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ABSTRACT

Feedbacks between a warming atmosphere, emission of aerosols, and clouds and
precipitation are some of the most difficult aspects for climate models to accurately
capture. While climate models operate at resolutions of tens or hundreds of kilome-
ters, many of the physics that determine how and where clouds form or precipitate
function at the micron droplet scale. Due to this disparity in physical scales, most
of these cloud physics must be modeled with only a few approximate quantities and
physical equations. These simplifications lead to large uncertainties about climate
forcings such as the sensitivity of global warming to human-emitted aerosols.

This work presents several promising new techniques for modeling and understand-
ing hydrometeors in the climate system, with a particular focus on processes that
involve collisions between droplets. First, I extend a high-complexity high-fidelity
Lagrangian microphysics method to represent the process of breakup, in which
colliding droplets fragment upon collision. Next, I introduce two new methods
which attempt to reduce the assumptions inherent to modeling droplet coalescence,
in which colliding droplets combine to form a larger drop. The first method uses a
spectral finite element approach, while the second generalizes this technique using
a method of moments to create a fully flexible microphysics scheme. Finally, I turn
to remote observations of clouds, aerosols, and lightning over busy shipping regions
to offer new techniques for quantifying aerosol-cloud interactions from creative data
resources. This combination of high-fidelity modeling tools, observational data,
and efficient numerical methods offers a path toward improving our understanding
of the role of cloud microphysics in our climate system.
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FOREWORD

The following essay was my (unsuccessful) submission to the 2024 DOE CSGF
"Communicate Your Science and Engineering" competition. Beyond its entertain-
ment value, I hope it may provide context for my journey pursuing a Mechanical
Engineering PhD by studying cloud microphysics.

Two cloud droplets walk into a bar; do they make it rain?

Five years ago, I never imagined making such a niche science pun. Having recently
finished my second internship in the oil industry as a chemical engineer, I began my
PhD at Caltech, excited to study soot and combustion products.

I never imagined that I would one day call myself a climate scientist, yet here we
are.

As it turns out, soot particles and cloud droplets share a lot in common. Both
float around in the atmosphere and are related to human impacts on climate. Both
provide endless opportunities for scientific play-on-words (“Your simulation must be
huge, the HPC cluster is smoking”). And, interestingly enough, soot and raindrops
both form by the same physical process of coagulation, also known as “collisional
coalescence”.

Let’s unpack the introductory pun to help explain this common physical mechanism.
Clouds are collections of tiny water droplets suspended in the air, droplets which
grow and shrink by condensing and evaporating water from the surrounding air.
When these droplets become large enough, they collide with each other (i.e. walk
into the same metaphorical bar). When these collisions happen, droplets often
stick together and coalesce, forming an even larger droplet. Soot forms via the
same process: small aromatic hydrocarbons produced from combustion bump into
each other and coagulate to form a large soot aggregate. Soot aggregates cause
lung cancer, clog up engines, and contribute to global warming. Coalescing cloud
droplets make it rain.

As a first-year mechanical engineering PhD student, I knew none of these fun facts
about the micro-scale physics of clouds. Fresh out of coursework on hypersonic
fluid mechanics and exploring potential research groups, I was intrigued by an
opportunity to branch into atmospheric fluid mechanics. I soon learned that my
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would-be advisor Professor Tapio Schneider had an ambitious goal in mind: to
revolutionize the way we model climate.

When it came time to choose between Tapio’s research and my initial plan to study
combustion products, I knew next to nothing about the basics of Earth’s atmosphere.
Even worse, Covid-19 upended the world, terminating the in-person meetings with
postdocs and other graduate students that were my only lifeline to making sense
of this new scientific field. When Caltech shut down the campus, I drove from
Pasadena to Colorado to weather the storm with family. Later that same week,
I received the call offering me a graduate fellowship (the CSGF). Instilled with
the urgency of worldwide crisis and presented with this opportunity, my ultimate
decision was easy. This was my chance to help solve a different global crisis: the
uncertainty of climate change.

In the ensuing year, I learned about Earth’s atmosphere largely by osmosis, attending
journal clubs on climate dynamics (“to Rossby, or not to Ross-be?”) and drinking
from the firehose of online classes on Atmospheric Chemistry (“Matlab’s ODE23-
and-me”) and Clouds and Boundary Layer Dynamics (“so flam-buoyant”). At the
same time, I dove into my own initial goal of building an aerosol model for the CliMA
project. I brushed up on mathematical techniques like statistical distributions and
the “method of moments,” all while continuously discovering flaws in the way that
we model not only aerosol particles in the atmosphere, but also every cloud droplet,
ice crystal, and snowflake. If our goal was to reduce uncertainty in this new climate
model, I decided that we would need to rebuild our computational representation of
these cloud microphysics from the ground up.

Modeling the atmosphere is conceptually similar to other applications of computa-
tional fluid mechanics. Large-scale motions like average winds are fully resolved
by dividing the atmosphere into gridboxes, while smaller motions at the scale of
turbulence and clouds are parameterized at the “sub-grid” scale. My metaphorical
watering-hole of cloud and rain drops exists at infinitesimal scales compared with
these 10-100km grid boxes, yet these microphysics determine important climato-
logical details such as where and how much it rains, or how human-emitted aerosols
impact climate. To produce accurate and confident climate predictions, we must
design the underlying mathematical systems such that our supercomputers are effi-
cient at not only moving information from gridbox to gridbox, but also at solving
complex systems of equations and thermodynamics at the subgrid scale.

We typically represent cloud particles as “distributions”: rather than tracking indi-
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vidual droplets directly, we consider the probability of finding a drop of a particular
size within the gridbox. The equations governing how these droplet populations
evolve due to condensation, coalescence, and other processes depend on droplet size,
adding a fifth dimension to our already four-dimensional space-time atmospheric
system. My first PhD paper attacked the numerical challenges and efficiency of this
issue head-on, presenting methods to solve for a droplet-size distribution without
making the sweeping and inaccurate assumptions of canonical models.

My fascination with droplet collisions drew me to more detailed models of cloud
microphysics based on Monte Carlo methods. These models still require heavy
computational power but operate at the scale of tens or hundreds or meters to model
a single cloud. As a project for my class in GPU computing, I decided to answer an
outstanding question related to a different collisional process: what happens when
droplets collide, and then break-up rather than coalescing? The answer is that this
break-up process has little impact on cloud properties compared to coalescence,
but it put to rest an often-cited source of uncertainty in cloud microphysics and
climate. More recently, I turned my attention to satellite observations to inform
our models of cloud microphysics. For instance, collisions between ice crystals are
poorly understood compared with their liquid droplet cousins, but these collisions
produce interesting evidence in the form of charge transfer and ultimately lightning.

As a climate scientist, I found my niche in this peculiar corner of atmospheric
modeling, where collisions between micron-sized particles can have flashy and
significant impacts on global climate. And as an engineer, I love approaching these
modeling challenges by drawing on my problem-solving skills to think outside of
the gridbox.
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C h a p t e r 1

INTRODUCTION

1.1 Clouds and Climate
Clouds provide a crucial link between human action and climate reaction. As hu-
mans pump greenhouse gases and other pollutants into the atmosphere, our climate
responds in predictable ways, i.e. warming according to the greenhouse gas effect.
But the atmosphere also responds in less predictable ways thanks to the complexity
of clouds. Emissions from ships traversing the seas form streaks of brighter clouds,
which are visible from space and which have a global cooling effect (Christensen
et al., 2022). Convective clouds above wildfires and heavily polluted industrial
regions can be strengthened by these aerosols, becoming electrified storm clouds
(Liu et al., 2021); other times, these aerosols have the opposite impact, delaying or
preventing these systems from precipitating (Igel & van den Heever, 2021; Varble
et al., 2023). Present-day climate models cannot accurately or consistently predict
these changes, particularly how the clouds which cool our planet respond to changes
in human-emitted aerosols, and especially not on the timescales necessary for policy
decisions about climate change (Intergovernmental Panel on Climate Change, 2014;
Morrison et al., 2020).

At the root of this challenge is a separation of scales. Climate models simulate
timescales of years and resolve atmospheric dynamics at the scale of 10s or 100s
of kilometers. On the other hand, the physics that determine when, where, and
how clouds form, evolve, and precipitate operate at timescales of seconds and length
scales of microns (10−6m). Consider a stratocumulus cloud looming above Caltech’s
(approximately) 1-square-kilometer campus on a gloomy June day: this thin low
cloud might have a depth of 200m and a density of 100 cloud droplets per cm3. That
means a total of 2 × 1016 cloud droplets exist in the cloud above Caltech’s campus,
all of which are constantly condensing and evaporating water, colliding with each
other, and falling relative to the air around them. Scaled up to a region the size
of Los Angeles, California, or the USA, even the world’s largest supercomputers
cannot simulate this many cloud particles (or “hydrometeors”), much less at the
scale of global climate.
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1.1.1 Challenges in cloud microphysics
As with other underresolved atmospheric processes such as turbulence, the sep-
aration of scales between cloud microphysics and model resolution is addressed
through a set of "subgrid scale" parameterizations. Rather than directly simulat-
ing the formation, growth, and evolution of individual cloud particles, we treat all
hydrometeors within each 10-100km atmospheric gridboxes as belonging to a “pop-
ulation.” Most commonly, this population is described and tracked according to a
few bulk properties such as the total mass of water belonging to these hydrometeors
or the total number of particles (e.g. Kessler, 1969; Seifert and Beheng, 2006).
These simplifying assumptions introduce structural uncertainty to the model. Fur-
thermore, the process rates governing how hydrometeors evolve must be adapted to
the simplified variables used to describe the population, leading to additional para-
metric uncertainty. More detailed methods exist, such as representing and evolving
several characteristic members of the population through a technique called the
superdroplet method (Shima et al., 2009) (described in Chapter 2), yet they are too
computationally intensive for weather and climate predictions. Chapters 3 and 4
present alternative model structures that require similar or only slightly more com-
putational resources than standard methods, but with the advantage of requiring
fewer simplifying assumptions and parameters.

The other fundamental challenge to accurately representing cloud microphysics
is a lack of adequate observational data to train and evaluate these subgrid scale
models. Observations of hydrometeors at the individual particle scale are the
most informative for fixing the parameters of microphysics process rates, yet these
laboratory-scale measurements are challenging to perform and not necessarily rep-
resentative of the complex atmospheric state. On the other hand, measurements of
the atmospheric state can be readily attained from ground-based (radar or lidar) and
space-based (satellite) measurements, but not at the spatiotemporal resolution re-
quired to distinguish microphysics from other subgrid-scale atmospheric processes.
Nevertheless, these remote measurements offer the most complete history of clouds
in the climate system and are crucial for evaluating larger scale climate sensitivity
(e.g. Bellouin et al., 2020). In Chapter 5, I shift to focus on exactly this: creative
ways to leverage available observational data in order to constrain aerosol-cloud
interactions.
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1.1.2 Collisional processes in clouds
One set of microphysical processes is particularly challenging to both model and
measure: collisions between hydrometeors. When two liquid droplets collide with
each other, they might merge (“coalesce”) to form a larger droplet, they might
fragment (“breakup”) into many smaller droplets, or they could bounce elastically.
In mixed phase clouds which include ice particles, the list of potential outcomes
grows dramatically, with the splintering of ice particles upon collision believed
to an important process in deep clouds (Phillips et al., 2017). This dissertation
focuses on the first set of “warm-rain” collisional processes in Chapters 2-4 and
touches on mixed-phase collisions in Chapter 5. Warm-rain collisions alone are a
primary mechanism by which cloud droplets become large enough to precipitate:
small droplets coalesce with their neighbors, forming larger and larger drops which
collide faster and faster, eventually leading to rain. Parameterizations of these
collisions in most climate models are lacking, leading to known issues such as an
overprediction of drizzle from stratocumulus (Stephens et al., 2010).

While single-particle processes such as condensation, evaporation, and freezing of
hydrometeors are well-constrained by thermodynamics, the rates and outcomes of
collisional processes depend on exactly when, where, and how hydrometeors are
moving toward or away from each other, as well as their properties. For instance,
a large rain-sized droplet might fall faster relative to a smaller cloud-sized droplet
beneath it, ultimately colliding and collecting the cloud droplet as it falls. If this size
difference is large enough, the opposite could happen instead: the surface tension of
the smaller droplet could be enough to prevent it from merging with the larger droplet,
leading to a breakup process that leaves even more tiny droplet fragments in the
wake of the collision (Low & List, 1982; Straub et al., 2010). When hydrometeors
are viewed as a population with a distribution of radii or other properties, these
collisional dynamics are best described as a set of probabilities: the probability that
droplet A and droplet B collide given their relative sizes, or the probability that
A and B coalesce versus breaking up. The coarsest microphysics models retain
the least detail about the distribution of sizes or other population properties; thus
they lead to the most assumptions, errors, and uncertainties regarding these crucial
rain-forming processes.

1.2 Outline
Motivated by practical solutions for climate modeling, this dissertation presents new
techniques for representing and understanding these small scale cloud processes



7

(“cloud microphysics”), emphasizing collisional processes. The chapters progress
from the smallest scale and most detailed simulations of microphysical processes,
to simpler methods suitable for climate models, and finally a large-scale assessment
of the sensitivity of clouds to aerosols.

Chapter 2 investigates the process of collisional breakup using a high-fidelity mod-
eling technique known as the “superdroplet method.” This method tracks several
representative droplets (a subset of the population) and treats collisional coales-
cences as random events with stochastic Monte Carlo steps (Shima et al., 2009). We
introduce a complementary and efficient algorithm to represent collisional breakup,
a process that was historically missing from this modeling framework. The chapter
goes on to illustrate the impacts of collisional breakup on precipitation and cloud for-
mation in a set of idealized cloud simulations. While the superdroplet method is too
computationally expensive to run at a global scale, this work illustrates how it can be
used to gain a process-level understanding that can inform cheaper climate-oriented
methods.

The next two chapters return to simpler computational methods that are suitable
for climate modeling, presenting new approaches that attempt to relieve limiting
assumptions of standard bulk microphysics methods. Chapter 3 presents a novel
numerical approach that involves directly modeling a distribution of particle sizes
using collocated finite elements. This method can attain the accuracy of a more
computationally expensive spectral method with only a quarter of the cost. The
method presented in Chapter 4 builds on this distribution modeling approach by
marrying the Eulerian method-of-moments with a flexible Lagrangian approach.
Importantly, this method relaxes the assumption of most current models that all liquid
hydrometeors are classified as either “cloud” or “rain” by applying a superdroplet-
style approach to collisional processes between droplets in different subpopulations.
As a result, we generalize the typical two-category moment-based method to utilize
an arbitrary number of subdistributions while also eliminating the need for uncertain
parameterizations of conversion rates between these categories.

Chapter 5 takes a step back from bottom-up mathematical modeling of microphysical
processes to instead investigate large-scale perturbations to clouds in the climate
system using remote observations. When new regulations in 2020 changed the fuels
burned by overseas ship traffic, they also resulted in changes to the aerosols emitted
by these ships, and therefore changes to the clouds above (Diamond, 2023; Yuan
et al., 2022). This chapter investigates a new potential indicator of aerosol-cloud
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interactions: lightning, which comes from charge separation during ice particle
collisions. This unusual metric reflects changes to shipping aerosols in regions
which are typically overlooked by other aerosol-cloud assessments, providing a
novel way to measure the impact of policy decisions on clouds and our climate.
Finally, Chapter 6 offers concluding remarks to contextualize the scope and findings
of this dissertation as well as suggest avenues for future work and improvement.
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C h a p t e r 2

AN EFFICIENT REPRESENTATION OF COLLISIONAL
BREAKUP IN THE SUPERDROPLET METHOD

de Jong, E. K., Mackay, J. B., Bulenok, O., Jaruga, A., & Arabas, S. (2023).
Breakups are complicated: Breakups are complicated: An efficient representation of
collisional breakup in the superdroplet method. Geoscientific Model Development,
16(14), 4193–4211. https://doi.org/10.5194/gmd-16-4193-2023

Abstract
A key constraint of particle-based methods for modeling cloud microphysics is the
conservation of total particle number, which is required for computational tractabil-
ity. The process of collisional breakup poses a particular challenge to this framework,
as breakup events often produce many droplet fragments of varying sizes, which
would require creating new particles in the system. This work introduces a represen-
tation of collisional breakup in the so-called "superdroplet" method which conserves
the total number of superdroplets in the system. This representation extends an ex-
isting stochastic collisional-coalescence scheme and samples from a fragment-size
distribution in an additional Monte Carlo step. This method is demonstrated in a
set of idealized box model and single-column warm-rain simulations. We further
discuss the effects of the breakup dynamic and fragment-size distribution on the
particle size distribution, hydrometeor population, and microphysical process rates.
Box model experiments serve to characterize the impacts of properties such as co-
alescence effieciency and fragmentation function on the relative roles of collisional
breakup and coalescence. The results demonstrate that this representation of colli-
sional breakup can produce a stationary particle-size distribution, in which breakup
and coalescence rates are approximately equal, and that it recovers expected behavior
such as a reduction in precipitate-sized particles in the column model. The breakup
algorithm presented here contributes to an open-source pythonic implementation
of the superdroplet method, ‘PySDM’, which will facilitate future research using
particle-based microphysics.
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2.1 Introduction
The superdroplet method (SDM) for cloud microphysics is a high-fidelity particle-
based (Lagrangian) representation of aerosols and hydrometeors that offers notable
advantages over traditional bulk and bin microphysics schemes. Particle-based
methods were initially used in atmospheric simulations to represent ice nucleation
(Jensen & Pfister, 2004; Paoli et al., 2004; Shirgaonkar & Lele, 2006; Sölch
& Kärcher, 2010), and were later extended to study aerosol indirect effects with
a superdroplet approach (Andrejczuk et al., 2008) in which each "superdroplet"
represents a mutliplicity of modeled particles with identical attributes, such as size
and chemical properties. Later, the SDM was extended to include a stochastic
representation of collisional coalescence (Riechelmann et al., 2012; Shima et al.,
2009) and ice-phase processes (Shima et al., 2020), making the SDM a nearly-
complete Monte Carlo representation of cloud microphysics. The burgeoning field
of particle-based cloud microphysics uses SDM implementations in large-eddy
simulations (LES) to understand microphysical processes that are underresolved in
traditional bulk and bin methods (e.g., Andrejczuk et al., 2010; Chandrakar et al.,
2021; Dziekan et al., 2019; Grabowski, 2020; Hoffmann, 2017; Morrison et al.,
2019). Furthermore, a growing literature of machine learning in microphysics
utilizes the SDM as a source of high-fidelity training data from which to "learn"
microphysical tendencies and properties (Bieli et al., 2022; Seifert & Rasp, 2020).
However, without a complete representation of microphysical processes in the SDM,
its predictive and benchmarking power for cloud feedbacks is limited.

Many implementations of the SDM do not include the process of collisional breakup
of droplets. Not only is collisional breakup an uncertain process in existing bin and
bulk parameterizations (Grabowski et al., 2019; Morrison et al., 2020), but these
uncertainties have been found to impact rain rates and other macroscale quantities
in bin microphysics studies (Seifert et al., 2005). Studying collisional breakup in
the SDM is not straightforward, as it requires balancing computational complexity
within a mass-conserving numerical model that respects the physics of the process.
Notably, a single breakup event is likely to produce fragments of multiple different
sizes. A literal representation of all fragments in the SDM would require the creation
of new superdroplet tracers for each new droplet size resulting from breakup, which
can lead to an explosive growth of superdroplet quantity and dramatically inhibit
performance of the SDM. Another option that reduces the computational burden of
new superdroplets involves creating and then selectively merging superdroplets, as in
Bringi et al., 2020. While both options respect mass conservation and the physics of
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superdroplet breakup, a scalable adaption of the SDM for parallel applications such
as LES requires strict conservation of the total number of superdroplets. This work
proposes a superdroplet-conserving SDM algorithm for the process of collisional
breakup, conceptually similar to the mass-flux algorithm of Kotalczyk et al., 2017,
using a Monte Carlo step that samples from a fragment size distribution.

This superdroplet-conserving breakup implementation draws inspiration from an
analogous "superparticle" representation of phytoplankton (Jokulsdottir & Archer,
2016): individual phytoplankton aggregates spontaneously break uniformly into a
number of fragments determined by a power law probability distribution. We apply
a similar spontaneous breakup principle to an intermediate coalesced state resulting
from the collision of two droplets. (While spontaneous breakup of liquid water
droplets has also been investigated (Kamra et al., 1991), it has not been observed
in in-situ studies of droplet collisions (Testik & Rahman, 2017) and is not included
in this version of the SDM.) The presented collisional breakup algorithm utilizes
empirical collection/breakup efficiencies (such as Beard and Ochs (1995), Berry
(1967), and Schlottke et al. (2010)) to determine whether a colliding droplet pair
is likely to break-up, and then samples from a corresponding empirical fragment
size distribution (such as Beard and Ochs (1995), Low and List (1982), McFarquhar
(2004), and Schlottke et al. (2010)) to determine the properties of the resulting
fragmented superdroplet. Breakup parameterizations are typically complex and
aim to summarize multiple physical mechanisms of breakup. This work addresses
how the proposed SDM breakup algorithm samples from such complex fragment
size distributions, but leaves evaluation and analysis of these empirical distributions
to future work.

The contents of this paper proceed as follows: Section 2.2 begin with a concep-
tual description of the proposed breakup algorithm, followed by a mathematical
description of its implementation. Section 2.3 validates the implementation against
analytical results in the literature and explores convergence with number of super-
droplets. Section 2.4 then presents several idealized simulations including various
parameterizations of collisional breakup to demonstrate the behavior of this imple-
mentation in the SDM. Section 2.5 concludes the discussion and poses additional
scientific questions which may be within reach given this novel implementation.
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Figure 2.1: Conceptual view of a real filament breakup event (left) and the
superdroplet-number-conserving SDM collisional breakup dynamic described in
this work (right). The real event involves collision between two parent droplets,
which may form a neck bridging each other before fragmenting into several differ-
ently sized droplets. The resulting droplets consisting of larger fragments derived
from the initial colliding parents, plus a set of small fragments known as "satellites."
Each of these groups forms a subdistribution in the overall fragmentation function,
shown below the droplet schematics. The tracer-conserving SDM representation
involves collision of two groups of droplets (each group represented as one super-
droplet, a donor and receiver), which collide and coalescence into a transition state,
which then fragments uniformly to a size sampled from the same fragmentation
function as in the real case. The result of the SDM breakup is two superdroplets,
or two groups of droplets, with one group corresponding to leftover donor droplets,
and the other group corresponding to a set of fragments whose size may correspond
to the depleted parent droplet size or the satellite fragments, depending on the frag-
ment size sampling step.

2.2 Superdroplet-conserving Collisional Breakup
2.2.1 Conceptual description
Two colliding liquid hydrometeors in the atmosphere can break-up via several phys-
ical pathways, including filament, sheet, and disc breakup (Barros et al., 2008).
The colliding droplets, referred to as "parents", typically lose mass to newly-formed
tiny "satellite" droplets that result from the collision, thereby resulting in several
differently sized droplet fragments (see Figure 2.1, left). As noted previously, com-
putational scaling of the SDM relies on preserving the number of tracers in the
system. In order to preserve the number of superdroplets in a binary collisional
breakup event, breakup is treated as a two step process based on superdroplet-
conserving coalescence (Figure 2.1, right). First, the two superdroplets collide and
coalesce: the superdroplet of higher multiplicity acts as a "donor" by donating mass
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Figure 2.2: Diagram of the Monte Carlo decision pathway during a collision-
coalescence-breakup event in the proposed algorithm.

and multiplicity while maintaining its attributes; the other superdroplet acts as a
"receiver" by growing in mass and maintaining its multiplicity to form a "coalesced
transition state." This unstable coalesced transition state immediately breaks up into
fragments of uniform size: the fragment size is selected sampling from a distribu-
tion of fragment sizes that encompasses both the remnants of the original parent
droplets, as well as the distribution of satellite fragments that can result from the col-
lision. (Going forward, the term "fragment" will be used to describe all collisional
breakup products, both small satellite fragments as well as larger fragments that are
nearer in size to the original colliding droplets.) The attributes and multiplicity of
this fragmented receiver are updated, with multiplicity increasing and mass of the
individual droplets represented by the superdroplet decreasing. Uniform fragmen-
tation is required to maintain conservation of superdroplets. Furthermore, uniform
fragmentation requires the assumption that all superparticle attributes are extensive
quantities and undergo equipartitional splitting (not applicable, e.g., for insoluble
aerosol constituents). The product of a collisional breakup event is therefore two
superdroplets: the donor maintains its attributes but donates multiplicity, and the
fragmented receiver represents (uniform) fragments that result from the breakup
event following a coalesced transition state. As in the original Monte Carlo step that
determines whether a collision occurs, the fragment size is sampled at random from
a fragment size distribution, which may depend on the properties of the colliding
particles.
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2.2.2 Mathematical description
The superdroplet-conserving method of collisional breakup is illustrated in Fig-
ure 2.2 and formulated below using notation following work of Shima et al. A single
superdroplet with label 𝑖 has a position x𝑖 (𝑡) and extensive physical attributes a𝑖 (𝑡),
such as droplet volume or mass (𝑣𝑖 (𝑡), 𝑚𝑖 (𝑡)) or mass of solute (𝑀𝑖 (𝑡)). (Note that
in Shima et al.’s notation, a𝑖 (𝑡) includes attributes such as droplet radius, whereas
we only consider attributes which are linearly additive and extensive in the droplet
size, such as volume or mass.) For simplicity, we will generally group all such
extensive attributes together as a𝑖 (𝑡), but will specifically use the droplet mass 𝑚𝑖
in computations of the transfer of extensive properties between superdroplets. Each
superdroplet corresponds to a multiplicity 𝜉𝑖 (𝑡) of "real" droplets which exist in the
same gridbox and have identical such attributes.

The proposed breakup algorithm unifies the representation of collisional coalescence
and breakup and builds on the original coalescence Monte Carlo steps in Shima et al.
As in this original SDM, we begin by selecting pairs of superdroplets to consider
collisions:

1. All superdroplets within a cell are randomly ordered in a list of non-overlapping
pairs ( 𝑗𝛼, 𝑘𝛼) where 𝑗 and 𝑘 are the superdroplet indices, and 𝛼 refers to the
pair index.

Next, we determine how many collisions, 𝛾𝛼, occur for the pair 𝛼 in the time step:

2. The probability of collision between droplets 𝑖 and 𝑗 within a small volume
Δ𝑉 is given by

𝑃𝑖, 𝑗 = 𝐾𝑖, 𝑗
Δ𝑡

Δ𝑉
, (2.1)

where 𝐾𝑖, 𝑗 [m3 s−1] is the volumetric rate of collisions based on the properties
of droplets 𝑖 and 𝑗 , and Δ𝑡 is the model time step. The scaled probability of
collision 𝑃(𝑠)

𝛼 for this pair 𝛼 accounts for the multiplicities of the colliding
superdroplets:

𝑃
(𝑠)
𝛼 = max(𝜉 𝑗 , 𝜉𝑘 )𝑃𝛼 . (2.2)

Only a subset ⌊𝑛𝑠/2⌋ of possible SD pairs are considered out of all possible
superdroplet pairs at each time step. Therefore, the probability is further
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scaled up to form the corrected probability of collision:

𝑝𝛼 =
𝑛𝑠 (𝑛𝑠 − 1)

2
/
⌊𝑛𝑠

2

⌋
𝑃
(𝑠)
𝛼 . (2.3)

The number of collisions that occur in this time step, 𝛾𝛼, is then determined in
a Monte Carlo step based on 𝑝𝛼. Taking 𝜙𝛼 ∈ (0, 1) to be a uniform random
number,

𝛾𝛼 = min(⌈𝑝𝛼 − 𝜙𝛼⌉, ⌊𝜉 𝑗𝛼/𝜉𝑘𝛼⌋). (2.4)

Here, we assumed the superdroplets are ordered such that 𝜉 𝑗𝛼 ≥ 𝜉𝑘𝛼 . If
𝛾𝛼 = 0, then no collisions occur.

The collision rate is then 𝛾𝛼 collisions per gridbox and per time step. Due to the
constraint in equation 2.4 based on droplet multiplicity, some collisions which should
occur probabilistically cannot if the donor superdroplet has insufficient multiplicity
to collide 𝑝𝛼 times. Therefore, a collision deficit 𝑝𝛼 − 𝛾𝛼 may be tracked as a tool
to assess whether the model time step is sufficiently small (elimination of the the
collision deficit is used for adaptive step size control in the SDM implementation
used herein (Arabas et al., 2022)).

In the original SDM, particles coalesce as long as 𝛾𝛼 > 0, as the rate of collisions is
taken to refer only to collisional coalescence. However, when we consider collisional
breakup, an additional Monte Carlo step must be taken to determine whether the
particles coalesce or break up. This is determined based on a coalescence efficiency
(or collection efficiency) 𝐸𝑐, which generally depends on properties of the colliding
particles such as their fall speed, mass, and surface tension. We additionally account
for the fact that in some collisions, droplets may bounce off of one another elastically
by including an optional additional parameter for the breakup efficiency, 𝐸𝑏. This
second Monte Carlo step is summarized as follows.

3. Compute the dynamic that occurs: coalescence, breakup, or bounce (nothing).
A second uniform random number 𝜙′𝛼 determines the outcome:

dynamic𝛼 =


coalescence, 𝜙′𝛼 ≤ 𝐸𝑐 (a 𝑗 , a𝑘 )

breakup, 𝐸𝑐 (a 𝑗 , a𝑘 ) < 𝜙′𝛼 ≤ 𝐸𝑏 (a 𝑗 , a𝑘 ) (1 − 𝐸𝑐 (a 𝑗 , a𝑘 )) + 𝐸𝑐 (a 𝑗 , a𝑘 )

bounce, 𝜙′𝛼 > 𝐸𝑏 (a 𝑗 , a𝑘 ) (1 − 𝐸𝑐 (a 𝑗 , a𝑘 )) + 𝐸𝑐 (a 𝑗 , a𝑘 )
(2.5)
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Once the dynamic is determined, a fragment size is sampled if necessary:

4. Sample a fragment size 𝑚 𝑓 ,𝛼 (mass) from a fragment size distribution, 𝑃 𝑓 ,𝛼,
with cumulative distribution function (CDF) 𝐶 𝑓 ,𝛼 (𝜙) that depends on the
colliding particle attributes. A related variable, 𝑁 𝑓 ,𝛼, is taken to denote the
number of fragments that would form in a collision between droplets of mass
𝑚 𝑗 and 𝑚𝑘 : 𝑁 𝑓 ,𝛼 =

𝑚𝑘+𝑚 𝑗

𝑚 𝑓 ,𝛼
.

Finally, updating of multiplicities and attributes proceeds based on the selected
dynamic, number of collisions, and sampled fragment size (if applicable):

(a) For coalescence: 

𝜉′
𝑗
= 𝜉 𝑗 − 𝛾𝛼𝜉𝑘

a′
𝑗
= a 𝑗

a′
𝑘
= a𝑘 + 𝛾𝛼a 𝑗

if 𝜉′
𝑗
= 0, then 𝜉′

𝑗
, 𝜉′
𝑘
= 𝜉𝑘/2, a′

𝑗
= a𝑘

(2.6)

𝛾𝛼 collisions occur between the two superdroplets, thus the more multiplic-
itous superdroplet 𝑗 transfers 𝛾𝛼𝜉𝑘 "real" droplets to coalesce with the less
multiplicitous superdroplet 𝑘 . 𝑗 thus maintains its previous attributes, while
the attributes of 𝑘 are recomputed as a multiplicity-average of its initial at-
tributes and the transferred 𝑗 attributes. The coalescence rate is incremented
by 𝛾𝛼𝜉𝑘 . The final step in updating multiplicities and attributes serves to
conserve the number of superdroplets with nonzero multiplicity in the simu-
lation in the case that all droplets within superdroplet 𝑗 are depleted. Unlike
in Shima et al., 2009, where superdroplet 𝑗 is discarded, this approach sets
properties of superdroplet 𝑗 to be identical to 𝑘 , and both 𝑗 and 𝑘 to half of
𝑘’s multiplicity to conserve mass.
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(b) For breakup:

In some cases, only 𝛾 𝑗 𝑘 ≤ 𝛾𝛼 breakups can occur for a given superdroplet
pair without encountering negative multiplicities. We compute this maximum
possible number of breakup steps and update the superdroplet properties using
a recurrence relation (assuming 𝛾𝛼 > 0), and track a breakup deficit rate of
𝛾𝛼 − 𝛾 𝑗 𝑘 . (Alternatively, one may perform substepping of the breakup event.)
The particle attributes are updated such to be consistent with the result of
several breakup steps with 𝛾𝛼 = 1 occurring in sequence, always producing
fragments of size 𝑚 𝑓 ,𝛼.

𝛾 𝑗 𝑘 = 0

𝜉 transfer
𝑗

= 0, 𝜉 transfer
𝑗 ,next = 𝜉𝑘

𝜉new
𝑘

= 𝜉𝑘 , 𝜉new
𝑘,next = 𝜉𝑘

(
𝑚 𝑗+𝑚𝑘

𝑚 𝑓 ,𝛼

)
while 𝛾 𝑗 𝑘 < 𝛾𝛼 and 𝜉 transfer

𝑗 ,next ≤ 𝜉 𝑗 :

𝜉 transfer
𝑗

= 𝜉 transfer
𝑗 ,next

𝜉new
𝑘

= 𝜉new
𝑘,next

𝛾 𝑗 𝑘 = 𝛾 𝑗 𝑘 + 1

𝜉 transfer
𝑗 ,next = 𝜉 transfer

𝑗 ,next + 𝜉new
𝑘,next

𝜉new
𝑘,next = 𝜉

new
𝑘,next

(
𝑚 𝑗

𝑚 𝑓 ,𝛼

)
+ 𝜉new

𝑘,next

(2.7)

Note that the transfer of multiplicity to superdroplet 𝑘 begins with a multi-
plication by the number of fragments that would result from a real collision
between droplets of size 𝑚 𝑗 and 𝑚𝑘 . Because the fragment size is conserved
in subsequent iterations, the additional multiplicity transfer comes only from
the more multiplicitous superdroplet 𝑗 which continues to transfer mass to 𝑘
during collisions.

𝜉′
𝑗
= 𝜉 𝑗 − 𝜉 transfer

𝑗

𝜉′
𝑘
= 𝜉new

𝑘

a′
𝑘
=
𝜉𝑘a𝑘+𝜉 transfer

𝑗
a 𝑗

𝜉new
𝑘

if 𝜉′
𝑗
= 0, then 𝜉′

𝑗
, 𝜉′
𝑘
= 𝜉new

𝑘
/2, a′

𝑗
= a′

𝑘

(2.8)

The breakup rate is incremented by 𝛾 𝑗 𝑘𝜉𝑘 . The breakup deficit rate is incre-
mented by (𝛾𝛼 − 𝛾 𝑗 𝑘 )𝜉𝑘 .
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(c) For bounce:

No update is made to droplet multiplicities or attributes, and only the collision
counter is incremented.

2.2.3 Additional Implementation Details
This method of breakup allows for the splitting of a coalesced transition state into a
non-integer number of fragments (𝑁 𝑓 ,𝛼 =

𝑚𝑘+𝑚 𝑗

𝑚 𝑓 ,𝛼
need not be integer), depending on

the sampled fragment size. For instances where it may be desirable to preserve su-
perdroplet multiplicities as integers, we recommend rescaling the multiplicities after
the breakup step by a factor of 𝑟𝑘 = ⌈𝜉𝑘⌉/𝜉𝑘 , and the multiplicities correspondingly
by 1/𝑟𝑘 such that extensive attributes (including mass) are conserved.

The presence of a "breakup deficit" in the case where 𝛾 𝑗 𝑘 < 𝛾𝛼 can be averted
by substepping, though this is inadvisable for parallel applications of the SDM.
Furthermore, superdroplet multiplicities may increase without bound according to
the algorithm as presented above, which can lead to numerical artifacts and instability
within a simulation. A set of limiters preventing runaway multiplicity is discussed
in Appendix 2.6. Finally, a method for sampling a fragment size from a nonlinear
empirical distribution, such as Straub 2010, is discussed in Appendix 2.6.1.

2.3 Validation and Convergence Properties
In order to validate the proposed Monte Carlo algorithm which encompasses both
coalescence and breakup, we compare to an analytical solution to the generalized
stochastic collection equation (SCE, or Smoluchowski equation). The approach
is similar to that of Lee and Matsoukas, 2000 and compares to the solution of
Srivastava, 1982, which uses constant-in-time and attribute-independent coagulation
and breakup rates. Discussion of the solution outside of cloud-physics can be
found, e.g., in Hansen (2018, eq. 8.58 therein) where it is presented in the context
of polymerization-depolymerization modeling (see Blatz & Tobolsky, 1945, for a
relevant seminal work featuring analytic SCE solutions). Specifically, herein we
compare to the results including processes of binary coagulation and breakup only,
neglecting spontaneous fragmentation.

The deterministic solution to the SCE relates the evolution in time of the ratio 𝑚 of
mean mass of particles to the fragment mass 𝑚frag in the case of constant-coefficient
binary coagulation and breakup is given by (notation as in eq. 13 in Srivastava,
1982):

𝑚(𝜏) = 𝑚(0)𝑒−𝛽★𝜏 +
(
1 + 1

2𝛽★

) (
1 − 𝑒−𝛽★𝜏

)
. (2.9)
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Case 𝑐 (s-1) 𝛽 (s-1) 𝑚frag (g)
breakup-only 10−15 10−9 0.25
coalescence-only 0.5 × 10−6 10−15 -
coalescence-breakup 0.5 × 10−6 10−9 0.25

Table 2.1: Coalescence rate (𝑐), breakup rate (𝛽), and fragment mass values for
different simulation setups. The inactive process rates are set to 10−15(𝑠-1) rather
than exactly 0 in accordance with the solutions of Srivastava, 1982.

The solution is given using non-dimensional variables defined by

𝜏 = 𝑐𝑀𝑡 (2.10)

𝛽∗ = 𝛽/𝑐, (2.11)

where 𝑡 is time, 𝑐 is a constant coalescence rate, 𝑀 is the ratio of total mass of the
system to the fragment mass 𝑚frag and 𝛽 is a constant breakup rate. The rates 𝑐
and 𝛽 correspond to efficiencies 𝐸𝑐 = 𝑐/(𝑐 + 𝛽) and 𝐸𝑏 = 1 (no bouncing) with the
corresponding collision kernel 𝐾 = 𝑐 + 𝛽. Of note, the solution does not depend on
the initial particle size spectrum — only on the initial mean mass 𝑚(0).

Two caveats are involved in comparing SDM results against SCE solutions in this
test set up. First, the constant collision kernel admits collisions of same-sized
particles, whereas collisions with a single superdroplet are not included in the
present SDM implementation. This discrepancy should diminish with increasing
numbers of super-particles (and hence decreasing values of multiplicities) down to
zero for a one-to-one simulation with multiplicities of unity. The second caveat
involves the assumption of breakup resulting in only a single fragment size, 𝑚frag.
This simplification is required to attain the analytic solutions of Srivastava, 1982,
but removes the final of four stochastic elements in the proposed superdroplet
breakup algorithm. As such, the following comparisons are useful to understand the
convergence properties of the proposed algorithm’s first three stochastic elements
(superdroplet sampling, collision probability, coalescence probability) only.

We analyze three comparison cases in a zero-dimensional box setting: breakup only
(𝑐 ≈ 0), coalescence only (𝛽 ≈ 0), and coalescence plus breakup. The parameter
values defining the three aforementioned cases are summarized in Table 2.1. These
simulations utilize the open-source Pythonic superdroplet code ‘PySDM’ (Bartman,
Bulenok, et al., 2022; de Jong et al., 2023). For each test case, we perform the
simulation at a few resolutions (number of superdroplets). Note while the SDM
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Figure 2.3: Mean (solid line) and standard deviation (shading) for the time evolution
of the breakup-only dynamics, including the analytical solution of Srivastava, 1982
and the SDM using 8, 32, 128, or 256 superdroplets.
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Figure 2.4: Mean (solid line) and standard deviation (shading) for the time evolution
of the coalescence-only dynamics, including the analytical solution of Srivastava,
1982 and the SDM using 8, 32, 128, or 256 superdroplets.

implementation guarantees that the number of super-particles cannot increase, a
superdroplet may be removed from the system during a collision event (for details
see point (5) in section 5.1.3 in Shima et al., 2009). The simulations are performed
for 2048s with 1s timesteps with adaptive collision substepping enabled. The initial
size distribution is monodisperse with equal multiplicities for all superdroplets.
These settings correspond to a population of 106 particles in one cubic metre, with
each droplet having initial mass of 1g. In the solution of Srivastava (1982), it is
assumed that all fragments resulting from breakup are of equal size. Here, the
constant fragment mass is set (arbitrarily) to 0.25g.

Figures 2.3–2.5 present the mean and standard deviation of 10 realizations of the
SDM simulations, versus the analytic solutions. Both the breakup-only (Figure 2.3)



23

10 1 100 101 102 103

step: t / dt

103

104

105

106

to
ta

l d
ro

pl
et

 n
um

er

initial #SD: 256
initial #SD: 512
initial #SD: 1024
initial #SD: 2048
analytic 

0 1000 2000
step: t / dt

23

25

27

29

211

su
pe

r-p
ar

tic
le

 c
ou

nt

0 500 1000 1500 2000
step: t / dt

0.005

0.010

0.015

0.020

0.025

0.030

m
ea

n 
dr

op
 m

as
s /

 to
ta

l m
as

s %

Figure 2.5: Mean (solid line) and standard deviation (shading) for the time evolution
of the coalescence-breakup combined dynamics, including the analytical solution
of Srivastava, 1982 and the SDM using 256, 512, 1024, or 2048 superdroplets.

and breakup-plus-coalescence (Figure 2.5) cases feature asymptotic values of droplet
number and mass, corresponding to all droplets having the size𝑚frag (breakup-only)
or a balance between fragmentation and coalescence of droplets (breakup-plus-
coalescence). In all three sets of dynamics, increasing the number of superdroplets
robustly reduces the ensemble spread and improves the match with the analytic
solution. Much higher resolution (on the order of thousands superparticles) is
required to match the analytic solution for the breakup-coalescence equilibrium
than for simulations featuring each process separately. This discrepancy is related
to the additional stochastic step of selecting the breakup or coalescence dynamic.
Extension of this logic implies that even more superparticles would be required to
match the exact asymptotic behavior of a system with a distribution of fragment
sizes, due to yet an additional stochastic element of sampling.

In Figure 2.5, the simulation with the largest number of superdroplets displays re-
moval of superdroplets from the system. The removal can happen when coalescence
leads to zero multiplicity in one of the resultant superdroplets, which then cannot be
split into two superdroplets. This is more likely when multiplicities are on average
lower (i.e. when more superdroplets are used). In the limit of few superdroplets,
both the breakup-only and the coalescence-only simulations are characterized by un-
derestimation of the process rate, which is consistent with the SDM implementation
that neglects collisional dynamics within a superdroplet.
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2.4 Numerical Experiments and Discussion
To demonstrate the behavior of a particle population under the proposed breakup
algorithm, we focus here on sensitivity studies in a zero-dimensional box setting
and in a one-dimensional rainshaft setup. The coalescence efficiency and fragment
size distribution are varied across the simulations while assuming a consistent initial
PSD and collision rate. We consider both artificial parameterizations that assume
fixed values for the efficiency and FSD, as well as empirical parameterizations
for comparison. These selections are made to highlight the variability in results
that is due to the additional stochastic components of the breakup algorithm while
maintaining consistency across other choices such as the initial distribution, rate of
collisions, and aerosol and updraft parameters (in the case of 1D test cases). No
resampling of superdroplets is performed throughout the simulation.

The simulations presented in this section assume a canonical geometric collision
kernel, where the volumetric rate of collisions 𝐾 𝑗 𝑘 [m3 s−1] between droplets with
the properties of superdroplets 𝑗 and 𝑘 is given by

𝐾 𝑗 𝑘 = 𝜋(𝑅 𝑗 + 𝑅𝑘 )2 |𝑣 𝑗 − 𝑣𝑘 |, (2.12)

where 𝑅 𝑗 is the radius of particle 𝑗 and 𝑣 𝑗 is the terminal velocity/fall speed of
particle 𝑗 , computed using the parameterization of Gunn and Kinzer, 1949. This
kernel assumes that all collisions result from interception of particles with different
fall speeds, neglecting non-vertical motions, turbulence, and impacts of particles on
the local flow field. As in Shima et al., 2009, collisions within a superdroplet (i.e.
collisions between droplets represented by the same superdroplet) are neglected — in
line with the assumption of a geometric collision kernel which precludes collisions
between equally-sized droplets, as they have the same terminal velocity. (These
intra-superdroplet collisions must be considered when using a turbulent collision
kernel parameterization.)

2.4.1 Particle Size Distribution
The zero-dimensional box simulations include collisional-coalescence and collisional-
breakup dynamics only. The droplet size distribution is initialized to an exponential
distribution in mass 𝑥, given by 𝑛(𝑥) = 𝑥0 exp(−𝑥/𝑥0) with the characteristic size
𝑥0 = (4𝜋/3)𝑅3

0 set using 𝑅0 = 30.531𝜇m as in Shima et al. (2009). The simulations
employ 213 = 8192 superdroplets to represent a number density of 100cm−3 in a box
of volume 1m3 with a fixed time step of 1s. This choice of superdroplet quantity
is sufficient to produce consistent results in the PSD across realizations using a
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different random seed, and was shown by Shima et al. to closely match the exact
PSD in a similar box model simulation of collisional coalescence.

The coalescence efficiency is chosen to be either a constant value (for sensitivity
studies), or the empirical coalescence efficiency of Straub et al., 2010 which de-
pends on the Weber number of the colliding droplet pair. (The Weber number is
a ratio of kinetic collisional energy and surface tension, and relates to the stabil-
ity of a droplet pair under collision.) We consider three types of fragmentation
functions: (1) a constant fragment number 𝑁 𝑓 , in which the particle-size distri-
bution (PSD) is a delta function 𝑃 𝑓 (𝑚 𝑓 ,𝛼) = 𝛿(𝑚 𝑓 ,𝛼 −

𝑚 𝑗+𝑚𝑘

𝑁 𝑓
); (2) an exponential

distribution 𝑃 𝑓 (𝑚 𝑓 ,𝛼) ∼ exp(−𝑚 𝑓 /𝜇) where the scale 𝜇 is specified; and (3) the
empirically derived fragmentation function of Straub et al., which uses four modes
of fragmentation represented by lognormal or normal subdistributions.

Particle size distributions are displayed as the number distribution or as the marginal
mass 𝑑𝑚 distribution in particle radius 𝑅, 𝑔(𝑅) = 𝑑𝑚

𝑑𝑙𝑛(𝑅(𝑥)) = 𝜌𝑙3𝑥
2𝑛(𝑥) where 𝑛(𝑥)

is the particle size distribution in particle volume 𝑥, and 𝜌𝑙 is the bulk density of
liquid water. This metric, with units [kg m−3], is defined consistently via the total
mass density of particles in the system 𝑀:

𝑀 =

∫ ∞

−∞
𝑔(𝑅)𝑑𝑙𝑛(𝑅) =

∫ ∞

0
𝜌𝑙𝑥𝑛(𝑥)𝑑𝑥.

The marginal mass distribution is computed by binning the resulting superdroplets
into 128 logarithmically-spaced size bins between particle radius 1µm and radius
10mm. We separate the simulations into those which use a deterministic frag-
mentation function, in which breakups result in a constant number of fragments
in any given collision; a stochastic fragmentation function with fragment sizes
sampled from a specific distribution; and a size-dependent fragmentation function,
where the fragment sizes are sampled from a distribution whose parameters depend
on the colliding particles. We further include experiments exploring the use of
a fixed coalescence efficiency versus a particle-attribute-derived coalescence effi-
ciency. This separation elucidates which aspects of the particle population behavior
are attributable to stochastic sampling of the fragmentation function, or related to
particle-property-dependent parameters such as Weber number.
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Figure 2.6: Particle size distribution with varying coalescence efficiencies under a
geometric collision kernel after 100s (left) and 200s (right). The breakup fragmen-
tation function is deterministic, with the fragment size determined as 1/8th the sum
of the colliding droplet sizes. The dashed black line represents the initial PSD, and
solid lines represent various fixed values of the coalescence efficiency. The pink
line corresponds to a size-dependent coalescence efficiency from Straub et al.

2.4.1.1 Sensitivity Studies: Deterministic and Size Independent
Fragmentation

First we investigate the sensitivity of the PSD evolution to the coalescence efficiency,
using four values of a constant-valued efficiency 𝐸𝑐 between 0.7 and 1.0 (𝐸𝑐 = 1.0
corresponds to coalescence-only) and a particle-size dependent 𝐸𝑐 parameterization
(Straub et al., 2010). All simulations use a deterministic fragmentation function in
which all single-step collisional breakups result in 𝑁 𝑓 = 8 fragments:

𝑃 𝑓 ,𝛼 (𝑚 𝑓 ) = 𝛿
(
𝑚 𝑓 −

𝑚 𝑗 + 𝑚𝑘

𝑁 𝑓

)
. (2.13)

Figure 2.6 displays two snapshots of the PSD under this set of dynamics, demonstrat-
ing the additional Monte Carlo step of selecting whether coalescence or breakup
occurs, independent of sampling a fragment size. As expected, the initial PSD
broadens and shifts toward larger droplets at 100s, with the largest values of fixed
𝐸𝑐 leading to the largest increase in average particle mass. However, after 200s,
the PSD for the 𝐸𝑐 = 0.8 case remains approximately steady with a mean size that
is smaller than the initial distribution mean, demonstrating that coalescence and
breakup are approximately balanced in this case.

By contrast, the PSD for the Straub 2010 parameterization of 𝐸𝑐 initially between
the 𝐸𝑐 = 0.9 and 𝐸𝑐 . = 1.0 simulations at 100s, but narrows without shifting toward
much larger droplets after further time has elapsed, leading to a dominant mode
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Figure 2.7: Sensitivity to fragmentation function of PSDs following collisions with
a geometric kernel and fixed coalescence efficiency of 𝐸𝑐 = 0.95 in a deterministic
and stochastic fragmentation function case. (Left) The fragment size is fixed by a
divisor of the sum of colliding particle volumes; (right) fragment size is sampled
from an exponential distribution with varying means 𝜇 determined as a multiple of
the initial distribution mean. The initial distribution is shown as a black dashed line
in each figure.

that is more similar to the 𝐸𝑐 = 0.9 case. This empirical parameterization also
shows evidence of approaching a steady state distribution, in which coalescence and
breakup rates are matched on average, driving the PSD to a stationary state. The
Straub 2010 parameterization decreases exponentially with the colliding particle
Weber number, which is correlated with the size and relative terminal velocity of
the colliding particles. Two colliding particles of comparable size have a low relative
terminal velocity, therefore as the PSD shifts toward larger coalesced droplets, there
is a competing effect between a larger particle size increasing the Weber number,
and decreased relative terminal velocity reducing it. This competition produces the
stationary behavior and narrowing of the PSD observed in this case.

Next we consider the PSD evolution when the coalescence efficiency is held fixed
at a constant value and the fragmentation function is varied. In Figure 2.7(a), we
consider a deterministic fragmentation function where the number of fragments
from a single breakup event is fixed (as in Figure 2.6), as well as an exponential
fragment size distribution with scale 𝜇 specified as a multiple of the initial mean
particle mass 𝑥0. When the number of fragments is fixed, results using the largest
number of fragments display the smallest mean particle size and broadest spectra.
The first behavior is expected, as a larger value of 𝑁 𝑓 results in smaller typical
fragment sizes. The broadening of the spectrum can be attributed to a wider range
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Figure 2.8: Initial PSD (black dashed) and PSD’s following collisions with a geomet-
ric kernel, the Straub 2010 collection efficiency, and the Straub 2010 fragmentation
function (Straub et al., 2010) after several elapsed times (colors).

of collision rates between small droplets (which result from fragmentation), and is
generally an expected outcome of including collisional breakup.

When the fragment size is sampled from an exponential distribution (Figure 2.7(b)),
the resulting spectra are bimodal, with a large-droplet mode that larger for larger
choices of the mean fragment size 𝜇, and a narrow small-droplet mode that likewise
depends on 𝜇. The appearance of a second mode occurs when the fragment size is
sampled from the left tail of the fragment size distribution, whereas the large mode
corresponds to a droplets undergoing coalescence only, as in the 𝑁 𝑓 = 1 case. This
behavior indicates that through stochastic sampling of the dynamic and fragment size
together, the droplet population splits into one mode which fragments into smaller
droplets, and a second mode which primarily undergoes coalescence and grows in
size. Because larger droplets collide at much quicker rates than small droplets, the
fragmented mode is less likely to collide and re-coalesce to form medium-sized
droplets, while the coalesced-mode retains some probability of colliding and either
growing (coalescing), or breaking up into smaller droplets. Thus we observe that
the small-droplet-mode grows in this instance, with particles effectively become
"stuck" in this dynamical regime due to the separation of scales in collision rates.

2.4.1.2 Steady State under Stochastic Size-Dependent Fragmentation

Finally, we consider an empirically derived coalescence efficiency and correspond-
ing fragmentation function whose parameters depend on the colliding droplet prop-
erties (Straub et al., 2010). In Figure 2.8, we consider the evolution of the PSD
under the Straub 2010 efficiency and fragmentation dynamics, beginning from the
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Figure 2.9: Initial PSD (left) and steady-state PSD (right) under collisions with the
Straub 2010 parameterizations, including reproduction of the findings in figure 10
from Straub et al., 2010 (black dashed line), and simulations including the proposed
breakup algorithm with different numbers of superdroplets. Steady state results
are displayed as the mean plus or minus one standard deviation (shading) of 10
simulation instances.

same initial distribution as previous experiments. At first, the PSD broadens and
shifts towards larger droplet sizes, as in Figure 2.6, but the PSD after 7200s shows
little difference from the PSD at 1800s. These results indicate the stationarity of the
particle size distribution after sufficient time has elapsed: coalescence and breakup
are balanced, as in the previous example. Contrasted with Figure 2.6, which used a
deterministic size-independent fragmentation function, the stationary PSD resulting
from the Straub et al. (2010) parameterization of fragmentation is less symmetric
and contains multiple small peaks. This difference reflects the sampling from a
multimodal distribution of fragment sizes, contrasting with the symmetric PSDs
found from using a fixed number of fragments.

This empirical parameterization provides an additional opportunity for validation
of the breakup algorithm on top of the analytical results presented in Section 2.3.
Figure 2.9 compares results of this SDM implementation against figure 10 of Straub
et al., 2010 (note that we now plot number concentration rather than mass con-
centration with a logarithmic y-scale and linear x-scale, as in Straub et al., 2010
and McFarquhar, 2004). Particles are initialized as a Marshall Palmer distribution
(exponential in droplet diameter) with rain rate 54mmhr−1; superdroplet sizes are
sampled logarithmically over this diameter range, rather than using constant mul-
tiplicity. With only 64 superdroplets, the SDM struggles to adequately sample the
low concentration but important rain droplets with diameters exceeding 1 mm, while
using over 1000 superdroplets is more than sufficient. The simulation is run using
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a 1s time step for 7200s to approximate a steady state in Figure 2.9b. The SDM
appears to converge using between 1000 to 16,000 superdroplets, with more super-
droplets being necessary to reduce spread of the results for small particle diameters.
The SDM approach captures the size and amplitude of the first mode of the steady
state distribution reasonably well, but shows some discrepancies at at intermediate
particle sizes, predicting a secondary mode at 1.2mm diameter rather than the less
pronounced shoulder at 2mm. Inspecting the resulting distributions at large particle
sizes reveals a larger quantity of 6-7mm diameter particles in the SDM simulations,
which are not seen in the work of Straub et al., 2010. This behavior indicates that
some large superdroplets coalesce rather than breaking up, which may be reflec-
tive of the multiplicity-limiter in the model which performs coalescence rather than
breakups which would result in a large increase in multiplicity (i.e. sampling a
small fragment size during collision involving one or more large droplets). The co-
alescence efficiency tends toward zero for any droplet larger than 6 mm in diameter,
which explains why the large droplet mass is concentrated at this size. In a realistic
setting, however, most rain-range droplets would be expected to sediment before
attaining this large 6mm size through coalescence. Indeed, later results presented in
Figure 2.11 do not show significant mass concentration at droplet sizes larger than
1 mm radius, indicating that this error in the steady state does not present in the
transient rainshaft simulation.

2.4.2 Cloud and Precipitation Properties
Next we consider the impact of collisional breakup in a one-dimensional warm rain
setting that includes condensation/evaporation (including aerosol activation/deactivation),
collisions, and transport of particles within the column through advection and sed-
imentation/precipitation. These 1D simulations are based on the kinematic frame-
work of Shipway and Hill, using a fixed profile of dry-air potential temperature and
dry-air density 𝜌𝑑 (𝑧), and a resolved budget of water vapor (advection and cou-
pling with vapor uptake and release by particles). Ventilation effects are neglected,
therefore rain evaporation is underpredicted and most rain sediments and leaves the
simulation domain. The vapor advection is solved using the MPDATA algorithm
on a columnar grid with vertical spacing of 100m (employing the PyMPDATA
implementation Bartman, Banaśkiewicz, et al., 2022). An aerosol population with
hygroscopicity 𝜅 = 0.9 is initialized throughout the vertical domain with 28 = 256
superdroplets per gridbox. This choice of 256 superdroplets per gridbox reflects
the higher computational demands of the one dimensional simulation compared to
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the box model and still produces statistically convergent results in the macroscopic
quantities investigated. For the first 600s of spin-up, condensation-evaporation
(including aerosol activation using kappa-Köhler theory; implementation of these
processes follows that of Arabas et al., 2015) and particle advection with the specific
updraft are the only active dynamics, with a time-varying updraft momentum flux of
𝜌𝑑𝑤(𝑡) = 6kgm−3ms−1 sin(𝜋𝑡/600s). After this spin-up time, the updraft velocity
is set to 0, and the processes of particle displacement due to sedimentation and
collision-coalescence-breakup begin. The time step is fixed at 5s throughout the
simulation.

The test cases demonstrated here include a no-breakup case, a property-independent
breakup case where the coalescence efficiency is fixed and fragment sizes are sam-
pled from a fixed distribution, and the particle-property-dependent empirical coales-
cence efficiency and fragmentation parameterizations from Straub et al., 2010. All
simulation parameters including the thermodynamic constants, number of super-
droplets, geometric collision rate (equation 2.12),and the Gunn and Kinzer terminal
velocity parameterization are fixed, while the coalescence efficiency and FSD are
varied. In the no-breakup case, all collisions result in coalescence. In the property-
independent breakup case, we fix 𝐸𝑐 = 0.95 for all superdroplet collisions based on
the correspondence in Figure 2.6 to the empirical coalescence efficiency. This case
samples fragment sizes from a Gaussian distribution in particle volume with mean
radius 30µm and standard deviation 15µm. In contrast to the property-independent
case, in which the fragmentation parameters are fixed regardless of the colliding
droplets, the property-dependent setting is based on empirical evidence, and is
expected to be more reflective of the variability of real clouds. In both the property-
independent and -dependent cases, the breakup efficiency is set to 𝐸𝑏 = 1 such that
all collisions result in either coalescence or breakup. To contrast the behavior of the
three cases, we consider the hydrometeor population at various altitudes throughout
the simulation, as well as collision process rates and aerosol processing rates.

2.4.2.1 Hydrometeor and Cloud Quantities

The mixing ratio of cloud droplets (activated droplets of no more than 50µm radius),
rain droplets (radius greater than 50µm), and the number concentration of unacti-
vated aerosols are displayed for the three test cases in Figure 2.10. The no-breakup
simulation forms a cloud due to activation of aerosols between 600m and 3800m
altitude until the updraft is terminated after 600s. Larger rain-range droplets form
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Figure 2.10: Hydrometeor concentrations without breakup (left column), with
breakup using a property-independent coalescence efficiency (middle column), and
with breakup following the property-dependent Straub et al. (2010) parameteriza-
tions (right column). Included are cloud water mixing ratio (top row), rain water
mixing ratio (middle row), and aerosol number concentration (bottom row).

from collisional coalescence and begin to sediment out of the system in clusters,
visible as distinct streaks in the (𝑡, 𝑧) plane, with surface precipitation beginning
around 1100s into the simulation, depleting the cloud droplet population. The
vertically-averaged particle size spectra in Figure 2.11 demonstrate these qualitative
changes as well. At 600s, the majority of particles are micron-sized aerosols with
cloud droplets beginning to form. At later times of 900s and 1200s, the particles
rapidly grow to tens or hundreds of microns in size, and at 1800s, the mass distribu-
tion in the no-breakup case shows significant depletion due to precipitation of large
particles.

When property-independent breakup is included, a higher concentration of cloud-
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Figure 2.11: Vertically-averaged particle size spectra (as a marginal mass distri-
bution) at four times selected from the 1D rainshaft simulations for each set of
dynamics (colors).

sized droplets persists at cloud base, and the surface precipitation is delayed and
spread out relative to the case with no breakup. This behavior indicates that rain
droplets favorably break up within the cloud and especially near cloud base, frag-
menting into smaller cloud droplets (the mean of the fragment size distribution is
30µm radius, only slightly lower than the rain size range) with a lower sedimentation
rate. We observe this behavior in Figure 2.11 as well: the property-independent case
shows much smaller average particle sizes at 900 and 1200s, as well as more mass
remaining in the system at 1800s due to the delayed precipitation. Furthermore,
the aerosol population below cloud base is not depleted as quickly in this property-
independent case, indicating a reduction in aerosol scavenging and washout that
is consistent with the lower precipitation rates. These phenomena are consistent
with documented impacts of collisional breakup such as reduced surface precipita-
tion (Seifert et al., 2005), and show that the proposed algorithm can meaningfully
represent the breakup process.

The empirical property-dependent breakup case using the Straub et al. parameter-
izations displays hydrometeor populations that are more similar to the no-breakup
case, indicating that the choice of 𝐸𝑐 = 0.95 in the property-independent case
likely overestimates the rate of collisional breakup when condensation and evap-
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oration are present (contrasted with Figure 2.6). As in the no-breakup case, the
property-dependent empirical case displays distinct streaks of precipitation, with
surface precipitation initiated around 1100s. While the hydrometeor populations
show only slight differences between no-breakup and property-dependent breakup
in Figure 2.10, the size spectra at 900s in Figure 2.11 shows a somewhat narrower
size distribution for the property-dependent case as particles approach the rain size
range, suggesting the role of collisional breakup.

The relatively short updraft time and simple one-dimensional representation of this
setup produce a short-lived cloud that is precipitating for only a few minutes. The
likelihood of breakup in the Straub parameterization is strongly correlated with
the size of the colliding droplets, with 𝐸𝑐 approaching one for colliding droplets
smaller than 1mm diameter, therefore we expect to see a stronger impact of including
SDM breakup in a strongly precipitating convective case. Due to the complexity
and feedbacks inherent to representing a superdroplet-coupled flow field as well as
mixed-phase processes, such experiment is beyond the scope of the present work
focused on the algorithm formulation. In deeper mixed-phase clouds, however,
secondary ice production via ice-ice and ice-supercooled-liquid collisions are two
analogous processes of collisional breakup that may be important (Hallett & Mossop,
1974; Harris-Hobbs & Cooper, 1987; James et al., 2021; Zhao & Liu, 2022).
Multiphase superdroplet representation of these mechanisms will face a similar
challenge of representing many different fragment sizes, thus the SDM breakup
representation presented in this work could be extended to collisional ice processes
in future research on secondary ice production and mixed-phase clouds.

2.4.2.2 Process Rates

Figure 2.12 displays the local rates of superdroplet collision (scaled by multiplicity),
as well as distinguishing between rates of coalescence and rates of breakup. We
see an expected correlation between the time and location of collisions in all three
cases with the location of hydrometeors (outlined in black for cloud and red for
rain)—as expected, a higher concentration of hydrometeors, particularly large rain-
range hydrometeors corresponds to higher rates of all collisional dynamics. The
rate of collisions increases throughout the simulation time, particularly near cloud
base where the largest droplets are sedimenting and colliding at higher rates. The
property-independent case is consistent with the other cases in displaying higher
collision rates at cloud base, even though the droplets in this region are slightly
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Figure 2.12: Collisional dynamic rates for the 1-dimensional case with (left) no
breakup, (middle) breakup with a fixed coalescence efficiency, and (right) breakup
with the Straub 2010 parameterizations. The dynamics shown include (top to
bottom): collision rate, coalescence rate, and breakup rate. Dashed contour lines
represent the level of 𝑞𝑐 = 0.4g/kg (black) and 𝑞𝑟 = 0.4g/kg (red), representing a
cloudy and rainy region of the time-space domain, respectively.
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smaller and fall in the cloud category.

All three cases display similar rates of collision and coalescence, with the highest
of these rates occurring in the cloud among rain droplets, and below cloud base
among precipitating rain droplets. In the no-breakup case, every feasible collision
results in a coalescence, and the breakup rate is zero. When property-independent
breakup is included, the time-space distribution of the breakup rate is nearly identical
to that of the collision rate. This trend is consistent with the use of a uniform
coalescence efficiency 𝐸𝑐 = 0.95, which is agnostic to the size of the colliding
particles. In contrast, the empirical property-dependent case sees collisional breakup
primarily where larger rain droplets are present, consistent with the Straub et al.
parameterization based on Weber number. Breakup events drop off quickly after
the initial depletion of the cloud-sized droplets, as the coalescence efficiency for
two large particles is much smaller than that of a small particle colliding with a
large particle. As seen in Figure 2.11, breakup plays less of a role in determining
the hydrometeor populations after 1200s of simulation time. Thus, the impacts of
collisional breakup are limited in time and space to where large concentration of
hydrometeors of both cloud and rain size are colliding. These results demonstrate
that the SDM breakup algorithm can produce expected process behavior in both a
property-independent setting, where the collision dynamics result in strong breakup,
and in an empirically parameterized setting.

As noted in the discussion of Figure 2.10, the property-independent breakup case
experiences a persistent population of aerosols below cloud base until 1500s, while
the no-breakup and property-dependent cases demonstrate washout upon the earlier
onset of precipitation. Collisional breakup could potentially introduce cloud droplets
so small that they deactivate in their environment. In Figure 2.13, we investigate
whether collisional breakup can induce significant changes to aerosol processing
rates, considering aerosol activation, deactivation, and ripening.

The property-independent and no-breakup cases have nearly identical behavior in
aerosol processing, consistent with the correspondence between their hydrometeor
concentrations and collision process rates. In all three cases, a few superdroplets at
cloud top encounter humidity close to their critical supersaturation, which results in
the "ripening" processes of fluctuation between an activated and deactivated state
due to competition when the supersaturation is insufficient to activate all aerosols
(e.g., Arenberg, 1939; Wood et al., 2002). (We define ripening rate as the number of
activated droplets growing through condensation per unit of time within a grid cell
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Figure 2.13: Aerosol processing rates for (left to right) no breakup, property-
independent breakup, and Straub et al. (2010) parameterizations. Included are (top
to bottom): ripening rate, activating rate, and deactivating rate. Dashed contour lines
represent the level of 𝑞𝑐 = 0.4g/kg (black) and 𝑞𝑟 = 0.4g/kg (red), representing a
cloudy and rainy region of the time-space domain, respectively.

in which deactivation simultaneously occurs on other particles.) Aerosols activate
primarily at the start of the simulation when an updraft is present, defining the altitude
boundaries of the cloud. No additional activation is seen in either instance including
collisional breakup. Deactivation occurs among a few aerosols which activate and
then rise in altitude beyond cloud top initially, and more strongly below cloud base
as droplets sediment out of the cloud and evaporate. The property-independent
case experiences much stronger deactivation at cloud base, which corresponds to
the higher rate of fragmentation of droplets at this altitude. The no-breakup and
property-dependent breakup cases display continued deactivation of aerosols at
the cloud base height throughout the simulation, while the property-independent
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case shows only near-surface deactivation, suggesting aerosol scavenging by rain
droplets throughout the more sustained precipitation process. These results indicate
that collisional breakup could be a relevant process for future studies of aerosol-
cloud effects, particularly in deeper-convective cases where collision rates are likely
to be higher.

2.5 Conclusions
This work presents a superdroplet algorithm for collisional breakup that is scalable
in avoiding creation of new superdroplets and physical in its ability to produce results
in a box and one-dimensional setting that are consistent with the expected reduction
and delay in rain formation. Furthermore, the algorithm produces hydrometeor
populations and process rates that differ between a property-independent approach
(with a fixed coalescence efficiency and fixed fragment size distribution), and a
property-dependent approach using empirical parameterizations. These differences
indicate the importance of random, stochastic events in warm rain microphysics,
a trait which has also been documented in other microphysical phenomena such
as giant CCN (Feingold et al., 1999; Yin et al., 2000). Without a scalable rep-
resentation, the superdroplet method has heretofore been unable to capture these
additional stochastic impacts of breakup, nor has it been applied to compare empir-
ical parameterizations of coalescence and breakup, which contribute uncertainties
to operational process, weather, and climate models.

This work provides the basis for a more complete representation of microphysical
processes in particle-based simulations. For instance, a superdroplet representa-
tion that considers ice-phase hydrometeors and properties could probe processes of
secondary ice production such as fragmentation and freezing of supercooled wa-
ter droplets upon collision with ice (James et al., 2021), rime splintering (Hallett
& Mossop, 1974), or ice-ice collisions (Harris-Hobbs & Cooper, 1987; Phillips
et al., 2017). These and other mixed-phase processes are poorly understood due
to challenges in obtaining direct observational or laboratory measurements, thus
a high-fidelity particle-based representation such as the superdroplet method pro-
vides an ideal means for studying these phenomena. While the collisional breakup
representation presented here does not address underlying uncertainties in parame-
terization of processes such as collision rates and phase change, it provides a path
forward for more rigorous and complete studies of cloud microphysics.
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Code and Data Availability
Implementation of this breakup algorithm in the SDM is available at https://doi.
org/10.5281/zenodo.7851352. The simulations presented in this work (and all
necessary input information) are available in the folder ’deJong_Mackay_2022’ at
https://doi.org/10.5281/zenodo.7851288. The notebooks in this folder reproduce
all results and figures presented in this study, with no external datasets required.
The scripts run the relevant model configuration in a matter of minutes and plot the
resulting output. All results presented in this paper can be reproduced by one of
two means: (1) downloading and installing ’PySDM’ and ’PySDM-examples’ (e.g.
using ’pip install’), and running the notebooks locally; (2) accessing the PySDM-
examples repository online and running the examples notebooks in the folder
‘deJong_Mackay_2022’ on Google Colab. These codes, PySDM and PySDM-
examples, are continuously under development at https://github.com/atmos-cloud-
sim-uj/PySDM and https://github.com/atmos-cloud-sim-uj/PySDM-examples, and
are further documented in a software publication (de Jong et al., 2023).

2.6 Appendix A: Limiters
In implementing collisional breakup for superdroplets, we suggest imposing a few
limiters to enforce physical constraints and maintain stability of the code. If the
user-selected time step for the SDM implementation is too large, collisional breakup
may quickly become a runaway process with superdroplet multiplicities increasingly
rapidly and unphysically, leading to numerical overflow. As an example, suppose
a droplet of multiplicity 102 should undergo 6 collisional breakups (𝛾𝛼 = 5) into
5 fragments each time (𝑁 𝑓 ,𝛼 = 5): then 𝛾 𝑗 𝑘 = 3906 and its new multiplicity
is 15, 525 = O(104). Successive collisional breakups between droplets whose
multiplicities have grown so rapidly would then lead to exponentially booming
multiplicities, and could quickly exceed the maximum representable quantity for
the computing machine (overflow). One solution is to set a maximum allowable
multiplicity for any superdroplet, and to reject any collisional breakups that would
produce a superdroplet exceeding this multiplicity.

In addition, the process of collisional breakup is physically constrained such that the
resulting superdroplet (the "fragment") volume should not exceed the volume of the
coalesced transition state, nor should it drop below a realistic size for a liquid water
droplet (molecule scale, for instance). These physical constraints can be imposed by
setting a minimum and maximum allowable fragment size resulting from breakup.
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The first of these constraints can then be imposed during computation of 𝛾 𝑗 𝑘 within
the while loop in equation 2.7:

𝜉new
𝑘 ≤ 𝜉max, (2.14)

where 𝜉max is a maximum multiplicity set to prevent overflow. The second two
constraints are imposed during the sampling of a fragment size:

𝑚min ≤ 𝑚 𝑓 ,𝛼 ≤ 𝑚 𝑗 + 𝑚𝑘 , (2.15)

where 𝑚min is a minimum physically allowed fragment size.

2.6.1 Sampling from empirical fragment size distributions
Sampling a fragment size 𝑚 𝑓 ,𝛼 requires selecting at random one 𝑚 𝑓 ,𝛼 according
to its weight in the overall fragment size distribution. For fragmentation functions
which are composed of several distinct modes, modes must be additionally mass-
weighted according to the mode’s associated fragment sizes in order to attain the
correct expectation value of fragment mass in the resulting sample. A common way
of sampling from simple distributions, such as a normal or lognormal, is to invert
the CDF (cumulative distribution function). We will demonstrate how to extend
this procedure to an empirical fragmentation function comprised of several modes,
which lacks a closed form CDF. For instance, the commonly-used fragmentation
function of Low and List partitions the fragmentation physics into three categories,
corresponding to filament, sheet, and disk breakup. Each category is then comprised
of 2–3 modes, corresponding to smaller satellite fragments and larger remnants of
the parent droplets. Similarly, Straub et al. distinguish four categories of fragments,
with the fragment size distribution within each category following a lognormal or
normal distribution. (Here, we follow the notation of Straub et al.)

Suppose the unnormalized fragmentation function 𝑃 𝑓 (𝐷) in droplet diameter 𝐷 is
described as a sum of 𝑘 modes:

𝑃 𝑓 (𝐷) =
𝑘∑︁
𝑟=1

𝑁𝑟 𝑝𝑟 (𝐷), (2.16)

where 𝑁𝑟 is the expected number of fragments from mode 𝑟, and 𝑝𝑟 (𝐷) is the
normalized fragment size distribution for mode 𝑟 . We begin by re-weighting the
size distribution by the mass contained within each mode, 𝑀𝑟 :

𝑀𝑟 =

∫ ∞

0

𝜋

6
𝐷3𝑝𝑟 (𝐷)𝑑𝐷, (2.17)



41

and then normalizing the distribution such that its integral is unity:

𝑃 𝑓 ,𝑛 (𝐷) =
∑𝑘
𝑟=1 𝑁𝑟𝑀𝑟 𝑝𝑟 (𝐷)∑𝑘

𝑟=1 𝑁𝑟𝑀𝑟

. (2.18)

These initial transformations yield a normalized fragment size distribution which
contains all modes of the fragmentation function weighted according to mass.
𝑃 𝑓 ,𝑛 (𝐷) corresponds to the probability (as a fraction) of retrieving a sample of
mass 𝐷 given the colliding droplet parameters.

Next, to sample a single fragment size 𝐷 𝑓 , we first use the random number 𝜙′′𝛼 to
determine which mode of the overall distribution is sampled. This equates to finding
𝑠 such that ∑𝑠−1

𝑟=1 𝑁𝑟𝑀𝑟∑𝑘
𝑟=1 𝑁𝑟𝑀𝑟

≤ 𝜙′′𝛼 <

∑𝑠
𝑟=1 𝑁𝑟𝑀𝑟∑𝑘
𝑟=1 𝑁𝑟𝑀𝑟

. (2.19)

The resulting fragment will represent only a single mode of the overall fragment
size distribution. However, selecting the mode according to its mass-weighted
probability conserves the expected mass distribution of the fragmentation function.
The average of several such steps is more likely to sample from each mode, therefore
it is crucial that a small enough time step is chosen to allow convergence of this
stochastic selection across collisions.

Next, the fragment size is chosen by sampling at random from the CDF of the mode
𝑝𝑠 (𝐷), which is assumed to be approximable by a closed form equation (as in the
case of a Gaussian or lognormal distribution). This second step of sampling can be
accomplished by selecting a new random number, reusing the random number from
a different colliding droplet pair, or simply rescaling 𝜙′′𝛼 as

𝜙′′𝛼 =
𝜙′′𝛼 −

∑𝑠−1
𝑟=1 𝑁𝑟𝑀𝑟∑𝑠

𝑟=1 𝑁𝑟𝑀𝑟 −
∑𝑠−1
𝑟=1 𝑁𝑟𝑀𝑟

. (2.20)

The fragment size 𝐷 𝑓 is then selected such that

𝜙′′𝛼 = 𝑝𝑠 (𝐷 𝑓 ). (2.21)

There are several methods of sampling a fragment size from distributions composed
of several modes. The presented implementation is used in generating results in this
work, and is included as one such example.
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SPANNING THE GAP FROM BULK TO BIN: A NOVEL
SPECTRAL MICROPHYSICS METHOD

de Jong, E. K., Bischoff, T., Nadim, A., & Schneider, T. (2022). Spanning the gap
from bulk to bin: A novel spectral microphysics method. Journal of Advances
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Abstract
Microphysics methods for climate models and numerical weather prediction typ-
ically track one, two, or three moments of a droplet size distribution for various
categories of liquid, ice, and aerosol. Such methods rely on conversion parameters
between these categories, which introduces uncertainty into predictions. While
higher-fidelity options such as bin and Lagrangian schemes exist, they require too
many degrees of freedom for climate modeling applications and introduce numer-
ical challenges. Here we introduce a flexible spectral microphysics method based
on collocation of basis functions. This method generalizes to a linear bulk scheme
when using few basis functions and to a smoothed bin scheme with more degrees
of freedom. Tested in an idealized box setting, the method improves spectral accu-
racy for droplet collision-coalescence and may eliminate the need for precipitation
autoconversion rates required by bulk methods; furthermore, it generalizes well to
multimodal distributions with less complexity than a bin method. The potential
to extend this collocation representation to multiple hydrometeor classes suggests
a path forward to unify liquid, ice, and aerosol microphysics in a single, flexible,
computational framework for climate modeling.

Plain Language Summary
Clouds and aerosols affect global warming by reflecting and absorbing radiation and
by storing and transporting water. Climate models need a way to efficiently track the
size and number of cloud droplets, ice, and aerosols in order to accurately predict
the impact that these “microphysical” particles have on climate. Existing methods
of microphysics rely on many uncertain parameters and are either too complicated
or too simple to take advantage of today’s computational resources. We propose a
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new way to represent cloud droplets that can both reduce uncertainties and make
use of increased computing power.

3.1 Introduction
Droplets, aerosols, and ice particles, collectively a subset of atmospheric micro-
physical particles, affect planetary-scale climate, yet the processes that govern their
behavior occur at the microscale. This extreme range of scales, from droplets to
clouds to large-scale atmospheric dynamics, makes it challenging to computation-
ally represent microphysics in atmosphere simulations. There are simply too many
particles to represent directly, yet the microphysics processes involved are nonlin-
ear and do not lend themselves easily to simplifications. Instead, microphysics
schemes in climate and numerical weather models predict the particle size distri-
bution (PSD) present at various locations in the atmosphere: the PSD and number
concentration determine the macroscopic behavior of the system, such as cloud
albedo or precipitation rates. Historically, methods to represent the PSD developed
along two trajectories: bulk methods, which predict aggregate properties of the
droplet population, and spectral methods, which explicitly track the PSD. Both of
these representations make assumptions about the droplet distribution and the mi-
crophysical process rates, with spectral methods being the more flexible of the two
options. Unfortunately, these parameterizations and assumptions contribute a major
yet difficult-to-quantify source of uncertainty in climate predictions (Arakawa, 2004;
Intergovernmental Panel on Climate Change, 2014; Khain et al., 2015; Morrison
et al., 2020; Randall et al., 2003).

Bulk schemes, originating with Kessler, 1969, explicitly track one or more prog-
nostic moments of the PSD and therefore are compact representations suitable for
global climate applications. Indeed, many diagnostic cloud quantities, such as the
radar reflectivity or liquid mass fraction are directly related to these moments. On
the other hand, many process rates such as collisional coalescence depend on the
full PSD, which is not uniquely defined by the prognostic moments. Therefore, by
abstracting a droplet population to one, two, or three variables, bulk methods make
two fundamental simplifications. First, many single-droplet processes such as sedi-
mentation or aerosol activation require additional parameterizations or assumptions
to approximate how the processes impact the prognostic moments. Second, because
many such process rates depend on higher-order moments which are not explicitly
tracked, moment-based methods require a closure to relate these higher order mo-
ments back to the prognostic variables. Frequently this closure is accomplished by
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relating the prognostic moments back to an underlying assumed size distribution
such as a gamma or exponential Milbrandt and Yau, 2005; Morrison and Grabowski,
2008; Seifert and Beheng, 2006, which corresponds well to data in many empirical
settings. However, in the case of a multimodal distribution, (for instance, when both
small cloud droplets and larger rain droplets are present) this closure assumption
introduces significant structural uncertainty into the microphysics scheme. There
is no physical reason a priori to restrict a droplet population to maintaining a par-
ticular size distribution as they coalesce, break up, grow, sediment, and change
phases. Unfortunately, inverting a multimodal distribution analytically is frequently
ill-posed (Morrison et al., 2019). Most traditional bulk methods avoid the issue by
representing several categories of hydrometeors (rain, cloud droplets, and several
categories of aerosols) through separate prognostic moments, assuming a simple
unimodal distribution for each of these categories. However, these categories of
condensed water, while intuitive, are artificial: in reality, liquid hydrometeors are
distributed across a continuous spectrum, from small chemically-active aerosol par-
ticles, to large liquid cloud droplets, to droplets which are large enough to fall as
rain. Conversion between these categories adds further complexity and uncertainty
to the model.

On the other hand, spectral or “bin” microphysics schemes directly evolve the PSD
in time through discrete bins, or particle size ranges (e.g. Berry, 1967; Berry
and Reinhardt, 1974; Tzivion (Tzitzvashvili) et al., 1987; Young, 1974). Bin
methods have made a great impact in understanding aerosol-cloud interactions
(e.g. Fan et al., 2016; Khain et al., 2015; Morrison and Grabowski, 2007), but
at a higher computational cost that currently makes them infeasible for climate
simulations. For example, Gettelman et al., 2021 ran a general circulation model
(GCM) with bin microphysics, incurring a factor of five cost penalty over a bulk
scheme. Furthermore, while bin methods avoid the closure assumptions of bulk
schemes, they suffer from similar parameterization challenges, numerical diffusion
(Morrison et al., 2019), as well as from sensitivity to the bin discretization (Ghan et
al., 2011). The purpose of the method presented here is to target the middle ground
of complexity between traditional bulk and bin methods using more sophisticated
numerical techniques.

To meet the needs of future climate and weather models, a microphysics scheme
should maintain enough flexibility to function with a wide range of degrees of
freedom and minimal structural uncertainty in the PSD representation. While bin-
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scheme complexity may be unattainable for GCMs in the near future, we still need a
microphysics method that can maintain spectral details without the closure assump-
tions and conversion parameterizations required by moment-based bulk methods.
Some recent efforts in microphysics modeling have focused on relaxing assumptions
about the size distribution and process rates to reduce these structural uncertainties.
One option, Lagrangian microphysics, directly tracks tracer particles known as su-
perdroplets (Andrejczuk et al., 2008, 2010; Riechelmann et al., 2012; Shima et al.,
2009), but it is far too computationally expensive for global or even regional mod-
els. A different moment-based method, the BOSS scheme proposed by Morrison
et al., 2019 leaves all process rates and closures as generalized power series whose
parameters are learned from data. Bieli et al., 2022 present a more efficient way
to learn these parameters within a similar bulk microphysics framework that still
relies on closures. More complex yet, Rodríguez Genó and Alfonso, 2022 tackle the
challenge of inverting multimodal distribution closures using a machine-learning
based method, which could avoid the necessity for cloud-rain conversion rate pa-
rameterizations. Another novel approach of combining bulk and bin microphysics
to generate arbitrary moments for potentially multimodal distributions (Igel, 2019)
illustrates the need to relax finite-size threshold assumptions for cloud-to-rain con-
version (Igel et al., 2022). However, these bulk methods cannot function in a wide
range of computational degrees of freedom, nor do they provide complete spectral
details about the PSD that might alleviate uncertainties about conversion between
hydrometeor types. One solution is to think beyond the classical bulk versus bin
representations of the PSD, leveraging numerical techniques developed for fluid
mechanics.

In this study, we present and test a novel way to span the gap in complexity between
bin and bulk microphysics methods by applying the collocation method with basis
functions (BFs) to represent the particle size distribution. (For simplicity, it will
be referred to going forward as the BF method.) Finite element methods such as
collocation have been historically overlooked for microphysics applications, with the
exception of Gelbard and Seinfeld, 1978’s demonstration using collocation of quartic
or cubic polynomials, which was never widely adopted in favor of contemporaneous
bin methods. More recent results from the applied math community suggest that
combining collocation with radial basis functions, rather than polynomials, is a
promising numerical technique for advection problems (Franke & Schaback, 1998;
Zhang et al., 2000). This work extends the basis function collocation technique to
the integro-differential equations encountered in microphysics. Beyond retaining
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spectral details of the PSD, the BF method has appealing extremes of complexity:
when using few basis functions, the method is effectively a linear closure, as in
the context of bulk schemes; at moderate or high resolutions, it converges toward a
smoothed bin scheme (replicating a bin scheme exactly if constant piecewise BFs and
appropriate numerics are used). Therefore collocation of basis functions promises
greater flexibility than either bulk or bin methods alone, while retaining desirable
aspects such as low-to-moderate complexity and spectral predictions. This paper
describes the method and presents results of applying the method to droplet collision
and coalescence, benchmarked against commonly used bulk, bin, and Lagrangian
frameworks. We additionally address some limitations posed by the method that
are specific to the context of tracking a PSD, such as mass non-conservation and a
finite size range. Overall, the BF method improves spectral PSD predictions in a box
model as well as simple precipitation predictions, measured as a size exceedance,
compared to a three-moment bulk method, and with fewer degrees of freedom
than a bin method. Furthermore, the run-time complexity of the method scales
quadratically with the number of degrees of freedom, making it just as efficient as
a bin method.

The remainder of this paper is organized as follows: section 2 describes the method
of collocation of basis functions to approximately solve the population balance
equation for collision-coalescence in microphysics, and section 3 describes a set of
microphysics box model case studies. Section 4 compares the accuracy of these
case studies solved using basis functions, bulk, and bin methods against a high-
fidelity Lagrangian reference solution, and discusses the computational complexity
of these methods. Finally, section 5 concludes the paper and suggests potential
improvements and applications.

3.2 Method Description
3.2.1 Key Equations
The governing equations for microphysics describe a population balance for the
droplet size distribution. The governing equation for collision-coalescence, also
called the Smoluchowski or Stochastic Collection Equation (SCE), is given by

𝜕𝑡𝑛(𝑥, 𝑡) =
1
2

∫ 𝑥

0
𝑛(𝑥 − 𝑦, 𝑡)𝑛(𝑦, 𝑡)𝐾 (𝑥 − 𝑦, 𝑦)𝐸𝑐 (𝑥 − 𝑦, 𝑦)𝑑𝑦

−𝑛(𝑥)
∫ ∞

0
𝑛(𝑦, 𝑡)𝐾 (𝑥, 𝑦)𝐸𝑐 (𝑥, 𝑦)𝑑𝑦,

(3.1)
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where 𝑛(𝑥, 𝑡) represents the number density of particles of mass 𝑥 at time 𝑡, 𝐾 (𝑥, 𝑦)
is the collision rate of particles of masses 𝑥 and 𝑦, and 𝐸𝑐 (𝑥, 𝑦) is the coalescence
efficiency of said collision. The first integral represents production of droplets of
size 𝑥 from two smaller droplets, and the second integral represents loss of droplets
of size 𝑥 due to coalescence with other droplets.

Other microphysical processes such as condensation, evaporation, sedimentation,
and aerosol activation also affect the PSD. To demonstrate the proposed BF method
for microphysics, we initially focus on only the coalescence process as in equation
(3.1). The SCE is notoriously difficult to solve numerically, as it is an integro-
partial differential equation and frequently involves rapid acceleration of particle
growth, yet this mechanism is crucial to determining the onset of rain and drizzle
(Stephens et al., 2010). Later, we will also consider two non-collisional processes
of sedimentation and injection of new particles. For the purposes of this study,
sedimentation is defined as removal of all particles above a size threshold 𝑥max,
which can prevent unphysically rapid acceleration of collisions. Sedimentation is
enforced by limiting the upper bound of each integral to 𝑥max, effectively truncating
the PSD to have a value of 𝑛(𝑥 > 𝑥max, 𝑡) = 0. We can alternatively prevent particles
larger than the maximum size 𝑥max from forming by rejecting those collisions in
a mass conserving manner. The appropriate upper bound for the second integral
in this case is 𝑥max − 𝑥 (Filbet & Laurençot, 2004). When such collisions are not
rejected and particles exit the system, we introduce new droplets to the system, to
mimic the entrainment or activation of new small particles. The rate of particle
injection 𝑃inj(𝑥, 𝑡) is given by

𝑃inj(𝑥, 𝑡) = ¤𝑃𝐼 (𝑥) (3.2)

where 𝐼 (𝑥) represents a normalized size distribution of the injected droplets, which
might be smaller than the average droplet in the system, and ¤𝑃 is the rate of particle
injection. This combination of droplet dynamics represents a system in which
particles continuously enter the system, grow through coalescence, and exit by
sedimentation once they reach a critical size.

3.2.2 Collocation of Basis Functions with Positivity Constraint
In our proposed method, based on the work of Zhang et al., 2000, the PSD is
approximated by a weighted sum of 𝑛BF basis functions:

𝑛(𝑥, 𝑡) ≈ 𝑛̃(𝑥, 𝑡) =
𝑛BF∑︁
𝑘=1

𝑐𝑘 (𝑡)𝜙(𝑥; 𝜃𝑘 ) = c(𝑡) · 𝝓(𝑥). (3.3)
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We denote the approximate solution 𝑛̃(𝑥, 𝑡), the collocation weights 𝑐𝑘 (𝑡), and the
basis functions 𝜙(𝑥 |𝜃𝑘 ) where 𝜙 is the functional form and 𝜃𝑘 are the parameters
of the 𝑘-th BF (for instance, mean and variance of a Gaussian). In the collocation
method, one such parameter is the center or mean of the basis function, 𝜇𝑘 ∈ 𝜃𝑘 ,
known as the collocation points. In the context of microphysics, these collocation
points refer to particle masses, which locate the mode of each basis function. In
equation (3.3), we have also compactly rewritten the BFs and weights in vector form
as 𝝓(𝑥) =

(
𝜙(𝑥 |𝜃1), 𝜙(𝑥 |𝜃2), . . . , 𝜙(𝑥 |𝜃𝑛BF)

)
and c(𝑡) =

(
𝑐1(𝑥), 𝑐2(𝑥), . . . , 𝑐𝑛BF (𝑥)

)
.

Since the basis functions have a fixed shape over the droplet size range, evolving
the approximate PSD reduces to solving for c(𝑡) in time as a system of ordinary
differential equations. Because liquid water is a conserved quantity in the absence
of evaporation/condensation, we consider the evolution of the local mass density
𝑚(𝑥, 𝑡) = 𝑥 𝑛(𝑥, 𝑡) rather than the local number density. Thus although we use basis
functions to approximate the number density, the equations are evolved in time based
on local mass density, as in a one-moment bulk method or a standard flux-method
bin scheme.

Denote the vector of approximate mass density at the collocation points 𝜇𝑘 to be
m̃(𝑡) =

(
𝜇1𝑛̃(𝜇1, 𝑡), . . . , 𝜇𝑝 𝑛̃(𝜇𝑝, 𝑡)

)
. At each timestep, recovering the weights from

the interpolated collocation points requires solving for c(𝑡) in the linear system

m̃(𝑡) = 𝚽 · c(𝑡), (3.4)

where 𝚽 is a 𝑛BF × 𝑛BF matrix, with elements Φ 𝑗 𝑘 = 𝜇 𝑗𝜙𝑘 (𝜇 𝑗 ) representing the
mass density of the 𝑘-th basis function evaluated at the 𝑗 th collocation point. For a
linearly independent set of basis functions, this system is well-posed and guarantees
a unique solution. However, it may be ill-conditioned, particularly when the choice
of basis function has global rather than compact support (Zhang et al., 2000).

The approximate solution is initialized by projecting the initial mass distribution
onto the basis space using the collocation points, as in Equation 3.4. This system is
solved via a constrained optimization problem:

min
c(𝑡)

∥𝚽 · c(𝑡) − m̃(𝑡)∥2 s.t. c(𝑡) ≥ 0 . (3.5)

The positivity constraint mathematically enforces the fact that the PSD should be
nonnegative at all points. Equation (3.5) is formulated as a quadratic optimization,
and therefore can be solved efficiently via least squares.



55

This projection could additionally incorporate a mass conservation constraint, both
initially and at every future time step, but at higher cost than solving the linear
system in equation 3.4. Additionally, since the exact solution to the equation does
not necessarily exist as a projection of the basis functions, the mass and positivity
constraints in the optimizer can lead to unphysical solutions as the approximate
PSD evolves in time. While relaxing this constraint might lead to an artificial
reduction or increase in mass throughout the simulation time, it allows a more
efficient nonnegative least-squares solution. In developing this method, we observed
that evolving the linear system in mass density with a positivity constraint, rather
than using number density directly, led to more physical and realistic PSDs compared
to including a mass-conserving constraint at all times.

3.2.2.1 Interpretability and design choices

The method described above generalizes to solve many categories of differential
equation, but selecting the basis functions and parameters 𝜃𝑘 requires care in order
to preserve physical properties of a droplet distribution, such as physically realistic
sizes, finite positive number and mass, and convergence with increasing complexity
(for further discussion, refer to Appendix A). To model a droplet PSD, we choose
to let the basis functions themselves be distributions, in contrast to the cubic splines
employed by Gelbard and Seinfeld, 1978 or spectral element methods. If we choose
Gaussian or lognormal BF’s collocated on a grid of droplet sizes, each BF effectively
represents a droplet size mode. This feature provides a useful analogy to aerosol size
modes, or cloud versus rain droplet distributions, much as a typical bin scheme will
distinguish between aerosol, cloud, and rain size bins, or how a moment scheme will
have a separate set of moments for cloud and rain water. In fact, this representation
is a generalization of bin schemes, which can be considered piecewise constant basis
functions: 𝜙𝑘 (𝑥) = 1, 𝑥 ∈ {𝑥𝑘 , 𝑥𝑘+1} (see Figure 3.1). When used with only a few
basis functions, the BF representation can similarly be thought of as approximating
a linear closure, as in the method of moments (MOM), where the prognostic variable
is the first moment calculated over sub-intervals of the particle size range.

Additional design choices include selecting the collocation points and additional
hyperparameters of the BFs, such as the variance for lognormal or Gaussian distri-
butions. An in-depth description and justification of the BF setup used in following
sections can be found in Appendix A. Notably, we introduce a compactly-supported
BF that approximates a lognormal distribution (CSLBF1: equation (3.9)), use
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Figure 3.1: Illustration of the way that the collocation of basis functions can span
the range in complexity from bulk to bin microphysics. The PSD for a two-mode
gamma mixture of particles, corresponding, for instance, to a cloud and rain mode,
is plotted as it would be represented in a: (a) 3-moment bulk scheme with gamma
closure (one set of moments for each mode); (b) 4 lognormal basis functions; (c)
16 lognormal basis functions; (d) 16 piecewise-constant basis functions; (e) bin
method with 32 bins.
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exponentially-spaced collocation points, and set the geometric standard deviation as
the distance between adjacent collocation points.

3.2.3 Application to the SCE and microphysical processes
The equations involved in applying the BF method to the SCE are derived in appendix
B, with the result summarized by equation (3.6) below:

𝑑𝑡m̃(𝑡) = c(𝑡) · Q · c(𝑡) +∑𝑁𝑝𝑟𝑜𝑐

𝑙=1 P𝑙
𝚽 · c(𝑡) = m̃, with c(𝑡) ≥ 0

. (3.6)

In this equation, third-order tensor Q and vectors P𝑙 are obtained by taking various
inner products of the collision kernel and additional process rates (respectively)
with the basis functions. All integrals for this collision-coalescence term can be
pre-computed for a fixed set of basis functions, defining these tensors through
numerical integration and projection of rate processes onto the basis space. (The
required precomputations and scaling of these computations with the number of
BFs are described in Appendix B. In summary, the precomputation steps scale at
most cubically with the number of BFs, and the computation at each time step scales
cubically or quadratically depending on the basis chosen.) The result is a simple
set of quadratic coupled ordinary differential equations for the mass density at the
collocation points, m̃(𝑡), and the BF weight vector c(𝑡). Examples demonstrated in
this work use a fourth-order Runge-Kutta time stepper to solve Equation 3.6.

3.3 Test Cases
As a demonstration of the the accuracy, efficiency, and limitations of the proposed
BF method, we compare its spectral and bulk quantity accuracy with bin, bulk, and
a reference Lagrangian microphysics scheme, using three different initial conditions
and four sets of collisional dynamics in a zero-dimensional box. The functional
form and parameters of each initial condition are summarized in table 1, and the
collision kernels and injection dynamics are summarized in table 2.

The first two initial conditions (table 1) consider a unimodal PSD, following either
an exponential (EXP) or gamma (GAM) distribution in particle volume (particles
assumed spherical). EXP considers a mean droplet radius of 15 𝜇m, and GAM
considers a smaller mean droplet radius of 8.95 𝜇m. The third initial PSD is a
bimodal (BIM) sum of two gamma distributions with mean droplet radii 9.85 𝜇m
and 4.57 𝜇m. This initial distribution can be thought of as representing two cloud
droplet or aerosol modes, or alternatively a cloud mode and rain droplet mode. A
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Label Form Parameters
EXP Exponential 𝑁0 = 10/cm3

𝑛0(𝑥) = 𝑁0
𝜃

exp(−𝑥/𝜃) 𝜃 = 14, 137𝜇m3

GAM Gamma 𝑁0 = 100/cm3, 𝑘 = 3
𝑛0(𝑥) = 𝑁0

Γ(𝑘)𝜃𝑘 𝑥
𝑘−1 exp(−𝑥/𝜃) 𝜃 = 1000𝜇m3

BIM Bimodal Gamma Mixture 𝑁0,𝑎 = 10/cm3, 𝑁0,𝑏 = 100/cm3

𝑛0(𝑥) = 𝑁0,𝑎

Γ(𝑘𝑎)𝜃𝑘𝑎𝑎
𝑥𝑘𝑎−1 exp(−𝑥/𝜃𝑎) 𝑘𝑎 = 4, 𝑘𝑏 = 2

+ 𝑁0,𝑏

Γ(𝑘𝑏)𝜃
𝑘𝑏
𝑏

𝑥𝑘𝑏−1 exp(−𝑥/𝜃𝑏) 𝜃𝑎 = 1000𝜇m3, 𝜃𝑏 = 200𝜇m3

Table 3.1: Summary of the three initial conditions tested for collision-only dynamics.

Label Equation Duration
Constant kernel collisions EXP: 4hr

1C 𝐾 (𝑥, 𝑦) = 𝐴 GAM: 4hr
𝐴 = 10−4/cm3/s BIM: 4hr

Golovin kernel collisions EXP: 2hr
1G 𝐾 (𝑥, 𝑦) = 𝐵(𝑥 + 𝑦) GAM: 1hr

𝐵 = 1500/s BIM: 4hr
Hydrodynamic kernel collisions EXP: 4hr

1H 𝐾 (𝑥, 𝑦) = 𝐶𝜋
(
𝑟 (𝑥) + 𝑟 (𝑦)

)
|𝑎(𝑥) − 𝑎(𝑦) | GAM: 4hr

𝐶 = 10−12cm3/𝜇m4/s BIM: 4hr
Golovin kernel collisions, injection, and removal

2 𝐾 (𝑥, 𝑦) = 𝐵(𝑥 + 𝑦), 𝐵 = 1500/s 2hr
𝐼 (𝑥) = 𝑥𝑘−1 exp(−𝑥/𝜃)

Γ𝑘𝜃𝑘
, 𝑘 = 2, 𝜃 = 200𝜇m3

¤𝑃 = 1/s, 𝑟𝑚𝑎𝑥 = 25𝜇m

Table 3.2: Equations and parameters for the four collision dynamics considered,
and the corresponding initial condition/simulation duration pairs tested for each
dynamic. For the hydrodynamic case 1H, 𝑟 (𝑥) and 𝑎(𝑥) refer to the radius and area,
respectively, of a particle with volume 𝑥. Case 2 is initialized as an empty box.
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simple closure-based 2- or 3-moment bulk representation cannot capture multiple
modes without an additional set of prognostic moments and autoconversion rates;
therefore, this test case highlights the information gained from using a more flexible
PSD representation.

The dynamics considered (table 2) fall into two categories: (1) collision-coalescence
only with three different collision kernels, or (2) Golovin collisions and additional
dynamics of particle injection and removal from the box. Cases 1C, 1G, and 1H use
a a constant collection efficiency 𝐸𝑐 = 1 and three collision kernels of increasing
complexity: (1C) a constant rate of collision, (1G) a Golovin linear kernel, and
(1H) a hydrodynamic kernel where 𝑟 (𝑥) and 𝑎(𝑥) represent the radius and area of
a particle of mass 𝑥, respectively. The kernel parameters and simulated duration
are selected such that the number concentration of the final droplet spectrum has
decreased, but does not approach the single-large-particle limit of coalescence-only
dynamics. Test case 2 begins with an initially empty box, using the same collision
kernel and parameters as 1G, plus a constant prescribed injection rate and injection
PSD to mimic entrainment/activation of new particles, and a maximum particle size
𝑟𝑚𝑎𝑥 = 25 𝜇m (as in Khairoutdinov and Kogan, 2000) for removal/sedimentation
of particles approaching a drizzle size-threshold. This set of particle dynamics will
drive the PSD to a steady state in which particles enter the system, collide, grow,
and precipitate out of the system. While modeling collision-coalescence by itself is
a useful numerical test, it requires that the microphysics scheme be able to represent
arbitrarily large particles with an accelerating rate of growth. Using a simplified
proxy for the introduction of small droplets and removal of large droplets allows for
the study of a steady-state PSD.

For the dynamics and initial conditions described above, we investigate the particle
size spectra pre- and post-collisions through the marginal mass distribution:

𝑑𝑚

𝑑 ln(𝑟) = 3𝑥2𝑛(𝑥), (3.7)

where 𝑑𝑚 is the mass of particles in a size range of 𝑑 ln(𝑟) in a logarithmic space
of spherical particle radius 𝑟 , corresponding to particle mass 𝑥. An 𝐿2 spectral
error 𝐸𝐿2 is calculated as a normalized sum of squared differences for this quan-
tity between the approximated profiles and a reference solution from Lagrangian
microphysics:

𝐸𝐿2 =

∫ ∞
0

(
𝑑𝑚

𝑑 ln(𝑟) approx
− 𝑑𝑚
𝑑 ln(𝑟) ref

)2
𝑑 ln(𝑟)∫ ∞

0
(
𝑑𝑚

𝑑 ln(𝑟) ref

)2
𝑑 ln(𝑟)

. (3.8)
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In addition, we consider the first three moments of the PSD, which correspond to
total number density, total mass density, and radar reflectivity; these are standard
quantities tracked in both climate modeling and weather prediction. Finally, to
understand the ability of the BF method to represent the growth of cloud droplets
into rain-range droplets, we compute the mass of droplets in the box exceeding a size
threshold of 𝑟max = 25 𝜇m (Khairoutdinov & Kogan, 2000) as the system evolves.
This exceedance can be considered a proxy for precipitation, even though all mass
remains in the box and these large particles may continue to collect smaller droplets.
(A threshold of 25 𝜇m was shown to have the best performance in distinguishing rain
and cloud modes in a different exploratory microphysical scheme (Igel et al., 2022),
although the use of a fixed size cutoff is inherently arbitrary.) Although the terminal
velocity of a 25 𝜇m particle is insufficient to sediment in a realistic convective
updraft, we introduce this threshold as a means of evaluating mass growth in the
tail of the particle size distribution, which corresponds to autoconversion in bulk
microphysics schemes and relates to the mass of droplets that experience the highest
rates of collision-coalescence.

For comparison with the BF method, we solve each test case numerically using
the flux method for spectral bin microphysics with 32 single-moment bins (Bott,
1998), a two- or three-moment closure method of moments (Bieli et al., 2022),
and a Lagrangian particle-based code called PySDM (v2.5) (Bartman et al., 2022).
The bin method used follows the original setup from Bott, 1998, spanning a range
of 0.633 𝜇m to 817 𝜇m radius with mass doubling between bins, and a time step
selected to be sufficiently small as to prevent numerical instability (1 s to 100 s
depending on the dynamics). The choice of 32 bins is common in LES application
and contrasts the performance of the BF method with a spectral representation that
is too expensive for existing GCMs. The MOM representation uses 2 moments
with an exponential closure for the EXP initial condition test cases, and a 3 moment
gamma closure for the GAM and BIM initial conditions. The MOM is initialized
to match the initial moments of each distribution exactly, and therefore is an exact
match of the initial PSD for the EXP and GAM cases. As a high-fidelity reference
for the collision-only dynamics, we use the results of Lagrangian microphysics. The
collision kernels used in this Lagrangian case have exactly the same functional forms
as those used for the collocation, bin, and bulk methods with a constant collection
efficiency 𝐸𝑐 = 1.

These Lagrangian PySDM simulations use 215 = 32, 768 superdroplets to represent
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the particle population in a box of volume 1 m3, and are taken as the reference
profile for the purposes of discussion and 𝐿2 spectral error. While operational SDM
simulations typically use closer to 256 superdroplets per gridbox to study broader
microphysical processes, the choice of a sufficiently large quantity of superdroplets
was shown to reproduce analytic and numerical solutions for similar collision dy-
namics in a 0D box setting well (Shima et al., 2009). Furthermore, it is expected
that the solution error for the other methods considered in these experiments will
outpace that of the Lagrangian results given the large number of superdroplets used
to represent the PSD. Thus although the superdroplet method may incur significant
errors due to an under-resolution of the size spectrum when fewer superdroplets are
used, the PySDM results presented in this work are a reasonable benchmark against
which to validate other methods.

The BF method is demonstrated in both a low-complexity and moderate-complexity
configuration, with 8 or 16 CSLBF1 basis functions, respectively. Both configu-
rations span a particle size range of 2 𝜇m to 200 𝜇m radius, which corresponds
to 26 of the 32 bins used in the flux method. Collocation points are logarithmi-
cally spaced over particle volumes corresponding to this size range (particles are
assumed spherical with liquid water density). BF shape parameters 𝜃𝑘 are chosen
such that the basis functions overlap with their nearest neighbors: 𝜃𝑘 = 𝜇𝑘 − 𝜇𝑘−2

and 𝜃1 = 𝜃2 = 𝜇2. The method is implemented in the Julia programming language
and uses a variable time-step with the DifferentialEquations.jl package (Rackauckas
& Nie, 2017). The constrained optimization in equation (3.4) is solved using Non-
NegLeastSquares.jl v0.4.0 (non-negative least squares). Numerical integrals are
computed using Cubature.jl v1.5.1.

3.4 Results
3.4.1 Unimodal collision-coalescence
For the collision-coalescence box cases with a single particle size mode (EXP
and GAM), we find that the collocation method with 16 basis functions is able
both to reproduce the initial PSD well and to accurately predict the PSD following
collisions. The spectra for case 1G-GAM in Figure 3.2 reveal that more than eight
basis functions are necessary for this particular BF configuration to approximate
the initial condition’s primary size mode, while 16 BFs are sufficient to capture the
height and location of this mode. The 16-BF configuration outperforms the MOM in
predicting the final spectrum, as the primary mode in the MOM is slightly too large
and the spectrum too narrow compared with Lagrangian, bin, and BF approach.
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Figure 3.2: Initial spectrum GAM (left) and post-collision spectrum (right) resulting
from a Golovin kernel collision-coalescence (1G) for bulk (MOM), bin (flux), and
Lagrangian methods, and using the BF collocation method with 8 or 16 degrees of
freedom.

The 8-BF configuration artificially broadens both the initial and final PSD due to
the wide basis functions required to span the particle size range of interest. This
result supports the claim that the BF approach is suitable as a moderate complexity
representation of microphysics, whereas a bulk method with closure is appropriate
when it is desired to use only a few degrees of freedom.

The results of all three initial conditions and collision kernels are summarized by the
𝐿2 spectral errors of the post-collision spectra in Figure 3.3. The collocation method
with 8 BFs performs on par with the MOM in many cases, suffering from broadening
of the spectrum particularly in the BIM case, which requires high resolution in the
particle size space to capture both narrow modes. With 16 BFs, the BF method
outperforms a bulk method in predicting the post-collision spectra in most cases, and
it performs similarly to a bin method (with superior accuracy in half of the cases)
despite requiring fewer degrees of freedom than the bin approach to span the same
particle size range. Errors in the bin representation range from 15–30% relative
to the Lagrangian results and may be attributed in part to the stepwise PSD repre-
sentation. Likewise, the BF approach with 16 degrees of freedom results in errors
consistently less than 25% for all three collision kernels investigated with unimodal
initial conditions, with some of this error attributable to an under-resolution of the
smooth distribution. In contrast, spectral errors in the MOM vary from case-to-case
according to the complexity of the collision kernel and initial condition. These
results demonstrate the potential for the collocation method to consistently resolve
realistic droplet spectra at a level of complexity between that of a bulk method and
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a 32-single-moment bin scheme.

Next we investigate bulk quantities predicted by each method in figures 3.4 and 3.5,
which illustrate the time evolution of the first three moments and exceedance mass,
respectively, for the 1G-GAM case, which displays representative behavior among
all unimodal test cases. The bulk method of moments outperforms the BF method
in predicting the time evolution of the PSD moments, as the first two moments are
predicted analytically, and the gamma closure approximation is only employed in
computing the second moment. (Although these results indicate that the bulk MOM
performs well on all bulk quantities relative even to a bin representation, bulk meth-
ods do not typically represent precipitation through exceedance as is done here, but
rely on autoconversion parameterizations which introduce significant uncertainty
into the model.) The BF method does not exactly conserve mass, especially when
fewer BFs are used, in part because the use of compactly supported basis functions
prevents the representation of particles larger than the support of the basis functions.
The distributional representation of a particle population allows for the formation
of unphysically large particles in the collision-coalescence equation; therefore, even
though the spectral error is relatively low, the inability of the BF to capture such
large particles strongly penalizes the higher-order moments, especially relative to a
bulk representation with a globally-supported closure assumption. Furthermore, the
matrix inversion in equation (3.4) does not guarantee conservation of mass, particu-
larly where the system of equations might be large and ill-conditioned. Despite this
challenge and lack of a guarantee, the BF method does a reasonable job recovering
mass conservation throughout the simulation time, with mass variations (relative to
the exact initial mass and reference Lagrangian solution, which is mass-conserving)
of up to 17% in the 8-BF case due to an early overprediction of mass, and up to a
loss of 9% of total mass in the 16-BF case, with the maximum error incurred near
the end of the simulation. Among all unimodal test cases summarized in Figure 3.3,
mass error for the 16-BF case is most severe for case 1H-GAM (not shown) with an
initial overprediction of 17%.

The second moment is overestimated by the 8-BF method initially due to error
in projecting the initial PSD onto the basis space: the initial projection slightly
overpredicts the size of some droplets, but not so much as to miscategorize them in
the exceedance regime in either BF case, as indicated in figures 3.2 and 3.5. The
results further indicate that the 8-BF representation is not sufficient to accurately
represent the short-time dynamics of the moment evolution, as evidenced by jumps
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Figure 3.3: Spectral error (𝐿2) for the bulk, bin (flux), and BF methods with 8 or
16 basis functions, computed relative to a Lagrangian PySDM result. Errors are
computed for each of three coalescence-only experiments (case 1C, 1G, and 1H,
respectively; bar colors), and each of three initial conditions (EXP, GAM, BIM; top
to bottom).
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Figure 3.4: Evolution of the first three moments (left to right) of the GAM initial
condition over time for bulk, bin, and BF method with 8 or 16 degrees of freedom
using Golovin collision dynamics (1G).
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bin, and collocation methods as a function of time for Golovin collision dynamics
(1G) and initial condition GAM.
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Figure 3.6: Spectra following collision-coalescence of a bimodal droplet population
BIM using Lagrangian, bulk, bin, and BF methods with a Golovin kernel (case 1G).

in the first and second moments as well as the exceedance mass. As noted in the
spectral case, the necessity for the basis functions to span the entire size range leads
to an artificial broadening of the spectrum in this case, as well as to unphysical
jumps in bulk quantities in time as soon as a basis function corresponding to a
larger size mode is first activated. This challenge is alleviated by using more
BFs (still lower complexity than the bin representation), and, in fact, the 16-BF
representation outperforms the bin method in predicting exceedance mass (Figure
3.5): the tail of the bin representation is underresolved with only 32 bins, leading to
an underprediction of the mass of large precipitation-range droplets. Indeed, despite
shortcomings in predicting PSD moments, the BF method improves prediction of the
second moment over the bin method in 6 out of 9 test cases (not shown), indicating
that the method still performs well at capturing the mass of particles which lie
in the tail of the distribution. This indicates a powerful capability for this flexible
spectral method to accurately capture the rate of transition from small cloud droplets
to a coalescence-driven "rain" mode without prior assumptions of a size threshold
or autoconversion rate, while also continuing to resolve the size spectrum of the
rain-mode droplets.

3.4.2 Multimodal collision-coalescence
One strength of the BF method is its ability to represent up to 𝑛BF modes of a PSD,
where 𝑛BF is the number of basis functions used. By contrast, bulk methods can
represent at most one droplet mode, and bin methods lose spectral detail of the modes
due to the piecewise constant representation of the PSD. We demonstrate in Figure
3.6 the test case 1G-BIM: Golovin collision-coalescence with an initially bimodal



67

100 101

particle radius (µm)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

dm
/d

ln
r (

g 
/ m

3  /
 u

ni
t l

n(
r))

Steady State
Injection PSD
Collocation n_bf = 8
Collocation n_bf = 16
Collocation n_bf = 64
Flux method, n_bin = 32
Flux method, n_bin = 64

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

pa
rti

cle
 in

je
ct

io
n 

ra
te

 µ
m

3 /c
m

3 /s
 p

er
 u

m
3

t = 2hr

Figure 3.7: Steady state PSD for the third case with collisions, sedimentation, and
injection, using a bin method with 32 or 64 bins, the BF method with 8, 16, or
64 basis functions, and a steady state solution computed using basis functions and
Newton’s method. The PSD of injected particles is plotted as a dashed black line
with units on the right y axis.

distribution. The Lagrangian, bin, and 16-BF results indicate that the smaller PSD
mode mostly disappears after 4 hours, leaving behind only a small shoulder in the
PSD and broadening and shifting the mode toward larger particles. With 16 degrees
of freedom, the BF method accurately captures both of these modes during the
PSD evolution, while a large initial condition error in the 8-BF case propagates to
an artificially large final PSD. By comparison, the gamma-closure MOM cannot
represent the initial or final PSD exactly due to the underlying unimodal closure
assumption, but it only slightly overpredicts the size of the dominant mode in the
post-collision spectra. The bin method accurately predicts droplets in both size
ranges, although the underlying piecewise-constant representation under-resolves
the complexity of the multimodal distribution initially.

3.4.3 Collision-coalescence with injection and removal
When including removal of large particles and introduction of small particles (case
2), we investigate the steady-state PSD and the time evolution of the PSD moments
to a steady state. No Lagrangian or MOM results are presented in this case, as the
removal and injection process rates used are not applicable in those frameworks. As
a high resolution reference, we instead present results from a 64-bin representation
and a 64-BF representation over the same size range, and a steady-state numerical
solution. This numerical steady state is computed with a 64-BF representation by
setting 𝑑𝑡m̃(𝑡) = 0 in equation (3.3) and iterating using Newton’s method with an
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Figure 3.8: Time-series evolution of first three moments of the distribution for the
collocation and bin methods with collisions, precipitation, and injection (case 2), as
well as high-fidelity and steady state reference values.

initial guess of Pinj, the projection of the injection PSD 𝐼 (𝑥) (table 1) on the basis
space.

In Figure 3.7, we see that the steady state and 64-BF results indicate that the injected
PSD should broaden and form a secondary mode at around 10 𝜇m in size. Particles
enter the system, grow through collisions, and exit once they reach 25 𝜇m in size.
However, this depletion of large particles is reflected by a substantial decrease in
slightly smaller particles, down to 10 𝜇m radius. This can be explained by the
fact that particles larger than 10 𝜇m are (a) far more likely to collide with each
other, given the Golovin kernel; and (b) likely to form a particle larger than 25 𝜇m
upon coalescence and thus leave the system. The bin method reflects this trend
while overpredicting the mass of droplets in this 10–12 𝜇m size range, yet it still
captures the first three moments of the distribution (Figure 3.8) relatively well, with
only marginal improvement from doubling the number of bins. In contrast, the
BF method does a poor job in this instance, particularly when only 8-BF are used:
because the 8-BF approach artifically broadens the injected spectrum, as seen in
previous spectral results, it similarly artificially accelerates the collisions toward
larger droplets. The truncation of the integrals at the exceedence size of 25 𝜇m is
not sufficient to capture the depletion of slightly smaller particles in either BF case,
as the distribution peaks near 25 𝜇m in both BF cases. This large-particle peak is
reflected in the overprediction of the steady-state mass (with errors in total mass up
to 30%) and second moment in Figure 3.8, though the transient growth period up to
around 2000 s is well represented when 16 BFs are used.

This set of particle dynamics, particularly removal of large particles using a size
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threshold, demonstrates that the BF method is ill-suited to represent dynamics with
fixed size-cutoffs at long time scales, relative to a traditional bin scheme. However,
the coalescence-only experiments presented earlier indicate that the BF method
performs well in predicting the tail of the PSD when these large droplets are not
removed from the system, indicating that it is capable of representing cloud and rain
droplets as a continuous spectrum, rather than using separate prognostic variables
as is typically done in bulk methods.

3.4.4 Computational Complexity
The BF method offers similar computational scaling to a bin spectral method, but
is higher complexity than a traditional multi-moment bulk method. Bulk methods
with a closure assumption scale with the number of moments, O(𝑁mom) when the
relationship between the prognostic moments and PSD parameters is known, but
more complex PSD closures may require nonlinear operations, tabulations, or non-
linear optimization, leading to computationally intensive operations at each time
step. Spectral bin methods such as the flux method used here (Bott, 1998) scale
quadratically with the number of bins, O(𝑁2

bin), as each pair of bins is consid-
ered sequentially for the coalescence dynamic. The basis function method scales
either cubically or quadratically depending on the choice of basis (see appendix
B). While the initial precomputation for the BF method is cubic in the number of
basis functions, a compactly supported basis will lead to quadratic operations in the
forward time-marching of equation (3.6), as the third-order tensor Q is sparse. This
places the BF method at the same order of complexity as other spectral methods,
O(𝑁2

BF) ∼ O(𝑁2
bin), but with performance that can meet or exceed bin scheme ac-

curacy with half or fewer of the required degrees of freedom. Thus the collocation
method could recover bin-like accuracy with only 1/4 of the computational cost.

3.5 Discussion and Conclusions
This paper describes and demonstrates a novel method to represent the particle
size distribution of droplets for warm-rain atmospheric microphysics. Collocation
of basis functions provides a more flexible PSD approximation than either bin
microphysics or the method of moments with closure (bulk microphysics). In
particular, selecting BFs which are themselves distributions generalizes traditional
spectral bin methods to a smoothed representation that can be interpreted as the
sum of droplet size modes, and the collocation approach applies to any choice of
basis function form, unlike the bin approach, where the numerical methods are
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specific to a piecewise constant representation. The method is also appropriate for
applications where more than three degrees of freedom (the most usually provided in
a bulk scheme) are desired, but where full bin complexity is infeasible. In this low-
complexity limit, collocation of basis functions can be considered a linear closure
relating the mass density at the collocation points to a BF weight vector.

Tested in a variety of box model settings, we find that the BF method improves spec-
tral accuracy under collision-coalescence dynamics compared to a three-moment
bulk method, while using fewer degrees of freedom than a bin method. The spectral
detail from the BF approach allows for a precise calculation of mass in the tail of
the distribution (exceedance), which could avert the need for precipitation parame-
terizations that are required by bulk methods. Another strength of the method is its
ability to represent multimodal distributions, unlike 3-moment bulk methods. Un-
der dynamics including injection and removal which drive the PSD toward a steady
state, the BF method does well in predicting the size distribution and moments in
the transient regime, but overpredicts the quantity of large particles in the steady
state size distribution. This finding indicates that the BF method is better suited to
continuous dynamics (rather than size thresholding), and therefore might perform
well in a context with no artificial separations between cloud and rain droplets.

In general, the BF method is a more flexible framework than bulk or bin meth-
ods: the suggested implementation can receive an arbitrary set of microphysical
processes and automatedly perform all required numerical integrations. This is in
contrast to bin methods, which require tabulated collision and breakup kernels that
are dependent on the bin discretization, and in contrast to bulk methods, which fre-
quently include hard-coded parameterizations and closures. The ability to specify
arbitrary functional process rates for the BF method will be especially useful for
reducing microphysics parameter uncertainty in atmosphere models. While this
study focuses on the collisional-coalescence dynamic, other warm rain dynamics
such as condensation-evaporation could be formulated as processes driving the col-
location weights in time, as in equation (3.6), though testing additional warm rain
dynamics is beyond the scope of this work. Condensation-evaporation is a source
of artificial spectral broadening in typical bin methods (Khain et al., 2015) unless
movable bins are implemented. Due to the high cost of recomputing numerical in-
tegrals for coalescence and other dynamics when collocation points are updated, we
would recommend fixing collocation points in particle size space throughout time.
The simplest approach would simply substitute the collocation representation and
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points into the diffusional growth equation, performing automatic differentiation of
the basis functions, and adding a new variable for supersaturation to the coupled set
of ODEs as in equation (3.6) plus resulting source terms to the right hand side of the
equation. As this approach requires no remapping over the particle mass space, it
might avert some issues related to numerical diffusion experienced in bin schemes
(while potentially incurring other penalties, such as mass conservation).

The BF method does have limitations. First, although the linear system in equation
(3.4) is solved in mass density space with a positivity constraint, the method does not
exactly conserve mass for collision-coalescence-only dynamics. When employed
with compactly supported basis functions, the method can only represent particles
up to a maximum size, unlike bulk or Lagrangian methods. This shortcoming
manifests in errors in the higher order moments of the PSD, including some mass
loss from the system (Figure 3.4). Some potential solutions could involve allowing
for globally supported basis functions at the tail of the distribution, or periodically
rescaling the weight vector to exactly conserve mass in the system. Alternatively,
a mass conserving constraint could be imposed at each time step in addition to
the positivity constraint, although doing so could result in numerical instability.
As this mass non-conservation typically only appears at the long-time limit of
the simulation when the total number concentration of particles is substantially
depleted, we anticipate that it would not contribute a dominant source of error on
short (sub-hourly) time scales when a full set of microphysical dynamics and flow
field computations are included. Instead, a simple rescaling of the basis function
weights before advecting microphysical quantities across grid boxes or computing
saturation adjustments would be sufficient to close the mass balance without strongly
impacting the spectral results. (For instance, this technique would require less than
a 10% rescaling in the 16-BF case presented in Figure 3.4.) As indicated by the
coalescence-injection-removal case in Figure 3.8, rescaling is likely unnecessary for
mass conservation on short time scales, but would be straightforward on longer time
scales where a steady state in the PSD is approached. Alternative approaches from
the aerosol modeling community such as the Quadrature-based Method of Moments
McGraw, 1997 do not suffer these mass conservation challenges, and therefore could
be an advantageous alternative to collocation.

When particle removal and injection are considered, the method is able to accurately
predict moments in the transient regime, and in fact over-predicts the quantity of
large particless. Therefore, additional testing with a complete set of microphysical
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processes and a comprehensive range of initial conditions will be required to de-
termine whether further refinement is necessary. Future work to improve and test
this novel microphysics method will involve incorporating additional microphysical
processes such as diffusional growth, as well as employing one, two, and three-
dimensional simulations to test the ability of the method to reproduce mesoscale
cloud properties and to assess the severity of mass nonconservation without im-
posing additional constraints. Further testing of the method in a one-dimensional
setting with spatial advection as well as diffusional growth will also be necessary to
assess how susceptible the collocation implementation is to numerical diffusion, as
is often observed with bin schemes.

The BF method presented here and tested for coalescence dynamics improves spec-
tral accuracy over bulk methods with fewer degrees of freedom than a bin method,
and it has the potential to reduce the computational cost of microphysics even fur-
ther. Using inspiration from proposed moving bin schemes, the locations or shapes
of BFs could be automatically selected and periodically updated to maximize the
information potential provided by only 𝑛BF degrees of freedom. While this approach
could impose the cost of recomputing numerical integrals, if done sparingly and
intelligently it would cluster basis functions near the most-weighted droplet modes,
improving the accuracy-complexity tradeoff. Another potential benefit of the col-
location representation is the ability to use multidimensional basis functions: one
independent variable could be the droplet size, as in this work, while other particle
properties such as aerosol hygroscopicity, ice riming fraction, or surface tension
could occupy additional inputs. This multidimensional representation has been ex-
plored for aerosol bin schemes (Lebo & Seinfeld, 2011), as well as for ice bulk
methods (Morrison & Milbrandt, 2015). However, it may be more computationally
efficient to represent multiple particle properties in the BF framework due to the
flexibility of selecting radial basis functions with compact support to generate a
sparse system and lessen the computational burden. Such a representation could
eliminate the uncertainties of conversion parameterizations and of information loss
from aggregating particles into categories with distinct sets of microphysical dy-
namics. This potential lights a path toward unifying the numerical representation of
all microphysical particles in a single, consistent framework.

3.6 Appendix A: Basis functions, collocation points, and hyperparameters
The BF collocation parameters demonstrated in this study are briefly explained. As
the collocation points correspond to the droplet mode represented by each BF, we
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should not assume a priori any particular initial or final distribution of particles.
However, we can use the inherent length scales of the physical system to aid the setup.
For cloud droplets and aerosols, the size domain should extend from 𝑥min ≥ 0𝜇m
to the size of the largest particles 𝑥max that do not sediment out of the system or
instantaneously break up, hence making a finite domain approximation reasonable.
Furthermore, we draw inspiration from bin microphysics to suggest logarithmically
spaced collocation points over the domain.

The basis function family and their hyperparameters should then be selected to
ensure a few criteria:

1. The entire domain [0, 𝑥max] is spanned with some minimum probability.

2. There should be no particles with negative or infinite mass; that is, 𝜙𝑘 (𝑥 <
0), 𝜙𝑘 (𝑥 → ∞) = 0 for all basis functions.

3. BF hyperparameters should be selected to minimize oscillations and jumps in
the approximated distribution.

The first condition is equivalent to requiring either globally-supported BFs, such that
𝜙(𝑥) > 0 ∀𝑥, or sufficient overlap of compactly-supported BFs, which are positive
over some interval and zero elsewhere. The second condition cannot be met exactly
for any BFs that are globally supported over (−∞,∞), therefore we suggest using
either compactly-supported BFs (CSBFs) or exponentially decaying BFs. CSBFs are
additionally recommended due to their favorable numerical properties: Zhang et al.,
2000 demonstrate that CSBFs result in a better conditioned system of equations (as
in equation (3.5)). The third criterion is the trickiest and will depend on the family of
BFs chosen. As a simple heuristic for a two-parameter family such as Gaussians, we
suggest setting the scale factors as some multiple of the spacing between collocation
points to ensure support and smoothness over the domain. More sophisticated
methods of setting the hyperparameters, such as optimization over a set of potential
distributions or constraints on fluctuations in the second derivatives, are possible
but beyond the scope of this paper.

Several families of basis functions are suitable to approximate a droplet size distri-
bution, such as Gaussian, gamma, and lognormal distributions. In order to obtain a
compactly supported basis, however, we propose to use a version of the CSRBF1, a
compactly supported Gaussian approximation proposed by Wu, 1995, modified to
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instead uses a logarithmic argument. This basis function, which we will refer to as
CSLBF1 (compactly supported lognormal BF 1) takes the form:

𝜙(𝑟) =


12
35 (1 − 𝑟)4(4 + 16𝑟 + 12𝑟2 + 3𝑟3) 𝑟 ≤ 1

0 𝑟 > 1
(3.9)

with argument

𝑟 =
| log(𝑥) − 𝜇 |

𝜃
,

where 𝜇 is the collocation point and 𝜃 is a scale factor. Given that CSRBF1
approximates a normal distribution, CSLBF1 approximates a lognormal distribution,
which is better suited to particle distributions as it is right skewed.

3.7 Appendix B: Collocation of BFs for the SCE
Evaluating equation (3.1) with arbitrary additional processes Pl in mass density at
collocation point 𝜇 𝑗 , we find

𝜕𝑡𝜇 𝑗𝑛(𝜇 𝑗 , 𝑡) =1/2𝜇 𝑗
∫ 𝜇 𝑗

0
𝑛(𝜇 𝑗 − 𝑦, 𝑡)𝑛(𝑦, 𝑡)𝐾 (𝜇 𝑗 − 𝑦, 𝑦)𝐸 (𝜇 𝑗 − 𝑦, 𝑦)𝑑𝑦

− 𝜇 𝑗𝑛(𝜇 𝑗 , 𝑡)
∫ 𝑥max−𝜇 𝑗

0
𝑛(𝑦, 𝑡)𝐸 (𝜇 𝑗 , 𝑦)𝐾 (𝜇 𝑗 , 𝑦)𝑑𝑦 +

𝑁𝑝𝑟𝑜𝑐∑︁
𝑙=1

𝑃𝑙 (𝜇 𝑗 , 𝑛(𝜇 𝑗 , 𝑡)).

(3.10)

Substituting the collocation approximate solution for local mass density, 𝑥𝑛̃(𝑥, 𝑡) =∑𝑝

𝑘=1 𝑥𝜙𝑘 (𝑥)𝑐𝑘 (𝑡), this time derivative becomes

𝜕𝑡𝑚̃ 𝑗 (𝑡) =1/2
𝑛BF∑︁
𝑘=1

𝑛BF∑︁
𝑙=1

𝜇 𝑗𝑐𝑘 (𝑡)𝑐𝑙 (𝑡)
∫ 𝜇 𝑗

0
𝜙𝑘 (𝜇 𝑗 − 𝑦)𝜙𝑙 (𝑦, 𝑡)𝐾 (𝜇 𝑗 − 𝑦, 𝑦)𝐸 (𝜇 𝑗 − 𝑦, 𝑦)𝑑𝑦

−
𝑛BF∑︁
𝑘=1

𝑛BF∑︁
𝑙=1

𝜇 𝑗𝑐𝑘 (𝑡)𝑐𝑙 (𝑡)𝜙𝑘 (𝜇 𝑗 )
∫ 𝑥max−𝜇 𝑗

0
𝜙𝑙 (𝑦)𝐾 (𝜇 𝑗 , 𝑦)𝐸 (𝜇 𝑗 , 𝑦)𝑑𝑦 +

𝑁𝑝𝑟𝑜𝑐∑︁
𝑙=1

𝜇 𝑗𝑃𝑙 (𝜇 𝑗 , 𝑛̃(𝜇 𝑗 , 𝑡)).

(3.11)

The collision-coalescence dynamics are summarized via a third-order tensor in mass
density: Q, with

𝑄 𝑗 𝑘𝑙 =1/2𝜇 𝑗
∫ 𝜇 𝑗

0
𝜙𝑘 (𝜇 𝑗 − 𝑦)𝜙𝑙 (𝑦, 𝑡)𝐾 (𝜇 𝑗 − 𝑦, 𝑦)𝐸 (𝜇 𝑗 − 𝑦, 𝑦)𝑑𝑦

− 𝜇 𝑗𝜙𝑘 (𝑥𝜇 𝑗 )
∫ 𝑥max−𝜇 𝑗

0
𝜙𝑙 (𝑦)𝐾 (𝜇 𝑗 , 𝑦)𝐸 (𝜇 𝑗 , 𝑦)𝑑𝑦

(3.12)
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The overall dynamics are then summarized by cubic collision-coalescence dynamics
plus the additional processes projected onto the basis space as in equation (3.5) to
obtain the terms P𝑙 =

(
𝜇1𝑃𝑙 (𝜇1), 𝜇2𝑃𝑙 (𝜇2), . . . , 𝜇𝑘𝑃𝑙 (𝜇𝑘 )

)
in equation (3.6).

Many of the quantities in equation (3.6) can be precomputed and stored for a given
set of basis functions. These precomputations include:

• The linear system, 𝚽;

• The third order tensor Q which can be computed numerically via quadrature
or Monte Carlo integration, given a functional form of the kernel;

• Appropriate projection of additional processes onto the basis space to obtain
P𝑙 . For the purpose of ensuring mass conservation, this may require computing
the first moments of the basis functions over the integration window [0, 𝑥max];

• The initial condition at the collocation points m̃(0).

The computation of Q scales cubically with the number of collocation points for
globally supported basis functions, and quadratically for partially overlapping com-
pactly supported basis functions. The dynamical system in equation (3.6) involves
at most cubic vector-tensor multiplication and function evaluations for the tensor-
vector inner products, and therefore a small system of basis functions is more likely
to be limited by the time-stepping scheme or matrix inversion than by the precom-
putation. Another advantage of choosing compactly supported basis functions is
that the constant-collocation matrix 𝚽 can be N-diagonal (CSBF’s that only overlap
their nearest neighbors will result in a tridiagonal system, for example) thus making
the inversion much more computationally efficient. Finally, using CSBFs limits
the range of particle sizes to a finite domain, making numerical integration more
straightforward.

Data Availability
The implementation of basis function collocation and examples used in this work can
be found in the package RBFCloud.jl at https://doi.org/10.5281/zenodo.6984349, or
on github at https://github.com/edejong-caltech/RBFCloud.jl. The 3-moment bulk
scheme uses the package Cloudy.jl, available at https://github.com/CliMA/Cloudy.jl,
and the Lagrangian microphysics package PySDM is available at https://github.com/
atmos-cloud-sim-uj/PySDM.
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C h a p t e r 4

AVOIDING CONVERSION RATES WITH FLEXIBLE
MOMENT-BASED MICROPHYSICS IN CLOUDY.JL

Abstract
Modern climate models represent warm-phase hydrometeors by separating liquid
droplets into cloud and rain categories and tracking one, two, or three statistical mo-
ments of their distributions. Such schemes require parameterizations to represent
rates of conversion of cloud droplets into rain droplets, replacing a physically inter-
pretable process (growth by coalescence based on droplet sizes) with artificial rates
of autoconversion and accretion. This work presents an alternative moment-based
approach in which an arbitrary number of subdistributions may be used to represent
the overall droplet size spectrum, including cloud and rain. Transfer of moments
between these subdistributions is computed from explicit integration over pairs of
subdistributions, akin to the superdroplet method. This method eliminates the need
for conversion rates while also avoiding issues of non-uniqueness when converting
between moments and parameters of a multimodal distribution. We demonstrate the
accuracy of this approach in modeling rain initiation and evolution of the droplet
spectra in comparison to standard bulk parameterizations and a high-fidelity super-
droplet method. This self-consistent and flexible microphysics framework offers an
efficient and accurate alternative to conventional microphysics schemes.

Plain Language Summary
Most climate models rely on inflexible approximate equations to model cloud and
rain droplets in the atmosphere. These equations make unnecessary and sometimes
false assumptions about the sizes and physics of these droplets, leading to model
errors. Our work presents an alternative mathematical framework that eliminates
the need to distinguish between "cloud", "rain", or other cloud particle categories.
This method shows comparable accuracy to much more complex and expensive
cloud droplet simulations, at significantly lower computational cost.

4.1 Introduction
Beginning in the 1960s, climate modelers developed simple yet enduring repre-
sentations of cloud microphysics that track only one or a few bulk quantities of a
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large and diverse hydrometeor population (Kessler, 1969). These single-moment
and two-moment schemes distill the complexity of heterogeneous cloud particles
down to simple quantities such as mass or number concentrations. These schemes
also have documented deficiencies related to their assumptions of hydrometeor cat-
egories (cloud, rain, ice, snow) and the corresponding parameterizations that are
required to convert particles between these categories (Igel, 2019; Lamb et al.,
2023; Morrison, van Lier-Walqui, et al., 2020). Moreover, the parameterizations
of one microphysics scheme are not necessarily modular or transferable to another,
as baked-in design choices such as the assumption of a gamma or exponential dis-
tribution are not uniform between methods. As a result, today’s climate modeler
must navigate an immense menu of microphysics parameterizations without an op-
tion to improve the representation of hydrometeors systematically by incrementally
relaxing controlled approximations.

Recent attempts to overhaul the microphysics method menu highlight the need for
flexibility in climate modeling. These efforts range from identifying the more op-
timal moments of a particle distribution (Igel, 2019; Kogan & Belochitski, 2012;
Morrison et al., 2019) or calibrating the parameters of similar moment-based mi-
crophysics frameworks (Azimi et al., 2023; Bieli et al., 2022; Morrison, van Lier-
Walqui, et al., 2020), to overhauling the way hydrometeor distributions and process
rates are represented (de Jong et al., 2022; Fierce & McGraw, 2017; Lamb et al.,
2023; Rodríguez Genó & Alfonso, 2022; Seifert & Rasp, 2020). Indeed, as com-
putational power increases and cloud microphysics becomes a leading source of
uncertainty in climate predictions (Morrison, van Lier-Walqui, et al., 2020), the
expense of more detailed and accurate microphysics methods becomes justified.
Unfortunately, closing a set of equations for many higher-order moments is an ill-
posed mathematical problem (Igel, 2019; Morrison, van Lier-Walqui, et al., 2020),
which has limited the development or deployment of truly flexible moment-based
microphysics methods.

We introduce a modernized moment-based approach to representing cloud micro-
physics that promises exactly that: flexibility. We build on the idea of a spectral
approximation for the particle-size distribution (PSD) that is composed of many
subdistributions (de Jong et al., 2022) by using a moment-based solution method
that allows all parameters of the subdistributions to vary in time. This novel method
presents a moving-abscissa version of the representation of de Jong et al., 2023,
using a method of moments algorithm rather than the collocation numerical ap-
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proach. Unlike the arbitrary-moment-predictor of Igel, 2019, our method evolves
the microphysical governing equations directly in the space of moments, and unlike
the generalized moment representation of Morrison, van Lier-Walqui, et al., 2020,
we close the system of moments by assuming that subpopulations of particles fol-
low physically interpretable distributions. Inspired by moving-bin or Lagrangian
particle-based microphysics, this approach avoids mathematical ill-posedness by
inverting the moments and parameters of sub-populations of the total PSD, much as
a single Lagrangian superdroplet tracks the properties and multiplicity of a subpop-
ulation of identical hydrometeors. In addition, our method handles particle-particle
interactions (such as collisional coalescence) similarly to the superdroplet method
(SDM) (Shima et al., 2009) by directly using pairwise particle process rates, rather
than parameterized bulk conversion rates to transfer moments between subdistri-
butions. This approach operates on a consistent and interpretable set of physical
processes in the domain of particle properties. That is, rather than requiring scheme-
specific parameterizations, the same process rates are used regardless of the number
of moments and subdistributions tracked. The user can therefore explore different
structural complexity by using more moments/subdistributions with the same mi-
crophysical process rates. These core process rates can even be calibrated in one
model configuration (e.g. as in Bieli et al., 2022) and remain applicable to a different
configuration of the method.

This work presents the numerical framework and results of this flexible moment-
based microphysics method to represent warm-rain processes. We extend ‘Cloudy.jl‘
(Bieli et al., 2022) and other Julia packages from the Climate Modeling Alliance
environment (‘KinematicDriver.jl‘) to implement and demonstrate the behavior and
accuracy of this approach with reference to other standard moment-based schemes,
as well as with reference to results of the Lagrangian SDM using the open-source
implementation ‘PySDM‘. Section 2 presents the mathematical foundation for this
method, followed by an evaluation of individual warm-rain process rates in section 3.
Section 4 then brings these microphysics processes together with a simple advection
scheme to simulate the formation and precipitation of an idealized one-dimensional
cloud (Shipway & Hill, 2012) in comparison to standard bulk approaches. Finally,
we offer additional insight and concluding remarks in section 5.
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4.2 Method Description
4.2.1 Conceptual
Our proposed method can be conceptually described as a hybrid approach between
Lagrangian microphysics methods and closure-based bulk microphysics (see Fig-
ure 4.1). In Lagrangian methods such as the superdroplet method (Shima et al.,
2009), the PSD is described as a sum of pointwise or monodisperse PSDs, known
as "superdroplets". Each superdroplet has properties including an associated mass
and multiplicity (or number concentration), both of which can vary in time accord-
ing to both single-particle processes such as condensation/evaporation, as well as
from transfer of mass between superdroplets during particle-particle interactions
such as collisional coalescence. A standard bulk approach tracks two categories of
liquid hydrometeors (cloud and rain) through a commutable set of time-varying mo-
ments and a fixed-form subdistribution corresponding to each category (the "closure
method of moments," or CMOM). In CMOM, 𝑏 hyperparameters of the subdistri-
bution are inferred from the first 𝑏 moments. For instance, the hyperparameters of
an exponential distribution include 𝑁 (the number density) and 𝜃 (the particle mass
scale), and are inferred from the first two moments in mass, 𝑀0 and 𝑀1, as 𝑁 = 𝑀0

and 𝜃 = 𝑀1/𝑀0. (A similar computation can be performed using three moments to
infer the three parameters of a gamma or lognormal distribution.) Single-particle
process rates are computed by integration over the size distribution implied by the
current moments, whereas particle-particle process rates are typically specified as
conversion rates which are fixed empirical functions of the moments (Khairoutdinov
and Kogan, 2000 for instance).

Our proposed method maintains the CMOM with two key modifications: (1) we do
not limit or require a particular number of subdistributions (such as cloud or rain);
and accordingly, (2) transfer of mass (and all other moments) between subdistribu-
tions during particle-particle interactions is numerically computed or approximated
on-the-fly, rather than relying on structure-specific conversion rates. Specifically,
when considering the transfer of mass between a particle drawn from subdistribu-
tions of smaller and larger particles, the mass of the resulting coalesced hydrometeor
(along with higher-order moments) is always transferred to the larger subdistribu-
tion, analogous to the bulk process of accretion (see Figure 4.2). When coalescence
occurs between two particles drawn from the same subdistribution, the mass and
moments of the resulting coalesced hydrometeor may either remain within this sub-
distribution or be transferred to a larger subdistribution. This decision is analogous
to the difference between self-collection and autoconversion. However, rather than
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Figure 4.1: Conceptual illustration of the difference between the proposed im-
plementation and the superdroplet method or a standard 2-moment microphysics
scheme.

using integrated conversion rates, our computation utilizes a mixing rule/weighting
function 𝑊𝑘 (𝑥), which determines the fraction of each moment from a subdistri-
bution 𝑘 that remains in that subdistribution upon coalescence, depending on the
particle size 𝑥 and the other parameters of that subdistribution. For instance, the
all-or-nothing mixing rule

𝑊𝑘 (𝑥) =


1 if 𝑁𝑘 > 𝑁𝑘+1,

0 otherwise,

partitions all mass to the subdistribution with larger number concentration as in the
superdroplet method (Shima et al., 2009). Other forms such as a Heaviside function
are considered later.

This reframing of standard 2-moment bulk microphysics allows us to extend this
framework to a semi-Lagrangian style. An arbitrary number of subdistributions (and
corresponding moments) may be used to describe a hydrometeor population while
retaining the same set of parameterized process rates as particle-based microphysics,
such as a rate of collisional-coalescence. In particular, the added flexibility of numer-
ically computing particle-particle interactions eliminates the necessity of conversion
rates that plague standard bulk microphysics, at relatively low computational cost.
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Figure 4.2: Illustration of transfer of mass and other moments between subdistribu-
tions according to a mixing rule.

The result is a flexible microphysics method which bridges the mathematical the-
ory and complexity of Lagrangian and bulk microphysics methods, accessing a
regime of high-fidelity microphysics which remains practical for large-scale global
atmospheric simulations, unlike existing bin or superdroplet methods.

4.2.2 Mathematical
This work extends the frameworks of de Jong et al., 2022 and Bieli et al., 2022
to a flexible and arbitrary-moment representation based on the closure method of
moments. Within an atmospheric gridbox, the particle size distribution 𝑛(𝑥) (where
𝑥 is the particle mass) is approximated by a sum of several subdistributions 𝑛𝑘 (𝑥),

𝑛(𝑥) = 𝑛1(𝑥) + 𝑛2(𝑥) + 𝑛3(𝑥) + ..., (4.1)

where each subdistribution 𝑛𝑘 (𝑥) may have a unique functional form. Further, each
subdistribution has time-varying hyperparameters {𝑁, 𝜃1, 𝜃2, ...} such as the number
density and mean mass for an exponential distribution, or the number density, scale
factor, and shape factor for a gamma distribution. As in Bieli et al., 2022, there
exists a well-defined map and inverse map between the hyperparameters and the
first 𝑝 moments of the subdistribution {𝑀0,𝑘 , ..., 𝑀𝑝,𝑘 }, where 𝑝 is the number of
hyperparameters. Then, at every point in time, the set of subdistribution moments
uniquely defines the parameters of each subdistribution and thus the overall PSD.
By contrast, inverting additional and higher-order overall moments of a multimodal
distribution such as a gamma mixture does not necessarily lead to a stable or well-
posed closure.
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4.2.2.1 Single-particle processes

For a single-particle microphysical process rate 𝐹𝑠𝑝 (𝑥), which may represent quan-
tities such as condensation/evaporation rates or sedimentation velocity and depends
on particle size 𝑥, contributions of the process to each subdistribution and its mo-
ments can be computed independently because of the linearity of the composition
(4.1):

𝑑

𝑑𝑡
𝑀 𝑗

���
𝑠𝑝

=
∑︁
𝑘

𝑑

𝑑𝑡
𝑀 𝑗 ,𝑘

���
𝑠𝑝
, (4.2)

where
𝑑

𝑑𝑡
𝑀 𝑗 ,𝑘

���
𝑠𝑝

=

∫ ∞

0
𝑥 𝑗𝐹𝑠𝑝 (𝑥)𝑛𝑘 (𝑥)𝑑𝑥. (4.3)

In instances where 𝐹𝑠𝑝 (𝑥) can be well-approximated by a power series, these indi-
vidual source terms are analytical sums of subdistribution moments. For instance,
we consider a power series parameterization of the particle fall speed 𝑣fall that allows
for analytical computation of the moment-weighted fall speeds:

𝑣fall(𝑥) =
∑︁
𝑗

𝑣 𝑗𝑥
𝛼 𝑗 , (4.4)

where 𝑣 𝑗 and 𝛼 𝑗 are empirically-derived parameters.

Furthermore, the processes of condensation/evaporation follow a power series an-
alytical equation. Neglecting ventilation effects, the rate of change of a particle of
radius 𝑟 in an environment with saturation 𝑆 can be described as

𝑑𝑟

𝑑𝑡

����
𝑐/𝑒

=
𝑆 − 1
𝐹𝑑 + 𝐹𝑘

1
𝑟
, (4.5)

where 𝐹𝑑 and 𝐹𝑘 are mass transfer coefficients (Pruppacher & Klett, 2010). Then
the rate of change of the particle size distribution in terms of volume 𝑥 is found to
be

𝜕𝑟

𝜕𝑡

����
𝑐/𝑒

= − 𝜕

𝜕𝑥

(
4𝜋𝑟𝑛(𝑥) (𝑆 − 1)𝐺 (𝑇)

)
, (4.6)

where 𝐺 (𝑇) encompasses the mass transfer coefficients and is assumed to be a

function of temperature 𝑇 . Finally, substituting for 𝑟 =
(

3
4𝜋𝜌𝑙 𝑥

)1/3
with 𝜌𝑙 referring

to liquid water density,

𝜕𝑟

𝜕𝑡

����
𝑐/𝑒
𝑛(𝑥) = − (4𝜋)2/331/3

𝜌
1/3
𝑙

(𝑆 − 1)𝐺 (𝑇) 𝜕
𝜕𝑥

(
𝑥1/3𝑛(𝑥)

)
. (4.7)
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Then, using the product rule and then performing integration by parts to find the 𝑘th
moment, we obtain

𝑑𝑀𝑘

𝑑𝑡

����
𝑐/𝑒

= 3
(
4𝜋
3

)2/3 1
𝜌

1/3
𝑙

(𝑆 − 1)𝐺 (𝑇)𝑘𝑀𝑘−2/3. (4.8)

In equations 4.8, the saturation 𝑆 and temperature 𝑇 are grid-mean quantities that
are explicitly tracked by a fluid solver, whereas 𝜌𝑙 is a fixed liquid density and 𝐺 (𝑇)
is an empirical function of temperature.

4.2.2.2 Collisional-coalescence

The collisional coalescence process is described by the stochastic collection equa-
tion,

𝜕𝑛(𝑥, 𝑡)
𝜕𝑡

����
𝑐𝑐

=
1
2

∫ 𝑥

0
𝐾 (𝑥 − 𝑦, 𝑦)𝑛(𝑥 − 𝑦)𝑛(𝑦)𝑑𝑦 − 𝑛(𝑥)

∫ ∞

0
𝐾 (𝑥, 𝑦)𝑛(𝑦)𝑑𝑦, (4.9)

where𝐾 (𝑥, 𝑦) is an empirical coalescence kernel that describes the rate of collisional
coalescence between two particles of size 𝑥 and 𝑦. The rate of change of the total
PSD moment of order 𝑏 is therefore

𝑑

𝑑𝑡
𝑀 (𝑏) =

1
2

∫ ∞

0
𝑥𝑏

∫ 𝑥

0
𝐾 (𝑥−𝑦, 𝑦)𝑛(𝑥−𝑦)𝑛(𝑦)𝑑𝑦𝑑𝑥−

∫ ∞

0
𝑥𝑏𝑛(𝑥)

∫ ∞

0
𝐾 (𝑥, 𝑦)𝑛(𝑦)𝑑𝑦 𝑑𝑥.

(4.10)
In order to substitute our approximation of the PSD as a sum of subdistributions
(equation (4.1)), our approach divides equation (4.9) into four component integrals:

• 𝑄 (𝑏)
𝑗 ,𝑘

: rate of gain of moment order 𝑏 in subdistribution 𝑘 through collision
with a particle distribution of smaller mean 𝑗 (i.e., 𝑘 > 𝑗). This term is akin
to the increase in rain moments through accretion of cloud droplets:

𝑄
(𝑏)
𝑗 ,𝑘

=
1
2

∫ ∞

0
𝑥𝑏

∫ 𝑥

0
𝐾 (𝑥 − 𝑦, 𝑦)

[
𝑛 𝑗 (𝑥)𝑛𝑘 (𝑥 − 𝑦) + 𝑛𝑘 (𝑥)𝑛 𝑗 (𝑥 − 𝑦)

]
𝑑𝑦 𝑑𝑥.

(4.11)

• 𝑅(𝑏)
𝑗 ,𝑘

: rate of loss of moment order 𝑏 from subdistribution 𝑗 through collision
with subdistribution 𝑘 , with 𝑗 ≠ 𝑘 . Note that this term is symmetric with 𝑄
when 𝑏 = 1 (implying mass conservation):

𝑅
(𝑏)
𝑗 ,𝑘

= −
∫ ∞

0
𝑥𝑏𝑛𝑘 (𝑥)

∫ ∞

0
𝐾 (𝑥, 𝑦)𝑛 𝑗 (𝑦)𝑑𝑦 𝑑𝑥. (4.12)
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• 𝑆(𝑏)+,𝑘 : rate of change of moment order 𝑏 due to internal collisions within subdis-
tribution 𝑘 that remain internal to subdistribution 𝑘 (akin to self-collection),
defined according to a weighting function (i.e. mixing rule)𝑊𝑘 (𝑥):

𝑆
(𝑏)
+,𝑘 =

1
2

∫ ∞

0
𝑥𝑏

∫ 𝑥

0
𝐾 (𝑥 − 𝑦, 𝑦)𝑛𝑘 (𝑥)𝑛𝑘 (𝑥 − 𝑦)𝑊𝑘 (𝑥)𝑑𝑦 𝑑𝑥. (4.13)

• 𝑆(𝑏)−,𝑘 : rate of change of moment order 𝑏 due to internal collisions within particle
𝑘 that are transferred to particle 𝑘 + 1 (akin to autoconversion), defined using
the same weighting function 𝑊𝑘 (𝑥). Note that 𝑆(𝑏)−,𝑃 = 0 where 𝑃 is the total
number of subdistributions:

𝑆
(𝑏)
−,𝑘 =

1
2

∫ ∞

0
𝑥𝑏

∫ 𝑥

0
𝐾 (𝑥 − 𝑦, 𝑦)𝑛𝑘 (𝑥)𝑛𝑘 (𝑥 − 𝑦)

[
1 −𝑊𝑘 (𝑥)

]
𝑑𝑦 𝑑𝑥. (4.14)

The moments of each subdistribution 𝑘 then satisfy the evolution equation

𝑑

𝑑𝑡
𝑀

(𝑏)
𝑘

=

𝑘−1∑︁
𝑗=1
𝑄

(𝑏)
𝑗 ,𝑘

+
𝑃∑︁
𝑗=1

𝑅
(𝑏)
𝑗 ,𝑘

+ 𝑆(𝑏)+,𝑘 + 𝑆
(𝑏)
−,𝑘−1 (4.15)

with 𝑆(𝑏)−,0 = 0. It can be verified that the sum of these subdistribution moment
tendencies satisfy Equation (4.10) for the overall PSD moments.

The innovation of this technique of separating integrals is twofold. First, the integrals
𝑄

(𝑏)
𝑗 ,𝑘

and 𝑅(𝑏)
𝑗 ,𝑘

can be solved analytically for most distribution closures (such as a
gamma or exponential) when the kernel 𝐾 (𝑥, 𝑦) is expressed as a power series or
polynomial approximation. (See Bieli et al., 2022 for the full derivation.) Second,
the use of a weighting function 𝑊 (𝑥) in the self-collection and autoconversion
integrals 𝑆(𝑏)+,𝑘 and 𝑆

(𝑏)
−,𝑘−1 allows for generalization of the method to more than

two categories without the need for additional conversion rates while maintaining
physical consistency through numerical integration over the collision kernel𝐾 (𝑥, 𝑦).

The weighting function describes the fraction of collisions within a subdistribution
that act as moment source terms to the same subdistribution (self-collection) versus
source terms to the next-largest subdistribution (autoconversion). For instance,
a commonly used coalescence algorithm in the superdroplet method uses an all-
or-nothing weighting depending on the superdroplet multiplicity. An alternative
continuous choice might be the unweighted marginal density of subdistribution 𝑘
for a particle size 𝑥, i.e.

𝑊
(𝑏)
𝑘

(𝑥) = 𝑛𝑘 (𝑥)/𝑁𝑘∑𝐿
𝑗=1 𝑛 𝑗 (𝑥)/𝑁 𝑗

, (4.16)
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where 𝐿 is the total number of subdistributions and 𝑁 𝑗 is the number density
parameter of subdistribution 𝑗 . A physically-motivated choice for the weighting
function might use a Heaviside function with fixed size thresholds 𝑥∗

𝑘
,

𝑊
(𝑏)
𝑘

(𝑥) = 1 −H(𝑥 − 𝑥∗𝑘 ), (4.17)

such that the domain of subdistribution 𝑘 is fixed to [𝑥∗
𝑘−1, 𝑥

∗
𝑘
]. This choice ef-

fectively transforms the subdistribution closure functions to finite elements in the
particle size domain, as in a related spectral method (de Jong et al., 2022). It is
further motivated by the tradition of thresholding the size of cloud droplets to a value
such as 25 𝜇m or 40 𝜇m (Igel et al., 2022) above which rates of self-collection and
accretion rapidly accelerate. Finally, the use of mass thresholding reduces the nu-
merical integration required by Equations 4.13-4.14 to a one-dimensional integral,
rather than a more computationally expensive two-dimensional integration. Be-
cause of these computational advantages and connection to standard presentations
of cloud and rain content in microphysical simulations, our demonstrations will use
this Heaviside form of the weight function.

4.2.2.3 Advection

Advection of moments between gridboxes in the flexible method can proceed in
an Eulerian, Lagrangian, or hybrid approach, depending on the context including
gridbox spacing and number of subdistributions employed.

1. Eulerian Similarly to traditional bulk microphysics, every gridbox maintains
a set of corresponding subdistributions and moments. Advection proceeds
by transferring moments to their corresponding tracers in neighboring grid-
box, and the advection scheme may employ additional subgrid-scale trans-
port closures. This technique has the advantage of consistent tracers within
gridboxes, but a potential disadvantage of introducing moments to spatially
adjacent subdistributions with vastly different properties, for instance at the
edge of a cloud.

2. Lagrangian Akin to the superdroplet method, subdistributions (and associ-
ated moments) retain a notion of position in the overall computational domain
and are advected by the mean flow. Subdistributions are then ordered by
mean particle size within each grid box in order to compute the coalescence
integrations (Equations 4.11-4.15). This method may be performant when a
large number of subdistributions are employed.
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3. Hybrid One mechanism to alleviate potential subdistribution mis-match in the
Eulerian advection approach is by transferring advected moments to the most-
similar subdistribution in the adjacent gridbox, rather than the subdistribution
with the same index. Although we do not test this approach in this work, we
suggest this hybrid technique for future implementations.

For simplicity, demonstrations in this work utilize the Eulerian advection approach.
We leave detailed evaluation of alternatives to future work.

4.2.3 A simple example: collisions in a box
We demonstrate the behavior of this numerical method in a single gridbox (zero-
dimensions) as it transfers mass between subdistributions during collisional coales-
cence in Figure 4.3. This example approximately solves equation 4.9 (the stochas-
tic collection equation) using the mathematical procedure described by equations
4.10–4.15. Figure 4.3 illustrates the evolution of the spectra, first moment, and sub-
distribution parameters in the case of a Golovin or linear coalescence kernel of the
form 𝐾 (𝑥, 𝑦) = 𝐵(𝑥 + 𝑦), with 𝐵 = 5 m3 kg−1 s−1 and with 𝑥 and 𝑦 expressed in kg.
The initial distribution is specified as an exponential distribution with 𝑁 = 108 m−3

and scale 𝜃 = 10−10 kg, and four gamma modes are used to represent the evolution
of a total of 12 moments. We use a Heaviside function as the weighting term for
internal collisions with mass thresholds of 10−9, 10−7, and 10−5 kg for the first three
modes. As the system evolves, mass is transferred from smaller modes to larger
ones. Larger and larger modes are activated as particles collide, coalesce, and their
moments are transferred to subsequently larger subdistributions. For instance, the
second subdistribution (orange) initially experiences a growth in its first moment due
to autoconversion from the first subdistribution (blue), and subsequently accretion of
this smaller mode. Its mass scale correspondingly increases as the average particle
size represented by this mode increases, until reaching the threshold determined
by the weighting function, and the shape factor evolves to capture the broadening
and then narrowing of the subdistribution. Selecting different mass thresholds for
the Heaviside weight function (such as uneven spacing) impacts the moments and
parameters of individual subdistributions, but does not strongly affect the overall
PSD or moments as the system evolves in time in the case of this simple linear
kernel. However, for more complex kernels which behave differently in different
particle size regimes (such as a geometric kernel), setting the mass thresholds to
correspond with these regimes is advantageous.
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Figure 4.3: Evolution of the particle size distribution (top) under a linear coales-
cence kernel using four gamma modes in the proposed method. Also shown are the
evolution of the first moment (mass density) within each of the subdistributions (bot-
tom left), and the evolution of the parameters of the second gamma subdistribution
(bottom right; shown are number density cm−3 (blue), mass scale in 𝜇g (orange),
and shape factor (green)).

4.3 Evaluation of subgrid scale hydrometeor processes
We now evaluate the performance of the proposed method in representing the
subgrid-scale processes of coalescence and condensation in a zero-dimensional set-
ting. For reference, we include results from the superdroplet method implementation
PySDM (Bartman et al., 2022; de Jong et al., 2023), or relevant literature results.
Although Lagrangian methods have been shown to display substantial disagreement
in representing rain formation due to differences in coalescence and initialisation
(Hill et al., 2023; Unterstrasser et al., 2017), the results are included here as a one-
to-one comparison using the same kernel and terminal velocity parameterizations
as the flexible method with a large number of superdroplets. The succeeding sec-
tion will combine subgrid-scale dynamics with vertical advection to illustrate the
formation and precipitation of a one-dimensional warm cloud, again with reference
to a particle-based simulation.

4.3.1 Collisions in a box
First we consider two examples of zero-dimensional droplet coalescence, again
solving the stochastic collection equation (Eq. 4.9) using the flexible method of
moments. In Figure 4.4 we illustrate the moments and spectra obtained by using the
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Figure 4.4: Evolution of the first three moments (left) and snapshots of the PSD
(right) for a particle distribution evolving under a linear coalescence kernel, solved
with either PySDM (superdroplets), a single gamma method-of-moments, or the
proposed method with two or three gamma subdistributions.

same linear Golovin kernel dynamics and initial condition as in Figure 4.3, solved
using a flexible-moment system in Cloudy.jl with either one, two, or three gamma
subdistributions, corresponding to 3, 6, or 9 moments. In the case of these linear
dynamics, the global-domain integrals 𝑄 and 𝑅 are computed analytically, and
the mass-transfer integrals 𝑆+/− are computed semi-analytically for the multi-mode
configurations with a Heaviside weighting function and mass threshold 𝑥∗ = 4𝜇g
(approximately 100𝜇m radius) in the case of two modes, and 1𝜇g and 100𝜇g (62𝜇m
and 287𝜇m radii) for three modes. For comparison, we include results from the
stochastic superdroplet method using 212 superdroplets and a maximum adaptive
time step of 1s (Bartman et al., 2022). Both the spectra and moments appear the
same as the SDM results as particle sizes evolve from 10’s to 1000’s of 𝜇m size.
There is almost no difference between the 1-mode and 2- or 3-mode versions of our
proposed method, except for the appearance of a tiny smaller mode at 60s simulation
time that implies a broader intermediate spectrum. The evolution of the first moment
shows that indeed by 60s, most mass has been transferred from smaller to larger
modes in the 2- and 3-mode instances.

Next we consider a more difficult parameterization of the collisional kernel: a
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geometric coalescence kernel of the form 𝐾 (𝑥, 𝑦) = 𝐶𝜋(𝑟 (𝑥)2+𝑟 (𝑦)2)
��𝐴(𝑥) −𝐴(𝑦) |

where 𝑟 (𝑥) is the radius and 𝐴(𝑥) is the cross-sectional area for a droplet of mass 𝑥,
with 𝐶 = 100m3kg−4/3s−1. We approximate this non-polynomial kernel as an order
4 polynomial (see figure 4.10) in order to perform the integrations of 𝑄, 𝑅, and 𝑆
analytically or semi-analytically. Figure 4.5 includes an additional flexible moment
configuration using 3 exponential modes to compare the utility of tracking moments
of more or less complex distributions. The superdroplet reference simulations use
215 superdroplets and a 0.5s adaptive time step. From Figure 4.5 we see that this
nonpolynomial kernel is more challenging to capture with only 6 moments, but also
that there is a clear benefit to including more subdistributions. Although the 2-mode
gamma closure and the 3-mode exponential closures both utilize 6 moments, the
3-mode version is better able to capture the broadening of the PSD over time, as
well diagnosing the super-exponential growth in the second moment despite not
tracking the second moments prognostically. Unlike the linear kernel in Figure
4.4, where the PSD follows an approximately gamma distribution at all times, these
closure assumptions are a poor approximation for the broad distribution resulting
from the hydrodyamic kernel. Indeed, use of a larger quantity of simpler exponential
subdistributions helps to alleviate this closure error by improving the representation
of persistent smaller (sub-100𝜇m) particles, which collide at a slower rate than the
larger droplets. This 3-mode exponential configuration in fact outperforms the 3-
mode gamma configuration, suggesting that higher-complexity closures (i.e. higher
moment-order methods) provide diminishing gains beyond two subdistributions.

4.3.2 Condensation in a parcel
The evolution of the moments of a PSD under condensational growth (derived
analytically in equation 4.8) are demonstrated in an adiabatic parcel simulation
following the setup of Rogers, 1975. The parcel begins unsaturated and rises
adiabatically at a fixed velocity of 10ms−1, condensing liquid water mass onto a fixed
number concentration of 200𝑐𝑚−3 droplets. Using a monodisperse or single gamma
distribution in our method matches the original parcel model results of Rogers,
1975 quite closely, with saturation leveling off near 1% as the rate of condensation
balances increased relative humidity from the rising parcel. An additional test case
demonstrating the evolution of a 2-mode mixture of an exponential and gamma
distribution demonstrates the impact of the size distribution shape on the maximum
attained saturation. Even though this distribution is initialized with the same total
mass and number concentration as the other cases, the distribution is skewed toward



94

Figure 4.5: Evolution of the first three moments (left) and snapshots of the PSD
(right) for a particle distribution evolving under a geometric coalescence kernel,
solved with either PySDM (superdroplets), or the proposed method with two or
three gamma subdistributions or with three exponential subdistributions.

larger hydrometeors, resulting in slower condensational growth and therefore less
depletion of the supersaturation field. These results demonstrate the capacity of this
unified and flexible method-of-moments framework to capture additional subgrid-
scale process detail that is unresolved by standard saturation-adjustment calculations.

4.4 Comparison in a One-Dimensional Rainshaft
4.4.1 Comparison with Lagrangian Microphysics
Finally we combine the subgrid scale dynamic of coalescence (Equation 4.10) with
vertical advection (including computation of moment-weighted terminal velocities,
Equation 4.4) to simulate a one-dimensional precipitating cloud by solving for sub-
distribution moments as a function of time and altitude. Figure 4.7 demonstrates the
vertical profiles of cloud and rain number (𝑁𝑐, 𝑁𝑟 respectively) and mass concentra-
tions (𝑞𝑐 and 𝑞𝑟) as the cloud evolves in time using two gamma subdistributions (6
moments) in the flexible method, again with reference to Lagrangian microphysics
simulations from PySDM. The simulations are initialised to contain liquid cloud
water following a gamma size distribution between 1.5km and 2.25km altitude, with
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Figure 4.6: Adiabatic parcel simulation based on the setup of Rogers, 1975 with
three different initial PSDs: monodisperse, gamma distribution, and mixture of an
exponential and gamma distribution.

no liquid water elsewhere. Both the flexible moment method and the SDM refer-
ence simulations use a 1s timestep and 150m vertical grid spacing. Both methods
use a power-law terminal velocity of 𝑣𝑡 (𝑥) = 𝑉0𝑥

𝛽 with 𝑉0 = 50ms−1kg−1/6 and
𝛽 = 1/6, as well as a Golovin coalescence kernel with 𝐵 = 5m3kg−1s−1 as in pre-
vious examples. For visualization purposes, we distinguish between "cloud" and
"rain" using a fixed size threshold of 50𝜇m radius. This distinction results in some
initial rain concentration and mass appearing in both profiles, as the initial particle
size distribution is a globally-supported gamma distribution.

The profiles in Figure 4.7 show a small underestimate in conversion of cloud number
concentration to rain by the flexible method in the first 250s of simulation time,
while conversion of mass concentration is initially overestimated, reflecting a small
underprediction of the left tail (quantity of small particles) of the PSD in Figure 4.4.
Advection of the Eulerian moments according to a first-order upwinding scheme
results in vertical broadening of the cloud over time relative to the Lagrangian
SDM. At later times these mass and number concentrations more closely match, as
does the altitude of maximum rain mass concentration as rain sediments. Surface
precipitation quantity and timing are well predicted by our method. Overall these
results confirm that our method is able to reproduce a particle-based simulation
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Figure 4.7: 1-dimensional rainshaft results comparing the proposed method (with
coalescence and sedimentation) against Lagrangian microphysics with the same
process rates. Subpanels are, clockwise from top left: cloud number concentration,
rain number concentration, cloud specific humidity, and rain specific humidity.

given the same definition of microphysical processes, unlike tradition bulk schemes
whose structure-specific parameters would need to be re-calibrated (Azimi et al.,
2023).

4.4.2 Comparison with Standard Bulk Methods
Finally, we illustrate the results of similar 1D cloud with coalescence and sedi-
mentation processes in reference to other standard bulk microphysics schemes and
Lagrangian microphysics. Figure 4.8 illustrates the time-altitude evolution of a
cloud where small cloud droplets have been initialized uniformly (and consistently
between simulations) throughout the domain, then left to coalescence and precipi-
tate according to the microphysics scheme and parameterizations. We contrast the
differences within the flexible moment framework that arise from changing either
the model structure (the number of moments) or the collision rate parameterization,
with comparison to the result of changing between traditional bulk microphysics
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representations and parameterizations.

In Figure 4.8 it becomes apparent that the parameterizations used within a standard
bulk moment scheme can have a larger impact on the production and timing of pre-
cipitation than the structure of the model (1M versus 2M). The empirical 1-moment
parameterizations of KK2000 (which is stractocumulus-specific) (Khairoutdinov &
Kogan, 2000) and Kessler (Kessler, 1969) are more different from each other than
from a completely different 2-moment parameterization. This 2-moment SB2006
(Seifert & Beheng, 2006) example is derived from the coalescence parameterization
of Pinsky et al., 2001, which has a similar piecewise structure as the Long kernel
(Long, 1974), but with limiters on rain formation. In contrast, substituting the colli-
sion kernel within our flexible moment-based approaching or using only 4 moments
rather 6 yields results which are much more self-consistent. Using Long’s kernel re-
sults in only a slight delay and reduction in precipitation relative to the linear kernel,
owing to the slower initial conversion of cloud to rain in the linear small-particle size
range. Likewise, using 4 moments rather than 6 (i.e. two exponential distributions,
rather than two gamma distributions) slightly reduces and delays precipitation due
to a less accurate representation of the PSD tail by the simpler exponential closure.
As seen in figure 4.7, when using the same Golovin collision kernel, our method
closely matches Lagrangian particle-based results (g). These results exemplify both
the challenges inherent to current microphysics modeling practices and the power of
using a flexible moment-based tool that does not require structure-specific conver-
sion parameterizations. The modeler need only specify the collision kernel itself,
be it linear, Long’s, or a more complex kernel such as Berry 1967 (Berry, 1967)
without regard for the number of moments or subdistributions used to represent the
PSD.

In figure 4.9 we include the process of cloud formation through aerosol activation
(Abdul-Razzak & Ghan, 2000) and condensation following the kinematic frame-
work of Shipway and Hill, 2012 to further highlight the difference between the
use of bulk conversion rates or collision kernels in the flexible and Lagrangian
microphysics methods. In these simulations, the fluid field is decoupled from the
microphysical processes rates, and only condensation/evaporation feeds back on the
local saturation field. As in Seifert and Beheng, 2006, we impose tendency limiters
on the number concentration in the flexible microphysics method to prevent artificial
evaporation that would lead to artificially small (and slowly sedimenting) particles.
The cloud initially forms at the same time and altitude in all three settings, as the
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a) Flexible 6M,  Golovin

b) Flexible 6M, Long’s

c) Flexible 4M, Long’s

d) 1M, Kessler

f) 2M, SB2006

e) 1M, KK2000

g) PySDM, Golovin

Figure 4.8: Liquid and rain water content for a coalescence-sedimentation version of
the 1-dimensional rainshaft, solved using six different microphysics parameteriza-
tions. Left, from top: (a) the proposed flexible method of moments with two gamma
modes (6 moments) and a linear collision kernel, (b) the same but with Long’s col-
lision kernel (Long, 1974), and (c) with two exponential modes (4 moments) and
Long’s kernel. Right, from top: (d) a single-moment (mass concentration) represen-
tation of cloud and rain using either the Kessler precipitation rate (Kessler, 1969) or
(e) the KK2000 autoconversion parameterizations (Khairoutdinov & Kogan, 2000),
(f) and a two-moment (mass and number concentration) representation using the
parameterizations of SB2006 (Seifert & Beheng, 2006). Bottom: (g) Lagrangian
particle-based results simulated in PySDM (Bartman et al., 2022; de Jong et al.,
2023) with the same Golovin collision kernel and sedimentation scheme as in (a).
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a) Flexible 6M,  Golovin

c) 2M, SB2006

b) PySDM, Golovin

Figure 4.9: Water content and number concentrations for the full 1-dimensional
idealized simulation framework of Shipway and Hill, 2012 using (a) the flexible
moment framework with 6 moments and a Golovin kernel, (b) Lagrangian mi-
crophysics (PySDM) with the same Golovin kernel, and (c) the double-moment
parameterization of Seifert and Beheng, 2006.
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aerosol-activation parameterization is consistent. However, while cloud droplets
grow through bulk thermodynamic equilibrium in the 2M scheme, condensation is
explicitly resolved in the flexible and Lagrangian methods. The flexible method
most notably shows much quicker onset of precipitation and depletion of cloud
water, which are consistent with the Lagrangian results and attributable to differ-
ences in both the representation of coalescence and sedimentation rates. As seen
in figure 4.7, the Eulerian advection of hydrometeors in the flexible method leads
to vertical diffusion of the rain hydrometeors in comparison with the Lagrangian
method. All liquid particles sediment at their respective terminal velocities in the
flexible method (aerosols are not tracked explicitly, unlike in the Lagrangian SDM),
whereas most bulk schemes only consider sedimentation of the rain category. The
2-moment SB2006 cloud is therefore much more persistent and does not show the
sedimentation behavior of cloud particles in the flexible or Lagrangian methods.
Indeed, the cloud number concentration is relatively uniform throughout the 2M
cloud, indicating a more homogeneous droplet size distribution, and precipitation
only appears near cloud base. This behavior is reflective of the built-in assumptions
Seifert and Beheng, 2006 regarding the shape of the PSD for cloud and rain modes.
This distinction further highlights the benefit of directly using consistent and gen-
eralized process rates such as coalescence kernel rates or terminal velocity across
all modes or subdistributions, rather than partitioning processes between cloud and
rain. The flexible moment framework therefore produces cloud simulations which
are both mathematically consistent, and consistent with Lagrangian SDM results.

4.5 Discussion and Conclusions
This work presents a flexible moment-based microphysics method as a potential
solution to the longstanding "warm rain problem", which refers to the inability of
parameterized conversion rates to accurately describe rain formation in bulk mi-
crophysics. Our method approximates the particle size distribution as sum of an
arbitrary number of modes (or subdistributions), each with associated moments,
rather than using a fixed bimodal cloud-rain descriptions as in most traditional
methods. We therefore rely on fundamental process rates such as particle-particle
coalescence or condensation which are dependent on particle size, rather than empir-
ical rates of conversion between cloud and rain categories which are not necessarily
generalizable. We show that by using the same set of particle-based process rates,
this method can reproduce Lagrangian superdroplet simulations in a box and one-
dimensional setting. In fact, with an appropriate choice of the weighting function
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and subdistributions which are delta functions, this flexible method mathematically
converges toward the expectation value of a particle-based representation when
many subdistributions are used.

The flexible structure of this approach means that not only can the modeler use a
wide range of complexity to represent hydrometeors (by specifying fewer or more
subdistributions), but also that the microphysical process rates generalize to any such
different configuration. This is in contrast to traditional bulk approaches, which often
have structure-dependent assumptions and parameterizations of key processes that
contribute to rain formation. As a result, this flexible approach to microphysics
presents a useful research tool to decorrelate and explore the accuracy-complexity
tradeoff of both the hydrometeor representation and the core process rates.

Finally, the similarities between this approach and Lagrangian microphysics may
enable straightforward extensions of the method beyond warm rain microphysics.
Analogously to a superparticle, a subdistribution and its corresponding of moments
may be described with either fixed or covarying properties in the aerosol or ice
space, such as dry aerosol size, hygroscopicity, ice density, or surface area. As a
result, this flexible warm rain approach may be seamlessly integrated with existing
parameterizations of mixed phase microphysics (by using fixed additional proper-
ties), or even used to unify the representation of additional traditional hydrometeor
categories from the point of aerosol nucleation and coagulation, to the status of a
precipitating rain droplet, hailstone, or snowflake.

4.6 Appendix A: Polynomial approximation of coalescence kernels
When 𝐾 (𝑥, 𝑦) is a polynomial, then the SCE moment integrals 𝑄 and 𝑅 can be
computed analytically, improving the efficiency of our method. The approximation
of a given kernel function as an order 𝑟 polynomial is performed through a nonlinear
optimization. The order-zero term in the polynomial series is defined as𝐾 (0, 0), and
subsequent higher order terms are the minimizer of an objective function defined
as the residual 𝐿2 error of the approximation evaluated on a 2D grid of candidate
colliding particle masses. Two examples of this polynomial approximation are
illustrated in figure 4.10.

Open Research
The implementation described in this paper can be found at https://github.com/
CliMA/Cloudy.jl v0.5.3, with additional examples generated using https://github.
com/CliMA/KinematicDriver.jl and PySDM https://github.com/open-atmos/PySDM.
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Figure 4.10: Illustration of the exact (left) and polynomial approximations (right)
for two non-polynomial collision kernels as a function of the two colliding particle
masses (in kg): a geometric kernel (order 4 approximation; top) and Long’s kernel
(Long, 1974) (order 2 approximation; bottom).
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C h a p t e r 5

WHAT CAN LIGHTNING AND SHIPPING REGULATIONS
TELL US ABOUT AEROSOLS IN DEEPLY CONVECTING

CLOUDS?

de Jong, E. K., Schneider, T., Jalkanen, J.-P., & Wennberg, P. O. (2024). What can
lightning and shipping regulations tell us about aerosols in deeply convecting
clouds? ESS Open Archive; Submitted to Geophysical Research Letters.
https://doi.org/10.22541/essoar.171632547.79526166/v1

Abstract
Lightning flashes result from charge separation caused by colliding ice particles.
They are particularly prevalent in continental convection but also occur over oceans,
where their frequency correlates with maritime shipping emissions. In 2020, the
International Maritime Organization (IMO) restricted ship fuels to much lower
sulfur concentrations. We use this abrupt perturbation to study the response of
oceanic lightning to aerosol, cloud, and convective properties. In principle, a
reduction in aerosols should lead to a decrease in lightning over shiptracks relative
to unpolluted regions. However, we find only one of the two investigated shipping
lanes displays this sensitivity. Using the spatiotemporal sensitivity of lightning flash
rate to hydrometeor size, we estimate the sensitivity of cloud water path to cloud
number concentration. The results offers insights into both the role of aerosols in
generating oceanic lightning and the mechanisms of aerosol-cloud interactions in
deep convection.

Plain Language Summary
Human-emitted aerosols influence clouds in complex ways, which can be chal-
lenging to measure directly. We study the ways in which aerosols can impact the
prevalence of lightning over the ocean by examining regions where shipping emis-
sions have recently decreased. Using observational data about clouds, winds, and
aerosols in this region, we demonstrate that aerosols generate lightning by producing
more numerous small cloud ice particles, and we estimate the magnitude of aerosols’
impact on these thunderstorm clouds.
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5.1 Introduction
Aerosol-cloud interactions (ACI) remain the largest uncertainty among anthro-
pogenic forcers of climate change (Intergovernmental Panel on Climate Change,
2021) due to complex feedbacks between cloud condensation nuclei (CCN) and
cloud properties such as top-of-atmosphere reflectivity or cloud lifetime effects. For
instance, the scientific community disagrees on whether increased CCN loading
from aerosols in a cloud can invigorate convective systems (e.g. Fan et al., 2018;
A. L. Igel and van den Heever, 2021; Rosenfeld et al., 2008; Varble et al., 2023). Fur-
thermore, well-quantified ACI impacts such as cloud brightening (Twomey, 1977)
and precipitation suppression (Yuan et al., 2023) have been predominantly studied in
stratocumulus clouds, using satellite-based measurements over polluted shiptracks,
but a broader characterization remains lacking.

In particular, our understanding of ACI in deep convective clouds (DCCs) remains
incomplete, in part because satellite retrievals of aerosol and near-surface atmo-
spheric properties in convective clouds are challenging (Koren et al., 2010). Our
current understanding of ACI in this regime relies primarily on modeling studies,
with contradictory results. For instance, Leung and van den Heever, 2023 and
Dagan, 2024 find that aerosols can feed back onto atmospheric circulations, while
Blossey et al., 2018 find a negligble net radiative effect from ACI over a polluted
shipping lane in the Indian Ocean. The correlation between aerosol-optical depth
(AOD) and markers of convection such as cloud top height or cloud morphology
often confounds observational studies, rendering their results difficult to interpret
(M. R. Igel & van den Heever, 2015; Koren et al., 2010; Zamora & Kahn, 2020).

Here we present an alternative method for quantifying and understanding aerosol
impacts in convective clouds using a different marker of deep convection: lightning.
Thornton et al., 2017 noted an increased frequency of oceanic lightning over two
of the busiest shipping lanes in the Indian Ocean (IO) and the South China Sea
(SCS). At the time, this finding was interpreted to support hypotheses of convective
invigoration by aerosols (Chang, 2017). However, more recent works suggest that
other mechanisms may be the source of this striking spatial correlation (Grabowski
& Morrison, 2020; Peterson, 2023). An opportunity to revisit these results comes
from the 2020 IMO mandate to reduce the maximum sulfur content in shipping fuels
from 3.5% to 0.5% (IMO-2020). This resulted in reduced shipping-related emissions
globally (Yuan et al., 2022) and detectable changes in low clouds (Diamond, 2023),
with yet-unquantified impacts on convective clouds. The combination of spatial
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and temporal variation in emissions presents a unique opportunity to investigate
the relationship between lightning, cloud microphysics, and aerosols in the IO and
SCS deep convective regions. Using observational and reanlaysis data, we examine
the spatio-temporal correlations between lightning, hydrometeors, meteorology, and
convection, to provide new observational constraints on the magnitude of aerosol-
cloud interactions in DCCs.

5.2 Theoretical basis
Lightning flashes stem from charge separation in clouds. This separation is induced
by transfer of charge during ice collisions: large graupel particles grow through
collisions, acquiring negative charge, and eventually fall, while lighter ice particles
take on positive charge during collisions and are lofted (Takahashi et al., 1999). The
mechanism relies on two key ingredients for lightning: ice particles and updrafts,
which have strong meteorological co-variability. Theoretically, a higher concentra-
tion of heterogeneously-sized ice particles would lead to greater charge separation,
as would a stronger updraft velocity. Both of these effects have been documented
through correlations of lightning with convective indicators (Romps et al., 2018)
and with the ice particle effective diameter (Sherwood et al., 2006).

Both cloud ice and convective strength are linked to aerosol loading. A large
concentration of CCN or ice-nucleating particles (INP) increases the cloud particle
concentration given a fixed cloud water content, leading to smaller effective radii (the
Twomey effect) (Twomey, 1977). A stronger updraft velocity can similarly nucleate
or freeze more ice crystals, which may lead to convective invigoration (Rosenfeld
et al., 2008). The interplay of aerosols and convection is confounded by interactions
with meteorological variables such as wind shear (M. R. Igel & van den Heever,
2015), leading to challenges evaluating the sign or magnitude of aerosol-cloud-
lightning interactions. However, by considering several years of measurements
including convective indicators such as sea surface temperature (SST), we isolate
these meteorological factors from aerosol-induced changes in lightning and cloud
microphysics.

5.3 Methods
5.3.1 Data
We investigate the same IO and SCS regions as Thornton et al., 2017, using lightning
flash rate (LFR) data from the Earth Networks Total Lightning Network (Zhu et al.,
2022). We focus on the period of 2017–2022, during which interannual variability
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in lightning is relatively low (Figure 5.1). In addition, we use observational and
modeled variables, grouped into five categories and listed in Table 5.1. They
include modeled shipping emission estimates from 2018–2021 produced using the
Ship Traffic Emissions Assessment Model (STEAMv4.3.1) (Jalkanen et al., 2009),
with weather effects disabled. As the LFR was previously shown to be spatially
sensitive to shipping emissions during the cold season (Thornton et al., 2017), we
restrict our analysis to November–April (IO) and October–March (SCS).

The LFR includes both cloud-to-ground and intracloud lightning. The choice to
use vertical pressure velocity, SST, and horizontal wind shear reflects the finding of
M. R. Igel and van den Heever, 2015 that these three quantities are stronger predictors
of convective cloud properties than convective available potential energy (CAPE).
Shear is computed as the difference between the 300–100hPa and 1000–900hPa
wind vectors.

Data are interpolated to a 0.1◦ grid and investigated as monthly averages to reduce
high-frequency variability. In the correlation study (section 4.2), we consider two
regional subsets of this data: an IO region bounded by (1◦N, 82◦E) to (11◦N,
93◦E), and an SCS region bounded by (1.5◦N, 104◦E) and (11◦N, 114◦E), excluding
continental gridboxes. Within each ocean basin, we further identify a “shipping
lane” and “reference region” in Figures 5.1 and 5.2. The shipping lane domain is
identified by the latitude/longitude ray of the highest density of shipping emissions,
plus 1.5◦ perpendicular in each direction. The reference lane is defined by translating
the shipping lane domain by 4◦ toward the open ocean away from heavy shipping
activity.

5.3.2 Regression and correlation
For the LFR at a particular location 𝑦 and time 𝑡, we assume a power-law dependence
on the variables in Table 5.1:

𝐿 (𝑦, 𝑡) = 𝐿0 + 𝜆
∏
𝑖

𝑥𝑖 (𝑦, 𝑡)𝛾𝑖 . (5.1)

Here, 𝐿0 > 0 represents a constant baseline level of lightning, 𝑥𝑖 are the normalized
independent variables, and 𝛾𝑖 are the sensitivities. The normalization of a variable
𝑋𝑖 is defined as

𝑥𝑖 (𝑦, 𝑡) =
𝑋𝑖 (𝑦, 𝑡) − min𝑦,𝑡 (𝑋𝑖 (𝑦, 𝑡))
𝑋̄𝑖 − min𝑦,𝑡 (𝑋𝑖 (𝑦, 𝑡))

, (5.2)
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where 𝑋̄𝑖 is the mean value over space and time. We likewise define a normalized
LFR L,

L =
𝐿 (𝑦, 𝑡) − 𝐿0

𝜆
, (5.3)

and re-express Eq. 5.1 as a log-linear model

logL =
∑︁
𝑖

𝛾𝑖 log 𝑥𝑖, (5.4)

with the sensitivities 𝛾𝑖 determined by linear regression. We additionally consider
"feature importance", defined as the coefficients from ridge regression using all
variables.

5.4 Results
5.4.1 Impacts of IMO-2020 on Lightning
Following IMO-2020, ship-emitted SO𝑥 dropped by 80% over major shipping lanes
passing through the port of Singapore, including the IO and SCS shipping regions
studied by Thornton et al., 2017 (Figures 5.1 and 5.2). In comparison, changes
to LFR over the same region are less obvious. Both shipping lanes display a
reduced but still visually apparent local enhancement of LFR after 2020 (Figure
5.2, middle left). However, while the SCS shipping lane shows a distinct reduction
in the normalized strike density, the IO shipping lane displays no apparent LFR
trend following the regulation (Figure 5.2, bottom left). This difference is apparent
in Figure 5.1, where the difference between the SCS shipping lane and reference
LFR is reduced following 2020, whereas the IO shipping lane lightning displays
stronger variability and no clear trend relative to the adjacent reference region. The
Strait of Malacca, like the SCS shipping region, displays a dramatic reduction in
both emissions and LFR across 2020, but with no adjacent shipping-free oceanic
reference region for comparison.

5.4.2 Feature Importance and Selection
Figure 5.3 shows the regional linear feature importance of all normalized log-space
variables in determining the spatiotemporal patterns of lightning. We investigate
both monthly data and cold-season averages to illustrate differences between sea-
sonal and interannual variations. For instance, this distinction illustrates the im-
portance of seasonal variations in convective strength through stronger SST contri-
butions in monthly versus annual data. The contrast further elucidates differences
between controlling factors of lightning in the two basins. Microphysical variables
including the cloud water path (CWP) are strong predictors of the annual lightning
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Figure 5.1: Timeseries of LFR (left) and SO𝑥 emissions rate (right) over regions of
the Indian Ocean and South China Sea. The solid line corresponds to the shipping
lane region, while the dashed lines correspond to the adjacent reference regions.

intensity over IO, whereas these variables have a stronger predictive ability for the
monthly lightning intensity over SCS.

Measurements of aerosol loading have similar feature importance in both ocean
basins, with AOD and emissions being the best predictors in the relatively pris-
tine IO basin, and with pm2.5 and Fine-Mode-Fraction (FMF) having a stronger
correlation in the more polluted and near-continental SCS region. Indicators of
convective strength do not have significantly larger feature importance than meteo-
rological variables in the IO, indicating a microphysics-driven response of lightning
to aerosol. However, these convective indicators play a stronger role than micro-
physical variables in the SCS, suggesting that convective drivers may outpace the
influence of aerosols in this region.

Based on the feature evaluation described above, we downselect to 6 variables for
the multivariate regression on annual aggregates described by Equation 5.4. These
variables are the best representatives from the aerosol loading, cloud properties, and
background/meteorology feature categories (Table 5.1), including: SO𝑥 emissions
and FMF, which correlate best with the IO and SCS regions, respectively; the mean
ice and liquid particle diameters, which are the most directly computed MODIS
satellite products; and shear and SST, which are selected by the automated regression
techniques. No variables from the convection category are used, as predictors from
this category are strongly correlated with the selected background variables and were
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Figure 5.2: LFR (left column) and SO𝑥 shipping emissions rate (right column) over
the Indian Ocean and South China Sea prior to (top row) and following (middle
row) IMO-2020 . Bottom row depicts the normalized difference in annual strike
density (left) and the absolute difference in annual SO𝑥 shipping emissions (right).
In each panel, the solid box bounds the two shipping lanes of interest, the adjacent
dashed boxes bound reference regions with less shipping activity, and the dotted
boxes outline the larger regions analyzed in the correlation study.
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Figure 5.3: Feature importance for the normalized log-basis independent variables
(Equation 5.2) over the IO region (top) and SCS (bottom).

rejected by both automated modeling algorithms. The coefficient of determination
for this model structure is 𝑅2 = 0.56 and 𝑅2 = 0.28 for the SCS and IO regions,
respectively (see Figure 5.4). Our regression model compares well to the trivariate
regressions of Romps et al., 2018, which attained 𝑅2 < 0.3.

5.4.3 Relationship of lightning to aerosol, microphysical, and background
properties

The sensitivities of LFR to the independent variables are listed in Table 5.2 and
depicted individually as functions of latitude (or distance from the primary shipping
lane) and year in Figure 5.5. The spatial pattern of SCS lightning strikes is well-
predicted following IMO-2020, while the LFR is generally underestimated pre-2020
in the region of strongest emissions. In the IO, our model generally underpredicts
LFR and overpredicts the reduction in peak lightning at 6◦N following IMO-2020.
These predictive deficiencies suggest that lightning over the IO shipping lane is not
aerosol-limited, and is therefore less sensitive to shipping emissions.
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Figure 5.4: Model parity for the hand-selected feature model. 𝑅2 = 0.28 for the
Indian Ocean region and 𝑅2 = 0.56 for the South China Sea region.

Variable 𝑥𝑖 IO Sensitivity 𝛾𝑖 SCS Sensitivity 𝛾𝑖
SO𝑥 Emissions 0.27 ± 0.06 0.34 ± 0.07

Fine Mode Fraction 0.13 ± 0.05 0.71 ± 0.04
Mean ice particle size 0.06 ± 0.04 -0.35 ± 0.06

Mean liquid particle size -0.22 ± 0.06 0.56 ± 0.08
Shear -0.27 ± 0.03 -0.27 ± 0.08

SST 0.44 ± 0.07 0.11 ± 0.04

Table 5.2: Coefficients of the normalized log-space linear regression, shown as
value plus/minus one standard error.

5.4.3.1 Aerosol loading

Both shipping regions have a positive sensitivity to sulfur emissions and FMF,
with a particularly strong sensitivity of SCS lightning to FMF (Table 5.2). Strong
sensitivity of lightning to ultrafine aerosols (< 1𝜇m) supports previous findings
of a contrasting relationship of lightning to fine versus coarse sea salt aerosol
(Pan et al., 2022). Sensitivity to the location rather than magnitude of emissions
supports the hypothesis that ships themselves attract lightning (Peterson, 2023). This
hypothesis appears more likely in the IO case, where the lightning peak is relatively
consistent before and after emission regulations. The FMF peak over each shipping
lane indicates enhanced fine aerosol concentrations, and the mean reduction in
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fine aerosols following IMO-2020 indicates contributions from shipping emissions
(Figure 5.5, 2nd row). Additional factors such as the local winds may distribute
and/or concentrate aerosols. For instance, the IO meridional near-surface wind
(v950, not shown) has a local minimum at 6◦N and a sign-change around this
latitude in the cold-season mean, and therefore may concentrate aerosols near the
IO shipping lane regardless of their origin.

5.4.3.2 Microphysical properties

In the years following IMO-2020, the average ice particle size decreased over both
shipping regions by up to 1𝜇𝑚, while the average liquid particle size increased
(Figure 5.5, rows 3-4). According to the model sensitivities (Table 5.2), lightning
has a contrasting response to hydrometeor size in the two shipping regions. IO
lighting has a negligible sensitivity to ice particle size and a negative relationship
to liquid particle size. The liquid particle diameter additionally shows a small local
minimum at 6◦N, where aerosol emissions are concentrated, particularly pre-2020,
which indicates a warm-phase Twomey effect. SCS lightning is more strongly
correlated with both phases of hydrometeors, with a negative relationship to ice
particle diameter (Liu et al., 2020; Sherwood et al., 2006) and a positive relationship
to liquid particle diameter. The negatively correlated SCS ice particle size shows
a substantial dip near the location of shipping emissions, indicating a Twomey-
like effect in the cold-phase. The strong positive relationship of liquid particle
diameter and SCS lightning is more puzzling. One potential explanation is a cycle
of aerosol-induced precipitation suppression contributing to cold-phase convective
invigoration, followed by more intense precipitation of large liquid hydrometeors
alongside stronger electrification. However, the liquid hydrometeor size shows little
interannual variability relative to other microphysical quantities and may have been
unimpacted by changes to aerosol emissions following IMO-2020.

5.4.3.3 Background and meteorology

Lightning has a nearly identical sensitivity to wind shear in both oceanic shipping
regions. The wind shear in turn displays the largest interannual variability among
the model variables, demonstrating the strong role of meteorology and horizontal
winds in driving convection over the ocean. The positive correlation between LFR
and SST follows the expected relationship of SST and convection (M. R. Igel &
van den Heever, 2015) and contributes to the interannual variability.
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Figure 5.5: Cold-season mean model features as a function of latitude (or distance
from shipping lane) and year (top 6 rows) and the overall model predictions versus
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5.5 Interpretation of microphysical sensitivities
Using a simple mechanistic explanation of lightning, we now attempt to isolate
and compare the relative strength of Twomey-like and non-Twomey contributions
of aerosol loading to lightning and cloud properties. We begin with the limiting
assumption that LFR is proportional to the ice hydrometeor collision rate 𝐶, which
in turn scales as

L ∝ 𝐶 ∝ 𝑁2𝑟𝛼, (5.5)

where 𝑟 and 𝑁 are the effective radius and number concentration of hydrometeors,
respectively.

Assuming a fixed CWP and cloud fraction, 𝑁 ∝ 𝑟−3, leads to the result that L ∝
𝐶 ∝ 𝑟𝛼−6 for a strictly Twomey-type aerosol-cloud-lightning interaction. A purely
gravitational collision has a coefficient of 𝛼 = 4, while a turbulent collisional
kernel such as the Saffman-Turner kernel (Saffman & Turner, 1956) uses 𝛼 = 3.
The normalized sensitivity of lightning to ice particle size in both ocean basins
(𝛾𝑖 ∈ (−0.35, 0.06)) implies that 𝛼−6 = −0.15±0.2, i.e., 𝛼 ≈ 6, which falls outside
the noted range for gravitational or turbulent collisions. Thus, it is unlikely that this
dependence is purely due to the Twomey effect. Under a contrasting assumption
of fixed cloud particle concentration (and variable CWP), L ∝ 𝑟𝛼, with the data
implying 𝛼 ≈ 0. The aforementioned realistic value of 𝛼 = 3.5 ± 0.5 imply a
collision rate dependence of 𝐶 ∝ 𝑁2𝑟𝛼 = 𝑟𝛼−𝛽, i.e., 𝑁 ∝ 𝑟−𝛽/2 with 𝛽 = 3.6 ± 0.7.
Retaining the assumption of fixed cloud fraction but now allowing both number
concentration and CWP to vary, we obtain that

CWP ∝ 𝑁𝑟3 ∝ 𝑁1−6/𝛽. (5.6)

This relationship indicates that

𝜕 log CWP
𝜕 log 𝑁

= 1 − 6/𝛽 ≈ −0.7 ± 0.3, (5.7)

providing a novel estimate for the sensitivity of cloud water path to hydrometeor
concentration (and by proxy, the concentration of CCN and INP). This derivation
extends the language and logic of Bellouin et al., 2020 and Yuan et al., 2023
to constrain aerosol-cloud interactions in DCCs by using lightning as an indirect
measurement of the combined effects of number concentration and CWP.

This preliminary estimate, though uncertain, supports a model of pristine deep
clouds that are highly sensitive to aerosol concentration. Without the competing low-
cloud mechanism of entrainment drying (Yuan et al., 2022), we find that these DCCs
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are susceptible to precipitation suppression and potentially convective invigoration.
Aerosols introduced by ship traffic therefore intensify electrification by generating
wetter, deeper, and/or more persistent clouds.

5.6 Discussion
Using the LFR signal in response to a sharp perturbation of shipping emissions, this
study quantitatively assessed the relationship between lightning, aerosol emissions,
cloud microphysical properties, and background meteorology. Unlike previous stud-
ies that correlated continental lightning with convective metrics, we find that oceanic
lightning is best explained as a response of cloud microphysics to local aerosol load-
ing on top of a background convective state that is influenced by meteorological and
surface conditions. This combination of rapid and slow responses is supported by
the difference in feature importance between monthly and seasonal data aggregates
in explaining LFR.

While our linear model cannot precisely recover the spatiotemporal distribution of
lightning over the Indian Ocean shipping lane, it has strong predictive power over
the SCS and reveals the mechanisms responsible for a visually apparent increase in
lightning over both busy shipping regions. We find a local peak in aerosol fine-mode-
fraction that corresponds to the location of heaviest shipping emissions, which in
turn influences the spatial distribution of lightning in both regions. We additionally
find that the SCS shipping region follows an expected negative relationship between
LFR and ice particle size, supporting a cold-phase Twomey-like effect that stems
from locally enhanced aerosol concentration. The relationships of lightning and
hydrometeor size over the Indian Ocean appear much weaker, suggesting that the
IO lightning signal is not aerosol-limited but susceptible to other factors such as
meteorology.

Finally, we suggest a simple estimate for the sensitivity of cloud water path to
number concentration in this deeply convecting region by using the relationship
of LFR to hydrometeor size. Similar constraints on the sensitivity of CWP to
number concentration are restricted to liquid-phase low clouds Yuan et al., 2023,
e.g. and cannot be expected to encompass complex feedbacks such as convective
invigoration (or enervation) at work in mixed phase clouds. Our estimate of CWP
sensitivity is inherently uncertain due to assumptions of fixed cloud fraction and
lightning as proportional to ice particle collision rate, yet it suggests a sensitivity that
is more strongly positive than found by related low-cloud studies. Flawed as it may
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be, this procedure offers a step toward observationally constraining aerosol-cloud
interactions that cannot be directly measured from space.

Open Research
Datasets used in this study are summarized in Table 5.1. MERRA-2 reanalysis
products (Global Modeling and Assimilation Office (GMAO), 2015a, 2015b, 2015c)
and satellite products (Huffman et al., 2023; NASA/LARC/SD/ASDC, 2017; Pincus
& Hubanks, 2022; Science Investigator-led Processing System, n.d.) are publicly
available through NASA databases at corresponding reference URL’s. Lightning
flash rate measurements are provided by Earth Networks Inc., an AEM company
(Zhu et al., 2022). Shipping emissions inventory data was provided by the Finnish
Meteorological Institute (Jalkanen et al., 2009). All analysis in this study employed
open-source software tools in the Python programming language.
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C h a p t e r 6

CONCLUDING REMARKS

Chapters 2–5 of this dissertation are only one step of journey toward improving
our understanding and models of cloud microphysics. In this concluding chapter,
I wish to contextualize the challenges and methods addressed by earlier chapters
within Atmospheric Science and broader disciplines, while offering suggestions and
warnings for future work based on my experience.

6.1 State of the Science
Although collisional processes in warm rain microphysics present a substantial
challenge to progress in climate and weather modeling, they are by no means the only
such obstacle. Indeed, this thesis only utilizes a small subset of available modeling
techniques and data resources to address an even smaller subset of underresolved
atmospheric processes. Moreover, fields beyond atmospheric science have faced
parallel challenges in parameterizing small scale processes. In fact, several of these
fields have developed parallel modeling techniques whose adaptation to atmospheric
processes could benefit the science.

Two important complexities of modeling cloud physics which are not fully discussed
in this thesis include:

1. Lack of Ground Truth: In the case of most microscopic atmospheric pro-
cesses including cloud microphysics, our ability to verify and validate models
and parameterizations is hindered by a lack of directly comparable obser-
vations. Satellite observations often have too low of spatial and temporal
resolution to sample microphysical processes, while aircraft and laboratory
experiments are not necessarily a representative sample of diverse atmospheric
states. Many processes such as secondary ice production are challenging to
even reproduce in the laboratory, hindering our fundamental understanding.
Yet other datasets, such as ground-based measurements of lightning, are pro-
prietary or inaccessible for academic research.

2. Parameterization-Squared: Once a cloud microphysics model structure and
its parameters are set, it must still be coupled to the representation of other
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subgrid scale processes. For instance, turbulent motions of the air are not
fully resolved by weather and climate models, yet they impact cloud micro-
physics through fluctuations in the local water saturation and entrainment of
dry air (Chandrakar et al., 2021). The tracers and parameters used to represent
cloud microphysics must be further integrated with parameterizations of sub-
grid scale turbulence, often requiring yet further assumptions regarding how
the parameterized quantities interact. When comparing model results with
observations, it can be challenging to disentangle errors due to one subgrid-
scale model from errors due to another, though the "piggybacking" approach
(Grabowski, 2019) may aid in doing so.

Recent efforts to overcome these obstacles have focused on either improving model
structure and parameters, with emphasis on integrate machine learning techniques,
or on increasing model resolution. Techniques such as inverse problem solving (e.g.
Bieli et al., 2022) offer a means of estimating the value and uncertainty of many
parameters simultaneously. Taking ML one step further, other researchers attempt
to replace ill-posed parameterizations with machine-learned surrogate models (e.g.
Gettelman et al., 2021) in order to alleviate structural uncertainties. On the other
hand, increasing the spatial resolution of climate models can eliminate the need for
parameterizations of convective cloud motions, reducing the quantity of uncertain
and entangled parameters at the cost of higher computational intensity. Neither ML
nor model resolution solves the issue of the lack of a ground truth for microscopic
processes, but each attempts to circumvent the need for such data by eliminating
uncertain parameters and by bringing the scope and spatial scale of models closer
to that of observations.

The models used in cloud microphysics are not unique to the subfield, but are often
developed in isolation from other disciplines and in some cases face obstacles that
have already been overcome by other scientific communities. For instance, Monte
Carlo simulations of representative tracers (the Superdroplet method, in micro-
physics) has been in use for over a decade by astrophysicists (Zsom & Dullemond,
2008) and marine scientists (Jokulsdottir & Archer, 2016), and for nearly thirty years
in the field of population dynamics (Scheffer et al., 1995). Bulk methods for rep-
resenting a dispersed phase within fluid flow likewise exist in Computational Fluid
Dynamics and combustion modeling to represent soot aggregates or other reactive
particles. In particular, the Quadrature Method of Moments (McGraw, 1997) and
more recent variants (e.g. Marchisio & Fox, 2005; Mueller et al., 2009) are an accu-
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rate and efficient class of bulk methods used for tracking sizes and even additional
properties of particles, and have been successfully applied to aerosol formation and
growth (Fierce & McGraw, 2017). These methods may outperform the alternative
bulk and spectral representations presented in Chapters 3 and 4 and are worth pursu-
ing further within cloud physics. Unfortunately, adapting and integrating new model
components into large operational weather and climate models can be a laborious
and ill-rewarded task. Thus even when new models are presented and validated in
simplified contexts, such as in Chapters 2–4, this initial model development does
not guarantee widespread adoption.

6.2 Next Steps and Words of Caution
6.2.1 High-Fidelity Modeling
Even with the inclusion of collisional breakup (Chapter 2), particle-based micro-
physics remains incomplete in its purview of microphysical processes. In particular,
mixed-phase representations within the SDM (Shima et al., 2020) currently neglect
secondary ice processes such as rime-splintering or collisional breakup of ice, as
these processes lack substantial fundamental understanding. However, coupling
the newly-introduced collisional breakup algorithm with SDM representations of
immersion freezing (Arabas et al., 2024) could provide an effective way to represent
the spontaneous freezing of supercooled liquid fragments upon collision. Exploring
this SIP mechanism as a combination of two existing process rates could introduce a
framework for representing and parameterizing additional collisional ice processes.

Although Chapters 3 and 4 utilize the SDM as a high-fidelity reference tool for
bulk parameterizations and other studies utilize SDM simulations as training data
for calibration (Azimi et al., 2023; Bieli et al., 2022), these practices are not
yet widely-accepted in cloud physics. Indeed, the particle-based microphysics
community is currently working to address discrepancies in precipitation predictions
that arise from small variations in the representation of stochastic coalescence among
realizations of the algorithm (Hill et al., 2023; Morrison et al., 2024). Other model
parameters such as the model time step, horizontal resolution, and initialisation of
superdroplets may additionally impact the results of an SDM simulation.

6.2.2 Simplified Models
The sequence of Chapters 3 and 4 traces the evolution of the flexible moment-based
method, Cloudy.jl or "Cloudy", as a continuation and improvement upon the collo-
cation method. Inspired by superdroplet model structure, Cloudy.jl was an attempt
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to maintain the flexibility and multimodal capability of a spectral method while
resolving the issues of mass conservation that arose from the collocation method.
Nevertheless, Cloudy is still not necessarily the best solution for representing warm
rain microphysics, in particular due to its reliance on polynomial kernel approxi-
mations (which may be ill-behaved for large particles), numerical integration, and
gamma or exponential type closures. For this reason, I suggest continuing to explore
other model structures such as variants of the Quadrature Method of Moments (Mc-
Graw, 1997) alongside continued development of this flexible moment architecture.
In particular, evaluation of Cloudy in more complex atmospheric simulations, such
as LES reproducing results of the RICO field campaign, should be undertaken before
coupling with mixed phase processes or a climate model. Future development of
any bulk microphysics model, whether it be Cloudy, QMOM, or an entirely different
structure, would benefit from the consideration of additional properties such as ice
density or aspect ratio or aerosol hygroscopicity in order to unify the representation
of microscopic particles.

The future of microphysics may not lie within this bucket of structured numerical
models at all, but rather among data-driven models. The BOSS approach (Morrison
et al., 2019) probed this possibility by abandoning structured process rates in favor
of generalized power series and calibrated parameters, and is under development for
large-scale simulations at the time of writing. Taken one step further, Lamb et al.,
2023 found that the information of particle size distributions could be reduced to
three inherent dimensions or latent variables using neural network encoders. Can
ML techniques uncover not only this latent space, but also the governing equation
for a complex system such as cloud microphysics? Using the tools developed by
Lamb et al., 2023 and Champion et al., 2019, I intend to explore this question
during my postdoctoral research using high-fidelity SDM simulations as a stand-in
for observational data.

6.2.3 Observational Evidence
Compiling, downselecting, and processing observational data is a science of its
own. Chapter 5 utilized only a small fraction of available datasets to study aerosol
and lightning, yet even these data took nearly a year to compile, from requesting
proprietary lightning measurements to running the STEAM model as an alternative
to the EDGAR database used by Thornton et al., 2017. Downloading open-source
and post-processed level-3 monthly satellite observations from NASA databases
was easy by comparison. In fact, satellite products are available at much higher
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temporal frequency (as level-2 or level-1 datasets, rather than level-3) and could be
used in a more detailed study to isolate the contributions of meteorology on daily
lightning frequency. Inferencing techniques such as ship-track detection algorithms
(Manshausen et al., 2022) and the comparison of counterfactuals using "kriging"
(Diamond, 2023) could further strengthen the statistical evidence used to study
aerosol-cloud-lightning interactions. Alternatively, bottom-up studies using light-
ning predictions from operational weather models could provide better mechanistic
evidence for lightning production, even if the predictions themselves are imperfect.
Ultimately, enhancing and upscaling observational data, whether through ML tech-
niques or otherwise, may be the future of how we integrate observational evidence
with models.
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