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ABSTRACT

Electrolytes are ubiquitous in science and engineering and are of active interest,
owing to their applications biology, energy storage, colloidal suspensions, and even
climate. Near a surface, electrolyte solutions exhibit a plethora of rich thermody-
namic and structural phenomena, owing to the interplay of long-ranged electrostatics
and nonelectrostatic interactions between ionic species, solvent, and the surface. In
this thesis, we present a pedagogical formulation for the thermodynamics of elec-
trolyte solutions near charged surfaces, followed by an examination of interactions
and structure of different types of electrolytes near surfaces. Specifically, we inves-
tigate the difference between constant surface charge and constant surface poten-
tial boundaries in electrolyte solutions, the capacitance applications, double-layer
structure, and screening behavior of a zwitterionic polymers, as well as the effect
of image charge on structure, capacitance, and forces in simple electrolytes near
metal, dielectric, and dielectrically-saturated metal surfaces. We conclude with a
Gaussian-fluctuation model for ions with soft-core excluded volume interactions.
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1

C h a p t e r 1

INTRODUCTION

This chapter gives a high-level description on electrolytes, their applications, and
open problems in understanding their interactions with surfaces. Later chapters
will delve into their thermodynamics, capacitance applications of zwitterionic elec-
trolytes, image-charge correlation effects in simple electrolytes, and a fluctuating
model for ions with soft-core excluded volume.

This chapter includes content from our previously published article:

(1) Bruch, D.; Balzer, C.; Wang, Z.-G. J. Chem. Phys. 2022, 156, 174704, DOI:
10.1063/5.0089260,



2

1.1 Preliminaries
An electrolyte is a medium, such as water, containing charged species that can
be conducted by an electric field. These charges interact with the solvent, other
ions, and surfaces through long-ranged electrostatic forces such as charge-charge
and charge-dipole interactions, as well as nonelectrostatic contributions such as
excluded volume effects. Some common types of charged species used in electrolytes
are salts, ionic liquids [1], polyelectrolytes [2], and large charged particles such as
colloidal suspensions [3]. The presence of charged bodies in a solution leads to
rich thermodynamic and structural phenomenon. For example, when an electrolyte
solution is exposed to a low-dielectric surface, such as air, ions will (in general)
deplete at the interface due to repulsive electrostatic interactions between the surface
and the ions, leading to the well-known increase in surface tension of water with
added salt [4, 5] and the Hofmeister series [6]. The depletion originates from air
having a lower dielectric constant than the solution medium, generating a repulsive
image charge as ions approach the surface. On the contrary, when an electrolyte
solution is placed next to a surface with a higher dielectric constant or a surface
possessing charge, ions will adsorb to the interface, forming an “electric double
layer” [7] (Fig. 1.1). The term “electric double layer” refers to the “layer” of
polarization or fixed charges on the inside of the surface, followed by a second layer
of counterions from the solution that adsorb to the surface to neutralize the charge.
The neutralization of surface charge dampens the penetration of the electrostatic
force into the solution, known as screening.

Figure 1.1: Diagram of the electric double layer formed at a charged plate in contact
with an electrolyte solution.
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1.2 Applications
Electrolytes are ubiquitous in science and engineering [3, 7–18] and are of active
interest, owing to their applications in biology, energy storage, colloidal suspensions,
and even climate. In biology, electrolytes serve essential purposes in cell function,
and different types of electrolytes are required to carry out these functions. For
example, simple ions like sodium and potassium are used in cellular ion pumps to
carry out nerve conduction [19]. More complex electrolytes like polyelectrolytes
are involved in liquid-liquid phase separation to compartmentalize a cell [20], and
proteins, a type of polyampholyte, rely on particular sequences of charge to bind a
particular substrate [21].

In energy storage, capacitors can store large amounts of energy through the adsorp-
tion of counterions from an electrolyte solution to the capacitor surface, referred to
as a supercapacitor [22]. Batteries depend on the conduction of electrolytes through
a medium to carry out electrochemical reactions at the electrode to store or release
energy [23]. One vast area of research is on the improvement, or potential re-
placement, of lithium-ion battery, for Li-ion battery technology is plagued by safety
concerns from the flammability of polar organic additives [24–27]. Several elec-
trolyte material alternatives have been studied for their energy density, mechanical
strength, and ionic conductivity, such as polymer electrolytes [28], polyelectrolytes
[29], room-temperature ionic liquids [1], and zwitterions [30–32]. These materials
have yet to surpass the performance of Li-ion technology though, and thus this
remains a booming area of research.

Other areas include climate and environmental sciences, such as sea foaming [33],
halogen release from the ocean [34], and heterogeneous reactions in seawater
aerosols, where surface active halide precursors (i.e., sea salt) form halogen com-
pounds that are harmful to the ozone layer [35]. Electrolytes are also relevant in
water purification, where textile runoffs release toxic, charged organic dyes into the
publicly-used waters [36]. Considering the surface propensity of ions is greatly
affected by the solvation structure near an interface [37], understanding the solva-
tion structure of bulky molecular ions like organic dyes near surfaces like filtration
membranes is a relevant problem for water purification.

1.3 Open Problems
In this thesis, we are interested in theoretically modeling the interactions of elec-
trolytes with macroscopically-large charged surfaces, specifically in electric double-
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layer formation or depletion. Copious theories to describe EDL structure and forces
have been developed, starting with the original work by Helmholtz [38] in 1879,
followed by revisions from Gouy [39] and Chapman [40] to account for ion mo-
bility in a solvent. Later, Stern [41] united the Helmholtz and Gouy and Chapman
models to account for both bound ions at the electrode interface (the Stern layer)
and the diffuse electric double layer. This Gouy–Chapman–Stern model has been
used extensively in the study of EDLs. While these simpler models explain a broad
spectrum of electrolyte behavior, EDLs can exhibit anomalous behaviors such as
charge inversion and like-charge attraction [42]. Such behaviors occur for low
molecular weight electrolytes in the strong-coupling limit where electrostatic corre-
lations dominate, or for polyelectrolytes even well below the strong-coupling limit
[7]. Even in the weak-coupling limit, boundary layer effects from image charge
dominate electric double-layer structure close to the surface depending on the di-
electric discontinuity [5, 43–45] and these singular boundary layers elude simple
perturbative treatments [46]. Correlations in electrolytes near surfaces and their
effects on electric double-layer properties are still not fully understood.

Additionally, there is a drive to improve energy storage devices through novel, high-
dielectric material additives. These materials improve devices such as batteries
and capacitors by increasing the dielectric constant of the ionic medium, enhancing
ion conductivity and stored energy density [30–32, 47–51]. One promising class
of high-dielectric materials are a type of polyelectrolyte: zwitterions. Zwitterions
are molecules with an anionic and cationic group separated by covalent bonds.
This structure gives zwitterions an enormous molecular dipole moment, making
them versatile, nonvolatile additives that enhance the dielectric constant and ion
conductivity of ionic media. We will develop a model for zwitterions and explore
their capacitance applications later.

As stated above, there are an innumerable amount of problems to be addressed in
electrolytes, each involving a delicate interplay of length scales of surface, electro-
static, and nonelectrostatic interactions, as well as the development of new materials
for energy storage. Sometimes, even the fundamentals of electrolyte solutions are
misunderstood [52]. In this thesis, we will address some of these issues using a
theoretical approach, all under the general theme of interactions of electrolytes near
surfaces. We start with a pedagogical formulation of thermodynamics of electrolyte
solutions in Chapter 2, for it is imperative to understand this before tackling more
complex problems. We then explore a particular electrolyte in Chapter 3, the zwit-
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terionic polymer, its capacitance applications, double-layer structure, and screening
behavior. We then turn to understanding the image-charge correlation in electrolyte
solutions in Chapter 4 and systematically compare its effect on double-layer struc-
ture, capacitance, and surface forces for different surface types. Lastly, we develop
a Gaussian-renormalized fluctuating theory to describe charged particles in solution
with a Gaussian excluded volume interaction in Chapter 5. This theory provides
a length-scale for ions that captures packing effects, unlike the incompressibility
condition, and we analyze bulk correlation effects. We use field theories for all
models, where discrete particles are represented as fields through a particle-to-field
transformation. Although the discreteness of matter is lost with this transformation,
we are mostly interested in the larger length scales of electrostatic interactions, and
field theories provide us with insightful predictions on electrolyte behavior, either
analytically or with little numerical cost relative to molecular dynamics simulations
or Monte Carlo. An excellent text to learn field theory is The Equilibrium Theory
of Inhomogeneous Polymers by Glenn Fredrickson [53].

We believe the content of this thesis contributes to our understanding of interactions
between electrolytes and different types of surfaces as well as the design of energy
storage devices with zwitterionic additives.
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C h a p t e r 2

THERMODYNAMICS OF ELECTROLYTE SOLUTIONS NEAR
CHARGED SURFACES: CONSTANT SURFACE CHARGE

VERSUS CONSTANT SURFACE POTENTIAL

Electric double layers are ubiquitous in science and engineering and are of current
interest, owing to their applications in the stabilization of colloidal suspensions
and as supercapacitors. While the structure and properties of electric double lay-
ers in electrolyte solutions near a charged surface are well characterized, there are
subtleties in calculating thermodynamic properties from the free energy of a sys-
tem with charged surfaces. These subtleties arise from the difference in the free
energy between systems with constant surface charge and constant surface poten-
tial. In this chapter, we present a systematic, pedagogical framework to properly
account for the different specifications on charged bodies in electrolyte solutions.
Our approach is fully variational—that is, all free energies, boundary conditions,
relevant electrostatic equations, and thermodynamic quantities are systematically
derived using variational principles of thermodynamics. We illustrate our approach
by considering a simple electrolyte solution between two charged surfaces using the
Poisson–Boltzmann theory. Our results highlight the importance of using the proper
thermodynamic potential and provide a general framework for calculating thermo-
dynamic properties of electrolyte solutions near charged surfaces. Specifically, we
present the calculation of the pressure and the surface tension between two charged
surfaces for different boundary conditions, including mixed boundary conditions.

This chapter includes content from our previously published article:

(1) Bruch, D.; Balzer, C.; Wang, Z.-G. J. Chem. Phys. 2022, 156, 174704, DOI:
10.1063/5.0089260,

I am thankful to Dr. Chris Balzer for his insight on the thermodynamics of charged
systems, especially on the topic of surface tension.
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2.1 Introduction
Electric double layers (EDLs) in electrolyte solutions near a charged surface have
a rich history, owing to their relevance in several fields of science and engineering
[1–13]. Copious theories to describe EDL structure and forces have been developed,
starting with the original work by Helmholtz [14] in 1879, followed by revisions
from Gouy [15] and Chapman [16] to account for ion mobility in a solvent. Later,
Stern [17] united the Helmholtz and Gouy and Chapman models to account for both
bound ions at the electrode interface (the Stern layer) and the diffuse electric double
layer. This Gouy–Chapman–Stern model has been used extensively in the study
of EDLs. For strongly charged surfaces, EDLs can exhibit anomalous behaviors
such as charge inversion and like-charge attraction [18]. Such behaviors occur for
low molecular weight electrolytes in the strong-coupling limit where electrostatic
correlations dominate, or for polyelectrolytes even well below the strong-coupling
limit [1]. Other electrostatic correlation effects include image charge [19–22],
where ions are either attracted or repelled from a surface depending on the nature
of the dielectric discontinuity. EDLs remain a subject of great interest owing to
their importance in applications such as energy storage in supercapacitors [23] and
stabilization of colloidal suspensions [2, 24–27].

Most theoretical formulations rely on constructing a free energy of the system.
Various thermodynamic properties can be calculated from derivatives of this free
energy. One notable property in EDLs is the pressure (or force) between charged sur-
faces. For example, in colloidal systems, according to Derjaguin–Landau–Verwey–
Overbeek (DLVO) theory [24], the interplay between EDL repulsion and van der
Waals interactions determines the stability of a colloidal suspension. The pressure
can be calculated by differentiating a free energy for the system; however, the rele-
vant free energy at equilibrium is different for surfaces with constant surface charge
versus constant surface potential. Consequently, the proper free energy must be
used to correctly obtain the pressure, and other thermodynamic properties.

The difference between the free energies for constant surface charge and surface
potential conditions is the energy to charge/discharge bodies at constant surface
potential. As other thermodynamic variables vary, energy is required to supply
or remove charge from the surfaces to maintain constant surface potential. This
was recognized and rigorously accounted for over 50 years ago in the works of
Verwey and Overbeek [28], Landau and Lifshitz [29], and Feynman [30] for isolated
charged bodies. Likewise, many authors over the last several decades extended this
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to charged bodies in the presence of electrolyte solutions in a rigorous, consistent
manner, through the Legendre transform or a Lagrange multiplier [31–39]. In recent
decades, however, the difference between these free energies has often not been
explicitly discussed [40–45]. As we will explore, the difference in thermodynamic
potential amounts to whether surface terms are included in the free energy. Of
central importance, some authors do not include surface terms in their free energies
and instead absorb these terms into boundary conditions. Other authors explicitly
include surface terms in the free energy. Presently, there is no accepted convention
on whether surface terms should be included. As we will show later, omitting
the surface terms amounts to using a Legendre transformed free energy, relevant
only for specified surface potential. While not including surface terms is valid and
correct, without an explicit explanation, the role of surface terms in the free energy
can cause confusion for the readers.

Gupta et al. recently published a study that proposed a framework to treat the
thermodynamics of EDLs near charged bodies [46]. A central point in their work
was invoking a term they called 𝑈charge to be added to the internal energy for the
system, whose form depends on different specifications of the boundary condition:
𝑈charge = 0 for constant surface charge, and

∫
ℬ

∑
𝑗 𝑞 𝑗𝜓 𝑗𝑑

2r for constant surface
potential, where 𝜓 and 𝑞 are respectively the surface potential and charge in their
notation. They applied their framework to both a mean-field model of an electrolyte
in the Poisson–Boltzmann approximation and to an electrolyte model with strong
electrostatic correlations described by a modified Gauss’s law. A motivation for
their work is their view that the 𝑈charge term was overlooked in several previously
published works [47–56] (Refs. 30–32, 36, 44–49 in Gupta et al.). Their approach
yields correct equations for properties such as the ion-density profile and pressure
between charged surfaces; however, some aspects of the thermodynamics presented
in Ref. [46] could be derived in a more pedagogical and thermodynamically con-
sistent manner. For example, allowing internal energy to have different form (and
value) depending on whether surface charge or surface potential is specified, con-
tradicts the fact that the internal energy is a state function whose value is uniquely
specified for a given state no matter what state variable is used to specify that state.
Instead, under conditions of specified surface potential, the relevant energy is an
enthalpy-like new energy given by the Legendre transform 𝐻 = 𝑈−

∫
ℬ

∑
𝑗 𝑞 𝑗𝜓 𝑗𝑑

2r,
where the last term is the work associated with charging/discharging the externally
charged body at constant potential; the different specifications of the boundary
condition correspond to different thermodynamic ensembles. The constant surface



12

charge and constant surface potential boundary conditions are associated with differ-
ent thermodynamic potentials (free energies) that are related to each other through
the Legendre transform. If one does not use the free energy to calculate thermo-
dynamic quantities, the issue of the Legendre transform does not arise, as is the
case in Refs. [47–56]. Furthermore, by writing the differential form of 𝑈charge as
𝛿𝑈charge =

∫
ℬ

∑
𝑗 𝜓 𝑗𝛿𝑞 𝑗𝑑

2r (Eq. (4) of Ref. [46]) instead of the total differential
𝛿𝑈charge =

∫
ℬ

∑
𝑗

(
𝜓 𝑗𝛿𝑞 𝑗 + 𝑞 𝑗𝛿𝜓 𝑗

)
𝑑2r, one would not be able to produce the correct

differential form of the Legendre transformed thermodynamic potential, from which
many useful relations (e.g., Maxwell relations) follow.

In this chapter, we seek to present a concise, systematic, and pedagogical frame-
work to properly account for different specified conditions on charged bodies in
electrolyte solutions. Starting from a system with specified surface charge, we con-
struct the appropriate free energy, and then perform a Legendre transform to obtain
a new free energy for a system with specified surface potential. All governing equa-
tions, including the Poisson–Boltzmann equation, boundary conditions, interplate
pressure, etc., are systematically derived from the appropriate free energy through
variational conditions and by taking the appropriate thermodynamic derivatives.
We note that the work by Reiner and Radke [31] also uses a variational approach to
derive Poisson–Boltzmann and other governing equations and does so rigorously.
However, our work seeks to serve as a pedagogical introduction to the most relevant
information regarding the different specifications of the charged surfaces, whereas
the work of Reiner and Radke [31] is more fitting for the advanced reader. The fact
that confusions still persist despite the existence of their work justifies the need for
further clarification. Additionally, our analysis shows that the boundary conditions
are a natural consequence of variation of the relevant free energy, and emphasizes
that surface potential and surface charge are not only boundary conditions, but are
also important thermodynamic variables for charged systems.

The rest of this article is organized as follows. First, we construct the variational
grand free energy, then systematically derive the ion densities and the Poisson–
Boltzmann equation for an electrolyte solution in the presence of a general external
charge distribution. We then discuss the subtleties of fixed surface charge and
fixed surface potential boundary conditions for parallel plates in an electrolyte
solution, and relate the relevant thermodynamic potentials for each case using the
Legendre transform. We further show that the 𝑈charge term introduced by Gupta
et al. [46] naturally arises from the Legendre transform. Additionally, we verify
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the thermodynamic consistency of our approach by showing that constant surface
potential and constant surface charge boundary conditions are a natural consequence
of variation of the relevant thermodynamic potential. To emphasize the importance
of properly treating the free energy, we discuss two thermodynamic properties—
pressure between the surfaces and surface tension. We show that using the incorrect
thermodynamic potential leads to a qualitatively incorrect pressure between the
plates at constant surface potential. For the surface tension, we show that it is
associated with a natural thermodynamic potential, regardless of the boundary
condition. Our work concludes with an example of mixed boundary conditions—
one plate at constant surface charge and the other at constant surface potential—
to demonstrate the simplicity of treating the energetics with such specifications
using our approach. We show that mixed boundary conditions predict “unlike-
charge repulsion” even at the mean-field Poisson–Boltzmann level, which would
not have been captured without using the proper free energy. We emphasize that
although variational approaches have been previously used [31], and the Legendre
transform has been implemented in the literature [31–39], here we present them in
a unified, pedagogical framework to clarify the energetics of electrolyte solutions in
the presence of charged bodies.

2.2 Variational Free Energy
We begin our pedagogical framework by constructing the variational grand free
energy for an electrolyte solution near a general external charge distribution, from
which we will later show that the Poisson–Boltzmann equation (PBE) and boundary
conditions naturally follow by variation of the grand free energy [31, 57]. We start
with a general free energy functional and later take the Poisson–Boltzmann limit;
however, taking this limit does not compromise the generality of the approach.

Consider a general system of an external charge distribution with charge density 𝜌ex

submerged in a bath of a symmetric (ion valencies 𝑍+ = 𝑍− = 𝑍), binary electrolyte
solution. The bulk ion concentration is 𝑐B. Since our focus is on developing a
framework, we will take the ion valencies to be 𝑍 = 1 for simplicity. The solvating
medium is assumed to be a dielectric continuum with uniform electric permittivity
𝜖 . The Helmholtz free energy of our system is written as a sum of ideal, excess, and
mean-field electrostatic contributions

𝐹 = 𝐹id + 𝐹ele + 𝐹ex. (2.1)
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The ideal portion is given by the free energy of an inhomogeneous mixture of an
ideal gas of ions

𝛽𝐹id =

∫
dr 𝑐+(r)

{
ln

[
𝑐+(r)𝑣+0

]
− 1

}
+

∫
dr 𝑐−(r)

{
ln

[
𝑐−(r)𝑣−0

]
− 1

}
(2.2)

where 𝛽 = 1/𝑘𝑇 , 𝑘 is the Boltzmann constant, 𝑐± are the number densities of the
ions, and 𝑣±0 are the characteristic volumes of the ions. We note that some authors
use the thermal wavelength cubed as the volume scale [58]. The choice of volume
scale is inconsequential—it merely results in a concentration-independent shift in
the chemical potential.

The excess term is a general contribution arising from electrostatic correlations and
other non-electrostatic interactions between charged particles and depends only on
the ion number densities 𝐹ex = 𝐹ex [𝑐+, 𝑐−]. The mean-field electrostatic contribu-
tion is simply the Coulomb energy of the system

𝛽𝐹ele =
𝛽𝑒2

2

∫
dr

∫
dr′𝜌(r)𝐶 (r, r′)𝜌(r′) (2.3a)

𝐶 (r, r′) = 1
4𝜋𝜖 |r − r′| (2.3b)

where 𝜌 is the net mean charge density in the system

𝑒𝜌 = 𝑒(𝜌ex + 𝑐+ − 𝑐−) (2.4)

with 𝑒 being the elementary charge and 𝜌ex being the charge density of the external
charged body, which includes any surface charge terms. Here, 𝜌 and 𝜌ex are in
units of length−3 and charge units have been explicitly written as the elementary
charge 𝑒. As discussed earlier, several authors [40, 41, 43–45] do not include surface
charge terms. This convention amounts to using a Legendre transformed free energy
corresponding to specified surface potential conditions, which we will discuss later.
Technically, both conventions are valid; however, for clarity and consistency, we
believe it is best practice to directly include surface terms in the free energy and
Legendre transform thereafter.

Noting an identity for the quadratic form in Eq. (2.3a), the quadratic interactions
can be decoupled at the expense of a new coupling to the variable 𝜓 [59], the
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mean-electrostatic potential. Applying this identity and integrating by parts, the
electrostatic contribution can be written as

𝛽𝐹ele = 𝛽

∫
dr

{
𝑒𝜌(r)𝜓(r) − 𝜖

2
[∇𝜓(r)]2

}
. (2.5)

We note that, in order to recover Eq. (2.3), 𝜓 satisfies the following variational
condition

𝛿𝛽𝐹ele
𝛿𝜓

= 0. (2.6)

Upon defining the Bjerrum length 𝑙B = 𝑒2/4𝜋𝜖𝑘𝑇 and redefining 𝜓 = 𝛽𝑒𝜓 for
notational simplicity, we obtain the full variational Helmholtz free energy

𝛽𝐹 =

∫
dr

{
(𝜌ex + 𝑐+ − 𝑐−)𝜓 − 1

8𝜋𝑙B
(∇𝜓)2

+ 𝑐+
[
ln

(
𝑐+𝑣

+
0
)
− 1

]
+ 𝑐−

[
ln

(
𝑐−𝑣

−
0
)
− 1

] }
+ 𝛽𝐹ex [𝑐+, 𝑐−] . (2.7)

Since our system is submerged in an electrolyte solution bath, the relevant thermo-
dynamic potential at equilibrium is the grand free energy. The grand free energy is
obtained from a Legendre transform

𝑊 = 𝐹 −
∫

dr(𝜇+𝑐+ + 𝜇−𝑐−). (2.8)

Thus

𝛽𝑊 =

∫
dr

{
(𝜌ex + 𝑐+ − 𝑐−)𝜓 − 1

8𝜋𝑙B
(∇𝜓)2

+ 𝑐+
[
ln

(
𝑐+𝑣

+
0
)
− 1

]
+ 𝑐−

[
ln

(
𝑐−𝑣

−
0
)
− 1

]
− (𝛽𝜇+𝑐+ + 𝛽𝜇−𝑐−)

}
+ 𝛽𝐹ex [𝑐+, 𝑐−] .

(2.9)

We note that𝑊 also satisfies the variational condition in 𝜓

𝛿𝛽𝑊

𝛿𝜓
= 0. (2.10)
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Additionally, by the variational principle of thermodynamic potentials [60], equilib-
rium is obtained from the variational condition of𝑊 with respect to the unconstrained
internal variables 𝑐±

𝛿𝛽𝑊

𝛿𝑐±
= 0. (2.11)

The variational conditions in 𝜓 and 𝑐± yield

∇2𝜓 = −4𝜋𝑙B(𝜌ex + 𝑐+ − 𝑐−) (2.12)

𝑐± =
𝑒𝛽𝜇±

𝑣±0
𝑒∓𝜓 exp

[
−𝛿𝛽𝐹ex
𝛿𝑐±

]
. (2.13)

Taking 𝐹ex = 0 recovers the Poisson–Boltzmann limit 𝑐± = 𝑒𝛽𝜇±
𝑣±0
𝑒∓𝜓 . Setting the

reference potential such that 𝜓 = 0 in the bulk solution, we obtain

𝑐± = 𝑐B𝑒
∓𝜓 . (2.14)

Lastly, after substituting Eq. (2.14) into (2.12) we have

∇2𝜓 = −4𝜋𝑙B [𝜌ex − 2𝑐B sinh (𝜓)] (2.15)

which is the Poisson–Boltzmann equation. The grand free energy becomes

𝛽𝑊 =

∫
dr

[
− 1

8𝜋𝑙B
(∇𝜓)2 + 𝜌ex𝜓 − 2𝑐B cosh (𝜓)

]
. (2.16)

2.3 Specified Surface Charge
We now examine the subtleties between fixed surface charge and surface potential
conditions, beginning with the case of fixed surface charge. Consider a system
composed of two parallel plates submerged in an electrolyte solution bath depicted
in Fig. 2.1. The solution contains a symmetric, binary, monovalent electrolyte with
bulk ion concentration 𝑐B. The left and right plates have specified surface charge
𝑄1 and 𝑄2, respectively, and corresponding unknown surface potentials 𝒱1 and 𝒱2.
The plates have surface area 𝐴 and are separated by a distance 𝐿. The surface charge
densities are then 𝜎1 = 𝑄1/𝐴 and 𝜎2 = 𝑄2/𝐴. Making use of the equations derived
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in the last section, the Poisson–Boltzmann equation (PBE) and resulting grand free
energy for our system becomes

d2𝜓

d𝑧2 = −4𝜋𝑙B [𝜎1𝛿(𝑧) + 𝜎2𝛿(𝑧 − 𝐿) − 2𝑐B sinh (𝜓)] (2.17)

𝛽𝑊 = 𝐴

∫ 𝐿

0
d𝑧

[
− 1

8𝜋𝑙B

(
d𝜓
d𝑧

)2
− 2𝑐B cosh (𝜓)

]
+ 𝜓(0)𝑄1 + 𝜓(𝐿)𝑄2 (2.18)

where we have invoked 𝜌ex = 𝜎1𝛿(𝑧) + 𝜎2𝛿(𝑧 − 𝐿) to explicitly include the surface
charge for parallel plates and 𝛿(𝑧) is the Dirac delta function.

Figure 2.1: A symmetric binary electrolyte solution containing two fully submerged
parallel plates in contact with an infinitely large reservoir. The bulk solution has ion
concentration 𝑐B, and the ions have valency 𝑍 = 1. The left and right plates have
surface charge density and surface potential 𝜎1, 𝒱1 and 𝜎2, 𝒱2, respectively, and are
located at 𝑧 = 0 and 𝑧 = 𝐿. Here, the surface charge densities and surface potentials
are in units of length−2 and energy/charge, respectively. The plates have area 𝐴 and
are separated by a distance 𝐿. The system volume is 𝑉 = 𝐴𝐿.

Since we specify the plates in Fig. 2.1 to have fixed surface charge, namely 𝑄1 on
the left plate and 𝑄2 on the right, the system is described by a 𝑇 , 𝑉 , 𝐴, 𝜇±, 𝑄1, 𝑄2
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ensemble. We emphasize that 𝑄1 and 𝑄2 are treated as thermodynamic variables
that define the system. Accordingly, the relevant free energy at equilibrium is the
grand free energy,𝑊 (𝑇,𝑉, 𝐴, 𝜇±, 𝑄1, 𝑄2). The differential form of𝑊 is

𝑑𝑊 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝛾𝑑𝐴 − 𝑁+𝑑𝜇+ − 𝑁−𝑑𝜇− + 𝑒𝒱1𝑑𝑄1 + 𝑒𝒱2𝑑𝑄2 (2.19)

where 𝑆 is the system entropy, 𝑃 is the pressure in the film (region of electrolyte
solution between the parallel plates), 𝛾 is the surface tension, and 𝑁+ and 𝑁− are
the number of positive and negative ions given by 𝑁± =

∫
𝑉

dr 𝑐±. Because the
solvent is treated implicitly, 𝑃 is actually the osmotic pressure while 𝛾 is the excess
surface tension with respect to the surface tension between the solid surface and
the pure solvent. Henceforth we will use the simpler terms pressure and surface
tension, respectively, to refer to these quantities. The 𝒱𝑑𝑄 terms correspond to the
electrostatic work required to add 𝑑𝑄 charges to the surface at a potential 𝒱. Note
that we have explicitly included the elementary charge, 𝑒, to remain consistent with
our definition of the charge density in the preceding section. For conciseness, the
surface tension refers to the surface tension of the two surfaces (𝛾 = 𝛾1 + 𝛾2) since
we do not separately consider each solid-liquid interface. Finally, we note that a
differential change in volume is clearly coupled to the differential change in area
(𝑑𝑉 = 𝐴𝑑𝐿 + 𝐿𝑑𝐴) for the confined system. We will revisit the pressure and surface
tension later on.

As discussed earlier,𝑊 satisfies the variational conditions Eq. (2.10) and Eq. (2.11)
with respect to 𝜓 and the internal unconstrained variables 𝑐±, and these conditions
yield the PBE given by Eq. (2.17). Thus, the PBE determines 𝜓 and 𝑐± and is a
natural consequence of variation of 𝑊 . Moreover, the PBE naturally admits fixed
surface charge boundary conditions, obtained by integrating the PBE from 𝑧 = 0−

to 𝑧 = 0+ for the left plate and 𝑧 = 𝐿− to 𝑧 = 𝐿+ for the right plate

d𝜓
d𝑧

����
𝑧=0+

− d𝜓
d𝑧

����
𝑧=0−

= −4𝜋𝑙B𝜎1 (2.20)

d𝜓
d𝑧

����
𝑧=𝐿+

− d𝜓
d𝑧

����
𝑧=𝐿−

= −4𝜋𝑙B𝜎2 (2.21)

where the 2𝑐B cosh (𝜓) term dropped out by continuity of 𝜓. Noting the electric
field vanishes inside each plate by Gauss’s law and charge neutrality, we obtain fixed
surface charge boundary conditions
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𝜎1 = − 1
4𝜋𝑙B

d𝜓
d𝑧

����
𝑧=0

(2.22)

𝜎2 =
1

4𝜋𝑙B
d𝜓
d𝑧

����
𝑧=𝐿

. (2.23)

Furthermore, we take advantage of the differential form of𝑊 in Eq. (2.19) to obtain
expressions for the thermodynamic conjugates of the surface charges, the surface
potentials 𝒱1 and 𝒱2

𝑒𝒱1 =

(
𝜕𝑊

𝜕𝑄1

)
𝑇,𝑉,𝐴,𝜇±,𝑄2

; 𝑒𝒱2 =

(
𝜕𝑊

𝜕𝑄2

)
𝑇,𝑉,𝐴,𝜇±,𝑄1

. (2.24)

To perform these derivatives, we invoke functional chain rule

(
𝜕𝑊

𝜕𝑄1

)
𝑇,𝑉,𝐴,𝜇±,𝑄2

=

(
𝜕𝑊

𝜕𝑄1

)
𝑇,𝑉,𝐴,𝜇±,𝑄2,𝜓,𝑐±

+
∫ 𝐿

0

𝛿𝑊

𝛿𝜓

𝜕𝜓

𝜕𝑄1
d𝑧 +

∫ 𝐿

0

𝛿𝑊

𝛿𝑐±

𝜕𝑐±
𝜕𝑄1

d𝑧 (2.25)

and similarly for the𝑄2 derivative. In principle,𝜓 and 𝑐± are functions of𝑄1 and𝑄2.
However, we see the importance of the variational conditions Eqs. (2.10) and (2.11),
which remove the last two terms of Eq. (2.25). Accordingly, the 𝑄𝑖 derivatives can
be taken without regard to the dependence of 𝜓 and 𝑐± on 𝑄𝑖. Evaluating these
derivatives in Eq. (2.24) yields

𝛽𝑒𝒱1 = 𝜓(0;𝑄1, 𝑄2); 𝛽𝑒𝒱2 = 𝜓(𝐿;𝑄1, 𝑄2). (2.26)

The function dependence on other state variables (𝑇 , 𝑉 , 𝐴, 𝜇±) is omitted for
notational brevity, and this convention will be adopted for the remainder of the
article. Thus, variation of 𝑊 in 𝑄1 and 𝑄2 reveals that the conjugate variables to
𝑄1 and 𝑄2, 𝒱1 and 𝒱2, respectively, are naturally determined from the electrostatic
potential evaluated at the surface of each plate. Therefore, under fixed surface charge
conditions, variation of the proper free energy, 𝑊 , naturally admits fixed surface
charge boundary conditions and relationships for the conjugate surface potentials.
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2.4 Specified Surface Potential
If the plates have specified surface potentials, namely 𝒱1 and 𝒱2, then the system
is described by a 𝑇 , 𝑉 , 𝐴, 𝜇±,𝒱1, 𝒱2 ensemble, and the relevant free energy at
equilibrium is now different from 𝑊 . The new, relevant thermodynamic potential,
denoted 𝑌 , is given by the Legendre transform of the grand free energy with respect
to the surface charge of each plate fixed at constant surface potential [29, 32–38].

𝑌 [𝜓;𝒱1,𝒱2] = 𝑊 [𝜓;𝑄1, 𝑄2] − 𝑒𝒱1𝑄1 − 𝑒𝒱2𝑄2 (2.27)

and, using Eq. (2.19), the differential of this potential is

𝑑𝑌 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝛾𝑑𝐴 − 𝑁+𝑑𝜇+ − 𝑁−𝑑𝜇− − 𝑒𝑄1𝑑𝒱1 − 𝑒𝑄2𝑑𝒱2 (2.28)

where 𝑄1 and 𝑄2 are now unconstrained internal variables of 𝑌 to be determined
by minimization of 𝑌 at specified surface potentials 𝒱1 and 𝒱2. This new potential
𝑌 can be interpreted as a “grand-like” free energy, where the surface potentials
are fixed and the surface charges can fluctuate. Physically, the Legendre transform
subtracts the electrostatic work associated with charging/discharging the plates at
constant surface potential. Thus, the change in 𝑌 bounds the non-electrostatic
work for a constant surface potential process taking place at isothermal conditions
with fixed reservoir chemical potentials. Furthermore, note that 𝑒𝑄1𝒱1 + 𝑒𝑄2𝒱2

is equivalent to 𝑈charge from Ref. [46] for the case of parallel plates. Thus, our
analysis provides the thermodynamic foundation for this term that was introduced
phenomenologically in Ref. [46]. Lastly, our analysis shows that 𝑈charge should
only be included for thermodynamic potentials that correspond to specified surface
potential.

To verify the thermodynamic consistency of free energy 𝑌 , we note that 𝑌 also
satisfies the variational conditions in 𝜓 and 𝑐±

𝛿𝑌

𝛿𝜓
= 0 (2.29a)

𝛿𝑌

𝛿𝑐±
= 0. (2.29b)

Applying these conditions to 𝑌 returns the Poisson–Boltzmann equation as ex-
pected. As mentioned before, 𝑄1 and 𝑄2 are now internal unconstrained variables.
Therefore, at equilibrium, 𝑌 satisfies the variational conditions



21(
𝜕𝑌

𝜕𝑄1

)
𝑇,𝑉,𝐴,𝜇±,𝒱1,𝒱2;𝑄2,𝜓,𝑐±

= 0 (2.30)(
𝜕𝑌

𝜕𝑄2

)
𝑇,𝑉,𝐴,𝜇±,𝒱1,𝒱2;𝑄1,𝜓,𝑐±

= 0. (2.31)

In the subscripts of Eqs. (2.30) and (2.31), we use a semicolon to separate system-
specifying variables 𝑇,𝑉, 𝐴, 𝜇±,𝒱1, and 𝒱2 from the unconstrained variational
variables 𝑄1, 𝑄2, 𝜓, and 𝑐±. These derivatives are taken at constant 𝑄2 and 𝑄1,
respectively, because they are partial derivatives. Additionally, Eqs. (2.30) and
(2.31) are taken at constant 𝜓 and 𝑐± due to variational conditions on 𝜓 and 𝑐± as
discussed in the previous section. Applying the variational conditions on 𝑄𝑖 to the
Legendre transform given in Eq. (2.27) yields(

𝜕𝑊

𝜕𝑄1

)
𝑇,𝑉,𝐴,𝜇±,𝒱1,𝒱2;𝑄2,𝜓,𝑐±

= 𝑒𝒱1 (2.32)

(
𝜕𝑊

𝜕𝑄2

)
𝑇,𝑉,𝐴,𝜇±,𝒱1,𝒱2;𝑄1,𝜓,𝑐±

= 𝑒𝒱2. (2.33)

Evaluating these derivatives gives

𝜓(0;𝑄1, 𝑄2) = 𝛽𝑒𝒱1; 𝜓(𝐿;𝑄1, 𝑄2) = 𝛽𝑒𝒱2. (2.34)

Therefore, at specified surface potential, constant surface potential boundary condi-
tions are a natural consequence of variation of the proper free energy𝑌 and are given
by setting the electrostatic potential at the surface of the plate to be the specified
surface potential. These boundary conditions also serve as an implicit equation to
determine the unknown surface charges, 𝑄1 and 𝑄2—equations of state of the form
𝑄1 = 𝑓 (𝒱1,𝒱2) and 𝑄2 = 𝑓 (𝒱1,𝒱2). We emphasize that both 𝑊 and 𝑌 naturally
produce the same 𝑄1 = 𝑓 (𝒱1,𝒱2) and 𝑄2 = 𝑓 (𝒱1,𝒱2) equations of state, Eqs.
(2.26) and (2.34), as expected by thermodynamic consistency. The only subtlety to
highlight is that Eq. (2.26) expresses 𝒱1 and 𝒱2 as functions of 𝑄1 and 𝑄2, and
Eq. (2.34) expresses 𝑄1 and 𝑄2 as functions of 𝒱1 and 𝒱2, but are still equivalent
equations of state. This is analogous to the equation of state of a gas, where one
can either obtain the pressure by specifying the density in a canonical ensemble, or
determine the density by specifying the pressure in an isobaric ensemble. Noting
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the boundary conditions in Eq. (2.34), we can now apply the Legendre transform in
Eq. (2.27) to𝑊 and obtain an expression for 𝑌

𝛽𝑌 = 𝐴

∫ 𝐿

0
d𝑧

[
− 1

8𝜋𝑙B

(
d𝜓
d𝑧

)2
− 2𝑐B cosh (𝜓)

]
. (2.35)

Compared to 𝑊 in Eq. (2.18), 𝑌 does not explicitly contain the boundary terms.
Therefore, we see that omitting the surface charge terms in𝑊 would give𝑌 , amount-
ing to a Legendre transformed free energy.

2.5 Interplate Force
We now provide a brief analytical calculation of the interplate force. The pressure in
the film 𝑃 is related to the pressure of bulk reservoir 𝑃bulk by the disjoining pressure
Π𝐷 ≡ 𝑃 − 𝑃bulk. At constant surface charge, the pressure between the plates is
obtained from a derivative of𝑊

𝑃𝐴 = −
(
𝜕𝑊

𝜕𝐿

)
𝑇,𝐴,𝜇±,𝑄1,𝑄2

. (2.36)

The partial derivative is taken at constant 𝐴 so the differential volume is proportional
to the differential in the plate separation 𝐿. Similarly, at constant surface potential,
the pressure is obtained from a derivative of 𝑌

𝑃𝐴 = −
(
𝜕𝑌

𝜕𝐿

)
𝑇,𝐴,𝜇±,𝒱1,𝒱2

. (2.37)

It can be shown that, upon applying Eqs. (2.36) and (2.37) to Eqs. (2.18) and (2.35),
respectively, and making use of the Poisson–Boltzmann equation, Eq. (2.17), both
derivatives result in the general expression

𝛽𝑃 = − 1
8𝜋𝑙B

(
𝑑𝜓

𝑑𝑧

)2
+ 2𝑐B cosh (𝜓) (2.38)

which can be evaluated at any position since the pressure is constant between
the plates by mechanical equilibrium. Derivation of Eq. (2.38) requires careful
manipulation of the free energy and is deferred to the Appendix. The first term on
the right-hand side of Eq. (2.38) is the isotropic part of the Maxwell stress tensor
[61], and the second term is the entropic contribution from the ions in the presence
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of a potential 𝜓. For the symmetric case (𝑄1 = 𝑄2 = 𝑄 or 𝒱1 = 𝒱2 = 𝒱), the
gradient of the potential at the midplane is zero so that

𝛽𝑃 = 2𝑐B cosh
(
𝜓 |𝐿/2

)
. (2.39)

Eq. (2.39) is an equation of state known from the contact value theorem [2]. As
expected, Eq. (2.36) and Eq. (2.37) yield equivalent expressions because a system’s
equilibrium state in a reversible process is independent of boundary conditions. In
fact, Eq. (2.39), together with the 𝒱–𝑄 equation of state (either Eq. (2.26) or
(2.34)), constitute the 𝑃–𝒱 or 𝑃–𝑄 equation of state. Both are equivalent—one can
simply interchange between 𝑃 as a function of 𝒱 and 𝑃 as a function of𝑄 using the
𝒱–𝑄 equation of state. Furthermore, specifying 𝑄 or specifying 𝒱 in a reversible
process simply corresponds to different paths taken on a𝒱–𝑄 surface. Changing the
path taken affects the work done and heat exchanged, but the same pressure equation
of state is valid everywhere along any path. This is analogous to an ideal gas, where
the ideal gas law is valid regardless of the process (e.g., adiabatic, isothermal).
However, we stress that to obtain Eq. (2.39) from a thermodynamic derivative, it is
necessary to use the correct thermodynamic potential for the specified conditions.
A straightforward substitution of Eq. (2.27) into (2.37) for symmetric plate surface
potentials gives the following identity

𝑃𝐴 = −
(
𝜕𝑌

𝜕𝐿

)
𝑇,𝐴,𝜇±,𝒱

= −
(
𝜕 (𝑊 − 2𝑒𝒱𝑄)

𝜕𝐿

)
𝑇,𝐴,𝜇±,𝒱

= −
(
𝜕𝑊

𝜕𝐿

)
𝑇,𝐴,𝜇±,𝒱

+ 2𝑒𝒱
(
𝜕𝑄

𝜕𝐿

)
𝑇,𝐴,𝜇±,𝒱

.

(2.40)

This identity can also be derived directly from Eq. (2.19) by dividing by 𝑑𝐿 and
applying constant temperature, chemical potentials, and surface potential. From
Eq. (2.40), attempting to obtain the pressure solely by differentiating𝑊 at constant
surface potential neglects the last term in Eq. (2.40), which accounts for the
charging/discharging of the plates as they move. We will explore the relative
importance of the last two terms later.

2.6 Surface Tension
We close our discussion of thermodynamic consistency with a brief discussion of
the surface tension of an electrolyte solution, an important quantity in studying
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the wettability of surfaces, especially in electrowetting applications [62]. The
thermodynamic definition of surface tension introduced by Gibbs [63] is commonly
used to calculate surface tension. The basis of Gibbs’s formulation is to divide
the inhomogeneous system into homogeneous bulk phases separated by a surface
region. The majority of discussion in the time since has been focused on the
application of Gibbs’s concept of dividing surfaces to curved surfaces and cases
where the system is not macroscopic [64–72]. Here, we only wish to clarify the
role of charged solid surfaces on the surface tension. To this end, we calculate
surface tension in a confined system with charged, planar surfaces. We find that
the natural thermodynamic potential to evaluate the surface tension is related to the
Legendre transform between constant surface charge and surface potential. From
the differential form of𝑊 and 𝑌 ,

𝛾 =

(
𝜕𝑊

𝜕𝐴

)
𝑇,𝑉,𝜇±,𝑄1,𝑄2

=

(
𝜕𝑌

𝜕𝐴

)
𝑇,𝑉,𝜇±,𝒱1,,𝒱2

. (2.41)

Writing 𝑑𝑉 = 𝐴𝑑𝐿 + 𝐿𝑑𝐴 in Eqs. (2.19) and (2.28), we also have,

𝛾𝐴 = 𝐴

(
𝜕𝑊

𝜕𝐴

)
𝑇,𝐿,𝜇±,𝑄1,𝑄2

+ 𝑃𝑉

= 𝐴

(
𝜕𝑌

𝜕𝐴

)
𝑇,𝐿,𝜇±,𝒱1,,𝒱2

+ 𝑃𝑉. (2.42)

Since at fixed 𝑇 ,𝐿,𝜇±,𝒱1,𝒱2, the potential 𝑌 is extensive in area 𝐴, the derivative in
the second line of Eq. (2.42) is simply 𝑌/𝐴. Therefore,

𝛾𝐴 = 𝑌 + 𝑃𝑉. (2.43)

The last term on the right-hand side of Eq. (2.43) corresponds to the grand potential
of a homogeneous system at film pressure 𝑃, i.e., 𝑃𝑉 = (Π𝐷 +𝑃bulk)𝑉 = −𝑊0 = −𝑌0

where subscript 0 indicates a homogeneous system, and for such a system,𝑊0 = 𝑌0

since there are no surface charge or potential terms.

Equation (2.43) can be understood from another perspective. Since𝑊 is a first-order,
homogeneous equation in its extensive variables (𝑉, 𝐴, 𝑄1, 𝑄2), we have
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𝑊 = 𝑉

(
𝜕𝑊

𝜕𝑉

)
𝑇,𝐴,𝜇±,𝑄1,𝑄2

+ 𝐴
(
𝜕𝑊

𝜕𝐴

)
𝑇,𝑉,𝜇±,𝑄1,𝑄2

+𝑄1

(
𝜕𝑊

𝜕𝑄1

)
𝑇,𝑉,𝐴,𝜇±,𝑄2

+𝑄2

(
𝜕𝑊

𝜕𝑄2

)
𝑇,𝑉,𝐴,𝜇±,𝑄1

. (2.44)

The partial derivatives on the right-hand side can be identified from the differential
form of𝑊 in Eq. (2.19), leading to the following Euler equation

𝑊 − 𝑒𝑄1𝒱1 − 𝑒𝑄2𝒱2 = −𝑃𝑉 + 𝛾𝐴. (2.45)

The left-hand side is exactly the definition of 𝑌 from the Legendre transform of𝑊 .

The surface tension is commonly evaluated using the integral form of the free energy
such that 𝛾𝐴 = Ω − Ωbulk = Ω + 𝑃bulk𝑉 , where Ω is a type of grand free energy.
The bulk subscript indicates that the interface is in contact with a macroscopic, bulk
phase. The confined system has an additional Π𝐷𝑉 term due to the difference in
the film pressure from the pressure of the bulk reservoir. For a charged system,
the common expression for surface tension is only valid when Ω is the “grand-like”
free energy 𝑌 , not the grand free energy 𝑊 , regardless of whether the system is
characterized by constant surface charge or constant surface potential.

Within PB theory, one can analytically obtain the result for the surface tension using
the previous expressions for 𝑌 from Eq. (2.35) and 𝑃 from Eq. (2.38) in Eq. (2.43).

𝛽𝛾 = − 1
4𝜋𝑙B

∫ 𝐿

0
d𝑧

(
d𝜓
d𝑧

)2
. (2.46)

We see that, like in the pressure expression Eq. (2.38), the electric field generates a
negative contribution to surface tension, reflecting the effect of the Maxwell stress
[61]. The usual definition is identical to the definition using 𝑌 when 𝑃 = 𝑃bulk,
which strictly corresponds to the limit where 𝐿 → ∞. Using the PB equation,
one can analytically evaluate this limit to obtain the surface tension when the two
surfaces are infinitely separated

𝛽𝛾∞ = − 2
𝜋𝜆𝐷 𝑙B

{
sinh2

[
𝜓(0)

4

]
+ sinh2

[
𝜓(𝐿)

4

] }
(2.47)
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where𝜆𝐷 is the Debye screening length given by𝜆𝐷 = 1/
√

8𝜋𝑙B𝑐B. In the expression
for 𝛾∞, the separate contributions from each surface are additive. Note that the above
expression is valid even when the two surfaces are at different potentials. Both Eqs.
(2.46) and (2.47) were derived by Reiner and Radke [31], who also presented
analytical results in the Debye-Hückel limit. In the special case of symmetric plates
at infinite separation, the total interfacial tension is twice that for a single surface.
Substituting the exact relationship between𝜓 and𝜎 for a single plate into Eq. (2.47),
we obtain

𝛽𝛾∞ =
−2𝜎2

√︃
2𝜋 𝑙B

𝑐B

1 +
√︃
𝜋𝜎2𝑙B

2𝑐B
+ 1

. (2.48)

The thermodynamic potential 𝑌 naturally leads to a useful Maxwell relation involv-
ing the surface tension. From the differential form of the free energy in Eq. (2.28),
one has the following Maxwell relation,(

𝜕𝛾

𝜕𝑒𝒱1

)
𝑇,𝑉,𝜇±,𝒱2

= −
(
𝜕𝑄1
𝜕𝐴

)
𝑇,𝑉,𝜇±,𝒱2

= −𝜎1 (2.49)

with a similar equation in which indices 1 and 2 are switched. The equation above
can be considered to be a general form of the Lippmann equation [73] for the
confined system. In the limit of infinite surface separation or for a single surface,
one can write the more common form, which has been noted by several authors
[74–78], (

𝜕𝛾

𝜕𝑒𝒱

)
𝑇,𝑉,𝜇±

= −
(
𝜕𝑄

𝜕𝐴

)
𝑇,𝑉,𝜇±

. (2.50)

2.7 Illustrative Examples
As we showed above, simple analytical expressions for the pressure and surface
tension can be obtained at the Poisson–Boltzmann level. This is not always possible
(e.g., complex free energy functionals), and one may need to numerically differen-
tiate or use the integral form of the free energy to obtain the quantities. However,
differentiating 𝑊 under constant surface potential conditions yields an incorrect
pressure. This can be seen analytically from the identity given by Eq. (2.40).
Likewise, using 𝛾𝐴 = 𝑊 + 𝑃𝑉 yields the incorrect surface tension, regardless of the
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boundary condition. We first demonstrate the calculation of the pressure by numer-
ically evaluating the pressure under constant surface charge density and constant
surface potential conditions for the system depicted in Fig. 2.1.

Fig. 2.2a shows the disjoining pressure in the electrolyte solution as a function of
plate separation for symmetric plates at constant surface charge density (𝜎1 = 𝜎2 =

𝜎). As the plates come together, the pressure diverges due to the repulsion of the
positive charges on the plates. The initial decay with increasing distance is very
rapid, stemming from nonlinearities at high surface potential. The rapid decay is
followed by a long-range, exponential decay arising from electrostatic screening of
the plates due to the electric double layer present at the plate surfaces, with a length
scale dictated by the Debye length. This result agrees with other authors [36, 42].

Fig. 2.2b shows the disjoining pressure as a function of plate separation at constant
surface potential (𝒱1 = 𝒱2 = 𝒱), calculated by numerically differentiating 𝑌 given
by Eq. (2.35) (blue dots), and theoretically using Eq. (2.39) (blue line). The
numerically correct and theoretical curves are in agreement and predict repulsion
between the plates at all separation distances. Moreover, the repulsion is weaker at
close separation for constant surface potential compared to constant surface charge
density. At constant surface potential, the plates discharge to satisfy the boundary
conditions (see Fig. 2.2c); however, for fixed surface charge density, the surface
charge density remains constant and the surface potential and force diverge at close
separation. Another important feature is that the curves saturate at zero separation
for the case of constant surface potential. Interestingly enough, this saturation
relates to a solvation energy for the plates. The area under the pressure curve is
the negative of the free energy of separating the two surfaces at contact—when
the surfaces are not exposed to the electrolyte solution—to infinity— when the
two surfaces are fully solvated by the solution. Although the decay length of the
pressure at constant surface potential appears to be larger than at constant surface
charge density, the inset plots of Figs. 2.2a and 2.2b show that both decay lengths
are the same and equal to the Debye screening length, 𝜆D = 3.07 nm for the given
conditions. Lastly, from Fig. 2.2b, the red curve (given by the penultimate term of
Eq. (2.40)) predicts attraction between the plates despite both being like-charged—a
qualitatively incorrect result. The result is further invalidated by Fig. 2.2c, where
we see the that plates are positively charged at all separation distances and, thus, are
expected to always repel.

Now, we explore the relative importance of the last two terms in Eq. (2.40) for
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Figure 2.2: Disjoining pressure Π𝐷 ≡ 𝑃 − 𝑃bulk and surface charge density for an
electrolyte solution at constant surface charge density and constant surface potential.
The solution has bulk concentration 𝑐B = 0.01 𝑀 , temperature 𝑇 = 300 K, and
Bjerrum length 𝑙B = 0.7 nm. (a) Pressure at constant surface charge density 𝑒𝜎 =

0.01 𝑒/nm2, calculated by numerically differentiating Eq. (2.18) (blue dots) and
theoretically (blue line) with Eq. (2.39). (b) Pressure at constant surface potential
𝒱 = 1 𝑘𝑇/𝑒, calculated by numerically differentiating Eq. (2.35) (blue dots),
theoretically (blue line) with Eq. (2.39), and incorrectly evaluated (red dots) by
numerically differentiating𝑊 , the first term on the rightmost side of Eq. (2.40). (c)
Surface charge density on the plates in (b). Insets: Semilog 𝑦 plot of the theoretical
pressure (Eq. (2.39)), where 𝑚 is the slope of the curve in the linear regime.
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Figure 2.3: Relative contributions of the last two terms of Eq. (2.40) to Π𝐷 as a
function of 𝑐B, 𝐿, and 𝒱. The solution conditions are 𝑇 = 300𝐾 and 𝑙B = 0.7 nm.
The dashed line shows the zero line for clarity. (a) Pressure contributions versus bulk
concentration 𝑐B at 𝐿 = 5 nm and 𝒱 = 1 𝑘𝑇/𝑒. (b) Pressure contributions versus
plate separation 𝐿 at 𝑐B = 0.01𝑀 and 𝒱 = 1 𝑘𝑇/𝑒. (c) Pressure contributions
versus surface potential 𝒱 at 𝑐B = 0.01𝑀 and 𝐿 = 5 nm.
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various 𝑐B, 𝐿, and 𝒱. In Fig. 2.3, we see that the last two terms of Eq. (2.40) are
nearly equally important for all conditions considered. Moreover, the contribution
to the pressure from the charging/discharging of the plates (blue line, last term of
Eq. (2.40)) is always repulsive, whereas the contribution from the grand free energy
(red curve, penultimate term of Eq. (2.40)) is always attractive. As an aside, the
total pressure in Fig. 2.3b was calculated by adding the individual terms on the right
hand side of Eq. (2.40), −

(
𝜕𝑊
𝜕𝐿

)
𝑇,𝐴,𝜇±,𝒱

and 2𝑒𝒱
(
𝜕𝑄

𝜕𝐿

)
𝑇,𝐴,𝜇±,𝒱

. On the other hand,
the total pressure in Fig. 2.2b was calculated by directly differentiating 𝑌 given by
Eq. (2.35). Both curves match, thus proving the equality of Eq. (2.40) and further
verifying the thermodynamic consistency of our approach. Lastly, we can perform
a final check of thermodynamic consistency using a Maxwell relation. From the
differential form of 𝑌 given by Eq. (2.28), we can write the following Maxwell
relation for symmetric plates(

𝜕𝑃

𝜕𝑒𝒱

)
𝑇,𝐴,𝜇±

= 2
(
𝜕𝑄

𝜕𝑉

)
𝑇,𝐴,𝜇±

= 2
(
𝜕𝜎

𝜕𝐿

)
𝑇,𝜇±

. (2.51)

Evaluating the left and right derivatives from Figs. 2.3c and 2.2c, respectively,
under the same conditions (𝒱 = 1 𝑘𝑇/𝑒, 𝐿 = 5 nm, and 𝑐B = 0.01𝑀) gives
𝜕𝑃/𝜕𝒱 = 2𝑒𝜕𝜎/𝜕𝐿 = 6.4 × 10−3 𝑒/nm3, which confirms the thermodynamic
consistency.

Turning to the surface tension, we first examine the scaling behavior of the surface
tension at infinite plate separation 𝛾∞. The results are shown in Fig. 2.4, where
𝛾∞ is calculated using Eq. (2.48) as a function of surface charge density for
various bulk concentrations. From Fig. 2.4, we see that the magnitude of the
surface tension scales quadratically for low 𝜎, but becomes linear for large 𝜎. The
surface tension also loses dependence on the bulk concentration at large 𝜎 (we note,
however, that this regime may exceed the range of validity of the PB theory). At low
surface charge density, the surface tension increases in magnitude with decreasing
bulk concentration because the surface potential is linearly increasing in the Debye
length. The crossover from the quadratic to the linear regimes occurs at a lower
surface charge density for low concentrations.

Now, we move to the case of the surface tension at a finite separation length between
the plates. We examine its variation with the plate separation; the results are shown
in Fig. 2.5, where the blue line is the correct calculation of the surface tension by Eq.
(2.43), the red line is calculated incorrectly from the grand potential 𝛾𝐴 = 𝑊 + 𝑃𝑉 ,
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Figure 2.4: Surface tension at infinite plate separation of a confined electrolyte
solution as a function of surface charge density for various bulk concentrations,
calculated from Eq. (2.48). The solution conditions are 𝑇 = 300 K and 𝑙B = 0.7 nm.

and the black dotted line is the value of the surface tension at infinite separation.
Clearly, the expression using 𝑌 captures the predicted behavior for large 𝐿 by Eq.
(2.47). For the particular conditions in Fig. 2.5, using 𝑊 instead of 𝑌 would lead
to qualitatively different conclusions with regard to both the sign and the trend. We
highlight these results for using the wrong expression 𝛾𝐴 = 𝑊 +𝑃𝑉 to heed caution
in calculating the surface tension. As discussed in the introduction, the literature
is not always clear in what is meant by “grand potential,” often using the same
language for 𝑊 and 𝑌 -type potentials; only the latter is the correct potential for
computing the interfacial tension.

We end this section by examining mixed boundary conditions—the left plate at con-
stant surface charge density and the right plate at constant surface potential. Taking
advantage of the framework developed earlier, we obtain the corresponding ther-
modynamic potential by Legendre transforming𝑊 for the right plate with specified
surface potential. The free energy and pressure are thus given by

𝑋 = 𝑊 − 𝑒𝒱2𝑄2 (2.52)

𝑃𝐴 = −
(
𝜕𝑋

𝜕𝐿

)
𝑇,𝐴,𝜇±,𝑄1,𝒱2

. (2.53)
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Figure 2.5: Surface tension of a confined electrolyte solution for varying plate
separation calculated using Eq. (2.43) (blue) and 𝛾𝐴 = 𝑊 + 𝑃𝑉 (red). The surface
tension at infinite separation 𝛾∞ is calculated using Eq. (2.47). The surfaces have
fixed surface potential 𝒱 = 1 𝑘𝑇/𝑒. The solution conditions are 𝑐B = 0.01 𝑀 ,
𝑇 = 300 K, and 𝑙B = 0.7 nm.

Fig. 2.6a shows the disjoining pressure as a function of plate separation with mixed
boundary conditions. From Fig. 2.6a, we see that the profiles saturate at zero
separation. As discussed earlier, this is best interpreted in terms of the solvation
energy of two plates, where one plate is at fixed surface charge density and the
other is at fixed surface potential. Furthermore, from Fig. 2.6b, the surface charge
density on the right plate at zero separation is simply equal and opposite the surface
charge density of the left plate to satisfy charge neutrality. From Fig. 2.6, the most
intriguing result is the pressure profile for 𝒱2 = −1 𝑘𝑇/𝑒. At moderate separation,
the constant surface potential plate is negatively charged so the plates are attractive
as expected. However, at close separation (< 4 nm), the plates become repulsive
despite still being oppositely charged as shown in Fig. 2.6b. Surprisingly, the ion
density profiles at a separation 𝐿 = 1 nm in Fig. 2.6c reveal that the ion layer present
on the surface of the left plate undergoes charge inversion—that is, the ion layer
switches from accumulation of negative ions to accumulation of positive ions on the
positively charged left plate, causing “unlike-charge repulsion” at close separation.
This phenomenon at the Poisson–Boltzmann level was first reported in Refs. [42,
79]. It is important to emphasize that, while unlike-charged plates can repel,
like-charged plates can never attract at the Poisson–Boltzmann level, although like-
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charged attraction is possible at the Poisson–Boltzmann level in curved geometries
[80].

2.8 Conclusion
In chapter, we presented a pedagogical framework to clarify the subtleties of speci-
fied surface charge and specified surface potential conditions using a variational ap-
proach and the Legendre transform. For specified surface charge, both the Poisson–
Boltzmann equation and fixed surface charge boundary conditions follow naturally
from variation of the grand free energy 𝑊 . For specified surface potential, we
demonstrate that the Poisson–Boltzmann equation and constant surface potential
boundary conditions are natural consequences of variation of the thermodynamic
potential𝑌—a new thermodynamic potential obtained from the Legendre transform
of𝑊 . We further verify the thermodynamic consistency of our approach by showing
both 𝑊 and 𝑌 result in the same pressure equation of state. The thermodynamic
potential 𝑌 is shown to be the natural connection to interfacial tension, regard-
less of whether the surface is characterized by constant surface charge or constant
surface potential. Lastly, we provide some illustrative examples to emphasize the
importance of properly treating the free energy.

The framework presented can be directly applied to any electrostatic system in
parallel plate geometry, even with electrostatic correlations, such as image charge.
For example, it can be applied to calculating work in charging-discharging processes
for capacitance application, as well as phase equilibrium in electrowetting of surfaces
[81, 82]. In the electrowetting of surfaces, an electrolyte solution in contact with a
surface at fixed surface potential would require a 𝑌 like free energy for determining
the transition. In its current form, our framework is limited to slab geometries, as the
system size is characterized conveniently by area 𝐴 and separation 𝐿. It would be
interesting to extend the framework to curved geometries, where Ref. [80] predicts
like-charge attraction between two metal spheres even at the Poisson-Boltzmann
level.

2.A Derivation of Interplate Pressure
Here, we present a derivation of Eq. (2.38) by application of the derivative from
Eq. (2.37) to 𝑌 , given by Eq. (2.35). Although the derivation has been done before
[28, 83], we provide it here for completeness. We start with the Poisson–Boltzmann
equation, given by
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Figure 2.6: Disjoining pressure and surface charge density for an electrolyte solution
with the left plate at constant surface charge density 𝑒𝜎1 = 0.01 𝑒/nm2 and the right
plate at various constant surface potentials. The solution conditions are 𝑐B = 0.01𝑀 ,
𝑇 = 300 K, and 𝑙B = 0.7 nm. (a) The disjoining pressure was calculated by
numerically differentiating 𝑋 given by Eq. (2.52). (b) Surface charge density on
the right plate versus plate separation 𝐿. (c) Positive and negative ion density
profiles versus distance from the plate at separation 𝐿 = 1 nm and right plate surface
potential 𝒱2 = −1 𝑘𝑇/𝑒.
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d2𝜓

d𝑧2 = 8𝜋𝑙B𝑐B sinh (𝜓). (2.54)

Rewriting the left-hand side as d2𝜓
d𝑧2 = 1

2
d

d𝜓

(
d𝜓
d𝑧

)2
and integrating gives

− 1
8𝜋𝑙B

(
d𝜓
d𝑧

)2
+ 2𝑐B cosh (𝜓) = constant. (2.55)

The constant can be found by evaluating Eq. (2.55) at any point in the confined
system. We evaluate it at some arbitrary position 𝑧 = 𝜉 between the two plates, and
denote its value as 𝐶 (𝜉); thus

𝐶 (𝜉) = − 1
8𝜋𝑙B

(
d𝜓
d𝑧

)2
+ 2𝑐B cosh (𝜓). (2.56)

It is important to stress that although 𝐶 (𝜉) is constant in position 𝑧, it still depends
on plate separation 𝐿.

Using Eq. (2.56) in Eq. (2.35), we obtain

𝛽𝑌/𝐴 = −𝐿𝐶 (𝜉) − 1
4𝜋𝑙B

∫ 𝐿

0
d𝑧

(
d𝜓
d𝑧

)2
. (2.57)

Next, we rewrite the last term of Eq. (2.57) as an integral over 𝜓 instead of 𝑧 by
making use of Eq. (2.56)

𝛽𝑌/𝐴 = −𝐿𝐶 (𝜉) − 1
4𝜋𝑙B

∫ 𝜓𝐿=𝒱2

𝜓0=𝒱1

d𝜓
√︁

16𝜋𝑙B𝑐B cosh (𝜓) − 8𝜋𝑙B𝐶 (𝜉). (2.58)

Applying the derivative from Eq. (2.37) to Eq. (2.58) yields

𝛽𝑃 = −
(
𝜕𝛽𝑌/𝐴
𝜕𝐿

)
𝑇,𝐴,𝜇±,𝒱1,𝒱2

.

= 𝐶 (𝜉) + 𝐿 𝜕𝐶 (𝜉)
𝜕𝐿

− 𝜕𝐶 (𝜉)
𝜕𝐿

∫
𝒱2

𝒱1

d𝜓
1√︁

16𝜋𝑙B𝑐B cosh (𝜓) − 8𝜋𝑙B𝐶 (𝜉)
.

(2.59)

Upon switching the integration in Eq. (2.59) back to 𝑧, the integral yields simply 𝐿,
resulting in exact cancellation of the last two terms. Therefore,
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𝛽𝑃 = 𝐶 (𝜉) = − 1
8𝜋𝑙B

(
𝑑𝜓

𝑑𝑧

)2
+ 2𝑐B cosh (𝜓). (2.60)
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C h a p t e r 3

A MODEL FOR ZWITTERIONIC POLYMERS AND THEIR
CAPACITANCE APPLICATIONS

Zwitterions have been shown experimentally to enhance the dielectric constant of
ionic media, owing to their large molecular dipole. Many studies since explored
the enhancement of ionic conductivity with zwitterion additives as well as bulk
behavior of zwitterions. Here, we examine the capacitance behavior of zwitterions
between charged parallel plates using a mean-field theory. Employing only chain
connectivity of a cation and anion with neutral monomers in between with mean-
field electrostatics, we show that our model captures the high-dielectric behavior of
zwitterions. We also predict an optimum in the capacitance of zwitterionic media as
a function of chain length. To address the issue of zwitterion screening near charged
surfaces, we demonstrate that zwitterions simultaneously partially screen charged
walls and act as a pure dielectric that propagate the electric field far from the surface.
Moreover, we show that salt solutions with zwitterionic additives outperform the
energy density of both salt-only and zwitterion-only capacitors. We find that salt-
only capacitors perform better at low applied potential, whereas salt capacitors with
zwitterionic additives perform better at high applied potential.

This chapter includes content from our soon-to-be published article:

(1) Bruch, D.; Wang, Z.-G. A Model for Zwitterionic Polymers and Their Ca-
pacitance Applications, Under Review, 2024.

I am thankful to Dr. Alejandro Gallegos for his insight on the charge neutrality issue.
I would also like to thank Dr. Chris Balzer and Sam Varner for helpful discussions
on numerical methods.
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3.1 Introduction
High-dielectric materials are essential to improve the performance of energy stor-
age devices. These materials improve devices such as batteries and capacitors by
increasing the dielectric constant of the ionic medium, enhancing ion conductivity
and stored energy density [1–8]. Typically, in Li-ion technologies, polar organic
additives are used to enhance the dielectric constant. However, these additives are
flammable and weaken mechanical strength, making them unsafe for widespread
use [9–12]. Polymer dielectric additives have superior mechanical strength and
are less flammable, mitigating these concerns, but conventionally-used polymers
such as biaxially-oriented polypropylene (BOPP) have low energy densities [2, 3].
One promising class of high-dielectric materials are zwitterions. Zwitterions are
molecules with an anionic and cationic group separated by covalent bonds. This
structure gives zwitterions an enormous molecular dipole moment, making them
useful, nonvolatile additives that enhance the dielectric constant and ion conduc-
tivity of ionic media. Studies have shown that zwitterionic additives significantly
improve ion conductivity in SCIPEs and polyelectrolyte gels [1, 4, 8]. Furthermore,
a recent work on Li transport in polyzwitterionic ionic liquids (PZILs) showed PZILs
form ordered subdomains that promote superionic mobility, yielding excellent Li
conductivity [13]. Additionally, dielectric enhancement with added zwitterion as
a function of temperature and the effect of cationic chemical substituents on the
zwitterion dielectric constant were recently studied [6, 7]. The self-coacervation of
semi-dilute and concentrated zwitterionic polymers has also been examined [14].
However, there are no studies on the capacitance of neat zwitterion and zwitterionic
additives, nor predictions on their energy density in parallel plate geometry. In order
to develop zwitterions into effective additives for energy storage devices, it is imper-
ative to understand the capacitance and energy density zwitterions as a function of
key design parameters such as added zwitterion concentration and the covalent-bond
spacing between cationic and anionic substituent. Furthermore, a theoretical model
of zwitterions that explores their energy storage applications would be beneficial.

On the theoretical description of zwitterions, a few models have been explored [14–
18]. Ref. [16] modeled polar, explicit solvent as zwitterionic dimers using density-
functional theory to capture solvent-ion structuring near a charged interface. Later,
Ref. [17] developed a statistical field theory for ion-molecular solutions. They
derived analytical expressions for the electrostatic potential around a test ion in a
solution of zwitterion dimers using a Debye–Huc̈kel approximation. Further, it was
shown that zwitterion dimers behave like unbound ions by screening electrostatic
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interactions when the zwitterion dipole length greatly exceeds the Debye length.
However, both studies were limited to zwitterionic dimers and neither explored the
energy storage applications of zwitterions. In order to improve our understanding of
zwitterions as additives to energy storage devices, theoretical studies are warranted.

Further clarification of zwitterion screening is needed as well. As stated previously,
Ref. [17] concluded that zwitterion dimers screen test ions when the zwitterion
dipole length exceeds the Debye length, [17] and Ref. [19] showed experimentally
that zwitterions modify electrostatic interactions at surfaces. However, Ref. [20]
showed that zwitterions layer at but do not screen charged surfaces. To properly
understand zwitterion behavior in electric double-layer capacitors, this discrepancy
requires clarification.

For these reasons, we study the capacitance applications of zwitterion additives in
charged parallel plate geometry. In order to capture the effect of spacers between
cationic and anionic substituents, we model zwitterions as a polymer—a cation and
anion separated by neutral monomers. Zwitterions are not free-ions nor dipoles,
but are something in between. The interplay of free-ion behavior dipole, controlled
by the degree of anion-cation spacing, should manifest interesting consequences
in electric double-layer structure near charged surfaces. We believe this to be an
essential physics not yet explored in the context of energy storage. For example,
as chain length between cation and anion increases, the net dipole of the molecule
increases. However, the cations and anions should act more like unbound ions as
chain length increases, screening a charged surface. It is unclear how the interplay of
molecular dipole and screening as a function of chain length will affect capacitance
and energy density. We explore this effect later and show that the competition
between zwitterion dipole and screening yields an optimum capacitance as a function
of chain length in neat zwitterions. Additionally, we address the screening issue by
demonstrating zwitterions simultaneously partially screen charged surfaces and act
as a dielectric medium by propagating the electric field through the bulk. Further,
we show that pure-dipole and pure free-ion regimes can be observed depending on
the anion-cation spacing.

The rest of the paper is organized as follows: first, we develop a mean-field theory
for zwitterions in a salt solution between charged plates, taking into account dis-
crete chain connectivity, incompressibility, and electrostatics. Second, we briefly
describe the numerical scheme used to solve the mean-field equations. In our nu-
merical scheme, we adopted an algorithm not yet used in the field-theory community
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that evaluates discrete chain propagators with FFT to arbitrary algebraic accuracy,
as opposed to the standard 𝒪(Δ𝑧2) implementation [21]. Next, we examine the
screening behavior of zwitterions as a function of chain length and statistical seg-
ment length. We also provide a brief analytical calculation of the dielectric constant
of a zwitterionic melt under small applied potential. Then, we show the capaci-
tance of a neat zwitterion exhibits a maximum as a function of chain length and
demonstrate this maximum arises from a competition of bulk and surface effects.
We conclude our work by showing that zwitterionic additives outperform salt-only
and zwitterion-only solutions, and they enhance the energy density of traditional
electric double-layer capacitors by up to 8.2% at high applied potential relative to
salt-only solutions. We also map the stored energy density of a zwitterion-salt solu-
tion capacitor as a function of zwitterion concentration and zwitterion chain length.
We believe these predictions will be helpful for the design of energy storage devices
with zwitterionic additives.

3.2 Model
We develop our model using a standard field-theoretic approach, starting with the
Hamiltonian for an incompressible solution of zwitterionic polymers in neutral
monomeric solvent with added salt between parallel electrodes [22]. Our goal is to
obtain the grand canonical partition function, from which we can obtain mean-field
equations using a saddle-point approximation.

Consider a system of of 𝑛 zwitterionic polymers, 𝑛+ free salt cations, 𝑛− free salt
anions, and 𝑛𝑠 neutral solvent molecules contained in a volume 𝑉 . The zwitterionic
polymer consists of 𝑁 + 1 beads with a positively charged bead on one end, and a
negatively charged bead on the other, separated by 𝑁−1 neutral beads. The beads are
connected through a harmonic-spring bonding potential. Both charged beads have a
valency 𝑍 = 1, so the zwitterion satisfies electroneutrality by construct. Since we are
not concerned with valency effects in this chapter, we assume the added salt to have
valency 𝑍 = 1. We assign the zwitterion positive end as bead 𝑗 = 0 and the negative
end as bead 𝑗 = 𝑁 without loss of generality. The solution is incompressible and
between anti-symmetric parallel electrodes with applied potentials +𝑉 and −𝑉 . A
diagram of the system is depicted in Fig. 3.1. We note that several recent studies
deal with polyzwitterions–zwitterionic systems having oppositely charged groups
on each monomer [13, 23, 24]. However, since we are interested in clarifying
the screening behavior of zwitterions and examining their capacitance, we choose
the model where the charges are on the two ends of the polymer as it is more
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representative of the zwitterions studied in the screening experiments of Ref. [20]
and the dielectric measurements of Ref. [7].

Figure 3.1: A solution of zwitterionic polymers of chain length 𝑁 and added salt
in neutral, monomeric solvent. The total solution density is 𝜌0. The zwitterion and
added salt have bulk concentrations 𝑐B,zw and 𝑐B,f, respectively. The solution is
between two charged plates located at 𝑧 = 0 and 𝑧 = 𝐿 with applied potentials +𝑉
and −𝑉 , respectively.

Our system Hamiltonian consists of contributions from bead connectivity and elec-
trostatic contributions from all charged species, as shown in Eq. (3.1).

𝛽𝐻 =

𝑛∑︁
𝛼=1

𝑁∑︁
𝑗=1

3
2𝑏2 (r𝛼, 𝑗 − r𝛼, 𝑗−1)2 + 𝑙B

2

∫
dr

∫
dr′

𝜌̂𝑒 (r) 𝜌̂𝑒 (r′)
|r − r′| (3.1)

where the first term is the entropic spring energy for 𝑛 chains each with 𝑁 +1 beads,
𝛽 = 1/𝑘𝑇 and 𝑘 is the Boltzmann constant, and 𝑏 is the statistical segment length.
We use the terms monomer and bead interchangeably, and we adopt this convention
for the remainder of the article. The second term is the total Coulomb energy where
𝑙B is the Bjerrum length defined as 𝑙B = 𝛽𝑒2/4𝜋𝜖𝜀0. Here, 𝑒 is the elementary
charge, 𝜀0 is the dielectric permittivity of vacuum, and 𝜖 is the dielectric constant
of the medium, assumed to be spatially uniform. The microscopic charge density
operator 𝜌̂e(r) is defined as
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𝑒𝜌̂e(r) = 𝑒 [𝜌ex(r) + 𝑐+(r) − 𝑐−(r)] (3.2)

where 𝜌ex(r) is an externally imposed charge distribution, i.e., the parallel electrodes.
Note that, in our definition of charge densities above, we explicitly factored out the
charge 𝑒, so all charge densities have units length−3. The positive and negative ion
density operators 𝑐±(r) are given by

𝑐+(r) = 𝑐zw,+(r) + 𝑐f,+(r) =
𝑛∑︁
𝛼=1

𝛿(r − r𝛼,0) +
𝑛+∑︁
𝑗=1
𝛿(r − r+𝑗 ) (3.3a)

𝑐−(r) = 𝑐zw,−(r) + 𝑐f,−(r) =
𝑛∑︁
𝛼=1

𝛿(r − r𝛼,𝑁 ) +
𝑛−∑︁
𝑗=1
𝛿(r − r−𝑗 ) (3.3b)

where the first and second terms correspond to the zwitterion and free-salt contribu-
tions, respectively. Note that in our definitions of 𝑐zw,±(r), the positive and negative
ions are the 0th and 𝑁 th bead, respectively, so their bead coordinates are r𝛼,0 and
r𝛼,𝑁 .

The grand canonical partition function is given by

Ξ =

∞∑︁
𝑛=0

∞∑︁
𝑛+=0

∞∑︁
𝑛−=0

∞∑︁
𝑛𝑠=0

𝑍C(𝑛, 𝑛+, 𝑛−, 𝑛𝑠)

× exp [𝛽𝜇zw𝑛 + 𝛽𝜇+𝑛+ + 𝛽𝜇−𝑛− + 𝛽𝜇𝑠𝑛𝑠] (3.4)

where 𝜇𝛾 is the chemical potential of species 𝛾 and 𝑍C is the canonical partition
function, written using the Boltzmann weight of the Hamiltonian

𝑍C =
1

𝑛!𝑛+!𝑛−!𝑛𝑠!𝜈𝑛(𝑁+1)𝜈𝑛++ 𝜈
𝑛−− 𝜈

𝑛𝑠
𝑠

×
𝑛∏
𝛼=1

𝑛+∏
𝑘=1

𝑛−∏
𝑙=1

𝑛𝑠∏
𝑚=1

∫
dr𝑁+1
𝛼

∫
dr+𝑘

∫
dr−𝑙

∫
dr𝑠𝑚

× exp
−

𝑛∑︁
𝛼=1

𝑁∑︁
𝑗=1

3
2𝑏2 (r𝛼, 𝑗 − r𝛼, 𝑗−1)2


× exp

[
− 𝑙B

2

∫
dr

∫
dr′

𝜌̂𝑒 (r) 𝜌̂𝑒 (r′)
|r − r′|

]
× 𝛿[ 𝜌̂(r) + 𝑐f,+(r) + 𝑐f,−(r) + 𝑐𝑠 (r) − 𝜌0]

(3.5)
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where 𝜈𝛾 is the characteristic volume of species 𝛾. Since we are only concerned
with extracting the essential physics of our model, we assume neutral and charged
monomers in the zwitterion have the same characteristic volume. We note that
some authors use the thermal wavelength cubed as the volume scale. The choice of
volume scale is inconsequential—it merely results in a concentration-independent
shift in the chemical potential [25]. Here, we use the shorthand notation

∫
dr𝑁+1
𝛼 to

denote the 𝑁+1 volume integrals over the individual monomer coordinates for chain
𝛼. The delta functional at the end of Eq. (3.5) enforces local incompressibility at
all points in space, where 𝜌0 is the density of the solution, 𝜌̂(r) is the microscopic
total monomer density defined as

𝜌̂(r) =
𝑛∑︁
𝛼=1

𝑁∑︁
𝑗=0
𝛿(r − r𝛼, 𝑗 ) (3.6)

and 𝑐𝑠 is the microscopic total solvent density given by

𝑐𝑠 (r) =
𝑛𝑠∑︁
𝑖=1

𝛿(r − r𝑠𝑖 ). (3.7)

Next, we use the Hubbard–Stratonovich (HS) transformation to decouple the quadratic
interactions of the electrostatic term in Eq. (3.5) at the expense of a new coupling to
the field variable 𝜉. Upon using the HS transformation, applying the definitions of
microscopic density operators, and redefining 𝜓 = 𝑖𝜉 and 𝜂 = 𝑖𝜂 (since we anticipate
the saddle-point lies purely on the imaginary axis) we arrive at the final following
form of the grand canonical partition function

Ξ =
1
𝑍

∫
𝒟𝜂

∫
𝒟𝜓 exp {−𝐿 [𝜂(r), 𝜓(r)]} (3.8a)

𝐿 [𝜂(r), 𝜓(r)] = −𝜆zw𝑄 − 𝜆+𝑞+ − 𝜆−𝑞− − 𝜆𝑠𝑞𝑠

+
∫

dr
{
− 1

8𝜋𝑙B
[∇𝜓(r)]2 + 𝜌ex𝜓 + 𝜂(r)𝜌0

}
(3.8b)

where we assumed 𝜈 = 𝑏3 for the zwitterion, 𝜆zw =

(
2𝜋
3

)3𝑁/2
𝑒𝛽𝜇zw , 𝜆± = 𝑒𝛽𝜇± , and

𝜆𝑠 = 𝑒
𝛽𝜇𝑠 are the fugacities of the zwitterionic polymer, positive and negative free

ions, and solvent, respectively. Additionally, 𝑞± = 1
𝜈±

∫
dr exp [𝜂(r) ∓ 𝜓(r)] and

𝑞𝑠 =
1
𝜈𝑠

∫
dr exp [𝜂(r)] are the single-particles partition function for the positive
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and negative free ions and solvent, respectively, and 𝑄 is the single-chain partition
function, given by

𝑄 [𝜂, 𝜓] = 1
𝑏3

∫
dr 𝑞(r, 𝑁; [𝜂, 𝜓]) (3.9)

where 𝑞(r, 𝑁; [𝜂, 𝜓]) is the chain propagator. Due to the asymmetry of the zwit-
terion, there are two chain propagators: 𝑞(r, 𝑁; [𝜂, 𝜓]), which propagates from the
positive to negative end, and 𝑞†(r, 𝑁; [𝜂, 𝜓]), which propagates from the negative
to positive end. The chain propagators are defined as

𝑞(r, 𝑁; [𝜂, 𝜓]) = exp [𝜂(r) − 𝜓(r)] (3.10a)

𝑞(r, 𝑗 + 1; [𝜂, 𝜓]) = exp [𝜂(r)]
∫

dr′Φ(r − r′)𝑞(r′, 𝑗 ; [𝜂, 𝜓])

for 𝑗 = 0, 1, ..., 𝑁 − 2 (3.10b)

𝑞(r, 𝑁; [𝜂, 𝜓]) = exp [𝜂(r) + 𝜓(r)]
∫

dr′Φ(r − r′)𝑞(r′, 𝑁 − 1; [𝜂, 𝜓]) (3.10c)

and

𝑞†(r, 𝑁; [𝜂, 𝜓]) = exp [𝜂(r) + 𝜓(r)] (3.11a)

𝑞†(r, 𝑗 + 1; [𝜂, 𝜓]) = exp [𝜂(r)]
∫

dr′Φ(r − r′)𝑞†(r′, 𝑗 ; [𝜂, 𝜓])

for 𝑗 = 0, 1, ..., 𝑁 − 2 (3.11b)

𝑞†(r, 𝑁; [𝜂, 𝜓]) = exp [𝜂(r) − 𝜓(r)]
∫

dr′Φ(r− r′)𝑞†(r′, 𝑁 − 1; [𝜂, 𝜓]) (3.11c)

where Φ(r − r′) is the normalized bond transition probability

Φ(r) =
(

3
2𝜋𝑏2

)3/2
exp

(
− 3

2𝑏2 r2
)
. (3.12)

From here, we apply the saddle-point approximation 𝛿𝐿/𝛿𝜓 = 0 and 𝛿𝐿/𝛿𝜂 = 0 to
obtain a set of self-consistent, mean-field equations that describe the incompressible
zwitterionic polymer solution. The saddle-point condition in 𝜓 yields the Poisson
equation
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∇2𝜓 = −4𝜋𝑙B(𝜌ex + 𝑐zw,+ + 𝑐f,+ − 𝑐zw,− − 𝑐f,−) (3.13)

where the ion concentrations are obtained from the integrand of chemical potential
derivatives of the grand free energy, given by

𝑐f,± = 𝑐B,f exp [𝜂(r) ∓ 𝜓(r)] (3.14a)

𝑐zw,+ = 𝑐B,zw 𝑞
†(r, 𝑁) (3.14b)

𝑐zw,− = 𝑐B,zw 𝑞(r, 𝑁) (3.14c)

with 𝑞 as the forward chain propagator (positive to negative bead) and 𝑞† as the
backward chain propagator (negative to positive bead). Note that the factors 𝑐B,f

and 𝑐B,zw came from setting the reference potential in the bulk to be 𝜓 = 0, which
gave relationships between the fugacities and bulk concentrations.

Similarly, the saddle-point condition in 𝜂 yields

𝜌0 = 𝑐zw,+ + 𝑐f,+ + 𝑐zw,− + 𝑐f,− + 𝑐𝑠 + 𝑐B,zw

𝑁−1∑︁
𝑗=1

𝑞(r, 𝑁 − 𝑗)𝑞†(r, 𝑗) (3.15)

where 𝑐𝑠 = 𝑐B,s exp [𝜂(r)], and 𝑐B,s is the bulk solvent density, related to the other
bulk densities through 𝑐B,s = 𝜌0 − 𝑐B,zw(𝑁 + 1) − 2𝑐B,f. Eq. (3.15) is simply a
statement of local incompressibility of all species in solution.

3.3 Numerical Methods
Eqs. (3.13)–(3.15) form the set of self-consistent equations of our system at a
mean-field level. However, they are unable to be solved analytically. Solving
these equations numerically requires two major steps: field updating and chain
propagation. We update the 𝜂 and 𝜓 fields using the well-known Anderson accel-
eration algorithm, giving rapid saddle-point convergence [26, 27]. Evaluating the
chain propagator requires numerically integrating a series of 𝑁 + 1 convolutions.
It is already known that these convolutions can be integrated on a uniform grid
of 𝑀 grid points using a cyclic summation on a doubled computational domain
with 𝒪(𝑀 log𝑀) speed using fast Fourier transforms (FFTs) [28, 29]. However,
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this method amounts to a trapezoidal rule approximation that has low accuracy of
𝒪(Δ𝑧2). A method that achieves higher accuracy is desirable, as it would save
computational time by reducing the number of grid points. As far as we know, there
have been no methods implemented for discrete Gaussian-chains in non-periodic,
finite domains that achieve a higher accuracy [29]. For this reason, we implemented
the algorithm developed by Qiang [21], which gives arbitrary algebraic accuracy for
evaluating convolutions on uniform grids in non-periodic, finite domains.

Consider a general form for the discrete-chain propagator of the 𝑘 + 1th monomer

𝑞(𝑧, 𝑘 + 1) = exp[−𝑤(𝑧)]
∫

d𝑧′Φ(𝑧 − 𝑧′)𝑞(𝑧′, 𝑘) (3.16)

where 𝑤(𝑧) is the field weight for the monomer, and Φ is the bonding potential.
Qiang’s algorithm works by embedding the discretized convolution with a higher-
order quadrature rule. For example, using Simpson’s rule, Eq. (3.16) is discretized
as

𝑞(𝑧𝑖, 𝑘 + 1) = 1
3
Δ𝑧 exp[−𝑤(𝑧𝑖)]

𝑀+1∑︁
𝑗=0

Φ(𝑧𝑖 − 𝑧 𝑗 )𝑞(𝑧 𝑗 , 𝑘) (3.17)

where 𝑞 contains the embedding of Simpson’s quadrature rule, given by

𝑞(𝑧 𝑗 , 𝑘) =



𝑞(𝑧 𝑗 , 𝑘), 𝑗 = 1

4𝑞(𝑧 𝑗 , 𝑘), 𝑗 = 2𝑙

2𝑞(𝑧 𝑗 , 𝑘), 𝑗 = 2𝑙 − 1

𝑞(𝑧 𝑗 , 𝑘), 𝑗 = 𝑀.

(3.18)

In order to use FFT, Eq. (3.17) can be rewritten as a cyclic summation on a doubled
computational grid according to Hockney [28]. Then, the cyclic summation can be
calculated using FFT, and the integral in Eq. (3.16) is given in the original domain
of the cyclic summation. These details are thoroughly described in Refs. [28] and
[21], and we defer the reader to these references for implementation.

With Simpson’s quadrature rule, this algorithm achieves 𝒪(Δ𝑧4) accuracy. More-
over, higher-order accuracy can be obtained with higher-order quadrature rules
(e.g., Boole’s rule), up to arbitrarily high algebraic accuracy with a suitable quadra-
ture rule. In this chapter, we use Qiang’s algorithm with Simpson’s quadrature
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rule, allowing us to evaluate discrete-chain propagators with 𝒪(Δ𝑧4) accuracy and
𝒪(𝑁𝑀 log𝑀) speed.

3.4 Screening
In this section, we address the previously-discussed discrepancy on zwitterion
screening by examining zwitterion density and potential profiles for various chain
lengths 𝑁 and statistical segment lengths 𝑏. Here, we focus on a zwitterionic poly-
mer melt, where a melt is the limiting case of Eqs. (3.13)–(3.15) for no added
salt (𝑐B,f = 0) nor solvent (𝑐B,s = 0; consequently, the bulk ion concentration from
zwitterions is given by 𝑐B,zw = 𝜌0/(𝑁 + 1)). Although we consider a melt in this
section, we explore zwitterion solutions in later sections.

We start by examining the density and potential profiles for a zwitterionic polymer
melt with chain length 𝑁 = 10 between two anti-symmetric charged plates with
spacing 𝐿 = 5 nm and potential drop Δ𝑉 = 2.0 𝑘𝑇/𝑒 in Fig. 3.2a. Here, the left
and right plates are positively and negatively charged, respectively. From Fig. 3.2a,
we see the anion and cation accumulate at the positively and negatively charged
plates, respectively. Although cations are depleted at the left plate, their density has
a maximum just before the anion surface layer due to the anion-cation connectivity.
The same is true for the right plate except with the charges reversed. The neutral
monomer enriches just outside of the electric double-layer due to connectivity with
the adsorbed ion as well as to satisfy the incompressibility constraint. All species
reach bulk concentrations sufficiently far from the plates. Since a zwitterion is
neither free ion nor pure dipole, we expect it to behave as a free ion on length scales
smaller than the end-to-end distance and as a dipole on length scales larger than the
end-to-end distance. This behavior is verified by the electrostatic potential profile
in Fig. 3.2b. From Fig. 3.2b, the electrostatic potential partially decays near the
surfaces, similarly to screening by unbound ions in traditional electric double-layer
systems. This result suggests zwitterions can at least partially screen the electric
field from the electrodes. Far from the surface, the electrostatic potential propagates
linearly through the bulk region of the melt. In other words, the bulk of the melt is
propagating a constant electric field, which is analogous to parallel plate capacitors
with a static dielectric medium. Therefore, the zwitterion acts as a dielectric medium
in the bulk.

Further, we examine to the two-body density functions between the zwitterion cation
and anion. For a dimer, the two-body densities are given by
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(a)

(b)

Figure 3.2: Density and electrostatic potential profiles for an incompressible zwit-
terionic polymer melt. (a) Positive (red), negative (blue), and neutral (yellow)
monomer density profiles and (b) electrostatic potential for an incompressible zwit-
terionic polymer melt as a function of distance from parallel electrodes. The left and
right plate are positively and negatively charged, respectively, with a potential drop
of 2.0 𝑘𝑇/𝑒 and plate separation 𝐿 = 5 nm. The polymers have 𝑁 = 10 bonds and
statistical segment length 𝑏 = 0.5 nm, and the melt has an incompressible density
𝜌0 = 10.0𝑀 and a Bjerrum length 𝑙B = 18.7 nm. All densities are scaled by their
bulk value.
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Figure 3.3: Two-body density profiles for an incompressible zwitterionic polymer
melt between two electrodes with a potential drop of 2.0 𝑘𝑇/𝑒 and plate separation
𝐿 = 5 nm. The polymers have 𝑁 = 10 bonds and statistical segment length 𝑏 = 0.5
nm, and the melt has an incompressible density 𝜌0 = 10.0𝑀 and a Bjerrum length
𝑙B = 18.7 nm. All densities are scaled by their bulk value. The two-body density
of the negative ion given a positive ion fixed at 𝑧 = 2.5 nm is blue, and that of the
positive ion given a negative ion fixed at 𝑧 = 2.5 nm is red.

𝜌+,−(r, r′) = exp [𝜂(r) − 𝜓(r)]Φ(r − r′) exp [𝜂(r′) + 𝜓(r′)] (3.19a)

𝜌−,+(r, r′) = exp [𝜂(r) + 𝜓(r)]Φ(r − r′) exp [𝜂(r′) − 𝜓(r′)] (3.19b)

where 𝜌+,−(r, r′) is the density of the negative ion given a positive ion at position
r, and 𝜌−,+(r, r′) is the reverse. For chains larger than a dimer, we constrain the
propagators to account for the explicit positions of the positive and negative beads.
Both two-body density functions are plotted in Fig. 3.3 for a zwitterionic polymer
with 𝑁 = 10 bonds, with the tagged ion located at the center (bulk) between
the plates. From Fig. 3.3, we see that the two-body densities are asymmetric
about the center point—that is, the dipole of the zwitterionic polymers have a net
alignment with the electric field. This dipole alignment in the bulk is similar to
the behavior of a static dielectric medium, and the alignment allows the zwitterion
to propagate the constant electric field. Therefore, for our model, we have shown
that zwitterions simultaneously partially screen and propagate electric fields—that
is, they exhibit partial unbound-ion and partial dipole characteristics. Ref. [17]
showed this for zwitterion dimers (𝑁 = 1) around a test ion, and here we showed it
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for zwitterionic polymers with charged electrodes. Now, we examine the conditions
where zwitterionic polymers behave as pure unbound ions or pure dipoles.

To understand the screening behavior of zwitterions, we isolate the effects of the
statistical segment length 𝑏 and the polymer chain length 𝑁 . We examine the
electrostatic potential profiles of a zwitterion dimer (𝑁 = 1) melt for various 𝑏 in
Fig. 3.4a at a nominal Debye length of 𝑙D = 0.027 nm. From Fig. 3.4a, we see the
zwitterion dimer does little to no screening for sufficiently small 𝑏 of 𝑏 = 0.1 nm
relative to the Debye length, exhibiting nearly pure dipole character. For moderate
𝑏, the dimer incompletely screens—a mix of dipole and unbound-ion character. At
a sufficiently large 𝑏 of 𝑏 = 10 nm, the dimer completely screens the electric field,
acting as unbound ions. In the inset plot of Fig. 3.4a, we see from the plot of log𝜓
versus distance that the inverse slope close to the surface coincides with the Debye
screening length only for large 𝑏. Moreover, the screening length coincides with the
Debye length only close to the surface. We argue that after sufficient screening of
the electric field close to the surface, the bonding potential of the zwitterion dimer
dominates, altering the screening length. However, for infinite 𝑏, the screening
length should persist as the Debye screening length indefinitely.

Turning to the chain length 𝑁 , the electrostatic potential profiles of a zwitterionic
polymer melt for various 𝑁 at fixed 𝑏 = 0.5 nm are shown in Fig. 3.4b. Note
that since the bulk ion concentration for a zwitterionic polymer melt is 𝑐B,zw =

𝜌0/(𝑁 + 1)), increasing the chain length dilutes the ions and changes the Debye
length. From Fig. 3.4b, we see that the zwitterion screens more as the chain length
increases. Moreover, from the inset plot of Fig. 3.4b, we see that the screening
length coincides more with the Debye length as the chain length increases. Thus, the
zwitterion ions gains more unbound-ion characteristic as the chain length increases,
and we expect the zwitterion ions would behave as purely unbound ions in the
infinite chain limit. Additionally, the screening length coincides with the Debye
screening length only close to the surface for the same reasons discussed for the
statistical segment length. Aside from the dilution effect, changing 𝑁 is equivalent
to changing 𝑏2.

Therefore, we have shown that with our model we recover regimes of no screening
(pure dipole), partial screening, and complete screening (unbound ion), depending
on chain length and statistical segment length. This is in agreement with the idea
that as the dipole length (distance between ions) increases, the charged ends become
less bound and screen similarly to Debye–Hückel electrolytes, as pointed out in Ref.
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(a)

(b)

Figure 3.4: Electrostatic potential profiles for an incompressible zwitterionic poly-
mer melt as a function of distance between parallel electrodes for various statistical
segment lengths 𝑏 and chain lengths 𝑁 . The left and right plates are positively
and negatively charged, respectively, with a potential drop of 2.0 𝑘𝑇/𝑒 and plate
separation 𝐿 = 5 nm. (a) 𝑏 = 0.1 nm (blue), 𝑏 = 0.5 nm (purple), and 𝑏 = 10 nm
(red). The zwitterion is a dimer 𝑁 = 1. (b) 𝑁 = 1 (blue), 𝑁 = 10 (purple), and
𝑁 = 50 (red). The zwitterionic polymer has statistical segment length 𝑏 = 0.5 nm.
Insets: Semilog 𝑦 of the electrostatic potential vs. distance from plate, where 𝑚 is
the slope of the line passing through the curve close to the surface.

[30]. This effect was later substantiated in Ref. [31] for a microscopic model of
dipolar molecules with point-like charged groups. The results for statistical segment
length are in agreement with the conclusions in Ref. [17] for zwitterion dimers
near a test ion at the Debye–Hückel level, although we demonstrated this with the
presence of a charged surface. In light of these conclusions, we can now clarify the
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discrepancy on zwitterion screening between Ref. [17], Ref. [19], and Ref. [20].
Ref. [17] concluded that zwitterion dimers screen test ions when the zwitterion
dipole length exceeds the Debye length, and Ref. [19] showed experimentally that
zwitterions modify electrostatic interactions at surfaces, which suggests screening
effects. However, Ref. [20] showed that glycine zwitterions in water layer at but
do not screen charged surfaces. The reason for this observation is the statistical
segment length of their zwitterion, glycine, is about 3 Å [32, 33], which is much
smaller than their reported screening lengths of ∼ 46–48 nm for their systems of
only glycine in water. Consequently, the zwitterions are expected to act as point
dipoles. We believe that if a system had been chosen at Debye length much smaller
than the zwitterion statistical segment length, one would observe screening.

3.5 Dielectric Constant
Here, we provide a brief analytical calculation of the dielectric constant for a zwit-
terionic polymer melt for small applied potential. By twice integrating the Poisson
equation (Eq. (3.13)), the following expression for the surface charge is obtained
[34]

𝜎 =
𝜀0𝜖Δ𝑉

𝛽𝑒2𝐿
− 1
𝐿

∫ 𝐿

0
d𝑧′ 𝑧′ [𝑐+(𝑧′) − 𝑐−(𝑧′)] (3.20)

where 𝜎 has units nm−2, Δ𝑉 is nondimensional, and the second term is the po-
larization of the medium. By applying the definition of differential capacitance
𝐶 = 𝛽𝑒2𝜕𝑄/𝜕Δ𝑉 (Q = 𝜎 A), and comparing with the capacitance of parallel
plates 𝐶 = 𝜀0𝜖 𝐴/𝐿, a general expression for the “effective” dielectric constant of a
polarizable medium between charged parallel plates can be derived, given by

𝜖eff = 𝜖 − 𝛽𝑒2

𝜀0

𝜕

𝜕Δ𝑉

∫ 𝐿

0
d𝑧′ 𝑧′ [𝑐+(𝑧′) − 𝑐−(𝑧′)] . (3.21)

We assume the applied potential Δ𝑉 is sufficiently small to evaluate the integrand
𝑐+ − 𝑐− in Eq. (3.21) by expanding the propagator for small electrostatic potential 𝜓
to first order. Additionally, note that the incompressibility field 𝜂 ∼ 𝜓2 by virtue of
incompressibility, and thus can be neglected to first order. Performing this expansion
to first order yields

𝑐+ − 𝑐− =
2𝜌0
𝑁 + 1

∫ 𝐿

0
d𝑧′Φ𝑁 (𝑧 − 𝑧′) [𝜓(𝑧′) − 𝜓(𝑧)] (3.22)
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where Φ𝑁 is the full chain end-to-end bond transition probability

Φ𝑁 (𝑧) =
(

3
2𝜋𝑁𝑏2

)1/2
exp

(
− 3

2𝑁𝑏2 𝑧
2
)
. (3.23)

To evaluate the integrals in Eqs. (3.22) and (3.21), we note that, as discussed
from Fig. 3.4, the electrostatic potential is linear when 𝑁1/2𝑏 ≪ 𝑙d. Under this
assumption, the electrostatic potential is given by 𝜓(𝑧) = −Δ𝑉

𝐿

(
𝑧 − 𝐿

2
)
. Upon

substituting this expression into Eq. (3.22), the equation evaluates to

𝑐+(𝑧) − 𝑐−(𝑧) =
𝜌0

𝑁 + 1

(
2𝑁𝑏2

3𝜋

)1/2 (
Δ𝑉

𝐿

)
×

{
exp

[
− 3

2𝑁𝑏2 𝑧
2
]
− exp

[
− 3

2𝑁𝑏2 (𝑧 − 𝐿)
2
]}

(3.24)

where the Gaussian terms originate from translational entropy loss of the zwitterion
near the walls. Upon substituting Eq. (3.24) in Eq. (3.21), taking the limit
𝑁1/2𝑏 ≪ 𝐿 (large plate separation) since we are not interested in confinement
effects, we arrive at the result for the effective dielectric constant

𝜖eff = 𝜖 + 𝛽𝑒
2𝜌0

3𝜀0

𝑁𝑏2

𝑁 + 1
. (3.25)

Note that this result for the dielectric constant holds in the bulk region outside the
limit 𝑁1/2𝑏 ≪ 𝑙d, which we demonstrate later. This result for 𝜖eff is simply the
Debye result for dipolar molecules, and it matches the expression for the dimer
limit (𝑁 = 1) derived by Ref. [17]. Similar behavior was shown for long dipoles
in Ref. [35]. Most notably, the effective dielectric constant scales as 𝑁

𝑁+1 . The
dipole strength grows as 𝑁 , but the ions are simultaneously diluted in a melt as

1
𝑁+1 . Therefore, the bulk dielectric constant will plateau for large 𝑁 . Lastly, a
straightforward substitution for 𝜌0, 𝑁 , and 𝑏 into Eq. (3.25) using the same values
from the previous section recovers effective dielectric constants on the order of
hundreds, in agreement with experimental observations from Ref. [6].

3.6 Capacitance
Because of the unusual screening behavior of zwitterions, we expect interesting be-
havior in their capacitance. In this section, we examine the differential capacitance
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of a zwitterionic polymer melt as a function of chain length (covalent bond spacing)
and applied potential, given by 𝐶/𝐴 = 𝜕𝜎/𝜕Δ𝑉 . We first show the capacitance ver-
sus applied potential undergoes a bell-to-camel transition as chain length increases.
Then, we find that the capacitance exhibits a maximum as a function of chain length.
We further demonstrate that this maximum arises from a competition of bulk and
surface effects.

(a)

(b)

Figure 3.5: Differential capacitance per unit area for an incompressible zwitteri-
onic polymer melt. The left and right plate are positively and negatively charged,
respectively, with plate separation 𝐿 = 10 nm. The polymer melt has statistical
segment length 𝑏 = 0.5 nm, incompressible density 𝜌0 = 10.0𝑀 , and Bjerrum
length 𝑙B = 18.7 nm. (a) Differential capacitance as a function of applied voltage
for various 𝑁 increasing from 2 (blue) to 20 (red) bonds in steps of 2 through a
color gradient. The dashed, black line denotes Δ𝑉−1/2 scaling, characteristic of
electric-double layer saturation. (b) Differential capacitance as a function of applied
𝑁 for various applied voltages.

Fig. 3.5a shows the capacitance of a zwitterionic polymer melt as a function of
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applied voltage for increasing chain lengths from 𝑁 = 2 to 𝑁 = 20 (blue to red) in
steps of 2 through a color gradient. From Fig. 3.5a, the curves exhibit a bell-to-
camel transition as chain length increases [36], simply due to the ion concentration
diluting as 1

𝑁+1 as chain length increases. Additionally, there are contributions
from chain stretching. At low applied voltage, the longer chains readily stretch in
the applied field with increasing voltage, increasing their dipole moment and thus
increasing the capacitance, whereas smaller chain cannot stretch appreciably and
the capacitance only decreases. At high applied voltage, the electric double layer
saturates so the capacitance decreases for both small and large chains. Additionally,
the capacitance for all chain lengths scales as Δ𝑉−1/2 at high applied potential due
to electric-double layer saturation, denoted by the dashed, black line. Moreover,
from Fig. 3.5b, we see that the capacitance has a maximum as a function of chain
length for various applied voltages. The maximum in the capacitance versus chain
length is nontrivial–it cannot be explained simply by the bulk effect, which we saw
is monotonically increasing from the expressions for 𝜖bulk in the previous section.
Therefore, the nonmonotonicity of the capacitance in chain length must have surface
contributions, which we explore next.

In order to characterize the surface contribution to the capacitance, we draw analogy
with serial capacitors. The contributions to the capacitance can be separated into
three capacitors connected in series—a bulk capacitor between two surface capaci-
tors. The total capacitance is given by their inverse sum 1

𝐶
= 1

𝐶ex
+ 1
𝐶bulk

, where the
term “exces” lumps both surface capacitors into a net surface-excess contribution.
To obtain the bulk contribution, 𝐶bulk, we note that serial capacitors all have the
same surface charge, but have different applied voltage drops. Thus, the surface
charge on all three capacitors is just the surface charge of the plates. On the other
hand, the bulk capacitor voltage drop can be obtained by extrapolating the line in
the bulk region of the electrostatic potential curves to the plates. Then, the bulk
contribution to capacitance is given by the derivative of the surface charge with
respect to the voltage drop in the bulk region. From this procedure, we obtain
the bulk contribution to the capacitance as a function of chain length for various
applied voltages, shown in Fig. 3.6a. From Fig. 3.6a, we see that the bulk capac-
itance increases monotonically in chain. Moreover, we see that the curves match
𝐶bulk/𝐴 = 𝜀0𝜖bulk/𝐿 for small applied voltages (plotted as the black dashed line),
where 𝜖bulk is the expression derived in previous section. This is an expected but
satisfying result.
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The surface-excess capacitance is calculated from𝐶ex = 1/[ 1
𝐶
− 1
𝐶bulk

], and the result
is shown in Fig. 3.6b. From Fig. 3.6b, we see that the surface-excess capacitance
is monotonically decreasing in 𝑁 . Therefore, the bulk and surface-excess contribu-
tions compete to give a nonmonotonic capacitance in chain length. Furthermore,
increasing the chain length effectively increases the “free-ion characteristic” of the
zwitterionic polymer—that is, the positive and negative ions feel less bound at large
chain length. Consequently, this increases the width of the screening region/the
surface region, and decreasing the surface excess capacitance. Therefore, the max-
imum of capacitance in chain length arises from a competition between the surface
screening and bulk dielectric effects of the zwitterionic polymer.

3.7 Energy Density
We end our paper with a quantitative comparison of the energy density between
systems with zwitterionic additives to model electric double-layer (EDL) systems.
We also present a contour map for the energy density of a zwitterion-salt solution
as a function of added zwitterion concentration 𝑐B,zw and zwitterion chain length
𝑁 . Note that in this section, we focus on zwitterion-salt solutions, not melts. Given
the possibility of zwitterions being used as high dielectric additives to increase
capacitance, it is necessary to verify if adding zwitterion to an electrolyte solution
actually gives a noticeable change in the energy density compared to the electrolyte
alone.

First, we compare the energy density of a salt solution with added zwitterion to that
of a salt-only and zwitterion-only solution at the same nominal ionic strength of
𝐼 = 1.0𝑀 . All ions are monovalent and solvated in the same dielectric background
(an arbitrary small molecule solvent), and the solution is incompressible. The chain
length of the zwitterionic polymer is 𝑁 = 4. The two solutions are compared on
their energy density, defined by the reversible work of charging

𝑊 =

∫ Δ𝑉

0
d𝑣 𝐶𝑣. (3.26)

Fig. 3.7a shows the the energy density of a zwitterion-only, salt-only, and zwitterion
+ salt solution as a function of applied voltage for three different ratios of bulk
zwitterion ion concentration to bulk free salt concentration (𝑐B,zw : 𝑐B,f). We see
that the zwitterion-only solution performs worse than all cases for the range of
applied voltage explored. The zwitterion + salt solution performs worse than salt
alone for all three ratios at low applied voltage, but outperforms salt alone at high
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(a)

(b)

Figure 3.6: Bulk and excess differential capacitance for an incompressible zwitte-
rionic polymer melt. The left and right plate are positively and negatively charged,
respectively, with plate separation 𝐿 = 10 nm. The polymer melt has statistical
segment length 𝑏 = 0.5 nm, incompressible density 𝜌0 = 10.0𝑀 , and Bjerrum
length 𝑙B = 18.7 nm. (a) Bulk differential capacitance as a function of 𝑁 for var-
ious applied voltages. The dashed black line is the Debye prediction from 𝜖eff in
Eq. (3.25). (b) Excess differential capacitance as a function of applied voltage for
various 𝑁 increasing from 2 (blue) to 20 (red) bonds in steps of 2 through a color
gradient.
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applied voltage. This performance increase at higher applied voltage is more clearly
seen from the ratio of the energy density to that of salt-only, shown in Fig. 3.7b.
The zwitterion + salt solution outperforms salt-only solution more as the ratio of
zwitterion to salt is increased, achieving a maximum percent increase of 8.2% at
49:1, compared to a 5.5% and 1.1% increase at 9:1 and 1:1, respectively. The reason
for the increase in performance is due to the zwitterion stretching and becoming
highly aligned with the electric field at high voltage, effectively raising the dielectric
constant of the solution. This effect becomes more pronounced with greater excess of
zwitterion because there is less free salt to screen the applied electric field, yielding
a higher maximum in the energy density ratio. Note that the maximum for the
49:1 curve occurs around 50.4 𝑘𝑇/𝑒, or 1.30 𝑉 , which is well within the operating
range for supercapacitors [37]. Moreover, although the zwitterions become highly
aligned at high applied voltage, the zwitterion-only solution performs worse than
all other cases because there is insufficient accumulation of ions at the plates due
to the lack of free-ions. These results are encouraging and show that zwitterions
used as additives to salt solutions outperform their zwitterion-only and salt-only
counterparts. Additionally, the results suggest zwitterions are most useful when
added in great excess, giving significant enhancement in the energy density of a
capacitor within its operating voltage.

Fig. 3.7c shows a contour map of the energy density 𝑊 as a function of zwitterion
chain length 𝑁 and added zwitterion concentration 𝑐B,zw for a lower applied voltage
of Δ𝑉 = 2.0 𝑘𝑇/𝑒 and salt concentration 𝑐B,f = 0.1 𝑀 . We also note that all ion
concentrations explored are within the operating conditions of supercapacitors [37].
From Fig. 3.7c, we see that stored energy density maximizes as both chain length
and added zwitterion concentration increases. We believe these predictions will be
useful in the design of supercapacitors with zwitterionic additives.

3.8 Conclusion
In this chapter, we studied the behavior of solutions of zwitterionic polymer with and
without added salt. Employing only chain connectivity and mean-field electrostat-
ics, we recovered bulk dielectric constants on the order of hundreds, in agreement
with Ref. [6]. Additionally, we recovered the same expression as Ref. [17] for
the effective dielectric constant of a zwitterion dimer. We then characterized the
screening regimes of a zwitterionic polymer melt near a surface, demonstrating that
the zwitterions have both as unbound-ion and dipole character—they partially screen
near a surface but propagate a constant electric field through the bulk. Increasing
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(a)

(b)

(c)

Figure 3.7: Energy densities for solutions of zwitterionic polymer and salt under
various conditions. (a) Stored energy density for zwitterion-only, salt-only, and
zwitterion + salt solution. Zwitterion + salt solution is shown for three different
ratios of bulk zwitterion ion concentration to free salt concentration 𝑐B,zw : 𝑐B,f
of 49:1, 9:1, and 1:1. (b) Ratio of stored energy density for a zwitterion + salt
solution to that of a salt-only solution. The solvent has Bjerrum length of 𝑙B = 18.7
nm. All solutions have same ionic strength 𝐼 = 1.0𝑀 and incompressible density
𝜌0 = 10𝑀 . The zwitterionic polymer has 𝑁 = 4 bonds. The plate separation is
𝐿 = 10 nm. (c) Stored energy density 𝛽𝑊/𝐴 as a function of zwitterion chain length
𝑁 and added zwitterion concentration 𝑐B,zw at an applied voltage of Δ𝑉 = 2.0 𝑘𝑇/𝑒
and salt concentration 𝑐B,f = 0.1 𝑀 . The added zwitterion concentration cannot
exceed the total density, giving an empty region on the upper-right section of the
plot.
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statistical segment length and chain length increases the unbound-ion character,
whereas decreasing these parameters increases the dipole character. Next, we found
the differential capacitance of a zwitterionic polymer melt has nonmonotonic behav-
ior versus chain length, and we determined this behavior is a competition between
bulk and surface effects. Then, we demonstrated that zwitterionic additives perform
on par with salt-only capacitors for the same ionic strength. Most importantly,
we found that zwitterions used as additives to salt solutions outperform the energy
density of salt-only and zwitterion-only solutions at high applied potential. Addi-
tionally, zwitterions are best used in great excess of the free salt, giving an 8.2%
increase in energy density compared to salt alone at the same nominal ionic strength.
Lastly, we presented a contour map of the stored energy density for a zwitterion-
salt capacitor as a function of added zwitterion concentration and zwitterion chain
length and showed that energy density increases with increasing zwitterion concen-
tration and chain length, although the energy density becomes sub optimal in the
pure-zwitterion limit.

We note that our model does not account for enthalpic solvent-polymer interactions.
Such interactions would lead to bulk and/or surface phase transitions that would
affect operating conditions of zwitterionic-additive-based batteries and capacitors.
Additionally, image charge effects introduced by the surface will modify zwitterion
screening behavior which necessitates including electrostatic correlations. Lastly,
we believe our model has other potential applications. One area is to explicitly
represent dipolar solvents. Dipoles are cumbersome to treat in a theory even at
a mean-field level, so using zwitterionic representations circumvents this issue.
This route is advantageous because it captures solvent structure to a degree and
modifications can be made to the architecture to better represent polar solvents, such
as the multipolar model by Ref. [17], and in the electrostatic collapse of dipolar
polymer gels [18]. This application is similar to the work of Ref. [16], although their
work does not consider image charge effects which have been shown to significantly
alter ion-solvation structure [38]. Lastly, since zwitterions have been demonstrated
to have anti-fouling, anti-microbial, and drug-delivery applications [23, 39–44], it
would be beneficial to develop theoretical models to capture these properties as well.
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C h a p t e r 4

IMAGE CHARGE EFFECTS UNDER METAL AND
DIELECTRIC BOUNDARY CONDITIONS

Image charge effect is a fundamental problem in electrostatics. However, a proper
treatment at the continuum level for many-ion systems, such as electrolyte solutions
or ionic liquids, remains an open theoretical question. Here, we demonstrate and
systematically compare the image charge effects under metal and dielectric boundary
conditions (BCs), based on a renormalized Gaussian-fluctuation theory. Our cal-
culations for a simple 1:1 symmetric electrolyte in the point-charge approximation
show that the double-layer structure, capacitance, and interaction forces between
like-charged plates depend strongly on the types of boundaries, even in the weak-
coupling regime. Like-charge attraction is predicted for both metal and dielectric
BCs. Finally, we comment on the effects of a dielectrically-saturated solvent layer
on the metal surface. We provide these results to serve as a baseline for comparison
with more realistic molecular dynamics simulations and experiments.

This chapter includes content from our previously published article:

(1) Zhou, T.; Bruch, D.; Wang, Z.-G. Image charge effects under metal and
dielectric boundary conditions, en, arXiv:2405.13261 [cond-mat], 2024,

I am thankful to Dr. Tingtao Zhou for allowing me to join this project.
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Image charge (IC) interaction has wide implications in electrostatics problems with
interfaces. A classic example is the study on surface tension of electrolyte solutions
pioneered by Wagner [1] and Onsager and Samaras [2], where the IC repulsion at
air/water interface was considered responsible for the increase in the surface tension
due to added salt ions. Monte Carlo simulations [3, 4] and an integral equation
theory based on hypernetted chain approximation [5] have shown ion depletion near
a weakly charged dielectric interface, while ion accumulation near a metal interface
is expected. Nanoscale supercapacitors have received recent interest for nanoscale
device applications [6–8] and may be used to probe material characteristics at the
molecular level [9]. These nanoscale devices require proper treatment of IC effects.
IC interaction also affects the study of capacitive desalination [10], capillary freezing
of ionic liquids [11], surface adsorption of ions [12], ion transport in charged nano-
porous materials [13], and may even play a role in planet formation [14].

The Poisson–Boltzmann (PB) theory has been widely accepted as the leading or-
der theory for the weak-coupling regime of electrostatics [3, 15–18], but it does
not include ion-correlation or IC effect. Theoretically, a primitive treatment is to
explicitly construct the image charge of a single ion and modify the free energy at
the interface [2]. In field-theoretic formulations, perturbative loop-expansion treat-
ments have been used to derive corrections to the PB theory [16, 19, 20] to include
IC interactions. However, by analysis of a single point charge approaching a bound-
ing interface, one can show that the image charge interaction diverges as the charge
approaches the interface [21]. For a dielectric interface, this singular behavior re-
sults in a singular boundary layer of the electrolyte close to the interface, eluding
regular perturbation methods [15]. Ref. [22] derived a renormalized field-theory
framework with implicit solvent. There, the solvent is modeled as a continuum with
an effective dielectric constant. Sharp dielectric interfaces have been studied using
this framework [23, 24] and lattice Monte Carlo simulations [25] have shown good
agreement with the predictions from Ref. [23]. Other field-theoretic treatments
including IC interactions usually introduce an arbitrary cutoff to avoid divergence
of self-energy [26, 27]. For the metal boundary, several techniques for Molecular
Dynamics (MD) simulations have been devised to account for the IC interactions,
such as iterative methods [28–31], explicit construction of image charges [32–36],
or directly updating polarization charges at interfaces with Car-Parrinello molecular
dynamics [37], and ion accumulation on the metal surfaces has been observed [38].
Simulations using the method of periodic Green’s functions have also been con-
structed for both dielectric and metal boundaries [38]. In all of these simulations,
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the solvent is treated implicitly where the polarization of the solvent is modeled by
a bulk dielectric constant. However, as found in Ref. [39], IC interaction is strongly
affected by the polarizability of both solvent molecules and ions — a polarizable
solvent even cancels out some effects of the IC, which is neglected in models with
implicit solvent background.

IC effects are known to be important for electric double layer capacitors. For
example, experimental evidence shows that surface polarizability leads to a much
higher differential capacitance than expected [40], and IC interaction may even lead
to a phase transition at the electrolyte-metal interface [41, 42] or induce symmetry
breaking patterns on the interface [43]. For room-temperature ionic liquids, MD
simulations and 1D model analysis [44, 45] showed importance of IC effects on
capacitance curves. For lower bulk salt concentrations, recent MD simulations [39]
have shown significant enhancement of charge separation in a nano-supercapacitor
with conducting electrodes. MD simulations also showed [46] non-trivial properties
of double-layer structures of polyelectrolytes due to surface polarization for both
dielectric and metal boundaries.

IC effects also influence colloidal interactions [47, 48], which play a critical role
in many soft matter systems. The classic DLVO theory [49] predicts only screened
repulsive electrostatic interactions. More recent efforts extending the PB theory,
such as the renormalized jellium model [50–54], result in a renormalized charge but
qualitatively same repulsive tendency. In fact, Trizac has shown that generally local
density approximations lead to repulsive pair potentials [55]. Nevertheless, like-
charged colloidal attraction have been reported [56–58] and has wide implications.
For example, during cement setting, attraction between like-charged surfaces may
allow the cohesion strength to increase beyond the order of magnitude of capillary
stress [59–61] or van der Waals interaction. Without systematic considerations of IC
effects, the like-charge attraction has been mostly attributed to ion-ion correlations
and fluctuations [5, 15, 62–68]. These correlation effects are generally thought to
become significant at the strong-coupling limit [69–72], typically from high surface
charge density or multi-valent ions. In the weak-coupling regime, Refs. [23, 73]
have shown like-charge attraction due to IC-induced ion depletion between dielectric
plates. For 1:1 electrolyte with metal boundary conditions and fixed surface charge
density, dos Santos & Levin [74] concluded that attraction between like-charged
particles can happen for spheres even at the level of the PB theory.

In reality, IC interaction can be further complicated by various other factors. These
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interfacial effects are often ion-specific [75], such as the famous Hofmeister series
[76] for protein salt-in/salt-out. The hydration shell structure of the ions also changes
when they are adsorbed onto a metal surface, which affects their hydration energy.
In addition, more complex and unexpected behaviors of the differential capacitance
have been reported in MD simulations with polyelectrolytes [46]. In the case of a
free interface, the IC interaction is also coupled with surface capillary waves [77–
79]. These complications are beyond the scope of this work.

In this paper, we provide a simple theoretical picture of the IC effects as a reference
for further studies with more realistic molecular models for electrolytes. To this
end, we treat all ions as point charges and assume an implicit solvent background.
We present a systematic comparison between the metal BC, dielectric BC, and
PB theory in terms of the differential capacitance of nano-capacitors and forces
between like-charged plates by numerically solving the variational field theory for an
incompressible electrolyte. Our calculations show that the differential capacitance
depends strongly on the boundary condition (metal or dielectric) as well as the bulk
salt concentration. For example, even at low bulk concentration but if the slit width
is small, the metal BC leads to a “bird-shaped” capacitance curve [80]. For a simple
1:1 electrolyte, we find the interplate forces change from repulsion to attraction
as the separation distance decreases between dielectric plates, and stronger and
long-ranged attractions between like-charged metal plates, due to the IC interaction.
Moreover, to account for the distance of closest approach of real ions to a surface,
we consider a thin layer of polarizable solvent on the metal surface, preventing direct
contact of ions with the boundary. We show that even a very thin surface dielectric
layer cancels out some IC effects, consistent with the findings in Ref. [39].

4.1 Theory
General Gaussian variational approach
We start by recapitulating the field-theoretic framework as presented in Ref. [22].
Consider a system with cations (of valence 𝑧+) and anions (of valence −𝑧−) in
an electrolyte solution, and external charges on the boundary surfaces 𝑒𝜌𝑒𝑥 . The
solution is connected to a reservoir with bulk cation and anion concentrations 𝑐+,0
and 𝑐−,0, respectively. The total microscopic charge density is

𝑒𝜌(r) = 𝑒
(
𝜌𝑒𝑥 (r) + 𝑧+

∑︁
𝑖+
ℎ+(r − r𝑖+) − 𝑧−

∑︁
𝑗−
ℎ−(r − r 𝑗−)

)
(4.1)



72

where the salt ions have a charge spread kernel, which is taken to the point charge
limit ℎ±(r − r𝑖±) = 𝛿(r − r𝑖±) throughout this work. The Coulomb energy is

𝐻 =
𝑒2

2

∫
𝑑r𝑑r′𝜌(r)𝐺0(r, r′)𝜌(r′) (4.2)

where the Coulomb operator 𝐺0 is defined by

−∇ · 𝜀(r)∇𝐺0(r, r′) = 𝛿(r − r′). (4.3)

The grand canonical partition function is

Ξ =
∑︁
𝑛+

∑︁
𝑛−

𝑒𝑛+𝜇+𝑒𝑛−𝜇−

𝑛+!𝑛−!𝑣𝑛++ 𝑣
𝑛−−

∫
𝑑r𝑖+𝑑r 𝑗−𝑒−𝛽𝐻

=
1√︁

det(𝐺0)

∫
𝐷 [𝜙]𝑒−

∫
𝑑rL[𝜙(r)]

(4.4)

where the action density is

L[𝜙] = 1
8𝜋ℓ𝐵

(∇𝜙(r))2 + 𝑖𝜌𝑒𝑥 (r)𝜙(r) − 𝜆+𝑒−𝑖𝑧+𝜙(r) + 𝜆−𝑒𝑖𝑧−𝜙(r) . (4.5)

For convenience Equation. (4.5) and subsequent ones throughout the paper are
written in dimensionless variables. The Bjerrum length is ℓ𝐵 = 𝑒2/(4𝜋𝜖𝑘𝐵𝑇).
The complex-valued auxiliary field 𝜙(r) conjugate to the charge density 𝜌(r) is
introduced through the standard Hubbard–Stratonovich transformation [81, 82] and
then non-dimensionalized by 𝑘𝐵𝑇/𝑒. 𝜆± = 𝑒𝜇±

𝑣±
are the bulk activities of salt ions,

where 𝜇± are the chemical potentials and 𝑣± are the volume scales which have
no thermodynamic consequences other than shifting the reference of the chemical
potential; therefore, for convenience, we choose 𝑣± to be simply the volume of the
ions. A renormalization of the field theory then can be derived through a variational
approach by extremizing [22, 83] the grand free energy

𝑊 ≤ 𝑊𝑟𝑒 𝑓 +
〈
𝐿 [𝜙] − 𝐿𝑟𝑒 𝑓 [𝜙]

〉
𝑟𝑒 𝑓

. (4.6)

The auxiliary field is decomposed into
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𝜙(r) = −𝑖𝜓(r) + 𝜒(r) (4.7)

where the mean-field part −𝑖𝜓(r) and fluctuation parts 𝜒(r) are purely imaginary
and real fields, respectively. The reference action is chosen as a Gaussian form for
the fluctuation part for the auxiliary field

𝐿𝑟𝑒 𝑓 =
1
2

∫
𝑑r𝑑r′𝜒(r)𝐺−1(r, r′)𝜒(r′). (4.8)

The Green’s function 𝐺 (r, r′) is unknown and will be determined together with the
mean-field 𝜓(r) by the extremization of𝑊 , which results in

−∇ ·
[

1
4𝜋ℓ𝐵 (r)

∇𝜓(r)
]
= 𝜌𝑒𝑥 (r) + 𝑧+𝑐+(r) − 𝑧−𝑐−(r) (4.9)

−∇ ·
[

1
4𝜋ℓ𝐵 (r)

∇𝐺 (r, r′)
]
+ 2𝐼 (r)𝐺 (r, r′) = 𝛿(r − r′) (4.10)

where the ionic strength is 𝐼 (r) = 1
2
[
𝑧2
+𝑐+(r) + 𝑧2

−𝑐−(r)
]
, and ion concentrations

are

𝑐±(r) = 𝜆± exp {∓𝑧±𝜓(r) − 𝑢±(r)} (4.11)

with the self energy
𝑢±(r) =

1
2
𝑧2
±𝐺 (r, r′ → r). (4.12)

Here the self-energy appears in the exponential of the Boltzmann factor of the charge
distributions and it is the key feature of this framework. It includes a singular part,
which is present even in a homogeneous solution without boundaries; this singular
part can be regularized by the introduction of a smearing function [22], with a spread
chosen to reproduce the Born solvation energy in a bulk electrolyte solution and can
be absorbed into the bulk ion chemical potentials. The remaining part of the self-
energy comes from spatial variations of charge distribution, correlation energy, and
the existence of boundaries and image charges. This part of the self-energy is finite
inside a continuum electrolyte, except at dielectric discontinuities and boundaries.
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Incompressible electrolyte
Even within the PB framework, ion densities near electrolyte–metal interfaces can
be overestimated and exceeds the physically maximum value of close packing [84],
due to the unconstrained exponential dependence of ion concentration on the electric
potential. The point-charge approximation in the variational field theory presented
in the last section still exhibits divergent self energy near an interface [21], resulting
in complete ion depletion (divergent accumulation) near a dielectric (metal) wall,
necessitating a proper consideration of finite ion sizes, which can be treated at differ-
ent levels. The first step of improvement is to constrain the total concentration by an
incompressibility condition, which prevents the divergence of ion accumulation or
self energy, without introducing an explicit length scale for the ions. The next level
of improvement is to introduce explicitly a finite ion size by either charge spread (ℎ
in Eqn. 4.1) or a hard sphere radius in a primitive model. At the mean-field level,
explicit modeling of ion sizes can lead to a generalized Boltzmann distribution [85].
Moreover, incorporation of charge spread [86] or a hard sphere radius [87] leads
to oscillations in ion densities, and in concentrated electrolytes, these oscillations
become important and lead to effects such as a nonmonotonic dependence of the
screening length on ion concentration [87].

As we focus on a proper comparison between the different boundary conditions
for IC effects, we adopt the minimum model with incompressibility constraint
[88, 89] to regulate ion concentration near the boundary surfaces. This way, the
IC interaction is still calculated for point charges that can approach the interface
indefinitely close, and hence the IC force may diverge as expected, but the ion
concentration is regulated by a saturation value. The incompressibility condition is
represented by a product of delta functions that enforces the solution density 1

𝑣0
at

every point in space,
∏

r 𝛿
(
𝑐+(r) + 𝑐−(r) + 𝑐𝑠 (r) − 1

𝑣0

)
, where the number densities

of cation, anion and solvent molecules are

𝑐+(r) =
∑︁
𝑖+
𝛿(r − r𝑖+)

𝑐−(r) =
∑︁
𝑖−
𝛿(r − r𝑖−)

𝑐𝑠 (r) =
∑︁
𝑠−
𝛿(r − r𝑖𝑠).

(4.13)

For simplicity we have assumed that the volumes of all species (cation, anion, and
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solvent) are equal 𝑣+ = 𝑣− = 𝑣𝑠 = 𝑣0 = (0.5 nm)3, so that the total concentration of
all species is 𝑐0 ≈ 13.33 M everywhere.

To deal with the incompressibility constraint, we represent the product of delta
functions as its Fourier transform by introducing an auxiliary field 𝜂(r)

∏
r
𝛿

(
𝑐+(r) + 𝑐−(r) + 𝑐𝑠 (r) −

1
𝑣0

)
=∫

𝐷 [𝜂(r)]𝑒𝑖
∫
𝑑r𝜂(𝑐++𝑐−+𝑐𝑠− 1

𝑣0
)

(4.14)

where the notation
∫
𝐷 [𝜂(r)] is the functional integral with respect to the field 𝜂(r).

Now 𝑐±,𝑠 (r) still depend on the ion/solvent positions {r𝑖}, which are integrated over
in the grand partition function.

With this constraint incorporated into the grand partition function, extremizing the
grand free energy with respect to the new auxiliary fields gives modified equations
for concentration fields

𝑐±(r) =𝜆±𝑒∓(𝑧±𝜓(r))+𝜂(r)−𝑢± (r) (4.15)

𝑐𝑠 (r) =
𝑒𝜇𝑠

𝑣0
𝑒𝜂(r) (4.16)

1
𝑣0

=𝑐+(r) + 𝑐−(r) + 𝑐𝑠 (r) (4.17)

where these Equations (4.15) and (4.16) are obtained from the integrand of chem-
ical potential derivatives of the grand free energy. Note that the differential equa-
tions (4.9) – (4.10) for the electric potential 𝜓 and Green’s function 𝐺 remain the
same. Hence, the treatment for incompressibility is at the mean-field level. For
consistency in the comparisons throughout this paper, we impose the incompress-
ibility condition for all cases—PB theory, metal and dielectric BCs, and for a thin
dielectric surface layer on a metal wall.

Force and capacitance between two plates
Consider an electrolyte solution confined between two infinite parallel plates. In
this work, we focus on comparing four cases of boundary conditions (BCs): (1)
both plates are perfect metal; (2) both plates are dielectric medium with a dielectric
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constant 𝜖𝑝 = 2, lower than that of the solution, assumed to be 𝜖𝑟 = 80; (3) PB
theory without image charge corrections; and (4) both plates are metal with a thin
dielectric surface layer with a dielectric constant 𝜖L, lower than that of solution.
For simplicity, cases (2) and (4) will be referred to as dielectric and layer BC from
now on, respectively. The electrolyte is connected to a bulk 1:1 solution of salt ion
concentrations 𝑐+,0 = 𝑐−,0 = 𝑐0; hence, the calculations are in the grand canonical
ensemble.

Due to the translational and rotational symmetry in the directions parallel to
the plates, it is convenient to use cylindrical coordinates (𝜌, 𝜃, 𝑧). The Equa-
tions (4.9), (4.10) and (4.15) – (4.17) are simplified to a set of 1D ordinary differential
equations (ODEs) along the 𝑧-axis perpendicular to the plates

− 1
4𝜋ℓ𝐵

𝜕2

𝜕𝑧2𝜓(𝑧) = 𝜌𝑒𝑥 (𝑧) + 𝑐+(𝑧) − 𝑐−(𝑧) (4.18)

𝛿(𝑧 − 𝑧′) = 1
4𝜋ℓ𝐵

{[
𝑘2 + 𝜅(𝑧)2] − 𝜕2

𝜕𝑧2

}
𝐺 (𝑘, 𝑧, 𝑧′) (4.19)

𝑐±(𝑧) = 𝜆±𝑒𝜂(𝑧)−𝑢(𝑧)∓𝜓(𝑧) (4.20)

𝑢(𝑧) = 𝑢𝐵𝑜𝑟𝑛 + 𝑢𝐷𝐻 + 1
4𝜋

∫ ∞

0
𝑑𝑘 (𝑘𝐺 (𝑘, 𝑧, 𝑧) − 2𝜋ℓ𝐵) (4.21)

𝜅(𝑧)2 = 4𝜋ℓ𝐵 [𝑐+(𝑧) + 𝑐−(𝑧)] (4.22)

𝑐𝑠 (𝑧) = 𝜆𝑠𝑒𝜂(𝑧) (4.23)
1
𝑣0

= 𝑐+(𝑧) + 𝑐−(𝑧) + 𝑐𝑠 (𝑧) (4.24)

where we use the partial Fourier transform𝐺 (𝑘, 𝑧, 𝑧′) of the Green function𝐺 (r, r′):
by symmetry of the geometry 𝐺 (r, r′) = 𝐺 ( |𝜌 − 𝜌′|, 𝑧, 𝑧′). One then only Fourier
transforms the separation 𝑠 = |𝜌 − 𝜌′| in the parallel direction

𝐺 ( |𝜌 − 𝜌′|, 𝑧, 𝑧′) = 1
2𝜋

∫ ∞

0
𝑘𝑑𝑘𝐽0(𝑘𝑠)𝐺 (𝑘, 𝑧, 𝑧′) (4.25)

where 𝐽0(𝑥) is the zeroth-order Bessel function. After the partial Fourier transform,
Equation (4.10) becomes Equation (4.19). Inverse Fourier transforming 𝐺 (𝑘, 𝑧, 𝑧′)
back and taking the limit of 𝜌 → 𝜌′, 𝑧 → 𝑧′ according to Equation (4.12) gives
Equation (4.21). In Equation (4.21), the singular part of the self-energy is replaced
with a constant reference energy, including the Born energy 𝑢𝐵𝑜𝑟𝑛 = 𝑧2ℓ𝐵/(2𝑎) and a
Debye-Hückel correlation term 𝑢𝐷𝐻 = −𝑧2ℓ𝐵𝜅𝐵/2, which is assumed homogeneous
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inside the domain and in the reservoir, and hence can be absorbed into the bulk
fugacity. 𝜅𝐵 =

√
8𝜋𝑐0ℓ𝐵 is the inverse Debye length in the bulk solution. Only the

excess part (second term of RHS in Equation (4.21)) will be relevant for our purpose
here. By setting 𝜂 = 0 for the reservoir, the chemical potentials are determined by
the bulk concentrations

𝜆𝑠 =
1
𝑣0

− 2𝑐0 (4.26)

𝜆±𝑒
−𝑢∞ = 𝑐±,0 = 𝑐0. (4.27)

The BCs for the ODE Eq. (4.18) can be set by fixing the surface potential (Dirichlet)
or fixing the surface charge density (Neumann), depending on the specific applica-
tion. We now specify the BCs for the ODE Eq. (4.19) for the Green’s function at the
surfaces 𝑧 = −𝐿/2 and 𝑧 = 𝐿/2. With metal plates, there is no fluctuation inside the
metal, so𝐺 (𝑧 = −𝐿/2, 𝑧′) = 𝐺 (𝑧 = 𝐿/2, 𝑧′) = 0 (noting that𝐺 (r, r′) = ⟨𝜒(r)𝜒(r′)⟩
is the variance of the fluctuation field 𝜒(r) from its defining Equation. (4.8)). With
dielectric plates of relative permitivity 𝜖𝑝, different from the solvent relative permi-
tivity 𝜖𝑟 , the equation can be extended to the whole space and the dielectric constant
is regarded as having a discontinuity at 𝑧 = ±𝐿/2 so that 𝜖 (𝑧) = 𝜖𝑝 outside |𝑧 | > 𝐿/2
and 𝜖 (𝑧) = 𝜖𝑟 inside |𝑧 | < 𝐿/2. Accounting for this jump one arrives at [24] a Robin
BC for 𝐺 (𝑘, 𝑧, 𝑧′)

𝜖𝑟𝜕𝑧𝐺 (𝑘, 𝑧 = ±𝐿/2, 𝑧′) = ∓𝑘𝜖𝑝𝐺 (𝑘, 𝑧 = ±𝐿/2, 𝑧′). (4.28)

For the case of a thin dielectric layer on the metal surface, the metal surface is at
fixed potential, and Equations (4.18) and (4.19) have Robin boundary conditions,
derived in Appendix C.

The differential capacitance 𝐶𝑑 = 𝑑𝜎𝑠/𝑑𝑉 can be readily obtained by sweeping the
voltage𝑉 , which is symmetrically applied on both plates such that𝜓(𝑧 = ±𝐿/2) = 𝑉 .
𝜎𝑠 is the surface charge density on a plate. We also examine forces between like-
charged plates by continuously varying their separation distance and computing the
total grand free energy 𝑊 . In any case, the free energy per unit area of the system
is [24]
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𝑊 =
1
2

∫
𝑑𝑧𝜓(𝑧) {𝜌𝑒𝑥 (𝑧) − 𝑐+(𝑧) + 𝑐−(𝑧)}

+
∫

𝑑𝑧(𝜂(𝑧) − 1) {𝑐+(𝑧) + 𝑐−(𝑧) + 𝑐𝑠 (𝑧)}

+
∫

𝑑𝑧𝐼 (𝑧)
∫ 1

0
[𝐺 (𝑧, 𝑧; 𝜉) − 𝐺 (𝑧, 𝑧)]𝑑𝜉

(4.29)

for fixed surface charges 𝜎𝑠, and performing a Legendre transform gives the free
energy 𝑌 = 𝑊 − 2𝜎𝑠𝑉 for fixed surface potentials at 𝜓(𝑧 = ±𝐿/2) = 𝑉 . The
“charging” Green’s function 𝐺 (𝑧, 𝑧′; 𝜉) is obtained by solving Eq. (4.19) but with
𝜅(𝑧)2 replaced by 𝜉𝜅(𝑧)2. The force per unit area is

Π = −𝜕 (W(𝐿) −W(∞))
𝜕𝐿

(4.30)

and W is 𝑊 or 𝑌 depending on whether surface charge or surface potential is
specified [90].

4.2 Numerical Results and Discussions
We numerically evaluate the Equations (4.18) – (4.24) iteratively. For the fixed
voltage (Dirichlet) boundary conditions, the Poisson equation (4.18) is solved by the
Chebyshev spectral method, and we combine the Chebyshev and shooting methods
to solve the fixed charge (Neumann) boundary condition. For a given pair of 𝑘 and
𝑧′ values, the Green’s function is solved by a finite difference method with non-
uniform grid size for accuracy. For the inverse Fourier transform, the integration
over 𝑘 in Equation (4.21) is performed with Gauss–Laguerre quadrature. The
numerical scheme converges in a few minutes for density profiles and a few hours
for capacitance/force curves. A diagram of the systems considered is shown in Fig.
4.1.

Charge accumulation/depletion at the surface
For a single point charge near a planar surface, its image charge is known to be
attractive for a metal boundary and repulsive for a dielectric medium with a lower
dielectric constant than that of the electrolyte. As the point charge approaches the
boundary interface, its distance to the image charge decreases to 0, resulting in a
divergent image charge interaction. This is reflected in the self-energy diverging at
the domain boundaries as shown in Fig. 4.2(a). The wall surface for both curves in
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Figure 4.1: A solution of monovalent ions near a charged wall. The ions have bulk
concentration 𝑐0 and the solution has dielectric constant 𝜀𝑟 = 80. The charged
wall is located at 𝑧 = −𝑎 and has a thin dielectric surface layer of thickness 𝑎 and
dielectric constant 𝜀L. For slit-pore conditions, there is another charged wall (not
shown) at 𝑧 = 𝐿 + 𝑎 that has a dielectric surface layer at 𝑧 = 𝐿. For purely metal or
dielectric BCs, there are no thin dielectric surface layers (𝑎 = 0).

Fig. 4.2 are fixed at 𝑉 = 0, and bulk ion concentrations are 𝑐+,0 = 𝑐−,0 = 0.1 M.
The self-energy near the surface has two contributions: (1) there are no other salt
ions inside the plate, hence less correlation energy. (2) the dielectric property of
the plate differs from the solution, leading to IC interactions. For dielectric BC,
salt ions are completely depleted from the surface; for metal BC, the ion density
saturates at the surface as shown in Fig. 4.2(b). The cation and anion profiles overlap
for either metal or dielectric BC since there is no applied voltage or fixed charges.
Although in both cases the electric potential is a constant zero everywhere, the
concentration profiles are nontrivial and nonuniform, different from the PB solution
that gives trivial constant concentrations equal the bulk value of 0.1 M. Away from
the boundary-layer zone, both dielectric and metal BCs show exponentially decaying
deviations of ion densities from the bulk with a similar screening length, while the
metal curve shows a significantly different screening length for the boundary layer
zone, as shown in the inset of Fig. 4.2(b).

For two parallel plates (a slit pore) with 𝑉 = 0 on both, the double layers from the
two surfaces start to overlap as the separation between the plates decreases. Hence,
the middle-point self-energy and ion concentrations deviate from the bulk values
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Figure 4.2: Charge accumulation/depletion at the planar boundary due to image
charge interactions. No applied voltage or fixed surface charge on the wall. The
bulk salt concentration is 𝑐0 = 0.1 M for each case. The dielectric constant of the
implicit solvent is 𝜖𝑟 = 80; for the dielectric plates, 𝜖𝑝 = 2. (a) Self-energy profiles
corresponding to metal BC (blue) and dielectric BC (red). (b) Concentration profiles:
the blue line represents the metal BC, corresponding to the left y-axis. The red line
represents the dielectric BC, corresponding to the right y-axis. The inset shows
the deviations from bulk concentration 𝑐0 (absolute value |𝑐/𝑐0 − 1|) on the same
log-scale y-axis.
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Figure 4.3: Finite-size effect on the charge accumulation/depletion at the boundaries
due to image charge interactions without applied voltage or fixed charge. The slit
pore width is 𝐿 = 1 nm and the bulk salt concentration is 𝑐0 = 0.1 M for each case.
The dielectric constant of the implicit solvent is 𝜖𝑟 = 80; for the dielectric plates,
𝜖𝑝 = 2. (a) Self-energy profiles corresponding to metal BC (blue) and dielectric BC
(red). (b) Concentration profiles: the cation and anion profiles overlap for either
metal or dielectric BC since there is no voltage applied. The blue line shows the
metal BC and red line shows the dielectric BC. The inset shows both profiles in
semilog-scale.
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Figure 4.4: Single wall fixed at surface potential𝑉 = 1. Bulk ion concentrations are
𝑐0,+ = 𝑐0,− = 0.1 M. The implicit solvent has dielectric constant 𝜖r = 80. To amplify
the boundary layer, we zoom into the region 0 < 𝑥 < 1 nm. (a) Electric potential
profiles for the metal (blue solid), dielectric (red solid) and PB (black dashed) BCs.
(b) Cation profiles with metal BCs (blue, left-y axis), dielectric (red, right y-axis)
BCs, and PB theory (black, right y-axis). (c) Anion profiles: legends and axes are
the same as in (b).
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Figure 4.5: Symmetrically charged slit pore of 1 nm with both plates at fixed
surface potentials 𝑉𝐿 = 𝑉𝑅 = 1. Bulk ion concentrations are 𝑐0,+ = 𝑐0,− = 0.1 M.
The implicit solvent has dielectric constant 𝜖r = 80. (a) Electric potential profiles
for the metal BCs (blue solid), dielectric (red solid) BCs, and PB theory (black
dashed). (b) Cation profiles with metal BCs (blue, left y-axis), dielectric BCs (red,
right y-axis) and PB theory (black, right y-axis). (c) Anion profiles: legends and
axes are the same as in (b).
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Figure 4.6: Ion concentration versus distance from a single metal wall at fixed
surface potential 𝑉 = 0 with a dielectric surface layer. The dielectric layer has size
𝑎 = 0.1 nm and dielectric constant 𝜖L = 60 (blue) or 𝜖L = 2 (red). The bulk ion
concentrations are 𝑐0,+ = 𝑐0,− = 0.1 M. For comparison, the ion concentration near
a dielectric wall (𝜖p = 2) with no layer is shown in black. The implicit solvent has
dielectric constant 𝜖r = 80.

as shown in Fig. 4.3. For metal BC (blue line), the image charge attraction is not
fully screened at the middle point so that 𝑐(𝑥 = 0)/𝑐0 ≈ 1.27 > 1. This is more
clearly shown in the inset where the blue line does not reach 100 and is not flat in
the middle. For dielectric BC (red line), the image charge repulsion leads to ion
depletion in the entire slit, as shown by the right y-axis of Fig. 4.3(b), and the middle
point concentration is significantly reduced from the bulk value. We note that since
the image charge is a boundary layer effect, the electric double layer structure will
look similar to the single wall case for plate separations > 2 nm.

We now examine the double layer structure when a weak but non-zero electric
potential is maintained at the boundary surface(s). Fig. 4.4 shows the ion concen-
trations and electric potential profiles near a single wall fixed at 𝑉 = 1. The bulk
ion concentrations are 𝑐+,0 = 𝑐−,0 = 0.1 M. The electric potential profiles for all
three boundary conditions are deceptively similar everywhere, as shown by the solid
lines corresponding to the left y-axis of Fig. 3(a). However, the charge densities
are different at a very short distance from the wall due to the drastic differences
in self-energy, as shown by the dashed lines corresponding to the right y-axis of
Fig. 4.4(a). Beyond the boundary layer, the three charge densities converge to the
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Figure 4.7: Ion concentration versus distance for a symmetrically charged slit pore
of 𝐿 = 1 nm. Both walls are metal with a dielectric layer of size 𝑎 = 0.1 nm on each
metal surface. The dielectric layer has dielectric constant 𝜖L = 60 (blue) or 𝜖L = 2
(red). The bulk ion concentrations are 𝑐0,+ = 𝑐0,− = 0.1 M. The implicit solvent has
dielectric constant 𝜖r = 80. (a) Applied potential 𝑉 = 0. (b) Positive ion densities
for applied potential 𝑉 = 1. (c) Negative ion densities for applied potential 𝑉 = 1.
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same outer solution. The competition between the IC repulsion and attraction of
anions to the positively-charged surface also leads to non-monotonic concentrations
of anions for dielectric BC near the wall, as shown by the red line in Fig. 4.4(c).

For a slit pore, as its width decreases with the surface potential of both plates fixed
at 𝑉 = 1, the double layers from the two surfaces start to overlap. For this case, one
can see the difference between the electric potentials of the different BCs as shown
in Fig. 4.5(a). Overall, the concentration inside the slit pore is largest for metal BC
and weakest for dielectric BC. This leads to a different magnitude of the screening
effect, which mostly comes from the boundary layers. Going from the surface into
the solution, for metal BC the electrostatic potential drops faster than the PB theory,
whereas for dielectric BC, it drops slower than the PB theory. Compared to the
single-wall case (Fig. 4.4(b) and (c)), the overlapping double layers and stronger IC
effects in the 1 nm pore lead to two main differences: (1) the boundary layers for
both the metal and dielectric BCs become thicker; (2) the anion concentration for
dielectric BC increases monotonically from the boundary until the middle-point as
shown in Fig. 4.5(b) and (c). For metal BC, the stronger IC attraction leads to a peak
of cation concentration close to the wall, as shown in Fig. 4.4(b). Moreover, both
cations and anions enrich near the surface for metal BC despite the positive applied
potential.

Now, we turn to the case of a dielectric layer with dielectric constant 𝜖L on the metal
surface that is lower than the dielectric constant of the solution. The dielectric layer
generates a repulsive image charge that competes with the attractive image charge
of the metal. This repulsive image charge is stronger with greater disparity between
the layer and solution dielectric constant, and this effect is shown for a single planar
boundary in Fig. 4.6. We see that the ion density completely depletes from the
surface, meaning the repulsive IC from the layer overpowers the metal IC at all
distances. For a layer with a low dielectric constant 𝜖L = 2, the repulsive IC is so
strong that the ion profile nearly matches that of a dielectric wall with the same
dielectric constant, shown by the dashed line in Fig. 4.6.

Next, we examine the double-layer structure between two parallel metal plates with
a dielectric layer on each surface, shown in Fig. 4.7. For no applied potential and
𝜖L = 60 in Fig. 4.7(a), the ions adsorb in the pore due to the metal’s attractive IC.
However, the ions deplete close to the wall due to the layer’s repulsive IC, giving a
peak in the ion density profile. The layer prevents ion saturation at the metal wall
previously seen in Fig. 4.3, yielding density profiles that qualitatively resemble
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those of Refs. [37] and [39]. If the layer dielectric constant is low (𝜖L = 2), the
ions completely deplete in the pore, similar to the profiles of the dielectric wall in
Fig. 4.3, albeit with a higher maximum density due to the metal’s attractive IC. For
applied potential 𝑉 = 1 in Fig. 4.7(b) and (c) at 𝜖L = 60, the positive and negative
ion density profiles are nonmonotonic for the same reasons as the zero-potential
case.

Differential capacitance
We next examine the differential capacitance 𝐶𝑑 = 𝑑𝜎𝑠/𝑑𝑉 for nanometer-sized
slit pores. The two plates of the slit pore are at the same surface potential 𝜓(𝑧 =
±𝐿/2) = 𝑉 to simulate a nanoscale pore inside a porous electrode that is maintained
at a constant potential.

In all three system conditions explored in Fig. 4.8, the initial capacitance (at very
low voltage) of the metal BC is higher than the PB theory, dielectric BC, or layer BC.
This is consistent with the qualitative understanding that metal BC image charge
attraction significantly enhances charge separation, where charge separation refers
to the difference in anion and cation densities as a function of position in the pore
[39]. On the other hand, at weak electric potentials, the image charge repulsion of
dielectric and layer BCs strongly depletes salt ions and reduces charge separation.
As a result, the initial 𝐶𝑑 is low. Moreover, since ions cannot closely approach
the metal surface due to exclusion by the layer, the surface charge on the metal
with a dielectric surface layer is less sensitive to the applied potential. This effect,
combined with the layer’s repulsive image charge, gives a lower capacitance than
the other three cases for nearly all conditions. The only exception is at low salt
concentration, small separation, and low applied potential in Fig. 4.8(c), where the
layer capacitance slightly exceeds dielectric BC and PB theory. The reason is that,
for very small separations, the attractive IC from the metal dominates the layer’s
repulsive IC, causing greater accumulation of ions in the pore compared to dielectric
BC and PB theory.

At low bulk salt concentration 𝑐0 = 0.1 M, and large separation between the plates
(𝐿 = 4 nm, compared to the double layer thickness < 1 nm), the differential
capacitance displays the “camel-shape” for dielectric and layer BCs, as well as PB
theory [91], whereas that of the metal BC has a slight “bird shape” [80], as shown
in Fig. 4.8(a). We note that the bird and camel shape come from the full-range
capacitance, −5 to 5 𝑘𝑇/𝑒, and the negative potential capacitance curve is just a
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Figure 4.8: Differential capacitance curves for four cases: metal (blue), dielectric
(red), and layer BCs (yellow), as well as PB theory (black). The capacitance curves
are shown under conditions: (a) 𝑐0 = 0.1 M, 𝐿 = 4 nm. (b) 𝑐0 = 5 M, 𝐿 = 4 nm.
(c) 𝑐0 = 0.1 M, 𝐿 = 1 nm.



89

Figure 4.9: Differential capacitance curves for four cases: metal (blue), dielectric
(red), and layer BCs (yellow), as well as PB theory (black) as a function of plate
separation for 𝑉 = 0. (a) Bulk ion concentration is 𝑐0 = 5 M. (b) Bulk ion
concentration is 𝑐0 = 0.1 M.
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reflection across the y axis since our system is symmetric. For the PB theory, this
is due to the nonlinear dependence of charge density on the electric potential. For
dielectric BC, as surface potential increases, the attraction of counter-ions to the
positively-charged surface overcomes the image charge repulsion in the middle of
the slit, flooding the pore with ions; therefore, the capacitance is enhanced greater
than the metal BC. The same is true for the layer BC; however, since the surface
charge on the metal with a dielectric surface layer is less sensitive to the applied
voltage for reasons mentioned earlier, the capacitance never exceeds the PB result
except for small separations with low applied potential and low bulk concentration.

It is known that the overestimation of surface ion density in the Gouy–Chapman
theory leads to a differential capacitance curve that is always “camel-shaped,” with
a minimum at 0 applied voltage. Kornyshev [91] pointed out that the “lattice satu-
ration” effect [92, 93], which accounts for finite ion sizes, can explain the observed
deviations from the Gouy–Chapman theory, i.e., a “bell” shaped capacitance curve
for room temperature ionic liquids [94]. Fig. 4.8(b) shows this scenario with a high
bulk salt concentration 𝑐0 = 5 M, and large separation 𝐿 = 4 nm. The solvent
concentration is only 𝑐𝑠 ≈ 3.33 M in the bulk reservoir, lower than the ion concen-
trations, as in a ‘water-in-salt’ electrolyte. At small voltage, initial charge separation
is enhanced due to the large number of salt ions in the slit, giving a large 𝐶𝑑 . Then,
as the electric potential increases, the double layer saturates quickly, regardless of
the BC. Thus, the overall 𝐶𝑑 displays a bell shape for all four cases. These results
are consistent with previous studies [91, 95–97]. Moreover, all curves converge at
high applied potential due to double-layer saturation. We expect this convergence
to occur for sufficiently high potential under the conditions for Fig. 4.8(a) and (c)
as well. Similar to the modified PB theory, the ion-saturation effect plays a key role
to render the bell shaped curves.

The more interesting regime is at low bulk salt concentration 𝑐0 = 0.1 M and very
small separation 𝐿 = 1.0 nm. In this case, the boundary accumulation / depletion
layers are very strong and dictate the charging behaviors at low surface potentials.
Specifically, the IC attraction of metal BC strongly enhances the charge separation,
resulting in a high initial capacitance. But, as the voltage increases, the saturated
boundary layers screen out the influence of the surface potential in the middle of
the slit, as seen in Fig. 4.5. This leads to a small second peak of the blue solid line
in Fig. 4.8(c), giving a “bird-shaped” capacitance curve. On the other hand, for the
dielectric and layer BCs, the IC repulsion at small distance is too strong at weak
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electric potential, so very few counter-ions migrate into the slit when the voltage
increases initially. Hence, the low-voltage capacitance is quite low for the dielectric
and layer BCs. Additionally, the linear response regime is much smaller for metal
BC under low bulk salt and small separation compared to dielectric and layer BCs.
The reason for this is that the charge fluctuation in the metal is much higher under
these conditions, causing significant deviations from the linear response capacitance
even at low applied potentials.

Lastly, we investigate the capacitance as a function of plate separation at 𝑉 = 0
for two bulk ion concentrations 𝑐0 = 5 and 0.1 M, shown in Fig. 4.9 (a) and (b),
respectively. At both concentrations, we see that the metal capacitance exceeds PB
theory due to the attractive metal IC. Moreover, the metal capacitance increases as
the pore size decreases, with an anomalously large increase for 𝑐0 = 0.1 M compared
to PB theory, similar to the results shown in Ref. [44]. For a dielectric boundary,
the capacitance is lower than PB theory for both concentrations due to ion depletion
in the pore caused by the dielectric wall’s repulsive IC. For the layer BC in both
cases, the capacitance is initially high due to the metal’s attractive IC dominating at
strong confinement. However, as the plates move apart, the capacitance decreases
due to the layer’s repulsive IC overtaking the attractive IC from the metal, causing
ions to deplete in the pore. This effect creates a minimum in the capacitance. For
large separations (> 1.5) nm, the layer’s repulsive IC has a weaker effect since it is
a boundary layer effect, so the capacitance gradually increases.

Force between like-charged plates
Finally, we investigate the forces between two symmetrically charged plates. In
reality, it is more natural to control surface charge density for dielectric plates, or to
maintain constant surface electric potential for metal plates, especially if the surface
geometry is not simple. For ease of conceptual comparison, we also present results
for dielectric BC with fixed surface potentials. In Fig. 4.10 (a), we investigate three
surface charges 𝜎 = 0.01, 0.02, 0.05 /nm2 at bulk concentration 𝑐0 = 0.1 M (blue,
black, and red curves, respectively). For lower surface charge 𝜎 = 0.01 /nm2,
the image charge contribution to the free energy for dielectric BC results in an
attractive potential well. There is also a small but noticeable repulsive regime for
plate separations between 1∼2 nm, which is consistent with the findings of Ref.
[23], although there it was computed using a WKB approximation. At higher
surface charge 𝜎 = 0.05 /nm2, the same-charge repulsion overcomes the IC effect.
Moreover, for 𝑐0 = 0.1 M, the attractive well gradually disappears and completely
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Figure 4.10: Force between neutral and like-charged plates with different material
boundaries. In all plots the bulk concentrations are colored by: 𝑐0 = 0.1 M (blue,
red and black) and 𝑐0 = 0.2 M (green). (a) Two dielectric plates with same surface
charge densities. Surface charge densities are 𝜎 = 0.01, 0.02, 0.05 /nm2 for the
blue, red, and black line, respectively, and 𝜎 = 0.02 /nm2 for the green line. (b)
Two dielectric plates with the same fixed surface potentials. The surface potentials
are 𝑉 = 0, 1, 2 𝑘𝑇/𝑒 for the blue, red, and black line, respectively, and 𝑉 = 0 𝑘𝑇/𝑒
for the green line. (c) Two metal plates with the same fixed surface potentials. The
surface potentials are𝑉 = 0, 1, 2 𝑘𝑇/𝑒 for the blue, red, and black line, respectively,
and 𝑉 = 0 𝑘𝑇/𝑒 for the green line.
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Figure 4.11: Force between neutral and like-charged metal plates with a 0.1 nm
thick dielectric layer with dielectric constant 𝜖L = 60 on each plate. The metal
plates have fixed surface potentials of either 𝑉 = 0, 1, 2 𝑘𝑇/𝑒. The blue, red, and
black curves have bulk ion concentration 𝑐0 = 0.1 M, and the green curve has bulk
ion concentration 𝑐0 = 0.2 M.

vanishes when increasing the surface charge from 0.01 to 0.05 /nm2 in Fig. 4.10 (a).
Moving to the effect of bulk concentration, the green curve is for a fixed surface
charge 𝜎 = 0.02 /nm2 with bulk concentration 𝑐0 = 0.2 M. Comparing the green
curve to the red curve, it is obvious that the higher bulk concentration leads to a
attraction at the same surface charge density. This is also qualitatively consistent
with Ref. [23, 73]. However, when the boundary condition is changed to fixed
surface potentials, the purely repulsive regime is no longer observed for reasonably
weak applied potentials, as shown in Fig. 4.10(b). Even for neutral surfaces (𝑉 = 0
𝑘𝑇/𝑒), there is attraction between plates, consistent with findings from a previous
calculation from liquid-state theory [98]. The repulsion at short distance in Fig.
4.10(a) comes from the strong repulsion between the fixed surface charges, while
in Fig. 4.10(b) the surface charges adjust to avoid strong repulsion and to lower the
total free energy. At fixed surface potential, both higher surface potential (black
line) and higher bulk salt concentration (green line) amplify the variation in the
force, as the IC contribution to the free energy is enhanced.

In the case of metal BC, the IC attraction is very strong and dominates the interplate
force. This is shown by Fig. 4.10(c), where the magnitude of the attraction is much



94

larger than in Fig. 4.10(b). In addition, no repulsive regime is observed and the
attractive force decays over a longer length scale. Recall that we use point-charge
model throughout the calculations here for consistency and fair comparisons. This
means that ions can approach the boundaries infinitely close. For dielectric BC,
the IC repulsion self-regulates this effect by suppressing the ion distributions at the
surface. However, for metal BC, the IC attraction results in high concentration of
counter-ions at the surface close to the saturation concentration, with a very large
self-energy. As a result the attraction force computed here at short separations
between the two electrodes may be overestimated compared with experimental or
simulation results with finite ion sizes. For this reason, we introduce the thin
dielectric layer to the metal surfaces to account for the distance of closest approach
for ions, which we discuss next.

To finish, we investigate the effect of a 0.1 nm thick dielectric layer (dielectric
constant 𝜖L = 60) on metal plates, where the metal plates are at the same fixed
potential. In Fig. 4.11, we see that the layer’s repulsive IC cancels the metal’s
attractive IC for separations > 1 nm, preventing the plates from interacting until
close separation (< 1) nm for all conditions considered. Consequently, the length
scale of interaction between plates with layer BC is much smaller than that of
metal and dielectric BCs. Moreover, at separations of 1 nm and above, the ions are
depleted from the walls. As the plates move from 1 nm to 0.9 nm spacing, the metal’s
attractive IC overcomes the repulsive IC from the layer, causing ions to flood into
the pore that generates an attractive force between the plates. Furthermore, the peak
in the 𝑉 = 2 curve stems from a stronger flooding of ions into the pore compared to
the lower potentials. The slight bump in the force curves near 0.85 nm separation is
due to the ions saturating the pore walls.

4.3 Conclusions
In this work, we discuss the image charge effect and its consequences in nano-
capacitors and forces between like-charged plates. We treat the IC effects non-
perturbatively for a point-charge model, based on a renormalized Gaussian fluctu-
ation theory. We apply the incompressibility condition to account for the excluded
volume interactions between the ions and solvent and to prevent the ion density from
diverging at the interfaces. We obtain full numerical solutions to the renormalized
field theory subject to different boundary conditions. We focus on a comparison
of these calculations under the (1) perfectly conducting metal plates, (2) dielectric
plates, (3) metal plates with a thin dielectric layer, and (4) the PB theory. We
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demonstrate these comparisons using a simple 1:1 electrolyte with equal volumes of
all species. IC effects with asymmetric valences or sizes can be readily incorporated
in future works.

We first show that the double-layer structures are significantly affected by the IC
interaction. For a single surface without applied voltage or externally-imposed
surface charge, IC leads to saturation of ions at the surface for the metal BC, and
strong ion depletion for the dielectric and layer BCs. For the layer BC, the depletion
strengthens with lower dielectric constant relative to the solvent. For a narrow slit
pore, the middle-point concentrations significantly deviate from the bulk values due
to IC. When a single surface is fixed at a weak applied potential, the electrostatic
potential profiles are not sensitive to the BCs. However, ion densities near the
surface depends strongly on the type of BC applied. For a narrow slit pore with
both surfaces at a weak fixed potential, both the ion density and the electrostatic
potential profiles are strongly affected by the BCs. Moreover, the layer BC gives
nonmonotonic ion density profiles that are qualitatively similar to those observed in
MD simulations [39].

Based on the understanding about the double-layer structures, our calculations fur-
ther show that the boundary layers due to IC interaction lead to significant differences
in the differential capacitance of a nano-pore under different boundary conditions.
The dielectric and layer BCs show a qualitatively similar trend with the PB theory,
where the capacitance curve changes from a camel shape to a bell shape as bulk salt
concentration increases. Moreover, the metal BC gives a “bird-shaped” capacitance
at low bulk ion concentrations and small pore width due to IC-induced boundary
layer accumulation and ion saturation. The layer BC shows that the ion exclusion
near the metal surface combined with the repulsive IC yields a lower capacitance
than PB, metal, or dielectric BCs at nearly all conditions. Notice that modified PB
treatment [44] only accounts for the IC from the mean-charge density 𝜌 = 𝑐+ − 𝑐−
in the Poisson equation, while our treatment captures the IC effect even at 𝜌 = 0,
and the ion density profiles 𝑐+ and 𝑐− are non-uniform. As a result, our predictions
of the capacitance are different from the modified PB treatment, especially at weak
applied potential.

The differences between the BCs are also manifested in the forces between like-
charged planar walls. For dielectric BC, at fixed surface charge density, the attraction
well gradually diminishes as surface charge increases; at fixed surface potential, the
attraction well is stronger at higher potential values. For metal BC with fixed
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surface potentials on both plates, which is more directly relevant to nano-pores
inside porous electrodes, the attraction is much stronger than the dielectric BC
and decays slower; no repulsion is observed in this ensemble in the weak-coupling
regime. Increasing either surface potential or bulk concentration slightly enhances
the attraction force. The prediction of pure attraction for planar metal plates is
different from the nonlinear PB theory, which only gives repulsion between like-
charged metal plates—Ref. [74] showed that in the PB theory, one has to invoke
curvature effects to induce like-charge attraction with metal BC. For layer BC at fixed
surface potentials, the interaction length scale is much smaller than that of metal
or dielectric BCs due to the layer’s repulsive IC canceling the metal’s attractive IC
at separations > 1 nm. For separations < 1 nm, the plates are strongly attractive,
similar to the metal BC, due to ions flooding the pore at close separation when the
metal IC overcomes the layer’s repulsive IC. Further modifications of the boundary
conditions such as surface charge regulation [99, 100] or multi-layered interfaces
[101] are expected to mediate the above results and can be readily incorporated into
the same framework.

Our work presents a fundamental perspective on the IC interaction, highlighting
its non-negligible influence on double layer structures, and consequently, nanoscale
capacitors and forces between like-charged plates. These effects are often omitted
or treated in a mean-field fashion. However, we show that even at zero mean-charge
density, where mean-field predictions will neglect IC, it still has a strong effect. Our
results provide a starting point to include IC in various realistic applications.

4.A Brief Summary of the Key Equations
Most of the derivations were already presented in Ref. [22] and earlier references
cited there. Here we sketch the outline of the derivations, including the incompress-
ibility constraint, for the reader’s convenience. We start with the Hamiltonian in SI
unit

𝐻 =

∫
𝑑r𝑑r′

𝑒2

2
𝜌(r)𝐺0(r, r′)𝜌(r′) (4.31)

where the Coulomb operator is defined by

−∇ · 𝜀∇′𝐺0(r, r′) = 𝛿(r − r′). (4.32)

The total charge density can be decomposed into external charge, cations and anions
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𝜌(r) = 𝜌𝑒𝑥 (r) + 𝑧+
∑︁
𝑖+
ℎ+(r − r𝑖+) − 𝑧−

∑︁
𝑗−
ℎ−(r − r 𝑗−) (4.33)

where ℎ± represents the spread shape of ion charge. The incompressibility of the
liquid requires

𝑐𝑡𝑜𝑡 = 𝑐+(r) + 𝑐−(r) + 𝑐𝑠 (r) = 1/𝑣0 (4.34)

where the density of species

𝑐+(r) =
∑︁
𝑖+
ℎ+(r − r𝑖+)

𝑐−(r) =
∑︁
𝑖−
ℎ−(r − r𝑖−)

𝑐𝑠 (r) =
∑︁
𝑠−
ℎ𝑠 (r − r𝑖𝑠)

(4.35)

subscript 𝑠 stands for solvent.

The canonical partition function is

𝑄 =
1

𝑛+!𝑛−!𝑛𝑠!𝑣𝑛++ 𝑣
𝑛−− 𝑣

𝑛𝑠
𝑠

∫
𝑑r𝑖+𝑑r 𝑗−𝑑r𝑠𝑒−𝛽𝐻

∏
𝑟

𝛿 (𝑐𝑡𝑜𝑡 − 1/𝑣0)

=
1

𝑛+!𝑛−!𝑛𝑠!𝑣𝑛++ 𝑣
𝑛−− 𝑣

𝑛𝑠
𝑠

∫
𝑑r𝑖+𝑑r 𝑗−𝑑r𝑠

× 𝑒−𝛽 𝑒2
2

∫
𝑑r𝑑r′ (𝜌𝑒𝑥+𝜌𝑖𝑜𝑛) (r)𝐺0 (r,r′) (𝜌𝑒𝑥+𝜌𝑖𝑜𝑛) (r′)

×
∫

𝑑𝑐±,𝑠

∫
𝐷 [𝜂]𝑒𝑖

∫
𝑑r𝜂(r) (𝑐++𝑐−+𝑐𝑠−1/𝑣0) (r)

×
∫

𝑑𝑤±,𝑠𝑒
𝑖
∫
𝑑r[𝑤+ (𝑐+−𝑐+)+𝑤− (𝑐−−𝑐−)+𝑤𝑠 (𝑐𝑠−𝑐𝑠)]

(4.36)

where auxiliary fields𝑤±,𝑠 are also introduced. In general, if there are other quadratic
or higher-order interaction terms involving the concentrations, it will be useful to
deal with the 𝑤 fields instead of directly manipulating the concentration operators.
Using the Hubbard-Stratonovich transform

∫
𝑑𝑥 exp

(
−1

2
𝑥𝑇 𝐴−1𝑥 ± 𝑖𝑥𝑦

)
=

√︁
det(𝐴) exp

(
−1

2
𝑦𝑇 𝐴𝑦

)
(4.37)
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the exponential factor is

𝑒−𝛽
𝑒2
2

∫
𝑑r𝑑r′𝜌(r)𝐺0 (r,r′)𝜌(r′)

=
1√︁

det(𝐺0)

∫
𝐷 [𝜙]𝑒−

∫
𝑑r𝑑r′

(
1

8𝜋ℓ𝐵
∇𝜙(r)·∇′𝜙(r′)+𝑖𝜌(r)𝜙(r′)

)
𝛿(r−r′) (4.38)

here ℓ𝐵 = 𝑒2/(4𝜋𝜖𝑘𝐵𝑇) is the Bjerrum length and 𝜙 is the dimensionless potential
scaled by 𝑘𝐵𝑇

𝑒
.

Now the grand partition function is

Ξ =
∑︁
𝑛+

∑︁
𝑛−

∑︁
𝑛𝑠

𝑄𝑒𝑛+𝜇+𝑒𝑛−𝜇−𝑒𝑛𝑠𝜇𝑠√︁
det(𝐺0)

∫
𝐷 [𝜙]𝐷 [𝜂]𝑑𝑤±,𝑠𝑑𝑐±,𝑠𝑒

−L (4.39)

where the action is

L =

∫
𝑑r𝑑r′

[
1

8𝜋ℓ𝐵
∇𝜙(r) · ∇′𝜙(r′) + 𝑖𝜌𝑒𝑥 (r)𝜙r′)

]
𝛿(r − r′)

−
∫

𝑑r
(
𝜆+𝑒

−𝑖(ℎ+∗[𝑧+𝜙+𝑖𝑤+]) (r) + 𝜆−𝑒𝑖(ℎ−∗[𝑧−𝜙−𝑖𝑤−]) (r)
)

+
∫

𝑑r (𝑤+𝑐+ + 𝑤−𝑐− + 𝑤𝑠𝑐𝑠 − 𝜂(𝑐+ + 𝑐− + 𝑐𝑠 − 1/𝑣0))

−
∫

𝑑r𝜆𝑠𝑒ℎ𝑠∗𝑤𝑠

(4.40)

∗ stands for the convolution operator

(ℎ ∗ 𝜙) (r) =
∫

𝑑r′ℎ(r′ − r)𝜙(r′) (4.41)

and 𝜆± = 𝑒𝜇±
𝑣±

is the fugacity.

The variational approach decomposes the field 𝜙 = −𝑖𝜓 + 𝜒, and the action becomes
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L[𝜙] =
∫

𝑑r
{

1
8𝜋ℓ𝐵

(∇ (−𝑖𝜓(r) + 𝜒(r)))2 + 𝜌𝑒𝑥 (r) (−𝑖𝜓(r) + 𝜒(r))
}

−
∫

𝑑r𝜆+𝑒−𝑧+ (ℎ+∗𝜓) (r)+(ℎ+∗𝑤+) (r)−𝑖𝑧+ (ℎ+∗𝜒) (r)

−
∫

𝑑r𝜆−𝑒𝑧− (ℎ−∗𝜓) (r)+(ℎ−∗𝑤−) (r)+𝑖𝑧− (ℎ−∗𝜒) (r)

+
∫

𝑑r (𝑤+𝑐+ + 𝑤−𝑐− + 𝑤𝑠𝑐𝑠 − 𝜂(𝑐+ + 𝑐− + 𝑐𝑠 − 1/𝑣0))

−
∫

𝑑r𝜆𝑠𝑒ℎ𝑠∗𝑤𝑠 .

(4.42)

The average number (density) of ions is

⟨𝑛±⟩ =
𝜕 lnΞ
𝜕𝜇±

=

∫
𝑑r𝜆±

〈
𝑒∓𝑧± (ℎ±∗(𝜓+𝑖𝜒)) (r)+(ℎ±∗𝑤±) (r)〉

𝑐±(r) =𝜆±
〈
𝑒∓𝑧± (ℎ±∗(𝜓+𝑖𝜒)) (r)+(ℎ±∗𝑤±) (r)〉 . (4.43)

For the variational renormalization, a Gaussian reference action is chosen

L𝑟𝑒 𝑓 =

∫
𝑑r𝑑r′

1
2
𝜒(r)𝐺−1(r, r′)𝜒(r′) (4.44)

and the extremized free energy is

𝑊 =𝑊𝑟𝑒 𝑓 +
〈
L[𝜙] − L𝑟𝑒 𝑓 [𝜙]

〉
𝑟𝑒 𝑓

= − 1
2

ln
(

det(𝐺)
det(𝐺0)

)
+ ⟨𝐿 [𝜙]⟩𝑟𝑒 𝑓 −

1
2
.

(4.45)

To evaluate ⟨L[𝜙]⟩𝑟𝑒 𝑓 , we note that

〈∫
𝑑r𝑑r′

1
4𝜋ℓ𝐵 (r)

𝛿(r − r′)∇𝜒(r) · ∇′𝜒(r′)
〉
𝑟𝑒 𝑓

=

∫
𝑑r𝑑r′

{
⟨𝜒(r)𝜒(r′)⟩𝑟𝑒 𝑓 ∇

[
1

4𝜋ℓ𝐵 (r)

]
· ∇′𝛿(r − r′)

}
=

∫
𝑑r𝑑r′

{
𝐺 (r, r′)∇

[
1

4𝜋ℓ𝐵 (r)

]
· ∇′𝛿(r − r′)

} (4.46)
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and

〈
𝑒∓𝑖𝑧± (ℎ±∗𝜒) (r)

〉
𝑟𝑒 𝑓

=𝑒−
1
2 𝑧

2
±
∫
𝑑y𝑑y′ℎ± (y−r)𝐺 (y,y′)ℎ± (y′−r) . (4.47)

Now we can simplify the averaged action as

⟨L[𝜓]⟩𝑟𝑒 𝑓 =
∫

𝑑𝑟

{
− 1

8𝜋ℓ𝐵
(∇𝜓(r))2 + 𝜌𝑒𝑥 (r)𝜓(r) − 𝑐±(r)

}
+ 1

2

∫
𝑑𝑟𝑑𝑟′𝐺 (r, r′)∇ ·

[
1

4𝜋ℓ𝐵 (r)

]
∇′𝛿(r − r′)

+
∫

𝑑r (𝑤+𝑐+ + 𝑤−𝑐− + 𝑤𝑠𝑐𝑠 − 𝜂(𝑐+ + 𝑐− + 𝑐𝑠 − 1/𝑣0))

−
∫

𝑑r𝜆𝑠𝑒ℎ𝑠∗𝑤𝑠 . (4.48)

The Euler-Lagrange equations in the main text for this field theory then result from
variational derivatives of𝑊 with respect to 𝜓, 𝐺, 𝑤±,𝑠, 𝑐±,𝑠 and 𝜂.

4.B Image Charge of a Single Point Charge Near Layered Interfaces
Metal-dielectric interface
Suppose for half space 𝑧 < 0, it is a metal plate. For half space 𝑧 > 𝑎, it is a dielectric
medium with relative permittivity 𝜖2. In between 0 < 𝑧 < 𝑎 it is another dielectric
with 𝜖1. A point charge 𝑞 is placed at (0, 0, 𝑎 + 𝑏). We now solve for the potential
inside the two dielectric media 𝜙1 and 𝜙2 + 𝜙3. Due to cylindrical symmetry, the
Poisson equation can be written as

(
𝜕2
𝑧 +

1
𝑟
𝜕𝑟𝑟𝜕𝑟 +

1
𝑟2 𝜕

2
𝜃

)
𝜙𝑖 = 0 𝑖 = 1, 2

𝜙3 =
𝑒𝑞

4𝜋𝜖0𝜖2
√︁
𝑟2 + [𝑧 − (𝑎 + 𝑏)]2

.
(4.49)

Nondimensionalize by the Bjerrum length in the liquid

ℓ𝐵 =
𝑒2

4𝜋𝜖0𝜖2𝑘𝐵𝑇
(4.50)

𝜓 =
𝑒𝜙

𝑘𝐵𝑇
=

𝑞ℓ𝐵√︁
𝑟2 + [𝑧 − (𝑎 + 𝑏)]2

. (4.51)
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For water 𝜖2 = 80, ℓ𝐵 ∼ 0.7 nm.

On the metal-dielectric interface 𝑧 = 𝑎, the boundary conditions are

𝜖1𝜕𝑧𝜙1(𝑟, 𝜃, 𝑎) = 𝜖2𝜕𝑧 (𝜙2(𝑟, 𝜃, 𝑎) + 𝜙3(𝑟, 𝜃, 𝑎))
𝜙1(𝑟, 𝜃, 𝑎) = 𝜙2(𝑟, 𝜃, 𝑎) + 𝜙3(𝑟, 𝜃, 𝑎).

(4.52)

The second condition implies already the continuity of the tangential 𝐸 field

𝜕𝑟𝜙1(𝑟, 𝜃, 𝑎) = 𝜕𝑟 (𝜙2(𝑟, 𝜃, 𝑎) + 𝜙3(𝑟, 𝜃, 𝑎)) . (4.53)

At 𝑧 = 0,

𝜙1(𝑟, 𝜃, 0) = 0. (4.54)

At 𝑧 → ∞,

𝜙2(𝑟, 𝜃,∞) = 0. (4.55)

The general solution satisfying BCs Eq. 4.54 and Eq. 4.55

𝜙1 =

∫ ∞

0
𝑑𝜆 sinh(𝜆𝑧)𝐽0(𝜆𝑟) 𝑓1(𝜆)

𝜙2 =

∫ ∞

0
𝑑𝜆𝑒−𝜆𝑧𝐽0(𝜆𝑟) 𝑓2(𝜆).

(4.56)

Then one uses the fact

1√︁
𝑟2 + (𝑧 − 𝑎 − 𝑏)2

=

∫ ∞

0
𝑑𝜆𝐽0(𝜆𝑟)𝑒−𝜆 |𝑧−𝑎−𝑏 | . (4.57)

To match the BC at 𝑧 = 𝑎

𝑞𝜖2𝑒
−𝜆𝑏 = 𝑓1(𝜆)𝜖1 cosh(𝑎𝜆) + 𝑓2(𝜆)𝜖2𝑒

−𝜆𝑎

𝑞𝑒−𝜆𝑏 = 𝑓1(𝜆) sinh(𝑎𝜆) − 𝑓2(𝜆)𝑒−𝜆𝑎 .
(4.58)

As a result,
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𝑓1(𝜆) =
2𝜖2𝑞𝑒

−𝜆𝑏

𝜖1 cosh(𝜆𝑎) + 𝜖2 sinh(𝜆𝑎)

𝑓2(𝜆) = 𝑞
𝜖2 sinh(𝜆𝑎) − 𝜖1 cosh(𝜆𝑎)
𝜖1 cosh(𝜆𝑎) + 𝜖2 sinh(𝜆𝑎) 𝑒

𝜆(𝑎−𝑏) .

(4.59)

For the IC force, at 𝑧 = 𝑎+0, the excess E field is

𝐸𝑟 = −
∫ ∞

0
𝑑𝜆𝑒−𝜆𝑎𝜆𝐽′0(𝜆𝑟) 𝑓2(𝜆)

=

∫ ∞

0
𝑑𝜆𝑒−𝜆𝑎𝜆𝐽1(𝜆𝑟) 𝑓2(𝜆)

𝐸𝑧 =

∫ ∞

0
𝑑𝜆𝑒−𝜆𝑎𝜆𝐽0(𝜆𝑟) 𝑓2(𝜆)

(4.60)

in addition to the E field generated by the point charge potential 𝜙3.

The surface charge density 𝜎(𝑧 = 𝑎) on the interface at 𝑧 = 𝑎 can be extracted by
the difference of the E field

𝐸𝑧 (𝑧 = 𝑎 + 0) − 𝐸𝑧 (𝑧 = 𝑎 − 0) = 𝜎(𝑧 = 𝑎)
(

1
𝜖1

+ 1
𝜖2

)
. (4.61)

Similarly, for the surface charge density 𝜎(𝑧 = 0), we have

𝜎(𝑧 = 0) = 𝜖1𝐸𝑧 (𝑧 = 0 + 0). (4.62)

4.C IC with a Dielectric Surface Layer
Suppose 𝑧 > 0 half space is filled by the electrolyte solution with dielectric constant
𝜖𝑟 , while −𝑎 < 𝑧 < 0 is a dielectric layer with 𝜖L.

The BC for Poisson equation with fixed surface potentials is a Robin type

𝜖L𝜙(0) − 𝜖𝑟𝑎𝜙′(0) = 𝜖L𝑉1. (4.63)

For another layer at 𝐿 < 𝑧 < 𝐿 + 𝑎, we have similarly

𝜖L𝜙(𝐿) + 𝜖𝑟𝑎𝜙′(𝐿) = 𝜖L𝑉2. (4.64)
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For fixed surface charge 𝑒𝜎𝑆 at 𝑧 = −𝑎, the BC at 𝑧 = 0 is still a Neumann BC

𝑒𝜎𝑆 = −𝜖L𝜙′L(0) = −𝜖𝑟𝜙′𝑟 (0). (4.65)

For the self-energy Green’s function, a Robin type BC now applies to both metal
and dielectric plates at 𝑧 < −𝑎. For a dielectric plate with 𝜖𝑝

𝐺′(0) − 𝑘 𝜖L
𝜖𝑟

𝜖L sinh(𝑘𝑎) + 𝜖𝑝 cosh(𝑘𝑎)
𝜖𝑝 sinh(𝑘𝑎) + 𝜖L cosh(𝑘𝑎)𝐺 (0) = 0. (4.66)

Taking the limit of 𝜖𝑝 → ∞, we have the BC for the metal plate

𝐺′(0) − 𝑘 𝜖L
𝜖𝑟

coth(𝑘𝑎)𝐺 (0) = 0. (4.67)
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C h a p t e r 5

THE GAUSSIAN-CORE SELF ENERGY

Excluded volume interactions in field theories are often incorporated through an
incompressibility condition which lacks packing effects. A typical revision to
incompressibility is the introduction of a hard-core radius for the mass of a particles;
however, this model overestimates the packing in soft-interacting bulky particles
such as ionic liquids. The Gaussian-core model can be used to capture these soft
interactions by introducing a smeared mass for each particle. Here, we develop
a variational theory for fluctuations in electrolytes with Gaussian-core interactions
using a renormalized-Gaussian approach. We derive analytical expressions for
electrostatic and Gaussian-core self energies of particles as well as the bulk pressure.
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5.1 Introduction
In theoretical modeling of electrolyte solutions, one must constrain the density of
species to prevent nonphysical accumulation of ions at surfaces. For field theories,
this is commonly achieved through an incompressibility constraint which enforces
the local total density to be constant at every point in space. Although incompress-
ibility assigns a volume to each species, there is no length scale associated with this
volume. Consequently, finite size effects such as packing are lost. While incom-
pressibility provides a reasonable description for dilute, simple ions, it is inaccurate
for concentrated electrolytes where the excluded-volume effects dominate. These
excluded-volume effects can be captured by introducing a length scale for ions either
by a charge spread [1] or a hard-sphere radius [2], which produce oscillations in ion
density profiles due to packing effects.

While a hard-sphere radius captures excluded-volume effects from mass for many
fluids, it overestimates the packing effects in bulky species such as ionic liquids.
Bulky particles are better described using a soft-core model, and the model we will
focus on is the Gaussian-core model. The Gaussian-core model assumes the particles
to have a smeared-Gaussian mass. We note that theoretical models for Gaussian-core
fluids have been previously studied [3, 4]. However, we are interested in applying
this model to charged systems as well as studying fluctuations in the Gaussian-core
model using a non-perturbative approach.

In this chapter, we study fluctuations for an electrolyte solution of Gaussian-core
ions and solvent using a field-theoretic renormalized-Gaussian fluctuating (RGF)
theory, similar to the treatment for fluctuations in electrolyte solutions in Ref. [5].
We also treat the electrostatics using RGF theory with a smeared-Gaussian spread
of charge. The key quantity we derive is the Gaussian-core self energy of a par-
ticle, which incorporates fluctuation effects through the particle self interaction
as well as coupling to the local environment. We proceed by deriving the exact
partition function using field-theoretic methods, followed by introducing the Gaus-
sian renormalization with a Gaussian reference action for both the electrostatic and
Gaussian-core interactions with the Gibbs–Feynmann–Bogoliubov bound. With
the renormalized partition function, we apply variational principles to obtain a set
of self-consistent equations, notably the Green’s functions for the electrostatic and
Gaussian-core parts, and expressions for their corresponding self energies. Then, we
obtain analytical expressions for the self energies and pressure in the bulk without
point approximations.
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5.2 Theory
We develop our theory using field-theoretic approaches and variational principles,
starting with the Hamiltonian for a simple electrolyte solution with both electrostatic
and Gaussian-core interactions. Our goal is to obtain the grand canonical partition
function, from which we can renormalize with the Gaussian reference action and
apply variational principles to obtain a set of self-consistent equations.

Partition Function
Consider a solution of 𝑛+ cations, 𝑛− anions, and 𝑛𝑠 solvent molecules contained in
a volume 𝑉 . The cations and anions have valency 𝑧+ and 𝑧−, respectively. The ions
have a smeared-Gaussian charge

ℎ±(r) =
(

1
2𝑎2

±

)3/2
exp

(
− 𝜋

2𝑎2
±

r2
)

(5.1)

where 𝑎± are the cation and anion radii. All species have a smeared-Gaussian mass

ℎ𝑚 (r) =
(

3
2𝜋𝜎2

)3/2
exp

(
− 3

2𝜎2 r2
)

(5.2)

where 𝜎 is the soft-core radius, and we have assumed all species to have the same
soft-core radius for simplicity. The Hamiltonian 𝐻 is composed of both electrostatic
and Gaussian-core interactions

𝛽𝐻 = 𝛽𝑈ele + 𝛽𝑈ex (5.3)

where the electrostatic interaction is simply the total Coulomb interactions

𝛽𝑈ele =
𝛽𝑒2

2

∫
dr

∫
dr′ 𝜌̂𝑒 (r)𝐶 (r, r′) 𝜌̂𝑒 (r′) (5.4)

where 𝛽 is the inverse thermal energy 𝛽 = 1/𝑘𝑇 , 𝑒 is elementary charge, and
𝐶 (r, r′) is the Coulomb kernel given by −∇ · [𝜀∇𝐶 (r, r′)] = 𝛿(r − r′). 𝜌̂𝑒 (r) is the
microscopic charge density

𝑒𝜌̂𝑒 (r) = 𝑒𝜌ex(r) + 𝑧+𝑒
∫

dr′ 𝑐+(r′)ℎ+(r− r′) − 𝑧−𝑒
∫

dr′ 𝑐−(r′)ℎ−(r− r′) (5.5)
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where 𝜌ex is a general fixed charge distribution, 𝑐±(r) =
∑𝑛±
𝑖=1 𝛿(r − r±

𝑖
) are the

microscopic ion densities, and charge units have been explicitly factored out. The
Gaussian-core interaction is given by

𝛽𝑈ex =
𝛽𝐴

2

∫
dr

∫
dr′ 𝜌̂(r)𝛿(r − r′) 𝜌̂(r′) (5.6)

where 𝐴 is the excluded volume strength parameter, assumed to be the same for all
species for simplicity, and 𝜌̂(r) is the microscopic solution density

𝜌̂(r) =
∫

dr′ ℎ𝑚 (r − r′) [𝑐+(r′) + 𝑐−(r′) + 𝑐𝑠 (r′)] (5.7)

with 𝑐𝑠 (r) =
∑𝑛𝑠
𝑖=1 𝛿(r − r𝑠

𝑖
). Thus, the grand canonical partition function is given

by

Ξ =

𝑛+∑︁
𝑖=1

𝑛−∑︁
𝑗=1

𝑛𝑠∑︁
𝑘=1

𝑄(𝑛+, 𝑛−, 𝑛𝑠) exp [𝛽𝜇+𝑛+ + 𝛽𝜇−𝑛− + 𝛽𝜇𝑠𝑛𝑠] (5.8a)

𝑄 =
1

𝑛+!𝑛−!𝑛𝑠!𝜈𝑛++ 𝜈
𝑛−− 𝜈

𝑛𝑠
𝑠

∫
𝑉

𝑛+∏
𝑖=1

dr+𝑖
∫
𝑉

𝑛−∏
𝑗=1

dr−𝑗
∫
𝑉

𝑛𝑠∏
𝑘=1

dr𝑠𝑘 exp [−𝛽𝐻] (5.8b)

where 𝜈𝛾 is the characteristic volume of species 𝛾. We note that some authors use
the thermal wavelength cubed as the volume scale. The choice of volume scale
is inconsequential—it merely results in a concentration-independent shift in the
chemical potential [6]. Next, we use the Hubbard–Stratonovich (HS) transformation
to decouple the quadratic interactions of the electrostatic and Gaussian-core terms
in Eqs. (5.4) and (5.6) at the expense of new couplings to the field variables 𝜉 and
𝑤. We also define 𝜙 = 𝛽𝑒𝜉 and 𝜖 = 𝜀/𝛽𝑒2, and redefine 𝑤 = 𝛽𝑤 Upon using the
HS transformation and applying the definitions of microscopic density operators,
we arrive at the fully-simplified grand canonical partition function

Ξ =
1

𝑍D𝑍C

∫
𝒟𝑤

∫
𝒟𝜙 exp {−𝐿 [𝑤(r), 𝜙(r)]} (5.9a)

𝐿 =

∫
dr

[
1

2𝛽𝐴
𝑤2 + 𝜖 (r)

2
(∇𝜙)2 + 𝑖𝜌ex𝜙 − 𝜆+𝑞+ − 𝜆−𝑞− − 𝜆𝑠𝑞𝑠

]
(5.9b)

𝑞± =
1
𝜈±

∫
dr exp

[
𝑖𝑤ℎ𝑚 (r) ∓ 𝑖𝑧± ℎ̂±𝜙(r)

]
(5.9c)
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𝑞𝑠 =
1
𝜈𝑠

∫
dr exp

[
𝑖𝑤ℎ𝑚 (r)

]
(5.9d)

𝑤ℎ𝑚 (r) =
∫

dr′𝑤(r′)ℎ𝑚 (r − r′) (5.9e)

𝜙ℎ±(r) =
∫

dr′ 𝜙(r′)ℎ±(r − r′). (5.9f)

Gaussian Renormalization
We introduce the RGF theory by applying the Gibbs–Feynman–Bogoliubov in-
equality using a Gaussian reference action 𝐿ref. Applying the Gibbs–Feynman–
Bogoliubov inequality to Eq. (5.9a)

Ξ = Ξref⟨exp {−𝐿 [𝑤, 𝜙] + 𝐿ref [𝑤, 𝜙]}⟩ref ≥ Ξref exp {−⟨𝐿 [𝑤, 𝜙] − 𝐿ref [𝑤, 𝜙]⟩ref}
(5.10)

the partition function is approximated by the right-hand side of Eq. (5.10), with
reference action

𝐿ref =
1
2

∫
dr

∫
dr′ [𝑤(r) + 𝑖𝑦(r)] 𝐺−1

𝑚 (r, r′) [𝑤(r′) + 𝑖𝑦(r′)]

+ 1
2

∫
dr

∫
dr′ [𝜙(r) + 𝑖𝜓(r)] 𝐺−1(r, r′) [𝜙(r′) + 𝑖𝜓(r′)] (5.11)

where 𝑦 and 𝜓 are the average excluded volume and electrostatic field, respectively,
and𝐺−1

𝑚 and𝐺−1 are the excluded volume and electrostatic inverse Green’s functions,
respectively, taken to be variational parameters in the theory. Their functional
inverse is defined as

∫
dr′𝐺 (r, r′)𝐺−1(r′, r′′) = 𝛿(r − r′′). (5.12)

The reference partition function Ξref is given by

Ξref =
1

𝑍D𝑍C

∫
𝒟𝑤

∫
𝒟𝜙 exp [−𝐿ref] =

[
det(𝐺𝑚)
det(𝐷)

]1/2 [
det(𝐺)
det(𝐶)

]1/2
(5.13)

where 𝐷 is the delta function Kernel for the Gaussian-core interaction 𝐷 (r − r′) =
𝛽𝐴𝛿(r − r′). Note that the average ⟨...⟩ is taken in the reference ensemble with
action 𝐿ref. We now seek to minimize the grand free energy given by
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𝛽𝑊 = − logΞref + ⟨𝐿 [𝑤, 𝜙] − 𝐿ref [𝑤, 𝜙]⟩ref (5.14)

which first requires evaluating the averages in the action and reference action.
Evaluating these averages is rather lengthy and involved. We will make a few notes
here, but we defer the reader to Ref. [5] for more detailed evaluation. The averages
are taken with respect to the reference ensemble, where the average of some quantity
is given by

⟨𝐹 [𝑤, 𝜙]⟩ =
∫

𝒟𝑤

∫
𝒟𝜙 𝐹 [𝑤, 𝜙]𝑃[𝑤, 𝜙] (5.15)

where 𝑃[𝑤, 𝜙] = 𝑍C𝑍DΞref exp (−𝐿ref) so that
∫
𝒟𝑤

∫
𝒟𝜙 𝑃[𝑤, 𝜙] = 1, and we

have omitted the subscript ref from the angled brackets for notational clarity. Note
that since the fields 𝑤 and 𝜙 are independent, their probabilities will factorize. We
define the variables 𝜒 = 𝜙+ 𝑖𝜓 and 𝜒𝑚 = 𝑤 + 𝑖𝑦, and note that since the distributions
of 𝜒 and 𝜒𝑚 are Gaussian, their averages can be evaluated exactly using Gaussian
functional integral identities. It follows that ⟨𝜒⟩ = ⟨𝜒𝑚⟩ = 0, ⟨𝜒(r)𝜒(r′)⟩ =

𝐺 (r, r′), and ⟨𝜒𝑚 (r)𝜒𝑚 (r′)⟩ = 𝐺𝑚 (r, r′). Additionally, the following averages will
appear and they evaluate to

∫
dr

∫
dr′ 𝛿(r − r′)𝜖 (r)⟨[∇r𝜒(r) · ∇r′𝜒(r′)]2⟩ =∫

dr
∫

dr′∇r · [𝜖 (r)∇r′𝛿(r − r′)]𝐺 (r, r′) (5.16)

and

⟨𝑒∓𝑖𝑧±𝜒ℎ± (r)⟩ = exp
[
−1

2
𝑧2
±

∫
dr′

∫
dr′′ ℎ±(r − r′)𝐺 (r′, r′′)ℎ±(r′′ − r)

]
(5.17)

and similar identities for 𝜒𝑚. Applying these definitions and identities to Eq. (5.14),
we arrive at the full variational grand free energy
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𝛽𝑊 = −1
2

log
(
det𝐺𝑚

det𝐷

)
− 1

2
log

(
det𝐺
det𝐶

)
+
∫

dr
[
− 1

2𝛽𝐴
𝑦2 − 𝜖 (r)

2
(∇𝜓)2 + 𝜌ex𝜓

]
−

∫
dr

[
𝜆+
𝜈+
𝑒𝑦ℎ𝑚 (r)−𝑧+ ℎ̂+𝜓(r)−𝑢+−𝑢𝑚 + 𝜆−

𝜈−
𝑒𝑦ℎ𝑚 (r)+𝑧− ℎ̂−𝜓(r)−𝑢−−𝑢𝑚 + 𝜆𝑠

𝜈𝑠
𝑒𝑦ℎ𝑚 (r)−𝑢𝑚

]
− 1

2

∫
dr

∫
dr′𝐺𝑚 (r, r′)

[
𝐺−1
𝑚 (r, r′) − 1

𝛽𝐴
𝛿(r − r′)

]
− 1

2

∫
dr

∫
dr′𝐺 (r, r′)

[
𝐺−1(r, r′) − 𝐶−1(r, r′)

]
(5.18)

where 𝑢± and 𝑢𝑚 are the ion’s electrostatic and Gaussian-core self energies given by

𝑢±(r) =
1
2
𝑧2
±

∫
dr′

∫
dr′′ ℎ±(r − r′)𝐺 (r′, r′′)ℎ±(r′′ − r) (5.19a)

𝑢𝑚 (r) =
1
2

∫
dr′

∫
dr′′ ℎ𝑚 (r − r′)𝐺𝑚 (r′, r′′)ℎ𝑚 (r′′ − r). (5.19b)

Applying the variational condition in 𝜓, 𝑦, 𝐺, and 𝐺𝑚 yields a set of self-consistent
equations

𝑦(r) = −𝛽𝐴
∫

dr′ ℎ𝑚 (r − r′) [𝑐𝑠 (r′) + 𝑐+(r′) + 𝑐−(r′)] (5.20a)

−∇ · [𝜖∇𝜓(r)] = 𝜌ex +
∫

dr′ [𝑧+ℎ+(r − r′)𝑐+(r′) − 𝑧−ℎ−(r − r′)𝑐−(r′)] (5.20b)

1
𝛽𝐴
𝐺𝑚 (r, r′)+

∫
dr1

∫
dr2 ℎ𝑚 (r−r1)ℎ𝑚 (r1−r2)𝐺𝑚 (r2, r′) [𝑐𝑠 (r1) + 𝑐+(r1) + 𝑐−(r1)]

= 𝛿(r − r′) (5.20c)

∫
dr1

∫
dr2𝐺 (r2, r′)

[
𝑧2
+ℎ+(r − r1)ℎ+(r1 − r2)𝑐+(r1) − 𝑧2

−ℎ−(r − r1)ℎ−(r1 − r2)𝑐−(r1)
]

− ∇r · [𝜖 (r)∇r𝐺 (r, r′)] = 𝛿(r − r′) (5.20d)

where 𝑐± and 𝑐𝑠 are the ion and solvent concentrations, obtained from the integrand
of chemical potential derivatives of the grand free energy

𝑐± =
𝜆±
𝜈±

exp
[
𝑦ℎ𝑚 (r) ∓ 𝑧± ℎ̂±𝜓(r) − 𝑢± − 𝑢𝑚

]
(5.21a)
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𝑐𝑠 =
𝜆𝑠

𝜈𝑠
exp

[
𝑦ℎ𝑚 (r) − 𝑢𝑚

]
. (5.21b)

Eqs. (5.20a)–(5.20d) are the key results of this chapter. Eq. (5.20a) and (5.20b)
are simply the mean-field conditions in the fields 𝑦 and 𝜓. Eq. (5.20a) enforces a
penalty on high densities in solution–a consequence of the repulsive Gaussian-core
excluded-volume interaction. Eq. (5.20b) is simply the Poisson equation, albeit non
local due to the Gaussian smearing of charge. Eqs. (5.20c) and (5.20d) represent
Gaussian fluctuations around the saddle-point for the excluded volume interaction
and electrostatic potential through the Green’s function. Note that these equations
are non local due to the convolutions since no point limits were taken. Invoking the
point-limit amounts to replacing all smearing functions ℎ with a delta function, and
Eqs. (5.20b) and (5.20d) would simply to those derived in Ref. [5]. The point limits
for these equations are nondivergent; however, we must retain their general form as
we are interested the length scales associated with the ion size and mass spread.

With the equations above, one can simplify the variational grand free energy in Eq.
(5.18)

𝛽𝑊 = −1
2

log
(
det𝐺𝑚

det𝐷

)
− 1

2
log

(
det𝐺
det𝐶

)
−

∫
dr

[
𝑐+ + 𝑐− + 𝑐𝑠 +

𝑦2

2𝛽𝐴

]
+ 1

2

∫
dr𝜓 [𝜌ex − 𝑧+𝑐+ + 𝑧−𝑐−] −

1
2

∫
dr

∫
dr′𝐺𝑚 (r, r′) 𝜌̄(r, r′)

−
∫

dr
∫

dr′𝐺 (r, r′)𝐼 (r, r′) (5.22)

where

𝜌̄(r, r′) =
∫

dr1 ℎ𝑚 (r − r1)ℎ𝑚 (r1 − r′) [𝑐𝑠 (r1) + 𝑐+(r1) + 𝑐−(r1)] (5.23a)

𝐼 (r, r′) = 1
2

∫
dr1

[
𝑧2
+ℎ+(r − r1)ℎ+(r1 − r′)𝑐+(r1) − 𝑧2

−ℎ−(r − r1)ℎ−(r1 − r′)𝑐−(r1)
]
.

(5.23b)

5.3 Bulk Analysis
Here, we analyze the self-consistent Eqs. (5.20a)–(5.20d) and the free energy in Eq.
(5.22) in a bulk solution with a uniform dielectric constant. Specifically, we derive
analytical expressions for the Gaussian-core and electrostatic self energies without
taking a point-limit, as well as an expression for the bulk pressure.
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Bulk Self Energy
In the bulk, all species have a constant density and there is no fixed charge 𝜌ex.
Charge neutrality requires that the bulk ion concentrations are 𝑐±,B = 𝑧∓𝑐B, where
𝑐B is the bulk salt concentration. Moreover, Eq. (5.20b) is automatically satisfied
by charge neutrality, giving a constant electrostatic potential that is absorbed into
the fugacity for all species. Eq. (5.20a) gives an expression for the bulk excluded
volume field 𝑦B = −𝛽𝐴𝜌B, where 𝜌B = 𝑐𝑠,B + (𝑧+ + 𝑧−)𝑐B is the total bulk density.

For the correlation expressions in Eqs. (5.20c) and (5.20d), the concentration depen-
dencies become constant and factor out of the integral, leaving double convolutions
over the Green’s functions. The resulting expressions for the bulk Green’s functions
can be solved analytically using Fourier transforms and invoking the convolution
theorem for the integral terms. Solving for the Green’s functions in Fourier space
and taking the inverse Fourier transforms gives the following expressions

𝐺𝑚 (r − r′) =
∫

dk
𝛽𝐴

1 + 𝛽𝐴𝜌B ℎ̂𝑚
2(k)

𝑒2𝜋𝑖(r−r′)·k (5.24a)

𝐺 (r − r′) =
∫

dk
1

4𝜋2𝜖k2 + 𝑧+𝑧−𝑐B

[
𝑧+ ℎ̂+

2(k) + 𝑧− ℎ̂−
2(k)

] 𝑒2𝜋𝑖(r−r′)·k. (5.24b)

Here, we define the forward and reverse Fourier transforms asF [ 𝑓 (r)] =
∫

dr 𝑓 (r)𝑒−2𝜋𝑖r·k

and F −1 [ 𝑓 (k)] =
∫

dk 𝑓 (k)𝑒2𝜋𝑖r·k, respectively. Additionally, ℎ̂𝑚
2(k) and ℎ̂±

2(k)
are the Fourier transforms of the smearing functions squared. Eqs. (5.24a) and
(5.24b) can be further simplified by converting the integrals to spherical coordinates
by noting that the integrand depends only on the magnitude of the wave vector and
by taking (r − r′) · k = |r − r′| |k| cos 𝜃 to give

𝐺𝑚 ( |r − r′|) = 2
|r − r′|

∫ ∞

0
d𝑘 𝑘

𝛽𝐴

1 + 𝛽𝐴𝜌B ℎ̂𝑚
2(𝑘)

sin (2𝜋 |r − r′|𝑘) (5.25a)

𝐺 ( |r − r′|) = 2
𝜖 |r − r′|

∫ ∞

0
d𝑘 𝑘

1
4𝜋2𝑘2 + 𝜅2(𝑘)

sin (2𝜋 |r − r′|𝑘) (5.25b)

where 𝜅2(𝑘) = 𝑧+𝑧−𝑐B
𝜖

[
𝑧+ ℎ̂+

2(𝑘) + 𝑧− ℎ̂−
2(𝑘)

]
is the wave-vector-dependent screen-

ing function. Eqs. (5.25a) and (5.25b) are convergent integrals but they cannot be
integrated analytically to obtain closed form expressions for 𝐺𝑚 and 𝐺. However,
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we can directly substitute these expressions for the Green’s functions into the ex-
pressions for the self energies, given by Eqs. (5.19b) and (5.19a). Doing this for the
Gaussian-core self energy yields

𝑢𝑚 = − 1
2𝜌B

(
3

4𝜋𝜎2

)3/2
Li3/2(−𝛽𝐴𝜌B) (5.26)

where Li3/2(−𝛽𝐴𝜌B) is special function called a polylogarithm of 3/2 order.

One can also derive a “point-limit” expression to the self-energy where a point limit
is taken in the Gaussian-core Green’s function expression Eq. (5.20c) by replacing
the smearing functions with delta functions. Solving for 𝐺𝑚 in this limit yields
𝐺𝑚 ( |r − r′|) = 𝛽𝐴𝛿(r − r′)/(1 + 𝛽𝐴𝜌B). Substituting this expression into the
self-energy gives

𝑢
pl
𝑚 = − 𝛽𝐴

2(1 + 𝛽𝐴𝜌B)

(
3

4𝜋𝜎2

)3/2
(5.27)

where the superscript “pl” denotes “point-limit.” Note that the point-limit cannot be
taken in the self-energy expression, as this returns a divergent same-point Green’s
function. We can study the limits of the Gaussian-core self energy in 𝛽𝐴 at fixed 𝜌B

lim
𝛽𝐴→ 0

𝑢𝑚 =
𝛽𝐴

2

(
3

4𝜋𝜎2

)3/2
(5.28a)

lim
𝛽𝐴→ 0

𝑢
pl
𝑚 =

𝛽𝐴

2

(
3

4𝜋𝜎2

)3/2
(5.28b)

lim
𝛽𝐴→∞

𝑢𝑚 =
1

2𝜌B

(
3

4𝜋𝜎2

)3/2 [log (𝛽𝐴𝜌B)]3/2

Γ(5/2) (5.28c)

lim
𝛽𝐴→∞

𝑢
pl
𝑚 =

1
2𝜌B

(
3

4𝜋𝜎2

)3/2
(5.28d)

where Γ(𝑥) denotes the gamma function. We see for both point-limit and exact,
the Gaussian-core self energy is always positive as expected for a purely repulsive
interaction. At low 𝛽𝐴, the excluded volume field is weak and both point-limit
and exact return the same self energy, meaning the particle structure is unimportant
in this limit. For high 𝛽𝐴, the point limit and exact differ by a logarithmic factor
with dimensionless quantity 𝛽𝐴𝜌B. Thus, the logarithmic factor originates from the
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Gaussian structure of the particles, making the self energy more repulsive for strong
fields relative to unstructured particles.

For the electrostatic self energy, substituting the electrostatic Green’s function (Eq.
(5.25b)) into the electrostatic self energy gives

𝑢± =
2𝜋𝑧2

±
𝜖

∫ ∞

0
d𝑘 𝑘2 ℎ̂±

2(𝑘)
4𝜋2𝑘2 + 𝜅2(𝑘)

. (5.29)

This integral cannot be evaluated analytically. However, as we are mostly interested
in obtaining corrections to the ions’ electrostatic self energy due to ion structure, we
can expand the screening function 𝜅(𝑘) for small wavelengths. This approximation
is reasonable, for the exponential factor ℎ̂±

2(𝑘) in the numerator suppresses large
wavelength contributions. Noting that ℎ̂±

2(𝑘) = exp (−4𝜋𝑎2
±𝑘

2) ≈ 1 − 4𝜋𝑎2
±𝑘

2 +
𝒪(𝑘𝑎±)4, expanding the screening function for small 𝑘 gives

𝑢± =
2𝜋𝑧2

±
𝜖

∫ ∞

0
d𝑘 𝑘2 ℎ̂±

2(𝑘)
4𝜋2𝑘2(1 − 𝑐B𝑙B𝑎̄2) + 𝜅2 (5.30)

where 𝑙B is the Bjerrum length 𝑙B = 1/4𝜋𝜖 and 𝑎̄2 = 4𝑧+𝑧−(𝑧+𝑎2
+ + 𝑧−𝑎2

−). This
expression for the self energy can be integrated analytically, which in the limit of
the electrostatic screening length being much larger than the ionic radii 𝜅𝑎± ≪ 1
yields

𝑢± =
𝑧2
±𝑙B
2

[
1

𝑎±
(
1 − 𝑐B𝑙B𝑎̄2) − 𝜅(

1 − 𝑐B𝑙B𝑎̄2)3/2

]
+𝒪(𝜅2). (5.31)

Note that Eq. (5.31) returns the expression derived in Ref. [5] for sufficiently small
ionic radii (𝑎̄ → 0). The first term of the self energy is the Born solvation energy
and the second term is a universal part due to interactions with other ions. The
terms in parentheses in the denominators represent small corrections for ion size.

Bulk Pressure
Here, we evaluate the grand free energy (Eq. (5.22) in the bulk without taking
point-limit approximations. In the bulk, the third term in Eq. (5.22) simplifies
accordingly from the bulk 𝑦 field derived earlier, 𝑦B = −𝛽𝐴𝜌B. The fourth term
vanishes by electroneutrality. The final two terms are evaluated using the Fourier
transform methods outlined in the previous section. The first two terms can be
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evaluated by using the functional integral definition for the determinant of a kernel
and substituting the Fourier-space kernel of into the determinant definition. The
Fourier-space kernel becomes diagonalized, which returns the determinant as a
product of the eigenvalues. Noting the explanations above, the bulk free energy
becomes

𝛽𝑊B
𝑉

= −𝜌B(1 + 𝛽𝐴𝜌B)

+ 2𝜋
∫ ∞

0
d𝑘 𝑘2

{
log

[
1 + 𝛽𝐴𝜌B ℎ̂𝑚

2(𝑘)
]
− 𝛽𝐴𝜌B ℎ̂𝑚

2(𝑘)

1 + 𝛽𝐴𝜌B ℎ̂𝑚
2(𝑘)

}
+ 2𝜋

∫ ∞

0
d𝑘 𝑘2

{
log

[
1 + 𝜅2(𝑘)

4𝜋2 𝑘2

]
− 𝜅2(𝑘)

4𝜋2𝑘2 + 𝜅2(𝑘)

}
(5.32)

where the first term comes from the bulk osmotic pressure and the mean-field
Gaussian-core contribution, the second term is the Gaussian-core correlation, and
the last term is the electrostatic correlation. The bulk pressure is then obtained simply
from the Euler relationship of the grand free energy to the pressure−𝛽𝑊/𝑉 = 𝑃. The
Gaussian-core contribution to the bulk pressure is able to be analytically evaluated
by performing integration by parts on the logarithmic term. The Gaussian-core
contribution is thus given by

𝑃gc = 𝛽𝐴𝜌
2
B − 1

2

(
3

4𝜋𝜎2

)3/2 [
Li3/2(−𝛽𝐴𝜌B) − Li5/2(−𝛽𝐴𝜌B)

]
(5.33)

with limiting behavior

lim
𝛽𝐴𝜌B→ 0

𝑃gc = 𝛽𝐴𝜌
2
B −

(
3

4𝜋𝜎2

)3/2 (𝛽𝐴𝜌B)2

8
√

2
+𝒪(𝛽𝐴𝜌B)3 (5.34a)

lim
𝛽𝐴𝜌B→∞

𝑃gc = 𝛽𝐴𝜌
2
B −

( √
3

4𝜋2𝜎3

)
[log (𝛽𝐴𝜌B)]3/2

[
1 − 2

5
log (𝛽𝐴𝜌B)

]
. (5.34b)

Note that 𝛽𝐴𝜌B → 0 is the ideal gas limit, and the Gaussian-core portion of the
bulk pressure returns only quadratic corrections to ideal gas, proving thermodynamic
consistency. Additionally, all correlation terms have a 𝜎−3 prefactor, meaning the
point limit (𝜎 → 0) of the correlation terms is divergent as expected from any self-
interacting system. Lastly, the high-density/strong-interacting limit (𝛽𝐴𝜌B → ∞)
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gives only a small logarithmic correction to the quadratic mean-field contribution,
since the correlations effectively cancel, similar to excluded volume interactions in
a polymer melt.

Figure 5.1: Negative of the electrostatic correlation contribution to the pressure as
a function of 𝜅2 for various ionic radii, evaluated from Eq. (5.36). The ions are
symmetric (𝑎+ = 𝑎−) and have Gaussian smearing of charge. The solid black line is
the point limit result. The dashed black line shows 𝜅 scaling for reference.

For the electrostatic correlation contribution to the pressure, the point limit result is

𝑃ele = −2𝜋
∫ ∞

0
d𝑘 𝑘2

{
log

[
1 + 𝜅2(𝑘)

4𝜋2 𝑘2

]
− 𝜅2(𝑘)

4𝜋2𝑘2 + 𝜅2(𝑘)

}
=
𝜅3

24𝜋
. (5.35)

However, the full electrostatic contribution with ion structure in the last term of Eq.
(5.32) cannot be integrated analytically, even for symmetric ionic radii (𝑎+ = 𝑎−).
We evaluate the pressure contribution numerically for various symmetric ionic radii
as a function of 𝜅2 using a cutoff of 100 for the integral upper bound. For symmetric
ionic radii, the integral expression becomes

𝑃ele = −2𝜋
∫ ∞

0
d𝑘 𝑘2

{
log

[
1 + 𝜅

2 ℎ̂2(𝑘)
4𝜋2 𝑘2

]
− 𝜅2 ℎ̂2(𝑘)

4𝜋2𝑘2 + 𝜅2 ℎ̂2(𝑘)

}
(5.36)
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where ℎ̂2(𝑘) = exp
(
−4𝜋𝑎2𝑘2) is the Fourier transform of the Gaussian smearing

function squared. Using a cutoff for the upper bound is a reasonable approxima-
tion so long as the cutoff is much larger than the ionic radii, as high frequency
contributions decay exponentially due to the Gaussian ion structure.

The negative of the bulk electrostatic correlation contribution to the pressure is
shown in Fig. 5.1 as a function of the inverse Debye screening length squared 𝜅2.
We see that for sufficiently small ionic radii, the pressure scaling almost coincides
with the point limit result since ion structure effects are small. This effect is
amplified for weak screening (small 𝜅2) as electrostatic effects dominate. However,
for large ionic radii > 1 nm, there is significant deviation from the point limit result,
especially at high screening (large 𝜅2). Physically, this deviation comes from the
size effects of the ions dominating when electrostatics is sufficiently screened, which
mathematically originates from the high frequency contributions to the integral in
Eq. (5.36) decaying exponentially from the ion structure. Such large ion sizes are
representative the delocalization of charge on bulky ions in ionic liquid systems,
albeit their charge spread will not be Gaussian. In the limit of large ion size, the
pressure appears to scale slightly weaker than 𝜅, suggesting the pressure scales with
ion concentration more weakly than 𝑐1/2

± .

5.4 Summary/Conclusion
In this chapter, we developed a variational theory for fluctuations in electrolytes
with Gaussian-core interactions using a renormalized-Gaussian approach for both
excluded-volume and electrostatic interactions. Using Gaussian smearing functions
for the charge and mass spread, we derived analytical expressions for the electrostatic
and Gaussian-core self energies of particles as well as the bulk pressure without
taking point limits. We found that in the high-density limit, excluded-volume
fluctuation effects give a logarithmic correction to the bulk pressure in the high-
density/strongly-interacting limit. Moreover, accounting for the charge spread of
an ion, the electrostatic portion of the bulk pressure transitions from 𝜅3 to sub 𝐾
scaling as the ionic radius increases, which is relevant for bulky ions such as ionic
liquids.

For inhomogeneous cases, such as ions near a surface, we believe this theory
will be useful because it captures packing effects of the ions/solvent, which gives
more qualitatively accurate density profiles like in molecular dynamics simulations.
Moreover, the theory would be able to capture underscreening behavior to some
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degree for highly-concentrated bulky electrolytes [2]. One can also derive an integral
equation theory for a Gaussian-core fluid without ions by taking the point limit of
Eq. (5.20c) and substituting into the density, which may provide improvements
over existing integral equations theories for soft-body excluded volume interactions.
These tasks are reserved for future work.
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