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ABSTRACT

The coupling between shocks and chemistry in detonations poses a challenge for
simulations. In this thesis, a simulation framework is developed to address key com-
ponents of detonation modeling: numerical stability of shocks and discontinuities,
and computational efficiency in chemistry modeling.

To ensure numerical stability in the vicinity of shocks, a variety of methods have
been used, including shock-capturing schemes such as weighted essentially non-
oscillatory (WENO) schemes, as well as the addition of artificial diffusivities to the
governing equations. In this work, all necessary viscous/diffusion terms are derived
from first principles, and the performance of these analytical terms is demon-
strated within a centered differencing framework. The physical Euler equations are
spatially-filtered with a Gaussian-like filter. Sub-filter scale (SFS) terms arise in
the momentum and energy equations. Analytical closure is provided for each of
them by leveraging the jump conditions for a shock. No SFS terms are present in
the continuity or species equations. For contact discontinuities, the analytical SFS
terms are identically zero. However, numerically, the transport of a contact discon-
tinuity may result in artificial oscillations due to dispersive errors. To treat contact
discontinuities, a WENO-like correction term is applied to the enthalpy transport.
Implemented within a centered difference code, this filtered framework performs
well for a range of shock-dominated flows without introducing excessive diffusion.
In addition to providing new insight into the placement and form of required diffu-
sion terms in the governing equations, this framework is general and may be used
with any numerical scheme.

Chemistry modeling in detonations typically relies on two broad approaches: sim-
plified models with one- or two-step chemistry, and detailed chemistry. These
approaches require choosing between computational efficiency or physical accu-
racy. In detailed chemistry simulations, there are physical constraints that must be
met when transporting species mass fractions; nonlinear transport schemes such as
WENO do not satisfy these constraints automatically. A new method is presented to
ensure that the sum of mass fractions equals 1, without penalizing inert species. The
approach is better able to capture the physical instability expected for detonations. To
reduce the cost of chemistry while maintaining accurate physics, tabulated chemistry
has been used extensively for flames/deflagrations in the low Mach number frame-
work. In the simplest tabulated chemistry model for premixed flames, a progress
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variable, describing the progress of reactions in the system, is transported in the
simulation. This progress variable is then used to look up all other species, transport
properties, and thermodynamic variables from a pre-computed table. Unfortunately,
there is no existing tabulation approach designed specifically for detonations. As
such, this work extends the tabulated chemistry method to detonations. To describe
the enthalpy and specific heat capacity, the temperature is selected as a second table
coordinate. The two table coordinates are able to capture virtually all variations
in the progress variable source term. The Zel’dovich-von Neumann-Döring (ZND)
model is found to be the most appropriate one-dimensional problem for generation
of the table. The ZND tabulation approach is validated for both one-dimensional
stable and pulsating and two-dimensional regular and irregular detonations in var-
ious hydrogen-oxygen mixtures. The tabulated chemistry simulations are able to
reproduce the detailed chemistry results in terms of propagation speed, cellular
structures, and source term statistics at a reduced computational cost, demonstrating
the benefits of this approach for predictive modeling of detonations.
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1

C h a p t e r 1

INTRODUCTION

1.1 Background and motivation
1.1.1 Safety and propulsion
History has seen numerous catastrophes involving accidental detonations. In 2001,
leaking ammonium nitrate caused an explosion at the AZote Fertilisant (AZF)
chemical plant in France [1]. In 2011 at the Fukushima Daiichi Nuclear Plant,
leaking hydrogen gas reacted with oxygen in the air, causing a detonation [2]. Many
coal mines have exploded worldwide, as recently as December 2018 in the Czech
Republic, in which methane gas and coal dust ignited [3]. In the U.S. alone, there
have been hundreds of coal mine explosions since the 1800s [4]. Detonations will
always be a safety risk, even though newer energy sources are replacing earlier
combustion methods.

Recently, detonations have been explored as an innovative means for energy gener-
ation. Detonation engines offer the potential for greatly increased engine efficiency
compared to the standard gas turbine engines used in many power and propulsion
applications [5, 6]. While gas turbine engines typically rely on the Brayton ther-
modynamic cycle, switching to a detonation cycle could substantially increase the
efficiency. Without the use of a compressor, the Brayton cycle has an efficiency of
0%, whereas detonations are nearly constant volume processes and produce much
higher pressures, achieving an efficiency of about 25% [7]. Unfortunately, the same
factors that make detonations more efficient (e.g., higher pressures), also make
detonation-based engines challenging to design.

Simulations can play an essential role in understanding the conditions that lead to
unwanted detonations (deflagration-to-detonation transition, [8, 9]), and can also
aid in the development of technologies such as detonation engines [10] by supple-
menting experimental studies [11, 12]. Simulating these large scale applications
necessitates models that accurately capture the inherent structure of detonations in
a computationally efficient manner.
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1.1.2 Detonation structure
In one dimension, the detonation wave structure can be described by the Zel’dovich-
von Neumann-Döring (ZND) model [13–15], in which the post-shock flow consists
of a thermoneutral induction zone followed by an exothermic reaction zone. The
structure is illustrated in Fig. 1.1 for a detonation wave propagating to the left. The
lead shock travels at the Chapman-Jouguet [16, 17] speed (𝑢𝐶𝐽), heating and com-
pressing the unburnt reactant gases (H2 and O2, for hydrogen combustion). In the
induction zone (with length L), initial radicals are formed while the thermodynamic
state remains approximately constant. This is followed by the reaction zone, where
products (H2O) are formed and heat is released; it is accompanied by an increase in
temperature and a decrease in the pressure (and density).

(a) Thermodynamic variables. (b) Species mass fractions.

Figure 1.1: ZND structure. Temperature (black solid line), pressure (blue dashed
line) (a); mass fractions of H2 (black solid line), O2 (blue dashed line), H2O (red
dash-dotted line) (b). Induction zone indicated by gray shaded region; shock is at
𝑥 = 0. 2H2-O2-7Ar.

In multi-dimensional detonations, the structure is further complicated by the pres-
ence of transverse shocks, resulting in substantial variation in the thermodynamic
conditions along the unsteady detonation wave front. Figure 1.2 shows an exam-
ple of the numerical schlieren (density gradient magnitude) for a two-dimensional
detonation. Comparing the primary shock front (largest density gradient) with the
location of the reaction zone (approximated by the contour of 𝑌H2O), the induc-
tion zone length varies along the detonation front. In portions of the front where
the shock is locally propagating above the CJ speed (overdriven), the post-shock
temperature and pressure are higher, increasing the reaction rates and shortening
the induction length; in regions where the shock is locally underdriven, the reac-
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tion rates are smaller and the induction zone lengthens. These regions of locally
shorter/longer induction zone lengths are separated by triple point collisions, con-
sisting of the incident shock (locally underdriven), Mach stem (locally overdriven),
and transverse waves. Vorticity generated at the triple points propagates into the
wake. In three dimensions, there are two sets of transverse waves (oscillating in
the 𝑦 and 𝑧 directions, for a detonation propagating in 𝑥), resulting in an even more
complex flow field.

Figure 1.2: Two-dimensional detonation front. Numerical schlieren and contour at
half the maximum H2O mass fraction (red solid line). 2H2-O2-5.6N2.

Experiments provide crucial contributions to our understanding of the structure
and dynamics of detonations. However, there are limitations on the data that can
be measured. In contrast, simulations provide access to every flow variable at
every grid point and time step, increasing the amount of information available.
Unfortunately, due to the complex interactions between shock waves and chemical
reactions, there are a number of numerical and modeling challenges associated with
multi-dimensional detonation simulations. These challenges are the reasons for any
observed discrepancies between simulation results and experimental observations
[18, 19]. Addressing these challenges is the focus of this thesis. Methods for
ensuring the numerical stability of shocks are reviewed in Sec. 1.2. Numerical
errors associated with species transport are discussed in Sec. 1.3. Sections 1.4 and
1.5 review strategies for chemistry modeling.
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1.2 Numerical treatment of shocks and discontinuities
The Euler equations admit solutions with two different types of discontinuities:
shocks and contact discontinuities. These discontinuities are often treated together
in numerical simulations, with the primary focus on ensuring stable simulations.
These approaches may be classified broadly as either shock-capturing numerical
schemes or the addition of artificial viscosity/diffusivity.

Essentially non-oscillatory (ENO) and weighted ENO (WENO) schemes are widely
used shock-capturing methods [20, 21]. ENO schemes prevent oscillations around
shocks by using an adaptive stencil based on the local flow conditions. Near shocks,
this stencil is chosen to produce a smooth solution. In WENO schemes, a weighted
combination of stencils is used, rather than selecting a single stencil at a given
location. While robust, these shock-capturing schemes tend to be dissipative of
quantities important for turbulence simulation [22]. Simulations with a combination
of shocks and turbulence often rely on a hybrid approach, switching between WENO
schemes in the vicinity of discontinuities and high-order accurate centered difference
schemes in smooth regions [23]. Such hybrid methods require a shock sensor.
However, designing a sensor effective for a variety of problems is challenging
[22]. Recent work has explored the use of neural networks for optimizing WENO
coefficients to switch effectively between smooth and discontinuous regions [24].
In application to contact discontinuities, shock-capturing schemes tend to smear
the discontinuity over time [25]. As such, methods have been developed to sharpen
contact discontinuities including subcell resolution [26], artificial compression [27],
and anti-diffusive flux corrections [28].

An alternative method, artificial viscosity/diffusivity, eliminates the need for a hy-
brid scheme and shock sensor, allowing high-order accurate schemes to be used
throughout the domain. Artificial viscosity was first introduced by von Neumann
and Richtmyer as a method for numerical shock calculations [29]. The addition
of artificial viscosity smears the shock such that it can be resolved on a numerical
grid using standard finite difference procedures. This approach has been devel-
oped and applied to a variety of problems. Based on local flow conditions, artificial
shear viscosity, bulk viscosity, conductivity, and/or species diffusivity are computed.
For example, to regularize the Euler equations, Cook and Cabot used an artificial
viscosity of the form

𝜇 = 𝐶𝜇𝜌(Δ𝑥)𝑟+1
����𝜕𝑟𝑢𝜕𝑥𝑟

����, (1.1)
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where 𝐶𝜇 is a constant, 𝜌 is the density, Δ𝑥 is the grid spacing, 𝑟 is an integer, 𝑢
is the velocity, and · is a Gaussian filter [30]. This artificial viscosity appears in
both the momentum and energy equations. Fiorina and Lele used a similar form to
define an artificial viscosity (𝜇) and an artificial diffusivity (𝜒𝜌, 𝜒𝑌 ), the latter of
which is based on the entropy gradient. Artificial dissipation terms were included
in all governing equations, including continuity [31]. Cook extended the artificial
viscosity approach in [30] to the full Navier-Stokes equations by introducing artificial
shear viscosity (𝜇∗), artificial bulk viscosity (𝛽∗), artificial conductivity (𝜅∗), and
artificial species diffusivity (𝐷∗

𝑖
) [32]. The artificial viscosities, conductivity, and

species diffusivities were based on the local gradients of the strain rate tensor,
internal energy, and species mass fractions, respectively. These artificial properties
are added to the corresponding physical properties wherever they appear in the
Navier-Stokes equations. Later, Kawai and Lele generalized the Localized Artificial
Diffusivity (LAD) approach to treat shocks and discontinuities on curvilinear and
anisotropic meshes [33]. The artificial properties 𝜇∗, 𝛽∗, 𝜅∗, and 𝐷∗

𝑘
introduced by

Cook [32] were reformulated for a multi-dimensional generalized coordinate system.
Mani et al. demonstrated the benefits of using dilatation instead of the strain rate to
define an artificial bulk viscosity [34]. Kawai et al. examined the effects of LAD on
simulations of compressible turbulence [35]. The artificial shear viscosity 𝜇∗ and
artificial conductivity 𝜅∗ are the same as those introduced by Cook [32], while the
artificial bulk viscosity 𝛽∗ is based on the dilatation, as recommended by Mani et
al. [34]. The addition of switching functions to the definition of the artificial bulk
viscosity is found to improve performance away from shocks in regions of weakly
compressible turbulence. Finally, Lee and Lele later investigated the application of
LAD to reacting flows, including deflagrations and detonations [36].

The previously mentioned LAD studies focused on structured high-order finite
difference codes [30–36]. More recent work has extended the use of artificial
viscosity to unstructured grids. Premasuthan et al. extended the approach to
spectral difference methods with unstructured quadrilateral grids [37]. In line
with [34–36], the artificial shear viscosity 𝜇Δ, artificial bulk viscosity 𝛽Δ, and
artificial conductivity 𝜅Δ are based on the local gradients of the magnitude of
the strain rate tensor, dilatation, and internal energy, respectively. It was found
that smoothing the artificial viscosity profiles led to more robust performance.
Further improvements were made by combining artificial viscosity with local mesh
refinement [38]. Haga and Kawai later extended the LAD approach to high-order
flux reconstruction methods for unstructured quadrilateral and hexahedral grids [39].



6

The artificial bulk viscosity 𝛽∗ and artificial mass diffusivity 𝛼∗ are based on the
local gradients of the dilatation and density, respectively.

As with the shock-capturing schemes, the use of LAD has proven successful for a
range of problems and numerical frameworks [30–39]. However, as demonstrated
by the above examples summarized in Table 1.1, there is no consistent placement
of artificial viscous/diffusion terms in the governing equations. The specific forms
of the terms are also arbitrary. Although the physical dimensions of the artificial
diffusion terms are consistent with the governing equations, the order of derivatives
used as well as the quantities used (i.e. magnitude of strain rate tensor vs. dilata-
tion) varies. Furthermore, all of these artificial diffusivities require the tuning of
coefficients to apply a sufficient amount of artificial diffusion.

Mass Momentum Energy Species
Cook and Cabot [30] — 𝜇 𝜇 —

Cook [32] — 𝜇∗, 𝛽∗ 𝜇∗, 𝛽∗, 𝜅∗ 𝐷∗
𝑖

Fiorina and Lele [31] 𝜒𝜌 𝜇 𝜇 𝜒𝑌
Kawai and Lele [33] — 𝜇∗, 𝛽∗ 𝜇∗, 𝛽∗, 𝜅∗ 𝐷∗

𝑘

Premasuthan et al. [37] — 𝜇Δ, 𝛽Δ 𝜇Δ, 𝛽Δ, 𝜅Δ —
Lee and Lele [36] — 𝜇∗, 𝛽∗ 𝜇∗, 𝛽∗, 𝜅∗, 𝐷∗

𝑘
𝐷∗

𝑘

Haga and Kawai [39] 𝛼∗ 𝛽∗ 𝛽∗ —

Table 1.1: Placement of artificial properties in the governing equations.

Most existing shock-capturing and artificial diffusivity methods are numerical ap-
proaches to spreading the shock interface. Shocks are typically idealized as discon-
tinuities, as their inherent thickness, of the order of a few mean free paths, is much
smaller than any practical grid resolution. As a result, the smallest scale feature in
the flow—the shock—is not resolved. This is analogous to Large Eddy Simulation
(LES), in which the smallest scale features are not resolved but are modeled instead
by sub-filter scale (SFS) terms [40, 41]. Adams and Stolz first introduced the idea
of exploiting the mathematical framework of LES for shock-capturing, using an ap-
proximate deconvolution approach to develop a subgrid-scale model [42, 43]. More
recently, Sousa and Scalo explored the mathematical similarity with SFS closure
models for LES and proposed closure expressions for both shock-dominated and tur-
bulent flows [44, 45]. While promising, neither the Quasi-Spectral Viscosity model
[44], nor the Legendre Spectral Viscosity model [45] leveraged any knowledge of
the theoretical shock jump conditions, and the inclusion of an additional explicit
filtering operation was found beneficial in attenuating spurious high wavenumber
oscillations.
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1.3 Numerical transport of species
Reacting flow simulations often require the transport of several species mass frac-
tions. Unfortunately, the solutions of the discretized species equations do not always
meet key physical constraints: namely, each mass fraction must be bounded between
0 and 1, and the sum of mass fractions must be equal to 1. First order linear schemes
such as upwind meet these constraints, but are too dissipative. High order linear
schemes (e.g., QUICK [46]) ensure the sum of mass fractions equals 1, but are not
bounded. Nonlinear schemes such as weighted essentially non-oscillatory (WENO)
schemes are often preferred for their high order accuracy and non-oscillatory prop-
erty. However, the sum of mass fractions is not guaranteed to equal 1.

A variety of approaches have been used to address this challenge [47–50]. In
detailed chemistry simulations, often 𝑁 − 1 out of the 𝑁 species equations are
transported, with the last inert species being computed to maintain a sum equal
to 1 [47]. Alternatively, the mass fractions may be renormalized after computing
the reconstruction at the faces [48]. Algorithms have been derived to satisfy both
physical constraints [49, 50], although the conditions are scheme-dependent and do
not extend easily to multiple dimensions.

1.4 Detonation chemistry modeling
As the chemistry influences the propagation and structure of detonations, deto-
nation simulations require chemical models that are both physically accurate and
computationally efficient. Current chemistry modeling approaches for detonations
span a range of complexity, from simplified one-step models to detailed chemical
mechanisms, resulting in a trade-off between accuracy and efficiency.

The most comprehensive approach considered here, detailed chemistry, requires a
separate transport equation for each species. By retaining information about all
intermediate species and reactions, this modeling approach is able to reproduce key
behavior [19, 51]. For example, detailed chemistry is able to predict quenching
limits consistent with experiments [19]. These predictions are possible despite
uncertainties in the individual reaction rate constants and neglect of vibrational
non-equilibrium effects, both of which may explain discrepancies between detailed
chemistry calculations and experimental cell sizes [52, 53]. Unfortunately, detailed
chemistry is computationally expensive, and large scale simulations may be imprac-
tical. Even the simplest fuel, hydrogen, involves the transport of nine species [54].
For complex hydrocarbon fuels, detailed chemical mechanisms may include tens to



8

hundreds of species [55, 56]. To reduce the cost associated with detailed chemistry,
in situ adaptive tabulation (ISAT) has been applied to detonation simulations, tabu-
lating the chemical source terms instead of integrating the stiff ordinary differential
equations [57, 58]. Although the evaluation of source terms is accelerated, all
chemical species must still be transported throughout the simulation.

At the opposite end, one-step chemistry is a computationally inexpensive method
in which a single reaction converts reactants to products. This method uses an
Arrhenius-type global reaction to describe the reaction rate, and one transport
equation is required for the mass fraction of the reactant [59, 60]. This simpli-
fied approach allows for the simulation of complex flow configurations such as
deflagration-to-detonation transition (DDT) [8] and detonation-turbulence interac-
tion [61]. Recent work has focused on optimizing the parameters in the Arrhenius
reaction expression to reproduce key flame and detonation properties for simula-
tions of DDT [62–64]. Although this inexpensive approach can reliably produce the
correct detonation propagation speeds, transient behavior such as quenching limits
[19] and re-initiation [65] cannot be reproduced.

The cost of detailed chemistry and the shortcomings of one-step chemistry have led
to the development of other simplified models. The detonation structure, consisting
of an induction zone followed by a reaction zone, led to the development of the
induction parameter model [66]. This model incorporates the induction time of
the mixture, delaying the energy release until after the induction period ends. This
model has been used for both fundamental studies of detonations [67] as well as
larger scale applications such as rotating detonation engine (RDE) simulations [10].
In all cases, the induction parameter must be transported in the simulation; in some
simulations [10], the reactant density is also transported.

More complex models describe the reaction process in more detail, using two trans-
port equations to track the chemistry [68–74]. The first step is a thermoneutral
induction period, corresponding to chain initiation, chain branching reactions, and
the formation of radicals. The second step is an exothermic reaction period, cor-
responding to chain termination, recombination reactions, and the formation of
products. In addition to the induction parameter, a reaction progress variable is
transported in the simulation to describe the second reaction step [70–74]. The
exothermic reaction rate often takes on an Arrhenius form [69, 71, 73, 74].

To capture additional physics, skeletal chemical models have been developed.
For hydrocarbon-air detonations, a two-step approach requires transporting seven
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species [75]. Three-step mechanisms further split the chemical process into chain-
initiation, chain-branching, and termination steps [19, 76]. However, the three-step
mechanisms produce weaker transverse waves, larger instantaneous flow structures,
and different quenching limits compared to detailed mechanisms. For simulations
involving the re-initiation of detonations in ethylene-oxygen mixtures, four-step
mechanisms have been used [65, 77]. In such cases, mechanisms with less than four
steps were found to be insufficient to reproduce the transverse waves that drive the
re-initiation process. As more steps are included, more chemical species need to be
included, and the computational cost increases.

1.5 Tabulated chemistry
Tabulated chemistry and flamelet-based methods are commonly used to reduce the
cost of low Mach flame simulations without sacrificing the physics [78–80]. In
this approach, a progress variable, 𝐶, is defined to track the evolution of chemical
processes in the simulation. The transport equation for the progress variable is given
by

𝜕 (𝜌𝐶)
𝜕𝑡

+ 𝜕 (𝜌𝑢𝑖𝐶)
𝜕𝑥𝑖

=
𝜕

𝜕𝑥𝑖

(
𝜌𝐷

𝜕𝐶

𝜕𝑥𝑖

)
+ ¤𝜔𝐶 , (1.2)

where 𝜌 is the density, 𝑢 is the velocity, 𝐷 is the diffusivity, and ¤𝜔𝐶 is the progress
variable source term. The species mass fractions, transport properties, and ther-
modynamic variables are tabulated as a function of the progress variable. One-
dimensional flamelets are used to pre-compute the information required by the
table. This is the simplest model for a premixed flame; other table coordinates
may be included in addition to the progress variable. For example, the unburned
gas temperature [81] or mixture fraction [80] may be used to describe variations in
enthalpy or local equivalence ratio, respectively.

Recent efforts have explored methods of incorporating compressibility effects into
the tabulated chemistry approach [82–85]. A challenge common to the various
methods is the inconsistency of the thermodynamics between the simulation and the
table. In low Mach simulations, there is no need to solve the energy equation, and the
temperature is simply an output of the chemistry table. However, in compressible
simulations, the temperature must be consistent with the transported energy and the
equation of state. In premixed flames, to account for deviations of the transported
energy from the tabulated energy, Vicquelin et al. [83] relied on a first-order Taylor
expansion to estimate the real temperature from the transported energy (𝑒), tabulated
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energy (𝑒0(𝐶)), and tabulated temperature (𝑇0(𝐶)),

𝑇 = 𝑇0(𝐶) +
𝑒 − 𝑒0(𝐶)
𝑐𝑣,0(𝐶)

. (1.3)

This expansion is only valid for small temperature and pressure variations, as ap-
plicable for acoustics. In non-premixed flames, Oevermann [82] and Saghafian et
al. [84] proposed an extension of tabulated chemistry for supersonic combustion.
As in [83], they assumed frozen chemistry and included an analytical correction
of the tabulated temperature based on the transported and tabulated energies. This
compressible formulation has been applied to subsonic flames [86], scramjet [82,
87], and other non-premixed supersonic combustion configurations [84, 88]. More
recently, Cisneros-Garibay and Mueller [85] used an iterative approach to solve for
the temperature and enforce the consistency between the transported energy and
tabulated energy. Within this iterative approach, they solve on the fly the low Mach
flamelet equations for all necessary tabulated quantities. As with [84], this iterative
method was demonstrated for non-premixed supersonic combustion. While this ap-
proach can be adapted to multimodal or premixed combustion, the use of flamelets
restricts the framework to the deflagration burning regime. Shunn et al. [89] re-
cently applied the compressible flamelet/progress variable approach of Saghafian et
al. to the large eddy simulation of a rotating detonation engine. Although their cor-
rections to the progress variable source term are informed by ZND solutions, their
approach still relies on premixed flamelets as the baseline solution. Unfortunately,
there is no existing tabulation approach specifically designed for detonations. The
application of flamelet-based tabulation to detonations has limited validation; it is
unclear if such an approach can reproduce key detonation dynamics, including prop-
agation speeds, the onset of one-dimensional instabilities, and the two-dimensional
cell structure.

1.6 Objectives and outline
The goal of this thesis is to develop a modeling framework for detonations that bal-
ances numerical stability, physical accuracy, and computational efficiency. Overall,
the focus is on two challenges in detonation modeling: shocks and chemistry. The
specific objectives are:

• Develop a mathematical and numerical framework to ensure the numerical
stability of shocks and contact discontinuities;
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• Demonstrate the developed framework in a finite difference solver with a
centered spatial discretization, discretely conservative of kinetic energy;

• Improve the physical accuracy and numerical stability of species transport in
detailed chemistry simulations;

• Reduce the computational cost of the chemistry in detonations by developing
a new tabulated chemistry model;

• Understand the impacts of both the numerics (SFS, species transport) and
chemistry model (detailed vs. tabulated) on the detonation physics.

This thesis is organized as follows. Chapters 2-3 focus primarily on non-reacting
flows with shocks and discontinuities. In Chapter 2, SFS viscous and diffusion
terms are derived from first principles by filtering the Euler equations. The SFS
terms are closed analytically by leveraging the shock jump conditions. The result-
ing mathematical framework is demonstrated for shock-dominated flows. Chapter 3
describes a numerical treatment of the spatially-filtered Euler equations to mini-
mize oscillations when simulating contact discontinuities. The remaining chapters
focus on detonations. Chapter 4 presents a new method for correcting the WENO-
interpolated mass fractions such that inert species do not change. The tabulated
chemistry method is extended to detonations in Chapter 5. Finally, Chapter 6 dis-
cusses the influence of the modeling framework on various aspects of the physics in
detonations.
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C h a p t e r 2

ANALYTICAL CLOSURE TO THE SPATIALLY-FILTERED
EULER EQUATIONS FOR SHOCK-DOMINATED FLOWS

[1] A. Baumgart, G. Beardsell, and G. Blanquart. “Analytical closure to the
spatially-filtered Euler equations for shock-dominated flows”. In: Journal of
Computational Physics 477 (2023), p. 111946. doi: https://doi.org/
10.1016/j.jcp.2023.111946.

The first objective of this chapter is to derive sub-filter scale (SFS) viscous and
diffusion terms by filtering the Euler equations. An analytical closure is provided
by leveraging the theoretical shock jump conditions. The filtering procedure will
identify unequivocally the placement, form, and magnitude of the required terms.
Second, this mathematical framework will be demonstrated numerically using a
finite difference solver with a centered spatial discretization. Such schemes are typ-
ically avoided for simulations of shock-dominated flows, for they lead to oscillations
without adequate diffusion. For this reason, they are the ideal candidate to verify
that the analytical diffusion terms are both necessary and sufficient. These simula-
tions will also underscore that the diffusion terms are independent of the numerical
scheme.

In Sec. 2.1, analytical SFS diffusion terms are derived for a shock. Sec. 2.2 in-
troduces the numerical methodology. The approach is tested for an assortment of
problems in Sec. 2.3-2.5. In Sec. 2.6, the SFS viscosity is compared with Localized
Artificial Diffusivity (LAD), and the benefits and limitations of the SFS approach
are discussed. A discussion of the so-called “sonic glitch” is included in Sec. 2.7.

2.1 Analytical framework
In this section, the derivation and closure of the SFS terms are presented. The
results are independent of any spatial discretization.

2.1.1 Spatial filtering
In their strong form, the Euler equations do not admit solutions that exhibit dis-
continuities. That is why we consider instead the weak form. More precisely, the
equations are filtered, following the same procedure used for LES of compressible
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flows [40, 41, 90, 91]. In one dimension, filtered variables are defined as

𝜙(𝑥) =
∫

𝜙(𝑥′)𝐺 (𝑥 − 𝑥′)𝑑𝑥′, (2.1)

where 𝜙 is some physical quantity, 𝐺 is the filter kernel, and the limits of integration
span the physical domain. The Favre (density-weighted) average is

𝜙(𝑥) = 𝜌𝜙

𝜌
, (2.2)

where 𝜌 is the density.

The unfiltered normal shock profile can be described by

𝜙(𝑥) = 𝜙1 + (𝜙2 − 𝜙1)𝐻 (𝑥), (2.3)

where subscript 1 refers to the pre-shock state, subscript 2 refers to the post-shock
state, and 𝐻 (𝑥) is the unit step (Heaviside) function. The filtered and Favre-averaged
shock profiles take the forms

𝜙(𝑥) = 𝜙1 + (𝜙2 − 𝜙1)𝛼(𝑥) (2.4)

and

𝜙(𝑥) = 𝜌𝜙

𝜌1 + (𝜌2 − 𝜌1)𝛼(𝑥)
, (2.5)

respectively. For a Gaussian filter kernel,

𝛼(𝑥) = 1
2

(
1 + erf

(√︂
6
𝛿2 𝑥

))
, (2.6)

𝛼(𝑥) ≈ 1
2

(
1 + tanh

( 𝑥
Δ

))
, (2.7)

where 𝛿 is the Gaussian filter width, and Δ = 1
2
√︁

𝜋
6 𝛿 is the tanh filter width. The

relation between 𝛿 and Δ ensures that the erf and tanh profiles have matching slopes
at 𝑥 = 0. As shown in Fig. 2.1 for a Mach 2 density jump, the erf and tanh functions
are virtually identical.

The original, unfiltered governing equations for mass, momentum, energy, and
species are given by

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖) = 0, (2.8)

𝜕 (𝜌𝑢𝑖)
𝜕𝑡

+ 𝜕

𝜕𝑥 𝑗
(𝜌𝑢𝑖𝑢 𝑗 ) = − 𝜕 𝑝

𝜕𝑥𝑖
, (2.9)

𝜕 (𝜌𝑒𝑡)
𝜕𝑡

+ 𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖ℎ𝑡) = −𝜕𝑞𝑖

𝜕𝑥𝑖
, (2.10)

𝜕

𝜕𝑡
(𝜌𝑌𝑠) +

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝑌𝑠) = −𝜕 𝑗𝑖,𝑠

𝜕𝑥𝑖
+ ¤𝜔𝑠, (2.11)
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Figure 2.1: Unfiltered (black solid line) and filtered density profile for a Mach 2
shock obtained using Eq. (2.6) (blue dashed line) and Eq. (2.7) (red dash-dotted
line).

where 𝑢 is the velocity, 𝑝 is the pressure, 𝑒𝑡 is the total energy, ℎ𝑡 is the total enthalpy,
𝑞 is the heat flux, 𝑌𝑠 is the mass fraction, 𝑗𝑠 is the species diffusion flux, ¤𝜔𝑠 is the
chemical source term, and the subscript 𝑠 indicates the species index. The total
energy and total enthalpy are given by

𝑒𝑡 = 𝑒 + 1
2
𝑢2
𝑖 , (2.12)

ℎ𝑡 = ℎ + 1
2
𝑢2
𝑖 , (2.13)

where 𝑒 is the specific internal energy, and ℎ is the specific enthalpy. The internal
energy and enthalpy are related by

ℎ = 𝑒 + 𝑝/𝜌. (2.14)

The heat flux and species diffusion flux are given by

𝑞𝑖 = −𝜆 𝜕𝑇
𝜕𝑥𝑖

+
∑︁
𝑠

ℎ𝑠 𝑗𝑖,𝑠 and 𝑗𝑖,𝑠 = −𝜌𝑌𝑠
(
𝐷𝑠

𝑋𝑠

𝜕𝑋𝑠

𝜕𝑥𝑖
+ 𝑢𝑖,𝑐

)
, (2.15)

where 𝜆 is the conductivity, ℎ𝑠 is the species enthalpy, 𝐷𝑠 is the species diffusivity,
𝑋𝑠 is the species mole fraction, and 𝑢𝑐 is the correction velocity to ensure mass
conservation. The system of equations is closed with the ideal gas law,

𝑝 = 𝜌𝑅𝑇/𝑊, (2.16)

where 𝑅 is the universal gas constant, and 𝑊 is the mixture molecular weight.
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After filtering, the equations become

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
(𝜌𝑢̃𝑖) = 0, (2.17)

𝜕

𝜕𝑡
(𝜌𝑢̃𝑖) +

𝜕

𝜕𝑥 𝑗
(𝜌𝑢̃𝑖𝑢̃ 𝑗 ) = − 𝜕 𝑝

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥 𝑗
(𝜌𝑢̃𝑖𝑢̃ 𝑗 − 𝜌𝑢𝑖𝑢 𝑗 ), (2.18)

𝜕 (𝜌𝑒𝑡)
𝜕𝑡

+ 𝜕

𝜕𝑥𝑖
(𝜌𝑢̃𝑖 ℎ̃𝑡) = −

𝜕𝑞 𝑗

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥𝑖

(
𝜌𝑢̃𝑖 ℎ̃𝑡 − 𝜌𝑢𝑖ℎ𝑡

)
, (2.19)

𝜕

𝜕𝑡
(𝜌𝑌𝑠) +

𝜕

𝜕𝑥𝑖
(𝜌𝑢̃𝑖𝑌𝑠) = −

𝜕 𝑗 𝑖,𝑠

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥𝑖

(
𝜌𝑢̃𝑖𝑌𝑠 − 𝜌𝑢𝑖𝑌𝑠

)
+ ¤𝜔𝑠, (2.20)

where some variables (e.g. 𝜌) appear as Reynolds-averages and other variables
(e.g. 𝑢̃𝑖) appear as Favre-averages. Other formulations such as the Reynolds-filtered
framework may lead to different closures [92]; however, this is not the focus of the
present work. The forms of Eq. (2.17) to (2.20) are standard for LES of reacting,
compressible flows. There are no additional terms in the continuity equation (Eq.
(2.17)). For Eq. (2.18) to (2.20), the following terms appear and require closure:

𝜏𝑖 𝑗 ,𝑆𝐹𝑆 = 𝜌𝑢̃𝑖𝑢̃ 𝑗 − 𝜌𝑢𝑖𝑢 𝑗 , (2.21)

𝑞𝑖,𝑆𝐹𝑆 = 𝜌𝑢̃𝑖 ℎ̃𝑡 − 𝜌𝑢𝑖ℎ𝑡 , (2.22)

𝑗𝑖,𝑆𝐹𝑆 = 𝜌𝑢𝑖𝑌𝑠 − 𝜌𝑢𝑖𝑌𝑠 . (2.23)

These SFS terms are discussed in Sec. 2.1.2 for momentum, Sec. 2.1.3 for energy,
and Sec. 2.1.4 for species. Closures are developed for two discontinuities of interest:
contact discontinuities and shocks.

2.1.2 Momentum equation
2.1.2.1 One-dimensional closure

In one dimension, the SFS term in the momentum equation is

𝜏𝑆𝐹𝑆 = 𝜌𝑢̃𝑢̃ − 𝜌𝑢𝑢 = 𝜌(𝑢̃𝑢̃ − 𝑢𝑢). (2.24)

Across a contact discontinuity, 𝑢 is constant, so 𝑢̃𝑢̃ and 𝑢𝑢 are equal and therefore
𝜏𝑆𝐹𝑆 = 0. In other words, no SFS terms are necessary in the momentum equation for
a contact discontinuity. For a shock in the shock-fixed frame, 𝜌𝑢 (= 𝜌𝑢̃ = 𝜌1𝑢1 =

𝜌2𝑢2) is constant, so the SFS term can be written equivalently as

𝜏𝑆𝐹𝑆 = 𝜌𝑢̃𝑢̃ − 𝜌𝑢𝑢 = 𝜌𝑢̃(𝑢̃ − 𝑢). (2.25)

Because 𝑢 is not constant across the shock, 𝑢̃ and 𝑢 are not equal. So, the 𝜏𝑆𝐹𝑆 is
nonzero.
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Using the filtered and Favre-averaged shock profiles from Eq. (2.4) and (2.5), the
SFS term becomes

𝜏𝑆𝐹𝑆 = 𝜌𝑢̃

(
𝜌1𝑢1
𝜌

− [𝑢1 + (𝑢2 − 𝑢1)𝛼]
)

= 𝜌𝑢̃

(
𝛼(1 − 𝛼)

𝜌
(2𝜌1𝑢1 − 𝜌1𝑢2 − 𝜌2𝑢1)

)
= (𝜌2 − 𝜌1) (𝑢2 − 𝑢1)𝑢̃𝛼(1 − 𝛼). (2.26)

For the tanh function (Eq. (2.7)), the following expression holds analytically,

𝛼(1 − 𝛼) = 1
4

(
1 − tanh2

( 𝑥
Δ

))
=
Δ

2
𝜕𝛼

𝜕𝑥
. (2.27)

Following the approximation of erf by tanh, 𝜏𝑆𝐹𝑆 becomes

𝜏𝑆𝐹𝑆 ≈ (𝜌2 − 𝜌1) (𝑢2 − 𝑢1)𝑢̃
Δ

2
𝜕𝛼

𝜕𝑥
. (2.28)

Finally, writing 𝜕𝛼
𝜕𝑥

in terms of 𝜕𝑢̃
𝜕𝑥

using Eq. (2.4) and (2.5),

𝜕𝛼

𝜕𝑥
= − 𝜌1𝑢1

𝜌2 − 𝜌1

1
𝑢̃2

𝜕𝑢̃

𝜕𝑥
, (2.29)

the resulting momentum SFS term for a normal shock is

𝜏𝑆𝐹𝑆 ≈ − 𝜌1𝑢1
𝜌2 − 𝜌1

1
𝑢̃
(𝜌2 − 𝜌1) (𝑢2 − 𝑢1)

Δ

2
𝜕𝑢̃

𝜕𝑥

≈ 𝜌(𝑢1 − 𝑢2)
Δ

2
𝜕𝑢̃

𝜕𝑥
. (2.30)

In other words, the SFS term takes the form of the velocity divergence. Because
the SFS term depends on velocity differences and velocity gradients, the model
is Galilean invariant and may be applied to both steady and unsteady shocks. In
Eq. (2.30), the units of 𝜌(𝑢1 − 𝑢2) Δ2 are kg·(m·s)−1, corresponding to those of
dynamic viscosity. Even though it was derived specifically for a shock, this SFS
viscosity is consistent with the closure obtained for a contact discontinuity (as
𝑢1 = 𝑢2), 𝜏𝑆𝐹𝑆 = 0. As such, the expression will be used for both shocks and contact
discontinuities. The only approximation used to derive Eq. (2.30) is the similarity
between the erf and tanh function.

2.1.2.2 Multi-dimensional closure

To extend this to two dimensions, Eq. (2.21) may be written in normal-tangential
(𝑛 − 𝑡) coordinates as

𝝉𝑆𝐹𝑆 =

[
𝜌𝑢̃𝑛𝑢̃𝑛 − 𝜌𝑢𝑛𝑢𝑛 𝜌𝑢̃𝑛𝑢̃𝑡 − 𝜌𝑢𝑛𝑢𝑡

𝜌𝑢̃𝑡 𝑢̃𝑛 − 𝜌𝑢𝑡𝑢𝑛 𝜌𝑢̃𝑡 𝑢̃𝑡 − 𝜌𝑢𝑡𝑢𝑡

]
. (2.31)
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Across an oblique shock, both 𝜌𝑢𝑛 and 𝑢𝑡 are constant, so

𝜏𝑛𝑛,𝑆𝐹𝑆 = 𝜌𝑢̃𝑛 (𝑢̃𝑛 − 𝑢𝑛), (2.32)

𝜏𝑛𝑡,𝑆𝐹𝑆 = 𝜏𝑡𝑛,𝑆𝐹𝑆 = 𝜌𝑢̃𝑛 (𝑢̃𝑡 − 𝑢𝑡) = 0, (2.33)

𝜏𝑡𝑡,𝑆𝐹𝑆 = 𝜌(𝑢̃𝑡 𝑢̃𝑡 − 𝑢𝑡𝑢𝑡) = 0. (2.34)

By the same procedure used to obtain Eq. (2.30), the two-dimensional SFS term in
the momentum equation is

𝝉𝑆𝐹𝑆 ≈
[
𝜌(𝑢1𝑛 − 𝑢2𝑛) Δ2

𝜕𝑢̃𝑛
𝜕𝑛

0
0 0

]
. (2.35)

However, implementing the SFS term in normal-tangential coordinates is not conve-
nient in practice, particularly when multiple shock angles are present in the domain.
To identify SFS shear and bulk viscosities that may be used independent of the
simulation coordinate system, Eq. (2.35) is compared to the physical viscous stress
tensor,

𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢̃𝑖

𝜕𝑥 𝑗
+
𝜕𝑢̃ 𝑗

𝜕𝑥𝑖
− 2

3
𝜕𝑢̃𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
+ 𝜅

𝜕𝑢̃𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗 , (2.36)

where 𝜇 and 𝜅 are the dynamic and bulk viscosities, respectively. The normal-
tangential components of the physical stress tensor are

𝜏𝑛𝑛 = 2𝜇
(
𝜕𝑢̃𝑛

𝜕𝑛
− 1

3

(
𝜕𝑢̃𝑛

𝜕𝑛
+ 𝜕𝑢̃𝑡

𝜕𝑡

))
+ 𝜅

(
𝜕𝑢̃𝑛

𝜕𝑛
+ 𝜕𝑢̃𝑡

𝜕𝑡

)
, (2.37)

𝜏𝑛𝑡 = 𝜏𝑡𝑛 = 𝜇

(
𝜕𝑢̃𝑛

𝜕𝑡
+ 𝜕𝑢̃𝑡

𝜕𝑛

)
, (2.38)

𝜏𝑡𝑡 = 2𝜇
(
𝜕𝑢̃𝑡

𝜕𝑡
− 1

3

(
𝜕𝑢̃𝑛

𝜕𝑛
+ 𝜕𝑢̃𝑡

𝜕𝑡

))
+ 𝜅

(
𝜕𝑢̃𝑛

𝜕𝑛
+ 𝜕𝑢̃𝑡

𝜕𝑡

)
. (2.39)

For an oblique (not curved) shock, 𝑢𝑡 is constant and 𝜕
𝜕𝑡

= 0, so the components of
𝜏 are simplified to

𝜏𝑛𝑛 =

(
𝜅 + 4

3
𝜇

)
𝜕𝑢̃𝑛

𝜕𝑛
, (2.40)

𝜏𝑛𝑡 = 𝜏𝑡𝑛 = 0, (2.41)

𝜏𝑡𝑡 =

(
𝜅 − 2

3
𝜇

)
𝜕𝑢̃𝑛

𝜕𝑛
. (2.42)
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To extract expressions for SFS viscosities, the components of the SFS stress tensor
in Eq. (2.35) can be matched with those in Eq. (2.40) and (2.42) such that

𝜏𝑛𝑛,𝑆𝐹𝑆 = 𝜌(𝑢1𝑛 − 𝑢2𝑛)
Δ

2
𝜕𝑢̃𝑛

𝜕𝑛
=

(
𝜅𝑆𝐹𝑆 +

4
3
𝜇𝑆𝐹𝑆

)
𝜕𝑢̃𝑛

𝜕𝑛
, (2.43)

𝜏𝑡𝑡,𝑆𝐹𝑆 = 0 =

(
𝜅𝑆𝐹𝑆 −

2
3
𝜇𝑆𝐹𝑆

)
𝜕𝑢̃𝑛

𝜕𝑛
, (2.44)

resulting in the SFS dynamic and bulk viscosities,

𝜇𝑆𝐹𝑆 = 𝜌(𝑢1𝑛 − 𝑢2𝑛)
Δ

4
, (2.45)

𝜅𝑆𝐹𝑆 = 𝜌(𝑢1𝑛 − 𝑢2𝑛)
Δ

6
. (2.46)

In Cartesian (𝑥 − 𝑦) coordinates, the SFS stress tensor components are then

𝜏𝑥𝑥,𝑆𝐹𝑆 = 2𝜇𝑆𝐹𝑆
(
𝜕𝑢̃

𝜕𝑥
− 1

3

(
𝜕𝑢̃

𝜕𝑥
+ 𝜕𝑣̃

𝜕𝑦

))
+ 𝜅𝑆𝐹𝑆

(
𝜕𝑢̃

𝜕𝑥
+ 𝜕𝑣̃

𝜕𝑦

)
= 𝜌(𝑢1𝑛 − 𝑢2𝑛)

Δ

2
𝜕𝑢̃

𝜕𝑥
,

(2.47)

𝜏𝑥𝑦,𝑆𝐹𝑆 = 𝜏𝑦𝑥,𝑆𝐹𝑆 = 𝜇𝑆𝐹𝑆

(
𝜕𝑢̃

𝜕𝑦
+ 𝜕𝑣̃

𝜕𝑥

)
= 𝜌(𝑢1𝑛 − 𝑢2𝑛)

Δ

4

(
𝜕𝑢̃

𝜕𝑦
+ 𝜕𝑣̃

𝜕𝑥

)
, (2.48)

𝜏𝑦𝑦,𝑆𝐹𝑆 = 2𝜇𝑆𝐹𝑆
(
𝜕𝑣̃

𝜕𝑦
− 1

3

(
𝜕𝑢̃

𝜕𝑥
+ 𝜕𝑣̃

𝜕𝑦

))
+ 𝜅𝑆𝐹𝑆

(
𝜕𝑢̃

𝜕𝑥
+ 𝜕𝑣̃

𝜕𝑦

)
= 𝜌(𝑢1𝑛 − 𝑢2𝑛)

Δ

2
𝜕𝑣̃

𝜕𝑦
.

(2.49)

As expected, the 2D 𝜏𝑆𝐹𝑆 simplifies to Eq. (2.30) in the limit of a normal shock.

2.1.3 Energy equation
In one dimension, the SFS term in the energy equation is

𝑞𝑆𝐹𝑆 = 𝜌𝑢̃ℎ̃𝑡 − 𝜌𝑢ℎ𝑡 . (2.50)

For the contact discontinuity, it is convenient to use ℎ𝑡 = 𝑐𝑝𝑇 + 1
2𝑢

2, splitting
Eq. (2.50) into a SFS conduction term and a SFS viscous dissipation term,

𝑞𝑆𝐹𝑆 = 𝑞𝑆𝐹𝑆,𝑐 + 𝑞𝑆𝐹𝑆,𝑣 =

(
𝜌𝑢̃𝑐𝑝𝑇 − 𝜌𝑢𝑐𝑝𝑇

)
+

(
1
2
𝜌𝑢̃𝑢2 − 1

2
𝜌𝑢𝑢2

)
. (2.51)

Approximating the specific heat capacity 𝑐𝑝 to be constant, and because 𝑢 = 𝑢̃ = 𝑢

across the contact discontinuity,

𝑞𝑆𝐹𝑆,𝑐 = 𝑢𝑐𝑝 (𝜌𝑇 − 𝜌𝑇) = 0, (2.52)

𝑞𝑆𝐹𝑆,𝑣 =
1
2
𝑢3(𝜌 − 𝜌) = 0. (2.53)
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In other words, the SFS heat flux term is zero for a contact discontinuity.

For a shock in the shock-fixed frame, both 𝜌𝑢 and ℎ𝑡 are constant, so Eq. (2.50)
simplifies to

𝑞𝑆𝐹𝑆 = 0. (2.54)

Alternatively, rather than assuming ℎ𝑡 in Eq. (2.50) is a constant, the two SFS terms
in Eq. (2.51) can be rewritten as

𝑞𝑆𝐹𝑆,𝑐 = 𝜌𝑢̃𝑐𝑝 (𝑇 − 𝑇), (2.55)

𝑞𝑆𝐹𝑆,𝑣 =
1
2
𝜌𝑢̃

(
𝑢2 − 𝑢2

)
, (2.56)

again assuming constant 𝑐𝑝 and 𝜌𝑢. First, looking at the SFS conduction term, the
filtered and Favre-averaged shock profiles lead to

𝑞𝑆𝐹𝑆,𝑐 = 𝜌𝑢̃𝑐𝑝 (𝑇 − 𝑇)

= 𝜌𝑢̃𝑐𝑝

(
𝑝

𝜌𝑅/𝑊 − [𝑇1 + (𝑇2 − 𝑇1)𝛼]
)

= 𝜌𝑢̃𝑐𝑝

(
𝛼(1 − 𝛼)

𝜌
(𝜌2 − 𝜌1) (𝑇2 − 𝑇1)

)
≈ 𝑢̃𝑐𝑝 (𝜌2 − 𝜌1) (𝑇2 − 𝑇1)

Δ

2
𝜕𝛼

𝜕𝑥
. (2.57)

Writing 𝜕𝛼
𝜕𝑥

in terms of 𝜕𝑇
𝜕𝑥

,

𝜕𝛼

𝜕𝑥
=

𝜌2𝑅/𝑊
𝜌1𝑝2 − 𝜌2𝑝1

𝜕𝑇

𝜕𝑥

=
𝜌2

𝜌1𝜌2𝑇2 − 𝜌2𝜌1𝑇1

𝜕𝑇

𝜕𝑥
, (2.58)

and the resulting SFS conduction term is

𝑞𝑆𝐹𝑆,𝑐 ≈
𝜌2

𝜌1𝜌2(𝑇2 − 𝑇1)
𝑢̃𝑐𝑝 (𝜌2 − 𝜌1) (𝑇2 − 𝑇1)

Δ

2
𝜕𝑇

𝜕𝑥

≈
𝜌2𝑐𝑝𝑢̃(𝜌2 − 𝜌1)

𝜌1𝜌2

Δ

2
𝜕𝑇

𝜕𝑥

≈
𝜌2𝑐𝑝𝑢̃(𝑢1 − 𝑢2)

𝜌𝑢̃

Δ

2
𝜕𝑇

𝜕𝑥

≈ 𝜌𝑐𝑝 (𝑢1 − 𝑢2)
Δ

2
𝜕𝑇

𝜕𝑥
, (2.59)
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showing that the SFS conductivity, like the SFS viscosity, is proportional to the
jump in velocity across the shock.

Using the filtered and Favre-averaged shock profiles, the viscous dissipation term is

𝑞𝑆𝐹𝑆,𝑣 =
1
2
𝜌𝑢̃

(
𝑢2 − 𝑢2

)
≈ 𝑢̃

2
(𝜌2 − 𝜌1) (𝑢2

2 − 𝑢2
1)
Δ

2
𝜕𝛼

𝜕𝑥
. (2.60)

Writing 𝜕𝛼
𝜕𝑥

in terms of 𝜕
𝜕𝑥

(
𝑢2

)
,

𝜕𝛼

𝜕𝑥
=

𝜌2

𝜌1𝑢1(𝜌1𝑢2 − 𝜌2𝑢1)
𝜕

𝜕𝑥

(
𝑢2

)
, (2.61)

and the resulting SFS viscous dissipation term is

𝑞𝑆𝐹𝑆,𝑣 ≈
𝜌2

𝜌1𝑢1(𝜌1𝑢2 − 𝜌2𝑢1)
𝑢̃

2
(𝜌2 − 𝜌1) (𝑢2

2 − 𝑢2
1)
Δ

2
𝜕

𝜕𝑥

(
𝑢2

)
≈ 𝜌(𝑢1 − 𝑢2)

Δ

4
𝜕

𝜕𝑥

(
𝑢2

)
. (2.62)

This equation involves 𝑢2, theoretically an unclosed term.

Alternatively, and to be consistent with the momentum equation, the SFS viscous
dissipation term may be derived using 𝜏𝑆𝐹𝑆 directly, such that

𝑞𝑆𝐹𝑆,𝑣 ≈ 𝜏𝑆𝐹𝑆 · 𝑢̃

≈
(
𝜌(𝑢1 − 𝑢2)

Δ

2
𝜕𝑢̃

𝜕𝑥

)
· 𝑢̃.

(2.63)

Rearranging, the term becomes

𝑞𝑆𝐹𝑆,𝑣 ≈ 𝜌(𝑢1 − 𝑢2)
Δ

4
𝜕𝑢̃2

𝜕𝑥
. (2.64)

The expressions for 𝑞𝑆𝐹𝑆,𝑣 in Eq. (2.62) and (2.64) are similar, the only difference
being that the former has a derivative of 𝑢2 while the latter has a derivative of
𝑢̃2. Because 𝑢̃2 does not require additional closure, Eq. (2.64) is more practical to
implement. This leads to a SFS viscous dissipation error,

𝑞𝑆𝐹𝑆,𝑣,𝑒𝑟𝑟 = 𝜌(𝑢1 − 𝑢2)
Δ

4
𝜕

𝜕𝑥

(
𝑢2 − 𝑢̃2

)
. (2.65)

The SFS conduction term (Eq. (2.59)), the SFS viscous dissipation term (Eq. (2.64)),
and the SFS viscous dissipation error (Eq. (2.65)) are all shown in Fig. 2.2 for a
Mach 2 shock, using the analytically filtered profiles. The SFS conduction and SFS
viscous dissipation counteract each other, and the SFS error term is negligible.
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Figure 2.2: SFS flux terms in the energy equation obtained from the analytically fil-
tered profiles for a Mach 2 shock, normalized by the constant 𝜌𝑢ℎ𝑡 . SFS conduction
term (Eq. (2.59), black solid line), SFS viscous dissipation term (Eq. (2.64), blue
dashed line), and SFS viscous dissipation error (Eq. (2.65), red dash-dotted line).

In two dimensions, the SFS stress tensor is used such that

q𝑆𝐹𝑆,𝑣 ≈
[
𝜏𝑥𝑥,𝑆𝐹𝑆 𝜏𝑥𝑦,𝑆𝐹𝑆

𝜏𝑦𝑥,𝑆𝐹𝑆 𝜏𝑦𝑦,𝑆𝐹𝑆

] [
𝑢

𝑣

]
, (2.66)

resulting in the components

𝑞𝑥,𝑆𝐹𝑆,𝑣 ≈ 𝜌(𝑢1𝑛 − 𝑢2𝑛)
Δ

4

(
𝜕

𝜕𝑥

(
𝑢̃2 + 1

2
𝑣̃2

)
+ 𝑣̃

𝜕𝑢̃

𝜕𝑦

)
, (2.67)

𝑞𝑦,𝑆𝐹𝑆,𝑣 ≈ 𝜌(𝑢1𝑛 − 𝑢2𝑛)
Δ

4

(
𝜕

𝜕𝑦

(
1
2
𝑢̃2 + 𝑣̃2

)
+ 𝑢̃

𝜕 𝑣̃

𝜕𝑥

)
. (2.68)

In summary, analytically, there are two possible models for the SFS term in the
energy equation: 𝑞𝑆𝐹𝑆 = 0 (Eq. (2.54), considering total enthalpy) and 𝑞𝑆𝐹𝑆 =

𝑞𝑆𝐹𝑆,𝑐 + 𝑞𝑆𝐹𝑆,𝑣 (Eq. (2.59) and (2.64), considering enthalpy and kinetic energy
separately). Both options will be tested for a variety of shock conditions.

2.1.4 Species equation
The one-dimensional SFS term in the species equation is given by

𝑗𝑆𝐹𝑆 = 𝜌𝑢̃𝑌𝑠 − 𝜌𝑢𝑌𝑠 . (2.69)

Again using 𝑢 = 𝑢̃ = 𝑢 for the contact discontinuity,

𝑗𝑆𝐹𝑆 = 𝑢(𝜌𝑌𝑠 − 𝜌𝑌𝑠) = 0. (2.70)
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The shock is assumed to be thin enough that no chemical reactions take place within
the shock, such that 𝑌𝑠 = 𝑌𝑠 = 𝑌 𝑠 and therefore

𝑗𝑆𝐹𝑆 = 𝜌𝑢̃(𝑌𝑠 − 𝑌 𝑠) = 0. (2.71)

In summary, for the species equation and potentially for the energy equation (de-
pending on the model used), no analytical SFS diffusion terms are required for
contact discontinuities or shocks. The reason why a SFS term is present in the
momentum equation only is the phenomenon of wave front sharpening. While such
phenomenon may arise numerically for temperature and species, it does not come
from the analytical equations.

2.1.5 Equation of state
The filtered equation of state (Eq. (2.16)) is

𝑝 = 𝜌𝑅𝑇/𝑊 = 𝜌�𝑅𝑇/𝑊. (2.72)

As in Sec. 2.1.4, we assume there are no chemical reactions occurring within the
shock, and therefore both 𝑅 and 𝑊 are constant across the shock. The filtered
pressure becomes

𝑝 = 𝜌𝑇𝑅
�( 1
𝑊

)
, (2.73)

with �( 1
𝑊

)
=

𝑛𝑠∑︁
𝑠=1

𝑌𝑠

𝑊𝑠

, (2.74)

so the ideal gas equation of state is still valid for the filtered quantities. The above
expression is also valid through contact discontinuities due to temperature and
species discontinuities.

In the governing Eq. (2.17)-(2.20), the quantities solved for are 𝜌, 𝜌𝑢̃, 𝜌𝑒𝑡 , and 𝜌𝑌𝑠;
the temperature is not solved for directly. Instead, Newton’s method is used to solve
the equation

𝑇𝑚+1 = 𝑇𝑚 +
(
𝜌𝑅𝑇𝑚

𝑊
−

(
𝜌

𝑛𝑠∑︁
𝑠=1

ℎ̃𝑠 (𝑇𝑚)𝑌𝑠 − 𝜌𝑒𝑡 +
1
2
𝜌𝑢̃𝑢̃

)) / (
𝜌

𝑛𝑠∑︁
𝑠=1

𝑐𝑣,𝑠 (𝑇𝑚)𝑌𝑠

)
,

(2.75)
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Figure 2.3: Convected quantities in the energy equation for a Mach 2 shock, nor-
malized by the total enthalpy ℎ𝑡 . Enthalpy (black solid line), kinetic energy using
𝑢̃2 (blue dashed line), sum of enthalpy and kinetic energy using 𝑢̃2(red dash-dotted
line), and error in filtered kinetic energy (orange dotted line).

where 𝑐𝑣,𝑠 is the species heat capacity at constant volume and 𝑚 is the iteration
number. Once 𝑇𝑚+1 is converged, the pressure is computed using the ideal gas law.

A small error is introduced when using the above expression. As discussed previ-
ously in Sec. 2.1.3, the filtered total enthalpy (ℎ̃𝑡) should be a constant through a
shock. As shown in Fig. 2.3 for a Mach 2 shock, the increase in 𝑐𝑝𝑇 is compensated
by the decrease in 1

2 𝑢̃
2. However, the transported quantity is 1

2 𝑢̃
2 and not 1

2𝑢
2.

This approximation introduces a small error that is negligible compared to the total
enthalpy.

2.1.6 Entropy equation
For a pure gas, it is common to evaluate entropy from the transported thermodynamic
variables using [22, 93]

𝑠 = 𝑐𝑣 ln 𝑝 − 𝑐𝑝 ln 𝜌. (2.76)

This is equivalent to the entropy as defined by the thermodynamic relation (Gibbs
equation)

𝑑𝑒 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣̃

= 𝑇𝑑𝑠 − 𝑝

𝜌2 𝑑𝜌, (2.77)
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where 𝑣̃ is the Favre-averaged specific volume. Rearranging the terms, recasting the
total derivatives as partial derivatives, and using continuity, in one dimension this
leads to

𝜕

𝜕𝑡
(𝜌𝑠) + 𝜕

𝜕𝑥
(𝜌𝑢̃𝑠) = 1

𝑇

(
𝜕

𝜕𝑡
(𝜌𝑒) + 𝜕

𝜕𝑥
(𝜌𝑢̃𝑒) + 𝑝

𝜕𝑢̃

𝜕𝑥

)
. (2.78)

The transport equation for 𝜌𝑒 may be obtained by subtracting the kinetic energy
equation (product of 𝑢̃ and the filtered momentum equation) from the filtered energy
equation, such that

𝜕

𝜕𝑡
(𝜌𝑒) + 𝜕

𝜕𝑥
(𝜌𝑢̃𝑒) = 𝜕

𝜕𝑥

(
𝜆𝑆𝐹𝑆

𝜕𝑇

𝜕𝑥

)
+ (𝜏𝑆𝐹𝑆 − 𝑝) 𝜕𝑢̃

𝜕𝑥
, (2.79)

where 𝜆𝑆𝐹𝑆 is the SFS conductivity corresponding to Eq. (2.59) and 𝜏𝑆𝐹𝑆 is the SFS
stress given by Eq. (2.30). Combining Eq. (2.78) and (2.79), we obtain

𝜕

𝜕𝑡
(𝜌𝑠) + 𝜕

𝜕𝑥
(𝜌𝑢̃𝑠) = 1

𝑇

(
𝜕

𝜕𝑥

(
𝜆𝑆𝐹𝑆

𝜕𝑇

𝜕𝑥

)
+ 𝜏𝑆𝐹𝑆

𝜕𝑢̃

𝜕𝑥

)
. (2.80)

The entropy profile for a steady shock, shown in Fig. 2.4a, is computed using a
high resolution numerical solution (𝑀 = 2 and Δ/Δ𝑥 = 16 from Sec. 2.3.3). The
entropy is smooth and not monotonic, reaching a peak in the middle of the shock.
This behavior has been observed previously for viscous shock layers with resolution
smaller than the mean free path [93]. The entropy peak will be visible in the solution
to the Shu-Osher problem in Sec. 2.4. This evolution is a result of the two source
terms in Eq. (2.80). Examining the entropy budget in Fig. 2.4b, the viscous term is
always positive while the conduction term has both positive and negative regions.
Together, the SFS terms balance the convective term. If the scaling or ratio of the SFS
viscosity and SFS conductivity were altered, the SFS terms would no longer balance
the convective term, leading to a source or sink of entropy. Furthermore, including
additional diffusion terms elsewhere in the governing equations may disrupt the
entropy balance (e.g., inclusion of a mass diffusivity in continuity [31, 39]; see
Table 1.1).

2.2 Numerical methods
In the previous section, no assumptions were made about either the grid spacing (Δ𝑥)
or the discretization of spatial derivatives. The analytical SFS terms are general and
can be used with any spatial discretization. The numerical discretization used for
the validation test cases (to be presented in Sec. 2.3-2.5) is reviewed in this section
first.
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(a) Entropy and density. (b) Entropy budget.

Figure 2.4: Nondimensional entropy (black solid line) and density (blue dashed
line) profiles (left). Balance of terms in the entropy transport equation: convective
term (black solid line), SFS conduction term (blue dashed line), SFS viscous term
(red dash-dotted line), and the error (orange dotted line), all nondimensionalized by
the constant 𝜌𝑢̃𝑐𝑣/Δ (right).

Simulations are performed using the compressible formulation [94] of the conserva-
tive finite difference solver NGA [95]. The reader is referred to [95] for a complete
description of the spatial discretization (common to the low Mach and compress-
ible formulations) and to [94] for the time integration (specific to the compressible
formulation). Only a brief overview will be provided here. A uniform Cartesian
grid is used, with variables staggered such that all scalar quantities are stored at the
cell centers and vector components are stored at the cell faces, as shown in Fig. 2.5.
Second-order accurate interpolation and differentiation operators are defined by

𝜙
𝑥
=
𝜙(𝑥 + Δ𝑥/2, 𝑦, 𝑧) + 𝜙(𝑥 − Δ𝑥/2, 𝑦, 𝑧)

2
, (2.81)

𝜕𝜙

𝜕𝑥

���
𝑥
=
𝜙(𝑥 + Δ𝑥/2, 𝑦, 𝑧) − 𝜙(𝑥 − Δ𝑥/2, 𝑦, 𝑧)

Δ𝑥
, (2.82)

respectively, for a quantity 𝜙. For instance, the discretized continuity equation takes
the form

𝜕𝜌

𝜕𝑡
+

3∑︁
𝑖=1

𝜕𝑔𝑖

𝜕𝑥𝑖
= 0, (2.83)

where 𝑔𝑖 = 𝜌𝑢𝑖, consistent with the low Mach number formulation. The discretiza-
tion for the momentum equation also matches that of [95]. Differences in the
discretization specific to the compressible formulation of the code are described in
[94]. Second-order accurate operators are used to discretize all convective, viscous,
and diffusive terms in the governing equations.
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Figure 2.5: Two-dimensional staggered grid (adapted from [94]); black circles
indicate scalar quantities, and vector quantities are marked by red crosses and blue
squares for the 𝑥- and 𝑦-components, respectively.

The NGA code was demonstrated to discretely conserve kinetic energy by Des-
jardins et al. [95]. The non-dissipative nature of the discretization is an important
property for simulations involving turbulence and remains true for the present com-
pressible formulation. However, the code does not discretely conserve total enthalpy.
Computing the kinetic energy at the cell centers requires interpolations, while the
enthalpy ℎ is already cell-centered; this discrepancy leads to an error in ℎ𝑡 in the
vicinity of shocks. As a consequence, it is expected that the energy equation will
require some diffusion to achieve numerical stability without changing the under-
lying discretization of the code. For this reason, the SFS energy model given by
Eq. (2.59) and (2.64) may be more robust against the code’s discretization.

The explicit RK4 scheme is used for the time integration of the equations for 𝜌, 𝜌𝑢,
𝜌𝑒𝑡 , and 𝜌𝑌𝑠. A semi-implicit RK4 method may be used to advance the species mass
fractions to reduce chemistry constraints on the timestep [94]. However, here the
timestep is restricted most by the shock velocity, not the chemistry, so the explicit
RK4 is used for all transported quantities.

2.3 Results of steady normal shock tests
The first flow configuration tested is a steady normal shock, with shock Mach
numbers ranging from 𝑀1 = 1.01 to 𝑀1 = 20. For all Mach numbers tested, the
pre-shock conditions are 𝑇1 = 298 K and 𝑝1 = 101325 Pa. The initial profiles are
given by Eq. (2.4), (2.5), and (2.7), using the Rankine-Hugoniot jump conditions
with 𝛾 = 1.4 to calculate the post-shock conditions. The inflow uses Dirichlet
boundary conditions set to the pre-shock values, with an inflow velocity 𝑢1 set to
the shock speed to ensure that the shock location is fixed. The outflow uses Navier-
Stokes Characteristic Boundary Conditions (NSCBCs) [96, 97]. The domain length
is 𝐿 = 1 mm. A filter width of Δ = 1 · 10−6 m is used along with three different grid
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resolutions: Δ/Δ𝑥 = 1, 2, and 4. The total simulation time is 2 · 10−6 s, allowing the
simulation to reach a stationary state. The timestep is given by a maximum CFL of
0.8. All the simulations reach a stationary state and did not exhibit the 1D carbuncle
effect observed in [98].

2.3.1 Moderate and strong normal shocks
Results for a Mach 2 shock are shown in Fig. 2.6 to compare the performance of
the two SFS models for the energy equation. Using the SFS term based on total
enthalpy (𝑞𝑆𝐹𝑆 = 0, Eq. (2.54)) leads to severe cell-to-cell oscillations. A steady
solution could not be reached for shock Mach numbers 5 and higher.

(a) Δ/Δ𝑥 = 1. (b) Δ/Δ𝑥 = 2.

Figure 2.6: Density profiles for a Mach 2 shock with two different grid resolutions:
Δ/Δ𝑥 = 1 (left) and Δ/Δ𝑥 = 2 (right). Comparison of using 𝑞𝑆𝐹𝑆 = 0 (black solid
line and triangles) and 𝑞𝑆𝐹𝑆 = 𝑞𝑐 + 𝑞𝑣 (blue dashed line and circles). The insets
show the oscillations just before the shock.

The SFS term that acts as a combination of conduction and viscous dissipation
(𝑞𝑆𝐹𝑆 = 𝑞𝑐 + 𝑞𝑣, Eq. (2.59) and (2.64)) leads to stable simulations for all shock
Mach numbers tested. For a grid resolution Δ/Δ𝑥 = 1 (shown in Fig. 2.6a), cell-
to-cell oscillations are present, as shown in the inset. These cell-to-cell oscillations
are observed to have a wavelength of 2Δ𝑥 for Mach numbers 2 and higher (see
Fig. 2.7). Therefore, using a filter width/resolution ratio of Δ/Δ𝑥 = 2 filters over
these cell-to-cell oscillations.

To compare the simulation shock profiles to the analytically filtered profile, the
shock thicknesses are evaluated to quantify the amount the shock is spread. The
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Figure 2.7: Wavelength of density oscillations using 𝑞𝑆𝐹𝑆 = 𝑞𝑐 + 𝑞𝑣 for grid
resolutions of Δ/Δ𝑥 = 1 (black solid line and circles), Δ/Δ𝑥 = 1.5 (blue dashed line
and triangles), Δ/Δ𝑥 = 2 (red dash-dotted line and asterisks), and Δ/Δ𝑥 = 4 (orange
dotted line and squares).

shock thickness is computed as

ℓ𝜙 =
𝜙2 − 𝜙1(
𝜕𝜙

𝜕𝑥

)
𝑚𝑎𝑥

, (2.84)

where 𝜙may be the density, pressure, velocity, or temperature. Using Eq. (2.84) with
the analytical expressions for 𝜙(𝑥) and 𝜙(𝑥) leads to an analytical shock thickness
of ℓ𝜙 = 2Δ. The lack of dependence of the filtered shock thickness on the Mach
number deserves further discussion. For common gases, a Reynolds number can
be defined as a function of the theoretical shock thickness and the jump in velocity
across the shock [99],

𝑅𝑒 =
ℓ(𝑢1 − 𝑢2)

𝜈
≈ 1. (2.85)

The theoretical shock thickness is then expressed as

ℓ ∝ 𝜈

(𝑢1 − 𝑢2)
. (2.86)

Using the SFS viscosity for 𝜈 in the above expression,

ℓ ∝
(𝑢1 − 𝑢2) Δ2
(𝑢1 − 𝑢2)

∝ Δ, (2.87)
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so the shock thickness is expected to be proportional to the filter width Δ, and
constant across shock Mach number. This result comes from the specific form of
the SFS viscosity, namely Eq. (2.30).

Figure 2.8a shows the shock thicknesses computed using 𝜌, 𝑝, 𝑢̃, and 𝑇 for a filter
width Δ/Δ𝑥 = 1. The thickness is approximately constant across the range of Mach
numbers (from 2 to 20) and is close to the theoretical value of 2Δ. The effect of grid
resolution is investigated in Fig. 2.8b using the shock thickness based on density,
ℓ𝜌. As Δ/Δ𝑥 increases, the shock thickness decreases and is closer to the theoretical
thickness. However, the thickness appears to converge to a value slightly large than
2Δ. The specific discretization used in NGA requires various interpolations that
may result in additional numerical diffusion and/or dispersion.

(a) Impact of choice of variable (Δ/Δ𝑥 = 1). (b) Impact of grid resolution.

Figure 2.8: Impact of the choice of flow variable (left at Δ/Δ𝑥 = 1) and grid
resolution (right for 𝜌) on the shock thickness for moderate and strong shocks. An-
alytical shock thickness (black dotted line); shock thickness computed from density
(black symbols/solid line), velocity (blue symbols/dashed line), temperature (red
symbols/dash-dotted line), pressure (orange symbols/dotted line); grid resolution of
Δ/Δ𝑥 = 1 (circles), Δ/Δ𝑥 = 1.5 (triangles), Δ/Δ𝑥 = 2 (asterisks), and Δ/Δ𝑥 = 4
(squares).

2.3.2 Weak normal shocks
For weak shocks (𝑀 ≈ 1), the jump in velocity (𝑢1 − 𝑢2) is small, and therefore the
SFS viscosity is small. For instance, a Mach 1.01 shock has a SFS viscosity on the
order of 10−6 Pa·s. Under these conditions, two numerical artifacts are observed.

First and as shown in Fig. 2.9, numerical oscillations develop ahead of the shock.
These oscillations are relatively large (of the order of the jump) but absolutely
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Figure 2.9: Density profile for Mach 1.01 shock (Δ/Δ𝑥 = 2) with SFS viscosity
only (black solid line) and with SFS and molecular viscosity (blue dashed line).

small (compared to the pre-shock values). For the full range of shocks tested, the
relative amplitude of oscillations is shown in Fig. 2.10. The absolute oscillations
(shown in Fig. 2.10a) are small, and increasing with Mach number for Δ/Δ𝑥 = 1.
Using Δ/Δ𝑥 = 1.5 reduces the oscillations, but still shows an increasing trend
at higher Mach numbers. For Δ/Δ𝑥 = 2, these oscillations virtually disappear
for moderate/strong shocks, as was observed in Fig. 2.6b. The relative oscillations
(shown in Fig. 2.10b) decrease with Mach number for all grid resolutions. Especially
for stronger shocks, increasing from Δ/Δ𝑥 = 1 to 2 leads to a substantial reduction
of the oscillations.

Increasing the ratio Δ/Δ𝑥 also leads to a more restrictive CFL condition. The
viscous CFL is given by

𝜎 =
4𝜈Δ𝑡
(Δ𝑥)2 , (2.88)

where 𝜈 is the physical kinematic viscosity. The SFS viscosity also has a corre-
sponding CFL given by

𝜎𝑆𝐹𝑆 =
4𝜈𝑆𝐹𝑆Δ𝑡
(Δ𝑥)2

=
2(𝑢1 − 𝑢2)Δ𝑡

Δ𝑥

(
Δ

Δ𝑥

) (2.89)

in one dimension. This CFL restriction is not unique to the framework here,
and is also present for artificial viscosity/diffusivity approaches [35, 100]. As
𝜎𝑆𝐹𝑆 ∝ Δ/Δ𝑥, it is best to keep Δ/Δ𝑥 as small as possible while still filtering
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(a) Absolute oscillation amplitude. (b) Relative oscillation amplitude.

Figure 2.10: Impact of grid resolution on the maximum temperature oscillation
amplitude, 𝐴𝑇 , normalized by the pre-shock temperature (left) and by the jump in
temperature across the shock (right). Δ/Δ𝑥 = 1 (black circles/solid line), Δ/Δ𝑥 =

1.5 (blue triangles/dashed line), Δ/Δ𝑥 = 2 (red asterisks/dash-dotted line), and
Δ/Δ𝑥 = 4 (orange squares/dotted line).

the oscillations. Referring back to the oscillation wavelengths in Fig. 2.7, there
is no need to use Δ/Δ𝑥 > 2 to manage the oscillations for moderate and strong
shocks. However, weaker shocks have oscillations spread over more points, and
as such require a larger Δ/Δ𝑥 to filter over the full oscillation wavelength. To
avoid increasing the resolution requirements—and thus the timestep restriction—
for weak shocks, this may be addressed by including molecular viscosity, which
is on the order of 10−5 Pa·s for air. This physical diffusion is sufficient to prevent
oscillations for the weaker shocks, as illustrated in Fig. 2.9, where a constant value
of 𝜇𝑚𝑜𝑙. = 1.81 · 10−5 Pa·s is used.

Second, and as shown in Fig. 2.11, the simulation results of weak shocks appear
thicker than the analytical/theoretical value of 2Δ. Because the overall jump across
the shock is small for weak shocks, the impact of the numerical discretization is
much more pronounced here. More precisely, the theoretical shock thickness scaling
(i.e. Eq. (2.84)) for weak shocks becomes [99]

ℓ ∝ 𝜈

𝑐(𝑀1 − 1) . (2.90)

As the SFS viscosity tends towards zero, other spurious viscous effects may become
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dominant. Assigning them a constant 𝜈𝑒𝑟𝑟 value, the shock thickness now becomes

ℓ ∝ 𝜈𝑆𝐹𝑆 + 𝜈𝑒𝑟𝑟

𝑐(𝑀1 − 1) ∝ 2Δ + 𝜈𝑒𝑟𝑟

𝑐(𝑀1 − 1) . (2.91)

So for weak shocks the thickness is expected to depend on the Mach number 𝑀1 in
addition to the filter width Δ.

(a) Impact of choice of variable (Δ/Δ𝑥 = 1). (b) Impact of grid resolution.

Figure 2.11: Impact of the choice of variable (left at Δ/Δ𝑥 = 1) and grid resolution
(right for 𝜌) on shock thickness for weak shocks. Analytical shock thickness (black
dotted line); shock thickness computed from density (black symbols/solid line),
velocity (blue symbols/dashed line), temperature (red symbols/dash-dotted line),
pressure (orange symbols/dotted line); grid resolution ofΔ/Δ𝑥 = 1 (circles),Δ/Δ𝑥 =

1.5 (triangles), Δ/Δ𝑥 = 2 (asterisks), and Δ/Δ𝑥 = 4 (squares).

The results of Fig. 2.11b confirm that the 𝜈𝑒𝑟𝑟 is of a numerical origin as its impact
reduces with increased grid resolution (Δ/Δ𝑥 = 2 and 4).

2.3.3 Order of convergence
The original Euler equations admit discontinuities, i.e., shocks are infinitely thin.
This lack of length scale in the original equations leads to poor convergence of
most numerical solutions with grid refinement. Even with higher order schemes,
first-order convergence is often observed in the vicinity of shocks [31, 101]. In
contrast, the filtered Euler equations are regularized, and a length scale has been
introduced: namely, the filter width Δ. As discussed in Sec. 2.3.1, the filter width
controls the shock thickness. By fixing Δ, the shock profile is expected to converge
with sufficiently high grid resolution (larger Δ/Δ𝑥).

To assess the effect of the grid resolution, a much finer simulation of the Mach 2
shock is performed with Δ/Δ𝑥 = 16 and the same filter width Δ = 1 · 10−6 m. After
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running this high resolution case for 𝑡 = 1 · 10−6 s, the solution is interpolated onto
the coarser grids for Δ/Δ𝑥 = 1, 2, and 4. Transient effects at the simulation startup
can lead to a slight drift in the shock position. Initializing from the same numerical
solution ensures this drift is the same for each Δ/Δ𝑥. All four cases are run for
another 𝑡 = 2 · 10−6 s.

The error in the density profile is calculated using the 𝐿∞, 𝐿1, and 𝐿2 norms. The
highest resolution case (Δ/Δ𝑥 = 16) is taken to be the exact solution (referred to as
𝜌∞). As shown in Fig. 2.12, all three error norms exhibit a quadratic dependence
on Δ𝑥. A second-order convergence is expected as the code uses second-order
interpolation and derivative operators in space (see Sec. 2.2).

Figure 2.12: Impact of grid resolution, Δ𝑥, on the 𝐿∞ error norm (black tri-
angles/solid line), 𝐿1 error norm (blue circles/dashed line), and 𝐿2 error norm
(red triangles/dash-dotted line) of the density profile for a Mach 2 shock. Fixed
Δ = 1 · 10−6 m.

2.3.4 Estimating the velocity across a shock
For simulations of steady normal shocks with a prescribed Mach number, the the-
oretical jump in velocity (𝑢1 − 𝑢2) can be used directly to compute the SFS terms
in Eq. (2.30), (2.59), and (2.64). This was done in the previous two subsections.
However, the jump in velocity is not always known a priori. For all general cases,
the velocity jump is estimated by considering the local densities and velocities.
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The shock normal vector can be defined using the density gradient as

n̂ =
∇𝜌

|∇𝜌 | + 𝜖
, (2.92)

where 𝜖 = 10−15 to avoid dividing by zero in uniform regions. The velocity vector
in (𝑥 − 𝑦) coordinates is

u = 𝑢x̂ + 𝑣ŷ. (2.93)

The normal velocity is given by

𝑢𝑛 = u · n̂

= 𝑢𝑛̂𝑥 + 𝑣𝑛̂𝑦,
(2.94)

and the change in the normal velocity across an oblique shock is

𝑢1𝑛 − 𝑢2𝑛 = (𝑢1 − 𝑢2)𝑛̂𝑥 + (𝑣1 − 𝑣2)𝑛̂𝑦 . (2.95)

(a) Δ/Δ𝑥 = 1. (b) Δ/Δ𝑥 = 2.

Figure 2.13: Comparison of theoretical (𝑢1−𝑢2) (black solid line) with the practical
(𝑢1−𝑢2) computed using Eq. (2.95) through (2.104) (blue dashed line). The density
profile for a Mach 5 shock using the practical (𝑢1 − 𝑢2) is shown for reference (red
dash-dotted line).

To compute this at runtime, first we identify the pre-shock and post-shock locations,
(𝑥1, 𝑦1) and (𝑥2, 𝑦2) respectively, using the local density such that

𝜌(𝑥1, 𝑦1) = min
𝑥′=𝑥±3Δ𝑥
𝑦′=𝑦±3Δ𝑦

{𝜌(𝑥′, 𝑦′)} , (2.96)

𝜌(𝑥2, 𝑦2) = max
𝑥′=𝑥±3Δ𝑥
𝑦′=𝑦±3Δ𝑦

{𝜌(𝑥′, 𝑦′)} , (2.97)
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with the points at±3Δ𝑥 based on the number of grid points observed across moderate
to strong shocks for Δ/Δ𝑥 = 1 (see Fig. 2.8a). The corresponding velocities at these
locations,

(𝑢1, 𝑣1) = (𝑢(𝑥1, 𝑦1), 𝑣(𝑥1, 𝑦1)), (2.98)

(𝑢2, 𝑣2) = (𝑢(𝑥2, 𝑦2), 𝑣(𝑥2, 𝑦2)), (2.99)

are then used in Eq. (2.95). To avoid picking up changes in density and velocity
due to shear layers or rarefaction fans, as well as to avoid adding SFS antidiffusion,
(𝑢1𝑛 − 𝑢2𝑛) is updated as

𝑢1𝑛 − 𝑢2𝑛 = max{𝑢1𝑛 − 𝑢2𝑛, 0}. (2.100)

For filter width ratios larger than Δ/Δ𝑥 = 1, there may be more points within
the shock, and so the velocity jump is underestimated. To correct this, assuming
the filtered shock profile takes the form of a hyperbolic tangent, the difference in
velocities at ±3Δ𝑥 is

𝑢(−3Δ𝑥) − 𝑢(3Δ𝑥) = (𝑢1 − 𝑢2) tanh
(
3
Δ𝑥

Δ

)
, (2.101)

so the result from Eq. (2.100) is updated to

𝑢1𝑛 − 𝑢2𝑛 =
𝑢1𝑛 − 𝑢2𝑛

tanh
(
3Δ𝑛

Δ

) , (2.102)

where the shock-normal grid spacing is given by

Δ𝑛 = Δ𝑥 · 𝑛̂𝑥 + Δ𝑦 · 𝑛̂𝑦 (2.103)

in two dimensions.

Finally, so that the largest value computed for (𝑢1𝑛 − 𝑢2𝑛) is used at more than one
grid point in the shock, the velocity jump at each point is updated as

(𝑢1𝑛 − 𝑢2𝑛) (𝑥, 𝑦) = max
𝑥′=𝑥−Δ𝑥≤𝑥≤𝑥+Δ𝑥
𝑦′=𝑦−Δ𝑦≤𝑦≤𝑦+Δ𝑦

{(𝑢1𝑛 − 𝑢2𝑛) (𝑥′, 𝑦′)} . (2.104)

As illustrated in Fig. 2.13, this calculation of (𝑢1𝑛 − 𝑢2𝑛) acts as a shock sensor,
achieving the theoretical velocity jump at the shock and dropping to zero away from
the shock.

The remaining simulations in this work do not have a theoretically-prescribed ve-
locity jump. Therefore, the calculation described in Eq. (2.95) through (2.104) is
used for all tests presented in Sec. 2.3.5, 2.4, and 2.5.
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2.3.5 Moderate and strong shocks with temperature-dependent properties
In the previous simulations, it was assumed that thermodynamic properties such
as the specific heat capacity are constant. However, for shocks with a substantial
temperature change, there is a non-negligible change in the heat capacities. To
investigate their impacts and the ability of the code to handle changes in properties,
a sample of Mach numbers is rerun with temperature-dependent properties for air
(𝑌N2 = 0.768 and 𝑌O2 = 0.232). The shock Mach numbers and the corresponding
post-shock specific heat ratios are shown in Table 2.1. Starting from the same initial
conditions as before, a total run time of 3 · 10−6 s is sufficient for the profiles to
adjust from the perfect gas (constant 𝑐𝑝) to the 𝑐𝑝 (𝑇) jump conditions. The timestep
restriction and boundary conditions are the same as in the previous shocks. The
filter width Δ = 1 · 10−6 m with Δ/Δ𝑥 = 2.

The steady-state profiles for a Mach 5 shock are compared in Fig. 2.14. For con-
sistency, both the constant 𝑐𝑝 and variable 𝑐𝑝 cases shown here use the practical
(𝑢1 − 𝑢2) described in Sec. 2.3.4. Accounting for changes in 𝑐𝑝 and the species
enthalpies ℎ𝑠 with temperature, the post-shock density increases and the post-shock
temperature decreases relative to the perfect gas post-shock conditions. These
changes do not affect the smoothness of the resulting profiles.

Figure 2.14: Density (left) and temperature (right) profiles for the Mach 5 shock,
using constant 𝑐𝑝 (black solid line) and variable 𝑐𝑝 (𝑇) (blue dashed line).

2.4 Other 1D results
2.4.1 Shu-Osher problem
The Shu-Osher problem is often used as a one-dimensional test for shock-turbulence
interaction. A Mach 3 shock propagates through a sinusoidal density field, gener-
ating acoustic and entropy waves downstream. In the present work, this problem
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𝑀1 𝛾2
2 1.39
3 1.36
5 1.31
8 1.28
12 1.27

Table 2.1: Post-shock specific heat capacity ratio 𝛾2 for variable 𝑐𝑝 (𝑇) shocks. The
pre-shock ratio 𝛾1 = 1.4 for all cases.

is used to isolate the effects of two parameters: the filter width, Δ, and the grid
resolution, Δ𝑥. The initial conditions are listed in Table 2.2. The boundaries use
NSCBCs, with the inlet conditions corresponding to the left state in Table 2.2. The
timestep is restricted by a CFL of 0.8.

Left Right
𝜌 3.857143 1.0 + 0.2 sin (5𝑥)
𝑝 10.33333 1.0
𝑢 2.629369 0.0

Table 2.2: Initial conditions for the Shu-Osher problem.

First, to test the impact of the filtering without introducing numerical errors, a fine
resolution Δ𝑥 = 0.005 is tested, using a filter width Δ/Δ𝑥 = 10 (i.e. Δ = 0.05).
Results are shown at 𝑡 = 1.8 in Fig. 2.15. The density profile, shown in Fig. 2.15a, is
compared with a reference solution obtained using a fifth-order ENO scheme [42].
The entropy profile, shown in Fig. 2.15b, is compared with a reference solution
obtained using a seventh-order WENO scheme [22]. To validate the numerical
solution of the filtered Euler equations, both reference solutions are filtered with a
Gaussian corresponding to Δ = 0.05. The entropy is computed from the simulation
data as Δ𝑠/𝑐𝑣 ≡ ln (𝑝/𝜌𝛾). As shown in Fig. 2.15, the shock, acoustic wave,
and entropy waves are all captured accurately, with limited damping of the entropy
wave in the post-shock region. Unlike the reference solution from [22], the entropy
reaches a maximum within the shock, near 𝑥 = 2.5, consistent with the discussion
from Sec. 2.1.6.

Next, to test the impact of the numerical discretization, the simulation is performed
on a coarse grid, with Δ𝑥 = Δ = 0.05. Results are shown in Fig. 2.16, again at
𝑡 = 1.8. To compare across resolutions, the previously discussed Δ𝑥 = 0.005 case
is also shown. At this resolution, the shock and acoustic wave are still captured
well. However, the results in Fig. 2.16b show a substantial change in the wavelength



38

(a) Density. Reference solution from [42]. (b) Entropy. Reference solution from [22].

Figure 2.15: Shu-Osher problem at 𝑡 = 1.8. Reference solution filtered with
Δ = 0.05 (black solid line), simulation solution with Δ𝑥 = 0.005, Δ = 0.05 (blue
dashed line).

(a) Density. (b) Entropy.

Figure 2.16: Shu-Osher problem at 𝑡 = 1.8. Simulation solution with Δ𝑥 = 0.005,
Δ = 0.05 (black solid line), simulation solution with Δ𝑥 = 0.05, Δ = 0.05 (blue
dashed line).

and amplitude of the post-shock entropy wave for the coarser grid (Δ𝑥 = 0.05).
This is purely a result of dispersion errors stemming from the present second-order
centered spatial discretization. From conservation of mass, the relationship between
the pre-shock wavelength, 𝜆1, and the post-shock wavelength, 𝜆2, is

𝜆2 =
𝑢𝑠 − 𝑢2
𝑢𝑠 − 𝑢1

𝜆1, (2.105)

where 𝑢𝑠, 𝑢1, and 𝑢2 are the shock, pre-shock, and post-shock velocities in the lab
frame of reference, respectively. For a second-order centered scheme, the modified
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wave speed is given by

𝑢′ =
sin(𝑘Δ𝑥)

𝑘Δ𝑥
𝑢, (2.106)

where 𝑘 is the wavenumber. Applying this dispersion relation to Eq. (2.105), the
modified wavelength is

𝜆′2 =
𝑢𝑠 − sin(𝑘Δ𝑥)

𝑘Δ𝑥
𝑢2

𝑢𝑠 − 𝑢1
𝜆1. (2.107)

For the Shu-Osher problem, 𝜆2 ≈ 0.33. From Eq.(2.107), the modified wavelengths
𝜆′2(Δ𝑥 = 0.005) ≈ 0.34 and 𝜆′2(Δ𝑥 = 0.05) ≈ 0.47, in agreement with the profiles
shown in Fig. 2.15b and 2.16b. Although Δ𝑥 = 0.05 is commonly used in the
literature for the Shu-Osher problem, the schemes used were high-order compact
schemes, greatly reducing the dispersion errors [30–33, 35]. These dispersion errors
on the entropy waves are unrelated to the SFS viscosity.

A more detailed discussion of the dispersion errors observed for the Shu-Osher
problem is included here. The discretized expressions for first derivatives in second
order centered, fourth order centered, fourth order compact, and sixth order compact
schemes are given by

𝜙′𝑖 =
1

2Δ𝑥
(𝜙𝑖+1 − 𝜙𝑖−1) , (2.108)

𝜙′𝑖 =
1

48Δ𝑥
(−𝜙𝑖+2 + 26𝜙𝑖+1 − 26𝜙𝑖−1 + 𝜙𝑖−2) , (2.109)

1
4
𝜙′𝑖−1 + 𝜙′𝑖 +

1
4
𝜙′𝑖+1 =

3
2
𝜙𝑖+1 − 𝜙𝑖−1

2Δ𝑥
, (2.110)

1
3
𝜙′𝑖−1 + 𝜙′𝑖 +

1
3
𝜙′𝑖+1 =

14
9
𝜙𝑖+1 − 𝜙𝑖−1

2Δ𝑥
+ 1

9
𝜙𝑖+2 − 𝜙𝑖−2

4Δ𝑥
, (2.111)

respectively. The corresponding modified wave speeds 𝑢′ are

𝑢′ =

(
sin(𝑘Δ𝑥)

𝑘Δ𝑥

)
𝑢, (2.112)

𝑢′ =

(
sin(𝑘Δ𝑥)

𝑘Δ𝑥

) (
13 − cos(𝑘Δ𝑥)

12

)
𝑢, (2.113)

𝑢′ =

(
sin(𝑘Δ𝑥)

𝑘Δ𝑥

) (
3

2 + cos(𝑘Δ𝑥)

)
𝑢, (2.114)

𝑢′ =

(
sin(𝑘Δ𝑥)

𝑘Δ𝑥

) (
14 + cos(𝑘Δ𝑥)
9 + 6 cos(𝑘Δ𝑥)

)
𝑢. (2.115)

To illustrate the dispersion errors, a sinusoidal entropy wave is tested, based on
the conditions for the post-shock region of the Shu-Osher problem. The velocity
𝑢 = 2.629369, pressure 𝑝 = 10.33333, and the density is given by
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𝜌(𝑥) = 3.857143 + 0.2 sin
(

2𝜋𝑥
0.33

)
. (2.116)

The boundary conditions are periodic. The simulation is run at different grid
resolutions: Δ𝑥 = 0.05, 0.025, 0.0125, and 0.005. The results at 𝑡 = 1 · 10−1 are
shown in Fig. 2.17, along with the initial condition.

Figure 2.17: Right-moving entropy wave at varying grid resolutions. Δ𝑥 = 0.005
(black solid line), 0.0125 (blue dashed line), 0.025 (red dash-dotted line), and 0.05
(orange dotted line). The initial wave is shown in solid purple.

From Fig. 2.17, the wave speeds at each resolution can be computed. The mea-
sured wave speed ratio is shown along with the theoretical dispersion relations in
Eq. (2.112) to (2.115) in Fig. 2.18. As expected, the simulation results correspond
to the second order dispersion errors.

2.4.2 1D detonation
A detonation is tested in hydrogen and air with an equivalence ratio 𝜙 = 0.6, using
an H2/O2 mechanism with 9 species and 54 reactions [54]. The simulation is
initialized with a Mach 5 normal shock with 𝑇1 = 298 K and 𝑝1 = 101325 Pa. The
post-shock state has sufficiently high temperature and pressure to ignite, after which
the shock evolves into a Zel’dovich-Neumann-Döring (ZND) detonation profile.
The ignition of the post-shock state results in an increase in the shock speed, so first
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Figure 2.18: Dispersion errors for 2nd order centered (black solid line), 4th order
centered (blue dashed line), 4th order compact (red dash-dotted line), and 6th order
compact (orange dotted line). The numerical results are shown in black circles.

the simulation is run for 2 · 10−6 s, allowing the ignition to begin and strengthen the
shock. Then, the velocity field and inflow velocity are shifted by 390 m/s to keep
the detonation wave fixed, and the simulation is run for an additional 2 · 10−6 s,
allowing the shock, induction zone, and post-ignition profile to reach a steady state.
Various grid resolutions are tested; based on the results from Sec. 2.3.1, a fixed ratio
of Δ/Δ𝑥 = 2 is used for all resolutions. The coarsest grid (Δ𝑥 = 1 · 10−6) is chosen
such that the filter width is about an order of magnitude smaller than the expected
induction zone length. For all resolutions, the timestep is restricted by a maximum
CFL of 0.8. The boundaries are treated with NSCBCs, with the inflow conditions
specified as the pre-shock, unburnt values.

The shock portion of the steady ZND profile behaves similarly to the normal shock
test case, and so the shock thickness will not be discussed again here. The coarsest
resolution case is compared to the ZND calculation from the Shock and Detonation
Toolbox [102] using Cantera [103] in Fig. 2.19. The ZND calculation takes the shock
front speed (measured from the simulation) along with the chemical mechanism and
the pre-shock conditions (temperature, pressure, species mass fractions) and outputs
the ZND detonation profiles. The simulation profiles match the Cantera profiles
closely. While the filtering framework spreads the shock to maintain numerical
stability, it does not spread the ignition portion of the ZND profile.

For detonations, the induction zone length is another important length scale. Com-
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Figure 2.19: Comparison of the coarsest resolution (Δ𝑥 = 1 · 10−6 m) case (NGA,
blue dashed line) with ZND calculation from the Shock and Detonation Toolbox
(Cantera, black solid line).

puting the induction zone length requires the shock location, post-shock temperature,
and the maximum temperature gradient during the ignition (post-shock). First, the
location of the overall maximum temperature gradient is identified as the shock
location 𝑥0. Using a least-squares regression, the hyperbolic tangent profile

𝑇 (𝑥) = 𝑇1 +
1
2
(𝑇2 − 𝑇1)

(
1 + tanh

(𝑥 − 𝑥0
Δ

))
(2.117)

is fit to the temperature data in the vicinity of the shock, with the post-shock
temperature 𝑇2, shock location 𝑥0, and Δ as parameters. The pre-shock temperature
is fixed at 𝑇1 = 298 K. The maximum temperature gradient during ignition, 𝜕𝑇3

𝜕𝑥
, and

the temperature 𝑇3 at the same location 𝑥3, are used to calculate the induction zone
length as follows:

L = 𝑥3 −
𝑇3 − 𝑇2

𝜕𝑇3
𝜕𝑥

− 𝑥0. (2.118)

The quantities used in Eq. (2.118) are illustrated in Fig. 2.20, and the calculated
induction zone lengths are shown in Table 2.3 for each resolution tested. For the finer
resolution cases, the induction zone lengths calculated from the simulation results
differ from Cantera by less than 1 · 10−6 m. From the different grid resolutions
tested, the order of accuracy can be examined. Using the highest resolution case
(Δ𝑥 = 1.25 · 10−7 m) as the “exact” length L∞, the relative error in L is shown in
Table 2.3 and plotted against the nondimensional grid spacing Δ𝑥/L∞ in Fig. 2.21.
The induction zone length is found to be approximately first-order accurate.

2.5 Multi-dimensional tests
Finally, multi-dimensional cases are considered to assess the formulation of the SFS
terms (Eq. (2.36) with (2.45) and (2.46)) in capturing oblique and curved shocks.
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Figure 2.20: Temperature data points (black triangles); hyperbolic tangent curve
fit (blue dashed line); maximum temperature gradient during ignition

(
𝜕𝑇3
𝜕𝑥

)
(red

dashed line); 𝑥 location of tanh fit and 𝜕𝑇3
𝜕𝑥

intersection (purple dashed line); the
induction zone length L is the distance from 𝑥0 to this intersection (purple arrow).

Δ𝑥 [·10−6 m] Δ [·10−6 m] L [·10−5 m] ΔL/L∞
1 2 2.82 0.133

0.667 1.33 2.69 0.083
0.5 1 2.63 0.058
0.25 0.5 2.54 0.019
0.125 0.25 2.49 0

Cantera 2.54

Table 2.3: Comparison of simulation induction zone length with Cantera. The result
for the finest resolution case is taken to be L∞.

2.5.1 Forward facing step
A Mach 3 supersonic inflow interacts with a forward facing step located at 𝑥 = 0.6
with a height of 0.2 [104]. The simulation uses a 240 × 80 grid on a 3 × 1 domain,
as in [104]. The Mach 3 flow is initially uniform throughout the domain with
𝑝 = 1 and 𝜌 = 1.4 (resulting in a sound speed 𝑐 = 1 using 𝛾 = 1.4). The inlet
conditions are 𝑝1 = 1, 𝜌1 = 1.4, and 𝑢1 = 3, and the inflow (left) and outflow
(right) boundaries are treated with NSCBCs. The upper boundary is a symmetry
plane. The walls are inviscid. A timestep Δ𝑡 = 1 · 10−3 is used. Results are shown
for 𝑡 = 4 in Fig. 2.22. This test features a rarefaction fan at the corner of the step
interacting with the reflecting shock waves. Numerical errors at this corner may
lead to substantial changes in the downstream flow behavior, as thoroughly detailed
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Figure 2.21: Order of accuracy of calculated induction zone length with changes in
grid resolution Δ𝑥 (blue circles). The line of fit (black solid line) for ΔL vs. Δ𝑥 is
given by ΔL 𝑓 𝑖𝑡 = 𝑎 · (Δ𝑥)𝑏, where 𝑏 indicates the order of accuracy.

in [104]. The framework here captures the expected flow features well. Particularly,
the Mach stems at the upper boundary and at the wall reflection are free of numerical
oscillations and kinks that have been observed in previous studies [105].

2.5.2 Shock diffraction over 90 degree corner
A Mach 5.09 normal shock diffracts around the corner of a step with a height of 0.45
and with the right edge located at 𝑥 = 0.05 [106]. The simulation uses a 400 × 400
grid on a 1 × 1 domain, as in [105]. Initially, the portion of the domain to the right
of the step has uniform flow set to the pre-shock conditions, 𝑝1 = 1 and 𝜌1 = 1.4
(resulting in a sound speed 𝑐1 = 1 using 𝛾 = 1.4). The portion of the domain
above the step has uniform flow set to the post-shock conditions. The inlet values
at the left boundary are set to the post-shock conditions, and NSCBCs are used for
both the inflow and outflow boundary conditions. The walls are inviscid, and the
remaining boundaries use Neumann boundary conditions. The timestep is restricted
by a maximum CFL of 0.4. Results are shown for 𝑡 = 0.1561 in Fig. 2.23. Previous
studies have shown that if insufficient diffusion is applied, the normal portion of the
shock front is subject to severe numerical instabilities (referred to as the carbuncle
phenomenon) [105, 106]. As seen in Fig. 2.23, the shock front is smooth along the
entire curvature, so the SFS diffusion is sufficient to avoid this numerical instability.

The shock diffraction is used to assess the effect of the grid resolution in two
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Figure 2.22: Contours of density (top) and density gradient magnitude (bottom).
Step shown in black (top) or red (bottom). The density plot shows 40 contour levels
spanning 0.2 to 7, as in [105]. (Δ/Δ𝑥 = 2).

dimensions. Keeping the filter width constant at Δ = 0.005 (corresponding to
Δ/Δ𝑥 = 2 for the 400 × 400 case), three additional simulations are performed with
Δ/Δ𝑥 = 1, Δ/Δ𝑥 = 3, and Δ/Δ𝑥 = 4. The density and pressure along a vertical cut
are compared in Fig. 2.24. The cut passes through the primary shock, the contact
discontinuity, the secondary shock, and the expansion. As shown in Fig. 2.24, the
profiles are virtually identical for each of these flow features, with the exception
of the coarsest case. This further highlights the observation in Sec. 2.3.1 that a
filter width/resolution ratio of Δ/Δ𝑥 = 2 is sufficient, even in more complex flow
configurations.

2.5.3 Blunt-body flow
An inviscid Mach 2 flow past a square obstacle is tested. The grid size is 1000×200,
the domain length and width are 𝐿 = 1 mm and 𝑊 = 0.2 mm, respectively. The
obstacle is a 2 ·10−5 m square located 4 ·10−4 m from the inlet and centered vertically
in the domain. The initial flow field is uniform 𝑀 = 2 flow with 𝑝 = 101325 Pa and
𝑇 = 298 K, and these conditions are also imposed at the inlet. The inflow (left) and
outflow (right) boundaries are treated with NSCBCs. The walls are inviscid. The
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Figure 2.23: Contours of density (left) and density gradient magnitude (right).
Corner step shown in black (left) or red (right). The density plot shows 30 contour
levels spanning 0 to 7, as in [105]. (Δ/Δ𝑥 = 2).

Figure 2.24: Density (left) and pressure (right) at 𝑥 = 0.4 (cut shown in white
dashed line in Fig. 2.23). Grid resolution of Δ/Δ𝑥 = 1 (black solid line), Δ/Δ𝑥 = 2
(blue dashed line), Δ/Δ𝑥 = 3 (red dash-dotted line), and Δ/Δ𝑥 = 4 (orange dotted
line). Fixed Δ = 0.005.

transverse (𝑦) boundaries are periodic such that shocks are reflected downstream
of the body. The timestep is restricted by a maximum CFL of 0.4. The resulting
simulated Schlieren (density gradient magnitude) and SFS viscosity after 2 · 10−6 s
are shown in Fig. 2.25. Similar to the forward facing step, there is a bow shock
followed by rarefaction fans at the left corners of the obstacle. The wake of the
obstacle features two shear layers followed by vortex shedding. Since the flow is
inviscid, the effective Reynolds number comes from the SFS viscosity. Farther
downstream of the obstacle, the vortices interact with the reflected shocks. Due to
the change in flow direction at the start of the wake region, a pair of secondary weak
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oblique shock waves form at the right corners of the obstacle. Both the primary
(bow) shock and these secondary shocks reflect off the periodic boundaries and the
centerline.

Figure 2.25: Contours of density gradient magnitude (top) and the SFS viscosity
(bottom). Obstacle shown in red (top) or black (bottom). (Δ/Δ𝑥 = 2).

Comparing the simulated Schlieren with the 𝜇𝑆𝐹𝑆 contours, the larger values of 𝜇𝑆𝐹𝑆
are in the vicinity of the shocks (as expected). The shock locations and strengths are
not known ahead of runtime, so Fig. 2.25 illustrates the ability of the SFS viscosity
to detect shocks as they form. Minimal SFS viscosity is applied to the vortices in the
wake, on the order of 10−5 Pa·s. At the rarefaction fans and in uniform regions (e.g.
in the inflow before the bow shock), the SFS viscosity is on the order of 10−7 Pa·s,
negligible compared to typical physical viscosity values for air.

2.6 Discussion
2.6.1 Comparison with localized artificial diffusivity (LAD)
The expressions for the SFS viscosity and conductivity derived in Sec. 2.1 resem-
ble previously developed artificial fluid properties. To compare the effect of SFS
properties with the effect of artificial properties, the oscillation amplitude and shock
thickness are computed for a 1D shock using the same conditions from Kawai and
Lele [33]. A Mach 2 shock is run at three grid resolutions: Δ𝑥 = 0.02, 0.01, and
0.005 m. For each Δ𝑥, three filter widths are tested: Δ/Δ𝑥 = 1, 1.5, and 2. The
timestep is restricted by a maximum CFL of 0.8, and the simulations are run to a
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steady state at 𝑡 = 3 · 10−2 s. The initial and boundary conditions are specified as in
Sec. 2.3. For consistency with the previous results shown for oscillation amplitude
and shock thickness (Fig. 2.10 and 2.8, respectively), the theoretical velocity jump
has been used again here.

The results computed from the pressure profiles are shown in Fig. 2.26 along
with results obtained from the LAD scheme LADG-E4 [33]. The maximum pres-
sure oscillation amplitude, normalized by the jump in pressure across the shock in
Fig. 2.26a, shows that the ratio Δ/Δ𝑥 has a much stronger impact on the oscillations
compared to Δ𝑥 alone. The Δ/Δ𝑥 = 1 cases have larger oscillations than the LADG-
E4 results; this is expected as the filter width is insufficient to prevent cell-to-cell
oscillations. Increasing the filter width to Δ/Δ𝑥 = 1.5 brings the amplitude slightly
below that of the LADG-E4 oscillations, and increasing to Δ/Δ𝑥 = 2 leads to a
larger drop in the amplitude. The shock thickness, normalized by Δ𝑥, also shows
a stronger dependence on the ratio Δ/Δ𝑥 than on Δ𝑥, as shown in Fig. 2.26b. The
shocks with Δ/Δ𝑥 = 1 are thinner than the LADG-E4 shocks. The Δ/Δ𝑥 = 1.5
shocks are slightly thicker than the LADG-E4 shocks, and the Δ/Δ𝑥 = 2 shocks
are the thickest. The LADG-E4 results are from simulations using a sixth-order
compact differencing scheme, not a second-order centered differencing scheme.
The minimum required Δ/Δ𝑥 is likely scheme dependent. The results in Fig. 2.26
illustrate the trade-off between oscillation amplitude and shock thickness; reducing
the magnitude of the oscillations leads to an increase in the number of grid points
per shock thickness.

The SFS properties and localized artificial viscosities/diffusivities can also be com-
puted and compared directly. For fair comparison, the SFS viscosities are computed
with a filter width ratio Δ/Δ𝑥 = 1.5, as this value had the closest results to the
LAD method (see Fig. 2.26). To isolate the properties from the specific numeri-
cal schemes used (i.e., second-order staggered vs. tenth-order compact), the same
gradient operators (second-order centered) are used in computing both the SFS and
LAD properties. The artificial fluid properties introduced by Cook [32] are defined
as

𝜇∗ = 𝐶𝜇𝜌 |∇𝑟𝑆 |Δ(𝑟+2) , (2.119)

𝛽∗ = 𝐶𝛽𝜌 |∇𝑟𝑆 |Δ(𝑟+2) , (2.120)

𝜅∗ = 𝐶𝜅

𝜌𝑐𝑠

𝑇
|∇𝑟𝑒 |Δ(𝑟+1) , (2.121)

where 𝐶𝜇 = 0.002, 𝑆 is the magnitude of the strain rate tensor, Δ is the local grid
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(a) Relative oscillation amplitude. (b) Shock thickness.

Figure 2.26: Results for a Mach 2 shock comparing SFS properties with LADG-E4
properties from Kawai and Lele [33]. Maximum pressure oscillation amplitude
normalized by the jump in pressure across the shock (left). Shock thickness com-
puted from pressure normalized by the grid spacing (right). LADG-E4 (black
triangles/solid line) and SFS with Δ/Δ𝑥 = 1 (blue circles/dashed line), Δ/Δ𝑥 = 1.5
(red triangles/dash-dotted line), and Δ/Δ𝑥 = 2 (orange asterisks/dotted line).

spacing, 𝐶𝛽 = 1, 𝐶𝜅 = 0.01, and 𝑐𝑠 is the sound speed. For details on the stencil
used for the truncated Gaussian filter (·), the reader is referred to [32]. Lee and
Lele [36] used the same definitions for the artificial shear viscosity 𝜇∗ and artificial
conductivity 𝜅∗, but used an artificial bulk viscosity based on the dilatation,

𝛽∗ = 𝐶𝛽𝜌 |∇𝑟∇ · u|Δ(𝑟+2) , (2.122)

similar to the form recommended by Mani et al. [34]. Data for the density, velocity,
energy, and temperature from a Mach 2 shock are used to calculate the artificial
properties given by Eq. (2.119) to (2.122). The same data is used to compute the
SFS properties, with the velocity jump estimated using Eq. (2.95) to (2.104). The
properties are compared in Fig. 2.27.

The SFS shear viscosity and conductivity are much larger than their artificial coun-
terparts, while the SFS bulk viscosity is comparable to the artificial bulk viscosity.
To analyze these results, it is insightful to consider ratios of two of these prop-
erties. The ratio of shear to bulk viscosity depends on the tuning parameters 𝐶𝜇

and 𝐶𝛽 for the LAD method. For Cook’s model [32], it is a constant, namely
𝜇∗/𝛽∗ = 𝐶𝜇/𝐶𝛽 = 0.002. In contrast, for the SFS viscosities, this ratio is derived
analytically to be 3/2 (as shown in Sec. 2.1.2.2). Similarly, a Prandtl number may
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(a) Viscosities.

(b) Conductivity.

Figure 2.27: SFS properties (black solid line), artificial properties from [32] (blue
dashed line), artificial bulk viscosity from [36] (red dash-dotted line). SFS/artificial
shear viscosity (a, left), bulk viscosity (a, right), and conductivity (b). The shock is
located at 𝑥/Δ = 0.

be computed as the ratio of kinematic viscosity and thermal diffusivity. The Prandtl
number for the artificial properties is given by

𝑃𝑟∗ =
𝜈∗

𝛼∗ =
𝜇∗𝑐𝑝
𝜅∗

=
𝐶𝜇𝜌 |∇𝑟𝑆 |Δ𝑐𝑝
𝐶𝜅

𝜌𝑐𝑠
𝑇
|∇𝑟𝑒 |

. (2.123)

This Prandtl number varies by several orders of magnitude, as can be seen in
Fig. 2.28. In contrast, for the SFS properties, the Prandtl number is shown mathe-
matically to be constant and, once again, order unity.

𝑃𝑟𝑆𝐹𝑆 =
𝜈𝑆𝐹𝑆

𝛼𝑆𝐹𝑆

=
(𝑢1 − 𝑢2) Δ4
(𝑢1 − 𝑢2) Δ2

=
1
2
. (2.124)

To compare the SFS and artificial viscosities in a more complex configuration, the
data from the forward facing step is used to compute the properties. The bulk
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Figure 2.28: Prandtl number computed using SFS properties (black solid line) and
artificial properties (blue dashed line). The shock is located at 𝑥/Δ = 0.

viscosities are shown in Fig. 2.29 for the full domain, and along 𝑦 = 0.3 in Fig. 2.30.
Overall, the larger values of bulk viscosity appear in similar regions around the
shocks, as expected. However, the artificial bulk viscosity (using both definitions) is
much larger than the SFS bulk viscosity between the bow shock and leading edge of
the step, and in parts of the expansion around the corner. The higher order velocity
derivatives used in computing 𝛽∗ detect changes through expansions, whereas the
method for computing 𝑢1𝑛 − 𝑢2𝑛 in 𝜅𝑆𝐹𝑆 does not. Also, although the artificial bulk
viscosity has smoother variation throughout the domain, the SFS bulk viscosity
is about an order of magnitude lower in the uniform inflow and in some regions
away from shocks, 𝑂 (10−5) and 𝑂 (10−4) for the SFS and artificial viscosities,
respectively.

2.6.2 Limitations
As demonstrated in the test cases in Sec. 2.3 to 2.5, the proposed SFS closure of
the filtered Euler equations has a wide range of applicability. All 1D shocks tested
(𝑀 = 1.01 to 20) reach a steady solution. For most of this range, the SFS viscosity
is sufficient to prevent cell-to-cell oscillations. The formulation also works for
both steady and unsteady shocks. The 1D shock and detonation simulations are
performed in the shock-fixed frame (steady), while the remaining test cases are
performed in the lab frame (unsteady). Using the multi-dimensional closure, the
method is shown to be robust for a range of shock angles and curvatures. Finally,
the SFS terms also perform well near walls at reflecting shocks and Mach stems.
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Figure 2.29: Bulk viscosities for the forward facing step. SFS (top), artificial based
on 𝑆 [32] (middle), artificial based on ∇ · u [36] (bottom). Contour at a value of
log(𝜅𝑆𝐹𝑆) = log(𝛽∗) = −3.5 (black line).

Figure 2.30: Bulk viscosities for the forward facing step at 𝑦 = 0.3 (cut shown in
white dashed line in Fig. 2.29). SFS (black solid line), artificial based on 𝑆 [32]
(blue dashed line), artificial based on ∇ · u [36] (red dash-dotted line).

Despite these successes, there are a few limitations to the presented closure of
the SFS terms. First, as shown in Sec. 2.3.2, the weaker shocks (𝑀 < 1.4) are
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too spread, thicker than the analytical shock thickness. For the weakest shocks
(𝑀 < 1.1), the absolute oscillation amplitude decreases as expected as the Mach
number is reduced. However, the relative oscillation amplitude remains large and
the SFS viscosity is not sufficient; so molecular viscosity is required to prevent
oscillations. Second, for the blunt-body flow in Sec. 2.5, the presence of SFS
viscosity leads to viscous vortex shedding that should not exist in inviscid flow
simulations. There is some SFS viscosity detected in these vortices, although much
smaller in magnitude,𝑂 (10−5) Pa·s, compared to𝑂 (10−4) Pa·s in shocks. Lastly, the
analytical closure leads to zero SFS terms for contact discontinuities. As a result,
the SFS properties do not treat numerical errors associated with the transport of
contact discontinuities. The treatment of contact discontinuities within the filtered
framework will be discussed in Chapter 3.

2.7 Burgers’ equation and the sonic glitch
The sonic glitch is a well-known numerical artifact observed near the sonic point
in rarefaction waves for many shock capturing schemes, including the Godunov
and Roe schemes [107]. In the present work, the SFS framework is demonstrated
to prevent oscillations near shocks in a centered finite difference solver. However,
this methodology is not limited to the Euler equations or any specific numerical
framework. To demonstrate this, we apply the methodology to Burgers’ equation
and solve the numerical simulations with the Godunov scheme. Following the same
mathematical procedure as in Sec. 2.1, the filtered Burgers’ equation is

𝜕𝑢̄

𝜕𝑡
+ 𝑢̄

𝜕𝑢̄

𝜕𝑥
=

𝜕

𝜕𝑥
(𝜏𝑆𝐹𝑆) , (2.125)

where the SFS stress is given by

𝜏𝑆𝐹𝑆 =
1
2
(𝑢̄𝑢̄ − 𝑢𝑢) (2.126)

= (𝑢1 − 𝑢2)
Δ

4
𝜕𝑢̄

𝜕𝑥
. (2.127)

Because there is no density present in Burgers’ equation, rather than following the
full procedure outlined in Sec. 2.3.4, the jump (𝑢1 − 𝑢2) is simply estimated by

(𝑢1 − 𝑢2) (𝑥) ≈ max
𝑥′=𝑥±3Δ𝑥

{𝑢̄(𝑥′)} − min
𝑥′=𝑥±3Δ𝑥

{𝑢̄(𝑥′)}. (2.128)

First, we consider the sonic rarefaction wave, for which Godunov’s scheme is known
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to exhibit a sonic glitch [107]. The sonic rarefaction wave is given by

𝑢(𝑥, 𝑡) =


𝑢𝐿 , 𝑥 < 𝑢𝐿𝑡,

𝑥/𝑡, 𝑢𝐿𝑡 ≤ 𝑥 ≤ 𝑢𝑅𝑡,

𝑢𝑅, 𝑥 > 𝑢𝑅𝑡,

(2.129)

where 𝑢𝑅 = 1 and 𝑢𝐿 = −𝑢𝑅 [107]. The domain spans −2 ≤ 𝑥 ≤ 2 with 150
grid cells, and the simulation is run from 𝑡 = 0.1 to 𝑡 = 1 with the CFL limited to
0.9. Figure 2.31a compares the exact solution (both unfiltered and filtered) with the
numerical solutions obtained using the Godunov scheme alone, and the Godunov
scheme with the SFS viscosity using Δ/Δ𝑥 = 2. The inset illustrates the sonic point
at 𝑥 = 0. Without SFS viscosity (i.e. Godunov scheme alone), the sonic glitch is
observed. With the addition of SFS viscosity, the sonic glitch is no longer visible.

(a) Expansion. (b) Shock.

Figure 2.31: Burgers’ equation solved for an expansion (left) and shock (right).
Exact solution (black solid line), solution using Godunov scheme (blue dotted line
and triangles), solution using Godunov scheme with SFS (red dash-dotted line and
circles), exact filtered shock (orange dashed line).

Second, Burgers’ equation is also tested with a shock wave, whose initial condition
is given by

𝑢(𝑥, 𝑡) =

𝑢𝐿 , 𝑥 < 0,

𝑢𝑅, 𝑥 > 0,
(2.130)

where 𝑢𝐿 = 1 and 𝑢𝑅 = −𝑢𝐿 . The domain and grid size are the same as for the
sonic rarefaction, and the simulation is run from 𝑡 = 0 to 𝑡 = 1 with the CFL
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limited to 0.9. The sonic point is once again located at 𝑥 = 0. Figure 2.31b
compares the exact solution with the numerical solution using the Godunov scheme
alone, and the exact filtered solution with the numerical solution using the Godunov
scheme with SFS viscosity using Δ/Δ𝑥 = 2. No numerical issues are observed at
the sonic point. While the SFS viscosity spreads the shock over more points than
the Godunov scheme alone, the numerical solution closely matches the analytically
filtered solution.

2.8 Conclusion
This chapter introduced a physical approach to spreading the shock interface, which
can be applied to any computational framework. Drawing from the methodology
of Large Eddy Simulation to model small-scale flow features, the necessary and
sufficient diffusion terms were derived by spatially-filtering the Euler equations.
Analytical closure was provided for the SFS terms by leveraging the shock jump
conditions. The framework was validated for several shock-dominated flow config-
urations.
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C h a p t e r 3

A NUMERICAL EXTENSION OF THE SPATIALLY-FILTERED
EULER EQUATIONS FOR CONTACT DISCONTINUITIES

[1] A. Baumgart and G. Blanquart. “A numerical extension of the spatially-
filtered Euler equations for contact discontinuities”. In: Journal of Com-
putational Physics 491 (2023), p. 112353. doi: https://doi.org/10.
1016/j.jcp.2023.112353.

In Chapter 2, the spatially-filtered framework was developed and validated for
shock-dominated flows. The treatment of contact discontinuities within the spatially-
filtered Euler equation framework deserves special consideration. Contact discon-
tinuities take the form of a jump in density without any associated discontinuities
in velocity or pressure. This density discontinuity may come from a jump in either
temperature or species composition, or both. From a theoretical point of view, these
contact discontinuities are fundamentally different from shocks because the density
profile is not subject to front sharpening and remains unaffected by transport. That
is why the SFS terms are identically zero for contact discontinuities (see Sec. 2.1).
In numerical simulations, the situation is different. Even if the initial density profile
is smooth and adequately resolved on a given grid, its numerical transport (even in a
one-dimensional uniform flow field) leads to either artificial oscillations or artificial
smearing [108]. The first phenomenon is due to dispersive errors; the second is due
to diffusive errors.

The objective of this chapter is to formulate a WENO-like correction term for the
energy equation to counteract dispersive errors encountered in contact discontinu-
ities and inherent to centered schemes. By using a WENO interpolation, there is no
need to tune coefficients, as required by artificial diffusivities. Furthermore, unlike
Riemann solvers that treat the entire system of Euler equations, this approach allows
for an isolated treatment of the enthalpy transport. This is analogous to the use of
the WENO scheme for the convective flux in the species transport equation (to be
discussed in detail in Chapter 4).

A numerical extension of the framework for contact discontinuities is described in
Sec. 3.1. A variety of tests involving contact discontinuities (both in temperature
and composition) are included in Sec. 3.2.
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3.1 Numerical extension for contact discontinuities
As demonstrated in Chapter 2, the present numerical framework leads to numerically
smooth solutions of shock-dominated flows thanks to the SFS terms,

𝜏𝑖 𝑗 ,𝑆𝐹𝑆 = 𝜌(𝑢1𝑛 − 𝑢2𝑛)
Δ

4

(
𝜕𝑢̃𝑖

𝜕𝑥 𝑗
+
𝜕𝑢̃ 𝑗

𝜕𝑥𝑖

)
, (3.1)

𝑞𝑖,𝑆𝐹𝑆 = 𝜌𝑐𝑝 (𝑢1𝑛 − 𝑢2𝑛)
Δ

2
𝜕𝑇

𝜕𝑥𝑖
+ 𝜏𝑖 𝑗 ,𝑆𝐹𝑆 · 𝑢̃ 𝑗 . (3.2)

However, the numerical solutions of contact discontinuities are not smooth (see
Fig. 3.2). As mentioned in Sec. 2.1, analytically, there is no SFS diffusivity for
contact discontinuities. From a numerical perspective, the conservative centered
scheme introduces dispersive errors, resulting in unphysical oscillations. The con-
vective flux in the energy equation is discretized at each face as (𝜌𝑒𝑡 + 𝑝)𝑥𝑢, in
theory allowing the pressure to remain constant across a contact after the interpola-
tion operation. However, this is not sufficient to prevent oscillations. To effectively
switch to a less dispersive scheme for the enthalpy without impacting the kinetic
energy, an “anti-dispersion” term is constructed by modifying the convective fluxes
as

(𝜌𝑒𝑡 + 𝑝)𝑥𝑢 → (𝜌𝑒𝑡 + 𝑝)𝑥𝑢 + 𝑞𝑊5,

𝑞𝑊5 = (𝜌𝑢)ℎ𝑊5 − 𝜌ℎ
𝑥
𝑢, (3.3)

where 𝜙
𝑥 is the second-order central difference interpolation, and 𝜙

𝑊5 is the fifth-
order WENO interpolation [21]. This deferred correction term, 𝑞𝑊5, subtracts off
the central difference interpolation of the enthalpy component of the convective
flux, replacing it with the WENO interpolation of the flux. The WENO component
is discretized to be consistent with continuity, using the face-centered momentum
(𝜌𝑢). The divergence of the modified fluxes is then computed, maintaining primary
conservation of total energy.

The total energy is given by 𝑒𝑡 = 𝑒 + 1
2𝑢

2, and the enthalpy is given by ℎ = 𝑒 + 𝑝/𝜌,
so the original convective flux can be written as

(𝜌𝑒𝑡 + 𝑝)𝑥𝑢 = 𝜌ℎ
𝑥
𝑢 + 1

2
𝜌𝑢2

𝑥
𝑢. (3.4)

Adding the deferred correction term (𝑞𝑊5) from Eq. (3.3) to Eq. (3.4), the new
convective flux becomes

(𝜌𝑒𝑡 + 𝑝)𝑥𝑢 + 𝑞𝑊5 = 𝜌ℎ
𝑥
𝑢 + 1

2
𝜌𝑢2

𝑥
𝑢 + (𝜌𝑢)ℎ𝑊5 − 𝜌ℎ

𝑥
𝑢

= (𝜌𝑢)ℎ𝑊5 + 1
2
𝜌𝑢2

𝑥
𝑢. (3.5)
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In summary, the enthalpy flux is practically replaced with the non-dispersive WENO
interpolation of the flux.

As written above, the WENO interpolation is performed on the enthalpy with stencil
coefficients computed from the same profile. For a contact discontinuity of a single
component fluid at constant 𝑐𝑝, the enthalpy is given by ℎ = 𝑐𝑝𝑇 , so the correction
term may be written equivalently as

𝑞𝑊5 = (𝜌𝑢)𝑐𝑝𝑥𝑇
𝑊5 − 𝜌𝑐𝑝𝑇

𝑥
𝑢, (3.6)

where the WENO interpolation is performed directly on 𝑇 . For simulations with
constant 𝑐𝑝 (as in the test problems in Sec. 3.2.1 and 3.2.2), there is no difference
between the discretizations in Eq. (3.3) and (3.6). In Sec. 3.2.3, the two interpolations
(ℎ

𝑊5
vs. 𝑐𝑝

𝑥𝑇
𝑊5) will be compared in temperature and enthalpy discontinuities

with variable 𝑐𝑝 and mixture composition to evaluate the performance of the two
discretizations.

(a) Contact discontinuity. (b) Shock.

Figure 3.1: Flux terms in the energy equation, normalized by 𝜌1𝑢1𝑐𝑝Δ𝑇 . SFS
conduction term (𝑞𝑆𝐹𝑆,𝑐 = 𝜌𝑐𝑝 (𝑢1𝑛 − 𝑢2𝑛) Δ2

𝜕𝑇
𝜕𝑥

, black solid line), SFS viscous term
(𝑞𝑆𝐹𝑆,𝑣 = 𝜏𝑆𝐹𝑆 · 𝑢̃, blue dashed line), and WENO correction term (𝑞𝑊5, red dash-
dotted line). Normalized temperature (purple dotted line, right axis). (Δ/Δ𝑥 = 2).

Comparison of the additional term in Eq. (3.3) with the SFS terms (Eq. (3.2)) is
shown in Fig. 3.1a for a contact discontinuity and in Fig. 3.1b for a shock, both with
a temperature jump corresponding to a Mach 5 shock. The WENO correction term
is the only active term for the contact discontinuity, but it is negligible compared
to the SFS terms for the shock. In both cases, the shape of the correction term is
consistent with a dispersive error.
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The WENO scheme was selected for its non-oscillatory property to counteract
dispersive errors specific to our schemes; the deferred correction approach itself
is not restricted to standard WENO schemes. Other schemes, such as upwind
differencing or TVD schemes, also prevent oscillations at discontinuities and could
be used in a similar manner. WENO schemes are preferred as they allow for a high
order of accuracy to be achieved. In our case, the fifth-order WENO interpolation
is used because it is the highest order WENO interpolation that does not require
additional ghost cells; the SFS terms in Eq. (3.1) and (3.2) already require a stencil
of ±3 grid points to estimate the shock-normal velocity jump (see Sec. 2.3.4 for
details). Despite these advantages, it is well-documented that WENO schemes
require additional sharpening to prevent excessive smearing of contacts [21, 26–28].
Such sharpening methods may be incorporated readily into the deferred correction;
however, that is outside the scope of this work.

3.2 Contact discontinuity results
3.2.1 Sod shock tube problem
The Sod problem is a standard test for shocks and contact discontinuities. Initially,
a diaphragm divides the domain into high and low pressure regions. On the left,
the pressure and density are both 1.0; on the right, the pressure is 0.1 and density is
0.125. The initial velocity is 0. When the diaphragm ruptures at 𝑡 = 0, a rarefaction
wave propagates to the left, and a shock and a contact discontinuity propagate to
the right. The domain length 𝐿 = 4, grid spacing Δ𝑥 = 0.002, and filter width
Δ = 0.004. The timestep is restricted by a CFL of 0.8. Results at 𝑡 = 0.25 are
shown in Fig 3.2. An exact filtered solution is obtained by integrating the exact
solution [109] with a Gaussian filter kernel of width Δ. As expected, the SFS
terms are sufficient to treat the shock, but not the contact. Including the WENO
correction term prevents oscillations in the contact without additional spreading of
the shock. The shock location is also unchanged with the addition of the correction
term, indicating that the modification in Eq. (3.3) has not affected the propagation
speed of the shock.

3.2.2 Shock diffraction over 90 degree corner
The diffraction of a shock over a corner involves a curved contact discontinuity. The
setup was described previously in Sec. 2.5. The grid size Δ𝑥 = 0.0025, and the
timestep Δ𝑡 = 10−5 s. Figure 3.3 shows the results at 𝑡 = 0.1561 both without and
with the WENO correction term. The contact discontinuity, located behind the lead
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(a) Sod problem. (b) Contact. (c) Shock.

Figure 3.2: Comparison of Sod shock tube results with the exact filtered Riemann
solution. Exact filtered solution (black dotted line), 𝑞𝑆𝐹𝑆 with no WENO (blue
dash-dotted line), 𝑞𝑆𝐹𝑆 with WENO (red dash-dotted line). (Δ/Δ𝑥 = 2).

shock, exhibits oscillations that pollute the expansion region when the WENO term
is not included. When the term is added, the post-contact oscillations are prevented
and the shocks are unaffected. As in the Sod problem, neither the shock location
nor its thickness have been altered.

3.2.3 Contact discontinuities in variable mixture compositions
In the Sod problem and shock diffraction, no species are present, and the specific
heat capacity is a constant. In such cases, there is no difference between using
𝑐𝑝

𝑥𝑇
𝑊5 or ℎ

𝑊5
in the WENO correction term. To determine which interpolation is

best, two types of contact discontinuities with species are tested: a discontinuity in
temperature with constant mixture enthalpy, and a discontinuity in mixture enthalpy
with constant temperature. For both cases, the uniform pressure and velocity are
𝑝0 = 101325 Pa and 𝑢0 = 100 m/s, respectively. Mixtures of Ar and H are used to
obtain the desired changes in 𝑇 and ℎ; both these gases are monatomic and therefore
have constant 𝑐𝑝. Chemical reactions are not included in the simulations. The left
and right initial states are summarized in Table 3.1.

𝑇1 (K) ℎ1 (J/g) 𝑌𝐴𝑟,1 𝑌𝐻,1 𝑇2 (K) ℎ2 (J/g) 𝑌𝐴𝑟,2 𝑌𝐻,2
𝑇 (𝑌𝑖), 300 21630 0.9 0.1 1500 21630 0.913 0.087

const. ℎ
ℎ(𝑌𝑖), 2000 885.5 1.0 0.0 2000 8855 0.968 0.032

const. 𝑇

Table 3.1: Initial conditions for the temperature and enthalpy discontinuities; sub-
scripts 1 and 2 indicate the left and right states, respectively.

The domain length 𝐿 = 1 m, Δ𝑥 = 0.005 m, and the discontinuity is initialized at
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(a) Without WENO correction term. (b) With WENO correction term.

(c) 1D cut along 𝑥 = 0.6.

Figure 3.3: Contours of density (left and center), with 30 contour levels from 0 to 7
(as in [105]). Vertical cut (white dashed line/right) showing the primary shock (S),
contact (C), and expansion (E); 𝑞𝑆𝐹𝑆 with no WENO (black solid line) and 𝑞𝑆𝐹𝑆
with WENO (blue dashed line. (Δ/Δ𝑥 = 2).

𝐿/2. The timestep is Δ𝑡 = 10−6 s, and the simulations are run for a total time 10−3 s.
The results are shown in Fig. 3.4 for the temperature discontinuity and Fig. 3.5 for
the enthalpy discontinuity. For both cases, using a WENO interpolation on ℎ instead
of 𝑇 leads to smoother density profiles and smaller errors in the constant quantity
(ℎ in Fig. 3.4 and 𝑇 in Fig. 3.5). Based on these results, using ℎ

𝑊5
is preferable, as

in Eq. (3.3).

3.3 Conclusion
Solving the spatially-filtered Euler equations with a kinetic energy-preserving cen-
tered discretization is an efficient framework for simulating shock-dominated flows.
In this chapter, a numerical extension was presented for simulating contact discon-
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(a) Density. (b) Temperature. (c) Enthalpy.

Figure 3.4: Profiles for a variable temperature, constant enthalpy contact disconti-
nuity. Deferred correction term with WENO interpolation on temperature (black
solid line), correction term with WENO interpolation on enthalpy (blue dashed
line). (Δ/Δ𝑥 = 2).

(a) Density. (b) Temperature. (c) Enthalpy.

Figure 3.5: Profiles for a variable enthalpy, constant temperature contact discontinu-
ity. Deferred correction term with WENO interpolation on temperature (black solid
line), correction term with WENO interpolation on enthalpy (blue dashed line).
(Δ/Δ𝑥 = 2).

tinuities. The enthalpy transport was treated with a WENO-like deferred correction
term, while the overall spatial discretization remained centered. The method was
demonstrated for the Sod shock tube problem in one dimension and the shock
diffraction in two dimensions.
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C h a p t e r 4

DETONATION SIMULATIONS WITH DETAILED CHEMISTRY

[1] A. Baumgart and G. Blanquart. “Ensuring
∑

𝑠 𝑌𝑠 = 1 in transport of species
mass fractions”. In: Journal of Computational Physics (2024), p. 113199.
doi: https://doi.org/10.1016/j.jcp.2024.113199.

[2] A. Baumgart, M. X. Yao, and G. Blanquart. “Tabulated chemistry approach
for detonation simuations”. In: Combustion and Flame (2024). (Under Re-
view).

Detonation simulations with detailed chemistry typically rely on solving 𝑁 − 1
species transport equations to maintain a sum of mass fractions equal to 1; un-
fortunately, this forces inert species to absorb any numerical errors in the species
transport. In this chapter, a simple method for preserving the sum of mass fractions
without penalizing the inert species is proposed. The approach is demonstrated to
improve detailed chemistry simulations of detonations. In Sec. 4.1, a correction
to the species discretization is proposed to ensure that the transported mass frac-
tions sum to 1. The simulation setup for the detonation simulations is described
in Sec. 4.2. One- and two-dimensional results are presented in Sec. 4.3 and 4.4,
respectively, for both regular and irregular H2-O2 mixtures. The two-dimensional
argon-diluted case that will be used to inform the methodology in Chapter 5 is
presented in Sec. 4.5.

4.1 Species discretization
Analytically, summing over the species transport equations (Eq. (2.11)) results in
the continuity equation (Eq. (2.8)),

𝑁∑︁
𝑠=1

(
𝜕 (𝜌𝑌𝑠)
𝜕𝑡

+ 𝜕 (𝜌𝑢𝑖𝑌𝑠)
𝜕𝑥𝑖

= −𝜕 𝑗𝑖,𝑠

𝜕𝑥𝑖
+ ¤𝜔𝑠

)
→

(
𝜕𝜌

𝜕𝑡
+ 𝜕 (𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0

)
, (4.1)

with the conditions
𝑁∑︁
𝑠=1

𝑌𝑠 = 1,
𝑁∑︁
𝑠=1

𝑗𝑠 = 0,
𝑁∑︁
𝑠=1

¤𝜔𝑠 = 0, (4.2)

where 𝑁 is the number of species. Unfortunately, when all 𝑁 species equations are
solved in addition to the continuity equation, Eq. (4.1) is not guaranteed discretely.
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In one dimension, the convective terms in Eq. (2.8) and (2.11) are spatially dis-
cretized as

𝜕 (𝜌𝑢)
𝜕𝑥

≈
(𝜌𝑢)𝑖+1/2 − (𝜌𝑢)𝑖−1/2

Δ𝑥𝑖
,

𝜕 (𝜌𝑢𝑌𝑠)
𝜕𝑥

≈
(𝜌𝑢)𝑖+1/2𝑌𝑠,𝑖+1/2 − (𝜌𝑢)𝑖−1/2𝑌𝑠,𝑖−1/2

Δ𝑥𝑖
, (4.3)

where (𝜌𝑢)𝑖+1/2 is known naturally due to the staggering, and 𝑌𝑠,𝑖+1/2 is the face
value that requires interpolation from the cell averages (𝑌𝑠,𝑖, 𝑌𝑠,𝑖+1,...).

When a linear scheme, such as first order upwind, is used to interpolate the mass
fractions, the stencil coefficients, 𝑐𝑖, are independent of the species 𝑠. For instance,
for an interpolation between two cells,

𝑌𝑠,𝑖+1/2 = 𝑐𝑖 · 𝑌𝑠,𝑖 + 𝑐𝑖+1 · 𝑌𝑠,𝑖+1

→
∑︁
𝑠

𝑌𝑠,𝑖+1/2 = 𝑐𝑖

∑︁
𝑠

𝑌𝑠,𝑖 + 𝑐𝑖+1
∑︁
𝑠

𝑌𝑠,𝑖+1 = 𝑐𝑖 + 𝑐𝑖+1 = 1, (4.4)

the summation of the interpolated values equals 1 as long as the initial cell-centered
sums are also equal to 1. When a nonlinear scheme is used, the sum of the
interpolated 𝑌𝑠 is not guaranteed to equal 1, because the stencil coefficients, 𝑓 (𝑌𝑠,𝑖),
are dependent on the species. For instance, for an interpolation between two cells,

𝑌𝑠,𝑖+1/2 = 𝑓 (𝑌𝑠,𝑖) · 𝑌𝑠,𝑖 + 𝑓 (𝑌𝑠,𝑖+1) · 𝑌𝑠,𝑖+1

→
∑︁
𝑠

𝑌𝑠,𝑖+1/2 =
∑︁
𝑠

(
𝑓 (𝑌𝑠,𝑖) · 𝑌𝑠,𝑖 + 𝑓 (𝑌𝑠,𝑖+1) · 𝑌𝑠,𝑖+1

)
≠ 1. (4.5)

In practice, this can lead to an error in
∑

𝑠 𝑌𝑠 that grows throughout the simulation.
Commonly used scalar transport schemes, including WENO schemes [21], fall into
this category. The methodology is illustrated for the fifth order WENO scheme and
can be easily extended to other nonlinear schemes. As mentioned earlier, there are
a few options to improve the sum of mass fractions.

Option 1: Recognizing that Eq. (2.8) and Eq. (2.11) are over-constrained, 𝑁 − 1
species equations may be solved instead of 𝑁 equations. Then, the 𝑁th mass fraction
is computed as 𝑌𝑁 = 1 − ∑𝑁−1

𝑠=1 𝑌𝑠 (e.g., [47]). However, this requires selecting one
species to absorb all of the error in

∑
𝑠 𝑌𝑠.

Option 2: Another simple approach involves normalizing the WENO-interpolated
mass fractions by their sum (e.g., [48]), 𝑌𝑠 = 𝑌𝑠

𝑊
/ ∑

𝑠 𝑌𝑠
𝑊 , where 𝑌𝑠 = 𝑌𝑠,𝑖+1/2 is

the final interpolated mass fraction, and ·𝑊 indicates the WENO-interpolated value.
This approach distributes the error in the sum of mass fractions over all species.
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However, as in option 1, this approach leads to errors in inert species, such as N2 or
Ar.

Option 3: Here, we propose a third option consisting of weighting between the
WENO and upwind interpolations to enforce

∑
𝑠 𝑌𝑠 = 1 without altering inert

species. The key observation is that

min{𝑌𝑠
𝑊
, 𝑌𝑠

𝑈} ≤ 𝑌𝑠
𝑊 ≤ max{𝑌𝑠

𝑊
, 𝑌𝑠

𝑈}, (4.6)

where ·𝑈 indicates the upwind-interpolated value. Within this range, we aim to find
a correction 𝜖𝑠 to 𝑌𝑠

𝑊 such that
∑

𝑠 (𝑌𝑠
𝑊 + 𝜖𝑠) = 1. The procedure is as follows:

1. Evaluate the WENO (𝑌𝑠
𝑊 ) and upwind (𝑌𝑠

𝑈) interpolations for all 𝑌𝑠.

2. If
∑

𝑠 𝑌𝑠
𝑊

> 1, we seek to decrease 𝑌𝑠
𝑊

• The largest decrease within the range of Eq. (4.6) is:∑− =
∑

𝑠 (min{𝑌𝑠
𝑊
, 𝑌𝑠

𝑈} − 𝑌𝑠
𝑊 ) < 0

• The relative decrease in
∑

𝑠 𝑌𝑠
𝑊 required is: 𝛼 = (1 − ∑

𝑠 𝑌𝑠
𝑊 )/∑−

• The correction to each species is: 𝜖𝑠 = 𝛼(min{𝑌𝑠
𝑊
, 𝑌𝑠

𝑈} − 𝑌𝑠
𝑊 )

3. If
∑

𝑠 𝑌𝑠
𝑊

< 1, we seek to increase 𝑌𝑠
𝑊

• The largest increase within the range of Eq. (4.6) is:∑+ =
∑

𝑠 (max{𝑌𝑠
𝑊
, 𝑌𝑠

𝑈} − 𝑌𝑠
𝑊 ) > 0

• The relative increase in
∑

𝑠 𝑌𝑠
𝑊 required is: 𝛼 = (1 − ∑

𝑠 𝑌𝑠
𝑊 )/∑+

• The correction to each species is: 𝜖𝑠 = 𝛼(max{𝑌𝑠
𝑊
, 𝑌𝑠

𝑈} − 𝑌𝑠
𝑊 )

4. Update the interpolated mass fractions to 𝑌𝑠 = 𝑌𝑠
𝑊 + 𝜖𝑠 prior to computing

the convective fluxes in Eq. (4.3).

In this way, spatially-uniform species are unaffected, as the upwind and WENO-
interpolated values are equal. For such species, the resulting flux is 𝐹𝑠,𝑖+1/2 =

(𝜌𝑢)𝑖+1/2𝑌𝑠; this consistency is essential for ensuring convergence of the scheme.
For the non-uniform species, a value between 𝑌𝑠

𝑊 and 𝑌𝑠
𝑈 is used.
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The proposed algorithm is equivalent to a flux limiting algorithm,

𝐹𝑠,𝑖+1/2 = 𝐹𝑈
𝑠,𝑖+1/2 + 𝜙𝑠,𝑖+1/2 [𝐹𝑊

𝑠,𝑖+1/2 − 𝐹𝑈
𝑠,𝑖+1/2]

= 𝐹𝑊
𝑠,𝑖+1/2 + (1 − 𝜙𝑠,𝑖+1/2) [𝐹𝑈

𝑠,𝑖+1/2 − 𝐹𝑊
𝑠,𝑖+1/2]

= (𝜌𝑢)𝑖+1/2

(
𝑌𝑠

𝑊 + (1 − 𝜙𝑠,𝑖+1/2) [𝑌𝑠
𝑈 − 𝑌𝑠

𝑊 ]
)

= (𝜌𝑢)𝑖+1/2

(
𝑌𝑠

𝑊 + 𝜖𝑠

)
, (4.7)

where 𝐹𝑈
𝑠,𝑖+1/2 is the upwind flux, 𝐹𝑊

𝑠,𝑖+1/2 is the WENO flux, and 𝜙𝑠,𝑖+1/2 is the limiter
function. The definitions for 𝜖𝑠 and 𝛼 can be related to the flux limiting algorithm
to find 𝜙𝑠,𝑖+1/2. If

∑
𝑠 𝑌𝑠

𝑊
> 1,

𝜖𝑠 = (1 − 𝜙𝑠,𝑖+1/2) [𝑌𝑠
𝑈 − 𝑌𝑠

𝑊 ] = 𝛼(min{𝑌𝑠
𝑊
, 𝑌𝑠

𝑈} − 𝑌𝑠
𝑊 )

𝜙𝑠,𝑖+1/2 = 1 − 𝛼
©­­«

min
{
𝑌𝑠

𝑊
, 𝑌𝑠

𝑈
}
− 𝑌𝑠

𝑊

𝑌𝑠
𝑈 − 𝑌𝑠

𝑊

ª®®¬
= 1 − 𝛼

2

(
1 + sgn(𝑌𝑠

𝑊 − 𝑌𝑠
𝑈)

)
, (4.8)

and if
∑

𝑠 𝑌𝑠
𝑊

< 1,

𝜖𝑠 = (1 − 𝜙𝑠,𝑖+1/2) [𝑌𝑠
𝑈 − 𝑌𝑠

𝑊 ] = 𝛼(max{𝑌𝑠
𝑊
, 𝑌𝑠

𝑈} − 𝑌𝑠
𝑊 )

𝜙𝑠,𝑖+1/2 = 1 − 𝛼
©­­«

max
{
𝑌𝑠

𝑊
, 𝑌𝑠

𝑈
}
− 𝑌𝑠

𝑊

𝑌𝑠
𝑈 − 𝑌𝑠

𝑊

ª®®¬
𝜙𝑠,𝑖+1/2 = 1 − 𝛼

2

(
1 − sgn(𝑌𝑠

𝑊 − 𝑌𝑠
𝑈)

)
. (4.9)

The form of the flux correction is similar in concept to the rescaling of the dominant
fluxes introduced in [110] to ensure the correct sum.

4.2 Physical configuration
The Shock and Detonation Toolbox [102] and Cantera [103] are used to compute
a Zel’dovich-von Neumann-Döring (ZND) detonation solution propagating at the
Chapman-Jouguet (CJ) speed. The unburnt conditions and relevant length scales
for all test cases included in Chapter 4 and 5 are listed in Table 4.1 and 4.2. In this
chapter, the 7Ar and 5.6N2-diluted mixtures will be used as representative regular
and irregular detonations, respectively. The detailed chemical mechanism contains
9 species and 54 reactions [54, 111, 112] (counting forward and backward reactions
separately).
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Mixture 𝑝1 (kPa) 𝑢𝐶𝐽 (m/s) Δ𝑡 (s)
2H2-O2-7Ar 6.67 1616 5 · 10−9

2H2-O2-12Ar 20 1516 5 · 10−9

2H2-O2-17Ar 20 1413 10−8

2H2-O2-3.5N2 20 1962 2.5 · 10−9

2H2-O2-5.6N2 20 1799 5 · 10−9

Table 4.1: Unburnt conditions, CJ speeds, and time steps for detonation test cases.
The unburnt temperature 𝑇1 = 295 K for all tables. Conditions taken from [113].

The shock-fixed referenced frame is used, with the inflow velocity matching the CJ
speed. The minimum grid spacing is Δ𝑥min = L/20, where L is the temperature-
based induction zone length (listed in Table 4.2 and defined below); this falls within
the range of values used in the literature for multi-dimensional detonations [19, 61,
63, 114–116]. The domain length, given in Table 4.2, corresponds to the maximum
integration distance of the ZND solver [102]. The first 0.05 m in 𝑥 is uniformly
spaced at the minimum Δ𝑥, after which a 1% stretch factor is used. The initial
condition is filtered with a filter width Δ = 2Δ𝑥min, consistent with the numerical
framework used (see Chapter 2).

Mixture L(𝑇) (mm) L( ¤𝜎) (mm) 𝐿𝑦

L( ¤𝜎) ℓ𝑟 (mm) L(𝑇)
ℓ𝑟

𝐿𝑥 (m)
2H2-O2-7Ar 1.20 1.50 60 1.05 1.14 0.83
2H2-O2-12Ar 0.69 0.89 67 0.50 1.37 0.83
2H2-O2-17Ar 1.36 1.73 60 0.90 1.52 0.75
2H2-O2-3.5N2 0.78 0.90 67 0.36 2.17 0.89
2H2-O2-5.6N2 1.56 1.78 60 0.67 2.32 0.97

Table 4.2: Induction and reaction lengths, channel heights, and domain lengths for
each mixture.

For the two-dimensional simulation, this one-dimensional solution is mapped onto
a two-dimensional grid, perturbing the detonation front according to

𝑥𝑠 (𝑦) = 𝑥0 + L ·
(
sin

(
2𝜋𝑦
𝐿𝑦

)
+ sin

(
2𝜋𝑦
𝐿𝑦/2

)
+ sin

(
2𝜋𝑦
𝐿𝑦/4

))
, (4.10)

where the shock location 𝑥𝑠 is centered at 𝑥0 = 0.0125 m. The domain height, given
in Table 4.2, is based on the distance to the maximum thermicity, with uniform
spacing Δ𝑦 = Δ𝑥min = L/20; for the 7Ar-diluted case, this 𝐿𝑦 is expected to allow
for about 6 cells across the channel height, based on experimental measurements
[113]. The inflow and outflow boundaries use Navier-Stokes Characteristic Bound-
ary Conditions (NSCBCs) [96, 97], with the outflow pressure 𝑝∞ relaxing to the
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CJ pressure. The upper and lower 𝑦 boundaries use symmetry conditions. The
simulation is run for a total time of 6 · 10−4 s, requiring 16000 CPU hours for the
7Ar-diluted case.

The relevant length scales for each mixture are included in Table 4.2. The temperature-
based induction zone length (i.e., the distance for which the temperature remains
essentially constant), is defined as follows:

L(𝑇) = 𝑥3 −
𝑇3 − 𝑇2
(∇𝑇)3

, (4.11)

where subscript 2 indicates the von Neumann state, subscript 3 indicates the location
of the maximum temperature gradient during ignition. The shock is located at 𝑥 = 0.
Alternatively, the induction zone length is commonly defined in terms of the location
of maximum thermicity, ¤𝜎. Both L(𝑇) and L( ¤𝜎) are included in Table 4.2; the
smaller estimate (L(𝑇)) was used to determine Δ𝑥, while the larger estimate (L( ¤𝜎))
was used to assess the domain height.

The progress variable at the end of the main reaction zone is computed as

𝐶𝑟 = 𝐶4 −
¤𝜔𝐶,4

(∇ ¤𝜔𝐶)4
, (4.12)

where subscript 4 indicates the location of the minimum progress variable source
term gradient. The reaction zone length is then

ℓ𝑟 = 𝑥𝑟 − L(𝑇), (4.13)

where 𝑥𝑟 is the location corresponding to 𝐶𝑟 .

4.3 One-dimensional detonations
The procedure outlined in Sec. 4.1 will be demonstrated for the 2H2-O2-7Ar and
2H2-O2-5.6N2 mixtures. Four scalar discretizations are tested: the standard WENO
with no corrections, WENO with 𝑁 − 1 species transport equations (WENO-N1),
WENO normalized by the sum of interpolated mass fractions (WENO-NORM) and
the weighted WENO/upwind correction (WENO-UP) proposed in the present work.

Figure 4.1 illustrates the WENO-UP approach for the one-dimensional argon-diluted
detonation. The largest errors in

∑
𝑠 𝑌𝑠

𝑊 as well as the largest magnitudes of
∑+ and∑− are found in the reaction zone of the detonation. The range

[∑−,
∑+] is much

larger than the required adjustment to
∑

𝑠 𝑌𝑠
𝑊 , indicating that the correction 𝜖𝑠 will

introduce only a small deviation from the standard WENO interpolation.
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Figure 4.1: Allowable adjustments to
∑

𝑠 𝑌
𝑊

𝑠 for one-dimensional Ar-diluted deto-
nation. Quantities used in the correction 𝜖𝑠 (a): maximum allowable increase (black
solid line), maximum allowable decrease (blue dashed line), error in

∑
𝑠 𝑌

𝑊

𝑠 (red
dash-dotted line), temperature (purple solid line).

(a) Maximum
∑

𝑠 𝑌𝑠. (b) Ar mass fraction error.

Figure 4.2: One-dimensional Ar-diluted detonation. Maximum
∑

𝑠 𝑌𝑠 over time (b)
and Ar mass fraction error at 𝑡 = 6 · 10−4 s (c) using WENO (black solid line),
WENO-N1 (blue dashed line), WENO-NORM (red dash-dotted line), and WENO-
UP (orange solid line).

The maximum
∑

𝑠 𝑌𝑠 over time, along with the Ar mass fraction at the end of
the simulation, are compared for the four scalar discretizations in Fig. 4.2a and
4.2b. WENO-N1, WENO-NORM, and WENO-UP are able to enforce

∑
𝑠 𝑌𝑠 = 1.

However, WENO, WENO-N1, and WENO-NORM have oscillatory errors in the Ar
mass fraction; only WENO-UP is able to maintain both constant 𝑌Ar and

∑
𝑠 𝑌𝑠 = 1.
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(a) Maximum
∑

𝑠 𝑌𝑠. (b) N2 mass fraction error.

Figure 4.3: One-dimensional N2-diluted detonation. Maximum
∑

𝑠 𝑌𝑠 over time (a)
and N2 mass fraction at 𝑡 = 6 ·10−4 s (b) using WENO (black solid line), WENO-N1
(blue dashed line), WENO-NORM (red dash-dotted line), and WENO-UP (orange
solid line).

Figure 4.4: One-dimensional N2-diluted detonation. Detonation propagation speed
normalized by the CJ speed using WENO (black solid line), WENO-N1 (blue dashed
line), WENO-NORM (red dash-dotted line), and WENO-UP (orange solid line).

The Ar-diluted case is known to be a relatively stable, regular mixture. In contrast,
the N2-diluted case is known to exhibit instabilities in 1D and irregular cellular
structures in 2D. Once again, WENO-UP is the only scheme able to ensure

∑
𝑠 𝑌𝑠 = 1

(Fig. 4.3a) and constant𝑌N2 (Fig. 4.3b). The errors in
∑

𝑠 𝑌𝑠 are larger compared to the
argon mixture when WENO is used. For this mixture, there is also a clear difference
in the limit cycle of the instability depending on the discretization (Fig. 4.4). WENO,
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WENO-N1, and WENO-NORM show small oscillations that grow gradually over
time. WENO-UP reproduces the expected pulsating detonation behavior, with larger
oscillations and period-doubling [117].

4.4 Two-dimensional detonations
4.4.1 Numerical soot foils
In the lab frame of reference, numerical soot foils are computed by recording the
maximum pressure over time at each (𝑥, 𝑦) location in the domain,

𝑄(𝑥, 𝑦, 𝑡) = max{𝑄(𝑥, 𝑦, 𝑡 − 𝑛Δ𝑡), 𝑝(𝑥, 𝑦, 𝑡)}, (4.14)

where 𝑄 is the soot foil record in the lab frame and 𝑝 is the simulation pressure
field. Because our simulations are performed in the shock frame of reference, the
generation of soot foils requires more elaboration. The array containing the soot foil
record in the shock frame is termed P. The following coordinate transformation is
used for time and the streamwise coordinate,

𝑠 = 𝑡, 𝜁 = 𝑥 − 𝑢𝐶𝐽 𝑡. (4.15)

The 𝑦 coordinate is unchanged. With this transformation, the shock frame and lab
frame soot foils are related by

P(𝜁, 𝑦, 𝑠) = 𝑄(𝑥, 𝑦, 𝑡),
P(𝜁 − 𝑢𝐶𝐽𝑛Δ𝑡, 𝑦, 𝑠 − 𝑛Δ𝑡) = 𝑄(𝑥, 𝑦, 𝑡 − 𝑛Δ𝑡). (4.16)

In practice, P is computed with the following procedure:

1. At 𝑡 = 𝑠 = 𝑡0, set P(𝜁𝑖, 𝑦 𝑗 , 𝑡0) = 𝑝(𝑥𝑖, 𝑦 𝑗 , 𝑡0)

2. Every time interval 𝑛Δ𝑡, update the record

• P(𝜁𝑖, 𝑦 𝑗 , 𝑠) = max{P(𝜁𝑖−1, 𝑦 𝑗 , 𝑠 − 𝑛Δ𝑡), 𝑝(𝑥𝑖, 𝑦 𝑗 , 𝑡)}

• At a given (𝜁𝑖, 𝑦 𝑗 ) coordinate, this updates the recorded pressure if
𝑝(𝑥𝑖, 𝑦 𝑗 , 𝑡) is a new maximum, or else advects the previously recorded
pressure P(𝜁𝑖−1, 𝑦 𝑗 , 𝑠 − 𝑛Δ𝑡) to the right at the inflow velocity (𝑢𝐶𝐽)

• 𝑛 is an integer to avoid interpolations in 𝑡, 𝑠

3. After 𝑁 updates to the soot foil record, the streamwise grid for P is

• Δ𝜁 = 𝑢𝐶𝐽𝑛Δ𝑡 is uniform
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• 𝐿𝜁 = 𝑁Δ𝜁

For convenience, 𝑁 = 𝑛𝑥; the integer 𝑛, which may be expressed as

𝑛 =
𝐿𝜁

𝑢𝐶𝐽𝑁Δ𝑡
(4.17)

is chosen for each mixture such that 𝐿𝜁 ≈ 0.2 m. This transformation from 𝑥

to 𝜁 does not account for the grid stretching present for 𝑥 > 0.05 m. Because
the pressure decreases away from the detonation front, and the detonation front is
always contained within the uniform grid region, it is assumed that there are no new
maxima in 𝑝 in the stretched region of the domain, so P can simply be advected
downstream.

(a) Soot foil using WENO.

(b) Soot foil using WENO-UP.

Figure 4.5: Two-dimensional N2-diluted detonation. Soot foils using WENO (a)
and WENO-UP (b).

4.4.2 Validation case - Nitrogen-diluted detonation
In one dimension, the nitrogen-diluted detonation had more severe errors in the
sum of mass fractions, and is therefore a more informative validation case for the
corrected species transport. To assess the impact of the scalar discretization on
the cellular structure of the detonation, the N2 mixture is also tested in 2D. To
exaggerate errors in the sum of mass fractions, a coarser grid is used, with the
minimum Δ𝑥 = Δ𝑦 = L/10.
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The numerical soot foils are shown for WENO and WENO-UP in Fig. 4.5a and 4.5b.
With WENO-UP, the cell structure is more irregular, as is expected for N2-diluted
mixtures. Using WENO, the sums of mass fractions, shown over time (Fig. 4.6a)
and vs. temperature at the end of the simulation (Fig. 4.6b), have substantial errors
compared to the 1D simulations, up to about 15%. As in the 1D simulations,
WENO-UP is able to ensure that

∑
𝑠 𝑌𝑠 = 1 throughout the simulation. WENO also

results in larger errors in the N2 mass fraction, as seen in Fig. 4.6c; WENO-UP
maintains the inert species at a constant value, as intended.

(a) Maximum
∑

𝑠 𝑌𝑠.

(b)
∑

𝑠 𝑌𝑠. (c) N2 mass fraction error.

Figure 4.6: Two-dimensional N2-diluted detonation. Maximum
∑

𝑠 𝑌𝑠 over time (a),∑
𝑠 𝑌𝑠 vs. temperature at 𝑡 = 6 ·10−4 s (b), and N2 mass fraction error vs. temperature

at 𝑡 = 6 · 10−4 s (c) using WENO (black solid line/points) and WENO-UP (blue
dashed line/points).
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4.5 Example - Argon-diluted detonation
Detailed chemistry data will be required to inform the chemistry model development
in Chapter 5. While the nitrogen-diluted case in Sec. 4.4.2 was a useful stress-test
for the scalar transport, the regular cell structure of argon-diluted detonations is
anticipated to be a simpler configuration for a priori analysis of the tabulation
framework. The 7Ar-diluted mixture is simulated in 2D with a minimum grid
spacing Δ𝑥 = L/20.

The numerical schlieren and temperature fields are shown at three time snapshots
in Fig. 4.7, and the propagation speed is shown in Fig. 4.8,

𝑢𝑠 =
⟨𝜌⟩2 (⟨𝑢⟩2 − ⟨𝑢⟩1)

⟨𝜌⟩1 − ⟨𝜌⟩2
, 𝑢𝑠 (𝑦0) =

𝜌2(𝑦0) (𝑢2(𝑦0) − 𝑢1(𝑦0))
𝜌1(𝑦0) − 𝜌2(𝑦0)

, (4.18)

where 𝑢𝑠 is the 𝑦-averaged speed and 𝑢𝑠 (𝑦0) is the local speed on the mid-plane
at 𝑦0 = 𝐿𝑦/2. The planar averages ⟨𝜌⟩1 and ⟨𝜌⟩2 correspond to the pre-shock and
von Neumann state (maximum ⟨𝜌⟩) densities, respectively. ⟨𝑢⟩1 and ⟨𝑢⟩2 are the
corresponding planar Favre-averaged velocities. Similarly, the local 𝜌1(𝑦0) and
𝜌2(𝑦0) are the pre-shock and von Neumann state (maximum 𝜌(𝑦0)) densities, and
𝑢1(𝑦0) and 𝑢2(𝑦0) are the corresponding local velocities. The relation in Eq. (4.18)
comes from the conservation of mass across a normal shock. The resulting shock
propagation speed indicates the extent of overdrive compared to the CJ velocity,
both on average and instantaneously.

The initial perturbation is shown as a numerical schlieren in Fig. 4.7a. The contour
at the H2O mass fraction corresponding to the peak 1D source term illustrates
the local changes in reaction zone length along the detonation front. Later in the
simulation (Fig. 4.7b and 4.7c), the detonation front is observed to have a regular
spacing between triple point collisions, as expected for the 2H2-O2-7Ar mixture,
with about 3-4 cells across the vertical domain; this will be discussed further using
soot foils in Sec. 5.3. As seen in Fig. 4.7d and 4.7e, higher temperatures at the
detonation front result in shorter induction lengths, while lower temperatures delay
the reactions. Both the planar-averaged propagation speed (Fig. 4.8a) and the local
propagation speed at the mid-plane (𝑦 = 𝐿𝑦/2) (Fig. 4.8b) oscillate about the CJ
propagation speed. These oscillations have a period of about 10−5 s. Because
there is always some portion of the front propagating above 𝑢𝐶𝐽 , and some portion
propagating below 𝑢𝐶𝐽 , the average remains within 1-2% of the CJ speed. The local
propagation speed shows larger fluctuations, as this shows the change in propagation
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(a) Schlieren, 0 s. (b) Schlieren, 4 · 10−4 s. (c) Schlieren, 6 · 10−4 s.

(d) Temperature, 4 · 10−4 s. (e) Temperature, 6 · 10−4 s.

Figure 4.7: Numerical Schlieren (normalized density gradient magnitude, a-c) and
temperature field (d-e); contour indicating 𝑌H2O at the peak ¤𝜔H2O,𝐶𝐽 (red line, a-c;
black line, d-e).

speed through a given cell. The velocity peaks at the triple point and decays through
the cell until it is reshocked at the next triple point.

The detailed chemistry results for the one- and two-dimensional detonations will be
used to inform the construction of the table in Sec. 5.2, and to validate the tabulation
approach in Sec. 5.3.

4.6 Conclusion
In this chapter, we described a procedure for correcting the sum of mass fractions
when nonlinear schemes such as WENO are used. Unlike common existing ap-
proaches, our procedure does not lead to errors in the inert species. The method was
successfully demonstrated for one-dimensional detonations in hydrogen and oxy-
gen, diluted with either argon or nitrogen, as well as a two-dimensional detonation
diluted with nitrogen. Errors in the sum of mass fractions present with the standard
fifth-order WENO scheme were prevented when the correction is used. Further-
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(a) Planar-averaged propagation speed vs. time.

(b) Local propagation speed vs. time.

Figure 4.8: Planar-averaged and local propagation speeds (normalized by CJ speed)
over time. Red markers correspond to the time snapshots shown in Fig. 4.7.

more, the diluent species do not absorb the errors and remain constant. For the
nitrogen-diluted detonations, the correction results in a more pronounced physical
instability/irregularity. While demonstrated here for the fifth-order WENO scheme,
the current approach is generalizable to other nonlinear transport schemes.
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C h a p t e r 5

TABULATED CHEMISTRY APPROACH FOR DETONATION
SIMULATIONS

[1] A. Baumgart, M. X. Yao, and G. Blanquart. “Tabulated chemistry approach
for detonation simuations”. In: Combustion and Flame (2024). (Under Re-
view).

The detailed chemistry simulations in Chapter 4 required transporting nine species
mass fractions. For flame simulations, tabulated chemistry is a common approach
to modeling chemistry at a lower computational cost. In this chapter, a tabulated
chemistry model suitable for detonations is developed. Analogous to the flamelets
used to generate chemistry tables for flames, one-dimensional detonations will be
used to pre-compute the table. In Sec. 5.1, the analytical framework for compressible
flow simulations is reviewed. The proposed tabulation method is described in
Sec. 5.2. Validation of the chemistry model is presented for various H2-O2 mixtures
in Sec. 5.3 for both one- and two-dimensional simulations.

5.1 Compressible flow simulation framework
To motivate the tabulated chemistry approach, the requirements for compressible
flow simulations are reviewed here.

5.1.1 Pure substance - Ideal gas
The spatially-filtered governing equations for mass, momentum, and energy are
given by

𝜕𝜌

𝜕𝑡
+ 𝜕𝜌𝑢̃𝑖

𝜕𝑥𝑖
= 0, (5.1)

𝜕 (𝜌𝑢̃𝑖)
𝜕𝑡

+
𝜕 (𝜌𝑢̃𝑖𝑢̃ 𝑗 )

𝜕𝑥 𝑗
= − 𝜕 𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
+
𝜕𝜏𝑖 𝑗 ,𝑆𝐹𝑆

𝜕𝑥 𝑗
, (5.2)

𝜕 (𝜌𝑒𝑡)
𝜕𝑡

+ 𝜕 (𝜌𝑢̃𝑖 ℎ̃𝑡)
𝜕𝑥𝑖

= −𝜕𝑞𝑖

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥𝑖

(
𝜏𝑖 𝑗 𝑢̃ 𝑗

)
+ 𝜕𝑞𝑖,𝑆𝐹𝑆

𝜕𝑥𝑖
, (5.3)

where 𝜌 is the density, 𝑢 is the velocity, 𝑝 is the pressure, 𝜏 is the viscous stress
tensor, 𝑒𝑡 is the total energy, and ℎ𝑡 is the total enthalpy. The heat flux, 𝑞, is defined
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as

𝑞𝑖 = −𝜆 𝜕𝑇
𝜕𝑥𝑖

, (5.4)

where 𝜆 is the thermal conductivity and 𝑇 is the temperature. The system is closed
with the ideal gas equation of state,

𝑝 =
𝜌𝑅𝑇

𝑊̃
, (5.5)

where 𝑅 is the universal gas constant and 𝑊 is the molecular weight. For a pure
substance, 𝑊 is constant.

Equations (5.1) to (5.3) and (5.5) form an almost complete set of equations to
describe any compressible flow of a pure substance. What remains is an expression
to relate the enthalpy (or the internal energy) to temperature and pressure, namely
ℎ = ℎ(𝑇, 𝑃). For a single ideal gas, enthalpy is only a function of temperature,
generally expressed as

ℎ(𝑇) = ℎ𝑟𝑒 𝑓 +
∫ 𝑇

𝑇𝑟𝑒 𝑓

𝑐𝑝 (𝑇)𝑑𝑇. (5.6)

When 𝑐𝑝 is constant, the enthalpy is often expressed as ℎ = 𝑐𝑝𝑇 . If 𝑐𝑝 is not
constant, the NASA polynomials [118] may be used to describe 𝑐𝑝 (𝑇) and hence
ℎ(𝑇). Using such expressions, the temperature is computed from the transported
quantities using a Newton iteration,

𝑇𝑚+1 = 𝑇𝑚 +
𝜌𝑅𝑇

𝑊̃
−

(
𝜌ℎ̃ − 𝜌𝑒𝑡 + 1

2𝜌𝑢̃𝑢̃
)

𝜌

(
𝑐𝑝 − 𝑅

𝑊̃

) , (5.7)

where 𝑚 is the iteration number.

5.1.2 Non-reacting mixtures
For mixtures, Eq. (5.1) to (5.3) must be accompanied by a transport equation for
each species, given by

𝜕 (𝜌𝑌𝑠)
𝜕𝑡

+ 𝜕 (𝜌𝑢̃𝑖𝑌𝑠)
𝜕𝑥𝑖

= −
𝜕 𝑗 𝑖,𝑠

𝜕𝑥𝑖
, (5.8)

where 𝑌𝑠 is the mass fraction of species 𝑠 and 𝑛𝑠 is the number of species. The
species diffusion flux, 𝑗𝑠, and the updated heat flux (in Eq. (5.3)) are defined as

𝑗 𝑖,𝑠 = −𝜌𝐷 𝜕𝑌𝑠

𝜕𝑥𝑖
,

𝑞𝑖 = −𝜆 𝜕𝑇
𝜕𝑥𝑖

+
∑︁
𝑠

ℎ̃𝑠 𝑗 𝑖,𝑠, (5.9)
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where 𝐷 is the species diffusivity and ℎ𝑠 is the species enthalpy. For simplicity, the
Lewis number 𝐿𝑒 = 𝛼/𝐷 (where 𝛼 = 𝜆/𝜌𝑐𝑝 is the thermal diffusivity) is assumed
to be unity.

To fully close the set of governing equations, expressions for the mixture molec-
ular weight and the mixture enthalpy are necessary. For ideal gases, the mixture
molecular weight is only a function of the species mass fractions and is given by

𝑊 (𝑌𝑠) =
(∑︁

𝑠

𝑌𝑠/𝑊𝑠

)−1

, (5.10)

and the mixture enthalpy and heat capacity are functions of only 𝑇 and 𝑌𝑠,

ℎ(𝑇,𝑌𝑠) =
∑︁
𝑠

ℎ𝑠 (𝑇)𝑌𝑠,

𝑐𝑝 (𝑇,𝑌𝑠) =
∑︁
𝑠

𝑐𝑝,𝑠 (𝑇)𝑌𝑠, (5.11)

where ℎ𝑠 (𝑇) and 𝑐𝑝,𝑠 (𝑇) are evaluated using the NASA polynomials for each species.
In practice, only ℎ is required in simulations, as 𝑐𝑝 is evaluated as

𝑐𝑝 =
𝜕ℎ

𝜕𝑇

����
𝑌𝑠

. (5.12)

The above expressions for 𝑊 , ℎ, and 𝑐𝑝 are then used for the temperature inversion;
no modifications to Eq. (5.7) are required.

5.1.3 Reacting flows - Detailed chemistry
In reacting flows, the previous requirements described in Sec. 5.1.1 and 5.1.2 still
hold. 𝑊 is still a function of 𝑌𝑠, and ℎ and 𝑐𝑝 are still functions of 𝑇 and 𝑌𝑠.
However, the species transport equation must be modified to include the chemical
source terms,

𝜕 (𝜌𝑌𝑠)
𝜕𝑡

+ 𝜕 (𝜌𝑢̃𝑖𝑌𝑠)
𝜕𝑥𝑖

= −
𝜕 𝑗 𝑖,𝑠

𝜕𝑥𝑖
+ ¤𝜔𝑠, (5.13)

where ¤𝜔𝑠 is the net source term for species 𝑠. These source terms are complex
functions of temperature and the species concentrations and may be expressed
generally as ¤𝜔𝑠 (𝜌, 𝑇,𝑌𝑠). It is through the density that the effects of pressure are
felt on the combustion processes.
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5.1.4 Reacting flows - Tabulated chemistry
In the tabulated chemistry framework, rather than solving Eq. (5.13) for each chem-
ical species present, a single scalar equation is solved,

𝜕 (𝜌𝐶̃)
𝜕𝑡

+ 𝜕 (𝜌𝑢̃𝑖𝐶̃)
𝜕𝑥𝑖

=
𝜕

𝜕𝑥𝑖

(
𝜌𝐷

𝜕𝐶̃

𝜕𝑥𝑖

)
+ ¤𝜔𝐶 , (5.14)

where 𝐶 is the progress variable. As in Eq. (5.9), the progress variable diffusivity
is evaluated assuming a unity Lewis number. The progress variable is often the
mass fraction of one of the products [80, 119] or a linear combination of species
mass fractions [78]. In low Mach number chemistry tabulation, it is assumed that
all thermochemical variables including the species mass fractions and temperature
may be reconstructed as a function of the progress variable, namely, 𝑌𝑠 ≈ 𝑌𝑠 (𝐶) and
𝑇 ≈ 𝑇 (𝐶). The energy equation and temperature inversion (Eq. (5.3) and (5.7)) are
not needed for low Mach number flow simulations.

In compressible flows, the temperature is an independent variable extracted from
the energy equation. If it is assumed that the species mass fractions may be entirely
described by the progress variable, namely 𝑌𝑠 ≈ 𝑌𝑠 (𝐶), the mixture enthalpy (see
Eq. (5.11)) would become a function of temperature and progress variable,

ℎ ≈ ℎ(𝑇, 𝐶). (5.15)

However, this functional dependence for 𝑌𝑠 is unnecessarily restrictive. Because
the temperature is already required to compute ℎ, here the assumption on the mass
fractions is relaxed such that the species mass fractions (at a given temperature)
may be reconstructed as a function of the progress variable, namely 𝑌𝑠 ≈ 𝑌𝑠 (𝑇, 𝐶).
Using this approximation in Eq. (5.10), the mixture molecular weight becomes a
function of temperature and progress variable,

𝑊 ≈ 𝑊 (𝑇, 𝐶). (5.16)

Similarly, the source term of the progress variable becomes a function of density,
temperature, and progress variable,

¤𝜔𝐶 ≈ ¤𝜔𝐶 (𝜌, 𝑇, 𝐶) . (5.17)

Evaluating these three functions is the goal of the present work and is detailed in
the following two sections.
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5.2 Chemistry tabulation method
The progress variable definition is discussed in Sec. 5.2.1. The choice of table
coordinates is assessed in Sec. 5.2.2. Section 5.2.3 describes the procedure for gen-
erating the chemistry tables. Finally, Sec. 5.2.4 investigates the chemical reactions
built into the table. The detailed chemistry data from Chapter 4 (Sec. 4.5) is used
for all a priori analysis.

5.2.1 Choice of progress variable
In deflagrations, the flame structure is primarily influenced by diffusion, so the mass
fraction of the products is sufficient to define the progress variable. However, in
detonations, ignition, not diffusion, becomes the driving process [75]. Because
ignition plays a key role in determining the detonation structure (e.g., induction
zone length), the progress variable definition requires further consideration.

Figure 5.1: Steady temperature profiles for the full mechanism (black solid line),
with the rate constant for Eq. (5.18) set to zero (blue dashed line), and with the rate
constant for Eq. (5.19) set to zero (red dash-dotted line).

In order for ignition to occur behind the shock wave, the source term of the progress
variable, ¤𝜔𝐶 , must be nonzero at 𝐶 = 0. This could be accomplished by using a
reactant species for𝐶, or by considering the initial radical species. The two initiation
reactions for hydrogen combustion are

H2 + M → 2H, (5.18)

H2 + O2 → HO2 + H. (5.19)

The only nonzero source terms in the unburnt mixture are ¤𝜔H and ¤𝜔HO2 . To identify
which initiation reaction is more important for reproducing the correct induction
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zone length, the original mechanism [54] is modified and the impact on the ZND
structure is examined. The resulting temperature profiles are compared in Fig. 5.1.
When the rate constant for Eq. (5.18) is set to zero, the temperature profile is virtually
identical to that of the full mechanism with the original rate constants. However,
when the rate constant for Eq. (5.19) is set to zero, the induction zone is much
longer than that of the full mechanism. In other words, the initiation reaction in
Eq. (5.19) controls the induction zone length. This initiation reaction involves the
formation of two radicals, H and HO2; either of them could be added to the progress
variable definition (e.g., 𝐶 = 𝑌H2O + 𝑌H). These initial radicals are then involved
in competing reaction pathways, as described in [120]; chain-branching for H, and
chain-termination for HO2.

(a) Species mass fractions. (b) Species source terms.

(c) Species source terms.

Figure 5.2: Species mass fractions (a) and corresponding source terms (b, c) of H2O
(black solid line), HO2 (blue dashed line), and H (red dash-dotted line). Vertical
dotted lines in (b, c) indicate the end of the induction zone and the end of the main
reaction zone. Inset shows near 𝑌H2O = 0 (c).

The mass fractions of H2O, HO2, and H from the ZND solution are shown in
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(a) Progress variable. (b) Progress variable source term.

Figure 5.3: Progress variable (a) and corresponding source term (b) when defined as
H2O (black solid line), H2O+HO2 (blue dashed line), and H2O+H (red dash-dotted
line). Insets show near 𝐶 = 0.

Fig. 5.2a. Ideally, the progress variable is a monotonically increasing quantity, as
seen for the mass fraction of H2O. Although the mass fractions of HO2 and H
are non-monotonic, their magnitudes are much smaller than 𝑌H2O: three orders of
magnitude for 𝑌HO2 , and one order of magnitude for 𝑌H. The sum of the mass
fractions remains monotonic whether HO2 or H is used with HO2, as shown in
Fig. 5.3a.

The net source terms for H2O, HO2, and H are shown in physical space in Fig. 5.2b.
The source term of HO2 jumps at the shock (at 𝑥 = 0), while the source term of H2O
remains zero into the post-shock. The induction zone, where temperature remains
essentially constant, spans from about 𝑥 = 0 to 𝑥 = 1.2 mm (marked by the first
vertical dotted line). For most of this region, ¤𝜔HO2 is the dominant source term; near
the end of the induction zone, the other source terms begin to increase. The main
reaction zone then spans from 𝑥 = 1.2 mm to 𝑥 = 2.3 mm (marked by the second
vertical dotted line); here, the H2O source term is dominant. (Induction/reaction
lengths for other mixtures, as well as details on their calculation, are included in
the supplementary material.) These source terms are shown as a function of 𝑌H2O

in Fig. 5.2c, and the net progress variable source term is shown in 𝐶 space for the
three definitions of𝐶 (H2O only, H2O with HO2, and H2O with H) in Fig. 5.3b. The
vertical dotted lines in Fig. 5.2c again correspond to the end of the induction zone
(𝑌H2O = 0.009) and reaction zone (𝑌H2O = 0.06). In Fig. 5.2c and 5.3b, 𝑌H2O = 0
and 𝐶 = 0 correspond to the von Neumann state; the pre-shock is well below the
autoignition limit, so ¤𝜔𝑠 ≈ 0 for all species. For the majority of the range of 𝐶, the
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contribution of ¤𝜔HO2 is small compared to the contribution of ¤𝜔H2O, so the first two
definitions of ¤𝜔𝐶 are indistinguishable. The main difference is near 𝐶 = 0, where
the source term for 𝐶 = 𝑌H2O goes to zero, but the source term for 𝐶 = 𝑌H2O +𝑌HO2

does not. Although the source term is also nonzero at 𝐶 = 0 for H (though an
order of magnitude smaller than the HO2 source term), the contribution of ¤𝜔H is
not negligible compared to ¤𝜔H2O for a large range of 𝐶. Therefore, it is preferable
to include HO2, rather than H, in the progress variable definition to improve the
behavior near 𝐶 = 0 without impacting the rest of the domain in 𝐶:

𝐶 = 𝑌H2O + 𝑌HO2 , (5.20)

¤𝜔𝐶 = ¤𝜔H2O + ¤𝜔HO2 . (5.21)

Unless otherwise specified, this definition of 𝐶 is used for all following sections.

5.2.2 Table coordinates
As discussed in Sec. 5.1.4, the key assumption behind tabulated chemistry is that the
mass fractions may be described as functions of progress variable and temperature:
𝑌𝑠 ≈ 𝑌𝑠 (𝐶,𝑇). From a mathematical point of view, the optimal estimator of any
bivariate function, 𝜙(𝐶,𝑇), is the 2D conditional mean, namely ⟨𝜙 |𝐶,𝑇⟩. The
quality of this estimator is measured by the 2D conditional standard deviation,
namely 𝜎(𝜙 |𝐶,𝑇). Using the detailed chemistry data from Sec. 4.5, conditional
statistics are used to extract the 2D functions. Unless otherwise specified, statistics
are computed using snapshots from 𝑡 = 4·10−4 to 6·10−4 s in intervals of 10−5 s. The
(𝐶,𝑇) bins used for the conditional statistics correspond to the (𝐶,𝑇) coordinates
of the chemistry table, which will be described in Sec. 5.2.3.

The two-dimensional conditional mean species mass fractions, ⟨𝑌 |𝐶,𝑇⟩, and relative
standard deviations, 𝜎(𝑌 |𝐶,𝑇)/𝑌1D

max, are shown in Fig. 5.4 for the fuel and a key
radical. The standard deviations are normalized by the maximum value from the
one-dimensional CJ solution. Both conditional mean mass fractions are smooth
functions which vary mostly with𝐶. The H2 mass fraction decreases almost linearly
with the progress variable in the initial reaction zone (i.e., 𝐶 < 0.06) and is virtually
zero thereafter. The OH profile increases gradually through the detonation with a
weak temperature dependence. At a given (𝐶,𝑇), the standard deviations of the
mass fractions are small, with a maximum around 1% for both species. These results
confirm the assumption that 𝑌𝑠 ≈ 𝑌𝑠 (𝑇, 𝐶).

The same conditional statistics are computed for all the quantities required in the
tabulated chemistry simulations, namely 𝑊 , ℎ, and ¤𝜔𝐶 , and are shown in Fig. 5.5.
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(a) H2 mass fraction mean. (b) H2 mass fraction rms.

(c) OH mass fraction mean. (d) OH mass fraction rms.

Figure 5.4: Conditional statistics computed on the two-dimensional detailed chem-
istry data. Conditional means (a, c) and standard deviations normalized by the
maximum value from the 1D CJ solution (b, d), conditioning on both 𝐶 and 𝑇 . CJ
solution for reference (red solid line).

The mixture molecular weight and enthalpy both have relatively small standard
deviations at a given (𝐶,𝑇) (around 0.1% for 𝑊 and 1% for ℎ). The chemical
source term for the progress variable deserves more consideration.

For a binary reaction 𝐴 + 𝐵 → 𝐷 (such as the initiation reactions discussed in the
previous section), the chemical source term is

¤𝜔𝑟 = [𝐴] · [𝐵] · 𝑘𝑟 (𝑇) =
𝜌𝑌𝐴

𝑊𝐴

· 𝜌𝑌𝐵
𝑊𝐵

· 𝑘𝑟 (𝑇), (5.22)

where [·] indicates the species concentration and 𝑘𝑟 is the temperature-dependent
reaction rate constant. Rearranging as

¤𝜔𝑟

𝜌2 =
𝑌𝐴

𝑊𝐴

· 𝑌𝐵
𝑊𝐵

· 𝑘𝑟 (𝑇), (5.23)
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(a) Mixture enthalpy mean. (b) Mixture enthalpy rms.

(c) Mixture molecular weight mean. (d) Mixture molecular weight rms.

(e) Source term mean. (f) Source term rms.

Figure 5.5: Conditional statistics computed on the two-dimensional detailed chem-
istry data for the 2H2-O2-7Ar mixture. Conditional means (a, c, e) and standard
deviations normalized by the maximum value from the 1D CJ solution (b, d, f),
conditioning on both 𝐶 and 𝑇 . CJ solution for reference (red solid line).

the right-hand side is now dependent only on the mixture composition (𝑌𝐴 and 𝑌𝐵)
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and the temperature. In hydrogen combustion, the majority of the reactions are
second order, suggesting that a density exponent of 2 is an appropriate scaling for
the progress variable source term.

More generally and without assuming the reaction order, the source term and density
are related by

¤𝜔𝐶 ∝ 𝜌𝑎𝜌 · 𝑓 (𝑇,𝑌𝑠). (5.24)

The sensitivity of the source term to density perturbations, namely 𝑎𝜌, may be
extracted using the CJ solution as the baseline. At each point in 𝐶, the density
is perturbed over a range of ±10% while maintaining the temperature and mixture
composition. The progress variable source term is then recomputed at the new
densities. Finally, the exponent is extracted by fitting

ln ¤𝜔𝐶 (𝐶) = 𝑎𝜌 ln 𝜌(𝐶). (5.25)

The resulting exponent is shown in Fig. 5.6 along with the source term. The detailed
mechanism used here consists of only second and third order reactions [54, 111,
112], so the exponent is expected to vary between 2 and 3. For the range of 𝐶 where
¤𝜔𝐶 is largest, 𝑎𝜌 ≈ 2. At higher 𝐶 where 𝑎𝜌 > 2, the source term is orders of
magnitude smaller than the peak ¤𝜔𝐶 , approaching zero as chemical equilibrium is
reached. The dominant reactions at specific 𝐶 locations (denoted by the symbols)
will be discussed in Sec. 5.2.4. The scaling found in Fig. 5.6 depends on the detailed
mechanism used. For example, a mechanism including non-thermal termolecular
reactions (which may be influential on the detonation structure [121, 122]) may
scale differently. While possible to tabulate 𝑎𝜌 as a varying function of 𝐶 and 𝑇

(as done in compressible flamelet/progress variable models [84]), we can reduce
the preprocessing requirements by noting the behavior of the source term relative
to 𝑎𝜌. Based on this observation, we seek to tabulate the progress variable source
term as ¤𝜔𝐶/𝜌2 = 𝑓 (𝐶,𝑇). The tabulated value would then be multiplied by 𝜌2 in
the simulation.

Examining the conditional mean ⟨ ¤𝜔𝐶/𝜌2 |𝐶,𝑇⟩ in Fig. 5.5e, the progress variable
source term is a smooth function with a strong 𝐶 and 𝑇 dependence. In the reaction
zone, it exhibits a bell-shape dependence on the progress variable and a monotonic
increase with temperature. After 𝐶 > 0.06, the source term is small, but not zero.
Figure 5.5f shows the standard deviation in the source term at a given (𝐶,𝑇). This
standard deviation compounds two separate errors: errors due to deviations in the
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Figure 5.6: Density scaling for the source term along the CJ solution (left axis, black
solid line); progress variable source term for reference (right axis, blue dashed line).
Symbols indicate 𝐶 locations to be discussed in Sec. 5.2.4.

species profiles (i.e.,𝑌𝑠 ≠ 𝑌𝑠 (𝐶,𝑇)) and contributions of elementary reactions which
are not second order (i.e. 𝜔𝑟�∝𝜌2). Although it is slightly larger compared to the
mass fraction standard deviations, it is still small relative to the peak source term
from the CJ solution (at most 5%). Based on these conditional statistics, the (𝐶,𝑇)
table coordinates are expected to be sufficient.

Figure 5.7 illustrates how a (𝐶,𝑇) chemistry table fits into the simulation framework
described in Sec. 5.1. Computing the right hand side (RHS) for the progress
variable transport equation requires a table lookup for the progress variable source
term. During the Newton iteration (Eq. (5.7)) to extract the temperature from the
transported energy, table lookups for the mixture enthalpy, molecular weight, and
specific heat capacity are required. Once the Newton iteration converges, both the
temperature and pressure are updated.

𝜌, 𝜌𝑢, 𝜌𝑒𝑡, 𝜌𝐶,
𝑇, 𝑝

𝑡𝑘=0
𝑛

RHS
ሶ𝜔𝐶 𝐶𝑘

𝑛, 𝑇𝑘
𝑛 , … RK step

𝑘 = 𝑘 + 1

Newton iteration𝜌𝑒𝑡 𝑘
𝑛, 𝐶𝑘

𝑛, 𝑇𝑘,𝑚
𝑛

ℎ 𝐶𝑘
𝑛, 𝑇𝑘,𝑚

𝑛 , 

𝑊 𝐶𝑘
𝑛, 𝑇𝑘,𝑚

𝑛 ,

𝑐𝑝 𝐶𝑘
𝑛, 𝑇𝑘,𝑚

𝑛

If 𝑘 < 4

𝑇𝑘
𝑛, 𝑝𝑘

𝑛

If 𝑘 = 4

𝜌, 𝜌𝑢, 𝜌𝑒𝑡, 𝜌𝐶,
𝑇, 𝑝

𝑡𝑛+1𝑚 = 𝑚 + 1

𝑇𝑘
𝑛, 𝑝𝑘

𝑛

Figure 5.7: Solution procedure using a (𝐶,𝑇) table. Superscript 𝑛 indicates the
timestep, subscript 𝑘 indicates the RK step, and subscript 𝑚 indicates the Newton
iteration number (see Eq. (5.7)). Quantities written as 𝑓 (𝐶𝑛

𝑘
, 𝑇𝑛

𝑘
) indicate where

table lookups are required.
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5.2.3 Table generation
The optimal (𝐶,𝑇) chemistry table consists of the conditional means ⟨𝜙 |𝐶,𝑇⟩
evaluated from the detailed chemistry data. However, this defeats the purpose of
tabulating the chemistry, as a two-dimensional detailed chemistry simulation would
be required for each mixture prior to generating the table. We propose an alternative
approach to filling in the (𝐶,𝑇) coordinate space, analogous to what is done for
flames.

Figure 5.8: One-dimensional ZND solutions in (𝐶,𝑇) space (black solid lines),
equilibrium boundary (red solid line), and CJ solution (blue solid line).

For premixed flames, chemistry tables are typically generated using one-dimensional
flamelets [80, 119]. However, a steady premixed flamelet cannot exist at the rel-
evant post-shock conditions in a detonation; due to the autoignition limits of the
fuel/oxidizer mixture, the unburnt side of the flame would ignite. In detonations,
the representative one-dimensional problem is the ZND model. To generate the
table, a set of 60 one-dimensional ZND detonation solutions are computed with the
Shock and Detonation Toolbox using the same unburnt conditions (2H2-O2-7Ar,
𝑝1 = 6.67 kPa, and 𝑇1 = 295 K). Using the shock speed as the varying parameter
is motivated by the conditions found along multi-dimensional detonation fronts,
where the local propagation speed varies but the unburnt/pre-shock conditions are
fixed. The propagation speeds range from 𝑢1 = 1400 to 2300 m/s, including both
under- and over-driven detonations (𝑢𝐶𝐽 = 1616 m/s, so 0.87 ≤ (𝑢1/𝑢𝐶𝐽) ≤ 1.42).
Generally, a range of 0.8 ≤ 𝑢1/𝑢𝐶𝐽 ≤ 1.4 is recommended to span the velocities
observed in multi-dimensional detonations [120, 123]; for the cases in the present
work, it was verified that the ZND solutions cover the range observed in the detailed
chemistry data. These detonations are shown in (𝐶,𝑇) space in Fig. 5.8. The
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boundary of the ZND profiles will be referred to as (𝐶ZND, 𝑇ZND). In addition to
the progress variable and temperature, along these profiles, the density, pressure,
all species mass fractions, mixture weight, enthalpy, and chemical source terms are
known. These variables are interpolated onto the 𝐶 and 𝑇 coordinates of the table.
There are 𝑁𝐶 = 100 points in 𝐶 ranging from 0 to 1.1 · max{𝑌H2O,CJ} (referred
to hereafter as 𝐶max). The points near 𝐶 = 0 use a logarithmic spacing and the
remaining points use a linear spacing,

𝐶 (𝑖) = 𝐶max
𝑁𝐶 − 𝑛 − 1

·
(
1
2

)𝑛+2−𝑖
for 2 ≤ 𝑖 ≤ 𝑛 + 1, (5.26)

𝐶 (𝑖) = 𝐶max
𝑁𝐶 − 𝑛 − 1

· (𝑖 − 𝑛 − 1) for 𝑛 + 2 ≤ 𝑖 ≤ 𝑁𝐶 , (5.27)

where 𝑛 is the number of logarithmically spaced points and 𝑖 is the𝐶 index. A value
of 𝑛 = 20 was found to provide sufficient resolution at low 𝐶. The 𝑇 coordinate
ranges from 250 to 3500 K, with 200 linearly spaced points. This range covers all
temperatures observed in the two-dimensional detailed chemistry simulation.

For all (𝐶,𝑇) coordinates inside the ZND boundary, the table outputs 𝜙(𝐶,𝑇) (for
𝜙 = 𝑌𝑠,𝑊, ℎ, ¤𝜔𝐶) are found using a bi-linear interpolation in 𝐶 and 𝑇 , using the
nearest ZND solutions. Outside the ZND boundary, extrapolation is required. The
extrapolation is done differently for the mixture composition and the thermodynamic
variables.

The mixture composition is extrapolated assuming all 𝑌𝑠 are primarily influenced
by 𝐶, not 𝑇 . Specifically, for (𝐶,𝑇) coordinates below the ZND boundary, the
mass fractions are copied down from the boundary, such that 𝑌𝑠 (𝐶,𝑇 < 𝑇ZND) =

𝑌𝑠 (𝐶,𝑇ZND). Similarly, for (𝐶,𝑇) coordinates above the ZND boundary, the mass
fractions are copied up from the boundary, such that𝑌𝑠 (𝐶,𝑇 > 𝑇ZND) = 𝑌𝑠 (𝐶,𝑇ZND).
For 𝐶 coordinates to the right of the CJ endpoint, the mass fractions are copied to
the right, such that𝑌𝑠 (𝐶 > 𝐶CJ, 𝑇) = 𝑌𝑠 (𝐶CJ, 𝑇). Then, the mixture weight𝑊 (𝐶,𝑇)
is computed using the extrapolated 𝑌𝑠 (𝐶,𝑇).

The mixture thermodynamic variables are primarily influenced by 𝑇 . For all 𝑇
coordinates, the species enthalpies, ℎ𝑠, are computed using the NASA polynomials
[118]. Because ℎ𝑠 are functions of 𝑇 only, there is no need to extrapolate outside the
ZND boundary. The mixture ℎ is computed using the exact ℎ𝑠 (𝑇) along with the
extrapolated mass fractions 𝑌𝑠 (𝐶,𝑇). For the denominator in the Newton iteration
(Eq. (5.7)), the heat capacity is computed as 𝑐𝑝 = 𝜕ℎ

𝜕𝑇

��
𝐶

; this is not the true mixture
heat capacity, but the derivative required for the Newton solver (which assumes
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(a) ZND table mixture enthalpy. (b) ZND table mixture enthalpy error.

(c) ZND table mixture molecular weight. (d) ZND table mixture molecular weight
error.

Figure 5.9: Tabulated mixture enthalpy (a) and molecular weight (c) using ZND
solutions. Error in the tabulated mixture enthalpy (b) and molecular weight (d)
compared to the conditional means, normalized by the maximum value from the
1D CJ solution. Equilibrium boundary (red solid line) and CJ solution (white solid
line).

constant 𝜌, 𝜌𝑒𝑡 , and 𝜌𝐶). Both𝑊 and ℎ vary smoothly throughout the table, as seen
in Fig. 5.9; this is particularly important for the convergence of the Newton iteration
in Eq. (5.7).

The boundary points (𝐶ZND, 𝑇ZND) are located at chemical equilibrium for each
of the ZND solutions; extrapolating the progress variable source term from inside
the ZND equilibrium boundary would be unphysical. Therefore, the source term
is set to zero outside the ZND boundary. The tabulated progress variable source
term is shown in Fig. 5.10a, with the ZND boundary and CJ profile overlaid for
reference. The source term varies smoothly throughout the table. Figure 5.10b
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(a) ZND table source term. (b) ZND table error.

(c) Isobar table source term. (d) Isobar table error.

(e) Isochor table source term. (f) Isochor table error.

Figure 5.10: Tabulated progress variable source term, normalized by 𝜌2, using
ZND solutions (a), isobaric ignitions (c), and isochoric ignitions (e). Error in the
tabulated source term compared to the conditional means ⟨·|𝐶,𝑇⟩, normalized by
the maximum value from the 1D CJ solution (b, d, f). Equilibrium boundary (red
solid line) and CJ solution (white solid line).
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shows the relative error of the progress variable source term predicted by the ZND
table against that from the conditional mean ⟨ ¤𝜔𝐶/𝜌2 |𝐶,𝑇⟩. The errors remain small
with a maximum of 7%. The errors in the other required table outputs, namely 𝑊

and ℎ, are even smaller and peak at 0.2% and 4% respectively.

As discussed in Sec. 5.2.1, the ignition process is important to reproduce the structure
and propagation of the detonation. Therefore, it is worth considering if other
ignition solutions (i.e. isobaric and isochoric ignitions) would predict equally well
the conditional means. A series of ignition cases, with initial𝑇 and 𝑝 corresponding
to the von Neumann states of the ZND solutions, are computed using FlameMaster
[124]. The individual ignitions are shown in (𝐶,𝑇) space in Fig. 5.11. From these
solutions, two additional tables are generated: an isobaric and an isochoric. The
procedure for interpolating and extrapolating the ignitions onto the (𝐶,𝑇) table
coordinates is the same as was done for the ZND table.

(a) Isobaric ignitions. (b) Isochoric ignitions.

Figure 5.11: One-dimensional ignition solutions in (𝐶,𝑇) space (black solid lines),
equilibrium boundary (red solid line), and CJ solution (blue solid line).

The progress variable source terms show the largest sensitivity to the choice of
ignition solutions and are shown in (𝐶,𝑇) space in Fig. 5.10. Qualitatively, the
dependence of the source term on 𝐶 and 𝑇 appears similar between the three
tables. Figure 5.10 also shows the relative errors in the three tables compared to
the conditional mean. The ZND table exhibits the lowest errors throughout the
range of (𝐶,𝑇) coordinates. For both ignition tables, beyond the reaction zone
and approaching the CJ state, the errors increase up to 30%. These tables would
likely result in an overproduction of 𝐶 in regions of the flow that should be nearing
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chemical equilibrium. From this comparison with the conditional means, the ZND
table is found to be the best option for tabulating in (𝐶,𝑇) coordinates without
relying on two-dimensional detailed chemistry calculations.

The ignition tables further highlight that premixed flamelets cannot be used for
table generation. Premixed flamelets require the unburnt temperature to be below
the ignition limit. As shown in Fig. 5.10d and 5.10f, the lower boundaries on
the both the isobaric and isochoric ignition tables have an initial temperature of
875 K. Unfortunately, for the CJ detonation, the von Neumann state temperature,
𝑇𝑣𝑁 = 1898 K, is well above this ignition threshold. While a premixed flamelet
table could be generated in (𝐶,𝑇) coordinates, the flamelet solutions could not fill
the (𝐶,𝑇) space relevant to detonations.

In addition to the 7Ar-diluted mixture used to illustrate the methodology in Sec. 5.2.2-
5.2.3, the tabulation approach is demonstrated for four other H2-O2 mixtures. The
parameters used for table generation are listed in Table 5.1. The same procedure
outlined in Sec. 5.2.3 is used for each mixture. The resulting tabulated source terms
are shown in Fig. 5.12.

Mixture 𝑝1 (kPa) 𝑢𝐶𝐽 (m/s) 𝑢𝑠 (m/s) 𝑢𝑠/𝑢𝐶𝐽

2H2-O2-12Ar 20 1516 1300-2200 0.84-1.45
2H2-O2-17Ar 20 1413 1200-2000 0.85-1.42
2H2-O2-3.5N2 20 1962 1540-2800 0.78-1.43
2H2-O2-5.6N2 20 1799 1450-2800 0.81-1.56

Table 5.1: Unburnt conditions and range of ZND shock velocities used for each
chemistry table. The unburnt temperature 𝑇1 = 295 K for all tables.

5.2.4 Reaction rates in (C,T) space
In one step chemistry models, typically the reaction rate is assumed to take an
Arrhenius form with a fixed parameter to describe the global activation energy.
Recent compressible tabulation approaches still assume an Arrhenius form, but
allow parameters to vary with the composition [84, 89]. Here, we explore the more
complex description of the chemical reactions inherently built into the table.

Figure 5.13 shows Arrhenius plots of the tabulated progress variable chemical source
term at the von Neumann state, the location of peak source term, and at 80% of the
maximum 𝐶. These three locations correspond to the symbols marked on Fig. 5.6.
To remove the offset between each mixture due to the varying amount of diluent
vs. reactants, the source term is normalized depending on the local reaction order.
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(a) 12Ar table source term. (b) 3.5N2 table source term.

(c) 17Ar table source term. (d) 5.6N2 table source term.

Figure 5.12: Tabulated progress variable source term, normalized by 𝜌2, using ZND
solutions for the mixtures/conditions listed in Table 5.1. Equilibrium boundary (red
solid line) and CJ solution (white solid line).

At the first two locations, ¤𝜔𝐶/𝜌2 is normalized by (1 − 𝑌dil.)2, where 𝑌dil. is either
𝑌Ar or 𝑌N2 , and the exponent of 2 comes from the general form for binary reactions,
Eq. (5.22). The third location was found to have 𝑎𝜌 ≈ 3 (see Fig. 5.6), so ¤𝜔𝐶 is
normalized instead by 𝜌3 and (1 − 𝑌dil.)3. These three locations in the detonation
can be linked to specific reactions in the detailed chemical mechanism.

As discussed for detailed chemistry in Sec. 5.2.1, the initiation reactions are domi-
nant in the post-shock region where 𝐶 ≈ 0. In particular, the following reaction,

H2 + O2 → HO2 + H, (5.28)

was found to have a significant influence on the induction zone length (see Fig. 5.1).
The slope corresponding to the Arrhenius rate for this reaction is indicated in
Fig. 5.13a (note the reaction rate constant follows the modified Arrhenius form with
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a 𝑇𝑛 term). Given the definition of the progress variable (Eq. (5.20)-(5.21)), the
only initiation reaction built into the progress variable source term is Eq. (5.28). As
a result, the same slope is found for each chemistry table regardless of the amount
or type of diluent, closely matching the slope from the detailed reaction rate.

(a) von Neumann state (𝐶 = 0). (b) 𝐶 at peak source term.

(c) 𝐶 = 0.8 · max {𝐶}.

Figure 5.13: Activation energy extracted from the chemistry tables along 𝐶 = 0, 𝐶
at the peak source term, and 𝐶 = 0.8 · max {𝐶}. Tables for stoichiometric H2-O2
diluted with 17Ar (black solid line), 12Ar (blue dashed line), 7Ar (red dash-dotted
line), 5.6N2 (orange solid line), and 3.5N2 (purple dashed line). Symbols correspond
to the (𝐶,𝑇) coordinate from the CJ ZND. Slopes corresponding to the rates for
H2+O2 → HO2+H (a), H+O2→ O+OH (b), and H+OH+H2O→2H2O (c) shown for
reference (black dotted line).

At the peak source term, there are several intermediate species and elementary
reactions involved. The following reaction,

H + O2 → O + OH, (5.29)
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was identified as the controlling reaction in determining ignition delay times [125].
The slope corresponding to the Arrhenius rate for this reaction is indicated in
Fig. 5.13b. The rate corresponding to Eq. (5.29) is a decent approximation for the
tabulated rates, albeit with some differences. Particularly for the N2-diluted tables,
there is some change in slope with temperature.

Near the maximum 𝐶, the termination reaction

H + OH + H2O → 2H2O, (5.30)

becomes important, so the assumption that second order reactions control the overall
progress variable source term no longer holds. This is consistent with the observed
source term-density dependence in Fig. 5.6. As for Eq. (5.28), the reaction rate for
Eq. (5.30) follows the modified Arrhenius form, now with the rate decreasing as
temperature increases. The tabulated source terms match this slope for a majority
of the temperature range, before quickly dropping off at high 𝑇 . These drops
correspond to approaching the ZND boundaries, as the source term goes to zero at
chemical equilibrium.

As evident from the changing slopes (indicative of changing activation energies),
the present chemistry tabulation captures the richness of the detailed chemistry (i.e,
different activation energy) while requiring only one additional transported scalar,
as in one-step chemistry. By tabulating ZND solutions directly in both 𝐶 and 𝑇

coordinates, there is no need to assume the functional form of the temperature
dependence of the source term.

5.3 A posteriori model validation
First, the chemistry model is tested for 1D argon-diluted detonations with two
different configurations in Sec. 5.3.1. Then, a 1D pulsating detonation in a nitrogen-
diluted mixture is demonstrated in Sec. 5.3.2. The model is validated for a variety
of two-dimensional detonations in Sec. 5.3.3. The numerical convergence of the
two-dimensional simulations is discussed in Sec. 5.3.4. Finally, Sec. 5.3.5 examines
the computational cost of the simulations.

5.3.1 One-dimensional argon-diluted detonation
The tabulation approach is verified in several one-dimensional simulations. First,
the table is tested using the ZND solution as the initial condition, propagating at the
CJ speed. The setup is consistent with the one-dimensional solution and grid (in
𝑥) described in Sec. 4.2. The detailed and tabulated chemistry solutions, compared
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at 𝑡 = 6 · 10−4 s in Fig. 5.14, are almost indistinguishable. As noted previously in
Sec. 4.1, the progress variable solution varies monotonically in 𝑥.

(a) Temperature. (b) Progress variable (𝑌H2O + 𝑌HO2).

Figure 5.14: One-dimensional CJ detonation in 7Ar-diluted mixture. Detailed
chemistry (black solid line) and tabulated chemistry (blue dashed line). The profiles
are shifted in 𝑥 such that the shock (identified by the maximum temperature gradient)
is located at 𝑥 = 0.

Next, to confirm the choice of progress variable, a non-stationary case is used to
compare two definitions: 𝐶 = 𝑌H2O and𝐶 = 𝑌H2O+𝑌HO2 . Rather than using the ZND
solution as the initial condition, a detonation may be triggered by a strong shock
propagating through the unburnt mixture. In this configuration, the initial progress
variable is 0 throughout the domain. A 1 m long shock tube configuration is used,
with a 0.01 m driver section followed by a 0.99 m test section. A uniform grid with
Δ𝑥 = L/20 is used for the entire domain. The initial conditions in the driver section
are 𝑇 = 2500 K and 𝑝 = 106 Pa, and the initial conditions in the test section are
𝑇 = 295 K and 𝑝 = 6.67 kPa. The initial velocity is equal to 0. At the start of the
simulation, a shock propagates to the right and an expansion propagates to the left.
As the unburnt mixture ignites, the shock wave transitions into a detonation wave
that propagates the length of the channel.

The evolution of the lead shock speed as it propagates down the channel is shown in
Fig. 5.15a. The solutions using both detailed chemistry and tabulated chemistry with
𝐶 = 𝑌H2O + 𝑌HO2 relax towards the CJ speed, whereas the tabulated chemistry with
𝐶 = 𝑌H2O propagates at a slower speed and decays without reaching an asymptote.
When the shock has reached 𝑥𝑠 = 0.9 m, the detailed and tabulated (including HO2)
cases are within 2-3% of the CJ speed. At this shock location, the instantaneous
profiles are compared in Fig. 5.15b and 5.15c. When the progress variable only
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(a) Shock speed.

(b) Temperature. (c) Progress variable.

Figure 5.15: Shock tube-initiated 1D detonation; shock propagation speed (nor-
malized by the CJ speed) shown as a function of the shock location 𝑥𝑠 (a), in-
stantaneous temperature and progress variable profiles shown when the shock has
reached 𝑥𝑠 = 0.9 (b,c). Detailed chemistry (black solid line), tabulated chemistry
with 𝐶 = 𝑌H2O (blue dashed line), and tabulated chemistry with 𝐶 = 𝑌H2O + 𝑌HO2

(red dash-dotted line); 𝑥𝑠 = 0.9 (a, vertical black dotted line).

includes H2O, ignition never occurs; the post-shock temperature is uniform and
the progress variable stays at 0. Including HO2 in the definition of the progress
variable results in temperature and progress variable profiles that closely match the
detailed chemistry solution. Slight differences in the detonation strength are likely
due to discrepancies in the initial transient. Due to the range of (𝐶,𝑇) conditions
encountered during the initial ignition process, this case is more sensitive to the
lower ZND boundary in the table. The lower bound of 𝑢𝑠 = 1400 m/s was sufficient
for cases initialized with the steady CJ solution; here, the lower bound is reduced to
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𝑢𝑠 = 1150 m/s. Other details of the table generation are the same as described in
Sec. 5.2.3; the modified table is shown in Fig. 5.16.

Figure 5.16: Tabulated progress variable source term for the non-stationary 7Ar-
diluted detonation, normalized by 𝜌2, using a lower ZND boundary of 𝑢𝑠 = 1150 m/s.
Equilibrium boundary (red solid line) and CJ solution (white solid line).

These one-dimensional results illustrate the importance of including HO2 in the
progress variable definition. In the tabulation of hydrogen flames, using 𝐶 = 𝑌H2O

was sufficient due to the role of diffusion [80]. Because detonations are driven
by ignition, not diffusion, it is necessary for the table to include the effects of
the initiation reactions. Therefore, all remaining test cases in this paper use 𝐶 =

𝑌H2O + 𝑌HO2 .

5.3.2 One-dimensional nitrogen-diluted detonation
To test the ability of the tabulation to capture additional unsteady 1D behavior, a more
unstable mixture is tested, this time diluting with nitrogen instead of argon: 2H2-
O2-5.6N2. Once again, the steady ZND solution is used as the initial condition, with
the minimum Δ𝑥 = L/20. Figure 5.17 shows the time evolution of the detonation
propagation speed. Both the detailed and tabulated chemistry solutions oscillate
about the CJ speed due to the physical instability of the detonation front. Although
the amplitude of the oscillations is somewhat reduced in the tabulated simulation,
the periods closely match between the two chemistry models. This indicates that the
tabulation approach is able to capture the limit cycle behavior expected for unstable
mixtures. The impact of grid resolution on this period-2 limit cycle is discussed in
Sec. 6.1.

Traditional stability analyses of 1D pulsating detonations have relied on one-step
chemistry characterized by a single activation energy (valid throughout the reaction
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Figure 5.17: 1D pulsating detonation in 5.6N2-diluted mixture; propagation velocity
normalized by the CJ speed. Detailed chemistry (black solid line) and tabulated
chemistry (blue dashed line).

process) [59, 126–134]. These studies identified the reduced activation energy
(𝐸𝑎/𝑅𝑇0, where 𝐸𝑎 is the activation energy and the reference temperature 𝑇0 is
typically the unburnt, pre-shock temperature [126]) as a controlling parameter in
separating stability limits/regimes. At lower activation energies, oscillations in
the shock pressure/speed are dampened out over time. As the activation energy
increases, a periodic limit cycle is achieved. In contrast, detailed chemistry is
composed of a multitude of elementary reactions, each with their own activation
energy. As a result, the overall/effective activation energy will be different in
different regions of the detonation, as discussed previously in Sec. 5.2.4. Because
the table contains information about the local reaction rates/activation energies, it
captures the onset of irregularity intrinsically. Other reduced models of two or three
steps have used the chain-branching cross-over temperature [135] or the ratio of the
reaction to induction zone lengths [136] as bifurcation parameters. More generally,
the ratio of the induction zone to reaction zone length influences the degree of
instability, regardless of the chemistry model used; these length scales and their
ratios are provided in Sec. 5.3.3 for various H2-O2 mixtures.

These results further highlight that a density scaling of 2 is a reasonable approx-
imation for the progress variable source term; the 1D instability originates within
the induction zone (from the von Neumann state, Fig. 5.13a, to the reaction zone,
around Fig. 5.13b), where second order reactions dominate the chemistry. While
there are third order reactions in the detailed mechanism, these are more important
further into the burnt region (Fig. 5.13c), and therefore have little impact on the
limit cycle behavior.
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5.3.3 Two-dimensional detonations
The chemistry table is validated for two-dimensional detonations using the same
configuration described in Sec. 4.2. Along with the H2-O2-7Ar mixture, four
additional mixtures are tested: 2H2-O2-12Ar, 2H2-O2-17Ar, 2H2-O2-3.5N2, and
2H2-O2-5.6N2. These conditions correspond to experimental mixture parameters
from [113]. Parameters for each mixture are included in Table 4.1, 4.2, and 5.1.
As described in Sec. 4.2, a uniform grid is used up to 𝑥 = 0.05 m, after which 1%
stretching is applied; because Δ𝑥 is dependent on the induction zone length, this
results in a different number of grid points in 𝑥 and 𝑦 for each mixture. To focus
on the late-time behavior, rather than discrepancies in the initial transient period,
the tabulated simulations are initialized from the detailed solutions at 𝑡 = 4 · 10−4 s
before running to 𝑡 = 6 · 10−4 s.

For each mixture, the time evolution of the propagation speed is shown in Fig. 5.18;
in all cases, the tabulated chemistry simulations sustain the CJ speed. Compared
to the planar-averaged propagation speed, the local propagation speed varies more
throughout the cell cycle, and is therefore useful for comparing the detonation
dynamics produced by the two chemistry models. For all mixtures tested, the
tabulated simulations are able to capture a majority of the variation within a cell
cycle. Both the amplitude and period of the velocity oscillations are similar between
the detailed and tabulated simulations.

The time evolution can be further examined by comparing numerical soot foils from
the two sets of simulations. The maximum pressure history is recorded over the
time range 𝑡 = 4 · 10−4 to 6 · 10−4 s and shown in Fig. 5.19. The sizes of the
observed cell structures are similar between the detailed and tabulated simulations,
indicating that the evolution of the triple point collisions is not impacted by the
chemistry tabulation. Additionally, the tabulation is able to reproduce the regu-
larity of the cell structure. The argon-diluted mixtures have more regular cells;
while the nitrogen-diluted mixtures have more irregular cell structures. The cell
sizes can be compared more quantitatively for the different mixtures and chemistry
models through histograms of the length scales observed. Figure 5.20 shows the
distributions of the length scales measured from the soot foils in Fig. 5.19. Length
scales are measured manually across a cell from triple point to triple point, both in
the streamwise and transverse directions. For all mixtures, the streamwise length
scales are longer than the transverse length scales; this is consistent between the
detailed and tabulated chemistry results. The widths and means of the distributions
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(a) 7Ar (b) 3.5N2

(c) 12Ar (d) 5.6N2

(e) 17Ar

Figure 5.18: Time evolution of the local propagation speed (normalized by the CJ
speed). Detailed chemistry (black solid line) and tabulated chemistry (blue dashed
line).

are also similar between the chemistry models. The soot foils are shown for com-
parison between the detailed chemistry and tabulated chemistry simulations only.
To compare the cell structure with that observed in experiments, the simulation
boundary conditions and domain size should match that of the experiment. While
the unburnt conditions in this work are taken from experiments [113], the channel
heights (𝐿𝑦 = 0.06 − 0.107 m) are smaller than that of the experimental facility
(𝐿𝑦 = 0.152 m), and the simulations are two-dimensional, not three-dimensional.
As such, direct comparisons to experimental cell sizes are outside the scope of the
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(a) 7Ar, detailed chemistry. (b) 7Ar, tabulated chemistry.

(c) 12Ar, detailed chemistry. (d) 12Ar, tabulated chemistry.

(e) 17Ar, detailed chemistry. (f) 17Ar, tabulated chemistry.

(g) 3.5N2, detailed chemistry. (h) 3.5N2, tabulated chemistry.

(i) 5.6N2, detailed chemistry. (j) 5.6N2, tabulated chemistry.

Figure 5.19: Numerical soot foils (maximum pressure trace) for the detailed (a, c,
e, g, i) and tabulated (b, d, f, h, j) simulations.

present work.

Instantaneous snapshots may be used to examine the detonation structure in more
detail. The numerical schlieren and temperature fields are shown for both N2 cases
in Fig. 5.21. Contour lines at the 𝐶 corresponding to the peak progress variable
source term (from the CJ solution in 1D) are shown to illustrate both the location
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(a) 7Ar (b) 3.5N2

(c) 12Ar (d) 5.6N2

(e) 17Ar (f) Mean cell sizes.

Figure 5.20: Distributions (a-e) of the length scales observed in the soot foils in
Fig. 5.19, normalized by the 1D induction zone length defined by the maximum
thermicity location. Streamwise cell lengths (gray histograms) and their mean
(black solid line), transverse cell heights (blue histograms) and their mean (blue
dashed line). Comparison of mean length scales for all cases (f).

of the reaction front relative to the shock front, as well as the unburnt pockets
behind the reaction front. Comparing the schlieren with the 𝐶 contour, the unburnt
pockets form next to transverse waves soon after a new triple point collision. As the
time evolution does not match instantaneously between the detailed and tabulated
simulations (see Fig. 5.18), these snapshots primarily offer a qualitative comparison
between the detailed and tabulated chemistry simulations. For both the 5.6N2 and
3.5N2-diluted mixtures, the sizes and shapes of the unburnt pockets are similar. For
both chemistry models, the unburnt pockets are found only near the most recent
triple point collisons; as the transverse waves propagate away from the triple point,
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(a) 5.6N2, detailed. (b) 5.6N2, tabulated. (c) 3.5N2, detailed. (d) 3.5N2, tabulated.

(e) 5.6N2, detailed. (f) 5.6N2, tabulated. (g) 3.5N2, detailed. (h) 3.5N2, tabulated.

Figure 5.21: Instantaneous schlieren (top) and temperature (bottom) for the N2-
diluted cases; contour at the 𝐶 corresponding to the peak ¤𝜔𝐶,𝐶𝐽 (red solid line, a-d;
black solid line, e-h).

the unburnt pockets are re-shocked and then burnt.

The time-averaged joint PDFs and conditional means of the progress variable source
term are shown in Fig. 5.22 and 5.23. For both the 7Ar (regular) and 5.6N2

(irregular) diluted cases, the tabulated chemistry simulation results closely reproduce
the detailed chemistry results. There are two small differences in the results. At the
source term peak, the tabulated distribution is slightly narrower than the detailed
distribution. At larger 𝐶, the tabulation does not capture all the variation in the
source term. These discrepancies are more easily seen in the conditional standard
deviations of the source term, shown in Fig. 5.24a and 5.24d. To separate the errors
introduced by the ZND table from the errors associated with the solution of the
progress variable transport equation, an a priori comparison is also shown. From
the detailed chemistry data, the progress variable 𝑌H2O + 𝑌HO2 and the temperature
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(a) 7Ar, detailed chemistry. (b) 7Ar, tabulated chemistry.

(c) 12Ar, detailed chemistry. (d) 12Ar, tabulated chemistry.

(e) 17Ar, detailed chemistry. (f) 17Ar, tabulated chemistry.

Figure 5.22: Two-dimensional Ar-diluted detonations. Comparison of detailed (a,
c, e) and a posteriori tabulated (b, d, f) progress variable source term time-averaged
over 𝑡 = 4 · 10−4 to 6 · 10−4 s. Joint PDF (red/yellow colormap showing the natural
log of the PDF) and conditional mean on 𝐶 (black solid line).

are used to look up the progress variable source term from the table. The a priori
tabulated conditional standard deviations closely match the detailed ones. This



108

(a) 3.5N2, detailed chemistry. (b) 3.5N2, tabulated chemistry.

(c) 5.6N2, detailed chemistry. (d) 5.6N2, tabulated chemistry.

Figure 5.23: Two-dimensional N2-diluted detonations. Comparison of detailed (a,
c) and a posteriori tabulated (b, d) progress variable source term time-averaged over
𝑡 = 4 · 10−4 to 6 · 10−4 s. Joint PDF (red/yellow colormap showing the natural log
of the PDF) and conditional mean on 𝐶 (black solid line).

indicates that the table itself is able to describe virtually all the variation in the source
term present in the detailed chemistry simulations. Minor differences in the results
emerge primarily due to a buildup of errors over time of the simulation. Specifically,
the slight underprediction of the standard deviations (up to about 5% at the peak
source term) for the a posteriori tabulated source term reflects slight differences
in the dynamical evolution of the 2D detonation (as shown in the previous soot
foils). These results indicate that even with the cumulative errors from the table
coordinates, table generation, and numerical transport of the progress variable, the
tabulation is still able to reproduce a majority of the variation in the source term for
both regular and irregular mixtures.
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(a) 7Ar, source term rms. (b) 3.5N2, source term rms.

(c) 12Ar, source term rms. (d) 5.6N2, source term rms.

(e) 17Ar, source term rms.

Figure 5.24: Conditional standard deviation of the source term normalized by the
maximum value from the 1D CJ solution from detailed chemistry (black solid line),
a priori tabulated chemistry (blue dashed line), and a posteriori tabulated chemistry
(red dash-dotted line).

5.3.4 Numerical convergence
To assess the impact of grid resolution on the two-dimensional simulations, one
regular case (2H2-O2-7Ar) and one irregular case (2H2-O2-5.6N2) are tested at
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varying resolutions: 10, 20, and 32 points per induction length. The resulting
soot foils are shown in Fig. 5.25 and 5.26. In the 7Ar-diluted cases, refining the
grid primarily sharpens the cell structures; the sizes/shapes of the cells are fairly
consistent. The resolution has a stronger influence on the 5.6N2-diluted cases.
At 10 points per induction length, the cell structure is more regular compared to
the two finer grids. While the irregular structures are sharper in the finest case
(32 points per induction length), 20 points per induction length is sufficient to
reproduce sizes/shapes of the cells. Therefore, the results presented in this chapter
use a resolution of 20 points per induction length. It is also worth noting that
for both mixtures, the resolution effects are similar between the detailed chemistry
and tabulated chemistry simulations. The influence of the resolution on the one-
dimensional instability will be investigated in Sec. 6.1.

(a) Δ𝑥 = L/10, detailed (b) Δ𝑥 = L/10, tabulated

(c) Δ𝑥 = L/20, detailed (d) Δ𝑥 = L/20, tabulated

(e) Δ𝑥 = L/32, detailed (f) Δ𝑥 = L/32, tabulated

Figure 5.25: 2H2-O2-7Ar soot foils at varying grid resolutions.
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(a) Δ𝑥 = L/10, detailed (b) Δ𝑥 = L/10, tabulated

(c) Δ𝑥 = L/20, detailed (d) Δ𝑥 = L/20, tabulated

(e) Δ𝑥 = L/32, detailed (f) Δ𝑥 = L/32, tabulated

Figure 5.26: 2H2-O2-5.6N2 soot foils at varying grid resolutions.

5.3.5 Computational cost
One of the main reasons for using a tabulated chemistry model in place of a detailed
mechanism is to reduce the computational cost. The computational time require-
ments for each component of the code are shown in Fig. 5.27, using the average
over 20 timesteps from the two-dimensional simulations. The combustion tim-
ing includes computation of all chemistry-related source terms and thermodynamic
properties; the continuity, momentum, and energy timings include computation of
the convective and viscous terms in the respective equations, as well as the time
integration; the scalar timing includes all species equations for the detailed simula-
tion, and the progress variable equation for the tabulated simulation; the SFS timing
accounts for all terms related to the treatment of shocks and discontinuities; the rest
timing accounts for everything else, a large portion of which is the temperature in-
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version (Eq. (5.7)). This computational budget does not include the pre-processing
time required for table generation. For one mixture, the table generation takes 2 min-
utes running Matlab in serial on a desktop. Relative to the total CPU hours required
for the two-dimensional simulation, the cost of table generation is negligible.

Overall, the computational time is reduced by a factor of 4.1 when using the tabulated
chemistry model. A substantial reduction in the CPU-time per point is observed for
both the combustion and scalar timings. In the tabulated simulation, the combustion
cost is reduced to a table lookup for the progress variable source term, rather than
computing chemical source terms for all 9 species and 54 reactions present in the
detailed hydrogen mechanism. The scalar cost is reduced because only one transport
equation (for the progress variable) is required instead of the 9 species equations.
The scalar timing shows an absolute speedup by a factor of 9.4, going from 51%
of the total computational cost to 21%. The combustion timing shows an absolute
speedup by a factor of about 17.3, going from 32% of the total computational cost
to 8%.

Figure 5.27: Computational time per grid point. Detailed simulation (black shaded
bars) and tabulated simulation (blue shaded bars).

All the detailed chemistry results presented used a corrected WENO scheme to
ensure that

∑
𝑠 𝑌𝑠 = 1 (see Sec. 4.1); this was necessary to capture the pulsating

behavior in Sec. 5.3.2 and the irregular cell structures in Sec. 5.3.3 for the N2-
diluted cases. The timings shown correspond to this scalar transport scheme for
the detailed chemistry simulations, and the standard fifth order WENO scheme for
the tabulated chemistry simulations; the same spatial and temporal resolution was
used for both chemistry models. The scalar transport scheme has some effect on the
scalar timing; when the standard WENO scheme is used with detailed chemistry,
the scalar transport is about 10% faster. However, as discussed in more detail in
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Sec. 6.1, when the standard WENO scheme is used, detailed chemistry requires a
finer grid for the same level of error as tabulated chemistry. This is an additional
source of computational savings.

The current work focuses on hydrogen combustion. More substantial computa-
tional savings are expected for larger chemical mechanisms required for hydro-
carbons, and for state-to-state thermochemical models that incorporate vibrational
non-equilibrium effects [53]. The timings in Fig. 5.27 can be used to estimate poten-
tial cost reduction for more complex fuels. For example, a reduced chemical model
for n-heptane (regularly used in turbulent premixed flames) requires 35 species and
217 reactions (forward and backward reactions counted separately) [55]. In general,
for detailed chemical kinetic models there is a linear correlation between the num-
ber of species and number of reactions [137]. If it is assumed that the combustion
and scalar timings scale linearly with the number of species, we expect speedup
factors of about 37 and 67 for the scalar and combustion timings, respectively. This
would result in an overall speedup of approximately 14. Other factors may affect
the ultimate performance for larger mechanisms; future work is required to confirm
the estimated speedup of the tabulated chemistry model with more complex fuels.

5.4 Conclusion
This chapter proposed a new tabulated chemistry approach valid for detonations.
One-dimensional ZND solutions were selected as the relevant physical problem to
be tabulated, with progress variable and temperature as the table coordinates. The
new model reproduced critical parameters such as induction zone length, detonation
velocity, and cell structure compared to the detailed chemistry results. The total
cost of simulations was reduced by over 4 times for hydrogen-oxygen detonations.
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C h a p t e r 6

DISCUSSIONS

Chapters 2 and 3 presented the mathematical framework used for the numerical simu-
lations of shock-dominated flows. Using this framework, one- and two-dimensional
detonations with detailed finite-rate chemistry were performed in Chapter 4. In
Chapter 5, the tabulated chemistry method was formulated for detonations and vali-
dated by comparing to detailed chemistry results. The performance and limitations
of the overall computational framework are reviewed here by focusing on three spe-
cific topics. First, the limit cycle of the one-dimensional detonation instability is
revisited in Sec. 6.1. In Sec. 6.2, the evolution of regular and irregular detonations
are examined in more detail in thermo-chemical space (i.e., (𝐶,𝑇) space). Finally,
the potential impact of the SFS viscosity is investigated by analyzing the flow field
behind the detonation front through the vorticity in Sec. 6.3. The objective is not
to perform an in-depth analysis of the mathematical or physical phenomena, but to
assess the impact of the numerical and modeling choices introduced in the previous
chapters.

6.1 One-dimensional instability
One-dimensional pulsating detonations were used as validation cases in Sec. 4.3 and
5.3.2. These pulsating detonations are perfect examples of bifurcations, sometimes
referred to as non-classical Hopf bifurcations [138] or period-doubling bifurcations
[134], and have been the subject of previous numerical and theoretical studies. The
detonation instability is revisited here for both N2-diluted mixtures to assess the
relative impacts of the numerical transport (see Chapter 4) and chemistry modeling
(see Chapter 5).

The peak pressure for the limit cycle behavior is shown as a function of time in
Fig. 6.1. For both 5.6N2 and 3.5N2, the cases with detailed chemistry and corrected
WENO scheme (i.e., WENO-UP in Chapter 4) display the strongest instability.
The tabulated chemistry cases show oscillations with a similar period, although the
amplitude is somewhat reduced. In contrast, the detailed chemistry cases using the
standard WENO scheme have oscillations with much lower amplitudes (by about
an order of magnitude) and shorter periods; in the 5.6N2 case, this amplitude grows
slowly, while in the 3.5N2 case, the oscillations are dampened over time. For both
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mixtures, the tabulated chemistry cases have almost the same period as the detailed
WENO-UP cases; the time between peaks is about 1-5% shorter in the tabulated
cases. This is an improvement from the detailed WENO cases, which have much
shorter periods, about 70% those of the detailed WENO-UP. The estimated periods
(and corresponding frequencies) are listed in Table 6.1.

(a) 5.6N2.

(b) 3.5N2.

Figure 6.1: Shock pressure over time, normalized by the steady von Neumann state
pressure (𝑝𝑣𝑁 ). Detailed chemistry with WENO-UP (black solid line), tabulated
chemistry (blue dashed line), and detailed chemistry with WENO (red dash-dotted
line).

Two periods of the shock oscillation are shown in Fig. 6.2 to illustrate the differences
in the limit cycle behavior. In the 5.6N2 case, the detailed chemistry case using
standard WENO spans the smallest region in phase space (see Fig. 6.2b). When the
species transport scheme is changed to WENO-UP, two different modes are observed.
This is referred to as period-doubling [117, 134]. The tabulated chemistry case also
shows two modes, with amplitudes between the two modes of the detailed WENO-
UP case. In the 3.5N2 case, both the detailed WENO-UP and tabulated chemistry
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cases have a single instability mode, with a slightly lower amplitude in the tabulated
case (see Fig. 6.2d). The detailed case with WENO shows almost no deviation from
the von Neumann state pressure.

(a) 5.6N2. (b) 5.6N2.

(c) 3.5N2. (d) 3.5N2.

Figure 6.2: Limit cycle over two periods. Shock pressure vs. time (a, c) and time
derivative of pressure vs. pressure (b, d). Detailed chemistry with WENO-UP
(black solid line), tabulated chemistry (blue dashed line), and detailed chemistry
with WENO (red dash-dotted line).

The limit cycle can also be analyzed through the power spectral density (PSD), shown
in Fig. 6.3. The PSD is computed using Welch’s overlapped segment averaging
estimator with two different window sizes: 9000Δ𝑡 (spanning approximately two
periods in 𝑡) and 30000Δ𝑡 (spanning several periods, to include more variations in
the peak amplitude). When the smaller window is used, the tabulated case closely
matches the detailed case with WENO-UP for a large range of frequencies; while
the detailed case with WENO is orders of magnitude lower, especially at the lower
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(a) 5.6N2, window of 9 · 10−5 s. (b) 5.6N2, window of 3 · 10−4 s.

(c) 3.5N2, window of 4.5 · 10−5 s. (d) 3.5N2, window of 1.5 · 10−4 s.

Figure 6.3: Welch’s PSD estimate. Detailed chemistry with WENO-UP (black solid
line), tabulated chemistry (blue dashed line), and detailed chemistry with WENO
(red dash-dotted line). Dotted lines indicate the 95% confidence interval for the
PSD estimate.

frequencies. When the larger window is used, differences between the detailed
WENO-UP and tabulated cases become evident at the low frequencies. The lowest
peak frequencies from the PSD (with the larger window) are included in Table 6.1
for comparison with the frequencies estimated from Fig. 6.1. For all cases, the peak
frequencies from the PSD closely match the corresponding frequencies estimated
from Fig. 6.1. For 5.6N2, the first peak in Fig. 6.3b corresponds to the double
period; the second peak corresponds to the period between adjacent peaks. The
detailed WENO case does not show the first peak frequency; this is consistent with
the lack of period-doubling seen in Fig. 6.2. The tabulated case matches both peak
frequencies closely, while the detailed WENO case peaks at a higher frequency.
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These observations are similar for 3.5N2 in Fig. 6.3d. Both the detailed WENO-UP
and tabulated cases match the first peak, while the detailed WENO case peaks at a
higher frequency.

detailed, WENO-UP tabulated detailed, WENO
5.6N2

1-period, est. (s) 4.52 · 10−5 4.43 · 10−5 2.95 · 10−5

Frequency, est. (Hz) 2.21 · 104 2.26 · 104 3.39 · 104

Frequency, PSD (Hz) 2.33 · 104 2.33 · 104 3.33 · 104

2-period, est. (s) 9.09 · 10−5 8.89 · 10−5 –
Frequency, est. (Hz) 1.10 · 104 1.12 · 10−4 –
Frequency, PSD (Hz) 104 104 –

3.5N2
Period, est. (s) 2.27 · 10−5 2.16 · 10−5 1.67 · 10−5

Frequency, est. (Hz) 4.40 · 104 4.62 · 104 5.99 · 104

Frequency, PSD (Hz) 4.67 · 104 4.67 · 104 6 · 104

Table 6.1: Periods and frequencies estimated from the time plots (Fig. 6.1) and
the PSD (Fig. 6.3). 2-period refers to the period/frequency describing the period-
doubling; 1-period refers to the time between two adjacent peaks.

The results in Fig. 6.1 to 6.3 and Table 6.1 all used a grid resolution of 20 points per
induction length. However, the one-dimensional instability is sensitive to the grid
resolution, as excessive numerical diffusion can alter the limit cycle behavior [139].
To understand the impact of the grid resolution on the one-dimensional instability,
resolutions of 10, 20, 32, 50, and 100 points per induction length were tested for the
5.6N2-diluted mixture.

For all three methods, 10 points per induction length is not sufficient to establish
the limit cycle, and peak frequencies could not be extracted. At 20 points per
induction length (shown in Fig. 6.1), detailed chemistry with standard WENO has
much weaker oscillations than the other two cases. Both the detailed chemistry with
WENO-UP and the tabulated chemistry cases show a period-2 limit cycle, although
there are some discrepancies in the peak amplitudes. If the standard WENO scheme
had been used for all detailed chemistry simulations in Chapters 4 to 5, a finer grid
would be required to observe any period-doubling (in one dimension); it is also
likely a finer grid would be needed to achieve the same degree of irregularity in the
N2 soot foils (in two dimensions). The WENO-UP scheme lessens the resolution
requirements for detailed chemistry, as 20 points per induction length is sufficient for
period-doubling. Interestingly, the tabulated chemistry simulation exhibits period-
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doubling at 20 points per induction length, even though the standard WENO scheme
is used.

(a) Mean frequency for all peaks. (b) Mean frequency for upper peaks.

Figure 6.4: 1D pulsating detonation (2H2-O2-5.6N2) at varying grid resolutions.
Detailed chemistry with WENO-UP (black solid line, circles), tabulated chemistry
(blue dashed line, triangles), and detailed chemistry with standard WENO (red
dash-dotted line, squares).

For resolutions of 20, 32, 50, and 100 points per induction length, the average
peak frequency (between all peaks in Fig. 6.4a, and between the upper peaks in
Fig. 6.4b) are extracted from the pressure-time data. (In the detailed WENO case,
period-doubling does not occur until 32 points per induction length, hence the
much larger errors at 20 points per induction length.) The frequency errors are
computed relative to the frequencies extracted from the detailed WENO-UP case at
the finest resolution, 𝑓𝑝𝑒𝑎𝑘,∞. As Δ𝑥 decreases, the frequencies for all three methods
generally converge towards 𝑓𝑝𝑒𝑎𝑘,∞. Going from Δ𝑥 = L/20 to L/32, there is not
much difference in the error for both the detailed WENO-UP and tabulated cases.
While there is a large decrease in the error for the detailed WENO case, the error at
Δ𝑥 = L/32 is still larger than both the detailed WENO-UP and tabulated errors at
Δ𝑥 = L/20. By Δ𝑥 = L/50, the detailed WENO case finally shows errors below
those of the detailed WENO-UP and tabulated at Δ𝑥 = L/20. This highlights
another advantage of the tabulation approach: given the same numerical scheme
(standard fifth-order WENO), a coarser grid may be used when using tabulated
chemistry in place of detailed chemistry. A larger Δ𝑥 allows for a larger Δ𝑡 while
still satisfying the CFL condition, and fewer grid points are required for a given
domain. These computational cost savings are in addition to those discussed in
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Sec. 5.3.5, in which the comparison used the same Δ𝑥 and Δ𝑡 for both chemistry
models.

Summary Overall, the tabulated chemistry models reproduce a majority of the
pulsating behavior observed in the detailed chemistry (WENO-UP) results, with only
one degree of freedom (one progress variable, compared to nine species required
for detailed chemistry). Furthermore, it does not suffer from the same numerical
sensitivity to the scalar transport scheme as detailed chemistry. When the standard
WENO scheme is used, the resolution requirements are less strict for tabulated
chemistry than for detailed chemistry.

6.2 Detonation behavior in (𝐶,𝑇) space
The conditional means and standard deviations in Sec. 5.2 provided an overall
assessment of the (𝐶,𝑇) ZND table’s ability to reproduce the thermo-chemical
states in a two-dimensional detonation. Such analysis may be referred as a “static”
analysis. The present section expands with an investigation of the dynamic behavior
in (𝐶,𝑇) space.

First, a detonation with a regular cell structure is examined. The numerical schlieren,
temperature field, and (𝐶,𝑇) curves are shown for the 7Ar-diluted mixture in Fig. 6.5
and 6.6. In Fig. 6.5, four 𝑦 locations are marked, corresponding to different condi-
tions at the detonation front. As seen in the (𝐶,𝑇) diagram at 𝐶 = 0, locations 𝑦1

and 𝑦2 are initially overdriven, 𝑦3 is initially underdriven, and 𝑦4 is near the CJ von
Neumann state. On each horizontal cut, a specific point is marked in (𝑥, 𝑦) coor-
dinates (Fig. 6.5a and 6.5b) and (𝐶,𝑇) coordinates (Fig. 6.5c). Both the markers
on 𝑦1 and 𝑦2 indicate the transition across a previous shock collision, going from
a locally overdriven region to a decaying region at the end of a previous cell. In
(𝐶,𝑇) space, this is seen as a sudden drop in temperature. Because 𝑦2 is nearer the
primary shock front, the drop in 𝑇 is accompanied by a drop in𝐶 as the line cut goes
from a hotter region with faster reactions to a cooler region with slower reactions.
The line cuts 𝑦3 and 𝑦4 start at locally decaying regions on the detonation front; the
markers indicate where a previous triple point (𝑦3) or transverse shock wave (𝑦4)
is crossed, resulting in an increase in temperature. Aside from the locations where
triple points or shocks are crossed, within the reaction zone up to 𝐶 = 0.06, the
(𝐶,𝑇) “trajectories” vary smoothly, roughly parallel to the tabulated ZND solutions.

In Fig. 6.6, three 𝑥 locations are marked, corresponding to different distances from
the primary shock front. Location 𝑥1 is nearest the shock front, in the reaction
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(a) Schlieren. (b) Temperature field.

(c) Line cuts in (𝐶,𝑇) space.

Figure 6.5: 7Ar tabulated chemistry solution at 𝑡 = 5 · 10−4 s. Horizontal cuts at
four locations across the detonation front (a-b) and corresponding curves in (𝐶,𝑇)
space (c); 𝑦1 (blue dashed line), 𝑦2 (red dash-dotted line), 𝑦3 (orange solid line),
and 𝑦4 (purple dashed line). Symbols correspond to the same locations in (𝑥, 𝑦)
(a-b) and (𝐶,𝑇) (c) coordinates. The CJ ZND solution and the ZND boundary are
indicated by the black solid lines.

zone, and therefore spans a wide range of 𝐶 values in (𝐶,𝑇) space. Between shock
collisions, this line cut varies smoothly in (𝐶,𝑇) space. Three points are marked
on the cut at 𝑥1. Points 𝑎 and 𝑏 correspond to locally overdriven portions of the
detonation front; 𝑎 is farther from the shock front than 𝑏, and has progressed farther
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(a) Schlieren. (b) Temperature field.

(c) Line cuts in (𝐶,𝑇) space.

Figure 6.6: 7Ar tabulated chemistry solution at 𝑡 = 5 · 10−4 s. Vertical cuts at
three locations in the wake of the detonation front (a-b) and corresponding curves
in (𝐶,𝑇) space (c); 𝑥1 (blue dashed line), 𝑥2 (red dash-dotted line), and 𝑥3 (orange
solid line). Symbols/letters correspond to the same locations in (𝑥, 𝑦) (a-b) and
(𝐶,𝑇) (c) coordinates. The CJ ZND solution and the ZND boundary are indicated
by the black solid lines.

in 𝐶. Point 𝑐 corresponds to a locally underdriven portion of the detonation front,
and is near 𝐶 = 0. Locations 𝑥2 and 𝑥3 are in the wake past the main reaction front;
in (𝐶,𝑇) space, there is almost no change in𝐶, and the temperature fluctuates about
the CJ ZND solution. The results in Fig. 6.6 illustrate that most of the production
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of 𝐶 occurs over a short distance; portions of 𝑥1 nearly reach 𝐶 = 0.06. Beyond this
main reaction zone, there is only a gradual increase in 𝐶; from 𝑥2 to 𝑥3, 𝐶 increases
by about 0.005.

(a) Schlieren. (b) Temperature field.

(c) Line cuts in (𝐶,𝑇) space.

Figure 6.7: 5.6N2 tabulated chemistry solution at 𝑡 = 4.7 · 10−4 s. Horizontal cuts at
four locations across the detonation front (a-b) and corresponding curves in (𝐶,𝑇)
space (c); 𝑦1 (blue dashed line), 𝑦2 (red dash-dotted line), 𝑦3 (orange solid line),
and 𝑦4 (purple dashed line). Symbols correspond to the same locations in (𝑥, 𝑦)
(a-b) and (𝐶,𝑇) (c) coordinates. The CJ ZND solution and the ZND boundary are
indicated by the black solid lines.

The same analysis is performed for the 5.6N2-diluted mixture in Fig. 6.7 and 6.8.
Once again, in Fig. 6.7, four 𝑦 locations are selected and mapped onto (𝐶,𝑇) space.
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At 𝐶 = 0, locations 𝑦1 and 𝑦3 are initially overdriven, while locations 𝑦2 and 𝑦4 are
initially underdriven. The marker on 𝑦1 indicates a local drop in temperature as one
transverse shock wave is crossed, prior to being reshocked upon crossing another
shock, after which the temperature increases again. The other three line cuts have
smooth (𝐶,𝑇) profiles for a majority of the range of 𝐶, again roughly parallel to
the tabulated ZND solutions; they extend farther in 𝐶 space before encountering
any additional shocks. Due to variations in the detonation strength along the front,
the physical distance from the shock front does not directly translate to distance in
progress variable space. The markers on 𝑦2 and 𝑦4 indicate the end of a relatively
low temperature region post-shock; despite the distance from the shock front, these
points still have small values of 𝐶, as seen in (𝐶,𝑇) space. The marker on 𝑦3,
however, is much closer to the shock front but is near the fully burnt side of the 𝐶

range.

In Fig. 6.8, three 𝑥 locations are shown at different distances from the shock front,
with the corresponding curves in (𝐶,𝑇) space. As with the 7Ar-diluted case, the
cut at 𝑥1 is nearest the front and crosses over locally over- and underdriven regions,
spanning a variety of conditions in𝐶 and𝑇 . The locations farther in the wake, 𝑥2 and
𝑥3, primarily fluctuate in 𝑇 , and show slightly more variation in 𝐶 than in the 7Ar
case. Four points are marked along 𝑥1. Point 𝑎 is in the vicinity of multiple shock
collisions and is at both high 𝐶 and 𝑇 . Points 𝑏 and 𝑑 are in locally underdriven
regions; 𝑏 is past the main reaction zone, and therefore at higher 𝐶, and 𝑑 is nearest
the shock front, near𝐶 = 0. Point 𝑐 is on a transverse shock between an underdriven
and overdriven region; in (𝐶,𝑇) space, this is a turning point as the curve crosses
the CJ ZND solution.

Summary The table was generated from one-dimensional steady ZND solutions.
Sometimes the two-dimensional detonation structure locally resembles that of un-
derdriven or overdriven ZND solutions, but features such as triple points are clearly
not one-dimensional. Despite this, the (𝐶,𝑇) table is able to capture the two-
dimensional and unsteady behavior.

6.3 Vorticity and the impact of SFS viscosity
The soot foils in Sec. 5.3.3 were a useful means of comparing the evolution of
triple points over time of the simulation. The tabulated chemistry simulations
were found to reproduce the cell structures of the detailed chemistry simulations;
the argon-diluted mixtures were characterized by regular cell structures, while the
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(a) Schlieren. (b) Temperature field.

(c) Line cuts in (𝐶,𝑇) space.

Figure 6.8: 5.6N2 tabulated chemistry solution at 𝑡 = 4.7 · 10−4 s. Vertical cuts at
three locations in the wake of the detonation front (a-b) and corresponding curves
in (𝐶,𝑇) space (c); 𝑥1 (blue dashed line), 𝑥2 (red dash-dotted line), and 𝑥3 (orange
solid line). Symbols/letters correspond to the same locations in (𝑥, 𝑦) (a-b) and
(𝐶,𝑇) (c) coordinates. The CJ ZND solution and the ZND boundary are indicated
by the black solid lines.

nitrogen-diluted mixtures had irregular cells. Vorticity is cited as one mechanism by
which soot foils are generated in experiments [117, 140]. As such, the differences
in regularity can also be observed by looking at the vorticity fields. Vorticity is
also a great means to investigate the impact of the numerical methods and the SFS
viscosity.
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(a) 7Ar, 𝑡 = 6 · 10−4 s. (b) 3.5N2, 𝑡 = 5.1 · 10−4 s.

(c) 12Ar, 𝑡 = 5.5 · 10−4 s. (d) 5.6N2, 𝑡 = 4.7 · 10−4 s.

(e) 17Ar, 𝑡 = 5.4 · 10−4 s.

Figure 6.9: Vorticity field for regular (a, c, e) and irregular (b, d) detonations.
Isocontours of |∇𝜌 | indicate the shock front (black solid lines).
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Representative instantaneous vorticity fields for each of the mixtures are shown in
Fig. 6.9. Vorticity is generated at the detonation front through mechanisms including
triple point collisions and baroclinic torque [117, 140–142] and is then advected
downstream. For the argon-diluted mixtures, these vortical structures are fairly
uniform, consistent with the regular cell structure observed in the soot foils. There
is some loss in the symmetry of the vortices downstream; because the soot foils track
the maximum pressure at the primary shock front/triple point collisions, this loss
of symmetry in the wake was not observed in Fig. 5.19. In contrast, the nitrogen-
diluted mixtures exhibit a more chaotic vorticity field; the sizes of the vortices and
the spacing between neighboring vortices vary throughout the wake.

To compare the magnitude of vorticity generated between different mixtures, the
vorticity, 𝜔𝑧, was non-dimensionalized as 𝜔𝑧L/𝑢𝐶𝐽 , where L and 𝑢𝐶𝐽 are specific
to the mixture. The induction zone length and the CJ speed are relevant length and
velocity scales at the detonation front; because vorticity is generated just behind the
detonation front, these quantities are natural choices for normalization. The non-
dimensional vorticity fields in Fig. 6.9 illustrate that the nitrogen-diluted mixtures
experience relatively higher vorticity magnitudes immediately behind the detonation
front.

(a) Unscaled vorticity magnitude. (b) Density-scaled vorticity magnitude.

Figure 6.10: Maximum vorticity magnitude vs. distance from the detonation
front, corresponding to the time snapshots in Fig. 6.9; diluted with 7Ar (black
solid line/circles), 12Ar (blue dashed line/triangles), and 17Ar (red dash-dotted
line/squares). Horizontal lines in (b) show the average of local peaks between
𝑥 − 𝑥0 = 0.02 and 0.05 m.

The evolution of the vorticity in the wake of the detonation front can be quantified by
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looking at the maximum vorticity magnitude in Fig. 6.10a for the argon-diluted cases.
As in Fig. 6.9, the induction length and CJ speed are used for non-dimensionalization
to compare across mixtures. At the shock (𝑥 = 𝑥0), there is a peak in vorticity for
all mixtures. In the wake, the vorticity shows several local peaks corresponding
to the vortical structures advecting downstream. The magnitudes of the peaks
decrease gradually with distance from the shock front, indicating a decay of vorticity.
However, it is important to account for the decrease in the density through the wake
of the detonation. In the absence of vortex stretching, baroclinic torque, viscous
diffusion, and body forces, the vorticity transport equation simplifies to

𝐷 (𝜔𝑧/𝜌)
𝐷𝑡

= 0, (6.1)

suggesting that 𝜔𝑧/𝜌, not 𝜔𝑧, should be conserved as vortices are advected down-
stream. Figure 6.10b shows the maximum magnitude of vorticity scaled by the
density. After an initial drop in vorticity immediately after the shock front (where
the vorticity is generated), by about 0.02 m into the wake, the density-scaled vorticity
fluctuates around a steady value. This evolution is a direct consequence of the nu-
merical and mathematical framework used. The numerical formulation (described
in Sec. 2.2) discretely conserves kinetic energy; as such, the numerical scheme does
not introduce artificial viscosity and should have minimal impact on the decay of
vorticity in the wake.

Vorticity may still be impacted by physical viscosity and the SFS terms. In Sec. 2.6.2,
it was observed that the velocity gradients due to vortical structures could lead to
nonzero SFS viscosity. Given the vorticity generation at the detonation front, and
the propagation of vortices throughout the wake, it is important to consider the
SFS viscosity again here and contrast it to the physical viscosity. Using the same
snapshots from Fig. 6.9 for the 7Ar- and 5.6N2-diluted mixtures, the SFS shear
viscosity is shown in Fig. 6.11. As expected, the largest SFS viscosity is at the
primary shock front, followed by the transverse shocks. The magnitudes of SFS and
physical viscosity are compared along horizontal line cuts in Fig. 6.11c and 6.11d.
Across the primary shock, the SFS viscosity is about two orders of magnitude
larger than the physical viscosity. In the wake for the 7Ar-diluted case, the physical
viscosity is larger than the SFS for a majority of the domain. For the 5.6N2-diluted
case, due to the stronger transverse waves, there are some locations in the wake
where the SFS viscosity exceeds the physical viscosity. Taken together, the results
in Fig. 6.10b and 6.11 demonstrate that the SFS viscosity has minimal impact on
the vorticity field in the wake.
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(a) 7Ar, 6 · 10−4 s. (b) 5.6N2, 4.7 · 10−4 s.

(c) 7Ar, . (d) 5.6N2, 𝑦 = 0.045 m.

Figure 6.11: SFS shear viscosity in the detonation. Comparison to physical viscosity
along the horizontal cuts (marked in white dashed lines on the contour plots); SFS
viscosity (black solid line), and physical viscosity (blue dashed line). Discontinuities
in the SFS viscosity correspond to regions where the SFS terms are zero.

Summary The detonation simulations in this thesis are idealized, propagating in
two-dimensional channels. In practical configurations, the flow is three-dimensional
and turbulent. As such, it is important to assess the impact of the numerical
framework on vorticity. This analysis is intended as a first step towards future work
to understand detonation-turbulence interactions.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

This thesis focused on developing methods to address challenges in detonation sim-
ulations. Methods that are able to balance numerical stability, physical accuracy,
and computational efficiency are essential for predictive modeling in applications
including safety and propulsion. To enable numerically stable simulations of shocks
and contact discontinuities, a mathematical framework was developed and demon-
strated in a central finite difference code. Chemistry modeling was investigated
first by improving the physical accuracy of detailed chemistry species transport, and
second by developing a tabulated chemistry model to reduce the cost of simulations.

7.1 Numerical stability of shocks and contact discontinuities
Chapters 2 and 3 established a simulation framework to ensure the numerical stability
of shocks and other discontinuities. To perform stable simulations involving shocks,
the Euler equations were spatially-filtered, resulting in SFS terms in the momentum,
energy, and species equations that required closure. For a contact discontinuity, these
SFS terms were found to be zero for all equations. Using analytical expressions for
a normal shock, a nonzero SFS term was derived for the momentum equation. This
term resembles previously used artificial viscosity, and in multiple dimensions, acts
as a combination of dynamic and bulk viscosity. Conservation of total enthalpy
across the shock resulted in no SFS term for the energy equation. An alternative
closure model for the energy equation led to a SFS conduction term and a SFS
viscous dissipation term. As chemical reactions do not occur over the thickness of
the shock, no SFS terms were required for the species equation.

The SFS terms were implemented within a conservative, centered difference numer-
ical framework. The normal shock test cases were numerically stable for the full
range of Mach numbers tested, and the filtered shock thickness was independent of
Mach number for moderate and strong shocks. Cell-to-cell oscillations were pre-
vented for a large range of shock Mach numbers. The one-dimensional formulation
was also validated for more complex configurations, including the Shu-Osher test
problem. The ZND detonation demonstrated both the accuracy and stability of this
approach when applied to reacting flows with shocks. The extension to multiple
dimensions was demonstrated for supersonic flow over a forward facing step, shock
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diffraction over a corner, and blunt-body flow. The implementation of the SFS terms
is similar to that of the LAD approach, the main difference being how the terms
are derived/constructed. Unlike hybrid WENO schemes, using SFS (or LAD) does
not require modifying the underlying discretization of the solver. For example, this
thesis uses a kinetic-energy conserving scheme throughout the domain; only the
magnitude of the SFS terms varies depending on the local flow conditions.

To treat numerical oscillations that arise at contact discontinuities, a WENO-like
deferred correction term was included for the enthalpy flux. The numerical treatment
of contact discontinuities was demonstrated for the Sod shock tube problem, as well
as other temperature and species discontinuities. In Chapter 6, the impact of the
SFS viscosity on the structure of two-dimensional detonations was examined, with
particular focus on the diffusion of vorticity.

In practical applications, shock waves are not isolated but interact with other flow
phenomena, including turbulence. For example, in accidental explosions, turbulent
flames may transition to detonation. Simulations intended to predict, and thus
help prevent, such explosions must be able to model both turbulence and shocks
accurately. Because the SFS terms were derived analytically, they are general and
may be implemented within any numerical framework, including codes designed
for high fidelity turbulence simulations.

7.2 Chemistry modeling for detonations
The existing approaches to modeling the chemistry in detonations often require
either the oversimplification of the chemical processes or prohibitive computational
costs. The most accurate approach, detailed chemistry, has additional numerical
challenges associated with species transport. When nonlinear transport schemes are
used, there is no guarantee that physical constraints on the species mass fractions are
satisfied. In Chapter 4, a procedure was introduced to ensure that the sum of mass
fractions equals 1. In addition to conserving inert species, this approach resulted in
a more pronounced physical instability for detonations in nitrogen-diluted mixtures.

To reduce the cost of chemistry without neglecting the physics, tabulated chemistry
has been used with much success for a variety of flame simulations. Originally
developed for low Mach combustion, there have been recent extensions of the method
to compressible reacting flows. However, the majority of supersonic combustion
tabulation has been for non-premixed configurations and relied on flamelets for table
generation, which is not applicable to detonation burning.
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Chapter 5 presented a tabulation approach for detonations. A two-dimensional
chemistry table was constructed, using a progress variable and temperature as the
inputs. Conditional statistics of the detailed chemistry data indicated that these
two coordinates are able to capture at least 95% of the variations in the source
term observed in two-dimensional detonations. To ensure ignition can occur, the
progress variable consisted of both the combustion product, H2O, as well as an
intermediate species formed by the initiation reactions, HO2. Rather than using
flamelets to generate the table, as in low Mach chemistry tables, one-dimensional
ZND detonations were used. Comparison of the conditional mean of the progress
variable source term with the tabulated source term demonstrated that the ZND
model is preferred over other one-dimensional model problems (i.e., ignitions),
introducing at most a 7% error.

Both a priori and a posteriori analysis showed promising results for the tabulation
framework for one- and two-dimensional detonation simulations. In one dimen-
sion, the tabulation was able to reproduce unsteady behavior including initiating a
detonation with a shock. For two-dimensional channel propagation, the detailed
and tabulated chemistry simulations produced similar detonation dynamics for both
regular and irregular H2-O2 mixtures. Even for the simplest fuel, hydrogen, the total
computational cost was reduced by about 4 times. This reduction was mainly due
to costs associated with the scalar transport and combustion, which were reduced
by factors of 9 and 17, respectively. These computational savings are expected
to increase for larger detailed mechanisms. In Chapter 6, the impact of both the
chemistry model and scalar transport on the physical limit cycle of unstable mixtures
was investigated. To further understand the performance of the tabulated chemistry
model, the evolution of two-dimensional detonations in thermo-chemical space was
analyzed.

The computational cost of detailed chemistry often leads to the use of simplified
chemical models in large scale detonation simulations. The continued development
of tabulated chemistry models will improve the accuracy of practical simulations at
low cost, which will aid in applications such as engine design.

7.3 Future work
The tabulated chemistry model introduced in Chapter 5 showed promising results for
two-dimensional hydrogen detonations. To improve upon the methodology, there
are a few areas that require future work:
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• The numerical implementation of the chemistry table may be further op-
timized. The sensitivity of results to the table resolution, both in 𝐶 and 𝑇

coordinates, as well as the number of ZND solutions used to precompute to ta-
ble, should be studied. The table lookup currently uses a bilinear interpolation
in 𝐶 and 𝑇 ; other interpolation methods should be considered.

• Additional detonation behavior such as detonation diffraction [65, 143] or
quenching [19] should be compared across chemistry models. This has par-
ticular relevance to both safety and propulsion applications.

• The tabulated chemistry model should be validated against experiments, not
only detailed chemistry simulation data. Such comparisons will require three-
dimensional simulations, with channel dimensions and boundary conditions
matching that of the comparison experiments.

The tabulation approach should also be expanded to include additional physics:

• Chemistry tables should be developed and validated for hydrocarbon fuels;
some details of the current model are specific to hydrogen combustion, such
as the definition of the progress variable and the tabulation of ¤𝜔𝐶/𝜌2. A sim-
ilar strategy for defining the progress variable is anticipated for hydrocarbon
fuels; in addition to using major/minor product species [81], future work will
identify the key radicals which influence the induction zone. In addition to
their relevance to propulsion applications, hydrocarbons have larger detailed
chemistry mechanisms and therefore would benefit from greater computa-
tional savings through tabulation.

• Thermal nonequilibrium effects have been suggested to have an impact on
the detonation structure [18, 53]. Tabulated chemistry is an ideal model-
ing framework for incorporating these effects with minimal increase to the
computational cost.

• As tabulated chemistry has proven useful for both flames and detonations sep-
arately, the possibility of chemistry tabulation for deflagration-to-detonation
transition should be explored. This is relevant for predictive modeling to
prevent accidental explosions.

There are two main areas of future work related to the filtering framework developed
in Chapter 2-3:
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• Three-dimensional detonations with turbulence should be investigated. First,
the impact of the SFS viscosity on turbulence must be studied; modifications
to the numerical implementation of the SFS terms may be required to prevent
artificially early dissipation of turbulence. Then, the modeling framework
may be used to study detonation-turbulence interactions.

• The impact of the filtering framework on the chemistry modeling should be
explored. This could enable detonation simulations at coarser grid resolutions
to further reduce the computational cost. A preliminary analysis is presented
in Appendix A.
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A p p e n d i x A

FILTERED TABULATED CHEMISTRY MODELS

This appendix presents an early investigation of the impact of spatial filtering on
the chemistry modeling for detonations. In the filtering procedure in Sec. 2.1, it is
assumed that the filter width, Δ, is much smaller than the chemical length scales;
for detonations, Δ ≪ L. Under this assumption, the shock can be filtered without
impacting the reaction zone. However, if the filter width approaches the induction
zone length, additional SFS terms may be required. The impact of the filtering on
the chemistry will be discussed here in the context of tabulated chemistry.

The SFS terms in the progress variable transport equation are discussed in Sec. A.1.
An a priori analysis of the filtering effects is presented in Sec. A.2, and modeling
implications are discussed.

A.1 Analytical framework
Making no assumptions about the closure for the SFS terms, the filtered progress
variable transport equation is

𝜕 (𝜌𝐶̃)
𝜕𝑡

+ 𝜕 (𝜌𝑢̃𝑖𝐶̃)
𝜕𝑥𝑖

=
𝜕 𝑗 𝑖

𝜕𝑥𝑖
+ 𝜕 𝑗𝑖,𝑆𝐹𝑆

𝜕𝑥𝑖
+ ¤𝜔𝐶 , (A.1)

where the SFS diffusion flux is

𝑗𝑖,𝑆𝐹𝑆 = 𝜌𝑢̃𝑖𝐶̃ − 𝜌𝑢𝑖𝐶. (A.2)

Assuming there are no reactions taking place within the filtered shock, both 𝜌𝑢

and 𝐶 are constant across the shock, such that 𝑗𝑖,𝑆𝐹𝑆 = 0, and the source term is
unaffected by the filtering, ¤𝜔𝐶 ≈ ¤𝜔𝐶 . This was the assumption made for the species
transport equation (see Eq. (2.71)).

If the filtered shock thickness is comparable to the chemical length scales, 𝐶 is no
longer constant across the filtered shock, and therefore 𝑗𝑖,𝑆𝐹𝑆 ≠ 0. Additionally,
the effect on the progress variable source term is non-negligible, ¤𝜔𝐶 ≠ ¤𝜔𝐶 . Un-
fortunately, there is no analytical closure that may be derived for these terms. An
a priori analysis of the effects of filtering on these terms will be conducted in the
following section. For the tabulated chemistry approach, only two terms require
closure ( 𝑗𝑖,𝑆𝐹𝑆 and ¤𝜔𝐶). In the detailed chemistry framework, closing the SFS terms
would be impractical due to the number of species and reactions involved.
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A.2 A priori analysis
The following a priori analysis relies on the 2H2-O2-7Ar detonation case in Sec. 4.5.

A.2.1 One-dimensional detonation
First, the one-dimensional ZND solution for the CJ detonation is filtered with a
Gaussian filter based on a fraction of the induction zone length: Δ = L/10,Δ = L/5,
and Δ = L/2. The temperature and progress variable profiles are shown in Fig. A.1.
As the filter width increases, the shock and reaction zone are no longer distinct
regions; for Δ = L/2, the temperature continually increases without a thermally-
neutral period, and the progress variable increases inside the shock. The convective
SFS terms resulting from the filtered solutions are shown in Fig. A.2. As expected,
the magnitude of the SFS term increases with the filter width. For the smaller filter
widths, the term is negative in the reaction zone and zero elsewhere. For the larger
filter width (Δ = L/2), there is also a positive SFS through the shock. Neglecting
the SFS due to the shock itself, the convective SFS is similar for the momentum
and energy equations. Analogous to the SFS viscosity and conductivity used in the
momentum and energy equations, this convective SFS term could be tabulated in
terms of a progress variable diffusivity to be added to the physical diffusivity, 𝐷.

(a) Temperature. (b) Progress variable.

Figure A.1: One-dimensional detonation; unfiltered (black solid line), filtered with
Δ = L/10 (blue dashed line), Δ = L/5 (red dash-dotted line), and Δ = L/2 (orange
solid line).

The budget for the filtered progress variable equation is shown in Fig. A.3 for two
filter widths. The convective term and the source term dominate the budget, while
the convective SFS term is small even for the larger filter width. This suggests that
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Figure A.2: Convective SFS flux for a one-dimensional detonation filtered with
Δ = L/10 (blue dashed line), Δ = L/5 (red dash-dotted line), and Δ = L/2 (orange
solid line).

the convective SFS term may be neglected with minimal impact on the progress
variable transport. Similarly, any SFS due to the reaction zone may be neglected
in the momentum and energy equations; the SFS terms computed for the shock are
sufficient.

(a) Δ = L/5. (b) Δ = L/2.

Figure A.3: Filtered progress variable equation budget for a one-dimensional deto-
nation; convective term (black solid line), convective SFS term (blue dashed line),
source term (red dash-dotted line), and diffusion term (orange solid line).

The filtered source term requires further discussion. Figure A.4 shows the filtered
source term both in physical space and in progress variable space. As the filter
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width increases, the peak source term decreases and the width of the source term
peak increases. For Δ = L/2, there is non-negligible source term within the shock.
These substantial effects on the progress variable source term indicate that the
filtering must be accounted for when tabulating the source term.

(a) Physical space. (b) Progress variable space.

Figure A.4: Progress variable source term for a one-dimensional detonation; unfil-
tered (black solid line), filtered with Δ = L/10 (blue dashed line), Δ = L/5 (red
dash-dotted line), and Δ = L/2 (orange solid line).

A.2.2 Two-dimensional detonation
In the previous section, the progress variable budget analysis indicated that the
convective SFS term may be neglected, whereas the filtering of the source term
must be included in the tabulation. The data from Sec. 4.5 will now be used to
assess these assumptions in two-dimensional detonations.

The instantaneous convective term and source term fields are shown in Fig. A.5
before and after filtering the data with Δ = L/2. Qualitatively, the filtered fields
resemble the unfiltered fields; the filtered source term is spread over a thicker region
along the detonation front. The corresponding convective SFS field is shown in
Fig. A.6a, and is nonzero in the lead shock and reaction zone.

Three 𝑦 locations (indicated by the dashed lines in Fig. A.5 and A.6a) are examined
in more detail for the budget analysis in Fig. A.6. Locations 𝑦1 (Fig A.6b) and
𝑦3 (Fig. A.6d) correspond to triple points on the primary detonation front, while
𝑦2 (Fig. A.6c) is mid-way between triple points. At the triple points, the source
term is the dominant term in the budget, followed by the convective term. Away
from the triple points, the convective term is the largest in magnitude, followed
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(a) Unfiltered convective term. (b) Filtered convective term.

(c) Unfiltered source term. (d) Filtered source term.

Figure A.5: Impact of filtering on a two-dimensional detonation, with Δ = L/2.
White dashed lines correspond to the budget locations used in Fig. A.6.

by the source term. For all three locations, the convective SFS term is relatively
small. The contribution of the unsteady term is not shown in the budget plots; this
contribution expected to compensate for the imbalance between the source term and
the convective term.

Although the two-dimensional detonation involves numerous shock collisions and
transverse waves downstream of the primary shock front, the convective SFS for the
progress variable does not have a major contribution to the overall budget. Therefore,
as an initial attempt, the filtered tabulation model does not need to include an SFS
progress variable diffusivity.

The conditional mean progress variable source term (conditioned on𝐶) in Fig. A.7a
shows a similar trend to that seen for the one-dimensional case in Fig. A.4. To
quantify the impact of the filter width on the source term, the reduction in the peak
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(a) Convective SFS term. (b) Budget along 𝑦1.

(c) Budget along 𝑦2. (d) Budget along 𝑦3.

Figure A.6: Two-dimensional convective SFS term (a) and progress variable equa-
tion budget (b-d) along the 𝑦 locations marked by the black dashed lines in (a).
Convective term (black solid line), convective SFS term (blue dashed line), and
source term (red dash-dotted line).

is computed as

𝑓 = max{ ¤𝜔𝐶}/max{ ¤𝜔𝐶}. (A.3)

The reduction factor 𝑓 is shown in Fig. A.7b as a function of the filter width. For
one-dimensional cases, 𝑓 is based on the peak values from the ZND solution. For
the two-dimensional case, 𝑓 is evaluated using the peak values from the conditional
mean, as well as the local values along the three 𝑦 locations used for the budget
analysis. Both the induction zone length,L, and the width at half the max ¤𝜔𝐶 , 𝛿, were
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considered as relevant length scales for normalizing the filter width. Normalization
by 𝛿 resulted in a better collapse of the computed 𝑓 values for the different cases.

(a) Conditional mean source term. (b) Peak source term reduction.

Figure A.7: Impact of filtering on the progress variable source term. Conditional
mean source term from the two-dimensional 7Ar-diluted detonation (a); unfiltered
(black solid line), filtered with Δ = L/10 (blue dashed line), Δ = L/5 (red dash-
dotted line), and Δ = L/2 (orange solid line). (b) Reduction in peak source term
due to filtering, 𝑓 = max{ ¤𝜔𝐶}/max{ ¤̄𝜔𝐶} for different Ar-diluted mixtures in 1D
and 2D (conditional mean).
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