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ABSTRACT

Optical frequency combs (OFC) have been vastly developing and were awarded
half of the Nobel Prize in 2005. OFCs are series of optical signals with distinct
and equally spaced frequencies. One reason why OFCs are essential for modern
optics and photonics engineering is that OFCs serve as a bridge between optical
frequencies (hundreds of THz) and frequencies within the electronic bandwidth
(from MHz to GHz, which is the distance between adjacent comb teeth). In this
thesis, I first introduce some physical principles of optical resonators, which are
critical components for confining optical energy and generating OFCs. Then, in
the main body of this thesis, I study the physics and applications of two types of
compact OFCs: soliton microcombs and electro-optical frequency combs.

Microcombs are OFCs generated on integrated photonics devices. Here, I first
develop a methodology to experimentally characterize two important physical prop-
erties (material absorption loss and optical nonlinearity) of integrated photonic
materials. Next, I focus on a novel method to generate mode-locked soliton micro-
combs on ultra-low-loss Si3N4 material. It was considered challenging to support
bright solitons due to its normal dispersion. This novel method involves two res-
onators that are partially coupled together, which can modify the dispersion through
mode hybridization and feature symmetry breaking. Following this, I investigate
two characteristics closely related to the symmetry breaking of this coupled-ring
device: the observation of Kelly sidebands and multicolor bright soliton generation.
Finally, I demonstrate bright soliton generation in Al0.2Ga0.8As resonators, which
feature high nonlinearity but were considered difficult to support bright solitons at
room temperature due to its high material loss. Here, we mitigate the effect of
material loss by pulse-pumping operation.

Electro-optical frequency combs are OFCs generated by modulating a continuous
wave laser using an external radio-frequency source. Taking advantage of low-noise
radio frequency and stable continuous-wave laser frequency, this OFC can serve as
a frequency reference for astronomical observation. In this thesis, I first introduce
the physics and operating principle of electro-optical frequency combs in Chapter
1, then discuss developing and deploying the near-infrared laser frequency comb at
the W.M. Keck Observatory in Chapter 7.

In summary, the thesis discusses the physics and applications of mode-locked bright
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soliton microcombs, which can generate radio frequencies by taking the beat note
of this OFC. I also discuss the physics and applications of electro-optical frequency
combs, which are stable OFCs used for astronomical frequency references generated
by radio-frequency modulation of continuous wave lasers. The critical role of OFCs
as a bridge between optical frequencies and frequencies within the electronic band-
width (MHz to GHz) is demonstrated, and their potential to revolutionize various
fields, including high-precision metrology, telecommunications, and astrophysics,
is highlighted.
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onators with photothermal and Kerr self-phase modulation, where the
input power in the bus waveguide is indicated. Theoretical fittings
are plotted in red and discussed in Methods. The cold transmission
spectra measured at low pump power are also plotted with dashed
lines for comparison. WG power: optical power in the bus waveg-
uide. (c) Measured resonant frequency shift versus intracavity power
for microresonators based on different materials. Dashed lines are
linear fittings of the measured data. The four traces have the same
slope, which is a result of the proportional relation shown in Eq.
(2.1). (d) Measured resonant frequency shift versus microresonator
chip temperature for the four materials, with linear fittings. The fitted
shift for Al0.2Ga0.8As, Si3N4, SiO2 and Ta2O5 are -13.1, -2.84, -1.83
and -0.996, in units of GHz·K−1, respectively. . . . . . . . . . . . . 51
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2.3 The ratio measurement. This experiment measures the ratio of Kerr
and photothermal nonlinear coefficients 𝑔/𝛼. (a) Illustration of the
ratio measurement. A pump laser is stabilized to a resonance and
modulated by an intensity modulator. The intracavity power is thus
modulated. As a result of photothermal effect and Kerr cross-phase
modulation, the frequency of a nearby resonance is also modulated.
Another probe laser is stabilized near this resonance, and its trans-
mission is monitored by a vector network analyzer (VNA). Inset: the
modulation response allows distinguishing the photothermal and Kerr
effects. (b) Experimental setup. IM: intensity modulator; CIRC: op-
tical circulator; LPF: low-pass filter; VNA: vector network analyzer.
(c) Typical measured response functions of the probe laser transmis-
sion R̃ as a function of modulation frequency Ω. Numerical fittings
are outlined as dashed curves. For modulation frequencies below 1
kHz, the probe response is suppressed by the servo feedback locking
loop. Some artifacts appear around 1 kHz as a result of the servo
control. Here the experimental trace is smoothed over 5 points. (d)
Measured wavelength dependence of the ratios between the Kerr non-
linearity and photothermal effect for three materials. Vertical error
bars give 95% confidence intervals. . . . . . . . . . . . . . . . . . . 52

2.4 Absorption 𝑄abs, nonlinear coefficients and parametric oscilla-
tion threshold. (a) Measured absorption 𝑄abs factors at different
wavelengths in the telecommmunication C-band for the four mate-
rials. Vertical error bars give standard deviations of measurements.
(b) Comparison of absorption 𝑄abs factors and normalized nonlinear
index (𝑛2/𝑛2) for the four materials. Measured 𝑛2 values are listed in
Table 2.1. The 𝑛2 of SiO2 was not measured here and a reported value
of 2.2 × 10−20 m2 W−1 is used. Parametric oscillation threshold for
a single material normalized by mode volume (𝑃th/𝑉eff) is indicated
by the red dashed lines, assuming 𝜆 = 1550 nm, intrinsic 𝑄0 equals
material absorption 𝑄, and 𝑄𝑒 = 𝑄0 (i.e., critical coupling condition). 53

2.5 Observation of Miller’s rule of nonlinear susceptibility. . . . . . 58
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3.1 Soliton pulse pair generation in two- and three-coupled-ring mi-
croresonators. (a) Schematic showing coherent pulse pairs that form
a composite excitation. Inset: Photomicrograph of the two-coupled-
ring resonator used in the experiments. Rings A and B are indicated.
The scale bar is 1 mm. (b) Simultaneous measurement of optical
spectra collected from the through port (pumping port) and drop port
in the coupled-ring resonator of panel a. The measured mode disper-
sion is also plotted (orange). Two dispersive waves are observed at
spectral locations corresponding to the phase matching condition as
indicated by the dispersion curve. (c) Radio-frequency spectrum of
microcomb beatnote (RBW: resolution bandwidth). (d) Illustration
of 3 pulse generation in a three-coupled-ring microresonator wherein
pulses alternately pair. Inset: Photomicrograph of the three-coupled-
ring microresonator used in the experiments. The scale bar is 1 mm.
(e) Measurement of optical spectrum of the three pulse microcomb.
The measured mode dispersion is also plotted (orange). (f) Radio
frequency spectrum of the microcomb beatnote. . . . . . . . . . . . 71
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3.2 Illustration of inter-ring coupling with (without) mode num-
ber conservation. (a) The top panel shows two different coupling
schemes between two ring resonators with different FSRs. The left
configuration possesses a continuous rotational symmetry that al-
lows coupling only between modes with the same absolute mode
(azimuthal) number (i.e., mode number is conserved). In this case,
the coupling opens a gap at the mode crossing and creates two hybrid
mode branches (green curves in the lower panel). Here the center blue
and red dashed lines represent the resonance frequency of individual
rings, and their intersection point corresponds to phase matching. In
this work (top right panel), inter-ring mode coupling depends on the
matching of resonance frequency instead of mode number (i.e., mode
number is not conserved), so that the dispersion is strongly altered
at all frequency degeneracies. (b) In the lower panel, frequency de-
generacies are marked by crossings between the blue and red dashed
lines, which still represent the dispersion of individual rings, but with
the abscissa shifted by integer numbers as a result of spectral folding
allowed by non-conservation of mode number. Compared to the first
configuration, the dispersion curve of the coupled rings repeats itself
every 2𝑀 modes, with 𝑀 = 1/(2𝜖) set by the length contrast of the
rings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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3.3 Mode number non-conservation coupling and recurring bright
soliton windows. (a) Measured frequency dispersion of the cou-
pled resonator (green circles) versus relative mode number 𝜇. Here
𝐷1/(2𝜋) = 19.9766 GHz, and 𝜔0 is chosen so that 𝜇 = 0 is at the
crossing center (1552.3 nm). Multiple anomalous dispersion win-
dows appear around 𝜇 = 0 and 400 for the upper branch and 𝜇 =
−200 and 200 for the lower branch. The anomalous dispersion win-
dow near 𝜇 = −200, 0 and 200 have been highlighted. Solid curves
are fittings and the color refers to the energy contribution from ring
A (obtained from theoretical calculations). The average of the up-
per and lower branch mode frequencies is plotted as orange circles
and fitted by a second-order dispersion model (orange curve). Inset:
transmission observed when scanning a laser over resonances in the
anomalous dispersion windows. Soliton steps are observed around
𝜇 = −200, 0 and 200. (b) Measured relative frequency dispersion of
the coupled resonator (green circles) versus relative mode number 𝜇.
Here 𝐷2/(2𝜋) = −283.0 kHz, and other parameters are the same as
panel (b). Solid curves are the theoretical fittings described by Eq.
(3.2). Fitted mode frequency dispersion diagrams of the single rings
without coupling are shown as red and blue lines. . . . . . . . . . . 73
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3.4 Temporal evolution of the soliton pulse pair in the two-ring cou-
pled resonator. (a) Upper panel: Illustration of the time evolution
of the soliton pair inside the two rings during one round trip time.
Lower panel: Snapshots of the pulses at different positions. In the
non-coupled regions (I and IV), pulses accumulate positive chirp due
to nonlinearity and normal dispersion of the waveguide. Pulse in ring
A is leading in time at I due to shorter ring circumference. When
the pulses enter the coupling region (II), the pulses exchange energy,
which leads to relative position shifts as well as chirp compensation
(III). The pulses exit the coupled region (IV) with position shifts
and chirping compensated. (b) Simulated pulse pair properties are
plotted versus pulse position in each ring during one round trip. The
two rings are aligned at the coupling region center, and the surplus
length in ring B is omitted in the figure. The yellow shaded area rep-
resents the coupling region. The quantities are, from top to bottom:
pulse timing difference (pulse center-to-center), linear chirp, peak
power, and full width at half maximum. The blue (red) lines repre-
sent simulation results for the pulse in ring A (B). The dashed lines
are analytical results from a linear coupling model (see Methods),
and are consistent with simulation results. . . . . . . . . . . . . . . 74

3.5 Observation of bipartite and tripartite multi soliton states in two-
and three-coupled-ring microresonators. (a, b) Optical spectra of
bipartite two-soliton states with different relative soliton positions.
The state in panel (b) is a two-soliton crystal state. Insets: rela-
tive position of the two solitons inside each microresonator. (c, d)
Through port optical spectra of tripartite two-soliton states with dif-
ferent relative positions. Inset: relative position of the two solitons
inside each microresonator. (e) Through port optical spectrum of a
tripartite three-soliton state. Inset: relative position of the three soli-
tons inside each microresonator. (f) Through port optical spectrum
of a tripartite four-soliton crystal. Inset: relative position of the four
solitons inside each microresonator. . . . . . . . . . . . . . . . . . . 75
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3.6 Dispersion and coupling characteristics of the ring waveguide.
(a) Finite element simulation results for dispersions of straight Si3N4

waveguides with fixed width (2.8 𝜇m) as a function of wavelength
and waveguide thickness. The zero-dispersion boundary is marked
as the black dashed curve. Nominal waveguide thickness (100 nm)
for the current process is marked as the white dashed line. (b)
Numerical simulations of the waveguide coupling rate 𝑔co and the
corresponding spectral gap (2𝐺 = 𝑔co𝐿co𝐷1/𝜋, with 𝐿co = 1.0 mm
and 𝐷1 = 2𝜋 × 20 GHz) are plotted as a function of wavelength and
waveguide thickness. The gap between waveguides is 2.4 𝜇m. . . . . 76

3.7 C and S resonances and autocorrelation measurements of soli-
tons in the coupled-ring resonator. (a) The relative frequency of
the C and S resonances are measured using a vector network an-
alyzer and plotted versus tuning voltage in the two-ring resonator.
(b,c,d,e,f,g,h) Experimental autocorrelation measurements of: (b)
single soliton state in a two-ring resonator (state in Fig. 3.1(b)); (c)
two soliton state in a two-ring resonator (state in Fig. 3.5(a)); (d)
two soliton crystal state in a two-ring resonator (state in Fig. 3.5(b));
(e) single soliton state in a three-ring resonator (state in Fig. 3.1(e));
(f) two soliton state in a three-ring resonator (state in Fig. 3.5(c));
(g) two soliton state in a three-ring resonator (state in Fig. 3.5(d));
(h) three soliton state in a three-ring resonator (state in Fig. 3.5(e)).
The resolution of the autocorrelation setup is 100 fs. The zoom-in of
each autocorrelation measurements are shown in corresponding right
panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Stable soliton operation in the two-ring resonator measured over
4 hours. (a) Continuous measurement of the RF beat note of a pulse
pair soliton microcomb over 4 hours. The RF beatnote peak drift over
4 hours is within 25.7 kHz (1.29 PPM). 𝑓 : RF frequency, 𝑓𝑐: center
RF frequency, RBW: resolution bandwidth. (b) Simultaneous mea-
surement of the optical spectrum of the pulse pair soliton microcomb
in panel a over 4 hours. . . . . . . . . . . . . . . . . . . . . . . . . 78
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3.9 Simulated optical spectra and dispersion relation for Dirac soli-
tons assuming different levels of approximations in the model.
Top panel: Uniform coupling between two rings (mode number con-
servation), without pump and loss, and with zero second-order disper-
sion. Middle panel: Non-uniform coupling between two rings (mode
number non-conservation), with pump and loss included, and with
zero second-order dispersion. Recurring dispersion relations can be
observed but the spectrum is free of strong dispersive waves. Bottom
panel: Non-uniform coupling between two rings (mode number non-
conservation), with pump and loss, and with negative second-order
dispersion [i.e., full Eqs. (3.4) and (3.5)]. . . . . . . . . . . . . . . . 86

4.1 Illustration of KS generation. (a) Optical image of the partially
coupled racetrack resonator. (b) Measured integrated dispersion of
the two hybrid mode families (orange and red) is plotted versus
wavelength and relative mode number. When pumped near point
I (anomalous dispersion center of the upper band), soliton pulse pairs
form as illustrated in panel (c). Also, DWs (interband KSs) appear at
points II & III (IV & V). The appearance of KSs at points IV and V
is discussed in Section 4.5.1. 𝜔𝜇: frequency of mode 𝜇, 𝜔0: center
mode frequency, 𝐷1/2𝜋: free-spectral-range (FSR) of the resonator,
𝜇: relative mode number such that 𝜇=0 corresponds to the pump
mode. (c) Schematic showing soliton pulse pair propagation in the
coupled racetracks. DW and KS waves are indicated as oscillatory
backgrounds. (d) Measured optical spectrum of soliton pulse pair
from continuous-wave laser pumping. DWs and interband KSs are
observed at the predicted location in panel (b). Dispersion curves are
overlaid onto the soliton spectrum for reference. . . . . . . . . . . . 90
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4.2 Comparison of numerical simulation results for sideband gener-
ation in partially coupled and fully coupled resonators. (a) Simu-
lated soliton spectrum and dispersion profile of the partially coupled
racetrack. The soliton, when pumped at point I, generates two disper-
sive waves (point II and III) and two interband Kelly sidebands (point
IV and V). (b) Simulated soliton spectrum and dispersion profile of
the fully coupled racetrack. In this case, the Kelly sidebands at point
IV and V do not appear, because of phase mismatch. Panel (a,b)
Insets: illustration of partially coupled and fully coupled racetrack
configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Active control of KS wavelengths on blue and red sides through
pulse pumping. (a) Optical spectrum of soliton pulse pair generated
from pulse pumping. The measured mode frequency dispersion for
the two bands is also plotted. Inset: zoom in of the dispersion curve
of the pumped mode family and its comparison with 19.97267 GHz
comb frequency line (horizontal magenta line) and 19.97359 GHz
comb frequency (tilted blue line). The right vertical axis of the inset
is a magnified version of the right vertical axis of the main panel.
(b, c) Zoom-in optical spectra of the two KSs at shorter wavelengths
(panel b) and longer wavelengths (panel c) for different input pump-
pulse repetition rates. Legend gives the repetition rate of the input
pump pulse relative to 19.97217 GHz. Vertical dashed grid lines
indicate multiples of the comb repetition rate of 19.97267 GHz. . . . 92
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4.4 Explanation of Kelly sideband (KS) formation. (a) Comb fre-
quencies (blue) walk-off from resonator mode frequencies (red) by
𝐷2𝜇

2/2 as a result of anomalous dispersion. Comb line at 𝜇 = 0 is
also the pump. The comb and mode frequency become aligned (or-
ange highlight) when this walk-off is equal to an integer multiple of
𝐷1 (FSR). This frequency is approximately the frequency of the KSs.
𝜇: relative mode number. 𝜔𝜇: frequency of each mode. 𝐷1/2𝜋:
FSR of the resonator. 𝐷2: second-order dispersion of the resonator.
(b) Dispersion profile of the mode family shown in panel a. The
first few corresponding modes in panel (a) are indicated by dashed
arrows. When a mode frequency is an integer times 𝐷1/2𝜋 relative
to the pumped mode at 𝜇=0, it becomes possible to generate a KS at
this frequency, provided a second condition is satisfied as described
in panel (c). (c) Illustration of the propagation phase of the comb and
the mode at 𝜇∗. Their relative phase changes by a multiple 2𝜋 every
round trip, leading to phase mismatch of the waves and preventing
KS generation when the resonators are fully coupled. . . . . . . . . 93

4.5 Analysis of the comb and KS frequency offset using frequencies
measured with a high-resolution OSA (resolution of 125 MHz,
blue shaded area). The comb spectral lines (from around 190 THz
to 195 THz) and the Kelly sidebands (KS) on the red side (two
data points around 187 THz) exhibit approximately the same offset
frequency, within the precision limits of the spectrometer. Data at
higher frequencies were not collected due to spectrometer limitations.
Further details are provided in the text. . . . . . . . . . . . . . . . . 93
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5.1 Co-propagation: (a) Optical image of the coupled-ring microres-
onator. Scale bar, 1mm. (b) Dispersion characteristics of hybrid
mode families versus wavelength. Two regions exhibiting anomalous
dispersion are highlighted in orange. The black dots indicate the
frequencies of two continuous-wave pump lasers. The frequencies
of the dashed line are the average of the two hybrid mode fami-
lies and feature normal dispersion. 𝜔𝜇: frequency of each mode;
𝜔0: center mode frequency; 𝐷1: FSR of the mode family 1 at
𝜇=0 where 𝐷1/2𝜋 ≈19.97 GHz. (c) Experimental setup for co-
propagating multi-color pulse pair generation. C.W.: continuous-
wave; EDFA: erbium-doped fiber amplifier; WDM: wavelength di-
vision multiplexer; PD: photodetector. (d) Experimental spectra
for co-propagating multi-color pulse-pairs. A schematic depicting
the co-propagating two-color pulse pairs is shown in the inset. (e)
Measured radio-frequency (RF) beatnotes of multi-color pulse pairs.
RBW: resolution bandwidth. . . . . . . . . . . . . . . . . . . . . . 102

5.2 Counter-propagation: experimental spectra for simultaneous
generation of a single 1582 nm pulse pair in the presence of
varying numbers of counter-propagating 1550 nm pulse pairs.
(a) One 1582 nm pulse pair with one 1550 nm pulse pair. (b) One
1582 nm pulse pair with two 1550 nm pulse pairs. (c) One 1582 nm
pulse pair with three 1550 nm pulse pairs. The insets are schematic
representations of the counter-propagating multi-color pulse pairs for
each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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6.1 Demonstration of microwave rate soliton in Al0.2Ga0.8As mi-
croresonator at room temperature. (a) Simulation result showing
the process of soliton formation. Soliton can be generated when
the input laser is scanned from blue to red, indicated by the soliton
step. However, the generation of soliton will introduce a intracavity
power drop, which will destabilize the resonator due to thermal-optics
nonlinearity. (b) Characterization of the resonator used to generate
the soliton. The resonator has a intrinsic 𝑄-factor of 1.27 Million,
and second order dispersion 𝐷2 ≈ 17.49GHz. (c) The experimental
setup to generate the soliton in Al0.2Ga0.8As resonator using electro-
optical modulated optical pulse. ECDL: external-cavity diode laser;
EDFA: erbium-doped fiber amplifier; PM: phase modulator; AM:
intensity modulator; PSG: RF signal generator; 𝜑: RF phase shifter;
WS: waveshaper; BPF: Bandpass filter; PC: polarization controller;
PD: photodetector; MZI: Mach-Zehnder interferometer; OSC: oscil-
loscope; OSA: optical spectrum analyzer. (d) The optical spectrum
of generated optical soliton. The envelope of the soliton features
sech2 function. The soliton spectrum has 422 comb lines in 10dB
bandwidth and 705 comb lines in 20dB bandwidth. . . . . . . . . . 106

7.1 Number of exoplanets discovered by various methods over time.
The methods include Radial Velocity (RV), transit photometry, disk
kinematics, direct imaging, timing, microlensing, and astrometry.
The PRV method has been particularly successful, contributing sig-
nificantly to the total number of confirmed exoplanets. The data used
to plot this figure is from Open Exoplanet Catalogue database. This
figure is up-to-date as of June 24, 2024. Python code to plot the most
up-to-date version of this figure is attached in Appendix G.1. . . . . 111
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7.2 Schematic of the Laser Frequency Comb (LFC) signal chain. The
system starts with a laser at 1560 nm, which is modulated by electro-
optic modulators. The signal is amplified using an Erbium-Doped
Fiber Amplifier (EDFA) and pre-broadened through a Highly Non-
linear Fiber (HNLF). The broadened signal then passes through a
Ta2O5 waveguide and a flattener before being directed to the spec-
trometer as the LFC output. Part of the signal is also directed through
periodically poled lithium niobate (PPLN) and a Rubidium cell for
stabilization and locking, monitored by photodetectors (PD). Both
PDs are used for stabilization and locking of the LFC. . . . . . . . . 112

7.3 Optical spectrum of the electro-optic (EO) comb generated by the
1560 nm laser. The comb has a bandwidth of approximately 12 nm.
After dispersion compensation, this comb can achieve a full width at
half maximum (FWHM) in the time domain around 800 fs. . . . . . . 113

7.4 Optical spectrum of the fully broadened comb after Ta2O5 waveg-
uide. This spectrum shows the broadened comb spans from 1400nm
to 2100nm. The peak around 1560nm is the amplified EO comb pump.114

7.5 Photo of the full setup of LFC. The setup contains one equipment
rack on the right, together with two bread boards covered by the black
enclosure on the optical table. . . . . . . . . . . . . . . . . . . . . . 115

7.6 Power stability of the LFC over time The data was collected from
the evening of March 17, 2022, to the morning of March 18, 2022.
The color scale represents the power (dBm) at different wavelengths
(nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Allan deviation of LFC optical frequency. This data is collected
by beating LFC against a commercialized HCN-referenced laser with
an Allan deviation of 10−9 at 102 seconds offset time. . . . . . . . . . 116

7.8 LFC signal collected by NIRSPEC spectrograph. . . . . . . . . . 118
7.9 Simultaneous exposure of LFC and star light. . . . . . . . . . . . 119
B.1 Schematic used for modelling transmission spectra with FP back-

grounds. The micro-resonator (red ring) is coupled to the bus waveg-
uide (gray line). Quantities are defined in the text. . . . . . . . . . . 121
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B.2 𝑄 fitting with FP background. (a) and (b) are the results of fitting
the same resonance of a Ta2O5 resonator TE mode at 1559.4𝑛𝑚. (a)
An overly simplified model of the FP background times the Lorentzian
resonance is used here to fit the experiment data. A deviation between
data and fitting can be observed around the resonance. (b) The
improved model (Eq. (B.12) and Eq. (B.11)) is used to fit data and
gives a more accurate fitting. 𝑄0 is the fitted intrinsic 𝑄 and 𝑄𝑒 is
the fitted external (coupling) 𝑄. The 𝑄 factors obtained in both cases
have a difference about 20%, showing that it is essential to take the
FP interference effect into account. . . . . . . . . . . . . . . . . . . 123

D.1 SiO2 measurements. (a) Mode profiles of the measured mode fam-
ily (left) and equilibrium temperature distribution of the resonator
upon heating due to optical absorption (right). The geometry of the
resonator is: radius 3.24 mm, thickness 8 𝜇m, wedge angle 27◦ and
undercut 137.5 𝜇m. (b) Measured dispersion spectrum of the exper-
imental mode family. The dashed red line is the parabola fitting, and
the dispersion parameters are fitted to be 𝐷1/2𝜋 = 10.0 GHz and
𝐷2/2𝜋 = 4.20 kHz. Relative mode number 𝜇 = 0 corresponds to
the wavelength of 1550 nm. (c) Simulated thermal diffusion respon-
sivity 𝑟 (Ω) versus modulation frequency Ω/2𝜋. (d) Representative
normalized transmission spectra under different on-waveguide (WG)
power. Intrinsic𝑄0 and external (coupling)𝑄𝑒 of this mode are 418.6
Million and 625.9 Million, respectively. This mode is at 1550nm. . . 128

D.2 Si3N4 measurements. (a) Mode profile of the measured mode family
(left) and temperature distribution in the resonator when heated by
optical absorption (right). The Si3N4 core is 2.2 𝜇m × 0.95 𝜇m
and is cladded by 3.45 𝜇m-thick silica. The resonator radius is
0.562 mm. (b) Measured dispersion spectrum of the measured mode
family. The dashed red line is the parabola fitting with 𝐷1/2𝜋 =

40.53 GHz and 𝐷2/2𝜋 = 215.7 kHz. Relative mode number 𝜇 = 0
corresponds to wavelength close to 1550 nm. (c) Simulated thermal
diffusion response 𝑟 (Ω) versus modulation frequency Ω/2𝜋. (d)
Representative normalized transmission spectra under different on-
waveguide (WG) power. Intrinsic 𝑄0 and external (coupling) 𝑄𝑒 of
this mode are 29.0 Million and 52.1 Million, respectively. This mode
is at 1544.1nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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D.3 Al0.2Ga0.8As measurements. (a) Mode profile of the measured
mode family (left) and temperature distribution in the resonator upon
optical absorption heating (right). The core is 0.8 𝜇m ×0.4 𝜇m
Al0.2Ga0.8As and is cladded by 1.5𝜇m-thick silica. The resonator
radius is 0.719 mm. It is noted that the top surface is not flat.
(b) Measured frequency dispersion of measured mode family. The
dashed red line is parabola fitting with 𝐷1/2𝜋 = 17.93 GHz and
𝐷2/2𝜋 = −19.58 kHz. Relative mode number 𝜇 = 0 corresponds
to wavelength close to 1550 nm. (c) Simulated thermal diffusion
responsivity 𝑟 (Ω) versus modulation frequencyΩ. (d) Representative
normalized transmission spectra under different on-waveguide (WG)
power. Intrinsic 𝑄0 and external (coupling) 𝑄𝑒 of this mode are 1.01
Million and 2.44 Million, respectively. This mode is at 1560.1nm. . 132

D.4 Ta2O5 measurements. (a) Mode profile of the measured mode
family (left) and equilibrium temperature distribution inside the res-
onator upon optical absorption heating (right). The resonator consists
a 2.25 𝜇m × 0.57 𝜇m core (Ta2O5) and a silica substrate. The res-
onator radius is 0.1095mm. (b) Measured dispersion spectrum of
the measured mode family. The dashed red line is parabola fit with
𝐷1/2𝜋 = 192.5 GHz and 𝐷2/2𝜋 = −8.188 MHz. Relative mode
number 𝜇 = 0 corresponds to wavelength close to 1550 nm. (c)
Simulated temperature response 𝑟 (Ω) versus modulation frequency
Ω/2𝜋. (d) Representative normalized transmission spectra under
different on-waveguide (WG) power. Intrinsic 𝑄0 and external (cou-
pling)𝑄𝑒 of this mode are 2.02 Million and 6.59 Million, respectively.
This mode is around 1543.5nm. . . . . . . . . . . . . . . . . . . . . 134

D.5 Calculated 𝑄abs of Ta2O5 versus thermal conductivity. The cal-
culated material limited 𝑄abs of Ta2O5 is plotted versus the thermal
conductivity of Ta2O5 used in the FEM simulation. The light blue
shading denotes the standard deviation from the measurements. The
thermal conductivity value used in this study is marked with orange
dashed line, while the reported range of values in the literature is
shaded in gray. The lowest possible 𝑄abs as set by measured intrinsic
𝑄 factor is calculated from Eq. (D.10) and is also plotted as the black
dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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E.1 Absorption loss measurement results. Absorption loss as mea-
sured by cavity-enhanced photothermal spectroscopy in the 1380 nm
band. Red dots: data from sample device. Blue solid line: 2.4 ppm
(weight) OH content level absorption lineshape based on reference
(Humbach, et. al. J. Non-Cryst. Solids 203, 19-26 (1996).). . . . . . 139

F.1 Schematic of the two-ring coupled resonator. Left panel: Top
view of the coupled resonator with key points marked. Right panel:
Schematic of the resonator with straightened waveguides (not to
scale). Segment lengths and field amplitudes have been marked. . . . 141
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C h a p t e r 1

INTRODUCTION

Nonlinear systems provide exotic phenomena that significantly differ from linear
systems and have been extensively studied in recent decades. In particular, nonlin-
ear optics, which studies material optical nonlinear response to electrical fields, has
emerged since the fast development of laser optics, fiber communication, and re-
cently the optical frequency comb technology. The development of nonlinear optics
opens its promising applications in optical frequency reference and radio-frequency
(RF) synthesizing.

In this chapter, we first review three types of common optical nonlinearity (Photother-
mal, Electro-optical, and Kerr nonlinearity) in optical media. Then, we introduce
the microresonator, which is an ideal platform to study nonlinear optics due to its
high ability to store optical energy and accumulate to high intensity. Finally, we
briefly introduce optical frequency comb, one major topic in nonlinear optics.

1.1 Optical nonlinearity
1.1.1 Introduction
The optical response of material to the electric field E is usually calibrated by
dielectric polarization density P. The dependence is modelled as power series of E,
reads

P = 𝜀0

(
𝜒(1)E + 𝜒(2)EE + 𝜒(3)EEE + · · ·

)
, (1.1)

where 𝜀0 is the vacuum permittivity, 𝜒(1) is known as linear susceptibility, and
𝜒(2) , 𝜒(3) are known as second, third order nonlinear susceptibility, respectively
[1]. Here 𝜒(𝑛) is a rank-(n+1) tensor, describing the polarization-dependent and
anisotropic material response. For the studies in this thesis, it is usually sufficient
to simplify these coefficients to scalar values.

The physical process that leads to second-order polarization and third-order polar-
ization tends to be different. Second-order nonlinear interaction can only occur
in materials without inversion symmetry. For example, lithium niobate (LiNbO3)
forms single crystal and it features strong second order nonlinearity, making it an
important material for optical modulator and wavelength converter.
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However, amorphous solids and many other crystals that are widely used in nonlinear
optics are inversion symmetric, making 𝜒(2) coefficients for those materials strictly
vanish, and thus the leading nonlinear term for these inversion symmetrical materials
is the third order term associated with 𝜒(3) . Typical 𝜒(3) materials involved in this
thesis include amorphous silica (SiO2) and silicon nitride (Si3N4).

One important phenomenon of optical nonlinearity is that the material’s refractive
index depends on the electric field. The refractive index describes how matter affects
light propagation. For most materials with relative magnetic permittivity close to 1,
the refractive index (or phase index) 𝑛 can be calculated as

𝑛 ≈
(
𝜀

𝜀0

)1/2
, (1.2)

where 𝜀 is the electric permittivity of the material, defined in the relation P =

(𝜀 − 𝜀0)E. If Eq. (1.1) only contains the linear term associated with 𝜒(1) , the
refractive index in Eq. (1.2) can be calculated as 𝑛 =

√︁
1 + 𝜒(1) . In this case, 𝑛

is not dependent on the electric field E. However, with the presence of nonlinear
terms in Eq. (1.1), the refractive index 𝑛 will involve dependence on E, which will
be further discussed in the following section.

There are many types of physical processes that can lead to optical nonlinearity, and
here we briefly review three processes that are involved in this thesis.

1.1.2 Electro-optics nonlinearity
The electro-optic effect refers to the optical property of a material changes through
the presence of a static or slow-changing (compared to the optical frequency) electric
field. Here, we especially focus on the linear electro-optics effect, or Pockels effect,
which is the proportional relation between refractive index and electric field. This
effect is related to the 𝜒(2) term in Eq. (1.1), and is strong in 𝜒(2) materials such as
LiNbO3. By applying an electric field modulated at RF rate, the refractive index of
the material can be modulated with the same RF rate. The light passing through this
material will experience a modulated optical path due to refractive index modulation,
causing the optical phase to be modulated. This is the operating principle of the
optical phase modulator. This phase modulation creates optical sidebands and can
further generate electro-optics frequency comb, which will be further discussed in
section 1.3.4.
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Here, we assume the electric field is only applied along one direction, and the
susceptibilities are scalars for simplicity. Taking only the first two terms in Eq.(1.1)
and the magnitude of P can be calculated from the magnitude of E by 𝑃 = 𝜀0(𝜒(1)𝐸+
𝜒(2)𝐸2). We can calculate the refractive index of the material from Eq. (1.2) as

𝑛 ≈ 𝑛0(1 + 𝛼𝐸𝐸), (1.3)

where 𝑛0 =
√︁

1 + 𝜒(1) is the material refractive index without external electric field,
𝛼𝐸 = 𝜒(2)/2𝑛2

0 is the proportion coefficient in linear electro-optics effect. Higer
order terms in Eq. (1.3) are neglected.

For an electro-optics based phase modulator, the electric field needed to induce a
phase change of 𝜋 for a light with frequency 𝑓 is 𝐸𝜋 = 𝑛0𝑐/𝜒(2) 𝑓 𝐿, where 𝐿 is
the physical length of the modulator, 𝑐 is the speed of light. In order to reach 𝐸𝜋,
the voltage that is needed to be applied is defined as the phase modulator’s half-
wave voltage, or 𝑉𝜋. Currently, the ultra-low 𝑉𝜋 of commercial phase modulators
based on LiNbO3 can be smaller than 3V. This ultra-low 𝑉𝜋 feature is important for
applications of electro-optics frequency comb, which will be discussed in Chapter
7 of this thesis.

1.1.3 Thermal-optics nonlinearity
The thermal-optics effect refers to the phenomenon that the refractive index of
a material varies when the material temperature is different. Note that here we
only consider homogeneous material1. For a material with refractive index 𝑛0 at
temperature 𝑇 , its refractive index 𝑛 at temperature 𝑇 + 𝛿𝑇 can be expressed as

𝑛 = 𝑛0 (1 + 𝛼𝑇𝛿𝑇) , (1.4)

where 𝛼𝑇 = (𝛿𝑛/𝛿𝑇)/𝑛0 is the thermal refractive coefficient associated with 𝑛0.

With the presence of an electric field, the material temperature can change due to the
thermal absorption of the electric field. Here, we only focus on linear absorption,
where the material thermal absorption rate 𝑃abs is proportional to the intensity of
the electrical field 𝐼. The temperature change 𝛿𝑇 can be expressed as

𝛿𝑇 =

(
𝛿𝑇

𝑃abs

) (
𝑃abs
𝐼

)
𝐼, (1.5)

1This effect for devices with heterogeneous structure will be discussed in Section 1.2.7.4.
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where 𝐼 = 1
2𝑐𝑛0𝜀0 |E|2 represents the intensity of the electromagnetic wave. Com-

bining Eq. (1.4) and (1.5), we can find that the refractive index 𝑛 is dependent
on |E|2 as mediated by thermal absorption of the optical field. The nonlinearity
associated with this effect is called thermal-optics nonlinearity.

It should be noted that thermal-optics nonlinearity is mediated through thermal
effect. The time scale of this effect will be determined by the thermal absorption
rate of the material (typically on the order of ms [2]), and this time scale is much
longer than the time scale of any coherent optical effects. As a result, this effect will
not lead to any coherent nonlinear optical effects, such as sum/difference frequency
generation or harmonic generation. Utilizing their different time scale can help
characterize material optical absorption property 𝑃abs/𝐼 in Eq. (1.5), and relevant
topics will be discussed in Chapter 2 of this thesis.

1.1.4 Kerr nonlinearity
The optical Kerr effect is characterized by a change in the refractive index of a
material that is directly proportional to the intensity of the incident light. This
phenomenon is akin to the Kerr electro-optical effect, where the refractive index
change is proportional to the square of an external electric field.

The third-order nonlinear susceptibility, 𝜒(3) , is primarily responsible for this non-
linearity. As discussed in Eq. (1.1), 𝜒(3) term is the leading term in materials such
as SiO2 and Si3N4, and Kerr nonlinearity will be dominant for nonlinear processes
in those materials. The refractive index under the influence of the Kerr effect is
usually expressed by intensity 𝐼 = 1

2𝑐𝑛0𝜀0 |E|2 as:

𝑛 = 𝑛0 + 𝑛2𝐼, (1.6)

where 𝑛2 is the nonlinear refractive index .

When two optical waves propagate together in a nonlinear medium, the Kerr effect
induces refractive index changes that result in additional frequency components, a
process known as four-wave mixing (FWM). FWM is a parametric process where
two photons interact with the medium to generate two new photons at different
frequencies, given by the relation:

𝜔1 + 𝜔2 = 𝜔3 + 𝜔4, (1.7)
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where 𝜔1, 𝜔2, 𝜔3, and 𝜔4 are the angular frequencies of the interacting waves. The
relation in Eq. (1.7) ensured energy conservation in FWM process. This process is
phase-matched, meaning the momentum conservation law is also satisfied, given by
the relation:

k1 + k2 = k3 + k4, (1.8)

where k1, k2, k3, and k4 are the wave vectors of the interacting waves. This
requirement is also referred to as phase-matching condition since wave-vector k
describes the propagation phase of waves.

The Kerr nonlinearity and FWM play a crucial role in various applications such as
optical signal processing, supercontinuum generation, and wavelength conversion.
Leveraging Kerr nonlinearity in optical microresonators can develop different types
of optical frequency combs with applications in precision metrology, spectroscopy,
and frequency synthesizing. Those relevant topics will be discussed in the following
chapters.

1.2 Optical resonator
1.2.1 Introduction
Optical resonators, also known as optical cavities, are structures that confine light
within a certain volume through optical circulation. These structures are essential
components in various optical systems, including lasers, optical filters, sensors,
and especially in compact optical frequency comb systems. The configurations of
optical resonators include Fabry-Pérot cavities, ring resonators, whispering gallery
mode resonators, and photonic crystal cavities. Fabry-Pérot cavities consist of two
parallel mirrors, creating a standing wave pattern between them. Ring resonators
guide light in a circular path, often used in integrated photonics for their compactness
and high quality. Whispering gallery mode resonators confine light via continuous
total internal reflection along the optical circulation. Photonic crystal cavities use
periodic dielectric structures to create bandgaps, confining light in defect regions.

Optical resonators support different types of modes, primarily categorized into
transverse modes and longitudinal modes. Transverse modes refer to the spatial
distribution of the electromagnetic field in the plane perpendicular to the direction
of propagation. These modes are defined by the boundary conditions imposed by the
resonator’s geometry. Examples of different transverse modes include transverse
electric (TE) mode and transverse magnetic (TM) mode, representing different
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Al0.2Ga0.8As

SiO2

Al0.2Ga0.8As

SiO2

(a) (b)

Figure 1.1: Mode profiles of different transverse modes. Mode profiles of TE0,0
mode (panel a) and TM0,0 mode (panel b) in an Al0.2Ga0.8As integrated waveguide
at 1550 nm.

directions of the electric and magnetic field components relative to the plane of
propagation. Different transverse modes have different mode profiles along the
plane perpendicular to the propagation direction. Examples of fundamental TE (or
TE0,0) mode and fundamental TM (or TM0,0) mode profiles are shown in Fig. 1.1
[3]. Here, the two numbers in the subscript denote the number of nodes along two
directions in the mode profile. When the number of nodes along one direction can
only be 0, the corresponding number can sometimes be omitted (for example, TE0,
TE1, TM0) as long as it does not cause any confusion.

Figure 1.2: Transmission spectrum of different longitudinal modes. The
frequency distance between two longitudinal modes is the local free-spectral-range.
The modes are not strictly equal distant due to chromatic dispersion, which lead to
mode dispersion and will be discussed in Section 1.2.2.

Another type of mode, longitudinal modes, represents the distribution of the elec-
tromagnetic field along the direction of propagation within the resonator. A series of
longitudinal modes belonging to the same transverse mode is called a (longitudinal)
mode family. Examples of the frequencies of a series of (longitudinal) mode family
is shown in Fig. 1.2 Longitudinal modes arise due to the constructive interference
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of light that circulates within the resonator. This interference condition is met when
the round-trip phase shift of the circulating light is an integer multiple of 2𝜋, for-
mulated as Eq. (1.18). This integer 𝑚 is called the (absolute) mode number of
this longitudinal mode, whose angular frequency is denoted as 𝜔𝑚. The frequency
spacing between adjacent longitudinal modes is known as the free spectral range
(FSR , or 𝐷1/2𝜋) of the resonator, with a unit of Hz. FSR is also related to the
round trip time of an optical pulse, and it can be calculated using Eq. (1.20).

1.2.2 Mode dispersion
It should be noted that due to the chromatic dispersion (the refractive index 𝑛 varies
with the wavelength 𝜆 of the light) of the propagation medium, the FSR will change
slightly across different wavelengths. In other words, chromatic dispersion will lead
to mode dispersion causing 𝜔𝑚 can not be simply represented by 2𝜋𝑚 × FSR.

To address this issue, 𝜔𝑚 is usually represented by power series around a chosen
longitudial mode 𝜔𝑚0 . Define relative mode number 𝜇 = 𝑚 − 𝑚0 and use relative
mode number as the subscript in the following discussion for convenience (for
example, 𝜔𝑚0 will be represented as 𝜔0), we can write,

𝜔𝜇 = 𝜔0 + 𝐷1𝜇 + 1
2
𝐷2𝜇

2 + 1
6
𝐷3𝜇

3 + · · · , (1.9)

where 𝐷1/2𝜋 is the FSR of this (longitudinal) mode family at 𝜔0, 𝐷2 is the
second order dispersion of this mode family at 𝜔0. Higher-order dispersions can
be defined subsequently. It should be noted that 𝐷1, 𝐷2, etc. are local parameters
and need to specify the angular frequency𝜔0 when they are referenced. Those mode
dispersions (𝐷2, 𝐷3, etc.) play a critical role in nonlinear optical processes that
happen in the resonator, such as frequency comb generation, parametric oscillation,
harmonics generation, and soliton formation.

To clearly illustrate the mode dispersions in a resonator, we define integrated
dispersion (sometimes also called retarded mode frequency or slow frequency) as

𝜔𝜇,int = 𝜔𝜇 − 𝜔0 − 𝐷1𝜇 (1.10)

=

∞∑︁
𝑛=2

𝐷𝑛

𝑛!
𝜇𝑛, (1.11)
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and the plot between 𝜔𝜇,int versus 𝜇 is called dispersion profile of this mode family.
examples of dispersion profile is shown in Fig. 1.3 [4]. The dispersion profile
of a mode family clearly illustrates the deviations from the ideal linear behavior
(represented by 𝐷1) and highlights the contributions of higher-order dispersions
(𝐷2, 𝐷3, etc.). These deviations are critical for understanding and controlling
nonlinear optical processes within the resonator.

Figure 1.3: An example of dispersion profile (a plot between integrated dispersion
and relative mode number) for two ultra-low-loss Si3N4 resonators with different
FSRs. It should be noted that dispersion profile is a scattered plot where relative
mode number 𝜇 can only take integer values.

Managing and engineering these dispersions enable precise control over the res-
onator’s nonlinear dynamics and are pivotal in developing advanced photonic de-
vices. Relevant topics will be discussed in Chapters 3 and 4 of this thesis.

1.2.2.1 Integrated (angular) frequency with respect to 𝐷1

As an additional note, 𝜔𝜇,int is the integrated angular frequency (or retarded
angular frequency) of 𝜔𝜇 with respect to 𝐷1. For an arbitrary angular frequency
𝜔 (not limited to mode frequencies 𝜔𝜇), we can also define its integrated angular
frequency𝜔int with respect to 𝐷1. This process is effectively mapping 1-dimensional
𝜔 axis to a 2-dimensional 𝜇-𝜔int plane, where 𝜔int can only take values within an
interval with a range of 𝐷1 and 𝜇 can only take integer numbers. The illustration of
this mapping process is shown in Fig. 1.4.
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Figure 1.4: Illustration of mapping between 1-dimensional 𝜔 axis to 2-
dimensional 𝜇-𝜔int plane. On 𝜇-𝜔int plane, 𝜇 only take integer numbers and
𝜔int only take values within an interval with a range of 𝐷1.

The absolute value of 𝜔int is typically not important and its relative value can be
represented as 𝜔 − 𝜇𝐷1.

The mapping shown in Fig. 1.4 will not be one-to-one if 𝜔int takes values out of
the range 𝐷1. For example, on 𝜇-𝜔int plane, point (𝜇∗,𝜔∗

int) and (𝜇∗ − 1,𝜔∗
int + 𝐷1)

represent the same absolute frequency. To avoid this effect, the values that are out
of range 𝐷1 can be "folded" within 𝐷1, as shown in Fig.1(d) of ref. [5].

Further discussions on the physical meaning of 𝜔int when it is outside the range 𝐷1,
and its significance in indicating the occurrence of a quasi-phase-matching process
in a resonator with broken symmetry, will be presented in Chapter 4 and illustrated
in Fig. 4.4.

1.2.3 Relationship between mode dispersion and group-velocity dispersion
In this section, we will review some key concepts related to group-velocity disper-
sion in fiber optics. Understanding these concepts is crucial for studying optical
resonators, as they share similar underlying principles, and have been well studied
in fiber optics with well-established measured values. Clarifying their relations
with microresonator parameters will be very beneficial for resonator studies. We
will begin with the mode propagation constant and its dispersion properties, then
examine their relationship to the group index and group-velocity dispersion, and
finally discuss how these concepts apply to optical resonators.

1.2.3.1 Mode propagating constant and its dispersion

In fiber optics, the propagation of electro-magnetic waves are confined by fiber, thus
the wavevectors k are often simplified to mode-propogating constant 𝛽 defined by
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𝛽 = 𝑛
𝜔

𝑐
, (1.12)

where 𝑐 is the speed of light. The power series of Eq. (1.12) around an angular
frequency 𝜔0 can be written as

𝛽 (𝜔) = 𝛽0 + 𝛽1(𝜔 − 𝜔0) +
1
2
𝛽2(𝜔 − 𝜔0)2 + · · · . (1.13)

It should be noted that, in Eq. (1.9), the coefficients 𝐷1, 𝐷2, etc. describe the
property of a resonator and can have different values for two resonators even if they
are made from the same material. The 𝛽0, 𝛽1, etc. values in Eq. (1.13) describe
the property of a material because they are solely dependent on the chromatic
dispersion 𝑛(𝜔) in Eq. (1.12). The values of 𝛽0, 𝛽1, etc. are often available in
Scientific Handbooks for many commonly used photonic materials. Additionally,
𝛽0, 𝛽1, etc. are also local parameters and need to specify the angular frequency 𝜔0

when they are referenced.

1.2.3.2 𝛽1 parameter and group index 𝑛𝑔

In Eq. (1.13), mode-propogating constant at 𝜔0 is 𝛽0 = 𝑛𝜔0/𝑐, and

𝛽1 =

(
d𝛽
d𝜔

)
𝜔=𝜔0

=
1
𝑣𝑔

=
𝑛𝑔

𝑐
, (1.14)

where 𝑣𝑔 is the group velocity, 𝑛𝑔 is the group index. With Eq. (1.12) and the
definition of 𝑛𝑔 in Eq. (1.14), we can see that in principle, 𝑛𝑔 can be negative
(leading to 𝑣𝑔 < 0) [6]. For the materials we commonly work with, we do not have
negative group velocities. Thus in the following discussion, we only consider cases
when 𝑛𝑔 > 0.

Group index 𝑛𝑔 is also a useful parameter to characterize the refractive index change
over different frequencies. Here, we further derive some useful equations related to
𝑛𝑔. With Eqs. (1.12) and (1.14), we have

𝛽1 =

(
d𝛽
d𝜔

)
𝜔=𝜔0

=
1
𝑐

(
d(𝑛𝜔)

d𝜔

)
𝜔=𝜔0

=
1
𝑐

(
𝜔d𝑛 + 𝑛d𝜔

d𝜔

)
𝜔=𝜔0

=
𝑛𝑔

𝑐
.
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Therefore by fully expanding the above equation, we can get the relationship between
𝑛𝑔 and the refractive index change d𝑛 when the angular frequency changes d𝜔 by 2

d𝑛
𝑛𝑔 − 𝑛

=
d𝜔
𝜔

= −d𝜆vac
𝜆vac

= − 𝑛

𝑛𝑔

d𝜆med
𝜆med

, (1.15)

where 𝜆vac is the corresponding light’s wavelength in vacuum, 𝜆med = 𝜆vac/𝑛 is the
wavelength in medium.

1.2.3.3 Group velocity dispersion parameter 𝛽2

Additionally, for 𝛽2 in Eq. (1.13), we have

𝛽2 =

(
d2𝛽

d𝜔2

)
𝜔=𝜔0

=

(
d𝛽1
d𝜔

)
𝜔=𝜔0

, (1.16)

and this term represents the variation of the group velocity with respect to frequency.

Physically speaking, the envelope of an optical pulse travels at the group velocity
𝑣𝑔, with the parameter 𝛽2 representing the dispersion of this group velocity, leading
to pulse broadening. This effect is known as group-velocity dispersion (GVD),
and 𝛽2 is the GVD parameter, with unit of ps2/km.

In practice, another dispersion parameter 𝑑2 in unit of ps/(km·nm), representing two
closely aligned wavepackets with wavelength difference d𝜆 (in unit of nm) walks off
in time (in unit of ps) after propagating 1 kilo-meter due to their different propagation
speed. Formalized as

𝑑2 = lim
d𝜆→0

𝛽1(𝜆 + d𝜆) − 𝛽1(𝜆)
d𝜆

=
d𝛽1
d𝜔

d𝜔
d𝜆

= −2𝜋𝑐
𝜆2 𝛽2. (1.17)

1.2.3.4 Relationship to mode dispersion

In optical resonator, the propagating constant 𝛽 of mode with absolute mode number
𝑚 should satisfy

𝛽𝐿 = 2𝜋𝑚 (1.18)
2Note that the second equality in Eq. (1.15) can be derived by taking derivation to both

sides of ln(𝜔) = ln(2𝜋𝑐/𝜆vac), which gives d(ln𝜔) = d𝜔/𝜔 = −d(ln𝜆vac) = −d𝜆vac/𝜆vac, as a
pure mathematical trick without physical meaning. Similarly, the third equality in Eq. (1.15)
can be verified by taking the total derivation of ln(𝜆med) = ln(𝜆vac/𝑛), which gives d𝜆med/𝜆med =

d𝜆vac/𝜆vac − d𝑛/𝑛 (also a pure mathematical trick without physical meaning).
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to meet the resonant condition.

Sometimes, the parameters 𝛽1 (or 𝑛𝑔) and 𝛽2 of the propagating medium within the
optical resonator can be found in reference handbooks. Then the FSR (or 𝐷1/2𝜋)
and mode dispersion parameter 𝐷2 can be calculated from 𝛽1 and 𝛽2. Take 𝜔 in
Eq. (1.13) as the frequency of a longitudinal mode with relative mode number 𝜇,
and bring the expression of 𝜔𝜇 in Eq. (1.9) into Eq. (1.13), we have

𝛽(𝜔𝜇) − 𝛽0 =
2𝜋𝜇
𝐿

= 𝛽1

(
𝐷1𝜇 + 1

2
𝐷2𝜇

2 + · · ·
)
+ 1

2
𝛽2

(
𝐷1𝜇 + 1

2
𝐷2𝜇

2 + · · ·
)2

+ · · ·

(1.19)

where the 2𝜋𝜇/𝐿 is calculated from Eq. (1.18).

Comparing the coefficients before 𝜇 and 𝜇2 in Eq. (1.19), we have: (used definition
of 𝑛𝑔 in Eq. (1.14), also note FSR=𝐷1/2𝜋)

𝐷1 =
2𝜋
𝛽1𝐿

=
2𝜋𝑐
𝑛𝑔𝐿

, (1.20)

with a unit of rad·s−1. And

𝐷2 = −
𝛽2𝐷

2
1

𝛽1
= −𝑐

𝛽2𝐷
2
1

𝑛𝑔
. (1.21)

Alternatively, Eq. (1.13) (can be interpreted as k(𝜔)) is related to the inverse series
of Eq. (1.9) (related to 𝜔(k), where k solely depend on 𝑚 by Eq. (1.18)), thus the
relations in Eqs. (1.20) and (1.21) can also be derived by calculating series reversion
coefficients3. Higher-order dispersion parameters (𝐷3, 𝐷4, etc.) can be calculated
similarly.

It should be noted that the index appeared in Eqs. (1.20) and (1.21) are group index
𝑛𝑔 instead of the phase index 𝑛. This fact is especially important when dealing with
materials like AlxGa1−xAs, whose 𝑛𝑔 and 𝑛 differ by 2.5% at vacuum wavelength
1.55𝜇𝑚 when x = 0.21 [7].

3Conveniently, this can be calculated with InverseSeries function in Wolfram Mathematica.
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1.2.4 Momentum conservation of FWM in optical resonator
Similar to fibers, the propagation direction of electro-magnetic waves in optical
resonator is also confined. Thus it makes sense to use mode-propogating constant 𝛽
defined in Eq. (1.12) (or equivalently use mode number𝑚 in Eq. (1.18)) to represent
wave vector k. Then the momentum conservation requirement in Eq. (1.8) can be
written as

𝛽0,𝑚1 + 𝛽0,𝑚2 = 𝛽0,𝑚3 + 𝛽0,𝑚4 , or

𝑛𝑚1𝜔𝑚1 + 𝑛𝑚2𝜔𝑚2 = 𝑛𝑚3𝜔𝑚3 + 𝑛𝑚4𝜔𝑚4 , or

𝑚1 + 𝑚2 = 𝑚3 + 𝑚4, (1.22)

where 𝑚1, 𝑚2, 𝑚3 and 𝑚4 are the absolute mode numbers of the interacting
waves. Here, we do not consider the case when the interacting waves are counter-
propogating in the resonator against each other. This equation posed requirements
to achieve an efficient FWM process. Under different situations, one form of expres-
sion in Eq. (1.22) will be adapted to represent the momentum conservation (phase
matching) condition.

The momentum conservation requirement for other nonlinear processes such as
harmonic generation and parametric oscillation can be written similarly.

Note that for degenerated FWM in optical resonator, where 𝑚3 = 𝑚4 = 𝑚, 𝜔3 =

𝜔4 = 𝜔, the condition in Eq. (1.7) and (1.22) expressed in terms of relative mode
number 𝜇 by

2𝜔 = 𝜔1 + 𝜔2, and

2𝜇 = 𝜇1 + 𝜇2, (1.23)

where 𝜔, 𝜔1, 𝜔2 are the angular frequencies of interacting waves. The requirement
in Eq. (1.23) can be easily represented in terms of integrated angular frequency plot
(as illustrated in the lower panel of Fig. 1.4) by identifying the point (𝜇, 𝜔 − 𝜇𝐷1)
is the mid-point between (𝜇1, 𝜔1 − 𝜇1𝐷1) and (𝜇2, 𝜔2 − 𝜇2𝐷1).

1.2.5 Normal dispersion and anomalous dispersion
Dispersion refers to the frequency dependence of various properties. Common
examples include refractive index dispersion, which causes prisms to separate white



14

light into its constituent colors, and focal length dispersion in lenses, leading to
chromatic aberration.

Normal and anomalous dispersion describes the frequency dependence of the group
index 𝑛𝑔 (not the phase index 𝑛). Dispersion is termed normal if 𝑛𝑔 increases with
angular frequency and anomalous if 𝑛𝑔 decreases with angular frequency. The
transition points between these regimes are the zero-dispersion points. For instance,
the normal and anomalous dispersion regimes for fused silica are illustrated in Fig.
1.5 [1].
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Figure 1.5: Dependence of the refractive index (𝑛) and group index (𝑛𝑔) on
vacuum wavelength for fused silica. It should be noted that the dispersion is
normal or anomalous is determined by whether 𝑛𝑔 is decreasing or increasing over
wavelength, not phase index 𝑛.

When the dispersion is normal, d𝑛𝑔
d𝜔 > 0. According to Eqs. (1.14), (1.16), and

(1.21), this implies 𝛽2 > 0 and 𝐷2 < 0. Note that 𝐷2 is also related to the
curvature of the dispersion profile (𝜔𝜇,int versus 𝜇 plot) as defined in Eq. (1.11).
Table 1.1 summarizes the relationships between these parameters for normal and
anomalous dispersion, highlighting how to identify the dispersion properties of
optical resonators. For example, both dispersion profiles shown in Fig. 1.3 has
negative curvature (concave down) at 𝜇 = 0, therefore both resonators in Fig. 1.3
feature normal dispersion at 𝜇 = 0.

Identifying dispersion parameters is crucial for the design and optimization of
optical systems. The nonlinear behavior of light in optical resonators is significantly
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Table 1.1: Summary of values for normal and anomalous dispersion (when 𝑛𝑔 > 0).
Examples of normal dispersion are shown in Figs. 1.3 and D.4(b). Examples of
anomalous dispersion are shown in Figs. D.1(b) and Fig. D.2(b).

Dispersion Type d𝑛𝑔
d𝜔 𝛽2 𝐷2 Dispersion Profile Curvature

Normal Dispersion d𝑛𝑔
d𝜔 > 0 𝛽2 > 0 𝐷2 < 0 Negative (Concave Down)

Anomalous Dispersion d𝑛𝑔
d𝜔 < 0 𝛽2 < 0 𝐷2 > 0 Positive (Concave Up)

influenced by the type of dispersion present. Normal and anomalous dispersion
affect pulse propagation and the process of optical soliton generation. The technique
of manipulating the dispersion profile in optical resonators to generate optical bright
soliton will be discussed in Chapter 3 of this thesis.

1.2.6 Quality of the resonator
1.2.6.1 Resonator-environment interaction

In the following sections, we focus on the behavior of a single resonator mode rather
than discussing the properties of a mode family. As discussed earlier, the absolute
angular frequency 𝜔0 of a mode can be determined by Eqs. (1.12) and (1.18). How-
ever, in practical scenarios, the resonator interacts with the environment, causing the
mode to resonate within a bandwidth around 𝜔0 rather than at a single frequency. A
high-quality resonator exhibits minimal interaction with the environment, and this
interaction extent is critical in describing the resonator’s quality.

Another way to interpret this excitation bandwidth is through mode coupling. The
coupling between the resonator mode and the environmental heat bath creates new
eigenmodes, which comprise components from both the environment and the res-
onator. These new eigenmodes form a spectrum around the original angular fre-
quency 𝜔0. For angular frequencies near but not exactly at 𝜔0, if the mode coupling
is strong, the eigenmodes will have a higher composition from the resonator, mak-
ing it easier to excite the resonator at these frequencies. Conversely, if the mode
coupling is weak, the resonator’s contribution to the eigenmodes is low, making it
harder to excite the resonator at angular frequencies away from 𝜔0. Phenomenally,
stronger (weaker) resonator-environment interaction, or lower (higher) resonator
quality, results in a larger (smaller) excitation bandwidth. This excitation bandwidth
can be characterized by the linewidth of a mode, as shown in Fig.1.6(a)[8].
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This resonator-environment interaction is also usually4 simplified to a total dissi-
pation rate (or total coupling rate), 𝜅, which is a real positive constant (𝜅 ∈ R+)
in unit of rad · s−1, representing the fraction of intracavity energy lost to the envi-
ronment per unit time. Using this definition, the dynamic of intracavity energy can
be represented as

d|𝑎 |2
|𝑎 |2

= −𝜅d𝑡, (1.24)

where |𝑎 |2 is the intracavity energy of the resonator in unit of J, 𝑡 represents time in
unit of Second (s). Definition of 𝑎 will be introduced in Eq. (1.33). Furthermore,
𝜅 is the excitation bandwidth (or linewidth of a mode) we discussed before, which
will also be introduced in Section 1.2.8.2, Eq. (1.62).

Using the relation in Eq. (1.24), 𝜅 can be measured with a "ring-down" experiment,
as shown in Fig. 1.6(b) [8], where the intracavity energy in unit of Joule (J) is
measured as a function of time. Other ways to measure 𝜅 will also be introduced in
Section 1.2.8.2.

In practice, people also model the loss as propagation loss 𝜎, in unit of dB· m−1.
The fraction of energy remaining after the wave packet propagates a distance 𝑧 is
given 5 by e−

𝑧
𝑐/𝑛𝑔 𝜅. Therefore, 𝜎 is related to 𝜅 by

𝜎 =
1
𝑧

10 · log10

(
1

e−
𝑧

𝑐/𝑛𝑔 𝜅

)
=

10
ln(10) ·

𝑛𝑔𝜅

𝑐
≈ 4.343

𝑛𝑔

𝑐
𝜅, (1.25)

where ln represents loge.

1.2.6.2 Intrinsic and external coupling

Additionally, different types of resonator-environment interactions contribute to 𝜅.
To probe the resonator, we deliberately interact with it. This part of the interaction,

4This simplification is particularly useful when we study ring resonator and whispering gallery
mode resonator, where the commonly used concept of transmission and reflection in Fabry-Pérot
cavity is not suitable. Resonators that are suitable for this simplification have a Lorentzian resonance
lineshape, which will be further discussed in Section 1.2.8.2. Resonators that are not suitable for this
simplification (for example, Fabry-Pérot cavity) may have other lineshapes.

5The time that wavepacket with power 𝑃in travels through distance d𝑧 is d𝑧
𝑐/𝑛𝑔 , therefore the

fraction of power that are lost after wavepacket travels through distance d𝑧 is d𝑧
𝑐/𝑛𝑔 𝜅. By solving

differential equation d𝑃
𝑃

= − d𝑧
𝑐/𝑛𝑔 𝜅, we can get 𝑃/𝑃in = e−

𝑧
𝑐/𝑛𝑔 𝜅 . The amount of loss after travelling

distance of 𝑧 (expressed in dB number) is 10 · log10 (𝑃in/𝑃), leading to the result in Eq. (1.25).
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which does not describe the resonator’s intrinsic quality, is separated from 𝜅 and
defined as the external dissipation rate (or external coupling rate), 𝜅e. The re-
maining part is the intrinsic dissipation rate (or intrinsic coupling rate), 𝜅0, which
accounts for the resonator’s inherent interaction with the environment. This intrinsic
dissipation rate is crucial for calibrating the resonator’s quality. Mathematically,

𝜅 = 𝜅0 + 𝜅e (1.26)

satisfies. 𝜅, 𝜅0 and 𝜅e all positive real constants (∈ R+).

Among the intrinsic resonator-environment interactions, several types of interactions
are involved. Scattering loss can be mitigated by improving surface roughness and
fabrication techniques, while absorption loss, which transfers optical energy to heat,
poses a fundamental limit to the material’s performance. By leveraging thermo-
optic nonlinearity, it is possible to isolate absorption loss from other intrinsic losses,
which will be discussed in Chapter 2.

1.2.6.3 Quality (𝑄) factor

The quality of a resonator is often quantified by unitless 𝑄-factor (quality fac-
tor), which is related to the fraction of energy loss per optical oscillaton cycle 6.
Mathematically, the 𝑄-factors are defined as:

𝑄0 =
𝜔0
𝜅0

, (1.27)

𝑄e =
𝜔0
𝜅e

, (1.28)

𝑄 =
𝜔0
𝜅
, (1.29)

where 𝑄 is the total quality factor (or loaded quality factor), 𝑄0 is the intrinsic
quality factor, and 𝑄e is the external quality factor.

Rewriting the relation in Eq. (1.26) in terms of 𝑄-factors, we have:

1
𝑄

=
1
𝑄0

+ 1
𝑄e

. (1.30)

6Generally, 𝑄-factor is defined as 𝑄 = 2𝜋 stored energy
energy loss per oscillation cycle . This can be further derived

to Eq. (1.29) by 𝑄 = 2𝜋 1
𝜅 · (1/ 𝑓 ) , where 𝑓 = 𝜔/2𝜋.
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The intrinsic 𝑄0 reflects the resonator’s inherent losses, while the external 𝑄e

represents losses due to external coupling that is deliberately applied to probe
the resonator. High 𝑄-factor is equivalent to low dissipation rate (𝜅) and narrow
resonance bandwidth, which is favored in many applications.

1.2.6.4 Finesse

Another unitless number ℱ, or finesse, is also used to quantify the quality of the
resonator. Adapting a similar idea as 𝑄-factor, which relates to energy loss per opti-
cal oscillation cycle, ℱ relates to energy loss per resonator round trip. ℱ is defined
using the full-width at half-maximum (FWHM) 𝛿𝜈FWHM of the resonance7, thus
may have different mathematical forms for resonators with different lineshape8. For
the resonators that are suitable for the simplification in Eq. (1.24) (with Lorentzian
resonance lineshape), we have

ℱ =
FSR
𝜅/2𝜋

. (1.31)

Intrinsic and external finesse can be defined similarly as Eqs. (1.27) and (1.28).

1.2.7 Characteristics of mode and its resonance angular frequency
In this section9, we will study the mode profile of transverse modes in optical
resonator, when the resonator is consisted of heterogeneous structures with spatially
varying refractive index 𝑛(𝑟, 𝜃, 𝑧). Here (𝑟, 𝜃, 𝑧) is the cylindrical coordinate10 with
the value of 𝑟 ∈ [0, +∞), 𝜃 ∈ [0, 2𝜋) and 𝑧 ∈ R. Then study its resonant angular
frequency 𝜔0 and how 𝜔0 is changed when spatially-varying refractive index has a
pertubation Δ𝑛. Finally we will define mode volume of the transverse mode, which
is important in nonlinear optics to calculate energy density.

1.2.7.1 Helmholtz equation

We start with the Helmholtz equation for a single-mode within the resonator,

−∇ × ∇ × Ẽ(r, 𝜔0) +
𝑛2𝜔2

0
𝑐2 Ẽ(r, 𝜔0) = 0, (1.32)

7Generally, finesse is defined as ℱ = FSR/𝛿𝜈FWHM.
8For example, ℱ for Fabry-Pérot cavities has a different form than Eq. (1.31).
9The contents in Section 1.2.7 are mainly adapted from the Supplementary Information of ref.

[2]. The main text contents of ref. [2] will be discussed in Chapter 2 of this thesis.
10We focus on ring resonators or whisper-gallery resonators with azimuthal symmetry in this

section.
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where Ẽ is the (real) modal electric field, 𝑐 is the vacuum speed of light, and 𝜔0 is
the resonance angular frequency. For convenience, Ẽ can be expressed as a phasor,

Ẽ =
1
2

E + c.c., E = 𝑎F(𝑟, 𝜃, 𝑧)𝑒−𝑖𝜔0𝑡 , (1.33)

where 𝑎 is the complex mode amplitude and F is the field distribution. For |𝑎 |2 =

𝑎 · 𝑎∗ (defined in Eq. (1.24)) to represent the optical energy stored in the mode, the
normalization for F reads 11

𝜀0
2

∫
𝑛2 |F|2d𝑉 = 1, (1.34)

where |F|2 ≡ F · F∗ and the volume integral goes over the entire resonator. Here
we assume that the modal field is sufficiently localized so convergence problems
associated with quasimodes can be neglected.

The field distribution F can be further represented as

F(𝑟, 𝜃, 𝑧) = f (𝑟, 𝑧)e𝑖𝑚𝜃 , (1.35)

where f (𝑟, 𝑧) represents the transverse mode profile shown in Fig. 1.1, e𝑖𝑚𝜃 repre-
sents the longitudinal mode order shown in Fig. 1.2. Any additional constant phases
in Eq. (1.33) can be absorbed in 𝑎.

1.2.7.2 Resonance angular frequency and its variation

For the Helmholtz equation Eq. (1.32), 𝜔2
0 can be expressed in its variational form:

𝜔2
0 = 𝑐2

∫
|∇ × F|2d𝑉∫
𝑛2 |F|2d𝑉

. (1.36)

For a slight change in refractive index Δ𝑛 that is applied externally, the perturbed
eigenfrequency can be written similarly as:

(𝜔0 + Δ𝜔0)2 = 𝑐2

∫
|∇ × F|2d𝑉∫

(𝑛′ + Δ𝑛)2 |F|2d𝑉
, (1.37)

where the field F can be regarded as not changing up to first order of Δ𝑛, and 𝑛′

is the refractive index at the new eigenfrequency 𝜔0 + Δ𝜔0 to take account of the
chromatic dispersion of the material. Using Eq. (1.15), 𝑛′ can be expanded as

𝑛′ ≈ 𝑛 + 𝜕𝑛

𝜕𝜔
Δ𝜔0 = 𝑛 + (𝑛𝑔 − 𝑛)Δ𝜔0

𝜔0
. (1.38)

11Eq. (1.34) is derived by calculating volume integration of energy density 1
2𝜀 |E|2, where 𝜀 is

replaced by Eq. (1.2).
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By expanding Eq. (1.37) up to first order in Δ𝑛, and use the expression of 𝜔0 in Eq.
(1.36), we can obtain

1
(𝜔0 + Δ𝜔0)2 ≈

∫
𝑛2 |F|2d𝑉

𝑐2
∫
|∇ × F|2d𝑉

+
2
∫ [

𝑛(𝑛𝑔 − 𝑛)Δ𝜔0/𝜔0
]
|F|2d𝑉

𝑐2
∫
|∇ × F|2d𝑉

+
2
∫
𝑛Δ𝑛|F|2d𝑉

𝑐2
∫
|∇ × F|2d𝑉

=
1
𝜔2

0
− 2
𝜔2

0

Δ𝜔0
𝜔0

+ 2
Δ𝜔0
𝜔0

∫
𝑛𝑛𝑔 |F|2d𝑉

𝑐2
∫
|∇ × F|2d𝑉

+
2
∫
𝑛Δ𝑛|F|2d𝑉

𝑐2
∫
|∇ × F|2d𝑉

≈ 1
(𝜔0 + Δ𝜔0)2 + 2

𝑐2
∫
|∇ × F|2d𝑉

(
Δ𝜔0
𝜔0

∫
𝑛𝑛𝑔 |F|2d𝑉 +

∫
𝑛Δ𝑛|F|2d𝑉

)
.

(1.39)

Therefore the Δ𝜔0 can be solved as,

Δ𝜔0
𝜔0

= −
∫
𝑛Δ𝑛|F|2d𝑉∫
𝑛𝑛𝑔 |F|2d𝑉

. (1.40)

1.2.7.3 Kerr nonlinearity perturbation and effective mode volume

Here we consider a special case when Δ𝑛 in Eq. (1.40) is contributed by Kerr
nonlinearity discussed in Section 1.1.4. In this case, the local refractive change
induced by the Kerr nonlinearity for an isotropic material has the form

Δ𝑛 = 𝑛2𝐼 = 𝑛2
𝜀𝑜𝑐𝑛

2
|E|2, (1.41)

where 𝑛2 is the nonlinear index associated with 𝑛. Note here the resonator we
discuss has spatially varying structure, including refractive index 𝑛(𝑟, 𝜃, 𝑧) and Kerr
coefficient 𝑛2(𝑟, 𝜃, 𝑧). Substituting Δ𝑛 into Eq. (1.40), we have

Δ𝜔0
𝜔0

= −𝜀𝑜𝑐
2

|𝑎 |2
∫
𝑛2𝑛2 |F|4d𝑉∫
𝑛𝑛𝑔 |F|2d𝑉

. (1.42)

To gain insight to the expression in Eq. (1.42), we separate it into three terms
(normalization relation in Eq. (1.34) is used) 12. We define the weighted nonlinear

12The explicit formalism of this separation to Eq. (1.42) is

Δ𝜔0
𝜔0

= −𝑐 |𝑎 |2
( ∫

𝑛2𝑛2 |F|4d𝑉∫
𝑛2 |F|4d𝑉

) ©­­­­­­­­­­­­«

∫
𝑛2 |F|4d𝑉(∫

𝑛2 |F|2d𝑉
)

︸            ︷︷            ︸
= 2

𝜀0

(∫
|F|2d𝑉

)
ª®®®®®®®®®®®®¬

( ∫
|F|2d𝑉∫

𝑛𝑛𝑔 |F|2d𝑉

)
.
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index,

𝑛2 =

∫
𝑛2𝑛2 |F|4d𝑉∫
𝑛2 |F|4d𝑉

, (1.43)

the effective mode volume,

𝑉eff =

∫
𝑛2 |F|2d𝑉

∫
|F|2d𝑉∫

𝑛2 |F|4d𝑉
, (1.44)

and the weighted index product,

𝑛𝑛𝑔 =

∫
𝑛𝑛𝑔 |F|2d𝑉∫
|F|2d𝑉

. (1.45)

Using these relations, the eigenfrequency shift in Eq. (1.42) can be expressed as

Δ𝜔0 = − 𝜔0𝑐𝑛2
𝑛𝑛𝑔𝑉eff

|𝑎 |2 = −𝜔0𝑐𝑛2
𝑛𝑛𝑔

𝜌 = −𝑔𝜌, (1.46)

where 𝜌 = |𝑎 |2/𝑉eff is the intracavity energy density, 𝑔 is the Kerr nonlinear
coefficient13, which takes the simple form

𝑔 =
𝜔0𝑐𝑛2
𝑛𝑛𝑔

. (1.47)

We note that, for resonators made with a single material, the averages in the expres-
sion drop out, and we recover the conventional result 𝑔 = 𝜔0𝑐𝑛2/(𝑛𝑛𝑔).

The fact that there is one appearance of phase index 𝑛 and one appearance of group
index 𝑛𝑔 in Eq. (1.47) is particularly important14 when we deal with materials (for
example, AlxGa1−xAs) whose 𝑛𝑔 and 𝑛 can be different by 2.5% [7].

1.2.7.4 Thermal-optics nonlinearity perturbation

Here we consider another special case when Δ𝑛 in Eq. (1.40) is contributed by
Thermal-optics nonlinearity discussed in Section 1.1.3. In this case, the local
refractive change induced by temperature change reads

Δ𝑛 = 𝑛𝛼𝑇Δ𝑇, (1.48)
13In some papers, 𝑔 may be defined as −Δ𝜔0/|𝑎 |2, which is equivalent to 𝑔′ = 𝑔/𝑉eff in our

definition. In other papers, 𝑔 may also have an additional factor of ℏ𝜔0 if |𝑎 |2 is normalized to
photon number instead of energy. ℏ is the reduced Planck constant.

14A common mistake is over-simplify Eq. (1.47) to 𝑔 = 𝜔0𝑐𝑛2/𝑛2. This simplification may
work under many circumstances. However, it becomes critical when we try to characterize material
properties, which will be discussed in Chapter 2 of this thesis.
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where 𝛼𝑇 (𝑟, 𝜃, 𝑧) and temperature change Δ𝑇 (𝑟, 𝜃, 𝑧) are also spatially varying15.
Substituting Δ𝑛 into Eq. (1.40), we have

Δ𝜔0
𝜔0

= −
∫
𝑛2𝛼𝑇Δ𝑇 |F|2d𝑉∫
𝑛𝑛𝑔 |F|2d𝑉

. (1.49)

For later convenience, we define a temperature average with respect to the optical
field,

Δ𝑇 =

∫
𝑛2𝛼𝑇Δ𝑇 |F|2d𝑉∫
𝑛2𝛼𝑇 |F|2d𝑉

(1.50)

such that different temperature distributions with equal 𝑇 will induce the same
frequency shift:

Δ𝜔0
𝜔0

= −Δ𝑇
∫
𝑛2𝛼𝑇 |F|2d𝑉∫
𝑛𝑛𝑔 |F|2d𝑉

. (1.51)

Similar to Eq. (1.5), we calculate the rate of total power loss inducing the temperature
change equals

𝑃abs =
1
2
𝜀𝑜 |𝑎 |2

∫
𝜅𝑎𝑛

2 |F|2d𝑉 (1.52)

where 𝜅𝑎 (𝑟, 𝜃, 𝑧) is the thermal absorption rate. Eq. (1.52) can be written as
𝑃abs = 𝜅a |𝑎 |2, where the averaged absorption rate reads (Normalization relation in
Eq. (1.34) is used)

𝜅a =
𝑃abs

|𝑎 |2
=

∫
𝜅a𝑛

2 |F|2d𝑉∫
𝑛2 |F|2d𝑉

. (1.53)

Now the absorption can be related to cavity resonance shift by 16

Δ𝜔0 =

(
Δ𝜔0

Δ𝑇

) (
Δ𝑇

𝑃abs

)
𝑃abs =

(
Δ𝜔0

Δ𝑇

) (
Δ𝑇

𝑃abs

)
𝜅a |𝑎 |2 = −𝛼𝜌, (1.54)

In Eq. (1.54), the first coefficient can be measured from experiment, and the
second coefficient can be calculated from thermal simulation. By measuring the

15The distribution of Δ𝑇 (𝑟, 𝜃, 𝑧) can be simulated by taking the simulated electrical field distri-
bution F as the heat source of the thermal diffusion equation:

𝜌m𝐶
𝜕𝑇

𝜕𝑡
− 𝑘∇2𝑇 =

1
2
𝜀𝑜𝑛

2 |𝑎 |2𝜅𝑎 |F|2,

where 𝜌m is the mass density in unit of (kg·m−3), 𝑘 is the Thermal conductivity in unit of
(W·m−1·K−1), 𝐶 is the Heat capacity in unit of (J·kg−1·K−1). The right hand side represents
the power density absorbed and 𝜅𝑎 is the absorption rate.

16Here the negative sign in front of 𝛼 is because for most of the materials we work with, the value
of Δ𝜔0/Δ𝑇 is negative.
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resonance shift Δ𝜔0 under different intracavity power |𝑎 |2, we can measure the
material absorption rate 𝜅a from Eq. (1.54). Details of this experiment will be
discussed in Chapter 2.

Using 𝜌 ≡ |𝑎 |2/𝑉eff , the photothermal nonlinear coefficient 𝛼 can be calculated
as

𝛼 = −𝜅a

(
Δ𝜔0

Δ𝑇

) (
Δ𝑇

𝑃abs

)
𝑉eff . (1.55)

1.2.8 Dynamics in an optical resonator
In this section, we give the time-dynamics of complex mode amplitude of the
resonator.

1.2.8.1 Linear dynamics of mode amplitude

In this section we give the time dynamics of mode amplitude when the resonator is
pumped by an external laser with angular frequency 𝜔P.

We define slow varying amplitude with optical oscillation angular frequency 𝜔P as

𝐴 = 𝑎e−𝑖(𝛿𝜔)𝑡 , (1.56)

where the pump detuning of the mode is defined as

𝛿𝜔 = 𝜔0 − 𝜔P. (1.57)

Then, the dynamic equation of 𝐴 reads

d𝐴
d𝑡

= −
( 𝜅
2
+ 𝑖𝛿𝜔

)
𝐴 + √

𝜅e𝑎in, (1.58)

where |𝑎in |2 is the power input to the external coupling:

|𝑎in |2 = 𝑃in, (1.59)

with a unit of Watt (W). Further details of Eq. (1.58) derivation process can be
found in Chapter 1.2 of ref. [9] 17.

17The 𝐴 we use is normalized to make sure |𝐴|2 has unit of J and represents optical energy stored
in the mode. In Chapter 1.2 of ref. [9], 𝑎 is normalized to make sure 𝑎†𝑎 is photon number operator
of the mode. 𝑎 operator in Chapter 1.2 of ref. [9] is equivalent to 𝐴/

√
ℏ𝜔0 in our definition, where

ℏ is the reduced Planck constant.
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As an additional note, 𝛿𝜔 < 0 indicates that the pump frequency is higher than the
mode frequency, which is known as blue detuned. Conversely 𝛿𝜔 > 0 indicates
that pump frequency is lower than the mode frequency and is known as red detuned.

1.2.8.2 Lineshape and 𝑄-factor measurement

(a) (b)

Figure 1.6: Lorentzian lineshape of a resonance in SiO2 microresonator, and
the respective ring down measurement. (a) Resonance linewidth measurement
of a 10 GHz FSR device at 1585 nm. The upper trace is resonance transmission
(blue dots) with Lorentzian lineshape fitting (red curve). The linewidth of this
mode (as discussed in Section 1.2.6.1) is 220 kHz. The 𝑄-factors are extracted
using the methods introduced in Section 1.2.8.2 Eq.(1.61), with a value of intrinsic
𝑄0=1130 million and loaded (total) 𝑄=860 million. (Note the relation between
𝑄 and 𝜅 was discussed in Eq.(1.29), M: million). The lower trace is a frequency
calibration (black dots) from a Mach–Zehnder interferometer (FSR is 5.979 MHz)
with sinusoidal fitting (cyan curve). (b) Ring-down measurement (blue) of the mode
measured in the left panel. An exponential decay (Eq.(1.24)) fitting is shown in red.
Photon lifetime is 704 ns, corresponding to loaded (total) 𝑄 ≈ 840 million.

Measuring the 𝑄-factor, or equivalently measuring dissipation rates 𝜅 (as discussed
in Section 1.2.6.3), is an important task for resonator quality calibration. We can
measure 𝜅 by adibatically changing 𝛿𝜔 so that d𝐴

d𝑡 ≈ 0, then calculate 𝜅 from the
lineshape we measured.

Now, we want to know the field amplitude that bypass the resonator after some power
is coupled into the resonator. This output field amplitude 𝑎out can be calculated with
input-output equation18

18 |𝑎out |2 is also normalized to power, with a unit of Watt (W).
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𝑎out = −√𝜅e𝐴 + 𝑎in. (1.60)

Therefore under quasi-static frequency tuning condition (d𝐴
d𝑡 ≈ 0), the output power

|𝑎out |2 can be solved as
|𝑎out |2
|𝑎in |2

=

����1 − 𝜅e
𝜅
2 + 𝑖𝛿𝜔

����2 , (1.61)

which features a Lorentzian lineshape, as shown in Fig. 1.6(a) [8]. The relative
value of 𝛿𝜔 can be calibrated by a Mach-Zehnder interferometer (MZI). To measure
𝜅 and 𝜅e, we can fit the lineshape to Eq. (1.61). However, only two information that
are in the lineshape is important, the first one is resonator excitation bandwidth (or
FWHM)

𝛿𝜔FWHM = 𝜅, (1.62)

and the second one is resonance depth (which is achieved when 𝛿𝜔 = 0)(
|𝑎out |2
|𝑎in |2

)
min

=

(
𝜅0 − 𝜅e
𝜅0 + 𝜅e

)2
= (1 − 2𝜂)2, (1.63)

where 𝜂 = 𝜅e/𝜅 is the coupling efficiency. Other than fitting the resonance lineshape
in Eq. (1.61), we can also solve 𝜅 and 𝜅e from Eqs. (1.62) and (1.63).

A critical condition min( |𝑎out/𝑎in |2) = 0 is satisfied when 𝜅0 = 𝜅e = 𝜅/2. This
coupling condition is called critical coupling. When 𝜅0 > 𝜅e (𝜅0 < 𝜅e), the
coupling condition is called under (over) coupling.

It should also be noted that if (𝜅, 𝜅e)=(𝜅′, 𝜅′e) is a solution to Eqs. (1.62) and (1.63),
then (𝜅, 𝜅e)=(𝜅′, 𝜅′ − 𝜅′e) will also be a solution. Thus the lineshape measurement
itself cannot distinguish whether the resonator is under-coupled or over-coupled. To
further identify the coupling condition, we can apply modulation to 𝑎in and measure
the demodulated error signal, which has been discussed in ref. [10].

1.2.8.3 Effect of Kerr and thermal-optics nonlinearity on optical resonator

As discussed in Section 1.2.7.3 and 1.2.7.4, the resonance angular frequency 𝜔0 in
Eq. (1.57) will be perturbed by Eqs. (1.46) and (1.54). Therefore, the dynamic
equation of Eq. (1.58) will change to

d𝐴
d𝑡

= −
( 𝜅
2
+ 𝑖 (𝛿𝜔 − (𝛼 + 𝑔)𝜌)

)
𝐴 + √

𝜅e𝑎in, (1.64)
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Figure 1.7: The hysteresis behavior of Lorentzian lineshape with Kerr and
thermal-optics nonlinearity. Kerr and thermal-optics nonlinearity effectively shifts
the cold resonance frequency (black line) and creates hysteresis lineshape (red
shape).

where 𝜌 = |𝐴|2/𝑉eff . An important feature of quasi-static solution to Eq. (1.64) is
that it has multiple solutions to 𝑎 at some detuning 𝛿𝜔, since Eq. (1.64) is cubic to
𝑎. This will lead to a hysteresis behavior of the lineshape, which is represented in
Fig. 1.7.

In terms of time scales, Kerr nonlinearity happens almost instantaneously and will
appear in the dynamic equation no matter what time scale we study. However,
at a time scale much faster than the thermal bandwidth (typically on the order
of ms), the thermal-optic nonlinearity does not have any dynamic effect because
the nonlinearity mediated by thermal absorption vanishes. This is also the main
reason why thermal-optics nonlinearity typically will not lead to any coherent optical
effects, as discussed in Section 1.1.3. Here we define a thermal response function
𝑟̃ (Ω) as

𝑟̃ (Ω) = 𝑇 (Ω)
|̃𝑎 |2(Ω)

/
𝑇 (Ω = 0)
|̃𝑎 |2(Ω = 0)

, (1.65)

where 𝑇 is the temperature of the resonator, Ω is the modulation angular frequency
of energy stored in the cavity. The AC component of 𝑧’s Fourier transform is denoted
as 𝑧̃. By definition of Eq. (1.65), 𝑟̃ (Ω = 0) = 1. The thermal bandwidth of the
resonator is defined as the Ω/2𝜋 where 𝑟̃ (Ω) = 0.5. Typical thermal bandwidth for
integrated on-chip microresonator without suspended structure19 is between 103 to
104 Hz 20 as shown in Figs. D.1, D.3, D.2, and D.4 (c), depending on the size of

19An example of suspended on-chip resonator is SiO2 wedge resonator reported in ref. [8, 11].
Those resonators have smaller thermal bandwidth because they are not well thermal conducted.

20This value is for resonators with FSR around 20 GHz.
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the resonator 21. Further details of the finite element simulation process of 𝑟̃ can be
found in the published available data of ref. [2].

With the definition of 𝑟̃, the Fourier transform of Eq. (1.64) can be written as

𝑖Ω𝐴 = −
(
𝜅

2
+ 𝑖

(
𝛿𝜔 − 𝛼𝑟̃ + 𝑔

𝑉eff
|̃𝐴|2

))
𝐴 + √

𝜅e𝑎in. (1.66)

And the solution of Eq. (1.66) can be approximated as quasi-static if the tuning
speed of 𝛿𝜔 is much slower than the thermal bandwidth of the resonator.

Furthermore, since thermal-optic nonlinearity typically does not lead to any coherent
optical effect, Eq. (1.64) are often simplified to

d𝐴
d𝑡

= −
( 𝜅
2
+ 𝑖

(
𝛿𝜔 − 𝑔′|𝐴|2

))
𝐴 + √

𝜅e𝑎in, (1.67)

when we study coherent nonlinear optic processes in the resonator. For future
convenience, we denote

𝑔′ =
𝑔

𝑉eff
=

𝜔0𝑐𝑛2
𝑉eff𝑛𝑛𝑔

. (1.68)

1.2.8.4 Effect of mode dispersion on optical resonator and Lugiato-Lefever
equation

In this section, we do not consider nonlinearities other than Kerr nonlinearity.

First of all, mode dispersion, as introduced in Section 1.2.2, involves a series of
longitudinal mode within one mode family. Each longitudinal mode has their own
angular frequency 𝜔𝜇 in the phase factor e−𝑖𝜔𝜇𝑡 of Eq. (1.33). To study how mode
dispersion is going to affect the dynamics of the resonator, we need to define 𝐴

operator for each longitudinal mode within this mode family.

It is worth to note that the dynamic equation for multiple coupled modes are funda-
mentally different from single mode due to the Kerr nonlinearity.

a. Find overall complex mode amplitude 𝜓 when multiple longitudinal modes
exist

The 𝐴 operator can be defined similarly to the definition in Eq. (1.56), reads

𝐴𝜇 = 𝑎𝜇e−𝑖(𝜔𝜇−𝜔P−𝐷1𝜇)𝑡 , (1.69)
21The thermal bandwidth is generally larger for smaller resonator, which is easier to reach thermal

equilibrium.
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where 𝐴𝜇 (slow varying amplitude of mode 𝜇 with optical oscillation angular
frequency 𝜔P +𝐷1𝜇) is the 𝐴 operator for the longitudinal mode with relative mode
number 𝜇. 𝐷1/2𝜋 is the FSR at 𝜔0. The coupled mode equations of 𝐴𝜇 reads

d𝐴𝜇

d𝑡
= −

( 𝜅𝜇
2

+ 𝑖
(
𝛿𝜔𝜇

) )
𝐴𝜇 +

√
𝜅e,𝜇𝑎in𝛿0,𝜇 + 𝑖𝑔′

∑︁
𝜇1,𝜇2

𝐴𝜇1𝐴𝜇2𝐴
∗
𝜇1+𝜇2−𝜇, (1.70)

where 𝛿0,𝜇 is the Kronecker delta function, 𝜅𝜇, 𝜅e,𝜇 are the total and external dissi-
pation rate for the longitudinal mode with relative mode number 𝜇. 𝛿𝜔𝜇 is similar
to Eq. (1.57), reads

𝛿𝜔𝜇 = 𝜔𝜇 − 𝜔P − 𝐷1𝜇 (1.71)

= 𝜔0 + 𝐷1𝜇 + 𝜔𝜇,int − 𝜔P − 𝐷1𝜇 (1.72)

= 𝛿𝜔0 + 𝜔𝜇,int, (1.73)

where Eq. (1.72) used the definition of integrated dispersion 𝜔𝜇,int in Eq. (1.11);
𝛿𝜔0 in Eq. (1.73) is defined in Eq. (1.71) when 𝜇 = 0. The terms associated
with 𝑔′ in Eq. (1.70) are the Kerr nonlinear terms that satisfy phase-matching
condition in Eq. (1.22). Furthermore, since in Eq. (1.69), the optical oscillation
angular frequency of 𝐴𝜇 is 𝜔P + 𝐷1𝜇, the phase matching between 𝐴𝜇1 , 𝐴𝜇2 , 𝐴𝜇

and 𝐴𝜇1+𝜇2−𝜇 automatically ensured their energy conservation requirement in Eq.
(1.7). Additionally, the coupled mode dynamic equation in Eq. (1.70) is recovered
to single mode dynamic equation in Eq. (1.67) when: "𝐴𝜇 ≠ 0 only if 𝜇 = 0."

The electric field phasor in the resonator mode with mode number 𝜇, as defined in
Eq. (1.33), can be expressed in terms of 𝐴 operators by substituting Eq. (1.69) to
Eq. (1.33), resulting in 22

E𝜇 = 𝑎𝜇F𝜇 (𝑟, 𝜃, 𝑧)𝑒−𝑖𝜔𝜇𝑡

= 𝐴𝜇𝑒
𝑖(𝜔𝜇−𝜔P−𝐷1𝜇)𝑡F𝜇 (𝑟, 𝜃, 𝑧)𝑒−𝑖𝜔𝜇𝑡

= 𝐴𝜇𝑒
−𝑖(𝐷1𝜇)𝑡F𝜇 (𝑟, 𝜃, 𝑧)𝑒−𝑖𝜔P𝑡

= 𝐴𝜇𝑒
−𝑖(𝐷1𝜇)𝑡e𝑖𝜇𝜃f (𝑟, 𝑧)𝑒𝑖(𝑚0𝜃−𝜔P𝑡) , (1.74)

22Note that the definition of 𝜃 here is consistent with Eq. (1.33), which represents the 𝜃 component
of the cylindrical coordinate system (𝑟, 𝜃, 𝑧) with a value of 𝜃 ∈ [0, 2𝜋).
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where 𝑚0 is the absolute mode number associated with the mode with relative mode
number 𝜇 = 0. f (𝑟, 𝑧) in Eq. (1.74) was defined in Eq. (1.35). In Eq. (1.74), the
term f (𝑟, 𝑧), which represents the transverse mode profile, will be assumed to be
identical within the range of 𝜇 we are interested in.

Finally, express the total electrical field phasor E as the superposition of all phasors
E𝜇 calculated in Eq. (1.74), we get

E =
∑︁
𝜇

E𝜇 =

(∑︁
𝜇

𝐴𝜇e𝑖𝜇(𝜃−𝐷1𝑡)
)

f (𝑟, 𝑧)e𝑖(𝑚0𝜃−𝜔P𝑡)

=

(∑︁
𝜇

𝐴𝜇e𝑖𝜇𝜙
)

f (𝑟, 𝑧)e𝑖(𝑚0𝜃−𝜔P𝑡)

= 𝜓(𝜙, 𝑡)f (𝑟, 𝑧)e𝑖(𝑚0𝜃−𝜔P𝑡) , (1.75)

where overall complex mode amplitude 𝜓 is defined as

𝜓(𝜙, 𝑡) =
∑︁
𝜇

𝐴𝜇e𝑖𝜇𝜙, (1.76)

and the co-moving coordinate (or co-moving frame) 𝜙 is defined as

𝜙 = 𝜃 − 𝐷1𝑡. (1.77)

Note that we did not add any relative phase between different E𝜇 in Eq. (1.75)
because any additional constant phase can be absorbed in 𝐴𝜇.

b. Revisit mode expansion of electric field phasor

Next we revisit the mode expansion of electric field phasor in Eq. (1.75), especially
what this means in time domain.

Eq. (1.75) can be re-written as

E =

(∑︁
𝜇

𝐴𝜇e𝑖𝜇𝜃e−𝑖(𝐷1𝜇)𝑡
)

e−𝑖(𝜔P)𝑡 · e𝑖𝑚0𝜃f (𝑟, 𝑧). (1.78)

In (angular) frequency domain, Eq. (1.78) represents series of discrete signals
around 𝜔P, with equal spacing 𝐷1. This is called a Optical Frequency Comb,
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Soliton (micro)combMode unlocked comb

Figure 1.8: Mode unlocked comb and soliton (micro)comb in resonator fast
time domain. Red line indicates the overall mode amplitude of the comb at
𝑡 = 0. Note that this figure contains no information on time domain. The oscillations
within the gray circle only tell which mode propagation constant 𝛽 (or relative mode
number 𝜇) it is representing. In this figure, the optical oscillation angular frequency
for the sinusoidal wave with relative mode number 𝜇 is 𝜔0 + 𝐷1𝜇, instead of 𝜔𝜇.

which is very useful in modern optics and photonics engineering. Optical Frequency
Comb will be a main topic we will discuss in the rest of this thesis.

Fig. 1.8 illustrated series of 𝐴𝜇e𝑖𝜇𝜃 by many sinusoidal functions of 𝜃 within the
gray circle with multiple colors. And the value of

∑
𝐴𝜇e𝑖𝜇𝜃 as a function of 𝜃 is

illustrated by the red line circulating outside the gray circle.

If every complex mode amplitude 𝐴𝜇 has the same phase, then every term in∑
𝐴𝜇e𝑖𝜇𝜃 can constructively interfere with each other, as shown in Fig. 1.8(b),

creating a comb with the same phase, whose time domain features optical pulses.
Fig. 1.8(b) is a demonstration of soliton microcomb, which will be discussed in
Section 1.3.5.

c. Understand co-moving coordinate 𝜙

As illustrated in Fig. 1.9, mode amplitude represented by 𝜙 eliminated the group
velocity of the wavepacket. Using this coordinate helps us to eliminate propagation
and allows us to focus on the pulse shape evolution. Periodic boundary condition
𝜓(𝜙, 𝑡) = 𝜓(𝜙 + 2𝜋, 𝑡) is satisfied.

In Fig. 1.9, the time interval 𝑡 between right and left panel is assumed to be very
small so the pulse shape is assumed to be unchanged. However, as the propagation
time increases, generally the pulse will not maintain its shape because waves with
different mode number have different phase velocity. This effect in the resonator
was described as mode dispersion, which has been discussed in Section 1.2.2. The
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Figure 1.9: Illustration of the relationship between cylindrical coordinate 𝜃

and comoving coordinate 𝜙. Cylindrical coordinate 𝜃 ∈ [0, 2𝜋) represents spatial
position. Comoving coordinate 𝜙 ∈ R is moving together with the wave packet.
Overall mode amplitude Re(𝜓) is represented by the red line. In this figure, we
assume 𝑡 is very small, so the pulse GVD is not illustrated.

differential equation that includes this effect is Lugiato-Lefever equation (LLE)
which will be discussed later.

d. Calculate energy and its spectrum from complex mode amplitude 𝜓

The total energy stored in the optical resonator E in unit of J can be expressed as

E(𝑡) = 1
2𝜋

∫ 2𝜋

0
d𝜙 |𝜓(𝜙, 𝑡) |2

=
1

2𝜋

∑︁
𝜇1,𝜇2

𝐴𝜇1𝐴
∗
𝜇2

∫ 2𝜋

0
d𝜙e𝑖𝜙(𝜇1−𝜇2)

=
∑︁
𝜇

|𝐴𝜇 |2. (1.79)

And as discussed in Section 1.2.8.4.b, its spectrum features equally spaced discrete
frequency comb, and the energy of its 𝜇-th comb line Ẽ(𝜔P+𝐷1𝜇) can be calculated
as

Ẽ(𝜔P+𝐷1𝜇) (𝑡) = |𝐴𝜇 |2 =

���� 1
2𝜋

∫ 2𝜋

0
d𝜙𝜓(𝜙, 𝑡)e−𝑖𝜇𝜙

����2 . (1.80)

e. Lugiato-Lefever equation (LLE)

Lugiato-Lefever equation is the partial differential equation describing the dynamic
of 𝜓(𝜙, 𝑡). (𝜓(𝜙, 𝑡) is defined in Eq. (1.76).) 𝜓(𝜙, 𝑡) is important in the study of
the total electric field of the optical resonator because it is the only dynamic part we
are interested in Eq. (1.75).
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𝜕𝜓(𝜙, 𝑡)
𝜕𝑡

=
𝜕

𝜕𝑡

∑︁
𝜇

𝐴𝜇e𝑖𝜇𝜙 =
∑︁
𝜇

e𝑖𝜇𝜙
d𝐴𝜇

d𝑡

=
∑︁
𝜇

e𝑖𝜇𝜙
(
−

( 𝜅𝜇
2

+ 𝑖
(
𝛿𝜔𝜇

) )
𝐴𝜇 +

√
𝜅e,𝜇𝑎in𝛿0,𝜇 + 𝑖𝑔′

∑︁
𝜇1,𝜇2

𝐴𝜇1𝐴𝜇2𝐴
∗
𝜇1+𝜇2−𝜇

)
(1.81)

= −
∑︁
𝜇

( 𝜅𝜇
2

+ 𝑖 (𝛿𝜔0)
)
𝐴𝜇e𝑖𝜇𝜙 + √

𝜅e,0𝑎in − 𝑖
∑︁
𝜇

e𝑖𝜇𝜙𝜔𝜇,int𝐴𝜇

+ 𝑖𝑔′
∑︁
𝜇

∑︁
𝜇1,𝜇2

(
𝐴𝜇1e𝑖𝜇1𝜙

)
·
(
𝐴𝜇2e𝑖𝜇2𝜙

)
·
(
𝐴∗
𝜇1+𝜇2−𝜇e−𝑖(𝜇1+𝜇2−𝜇)𝜙

)
, (1.82)

where Eq. (1.81) is get by replacing d𝐴𝜇/d𝑡 with Eq. (1.70), Eq. (1.82) is get by
replacing 𝛿𝜔𝜇 with Eq. (1.73). Next we assume the total dissipation rate 𝜅𝜇 are
identical for every 𝜇 Eq. (1.82) can be further simplified to

𝜕𝜓(𝜙, 𝑡)
𝜕𝑡

= −
( 𝜅
2
+ 𝑖 (𝛿𝜔0)

)
𝜓 + √

𝜅e,0𝑎in − 𝑖
∑︁
𝜇

( ∞∑︁
𝑛=2

1
𝑛!
𝐷𝑛𝜇

𝑛

)
𝐴𝜇e𝑖𝜇𝜙

+ 𝑖𝑔′
∑︁

𝜇1+𝜇2−𝜇

∑︁
𝜇1,𝜇2

(
𝐴𝜇1e𝑖𝜇1𝜙

)
·
(
𝐴𝜇2e𝑖𝜇2𝜙

)
·
(
𝐴∗
𝜇1+𝜇2−𝜇e−𝑖(𝜇1+𝜇2−𝜇)𝜙

)
,

(1.83)

where we change the independent summation subscript in the last term from (𝜇, 𝜇1,
𝜇2) to (𝜇1 + 𝜇2 − 𝜇, 𝜇1, 𝜇2). Note that

𝜕𝑛

𝜕𝜙𝑛
𝜓(𝜙, 𝑡) =

∑︁
𝜇

𝐴𝜇

𝜕𝑛

𝜕𝜙𝑛
e𝑖𝜇𝜙 = 𝑖𝑛

∑︁
𝜇

𝜇𝑛𝐴𝜇e𝑖𝜇𝜙,

which can be substituted to the dispersion term in Eq. (1.83).

Finally, the Lugiato-Lefever Equation (LLE) which is the partial differential equa-
tion describing the time dynamic of field amplitude within an optical resonator in
co-moving frame, can be summarized as

𝜕𝜓(𝜙, 𝑡)
𝜕𝑡

= −
( 𝜅
2
+ 𝑖 (𝛿𝜔0)

)
𝜓 + √

𝜅e,0𝑎in −
1

𝑖𝑛−1

∞∑︁
𝑛=2

1
𝑛!
𝐷𝑛

𝜕𝑛𝜓

𝜕𝜙𝑛
+ 𝑖𝑔′|𝜓 |2𝜓. (1.84)

This is in the same form as the equation proposed in ref. [12].
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1.2.9 Parametric oscillation and its threshold
Here we consider the following case: when the resonator mode with relative mode
number 𝜇 = 0, whose angular frequency is 𝜔0, is pumped by external laser with
angular frequency 𝜔P, what will happen to the other two modes with relative mode
number ±𝜇. Under this condition, we have

𝛿𝜔±𝜇 = 𝜔0 − 𝜔P + 𝜔±𝜇,int = 𝛿𝜔0 +
1
2
𝐷2𝜇

2 (1.85)

using the definition in Eq. (1.72). Here, we only preserve the leading term 𝐷2 of
𝜔±𝜇,int, which is defined in Eq. (1.11).

The reason we consider two modes with 𝐴 operator 𝐴±𝜇 is because: 𝐴±𝜇 (defined
in Eq. (1.69), with optical oscillating angular frequency 𝜔0 ± 𝐷1𝜇) automatically
satisfied degenerate FWM energy and momentum matching condition (summarized
in Eq. (1.23)) with 𝐴0 (𝐴0 has an optical oscillating frequency of 𝜔0).

In this context, we assume |𝐴0 | is quasi-static (d𝐴0
d𝑡 ≈ 0) and |𝐴0 | ≫ |𝐴±𝜇 |, and the

mode numbers under consideration include 𝜇, 0 and −𝜇. The dynamic equation of
𝐴±𝜇 can be derived from Eq. (1.70). In Eq. (1.70), there are total of six terms
associated with

∑
𝜇1,𝜇2 𝐴𝜇1𝐴𝜇2𝐴

∗
𝜇1+𝜇2−𝜇, which are listed in Table 1.2.

Table 1.2: Nonlinear Term Representation for
∑

𝜇1,𝜇2 𝐴𝜇1𝐴𝜇2𝐴
∗
𝜇1+𝜇2−𝜇 in Eq. (1.70).

𝜇1\𝜇2 +𝜇 0 −𝜇
+𝜇 𝐴+𝜇𝐴+𝜇𝐴∗

+𝜇 𝐴+𝜇𝐴0𝐴
∗
0 𝐴+𝜇𝐴−𝜇𝐴∗

−𝜇
0 𝐴0𝐴+𝜇𝐴∗

0 𝐴0𝐴0𝐴
∗
−𝜇

−𝜇 𝐴−𝜇𝐴+𝜇𝐴∗
−𝜇

We preserve terms up to the first order of |𝐴±𝜇 |, then dynamic equation for 𝐴𝜇 and
𝐴∗
−𝜇 in Eq. (1.70) reads

d
d𝑡

(
𝐴𝜇

𝐴∗
−𝜇

)
=

(
− 𝜅𝜇

2 − 𝑖𝛿𝜔𝜇 + 2𝑖𝑔′|𝐴0 |2 𝑖𝑔′𝐴2
0

−𝑖𝑔′(𝐴∗
0)

2 − 𝜅−𝜇
2 + 𝑖𝛿𝜔−𝜇 − 2𝑖𝑔′|𝐴0 |2

) (
𝐴𝜇

𝐴∗
−𝜇

)
. (1.86)

Let us denote the matrix in Eq. (1.86) as M:

M =

(
− 𝜅𝜇

2 − 𝑖𝛿𝜔𝜇 + 2𝑖𝑔′|𝐴0 |2 𝑖𝑔′𝐴2
0

−𝑖𝑔′(𝐴∗
0)

2 − 𝜅−𝜇
2 + 𝑖𝛿𝜔−𝜇 − 2𝑖𝑔′|𝐴0 |2

)
. (1.87)
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The field amplitude 𝐴𝜇 and 𝐴−𝜇 can not be accumulated if |𝐴0 | is not high enough
and the real part of two eigenvalues of M are all smaller than zero. At the critical
point of modulation instability, the real part of (at least) one eigenvalue is zero.
Denote this eigenvalue as 𝜆𝑖 (𝜆 ∈ R), we have(
−𝜅

2
− 𝑖𝛿𝜔𝜇 + 2𝑖𝑔′|𝐴0 |2 − 𝜆𝑖

)
·
(
−𝜅

2
+ 𝑖𝛿𝜔−𝜇 − 2𝑖𝑔′|𝐴0 |2 − 𝜆𝑖

)
− (𝑔′)2 |𝐴0 |4 = 0,

(1.88)

where we assumed 𝜅𝜇 = 𝜅−𝜇 = 𝜅.

The imaginary part of Eq. (1.88) is

− 𝜅

2
(+𝛿𝜔−𝜇 − 2𝑔′|𝐴0 |2 − 𝜆 − 𝛿𝜔𝜇 + 2𝑔′|𝐴0 |2 − 𝜆)

= − 𝜅

2
(𝛿𝜔−𝜇 − 𝛿𝜔𝜇 − 2𝜆) = 0. (1.89)

Substitute Eq. (1.89) into Eq. (1.88), we get the real part of Eq. (1.88) as(
2𝑔′|𝐴0 |2 −

𝛿𝜔−𝜇 + 𝛿𝜔𝜇

2

)2
= (𝑔′)2 |𝐴0 |4 −

( 𝜅
2

)2
. (1.90)

Importantly, in the following discussion, we study necessary but NOT sufficient
conditions to get parametric oscillations (solution to Eqs. (1.89) and (1.90)).

The left-hand side of Eq. (1.90) is non-negative, thus the minimum |𝐴0 |2 when Eq.
(1.90) has solution to |𝐴0 |2 is

Eth = |𝐴0 |2th =
𝜅

2𝑔′
. (1.91)

where Eth is the threshold energy required in mode 𝜔0 to generate modulation
instability at mode ±𝜇th who satisfies

𝛿𝜔−𝜇th + 𝛿𝜔𝜇th

2
= 𝜅. (1.92)

Eq. (1.91) is get by setting right-hand side of Eq. (1.90) to 0. Eq. (1.92) is get by
bringing Eq. (1.91) into Eq. (1.90).

Next, we calculate the minimum input power |𝑎in |2, in unit of W, to achieve the
threshold energy Eth in Eq. (1.91). Using the quasi-static solution of Eq. (1.67), we
have
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𝑃in,th(𝛿𝜔0) = |𝑎in |2th =
1
𝜅e

���𝜅2 + 𝑖(𝛿𝜔0 − 𝑔′|𝐴0 |2th)
���2 · |𝐴0 |2th,

which is minimized to modulation instability (or parametric oscillation) thresh-
old power

𝑃in,th =
1
𝜅𝑒

���𝜅2 ���2 · |𝐴0 |2th =
𝜅3

8𝑔′𝜅e
(1.93)

when

𝛿𝜔0 = 𝑔′|𝐴0 |2th =
𝜅

2
. (1.94)

And the threshold mode number 𝜇th can be solved from Eqs. (1.85), (1.92), and
(1.94) as

𝜇th =

√︂
𝜅

𝐷2
. (1.95)

One reason the above parametric oscillation threshold conditions are only necessary
but not sufficient is that Eq. (1.95) may not result in an integer mode number. The
actual physical process of modulation instability is more complicated, and more
discussions can be found in ref. [13].

In summary, at the (ideal) parametric oscillation threshold described above, res-
onator mode with angular frequency 𝜔0, relative mode number 𝜇 = 0 is pumped
by an external laser with power 𝜅3/8𝑔′𝜅e (Eq. (1.93)) and angular frequency
𝜔P = 𝜔0 − 𝜅/2 (Eq. (1.94)). Then, two other longitudinal modes with relative
mode number ±

√︁
𝜅/𝐷2 (Eq. (1.92)) start to parametric oscillate, rising power

from the quantum noise in these modes. This effect is called modulation insta-
bility, which is usually considered as the starting point (sometimes referred to as
primary comb) of optical frequency comb generation using an optical resonator
[14]. Cascaded modulation instability may generate chaotic comb, which can be
used in parallel ranging [15].

The above physical process can only happen when 𝐷2 in Eq. (1.95) is positive.
This requirement is usually summarized as the mode dispersion (defined in Section
1.2.5) has to be anomalous in order to get modulation instability.

However, if we do not make the assumption that 𝜔±𝜇,int = 𝐷2𝜇
2/2 in Eq. (1.85),

then 𝜇th need to be solved from Eqs. (1.10), (1.73), (1.92), and (1.94). In this case,
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although the resonator may have an overall normal dispersion, a perturbation to the
angular frequency of pump mode 𝜔0 (by selective mode splitting) may also enable
parametric oscillation [16].

As an additional note, the parametric oscillation threshold (in Eq. (1.93)) is NOT
minimized when the resonator is critically coupled (𝜂 = 1/2, where 𝜂 was defined
in Eq. (1.63)). Instead, the 𝑃in,th in Eq. (1.93) is minimized when

𝜅e =
1
2
𝜅0, 𝜂 =

1
3
,

(
|𝑎out |2
|𝑎in |2

)
min

=
1
9
. (1.96)

1.3 Optical frequency combs
We gave a bottom-up introduction to the optical frequency comb generated in the
optical resonator in Sections 1.2.8.4.b and 1.2.9. In this section, we will introduce
optical frequency comb in a top-down way. We will also include discussions on the
engineering and applications of optical frequency combs.

In this section, we no longer study the modal distribution of electric field E. There-
fore, electric field E will be simplified to 𝐸 in Section 1.3.

1.3.1 Introduction
(a)

(b)

Figure 1.10: Conceptual illustration of Optical Frequency Comb and its time
domain. (a) Illustration of the spectrum of a mode-locked optical frequency comb
and its electrical field in time domain. Here 𝑇r is the repetition time, 𝑇CEO is the
carrier-envelop phase match period. (b) The pulses coupled from optical resonator
forms a periodic pulse train in time domain, which is an optical frequency comb in
frequency domain.

Optical frequency comb in frequency domain contains a series of discrete comb
lines, with a equal distance of 𝑓r, as shown in Fig. 1.10(a). The frequency of the
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n-th order comb line can be represented as

𝑓n = 𝑛 𝑓r + 𝑓CEO, (1.97)

where 𝑓CEO is the baseband offset frequency (or carrier-envelope offset fre-
quency), which is the same for all comb lines. In time domain, the electric field
of optical frequency comb is a collection of series of frequency components, which
has been illustrated in Fig. 1.8, with a repetition rate 𝑓r, as shown in Fig. 1.10(a)
inset.

Mode-locked pulses (Fig. 1.8(b)) coupled from optical resonator forms a periodic
pulse train and becomes optical frequency comb in frequency domain. A conceptual
illustration is shown in Fig. 1.10(b).

Optical frequency comb is one of the most critical components for modern photonics
because it acts as a bridge between optical frequency (THz) and the frequency within
electronic bandwidth ( 𝑓r range from MHz ∼ GHz), which has been well discussed
in ref. [17]. Some concepts in ref. [17] used in this thesis include:

1. From a single frequency continuous wave (CW) laser, we can modulate it with
RF signal generated by electronics, and the modulated CW laser becomes a
comb in optical frequency domain.

2. From a optical frequency comb, its radio-frequncy beat note at frequency
𝐷1/2𝜋 has a phasor of

∑
𝜇 𝐴𝜇𝐴

∗
𝜇+1, which can constructively interfere and

become a single tone RF signal if every 𝐴𝜇 has the same phase (Fig. 1.8(b)).

Therefore, with the help of optical frequency comb, the technologies to stabilize
optical frequency (radio frequency) can be utilized to transfer this stability into radio
frequency (optical frequency). Some examples used in this thesis include:

1. From RF to optics: Using optical frequency comb as a calibration source for
Astronomical observation. This will be discussed in Chapter 7 of this thesis.

2. From optics to RF: Using mode-locked optical frequency comb to generate
RF signal which can be further stabilized using optical frequency division.
The generation of a mode-locked comb will be discussed in Chapter 3 of this
thesis.
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In summary, optical frequency combs have a wide range of applications in science
and technology, including time keeping, optical frequency synthesis, spectroscopy,
ranging, astronomical calibration, microwave generation, etc..

1.3.2 Comb in frequency domain and repeated pulse in time domain
Next, we explain the relation between "comb in frequency domain" and "repeated
pulse in time domain" from the concept of the Fourier transform of sampling
function.

We start from focusing on a single pulse in Fig. 1.10(a) inset. We denote the electric
field of this single pulse as 𝐸 (𝑡), and its Fourier transform in frequency domain as
𝐸 ( 𝑓 ). We have

𝐸 ( 𝑓 ) = F [𝐸 (𝑡)] , (1.98)

where F [·] (F −1 [·]) represents (inverse) Fourier transform operator. Note that the
intensity spectrum of 𝐸 ( 𝑓 ) is a continuous function, represented by the dashed
envelope of Fig. 1.10(a). The spectrum of optical frequency comb 𝐸comb( 𝑓 ) is the
sampling of 𝐸 ( 𝑓 ), which can be written as

𝐸comb( 𝑓 ) ∝ 𝐸 ( 𝑓 ) ·X
(
𝑓 − 𝑓CEO

𝑓r

)
. (1.99)

Here X(𝑥) is the unit sampling distribution (or unit Sha-distribution) defined as

X(𝑥) =
∑︁
𝑛∈Z

𝛿(𝑥 − 𝑛). (1.100)

This distribution, also known as the (unit) Dirac comb, is a valuable tool with
applications in Fourier analysis [18], signal processing [19], and various other
scientific fields [20]. Further discussions on the properties of the Dirac comb are
provided in the respective references.

In Appendix A.1, we will show that the Fourier transform of unit sampling function
is itself [21], reads

F [X(𝑥)] = X(𝑥). (1.101)

Take the Fourier transform of Eq. (1.99), we can calculate the time domain of
optical frequency comb 𝐸comb(𝑡) reads 23

23Here we used the property of Fourier transform F −1
[
ℎ( 𝑓 −𝑎

𝑏
)
]
= 𝑏e𝑖2𝜋𝑡𝑎F −1 [ℎ] (𝑏𝑡).
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𝐸comb(𝑡) = F −1
[
𝐸comb( 𝑓 )

]
∝ F −1

[
𝐸 ( 𝑓 ) ·X

(
𝑓 − 𝑓CEO

𝑓r

)]
= F −1

[
𝐸 ( 𝑓 )

]
⊗ F −1

[
X

(
𝑓 − 𝑓CEO

𝑓r

)]
∝ 𝐸 (𝑡) ⊗

(
e𝑖2𝜋𝑡 𝑓CEOX( 𝑓r𝑡)

)
=

∫ ∞

−∞
𝐸 (𝑡 − 𝜏)e𝑖2𝜋𝜏 𝑓CEOX( 𝑓r𝜏)d𝜏

∝
∑︁
𝑛∈Z

𝐸

(
𝑡 − 𝑛

𝑓r

)
e𝑖2𝜋

𝑛 𝑓CEO
𝑓r , (1.102)

where "𝑔(𝑥) ⊗ ℎ(𝑥)" means the convolution between 𝑔(𝑥) and ℎ(𝑥).

Eq. (1.102) shows that: frequency sampling a continuous signal spectrum every 𝑓r

results in repeating the signal every 1/ 𝑓r in time domain, with an additional phase
2𝜋𝑛 𝑓CEO/ 𝑓r to each repetition. This additional phase result in the phase of the pulse
within each repetition is different from each other, as shown in Fig. 1.10(a) inset.

In practice, the proportion coefficient in Eq. (1.102) which we did not consider
should be determined by energy conservation within sampling bandwidth.

1.3.3 Stability of optical frequency comb
In order to fully stabilize the comb in optical domain, both 𝑓r and 𝑓CEO needs
to be stabilized. Stabilizing 𝑓r prevents the frequency comb from "accordion"
like instability. Some techniques to stabilize 𝑓r include quiet-point operation and
optical frequency division. Stabilizing 𝑓CEO prevents the instability of the comb’s
absolute frequency. An important technique to stabilize 𝑓CEO is self-referencing (or
referencing to a self-referenced comb). Additionally, locking to atom transitions
can also offer reference to the absolute frequency of an optical frequency comb.

The stability of 𝑓r are often measured by its single-side-band (SSB) phase noise
spectra in unit of dBc/Hz. Further discussion of this concept can be found in ref.
[22].

In astronomical calibration, an important stability measure is the Allan deviation𝜎 𝑓

of the optical frequency. The allan deviation measures what is the relative standard
deviation 𝛿 𝑓 / 𝑓 of the frequency of a comb line over a measurement period 𝑡. The
reason why this is important will be discussed in Chapter 7 Eq. (7.2) and Section
7.3.2 of this thesis.
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1.3.4 Electro-optics frequency comb
The physical configuration of electro-optics frequency comb can be found in Fig.8.2
of ref. [23]. In this section, we summarize the operating principle of electro-optics
frequency comb from a mathematical perspective.

An electro-optics frequency comb is generated from phase modulating a single-
frequency continuous wave (CW) laser, whose phasor is represented as 𝐸0e−𝑖2𝜋 𝑓0𝑡 .
Here the phase modulation is achieved by utilizing electro-optics nonlinearity dis-
cussed in Section 1.1.2. The CW laser pass through a phase modulator (PM), whose
refractive index along the optical path is modulated by an external electric field with
frequency 𝑓r. The amplitude of this external electrical field is denoted as 𝐸ext,PM.
The principle of this refractive index modulation has been discussed in Eq. (1.3).

The electric field phasor of the CW laser after being phase-modulated reads

𝐸0e−𝑖2𝜋 𝑓0𝑡 · e𝑖𝛽𝑃sin(2𝜋 𝑓r𝑡) ,

where 𝛽𝑃 = 𝜋𝐸ext,PM/𝐸𝜋,PM is the depth of phase modulation (𝐸𝜋 was defined in
Section 1.1.2). Any additional constant phase can be absorbed into 𝐸0.

After phase modulation, a second stage intensity modulator (IM) is added to spec-
trally flatten the modulated comb. The intensity modulation is achieved by a Mach-
Zehnder interferometer, which first split the light with 50/50 splitter, then apply
electric field 𝐸ext,IM to phase modulate one path, and finally recombine the two
paths with 50/50 combiner. The resulted electric field phasor reads

𝐸 = 𝐸0e−𝑖2𝜋 𝑓0𝑡 · e𝑖𝛽𝑃sin(2𝜋 𝑓r𝑡) ·
(

1
√

2

(
e𝑖𝜙DC + e𝑖𝛽𝐼sin(2𝜋 𝑓r𝑡+𝜙𝐼 )

))
, (1.103)

where 𝛽𝐼 = 𝜋𝐸ext,IM/𝐸𝜋,IM is the depth of intensity modulation, 𝜙𝐼 is the relative
phase between intensity modulation and phase modulation, 𝜙DC is the offset bias of
intensity modulator (operation position of Mach-Zehnder interferometer).

Next, we investigate what the parameters are when EO comb is under optimized
operation point. In order to get in-phase intensity modulation, we first set

𝜙𝐼 = 0, (1.104)

then we have



41

𝐸 =
1
√

2
𝐸0e−𝑖2𝜋 𝑓0𝑡 ·

(
e𝑖𝜙DCe𝑖𝛽𝑃sin(2𝜋 𝑓r𝑡) + e𝑖(𝛽𝑃+𝛽𝐼 )sin(2𝜋 𝑓r𝑡)

)
=

1
√

2
𝐸0e−𝑖2𝜋 𝑓0𝑡 ·

∑︁
𝑛∈Z

e𝑖2𝜋 𝑓r𝑡·𝑛
(
e𝑖𝜙DCJ𝑛 (𝛽𝑃) + J𝑛 (𝛽𝑃 + 𝛽𝐼)

)
(1.105)

≈ 1
√

2
𝐸0e−𝑖2𝜋 𝑓0𝑡 ·

∑︁
𝑛∈Z

e𝑖2𝜋 𝑓r𝑡·𝑛
√︄

2
𝜋𝛽𝑃

(
e𝑖𝜙DCcos

(
𝛽𝑃 − 𝑛𝜋

2
− 𝜋

4

)
+ cos

(
𝛽𝑃 + 𝛽𝐼 −

𝑛𝜋

2
− 𝜋

4

))
,

(1.106)

where J𝑛 (𝑧) represents n-th order Bessel functions of the first kind. Eq. (1.105)
used Jacobi–Anger expansion exp (𝑖𝑧sin(𝜃)) =

∑
𝑛∈Z J𝑛 (𝑧)exp (𝑖𝑛𝜃). Eq. (1.106)

used asymptotic expansion of J𝑛 (𝑧) ≈
√︃

2
𝜋𝑧

cos(𝑧 − 𝑛𝜋
2 − 𝜋

4 ) when 𝛽𝑃 ≫ 1 24 and
𝛽𝑃 ≫ 𝛽𝐼 . We assumed 𝛽𝑃 is a large number because 𝛽𝑃 is the main driving source
of the electro-optic comb, and usually this driving source has a much higher power
(typically ∼ 30 dBm) than the signal that drives the intensity modulator. From Eq.
(1.105), we can also identify that 𝛽𝑃 is roughly half of the number of comb lines,
because the function25 ℎ𝑥 (𝑛) = |J𝑛 (𝑥) | is approximately maximized when 𝑛 ≈ 𝑥 and
decays very fast when 𝑛 > 𝑥.

In Eq. (1.106), we can see that under the condition

𝜙DC =
𝜋

2
, 𝛽𝐼 =

𝜋

2
, (1.107)

the final modulated electric field reads a simple form

𝐸 ≈ 𝑖
√
𝜋𝛽𝑃

𝐸0e−𝑖2𝜋 𝑓0𝑡 ·
∑︁
𝑛∈Z

e𝑖2𝜋 𝑓r𝑡·𝑛 · e𝑖(𝛽𝑃− 𝑛𝜋
2 − 𝜋

4 ) , (1.108)

which means the intensity of comb lines at every order 𝑛 are the same. Note that
the equation in Eq. (1.108) is valid only when the asymptotic expansion from Eq.
(1.105) to Eq. (1.106) are valid (when |𝑛| ≪

√
𝛽𝑃). Therefore, the conditions in

Eqs. (1.104) and (1.107) can only guarantee comb line intensity are the same when
|𝑛| ≪

√
𝛽𝑃. Actually, when |𝑛| ∼ 𝛽𝑃, the intensity of comb lines becomes stronger

and presents the well-known "two-sided wing" behavior of electro-optics comb, as
shown in Fig. 7.3.

24Strictly speaking, this should be 𝛽𝑃 ≫
��𝑛2 − 1

4
��. The approximation used in Eq. (1.106) works

for the comb order 𝑛 much smaller than
√
𝛽𝑃 .

25Note ℎ𝑥 (𝑛) is a function of 𝑛, and is defined on Z. 𝑥 is the parameter, not the argument of
ℎ𝑥 (𝑛).
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Finally, the conditions in Eqs. (1.104) and (1.107) constitute the optimal operation
point of EO comb. If we have multiple stages of phase modulation, then we need
to add another optimal operation condition, which is the relative modulation phase
between different phase modulators 𝜙𝑃 needs to be the same.

Experimentally, the process of tuning EO comb to its optimal operation point can
be summarized as following:

1. Attenuate the RF signal send into IM to near zero (𝛽𝐼 ≈ 0), tune the DC bias
applied to IM (𝜙DC) until the transmission output power is approximately half
of maximum output power (tuned 𝜙DC = 𝜋/2).

2. Tune the RF phase shifter of the IM driving signal (change 𝜙𝐼), until the output
spectrum looks symmetric (𝜙𝐼 = 0). Because if 𝜙𝐼 ≠ 0, there will be terms
asymmetrical to 𝑛 in Eq. (1.105).

3. Tune the RF phase shifter to different PM (if the comb is driven by multiple
stages of PM), until the bandwidth of the comb is maximized (𝜙𝑃 are the same
for every PM).

4. Tune the variable RF attenuator to drive the IM until the comb is flat around
the spectrum center. (𝛽𝐼 = 𝜋/2).

5. Iterate steps 1 to 4 to optimize the comb.

If we consider the higher order terms in the asymptotic expansion from Eq. (1.105)
to Eq. (1.106), we can calculate the phase dispersion of electro-optics comb.
Experimentally, the dispersion of EO comb can be well compensated by second-
order dispersion. After dispersion compensation, we can generate an optical pulse
in the time domain.

1.3.5 Soliton (micro)comb
Soliton microcomb is a kind of mode-locked frequency comb generated in microres-
onators. It is a special solution of 𝜓(𝜙, 𝑡) in Eq. (1.84) which does not depend on
𝑡. This 𝑡 independent feature indicates that this solution does not evolve over time.
Physically speaking, this solution of 𝜓(𝜃 − 𝐷1𝑡, 𝑡) can propagate around the res-
onator and sustain itself. The solution has analytical form in absence of the pump
term √

𝜅e,0𝑎in, loss term 𝜅 and high-order (𝑛 ≥ 3) dispersion terms of Eq. (1.84),
reads
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𝜕𝜓(𝜙, 𝑡)
𝜕𝑡

= −𝑖 (𝛿𝜔0) 𝜓 + 𝑖
1
2
𝐷2

𝜕2𝜓

𝜕𝜙2 + 𝑖𝑔′|𝜓 |2𝜓. (1.109)

And this 𝑡 independent solution to 𝜓(𝜙, 𝑡) is

𝜓(𝜙, 𝑡) =

√︄
2𝛿𝜔0
𝑔′

sech

(√︂
2𝛿𝜔0
𝐷2

𝜙

)
. (1.110)

1.4 Chapter overview
Chapter 2 explores the critical role of high-quality factor (𝑄) optical microres-
onators in integrated photonic devices, focusing on the measurement of material-
limited 𝑄 factors and Kerr nonlinearities in SiO2, Si3N4, Al0.2Ga0.8As, and Ta2O5.
Through cavity-enhanced photothermal spectroscopy, we quantify the ultimate 𝑄

determined by material absorption and evaluate the Kerr nonlinearity in each plat-
form. The findings provide insights into the interplay between material nonlinearity
and 𝑄 factor, informing the design and development of next-generation photonic
integrated systems by establishing performance limits and guiding microresonator
material improvements.

Chapter 3 introduces a novel microcomb that achieves mode-locking through the
formation of pulse pairs in normal-dispersion coupled-ring resonators. Unlike
traditional microcombs, these pulse pairs must phase lock together to create a bright
soliton comb, and they form at recurring spectral windows with distinct optical
spectra. We also demonstrated 3-ring systems where three pulses achieve mode
locking through alternating pairwise coupling. The results are facilitated by a
new CMOS-foundry platform, previously incapable of bright soliton generation due
to its inherent normal dispersion. This capability to generate multi-color pulse
pairs across multiple rings holds significant potential for all-optical soliton buffers,
memories, and advances in quantum combs and topological photonics.

Chapter 4 explores the generation of Kelly sidebands (KS) in coupled-ring soliton
microcombs. Kelly sidebands, a type of dispersive wave typically observed in
mode-locked systems, are produced here through continuous-wave (CW) excitation
in a partially-coupled racetrack-resonator microcomb. This configuration supports
two optical bands, allowing the soliton and Kelly sideband to reside in distinct
bands. This interband excitation lowers power requirements and facilitates CW
sideband excitation. The chapter also investigates the tuning of sideband spectral
positions under pulsed excitation. Both numerical simulations and experiments
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show that symmetry breaking in the partially-coupled two-ring system is crucial
for KS formation. The findings highlight the potential of multi-band systems to
engineer Kelly sidebands for microcomb spectral broadening.

Chapter 5 presents the generation of multi-color co-propagating and counter-
propagating solitons using a coupled-ring microresonator in the ultra-low-loss Si3N4

platform. The soliton spectra and beatnotes are measured, and potential applica-
tions are discussed. The study demonstrates how multi-color pulse pairs can form in
distinct spectral windows driven by two continuous-wave pumps, highlighting the
capability of multi-pump methods to extend microcomb bandwidth.

Chapter 6 discusses the generation of mode-locked soliton microcombs in Al0.2Ga0.8As
microresonators using pulse pumping at room temperature. Al0.2Ga0.8As offers ad-
vantageous nonlinearity and compatibility with active gain, making it suitable for
high-efficiency frequency combs. However, challenges such as strong absorption
complicate soliton generation. This study demonstrates how pulse pumping can
mitigate thermal effects, enabling robust soliton formation and stabilization. The
results suggest potential applications in integrated photonics and provide insights
into soliton dynamics in Al0.2Ga0.8As microresonators.

Chapter 7 presents the development and commissioning of a near-infrared (NIR)
Laser Frequency Comb (LFC) for the NIRSPEC instrument on the Keck observatory.
The LFC operates over wavelengths from 1.2 to 2.1 𝜇m, with future extension to 2.5
𝜇m, and has an intrinsic mode spacing of 16 GHz. By referencing a Rubidium stan-
dard, the LFC achieves long-term stability of less than 10 cm s−1. This development
enhances the capabilities of high-precision radial velocity (PRV) measurements,
which are crucial for exoplanet detection and characterization. The chapter details
the LFC signal chain, stability analysis, and on-sky observations, demonstrating the
LFC’s potential for improving the precision of exoplanet searches.
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C h a p t e r 2

MATERIAL ABSORPTION AND OPTICAL NONLINEARITY
CHARACTERIZATION OF INTEGRATED PHOTONIC

MATERIALS

This chapter is based on the following published paper:
Gao, M., Yang, Q.-F., Ji, Q.-X. et. al. Probing material absorption and optical
nonlinearity of integrated photonic materials. Nat Commun 13, 3323 (2022).

https://doi.org/10.1038/s41467-022-30966-5

Optical microresonators with high quality (𝑄) factors are essential to a wide range
of integrated photonic devices. Steady efforts have been directed towards increasing
microresonator 𝑄 factors across a variety of platforms. With success in reducing
microfabrication process-related optical loss as a limitation of𝑄, the ultimate attain-
able 𝑄, as determined solely by the constituent microresonator material absorption,
has come into focus. Here, we report measurements of the material-limited 𝑄 fac-
tors in several photonic material platforms. High-𝑄 microresonators are fabricated
from thin films of SiO2, Si3N4, Al0.2Ga0.8As and Ta2O5. By using cavity-enhanced
photothermal spectroscopy, the material-limited 𝑄 is determined. The method
simultaneously measures the Kerr nonlinearity in each material and reveals how
material nonlinearity and ultimate 𝑄 vary in a complementary fashion across pho-
tonic materials. Besides guiding microresonator design and material development
in four material platforms, the results help establish performance limits in future
photonic integrated systems.

2.1 Introduction
Performance characteristics of microresonator-based devices improve dramatically
with increasing 𝑄 factor [1]. Nonlinear optical oscillators, for example, have turn-
on threshold powers that scale inverse quadratically with 𝑄 factor [2–4]. The
fundamental linewidth of these and conventional lasers also vary in this way [5–7].
In other areas including cavity quantum electrodynamics [8], integrated quantum
optics [9–12], cavity optomechanics [13] and sensing [14], a higher𝑄 factor provides
at least a linear performance boost. In recent years, applications that rely upon these
microresonator-based phenomena, including microwave generation [15], frequency
microcomb systems [16], high-coherence lasers [7, 17, 18] and chip-based optical
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gyroscopes [19–21], have accelerated the development of high-𝑄 photonic-chip
systems [18, 22–31].

𝑄 factor is determined by material losses, cavity loading (i.e., external waveguide
coupling), and scattering losses (see Fig. 2.1(a)). To increase 𝑄 factor, there have
been considerable efforts focused on new microfabrication methods and design tech-
niques that reduce scattering loss associated with interface roughness [22, 32, 33]
and coupling non-ideality[34, 35]. Impressive progress has resulted in demonstra-
tions of high-𝑄 microresonator systems with integrated functionality [36, 37], as
well as resonators that are microfabricated entirely within a CMOS foundry [18].
With these advancements, attention has turned towards𝑄 limits imposed by the con-
stituent photonic material themselves. For example, the presence of water, hydrogen,
trace metal ions [33, 38–41] and other pathways [42, 43] are known to increase ab-
sorption. In this work, cavity-enhanced photothermal spectroscopy [39, 41, 44–47]
is used to determine the absorption-limited 𝑄 factor (𝑄abs) and optical nonlinear-
ity of state-of-the-art high-𝑄 optical microresonators fabricated from four different
photonic materials on silicon wafer.

2.2 Logic of measurement
Images of the microresonators characterized in this study are shown in Fig. 2.1(b),
where the microresonators are SiO2 [4, 48] microdisks and Si3N4 [47], Al0.2Ga0.8As
[26, 27] and Ta2O5 [49] microrings. Details of the device fabrication processes are
given in the Methods. Typical microresonator transmission spectra showing optical
resonances are presented in Fig. 2.1(b). The transmission spectra feature Lorentzian
lineshapes, but in some cases are distorted by etalon effects resulting from reflection
at the facets of the coupling waveguide. With such etalon effects accounted for
(see Appendix B.1), the intrinsic (𝑄0) and external (coupling) (𝑄𝑒) 𝑄 factors can
be determined. The measured intrinsic 𝑄0 factors are 418 million, 30.5 million,
2.01 million, and 2.69 million, for SiO2, Si3N4, Al0.2Ga0.8As, and Ta2O5 devices,
respectively.

The microresonator intrinsic 𝑄0 is determined by scattering and absorption losses.
In order to isolate the absorption loss contribution, cavity-enhanced photothermal
spectroscopy is used. The principle is based on that the resonant frequencies of
dielectric microresonators are shifted by the Kerr effect and the photothermal effect,
both of which result from the refractive index change that depends on the intracav-
ity optical intensity. Because these two effects occur on very distinct time-scales
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Table 1 | Properties of materials in current integrated high-Q microresonators at 1550 nm
Material

SiO2

Si3N4

Al0.2Ga0.8As

Ta2O5

Reported n2  (10-20 m2 W-1)

2.2

24

2600

62

Qabs  (M)

3900 ± 200

290 ± 50

2.0 ± 0.2

2.4 ± 0.3

Growth method

IBS

MBE

Wet oxidation

LPCVD

Structure

Amorphous

Crystal

Amorphous

Amorphous

no

1.44

2.00

3.28

2.06

0.0065 ± 0.0003

0.12 ± 0.02

28 ± 2

15 ± 2

-

22 ± 1

1700 ± 100

27 ± 3

n2  (10-20 m2 W-1) σabs  (dB m-1)

Table 2.1: Summary of material loss and nonlinearity. LPCVD: low-pressure
chemical vapour deposition; MBE: molecular beam epitaxy; IBS: ion-beam sput-
tering. Propagation loss 𝜎abs induced by absorption is calculated as 𝜎Mat =

(10/ln 10)𝜔0𝑛𝑔/(𝑄abs𝑐). Error indicates standard deviation. These numbers should
be viewed as state-of-the-art values rather than fundamental limits. Possible sys-
tematic errors of measurement values are discussed in Section 2.8.6. The 𝑄abs for
Ta2O5 is further discussed in Appendix D.4.

(Kerr effect being ultra-fast and optical absorption occurring at a relatively slow
thermal time scale from milliseconds to microseconds), it is possible to distinguish
their respective contributions to resonant frequency shift and infer their nonlin-
ear coefficients [45]. Two distinct measurements are performed to determine the
absorption-limited 𝑄abs. Here, they are referred to as the “sum measurement” and
“ratio measurement.” In the sum measurement, resonant frequency shift is measured
to obtain the sum of Kerr and photothermal effects. In the ratio measurement, the
photothermal frequency response is measured to distinguish its contribution from
the Kerr effect.

2.3 Sum measurement
In the sum measurement, the microresonator is probed by a tunable laser whose
frequency is slowly swept across a resonance from the higher frequency side of
a resonance (i.e., blue-detuned side). The input light polarization is aligned to
the fundamental TE (Si3N4, Al0.2Ga0.8As, and Ta2O5) or TM (SiO2) mode of the
microresonator. In the case of SiO2, because of the presence of multiple transverse
modes, a fundamental mode well separated from other resonances was used so as
to reduce the influence of mode interactions. The experimental setup is depicted in
Fig. 2.2(a). The frequency scan is calibrated by a radio-frequency calibrated Mach-
Zehnder interferometer (MZI) [50]. The probe laser frequency scan is sufficiently
slow (i.e., quasi-static scan, see Fig. D.1, Fig. D.2, Fig. D.3, and Fig. D.4 for
details) to ensure that scan speed does not impact the observed lineshape through
transient thermal processes within the microresonator. The transmission spectra
exhibit a triangular shape [51] as shown in Fig. 2.2(b). Theoretical fittings of the
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Figure 2.1: High-𝑄 optical microresonators characterized in this work. (a)
Schematic showing optical loss channels for high-𝑄 integrated optical microres-
onators. The loss channels include surface (and bulk) scattering loss and material
absorption loss. The intrinsic loss rate is characterized by the intrinsic𝑄 factor (𝑄0).
Bus waveguide coupling also introduces loss that is characterized by the external
(coupling) 𝑄 factor (𝑄𝑒). (b) Left column: images of typical microresonators used
in this study. Right column: corresponding low input-power spectral scans (blue
points) with fitting (red). The intrinsic and external 𝑄 factors are indicated. M:
million.

transmission spectra are shown in red and discussed in Methods. Also, the cold
resonance spectra (i.e., with very low waveguide power) measured under the same
coupling conditions are plotted for comparison (dashed curve).

By changing the input pump laser power with a voltage-controlled optical attenuator
(VOA), the quasi-static resonance shift 𝛿𝜔0 of the resonant frequency 𝜔0 versus the
intracavity circulating optical energy density 𝜌 (units of J·m−3) is determined and
summarized in Fig. 2.2(c). The observed linear dependence contains contributions
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Figure 2.2: The sum measurement. This experiment measures the sum of Kerr
and photothermal nonlinear coefficients (𝑔 + 𝛼). (a) Experimental setup. ECDL:
external-cavity diode laser; EDFA: erbium-doped fiber amplifier; VOA: voltage-
controlled optical attenuator; PC: polarization controller; PD: photodetector; MZI:
Mach-Zehnder interferometer; AFG: arbitrary function generator; OSC: oscillo-
scope. For SiO2 experiment, ECDL is replaced by a narrow-linewidth fiber laser to
achieve a slower frequency tuning speed. As an aside due to narower tuning range
of fiber laser, this experiment is only performed at 1550nm for SiO2. (b) Typi-
cal transmission spectra of microresonators with photothermal and Kerr self-phase
modulation, where the input power in the bus waveguide is indicated. Theoretical
fittings are plotted in red and discussed in Methods. The cold transmission spectra
measured at low pump power are also plotted with dashed lines for comparison. WG
power: optical power in the bus waveguide. (c) Measured resonant frequency shift
versus intracavity power for microresonators based on different materials. Dashed
lines are linear fittings of the measured data. The four traces have the same slope,
which is a result of the proportional relation shown in Eq. (2.1). (d) Measured res-
onant frequency shift versus microresonator chip temperature for the four materials,
with linear fittings. The fitted shift for Al0.2Ga0.8As, Si3N4, SiO2 and Ta2O5 are
-13.1, -2.84, -1.83 and -0.996, in units of GHz·K−1, respectively.
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Figure 2.3: The ratio measurement. This experiment measures the ratio of Kerr
and photothermal nonlinear coefficients 𝑔/𝛼. (a) Illustration of the ratio measure-
ment. A pump laser is stabilized to a resonance and modulated by an intensity
modulator. The intracavity power is thus modulated. As a result of photothermal
effect and Kerr cross-phase modulation, the frequency of a nearby resonance is also
modulated. Another probe laser is stabilized near this resonance, and its trans-
mission is monitored by a vector network analyzer (VNA). Inset: the modulation
response allows distinguishing the photothermal and Kerr effects. (b) Experimen-
tal setup. IM: intensity modulator; CIRC: optical circulator; LPF: low-pass filter;
VNA: vector network analyzer. (c) Typical measured response functions of the
probe laser transmission R̃ as a function of modulation frequency Ω. Numerical
fittings are outlined as dashed curves. For modulation frequencies below 1 kHz, the
probe response is suppressed by the servo feedback locking loop. Some artifacts
appear around 1 kHz as a result of the servo control. Here the experimental trace is
smoothed over 5 points. (d) Measured wavelength dependence of the ratios between
the Kerr nonlinearity and photothermal effect for three materials. Vertical error bars
give 95% confidence intervals.

from the Kerr self-phase modulation and photothermal effects as,

𝛿𝜔0
𝜔0

= − 1
𝜔0

(𝛼 + 𝑔)𝜌, (2.1)

where 𝛼 and 𝑔 denote the photothermal coefficient and the Kerr coefficient given
by:

𝛼 = 𝜅𝑎
𝛿𝑇

𝑃abs

(
−𝛿𝜔0

𝛿𝑇

)
𝑉eff ,

𝑔 =
𝑛2
𝑛𝑛𝑔

𝜔0𝑐.

(2.2)
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Figure 2.4: Absorption 𝑄abs, nonlinear coefficients and parametric oscillation
threshold. (a) Measured absorption 𝑄abs factors at different wavelengths in the
telecommmunication C-band for the four materials. Vertical error bars give stan-
dard deviations of measurements. (b) Comparison of absorption 𝑄abs factors and
normalized nonlinear index (𝑛2/𝑛2) for the four materials. Measured 𝑛2 values are
listed in Table 2.1. The 𝑛2 of SiO2 was not measured here and a reported value of
2.2 × 10−20 m2 W−1 is used. Parametric oscillation threshold for a single material
normalized by mode volume (𝑃th/𝑉eff) is indicated by the red dashed lines, assuming
𝜆 = 1550 nm, intrinsic 𝑄0 equals material absorption 𝑄, and 𝑄𝑒 = 𝑄0 (i.e., critical
coupling condition).
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Here, 𝜅𝑎 is the energy loss rate (or dissipation rate) due to optical absorption, 𝑛2

is the material Kerr nonlinear refractive index, 𝑛 is the material refractive index, 𝑛𝑔
is the material chromatic group refractive index, 𝑐 is the speed of light in vacuum,
𝑃abs is the absorbed optical power by the microresonator and 𝑇 is the temperature of
the microresonator. The bar (e.g., 𝑛2) denotes the average value of the underneath
variable weighted by the field distribution of the optical mode. The exact definition
of each average is provided in Eqs. (1.43), (1.44), and (1.45).

The energy loss rate 𝜅𝑎 is related to the material absorption-limited 𝑄abs factor by

𝑄abs =
𝜔0
𝜅𝑎

. (2.3)

To determine 𝜅𝑎 and hence 𝑄abs from 𝛼, it is necessary to determine 𝑉eff , 𝛿𝑇/𝑃abs

and 𝛿𝜔0/𝛿𝑇 . The effective mode volume 𝑉eff is calculated using the optical mode
obtained in finite-element modeling, and 𝛿𝑇/𝑃abs is further calculated using the
finite-element modeling with a heat source spatially distributed as the optical mode.
The resonance tuning coefficient 𝛿𝜔0/𝛿𝑇 is directly measured by varying the tem-
perature of the microresonator chip using a thermoelectric cooler (TEC), and the
results are shown in Fig. 2.2(d). Since the TEC heats the entire chip, the thermo-
elastic effect of the silicon substrate contributes to the frequency shift and combines
with the photothermal effect. However, this thermo-elastic contribution does not
appear in the sum measurement, where the heating originates only from the optical
mode. Thus, the thermal-elastic contribution of the silicon substrate must be de-
ducted from the TEC measured results (see Section 2.8.5). Other effects that may
lead to frequency shift or linewidth broadening (discussed in Section 2.8.6), such as
harmonic generation or multi-photon absorption, are not significant in the samples,
as confirmed by observing the coupling efficiency with respect to power (see Fig.
D.1(d), Fig. D.2(d), Fig. D.3(d), and Fig. D.4(d)).

2.4 Ratio experiment
The measurement associated with Eq. (2.1) wherein the sum contributions of Kerr
and photothermal effects are measured is supplemented by a measurement that
provides the ratio of these quantities. This second measurement takes advantage
of the very different relaxation time scales of Kerr and photothermal effects. The
experimental concept and setup are depicted in Figs. 2.3a and 2.3b. Pump and
probe lasers are launched from opposite directions into the microresonator. The
pump laser is stabilized to one resonance by monitoring the transmission signal and
locking close to the center of the resonance. Pump power is modulated over a range
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of frequencies using a commercial lithium niobate electro-optic modulator driven
by a vector network analyzer (VNA). Similarly, the probe laser is locked to another
nearby resonance, and is slightly detuned from the center resonant frequency. Both
probe and pump modes are fundamental spatial modes, but not necessarily in the
same polarization state. For Al0.2Ga0.8As and Ta2O5, both pump and probe modes
belong to the fundamental TE mode, while for Si3N4, pump and probe modes belong
to the fundamental TE and TM modes, respectively (see Appendix D.2). It is also
noted that this measurement was challenging to perform in the suspended SiO2

microdisks on account of a very slow thermal diffusion process (see Appendix D.1).
Instead, a published value of 𝑛2 for SiO2 (2.2 × 10−20 m2·W−1) was used [52].

With this arrangement, pump power modulation in the first resonance induces mod-
ulation of the output probe power in the second resonance, through the effect of
Kerr- and photothermal-induced refractive index modulations. As illustrated in
the inset of Fig. 2.3(a), photothermal modulation determines the low frequency
response in this measurement, while the Kerr effect determines the intermediate
frequency response, and the highest corner frequency is set by the cavity dissipation
rate (see Methods). The probe frequency response measured for three different
microresonators is presented in Fig. 2.3c. The response at very low frequencies
is normalized to 0 dB. Both pump and probe laser powers are sufficiently low to
minimize the thermal locking effect [51]. The plateau in the frequency response at
low frequency gives the combined quasi-static contributions of photothermal and
Kerr effects in the sum measurement (inset of Fig. 2.3(a)), while the high frequency
response constitutes only the Kerr contribution. In addition, the Kerr effect here
is the cross-phase modulation contribution (from the pump to the probe), while,
as noted above, the Kerr self-phase modulation contribution appears in Eq. (2.1).
These two effects are related by a cross-phase modulation factor 𝛾 determined by the
mode combinations used (see Methods). By numerically fitting the response curves
(see Appendix C.1), the ratio between Kerr and photothermal effects is extracted
over a range of wavelengths and plotted in Fig. 2.3d.

2.5 Measurement result of absorption limited 𝑄-factor
Combining results from the above sum and ratio measurements, the photothermal
and Kerr coefficients are obtained individually. The inferred absorption-limited𝑄abs

values measured over the telecommunication C-band for each material are summa-
rized in Fig. 2.4(a). It is worth mentioning that the SiO2 microdisk measurement
requires a narrow-linewidth, highly-stable fiber laser on account of the microres-
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onator’s ultra-high 𝑄 factor. The use of the fiber laser limits the measurement range
to near 1550 nm. A combined plot of the measured 𝑛2 values (normalized by 𝑛2)
versus the absorption 𝑄abs is given in Fig. 2.4(b) (the 𝑛2 of SiO2 is taken from the
literature [52]). Also, in the cases of critical coupling (𝑄𝑒 = 𝑄0) and absorption-
limited intrinsic𝑄 factors (𝑄0 = 𝑄abs), the parametric oscillation threshold (derived
in Eq.(1.93)) per unit mode volume [3, 53, 54] for a single material is shown by
dashed red iso-contours:

𝑃th
𝑉eff

=
𝑛2 𝜔𝑜

𝑛2𝑄
2
abs𝑐

, (2.4)

where𝑉eff is the effective mode volume. It should be noted that actual thresholds may
be different if the optical field is not tightly confined in the core of the microresonator
heterostructure.

The results described above are further summarized in Table 2.1, where, for SiO2

and Si3N4, the measured material absorption losses are much lower than the present
microresonator intrinsic losses. Therefore, improvement in microfabication of SiO2

and Si3N4 to reduce surface roughness, hence to reduce scattering losses, will benefit
photonic integrated circuits using these materials. For Al0.2Ga0.8As and Ta2O5, the
material losses are close to their respective intrinsic losses, which suggests that both
material and scattering loss contributions should be addressed.

2.6 Additional discussion for each materials
Overall, the absorption 𝑄abs values reported here should be viewed as state-of-the-
art values that are not believed to be at fundamental limits. For example, silica glass
in optical fiber exhibits loss (typically 0.2 dB·km−1) [55] that is over one order of
magnitude lower than that reported in Fig. 2.4(b).

Likewise, Ta2O5 is the premier material for optical coatings employed, for example,
in the highest performance optical clocks and gravitational-wave interferometers.
However, Ta2O5 exhibits fascinating stoichiometry and crystallization effects, which
require careful mitigation in deposition and processing. The material-limited 𝑄 of
Ta2O5 and TiO2:Ta2O5 has been measured to be 5 million and 25 million, respec-
tively [56]. Hence, the nanofabricated devices and precision-measurement technique
reported here highlight the promise to optimize material-limited performance in the
Ta2O5 platform. It is also noted that in Al0.2Ga0.8As, a compound semiconductors
material, surface defects may generate mid-gap states [42] which cause extra mate-
rial absorption loss. This loss mechanism will depend upon process conditions and
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intrinsic 𝑄 factors as high as 3.52 M for Al0.2Ga0.8As have been reported elsewhere
[27]. Finally, some of the material parameters used in modeling are impacted by
factors such as the film deposition method. For example, thermal conductivity of
Ta2O5 can depend upon the deposition method as is reflected by a wide range of
values available in the literature (see Appendix D.4). Such effects could also impact
other materials used in this study, but we have nonetheless relied upon bulk values
and simplifications in modeling (see Table 2.3). Certain details in the simulation,
e.g., heat dissipation rate into the air (see Table 2.4), are also possible contributing
factors. Domain size in the finite element simulation have been optimized and not
considered as an error source.

The current method also provides in-situ measurement of 𝑛2 for integrated photonic
microresonators. We compare the 𝑛2 values measured here with other reported
values in Table 2.1. Reported 𝑛2 values are taken from ref. [52] (SiO2), ref. [57]
(Si3N4), ref. [58] (Al0.2Ga0.8As) and ref. [49] (Ta2O5).

To give a fashion of how the nonlinearity varies between the four materials, third-
order nonlinear susceptibility 𝜒(3) is calculated from the measured 𝑛2 and compared
with the linear susceptibility 𝜒(1) . The Miller’s rule [59, 60] 𝜒(3) ∝ 𝜒4

(1) relating the
scaling of these two quantities is observed (see Section 2.7).

In summary, the absorption loss and Kerr nonlinear coefficients of four leading inte-
grated photonic materials have been measured using cavity-enhanced photothermal
spectroscopy. The material absorption sets a practical limit of these materials in
microcavity applications. The Kerr nonlinear coefficients have also been charac-
terized, and the results are consistent with a general trend relating to nonlinearity
and optical loss. Overall, the results suggest specific directions where there can be
improvement in these systems as well as providing a way to predict future device
performance.

2.7 Observation of Miller’s rule
The Miller’s rule gives a phenomenological prediction of the material nonlinear
coefficients based on its linear susceptibility [59, 60]. Specifically, the third-order
nonlinear susceptibility 𝜒(3) is predicted to be proportional to the linear susceptibility
𝜒4
(1) , where

𝜒(3) =
4𝜀0𝑐𝑛

2

3
𝑛2, (2.5)

𝜒(1) = 𝑛2 − 1. (2.6)
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Figure 2.5: Observation of Miller’s rule of nonlinear susceptibility.

The measured 𝜒(3) (as calculated from 𝑛2) is plotted in Fig. 2.5, along with a
fourth-power fitting (dashed). Despite a difference of 4 orders of magnitude in 𝜒(3)

between different materials, the fourth-power scaling is evident as shown in the
figure.

2.8 Methods and supplementary information
2.8.1 Fabrication of optical microresonators
The SiO2 microresonator is fabricated by thermally growing 8-𝜇m thick thermal wet
oxide on a 4 inch float-zone silicon wafer, followed by i-line stepper photolithog-
raphy, buffered oxide etch, XeF2 silicon isotropic dry etch and thermal annealing
[4, 48]. The Si3N4 microresonator is fabricated with the photonic Damascene
process, including using deep-ultraviolet stepper lithography, preform etching, low-
pressure chemical vapour deposition, planarization, cladding and annealing [47].
The Al0.2Ga0.8As microresonator is fabricated with an epitaxial Al0.2Ga0.8As layer
bonded onto a silicon wafer with a 3-𝜇m thermal SiO2 layer, followed by GaAs
substrate removal, deep ultraviolet patterning, inductively coupled plasma etching,
passivation with Al2O3 and SiO2 cladding [26, 27]. The Ta2O5 microresonator is
fabricated by ion-beam sputtering Ta2O5 deposition followed by annealing, electron-
beam lithography, Ta2O5 etching, ultraviolet lithography and dicing [49].

2.8.2 Experimental details
In the sum measurement, the scanning speed of the laser frequency is decreased until
the mode’s broadening as induced by the thermo-optic shift becomes stable (i.e., not
influenced by the scan rate). Also, the waveguide input power is minimized such
that it is well below the threshold of parametric oscillation. The power is calibrated
using the photodetector voltage.

In the ratio measurement, the optical frequencies of the pump and probe lasers are
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locked to their respective cavity modes using a servo feedback with 1 kHz bandwidth.
The pump laser is locked near the mode resonant frequency, while the probe laser
is locked to the side of the resonance to increase transduction of refractive index
modulation into transmitted probe power. The intensity modulator is calibrated in a
separate measurement under the same driving power.

2.8.3 Fitting of spectra in the sum measurement
For Si3N4 and Ta2O5 devices, the transmission spectrum is the interference of
a Lorentzian-lineshaped mode resonance with a background field contributed by
facet reflections of the waveguide. The transmission function of a cavity resonance
is given by

𝑇res = 1 − 𝜅𝑒

𝜅/2 + 𝑖[Δ − (𝛼 + 𝑔)𝜌] , (2.7)

where Δ is the cold-cavity laser-cavity detuning, 𝛼 and 𝑔 are the absorption and
Kerr nonlinear coefficients, respectively, and 𝜌 is the intracavity energy density as
defined in the main text. The reflection at the two waveguide facets forms a low-
finesse Fabry–Pérot resonator. Combining this waveguide reflection with the cavity
resonance, the overall amplitude transmission is given by (see Appendix B.1)

𝑇 ∝
���� 𝑇res

1 − 𝑟𝑇2
res exp[𝑖(−Δ/𝜔FP + 𝜙)]

����2 , (2.8)

where 𝑟 is the reflectivity at the waveguide facet, 𝜔FP is the free spectral range of the
facet-induced Fabry–Pérot cavity (in rad/s units), and 𝜙 is a constant phase offset.

In the experiment, the above quantities are fitted in three steps. First, 𝜔FP and 𝑟 are
obtained by measuring the transmission away from mode resonances. Next, loss
rates 𝜅 and 𝜅𝑒 can be determined by measuring the transmission of the mode at a low
probe power. Finally, launching higher power into the microresonator allows the
mode broadening to be observed and the transmission is fitted with Eq. (2.8), where
(𝛼 + 𝑔) is the fitting variable and other parameters are obtained from the previous
steps. For Al0.2Ga0.8As and SiO2 devices which have no Fabry–Pérot background,
𝑟 can be set to zero and the first step in the above fitting procedure can be omitted.
The fitting results are presented in Fig. 2.2(b).
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2.8.4 Fitting of response in the ratio measurement
The response of the probe mode resonant frequency 𝛿b as a result of pump power
modulation 𝑃̃in can be described by (see Appendix C.1),

𝛿b(Ω)
𝑃̃in(Ω)

= −𝛼𝑟 (Ω) + 𝛾𝑔

𝑉eff

2𝜂p

𝑖Ω + 𝜅p/2
. (2.9)

where Ω is the pump power modulation frequency (in rad/s units), 𝑃̃in is the mod-
ulation amplitude of the pump power, 𝜅p is the total loss rate of the pump mode,
𝜂p = 𝜅𝑒,p/𝜅p is the coupling efficiency for pump mode, 𝛼 is the absorption coef-
ficient as mentioned in the previous section, 𝑟 is the frequency response of modal
temperature modulation as a result of thermal diffusion, and the factor 𝛾 accounts
for cross-phase modulation of the probe mode by the pump mode. The denominator
in Eq. (2.9) creates a corner frequency for the response that is illustrated in the inset
of Fig. 2.3(a) and that appears in the data and fitting in Fig. 2.3(c).

The frequency response of the transmitted probe mode with respect to its resonance
shift 𝛿b(Ω) is derived in Appendix C.1 and has the following form:

𝑇b(Ω)
𝛿b(Ω)

= −
2𝜅𝑒,bΔ(0)

b

𝜅2
b/4 +

(
Δ
(0)
b

)2
𝜅b − 𝜅𝑒,b + 𝑖Ω

(𝜅b/2 + 𝑖Ω)2 +
(
Δ
(0)
b

)2 |𝑎in,b |2, (2.10)

where Δ
(0)
b is the steady-state detuning of the probe mode when no modulation is

present, and 𝜅b and 𝜅𝑒,b refer to the total loss rate and external coupling rate for the
probe mode.

The response curve in Fig. 2.3(c) is modeled by

R̃ (Ω) = 𝑇b(Ω)
𝑃̃in(Ω)

=
𝑇b(Ω)
𝛿b(Ω)

𝛿b(Ω)
𝑃̃in(Ω)

, (2.11)

and is fitted according to Eqs. (2.9) and (2.10). In the fitting, 𝜅 and 𝜅𝑒 have been
measured separately, 𝑟 is determined from finite element method simulations, and
the probe mode Δ0 and ratio 𝛼/𝑔 are parameters to be fitted.

2.8.5 Calibration of resonance thermal shift
In the sum experiment, resonance shift originates from localized material absorption.
This increases the resonator temperature locally, and shifts the resonance primarily
through the thermo-optical effect (factor 𝛼𝑛 is defined in Eq. (1.48)). However,
when the resonance shift is calibrated using a thermoelectric cooler (TEC) (see
Fig. 2.2(d)), the entire chip is heated, and the resonance shift therefore includes a
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contribution from the thermo-elastic expansion created by the silicon substrate. To
remove this extra contribution, the coefficient of linear thermal expansion 𝛼𝑙,sub of
the silicon substrate is subtracted. As a check of this approach, Table 2.2 compiles
measured values for 𝛼𝑛 + 𝛼𝑙,sub using the TEC as described in the main text along
with values for 𝛼𝑛 and 𝛼𝑙 (coefficient of linear thermal expansion) reported in the
literature for the relevant materials. The TEC measured values are close compared
to the reported 𝛼𝑛 with the silicon (substrate material) 𝛼𝑙 added. The discrepancy
between 𝛼𝑛 reported for Al0.2Ga0.8As makes the same comparison difficult, but the
result for this case falls reasonably close to the measured value.

𝛼𝑛, reported 𝛼𝑙 , reported 𝛼𝑛 + 𝛼𝑙,sub, measured (TEC)
SiO2 0.752 (ref. [61]) 0.055 (ref. [62]) 0.95
Si3N4 1.25 (ref. [63]) 0.33 (ref. [64]) 1.47

Al0.2Ga0.8As 6.970 (ref. [26]) 0.562 (ref. [65]) 6.798
6.054 (ref. [66])

Ta2O5 0.29 (ref. [67]) 0.24 (ref. [68]) 0.52
Si (Substrate) – 0.26 (ref. [69]) –

Table 2.2: Thermo-optic and thermo-elastic coefficients reported in the literature
compared with the measured combined effect determined by heating of the resonator
chip.

2.8.6 Sources of systematic errors in 𝑄abs and 𝑛2

Material Density Thermal conductivity Heat capacity
𝜌m (kg·m−3) 𝑘 (W·m−1·K−1) 𝐶 (J·kg−1·K−1)

Si (ref. [70]) 2.33 × 103 130 700
SiO2 (ref. [70]) 2.2 × 103 1.4 740

Si3N4 (ref. [70, 71]) 3.17 × 103 30 800
Al𝑥Ga1−𝑥As (ref. [65]) (5.32 − 1.56𝑥) × 103 55 − 212𝑥 + 248𝑥2 320 + 132𝑥

Ta2O5 6.85 × 103 (ref. [72]) 0.4 (ref. [73]) 306 (ref. [74])

Table 2.3: Thermal constants of resonator materials used in finite-element method
simulations. The thermal conductivity of Ta2O5 is further discussed in Appendix
D.4.

The𝑄abs and 𝑛2 are calculated from measured 𝛼 and 𝑔 factors, respectively, utilizing
Eq. (2.2). The calculation uses material constants from handbooks, where a
measurement of these parameters is beyond the scope of this study.

• Thermal properties of the materials are taken from references as summarized
in Tables (2.3) and (2.2). The values not only depend upon the specific
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bulk material, but also on layer deposition and growth processes. In turn, a
variation in these parameters will directly impact the inferred 𝑄abs. Using a
larger thermal conductivity (or heat capacity) reduces the inferred 𝛿𝑇 for the
same absorbed power (as in Eq. (1.55)), and leads to a lower calculated 𝑄abs.
As an example, the reported thermal conductivity for Ta2O5 has variations
and its impact is further discussed in Appendix D.4.

• Similarly, the optical refractive index 𝑛𝑜 and group index 𝑛𝑔 refer to bulk
materials. These parameters appear in Eq. (1.47) and affect the calculated 𝑛2.
Also, refractive indices determine the modal field distribution for averaging
(as in Eqs. (1.43), (1.45), and (1.53)), which also affect the calculated material
properties.

• In the experiment the air surrounding the sample is static, and the convective
heat flux coefficient ℎ = 10 W·m−2·K−1 (ref. [75]) is used in all simulations. A
larger convective heat flux coefficient will lead to lower temperature increase
per unit absorbed power (𝛿𝑇/𝑃abs), and to a lower calculated 𝑄abs. However,
numerical simulations indicate that this effect is minor (see below).

𝛿𝑇/𝑃abs (K·W−1) SiO2 Si3N4 Al0.2Ga0.8As Ta2O5
ℎ = 2 W·m−2·K−1 558 95.3 90.7 1085.1
ℎ = 10 W·m−2·K−1 552 95.3 90.7 1085.1
ℎ = 25 W·m−2·K−1 542 95.3 90.7 1085.1

Table 2.4: 𝛿𝑇/𝑃abs values with different heat dissipation rate.

Furthermore, there are physical processes neglected in the modelling that may lead
to systematic errors.

• Surface and interface effects between different layers in the heterogeneous
structure may alter the theoretical model. For example, contact thermal resis-
tance is present at the interfaces between different materials, and this could
not be evaluated here. However, for micron-scale cross-section structures in
our study, the induced thermal resistance is negligible. As an example, for
the interface between silicon and silica, numerical studies [76] and measure-
ments [77] estimate the interface thermal resistance per unit area as 0.9×10−9

m2·K·W−1 and 2.3 × 10−9 m2·K·W−1, respectively. Meanwhile, with param-
eters in Table. 2.3, the thermal resistance of a 1-micron-thick silica film is



63

evaluated to be 7.1 × 10−7 m2·K·W−1, more than 102 larger than the inter-
face contribution. Apart from contact thermal resistance, surface absorption
may also be prominent for semiconductors (Al0.2Ga0.8As) and is discussed in
Appendix D.4.

• There are absorption pathways where a portion of the absorbed energy does
not end up as heat (e.g., Raman and Brillouin scattering). Including such
effects requires more absorbed power for the same 𝛿𝑇 , and leads to a lower
calculated 𝑄abs. We do not believe these processes are significant since the
phase-matching condition is not favorable in measured devices.

• Harmonics generation, multi-photon absorption and other nonlinear optical
effects may also lead to frequency shift or linewidth broadening. However,
because these will induce a power-dependent loss on the pump mode, coupling
efficiency of the pump mode will decrease when these effects are prominent,
and this is not observed in the transmission traces (see Figs. D.1d, D.2d,
D.3d, and D.4d). As a result, these effects are also neglected in the model.

It should be noted that error bars in the main text represent measurement errors
only (including instrumental error and data fitting error), while systematic errors
discussed above are not included. To ensure accuracy, the mode used for testing
should minimize all of the above nonlinear optical effects.
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C h a p t e r 3

SOLITON PULSE PAIRS AT MULTIPLE COLOURS IN
NORMAL DISPERSION MICRORESONATORS

This chapter is based on the following published paper:
Yuan, Z., Gao, M., Yu, Y. et. al. Soliton pulse pairs at multiple colours in normal

dispersion microresonators. Nat. Photon. 17, 977–983 (2023).
https://doi.org/10.1038/s41566-023-01257-2

Soliton microcombs [1] are helping to advance the miniaturization of a range of
comb systems [2]. These combs mode lock through the formation of short temporal
pulses in anomalous dispersion resonators. Here, a new microcomb is demonstrated
that mode locks through the formation of pulse pairs in normal-dispersion coupled-
ring resonators. Unlike conventional microcombs, pulses in this system cannot exist
alone, and instead must phase lock in pairs to form a bright soliton comb. Also, the
pulses can form at recurring spectral windows and the pulses in each pair feature
different optical spectra. This pairwise mode-locking modality extends to higher
dimensions and we demonstrate 3-ring systems in which 3 pulses mode lock through
alternating pairwise pulse coupling. The results are demonstrated using the new
CMOS-foundry platform that has not previously produced bright solitons on account
of its inherent normal dispersion [3]. The ability to generate multi-color pulse pairs
over multiple rings is an important new feature for microcombs. It can extend the
concept of all-optical soliton buffers and memories [4, 5] to multiple storage rings
that multiplex pulses with respect to soliton color and that are spatially addressable.
The results also suggest a new platform for the study of quantum combs [6–8] and
topological photonics [9–11].

3.1 Introduction
Microresonator solitons exist through a balance of optical nonlinearity and dis-
persion, which must be anomalous for bright soliton generation. Moreover, mi-
croresonators must feature high optical Q factors for low pump power operation of
the resulting microcomb. While these challenges have been addressed at telecom-
munications wavelengths using a range of material systems [1], CMOS-foundry
resonators do not yet support bright solitons as their waveguides feature normal
dispersion [3]. Furthermore, all resonators are dominated by normal dispersion at

https://doi.org/10.1038/s41566-023-01257-2
https://doi.org/10.1038/s41566-023-01257-2
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shorter wavelengths. For these reasons, there has been keen interest in developing
methods to induce anomalous dispersion for bright soliton generation in systems
that otherwise feature normal dispersion. Such methods have in common the engi-
neering of dispersion through coupling of resonator mode families, including those
associated with concentric resonator modes [12, 13], polarization [14] or transverse
modes [15].

Here, we engineer anomalous dispersion in CMOS-foundry resonators by partially-
coupling resonators as illustrated in Fig. 3.1(a). This geometry introduces unusual
new features to bright soliton generation. For example, spectra resembling single
pulse microcombs form instead from pulse pairs as illustrated in Fig. 3.1(a). The
pulse pairs circulate in a mirror-image fashion in the coupled rings to form coherent
comb spectra (Fig. 3.1(b)) with highly stable microwave beat notes (Fig. 3.1(c)).
The interaction of the pulses in the coupling section between the rings is shown to
induce anomalous dispersion that compensates for the overall normal dispersion of
each ring. This pairwise compensation spectrally recurs thereby opening multiple
anomalous dispersion windows for the formation of multi-color soliton pairs. These
windows can be engineered during resonator design. Furthermore, the spectral
composition of each pulse in a pair is different. Fig. 3.1(b), for example, shows
through-port and drop-port spectra that reflect the distinct spectral compositions of
pulses in cavity A and cavity B of Fig. 3.1(a). This peculiar effect is also associated
with Dirac solitons [16] and it is shown that the 2-ring pulse pair represents a new
embodiment of a Dirac soliton as the underlying dynamical equation (see Section
3.6.3) resembles the nonlinear Dirac equation in 1 + 1 dimensions. Pulse pairing
is also extendable to higher-dimensional designs with additional normal dispersion
rings. For example, in Fig. 3.1(d,e,f) 3 pulses in 3 coupled rings alternately pair to
compensate for the normal dispersion of each ring.

In what follows, we first study the dispersion of this system and compare it to previous
mode coupling methods. Experimental results including dispersion measurement
and comb formation are then presented. Pairwise pulse formation is then studied
in the time domain. Finally, because multi-pulse spectra in these systems resemble
conventional single-pulse soliton spectra, it is convenient to resolve this ambiguity
by denoting 2 and 3 ring systems as bipartite and tripartite soliton microcombs,
respectively. The need for this nomenclature becomes clear by the demonstration of
multiple pulse-pair states, including a 2 ring microcomb state containing 4 pulses
that behaves as a 2-pulse soliton crystal, and a 3 ring state with 12 pulses that behaves
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Figure 3.1: Soliton pulse pair generation in two- and three-coupled-ring mi-
croresonators. (a) Schematic showing coherent pulse pairs that form a composite
excitation. Inset: Photomicrograph of the two-coupled-ring resonator used in the
experiments. Rings A and B are indicated. The scale bar is 1 mm. (b) Simultaneous
measurement of optical spectra collected from the through port (pumping port) and
drop port in the coupled-ring resonator of panel a. The measured mode dispersion
is also plotted (orange). Two dispersive waves are observed at spectral locations cor-
responding to the phase matching condition as indicated by the dispersion curve. (c)
Radio-frequency spectrum of microcomb beatnote (RBW: resolution bandwidth).
(d) Illustration of 3 pulse generation in a three-coupled-ring microresonator wherein
pulses alternately pair. Inset: Photomicrograph of the three-coupled-ring microres-
onator used in the experiments. The scale bar is 1 mm. (e) Measurement of optical
spectrum of the three pulse microcomb. The measured mode dispersion is also
plotted (orange). (f) Radio frequency spectrum of the microcomb beatnote.

as a 4-pulse soliton crystal.

3.2 Recurring spectral windows
Before addressing pulse pair propagation in the 2-ring and 3-ring systems, the con-
ventional mode-family coupling approach is considered [12–14]. As a representative
example, the case of a concentric resonator system is chosen as illustrated in the
left panel of Fig. 3.2(a). The characteristics of this system are identical to other
methods. First, a phase matching condition must be satisfied by a mode in each
resonator such that the absolute mode number in each ring must be equal at the same
optical frequency. This mode number determines the wavelength where soliton
formation is possible. Second, the free-spectral-range values, FSR𝐴 and FSR𝐵, of
the uncoupled mode families of ring A and ring B must be close in value compared
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Figure 3.2: Illustration of inter-ring coupling with (without) mode number
conservation. (a) The top panel shows two different coupling schemes between two
ring resonators with different FSRs. The left configuration possesses a continuous
rotational symmetry that allows coupling only between modes with the same absolute
mode (azimuthal) number (i.e., mode number is conserved). In this case, the
coupling opens a gap at the mode crossing and creates two hybrid mode branches
(green curves in the lower panel). Here the center blue and red dashed lines
represent the resonance frequency of individual rings, and their intersection point
corresponds to phase matching. In this work (top right panel), inter-ring mode
coupling depends on the matching of resonance frequency instead of mode number
(i.e., mode number is not conserved), so that the dispersion is strongly altered at
all frequency degeneracies. (b) In the lower panel, frequency degeneracies are
marked by crossings between the blue and red dashed lines, which still represent the
dispersion of individual rings, but with the abscissa shifted by integer numbers as a
result of spectral folding allowed by non-conservation of mode number. Compared
to the first configuration, the dispersion curve of the coupled rings repeats itself
every 2𝑀 modes, with 𝑀 = 1/(2𝜖) set by the length contrast of the rings.

to their average FSR = (FSR𝐴 + FSR𝐵)/2 so that phase matching occurs over a
large number of modes. With these conditions satisfied, the resulting dispersion
will be as illustrated schematically in the Fig. 3.2(b) (green curves). Comparison
to the uncoupled dispersion curves (center dashed blue and red lines) shows that
anomalous dispersion is possible for the upper mode family branch in the spectral
vicinity of the phase matching mode number M0.
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Figure 3.3: Mode number non-conservation coupling and recurring bright
soliton windows. (a) Measured frequency dispersion of the coupled resonator
(green circles) versus relative mode number 𝜇. Here 𝐷1/(2𝜋) = 19.9766 GHz,
and 𝜔0 is chosen so that 𝜇 = 0 is at the crossing center (1552.3 nm). Multiple
anomalous dispersion windows appear around 𝜇 = 0 and 400 for the upper branch
and 𝜇 = −200 and 200 for the lower branch. The anomalous dispersion window
near 𝜇 = −200, 0 and 200 have been highlighted. Solid curves are fittings and
the color refers to the energy contribution from ring A (obtained from theoretical
calculations). The average of the upper and lower branch mode frequencies is
plotted as orange circles and fitted by a second-order dispersion model (orange
curve). Inset: transmission observed when scanning a laser over resonances in
the anomalous dispersion windows. Soliton steps are observed around 𝜇 = −200,
0 and 200. (b) Measured relative frequency dispersion of the coupled resonator
(green circles) versus relative mode number 𝜇. Here 𝐷2/(2𝜋) = −283.0 kHz, and
other parameters are the same as panel (b). Solid curves are the theoretical fittings
described by Eq. (3.2). Fitted mode frequency dispersion diagrams of the single
rings without coupling are shown as red and blue lines.

Next, consider the case where two rings are placed side-by-side and coupled to-
gether as illustrated in the right panel of Fig. 3.2(a). The two ring cavities differ
only in length, with ring B slightly longer than ring A so that FSR𝐴>FSR𝐵. Con-
sidering the straight coupling section from a coupled-mode perspective, modes of
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Figure 3.4: Temporal evolution of the soliton pulse pair in the two-ring coupled
resonator. (a) Upper panel: Illustration of the time evolution of the soliton pair
inside the two rings during one round trip time. Lower panel: Snapshots of the pulses
at different positions. In the non-coupled regions (I and IV), pulses accumulate
positive chirp due to nonlinearity and normal dispersion of the waveguide. Pulse in
ring A is leading in time at I due to shorter ring circumference. When the pulses
enter the coupling region (II), the pulses exchange energy, which leads to relative
position shifts as well as chirp compensation (III). The pulses exit the coupled
region (IV) with position shifts and chirping compensated. (b) Simulated pulse pair
properties are plotted versus pulse position in each ring during one round trip. The
two rings are aligned at the coupling region center, and the surplus length in ring
B is omitted in the figure. The yellow shaded area represents the coupling region.
The quantities are, from top to bottom: pulse timing difference (pulse center-to-
center), linear chirp, peak power, and full width at half maximum. The blue (red)
lines represent simulation results for the pulse in ring A (B). The dashed lines are
analytical results from a linear coupling model (see Methods), and are consistent
with simulation results.

the two rings will strongly couple if they have matching wavevectors (or equiva-
lently, resonance frequencies), while there are no requirements on mode number
matching of the rings (i.e., mode number is not conserved). In comparison to the
concentric ring configuration, this dramatically modifies the dispersion relation as
illustrated in Fig 3.2b, where the orange curves give the resulting dispersion. Due
to the loss of mode number conservation, inter-ring coupling pushes the resonance
frequencies away from that of the individual rings (blue and red dashed lines) at
all frequency degeneracies, so that recurring anomalous dispersion windows now
appear in the spectrum. These result from spectral folding that occurs between the
cavity resonances. As an aside, because mode number is not conserved, modeling
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Figure 3.5: Observation of bipartite and tripartite multi soliton states in two-
and three-coupled-ring microresonators. (a, b) Optical spectra of bipartite two-
soliton states with different relative soliton positions. The state in panel (b) is a
two-soliton crystal state. Insets: relative position of the two solitons inside each
microresonator. (c, d) Through port optical spectra of tripartite two-soliton states
with different relative positions. Inset: relative position of the two solitons inside
each microresonator. (e) Through port optical spectrum of a tripartite three-soliton
state. Inset: relative position of the three solitons inside each microresonator. (f)
Through port optical spectrum of a tripartite four-soliton crystal. Inset: relative
position of the four solitons inside each microresonator.

of this dispersion proceeds differently relative to the standard coupled-mode family
approach (see Appendix F.1 and F.2).

3.3 Dispersion measurements and soliton pulse pair generation
The coupled resonators in both 2-ring and 3-ring geometries consist of thin Si3N4

single-mode racetrack waveguide resonators with the same cross sections. Bus
waveguides are provided for external coupling. Optical images of 2-ring and 3-ring
coupled resonators are provided in Fig. 3.1(a) and 3.1(d) insets. For the coupled
2-ring device, the round trip length of ring A is 9.5 mm, which corresponds to
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Figure 3.6: Dispersion and coupling characteristics of the ring waveguide. (a)
Finite element simulation results for dispersions of straight Si3N4 waveguides with
fixed width (2.8 𝜇m) as a function of wavelength and waveguide thickness. The
zero-dispersion boundary is marked as the black dashed curve. Nominal waveguide
thickness (100 nm) for the current process is marked as the white dashed line. (b)
Numerical simulations of the waveguide coupling rate 𝑔co and the corresponding
spectral gap (2𝐺 = 𝑔co𝐿co𝐷1/𝜋, with 𝐿co = 1.0 mm and 𝐷1 = 2𝜋 × 20 GHz) are
plotted as a function of wavelength and waveguide thickness. The gap between
waveguides is 2.4 𝜇m.

a free spectral range (FSR) of ∼20 GHz, and ring B is 0.5% longer than ring A.
For the 3-ring device, the rightmost ring has a circumference of 9.5 mm, and each
other ring is 0.3% longer than its right neighbor. The rings feature high intrinsic
𝑄 factors exceeding 75 million, but individually each ring does not support bright
soliton formation around 1550 nm due to the strong normal dispersion associated
with the low confinement waveguide structure (see Fig. 3.6). Prior studies on
similar single-ring structures have generated only dark pulse comb spectra [3].

The measured resonance frequency dispersion (green points) for the 2-ring system
with comparison to theory (solid lines) is shown in Fig. 3.3(a). The dispersion
of the 3-ring resonator is discussed in Section F.2. The measurement is performed
using a radio-frequency calibrated interferometer in combination with a wavelength-
tunable laser [17]. The coupled resonators produce the two bands measured in Fig.
3.3(a) where three anomalous dispersion windows are highlighted. At each window,
soliton steps are observed when scanning the laser frequency over a cavity resonance
(see insets in Fig. 3.3(a)). Operation at the longest and shortest wavelength windows
(1584.5 nm and 1525.5 nm) was challenging due to low laboratory laser power and
as a result, the time duration of the soliton steps for these wavelengths is relatively
shorter.

Analysis shows that the average frequency of the two bands (i.e., 𝜔𝜇 ≡ (𝜔𝜇,+ +
𝜔𝜇,−)/2) is given by the mode frequency for a length-averaged resonator at the same
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Figure 3.7: C andS resonances and autocorrelation measurements of solitons in
the coupled-ring resonator. (a) The relative frequency of the C and S resonances
are measured using a vector network analyzer and plotted versus tuning voltage in
the two-ring resonator. (b,c,d,e,f,g,h) Experimental autocorrelation measurements
of: (b) single soliton state in a two-ring resonator (state in Fig. 3.1(b)); (c) two
soliton state in a two-ring resonator (state in Fig. 3.5(a)); (d) two soliton crystal state
in a two-ring resonator (state in Fig. 3.5(b)); (e) single soliton state in a three-ring
resonator (state in Fig. 3.1(e)); (f) two soliton state in a three-ring resonator (state in
Fig. 3.5(c)); (g) two soliton state in a three-ring resonator (state in Fig. 3.5(d)); (h)
three soliton state in a three-ring resonator (state in Fig. 3.5(e)). The resolution of the
autocorrelation setup is 100 fs. The zoom-in of each autocorrelation measurements
are shown in corresponding right panel.
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Figure 3.8: Stable soliton operation in the two-ring resonator measured over
4 hours. (a) Continuous measurement of the RF beat note of a pulse pair soliton
microcomb over 4 hours. The RF beatnote peak drift over 4 hours is within 25.7
kHz (1.29 PPM). 𝑓 : RF frequency, 𝑓𝑐: center RF frequency, RBW: resolution
bandwidth. (b) Simultaneous measurement of the optical spectrum of the pulse pair
soliton microcomb in panel a over 4 hours.

mode number (see Appendix F.1). We note that averaging the frequencies of the two
bands removes the effect of the coupling entirely, and the resulting average dispersion
shown in Fig. 3.3(a) (orange points) closely matches a parabolic-shaped dispersion
curve (orange curve). Accordingly, this average frequency can be described by a
second-order dispersion model:

𝜔𝜇 ≈ 𝜔0 + 𝐷1𝜇 + 1
2
𝐷2𝜇

2 (3.1)

where𝜔0 is the mode frequency at 𝜇 = 0 and 𝜇 is a relative mode number referenced
to the frequency degeneracy at 1552.3 nm. 𝐷1 is the length-averaged FSR for the
resonator at 𝜇 = 0, 𝐷2 = −𝑐𝐷2

1𝛽2/𝑛g is the second-order dispersion parameter at
𝜇 = 0 with group velocity dispersion 𝛽2 and waveguide group index 𝑛g.

On the other hand, the effect of the coupling is made clearer by plotting the mode
frequencies relative to the averaged frequency (i.e., relative mode frequency 𝜔𝜇,± −
𝜔𝜇) as shown in Fig. 3.3(b). Without inter-ring coupling, the relative mode
frequencies of the single rings appear as straight lines on the mode spectrum plot.
These lines are related to the straight dashed lines for the uncoupled resonators in
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Fig. 3.2(a). Their positive and negative slopes in Fig. 3.3(b) result from removing
a linear component of dispersion in this plot given by the average FSR, 𝐷1. Mode
number walk-off also causes the lines to vertically wrap around at ±𝐷1/2. For
the rings used here, the length of ring B is 0.5% longer than ring A, and frequency
degeneracy of the rings occurs every 200 ring A modes (or every 201 ring B modes).
The introduction of coupling opens gaps at all frequency degeneracies, regardless
of whether the absolute mode number is matched.

More detailed analysis shows that each of the gap widths equals 2𝐺 ≡ 𝑔co𝐿co𝐷1/𝜋,
where 𝑔co is the coupling strength per unit length and 𝐿co is the effective coupler
length. The full dispersion relation is found to be (see Appendix F.1):

𝜔𝜇,± = 𝜔𝜇 ±
𝐷1
2𝜋

arccos [cos(𝑔co𝐿co) cos (2𝜋𝜖𝜇)] (3.2)

where 𝜖 = (𝐿B − 𝐿A)/(𝐿B + 𝐿A) is the length contrast of the rings, and 𝐿A (𝐿B)
is the length of ring A (B). For the current design 𝜖 = 1/401, and the gap is
modulated with respect to mode number with period 𝜖−1 = 401 (corresponding to
8 THz in the spectrum). The small length contrast 𝜖 guarantees the wide spectral
range of the anomalous dispersion window. Overall, there is very good agreement
between the model and the measured data in Fig. 3.3(a) and Fig. 3.3(b), and the
fitting allows determination of key resonator parameters (see figure caption). As an
aside, the spectral gap is smaller at larger mode numbers, which can be attributed
to the wavelength dependence of 𝑔co, as shorter wavelength results in stronger
mode confinement, and hence smaller coupling with the adjacent waveguide. When
combined with the original normal dispersion of each ring, the net dispersion for
coupled system remains anomalous around 𝜇 = 0 and 400 for the upper branch and
around 𝜇 = −200 and 200 for the lower branch.

Besides the observation of soliton steps (Fig. 3.3(a)), microcomb spectra measured
around 1550 nm for through port (ring A) and drop port (ring B) are presented in Fig.
3.1(b). The microcomb was stabilized by measuring comb power from the through
port and feeding back to the pump laser frequency, which controls the pump-cavity
offset frequency [18]. The comb exhibits excellent stability and measurements of
comb spectra and repetition rate over 4 hours of operation are provided in the Fig.
3.8. The theoretical pulse width of the comb spectra in the figure is estimated
to be ∼ 250 fs. Comb coherence and soliton pulse behavior were confirmed in
several ways. The radio-frequency spectrum of the soliton beatnote is presented in
Fig. 3.1(c). Also, the soliton S-resonance and C-resonance [19, 20] were measured
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using a vector network analyzer. Plots of their relative frequencies versus laser-cavity
detuning are given in Fig. 3.7. Finally, time domain autocorrelation measurements
are also given in the Fig. 3.7. Multiple pulse pair comb states are discussed in
the next section and autocorrelation measurements for these comb states are also
included in Fig. 3.7.

Through port and drop port spectra correspond to pulses in ring A and ring B,
and show these pulses are both different from each other and deviate from the
conventional sech2 shape of Kerr solitons. The through port spectrum is stronger
(weaker) than the drop port at shorter (longer) wavelengths. This is a result of
this system representing a new version of the Dirac soliton [16] as discussed in the
Methods section.

In Fig. 3.1(b), two strong dispersive waves (DWs) are observed near 1526 nm
and 1577 nm. These correspond to spectral locations where modes of the coupled
resonator phase-match to the soliton comb line. For comparison, the dispersion in
the vicinity of the comb spectrum has been overlaid in the figure. The DWs broaden
the soliton spectrum and provide higher power comb lines (1.5 𝜇W on-chip power
at shorter wavelength and 5.4 𝜇W at longer wavelength), which is advantageous for
application to optical frequency division [2]. To further confirm coherence, the radio
frequency spectrum of the soliton beatnote is presented (Fig. 3.1(c)). Finally, the
soliton S-resonance and C-resonance [19] were measured using a vector network
analyzer. Plots of their relative frequencies versus laser-cavity detuning are given
in Fig. 3.7.

Comb generation in the 3-ring system was also demonstrated (see Fig. 3.1(d)). Here,
the coupling on both sides of the middle ring creates local anomalous dispersion
windows (Appendix F.2). Fig. 3.1(e) shows the spectrum of three pulses as measured
from the center ring. The measured dispersion is also included in the figure. The
pump laser wavelength is several nanometers away from the anomalous dispersion
center frequency, and, as a result, the spectrum features only one dispersive wave at
the shorter wavelength side. The radio frequency spectrum of the soliton beatnote
is presented in Fig. 3.1(f), indicating good coherence.

3.4 Pulse pairs and multi-partite states
This section describes a time domain picture of the coupled-ring system. Besides
providing a complementary physical picture (to the dispersion analysis above), sim-
ulations of mode locking show microcombs form as phase-locked pulse pairs where
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the pulses have opposite phases. The pair viewpoint provides a powerful framework
for visualization of mode locking that readily explains observable multi pulse-pair
states and higher dimensional systems comprising multiple coupled cavities.

Simulations of pulse propagation in the 2-ring system are presented in Fig. 3.4(a).
Here, the ring FSRs and couplings are those of the experimental system studied
in Fig. 3.3 and excitation occurs for the mode 𝜇 = 0. As shown in Fig. 3.4(b),
each pulse undergoes shape, chirp, and pulse width variations that repeat upon each
round trip. Before entering the coupling region (point I in Fig. 3.4(a)), the chirp of
both pulses has increased due to uncompensated Kerr nonlinearity from propagation
in normal dispersion waveguides of each ring. Pulse chirp is indicated in the lower
panel of Fig. 3.4(a), where the color represents instantaneous frequency. The pulse
in ring B (red) also lags behind its counterpart in ring A (blue) due to the difference
in ring lengths. However, upon entering the coupling region (point II), the ring B (A)
pulse accelerates (decelerates) and becomes the leading (lagging) pulse when exiting
the coupling region (point III). In the meantime, the chirp of both pulses decreases
through the coupling region. Upon exiting the coupling region, the pulses propagate
in their respective waveguides (point IV) where chirp increases as the pulses circle
back through point I. Detailed numerical simulations are used to further explore and
confirm the pulse pair evolution (Fig. 3.4(b)).

This picture of pairwise round trip compensation of normal dispersion enables
understanding of how compensation works for multi-pair systems as well as for
higher dimensions with additional ring cavities. Specifically, it constrains the ways
these states are allowed to form. For example, consider the coupled-ring states in
Fig. 3.5(a,b) wherein 2 pulse pairs circulate in a mirror-image like fashion to form
the observed spectra. Here, to reduce confusion with corresponding multi-pulse
soliton systems, we adopt the nomenclature that a single pulse pair in a 2 ring
system is a bipartite single soliton (see Fig. 3.1(a,b)), while multi-pair states in the
same are bipartite multi soliton systems. Specfically, the states in Fig. 3.5(a,b) are
bipartite 2 soliton states. The state in Fig. 3.5(b) is moreover a bipartite 2-soliton
crystal. Notice that the requirements imposed on pulse pairing allow a one-to-one
correspondence between conventional multi-soliton states and bipartite states, since
the pulse configurations in each ring resonator must mirror image its neighboring
ring.

The same is true for higher dimensional systems. For example, three pulses compen-
sate normal dispersion by alternating their pairwise coupling as illustrated in Fig.
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3.1(d). Here, the outer ring pulses experience compensation once per cycle, but the
inner ring pulse experiences compensation twice per cycle. Moreover, the pairwise
compensation works when additional pulses are added to each cavity. For example,
measurement of tripartite 2 soliton, 3 soliton and a 4 soliton crystal state (containing
respectively 6, 9, and 12 pulses) are presented in Fig. 3.5(c,d,e,f). Notice that the
measured comb line spacing (79.93 GHz) for the crystal state is four times the FSR
of a single ring as is consistent with a conventional 4 soliton crystal state.

3.5 Discussion
In summary, we have observed a new type of microcavity soliton that mode locks
as pulse pairs distributed spatially over multiple ring resonators. The requirement
to compensate overall normal dispersion of the rings requires that the pulses in each
ring arrange themselves as a mirror image of the pulses in neighboring rings. Partial
coupling of the resonators creates a situation in which ring resonator mode number
is not conserved and this enables recurring spectral windows where the pairs can be
formed. The presented bright soliton results use the CMOS-ready process that has
previously been restricted to only dark pulse generation. The ability to distribute
coherent pulses over multiple rings with individual taps and with simultaneous pulse
formation at multiple wavelengths presents new opportunities for soliton science and
microcomb applications.

3.6 Methods and supplementary information
3.6.1 Resonator design
The rings consist of Si3N4 waveguides (2800 nm width and 100 nm thickness)
embedded in silica and formed into a racetrack shape. The waveguide cross-section
only supports one polarization mode. Detailed information on fabrication steps can
be found elsewhere [3]. For the two-ring device, ring A has a circumference of
9.5 mm, and ring B is 0.5% longer. For the three-ring device, the rightmost ring
has a circumference of 9.5 mm, and each other ring is 0.3% longer than its right
neighbor. The adiabatic waveguide bend has the shape of a fifth-degree spline such
that the curvature is continuous along the curve and transition loss is minimized.
The gap between the inner edges of the two waveguides in the coupling region is
2400 nm, and the effective coupling length is 1.0 mm including contributions from
the adiabatic bend (which is 10.5% of the shortest ring circumference).

The simulated dispersion of straight Si3N4 waveguides with 2.8 𝜇m width are
shown in Extended Data Fig. 3.6(a). For these calculations, the effective index
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of the fundamental TE mode was calculated and the group velocity dispersion
determined through 𝛽2 = 𝜆3/(2𝜋𝑐2)𝜕2𝑛wg/𝜕𝜆2, where 𝜆 is the vacuum wavelength.
For waveguides with thickness under 780 nm, the fundamental TE mode always
features normal dispersion in the C-band. To maintain high optical 𝑄 factors, the
waveguide thickness is about 100 nm for the current process, which places the
waveguide deep into the normal dispersion region.

Simulations of the waveguide coupling rate 𝑔co with 2.4 𝜇m coupling gap are
presented in Extended Data Fig. 3.6(b). The effective index of the two supermodes
at the coupling region is calculated, and the coupling rate 𝑔co is related to the index
difference of the supermodes Δ𝑛wg by 𝑔co = Δ𝑛wg𝜋/𝜆. With a thinner waveguide or
a longer wavelength, the optical confinement is weaker, leading to a larger coupling
strength and larger spectral gap width.

3.6.2 Dispersion measurement and fitting
The dispersion is measured by sweeping a mode-hop-free laser while pumping the
resonator, recording the mode positions from the transmission signal, and comparing
it against a calibrated Mach-Zehnder interferometer [17]. The averaged mode
frequencies are fitted by a second-order dispersion model given by Eq. (3.1) with
𝐷1 = 2𝜋×19.9766 GHz and 𝐷2 = 2𝜋× (−283.0) kHz. The relative frequencies are
fitted with Eq. (3.2), where we assume that the coupling is exponentially decaying
with respect to mode number:

𝑔co = 𝑔co,0 exp(−𝜇/𝜇𝑔) (3.3)

where 𝜇𝑔 gives a decay scale. The fitting uses 𝑔co,0, 𝜇𝑔 and the crossing center
position as fitting parameters, while 𝐷1 and 𝐷2 are derived from the mode frequency
average fitting and 𝜖 = 1/401 is taken from design values. Fitting gives 𝑔co,0𝐿co =

0.954 and 𝜇𝑔 = 1196. The coupling is equivalent to a 33% : 67% coupler near 𝜇 = 0,
and the coupling rate increases by 5.4% for every 10 nm increased near 1550 nm. The
coupling rate and decaying scale are close to simulation results (𝑔co,0𝐿co = 0.782,
5.5% increase per 10 nm; see Extended Data Fig. 3.6(b)). Differences between
measured and simulated values may result from refractive index and layer thickness
variations.
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3.6.3 Dynamics of the soliton pulse pair
The optical fields in the two rings are governed by the coupled nonlinear wave
equations:

𝜕𝐸A
𝜕𝑡

= −
( 𝜅
2
+ 𝑖𝛿𝜔A

)
𝐸A − 𝑣g

𝜕𝐸A
𝜕𝑧

− 𝑖
𝛽2𝑣

3
g

2
𝜕2𝐸A

𝜕𝑧2

+ 𝑖𝑔co𝑣g𝜒co(𝑧)𝐸B + 𝑖𝑔NL |𝐸A |2𝐸A + 𝐹 (3.4)
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𝜕𝑡

= −
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+ 𝑖𝛿𝜔B

)
𝐸B − 𝑣g

𝜕𝐸B
𝜕𝑧

− 𝑖
𝛽2𝑣

3
g

2
𝜕2𝐸B

𝜕𝑧2

+ 𝑖𝑔co𝑣g𝜒co(𝑧)𝐸A + 𝑖𝑔NL |𝐸B |2𝐸B (3.5)

accompanied by periodic boundary conditions in the 𝑧 direction, where 𝐸A,B denotes
the optical field in the two rings normalized to photon numbers in the corresponding
length-averaged ring, 𝜅 = 𝜅in + 𝜅ex is the loss rate (sum of intrinsic and external loss)
for the individual rings (assumed to be identical for ring A and B), which can be
linked to the quality factors via 𝜅 = 𝜔0/𝑄, 𝜅in = 𝜔0/𝑄in, and 𝜅ex = 𝜔0/𝑄ex. Also,
𝛿𝜔A,B = 𝜔0A,B − 𝜔p is the pump laser detuning, 𝑣g = 𝑐/𝑛g is the group velocity of
the waveguide, 𝑧 ∈ [0, 𝐿A,B) is the resonator coordinate with 𝐿A,B the ring length,
𝛽2 is the waveguide group velocity dispersion, 𝑔co is the coupling strength between
the two waveguides in the coupling region, 𝜒co(𝑧) is the indicator function with
value 1 in the coupling region and 0 elsewhere, 𝑔NL = ℏ𝜔2

0𝐷1𝑛2/(2𝜋𝑛g𝐴eff) is the
nonlinear coefficient with 𝐴eff being the effective mode area, and 𝐹 =

√︁
𝜅ex𝑃in/ℏ𝜔0

is the pump term where 𝑃in is the on-chip pump power. For simplicity, the pump and
loss terms are averaged over the entire resonator without considering the detailed
coupling geometry between the rings and the bus waveguides.

To demonstrate that the resulting soliton resembles the optical Dirac soliton [16], we
will convert the above equations into a form that is analogous to the Dirac equation
in quantum field theory. We start by defining a common roundtrip variable 𝜃 for
both resonators, with 𝜃 = 2𝜋𝑧/𝐿A for ring A and 𝜃 = 2𝜋𝑧/𝐿B for ring B. With this
change, the LLE reads

𝜕𝐸A
𝜕𝑡

= −
( 𝜅
2
+ 𝑖𝛿𝜔A

)
𝐸A

− 𝐷1
1 − 𝜖

𝜕𝐸A
𝜕𝜃

+ 𝑖
𝐷2

2(1 − 𝜖)2
𝜕2𝐸A

𝜕𝜃2

+ 𝑖𝑔co𝑣g𝜒co(𝜃)𝐸B + 𝑖𝑔NL |𝐸A |2𝐸A + 𝐹 (3.6)

and similarly for 𝐸B with 𝜖 replaced by −𝜖 and pump term dropped. The unified
roundtrip variable breaks the correspondence of waveguide sections in the coupling
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region, but these have been neglected as the pulse width is much larger compared
to the ring length difference (Fig. 3.3(b)). Switching to the co-moving frame of the
pulse [𝜓A,B(𝜃, 𝑡) ≡ 𝐸A,B(𝜃 + 𝐷1𝑡, 𝑡)] leads to

𝜕𝜓A
𝜕𝑡

≈ −
( 𝜅
2
+ 𝑖𝛿𝜔A

)
𝜓A − 𝜖𝐷1

𝜕𝜓A
𝜕𝜃

+ 𝑖
𝐷2
2

𝜕2𝜓A

𝜕𝜃2

+ 𝑖𝐺𝜓B + 𝑖𝑔NL |𝜓A |2𝜓A + 𝐹 (3.7)

and similarly for 𝐸B, where we retain the lowest order of 𝜖 and further assume
that the pulse varies slowly within one round trip such that the effect of coupling
is averaged over the resonator length (i.e., uniform coupling which conserves the
mode number). Finally, shifting the wavevector and frequency reference (𝜓̃A,B ≡
𝜓A,B exp(𝑖𝑘0𝜃 − 𝑖𝜔0𝑡)) gives

𝜕𝜓̃A
𝜕𝑡

≈ − 𝑖 (𝛿𝜔A − 𝜖𝐷1𝑘0 + 𝜔0) 𝜓̃A − 𝜖𝐷1
𝜕𝜓̃A
𝜕𝜃

+ 𝑖𝐺𝜓̃B

+ 𝑖𝑔NL |𝜓̃A |2𝜓̃A

− 𝜅

2
𝜓̃A + 𝑖

𝐷2
2

𝜕2𝜓̃A

𝜕𝜃2 + 𝐹 exp(𝑖𝑘0𝜃 − 𝑖𝜔0𝑡) (3.8)

𝜕𝜓̃B
𝜕𝑡

≈ − 𝑖 (𝛿𝜔B + 𝜖𝐷1𝑘0 + 𝜔0) 𝜓̃B + 𝜖𝐷1
𝜕𝜓̃B
𝜕𝜃

+ 𝑖𝐺𝜓̃A

+ 𝑖𝑔NL |𝜓̃B |2𝜓̃B

− 𝜅

2
𝜓̃B + 𝑖

𝐷2
2

𝜕2𝜓̃B

𝜕𝜃2 (3.9)

where we assume that we are pumping near the crossing center such that 𝜖𝐷1 ≪
𝐷2𝑘0 and high-order terms in 𝑘0 could be neglected. Choosing 𝑘0 = (𝛿𝜔A −
𝛿𝜔B)/(2𝜖𝐷1) and 𝜔0 = −(𝛿𝜔A + 𝛿𝜔B)/2 removes the effective detuning terms
from the two equations.

This can now be compared to the massive Dirac equation in 1+ 1 dimension written
in a chiral basis [21]:

𝜕𝑡𝜓L = −𝑐𝜕𝑥𝜓L + 𝑖
𝑀𝑐2

ℏ
𝜓R (3.10)

𝜕𝑡𝜓R = +𝑐𝜕𝑥𝜓R + 𝑖
𝑀𝑐2

ℏ
𝜓L (3.11)

where 𝑀 is interpreted as the mass, and corresponds to the coupling term (the
massless Dirac equation with 𝑀 = 0 would correspond to an uncoupled system with
frequency gap closed). The momentum term corresponds to the FSR difference. The
nonlinear term converts the equation into a nonlinear Dirac equation, although there
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Figure 3.9: Simulated optical spectra and dispersion relation for Dirac solitons
assuming different levels of approximations in the model. Top panel: Uniform
coupling between two rings (mode number conservation), without pump and loss,
and with zero second-order dispersion. Middle panel: Non-uniform coupling be-
tween two rings (mode number non-conservation), with pump and loss included, and
with zero second-order dispersion. Recurring dispersion relations can be observed
but the spectrum is free of strong dispersive waves. Bottom panel: Non-uniform
coupling between two rings (mode number non-conservation), with pump and loss,
and with negative second-order dispersion [i.e., full Eqs. (3.4) and (3.5)].

is no exact analogue of the self-phase modulation in quantum field theory as this
contradicts the Pauli exclusion principle. Loss, pump and second-order dispersion
terms do not have analogues in the nonlinear Dirac equation, and could be treated as
perturbations for the soliton dynamics. For example, 𝐷2 is no longer the dominant
contribution to dispersion near the mode crossing center. We note that these terms
do not change the qualitative features of the generated soliton, therefore establishing
the link between the current soliton and the optical Dirac soliton previously studied
[16]. A comparison of the simulated soliton spectral profile using different levels
of approximation can be found in Fig. 3.9.
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3.6.4 Simulations of soliton pulse pair formation
Numerical simulations have been performed based on the nonlinear wave equations
[Eqs. (3.4) and (3.5)] and the results are used for plotting Fig. 3.3(b). For simplicity,
the coupling is assumed to be wavelength independent (𝑔co = 𝑔co,0), which makes
understanding the dispersion compensation in the coupling region more transparent.
Parameters used for numerical simulations are: 𝜔0 = 2𝜋 × 193.34 THz, 𝑄in = 75
M, 𝑄ex = 45 M, 𝛿𝜔A = 𝛿𝜔B = 12.5𝜅 − 𝐺 where 𝐺 is the half gap created by
the coupling (pump is red-detuned with respect to the upper branch resonance by
12.5𝜅), 𝐷1 = 2𝜋 × 19.9766 GHz, 𝐷2 = −2𝜋 × 283.0 kHz, 𝑛g = 1.575, 𝑃in = 300
mW, 𝑔NL = 0.0277 s−1, and 𝑔co,0 = 0.954 mm−1.

3.6.5 Soliton dynamics in the coupling region
In the coupling region where linear interaction is dominant in the soliton dynamics,
the coupled LLE can be reduced to:

𝜕𝐸A
𝜕𝑧

+ 1
𝑣g

𝜕𝐸A
𝜕𝑡

= 𝑖𝑔co𝐸B (3.12)

𝜕𝐸B
𝜕𝑧

+ 1
𝑣g

𝜕𝐸B
𝜕𝑡

= 𝑖𝑔co𝐸A (3.13)

where 𝑧 = 0 denotes the beginning of the coupling region. Note that 𝑔co here is
assumed to be wavelength independent for simplicity. The optical fields at 𝑧 can be
related to the incident fields (𝑧 = 0) as

𝐸A(𝑧, 𝑡) = cos (𝑔co𝑧)𝐸A(0, 𝑡′) + 𝑖 sin (𝑔co𝑧)𝐸B(0, 𝑡′) (3.14)

𝐸B(𝑧, 𝑡) = cos (𝑔co𝑧)𝐸B(0, 𝑡′) + 𝑖 sin (𝑔co𝑧)𝐸A(0, 𝑡′) (3.15)

where 𝑡′ = 𝑡 − 𝑧/𝑣g is the retarded time. The evolution of soliton properties with
propagation distance plotted in Fig. 3.3(b) is obtained from Eqs. (3.14) and (3.15),
with initial conditions 𝐸A,B(0, 𝑡′) taken from simulations, and shows good agreement
with the simulation results using Eqs. (3.4) and (3.5).
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C h a p t e r 4

OBSERVATION OF INTERBAND KELLY SIDEBANDS IN
COUPLED-RING SOLITON MICROCOMBS

This chapter is based on the following published paper:
Gao M., Yuan Z. Yan Y. et. al., Observation of interband Kelly sidebands in

coupled-ring soliton microcombs, Optica 11, 940-944, (2024).
https://doi.org/10.1364/OPTICA.524074

Kelly sidebands are a special type of dispersive wave that appear in mode locked
systems and they have recently been observed by pulsed excitation in integrated
microcombs. Here, Kelly sidebands are generated by continuous-wave excitation in
a partially-coupled racetrack-resonator microcomb. The coupled-racetrack system
supports two optical bands so that, in contrast to earlier studies, the soliton and Kelly
sideband reside in distinct bands. The resulting interband excitation of the Kelly
sidebands relaxes power requirements and continuous-wave sideband excitation is
demonstrated. Tuning of sideband spectral position under pulsed excitation is also
studied. Numerical simulation and the experiment show that the sidebands rely
upon symmetry breaking caused by partial coupling of the two-ring system. More
generally, multi-band systems provide a new way to engineer Kelly sidebands for
spectral broadening of microcombs.

4.1 Introduction
Kelly sidebands (KSs) [1] have been intensively studied in soliton mode-locked fiber
lasers [2–7]. They resemble dispersive waves (DWs) [8–11] but their phase relative
to the mode-locked optical pulse changes by integer multiples of 2𝜋 (instead of 0)
every cavity round trip. This roundtrip phase mismatch prevents coupling of the
soliton and KS unless a symmetry is broken in the system. Like DWs, KSs extend
the spectral reach of the pulse. However, generating KSs is challenging in integrated
photonic resonators on account of their smaller round trip path lengths compared to
table-top mode locked systems. Nonetheless, KSs have recently been observed in
pulsed-pumped soliton microcombs featuring broken symmetry [12].

Here, interband KSs are observed in soliton microcombs formed using dual-racetrack
Si3N4 microresonators [13] (Fig. 4.1(a)). The Si3N4 waveguides used to fabricate

https://doi.org/10.1364/OPTICA.524074
https://doi.org/10.1364/OPTICA.524074
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Figure 4.1: Illustration of KS generation. (a) Optical image of the partially
coupled racetrack resonator. (b) Measured integrated dispersion of the two hybrid
mode families (orange and red) is plotted versus wavelength and relative mode
number. When pumped near point I (anomalous dispersion center of the upper
band), soliton pulse pairs form as illustrated in panel (c). Also, DWs (interband
KSs) appear at points II & III (IV & V). The appearance of KSs at points IV and V is
discussed in Section 4.5.1. 𝜔𝜇: frequency of mode 𝜇, 𝜔0: center mode frequency,
𝐷1/2𝜋: free-spectral-range (FSR) of the resonator, 𝜇: relative mode number such
that 𝜇=0 corresponds to the pump mode. (c) Schematic showing soliton pulse pair
propagation in the coupled racetracks. DW and KS waves are indicated as oscillatory
backgrounds. (d) Measured optical spectrum of soliton pulse pair from continuous-
wave laser pumping. DWs and interband KSs are observed at the predicted location
in panel (b). Dispersion curves are overlaid onto the soliton spectrum for reference.

the racetracks feature normal dispersion, however, partial coupling of racetracks
having slightly different free-spectral-ranges (FSRs) creates two optical frequency
bands associated with the hybridization of the individual racetrack modes. The
measured integrated dispersion of these bands is plotted in Fig. 4.1(b), and shows
that the frequency bands feature spectral windows with anomalous dispersion. For
example, the upper band (soliton mode band in Fig. 4.1(b)) features anomalous
dispersion in the vicinity of point I, and pumping near this point has been shown
to form bright soliton pulse pairs that circulate in a mirror-image fashion as shown
in Fig. 4.1(c) [13]. In this work, the impact of this multi frequency band structure
on KS formation is studied. Specifically, interband KSs are shown to form in the
orthogonal band in Fig. 4.1(b). Also, as discussed in the Section 4.5.1, partial
coupling of the racetracks creates symmetry breaking that allows the soliton to cou-
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Figure 4.2: Comparison of numerical simulation results for sideband gener-
ation in partially coupled and fully coupled resonators. (a) Simulated soliton
spectrum and dispersion profile of the partially coupled racetrack. The soliton,
when pumped at point I, generates two dispersive waves (point II and III) and two
interband Kelly sidebands (point IV and V). (b) Simulated soliton spectrum and
dispersion profile of the fully coupled racetrack. In this case, the Kelly sidebands
at point IV and V do not appear, because of phase mismatch. Panel (a,b) Insets:
illustration of partially coupled and fully coupled racetrack configuration.

ple to these KSs. The spectral shift provided by interband excitation of the KSs
relaxes otherwise challenging KS excitation requirements on comb bandwidth in
micocombs, and continuous-wave excitation is demonstrated. In addition pulsed
pumping is studied as a way to tune the KSs spectral locations.
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Figure 4.3: Active control of KS wavelengths on blue and red sides through
pulse pumping. (a) Optical spectrum of soliton pulse pair generated from pulse
pumping. The measured mode frequency dispersion for the two bands is also
plotted. Inset: zoom in of the dispersion curve of the pumped mode family and
its comparison with 19.97267 GHz comb frequency line (horizontal magenta line)
and 19.97359 GHz comb frequency (tilted blue line). The right vertical axis of
the inset is a magnified version of the right vertical axis of the main panel. (b, c)
Zoom-in optical spectra of the two KSs at shorter wavelengths (panel b) and longer
wavelengths (panel c) for different input pump-pulse repetition rates. Legend gives
the repetition rate of the input pump pulse relative to 19.97217 GHz. Vertical dashed
grid lines indicate multiples of the comb repetition rate of 19.97267 GHz.

4.2 Obsrvation of Kelly sideband
The coupled-ring devices are fabricated using the CMOS-compatible process de-
scribed in reference [14]. Continuous-wave laser pumping around the anomalous
dispersion window near point I produces the optical spectrum shown in Fig. 4.1(d).
This spectrum corresponds to soliton pulse pair mode locking as illustrated in Fig.
4.1(c) [13]. For comparison, portions of the dispersion spectra for the two frequency
bands in Fig. 4.1(b) are overlaid with the pulse-pair spectrum.

The spectrum in Fig. 4.1(d) features two DWs at points II and III. These DWs
correspond to modes that phase match with soliton comb frequencies. Meanwhile,
two further sidebands are observed at points IV and V, which are identified as
KSs. These sidebands are notable because they form on the other frequency band
(interband KS) relative to the frequency band used to generate the soliton pulse pair.
As indicated, the values of their integrated dispersion differ by one FSR (𝐷1/2𝜋 in
the figure) compared to point I, and as such the sideband phases are mismatched by
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Figure 4.4: Explanation of Kelly sideband (KS) formation. (a) Comb frequen-
cies (blue) walk-off from resonator mode frequencies (red) by 𝐷2𝜇

2/2 as a result
of anomalous dispersion. Comb line at 𝜇 = 0 is also the pump. The comb and
mode frequency become aligned (orange highlight) when this walk-off is equal to
an integer multiple of 𝐷1 (FSR). This frequency is approximately the frequency of
the KSs. 𝜇: relative mode number. 𝜔𝜇: frequency of each mode. 𝐷1/2𝜋: FSR of
the resonator. 𝐷2: second-order dispersion of the resonator. (b) Dispersion profile
of the mode family shown in panel a. The first few corresponding modes in panel
(a) are indicated by dashed arrows. When a mode frequency is an integer times
𝐷1/2𝜋 relative to the pumped mode at 𝜇=0, it becomes possible to generate a KS at
this frequency, provided a second condition is satisfied as described in panel (c). (c)
Illustration of the propagation phase of the comb and the mode at 𝜇∗. Their relative
phase changes by a multiple 2𝜋 every round trip, leading to phase mismatch of the
waves and preventing KS generation when the resonators are fully coupled.

KS

Figure 4.5: Analysis of the comb and KS frequency offset using frequencies
measured with a high-resolution OSA (resolution of 125 MHz, blue shaded area).
The comb spectral lines (from around 190 THz to 195 THz) and the Kelly sidebands
(KS) on the red side (two data points around 187 THz) exhibit approximately the
same offset frequency, within the precision limits of the spectrometer. Data at higher
frequencies were not collected due to spectrometer limitations. Further details are
provided in the text.

2𝜋 relative to the pumped mode every round trip (See Fig. 4.4). It is important to
note that this mismatch is primarily accumulated because the soliton and KS waves
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reside in distinct frequency bands (separated by a frequency shift comparable to the
cavity FSR). As shown in the Section 4.5.1, the accumulation of this shift would
normally require a larger number of mode shifts and hence greater comb bandwidth
and power. While other types of interband sideband generation in coupled-ring
solitons have been studied before [15], the KSs in our study are fundamentally
different from conventional phase-matched sidebands that do not require symmetry
breaking.

4.3 Numerical simulation
Numerical simulation is performed to compare the difference of KS generation
in the partially coupled and fully coupled devices. The result is shown in Fig.
4.2. The simulation for the partially coupled case is based on the coupled mode
Lugiato-Lefever equation (LLE) with a position-dependent coupling term in the lab
coordinate, formalized as [13],

𝜕𝐸R
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= −
( 𝜅
2
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)
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3
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+ 𝑖𝑔K |𝐸R |2𝐸R + 𝑖𝑔c𝑣g𝜒c(𝑧)𝐸L + 𝑓p, (4.1)

and
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= −
( 𝜅
2
+ 𝑖𝛿𝜔L

)
𝐸L − 𝑣g
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3
g

2
𝜕2𝐸L

𝜕𝑧2

+ 𝑖𝑔K |𝐸L |2𝐸L + 𝑖𝑔c𝑣g𝜒c(𝑧)𝐸R, (4.2)

where 𝐸L,R denotes the normalized optical field in the left and the right racetrack,
𝜅 = 𝜅in + 𝜅ex is the sum of intrinsic and external loss rate for each racetrack, 𝛿𝜔L,R

is the pump laser detuning, 𝑣g is the group velocity and 𝛽2 is the group velocity
dispersion of the waveguide, 𝑧 is the coordinate of each resonator, 𝑔c is the coupling
strength per unit length, 𝑔K is the Kerr nonlinear coefficient and 𝑓p is the continuous-
wave pumping term. The function 𝜒c(𝑧) is an indicator function with a value of
1 where the two racetracks are coupled and a value of 0 where two rings are not
coupled. For the simulation in Fig. 4.2(a), the two racetracks are partially coupled
together, and this indicator function is

𝜒c(𝑧) =


1 𝑧 ∈ [0, 𝐿c),

0 elsewhere,
(4.3)

where 𝐿c is the effective length of the section where two racetracks are coupled
together. For the simulation in Fig. 4.2(b), the two racetracks are fully coupled
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together (i.e., 𝜒c is unity at all positions) so that the coupled LLE in the rotating
frame [16] is used to study soliton dynamics. Parameters used in this simulation are
listed in Section 4.5.2.

In Fig. 4.2, the simulated results of the soliton spectrum are plotted as the red
curves, together with the dispersion as the black curves. The spectrum in Fig. 4.2(a)
of partial coupling (i.e., symmetry broken case) shows a similar structure to our
observation in Fig. 4.1(d). Specifically, the spectrum contains two DWs at points
II and III, and two interband KSs around points IV and V. For comparison, the
simulated soliton spectrum in the fully coupled ring is shown in Fig. 4.2(b). Here,
the KSs are absent and only two DW sidebands appear at points II and III. In this
fully coupled case (i.e., symmetrical case), the frequency-matched interband modes
at points IV and V cannot generate KSs because of phase mismatch. As an aside,
in comparing the simulated spectrum in Fig. 4.2(a) with the measurement in Fig.
4.1(d), the measured KSs exhibit an asymmetry in power. This happens for several
reasons. First, the optical field of the modes at point IV (V) is mainly distributed in
the right (left) ring, while the measured output is coupled from the right ring [13].
Accordingly, the KS appears to be stronger at point IV (blue side) than point V (red
side). Second, the pumping laser is slightly blue-detuned relative to the anomalous
dispersion window center and this contributes to such a difference in measured KS
power.

Increasing comb bandwidth would tend to strengthen the KS. And comb bandwidth
can be increased through control of the integrated dispersion profile. As discussed in
ref. [13] this can be tuned by controlling 𝑔𝑐 and the round trip length ratio between
the rings. A stronger KS is potentially useful for optical frequency division [17–19].
We also note that the KS strength may be limited by the strength of DWs, which
tend to destabilize the soliton as the detuning or pump power is further increased
[20].

4.4 Active control of Kelly sideband position by pulsed pumping
To further study the tuning properties of the KSs, an optical pumping pulse is
generated by forming an electro-optic comb and then applying pulse compression
methods [21]. This method of pumping enables higher peak pumping powers
and also allows exploration of variation of pumping repetition rate on sideband
formation. The resulting microcomb spectrum is shown in Fig. 4.3(a), and the
electro-optic comb pump spectral lines are visible near the spectral center of the
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comb. Similar to the continuous-wave pump case, two DWs form around points II
& III and the two KSs appear around points IV & V in the spectrum. In contrast
to the continuous-wave pump case, the repetition rate of the soliton spectrum is
determined by the electro-optic pump pulse [22, 23]. The impact of varying this
rate on DW spectral location is illustrated in the Fig. 4.3(a) inset, which overlays the
dispersion of the upper frequency band with the equally-spaced comb frequencies as
given by a line. The intersection of the dispersion curve with the soliton line gives
the condition for phase matching of the soliton with the dispersive wave. Tuning of
the soliton repetition rate causes a shift in the frequencies of the DWs as illustrated.

A similar phase matching condition will also apply for the KSs, but with respect to
the second frequency band shifted by 𝐷1/2𝜋. Here, as the repetition rate increases,
the wavelength of the strongest blue and red KSs would be expected to both increase.
This is confirmed experimentally in Fig. 4.3(b) and Fig. 4.3(c), where tuning by
about 1.14 MHz of the repetition rate causes the interband KS to jump by 7 modes
(blue side), and by 5 modes (red side). For a larger repetition rate, the KS on the
red side becomes indistinguishable from the instrumental noise floor.

4.5 Supplementary information
4.5.1 Principle of conventional KS generation

To illustrate the principle of conventional KS generation [1], consider the spectrum
of a frequency comb as illustrated in Fig. 4.4(a). The comb lines (blue) are equally
spaced by a separation approximately equal to the resonator FSR (or 𝐷1/2𝜋). The
comb line at relative mode number 𝜇=0 is also the optical pump. The frequencies
of the resonator modes are illustrated as red lines. Due to the dispersion of the
resonator, these frequencies are not equally spaced. Assuming anomalous second-
order dispersion (𝐷2), as required for soliton formation, the frequencies of the
resonator modes and comb lines walk off by 𝐷2𝜇

2/2 versus 𝜇. The integrated
dispersion plot of this mode family in Fig. 4.4(b) shows that, as a result of this
walk-off, the relative mode number 𝜇∗ is aligned to the (𝜇∗ + 1)-th comb line when
the walk-off 𝐷2𝜇

∗2/2 = 𝐷1. This mode is orange highlighted in both Fig. 4.4(a)
and (b). This alignment is a necessary condition for generation of the KS at this
frequency, and the large FSR of microcombs makes excitation of this KS mode more
challenging. In the case of interband excitation, modes from the orthogonal band
align with the comb at a smaller walk-off than the soliton band due to the spectral
gap between the bands, thus relaxing the power requirements for KSs.
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A second condition must also be satisfied for KS excitation. The accumulated round
trip phase of the KS wave in Fig. 4.4(a) is offset by 2𝜋 from the original comb
every round trip. This is illustrated in Fig. 4.4(c), and the integrated roundtrip
coupling of soliton to the KS wave is zero as a result of phase interference (i.e.,
phase mismatch). Generation of the KS wave is thereby prevented in cases where
the resonators are fully coupled together, as shown in Fig. 4.2(b). However, if the
additional condition of partial racetrack coupling is added (as formalized in Eq.
(4.3)), then the partial roundtrip integral is non-zero and KS generation occurs. In
effect, the fully coupled racetrack system features a reflection symmetry that is lifted
by partial coupling, thereby allowing the soliton and KS wave to couple when the
eigenmode frequency aligns with the comb frequency (for example, points IV and
V in Fig. 4.1(b)). This effect is also discussed in Fig. 4.2 of the main text. In
addition to KSs in mode-locked soliton combs, similar parametric sidebands can
also be generated in resonators with broken symmetry [24].

4.5.2 Parameters in coupled mode LLE

In Eqs. (4.1) and (4.2), the parameter definitions are the same as those used in
ref. [13]. The optical field 𝐸L,R is normalized to photon numbers in the length-
averaged ring. 𝜅in,ex is related to the resonator 𝑄-factor by 𝜅in,ex = 𝜔0/𝑄in,ex.
The laser frequency detuning 𝛿𝜔L = 𝛿𝜔R = 12.5𝜅 − 𝐺, where 𝜅 = 𝜅in + 𝜅ex,
𝐺 = 𝑔𝑐𝐿c𝐷1/2𝜋. 𝐺 is the half frequency gap created by coupling. 𝑣g = 𝑐/𝑛g is the
group velocity, where 𝑐 is the speed of light. and 𝑛g is the waveguide group index.
𝑔K = ℏ𝜔2

0𝐷1𝑛2/(2𝜋𝑛g𝐴eff) is the nonlinear coefficient with 𝐴eff effective mode area
and 𝑛2 is the nonlinear coefficient of the waveguide. The group velocity dispersion
is related to 𝐷1 and 𝐷2 by 𝛽2 = −𝑛g𝐷2/(𝑐𝐷2

1). 𝑓p =
√︁
𝜅ex𝑃in/(ℏ𝜔0) is the pump

term, where 𝑃in is the on-chip pump power. The argument 𝑧 is limited to [0, 𝐿L,R),
where 𝐿L.R is the respective resonator round trip length.

The numerical values of the relevant parameters are 𝑄in = 75×106; 𝑄ex = 45×106;
𝜔0 = 2𝜋 × 193.34 THz; 𝐿R = 9.5 mm; 𝐿L = 1.005 × 𝐿R (𝐷1,R = 1.005 × 𝐷1,L);
𝐿c = 1 mm; 𝑛g = 1.575; 𝑔K = 0.0277 s−1; 𝑔c = 0.954 mm−1; 𝑃in = 300 mW,
𝐷1 = 2𝜋 × 19.97 GHz; 𝐷2 = −2𝜋 × 283.0 kHz.

To investigate how 𝐿c can affect the KS strength, we also perform multiple sim-
ulations with different coupling lengths 𝐿c while keeping 𝑔c𝐿c fixed so that the
dispersion profile remains unchanged. The results suggest that from 𝐿c/𝐿R = 0.105
to 0.667, the KS power decreases slightly with increasing coupling length under the
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same dispersion profile and pumping conditions. This is because as 𝐿c increases,
the coupling strength between modes of the two individual rings with relative mode
numbers offset by 1 decreases slightly.

In the fully coupled case, Q-factors, waveguide dispersion, FSRs, nonlinear coeffi-
cient, pump frequency, power, and detuning are unchanged. The coupling between
two rings is averaged over the entire ring, keeping 𝐺 (half bandgap opened by the
coupling) the same as the partially coupled case.

4.5.3 Alignment of interband KSs with the main comb grid
To further verify that the KS frequencies align with the main comb and share the
same carrier-envelope offset frequency, the frequency of the comb and the KS (on
the red side) are measured using a high-precision spectrometer with an accuracy of
1 pm (125 MHz). This data is then used to construct the plot in Fig. 4.5 wherein
𝜈𝜇 − 𝜇 𝑓rep is plotted versus 𝜈, where 𝜈𝜇 is the frequency of comb line (or KS line)
with relative order 𝜇 and 𝑓rep is the comb repetition rate. The plot confirms the
alignment of the KS with the main comb within the resolution of the spectrometer.
Notably, the KS on the blue side does not appear in the plot because its frequency is
beyond the range of the spectrometer.

4.6 Summary
In summary, interband Kelly sidebands have been produced using both continuous-
wave and pulsed pumping. The sidebands reside in a frequency band that is distinct
from the soliton pulse in a coupled-racetrack resonator microcomb. Their interband
nature relaxes excitation requirements. The wavelengths of the Kelly sidebands
agree with predictions based on mode dispersion measurements. Pulsed-pump
operation allowed exploration of the sideband tuning properties.
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C h a p t e r 5

SIMUTANEOUS GENERATION OF MULTI-COLOR SOLITONS
IN COUPLED-RING MICRORESONATORS

This chapter is based on the following published conference abstract:
Gao M., Ge J., Yuan Z., et. al., Multi-color solitons in coupled-ring

microresonators, in CLEO 2024, Technical Digest Series (Optica Publishing
Group), paper SM3G.1.

https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2024-SM3G.1

Multi-color co-propagating and counter-propagating solitons are generated using a
coupled-ring microresonator in the ultra-low-loss Si3N4 platform. Soliton spectra
and beatnotes are measured and potential applications are discussed.

5.1 Multicolor operation
Soliton microcombs have found diverse applications across various material platforms[1].
In a recent development, microcombs formed as coherent pulse pairs have been
demonstrated in the ultra-low-loss Si3N4 on silicon platform [2]. This pulse pair
mode locking modality overcomes the inherent normal dispersion of this system,
leading to bright soliton microcombs. In this study, we showcase another feature of
the pulse pair system, which is multi-color operation. Driven by two continuous-
wave pumps, as illustrated in Fig. 5.1(a), two pulse pairs form in distinct spectral
windows. The multi-color pairs can be pumped so as to co-propagate or counter-
propagate.

The device consists of two coupled racetrack resonators with slightly different free-
spectral ranges (FSRs). The uncoupled resonators feature normal dispersion, which
is characteristic of the ultra-low-loss Si3N4 platform. However, their coupling
gives rise to the formation of two hybridized mode families, whose dispersion
characteristics are illustrated in Fig. 5.1(b). Significant to the current study is that
the coupling of the resonators covers only a fraction of their circumference, meaning
that mode hybridization does not require mode-number matching. As a result,
hybridization has a spectral recurrence set by the offset in the resonator FSRs, leading
to multiple anomalous dispersion windows where pulse pair formation is possible.
Two such windows are indicated in Fig. 5.1(b) wherein strong hybridization causes

https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2024-SM3G.1
https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2024-SM3G.1
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anomalous dispersion characterized by a positive curvature in the dispersion plot.
By pumping in the vicinity of these anomalous dispersion windows, bright soliton
pulse pairs form and circulate in a mirror-image fashion around the two resonators
[2]. In the measurement, pulse pairs are stabilized by detection of their comb
power followed by servo control of the corresponding pump laser frequency. The
experimental setup is shown in Fig. 5.1c and is similar to that used for stabilization
of conventional soliton microcombs [3].

5.2 Freqeuncy multiplexed soliton spectrum
The measured comb spectra resulting from the simultaneous generation of two-color
pulse pairs are shown in Fig. 5.1(d). Each individual soliton spectrum exhibits an
approximately sech2 envelope shape. Furthermore, dispersive waves [4] and Kelly
sidebands [5] emerge at points where mode and comb frequencies coincide, leading
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Figure 5.1: Co-propagation: (a) Optical image of the coupled-ring microresonator.
Scale bar, 1mm. (b) Dispersion characteristics of hybrid mode families versus
wavelength. Two regions exhibiting anomalous dispersion are highlighted in orange.
The black dots indicate the frequencies of two continuous-wave pump lasers. The
frequencies of the dashed line are the average of the two hybrid mode families
and feature normal dispersion. 𝜔𝜇: frequency of each mode; 𝜔0: center mode
frequency; 𝐷1: FSR of the mode family 1 at 𝜇=0 where 𝐷1/2𝜋 ≈19.97 GHz.
(c) Experimental setup for co-propagating multi-color pulse pair generation. C.W.:
continuous-wave; EDFA: erbium-doped fiber amplifier; WDM: wavelength division
multiplexer; PD: photodetector. (d) Experimental spectra for co-propagating multi-
color pulse-pairs. A schematic depicting the co-propagating two-color pulse pairs
is shown in the inset. (e) Measured radio-frequency (RF) beatnotes of multi-color
pulse pairs. RBW: resolution bandwidth.
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Figure 5.2: Counter-propagation: experimental spectra for simultaneous
generation of a single 1582 nm pulse pair in the presence of varying numbers of
counter-propagating 1550 nm pulse pairs. (a) One 1582 nm pulse pair with one
1550 nm pulse pair. (b) One 1582 nm pulse pair with two 1550 nm pulse pairs. (c)
One 1582 nm pulse pair with three 1550 nm pulse pairs. The insets are schematic
representations of the counter-propagating multi-color pulse pairs for each case.

to resonant power enhancement. Additionally, weak spectral features appear that
are attributed to parasitic four-wave mixing (FWM) effects between a given pulse
pair and the pump for the other pulse pair. The broader bandwidth of the 1582 nm
soliton as well as the presence of more pronounced dispersive waves is attributed to
the reduced curvature (i.e., second-order dispersion) in the corresponding dispersion
profile. This reduced curvature is predicted from dispersion modeling due to larger
waveguide coupling strength between the two resonators at longer wavelengths,
which opens a larger gap in frequency for the hybrid modes [2].

The radio-frequency beatnote of the two-color pulse-pair spectrum is shown in Fig.
5.1(e). Frequencies corresponding to the pulse pairs at 1550 nm and 1582 nm are
19.970 GHz and 20.026 GHz, respectively. This difference reflects slight differences
in FSR values at the two spectral windows in Fig. 5.1(b). In the current resonator
design, the local FSR difference at the two pump wavelengths is 56.6 MHz, which
is in reasonable agreement with the experimentally measured 56.0 MHz difference
in pulse-pair repetition rates.

5.3 Co-propagation and counter-propagation multicolor soliton
In addition to co-propagating two-color pulse pairs, we also demonstrated counter-
propagating two-color pulse pairs as shown in Fig. 5.2. In contrast to the co-
propagating scenario, interactions between counter-propagating solitons are weaker[6],
and FWM features are not observed. By actively selecting different stabilization
parameters[3], it is also possible to controllably select the number of pulse pairs
circulating at a given color as shown in Fig. 5.2(b) and 5.2(c). The RF beat notes
of these spectra exhibit two distinct peaks, similar to that observed in Fig. 5.1(e).
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5.4 Summary
In summary, we have demonstrated the generation of both co-propagating and
counter-propagating two-color soliton pulse pairs in ultra-low-loss Si3N4 coupled-
ring microresonators. This results suggest the potential to extend the microcomb
bandwidth through multi-pump methods[7, 8]. Furthermore, by carefully design-
ing the dispersion profile, the spectral overlap between the two pulse pairs could
be harnessed for applications such as dual-comb spectroscopy. The difference in
repetition rates between two soliton pulse pairs can be designed, and is potentially
useful for application to ranging [9].
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C h a p t e r 6

PULSE-PUMPED GENERATION OF BRIGHT SOLITON IN
AL0.2GA0.8AS RESONATOR UNDER ROOM TEMPERATURE

6.1 Introduction
Mode locked soliton microcombs [1] have been demonstrated as a miniaturized
solution for precision measurements [2–5] and multi-channel systems, which have
been demonstrated in a variety of microresonators [6–15]. Al0.2Ga0.8As, a material
with advantageous nonlinearity coefficient [16] and compatibility of active gain,
has been demonstrated to drive silicon photonics modules for multi-functions [17].
Combined with the small mode area enabled by its high refractive index, as well
as reduced scattering losses [18, 19], ultra-efficient frequency combs are feasible
under tens of 𝜇W pumping [16].

However, Al0.2Ga0.8As (also other similar III/VI materials) preserves difficulty in
generating soliton frequency combs due to its strong absorption at the optical C band
[20] (attributed to its smaller bandgap [21, 22]) and large thermo-opto coefficient
[11] (an order of magnitude higher than silica and SiN) , especially at CMOS-capable
repetition rates. The absorption converted to heat shifts the cavity resonance dramat-
ically upon soliton formation, which makes it challenging for soliton stabilization
[23]. Indeed, a stabilized soliton microcomb has only be obtained at cryogenic
temperatures for Al0.2Ga0.8As [11], while a soliton ’step’ at room temperature has
only been observed with a scanning laser [16]. AlN, another III/VI material has
reported stabilized soliton microcombs with self-referencing using a rapid laser tun-
ing system to overcome the thermal shift [13, 24], which involves extra electronics.
As an aside, non-bright solitons have been demonstrated in Al0.2Ga0.8As resonators
where the intracavity power changing is relatively small [25], however, with limited
number (tens) of comb lines and beyond CMOS compatible rates.

Synchronized pumping with a picosecond pulse for soliton generation launches less
averaged power into a resonator, which reduces the influence of thermal heating
[26]. It has also been reported to increase soliton conversion efficiency, regulate
the soliton behaviour and lay insights on soliton trapping physics. The scheme also
merits capability of integration with active modules by electrically pulse driving a
gain-switched semiconductor laser [27]. Here, we generate soliton microcombs in
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CMOS-ready Al0.2Ga0.8As resonators using pulse pumping at room temperatures.

6.2 Results
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Figure 6.1: Demonstration of microwave rate soliton in Al0.2Ga0.8As microres-
onator at room temperature. (a) Simulation result showing the process of soliton
formation. Soliton can be generated when the input laser is scanned from blue to
red, indicated by the soliton step. However, the generation of soliton will introduce
a intracavity power drop, which will destabilize the resonator due to thermal-optics
nonlinearity. (b) Characterization of the resonator used to generate the soliton.
The resonator has a intrinsic 𝑄-factor of 1.27 Million, and second order dispersion
𝐷2 ≈ 17.49GHz. (c) The experimental setup to generate the soliton in Al0.2Ga0.8As
resonator using electro-optical modulated optical pulse. ECDL: external-cavity
diode laser; EDFA: erbium-doped fiber amplifier; PM: phase modulator; AM: in-
tensity modulator; PSG: RF signal generator; 𝜑: RF phase shifter; WS: waveshaper;
BPF: Bandpass filter; PC: polarization controller; PD: photodetector; MZI: Mach-
Zehnder interferometer; OSC: oscilloscope; OSA: optical spectrum analyzer. (d)
The optical spectrum of generated optical soliton. The envelope of the soliton fea-
tures sech2 function. The soliton spectrum has 422 comb lines in 10dB bandwidth
and 705 comb lines in 20dB bandwidth.

Schematic illustration and simulation of thermal effects under conventional cw
pumping and pulse pumping is shown in Fig. 6.1(a). Generally speaking, solitons
are generated by pumping a cavity resonance with a laser scanned from blue to red
detuned. Solitons are thus generated after experiencing a high intra-cavity power
chaotic regime, associated with a sudden power drop inside the cavity. A portion
of the circulating power inside the resonator is converted into heat (especially for
Al0.2Ga0.8As whose absorption is strong [20]), which shifts the cavity resonant
wavelength through the thermo-opto effect. And this sudden power drop shifts
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the resonant wavelength significantly, pushing the laser-cavity detuning out of the
possible soliton existence range. This effect is illustrated in Fig. 6.1(a). Numerical
simulation based on the Lugiato-Lefever model cooperating thermal effect [28] is
plotted in the same figure, where a soliton step [6, 7] cannot be observed. Here,
FEM simulations give a thermal dissipation bandwidth of 10 kHz using the method
in ref. [20], and the material absorption loss rate is 𝜎MAT = 28 dB m−1. For pulse
pumping a microresonator (𝜇s round trip time) with a pico-second pulse, as result
of the reduced averaged pump power [26], the thermal shift upon soliton formation
is smaller, which retrieved the soliton step for further caption and stabilization [23].

In experiment, an Al0.2Ga0.8As micreresonator is adapter for soliton generation
under a pico-second pulse pump. The resonator features a quality factor higher than
106 (Fig. 6.1(b), upper left), with anomalous dispersion (Fig. 6.1(b), upper right)
fitted to feature 𝐷1/2𝜋 = 17.49 GHz and 𝐷2/2𝜋 = 53.80 kHz. The fitting residual
is plotted in Fig. 6.1(b) lower right with scattered mode distribution, which is a
result of fabrication non-perfections. The pico-second pulse is generated by electro-
opto modulating an amplified tunable laser (ECDL) and dispersion compensation
with a wave shaper. Amplified spontaneous emission from the Erbium amplifier is
filtered out by a bandpass filter, and the pump pulse is coupled onto the Al0.2Ga0.8As
chip via a lensed fiber. The generated soliton comb is filtered out by a wavelength
division multiplexer (WDM), detected by a photo detector and sent to a servo for
stabilization of the soliton by applying feedback to the pumping laser frequency.
Representative optical spectrum of the generated soliton comb at the throughout
waveguide is plotted in Fig. 6.1(d) in blue with the sech2 envelope fitting (fitted
pulse width 46 fs), where the optical spectral analyzer (OSA) noise floor is plotted in
yellow. Optical spectrum of the pumping pulse is plotted in the inset of Fig. 6.1(d)
(2 ps pulse width as measured by an autocorrelator).

6.3 Summary
In conclusion, we demonstrated dissipative Kerr solitons inside an integrated Al0.2Ga0.8As
resonator at room temperature with a pico-second pulsed pump. The pulse pumping
also enables robust generation of single soliton state with high fidelity; This work
provides a method for generating solitons microcombs in integrated III/IV microres-
onators, and lay sights on soliton dynamics inside Al0.2Ga0.8As microresonators.
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C h a p t e r 7

EXOPLANET SEARCHING USING ELECTRO-OPTIC
FREQUENCY COMB AS NEAR-INFRARED FREQUENCY

REFERENCE

The discovery and characterization of exoplanets using the Precision Radial Ve-
locity (PRV) and transit spectroscopy techniques relies on high spectral resolution
spectrometers with extremely stable and long-term wavelength solutions. The de-
velopment of Laser Frequency Combs (LFC) plays a key role in advancing the
observational capabilities of existing and future spectrometers. We report the de-
velopment and commissioning of a near-infrared (NIR) LFC for the NIRSPEC
instrument on the 10-m Keck-2 telescope of the Keck Observatory on Maunakea.
The Electro-Optical Modulation LFC operates over wavelengths from 1.2 to 2.1 𝜇m
with future extension to 2.5 𝜇m. The LFC has an intrinsic mode spacing of 16 GHZ
with a long term stability < 10 cm s−1 by reference to a Rubidium standard.

7.1 Introduction to exoplanet searching and Precision Radial Velocity (PRV)
technique

The search for exoplanets, planets orbiting stars outside our solar system, has become
one of the most exciting fields in modern astronomy. The discovery of these distant
worlds not only enhances our understanding of planetary systems but also fuels the
quest to find potentially habitable environments beyond Earth. Various techniques
are employed to detect and characterize exoplanets, including transit photometry,
radial velocity, direct imaging, microlensing, and astrometry. According to the Open
Exoplanet Catalogue database [1], as of June 25, 2024, a total of 5,414 exoplanets
have been confirmed, and 1,075 of them are confirmed using the PRV method. A
statistical plot of discovery methods is shown in Fig. 7.1. Among these methods,
the Precision Radial Velocity (PRV) method is one of the most successful and
widely used.

The PRV technique involves measuring the effective two-body motion of the star
caused by the gravitational pull of an orbiting planet. As a planet orbits a star, it
induces a periodic shift in the star’s velocity along the line of sight to the observer.
This shift can be detected as changes in the star’s spectral lines due to the Doppler
effect. By precisely measuring these changes in the star’s spectrum over time,
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Figure 7.1: Number of exoplanets discovered by various methods over time.
The methods include Radial Velocity (RV), transit photometry, disk kinematics,
direct imaging, timing, microlensing, and astrometry. The PRV method has been
particularly successful, contributing significantly to the total number of confirmed
exoplanets. The data used to plot this figure is from Open Exoplanet Catalogue
database. This figure is up-to-date as of June 24, 2024. Python code to plot the
most up-to-date version of this figure is attached in Appendix G.1.

astronomers can infer the presence of an exoplanet, estimate its mass, and determine
its orbital parameters. It is also worth to note that among all the methods listed in Fig.
7.1, only PRV and astrometry are able to characterize the mass of the exoplanets.
However, while astrometry can not be performed from the ground, PRV can.

The frequency of the observed spectral line 𝑓obs when the star emits a frequency
𝑓emit, affected by the optical Doppler effect, is given by:

𝑓obs = 𝑓emit

√︂
𝑐 + 𝑣

𝑐 − 𝑣
, (7.1)

where 𝑣 is the velocity of the star along the line of sight (negative when the star is
moving away from the observer and positive when moving towards the observer).
Taking the derivative of Eq. (7.1), we have
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Figure 7.2: Schematic of the Laser Frequency Comb (LFC) signal chain. The
system starts with a laser at 1560 nm, which is modulated by electro-optic mod-
ulators. The signal is amplified using an Erbium-Doped Fiber Amplifier (EDFA)
and pre-broadened through a Highly Nonlinear Fiber (HNLF). The broadened sig-
nal then passes through a Ta2O5 waveguide and a flattener before being directed
to the spectrometer as the LFC output. Part of the signal is also directed through
periodically poled lithium niobate (PPLN) and a Rubidium cell for stabilization and
locking, monitored by photodetectors (PD). Both PDs are used for stabilization and
locking of the LFC.

𝛿 𝑓obs
𝑓obs

=
𝛿𝑣

𝑐
, (7.2)

where 𝛿 𝑓obs is the uncertainty of the observed frequency, 𝛿𝑣 is the uncertainty of
the star velocity.

By achieving smaller uncertainties in the star’s velocity, astronomers can detect
lower-mass planets, which produce smaller velocity shifts in their host stars. Al-
though detecting Earth-like planets orbiting sun-like stars remains extremely chal-
lenging due to the minute RV signals (around 9 cm/s) and other contributing factors
such as stellar noise (e.g., spots, granulation, and faculae), this level of precision is
significant. Additionally, because this comb/spectrograph works well into the near-
infrared (NIR), it can effectively characterize planets orbiting smaller, cooler stars,
such as M-dwarfs, providing crucial data for the search for potentially habitable
exoplanets. Current astronomical spectrometers can achieve an observed frequency
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Figure 7.3: Optical spectrum of the electro-optic (EO) comb generated by the
1560 nm laser. The comb has a bandwidth of approximately 12 nm. After dispersion
compensation, this comb can achieve a full width at half maximum (FWHM) in the
time domain around 800 fs.

uncertainty corresponding to a radial velocity precision of around 0.3 m s−1 or
better, according to ref. [2].

To achieve such high precision, advanced calibration techniques and stable wave-
length references, such as Laser Frequency Combs (LFCs), are employed.

Achieving high precision in stellar velocity measurements requires advanced calibra-
tion techniques and stable wavelength references, such as Laser Frequency Combs
(LFCs). These technologies ensure the spectrograph’s stability and accuracy, en-
abling precise measurements of stellar velocities over long periods. This chapter
discusses the development and implementation of an Electro-Optical Modulation
LFC for the NIRSPEC instrument, enhancing its capability to perform high-precision
PRV measurements in the near-infrared spectrum.

7.2 LFC signal chain
The Laser Frequency Comb (LFC) signal chain is a compact system designed to
provide precise and stable wavelength references for high-precision radial velocity
measurements. The signal chain, as depicted in Figure 7.2, involves several key
components and processes that ensure the stability and accuracy of the LFC output.

The process begins with a laser operating at 1560 nm. The linewidth of the initial
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Figure 7.4: Optical spectrum of the fully broadened comb after Ta2O5 waveg-
uide. This spectrum shows the broadened comb spans from 1400nm to 2100nm.
The peak around 1560nm is the amplified EO comb pump.

laser source is critical as it serves as the basis for subsequent frequency modulation
and broadening. The laser’s frequency is doubled through a periodically poled
lithium niobate (PPLN) crystal and then referenced to a Rubidium (Rb) cell to lock
its absolute frequency.

The laser signal is then directed through three electro-optic modulators in series and
an intensity modulator, creating the electro-modulated seed signal. The spectrum of
the electro-modulated comb is shown in Figure 7.3. The dispersion of this comb is
then compensated with a waveshaper, forming the mode-locked electro-optic comb.
The DC bias of the intensity modulator is locked to keep the operating point at
𝜙DC = 𝜋/2.

Following modulation, the signal is amplified using an Erbium-Doped Fiber Am-
plifier (EDFA) and then undergoes pre-broadening through a section of Highly
Nonlinear Fiber (HNLF). The HNLF compresses the mode-locked pulse in the time
domain, which is critical for the subsequent waveguide to function effectively. The
spectrum bandwidth of the pre-broadened comb is approximately 200 nm. The
lengths of the HNLF and the subsequent dispersion compensation PM1550 fiber
need to be carefully optimized.

After pre-broadening, the signal is passed through a Ta2O5 waveguide. This waveg-
uide handles pulses with energies greater than 160 pJ and durations shorter than
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120 fs, broadening these pulses in the spectral domain. Under optimal operation,
the waveguide can achieve spectral broadening to cover one octave. The spectrum
after waveguide broadening is shown in Fig. 7.4.

Finally, the comb spectrum is flattened using a commercial spectral flattener. The
flattened spectrum is then directed to the spectrometer as the LFC output. This
output serves as a highly precise wavelength reference, enabling the spectrometer
to perform accurate and stable measurements over long periods.

In addition to the primary signal path, part of the laser signal is re-injected into the
comb as a center indicator. This auxiliary pump indicator creates a single strong
comb line to indicate which line corresponds to half of the Rb transition frequency.

It is critical to emphasize that every component within this system must be polarization-
maintained. Without maintaining polarization, the generated comb will not meet
the required stability. A photo of the full setup is shown in Fig. 7.5.

Figure 7.5: Photo of the full setup of LFC. The setup contains one equipment rack
on the right, together with two bread boards covered by the black enclosure on the
optical table.

7.3 Stability
The stability of the Laser Frequency Comb (LFC) is crucial for ensuring precise and
consistent wavelength references over time. In this section, we discuss two important
aspects of LFC stability: power stability and frequency stability, as characterized by
Allan deviation.

7.3.1 Power stability
The stability of pulse energy injected into the waveguide is important, as fluctuations
in pulse energy may result in variations in the final full comb bandwidth. Here,
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Figure 7.6: Power stability of the LFC over time The data was collected from the
evening of March 17, 2022, to the morning of March 18, 2022. The color scale
represents the power (dBm) at different wavelengths (nm).
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Figure 7.7: Allan deviation of LFC optical frequency. This data is collected
by beating LFC against a commercialized HCN-referenced laser with an Allan
deviation of 10−9 at 102 seconds offset time.

we characterized the stability of the comb spectrum power after the HNLF pre-
broadening stage overnight. The result is shown in Figure 7.6.

The results show that the comb power does not exhibit strong fluctuations. This data
was collected while the amplifiers were operating under a constant power output
mode, which minimized noise transfer from any power fluctuations in the source
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laser.

7.3.2 Allan deviation
The stability of the LFC optical frequency is crucial because it determines the uncer-
tainty of the observed star light frequency, 𝛿 𝑓obs. As shown in Eq. (7.2), the relative
uncertainty of optical frequency, 𝛿 𝑓obs/ 𝑓obs, directly affects the uncertainty of the
star’s radial velocity, 𝛿𝑣. Here, 𝛿 𝑓obs/ 𝑓obs is characterized by the Allan deviation of
the optical frequency. This measurement was performed by monitoring the beat-note
between the pump laser and a wavelength-reference laser. The wavelength-reference
laser is a commercial laser with its frequency locked to HCN. The frequency Allan
deviation of this commercial reference laser is 10−9 at 102 seconds.

From Eq. (7.2), we can see that an Allan deviation of 10−9 corresponds to 𝛿𝑣 =

10−9𝑐 = 10 cm s−1. Compared to the wavelength calibration of spectrographs, this
precision is improved by four orders of magnitude.

7.4 On sky observation
First we demonstrated the LFC exposure on NIRSPEC spectrograph. The result is
shown in Fig. 7.8.

After KPIC is installed in February 2024, LFC and star light will be able to simulta-
neously inject into the NIRSPEC. One simultaneous exposure is shown in Fig. 7.9.
This data is collected on April 26, 2024.
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Figure 7.8: LFC signal collected by NIRSPEC spectrograph.
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Figure 7.9: Simultaneous exposure of LFC and star light.
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A p p e n d i x A

THE FOURIER TRANSFORM OF DIRAC COMB

In this section, we explain why the Fourier transform of Dirac comb distribution is
itself. Dirac comb distribution was defined in Eq. (1.100), reads

X(𝑥) =
∑︁
𝑛∈Z

𝛿(𝑥 − 𝑛).

And we want to show that the Fourier transform of X(𝑥) is itself, as summarized
in Eq. (1.101), reads

F [X(𝑥)] = X(𝑥).

A.1 Derivation of F [X(𝑥)] = X(𝑥)
The equation in Eq. (1.101) can be derived by calculating the (inverse) Fourier
series of X(𝑥). X(𝑥) is a distribution defined on 𝑥 ∈ R, with a period of 1, i.e.,

X(𝑥) = X(𝑥 + 𝑛), ∀𝑛 ∈ Z, 𝑥 ∈ R. (A.1)

Thus, X(𝑥) can be decomposed into orthonormal basis functions:

ℎ𝑚 (𝑥) = e−𝑖2𝜋𝑚𝑥 , 𝑚 ∈ Z, 𝑥 ∈ R, (A.2)

with the inner product:

⟨ℎ𝑚, ℎ𝑛⟩ =
∫ 𝑏

𝑎

ℎ𝑚 (𝑥)ℎ∗𝑛 (𝑥) d𝑥 = 𝛿𝑚,𝑛, for 𝑏 − 𝑎 = 1. (A.3)

This decomposition, or inverse Fourier series, of X(𝑥) is:

X(𝑥) =
∑︁
𝑚∈Z

𝐶𝑚e−𝑖2𝜋𝑚𝑥 , 𝑥 ∈ R. (A.4)

Calculating 𝐶𝑚 by taking the inner product of X(𝑥) with e−𝑖2𝜋𝑚𝑥 , we get:

𝐶𝑚 = ⟨X(𝑥), e−𝑖2𝜋𝑚𝑥⟩ =
∫ 𝑏

𝑎

X(𝑥)e𝑖2𝜋𝑚𝑥 d𝑥 = 1, for 𝑏 − 𝑎 = 1, 𝑎 ∉ Z. (A.5)

Therefore, X(𝑥) = ∑
𝑚∈Z e−𝑖2𝜋𝑚𝑥 . This verifies Eq. (1.101) by:

X(𝑥) =
∑︁
𝑚∈Z

e−𝑖2𝜋𝑚𝑥 =
∑︁
𝑚∈Z

F [𝛿(𝑥 − 𝑚)] = F
[∑︁
𝑚∈Z

𝛿(𝑥 − 𝑚)
]
= F [X(𝑥)] .

(A.6)
In Eq. (A.6), we used F [𝛿(𝑥)] = 1 and F [𝛿(𝑥 − 𝑚)] = e−𝑖2𝜋𝑚𝑥 .
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A p p e n d i x B

LINESHAPE OF THE OPTICAL RESONATOR COUPLED WITH
WAVEGUIDE ETALON

B.1 Derivation of the lineshape
Three of the devices being tested in Chapter 2 (Si3N4, Al0.2Ga0.8As and Ta2O5)
feature integrated waveguides, so that light is coupled to the chip through the
waveguide facets located at the side of the chips. Of these three devices, the facets
of the Al0.2Ga0.8As are angled, while the Si3N4 and Ta2O5 have flat facets, causing
the light in the waveguide to be reflected at these endpoints. The reflections form a
Fabry–Pérot (FP) cavity out of the on-chip waveguide, and the measured resonator
transmission lineshapes appear with a modulated background. In the following we
model this FP background in order to extract resonator properties accurately.

b1 b1e
ikL1 TreSb1e

ikL1

b2b2e
ikL2TreSb2e

ik(L1+L2)

Output

pout

Transmission function

Tres

right facet
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Waveguide
Input 

pin

left facet TreSb2e
ikL2

 TreSb1e
ik(L1+L2)

r1,t1

Figure B.1: Schematic used for modelling transmission spectra with FP back-
grounds. The micro-resonator (red ring) is coupled to the bus waveguide (gray
line). Quantities are defined in the text.

We denote 𝑏1 (𝑏2) as the slowly-varying field just inside the input (output) waveg-
uide facet propagating towards the resonator (Fig. B.1). At the output facet, the
field propagating towards the facet reads 𝑇rese𝑖𝑘 (𝐿1+𝐿2)𝑏1, where 𝑇res is the linear
transmission function of the resonator, 𝑘 is the wavevector, and 𝐿1 and 𝐿2 are
waveguide lengths from the resonator coupling point to the input and output facets,
respectively. This expression assumes no loss on the waveguide, and the exponen-
tial factor accounts for the propagation phase. Similarly, at the input facet, the field
propagating towards the facet reads 𝑇rese𝑖𝑘 (𝐿1+𝐿2)𝑏2. Reflection at the facets cause
the fields in the two directions to couple together as follows:

𝑏1 = 𝑟1𝑇res𝑏2e𝑖𝑘 (𝐿1+𝐿2) + 𝑡1𝑝in, (B.1)

𝑏2 = 𝑟2𝑇res𝑏1e𝑖𝑘 (𝐿1+𝐿2) , (B.2)



122

where 𝑟1 (𝑟2) and 𝑡1 (𝑡2) are reflection and transmission coefficients, respectively, at
the input (output) waveguide facet, and 𝑝in is the input field at the waveguide facet.
Solving the above equations gives

𝑏1 =
𝑡1𝑝in

1 − 𝑟1𝑟2𝑇
2
rese2𝑖𝑘𝐿wg

. (B.3)

with 𝐿wg ≡ 𝐿1 + 𝐿2. The output field from the waveguide 𝑝out is

𝑝out = 𝑡2𝑇res𝑏1e𝑖𝑘𝐿wg . (B.4)

and the output power can be found as

𝑃out = |𝑝out |2 = |𝑡1𝑡2 |2
|𝑇res |2

|1 − 𝑟1𝑟2𝑇
2
rese2𝑖𝑘𝐿wg |2

|𝑝in |2. (B.5)

To see how this power transmission gives the FP background, we consider the case
when the resonator is not on resonance, i.e., 𝑇res = 1. The above equation simplifies
to

𝑃out =
|𝑡1𝑡2 |2

|1 − 𝑟1𝑟2e2𝑖𝑘𝐿wg |2
|𝑝in |2. (B.6)

For later convenience, the wavevector 𝑘 is replaced with the cavity detuning of a
certain resonance, Δres = 𝜔c,res − 𝜔𝑝, where 𝜔c,res is the resonance frequency and
𝜔𝑝 is the pump frequency. The exponential factor can then be written as,

exp(2𝑖𝑘𝐿wg) = exp
[
2𝑖
𝐿wg

𝑐
(𝜔c,res − Δres)

]
= exp

(
−𝑖Δres

𝜔FP
+ 𝑖𝜙

)
(B.7)

where we have identified 𝜔FP = 𝑐/(2𝐿wg) as the free spectral range of the FP cavity
and 𝜙 = 𝜔c,res/𝜔FP is a phase offset. Therefore, the power transmission reads

𝑃out =
|𝑡1𝑡2 |2

|1 − 𝑟1𝑟2e−𝑖Δres/𝜔FP+𝑖𝜙 |2
|𝑝in |2. (B.8)

From here, the total reflection 𝑟 = |𝑟1𝑟2 |, total transmission |𝑡1𝑡2 | and the phase
offset 𝜙 can be fitted from the experiment data. We note that the phase of 𝑟1𝑟2 can
be absorbed into 𝜙 and the fitting parameters can be restricted to be real.

Near the resonance frequency, the linear transmission 𝑇res can be found from the
coupled-mode equation and the input-output relations of the resonator:

d𝑎res
d𝑡

= −
( 𝜅res

2
+ 𝑖Δres

)
𝑎res +

√
𝜅𝑒,res𝑎in, (B.9)

𝑎out = −√𝜅𝑒,res𝑎res + 𝑎in, (B.10)
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where 𝑎res is the field amplitude of the resonance, 𝜅res and 𝜅𝑒,res are the intrinsic
loss rate and external coupling rate of the resonance mode, respectively, 𝑎in and
𝑎out are the waveguide fields before and after the resonator, and Δres is the detuning
introduced previously. At steady state (d𝑎res/d𝑡 = 0) the transmission can be solved
as

𝑇res =
𝑎out
𝑎in

= 1 − 𝜅𝑒,res

𝜅res/2 + 𝑖Δres
. (B.11)

The overall power transmission now reads

𝑃out = |𝑡1𝑡2 |2
|𝑇res |2

|1 − 𝑟1𝑟2𝑇
2
rese−𝑖Δres/𝜔FP+𝑖𝜙 |2

|𝑝in |2. (B.12)

where 𝑇res should be substituted with the previous equation. From here, 𝜅res and
𝜅𝑒,res can be fitted using experimental data and parameters from the previous stage.

It is important to note that the lineshape is not a product of the FP background and
the bare Lorentzian resonance |𝑇res |2. The appearance of 𝑇res on the denominator of
𝑃out creates interference between the two lineshapes, which leads to about 20% error
for 𝑄 values for the current data unless the FP interference is taken into account.
An example of a Ta2O5 resonance is shown in Fig. B.2.
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Figure B.2: 𝑄 fitting with FP background. (a) and (b) are the results of fitting
the same resonance of a Ta2O5 resonator TE mode at 1559.4𝑛𝑚. (a) An overly
simplified model of the FP background times the Lorentzian resonance is used here
to fit the experiment data. A deviation between data and fitting can be observed
around the resonance. (b) The improved model (Eq. (B.12) and Eq. (B.11)) is
used to fit data and gives a more accurate fitting. 𝑄0 is the fitted intrinsic 𝑄 and
𝑄𝑒 is the fitted external (coupling) 𝑄. The 𝑄 factors obtained in both cases have a
difference about 20%, showing that it is essential to take the FP interference effect
into account.
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The above results do not apply to the case when the resonance undergoes nonlinear
broadening, where 𝑇res now depends on the pump power at the resonator. The anal-
ysis is further complicated by the fact that the transmitted power after the resonator
will be reflected to affect the pumping power, and the backward-propagating light
sees a different resonance in the resonator due to the difference between self- and
cross-phase Kerr modulations. To get around these problems, we assume that at all
frequencies, the pumping power for the resonator is the waveguide power with FP
effects but without the cavity resonance, and we do not iterate further to consider
the effect of reflected transmission on the pumping power. This is justified as the
overall reflection 𝑟 observed in the samples is relatively weak (< 10%). In this case,
starting from the coupled-mode equations with nonlinear effects,

d𝑎res
d𝑡

= −
( 𝜅res

2
+ 𝑖(Δres − (𝛼 + 𝑔)𝜌res)

)
𝑎res +

√
𝜅𝑒,res𝑎in, (B.13)

where 𝜌res = |𝑎res |2/𝑉eff is the resonance mode energy density, the transmission at
steady state can be determined as

𝑇res = 1 − 𝜅𝑒,res

𝜅res/2 + 𝑖(Δres − (𝛼 + 𝑔)𝜌res)
. (B.14)

The overall power transmission is approximated by substituting the above nonlinear
𝑇res into Eq. (B.12), and is used to fit the sum measurement data. The fitting results
of the sum of Kerr and thermal coefficient 𝛼 + 𝑔 are shown in Fig. 2.2(b).
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A p p e n d i x C

MODEL FOR RATIO EXPERIMENT IN CHAPTER 2

C.1 Model for ratio experiment
Here we derive Eqs. (2.9), (2.10), and (2.11), which describe the response of the
probe mode transmission when the power pumping the pump mode is modulated.
The modulation can be broken down into three independent processes. The mod-
ulation of pumping power leads to the change of intracavity power in the pump
mode, which leads to frequency shifts of the probe mode, which in turn leads to
the transmission changes at a fixed frequency. The overall transfer function is the
product of the three individual responses.

The dynamics of the pump mode reads

d𝑎p

d𝑡
= −

𝜅p

2
𝑎p +

√
𝜅𝑒,p𝑎in,p, (C.1)

where 𝑎p is the pump mode amplitude, 𝜅p and 𝜅𝑒,p are the total loss rate and external
coupling rate of the pump mode, respectively, 𝑎in,p is the pump input amplitude, and
the frequency detuning term has been removed because the pump laser is locked
close to the mode resonance in the experiment. The steady-state solution reads

𝑎
(0)
p =

2
𝜅p

√
𝜅𝑒,p𝑎

(0)
in,p, (C.2)

where 𝑧(0) is the steady-state value of variable 𝑧. Fourier transforming Eq. (C.1)
gives

𝑖Ω𝑎p = −
𝜅p

2
𝑎p +

√
𝜅𝑒,p𝑎in,p, 𝑎p =

1
𝜅p/2 + 𝑖Ω

√
𝜅𝑒,p𝑎in,p, (C.3)

where the AC component of 𝑧’s Fourier transform is denoted as 𝑧̃. Similarly

𝑎∗p =
1

𝜅p/2 + 𝑖Ω

√
𝜅𝑒,p𝑎

∗
in,p. (C.4)

We denote 𝐼p = |𝑎p |2 as the intracavity energy and 𝑃in = |𝑎in,p |2 the pumping power.
For small-signal modulations, we have

𝐼p ≈ (𝑎 (0)p )∗𝑎p + 𝑎
(0)
p 𝑎∗p, 𝑃in ≈ (𝑎 (0)in,p)

∗𝑎in,p + 𝑎
(0)
in,p𝑎

∗
in,p. (C.5)
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After substituting 𝑎
(0)
p with 𝑎

(0)
in,p and using Eq. (C.3) and (C.4), we get

𝐼p(Ω)
𝑃in(Ω)

=
2𝜂p

𝑖Ω + 𝜅p/2
, (C.6)

where 𝜂p = 𝜅𝑒,p/𝜅p is the coupling efficiency for the pump mode. We note that the
modulation of 𝐼p also shifts the frequency of the pump mode. However, since 𝐼p is
maximized at zero detuning, such detuning changes do not influence 𝐼p up to first
order, which justifies dropping the detuning term from the beginning.

The resonance shift of the probe mode 𝛿b can be written similarly as (2.1) in the
main text and reads

𝛿b(Ω)
𝐼p(Ω)

= −𝛼𝑟 + 𝛾𝑔

𝑉eff
. (C.7)

Here 𝑟̃ (Ω) is the thermal response found in Eq. (1.65) through simulation (with
𝑟̃ (Ω = 0) = 1). The modulation frequency range is much lower than the electronic
response in materials, thus we do not associate a response function to 𝑔. An extra
correction factor 𝛾 is added to 𝑔 as the probe mode sees cross-phase modulation
rather than the previous self-phase modulation. For Al0.2Ga0.8As and Ta2O5 res-
onators, a nearby mode in the same mode family is used as the probe mode, and in
these cases 𝛾 = 2. For Si3N4 resonators, another transverse mode with a different
polarization is used to improve contrast between thermal and Kerr effects, and the
𝛾 factor is evaluated to be 𝛾 = 0.67.

Finally we calculate the transmission change of the probe mode 𝑇p with respect to
𝛿b. The probe dynamics are given by

d𝑎b
d𝑡

= −
( 𝜅b

2
+ 𝑖Δb

)
𝑎b +

√
𝜅𝑒,b𝑎in,b, (C.8)

where 𝑎b is the probe mode amplitude, 𝜅b and 𝜅𝑒,b are the total loss rate and external
coupling rate of the probe mode, respectively, and 𝑎in,b is the probe input amplitude.
Its steady-state solution is

𝑎
(0)
b =

√
𝜅𝑒,b𝑎in,b

𝜅b/2 + 𝑖Δ
(0)
b

, (C.9)

with Δ
(0)
b the steady-state detuning of the probe mode.

Fourier transforming Eq. (C.8) while expanding to first order of 𝛿b gives

𝑖Ω𝑎b = −( 𝜅b
2

+ 𝑖Δb)𝑎b − 𝑖𝛿b𝑎
(0)
b , 𝑎b =

−𝑖𝑎 (0)b
𝜅b/2 + 𝑖Δb + 𝑖Ω

𝛿b, (C.10)



127

and 𝑎∗b can be found similarly. It should be noted that input probe amplitude 𝑎in,b is
not modulated and 𝑎in,b does not appear in Eq. (C.10).

The transmitted power for the probe mode is found though the input-output relation:

𝑇b =
��𝑎in,b −

√
𝜅𝑒,b𝑎b

��2 . (C.11)

Because the probe input amplitude 𝑎in,b is not modulated, 𝑎in,b does not show in the
AC component of Eq. (C.11). Fourier transforming Eq. (C.11) while expanding to
first order of 𝑎∗b gives

𝑇b =

(
𝑎in,b −

√
𝜅𝑒,b𝑎

(0)
b

) √
𝜅𝑒,b𝑎

∗
b +

[
𝑎∗in,b −

√
𝜅𝑒,b

(
𝑎
(0)
b

)∗] √
𝜅𝑒,b𝑎b. (C.12)

Plugging in 𝑎
(0)
b (Eq. (C.9)) and 𝑎b (Eq. (C.10)) results in

𝑇b =
𝑖𝜅𝑒,b

(𝜅b/2)2 +
(
Δ
(0)
b

)2

[
𝜅b/2 − 𝜅𝑒,b + 𝑖Δ

(0)
b

𝜅b/2 + 𝑖Ω − 𝑖Δ
(0)
b

−
𝜅b/2 − 𝜅𝑒,b − 𝑖Δ

(0)
b

𝜅b/2 + 𝑖Ω + 𝑖Δ
(0)
b

] ��𝑎in,b
��2 𝛿b

(C.13)

= −
2𝜅𝑒,bΔ(0)

b

(𝜅b/2)2 +
(
Δ
(0)
b

)2
𝜅b − 𝜅𝑒,b + 𝑖Ω

(𝜅b/2 + 𝑖Ω)2 +
(
Δ
(0)
b

)2

��𝑎in,b
��2 𝛿b. (C.14)

The overall response function is the product of responses of the three processes,

R̃ (Ω) = 𝑇b(Ω)
𝑃in(Ω)

=
𝑇b(Ω)
𝛿b(Ω)

𝛿b(Ω)
𝐼p(Ω)

𝐼p(Ω)
𝑃in(Ω)

, (C.15)

and corresponds to Eq. (2.11) in the main text. The last two factors (derived in Eq.
(C.7) and (C.6)) correspond to Eq. (2.9) in the main text. The first factor (derived
in Eq. (C.14)) corresponds to Eq. (2.10) in the main text.
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A p p e n d i x D

DISCUSSION FOR EACH INDIVIDUAL MATERIAL IN
CHAPTER 2

D.1 Measurement of SiO2 microresonators
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Figure D.1: SiO2 measurements. (a) Mode profiles of the measured mode family
(left) and equilibrium temperature distribution of the resonator upon heating due
to optical absorption (right). The geometry of the resonator is: radius 3.24 mm,
thickness 8 𝜇m, wedge angle 27◦ and undercut 137.5 𝜇m. (b) Measured dispersion
spectrum of the experimental mode family. The dashed red line is the parabola fitting,
and the dispersion parameters are fitted to be 𝐷1/2𝜋 = 10.0 GHz and 𝐷2/2𝜋 = 4.20
kHz. Relative mode number 𝜇 = 0 corresponds to the wavelength of 1550 nm. (c)
Simulated thermal diffusion responsivity 𝑟 (Ω) versus modulation frequency Ω/2𝜋.
(d) Representative normalized transmission spectra under different on-waveguide
(WG) power. Intrinsic𝑄0 and external (coupling)𝑄𝑒 of this mode are 418.6 Million
and 625.9 Million, respectively. This mode is at 1550nm.

The SiO2 resonator is a disk with a wedge suspended in air, which supports a
number of modes in each polarization. The fundamental TM mode (with the
highest 𝑄 factor) is used for the measurements. The mode identification method is
described elsewhere[1] and its profile is shown in Fig. D.1(a). To evaluate the mode
temperature (as defined in Eq. (1.50)) change upon optical absorption, i.e., 𝛿𝑇/𝑃abs

in Eq. (2.2) in the main text, finite-element method simulation is performed (Fig.
D.1(a)) using parameters in Section 2.8.6. The heating rate distribution is assumed
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to be proportional to the electric field intensity. Here, 𝛿𝑇/𝑃abs is evaluated to be
552 K·W−1. Measured integrated mode dispersion 𝐷int/2𝜋 = (𝜔𝜇 −𝜔0 − 𝜇𝐷1)/2𝜋
of this mode family is shown in the Fig. D.1(b), along with a parabola fitting.

The simulated thermal diffusion responsivity 𝑟 (Ω) (as defined in Eq. (1.65)) is
plotted in Fig. D.1(c). The thermal relaxation bandwidth (3 dB) is <100 Hz,
where the probe response is suppressed by the servo feedback locking loop with a
bandwidth of 1kHz (see Fig. 2.3(b) and Fig. 2.3(c) in the main text). Measuring
the low-frequency photothermal response requires a locking bandwidth smaller than
10 Hz, which is challenging. Thus the ratio experiment is not performed on the
silica resonator. Also, due to the suspended nature of the silica structure, the optical
absorption effect for the current resonator is typically 102 higher than Kerr nonlinear
effect (𝑔 ≪ 𝛼)[2]. Therefore, it is reasonable to neglect the Kerr contribution in
the sum experiment, and attribute all the resonance shift to material absorption
(𝛼 + 𝑔 ≈ 𝛼).

Representative linewidth broadening curves at different waveguide pumping power
are plotted in Fig. D.1(d) and exhibit the characteristic thermal ‘triangle’ features, as
expected. Eq. (B.12) (in this case 𝑟=0) and Eq. (B.14) are used to fit the lineshape
in Fig. D.1(d), and the thermal absorption coefficient 𝛼 is extracted. As mentioned
in the main text, the laser frequency must be tuned adiabatically to ensure thermal
equilibrium at all times. This is checked by decreasing laser frequency scanning
speed at constant power, while monitoring the transmission spectra, until the edge
of the ‘triangle’ stops shifting to the red-detuned direction. Here the frequency
scanning speed is set to 20 MHz s−1, which is achieved by using a narrow-linewidth
fiber laser.

This experiment is repeated using another SiO2 resonator (𝐷1/2𝜋 = 10 GHz) with
different mode polarization. The TE and TM modes are measured to have absorption
𝑄 factors of 4148 ± 264 M and 4160 ± 250 M, respectively. These results show
that polarization does not significantly affect the measured absorption 𝑄 factors of
the SiO2 device. We note that spatial mode identification is not performed in this
repeated experiment, which affects the value of 𝛿𝑇/𝑃abs. For example, 𝛿𝑇/𝑃abs is
evaluated to be 554, 537, 522 K·W−1 for TE0, TE1, TE2 modes and 552, 535, 519
K·W−1 for TM0, TM1, TM2 modes, respectively. As a result, the error uncertainty
in the absorption Q factors for this device is larger.
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Figure D.2: Si3N4 measurements. (a) Mode profile of the measured mode family
(left) and temperature distribution in the resonator when heated by optical absorption
(right). The Si3N4 core is 2.2 𝜇m × 0.95 𝜇m and is cladded by 3.45 𝜇m-thick
silica. The resonator radius is 0.562 mm. (b) Measured dispersion spectrum
of the measured mode family. The dashed red line is the parabola fitting with
𝐷1/2𝜋 = 40.53 GHz and 𝐷2/2𝜋 = 215.7 kHz. Relative mode number 𝜇 = 0
corresponds to wavelength close to 1550 nm. (c) Simulated thermal diffusion
response 𝑟 (Ω) versus modulation frequency Ω/2𝜋. (d) Representative normalized
transmission spectra under different on-waveguide (WG) power. Intrinsic 𝑄0 and
external (coupling) 𝑄𝑒 of this mode are 29.0 Million and 52.1 Million, respectively.
This mode is at 1544.1nm.

D.2 Measurement of Si3N4 microresonators
The cross-section of the integrated Si3N4 resonator consists of a rectangular Si3N4

core with silica cladding at all sides. The resonator supports two transverse modes
(fundamental TE and TM modes) and the fundamental TE mode is used in sum
measurement. The mode profile and temperature distribution upon optical absorp-
tion heating are shown in Fig. D.2(a). Here, 𝛿𝑇/𝑃abs is evaluated to be 95.3 K·W−1.
The Dispersion spectrum is shown in Fig. D.2(b).

The thermal diffusion responsivity 𝑟 (Ω) (as defined in Eq. (1.65)) of this resonator
is plotted in Fig. D.2(c). As an aside, thermal and Kerr effects are comparable
in Si3N4, and in the ratio experiment the contrast between the two plateaus is
low. In order to increase the contrast, pump and probe modes are chosen as two
mode families with different polarizations (i.e., fundamental TE mode as pump,
fundamental TM mode as probe). The cross phase modulation factor 𝛾 in this case
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is smaller than 2, which effectively suppresses the second (Kerr effect) plateau and
increases the contrast between two plateaus. The cross phase modulation factor
yields

𝛾 =
2
∫
𝑛2
𝑜𝑛2

[
|FTE |2 |FTM |2 + |FTE · F∗

TM |2 + |FTE · FTM |2
]

d𝑉∫
𝑛2
𝑜𝑛2

[
2|FTE |4 + |FTE · FTE |2

]
d𝑉

(𝑛𝑜𝑛𝑔)TE

(𝑛𝑜𝑛𝑔)TM
= 0.67.

(D.1)

In the sum experiment, the fundamental TE mode is tested at multiple wavelengths
across the C-band. The result at 1544.1 nm under different pump power on waveg-
uide is shown in Fig. D.2(d). A low scanning speed (12.7 GHz·s−1) is used to ensure
the resonator reaches thermal equilibrium.

The correction factor for heterogeneous mode distribution in Eqs. (1.43), (1.45),
and (1.53) is calculated based on finite-element method simulation, with

𝑛2 = 0.996𝑛2,Si3N4 + 0.004𝑛2,SiO2 , (D.2)

𝑛𝑜𝑛𝑔 = 0.933(𝑛𝑜𝑛𝑔)Si3N4 + 0.067(𝑛𝑜𝑛𝑔)SiO2 , (D.3)

𝜅a = 0.964𝜅𝑎,Si3N4 + 0.036𝜅𝑎,SiO2 . (D.4)

These correction factors are applied to extract material absorption rate 𝜅a and non-
linearity 𝑛2. The 𝑛𝑜 and 𝑛𝑔 factors (at 1.55 𝜇m) used for SiO2 are 𝑛𝑜 = 1.44,
𝑛𝑔 = 1.46 (ref. [3]), for Si3N4 are 𝑛𝑜 = 2.00, 𝑛𝑔 = 2.04 (ref. [4]).

D.3 Measurement of Al0.2Ga0.8As microresonators
The cross-section of the integrated Al0.2Ga0.8As resonator consists of a rectangular
Al0.2Ga0.8As core with silica cladding at all sides. The cladding has protrusions
on top of the resonator, as illustrated in Fig. D.3(a). The resonator supports two
transverse modes (fundamental TE and TM modes) and the fundamental TE mode
is used in both the sum and ratio measurements. The mode profile and equilibrium
temperature distribution when heated by optical absorption from Al0.2Ga0.8As core
(i.e., bulk absorption) are shown in Fig. D.3(a). Here, 𝛿𝑇/𝑃abs is evaluated to be
90.7 K·W−1. Dispersion spectrum of this mode family is shown in Fig. D.3(b)
along with a parabola fitting with 𝐷1/2𝜋 = 17.93 GHz and 𝐷2/2𝜋 = −19.58 kHz.

We note that surface absorption may be prominent for aluminium gallium arsenide
waveguides depending on fabrication details. This changes the distribution of
absorbed heat for the waveguide cross-section. However, the 𝛿𝑇/𝑃abs coefficient
from simulations differs by less than 1% even if the surface absorption is taken into
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Figure D.3: Al0.2Ga0.8As measurements. (a) Mode profile of the measured mode
family (left) and temperature distribution in the resonator upon optical absorption
heating (right). The core is 0.8 𝜇m ×0.4 𝜇m Al0.2Ga0.8As and is cladded by 1.5𝜇m-
thick silica. The resonator radius is 0.719 mm. It is noted that the top surface is
not flat. (b) Measured frequency dispersion of measured mode family. The dashed
red line is parabola fitting with 𝐷1/2𝜋 = 17.93 GHz and 𝐷2/2𝜋 = −19.58 kHz.
Relative mode number 𝜇 = 0 corresponds to wavelength close to 1550 nm. (c)
Simulated thermal diffusion responsivity 𝑟 (Ω) versus modulation frequency Ω. (d)
Representative normalized transmission spectra under different on-waveguide (WG)
power. Intrinsic 𝑄0 and external (coupling) 𝑄𝑒 of this mode are 1.01 Million and
2.44 Million, respectively. This mode is at 1560.1nm.

account. This is because the spatially larger profile of the thermal distribution is not
significantly affected by the exact location of the smaller modal heat source. The
reported 𝑄abs here includes both bulk and surface contributions and, as noted in
the main text, Al0.2Ga0.8As resonators with 𝑄 factors higher than 𝑄abs have been
reported elsewhere.

The thermal diffusion responsivity 𝑟 (Ω) (as defined in Eq. (1.65)) of the resonator
is simulated using the finite-element method technique and is shown in D.3(c). In
the ratio experiment the pump and probe modes belong to the same fundamental TE
mode. In this case the cross phase modulation factor 𝛾 = 2.

In the sum experiment the fundamental TE mode is tested at multiple wavelengths
across the C-band. The result at 1560.1 nm under different on-waveguide pumping
power is shown in Fig. D.3(d). A low scanning speed (783.9 GHz·s−1) is used
to ensure that the resonator reaches thermal equilibrium. As an aside, two-photon
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absorption and harmonic generation will lead to a decrease in coupling efficiency
as pump power increases [5]. Such effects are not significant in Fig. D.3, indicating
that the processes are not prominent for the current samples.

The correction factor for heterogeneous mode distribution in Eqs. (1.43), (1.45),
and (1.53) is calculated based on finite-element method,

𝑛2 = 0.997𝑛2,Al0.2Ga0.8As + 0.003𝑛2,SiO2 , (D.5)

𝑛𝑜𝑛𝑔 = 0.892(𝑛𝑜𝑛𝑔)Al0.2Ga0.8As + 0.108(𝑛𝑜𝑛𝑔)SiO2 , (D.6)

𝜅a = 0.977𝜅𝑎,Al0.2Ga0.8As + 0.023𝜅𝑎,SiO2 . (D.7)

These correction factors are applied to extract material absorption rate 𝜅a and non-
linearity 𝑛2. The 𝑛𝑜 and 𝑛𝑔 factors (at 1.55 𝜇m) used for Al0.2Ga0.8As are 𝑛𝑜 = 3.28,
𝑛𝑔 = 3.22 (ref. [6]).

D.4 Measurement of Ta2O5 microresonators
The cross-section of the integrated Ta2O5 resonator consists of a rectangular Ta2O5

core on top of a silica substrate, and there’s no cladding on the other sides of the
resonator. The resonator supports two transverse modes (fundamental TE and TM)
and the fundamental TE mode is used in both the sum and ratio measurements.
The mode profile and equilibrium temperature distribution when heated by optical
absorption are shown in Fig. D.4(a). Here, 𝛿𝑇/𝑃abs is evaluated to be 1085.1 K·W−1

(using thermal conductivity 0.4 W·m−1·K−1). Dispersion spectrum is shown in Fig.
D.4(b). The red dashed line indicates a parabola fitting with 𝐷1/2𝜋 = 195.2 GHz
and 𝐷2/2𝜋 = −8.188 kHz.

In this study, the thermal conductivity assumed in the calculation of 𝑄abs was taken
from that reported for electron-beam deposited Ta2O5, which is 0.4 W·m−1·K−1 (ref.
[7]). Other reported values vary from 0.2 to 5 W·m−1·K−1 (ref. [8–10]) as thermal
conductivity is strongly dependent upon deposition process among other factors.
As discussed in section IIC, larger thermal conductivity will lead to faster thermal
diffusion and therefore a lower value for 𝑄abs inferred from the measurements (see
also Fig. D.5). We also note that the measured value of 𝑄0 of the device places an
upper bound on the total loss of the resonator. As absorption is only a component
of the total resonator loss, 𝑄0 also therefore also sets a lower bound on 𝑄abs.

The thermal diffusion responsivity 𝑟 (Ω) (as defined in Eq. (1.65)) of the resonator
is simulated using the finite-element method technique and shown in D.4c. In the
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Figure D.4: Ta2O5 measurements. (a) Mode profile of the measured mode family
(left) and equilibrium temperature distribution inside the resonator upon optical
absorption heating (right). The resonator consists a 2.25 𝜇m × 0.57 𝜇m core
(Ta2O5) and a silica substrate. The resonator radius is 0.1095mm. (b) Measured
dispersion spectrum of the measured mode family. The dashed red line is parabola
fit with 𝐷1/2𝜋 = 192.5 GHz and 𝐷2/2𝜋 = −8.188 MHz. Relative mode number
𝜇 = 0 corresponds to wavelength close to 1550 nm. (c) Simulated temperature
response 𝑟 (Ω) versus modulation frequency Ω/2𝜋. (d) Representative normalized
transmission spectra under different on-waveguide (WG) power. Intrinsic 𝑄0 and
external (coupling) 𝑄𝑒 of this mode are 2.02 Million and 6.59 Million, respectively.
This mode is around 1543.5nm.

ratio experiment the pump and probe modes belong to the same fundamental TE
mode. In this case the cross phase modulation factor 𝛾 = 2.

In sum experiment the fundamental TE mode is tested at multiple wavelengths
across the C-band. the result at 1543.5nm under different on-waveguide power is
shown in Fig. D.4(d). A low scanning speed (1378 GHz·s−1) is used to ensure the
thermal equilibrium.

The correction factor for heterogeneous mode distribution in Eqs. (1.43), (1.45),
and (1.53) is calculated based on finite-element method,

𝑛2 = 0.989𝑛2,Ta2O5 + 0.009𝑛2,SiO2 + 0.002𝑛2,Air, (D.8)

𝑛𝑜𝑛𝑔 = 0.874(𝑛𝑜𝑛𝑔)Ta2O5 + 0.080(𝑛𝑜𝑛𝑔)SiO2 + 0.046(𝑛𝑜𝑛𝑔)Air, (D.9)

𝜅a = 0.946𝜅𝑎,Ta2O5 + 0.042𝜅𝑎,SiO2 + 0.012𝜅𝑎,Air. (D.10)
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Figure D.5: Calculated 𝑄abs of Ta2O5 versus thermal conductivity. The calcu-
lated material limited 𝑄abs of Ta2O5 is plotted versus the thermal conductivity of
Ta2O5 used in the FEM simulation. The light blue shading denotes the standard de-
viation from the measurements. The thermal conductivity value used in this study is
marked with orange dashed line, while the reported range of values in the literature
is shaded in gray. The lowest possible 𝑄abs as set by measured intrinsic 𝑄 factor is
calculated from Eq. (D.10) and is also plotted as the black dashed line.

These correction factors are applied to extract material absorption rate 𝜅a and non-
linearity 𝑛2. The 𝑛𝑜 and 𝑛𝑔 factors (at 1.55 𝜇m) used for Ta2O5 are 𝑛𝑜 = 2.06,
𝑛𝑔 = 2.10 (ref. [11]).

References

[1] Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics.
Nat. Commun. 8, 14869 (2017).

[2] Rokhsari, H. & Vahala, K. J. Observation of Kerr nonlinearity in microcavities
at room temperature. Opt. Lett. 30, 427–429 (2005).

[3] Malitson, I. H. Interspecimen comparison of the refractive index of fused
silica. J. Opt. Soc. Am. 55, 1205–1209 (1965).

[4] Luke, K., Okawachi, Y., Lamont, M. R. E., Gaeta, A. L. & Lipson, M.
Broadband mid-infrared frequency comb generation in a Si3N4 microresonator.
Opt. Lett. 40, 4823–4826 (2015).

[5] Parrain, D. et al. Origin of optical losses in gallium arsenide disk whispering
gallery resonators. Opt. Express 23, 19656–19672 (2015).

[6] Papatryfonos, K. et al. Refractive indices of MBE-grown Al𝑥Ga1−𝑥As ternary
alloys in the transparent wavelength region. AIP Adv. 11, 025327 (2021).



136

[7] Farsi, A., Siciliani de Cumis, M., Marino, F. & Marin, F. Photothermal and
thermo-refractive effects in high reflectivity mirrors at room and cryogenic
temperature. J. Appl. Phys. 111, 043101 (2012).

[8] Wu, Z. L., Reichling, M., Hu, X.-Q., Balasubramanian, K. & Guenther, K. H.
Absorption and thermal conductivity of oxide thin films measured by pho-
tothermal displacement and reflectance methods. Appl. Opt. 32, 5660 (1993).

[9] Landon, C. D. et al. Thermal transport in tantalum oxide films for memristive
applications. Appl. Phys. Lett. 107, 023108 (2015).

[10] Grilli, M., Ristau, D., Dieckmann, M. & Willamowski, U. Thermal conduc-
tivity of E-beam coatings. Appl. Phys. A 71, 71–76 (2000).

[11] Bright, T. J. et al. Infrared optical properties of amorphous and nanocrystalline
Ta2O5 thin films. J. Appl. Phys. 114, 083515 (2013).



137

A p p e n d i x E

OH ABSORPTION IN ON-CHIP HIGH-Q RESONATORS

This chapter is based on the following published paper:
Wu L., Gao M., Liu J.-Y., Chen H.-J., Colburn K., Blauvelt H.A., and Vahala K.,
Hydroxyl ion absorption in on-chip high-𝑄 resonators, Opt. Lett. 48, 3511-3514

(2023).
https://doi.org/10.1364/OL.492067

High-Q integrated resonators have become an essential component in nonlinear
photonics. Most often, the guided light in these structures has a significant fractional
overlap with silica (e.g., all-silica wedge resonators [1, 2] and silica-clad ultra-low-
loss silicon nitride waveguides [3, 4]). It is therefore important to understand the loss
limits imposed by the silica used in silicon photonic processing. Besides interface
scattering loss, optical absorption from bound hydroxyl ions (Si-OH) can be a
significant component of loss [5], especially since thermal silica is prepared using a
process involving water. Bound hydroxyl ions produce a well-known fundamental
absorption peak at 2720 nm [6] and the overtone at 1380 nm is used here to measure
OH absorption loss in ultra-high-Q thermal-silica wedge microresonators. Further
comparison to scattering loss is made over a wavelength range from 680 nm to 1550
nm. Also, using cavity-enhanced photo-thermal spectroscopy [5] near the 1380 nm
band, the OH ion content level is estimated to be 2.4 ppm (weight). This value also
agrees with Secondary Ion Mass Spectroscopy (SIMS) depth profiling performed
on the resonator material. Outside of the 1380 nm band, scattering loss is confirmed
by measurement and modeling to be the dominant loss mechanism in the samples
tested.

Thermally-grown silica wedge whispering-gallery resonator devices were prepared
as measurement samples, and featured 8 𝜇m thermal oxide thickness with resonator
diameter 6.5 mm (10 GHz free spectral range, FSR). The fabrication steps are
detailed in reference [2]. The thermal silica was grown from float-zone (low back-
ground doping level) silicon wafers using the wet oxidation method. As a final step,
the devices were annealed for 18-hours at 1000◦C in N2. The samples were stored
and measured in a dry N2 environment to minimize environmental impact on optical
loss. Tapered fiber couplers [7, 8] were used to couple probe light to the resonator

https://doi.org/10.1364/OL.492067
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samples.

A strong increase in loss near 1380 nm is apparent in all six samples, correspond-
ing to the OH absorption band and reaching over 200 dB/km. This absorption
quickly decreases for wavelengths above and below 1380 nm. The loss in other
spectral regions is believed to be dominated by Rayleigh scattering. The wavelength
dependence of this scattering within the resonator mode volume would scale approx-
imately as 𝜆−4, and does not fit the data. Modeling of surface scattering is described
in the Methods and provides better agreement with the wavelength dependence. This
theoretical dependence is given by the purple curve (for the fundamental TE mode)
where surface roughness variance (1.9 nm) and correlation length (350 nm) are
assumed in the plot [9]. The origin of the increased loss at the shortest wavelengths
measured is not known, but possibilities include absorption loss from metallic ion
impurities and scattering from material density fluctuations. For example, SIMS
data has shown that Chromium is a residual contaminant in our processing, and Cr3+

ions can contribute 1.6 dB/km/ppbw at 800 nm (peak at 625 nm) to absorption [10].

Material 1385 (dB/km) 1550 (dB/km)
thermal silica in this study 152 3.2
1 ppmw OH in silica [6] 62.7
Wet fiber studied in [6] 48500 100
Fiber studied in [11] 1.172 0.045
low-OH fiber [12, 13] 0.05 0.02

Table E.1: Summary of absorption loss rates at both 1385 nm and 1550 nm from
Fig. E.1 and taken from the literature. Note that ppmw is parts per million in weight
(equivalently, 𝜇g/g).

Cavity-enhanced photothermal spectroscopy (CEPS) [5] was used to further study
the OH absorption loss. This method measures the microresonator resonance ther-
mal triangle formation induced by the thermo-optical effect [14] to determine mode
volume absorption. Details on this method are provided in reference [5]. Fig. E.1
summarizes the wavelength dependence of the measured absorption loss in both the
1380 nm band and at 1550 nm. The measured absorption near 1380 nm follows
reasonably well the OH overtone lineshape in silica as determined elsewhere [6]
(blue curve superimposed in plot). To fit the magnitude of the lineshape function
to the data, an OH content level of 2.4 ppm weight is used. Also, the data near
1550 nm indicates that by further reduction in scattering loss, the existing thermal
silica can provide absorption limited Q factors as high as 8 billion. This value is 2×
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Figure E.1: Absorption loss measurement results. Absorption loss as measured
by cavity-enhanced photothermal spectroscopy in the 1380 nm band. Red dots: data
from sample device. Blue solid line: 2.4 ppm (weight) OH content level absorption
lineshape based on reference (Humbach, et. al. J. Non-Cryst. Solids 203, 19-26
(1996).).

larger than measured for wedge resonators in a previous study [5] and is attributed
to application of an improved resist cleaning step. The absorption loss measurement
results at 1385 nm and 1550 nm are summarized in Table E.1 and compared with
values from the literature. The measured absorption ratio 𝛼(1385 nm)/𝛼(1550 nm)
in the current data is more consistent with the report in ref. [12]. The high OH
concentration in ref. [6] could possibly account for this difference.
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A p p e n d i x F

THEORETICAL DISPERSION OF COUPLED 2- AND 3-RING
RESONATORS

F.1 Eigenmodes of a two-ring coupled resonator
In this section we study the coupling between the two coupled rings and analyze the
mode frequencies of the compound system. Eigenfrequencies of coupled resonators
have traditionally been calculated from a coupled-mode perspective, where modal
coupling are calculated as off-diagonal matrix elements. However, this approach
becomes unfeasible in the current system as one longitudinal mode will couple
to many modes from the opposite ring because mode number matching is not
required. The dependence of coupling with respect to wavelength is also difficult
to implement. To circumvent these problems, we instead use a transfer function
formalism to determine the mode frequencies.

The resonator schematic is shown in Fig. F.1. 𝐿A and 𝐿B are the circumferences of
the right and left ring, respectively, 𝐿co is the length of the coupling region, 𝑐 is the
speed of light in vacuum, and 𝑛wg(𝜔) is the effective phase index of the fundamental
mode in the SiN waveguide at optical angular frequency 𝜔. By defining a single
index along the waveguide, we have neglected the geometric dispersions resulting
from bending the waveguide. These have been shown to be small compared to the
geometric dispersion induced by waveguide confinement. We now assume that light
with a single frequency is propagating in the system. At the points opposite to the
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Figure F.1: Schematic of the two-ring coupled resonator. Left panel: Top view
of the coupled resonator with key points marked. Right panel: Schematic of the
resonator with straightened waveguides (not to scale). Segment lengths and field
amplitudes have been marked.
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coupling region, the field amplitude in each ring is denoted as 𝜓I,A and 𝜓I,B. These
amplitudes can be assembled into a vector as 𝜓I = (𝜓I,A, 𝜓I,B)T, where T denotes
the transpose of a vector or matrix. Similarly, the field just before the coupling part
can be found as(

𝜓II,A

𝜓II,B

)
=

(
𝑒𝑖𝑛wg𝜔(𝐿A−𝐿co)/(2𝑐) 0

0 𝑒𝑖𝑛wg𝜔(𝐿B−𝐿co)/(2𝑐)

) (
𝜓I,A

𝜓I,B

)
. (F.1)

For the coupling section, we denote the coupling rate per unit length as 𝑔co. The
coupling depends on𝜔, and is assumed to be uniform along the coupling section (i.e.,
boundary effects from adiabatic bends are included in the effective coupling length).
The field after the coupling section can be expressed with a matrix exponential:(

𝜓III,A

𝜓III,B

)
= exp

[
𝑖𝐿co

(
𝑛wg𝜔/𝑐 𝑔co

𝑔co 𝑛wg𝜔/𝑐

)] (
𝜓II,A

𝜓II,B

)
. (F.2)

Finally, returning to the points opposite to the coupling region, the field reads(
𝜓IV,A

𝜓IV,B

)
=

(
𝑒𝑖𝑛wg𝜔(𝐿A−𝐿co)/(2𝑐) 0

0 𝑒𝑖𝑛wg𝜔(𝐿B−𝐿co)/(2𝑐)

) (
𝜓III,A

𝜓III,B

)
. (F.3)

For modes in the system, we require the state to reproduce itself after one round trip:

𝜓IV = 𝑒𝑖Θ𝜓I. (F.4)

This requires finding the eigenvalues of the roundtrip transfer matrix 𝑇 , which is the
product of the previous three transfer matrices:

𝜓IV = 𝑇𝜓I, 𝑇 = 𝑒𝑖𝑛wg𝜔𝐿/𝑐
(
𝑒𝑖𝑛wg𝜔Δ𝐿/𝑐 cos(𝑔co𝐿co) 𝑖 sin(𝑔co𝐿co)

𝑖 sin(𝑔co𝐿co) 𝑒−𝑖𝑛wg𝜔Δ𝐿/𝑐 cos(𝑔co𝐿co)

)
,

(F.5)
where 𝐿 = (𝐿A + 𝐿B)/2 and Δ𝐿 = (𝐿B − 𝐿A)/2. Each one of the two eigenvalues
defines a transverse mode family of the system. Furthermore, when the accumulated
phase Θ equals an integer multiple of 2𝜋, a longitudinal mode can be found at the
corresponding frequency. Diagonalizing the 𝑇 matrix gives

Θ = 𝑛wg𝜔𝐿/𝑐 ∓ arccos[cos(𝑔co𝐿co) cos(𝑛wg𝜔Δ𝐿/𝑐)] . (F.6)

Now we define a mode number associated with the average length of the rings:

𝑚 ≡
𝑛wg𝜔𝐿

2𝜋𝑐
. (F.7)
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Figure F.2: Eigenfrequency plots for the two-ring coupled resonator. (a,b,c)
Relative frequency (normalized to 𝐷1,𝑚), relative FSR (normalized to 𝜖𝐷1,𝑚) and
relative 𝐷2 (normalized to 𝜖2𝐷1,𝑚) plots for 𝑔co𝐿co = 0.3. (d,e,f) Similar plots but
with 𝑔co𝐿co = 1.0. The horizontal axis is defined as 𝜙𝑚 = 2𝜋𝜖𝑚. Relative mode
frequency, FSR and 𝐷2 for individual rings before coupling have been superimposed
(black dashed lines). The relative FSR is found by differentiating the relative
frequency, and the relative 𝐷2 is found by differentiating the relative FSR.

The relation can be inverted to give a solution of 𝜔𝑚 dependent on 𝑚. When 𝑚 is
an integer, 𝜔𝑚 would be the mode frequencies for a ring resonator with length 𝐿.
As 𝑔co ≪ 𝜔/𝑐 and Δ𝐿 ≪ 𝐿, the phase contribution related to the coupling varies
slowly compared to the 𝑛wg𝜔𝐿/𝑐 part. This allows us to approximate the coupled
mode frequencies using 𝜔𝑚, and the eigenfrequencies 𝜔𝑚,± can be solved as:

2𝜋𝑚 = 𝑛wg𝜔𝑚,±𝐿/𝑐 ∓ arccos[cos(𝑔co𝐿co) cos(𝑛wg𝜔𝑚,±Δ𝐿/𝑐)]
≈ 𝑛wg𝜔𝑚,±𝐿/𝑐 ∓ arccos[cos(𝑔co𝐿co) cos(𝑛wg𝜔𝑚Δ𝐿/𝑐)], (F.8)

𝜔𝑚,± = 𝜔𝑚 ±
[
𝐿

𝑐

𝜕 (𝑛wg𝜔)
𝜕𝜔

]−1
������
𝜔=𝜔𝑚

× arccos
[
cos(𝑔co𝐿co) cos

(
2𝜋

Δ𝐿

𝐿
𝑚

)]
= 𝜔𝑚 ± 𝐷1,𝑚

2𝜋
arccos [cos(𝑔co𝐿co) cos (2𝜋𝜖𝑚)] , (F.9)

where 𝐷1.𝑚 is the local FSR that depends on 𝜔𝑚 and 𝜖 = Δ𝐿/𝐿 is the length contrast
of the rings. The result shows that the mode structure can be seen as splitting off
from the length-averaged resonator modes, where the splitting gap is determined
by 𝑔co and modulated with respect to mode number with period 𝜖−1. Note that Eq.
(3.2) in the main text is obtained by replacing the mode number 𝑚 with the relative
mode number 𝜇 in Eq. (F.9). Such a variable change is valid when 𝜇 is referenced
to a frequency degeneracy of the rings.



144

Mode number µ

(ω
µ-ω

0-D
1*

µ-
D
2/2

*µ
2 )

/2
π   (G

H
z)a

-500 -400 -300 -200 -100 0 100 200 300 400 500
-10

-5

0

5

10

I

II

III

IV

V

VI

Ring A
Ring B

Fitted resonances

I II

III IV

V VI

Emax

-Emax

R
eal(E

x ) in the coupling region

b1

0

R
ing A com

position

0

Figure F.3: Illustration of mode hybridization in the coupling region. (a) Fitted
optical resonance frequency dispersion of the coupled resonator (solid curves) and
fitted mode frequency dispersion of the single rings (red and blue lines) plotted
versus relative mode number 𝜇. These plots are the same as Fig. 3.3(b). (b)
Cross-sectional view of simulated electric field amplitudes in the coupled region at
mode numbers indicated in panel (a) by the black points. The right (left) waveguide
belongs to ring A (B). At the crossing center (I, II, V and VI), two waveguides
have the same field intensity and the opposite (same) phase for the anti-symmetric
(symmetric) mode. When hybrid mode frequencies meet the single-ring resonances
(III and IV), the electrical field at the coupled region is contributed by a single ring.

To gain insight into the model, Fig. F.2 plots mode frequency, FSR and the second-
order dispersion parameter 𝐷2 relative to 𝜔𝑚 for different values of 𝑔co as predicted
by Eq. (F.9). In these plots 𝜔𝑚 has been subtracted from the mode frequencies,
and only the contributions associated with FSR difference of the two rings and the
coupling are considered. The 𝐷1,𝑚 is also approximated as a constant. The FSRs
of the transverse modes show a typical avoided crossing behavior as shown in Fig.
F.2(b) and F.2(e). The FSR of one mode continuously transitions to the other mode
at the avoided crossing, and similar to the coupling itself, this process is also periodic
in the frequency domain. The calculated 𝐷2 shows spikes at the avoided crossing
center, and the positive spike can be used to counter the normal dispersion present in
the averaged resonator dispersion. Smaller 𝑔co leads to higher peak 𝐷2 with smaller
crossing bandwidth. To get a larger crossing bandwidth, 𝑔co could be increased at
the expense of lower 𝐷2, but the maximum bandwidth is half the modulation period
(i.e., the vernier FSR) as the effect of the neighboring crossings set in and shifts the
𝐷2 in the opposite direction.

In addition to the mode frequency, the mode compositions can also be derived
from the transfer matrix 𝑇 . As the change of mode profile is large enough across the
measured optical bandwidth, the mode compositions has an impact on soliton power
distribution in the rings (as in Fig. 3.2 in the main text), and complements FSRs
and dispersions when describing the dispersion characteristics. The eigenvectors of
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𝑇 read,

𝜓I ∝
(√︄

sin(𝛼 + 𝜙𝑚)
2 sin𝛼 cos 𝜙𝑚

, ∓

√︄
sin(𝛼 − 𝜙𝑚)

2 sin𝛼 cos 𝜙𝑚

)T

, 𝜙𝑚 = 2𝜋𝜖𝑚, 𝛼 = ∓ arccos [cos(𝑔co𝐿co) cos 𝜙𝑚] .

(F.10)
This gives the relative field intensities in the non-coupled regions of the rings for a
particular mode, and is used to plot composition ratios in Fig. 3.3. Another point
of interest is the center of the coupled region. Here the field can be found as

𝜓co ∝
(

cos(𝑔co𝐿co/2) 𝑖 sin(𝑔co𝐿co/2)
𝑖 sin(𝑔co𝐿co/2) cos(𝑔co𝐿co/2)

) (
𝑒𝑖𝜙𝑚/2 0

0 𝑒−𝑖𝜙𝑚/2

)
𝜓I

∝
(√︂

sin𝛼 + sin 𝜙𝑚

2 sin𝛼
, ∓

√︂
sin𝛼 − sin 𝜙𝑚

2 sin𝛼

)T

. (F.11)

There are some special cases of 𝜙𝑚 that lead to simplified field distributions and are
demonstrated in Fig. F.3. For example, if 𝜙𝑚/𝜋 is an integer (crossing centers), the
modes become purely symmetrical and anti-symmetrical:

𝜓I ∝ (
√︁

1/2,∓
√︁

1/2)T, 𝜓co ∝ (
√︁

1/2,∓
√︁

1/2)T. (F.12)

Points I, II, V, and VI in Fig. F.3(b) belong to these cases. Points II and V are
symmetric modes formed by the two rings, with equal mode intensities and the
same phase. On the other hand, points I and VI are anti-symmetric modes, with
equal mode intensities but opposite phase. These results happen to agree with
coupled-mode calculations when only the pair of degenerate longitudinal modes
from each ring are considered. However, while the energy is equally distributed in
the two rings in the same way as the reduced coupled-mode theory predicted, other
longitudinal modes still participate in the coupling because the wavevector in the
coupled region differs from that in the uncoupled region. On the other hand, if 𝜙𝑚/𝜋
is a half-integer (halfway between crossing centers), then at the center of coupling
position the field is entirely within a single ring:

𝜓I ∝ (cos(𝑔co𝐿co/2), sin(𝑔co𝐿co/2))T, 𝜓co ∝ (1, 0)T, or (F.13)

𝜓I ∝ (sin(𝑔co𝐿co/2),− cos(𝑔co𝐿co/2))T, 𝜓co ∝ (0,−1)T. (F.14)

Points III and IV in Fig. F.3(b) belong to these cases.

An interesting feature of the field distribution is that, for a single continuous branch,
the field compositions exchange parity at the next degeneracy point, and the anti-
symmetric mode now becomes the symmetric mode (from point I to V) and vice
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versa (from point II to VI). The change of parity shows that the modes repeat them-
selves every two vernier periods (every two degeneracy points) instead of one, in
agreement with Eq. (F.9). While the parity exchange is obvious after plotting the
dispersion (Fig. F.3(a)), it can also be understood from a mode number argument.
We consider the total phase accumulated in ring A for a specific mode divided by
2𝜋, which should be an integer and denoted as 𝑚A. This is the “mode number”
for ring A for the specific mode. Similarly 𝑚B could be defined. These two num-
bers equal to the respective mode numbers of the closest uncoupled modes, which
can be seen by adiabatically turning of the coupling. For a single vernier period,
the total mode number changes by an odd number. However, going to the next
longitudinal mode by changing the frequency alone changes both 𝑚A and 𝑚B by
one. The only way to induce a separate mode number change is to create a zero
in the field amplitude somewhere in the respective ring, which is indeed the case
for points III and IV shown in Fig. F.3(b). Considering that the individual mode
numbers are about equally distributed around the averaged-length mode number 𝑚
(e.g., | (𝑚B − 𝑚) − (𝑚 − 𝑚A) | ≤ 1), the extra increment of 𝑚B and decrement of
𝑚A should have taken place alternatively between the vernier periods, indicating the
mode branch switches mode compositions for each vernier period.

F.2 Eigenmodes of a three-ring coupled resonator
In this section we study the mode frequencies of the three-ring coupled resonator.
Although the derivation is similar to that of the two-ring resonator, we will highlight
some features of the coupled system that are not obvious in the two-ring case. The
result can also be readily generalized to multi-ring arrangements.

Ring
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Figure F.4: Schematic of the three-ring coupled resonator. Left panel: Top view
of the coupled resonator with key points marked. Right panel: Schematic of the
resonator with straightened waveguides (not to scale). Segment lengths have been
marked.
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The schematic for the three-ring coupled resonator is shown in Fig. F.4 along
with definitions of segment lengths. Unlike the two-ring case, there is no explicit
symmetry to take advantage of, and the segmentation method is chosen to reduce
calculation complexity. We can assemble the field amplitudes from ring C, A, and
B, in that order, into a vector and find the transfer matrix for each section:

𝜓II = exp

𝑖𝑛wg𝜔/𝑐
©­­«
𝐿C1 0 0
0 𝐿A1 0
0 0 𝐿B1

ª®®¬
𝜓I, (F.15)

𝜓III = exp

𝑖𝐿co
©­­«
𝑛wg𝜔/𝑐 0 0

0 𝑛wg𝜔/𝑐 𝑔co

0 𝑔co 𝑛wg𝜔/𝑐

ª®®¬
𝜓II, (F.16)

𝜓IV = exp

𝑖𝑛wg𝜔/𝑐
©­­«
𝐿2 0 0
0 𝐿2 0
0 0 𝐿2

ª®®¬
𝜓III, (F.17)

𝜓V = exp

𝑖𝐿co
©­­«
𝑛wg𝜔/𝑐 𝑔co 0
𝑔co 𝑛wg𝜔/𝑐 0
0 0 𝑛wg𝜔/𝑐

ª®®¬
𝜓IV. (F.18)

The overall round-trip transfer matrix is the product of the previous four matrices
and reads

𝑇 =

©­­«
𝑒𝑖𝑛wg𝜔𝐿C/𝑐 cos(𝑔co𝐿co) 𝑖𝑒𝑖𝑛wg𝜔𝐿A/𝑐 cos(𝑔co𝐿co) sin(𝑔co𝐿co) −𝑒𝑖𝑛wg𝜔𝐿B/𝑐 sin2(𝑔co𝐿co)
𝑖𝑒𝑖𝑛wg𝜔𝐿C/𝑐 sin(𝑔co𝐿co) 𝑒𝑖𝑛wg𝜔𝐿A/𝑐 cos2(𝑔co𝐿co) 𝑖𝑒𝑖𝑛wg𝜔𝐿B/𝑐 cos(𝑔co𝐿co) sin(𝑔co𝐿co)

0 𝑖𝑒𝑖𝑛wg𝜔𝐿A/𝑐 sin(𝑔co𝐿co) 𝑒𝑖𝑛wg𝜔𝐿B/𝑐 cos(𝑔co𝐿co)

ª®®¬ ,
(F.19)

where we defined the total length of ring C, 𝐿C = 𝐿C1 + 𝐿2 + 2𝐿co, and 𝐿A and
𝐿B are defined similarly. Note that the dependence on individual segment lengths
𝐿C1, 𝐿A1, 𝐿B1, and 𝐿2 have disappeared from 𝑇 , indicating that the relative position
of the couplers on ring A does not matter for eigenfrequency calculations. This
is because propagating the same distance for all three components provides only a
global phase for the state, which can be moved past the coupler. Mathematically,
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Figure F.5: Eigenfrequency plots for the three-ring coupled resonator, showing
relative frequency (normalized to 𝐷1,𝑚) versus 𝜙1. Parameters are (a) 𝑔co𝐿co =

0.3 and 𝜙2 = 0; (b) 𝑔co𝐿co = 0.3 and 𝜙2 = 0.4; (c) 𝑔co𝐿co = 1.0 and 𝜙2 = 0.4.

the coupling matrix commutes with the propagation matrix, which is proportional
to the identity matrix for identical ring cross sections:𝐿co

©­­«
𝑛wg𝜔/𝑐 0 0

0 𝑛wg𝜔/𝑐 𝑔co

0 𝑔co 𝑛wg𝜔/𝑐

ª®®¬ , 𝑛wg𝜔/𝑐
©­­«
𝐿2 0 0
0 𝐿2 0
0 0 𝐿2

ª®®¬
 = 0. (F.20)

For the coupler itself, the propagating part (diagonal elements) also commute with
the pure coupling part (off-diagonal elements), although different couplers do not
commute. Therefore, the system is equivalent to propagating along the entire length
of individual rings, followed by two point couplers with the same coupling ratios as
the original couplers. This argument works for all coupled resonators with identical
ring cross-sections coupled in a chain or tree topology, and provides a degree of
freedom for placing the rings in the design phase.

Following the two-ring analysis, we define an averaged length for the resonators and
its associated mode number:

𝐿 ≡ 𝐿C + 𝐿A + 𝐿B
3

, 𝑚 ≡
𝑛wg𝜔𝐿

2𝜋𝑐
. (F.21)

We will also need to define two length differences. For the current design, we have
𝐿C + 𝐿B ≈ 2𝐿A, and the following contrast definitions become convenient:

𝜖1 =
𝐿B − 𝐿C

2𝐿
, 𝜖2 =

𝐿C + 𝐿B − 2𝐿A

6𝐿
. (F.22)

With these notations, 𝑇 can be written as

𝑇 = 𝑒2𝜋𝑚𝑖

©­­«
𝑒𝑖(−𝜙1+𝜙2) cos(𝑔co𝐿co) 𝑖𝑒−2𝑖𝜙2 cos(𝑔co𝐿co) sin(𝑔co𝐿co) −𝑒𝑖(𝜙1+𝜙2) sin2(𝑔co𝐿co)
𝑖𝑒𝑖(−𝜙1+𝜙2) sin(𝑔co𝐿co) 𝑒−2𝑖𝜙2 cos2(𝑔co𝐿co) 𝑖𝑒𝑖(𝜙1+𝜙2) cos(𝑔co𝐿co) sin(𝑔co𝐿co)

0 𝑖𝑒−2𝑖𝜙2 sin(𝑔co𝐿co) 𝑒𝑖(𝜙1+𝜙2) cos(𝑔co𝐿co)

ª®®¬ ,
(F.23)
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with 𝜙1 = 2𝜋𝜖1𝑚 and 𝜙2 = 2𝜋𝜖2𝑚. For the current design, 𝜖1 ≈ 3 × 10−3 and
𝜖2 ≈ 1.5× 10−6, which ensures a slowly-varying phase contributed by the coupling.
The eigenfrequencies are given by

𝜔 = 𝜔𝑚 − 𝐷1,𝑚

2𝜋
𝜃, (F.24)

where 𝑒𝑖𝜃 is given by the roots to the cubic characteristic equation:

𝑥3 − (𝑒−2𝑖𝜙2 cos(𝑔co𝐿co) + 2𝑒𝑖𝜙2 cos(𝜙1)) cos(𝑔co𝐿co)𝑥2

+ (𝑒2𝑖𝜙2 cos(𝑔co𝐿co) + 2𝑒−𝑖𝜙2 cos(𝜙1)) cos(𝑔co𝐿co)𝑥 − 1 = 0, 𝑥 ≡ 𝑒𝑖𝜃 . (F.25)

The unitary nature of 𝑇 ensures that all three roots for 𝑥 lie on the complex unit
circle.

As 𝜖2 ≪ 𝜖1 for the current design, 𝜙2 varies much more slowly compared to 𝜙1 and
we will take 𝜙2 to be a constant to simplify the discussions below. Fig. F.5 plots
the relative frequencies for some parameter combinations. In the case of 𝜙2 = 0
(Fig. F.5(a)), the mode frequencies of ring A coincides with the averaged frequency,
and the mode frequencies of ring A and B are symmetrically distributed around the
averaged frequency. As a result, the coupled frequency spectrum resembles that
of the two-ring resonator. A key difference here is that the two gaps opened have
different widths. For crossings at integer 𝜙1/(2𝜋) locations, ring A participates in
the coupling, and the total gap is approximately 2

√
2𝑔co𝐿co × 𝐷1,𝑚/(2𝜋) for small

𝑔co𝐿co. For the other crossings at half-integer 𝜙1/(2𝜋) locations, the mode from
ring A is half an FSR away from ring C and B, and the coupling becomes indirect.
Here the gap width is approximately (𝑔co𝐿co)2 ×𝐷1,𝑚/(2𝜋) for small 𝑔co𝐿co, which
is second order in the coupling strength. A nonzero 𝜙2 = 0 breaks the frequency-
domain symmetry and leads to additional avoided crossings (Fig. F.5(b)). For
stronger coupling strengths, the bandwidths of the crossings expand and merge with
the other crossings (Fig. F.5(c)) similar to the two-ring case. Here the frequency
dispersion become smoother and have less overall coupling-contributed dispersion.

Figure F.6(a) shows the measured dispersion data for the three-ring resonator. The
topmost branch is used for soliton generation and is also shown in Fig. 3.1(e).
Fitting the averaged frequency (not plotted) gives an averaged FSR of 19.9711 GHz
and a second-order dispersion parameter of 282.7 kHz, consistent with the two-ring
results. After subtracting the averaged frequency, Fig. F.6(b) shows the relative
frequency with a similar structure of Fig. F.5(c). Using the exponential decaying
coupling model as described in the methods (𝑔co = 𝑔co,0 exp(−𝜇/𝜇𝑔)), the fitted
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Figure F.6: Dispersion of the coupled three-ring resonator. (a) Measured disper-
sion for the three-ring resonator. The topmost branch is also shown in Fig. 3.1(e) in
the main text. (b) Mode frequencies relative to the averaged frequencies (circles).
Solid curves show the fitted result using the three-ring model, and are in excellent
agreement with the data. Dashed lines indicate frequencies of the individual rings
before coupling.

result for the relative frequencies also shows good agreement with the measured
data. The fitted parameters are 𝑔co,0𝐿co = 0.985, 𝜇𝑔 = 1175 and 𝜙2 = 0.216.
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A p p e n d i x G

CODE TO PLOT UP-TO-DATE FIG. 7.1

G.1 Python code to plot the up-to-date number of exoplanets found using
different methods

1 import xml.etree.ElementTree as ET, urllib.request, gzip, io,

numpy as np, matplotlib.pyplot as plt

2 from collections import Counter

3

4 url = "https://github.com/OpenExoplanetCatalogue/oec_gzip/raw/

master/systems.xml.gz"

5 oec = ET.parse(gzip.GzipFile(fileobj=io.BytesIO(urllib.request.

urlopen(url).read())))

6

7 # Extract discovery years and methods

8 years_methods = Counter((int(planet.findtext("discoveryyear")),

planet.findtext("discoverymethod"))

9 for planet in oec.findall(".//planet")

10 if planet.findtext("discoveryyear"))

11

12 years = range(1995, max(years_methods)[0] + 1)

13

14 # Get the set of discovery methods

15 methods = set(method for year, method in years_methods)

16 # plot ’RV’ the first, ’transit’ the last

17 methods = list(methods)

18 methods.remove(’RV’)

19 methods.remove(’transit’)

20 methods = [’RV’]+methods+[’transit’]

21

22 # Create a list of all counts

23 counts = np.array([[years_methods[(year, method)] for method in

methods] for year in years])

24

25 # Use more contrasting colors

26 colors = plt.cm.tab20(np.linspace(0, 1, len(methods)))

27

28 # Create a stacked bar plot

29 for i, method in enumerate(methods):

30 plt.bar(years, counts[:, i], bottom=np.sum(counts[:, :i], axis
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=1), color=colors[i], label=method)

31

32 # Add labels and legend

33 plt.xlabel("Year")

34 plt.ylabel("Number of planets discovered")

35 plt.ylim(0, 200)

36 plt.legend()

37 plt.show()

Listing G.1: Python code to plot the number of exoplanets found using different
methods with up-to-date information from Open Exoplanet Catalogue database.
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anomalous dispersion, 14

B
blue detuned, 24
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chromatic dispersion, 7
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co-moving frame, 29
coupling

critical coupling, 25
over coupling, 25
under coupling, 25

coupling efficiency, 25
coupling rate

external coupling rate, 17
intrinsic coupling rate, 17
total coupling rate, 16
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Dirac comb, 38
dispersion profile, 8
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absorption dissipation rate, 54
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group index, 10
group velocity, 10
group-velocity dispersion (GVD), 11
GVD parameter, 11

I
integrated dispersion, 7
integrated frequency, 8

K
Kerr nonlinear coefficient, 21

L
linewidth of a mode, 15
longitudinal modes, 6
Lorentzian lineshape, 25
Lugiato-Lefever equation (LLE), 31

M
mode dispersion, 7
mode family, 6
mode number

absolute mode number, 7
relative mode number, 7

mode profile, 6
mode-propogating constant, 9

N
nonlinear refractive index, 4
normal dispersion, 14

P
phase modulator, 2

phase modulator’s half-wave voltage, 3
phase-matching condition, 5
photothermal nonlinear coefficient, 23
pump detuning, 23

Q
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quality factor
absorption-limited 𝑄 factor, 54
external quality factor, 17
intrinsic quality factor, 17
loaded quality factor, 17
total quality factor, 17

R
radial velocity method, 110
red detuned, 24
refractive index, 2
retarded frequency, 8

S
second order dispersion, 7
susceptibility

linear susceptibility, 1
nonlinear susceptibilities, 1

T
thermal bandwidth, 26
thermal response function, 26
transverse modes, 5

V
vacuum permittivity, 1
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