡 (𝑰 − 𝑷0)∥ (by (2.81))

≤ ∥e(𝑯+𝑨−𝜆𝑔𝑎𝑝 (𝑯)𝑷0)𝑡 ∥ · ∥𝑰 − 𝑷0∥

=




 exp
©­­­«

𝑯′:=︷                         ︸︸                         ︷
(𝑯 − 𝜆𝑔𝑎𝑝 (𝑯) |𝜓1⟩⟨𝜓1 |)𝑡 + 𝑨𝑡 +

𝑩:=︷                         ︸︸                         ︷
𝜆𝑔𝑎𝑝 (𝑯) ( |𝜓1⟩⟨𝜓1 | − 𝑷0)𝑡

ª®®®¬



 · ∥𝑰 − 𝑷0∥

≤ e(𝜆1 (𝑯′)+∥𝑩∥)𝑡 (∥𝑰 − |𝜓1⟩⟨𝜓1 |∥ + ∥|𝜓1⟩⟨𝜓1 | − 𝑷0∥)
(by Lemma 2.10.1)

≤ exp
(
𝜆2(𝑯) (1 −

4.75
√
𝑟

1 − 𝑟 )𝑡
)
(1 + 4.75

√
𝑟). (by Eq. (2.80))

≤ 3
2
· exp

(
1
2
𝜆2(𝑯)𝑡

)
. (by 𝑟 ≤ 1/100) ■

Now, we can specialize the above to the case of Lindbladians to obtain mixing times.

Proposition 2.2.3 (Mixing time from Hermitian gap). For any Lindbladian L and a
full-rank state 𝝆, suppose the self-adjoint componentH = H(𝝆,L) satisfies

𝜆1(H)
𝜆𝑔𝑎𝑝 (H)

≤ 1
100

, then 𝑡𝑚𝑖𝑥 (L) ≤ 3
ln(3∥𝝆−1/2∥)
𝜆𝑔𝑎𝑝 (H)

.
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Proof. We proceed as in the proof of Proposition 2.2.2. For any traceless Hermitian
𝑹, we have

eL𝑡 [𝑹]




1 =




𝝆1/4e𝑡 (H+A) [𝝆−1/4(𝑹)𝝆−1/4]𝝆1/4





1
(by definition)

≤



𝝆1/4





4
·



e𝑡 (H+A) [𝝆−1/4(𝑹)𝝆−1/4]





2
·



𝝆1/4





4

(by Hölder’s inequality)

≤ 3
2

e𝜆2 (𝑯)𝑡/2



𝝆−1/4𝑹𝝆−1/4





2

(by Lemma 2.10.2)

≤ 3
2

e𝜆2 (𝑯)𝑡/2∥𝝆−1/4∥2∥𝑹∥2 (by Hölder’s inequality)

≤ 3
2

e𝜆2 (𝑯)𝑡/2∥𝝆−1/2∥∥𝑹∥1. (since 𝝆 ≻ 0 and ∥·∥2 ≤ ∥·∥1)

The second inequality uses Lemma 2.10.2 since lim𝑡→∞ eL𝑡 [𝑹] = 0 (or in the notation
of Lemma 2.10.2, 𝑷0 |𝑹⟩ = 0). By assumption, 𝜆2(H) = 𝜆1(H) − 𝜆𝑔𝑎𝑝 (H) ≤
−0.99𝜆𝑔𝑎𝑝 (H); take the logarithm to conclude the proof. ■

2.11 Appendix:Improved incoherent Lindbladian simulation
The improved algorithm builds on the circuit in Figure 2.10, which is similar to that
of our weak measurement scheme in Figure 2.3, with a key technical difference: here,
a specific ancilla state 𝒀𝛿 |0⟩ =

√
1 − 𝛿 |0⟩ +

√
𝛿 |1⟩ “triggers” the appropriate weak

measurement. Thus, the circuit is “idle” if we remove the 𝒀𝛿 gate, which is essential
for our “compression” argument. However, this also makes the circuit post-selective,
which could exponentially decrease the probability of success if we were to run for
longer times naively. Thus, for 𝑡 > 2 we decompose the simulation to ⌈𝑡/2⌉ equal
segments, each of which can be amplified with constant (coherent) repetitions by
oblivious amplitude amplification.

The main conceptual ingredient leading to the substantial improvement is com-
pression [49]: instead of naively running 𝑟-repetitions of the circuit from Fig-
ure 2.10 as outlined in Figure 2.11, we compress the circuit such that it uses only
ℎ ∼ 𝑡 log(𝑡/𝜖) ≪ 𝑟 = Θ(𝑡2/𝜖) repetitions. The compression technique relies on
understanding the joint initial state

(��0𝑐+1〉𝒀𝛿 |0⟩)⊗𝑟 of the circuit in Figure 2.11 after
the single-qubit gates. The upshot is that 𝒀⊗𝑟

𝛿
|0𝑟⟩ is concentrated on strings with

Hamming weight ≤ ℎ, thus ℎ repetitions will suffice for the mass of the amplitudes.

Before diving into the proof, we explain the intuitive compression strategy in more
detail; the proof closely follows this, but with technical changes. Let 𝑡 ≤ 2 and let
𝑪′ be the circuit that we get from 𝑪 by removing the two single qubit gates 𝒀𝛿,𝒀†𝛿/4
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|0⟩ 𝒀
𝛿

𝒀†𝛿
4

accept the all-zero outcome
and when the second qubit is 1

|0⟩��0𝑏〉
𝑼 𝑼†

��0𝑎−𝑏〉
𝝆 = (1 − 𝛿

4 )e
𝛿L[𝝆] + O

(
𝛿2)

Figure 2.10: Alternative quantum circuit implementation of an approximate 𝛿-
time step via a postselective weak measurement scheme. Let 𝑪′ be the circuit
that we get by removing the two single qubit rotation gates 𝒀𝛿,𝒀

†
𝛿/4 from the

first qubit. For our compression argument it is of paramount importance that
𝑪′ · |0𝑎+2⟩⟨0𝑎+2 | ⊗ 𝑰 = |0𝑎+2⟩⟨0𝑎+2 | ⊗ 𝑰.

|0⟩��0𝑐+1〉
|0⟩��0𝑐+1〉
|0⟩��0𝑐+1〉
𝝆

𝒀𝛿

... . .
.

𝒀𝛿

𝒀𝛿

𝑪′

𝑪′

𝑪′

𝑪′

𝑪′

𝒀†
𝛿/4

...

𝒀†
𝛿/4

𝒀†
𝛿/4

accept the all-zero
outcome and when
the second qubit is 1

accept the all-zero
outcome and when
the second qubit is 1
accept the all-zero
outcome and when
the second qubit is 1
= (1 − 𝛿

4 )
𝑟e𝑟𝛿L[𝝆] + O

(
𝑟𝛿2)

Figure 2.11: 𝑟 subsequent repetitions of the circuit 𝑪′ from Figure 2.10. The circuits
𝑪′ act on potentially nonadjacent qubits, which is indicated by the vertical curly
connection between the visually split “halves” of the affected 𝑪′ circuits.

from the first qubit in Figure 2.10. Let 𝑋𝑖 be the random variable representing the
measurement outcome of a computational basis measurement of the 𝑖-th qubit in
𝒀⊗𝑟
𝛿
|0𝑟⟩. Then, the Chernoff bound tells us that Pr

(∑𝑟
𝑖=1 𝑋𝑖 > (1 + 𝑦)𝑡

)
≤

(
e𝑦

(1+𝑦)1+𝑦

)𝑡
so that the probability that the Hamming weight of

(√
1 − 𝛿 |0⟩ +

√
𝛿 |1⟩

)⊗𝑟
is greater
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than ℎ := (1 + 𝑦)𝑡 is at most eℎ−𝑡 𝑡ℎ
ℎℎ
≤ ( 𝑒𝑡

ℎ
)ℎ ≤ ( 2𝑒

ℎ
)ℎ. In particular, choosing

ℎ = Θ

(
log(1/𝜖)

log log(1/𝜖)

)
ensures that this probability is at most O

(
𝜖2) . Therefore, the initial state can be

replaced by its (normalized) projection |𝜙0⟩ to the subspace of Hamming-weight
≤ ℎ states while inflicting an error that is bounded by

∥𝒀⊗𝑟
𝛿
|0𝑟⟩ − |𝜙0⟩∥ ≤ 𝜖 .

This bound on Hamming-weights translates into a reduction of applications of the
circuit 𝑪′. Since |𝜙0⟩ is a superposition of bitstrings of Hamming-weights at most
ℎ, in all branches of the superposition all but ℎ applications of 𝑪′ can be neglected,
crucially because it acts trivially when the ancilla register is in state

��0𝑎+2〉:
𝑪′ · |0𝑎+2⟩⟨0𝑎+2 | ⊗ 𝑰 = |0𝑎+2⟩⟨0𝑎+2 | ⊗ 𝑰. (2.83)

Now we define a compression scheme for the 𝑟 ancilla registers, each containing (𝑎+2)
qubits50 in Figure 2.11, inspired by [18, 49]. The compression scheme can represent
the ≤ ℎ Hamming-weight states of the ancilla registers on just ℎ · (log(𝑟 + 1) + 𝑎 + 2)
qubits (concerning the 𝑟 registers to be compressed, by Hamming weight, we mean
the number of registers that do not contain the state

��0𝑎+2〉). Marking the register
state

��0𝑎+2〉 by 0· and the content of the 𝑖-th nonzero register by 𝑑𝑖 the encoding works
as follows:(
{0, 1}𝑎+2

)𝑟
∋ 0· 𝑠1𝑑10· 𝑠2𝑑2 . . .→ (𝑠1, 𝑠2, . . .) × (𝑑1, 𝑑2, . . .) ∈ {0, 1, 2, . . . , 𝑟}ℎ ×

(
{0, 1}𝑎+2

)ℎ
.

(2.84)

The compressed representation’s first “compression” register contains ℎ blocks of
log(𝑟 + 1) qubits, designated to store a sequence 𝑠 ∈ {0, 1, 2, . . . , 𝑟}ℎ, where 𝑠𝑖 is
the number of consecutive ancilla registers containing

��0𝑎+2〉 before the 𝑖-th ancilla
register that is not in state 0· ; if 𝑖 exceeds the Hamming weight, then we set 𝑠𝑖 = 𝑟.
The second “data” register consists of ℎ blocks of (𝑎 + 2) qubits, where the 𝑖-th block
represents the qubits of the 𝑖-th nonzero register of the uncompressed state; if the
Hamming weight is less than 𝑖, then the block is set to 0· . The property (2.83) means
that the 𝑪′ gates can be applied “transversally” on the second “data” register of the
encoded scheme because they do not change the location of the nonzero registers of
the uncompressed state.

50Note that the first qubit is redundant in this encoding, but we add it here for clarity of the
presentation.
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Theorem 2.3.2 (Compressed incoherent Lindbladian simulation algorithm). Suppose
𝑼 is a block-encoding of the Lindblad operators of a purely irreversible Lindbladian
L as in Definition 2.1.2. Let 𝜖 ≤ 1/2, then we can simulate the action of the
superoperator e𝑡L to precision 𝜖 in diamond norm using

O((𝑐 + log((𝑡 + 1)/𝜖)) log((𝑡 + 1)/𝜖)) (resettable) ancilla qubits,

O
(
(𝑡 + 1) log((𝑡 + 1)/𝜖)

log log((𝑡 + 1)/𝜖)

)
(controlled) uses of 𝑼 and 𝑼†,

and O((𝑡 + 1) (𝑐 + 1)polylog((𝑡 + 1)/𝜖)) other two-qubit gates.

If the Lindbladian has a coherent part −i[𝑯, 𝝆], and we have access to a block-
encoding of 𝑯 = (⟨0𝑐 |⊗𝑰)𝑽 ( |0𝑐⟩⊗𝑰), then we can simulate e𝑡L withO

(
(𝑡 + 1) log((𝑡+1)/𝜖)

log log((𝑡+1)/𝜖)

)
additional (controlled) uses of 𝑽 and 𝑽†.

Proof of Theorem 2.3.2. We begin with analyzing the (modified) weak-measurement
scheme using similar calculations to Theorem 2.3.1, and then compress it. We focus
on the purely irreversible scenario and, at the end, handle the general case.

(Postselected weak-measurement.) The circuit 𝑪 from Figure 2.10 on a pure input
state |𝜓⟩ acts as��0𝑎+2〉 |𝜓⟩ (1)→ (√1 − 𝛿 |0⟩ +

√
𝛿 |1⟩) |0⟩𝑼 |0𝑐⟩|𝜓⟩

(2)
→
√

1 − 𝛿 |00⟩𝑼 |0𝑐⟩|𝜓⟩ +
√
𝛿 |11⟩

(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩

+
√
𝛿 |10⟩(𝑰 − |0𝑏⟩⟨0𝑏 | ⊗ 𝑰)𝑼 |0𝑐⟩|𝜓⟩

= (
√

1 − 𝛿 |00⟩ +
√
𝛿 |10⟩)𝑼 |0𝑐⟩|𝜓⟩ +

√
𝛿 |11⟩

��0𝑏〉(〈0𝑏
�� ⊗ 𝑰)𝑼 |0𝑐⟩|𝜓⟩︸                  ︷︷                  ︸
|𝜓′0⟩:=

−
√
𝛿 |10⟩

(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩

(3)
→

(
𝒀†𝛿

4
⊗ 𝑰

) (
(
√

1 − 𝛿 |00⟩ +
√
𝛿 |10⟩) |0𝑐⟩|𝜓⟩ +

√
𝛿 |11⟩

��0𝑏〉��𝜓′0〉
−
√
𝛿 |10⟩𝑼†

(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩

)
(2.85)
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Now, let us compute the part of 𝑪
��0𝑎+2〉 |𝜓⟩ starting with

��0𝑎+2〉
(
〈
0𝑎+2

�� ⊗ 𝑰)𝑪
��0𝑎+2〉 |𝜓⟩

=

(√︂(
1 − 𝛿

4

)
(1 − 𝛿) + 𝛿

2

)
︸                         ︷︷                         ︸
=1− 𝛿

8 +O(𝛿2)=
√

1− 𝛿
4 +O(𝛿2)

|𝜓⟩ − 𝛿
2
(⟨0𝑐 | ⊗ 𝑰)𝑼†

(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩︸                                          ︷︷                                          ︸∑

𝑗∈𝐽 𝑳†
𝑗
𝑳 𝑗 |𝜓⟩

=

√︂
1 − 𝛿

4

((
𝑰 − 𝛿

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗

)
|𝜓⟩ + O

(
𝛿2

))
,

and the part where second qubit is |1⟩

(𝑰 ⊗ ⟨1| ⊗ 𝑰)𝑪
��0𝑎+2〉 |𝜓⟩ = √𝛿𝒀†𝛿

4
|1⟩

��0𝑏〉��𝜓′0〉 = √𝛿𝒀†𝛿
4
|1⟩

��0𝑏〉 ∑︁
𝑗∈𝐽
| 𝑗⟩𝑳 𝑗 |𝜓⟩.

Let 𝚷̃ := 1√
1− 𝛿

4

(
|0𝑎+2⟩⟨0𝑎+2 | ⊗ 𝑰 + 𝑰 ⊗ |1⟩⟨1| ⊗ 𝑰

)
, the above implies that

Tr𝑎+2
(
𝚷̃𝐶

(
|0𝑎+2⟩⟨0𝑎+2 | ⊗ |𝜓⟩⟨𝜓 |

)
𝐶†𝚷̃

)
=

(
𝑰 − 𝛿

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗

)
|𝜓⟩⟨𝜓 |

(
𝑰 − 𝛿

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗

)
+ 𝛿

∑︁
𝑗∈𝐽

𝑳 𝑗 |𝜓⟩⟨𝜓 |𝑳†𝑗 + O
(
𝛿2

)
= e𝛿L[|𝜓⟩⟨𝜓 |] + O

(
𝛿2

)
.

Similarly to the proof of Theorem 2.3.1, it is easy to see that this implies

∥Tr𝑎+2
(
𝚷̃𝐶

(
|0𝑎+2⟩⟨0𝑎+2 | ⊗ [·]

)
𝐶†𝚷̃

)
− e𝛿L [·] ∥^ = O

(
𝛿2

)
.

Like in Theorem 2.3.1, choosing 𝛿 = Θ(𝜖/𝑡) and repeating the process 𝑟 := 𝑡/𝛿 times
(every time using 𝑎 + 2 fresh ancillas) yields an 𝜖-accurate simulation (Figure 2.11).
This gives similar circuit complexity as Theorem 2.3.1, except that the resulting
postselective protocol has success probability about (1 − 𝜖

𝑡
) 𝑡

2
𝜖 = exp(−Θ(𝑡)). More

precisely, the square of the subnormalization factor is (1 − 𝛿
4 )

𝑡
𝛿 , which is at least 1

2
for 𝑡 ≤ 2 and 𝛿 ∈ (0, 1] since (1 − 𝛿

4 )
𝑡
𝛿 ≥ (1 − 𝛿

4 )
2
𝛿 ≥ ( 34 )

2 > 1
2 .

(Compression.) While the above discussion is largely similar to Theorem 2.3.1, we
now further compress to obtain the desired complexity. We analyze the case when
𝑡 ≤ 2 and later show how to bootstrap the results for arbitrary large 𝑡.

Instead of running the verbose circuit of Figure 2.11, we directly prepare the
compressed version of the state |𝜙0⟩ using the techniques of [18]. Using the
algorithm of [18], we can directly prepare the “compression” register corresponding
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to |𝜙0⟩, then we can initialize the “data” register by looping through all blocks and
applying an 𝑿 gate on the first qubit conditioned on the corresponding “compression”
block containing a number less than 𝑟. Then we apply the 𝑪′ gates “transversally”,
looping through each of the ℎ blocks of the “data” register of the compressed state in
increasing order starting from the first block.

The last and technically most challenging difficulty that we face is to evaluate
the post-selection criterion in Figure 2.11. We could, of course, uncompress the
state, apply the single qubit gates (𝒀†

𝛿/4)
⊗𝑟 and perform the measurement literally

as depicted on Figure 2.11, however it is possible to evaluate this criterion while
keeping the compressed representation.51

We use a slightly modified variant of the compressed measurement scheme out-
lined in [18, Section 5] that enables us to perform a measurement of the form(
𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |, 𝑰 − 𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |

)⊗𝑟 , where 𝑷0 = 𝒀𝛿/4 |0⟩⟨0|𝒀†𝛿/4. This com-
pressed measurement procedure reports the result also in a compressed form by
listing the (uncompressed) indices (𝑖1, 𝑖2, . . . , 𝑖ℓ) where the measurement outcome is
𝑰 − 𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |.

The initial observation of [18] is that the measurement
( (
𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |

)⊗𝑟
, 𝑰 −

(
𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |

)⊗𝑟 )
can be approximately performed by using the compressed state preparation circuit
approximately preparing the compressed version of the state

(��0𝑐+1〉𝒀𝛿/4 |0⟩)⊗𝑟 . In-
deed, we can just run this compressed state preparation in reverse and verify that we
get the all-zero state.

A similar procedure can be devised for performing the compressed measurement((
𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |

)⊗ℓ
, 𝑰 −

(
𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |

)⊗ℓ)
(2.86)

51The compression and compact verification procedure for checking whether all segments were
applied successfully in the encoded scheme (and the resulting reflection operator) does not appear to
work as described in [49]. The issue is manifest in their description of the reflection operator about
accepted outcomes: “Therefore, the corresponding operation in the encoded representation is first
applying e†, then applying the reflection about the encoded state |0𝑐⟩|0𝑏⟩ on the first two registers,
and last applying 𝐸 .”

However, this approach does not seem to work, as noted in [18] (here 𝑈𝑚 is the analog of 𝐸 in
the above quote from [49]): “At first glance, one might imagine that applying 𝑈𝑚 in place of 𝑅⊗𝑚
would yield a succinct representation of the final outcome state, so measuring in the computational
basis would provide the correct result. Unfortunately, this does not accurately simulate the final
measurement except in the case where the all-zero string is obtained.”

For completeness, we include and analyze our modified compression / verification scheme. There
may be a simpler fix for the above issue [176], or alternatively, the techniques of the recent work [112]
— circumventing compression — could also be compatible with our improvements [176], which would
in turn probably also simplify our circuits.
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for any given consecutive ℓ (uncompressed) registers 𝑑𝑖, 𝑑𝑖+1, . . . , 𝑑𝑖+ℓ−1. Towards
this, observe that we can efficiently convert an encoded string 𝑒1;𝑟 of the form
(2.84) to a new form (𝑒1;𝑖−1, 𝑒𝑖;𝑖+ℓ−1, 𝑒𝑖+ℓ;𝑟) where 𝑒 𝑗 ;𝑘 is an encoding of the un-
compressed block-string 𝑢 𝑗 , 𝑢 𝑗+1, . . . , 𝑢𝑘 . The measurement is then performed by
applying this conversion 𝑒1;𝑟 → (𝑒1;𝑖−1, 𝑒𝑖;𝑖+ℓ−1, 𝑒𝑖+ℓ;𝑟) in superposition, then apply-
ing the “full” measurement (2.86) on

��𝑒𝑖;𝑖+ℓ−1
〉
, and finally reversing the conversion

(𝑒1;𝑖−1, 𝑒𝑖;𝑖+ℓ−1, 𝑒𝑖+ℓ;𝑟) → 𝑒1;𝑟 . This way, using binary search, we can, e.g., locate the
first (uncompressed) index where the measurement result is 𝑰 − 𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |
using log(𝑟) such compressed measurements. With very high probability at most
O(ℎ) indices will result in outcome 𝑰− 𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |, so this binary-search-based
compressed measurement scheme will terminate after O(ℎ log(𝑟)) steps with very
high probability. We refer the reader to [18, Section 5] for further details about the
precise error and run-time bounds.

Once we obtained the list of indices (𝑖1, 𝑖2, . . . , 𝑖ℓ) where the uncompressed measure-
ment would have resulted in 𝑰 − 𝑷0 ⊗ |0𝑐+1⟩⟨0𝑐+1 |, we need to check the alternative
acceptance condition, i.e., whether the second qubit is in state 1 or not, completing
the verification whether all circuit segments were applied successfully. Given such
an index 𝑖 we first use the first “compression” register of the compressed encoding
to identify how many nonzero (uncompressed) registers are before 𝑖, and then look
up the corresponding block in the “data” register to check whether the second qubit
is in state 1; if the 𝑖-th uncompressed register contains

��0𝑎+2〉 according to the
“compression” register then we conclude that the second qubit is in state 0 without
looking at the “data” register. All of these operations can be performed in time that
is polynomial in the size of the “compression” register, which is O(polylog(1/𝜖)).

This completes the description of how to simulate e𝑡L[·] to precision O(1/𝜖) with
success probability ≥ 1/2 when 𝑡 ≤ 2 using

O(ℎ(𝑎 + log((𝑟 + 1)))) = O(log(1/𝜖) (𝑎 + log(1/𝜖))) ancilla qubits,

ℎ = O
(

log(1/𝜖)
log log(1/𝜖)

)
(controlled) uses of 𝑼 and 𝑼†,

O((𝑎 + 1)polylog(1/𝜖)) other two-qubit gates.

The success probability can be improved to 1 while keeping the precision O(1/𝜖),
using 3-steps of oblivious amplitude amplification, cf. [49, 73]. For 𝑡 > 2, we divide
up the evolution to ⌈𝑡/2⌉ equal segments and repeat the process ⌈𝑡/2⌉ times, setting
the precision to 𝜖/𝑡 in each segment. This gives the stated final complexity.
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With a slight modification, we can make the above algorithm work for general
Lidbladians as well, assuming that we have an (at most) 𝑎-qubit block-encoding 𝑽 of
the driving Hamiltonian term 𝑯. One just needs to modify the circuit of Figure 2.10,
sketched in Figure 2.12.

|0⟩ 𝒀2𝛿 𝒀†5
4 𝛿

accept the all-zero outcome
and when the third qubit is 1

|0⟩ 𝒀1
2 e−i arcsin(

√︃
4
5 )𝑿

|0⟩��0𝑏〉
𝑽 𝑼 𝑼†

��0𝑎−𝑏〉
𝝆 = (1 − 5

4𝛿)e
𝛿L[𝝆] + O

(
𝛿2)

Figure 2.12: Alternative quantum circuit implementation of an approximate 𝛿-time
step via a postselective weak measurement scheme including the coherence term
−𝑖[𝑯, 𝝆] for the block-encoded Hamiltonian 𝑯 = (⟨0𝑐 | ⊗ 𝑰)𝑽 ( |0𝑐⟩ ⊗ 𝑰).

For completeness, we include the analysis of the circuit 𝑪𝑯 from Figure 2.12. Let us
define

𝑹 := (𝒀†5
4 𝛿
⊗ 𝑰) ·

(
|0⟩⟨0| ⊗ 𝑰 + |1⟩⟨1| ⊗ e−i arcsin(

√︃
4
5 )𝑿

)
.
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Similarly to (2.85) we analyze the action of 𝑪𝑯 on a pure state |𝜓⟩:��0𝑎+3〉 |𝜓⟩
(1)
→ (
√

1 − 2𝛿 |0⟩ +
√

2𝛿 |1⟩) |00⟩|0𝑐⟩|𝜓⟩
(2)
→ (
√

1 − 2𝛿 |00⟩ +
√
𝛿 |10⟩ +

√
𝛿 |11⟩) |0⟩|0𝑐⟩|𝜓⟩

(3)
→ (
√

1 − 2𝛿 |000⟩ +
√
𝛿 |100⟩) |0𝑐⟩|𝜓⟩ +

√
𝛿 |110⟩𝑽 |0𝑐⟩|𝜓⟩

(4)
→ (
√

1 − 2𝛿 |000⟩ +
√
𝛿 |100⟩)𝑼 |0𝑐⟩|𝜓⟩ +

√
𝛿 |110⟩𝑼𝑽 |0𝑐⟩|𝜓⟩

(5)
→
√

1 − 2𝛿 |000⟩𝑼 |0𝑐⟩|𝜓⟩ +
√
𝛿 |101⟩

(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩

+
√
𝛿 |100⟩(𝑰 − |0𝑏⟩⟨0𝑏 | ⊗ 𝑰)𝑼 |0𝑐⟩|𝜓⟩

√
𝛿 |110⟩𝑼𝑽 |0𝑐⟩|𝜓⟩

= (
√

1 − 2𝛿 |000⟩ +
√
𝛿 |100⟩)𝑼 |0𝑐⟩|𝜓⟩ +

√
𝛿 |101⟩

��0𝑏〉(〈0𝑏
�� ⊗ 𝑰)𝑼 |0𝑐⟩|𝜓⟩︸                  ︷︷                  ︸
|𝜓′0⟩:=

−
√
𝛿 |100⟩

(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩ +

√
𝛿 |110⟩𝑼𝑽 |0𝑐⟩|𝜓⟩

(6−7)
→ (𝑹 ⊗ 𝑰)

(
(
√

1 − 𝛿 |000⟩ +
√
𝛿 |100⟩) |0𝑐⟩|𝜓⟩ +

√
𝛿 |101⟩

��0𝑏〉��𝜓′0〉
−
√
𝛿 |100⟩𝑼†

(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩

)
+ (𝑹 ⊗ 𝑰)

√
𝛿 |110⟩𝑽 |0𝑐⟩|𝜓⟩.

Considering that

⟨000| (𝑹 ⊗ 𝐼) =
(
𝑹† |00⟩

)†
⟨0| =

(√︂
1 − 5

4
𝛿⟨000| +

√︂
𝛿

4
⟨100| − 𝑖

√
𝛿⟨110|

)
,

let us compute the part of 𝑪𝑯

��0𝑎+3〉 |𝜓⟩ starting with
��0𝑎+3〉:

(
〈
0𝑎+3

�� ⊗ 𝑰)𝑪𝑯

��0𝑎+3〉 |𝜓⟩
=

(√︂(
1 − 5

4
𝛿

)
(1 − 𝛿) + 𝛿

2

)
︸                           ︷︷                           ︸
=1− 5

8 𝛿+O(𝛿2)=
√︃

1− 5
4 𝛿+O(𝛿2)

|𝜓⟩ − 𝛿
2
(⟨0𝑐 | ⊗ 𝑰)𝑼†

(
|0𝑏⟩⟨0𝑏 | ⊗ 𝑰

)
𝑼 |0𝑐⟩|𝜓⟩︸                                          ︷︷                                          ︸∑

𝑗∈𝐽 𝑳†
𝑗
𝑳 𝑗 |𝜓⟩

− 𝑖𝛿(⟨0𝑐 | ⊗ 𝑰)𝑽 |0𝑐⟩|𝜓⟩

=

√︂
1 − 5

4
𝛿

((
𝑰 − 𝑖𝛿𝑯 − 𝛿

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗

)
|𝜓⟩ + O

(
𝛿2

))
,

and the part where third qubit is |1⟩:

(𝑰 ⊗ ⟨1| ⊗ 𝑰)𝑪𝑯

��0𝑎+3〉 |𝜓⟩ = √𝛿𝑹 |10⟩
��0𝑏〉��𝜓′0〉 = √𝛿𝑹 |10⟩

��0𝑏〉 ∑︁
𝑗∈𝐽
| 𝑗⟩𝑳 𝑗 |𝜓⟩.
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Let 𝚷̃ := 1√︃
1− 5

4 𝛿

(
|0𝑎+3⟩⟨0𝑎+3 | ⊗ 𝑰 + 𝑰 ⊗ |1⟩⟨1| ⊗ 𝑰

)
, the above implies that

Tr𝑎+3
(
𝚷̃𝐶

(
|0𝑎+3⟩⟨0𝑎+3 | ⊗ |𝜓⟩⟨𝜓 |

)
𝐶†𝚷̃

)
=

(
𝑰 − 𝑖𝛿𝑯 − 𝛿

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗

)
|𝜓⟩⟨𝜓 |

(
𝑰 + 𝑖𝛿𝑯 − 𝛿

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗

)
+ 𝛿

∑︁
𝑗∈𝐽

𝑳 𝑗 |𝜓⟩⟨𝜓 |𝑳†𝑗 + O
(
𝛿2

)
= e𝛿L[|𝜓⟩⟨𝜓 |] + O

(
𝛿2

)
.

Similarly to the proof of Theorem 2.3.1, it is easy to see that this implies

∥Tr𝑎+2
(
𝚷̃𝐶

(
|0𝑎+3⟩⟨0𝑎+3 | ⊗ [·]

)
𝐶†𝚷̃

)
− e𝛿L [·] ∥^ = O

(
𝛿2

)
. ■

2.12 Appendix:Quantum simulated annealing
A subroutine for a coherent Gibbs sampler is to prepare the top eigenvector of the
discriminant. In semi-group settings, one simply iterates the map for an arbitrary
initial state to find its fixed point; given coherent access to some discriminant D
(which is not quite a CPTP map), the standard approach is quantum simulated
annealing [24, 179, 186]. To keep this section self-contained, in the following, we
assume coherent access to some discriminants D𝛽 𝑗 . First, we use QSVT to boost
the gap; this is the origin of the quadratic speedup.

Proposition 2.12.1 (Quadratic speedup [73, 118]). Given a block-encoding 𝑼D of a
Hermitian matrix 𝑰 + D with eigenvalue gap 𝜆𝑔𝑎𝑝 (D) and 𝜆1(D) ≥ −𝜆𝑔𝑎𝑝 (D), we
can construct a unitary 𝑼′ block-encoding a matrix 𝑝(𝑰 + D) that has the same top
eigenvector as D but with O(1) eigenvalue gap, with O( 1√

𝜆𝑔𝑎𝑝 (D)
) uses of 𝑼D and

𝑼†D .

Second, following [24], we consider the discretized adiabatic paths through tempera-
tures ��𝜆1(D𝛽0)

〉
→ · · ·

��𝜆1(D𝛽 𝑗 )
〉
→ · · ·

��𝜆1(D𝛽𝑘 )
〉

𝑼D𝛽0
→ · · ·𝑼D𝛽 𝑗

→ · · ·𝑼D𝛽𝑘
where 𝛽 𝑗 =

𝑗

𝑘
𝛽. (2.87)

While a more refined annealing schedule is possible, we consider the above linear
schedule for simplicity. In particular, the initial state is the maximally entangled
state 𝛽 = 0. In the following, we show that choosing 𝑘 = Θ(𝛽∥𝑯∥) ensures that the
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consecutive overlaps remain constant large, allowing us to jump between consecutive
states using a few steps of (fixed-point) amplitude amplification.

Proposition 2.12.2 (Consecutive overlaps). Suppose the discriminants have a top
eigenvector close to the purified Gibbs states

∥
��𝜆1(D𝛽 𝑗

〉
−

���√︁𝝆𝛽 𝑗

〉
∥ ≤ 1

10
. (2.88)

Let 𝛿𝛽 := 𝛽 𝑗+1 − 𝛽 𝑗 , then the consecutive overlaps are large��⟨𝜆1(D𝛽 𝑗 ) |𝜆1(D𝛽 𝑗+1)⟩
��2 ≥ 7

10
− O((𝛿𝛽)2∥𝑯2e−𝛿𝛽𝑯∥). (2.89)

Proof. Let us evaluate the overlap between the ideal Gibbs states and rewrite using
the Hilbert-Schmidt inner product���⟨√︁𝝆𝛽 𝑗 |

√︁
𝝆𝛽 𝑗+1⟩

���2 =
Tr

[
e−𝛽 𝑗𝑯/2e−𝛽 𝑗𝑯/2e−𝛿𝛽𝑯/2

]2

Tr[e−𝛽 𝑗𝑯]Tr[e−𝛽 𝑗𝑯e−𝛿𝛽𝑯]
=
⟨e−𝛿𝛽𝑯/2⟩2

𝛽 𝑗

⟨𝑰⟩𝛽 𝑗 ⟨e−𝛿𝛽𝑯⟩𝛽 𝑗
= 1 − O((𝛿𝛽)2⟨𝑯2e−𝛿𝛽𝑯⟩𝛽 𝑗 )
≥ 1 − O((𝛿𝛽)2∥𝑯2e−𝛿𝛽𝑯∥),

where we denote the thermal expectation by ⟨𝑨⟩𝛽 = Tr[𝝆𝛽𝑨]. The last equality
expands the exponential

e−𝛿𝛽𝑯/2 = 𝑰 − 𝛿𝛽𝑯/2 + (e−𝛿𝛽𝑯/2 − 𝑰 + 𝛿𝛽𝑯/2).

The small discrepancy (2.88) between
��𝜆1(D𝛽 𝑗

〉
and

��√𝝆𝛽 𝑗 〉 only induces a minor
change in the overlaps thus proving (2.89). ■

Proposition 2.12.3 (Simulated annealing). In the setting of Proposition 2.12.2,
following the discretized adiabatic path (2.87) with 𝑘 = ⌈𝑐𝛽∥𝑯∥⌉ prepares a state
|𝜓⟩ such that ∥|𝜓⟩ −

��𝜆1(D𝛽 𝑗+1

〉
∥ ≤ 𝛿 using

O
©­­«

𝛽∥𝑯∥

min 𝑗
√︃
𝜆𝑔𝑎𝑝 (D𝛽 𝑗 )

log2(𝛽∥𝑯∥/𝛿)
ª®®¬.

total calls for the oracle for discriminants D𝛽 𝑗 .

Proof. Use fixed-point amplitude amplification [185] to “jump” between the eigen-
vectors

��𝜆1(D𝛽 𝑗

〉
. We can implement a

√
𝛿
𝑘

-approximate projector to each eigenvector
with O( log(𝑘/𝛿)√

𝜆𝑔𝑎𝑝 (D𝛽 𝑗
) ) calls to the block-encoded discriminants D𝛽 𝑗 . To ensure that

all the 𝑘 jumps are all approximated to error ≤ 𝛿
𝑘
, all fixed-point amplitude amplifi-

cation consists of log(𝑘/𝛿) rounds, each calling the block-encoded (approximate)
projectors. ■
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A simple lower bound on 𝛽 dependence
In this section, we prove a simple lower-bound for the temperature dependence in the
sense of implementing a reflection about the purified Gibbs state.

Proposition 2.12.4 (Lower-bound on simulation time). A circuit implementing the
reflection operator

𝑹𝛽,𝑯 := 𝑰 −
��√𝝆𝛽,𝑯〉〈√

𝝆𝛽,𝑯
��

using Hamiltonian simulation for 𝑯 as a black-box must use Hamiltonian simulation
time 𝑇 = Ω(𝛽).

Proof. The idea is to argue that the reflection operator is sensitive to 𝛽 and the
Hamiltonian 𝑯, so the Hamiltonian simulation time 𝑇 cannot be too short. First, we
control the norm change of the reflection operator. Let 𝝆𝛽,𝑯 =: 𝝆 and 𝝆𝛽,𝑯′ =: 𝝆′,
then

∥𝑹𝛽,𝑯 − 𝑹𝛽,𝑯′ ∥ = ∥|
√
𝝆⟩⟨√𝝆 | − |

√︁
𝝆′⟩⟨

√︁
𝝆′|∥

≥
���〈√𝝆��(|√𝝆⟩⟨√𝝆 | − |√︁𝝆′⟩⟨

√︁
𝝆′|

)��√𝝆⊥〉���
=

���⟨√𝝆 |√︁𝝆′⟩⟨
√︁
𝝆′|√𝝆⊥⟩

���
=

√︁
1 − 𝜃2 · 𝜃,

where 𝜃 :=
√︃

1 −
��⟨√𝝆 |√𝝆′⟩��2 and��√𝝆⊥〉 ∈ 𝑆𝑝𝑎𝑛{��√𝝆〉

,

���√︁𝝆′
〉
} such that ⟨√𝝆⊥ |√𝝆⟩ = 0.

Now, for infinitesimal 𝜖 → 0, let

𝑯 = |0⟩⟨0| + |1⟩⟨1|
𝑯′ = |0⟩⟨0| + (1 + 𝜖) |1⟩⟨1|

such that ��√𝝆〉
∝ |00⟩ + |11⟩���√︁𝝆′

〉
∝ |00⟩ + (1 + 𝛽𝜖/2) |11⟩ + O(𝜖2).

Direct calculation gives 𝜃 = Ω(𝛽𝜖) for small 𝜖 → 0. To conclude the proof, suppose
the block-box circuit uses only Hamiltonian simulation time 𝑇 . Then, the resulting
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circuits for 𝑯 and 𝑯′ can only differ by ∥𝑯 − 𝑯′∥𝑇 = 𝜖𝑇 . Therefore, for small
𝜖 → 0,

𝑇𝜖 ≥
√︁

1 − 𝜃2 · 𝜃 = Ω(𝛽𝜖),

proving the advertised result. ■

The above sensitivity argument similarly applies to algorithms preparing the Gibbs
state using black-box Hamiltonian simulation.

Proposition 2.12.5 (Lower-bound on simulation time). A circuit preparing the
Gibbs state 𝝆𝛽 ∝ e−𝛽𝑯 using Hamiltonian simulation for 𝑯 as a black-box must use
Hamiltonian simulation time 𝑇 = Ω(𝛽).

Proof. Again, consider 𝑯 and 𝑯′ as above and their Gibbs states

𝝆 ∝ |0⟩⟨0| + |1⟩⟨1|
𝝆′ ∝ |0⟩⟨0| + (1 + 𝛽𝜖) |1⟩⟨1| + O(𝜖2).

Then, for infinitesimal 𝜖 → 0,

∥𝝆 − 𝝆′∥1 ≥ Ω(𝛽𝜖),

which implies 𝑇 = Ω(𝛽) as advertised. ■

2.13 Appendix:Impossibility of boosted shift-invariant in-place phase estima-
tion

In this section, we include the proof that certain “boosted shift-invariant in place
phase estimation” utilized in [167] is impossible. The impossibility result was
developed in parallel with this work; we reproduce the main argument here with the
permission of András Gilyén and Dávid Matolcsi until their manuscript becomes
publicly available.

We begin by reviewing the phase estimation assumptions made by [167]. First, they
assume [167, Eqn.(11), Supplemental Information] the phase estimation map is
shift-invariant in the sense that

Φ :=
∑̄︁
𝜈

∑̄︁
𝜇

𝑴 𝜇̄

𝜈̄
⊗ |𝜈̄⟩⟨𝜇̄ | where 𝑴 𝜇̄

𝜈̄
:=

∑︁
𝑖

𝛼(𝐸𝑖, 𝜈̄ − 𝜇̄) |𝜓𝑖⟩⟨𝜓𝑖 | and 𝜈̄, 𝜇̄ ∈ {Z𝜔̄}.
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In [167], the shift-invariance was shown to hold for an unboosted phase estimation
unitary [167, Eqn.(12), Supplemental Information], which has a slowly decaying tail
when 𝐸𝑖 deviates substantially from 𝜈̄ − 𝜇̄.

Second, to prove the correctness of the fixed point, they impose [167, Eqn.(10),
Supplemental Information] that the profile 𝛼(𝐸𝑖, 𝜈̄ − 𝜇̄) can be boosted:52 the only
nonzero matrix elements are such that

|𝜈̄ − 𝜇̄ − 𝐸𝑖 | < 𝜔̄,

where 𝜔̄ is the energy resolution for the phase estimation readout registers. Unfortu-
nately, these two assumptions are not compatible with each other, as argued by the
following.

Proposition 2.13.1 (Impossibility for shift-invariant boosting). There exists no
continuous family of “boosted shift-invariant in place phase estimation” unitaries.
More precisely, for every constant 𝑘 for large enough 𝑁 there exists no profile
𝛼 : R × 2𝜋

𝑁
· {0, 1, 2, . . . , 𝑁 − 1} → C that simultaneously satisfies:

• (almost) unitarity: 𝑴𝐸 :=
∑𝑁−1
𝑖, 𝑗=0 𝛼(𝐸,

2𝜋
𝑁
(𝑖− 𝑗 mod 𝑁)) |𝑖⟩⟨ 𝑗 | is close to some

unitary 𝑼𝐸 for all 𝐸 ∈ R : ∥𝑴𝐸 −𝑼𝐸 ∥ ≤ 1
2

• boosting: 𝛼(𝐸, 𝜈̄ − 𝜇̄) = 0 if |𝜈̄ − 𝜇̄ − 𝐸 mod 2𝜋 | > 𝑘 2𝜋
𝑁

• continuity: 𝛼(𝐸, 𝜈̄) depends continuously on 𝐸

Proof. We prove the statement by contradiction. Let us assume that such a profile
exists for 𝑁 ≫ 𝑘3. We will track how the profile changes as we increase the energy
from 𝐸0 = 𝑘 2𝜋

𝑁
to 𝐸1 = (3𝑘 + 1) 2𝜋

𝑁
.

Now, consider the polynomial 𝑝𝐸 (𝑧) =
∑4𝑘+1
𝑗=0 𝛼(𝐸, 𝑗 2𝜋

𝑁
)𝑧 𝑗 (whose physical meaning

will become clear). Due to boosting the polynomial 𝑝𝐸0 (𝑧) has a degree at most
2𝑘 , so it has at most 2𝑘 roots, and in particular, at most 2𝑘 roots are situated within
the complex unit circle. Due to continuity, the polynomial 𝑝𝐸 (𝑧) is continuously
transformed to 𝑝𝐸1 (𝑧) whose smallest nonzero coefficient comes with a power of
𝑧 at least 2𝑘 + 1 due to boosting. This implies that 0 is a root with multiplicity
at least 2𝑘 + 1, and in particular, we have at least 2𝑘 + 1 roots within the unit

52This is explicitly stated in the last paragraph of page 13 [167, Supplemental Information]:
“According to (10) we can replace the function 𝑓 (𝐸 𝑗 , 𝑘 − 𝑝) by its enhanced counterpart 𝛼𝐸 𝑗

(𝑘 − 𝑝),
which acts as a binary amplitude for the two closest 𝑟-bit integers to the actual energy 𝐸 𝑗 .”
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circle. Since the polynomial changes continuously, its multi-set of roots also changes
continuously, which means that at some point, a root must enter the unit circle53

(here we acknowledge that some roots enter from infinity when the degree of the
polynomial increases but that does not affect our argument — one can make this
precise by tracking roots on the surface of the Riemann sphere). Thus, there is some
energy 𝐸′ for which a complex unit number 𝑧 = e2𝜋𝑖𝜑 is a root of the corresponding
polynomial 𝑝𝐸 ′ (𝑧).

We show that this implies that the plane wave with quasi-momentum 𝜑 is (almost) in
the kernel of the shift-invariant matrix 𝑴𝐸 ′ : for every 𝑖 ≤ 𝑁 − 4𝑘 − 2 we have

⟨𝑖 |𝑴𝐸 ′

𝑁−1∑︁
𝑗=0
| 𝑗⟩𝑧− 𝑗 =

𝑁−1∑︁
𝑗=0

𝛼(𝐸′, 2𝜋
𝑁
(𝑖 − 𝑗 mod 𝑁))𝑧− 𝑗 = 𝑧−𝑖𝑝𝐸 ′ (𝑧) = 0,

implying

∥𝑴𝐸 ′

𝑁−1∑︁
𝑗=0
| 𝑗⟩𝑧− 𝑗 ∥2 = O

(
𝑘3

)
≪ 𝑁 = ∥𝑼𝐸

𝑁−1∑︁
𝑗=0
| 𝑗⟩𝑧− 𝑗 ∥2,

a contradiction. ■

53The idea of tracking the roots of this polynomial is due to Dávid Matolcsi.
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Table 2.1: A comparison of existing thermal state preparation algorithms7.
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C h a p t e r 3

AN EFFICIENT AND EXACTLY DETAILED-BALANCED
QUANTUM GIBBS SAMPLER

3.1 Introduction
One of the leading candidate applications of quantum computers [54] is to simulate
quantum systems [68]. In particular, the preparation of thermal states or ground
states for materials and molecules has received significant attention [14, 30, 37, 107].
Surprisingly, there has not been a consensus on the “go-to” quantum algorithm
for this task due to a lack of provable guarantees or empirical evidence [108].
Recently, several Monte Carlo-style, nonunitary quantum algorithms have been
proposed [40, 61, 149, 167, 180, 186]. While their efficacy has only been validated
using small-scale numerics and under strong theoretical assumptions [38, 61, 160],
there are reasons for optimism. On physical grounds, these algorithms resemble
naturally occurring system-bath dynamics [134]; if a system rapidly cools in a
refrigerator, the same plausibly applies to a “cooling algorithm” that emulates this
process. Alternatively, from a computer science perspective, these algorithms are
cousins of classical Markov chain Monte Carlo (MCMC) methods but with quantum
mechanical effects and complications. This work sets out to complete this line of
thought and construct an ideal quantum MCMC algorithm where the robustness,
simplicity, and empirical success of the classical case may be transferrable.

The cornerstone of classical Markov chain Monte Carlo methods is detailed balance
(see, e.g., [110]): given a target state 𝜋, we impose a certain symmetry of the Markov
chain 𝑴

𝑴𝑠′𝑠𝜋𝑠 = 𝜋𝑠′𝑴𝑠′𝑠 for each configuration 𝑠, 𝑠′, ensuring stationarity 𝑴 [𝜋] = 𝜋.

This simple recipe for the stationary state has been crucial in constructing and
analyzing the Metropolis-Hastings algorithm and related Markov chains. Notably,
detailed balance gives a conceptually simple picture of convergence via the spectral
gap of 𝑴, a quantity amenable to numerical and analytic bounds. If the problem
at hand has a local structure, detailed balance can often be imposed locally and
efficiently, relegating the algorithm’s complexity to the mixing time, the time scale
of convergence towards stationarity. While the mixing time may be challenging to
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analyze, MCMC methods can often be employed heuristically. In particular, we are
often interested in sampling the Gibbs distribution 𝜋𝛽 ∝ 𝑒−𝛽𝐻 of a certain energy
functional 𝐻 at temperature 1/𝛽. Analogously, the central idea of quantum Gibbs
sampling is to construct a detailed-balanced quantum process where the quantum
Gibbs state is stationary. In this work, we focus on designing a Lindbladian L𝛽 (the
quantum analog of a continuous-time Markov chain generator) such that

eL𝛽𝑡 [𝝆𝛽] = 𝝆𝛽 where 𝝆𝛽 := e−𝛽𝑯/Tr(e−𝛽𝑯),

for any target quantum Hamiltonian 𝑯. As in the classical case, we can prepare
samples of quantum Gibbs states if the Lindbladian evolution can be efficiently
implemented and the state converges rapidly to the Gibbs state.

The main issue with existing quantum Gibbs sampling algorithms is that quantum
detailed balance (Figure 3.1) only holds approximately unless we can distinguish
individual energy eigenstates exactly, which is generally intractable except for fast-
forwardable Hamiltonians (e.g., Hamiltonians with commuting terms). Consequently,
we either lose accuracy guarantees for the stationary state or the efficiency for the
individual steps of the Gibbs sampling algorithm, leading to significant aggregated
complexity plaguing various constructions; see Ref. [40] for a comprehensive
catalog. The algorithmic challenge in enforcing quantum detailed balance is the
energy-time uncertainty principle rooted in metrology: for each energy estimate,
the uncertainty scales inversely proportional to the Hamiltonian simulation time.
Indeed, all existing quantum MCMC algorithms attempt to attain detailed balance
via an “energy estimation” subroutine (quantum phase estimation [149, 167, 180] or
operator Fourier Transform [40, Appendix A]). Consequently, this error propagates
to the desired Gibbs state and impacts the implementation cost.

To our knowledge, the best general lower-bound on the Hamiltonian simulation time
is Ω(𝛽) per Gibbs sample [40, Proposition G.5]. This comes from a sensitivity
argument that the Gibbs state is a smooth matrix function of 𝑯 with derivatives
bounded by O(𝛽). This conceptual gap motivates our guiding question:

Can we design an efficiently implementable

yet exactly detailed-balanced quantum Gibbs sampler?

If so, we may recover both the simplicity and versatility of classical MCMC algorithms.
In this work, we answer this question in the affirmative by explicitly constructing
an exactly detailed-balanced Lindbladian at a moderate cost: Õ(𝛽)-Hamiltonian
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simulation cost per unit time of Linbladian evolution eL . (The unit-time evolution
for a continuous-time generator should be regarded as “one step,” corresponding
to one discrete Markov chain update.) Furthermore, for lattice Hamiltonians (with
local jumps), our Lindbladian is (quasi-)local with locality scaling as Õ(𝛽). Thus,
one step of the algorithm only needs to simulate localized Hamiltonian patches; this
starkly contrasts with previous works, whose cost per unit time step generally scales
with the system size due to simulating the global Hamiltonian. The mathematical
and conceptual simplicity of our result immediately initiates a list of new directions,
which we discuss in detail in section 3.4.

The key revelation behind our construction is that quantum detailed balance can
be enforced smoothly without ever knowing the energy. Indeed, the standard
metrology lower bound ∼ Ω( 1

𝜖
) is not an obstruction because having access to a

detailed-balanced Lindbladian (or the Gibbs state) does not give energy estimates.
We have seen that Quantum Signal Processing [117] or Quantum Singular Value
Transform (QSVT) [73] allows one to directly access smooth (polynomial) functions
of Hamiltonians without a phase-estimation subroutine; the costs often scale linearly
with the largest derivatives and only logarithmically with the precision. However,
Lindbladians, as superoperators, are more restrictive to manipulate than Hermitian
matrices. A key design ingredient is a carefully chosen coherent term in our
Lindbladian

L𝛽 [𝝆] = −i[𝑩, 𝝆]︸    ︷︷    ︸
“coherent”

+ (“dissipative”),

which appears necessary to coherently and exactly cancel out certain unwanted errors
from the dissipative part.

As a by-product, purifying our Lindbladian yields a temperature-dependent family
of “parent Hamiltonians” whose zero-eigenstate is a canonical purification of the
Gibbs state.1 Similarly to how classical Markov chains can be “quantized” to prepare
the purified stationary state, here we prepare the purified Gibbs state by following a
prescribed adiabatic path (called quantum simulated annealing [164, 186]), drawing
a surprisingly simple connection between thermal dissipation and adiabatic evolution.
In particular, for lattice Hamiltonians, the parent Hamiltonian inherits the (quasi-
)locality, which curiously connects the purified Gibbs state to the ground state of
(quasi-)local Hamiltonians.

1This purification coincides with the Thermal Field Double state featured in recent quantum
gravity discussions. See, e.g., [122].
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Classical Quantum

Figure 3.1: (Left) For the classical Gibbs distribution, the detailed balance condition
is a pairwise relation between heating (red) and cooling (blue) transition rates,
depending on the energy difference 𝜈 of states. (Right) For the quantum Gibbs
state, the detailed balance condition refers to pairs of matrix elements of the density
operator (expanded in the energy basis), where each matrix element is described by a
pair of energies (of the basis elements in the ket and bra respectively), and therefore
the relation depends on both of the respective energy differences 𝜈1 and 𝜈2.

Main results
Our main results, based on the algorithmic framework of [40, Section III], consider
the following Lindbladian in the Schrodinger picture

L𝛽 [·] := −i[𝑩, ·]︸   ︷︷   ︸
“coherent”

+
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝛾(𝜔)

©­­­­­«
𝑨̂𝑎 (𝜔) (·) 𝑨̂𝑎 (𝜔)†︸                ︷︷                ︸

“transition”

− 1
2
{ 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔), ·}︸                    ︷︷                    ︸

“decay”

ª®®®®®¬
d𝜔

(3.1)

which is parameterized by the following terms (with convenient normalization
conditions [40, Section I.B]):

• The distinct jump operators 𝑨𝑎 “drive” the transitions, and can be chosen
arbitrarily as long as their adjoints are included

{𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴} and






∑︁
𝑎∈𝐴

𝑨𝑎†𝑨𝑎






 ≤ 1. (3.2)

For better mixing and ergodicity, the jumps should be “scrambling” and
not commute with the Hamiltonian (e.g., breaking the symmetries of the
Hamiltonian). For lattice Hamiltonians, the jump operators may be chosen
simply to be the single-site Pauli operators, but global jumps could also be
helpful in some cases as in the classical case (e.g., cluster updates).
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• The Operator Fourier Transform (OFT)2 (section 3.2) weighted by a Gaussian
filter with a tunable width ∼ 𝜎−1

𝐸

𝑨̂𝑎 (𝜔) :=
1
√

2𝜋

∫ ∞

−∞
ei𝑯𝑡𝑨𝑎e−i𝑯𝑡e−i𝜔𝑡 𝑓 (𝑡)d𝑡 (3.3)

where 𝑓 (𝑡) := e−𝜎
2
𝐸
𝑡2
√︃
𝜎𝐸

√︁
2/𝜋 =

e−𝑡2/𝛽2√︃
𝛽
√︁
𝜋/2

if 𝜎𝐸 =
1
𝛽
.

In particular, the Gaussian is normalized
∫ ∞
−∞ | 𝑓 (𝑡) |

2d𝑡 = 1. Naturally, the
Heisenberg evolution ei𝑯𝑡𝑨𝑎e−i𝑯𝑡 diagnoses the energy difference 𝜔 before
and after the jump. Integrating over time 1√

2𝜋

∫ ∞
−∞(·)e

−i𝜔𝑡 𝑓 (𝑡)d𝑡 yields the
operator Fourier Transform 𝑨̂𝑎 (𝜔), which selects the transitions of 𝑨𝑎 that
increase the energy by roughly ∼ 𝜔 ± O(𝜎𝐸 ). At first glance, the Gaussian
filter seems to merely ensure good concentration for both the frequency and
time domain, but it turns out to have a more intimate connection [133] to
quantum detailed balance (see also section 3.8 for an alternative justification).

• The transition weight 𝛾(𝜔) follows (yet another) Gaussian with a tunable
variance 𝜎𝛾 > 0:

𝛾(𝜔) = exp

(
−
(𝜔 + 𝜔𝛾)2

2𝜎2
𝛾

)
with variance 𝜎2

𝛾 :=
2𝜔𝛾
𝛽
− 𝜎2

𝐸 (3.4)

= exp
(
− (𝛽𝜔 + 1)2

2

)
if 𝜎𝐸 = 𝜎𝛾 = 𝜔𝛾 =

1
𝛽
. (3.5)

The normalization is such that ∥𝛾(𝜔)∥∞ ≤ 1, and the maximum is attained at
𝜔 = −𝜔𝛾.

• A coherent (i.e., nondissipative) term generated by a fine-tuned Hermitian
matrix 𝑩. The expression depends on 𝜔𝛾, 𝜎𝐸 , 𝛽 in the general case (see
Corollary 3.3.1), but it simplifies to

𝑩 :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑏2(𝑡′)ei𝛽𝑯𝑡′𝑨𝑎†e−2i𝛽𝑯𝑡′𝑨𝑎ei𝛽𝑯𝑡′d𝑡′

)
ei𝛽𝑯𝑡d𝑡

if 𝜔𝛾 = 𝜎𝐸 = 𝜎𝛾 =
1
𝛽

(3.6)

for some carefully chosen smooth and rapidly decaying functions 𝑏1, 𝑏2

normalized by ∥𝑏1∥1, ∥𝑏2∥1 ≤ 1. The coherent term 𝑩may appear intimidating
2Note the sign convention, which might differ from that of other works in the literature.
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but plays a crucial role in ensuring quantum detailed balance for the Gibbs
state 𝝆𝛽, defined as

L†
𝛽
[·] = √𝝆𝛽−1L𝛽 [

√
𝝆𝛽 ·
√
𝝆𝛽]
√
𝝆𝛽
−1 for fixed 𝛽,𝑯. (3.7)

It implies the stationarity of Gibbs state exactly (see Definition 3.2.1).

The Gaussian transition weight (3.4) is inspired by an observation of [133]:3 the
functional form of Gaussians is naturally compatible with exact detailed balance4 if
we make conscious choices of 𝜔𝛾, 𝜎𝐸

exp

(
−
(𝜔 + 𝜔𝛾)2

2𝜎2

)
= exp(−

2𝜔𝛾
𝜎2 · 𝜔) exp

(
−
(−𝜔 + 𝜔𝛾)2

2𝜎2

)
.

Compared with the usual step-function-like Metropolis weight min(1, e−𝛽𝜔), the
Gaussian weight is more selective, only allowing energy transitions −𝜔𝛾 ± O(𝜎𝛾);
this narrower window could potentially freeze the dynamics, leading to long mixing
time.

Fortunately, quantum detailed balance 3.7 is preserved under linear combination of
Lindbladians; hence, choosing a linear combination of 𝛾 covering a range of different
width 𝜎𝛾 can remove the heavy restriction on energy transitions. Surprisingly, a
suitable linear combination recovers Metropolis-like transition weights, which we
focus on as the representative. To obtain the corresponding exactly detailed-balanced
Lindbladian, the only change compared to (3.4)-(3.6) is the choice of transition
weight

(Metropolis-Style) 𝛾𝑀 (𝜔) := exp
(
−𝛽max

(
𝜔 + 1

2𝛽
, 0

))
if 𝜎𝐸 =

1
𝛽

(3.8)

with the corresponding coherent term 𝑩𝑀 parameterized by another function 𝑏𝑀2 (𝑡)
(the function 𝑏𝑀1 (𝑡) = 𝑏1(𝑡) remains the same as in (3.6)).5

Now, we present the first main result: the Gibbs state is an exact stationary state
of the advertised Lindbladian (see section 3.2 for the proof). Although we have

3Their algorithm [133] seems qualitatively different from Monte Carlo style quantum algo-
rithms [40, 149, 167, 180, 186] and closer to performing phase estimation on trial states; see the
discussion in [133, Page 5].

4We thank Jonathan Moussa for pointing us to his paper and raising the question of whether
detailed balance can hold exactly in the precursor of this work [40].

5The generalized function (distribution) 𝑏𝑀2 (𝑡) should be interpreted as the Cauchy principal value
lim𝜂→0+ 1( |𝑡 | > 𝜂)𝑏𝑀2 (𝑡). In case [𝑯,∑𝑎∈𝐴 𝑨𝑎†𝑨𝑎] ≠ 0 an additional correction term 1

16
√

2𝜋
𝛿(𝑡)

should be added.
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mainly focused on the Gibbs state, we can formally invoke Gibbs sampling for
𝛽𝑯 = log(𝝆 𝑓 𝑖𝑥) for arbitrary target stationary state 𝝆 𝑓 𝑖𝑥 , albeit with potential
overhead from implementing the matrix logarithm.

Theorem 3.1.1 (Gibbs state is stationary). For any 𝛽 ≥ 0, the Lindbladian (3.1)-(3.3)
with 𝜎𝐸 = 1

𝛽
, Gaussian transition wieght (3.5), and the coherent term 𝑩 (3.6) satisfies

detailed balance (3.7) exactly. Therefore, the Gibbs state is stationary

L𝛽 [𝝆𝛽] = 0.

The same applies for the Metropolis transition weight 𝛾𝑀 (𝜔) (3.8) with the corre-
sponding coherent term 𝑩𝑀 .

Furthermore, building on the algorithmic machinery developed in Ref. [40, Section
III], the Lindbladian can be efficiently simulated at a moderate cost (see section 3.3
for the proof).

Theorem 3.1.2 (Efficient implementation). Instantiate the Lindbladian parameters
of Theorem 3.1.1 for either the Gaussian 𝛾(𝜔) or Metropolis 𝛾𝑀 (𝜔) transition
weight. Then, the Lindbladian evolution

eL𝛽𝑡 for each 𝑡 ≥ 1

can be implemented efficiently in 𝜖-diamond distance with cost:

Õ(𝑡 · 𝛽) (total Hamiltonian simulation time)

Õ(1) (resettable ancilla)

Õ(𝑡) (block-encodings for the jumps
∑︁
𝑎∈𝐴
|𝑎⟩ ⊗ 𝑨𝑎)

Õ(𝑡) (other two-qubit gates).

The Õ(·) notation absorbs logarithmic dependencies on 𝑡, 𝛽, ∥𝑯∥, 𝑛, 1/𝜖, |𝐴|.

Here, our Lindbladian is normalized (3.2), (3.3), (3.4), (3.6) (or the Metropolis-like
weight (3.8) with its coherent term 𝑩𝑀) such that

∥L𝛽∥1−1 = Õ(1).

Therefore, evolving for unit time 𝑡 = 1 corresponds to a Õ(1)-strength update eL𝛽

and only requires a characteristic Hamiltonian simulation time ∼ 𝛽. This is precisely
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the cost for implementing both the operator Fourier Transform (3.3) and the coherent
term (3.6) via Linear Combination of Unitaries. To be more careful, the Õ(·)
notation also includes polylogarithmic factors due to discretization, truncation, and
Hamiltonian simulation error, which is typical in quantum algorithms. To clarify,
the idealized map L𝛽 remains exactly detailed-balanced (the nice object to analyze),
and the algorithmic implementation error can be made arbitrarily small given the
desired runtime.

We expect the total Hamiltonian simulation time to be the figure of merit for the
algorithmic cost, among others. The jump operators 𝑨𝑎 can be as simple as Pauli
operators, but we consider a black-box query model in case more complex jumps
are needed for faster mixing. In the last line, the use of other two-qubit gates comes
from easier-to-implement unitaries, including the Quantum Fourier Transform,
state preparation unitary for the Gaussian filter | 𝑓 ⟩, controlled transition weight;
see section 3.3 and [40, Section III.B].

Combining Theorem 3.1.1 and Theorem 3.1.2, we can prepare the Gibbs state by
simulating the Lindblaidan until convergence, resulting in the cost

(total Hamiltonian simulation time per Gibbs sample) = Õ
(
𝑡𝑚𝑖𝑥 (L𝛽) · 𝛽

)
.

Formally, the mixing time 𝑡𝑚𝑖𝑥 (L𝛽) quantifies the shortest time scale that any two
input states become indistinguishable (see Proposition 3.9.4). To obtain end-to-end
gate complexities, we should also instantiate the Hamiltonian simulation cost, a
subroutine whose complexity for various systems has been thoroughly studied. For
example, on 𝐷-dimensional lattices with local jumps 𝑨𝑎, we expect the actual cost
to be (up to logarithmic error dependence)

(gate complexity per unit evolution time) ∼ 𝛽︸︷︷︸
Ham. sim. time

× (𝑣𝐿𝑅𝛽)𝐷︸    ︷︷    ︸
volume

,

(spatially local Hamiltonians)

where 𝑣𝐿𝑅 is the Lieb-Robinson velocity and 𝑣𝐿𝑅𝛽 is roughly the radius of the
Heisenberg evolution 𝑨𝑎 (·) at time ∼ 𝛽. Indeed, the Lindbladian is a sum over
quasi-local Lindbladian operators (Figure 3.2)

L𝛽 =
∑︁
𝑎∈𝐴
L𝑎𝛽 each centered at 𝑨𝑎 with radius Õ(𝑣𝐿𝑅𝛽).
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Figure 3.2: (Left) For lattice Hamiltonians, our Lindbladian is a sum of quasi-local
terms L𝑎

𝛽
localized around each jump 𝑨𝑎 with radius Õ(𝛽). Indeed, detailed balance

is really about the energy difference, which can be diagnosed by Fourier Transforming
the Heisenberg evolution 𝑨𝑎 (𝑡) = ei𝑯𝑡𝑨𝑎e−i𝑯𝑡 . Due to the Lieb-Robinson bounds,
the localized Lindbladian terms effectively only depend on the local Hamiltonian
patch nearby (up to exponentially decaying tail). (Right) This locality persists after
purification, where two copies of the system are glued together.

In particular, the cost per unit Lindbladian evolution time is essentially independent
of the system size (up to logarithmic dependencies), as we only need to simulate the
Hamiltonian patch surrounding each jump 𝑨𝑎.6

Purifying the Lindbladians

We may purify the Lindbladian to prepare the purified Gibbs state [180]��√𝝆𝛽〉 :=
1√︁

Tr[e−𝛽𝑯]

∑︁
𝑖

e−𝛽𝐸𝑖/2 |𝜓𝑖⟩ ⊗
��𝜓∗𝑖 〉; (3.9)

this particular purification is reminiscent of the quantum walk formalism for detailed-
balanced classical Markov chains. The relevant “parent Hamiltonian” (playing
the role of a “quantum walk” operator) is the discriminant associated with the
Lindbladian; the expression may appear intimidating but resembles how classical
detailed-balanced Markov chains are quantized

H𝛽 := 𝝆−1/4L[𝝆1/4 · 𝝆1/4]𝝆−1/4.

The above should be regarded as the Lindbladian under similarity transformation.
Further, to implement the quantum walk, the superoperator needs to be vectorized
into an operator on duplicated Hilbert spaces

(vectorization) H𝛽 : B(C2𝑛) → B(C2𝑛) ≃ H𝜷 ∈ B(C2𝑛 ⊗ C2𝑛).

6In fact, we can further parallelize the Lindbladian evolution to improve the circuit depth;
see section 3.7.
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Indeed, the Gibbs state 𝝆𝛽, as the Lindbladian stationary state, corresponds to the
purified Gibbs state

��√𝝆𝛽〉 (3.9), as a zero-eigenvector of the discriminant. As a
sanity check, the quantum detailed balance condition 3.7 naturally ensures that the
operator is Hermitian H𝜷 = H

†
𝜷
.

Proposition 3.1.1 (Purifying Lindbladians). Instantiate the Lindbladian parameters
of Theorem 3.1.1 for the Gaussian or Metropolis transition weight. Then, the
corresponding discriminant H𝜷 is Hermitian, frustration-free, and annihilates the
purified Gibbs state.

H𝜷 =
∑︁
𝑎∈𝐴

H
𝒂
𝜷 such that H

𝒂
𝜷

��√𝝆𝛽〉 = 0 for each 𝑎 ∈ 𝐴.

In other words, preparing the purified Gibbs state boils down to the ground state
problem (up to a negative sign) for a frustration-free parent Hamiltonian parameterized
by 𝛽7; for lattice Hamiltonian with local jumps 𝑨𝑎, the parent Hamiltonian inherits
the quasi-locality of our Lindbladian, with individual terms of radius ∼ 𝑣𝐿𝑅𝛽. The
algorithmic cost to implement the parent Hamiltonian is analogous to the Lindbladian
case, where 𝑯𝛽 roughly corresponds to a constant-time Lindbladian evolution.

Theorem 3.1.3 (Block encodings for the discriminants). Instantiate the Lindbladian
parameters of Theorem 3.1.1 for either the Gaussian or Metropolis transition weight.
Then, the corresponding discriminant 1

Õ(1)H𝜷 can be block-encoded approximately
in 𝜖-spectral norm using

Õ(𝛽) (Hamiltonian simulation time)

Õ(1) (resettable ancilla)

Õ(1) (block-encodings for the jumps
∑︁
𝑎∈𝐴
|𝑎⟩ ⊗ 𝑨𝑎 and its transposes

∑︁
𝑎∈𝐴
|𝑎⟩ ⊗ (𝑨𝑎)𝑇 )

Õ(1) (other two-qubit gates).

The Õ(·) notation absorbs logarithmic dependencies on 𝑡, 𝛽, ∥𝑯∥, 𝑛, 1/𝜖, |𝐴|.

Like in Theorem 3.1.2, we have expanded many other unitaries in the last line;
see section 3.3. Note that we had to downscale the discriminant to implement the

7Strictly speaking, originating from a Lindbladian, here the parent Hamiltonian is negative
semi-definite, and the purified Gibbs state is the top-eigenstate. Introducing a global negative sign
will make it the ground state.
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block encodings; see section 3.3 for the proof. For readers familiar with quantum
walks, obtaining a block-encoding for 𝑰 +H𝜷 (instead of H𝜷) would be nicer as it
leads to a quadratic speedup in terms of the spectral gap of H𝜷. However, we have
not found such a direct block-encoding for our particular construction, leaving this an
open problem. This is in contrast with our earlier approximate construction [40, 180],
where such a direct block-encoding was possible, which might be advantageous in
some cases.

Roadmap
The remaining body of text is organized thematically by the analysis and the algorithm.
We begin with the analysis (section 3.2) regarding how we design our Lindbladian
to satisfy quantum detailed balance exactly. Next, we give efficient algorithms
(section 3.3) in terms of modularized block encodings to implement the advertised
Lindbladian and its purification.

In the appendix, we include independent expositions: a connection between the
discriminant gap, mixing time, and the area law of entanglement (section 3.7) and
an alternative heuristic derivation of our detailed balance Lindbladian in the time
domain (section 3.8).

3.2 Analysis
In this section, we execute the calculations circling the exact detailed balance
condition. First, we review the operator Fourier Transform in the frequency domain.
Second, we review the notion of detailed balance, including the stationary state and
spectral theory of convergence. Third, we plug in the advertised functional forms
and derive the required coherent term 𝑩 for achieving detailed balance.

Operator Fourier Transform
Our Lindbladian features the operator Fourier Transform 𝑨̂(𝜔) of a jump operator 𝑨
according to the Hamiltonian 𝑯 (dropping the jump label for this section). To analyze
it, we need to consider the frequency domain representation instead of the time domain.
Decompose the operator in the energy basis, and regroup in terms of the energy
change (called the Bohr frequencies 𝜈 ∈ 𝐵(𝑯) := {𝐸𝑖 − 𝐸 𝑗 | 𝐸𝑖, 𝐸 𝑗 ∈ Spec(𝑯)})

𝑨 :=
∑︁

𝐸1,𝐸2∈spec(𝑯)
𝑷𝐸2 𝑨𝑷𝐸1 =

∑︁
𝜈∈𝐵(𝑯)

∑︁
𝐸2−𝐸1=𝜈

𝑷𝐸2 𝑨𝑷𝐸1

=:
∑︁

𝜈∈𝐵(𝑯)
𝑨𝜈 such that (𝑨𝜈)† = (𝑨†)−𝜈,
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where 𝑷𝐸 denotes the orthogonal projector onto the eigensubspace of 𝑯 with exact
energy 𝐸 . This decomposition naturally solves the Heisenberg evolution

ei𝑯𝑡𝑨e−i𝑯𝑡 =
∑︁
𝜈∈𝐵

𝑨𝜈ei𝜈𝑡 since [𝑯, 𝑨𝜈] = 𝜈𝑨𝜈 .

Indeed, the energy differences 𝜈 ∈ 𝐵 (shorthand of 𝐵(𝑯)) naturally arise from the
commutator (as opposed to the absolute energies 𝐸 ∈ spec(𝑯)).

At first glance, the reference to the exact energies seems unphysical as each of them
individually requires a long (likely exponential) Hamiltonian simulation time to
access algorithmically. Fortunately, all that we are manipulating are the smooth
weights on these Bohr frequencies; indeed, the operator Fourier Transform can be
conveniently expressed by

𝑨̂ 𝑓 (𝜔) =
1
√

2𝜋

∫ ∞

−∞
ei𝑯𝑡𝑨e−i𝑯𝑡e−i𝜔𝑡 𝑓 (𝑡)d𝑡 =

∑︁
𝜈∈𝐵

𝑨𝜈 𝑓 (𝜔 − 𝜈),

where 𝑓 (𝜔) = 1√
2𝜋

∫ ∞
−∞ 𝑓 (𝑡)e

−i𝜔𝑡d𝑡 is the Fourier Transform of the filter function
𝑓 (𝑡). Our choice of 𝑓 (𝑡) is

𝑓 (𝑡) := e−𝜎
2
𝐸
𝑡2
√︃
𝜎𝐸

√︁
2/𝜋 such that

𝑓 (𝜔) = 1√︃
2𝜎𝐸
√

2𝜋
exp

(
− 𝜔

2

4𝜎2
𝐸

)
and

∫ ∞

−∞
| 𝑓 (𝑡) |2d𝑡 = 1,

therefore 𝑨̂(𝜔) becomes simply

𝑨̂(𝜔) = 1√︃
2𝜎𝐸
√

2𝜋

∑︁
𝜈∈𝐵

exp

(
− (𝜔 − 𝜈)

2

4𝜎2
𝐸

)
𝑨𝜈 .

The above uses the Gaussian integrals, which will also be constantly recalled.

Fact 3.2.1 (Gaussian integrals). For any 𝑏 ∈ C and 𝜎 > 0, we have that∫ ∞
−∞ e−

(𝜔−𝑏)2
2𝜎2 d𝜔 =

√
2𝜋𝜎.

We can think of the width 𝜎𝐸 as the uncertainty in energy, which scales inversely
proportionally to the time width ∼ 𝜎−1

𝐸
.

Exact detailed balance from that of the transition part
Our notion of detailed balance for Lindbladians is analogous to its classical cousin,
ensuring a stationary state 𝝆. For the mathematical audience, we should mention
that other forms of quantum detailed balance have also been studied (see section 3.9),
but we will dominantly focus on the following as it appears to be especially nice.
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Definition 3.2.1 (Kubo–Martin–Schwinger detailed balance condition). For a nor-
malized, full-rank state 𝝆 ≻ 0, we say that an super-operator L satisfies 𝝆-detailed
balance (or 𝝆-DB in short) if

L† [·] = 𝝆−1/2L[𝝆1/2 · 𝝆1/2]𝝆−1/2,

or equivalently, whenever the associated discriminant is self-adjoint with respect to
𝝆, i.e.,

D(𝝆,L) := 𝝆−1/4L[𝝆1/4 · 𝝆1/4]𝝆−1/4

= 𝝆1/4L† [𝝆−1/4 · 𝝆−1/4]𝝆1/4 = D(𝝆,L)†.

In the above, (L)† denotes the adjoint for superoperators with respect to trace (i.e.,
the Hilbert Schmidt inner product).

One may interpret the conjugation with the state as a similarity transformation under
which the Lindbladian becomes Hermitian (w.r.t. to the KMS inner product). The
above generalizes classical detailed balance by considering super-operators and
permitting the stationary distribution to be an operator.

Proposition 3.2.1 (Fixed point). If a Lindbladian L is 𝝆-detailed-balanced, then

L[𝝆] = 0.

Recently, quantum approximate detailed balance has also been studied in the
precursor of this work [40, Section II.A], discussing nonasymptotic error bounds
relating mixing times to fixed point error. Exact detailed balance gives a much simpler
conceptual picture. Still, we may again need to recall approximate detailed balance
for non-fine-tuned Lindbladians (such as those from Nature) or amid intermediate
steps of analysis (such as when truncating the radius of the quasi-local jumps).

At first glance, the detailed balance condition is merely a linear equation that can be
solved abstractly. However, the difficulty arises due to two additional constraints.

• (Complelete Positivity.) Lindbladians have a particular quadratic dependence
on the Lindblad operators to ensure complete positivity and trace preservation
of e𝑡L for any 𝑡.

• (Efficiency.) The Lindbladian (i.e., the block-encoding for the jumps and the
Hamiltonian) must be efficiently implemented using a limited Hamiltonian
simulation time.
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The main challenge is to satisfy both constraints simultaneously. Indeed, Davies’
generator [56, 58] satisfies the first but not the second because it uses an infinite-
time operator Fourier Transform; using QSVT, one might be able directly to
implement the Boltzmann weight smoothly at moderate costs, but it may break the
Lindbladian structure. Our approach begins by isolating the “transition” part of the
Lindbladian (3.1) with abstract Lindblad operators 𝑳 𝑗

L[·] := −i[𝑩, ·] +
∑︁
𝑗

𝑳 𝑗 · 𝑳†𝑗︸       ︷︷       ︸
T :=

− 1
2
{
∑︁
𝑗

𝑳†
𝑗
𝑳 𝑗︸     ︷︷     ︸

𝑹:=

, ·},

where 𝑩 and 𝑹 are both Hermitian. This decomposition is helpful because conjugating
with the stationary state preserves the form of the transition part

√
𝝆−1

(∑︁
𝑗

𝑳 𝑗 (
√
𝝆 · √𝝆)𝑳†

𝑗

)
√
𝝆−1

=
∑︁
𝑗

𝑳′𝑗 (·)𝑳
′†
𝑗
.

However, the commutator 𝑩 and anti-commutator terms 𝑹 mix with each other
under conjugation with Gibbs state. Based on the above observation, our recipe for
constructing a detailed-balanced Lindbladian consists of three steps:

1. Guess a set of Lindblad operators 𝑳 𝑗 such that the transition part (which is
T =

∑
𝑎

∫ ∞
−∞ 𝛾(𝜔) 𝑨̂

𝑎 (𝜔) · 𝑨̂𝑎 (𝜔)†d𝜔 in our case) obeys detailed balance.

2. According to the transition part T , determine the decay part parameterized by
𝑹. This gives a purely dissipative Lindbladian.

3. According to the decay part 𝑹, tailor the commutator term 𝑩 to ensure detailed
balance. Remarkably, such a 𝑩 always exists, can be found explicitly, and is
essentially unique. Of course, whether the map is efficiently implementable is
a separate question.8

To simplify the presentation, we introduce the following notation for conjugating any
full-rank state 𝝆:

Γ𝝆 [·] := 𝝆1/2(·)𝝆1/2 and Λ𝝆 [·] := 𝝆−1/2(·)𝝆1/2.

Observe that for Hermitian operator 𝑿, we have the identities Γ𝝆 [𝑿]† = Γ𝝆 [𝑿] and
Λ𝝆 [𝑿]† = Λ−1

𝝆 [𝑿]. When the context is clear, we will omit subscript 𝝆.
8This is inspired by a related ongoing work [78] at an early stage.
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The main calculation of this section is summarized as follows. For any 𝑹, we can give
a general solution for the coherent term 𝑩; this calculation is possible because the
coherent term is not constrained by the complete-positivity structure of Lindbladians
and only needs to be Hermitian.

Lemma 3.2.1 (Prescribing the coherent term). For any full-rank state 𝝆 and
Hermitian operator 𝑹, there exists a unique Hermitian operator 𝑩 (up to adding any
scalar multiples of the identity 𝑰) such that the super-operator

S[·] := −i[𝑩, ·] − 1
2
{𝑹, ·}

satisfies 𝝆-DB.9 For a Gibbs state 𝝆 ∝ exp(−𝛽𝑯), we can express the solution
decomposed according to the Bohr frequencies 𝜈 ∈ 𝐵 as

𝑩 =
i
2

∑︁
𝜈∈𝐵

tanh
(
𝛽𝜈

4

)
𝑹𝜈 .

The above can be applied to a purely dissipative Lindbladian, where the transition
part already satisfies 𝝆-DB.

Corollary 3.2.1 (𝝆-DB Lindbladians). Suppose we have a purely-dissipative L𝑑𝑖𝑠𝑠
Lindbladian such that the transition part satisfies 𝝆-DB for a full-rank state 𝝆

Γ−1
𝝆 ◦ T ◦ Γ1

𝝆 = T †,

then we can accordingly prescribe 𝑩 such that −i[𝑩, ·] + L𝑑𝑖𝑠𝑠 satisfies 𝝆-DB.

Proof of Lemma 3.2.1. Let 𝑲 := 𝑩 − i
2𝑹 and observe that

S[·] := −i[𝑩, ·] − 1
2
{𝑹, ·} = −i𝑲 (·) + i(·)𝑲†

S† [·] := i[𝑩, ·] − 1
2
{𝑹, ·} = i𝑲†(·) − i(·)𝑲

using that 𝑩 and 𝑹 are Hermitian. Then,

S† [·] − Γ−1 ◦ S ◦ Γ[·] = i𝑲†(·) − i(·)𝑲 + iΓ−1
(
𝑲Γ[·] − Γ[·]𝑲†

)
= i

(
𝑲† + Λ[𝑲]

)
(·) − i(·)

(
𝑲 + (Λ[𝑲])†

)
(using that Γ−1𝑲Γ[·] = Λ[𝑲] (·))

=: i(𝑸(·) − (·)𝑸†),
9Actually, our proof shows an even stronger statement: for any Hermitian 𝑭 commuting with 𝝆

there is a unique 𝑩 (up to an additive term proportional to 𝑰) such thatS† [·] −Γ−1◦S◦Γ[·] = −i[𝑭, ·].
The only change is that one should set 𝑩0 := − 1

2𝑭. This relates to a more general notion of detailed
balance that allows for a unitary drift Definition 3.9.1, see also [69, Section 5]. This might be useful
for breaking degeneracies of the state 𝝆 (or the Hamiltonian 𝑯).
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where we define 𝑸 := 𝑲† + Λ[𝑲]. To ensure quantum detailed balance, we need the
RHS to vanish

𝑸(·) − (·)𝑸† = 0 ⇐⇒ 𝑸 = 0 + 𝜆𝑰 for 𝜆 ∈ R,

that is, 𝑸 vanishes up to a real multiple of the identity 𝜆𝑰; for simplicity, the identity
part can be dropped for now and added back. Since 𝝆 has full rank, we can assume
without loss of generality that 𝝆 ∝ exp(−𝛽𝑯) for some 𝑯. Now we compute

𝑸 = 𝑲† + Λ[𝑲]

= (1 + Λ)𝑩 + i
2
(1 − Λ)𝑹

=
∑︁
𝜈∈𝐵
(1 + e𝛽𝜈/2)𝑩𝜈 +

i
2
(1 − e𝛽𝜈/2)𝑹𝜈 ., (using that Λ(𝑩𝜈) = e𝛽𝜈/2𝑩𝜈)

where we denote 𝐵 := 𝐵(𝑯) the set of Bohr frequencies of 𝑯. Since the operators
𝑩𝜈 (and 𝑹𝜈) are linearly independent for different Bohr frequencies,

𝑸 = 0 ⇐⇒ 𝑩𝜈 =
i
2

tanh
(
𝛽𝜈

4

)
𝑹𝜈 for each 𝜈 ∈ 𝐵.

(using that tanh(𝑥) = e2𝑥−1
e2𝑥+1 )

In particular, 𝑩0 = 0 since tanh(0) = 0.

Finally, since 𝑹 is Hermitian and tanh(𝜔) is an odd function, we have that 𝑩 is
Hermitian as well by∑︁

𝜈∈𝐵
(𝑩𝜈)† =

i
2

∑︁
𝜈∈𝐵

tanh
(
− 𝛽𝜈

4

)
(𝑹𝜈)†. (Using − tanh(𝑥) = tanh(−𝑥))

=
i
2

∑︁
𝜈∈𝐵

tanh
(
− 𝛽𝜈

4

)
𝑹−𝜈 (Using that 𝑹 = 𝑹† implies (𝑹𝜈)† = 𝑹−𝜈)

=
i
2

∑︁
𝜈∈𝐵

tanh
(
𝛽𝜈

4

)
𝑹𝜈 =

∑︁
𝜈∈𝐵

𝑩𝜈 . (Change of variables 𝜈 → −𝜈) ■

Adding the identity part 𝜆𝑰 to conclude the proof.

Exact detailed balance for Gaussian weights and their linear combinations
In this section, we carry out the abstract recipe for our advertised Lindbladian to
prove the exact detailed balance condition (Definition 3.2.1). We begin with the
transition part and then solve for the coherent term.
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Exact detailed balance of the transition part

First, we show that the Gaussian ansatz indeed leads to detailed balance for the
“transition” part

Γ−1
𝝆 ◦ T ◦ Γ𝝆 = T †.

It is instructive to rewrite the abstract equation above in terms of Bohr-frequencies.
Let (·) be any input matrix, then the transition part of our Lindbaldian reads

T =
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝛾(𝜔)𝑨𝑎 (𝜔) (·)𝑨𝑎 (𝜔)†d𝜔

=
1

2𝜎𝐸
√

2𝜋

∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

∫ ∞

−∞
e
− (𝜔+𝜔𝛾 )2

2𝜎2
𝛾 e

− (𝜔−𝜈1 )2

4𝜎2
𝐸 e

− (𝜔−𝜈2 )2

4𝜎2
𝐸 𝑨𝑎𝜈1 (·) (𝑨

𝑎
𝜈2)
†d𝜔

=:
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼
(𝜔𝛾 ,𝜎𝛾)
𝜈1,𝜈2 𝑨𝑎𝜈1 (·) (𝑨

𝑎
𝜈2)
†. (3.11)

Since the bilinear expression holds for any input (·), taking traces on both sides
yields that∑︁

𝑎∈𝐴

∫ ∞

−∞
𝛾(𝜔)𝑨𝑎 (𝜔)†𝑨𝑎 (𝜔)d𝜔 =

∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼
(𝜔𝛾 ,𝜎𝛾)
𝜈1,𝜈2 (𝑨𝑎𝜈2)

†𝑨𝑎𝜈1 .

In terms of Bohr frequencies, the exact detailed balance condition is a certain
symmetry of the coefficient matrix 𝛼(𝜔𝛾 ,𝜎𝛾) .

Proposition 3.2.2 (Detailed balance in the Energy domain). Consider a super-
operator parameterized by a Hamiltonian 𝑯, 𝛽, and a set of operators including its
adjoints {𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴}:

T =
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2 𝑨
𝑎
𝜈1 (·) (𝑨

𝑎
𝜈2)
† such that 𝛼𝜈1,𝜈2 = 𝛼−𝜈2,−𝜈1e−𝛽(𝜈1+𝜈2)/2

for each 𝜈1, 𝜈2 ∈ 𝐵

Then,

Γ−1
𝝆 ◦ T ◦ Γ1

𝝆 = T †.

Indeed, one recovers the classical detailed balance condition for inputs diagonal in
the energy basis. However, the quantum detailed balance condition also constrains
the amplitudes between off-diagonal matrix elements (Figure 3.1).
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Proof. We can directly calculate

Γ−1
𝝆 ◦ T ◦ Γ1

𝝆 =
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2

√︃
𝝆−1
𝛽
𝑨𝑎𝜈1

√
𝝆𝛽 (·)

√
𝝆𝛽 (𝑨𝑎𝜈2)

†
√︃
𝝆−1
𝛽

=
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2e
𝛽

2 𝜈1 𝑨𝑎𝜈1 (·) (𝑨
𝑎
𝜈2)
†e

𝛽

2 𝜈2 (since 𝝆𝛽 ∝ e−𝛽𝑯)

=
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼−𝜈2,−𝜈1 𝑨
𝑎
𝜈1 (·) (𝑨

𝑎
𝜈2)
† (since 𝛼𝜈1,𝜈2e

𝛽 (𝜈1+𝜈2 )
2 = 𝛼−𝜈2,−𝜈1)

=
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼−𝜈2,−𝜈1 ((𝑨𝑎†)−𝜈1)†(·) (𝑨𝑎†)−𝜈2

(since (𝑨𝜈)† = (𝑨†)−𝜈)

=
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼−𝜈2,−𝜈1 (𝑨𝑎−𝜈1)
†(·)𝑨𝑎−𝜈2

(since {𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴})

=
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈2,𝜈1 (𝑨𝑎𝜈1)
†(·)𝑨𝑎𝜈2

(since 𝐵 = spec(𝑯) − spec(𝑯) = −𝐵)

=
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2 (𝑨𝑎𝜈2)
†(·)𝑨𝑎𝜈1 = T

†. (relabelling 𝜈1 ↔ 𝜈2) ■

While the above representation explicitly addresses the energy basis, we note that
positivity becomes obscured as the left and right energy labels 𝜈1, 𝜈2 can differ. The
positivity now becomes implicit in the coefficient matrix.

Proposition 3.2.3 (Positive semi-definite). If the coefficients 𝛼𝜈1,𝜈2 as a matrix 𝜶 is
positive-semi-definite

𝜶 ≥ 0,

(and thus Hermitian 𝛼𝜈1,𝜈2 =
(
𝛼𝜈2,𝜈1

)∗), then∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2

(
𝑨𝑎𝜈1 (·) (𝑨

𝑎
𝜈2)
† − 1

2
{(𝑨𝑎𝜈2)

†𝑨𝑎𝜈1 , ·}
)

gives a Lindbladian.

Positivity indeed holds for (3.11) and can be seen by the integral form of the
coefficients. To conclude this section, it remains to verify that the coefficients arising
from Gaussian indeed satisfy the symmetry.

Lemma 3.2.2 (Exact “skew-symmetry” of coefficients). For each 𝜔𝛾, 𝜎𝛾, the
coefficients 𝛼(𝜔𝛾 ,𝜎𝛾)

𝜈1,𝜈2 defined by (3.11) factorize

𝛼
(𝜔𝛾 ,𝜎𝛾)
𝜈1,𝜈2 =

𝜎𝛾

2
√︃
𝜎2
𝐸
+ 𝜎2

𝛾

· exp

(
−
(𝜈1 + 𝜈2 + 2𝜔𝛾)2

8(𝜎2
𝐸
+ 𝜎2

𝛾 )

)
· exp

(
− (𝜈1 − 𝜈2)2

8𝜎2
𝐸

)
,(3.12)
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and have a certain “skew-symmetry” under negation and transpose

𝛼
(𝜔𝛾 ,𝜎𝛾)
𝜈1,𝜈2 = 𝛼

(𝜔𝛾 ,𝜎𝛾)
−𝜈2,−𝜈1 e−𝛽(𝜈1+𝜈2)/2 for 𝛽 :=

2𝜔𝛾
𝜎2
𝐸
+ 𝜎2

𝛾

. (3.13)

Proof. We directly calculate the Gaussian integrals in (3.11), preserving the quadratic
nature of the exponents.

𝛼
(𝜔𝛾 ,𝜎𝛾)
𝜈1,𝜈2 =

1
𝜎𝐸
√

8𝜋

∫ ∞

−∞
exp

(
−𝜔

2

2
·
(

1
𝜎2
𝛾

+ 1
𝜎2
𝐸

)
− 𝜔 ·

(
𝜔𝛾

𝜎2
𝛾

− 𝜈1 + 𝜈2

2𝜎2
𝐸

)
−
𝜈2

1 + 𝜈
2
2

4𝜎2
𝐸

−
𝜔2
𝛾

2𝜎2
𝛾

)
d𝜔

=
1

𝜎𝐸
√

8𝜋

∫ ∞

−∞
exp

©­­­­«
−

(
𝜔 +

(
1
𝜎2
𝛾
+ 1
𝜎2
𝐸

)−1(𝜔𝛾

𝜎2
𝛾
− 𝜈1+𝜈2

2𝜎2
𝐸

))2
2
(

1
𝜎2
𝛾
+ 1
𝜎2
𝐸

)−1 +

(
1
𝜎2
𝛾
+ 1
𝜎2
𝐸

)−1

2

(
𝜔𝛾

𝜎2
𝛾

− 𝜈1 + 𝜈2

2𝜎2
𝐸

)2
−
𝜈2

1 + 𝜈
2
2

4𝜎2
𝐸

−
𝜔2
𝛾

2𝜎2
𝛾

ª®®®®¬
d𝜔

=
1

2𝜎𝐸
· 1√︃

1
𝜎2
𝛾
+ 1
𝜎2
𝐸

exp
©­­«

1

2
(

1
𝜎2
𝛾
+ 1
𝜎2
𝐸

) (
𝜔𝛾

𝜎2
𝛾

− 𝜈1 + 𝜈2

2𝜎2
𝐸

)2

−
𝜈2

1 + 𝜈
2
2

4𝜎2
𝐸

−
𝜔2
𝛾

2𝜎2
𝛾

ª®®¬
(by Fact 3.2.1)

=
1

2
√︂

𝜎2
𝐸

𝜎2
𝛾
+ 1
· exp

(
−
(𝜈1 + 𝜈2 + 2𝜔𝛾)2

8(𝜎2
𝐸
+ 𝜎2

𝛾 )

)
· exp

(
− (𝜈1 − 𝜈2)2

8𝜎2
𝐸

)
(since 2(𝜈2

1+𝜈
2
2) = (𝜈1+𝜈2)2 + (𝜈1−𝜈2)2)

= 𝛼
(𝜔𝛾 ,𝜎𝛾)
−𝜈2,−𝜈1 e−𝛽(𝜈1+𝜈2)/2. (due to our choice of 𝛽) ■

We see that we may tune the parameters to match a desirable exponent 𝛽. Remarkably,
the width 𝜎𝐸 can be finite (i.e., do not scale linearly the precision 1

𝜖
like in metrology)

while retaining exact detailed balance; a reasonable choice is, e.g.,

𝜔𝛾 = 𝜎𝐸 = 𝜎𝛾 =
1
𝛽
.

This will imply that the algorithmic cost for implementing the Gaussian weighted
operator Fourier Transform will only need to scale with 𝛽 (and polylogarithmically
with the precision due to discretization and truncation error!) However, the Gaussian
transition weight comes with the price of a narrower band of transitions peaked at
𝜔𝛾 ± O(𝜎𝛾), which might result in a substantially increased mixing time compared
to, e.g., Metropolis weight 𝛾(𝜔) = min(1, e−𝛽𝜔); we will revisit this issue by taking
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linear combinations of Gaussians at section 3.2 since all our calculation are linear.
For clarity, we first focus on the Gaussian weights.

Why does Gaussian interplay so perfectly with quantum detailed balance? In sec-
tion 3.8, we attempted to derive Gaussian from the first principle. Indeed, Gaussians
are very natural if we impose several conditions on the function.

Adding the unitary term

Now that the “transition” part satisfies the detailed balance condition exactly, we
proceed to complete the Lindbaldian by adding the “decay” part and the “coherent”
part. The decay part is fixed by trace-preserving; Lemma 3.2.1 then uniquely
prescribes the required coherent term, which we display as follows in the frequency
domain. The explicit form will be useful for implementation.

Corollary 3.2.2 (An exactly detailed-balanced Lindbladian with Gaussian filtering).
The Lindbladian

L[·] := −i
∑︁
𝜈∈𝐵
[𝑩𝜈, ·] +

∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2

(
𝑨𝑎𝜈1 (·) (𝑨

𝑎
𝜈2)
† − 1

2
{(𝑨𝑎𝜈2)

†𝑨𝑎𝜈1 , ·}
)

corresponding to a self-adjoint set of jump operators {𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴},
parametrized by coefficients 𝛼𝜈1,𝜈2 ∈ C satisfying 𝛼∗𝜈1,𝜈2 = 𝛼𝜈2,𝜈1 and

𝛼𝜈1,𝜈2e
𝛽 (𝜈1+𝜈2 )

2 = 𝛼−𝜈2,−𝜈1 ,

and amended by the coherent terms

𝑩𝜈 :=
∑︁
𝑎∈𝐴

∑︁
𝜈1−𝜈2=𝜈
𝜈1,𝜈2∈𝐵

tanh(−𝛽(𝜈1 − 𝜈2)/4)
2i

𝛼𝜈1,𝜈2︸                             ︷︷                             ︸
𝑓 (𝜈1,𝜈2):=

(𝑨𝑎𝜈2)
†𝑨𝑎𝜈1 (3.14)

satisfies 𝝆𝛽-detailed balance.

Proof. Apply Lemma 3.2.1. Note that the operator

(𝑨𝑎𝜈2)
†𝑨𝑎𝜈1 =

∑︁
𝐸𝑖−𝐸 𝑗=𝜈1,𝐸𝑖−𝐸𝑘=𝜈2

𝑷𝐸𝑘
𝑨𝑎†𝑷𝐸𝑖

𝑨𝑎𝑷𝐸 𝑗

must have the energy difference contained in the set of Bohr frequencies 𝐵

𝜈1 − 𝜈2 = 𝐸𝑖 − 𝐸 𝑗 − (𝐸𝑖 − 𝐸𝑘 ) for some 𝐸𝑖, 𝐸 𝑗 , 𝐸𝑘 ∈ 𝑆𝑝𝑒𝑐(𝑯)
= 𝐸𝑘 − 𝐸𝑖 ∈ 𝐵.

■
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The above corollary essentially leads to Theorem 3.1.1 but is written in the Bohr-
frequency decomposition.

Proof of Theorem 3.1.1. Combine Proposition 3.2.3, Lemma 3.2.2, Proposition 3.2.1,
and Corollary 3.2.2 to conclude the proof. ■

Linear combination of Gaussians

Can we go beyond Gaussians? As we discussed, the Gaussians have a narrower band
of transitions; it would be desirable to lift this restriction to accelerate the mixing
time. In this section, we give a family of filters by exploiting the freedom to tune the
Gaussian parameters (𝜔𝛾, 𝜎𝐸 , 𝜎𝛾) and taking a linear combination of Gaussians.

Corollary 3.2.3 (Linear combination of Gaussians). Fix 𝜎𝐸 and 𝑔 ∈ ℓ1(R) and set

𝛾 (𝑔) (𝜔) :=
∫ ∞
𝛽𝜎2

𝐸
2

𝑔(𝑥)e
− (𝜔+𝑥 )2

4𝑥/𝛽−2𝜎2
𝐸 d𝑥.10 Then, analogous to (3.11), the coefficients as a

linear combination over integration variable 𝑥

𝛼
(𝑔)
𝜈1,𝜈2 :=

∫ ∞

𝛽𝜎2
𝐸

2

𝑔(𝑥)𝛼(𝜔𝛾 ,𝜎𝛾)
𝜈1,𝜈2 d𝑥 for (𝜔𝛾 (𝑥), 𝜎𝛾 (𝑥)) = (𝑥,

√︃
2𝑥/𝛽 − 𝜎2

𝐸
),(3.15)

satisfy the symmetries 𝛼(𝑔)∗𝜈1,𝜈2 = 𝛼
(𝑔)
𝜈2,𝜈1 and 𝛼

(𝑔)
𝜈1,𝜈2 = 𝛼

(𝑔)
−𝜈1,−𝜈2e−𝛽(𝜈1+𝜈2)/2 for each

𝜈1, 𝜈2 ∈ R. If 𝑔(𝑥) ≥ 0 for each 𝑥, then we also have that 𝜶(𝒈) ≥ 0, however, this is
not a necessary condition.

Proof. Recall the meaning of the superscripts 𝛼(𝜔𝛾 ,𝜎𝛾)
𝜈1,𝜈2 . The proof is merely the

linearity of symmetries and that convex combination preserves the cone of positive
semidefinite matrices. ■

To widen the band of transitions, a natural choice is to weigh each Gaussian e
− (𝜔+𝜔𝛾 )2

2𝜎2
𝛾

with its inverse ℓ1-weight. Surprisingly, this leads to filters that resemble the
Metropolis and Glauber weights; while other choices are plausible, we spell out the
calculation for this as a natural representative.

10Note that in principle we could also vary 𝜎𝐸 , but that would complicate both the analysis and the
implementation due to the required adjustments to the parameters of the performed operator Fourier
Transform.
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Proposition 3.2.4 (Metropolis and Glauber-like filters). Setting 𝑔(𝜔𝛾) = 1√
2𝜋𝜎𝛾

=

1√︃
2𝜋( 2𝜔𝛾

𝛽
−𝜎2

𝐸
)

yields

𝛾
(𝑠)
𝜎𝐸
(𝜔) :=

∫ 𝛽𝜎2
𝐸

2 +
𝑠2
𝛽

𝛽𝜎2
𝐸

2

e
− (𝜔+𝑥 )2

4𝑥/𝛽−2𝜎2
𝐸√︃

2𝜋(2𝑥/𝛽 − 𝜎2
𝐸
)
d𝑥

= e
−𝛽max

(
𝜔+

𝛽𝜎2
𝐸

2 ,0
)
· 1

2

[(
erf

(
𝑠

2
− 𝛽
𝑠

�����𝜔 + 𝛽𝜎2
𝐸

2

�����
)
+ 1

)
+ e

𝛽

����𝜔+ 𝛽𝜎2
𝐸

2

����(erf

(
𝑠

2
+ 𝛽
𝑠

�����𝜔 + 𝛽𝜎2
𝐸

2

�����
)
− 1

)]
︸                                                                                        ︷︷                                                                                        ︸

≤1

,

which, in the 𝑠→∞ limit, coincides with the Metropolis weight shifted by 𝛽𝜎2
𝐸

2 :

𝛾
(∞)
𝜎𝐸
(𝜔) = e

−𝛽max
(
𝜔+

𝛽𝜎2
𝐸

2 ,0
)
. (3.16)

Restricting the above 𝑔(𝜔𝛾) to the interval 𝜔𝛾 ∈
(

3𝛽𝜎2
𝐸

2 ,∞
)

results in the following
smooth variant of (3.16)

𝛾̃
(∞)
𝜎𝐸
(𝜔) = e

−𝛽max
(
𝜔+

𝛽𝜎2
𝐸

2 ,0
)
· (3.17)

1
2

[
erfc

(
1
𝜎𝐸

(
𝛽𝜎2

𝐸

2
−

�����𝜔 + 𝛽𝜎2
𝐸

2

�����
))
+ e

𝛽

����𝜔+ 𝛽𝜎2
𝐸

2

���� erfc

(
1
𝜎𝐸

(
𝛽𝜎2

𝐸

2
+

�����𝜔 + 𝛽𝜎2
𝐸

2

�����
))]

︸                                                                                                  ︷︷                                                                                                  ︸
≤1

,

which resembles the Glauber filter also shifted by 𝛽𝜎2
𝐸

2 (Figure 3.3).

Proof. We directly found the above by Mathematica. ■

3.3 Algorithms
This section presents efficient quantum algorithms for simulating the advertised
Lindbladian and the associated parent Hamiltonian. The former mainly builds on
black-box Lindbladian simulation algorithms [43, 49, 112], more precisely their
improved variant described in [40, Theorem III.2] whose complexity boils down to
constructing block encoding for the Lindblad operators (Definition 3.3.1); the latter
merely requires block-encoding the parent Hamiltonian, which feeds into quantum
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−4 −3 −2 −1 1 2 3 4

1
2

1

𝛽𝜔

𝛾(𝜔) exp(−𝛽max(𝜔, 0))
𝛾
(∞)
𝛽−1 (𝜔) in (3.16)
𝛾̃
(∞)
𝛽−1 (𝜔) in (3.17)

1/(1 + exp(𝛽𝜔))

Figure 3.3: A plot of the filter functions 𝛾(𝜔) for Metropolis, Glauber and our
filters arising from Gaussian linear combination(3.16)-(3.17) (with 𝜎𝐸 = 1

𝛽
).

simulated annealing (see [40, Appendix G] for a modern discussion) to prepare the
purified Gibbs state.

Thus, the main algorithmic contribution is to assemble the block encodings associated
with our synthetic Lindbladian (3.1) and our parent Hamiltonians (Theorem 3.1.3).
The frequency domain representation (section 3.2), which is natural in the context of
analyzing quantum detailed balance, is less instructive for algorithmic implementation.
Indeed, addressing the exact energy eigenstates (or the exact Bohr frequencies) is
generally inefficient. Nevertheless, the algorithmic task becomes straightforward in
the time domain representation. Indeed, our Lindbladian can be expressed in terms
of weighted time integrals

∫
(·)d𝑡 of some rapidly decaying functions; a standard

Linear-Combination-of-Unitary argument (under suitable discretization) leads to the
algorithmic complexity in terms of controlled Hamiltonian simulation time.

For the Lindbladian (3.1), block-encodings for the dissipative part are already
constructed in [40, Section III.B]. Thus, it remains to construct the coherent term; for
the parent Hamiltonian, we will need to construct block encodings from scratch, but
the manipulations are analogous. In the following sections, we first present the time-
domain expressions (section 3.3-3.3), which immediately yield the corresponding
block encodings (section 3.3) and the overall complexities (section 3.3-3.3).

Time-domain representation of our Lindbladians
Applying a two-dimensional Fourier Transform for the coherent term (3.14) leads
to the following time-domain representation where LCU techniques are naturally
applicable. See section 3.5 for the calculations.

Corollary 3.3.1 (Coherent term for the Gaussian case). For each 𝛽 > 0 and
parameters 𝜎𝐸 = 𝜎𝛾 = 𝜔𝛾 = 1

𝛽
, the coherent term 𝑩 (3.14) corresponding to the
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Gaussian weight 𝛾(𝜔) = exp
(
− (𝛽𝜔+1)

2

2

)
can be written as

𝑩 :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑏2(𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′

)
ei𝛽𝑯𝑡d𝑡, (3.18)

where

𝑏1(𝑡) := 2
√
𝜋e

1
8

(
1

cosh(2𝜋𝑡) ∗𝑡 sin(−𝑡) exp
(
−2𝑡2

))
such that ∥𝑏1∥1 < 1 (3.19)

𝑏2(𝑡) :=
1

2𝜋

√︂
1
𝜋

exp
(
−4𝑡2 − 2i𝑡

)
such that ∥𝑏2∥1 <

1
16
. (3.20)

Indeed, we can verify that 𝑩 is Hermitian by

𝑩† =
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏∗1(𝑡)e

−i𝛽𝑯𝑡
(∫ ∞

−∞
𝑏∗2(𝑡

′)𝑨𝑎†(−𝛽𝑡′)𝑨𝑎 (𝛽𝑡′)d𝑡′
)
ei𝛽𝑯𝑡d𝑡

=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑏2(−𝑡′)𝑨𝑎†(−𝛽𝑡′)𝑨𝑎 (𝛽𝑡′)d𝑡′

)
ei𝛽𝑯𝑡d𝑡

(By 𝑏∗1(𝑡) = 𝑏1(𝑡) and 𝑏∗2(𝑡) = 𝑏2(−𝑡))

=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑏2(𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′

)
ei𝛽𝑯𝑡d𝑡 = 𝑩.

(Change of variable 𝑡′→ −𝑡′)

The explicit weights corresponding to Metropolis weights are slightly more cumber-
some due to taming a mild (logarithmic) singularity. We can also verify that 𝑩𝑀,𝜂 is
Hermitian by 𝑏𝑀,𝜂∗2 (𝑡) = 𝑏𝑀,𝜂2 (−𝑡).

Corollary 3.3.2 (Approximate coherent term for the Metropolis-like weight). If
𝜎𝐸 = 1

𝛽
, then the coherent term 𝑩𝑀 corresponding to the Metropolis-like weight

𝛾𝑀 (𝜔) = exp
(
−𝛽max

(
𝜔 + 1

2𝛽 , 0
))

satisfies



𝑩𝑀 − 𝑩𝑀,𝜂


 ≤ 




∑︁

𝑎∈𝐴
𝑨𝑎†𝑨𝑎






 min
(
𝜂𝛽∥𝑯∥
√

2𝜋
,O

(
(𝜂𝛽∥𝑯∥)3

))
, (3.21)

where

𝑩𝑀,𝜂 :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑏
𝑀,𝜂

2 (𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′ + 1
16
√

2𝜋
𝑨𝑎†𝑨𝑎

)
ei𝛽𝑯𝑡d𝑡,

(3.22)
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with 𝑏1(𝑡) as in (3.19), and

𝑏
𝑀,𝜂

2 (𝑡) :=
1

4
√

2𝜋
exp

(
−2𝑡2 − i𝑡

)
+ 1( |𝑡 | ≤ 𝜂)i(2𝑡 + i)
𝑡 (2𝑡 + i)

such that ∥𝑏𝑀,𝜂2 ∥1 <
1
5
+ 1

2
√

2𝜋
ln(1/𝜂). (3.23)

Further, if
[∑

𝑎∈𝐴 𝑨𝑎†𝑨𝑎,𝑯
]
= 0, we can drop the second term in (3.22) after the

integral in 𝑡′ since
∫ ∞
−∞ 𝑏1(𝑡) = 0.

See section 3.6 for the proof. After suitable truncation, this merely incurs a logarithmic
overhead (∼ log(𝛽∥𝑯∥/𝜖)) to the algorithmic cost for an 𝜖-approximation due to
subnormalization 1

∥𝑏𝑀,𝜂

2 ∥1
.

Time-domain representation of our parent Hamiltonians
Recall that the central mathematical object for coherent Gibbs sampling is the
discriminant (i.e., the Lindbladian under a similarity transformation)

H(𝝆,L) := 𝝆−1/4L[𝝆1/4 · 𝝆1/4]𝝆−1/4.

This amounts to a mild calculation that transfers the heavy lifting done already
in the Lindbladidan context. One adaption for the coherent algorithm is that the
fundamental object is not a superoperator but an operator on a doubled Hilbert space.
Formally, we define the vectorization of a super-operator by

C[·] =
∑︁
𝑗

𝛼 𝑗 𝑨 𝑗 [·]𝑩 𝑗 → C =
∑︁
𝑗

𝛼 𝑗 𝑨 𝑗 ⊗ 𝑩𝑇𝑗 , (vectorization)

where 𝑩𝑇
𝑗

denotes the transpose of the matrix 𝑩 𝑗 in the computational basis |𝑖⟩.
We use curly fonts C for super-operators and bold fonts C for the vectorized super-
operators (which is, a matrix). For a matrix 𝝆, let us denote its vectorized version
by

|𝝆⟩ := (𝐼 ⊗ 𝑇−1)𝝆 where 𝑇 |𝑖⟩ = ⟨𝑖 | for each |𝑖⟩.

In the time domain, our parent Hamiltonian takes the following form (see section 3.5
for the calculations):

H𝛽 =
∑︁
𝑎∈𝐴

∫ ∞

−∞

∫ ∞

−∞
ℎ−(𝑡−)ℎ+(𝑡+) · 𝑨𝑎 (𝑡+ − 𝑡−) ⊗ 𝑨𝑎 (−𝑡− − 𝑡+)𝑇d𝑡+d𝑡−︸                                                                                 ︷︷                                                                                 ︸

transition part

+ 1
2
(𝑵 ⊗ 𝑰 + 𝑰 ⊗ 𝑵∗)︸                   ︷︷                   ︸

decay and coherent part

.
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Compared with the Lindbladian case, the first term is essentially the transition part
under a similarity transformation, and the second term combines the decay and
coherent part. Here, we do not care about complete positivity or trace-preserving
but merely Hermiticity.

The transition part

The transition parts for both Gaussian and Metropolis weights are as follows.

Corollary 3.3.3 (The transition part for Gaussian weights). For the Gaussian weight
𝛾(𝜔) = exp

(
− (𝛽𝜔+1)

2

2

)
with 𝜔𝛾 = 𝜎𝐸 = 𝜎𝛾 = 1/𝛽, the discriminant H𝛽 is described

in the time domain by

ℎ+(𝑡) =
1
𝛽

e−1/4 exp(−4𝑡2

𝛽2 ) and ℎ−(𝑡) =
1
𝜋𝛽

exp(−2𝑡2

𝛽2 ) such that ∥ℎ−∥1, ∥ℎ+∥1 ≤ 1.

(3.24)

Corollary 3.3.4 (The transition part for Metropolis weights). For 𝜎𝐸 = 1
𝛽
, the

Metropolis-like weight 𝛾𝑀 (𝜔) = exp
(
−𝛽max

(
𝜔 + 1

2𝛽 , 0
))

yields H𝛽 described in
the time domain by the same ℎ−(𝑡) as in Eq. (3.24) and by

ℎ+(𝑡) =
e−1/8

𝛽

e−2𝑡2/𝛽2

4
√

2𝜋( 𝑡2
𝛽2 + 1

16 )
such that ∥ℎ+(𝑡)∥1 ≤ 1.

The 𝑵-term

The time-domain presentation of the 𝑵 term is as follows.

Corollary 3.3.5 (𝑵 term for Gaussian weights). For each 𝛽, the Gaussian weight
𝛾(𝜔) = exp

(
− (𝛽𝜔+1)

2

2

)
with 𝜎𝐸 = 𝜎𝛾 = 𝜔𝛾 = 1

𝛽
corresponds to the discriminant

where

𝑵 =
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑛1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑛2(𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′

)
ei𝛽𝑯𝑡d𝑡,

where

𝑛1(𝑡) :=
1
4
· 2
√
𝜋

(
1

cosh(2𝜋𝑡) ∗𝑡 exp
(
−2𝑡2

))
such that ∥𝑛1∥1 =

𝜋

4
√

2
< 1

(3.25)

𝑛2(𝑡) := 4 · 2 · 1
2𝜋

√︂
1
𝜋

exp
(
−4𝑡2 − 2i𝑡

)
= 8 · 𝑏2(𝑡) such that ∥𝑛2∥1 <

1
2

with 𝑏2 as in (3.20).
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Corollary 3.3.6 (𝑵 term for Metropolis weights). If 𝜎𝐸 = 1
𝛽
, then the Metropolis-like

weight 𝛾𝑀 (𝜔) = exp
(
−𝛽max

(
𝜔 + 1

2𝛽 , 0
))

corresponds to the discriminant where
𝑵𝑀 satisfies

𝑵𝑀 − 𝑵𝑀,𝜂



 ≤∑︁
𝑎∈𝐴



𝑨𝑎†𝑨𝑎

 min
(
𝜂𝛽∥𝑯∥
√

2𝜋
,O

(
(𝜂𝛽∥𝑯∥)3

))
,

where

𝑵𝑀,𝜂 :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑛1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑛
𝑀,𝜂

2 (𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′ + 1
16
√

2𝜋
𝑨𝑎†𝑨𝑎

)
ei𝛽𝑯𝑡d𝑡,

with 𝑛1(𝑡) as in (3.25), and 𝑛𝑀,𝜂2 = 𝑏
𝑀,𝜂

2 as in (3.23).

In the above cases, we can verify that 𝑵 is Hermitian by 𝑛∗1(𝑡) = 𝑛1(𝑡) and
𝑛∗2(𝑡) = 𝑛2(−𝑡). For 𝑵𝑀 , we also use that (𝑨𝑎†𝑨𝑎)† = 𝑨𝑎†𝑨𝑎 .

Block-encodings
Our simulation algorithm extensively uses block encodings that are largely borrowed
from [40]. This section aims to instantiate them to state the theorems appropriately,
and the curious reader may refer to [40, Section III.B].

Definition 3.3.1 (Block-encoding for Lindbladian). Given a purely irreversible
Lindbladian

L[𝝆] :=
∑︁
𝑗∈𝐽

(
𝑳 𝑗 𝝆𝑳

†
𝑗
− 1

2
𝑳†
𝑗
𝑳 𝑗 𝝆 −

1
2
𝝆𝑳†

𝑗
𝑳 𝑗

)
,

we say that a unitary 𝑼 is a block-encoding for Lindblad operators {𝑳 𝑗 } 𝑗∈𝐽 if 11

(
〈
0𝑏

�� ⊗ 𝑰) ·𝑼 · ( |0𝑐⟩ ⊗ 𝑰) =
∑︁
𝑗∈𝐽
| 𝑗⟩ ⊗ 𝑳 𝑗 for 𝑏 ≤ 𝑐 ∈ Z+.

• Block-encoding𝑽 𝑗𝑢𝑚𝑝 of the jump operators 𝑨𝑎 in the form of Definition 3.3.1:

(
〈
0𝑏

�� ⊗ 𝑰𝑎 ⊗ 𝑰𝑠𝑦𝑠)] · 𝑽 𝑗𝑢𝑚𝑝 · ( |0𝑐⟩ ⊗ 𝑰𝑠𝑦𝑠) =
∑︁
𝑎∈𝐴
|𝑎⟩ ⊗ 𝑨𝑎 .

To implement the discriminant, we also assume access to a block-encoding
𝑽 𝑗𝑢𝑚𝑝𝑇 for the partial transpose

∑
𝑎∈𝐴 |𝑎⟩ ⊗ (𝑨𝑎)𝑇 .

11In the first register, we could use any orthonormal basis. Sticking to computational basis
elements | 𝑗⟩ is just for ease of presentation. Intuitively, one can think about 𝑏 as the number of ancilla
qubits used for implementing the Lindblad operators 𝑳 𝑗 , while typically 𝑎 − 𝑏 ≈ log |𝐽 |.
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• Quantum Fourier Transform

𝑸𝑭𝑻𝑁 : |𝑡⟩ → 1
√
𝑁

∑︁
𝜔̄∈𝑆𝜔0

e−i𝜔̄𝑡 |𝜔̄⟩.

We use “bar” to denote variables taking discrete values. In particular, the
Fourier frequencies 𝜔̄ and times 𝑡 are integer multiples of𝜔0 and 𝑡0 respectively
such that

𝜔0𝑡0 =
2𝜋
𝑁
, and 𝑆⌈𝑁⌋ :=

{
− ⌈(𝑁 − 1)/2⌉, . . . ,−1, 0, 1, . . . , ⌊(𝑁 − 1)/2⌋

}
,

and 𝑆
⌈𝑁⌋
𝜔0 := 𝜔0 · 𝑆⌈𝑁⌋ , 𝑆

⌈𝑁⌋
𝑡0

:= 𝑡0 · 𝑆⌈𝑁⌋ .

• Controlled Hamiltonian simulation∑︁
𝑡∈𝑆𝑡0

|𝑡⟩⟨𝑡 | ⊗ e±i𝑡𝑯 .

• State preparation oracles for the Fourier Transform weights, acting on the
frequency register

𝑷𝒓𝒆 𝒑 𝒇 :
��0̄〉 → | 𝑓 ⟩.

• Controlled filter for the Boltzmann factors acting on the frequency register and
the Boltzmann weight register

𝑾 :=
∑︁
𝜔̄∈𝑆𝜔0

𝒀1−𝛾(𝜔̄) ⊗ |𝜔̄⟩⟨𝜔̄ | where 0 ≤ 𝛾(𝜔̄) ≤ 1 and 𝛾(𝜔̄) = 𝛾(−𝜔̄)e−𝛽𝜔̄.

• Single qubit Pauli-Y rotations

𝒀𝜃 :=

(√
1 − 𝜃 −

√
𝜃√

𝜃
√

1 − 𝜃

)
.

• Reflection on 𝑏-qubits

𝑹𝑏 := 2
��0𝑏〉〈0𝑏

�� − 𝑰𝑏 .

To feed into the black-box Lindbladian simulation algorithm [40, Theorem III.2], we
need block-encodings for the dissipative part and the coherent term; for the coherent
Gibbs sampler, we need block-encoding for the discriminantH𝛽, which we obtain by
adding the transition part and the 𝑵 part.
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|0⟩ 𝒀1/2

𝑹𝑏+1

𝒀1/2 ⟨0|��0𝑏〉
𝑽 𝑗 𝑝 𝑽†

𝑗 𝑝

〈
0𝑏

����0𝑐−𝑏〉 〈
0𝑐−𝑏

��
𝝆 e−i𝑯𝑡 ei𝑯𝑡 e−i𝑯𝑡 ei𝑯𝑡

��0̄〉 𝑷𝒓𝒆 𝒑′ 𝑷𝒓𝒆 𝒑†
〈
0̄
��

Figure 3.4: Circuit for block-encoding (3.3). The gate 𝒑𝒓𝒆 𝒑 is a shorthand for
𝑷𝒓𝒆 𝒑√| 𝑓+ | and 𝒑𝒓𝒆 𝒑′ for 𝑷𝒓𝒆 𝒑

𝑓+/
√
| 𝑓+ |

.

Proposition 3.3.1 (Block-encoding for the coherent term). Suppose ∥ 𝑓−∥1, ∥ 𝑓+∥1 ≤ 1.
Then, there is a block-encoding for∑︁

𝑡−∈𝑆𝑡0

𝑓−(𝑡−)e−i𝑯𝑡−©­«
∑︁
𝑡+∈𝑆𝑡0

𝑓+(𝑡+)
∑︁
𝑎∈𝐴

𝑨𝑎†(𝑡+)𝑨𝑎 (−𝑡+)ª®¬ei𝑯𝑡−

using constant calls to controlled Hamiltonian simulation,𝑽 𝑗𝑢𝑚𝑝, 𝒑𝒓𝒆 𝒑√| 𝑓+ |, 𝒑𝒓𝒆 𝒑 𝑓+/
√
| 𝑓+ |

,
𝒑𝒓𝒆 𝒑√| 𝑓+ |, 𝒑𝒓𝒆 𝒑 𝑓+/

√
| 𝑓+ |

and their adjoints.

The identical statement applies to the 𝑵 term by replacing 𝑓± → 𝑛±.

Proof. It suffices to construct∑︁
𝑡+∈𝑆𝑡0

𝑓+(𝑡+)
∑︁
𝑎∈𝐴

𝑨𝑎†(𝑡+)𝑨𝑎 (−𝑡+)

and then apply the operator Fourier Transform. When there is only one jump
(|𝐴| = 1), this merely uses iterations of LCU and controlled Hamiltonian simulation.
When a block-encoding gives the set of jumps, see Figure 3.4. To see that this yields
the desired expression, observe that

𝒀1/2 |0⟩ = |+⟩ and 𝒀†1/2 |0⟩ = |−⟩.

Thus, the expression remains the same if we drop the −𝑰𝑏+1 term in 𝑹𝑏+1. ■

Proposition 3.3.2 (Bilinear). Suppose ∥ℎ−∥1 = ∥ℎ+∥1 = 1. Then, there is a
block-encoding for∑︁

𝑡−∈𝑆𝑡0

∑︁
𝑡+∈𝑆𝑡0

∑︁
𝑎∈𝐴

ℎ−(𝑡−)ℎ+(𝑡+) · 𝑨𝑎 (𝑡+ − 𝑡−) ⊗ 𝑨𝑎 (−𝑡− − 𝑡+)𝑇
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using constant calls to controlled Hamiltonian simulation,𝑽 𝑗𝑢𝑚𝑝,𝑽 𝑗𝑢𝑚𝑝𝑇 , 𝒑𝒓𝒆 𝒑√|ℎ+ |, 𝒑𝒓𝒆 𝒑ℎ+/
√
|ℎ+ |

,
𝒑𝒓𝒆 𝒑√|ℎ+ |, 𝒑𝒓𝒆 𝒑ℎ+/

√
|ℎ+ |

and their adjoints.

Proof. The proof is a modification of Proposition 3.3.1 by replacing 𝑽†
𝑗𝑢𝑚𝑝

with
𝑽𝑇
𝑗𝑢𝑚𝑝

and duplicating the system register. ■

Proving Theorem 3.1.2: complexity for Lindbladian simulation
We now combine the block-encoding to give the overall cost of Gibbs sampling. We
can implement the controlled time-evolution up to a truncation time as long as the
profiles 𝑓+, 𝑓− are well-concentrated and smooth in the time domain (and that the
Fourier Transforms are well-defined), which is the case since the frequency profiles
𝑓+, 𝑓− are smooth and concentrated Corollary 3.3.1-Proposition 3.6.1. Also, the
following results all require discretization of the time integrals, which is fortunately
handled by [40, Appendix C]; this sets the required size of the Fourier Transform
register, which uses polylogarithmically many qubits.

Proof of Theorem 3.1.2. Use the black-box Lindbladian simulation algorithm [40,
Theorem III.2] for block-encoding for the coherent term (Proposition 3.3.1) and
the dissipative part [40, Section III.B.1]. For the Metropolis weight, a logarithmic
overhead is incurred for taming the mild singularity in the 𝑏𝑀2 ; 𝑩 is especially
subnormalized by ∥𝑏𝑀2 ∥

−1
1 = 1/O(log(𝛽∥𝐻∥/𝜖)) to fit an approximation of 𝑩 into a

unitary block encoding. ■

Proving Theorem 3.1.3: complexity for the discriminant
We may now construct the advertised block encoding for the discriminant. The 𝑵

term is analogous to the coherent term (Proposition 3.3.1).

Proof of Theorem 3.1.3. Add the block encodings for the transition part (from Propo-
sition 3.3.2), 𝑵 ⊗ 𝑰, and 𝑰 ⊗ 𝑵 (from Proposition 3.3.1), up to mild subnormalization.
Again, the Metropolis case incurs an additional logarithmic factor. ■

Note that we do not implement 𝑰 +H𝛽 (as in [40, Proposition III.5]) but rather H𝛽

itself; implementing the former would allow us to obtain a quadratic speedup on the
discriminant gap, which we currently do not have.
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3.4 Discussion
We have constructed the quantum analog of the classical Monte Carlo algorithms
with desirable features. We highlight potential future directions as listed.

• Quantum simulation applications. A key factor in industrial quantum
simulation applications [30, 37, 107] is effective quantum algorithms for low-
energy states. Our algorithm can be employed for any Hamiltonian without
substantial variational parameters or a case-by-case trial state or adiabatic path.
While the mixing time can vary widely, the fact that physically relevant states
(molecules or materials) exist in Nature suggests a reasonable mixing time in
practice. Regarding practical gate complexities, the locality of our algorithm
for lattice Hamiltonian may be favorable as we merely need to simulate a
Õ(𝛽)-radius Hamiltonian patch localized around each jump 𝑨𝑎.

• Locality and complexity of quantum Gibbs state. Our algorithm opens new
angles on the locality and complexity of Gibbs states (such as the decay of
correlation, quantum conditional mutual information, recovery channels, and
quantum belief propagation). In particular, the combination of localized jumps
and exact detailed balance enables the rigorous study of convergence [31, 96]
for noncommuting lattice Hamiltonians. Rapid mixing also directly implies the
circuit complexity of the purification (Appendix 3.7) through the Lindbladian
gap, giving a dynamic perspective on the area law of entanglement [84].

• New open-system physics. Just as quantum computing lacks a go-to Monte
Carlo algorithm, open system physics lacks a simple, universal Lindbladian
that succinctly captures open system thermodynamics. Our algorithm qualifies
due to its elegant properties. For example, our Lindbladian enables a precise
definition of dynamical thermal phase transitions in terms of mixing time that
may contrast with static thermal phase transitions. Related concepts include
metastable states, the energy landscape, quantum spin glass, and self-correcting
quantum memories, whose precise formulation for noncommuting Hamiltonian
has also been lacking.

• A new algorithmic subroutine. Classical MCMC algorithms have been
widely employed to solve other problems beyond physical simulation, and we
may expect the same for our algorithm. A natural example is optimization
problems (e.g., constraint satisfaction problems and modern optimization
problems), whether applying to classical Hamiltonian (in a setting similar
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to Quantum Approximate Optimization Algorithms (QAOA) [66]) or quan-
tum Hamiltonians. Another application is Quantum Semidefinite Program
Solvers [11, 27], where Quantum Gibbs state preparation is routinely invoked.

• Comparision with existing algorithms. With a new algorithm at hand, we
expect fruitful comparison with existing (quantum or classical) algorithms
such as the adiabatic algorithm [64], phase estimation with trial states, tensor
network, Quantum Monte Carlo, etc. In particular, understanding the distinction
from classical algorithms could either inspire better classical algorithms or
expose potential sources of quantum advantage in quantum simulation (e.g.,
the sign problem or difficulty in contracting PEPS).

• Numerical studies. As the complement to theory, the explicit form of our
Lindbladian also enables direct numerical studies regarding the above notions,
e.g., the scaling of mixing time for thermal state or ground states, dynamic
phase transitions, and noncommuting quantum memories, and the interplay
with tensor networks.

To conclude, given the celebrated theoretical and empirical triumph of Markov chain
Monte Carlo methods and its successors over the past 70 years, we argue that this
work should serve similar roles in quantum computing. Especially given the current
skepticism on the practical applicability of quantum computers, our new algorithms
bring hope to the community by initiating a new wave of directions covering theory,
experiment, numerics, and application.
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3.5 Appendix:Deriving time-domain represantations
Our calculation for detailed balance has focused on the frequency domain. This
appendix applies Fourier transforms to obtain the time-domain representation. The
arguments are conceptually straightforward but require some bookkeeping.

For both the Lindbladians and the parent Hamiltonians, we will often encounter
a two-dimensional sum over Bohr frequencies. Since there are two energy labels,
we employ a two-dimensional Fourier Transform. For any function of frequencies
𝑓 (𝜈1, 𝜈2), the time-domain representation of the bilinear expression gives∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝑓 (𝜈1, 𝜈2)𝑨𝑎𝜈1 ⊗ (𝑨
𝑎
𝜈2)
† =

∑︁
𝑎∈𝐴

1
2𝜋

∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑡1, 𝑡2)𝑨𝑎 (𝑡1) ⊗ 𝑨𝑎†(−𝑡2)d𝑡1d𝑡2,

where we introduced the two-dimensional Fourier Transform

𝑓 (𝑡1, 𝑡2) :=
1

2𝜋

∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝜈1, 𝜈2)ei𝜈1𝑡1ei𝜈2𝑡2d𝜈1d𝜈2.

Fortunately, for our usage, the Fourier Transform decouples into two iterations of
one-dimensional Fourier Transforms, significantly simplifying the presentation and
implementation.

Corollary 3.5.1 (Factorized time-domain functions). If the function factorizes in the
energy domain such that

1
2𝜋

𝑓 (𝜈1, 𝜈2) = 𝑓+(𝜈1 + 𝜈2) · 𝑓−(𝜈1 − 𝜈2),

then ∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝑓 (𝜈1, 𝜈2)𝑨𝑎𝜈1 ⊗ (𝑨
𝑎
𝜈2)
†

=
∑︁
𝑎∈𝐴

∫ ∞

−∞

∫ ∞

−∞
𝑓−(𝑡−) 𝑓+(𝑡+)𝑨𝑎 (−𝑡− − 𝑡+) ⊗ 𝑨𝑎†(𝑡+ − 𝑡−)d𝑡+d𝑡− (3.26)

and ∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝑓 (𝜈1, 𝜈2) (𝑨𝑎𝜈2)
†𝑨𝑎𝜈1

=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑓−(𝑡−)e−i𝑯𝑡−

(∫ ∞

−∞
𝑓+(𝑡+)𝑨𝑎†(𝑡+)𝑨𝑎 (−𝑡+)d𝑡+

)
ei𝑯𝑡−d𝑡−,

where the function 𝑓± are inverse Fourier Transforms of 𝑓±.
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Crucially, the RHS can be implemented via Linear Combination of Unitaries by
discretizing the integral.

Proof. Since the expression is linear in the sum over jumps 𝑎 ∈ 𝐴, it suffices to
prove for any operator 𝑨, dropping the jump labels 𝑎.∑︁

𝜈1,𝜈2∈𝐵
2𝜋 𝑓+(𝜈1 + 𝜈2) · 𝑓−(𝜈1 − 𝜈2)𝑨𝜈1 ⊗ (𝑨𝜈2)†

=
∑︁

𝜈1,𝜈2∈𝐵
2𝜋 𝑓+(𝜈+) · 𝑓−(𝜈−)

(
𝑨 𝜈++𝜈−

2
⊗ 𝑨 𝜈+−𝜈−

2

)†
(Let 𝜈+ := 𝜈1 + 𝜈2 and𝜈− := 𝜈1 − 𝜈2)

=
∑︁

𝜈1,𝜈2∈𝐵

∫ ∞

−∞
𝑓+(𝑡+)𝑒−i𝜈+𝑡+d𝑡+

∫ ∞

−∞
𝑓−(𝑡−)𝑒−i𝜈−𝑡−d𝑡−𝑨 𝜈++𝜈−

2
⊗

(
𝑨 𝜈+−𝜈−

2

)†
(Fourier Transform)

=
∑︁

𝜈1,𝜈2∈𝐵

∫ ∞

−∞

∫ ∞

−∞
𝑓+(𝑡+) 𝑓−(𝑡−)𝑨 𝜈++𝜈−

2
(−𝑡+ − 𝑡−) ⊗

(
𝑨 𝜈+−𝜈−

2

)†
(𝑡+ − 𝑡−)d𝑡+d𝑡−

(Since (𝑨𝜈)† = (𝑨†)−𝜈)

=

∫ ∞

−∞

∫ ∞

−∞
𝑓+(𝑡+) 𝑓−(𝑡−)𝑨(−𝑡+ − 𝑡−) ⊗ 𝑨†(𝑡+ − 𝑡−)d𝑡+d𝑡−.

The fourth equality uses that

e−i𝜈+𝑡+e−i𝜈−𝑡− = exp( i(𝜈+ − 𝜈−) (𝑡+ − 𝑡−)
2

) · exp( i(𝜈+ + 𝜈−) (−𝑡+ − 𝑡−)
2

)

to conclude the proof. ■

Now, we plug in the appropriate functions to arrive at the time-domain functions.

Our Lindbladians
We evaluate the Fourier transform for the coherent term 𝑩. The expression looks
intimidating, but all that matters for the algorithmic complexity is that they decay
rapidly (in the time domain).

Corollary 3.5.2 (Explicit time-domain functions). In the time domain, the coherent
term 𝑩 in (3.14) corresponding to coefficients constructed in (3.15) reads

𝑓+(𝑡) =
∫ ∞

𝛽𝜎2
𝐸

2

𝑔(𝑥)𝜎𝛾 (𝑥) exp
(
−4𝑡2𝑥

𝛽
− 2i𝑡𝑥

)
d𝑥, (3.27)

𝑓−(𝑡) =
𝜎𝐸

𝜋𝛽
e

𝛽2𝜎2
𝐸

8
©­­«

1

cosh
(

2𝜋𝑡
𝛽

) ∗𝑡 sin
(
−𝛽𝜎2

𝐸 𝑡

)
e−2𝜎2

𝐸
𝑡2
ª®®¬, (3.28)
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depending on parameters 𝜎𝐸 , 𝑔(𝑥), 𝛽.12

Recall that the convolution of two functions over variable 𝑡 is defined by

( 𝑓 ∗𝑡 𝑔) (𝑡) :=
∫ ∞

−∞
𝑓 (𝑠)𝑔(𝑡 − 𝑠)d𝑠.

Nicely, the product structure persists under a convex combination of Gaussians as
only 𝑓+(𝑡) depends on 𝑔(𝑥). Otherwise, we could have had to consider a linear
combination of function products, which is messier to implement.

Proof. First, we confirm that the energy domain function indeed has a product
structure 1

2𝜋 𝑓 (𝜈1, 𝜈2) = 𝑓+(𝜈1 + 𝜈2) · 𝑓−(𝜈1 − 𝜈2) due to (3.12), (3.15) and (3.14) for

𝑓+(𝜈) =
∫ ∞

𝛽𝜎2
𝐸

2

𝑔(𝑥)𝜎𝛾 (𝑥)

2
√︃
𝜎2
𝐸
+ 𝜎2

𝛾 (𝑥)
exp

(
− (𝜈 + 2𝑥)2

16𝑥/𝛽

)
d𝑥, and (3.29)

𝑓−(𝜈) =
1

2𝜋
tanh(−𝛽𝜈/4)

2i
exp

(
− 𝜈2

8𝜎2
𝐸

)
=

1
2𝜋

1
cosh(−𝛽𝜈/4) ·

sinh(−𝛽𝜈/4)
2i

exp

(
− 𝜈2

8𝜎2
𝐸

)
.

Since we work with well-concentrated integrable functions, the Fourier Transforms
exist, and we can compute them as follows. We begin with the Gaussian integral
associated with 𝑓+

1
√

2𝜋

∫ ∞

−∞
exp

(
− (𝜈 + 2𝑥)2

16𝑥/𝛽

)
ei𝜈𝑡d𝜈 = 2

√︄
2𝑥
𝛽

exp
(
−4𝑡2𝑥

𝛽
− 2i𝑡𝑥

)
.

Thus, using (3.29) and the definition of 𝜎𝛾 (𝑥) =
√︃

2𝑥/𝛽 − 𝜎2
𝐸

, we get (3.27). In order
to compute 𝑓−(𝑡), we use the convolution theorem F −1(F ( 𝑓 ) · F (𝑔)) = 𝑓 ∗ 𝑔/

√
2𝜋.

Individually, we have

1
√

2𝜋

∫ ∞

−∞

sinh(−𝛽𝜈/4)
2i

exp

(
− 𝜈2

8𝜎2
𝐸

)
ei𝜈𝑡d𝜈 = 𝜎𝐸e

𝛽2𝜎2
𝐸

8 sin
(
−𝛽𝜎2

𝐸 𝑡

)
e−2𝜎2

𝐸
𝑡2(3.30)

1
√

2𝜋

∫ ∞

−∞

1
2𝜋 cosh(−𝛽𝜈/4) e

i𝜈𝑡d𝜈 =
2

√
2𝜋𝛽 cosh

(
2𝜋𝑡
𝛽

) .
12Note that the function 𝑏1 (𝑡) seems to have width∼ 𝛽𝜎𝐸 due to the convolution by 1

cosh(4𝜋𝑡/(𝛽𝜎𝐸 ) ) ,
meaning that the integral in 𝑡 seems to require Hamiltonian evolution times up to ∼ 𝛽. In fact,
the numerics show a 1/poly decay until about ∼ 𝛽𝜎𝐸 (after which the exponential decay starts),
suggesting that about min

(
𝜎−1
𝐸

Poly(1/𝜖), 𝛽 log(1/𝜖)
)

Hamiltonian simulation time is required in
order to achieve 𝜖 precision for the block-encoding of the coherent term. Thus, it might be difficult to
obtain exact detailed balance below Ω(𝛽) Hamiltonian evolution times. On the contrary, the function
𝑏2 (𝑡′) has a width only about 1/

√︁
𝛽𝜔𝛾 , implying that the corresponding other integral in 𝑡′ can be

well-approximated by only using Hamiltonian evolution time ∼
√︁
𝛽/𝜔𝛾 .
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Take the convolution to conclude the calculation. ■

The above explicit form allows us to compute the explicit form of the function 𝑓+(𝑡)
corresponding to our two main settings. We begin with the Gaussian case.

Corollary 3.3.1 (Coherent term for the Gaussian case). For each 𝛽 > 0 and
parameters 𝜎𝐸 = 𝜎𝛾 = 𝜔𝛾 = 1

𝛽
, the coherent term 𝑩 (3.14) corresponding to the

Gaussian weight 𝛾(𝜔) = exp
(
− (𝛽𝜔+1)

2

2

)
can be written as

𝑩 :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑏2(𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′

)
ei𝛽𝑯𝑡d𝑡, (3.18)

where

𝑏1(𝑡) := 2
√
𝜋e

1
8

(
1

cosh(2𝜋𝑡) ∗𝑡 sin(−𝑡) exp
(
−2𝑡2

))
such that ∥𝑏1∥1 < 1 (3.19)

𝑏2(𝑡) :=
1

2𝜋

√︂
1
𝜋

exp
(
−4𝑡2 − 2i𝑡

)
such that ∥𝑏2∥1 <

1
16
. (3.20)

Indeed, both functions of time are rapidly decaying and have bounded ℓ1-norm (as
required for LCU implementation).

Proof. Setting 𝑔(𝑥) = 𝛿(𝑥 − 𝜔𝛾) in Corollary 3.5.1 yields the desired Gaussian
weight and 𝑓+(𝑡) in (3.27) becomes

𝑓+(𝑡) =
∫ ∞

−∞
𝛿(𝑥 − 𝜔𝛾)𝜎𝛾 exp

(
−4𝑡2𝑥

𝛽
− 2i𝑡𝑥

)
𝑑𝑥 =

√︄
2𝜔𝛾
𝛽
− 𝜎2

𝐸
exp

(
−

4𝑡2𝜔𝛾
𝛽
− 2i𝑡𝜔𝛾

)
.

Setting 𝑏1(𝑡) := 2𝜋
√
𝜋 𝑓−(𝑡/𝜎𝐸 ) and 𝑏2(𝑡′) := 𝑓+(𝛽𝑡′)/(2𝜋

√
𝜋) and applying a

change of variables in the integral (3.26) yields the desired result (3.18). Note that
the convolution ∗𝑡 implicitly is an integral over 𝑡, so we should not forget to rescale
d𝑡 there.

Lastly, we bound the ℓ1-norm of the functions by Hölder’s inequality

∥𝑏1∥1 ≤


(1 + 𝑡2)−1



2



(1 + 𝑡2)𝑏1




2 =

√︂
𝜋

2


(1 + 𝑡2)𝑏1




2 ≤ 1,

using individual bounds
∫ ∞
−∞

1
(1+2𝑡2)2 d𝑡 = 𝜋

2 and
∫ ∞
−∞

���(1 + 𝑡2)𝑏1(𝑡)
���2d𝑡 < 0.625. The

norm ∥𝑏2∥1 = 𝑒−1/4

4𝜋 < 1
16 is a Gaussian integral (Fact 3.2.1). ■
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The explicit weights corresponding to Metropolis weights are slightly more cumber-
some due to taming a logarithmic singularity; see section 3.6.

Our parent Hamiltonians
Based on the Lindbladian, we explicitly evaluate the discriminant in the frequency
domain.

Proposition 3.5.1 (Symmerized discriminant). In the setting of Corollary 3.2.2, the
discriminant corresponding to the 𝝆𝛽-DB Lindbladian reads

H𝛽 =
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

ℎ𝜈1,𝜈2 𝑨
𝑎
𝜈1 (·) (𝑨

𝑎
𝜈2)
† + 1

2
(𝑵(·) + (·)𝑵)

or H𝛽 =
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

ℎ𝜈1,𝜈2 𝑨
𝑎
𝜈1 ⊗ (𝑨

𝑎
𝜈2)
∗︸                 ︷︷                 ︸

transition part

+ 1
2
(𝑵 ⊗ 𝑰 + 𝑰 ⊗ 𝑵∗)︸                   ︷︷                   ︸

coherent and decay part

where ℎ𝜈1,𝜈2 := e𝛽(𝜈1+𝜈2)/4𝛼𝜈1,𝜈2 = ℎ−𝜈2,−𝜈1 and

𝑵 := −
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2

cosh(𝛽(𝜈1 − 𝜈2)/4)
(𝑨𝑎𝜈2)

†𝑨𝑎𝜈1 = 𝑵†.

Proof. We calculate

H𝛽 = 𝝆−1/4L[𝝆1/4 · 𝝆1/4]𝝆−1/4

=
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

e𝛽(𝜈1+𝜈2)/4𝛼𝜈1,𝜈2 𝑨
𝑎
𝜈1 (·) (𝑨

𝑎
𝜈2)
† − i

∑︁
𝜈∈𝐵
(e

𝛽𝜈

4 𝑩𝜈 (·) − e−
𝛽𝜈

4 (·)𝑩𝜈)

− 1
2

∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

(
𝛼𝜈1,𝜈2e

𝛽 (𝜈1−𝜈2 )
4 (𝑨𝑎𝜈2)

†𝑨𝑎𝜈1 (·) + 𝛼𝜈1,𝜈2e−
𝛽 (𝜈1−𝜈2 )

4 (·) (𝑨𝑎𝜈2)
†𝑨𝑎𝜈1

)
=

∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

ℎ𝜈1,𝜈2 𝑨
𝑎
𝜈1 (·) (𝑨

𝑎
𝜈2)
† + 1

2
𝑵(·) + 1

2
(·)𝑵†,

where

𝑵 = −2i
∑︁
𝜈∈𝐵

e𝛽𝜈/4𝑩𝜈 −
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2e
𝛽 (𝜈1−𝜈2 )

4 (𝑨𝑎𝜈2)
†𝑨𝑎𝜈1 .

We further simplify 𝑵 by expressing 𝑩 as a linear combination of (𝑨𝑎𝜈2)
†𝑨𝑎𝜈1 as

in (3.14).

𝑵 =
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

(
exp(𝛽(𝜈1 − 𝜈2)/4) tanh(𝛽(𝜈1 − 𝜈2)/4) − exp(𝛽(𝜈1 − 𝜈2)/4)

)
𝛼𝜈1,𝜈2 (𝑨𝑎𝜈2)

†𝑨𝑎𝜈1

= −
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2

cosh(𝛽(𝜈1 − 𝜈2)/4)
(𝑨𝑎𝜈2)

†𝑨𝑎𝜈1 (By e𝑥 (tanh(𝑥) − 1) = −1
cosh(𝑥) )

= 𝑵†, (Invariance under 𝜈1 ↔ 𝜈2)
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as advertised.

■

The transition part

For the transition part, we quickly obtain the time-domain representation using a
two-dimensional Fourier Transform as a corollary of Corollary 3.5.1.

Corollary 3.5.3 (Time integrals). Suppose ℎ𝜈1,𝜈2 = 2𝜋 · ℎ̂+(𝜈+) · ℎ̂−(𝜈−), then∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

ℎ𝜈1,𝜈2 𝑨
𝑎
𝜈1 ⊗ (𝑨

𝑎
𝜈2)
∗

=
∑︁
𝑎∈𝐴

∫ ∞

−∞

∫ ∞

−∞
ℎ−(𝑡−)ℎ+(𝑡+) · 𝑨𝑎 (𝑡+ − 𝑡−) ⊗ 𝑨𝑎 (−𝑡− − 𝑡+)𝑇d𝑡+d𝑡−,

where ℎ±(𝑡) are Fourier Transforms of ℎ̂±(𝜈).

Now, we can evaluate the Fourier transforms explicitly.

Proposition 3.5.2 (Linear combination for ℎ). For 𝛼𝜈1,𝜈2 defined in (3.15) and each
𝜎𝐸 , 𝑔(𝑥), we have that ℎ𝜈1,𝜈2 = 2𝜋ℎ̂+(𝜈+) · ℎ̂−(𝜈−) for the discriminant (Proposi-
tion 3.5.1) where

ℎ̂+(𝜈) =
∫ ∞

𝛽𝜎2
𝐸

2

𝑔(𝑥)𝜎𝛾 (𝑥)

2
√︃
𝜎2
𝐸
+ 𝜎2

𝛾 (𝑥)
exp

(
− 𝛽𝜈

2

16𝑥
− 𝛽𝑥

4

)
d𝑥

and ℎ̂−(𝜈) :=
1

2𝜋
exp

(
− 𝜈2

8𝜎2
𝐸

)
,

with the corresponding time-domain functions

ℎ+(𝑡) =
∫ ∞

𝛽𝜎2
𝐸

2

𝑔(𝑥)𝜎𝛾 (𝑥) exp
(
−4𝑡2𝑥

𝛽
− 𝛽𝑥

4

)
d𝑥

and ℎ−(𝑡) =
𝜎𝐸

𝜋
exp(−2𝜎2

𝐸 𝑡
2). (3.31)

Proof. For ℎ̂+(𝜈) term, the cross term in the exponential e−𝛽𝜈/4 is precisely cancelled
by ℎ𝜈1,𝜈2 := e𝛽(𝜈1+𝜈2)/4𝛼𝜈1,𝜈2; the ℎ̂−(𝜈) term remains the same. To obtain the
time-domain functions, we simply carry out the Gaussian integral

1
√

2𝜋

∫ ∞

−∞
exp

(
− 𝛽𝜈

2

16𝑥
− 𝛽𝑥

4

)
ei𝜈𝑡d𝜈 = 2

√︄
2𝑥
𝛽

exp
(
−4𝑡2𝑥

𝛽
− 𝛽𝑥

4

)
and use that 𝜎2

𝐸
+ 𝜎2

𝛾 (𝑥) = 𝛽/2𝑥. ■
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Proposition 3.5.3 (The Gaussian case). In the setting of Proposition 3.5.2 and for
𝛼𝜈1,𝜈2 defined in (3.13), we have

ℎ̂+(𝜈) :=
𝜎𝛾

2
√︃
𝜎2
𝐸
+ 𝜎2

𝛾

· exp

(
−
𝜈2 + (2𝜔𝛾)2

8(𝜎2
𝐸
+ 𝜎2

𝛾 )

)
and ℎ̂−(𝜈) :=

1
2𝜋

exp

(
− 𝜈2

8𝜎2
𝐸

)
.

Corollary 3.3.3 (The transition part for Gaussian weights). For the Gaussian weight
𝛾(𝜔) = exp

(
− (𝛽𝜔+1)

2

2

)
with 𝜔𝛾 = 𝜎𝐸 = 𝜎𝛾 = 1/𝛽, the discriminant H𝛽 is described

in the time domain by

ℎ+(𝑡) =
1
𝛽

e−1/4 exp(−4𝑡2

𝛽2 ) and ℎ−(𝑡) =
1
𝜋𝛽

exp(−2𝑡2

𝛽2 ) such that ∥ℎ−∥1, ∥ℎ+∥1 ≤ 1.

(3.24)

Corollary 3.3.4 (The transition part for Metropolis weights). For 𝜎𝐸 = 1
𝛽
, the

Metropolis-like weight 𝛾𝑀 (𝜔) = exp
(
−𝛽max

(
𝜔 + 1

2𝛽 , 0
))

yields H𝛽 described in
the time domain by the same ℎ−(𝑡) as in Eq. (3.24) and by

ℎ+(𝑡) =
e−1/8

𝛽

e−2𝑡2/𝛽2

4
√

2𝜋( 𝑡2
𝛽2 + 1

16 )
such that ∥ℎ+(𝑡)∥1 ≤ 1.

Proof. Setting 𝑔(𝑥) = 1√
2𝜋𝜎𝛾 (𝑥)

on the interval
(
𝛽𝜎2

𝐸

2 ,∞
)
, yields in (3.31)

ℎ+(𝑡) =
∫ ∞

𝛽𝜎2
𝐸

2

𝑔(𝑥)𝜎𝛾 (𝑥) exp
(
−4𝑡2𝑥

𝛽
− 𝛽𝑥

4

)
d𝑥 =

1
√

2𝜋

∫ ∞

𝛽𝜎2
𝐸

2

exp
(
−4𝑡2𝑥

𝛽
− 𝛽𝑥

4

)
d𝑥

=
1
𝛽

e−2𝜎2
𝐸
𝑡2−𝛽2𝜎2

𝐸
/8

4
√

2𝜋( 𝑡2
𝛽2 + 1

16 )
.

Set 𝜎𝐸 = 1/𝛽 to conclude the calculation. To obtain the ℓ1-norm bound, integrate
e−1/8

4
√

2𝜋

∫ ∞
−∞

e−2𝑥2

𝑥2+1/16d𝑥 =
√︁
𝜋
2 erfc(1/

√
8) < 0.78. ■

The 𝑵-term

We instantiate the time-domain presentation of the 𝑵 term (adapted from the
calculation for the coherent term 𝑩 (Corollary 3.5.2)).

Corollary 3.5.4 (Explicit time-domain functions). In the time domain, the 𝑵 term
corresponding to coefficients constructed in (3.15) can be written as

𝑵 =
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑓−(𝑡−)e−i𝑯𝑡−

(∫ ∞

−∞
𝑓+(𝑡+)𝑨𝑎†(𝑡+)𝑨𝑎 (−𝑡+)d𝑡+

)
ei𝑯𝑡−d𝑡−
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for 𝑓+(𝑡) as in (3.27) and

𝑓−(𝑡) =
2𝜎𝐸
𝜋𝛽

©­­«
1

cosh
(

2𝜋𝑡
𝛽

) ∗𝑡 e−2𝜎2
𝐸
𝑡2
ª®®¬,

depending on parameters 𝜎𝛾, 𝜎𝐸 , 𝑔(𝑥), 𝛽.

Proof. Follow the proof of Corollary 3.5.2, but drop the sinh(−𝛽𝜈/4)/(2i) term
in (3.30). The convolution then gives

1
√

2𝜋

∫ ∞

−∞
exp

(
− 𝜈2

8𝜎2
𝐸

)
ei𝜈𝑡d𝜈 = 2𝜎𝐸e−2𝜎2

𝐸
𝑡2 .

■

We instantiate similar results with minor modifications without replicating the proofs.

Corollary 3.3.5 (𝑵 term for Gaussian weights). For each 𝛽, the Gaussian weight
𝛾(𝜔) = exp

(
− (𝛽𝜔+1)

2

2

)
with 𝜎𝐸 = 𝜎𝛾 = 𝜔𝛾 = 1

𝛽
corresponds to the discriminant

where

𝑵 =
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑛1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑛2(𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′

)
ei𝛽𝑯𝑡d𝑡,

where

𝑛1(𝑡) :=
1
4
· 2
√
𝜋

(
1

cosh(2𝜋𝑡) ∗𝑡 exp
(
−2𝑡2

))
such that ∥𝑛1∥1 =

𝜋

4
√

2
< 1

(3.25)

𝑛2(𝑡) := 4 · 2 · 1
2𝜋

√︂
1
𝜋

exp
(
−4𝑡2 − 2i𝑡

)
= 8 · 𝑏2(𝑡) such that ∥𝑛2∥1 <

1
2

with 𝑏2 as in (3.20).

Proof. As both functions are positive 1
cosh(2𝜋𝑡) , exp(−2𝑡2) > 0, we have that

∥𝑛1(𝑡)∥1 =
∫ ∞
−∞ 𝑛1(𝑡)d𝑡 =

√
𝜋

2

(∫ ∞
−∞

1
cosh(2𝜋𝑡)d𝑡

)
·
(∫ ∞
−∞ exp(−2𝑡2)d𝑡

)
, where the sec-

ond equality follows from the fact that the integral of a convolution is the product of
the integrals of the convolved functions due to Fubini’s theorem. The first integral
evaluates to 1/2 and the second evaluates to

√︁
𝜋/2 due to Fact 3.2.1, therefore
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∥𝑛1(𝑡)∥1 = 𝜋/
√

32. The second bound follows from the analogous bound on 𝑏2

in Corollary 3.3.1. The factor of 4 and 1
4 is redistributed to ensure both 𝑛1 and

𝑛2 are normalized. Note the overall extra factor of 2 in Corollary 3.5.4 compared
with Corollary 3.5.2. ■

Corollary 3.3.6 (𝑵 term for Metropolis weights). If 𝜎𝐸 = 1
𝛽
, then the Metropolis-like

weight 𝛾𝑀 (𝜔) = exp
(
−𝛽max

(
𝜔 + 1

2𝛽 , 0
))

corresponds to the discriminant where
𝑵𝑀 satisfies

𝑵𝑀 − 𝑵𝑀,𝜂



 ≤∑︁
𝑎∈𝐴



𝑨𝑎†𝑨𝑎

 min
(
𝜂𝛽∥𝑯∥
√

2𝜋
,O

(
(𝜂𝛽∥𝑯∥)3

))
,

where

𝑵𝑀,𝜂 :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑛1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑛
𝑀,𝜂

2 (𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′ + 1
16
√

2𝜋
𝑨𝑎†𝑨𝑎

)
ei𝛽𝑯𝑡d𝑡,

with 𝑛1(𝑡) as in (3.25), and 𝑛𝑀,𝜂2 = 𝑏
𝑀,𝜂

2 as in (3.23).

3.6 Appendix:Calculating the coherent term for the Metropolis-like weights
In this section, we dedicate to calculating the weights corresponding to the Metropolis-
like weight in order to arrive at an expression that enables efficient implementation
via LCU.

Proposition 3.6.1 (Metropolis-like weights). Setting 𝑔(𝑥) = 1√
2𝜋𝜎𝛾 (𝑥)

on the interval(
𝛽𝜎2

𝐸

2 , 𝑠
2

𝛽

)
, yields in (3.27)

𝑓
(𝑠)
+ (𝑡) =

1
𝛽

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡 − e−4 𝑡2

𝛽2 𝑠
2−2i 𝑡

𝛽
𝑠2

2
√

2𝜋 𝑡
𝛽
(2 𝑡

𝛽
+ i)

. (3.32)

In particular, in the 𝑠→∞ limit, the second term vanishes, but we can only interpret
the result as a distribution

𝑓
(∞)
+ (𝑡) = lim

𝜂→0+
1( |𝑡 | ≥ 𝜂) 1

𝛽

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡

2
√

2𝜋 𝑡
𝛽
(2 𝑡

𝛽
+ i)
+

√︂
𝜋

8
𝛿(𝑡),

which again decays rapidly; we would need to pay attention to the 𝑡 ∼ 0 regime due
to the delta function 𝛿(𝑡) and 1/𝑡 dependence.
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Proof. We substitute 𝑔(𝑥) = 1√
2𝜋𝜎𝛾 (𝑥)

in (3.27), which due to 𝜎2
𝐸
+ 𝜎2

𝛾 =
2𝜔𝛾

𝛽
gives

𝑓
(𝑠)
+ (𝑡) :=

∫ ∞

𝛽𝜎2
𝐸

2

1
√

2𝜋𝜎𝛾 (𝑥)
𝜎𝛾 (𝑥) exp

(
−4𝑡2𝑥

𝛽
− 2i𝑡𝑥

)
d𝑥 =

1
√

2𝜋

∫ 𝑠2
𝛽

𝛽𝜎2
𝐸

2

exp
(
−4𝑡2𝑥

𝛽
− 2i𝑡𝑥

)
d𝑥

=
1
𝛽

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡 − e−4 𝑡2

𝛽2 𝑠
2−2i 𝑡

𝛽
𝑠2

2
√

2𝜋 𝑡
𝛽
(2 𝑡

𝛽
+ i)

.

In order to properly understand the 𝑠→∞ limit we also need to analyze (3.29):

𝑓
(𝑠)
+ (𝜈) =

∫ ∞

𝛽𝜎2
𝐸

2

𝑔(𝑥)𝜎𝛾

2
√︃
𝜎2
𝐸
+ 𝜎2

𝛾

exp
(
− (𝜈 + 2𝑥)2

16𝑥/𝛽

)
d𝑥 =

∫ 𝑠2
𝛽

𝛽𝜎2
𝐸

2

√︂
𝛽

16𝜋𝑥
exp

(
− (𝜈 + 2𝑥)2

16𝑥/𝛽

)
d𝑥

(3.33)

=
1
4

(
e−

𝛽𝜈

2 erf
(

𝜈
√

8𝜎𝐸
− 𝛽𝜎𝐸√

8

)
− erf

(
𝜈
√

8𝜎𝐸
+ 𝛽𝜎𝐸√

8

)
+ e−

𝛽𝜈

2 erf
(
𝑠

2
− 𝛽𝜈

4𝑠

)
+ erf

(
𝑠

2
+ 𝛽𝜈

4𝑠

))
,

which in the 𝑠→∞ limit becomes

𝑓
(∞)
+ (𝜈) = 1

4

(
erfc

(
𝛽𝜎𝐸√

8
+ 𝜈
√

8𝜎𝐸

)
+ e−

𝛽𝜈

2 erfc
(
𝛽𝜎𝐸√

8
− 𝜈
√

8𝜎𝐸

))
. (3.34)

In order to compute 𝑓
(∞)
+ (𝜈), let us consider the function 𝑓

(∞)
+,0 (𝜈) := 𝑓

(∞)
+ (𝜈) −

1−sgn(𝜈)
4 , where

sgn(𝜈) =


0 if 𝜈 = 0

sgn(𝜈) = 𝜈/|𝜈 | if 𝜈 ≠ 0
.

Since 𝑓 (∞)+,0 (𝜈) ∈ ℓ1, its inverse Fourier Transform exists, and it can be computed as

𝑓
(∞)
+,0 (𝑡) =

1
𝛽

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡+2i 𝑡

𝛽
−1

2
√

2𝜋 𝑡
𝛽
(2 𝑡

𝛽
+i)

after a change of variables by utilizing the (complex)

Laplace transform of the error function erf [146]. Moreover, since 𝑓 (∞)+,0 (𝜈) is smooth,
apart from 𝜈 = 0 where its value is the mean of its left and right side limits, standard
results in the theory of Fourier integrals (see, e.g., [189, Chapter 18.3.1.d]) imply

𝑓
(∞)
+,0 (𝜈) = lim

𝜂→0+

1
√

2𝜋

∫ 1
𝜂

− 1
𝜂

𝑓
(∞)
+,0 (𝜈)𝑒

−i𝜈𝑡d𝑡 = lim
𝜂→0+

1
√

2𝜋

∫ 1
𝜂

− 1
𝜂

1
𝛽

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡 + 2i 𝑡

𝛽
− 1

2
√

2𝜋 𝑡
𝛽
(2 𝑡

𝛽
+ i)

d𝑡.
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On the other hand, it is a standard calculation that

1
4

sgn(𝜈) = lim
𝜂→0+

1
8𝜋

∫ ∞

𝜂

sin(𝜈𝑡)
𝑡

d𝑡 = lim
𝜂→0+

1
√

2𝜋

(∫ −𝜂

− 1
𝜂

i
√

8𝜋𝑡
e−i𝜈𝑡d𝑡 +

∫ 1
𝜂

𝜂

i
√

8𝜋𝑡
e−i𝜈𝑡d𝑡

)
.

Since 𝑓 (∞)+,0 (𝜈) is bounded in the neighborhood of 0 we can combine the above two
expression, yielding

𝑓
(∞)
+ (𝜈) − sgn(𝜈)

4
= 𝑓

(∞)
+,0 (𝜈) −

1
4

= lim
𝜂→0+

1
√

2𝜋

∫ ∞

−∞
1( |𝑡 | ∈ (𝜂, 1/𝜂))

(
𝑓
(∞)
+,0 (𝜈) −

i
√

8𝜋𝑡

)
𝑒−i𝜈𝑡d𝑡

= lim
𝜂→0+

1
√

2𝜋

∫ ∞

−∞
1( |𝑡 | ∈ (𝜂, 1/𝜂)) 1

𝛽

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡

2
√

2𝜋 𝑡
𝛽
(2 𝑡

𝛽
+ i)

e−i𝜈𝑡d𝑡

= lim
𝜂→0+

1
√

2𝜋

∫ ∞

−∞
1( |𝑡 | ≥ 𝜂) 1

𝛽

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡

2
√

2𝜋 𝑡
𝛽
(2 𝑡

𝛽
+ i)

e−i𝜈𝑡d𝑡,

where the last equality holds because of the rapid decay of the function for large
𝑡 values. We can conclude the proof by observing that the Fourier Transform of√︁
𝜋
8 𝛿(𝑡) is 1

4 . ■

In the 𝑠 = ∞ case, the diverging ℓ1 norm of 𝑓 (∞)+ (𝑡) raises the question: how big
could the norm



𝑩𝑀

 be? In the following we spell out the explicit form of 𝑩 by
removing the singularity at 𝑡 = 0, which shows that in fact



𝑩𝑀

 ≤ O(log(𝛽∥𝑯∥)),
because ∥ 𝑓−∥1 = O(1). Although the exact formula becomes cumbersome, it enables
us to find a very precise approximation by a much simpler formula in Corollary 3.3.2.

Proposition 3.6.2 (Exact form of Metropolis coherent term). The coherent term 𝑩𝑀

corresponding to the quasi-Metropolis weight 𝛾 (∞)𝜎𝐸
(𝜔) in (3.16) can be written as

𝑩𝑀 =
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑓−(𝑡−)e−i𝑯𝑡−𝑶𝑀

𝑎 ei𝑯𝑡−d𝑡−,
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where 𝑓−(𝑡−) is defined in (3.28), and for arbitrary 𝜃 > 0 we have

𝑶𝑀
𝑎 =

∫ ∞

−∞
ei𝑯𝑡𝑨𝑎†

©­­«
e−2𝜎2

𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡 + 1( |𝑡 | ≤ 𝜃)i

(
2 𝑡
𝛽
+ i

)
√

8𝜋𝑡 (2 𝑡
𝛽
+ i)

e−2i𝑯𝑡 − 1( |𝑡 | ≤ 𝜃)𝑯 sinc(2𝑯𝑡)
√

2𝜋

ª®®¬𝑨𝑎ei𝑯𝑡d𝑡

+ 1
√

8𝜋

∫ 𝜃

−𝜃
cos(𝑯𝑡)𝑨𝑎† cos(2𝑯𝑡)𝑨𝑎𝑯 sinc(𝑯𝑡) + sinc(𝑯𝑡)𝑯𝑨𝑎† cos(2𝑯𝑡)𝑨𝑎 cos(𝑯𝑡)d𝑡

+
√︂
𝜋

8
𝑨𝑎†𝑨𝑎 .

Proof. By Corollary 3.5.1-Proposition 3.6.1 we know that

𝑶𝑀
𝑎 = lim

𝜂→0+

∫ ∞

−∞

(
1( |𝑡 | ≥ 𝜂) e−2𝜎2

𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡

√
8𝜋𝑡 (2 𝑡

𝛽
+ i)
+

√︂
𝜋

8
𝛿(𝑡)

)
𝑨𝑎†(𝑡)𝑨𝑎 (−𝑡)𝑑𝑡.

We decompose the above integral in order to remove its singularity at 𝑡 = 0. We start
with the decomposition

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡

√
8𝜋𝑡 (2 𝑡

𝛽
+ i)

=

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡 + 1( |𝑡 | ≤ 𝜃)i

(
2 𝑡
𝛽
+ i

)
√

8𝜋𝑡 (2 𝑡
𝛽
+ i)

− 1( |𝑡 | ≤ 𝜃) i
√

8𝜋𝑡
,

implying that

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡

√
8𝜋𝑡 (2 𝑡

𝛽
+ i)

𝑨𝑎†(𝑡)𝑨𝑎 (−𝑡)

= ei𝑯𝑡𝑨𝑎† ·
(

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡

√
8𝜋𝑡 (2 𝑡

𝛽
+ i)

e−2i𝑯𝑡

)
𝑨𝑎ei𝑯𝑡

= ei𝑯𝑡𝑨𝑎† ·
©­­«

e−2𝜎2
𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡 + 1( |𝑡 | ≤ 𝜃)i

(
2 𝑡
𝛽
+ i

)
√

8𝜋𝑡 (2 𝑡
𝛽
+ i)

− 1( |𝑡 | ≤ 𝜃) i
√

8𝜋𝑡

ª®®¬e−2i𝑯𝑡𝑨𝑎ei𝑯𝑡 ,

where

i
√

8𝜋𝑡
e−2i𝑯𝑡 =

i
√

8𝜋𝑡
cos(2𝑯𝑡) + 1

√
8𝜋𝑡

sin(2𝑯𝑡)︸    ︷︷    ︸
2𝑯𝑡 sinc(2𝑯𝑡)

= i
cos(2𝑯𝑡)
√

8𝜋𝑡
+ 𝑯 sinc(2𝑯𝑡)

√
2𝜋

.
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Finally, observe that due to parity reasons, we have∫ ∞

−∞
1( |𝑡 | ≥ 𝜂)ei𝑯𝑡𝑨𝑎†1( |𝑡 | ≤ 𝜃) i

√
8𝜋

cos(2𝑯𝑡)
𝑡

𝑨𝑎ei𝑯𝑡d𝑡

=
−1
√

8𝜋

∫ ∞

−∞
1(𝜂 ≤ |𝑡 | ≤ 𝜃)

(
cos(𝑯𝑡)𝑨𝑎† cos(2𝑯𝑡)

𝑡
𝑨𝑎 sin(𝑯𝑡) + sin(𝑯𝑡)𝑨𝑎† cos(2𝑯𝑡)

𝑡
𝑨𝑎 cos(𝑯𝑡)

)
d𝑡

=
−1
√

8𝜋

∫ ∞

−∞
1(𝜂 ≤ |𝑡 | ≤ 𝜃)(

cos(𝑯𝑡)𝑨𝑎† cos(2𝑯𝑡)𝑨𝑎𝑯 sinc(𝑯𝑡) + sinc(𝑯𝑡)𝑯𝑨𝑎† cos(2𝑯𝑡)𝑨𝑎 cos(𝑯𝑡)
)
d𝑡.

Since in the above provided decomposition, every (matrix) function is bounded in
the neighborhood of 0, we can obtain the 𝜂 → 0+ limit by simply removing the
indicator 1( |𝑡 | ≥ 𝜂).

lim
𝜂→0+

∫ ∞

−∞
1( |𝑡 | ≥ 𝜂) e−2𝜎2

𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡

√
8𝜋𝑡 (2 𝑡

𝛽
+ i)

𝑨𝑎†(𝑡)𝑨𝑎 (−𝑡)𝑑𝑡

=

∫ ∞

−∞
ei𝑯𝑡𝑨𝑎† ·

©­­«
e−2𝜎2

𝐸
𝑡2−i𝛽𝜎2

𝐸
𝑡 + 1( |𝑡 | ≤ 𝜃)i

(
2 𝑡
𝛽
+ i

)
√

8𝜋𝑡 (2 𝑡
𝛽
+ i)

e−2i𝑯𝑡 − 1( |𝑡 | ≤ 𝜃)𝑯 sinc(2𝑯𝑡)
√

2𝜋

ª®®¬𝑨𝑎ei𝑯𝑡d𝑡

+ 1
√

8𝜋

∫ 𝜃

−𝜃
cos(𝑯𝑡)𝑨𝑎† cos(2𝑯𝑡)𝑨𝑎𝑯 sinc(𝑯𝑡) + sinc(𝑯𝑡)𝑯𝑨𝑎† cos(2𝑯𝑡)𝑨𝑎 cos(𝑯𝑡)d𝑡.

We conclude by noting that
∫ ∞
−∞

√︁
𝜋
8 𝛿(𝑡)𝑨

𝑎†(𝑡)𝑨𝑎 (−𝑡)𝑑𝑡 =
√︁
𝜋
8 𝑨

𝑎†𝑨𝑎. ■

Note that this exact formula could be directly and efficiently implemented using
QSVT. However, the gains are minimal, as it would only reduce subnormalization
from O(log(𝛽∥𝐻∥/𝜖)) (this being the ℓ1 norm required to achieve 𝜖 precision in
Corollary 3.3.2) to O(log(𝛽∥𝐻∥)) (the ℓ1 norm of the weight function corresponding
to the natural choice 𝜃 = 1/𝛽∥𝑯∥ in Proposition 3.6.2).

More interestingly, this exact formula seems also to hold in the infinite-dimensional
case, giving rise to exact detailed balance in the infinite-dimensional version as well.
We leave it for future work to verify that the construction and its analysis can indeed
be generalized to infinite dimensional systems.
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Moreover, the above result actually also implies that the Lindbladian corresponding
to (3.32) also well-approximates its 𝑠 → ∞ limit, i.e., the above Metropolis-like
Lindbladian. The argument goes as follows: first, “round” the Hamiltonian 𝑯

to discretize its spectrum at some finite resolution ≪ 1/𝛽. Due to the form of
(3.32), the resulting perturbation of the Lindbladian is bounded. Then, take the
𝑠 → ∞ limit. Since (3.33) is exponentially close to its limit (3.34) and there is a
limited number of Bohr frequencies due to rounding, the resulting perturbation of
the Lindbladian is once again bounded. Finally, undo the rounding, which again
causes a bounded perturbation due to the exact form of Metropolis coherent term
(Proposition 3.6.2). Carefully executing these bounds in the 𝜎𝐸 = 𝛽 case should
show that for 𝑠 = Θ((𝛽∥𝐻∥ + log(1/𝜖) + 1)2) the resulting Lindbladian is 𝜖-close to
its 𝑠 = ∞ limit.

Now we show how to approximate the exact Metropolis Lindbladian in a different
efficient way.

Corollary 3.3.2 (Approximate coherent term for the Metropolis-like weight). If
𝜎𝐸 = 1

𝛽
, then the coherent term 𝑩𝑀 corresponding to the Metropolis-like weight

𝛾𝑀 (𝜔) = exp
(
−𝛽max

(
𝜔 + 1

2𝛽 , 0
))

satisfies



𝑩𝑀 − 𝑩𝑀,𝜂


 ≤ 




∑︁

𝑎∈𝐴
𝑨𝑎†𝑨𝑎






 min
(
𝜂𝛽∥𝑯∥
√

2𝜋
,O

(
(𝜂𝛽∥𝑯∥)3

))
, (3.21)

where

𝑩𝑀,𝜂 :=
∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏1(𝑡)e−i𝛽𝑯𝑡

(∫ ∞

−∞
𝑏
𝑀,𝜂

2 (𝑡′)𝑨𝑎†(𝛽𝑡′)𝑨𝑎 (−𝛽𝑡′)d𝑡′ + 1
16
√

2𝜋
𝑨𝑎†𝑨𝑎

)
ei𝛽𝑯𝑡d𝑡,

(3.22)

with 𝑏1(𝑡) as in (3.19), and

𝑏
𝑀,𝜂

2 (𝑡) :=
1

4
√

2𝜋
exp

(
−2𝑡2 − i𝑡

)
+ 1( |𝑡 | ≤ 𝜂)i(2𝑡 + i)
𝑡 (2𝑡 + i)

such that ∥𝑏𝑀,𝜂2 ∥1 <
1
5
+ 1

2
√

2𝜋
ln(1/𝜂). (3.23)

Further, if
[∑

𝑎∈𝐴 𝑨𝑎†𝑨𝑎,𝑯
]
= 0, we can drop the second term in (3.22) after the

integral in 𝑡′ since
∫ ∞
−∞ 𝑏1(𝑡) = 0.

Proof. First, let us establish the norm bound (3.23). Observe that

𝑏
𝑀,𝜂

2 (𝑡) = 𝑏𝑀,12 (𝑡) − 1
4
√

2𝜋
1(𝜂 < |𝑡 | ≤ 1) i

𝑡
.
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Using the above identity and applying a triangle inequality and then Hölder’s
inequality gives

∥𝑏𝑀,𝜂2 ∥1 ≤


(1 + 4𝑡2)−1



2




(1 + 4𝑡2)𝑏𝑀,12





2
+ 1

4
√

2𝜋





1(𝜂 < |𝑡 | ≤ 1) i
𝑡






1
.

To obtain (3.23), use that
∫ 1
𝜂

1
𝑡
d𝑡 = ln(1/𝜂),

∫ ∞
−∞

1
(1+4𝑡2)2 d𝑡 = 𝜋

4 ,
∫ ∞

1

�� exp(−2𝑡2) (2𝑡−i)
𝑡

��2d𝑡 =

e−4 −
√
𝜋 erfc(2), and a direct computation of

∫ 1
−1

��� exp(−2𝑡2−i𝑡) (2𝑡−i)+i(1+4𝑡2)
𝑡

���2 < 16.

Next, setting 𝜃 = 𝜂𝛽 in Proposition 3.6.2 and scaling the variables 𝑡, 𝑡′ by a factor of
𝛽 reveals that

𝑩𝑀 − 𝑩𝑀,𝜂 =
1

2
√

2𝜋2

∑︁
𝑎∈𝐴

∫ ∞

−∞
𝑏1(𝑡)e−i𝛽𝑯𝑡𝑸𝑎ei𝛽𝑯𝑡d𝑡, (3.35)

where

𝑸𝑎 =
1
2

∫ 𝜂

−𝜂
cos(𝛽𝑯𝑡′)𝑨𝑎† cos(2𝛽𝑯𝑡′)𝑨𝑎𝛽𝑯 sinc(𝛽𝑯𝑡′)

+ sinc(𝛽𝑯𝑡′)𝛽𝑯𝑨𝑎† cos(2𝛽𝑯𝑡′)𝑨𝑎 cos(𝛽𝑯𝑡′)d𝑡′

−
∫ 𝜂

−𝜂
ei𝛽𝑯𝑡′𝑨𝑎†

(
𝛽𝑯 sinc(2𝛽𝑯𝑡′)

)
𝑨𝑎ei𝛽𝑯𝑡′d𝑡′.

We can decompose in the second term ei𝛽𝑯𝑡′ = cos(𝛽𝑯𝑡′) + i sin(𝛽𝑯𝑡′). Due to
parity reasons, we can see that the second term can be replaced by

−
∫ 𝜂

−𝜂
cos(𝛽𝑯𝑡′)𝑨𝑎†

(
𝛽𝑯 sinc(2𝛽𝑯𝑡′)

)
𝑨𝑎 cos(𝛽𝑯𝑡′) − sin(𝛽𝑯𝑡′)𝑨𝑎†

(
𝛽𝑯 sinc(2𝛽𝑯𝑡′)

)
𝑨𝑎 sin(𝛽𝑯𝑡′)d𝑡′.

Now, let us define

𝜇𝑎 (𝑿) := cos(𝑿)𝑨𝑎† cos(2𝑿)𝑨𝑎𝑿 sinc(𝑿) + sinc(𝑿)𝑿𝑨𝑎† cos(2𝑿)𝑨𝑎 cos(𝑿)
− 2 cos(𝑿)𝑨𝑎†

(
𝑿 sinc(2𝑿)

)
𝑨𝑎 cos(𝑿) + 2 sin(𝑿)𝑨𝑎†

(
𝑿 sinc(2𝑿)

)
𝑨𝑎 sin(𝑿),

so that

𝑸𝑎 =

∫ 𝜂

−𝜂

𝜇𝑎 (𝛽𝑯𝑡′)
2𝑡′

d𝑡′.

If 𝑿 is Hermitian, by the triangle inequality, we can see that ∥𝜇𝑎 (𝑿)∥ ≤ 6∥𝑨𝑎∥2∥𝑿∥.
Moreover, from its definition, we can see that 𝜇𝑎 (𝑿) is an odd analytic entire
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function, and its derivative is 0 at 𝑿 = 0. From this it directly follows that
𝜇𝑎 (𝑿) = O

(
∥𝑨𝑎∥2∥𝑿∥3

)
for every Hermitian 𝑿. Due to the triangle inequality,

∥𝑸𝑎∥ ≤
∫ 𝜂

−𝜂

∥𝜇𝑎 (𝛽𝑯𝑡′)∥
2|𝑡′| d𝑡′ ≤

∫ 𝜂

−𝜂
∥𝑨𝑎∥2∥𝛽𝑯∥min

(
6
2
,O

(
∥𝛽𝑯𝑡′∥2

))
d𝑡′

= ∥𝑨𝑎∥2 min
(
6𝜂𝛽∥𝑯∥,O

(
(𝜂𝛽∥𝑯∥)3

))
.

Finally, we can prove (3.21) for individual jumps by combining the above bound
and the inequality ∥𝑏1∥1 ≤ 1 within (3.35). To obtain the bound in terms of the
norm-of-sum ∥∑𝑎 𝑨

𝑎†𝑨𝑎∥, note that for any matrices 𝑿,𝒀 , 𝒁, we have

∥
∑︁
𝑎

𝑿𝑨𝑎†𝒀𝑨𝑎𝒁∥ ≤ ∥𝑿∥ · ∥
∑︁
𝑎

𝑨𝑎† ⊗ ⟨𝑎 |∥ · ∥𝒀 ⊗ 𝑰∥ · ∥
∑︁
𝑎

𝑨𝑎 ⊗ |𝑎⟩∥ · ∥𝒁∥

= ∥𝑿∥∥𝒀 ∥∥𝒁∥ · ∥
∑︁
𝑎

𝑨𝑎†𝑨𝑎∥.

And rewrite 𝜇𝑎 (𝑿) as a linear combination of terms each bounded byO(∥∑𝑎 𝑨
𝑎†𝑨𝑎∥∥𝑿∥3)

by canceling out the linear O(𝑿) terms. ■

3.7 Appendix:The discriminant gap and area law
The fact that the discriminant H𝛽 can be regarded as frustration-free, spatially
local Hamiltonian (Proposition 3.1.1) has direct implications on the “locality” of its
zero-eigenstate, the purified Gibbs state. In particular, existing analytic techniques
for studying gapped phases immediately lead to explicit low-depth circuits assuming
a large discriminant gap for H𝛽. Elegantly, lowering the temperature can now
be interpreted as the Nature-given adiabatic paths parameterized by the inverse
temperature 𝛽 (known as quantum simulated annealing).

The particularly helpful tool is quasi-adiabatic evolution [85], a version of adiabatic
evolution that exploits spatial locality.

Lemma 3.7.1 (Quasi-adiabatic evolution [15, Proposition 2.4]). Consider a one-
parameter family of Hamiltonians

𝑯(𝑠) for each 𝑠 ∈ [0, 1] with minimal gap Δ.

Then, the family of ground-state projectors can be generated by a time-dependent
Hamiltonian

𝑷′(𝑠) = i[𝑾 (𝑠), 𝑷(𝑠)] where

𝑾 (𝑠) :=
∫ ∞

−∞
d𝑡 𝑤(𝑡)

∫ 𝑡

0
𝑑𝑢 ei𝑢𝑯(𝑠)𝑯′(𝑠)e−i𝑢𝑯(𝑠) for each 𝑠 ∈ [0, 1]
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for any weight function 𝑤(𝑡) satisfying∫ ∞

−∞
𝑤(𝑡)d𝑡 = 1 and 𝑤̃(𝜔) = 0 if |𝜔 | ≥ |Δ|.

For geometrically local Hamiltonian on 𝑑-dimention lattice with single-site jumps
∥𝑨𝑎∥ = 1 (note that the natural normalization here is to make the strength extensive
∥∑𝑎∈𝐴 𝑨𝑎†𝑨𝑎∥ ∝ 𝑛), we can plug the discriminant into the above by

𝑯(𝑠) → H𝑠𝛽 and Δ→ min
𝑠
𝜆𝑔𝑎𝑝 (H𝑠𝛽).

Strictly speaking, we are interested in the top eigenvector instead of the ground state
due to its Lindbladian origin (Lindbladian spectrum is always nonpositive), but this
is also handled by quasi-adiabatic continuation. We obtain a unitary circuit preparing
the purified Gibbs state driven by the following time-dependent Hamiltonian:

𝑾 (𝑠) =
∑︁
𝑎

∫ ∞

−∞
d𝑡 𝑤(𝑡)

∫ 𝑡

0
𝑑𝑢 ei𝑢H𝑠𝛽H

𝑎′

𝑠𝛽e
−i𝑢H𝑠𝛽︸                                             ︷︷                                             ︸

=:𝑾𝑎 (𝑠)

. (3.36)

Algorithmically, the above should be considered an alternative to modernized adia-
batic algorithms based on amplitude amplification [40, Appedix G]. The Heisenberg
evolution is particularly powerful in the case of local Hamiltonians as it manifestly
gives a quasi-local unitary circuit. Based on existing tools, we quickly instantiate
several notations of locality. First, the unitary preserves spatially local operators.

Proposition 3.7.1 (Quasi-local unitary [15]). Consider the one-parameter family of
unitaries generated by the time-dependent Hermitian matrix 𝑾 (𝑠) as in (3.36)

𝑽′(𝑠) = i𝑾 (𝑠)𝑽 (𝑠) for each 𝑠 ∈ [0, 1] .

Then, the unitary satisfies a Lieb-Robinson bound with almost exponential decay

∥ [𝑽 (𝑠)𝑶1𝑽
†(𝑠),𝑶2] ∥ ≤ O

(
exp(− 𝑑

Poly𝐷 (𝛽) ln(𝑑2)
)
)

where 𝑑 = 𝑑 (𝑶1,𝑶2).

Second, the unitary generates limited entanglement. Since the unitary is generated
by (quasi)-local operators, integrating the entangling rate from 0→ 𝛽 13 gives an
area law of entanglement [171] for purified Gibbs state.

13The infinite temperature Gibbs state is the maximally entangled state. It is a tensor product of
bell pairs across the two copies and has trivially entanglement across regions.
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Corollary 3.7.1 (Thermal area-law from entangling rates (similar argument to [171])).
The purified Gibbs state satisfies an entanglement area-law

(the entanglement entropy for any region 𝑅) ≤
Poly𝐷 (𝛽)

Δ
· |𝜕𝑅 |.

The above thermal area-law is weaker than existing bounds14 and should be thought
of as a sanity check. However, what’s new is the explicitly parameterized low-depth
unitary circuit (which is not a consequence of the area law). The unitary 𝑽 (1)
corresponding to (3.36) for a 𝐷-dimensional lattice Hamiltonian can be decomposed
into a

depth
Poly𝐷 (𝛽)

Δ
· Poly log(𝑛/𝜖) circuit of 2-qubit gates

up to 𝜖-error in the operator norm using the HHKL algorithm [80]. The discriminant
gap Δ is expected to be independent of the system size in the rapid mixing regime
(under the normalization ∥𝑨𝑎∥ = 1). To obtain gapped ground states, we could scale
the inverse temperature with the Hamiltonian gap Δ(𝑯)(not to confuse with the
discriminant gap Δ)

𝛽 = O
(
Δ(𝑯) log(𝑛/𝜖)

)
.

Of course, there might be phase transitions at low temperatures where the discriminant
gap may close. The logarithmic dependence on the system size marks a technical
difference from the area law setting. Nevertheless, the explicit circuit appears novel
and could potentially lead to new numerical ansatz for low-energy states.

The Lindbladian case
Of course, we may apply the same line of thought to Lindbladians, assuming
the quasi-local Lindbladian mixes in logarithmic time. However, there are subtle
differences. The spectral gap of the parent Hamiltonian is qualitatively the same as
the mixing time of our Lindbladian (which has a vanishing anti-Hermitian part)

ln(2)
𝜆𝑔𝑎𝑝 (H)

≤ 𝑡𝑚𝑖𝑥 (L) ≤
ln(2∥𝝆−1/2∥)
𝜆𝑔𝑎𝑝 (H)

.

The conversion overhead ln(2∥𝝆−1/2∥) = O(𝛽∥𝑯∥) could scale with the system
size in general. However, to drop this O(𝛽∥𝑯∥) factor (i.e., proving rapid mixing

14Ref. [104] states that the mutual information between regions satisfies 𝐼 (𝑅 : 𝑅′) ≤ O(𝛽2/3) |𝜕𝑅 |
in any 𝐷-dimension lattice.
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such that the mixing time scaling logarithmically with the system size) amounts to
proving a more stringent quantum log-Sobelov inequality, which has been highly
nontrivial [31]. Even if we assume rapid mixing, to get a low-depth circuit for
the Gibbs state, we still need an efficient algorithm to implement the Lindbladian
evolution that parallelizes the Lindblad operators. However, the HHKL algorithm [80]
achieving this parallelization for local Hamiltonians made critical use of reversing
time evolutions, which does not obviously apply to the dissipative setting.

As a remedy, one may consider trotterizing into quasi-local brickwork nonunitary
circuits, giving a discrete-time Quantum Markov chain15

eL𝜃 → N :=
∏
𝑔

eL𝑔𝜃 where L =
∑︁
𝑔

L𝑔

such that each L𝑔 is a sum of quasi-local, nearly commuting block.

That is, we regroup the Lindbladian L =
∑
𝑎∈𝐴 L𝑎 into quasi-local blocks to exploit

the fact that nearly disjoint Lindbladians can be efficiently implemented in parallel
(after spatial truncation). However, the Trotter error from first-order product formulas
is extensive; thus, the discrete-time channel would not approximate the continuous-
time evolution in general, and the mixing time analysis might require quantitatively
different formalism. Nevertheless, the Gibbs state remains stationary

N[𝝆𝛽] = 𝝆𝛽,

and could potentially share similar mixing behavior as the continuous case in practice.

3.8 Appendix:Why Gaussians?
Our direct calculation confirms the correctness of our ansatz. But why does the filter
𝑓 (𝑡) need to be Gaussian (3.3)? In this section, we try to derive the Gaussians from
scratch, which can be viewed as an alternative view of detailed balance in the time
domain. While we try to make our arguments precise, we stop at physicists’ level of
rigor and do not attempt to extract a mathematical theorem.

Assume that the filter function is real on the real axis

𝑓 (𝑡) = 𝑓 (𝑡)∗ for each 𝑡 ∈ R

and complex analytic, independent of 𝛽, and that the jump operator 𝑨 = 𝑨† is
Hermitian (Let us focus on a single jump and drop the jump labels 𝑎 ∈ 𝐴.). The goal
is to solve for the viable choices of 𝑓 (𝑡).

15The observation that discretization can be helpful despite deviating from the continuum was
made in [61].
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We calculate the associated “transition” part (3.1) in the time domain

T † [·] =

∫ ∞

−∞
𝛾(𝜔) 𝑨̂(𝜔)†(·) 𝑨̂(𝜔)d𝜔

=

∫
𝛾(𝜔)ei𝜔(𝑡−𝑡′) 𝑓 (𝑡) 𝑓 (𝑡′)𝑨(𝑡) (·)𝑨(𝑡′)d𝜔d𝑡d𝑡′ (using 𝑓 (𝑡) = 𝑓 (𝑡)∗)

=
1
√

2𝜋

∫
𝑐(𝑡 − 𝑡′) 𝑓 (𝑡) 𝑓 (𝑡′)𝑨(𝑡) (·)𝑨(𝑡′)d𝑡d𝑡′.

The third line uses the inverse Fourier Transform

𝑐(𝑡) = 1
√

2𝜋

∫ ∞

−∞
ei𝜔𝑡𝛾(𝜔)d𝜔.

We may interpret 𝑐(𝑡) as a certain correlation function (hence the notation). Now,
note that conjugating the Gibbs state yields

Λ( 𝑨̂(𝜔)) =
∫ ∞

−∞
e−i𝜔𝑡 𝑓 (𝑡)ei𝑯(𝑡−i𝛽/2)𝑨e−i𝑯(𝑡−i𝛽/2)d𝑡

=

∫
e−i𝑠𝜔e𝛽𝜔/2𝑨(𝑠) 𝑓 (𝑠 + i𝛽/2)d𝑠 (setting 𝑠 := 𝑡 − i𝛽/2).

Then, we get that

Γ−1 ◦ T ◦ Γ[·]

=

∫ ∞

−∞
𝛾(𝜔)Λ( 𝑨̂(𝜔)) (·)Λ−1( 𝑨̂(𝜔)†)d𝜔

=

∫ ∞

−∞

∫ ∫
𝛾(𝜔)e−i𝜔(𝑠−𝑠′+i𝛽) 𝑓 (𝑠 + i𝛽/2) 𝑓 (𝑠′ − i𝛽/2)𝑨(𝑠) (·)𝑨(𝑠′)d𝑠d𝑠′d𝜔

(setting 𝑠′ := 𝑡′ + i𝛽)

=
1
√

2𝜋

∫ ∫
𝑐(𝑠′ − 𝑠 − i𝛽) 𝑓 (𝑠 + i𝛽/2) 𝑓 (𝑠′ − i𝛽/2)𝑨(𝑠) (·)𝑨(𝑠′)d𝑠d𝑠′

(continuing 𝑐(𝑧), 𝑧 ∈ C)

=
1
√

2𝜋

∫ ∫
𝑐(𝑡′ − 𝑡 − i𝛽) 𝑓 (𝑡 + i𝛽/2) 𝑓 (𝑡′ − i𝛽/2)𝑨(𝑡) (·)𝑨(𝑡′)d𝑡d𝑡′ .

(shifting integration)

The third line uses that (𝑨(𝑧))† = 𝑨(𝑧∗) for Heisenberg evolution at complex times.
The last line shifts the integrals by 𝑠→ 𝑡 and 𝑠′→ 𝑡′ (assuming the absence of poles
across the strip).

Comparing the coefficient of product integrals over 𝑨(𝑡) · 𝑨(𝑡′) for each 𝑡, 𝑡′, the
condition

𝑐(𝑡 − 𝑡′) 𝑓 (𝑡) 𝑓 (𝑡′) = 𝑐(𝑡′ − 𝑡 − i𝛽) 𝑓 (𝑡 + i𝛽/2) 𝑓 (𝑡′ − i𝛽/2) for each 𝑡, 𝑡′ ∈ R
ensures T † = Γ−1 ◦ T ◦ Γ.
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This condition can be rearranged as (whenever the denominators are non-zero)

𝑐(𝑡 − 𝑡′)
𝑐(𝑡′ − 𝑡 − i𝛽) =

𝑓 (𝑡 + i𝛽/2) 𝑓 (𝑡′ − i𝛽/2)
𝑓 (𝑡) 𝑓 (𝑡′) for each 𝑡, 𝑡′ ∈ R. (3.40)

Solving the functional equation
We proceed to solve (3.40) for a fixed 𝛽. Consider a change of variable 𝑡 ↔ 𝑡′

𝑐(𝑡′ − 𝑡)
𝑐(𝑡 − 𝑡′ − i𝛽) =

𝑓 (𝑡′ + i𝛽/2) 𝑓 (𝑡 − i𝛽/2)
𝑓 (𝑡′) 𝑓 (𝑡) . (3.41)

Then, divide the two equations and observe that the LHS depends only on the time
difference 𝑡 − 𝑡′

(3.40)/(3.41) : 𝑓1(𝑡 − 𝑡′) =
𝑓 (𝑡 + 𝑖𝛽/2)
𝑓 (𝑡 − i𝛽/2) ·

𝑓 (𝑡′ − i𝛽/2)
𝑓 (𝑡′ + i𝛽/2) := 𝑔(𝑡)/𝑔(𝑡′).

We must have that

𝑔(𝑡) = 𝑎e𝑏𝑡 for constants 𝑎, 𝑏 independent of 𝑡.

Thus,

𝑎e𝑏𝑡 𝑓 (𝑡 − i𝛽/2) = 𝑓 (𝑡 + i𝛽/2)
=⇒ 𝑎e𝑏𝑡e−𝑖𝛽/2·𝜕𝑡 𝑓 (𝑡) = e𝑖𝛽/2·𝜕𝑡 𝑓 (𝑡) (analyticity)

=⇒ e𝑎
′+𝑏′𝑡−𝑖𝛽·𝜕𝑡 𝑓 (𝑡) = 𝑓 (𝑡) (since [𝑡, 𝜕𝑡] ∝ 1).

The last equality regards 𝑡 and 𝜕𝑡 as linear operators acting on functions and use the
matrix-exponential fact that

[𝑿,𝒀] commutes with 𝑿,𝒀 implies e𝑿e𝒀 = e𝑿+𝒀+[𝑿,𝒀]/2.

We can get rid of the exponential by regarding it as an eigenproblem

e𝑿 |𝑣⟩ = |𝑣⟩ implies 𝑿 |𝑣⟩ = i2𝜋Z · |𝑣⟩.

This amounts to solving the differential equation

(𝑎1𝜕𝑡 + 𝑎2𝑡 + 𝑎3) 𝑓 (𝑡) = 0

which has the general solution being Gaussians (the constants may depend on the
fixed 𝛽.). Plugging back into (3.40), we can solve for 𝑐(𝑡), which would not be
unique as it allows for linear combinations.
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As a sanity check, we re-derive the constraints between the Gaussian parameters and
the temperature in the time picture. Let

𝑐(𝑥) = 𝑒−𝑖𝑎𝑥e−𝑥2/𝛿2
, a𝑛𝑑 𝑓 (𝑡) = 𝑒−𝑡2/𝜅2

,

where 𝑎, 𝛿, 𝜅 are all real parameters. Then, letting 𝑡 − 𝑡′ := 𝑥 we get:

log
[

𝑐(𝑡 − 𝑡′)
𝑐(𝑡′ − 𝑡 − i𝛽)

]
= log

[
𝑓 (𝑡 + i𝛽/2) 𝑓 (𝑡′ − i𝛽/2)

𝑓 (𝑡) 𝑓 (𝑡′)

]
=⇒ log

[
𝑒−𝑖𝑎𝑥e−𝑥2/𝛿2

𝑒𝑖𝑎(𝑥+i𝛽)e−(𝑥+i𝛽)2/𝛿2

]
= log

[
𝑒−(𝑡+i𝛽/2)

2/𝜅2e−(𝑡′−i𝛽/2)2/𝜅2

𝑒−𝑡2/𝜅2−𝑡′2/𝜅2

]
,

it suffices if 2𝑖𝑥( 𝛽
𝛿2 − 𝑎) + 𝑎𝛽 −

𝛽

𝛿2 =
−𝑖𝑥𝛽
𝜅2 +

𝛽2

2𝜅2 .

Equating the imaginary and real parts leads to two linearly dependent equations with
the same solution:

𝑎 = 𝛽( 1
𝛿2 +

1
2𝜅2 ).

Then identifying 𝑎 ≡ 𝜔𝛾, 𝛾−2 = 𝜎2
𝛾/2, and 𝜅−2 = 𝜎2

𝐸
leads to the same relationship

between 𝜔𝛾, 𝜎2
𝛾 , 𝜎

2
𝐸

and 𝛽 as in (3.4).

3.9 Appendix:Other notions of detailed balance
In addition to our KMS detailed balance condition (Definition 3.2.1), other quantum
detailed balance has also been studied (see, e.g., [8, 32, 69]). In this section, we will
discuss two variants of quantum detailed balance, and only the first one seems to
work.

Detailed balance with unitary drift
We constructed a Lindbladian satisfying the KMS detailed balance condition. How-
ever, much of our results remain to hold even if we add a suitable Hamiltonian term,
which might enable alternative constructions.

Definition 3.9.1 (KMS-detailed balance with unitary drift [69, Section 5]). We
say that the Lindbladian L satisfies 𝝆-detailed balance with unitary drift (in short
𝝆-DBU) with respect to a full-rank state 𝝆 if there exists a Hermitian operator 𝑸
such that

L† [·] − √𝝆−1L[√𝝆 · √𝝆]√𝝆−1
= i[𝑸, ·] . (3.45)

Or, in terms of discriminants,

A(𝝆,L) :=
D(𝝆,L) − D(𝝆,L)†

2
= −i𝝆1/4 [𝑸, 𝝆−1/4(·)𝝆−1/4]𝝆1/4.
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That is, we relax the KMS detailed balance condition (Definition 3.2.1) by allowing
the RHS to be any commutator term i[𝑸, ·] 16; this enlarges the family of possible
Lindbladian for the stationary state 𝝆.

Proposition 3.9.1 (Fixed point). If a Lindbladian L is 𝝆-detailed-balanced with
unitary drift, then

L[𝝆] = 0.

Proof. Evaluate the superoperator (3.45) for the identity 𝑰 and conclude√𝝆−1L[√𝝆𝑰√𝝆]√𝝆−1
=

L† [𝑰] = 0. ■

Intuitively, we can certainly add any Hermitian 𝑸 that commutes with 𝝆 without
changing the stationary state. In fact, this is the only possibility17.

Proposition 3.9.2 (Structure of 𝑸 [69, Lemma 28]). In the setting of Definition 3.9.1,
𝑸 must commute with 𝝆.

Indeed, we can solve for 𝑩 and 𝑸 by modifying the argument for Corollary 3.2.1

𝑸 = 𝑸†

⇕

(Λ − Λ−1) (𝑩) = i
2
(2I − (Λ + Λ−1)) (𝑹)

⇕∑︁
𝜈∈𝐵
(e

𝛽𝜈

2 − e
−𝛽𝜈

2 )𝑩𝜈 =
i
2

∑︁
𝜈∈𝐵
(2 − e−

𝛽𝜈

2 − e
𝛽𝜈

2 )𝑹𝜈

⇕∑︁
𝜈∈𝐵\{0}

𝑩𝜈 =
i
2

∑︁
𝜈∈𝐵\{0}

tanh
(
𝛽𝜈

4

)
𝑹𝜈 . (e

𝛽𝜈

2 − e
−𝛽𝜈

2 ≠ 0 ⇐⇒ 𝜈 ≠ 0)

Thus, allowing the term 𝑸 ≠ 0 merely amounts to dropping constraints on the 𝑩0

component (which is exactly the set of operators that commute with the Hamiltonian).

This relaxed version of detailed balance comes with the conceptual price of making
the Lindbladian “non-self-adjoint” under similarity transformation. Due to the anti-
self-adjoint componentA(𝝆,L)†, the spectral theory of convergence (at first glance)

16In an email exchange with Jonathan Moussa, he mentioned analogous unitary effect for discrete
quantum channels.

17We thank Jonathan Moussa for pointing us to [69, Lemma 28]. This further simplifies the
derivation and the presentation, clarifying that our construction actually has 𝑸 = 0 and a vanishing
anti-Hermitian component.
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seems to break since the right eigenvectors are not orthogonal in the Hilbert-Schmidt
norm. Fortunately, the following observation comes to the rescue.

Proposition 3.9.3. If a Lindbladian L is 𝝆-detailed-balanced with unitary drift,
then

A(𝝆,L)[√𝝆] = H(𝝆,L)[√𝝆] = 0.

In other words, the specific form of detailed balance implies that the anti-self-adjoint
component preserves the eigenvector √𝝆; the particular eigenvector √𝝆, which we
care about, is orthogonal to other eigenvectors. Therefore, the second eigenvalue
of H corresponds to the contraction of the Hilbert-Schmidt norm of the other
eigenvector, controlling the mixing time.

Proposition 3.9.4 (Mixing time from spectral gap (adapted from [40, Proposition
II.2])). If a Lindbladian L satisfies 𝝆-DBU, then

𝑡𝑚𝑖𝑥 (L) ≤
ln(2∥𝝆−1/2∥)
𝜆𝑔𝑎𝑝 (H)

where H :=
D(𝝆,L)† + D(𝝆,L)

2
,

and the mixing time 𝑡𝑚𝑖𝑥 is the smallest time for which

eL𝑡𝑚𝑖𝑥 [𝝆1 − 𝝆2]




1 ≤
1
2
∥𝝆1 − 𝝆2∥1 for any states 𝝆1, 𝝆2.

In other words, adding a coherent term only seems to help with the convergence.

Proof. Write 𝑹 = 𝝆1 − 𝝆2, then

eL𝑡 [𝑹]




1 =




𝝆1/4eD𝑡 [𝝆−1/4𝑹𝝆−1/4]𝝆1/4





1

≤



𝝆1/4





4
·



eD𝑡 [𝝆−1/4𝑹𝝆−1/4]





2
·



𝝆1/4





4

≤ e−𝜆𝑔𝑎𝑝 (H)𝑡



𝝆−1/4𝑹𝝆−1/4





2

≤ e−𝜆𝑔𝑎𝑝 (H)𝑡 ∥𝝆−1/4∥2∥𝑹∥2
≤ e−𝜆𝑔𝑎𝑝 (H)𝑡 ∥𝝆−1/4∥2∥𝑹∥1
= e−𝜆𝑔𝑎𝑝 (L

†)𝑡 ∥𝝆−1/2∥∥𝑹∥1.

The first inequality uses Hölder’s inequality. The second inequality uses the
orthogonality to the leading eigenvector such that Tr[√𝝆 ·𝝆−1/4𝑹𝝆−1/4] = Tr[𝑹] = 0.
Take the logarithm to conclude the proof. ■
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However, if we wish to obtain a parent Hamiltonian corresponding to this Lindbladian,
the anti-Hermitian component forces us to consider the symmetrized discriminant

H𝜷 =
D + D†

2
.

Unfortunately, the presence of the anti-Hermitian component breaks the qualitative
analogy between mixing times and discriminant gaps; fast mixing can hold despite a
small symmetrized discriminant gap, marking a limitation of the parent Hamiltonian
approach. Incorporating a coherent term, the general conversion bound is as
follows [40]; unfortunately, some bounds are only meaningful if the anti-Hermitian
part A is small enough.

Proposition 3.9.5 (Spectral gap from mixing time [40, Proposition E.5]). For any
Lindbladian L, let −𝜆Re(𝑔𝑎𝑝) (L) be the second largest real part in its spectrum
(counted by algebraic multiplicity), then

𝜆𝑔𝑎𝑝 (H) + 2∥A∥2−2 ≥ ∥A∥2−2 − 𝜆2(H) ≥ 𝜆Re(𝑔𝑎𝑝) (L) ≥
ln(2)
𝑡𝑚𝑖𝑥 (L)

. (3.46)

Moreover, if 𝜆Re(𝑔𝑎𝑝) (L) ≥ 2∥A∥2−2, then there is unique eigenvalue 𝜆1(H) ≥
−∥A∥2−2 and

𝜆𝑔𝑎𝑝 (H) + 2∥A∥2−2 ≥ ∥A∥2−2 − 𝜆2(H) ≥ 𝜆Re(𝑔𝑎𝑝) (L). (3.47)

Corollary 3.9.1 (Spectral gap from mixing time). If a Lindbladian L satisfies
𝝆-DBU and ln(2)

2𝑡𝑚𝑖𝑥 (L) ≥ ∥A∥2−2, then18

𝜆𝑔𝑎𝑝 (H) ≥
ln(2)

2𝑡𝑚𝑖𝑥 (L)
.

Proof. Observe that ln(2)
2𝑡𝑚𝑖𝑥 (L) ≥ ∥A∥2−2 implies 𝜆Re(𝑔𝑎𝑝) (L) ≥ 2∥A∥2−2 due to

(3.46), which in turn by (2.79) also implies that 𝜆1(H) = 0 (since 0 is an eigenvalue
due to Proposition 3.9.3). Thus combining (3.46)-(3.47) yields

∥A∥2−2 + 𝜆gap(H) ≥ 𝜆Re(𝑔𝑎𝑝) (L) ≥
ln(2)
𝑡𝑚𝑖𝑥 (L)

. ■

18The bound cannot be qualitatively strengthened without additional structural understanding or
assumptions, e.g., consider 𝑯 := 𝒁 − (1 + 𝜖)𝑰, 𝑨 := i𝑿; the eigenvalues of 𝑯 + 𝑨 are −1 − 𝜖 , while
𝜆1 (𝑯) = −𝜖 , ∥𝑨∥ = 1, and the relaxation (mixing) time is O(1).
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The proof of the above proceeds by showing that 𝜆Re(𝑔𝑎𝑝) (L) ≥ ln(2)
𝑡𝑚𝑖𝑥 (L) , however

without any prior knowledge on ∥A∥2−2 it does not seem to be possible to lower bound
𝜆𝑔𝑎𝑝 (H) in general. Indeed, if the Lindbladian L satisfies 𝝆-detailed balance with
unitary drift, then L andD(𝝆,L) = H +A are related by a similarity transform and
are thus co-spectral. Due to Proposition 3.9.3 we know that 𝑉 := Span(√𝝆)⊥ is an
invariant subspace of bothH and A, and thus also of L. SinceH|𝑉 ⪯ −𝜆𝑔𝑎𝑝 (H)I
and A |𝑉 is anti-Hermitian we get that every eigenvalue of L†|𝑉 has real part at most
−𝜆𝑔𝑎𝑝 (H), thus 𝜆Re(𝑔𝑎𝑝) (L) ≥ 𝜆𝑔𝑎𝑝 (H), which is an inequality in the “wrong”
direction.

𝑠-detailed balance
Our KMS detailed balance condition (Definition 3.9.2) is a special case (𝑠 = 1/2) of
a larger family of 𝑠-detailed balance condition.

Definition 3.9.2 (𝑠-detailed balance condition). For a normalized, full-rank state
𝝆 ≻ 0 and an scalar 0 ≤ 𝑠 ≤ 1, we say that an super-operator L satisfies
(𝑠, 𝝆)-detailed balance (or 𝑠-DB in short) if

L† [·] = 𝝆𝑠−1L[𝝆1−𝑠 · 𝝆𝑠]𝝆−𝑠 .

Since 𝝆 is an operator, different choices of 0 ≤ 𝑠 ≤ 1 yield different detailed balance
conditions. Nevertheless, they all prescribe the same fixed point.

Proposition 3.9.6 (Fixed point). If a Lindbladian L is (𝑠, 𝝆)-detailed-balanced,
then L[𝝆] = 0.

The case 𝑠 = 0 corresponds to the so-called Gelfand-Naimark-Segal (GNS) inner
product. One naturally wonders if our constructions also apply here. Unfortunately,
the case 𝑠 = 1/2 appears to be a special point in the interval 0 ≤ 𝑠 ≤ 1. Let us
revisit the energy domain representation of detailed balance (Proposition 3.2.2) for
the transition part. Consider a super-operator parameterized by a Hamiltonian 𝑯, 𝛽,
and a set of operators including its adjoints {𝑨𝑎 : 𝑎 ∈ 𝐴} = {𝑨𝑎† : 𝑎 ∈ 𝐴}:

T =
∑︁
𝑎∈𝐴

∑︁
𝜈1,𝜈2∈𝐵

𝛼𝜈1,𝜈2 𝑨
𝑎
𝜈1 (·) (𝑨

𝑎
𝜈2)
†.

Then, the 𝑠-detailed balance condition

T † [·] = 𝝆𝑠−1T [𝝆1−𝑠 · 𝝆𝑠]𝝆−𝑠 demands that

𝛼𝜈1,𝜈2 = 𝛼−𝜈2,−𝜈1 exp(−𝛽(1 − 𝑠)𝜈1 − 𝛽𝑠𝜈2) for each 𝜈1, 𝜈2 ∈ 𝐵.
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However, this appears to be a strong condition; if we apply a change of variable
(𝜈1, 𝜈2) → (−𝜈2,−𝜈1),

𝛼−𝜈2,−𝜈1 = 𝛼𝜈1,𝜈2 exp(𝛽(1 − 𝑠)𝜈2 + 𝛽𝑠𝜈1) for each 𝜈1, 𝜈2 ∈ 𝐵.

Multiply the two to see that (see [32, Lemma 2.5] for an abstract argument)

𝛼𝜈1,𝜈2𝛼−𝜈2,−𝜈1 = 𝛼𝜈1,𝜈2𝛼−𝜈2,−𝜈1 exp(𝛽(1 − 2𝑠) (𝜈2 − 𝜈1)) for each 𝜈1, 𝜈2 ∈ 𝐵.

Therefore, if 𝑠 ≠ 1
2 and 𝛽 ≠ 0, we must have that

𝛼𝜈1,𝜈2 = 0 if 𝜈1 ≠ 𝜈2 (3.48)

which contradicts our construction, and currently, we do not know how to algorith-
mically ensure (3.48). The only existing Lindbladian we knew that satifies (3.48)
is the Davies’ generator [56], which requires resolving the level spacing using a
(exponentially) long Hamiltonian simulation time.
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C h a p t e r 4

COOLING IS UNIVERSAL FOR QUANTUM COMPUTATION

4.1 Introduction
Finding ground states and other low-energy states of quantum many-body systems is a
central problem in physics, materials science, and chemistry. To address this problem,
many powerful computational methods, such as density functional theory (DFT)
[89, 103], quantum Monte Carlo (QMC) [17, 34, 155], variational optimization
with tensor network ansatzes [82, 93, 145, 156, 173, 177, 178] or neural network
ansatzes [33, 59, 88], and data-driven machine learning approaches [71, 91, 111, 147],
have been developed. These methods, which can be implemented using classical
computers, work well for many physically relevant problem instances but fail badly
in other cases.

Quantum computers may be able to find ground states efficiently in cases that are
too hard to solve classically, but conclusively identifying such cases is challenging.
Even when known classical methods falter, one cannot easily rule out that alternative
classical methods will have much better performance. Furthermore, finding ground
states of local Hamiltonians is known to be QMA-hard [98, 100], and therefore is
expected to be intractable even for quantum computers for some physical systems. To
establish the efficacy of existing quantum algorithms for the ground-state problem,
assumptions are required that might not be justified [108], such as the presence of a
trial state with sufficient ground state overlap [70, 114] or a parameterized adiabatic
path whose spectral gap remains open [65].

If finding ground states is hard for quantum computers, we expect that the task
is hard for Nature as well. In searching for physics problems where quantum
computers could have an advantage over classical computers, we should follow
Nature’s guidance. With that in mind, we observe that when a quantum system is
placed in a low-temperature thermal bath [28, 55, 115, 135], it seeks a local minimum
of the energy which may be far from the global minimum. For some physical systems,
such as spin glasses [23, 63, 99, 136], finding a ground state is indeed known to be
hard; such systems, when cooled, almost always find a local minimum instead of
the ground state. In these cases, the ground state of the Hamiltonian is physically
irrelevant because it is unlikely to be observed in experiments.
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Figure 4.1: (a) Energy landscape with multiple local minima. Some Hamiltonians,
such as magnets in a small external magnetic field, have multiple local minima.
One is the ground state while the other local minima are suboptimal. (b) Energy
landscape with one local minimum. For some local Hamiltonians, such as a family of
BQP-hard Hamiltonians, the energy landscape over the entire 𝑛-qubit state space has
a nice bowl shape, and the only local minimum is the global minimum. However, for
QMA-hard Hamiltonians, the energy landscape necessarily contains many suboptimal
local minima. (c) Energy landscape under local unitary perturbations. For any
local Hamiltonian 𝑯, there are always doubly exponentially many local minima
within the 𝑛-qubit state space that stems from a large barren plateau. Local unitary
perturbations are reversible, while thermal perturbations are irreversible.

This perspective encourages us to formulate and study a physically motivated
alternative to the ground-state problem. We ask:

How tractable is the problem of finding local minima of the energy
in quantum systems using classical and quantum computers?

We address this question by proving that a machine that cools physical systems to
local minima is a universal quantum computer; that is, by finding local minima
one can solve any problem that is efficiently solvable by a quantum computer,
and furthermore a quantum computer can always find local minima efficiently for
any physical system. Hence, under the widely accepted assumption that quantum
computing is more powerful than classical computing, finding local minima is both
classically hard and quantumly easy. This result raises the hope that exploring local
minima in quantum systems arising from physics, chemistry, and materials science
may offer new opportunities for solving classically intractable and physically relevant
problems using quantum computers.

4.2 Results
We now present our main results concerning the tractability of finding local minima
in quantum systems. A collection of notational conventions and some background
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on quantum thermodynamics can be found in Appendix 4.5. Based on the standard
definition in mathematical optimization [2, 5, 25, 94, 144], we consider a local
minimum in a quantum system governed by Hamiltonian 𝑯 to be a quantum state
such that the expectation value of 𝑯 does not decrease under any small perturbation
applied to the state; see a brief review of mathematical optimization in Appendix 4.6.

Let P𝜶 be a perturbation parameterized by a small vector 𝜶 that maps quantum states
to quantum states. An 𝜖-approximate local minimum of an 𝑛-qubit Hamiltonian
𝑯 under perturbation P is a state 𝝆 with an energy tr(𝑯𝝆) that is an approximate
minimum under perturbations, i.e.,

tr(𝑯𝝆) ≤ tr(𝑯P𝜶 (𝝆)) + 𝜖 ∥𝜶∥

for all small enough 𝜶. The formal definition is given in Appendix 4.6. The local
minima of 𝑯 form a subset of the entire quantum state space, which contains the
global minima, the ground states of 𝑯. See Fig. 4.1 for energy landscapes with
different numbers of local minima. We say an algorithm A has solved the problem
of finding local minima under perturbation P if given any 𝑛-qubit Hamiltonian 𝑯,
written as a sum of few-qubit Hermitian operators, and any few-qubit observable 𝑶,
the algorithm A can output a real value tr(𝑶𝝆) corresponding to any approximate
local minimum 𝝆 of 𝑯 under perturbations P up to a small error.1

Inspired by the physical process that Nature uses to cool quantum systems, we define
local minima based on thermal perturbations rooted in open system thermodynamics
[28, 39, 55, 115, 135]. Thermal perturbations are fundamentally different from local
unitary perturbations, which are short-time unitary evolution governed by a sum
of few-body Hermitian operators, as may arise in an adaptive variational quantum
eigensolver (VQE) [35, 77, 143]. These two types of perturbations yield distinct
energy landscapes as illustrated in Fig. 4.1, leading to vastly different computational
complexity for the task of finding a local minimum. Indeed, we argue in Section 4.2
that for local unitary perturbations, in contrast to thermal perturbations, finding a
local minimum is classically easy.

Local minima under thermal perturbations
In this section, we consider local minima under thermal perturbations induced by a
heat bath, formally defined in Appendix 4.6. When the coupling between an 𝑛-qubit
system and a thermal bath is weak, and the bath is memoryless, the complicated joint

1Since there could be multiple local minima and we consider finding one instance to be sufficient,
this problem is closer to a relational problem than to a decision problem.
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system-bath Hamiltonian dynamics reduces to a Markovian Lindbladian evolution
of the system alone, 𝝆(𝑡) = eL𝑡 [𝝆]. Remarkably, this continuous time generator L
can be defined by merely the system Hamiltonian 𝑯, the jump operators 𝑨𝑎 through
which the bath interacts with the system, and thermodynamic quantities of the bath:
inverse temperature 𝛽 and a characteristic time-scale 𝜏. See Appendix 4.5 for an
introduction and Appendix 4.10 for an in-depth discussion. Under these assumptions,
we may effectively consider a thermal perturbation of 𝑛-qubit state 𝝆 to be

(thermal perturbation): 𝝆 → exp

(
𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆), (4.1)

whereL𝛽,𝜏,𝑯𝑎 is the thermal Lindbladian associated with each jump operator 𝑨𝑎 acting
on a few qubits, 𝑚 = poly(𝑛) is the number of jump operators, and 𝜶 =

∑
𝑎 𝛼𝑎𝒆𝑎 ∈

R𝑚≥0 is a nonnegative vector close to zero. Here, the vector is nonnegative because
thermodynamic processes are generally irreversible. The irreversibility in thermal
perturbations is crucial to ensure that there are fewer than doubly-exponentially many
local minima in the energy landscape; see the discussion in Appendix 4.6.

We define a local minimum under thermal perturbations to be a state 𝝆 with the
minimum energy tr(𝑯𝝆) under thermal perturbations given in Eq. (4.1). Given the
definition, we next study how tractable is the problem of finding a local minimum
under thermal perturbations. Our complexity-theoretic results show that finding
local minima under thermal perturbations is both quantumly easy (Section 4.2)
and classically hard (Section 4.2), the latter under the well-accepted assumption
that not all quantum circuits can be efficiently simulated on classical computers
(BPP ≠ BQP).

Finding local minima is easy for quantum computers

If our notion of local minima properly captures how a quantum system behaves in a
cold environment, we expect finding local minima to be quantumly easy. Indeed, in
the following theorem, we prove that a quantum computer can always efficiently find
a local minimum of 𝑯 under thermal perturbations starting from any initial state.

Theorem 4.2.1 (Quantumly easy to find local minima under thermal perturbations;
informal). The problem of finding an 𝜖-approximate local minimum of an 𝑛-qubit
local Hamiltonian 𝑯 under thermal perturbations with inverse temperature 𝛽 and
time scale 𝜏 can be solved in poly(𝑛, 1/𝜖, 𝛽, 𝜏) quantum computational time.
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The formal statement is given in Theorem 4.9.1 and is proven in Appendix 4.11. To
establish the theorem, we propose a quantum thermal gradient descent algorithm
that cools down a quantum system by performing gradient descent based on quantum
thermodynamics. This result builds on the recent algorithmic developments for
quantum Markov Chain Monte Carlo methods [41, 61, 149, 167].

Finding local minima is hard for classical computers

While local minima are easier to find than ground states for quantum computers,
how hard is it to find them? As our second main result, we address this question
by considering a class of geometrically local Hamiltonians {𝑯𝐶} on a 2D lattice,
such that the ground state of 𝑯𝐶 encodes the outcome of a polynomial-size quantum
circuit 𝐶 using a modified Kitaev’s circuit-to-Hamiltonian construction [3, 100, 142].
To understand the computational hardness, we provide the following characterization
of the energy landscape.

Theorem 4.2.2 (No suboptimal local minimum in BQP-hard Hamiltonians; informal).
For any quantum circuit 𝐶 with size |𝐶 |, all approximate local minima of the
geometrically local 2D Hamiltonian 𝑯𝐶 under thermal perturbations with inverse
temperature 𝛽 = Poly( |𝐶 |) and time scale 𝜏 = Poly( |𝐶 |) are close to the ground
state.

This theorem is the most technically involved contribution of this work. The formal
statement is given in Theorem 4.9.2 and is proven in Appendix 4.14. Conceptually,
the landscape of these 2D Hamiltonians has a nice bowl shape, like in convex
optimization [25]. Therefore, performing thermal gradient descent (Theorem 4.2.1)
allows us to prepare the ground state starting from an arbitrary initial state. To prove
the theorem, we develop a set of techniques for establishing that a Hamiltonian 𝑯

has no suboptimal local minima, i.e., all local minima of 𝑯 are global minima.

Using this energy landscape characterization, we can show that finding a local
minimum under thermal perturbations is classically intractable, assuming quantum
computation is more powerful than classical computation. Suppose that a classical
computer can efficiently find any local minima under thermal perturbations. Then by
Theorem 4.2.2, the classical computer can efficiently find the ground state of 𝑯𝐶

and thus simulate any efficient quantum circuit 𝐶, which is widely believed to be
impossible. See Theorem 4.9.3 for a formal statement and the proof.
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Theorem 4.2.3 (Classically hard to find local minima under thermal perturbations;
informal). Assume the widely believed conjecture that BPP ≠ BQP. The problem
of finding an approximate local minimum of an 𝑛-qubit local Hamiltonian 𝑯 under
thermal perturbations is universal for quantum computation and is thus classically
hard.

Local minima under local unitary perturbations
Instead of defining local minima in terms of thermal perturbations, one could consider
local unitary perturbations instead. Local unitary perturbations are mathematically
simple and commonly considered in adaptive variational quantum eigensolvers
[35, 77, 143]. However, as we now explain, the task of finding a local minimum with
respect to unitary perturbations is classically easy and, therefore, does not fulfill our
goal of identifying a problem that separates quantum from classical computation.

Local unitary perturbations are short-time unitary evolutions under a sum of few-body
Hermitian operators (e.g., a quantum circuit consisting of near-identity two-qubit
gates). A local unitary perturbation of an 𝑛-qubit pure state|𝜓⟩ is given by

(local unitary perturbation): |𝜓⟩ → exp

(
−i

𝑚∑︁
𝑎=1

𝛼𝑎𝒉
𝑎

)
|𝜓⟩,

where 𝒉𝑎 is a Hermitian operator acting on a few qubits, 𝑚 = poly(𝑛) is the number
of such Hermitian operators, and 𝜶 =

∑
𝑎 𝛼𝑎𝒆𝑎 ∈ R𝑚 is a vector close to zero. This

definition is inspired by adaptive VQE [35, 77, 143], and is the state version of
the Riemannian geometry of quantum computation defined in [140]. When one
variationally minimizes the energy by applying unitary gates, one finds a local
minimum under local unitary perturbations.

We prove that for any Hamiltonian 𝑯, a random 𝑛-qubit pure state is almost always a
local minimum of 𝑯 under local unitary perturbations; see Lemma 4.4.1 in Methods.
Hence, there are exp(exp(Ω(𝑛))) many suboptimal local minima in the energy
landscape, i.e., a large barren plateau. Because the number of local minima is
enormous, the properties of these local minima concentrate on fixed values, making
this problem classically easy.

Proposition 4.2.1 (Classically easy to find local minima under local unitary per-
turbations; informal). The problem of finding approximate local minima of 𝑛-qubit
local Hamiltonian 𝑯 under local unitary perturbations is classically easy.
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See Proposition 4.9.1 for the detailed statement and Appendix 4.9 for its proof. Aside
from being classically easy, the landscape defined by local unitary perturbation is
not physically well motivated because a physical system in contact with a thermal
bath cools by open system dynamics rather than by unitary dynamics acting on the
system.

4.3 Discussion
We have good reasons for believing that scalable fault-tolerant quantum computers will
be more powerful than classical computers, but for what problems of practical interest
should we expect a superpolynomial quantum advantage? Quantum computers might
substantially speed up the task of characterizing properties of ground states for some
local Hamiltonians that arise in physics, chemistry, and materials science, but it is
not clear how to identify particular problems for which such speedups occur [109].
In some cases, classical methods provide good solutions, while in other cases, the
problem is hard even for quantum computers.

Here, we have focused on an easier problem, namely finding local minima rather than
global minima of a Hamiltonian. This problem is well motivated physically because
the task of finding a local minimum under thermal perturbations is routinely carried
out by actual physical systems when in contact with a cold thermal bath. We showed
that this problem is solved efficiently by a proposed quantum optimization algorithm,
the quantum thermal gradient descent algorithm. Furthermore, we showed that
finding a local minimum is classically hard in general (assuming that BPP ≠ BQP).
Hence, the local minimum problem is a quantumly tractable alternative to the ground
state problem for which superpolynomial quantum advantage can be achieved for
some problem instances.

There have been other proposals for solving classically hard problems by finding
suitable quantum states, such as designing a gapped adiabatic path for Hamiltonians
to find ground states [3], engineering Lindbladians to have rapid dissipative evolution
towards steady states [174] and performing quantum phase estimation on an initial
state with high ground-state overlap [70]. These approaches draw inspiration from
physics to motivate algorithms for solving problems on analog and digital quantum
devices but do not emulate naturally occurring physical processes. In contrast, the
problem of finding a local minimum is motivated by ubiquitous physical processes
in Nature that produce the low-energy states studied in physics, chemistry, and
materials science. Furthermore, the local minima problem enjoys the robustness of
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thermodynamics: one merely needs to specify macroscopic bath quantities 𝛽 and 𝜏
without worrying about microscopic details, and the choice of jump operators can be
flexible since adding more jumps (even unwanted ones) only removes suboptimal
local minima.

There are a plethora of classical algorithms for minimizing energies of quantum
systems based on classical variational ansatzes for quantum states, such as tensor
networks [1, 13, 52, 82, 93, 95, 106, 145, 156, 162, 163, 172, 173, 177, 178, 183, 187]
and neural quantum states [33, 46, 47, 59, 60, 67, 74, 88, 120, 131, 141, 175]. These
classical algorithms find a local minimum within a family of states defined by the
classical variational ansatz. However, such a local minimum for the classical ansatz
might not be a local minimum under thermal perturbations. If not, we can load the
state found by the classical algorithm into a quantum computer and find a lower
energy state by running the quantum thermal gradient descent algorithm. A corollary
of our main results states the following.

Corollary 4.3.1 (Quantum advantage in finding lower-energy state; informal).
Assume that not all polynomial-size quantum circuits can be efficiently simulated
classically. Then there are 2D geometrically local Hamiltonians such that given any
classical ansatz that allows efficient estimation of single-qubit observables and an
output state 𝝆# of any efficient classical algorithm that optimizes the classical ansatz,
running quantum thermal gradient descent starting at 𝝆# strictly lowers the energy.

A formal statement is in Corollary 4.9.1, and its proof is in Appendix 4.9. In many
cases, we can check if the classically optimized state 𝝆# is a local minimum under
thermal perturbation by executing an efficient classical computation to compute the
energy gradient. A negative energy gradient confirms that a quantum algorithm
starting from 𝝆# could outperform the classical algorithm.

Furthermore, we may be able to do better than quantum thermodynamics by
sharpening our quantum algorithms. Indeed, we may modify the thermal Lindbladians
to have nicer analytic properties or lower algorithmic cost [39]. While these synthetic
Lindbladians may not simulate Nature, they constitute a broader class of Quantum
Markov Chain Monte Carlo algorithms [39, 41, 61, 149, 167] that may improve upon
Nature. Apart from Lindbladians, other families of perturbations, such as unitary
perturbations accompanied by mid-circuit measurements and/or qubit resets, may also
yield nice bowl-shaped energy landscapes without suboptimal local minima. Progress
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in this direction could lead to more efficient quantum optimization algorithms for
finding low-energy states or for other applications.

Many other interesting and challenging questions remain open. Sometimes, when
a system performs a random walk over a large plateau of suboptimal local minima
for a sufficiently long time, the system escapes the plateau and reaches the true
ground state (see, e.g., Case 1 in section 4.13). Could we characterize when ground
states can be found efficiently despite having many suboptimal local minima? Our
conclusion that finding local minima under thermal perturbations is classically hard
relied on the complexity-theoretic conjecture that BPP ≠ BQP. Can we prove
unconditionally that finding local minima is hard for classical algorithms, perhaps
within a black-box oracle model? We have shown that there is a quantum advantage in
finding local minima of quantum systems. Might there also be a quantum advantage
in finding better local minima in classical optimization problems under some variant
of quantum thermal gradient descent?

While ground state problems are hard to solve in general, many experimentally
observed quantum systems efficiently relax to their ground states when cooled. This
physical phenomenon suggests that perhaps many Hamiltonians of interest in physics,
chemistry, and materials science have no suboptimal local minima. We have shown in
Theorem 4.2.2 that a particular family of BQP-hard Hamiltonians has no suboptimal
local minima under thermal perturbation. An important future goal is to characterize
broader classes of Hamiltonians that have a similarly good energy landscape. Our
proposed negative gradient condition suffices to rule out suboptimal local minima
(Lemma 4.8.3), but checking this condition for a general Hamilton involves highly
complex calculations. It would be helpful to develop more general-purpose and
efficient methods to verify this property for specified physical Hamiltonians over
spins, fermions, or bosons. We hope the ideas and techniques presented here will
yield a deeper understanding of the energy landscapes of quantum systems and
point toward promising opportunities for achieving quantum advantage for physically
relevant problems.

Data availability
We do not analyse or generate any datasets, because our work proceeds within a
theoretical and mathematical approach.
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Code availability
We do not have any computer code, because our work proceeds within a theoretical
and mathematical approach. All algorithms are analyzed mathematically in the
Supplementary Information.
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4.4 Methods
Local minima under thermal perturbations
A central concept that enables us to understand the energy landscape and establish
the computational complexity of finding local minima under thermal perturbations
in Theorem 4.2.1 and 4.2.3 is the energy gradient operator,

(energy gradient operator):
𝑚∑︁
𝑎=1
L†𝛽,𝜏,𝑯𝑎 (𝑯)𝒆𝑎,

where the adjoint L† is the Heisenberg-picture Lindbladian, i.e., tr(L† [𝑶]𝝆) =
tr(𝑶L[𝝆]). The energy gradient operator is a vector of individual gradient operators2
associated with each jump operator 𝑨𝑎. Indeed, the energy gradient operator naturally

2This is similar to the spin operator 𝝈 = 𝜎𝑥𝑥 + 𝜎𝑦 𝑦̂ + 𝜎𝑧𝑧, which is a vector of Hermitian
observables.
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emerges by taking an infinitesimal perturbation, i.e., the gradient of the energy tr(𝑯𝝆),

tr

(
𝑯 exp

(
𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆)

)
= tr(𝑯𝝆) +𝜶 ·

𝑚∑︁
𝑎=1

tr
(
L†𝛽,𝜏,𝑯𝑎 (𝑯)𝝆

)
𝒆𝑎 + O(∥𝜶∥2).

In Appendix 4.8, we describe the formal definition and some properties of the
energy gradient. We provide a concrete example by showing the sets of local
minima for ferromagnetic Ising chains under different longitudinal field strengths in
Appendix 4.13.

Quantum thermal gradient descent

To establish Theorem 4.2.1 showing that finding local minima under thermal
perturbations is quantumly easy, we propose an algorithm called quantum thermal
gradient descent. Gradient descent is necessary when the inverse temperature 𝛽 and
time scale 𝜏 are not infinite. When 𝛽 = 𝜏 = ∞, the energy gradient L†∞,∞,𝑯𝑎 (𝑯) ⪯ 0
is nonpositive. In this case, the algorithm can just perform a random walk along
random directions because no perturbations increase energy, and the use of gradient
descent is not necessary. But when 𝛽 and 𝜏 are finite, the energy gradient can be
positive. To find a local minimum that is a minimum under all thermal perturbations,
the algorithm needs to carefully walk in directions with negative energy gradients.

To prove the convergence of quantum thermal gradient descent to a local minimum,
we show that every small gradient step starting from a state that is not an approximate
local minimum will decrease the energy. Because the energy of a quantum system
cannot go unboundedly to negative infinity, the algorithm must terminate at some
point, which means it will find an approximate local minimum. To establish this
claim, we derive analytic properties of thermal Lindbladians based on a smoothness
bound on the second derivatives in [39]. To implement a gradient step based on
thermal perturbations on a quantum computer, we build on a recently developed
efficient quantum algorithm that simulates thermal Lindbladian evolution using a
quantum circuit augmented by mid-circuit measurements [39].

All local minima are global

We now highlight the proof idea for Theorem 4.2.2 showing that all approximate local
minima are close to ground states in a family of Hamiltonians with classically-hard
ground states. The family of geometrically local 𝑛-qubit Hamiltonians {𝑯𝐶} in a
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2D lattice studied in this work is a modification of Kitaev’s circuit-to-Hamiltonian
construction [100, 142] where the ground state encodes the computation of a quantum
circuit 𝑼𝐶 = 𝑼𝑇 . . .𝑼1. In particular, we design the ground state of 𝑯𝐶 to be

𝑇∑︁
𝑡=0

√︁
𝜉𝑡

(
𝑼𝑡 · · ·𝑼1 |0𝑛⟩

)
⊗

��1𝑡0𝑇−𝑡〉, where 𝜉𝑡 :=
1
2𝑇

(
𝑇

𝑡

)
.

The binomial coefficient 𝜉𝑡 is our modification of Kitaev’s construction and is chosen
to ensure that desired properties hold for the spectrum and the energy gradients.3
Estimating local properties of the ground state of 𝑯𝐶 is equivalent to simulating the
quantum circuit 𝐶, which is BQP-hard. Hence, under the standard assumption that
not all quantum circuits can be simulated by classical computations, estimating local
properties of the ground state of 𝑯𝐶 is classically hard.

Given the Hamiltonian 𝑯𝐶 , showing that all of its approximate local minima under
thermal perturbations are also approximate global minima seems daunting due to the
complex expression for the thermal Lindbladian L𝛽,𝜏,𝑯𝑎 and the doubly exponentially
large space of possible quantum states. Previous studies on circuit-to-Hamiltonian
mappings mainly focused on the lowest energy states. Here, we need to worry about
potential local minima in all excited states in any superposition. To make progress,
we propose a sufficient condition in Appendix 4.8 that captures the nice landscape of
𝑯𝐶 and rules out the presence of any suboptimal local minimum. Let 𝑷𝐺 (𝑯) be
the projector onto the ground state space of 𝑯. Assume there exists a unit vector
𝜶̂ ∈ R𝑚≥0 and 𝑟 > 0 with

(negative gradient condition): −
𝑚∑︁
𝑎=1

𝛼̂𝑎L†𝛽,𝜏,𝑯𝑎 (𝑯) ⪰ 𝑟 (𝑰 − 𝑷𝐺 (𝑯)).

This negative gradient condition implies that any state with a small ground state
overlap must experience a substantially negative energy gradient, i.e., it must not be
a local minimum.

To prove that 𝑯𝐶 satisfies the negative gradient condition, we propose a series of
lemmas and mathematical techniques for characterizing energy gradients in few-qubit
systems, in commuting Hamiltonians, and in subspaces of the Hamiltonian, which
are stated in Appendix 4.12 and proven in Appendix 4.16. These new techniques
build on the operator Fourier transform, and the secular approximation given in [39]

3The binomial distribution ensures the Bohr-frequency gap is sufficiently large, which is central
to the robustness of energy gradients under errors due to finite temperature and small perturbations.
We believe that the standard circuit-to-Hamiltonian construction also has a large Bohr-frequency gap,
but the proof seems more difficult.
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for systematically handling energy uncertainty in thermal Lindbladians, which we
review and adapt for our purpose in Appendix 4.15. Using these techniques, we
analyze the energy gradient of the entire system perturbatively by considering a
sequence of Hamiltonians

𝑯1 → 𝑯2 → 𝑯3 = 𝑯𝐶 with refining ground spaces 𝑷1 ⊃ 𝑷2 ⊃ 𝑷3,

where ∥𝑯1∥ ≫ ∥𝑯2 − 𝑯1∥ ≫ ∥𝑯3 − 𝑯2∥.

Through these perturbations, we sequentially rule out local minima in excited states
of the Hamiltonian 𝑯1,𝑯2 and, finally, 𝑯3 = 𝑯𝐶 . For example, we show the first
Hamiltonian 𝑯1 satisfies the negative gradient condition and that the gradient is
stable under perturbation going from 𝑯1 → 𝑯2 → 𝑯3. Controlling perturbations
of the energy gradient is surprisingly challenging, and it is not a priori clear why
this stability property should hold due to multiple (possibly competing) energy
scales, including 𝛽−1, 𝜏−1, the spectral gap, and the Bohr-frequency gap.4 The
perturbative errors are not suppressed by the spectral gap of the Hamiltonian as seen
in standard settings, but instead by the Bohr-frequency gap, which can be much
smaller (see Theorem 4.16.1). These techniques allow us to establish the robustness
of energy gradients when perturbing a degenerate Hamiltonian with a sufficiently
large Bohr-frequency gap.

We emphasize that while we proved that 𝑯𝐶 has no suboptimal local minima
when 𝐶 is a polynomial-size quantum circuit, the same is not true for general
local Hamiltonians. Finding the ground state of a local Hamiltonian is a QMA-
hard problem; hence, we do not expect it to be solved efficiently by the quantum
thermal gradient descent algorithm or by any other quantum algorithm. In the
case of a quantum circuit that verifies the witness for a problem in QMA, Kitaev’s
corresponding local Hamiltonian contains a term, often denoted 𝑯i𝑛, which specifies
some of the input qubits and leaves the input qubits corresponding to the witness
unspecified, and a term, often denoted 𝑯o𝑢𝑡 , which checks whether the witness
is accepted. Due to the unspecified witness qubits in 𝑯i𝑛, the energy landscape
contains a significant number of local minima corresponding to all possible witnesses.
Furthermore, most of these local minima correspond to rejected witnesses and are
suboptimal because of the energy penalty from 𝑯o𝑢𝑡 . For these QMA-complete
Hamiltonians, quantum thermal gradient descent is likely to remain stuck for a long
time at a suboptimal local minimum. In 𝑯𝐶 , the term 𝑯i𝑛 specifies all input qubits,

4Recall that spectral gap is the minimum nonzero difference between energy eigenvalues.
Bohr-frequency gap is the minimum nonzero difference between the difference of energy eigenvalues.
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and the term 𝑯o𝑢𝑡 is absent, which greatly simplifies the energy landscape, enabling
quantum thermal gradient descent to find the global minimum efficiently.

Local minima under local unitary perturbations
We present the central idea for proving Proposition 4.2.1 that establishes the classical
easiness for finding local minima under local unitary perturbations.

To understand how easy the problem of finding local minima under local unitary
perturbations is, we need to characterize the energy landscape. The following lemma
provides a universal characterization of the structure of the energy landscape under
local unitary perturbations. The formal statement is given in Lemma 4.7.1, and the
proof is given in Appendix 4.7.

Lemma 4.4.1 (Barren plateau; informal). Given any 𝑛-qubit local Hamiltonian 𝑯.
A random pure 𝑛-qubit state |𝜓⟩ is an approximate local minimum of 𝑯 under local
unitary perturbations.

The proof of the above lemma illustrates the following physical picture: the energy
landscape in the pure state space defined in terms of local unitary perturbations
consists of a large barren plateau [129] with doubly-exponentially many approximate
local minima having exponentially small energy gradient. Additionally, almost all
of the local minima have local properties that are exponentially close to that of the
maximally mixed state. As a result, while finding ground states is classically hard,
finding local minima under local unitary perturbations is classically trivial.

4.5 Appendix:Notations and Preliminaries
Before we begin stating and proving our results formally in the rest of the appendices,
we present some notations used throughout the paper. We also give a brief review of
key concepts in quantum information theory that we utilize in this work.
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Notations
This section recapitulates notations, and the reader may skim through this and return
as needed.

𝑯 :=
∑︁
𝑖

𝐸𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | Hamiltonian and the eigendecomposition

Spec(𝑯) := {𝐸𝑖} the spectrum of the Hamiltonian

𝜈 ∈ 𝐵(𝑯) := {𝐸𝑖 − 𝐸 𝑗 | 𝐸𝑖, 𝐸 𝑗 ∈ Spec(𝑯)} the set of Bohr frequencies

Δ𝜈 (𝑯) := min{|𝜈1 − 𝜈2 | : 𝜈1 ≠ 𝜈2 ∈ 𝐵(𝑯)} the Bohr-frequency gap

𝑨(𝑡) := ei𝑯𝑡𝑨e−i𝑯𝑡 Heisenberg evolution for operator 𝑨

𝑚 : the number of jump operators

{𝑨𝑎}𝑚𝑎=1 : the set of jump operators

𝝆 : the density matrix

L : a Lindbladian in the Schrodinger Picture

𝛽 : the inverse temperature

𝑨̂ 𝑓 (𝜔) :=
1
√

2𝜋

∫ ∞

−∞
𝑓 (𝑡)e−i𝜔𝑡𝑨(𝑡)d𝑡 Operator Fourier transform of 𝑨 under 𝑓

𝑓𝜏 (𝑡) :=
1
√
𝜏
· 1( |𝑡 | ≤ 𝜏/2) the normalized window function with width 𝜏

𝑓 (𝜔) = 1
√

2𝜋

∫ ∞

−∞
e−i𝜔𝑡 𝑓 (𝑡)d𝑡 Fourier transform of a scalar function 𝑓 (𝑡)

𝑨𝜈 :=
∑︁

𝐸2−𝐸1=𝜈

𝑷𝐸2 𝑨𝑷𝐸1 operator 𝑨 at exact Bohr frequency 𝜈

𝑰 : the identity operator

∥ 𝑓 ∥𝑝 := (
∫ ∞

−∞
| 𝑓 (𝑡) |𝑝d𝑡)1/𝑝 the 𝑝-norm of a function

∥𝑶∥ := sup
|𝜓⟩,|𝜙⟩

⟨𝜙 |𝑶 |𝜓⟩
∥ |𝜓⟩∥ · ∥ |𝜙⟩∥ the operator norm of a matrix 𝑶

∥𝑶∥𝑝 := (tr|𝑶 |𝑝)1/𝑝 the Schatten p-norm of a matrix 𝑶

∥L∥𝑝−𝑝 := sup
𝑶

∥L[𝑶] ∥𝑝
∥𝑶∥𝑝

the induced 𝑝 − 𝑝 norm of a superoperator L

We write scalars, functions and vectors in normal font, and natural constants e, i, 𝜋
are particularly in Roman font. We write matrices in bold font 𝑶 and super-operators
in curly font L.

Furthermore, we define the indicator function 1(𝑆) which is 1 if the statement 𝑆 is
true and 0 otherwise. For any orthogonal projector 𝑷, we denote 𝑷⊥ = 𝑰 − 𝑷. We
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Figure 4.2: The Bohr frequencies 𝜈 ∈ 𝐵(𝑯) = {𝐸𝑖 − 𝐸 𝑗 | 𝐸𝑖, 𝐸 𝑗 ∈ Spec(𝑯)} are
the differences of energy (eigenvalues of the Hamiltonian 𝑯).

say 𝑨
𝐸≈ 𝑩 when ∥𝑨 − 𝑩∥ ≤ 𝐸 .

To simplify the notation, we often drop 𝑓 as a subscript 𝑨̂ 𝑓 (𝜔) ≡ 𝑨̂(𝜔), by which
we have chosen the window function 𝑓 (𝑡) = 𝑓𝜏 (𝑡).

Lindbladians
Completely Positive Trace-Preserving (CPTP) maps, also called quantum channels
and quantum processes in the literature, correspond to all possible physical operations
that could transform quantum states into other quantum states. Lindbladians are
infinitesimal generators of CPTP maps. That is, they map density operators to density
operators (even if the map is tensored with the identity)

I ⊗ eL𝑡 [·] : S → S for each 𝑡 ≥ 0.

In the Schrodinger Picture, a Lindbladian always has the following structure:

L[𝝆] = −i[𝑯, 𝝆]︸    ︷︷    ︸
coherent term

+
∑︁
𝑗∈𝐽

(
𝑳 𝑗 𝝆𝑳

†
𝑗︸  ︷︷  ︸

transition rate

− 1
2
{𝑳†

𝑗
𝑳 𝑗 , 𝝆}︸         ︷︷         ︸

decay rate

)
,

where the commutator is shorthanded by [𝑨, 𝑩] = 𝑨𝑩−𝑩𝑨 and the anti-commutator
by {𝑨, 𝑩} = 𝑨𝑩 + 𝑩𝑨. The operator 𝑯 can be any Hermitian matrix, and the set
of Lindblad operators {𝑳 𝑗 } 𝑗∈𝐽 can be arbitrary as the second term always ensures
trace-preserving.

Thermal Lindbladians
In this section, we describe the basic parameters that define a thermal Lindbladian, i.e.,
Lindbladian originating from generic system-bath interactions under a Markovian,
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weak-coupling assumption [135]. Consider an 𝑛-qubit quantum system governed
by a Hamiltonian 𝑯 and a heat bath with inverse temperature 𝛽 and time scale 𝜏.
The bath interacts with the system via a set of local interaction terms acting on the
system {𝑨1, . . . , 𝑨𝑚} = {𝑨𝑎}𝑚

𝑎=1, where each operator 𝑨𝑎 acts on a constant number
of qubits. Each operator 𝑨𝑎 can be arbitrary (𝑨𝑎 does not need to be Hermitian nor
unitary), but the set should be closed under Hermitian conjugate,

{𝑨𝑎}𝑚𝑎=1 = {𝑨𝑎†}𝑚𝑎=1.

Each 𝑨𝑎 is referred to as a jump operator and induces changes in energy (in the
𝑛-qubit system). For simplicity, we will enforce the following normalization for the
interaction strengths,

∥𝑨𝑎†𝑨𝑎∥∞ ≤ 1 for each 𝑎 = 1, . . . , 𝑚. (4.2)

For example, we may consider 𝑚 = 3𝑛 and 𝑨1, . . . , 𝑨𝑚 to be all single-qubit
Pauli observables 𝑿𝑖,𝒀𝑖, 𝒁𝑖 for 𝑖 = 1, . . . , 𝑛, which have an interaction strength
∥𝑨𝑎†𝑨𝑎∥∞ = 1.

The above parameters determine the thermal Lindbladian governing the equation
of motion for the density operator, also referred to as the coarse-grained master
equation [135]

d𝝆
d𝑡

= −i[𝑯, 𝝆] +
𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎 (𝝆), (4.3)

The term −i[𝑯, 𝝆] corresponds to the Hamiltonian dynamics governed by the system
Hamiltonian 𝑯, the (closed system) Schrodinger’s equation. The effects of system
bath interaction are captured by a weighted average of the thermal Lindbladian
L𝛽,𝜏,𝑯𝑎 , defined by each local jump operator 𝑨𝑎, the Hamiltonian 𝑯, and parameters
of the bath 𝛽, 𝜏. The weighting is captured by the nonnegative vector 𝜶 ∈ R𝑚≥0.

By varying the 𝑚-dimensional nonnegative vector 𝜶 ∈ R𝑚≥0, the open system
dynamics in Eq. (4.3) have the freedom to tune the interaction strengths for the jump
operators. Each 𝛼𝑎 corresponds to the interaction strength of a jump operator 𝑨𝑎

and can be effectively absorbed into the set of jump operators by considering{√
𝛼𝑎𝑨

𝑎
}
𝑎
.

The interaction strength 𝛼𝑎 ≥ 0 determines how much contribution each thermal
Lindbladian L𝛽,𝜏,𝑯𝑎 provides, and can be regarded as a probabilistic mixture. For
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example, if 𝛼2 is set to 0, one removes the jump operator 𝑨2 from the system-bath
interaction. This flexibility lets us study a (convex) set of thermal perturbations due
to system-bath interaction by considering all 𝜶 ∈ R𝑚≥0. As the system is weakly
coupled to the bath, 𝜶 is considered to be a vector with a small ∥𝜶∥1 =

∑
𝑎 𝛼𝑎.

For each local interaction term 𝑨𝑎, the corresponding thermal Lindbladian L𝛽,𝜏,𝑯𝑎 is
an open system evolution with Lindblad jump operators { 𝑨̂𝑎 (𝜔)}𝜔 for all possible
energy differences 𝜔 ∈ (−∞,∞). Each Lindblad jump operator 𝑨̂𝑎 (𝜔) is a restricted
version of the system-bath interaction term 𝑨𝑎 that only contains transitions between
eigenstates of 𝑯 whose associated eigenvalues, i.e., energies, differ by approximately
𝜔. The inverse temperature 𝛽 sets the transition weight 𝛾𝛽 (𝜔), which determines the
probability of occurrence for each Lindblad operator 𝑨̂𝑎 (𝜔). For 𝛽 > 0, the transition
weight 𝛾𝛽 (𝜔) favors cooling (𝜔 < 0) over heating (𝜔 > 0) transitions. The timescale
𝜏 sets the resolution (1/𝜏) at which 𝑨̂(𝜔) identifies the energy differences between
the eigenstates. The exact form of thermal Lindbladians is relatively complex, so we
defer further discussion to Appendix 4.10 when needed for the full technical proof.

4.6 Appendix:Local minima in quantum systems
In this appendix, we will introduce local minima in classical optimization, extend
the definition to quantum systems, and formalize the problem of finding a local
minimum in quantum systems.

Local minima in classical optimization
In this subsection, we describe the definition of local minima in finite-dimensional
Euclidean spaces, introduce a direct generalization to geometries with tangent spaces
and exponential maps (such as circles and spheres), and discuss the concept of
approximate local minima.

Local minima in Euclidean space

In classical optimization, one considers a real-valued function ℎ(𝒙) : X → R over
a domain X ⊆ R𝑛 consisting of 𝑛-dimensional vectors, and the goal is to find the
global minimum of ℎ(𝒙),

𝒙∗ = arg min
𝒙∈X

ℎ(𝒙).

Finding the global minimum is already NP-hard even when ℎ(𝒙) is a quadratic
function [144]. Instead of finding a global minimum, one typically resorts to finding
a local minimum 𝒙#, which is the minimum in a neighborhood around 𝒙#. The
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definition of a local minimum 𝒙# is that there exists a distance 𝛿 > 0, such that

ℎ(𝒙# + 𝜶) ≥ ℎ(𝒙#), for all ∥𝜶∥ ≤ 𝛿 and 𝒙# + 𝜶 ∈ X. (4.4)

Here the vector 𝜶 is of the same dimension as 𝒙#. We will refer to the above as
an exact local minimum because all points in the neighborhood have to be at least
ℎ(𝒙#). When there is an 𝜶 such that ℎ(𝒙# + 𝜶) is only lower than ℎ(𝒙#) by an
extremely small value, 𝒙# is still not an exact local minimum. We will also define
the approximate local minimum that relaxes this in Appendix 4.6.

Local minima in general geometrical spaces

The concept of a local minimum can be directly generalized to any geometry with
tangent spaces and exponential maps, such as spheres, density matrices, unitaries,
and more general Riemannian manifolds. Consider the tangent space 𝑇𝒙 and the
exponential map exp𝒙 of a point 𝒙. In a physical picture, the tangent space 𝑇𝒙 is the
space consisting of all vectors 𝜶 that describe the direction 𝜶̂ and magnitude ∥𝜶∥
for a particle moving at point 𝒙 on a manifold, and the exponential map exp𝒙 is a
function that takes in the vector 𝜶 ∈ 𝑇𝒙 encompassing the direction and magnitude
and outputs the point after moving 𝒙 in the direction 𝜶̂ with a magnitude ∥𝜶∥.5 To
visualize these concepts, we give two warm-up examples in the following.

Euclidean space: In an𝑚-dimensional Euclidean space, ∀𝒙 ∈ X = R𝑚, the tangent
space is

𝑇𝒙 = {𝜶 ∈ R𝑚}.

Given 𝜶 ∈ 𝑇𝒙 , when we move 𝒙 in the direction 𝜶̂ with a magnitude ∥𝜶∥, we obtain

exp𝒙 (𝜶) = 𝒙 + 𝜶.

We can see that this matches our physical picture.

Particle moving counter-clockwise on a circle: As another warm-up, let us
consider a unit circle X = {𝒙 ∈ R2 | ∥𝒙∥ = 1} where a particle can only move
counter-clockwise. In this example, the tangent space 𝑇𝒙 of a unit vector 𝒙 ∈ R2 with
∥𝒙∥ = 1 is the set of one-dimensional rays,

𝑇𝒙 = {𝛼 ∈ R | 𝛼 ≥ 0}.
5Strictly speaking, to define the exponential map, we need to know how to “transport” the vector

𝛼 along itself. Fortunately, this is natural for all cases we consider.
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The condition 𝛼 ≥ 0 comes from the constraint that the particle can only move
counter-clockwise (unidirectional rather than bidirectional). When we move 𝒙

according to 𝛼 ∈ 𝑇𝒙 , we obtain

exp𝒙 (𝛼) = exp

((
0 −𝛼
𝛼 0

))
𝒙 =

(
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

)
𝒙.

The larger 𝛼 is, the bigger the rotation is.

Using the language of tangent spaces and exponential maps, an exact local mini-
mum 𝒙# ∈ X of a function ℎ is equivalent to the statement that there exists 𝛿 > 0,
such that

ℎ(exp𝒙# (𝜶)) ≥ ℎ(𝒙#), for all 𝜶 ∈ 𝑇𝒙# , ∥𝜶∥ ≤ 𝛿. (4.5)

For the case of optimizing over 𝑚-dimensional Euclidean space, the condition of
Eq. (4.5) becomes the same as Eq. (4.4) noting exp𝒙# (𝜶) = 𝒙# + 𝜶. However, the
condition can be quite different when the tangent space changes. For example,
consider a 2-dimensional Euclidean space and the function ℎ(𝒙) = ∥𝒙∥2. In general,
there is only one exact local minimum 𝒙# = 0. However, if the particle can only move
to the right, the tangent space becomes 𝑇𝒙 = {𝜶 ∈ R2 | 𝜶1 ≥ 0} and every point 𝒙
with 𝒙1 ≥ 0 and 𝒙2 = 0 is an exact local minimum. Modifying the tangent space
changes the definition of neighborhood. Hence, the set of local minima would be
changed accordingly. We will consider the most suitable norm ∥𝜶∥ for each context.

Approximate local minima

While global minima are computationally hard to find, exact local minima are not
much easier. If there is an𝜶 such that ℎ(exp𝒙# (𝜶)) is lower than ℎ(𝒙#) by an extremely
small value, 𝒙# is not consider to be an exact local minimum. The requirement to
resolve an extremely small value in exact local minima leads to the fact that finding
an exact local minimum is still computationally hard [5]. Furthermore, exact local
minima are very sensitive to small perturbations to the function ℎ. Therefore, it is
desirable to define approximate local minima to promote computational efficiency
and robustness to small perturbations. We consider the following principle for
defining 𝜖-approximate local minima: if a function ℎ∗ is very close to ℎ, then an exact
local minimum of ℎ∗ is an approximate local minimum of ℎ̃. The formal definition is
given below.

Definition 4.6.1. (𝜖-approximate local minima) Given a spaceX with tangent spaces
𝑇𝑥 and exponential maps exp𝑥 for all 𝑥 ∈ X, and a function ℎ: X → R. 𝒙# is an
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𝜖-approximate local minimum of ℎ if 𝒙# is the exact local minimum of some function
ℎ∗, where Δ(𝒙) := ℎ∗(𝒙) − ℎ(𝒙) satisfies

|Δ(𝒙) | ≤ 𝜖 for each 𝒙 ∈ X, (𝜖-bounded),��Δ(exp𝒙# (𝜶))
�� ≤ 𝜖 ∥𝜶∥ for each 𝜶 ∈ 𝑇𝒙# , (𝜖-Lipschitz around 𝑥#).

A (𝜖 = 0)-approximate local minimum of ℎ is an exact local minimum of ℎ.

Under this definition, 𝒙# is an approximate local minimum of ℎ if there is an 𝒙 in the
neighborhood of 𝒙# such that ℎ(𝒙) is lower than ℎ(𝒙#) by an extremely small value.
We also give the following equivalent characterization based on looking at the local
neighborhood.

Proposition 4.6.1. (An equivalent characterization of 𝜖-approximate local minima)
𝒙# ∈ X is an 𝜖-approximate local minimum of the function ℎ if and only if there
exists a distance 𝛿 > 0,

ℎ(exp𝒙# (𝜶)) ≥ ℎ(𝒙#) − 𝜖 ∥𝜶∥ for each 𝜶 ∈ 𝑇𝒙# , ∥𝜶∥ ≤ 𝛿, (4.6)

i.e., all the neighboring points can at most be 𝜖 ∥𝜶∥ lower than the point 𝒙#.

Proof. For the “only if” statement, we recall the definition of an exact local minimum
that there exists 𝛿 > 0, such that ℎ∗(exp𝒙# (𝜶)) − ℎ∗(𝒙#) ≥ 0 for all 𝜶 ∈ 𝑇𝒙# and
∥𝜶∥ ≤ 𝛿. From the 𝜖-Lipschitz condition around 𝑥# for the function Δ(𝒙), we have

0 ≤ ℎ∗(exp𝒙# (𝜶)) − ℎ∗(𝒙#) = ℎ(exp𝒙# (𝜶)) − ℎ(𝒙#) + Δ(exp𝒙# (𝜶))
≤ ℎ(exp𝒙# (𝜶)) − ℎ(𝒙#) − 𝜖 ∥𝜶∥.

This concludes the “only if” statement.

For the “if” statement, consider 𝛿 to be of at most 1 and let

Δ(𝒙) :=

ℎ(𝒙#) − ℎ(𝒙), if 𝒙 = exp𝒙# (𝜶) for some 𝜶 ∈ 𝑇𝒙# , ∥𝜶∥ ≤ 𝛿,

0, otherwise.

We have 𝒙# is an exact local minimum for ℎ∗(𝒙) := ℎ(𝒙) + Δ(𝒙). Furthermore,
because ℎ(𝒙#) − ℎ(exp𝒙# (𝜶)) ≤ 𝜖 ∥𝜶∥ ≤ 𝜖 , both 𝜖-bounded and 𝜖-Lipschitz around
𝑥# are satisfied by Δ(𝒙). ■
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Defining local minima in quantum systems
To define local minima, we need to consider the domain X of elements 𝒙 ∈ X, the
optimization function ℎ(𝒙), the tangent space 𝑇𝒙 consisting of all possible directions
and magnitudes to move an element 𝒙, where 𝜶 ∈ 𝑇𝒙 encompass the direction 𝜶̂ and
the magnitude ∥𝜶∥, and the exponential map exp𝒙 (𝜶) that describes the resulting
element after moving 𝒙 under 𝜶.

In the following, we present two settings. The first setting in Appendix 4.6 considers
general quantum states that can evolve under thermodynamic processes induced
by interacting with a low-temperature heat bath. This setting defines local minima
under thermal perturbations. The second setting in Appendix 4.6 considers pure
quantum states that can move under any unitary generated by a set of local Hermitian
operators (e.g., all two-qubit Pauli observables 𝑷𝑖 ⊗ 𝑸 𝑗 , where 𝑷,𝑸 ∈ {𝑿,𝒀 , 𝒁}).
This setting defines local minima under local unitary perturbations.

Definition based on thermal perturbations

In quantum mechanics, the central optimization problem considers a function ℎ
defined by the Hamiltonian 𝑯 of an 𝑛-qubit quantum system,

ℎ(𝝆) = tr(𝑯𝝆),

which is the average energy of an 𝑛-qubit quantum state 𝝆. The ground states 𝝆(𝑔) of
𝑯 are the global minima of the optimization over ℎ(𝝆) = tr(𝑯𝝆) in the quantum state
space, i.e., the set of density operators (trace-one positive semidefinite matrices),

S2𝑛 := {𝝆 ∈ C2𝑛×2𝑛 | 𝝆† = 𝝆, 𝝆 ⪰ 0, tr(𝝆) = 1}.

When the quantum system is placed in a heat bath with inverse temperature 𝛽 ∈
[0,∞], time scale 𝜏 ∈ [0,∞], and system-bath interactions based on 𝑚 local jump
operators6 𝑨1, . . . , 𝑨𝑚, the system dynamics are effectively described by the thermal
Lindbladians L𝛽,𝜏,𝑯𝑎 ,

d𝝆(𝑡)
d𝑡

= −i[𝑯, 𝝆] +
𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎 [𝝆], (4.7)

where 𝛼𝑎 ≥ 0 for each 𝑎. After time 𝑡, the initial quantum state 𝝆 will evolve to

𝝆(𝑡) = exp

(
−i𝑡 [𝑯, ·] +

𝑚∑︁
𝑎=1

𝑡𝛼𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆).

6A local operator 𝑨𝑎 acts on O(1) qubits, but the set of qubits that 𝑨𝑎 acts on may not be
geometrically close.
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Each termL𝛽,𝜏,𝑯𝑎 is the thermal Lindbladian associated with a local jump operator 𝑨𝑎

(recall that local operator 𝑨𝑎 acts on a constant number of qubits). See Appendix 4.5
for a brief review of thermal Lindbladians, and Appendix 4.10 for the exact form of
thermal Lindbladians.

The coefficient 𝛼𝑎 ≥ 0 corresponds to the interaction strength of each jump operator
𝑨𝑎. As 𝛼𝑎 < 0 is equivalent to reversing time, we cannot have 𝛼𝑎 < 0 since
thermodynamic processes are irreversible in general. Different interaction strength
vector 𝜶 corresponds to a different system-bath interaction, and the thermodynamics
could be different. Because 𝜶 describes the probability of each jump occurring,
the natural norm ∥𝜶∥ for the interaction strength vector 𝜶 is ∥𝜶∥1. We denote
𝜶̂ = 𝜶/∥𝜶∥1 as the unit vector.

The thermodynamics equation in Eq. (4.7) consists of a fast-rotating term −i[𝑯, ·]
due to the system Hamiltonian 𝑯 that keeps the energy tr(𝑯𝝆) invariant and the
thermal perturbation term

∑
𝑎 𝛼𝑎L

𝛽,𝜏,𝑯
𝑎 due to the heat bath that cools the system.

Because −i[𝑯, ·] keeps the energy constant, only the thermal perturbation term∑
𝑎 𝛼𝑎L

𝛽,𝜏,𝑯
𝑎 is relevant for minimizing the energy ℎ(𝝆) = tr(𝑯𝝆). For notational

simplicity, we will only consider contributions from the thermal perturbations and
absorb the 𝑡 dependence in 𝑡𝛼𝑎 into 𝛼𝑎 since 𝜶 is an arbitrary nonnegative vector.
Together, the thermal perturbation on 𝝆 due to a heat bath with inverse temperature
𝛽, time scale 𝜏, and system-bath interactions generated by {𝑨𝑎}𝑎 can be written as

𝝆 → exp

(
𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆)

for a nonnegative vector 𝜶 ∈ R𝑚≥0 that combines the interaction strength vector and
time 𝑡.

A dictionary between all the relevant functions and variables for optimizing tr(𝑯𝝆)
in 𝑛-qubit quantum systems under a heat bath with inverse temperature 𝛽 and time
scale 𝜏 and optimizing ℎ(𝒙) in an 𝑛-dimensional Euclidean space is given as follows.

X = R𝑛 ↔ X = S2𝑛 , (domain)

𝒙 ∈ R𝑛 ↔ 𝝆 ∈ S2𝑛 , (an element)

ℎ(𝒙) ↔ ℎ(𝝆) = tr(𝑯𝝆), (optimization function)

𝑇𝒙 = {𝜶 ∈ R𝑛} ↔ {𝜶 ∈ R𝑚≥0}, (tangent space)

exp𝒙 (𝜶) = 𝒙 + 𝜶 ↔ exp

(
𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆) (exponential map).
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The formal definition of tangent spaces and exponential maps via Lindbladians is
given below.

Definition 4.6.2 (Tangent spaces of quantum states in a heat bath). Consider an
𝑛-qubit quantum state 𝝆, an 𝑛-qubit Hamiltonian 𝑯,𝑚 local jump operators {𝑨𝑎}𝑚

𝑎=1,
and parameters 𝛽, 𝜏 ≥ 0. The tangent space 𝑇 𝛽,𝜏,𝑯,{𝑨

𝑎}𝑚
𝑎=1

𝝆 under a heat bath with
an inverse temperature 𝛽, a time scale 𝜏, and system-bath interactions generated by
{𝑨𝑎}𝑎 is defined as

𝑇
𝛽,𝜏,𝑯,{𝑨𝑎}𝑚

𝑎=1
𝝆 :=

{
𝜶 ∈ R𝑚≥0

}
,

which is independent of 𝛽, 𝜏,𝑯, {𝑨𝑎}𝑚
𝑎=1. The exponential map exp𝛽,𝜏,𝑯,{𝑨

𝑎}𝑎
𝝆 is

defined as

exp𝛽,𝜏,𝑯,{𝑨
𝑎}𝑎

𝝆 (𝜶) := exp

(
𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆). (4.8)

With the definition of tangent spaces and exponential maps, we can define 𝜖-
approximate local minimum similar to the classical case in Eq. (4.6). We consider
the natural choice of ∥·∥1 for the nonnegative vector 𝜶 encompassing the probability
of each jump. Our results remain qualitatively the same for other reasonable vector
norms, such as Euclidean norm ∥·∥2 or ℓ𝑝 norm ∥·∥𝑝.

Definition 4.6.3 (Local minima under thermal perturbations). Given an 𝑛-qubit
Hamiltonian 𝑯, 𝑚 local jump operators {𝑨𝑎}𝑚

𝑎=1, and parameters 𝛽, 𝜏 ≥ 0, an
𝑛-qubit state 𝝆 ∈ S2𝑛 is an 𝜖-approximate local minimum of 𝑯 under thermal
perturbations with an inverse temperature 𝛽, a time scale 𝜏, and system-bath
interactions generated by {𝑨𝑎}𝑎 if there is a 𝛿 > 0 such that

tr
(
𝑯 exp𝛽,𝜏,𝑯,{𝑨

𝑎}𝑎
𝝆 (𝜶)

)
≥ tr(𝑯𝝆) − 𝜖 ∥𝜶∥1 for each 𝜶 ∈ R𝑚≥0, ∥𝜶∥1 ≤ 𝛿,

i.e., all the neighboring points can at most be 𝜖 ∥𝜶∥1 lower than the point 𝝆.

A central concept we will be using for characterizing local minima under thermal
perturbations is the energy gradient. The energy gradient at an 𝑛-qubit state 𝝆 under
thermal perturbation is determined by the following state-independent operator:

(energy gradient operator):
𝑚∑︁
𝑎=1
L†𝛽,𝜏,𝑯𝑎 (𝑯)𝒆𝑎,

where we denote L†𝛽,𝜏,𝑯𝑎 to be the Hermitian conjugate of L𝛽,𝜏,𝑯𝑎 . The energy
gradient operator is a vector of Hermitian observables. The terminology stems from
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the fact that evaluating the energy gradient operator on a state 𝝆 gives the energy
gradient at the state 𝝆,

tr

(
𝑯 exp

(
−i

𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆)

)
= tr(𝑯𝝆)+𝜶·

𝑚∑︁
𝑎=1

tr
(
L†𝛽,𝜏,𝑯𝑎 (𝑯)𝝆

)
𝒆𝑎+O(∥𝛼∥2).

In Appendix 4.8, we provide more discussions about the energy gradient.

Thermal perturbations depend on how the quantum system is interacting with the
heat bath. Local minima defined above are local minima of the Hamiltonian 𝑯 under
thermal perturbations induced by all system-bath interactions generated by the jump
operators {𝑨𝑎}𝑎.

Remark 4.6.0.1 (Thermodynamics at local minima). Given a specific system-
bath interaction, inverse temperature 𝛽, and time scale 𝜏, there could still be
thermodynamics at a local minimum. For example, when 𝛽 is not infinitely large,
a local minimum could still move to other higher-energy states due to thermal
fluctuations. Another example is when the local minimum is on a large and flat
plateau, then the local minimum can still perform a random walk on the plateau.

Definition based on local unitary perturbations

Inspired by variation quantum eigensolvers [35, 77], another natural definition for
tangent spaces, exponential maps, and local minima considers pure states and local
unitary perturbation. Given𝑚 local Hermitian operators 𝒉1, . . . , 𝒉𝑚 with ∥𝒉𝑎∥∞ = 1.
Here, local means that each operator 𝒉𝑎 only acts on a constant number of qubits.
We can consider all possible local unitary perturbations formed by performing
time evolution under a Hamiltonian generated by the set {𝒉𝑎}𝑎 of local Hermitian
operators,

𝑚∑︁
𝑎=1

𝛼𝑎𝒉𝑎,

for any 𝜶 ∈ R𝑚. Since the time evolution under a Hamiltonian is always reversible,
there is no additional requirement that 𝜶 must be in the nonnegative orthant. Similar
to thermal perturbations, we will absorb the contribution of evolution time 𝑡 into
the arbitrary vector 𝜶. Consider the following dictionary between all the relevant
functions and variables for optimizing ⟨𝜓 |𝑯 |𝜓⟩ in 𝑛-qubit pure state |𝜓⟩ under local
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unitary perturbation and optimizing ℎ(𝒙) in an 𝑛-dimensional Euclidean space.

X = R𝑛 ↔ X = {|𝜓⟩ ∈ C2𝑛 |⟨𝜓 |𝜓⟩ = 1}, (domain)

𝒙 ∈ R𝑛 ↔ |𝜓⟩ ∈ C2𝑛 , ⟨𝜓 |𝜓⟩ = 1, (an element)

ℎ(𝒙) ↔ ℎ( |𝜓⟩) = ⟨𝜓 |𝑯 |𝜓⟩, (optimization function)

𝑇𝒙 = {𝜶 ∈ R𝑛} ↔ {𝜶 ∈ R𝑚}, (tangent space)

exp𝒙 (𝜶) = 𝒙 + 𝜶 ↔ exp

(
𝑚∑︁
𝑎=1

𝛼𝑎𝒉𝑎

)
|𝜓⟩ (exponential map).

The tangent space and the exponential map can be formally defined as follows.

Definition 4.6.4 (Tangent spaces of pure quantum states under local unitaries). Given
an 𝑛-qubit pure quantum state |𝜓⟩ and 𝑚 local Hermitian operators {𝒉𝑎}𝑎. The
tangent space 𝑇𝜓 is defined as

𝑇
{𝒉𝑎}𝑎
𝜓

:= R𝑚,

and the exponential map exp𝜓 is defined as

exp{𝒉𝑎}𝑎
𝜓
(𝜶) := exp

(
−𝑖

∑︁
𝑎

𝛼𝑎𝒉𝑎

)
|𝜓⟩.

When the set {𝒉𝑎}𝑎 is the set of all two-qubit Pauli observables, the tangent space 𝑇𝜓
and exponential map exp𝜓 define a Riemannian manifold that connects all 𝑛-qubit
pure states through unitary evolutions. This Riemannian manifold is the state version
of the manifold over quantum unitaries defined in a seminal work on the geometry of
quantum computation [140].

The optimization function is ℎ( |𝜓⟩) = ⟨𝜓 |𝑯 |𝜓⟩, the average energy of the Hamil-
tonian 𝑯 for the pure state |𝜓⟩. Performing gradient descent on this pure state
Riemannian manifold to minimize ⟨𝜓 |𝑯 |𝜓⟩ is equivalent to performing adaptive
variational quantum optimization [77] to minimize the Hamiltonian 𝑯. The local
minima can be defined similarly as before. To be consistent with local minima under
thermal perturbations, we consider the ℓ1-norm ∥𝜶∥1. All of our results remain
qualitatively the same for other reasonable vector norms, such as the Euclidean norm
or ℓ𝑝 norm.

Definition 4.6.5 (local minima under local unitary perturbations). Given an 𝑛-qubit
Hamiltonian 𝑯, and 𝑚 local Hermitian operators {𝒉𝑎}𝑎. A pure state |𝜓⟩ is an



223

𝜖-approximate local minimum of 𝑯 under local unitary perturbations generated by
{𝒉𝑎}𝑎 if

exp{𝒉𝑎}𝑎
𝜓
(𝜶)†𝑯 exp{𝒉𝑎}𝑎

𝜓
(𝜶) ≥ ⟨𝜓 |𝑯 |𝜓⟩−𝜖 ∥𝜶∥1, for each 𝜶 ∈ 𝑇 {𝒉𝑎}𝑎

𝜓
, ∥𝜶∥1 ≤ 𝛿.

for some 𝛿 > 0.

This is also a valid definition of local minima in quantum systems. However, we will
later show that the optimization landscape defined in this way always has a very large
barren plateau. Hence, the problem of finding a local minimum defined in this way
will be a trivial problem.

The problem of finding a local minimum in quantum systems
With these definitions of local minima, we can define the task of finding a local
minimum in a straightforward manner. To formulate the problem to have purely
classical output, we focus on outputting a simple property, such as the expectation
value of a local observable 𝑶, of an approximate local minimum 𝝆. Furthermore,
we only consider Hamiltonians 𝑯 that can be written as a sum of local observables,
commonly referred to as local Hamiltonians in the literature.

While there can be many approximate local minima, we consider the algorithm to be
successful if the algorithm outputs the property of any one of the local minima.

Definition 4.6.6 (Finding a local minimum under low-temperature thermal perturba-
tions). Given error 𝜖 > 0, inverse temperature 𝛽 ≥ 0, time scale 𝜏 ≥ 0, an 𝑛-qubit
local Hamiltonian 𝑯, 𝑚 local jump operators {𝑨𝑎}𝑎, and a local observable 𝑶 with
∥𝑶∥∞ ≤ 1. Output a real value 𝑣 ∈ [−1, 1], such that 𝑣 is 𝜖-close to tr(𝑶𝝆) for an
𝜖-approximate local minimum 𝝆 of 𝑯 under thermal perturbations with an inverse
temperature 𝛽, a time scale 𝜏, and system-bath interactions generated by {𝑨𝑎}𝑎.

Definition 4.6.7 (Finding a local minimum under local unitary perturbations). Given
error 𝜖 > 0, an 𝑛-qubit local Hamiltonian 𝑯, 𝑚 local Hermitian operators {𝒉𝑎}𝑎,
and a local observable 𝑶 with ∥𝑶∥∞ ≤ 1. Output a real value 𝑣 ∈ [−1, 1], such that
𝑣 is 𝜖-close to ⟨𝜓 |𝑶 |𝜓⟩ for an 𝜖-approximate local minimum |𝜓⟩ of the Hamiltonian
𝑯 under local unitary perturbations generated by {𝒉𝑎}𝑎.

Ideally, we would like the two problems to be quantumly easy and classically hard.
However, we will show that only the first problem based on thermal perturbations is
both quantumly easy and classically hard. The second problem based on local unitary
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perturbation is classically trivial due to the presence of too many local minima in an
exponentially large barren plateau.

The importance of irreversible perturbations
Suppose that the perturbations P𝜶 parameterized by a polynomial-size vector 𝜶
are reversible P−𝜶 = P−1

𝜶 and are smooth. The following argument shows that the
energy landscape must have doubly-exponentially many approximate local minima.

Given any 𝑛-qubit state 𝝆 and any 𝑛-qubit Hamiltonian 𝑯 with ∥𝑯∥∞ = poly(𝑛).
Consider a gradient descent algorithm that starts at 𝝆. Because ∥𝑯∥∞ = poly(𝑛),
after a polynomial number of steps 𝑇 , the gradient descent algorithm can find an
approximate local minimum 𝝆# of 𝑯,

𝝆# = P𝜶𝑇
. . .P𝜶1 (𝝆).

From the reversibility of the perturbations, we have

𝝆 = P−𝜶1 . . .P−𝜶𝑇
(𝝆#).

Consider a covering net N for the set of approximate local minima of 𝑯. Because
the packing net for all 𝑛-qubit states is of size

exp(exp(Ω(𝑛))),

and the covering net for the perturbations is of size

exp(poly(𝑛)).

We have the following relationship,

exp(𝑇 · poly(𝑛)) |N | = exp(exp(Ω(𝑛))).

Hence, we can see that

|N | = exp(exp(Ω(𝑛)) − poly(𝑛)) = exp(exp(Ω(𝑛)))

since exp(Ω(𝑛)) grows much faster than poly(𝑛).

4.7 Appendix:Characterizing local minima under local unitary perturbations
Now that we have defined local minima in quantum systems, we present a set of
results characterizing properties of local minima in quantum systems in this and
the next appendix. These results provide a further understanding of local minima
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in quantum systems and are essential to establishing the main theorems given in
Appendix 4.9.

We begin by looking at the energy landscape defined by local unitary perturbations.
We will prove a central lemma portraying the energy landscapes defined by local
unitary perturbations for pure quantum systems. The lemma states that most pure
quantum states |𝜓⟩ are local minima under local unitary perturbations with an
expectation value close to tr(𝑶)/2𝑛 = tr(𝑶 (𝑰/2𝑛)) for any local observable 𝑶.
Furthermore, the proof shows that the gradient at a randomly sampled local minimum
|𝜓⟩ is exponentially close to zero.

Lemma 4.7.1 and its proof provide the following physical picture. In the energy
landscape defined by local unitary perturbations, there is an overwhelmingly large
barren plateau consisting of local minima with almost equal energy as their neighbors.
Furthermore, these local minima behave like the maximally mixed state 𝑰/2𝑛, which
makes the task of predicting properties for a local minimum under local unitary
perturbations classically trivial to solve.

Given𝑚 local Hermitian operators {𝒉𝑎}𝑎 and 𝜶 ∈ R𝑚. By applying Taylor’s theorem
in Prop. 4.8.1 to the one-dimensional function

𝑔(𝑡) = exp{𝒉𝑎}𝑎
𝜓
(𝑡𝜶̂)†𝑯 exp{𝒉𝑎}𝑎

𝜓
(𝑡𝜶̂)

for 0 ≤ 𝑡 ≤ ∥𝜶∥1 and 𝜶̂ = 𝜶/∥𝜶∥1, we can obtain the following proposition.

Proposition 4.7.1 (Taylor’s theorem for local unitary perturbations). Given an 𝑛-qubit
Hamiltonian 𝑯, 𝜶 ∈ R𝑛, 𝑚 local Hermitian operators {𝒉𝑎}𝑎, and an 𝑛-qubit pure
state |𝜓⟩. We have

exp𝜓 (𝜶)†𝑯 exp𝜓 (𝜶) = ⟨𝜓 |𝑯 |𝜓⟩ − i⟨𝜓 |
[
𝑯,

𝑚∑︁
𝑎=1

𝛼𝑎𝒉𝑎

]
|𝜓⟩

− 1
2

𝑚∑︁
𝑎=1

𝑚∑︁
𝑎′=1

𝛼𝑎𝛼𝑎′ exp𝜓 (𝜂𝜶̂)† [[𝑯, 𝒉𝑎], 𝒉𝑎′] exp𝜓 (𝜂𝜶̂),

for some 0 ≤ 𝜂 ≤ ∥𝜶∥1.

Lemma 4.7.1 (A random state is a local minimum under local unitary perturbations;
Restatement of Lemma 4.4.1). Consider a large problem size 𝑛. Given error
𝜖 ≥ 1/2𝑛/4, an 𝑛-qubit local Hamiltonian 𝑯 with ∥𝑯∥∞ = poly(𝑛), 𝑚 local
Hermitian operators {𝒉𝑎}𝑎 with𝑚 = poly(𝑛) and ∥𝒉𝑎∥∞ = 1, and a local observable



226

𝑶 with ∥𝑶∥∞ ≤ 1. With probability at least 1−1/22𝑛/4 , an 𝑛-qubit state |𝜓⟩ sampled
uniformly at random is an 𝜖-approximate local minimum of 𝑯 under local unitary
perturbations generated by {𝒉𝑎}𝑎 and ⟨𝜓 |𝑶 |𝜓⟩ is 𝜖-close to tr(𝑶)/2𝑛.

Proof. From Lemma III.5 in [87], for any Pauli operator 𝑸 ∈ {𝑰, 𝑿,𝒀 , 𝒁}⊗𝑛 \ {𝑰⊗𝑛}
and a random 𝑛-qubit pure state |𝜓⟩ sampled uniformly, we have

Pr
|𝜓⟩
[|⟨𝜓 |𝑸 |𝜓⟩| > 𝛿] ≤ 2 exp

(
−2𝑛𝛿2

10

)
,

for any 0 ≤ 𝛿 ≤ 1. Let 𝛿 = 1/2𝑛/3. Then, we have

Pr
|𝜓⟩

[
|⟨𝜓 |𝑸 |𝜓⟩| > 1

2𝑛/3

]
≤ 2 exp

(
−2𝑛/3

10

)
.

Recall that any Hermitian operator has a unique Pauli decomposition:

𝑯 =
∑︁

𝑷∈{𝑰,𝑿,𝒀 ,𝒁}⊗𝑛
𝛼𝑷 (𝑯)𝑷,

𝑶 =
∑︁

𝑷∈{𝑰,𝑿,𝒀 ,𝒁}⊗𝑛
𝛼𝑷 (𝑶)𝑷,

𝒉𝑎 =
∑︁

𝑷∈{𝑰,𝑿,𝒀 ,𝒁}⊗𝑛
𝛼𝑷 (𝒉𝑎)𝑷,

where the Pauli coefficients 𝛼𝑷 (·) satisfy∑︁
𝑷∈{𝑰,𝑿,𝒀 ,𝒁}⊗𝑛

𝛼2
𝑷 (𝑯) ≤ ∥𝑯∥

2
∞ = poly(𝑛), (4.9)∑︁

𝑷∈{𝑰,𝑿,𝒀 ,𝒁}⊗𝑛
𝛼2
𝑷 (𝑶) ≤ ∥𝑶∥

2
∞ = 1. (4.10)∑︁

𝑷∈{𝑰,𝑿,𝒀 ,𝒁}⊗𝑛
𝛼2
𝑷 (𝒉𝑎) ≤ ∥𝒉𝑎∥

2
∞ = 1. (4.11)

Let 𝑆0 be the set of Pauli operator 𝑷 with nonzero Pauli coefficients 𝛼𝑷 in the Pauli
decompositions of either 𝑯 or 𝑶,

𝑆0 =
{
𝑷 ∈ {𝑰, 𝑿,𝒀 , 𝒁}⊗𝑛 \ {𝑰⊗𝑛} | 𝛼𝑷 (𝑯) ≠ 0 or 𝛼𝑷 (𝑶) ≠ 0

}
,

and 𝑆𝐸 be the set of Pauli operator 𝑷 with nonzero Pauli coefficients 𝛼𝑷 in the Pauli
decompositions of 𝒉𝑎 for some 𝑎,

𝑆𝐸 =
{
𝑷 ∈ {𝑰, 𝑿,𝒀 , 𝒁}⊗𝑛 \ {𝑰⊗𝑛} | ∃1 ≤ 𝑎 ≤ 𝑚, 𝛼𝑷 (𝒉𝑎) ≠ 0

}
.
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Because 𝑯 is a local Hamiltonian and 𝑶 is a local observable, we have |𝑆0 | = poly(𝑛).
Because 𝒉𝑎 is a local observable, we have |𝑆𝐸 | = O(𝑚) = poly(𝑛). We then define

𝑆 =

{
𝑷′ ∈ {𝑰, 𝑿,𝒀 , 𝒁}⊗𝑛 \ {𝑰⊗𝑛} | ∃𝑸 ∈ 𝑆0, 𝑷 ∈ 𝑆𝐸 , tr(𝑷′[𝑸, 𝑷]) ≠ 0

}
∪ 𝑆0.

Because |𝑆0 | = poly(𝑛) and [𝑸, 𝑷] is another Pauli observable up to a phase, we
have |𝑆 | ≤ |𝑆𝐸 | |𝑆1 | = poly(𝑛). The union bound yields the following probabilistic
statement:

1 − Pr
|𝜓⟩

[
|⟨𝜓 |𝑸 |𝜓⟩| < 1

2𝑛/3
, ∀𝑸 ∈ 𝑆

]
≤ 2|𝑆 | exp

(
−2𝑛/3

10

)
≤ poly(𝑛)

22𝑛/3/10
<

1
22𝑛/4

,

where the last inequality holds for any large 𝑛 since 22𝑛/3/10−2𝑛/4 grows much faster
than any polynomial of 𝑛. We condition on the event for the random state |𝜓⟩ that

|⟨𝜓 |𝑸 |𝜓⟩| < 1
2𝑛/3

for all 𝑸 ∈ 𝑆,

referred to as event 𝐸∗. We can obtain the following from Cauchy-Schwarz inequality:

|⟨𝜓 | [𝑯, 𝒉𝑎] |𝜓⟩| ≤
∑︁

𝑸,𝑷∈{𝑰,𝑿,𝒀 ,𝒁}⊗𝑛

��𝛼𝑸 (𝑯)��|𝛼𝑷 (𝒉𝑎) | |⟨𝜓 | [𝑸, 𝑷] |𝜓⟩|

≤
√︄ ∑︁

𝑸,𝑷∈{𝑰,𝑿,𝒀 ,𝒁}⊗𝑛
𝛼2
𝑸
(𝑯)𝛼2

𝑷 (𝒉𝑎)
√︂
|𝑆 |

22𝑛/3 ≤
poly(𝑛)

2𝑛/3
,(4.12)

where the second inequality uses the conditioning on event 𝐸∗ and [𝑸, 𝑷] ≠ 0 =⇒
𝑸, 𝑷 ≠ 𝑰⊗𝑛, and the third inequality uses |𝑆 | = poly(𝑛) and Eq. (4.9), (4.11).
Similarly, we also have

|⟨𝜓 | [ [𝑯, 𝒉𝑎], 𝒉𝑎′] |𝜓⟩| ≤
poly(𝑛)

2𝑛/3
.

Using Eq. (4.10) instead of Eq. (4.9), we can similarly obtain

|⟨𝜓 |𝑶 |𝜓⟩ − 𝛼𝐼⊗𝑛 (𝑶) | =
����⟨𝜓 |𝑶 |𝜓⟩ − tr(𝑂)

2𝑛

���� ≤ poly(𝑛)
2𝑛/3

<
1

2𝑛/4
≤ 𝜖 (4.13)

for any large problem size 𝑛 since 2𝑛/3 grows much faster than any polynomial in 𝑛.
We now show that |𝜓⟩ is an 𝜖-approximate local minimum of 𝑯 under local unitary
perturbations. To establish this claim, from Def. 4.6.5, we need to prove that

exp𝜓 (𝜶)†𝑯 exp𝜓 (𝜶) ≥ ⟨𝜓 |𝑯 |𝜓⟩ − 𝜖 ∥𝜶∥1, for each 𝜶 ∈ 𝑇𝜓 , ∥𝜶∥1 ≤ 𝛿



228

for some 𝛿 > 0. Recall from Lemma 4.7.1 based on Taylor’s theorem (Prop. 4.8.1),
we have

exp𝜓 (𝜶)†𝑯 exp𝜓 (𝜶) = ⟨𝜓 |𝑯 |𝜓⟩ − i⟨𝜓 |
[
𝑯,

𝑚∑︁
𝑎=1

𝛼𝑎𝒉𝑎

]
|𝜓⟩

− 1
2

𝑚∑︁
𝑎=1

𝑚∑︁
𝑎′=1

𝛼𝑎𝛼𝑎′ exp𝜓 (𝜂𝜶̂)† [[𝑯, 𝒉𝑎], 𝒉𝑎′] exp𝜓 (𝜂𝜶̂),

for some 0 ≤ 𝜂 ≤ ∥𝜶∥1. For the linear term, from Eq. (4.12) bounding |⟨𝜓 | [𝑯, 𝒉𝑎] |𝜓⟩|,
we have �����−i⟨𝜓 |

[
𝑯,

𝑚∑︁
𝑎=1

𝛼𝑎𝒉𝑎

]
|𝜓⟩

����� ≤ 𝑚∑︁
𝑎=1
|𝛼𝑎 |

poly(𝑛)
2𝑛/3

≤ poly(𝑛)
2𝑛/3

∥𝜶∥1,

where the last inequality uses 𝑚 = poly(𝑛). For the quadratic residual term, we have�����12 𝑚∑︁
𝑎=1

𝑚∑︁
𝑎′=1

𝛼𝑎𝛼𝑎′ exp𝜓 (𝜂𝜶̂)† [[𝑯, 𝒉𝑎], 𝒉𝑎′] exp𝜓 (𝜂𝜶̂)
����� ≤ 2∥𝜶∥21∥𝑯∥∞ = poly(𝑛)∥𝜶∥21.

Together, we can combine the inequalities to get

exp𝜓 (𝜶)†𝑯 exp𝜓 (𝜶) ≥ ⟨𝜓 |𝑯 |𝜓⟩ −
poly(𝑛)

2𝑛/3
∥𝜶∥1 − poly(𝑛)∥𝜶∥21

≥ ⟨𝜓 |𝑯 |𝜓⟩ − 0.5𝜖 ∥𝜶∥1 − poly(𝑛)∥𝜶∥21,

where the second inequality holds for any large problem size 𝑛 since 𝜖 ≥ 1/2𝑛/4

decays much slower than poly(𝑛)/2𝑛/3. For any ∥𝜶∥ < 𝛿 := 0.5𝜖/poly(𝑛), we have

exp𝜓 (𝜶)†𝑯 exp𝜓 (𝜶) ≥ ⟨𝜓 |𝑯 |𝜓⟩ − 0.5𝜖 ∥𝜶∥1 − 0.5𝜖 ∥𝜶∥1 = ⟨𝜓 |𝑯 |𝜓⟩ − 𝜖 ∥𝜶∥1,

which shows that |𝜓⟩ is an 𝜖-approximate local minimum of 𝑯 under local unitary
perturbations. Finally, because the event 𝐸∗ occurs with probability at least 0.99, by
combining Eq. (4.13) and the above, we establish the claim that, with high probability,
a random 𝑛-qubit state |𝜓⟩ sampled uniformly is an 𝜖-approximate local minimum
of 𝑯 under local unitary perturbations and ⟨𝜓 |𝑶 |𝜓⟩ is 𝜖-close to tr(𝑂)/2𝑛. ■

4.8 Appendix:Characterizing local minima under thermal perturbations
In this appendix, we characterize local minima under thermal perturbations. In
particular, we will focus on the gradients of the energy landscape, conditions of local
minima, and conditions on the Hamiltonian 𝑯 that ensure approximate local minima
are approximate global minima, i.e., there are no suboptimal local minima in the
energy landscape.
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Energy gradients
The energy landscape is much more nontrivial when defined under thermal perturba-
tions. We can study the energy landscape by looking at the energy gradients. Recall
the exponential map exp𝛽,𝜏,𝑯,{𝑨

𝑎}𝑎
𝝆 in Eq. (4.8) and consider the one-dimensional

function

𝑔(𝑡) = tr
(
𝑯 exp𝛽,𝜏,𝑯,{𝑨

𝑎}𝑎
𝝆 (𝑡𝜶̂)

)
= tr

(
𝑯 exp

(
𝑚∑︁
𝑎=1

𝑡𝛼̂𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆)

)
for 0 ≤ 𝑡 ≤ ∥𝜶∥1, 𝜶̂ = 𝜶/∥𝜶∥1. We have the following derivatives:

𝑑𝑔

𝑑𝑡
(𝑡) = tr

(
𝑯

∑︁
𝑎

𝛼̂𝑎L𝛽,𝜏,𝑯𝑎

[
exp

(
𝑚∑︁
𝑎=1

𝑡𝛼̂𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆)

])
,

𝑑2𝑔

𝑑𝑡2
(𝑡) = tr

(
𝑯

∑︁
𝑎

∑︁
𝑎′
𝛼̂𝑎𝛼̂𝑎′L𝛽,𝜏,𝑯𝑎′

[
L𝛽,𝜏,𝑯𝑎

[
exp

(
𝑚∑︁
𝑎=1

𝑡𝛼̂𝑎L𝛽,𝜏,𝑯𝑎

)
(𝝆)

] ])
.

Recall Taylor’s theorem with the Lagrange form of the remainder from standard
single-variate calculus. By applying Taylor’s theorem in Prop. 4.8.1 to 𝑔(𝑡), we can
obtain Prop. 4.8.2.

Proposition 4.8.1 (Taylor’s theorem). Let 𝑔(𝑡) : R→ R be twice differentiable on
the open interval between 0 and 𝑡 and 𝑔′(𝑡) continuous on the closed interval between
0 and 𝑡. Then

𝑔(𝑡) = 𝑔(0) + 𝑔′(0)𝑡 + 1
2
𝑔′′(𝜂)𝑡2,

for some real number 𝜂 between 0 and 𝑡.

Proposition 4.8.2 (Taylor’s theorem for thermal perturbations). Given an 𝑛-qubit
Hamiltonian 𝑯, 𝑚 local jump operators {𝑨𝑎}𝑎, parameters 𝛽, 𝜏 ≥ 0, 𝜶 ∈ R𝑚≥0, and
an 𝑛-qubit state 𝝆 ∈ S2𝑛 .

tr
(
𝑯 exp𝛽,𝜏,𝑯,{𝑨

𝑎}𝑎
𝝆 (𝜶)

)
= tr(𝑯𝝆) +

∑︁
𝑎

𝛼𝑎 tr(𝑯L𝛽,𝜏,𝑯𝑎 [𝝆])

+ 1
2

∑︁
𝑎

∑︁
𝑎′
𝛼𝑎𝛼𝑎′ tr

(
𝑯L𝛽,𝜏,𝑯

𝑎′ [L𝛽,𝜏,𝑯𝑎 [exp𝛽,𝜏,𝑯,{𝑨
𝑎}𝑎

𝝆 (𝜂𝜶̂)]]
)

for some 0 ≤ 𝜂 ≤ ∥𝜶∥1.

We define the energy gradients as follows. We separately consider a positive and
a negative energy gradient. The motivation of the definition is that the positive
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(negative) energy gradient should determine the direction of the thermodynamics
that causes the energy of the state to increase (decrease). Because our goal is to
understand local minima, we will focus on the negative energy gradient. When one
studies local maxima, one will focus on the positive energy gradient.

Definition 4.8.1 (Energy gradients of a state under thermal perturbations). Given an
𝑛-qubit Hamiltonian 𝑯, 𝑚 local jump operators {𝑨𝑎}𝑎, and parameters 𝛽, 𝜏 ≥ 0,
the gradients of an 𝑛-qubit state 𝝆 ∈ S2𝑛 under thermal perturbations with inverse
temperature 𝛽, time scale 𝜏, and system-bath interactions generated by {𝑨𝑎}𝑎 is
defined as

∇
+
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆) :=

𝑚∑︁
𝑎=1

max
(
+ tr

(
𝑯L𝛽,𝜏,𝑯𝑎 [𝝆]

)
, 0

)
𝒆𝑎, (positive energy gradient)

∇
−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆) :=

𝑚∑︁
𝑎=1

max
(
− tr

(
𝑯L𝛽,𝜏,𝑯𝑎 [𝝆]

)
, 0

)
𝒆𝑎, (negative energy gradient)

∇𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆) :=
𝑚∑︁
𝑎=1

tr
(
𝑯L𝛽,𝜏,𝑯𝑎 [𝝆]

)
𝒆𝑎, (energy gradient)

where 𝒆𝑎 is the unit vector along the 𝑎-th coordinate.

Since the set of jump operators {𝑨𝑎}𝑎 will be fixed, we will sometimes drop the
dependence on {𝑨𝑎}𝑎 for notational simplicity. The positive/negative energy gradient
belongs to the tangent space R𝑚≥0, but the energy gradient

∇𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆) = ∇
+
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆) − ∇

−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆)

may not be in the tangent space due to negative values. So, in general, one could
not move in the direction of the energy gradient. However, one could move in the
direction of the positive or negative energy gradient. It is instructive to think about
the Heisenberg picture and define the energy gradient operator.

Definition 4.8.2 (Energy gradient operator). Given an 𝑛-qubit Hamiltonian 𝑯, 𝑚
local jump operators {𝑨𝑎}𝑎, inverse temperature 𝛽 ≥ 0, and time scale 𝜏 ≥ 0, the
energy gradient operators under thermal perturbations is

𝑚∑︁
𝑎=1
L†𝛽,𝜏,𝑯𝑎 [𝑯] 𝒆𝑎,

which is a vector of 𝑛-qubit Hermitian operators.
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We can provide an upper and lower bound to the energy gradients by combining
Prop. 4.10.2 and Prop. 4.10.3 to obtain the following proposition.

Proposition 4.8.3 (Bound on the energy gradients). Given an 𝑛-qubit Hamiltonian
𝑯, 𝑚 local jump operators {𝑨𝑎}𝑎, inverse temperature 𝛽 ≥ 0, and time scale 𝜏 ≥ 0,

∥L†𝛽,𝜏,𝑯𝑎 (𝑯)∥∞ ≤ 3∥𝑯∥∞

for all 𝑎 = 1, . . . , 𝑚.

The 𝛽, 𝜏 →∞ limit (zero temperature heat bath with an infinite time scale) recovers
the Davies’ generator L∞,∞,𝑯𝑎 . The Davies’ generator takes an energy eigenvector
|𝜓 𝑗 ⟩⟨𝜓 𝑗 | of 𝑯 to energy eigenvectors with equal or lower energy, i.e., for any 𝑡 ≥ 0,

⟨𝜓𝑘 | exp
(
𝑡L∞,∞,𝑯𝑎

) (
|𝜓 𝑗 ⟩⟨𝜓 𝑗 |

)
|𝜓𝑘⟩ = 0 for any 𝑗 , 𝑘 such that 𝐸𝑘 > 𝐸 𝑗 .

We can use the above to obtain the following proposition.

Proposition 4.8.4 (Vanishing positive energy gradient). For 𝛽 = 𝜏 = ∞, we have

L∞,∞,𝑯†𝑎 [𝑯] ⪯ 0, for each 𝑎.

Hence, the positive energy gradient vanishes ∇+∞,∞(𝑯, 𝝆) = 0 and ∇∞,∞(𝑯, 𝝆) =
−∇−∞,∞(𝑯, 𝝆) for all Hamiltonian 𝑯 and state 𝝆.

This proposition illustrates that thermal perturbations induced by a zero-temperature
heat bath with an infinite time scale should only absorb energy from the quantum
system and not cause the energy to increase. Hence, the positive energy gradient
must vanish.

A sufficient condition and a necessary condition of local minima
Using the negative gradient, we can show a necessary condition and a sufficient
condition for local minima under thermal perturbations. They differ only slightly
(< vs ≤). From the conditions, we can see that local minima are well characterized
by the negative energy gradient. Recall that ∥𝒙∥∞ = max𝑖 |𝑥𝑖 | is the ℓ∞ norm for a
finite-dimensional vector 𝒙.

Lemma 4.8.1 (A sufficient condition for local minima under thermal perturbations).
Given 𝜖 > 0, an 𝑛-qubit Hamiltonian 𝑯, 𝑚 local jump operators {𝑨𝑎}𝑎, and
parameters 𝛽, 𝜏 ≥ 0, an 𝑛-qubit state 𝝆 with a small negative energy gradient,

∥∇−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆)∥∞ < 𝜖, (4.14)
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is an 𝜖-approximate local minimum 𝝆 of the 𝑛-qubit Hamiltonian 𝑯 under thermal
perturbations with inverse temperature 𝛽, time scale 𝜏, and system-bath interactions
generated by {𝑨𝑎}𝑎.

Proof. Consider 𝐶𝐿 = max𝑎 ∥L𝛽,𝜏,𝑯𝑎 ∥1−1 > 0 and 𝐶𝐻 = ∥𝑯∥∞. Given 𝜶 ∈ R𝑚≥0, we
have �����∑︁

𝑎

∑︁
𝑎′
𝛼𝑎𝛼𝑎′ tr(𝑯L𝛽,𝜏,𝑯𝑎′ [L𝛽,𝜏,𝑯𝑎 [𝝈]])

����� ≤ 𝐶2
𝐿𝐶𝐻 ∥𝜶∥21,

for any state 𝝈. Let 𝜖0 := ∥∇−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆)∥∞ < 𝜖 . From 𝛼𝑎 ≥ 0 and Cauchy-

Schwarz inequality,∑︁
𝑎

𝛼𝑎 tr(𝑯L𝛽,𝜏,𝑯𝑎 [𝝆]) ≥ −
∑︁
𝑎

|𝛼𝑎 |max
(
− tr

(
𝑯L𝛽,𝜏,𝑯

𝑖
[𝝆]

)
, 0

)
≥ −∥𝜶∥1𝜖0.

Together, Taylor’s theorem for thermal perturbations (Prop. 4.8.2) implies

tr
(
𝑯 exp𝛽,𝜏,𝑯,{𝑨

𝑎}𝑎
𝝆 (𝜶)

)
≥ tr(𝑯𝝆) − ∥𝜶∥1𝜖0 −

∥𝜶∥21
2

𝐶2
𝐿𝐶𝐻 ,

for any 𝜶 ∈ R𝑚≥0. From the above, we see that for any ∥𝜶∥21 < 𝛿 := 2(𝜖−𝜖0)
𝐶2
𝐿
𝐶𝐻

,

tr
(
𝑯 exp𝛽,𝜏,𝑯,{𝑨

𝑎}𝑎
𝝆 (𝜶)

)
≥ tr(𝑯𝝆) − 𝜖 ∥𝜶∥1 + ∥𝜶∥1

(
(𝜖 − 𝜖0) −

𝐶2
𝐿
𝐶𝐻

2
∥𝜶∥21

)
≥ tr(𝑯𝝆) − 𝜖 ∥𝜶∥1.

So, 𝝆 is an 𝜖-approximate local minimum of 𝑯 under thermal perturbations with
inverse temperature 𝛽, time scale 𝜏, and system-bath interactions generated by
{𝑨𝑎}𝑎. ■

Lemma 4.8.2 (A necessary condition for local minima under thermal perturbations).
Given 𝜖 > 0, an 𝑛-qubit Hamiltonian 𝑯, 𝑚 local jump operators {𝑨𝑎}𝑎, and
parameters 𝛽, 𝜏 ≥ 0, an 𝜖-approximate local minimum 𝝆 of 𝑯 under thermal
perturbations with inverse temperature 𝛽, time scale 𝜏, and system-bath interactions
generated by {𝑨𝑎}𝑎 satisfies

∥∇−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆)∥∞ ≤ 𝜖,

which differs only slightly from the condition in Eq. (4.14).
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Proof. Recall that ∇−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆) ∈ R

𝑚
≥0. Let 𝑎∗ = a𝑟𝑔 𝑚𝑎𝑥

𝑎

(
∇−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆)𝑎

)
.

If the negative energy gradient vector tr(𝑯L𝛽,𝜏,𝑯
𝑎∗ [𝝆]) is zero, then the claim holds.

Hence, we only need to consider the case when the negative energy gradient vector
is nonzero. In this case,

0 < ∥∇−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆)∥∞ = ∇−

𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆)𝑎∗ = − tr(𝑯L𝛽,𝜏,𝑯
𝑎∗ [𝝆]).

Consider 𝜶̂ := 𝒆𝑎∗ ∈ R𝑚≥0, which satisfies ∥𝜶̂∥1 = 1. We have

lim
𝑡→0+

tr(𝑯 exp𝛽,𝜏,𝑯,{𝑨
𝑎}𝑎

𝝆 (𝑡𝜶̂)) − tr(𝑯𝝆)
𝑡

= tr(𝑯L𝛽,𝜏,𝑯
𝑎∗ [𝝆])

= −∥∇−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆)∥∞.

At the same time, for any 𝑡 > 0, we also have

tr(𝑯 exp𝛽,𝜏,𝑯,{𝑨
𝑎}𝑎

𝝆 (𝑡𝜶̂)) − tr(𝑯𝝆)
𝑡

≥ −𝜖 ∥𝜶̂∥1 = −𝜖 .

Together, we obtain the desired claim. ■

Hamiltonians without suboptimal local minima
An important concept in classical optimization is to understand when all local minima
are global minima. For example, in convex optimization, checking the convexity
of the objective function ℎ(𝒙) ensures that all local minima are global minima.
When all local minima are global minima, it is commonly referred to as having no
suboptimal local minima in the optimization landscape. For optimizing quantum
Hamiltonians, we can define a similar concept. Let us begin with a definition of
approximate global minimum.

Definition 4.8.3 (Approximate global minimum of Hamiltonians). Given 𝜖, 𝛿 > 0
and an 𝑛-qubit Hamiltonian 𝑯 with minimum energy 𝐸0. Let 𝑷𝐺+𝜖 (𝑯) be the
projector to the subspace of energy eigenstates of 𝑯 with energy at most 𝐸0 + 𝜖 . An
𝑛-qubit state 𝝆 is an 𝜖-approximate global minimum of 𝑯 with failure probability
≤ 𝛿 if tr(𝑷𝐺+𝜖 (𝑯)𝝆) ≥ 1 − 𝛿.

Definition 4.8.4 (No suboptimal local minima). Given 𝜖 > 0. We say an 𝑛-
qubit Hamiltonian 𝑯 has no suboptimal 𝜖-approximate local minima with failure
probability 𝛿 if any 𝜖-approximate local minimum 𝝆 of 𝑯 is an 𝜖-approximate global
minimum of 𝑯 with failure probability ≤ 𝛿, i.e., tr(𝑷𝐺+𝜖 (𝑯)𝝆) ≥ 1 − 𝛿.
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While the above definitions apply to any Hamiltonian 𝑯, in this work, we will focus
on Hamiltonians with a gap Δ > 0 between the minimum energy and the second
minimum energy, also known as the spectral gap. By definition of 𝑷𝐺+𝜖 (𝑯) and
spectral gap Δ, we have

𝜖 < Δ =⇒ 𝑷𝐺+𝜖 (𝑯) = 𝑷𝐺 (𝑯).

As we will almost always consider 𝜖 < Δ, any 𝜖-approximate global minimum is an
0-approximate global minimum or exact global minimum.

Convexity implies all local minima are global in classical optimization. In the
following lemma, we present a sufficient condition for ensuring that all local minima
are global in quantum systems. As we can see, all we need is to check the negative
gradient operator is sufficiently positive in the non-ground-state space 𝑰 − 𝑷𝐺 . We
will refer to this as the negative gradient condition.

Lemma 4.8.3 (A sufficient condition ensuring all local minima are global). Given
𝜖, 𝛿 > 0, an 𝑛-qubit Hamiltonian 𝑯, 𝑚 local jump operators {𝑨𝑎}𝑎, and parameters
𝛽, 𝜏 ≥ 0. Let 𝑷𝐺 (𝑯) be the projection onto the ground state space of 𝑯. If there
exists 𝜶 ∈ R𝑚≥0 with ∥𝜶∥1 = 1, such that the negative gradient operator satisfies

(negative gradient condition): −
∑︁
𝑎

𝛼𝑎L†𝛽,𝜏,𝑯𝑎 [𝑯] ⪰ 2𝜖
𝛿
(𝑰 − 𝑷𝐺 (𝑯)) − 𝜖 𝑰,

(4.15)
then any 𝜖-approximate local minimum 𝝆 of the 𝑛-qubit Hamiltonian 𝑯 under
thermal perturbations with inverse temperature 𝛽, time scale 𝜏, and system-bath
interactions generated by {𝑨𝑎}𝑎 is an exact global minimum with failure probability
≤ 𝛿. That is, tr(𝑷𝐺 (𝑯)𝝆) ≥ 1 − 𝛿.

Proof. From the necessary condition for local minima in Lemma 4.8.2, any 𝜖-
approximate local minimum 𝝆 of the 𝑛-qubit Hamiltonian 𝑯 under thermal per-
turbations with inverse temperature 𝛽, time scale 𝜏, and system-bath interactions
generated by {𝑨𝑎}𝑎 satisfies

− tr(L†𝛽,𝜏,𝑯𝑎 [𝑯]𝝆) ≤ 𝜖 for each 𝑎 = 1, . . . , 𝑚.

Hence, from Eq. (4.15), we have

𝜖 ≥ −
∑︁
𝑎

𝛼𝑎 tr(L†𝛽,𝜏,𝑯𝑎 [𝑯]𝝆) ≥ 2𝜖
𝛿
(1 − tr(𝑷𝐺 (𝑯)𝝆)) − 𝜖 .

This immediately implies that tr(𝑷𝐺 (𝑯)𝝆) ≥ 1 − 𝛿. ■
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4.9 Appendix:Complexity of finding a local minimum in quantum systems
In this appendix, we formally present the main results of this paper shown earlier in
section 4.2 regarding the computational complexity of finding a local minimum in
quantum systems. We separate the results into two parts. First, we look at the problem
of finding a local minimum under local unitary perturbations (Def. 4.6.7), showing
that the problem is classically trivial to solve. Next, we look at the problem of finding
a local minimum under low-temperature thermal perturbations (Def. 4.6.6). We will
see that this problem is quantumly easy but classically hard to solve, establishing a
promising candidate problem for quantum advantage.

Finding a local minimum under local unitary perturbations
We begin with the first main result stating the problem of a local minimum under
local unitary perturbations is classically trivial. The main issue is that there is a
large barren plateau (which consists of many local minima with high energy) in
the quantum optimization landscape. Hence, a classical algorithm can efficiently
estimate the properties of a single local minimum.

Proposition 4.9.1 (Classically easy to find a local minimum under local unitary
perturbations; Restatement of Proposition 4.2.1). Consider a large problem size
𝑛. There is a trivial classical algorithm that guarantees the following. Given
error 𝜖 = 1/poly(𝑛), an 𝑛-qubit local Hamiltonian 𝑯 with ∥𝑯∥∞ = poly(𝑛), 𝑚
local Hermitian operators {𝒉𝑎}𝑚

𝑎=1 with 𝑚 = poly(𝑛) and ∥𝒉𝑎∥∞ = 1, and a local
observable 𝑶 with ∥𝑶∥∞ ≤ 1.

The classical algorithm runs in time O(1) and outputs a real value 𝑣 ∈ [−1, 1],
such that 𝑣 is 𝜖-close to ⟨𝜓 |𝑶 |𝜓⟩ for an 𝜖-approximate local minimum |𝜓⟩ of the
Hamiltonian 𝑯 under local unitary perturbations generated by {𝒉𝑎}𝑎.

Proof. From Lemma 4.7.1 given in Appendix 4.7 characterizing local minima of 𝑯
under local unitary perturbations, with high probability, a state |𝜓⟩ sampled uniformly
at random from the space of pure states is an 𝜖-approximate local minimum |𝜓⟩ of
the local Hamiltonian 𝑯 under local unitary perturbations, and ⟨𝜓 |𝑶 |𝜓⟩ is 𝜖-close
to tr(𝑶)/2𝑛. Hence, there exists an 𝜖-approximate local minimum |𝜓⟩ of 𝑯 under
local unitary perturbations, and ⟨𝜓 |𝑶 |𝜓⟩ is 𝜖-close to tr(𝑶)/2𝑛.

This characterization of local minima gives rise to the following trivial classical
algorithm. Given a local observable 𝑶, represented by the subset 𝑆 of qubits 𝑶 acts
on with |𝑆 | = O(1) and a 2|𝑆 |×|𝑆 | Hermitian matrix 𝑶∗. A classical algorithm can
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compute tr(𝑶)/2𝑛 efficiently by computing the trace of 𝑶∗ and dividing by 2|𝑆 |. This
trivial classical algorithm runs in time O(1). ■

Finding a local minimum under thermal perturbations
We now turn to the second main result of this work, which shows that finding a
local minimum under low-temperature thermal perturbations is easy with a quantum
computer. This is in contrast to the task of finding the ground state (global minimum),
which is hard on quantum computers. The formal statement is given below in
Theorem 4.9.1.

Theorem 4.9.1 (Quantumly easy to find a local minimum under thermal perturbations;
Restatement of Theorem 4.2.1). Let 𝑛 be the problem size. There is a poly(𝑛)-time
quantum algorithm that guarantees the following. Given error 𝜖 = 1/poly(𝑛),
inverse temperature 0 ≤ 𝛽 ≤ poly(𝑛), time scale 𝜏 = poly(𝑛), an 𝑛-qubit local
Hamiltonian 𝑯 with ∥𝑯∥∞ = poly(𝑛), 𝑚 local jump operators {𝑨𝑎}𝑚

𝑎=1 with
𝑚 = poly(𝑛), and a local observable 𝑶 with ∥𝑶∥∞ ≤ 1.

The quantum algorithm outputs a real value 𝑣 ∈ [−1, 1], such that 𝑣 is 𝜖-close to
tr(𝑶𝝆) for an 𝜖-approximate local minimum 𝝆 of 𝑯 under thermal perturbations
with an inverse temperature 𝛽, a time scale 𝜏, and system-bath interactions generated
by {𝑨𝑎}𝑎.

Proof idea. We consider a version of gradient descent, which we refer to as Quantum
thermal gradient descent, that mimics how Nature cools the quantum system when
the system is interacting locally and weakly with a low-temperature heat bath. The
algorithm starts with an arbitrary initial state 𝝆0. For each step 𝑡 = 0, 1, 2, . . ., the
algorithm considers the current state 𝝆𝑡 and proposes the next state 𝝆𝑡+1. The tangent
space 𝑇 𝛽,𝜏,𝑯𝝆𝑡 at 𝝆𝑡 is high dimensional with many possible directions/dynamics
depending on the system-bath interaction. The algorithm chooses a direction that
lowers the energy as fast as possible by computing the gradient of the energy and
proposes 𝝆𝑡+1 by performing gradient descent. As long as the current state 𝝆𝑡 is not
an 𝜖-approximate local minimum of 𝑯 under thermal perturbations, the energy will
decrease by a sufficiently large amount

tr(𝑯𝝆𝑡+1) < tr(𝑯𝝆𝑡) −
1

poly(𝑛) .

Because the energy is bounded from below, there are, at most, a polynomial number
of steps 𝑡 ≤ poly(𝑛) until the algorithm arrives at an 𝜖-approximate local minimum
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of 𝑯 under thermal perturbations. The detailed proof of Theorem 4.9.1 is given in
Appendix 4.11. ■

Finally, we turn to the third main result establishing the difficulty of finding a local
minimum under thermal perturbations using a classical computer. To establish this
result, we consider a class of geometrically local Hamiltonians {𝑯𝐶}𝐶 on 2D lattices.
Each Hamiltonian 𝑯𝐶 corresponds to a 2D circuit 𝑼𝐶 = 𝑼𝑇 · · ·𝑼2𝑼1 acting on 𝑛
qubits with 𝑇 = 2𝑡0 + 𝐿 = poly(𝑛) gates as constructed in Fig. 1 of [142] with the
additional padding to the construction in [142] such that the first and last 𝑡0 = 𝑐𝐿2

gates being the identity gates for a constant 𝑐 = O(1). The construction in [142]
has the property that each gate of the 2D circuit 𝑼𝐶 is geometrically adjacent to the
subsequent gate.

Given the 2D circuit𝑼𝐶 on 𝑛 qubits with𝑇 gates. The geometrically local Hamiltonian
𝑯𝐶 acts on 𝑛 + 𝑇 qubits on a 2D lattice and has a highly-entangled unique ground
state that encodes the quantum computation based on the 2D circuit 𝑼𝐶 ,

|𝜂0⟩ =
𝑇∑︁
𝑡=0

√︁
𝜉𝑡

(
𝑼𝑡 · · ·𝑼1 |0𝑛⟩

)
⊗

��1𝑡0𝑇−𝑡〉, where 𝜉𝑡 :=
1
2𝑇

(
𝑇

𝑡

)
.

We present the detailed construction of the 2D Hamiltonian 𝑯𝐶 in Definition 4.14.1
in Appendix 4.14. We have the following proposition for estimating single-qubit
observables on the ground state of 𝑯𝐶 .

Proposition 4.9.2 (BQP-hardness for estimating properties of the ground state of
𝑯𝐶). If there is a classical algorithm that can estimate any single-qubit observable
on the unique ground state of the geometrically local Hamiltonian 𝑯𝐶 in time
polynomial in the number of qubits in 𝑯𝐶 to error 1/4 for any 𝑯𝐶 in the class, then
BPP = BQP.

Proof. Consider the single-qubit observable 𝒁 𝑗 and let 𝑇𝑗 be the last time that qubit
𝑗 is acted by a gate in the circuit 𝐶. The ground state expectation of 𝒁 𝑗 is

⟨𝜂0 |𝒁 𝑗 |𝜂0⟩ =
𝑇∑︁

𝑡=𝑇 𝑗+1
𝜉𝑡 ⟨0𝑛 |𝑼†1 · · ·𝑼

†
𝑡 𝒁 𝑗𝑼𝑡 · · ·𝑼1 |0𝑛⟩ +

𝑇 𝑗∑︁
𝑡=0

𝜉𝑡 ⟨0𝑛 |𝑼†1 · · ·𝑼
†
𝑡 𝒁 𝑗𝑼𝑡 · · ·𝑼1 |0𝑛⟩

= ⟨0𝑛 |𝑼†1 · · ·𝑼
†
𝑇
𝒁 𝑗𝑼𝑇 · · ·𝑼1 |0𝑛⟩𝑃𝑡>𝑇 𝑗 + 𝜖 𝑗 ,

where 𝑃𝑡>𝑇 𝑗 :=
∑︁
𝑡>𝑇 𝑗

𝜉𝑡 , 𝜖 𝑗 :=
∑︁
𝑡≤𝑇 𝑗

𝜉𝑡 ⟨0𝑛 |𝑼†1 · · ·𝑼
†
𝑡 𝒁 𝑗𝑼𝑡 · · ·𝑼1 |0𝑛⟩.
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We have used the fact that𝑈𝑡 for 𝑡 > 𝑇𝑗 acts like identity on the 𝑗-th qubit. Note that

|𝜖 𝑗 | ≤ 1 − 𝑃𝑡>𝑇 𝑗 =: 𝑃𝑡≤𝑇 𝑗 .

We can make 𝜖 𝑗 arbitrarily small using a tail bound on the binomial distribution.
Given any circuit, one could always pad more identity gates to form an 𝐿-gate circuit,
such that the last 3/4 of the 𝐿 gates are identity. Recall that 𝑇 = 2𝑡0 + 𝐿 = 2𝑐𝐿2 + 𝐿.
Then 𝑇𝑗 ≤ 𝑐𝐿2 + 𝐿/4 and we have |𝜖 𝑗 | ≤ 𝑃𝑡≤𝑇 𝑗 ≤ 𝑃𝑡≤𝑐𝐿2+𝐿/4.

Using Hoeffding’s inequality, we can bound the probability of sampling a time 𝑡,
such that 𝑡 ≤ 𝑐𝐿2 + 𝐿/4, according to the Binomial distribution {𝜉𝑡}𝑇𝑡=0. This yields

|𝜖 𝑗 | ≤ exp

[
−2𝑇

(
1
2
− 𝑐𝐿

2 + 𝐿/4
2𝑐𝐿2 + 𝐿

)2]
= e−

𝐿
8+16𝑐𝐿 .

By choosing a small constant 𝑐 ≤ 1/(16 ln 18) − 1/(2𝐿), we have |𝜖 𝑗 | ≤ 1/18 and
𝑃𝑡>𝑇 𝑗 ≥ 17/18. Because of the bounds on the error |𝜖 𝑗 | and the probability 𝑃𝑡>𝑇 𝑗 ,
a classical algorithm satisfying the assumption of the proposition can determine
whether

⟨0𝑛 |𝑼†1 · · ·𝑼
†
𝑇
𝑍 𝑗𝑼𝑇 · · ·𝑼1 |0𝑛⟩ > 1/3 or ⟨0𝑛 |𝑼†1 · · ·𝑼

†
𝑇
𝑍 𝑗𝑼𝑇 · · ·𝑼1 |0𝑛⟩ < −1/3,

for any 2D circuit𝑼𝐶 with𝑇 = 2𝑡0+𝐿 = 2𝑐𝐿2+𝐿 gates, where the first 𝑡0 and and the
last (3/4)𝐿+ 𝑡0 gates are identity. Because one could think of the circuit𝑼𝐶 as having
𝐿/4 gates for any 𝐿 = poly(𝑛), this immediately implies that a polynomial-time
classical algorithm can decide whether the expectation value of 𝑍 𝑗 on the output
state is > 1/3 or < −1/3 for any polynomial-size 2D circuit where all consecutive
gates are adjacent in the 2D geometry.

A 2D circuit 𝑼𝐶 such that any gate is adjacent to the subsequent gate can be
constructed from any quantum circuit without the 2D constraint, such that a single-
qubit observable 𝑍𝑖 on the output of the original quantum circuit corresponds to
a single-qubit observable 𝑍 𝑗 on the output of the 2D circuit. As a result, any
polynomial-time classical algorithm that can determine whether the expectation
value of 𝑍 𝑗 on 𝑼𝑡 · · ·𝑼1 |0𝑛⟩ is greater than 1/3 or smaller than −1/3 can be used to
simulate any polynomial-time quantum algorithm for solving decision problems in
classical polynomial time. Hence, BPP = BQP. ■

Using a series of mathematical techniques presented in Appendix 4.12 for charac-
terizing whether all local minima are global minima in a many-body Hamiltonian,
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we prove that all local minima 𝑯𝐶 are close to the unique ground state |𝜂0⟩ in
Theorem 4.9.2. This theorem is the most involved technical contribution of this work.
Intuitively, one can think of the energy landscape of the 2D Hamiltonian 𝑯𝐶 over
the space of 𝑛-qubit density matrices under low-temperature thermal perturbations
to have a good bowl shape. This is in stark contrast to the energy landscape under
local unitary perturbations, where the landscape always contains an overwhelmingly
large barren plateau causing the problem of finding local minima to be classically
easy. Furthermore, this theorem shows that a low-temperature cooling can always
find a state close to the ground state irrespective of where we initialize the state in
the exponentially large quantum state space.

Theorem 4.9.2 (All local minima are global in BQP-hard Hamiltonians; Restatement
of Theorem 4.2.2). Let 𝑷𝐺 (𝑯𝐶) = |𝜂0⟩⟨𝜂0 | be the ground state of the 2D Hamiltonian
𝑯𝐶 acting on 𝑛 + 𝑇 = poly(𝑛) qubits. There is a choice of 𝑚 = Poly(𝑛) two-qubit
jump operators {𝑨𝑎}𝑎 satisfying the following.

Given 0 < 𝛿 < 1. For any small error 𝜖 = 1/Poly(𝑛, 1/𝛿), any 𝜖-approximate local
minimum 𝝆 of 𝑯𝐶 under thermal perturbations with a large inverse temperature
𝛽 = Poly(𝑛, 1/𝛿), a large time scale 𝜏 = Poly(𝑛, 1/𝛿), and system-bath interactions
generated by {𝑨𝑎}𝑎 is an exact global minimum with high probability, i.e., we have
tr(𝑷𝐺 (𝑯𝐶)𝝆) ≥ 1 − 𝛿.

The proof of Theorem 4.9.2 is given in Appendix 4.14. To show that the landscape has
a good bowl shape, we utilize the negative gradient condition given in Appendix 4.8.
However, the negative energy gradient operator is not easy to study. To establish
this strong claim, we give a series of techniques in Appendix 4.12 for characterizing
negative energy gradient operator in few-qubit systems, in commuting Hamiltonians,
and in perturbed Hamiltonians. These technical tools can also be used to understand
the energy landscape in other interacting many-body Hamiltonians.

While finding a local minimum under local unitary perturbations is classically easy,
the characterization of the energy landscape in these BQP-hard Hamiltonians 𝑯𝐶

implies that finding a local minimum under thermal perturbations is universal for
quantum computation and is hence classically hard if BPP ≠ BQP. Recall that
BPP = BQP implies that all single-qubit measurements of all polynomial-size
quantum circuits can be simulated in polynomial time on a classical computer. Since
one expects some quantum circuits to be hard to simulate on a classical computer,
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Theorem 4.9.3 implies that finding a local minimum under thermal perturbations is
classically hard.

Theorem 4.9.3 (Classically hard to find a local minimum under thermal perturbations;
Restatement of Theorem 4.2.3). Let 𝑛 be the problem size. Suppose there is a poly(𝑛)-
time classical algorithm guaranteeing the following. Given error 𝜖 = 1/poly(𝑛),
inverse temperature 0 ≤ 𝛽 ≤ poly(𝑛), time scale 0 ≤ 𝜏 ≤ poly(𝑛), an 𝑛-qubit
local Hamiltonian 𝑯 with ∥𝑯∥∞ = poly(𝑛), 𝑚 local jump operators {𝑨𝑎}𝑚

𝑎=1 with
𝑚 = poly(𝑛), and a single-qubit observable 𝑶 with ∥𝑶∥∞ ≤ 1.

The classical algorithm outputs a real value 𝑣 ∈ [−1, 1], such that 𝑣 is 𝜖-close
to tr(𝑶𝝆) for an 𝜖-approximate local minimum 𝝆 of the Hamiltonian 𝑯 under
thermal perturbations with an inverse temperature 𝛽, a time scale 𝜏, and system-bath
interactions generated by {𝑨𝑎}𝑎. Then BPP = BQP.

Proof. Assuming the existence of a polynomial-time classical algorithm that satisfies
the properties stated in the theorem. Apply this classical algorithm to the 2D
Hamiltonian 𝑯𝐶 considered in Theorem 4.9.2 with a sufficiently small approximation
error 𝜖 , such that any 𝜖-approximate local minimum 𝝆 of 𝑯𝐶 under thermal
perturbations with polynomially-large 𝛽, 𝜏 and system-bath interactions generated
by {𝑨𝑎}𝑎 is an exact global minimum with high probability, i.e.,

⟨𝜂0 |𝝆 |𝜂0⟩ = tr(𝑷𝐺 (𝑯𝐶)𝝆) ≥ 1 − 1
162 ,

where |𝜂0⟩ is the unique ground state of 𝑯𝐶 . We further consider 𝜖 to be small
enough such that

𝜖 <
1
8
. (4.16)

Let 𝝆 be an 𝜖-approximate local minimum of the Hamiltonian 𝑯 under thermal
perturbations. Consider the observable 𝑶 𝑗 = 𝒁 𝑗 from the proof of Proposition 4.9.2.
Using the Fuchs–van de Graaf inequalities, we have

∥𝝆 − |𝜂0⟩⟨𝜂0 |∥1 ≤
1
8
. (4.17)

Because the classical algorithm can estimate tr(𝑶 𝑗 𝝆) to error 𝜖 , from Eq. (4.16) and (4.17),
the classical algorithm can estimate ⟨𝜂0 |𝑶 𝑗 |𝜂0⟩ to error 1/4 in time polynomial in
the number of qubits in 𝑯𝐶 . From Prop. 4.9.2, this implies that BPP = BQP. ■

In the following, we use the previous theorem to show that quantum machines
can improve over any efficient classical algorithm that variationally optimizes a
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classical ansatz that can efficiently predict local properties by performing low-
temperature cooling. Examples of the classical ansatz include tensor networks with
efficient tensor contraction algorithms and neural-network quantum states with fast
sampling algorithms. This result provides a physically-relevant problem that yields
an advantage in minimizing the energy of a geometrically-local Hamiltonian.

Corollary 4.9.1 (Quantum advantage over variationally optimized classical ansatz).
Under the conjecture that BPP ≠ BQP, there exists a class of 𝑛-qubit geometrically-
local Hamiltonian 𝑯 on a two-dimensional lattice with ∥𝑯∥∞ = O(𝑛) that satisfies
the following. Given any classical ansatz of 𝑛-qubit state 𝝆 that can estimate the
expectation value of single-qubit observables to 1/poly(𝑛) error in poly(𝑛)-time on
classical computers, any poly(𝑛)-time classical algorithm for minimizing the energy
tr(𝑯𝝆) using the classical ansatz, and samples of the state 𝝆 represented by the
optimized classical ansatz. A quantum machine can find a state 𝝆# with strictly lower
energy than 𝝆 in poly(𝑛) time by running a quantum thermal gradient descent based
on low-temperature cooling.

Proof. The central claim is that the state 𝝆 found by an efficient classical algorithm
cannot be an 𝜖-approximate local minimum under low-temperature thermal perturba-
tions. We establish this claim by contradiction. Suppose that the classical ansatz
for 𝝆 found by the efficient classical algorithm is an 𝜖-approximate local minimum.
Then the classical algorithm can use the classical ansatz to predict the expectation
values of single-qubit observables of an 𝜖-approximate local minimum 𝝆 of 𝑯 to 𝜖
error. From Theorem 4.9.3, this implies that BPP = BQP, which is a contradiction.

Because 𝝆 is not an 𝜖-approximate local minimum under low-temperature thermal
perturbations, a quantum machine can use samples of 𝝆 to initialize at the state 𝝆

and perform one gradient descent step based on low-temperature cooling. From
Lemma 4.8.2 on the necessary condition for local minima, there exists 𝑎 ∈ {1, . . . , 𝑚}
such that tr(𝑯L𝛽,𝜏,𝑯𝑎 [𝝆]) < −𝜖 . From Lemma 4.11.1 on cooling by gradient descent,
one can show that a single gradient descent step yields a state 𝝆(next) with a strictly
lower energy than the state 𝝆. Hence, one establishes the desired claim. ■

4.10 Appendix:Details of thermal Lindbladians
In the rest of the appendices, we give the full detailed proofs of Theorems 4.9.1
and 4.9.2 that are central to establishing the computational complexity of finding
local minima under thermal perturbations in the previous appendix. To that end,
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we need to provide the techincal details of thermal Lindbladians that generate such
perturbations.

We have previously presented a high-level introduction to thermal Lindbladians in
Appendix 4.5. This has been sufficient for defining local minima and analyzing
some basic properties, but not enough for proving Theorems 4.9.1 and 4.9.2. In this
appendix, we present the exact form of thermal Lindbladians, their properties, and
the algorithmic primitives for simulating quantum thermodynamics.

Exact form
The exact form of the thermal Lindbladian depends on a few physical concepts due
to the microscopic derivation from a system-bath interaction [135]. For each jump
𝑨𝑎, we have

L𝛽,𝜏,𝑯𝑎 (𝝆) := −i[𝑯𝛽,𝜏,𝑯
𝐿𝑆,𝑎

, 𝝆]+
∫ ∞

−∞
𝛾𝛽 (𝜔)

[
𝑨̂𝑎 (𝜔)𝝆𝑨̂𝑎 (𝜔)† − 1

2
{ 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔), 𝝆}

]
d𝜔︸                                                                       ︷︷                                                                       ︸

:=D𝛽,𝜏,𝑯
𝑎 [𝝆]

,

(4.18)
where D𝛽,𝜏,𝑯

𝑎 is the purely dissipative part of the thermal Lindbladian. Implicitly,
the operator 𝑨̂𝑎 (𝜔) also depends on the Hamiltonian 𝑯 and the time scale 𝜏. We
now unpack the physical concepts that form the building blocks of this expression.

Transition weight. At a fixed inverse temperature 𝛽, the transition weight 𝛾𝛽 (𝜔)
tells us how strong the rate of a transition/jump should be, depending on the
energy difference 𝜔. In particular, the transition weight satisfies the following
Kubo-Martin-Schwinger (KMS) condition and convenient normalization

𝛾𝛽 (𝜔)/𝛾𝛽 (−𝜔) = e−𝛽𝜔 and 0 ≤ 𝛾𝛽 (𝜔) ≤ 1 for any 𝛽 ≥ 0 and any 𝜔 ∈ R,
(4.19)

which is reminiscent of how detailed balance is enforced in classical Markov chains.
We remark that any 𝛾𝛽 (𝜔) obeying the above KMS condition and normalization also
satisfies the following tail bound:

max
𝜔≥Δ

𝜔𝛾𝛽 (𝜔) ≤ max
𝜔≥Δ

𝜔e−𝛽𝜔 =
1
𝛽

max
𝑥≥𝛽Δ

𝑥e−𝑥 ≤ 1
𝛽

max
𝑥≥𝛽Δ

e−𝑥/2 =
e−𝛽Δ/2

𝛽
. (4.20)

For concreteness, we usually adopt the common choice of 𝛾𝛽 corresponding to
Glauber dynamics, with a cut-off frequency Λ0 to regulate the inverse Fourier
transform:

𝛾𝛽 (𝜔) =
1

2 + ln(1 + 𝛽Λ0)
e−𝜔2/2Λ2

0

1 + e𝛽𝜔
. (4.21)
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In the zero temperature regime (𝛽 = ∞), the function (1 + e𝛽𝜔)−1 gives a step
function (one for negative 𝜔 and zero for positive 𝜔). Based on the choice of bath
phenomenology, there are plenty of options for the transition weight, such as ohmic
heating 𝛾𝛽 (𝜔) = 1

𝜔0
𝜔e−𝜔

2/2Λ2
0

1−e−𝛽𝜔 . However, for simplicity, we will stick to the Glauber
dynamics. Unless otherwise stated, we will also choose the cut-off frequency to be

Λ0 = 1,

since each local jumps 𝑨𝑎 changes the energy by at most O(1) for our usage (and
is generally true for local Hamiltonians with bounded degree interaction graph and
bounded-norm terms). We do not expect our main conclusion to change under other
reasonable choices of 𝛾𝛽 (𝜔).

Operator Fourier transform. Given a jump operator 𝑨𝑎, we consider the
operator Fourier Transform [39] for the Heisenberg-evolved jump operator 𝑨𝑎 (𝑡)
characterized by a time scale 𝜏 ∈ R of the heat bath

𝑨̂𝑎 (𝜔) :=
1
√

2𝜋𝜏

∫ 𝜏/2

−𝜏/2
ei𝑯𝑡𝑨𝑎e−i𝑯𝑡︸        ︷︷        ︸

=:𝑨𝑎 (𝑡)

e−i𝜔𝑡d𝑡.

The operator 𝑨̂𝑎 (𝜔) corresponds to matrix elements in 𝑨𝑎 that induce jumps between
energy eigenstates with an energy difference approximately 𝜔 ± O( 1

𝜏
). The bigger 𝜏

is, the more precise 𝜔 corresponds to the true energy difference; see Appendix 4.15
for further details. Physically, 𝜏 is related to microscopic parameters of the bath (the
bath correlation time and the weak-coupling strength [135]), but our discussion only
requires the single time scale 𝜏 that sets the Fourier transform energy uncertainty.

Lamb-shift. The interaction with the heat bath induces an additional correction
term in the coherent Hamiltonian dynamics of the 𝑛-qubit system, known as the Lamb-
shift. Given a jump operator 𝑨𝑎, we have the following Lamb-shift Hamiltonian that
depends on the bath correlation function 𝑐𝛽 (𝑡) and the time scale 𝜏:

𝑯𝛽,𝜏,𝑯
𝐿𝑆,𝑎

:=
i

2
√

2𝜋𝜏

∫ 𝜏/2

−𝜏/2

∫ 𝜏/2

−𝜏/2
sgn(𝑡1 − 𝑡2)𝑐𝛽 (𝑡2 − 𝑡1)𝑨𝑎 (𝑡2)𝑨𝑎 (𝑡1)d𝑡2d𝑡1.(4.22)

While the Lamb-shift term is physically important, for our purposes, it is largely
treated as a source of error; the energy gradient contribution comes from the
dissipative part D𝛽,𝜏,𝑯

𝑎 .
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Bath correlation function. In the Lamb-shift term, the bath correlation function
𝑐𝛽 (𝑡) is the Fourier transform of the transition weight 𝛾𝛽 (𝜔),

𝑐𝛽 (𝑡) =
1
√

2𝜋

∫ ∞

−∞
𝛾𝛽 (𝜔)e+i𝜔𝑡d𝑡.

The prefactor in Eq. (4.21) is chosen such that (see Proposition 4.10.1)

1
√

2𝜋

∫ ∞

−∞

��𝑐𝛽 (𝑡)��d𝑡 ≤ 1. (4.23)

This normalization sets the strength of ∥𝑯𝛽,𝜏,𝑯
𝐿𝑆,𝑎
∥ to be bounded by O(1).

Absolute zero 𝛽 = ∞. It is instructive to consider the case of zero temperature
𝛽 = ∞ and infinite time scale 𝜏 = ∞. In this case, the transition weight 𝛾𝛽 (𝜔)
is a step function (1 for 𝜔 < 0 and 0 for 𝜔 > 0) and 𝑨̂𝑎 (𝜔) measures the energy
difference perfectly. Thus, all heating transitions (|𝐸⟩ → |𝐸 + 𝜔⟩ for 𝜔 > 0) are
forbidden, and all cooling transitions (|𝐸⟩ → |𝐸 + 𝜔⟩ for 𝜔 < 0) will remain. Hence,
in the case when 𝛽 = 𝜏 = ∞, the thermal Lindbladian only lowers the energy. This
matches our physical intuition that a zero-temperature bath only absorbs energy from
the system.

Multiple jumps. The thermal Lindbladian L𝛽,𝜏,𝑯𝑎 considers merely a single jump
operator 𝑨𝑎 in the system-bath interaction. When there are multiple jump operators,
the total thermal Lindbladian is a weighted sum of the individual thermal Lindbladian
L𝛽,𝜏,𝑯𝑎 ,

L𝛽,𝜏,𝑯 =

𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎 ,

where 𝛼𝑎 ≥ 0 is a nonnegative weight.

Again, the interaction strength vector 𝜶 ∈ R𝑚≥0 weights the contribution of each
thermal Lindbladian. Thus, the total equation of motion under multiple jumps reads

𝑑𝝆

𝑑𝑡
= −i[𝑯, 𝝆] + L𝛽,𝜏,𝑯 (𝝆)

= −i

[
𝑯 +

𝑚∑︁
𝑎=1

𝛼𝑎𝑯
𝛽,𝜏,𝑯
𝐿𝑆,𝑎

, 𝝆

]
+

𝑚∑︁
𝑎=1

𝛼𝑎D𝛽,𝜏,𝑯
𝑎 (𝝆), (4.24)

which consists of a coherent part and a purely dissipative part.
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Calculation for normalization of 𝑐𝛽 (𝑡). We now give a supplemental calcula-
tion that shows our choice of 𝛾𝛽 (𝜔) in Equation 4.21 satisfies the condition in
Equation 4.23.

Proposition 4.10.1. For

𝑓 (𝜔) :=
e−𝜔2/2Λ2

0

1 + e𝛽𝜔
,

we have that
1
√

2𝜋
∥ 𝑓 ∥1 ≤ 2 + ln(1 + 𝛽Λ0).

Proof. We want to bound the 1-norm of 𝑓 (𝑡) in the time domain. To do so, we
bound the moments in the time domains

√
2𝜋∥ 𝑓 ∥∞ ≤ ∥ 𝑓 ∥1 ≤

∫ ∞

−∞
e−𝜔

2/2Λ2
0d𝜔 = Λ0

√
2𝜋.

√
2𝜋∥𝑡 𝑓 (𝑡)∥∞ ≤ ∥

d
d𝜔

𝑓 ∥1 = 2 · ∥ 𝑓 ∥∞ ≤ 2.

√
2𝜋∥𝑡2 𝑓 (𝑡)∥∞ ≤ ∥

d2

d𝜔2 𝑓 ∥1 ≤ 4 · ∥ d
d𝜔

𝑓 ∥∞ ≤ 𝑇.

The second line uses the fact that 𝑓 is increasing and then decreasing (from −∞ to
∞). The third line evaluates the derivative

4

����� d
d𝜔

(
e−𝜔2/2Λ2

0

1 + e𝛽𝜔

)����� = 4

�����−e−𝜔2/2Λ2
0𝜔/Λ2

0
1 + e𝛽𝜔

− e−𝜔2/2Λ2
0𝛽e𝛽𝜔

(1 + e𝛽𝜔)2

�����
≤ 4

(
1
√

eΛ0
+ 𝛽

)
=: 𝑇.

Thus, we may partition into three integrals to optimize the bound

∥ 𝑓 ∥1 =

(∫
|𝑡 |≤Λ−1

0

+
∫
𝑇≥|𝑡 |≥Λ−1

0

+
∫
|𝑡 |≥𝑇

)
| 𝑓 (𝑡) |d𝑡

≤
∫
|𝑡 |≤Λ−1

0

Λ0d𝑡 + 1
√

2𝜋

∫
𝑇≥|𝑡 |≥Λ−1

0

2
|𝑡 |d𝑡 +

1
√

2𝜋

∫
|𝑡 |≥𝑇

𝑇

𝑡2
d𝑡

≤ 2 + 4
√

2𝜋
ln(Λ0𝑇) +

2
√

2𝜋

≤
2 + 2
√

2𝜋 + 4 ln( 4√
e + 4𝛽Λ0)

√
2𝜋

≤ 2 + 2
√

2𝜋 + 8 ln(2) + 4 ln(1 + 𝛽Λ0)√
2𝜋

≤
√

2𝜋(2 + ln(1 + 𝛽Λ0)),

where in the last line, we used 1/
√

e ≤ 1 among other numerical bounds. ■



246

Properties of thermal Lindbladians
From the exact forms of the thermal Lindbladians, we have the following propositions.

Proposition 4.10.2 (Norm for the dissipative part [39]). Any purely dissipative
Lindbladian

∑
𝑎D

𝛽,𝜏,𝑯
𝑎 defined in Eq. (4.18) for any set of jump operators {𝑨𝑎}𝑚

𝑎=1
and any transition weight satisfying Eq. (4.19) have bounded superoperator norms




 𝑚∑︁

𝑎=1
𝛼𝑎D†𝛽,𝜏,𝑯𝑎







∞−∞

=






 𝑚∑︁
𝑎=1

𝛼𝑎D𝛽,𝜏,𝑯
𝑎







1−1

≤ 2∥
𝑚∑︁
𝑎=1

𝛼𝑎𝑨
𝑎†𝑨𝑎∥.

The first equality is the duality between the 1 − 1 and∞−∞ superoperator norms.

Proposition 4.10.3 (Properties of the Lamb-shift term [39]). The sum of Lamb-
shift term (4.22) for any set of jump operators {𝑨𝑎}𝑚

𝑎=1 under a normalized bath
correlation function 𝑐𝛽 (𝑡) given by Eq. (4.23) satisfies that7




 𝑚∑︁

𝑎=1
𝛼𝑎𝑯

𝛽,𝜏,𝑯
𝐿𝑆,𝑎






 ≤ 1
2
∥
𝑚∑︁
𝑎=1

𝛼𝑎𝑨
𝑎†𝑨𝑎∥

∥
𝑚∑︁
𝑎=1

𝛼𝑎 [𝑯𝛽,𝜏,𝑯
𝐿𝑆,𝑎

,𝑯] ∥ ≤ O
(
∥𝑯∥3/4

𝜏1/4 ∥
𝑚∑︁
𝑎=1

𝛼𝑎𝑨
𝑎†𝑨𝑎∥

)
.

For large enough 𝜏, the Lamb-shift term almost commutes with the Hamiltonian.

From Prop. 4.10.2 and Prop. 4.10.3, we have the following norm bound for thermal
Lindbladians.

Proposition 4.10.4 (Norm of thermal Lindbladians). Given a Hamiltonian 𝑯, an
inverse temperature 𝛽 ≥ 0, a time scale 𝜏 ≥ 0, 𝑚 local jump operators {𝑨𝑎}𝑚

𝑎=1, a
transition weight 𝛾𝛽 (𝜔) satisfying Eq. (4.19), a normalized bath correlation function
𝑐𝛽 (𝑡) satisfying Eq. (4.23). The associated thermal Lindbladian

∑𝑚
𝑎=1 𝛼𝑎L

𝛽,𝜏,𝑯
𝑎 has

bounded superoperator norms




 𝑚∑︁
𝑎=1

𝛼𝑎L†𝛽,𝜏,𝑯𝑎







∞−∞

=






 𝑚∑︁
𝑎=1

𝛼𝑎L𝛽,𝜏,𝑯𝑎







1−1

≤ 3∥
𝑚∑︁
𝑎=1

𝛼𝑎𝑨
𝑎†𝑨𝑎∥,

which is controlled by the interaction strength vector 𝜶 under the normalization of
𝑨𝑎 in Eq. (4.2).

7Implicitly, the Lamb-shift term has units of energy yet do not scale with ∥𝑯∥.
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Algorithmic primitives for simulating thermal Lindbladians
In this subsection, we review existing algorithmic primitives for simulating thermal
Lindbladians [39], estimating energy and expectation value of observables using
block-encoding and quantum singular value transform (QSVT). See [126] for a
tutorial on block encoding and QSVT. We begin with a definition of a block-encoding
for Hermitian matrices, i.e., observables.

Definition 4.10.1 (Block-encoding for Hermitian matrices). We say that a unitary 𝑼
is a block-encoding for a Hermitian matrix 𝑶 if

(
〈
0𝑑

�� ⊗ 𝑰) ·𝑼 · (
��0𝑑〉 ⊗ 𝑰) = 𝑶 for 𝑑 ∈ Z+.

Recall the following result stating that expectation values can be estimated using
block-encoding.

Proposition 4.10.5 (Measuring observable using block-encoding). Given a block-
encoding 𝑼𝑶 for a Hermitian matrix 𝑶 and samples of a state 𝝆. One could estimate
tr(𝑶𝝆) to small error 0 < 𝜖 < 0.5 using only Õ(1/𝜖2) queries to the unitary 𝑼𝑶 .

Proof. Consider |0⟩⟨0| ⊗ 𝝆 and apply the Hadamard test to sample tr[𝑼 |0⟩⟨0| ⊗ 𝝆] =
tr[𝑶𝝆] 8. ■

Linear combinations of unitaries allow us to make efficient block-encodings of
Hamiltonians presented as a sum of local terms. This fact results in the following
proposition.

Proposition 4.10.6 (Block-encoding for Hamiltonian; see [19, 45, 126]). Any 𝑛-qubit
Hamiltonian 𝑯 has an efficient block-encoding 𝑼𝑯/𝜆1 for some scalar 𝜆1 being the
1-norm of Pauli expansion coefficients.

From [39], we have the following for the Lamb-shift term 𝑯𝐿𝑆 from Eq. (4.22).
Conveniently, the Lamb-shift term is already normalized (Proposition 4.10.3).

Proposition 4.10.7 (Block-encoding for Lamb-shift term; see [39]). The Lamb-shift
term 𝑯𝐿𝑆 has an efficient block-encoding 𝑼𝐿𝑆.

We define the block-encoding for a Lindbladian without the coherent commutator
term −i[𝑯, 𝝆].

8We thank Yu Tong for discussions on this argument.
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Definition 4.10.2 (Block-encoding for Lindblad operators [39]). Given a purely
irreversible Lindbladian

L[𝝆] :=
∑︁
𝑗∈𝐽

(
𝑳 𝑗 𝝆𝑳

†
𝑗
− 1

2
𝑳†
𝑗
𝑳 𝑗 𝝆 −

1
2
𝝆𝑳†

𝑗
𝑳 𝑗

)
,

we say that a unitary 𝑼 is a block-encoding for Lindblad operators {𝑳 𝑗 } 𝑗∈𝐽 if 9

(
〈
0𝑏

�� ⊗ 𝑰) ·𝑼 · ( |0𝑐⟩ ⊗ 𝑰) =
∑︁
𝑗∈𝐽
| 𝑗⟩ ⊗ 𝑳 𝑗 for 𝑏 ≤ 𝑐 ∈ Z+.

Theorem 4.10.1 (Linear-time Lindbladian simulation [39]). Suppose the jumps 𝑨𝑎

can be block-encoded by a unitary 𝑽 𝑗𝑢𝑚𝑝 using 𝑐 ∈ Z ancillas qubits. Then, we can
simulate the map e𝑡L for (4.24) to 𝜖 ≤ 1/2 precision in the diamond norm using

Õ((𝑐 + 1)) resettable ancilla,

Õ((𝑡 + 1)𝜏) controlled Hamiltonian simulation time,

Õ((𝑡 + 1) (𝑐 + 1)) other two-qubit gates,

and Õ(𝑡 + 1) queries to 𝑾, 𝒑𝒓𝒆 𝒑𝑐𝛽 (𝑡) ,𝑷𝒓𝒆 𝒑
′
𝑐𝛽 (𝑡) , and 𝑽 𝑗𝑢𝑚𝑝

where Õ(·) absorbed poly-logarithmic dependences on 𝑡, ∥𝑯∥, 𝜖 , 𝜏, 𝛽. Furthermore,
a block-encoding of the purely irreversible Lindbladian D𝛽,𝜏,𝑯 with discretized
frequency labels can be implemented efficiently.

The above uses the following circuit components required for implementation: the
controlled Hamiltonian simulation∑︁

𝑡∈𝑆𝑡0

|𝑡⟩⟨𝑡 | ⊗ e±i𝑡𝑯,

the unitary gates for preparing the bath correlation function in superposition

𝑷𝒓𝒆 𝒑𝑐𝛽 (𝑡) :
��0̄〉 → ∑︁

𝑡∈𝑆𝑡0

√︃��𝑐𝛽 (𝑡)��|𝑡⟩ and 𝑷𝒓𝒆 𝒑′
𝑐𝛽 (𝑡) :

��0̄〉 → ∑︁
𝑡∈𝑆𝑡0

𝑐𝛽 (𝑡)√︃��𝑐𝛽 (𝑡)�� |𝑡⟩,
and the controlled rotation for transition weights

𝑾 :=
∑︁
𝜔̄∈𝑆𝜔0

( √︁
𝛾(𝜔̄) −

√︁
1 − 𝛾(𝜔̄)√︁

1 − 𝛾(𝜔̄)
√︁
𝛾(𝜔̄)

)
⊗ |𝜔̄⟩⟨𝜔̄ |.

9In the first register, we could use any orthonormal basis, sticking to computational basis elements
| 𝑗⟩ is just for ease of presentation. Intuitively one can think about 𝑏 as the number of ancilla qubits
used for implementing the operators 𝑳 𝑗 , while typically 𝑎 − 𝑏 ≈ log |𝐽 |.
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Indeed, the above implementation uses discrete labels for the time 𝑡 ∈ 𝑆𝑡0 and
frequencies 𝜔̄ ∈ 𝑆𝜔0 corresponding to d𝑡 and d𝜔; these dominate the ancilla use.
For conceptual simplicity, we focus on the continuous integral everywhere else and
emphasize that the discretization is merely for implementation and introduces a
negligible error; see [39].

The controlled Hamiltonian simulation can be implemented efficiently for any 𝑛-qubit
local Hamiltonian 𝑯 [19, 45, 126]. The other operations𝑾, 𝒑𝒓𝒆 𝒑𝑐𝛽 (𝑡) ,𝑷𝒓𝒆 𝒑′𝑐𝛽 (𝑡) can
all be implemented efficiently [39] with the physically-motivated choice considered
in Appendix 4.10.

Proposition 4.10.8 (Gradient of an observable under Lindbladian evolution; adapted
from [39]). Given block-encodings𝑼 for a purely irreversible Lindbladian (Def. 4.10.2)
and 𝑼𝑶 for a Hermitian observable 𝑶, we get a block-encoding of∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑶𝑳 𝑗 via 𝑽 := (𝒀1

2
⊗ 𝑼† ⊗ 𝑰𝑑) ·

(
2|0𝑏+1⟩⟨0𝑏+1 | ⊗ 𝑰 − 𝑰

)
⊗ 𝑼𝑶 · (𝒀1

2
⊗ 𝑼 ⊗ 𝑰𝑑),

where |±⟩ := ( |0⟩ ± |1⟩)/
√

2 and 𝒀1
2

:= 1√
2

(
1 −1
1 1

)
.

Proof. We calculate

(
〈
0𝑐+1

�� ⊗ 𝑰 ⊗
〈
0𝑑

��) · 𝑽 · (��0𝑐+1〉 ⊗ 𝑰 ⊗
��0𝑑〉)

=

(
⟨−| ⊗ (⟨0𝑐 | ⊗ 𝑰)𝑼† ⊗

〈
0𝑑

��) · (2|0𝑏+1⟩⟨0𝑏+1 | ⊗ 𝑰 − 𝑰
)
⊗ 𝑼𝑶 ·

(
|+⟩ ⊗ 𝑼( |0𝑐⟩ ⊗ 𝑰) ⊗

��0𝑑〉)
=

(
⟨−| ⊗ (⟨0𝑐 | ⊗ 𝑰)𝑼† ⊗

〈
0𝑑

��) · (2|0𝑏+1⟩⟨0𝑏+1 | ⊗ 𝑰
)
⊗ 𝑼𝑶 ·

(
|+⟩ ⊗ 𝑼( |0𝑐⟩ ⊗ 𝑰) ⊗

��0𝑑〉)
= (⟨0𝑐 | ⊗ 𝑰) ·𝑼† · ( |0𝑏⟩⟨0𝑏 | ⊗ 𝑰) ⊗ 𝑶 · ( |0𝑐⟩ ⊗ 𝑰)

=

(∑︁
𝑗∈𝐽
⟨ 𝑗 | ⊗ 𝑳†

𝑗

)
𝑰 ⊗ 𝑶

(∑︁
𝑗 ′∈𝐽
| 𝑗 ′⟩ ⊗ 𝑳 𝑗 ′

)
=

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑶𝑳 𝑗 . ■

Corollary 4.10.1 (Block-encoding the gradient of the Hamiltonian). Given a block-
encoding for a purely irreversible Lindbladian L and a Hamiltonian 𝑯, there is an
efficient block-encoding for

1
2
L† [𝑯],

which is a Hermitian operator corresponding to the gradient of 𝑯 under L.
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Proof. Apply Proposition 4.10.8 for Lindbladian L, Hermitian observables 𝑯 and
𝑰 to obtain block-encodings for

∑
𝑗∈𝐽 𝑳

†
𝑗
𝑯𝑳 𝑗 and

∑
𝑗∈𝐽 𝑳

†
𝑗
𝑳 𝑗 . Then, use quantum

singular value transform (QSVT) for products and sums of block-encoding to obtain
the block-encoding for

1
2
L† [𝑯] = 1

2

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑯𝑳 𝑗 −

1
4

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗𝑯 −

1
4
𝑯

∑︁
𝑗∈𝐽

𝑳†
𝑗
𝑳 𝑗

at high precision. ■

From all of the above propositions, corollaries, and theorems, we can obtain the
following.

Lemma 4.10.1 (Measuring energy gradient). Given an 𝑛-qubit Hamiltonian 𝑯,
inverse temperature 𝛽 ≥ 0, time scale 𝜏 ≥ 0, samples of an 𝑛-qubit state 𝝆, a thermal
Lindbladian L𝛽,𝜏,{𝑨𝑎}𝑎 from Eq. (4.24). The energy gradient

tr(𝑯L𝛽,𝜏,𝑯 (𝝆)) = tr(L†𝛽,𝜏,𝑯 (𝑯)𝝆)

can be estimated to error 𝜖 using time and samples of 𝝆 polynomial in 𝑛, 1/𝜖, ∥𝑯∥, 𝛽, 𝜏.

Proof. From the form of thermal Lindbladians (4.24) and dropping the scripts
L𝛽,𝜏,𝑯 = L,𝑯𝛽,𝜏,𝑯

𝐿𝑆
= 𝑯𝐿𝑆,D𝛽,𝜏,𝑯 = D we have

L†(𝑯) = i[𝑯𝐿𝑆,𝑯] + D†(𝑯).

Our goal is to create the block-encoding for L†(𝑯). First, we use quantum singular
value transform (QSVT) for products and sums of block-encoding to obtain the block-
encoding for i[𝑯𝐿𝑆,𝑯] from block-encoding for 𝑯 and 𝑯𝐿𝑆 in Propositions 4.10.6
and 4.10.7. Next, using the block-encoding for the purely irreversible LindbladianD
from Theorem 4.10.1 and the block-encoding for 𝑯, we can apply Corollary 4.10.1
to obtain efficient block-encoding for D†(𝑯). To obtain the block-encoding for
L†(𝑯), we use QSVT for sums of block-encoding to add i[𝑯𝐿𝑆,𝑯] and D†(𝑯).
Finally, using Prop. 4.10.5, we can estimate tr(L†(𝑯)𝝆) efficiently. All the above
QSVT manipulations operate at high precision, and the discrete Fourier transform
well-approximates the continuum at poly-logarithmic costs [39]. ■

4.11 Appendix:A polynomial-time quantum algorithm for finding a local
minimum under thermal perturbations (Proof of Theorem 4.9.1)

In this appendix, we present the proof of Theorem 4.9.1 by giving a polynomial-time
quantum algorithm for finding local minima under thermal perturbations. We
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refer to the efficient quantum algorithm as Quantum thermal gradient descent as
the algorithm performs gradient descent using thermal Lindbladians induced by a
heat bath. The algorithm uses the properties of thermal Lindbladians presented in
Appendix 4.10.

Cooling by gradient descent
The central idea of quantum thermal gradient descent is the following. When we are
not at a local minimum under thermal perturbations, the negative energy gradient will
be sufficiently large, and we can decrease the energy by following a direction with a
negative energy gradient. This is characterized by the following lemma. We will use
this lemma to design the gradient descent algorithm for finding a local minimum.

Lemma 4.11.1 (Cooling by gradient descent). Given parameters 0 < 𝜖 < 0.5, 𝐵 ≥ 1,
𝛽, 𝜏 ≥ 0, an 𝑛-qubit Hamiltonian 𝑯 with ∥𝑯∥∞ ≤ 𝐵, and 𝑚 local jump operators
{𝑨𝑎}𝑎. Consider 𝑎 = 1, . . . , 𝑚 with an approximate energy gradient 𝑔𝑎 satisfying���𝑔𝑎 − tr

(
𝑯L𝛽,𝜏,𝑯𝑎 [𝝆(𝑡−1)]

)��� < 0.01𝜖 .

Suppose there exist 𝑎∗ ∈ {1, . . . , 𝑚} with sufficiently negative approximate energy
gradient,

𝑔𝑎∗ < −0.99𝜖 .

The state after evolving 𝝆 along the direction 𝒆𝑎∗ for a small step 𝑠 = |𝑔𝑎∗ |/(9𝐵2) > 0,

𝝆(next) := exp𝛽,𝜏,𝑯,{𝑨
𝑎}𝑎

𝝆 (𝑠𝒆𝑎∗)

guarantees the following energy decrease,

tr
(
𝑯𝝆(next)

)
< tr(𝑯𝝆) − 𝜖2

20𝐵2 .

Proof. From Prop. 4.8.2 on Taylor’s theorem, we have the following identity

tr
(
𝑯𝝆(next)

)
= tr(𝑯𝝆) + 𝑠 tr(𝑯L𝛽,𝜏,𝑯

𝑎∗ [𝝆]) + 𝑠
2

2
tr(𝑯L𝛽,𝜏,𝑯

𝑎∗ [L𝛽,𝜏,𝑯
𝑎∗ [𝝈]])

for some 𝑛-qubit state 𝝈. We will separately control the linear term and the quadratic
term.

Linear term. From the definition of the energy gradient vector ∇𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆),
we have

tr(𝑯L𝛽,𝜏,𝑯
𝑎∗ [𝝆]) < 𝑔𝑎∗ + 0.01𝜖 <

98
99
𝑔𝑎∗ = −

98
99
|𝑔𝑎∗ |.

The second inequality follows from 𝑔𝑎∗ < −0.99𝜖 , hence 0.01𝜖 < −(1/99)𝑔𝑎∗ .
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Quadratic term. We can bound the quadratic term as follows:

1
2

tr(𝑯L𝛽,𝜏,𝑯
𝑎∗ [L𝛽,𝜏,𝑯

𝑎∗ [𝝈]]) ≤ 1
2




L†𝛽,𝜏,𝑯𝑎∗





∞−∞
∥L†𝛽,𝜏,𝑯

𝑎∗ (𝑯)∥∞.

From Prop. 4.8.3 and Prop. 4.10.4 that bounds the norm of these objects, we have

1
2




L†𝛽,𝜏,𝑯𝑎





∞−∞
∥L†𝛽,𝜏,𝑯

𝑎′ (𝑯)∥∞ ≤ 4.5∥𝑯∥2∞ ≤ 4.5𝐵2.

Combining the linear and quadratic terms with 𝑠 = |𝑔𝑎∗ |/(9𝐵2) > 0, we have

tr
(
𝑯𝝆(next)

)
≤ tr(𝑯𝝆) −

(
98

99 × 9
− 1

18

)
|𝑔𝑎∗ |2
𝐵2 < tr(𝑯𝝆) − 0.054

|𝑔𝑎∗ |2
𝐵2 .

We can use |𝑔𝑎∗ |2 > 0.992𝜖2 to obtain the desired claim. ■

Quantum thermal gradient descent
Given error 𝜖 = 1/poly(𝑛), norm bound 𝐵 = poly(𝑛), inverse temperature 0 ≤ 𝛽 ≤
poly(𝑛), time scale 𝜏 = poly(𝑛), an 𝑛-qubit local Hamiltonian 𝑯 with ∥𝑯∥∞ ≤ 𝐵,
𝑚 local jump operators {𝑨𝑎}𝑎 with 𝑚 = poly(𝑛), and a local observable 𝑶 with
∥𝑶∥∞ ≤ 1.

We consider a coordinate-wise gradient descent algorithm that implements the
following. The initial state 𝝆(0) is arbitrary as long as copies of the state can be
prepared on the quantum computer. For example, we can set 𝝆(0) to be the maximally
mixed state 𝑰

2𝑛 . The total number of steps is

𝑇 :=
42𝐵3

𝜖2 . (4.27)

For each time step 𝑡 from 1 to 𝑇 , the algorithm does the following.

1. For each direction 𝑎 = 1, . . . , 𝑚, estimate an approximate energy gradient 𝑔(𝑡)𝑎
satisfying ���𝑔(𝑡)𝑎 − tr

(
L†𝛽,𝜏,𝑯𝑎 (𝑯)𝝆(𝑡−1)

)��� < 0.0099𝜖 . (4.28)

The energy gradient can be estimated efficiently using Lemma 4.10.1 given
copies of 𝝆(𝑡−1) prepared through Eq. (4.29) and Theorem 4.10.1. From the
bound on energy gradients in Prop. 4.8.3, we have |𝑔(𝑡)𝑎 | ≤ 3𝐵 + 0.0099𝜖 . If
𝑔
(𝑡)
𝑎 < −0.99𝜖 , set 𝑎 (𝑡) := 𝑎 and terminate the for-loop over 𝑎.

2. If 𝑎 (𝑡) is not found, set 𝝆(𝑇) := 𝝆(𝑡−1) and terminate the for-loop over 𝑡.
Otherwise evolve 𝝆(𝑡−1) under the direction 𝒆𝑎 (𝑡 ) for a small step 𝑠(𝑡) :=



253

|𝑔(𝑡)𝑎 |/(9𝐵2),

𝝆(𝑡) := exp
(
𝑠(𝑡)L𝛽,𝜏,𝑯

𝑎 (𝑡 )

) (
𝝆(𝑡−1)

)
=

𝑡∏
𝑡′=1

exp
(
𝑠(𝑡)L𝛽,𝜏,𝑯

𝑎 (𝑡 )

) (
𝝆(0)

)
. (4.29)

Because 0 ≤ 𝑠(𝑡) ≤ 1/(2𝐵), a single copy of 𝝆(𝑡) can be prepared in polynomial-
time using the thermal Lindbladian simulation algorithm in [39]; see Theo-
rem 4.10.1.

We will show that the state 𝝆(𝑇) created by the gradient descent algorithm is an
𝜖-approximate local minimum of 𝑯 under thermal perturbations. Furthermore, using
the thermal Lindbladian simulation algorithm, a quantum machine can efficiently
create many copies of 𝝆(𝑇) .

Proof of Theorem 4.9.1
The central idea in the proof of Theorem 4.9.1 is the following lemma. The lemma
combines the key results characterizing local minima in Appendix 4.8.

Lemma 4.11.2 (Gradient descent finds a local minimum). 𝝆(𝑇) from Eq. (4.29) is
an 𝜖-approximate local minimum of 𝑯 under thermal perturbations with inverse
temperature 𝛽, time scale 𝜏, and system-bath interactions generated by {𝑨𝑎}𝑎.

Proof. Suppose the algorithm terminates at some time step 𝑡 < 𝑇 , then 𝑔(𝑡)𝑎 ≥ −0.99𝜖 .
From Eq. (4.28), we have tr

(
L†𝛽,𝜏,𝑯𝑎 (𝑯)𝝆(𝑡−1)

)
≥ −0.9999𝜖 . Hence,

∥∇−
𝛽,𝜏,{𝑨𝑎}𝑎 (𝑯, 𝝆

(𝑡−1))∥∞ ≤ 0.9999𝜖 < 𝜖 .

From the sufficient condition for local minima given in Lemma 4.8.1, we have
𝝆(𝑇) = 𝝆(𝑡−1) is an 𝜖-approximate local minimum 𝝆 of the 𝑛-qubit Hamiltonian 𝑯

under thermal perturbations.

We now show by contradiction that the algorithm must terminate early. Assume
that the algorithm did not terminate early. Then, we can use Lemma 4.11.1 with
𝜖 = 0.99𝜖 for cooling by gradient descent to obtain

tr(𝑯𝝆(𝑇)) ≤ tr(𝑯𝝆(𝑇−1))−0.992𝜖2

20𝐵2 ≤ . . . ≤ tr(𝑯𝝆(0))−0.992𝜖2

20𝐵2 𝑇 ≤ ∥𝑯∥∞−
0.992𝜖2

20𝐵2 𝑇.

From the definition of 𝑇 in Eq. (4.27) and ∥𝑯∥∞ ≤ 𝐵, we have

tr(𝑯𝝆(𝑇)) ≤ ∥𝑯∥∞ −
0.992𝜖2

20𝐵2
42𝐵3

𝜖2 ≤ ∥𝑯∥∞ − 2.05𝐵 ≤ −1.05𝐵.
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At the same time, because ∥𝝆(𝑇) ∥1 = 1,

tr(𝑯𝝆(𝑇)) ≥ −∥𝑯∥∞ ≥ −𝐵.

This is a contradiction. Hence the algorithm must terminate early. ■

The polynomial-time quantum algorithm for establishing Theorem 4.9.1 is as follows.
The algorithm runs quantum thermal gradient descent to find a local minimum 𝝆(𝑇)

of 𝑯 under thermal perturbations. Recall that 𝐵 is the upper bound on ∥𝑯∥∞, and is
equal to poly(𝑛), and 1/𝜖 = poly(𝑛). Because every step can be done in polynomial
time, and there are at most 𝑇 = 42𝐵3/𝜖2 = poly(𝑛) time steps, quantum thermal
gradient descent runs in time polynomial in 𝑛.

Now, given any observable 𝑶. The quantum algorithm prepares O(1/𝜖2) = poly(𝑛)
copies of 𝝆(𝑇) in poly(𝑛) time, then measures 𝑶 on the O(1/𝜖2) copies of 𝝆(𝑇) to
estimate tr(𝑶𝝆(𝑇)) to 𝜖 error. This concludes the proof of Theorem 4.9.1.

4.12 Appendix:Characterizing energy gradients in low-temperature heat bath
Recall from Appendix 4.8 on certifying Hamiltonians without suboptimal local
minima, if there exists 𝜶 ∈ R𝑚≥0 with ∥𝜶∥1 = 1, such that the negative gradient
condition holds,

−
∑︁
𝑎

𝛼𝑎L†𝛽,𝜏,𝑯𝑎 [𝑯] ⪰ 2𝜖
𝛿
(𝑰 − 𝑷𝐺 (𝑯)) − 𝜖 𝑰,

then any 𝜖-approximate local minimum 𝝆 of the 𝑛-qubit Hamiltonian 𝑯 under
thermal perturbations is an exact global minimum of 𝑯 with failure probability ≤ 𝛿,
i.e., tr(𝑷𝐺 (𝑯)𝝆) ≥ 1− 𝛿, where 𝑷𝐺 (𝑯) is the projection onto the ground state space.
To understand when the above condition holds, it is imperative to characterize the
energy gradients, L†𝛽,𝜏,𝑯𝑎 [𝑯].

In this appendix, we present various lemmas and theorems characterizing the energy
gradients, which will be used in our proof of Theorem 4.9.2 in section 4.14 for
showing that a certain family of Hamiltonians has no suboptimal local minima. We
remark that the proofs of many formal statements in this appendix require concepts
and results that won’t be shown till later in Appendices 4.15 and 4.16, and we
recommend the first-time reader to freely skip the proofs and return later.

For simplicity, we will focus on the nonnegative vector 𝜶 being uniform over a subset
𝑆 for the remaining appendices. We will show that this is sufficient for our purposes



255

even though having the ability to choose 𝜶 is more powerful. We define the following
Lindbladian with uniform weights over a subset 𝑆 ⊆ {1, . . . , 𝑚}:

L :=
∑︁
𝑎∈𝑆
L𝛽,𝜏,𝑯𝑎 . (4.30)

Recall from Appendix 4.10 that each L†𝛽,𝜏,𝑯𝑎 corresponds to a jump operator 𝑨𝑎

satisfying the normalization condition ∥𝑨𝑎∥∞ ≤ 1. If we let 𝑟 := 2𝑚𝜖/𝛿, 𝜖′ = 𝑚𝜖
and 𝑆 = {1, . . . , 𝑚}, then the negative gradient condition becomes

(negative gradient condition) : −L† [𝑯] ⪰ 𝑟 (𝑰 − 𝑷𝐺) − 𝜖′𝑰. (4.31)

This will be the central inequality we would like to establish for the remaining
appendices. Throughout the proofs, we will consider different subsets 𝑆 and show a
relation similar to Eq. (4.31) for subset 𝑆.

Basic properties of energy gradients in low-temperature bath
We show a few basic properties of energy gradients under a low-temperature,
long-time-scale bath. First, we show that the energy gradient, at large 𝛽 (i.e., low
temperatures), is negative semi-definite up to controllable error. Intuitively, this can
be seen from the KMS condition in Eq. (4.19), 𝛾𝛽 (𝜔) = 𝛾𝛽 (−𝜔)e−𝛽𝜔: the heating
transition is suppressed by the Boltzmann weight, allowing energy to increase by
𝜔 ∼ 𝛽−1. Another source of error is the uncertainty in energy 𝜏−1.

Lemma 4.12.1 (Almost negative gradients). Consider the thermal Lindbladian
L =

∑
𝑎∈𝑆 L

𝛽,𝜏,𝑯
𝑎 with jump operators {𝑨𝑎}𝑎∈𝑆 where ∥𝑨𝑎∥ ≤ 1, and 𝛾𝛽 (𝜔)

satisfying Eq. (4.19). Then,

L† [𝑯] ⪯ O
(
|𝑆 |

(
∥𝑯∥3/4

𝜏1/4 + 1
𝜏
+ 1
𝛽

))
· 𝑰.

Proof. Rewrite the energy gradient with an error controlled by Proposition 4.10.3
and Lemma 4.16.1 gives

L† [𝑯] ≈
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾𝛽 (𝜔)𝜔 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔

=
∑︁
𝑎∈𝑆

∫ ∞

0
𝛾𝛽 (𝜔)𝜔 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔 +

∑︁
𝑎∈𝑆

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔
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and bound the positive operator

∥
∑︁
𝑎∈𝑆

∫ ∞

0
𝛾𝛽 (𝜔)𝜔 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔∥∞ ≤ |𝑆 |max

𝜔≥0
𝛾𝛽 (𝜔)𝜔 ≤

|𝑆 |
𝛽
.

The second inequality used the tail bound in Eq. (4.20) with Δ = 0. ■

Second, we show that the energy gradient operator is nearly diagonal in the energy
basis. The intuition is that for any operator 𝑨, the product

𝑨̂†(𝜔) 𝑨̂(𝜔)

is nearly diagonal in the energy basis for large 𝜏.

Lemma 4.12.2 (Energy gradient is almost diagonal). In the setting of Lemma 4.12.1,
assume that for any two well-isolated energy eigensubspaces 𝑷1 and 𝑷2 such that
the two sets of eigenvalues have at least distance 𝛿. Then,

∥𝑷1L† [𝑯]𝑷2∥ ≤ O
(
|𝑆 |

(
∥𝑯∥3/4

𝜏1/4 + 1
𝜏
+
∥𝜃𝛽∥∞√
𝛿𝜏

))
,

where 𝜃𝛽 (𝜔) := 𝛾𝛽 (𝜔)𝜔.

Proof. Formally, approximate the energy gradient by dropping the Lamb-shift term
(Proposition 4.10.3) and applying Lemma 4.16.1,

L† [𝑯] ≈
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾𝛽 (𝜔)𝜔 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔.

We then apply the secular approximation for 𝜇 = 𝛿/2 (Corollary 4.15.3) such that
the transition amplitudes vanishes between the subspaces

𝑷1𝑺̂
𝑎
𝜇 (𝜔)†𝑺̂𝑎𝜇 (𝜔)𝑷2 = 0 for each 𝜔 ∈ R and 𝑎 ∈ 𝐴.

Combining the errors in each of the approximations leads to the claimed result. ■

Next, we show that the finite-𝜏 Lindbladian can be approximated by the infinite-𝜏
version under certain conditions. The latter, known as the Davies’ generator [57],
has a simpler form that is more amenable for analysis in some situations.

Lemma 4.12.3 (Recovering Davies’ generator). Consider the dissipative part of the
thermal Lindbladian D𝛽,𝜏,𝑯

𝑎 with the jump operators 𝑨𝑎 where ∥𝑨𝑎∥ ≤ 1, and any
𝛾𝛽 such that ∥𝛾𝛽∥∞ ≤ 1. Suppose the Bohr-frequency gap is Δ𝜈 (𝑯), then

∥D†𝛽,𝜏,𝑯𝑎 − D†𝛽,∞,𝑯𝑎 ∥∞−∞ ≤ O
(
max
𝜈

����𝛾𝛽 (𝜈) − ∫ ∞

−∞
𝛾𝛽 (𝜔)

�� 𝑓 (𝜔 − 𝜈)��2d𝜔
���� + 1√︁

Δ𝜈 (𝑯)𝜏

)
.
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Therefore, the Bohr-frequency gap sets a timescale ∼ Δ−1
𝜈 such that the map D†𝛽,𝜏,𝑯𝑎

stabilized.

Proof. It suffices to consider D†𝛽,𝜏,𝑯𝑎 [𝑶] acting on arbitrary operator 𝑶 such that
∥𝑶∥ = 1:

D†𝛽,𝜏,𝑯𝑎 [𝑶] =
∫ ∞

−∞
𝛾𝛽 (𝜔)

[
𝑨̂𝑎 (𝜔)†𝑶𝑨̂𝑎 (𝜔) − 1

2
{ 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔),𝑶}

]
d𝜔

𝐸1≈
∫ ∞

−∞
𝛾𝛽 (𝜔)

[
𝑺̂𝑎 (𝜔)†𝑶𝑺̂𝑎 (𝜔) − 1

2
{𝑺̂𝑎 (𝜔)†𝑺̂𝑎 (𝜔),𝑶}

]
d𝜔

=
∑︁

𝜈,𝜈′∈𝐵(𝑯)

(
𝑨𝑎†
𝜈′ 𝑶𝑨𝑎𝜈 −

1
2
{𝑨𝑎†

𝜈′ 𝑨
𝑎
𝜈 ,𝑶}

) ∫ ∞

−∞
𝛾𝛽 (𝜔) 𝑓 ∗𝜇 (𝜔 − 𝜈′) 𝑓𝜇 (𝜔 − 𝜈)d𝜔

=
∑︁

𝜈∈𝐵(𝑯)

(
𝑨𝑎†𝜈 𝑶𝑨𝑎𝜈 −

1
2
{𝑨𝑎†𝜈 𝑨𝑎𝜈 ,𝑶}

) ∫ ∞

−∞
𝛾𝛽 (𝜔)

�� 𝑓𝜇 (𝜔 − 𝜈)��2d𝜔

𝐸2≈
∑︁

𝜈∈𝐵(𝑯)

(
𝑨𝑎†𝜈 𝑶𝑨𝑎𝜈 −

1
2
{𝑨𝑎†𝜈 𝑨𝑎𝜈 ,𝑶}

)
𝛾𝛽 (𝜈).

The approximation errors are bounded by

𝐸1 ≤ 2∥𝑶∥∥𝛾𝛽∥∞∥𝑨𝑎∥∥ 𝑓𝜏 · (1 − 𝑠𝜇)∥2∥ 𝑓𝜏∥2 = O
(

1
√
𝜇𝜏

)
,

𝐸2 ≤ 2∥𝑶∥∥𝑨𝑎∥max
𝜈

����𝛾𝛽 (𝜈) − ∫ ∞

−∞
𝛾𝛽 (𝜔)

�� 𝑓𝜇 (𝜔 − 𝜈)��2d𝜔
����

≤ O
(
max
𝜈

����𝛾𝛽 (𝜈) − ∫ ∞

−∞
𝛾𝛽 (𝜔)

�� 𝑓 (𝜔 − 𝜈)��2d𝜔
���� + ∥𝛾𝛽∥∞𝜇𝜏

)
.

Combine the error bounds to conclude the proof. Note that since the bound becomes
vacuous at 𝜇𝜏 = Ω(1), we have that O(1/√𝜇𝜏 + 1/(𝜇𝜏)) = O(1/√𝜇𝜏). ■

Lemma 4.12.4. For 𝛾𝛽 (𝜔) defined in Eq. (4.21) with Λ0 = Θ(1), we have that

max
𝜈∈R

����𝛾𝛽 (𝜈) − ∫ ∞

−∞
𝛾𝛽 (𝜔)

�� 𝑓 (𝜔 − 𝜈)��2d𝜔
���� ≤ O (

1 + 𝛽
𝜏

ln 𝜏
)
.

Proof. Recall the integration-by-part trick for expectation integral∫ ∞

0
𝑓 (𝑥)𝑝(𝑥)d𝑥 = −[ 𝑓 (𝑥)𝑃(𝑥)]𝑥=∞𝑥=0 +

∫ ∞

0
𝑓 ′(𝑥)𝑃(𝑥)d𝑥 where 𝑃(𝑥) :=

∫ ∞

𝑥

𝑝(𝑦)d𝑦.

Then,∫ ∞

−∞
𝛾𝛽 (𝜔)

�� 𝑓 (𝜔 − 𝜈)��2d𝜔 =

∫ ∞

−∞
𝛾𝛽 (𝜈 + 𝑥)

�� 𝑓 (𝑥)��2d𝑥 =
∫ ∞

0

𝛾𝛽 (𝜈 + 𝑥) + 𝛾𝛽 (𝜈 − 𝑥)
2

2
�� 𝑓 (𝑥)��2︸   ︷︷   ︸
=:𝑝(𝑥)

d𝑥

= 𝛾𝛽 (𝜈) +
∫ ∞

0

𝛾′
𝛽
(𝜈 + 𝑥) + 𝛾′

𝛽
(𝑥 − 𝜈)

2
𝑃(𝑥)d𝑥,
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where in the last line we applied the integration-by-part and used 𝛾(±∞) = 0 and
𝑃(0) = 1. The error term can be bounded as follows:�����∫ ∞

0

𝛾′
𝛽
(𝜈 + 𝑥) + 𝛾′

𝛽
(𝑥 − 𝜈)

2
𝑃(𝑥)d𝑥

�����
=

�����∫ 1/𝜏

0

𝛾′
𝛽
(𝜈 + 𝑥) + 𝛾′

𝛽
(𝜈 − 𝑥)

2
𝑃(𝑥)d𝑥 +

∫ ∞

1/𝜏

𝛾′
𝛽
(𝜈 + 𝑥) + 𝛾′

𝛽
(𝜈 − 𝑥)

2
𝑃(𝑥)d𝑥

�����
= O(1 + 𝛽

𝜏
) + O(1 + 𝛽

𝜏
ln 𝜏).

In the last line, we control the first term by 𝑃(𝑥) ≤ 1 and noting by the product rule
we have���𝛾′𝛽 (𝜔)��� = O (����� d

d𝜔

(
e−𝜔2/2Λ2

0

1 + e𝛽𝜔

)�����
)
= O

(�����−e−𝜔2/2Λ2
0𝜔/Λ2

0
1 + e𝛽𝜔

− e−𝜔2/2Λ2
0𝛽e𝛽𝜔

(1 + e𝛽𝜔)2

�����
)

≤ O( 1
Λ0
+ 𝛽).

The second term uses the tail bound 𝑃(𝑥) ≤ 4
𝜋𝑥𝜏

from Eq. (4.93) and that 𝛾′
𝛽
(𝜈 ± 𝑥)

are each rapidly decaying outside an 𝑥 ∈ [∓𝜈 − Λ0,∓𝜈 + Λ0] window so that the
integral over 1

𝑥
d𝑥 only contributes at most O(

∫ Λ0
1/𝜏

1
𝑥
d𝑥) = O(log(𝜏Λ0)). ■

Relating subspace and local gradients to global gradients
As a method of proof, we will often analyze a Lindbladian by its constituents, and
here we present a few useful relations. First, when studying gradients, the gradient
acting on a subspace is often conceptually simpler. The following lemma relates
the energy gradient in a subspace and the full energy gradient. This is a direct
consequence of Lemma 4.12.1 and Lemma 4.12.2 above.

Lemma 4.12.5 (Subspace gradient and global gradient). In the setting of Lemma 4.12.2,
suppose 𝑷 projects onto a set of eigenstates of 𝑯 separated by the rest by a gap of at
least 𝛿. Then,

−L† [𝑯] ⪰ −𝑷L† [𝑯]𝑷 − O
(
|𝑆 |

(
∥𝑯∥3/4

𝜏1/4 + 1
𝛽
+ 1
𝜏
+
∥𝜃𝛽∥∞√
𝛿𝜏

))
· 𝑰.

Proof. Let 𝑳 = L† [𝑯]. We have,

𝑳 = 𝑷𝑳𝑷 + 𝑷⊥𝑳𝑷⊥ + 𝑷𝑳𝑷⊥ + 𝑷⊥𝑳𝑷.

Using Lemma 4.12.1 establishing the almost negativity of the energy gradient,

−𝑳 ⪰ −O
(
|𝑆 |

(
∥𝑯∥3/4

𝜏1/4 + 1
𝜏
+ 1
𝛽

))
𝑰,
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we have

−𝑷⊥𝑳𝑷⊥ ⪰ −O
(
|𝑆 |

(
∥𝑯∥3/4

𝜏1/4 + 1
𝜏
+ 1
𝛽

))
𝑷⊥. (Lemma 4.12.1)

∥𝑷𝑳𝑷⊥ + 𝑷⊥𝑳𝑷∥ ≤ O
(
|𝑆 |

(
∥𝑯∥3/4

𝜏1/4 + 1
𝜏
+
∥𝜃𝛽∥∞√
𝛿𝜏

))
. (Lemma 4.12.2)

Putting the bounds together yields the advertised result. ■

Next, we provide a lemma that gives a simplified expression of the energy gradient
operator when restricted to a subspace of low-energy eigenstates.

Lemma 4.12.6 (Gradient in a subspace). In the setting of Lemma 4.12.1, suppose
𝑯 has a subspace of low-energy eigenstates with corresponding projector 𝑸 that
is separated from the higher energy eigenstates by an excitation gap Δ𝑸 . Let
Δ𝜈 = min𝜈1≠𝜈2∈𝐵(𝑯 |𝑸) |𝜈1 − 𝜈2 | be the Bohr-frequency gap of 𝑯 restricted to the
subspace. Assuming Δ𝜈/2 < Δ𝑸 , then the energy gradient operator in the subspace
can be approximated using




𝑸L† [𝑯]𝑸 −∑︁

𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯 |𝑸)

𝑸𝑨𝑎†𝜈 𝑸𝑨𝑎𝜈𝑸

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔| 𝑓𝜇 (𝜔 − 𝜈) |2d𝜔






 ≤ 𝜖
where 𝜇 = Δ𝜈/2 and

𝜖 ≤ |𝑆 |O
(
∥𝑯∥3/4

𝜏1/4 + 1
𝜏
+ 1
𝛽
+
∥𝜔𝛾𝛽 (𝜔)∥∞√

Δ𝜈𝜏

)
.

Proof. We invoke a series of approximations to rewrite in terms of the exact Bohr
frequencies on the subspace 𝑷I.

L† [𝑯] 𝐸1≈ D† [𝑯]
𝐸2≈

∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾𝛽 (𝜔)𝜔𝑨𝑎 (𝜔)†𝑨𝑎 (𝜔)d𝜔

𝐸3≈
∑︁
𝑎∈𝑆

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔𝑨𝑎 (𝜔)†𝑨𝑎 (𝜔)d𝜔

𝐸4≈
∑︁
𝑎∈𝑆

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔𝑺𝑎 (𝜔)†𝑺𝑎 (𝜔)d𝜔

=
∑︁
𝑎∈𝑆

∑︁
𝜈′,𝜈∈𝐵(𝑯)

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔𝑨𝑎†

𝜈′ 𝑨
𝑎
𝜈 𝑓𝜇
∗(𝜔 − 𝜈′) 𝑓𝜇 (𝜔 − 𝜈)d𝜔 =: 𝑿 .(4.44)
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The errors are 𝐸1 = O(|𝑆 |∥𝑯∥3/4/𝜏1/4), 𝐸2 = O(|𝑆 |/𝜏), 𝐸3 = O(|𝑆 |/𝛽), and
𝐸4 = O(|𝑆 | × ∥𝜔𝛾𝛽 (𝜔)∥∞/

√
𝜇𝜏). In particular, 𝐸3 arises from dropping the positive

integral range with error bounded by max𝜔≥0 𝜔𝛾𝛽 (𝜔) ≤ 1/𝛽. In other words, our
choice of 𝛾𝛽 (𝜔) allows the energy to increase by at most O(1/𝛽).

Sandwiching Eq. (4.12) with 𝑸 further simplifies the expression as it restricts to
transitions in the subspace. Specifically, we have

𝑸𝑿𝑸 =
∑︁
𝑎∈𝑆

∑︁
𝜈′,𝜈∈𝐵(𝑯)

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔𝑸𝑨𝑎†

𝜈′ 𝑸𝑨𝑎𝜈𝑸 𝑓𝜇
∗(𝜔 − 𝜈′) 𝑓𝜇 (𝜔 − 𝜈)d𝜔

=
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯 |𝑸)

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔𝑸𝑨𝑎†𝜈 𝑸𝑨𝑎𝜈𝑸

�� 𝑓𝜇 (𝜔 − 𝜈)��2d𝜔.

The first line inserts an additional projector 𝑸 between 𝑨𝑎†
𝜈′ and 𝑨𝑎𝜈 because any

transition to excited states require 𝜈, 𝜈′ > Δ𝑸 , but this is forbidden by the restrictions
that 𝜔 ≤ 0 (from the integral) and that |𝜈 − 𝜔|, |𝜈′ − 𝜔 | < 𝜇 < Δ𝑸 (from the secular
approximation). In the second line, since the Bohr frequencies in 𝐵(𝑯 |𝑸) are at least
Δ𝜈 = 2𝜇 apart, we must have that

𝑓 ∗𝜇 (𝜔 − 𝜈′) 𝑓𝜇 (𝜔 − 𝜈) = 0 for all 𝜔 ∈ R, unless 𝜈′ = 𝜈.

Combining the above with Eq. (4.12) to conclude the proof. ■

When the Hamiltonian is local, thinking about the gradient “locally” is sometimes
useful. The following lemma gives a sufficient condition that guarantees a global
gradient. Since the consequence is strong, the premise is also more stringent; it is
only helpful when the Hamiltonian is frustration-free.

Lemma 4.12.7 (Local-to-global gradient condition). Suppose 𝑯 =
∑
𝑖 𝒉𝑖, where

each term 𝒉𝑖 ⪰ 0. Then for any (not necessarily thermal) Lindbladian L,

−L† [𝒉𝑖] ⪰ 𝑟𝑖𝒉𝑖 =⇒ −L† [𝑯] ⪰ 𝑟𝑯,

where 𝑟 = min𝑖 𝑟𝑖.

Proof. By linearity, we have −L† [𝑯] = ∑
𝑖 −L† [𝒉𝑖] ⪰

∑
𝑖 𝑟𝑖𝒉𝑖. Since 𝑟𝑖𝒉𝑖 ⪰ 𝑟𝒉𝑖,

we have −L† [𝑯] ⪰ 𝑟∑𝑖 𝒉𝑖 = 𝑟𝑯, concluding the proof. ■
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Gradients for commuting Hamiltonians
When we are given a commuting Hamiltonian, the energy gradient induced by any
local jump operator can be understood by restricting the system to its neighborhood.
In this situation, the negative gradient condition for the overall Hamiltonian can
be decomposed into conditions that can be checked locally. This gives an efficient
method to show a commuting Hamiltonian has a negative gradient for all its excited
states, which we elucidate in this section of the appendix.

Recall the thermal Lindbladian L := L𝛽,𝜏,𝑯 defined in Eq. (4.18) for a local jump
operator 𝑨𝑎, whose Heisenberg picture is

L†𝛽,𝜏,𝑯𝑎 [𝑶] = i[𝑯𝛽,𝜏,𝑯
𝐿𝑆,𝑎

,𝑶] + D†𝛽,𝜏,𝑯𝑎 [𝑶],

where

D†𝛽,𝜏,𝑯𝑎 [𝑶] =
∫ ∞

−∞
𝛾𝛽 (𝜔)

[
𝑨̂𝑎 (𝜔)†𝑶𝑨̂𝑎 (𝜔) − 1

2
{ 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔),𝑶}

]
d𝜔.

Note 𝑨̂𝑎 (𝜔) is the operator Fourier transform of 𝑨𝑎 (𝑡) = ei𝑯𝑡𝑨𝑎e−i𝑯𝑡 , and 𝑯𝛽,𝜏,𝑯
𝐿𝑆,𝑎

is a Lamb-shift term defined in Eq. (4.22).

When 𝑯 is a commuting Hamiltonian (e.g., [31, 96]), an important observation is that
𝑨𝑎 (𝑡) only depends on the part of 𝑯 that does not commute with 𝑨𝑎. In particular,
the energy gradient for each jump operator only depends on the neighborhood of 𝑨𝑎.

Lemma 4.12.8 (Commuting Hamiltonian and localized Lindblad operators). Suppose
𝑯 =

∑
𝑒 𝒉𝑒 is a commuting Hamiltonian. For any jump operator 𝑨𝑎, the associated

energy gradient simplifies to

L†𝛽,𝜏,𝑯𝑎 [𝑯] = L†𝛽,𝜏,𝑯∋𝑎𝑎 [𝑯∋𝑎],

where 𝑯∋𝑎 =
∑
𝑒: [𝒉𝑒,𝑨𝑎]≠0 𝒉𝑒 is the part of 𝑯 does not commute with 𝑨𝑎.

Proof. When 𝑯 is commuting, we have 𝑨𝑎 (𝑡) = ei𝑯𝑡𝑨𝑎e−i𝑯𝑡 = ei𝑯∋𝑎𝑡𝑨𝑎e−i𝑯∋𝑎𝑡 , so
the Lindbladian superoperator only depends on 𝑯∋𝑎, i.e., L†𝛽,𝜏,𝑯𝑎 = L†𝛽,𝜏,𝑯∋𝑎𝑎 .

Let 𝑯∌𝑎 = 𝑯 −𝑯∋𝑎 be the part of 𝑯 that commutes with 𝑨𝑎. Since [𝑯∌𝑎,𝑯∋𝑎] = 0,
we have [𝑨𝑎 (𝑡),𝑯∌𝑎] = 0 for each 𝑡, which implies [𝑯𝛽,𝜏,𝑯

𝐿𝑆,𝑎
,𝑯∌𝑎] = [ 𝑨̂𝑎 (𝜔),𝑯∌𝑎] =

0. Thus we have L†𝛽,𝜏,𝑯𝑎 [𝑯∌𝑎] = 0. ■
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Negative gradient condition under perturbations to Hamiltonians
We next look at how the negative energy gradient condition changes under perturba-
tions to the 𝑛-qubit Hamiltonian 𝑯. See Appendix 4.16 for the proof of the following
theorem.

Theorem 4.12.1 (Monotonicity of gradient under level splitting). Consider a
highly degenerate Hamiltonian 𝑯 =

∑
𝐸̄ 𝐸̄𝑷𝐸̄ with Bohr-frequency gap Δ𝜈 :=

min𝜈1≠𝜈2∈𝐵(𝑯) |𝜈1 − 𝜈2 | of 𝑯, and add a perturbation 𝑯′ := 𝑯 + 𝑽. Let 𝑷 = 𝑷𝐸̄ be
a projector to an energy subspace and 𝑷′ the corresponding perturbed subspace.
Suppose the perturbation is weaker than the Bohr-frequency gap, ∥𝑽∥ ≤ 1

8Δ𝜈. For
any 𝛽, 𝜏 > 0, let L =

∑
𝑎∈𝑆 L

𝛽,𝜏,𝑯
𝑎 ,L′ = ∑

𝑎∈𝑆 L
𝛽,𝜏,𝑯′
𝑎 be thermal Lindbladians

with jumps {𝑨𝑎}𝑎∈𝑆, where ∥𝑨𝑎∥ ≤ 1 and the transition weight 𝛾𝛽 (𝜔) is given by
Eq. (4.21). Then we have the monotone property that

−L† [𝑯] ⪰ 𝑟 (𝑰 − 𝑷) − 𝜖 𝑰 implies − L′† [𝑯′] ⪰ 𝑟 (𝑰 − 𝑷′) − 𝜖′𝑰,

where

𝜖′ ≤ 𝜖 + |𝑆 | · O
(

1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ e−𝛽Δ𝜈/4

𝛽
+

(
1 + Λ0 + 𝑟

Δ𝜈

)
∥𝑽∥

)
.(4.48)

Finally, we look at how the negative energy gradient condition changes when restricted
to a subspace. See Appendix 4.16 for proofs of the following two corollaries.

Corollary 4.12.1 (Monotonicity of gradient on a subspace). Consider a Hamiltonian
𝑯 =

∑
𝐸̄ 𝐸̄𝑷𝐸̄ and its perturbation 𝑯′ := 𝑯+𝑽. Let 𝑷 be the ground space projector

for 𝑯 and 𝑷′ be the corresponding perturbed eigensubspace of 𝑯′. Let 𝑸 be a low-
energy eigensubspace projector of 𝑯 (i.e., 𝑸 =

∑
𝐸≤𝐸𝑸 𝑷𝐸 for 𝐸𝑸 ∈ Spec(𝑯)) with

excitation gap Δ𝑸 . Assume ∥𝑽∥∥𝑯∥
Δ𝑸

≤ 1
144Δ𝜈 where Δ𝜈 := min𝜈1≠𝜈2∈𝐵(𝑯 |𝑸) |𝜈1 − 𝜈2 |

is the Bohr-frequency gap of 𝑯 within the subspace 𝑸. For any 𝛽, 𝜏 > 0, let
L =

∑
𝑎∈𝑆 L

𝛽,𝜏,𝑯
𝑎 ,L′ = ∑

𝑎∈𝑆 L
𝛽,𝜏,𝑯′
𝑎 be thermal Lindbladians with jumps {𝑨𝑎}𝑎∈𝑆,

where ∥𝑨𝑎∥ ≤ 1 and the transition weight 𝛾𝛽 (𝜔) is given by Eq. (4.21). Then we
have the monotone property that

−𝑸L† [𝑯]𝑸 ⪰ 𝑟𝑸(𝑰 − 𝑷) − 𝜖 𝑰 implies − 𝑸′L′† [𝑯′]𝑸′ ⪰ 𝑟𝑸′(𝑰 − 𝑷′) − 𝜖′𝑰,
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where 𝑸′ projects onto the perturbed eigensubspace of 𝑯′ identified with 𝑸, and

𝜖′ ≤ 𝜖 + |𝑆 | · O
(

1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ Λ0√︁

Δ𝑸𝜏
+ e−𝛽Δ𝜈/4

𝛽
+ e−𝛽Δ𝑸/4

𝛽

+
(
1 + Λ0

Δ𝜈

)
∥𝑽∥∥𝑯∥

Δ𝑸
+ 𝑟

( ∥𝑽∥
Δ𝑸
+ ∥𝑽∥

Δ𝜈

))
. (4.49)

Corollary 4.12.2 (Monotonicity of gradient on a subspace under off-block-diagonal
perturbation). In the setting of Corollary 4.12.1, instead assume ∥𝑽∥

Δ𝜈
,
∥𝑽∥
Δ𝑸
≤ (𝑐𝑜𝑛𝑠𝑡.),

and that the perturbation is off-block-diagonal, i.e., 𝑸𝑽𝑸 = (𝑰 − 𝑸)𝑽 (𝑰 − 𝑸) = 0.
Then,

−𝑸L† [𝑯]𝑸 ⪰ 𝑟𝑸(𝑰 − 𝑷) − 𝜖 𝑰 implies − 𝑸′L′† [𝑯′]𝑸′ ⪰ 𝑟𝑸′(𝑰 − 𝑷′) − 𝜖′𝑰,

where

𝜖′ ≤ 𝜖 + |𝑆 | · O
(

1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ Λ0√︁

Δ𝑸𝜏
+ e−𝛽Δ𝜈/4

𝛽
+ e−𝛽Δ𝑸/4

𝛽

+ ∥𝑽∥
2

Δ𝑸
+ ∥𝑯𝑸 ∥ ·

( ∥𝑯𝑸 ∥∥𝑽∥
Δ𝑸Δ𝜈

+ ∥𝑽∥
2

Δ𝑸Δ𝜈

)
+ 𝑟

( ∥𝑽∥
Δ𝑸
+ ∥𝑽∥

2

Δ𝑸Δ𝜈

))
.
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4.13 Appendix:Energy landscape of an Ising chain
In this appendix, we take a brief aside to characterize the energy landscape of
the one-dimensional ferromagnetic Ising chain under thermal perturbations. This
provides a basic example on how the definition of local minima under thermal
perturbations is related to the physical picture. We will see that this system has
many suboptimal local minima in the absence of an external field with a lifetime
polynomial in the system size. Once an external field is added, however, the system
essentially has no suboptimal local minima and can quickly cool to the ground state
where all spins are aligned. This observation corresponds to the following physical
phenomena: when there is no external magnetic field, a ferromagnetic system will
often be stuck in a configuration with many domain walls, and an externally applied
magnetic field can quickly magnetize the system.

The Hamiltonian for the ferromagnetic Ising chain on a periodic boundary condition
is

𝑯 = −
𝑛∑︁
𝑗=1

𝒁 𝑗𝒁 𝑗+1 − ℎ
𝑛∑︁
𝑗=1

𝒁 𝑗 ,

where we identify 𝒁𝑛+1 ≡ 𝒁1. Intuitively, this system energetically favors configura-
tions where adjacent spins are aligned. When ℎ = 0, we have two degenerate ground
states, |00 · · · 0⟩ and |11 · · · 1⟩, which are the global minima. This degeneracy is
broken when ℎ ≠ 0, and these two states split by energy 2𝑛ℎ. The system also
has many excited states with domain walls, i.e., locations where adjacent spins are
anti-aligned such as |01⟩ and |10⟩. In what follows, we study the energy landscape
of the above system under thermal perturbations with jump operator {𝑨 𝑗 = 𝑿 𝑗 }𝑛𝑗=1,
setting 𝜏 = ∞ for simplicity. We analyze three cases.

Case 1: no external field (ℎ = 0). In this case, we will see that any bit string state
with domain walls sufficiently far from each other, e.g. |· · · 0001111000 · · · ⟩ is a
suboptimal local minimum. Indeed, there is no local operation to strictly decrease
the energy of such states; the jump operators {𝑿 𝑗 } can only displace the domain
walls by one site, which does not change the energy.

We can see this more formally by computing the energy gradient operator. Since 𝑯 is a
commuting Hamiltonian, we may apply Lemma 4.12.8 and study the gradient induced
by a single jump operator 𝑿 𝑗 by restricting the Hamiltonian to its neighborhood, i.e.,

𝑯∋ 𝑗 = −𝒁 𝑗−1𝒁 𝑗 − 𝒁 𝑗𝒁 𝑗+1.
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Observe 𝑯∋ 𝑗 has three degenerate eigenspaces 𝑷𝐸
𝑗

with energy 𝐸 as follows:

𝑷−2
𝑗 =

∑︁
𝒔∈{000,111}

|𝒔⟩⟨𝒔 | 𝑗−1, 𝑗 , 𝑗+1, 𝑷2
𝑗 =

∑︁
𝒔∈{010,101}

|𝒔⟩⟨𝒔 | 𝑗−1, 𝑗 , 𝑗+1,

and 𝑷0
𝑗 =

∑︁
𝒔∈{001,100,011,110}

|𝒔⟩⟨𝒔 | 𝑗−1, 𝑗 , 𝑗+1.

Then the negative Bohr-frequencies and the associated jumps are

𝑨 𝑗
𝜈1 = 𝑷−2

𝑗 𝑿 𝑗𝑷
2
𝑗 = ( |000⟩⟨010| + |111⟩⟨101|) 𝑗−1, 𝑗 , 𝑗+1, 𝜈1 = −4,

𝑨 𝑗
𝜈2 = 𝑷0

𝑗 𝑿 𝑗𝑷
2
𝑗 + 𝑷−2

𝑗 𝑿 𝑗𝑷
0
𝑗 = 0, 𝜈2 = −2.

Hence, the energy gradient operator associated with jump 𝑿 𝑗 is

D†𝛽,∞,𝑯
𝑗

[𝑯] = D†𝛽,∞,𝑯∋ 𝑗
𝑗

[𝑯∋ 𝑗 ] =
∑
𝜈∈𝐵(𝑯∋ 𝑗 ) 𝜈𝛾𝛽 (𝜈)𝑨

𝑗†
𝜈 𝑨 𝑗

𝜈

= 𝜃0 · ( |010⟩⟨010| + |101⟩⟨101|) 𝑗−1, 𝑗 , 𝑗+1 + O(𝑒−4𝛽),

where 𝜃0 = −4𝛾𝛽 (−4) = −Ω(1). As we can see, the energy gradient is essentially 0
when the domain walls are more than distance 1 apart, and only becomes significant
when two domain walls are next to each other, as in |· · · 010 · · · ⟩ or |· · · 101 · · · ⟩.
This implies the presence of exponentially many suboptimal local minima; for
example, choose whether or not to have a domain wall every 2 sites.

Despite the presence of many suboptimal local minima, we now argue that they have
a lifetime polynomial in the system size 𝑛 when the system evolves under thermal
perturbations. We may understand the dynamics of the system as a random walk of
domain walls, and two domain walls annihilate each other when they meet. Since
two domain walls at distance ℓ apart moving under diffusive dynamics take O(ℓ2)
time to meet, a suboptimal local minimum with 𝑘 domain walls decays to a lower
energy state after approximately O(𝑛2/𝑘2) time.

Case 2: weak external field (0 < ℎ < 2). In this case, the ground state of 𝑯 is
uniquely |0𝑛⟩, as all spins are slightly favored to be in the |0⟩ state instead of the |1⟩
state. When the domain walls are far apart, e.g. |· · · 0001111000 · · · ⟩, the applied
external field causes an attraction across the domain of 1’s, which energetically favors
the domain walls to move closer together. The presence of the field ℎ removes all the
suboptimal local minima that were in the previous case. The state |1𝑛⟩, which was a
ground state in the previous case, becomes now the only suboptimal local minimum.

We now more formally characterize the energy landscape of 𝑯 using the energy
gradient operator. Again applying Lemma 4.12.8, we may consider the gradient
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induced by a single jump operator by focusing on its neighborhood. The relevant
neighborhood Hamiltonian is

𝑯∋ 𝑗 = −𝒁 𝑗−1𝒁 𝑗 − 𝒁 𝑗𝒁 𝑗+1 − ℎ𝒁 𝑗 .

Turning the crank, we see that the negative Bohr-frequencies and the associated
jumps are

𝑨 𝑗
𝜈1 = |000⟩⟨010| 𝑗−1, 𝑗 , 𝑗+1, 𝜈1 = −4 − 2ℎ,

𝑨 𝑗
𝜈2 = |111⟩⟨101| 𝑗−1, 𝑗 , 𝑗+1, 𝜈2 = −4 + 2ℎ,

𝑨 𝑗
𝜈3 = ( |001⟩⟨011| + |100⟩⟨110|) 𝑗−1, 𝑗 , 𝑗+1, 𝜈3 = −2ℎ. (4.50)

Then the energy gradient operator associated with jump 𝑿 𝑗 is

D†𝛽,∞,𝑯
𝑗

[𝑯] = ∑
𝜈∈𝐵(𝑯∋ 𝑗 ) 𝜈𝛾𝛽 (𝜈)𝑨

𝑗†
𝜈 𝑨 𝑗

𝜈

= (𝜃1 |010⟩⟨010| + 𝜃2 |101⟩⟨101| + 𝜃3 |011⟩⟨011| + 𝜃3 |110⟩⟨110|) 𝑗−1, 𝑗 , 𝑗+1 + O(𝑒−2𝛽ℎ),

where 𝜃 𝑗 = 𝜈 𝑗𝛾𝛽 (𝜈 𝑗 ). As we can see, any configuration with a domain wall now has
a significant gradient from at least one of the jumps. The only configurations without
a significant energy gradient are |0𝑛⟩, the ground state, and |1𝑛⟩, a metastable local
minimum.

Case 3: strong external field (ℎ > 2). In this case, the external field is sufficiently
strong that the state |1𝑛⟩ is no longer a local minimum, and 𝑯 has no suboptimal
local minima. To see this, we note that ℎ > 2 implies that 𝜈2 > 0 in Eq. (4.50), which
means the energetically favored jump operator is actually 𝑨 𝑗

−𝜈2 = 𝑨 𝑗†
𝜈2 . This implies

the energy gradient operator induced by the jump 𝑿 𝑗 in this case is

D†𝛽,∞,𝑯
𝑗

[𝑯] = (𝜃1 |010⟩⟨010| + 𝜃′2 |111⟩⟨111| + 𝜃3 |011⟩⟨011| + 𝜃3 |110⟩⟨110|) 𝑗−1, 𝑗 , 𝑗+1

+ O(𝑒−2𝛽(ℎ−2)),

where 𝜃′2 = −𝜈2𝛾𝛽 (−𝜈2). This gives the state |1𝑛⟩ a significant energy gradient, and
thus the ground state |0𝑛⟩ is the only local minimum of 𝑯.
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Figure 4.3: The circuit-to-Hamiltonian mapping. For any 1D circuit, we can turn
the circuit depth into an additional spatial dimension by introducing layers of swap
gates; this particularly structured 2D circuit (now on 𝑛 qubits) is what we call 𝑼𝐶 .
Then, we map the circuit 𝑼𝐶 to a 2D-Hamiltonian by introducing the clock qubits,
which weave between the layers of system qubits in a zigzag order. This layout
ensures that each clock qubit only controls nearby system qubits (in particular, the
odd clock layers control only blue gates, and the even layers control only pink gates.)

4.14 Appendix:All local minima are global in BQP-hard Hamiltonians (Proof
of Theorem 4.9.2)

A main result of our work is that the task of finding a local minimum for 𝑯𝐶 under
thermal perturbation is universal for quantum computation and hence classically
hard. As we have seen in the main text and Appendix 4.9, this main result follows
from Theorem 4.9.2, which we prove in this appendix.

We start by defining 𝑯𝐶 in detail (visualized in Fig. 4.3). Given a 2D 𝑛-qubit circuit
𝑼𝐶 = 𝑼𝑇 · · ·𝑼2𝑼1 with 𝑇 = 2𝑡0 + 𝐿 = poly(𝑛) gates as constructed in Fig. 1 of
Ref. [142], where the first and last 𝑡0 gates are identity gates and each gate of the
2D circuit 𝑼𝐶 is geometrically adjacent to the subsequent gate. We consider a
geometrically local Hamiltonian on a 2D lattice with 𝑛 + 𝑇 qubits defined as follows.

Definition 4.14.1 (Modified circuit-to-Hamiltonian construction). Consider a 2D
circuit

𝑼𝐶 = 𝑼𝑇 · · ·𝑼2𝑼1

on 𝑛 qubits with 𝑇 = 2𝑡0 + 𝐿 gates, where the first and last 𝑡0 = 𝑐𝐿2 gates are identity
gates with 𝑐 = O(1), and each consecutive gates are geometrically adjacent. We
define a geometrically-local Hamiltonian 𝑯𝐶 on a 2D lattice with 𝑛 + 𝑇 qubits as
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follows:

𝑯𝐶 := 𝑯clock + 𝑯in + 𝑯prop acting on (C2)⊗𝑛 ⊗ (C2)⊗𝑇 , (4.51)

where each individual term is given by

𝑯clock := 𝐽clock

𝑇−1∑︁
𝑡=1

𝑓𝑡 𝑰 ⊗ |01⟩⟨01|𝑡,𝑡+1,

𝑯in := 𝐽in

𝑛∑︁
𝑗=1
𝑔 𝑗 |1⟩⟨1| 𝑗 ⊗ |10⟩⟨10|𝑡 𝑗−1,𝑡 𝑗 ,

𝑯prop :=
1
2
𝐽prop

𝑇∑︁
𝑡=1

𝑯prop(𝑡),

𝑯prop(1) := 𝑰 − ℎ1(𝑼1 ⊗ |10⟩⟨00|1,2 +𝑼†1 ⊗ |00⟩⟨10|1,2),
𝑯prop(𝑡) := 𝑰 − ℎ𝑡 (𝑼𝑡 ⊗ |110⟩⟨100|𝑡−1,𝑡,𝑡+1 +𝑼†𝑡 ⊗ |100⟩⟨110|𝑡−1,𝑡,𝑡+1)
𝑯prop(𝑇) := 𝑰 − ℎ𝑇 (𝑼𝑇 ⊗ |11⟩⟨10|𝑇−1,𝑇 +𝑼†𝑇 ⊗ |10⟩⟨11|𝑇−1,𝑇 )

for each 1 < 𝑡 < 𝑇, .

The 𝑇 qubits correspond to the 𝑇 geometrically-local gates and are placed next to
each gate to ensure 𝑯𝐶 is geometrically local. The couplings are chosen as

𝐽clock = 1, 𝑓𝑡 = (𝑇 − 𝑡)/𝑇, 𝑔 𝑗 = 1/𝜉𝑡 𝑗−1, ℎ𝑡 =
√︁
𝑡 (𝑇 − 𝑡 + 1).

We will set the other parameters 𝐽in, 𝐽prop later. The time 𝑡 𝑗 is the first time qubit 𝑗 is
acted on.

We will show later in Appendix 4.14 that 𝑯𝐶 has a unique ground state given by

|𝜂0⟩ =
𝑇∑︁
𝑡=0

√︁
𝜉𝑡

(
𝑼𝑡 · · ·𝑼1 |0𝑛⟩

)
⊗

��1𝑡0𝑇−𝑡〉 where 𝜉𝑡 :=
1
2𝑇

(
𝑇

𝑡

)
.

Note this state encodes the computational history of the circuit 𝑼𝐶 . By choosing
𝑡0 = 𝐿2, we ensure that each time in the interesting part of the computational history
(i.e., the intermediate 𝐿 gates) can be observed with Ω(1/𝑇) probability as we will
show later in Proposition 4.14.1. This also implies 𝑔 𝑗 = O(𝑇).

We now state a detailed version of Theorem 4.9.2 based on the definition of 𝑯𝐶 in
the following.

Theorem 4.14.1 (All local minima are global in 𝑯𝐶). Let 𝑷𝐺 be the ground-space
projector for the Hamiltonian 𝑯𝐶 in Eq. (4.51). For any failure probability 0 < 𝛿 < 1,
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there is a parameter choice 𝐽in, 𝐽prop = Poly(𝑛, 𝑇, 𝛿−1) and a choice of 𝑚 two-qubit
jump operators

𝑆0 = {𝑨𝑎}𝑚𝑎=1 := {𝑰 ⊗ 𝑿𝑡 , 𝑰 ⊗ 𝒁𝑡}𝑇𝑡=1 ∪ {𝑿 𝑗 ⊗ |0⟩⟨0|𝑡 𝑗 }𝑛𝑗=1 (4.52)

with 𝑚 = 2𝑇 + 𝑛 satisfying the following:

For a sufficiently small 𝜖 = 1/Poly(𝑛, 𝑇, 𝛿−1), any 𝜖-approximate local minimum
𝝆 of 𝑯𝐶 under thermal perturbations with sufficiently large 𝛽 = Poly(𝑛, 𝑇, 𝛿−1),
𝜏 = Poly(𝑛, 𝑇, 𝛿−1), and system-bath interactions generated by 𝑆0 is an exact global
minimum with probability tr(𝑷𝐺 (𝑯𝐶)𝝆) ≥ 1 − 𝛿.

We remind the reader that the thermal Lindbladians that generate the perturbations
are defined in Eq. (4.18). The transition weight 𝛾𝛽 (𝜔) is chosen to be Glauber
dynamics as defined in Eq. (4.21), with energy cut-off Λ0 = 1 as a convenient choice
so that ∥𝜔𝛾𝛽 (𝜔)∥∞ ≤ 1. We do not expect our result to change with other reasonable
choices of 𝛾𝛽 (𝜔).

Remark 4.14.1.1. Our 𝑯𝐶 is similar to previous circuit-Hamiltonian constructions
(see, e.g., [3, 100, 142]), but there are some significant differences. One key change
is that 𝑯prop is no longer frustration-free, and its couplings ℎ𝑡 are not uniform;
consequently, this revised 𝑯prop has better spectral properties that enable us to
lower bound its Bohr-frequency gap. Furthermore, 𝑯clock is given nonuniform
couplings 𝑓𝑡 so that any local excitation has an incentive to move rightwards (e.g.,
|0011⟩ → |0001⟩), ensuring 𝑯clock has no local minima except its ground states.
These modifications allow us to prove that all excited states of 𝑯𝐶 have significant
negative gradients, so that they will all flow to the ground state under thermal
perturbations.

Characterizing low energy states of 𝑯𝐶

We will start by characterizing the low energy states of the circuit Hamiltonian. We
define the following sequence of Hamiltonians:

𝑯I = 𝑯clock

𝑯II = 𝑯clock + 𝑯prop

𝑯III = 𝑯clock + 𝑯prop + 𝑯in = 𝑯𝐶

with the ground space projectors 𝑷 𝑗 such that

𝑷I ⊃ 𝑷II ⊃ 𝑷III.
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Equivalently, we have 𝑷I𝑷II = 𝑷II and 𝑷I𝑷III = 𝑷II𝑷III = 𝑷III. Our approach
to calculating the gradient for 𝑯III = 𝑯𝐶 is perturbative: we start with the simple
Hamiltonian 𝑯I and gradually add perturbations (which will split the spectrum,
Figure 4.4). Remarkably, the gradient is stable as long as the perturbation is weak
enough. That is, it suffices to analyze the gradient of the simpler, unperturbed
Hamiltonians on suitable subspaces.

Now we describe explicitly the ground subspaces 𝑷I, 𝑷II and 𝑷III. Let

|𝐶𝑡⟩ =
��1𝑡0𝑇−𝑡〉 for each 𝑡 = 0, 1, . . . , 𝑇

and ��𝜂𝒙,𝑡〉 = (
𝑼𝑡 · · ·𝑼1 |𝒙⟩

)
⊗ |𝐶𝑡⟩ for each 𝒙 ∈ {0, 1}𝑛 and 0 ≤ 𝑡 ≤ 𝑇.

The set of
��𝜂𝒙,𝑡〉 forms an orthonormal basis for the ground space of 𝑯I = 𝑯clock,

with energy 0 and a spectral gap of 𝐽clock/𝑇 . The ground space projector is

𝑷I =
∑︁

𝒙∈{0,1}𝑛

𝑇∑︁
𝑡=0
|𝜂𝒙,𝑡⟩⟨𝜂𝒙,𝑡 | and ⟨𝜂𝒚,𝑡′ |𝜂𝒙,𝑡⟩ = 𝛿𝒚𝒙𝛿𝑡𝑡′ .

Observe that [𝑯prop, 𝑷I] = 0, so the ground states of 𝑯II = 𝑯clock + 𝑯prop are given
as the ground states of

𝑷I𝑯prop𝑷I =
𝐽prop

2

𝑇∑︁
𝑡=1
[𝑰 − ℎ𝑡 (𝑼𝑡 ⊗ |𝐶𝑡⟩⟨𝐶𝑡−1 | +𝑼†𝑡 ⊗ |𝐶𝑡−1⟩⟨𝐶𝑡 |)] .

Furthermore, observe the orthogonality relations

⟨𝜂𝒙,𝑡 |𝑯prop |𝜂𝒚,𝑡′⟩ = 0 when 𝒙 ≠ 𝒚 for each 𝑡, 𝑡′.

That is, 𝑷I𝑯prop𝑷I is block diagonal with blocks labeled by 𝒙. Moreover, for any 𝒙,
in the basis of

��𝜂𝒙,0〉, ��𝜂𝒙,1〉, . . . , ��𝜂𝒙,𝑇 〉, we can explicitly write down the effective
(𝑇 + 1) × (𝑇 + 1) Hamiltonian

𝑷I𝑯prop𝑷I =
𝐽prop

2

©­­­­­­­­­­­«

𝑇 −ℎ1

−ℎ1 𝑇 −ℎ2

−ℎ2 𝑇 −ℎ3

−ℎ3
. . .

. . .

. . . 𝑇 −ℎ𝑇
−ℎ𝑇 𝑇

ª®®®®®®®®®®®¬
= 𝐽prop

(𝑇
2
𝑰 − 𝑳𝑥

)
,
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Figure 4.4: The degenerate levels of 𝑯clock split under perturbations 𝑯prop and 𝑯in.
In particular, the ground state splitting is tracked in blue shades. The careful choice
of energy scales ensures that the levels can be identified with the original degenerate
blocks.

where 𝑳𝑥 is the matrix representation of the spin-𝑇/2 angular momentum operator
whose spectrum is well known. In particular, the unique ground state is

|𝜂𝒙⟩ :=
𝑇∑︁
𝑡=0

√︁
𝜉𝑡
��𝜂𝒙,𝑡〉 with energy 0 and spectral gap 𝐽prop.

We will call |𝜂𝒙⟩ the history state with respect to input |𝒙⟩. The ground space
projector of 𝑯II is then given as

𝑷II =
∑︁

𝒙∈{0,1}𝑛
|𝜂𝒙⟩⟨𝜂𝒙 |.

Finally, note |𝜂0⟩ for 0 = (0, 0, · · · , 0) is the unique ground state of 𝑯𝐶 = 𝑯III and
so

𝑷III = |𝜂0⟩⟨𝜂0 |.

This is because 𝑯in is positive semi-definite, and |𝜂0⟩ is the only state in 𝑷II with
zero eigenvalue with respect to 𝑯in.

Proof of Theorem 4.14.1
To prove Theorem 4.14.1, we show that all excited states in 𝑰 − 𝑷III have significant
gradient relative to 𝑯III. Our analysis for the gradient will be carried out in three
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subspaces:

𝑰 − 𝑷III = (𝑰 − 𝑷I)︸    ︷︷    ︸
studying 𝑯I

+ 𝑷I(𝑰 − 𝑷II)︸         ︷︷         ︸
studying 𝑯II𝑷I

+ 𝑷II(𝑰 − 𝑷III)︸           ︷︷           ︸
studying 𝑯III𝑷II

.

Let L 𝑗 := L𝛽,𝜏,𝑯 𝑗 be the thermal Lindbladian with uniform weights as in Eq. (4.30),
defined with respect to 𝑯 𝑗 and the jump operators in Eq. (4.52) .

Case 1: Gradients for 𝑰 − 𝑷I from 𝑯I. We first show excited states of 𝑯I have
good energy gradient:

−L†I [𝑯I] ⪰ 𝑟1(𝑰 − 𝑷I) − 𝜖1𝑎 𝑰. (4.53)

Because 𝑯I = 𝑯clock is a commuting Hamiltonian, the global gradient can be
lower bounded by checking the local gradient from individual local jumps. We
carry out this computation in section 4.14, where we show 𝑟1 = Ω(1/𝑇 ln 𝛽) and
𝜖1𝑎 = O(𝑇7/4/𝜏1/4 + 𝑇/𝛽 + 𝑇 (1 + 𝛽) ln 𝜏/𝜏) in Lemma 4.14.2.

We then apply Theorem 4.12.1 (with 𝑯 = 𝑯I and 𝑯′ = 𝑯III) to show excited states
of 𝑯I have large gradient with respect to 𝑯III. In other words,

−L†III [𝑯III] ⪰ 𝑟1(𝑰 − 𝑷I) − 𝜖1𝑰. (4.54)

To do this, we only need to check that the conditions of Theorem 4.12.1 are satisfied.
Note 𝑷I also projects onto eigenstates of 𝑯III since [𝑷I,𝑯III] = 0. Note 𝑯I has
a discrete spectrum with a minimum Bohr-frequency gap of at least Δ𝜈 ≥ 1/𝑇 .
We can choose sufficiently small 𝐽prop, 𝐽in such that ∥𝑽I∥ := ∥𝑯prop + 𝑯in∥ ≤
𝐽prop𝑇

2 + 𝐽in𝑛𝑔max ≪ Δ𝜈 (𝑯I) = 1/𝑇 , where 𝑔𝑚𝑎𝑥 := max1≤ 𝑗≤𝑛 𝑔 𝑗 = O(𝑇). And
plugging in Λ0 = 1 and other parameters into the error bound (4.48)

𝜖1 = 𝜖1𝑎 + |𝑆0 |O
(

1
𝜏
+ ∥𝑯I∥

3/4

𝜏1/4 + 1
𝜏1/3 +

1
√
Δ𝜈𝜏
+ e−𝛽Δ𝜈/4

𝛽
+

(
1 + 1 + 𝑟1

Δ𝜈

)
∥𝑽I∥

)
.

Noting that |𝑆0 |, ∥𝑯I∥, 𝑔max = O(𝑇), we can make 𝜖1/𝑟1 ≤ 𝛿/6 by choosing
appropriate powers

𝜏 ≥ Ω̃(𝑇11/𝛿4), 𝛽 ≥ Ω̃(𝑇2/𝛿), 𝐽prop ≤ Õ(𝛿/𝑇5), and 𝐽in ≤ Õ(𝛿/𝑛𝑇4).
(4.55)
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Case 2: Gradients for 𝑷I(𝑰 − 𝑷II) from 𝑯II. We next restrict our attention
to the action of L†II [𝑯II] inside the 𝑷I subspace, which conveniently is also an
eigensubspace of both 𝑯II and 𝑯III since [𝑷I,𝑯II] = [𝑷I,𝑯III] = 0. Explicit
computation in section 4.14 shows that

−𝑷IL†II [𝑯II]𝑷I ⪰ 𝑟2𝑷I(𝑰 − 𝑷II) − 𝜖2𝑎 𝑰, (4.56)

with the bounds from Lemma 4.14.4 promising

𝑟2 = Ω(
𝐽prop

𝑇 ln 𝛽
) and 𝜖2𝑎 = |𝑆0 | · O

(1
𝜏
+ ∥𝑯II∥

3/4

𝜏1/4 + 1
𝛽
+ 1√︁

𝜏𝐽prop

)
.

We then invoke Corollary 4.12.1 with 𝑸 = 𝑸′ = 𝑷I, 𝑯 = 𝑯II and 𝑯′ = 𝑯III to
show monotonicity of energy gradient on a subspace under perturbation

−𝑷IL†III [𝑯III]𝑷I ⪰ 𝑟2𝑷I(𝑰 − 𝑷′II) − 𝜖2𝑏 𝑰,

where 𝑷′II is the perturbed eigensubspace of 𝑯III that is identified with 𝑷II. To
justify the application of Corollary 4.12.1, we note in 𝑯II, the eigensubspace 𝑷I

has an excitation gap of Δ𝑸 ≥ 1/𝑇 − 2∥𝑯prop∥ = Ω(1/𝑇), where extra 2∥𝑯prop∥
term is due to shifts in eigenvalues of 𝑯I bounded by Weyl’s inequality (see
Proposition 4.16.3). The perturbation on 𝑯II has strength ∥𝑽II∥ := ∥𝑯in∥ ≤
𝐽in𝑛𝑔max, and Δ𝜈 (𝑯II |𝑷I) = 𝐽prop. Then noting Δ𝜈 ≪ Δ𝑸 , we keep the dominant
terms in the error bound (4.49) and get

𝜖2𝑏 ≤ 𝜖2𝑎 + |𝑆0 | · O
( ∥𝑽II∥∥𝑯II∥

Δ𝜈Δ𝑸
+ 𝑟2
∥𝑽II∥
Δ𝜈

)
.

Furthermore, the eigensubspace 𝑷I in 𝑯III is separated by a spectral gap of
1/𝑇 − 2∥𝑽I∥ = Ω(1/𝑇) from the other eigenstates, we may apply Lemma 4.12.5 to
show

−L†III [𝑯III] ⪰ 𝑟2𝑷I(𝑰 − 𝑷′II) − 𝜖2𝑰 where 𝜖2 = 𝜖2𝑏 + |𝑆0 |O(
1
𝛽
+ 1
𝜏
+

√︂
𝑇

𝜏
).

(4.57)
Since |𝑆0 |, 𝑔max, ∥𝑯II∥, ∥𝑯III∥ = O(𝑇), we can make 𝜖2/𝑟2 ≤ 𝛿/6 by choosing

𝜏 ≥ Ω̃

( 𝑇11

𝐽2
prop𝛿

4

)
, 𝛽 ≥ Ω̃

( 𝑇2

𝐽prop𝛿

)
, and 𝐽in ≤ Õ

( 𝐽2
prop𝛿

𝑛𝑇5

)
. (4.58)
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Case 3: Gradients for 𝑷II(𝑰 − 𝑷III) from 𝑯III. Now, we restrict our attention
to 𝑷′II, the perturbed eigensubspace in 𝑯III that corresponds to 𝑷II. We can show
by explicit computation (deferred to section 4.14) that

−𝑷′IIL†III [𝑯III]𝑷
′
II ⪰ 𝑟3𝑷

′
II(𝑰 − 𝑷III) − 𝜖3𝑎 𝑰. (4.59)

This computation shows that all valid history states |𝜂𝒙⟩ except for 𝒙 = 0 have nonzero
gradient with respect to LIII. The derivation uses a more fine-grained version
of subspace gradient monotonicity (Corollary 4.12.2) since the standard version
yields insufficient bounds. Roughly, we need to capture the fact that off-diagonal
perturbations induce only second-order perturbation on the eigenvalues. The final
calculated bounds in Eqs. (4.14) and (4.14) give us

𝑟3 = Ω

( 𝐽in

𝑇2 ln 𝛽

)
and 𝜖3𝑎 ≤ 𝑇O

(
𝑇3/4

𝜏1/4 +
1
𝛽
+ 1
√
𝐽in𝜏
+ e−𝛽𝐽in + 𝑛 (𝑛𝑇𝐽in)2

𝐽prop

)
.

Using the fact that 𝑷′II is separated by energy of at least 𝐽prop − 2∥𝑯in∥ from the
other eigenstates in 𝑯III, we can apply Lemma 4.12.5 to get

−L†III [𝑯III] ⪰ 𝑟3𝑷
′
II(𝑰−𝑷III)−𝜖3𝑰 where 𝜖3 = 𝜖3𝑎+|𝑆0 |O

( 1
𝛽
+ 1
𝜏
+ 1√︁

𝐽prop𝜏

)
.

(4.60)
We may ensure 𝜖3/𝑟3 ≤ 𝛿/6 by choosing

𝜏 ≥ Ω̃

( 𝑇15

𝐽4
in𝛿

4

)
, 𝛽 ≥ Ω̃

( 𝑇3

𝐽in𝛿

)
, and 𝐽in ≤ Õ

( 𝐽prop𝛿

𝑛3𝑇5

)
. (4.61)

Altogether. Based on the conditions in Eqs. (4.55) (4.58) (4.61) and the fact that
𝑇 = Ω(𝑛), a consistent choice of parameters that satisfies all the bounds and ensures
𝜖 𝑗/𝑟 𝑗 ≤ 𝛿/6 are

𝜏 = Θ̃

(𝑇79

𝛿16

)
, 𝛽 = Θ̃

(𝑇19

𝛿4

)
, 𝐽prop = Θ̃

( 𝛿
𝑇5

)
, and 𝐽in = Θ̃

( 𝛿3

𝑇16

)
.

Then combining Eqs. (4.54), (4.57), and (4.60) implies that

𝑰 − 𝑷I ⪯
𝜖1
𝑟1

𝑰 − 1
𝑟1
L†III [𝑯III],

𝑷I − 𝑷′II ⪯
𝜖2
𝑟2

𝑰 − 1
𝑟2
L†III [𝑯III],

𝑷′II − 𝑷III ⪯
𝜖3
𝑟3

𝑰 − 1
𝑟3
L†III [𝑯III] .
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Note we have used 𝑷I𝑷
′
II = 𝑷′II and 𝑷′II𝑷III = 𝑷III. Recall that LIII =∑𝑚

𝑎=1 L
𝛽,𝜏,𝑯𝐶
𝑎 . Adding all three inequalities together and normalizing suitably

by the number of jumps 𝑚 = |𝑆0 |, we have

𝑰 − 𝑷III ⪯ −©­«
3∑︁
𝑗=1

𝑚

𝑟 𝑗

ª®¬
(

1
𝑚

𝑚∑︁
𝑎=1
L†𝛽,𝜏,𝑯𝐶
𝑎 [𝑯III]

)
+ ©­«

3∑︁
𝑗=1

𝜖 𝑗

𝑟 𝑗

ª®¬𝑰.
The above provides the desired negative gradient condition on the full Hamiltonian
𝑯III = 𝑯𝐶 . From Lemma 4.8.2, any 𝜖-approximate local minimum 𝝆 of 𝑯𝐶 under
thermal perturbation satisfies

1 − tr(𝑷III𝝆) ≤
3∑︁
𝑗=1

𝜖 𝑗 + 𝑚𝜖
𝑟 𝑗

≤ 𝛿
2
+ 𝜖𝑚

3∑︁
𝑗=1

1
𝑟 𝑗
.

By choosing 𝜖 ≤ 𝛿
2𝑚

( ∑3
𝑗=1 1/𝑟 𝑗

)−1
= 1/Poly(𝑛, 𝑇, 𝛿−1), we guarantee that 1 −

tr(𝑷III𝝆) ≤ 𝛿. This concludes our proof of Theorem 4.14.1.

Explicit calculations for energy gradients
In this section of the appendix, we provide the missing calculations supporting the
claims that were asserted in Eqs. (4.53), (4.56), and (4.59) in the above proof of
Theorem 4.14.1.

Gradient from 𝑯clock

Note that 𝑯I = 𝑯clock is a commuting Hamiltonian

𝑯I = 𝑯clock = 𝐽clock

𝑇−1∑︁
𝑡=1

𝑓𝑡𝒉𝑡,𝑡+1, where 𝒉𝑡,𝑡+1 = 𝑰 ⊗ |01⟩⟨01|𝑡,𝑡+1,

where we set 𝑓𝑡 = (𝑇 − 𝑡)/𝑇 and 𝐽clock = 1. We start by computing the gradient from
a single jump operator, using the simplification from Lemma 4.12.8:

Lemma 4.14.1. Let the jump operator 𝑨𝑡 = 𝑰 ⊗ 𝑿𝑡 for each 𝑡 ∈ [𝑇]. For all
𝑡 = 2, . . . , 𝑇 , we have

−D†𝛽,𝜏,𝑯I𝑡 [𝑯I] ⪰ 𝑟1𝒉𝑡−1,𝑡 − 𝜖0𝑰,

where 𝑟1 = Ω( 1
𝑇 ln 𝛽 ) and 𝜖0 = O(

√︁
𝑇/𝜏 + [(1 + 𝛽) ln 𝜏]/𝜏 + 1/𝛽).

Proof. By Lemma 4.12.8, we have D†𝛽,𝜏,𝑯I𝑡 [𝑯I] = D†𝛽,𝜏,𝑯∋𝑡𝑡 [𝑯∋𝑡]. We then
proceed in two cases.
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Case 1: 2 ≤ 𝑡 ≤ 𝑇 − 1. In this case, the relevant part of 𝑯I that does not commute
with 𝑨𝑡 is

𝑯∋𝑡 = 𝑓𝑡−1 |01⟩⟨01|𝑡−1,𝑡 + 𝑓𝑡 |01⟩⟨01|𝑡,𝑡+1.

Observe that 𝑯∋𝑡 has three degenerate eigenspaces with corresponding energies as
follows:

𝑷0
𝑡 =

∑︁
𝒔∈{000,100,110,111}

|𝒔⟩⟨𝒔 |𝑡−1,𝑡,𝑡+1, 𝐸0 = 0,

𝑷𝐿𝑡 =
∑︁

𝒔∈{010,011}
|𝒔⟩⟨𝒔 |𝑡−1,𝑡,𝑡+1, 𝐸𝐿 = 𝑓𝑡−1,

𝑷𝑅𝑡 =
∑︁

𝒔∈{001,101}
|𝒔⟩⟨𝒔 |𝑡−1,𝑡,𝑡+1, 𝐸𝑅 = 𝑓𝑡 .

The possible negative Bohr frequencies and the associated jumps are

𝑨𝑡𝜈1 = 𝑷0
𝑡 𝑿𝑡𝑷

𝐿
𝑡 = |000⟩⟨010|𝑡−1,𝑡,𝑡+1, 𝜈1 = − 𝑓𝑡−1,

𝑨𝑡𝜈2 = 𝑷0
𝑡 𝑿𝑡𝑷

𝑅
𝑡 = |111⟩⟨101|𝑡−1,𝑡,𝑡+1, 𝜈2 = − 𝑓𝑡 ,

𝑨𝑡𝜈3 = 𝑷𝑅𝑡 𝑿𝑡𝑷
𝐿
𝑡 = |001⟩⟨011|𝑡−1,𝑡,𝑡+1, 𝜈3 = 𝑓𝑡 − 𝑓𝑡−1 = −1/𝑇.

Furthermore, observe that the Bohr frequencies are exactly integer multiples of
1/𝑇 , so we can lower bound the Bohr-frequency gap Δ𝜈 (𝑯∋𝑡) ≥ 1/𝑇 . Then
by Lemma 4.12.3 and 4.12.4, we can replace D†𝛽,𝜏,𝑯∋𝑡𝑡 with D†𝛽,∞,𝑯∋𝑡𝑡 up to an
O(

√︁
𝑇/𝜏 + [(1 + 𝛽) ln 𝜏]/𝜏) error.

Letting 𝜃 𝑗 = 𝜈 𝑗𝛾𝛽 (𝜈 𝑗 ) for 𝑗 = 1, 2, 3 (recall 𝛾𝛽 is given in Eq. (4.21) with Λ0 = 1),
we have

D†𝛽,∞,𝑯∋𝑡𝑡 [𝑯∋𝑡] =
∑︁

𝜈∈𝐵(𝑯∋𝑡 )
𝜈𝛾𝛽 (𝜈)𝑨𝑎†𝜈 𝑨𝑎𝜈

=
(
𝜃1 |010⟩⟨010| + 𝜃2 |101⟩⟨101| + 𝜃3 |011⟩⟨011|

)
𝑡−1,𝑡,𝑡+1 + O(1/𝛽),

where the last error term is due to heating transitions (positive Bohr frequencies),
which incur errors of at most ∥𝜔𝛾𝛽 (𝜔)1(𝜔 > 0)∥∞ = O(1/𝛽). Note that 𝜃1, 𝜃2, 𝜃3 <

0, and furthermore we have

min{|𝜃1 |, |𝜃3 |} ≥ min
𝜔∈[−1,−1/𝑇]

|𝜔 |𝛾𝛽 (𝜔) =: 𝑟1 = Ω
( 1
𝑇 ln 𝛽

)
.

Hence,

−D†𝛽,∞,𝑯∋𝑡𝑡 [𝑯∋𝑡] ⪰ 𝑟1
(
|010⟩⟨010| + |011⟩⟨011|

)
𝑡−1,𝑡,𝑡+1 − O(1/𝛽)𝑰.
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Note the first term combines to make 𝒉𝑡−1,𝑡 . We then return to the finite-𝜏 Lindbladian
up to the aforementioned error:

−D†𝛽,𝜏,𝑯∋𝑡𝑡 [𝑯∋𝑡] ⪰ 𝑟1𝒉𝑡−1,𝑡 − O
(√︂𝑇

𝜏
+ (1 + 𝛽) ln 𝜏

𝜏
+ 1
𝛽

)
𝑰

Case 2: 𝑡 = 𝑇 . The relevant part of 𝑯I in this case is

𝑯∋𝑇 = 𝑓𝑇−1 |01⟩⟨01|𝑇−1,𝑇 ,

which has two eigenspaces. There is only one negative Bohr frequency with a
corresponding jump operator filtered at 𝜈

𝑨𝑇𝜈 = (𝑰−|01⟩⟨01|𝑇−1,𝑇 )𝑿𝑇 |01⟩⟨01|𝑇−1,𝑇 = |00⟩⟨01|𝑇−1,𝑇 where 𝜈 = − 𝑓𝑇−1 = − 1
𝑇
.

Then,
D†𝛽,∞,𝑯∋𝑇𝑡 [𝑯∋𝑇 ] = − 1

𝑇
𝛾𝛽 (− 1

𝑇
) |01⟩⟨01|𝑇−1,𝑇 + O( 1

𝛽
)𝑰.

Note that 1
𝑇
𝛾𝛽 (− 1

𝑇
) ≥ 𝑟1. Applying Lemma 4.12.3 and 4.12.4 to return to the finite

𝜏 expression,

−D†𝛽,𝜏,𝑯∋𝑇𝑡 [𝑯∋𝑇 ] ⪰ 𝑟1𝒉𝑇−1,𝑇 − O
(√︂𝑇

𝜏
+ (1 + 𝛽) ln 𝜏

𝜏
+ 1
𝛽

)
𝑰,

which is the advertised result. ■

We are now ready to prove Eq. (4.53), which we state as the following lemma:

Lemma 4.14.2. Assume 1 ≤ 𝑇 ≤ 𝜏. We have

−L†I [𝑯I] ⪰ 𝑟1(𝑰 − 𝑷I) − 𝜖1𝑎 𝑰,

where

𝑟1 = Ω

( 1
𝑇 ln 𝛽

)
and 𝜖1𝑎 = O

(𝑇7/4

𝜏1/4 +
𝑇

𝛽
+ 𝑇 (1 + 𝛽) ln 𝜏

𝜏

)
.

Proof. Note by linearity, we have

L†I [𝑯I] =
∑︁
𝑎∈𝑆
L†𝛽,𝜏,𝑯I𝑎 [𝑯I] .

Let 𝑆I = {𝑰 ⊗ 𝑿𝑡 : 2 ≤ 𝑡 ≤ 𝑇} be a subset of the jump operators. Then

−L†I [𝑯I] ⪰ −
∑︁
𝑎∈𝑆I
D†𝛽,𝜏,𝑯I𝑎 [𝑯I] − O

(
|𝑆0 |

( ∥𝑯I∥3/4
𝜏1/4 + 1

𝜏
+ 1
𝛽

))
𝑰,
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where the error contribution from neglecting the Lamb-shift term and the other jump
operators in 𝑆0 \ 𝑆I are bounded by Proposition 4.10.3 and Lemma 4.12.1.

Applying Lemma 4.14.1 to the sum on the right hand side above, we get

−
∑︁
𝑎∈𝑆I
D†𝛽,𝜏,𝑯I𝑎 [𝑯I] ⪰ 𝑟1

𝑇−1∑︁
𝑡=1

𝒉𝑡,𝑡+1 − 𝑇𝜖0𝑰.

It is not difficult to see that
𝑇−1∑︁
𝑡=1

𝒉𝑡,𝑡+1 ⪰ 𝑰 − 𝑷I,

that is, the smallest excitation has energy 1. Hence,

−L†I [𝑯I] ⪰ 𝑟1(𝑰 − 𝑷I) − 𝜖1𝑎 𝑰,

where

𝜖1𝑎 = O
(
|𝑆0 |

( ∥𝑯I∥3/4
𝜏1/4 + 1

𝜏
+ 1
𝛽

))
+ O

(𝑇3/2

𝜏1/2 +
𝑇 (1 + 𝛽) ln 𝜏

𝜏
+ 𝑇
𝛽

)
= O

(𝑇7/4

𝜏1/4 +
𝑇

𝜏
+ 𝑇
𝛽
+ 𝑇

3/2

𝜏1/2 +
𝑇 (1 + 𝛽) ln 𝜏

𝜏

)
.

The last equality uses that |𝑆0 |, ∥𝑯I∥ = O(𝑇). Since 1 ≤ 𝑇 ≤ 𝜏, we have
𝑇7/4/𝜏1/4 ≥ 𝑇/𝜏 and 𝑇7/4/𝜏1/4 ≥ 𝑇3/2/𝜏1/2, so we drop the latter two terms for the
final error estimate in the lemma statement. ■

Gradient from 𝑯prop

In this subsection, we prove

−𝑷IL†II [𝑯II]𝑷I ⪰ 𝑟2𝑷I(𝑰 − 𝑷II) − 𝜖2𝑎 𝑰.

Denote |𝑡⟩ :=
��𝜂𝒙,𝑡〉 in what follows. Let 𝑳+ be the raising operator whose only

nontrivial action is

𝑳+ |𝑡⟩ =
√︁
(𝑡 + 1) (𝑇 − 𝑡) |𝑡 + 1⟩ for each 0 ≤ 𝑡 ≤ 𝑇 − 1

and 𝑳− =: 𝑳†+.

Furthermore, let 𝑳𝑥 = 1
2 (𝑳+ + 𝑳−), 𝑳𝑦 = 1

2i (𝑳+ − 𝑳−), 𝑳𝑧 =
∑𝑇
𝑡=0(𝑡 − 𝑇/2) |𝑡⟩⟨𝑡 |.

These operators form a set of angular momentum operators as [𝑳𝑎, 𝑳𝑏] = i𝜖𝑎𝑏𝑐𝑳𝑐
for 𝑎, 𝑏, 𝑐 ∈ {𝑥, 𝑦, 𝑧}. As noted earlier, we have

𝑷I𝑯prop𝑷I = 𝐽prop(
𝑇

2
− 𝑳𝑥).
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The eigenstates are known to be

|𝑣𝑘⟩ = ei𝜋𝑳𝑦/2 |𝑘⟩ with eigenvalues 𝜆𝑘 = 𝑘𝐽prop for 𝑘 = 0, 1, . . . , 𝑇 .

This integer spectrum means the minimum Bohr-frequency gap in the subspace 𝑷I is
Δ𝜈 (𝑯prop |𝑷I) = 𝐽prop.

Next, we give jump operators with nontrivial gradient on any excited state of
𝑷I𝑯prop𝑷I. These will be the 1-local jumps acting on the clock register

𝑰 ⊗ 𝒁ℓ for each 1 ≤ ℓ ≤ 𝑇

which nicely respects the block-diagonal structure of 𝑯prop such that

⟨𝜂𝒙,𝑡 |𝑰 ⊗ 𝒁ℓ |𝜂𝒚,𝑡′⟩ = 0 if 𝒚 ≠ 𝒙. (4.62)

Thus, fixing 𝒙, we merely need to consider effective jump operators

𝑷I(𝑰 ⊗ 𝒁ℓ)𝑷I ≡ 𝝈ℓ such that 𝝈ℓ |𝑡⟩ = (−1)1𝑡≥ℓ |𝑡⟩. (4.63)

Lemma 4.14.3 (Good transition rates). For the operators 𝝈ℓ in Eq. (4.63) and any
0 ≤ 𝑘 < 𝑇 , we have that

max
ℓ∈[𝑇]
|⟨𝑣𝑘 |𝝈ℓ |𝑣𝑘+1⟩| ≥

1
√
𝑇
.

Proof. Fix any 0 ≤ 𝑘 < 𝑇 . Observe that

⟨𝑣𝑘 |𝑳𝑧 |𝑣𝑘+1⟩ = ⟨𝑘 |e−i𝜋𝑳𝑦/2𝑳𝑧ei𝜋𝑳𝑦/2 |𝑘 + 1⟩ = ⟨𝑘 |𝑳𝑥 |𝑘 + 1⟩ = 1
2
√︁
(𝑘 + 1) (𝑇 − 𝑘).

Then,

max
𝑡
|⟨𝑣𝑘 |𝝈𝑡 |𝑣𝑘+1⟩| ≥

1
𝑇

𝑇∑︁
𝑡=1
|⟨𝑣𝑘 |𝝈𝑡 |𝑣𝑘+1⟩|

≥ 2
𝑇
|⟨𝑣𝑘 |𝑳𝑧 |𝑣𝑘+1⟩|

≥ 1
√
𝑇

as advertised. ■

Now that we understand the connectivity between the 𝑡 labels, we may restore the 2𝑛

many labels 𝒙

|𝑣𝑘⟩ →
��𝑣𝑘,𝒙〉 such that ⟨𝑣𝑘 ′,𝒚 |𝑣𝑘,𝒙⟩ = 𝛿𝑘𝑘 ′𝛿𝒙𝒚 .

Fortunately, we do not need to address the explicit labels 𝒙 due to the orthogonality
properties in Eq. (4.62). We may now calculate the gradient operator 𝑷IL†II [𝑯II]𝑷I.
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Lemma 4.14.4. Consider the thermal Lindbladian LII =
∑
𝑎∈𝑆0 L

𝛽,𝜏,𝑯II
𝑎 . Then,

−𝑷IL†II [𝑯II]𝑷I ⪰ 𝑟2𝑷I(𝑰 − 𝑷II) − 𝜖2𝑰

for

𝑟2 = Ω(
𝐽prop

𝑇 ln 𝛽
) and 𝜖2 = |𝑆0 | · O

(
1
𝜏
+ ∥𝑯II∥

3/4

𝜏1/4 + 1
𝛽
+ 1√︁

𝜏𝐽prop

)
.

Proof. Observe that 𝑷I projects onto a low-energy subspace of 𝑯II with an excitation
gap of at least 𝐽clock/𝑇−2∥𝑯prop∥ from Weyl’s inequality. Furthermore, 𝑯II restricted
to 𝑷I has eigenvalues that are integer multiples of 𝐽prop, so the Bohr-frequency gap
in the subspace is Δ𝜈 (𝑯II |𝑷I) = 𝐽prop. Assuming 𝐽prop/2 < 𝐽clock/𝑇 − 2∥𝑯prop∥, we
may apply Lemma 4.12.6 with 𝑯 = 𝑯II, 𝑸 = 𝑷I to get

𝑷IL†II [𝑯II]𝑷I
𝐸≈

∑︁
𝑎∈𝑆0

∑︁
𝜈∈𝐵(𝑯II |𝑷I )

𝑷I𝑨
𝑎†
𝜈 𝑷I𝑨

𝑎
𝜈𝑷I

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔

�� 𝑓𝜇 (𝜔 − 𝜈)��2d𝜔

⪯
∑︁
𝑎∈𝑆II

∑︁
𝜈∈𝐵(𝑯II |𝑷I )

𝑷I𝑨
𝑎†
𝜈 𝑷I𝑨

𝑎
𝜈𝑷I

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔

�� 𝑓𝜇 (𝜔 − 𝜈)��2d𝜔,

(4.68)

where 𝜇 = Δ𝜈/2 and

𝐸 = |𝑆0 |O
(
∥𝑯∥3/4

𝜏1/4 + 1
𝜏
+ 1
𝛽
+ 1
√
Δ𝜈𝜏

)
.

The second line uses the negativity of the half-integral to reduce to the following
subset of jump operators from Eq. (4.52)

𝑆II = {𝑰 ⊗ 𝒁ℓ : ℓ ∈ [𝑇]}.

Let us now explicitly display the matrix elements of the above jump operators in the��𝑣𝑘,𝒙〉 basis:

𝑷I(𝑰 ⊗ 𝒁ℓ)𝑷I =
∑︁

𝑘,𝑘 ′,𝒙,𝒚

��𝑣𝑘 ′,𝒚〉〈𝑣𝑘 ′,𝒚��𝑰 ⊗ 𝒁ℓ
��𝑣𝑘,𝒙〉〈𝑣𝑘,𝒙 ��

=
∑︁
𝑘,𝑘 ′,𝒙

��𝑣𝑘 ′,𝒙〉〈𝑣𝑘 ′,𝒙 ��𝑰 ⊗ 𝒁ℓ
��𝑣𝑘,𝒙〉〈𝑣𝑘,𝒙 ��,
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where we applied Eq. (4.62) to drop the sum on 𝒚. Thus we can rewrite the RHS of
Eq. (4.68) as

(𝑐𝑜𝑛𝑡.) =
∑︁

ℓ,𝑘 ′,𝑘,𝒙

|𝑣𝑘,𝒙⟩⟨𝑣𝑘,𝒙 |𝝈ℓ |𝑣𝑘 ′,𝒙⟩⟨𝑣𝑘 ′,𝒙 |𝝈ℓ |𝑣𝑘,𝒙⟩⟨𝑣𝑘,𝒙 |
∫ 0

−∞
𝛾𝛽 (𝜔)𝜔

�� 𝑓𝜇 (𝜔 − 𝐽prop(𝑘′ − 𝑘))
��2d𝜔

⪯ −Ω
(
𝐽prop

ln 𝛽

) ∑︁
𝑘,𝒙

��𝑣𝑘,𝒙〉〈𝑣𝑘,𝒙 �� max
ℓ∈[𝑇]

��〈𝑣𝑘,𝒙 ��𝝈ℓ��𝑣𝑘−1,𝒙
〉��2

⪯ −Ω
(
𝐽prop

𝑇 ln 𝛽

) ∑︁
𝑘≥1,𝒙

��𝑣𝑘,𝒙〉〈𝑣𝑘,𝒙 ��
⪯ −Ω

(
𝐽prop

𝑇 ln 𝛽

) (
𝑷I −

∑︁
𝒙

��𝑣0,𝒙
〉〈
𝑣0,𝒙

��) = −Ω( 𝐽prop

𝑇 ln 𝛽
) · 𝑷I(𝑰 − 𝑷II).

The first line uses the orthogonality condition ⟨𝑣𝑘 ′,𝒚 |𝑣𝑘,𝒙⟩ = 𝛿𝑘𝑘 ′𝛿𝒙𝒚, and the fact
that the identical 𝜈 labels on 𝑨𝑎†𝜈 and 𝑨𝑎𝜈 enforce that transitions from 𝑘′ need to be
to the same 𝑘 on both sides. The second line uses the negativity of the half-integral
to focus on cooling transitions (which includes 𝑘 → 𝑘 − 1) and evaluates the integral
(which concentrates near 𝜔 ≈ 𝐽prop). Lastly, we combine the above with the error
bound on 𝐸 to conclude the proof. ■

Gradient from 𝑯in

The goal of this subsection is to prove

−𝑷′IIL†III [𝑯III]𝑷
′
II ⪰ 𝑟3𝑷

′
II(𝑰 − 𝑷III) − 𝜖3𝑎 𝑰.

Here 𝑷′II is the projector onto perturbed low-energy eigenstates of 𝑯III = 𝑯II +𝑯in,
corresponding to

𝑷II =
∑︁

𝒙∈{0,1}𝑛
|𝜂𝒙⟩⟨𝜂𝒙 |,

where

|𝜂𝒙⟩ =
𝑇∑︁
𝑡=0

√︁
𝜉𝑡
��𝜂𝒙,𝑡〉 = 𝑇∑︁

𝑡=0

√︁
𝜉𝑡𝑈𝑡 · · ·𝑈1 |𝒙⟩ ⊗ |𝐶𝑡⟩ and 𝜉𝑡 =

1
2𝑇

(
𝑇

𝑡

)
.

Recall our Definition 4.14.1 where given a circuit with 𝐿 computational gates, we pad
it in the beginning and the end with 𝑡0 identity gates to make a total 𝑇 = 2𝑡0 + 𝐿 gates.
We can understand 𝜉𝑡 as the probability from a symmetric binomial distribution
Binom(𝑇, 1

2 ), which has substantial weight near the center where the interesting
computation takes place.
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Proposition 4.14.1 (Lower bound 𝜉𝑡 in the center). Suppose𝑇 = 2𝑡0+𝐿 and 𝑡0 = 𝑐𝐿2

are positive integers. Then we have

𝜉𝑡 ≥
e−𝑐/4

𝑇 + 1
for each 𝑡 ∈ [𝑡0, 𝑇 − 𝑡0] .

Proof. As a property of the binomial distribution Binom(𝑇, 1
2 ), we have 𝜉𝑡 ≥ 𝜉𝑡0 for

all 𝑡 ∈ [𝑡0, 𝑇 − 𝑡0]. Observe that(
𝑇

𝑡

)−1
= (𝑇 + 1)

∫ 1

0
𝑥𝑡 (1 − 𝑥)𝑇−𝑡d𝑥 ≤ (𝑇 + 1)

( 𝑡
𝑇

) 𝑡 (
1 − 𝑡

𝑇

)𝑇−𝑡
,

where the inequality comes from the fact that arg max𝑥∈[0,1] 𝑥𝑡 (1−𝑥)𝑇−𝑡 = 𝑡/𝑇 . Then

𝜉𝑡0 =
1
2𝑇

(
𝑇

𝑡0

)
≥ 𝑓 (𝐿)
𝑇 + 1

,

where 𝑓 (𝐿) = 1
2𝑇

(𝑇
𝑡0

) 𝑡0 ( 𝑇

𝑇 − 𝑡0

)𝑇−𝑡0
=

(
1 + 1

2𝑐𝐿

)𝑐𝐿2 (
1 − 1

2(𝑐𝐿 + 1)

)𝑐𝐿2+𝐿
.

The last equality is obtained after plugging in 𝑇 = 2𝑡0 + 𝐿, 𝑡0 = 𝑐𝐿2 and simplifying.
We can use the first-derivative test to check that 𝑓 (𝐿) is monotonically decreasing,
and so 𝑓 (𝐿) ≥ lim𝐿→∞ 𝑓 (𝐿) = e−𝑐/4. Hence, 𝜉𝑡 ≥ 𝜉𝑡0 ≥ 𝑓 (𝐿)/(𝑇 + 1) ≥
e−𝑐/4/(𝑇 + 1). ■

Using the fact that 𝑈𝑡 𝑗−1 · · ·𝑈1 acts trivially on the 𝑗-th qubit (by definition of 𝑡 𝑗 ),
we see that 𝑷II𝑯in𝑷II is diagonal in the |𝜂𝒙⟩ basis:

⟨𝜂𝒙 |𝑯in |𝜂𝒚⟩ = 𝐽in

𝑇∑︁
𝑡,𝑡′=0

√︁
𝜉𝑡𝜉𝑡′ ⟨𝜂𝒙,𝑡 |

( 𝑛∑︁
𝑗=1
𝑔 𝑗 |1⟩⟨1| 𝑗 ⊗ |𝐶𝑡 𝑗−1⟩⟨𝐶𝑡 𝑗−1 |

)
|𝜂𝒚,𝑡′⟩

= 𝛿𝒙,𝒚 · 𝐽in

𝑛∑︁
𝑗=1
𝑥 𝑗𝑔 𝑗𝜉𝑡 𝑗−1.

Since 𝑔 𝑗 = 1/𝜉𝑡 𝑗−1 (see Definition 4.14.1), then the above implies that that |𝜂𝒙⟩ are
eigenstates of 𝑷II𝑯in𝑷II with eigenvalue 𝐽in · wt(𝒙), where wt(𝒙) is the Hamming
weight of bit string 𝒙. While |𝜂𝒙⟩ are eigenstates of 𝑷II𝑯in𝑷II, unfortunately, only
|𝜂0⟩ is an eigenstate of 𝑯in; this will require an additional perturbation step to handle
this off-block-diagonal effect.

Let 𝑯III = 𝑯̃III + 𝑽III, where

𝑯̃III = 𝑯II + 𝑷II𝑯in𝑷II + 𝑷⊥II𝑯in𝑷
⊥
II and 𝑽III = 𝑷II𝑯in𝑷

⊥
II + 𝑷⊥II𝑯in𝑷II.
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We will also denote L̃III as the thermal Lindbladian with respect to 𝑯̃III.

We start by studying the gradient on 𝑯̃III and showing all its excited states have
negative energy gradients. It suffices to focus on the states in 𝑷II, which is a low-
energy subspace of eigenstates of 𝑯̃III with excitation gap of at least 𝐽prop − 2∥𝑯in∥
from Weyl’s inequality. The effective Hamiltonian in this subspace has a simple
form of decoupled qubits, which we write as

𝑯̃eff := 𝑯̃III |𝑷II = 𝑷II𝑯in𝑷II = 𝐽in
∑︁
𝒙

wt(𝒙) |𝜂𝒙⟩⟨𝜂𝒙 | ≡ 𝐽in

𝑛∑︁
𝑗=1
(𝑰 − 𝒁eff

𝑗 )/2,

where 𝒁eff
𝑗

is the Pauli Z operator of a virtual qubit defined as 𝒁eff
𝑗
|𝜂𝒙⟩ = (−1)𝑥 𝑗 |𝜂𝒙⟩.

Observe that 𝑯̃eff has eigenvalues that are integer multiples of 𝐽in, and thus its
Bohr-frequency gap is Δ𝜈 (𝑯̃eff) = 𝐽in. Hence, assuming 𝐽in/2 < 𝐽prop − 2∥𝑯in∥, we
can apply Lemma 4.12.6 to see that the gradient operator sandwiched by 𝑷II can be
understood by fully restricting to the subspace:

𝑷IIL̃†III [𝑯̃III]𝑷II
𝐸̃𝑎≈

∑︁
𝑎∈𝑆0

∑︁
𝜈∈𝐵(𝑯̃eff)

𝑷II𝑨
𝑎†
𝜈 𝑷II𝑨

𝑎
𝜈𝑷II

∫ 0

−∞
𝛾𝛽 (𝜔)𝜔| 𝑓𝜇 (𝜔− 𝜈) |2d𝜔,

(4.77)
where 𝜇 = 𝐽in/2 and

𝐸̃𝑎 = |𝑆0 |O
(
∥𝑯̃III∥3/4

𝜏1/4 + 1
𝜏
+ 1
𝛽
+ 1
√
𝐽in𝜏

)
.

To show that this has good gradients for all states in 𝑷II(𝑰 − 𝑷III), it is sufficient to
consider the following subset of the jump operators from Eq. (4.52):

𝑆III =
{
𝑿 𝑗 ⊗ |0⟩⟨0|𝑡 𝑗

}𝑛
𝑗=1.

These jump operators from 𝑆III effectively flip the individual virtual qubits by

⟨𝜂𝒚 | (𝑿 𝑗 ⊗ |0⟩⟨0|𝑡 𝑗 ) |𝜂𝒙⟩ = ⟨𝒚 |𝑿 𝑗 |𝒙⟩
∑𝑡 𝑗−1
𝑡=0 𝜉𝑡 =: ⟨𝒚 |𝑿 𝑗 |𝒙⟩

√
𝛼 𝑗 ,

where we have denoted 𝛼 𝑗 = (
∑
𝑡<𝑡 𝑗

𝜉𝑡)2. Let

𝑿eff
𝑗 = 𝑷II(𝑿 𝑗 ⊗ |0⟩⟨0|𝑡 𝑗 )𝑷II/

√
𝛼 𝑗 such that ∥𝑿eff

𝑗 ∥ = 1 for each 𝑗 = 1, . . . , 𝑛.

Note 𝑿eff
𝑗

is effectively the Pauli X operator for the 𝑗-th virtual qubit. Furthermore,
note since 𝑡 𝑗 ∈ [𝑡0, 𝑇 − 𝑡0] by our circuit construction in Definition 4.14.1, we have
𝛼 𝑗 ≥ 𝜉2

𝑡0
≥ Ω(1/𝑇2) by Proposition 4.14.1.
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Next, we replace 𝑯̃III by 𝑯̃eff so we only need to talk about the virtual qubits. We
first restore the RHS of Eq. (4.77) to the thermal Lindbladian form by undoing the
approximation in Lemma 4.12.6, which incurs another error bounded by 𝐸̃𝑎:

𝑷IIL̃†III [𝑯̃III]𝑷II
2𝐸̃𝑎≈ L†𝛽,𝜏,𝑯eff [𝑯eff] .

We then focus on the subset 𝑆III of jump operators and write

L†𝛽,𝜏,𝑯eff [𝑯eff]
𝐸̃𝑏≈ ∑𝑛

𝑗=1 𝛼 𝑗 L̃
†
𝑗
[𝑯̃eff], (4.78)

where we denoted L̃ 𝑗 := L𝛽,𝜏,𝑯̃eff
𝑗

to be the thermal Lindbladian associated with
effective jump operator 𝑿eff

𝑗
and pulled out the normalization factor 𝛼 𝑗 . The error

𝐸̃𝑏 = |𝑆0 |O
(
∥𝑯̃eff∥3/4

𝜏1/4 + 1
𝜏
+ 1
𝛽

)
comes from neglecting the other jump operators 𝑆0 \ 𝑆III, and is bounded using
Lemma 4.12.1.

Since the effective operators on different virtual qubits commute, we can treat them
independently. More formally, by Lemma 4.12.8 we have L̃†

𝑗
[𝑯̃eff] = L

†𝛽,𝜏,𝒉 𝑗

𝑗
[𝒉 𝑗 ],

where 𝒉 𝑗 = 𝐽in(𝑰 − 𝒁 𝑗

eff)/2. To bound the global gradient in Eq. (4.78), we first
consider cooling a single qubit.

Lemma 4.14.5 (Cooling a qubit). On a qubit, consider the thermal Lindbladian
L = L𝛽,𝜏,𝑯𝑎 with the Hamiltonian 𝑯 = 𝐽in(𝑰 − 𝒁)/2 and one jump operator 𝑨 = 𝑿.
Then,

−L† [𝑯] ⪰ 𝑟in(𝑰 − 𝒁) − 𝜖in𝑰,

where

𝑟in = Ω

( 𝐽in
ln 𝛽

)
and 𝜖in = O

( 𝐽3/4
in
𝜏1/4 +

1
𝜏
+ 1
√
𝜏𝐽in
+ e−𝛽𝐽in

)
.

Proof. Again, we invoke a series of approximations:

L† [𝑯] ≈ D† [𝑯]

≈
∫ ∞

−∞
𝛾𝛽 (𝜔)𝜔𝑨(𝜔)†𝑨(𝜔)d𝜔

≈
∫ ∞

−∞
𝛾𝛽 (𝜔)𝜔𝑺(𝜔)†𝑺(𝜔)d𝜔

=
∑︁

𝜈∈𝐵(𝑯)
𝑨†𝜈𝑨𝜈

∫ ∞

−∞
𝛾𝛽 (𝜔)𝜔

�� 𝑓𝜇 (𝜔 − 𝜈)��2d𝜔

⪯ −Ω(𝐽in/ln 𝛽) |1⟩⟨1| + O(e−𝛽𝐽in) |0⟩⟨0|.
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The last line uses the transition matrix elements for the two Bohr frequencies 𝜈 = ±𝐽in:

𝑨+1 = |1⟩⟨0|, and 𝑨−1 = |0⟩⟨1|.

Combine the error bound to conclude the proof. ■

Summing up over the contributions from the individual qubits, the global gradient
satisfies

−𝑷IIL̃†III [𝑯̃III]𝑷II ⪰
𝑛∑︁
𝑗=1
𝛼 𝑗𝑷II

[
𝑟in(𝑰 − 𝒁eff

𝑗 ) − 𝜖in𝑰
]
𝑷II − (2𝐸̃𝑎 + 𝐸̃𝑏)𝑰

⪰ 𝑟3𝑷II(𝑰 − 𝑷III) − 𝜖3𝑰,

where we used the fact that
∑𝑛
𝑗=1(𝑰 − 𝒁eff

𝑗
) ⪰ 𝑷III, and denoted 𝑟3 = 𝑟in min 𝑗 𝛼 𝑗 ,

and 𝜖3 = 2𝐸̃𝑎 + 𝐸̃𝑏 + 𝜖in
∑𝑛
𝑗=1 𝛼 𝑗 . Since 𝛼 𝑗 = Ω(1/𝑇2) and 𝛼 𝑗 ≤ 1, we have that

𝑟3 = Ω

( 𝐽in

𝑇2 ln 𝛽

)
and 𝜖3 ≤ 2𝐸̃𝑎+𝐸̃𝑏+𝑛𝜖in = |𝑆0 |O

( ∥𝑯̃III∥3/4
𝜏1/4 +1

𝜏
+1
𝛽
+ 1
√
𝐽in𝜏
+e−𝛽𝐽in

)
.

(4.85)

Lastly, to obtain the gradient for the final Hamiltonian 𝑯III, we need to add the
off-block-diagonal perturbation and show that the gradient persists on the subspace.
Directly applying subspace monotonicity (Corollary 4.12.1) yields loose bounds; we
will need to invoke a finer-grained subspace monotonicity (Corollary 4.12.2) that
exploits the fact that 𝑽 is off-block-diagonal and contribute to eigenvalue change at
second order O(∥𝑽∥2). We apply Corollary 4.12.2 with 𝑯 = 𝑯̃III and 𝑯′ = 𝑯III,
and parameters

𝑸 = 𝑷II

Δ𝑸 = 𝐽prop − 2∥𝑯in∥
𝑽 = 𝑷II𝑯in(𝑰 − 𝑷II) + (𝑰 − 𝑷II)𝑯in𝑷II

Δ𝜈 = 𝐽in

Therefore, by Corollary 4.12.2,

−𝑷′IIL†III [𝑯III]𝑷
′
II ⪰ 𝑟3𝑷

′
II(𝑰 − 𝑷III) − 𝜖3𝑎 𝑰,

where

𝜖3𝑎 ≤ 𝜖3 + |𝑆0 | · O
(

1
𝜏
+ ∥𝑯̃III∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ Λ0√︁

Δ𝑸𝜏
+ e−𝛽Δ𝑸/4

𝛽

+ ∥𝑽∥
2

Δ𝑸
+ ∥𝑯𝑸 ∥ ·

( ∥𝑯𝑸 ∥∥𝑽∥
Δ𝑸Δ𝜈

+ ∥𝑽∥
2

Δ𝑸Δ𝜈

)
+ 𝑟3

( ∥𝑽∥
Δ𝑸
+ ∥𝑽∥

2

Δ𝜈Δ𝑸

))
.
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Noting that |𝑆0 |, ∥𝑯̃III∥ = O(𝑇), ∥𝑽∥ = O(𝑛𝑇𝐽in), ∥𝑯𝑸 ∥ = 𝑛𝐽in, and 𝐽in ≪ 𝐽prop,
we simplify the error bound above by keeping the dominant term to get

𝜖3𝑎 ≤ 𝑇O
(
𝑇3/4

𝜏1/4 +
1
𝛽
+ 1
√
𝐽in𝜏
+ e−𝛽𝐽in + 𝑛 (𝑛𝑇𝐽in)2

𝐽prop

)
(4.91)

as advertised earlier in Eq. (4.59).

4.15 Appendix:Operator Fourier Transform
Recall that the exact form of thermal Lindbladians in Appendix 4.10 involves the
operator Fourier transform (OFT) [39] for a set of jump operators 𝑨𝑎. In this
appendix, we provide the key properties of OFT which are used in the proofs of many
statements in Appendices 4.12 and 4.16. For any operator 𝑨 (the jump operator),
and Hermitian operator 𝑯 (the Hamiltonian), and a weight function 𝑓 , the operator
Fourier Transform (OFT) is an integral over time-evolution of the operator 𝑨,

𝑨̂ 𝑓 (𝜔) :=
1
√

2𝜋

∫ ∞

−∞
ei𝑯𝑡𝑨e−i𝑯𝑡e−i𝜔𝑡 𝑓 (𝑡)d𝑡.

Often, we will also write 𝑨̂(𝜔) when we choose 𝑓 to be the default normalized
window function

𝑓𝜏 (𝑡) =
1
√
𝜏
·


1 if 𝑡 ∈ [−𝜏/2, 𝜏/2]

0 else.
(4.92)

It is usually helpful to consider the energy eigenspaces 𝑯 =
∑
𝑖 𝐸𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | =∑

𝐸∈Spec(𝑯) 𝐸𝑷𝐸 and and write 𝑨 as the following decomposition

𝑨 =
∑︁

𝐸2,𝐸1∈Spec(𝑯)
𝑷𝐸2 𝑨𝑷𝐸1 =

∑︁
𝜈∈𝐵(𝑯)

𝑨𝜈 where 𝑨𝜈 :=
∑︁

𝐸2−𝐸1=𝜈

𝑷𝐸2 𝑨𝑷𝐸1 .

Formally, these energy differences 𝜈 ∈ 𝐵(𝑯) := {𝐸𝑖 − 𝐸 𝑗 | 𝐸𝑖, 𝐸 𝑗 ∈ Spec(𝑯)}
are called the Bohr frequencies (Figure 4.2), and 𝑨𝜈 collects the matrix elements
⟨𝜓𝑖 |𝑨

��𝜓 𝑗 〉 that changes the energy by 𝜈 = 𝐸𝑖 − 𝐸 𝑗 . The Bohr frequencies are natural
for the Heisenberg-picture evolution of 𝑨 since

ei𝑯𝑡𝑨e−i𝑯𝑡 =
∑︁

𝜈∈𝐵(𝑯)
ei𝜈𝑡𝑨𝜈 .

Then, executing the Fourier integral yields the frequency domain representation

𝑨̂ 𝑓 (𝜔) =
∑︁
𝜈∈𝐵

𝑨𝜈 𝑓 (𝜔 − 𝜈) where 𝑓 (𝜔) :=
1
√

2𝜋

∫ ∞

−∞
𝑓 (𝑡)e−i𝜔𝑡d𝑡,

which contains a collection of Bohr frequencies 𝜈 near 𝜔. Conceptually, we can
think of the operator Fourier transform 𝑨̂ 𝑓 (𝜔) as the smooth probe of 𝑨𝜈 with exact
Bohr frequency 𝜈, which generally requires resolving arbitrarily close eigenvalues.
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Useful properties
We instantiate some useful properties of the Operator Fourier Transform.

Proposition 4.15.1 (Operator Parseval’s identity [39]). Consider a set of operators
{𝑨𝑎}𝑎 and its operator Fourier transform with weight 𝑓 ∈ L2(R) and Hamiltonian 𝑯.
Then, we have a certain symmetry (𝑨𝑎

𝑓
(𝜔))† = 𝑨𝑎†

𝑓 ∗ (−𝜔) and certain Parseval-type
identity ∑︁

𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔)

† 𝑨̂𝑎𝑓 (𝜔)d𝜔 =
∑︁
𝑎∈𝑆

∫ ∞

−∞
ei𝑯𝑡𝑨𝑎†𝑨𝑎e−i𝑯𝑡 | 𝑓 (𝑡) |2d𝑡

⪯ ∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥∥ 𝑓 ∥22 · 𝑰∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔) 𝑨̂

𝑎
𝑓 (𝜔)

†d𝜔 =
∑︁
𝑎∈𝑆

∫ ∞

−∞
ei𝑯𝑡𝑨𝑎𝑨𝑎†e−i𝑯𝑡 | 𝑓 (𝑡) |2d𝑡

⪯ ∥
∑︁
𝑎∈𝑆

𝑨𝑎𝑨𝑎†∥∥ 𝑓 ∥22 · 𝑰.

Intuitively, the above tells us that the Fourier Transforms 𝑨̂𝑎
𝑓
(𝜔) with different

frequencies 𝜔 are “orthogonal” to each other and that the average of squares of
strengths is bounded (reminiscent of a probability). Without using this norm sum
constraint from Fourier transforms, one easily gets loose bounds. An alternative
view of the above (as a natural purification) will prove useful for manipulating norms
of expression involving 𝑨𝑎

𝑓
(𝜔).

Corollary 4.15.1 (Purification of Operator Fourier Transform). In the prevailing
notation, the abstract operator Fourier Transform has a norm bound,

∥
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔) ⊗ |𝑎⟩ ⊗ |𝜔⟩d𝜔∥ ≤ ∥ 𝑓 ∥2

√︄
∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥,

where the continuous basis vectors satisfy the normalization

⟨𝜔′|𝜔⟩ = 𝛿(𝜔′ − 𝜔).

Proof. We multiply the conjugate(∑︁
𝑎′∈𝑆

∫ ∞

−∞
𝑨̂𝑎
′

𝑓 (𝜔
′)† ⊗ ⟨𝑎′| ⊗ ⟨𝜔′|d𝜔′

)
·
(∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔) ⊗ |𝑎⟩ ⊗ |𝜔⟩d𝜔

)
=

∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔)

† 𝑨̂𝑎𝑓 (𝜔)d𝜔.

Take the operator norm and use Proposition 4.15.1 to conclude the proof. ■
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The above “purification” trick applies to other quantities with a liberal choice of
summation indices, whether they are 𝑎, 𝜔, or 𝜈.

Lemma 4.15.1 (Norm inequalities from operator purification). For any operator 𝑶
and any set of operators 𝑨𝑖, 𝑨

′
𝑗

acting on the same Hilbert space, we have that




∑𝑖, 𝑗 𝑨
†
𝑖
𝑶𝑨′

𝑗
𝐺𝑖 𝑗




 ≤ ∥𝑮∥∥𝑶∥√√√




∑︁
𝑖

𝑨†
𝑖
𝑨𝑖












∑︁

𝑗

𝑨
′†
𝑗
𝑨′
𝑗











∑︁
𝑖, 𝑗

𝑨†
𝑖
𝑨′𝑗𝐺𝑖 𝑗






 ≤ ∥𝑮∥
√√√




∑︁

𝑖

𝑨†
𝑖
𝑨𝑖












∑︁

𝑗

𝑨
′†
𝑗
𝑨′
𝑗







Proof. By homogeneity, it suffices to set normalization to be ∥∑ 𝑗 𝑨

′†
𝑗
𝑨′
𝑗
∥ =

∥∑𝑖 𝑨
†
𝑖
𝑨𝑖∥ = ∥𝑶∥ = ∥𝑮∥ = 1. Introduce purifications

𝑮′ := 𝑰 ⊗
∑︁
𝑖, 𝑗

𝐺𝑖 𝑗 |𝑖⟩⟨ 𝑗 |, 𝑶′ := 𝑶 ⊗ 𝑰,

𝑽′ :=
∑︁
𝑗

𝑨′𝑗 ⊗ | 𝑗⟩, 𝑽 :=
∑︁
𝑖

𝑨𝑖 ⊗ |𝑖⟩,

which are all bounded by ∥𝑮′∥, ∥𝑶′∥, ∥𝑽′∥, ∥𝑽∥ ≤ 1. Then,



∑︁
𝑖, 𝑗

𝑨†
𝑖
𝑶𝑨′𝑗𝐺𝑖 𝑗





 = ∥𝑽′𝑶′𝑮′𝑽∥ ≤ 1



∑︁
𝑖, 𝑗

𝑨†
𝑖
𝑨′𝑗𝐺𝑖 𝑗





 = ∥𝑽′𝑮′𝑽∥ ≤ 1.

Rescale to obtain the advertised result. ■

Secular approximation
Due to the energy-time uncertainty principle, the energies 𝜔 that are accessed by
finite-time quantum algorithms always inherit an uncertainty. Indeed, when we
choose our weight function 𝑓𝜏 (𝑡) in Eq. (4.92) for our operator Fourier transform in
the frequency domain, we have

𝑨̂ 𝑓 (𝜔) =
∑︁
𝜈∈𝐵

𝑨𝜈 𝑓 (𝜔 − 𝜈) where 𝑓 (𝜔) = ei𝜔𝜏/2 − e−i𝜔𝜏/2

i𝜔
√

2𝜋𝜏
when 𝑓 (𝑡) = 𝑓𝜏 (𝑡).

Note with this choice, 𝑓 (𝜔) has a heavy tail ∼ 1/𝜔, which is reminiscent of
unamplified phase estimation. Therefore, even when restricting to jumps with 𝜔 < 0,
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there is a decent chance that 𝑨̂ 𝑓 (𝜔) mistakenly activates a heating transition (𝜈 > 0)
instead of a cooling transition (𝜈 < 0), unintentionally heating up the system instead
of cooling it.

To control the resulting error, in this section, we introduce the secular approxima-
tion [39] of the Fourier transformed operators 𝑨 𝑓 (𝜔). The secular approximation
applies truncation to the Fourier-transformed operators in the frequency domain by
truncating Bohr frequencies 𝐸 ∈ 𝐵 that deviate substantially from the frequency
label 𝜔. Truncation at energy difference 𝜇 can be achieved by setting a step function
and defining the following secular-approximated operators as follows:

𝑺̂ 𝑓 ,𝜇 (𝜔) :=
∑︁
𝜈∈𝐵

𝑨𝜈 𝑓 (𝜔 − 𝜈) · 𝑠𝜇 (𝜔 − 𝜈) where 𝑠𝜇 (𝜔) := 1( |𝜔| < 𝜇).

We often drop subscript 𝑓 , 𝜇 for simplicity. The truncation error is an operator whose
norm can be bounded by the following (as a variant of Corollary 4.15.1).

Corollary 4.15.2 (Secular approximation). In the prevailing notation,

∥
∑︁
𝑎∈𝑆

∫ ∞

−∞
(𝑺̂𝑎𝑓 (𝜔) − 𝑨̂𝑎𝑓 (𝜔)) ⊗ |𝑎⟩ ⊗ |𝜔⟩d𝜔∥ ≤ ∥ 𝑓 · (1 − 𝑠𝜇)∥2

√︄
∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥.

The error is controlled by the 2-norm for the truncated tail

∥ 𝑓 · (1 − 𝑠𝜇)∥22 =

∫
|𝜔|≥𝜇

| 𝑓 (𝜔) |2d𝜔

noting that conveniently, the Fourier transform preserves the 2-norm of functions.
For our bump function (4.92) in particular, we can integrate the tail-bound

∥ 𝑓𝜏 · (1 − 𝑠𝜇)∥22 ≤
4
𝜋𝜇𝜏

. (4.93)

This conveniently leads to bounds on other quantities involving operator Fourier
Transforms 𝑨̂𝑎 (𝜔).

Corollary 4.15.3 (Error from secular approximation). For any real function 𝜃 : R→
R, 




∑︁

𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′) 𝑨̂𝑎𝑓 (𝜔

′)† 𝑨̂𝑎𝑓 (𝜔
′)d𝜔′ −

∑︁
𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′) 𝑺̂𝑎𝑓 ,𝜇 (𝜔

′)†𝑺̂𝑎𝑓 ,𝜇 (𝜔
′)d𝜔′







≤ 2∥𝜃∥∞∥ 𝑓 · (1 − 𝑠𝜇)∥2∥ 𝑓 ∥2

√︄
∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥.
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Proof. It suffices to set normalization ∥∑𝑎∈𝑆 𝑨
𝑎†𝑨𝑎∥ = 1. Introduce purifications

𝑭 := 𝑰 ⊗ 𝑰 ⊗
∫ ∞

−∞
𝜃 (𝜔) |𝜔⟩⟨𝜔 |d𝜔,

𝑽 :=

(∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎𝑓 (𝜔) ⊗ |𝑎⟩ ⊗ |𝜔⟩d𝜔

)
,

𝑽′ :=

(∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑺̂𝑎𝑓 (𝜔) ⊗ |𝑎⟩ ⊗ |𝜔⟩d𝜔

)
.

Then, by a telescoping sum,

(𝐿𝐻𝑆) = ∥𝑽†𝑭𝑽 − 𝑽 ′†𝑭𝑽′∥ ≤ ∥(𝑽† − 𝑽 ′†)𝑭𝑽∥ + ∥𝑽 ′†𝑭(𝑽 − 𝑽′)∥.

We conclude the proof using the individual bounds on the operator norm

∥𝑽∥ ≤ ∥ 𝑓 ∥2
∥𝑽′∥ ≤ ∥ 𝑓 · 𝑠𝜇∥2 ≤ ∥ 𝑓 ∥2
∥𝑭∥ ≤ ∥𝜃∥∞

∥𝑽′ − 𝑽∥ ≤ ∥ 𝑓 · (1 − 𝑠𝜇)∥2 .

This concludes the proof. ■

4.16 Appendix:Proving monotonicity of energy gradient under level splitting
It will often be helpful to understand how the energy gradients of a Hamiltonian
𝑯 change when a perturbation 𝑽 is added to yield 𝑯′ = 𝑯 + 𝑽. This allows us to
characterize the energy gradient of 𝑯′ by analyzing the unperturbed spectrum of
𝑯, which is usually much simpler than that of 𝑯′. Indeed, this is an important part
of our proof strategy for showing our key result that 𝑯𝐶 has no suboptimal local
minima (Theorem 4.14.1 in section 4.14).

The relationship we can prove, which was previously stated in Theorem 4.12.1 in
section 4.12, takes the form of monotonicity. As the name implies, the result only
holds in one direction; it fails when the 𝑯′ and 𝑯 are switched. It is imperative that
𝑯 have a highly degenerate spectrum with the Bohr-frequency gap

Δ𝜈 (𝑯) := min
𝜈1≠𝜈2∈𝐵(𝑯)

|𝜈1 − 𝜈2 |,
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which sets an energy scale for which 𝑽 is perturbative. Note that the Bohr-frequency
gap is upper bounded by the gap in the spectrum10

Δ𝜈 ≤ Δ𝐸 where Δ𝐸 = min
𝐸1≠𝐸2∈Spec(𝑯)

|𝐸1 − 𝐸2 |.

We now state a more general version of Theorem 4.12.1, which we prove in the
remainder of this appendix.

Theorem 4.16.1 (Monotonicity of gradient under level splitting, expanded version).
Consider a Hamiltonian 𝑯 with a highly degenerate spectrum and Bohr-frequency
gap Δ𝜈 := min𝜈1≠𝜈2∈𝐵(𝑯) |𝜈1 − 𝜈2 |, and a perturbed Hamiltonian 𝑯′ = 𝑯 + 𝑽.
Suppose the perturbation is weaker than the Bohr-frequency gap, ∥𝑽∥ ≤ 1

8Δ𝜈. For
any 𝛽, 𝜏 > 0, let L =

∑
𝑎∈𝑆 L

𝛽,𝜏,𝑯
𝑎 ,L′ = ∑

𝑎∈𝑆 L
𝛽,𝜏,𝑯′
𝑎 be thermal Lindbladians

with jumps {𝑨𝑎}𝑎∈𝑆, where ∥𝑨𝑎∥ ≤ 1 and the transition weight 𝛾𝛽 (𝜔) is given
by Eq. (4.21). Let 𝛿𝜆 = max 𝑗 |𝜆 𝑗 (𝑯) − 𝜆 𝑗 (𝑯′) |, where 𝜆 𝑗 (𝑿) is the 𝑗-th largest
eigenvalue of 𝑿, and let 𝜃max = max𝜈∈𝐵(𝑯) |𝜈𝛾𝛽 (𝜈)1(𝜈 ≤ Δ𝜈/2) |. For any two
operators 𝑶 and 𝑶′, where [𝑶′,𝑯′] = 0, we have the monotone property that

−L† [𝑯] ⪰ 𝑟𝑶 − 𝜖 𝑰 implies − L′† [𝑯′] ⪰ 𝑟𝑶′ − 𝜖′𝑰,

where

𝜖′ ≤ 𝜖+|𝑆 |·O
(

1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ e−𝛽Δ𝜈/4

𝛽
+ 𝛿𝜆 + 𝜃max

∥𝑽∥
Δ𝜈
+ 𝑟 ∥𝑶 − 𝑶′∥

)
.

For the special case of 𝑶 = 𝑰 − 𝑷 and 𝑶′ = 𝑰 − 𝑷′, where 𝑷 projects onto an
eigensubspace of 𝑯, and 𝑷′ projects onto the corresponding perturbed eigensubspace
in 𝑯′, then we have the following simpler error bound:

𝜖 ′ ≤ 𝜖 + |𝑆 | · O
(

1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ e−𝛽Δ𝜈/4

𝛽
+

(
1 + Λ0 + 𝑟

Δ𝜈

)
∥𝑽∥

)
.

The above result is nontrivial because naïve perturbation theory fails: the Lindbladian
depends sensitively on the perturbation 𝑽 (as it uses a long Hamiltonian simulation
time 𝜏∥𝑽∥ ≫ 1). In fact, it drastically fails if the energy spectrum of 𝑯 has a (nearly)
continuous spectrum (as the opposite of the premise of gapped degenerate subspaces).

10The Bohr-frequency gap can be much smaller than the eigenvalue gap. For example, consider
the energies {−0.99, 0, 1}, which has an eigenvalue gap of 0.99 and a Bohr-frequency gap of 0.01.



292

We can understand the energy scale associated with the minimum Bohr-frequency
gap Δ𝜈 as the meaningful quantity for which 𝑽 is a perturbation

1
𝜏
≪ ∥𝑽∥ ≪ Δ𝜈 .

Otherwise, the 1/𝜏 energy resolution is too small compared to the intended perturba-
tion ∥𝑽∥.

The proof of Theorem 4.16.1 will be quite involved. Technically, we heavily utilize
the manipulations using the operator Fourier Transform (Appendix 4.15). The key
subroutines of the proof are discussed separately as follows. First, in Appendix 4.16,
we will simplify the intimidating expression for energy gradient L† [𝑯]. Secondly, in
Appendix 4.16, we isolate the key nonperturbative argument, which roughly says level
splitting only improves the gradient. We then provide some results from perturbation
theory in section 4.16. The altogether proof is presented in Appendix 4.16, with
minor supporting calculations in section 4.16. We also prove two corollaries of
Theorem 4.16.1 that apply to subspace gradients in Appendix 4.16.

Since this appendix only consider thermal Lindbladians, in what follows we will
drop the superscripts 𝛽, 𝜏,𝑯, i.e. L ≡ L𝛽,𝜏,𝑯, L′ ≡ L𝛽,𝜏,𝑯′ , D ≡ D𝛽,𝜏,𝑯, etc.

Expressing the energy gradient
The thermal Lindbladian is quite cumbersome to manipulate. Nicely, the energy
gradient operator associated with the dissipative partD† [𝑯] permits a much simpler
approximate form up to a controllable error. Combining with error bounds on the
Lamb-shift term [𝑯𝐿𝑆,𝑯] (Proposition 4.10.3) allows us to approximate the full
gradient operator L† [𝑯].

Lemma 4.16.1 (Expression for energy gradient). Consider the operator Fourier
Transforms 𝑨̂𝑎 (𝜔) weighted by the bump function 𝑓𝜏 in Eq. (4.92) with Hamiltonian
𝑯. Then, for any Fourier transform pairs 𝛾(𝜔) and 𝑐(𝑡), the energy gradient
associated with the purely dissipative Lindbladian

D† [𝑯] =
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾(𝜔)

(
𝑨̂𝑎 (𝜔)†𝑯𝑨̂𝑎 (𝜔) − 1

2
{ 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔),𝑯}

)
d𝜔

can be well approximated as a simpler form using

∥D† [𝑯] −
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾(𝜔)𝜔 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔∥ ≤ 2

√
2𝜋𝜏
· ∥𝑐∥1 · ∥

∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥.
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Intuitively, the following expression is the simplest proxy one can write down to
capture the rate of energy change∑︁

𝑎∈𝑆

∫ ∞

−∞
𝜔 × 𝛾(𝜔) 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔 ∼ (energy difference) × (rate).

Indeed, the Bohr frequency 𝜔 is essentially the energy difference after jump operator
𝑨𝑎 (𝜔); but because of the energy uncertainty in the operator Fourier transform (i.e.,
because 𝑓 (𝜔) is not a delta function), this interpretation must be corrected by an
error scaling as the energy resolution ∼ 1/𝜏. The starting point of the calculation
is a certain integration-by-part trick that relates the Hamiltonian operator 𝑯 to the
scalar 𝜔.

Proposition 4.16.1 (Integration by parts). In the setting of Lemma 4.16.1,

[𝑯, 𝑨̂(𝜔)] = 𝜔 𝑨̂(𝜔) + 1
i
√

2𝜋𝜏

(
𝑨(𝜏/2)e−i𝜔𝜏/2 − 𝑨(−𝜏/2)ei𝜔𝜏/2

)
.

Proof. Integration of the derivative can be expanded by the product rule

1
√

2𝜋𝜏

(
𝑨(𝜏/2)e−i𝜔𝜏/2 − 𝑨(−𝜏/2)ei𝜔𝜏/2

)
=

1
√

2𝜋𝜏

∫ 𝜏/2

−𝜏/2

d
d𝑡

(
𝑨(𝑡)e−i𝜔𝑡

)
d𝑡

=
1
√

2𝜋𝜏

∫ 𝜏/2

−𝜏/2

(
i[𝑯, 𝑨(𝑡)]e−i𝜔𝑡 − i𝜔𝑨(𝑡)e−i𝜔𝑡

)
d𝑡

= i[𝑯, 𝑨̂(𝜔)] − i𝜔 𝑨̂(𝜔).

Rearrange to conclude the proof. ■

Observe that taking the infinite time limit 𝜏 →∞ (i.e., perfect energy resolution) in
the above proposition recovers the relation for the true Bohr frequencies 𝜈

[𝑯, 𝑨𝜈] = 𝜈𝑨𝜈 for each 𝜈 ∈ 𝐵(𝑯).

At finite 𝜏, the above leads to simple bounds on the correction term. We now present
the proof of Lemma 4.16.1.
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Proof of Lemma 4.16.1. We calculate

D† [𝑯] =
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾(𝜔)

(
𝑨̂𝑎 (𝜔)†𝑯𝑨̂𝑎 (𝜔) − 1

2
{ 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔),𝑯}

)
d𝜔

=
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾(𝜔) 1

2

(
𝑨̂𝑎 (𝜔)† [𝑯, 𝑨̂𝑎 (𝜔)] − [𝑯, 𝑨̂𝑎 (𝜔)†] 𝑨̂𝑎 (𝜔)

)
d𝜔

=
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾(𝜔)𝜔 𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔 + 𝑬,

where the error term 𝑬 is given by Proposition 4.16.1 as

𝑬 :=
−i

2
√

2𝜋𝜏

∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾(𝜔) 𝑨̂𝑎 (𝜔)†

(
𝑨𝑎 (𝜏/2)e−i𝜔𝜏/2 − 𝑨𝑎 (−𝜏/2)ei𝜔𝜏/2

)
d𝜔

+ i
2
√

2𝜋𝜏

∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾(𝜔)

(
𝑨𝑎 (𝜏/2)†ei𝜔𝜏/2 − 𝑨𝑎 (−𝜏/2)†e−i𝜔𝜏/2

)
𝑨̂𝑎 (𝜔)d𝜔.

To bound this error term, let us calculate one of the four individual terms as an
example∑︁
𝑎∈𝑆

∫ ∞

−∞
𝛾(𝜔)𝑨𝑎 (𝜏/2)† 𝑨̂𝑎 (𝜔)ei𝜔𝜏/2d𝜔

=
∑︁
𝑎∈𝑆

1
2𝜋
√
𝜏

∫ ∞

−∞

∫ ∞

−∞
𝑐(𝑡1)e−i𝜔𝑡1d𝑡1

∫ 𝜏/2

−𝜏/2
ei𝜔𝜏/2𝑨𝑎 (𝜏/2)†𝑨𝑎 (𝑡2)e−i𝜔𝑡2d𝑡2d𝜔

=
1
√
𝜏

∑︁
𝑎∈𝑆

∫ 𝜏/2

−𝜏/2
𝑐(𝜏/2 − 𝑡2)𝑨𝑎 (𝜏/2)†𝑨𝑎 (𝑡2)d𝑡2.

We can bound the operator norm of this term by ∥𝑐∥1/
√
𝜏 after applying the triangle

inequality and using the fact that

∥
∑︁
𝑎∈𝑆

𝑨𝑎 (𝜏/2)†𝑨𝑎 (𝑡2)∥ = ∥
∑︁
𝑎∈𝑆

𝑨𝑎†(𝜏/2)𝑨𝑎 (𝑡2)∥

≤ ∥
∑︁
𝑎∈𝑆

𝑨𝑎† ⊗ ⟨𝑎 |∥ · ∥
∑︁
𝑎∈𝑆

𝑨𝑎 ⊗ |𝑎⟩∥ = ∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥.

Repeat a similar argument for the other three terms to conclude the proof. ■

Monotonicty of rates
Thermal Lindbladians generally depend sensitively on the Hamiltonian as it uses
Hamiltonian simulation for a long time 𝜏

ei𝑯𝜏 for 𝜏 ≫ 1.
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Therefore, even adding a small perturbation to the Hamiltonian 𝑯′ = 𝑯 + 𝑽 may
have a nonperturbative effect on L since

𝜏∥𝑽∥ ≫ 1 implies ∥L − L′∥1−1 ≫ 0.

In other words, at a large 𝜏, it is not obvious at all why the Lindbladians L,L′ are
related. Indeed, the original Davies’ generator (𝜏 →∞) is unstable against arbitrarily
small perturbations to the Hamiltonian; whenever energy degeneracy is broken, the
Lindbladian can change substantially.

Nevertheless, what we can show as a compromise is that the rate only increases
if the perturbation only introduces level splitting; this amounts to the assumption
that the original Hamiltonian has highly degenerate subspaces with a certain Bohr
frequencies gap Δ𝜈 as another large energy scale

1
𝜏
≪ ∥𝑽∥ ≪ Δ𝜈 .

Intuitively, level splitting causes decoherence (and only decoherence) in the Bohr
frequencies; for large 𝜏, the Lindblidan can indeed tell the transitions 𝜔, 𝜔′ apart if
the Bohr frequencies are sufficiently different. Fortunately, even though decoherence
can change the Lindbladian by a lot, we establish certain monotonicity of transition
rates. That is, L′ must have as good transition rates as L. A good example of 𝑶
would be an energy subspace projector. However, the argument works for general 𝑶,
which makes it more flexible to use.

Lemma 4.16.2 (Decoherence increases the rates). For any set of operators {𝑨𝑎}𝑎∈𝑆,
suppose there exists an operator 𝑶 such that∑︁

𝑎∈𝑆
𝑨𝑎†𝑨𝑎 ⪰ 𝑶 where [𝑶,𝑯] = 0.

Then, the operator Fourier Transforms 𝑨̂𝑎 (𝜔) (subscript 𝑓 omitted) for some
normalized weight

∫ ∞
−∞ | 𝑓 (𝑡) |

2d𝑡 = 1 and Hamiltonian 𝑯 satisfies∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔 ⪰ 𝑶.
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Proof. By Proposition 4.15.1,∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎 (𝜔)† 𝑨̂𝑎 (𝜔)d𝜔 − 𝑶 =

∫ ∞

−∞
ei𝑯𝑡

(∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎
)
e−i𝑯𝑡 | 𝑓 (𝑡) |2d𝑡 − 𝑶

=

∫ ∞

−∞
ei𝑯𝑡

(∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎 − 𝑶
)
e−i𝑯𝑡 | 𝑓 (𝑡) |2d𝑡

=

∫ ∞

−∞
ei𝑯𝑡𝑿† · 𝑿e−i𝑯𝑡 | 𝑓 (𝑡) |2d𝑡

⪰ 0.

The second equality uses that
∫ ∞
−∞ | 𝑓 (𝑡) |

2d𝑡 = 1 and that ei𝑯𝑡𝑶e−i𝑯𝑡 = 𝑶. The last
line establishes PSD order using the assumption that there exists operator 𝑿 such
that

∑
𝑎∈𝑆 𝑨

𝑎†𝑨𝑎 − 𝑶 = 𝑿†𝑿. Together, we establish the desired statement. ■

Perturbation theory of eigenstates and eigenvalues
We state a few useful facts about perturbed eigenspace and eigenvalues that would be
useful in the proofs.

Proposition 4.16.2 (Davis-Kahan sinΘ theorem (see also Theorem VII.3.1 of [22])).
Let 𝑯 and 𝑯̃ be two equal-sized Hermitian matrices. Let 𝑷 be the projector onto
eigenstates of 𝑯 with eigenvalue in an interval [𝑎, 𝑏]. Let 𝑷̃⊥ be the projector onto
eigenstates of 𝑯̃ with eigenvalues outside the interval [𝑎 − 𝛿, 𝑏 + 𝛿]. Then

∥𝑷𝑷̃⊥∥ ≤ ∥𝑯 − 𝑯̃∥/𝛿.

Here ∥ · ∥ is the spectral norm (or any unitarily invariant norm).

Furthermore, the following fact bounds errors on perturbed eigenvalues:

Proposition 4.16.3 (Weyl’s inequality). For any two equal-sized Hermitian matrices
𝑯 and 𝑯̃, we have |𝜆 𝑗 (𝑯) − 𝜆 𝑗 (𝑯̃) | ≤ ∥𝑯 − 𝑯̃∥ for all 𝑗 , where 𝜆 𝑗 (𝑿) is the 𝑗-th
largest eigenvalue of matrix 𝑿.

Together, these facts imply that

Lemma 4.16.3. Let 𝑯 and 𝑯̃ = 𝑯 +𝑽 be Hamiltonians. Let 𝑷 be the projector onto
eigenstates of 𝑯 with eigenvalues in some interval [𝑎, 𝑏], which are separated from
the other eigenvalues by a gap of at least Δ. If ∥𝑽∥ ≤ Δ/4, then
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1. There exists a spectral projector 𝑷̃ onto eigenstates of 𝑯̃ with eigenvalues in
[𝑎 − Δ/4, 𝑏 + Δ/4], which are separated from the other eigenvalues by a gap
of at least Δ/2.

2. ∥𝑷 − 𝑷̃∥ ≤ 8∥𝑽∥/Δ.

Proof. The existence of 𝑷̃ (item 1) holds because of Proposition 4.16.3 above. Then
observe that

∥𝑷 − 𝑷̃∥ = ∥𝑷 − 𝑷𝑷̃ + 𝑷𝑷̃ − 𝑷̃∥ ≤ ∥𝑷𝑷̃⊥∥ + ∥𝑷⊥𝑷̃∥ ≤ 8∥𝑽∥/Δ,

where the last inequality is obtained by applying Proposition 4.16.2 with 𝛿 = Δ/4 to
bound ∥𝑷𝑷̃⊥∥ and ∥𝑷⊥𝑷̃∥. ■

Lemma 4.16.4 (Off-block-diagonal perturbation). Consider a block diagonal Hermi-
tian matrix 𝑫 = 𝑫1 + 𝑫2, where the two blocks correspond to orthogonal subspace
projectors 𝑷1 and 𝑰 − 𝑷1 = 𝑷2 and are separated by eigenvalue gap at least Δ. Add
an off-block-diagonal Hermitian perturbation 𝑽 = 𝑽12 + 𝑽21 such that ∥𝑽∥ ≤ Δ/4.
Then, there is an anti-Hermitian operator 𝑩 and an absolute constant 𝐶0 such that

𝑫 + 𝑽 = e−𝑩𝑫e𝑩 + (𝑫 + 𝑽 − e−𝑩𝑫e𝑩)

where ∥𝑩∥ ≤ 𝐶0
∥𝑽∥
Δ
, and ∥e𝑩 (𝑫 + 𝑽)e−𝑩 − 𝑫∥ ≤ 𝐶0

∥𝑽∥2
Δ

.

This implies the sorted eigenvalues of 𝑫 are perturbed by 𝐶0∥𝑽∥2/Δ.

We remark that the scaling with respect to ∥𝑽∥ is consistent with perturbation theory:
the angle change is first-order ∼ ∥𝑽∥

Δ
, and the eigenvalue change is second-order

∼ ∥𝑽∥
2

Δ
. Note that for diagonal perturbation, the eigenvalue change is only bounded

by ∼ ∥𝑽∥.

Proof. Observe that

e𝑩 (𝑫 + 𝑽)e−𝑩 = 𝑫 + (𝑽 + [𝑩, 𝑫]) + [𝑩,𝑽] +
∞∑︁
𝑘=2

1
𝑘!

ad𝑘𝑩 (𝑫 + 𝑽).

Let us choose 𝑩 to cancel the first order term in 𝑽, i.e.,

𝑽 = −[𝑩, 𝑫] . (4.113)
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We can solve for 𝑩 by working in the eigenbasis of 𝑫 =
∑
𝑖 𝐷𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |. Then denoting

𝑂𝑖 𝑗 = ⟨𝜓𝑖 |𝑶 |𝜓 𝑗 ⟩, we can rewrite Eq. (4.16) as

𝑉𝑖 𝑗 = 𝐵𝑖 𝑗 (𝐷𝑖 − 𝐷 𝑗 ) or 𝐵𝑖 𝑗 =
𝑉𝑖 𝑗

𝐷𝑖 − 𝐷 𝑗

.

Note 𝐵𝑖 𝑗 = 𝑉𝑖 𝑗 = 0 whenever |𝐷𝑖 − 𝐷 𝑗 | ≥ Δ by assumption. Hence, we can solve for
𝑩 using the Heisenberg picture Fourier transform:

𝐵𝑖 𝑗 =
1
√

2𝜋

∫ ∞

−∞
𝑓 (𝑡)ei(𝐷𝑖−𝐷 𝑗 )𝑡𝑉𝑖 𝑗d𝑡 = 𝑉𝑖 𝑗 𝑓 (𝐷 𝑗 − 𝐷𝑖) for each 𝑖, 𝑗

or 𝑩 =
1
√

2𝜋

∫ ∞

−∞
𝑓 (𝑡)ei𝑫𝑡𝑽e−i𝑫𝑡︸      ︷︷      ︸

=:𝑽 (𝑡)

d𝑡,

where we choose the function 𝑓 (𝑡) whose Fourier transform matches the reciprocal
at sufficiently large values,

𝑓 (𝜔) = 1
−𝜔 when |𝜔 | ≥ Δ,

but remain “nice” near 𝜔 = 0. One example is to use a smooth bump function

− 1
𝜔
· 𝑏(𝜔

Δ
) where 𝑏(𝑥) =


1 if |𝑥 | ≥ 1

O(𝑥2) if |𝑥 | ≈ 0.

For concreteness, we take

𝑏(𝑥) =


1 − exp( 1
1− 1

𝑥2
) if |𝑥 | < 1

1 else
.

Then, taking triangle inequality and using the unitary invariance of the operator
norm,

∥𝑩∥ ≤ 1
√

2𝜋
∥ 𝑓 ∥1 · ∥𝑽∥ ≤ 𝐶0

∥𝑽∥
Δ
.

The last inequality bounds the Fourier transform by change-of-variable 𝑥 = 𝜔/Δ
and leaves a constant 𝐶0 that depends on the inverse Fourier transform of the
“dimensionless function” 𝑏(𝑥)/𝑥. This bound on 𝑩 then allows us to control the
higher-order errors

e𝑩 (𝑫+𝑽)e−𝑩 = 𝑫+𝑽+
∫ 1

0
e𝑩𝑠 [𝑩,𝑽]e−𝑩𝑠d𝑠+[𝑩, 𝑫]+

∫ 1

0
e𝑩𝑠 [𝑩, [𝑩, 𝑫]]e−𝑩𝑠 (1−𝑠)d𝑠.
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Substitute [𝑩, 𝑫] = −𝑽 and rearranging, we get

e𝑩 (𝑫 + 𝑽)e−𝑩 − 𝑫 =

∫ 1

0
e𝑩𝑠 [𝑩,𝑽]e−𝑩𝑠𝑠d𝑠.

Apply the triangle inequality, we get

∥e𝑩 (𝑫 + 𝑽)e−𝑩 − 𝑫∥ ≤ ∥[𝑩,𝑽] ∥
∫ 1

0
𝑠d𝑠 ≤ 𝐶0

∥𝑽∥2
Δ

.

Finally, to obtain sorted eigenvalues of 𝑫, use the fact that e−𝑩 is unitary and apply
Weyl’s inequality for e−𝑩𝑫e𝑩. ■
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Figure 4.5: The energy scales 1
𝜏
≪ ∥𝑽∥ ≪ Δ𝜈 in one plot. The Hamiltonian

perturbation 𝑽 causes eigenvalues of 𝑯 to change by at most 𝛿𝜆 ≤ ∥𝑽∥, which splits
the Bohr frequencies such that |𝜈 − 𝜈′| ≤ 2𝛿𝜆. Here 𝜇 is the cut-off frequency for
the secular approximation 𝑺̂𝑎

𝑓 ,𝜇
(𝜔′) = ∑

𝜈′ 𝑨
𝑎
𝜈′ 𝑓 (𝜔′ − 𝜈′)𝑠𝜇 (𝜔′ − 𝜈′). As long as we

choose 𝜇 < Δ𝜈−4𝛿𝜆
2 small enough, the secular approximation 𝑺̂𝑎 (𝜔′) can only contain

Bohr frequencies 𝑨𝜈′ from at most one block 𝜈, i.e., different blocks decohere.

Proof of Theorem 4.16.1
We combine the above ingredients for the proof of Theorem 4.16.1. In what follows,
let 𝐸 𝑗 , 𝑷𝐸 𝑗

, 𝜈 be the eigenvalues, eigenspace projectors, and Bohr frequencies of the
unperturbed Hamiltonian 𝑯; furthermore let 𝐸′

𝑗
, 𝑷𝐸 ′

𝑗
𝜈′, be their counterpart for the

perturbed Hamiltonian 𝑯′.

It will be helpful to display the structure of the Bohr frequencies and the energy
eigenspaces under perturbation by

𝑨𝑎 =
∑︁

𝜈∈𝐵(𝑯)

∑︁
𝐸1−𝐸2=𝜈

𝑷𝐸1 𝑨
𝑎𝑷𝐸2 =

∑︁
𝜈∈𝐵(𝑯)

𝑨𝑎𝜈

=
∑︁

𝜈′∈𝐵(𝑯′)

∑︁
𝐸 ′1−𝐸

′
2=𝜈

′

𝑷𝐸 ′1 𝑨
𝑎𝑷𝐸 ′2 =

∑︁
𝜈′∈𝐵(𝑯′)

𝑨𝑎𝜈′ =
∑︁

𝜈∈𝐵(𝑯)
𝑨𝑎≈𝜈,
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where we defined

𝑨𝑎≈𝜈 :=
∑︁

𝜈′∈𝐵(𝑯′), 𝜈′≈𝜈
𝑨𝑎𝜈′ and 𝜈′ ≈ 𝜈 ⇐⇒ |𝜈′ − 𝜈 | ≤ 2𝛿𝜆.

In other words, the perturbed set of Bohr frequencies can be identified with the
original degenerate blocks according to eigenvalue perturbation11 bounded by 𝛿𝜆,
under the assumption that the perturbation is weaker than the Bohr frequency
differences Δ𝜈 > 4𝛿𝜆. This structure is crucial for proving the monotonicity of
gradients; see Figure 4.5. For later use, we also define 𝑨̂𝑎≈𝜈 (𝜔′) to be the operator
Fourier transform of 𝑨𝑎≈𝜈 with respect to the perturbed Hamiltonian 𝑯′, and consider
its secular approximation 𝑺̂𝑎≈𝜈 (𝜔′) at truncation scale 𝜇, i.e.,

𝑨̂𝑎≈𝜈 (𝜔′) =
∑︁
𝜈′≈𝜈

𝑨𝑎𝜈′ 𝑓𝜏 (𝜔′− 𝜈′), 𝑺̂𝑎≈𝜈 (𝜔′) =
∑︁
𝜈′≈𝜈

𝑨𝑎𝜈′ 𝑓𝜏 (𝜔′− 𝜈′)1( |𝜔′− 𝜈′| < 𝜇).

(4.114)

In what follows, we will denote 𝜃 (𝜔) = 𝛾(𝜔)𝜔. It is worth recalling the following
bounds:

∥𝑨𝑎∥, ∥ 𝑓𝜏∥2,
∥𝑐𝛽∥1√

2𝜋
≤ 1, ∥𝜃∥∞ = O(Λ0), Λ0 = Θ(1).

Our strategy for proving Theorem 4.12.1 is to rewrite the energy gradients L† [𝑯]
and L′† [𝑯′] in a form amenable to Lemma 4.16.2 between a set of operators and
their Fourier Transforms.

Step 1. For the perturbed Hamiltonian 𝑯′, we apply a sequence of approximations
to establish




∑︁

𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝜃−(𝜈)
∫ ∞

−∞
𝑨̂𝑎≈𝜈 (𝜔′)† 𝑨̂𝑎≈𝜈 (𝜔′)d𝜔′ − L

′† [𝑯′]





 ≤ 𝜖𝐴 (4.115)

for some 𝜖𝐴 > 0 and a function 𝜃− to be soon specified. Recall we write 𝑨
𝐸≈ 𝑩 if

11Note that we always have 𝛿𝜆 ≤ ∥𝑽∥ by Proposition 4.16.3, but we keep 𝛿𝜆 as an separate
parameter which helps yield better bounds when 𝛿𝜆 ≪ ∥𝑽∥, such as the case when the 𝑽 is an
off-diagonal perturbation (see Lemma 4.16.4).
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∥𝑨 − 𝑩∥ ≤ 𝐸 .

L′† [𝑯′] 𝐸1≈ D ′† [𝑯′]
𝐸2≈

∑︁
𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′) 𝑨̂𝑎 (𝜔′)† 𝑨̂𝑎 (𝜔′)d𝜔′

𝐸3≈
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′) 𝑺̂𝑎 (𝜔′)†𝑺̂𝑎 (𝜔′)d𝜔′

=
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

∫ ∞

−∞
𝜃 (𝜔′) 𝑺̂𝑎≈𝜈 (𝜔′)†𝑺̂𝑎≈𝜈 (𝜔′)d𝜔′

𝐸4≈
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

∫ ∞

−∞
𝜃 (𝜔′) 𝑨̂𝑎≈𝜈 (𝜔′)† 𝑨̂𝑎≈𝜈 (𝜔′)d𝜔′

𝐸5≈
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝜃 (𝜈)
∫ ∞

−∞
𝑨̂𝑎≈𝜈 (𝜔′)† 𝑨̂𝑎≈𝜈 (𝜔′)d𝜔′

𝐸6≈
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝜃−(𝜈)
∫ ∞

−∞
𝑨̂𝑎≈𝜈 (𝜔′)† 𝑨̂𝑎≈𝜈 (𝜔′)d𝜔′.

The approximations 𝐸1, 𝐸2 are bounded by

𝐸1 ≤ O
(
∥𝑯∥3/4

𝜏1/4 ∥𝑐𝛽∥1∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥
)
= |𝑆 |O( ∥𝑯∥

3/4

𝜏1/4 )

𝐸2 ≤
2∥∑𝑎∈𝑆 𝑨

𝑎†𝑨𝑎∥
√

2𝜋𝜏
∥𝑐𝛽∥1 = |𝑆 |O( 1

𝜏
).

In the approximations 𝐸3 and 𝐸4, we choose the secular approximation parameter 𝜇
such that

𝜇 < (Δ𝜈 − 4𝛿𝜆)/2 (4.124)

with associated errors given by Corollary 4.15.3 as

𝐸3 ≤ 2∥𝜃∥∞∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥∥ 𝑓𝜏 · (1 − 𝑠𝜇)∥2∥ 𝑓𝜏∥2 = |𝑆 |O(Λ0

√︄
1
𝜇𝜏
),

𝐸4 ≤ 2∥𝜃∥∞∥
∑︁
𝑎,𝜈

𝑨𝑎†≈𝜈𝑨
𝑎
≈𝜈∥∥ 𝑓𝜏 · (1 − 𝑠𝜇)∥2∥ 𝑓𝜏∥2 = |𝑆 |O(Λ0

√︄
1
𝜇𝜏
),

where we applied Eq. (4.93) to bound ∥ 𝑓𝜏 · (1 − 𝑠𝜇)∥2 ≤
√︁

4/𝜋𝜇𝜏, and used Propo-
sition 4.16.5 to bound the spectral norm of the sum of jump operators in the second
line.
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To justify the equality on the fourth line (different blocks 𝜈s decohere), observe the
choice of the parameter 𝜇 in Eq. (4.16) implies

𝑺̂𝑎 (𝜔′) =
∑︁

𝜈∈𝐵(𝑯)
𝑺̂𝑎≈𝜈 (𝜔′)1( |𝜔′ − 𝜈 | < 𝜇 + 2𝛿𝜆) =

∑︁
𝜈∈𝐵(𝑯)

𝑺̂𝑎≈𝜈 (𝜔′)1( |𝜔′ − 𝜈 | < Δ𝜈/2),

(4.125)

where 𝑺̂𝑎≈𝜈 (𝜔′) is given in Eq. (4.114). This ensures that for any given 𝜔′, 𝑺̂𝑎 (𝜔′)
can activate at most one block of transitions with Bohr frequencies closest to 𝜈 (see
Figure 4.5). Consequently,

𝑺̂𝑎†(𝜔′) 𝑺̂𝑎 (𝜔′) =
∑︁

𝜈∈𝐵(𝑯)
𝑺̂𝑎†≈𝜈 (𝜔′) 𝑺̂𝑎≈𝜈 (𝜔′).

Next, for the approximation 𝐸5, we define the following “rounded” function 𝜃 (𝜔′)
where an input𝜔′ close to 𝜈 ∈ 𝐵(𝑯) is assigned the same value 𝜃 (𝜈), with uniqueness
of 𝜈 guaranteed by Eq. (4.125),

𝜃 (𝜔′) :=

𝜃 (𝜈) if |𝜔′ − 𝜈 | ≤ 𝜇 + 2𝛿𝜆 for 𝜈 ∈ 𝐵(𝑯)

𝜃 (𝜔′) else
.

This lets us formally pull 𝜃 (𝜔′) out of the integral. Of course, this rounding introduces
an error scaling with the energy spread multiplied with the derivative

∥𝜃 − 𝜃∥∞ ≤ (2𝜇 + 4𝛿𝜆) · ∥d𝜃/d𝜔∥∞.

Roughly, this error quantifies how the energy gradient (i.e., 𝜃 (𝜔) = 𝛾𝛽 (𝜔)𝜔) changes
due to perturbation in Bohr frequency. Thus,

𝐸5 ≤ ∥𝜃 − 𝜃∥∞




∑︁
𝑎,𝜈

𝑨𝑎†≈𝜈𝑨
𝑎
≈𝜈





∥ 𝑓𝜏 · 𝑠𝜇∥22 = |𝑆 |O(2𝜇 + 4𝛿𝜆),

where we applied Propositions 4.16.4 and 4.16.5 (deferred to section 4.16), and used
the fact that ∥ 𝑓𝜏𝑠𝜇∥2 ≤ ∥ 𝑓𝜏∥2 ≤ 1.

Finally, in the last approximation 𝐸6, we define the truncated weight

𝜃−(𝜈) = 𝜃 (𝜈)1(𝜈 ≤ Δ𝜈/2).

This truncation has the property that 𝜃−(𝜈) ≤ 0 for each 𝜈 ∈ 𝐵(𝑯), which ensures
the last line is negative semidefinite. Thus,

𝐸6 ≤ ∥𝜃 − 𝜃−∥∞∥
∑︁
𝑎,𝜈

𝑨𝑎†≈𝜈𝑨
𝑎
≈𝜈∥∥ 𝑓𝜏∥22 ≤ |𝑆 |∥𝜃 − 𝜃−∥∞,

where ∥𝜃 − 𝜃−∥∞ ≤ max
𝜔≥Δ𝜈/2

𝜔𝛾𝛽 (𝜔) ≤
e−𝛽Δ𝜈/4

𝛽
,
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using the tail bound in Eq. (4.20). Altogether,

𝜖𝐴 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6

≤ O
(
|𝑆 |

(
1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 + 𝜇 + Λ0√
𝜇𝜏
+ 𝛿𝜆 +

e−𝛽Δ𝜈/4

𝛽

))
.

We then choose 𝜇 = min(Λ2/3
0 /𝜏

1/3, (Δ𝜈 − 4𝛿𝜆)/4) so as to optimize the error
O(𝜇 + Λ0/

√
𝜇𝜏) while subject to the constraint that 𝜇 < (Δ𝜈 − 4𝛿𝜆)/2. This choice

implies Λ0/
√
𝜇𝜏 ≤ Λ

2/3
0 /𝜏

1/3 + 2Λ0/
√︁
(Δ𝜈 − 4𝛿𝜆)𝜏 ≤ O(Λ2/3

0 /𝜏
1/3 + Λ0/

√
Δ𝜈𝜏),

where we used 𝛿𝜆 ≤ ∥𝑽∥ ≤ Δ𝜈/8 which is a combination of Proposition 4.16.3 and
the assumption in the theorem statement. This yields the following error bound

𝜖𝐴 ≤ O
(
|𝑆 |

(
1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ 𝛿𝜆 +

e−𝛽Δ𝜈/4

𝛽

))
. (4.126)

Step 2. For the original Hamiltonian 𝑯, we may repeat the above argument with
trivial perturbation (𝑽 = 0) to get

∥
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝜃−(𝜈) (𝑨𝑎≈𝜈)†𝑨≈𝜈 − L† [𝑯] ∥ ≤ 𝜖𝐵 (4.127)

for some 𝜖𝐵 > 0. More detailedly, we have

L† [𝑯] 𝐸7≈
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

∫ ∞

−∞
𝜃−(𝜈) 𝑨̂𝑎𝜈 (𝜔)† 𝑨̂𝑎𝜈 (𝜔)d𝜔

=
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝜃−(𝜈) (𝑨𝑎𝜈)†𝑨𝑎𝜈

𝐸8≈
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝜃−(𝜈) (𝑨𝑎≈𝜈)†𝑨𝑎≈𝜈 .

The second line is operator Parseval’s identity, where the time evolution simplifies
due to commutativity [𝑨𝑎†𝜈 𝑨𝑎𝜈 ,𝑯] = 0. The error 𝐸7 can be bounded by the same
bounds for 𝜖𝐴 in Eq. (4.126) by setting 𝑽 = 0 (i.e., 𝑨𝑎≈𝜈 → 𝑨𝑎𝜈 ).

The last line is a brute-force rewriting of 𝑨𝑎𝜈 into 𝑨𝑎≈𝜈, which acts on eigenstates
of 𝑯′ instead of 𝑯, with error 𝐸8 bounded by perturbation theory. This rewriting
allows us to prove Theorem 4.16.1 by directly applying Lemma 4.16.2 between the
following set of operators and their Fourier transforms:

{
√︁
|𝜃−(𝜈) |𝑨𝑎≈𝜈}𝑎,𝜈 and {

√︁
|𝜃−(𝜈) | 𝑨̂𝑎≈𝜈 (𝜔′)}𝑎,𝜈,𝜔′ for the perturbed Hamiltonian 𝑯′.
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We give an explicit error bound on 𝐸8 in Proposition 4.16.6 (deferred to section 4.16),
which yields

𝐸8 = O
(



∑︁

𝑎∈𝑆
𝑨𝑎†𝑨𝑎





𝜃max
∥𝑽∥
Δ𝜈

)
= O

(
|𝑆 |𝜃max

∥𝑽∥
Δ𝜈

)
,

where we used the bound max𝜈∈𝐵(𝑯) |𝜃−(𝜈) | = 𝜃max provided in the theorem
statement. Collect the errors to bound 𝜖𝐵 = 𝐸7 + 𝐸8 ≤ 𝜖𝐴 + 𝐸8.

Step 3. Now we may finish the proof of Theorem 4.16.1 by applying Lemma 4.16.2.
First, Eq. (4.127) implies

−
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝜃−(𝜈) (𝑨𝑎≈𝜈)†𝑨≈𝜈 + 𝜖𝐵 𝑰 ⪰ −L† [𝑯]

⪰ 𝑟𝑶 − 𝜖 𝑰
⪰ 𝑟𝑶′ − (𝑟 ∥𝑶′ − 𝑶∥ + 𝜖)𝑰.

Similarly, Eq. (4.115) implies

−L′† [𝑯′] + 𝜖𝐴𝑰 ⪰ −
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝜃−(𝜈)
∫ ∞

−∞
𝑨̂𝑎≈𝜈 (𝜔′)† 𝑨̂𝑎≈𝜈 (𝜔′)d𝜔′

⪰ 𝑟𝑶′ − (𝜖 + 𝜖𝐵 + 𝑟 ∥𝑶 − 𝑶′∥)𝑰.

Note in the last step we used the assumption that [𝑶′,𝑯′] = 0 and applied
Lemma 4.16.2. Hence, we have shown that −L′† [𝑯′] ⪰ 𝑟𝑶′ − 𝜖′𝑰, where
𝜖′ = 𝜖 + 𝜖𝐴 + 𝜖𝐵 + 𝑟 ∥𝑶 − 𝑶′∥ can be bounded by

𝜖′ ≤ 𝜖 + O
(
|𝑆 |

(1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ e−𝛽Δ𝜈/4

𝛽
+ 𝛿𝜆 + 𝜃max

∥𝑽∥
Δ𝜈
+ 𝑟 ∥𝑶 − 𝑶′∥

))
.

A simpler bound. We now consider the special case of 𝑶 = 𝑰 − 𝑷, 𝑶 = 𝑰 − 𝑷′

to derive a simpler bound as in the theorem statement. Note we have ∥𝑶 − 𝑶′∥ =
∥𝑷 − 𝑷′∥ ≤ 8∥𝑽∥/Δ𝐸 ≤ 8∥𝑽∥/Δ𝜈, using Lemma 4.16.3 and the fact the spectral
gap is lower bounded by the Bohr-frequency gap, Δ𝐸 ≥ Δ𝜈. Furthermore generally
𝜃max = ∥𝜃−∥∞ = O(Λ0) for our choice of 𝛾𝛽 (𝜔) in Equation 4.21. And we always
have 𝛿𝜆 ≤ ∥𝑽∥ by Proposition 4.16.3. Plugging these into Equation 4.16, we have

𝜖′ ≤ 𝜖 + O
(
|𝑆 |

(1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ e−𝛽Δ𝜈/4

𝛽
+ ∥𝑽∥ + (Λ0 + 𝑟)

∥𝑽∥
Δ𝜈

))
.

This concludes our proof of Theorem 4.16.1.



305

Supplementary calculations
In this section, we provide some missing calculations that prove some propositions
used in the proof in the previous section.

Proposition 4.16.4 (Bounds on the derivative). There exists an absolute constant 𝐶
such that for any 𝛽,Λ0,

∥ d
d𝜔
𝜃 (𝜔)∥∞ = O

(
∥ d

d𝜔

(
e−𝜔2/2Λ2

0

1 + e𝛽𝜔
𝜔

)
∥∞

)
≤ 𝐶.

Proof. By the product rule,����� d
d𝜔

(
𝜔e−𝜔2/2Λ2

0

1 + e𝛽𝜔

)����� =
�����e−𝜔2/2Λ2

0 − e−𝜔2/2Λ2
0𝜔2/Λ2

0
1 + e𝛽𝜔

− e−𝜔2/2Λ2
0𝛽𝜔e𝛽𝜔

(1 + e𝛽𝜔)2

����� ≤ (𝑐𝑜𝑛𝑠𝑡.)
using change of variable 𝑥 = 𝛽𝜔 and 𝑦 = 𝜔/Λ0 to obtain the absolute constant
bound. ■

Proposition 4.16.5. In the prevailing notation,




∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝑨𝑎†𝜈 𝑨𝑎𝜈






,





∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝑨𝑎†≈𝜈𝑨
𝑎
≈𝜈






 ≤





∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎






.
Proof. We focus on 𝑨𝑎†≈𝜈 since the case of 𝑨𝑎†𝜈 is a special case. Resolve the identity
by nearby energy subspaces

𝑰 =
∑︁
𝐸

𝑷𝐸 =
∑̄︁
𝐸

∑︁
𝐸≈𝐸̄

𝑷𝐸︸  ︷︷  ︸
=:𝑷≈𝐸̄

such that 𝑨𝑎≈𝜈 =
∑︁

𝐸̄2−𝐸̄1=𝜈

𝑷≈𝐸̄2 𝑨
𝑎𝑷≈𝐸̄1 .

Now, we calculate




∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

𝑨𝑎†≈𝜈𝑨
𝑎
≈𝜈






 =





 ∑︁
𝑎∈𝑆,𝐸̄2,𝐸̄1

𝑷≈𝐸̄1 𝑨
𝑎†𝑷≈𝐸̄2 𝑨

𝑎𝑷≈𝐸̄1






 =





 ∑︁
𝑎∈𝑆,𝐸̄1

𝑷≈𝐸̄1 𝑨
𝑎†𝑨𝑎𝑷≈𝐸̄1







= max

𝐸̄





𝑷≈𝐸̄1

∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎𝑷≈𝐸̄1





 ≤ 



∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎




.

The last line uses that the operator norm of block-diagonal matrices equals the
maximum among the blocks. ■
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Proposition 4.16.6 (Jumps with perturbed Hamiltonian). In the prevailing notation,
and for any function ℎ(𝜈), we have that

∥
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

ℎ(𝜈) (𝑨𝑎𝜈)†𝑨𝑎𝜈 −
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

ℎ(𝜈) (𝑨𝑎≈𝜈)†𝑨𝑎≈𝜈∥

≤ O
(




∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎






 · max
𝜈∈𝐵(𝑯)

|ℎ(𝜈) | · ∥𝑽∥
Δ𝜈

)
.

Proof. It suffices to set ∥∑𝑎∈𝑆 𝑨
𝑎†𝑨𝑎∥ = 1. Consider the operator Fourier transform

with a smooth bump weight ∥𝑔∥2 = 1,

𝑨𝑎𝑔,𝑯 (𝜔) for 𝑔̂(𝜔) ∝


0 if |𝜔| ≥ Δ𝜈

2

O(1) else.

which automatically decohere different Bohr frequency blocks (i.e., no need to apply
secular approximation). Also, extend the function locally:

ℎ(𝜔) :=
{
ℎ(𝜈) if |𝜔 − 𝜈 | ≤ 2∥𝑽∥ .

Then, ∑︁
𝑎∈𝑆

∫ ∞

−∞
ℎ(𝜔)𝑨𝑎𝑔,𝑯 (𝜔)

†𝑨𝑎𝑔,𝑯 (𝜔)d𝜔

=
∑︁
𝑎∈𝑆

∑︁
𝜈,𝜈′∈𝐵(𝑯)

∫ ∞

−∞
ℎ(𝜔) (𝑨𝑎𝜈′)†𝑨𝑎𝜈 𝑔̂∗(𝜔 − 𝜈′)𝑔̂(𝜔 − 𝜈)d𝜔

=
∑︁
𝑎∈𝑆

∑︁
𝜈,∈𝐵(𝑯)

ℎ(𝜈) (𝑨𝑎𝜈)†𝑨𝑎𝜈
∫ ∞

−∞
|𝑔̂(𝜔 − 𝜈) |2d𝜔

=
∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯)

ℎ(𝜈) (𝑨𝑎𝜈)†𝑨𝑎𝜈 .

Now, we add the perturbation 𝑯 +𝑽. The insight is that we can introduce an artificial
Hamiltonian

𝑯̄ :=
∑︁

𝐸∈spec(𝑯)
𝐸

∑︁
𝐸 ′≈𝐸

𝑷𝐸 ′ such that ∥𝑯̄ − 𝑯∥ ≤ 2∥𝑽∥

with exactly the same spectrum of the original Hamiltonian 𝑯, but with the basis
according to the perturbed Hamiltonian 𝑯′. Then, the same argument with the
artificial Hamiltonian implies∑︁

𝑎∈𝑆

∫ ∞

−∞
ℎ(𝜔)𝑨𝑎

𝑔,𝑯̄
(𝜔)†𝑨𝑎

𝑔,𝑯̄
(𝜔)d𝜔 =

∑︁
𝑎∈𝑆

∑︁
𝜈∈𝐵(𝑯̄)

ℎ(𝜈) (𝑨𝑎≈𝜈)†𝑨𝑎≈𝜈 .
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Lastly, we may bound the difference by the purification

∥
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎𝑔,𝑯 (𝜔) ⊗ |𝑎⟩ ⊗ |𝜔⟩d𝜔 −

∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨̂𝑎
𝑔,𝑯̄
(𝜔) ⊗ |𝑎⟩ ⊗ |𝜔⟩d𝜔∥

= ∥
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨𝑎𝑯 (𝑡) ⊗ |𝑎⟩ ⊗ 𝑔(𝑡) |𝑡⟩d𝑡 −

∑︁
𝑎∈𝑆

∫ ∞

−∞
𝑨𝑎
𝑯̄
(𝑡) ⊗ |𝑎⟩ ⊗ 𝑔(𝑡) |𝑡⟩d𝑡∥

≤

√︄∫ ∞

−∞

��2∥ei𝑯𝑡 − ei𝑯̄𝑡 ∥𝑔(𝑡)
��2d𝑡 = O( ∥𝑽∥

Δ𝜈
).

The factor of 2 is due to left and right Hamiltonian evolution

ei𝑯𝑡𝑨𝑎e−i𝑯𝑡 − ei𝑯̄𝑡𝑨𝑎e−i𝑯̄𝑡 = ei𝑯𝑡𝑨𝑎 (e−i𝑯𝑡 − e−i𝑯̄𝑡) + (ei𝑯𝑡 − ei𝑯̄𝑡)𝑨𝑎e−i𝑯̄𝑡 .

To evaluate the integral, we use that ∥ei𝑯𝑡 − ei𝑯̄𝑡 ∥ ≤ ∥𝑯 − 𝑯̄∥𝑡 ≤ 2∥𝑽∥𝑡 and that
𝑔(𝑡) is rapidly decaying for large |𝑡 | ≥ 1

Δ𝜈
. To conclude the proof, use the purification

tricks (Lemma 4.15.1). ■

Monotonicity of gradient on a subspace
For our proof that BQP-hard Hamiltonians has no suboptimal local minima in
section 4.14, we will need the following refinements of Theorem 4.16.1 where the
gradient operator acts on a low-energy subspace with an excitation gap. Intuitively,
we care only about the Bohr-frequency gap restricted to the low-energy subspace
𝑯𝑸 instead of the full Hilbert space; the gradient on that subspace should not be
sensitive to the excited states above the excitation gap.

Corollary 4.16.1 (Monotonicity of gradient on a subspace; Corollary 4.12.1 restated).
Consider a Hamiltonian 𝑯 =

∑
𝐸̄ 𝐸̄𝑷𝐸̄ and its perturbation 𝑯′ := 𝑯 + 𝑽. Let

𝑷 be the ground space projector for 𝑯 and 𝑷′ be the corresponding perturbed
eigensubspace of 𝑯′. Let 𝑸 be a low-energy eigensubspace projector of 𝑯 (i.e.,
𝑸 =

∑
𝐸≤𝐸𝑸 𝑷𝐸 for 𝐸𝑸 ∈ Spec(𝑯)) with excitation gapΔ𝑸 . Assume ∥𝑽∥∥𝑯∥

Δ𝑸
≤ 1

144Δ𝜈

where Δ𝜈 := min𝜈1≠𝜈2∈𝐵(𝑯 |𝑸) |𝜈1 − 𝜈2 | is the Bohr-frequency gap of 𝑯 within the
subspace 𝑸. For any 𝛽, 𝜏 > 0, let L =

∑
𝑎∈𝑆 L

𝛽,𝜏,𝑯
𝑎 ,L′ = ∑

𝑎∈𝑆 L
𝛽,𝜏,𝑯′
𝑎 be thermal

Lindbladians with jumps {𝑨𝑎}𝑎∈𝑆, where ∥𝑨𝑎∥ ≤ 1 and the transition weight 𝛾𝛽 (𝜔)
is given by Eq. (4.21). Then we have the monotone property that

−𝑸L† [𝑯]𝑸 ⪰ 𝑟𝑸(𝑰 − 𝑷) − 𝜖 𝑰 implies − 𝑸′L′† [𝑯′]𝑸′ ⪰ 𝑟𝑸′(𝑰 − 𝑷′) − 𝜖′𝑰
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where 𝑸′ projects onto the perturbed eigensubspace of 𝑯′ identified with 𝑸, and

𝜖′ ≤ 𝜖 + |𝑆 | · O
(

1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ Λ0√︁

Δ𝑸𝜏
+ e−𝛽Δ𝜈/4

𝛽
+ e−𝛽Δ𝑸/4

𝛽

+
(
1 + Λ0

Δ𝜈

)
∥𝑽∥∥𝑯∥

Δ𝑸
+ 𝑟

( ∥𝑽∥
Δ𝑸
+ ∥𝑽∥

Δ𝜈

))
.

Proof. The idea is that 𝑸′L′† [𝑯′]𝑸′ essentially depends only on the low energy
subspace 𝑸′ and the corresponding restricted transition 𝑸′𝑨𝑎𝑸′.

𝑸′L′† [𝑯′]𝑸′ 𝐸1≈
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′)𝑸′ 𝑨̂𝑎 (𝜔′)† 𝑨̂𝑎 (𝜔′)𝑸′d𝜔′

𝐸2≈
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′)𝑸′ 𝑨̂𝑎 (𝜔′)†𝑸′ 𝑨̂𝑎 (𝜔′)𝑸′d𝜔′

=
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′) 𝑹̂′𝑎 (𝜔′)† 𝑹̂′𝑎 (𝜔′)d𝜔′

𝐸3≈ L
†𝛽,𝜏,𝑯′

𝑸′

{𝑹′𝑎} [𝑯′𝑸′]
𝐸4≈ L

†𝛽,𝜏,𝑯′
𝑸′

{𝑹𝑎} [𝑯′𝑸′] .

The approximation 𝐸2 inserts the low-energy projector 𝑸′. To do so, we resolves the
identity by 𝑰 = 𝑸′ + (𝑰 − 𝑸′) and uses that∑︁

𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′)𝑸′ 𝑨̂𝑎 (𝜔′)†(𝑰 − 𝑸′) 𝑨̂𝑎 (𝜔′)𝑸′d𝜔′

𝐸21≈
∑︁
𝑎∈𝑆

∫ ∞

−∞
𝜃 (𝜔′) 𝑺̂𝑎 (𝜔′)†𝑺̂𝑎 (𝜔′)d𝜔′

𝐸22≈ 0.

That is, we need the excitation gap to be large so that (𝑰 −𝑸′)𝑨𝑎𝑸′ have a vanishing
contribution to the gradient. These error combines 𝐸2 = 𝐸21 + 𝐸22, where

𝐸21 ≤ 2∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥∥𝜃∥∞∥ 𝑓𝜏 · (1 − 𝑠𝜇)∥2∥ 𝑓𝜏∥2 = |𝑆 |O( Λ0√
𝜇𝜏
)

𝐸22 ≤ ∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥ max
𝜔′≥Δ𝑸′−𝜇

|𝜃 (𝜔′) |∥ 𝑓𝜏 · 𝑠𝜇∥22 = |𝑆 | e
−𝛽(Δ𝑸′−𝜇)/2

𝛽
.

Thus, we consider a safe choice of 𝜇 = Δ𝑸′/2. Also, since the perturbation is
small by assumption, ∥𝑽∥ ≤ 1

144Δ𝜈
Δ𝑸

∥𝑯∥ ≤
1

144Δ𝑸 , the excitation gap remains large
Δ𝑸′ ≥ Δ𝑸 − 2∥𝑽∥ ≥ Δ𝑸 − 1

72Δ𝑸 ≥ Δ𝑸/2. The third line (after approximation
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𝐸2) formally disposes of the excited state of 𝑯′ above 𝐸′𝑸′ by defining a modified
Hamiltonian

𝑯′𝑸′ := 𝑯′𝑸′ + 𝐸′𝑸′ (𝑰 − 𝑸
′)

for the Fourier transform 𝑹′𝑎 (𝜔′). This Hamiltonian is merely a proof artifact, and
one can also set the energy of the excited subspace 𝑰 − 𝑸′ to be infinity. The error
𝐸3 is merely the error to put it back to the form of an energy gradient.

The approximation 𝐸4 changes the jumps with norm bounded by

∥
∑︁
𝑎∈𝑆

𝑹′𝑎 ⊗ |𝑎⟩ −
∑︁
𝑎∈𝑆

𝑹𝑎 ⊗ |𝑎⟩∥

≤ 2
√︄
∥
∑︁
𝑎∈𝑆

𝑨𝑎†𝑨𝑎∥∥𝑸 − 𝑸′∥ = |𝑆 |O( ∥𝑽∥
Δ𝑸
)

using subspace perturbation bounds ∥𝑸 − 𝑸′∥ ≤ 8 ∥𝑽∥
Δ𝑸

(Lemma 4.16.3). Since
the (suitably normalized) gradient operator 1

2|𝑆 | ∥𝑶∥ · L
† [𝑶] can be block-encoded

using O(1) block-encodings of the jumps (Theorem 4.10.1, Proposition 4.10.7,
Proposition 4.10.8), perturbation to the jumps propagates to the gradient operator by

𝐸4 = O
(



∑︁

𝑎

𝑹′𝑎 |𝑎⟩ −
∑︁
𝑎

𝑹𝑎 |𝑎⟩




 · ∥𝑯′𝑸′ ∥) = |𝑆 |O

(
∥𝑯′𝑸′ ∥

∥𝑽∥
Δ𝑸

)
.

To summarize, the above gives the bound

∥𝑸′L′† [𝑯′]𝑸′ − L
†𝛽,𝜏,𝑯′

𝑸′

{𝑹𝑎} [𝑯′𝑸′] ∥ ≤ |𝑆 | · O
(

1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 + Λ0√︁
Δ𝑸𝜏

+ e−𝛽Δ𝑸/4

𝛽
+ ∥𝑽∥

Δ𝑸
∥𝑯′𝑸′ ∥

)
(4.148)

using ∥𝑯′∥ ≤ ∥𝑯∥ + ∥𝑽∥ ≤ 2∥𝑯∥ and Δ𝑸′ ≥ Δ𝑸/2. Similarly, the

𝑸L† [𝑯]𝑸 𝐸5≈ L†𝛽,𝜏,𝑯𝑸

{𝑹𝑎} [𝑯𝑸] for 𝑯𝑸 := 𝑯𝑸 + 𝐸𝑸 (𝑰 − 𝑸)

with 𝐸5 also bounded by the RHS of Eq. (4.16) but with ∥𝑽∥ → 0.

Now, we may use the monotonicity of gradient (Theorem 4.16.1) for Hamiltonian
pairs 𝑯𝑸 and 𝑯′𝑸′ , jumps {𝑹𝑎}𝑎∈𝑆, with the characteristic Bohr-frequency gap
Δ𝜈 = min𝜈1≠𝜈2∈𝐵(𝑯𝑸) |𝜈1 − 𝜈2 |. The modified Hamiltonian perturbation ∥𝑯𝑸 −𝑯′𝑸′ ∥
is bounded by the sum of the following two errors:

∥𝑯𝑸 − 𝑯′𝑸′∥ = ∥𝑯𝑸 − 𝑯𝑸′ + 𝑯𝑸′ − 𝑯′𝑸′∥ ≤ 8
∥𝑽∥
Δ𝑸
∥𝑯∥ + ∥𝑽∥ ≤ 9

∥𝑽∥
Δ𝑸
∥𝑯∥,

(4.149)
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∥𝐸𝑸 (𝑰 − 𝑸) − 𝐸′𝑸′ (𝑰 − 𝑸
′)∥ = ∥𝐸𝑸 (𝑰 − 𝑸) − 𝐸𝑸 (𝑰 − 𝑸′) + 𝐸𝑸 (𝑰 − 𝑸′) − 𝐸′𝑸′ (𝑰 − 𝑸

′)∥

≤ 8𝐸𝑸
∥𝑽∥
Δ𝑸
+ ∥𝑽∥ ≤ 9

∥𝑽∥
Δ𝑸
∥𝑯∥. (4.150)

So ∥𝑯𝑸 − 𝑯′𝑸′ ∥ ≤ 18∥𝑽∥∥𝑯∥/Δ𝑸 , which is less than Δ𝜈/8 by the assumption in
the corollary statement so we may apply Theorem 4.16.1. Note that error due to
perturbing the 𝑸(𝑰 − 𝑷) can be bounded directly by

∥𝑸′(𝑰 − 𝑷′) − 𝑸(𝑰 − 𝑷)∥ ≤ ∥𝑸′ − 𝑸∥ + ∥𝑷 − 𝑷′∥ = O
( ∥𝑽∥
Δ𝑸
+ ∥𝑽∥

Δ𝜈

)
. (4.151)

Apply Theorem 4.16.1 with 𝑯 = 𝑯𝑸 , 𝑯′ = 𝑯′𝑸′ , 𝑶 = 𝑸(𝑰−𝑷), and 𝑶′ = 𝑸′(𝑰−𝑷′),
𝛿𝜆 ≤ ∥𝑯𝑸 − 𝑯𝑸′ ∥, and 𝜃max = O(Λ0), along with the additional approximation
error in Eq. (4.16), we obtain the result as advertised in the corollary statement. ■

Corollary 4.16.2 (Monotonicity of gradient on a subspace under off-block-diagonal
perturbation; Corollary 4.12.2 restated). In the setting of Corollary 4.16.1, instead
assume ∥𝑽∥

Δ𝜈
,
∥𝑽∥
Δ𝑸
≤ (𝑐𝑜𝑛𝑠𝑡.), and that the perturbation is off-block-diagonal, i.e.,

𝑸𝑽𝑸 = (𝑰 − 𝑸)𝑽 (𝑰 − 𝑸) = 0. Then,

−𝑸L† [𝑯]𝑸 ⪰ 𝑟𝑸(𝑰 − 𝑷) − 𝜖 𝑰 implies − 𝑸′L′† [𝑯′]𝑸′ ⪰ 𝑟𝑸′(𝑰 − 𝑷′) − 𝜖′𝑰,

where

𝜖′ ≤ 𝜖 + |𝑆 | · O
(

1
𝜏
+ ∥𝑯∥

3/4

𝜏1/4 +
Λ

2/3
0
𝜏1/3 +

Λ0√
Δ𝜈𝜏
+ Λ0√︁

Δ𝑸𝜏
+ e−𝛽Δ𝜈/4

𝛽
+ e−𝛽Δ𝑸/4

𝛽

+ ∥𝑽∥
2

Δ𝑸
+ ∥𝑯𝑸 ∥ ·

( ∥𝑯𝑸 ∥∥𝑽∥
Δ𝑸Δ𝜈

+ ∥𝑽∥
2

Δ𝑸Δ𝜈

)
+ 𝑟

( ∥𝑽∥
Δ𝑸
+ ∥𝑽∥

2

Δ𝑸Δ𝜈

))
.

Proof. When the perturbation 𝑽 is off-diagonal in the energy eigenbasis of 𝑯, we
can use tighter bounds on the changes in eigenvalues and eigensubspaces of 𝑯′ from
Lemma 4.16.4, which implies

𝛿𝜆 = max
𝑗
|𝐸 𝑗 − 𝐸′𝑗 | = O

( ∥𝑽∥2
Δ𝑸

)
∥𝑯𝑸 − 𝑯′𝑸′ ∥ = O

(
∥𝑯𝑸 ∥

∥𝑽∥
Δ𝑸
+ ∥𝑽∥

2

Δ𝑸

)
.

∥𝑷 − 𝑷′∥ ≤ O
( ∥𝑽∥
Δ𝑸
+ ∥𝑽∥

2

Δ𝑸Δ𝜈

)
.
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The second line and third line are due to rotation and then subspace perturbation
(Lemma 4.16.3). Essentially, this is because (1) all subspace rotations are small
( ∥𝑽∥
Δ𝑸
≪ 1) and (2) the energy perturbation is smaller than the level spacing ( ∥𝑽∥

2

Δ𝑸
≪

Δ𝜈). We then follow the same argument in the proof of Corollary 4.16.1 above with
the improved bounds for Eqs. (4.149), (4.150), and (4.151). We can also use an
improve bound of 𝜃max ≤ ∥𝑯𝑸 ∥. Together these improvements yield the better error
bound on 𝜖′ as advertised. ■

Example where perturbation kills energy gradient
We present an example where despite ∥𝑽∥ ≪ Δ𝜈, the gradient is lost due to the
perturbation. Therefore, the resulting change in gradient is not multiplicative
(1 − ∥𝑽∥

Δ𝜈
), but merely additive. If the gradient is polynomially small, we need ∥𝑽∥

Δ𝜈
to

be also polynomially small to secure the gradient.

Proposition 4.16.7 (Perturbation kills the gradient). Let 𝑯 = 𝒁 = |1⟩⟨1| − |−1⟩⟨−1|,
𝑨 = 𝒁 + 𝜖𝑿, and 𝑽 = 𝜖𝑿. Then, for the 𝛽, 𝜏 →∞ heat bath Lindbladian, we have
that

L† [𝑯] ⪯ −2𝜖2(𝑰 − 𝑷) but L′† [𝑯′] = 0.

Proof.

L† [𝑯] = 𝜖2
(
|1⟩⟨−1|𝑯 |−1⟩⟨1| − 1

2
|1⟩⟨1|𝑯 − 1

2
𝑯 |1⟩⟨1|

)
= −2𝜖2 |1⟩⟨1|.

ButL′† [𝑯′] = 0 because [𝑯′, 𝑨] = 0, i.e., 𝑨 is diagonal in the new energy basis. ■
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1Here 𝑡𝑚𝑖𝑥 refers to the mixing time of modified Lindbladians that forbid certain energies
transitions (parameterized by an additional attenuation coefficient 𝛾𝑎𝑡𝑡 ); it is unclear how this
restricted connectivity impacts the mixing time. Also, our improved Lindbladian simulation results
already improve their complexities from Õ( 𝛽

3𝑡𝑚𝑖𝑥

𝜖 7 ) to Õ( 𝛽𝑡𝑚𝑖𝑥

𝜖 2 ).

2Ref. [160] is similar to [38], but its proof of convergence assumes the Eigenstate Thermalization
Hypothesis (ETH) and a maximally mixed initial state. [38] has guarantees assuming only the mixing
time, and ETH is one way of bounding the mixing time.

3Ref. [180] did not include the algorithmic cost of quantum simulated annealing, so we fill in
using our modernized version (section 2.12). Likewise, the simulated annealing cost of [186] could
also be improved (still assuming perfect QPE).

4The proof of correctness assumes each eigenstate 𝑯 can be perfectly distinguished.

5Assuming the Markov property and clustering quantities both decay exponentially.

6Their exactly detailed-balanced quantum channel seems to qualitatively differ from other quantum
MCMC algorithms. It assumes certain efficiently implementable basis measurements with a good
overlap with the energy basis. For example if measured in the computational basis, the 1D transverse
field Ising model seems to exhibit an exponential mixing time at constant temperature, see [133, Page
5].

7A comparison of existing thermal state preparation algorithms. We focus on methods with
provable guarantees for an 𝜖-approximation of the Gibbs state (in trace distance) and list their cost,
assumptions, and caveats. We use Poly(·) to denote polynomials and Õ(·) to absorb logarithmic
dependences. The first few algorithms are Monte Carlo-style methods, incoherent or coherent; we
represent their costs by the total black-box Hamiltonian simulation time. The incoherent ones are
based on semi-groups, with complexity being the cost of emulating the semi-group (which is basically
dominated by the phase estimation time 𝑡𝑄𝑃𝐸) multiplied by the mixing time 𝑡𝑚𝑖𝑥 . Instead, the
coherent version implements block-encoding for discriminants and prepares the purified Gibbs state
via quantum simulated annealing. The number of discriminant calls is Õ(𝛽∥𝑯∥

√︃
𝜆−1
𝑔𝑎𝑝) (as the

counterpart for the mixing time 𝑡𝑚𝑖𝑥) where 𝜆g𝑎𝑝 refers to the minimum gap of discriminants along
the adiabatic path. We calculate the costs for Theorem 2.1.3 and Theorem 2.1.4, assuming the
algorithmic parameters and the mixing time 𝑡𝑚𝑖𝑥 or spectral gap 𝜆𝑔𝑎𝑝 satisfy certain self-consistency
constraint. The mixing time and spectral gap can be (loosely) converted to each other, assuming
approximate detailed balance. Of course, as in all classical MCMC methods, the mixing time 𝑡𝑚𝑖𝑥 or
spectral gap 𝜆𝑔𝑎𝑝 can be exponentially small depending on the temperature and the system; indeed,
there are systems whose thermal states are expected to have high complexity, such as certain spin
glass models, and we do not expect efficient quantum algorithms to exist in general. Optimistically,
we often care about the Gibbs state that appears in nature, which suggests the mixing time remains
reasonably small.
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