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ABSTRACT

Optical frequency combs (OFC) have been vastly developing and were awarded
half of the Nobel Prize in 2005. OFCs are series of optical signals with distinct
and equally spaced frequencies. One reason why OFCs are essential for modern
optics and photonics engineering is that OFCs serve as a bridge between optical
frequencies (hundreds of THz) and frequencies within the electronic bandwidth
(from MHz to GHz, which is the distance between adjacent comb teeth). In this
thesis, I first introduce some physical principles of optical resonators, which are
critical components for confining optical energy and generating OFCs. Then, in
the main body of this thesis, I study the physics and applications of two types of
compact OFCs: soliton microcombs and electro-optical frequency combs.

Microcombs are OFCs generated on integrated photonics devices. Here, I first
develop a methodology to experimentally characterize two important physical prop-
erties (material absorption loss and optical nonlinearity) of integrated photonic
materials. Next, I focus on a novel method to generate mode-locked soliton micro-
combs on ultra-low-loss Si3N4 material. It was considered challenging to support
bright solitons due to its normal dispersion. This novel method involves two res-
onators that are partially coupled together, which can modify the dispersion through
mode hybridization and feature symmetry breaking. Following this, I investigate
two characteristics closely related to the symmetry breaking of this coupled-ring
device: the observation of Kelly sidebands and multicolor bright soliton generation.
Finally, I demonstrate bright soliton generation in Alp>GaggAs resonators, which
feature high nonlinearity but were considered difficult to support bright solitons at
room temperature due to its high material loss. Here, we mitigate the effect of

material loss by pulse-pumping operation.

Electro-optical frequency combs are OFCs generated by modulating a continuous
wave laser using an external radio-frequency source. Taking advantage of low-noise
radio frequency and stable continuous-wave laser frequency, this OFC can serve as
a frequency reference for astronomical observation. In this thesis, I first introduce
the physics and operating principle of electro-optical frequency combs in Chapter
1, then discuss developing and deploying the near-infrared laser frequency comb at
the W.M. Keck Observatory in Chapter 7.

In summary, the thesis discusses the physics and applications of mode-locked bright
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soliton microcombs, which can generate radio frequencies by taking the beat note
of this OFC. I also discuss the physics and applications of electro-optical frequency
combs, which are stable OFCs used for astronomical frequency references generated
by radio-frequency modulation of continuous wave lasers. The critical role of OFCs
as a bridge between optical frequencies and frequencies within the electronic band-
width (MHz to GHz) is demonstrated, and their potential to revolutionize various
fields, including high-precision metrology, telecommunications, and astrophysics,
is highlighted.
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ring resonator used 1n the experiments. Rings A and B are indicated.

The scale bar 1s 1 mm. (b) Simultaneous measurement of optical
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1n the coupled-ring resonator of panel a. The measured mode disper-

ston 1s also plotted (orange). Two dispersive waves are observed at

spectral locations corresponding to the phase matching condition as

indicated by the dispersion curve. (¢) Radio-frequency spectrum of

microcomb beatnote (RBW: resolution bandwidth). (d) Illustration

of 3 pulse generation 1n a three-coupled-ring microresonator wherein
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3.2 Illustration of inter-ring coupling with (without) mode num-

ber conservation. (a) The top panel shows two different coupling

schemes between two ring resonators with different FSRs. The left

configuration possesses a continuous rotational symmetry that al-

lows coupling only between modes with the same absolute mode

(azimuthal) number (1.e., mode number 1s conserved). In this case,

the coupling opens a gap at the mode crossing and creates two hybrid

mode branches (green curves in the lower panel). Here the center blue

and red dashed lines represent the resonance frequency of individual

rings, and their intersection point corresponds to phase matching. In

this work (top right panel), inter-ring mode coupling depends on the

matching of resonance frequency instead of mode number (1.e., mode

number 1s not conserved), so that the dispersion 1s strongly altered

at all frequency degeneracies. (b) In the lower panel, frequency de-

generacies are marked by crossings between the blue and red dashed

lines, which still represent the dispersion of individual rings, but with

the abscissa shifted by integer numbers as a result of spectral folding

allowed by non-conservation of mode number. Compared to the first

configuration, the dispersion curve of the coupled rings repeats itself

every 2M modes, with M = 1/(2€) set by the length contrast of the

TINGS. [+« v v o e e e e e e e e e e e e e e e e e e e
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3.3  Mode number non-conservation coupling and recurring bright

soliton windows. (a) Measured frequency dispersion of the cou-

pled resonator (green circles) versus relative mode number y. Here

D/(21) = 19.9766 GHz, and wy is chosen so that u = 0 is at the

crossing center (1552.3 nm). Multiple anomalous dispersion win-

dows appear around p = 0 and 400 for the upper branch and u =

—200 and 200 for the lower branch. The anomalous dispersion win-

dow near y = —200, 0 and 200 have been highlighted. Solid curves

are fittings and the color refers to the energy contribution from ring

A (obtained from theoretical calculations). The average of the up-

per and lower branch mode frequencies 1s plotted as orange circles

and fitted by a second-order dispersion model (orange curve). Inset:

transmission observed when scanning a laser over resonances 1n the

anomalous dispersion windows. Soliton steps are observed around

u =—200, 0 and 200. (b) Measured relative frequency dispersion of

the coupled resonator (green circles) versus relative mode number p.

Here D,/(27) = —283.0 kHz, and other parameters are the same as

panel (b). Solid curves are the theoretical fittings described by Eqg.

(3.2). Fitted mode frequency dispersion diagrams of the single rings

without coupling are shown as red and blue lines. | . . . . ... . ..




3.4 Temporal evolution of the soliton pulse pair in the two-ring cou-

pled resonator. (a) Upper panel: Illustration of the time evolution

of the soliton pair 1nside the two rings during one round trip time.

Lower panel: Snapshots of the pulses at different positions. In the

non-coupled regions (I and V), pulses accumulate positive chirp due

to nonlinearity and normal dispersion of the waveguide. Pulse 1n ring

A 1s leading 1in time at I due to shorter ring circumference. When

the pulses enter the coupling region (IlI), the pulses exchange energy,

which leads to relative position shifts as well as chirp compensation

(II). The pulses exit the coupled region (IV) with position shifts

and chirping compensated. (b) Simulated pulse pair properties are

plotted versus pulse position 1n each ring during one round trip. The

two rings are aligned at the coupling region center, and the surplus

length 1n ring B 1s omitted 1n the figure. The yellow shaded area rep-

resents the coupling region. The quantities are, from top to bottom:

pulse timing difference (pulse center-to-center), linear chirp, peak

power, and full width at half maximum. The blue (red) lines repre-

sent simulation results for the pulse in ring A (B). The dashed lines

are analytical results from a linear coupling model (see Methods),

3.5 Observation of bipartite and tripartite multi soliton states in two-

and three-coupled-ring microresonators. (a, b) Optical spectra of

bipartite two-soliton states with different relative soliton positions.

The state 1n panel (b) 1s a two-soliton crystal state. Insets: rela-

tive position of the two solitons inside each microresonator. (c, d)

Through port optical spectra of tripartite two-soliton states with dif-

ferent relative positions. Inset: relative position of the two solitons

mside each microresonator. (e) Through port optical spectrum of a

tripartite three-soliton state. Inset: relative position of the three soli-

tons inside each microresonator. (f) Through port optical spectrum

of a tripartite four-soliton crystal. Inset: relative position of the four
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3.6 Dispersion and coupling characteristics of the ring waveguide.

(a) Finite element simulation results for dispersions of straight S13N4

waveguides with fixed width (2.8 ym) as a function of wavelength

and waveguide thickness. The zero-dispersion boundary 1s marked

Numerical simulations of the waveguide coupling rate g., and the

corresponding spectral gap (2G = gcoLcoD1/m, with Lo, = 1.0 mm

|
|
|
|
as the black dashed curve. Nominal waveguide thickness (100 nm) |
|
|
|
|

and D = 2 X 20 GHz) are plotted as a function of wavelength and

I
I
I
I
I
| for the current process is marked as the white dashed line. (b)
I
I
I
I

waveguide thickness. The gap between waveguides 1s 2.4 um. |. . . . 76

3.7 and S resonances and autocorrelation measurements of soli-

tons In the coupled-ring resonator. (a) The relative frequency of

the C and S resonances are measured using a vector network an-

alyzer and plotted versus tuning voltage in the two-ring resonator.

(b,c,d,e f,g,h) Experimental autocorrelation measurements of: (b)

single soliton state in a two-ring resonator (state in Fig. |3.1(b)); (¢)

two soliton state in a two-ring resonator (state in Fig. |3.5(a)); (d)

two soliton crystal state 1n a two-ring resonator (state in Fig. [3.5(b));

(e) single soliton state 1n a three-ring resonator (state in Fig. [3.1(e));

(f) two soliton state in a three-ring resonator (state in Fig. |3.5(c));

(g) two soliton state 1n a three-ring resonator (state in Fig. [3.5(d));

The resolution of the autocorrelation setup 1s 100 fs. The zoom-in of

each autocorrelation measurements are shown in corresponding right

panel. | . ... 77

3.8 Stable soliton operation in the two-ring resonator measured over

4 hours. (a) Continuous measurement of the RF beat note of a pulse

pair soliton microcomb over 4 hours. The RF beatnote peak drift over
4 hours 1s within 25.7 kHz (1.29 PPM). f: RF frequency, f.: center
RF frequency, RBW: resolution bandwidth. (b) Simultaneous mea-

surement of the optical spectrum of the pulse pair soliton microcomb

I
I
I
I
I
I
I
I
I
I
| (h) three soliton state 1n a three-ring resonator (state in Fig. [3.5(e)).
I
I
I
I
I
I
I
I
I
I

mpanelaoverdhours. | . . . .. ... o oL 78
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3.9 Simulated optical spectra and dispersion relation for Dirac soli-

tons assuming different levels of approximations in the model.

'Top panel: Uniform coupling between two rings (mode number con-

servation), without pump and loss, and with zero second-order disper-

stion. Middle panel: Non-uniform coupling between two rings (mode

number non-conservation), with pump and loss included, and with

zero second-order dispersion. Recurring dispersion relations can be

observed but the spectrum 1s free of strong dispersive waves. Bottom

panel: Non-uniform coupling between two rings (mode number non-

conservation), with pump and loss, and with negative second-order

dispersion [1.e., full Egs. (3.4)and (3.5)]. |. . . . . . . ... ... ..
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4.1

Hlustration of KS generation. (a) Optical image of the partially

coupled racetrack resonator. (b) Measured integrated dispersion of

the two hybrid mode families (orange and red) 1s plotted versus

wavelength and relative mode number. When pumped near point

I (anomalous dispersion center of the upper band), soliton pulse pairs

form as 1llustrated 1n panel (c). Also, DWs (interband KSs) appear at

points II & III (IV & V). The appearance of KSs at points [V and V

18 discussed 1n Section4.5.1] w,,: frequency of mode u, wyp: center

mode frequency, D /2n: free-spectral-range (FSR) of the resonator,

u: relative mode number such that u=0 corresponds to the pump

mode. (c¢) Schematic showing soliton pulse pair propagation 1n the

coupled racetracks. DW and KS waves are indicated as oscillatory

backgrounds. (d) Measured optical spectrum of soliton pulse pair

from continuous-wave laser pumping. DWs and interband KSs are

observed at the predicted location 1n panel (b). Dispersion curves are

overlaid onto the soliton spectrum for reference. | . . . . . ... . ..




XXii

4.2 Comparison of numerical simulation results for sideband gener-

ation in partially coupled and Tully coupled resonators. (a) Simu-

lated soliton spectrum and dispersion profile of the partially coupled

racetrack. The soliton, when pumped at point I, generates two disper-

stve waves (point Il and III) and two interband Kelly sidebands (point

IV and V). (b) Simulated soliton spectrum and dispersion profile of

the fully coupled racetrack. In this case, the Kelly sidebands at point

IV and V do not appear, because of phase mismatch. Panel (a,b)

Insets: 1llustration of partially coupled and fully coupled racetrack

configuration. | . . . . . . . . ..

4.3

Active control of KS wavelengths on blue and red sides through

pulse pumping. (a) Optical spectrum of soliton pulse pair generated

from pulse pumping. The measured mode frequency dispersion for

the two bands 1s also plotted. Inset: zoom 1n of the dispersion curve

of the pumped mode family and 1ts comparison with 19.97267 GHz

comb frequency line (horizontal magenta line) and 19.97359 GHz

comb frequency (tilted blue line). The right vertical axis of the mset

1s a magnified version of the right vertical axis of the main panel.

(b, ¢) Zoom-in optical spectra of the two KSs at shorter wavelengths

(panel b) and longer wavelengths (panel ¢) for different input pump-

pulse repetition rates. Legend gives the repetition rate of the input

pump pulse relative to 19.97217 GHz. Vertical dashed grid lines

indicate multiples of the comb repetition rate of 19.97267 GHz. |. . .

92
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4.4  Explanation of Kelly sideband (KS) formation. (a) Comb fre-

quencies (blue) walk-off from resonator mode frequencies (red) by

D>u”/2 as a result of anomalous dispersion. Comb line at ¢ = 0 is

also the pump. The comb and mode frequency become aligned (or-

ange highlight) when this walk-off 1s equal to an integer multiple of

D1 (FSR). This frequency 1s approximately the frequency of the KSs.

u: relative mode number. w,: frequency of each mode. Di/2x:

FSR of the resonator. D»: second-order dispersion of the resonator.

(b) Dispersion profile of the mode family shown in panel a. The

first few corresponding modes 1n panel (a) are indicated by dashed

arrows. When a mode frequency 1s an integer times D /27 relative

to the pumped mode at u=0, it becomes possible to generate a KS at

this frequency, provided a second condition 1s satisfied as described

n panel (c). (¢) [llustration of the propagation phase of the comb and

the mode at u*. Their relative phase changes by a multiple 27 every

round trip, leading to phase mismatch of the waves and preventing

KS generation when the resonators are fully coupled. | . . . . . . ..

4.5

Analysis of the comb and KS frequency offset using frequencies

measured with a high-resolution OSA (resolution of 125 MHz,

blue shaded area). The comb spectral lines (from around 190 THz

to 195 THz) and the Kelly sidebands (KS) on the red side (two

data points around 187 THz) exhibit approximately the same offset

frequency, within the precision limits of the spectrometer. Data at

higher frequencies were not collected due to spectrometer limitations.

Further details are provided inthe text. | . . . . . .. ... ... ...
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Co-propagation: (a) Optical image of the coupled-ring microres-

onator. Scale bar, Imm. (b) Dispersion characteristics of hybrid

mode families versus wavelength. Two regions exhibiting anomalous

dispersion are highlighted 1n orange. The black dots indicate the

frequencies of two continuous-wave pump lasers. The frequencies

of the dashed line are the average of the two hybrid mode fami-

lies and feature normal dispersion. w,: frequency of each mode;

wo: center mode frequency; Di: FSR of the mode family 1 at

u=0 where D/2n =19.97 GHz. (c) Experimental setup for co-

propagating multi-color pulse pair generation. C.W.: continuous-

wave; EDFA: erbium-doped fiber amplifier; WDM: wavelength di-

vision multiplexer; PD: photodetector. (d) Experimental spectra

for co-propagating multi-color pulse-pairs. A schematic depicting

the co-propagating two-color pulse pairs 1s shown 1n the inset. (e)

Measured radio-frequency (RF) beatnotes of multi-color pulse pairs.

5.2 Counter-propagation: experimental spectra for simultaneous

generation of a single 1582 nm pulse pair in the presence of

varying numbers of counter-propagating 1550 nm pulse pairs.

(a) One 1582 nm pulse pair with one 1550 nm pulse pair. (b) One

1582 nm pulse pair with two 1550 nm pulse pairs. (¢) One 1582 nm

pulse pair with three 1550 nm pulse pairs. The insets are schematic

representations of the counter-propagating multi-color pulse pairs for
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Demonstration of microwave rate soliton in Al),GaggAs mi-

croresonator at room temperature. (a) Stmulation result showing

the process of soliton formation. Soliton can be generated when

the 1nput laser 1s scanned from blue to red, indicated by the soliton

step. However, the generation of soliton will introduce a intracavity

power drop, which will destabilize the resonator due to thermal-optics

nonlinearity. (b) Characterization of the resonator used to generate

the soliton. The resonator has a intrinsic O-factor of 1.27 Million,

and second order dispersion D, = 17.49GHz. (c¢) The experimental

setup to generate the soliton 1n Aly,Gag g As resonator using electro-

optical modulated optical pulse. ECDL: external-cavity diode laser;

EDFA: erbium-doped fiber amplifier; PM: phase modulator; AM:

intensity modulator; PSG: RF signal generator; ¢: RF phase shifter;

WS: waveshaper; BPF: Bandpass filter; PC: polarization controller;

PD: photodetector; MZI1: Mach-Zehnder interferometer; OSC: oscil-

loscope; OSA: optical spectrum analyzer. (d) The optical spectrum

of generated optical soliton. The envelope of the soliton features

sech” function. The soliton spectrum has 422 comb lines in 10dB

Number of exoplanets discovered by various methods over time.

'The methods include Radial Velocity (RV), transit photometry, disk

kinematics, direct 1imaging, timing, microlensing, and astrometry.

The PRV method has been particularly successtul, contributing sig-

nificantly to the total number of confirmed exoplanets. The data used

to plot this figure 1s from Open Exoplanet Catalogue database. This

figure 1s up-to-date as of June 24, 2024. Python code to plot the most

up-to-date version of this figure 1s attached in Appendix |G.1} | . . .

111
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1.2

Schematic of the Laser Frequency Comb (LFC) signal chain. The

system starts with a laser at 1560 nm, which 1s modulated by electro-

optic modulators. The signal 1s amplified using an Erbium-Doped

Fiber Amplifier (EDFA) and pre-broadened through a Highly Non-

linear Fiber (HNLF). The broadened signal then passes through a

Tar,Os5 waveguide and a flattener before being directed to the spec-

trometer as the LFC output. Part of the signal 1s also directed through

periodically poled lithium niobate (PPLN) and a Rubidium cell for

stabilization and locking, monitored by photodetectors (PD). Both

PDs are used for stabilization and locking of the LFC.| . . . . . .. 112
‘7.3 Optical spectrum of the electro-optic (EO) comb generated by the |
1560 nm laser. The comb has a bandwidth of approximately 12 nm. |
After dispersion compensation, this comb can achieve a full width at |
half maximum (FWHM) 1n the time domain around 800 fs.|. . . . . . 113

Optical spectrum of the fully broadened comb after Ta,Os waveg-

uide. This spectrum shows the broadened comb spans from 1400nm

to 2100nm. The peak around 1560nm 1s the amplified EO comb pump.|114

[ 7.5 Photo of the full setup of LFC. The setup contains one equipment

rack on the right, together with two bread boards covered by the black

I
| enclosure on the optical table.| . . . . ... ... ... ... ..... 115
[ 7.6 Power stability of the LFC over time The data was collected from |
| the evening of March 17/, 2022, to the morning of March 18, 2022. |
| The color scale represents the power (dBm) at different wavelengths |
[ (mm) .. 116
[7.7 Allan deviation of LFC optical frequency. This data is collected |
| by beating LFC against a commercialized HCN-referenced laser with |
- * seconds offset timeJ . . . . . . . . 116
[ 7.8 LFC signal collected by NIRSPEC spectrograph.] . . . . . . .. 118
[ 7.9 Simultaneous exposure of LFC and star light.| . . . . . . . . .. 119
[ B.1 Schematic used for modelling transmission spectra with FP back- |
| grounds. The micro-resonator (red ring) 1s coupled to the bus waveg- |
| uide (gray line). Quantities are defined inthe text. | . . . . . . . .. 121




B.2

Q fitting with FP background. (a) and (b) are the results of fitting

the same resonance of a Ta,O5 resonator TE mode at 1559.4nm. (a)

An overly simplified model of the FP background times the Lorentzian

resonance 1s used here to fit the experiment data. A deviation between

data and fitting can be observed around the resonance. (b) The

improved model (Eq. (B.12)) and Eq. (B.11)) 1s used to fit data and

gives a more accurate fitting. (g 1s the fitted intrinsic Q and Q, 1s

the fitted external (coupling) Q. The Q factors obtained 1n both cases

have a difference about 20%, showing that it 1s essential to take the

S10, measurements. (a) Mode profiles of the measured mode fam-

ily (left) and equilibrium temperature distribution of the resonator

upon heating due to optical absorption (right). The geometry of the

resonator 1s: radius 3.24 mm, thickness 8 um, wedge angle 27° and

undercut 137.5 um. (b) Measured dispersion spectrum of the exper-

1mental mode family. The dashed red line 1s the parabola fitting, and

the dispersion parameters are fitted to be D /27 = 10.0 GHz and

D, /2r = 4.20 kHz. Relative mode number ¢ = 0 corresponds to

the wavelength of 1550 nm. (¢) Simulated thermal diffusion respon-

stvity r(€) versus modulation frequency €/27. (d) Representative

normalized transmission spectra under different on-waveguide (WQG)

power. Intrinsic Qg and external (coupling) Q. of this mode are 418.6

Million and 625.9 Million, respectively. This mode 1s at 1550nm. | .

. 128

S13N4 measurements. (a) Mode profile of the measured mode family

(left) and temperature distribution in the resonator when heated by

optical absorption (right). The Si13N4 core 1s 2.2 ym X 0.95 um

and 1s cladded by 3.45 um-thick silica. The resonator radius is

0.562 mm. (b) Measured dispersion spectrum of the measured mode

family. The dashed red line is the parabola fitting with D;/2r =

40.53 GHz and D,/2x = 215.7 kHz. Relative mode number u = 0

corresponds to wavelength close to 1550 nm. (¢) Simulated thermal

diffusion response 7(£2) versus modulation frequency Q/2n. (d)

Representative normalized transmission spectra under different on-

waveguide (WG) power. Intrinsic ¢ and external (coupling) Q. of

this mode are 29.0 Million and 52.1 Million, respectively. This mode

isat 1544 . Inm. | . . . . . . e
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D.3

Aly»,Gap gAs measurements. (a) Mode profile of the measured

mode family (left) and temperature distribution in the resonator upon

optical absorption heating (right). The core 1s 0.8 ym x0.4 um

Alp2GaggAs and 1s cladded by 1.5um-thick silica. The resonator

radius 1s 0.719 mm. It 1s noted that the top surface is not flat.

(b) Measured frequency dispersion of measured mode family. The

dashed red line is parabola fitting with D/27x = 17.93 GHz and

D,/2m = —19.58 kHz. Relative mode number ¢ = O corresponds

to wavelength close to 1550 nm. (c¢) Simulated thermal diffusion

responsivity 7(£2) versus modulation frequency €. (d) Representative

normalized transmission spectra under different on-waveguide (WQG)

power. Intrinsic Qg and external (coupling) Q. of this mode are 1.01

Million and 2.44 Million, respectively. This mode 1s at 1560.1nm. |

. 132

Ta,Os5 measurements. (a) Mode profile of the measured mode

family (left) and equilibrium temperature distribution inside the res-

onator upon optical absorption heating (right). The resonator consists

a2.25 um X 0.57 um core (Ta,Os) and a silica substrate. The res-

onator radius 1s 0.1095mm. (b) Measured dispersion spectrum of

the measured mode family. The dashed red line 1s parabola fit with

D/2n = 192.5 GHz and D,/2n = —8.188 MHz. Relative mode

number ¢ = 0 corresponds to wavelength close to 1550 nm. (c)

Simulated temperature response 7(£2) versus modulation frequency

Q/2x. (d) Representative normalized transmission spectra under

different on-waveguide (WG) power. Intrinsic Qg and external (cou-

pling) O, of this mode are 2.02 Million and 6.59 Million, respectively.

D.5

Calculated Q. of Ta,Os versus thermal conductivity. The cal-

culated material limited Q4,5 of TayOs 1s plotted versus the thermal

conductivity of Ta;Os used 1 the FEM simulation. The light blue

shading denotes the standard deviation from the measurements. The

thermal conductivity value used 1n this study 1s marked with orange

dashed line, while the reported range of values in the literature 1s

shaded 1n gray. The lowest possible O ,ps as set by measured intrinsic

Q factor 1s calculated from Eq. (D.10) and 1s also plotted as the black
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Absorption loss measurement results. Absorption loss as mea-

sured by cavity-enhanced photothermal spectroscopy 1n the 1380 nm

band. Red dots: data from sample device. Blue solid line: 2.4 ppm

(weight) OH content level absorption lineshape based on reference

(Humbach, et. al. J. Non-Cryst. Solids 203, 19-26 (1996).).| . . . .

Schematic of the two-ring coupled resonator. Left panel: Top

view of the coupled resonator with key points marked. Right panel:

Schematic of the resonator with straightened waveguides (not to

scale). Segment lengths and field amplitudes have been marked.| . .

. 141

Eigenfrequency plots for the two-ring coupled resonator. (a,b,c)

Relative frequency (normalized to D1 ,,), relative FSR (normalized to

€D ) and relative D> (normalized to €>D 1.m) plots for gco Lo = 0.3.

(d,e,f) Similar plots but with g.,L., = 1.0. The horizontal axis is

defined as ¢,, = 2mem. Relative mode frequency, FSR and D»

for individual rings before coupling have been superimposed (black

dashed lines). The relative FSR 1s found by differentiating the relative

frequency, and the relative D5 1s found by differentiating the relative

F.3

Hlustration of mode hybridization in the coupling region. (a) Fit-

ted optical resonance frequency dispersion of the coupled resonator

(solid curves) and fitted mode frequency dispersion of the single

rings (red and blue lines) plotted versus relative mode number u.

These plots are the same as Fig. [3.3[(b). (b) Cross-sectional view

of stmulated electric field amplitudes 1n the coupled region at mode

numbers indicated 1n panel (a) by the black points. The right (left)

waveguide belongs to ring A (B). At the crossing center (I, II, V and

VI), two waveguides have the same field intensity and the opposite

(same) phase for the anti-symmetric (symmetric) mode. When hy-

brid mode frequencies meet the single-ring resonances (11l and IV),

the electrical field at the coupled region is contributed by a single ring. |144

Schematic of the three-ring coupled resonator. Left panel: Top

view of the coupled resonator with key points marked. Right panel:

Schematic of the resonator with straightened waveguides (not to

scale). Segment lengths have been marked.| . . . . . ... .. ...

. 146
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F.5  Eigenfrequency plots for the three-ring coupled resonator, show- |

ing relative frequency (normalized to D ,,) versus ¢,. Parameters |
are (a) gcolco = 0.3 and ¢ = 0; (b) gcoLco = 0.3 and ¢ = 0.4; (¢) |
gCOLCO = 1.0 al’ld ¢2 = 0.4.' ....................... 148

F.6 Dispersion of the coupled three-ring resonator. (a) Measured

shown in Fig. [3.1e) in the main text. (b) Mode frequencies relative to

the averaged frequencies (circles). Solid curves show the fitted result

using the three-ring model, and are 1n excellent agreement with the

data. Dashed lines indicate frequencies of the individual rings before

I
I
I
I
I
| dispersion for the three-ring resonator. The topmost branch 1s also
I
I
I
I
I

coupling.| . . . . . .. 150
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Chapter 1
INTRODUCTION

Nonlinear systems provide exotic phenomena that significantly differ from linear
systems and have been extensively studied in recent decades. In particular, nonlin-
ear optics, which studies material optical nonlinear response to electrical fields, has
emerged since the fast development of laser optics, fiber communication, and re-
cently the optical frequency comb technology. The development of nonlinear optics
opens its promising applications in optical frequency reference and radio-frequency

(RF) synthesizing.

In this chapter, we first review three types of common optical nonlinearity (Photother-
mal, Electro-optical, and Kerr nonlinearity) in optical media. Then, we introduce
the microresonator, which is an ideal platform to study nonlinear optics due to its
high ability to store optical energy and accumulate to high intensity. Finally, we

briefly introduce optical frequency comb, one major topic in nonlinear optics.

1.1 Optical nonlinearity

1.1.1 Introduction

The optical response of material to the electric field E is usually calibrated by
dielectric polarization density P. The dependence is modelled as power series of E,

reads

P =20 (xVE+y¥EE+ yVEEE+ ), (1.1)

where & is the vacuum permittivity, y(!) is known as linear susceptibility, and
x?, ¥® are known as second, third order nonlinear susceptibility, respectively
[1]]. Here X(”) is a rank-(n+1) tensor, describing the polarization-dependent and
anisotropic material response. For the studies in this thesis, it is usually sufficient

to simplify these coeflicients to scalar values.

The physical process that leads to second-order polarization and third-order polar-
ization tends to be different. Second-order nonlinear interaction can only occur
in materials without inversion symmetry. For example, lithium niobate (LiNbO3)
forms single crystal and it features strong second order nonlinearity, making it an

important material for optical modulator and wavelength converter.
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However, amorphous solids and many other crystals that are widely used in nonlinear
optics are inversion symmetric, making y? coefficients for those materials strictly
vanish, and thus the leading nonlinear term for these inversion symmetrical materials
is the third order term associated with y®). Typical y® materials involved in this

thesis include amorphous silica (SiO;) and silicon nitride (SizNy).

One important phenomenon of optical nonlinearity is that the material’s refractive
index depends on the electric field. The refractive index describes how matter affects
light propagation. For most materials with relative magnetic permittivity close to 1,

the refractive index (or phase index) n can be calculated as

1/2
n~ (i) , (1.2)

€0

where ¢ is the electric permittivity of the material, defined in the relation P =
(¢ — e0)E. If Eq. (L.I) only contains the linear term associated with ¥V, the
refractive index in Eq. (1.2) can be calculated as n = \/T/\((l) . In this case, n
is not dependent on the electric field E. However, with the presence of nonlinear
terms in Eq. (I.1)), the refractive index n will involve dependence on E, which will

be further discussed in the following section.

There are many types of physical processes that can lead to optical nonlinearity, and

here we briefly review three processes that are involved in this thesis.

1.1.2 Electro-optics nonlinearity

The electro-optic effect refers to the optical property of a material changes through
the presence of a static or slow-changing (compared to the optical frequency) electric
field. Here, we especially focus on the linear electro-optics effect, or Pockels effect,
which is the proportional relation between refractive index and electric field. This
effect is related to the y® term in Eq. (L.1), and is strong in x® materials such as
LiNbOs3. By applying an electric field modulated at RF rate, the refractive index of
the material can be modulated with the same RF rate. The light passing through this
material will experience a modulated optical path due to refractive index modulation,
causing the optical phase to be modulated. This is the operating principle of the
optical phase modulator. This phase modulation creates optical sidebands and can

further generate electro-optics frequency comb, which will be further discussed in

section[I.3.4]
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Here, we assume the electric field is only applied along one direction, and the
susceptibilities are scalars for simplicity. Taking only the first two terms in Eq.(I.1)
and the magnitude of P can be calculated from the magnitude of Eby P = go(y VE+
YPE?). We can calculate the refractive index of the material from Eq. (L.2) as

n=~no(l+agkE), (1.3)

where ng = /1 + y(1 is the material refractive index without external electric field,
ag = x?/ Zn% is the proportion coefficient in linear electro-optics effect. Higer

order terms in Eq. (1.3)) are neglected.

For an electro-optics based phase modulator, the electric field needed to induce a
phase change of r for a light with frequency f is Ex = noc/x? fL, where L is
the physical length of the modulator, c is the speed of light. In order to reach E,
the voltage that is needed to be applied is defined as the phase modulator’s half-
wave voltage, or V. Currently, the ultra-low V, of commercial phase modulators
based on LiNbOs3 can be smaller than 3V. This ultra-low V;; feature is important for
applications of electro-optics frequency comb, which will be discussed in Chapter
7 of this thesis.

1.1.3 Thermal-optics nonlinearity

The thermal-optics effect refers to the phenomenon that the refractive index of
a material varies when the material temperature is different. Note that here we
only consider homogeneous materiall] For a material with refractive index ng at

temperature 7', its refractive index n at temperature 7 + 67 can be expressed as

n=ny(l+aréTl), (1.4)

where ar = (6n/0T)/ng is the thermal refractive coefficient associated with n.

With the presence of an electric field, the material temperature can change due to the
thermal absorption of the electric field. Here, we only focus on linear absorption,
where the material thermal absorption rate P, is proportional to the intensity of

the electrical field /. The temperature change 67 can be expressed as

6T = ( oT ) (Pabs)l, (1.5)
Pabs Il

IThis effect for devices with heterogeneous structure will be discussed in Section|1.2.7.4
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where [ = %cnosolEl2 represents the intensity of the electromagnetic wave. Com-
bining Eq. (I.4) and (1.3), we can find that the refractive index n is dependent
on |E|? as mediated by thermal absorption of the optical field. The nonlinearity

associated with this effect is called thermal-optics nonlinearity.

It should be noted that thermal-optics nonlinearity is mediated through thermal
effect. The time scale of this effect will be determined by the thermal absorption
rate of the material (typically on the order of ms [2]]), and this time scale is much
longer than the time scale of any coherent optical effects. As a result, this effect will
not lead to any coherent nonlinear optical effects, such as sum/difference frequency
generation or harmonic generation. Utilizing their different time scale can help
characterize material optical absorption property Paps/I in Eq. (I.5]), and relevant

topics will be discussed in Chapter 2 of this thesis.

1.1.4 Kerr nonlinearity

The optical Kerr effect is characterized by a change in the refractive index of a
material that is directly proportional to the intensity of the incident light. This
phenomenon is akin to the Kerr electro-optical effect, where the refractive index

change is proportional to the square of an external electric field.

The third-order nonlinear susceptibility, x*, is primarily responsible for this non-
linearity. As discussed in Eq. (T.1), ¥ term is the leading term in materials such
as Si0; and Si3Ny, and Kerr nonlinearity will be dominant for nonlinear processes
in those materials. The refractive index under the influence of the Kerr effect is

usually expressed by intensity / = %cnogolEl2 as:

n=ng+nol, (1.6)

where 75 is the nonlinear refractive index .

When two optical waves propagate together in a nonlinear medium, the Kerr effect
induces refractive index changes that result in additional frequency components, a
process known as four-wave mixing (FWM). FWM is a parametric process where
two photons interact with the medium to generate two new photons at different

frequencies, given by the relation:

w1+ wy = w3 + wyg, (1.7)
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where w1, w2, w3, and w4 are the angular frequencies of the interacting waves. The
relation in Eq. (1.7)) ensured energy conservation in FWM process. This process is
phase-matched, meaning the momentum conservation law is also satisfied, given by

the relation:

k; +k, = ks + Ky, (18)

where ki, ko, k3, and k4 are the wave vectors of the interacting waves. This
requirement is also referred to as phase-matching condition since wave-vector k

describes the propagation phase of waves.

The Kerr nonlinearity and FWM play a crucial role in various applications such as
optical signal processing, supercontinuum generation, and wavelength conversion.
Leveraging Kerr nonlinearity in optical microresonators can develop different types
of optical frequency combs with applications in precision metrology, spectroscopy,
and frequency synthesizing. Those relevant topics will be discussed in the following

chapters.

1.2 Optical resonator

1.2.1 Introduction

Optical resonators, also known as optical cavities, are structures that confine light
within a certain volume through optical circulation. These structures are essential
components in various optical systems, including lasers, optical filters, sensors,
and especially in compact optical frequency comb systems. The configurations of
optical resonators include Fabry-Pérot cavities, ring resonators, whispering gallery
mode resonators, and photonic crystal cavities. Fabry-Pérot cavities consist of two
parallel mirrors, creating a standing wave pattern between them. Ring resonators
guide light in a circular path, often used in integrated photonics for their compactness
and high quality. Whispering gallery mode resonators confine light via continuous
total internal reflection along the optical circulation. Photonic crystal cavities use

periodic dielectric structures to create bandgaps, confining light in defect regions.

Optical resonators support different types of modes, primarily categorized into
transverse modes and longitudinal modes. Transverse modes refer to the spatial
distribution of the electromagnetic field in the plane perpendicular to the direction
of propagation. These modes are defined by the boundary conditions imposed by the
resonator’s geometry. Examples of different transverse modes include transverse

electric (TE) mode and transverse magnetic (TM) mode, representing different



Figure 1.1: Mode profiles of different transverse modes. Mode profiles of TE o
mode (panel a) and TM o mode (panel b) in an Al 2Gag gAs integrated waveguide
at 1550 nm.

directions of the electric and magnetic field components relative to the plane of
propagation. Different transverse modes have different mode profiles along the
plane perpendicular to the propagation direction. Examples of fundamental TE (or
TEj,0) mode and fundamental TM (or TMy o) mode profiles are shown in Fig. |_1L1'|
[3]. Here, the two numbers in the subscript denote the number of nodes along two
directions in the mode profile. When the number of nodes along one direction can
only be 0, the corresponding number can sometimes be omitted (for example, TE,

TE;, TMy) as long as it does not cause any confusion.

1

Transmission
(=]
w

A A A

Figure 1.2:  Transmission spectrum of different longitudinal modes. The
frequency distance between two longitudinal modes is the local free-spectral-range.
The modes are not strictly equal distant due to chromatic dispersion, which lead to
mode dispersion and will be discussed in Section[1.2.2]

Another type of mode, longitudinal modes, represents the distribution of the elec-
tromagnetic field along the direction of propagation within the resonator. A series of
longitudinal modes belonging to the same transverse mode is called a (longitudinal)
mode family. Examples of the frequencies of a series of (longitudinal) mode family

is shown in Fig. [[.2] Longitudinal modes arise due to the constructive interference
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of light that circulates within the resonator. This interference condition is met when
the round-trip phase shift of the circulating light is an integer multiple of 2x, for-
mulated as Eq. (I.18)). This integer m is called the (absolute) mode number of
this longitudinal mode, whose angular frequency is denoted as w,,. The frequency
spacing between adjacent longitudinal modes is known as the free spectral range
(FSR , or D/2r) of the resonator, with a unit of Hz. FSR is also related to the
round trip time of an optical pulse, and it can be calculated using Eq. (1.20).

1.2.2 Mode dispersion

It should be noted that due to the chromatic dispersion (the refractive index n varies
with the wavelength A of the light) of the propagation medium, the FSR will change
slightly across different wavelengths. In other words, chromatic dispersion will lead

to mode dispersion causing w,, can not be simply represented by 27rm X FSR.

To address this issue, w,, is usually represented by power series around a chosen
longitudial mode w,,,. Define relative mode number y = m — mg and use relative
mode number as the subscript in the following discussion for convenience (for

example, w,,, will be represented as wy), we can write,

1 1
a),u:w0+D1y+§D2,u2+gD3,u3+---, (1.9)

where D /2 is the FSR of this (longitudinal) mode family at wy, D, is the
second order dispersion of this mode family at wy. Higher-order dispersions can
be defined subsequently. It should be noted that Dy, D5, etc. are local parameters
and need to specify the angular frequency wo when they are referenced. Those mode
dispersions (D», D3, etc.) play a critical role in nonlinear optical processes that
happen in the resonator, such as frequency comb generation, parametric oscillation,

harmonics generation, and soliton formation.

To clearly illustrate the mode dispersions in a resonator, we define integrated

dispersion (sometimes also called retarded mode frequency or slow frequency) as

wu,int:wy_wO_Dl/l (1.10)

=y 2L (1.11)
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and the plot between w, jn versus y is called dispersion profile of this mode family.
examples of dispersion profile is shown in Fig. [[.3] [4]. The dispersion profile
of a mode family clearly illustrates the deviations from the ideal linear behavior
(represented by D) and highlights the contributions of higher-order dispersions
(D7, D3, etc.). These deviations are critical for understanding and controlling

nonlinear optical processes within the resonator.

0 4 FSR=5GHz

. D,/(2x) = —20.3 kHz

-1 -
-300 -200 -100 0 100 200 300

0 4 FSR=10GHz

D,/(2x) = -80.2 kHz

Integrated dispersion, D, ,/2x (GHz)

b

-

-150 -100 -50 0 50 100 150
Mode index, u

Figure 1.3: An example of dispersion profile (a plot between integrated dispersion
and relative mode number) for two ultra-low-loss Siz; N, resonators with different
FSRs. It should be noted that dispersion profile is a scattered plot where relative
mode number u can only take integer values.

Managing and engineering these dispersions enable precise control over the res-
onator’s nonlinear dynamics and are pivotal in developing advanced photonic de-

vices. Relevant topics will be discussed in Chapters 3 and 4 of this thesis.

1.2.2.1 Integrated (angular) frequency with respect to D

As an additional note, w,in¢ is the integrated angular frequency (or retarded
angular frequency) of w, with respect to D. For an arbitrary angular frequency
w (not limited to mode frequencies w,,), we can also define its integrated angular
frequency wiy withrespectto D . This process is effectively mapping 1-dimensional
w axis to a 2-dimensional u-wjy; plane, where wjy; can only take values within an
interval with a range of D and u can only take integer numbers. The illustration of

this mapping process is shown in Fig. [[.4]



D, D, D, D, D, D, D
e e e L
P T BN TR TR u=0 ) -1 TiRTA

v >U

Figure 1.4: Illustration of mapping between 1-dimensional w axis to 2-
dimensional u-wj, plane. On u-wiy plane, u only take integer numbers and
wint only take values within an interval with a range of D .

The absolute value of wjy is typically not important and its relative value can be

represented as w — uD.

The mapping shown in Fig. will not be one-to-one if wjy takes values out of
the range D;. For example, on p-win plane, point (¢*,w; ) and (u* — 1w + D1)
represent the same absolute frequency. To avoid this effect, the values that are out
of range D can be "folded" within D, as shown in Fig.1(d) of ref. [5].

Further discussions on the physical meaning of wj,; when it is outside the range D1,
and its significance in indicating the occurrence of a quasi-phase-matching process

in a resonator with broken symmetry, will be presented in Chapter 4 and illustrated

in Fig.

1.2.3 Relationship between mode dispersion and group-velocity dispersion

In this section, we will review some key concepts related to group-velocity disper-
sion in fiber optics. Understanding these concepts is crucial for studying optical
resonators, as they share similar underlying principles, and have been well studied
in fiber optics with well-established measured values. Clarifying their relations
with microresonator parameters will be very beneficial for resonator studies. We
will begin with the mode propagation constant and its dispersion properties, then
examine their relationship to the group index and group-velocity dispersion, and

finally discuss how these concepts apply to optical resonators.

1.2.3.1 Mode propagating constant and its dispersion

In fiber optics, the propagation of electro-magnetic waves are confined by fiber, thus

the wavevectors k are often simplified to mode-propogating constant S defined by
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B =n—, (1.12)

w
C
where c is the speed of light. The power series of Eq. (I.12) around an angular

frequency wq can be written as

1
ﬁ(w):ﬁo+ﬁ1(w—wo>+5ﬁz<w—wo>2+---. (1.13)

It should be noted that, in Eq. (I.9), the coefficients D, D, etc. describe the
property of a resonator and can have different values for two resonators even if they
are made from the same material. The By, 51, efc. values in Eq. describe
the property of a material because they are solely dependent on the chromatic
dispersion n(w) in Eq. (I.12). The values of By, B1, etc. are often available in
Scientific Handbooks for many commonly used photonic materials. Additionally,
Bo, B1, etc. are also local parameters and need to specify the angular frequency wq
when they are referenced.

1.2.3.2 B, parameter and group index 7,

In Eq. (I.13), mode-propogating constant at wy is By = nwyp/c, and

B = (d_ﬁ) _1 s (1.14)

dw Ve c

where v, is the group velocity, n, is the group index. With Eq. (L.12) and the
definition of n, in Eq. (I.14)), we can see that in principle, n, can be negative
(leading to v, < 0) [6]. For the materials we commonly work with, we do not have
negative group velocities. Thus in the following discussion, we only consider cases

when ng > 0.

Group index ny is also a useful parameter to characterize the refractive index change

over different frequencies. Here, we further derive some useful equations related to
ng. With Eqs. (I.12)) and (1.14), we have

(dﬁ) 1 (d(na))) 1 (wdn +nda)) ng
ﬁl = d_ = — = | = —.
W) e, ¢\ dw [, ¢ dw wewy €
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Therefore by fully expanding the above equation, we can get the relationship between

n, and the refractive index change dn when the angular frequency changes dw by E]

dn d_(U _ _d/lvac _ _n dAmed (1.15)

ng —n w Avac ng Amed

where Ay, is the corresponding light’s wavelength in vacuum, Apeq = Ayac /7 1S the

wavelength in medium.

1.2.3.3 Group velocity dispersion parameter 3,

Additionally, for 8, in Eq. (1.13)), we have

2
B = (d—ﬁ) = (%) , (1.16)

dw? dw
and this term represents the variation of the group velocity with respect to frequency.

Physically speaking, the envelope of an optical pulse travels at the group velocity
vg, with the parameter 3, representing the dispersion of this group velocity, leading
to pulse broadening. This effect is known as group-velocity dispersion (GVD),
and f3, is the GVD parameter, with unit of ps?/km.

In practice, another dispersion parameter d> in unit of ps/(km-nm), representing two
closely aligned wavepackets with wavelength difference dA (in unit of nm) walks off
in time (in unit of ps) after propagating 1 kilo-meter due to their different propagation

speed. Formalized as

. p1(A+d) - pi1(A)  dfidw  2mc
d, = lim — sw

_ = _TCs 1.17
4150 i dw di 2P (L.17)

1.2.3.4 Relationship to mode dispersion

In optical resonator, the propagating constant § of mode with absolute mode number

m should satisfy

BL =2nm (1.18)

Note that the second equality in Eq. (T.15) can be derived by taking derivation to both
sides of In(w) = In(27wc/Ayac), which gives d(Inw) = dw/w = —d(Indyye) = —dAyac/Ayac, as a
pure mathematical trick without physical meaning. Similarly, the third equality in Eq. (T.13)
can be verified by taking the total derivation of In(Apeq) = In(Ayac/n), which gives dAmed/Amed =
dAyac/Avac — dn/n (also a pure mathematical trick without physical meaning).
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to meet the resonant condition.

Sometimes, the parameters 3 (or ng) and S, of the propagating medium within the
optical resonator can be found in reference handbooks. Then the FSR (or D{/2n)
and mode dispersion parameter D, can be calculated from g; and ;. Take w in
Eq. as the frequency of a longitudinal mode with relative mode number g,
and bring the expression of w,, in Eq. (1.9) into Eq. (L.13)), we have

2
Blww) - o=

2
1 1 1
=B Dl,u+§D2,u2+---)+§,82(D1’U+ED2/42+... 4+ ...

(1.19)

where the 27ru/L is calculated from Eq. (I.I8).

Comparing the coefficients before u and u? in Eq. (T.19), we have: (used definition
of ng in Eq. (I.14), also note FSR=D /27)

o 2
p, = L - ¢ (1.20)
BiL ~ ngl

with a unit of rad-s™!. And
D, = _ﬂzD% _ _CﬁzD%
Bi ng

Alternatively, Eq. (I.13)) (can be interpreted as k(w)) is related to the inverse series
of Eq. (I.9) (related to w(k), where k solely depend on m by Eq. (1.18))), thus the
relations in Eqs. (1.20) and (I.21)) can also be derived by calculating series reversion

(1.21)

coefficients?] Higher-order dispersion parameters (D3, Dy, etc.) can be calculated

similarly.

It should be noted that the index appeared in Eqs. (1.20) and (1.21)) are group index

n, instead of the phase index n. This fact is especially important when dealing with

materials like Al,Ga;_xAs, whose n, and n differ by 2.5% at vacuum wavelength
1.55um when x = 0.21 [[7].

3Conve:niently, this can be calculated with InverseSeries function in Wolfram Mathematica.
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1.2.4 Momentum conservation of FWM in optical resonator

Similar to fibers, the propagation direction of electro-magnetic waves in optical
resonator is also confined. Thus it makes sense to use mode-propogating constant 3
defined in Eq. (I.12) (or equivalently use mode number m in Eq. (I.18))) to represent
wave vector K. Then the momentum conservation requirement in Eq. (I.8)) can be

written as

Bomy + Bomy = Boms + Bomy or
N, Wiy + Ny Wiy = Aoy Wiy + Ny Wy or
mi+my = ms3+ ny, (1.22)

where my, my, ms and my4 are the absolute mode numbers of the interacting
waves. Here, we do not consider the case when the interacting waves are counter-
propogating in the resonator against each other. This equation posed requirements
to achieve an efficient FWM process. Under different situations, one form of expres-
sion in Eq. (1.22) will be adapted to represent the momentum conservation (phase

matching) condition.

The momentum conservation requirement for other nonlinear processes such as

harmonic generation and parametric oscillation can be written similarly.

Note that for degenerated FWM in optical resonator, where m3 = my = m, w3 =
w4 = w, the condition in Eq. (1.7) and (1.22) expressed in terms of relative mode
number u by

2w = w1 + w2, and

2p =+ o, (1.23)

where w, w1, w; are the angular frequencies of interacting waves. The requirement
in Eq. (I.23) can be easily represented in terms of integrated angular frequency plot
(as illustrated in the lower panel of Fig. by identifying the point (u, w — uDy)
is the mid-point between (u, w; — w1 D1) and (uz, wy — ua D).

1.2.5 Normal dispersion and anomalous dispersion
Dispersion refers to the frequency dependence of various properties. Common

examples include refractive index dispersion, which causes prisms to separate white
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light into its constituent colors, and focal length dispersion in lenses, leading to

chromatic aberration.

Normal and anomalous dispersion describes the frequency dependence of the group
index ng (not the phase index n). Dispersion is termed normal if n, increases with
angular frequency and anomalous if n, decreases with angular frequency. The
transition points between these regimes are the zero-dispersion points. For instance,

the normal and anomalous dispersion regimes for fused silica are illustrated in Fig.
[L.5] 1].

1 .49 T T T T - T

1.48} 4
Normal : Anomalous

1.47 .

1.46

(group or phase) Index

1.45

1.44 : . L ! : L
0.6 0.8 1 1.2 14 1.6

Wavelength (um)

Figure 1.5: Dependence of the refractive index () and group index (ng) on
vacuum wavelength for fused silica. It should be noted that the dispersion is
normal or anomalous is determined by whether n, is decreasing or increasing over
wavelength, not phase index n.

When the dispersion is normal, (ili(j > 0. According to Eqs. (1.14), (I.16), and
(L.21)), this implies B8, > 0 and D, < 0. Note that D, is also related to the
curvature of the dispersion profile (w in; versus u plot) as defined in Eq. (I.1T].
Table [[.1] summarizes the relationships between these parameters for normal and
anomalous dispersion, highlighting how to identify the dispersion properties of
optical resonators. For example, both dispersion profiles shown in Fig. has
negative curvature (concave down) at u = 0, therefore both resonators in Fig. [1.3|
feature normal dispersion at y = 0.

Identifying dispersion parameters is crucial for the design and optimization of

optical systems. The nonlinear behavior of light in optical resonators is significantly
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Table 1.1: Summary of values for normal and anomalous dispersion (when n, > 0).
Examples of normal dispersion are shown in Figs. [I.3] and [D.4(b). Examples of
anomalous dispersion are shown in Figs. [D.1|b) and Fig. [D.2|b).

dng

Dispersion Type T B2 D, Dispersion Profile Curvature
Normal Dispersion % >0 | B2>0]| Dy <0 | Negative (Concave Down)
Anomalous Dispersion % <0 | B<0|Dy>0 Positive (Concave Up)

influenced by the type of dispersion present. Normal and anomalous dispersion
affect pulse propagation and the process of optical soliton generation. The technique
of manipulating the dispersion profile in optical resonators to generate optical bright

soliton will be discussed in Chapter 3 of this thesis.

1.2.6 Quality of the resonator

1.2.6.1 Resonator-environment interaction

In the following sections, we focus on the behavior of a single resonator mode rather
than discussing the properties of a mode family. As discussed earlier, the absolute

angular frequency wy of a mode can be determined by Eqs. (1.12) and (I.18]). How-

ever, in practical scenarios, the resonator interacts with the environment, causing the
mode to resonate within a bandwidth around wy rather than at a single frequency. A
high-quality resonator exhibits minimal interaction with the environment, and this

interaction extent is critical in describing the resonator’s quality.

Another way to interpret this excitation bandwidth is through mode coupling. The
coupling between the resonator mode and the environmental heat bath creates new
eigenmodes, which comprise components from both the environment and the res-
onator. These new eigenmodes form a spectrum around the original angular fre-
quency wq. For angular frequencies near but not exactly at wy, if the mode coupling
is strong, the eigenmodes will have a higher composition from the resonator, mak-
ing it easier to excite the resonator at these frequencies. Conversely, if the mode
coupling is weak, the resonator’s contribution to the eigenmodes is low, making it
harder to excite the resonator at angular frequencies away from wg. Phenomenally,
stronger (weaker) resonator-environment interaction, or lower (higher) resonator
quality, results in a larger (smaller) excitation bandwidth. This excitation bandwidth
can be characterized by the linewidth of a mode, as shown in Fig|T.6(a)[8]].
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This resonator-environment interaction is also usually{?| simplified to a total dissi-
pation rate (or total coupling rate), «, which is a real positive constant (k € R,)
in unit of rad - s~!, representing the fraction of intracavity energy lost to the envi-
ronment per unit time. Using this definition, the dynamic of intracavity energy can

be represented as

= —dt, (1.24)

where |a|? is the intracavity energy of the resonator in unit of J, # represents time in
unit of Second (s). Definition of a will be introduced in Eq. (I.33). Furthermore,
k is the excitation bandwidth (or linewidth of a mode) we discussed before, which
will also be introduced in Section [1.2.8.2] Eq. (1.62).

Using the relation in Eq. (1.24)), x can be measured with a "ring-down" experiment,
as shown in Fig. [L.6[b) [8], where the intracavity energy in unit of Joule (J) is
measured as a function of time. Other ways to measure k will also be introduced in

Section[1.2.8.2]

In practice, people also model the loss as propagation loss o, in unit of dB- m™'.
The fraction of energy remaining after the wave packet propagates a distance z is

__z
givenby e <", Therefore, o is related to « by

10
) TeX 434328, (1.25)
K C

| |
= 210-1 _ il
777 Oglo( ) T I(10) ¢

e C/l;Lg

where In represents log,..

1.2.6.2 Intrinsic and external coupling

Additionally, different types of resonator-environment interactions contribute to .

To probe the resonator, we deliberately interact with it. This part of the interaction,

4This simplification is particularly useful when we study ring resonator and whispering gallery
mode resonator, where the commonly used concept of transmission and reflection in Fabry-Pérot
cavity is not suitable. Resonators that are suitable for this simplification have a Lorentzian resonance
lineshape, which will be further discussed in Section[I.2.8.2] Resonators that are not suitable for this
simplification (for example, Fabry-Pérot cavity) may have other lineshapes.

>The time that wavepacket with power P, travels through distance dz is C?—;g, therefore the

dz
c/ng

fraction of power that are lost after wavepacket travels through distance dz is k. By solving

differential equation % =- c% K, we can get P/Pj, = e <"z . The amount of loss after travelling
g

distance of z (expressed in dB number) is 10 - log,, (Pin/P), leading to the result in Eq. (T.23).
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which does not describe the resonator’s intrinsic quality, is separated from « and
defined as the external dissipation rate (or external coupling rate), x.. The re-
maining part is the intrinsic dissipation rate (or intrinsic coupling rate), «o, which
accounts for the resonator’s inherent interaction with the environment. This intrinsic

dissipation rate is crucial for calibrating the resonator’s quality. Mathematically,
K = Ko + Ke (1.26)

satisfies. «, kg and k. all positive real constants (€ R,).

Among the intrinsic resonator-environment interactions, several types of interactions
are involved. Scattering loss can be mitigated by improving surface roughness and
fabrication techniques, while absorption loss, which transfers optical energy to heat,
poses a fundamental limit to the material’s performance. By leveraging thermo-
optic nonlinearity, it is possible to isolate absorption loss from other intrinsic losses,

which will be discussed in Chapter 2.

1.2.6.3 Quality (Q) factor

The quality of a resonator is often quantified by unitless Q-factor (quality fac-
tor), which is related to the fraction of energy loss per optical oscillaton cycle [9

Mathematically, the Q-factors are defined as:

00=2, (1.27)
Ko

Qc= 2, (1.28)
Ke

0=, (1.29)
K

where Q is the total quality factor (or loaded quality factor), Q is the intrinsic

quality factor, and Q. is the external quality factor.

Rewriting the relation in Eq. (1.26)) in terms of Q-factors, we have:

1 1 1
—=—+4—. (1.30)
Q QO Qe

Generally, Q-factor is defined as Q = 2x stored energy This can be further derived

energy loss per oscillation cycle *

to Eq. (I.29) by O = ZHW, where f = w/27.
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The intrinsic Qg reflects the resonator’s inherent losses, while the external Q.
represents losses due to external coupling that is deliberately applied to probe
the resonator. High Q-factor is equivalent to low dissipation rate (k) and narrow

resonance bandwidth, which is favored in many applications.

1.2.6.4 Finesse

Another unitless number &, or finesse, is also used to quantify the quality of the
resonator. Adapting a similar idea as Q-factor, which relates to energy loss per opti-
cal oscillation cycle, & relates to energy loss per resonator round trip. & is defined
using the full-width at half-maximum (FWHM) §vpwnm of the resonancd’] thus
may have different mathematical forms for resonators with different lineshape®| For
the resonators that are suitable for the simplification in Eq. (with Lorentzian

resonance lineshape), we have
- _ FSR

S = .
K/2nm

(1.31)
Intrinsic and external finesse can be defined similarly as Eqs. (I.27) and (1.28).

1.2.7 Characteristics of mode and its resonance angular frequency

In this section’}, we will study the mode profile of transverse modes in optical
resonator, when the resonator is consisted of heterogeneous structures with spatially
varying refractive index n(r, 6, z). Here (r, 6, z) is the cylindrical coordinatd™| with
the value of r € [0,+0), § € [0,27) and z € R. Then study its resonant angular
frequency wo and how wy is changed when spatially-varying refractive index has a
pertubation An. Finally we will define mode volume of the transverse mode, which

is important in nonlinear optics to calculate energy density.

1.2.7.1 Helmbholtz equation

We start with the Helmholtz equation for a single-mode within the resonator,

n2w2
~ O ~
~V x V x E(r, wo) + —52E(r, wo) = 0, (1.32)
C

7Generally, finesse is defined as = FSR/6vpwum.

8For example, F for Fabry-Pérot cavities has a different form than Eq. (T.31)).

The contents in Section are mainly adapted from the Supplementary Information of ref.
[2]. The main text contents of ref. [[2]] will be discussed in Chapter 2 of this thesis.

0We focus on ring resonators or whisper-gallery resonators with azimuthal symmetry in this
section.
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where E is the (real) modal electric field, ¢ is the vacuum speed of light, and wy is

the resonance angular frequency. For convenience, E can be expressed as a phasor,

- 1 .
E = EE +c.c., E=aF(r,0,7)e ', (1.33)

where a is the complex mode amplitude and F is the field distribution. For |a|? =
a - a* (defined in Eq. (I.24)) to represent the optical energy stored in the mode, the
normalization for F reads [M]

%/nzmzdv: 1, (1.34)

where |F|> = F - F* and the volume integral goes over the entire resonator. Here
we assume that the modal field is sufficiently localized so convergence problems

associated with quasimodes can be neglected.

The field distribution F can be further represented as

F(r,6,2) = f(r,2)e™’, (1.35)

where f(r, z) represents the transverse mode profile shown in Fig. e repre-
sents the longitudinal mode order shown in Fig. [[.2] Any additional constant phases
in Eq. (1.33)) can be absorbed in a.

1.2.7.2 Resonance angular frequency and its variation

For the Helmholtz equation Eq. (T:32), w? can be expressed in its variational form:

V x F|2dV
w?E = 02/|—|. (1.36)
0 [ n2|F2dv

For a slight change in refractive index An that is applied externally, the perturbed
eigenfrequency can be written similarly as:

[ IV xF[?dvV
[ (" + An)* [F|2dV

2

(wo + Awg)? = ¢ (1.37)

where the field F can be regarded as not changing up to first order of An, and n’

is the refractive index at the new eigenfrequency wg + Awyg to take account of the

chromatic dispersion of the material. Using Eq. (I.I5)), n’ can be expanded as
on Aw
n’zn+—Awo:n+(ng—n)—o. (1.38)
ow wo
"Eq. (T34) is derived by calculating volume integration of energy density %lelz, where ¢ is
replaced by Eq. (1.2).
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By expanding Eq. (I.37) up to first order in An, and use the expression of wy in Eq.

(1.36), we can obtain

1 fn2|F|2dV 2/ [n(ng —n)Aa)o/wo] |F|2dV 2ann|F|2dV
(wo + Awy)? N 2 [ |V x F[2dV ¥ 2 [ |V xF2dV ¥ 2 [ |V xF]2dV
1 2 Awy _Awy [nnglFI*dV 2 [ nAn|F|*dV
W W wo MR c2f|V><F|2dV+c2f|V><F|2dV

1 2 A
~ S+ ( wO/nng|F|2dV+/nAn|F|2dV).
(wo +Awg)? 2 [ |V xF2dV \ wo

(1.39)
Therefore the Awg can be solved as,

Awy [ nAn|F|?dV
wo /nng|F|2dV'

(1.40)

1.2.7.3 Kerr nonlinearity perturbation and effective mode volume

Here we consider a special case when An in Eq. (L.40) is contributed by Kerr
nonlinearity discussed in Section In this case, the local refractive change
induced by the Kerr nonlinearity for an isotropic material has the form

goCh

2

where n, is the nonlinear index associated with n. Note here the resonator we

IE|, (1.41)

An=nyl = ny

discuss has spatially varying structure, including refractive index n(r, 6, z) and Kerr
coeflicient n,(r, 6, z). Substituting An into Eq. (1.40), we have

, [ n*na|F|*dv

Awg _ &C
/nng|F|2dV ‘

=——lal

w( 2

(1.42)

To gain insight to the expression in Eq. (1.42), we separate it into three terms
(normalization relation in Eq. (1.34) is used)[?] We define the weighted nonlinear

12The explicit formalism of this separation to Eq. is

Ao _ | |z(fn2nz|Fl4dV) [ n?[F|*av ( [ FPPdv
— =—la
wo fn2|F|4dV (/ n2|F|2dV) (/ |F|2dV) fnng|F|2dV

~—_————
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index,
_ fn2n2|F|4dV (143)
ST '
the effective mode volume,
B [ n?|F2dV [ |F]?dV (1.44)
o [ n2[FJ4dv '
and the weighted index product,
e = M (1.45)
S [IFPav '

Using these relations, the eigenfrequency shift in Eq. (I.42) can be expressed as

S0 a2 = 20— e, (1.46)
nig Vest niig

Aa)():—

where p = |a|?/Veg is the intracavity energy density, g is the Kerr nonlinear
coefficient] which takes the simple form

wochy
= —. (1.47)
nig
We note that, for resonators made with a single material, the averages in the expres-

sion drop out, and we recover the conventional result g = wocna/(nny).

The fact that there is one appearance of phase index n and one appearance of group
index n, in Eq. is particularly importan{™ when we deal with materials (for
example, AlyGa;_xAs) whose ng and n can be different by 2.5% [[7].

1.2.7.4 Thermal-optics nonlinearity perturbation

Here we consider another special case when An in Eq. (1.40) is contributed by
Thermal-optics nonlinearity discussed in Section In this case, the local
refractive change induced by temperature change reads

An = narAT, (1.48)

3In some papers, g may be defined as —Awy/|a|?, which is equivalent to g’ = g/Veg in our
definition. In other papers, g may also have an additional factor of 7wy if |a|® is normalized to
photon number instead of energy. 7 is the reduced Planck constant.

'4A common mistake is over-simplify Eq. ([.47) to g = wocny/n®. This simplification may
work under many circumstances. However, it becomes critical when we try to characterize material
properties, which will be discussed in Chapter 2 of this thesis.
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where ar(r, 6, z) and temperature change AT (r, 8, z) are also spatially Varyin
Substituting An into Eq. (1.40), we have

Awy [ n*arAT|F|*dV

= 1.49
wo / nng|F|2dV (149

For later convenience, we define a temperature average with respect to the optical

field,
[ n*arAT|F|PdV
T = (1.50)
fnzaT|F|2dV

such that different temperature distributions with equal 7 will induce the same
frequency shift:
2 2
Awy _Efn ar|F|?dV

= —_ (1.51)
wo /nng|F|2dV

Similar to Eq. (I.3)), we calculate the rate of total power loss inducing the temperature

change equals

1
Paps = Eso|a|2/ kn?|F2dV (1.52)

where k,(r,0,z7) is the thermal absorption rate. Eq. (1.52) can be written as
Pabs = K_alalz, where the averaged absorption rate reads (Normalization relation in

Eq. (1.34)) is used)
a 2F2
Paps B /Kan | | dv

K, = = . (1.53)
T al? [ n2|F2dv
Now the absorption can be related to cavity resonance shift by
Aa)() E Aa)o E _
AT P abs AT P abs

In Eq. (I.54), the first coefficient can be measured from experiment, and the

second coeflicient can be calculated from thermal simulation. By measuring the

15The distribution of AT(r, 8, z) can be simulated by taking the simulated electrical field distri-
bution F as the heat source of the thermal diffusion equation:

me(z—Z; - kVT = %80n2|a|2/<a|F|2,
where py, is the mass density in unit of (kg-m~3), k is the Thermal conductivity in unit of
(W-m~1.K~1), C is the Heat capacity in unit of (J-kg~!-K~'). The right hand side represents
the power density absorbed and «,, is the absorption rate.
16Here the negative sign in front of @ is because for most of the materials we work with, the value
of Awy/AT is negative.
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resonance shift Awo under different intracavity power |a|?, we can measure the
material absorption rate k, from Eq. (I.54). Details of this experiment will be

discussed in Chapter 2.

Using p = |a|?/Ves, the photothermal nonlinear coefficient o can be calculated

a:—@(éﬂﬂ(AT)wﬁ (1.55)

as

H P abs

1.2.8 Dynamics in an optical resonator
In this section, we give the time-dynamics of complex mode amplitude of the
resonator.

1.2.8.1 Linear dynamics of mode amplitude

In this section we give the time dynamics of mode amplitude when the resonator is

pumped by an external laser with angular frequency wp.

We define slow varying amplitude with optical oscillation angular frequency wp as

A = ge 0w (1.56)

where the pump detuning of the mode is defined as

0w = wWo — Wp. (1.57)

Then, the dynamic equation of A reads

dA__(

2

where |ai,|? is the power input to the external coupling:
|ain|* = Pin, (1.59)

with a unit of Watt (W). Further details of Eq. (1.58)) derivation process can be
found in Chapter 1.2 of ref. [9]

"The A we use is normalized to make sure |A|? has unit of J and represents optical energy stored
in the mode. In Chapter 1.2 of ref. [9]], a is normalized to make sure a'a is photon number operator
of the mode. a operator in Chapter 1.2 of ref. [9] is equivalent to A/vAwq in our definition, where
#i is the reduced Planck constant.
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As an additional note, dw < 0 indicates that the pump frequency is higher than the
mode frequency, which is known as blue detuned. Conversely 6w > 0 indicates

that pump frequency is lower than the mode frequency and is known as red detuned.

1.2.8.2 Lineshape and Q-factor measurement

(a) 1 (b) T T T

0.8 1
c ) =
92 0.6 § S TL=704ns
2 [ 220 kHz 5 QL=840 M
£ 04 1 o
S 0.0 ¥ Qo=1130 M =l |
= = Qu=860M 2

ot ) T
-0.2L— : : : : . &
Frequency (MHz)

Time (ns)

Figure 1.6: Lorentzian lineshape of a resonance in SiO; microresonator, and
the respective ring down measurement. (a) Resonance linewidth measurement
of a 10 GHz FSR device at 1585 nm. The upper trace is resonance transmission
(blue dots) with Lorentzian lineshape fitting (red curve). The linewidth of this
mode (as discussed in Section [[.2.6.1)) is 220 kHz. The Q-factors are extracted
using the methods introduced in Section [1.2.8.2| Eq.(1.61)), with a value of intrinsic
Qp=1130 million and loaded (total) Q=860 million. (Note the relation between
O and « was discussed in Eq.(1.29), M: million). The lower trace is a frequency
calibration (black dots) from a Mach—Zehnder interferometer (FSR is 5.979 MHz)
with sinusoidal fitting (cyan curve). (b) Ring-down measurement (blue) of the mode
measured in the left panel. An exponential decay (Eq.(1.24)) fitting is shown in red.
Photon lifetime is 704 ns, corresponding to loaded (total) Q =~ 840 million.

Measuring the Q-factor, or equivalently measuring dissipation rates « (as discussed
in Section [1.2.6.3), is an important task for resonator quality calibration. We can
measure « by adibatically changing 6w so that % ~ 0, then calculate « from the

lineshape we measured.

Now, we want to know the field amplitude that bypass the resonator after some power
is coupled into the resonator. This output field amplitude aq,¢ can be calculated with
input-output equation®|

18] 4ue|? is also normalized to power, with a unit of Watt (W).
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Aout = _VK_QA + Ain. (1.60)

Therefore under quasi-static frequency tuning condition (‘é—‘? ~ (), the output power

|aout|? can be solved as

2
|aout|2 _

|ain|2

Ke
ra—
§+15w

(1.61)

which features a Lorentzian lineshape, as shown in Fig. [I.6(a) [8]. The relative
value of dw can be calibrated by a Mach-Zehnder interferometer (MZI). To measure
k and ke, we can fit the lineshape to Eq. (I.61). However, only two information that
are in the lineshape is important, the first one is resonator excitation bandwidth (or
FWHM)

OWFWHM = K, (1.62)

and the second one is resonance depth (which is achieved when dw = 0)

(|aom|2) (Ko—xe)z 2
Dol | o [ 22=2) = (1-2p)% (1.63)

|ain|2 Ko + Ke

where 7 = k. /« is the coupling efficiency. Other than fitting the resonance lineshape
in Eq. (I.61)), we can also solve x and . from Eqs. (1.62) and (1.63).

A critical condition min(|agu/ain|?) = O is satisfied when kg = ke = «/2. This
coupling condition is called critical coupling. When k9 > «. (ko < k¢), the

coupling condition is called under (over) coupling.

It should also be noted that if (k, k.)=(’, «.) is a solution to Egs. (1.62)) and (1.63),

then (k, ke)=(k’, k" — k) will also be a solution. Thus the lineshape measurement

itself cannot distinguish whether the resonator is under-coupled or over-coupled. To
further identify the coupling condition, we can apply modulation to a;, and measure

the demodulated error signal, which has been discussed in ref. [[10].

1.2.8.3 Effect of Kerr and thermal-optics nonlinearity on optical resonator

As discussed in Section [1.2.7.3|and [1.2.7.4] the resonance angular frequency wy in

Eq. (1.57) will be perturbed by Eqs. (1.46) and (1.54). Therefore, the dynamic
equation of Eq. (1.58) will change to

dA__(

== (5+i 6w = (@ +)p)) A+ Vi, (1.64)

2
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Figure 1.7: The hysteresis behavior of Lorentzian lineshape with Kerr and
thermal-optics nonlinearity. Kerr and thermal-optics nonlinearity effectively shifts
the cold resonance frequency (black line) and creates hysteresis lineshape (red
shape).

where p = |A|?/Veg. An important feature of quasi-static solution to Eq. (T.64) is
that it has multiple solutions to a at some detuning dw, since Eq. (1.64)) is cubic to

a. This will lead to a hysteresis behavior of the lineshape, which is represented in
Fig.

In terms of time scales, Kerr nonlinearity happens almost instantaneously and will
appear in the dynamic equation no matter what time scale we study. However,
at a time scale much faster than the thermal bandwidth (typically on the order
of ms), the thermal-optic nonlinearity does not have any dynamic effect because
the nonlinearity mediated by thermal absorption vanishes. This is also the main
reason why thermal-optics nonlinearity typically will not lead to any coherent optical
effects, as discussed in Section[I.1.3] Here we define a thermal response function
r(Q) as

_T(Q / T(Q=0) (1.65)

Q) == — :
|al>(Q) ] |al*(Q =0)

where T is the temperature of the resonator, €2 is the modulation angular frequency
of energy stored in the cavity. The AC component of z’s Fourier transform is denoted
as zZ. By definition of Eq. (I.63), 7(Q = 0) = 1. The thermal bandwidth of the
resonator is defined as the Q /27 where 7(Q) = 0.5. Typical thermal bandwidth for
integrated on-chip microresonator without suspended structur is between 103 to
10* Hz [2°| as shown in Figs. [D.1} [D.3] |D.2] and [D.4| (c), depending on the size of

19 An example of suspended on-chip resonator is SiO, wedge resonator reported in ref. [} [I1].
Those resonators have smaller thermal bandwidth because they are not well thermal conducted.
20This value is for resonators with FSR around 20 GHz.
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the resonator 1 Further details of the finite element simulation process of 7 can be
found in the published available data of ref. [2].

With the definition of 7, the Fourier transform of Eq. (I.64) can be written as

QA4 = — | X 46w - L TE1AR)) A + vieam. (1.66)
2 Vett
And the solution of Eq. (1.66) can be approximated as quasi-static if the tuning

speed of dw 1s much slower than the thermal bandwidth of the resonator.

Furthermore, since thermal-optic nonlinearity typically does not lead to any coherent
optical effect, Eq. (1.64)) are often simplified to

dA
g - (5 +i(6w-g1AP)) 4+ vican. (1.67)

when we study coherent nonlinear optic processes in the resonator. For future

convenience, we denote
’ g _ wocnz

8§ =5 = E—
Vett Veffnng

(1.68)

1.2.8.4 Effect of mode dispersion on optical resonator and Lugiato-Lefever

equation
In this section, we do not consider nonlinearities other than Kerr nonlinearity.

First of all, mode dispersion, as introduced in Section @, involves a series of
longitudinal mode within one mode family. Each longitudinal mode has their own
angular frequency w, in the phase factor e ! of Eq. (I.33). To study how mode
dispersion is going to affect the dynamics of the resonator, we need to define A

operator for each longitudinal mode within this mode family.

It is worth to note that the dynamic equation for multiple coupled modes are funda-

mentally different from single mode due to the Kerr nonlinearity.

a. Find overall complex mode amplitude ¥y when multiple longitudinal modes

exist

The A operator can be defined similarly to the definition in Eq. (1.56)), reads

Ay = aﬂe‘i(“’ﬂ‘wP—Dlﬂ)f’ (1.69)

21The thermal bandwidth is generally larger for smaller resonator, which is easier to reach thermal
equilibrium.
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where A, (slow varying amplitude of mode u with optical oscillation angular
frequency wp + D u) is the A operator for the longitudinal mode with relative mode

number u. D1/2n is the FSR at wg. The coupled mode equations of A, reads

dA K
S (7“ i (5%)) A+ \Reindo, +i8" Y A A Al e (170)
M1,HM2

where 6, is the Kronecker delta function, k,, ke, are the total and external dissi-

pation rate for the longitudinal mode with relative mode number p. dw,, is similar

to Eq. (1.57)), reads

owy =wy —wp—Du (1.71)
=wo+ D+ wying — wp — D1 (1.72)
= 0w( + Wy ints (1.73)

where Eq. (L.72)) used the definition of integrated dispersion wy, in; in Eq. (L.IT));
dwy in Eq. is defined in Eq. when u = 0. The terms associated
with g’ in Eq. are the Kerr nonlinear terms that satisfy phase-matching
condition in Eq. (1.22). Furthermore, since in Eq. (1.69), the optical oscillation
angular frequency of A, is wp + Dpu, the phase matching between A, , A,,, Ay
and A, +,,-, automatically ensured their energy conservation requirement in Eq.
(I.7). Additionally, the coupled mode dynamic equation in Eq. is recovered
to single mode dynamic equation in Eq. (I.67) when: "A, # 0 only if x4 = 0."

The electric field phasor in the resonator mode with mode number u, as defined in
Eq. (I.33), can be expressed in terms of A operators by substituting Eq. (1.69) to

Eq. (1.33), resulting in[??]

E, =a,F,(r,0,z)e "
— Aﬂei(w#_wp_Dlﬂ)lF# (r’ 9’ Z)e—iw#[
= Aue_i(D‘“)’F#(r, 6, z)e_iwpt

= Ape T (PIIhOf(p 7)!tmol=een), (1.74)

22Note that the definition of § here is consistent with Eq. (T.33)), which represents the § component
of the cylindrical coordinate system (r, 6, z) with a value of 6 € [0, 27).
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where m is the absolute mode number associated with the mode with relative mode

number p = 0. f(r, z) in Eq. was defined in Eq. (1.35). In Eq. (1.74)), the
term f(r, z), which represents the transverse mode profile, will be assumed to be

identical within the range of u we are interested in.

Finally, express the total electrical field phasor E as the superposition of all phasors
E, calculated in Eq. (I.74), we get

E:ZE,,:
7

Z Aﬂeiﬂ(Q—Dll)) f(r’ Z)ei(moe—wpl)
u

Z A#ei’“‘"’
u

= (¢, 1)E(r, z)e!mof-wr) (1.75)

f(r, Z) ei(M()e—wpt)

where overall complex mode amplitude ¢ is defined as

(1) = ) Ay, (1.76)
u

and the co-moving coordinate (or co-moving frame) ¢ is defined as

¢ =60—-Dit. (1.77)
Note that we did not add any relative phase between different E, in Eq. (1.75)
because any additional constant phase can be absorbed in A,.
b. Revisit mode expansion of electric field phasor

Next we revisit the mode expansion of electric field phasor in Eq. (1.73]), especially

what this means in time domain.

Eq. (1.75) can be re-written as

E =

> A#ei”ee_i(Dl")’) e WP im0 (r, 7). (1.78)
M

In (angular) frequency domain, Eq. represents series of discrete signals
around wp, with equal spacing D;. This is called a Optical Frequency Comb,
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a Mode unlocked comb b Soliton (micro)comb

Figure 1.8: Mode unlocked comb and soliton (micro)comb in resonator fast
time domain. Red line indicates the overall mode amplitude of the comb at
t = 0. Note that this figure contains no information on time domain. The oscillations
within the gray circle only tell which mode propagation constant S (or relative mode
number p) it is representing. In this figure, the optical oscillation angular frequency
for the sinusoidal wave with relative mode number y is wq + D u, instead of w,,.

which is very useful in modern optics and photonics engineering. Optical Frequency

Comb will be a main topic we will discuss in the rest of this thesis.

Fig. illustrated series of Aﬂei"‘@ by many sinusoidal functions of 6 within the
gray circle with multiple colors. And the value of }; A#ei“e as a function of @ is

illustrated by the red line circulating outside the gray circle.

If every complex mode amplitude A, has the same phase, then every term in
> A#eiﬂg can constructively interfere with each other, as shown in Fig. b),
creating a comb with the same phase, whose time domain features optical pulses.
Fig. Bkb) is a demonstration of soliton microcomb, which will be discussed in
Section [.3.3l

c¢. Understand co-moving coordinate ¢

As illustrated in Fig. [I.9] mode amplitude represented by ¢ eliminated the group
velocity of the wavepacket. Using this coordinate helps us to eliminate propagation
and allows us to focus on the pulse shape evolution. Periodic boundary condition
U(p,t) =y (¢ +2m,1) is satisfied.

In Fig. [I.9] the time interval ¢ between right and left panel is assumed to be very
small so the pulse shape is assumed to be unchanged. However, as the propagation
time increases, generally the pulse will not maintain its shape because waves with
different mode number have different phase velocity. This effect in the resonator

was described as mode dispersion, which has been discussed in Section[I.2.2] The
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Figure 1.9: Illustration of the relationship between cylindrical coordinate ¢
and comoving coordinate ¢. Cylindrical coordinate 6 € [0, 27) represents spatial
position. Comoving coordinate ¢ € R is moving together with the wave packet.
Overall mode amplitude Re(y) is represented by the red line. In this figure, we
assume ¢ is very small, so the pulse GVD is not illustrated.

differential equation that includes this effect is Lugiato-Lefever equation (LLE)

which will be discussed later.
d. Calculate energy and its spectrum from complex mode amplitude v

The total energy stored in the optical resonator & in unit of J can be expressed as
1 2r 5
&) =5 [ dolu(e.0)l
T Jo

1 2n .
- > Z Aﬂ1A22/ d¢el¢(,u1—,uz)
n

H1,42 0

= 3 Al (1.79)
o

And as discussed in Section [[.2.8.4]b, its spectrum features equally spaced discrete
frequency comb, and the energy of its y-th comb line g(wP+D1 ) can be calculated
as

2r 2

_ 1 .
B ® =14 = |- [ dou (. (1.80)
T Jo

e. Lugiato-Lefever equation (LLE)

Lugiato-Lefever equation is the partial differential equation describing the dynamic

of y(¢,1). (Y(¢,1) is defined in Eq. (1.76).) ¥ (¢,1) is important in the study of
the total electric field of the optical resonator because it is the only dynamic part we

are interested in Eq. (1.75).
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3¢(¢’ t) _ 0 iug _ i/z¢dA.U
a &Z#:A#e _;e dr

:Z (— (— +1i (6(,0#)) A + VKe u améOy +lg Z A/«tlAﬂzA,ulﬂlz /1)
u

H1,H2
(1.81)
K i ]
B Z (?ﬂ +i (6w0)) A€M + \Keo@in — iz e wyinAy
m 7
+ig Z Z A el#l¢ A el#2¢) (AZ|+,uz -u® —z(,u1+u2—#)¢) ’ (1.82)

o H1LH2

where Eq. (L.81) is get by replacing dA,/dr with Eq. (I.70), Eq. (1.82) is get by
replacing 6w, with Eq. (1.73). Next we assume the total dissipation rate «, are

identical for every u Eq. (I.82)) can be further simplified to

aw((;f,t) (+z(5w0))¢+\/zam Zﬂ:(z — D"

+lg Z Z A el,u1¢ A el#2¢) (A:uﬂtzu —l(#1+#2—#)¢)’

HFH2— [ (42

Ae

(1.83)

where we change the independent summation subscript in the last term from (u, p1,

H2) to (u1 + po — i, py, ). Note that

0" o" ;
— iug _ :n n ing
6¢nlﬁ(¢, t) = ME A#a¢ne” =1 'ug u'Auet

which can be substituted to the dispersion term in Eq. (I.83).

Finally, the Lugiato-Lefever Equation (LLE) which is the partial differential equa-
tion describing the time dynamic of field amplitude within an optical resonator in

co-moving frame, can be summarized as

Ay (¢, 1) K Lol
rrani (5 +i (&uo)) ¥ + \Ke0@in — prry Z EDn FyT +iglyPy. (1.84)

n=2

This is in the same form as the equation proposed in ref. [12].
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1.2.9 Parametric oscillation and its threshold

Here we consider the following case: when the resonator mode with relative mode
number u = 0, whose angular frequency is wg, is pumped by external laser with
angular frequency wp, what will happen to the other two modes with relative mode

number +u. Under this condition, we have

1
OWiy = W) — WP + Wy ing = OW( + EDz,uz (1.85)

using the definition in Eq. (1.72)). Here, we only preserve the leading term D; of
W4 ,in Which is defined in Eq. (L.TT).

The reason we consider two modes with A operator A, is because: A, (defined
in Eq. (1.69), with optical oscillating angular frequency wg + Du) automatically
satisfied degenerate FWM energy and momentum matching condition (summarized

in Eq. (1.23))) with Ag (Ag has an optical oscillating frequency of wy).

In this context, we assume |Ag| is quasi-static (% ~ 0) and |Ag| > |A.,l, and the
mode numbers under consideration include i, 0 and —u. The dynamic equation of
Ay, can be derived from Eq. (1.70). In Eq. (1.70), there are total of six terms

associated with 3, ) Ay Ay, Ay 4y,—» Which are listed in Table

Table 1.2: Nonlinear Term Representation for }; o A A #ZAZ i in Eq. (1.70).

H1\p2 + 0 -1
0 | ApAn AL | AgAoAT,

We preserve terms up to the first order of |A.,|, then dynamic equation for A, and

AZ, in Eq. (1.70) reads

d|[A —5 _iSw, +2ig’'|Aol? ig’ A2 A

— (=2 . o L] ase)
dr AL, —ig'(Ap) —-=" +idw_, — 2ig'|Ao|7| \AZ,

Let us denote the matrix in Eq. (1.86]) as M:

M = (_%,, —idw, +2ig'|Ao|? ig'Aj ) _ (1.87)

—ig'(A})? St tidw_y, — 2ig’|Aol?
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The field amplitude A, and A_, can not be accumulated if |Ag| is not high enough
and the real part of two eigenvalues of M are all smaller than zero. At the critical
point of modulation instability, the real part of (at least) one eigenvalue is zero.

Denote this eigenvalue as Ai (1 € R), we have

K . 4 . K . ./ . ’
(—5 — 6w, +2ig'|Ao|? - m) - (_5 +isw_, —2ig'|Aof? - /lz) — (&) 40l* =0,

(1.88)
where we assumed «,, = k_;, = .
The imaginary part of Eq. (1.88) is
K ’ 2 ’ 2
- §(+6w_# - 2¢"|Ao|” — A = dw, +2g"|Ap|” = )
K
=— 5(&0_# —dw, —24) =0. (1.89)
Substitute Eq. (1.89) into Eq. (1.88)), we get the real part of Eq. (I.88)) as
, Sw_y + 6w\ , K\2
26|40l - %) = ()14 - (5) - (1.90)

Importantly, in the following discussion, we study necessary but NOT sufficient
conditions to get parametric oscillations (solution to Eqs. (1.89) and (1.90)).

The left-hand side of Eq. (1.90) is non-negative, thus the minimum |Ag|> when Eq.
(T:90) has solution to |Ao|? is

2 K
Emn = |Aoly, = 2 (1.91)
where &y, is the threshold energy required in mode wg to generate modulation

instability at mode +u, who satisfies

6w—ﬂth + 6”#1}1
2

Eq. (I.91) is get by setting right-hand side of Eq. (1.90) to 0. Eq. (I.92) is get by
bringing Eq. (I.91)) into Eq. (I.90).

Next, we calculate the minimum input power |ain|2, in unit of W, to achieve the
threshold energy &g, in Eq. (1.91). Using the quasi-static solution of Eq. (1.67), we
have

=K. (1.92)
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1
Pinn(0wo) = |ainlf, = —
Ke

K . , 2
>t i(6wo — &'l Aol2)| - 140l3,

which is minimized to modulation instability (or parametric oscillation) thresh-

old power
1 k|2 K3
Pinih = — _) Aok = = (1.93)
th . 2 Olth 8g,Ke
when
’ 2 K
5&)0 =g |A0|th = 5 (1.94)

And the threshold mode number yy, can be solved from Eqs. (1.85)), (1.92)), and
(1.94) as

K

= [—=. 1.
HMih D, (1.95)

One reason the above parametric oscillation threshold conditions are only necessary
but not sufficient is that Eq. may not result in an integer mode number. The
actual physical process of modulation instability is more complicated, and more

discussions can be found in ref. [13]].

In summary, at the (ideal) parametric oscillation threshold described above, res-
onator mode with angular frequency wy, relative mode number u = 0 is pumped
by an external laser with power «*/8g’k. (Eq. (I.93)) and angular frequency
wp = wo — k/2 (Eq. (I.94)). Then, two other longitudinal modes with relative
mode number ++/k/D> (Eq. (1.92)) start to parametric oscillate, rising power
from the quantum noise in these modes. This effect is called modulation insta-
bility, which is usually considered as the starting point (sometimes referred to as
primary comb) of optical frequency comb generation using an optical resonator
[14]]. Cascaded modulation instability may generate chaotic comb, which can be

used in parallel ranging [[15]].

The above physical process can only happen when D, in Eq. (1.95) is positive.
This requirement is usually summarized as the mode dispersion (defined in Section

[1.2.5)) has to be anomalous in order to get modulation instability.

However, if we do not make the assumption that w. jne = D>p?/2 in Eq. (1.83),
then g, need to be solved from Eqs. (1.10), (1.73)), (I.92)), and (1.94)). In this case,
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although the resonator may have an overall normal dispersion, a perturbation to the
angular frequency of pump mode w (by selective mode splitting) may also enable

parametric oscillation [[16]].

As an additional note, the parametric oscillation threshold (in Eq. (1.93)) is NOT
minimized when the resonator is critically coupled (7 = 1/2, where n was defined
in Eq. (1.63))). Instead, the Pj,  in Eq. (I.93) is minimized when

1 1 |aout|2 ) 1
Ke = =Ko, 1 = =, = —. (1.96)
) 3 ( |ainl? Jin 9

1.3 Optical frequency combs

We gave a bottom-up introduction to the optical frequency comb generated in the
optical resonator in Sections [[.2.8.4]b and [[.2.9] In this section, we will introduce
optical frequency comb in a top-down way. We will also include discussions on the

engineering and applications of optical frequency combs.

In this section, we no longer study the modal distribution of electric field E. There-
fore, electric field E will be simplified to E in Section[I.3]

1.3.1 Introduction

T, =I/f, /
— Teso=Vfso

OUTPUT

Figure 1.10: Conceptual illustration of Optical Frequency Comb and its time
domain. (a) Illustration of the spectrum of a mode-locked optical frequency comb
and its electrical field in time domain. Here T; is the repetition time, Tcgo is the
carrier-envelop phase match period. (b) The pulses coupled from optical resonator
forms a periodic pulse train in time domain, which is an optical frequency comb in
frequency domain.

Optical frequency comb in frequency domain contains a series of discrete comb

lines, with a equal distance of f;, as shown in Fig. [[.10(a). The frequency of the
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n-th order comb line can be represented as

Jo =nf: + fceo, (1.97)

where fcgo is the baseband offset frequency (or carrier-envelope offset fre-
quency), which is the same for all comb lines. In time domain, the electric field
of optical frequency comb is a collection of series of frequency components, which
has been illustrated in Fig. [I.8] with a repetition rate f;, as shown in Fig. [I.10]a)

inset.

Mode-locked pulses (Fig. [I.8(b)) coupled from optical resonator forms a periodic
pulse train and becomes optical frequency comb in frequency domain. A conceptual
illustration is shown in Fig. [[.I0[b).

Optical frequency comb is one of the most critical components for modern photonics
because it acts as a bridge between optical frequency (THz) and the frequency within
electronic bandwidth ( f; range from MHz ~ GHz), which has been well discussed

in ref. [[17]. Some concepts in ref. [[1/] used in this thesis include:

1. From a single frequency continuous wave (CW) laser, we can modulate it with
RF signal generated by electronics, and the modulated CW laser becomes a

comb in optical frequency domain.

2. From a optical frequency comb, its radio-frequncy beat note at frequency
D1 /2n has a phasor of A’“‘AZ
become a single tone RF signal if every A, has the same phase (Fig. [I.§(b)).

+1» Which can constructively interfere and

Therefore, with the help of optical frequency comb, the technologies to stabilize
optical frequency (radio frequency) can be utilized to transfer this stability into radio

frequency (optical frequency). Some examples used in this thesis include:

1. From RF to optics: Using optical frequency comb as a calibration source for

Astronomical observation. This will be discussed in Chapter 7 of this thesis.

2. From optics to RF: Using mode-locked optical frequency comb to generate
RF signal which can be further stabilized using optical frequency division.
The generation of a mode-locked comb will be discussed in Chapter 3 of this

thesis.



38

In summary, optical frequency combs have a wide range of applications in science
and technology, including time keeping, optical frequency synthesis, spectroscopy,

ranging, astronomical calibration, microwave generation, etc..

1.3.2 Comb in frequency domain and repeated pulse in time domain
Next, we explain the relation between "comb in frequency domain" and "repeated
pulse in time domain" from the concept of the Fourier transform of sampling

function.

We start from focusing on a single pulse in Fig. [I.10(a) inset. We denote the electric
field of this single pulse as E(t), and its Fourier transform in frequency domain as
E( f). We have

E(f)=F[EM], (1.98)

where F[-] (F~'[-]) represents (inverse) Fourier transform operator. Note that the
intensity spectrum of E (f) is a continuous function, represented by the dashed
envelope of Fig. a). The spectrum of optical frequency comb Ecomb( f) is the
sampling of E (f), which can be written as

Emwﬂxﬂﬁwnﬁéﬁﬁy (1.99)

Here I1I(x) is the unit sampling distribution (or unit Sha-distribution) defined as

III(x) :Zé(x—n). (1.100)

nez
This distribution, also known as the (unit) Dirac comb, is a valuable tool with
applications in Fourier analysis [18]], signal processing [19], and various other
scientific fields [20]. Further discussions on the properties of the Dirac comb are

provided in the respective references.

In Appendix [A.T] we will show that the Fourier transform of unit sampling function
is itself [21], reads
F [MI(x)] = II(x). (1.101)

Take the Fourier transform of Eq. (1.99), we can calculate the time domain of
optical frequency comb E¢omp(7) reads

23Here we used the property of Fourier transform # ! [h(%)] = be?"taF =1 [h] (bt).
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Ecomb(?) = ?_1 [Ecomb(f)] o« T_l [E(f) - II (@)]
=7 '|E bl m)]
7 [En]er | =

« E(1) ® (eﬂ”ffCEOHI( frt))

= / E(t — 1)/ /Ceo I ( for)dr

. nfy
« S E (r - ﬁ) S o (1.102)
Jr

nez

where "g(x) ® h(x)" means the convolution between g(x) and A(x).

Eq. (1.102)) shows that: frequency sampling a continuous signal spectrum every f;
results in repeating the signal every 1/ f; in time domain, with an additional phase
2nn fceo/ fr to each repetition. This additional phase result in the phase of the pulse
within each repetition is different from each other, as shown in Fig. [[.10|(a) inset.

In practice, the proportion coefficient in Eq. (I.102) which we did not consider

should be determined by energy conservation within sampling bandwidth.

1.3.3 Stability of optical frequency comb

In order to fully stabilize the comb in optical domain, both f; and fcgo needs
to be stabilized. Stabilizing f; prevents the frequency comb from "accordion"
like instability. Some techniques to stabilize f; include quiet-point operation and
optical frequency division. Stabilizing fcgo prevents the instability of the comb’s
absolute frequency. An important technique to stabilize fcgo is self-referencing (or
referencing to a self-referenced comb). Additionally, locking to atom transitions

can also offer reference to the absolute frequency of an optical frequency comb.

The stability of f; are often measured by its single-side-band (SSB) phase noise
spectra in unit of dBc/Hz. Further discussion of this concept can be found in ref.
[22].

In astronomical calibration, an important stability measure is the Allan deviation o ¢
of the optical frequency. The allan deviation measures what is the relative standard
deviation ¢ f/ f of the frequency of a comb line over a measurement period ¢. The
reason why this is important will be discussed in Chapter 7 Eq. and Section
of this thesis.
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1.3.4 Electro-optics frequency comb
The physical configuration of electro-optics frequency comb can be found in Fig.8.2
of ref. [23]]. In this section, we summarize the operating principle of electro-optics

frequency comb from a mathematical perspective.

An electro-optics frequency comb is generated from phase modulating a single-
frequency continuous wave (CW) laser, whose phasor is represented as Ege 2%/’
Here the phase modulation is achieved by utilizing electro-optics nonlinearity dis-
cussed in Section[[.1.2] The CW laser pass through a phase modulator (PM), whose
refractive index along the optical path is modulated by an external electric field with
frequency f;. The amplitude of this external electrical field is denoted as Ecx;pm.

The principle of this refractive index modulation has been discussed in Eq. (I.3).

The electric field phasor of the CW laser after being phase-modulated reads

Eoe—i27rfot . eiﬁpsm(anrt)’

where Bp = mEcpm/ExpMm 1S the depth of phase modulation (E, was defined in
Section[I.1.2)). Any additional constant phase can be absorbed into E.

After phase modulation, a second stage intensity modulator (IM) is added to spec-
trally flatten the modulated comb. The intensity modulation is achieved by a Mach-
Zehnder interferometer, which first split the light with 50/50 splitter, then apply
electric field Eex v to phase modulate one path, and finally recombine the two

paths with 50/50 combiner. The resulted electric field phasor reads

E = Eoe—iZITf()l . eiﬂpsil’l(2ﬂfrl) . (L

V2

where 81 = mEcm/Ex1m is the depth of intensity modulation, ¢; is the relative

(ei¢DC + ei,B[Siﬂ(Zﬂﬁt+¢I))) , (1103)

phase between intensity modulation and phase modulation, ¢pc is the offset bias of

intensity modulator (operation position of Mach-Zehnder interferometer).

Next, we investigate what the parameters are when EO comb is under optimized

operation point. In order to get in-phase intensity modulation, we first set

¢, =0, (1.104)

then we have
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E = L Eoe‘iz”fo’ ) (eirzboceiﬁpsin(zn fit) 4 oi(Bp+Br)sin(2n ﬁt))
V2

1 , , .

— _Eoe—l27rfot . Z el27rfrt-n (el¢DCJn(ﬂP) + Jn(ﬁP +,81)) (1105)
2 nez
1 . . 2 ) e wr n

~ —Ege 2N glmhin |2 (e‘¢DCcos ( -— - —) + cos ( +B— — - —)) ;
2 é 7Bp Pr=5 71 Prrbr=5 -3

(1.106)

where J,,(z) represents n-th order Bessel functions of the first kind. Eq. (1.105])
used Jacobi—Anger expansion exp (izsin(0)) = >,z J.(z)exp (inf). Eq. ]_‘]ED
24l and

used asymptotic expansion of J,(z) = ”%cos(z — 5 — %) when gp > 1

Bp > Br. We assumed Sp is a large number because Sp is the main driving source
of the electro-optic comb, and usually this driving source has a much higher power
(typically ~ 30 dBm) than the signal that drives the intensity modulator. From Eq.
(I.103), we can also identify that Bp is roughly half of the number of comb lines,
because the function| i, (n) = |J,(x)| is approximately maximized when n ~ x and

decays very fast when n > x.

In Eq. (I.106)), we can see that under the condition

T T

¢pc = 5 Br = 5 (1.107)

the final modulated electric field reads a simple form

i . o . o . nm T
E~ ——Ege 2t .\ ei2nhin  oi(br=t-%) (1.108)
V7P é

which means the intensity of comb lines at every order n are the same. Note that
the equation in Eq. (I.108) is valid only when the asymptotic expansion from Eq.
(T.103) to Eq. (I.106)) are valid (when |n| < v/Bp). Therefore, the conditions in
Egs. (1.104) and (1.107) can only guarantee comb line intensity are the same when
|n| < /Bp. Actually, when |n| ~ Bp, the intensity of comb lines becomes stronger
and presents the well-known "two-sided wing" behavior of electro-optics comb, as

shown in Fig.

24Strictly speaking, this should be Bp > |n> — 1|. The approximation used in Eq. (T:106) works
for the comb order n much smaller than v/8p.

2Note &y (n) is a function of 7, and is defined on Z. x is the parameter, not the argument of
hy (n).
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Finally, the conditions in Eqs. (I.104)) and (I.I07) constitute the optimal operation

point of EO comb. If we have multiple stages of phase modulation, then we need
to add another optimal operation condition, which is the relative modulation phase

between different phase modulators ¢p needs to be the same.

Experimentally, the process of tuning EO comb to its optimal operation point can

be summarized as following:

1. Attenuate the RF signal send into IM to near zero (8; = 0), tune the DC bias
applied to IM (¢pc) until the transmission output power is approximately half

of maximum output power (tuned ¢pc = 7/2).

2. Tune the RF phase shifter of the IM driving signal (change ¢;), until the output
spectrum looks symmetric (¢; = 0). Because if ¢; # 0, there will be terms
asymmetrical to n in Eq. (I.105).

3. Tune the RF phase shifter to different PM (if the comb is driven by multiple
stages of PM), until the bandwidth of the comb is maximized (¢ p are the same

for every PM).

4. Tune the variable RF attenuator to drive the IM until the comb is flat around

the spectrum center. (8; = 7/2).

5. Iterate steps 1 to 4 to optimize the comb.

If we consider the higher order terms in the asymptotic expansion from Eq. (1.105])
to Eq. (1.106), we can calculate the phase dispersion of electro-optics comb.
Experimentally, the dispersion of EO comb can be well compensated by second-
order dispersion. After dispersion compensation, we can generate an optical pulse

in the time domain.

1.3.5 Soliton (micro)comb

Soliton microcomb is a kind of mode-locked frequency comb generated in microres-
onators. It is a special solution of ¥ (¢, t) in Eq. which does not depend on
t. This t independent feature indicates that this solution does not evolve over time.
Physically speaking, this solution of (6 — D t,t) can propagate around the res-
onator and sustain itself. The solution has analytical form in absence of the pump
term +/Ke,0@in, 10ss term « and high-order (n > 3) dispersion terms of Eq. (1.84),

reads
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oy (¢, . 1%y
—wgf D _ —i (bwo) ¥ +l§D2% +ig |y Py (1.109)

And this 7 independent solution to ¥ (¢, ) is

20wy
D,

20wy

Y(o,t) = —sech
8

, (1.110)

1.4 Chapter overview

Chapter 2 explores the critical role of high-quality factor (Q) optical microres-
onators in integrated photonic devices, focusing on the measurement of material-
limited Q factors and Kerr nonlinearities in SiO,, SizNy, Al 2Gag gAs, and TayOs.
Through cavity-enhanced photothermal spectroscopy, we quantify the ultimate Q
determined by material absorption and evaluate the Kerr nonlinearity in each plat-
form. The findings provide insights into the interplay between material nonlinearity
and Q factor, informing the design and development of next-generation photonic
integrated systems by establishing performance limits and guiding microresonator

material improvements.

Chapter 3 introduces a novel microcomb that achieves mode-locking through the
formation of pulse pairs in normal-dispersion coupled-ring resonators. Unlike
traditional microcombs, these pulse pairs must phase lock together to create a bright
soliton comb, and they form at recurring spectral windows with distinct optical
spectra. We also demonstrated 3-ring systems where three pulses achieve mode
locking through alternating pairwise coupling. The results are facilitated by a
new CMOS-foundry platform, previously incapable of bright soliton generation due
to its inherent normal dispersion. This capability to generate multi-color pulse
pairs across multiple rings holds significant potential for all-optical soliton buffers,

memories, and advances in quantum combs and topological photonics.

Chapter 4 explores the generation of Kelly sidebands (KS) in coupled-ring soliton
microcombs. Kelly sidebands, a type of dispersive wave typically observed in
mode-locked systems, are produced here through continuous-wave (CW) excitation
in a partially-coupled racetrack-resonator microcomb. This configuration supports
two optical bands, allowing the soliton and Kelly sideband to reside in distinct
bands. This interband excitation lowers power requirements and facilitates CW
sideband excitation. The chapter also investigates the tuning of sideband spectral

positions under pulsed excitation. Both numerical simulations and experiments
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show that symmetry breaking in the partially-coupled two-ring system is crucial
for KS formation. The findings highlight the potential of multi-band systems to

engineer Kelly sidebands for microcomb spectral broadening.

Chapter 5 presents the generation of multi-color co-propagating and counter-
propagating solitons using a coupled-ring microresonator in the ultra-low-loss Si3N4
platform. The soliton spectra and beatnotes are measured, and potential applica-
tions are discussed. The study demonstrates how multi-color pulse pairs can form in
distinct spectral windows driven by two continuous-wave pumps, highlighting the

capability of multi-pump methods to extend microcomb bandwidth.

Chapter 6 discusses the generation of mode-locked soliton microcombs in Aly ,Gag gAs
microresonators using pulse pumping at room temperature. Alp>Gag gAs offers ad-
vantageous nonlinearity and compatibility with active gain, making it suitable for
high-efficiency frequency combs. However, challenges such as strong absorption
complicate soliton generation. This study demonstrates how pulse pumping can
mitigate thermal effects, enabling robust soliton formation and stabilization. The
results suggest potential applications in integrated photonics and provide insights

into soliton dynamics in Al ,Gag g As microresonators.

Chapter 7 presents the development and commissioning of a near-infrared (NIR)
Laser Frequency Comb (LFC) for the NIRSPEC instrument on the Keck observatory.
The LFC operates over wavelengths from 1.2 to 2.1 um, with future extension to 2.5
pm, and has an intrinsic mode spacing of 16 GHz. By referencing a Rubidium stan-
dard, the LFC achieves long-term stability of less than 10 cm s~!. This development
enhances the capabilities of high-precision radial velocity (PRV) measurements,
which are crucial for exoplanet detection and characterization. The chapter details
the LFC signal chain, stability analysis, and on-sky observations, demonstrating the

LFC’s potential for improving the precision of exoplanet searches.
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Chapter 2

MATERIAL ABSORPTION AND OPTICAL NONLINEARITY
CHARACTERIZATION OF INTEGRATED PHOTONIC
MATERIALS

This chapter is based on the following published paper:
Gao, M., Yang, Q.-F,, Ji, Q.-X. et. al. Probing material absorption and optical
nonlinearity of integrated photonic materials. Nat Commun 13, 3323 (2022).
https://doi.org/10.1038/s41467-022-30966-5

Optical microresonators with high quality (Q) factors are essential to a wide range
of integrated photonic devices. Steady efforts have been directed towards increasing
microresonator Q factors across a variety of platforms. With success in reducing
microfabrication process-related optical loss as a limitation of Q, the ultimate attain-
able Q, as determined solely by the constituent microresonator material absorption,
has come into focus. Here, we report measurements of the material-limited Q fac-
tors in several photonic material platforms. High-Q microresonators are fabricated
from thin films of SiO,, Si3N4, Alg>Gag gAs and Ta,Os. By using cavity-enhanced
photothermal spectroscopy, the material-limited Q is determined. The method
simultaneously measures the Kerr nonlinearity in each material and reveals how
material nonlinearity and ultimate Q vary in a complementary fashion across pho-
tonic materials. Besides guiding microresonator design and material development
in four material platforms, the results help establish performance limits in future

photonic integrated systems.

2.1 Introduction

Performance characteristics of microresonator-based devices improve dramatically
with increasing Q factor [1]]. Nonlinear optical oscillators, for example, have turn-
on threshold powers that scale inverse quadratically with Q factor [2-4]]. The
fundamental linewidth of these and conventional lasers also vary in this way [SH7].
In other areas including cavity quantum electrodynamics [8], integrated quantum
optics [9-12], cavity optomechanics [13] and sensing [[14], a higher Q factor provides
at least a linear performance boost. In recent years, applications that rely upon these
microresonator-based phenomena, including microwave generation [[15]], frequency

microcomb systems [[16]], high-coherence lasers [7, [17, [18]] and chip-based optical
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gyroscopes [19-21], have accelerated the development of high-Q photonic-chip
systems [[18}, 122-31]).

Q factor is determined by material losses, cavity loading (i.e., external waveguide
coupling), and scattering losses (see Fig. [2.1(a)). To increase Q factor, there have
been considerable efforts focused on new microfabrication methods and design tech-
niques that reduce scattering loss associated with interface roughness [22, 132} 33]]
and coupling non-ideality[34} [35]. Impressive progress has resulted in demonstra-
tions of high-Q microresonator systems with integrated functionality [36, [3'/]], as
well as resonators that are microfabricated entirely within a CMOS foundry [18]].
With these advancements, attention has turned towards Q limits imposed by the con-
stituent photonic material themselves. For example, the presence of water, hydrogen,
trace metal ions [33, 3854 1] and other pathways [42, 43]] are known to increase ab-
sorption. In this work, cavity-enhanced photothermal spectroscopy [39, 41} 44-47]]
is used to determine the absorption-limited Q factor (Qaps) and optical nonlinear-
ity of state-of-the-art high-Q optical microresonators fabricated from four different

photonic materials on silicon wafer.

2.2 Logic of measurement

Images of the microresonators characterized in this study are shown in Fig. 2.1(b),
where the microresonators are SiO; [4} 48] microdisks and SizNy [47]], Aly »Gag gAs
[26] 27] and Ta;Os [49] microrings. Details of the device fabrication processes are
given in the Methods. Typical microresonator transmission spectra showing optical
resonances are presented in Fig. [2.1(b). The transmission spectra feature Lorentzian
lineshapes, but in some cases are distorted by etalon effects resulting from reflection
at the facets of the coupling waveguide. With such etalon effects accounted for
(see Appendix [B.T)), the intrinsic (Qp) and external (coupling) (Q.) Q factors can
be determined. The measured intrinsic Qg factors are 418 million, 30.5 million,
2.01 million, and 2.69 million, for Si0,, Si3Ny4, Aly2Gag gAs, and Ta;O5 devices,

respectively.

The microresonator intrinsic Qg is determined by scattering and absorption losses.
In order to isolate the absorption loss contribution, cavity-enhanced photothermal
spectroscopy is used. The principle is based on that the resonant frequencies of
dielectric microresonators are shifted by the Kerr effect and the photothermal effect,
both of which result from the refractive index change that depends on the intracav-

ity optical intensity. Because these two effects occur on very distinct time-scales
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Table 1 | Properties of materials in current integrated high-Q microresonators at 1550 nm

Material Growth method Structure n, Reported n, (10 m? W) n, (102 m? W) Q.. (M) G,ps (dB M)
Sio, Wet oxidation Amorphous 1.44 22 = 3900 + 200 0.0065 + 0.0003
Si,N, LPCVD Amorphous 2.00 24 22+1 290 £ 50 0.12+0.02
Al,,Ga, As MBE Crystal 3.28 2600 1700 + 100 2002 28+2

Ta,0, IBS Amorphous 2.06 62 27+3 2403 15+2

Table 2.1: Summary of material loss and nonlinearity. LPCVD: low-pressure
chemical vapour deposition; MBE: molecular beam epitaxy; IBS: ion-beam sput-
tering. Propagation loss o,s induced by absorption is calculated as oma =
(10/In 10)won, / (Qabsc). Errorindicates standard deviation. These numbers should
be viewed as state-of-the-art values rather than fundamental limits. Possible sys-
tematic errors of measurement values are discussed in Section [2.8.6] The Qs for
Ta,Os is further discussed in Appendix [D.4]

(Kerr effect being ultra-fast and optical absorption occurring at a relatively slow
thermal time scale from milliseconds to microseconds), it is possible to distinguish
their respective contributions to resonant frequency shift and infer their nonlin-
ear coefficients [45]. Two distinct measurements are performed to determine the
absorption-limited Q5. Here, they are referred to as the “sum measurement” and
“ratio measurement.” In the sum measurement, resonant frequency shift is measured
to obtain the sum of Kerr and photothermal effects. In the ratio measurement, the
photothermal frequency response is measured to distinguish its contribution from
the Kerr effect.

2.3 Sum measurement

In the sum measurement, the microresonator is probed by a tunable laser whose
frequency is slowly swept across a resonance from the higher frequency side of
a resonance (i.e., blue-detuned side). The input light polarization is aligned to
the fundamental TE (SizNy4, Alp2GaggAs, and TayOs) or TM (SiO;) mode of the
microresonator. In the case of SiO,, because of the presence of multiple transverse
modes, a fundamental mode well separated from other resonances was used so as
to reduce the influence of mode interactions. The experimental setup is depicted in
Fig. [2.2(a). The frequency scan is calibrated by a radio-frequency calibrated Mach-
Zehnder interferometer (MZI) [S0]. The probe laser frequency scan is sufficiently
slow (i.e., quasi-static scan, see Fig. Fig. Fig. and Fig. for
details) to ensure that scan speed does not impact the observed lineshape through
transient thermal processes within the microresonator. The transmission spectra
exhibit a triangular shape [51] as shown in Fig. 2.2(b). Theoretical fittings of the
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Figure 2.1: High-Q optical microresonators characterized in this work. (a)
Schematic showing optical loss channels for high-Q integrated optical microres-
onators. The loss channels include surface (and bulk) scattering loss and material
absorption loss. The intrinsic loss rate is characterized by the intrinsic Q factor (Qy).
Bus waveguide coupling also introduces loss that is characterized by the external
(coupling) Q factor (Q.). (b) Left column: images of typical microresonators used
in this study. Right column: corresponding low input-power spectral scans (blue
points) with fitting (red). The intrinsic and external Q factors are indicated. M:
million.

transmission spectra are shown in red and discussed in Methods. Also, the cold
resonance spectra (i.e., with very low waveguide power) measured under the same

coupling conditions are plotted for comparison (dashed curve).

By changing the input pump laser power with a voltage-controlled optical attenuator
(VOA), the quasi-static resonance shift dwq of the resonant frequency wg versus the
intracavity circulating optical energy density p (units of J-m~3) is determined and

summarized in Fig. [2.2c). The observed linear dependence contains contributions
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Figure 2.2: The sum measurement. This experiment measures the sum of Kerr
and photothermal nonlinear coefficients (g + @). (a) Experimental setup. ECDL:
external-cavity diode laser; EDFA: erbium-doped fiber amplifier; VOA: voltage-
controlled optical attenuator; PC: polarization controller; PD: photodetector; MZI:
Mach-Zehnder interferometer; AFG: arbitrary function generator; OSC: oscillo-
scope. For SiO; experiment, ECDL is replaced by a narrow-linewidth fiber laser to
achieve a slower frequency tuning speed. As an aside due to narower tuning range
of fiber laser, this experiment is only performed at 1550nm for SiO,. (b) Typi-
cal transmission spectra of microresonators with photothermal and Kerr self-phase
modulation, where the input power in the bus waveguide is indicated. Theoretical
fittings are plotted in red and discussed in Methods. The cold transmission spectra
measured at low pump power are also plotted with dashed lines for comparison. WG
power: optical power in the bus waveguide. (¢) Measured resonant frequency shift
versus intracavity power for microresonators based on different materials. Dashed
lines are linear fittings of the measured data. The four traces have the same slope,
which is a result of the proportional relation shown in Eq. (2.1I). (d) Measured res-
onant frequency shift versus microresonator chip temperature for the four materials,
with linear fittings. The fitted shift for Aly,GaggAs, SizN4, SiO, and Ta;Os are
-13.1, -2.84, -1.83 and -0.996, in units of GHz-K!, respectively.
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Figure 2.3: The ratio measurement. This experiment measures the ratio of Kerr
and photothermal nonlinear coefficients g/a. (a) Illustration of the ratio measure-
ment. A pump laser is stabilized to a resonance and modulated by an intensity
modulator. The intracavity power is thus modulated. As a result of photothermal
effect and Kerr cross-phase modulation, the frequency of a nearby resonance is also
modulated. Another probe laser is stabilized near this resonance, and its trans-
mission is monitored by a vector network analyzer (VNA). Inset: the modulation
response allows distinguishing the photothermal and Kerr effects. (b) Experimen-
tal setup. IM: intensity modulator; CIRC: optical circulator; LPF: low-pass filter;
VNA: vector network analyzer. (c) Typical measured response functions of the
probe laser transmission R as a function of modulation frequency Q. Numerical
fittings are outlined as dashed curves. For modulation frequencies below 1 kHz, the
probe response is suppressed by the servo feedback locking loop. Some artifacts
appear around 1 kHz as a result of the servo control. Here the experimental trace is
smoothed over 5 points. (d) Measured wavelength dependence of the ratios between
the Kerr nonlinearity and photothermal effect for three materials. Vertical error bars
give 95% confidence intervals.

from the Kerr self-phase modulation and photothermal effects as,

50)0

1
— =——(a+g)p, 2.1)
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where @ and g denote the photothermal coefficient and the Kerr coefficient given

by: o
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Figure 2.4: Absorption Q s, nonlinear coefficients and parametric oscillation
threshold. (a) Measured absorption Q.ps factors at different wavelengths in the
telecommmunication C-band for the four materials. Vertical error bars give stan-
dard deviations of measurements. (b) Comparison of absorption Q,,s factors and
normalized nonlinear index (n,/n?) for the four materials. Measured n, values are
listed in Table @ The ny of SiO, was not measured here and a reported value of
2.2x 1072 m?> W~ is used. Parametric oscillation threshold for a single material
normalized by mode volume (Py,/Veg) is indicated by the red dashed lines, assuming
A = 1550 nm, intrinsic Q¢ equals material absorption Q, and Q. = Qy (i.e., critical

coupling condition).
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Here, «, is the energy loss rate (or dissipation rate) due to optical absorption, 7,
is the material Kerr nonlinear refractive index, n is the material refractive index, ng
is the material chromatic group refractive index, c is the speed of light in vacuum,
P,y 1s the absorbed optical power by the microresonator and 7" is the temperature of
the microresonator. The bar (e.g., ;) denotes the average value of the underneath

variable weighted by the field distribution of the optical mode. The exact definition
of each average is provided in Eqgs. ([.43), (I.44), and (1.45).

The energy loss rate k, is related to the material absorption-limited Q,,, factor by
wo

Qabs = —. (2.3)
K

a

To determine «, and hence Q,,s from «, it is necessary to determine Vg, 6_T/ Py
and dwqo/O6T. The effective mode volume Vg is calculated using the optical mode
obtained in finite-element modeling, and 0T | Pays is further calculated using the
finite-element modeling with a heat source spatially distributed as the optical mode.
The resonance tuning coefficient dwq/dT is directly measured by varying the tem-
perature of the microresonator chip using a thermoelectric cooler (TEC), and the
results are shown in Fig. [2.2(d). Since the TEC heats the entire chip, the thermo-
elastic effect of the silicon substrate contributes to the frequency shift and combines
with the photothermal effect. However, this thermo-elastic contribution does not
appear in the sum measurement, where the heating originates only from the optical
mode. Thus, the thermal-elastic contribution of the silicon substrate must be de-
ducted from the TEC measured results (see Section [2.8.5]). Other effects that may
lead to frequency shift or linewidth broadening (discussed in Section[2.8.6), such as
harmonic generation or multi-photon absorption, are not significant in the samples,

as confirmed by observing the coupling efficiency with respect to power (see Fig.

[D.1{d), Fig. [D.2(d), Fig. [D.3(d), and Fig. [D.4(d)).

2.4 Ratio experiment

The measurement associated with Eq. (2.1)) wherein the sum contributions of Kerr
and photothermal effects are measured is supplemented by a measurement that
provides the ratio of these quantities. This second measurement takes advantage
of the very different relaxation time scales of Kerr and photothermal effects. The
experimental concept and setup are depicted in Figs. [2.3p and 2.3b. Pump and
probe lasers are launched from opposite directions into the microresonator. The
pump laser is stabilized to one resonance by monitoring the transmission signal and

locking close to the center of the resonance. Pump power is modulated over a range
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of frequencies using a commercial lithium niobate electro-optic modulator driven
by a vector network analyzer (VNA). Similarly, the probe laser is locked to another
nearby resonance, and is slightly detuned from the center resonant frequency. Both
probe and pump modes are fundamental spatial modes, but not necessarily in the
same polarization state. For Aly,GaggAs and Ta,Os, both pump and probe modes
belong to the fundamental TE mode, while for Si3N,4, pump and probe modes belong
to the fundamental TE and TM modes, respectively (see Appendix [D.2). It is also
noted that this measurement was challenging to perform in the suspended SiO;
microdisks on account of a very slow thermal diffusion process (see Appendix [D.I).
Instead, a published value of n; for SiO; (2.2 X 10720 m2.- W) was used [52].

With this arrangement, pump power modulation in the first resonance induces mod-
ulation of the output probe power in the second resonance, through the effect of
Kerr- and photothermal-induced refractive index modulations. As illustrated in
the inset of Fig. [2.3(a), photothermal modulation determines the low frequency
response in this measurement, while the Kerr effect determines the intermediate
frequency response, and the highest corner frequency is set by the cavity dissipation
rate (see Methods). The probe frequency response measured for three different
microresonators is presented in Fig. [2.3c. The response at very low frequencies
is normalized to 0 dB. Both pump and probe laser powers are sufficiently low to
minimize the thermal locking effect [S1]. The plateau in the frequency response at
low frequency gives the combined quasi-static contributions of photothermal and
Kerr effects in the sum measurement (inset of Fig. [2.3(a)), while the high frequency
response constitutes only the Kerr contribution. In addition, the Kerr effect here
is the cross-phase modulation contribution (from the pump to the probe), while,
as noted above, the Kerr self-phase modulation contribution appears in Eq. (2.1).
These two effects are related by a cross-phase modulation factor y determined by the
mode combinations used (see Methods). By numerically fitting the response curves
(see Appendix [C.T)), the ratio between Kerr and photothermal effects is extracted
over a range of wavelengths and plotted in Fig. 2.3d.

2.5 Measurement result of absorption limited Q-factor

Combining results from the above sum and ratio measurements, the photothermal
and Kerr coeflicients are obtained individually. The inferred absorption-limited Q aps
values measured over the telecommunication C-band for each material are summa-
rized in Fig. [2.4((a). It is worth mentioning that the SiO, microdisk measurement

requires a narrow-linewidth, highly-stable fiber laser on account of the microres-
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onator’s ultra-high Q factor. The use of the fiber laser limits the measurement range
to near 1550 nm. A combined plot of the measured 7, values (normalized by n?)
versus the absorption Qg is given in Fig. [2.4(b) (the n, of SiO; is taken from the
literature [S2]). Also, in the cases of critical coupling (Q, = Q) and absorption-
limited intrinsic Q factors (Qg = Qabs), the parametric oscillation threshold (derived
in Eq.(1.93)) per unit mode volume [3} (53] [54] for a single material is shown by

dashed red iso-contours:

P 2
St # , (2.4)
Veff nz Qabs ¢

where Vi is the effective mode volume. It should be noted that actual thresholds may
be different if the optical field is not tightly confined in the core of the microresonator

heterostructure.

The results described above are further summarized in Table where, for Si0,
and Si3Ny, the measured material absorption losses are much lower than the present
microresonator intrinsic losses. Therefore, improvement in microfabication of SiO;
and Si3Ny to reduce surface roughness, hence to reduce scattering losses, will benefit
photonic integrated circuits using these materials. For Aly,Gag gAs and Ta,Os, the
material losses are close to their respective intrinsic losses, which suggests that both

material and scattering loss contributions should be addressed.

2.6 Additional discussion for each materials

Overall, the absorption Qs values reported here should be viewed as state-of-the-
art values that are not believed to be at fundamental limits. For example, silica glass
in optical fiber exhibits loss (typically 0.2 dB-km~") [55] that is over one order of
magnitude lower than that reported in Fig. [2.4(b).

Likewise, TayOs is the premier material for optical coatings employed, for example,
in the highest performance optical clocks and gravitational-wave interferometers.
However, Tay O5 exhibits fascinating stoichiometry and crystallization effects, which
require careful mitigation in deposition and processing. The material-limited Q of
Ta;Os and TiO;,:TayOs has been measured to be 5 million and 25 million, respec-
tively [56]. Hence, the nanofabricated devices and precision-measurement technique
reported here highlight the promise to optimize material-limited performance in the
TayO5 platform. It is also noted that in Alg,Gag gAs, a compound semiconductors
material, surface defects may generate mid-gap states [42] which cause extra mate-

rial absorption loss. This loss mechanism will depend upon process conditions and
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intrinsic Q factors as high as 3.52 M for Aly,Gag gAs have been reported elsewhere
[27]. Finally, some of the material parameters used in modeling are impacted by
factors such as the film deposition method. For example, thermal conductivity of
Ta;O5 can depend upon the deposition method as is reflected by a wide range of
values available in the literature (see Appendix [D.4). Such effects could also impact
other materials used in this study, but we have nonetheless relied upon bulk values
and simplifications in modeling (see Table [2.3)). Certain details in the simulation,
e.g., heat dissipation rate into the air (see Table [2.4), are also possible contributing
factors. Domain size in the finite element simulation have been optimized and not

considered as an error source.

The current method also provides in-situ measurement of n, for integrated photonic
microresonators. We compare the n, values measured here with other reported
values in Table 2.1] Reported n; values are taken from ref. [52] (SiO), ref. [57]
(SizNy), ref. [58]] (Aly2Gag gAs) and ref. [49] (TayO5).

To give a fashion of how the nonlinearity varies between the four materials, third-
order nonlinear susceptibility y(3) is calculated from the measured n, and compared
with the linear susceptibility y(1). The Miller’s rule [59,160] x 3) o )(?1) relating the

scaling of these two quantities is observed (see Section [2.7).

In summary, the absorption loss and Kerr nonlinear coefficients of four leading inte-
grated photonic materials have been measured using cavity-enhanced photothermal
spectroscopy. The material absorption sets a practical limit of these materials in
microcavity applications. The Kerr nonlinear coefficients have also been charac-
terized, and the results are consistent with a general trend relating to nonlinearity
and optical loss. Overall, the results suggest specific directions where there can be
improvement in these systems as well as providing a way to predict future device

performance.

2.7 Observation of Miller’s rule

The Miller’s rule gives a phenomenological prediction of the material nonlinear
coeflicients based on its linear susceptibility [59, 60]. Specifically, the third-order
nonlinear susceptibility y(3) is predicted to be proportional to the linear susceptibility
X?I)’ where

4eocn®

X(3) = nz, (2.5)

X(1) = n*—1. (2.6)
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Figure 2.5: Observation of Miller’s rule of nonlinear susceptibility.

The measured yx(3) (as calculated from n;) is plotted in Fig. along with a
fourth-power fitting (dashed). Despite a difference of 4 orders of magnitude in /3
between different materials, the fourth-power scaling is evident as shown in the

figure.

2.8 Methods and supplementary information

2.8.1 Fabrication of optical microresonators

The SiO, microresonator is fabricated by thermally growing 8-um thick thermal wet
oxide on a 4 inch float-zone silicon wafer, followed by i-line stepper photolithog-
raphy, buffered oxide etch, XeF, silicon isotropic dry etch and thermal annealing
[4, 48]. The SizN4 microresonator is fabricated with the photonic Damascene
process, including using deep-ultraviolet stepper lithography, preform etching, low-
pressure chemical vapour deposition, planarization, cladding and annealing [47].
The Alp,Gag gAs microresonator is fabricated with an epitaxial Alg,Gag gAs layer
bonded onto a silicon wafer with a 3-um thermal SiO; layer, followed by GaAs
substrate removal, deep ultraviolet patterning, inductively coupled plasma etching,
passivation with Al,O3 and SiO» cladding [26, 27]. The Ta;Os5 microresonator is
fabricated by ion-beam sputtering Ta; O5 deposition followed by annealing, electron-

beam lithography, Ta,Os etching, ultraviolet lithography and dicing [49].

2.8.2 Experimental details

In the sum measurement, the scanning speed of the laser frequency is decreased until
the mode’s broadening as induced by the thermo-optic shift becomes stable (i.e., not
influenced by the scan rate). Also, the waveguide input power is minimized such
that it is well below the threshold of parametric oscillation. The power is calibrated

using the photodetector voltage.

In the ratio measurement, the optical frequencies of the pump and probe lasers are
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locked to their respective cavity modes using a servo feedback with 1 kHz bandwidth.
The pump laser is locked near the mode resonant frequency, while the probe laser
is locked to the side of the resonance to increase transduction of refractive index
modulation into transmitted probe power. The intensity modulator is calibrated in a

separate measurement under the same driving power.

2.8.3 Fitting of spectra in the sum measurement

For Si3N4 and Ta;Os devices, the transmission spectrum is the interference of
a Lorentzian-lineshaped mode resonance with a background field contributed by
facet reflections of the waveguide. The transmission function of a cavity resonance

is given by
Ke

1 - )
k/2+i[A - (a+g)p]
where A is the cold-cavity laser-cavity detuning, @ and g are the absorption and

Tres = (27)

Kerr nonlinear coefficients, respectively, and p is the intracavity energy density as
defined in the main text. The reflection at the two waveguide facets forms a low-
finesse Fabry—Pérot resonator. Combining this waveguide reflection with the cavity
resonance, the overall amplitude transmission is given by (see Appendix [B.1)

2
T,
T o e , (2.8)

1 - rT expli(—=A/wep + ¢)]

where r is the reflectivity at the waveguide facet, wrp is the free spectral range of the

facet-induced Fabry—Pérot cavity (in rad/s units), and ¢ is a constant phase offset.

In the experiment, the above quantities are fitted in three steps. First, wpp and r are
obtained by measuring the transmission away from mode resonances. Next, loss
rates « and k., can be determined by measuring the transmission of the mode at a low
probe power. Finally, launching higher power into the microresonator allows the
mode broadening to be observed and the transmission is fitted with Eq. (2.8)), where
(a + g) is the fitting variable and other parameters are obtained from the previous
steps. For Alg»Gap gAs and SiO, devices which have no Fabry—Pérot background,
r can be set to zero and the first step in the above fitting procedure can be omitted.
The fitting results are presented in Fig. [2.2b).
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2.8.4 Fitting of response in the ratio measurement

The response of the probe mode resonant frequency Jy, as a result of pump power
modulation P;, can be described by (see Appendix C.1)),

oh(Q) _ af(Q)+yg  2mp
Pin(Q) Vet iQ+kp/2

(2.9)

where Q is the pump power modulation frequency (in rad/s units), Py, is the mod-
ulation amplitude of the pump power, «, is the total loss rate of the pump mode,
Mp = Kep/kp is the coupling efficiency for pump mode, « is the absorption coef-
ficient as mentioned in the previous section, 7 is the frequency response of modal
temperature modulation as a result of thermal diffusion, and the factor y accounts
for cross-phase modulation of the probe mode by the pump mode. The denominator
in Eq. (2.9) creates a corner frequency for the response that is illustrated in the inset
of Fig. [2.3(a) and that appears in the data and fitting in Fig. 2.3(c).

The frequency response of the transmitted probe mode with respect to its resonance
shift &y, (Q) is derived in Appendix and has the following form:

Tb(Q) _ 2Ke,bA}()0) Kb — Kep +1€2
0b()

5 > |ainpl?, (2.10)
@4+ (A7) (ko/2+102)2+ (A7)

where Al(jo) is the steady-state detuning of the probe mode when no modulation is
present, and «y, and «, p refer to the total loss rate and external coupling rate for the

probe mode.

The response curve in Fig. [2.3]c) is modeled by

_ (@) _ Th(Q) 5v()
Pin(Q) 55(Q) Pin(Q)’

and is fitted according to Eqs. (2.9) and (2.10). In the fitting, « and «, have been

measured separately, 7 is determined from finite element method simulations, and

R(Q) (2.11)

the probe mode A and ratio a/g are parameters to be fitted.

2.8.5 Calibration of resonance thermal shift

In the sum experiment, resonance shift originates from localized material absorption.
This increases the resonator temperature locally, and shifts the resonance primarily
through the thermo-optical effect (factor @, is defined in Eq. (1.48)). However,
when the resonance shift is calibrated using a thermoelectric cooler (TEC) (see

Fig. [2.2]d)), the entire chip is heated, and the resonance shift therefore includes a
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contribution from the thermo-elastic expansion created by the silicon substrate. To
remove this extra contribution, the coefficient of linear thermal expansion a@; g of
the silicon substrate is subtracted. As a check of this approach, Table 2.2 compiles
measured values for @, + @; g using the TEC as described in the main text along
with values for a;, and «; (coefficient of linear thermal expansion) reported in the
literature for the relevant materials. The TEC measured values are close compared
to the reported «, with the silicon (substrate material) @; added. The discrepancy
between «,, reported for Alg>Gag gAs makes the same comparison difficult, but the

result for this case falls reasonably close to the measured value.

ay, reported ay, reported ay + @) sub, measured (TEC)
SiO, 0.752 (ref. [61]) | 0.055 (ref. [62]) 0.95
SizNy 1.25 (ref. [63]) | 0.33 (ref. [64]) 1.47
Aly2GaggAs | 6.970 (ref. [26]) | 0.562 (ref. [65]) 6.798
6.054 (ref. [66]])
TayOs5 0.29 (ref. [67]) | 0.24 (ref. [68]) 0.52
Si (Substrate) - 0.26 (ref. [69]) -

Table 2.2: Thermo-optic and thermo-elastic coefficients reported in the literature
compared with the measured combined effect determined by heating of the resonator
chip.

2.8.6 Sources of systematic errors in Q,,; and n,

Material Density Thermal conductivity  Heat capacity
pm (kgm™) k (W-m™1.K™1) C Jkg 'K
Si (ref. [70]) 2.33x 10° 130 700
SiO, (ref. [70]) 2.2x 103 1.4 740
Si3Ny (ref. [70, [711) 3.17x 103 30 800
AlL,Ga;_,As (ref. [65]) | (5.32 —1.56x) x 10> 55— 212x + 248x? 320 + 132x
Tay0s 6.85 x 10 (ref. [72]) 0.4 (ref. [73]) 306 (ref. [74])

Table 2.3: Thermal constants of resonator materials used in finite-element method
simulations. The thermal conductivity of Ta;Os is further discussed in Appendix

D.4

The Qs and ny are calculated from measured « and g factors, respectively, utilizing
Eq. (2.2). The calculation uses material constants from handbooks, where a

measurement of these parameters is beyond the scope of this study.

* Thermal properties of the materials are taken from references as summarized
in Tables (2.3) and (2.2). The values not only depend upon the specific
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bulk material, but also on layer deposition and growth processes. In turn, a
variation in these parameters will directly impact the inferred Q5. Using a
larger thermal conductivity (or heat capacity) reduces the inferred 67 for the
same absorbed power (as in Eq. (I.55))), and leads to a lower calculated Q yps.
As an example, the reported thermal conductivity for Ta,Os has variations

and its impact is further discussed in Appendix [D.4]

e Similarly, the optical refractive index n, and group index n, refer to bulk
materials. These parameters appear in Eq. and affect the calculated n,.
Also, refractive indices determine the modal field distribution for averaging
(asin Egs. (1.43), (1.43)), and (1.53))), which also affect the calculated material

properties.

* In the experiment the air surrounding the sample is static, and the convective
heat flux coefficient # = 10 W-m™2-K~! (ref. [73]) is used in all simulations. A
larger convective heat flux coefficient will lead to lower temperature increase
per unit absorbed power (ﬁ/ P.ps), and to a lower calculated Q,,s. However,

numerical simulations indicate that this effect is minor (see below).

5_T/Pabs (K-W_l) Si02 Si3N4 Alo.zGaolgAS Ta205
h=2W-m2K7T | 558 953 90.7 1085.1
h=10W-m2-K!'| 552 953 90.7 1085.1
h=25W-m 2K | 542 953 90.7 1085.1

Table 2.4: 5_T/ Py values with different heat dissipation rate.

Furthermore, there are physical processes neglected in the modelling that may lead

to systematic errors.

» Surface and interface effects between different layers in the heterogeneous
structure may alter the theoretical model. For example, contact thermal resis-
tance is present at the interfaces between different materials, and this could
not be evaluated here. However, for micron-scale cross-section structures in
our study, the induced thermal resistance is negligible. As an example, for
the interface between silicon and silica, numerical studies [76] and measure-
ments [[/7] estimate the interface thermal resistance per unit area as 0.9 X 107
m?-K-W™! and 2.3 x 107 m?>-K-W~!, respectively. Meanwhile, with param-

eters in Table. [2.3] the thermal resistance of a 1-micron-thick silica film is
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evaluated to be 7.1 x 1077 m2-K-W~!, more than 102 larger than the inter-
face contribution. Apart from contact thermal resistance, surface absorption

may also be prominent for semiconductors (Aly,GaggAs) and is discussed in
Appendix [D.4]

There are absorption pathways where a portion of the absorbed energy does
not end up as heat (e.g., Raman and Brillouin scattering). Including such
effects requires more absorbed power for the same ST, and leads to a lower
calculated Q,ns. We do not believe these processes are significant since the

phase-matching condition is not favorable in measured devices.

Harmonics generation, multi-photon absorption and other nonlinear optical
effects may also lead to frequency shift or linewidth broadening. However,
because these will induce a power-dependent loss on the pump mode, coupling
efficiency of the pump mode will decrease when these effects are prominent,
and this is not observed in the transmission traces (see Figs. [D.Id, [D.2d,
@ﬂ, and @h). As a result, these effects are also neglected in the model.

It should be noted that error bars in the main text represent measurement errors

only (including instrumental error and data fitting error), while systematic errors

discussed above are not included. To ensure accuracy, the mode used for testing

should minimize all of the above nonlinear optical effects.
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Chapter 3

SOLITON PULSE PAIRS AT MULTIPLE COLOURS IN
NORMAL DISPERSION MICRORESONATORS

This chapter is based on the following published paper:
Yuan, Z., Gao, M., Yu, Y. et. al. Soliton pulse pairs at multiple colours in normal
dispersion microresonators.| Nat. Photon. 17, 977-983 (2023).
https://doi.org/10.1038/s41566-023-01257-2

Soliton microcombs [1]] are helping to advance the miniaturization of a range of
comb systems [2]. These combs mode lock through the formation of short temporal
pulses in anomalous dispersion resonators. Here, a new microcomb is demonstrated
that mode locks through the formation of pulse pairs in normal-dispersion coupled-
ring resonators. Unlike conventional microcombs, pulses in this system cannot exist
alone, and instead must phase lock in pairs to form a bright soliton comb. Also, the
pulses can form at recurring spectral windows and the pulses in each pair feature
different optical spectra. This pairwise mode-locking modality extends to higher
dimensions and we demonstrate 3-ring systems in which 3 pulses mode lock through
alternating pairwise pulse coupling. The results are demonstrated using the new
CMOS-foundry platform that has not previously produced bright solitons on account
of its inherent normal dispersion [3]]. The ability to generate multi-color pulse pairs
over multiple rings is an important new feature for microcombs. It can extend the
concept of all-optical soliton buffers and memories [4) 5] to multiple storage rings
that multiplex pulses with respect to soliton color and that are spatially addressable.
The results also suggest a new platform for the study of quantum combs [658] and

topological photonics [9-11]].

3.1 Introduction

Microresonator solitons exist through a balance of optical nonlinearity and dis-
persion, which must be anomalous for bright soliton generation. Moreover, mi-
croresonators must feature high optical Q factors for low pump power operation of
the resulting microcomb. While these challenges have been addressed at telecom-
munications wavelengths using a range of material systems [1], CMOS-foundry
resonators do not yet support bright solitons as their waveguides feature normal

dispersion [3]. Furthermore, all resonators are dominated by normal dispersion at


https://doi.org/10.1038/s41566-023-01257-2
https://doi.org/10.1038/s41566-023-01257-2

70

shorter wavelengths. For these reasons, there has been keen interest in developing
methods to induce anomalous dispersion for bright soliton generation in systems
that otherwise feature normal dispersion. Such methods have in common the engi-
neering of dispersion through coupling of resonator mode families, including those
associated with concentric resonator modes [[12,13]], polarization [[14] or transverse
modes [[15]].

Here, we engineer anomalous dispersion in CMOS-foundry resonators by partially-
coupling resonators as illustrated in Fig. [3.(a). This geometry introduces unusual
new features to bright soliton generation. For example, spectra resembling single
pulse microcombs form instead from pulse pairs as illustrated in Fig. [3.1(a). The
pulse pairs circulate in a mirror-image fashion in the coupled rings to form coherent
comb spectra (Fig. [3.1(b)) with highly stable microwave beat notes (Fig. [3.1]c)).
The interaction of the pulses in the coupling section between the rings is shown to
induce anomalous dispersion that compensates for the overall normal dispersion of
each ring. This pairwise compensation spectrally recurs thereby opening multiple
anomalous dispersion windows for the formation of multi-color soliton pairs. These
windows can be engineered during resonator design. Furthermore, the spectral
composition of each pulse in a pair is different. Fig. [3.I(b), for example, shows
through-port and drop-port spectra that reflect the distinct spectral compositions of
pulses in cavity A and cavity B of Fig. [3.1(a). This peculiar effect is also associated
with Dirac solitons [[16] and it is shown that the 2-ring pulse pair represents a new
embodiment of a Dirac soliton as the underlying dynamical equation (see Section
[3.6.3) resembles the nonlinear Dirac equation in 1 + 1 dimensions. Pulse pairing
is also extendable to higher-dimensional designs with additional normal dispersion
rings. For example, in Fig. [3.1)(d,e.f) 3 pulses in 3 coupled rings alternately pair to
compensate for the normal dispersion of each ring.

In what follows, we first study the dispersion of this system and compare it to previous
mode coupling methods. Experimental results including dispersion measurement
and comb formation are then presented. Pairwise pulse formation is then studied
in the time domain. Finally, because multi-pulse spectra in these systems resemble
conventional single-pulse soliton spectra, it is convenient to resolve this ambiguity
by denoting 2 and 3 ring systems as bipartite and tripartite soliton microcombs,
respectively. The need for this nomenclature becomes clear by the demonstration of
multiple pulse-pair states, including a 2 ring microcomb state containing 4 pulses

that behaves as a 2-pulse soliton crystal, and a 3 ring state with 12 pulses that behaves
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Figure 3.1: Soliton pulse pair generation in two- and three-coupled-ring mi-
croresonators. (a) Schematic showing coherent pulse pairs that form a composite
excitation. Inset: Photomicrograph of the two-coupled-ring resonator used in the
experiments. Rings A and B are indicated. The scale bar is 1 mm. (b) Simultaneous
measurement of optical spectra collected from the through port (pumping port) and
drop port in the coupled-ring resonator of panel a. The measured mode dispersion
is also plotted (orange). Two dispersive waves are observed at spectral locations cor-
responding to the phase matching condition as indicated by the dispersion curve. (c)
Radio-frequency spectrum of microcomb beatnote (RBW: resolution bandwidth).
(d) Ilustration of 3 pulse generation in a three-coupled-ring microresonator wherein
pulses alternately pair. Inset: Photomicrograph of the three-coupled-ring microres-
onator used in the experiments. The scale bar is 1 mm. (e) Measurement of optical
spectrum of the three pulse microcomb. The measured mode dispersion is also
plotted (orange). (f) Radio frequency spectrum of the microcomb beatnote.

as a 4-pulse soliton crystal.

3.2 Recurring spectral windows

Before addressing pulse pair propagation in the 2-ring and 3-ring systems, the con-
ventional mode-family coupling approach is considered [12-14]]. As arepresentative
example, the case of a concentric resonator system is chosen as illustrated in the
left panel of Fig. [3.2(a). The characteristics of this system are identical to other
methods. First, a phase matching condition must be satisfied by a mode in each
resonator such that the absolute mode number in each ring must be equal at the same
optical frequency. This mode number determines the wavelength where soliton
formation is possible. Second, the free-spectral-range values, FSR4 and FSRp, of

the uncoupled mode families of ring A and ring B must be close in value compared
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Figure 3.2: Illustration of inter-ring coupling with (without) mode number
conservation. (a) The top panel shows two different coupling schemes between two
ring resonators with different FSRs. The left configuration possesses a continuous
rotational symmetry that allows coupling only between modes with the same absolute
mode (azimuthal) number (i.e., mode number is conserved). In this case, the
coupling opens a gap at the mode crossing and creates two hybrid mode branches
(green curves in the lower panel). Here the center blue and red dashed lines
represent the resonance frequency of individual rings, and their intersection point
corresponds to phase matching. In this work (top right panel), inter-ring mode
coupling depends on the matching of resonance frequency instead of mode number
(i.e., mode number is not conserved), so that the dispersion is strongly altered at
all frequency degeneracies. (b) In the lower panel, frequency degeneracies are
marked by crossings between the blue and red dashed lines, which still represent the
dispersion of individual rings, but with the abscissa shifted by integer numbers as a
result of spectral folding allowed by non-conservation of mode number. Compared
to the first configuration, the dispersion curve of the coupled rings repeats itself
every 2M modes, with M = 1/(2¢) set by the length contrast of the rings.

to their average FSR = (FSR4 + FSRp)/2 so that phase matching occurs over a
large number of modes. With these conditions satisfied, the resulting dispersion
will be as illustrated schematically in the Fig. [3.2(b) (green curves). Comparison
to the uncoupled dispersion curves (center dashed blue and red lines) shows that
anomalous dispersion is possible for the upper mode family branch in the spectral

vicinity of the phase matching mode number M.
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Figure 3.3: Mode number non-conservation coupling and recurring bright
soliton windows. (a) Measured frequency dispersion of the coupled resonator
(green circles) versus relative mode number y. Here D;/(27) = 19.9766 GHz,
and wq is chosen so that u = 0 is at the crossing center (1552.3 nm). Multiple
anomalous dispersion windows appear around u = 0 and 400 for the upper branch
and u = —200 and 200 for the lower branch. The anomalous dispersion window
near u = —200, 0 and 200 have been highlighted. Solid curves are fittings and
the color refers to the energy contribution from ring A (obtained from theoretical
calculations). The average of the upper and lower branch mode frequencies is
plotted as orange circles and fitted by a second-order dispersion model (orange
curve). Inset: transmission observed when scanning a laser over resonances in
the anomalous dispersion windows. Soliton steps are observed around u = —200,
0 and 200. (b) Measured relative frequency dispersion of the coupled resonator
(green circles) versus relative mode number u. Here D,/(27) = —283.0 kHz, and
other parameters are the same as panel (b). Solid curves are the theoretical fittings
described by Eq. (3.2). Fitted mode frequency dispersion diagrams of the single
rings without coupling are shown as red and blue lines.

Next, consider the case where two rings are placed side-by-side and coupled to-
gether as illustrated in the right panel of Fig. [3.2fa). The two ring cavities differ
only in length, with ring B slightly longer than ring A so that FSR4>FSRp. Con-
sidering the straight coupling section from a coupled-mode perspective, modes of
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Figure 3.4: Temporal evolution of the soliton pulse pair in the two-ring coupled
resonator. (a) Upper panel: Illustration of the time evolution of the soliton pair
inside the two rings during one round trip time. Lower panel: Snapshots of the pulses
at different positions. In the non-coupled regions (I and IV), pulses accumulate
positive chirp due to nonlinearity and normal dispersion of the waveguide. Pulse in
ring A is leading in time at I due to shorter ring circumference. When the pulses
enter the coupling region (II), the pulses exchange energy, which leads to relative
position shifts as well as chirp compensation (III). The pulses exit the coupled
region (IV) with position shifts and chirping compensated. (b) Simulated pulse pair
properties are plotted versus pulse position in each ring during one round trip. The
two rings are aligned at the coupling region center, and the surplus length in ring
B is omitted in the figure. The yellow shaded area represents the coupling region.
The quantities are, from top to bottom: pulse timing difference (pulse center-to-
center), linear chirp, peak power, and full width at half maximum. The blue (red)
lines represent simulation results for the pulse in ring A (B). The dashed lines are
analytical results from a linear coupling model (see Methods), and are consistent
with simulation results.

the two rings will strongly couple if they have matching wavevectors (or equiva-
lently, resonance frequencies), while there are no requirements on mode number
matching of the rings (i.e., mode number is not conserved). In comparison to the
concentric ring configuration, this dramatically modifies the dispersion relation as
illustrated in Fig [3.2b, where the orange curves give the resulting dispersion. Due
to the loss of mode number conservation, inter-ring coupling pushes the resonance
frequencies away from that of the individual rings (blue and red dashed lines) at
all frequency degeneracies, so that recurring anomalous dispersion windows now
appear in the spectrum. These result from spectral folding that occurs between the

cavity resonances. As an aside, because mode number is not conserved, modeling
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Figure 3.5: Observation of bipartite and tripartite multi soliton states in two-
and three-coupled-ring microresonators. (a, b) Optical spectra of bipartite two-
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two-soliton crystal state. Insets: relative position of the two solitons inside each
microresonator. (¢, d) Through port optical spectra of tripartite two-soliton states
with different relative positions. Inset: relative position of the two solitons inside
each microresonator. (e) Through port optical spectrum of a tripartite three-soliton
state. Inset: relative position of the three solitons inside each microresonator. (f)
Through port optical spectrum of a tripartite four-soliton crystal. Inset: relative
position of the four solitons inside each microresonator.

of this dispersion proceeds differently relative to the standard coupled-mode family
approach (see Appendix [F.1]and [F.2)).

3.3 Dispersion measurements and soliton pulse pair generation

The coupled resonators in both 2-ring and 3-ring geometries consist of thin SizNy4
single-mode racetrack waveguide resonators with the same cross sections. Bus
waveguides are provided for external coupling. Optical images of 2-ring and 3-ring
coupled resonators are provided in Fig. [3.1[a) and [3.1(d) insets. For the coupled

2-ring device, the round trip length of ring A is 9.5 mm, which corresponds to
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Figure 3.6: Dispersion and coupling characteristics of the ring waveguide. (a)
Finite element simulation results for dispersions of straight Si3sN4 waveguides with
fixed width (2.8 um) as a function of wavelength and waveguide thickness. The
zero-dispersion boundary is marked as the black dashed curve. Nominal waveguide
thickness (100 nm) for the current process is marked as the white dashed line. (b)
Numerical simulations of the waveguide coupling rate g., and the corresponding
spectral gap 2G = gcoLcoD1 /7, with Lo = 1.0 mm and D = 27 X 20 GHz) are
plotted as a function of wavelength and waveguide thickness. The gap between
waveguides is 2.4 um.

a free spectral range (FSR) of ~20 GHz, and ring B is 0.5% longer than ring A.
For the 3-ring device, the rightmost ring has a circumference of 9.5 mm, and each
other ring is 0.3% longer than its right neighbor. The rings feature high intrinsic
Q factors exceeding 75 million, but individually each ring does not support bright
soliton formation around 1550 nm due to the strong normal dispersion associated
with the low confinement waveguide structure (see Fig. [3.6). Prior studies on

similar single-ring structures have generated only dark pulse comb spectra [3]].

The measured resonance frequency dispersion (green points) for the 2-ring system
with comparison to theory (solid lines) is shown in Fig. [3.3(a). The dispersion
of the 3-ring resonator is discussed in Section[F.2] The measurement is performed
using a radio-frequency calibrated interferometer in combination with a wavelength-
tunable laser [17]. The coupled resonators produce the two bands measured in Fig.
[3.3(a) where three anomalous dispersion windows are highlighted. Ateach window,
soliton steps are observed when scanning the laser frequency over a cavity resonance
(see insets in Fig. [3.3(a)). Operation at the longest and shortest wavelength windows
(1584.5 nm and 1525.5 nm) was challenging due to low laboratory laser power and
as a result, the time duration of the soliton steps for these wavelengths is relatively

shorter.

Analysis shows that the average frequency of the two bands (i.e., w, = (wy+ +

wy,—)/2) s given by the mode frequency for a length-averaged resonator at the same



77

a 110
I

Frequency (M
- N w B
o o o o
(gp) Aususyul aAnejey

o

Voltage (V)
, O N B
,>A o

N

Voltage (V)

T LT

Time (ps) Time (ps)

o
o
N
(<))
o
N

L L L

Voltage (V)
Voltage (V)

100 50 0_. 50 100 150 10 0
d Time (ps) Time (ps)
S ! — r S o
o 2f 1 o 2f 1
g7 1 Bt 1
$0 ‘ ‘ ‘ ‘ S of .
-100 -50 150 2 -1 0 1 2
. Tnme ps) Time (ps)
Sl S1 T T T
(] (0]
g g
S Op~ So
> >
-100 150 3 0 3
Tlme PS Time (ps)

Voltage (V)

o N

o E
(2
o

Voltage (V)

o N

-100 50 100 150 -10 0 10
Time (ps) Time (ps)
g S : : : T 1 SHF
So ‘ : ‘ ‘ S okl Y, W v
-100 -50 0_. 50 100 150 -20 0 20
Time (ps) Time (ps)
h ~ ! T . T — T
: | M‘/A/\——MML :
@ @
o o jo2}
g s
So ‘ : ‘ ‘ S op el T
-100 -50 0_. 50 100 150 30 0 30
Time (ps) Time (ps)

Figure 3.7: C and S resonances and autocorrelation measurements of solitons in
the coupled-ring resonator. (a) The relative frequency of the C and S resonances
are measured using a vector network analyzer and plotted versus tuning voltage in
the two-ring resonator. (b,c,d,e,f,g,h) Experimental autocorrelation measurements
of: (b) single soliton state in a two-ring resonator (state in Fig. [3.1(b)); (¢) two
soliton state in a two-ring resonator (state in Fig. @ka)); (d) two soliton crystal state
in a two-ring resonator (state in Fig. [3.5(b)); (e) single soliton state in a three-ring
resonator (state in Fig. e)); (f) two soliton state in a three-ring resonator (state in
Fig. [3.5(c)); (g) two soliton state in a three-ring resonator (state in Fig. [3.5(d)); (h)
three soliton state in a three-ring resonator (state in Fig. [3.5(e)). The resolution of the
autocorrelation setup is 100 fs. The zoom-in of each autocorrelation measurements
are shown in corresponding right panel.
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Figure 3.8: Stable soliton operation in the two-ring resonator measured over
4 hours. (a) Continuous measurement of the RF beat note of a pulse pair soliton
microcomb over 4 hours. The RF beatnote peak drift over 4 hours is within 25.7
kHz (1.29 PPM). f: RF frequency, f.: center RF frequency, RBW: resolution
bandwidth. (b) Simultaneous measurement of the optical spectrum of the pulse pair
soliton microcomb in panel a over 4 hours.

mode number (see Appendix[F.I)). We note that averaging the frequencies of the two
bands removes the effect of the coupling entirely, and the resulting average dispersion
shown in Fig. [3.3[a) (orange points) closely matches a parabolic-shaped dispersion
curve (orange curve). Accordingly, this average frequency can be described by a

second-order dispersion model:
1
Wy zwo+D1,u+§D2,uz (3.1)

where wy is the mode frequency at ¢ = 0 and u is a relative mode number referenced
to the frequency degeneracy at 1552.3 nm. D is the length-averaged FSR for the
resonator at u = 0, Dy = —cD%,Bz /ng is the second-order dispersion parameter at

u = 0 with group velocity dispersion 3, and waveguide group index ng.

On the other hand, the effect of the coupling is made clearer by plotting the mode
frequencies relative to the averaged frequency (i.e., relative mode frequency w,, . —
wy) as shown in Fig. @b). Without inter-ring coupling, the relative mode
frequencies of the single rings appear as straight lines on the mode spectrum plot.

These lines are related to the straight dashed lines for the uncoupled resonators in
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Fig. [3.2[a). Their positive and negative slopes in Fig. [3.3|b) result from removing

a linear component of dispersion in this plot given by the average FSR, D;. Mode
number walk-off also causes the lines to vertically wrap around at +D/2. For
the rings used here, the length of ring B is 0.5% longer than ring A, and frequency
degeneracy of the rings occurs every 200 ring A modes (or every 201 ring B modes).
The introduction of coupling opens gaps at all frequency degeneracies, regardless

of whether the absolute mode number is matched.

More detailed analysis shows that each of the gap widths equals 2G = g¢oLcoD1/7,
where g, is the coupling strength per unit length and L, is the effective coupler
length. The full dispersion relation is found to be (see Appendix [F.I)):

D
Wyt = Wy * 2—1 arccos [cos(gcoLco) cos (2mew) | (3.2)
T

where € = (Lg — La)/(Lp + La) is the length contrast of the rings, and La (L)
is the length of ring A (B). For the current design € = 1/401, and the gap is
modulated with respect to mode number with period €~! = 401 (corresponding to
8 THz in the spectrum). The small length contrast € guarantees the wide spectral
range of the anomalous dispersion window. Overall, there is very good agreement
between the model and the measured data in Fig. [3.3[a) and Fig. [3.3(b), and the
fitting allows determination of key resonator parameters (see figure caption). As an
aside, the spectral gap is smaller at larger mode numbers, which can be attributed
to the wavelength dependence of g.,, as shorter wavelength results in stronger
mode confinement, and hence smaller coupling with the adjacent waveguide. When
combined with the original normal dispersion of each ring, the net dispersion for
coupled system remains anomalous around u = 0 and 400 for the upper branch and
around u = —200 and 200 for the lower branch.

Besides the observation of soliton steps (Fig. [3.3(a)), microcomb spectra measured
around 1550 nm for through port (ring A) and drop port (ring B) are presented in Fig.
[3.1(b). The microcomb was stabilized by measuring comb power from the through
port and feeding back to the pump laser frequency, which controls the pump-cavity
offset frequency [18]. The comb exhibits excellent stability and measurements of
comb spectra and repetition rate over 4 hours of operation are provided in the Fig.
3.8l The theoretical pulse width of the comb spectra in the figure is estimated
to be ~ 250 fs. Comb coherence and soliton pulse behavior were confirmed in
several ways. The radio-frequency spectrum of the soliton beatnote is presented in
Fig. c). Also, the soliton S-resonance and C-resonance [[19],20] were measured
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using a vector network analyzer. Plots of their relative frequencies versus laser-cavity
detuning are given in Fig. Finally, time domain autocorrelation measurements
are also given in the Fig. Multiple pulse pair comb states are discussed in
the next section and autocorrelation measurements for these comb states are also
included in Fig.

Through port and drop port spectra correspond to pulses in ring A and ring B,
and show these pulses are both different from each other and deviate from the
conventional sech? shape of Kerr solitons. The through port spectrum is stronger
(weaker) than the drop port at shorter (longer) wavelengths. This is a result of
this system representing a new version of the Dirac soliton [16] as discussed in the

Methods section.

In Fig. [3.1(b), two strong dispersive waves (DWs) are observed near 1526 nm
and 1577 nm. These correspond to spectral locations where modes of the coupled
resonator phase-match to the soliton comb line. For comparison, the dispersion in
the vicinity of the comb spectrum has been overlaid in the figure. The DWs broaden
the soliton spectrum and provide higher power comb lines (1.5 uW on-chip power
at shorter wavelength and 5.4 uW at longer wavelength), which is advantageous for
application to optical frequency division [2]. To further confirm coherence, the radio
frequency spectrum of the soliton beatnote is presented (Fig. [3.1(c)). Finally, the
soliton S-resonance and C-resonance [19] were measured using a vector network

analyzer. Plots of their relative frequencies versus laser-cavity detuning are given
in Fig.

Comb generation in the 3-ring system was also demonstrated (see Fig. [3.1(d)). Here,
the coupling on both sides of the middle ring creates local anomalous dispersion
windows (Appendix[F.2). Fig. [3.1)(e) shows the spectrum of three pulses as measured
from the center ring. The measured dispersion is also included in the figure. The
pump laser wavelength is several nanometers away from the anomalous dispersion
center frequency, and, as a result, the spectrum features only one dispersive wave at
the shorter wavelength side. The radio frequency spectrum of the soliton beatnote

is presented in Fig. [3.1](f), indicating good coherence.

3.4 Pulse pairs and multi-partite states
This section describes a time domain picture of the coupled-ring system. Besides
providing a complementary physical picture (to the dispersion analysis above), sim-

ulations of mode locking show microcombs form as phase-locked pulse pairs where
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the pulses have opposite phases. The pair viewpoint provides a powerful framework
for visualization of mode locking that readily explains observable multi pulse-pair

states and higher dimensional systems comprising multiple coupled cavities.

Simulations of pulse propagation in the 2-ring system are presented in Fig. [3.4(a).
Here, the ring FSRs and couplings are those of the experimental system studied
in Fig. [3.3] and excitation occurs for the mode u = 0. As shown in Fig. [3.4(b),
each pulse undergoes shape, chirp, and pulse width variations that repeat upon each
round trip. Before entering the coupling region (point I in Fig. [3.4(a)), the chirp of
both pulses has increased due to uncompensated Kerr nonlinearity from propagation
in normal dispersion waveguides of each ring. Pulse chirp is indicated in the lower
panel of Fig. [3.4(a), where the color represents instantaneous frequency. The pulse
in ring B (red) also lags behind its counterpart in ring A (blue) due to the difference
inring lengths. However, upon entering the coupling region (point II), the ring B (A)
pulse accelerates (decelerates) and becomes the leading (lagging) pulse when exiting
the coupling region (point III). In the meantime, the chirp of both pulses decreases
through the coupling region. Upon exiting the coupling region, the pulses propagate
in their respective waveguides (point IV) where chirp increases as the pulses circle
back through point I. Detailed numerical simulations are used to further explore and

confirm the pulse pair evolution (Fig. [3.4(b)).

This picture of pairwise round trip compensation of normal dispersion enables
understanding of how compensation works for multi-pair systems as well as for
higher dimensions with additional ring cavities. Specifically, it constrains the ways
these states are allowed to form. For example, consider the coupled-ring states in
Fig. [3.5(a,b) wherein 2 pulse pairs circulate in a mirror-image like fashion to form
the observed spectra. Here, to reduce confusion with corresponding multi-pulse
soliton systems, we adopt the nomenclature that a single pulse pair in a 2 ring
system is a bipartite single soliton (see Fig. [3.1(a,b)), while multi-pair states in the
same are bipartite multi soliton systems. Specfically, the states in Fig. [3.5(a,b) are
bipartite 2 soliton states. The state in Fig. [3.5(b) is moreover a bipartite 2-soliton
crystal. Notice that the requirements imposed on pulse pairing allow a one-to-one
correspondence between conventional multi-soliton states and bipartite states, since
the pulse configurations in each ring resonator must mirror image its neighboring

ring.

The same is true for higher dimensional systems. For example, three pulses compen-

sate normal dispersion by alternating their pairwise coupling as illustrated in Fig.
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[3.1(d). Here, the outer ring pulses experience compensation once per cycle, but the
inner ring pulse experiences compensation twice per cycle. Moreover, the pairwise
compensation works when additional pulses are added to each cavity. For example,
measurement of tripartite 2 soliton, 3 soliton and a 4 soliton crystal state (containing
respectively 6, 9, and 12 pulses) are presented in Fig. c,d,e,f). Notice that the
measured comb line spacing (79.93 GHz) for the crystal state is four times the FSR

of a single ring as is consistent with a conventional 4 soliton crystal state.

3.5 Discussion

In summary, we have observed a new type of microcavity soliton that mode locks
as pulse pairs distributed spatially over multiple ring resonators. The requirement
to compensate overall normal dispersion of the rings requires that the pulses in each
ring arrange themselves as a mirror image of the pulses in neighboring rings. Partial
coupling of the resonators creates a situation in which ring resonator mode number
is not conserved and this enables recurring spectral windows where the pairs can be
formed. The presented bright soliton results use the CMOS-ready process that has
previously been restricted to only dark pulse generation. The ability to distribute
coherent pulses over multiple rings with individual taps and with simultaneous pulse
formation at multiple wavelengths presents new opportunities for soliton science and

microcomb applications.

3.6 Methods and supplementary information

3.6.1 Resonator design

The rings consist of Si3Ny waveguides (2800 nm width and 100 nm thickness)
embedded in silica and formed into a racetrack shape. The waveguide cross-section
only supports one polarization mode. Detailed information on fabrication steps can
be found elsewhere [3]. For the two-ring device, ring A has a circumference of
9.5 mm, and ring B is 0.5% longer. For the three-ring device, the rightmost ring
has a circumference of 9.5 mm, and each other ring is 0.3% longer than its right
neighbor. The adiabatic waveguide bend has the shape of a fifth-degree spline such
that the curvature is continuous along the curve and transition loss is minimized.
The gap between the inner edges of the two waveguides in the coupling region is
2400 nm, and the effective coupling length is 1.0 mm including contributions from

the adiabatic bend (which is 10.5% of the shortest ring circumference).

The simulated dispersion of straight SizNs waveguides with 2.8 ym width are
shown in Extended Data Fig. [3.6(a). For these calculations, the effective index
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of the fundamental TE mode was calculated and the group velocity dispersion
determined through 8, = A3/ (27rcz)62nwg /0%, where 1 is the vacuum wavelength.
For waveguides with thickness under 780 nm, the fundamental TE mode always
features normal dispersion in the C-band. To maintain high optical Q factors, the
waveguide thickness is about 100 nm for the current process, which places the

waveguide deep into the normal dispersion region.

Simulations of the waveguide coupling rate g., with 2.4 um coupling gap are
presented in Extended Data Fig. [3.6(b). The effective index of the two supermodes
at the coupling region is calculated, and the coupling rate g, is related to the index
difference of the supermodes Any,g by gco = Anygm/A. With a thinner waveguide or
a longer wavelength, the optical confinement is weaker, leading to a larger coupling

strength and larger spectral gap width.

3.6.2 Dispersion measurement and fitting

The dispersion is measured by sweeping a mode-hop-free laser while pumping the
resonator, recording the mode positions from the transmission signal, and comparing
it against a calibrated Mach-Zehnder interferometer [17]. The averaged mode
frequencies are fitted by a second-order dispersion model given by Eq. (3.1I) with
Dy =27x%x19.9766 GHz and D, = 27 X (—283.0) kHz. The relative frequencies are
fitted with Eq. (3.2)), where we assume that the coupling is exponentially decaying

with respect to mode number:

8co = &co,0 exp(—,u/,ug) (33)

where u, gives a decay scale. The fitting uses g¢o0, i, and the crossing center
position as fitting parameters, while D and D5 are derived from the mode frequency
average fitting and € = 1/401 is taken from design values. Fitting gives gco.0Lco =
0.954 and ug = 1196. The coupling is equivalent to a 33% : 67% coupler near u = 0,
and the coupling rate increases by 5.4% for every 10 nm increased near 1550 nm. The
coupling rate and decaying scale are close to simulation results (gco,0Lco = 0.782,
5.5% increase per 10 nm; see Extended Data Fig. [3.6(b)). Differences between
measured and simulated values may result from refractive index and layer thickness

variations.
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3.6.3 Dynamics of the soliton pulse pair

The optical fields in the two rings are governed by the coupled nonlinear wave

equations:
OE A (K Lis ) £ OE A _:82"'; 02EA
—— =— (= +idw —v —1i
ot 2 A)EAT g, 2 42
+igcoVeXeo(2)Ep +igNL|EAI*EA + F (3.4)
3
OEgp K dEy B2y 0°Ep
B (246 )E - i
o1 (2 OWB) BB Ve T T Ty a2
+igcoVaXeo(2)Ea +ignL|EB|*En (3.5)

accompanied by periodic boundary conditions in the z direction, where E s g denotes
the optical field in the two rings normalized to photon numbers in the corresponding
length-averaged ring, k = ki, + Kex 1S the loss rate (sum of intrinsic and external loss)
for the individual rings (assumed to be identical for ring A and B), which can be
linked to the quality factors via k = wy/Q, kin = Wo/Qin, and kex = wWo/Qex- Also,
dwaB = WoAB — Wp is the pump laser detuning, vy = ¢/ng is the group velocity of
the waveguide, z € [0, Lo p) is the resonator coordinate with La g the ring length,
2 is the waveguide group velocity dispersion, g, is the coupling strength between
the two waveguides in the coupling region, y.o(z) is the indicator function with
value 1 in the coupling region and O elsewhere, gnp = hw%Dlnz /(2nngAeg) is the
nonlinear coefficient with A.g being the effective mode area, and F = \/m
is the pump term where Pj, is the on-chip pump power. For simplicity, the pump and
loss terms are averaged over the entire resonator without considering the detailed

coupling geometry between the rings and the bus waveguides.

To demonstrate that the resulting soliton resembles the optical Dirac soliton [16], we
will convert the above equations into a form that is analogous to the Dirac equation
in quantum field theory. We start by defining a common roundtrip variable 8 for
both resonators, with 8 = 2wz/La for ring A and 6 = 2nz/ Ly for ring B. With this
change, the LLE reads

8EA K
I=h (K yis )E
ot (2 t0WA | A
D (9EA +i D> azEA
- l
1—€ 00 2(1-¢€)2 962
+igcoVaXeo(0)Ep +igNLIEA|*Ea + F (3.6)

and similarly for Eg with € replaced by —e and pump term dropped. The unified

roundtrip variable breaks the correspondence of waveguide sections in the coupling
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region, but these have been neglected as the pulse width is much larger compared
to the ring length difference (Fig. [3.3]b)). Switching to the co-moving frame of the
pulse [Yap(0,1) = Eas(6 + Dit,t)] leads to

M (K Oya Dy d%ya
Ey ~ (2+l(5a)A) YA —€Dy 20 +1 5> a8
+iGyp +ignLlWal*Wa + F (3.7)

and similarly for Ep, where we retain the lowest order of € and further assume
that the pulse varies slowly within one round trip such that the effect of coupling
is averaged over the resonator length (i.e., uniform coupling which conserves the
mode number). Finally, shifting the wavevector and frequency reference (/g =

Yapexp(ikod —iwpt)) gives

0 ~ oy -
% ~ —i(de - €D1ko+a)0) YA — GDl% +iGl/IB
+igNLIWAl* P A
- .Dy0%
- §¢A + i72 89‘/’2“ + Fexp(ikof — iwot) (3.8)
aﬂ e —i(éa)B +€D]k0+a)0)l/7]3 +ED1% +iGlZA
ot 00
+ignLIUB[ B
K ~ D2 azlﬁB
R T )

where we assume that we are pumping near the crossing center such that eD| <«
Dyko and high-order terms in k¢ could be neglected. Choosing ky = (dwa —
dwp)/(2eD) and wy = —(dwa + dwp)/2 removes the effective detuning terms

from the two equations.

This can now be compared to the massive Dirac equation in 1+ 1 dimension written

in a chiral basis [21]]:

2

M
O = —cOu +i—

'Mcz
OWR = +CcOUR + lTlﬁL 3.11)

YR (3.10)

where M is interpreted as the mass, and corresponds to the coupling term (the
massless Dirac equation with M = 0 would correspond to an uncoupled system with
frequency gap closed). The momentum term corresponds to the FSR difference. The

nonlinear term converts the equation into a nonlinear Dirac equation, although there
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Figure 3.9: Simulated optical spectra and dispersion relation for Dirac solitons
assuming different levels of approximations in the model. Top panel: Uniform
coupling between two rings (mode number conservation), without pump and loss,
and with zero second-order dispersion. Middle panel: Non-uniform coupling be-
tween two rings (mode number non-conservation), with pump and loss included, and
with zero second-order dispersion. Recurring dispersion relations can be observed
but the spectrum is free of strong dispersive waves. Bottom panel: Non-uniform
coupling between two rings (mode number non-conservation), with pump and loss,
and with negative second-order dispersion [i.e., full Eqs. (3.4) and (3.5)].

is no exact analogue of the self-phase modulation in quantum field theory as this
contradicts the Pauli exclusion principle. Loss, pump and second-order dispersion
terms do not have analogues in the nonlinear Dirac equation, and could be treated as
perturbations for the soliton dynamics. For example, D is no longer the dominant
contribution to dispersion near the mode crossing center. We note that these terms
do not change the qualitative features of the generated soliton, therefore establishing
the link between the current soliton and the optical Dirac soliton previously studied
[16]]. A comparison of the simulated soliton spectral profile using different levels

of approximation can be found in Fig. 3.9
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3.6.4 Simulations of soliton pulse pair formation

Numerical simulations have been performed based on the nonlinear wave equations
[Egs. (3.4) and (3.5)] and the results are used for plotting Fig. [3.3[(b). For simplicity,
the coupling is assumed to be wavelength independent (gco = &co.0), Which makes
understanding the dispersion compensation in the coupling region more transparent.
Parameters used for numerical simulations are: wo = 27 X 193.34 THz, Qj, = 75
M, Qex = 45 M, 6wp = 6w = 12.5k — G where G is the half gap created by
the coupling (pump is red-detuned with respect to the upper branch resonance by
12.5«), Dy = 27 x 19.9766 GHz, D, = —2n x 283.0 kHz, ny = 1.575, P;, = 300
mW, gnp = 0.0277 s7!, and geoo = 0.954 mm™!.

3.6.5 Soliton dynamics in the coupling region
In the coupling region where linear interaction is dominant in the soliton dynamics,
the coupled LLE can be reduced to:

OEs 1 0EA

—+ ——— =g E 3.12
OEg 1 0Ep

—t—— = E 3.13

where z = 0 denotes the beginning of the coupling region. Note that g., here is
assumed to be wavelength independent for simplicity. The optical fields at z can be
related to the incident fields (z = 0) as

Ea(z,1) = cos (8coz) Ea(0, 1) +isin (geoz) Eg(0, 1) (3.14)
EB(z,1) = cos (gcoz) E(0,1") +isin (geoz) Ea(0,1") (3.15)
where ' =t — z/v, is the retarded time. The evolution of soliton properties with
propagation distance plotted in Fig. [3.3|b) is obtained from Eqs. (3.14) and (3.15),

with initial conditions E s (0, t') taken from simulations, and shows good agreement
with the simulation results using Eqgs. (3.4) and (3.5).
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Chapter 4

OBSERVATION OF INTERBAND KELLY SIDEBANDS IN
COUPLED-RING SOLITON MICROCOMBS

This chapter is based on the following published paper:
Gao M., Yuan Z. Yan Y. et. al., Observation of interband Kelly sidebands in
coupled-ring soliton microcombs, Optica 11, 940-944, (2024).
https://doi.org/10.1364/0PTICA.524074

Kelly sidebands are a special type of dispersive wave that appear in mode locked
systems and they have recently been observed by pulsed excitation in integrated
microcombs. Here, Kelly sidebands are generated by continuous-wave excitation in
a partially-coupled racetrack-resonator microcomb. The coupled-racetrack system
supports two optical bands so that, in contrast to earlier studies, the soliton and Kelly
sideband reside in distinct bands. The resulting interband excitation of the Kelly
sidebands relaxes power requirements and continuous-wave sideband excitation is
demonstrated. Tuning of sideband spectral position under pulsed excitation is also
studied. Numerical simulation and the experiment show that the sidebands rely
upon symmetry breaking caused by partial coupling of the two-ring system. More
generally, multi-band systems provide a new way to engineer Kelly sidebands for

spectral broadening of microcombs.

4.1 Introduction

Kelly sidebands (KSs) [[1]] have been intensively studied in soliton mode-locked fiber
lasers [2-7]. They resemble dispersive waves (DWs) [8-11]] but their phase relative
to the mode-locked optical pulse changes by integer multiples of 27 (instead of 0)
every cavity round trip. This roundtrip phase mismatch prevents coupling of the
soliton and KS unless a symmetry is broken in the system. Like DWs, KSs extend
the spectral reach of the pulse. However, generating KSs is challenging in integrated
photonic resonators on account of their smaller round trip path lengths compared to
table-top mode locked systems. Nonetheless, KSs have recently been observed in

pulsed-pumped soliton microcombs featuring broken symmetry [12]].

Here, interband KSs are observed in soliton microcombs formed using dual-racetrack

Si3Ny microresonators [13] (Fig. .1[(a)). The Si3N4 waveguides used to fabricate
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Figure 4.1: Illustration of KS generation. (a) Optical image of the partially
coupled racetrack resonator. (b) Measured integrated dispersion of the two hybrid
mode families (orange and red) is plotted versus wavelength and relative mode
number. When pumped near point I (anomalous dispersion center of the upper
band), soliton pulse pairs form as illustrated in panel (c). Also, DWs (interband
KSs) appear at points II & III IV & V). The appearance of KSs at points IV and V is
discussed in Section@ w,: frequency of mode i, wp: center mode frequency,
D /2n: free-spectral-range (FSR) of the resonator, u: relative mode number such
that =0 corresponds to the pump mode. (¢) Schematic showing soliton pulse pair
propagation in the coupled racetracks. DW and KS waves are indicated as oscillatory
backgrounds. (d) Measured optical spectrum of soliton pulse pair from continuous-
wave laser pumping. DWs and interband KSs are observed at the predicted location
in panel (b). Dispersion curves are overlaid onto the soliton spectrum for reference.
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the racetracks feature normal dispersion, however, partial coupling of racetracks
having slightly different free-spectral-ranges (FSRs) creates two optical frequency
bands associated with the hybridization of the individual racetrack modes. The
measured integrated dispersion of these bands is plotted in Fig. [.I[(b), and shows
that the frequency bands feature spectral windows with anomalous dispersion. For
example, the upper band (soliton mode band in Fig. [.I[b)) features anomalous
dispersion in the vicinity of point I, and pumping near this point has been shown
to form bright soliton pulse pairs that circulate in a mirror-image fashion as shown
in Fig. @.T[(c) [13]. In this work, the impact of this multi frequency band structure
on KS formation is studied. Specifically, interband KSs are shown to form in the
orthogonal band in Fig. {.I[b). Also, as discussed in the Section {.5.1] partial

coupling of the racetracks creates symmetry breaking that allows the soliton to cou-
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Figure 4.2: Comparison of numerical simulation results for sideband gener-
ation in partially coupled and fully coupled resonators. (a) Simulated soliton
spectrum and dispersion profile of the partially coupled racetrack. The soliton,
when pumped at point I, generates two dispersive waves (point II and III) and two
interband Kelly sidebands (point IV and V). (b) Simulated soliton spectrum and
dispersion profile of the fully coupled racetrack. In this case, the Kelly sidebands
at point IV and V do not appear, because of phase mismatch. Panel (a,b) Insets:
illustration of partially coupled and fully coupled racetrack configuration.

ple to these KSs. The spectral shift provided by interband excitation of the KSs
relaxes otherwise challenging KS excitation requirements on comb bandwidth in
micocombs, and continuous-wave excitation is demonstrated. In addition pulsed

pumping is studied as a way to tune the KSs spectral locations.
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Figure 4.3: Active control of KS wavelengths on blue and red sides through
pulse pumping. (a) Optical spectrum of soliton pulse pair generated from pulse
pumping. The measured mode frequency dispersion for the two bands is also
plotted. Inset: zoom in of the dispersion curve of the pumped mode family and
its comparison with 19.97267 GHz comb frequency line (horizontal magenta line)
and 19.97359 GHz comb frequency (tilted blue line). The right vertical axis of
the inset is a magnified version of the right vertical axis of the main panel. (b, ¢)
Zoom-in optical spectra of the two KSs at shorter wavelengths (panel b) and longer
wavelengths (panel ¢) for different input pump-pulse repetition rates. Legend gives
the repetition rate of the input pump pulse relative to 19.97217 GHz. Vertical dashed
grid lines indicate multiples of the comb repetition rate of 19.97267 GHz.

4.2 Obsrvation of Kelly sideband

The coupled-ring devices are fabricated using the CMOS-compatible process de-
scribed in reference [14]. Continuous-wave laser pumping around the anomalous
dispersion window near point I produces the optical spectrum shown in Fig. i.1(d).
This spectrum corresponds to soliton pulse pair mode locking as illustrated in Fig.
M.1{c) [13]]. For comparison, portions of the dispersion spectra for the two frequency
bands in Fig. #.1(b) are overlaid with the pulse-pair spectrum.

The spectrum in Fig. [.I[d) features two DWs at points II and III. These DWs
correspond to modes that phase match with soliton comb frequencies. Meanwhile,
two further sidebands are observed at points IV and V, which are identified as
KSs. These sidebands are notable because they form on the other frequency band
(interband KS) relative to the frequency band used to generate the soliton pulse pair.
As indicated, the values of their integrated dispersion differ by one FSR (D /2x in

the figure) compared to point I, and as such the sideband phases are mismatched by
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Figure 4.4: Explanation of Kelly sideband (KS) formation. (a) Comb frequen-
cies (blue) walk-off from resonator mode frequencies (red) by D,u?/2 as a result
of anomalous dispersion. Comb line at ¢ = 0 is also the pump. The comb and
mode frequency become aligned (orange highlight) when this walk-off is equal to
an integer multiple of D (FSR). This frequency is approximately the frequency of
the KSs. p: relative mode number. w,: frequency of each mode. D{/2n: FSR of
the resonator. D;: second-order dispersion of the resonator. (b) Dispersion profile
of the mode family shown in panel a. The first few corresponding modes in panel
(a) are indicated by dashed arrows. When a mode frequency is an integer times
D1 /2r relative to the pumped mode at =0, it becomes possible to generate a KS at
this frequency, provided a second condition is satisfied as described in panel (c). (c)
Illustration of the propagation phase of the comb and the mode at u*. Their relative
phase changes by a multiple 27 every round trip, leading to phase mismatch of the
waves and preventing KS generation when the resonators are fully coupled.
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Figure 4.5:  Analysis of the comb and KS frequency offset using frequencies
measured with a high-resolution OSA (resolution of 125 MHz, blue shaded area).
The comb spectral lines (from around 190 THz to 195 THz) and the Kelly sidebands
(KS) on the red side (two data points around 187 THz) exhibit approximately the
same offset frequency, within the precision limits of the spectrometer. Data at higher
frequencies were not collected due to spectrometer limitations. Further details are
provided in the text.

2n relative to the pumped mode every round trip (See Fig. 4.4). It is important to
note that this mismatch is primarily accumulated because the soliton and KS waves
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reside in distinct frequency bands (separated by a frequency shift comparable to the
cavity FSR). As shown in the Section [4.5.1] the accumulation of this shift would
normally require a larger number of mode shifts and hence greater comb bandwidth
and power. While other types of interband sideband generation in coupled-ring
solitons have been studied before [15]], the KSs in our study are fundamentally
different from conventional phase-matched sidebands that do not require symmetry

breaking.

4.3 Numerical simulation

Numerical simulation is performed to compare the difference of KS generation
in the partially coupled and fully coupled devices. The result is shown in Fig.
M.2] The simulation for the partially coupled case is based on the coupled mode
Lugiato-Lefever equation (LLE) with a position-dependent coupling term in the lab

coordinate, formalized as [[13],

0ER (K +is )E O0ER _:82‘)2 azER
— == |z t+iow -y —
a1 2 R)ER™ Ve, 2 972
+igk|ER|*ER +igcvaxc(2)EL + fp, (4.1)
and
3
0EL K . 0EL _IBZVg azEL
—— =—|z+io )E - —
ot (2 POOL)EL = Ve = T I 5 2
+igk|ELI*EL + igevexc(2) ER, (4.2)

where E7 r denotes the normalized optical field in the left and the right racetrack,
K = Kin + Kex 1s the sum of intrinsic and external loss rate for each racetrack, dwr r
is the pump laser detuning, v, is the group velocity and §3, is the group velocity
dispersion of the waveguide, 7 is the coordinate of each resonator, g, is the coupling
strength per unit length, gk is the Kerr nonlinear coefficient and f;, is the continuous-
wave pumping term. The function y.(z) is an indicator function with a value of
1 where the two racetracks are coupled and a value of 0 where two rings are not
coupled. For the simulation in Fig. #.2[a), the two racetracks are partially coupled

together, and this indicator function is

1 ze€]0,L.),
xe(2) = ) 4.3)
0 elsewhere,
where L. is the effective length of the section where two racetracks are coupled

together. For the simulation in Fig. {.2|b), the two racetracks are fully coupled
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together (i.e., x. is unity at all positions) so that the coupled LLE in the rotating
frame [16] is used to study soliton dynamics. Parameters used in this simulation are
listed in Section 4.5.2

In Fig. [A.2] the simulated results of the soliton spectrum are plotted as the red
curves, together with the dispersion as the black curves. The spectrum in Fig. f.2)(a)
of partial coupling (i.e., symmetry broken case) shows a similar structure to our
observation in Fig. [4.1[d). Specifically, the spectrum contains two DWs at points
IT and III, and two interband KSs around points IV and V. For comparison, the
simulated soliton spectrum in the fully coupled ring is shown in Fig. 4.2(b). Here,
the KSs are absent and only two DW sidebands appear at points II and III. In this
fully coupled case (i.e., symmetrical case), the frequency-matched interband modes
at points IV and V cannot generate KSs because of phase mismatch. As an aside,
in comparing the simulated spectrum in Fig. [4.2(a) with the measurement in Fig.
M.1(d), the measured KSs exhibit an asymmetry in power. This happens for several
reasons. First, the optical field of the modes at point IV (V) is mainly distributed in
the right (left) ring, while the measured output is coupled from the right ring [13]].
Accordingly, the KS appears to be stronger at point IV (blue side) than point V (red
side). Second, the pumping laser is slightly blue-detuned relative to the anomalous
dispersion window center and this contributes to such a difference in measured KS

power.

Increasing comb bandwidth would tend to strengthen the KS. And comb bandwidth
can be increased through control of the integrated dispersion profile. As discussed in
ref. [13] this can be tuned by controlling g. and the round trip length ratio between
the rings. A stronger KS is potentially useful for optical frequency division [17H19].
We also note that the KS strength may be limited by the strength of DWs, which
tend to destabilize the soliton as the detuning or pump power is further increased
[20].

4.4 Active control of Kelly sideband position by pulsed pumping

To further study the tuning properties of the KSs, an optical pumping pulse is
generated by forming an electro-optic comb and then applying pulse compression
methods [21]. This method of pumping enables higher peak pumping powers
and also allows exploration of variation of pumping repetition rate on sideband
formation. The resulting microcomb spectrum is shown in Fig. [{.3(a), and the

electro-optic comb pump spectral lines are visible near the spectral center of the
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comb. Similar to the continuous-wave pump case, two DWs form around points II
& III and the two KSs appear around points IV & V in the spectrum. In contrast
to the continuous-wave pump case, the repetition rate of the soliton spectrum is
determined by the electro-optic pump pulse [22| 23]]. The impact of varying this
rate on DW spectral location is illustrated in the Fig. {.3|a) inset, which overlays the
dispersion of the upper frequency band with the equally-spaced comb frequencies as
given by a line. The intersection of the dispersion curve with the soliton line gives
the condition for phase matching of the soliton with the dispersive wave. Tuning of

the soliton repetition rate causes a shift in the frequencies of the DWs as illustrated.

A similar phase matching condition will also apply for the KSs, but with respect to
the second frequency band shifted by D /2x. Here, as the repetition rate increases,
the wavelength of the strongest blue and red KSs would be expected to both increase.
This is confirmed experimentally in Fig. [4.3(b) and Fig. [4.3|c), where tuning by
about 1.14 MHz of the repetition rate causes the interband KS to jump by 7 modes
(blue side), and by 5 modes (red side). For a larger repetition rate, the KS on the
red side becomes indistinguishable from the instrumental noise floor.

4.5 Supplementary information

4.5.1 Principle of conventional KS generation

To illustrate the principle of conventional KS generation [1]], consider the spectrum
of a frequency comb as illustrated in Fig. [#.4(a). The comb lines (blue) are equally
spaced by a separation approximately equal to the resonator FSR (or D{/2x). The
comb line at relative mode number p=0 is also the optical pump. The frequencies
of the resonator modes are illustrated as red lines. Due to the dispersion of the
resonator, these frequencies are not equally spaced. Assuming anomalous second-
order dispersion (D), as required for soliton formation, the frequencies of the
resonator modes and comb lines walk off by D,u?/2 versus u. The integrated
dispersion plot of this mode family in Fig. @.4(b) shows that, as a result of this
walk-off, the relative mode number u* is aligned to the (u* + 1)-th comb line when
the walk-off D>u*?/2 = D. This mode is orange highlighted in both Fig. a)
and (b). This alignment is a necessary condition for generation of the KS at this
frequency, and the large FSR of microcombs makes excitation of this KS mode more
challenging. In the case of interband excitation, modes from the orthogonal band
align with the comb at a smaller walk-off than the soliton band due to the spectral

gap between the bands, thus relaxing the power requirements for KSs.
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A second condition must also be satisfied for KS excitation. The accumulated round
trip phase of the KS wave in Fig. [#.4(a) is offset by 27 from the original comb
every round trip. This is illustrated in Fig. B.4(c), and the integrated roundtrip
coupling of soliton to the KS wave is zero as a result of phase interference (i.e.,
phase mismatch). Generation of the KS wave is thereby prevented in cases where
the resonators are fully coupled together, as shown in Fig. #.2|b). However, if the
additional condition of partial racetrack coupling is added (as formalized in Eq.
(4.3)), then the partial roundtrip integral is non-zero and KS generation occurs. In
effect, the fully coupled racetrack system features a reflection symmetry that is lifted
by partial coupling, thereby allowing the soliton and KS wave to couple when the
eigenmode frequency aligns with the comb frequency (for example, points IV and
V in Fig. [@.1(b)). This effect is also discussed in Fig. #.2] of the main text. In
addition to KSs in mode-locked soliton combs, similar parametric sidebands can

also be generated in resonators with broken symmetry [24]].

4.5.2 Parameters in coupled mode LLE

In Eqs. (@.I) and (4.2), the parameter definitions are the same as those used in
ref. [13]. The optical field Ey r is normalized to photon numbers in the length-
averaged ring. kjnex 1S related to the resonator Q-factor by kinex = wo/Qin.ex-
The laser frequency detuning dwy, = dwr = 12.5«k — G, where k = Kj + Kex,
G =gcLcD1/2r. G is the half frequency gap created by coupling. v, = ¢/n; is the
group velocity, where c is the speed of light. and 7, is the waveguide group index.
gK = hw%Dlnz / (2mngAefr) is the nonlinear coefficient with A effective mode area
and n, is the nonlinear coefficient of the waveguide. The group velocity dispersion
is related to D and D, by 8, = —ngDz/(cD%). o= Vkex Pin/ (Tiw) is the pump
term, where Pj, is the on-chip pump power. The argument z is limited to [0, Ly r),

where Ly R is the respective resonator round trip length.

The numerical values of the relevant parameters are Q;, = 75 X 10%; Qex = 45 % 100
21 x 193.34 THz; Lr = 9.5 mm; Ly, = 1.005 X Lr (D1r = 1.005 X D1 1);
L. = 1 mm; ng = 1.575; gk = 0.0277 5715 g = 0.954 mm™'; P, = 300 mW,
D =21 x%x19.97 GHz; D, = 27 x 283.0 kHz.

wo

To investigate how L. can affect the KS strength, we also perform multiple sim-
ulations with different coupling lengths L. while keeping g.L. fixed so that the
dispersion profile remains unchanged. The results suggest that from L./Lgr = 0.105

to 0.667, the KS power decreases slightly with increasing coupling length under the
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same dispersion profile and pumping conditions. This is because as L increases,
the coupling strength between modes of the two individual rings with relative mode

numbers offset by 1 decreases slightly.

In the fully coupled case, Q-factors, waveguide dispersion, FSRs, nonlinear coeffi-
cient, pump frequency, power, and detuning are unchanged. The coupling between
two rings is averaged over the entire ring, keeping G (half bandgap opened by the
coupling) the same as the partially coupled case.

4.5.3 Alignment of interband KSs with the main comb grid

To further verify that the KS frequencies align with the main comb and share the
same carrier-envelope offset frequency, the frequency of the comb and the KS (on
the red side) are measured using a high-precision spectrometer with an accuracy of
1 pm (125 MHz). This data is then used to construct the plot in Fig. [.5] wherein
Vi — M frep 18 plotted versus v, where v, is the frequency of comb line (or KS line)
with relative order y and fp is the comb repetition rate. The plot confirms the
alignment of the KS with the main comb within the resolution of the spectrometer.
Notably, the KS on the blue side does not appear in the plot because its frequency is
beyond the range of the spectrometer.

4.6 Summary

In summary, interband Kelly sidebands have been produced using both continuous-
wave and pulsed pumping. The sidebands reside in a frequency band that is distinct
from the soliton pulse in a coupled-racetrack resonator microcomb. Their interband
nature relaxes excitation requirements. The wavelengths of the Kelly sidebands
agree with predictions based on mode dispersion measurements. Pulsed-pump

operation allowed exploration of the sideband tuning properties.
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Chapter 5

SIMUTANEOUS GENERATION OF MULTI-COLOR SOLITONS
IN COUPLED-RING MICRORESONATORS

This chapter is based on the following published conference abstract:
Gao M., Ge J., Yuan Z., et. al., Multi-color solitons in coupled-ring
microresonators, in CLEO 2024, Technical Digest Series (Optica Publishing
Group), paper SM3G.1.
https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2024-SM3G.1

Multi-color co-propagating and counter-propagating solitons are generated using a
coupled-ring microresonator in the ultra-low-loss Si3N4 platform. Soliton spectra

and beatnotes are measured and potential applications are discussed.

5.1 Multicolor operation

Soliton microcombs have found diverse applications across various material platforms[/1].
In a recent development, microcombs formed as coherent pulse pairs have been
demonstrated in the ultra-low-loss SizN4 on silicon platform [2]. This pulse pair
mode locking modality overcomes the inherent normal dispersion of this system,
leading to bright soliton microcombs. In this study, we showcase another feature of

the pulse pair system, which is multi-color operation. Driven by two continuous-
wave pumps, as illustrated in Fig. [5.1a), two pulse pairs form in distinct spectral
windows. The multi-color pairs can be pumped so as to co-propagate or counter-

propagate.

The device consists of two coupled racetrack resonators with slightly different free-
spectral ranges (FSRs). The uncoupled resonators feature normal dispersion, which
is characteristic of the ultra-low-loss Si3Ny4 platform. However, their coupling
gives rise to the formation of two hybridized mode families, whose dispersion
characteristics are illustrated in Fig. [5.I(b). Significant to the current study is that
the coupling of the resonators covers only a fraction of their circumference, meaning
that mode hybridization does not require mode-number matching. As a result,
hybridization has a spectral recurrence set by the offset in the resonator FSRs, leading
to multiple anomalous dispersion windows where pulse pair formation is possible.

Two such windows are indicated in Fig. [5.I[(b) wherein strong hybridization causes
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anomalous dispersion characterized by a positive curvature in the dispersion plot.
By pumping in the vicinity of these anomalous dispersion windows, bright soliton
pulse pairs form and circulate in a mirror-image fashion around the two resonators
[2]. In the measurement, pulse pairs are stabilized by detection of their comb
power followed by servo control of the corresponding pump laser frequency. The
experimental setup is shown in Fig. [5.Tf and is similar to that used for stabilization

of conventional soliton microcombs [3]].

5.2 Freqeuncy multiplexed soliton spectrum

The measured comb spectra resulting from the simultaneous generation of two-color
pulse pairs are shown in Fig. [5.1(d). Each individual soliton spectrum exhibits an
approximately sech? envelope shape. Furthermore, dispersive waves [4] and Kelly

sidebands [5]] emerge at points where mode and comb frequencies coincide, leading
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Figure 5.1: Co-propagation: (a) Optical image of the coupled-ring microresonator.
Scale bar, Imm. (b) Dispersion characteristics of hybrid mode families versus
wavelength. Two regions exhibiting anomalous dispersion are highlighted in orange.
The black dots indicate the frequencies of two continuous-wave pump lasers. The
frequencies of the dashed line are the average of the two hybrid mode families
and feature normal dispersion. w,: frequency of each mode; wp: center mode
frequency; Di: FSR of the mode family 1 at u=0 where D/2n ~19.97 GHz.
(c) Experimental setup for co-propagating multi-color pulse pair generation. C.W.:
continuous-wave; EDFA: erbium-doped fiber amplifier; WDM: wavelength division
multiplexer; PD: photodetector. (d) Experimental spectra for co-propagating multi-
color pulse-pairs. A schematic depicting the co-propagating two-color pulse pairs
is shown in the inset. (e) Measured radio-frequency (RF) beatnotes of multi-color
pulse pairs. RBW: resolution bandwidth.
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Figure 5.2:  Counter-propagation: experimental spectra for simultaneous
generation of a single 1582 nm pulse pair in the presence of varying numbers of
counter-propagating 1550 nm pulse pairs. (a) One 1582 nm pulse pair with one
1550 nm pulse pair. (b) One 1582 nm pulse pair with two 1550 nm pulse pairs. (c)
One 1582 nm pulse pair with three 1550 nm pulse pairs. The insets are schematic
representations of the counter-propagating multi-color pulse pairs for each case.

to resonant power enhancement. Additionally, weak spectral features appear that
are attributed to parasitic four-wave mixing (FWM) effects between a given pulse
pair and the pump for the other pulse pair. The broader bandwidth of the 1582 nm
soliton as well as the presence of more pronounced dispersive waves is attributed to
the reduced curvature (i.e., second-order dispersion) in the corresponding dispersion
profile. This reduced curvature is predicted from dispersion modeling due to larger
waveguide coupling strength between the two resonators at longer wavelengths,

which opens a larger gap in frequency for the hybrid modes [2].

The radio-frequency beatnote of the two-color pulse-pair spectrum is shown in Fig.
[5.1(e). Frequencies corresponding to the pulse pairs at 1550 nm and 1582 nm are
19.970 GHz and 20.026 GHz, respectively. This difference reflects slight differences
in FSR values at the two spectral windows in Fig. [5.1(b). In the current resonator
design, the local FSR difference at the two pump wavelengths is 56.6 MHz, which
is in reasonable agreement with the experimentally measured 56.0 MHz difference

in pulse-pair repetition rates.

5.3 Co-propagation and counter-propagation multicolor soliton

In addition to co-propagating two-color pulse pairs, we also demonstrated counter-
propagating two-color pulse pairs as shown in Fig. [5.2l In contrast to the co-
propagating scenario, interactions between counter-propagating solitons are weaker[6]],
and FWM features are not observed. By actively selecting different stabilization
parameters[3]], it is also possible to controllably select the number of pulse pairs
circulating at a given color as shown in Fig. [5.2(b) and [5.2)c). The RF beat notes
of these spectra exhibit two distinct peaks, similar to that observed in Fig. [5.1f(e).
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5.4 Summary

In summary, we have demonstrated the generation of both co-propagating and
counter-propagating two-color soliton pulse pairs in ultra-low-loss Si3N4 coupled-
ring microresonators. This results suggest the potential to extend the microcomb
bandwidth through multi-pump methods[7, 8]. Furthermore, by carefully design-
ing the dispersion profile, the spectral overlap between the two pulse pairs could
be harnessed for applications such as dual-comb spectroscopy. The difference in
repetition rates between two soliton pulse pairs can be designed, and is potentially

useful for application to ranging [9].
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Chapter 6

PULSE-PUMPED GENERATION OF BRIGHT SOLITON IN
ALp>GAp3AS RESONATOR UNDER ROOM TEMPERATURE

6.1 Introduction

Mode locked soliton microcombs [[1] have been demonstrated as a miniaturized
solution for precision measurements [2-5] and multi-channel systems, which have
been demonstrated in a variety of microresonators [6-15]. Alg2Gag gAs, a material
with advantageous nonlinearity coefficient [[16] and compatibility of active gain,
has been demonstrated to drive silicon photonics modules for multi-functions [17].
Combined with the small mode area enabled by its high refractive index, as well
as reduced scattering losses [[18, [19], ultra-efficient frequency combs are feasible

under tens of uW pumping [16].

However, Aly,GaggAs (also other similar III/VI materials) preserves difficulty in
generating soliton frequency combs due to its strong absorption at the optical C band
[20] (attributed to its smaller bandgap (21, 22]) and large thermo-opto coefficient
[[L1] (an order of magnitude higher than silica and SiN) , especially at CMOS-capable
repetition rates. The absorption converted to heat shifts the cavity resonance dramat-
ically upon soliton formation, which makes it challenging for soliton stabilization
[23]]. Indeed, a stabilized soliton microcomb has only be obtained at cryogenic
temperatures for Aly,Gag gAs [11], while a soliton ’step’ at room temperature has
only been observed with a scanning laser [16]. AIN, another III/VI material has
reported stabilized soliton microcombs with self-referencing using a rapid laser tun-
ing system to overcome the thermal shift [13| 24], which involves extra electronics.
As an aside, non-bright solitons have been demonstrated in Alg »Gag g As resonators
where the intracavity power changing is relatively small [25]], however, with limited

number (tens) of comb lines and beyond CMOS compatible rates.

Synchronized pumping with a picosecond pulse for soliton generation launches less
averaged power into a resonator, which reduces the influence of thermal heating
[26]. It has also been reported to increase soliton conversion efficiency, regulate
the soliton behaviour and lay insights on soliton trapping physics. The scheme also
merits capability of integration with active modules by electrically pulse driving a

gain-switched semiconductor laser [27]]. Here, we generate soliton microcombs in
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CMOS-ready Alp,Gap gAs resonators using pulse pumping at room temperatures.

6.2 Results
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Figure 6.1: Demonstration of microwave rate soliton in Aly,Gag gAs microres-
onator at room temperature. (a) Simulation result showing the process of soliton
formation. Soliton can be generated when the input laser is scanned from blue to
red, indicated by the soliton step. However, the generation of soliton will introduce
a intracavity power drop, which will destabilize the resonator due to thermal-optics
nonlinearity. (b) Characterization of the resonator used to generate the soliton.
The resonator has a intrinsic Q-factor of 1.27 Million, and second order dispersion
D, ~ 17.49GHz. (c¢) The experimental setup to generate the soliton in Aly 2Gag gAs
resonator using electro-optical modulated optical pulse. ECDL: external-cavity
diode laser; EDFA: erbium-doped fiber amplifier; PM: phase modulator; AM: in-
tensity modulator; PSG: RF signal generator; ¢: RF phase shifter; WS: waveshaper;
BPF: Bandpass filter; PC: polarization controller; PD: photodetector; MZI: Mach-
Zehnder interferometer; OSC: oscilloscope; OSA: optical spectrum analyzer. (d)
The optical spectrum of generated optical soliton. The envelope of the soliton fea-
tures sech? function. The soliton spectrum has 422 comb lines in 10dB bandwidth
and 705 comb lines in 20dB bandwidth.

Schematic illustration and simulation of thermal effects under conventional cw
pumping and pulse pumping is shown in Fig. [6.1(a). Generally speaking, solitons
are generated by pumping a cavity resonance with a laser scanned from blue to red
detuned. Solitons are thus generated after experiencing a high intra-cavity power
chaotic regime, associated with a sudden power drop inside the cavity. A portion
of the circulating power inside the resonator is converted into heat (especially for
Alp,GapgAs whose absorption is strong [20]), which shifts the cavity resonant
wavelength through the thermo-opto effect. And this sudden power drop shifts



107

the resonant wavelength significantly, pushing the laser-cavity detuning out of the
possible soliton existence range. This effect is illustrated in Fig. [6.I(a). Numerical
simulation based on the Lugiato-Lefever model cooperating thermal effect [28]] is
plotted in the same figure, where a soliton step [6, [/] cannot be observed. Here,
FEM simulations give a thermal dissipation bandwidth of 10 kHz using the method
in ref. [20], and the material absorption loss rate is oyar = 28 dB m~!. For pulse
pumping a microresonator (us round trip time) with a pico-second pulse, as result
of the reduced averaged pump power [26], the thermal shift upon soliton formation

is smaller, which retrieved the soliton step for further caption and stabilization [23]].

In experiment, an Alp,GaggAs micreresonator is adapter for soliton generation
under a pico-second pulse pump. The resonator features a quality factor higher than
10° (Fig. b), upper left), with anomalous dispersion (Fig. b), upper right)
fitted to feature D /27 = 17.49 GHz and D, /27 = 53.80 kHz. The fitting residual
is plotted in Fig. [6.I(b) lower right with scattered mode distribution, which is a
result of fabrication non-perfections. The pico-second pulse is generated by electro-
opto modulating an amplified tunable laser (ECDL) and dispersion compensation
with a wave shaper. Amplified spontaneous emission from the Erbium amplifier is
filtered out by a bandpass filter, and the pump pulse is coupled onto the Aly 2Gag gAs
chip via a lensed fiber. The generated soliton comb is filtered out by a wavelength
division multiplexer (WDM), detected by a photo detector and sent to a servo for
stabilization of the soliton by applying feedback to the pumping laser frequency.
Representative optical spectrum of the generated soliton comb at the throughout
waveguide is plotted in Fig. d) in blue with the sech? envelope fitting (fitted
pulse width 46 fs), where the optical spectral analyzer (OSA) noise floor is plotted in
yellow. Optical spectrum of the pumping pulse is plotted in the inset of Fig. [6.1(d)
(2 ps pulse width as measured by an autocorrelator).

6.3 Summary

In conclusion, we demonstrated dissipative Kerr solitons inside an integrated Aly ,Gag g As
resonator at room temperature with a pico-second pulsed pump. The pulse pumping

also enables robust generation of single soliton state with high fidelity; This work
provides a method for generating solitons microcombs in integrated III/IV microres-

onators, and lay sights on soliton dynamics inside Alp>GaggAs microresonators.
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Chapter 7

EXOPLANET SEARCHING USING ELECTRO-OPTIC
FREQUENCY COMB AS NEAR-INFRARED FREQUENCY
REFERENCE

The discovery and characterization of exoplanets using the Precision Radial Ve-
locity (PRV) and transit spectroscopy techniques relies on high spectral resolution
spectrometers with extremely stable and long-term wavelength solutions. The de-
velopment of Laser Frequency Combs (LFC) plays a key role in advancing the
observational capabilities of existing and future spectrometers. We report the de-
velopment and commissioning of a near-infrared (NIR) LFC for the NIRSPEC
instrument on the 10-m Keck-2 telescope of the Keck Observatory on Maunakea.
The Electro-Optical Modulation LFC operates over wavelengths from 1.2 to 2.1 um
with future extension to 2.5 ym. The LFC has an intrinsic mode spacing of 16 GHZ
with a long term stability < 10 cm s~! by reference to a Rubidium standard.

7.1 Introduction to exoplanet searching and Precision Radial Velocity (PRV)
technique
The search for exoplanets, planets orbiting stars outside our solar system, has become
one of the most exciting fields in modern astronomy. The discovery of these distant
worlds not only enhances our understanding of planetary systems but also fuels the
quest to find potentially habitable environments beyond Earth. Various techniques
are employed to detect and characterize exoplanets, including transit photometry,
radial velocity, direct imaging, microlensing, and astrometry. According to the Open
Exoplanet Catalogue database [[1], as of June 25, 2024, a total of 5,414 exoplanets
have been confirmed, and 1,075 of them are confirmed using the PRV method. A
statistical plot of discovery methods is shown in Fig. Among these methods,
the Precision Radial Velocity (PRV) method is one of the most successful and

widely used.

The PRV technique involves measuring the effective two-body motion of the star
caused by the gravitational pull of an orbiting planet. As a planet orbits a star, it
induces a periodic shift in the star’s velocity along the line of sight to the observer.
This shift can be detected as changes in the star’s spectral lines due to the Doppler

effect. By precisely measuring these changes in the star’s spectrum over time,
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Figure 7.1: Number of exoplanets discovered by various methods over time.
The methods include Radial Velocity (RV), transit photometry, disk kinematics,
direct imaging, timing, microlensing, and astrometry. The PRV method has been
particularly successful, contributing significantly to the total number of confirmed
exoplanets. The data used to plot this figure is from Open Exoplanet Catalogue
database. This figure is up-to-date as of June 24, 2024. Python code to plot the
most up-to-date version of this figure is attached in Appendix [G.1]

astronomers can infer the presence of an exoplanet, estimate its mass, and determine
its orbital parameters. Itis also worth to note that among all the methods listed in Fig.
[7.1] only PRV and astrometry are able to characterize the mass of the exoplanets.

However, while astrometry can not be performed from the ground, PRV can.

The frequency of the observed spectral line f,s when the star emits a frequency
Jemit> affected by the optical Doppler effect, is given by:

c+v

Jobs = femit s (7.1)

c—V

where v is the velocity of the star along the line of sight (negative when the star is
moving away from the observer and positive when moving towards the observer).
Taking the derivative of Eq. (7.1)), we have
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Figure 7.2: Schematic of the Laser Frequency Comb (LFC) signal chain. The
system starts with a laser at 1560 nm, which is modulated by electro-optic mod-
ulators. The signal is amplified using an Erbium-Doped Fiber Amplifier (EDFA)
and pre-broadened through a Highly Nonlinear Fiber (HNLF). The broadened sig-
nal then passes through a Ta,Os waveguide and a flattener before being directed
to the spectrometer as the LFC output. Part of the signal is also directed through
periodically poled lithium niobate (PPLN) and a Rubidium cell for stabilization and
locking, monitored by photodetectors (PD). Both PDs are used for stabilization and
locking of the LFC.

Ofohs O
Jobs _ _V’ (7.2)

Jobs c

where 0 fobs 1s the uncertainty of the observed frequency, v is the uncertainty of

the star velocity.

By achieving smaller uncertainties in the star’s velocity, astronomers can detect
lower-mass planets, which produce smaller velocity shifts in their host stars. Al-
though detecting Earth-like planets orbiting sun-like stars remains extremely chal-
lenging due to the minute RV signals (around 9 cm/s) and other contributing factors
such as stellar noise (e.g., spots, granulation, and faculae), this level of precision is
significant. Additionally, because this comb/spectrograph works well into the near-
infrared (NIR), it can effectively characterize planets orbiting smaller, cooler stars,
such as M-dwarfs, providing crucial data for the search for potentially habitable

exoplanets. Current astronomical spectrometers can achieve an observed frequency
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Figure 7.3: Optical spectrum of the electro-optic (EQ) comb generated by the
1560 nm laser. The comb has a bandwidth of approximately 12 nm. After dispersion
compensation, this comb can achieve a full width at half maximum (FWHM) in the
time domain around 800 fs.

uncertainty corresponding to a radial velocity precision of around 0.3 m s~! or

better, according to ref. [2].

To achieve such high precision, advanced calibration techniques and stable wave-

length references, such as Laser Frequency Combs (LFCs), are employed.

Achieving high precision in stellar velocity measurements requires advanced calibra-
tion techniques and stable wavelength references, such as Laser Frequency Combs
(LFCs). These technologies ensure the spectrograph’s stability and accuracy, en-
abling precise measurements of stellar velocities over long periods. This chapter
discusses the development and implementation of an Electro-Optical Modulation
LEC for the NIRSPEC instrument, enhancing its capability to perform high-precision

PRV measurements in the near-infrared spectrum.

7.2 LFC signal chain

The Laser Frequency Comb (LFC) signal chain is a compact system designed to
provide precise and stable wavelength references for high-precision radial velocity
measurements. The signal chain, as depicted in Figure [7.2] involves several key

components and processes that ensure the stability and accuracy of the LFC output.

The process begins with a laser operating at 1560 nm. The linewidth of the initial
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Figure 7.4: Optical spectrum of the fully broadened comb after Ta;O5 waveg-
uide. This spectrum shows the broadened comb spans from 1400nm to 2100nm.
The peak around 1560nm is the amplified EO comb pump.

laser source is critical as it serves as the basis for subsequent frequency modulation
and broadening. The laser’s frequency is doubled through a periodically poled
lithium niobate (PPLN) crystal and then referenced to a Rubidium (Rb) cell to lock

its absolute frequency.

The laser signal is then directed through three electro-optic modulators in series and
an intensity modulator, creating the electro-modulated seed signal. The spectrum of
the electro-modulated comb is shown in Figure[7.3] The dispersion of this comb is
then compensated with a waveshaper, forming the mode-locked electro-optic comb.
The DC bias of the intensity modulator is locked to keep the operating point at
¢pc = /2.

Following modulation, the signal is amplified using an Erbium-Doped Fiber Am-
plifier (EDFA) and then undergoes pre-broadening through a section of Highly
Nonlinear Fiber (HNLF). The HNLF compresses the mode-locked pulse in the time
domain, which is critical for the subsequent waveguide to function effectively. The
spectrum bandwidth of the pre-broadened comb is approximately 200 nm. The
lengths of the HNLF and the subsequent dispersion compensation PM1550 fiber

need to be carefully optimized.

After pre-broadening, the signal is passed through a Ta,O5 waveguide. This waveg-
uide handles pulses with energies greater than 160 pJ and durations shorter than



115

120 fs, broadening these pulses in the spectral domain. Under optimal operation,
the waveguide can achieve spectral broadening to cover one octave. The spectrum

after waveguide broadening is shown in Fig. [7.4]

Finally, the comb spectrum is flattened using a commercial spectral flattener. The
flattened spectrum is then directed to the spectrometer as the LFC output. This
output serves as a highly precise wavelength reference, enabling the spectrometer

to perform accurate and stable measurements over long periods.

In addition to the primary signal path, part of the laser signal is re-injected into the
comb as a center indicator. This auxiliary pump indicator creates a single strong

comb line to indicate which line corresponds to half of the Rb transition frequency.

Itis critical to emphasize that every component within this system must be polarization-
maintained. Without maintaining polarization, the generated comb will not meet
the required stability. A photo of the full setup is shown in Fig.

Figure 7.5: Photo of the full setup of LFC. The setup contains one equipment rack
on the right, together with two bread boards covered by the black enclosure on the
optical table.

7.3 Stability

The stability of the Laser Frequency Comb (LFC) is crucial for ensuring precise and
consistent wavelength references over time. In this section, we discuss two important
aspects of LFC stability: power stability and frequency stability, as characterized by

Allan deviation.

7.3.1 Power stability
The stability of pulse energy injected into the waveguide is important, as fluctuations

in pulse energy may result in variations in the final full comb bandwidth. Here,
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Figure 7.6: Power stability of the LFC over time The data was collected from the
evening of March 17, 2022, to the morning of March 18, 2022. The color scale
represents the power (dBm) at different wavelengths (nm).
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Figure 7.7: Allan deviation of LFC optical frequency. This data is collected
by beating LFC against a commercialized HCN-referenced laser with an Allan
deviation of 107° at 10? seconds offset time.

we characterized the stability of the comb spectrum power after the HNLF pre-
broadening stage overnight. The result is shown in Figure[7.6]

The results show that the comb power does not exhibit strong fluctuations. This data
was collected while the amplifiers were operating under a constant power output

mode, which minimized noise transfer from any power fluctuations in the source
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laser.

7.3.2 Allan deviation

The stability of the LFC optical frequency is crucial because it determines the uncer-
tainty of the observed star light frequency, 6 fobs. As shown in Eq. (7.2)), the relative
uncertainty of optical frequency, o fobs/ fobs, directly affects the uncertainty of the
star’s radial velocity, 6v. Here, 6 fobs/ fobs 1S characterized by the Allan deviation of
the optical frequency. This measurement was performed by monitoring the beat-note
between the pump laser and a wavelength-reference laser. The wavelength-reference
laser is a commercial laser with its frequency locked to HCN. The frequency Allan

deviation of this commercial reference laser is 10~ at 10% seconds.

From Eq. (7.2), we can see that an Allan deviation of 10~ corresponds to v =
10~%¢ = 10 cm s~!. Compared to the wavelength calibration of spectrographs, this

precision is improved by four orders of magnitude.

7.4 On sky observation
First we demonstrated the LFC exposure on NIRSPEC spectrograph. The result is

shown in Fig.

After KPIC is installed in February 2024, LFC and star light will be able to simulta-
neously inject into the NIRSPEC. One simultaneous exposure is shown in Fig.
This data is collected on April 26, 2024.
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Figure 7.9: Simultaneous exposure of LFC and star light.
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Appendix A
THE FOURIER TRANSFORM OF DIRAC COMB

In this section, we explain why the Fourier transform of Dirac comb distribution is
itself. Dirac comb distribution was defined in Eq. (I.100), reads

IMI(x) = Za(x —n).

nez

And we want to show that the Fourier transform of III(x) is itself, as summarized

in Eq. (I.101)), reads
F [HL(x)] = I (x).

A.1 Derivation of 7 [I1I(x)] = III(x)
The equation in Eq. (I.I0I)) can be derived by calculating the (inverse) Fourier

series of III(x). I1I(x) is a distribution defined on x € R, with a period of 1, i.e.,
HI(x) =I(x+n), VneZ xeR. (A.1)

Thus, III(x) can be decomposed into orthonormal basis functions:

B (x) = €727 meZ x €R, (A.2)
with the inner product:
b
My hy) = / hw ()R, (x)dx = 6y, forb—a=1. (A.3)
This decomposition, or inverse Fourier series, of II1(x) is:
I (x) = Z Cpe™ 2% x e R. (A.4)
mezZ
—i2rmx

Calculating C,, by taking the inner product of III(x) with e , we get:
b
C,p = (III(x), e 2™y = / HI(x)e?™ dx =1, forb—a=1,a¢Z. (AS5)

Therefore, ITI(x) = Y,,,cz € “2™™*. This verifies Eq. (I.T0T) by:

II(x) = Z e~i2mmx — Z Flo(x—m)]=F lz o(x — m)] =F [II(x)].

mezZ mezZ mez
(A.6)

In Eq @D, we used 7: [5()C)] =land F [(S(X _ m)] — e—i27‘rmx.
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Appendix B

LINESHAPE OF THE OPTICAL RESONATOR COUPLED WITH
WAVEGUIDE ETALON

B.1 Derivation of the lineshape

Three of the devices being tested in Chapter 2 (SizNy, Alp2GapgAs and TayOs)
feature integrated waveguides, so that light is coupled to the chip through the
waveguide facets located at the side of the chips. Of these three devices, the facets
of the Alp>Gag gAs are angled, while the SizNy and Ta;Os have flat facets, causing
the light in the waveguide to be reflected at these endpoints. The reflections form a
Fabry—Pérot (FP) cavity out of the on-chip waveguide, and the measured resonator
transmission lineshapes appear with a modulated background. In the following we

model this FP background in order to extract resonator properties accurately.

e 7
microresonator

left facet 7 p gnert) T bk be b, right facet
rut, rut,

Input . < < < Output
—_ —_— Waveguide —_— — —_— —_—
P b, be"t y T, .bet T b eHt) Pa

T

Transmission function

Figure B.1: Schematic used for modelling transmission spectra with FP back-
grounds. The micro-resonator (red ring) is coupled to the bus waveguide (gray
line). Quantities are defined in the text.

We denote b; (by) as the slowly-varying field just inside the input (output) waveg-
uide facet propagating towards the resonator (Fig. [B.I). At the output facet, the
field propagating towards the facet reads Tiese’*(L1+12) b, where Ty is the linear
transmission function of the resonator, k is the wavevector, and L and L, are
waveguide lengths from the resonator coupling point to the input and output facets,
respectively. This expression assumes no loss on the waveguide, and the exponen-
tial factor accounts for the propagation phase. Similarly, at the input facet, the field
propagating towards the facet reads Tjese’*(L1+12) b, Reflection at the facets cause

the fields in the two directions to couple together as follows:
b1 = riTreshae™ P42 411 pi, (B.1)

by = r2Tresbleik(Ll+L2), (B.2)
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where | (r2) and #; (¢2) are reflection and transmission coefficients, respectively, at
the input (output) waveguide facet, and pj, is the input field at the waveguide facet.

Solving the above equations gives

11 Din
by = ; . B.3

L= rirp T e (B

with Lye = L1 + L. The output field from the waveguide poy is
Pout = t2Tresbleikng- (B.4)

and the output power can be found as
2
_ 2 2 |Tres | 2

Pout = |pout|”™ = |t112] - r1r2Tr26562ikLWg|2 |Pinl”. (B.5)

To see how this power transmission gives the FP background, we consider the case
when the resonator is not on resonance, i.e., Tres = 1. The above equation simplifies

to 5
|£122] 2

out =
|1 —rire

For later convenience, the wavevector k is replaced with the cavity detuning of a
certain resonance, Ares = W res — Wp, Where we res 18 the resonance frequency and

w), s the pump frequency. The exponential factor can then be written as,

. _ .LWg _ Ares .
exp(2ik Lyg) = exp |[2i— (wc res — Ares) | = exp | =i +ig (B.7)
c WFp

where we have identified wgp = ¢/(2Lyyg) as the free spectral range of the FP cavity

and ¢ = wc res/wrp 18 a phase offset. Therefore, the power transmission reads

|l1f2|2

= .12
= |1 _ rlrze_l'Ares/wFP+i¢|2 |p1n| . (B8)

P out

From here, the total reflection » = |riry|, total transmission |¢1f;| and the phase
offset ¢ can be fitted from the experiment data. We note that the phase of r1r, can

be absorbed into ¢ and the fitting parameters can be restricted to be real.

Near the resonance frequency, the linear transmission Ti.s can be found from the

coupled-mode equation and the input-output relations of the resonator:

da K .
d;es = — (% + lAres) Qres T VKe resQins (B.9)

Qout = —VKe,resQres T Ain, (B-IO)
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where ayes 1s the field amplitude of the resonance, kres and . res are the intrinsic
loss rate and external coupling rate of the resonance mode, respectively, aj, and
aoy are the waveguide fields before and after the resonator, and A is the detuning

introduced previously. At steady state (da,.s/d¢ = 0) the transmission can be solved

as
Aout Ke res
Ties = =l-— (B.11)
Ain Kres/2 + iAres
The overall power transmission now reads
2
2 |Tres| 2
Pout = |1112] |Pin|”. (B.12)

|1 = rirp T e/ wre+io|2

where Ti.s should be substituted with the previous equation. From here, s and

Ke res can be fitted using experimental data and parameters from the previous stage.

It is important to note that the lineshape is not a product of the FP background and
the bare Lorentzian resonance |Tjes|?. The appearance of Ti.s on the denominator of
Py creates interference between the two lineshapes, which leads to about 20% error
for Q values for the current data unless the FP interference is taken into account.

An example of a TayOs resonance is shown in Fig. [B.2]
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Figure B.2: Q fitting with FP background. (a) and (b) are the results of fitting
the same resonance of a Ta;Os resonator TE mode at 1559.4nm. (a) An overly
simplified model of the FP background times the Lorentzian resonance is used here
to fit the experiment data. A deviation between data and fitting can be observed
around the resonance. (b) The improved model (Eq. (B.12) and Eq. (B.I1)) is
used to fit data and gives a more accurate fitting. Qg is the fitted intrinsic Q and
Q. is the fitted external (coupling) Q. The Q factors obtained in both cases have a
difference about 20%, showing that it is essential to take the FP interference effect
into account.
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The above results do not apply to the case when the resonance undergoes nonlinear
broadening, where T;.s now depends on the pump power at the resonator. The anal-
ysis is further complicated by the fact that the transmitted power after the resonator
will be reflected to affect the pumping power, and the backward-propagating light
sees a different resonance in the resonator due to the difference between self- and
cross-phase Kerr modulations. To get around these problems, we assume that at all
frequencies, the pumping power for the resonator is the waveguide power with FP
effects but without the cavity resonance, and we do not iterate further to consider
the effect of reflected transmission on the pumping power. This is justified as the
overall reflection r observed in the samples is relatively weak (< 10%). In this case,

starting from the coupled-mode equations with nonlinear effects,

dages ( Kres

dr = ) + i(Ares - (a’ + g)pres)) Ares T \Ke resQin, (B.13)

where pres = |ares|2 / Vet s the resonance mode energy density, the transmission at
steady state can be determined as

Ke res

- Kres/2 + i(Ares — (@ + &) Pres) '

Tres =1 (B.14)

The overall power transmission is approximated by substituting the above nonlinear
Ties into Eq. (B.12)), and is used to fit the sum measurement data. The fitting results
of the sum of Kerr and thermal coefficient @ + g are shown in Fig. 2.2(b).
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Appendix C
MODEL FOR RATIO EXPERIMENT IN CHAPTER 2

C.1 Model for ratio experiment

Here we derive Eqs. (2.9), (2.10), and (2.11)), which describe the response of the
probe mode transmission when the power pumping the pump mode is modulated.
The modulation can be broken down into three independent processes. The mod-
ulation of pumping power leads to the change of intracavity power in the pump
mode, which leads to frequency shifts of the probe mode, which in turn leads to
the transmission changes at a fixed frequency. The overall transfer function is the

product of the three individual responses.

The dynamics of the pump mode reads

dr 2P PP

where aj, is the pump mode amplitude, kp, and &, ;, are the total loss rate and external
coupling rate of the pump mode, respectively, aiy p is the pump input amplitude, and
the frequency detuning term has been removed because the pump laser is locked

close to the mode resonance in the experiment. The steady-state solution reads
o _2 (0)
a, = K—p\/Ke,pain,p, (C.2)

where z(? is the steady-state value of variable z. Fourier transforming Eq. (C.I))

gives
i~ Kp _ — 1 —_
where the AC component of z’s Fourier transform is denoted as z. Similarly
~__ 1 ;
b= gz Verny (C4)

We denote I, = |czp|2 as the intracavity energy and Pj, = |ainp |? the pumping power.

For small-signal modulations, we have

= 0)\x ~ 0) % D 0) \% — 0) ~—
I, = (a[(, )) ap + al() )ap, Pin ~ (ai(n’)p) Qinp + ai(n’)pain,p. (C.5)
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After substituting aI(JO) with ai(l?)p and using Eq. (C3) and (C4)), we get

E)(Q) _ 277p
Pn(Q)  IQ+kp/2

(C.6)

where 17, = k. p/kp is the coupling efficiency for the pump mode. We note that the
modulation of I, also shifts the frequency of the pump mode. However, since I, is
maximized at zero detuning, such detuning changes do not influence /;, up to first

order, which justifies dropping the detuning term from the beginning.

The resonance shift of the probe mode 6y, can be written similarly as (2.1)) in the

main text and reads _
0h(Q)  aif+vyg

I,(Q) Vett

(C.7)

Here 7(Q) is the thermal response found in Eq. (1.65) through simulation (with
r(Q = 0) = 1). The modulation frequency range is much lower than the electronic
response in materials, thus we do not associate a response function to g. An extra
correction factor y is added to g as the probe mode sees cross-phase modulation
rather than the previous self-phase modulation. For Aly,GaggAs and Ta;Os res-
onators, a nearby mode in the same mode family is used as the probe mode, and in
these cases y = 2. For SizNy resonators, another transverse mode with a different
polarization is used to improve contrast between thermal and Kerr effects, and the

v factor is evaluated to be y = 0.67.

Finally we calculate the transmission change of the probe mode T; with respect to

Sp. The probe dynamics are given by

dab__(

e Kb + iAb) ap + \Ke bQin,b, (C.8)

2

where ay, is the probe mode amplitude, «p, and k. p, are the total loss rate and external
coupling rate of the probe mode, respectively, and aip p is the probe input amplitude.

Its steady-state solution is

(0) VKe,bdin,b
a = 7

> 24 i ©
with Aéo) the steady-state detuning of the probe mode.
Fourier transforming Eq. (C.8) while expanding to first order of b gives
. Kb .x v~ .z (0) ~ —iat(,o) ~
iQayp = —(7 +iAp)ap — i6pay ', ap = PRSI iQ(Sb’ (C.10)
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and c;;*) can be found similarly. It should be noted that input probe amplitude a;j,p, is

not modulated and aj, , does not appear in Eq. (C.10).

The transmitted power for the probe mode is found though the input-output relation:

Ty, = |ainp — VEepa| - (C.11)

Because the probe input amplitude aj, p is not modulated, aj,p, does not show in the
AC component of Eq. (C.T1). Fourier transforming Eq. (C.TT)) while expanding to

first order of C,l,; gives
T (g — (0) ~ T )" 5 C.12
b = |@inb — VKebay Kebdy + | Ay — VKeb (ay VKe b@b- (C.12)

Plugging in al(jo) (Eq. (C.9)) and ay, (Eq. (C.I0)) results in

~ iKe Kn/2 = Kep +iN” k)2 = Kep — A -
fo= 2 ‘0 _ A0 A (0) |@in|” 0o
(kp/2)* + (At()O)) Ko/2 +i€Q — iA] Ko /2 +iQ +iA,
(C.13)
2Ke,bA(0) Kp — Kep + iQ 9 ~
- ” ’ > |ainb|” b (C.14)

(kp/2)? + (AI(DO))Z (k)2 +iQ)% + (Aff’))

The overall response function is the product of responses of the three processes,

_ Bh(Q) _ Ty(Q) 5h(Q) (@)

RQ)==—=="—=2"2L——
Pin(Q) 5b(9) Ip(g) Pin(g)

(C.15)

and corresponds to Eq. (2.11)) in the main text. The last two factors (derived in Eq.
(C.7) and (C.6)) correspond to Eq. (2.9) in the main text. The first factor (derived

in Eq. (C.14)) corresponds to Eq. (2.10) in the main text.
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Appendix D

DISCUSSION FOR EACH INDIVIDUAL MATERIAL IN
CHAPTER 2

D.1 Measurement of SiO, microresonators
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Figure D.1: SiO; measurements. (a) Mode profiles of the measured mode family
(left) and equilibrium temperature distribution of the resonator upon heating due
to optical absorption (right). The geometry of the resonator is: radius 3.24 mm,
thickness 8 um, wedge angle 27° and undercut 137.5 um. (b) Measured dispersion
spectrum of the experimental mode family. The dashed red line is the parabola fitting,
and the dispersion parameters are fitted to be D /27 = 10.0 GHz and D, /27 = 4.20
kHz. Relative mode number u = 0 corresponds to the wavelength of 1550 nm. (c¢)
Simulated thermal diffusion responsivity r(£2) versus modulation frequency Q/2x.
(d) Representative normalized transmission spectra under different on-waveguide
(WG) power. Intrinsic Qg and external (coupling) Q. of this mode are 418.6 Million
and 625.9 Million, respectively. This mode is at 1550nm.

The SiO; resonator is a disk with a wedge suspended in air, which supports a
number of modes in each polarization. The fundamental TM mode (with the
highest Q factor) is used for the measurements. The mode identification method is
described elsewhere[1]] and its profile is shown in Fig. [D.I|(a). To evaluate the mode
temperature (as defined in Eq. (I.50)) change upon optical absorption, i.e., OT | P
in Eq. (2.2) in the main text, finite-element method simulation is performed (Fig.

[D.1fa)) using parameters in Section [2.8.6] The heating rate distribution is assumed
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to be proportional to the electric field intensity. Here, 6T /Py is evaluated to be
552 K-W~!. Measured integrated mode dispersion Djn /27 = (wy —wo—uD1) /21
of this mode family is shown in the Fig. [D.I(b), along with a parabola fitting.

The simulated thermal diffusion responsivity 7(Q) (as defined in Eq. (1.63)) is
plotted in Fig. [D.Ic). The thermal relaxation bandwidth (3 dB) is <100 Hz,
where the probe response is suppressed by the servo feedback locking loop with a
bandwidth of 1kHz (see Fig. [2.3(b) and Fig. [2.3(c) in the main text). Measuring
the low-frequency photothermal response requires a locking bandwidth smaller than
10 Hz, which is challenging. Thus the ratio experiment is not performed on the
silica resonator. Also, due to the suspended nature of the silica structure, the optical
absorption effect for the current resonator is typically 10% higher than Kerr nonlinear
effect (¢ < a)[2l]. Therefore, it is reasonable to neglect the Kerr contribution in
the sum experiment, and attribute all the resonance shift to material absorption

(d+g =~ a).

Representative linewidth broadening curves at different waveguide pumping power
are plotted in Fig. [D.1(d) and exhibit the characteristic thermal ‘triangle’ features, as
expected. Eq. (B.I2) (in this case r=0) and Eq. (B.I4) are used to fit the lineshape
in Fig. [D.1](d), and the thermal absorption coefficient « is extracted. As mentioned
in the main text, the laser frequency must be tuned adiabatically to ensure thermal
equilibrium at all times. This is checked by decreasing laser frequency scanning
speed at constant power, while monitoring the transmission spectra, until the edge
of the ‘triangle’ stops shifting to the red-detuned direction. Here the frequency
scanning speed is set to 20 MHz s~!, which is achieved by using a narrow-linewidth

fiber laser.

This experiment is repeated using another SiO, resonator (D /27 = 10 GHz) with
different mode polarization. The TE and TM modes are measured to have absorption
Q factors of 4148 + 264 M and 4160 + 250 M, respectively. These results show
that polarization does not significantly affect the measured absorption Q factors of
the SiO, device. We note that spatial mode identification is not performed in this
repeated experiment, which affects the value of 6_T/ Paps. For example, 6_T/ Pps 18
evaluated to be 554, 537, 522 K-W~! for TE0, TE1, TE2 modes and 552, 535, 519
K-W~! for TM0O, TM1, TM2 modes, respectively. As a result, the error uncertainty
in the absorption Q factors for this device is larger.
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Figure D.2: Si3sNs measurements. (a) Mode profile of the measured mode family
(left) and temperature distribution in the resonator when heated by optical absorption
(right). The SizN4 core is 2.2 um X 0.95 um and is cladded by 3.45 um-thick
silica. The resonator radius is 0.562 mm. (b) Measured dispersion spectrum
of the measured mode family. The dashed red line is the parabola fitting with
Di/2n = 40.53 GHz and D,/2n = 215.7 kHz. Relative mode number u = 0
corresponds to wavelength close to 1550 nm. (c) Simulated thermal diffusion
response 7(€2) versus modulation frequency €/2x. (d) Representative normalized
transmission spectra under different on-waveguide (WG) power. Intrinsic Q¢ and
external (coupling) Q. of this mode are 29.0 Million and 52.1 Million, respectively.
This mode is at 1544.1nm.

D.2 Measurement of Si;N4 microresonators

The cross-section of the integrated SizN4 resonator consists of a rectangular SizNy
core with silica cladding at all sides. The resonator supports two transverse modes
(fundamental TE and TM modes) and the fundamental TE mode is used in sum
measurement. The mode profile and temperature distribution upon optical absorp-
tion heating are shown in Fig. a). Here, 6_T/ Pabs is evaluated to be 95.3 K-W~1,
The Dispersion spectrum is shown in Fig. [D.2(b).

The thermal diffusion responsivity 7(€2) (as defined in Eq. (T.63))) of this resonator
is plotted in Fig. [D.2(c). As an aside, thermal and Kerr effects are comparable
in Si3N4, and in the ratio experiment the contrast between the two plateaus is
low. In order to increase the contrast, pump and probe modes are chosen as two
mode families with different polarizations (i.e., fundamental TE mode as pump,

fundamental TM mode as probe). The cross phase modulation factor vy in this case
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is smaller than 2, which effectively suppresses the second (Kerr effect) plateau and
increases the contrast between two plateaus. The cross phase modulation factor

yields

_ 2 [ nZny [|FrePIFrml? + [Frg - Fiy* + [Fre - Frvl?| dV (7rorg)1E

=0.67.
f n%nz [2|FTE|4 + |FrE - FTElz] dv (nong)TM

Y

(D.1)

In the sum experiment, the fundamental TE mode is tested at multiple wavelengths
across the C-band. The result at 1544.1 nm under different pump power on waveg-
uide is shown in Fig. d). A low scanning speed (12.7 GHz-s~!) is used to ensure

the resonator reaches thermal equilibrium.

The correction factor for heterogeneous mode distribution in Eqs. (1.43)), (1.45)),
and (1.53)) is calculated based on finite-element method simulation, with

ny = 0.996”2,5131\14 + 0.004?12’5102, (D.Z)
nohg = 0.933(n,ng)si;N, +0.067(n,ng)si0,, (D.3)
Ky = 0-964Ka,Si3N4 + 0.036Ka,5102. (D.4)

These correction factors are applied to extract material absorption rate k, and non-
linearity n;. The n, and ng factors (at 1.55 pum) used for SiO, are n, = 1.44,
ng = 1.46 (ref. [3]]), for SizNy are n, = 2.00, ny = 2.04 (ref. [4]).

D.3 Measurement of Aly,GaggAs microresonators

The cross-section of the integrated Aly,Gag g As resonator consists of a rectangular
Alp,GaggAs core with silica cladding at all sides. The cladding has protrusions
on top of the resonator, as illustrated in Fig. [D.3[(a). The resonator supports two
transverse modes (fundamental TE and TM modes) and the fundamental TE mode
is used in both the sum and ratio measurements. The mode profile and equilibrium
temperature distribution when heated by optical absorption from Aly,Gag gAs core
(i.e., bulk absorption) are shown in Fig. a). Here, 6_T/ Py is evaluated to be
90.7 K-W~!. Dispersion spectrum of this mode family is shown in Fig. b)
along with a parabola fitting with D /27 = 17.93 GHz and D, /27 = —19.58 kHz.

We note that surface absorption may be prominent for aluminium gallium arsenide
waveguides depending on fabrication details. This changes the distribution of
absorbed heat for the waveguide cross-section. However, the ﬁ/ P,y coefficient

from simulations differs by less than 1% even if the surface absorption is taken into
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Figure D.3: Aly,Gag gAs measurements. (a) Mode profile of the measured mode
family (left) and temperature distribution in the resonator upon optical absorption
heating (right). The core is 0.8 um X0.4 um Aly,Gag gAs and is cladded by 1.5um-
thick silica. The resonator radius is 0.719 mm. It is noted that the top surface is
not flat. (b) Measured frequency dispersion of measured mode family. The dashed
red line is parabola fitting with D;/2x = 17.93 GHz and D,/2n = —19.58 kHz.
Relative mode number y = 0 corresponds to wavelength close to 1550 nm. (c)
Simulated thermal diffusion responsivity 7(€) versus modulation frequency Q. (d)
Representative normalized transmission spectra under different on-waveguide (WG)
power. Intrinsic Q¢ and external (coupling) Q. of this mode are 1.01 Million and
2.44 Million, respectively. This mode is at 1560.1nm.

account. This is because the spatially larger profile of the thermal distribution is not
significantly affected by the exact location of the smaller modal heat source. The
reported Q,ps here includes both bulk and surface contributions and, as noted in
the main text, Alg,GaggAs resonators with Q factors higher than Qs have been

reported elsewhere.

The thermal diffusion responsivity 7(Q) (as defined in Eq. (1.63)) of the resonator
is simulated using the finite-element method technique and is shown in[D.3{c). In
the ratio experiment the pump and probe modes belong to the same fundamental TE

mode. In this case the cross phase modulation factor y = 2.

In the sum experiment the fundamental TE mode is tested at multiple wavelengths
across the C-band. The result at 1560.1 nm under different on-waveguide pumping
power is shown in Fig. d). A low scanning speed (783.9 GHz-s™!) is used

to ensure that the resonator reaches thermal equilibrium. As an aside, two-photon
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absorption and harmonic generation will lead to a decrease in coupling efficiency
as pump power increases [3)]. Such effects are not significant in Fig. indicating
that the processes are not prominent for the current samples.

The correction factor for heterogeneous mode distribution in Eqs. (1.43)), (1.49),
and (1.53) is calculated based on finite-element method,

l’l_z = 0.997n2,A10_2Ga0_8AS + 0.003112’51()2, (D.S)
nong = 0-892(n0”g)A10,2Gao_gAs + 0-108(n0ng)5i02, (D6)
K_a = 0.977KQ,A10V2G30V8AS + 0.023Ka,5102. (D.7)

These correction factors are applied to extract material absorption rate k, and non-
linearity n,. The n, and n, factors (at 1.55 um) used for Aly,Gag gAs are n, = 3.28,
ng = 3.22 (ref. [6]).

D.4 Measurement of Ta>Os microresonators

The cross-section of the integrated Ta,Os resonator consists of a rectangular TayOs
core on top of a silica substrate, and there’s no cladding on the other sides of the
resonator. The resonator supports two transverse modes (fundamental TE and TM)
and the fundamental TE mode is used in both the sum and ratio measurements.
The mode profile and equilibrium temperature distribution when heated by optical
absorption are shown in Fig. a). Here, ﬁ/ P,bs is evaluated to be 1085.1 K-W~!
(using thermal conductivity 0.4 W-m~!-K~1). Dispersion spectrum is shown in Fig.
[D.4(b). The red dashed line indicates a parabola fitting with D /27 = 195.2 GHz
and D, /2n = —8.188 kHz.

In this study, the thermal conductivity assumed in the calculation of Q4,5 was taken
from that reported for electron-beam deposited Ta,Os, which is 0.4 W-m~ K (ref.
[71). Other reported values vary from 0.2 to 5 W-m~1.K™! (ref. [8-10]) as thermal
conductivity is strongly dependent upon deposition process among other factors.
As discussed in section IIC, larger thermal conductivity will lead to faster thermal
diffusion and therefore a lower value for Qs inferred from the measurements (see
also Fig. [D.5)). We also note that the measured value of Qg of the device places an
upper bound on the total loss of the resonator. As absorption is only a component

of the total resonator loss, Qg also therefore also sets a lower bound on Q ;.

The thermal diffusion responsivity 7(Q) (as defined in Eq. (1.63])) of the resonator
is simulated using the finite-element method technique and shown in [D.4c. In the
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Figure D.4: Ta; 05 measurements. (a) Mode profile of the measured mode family
(left) and equilibrium temperature distribution inside the resonator upon optical
absorption heating (right). The resonator consists a 2.25 um X 0.57 um core
(TayOs) and a silica substrate. The resonator radius is 0.1095mm. (b) Measured
dispersion spectrum of the measured mode family. The dashed red line is parabola
fit with D /27 = 192.5 GHz and D,/2x = —8.188 MHz. Relative mode number
u = 0 corresponds to wavelength close to 1550 nm. (c¢) Simulated temperature
response 7(€2) versus modulation frequency Q/2x. (d) Representative normalized
transmission spectra under different on-waveguide (WG) power. Intrinsic Q¢ and
external (coupling) Q. of this mode are 2.02 Million and 6.59 Million, respectively.
This mode is around 1543.5nm.

ratio experiment the pump and probe modes belong to the same fundamental TE

mode. In this case the cross phase modulation factor y = 2.

In sum experiment the fundamental TE mode is tested at multiple wavelengths
across the C-band. the result at 1543.5nm under different on-waveguide power is
shown in Fig. d). A low scanning speed (1378 GHz-s™!) is used to ensure the

thermal equilibrium.

The correction factor for heterogeneous mode distribution in Eqs. (1.43), (1.43),
and (I.53) is calculated based on finite-element method,

ny = 0.989112;[3205 + 0.009112’5102 + O.OOan,Air, (D.8)

nottg = 0.874(nyng)1a,05 +0.080(n,n¢)si0, + 0.046(n,n) Airs (D.9)

Ka = 0-946Ka,Ta205 + 0.042Ka,5102 + 0-012Ka,Air- (D.IO)
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Figure D.5: Calculated Qs of Ta;Os versus thermal conductivity. The calcu-
lated material limited Qs of TayOs is plotted versus the thermal conductivity of
TaOs used in the FEM simulation. The light blue shading denotes the standard de-
viation from the measurements. The thermal conductivity value used in this study is
marked with orange dashed line, while the reported range of values in the literature
is shaded in gray. The lowest possible Qps as set by measured intrinsic Q factor is
calculated from Eq. (D.10) and is also plotted as the black dashed line.

These correction factors are applied to extract material absorption rate k, and non-
linearity n. The n, and n, factors (at 1.55 um) used for Ta,Os are n, = 2.06,
ng = 2.10 (ref. [L1]).
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Appendix E

OH ABSORPTION IN ON-CHIP HIGH-Q RESONATORS

This chapter is based on the following published paper:

Wu L., Gao M., Liu J.-Y., Chen H.-J., Colburn K., Blauvelt H.A., and Vahala K.,
Hydroxyl ion absorption in on-chip high-Q resonators, Opt. Lett. 48,3511-3514
(2023).
https://doi.org/10.1364/0L.492067

High-Q integrated resonators have become an essential component in nonlinear
photonics. Most often, the guided light in these structures has a significant fractional
overlap with silica (e.g., all-silica wedge resonators [1, 2] and silica-clad ultra-low-
loss silicon nitride waveguides [13,4]]). It is therefore important to understand the loss
limits imposed by the silica used in silicon photonic processing. Besides interface
scattering loss, optical absorption from bound hydroxyl ions (Si-OH) can be a
significant component of loss 3], especially since thermal silica is prepared using a
process involving water. Bound hydroxyl ions produce a well-known fundamental
absorption peak at 2720 nm [[6] and the overtone at 1380 nm is used here to measure
OH absorption loss in ultra-high-Q thermal-silica wedge microresonators. Further
comparison to scattering loss is made over a wavelength range from 680 nm to 1550
nm. Also, using cavity-enhanced photo-thermal spectroscopy [5] near the 1380 nm
band, the OH ion content level is estimated to be 2.4 ppm (weight). This value also
agrees with Secondary Ion Mass Spectroscopy (SIMS) depth profiling performed
on the resonator material. Outside of the 1380 nm band, scattering loss is confirmed
by measurement and modeling to be the dominant loss mechanism in the samples
tested.

Thermally-grown silica wedge whispering-gallery resonator devices were prepared
as measurement samples, and featured 8 pm thermal oxide thickness with resonator
diameter 6.5 mm (10 GHz free spectral range, FSR). The fabrication steps are
detailed in reference [2]. The thermal silica was grown from float-zone (low back-
ground doping level) silicon wafers using the wet oxidation method. As a final step,
the devices were annealed for 18-hours at 1000°C in N,. The samples were stored
and measured in a dry N, environment to minimize environmental impact on optical

loss. Tapered fiber couplers [7, 8] were used to couple probe light to the resonator
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samples.

A strong increase in loss near 1380 nm is apparent in all six samples, correspond-
ing to the OH absorption band and reaching over 200 dB/km. This absorption
quickly decreases for wavelengths above and below 1380 nm. The loss in other
spectral regions is believed to be dominated by Rayleigh scattering. The wavelength
dependence of this scattering within the resonator mode volume would scale approx-
imately as 17#, and does not fit the data. Modeling of surface scattering is described
in the Methods and provides better agreement with the wavelength dependence. This
theoretical dependence is given by the purple curve (for the fundamental TE mode)
where surface roughness variance (1.9 nm) and correlation length (350 nm) are
assumed in the plot [9]. The origin of the increased loss at the shortest wavelengths
measured is not known, but possibilities include absorption loss from metallic ion
impurities and scattering from material density fluctuations. For example, SIMS
data has shown that Chromium is a residual contaminant in our processing, and Cr>*
ions can contribute 1.6 dB/km/ppbw at 800 nm (peak at 625 nm) to absorption [10].

Material 1385 (dB/km) | 1550 (dB/km)
thermal silica in this study 152 32
1 ppmw OH in silica [6] 62.7
Wet fiber studied in [6] 48500 100
Fiber studied in [[11]] 1.172 0.045
low-OH fiber [[12] [13]] 0.05 0.02

Table E.1: Summary of absorption loss rates at both 1385 nm and 1550 nm from
Fig. [E.T]and taken from the literature. Note that ppmw is parts per million in weight

(equivalently, ug/g).

Cavity-enhanced photothermal spectroscopy (CEPS) [5] was used to further study
the OH absorption loss. This method measures the microresonator resonance ther-
mal triangle formation induced by the thermo-optical effect [[14] to determine mode
volume absorption. Details on this method are provided in reference [5]. Fig.
summarizes the wavelength dependence of the measured absorption loss in both the
1380 nm band and at 1550 nm. The measured absorption near 1380 nm follows
reasonably well the OH overtone lineshape in silica as determined elsewhere [6]
(blue curve superimposed in plot). To fit the magnitude of the lineshape function
to the data, an OH content level of 2.4 ppm weight is used. Also, the data near
1550 nm indicates that by further reduction in scattering loss, the existing thermal

silica can provide absorption limited Q factors as high as 8 billion. This value is 2x
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Figure E.1: Absorption loss measurement results. Absorption loss as measured
by cavity-enhanced photothermal spectroscopy in the 1380 nm band. Red dots: data
from sample device. Blue solid line: 2.4 ppm (weight) OH content level absorption
lineshape based on reference (Humbach, et. al. J. Non-Cryst. Solids 203, 19-26
(1996).).

larger than measured for wedge resonators in a previous study [S] and is attributed
to application of an improved resist cleaning step. The absorption loss measurement
results at 1385 nm and 1550 nm are summarized in Table and compared with
values from the literature. The measured absorption ratio @(1385 nm)/a(1550 nm)
in the current data is more consistent with the report in ref. [12]. The high OH

concentration in ref. [6] could possibly account for this difference.
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Appendix F

THEORETICAL DISPERSION OF COUPLED 2- AND 3-RING
RESONATORS

F.1 Eigenmodes of a two-ring coupled resonator

In this section we study the coupling between the two coupled rings and analyze the
mode frequencies of the compound system. Eigenfrequencies of coupled resonators
have traditionally been calculated from a coupled-mode perspective, where modal
coupling are calculated as off-diagonal matrix elements. However, this approach
becomes unfeasible in the current system as one longitudinal mode will couple
to many modes from the opposite ring because mode number matching is not
required. The dependence of coupling with respect to wavelength is also difficult
to implement. To circumvent these problems, we instead use a transfer function

formalism to determine the mode frequencies.

The resonator schematic is shown in Fig. [F.I] La and Ly are the circumferences of
the right and left ring, respectively, L, is the length of the coupling region, c is the
speed of light in vacuum, and ny, (w) is the effective phase index of the fundamental
mode in the SiN waveguide at optical angular frequency w. By defining a single
index along the waveguide, we have neglected the geometric dispersions resulting
from bending the waveguide. These have been shown to be small compared to the
geometric dispersion induced by waveguide confinement. We now assume that light

with a single frequency is propagating in the system. At the points opposite to the

s Vi 7 N v,
: N
1A

(Ly-L)2 L, (Ly-L2

<~
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Figure F.1: Schematic of the two-ring coupled resonator. Left panel: Top view
of the coupled resonator with key points marked. Right panel: Schematic of the
resonator with straightened waveguides (not to scale). Segment lengths and field
amplitudes have been marked.
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coupling region, the field amplitude in each ring is denoted as 1 o and Y1 . These
amplitudes can be assembled into a vector as Y1 = (Y14, WI,B)T, where T denotes
the transpose of a vector or matrix. Similarly, the field just before the coupling part

can be found as

lr//H,A B einwgw(LA_Lco)/(zc) 0 wLA Fl
- iNwgw(LB—Leo)/(2¢) ) ( ) )
YuB 0 el Y18

For the coupling section, we denote the coupling rate per unit length as g.,. The
coupling depends on w, and is assumed to be uniform along the coupling section (i.e.,
boundary effects from adiabatic bends are included in the effective coupling length).

The field after the coupling section can be expressed with a matrix exponential:

(&HI,A) —exp|iLa (nwgw/ c  8co )] (lﬁILA). (F.2)
YiB

8co nwgw/c Y1,
Finally, returning to the points opposite to the coupling region, the field reads

inwgw(LA—Lco)/(zc) 0
(WIV,A) _ (e ) (lﬁm,A) . (E3)

Yv.B 0 eimue@(Ly=Leo)/20) | | iy

For modes in the system, we require the state to reproduce itself after one round trip:

Y1v = ey (F.4)

This requires finding the eigenvalues of the roundtrip transfer matrix 7', which is the

product of the previous three transfer matrices:

inwgwAL/c

Cos(gcoLco) i Sin(gCOLCO)

i sin(gcoLeco) e e @ALIC cos(geoLeo) |
(E.5)

where L = (La + Lg)/2 and AL = (Lg — LA)/2. Each one of the two eigenvalues
defines a transverse mode family of the system. Furthermore, when the accumulated

iy =Tyy, T = e™slle €

phase © equals an integer multiple of 2x, a longitudinal mode can be found at the

corresponding frequency. Diagonalizing the T matrix gives

0= nwga)Z/c F arccos[cos(gcoLco) cOS(nwgwAL/c)]. (F.6)

Now we define a mode number associated with the average length of the rings:

NygwL

2mc ®7)
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Figure F.2: Eigenfrequency plots for the two-ring coupled resonator. (a,b,c)
Relative frequency (normalized to D1 ), relative FSR (normalized to €D ,,) and
relative D, (normalized to ele,m) plots for g¢oLco = 0.3. (d,e,f) Similar plots but
with gcoLco = 1.0. The horizontal axis is defined as ¢,, = 2wrem. Relative mode
frequency, FSR and D5 for individual rings before coupling have been superimposed
(black dashed lines). The relative FSR is found by differentiating the relative
frequency, and the relative D> is found by differentiating the relative FSR.

The relation can be inverted to give a solution of w,, dependent on m. When m is
an integer, w,, would be the mode frequencies for a ring resonator with length L.
As geo < w/c and AL < L, the phase contribution related to the coupling varies
slowly compared to the nwng/ ¢ part. This allows us to approximate the coupled

mode frequencies using w,,, and the eigenfrequencies w,, .+ can be solved as:

2mm = nwgwm,iZ/c F arccos[cos(gcoLco) COS(nywgwm +AL/c)]

~ nwgwm,iZ/c F arccos[cos(gcoLco) cOS(nywgwpu AL/ C)], (E.8)
_ -1
L 0(nygw) AL
Wnse =Wy = | ——F—— X arccos [cos(geoLco) €OS [2m—m
c Ow L
W=Wy,
=Wy, * L™ arccos [cos(gcoLeo) cos (2mem)] , (F.9)

where D ,, is the local FSR that depends on w,, and € = AL /Z is the length contrast
of the rings. The result shows that the mode structure can be seen as splitting off
from the length-averaged resonator modes, where the splitting gap is determined
by geo and modulated with respect to mode number with period e~!. Note that Eq.
in the main text is obtained by replacing the mode number m with the relative
mode number y in Eq. (F:9). Such a variable change is valid when p is referenced
to a frequency degeneracy of the rings.
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Figure F.3: Illustration of mode hybridization in the coupling region. (a) Fitted
optical resonance frequency dispersion of the coupled resonator (solid curves) and
fitted mode frequency dispersion of the single rings (red and blue lines) plotted
versus relative mode number u. These plots are the same as Fig. [3.3(b). (b)
Cross-sectional view of simulated electric field amplitudes in the coupled region at
mode numbers indicated in panel (a) by the black points. The right (left) waveguide
belongs to ring A (B). At the crossing center (I, II, V and VI), two waveguides
have the same field intensity and the opposite (same) phase for the anti-symmetric
(symmetric) mode. When hybrid mode frequencies meet the single-ring resonances
(IIT and 1V), the electrical field at the coupled region is contributed by a single ring.

To gain insight into the model, Fig. [F:2] plots mode frequency, FSR and the second-
order dispersion parameter D relative to w,, for different values of g, as predicted
by Eq. (F9). In these plots w,, has been subtracted from the mode frequencies,
and only the contributions associated with FSR difference of the two rings and the
coupling are considered. The D, is also approximated as a constant. The FSRs
of the transverse modes show a typical avoided crossing behavior as shown in Fig.
[F-2(b) and [F.2e). The FSR of one mode continuously transitions to the other mode
at the avoided crossing, and similar to the coupling itself, this process is also periodic
in the frequency domain. The calculated D, shows spikes at the avoided crossing
center, and the positive spike can be used to counter the normal dispersion present in
the averaged resonator dispersion. Smaller g., leads to higher peak D, with smaller
crossing bandwidth. To get a larger crossing bandwidth, g., could be increased at
the expense of lower D, but the maximum bandwidth is half the modulation period
(i.e., the vernier FSR) as the effect of the neighboring crossings set in and shifts the

D> in the opposite direction.

In addition to the mode frequency, the mode compositions can also be derived
from the transfer matrix 7. As the change of mode profile is large enough across the
measured optical bandwidth, the mode compositions has an impact on soliton power
distribution in the rings (as in Fig. [3.2]in the main text), and complements FSRs

and dispersions when describing the dispersion characteristics. The eigenvectors of
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T read,
. . T
+ —
Y o M, F M , Om =2mem, a = Farccos [cos(gcoLco) COS Py -
2sin @ cos ¢y, 2sina@ cos ¢y,

(F.10)
This gives the relative field intensities in the non-coupled regions of the rings for a
particular mode, and is used to plot composition ratios in Fig. [3.3] Another point

of interest is the center of the coupled region. Here the field can be found as

Vo o c08(geoLco/2) isin(geoLeo/2)) (€2 0 ,
; 1
co isin(gcolco/2) €08(geolco/2) 0 o—itm/2
T

o« \/sina/-ljsin(/)m’ $\/sina—.sin¢m . E1D)
2sina 2sina

There are some special cases of ¢,, that lead to simplified field distributions and are

demonstrated in Fig. For example, if ¢,, /7 is an integer (crossing centers), the

modes become purely symmetrical and anti-symmetrical:

1 oc (V1/2,5Y1/2)T, weo o (172, 541/2)". (F.12)

Points I, II, V, and VI in Fig. b) belong to these cases. Points II and V are
symmetric modes formed by the two rings, with equal mode intensities and the
same phase. On the other hand, points I and VI are anti-symmetric modes, with
equal mode intensities but opposite phase. These results happen to agree with
coupled-mode calculations when only the pair of degenerate longitudinal modes
from each ring are considered. However, while the energy is equally distributed in
the two rings in the same way as the reduced coupled-mode theory predicted, other
longitudinal modes still participate in the coupling because the wavevector in the
coupled region differs from that in the uncoupled region. On the other hand, if ¢,,, /7
is a half-integer (halfway between crossing centers), then at the center of coupling

position the field is entirely within a single ring:
Y1 o (cos(geoLco/2), Sin(gcoLco/z))T’ Weo o (1, O)Ta or (F.13)
Y1 o< (sin(geoLeco/2), — Cos(gcoLco/z))T» Weo o (0, _1)T- (F.14)
Points I1I and IV in Fig. [F.3(b) belong to these cases.

An interesting feature of the field distribution is that, for a single continuous branch,
the field compositions exchange parity at the next degeneracy point, and the anti-

symmetric mode now becomes the symmetric mode (from point I to V) and vice
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versa (from point II to VI). The change of parity shows that the modes repeat them-
selves every two vernier periods (every two degeneracy points) instead of one, in
agreement with Eq. (F:9). While the parity exchange is obvious after plotting the
dispersion (Fig. [F.3[@)), it can also be understood from a mode number argument.
We consider the total phase accumulated in ring A for a specific mode divided by
27, which should be an integer and denoted as ma. This is the “mode number”
for ring A for the specific mode. Similarly mg could be defined. These two num-
bers equal to the respective mode numbers of the closest uncoupled modes, which
can be seen by adiabatically turning of the coupling. For a single vernier period,
the total mode number changes by an odd number. However, going to the next
longitudinal mode by changing the frequency alone changes both m and mp by
one. The only way to induce a separate mode number change is to create a zero
in the field amplitude somewhere in the respective ring, which is indeed the case
for points III and IV shown in Fig. [F.3|b). Considering that the individual mode
numbers are about equally distributed around the averaged-length mode number m
(e.g., |[(mgp — m) — (m —mp)| < 1), the extra increment of mp and decrement of
ma should have taken place alternatively between the vernier periods, indicating the

mode branch switches mode compositions for each vernier period.

F.2 Eigenmodes of a three-ring coupled resonator

In this section we study the mode frequencies of the three-ring coupled resonator.
Although the derivation is similar to that of the two-ring resonator, we will highlight
some features of the coupled system that are not obvious in the two-ring case. The

result can also be readily generalized to multi-ring arrangements.

Figure F.4: Schematic of the three-ring coupled resonator. Left panel: Top view
of the coupled resonator with key points marked. Right panel: Schematic of the
resonator with straightened waveguides (not to scale). Segment lengths have been
marked.
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The schematic for the three-ring coupled resonator is shown in Fig. [F.4] along
with definitions of segment lengths. Unlike the two-ring case, there is no explicit
symmetry to take advantage of, and the segmentation method is chosen to reduce
calculation complexity. We can assemble the field amplitudes from ring C, A, and

B, in that order, into a vector and find the transfer matrix for each section:

Lcy O 0
Y = exp |inygw/c| 0  Lar 0 [|¥1, (F.15)
0 0 Lg
NygW/C 0 0
Ym =exp|iLeo| O Nwgw/c 8o ||¥, (F.16)
0 gco NygW/C
L, 0 O
Yv = exp |inggw/c| 0 L, O [, (F.17)
0O 0 L,
nwgw/c 8co 0
Yv =exp |iLeo| 8o  Nwew/c 0 U1v. (F.18)
0 0 NygW/C

The overall round-trip transfer matrix is the product of the previous four matrices

and reads
T =
eimwewlc/c c08(geoLeco) jeimwewla/c cos(gcoLco) Sin(geoLco) —elmwewls/c Sinz(gcoLco)
jelwewlc/c Sln(gco co) eitwewlalc COSz(gco co) jeMvewls/c c08(gcoLco) sin(geoLco) |
ieinwngA/c Sin(gcoLco) einwngB/c COS(gcoLco)
(F.19)

where we defined the total length of ring C, Lc = Lcy + Ly + 2L, and La and
Lp are defined similarly. Note that the dependence on individual segment lengths
Lci, Lay, L1, and L, have disappeared from 7', indicating that the relative position
of the couplers on ring A does not matter for eigenfrequency calculations. This
is because propagating the same distance for all three components provides only a

global phase for the state, which can be moved past the coupler. Mathematically,
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Figure F.5: Eigenfrequency plots for the three-ring coupled resonator, showing
relative frequency (normalized to D ,,) versus ¢;. Parameters are (a) gcoLco =
0.3 and ¢ = 0; (b) gcoLco = 0.3 and ¢ = 0.4; (¢) geoLco = 1.0 and ¢ = 0.4.

the coupling matrix commutes with the propagation matrix, which is proportional

to the identity matrix for identical ring cross sections:

NygW/C 0 0 L, 0 O
Lo 0 NygW/C 8o |» Pwew/c| O L O || =0. (F.20)
0 8co nwgw/c 0 0 L,

For the coupler itself, the propagating part (diagonal elements) also commute with
the pure coupling part (off-diagonal elements), although different couplers do not
commute. Therefore, the system is equivalent to propagating along the entire length
of individual rings, followed by two point couplers with the same coupling ratios as
the original couplers. This argument works for all coupled resonators with identical
ring cross-sections coupled in a chain or tree topology, and provides a degree of

freedom for placing the rings in the design phase.

Following the two-ring analysis, we define an averaged length for the resonators and
its associated mode number:
— Le+La+L NwgwL
I = C A B . m= wg
3 2nc
We will also need to define two length differences. For the current design, we have

(F.21)

Lc + L = 2L, and the following contrast definitions become convenient:
Lg — Lc¢ Lo+ L —2LA
=, € = — .

€] 2 (F.22)
2L 6L
With these notations, 7' can be written as
T = eani
el (=01+02) cos(gcoLco) ie=2i0 c0s(gcoLco) Sin(geoLeo) —e!(91+92) gin? (8coLco)
ie'21+92) gin(geoLeo) €292 c0s?(geoLeo) ie"®1492) cos(geoLeo) SiN(geoLco) |
0 ie=2i0 sin(gcoLco) ei(#1+42) cos(gcoLco)

(F.23)
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with ¢1 = 2meym and ¢> = 2mepm. For the current design, € =~ 3 X 1073 and
e ~ 1.5 x 1075, which ensures a slowly-varying phase contributed by the coupling.
The eigenfrequencies are given by

Dl m
—0, (F.24)
2r

W =Wy —
where e'? is given by the roots to the cubic characteristic equation:

X - (e_2i¢2 cos(geoLco) + 2¢'" cos(¢1)) Cos(gcoLco)x2
+ (€22 cos(geoLeo) + 2¢ 72 cos(¢1)) cos(geoLeo)x — 1 =0, x =€, (F.25)

The unitary nature of 7 ensures that all three roots for x lie on the complex unit

circle.

As e < ¢ for the current design, ¢, varies much more slowly compared to ¢ and
we will take ¢, to be a constant to simplify the discussions below. Fig. [E.5|plots
the relative frequencies for some parameter combinations. In the case of ¢, = 0
(Fig. [F.5(a)), the mode frequencies of ring A coincides with the averaged frequency,
and the mode frequencies of ring A and B are symmetrically distributed around the
averaged frequency. As a result, the coupled frequency spectrum resembles that
of the two-ring resonator. A key difference here is that the two gaps opened have
different widths. For crossings at integer ¢/(2r) locations, ring A participates in
the coupling, and the total gap is approximately 2V2gcoLco X D1 /(27) for small
gcoLco. For the other crossings at half-integer ¢|/(27) locations, the mode from
ring A is half an FSR away from ring C and B, and the coupling becomes indirect.
Here the gap width is approximately (gcoLeo)? X D1,/ (27) for small geoLeo, Which
is second order in the coupling strength. A nonzero ¢, = 0 breaks the frequency-
domain symmetry and leads to additional avoided crossings (Fig. [F.5[b)). For
stronger coupling strengths, the bandwidths of the crossings expand and merge with
the other crossings (Fig. [F.5]c)) similar to the two-ring case. Here the frequency
dispersion become smoother and have less overall coupling-contributed dispersion.

Figure [F.6(a) shows the measured dispersion data for the three-ring resonator. The
topmost branch is used for soliton generation and is also shown in Fig. [3.1fe).
Fitting the averaged frequency (not plotted) gives an averaged FSR of 19.9711 GHz
and a second-order dispersion parameter of 282.7 kHz, consistent with the two-ring
results. After subtracting the averaged frequency, Fig. [F.6(b) shows the relative
frequency with a similar structure of Fig. [F.5(c). Using the exponential decaying

coupling model as described in the methods (gco = &co,0 €Xp(—4t/1tg)), the fitted
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Figure F.6: Dispersion of the coupled three-ring resonator. (a) Measured disper-
sion for the three-ring resonator. The topmost branch is also shown in Fig. [3.1fe) in
the main text. (b) Mode frequencies relative to the averaged frequencies (circles).
Solid curves show the fitted result using the three-ring model, and are in excellent
agreement with the data. Dashed lines indicate frequencies of the individual rings
before coupling.

result for the relative frequencies also shows good agreement with the measured
data. The fitted parameters are gco0Lco = 0.985, g = 1175 and ¢, = 0.216.
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Appendix G

CODE TO PLOT UP-TO-DATE FIG.[L]]

G.1 Python code to plot the up-to-date number of exoplanets found using

different methods
import xml.etree.ElementTree as ET, urllib.request, gzip, io,
numpy as np, matplotlib.pyplot as plt
from collections import Counter

url = "https://github.com/OpenExoplanetCatalogue/oec_gzip/raw/
master/systems.xml.gz"

oec = ET.parse(gzip.GzipFile(fileobj=io.BytesIO(urllib.request.
urlopen(url) .read())))

# Extract discovery years and methods

years_methods = Counter((int(planet.findtext("discoveryyear")),
planet. findtext("discoverymethod"))
for planet in oec.findall(".//planet")
if planet.findtext("discoveryyear"))

years = range (1995, max(years_methods) [0] + 1)

# Get the set of discovery methods

methods = set(method for year, method in years_methods)
# plot 'RV’ the first, ’'transit’ the last

methods = list(methods)

methods.remove(’RV’)

methods.remove(’transit’)

methods = [’RV’]+methods+[’transit’]

# Create a list of all counts

3 counts = np.array([[years_methods[(year, method)] for method in

methods] for year in years])

5 # Use more contrasting colors

colors = plt.cm.tab20(np.linspace(®, 1, len(methods)))

# Create a stacked bar plot
for i, method in enumerate (methods):
plt.bar(years, counts[:, i], bottom=np.sum(counts[:, :i], axis



152
=1), color=colors[i], label=method)
# Add labels and legend

plt.xlabel ("Year")
plt.ylabel ("Number of planets discovered")

5 plt.ylim(0, 200)

plt.legend ()
plt.show()

Listing G.1: Python code to plot the number of exoplanets found using different
methods with up-to-date information from Open Exoplanet Catalogue database.
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anomalous dispersion, [I4]

B
blue detuned, 24]

C
chromatic dispersion,
co-moving coordinate, [29]
co-moving frame,
coupling

critical coupling, [25]

over coupling, [25]

under coupling, 23]
coupling efficiency, 23]
coupling rate

external coupling rate,

intrinsic coupling rate,

total coupling rate, [16]

D

detuning, 23]

Dirac comb, [38§]

dispersion profile, [§]

dissipation rate
absorption dissipation rate,
external dissipation rate,
intrinsic dissipation rate,
total dissipation rate, [16|

Doppler effect, [IT]]

F
finesse, [18]
free spectral range (FSR),

G
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group index, [I0]

group velocity, [10]

group-velocity dispersion (GVD), L]
GVD parameter, [[ ]

I
integrated dispersion, [7]

integrated frequency, @

K

Kerr nonlinear coefficient, 21]

L

linewidth of a mode, [13]
longitudinal modes, [6]

Lorentzian lineshape,
Lugiato-Lefever equation (LLE), [31]

M
mode dispersion,
mode family, [6]
mode number
absolute mode number,
relative mode number,
mode profile, [6]

mode-propogating constant, @

N
nonlinear refractive index, [

normal dispersion, [[4]

P
phase modulator, 2]

phase modulator’s half-wave voltage,
phase-matching condition, 5]

photothermal nonlinear coefficient, 23|

pump detuning, 23]

Q
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quality factor
absorption-limited Q factor, @]
external quality factor,
intrinsic quality factor, [I7]
loaded quality factor,
total quality factor,

R

radial velocity method, [TT0]
red detuned, [24]

refractive index, 2]

retarded frequency, [§]

S
second order dispersion,
susceptibility

linear susceptibility, [I]

nonlinear susceptibilities, []

T
thermal bandwidth, [26]
thermal response function, 26]

transverse modes, [3]

A%

vacuum permittivity, [I]
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