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ABSTRACT

This thesis studies diffusion processes on spinor endomorphism algebras. The spinor
and connection laplacian generated heat semigroups are shown to quantum dynami-
cal semigroups, and after spectral truncation the existence of Evans-Hudson flows is
established. The vacuum state expectation of the process is related to spectral action
principle in noncommutative geometry. Examples where the flow is proven to exist
for untruncated laplacians are given. Convergence of finite dimensional approxima-
tions, through discretization and truncation, to spectral triples encoding Riemannian
geometry and their statespaces as quantum metric spaces is also considered.
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C h a p t e r 1

QUANTUM DIFFUSION AND SPIN GEOMETRY

1.1 Introduction
Quantum diffusion is an operator-valued stochastic process specialized to live on the
Fock space with the noncommutative probability model fixed to quantum probability.
It’s associated with a dynamical semigroup on a C*(or a von Neumann algebra). The
initial theory was developed for norm-continuous operator semigroups describing
quantum dynamics and the form for generators of such semigroups, which are
bounded, is characterized by the work of Gorini, Kossakowski, Sudarshan, and
Lindblad. At the same time, the diffusion generated by the unbounded laplacian –
Brownian motion, and its associated heat semigroup 𝑒−𝑡△ on a Riemannian manifold,
has deep interactions with the geometry.

This thesis is focused on the intersection of the two: the diffusion processes gener-
ated by unbounded elliptic noncommutative operators on endomorphism bundles,
specifically, the diffusion generated by the Dirac and connection laplacian on the
spinor bundle endomorphism algebra. The work is motivated by the spectral action
principle that underlies the spectral standard model where the trace of the spinor heat
kernel, defined as the spectral action, plays a central role. The geometry that arises
in this context is defined as the almost-commutative geometry, and more generally,
it provides an implementation of the program of quantum Riemannian geometry
toward noncommutative gauge theory. The Dirac heat kernel and diffusion are stud-
ied from this almost-commutative geometry perspective. The related question in
discrete differential/finite-noncommutative geometry of how the noncommutative
geometric perspective can be discretized is also considered.

Specialized to commutative geometry, the connection between spinor laplacian and
Einstein-Hilbert action through the spectral action is well known; the new contri-
bution is the probabilistic formulation. This approach is suggested by observing
that the trace of the spinor heat kernel for Robertson-Walker cosmologies can be
evaluated by using Brownian bridge integrals. The follow-up question is to see if
this can be carried out for almost commutative geometry in general. Because of the
noncommutative character, the process now must be a noncommutative diffusion,
with quantum probability providing a natural model set on the boson Fock space.
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The answer is in the affirmative — the spectral action can be recovered from quan-
tum stochastic flows on the underlying, possibly noncommutative, geometry. This
provides an interpretation of the spectral action as being realized by random fluctu-
ations acting on the spinor bundle; more precisely, the spectral action arises as the
solution to a quantum stochastic differential equation which can be constructed algo-
rithmically, and carries at least a superficial similarity to the stochastic quantization
program.

The epilogue to this work remarks briefly on the possibilities of operator algebraic
and geometric methods in studying stochastic dynamics on Hilbert spaces, particu-
larly in the quantum information context, and considers possible future headings.

Outline: The relevant background is introduced as needed, with chapters being self-
contained but incremental. The following chapter starts by introducing Dirac bun-
dles and examining the various heat semigroups associated with the Dirac laplacian.
The spectral action is shown to be embedded inside the action of the noncommuta-
tive laplacian on the spinor endomorphism algebra and can be approximated by the
quantum stochastic flow generated by the spectrally truncated laplacian. After this,
aspects of quantum stochastic analysis and differential equations are introduced in
chapter 3. In chapter 4 infinite dimensional examples where conditions for existence
of diffusion generated by the untruncated flow can be established. This includes
noncommutative laplacian, the Laplace-Beltrami operator generated diffusion on the
compact manifolds where laplacian eigenfunctions follow a growth condition, and
the Dirac laplacian generated diffusion in almost commutative geometry over reduc-
tive homogeneous spaces. Some tangential ideas are also explored. Finally, before
leading into the epilogue, the question of finite approximations and compressions
of canonical spectral triples is addressed in chapter 5.
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C h a p t e r 2

DIFFUSION ON SPINOR ENDOMORPHISM ALGEBRAS

2.1 Introduction
In this chapter the heat semigroups associated with endomorphism algebras of spinor
bundles are studied. These provide the natural generalization of the heat semigroup
of a smooth manifold since by Ćaćić [16]’s characterization, spectral triples describ-
ing almost commutative geometry are realized as spinor endomorphism sub-bundles.
The semigroups are shown to be quantum dynamical semigroups. The existence of a
quantum stochastic flows/dilations of Evans-Hudson type is established for spectral
truncations of the generators. This question of the existence of such flows — which
can be viewed as diffusion on the spectral triple — and realizing an appropriate
expectation as a spectral action is in the same vein of results as [21, 32] where von
Neumann entropy and the average energy of the Gibbs state are expressed as spec-
tral actions; both are based on fermionic second quantization. The flows considered
here, however, live on bosonic Fock space and what they recovered from the dilation
on the Fock is the geometry itself. While only the symmetric Fock space stochastic
calculus is used here, an antisymmetric Fock space theory is known (a unified con-
struction was given by [45]) and similar constructions on full Fock space have been
studied in free probability (see, for instance, [47], and [14] for free stochastic quan-
tization). Since the symmetric Fock space is isomorphic to Wiener spaces by the
Wiener-Ito-Segal isomorphism, this approach and the general question of a deeper
connection between noncommutative probability and noncommutative geometry, as
well as connections to the stochastic quantization program, are suggested by the
Brownian bridge integral expansions for the spectral action[20, 34]. In Euclidean
fermionic quantum field theory context, stochastic quantization considered by [3]
explores related ideas on Grassmann algebras; see also [22]. As an application, the
spectral action for an arbitrary compact Riemannian spin manifold is realized from
the quantum stochastic flow for the noncommutative laplacian.

Organization
Section 2.2 introduces the quantum dynamical semigroups, dilations, and relevant
background; section 2.3 introduces Ćaćić’s results and gives the characterization
in terms of spinor bundles. The existence of quantum stochastic dilations and
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flows for associated qsde is considered in 2.4. The results are obtained by first
showing that the laplacians define C*-Dirichlet forms and, therefore, generates a
quantum dynamical semigroup, which can be embedded in a conservative quantum
dynamical semigroup for which dilations exist after spectral truncation. This is
enough to approximate the spectral action up to an arbitrary cutoff as considered
in 2.6. Section 2.7 considers heat semigroups on the product almost-commutative
spectral triples and general almost-commutative spectral triples, and remarks on the
C*-bundles considered by [28, 24].

Some notational conventions: for Hilbert space, H, B(H) will denote bounded
operators on H, K(H) compact operators and H2(H) the Hilbert-Schmidt operators.
i will denote

√
−1. For 𝑚, 𝑛 ∈ N, [𝑛], [𝑚 : 𝑛] will denote {1, 2 . . . 𝑛} and {𝑚, 𝑚 +

1 . . . 𝑛} respectively. Lie[𝐺] will denote the Lie algebra of Lie group 𝐺. (𝑀, 𝑔)
will denote a smooth manifold 𝑀 with a Riemannian metric 𝑔. After fixing a local
orthonormal frame, 𝑒 𝑗 , the connection ∇ 𝑗 will be used interchangeably for ∇𝑒 𝑗 . On
bundles carrying Clifford multiplication, · will denote Clifford multiplication; · will
be suppressed when Clifford multiplication is clear from context. Following [49],
by a Riemannian connection we mean a metric connection not necessarily torsion-
free; the canonical Riemannian connection is taken as the torsion-free Riemannian
connection. All manifolds will be compact spin manifolds since that is the object
in the reconstruction theorems from noncommutative geometry. The boundary is
assumed to be empty; this is needed as the Dirac operator may not be symmetric
otherwise (see, for instance, [49, eq II.5.7]). For some specialized settings, the
assumption of even dimensionality is made. Cl(𝐸, 𝑞) will denote the Clifford
algebra (bundle) over the vector space (vector bundle) 𝐸 with quadratic form 𝑞.
For Riemannian manifold (𝑀, 𝑔), Cl(𝑀) = ⊔𝑚∈𝑀 Cl((𝑇∗

𝑚𝑀),−𝑔). /𝐷 will denote a
geometric Dirac operator, that is, Dirac operator associated to a Clifford connection,
with /𝐷2 the associated geometric Dirac laplacian, and 𝐷 will denote a Dirac-type
operator (and its lapacian 𝐷2) which may not be associated to a Clifford connection.

2.2 Quantum stochastic flows
Recall that a ∗-algebra is an algebra endowed with an involution ∗, while a C*-algebra
is a norm-closed ∗-algebra where the norm satisfies the C*-identity, ∥𝑎∗𝑎∥ = ∥𝑎∥2.
Note that if A is a unital C*-algebra A, then Mat𝑛 (A) � A ⊗ Mat𝑛 (C). Working
with quantum dynamical systems requires a stronger notion of positivity: complete
positivity.
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Definition 2.2.1. For unital C*-algebras, A1,A2, with positive cones denoted
(A1)+, (A2)+,

1. A linear map 𝑇 : A1 → A2 is positive if 𝑇 ((A1)+) ⊂ (A2)+.

2. 𝑇 is completely positive if for all 𝑛 ∈ N, 𝑇𝑛 := 𝑇 ⊗ 1𝑛 : Mat𝑛 (A1) �
A1 ⊗ Mat𝑛 (C) → A2 ⊗ Mat𝑛 (C) � Mat𝑛 (A2), 𝑇𝑛 ( [𝑎𝑖 𝑗 ]) = [𝑇 (𝑎𝑖 𝑗 )], is
positive.

Definition 2.2.2 (Quantum Dynamical Semigroups). A semigroup (𝑇𝑡)𝑡≥0 on a C*-
algebra A is strongly continuous if lim𝑡→𝑡0 𝑇𝑡𝑥 = 𝑇𝑡0𝑥 for all 𝑥, 𝑡0. The semigroup
is conservative if for all 𝑡, 𝑇𝑡 (1) = 1; equivalently L(1) = 0 for the generator L
of 𝑇𝑡 . A quantum dynamical semigroup on a C*-algebra is a strongly continuous
semigroup 𝑇𝑡 such that each 𝑇𝑡 : A → A is contractive and completely positive.
On a von Neumann algebra M, a quantum dynamical semigroup is a semigroup 𝑇𝑡
of completely positive, contractive maps such that 𝑇𝑡 is normal for each 𝑡.

For a C*or von Neumann algebra, A, A′′ will denote the bicommutant. A′′ is a
von Neumann algebra.

Definition 2.2.3. A conditional expectation is a linear map, E : N → M, between
∗-algebras M,N , satisfying M ⊂ N ,E [1] = 1 and for any 𝑀𝑖 ∈ M, 𝑁 ∈ N
E [𝑀1𝑁𝑀2] = 𝑀1E [𝑁]𝑀2 .

Definition 2.2.4 (Stochastic dilation). For quantum dynamical semigroup (𝑇𝑡), 𝑡 ≥ 0
on a C* M, a (quantum) stochastic dilation is a family of ∗-homomorphisms,
𝑗𝑡 : M → N , where N is a ∗-algebra with conditional expectation E0 : N → M
satisfying 𝑇𝑡 = E0 [ 𝑗𝑡].

We will consider stochastic dilations on the Fock space.

Definition 2.2.5. For a Hilbert space H, the free Fock space, Γ 𝑓 (H) is the sum of the
symmetric and antisymmetric Fock spaces, Γ𝑠 (H), Γ𝑎 (H), Γ 𝑓 (H) = Γ𝑎 (H) ⊕ Γ𝑠 (H),
where Γ𝑠 (H), Γ𝑎 (H) are defined by ⊕Z≥0H◦𝑛, ◦ being the symmetric or tensor
product for symmetric Fock space, antisymmetric tensor product for antisymmetric
Fock space, and free tensor product for the free Fock space.

The object of interest throughout this work will be the symmetric tensor product
(denoted by ⊗ again) unless otherwise specified; we will also denote symmetric



6

Fock space Γ𝑠 (H) by Γ(H) when clear from the context. The symmetrization
operator defines the map from free to symmetric Fock space, Γ 𝑓 (H) → Γ𝑠 (H) by
Symm(⊗𝑖∈[𝑛]𝑔𝑖) = 1/(𝑛 − 1)! ∑𝜎∈𝑆𝑛 ⊗𝑖∈[𝑛]𝑔𝜎(𝑖) . For a subspace V ⊂ H, E(V) ⊂
Γ𝑠 (H) denotes the C-linear span of exponential vectors E(𝑣) = ⊕𝑘∈N𝑣𝑘/

√
𝑘!, 𝑣 ∈

V. There’s an inner product on the Γ(H) induced by the inner product on H,
⟨E(𝑢),E(𝑣)⟩ = exp ⟨𝑢, 𝑣⟩.

Example 2.2.6 (Feynman-Kac formula, Brownian motion and stochastic dilation).
Viewing Brownian motion on (𝑀, 𝑔) as a diffusion generated by the Laplace-
Beltrami operator, it’s noted that the Feynman-Kac formula for a Riemannian mani-
fold[56, Thm 3.2], (𝑀, 𝑔), for the operator𝐻 := 1

2△C(𝑀)+𝑉, 𝑢 ∈ C4(𝑀), 𝑉 ∈ C(𝑀),
with Laplace-Beltrami operator, △C(𝑀) , acting on the C2(𝑀) gives

(𝑒−𝑡𝐻𝑢) (𝑥) =
∫
𝑊 (𝑀)

𝑒
∫ 𝑡

0 𝑉 (𝜔(𝑠))−1/6·𝜅𝑀 (𝜔(𝑠))𝑑𝑠𝑢(𝑥) d𝑊𝑥
𝑀
(𝑑𝜔)

𝑁 (𝑢, 𝜅𝑀 , d𝑊𝑥
𝑀
(𝑑𝜔))

where d𝑊𝑥
𝑀
(𝑑𝜔) denotes the Wiener measure on C(𝑀), 𝑢 ∈ C4(𝑀) and 𝜅𝑀 is the

scalar curvature of 𝑀 and 𝑁 (𝑢, 𝜅𝑀 , d𝑊𝑥
𝑀
(𝑑𝜔)) a normalization depending on 𝜅𝑀 , 𝑢

and d𝑊𝑥
𝑀
(𝑑𝜔). This can be thought of as a stochastic dilation of heat semigroup on

C∞(𝑀) to the Wiener space,𝑊 (𝑀), on 𝑀 , the integral with respect to the Wiener
measure playing the role of the conditional expectation.

Quantum stochastic dilation of Evans-Hudson type
On a smooth manifold, 𝑀 , a homogeneous flow is a smooth map 𝜙 : R≥0×𝑀 → 𝑀 ,
𝜙𝑡 (𝑚) := 𝜙(𝑡, 𝑚), satisfying 𝜙(𝑡 + 𝑠, 𝑚) = 𝜙(𝑠, 𝜙(𝑡, 𝑚)), 𝜙(0, 𝑚) = 𝑚. The flow
induces a 1-parameter semigroup, ( 𝑗𝑡)𝑡≥0 : C∞(𝑀) → C∞(𝑀), 𝑗𝑡 ( 𝑓 ) := 𝑓 ◦ 𝜙−1

𝑡

with the infinitesimal generator L following the differential equation[44],

𝑑

𝑑𝑡
𝑗𝑡 ( 𝑓 ) = 𝑗𝑡 (L( 𝑓 )), with 𝑗0( 𝑓 ) = 𝑓 , L( 𝑓 ) = 𝑑

𝑑𝑡

����
𝑡=0
𝑗𝑡 ( 𝑓 ), 𝑓 ∈ C∞(𝑀) (2.1)

The classical stochastic flow can be viewed as a stochastic process 𝜓𝑡 taking values
in diffeomorphism group of 𝑀 which satisfies the flow property almost surely (see,
for instance, [48, Ch 3]). Now solutions to stochastic differential equations (sde)
on manifolds generate stochastic flows, the stochastic version of flow equation is
obtained by introducing Wiener process terms into eq 2.1 yields

𝑑

𝑑𝑡
𝑗𝑡 ( 𝑓 ) = 𝑗𝑡 (L( 𝑓 )) +

∑︁
𝑗∈[𝑛]

𝑗𝑡 (𝑏 𝑗 ( 𝑓 ))𝑑𝐵 𝑗
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for linear maps 𝑏𝑘 , and components 𝐵 𝑗 of 𝑛-dimensional Brownian motion 𝐵 on
𝑀 with sample space Ω. Algebraically, 𝑗𝑡 , are now ∗-algebra homomorphisms,
𝑗𝑡 : B(𝑀 × Ω) ⊃ 𝐶∞(𝑀) → B(𝑀 × Ω) for the space of bounded measurable
functions, B(𝑀 ×Ω), on 𝑀 ×Ω. Note that 𝐶∞(𝑀) is embedded in B(𝑀 ×Ω).

Formulated as integral equations, the quantum analog of this sde can be defined on
the Fock space. For a finite dimensional Hilbert space V, set H = 𝐿2(R≥0,V) :=
𝐿2(R≥0) ⊗ V. H decomposes as H = H𝑡 ⊕ H𝑡 , where H𝑡 = 𝐿2( [0, 𝑡)) ⊗ V,H𝑡 =
𝐿2( [𝑡,∞)) ⊗ V. On the Fock space, Γ(H) = Γ(H𝑡) ⊗alg Γ(H𝑡), given an “initial”
Hilbert space H0, set

H̃𝑡 = H0 ⊗ Γ(H𝑡), H̃
𝑡
= H0 ⊗ Γ(H𝑡), H̃ = H0 ⊗ Γ(H)

then for a class of R≥0-indexed operator families on H̃, Λ𝑖
𝑗
, 𝑖, 𝑗 ∈ [0 : dim V0],

called the fundamental processes (or quantum noises, which corresponds to the
annihilation, creation, and conservation processes on the Fock space), the quantum
stochastic integral

∫ 𝑡

0
∑
𝑖, 𝑗 𝐸

𝑗

𝑖
𝑑Λ𝑖

𝑗
can be defined for processes (𝐸 𝑗

𝑖
)𝑡∈R≥0 that are

regular (i.e. the map 𝑡 → (𝐸 𝑗

𝑖
)𝑡 (𝑢0 ⊗ E𝑢) is continuous with a growth condition on

∥(𝐸 𝑗

𝑖
)𝑡 (𝑢0 ⊗E𝑢)∥) and each (𝐸 𝑗

𝑖
)𝑡 is adapted where a process 𝑋𝑡 : H̃ → H̃ is adapted

if there exists 𝑌𝑡 : H0 ⊗ E(H𝑡) → H0 ⊗ Γ(H𝑡), so that 𝑋𝑡 = 𝑌𝑡 ⊗ 1Γ(H𝑡 ) , that is, 𝑋𝑡
does not look into the future — the same as the classical notion of adaptedness. For
brevity, the details of quantum stochastic integrals are deferred to in the following
chapter 3.

The stochastic calculus can be developed on operator algebras similarly to Hilbert
spaces[62, Ch 5] and the stochastic flow can be defined by extending the classical
picture: for a dense ∗-algebra A0 ⊂ A with A ⊂ B(H0) unital, the quantum
stochastic flow ( 𝑗𝑡)𝑡≥0 is a family of injective ∗-homomorphism, 𝑗𝑡 : A0 → B(H),
such that for all 𝑎 ∈ A, each 𝑗𝑡 (𝑎) is an adapted process and there exists {𝜆𝑖

𝑗
: 𝑖, 𝑗 ∈

[0 : dim V]}, called the structure maps, with

𝑗𝑡 (𝑎) = 𝑎 ⊗ 1 +
∫ 𝑡

0

∑︁
𝑖, 𝑗

𝑗𝑡 (𝜆𝑖𝑗 (𝑎))𝑑Λ
𝑗

𝑖

Equivalently, in differential form, 𝑑𝑗𝑡 (𝑎) =
∑
𝑖, 𝑗 𝑗𝑡 (𝜆𝑖𝑗 (𝑎))𝑑Λ

𝑗

𝑖
with 𝑗0 = 1. Flows

of this form arising as solutions to a quantum stochastic differential equation, with
𝑗𝑡 satisfying an additional dilation property, are called Evans-Hudson flows[58,
§ 27, 28] and generalize Markov processes to operator algebras1. In particular,

1From [57] note, any Markov chain on countable state space can be realized as Evans-Hudson
flow.
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Brownian motion onR can be realized as Evans-Hudson dilation on the Fock space
Γ(𝐿2(R≥0)) by specializing to A = 𝐿∞(R) viewed as operators on H = 𝐿2(R), V
fixed as trivial and using the Fock space-Wiener space dictionary provided by the
Wiener-Ito-Segal isomorphism (more detail in provided in the next chapter).

Definition 2.2.7. Evans-Hudson dilation[62] For a conservative quantum dynamical
semigroup (𝑇𝑡)𝑡≥0 with generator L on C*-algebra A ⊂ B(H), a family of ∗-
homomorphisms, ( 𝑗𝑡)𝑡≥0 : A → A′′⊗B(Γ(𝐿2(R≥0)⊗V)) satisfying the following.

• There exist maps 𝐽𝑡 : A ⊗alg E(𝐿2(R≥0) ⊗ V) → A′′ ⊗ B(Γ(𝐿2(R≥0) ⊗ V)),
𝐽𝑡 (𝑎⊗ 𝑒( 𝑓 ))𝑢 := 𝑗𝑡 (𝑎) (𝑢𝑒( 𝑓 )) such that for an ultra-weakly dense subalgebra
A0 ⊂ A, Dom(L) ⊂ A0, on A0 ⊗ 𝐿2(R≥0) ⊗ V the Evans-Hudson flow
qsde

𝑑𝐽𝑡 = 𝐽𝑡 (𝑎𝛿 (𝑑𝑡) + 𝑎†𝛿 (𝑑𝑡) + Λ𝜎 (𝑑𝑡) + 1L (𝑑𝑡)), 𝐽0 = 1 (2.2)

holds, where 𝑎𝛿, 𝑎†𝛿,Λ𝜎, 1L are the structure maps (see Chapter 3); 𝐽𝑡 as a
quantum stochastic process is regular and adapted.

• 𝑗𝑡 is a dilation of 𝑇𝑡 in the following sense: for all 𝑢, 𝑣 ∈ H, 𝑎 ∈ A,

⟨𝑣E(0), 𝑗𝑡 (𝑎)𝑢E(0)⟩ = ⟨𝑣, 𝑇𝑡 (𝑎)𝑢⟩ (2.3)

where E(0) denotes the Fock space vacuum.

The solution 𝐽𝑡 to Evans-Hudson flow qsde, equivalently 𝑗𝑡 , is defined as the Evans-
Hudson flow. The maps 𝑎𝛿, 𝑎†𝛿,Λ𝜎, 1L and the noise space V are obtained from
the structure theory of the generator L. The computation of structure maps for
Laplace-Beltrami operator generator flow is considered in chapter 4 and follows
the same scheme generally. If the generator is bounded, for example, a spectral
truncation of an unbounded generator, then after obtaining the structure maps, the
existence (and uniqueness) of the Evans-Hudson flow follows from standard theory
(see, for instance, [62, 11]). The unbounded case requires more machinery.

2.3 Almost-commutative spectral triples as spinor bundles
A spectral triple is three basic pieces of data, (A,H, 𝐷), where 𝐷 is symmetric
operator on the Hilbert space H, and a *-algebra of bounded operators on H, A ⊂
B(H). The operator 𝐷 is allowed to be self-adjoint and unbounded but with
[𝐷, 𝑎] bounded for all 𝑎 ∈ A. A compact Riemannian spin manifold (𝑀, 𝑔) can be
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characterized by the canonical spectral triple, 𝔄𝑀 := (C∞(𝑀), 𝐿2(S), 𝐷𝑀 ; 𝐽𝑀 , 𝛾𝑀)
where S is the spinor bundle, C∞(𝑀) is the ∗-algebra of smooth functions interpret
as operators acting on 𝐿2(S) by multiplication, and 𝐷𝑀 is the Dirac operator
associated with the Levi-Civita connection on the spinor bundle; the data of a
spectral triple has been supplemented with a Z2 grading operator 𝛾𝑀 on H and
an anti-unitary operator 𝐽 : H → H, called the real structure, which makes H an
A −A bimodule from a left A-module. Such spectral triples can be characterized
abstractly; Connes reconstruction theorem recovers the Riemannian spin structure
from the abstract spectral triples[41, Thm 11.2].

A finite noncommutative space is the finite spectral triple, 𝔄𝐹 := (A𝐹 , 𝐻𝐹 , 𝐷𝐹),
with dim𝐻𝐹 finite. This is supplemented with a real structure and a grading,
(𝐽𝐹 , 𝛾𝐹). A product almost-commutative spectral triple is the globally trivial bundle,

𝑀 × 𝐹 := (C∞(𝑀) ⊗ 𝐴𝐹 , 𝐿2(𝑀, 𝑆 ⊗ 𝐻𝐹), 𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷𝐹 ; 𝐽𝑀 ⊗ 𝐽𝐹 , 𝛾𝑀 ⊗ 𝛾𝐹)

Ćaćić [16] expands the definition of product almost-commutative spectral triples to
include non-trivial algebra bundles over the base space. This is formalized without
appeal to the explicit product structure as an abstract almost-commutative spectral
triple:

Definition 2.3.1. ([16, Def 2.16]) A spectral triple (A,H, 𝐷), B ⊂ A a central,
unital ∗-subalgebra is an abstract almost-commutative spectral triple over the base
B if (B,H, 𝐷) is a commutative spectral triple of Dirac type[16], and for all 𝑎 ∈
A, [𝐷, 𝑎]2 ∈ A, additionally

1. For all 𝑎 ∈ A, 𝑏 ∈ B, [[𝐷, 𝑏], 𝑎] = 0.

2. A is an even finitely generated projective B-module and a ∗-subalgebra of the
algebra EndB+𝑖B (H∞) where H∞ = ∩𝑘∈NDom𝐷𝑘 .

From [18, lemma 4.2.4], the requirement that the spectral triple is of Dirac type can
be dropped, since it follows from regularity conditions on the spectral triple (see
[17] for the reconstruction theorem in more generality).

The concrete realization of the abstract almost-commutative spectral triple is con-
structed by appeal to Connes’s reconstruction theorem[41, Ch 11], and the following
global analytic equivalent formulation is obtained, and this is the formulation that
we work with.
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Definition 2.3.2. [16, Def 2.3] An almost-commutative spectral triple is a spectral
triple of the form

(C∞(𝑀, 𝐴), 𝐿2(𝑀, 𝐻), 𝐷0)

for a compact oriented Riemannian manifold 𝑀 , 𝐻 a self-adjoint Clifford module
bundle, 𝐴 a real unital ∗-algebra sub-bundle of End+Cl(𝑀) (𝐻), and 𝐷0 is a symmetric
Dirac-type operator on 𝐻, where End+Cl(𝑀) (𝐻) are the even endomorphisms of 𝐻
that supercommute with the Clifford action 𝑐 : 𝑇∗𝑀 → End(𝐻) defined by 𝐷.

Remark 2.3.3. Recall that for a Z2 graded K -algebra, 𝐴 = 𝐴0 ⊕ 𝐴1, with 𝐴𝑖 · 𝐴 𝑗 ⊂
𝐴𝑖+ 𝑗 , the supercommutator [·, ·]𝑠 is the map [𝑎𝑖, 𝑏 𝑗 ]𝑠 = 𝑎𝑖𝑏 𝑗 − (−1)𝑖 𝑗𝑏 𝑗𝑎𝑖 for
𝑎𝑖 ∈ 𝐴𝑖, 𝑏 𝑗 ∈ 𝐵 𝑗 . As the Clifford action, 𝑐 : 𝑇∗𝑀 → End(𝐻) and End+Cl(𝑀) (𝐻)
consisting of even endomorphisms, 𝜙 ∈ End+Cl(𝑀) (𝐻) supercommute, 𝜙◦𝑐−𝑐◦𝜙 = 0.

Structure of Dirac bundles
The Clifford algebra Cl(𝑉,𝑄) is the algebra generated over the vector space𝑉 by the
relation 𝑣2 = 𝑄(𝑣)1 where𝑄 is a quadratic form on𝑉 . It satisfies the following uni-
versal property: any linear map 𝑓 : 𝑉 → A,𝑉 a vector space, A a unital associative
K -algebra, with 𝑓 (𝑣) · 𝑓 (𝑣) = 𝑄(𝑣)1 extends uniquely to a K -algebra homomor-
phism 𝑓 : Cl(𝑉,𝑄) → A. Cl(𝑉,𝑄) comes with a Z2 grading, 𝜒(𝑣1 · · · 𝑣𝑘 ) =

(−1)𝑘𝑣1 · · · 𝑣𝑘 , that yields the decomposition, Cl(𝑉,𝑄) = Cl(𝑉,𝑄)0 ⊕ Cl(𝑉,𝑄)1.
Specializing to R𝑛, fix 𝑄𝑛 =

∑
𝑛 𝑥

2
𝑖
, define Cl+𝑛 = Cl(R𝑛, 𝑄𝑛),Cl−𝑛 = Cl(R𝑛,−𝑄𝑛)

and Cl𝑛 = Cl(C𝑛, 𝑄𝑛) which is Cl+𝑛 ⊗RC,Cl−𝑛 ⊗RC. The grading comes from the
chirality operator 𝛾𝑛+1 on Cl𝑛 is given by (−i)𝑚𝑒1 · · · 𝑒𝑛 where 𝑒𝑖’s generate Cl𝑛 and
𝑛 = 2𝑚 if even and 𝑛 = 2𝑚 + 1 for odd. This can be carried over to a vector bundle
as follows.

Definition 2.3.4. A Clifford structure on a vector bundle 𝐸 → 𝑀 , is a bundle
morphism 𝑐 : 𝑇∗𝑀 → End(𝐸), {𝑐(𝑢), 𝑐(𝑣)} = −2𝑔(𝑢, 𝑣)1. 𝑐(𝑣) ∈ End(𝐸)
denotes the “Clifford multiplication by 𝑣”, and the pair (𝐸, 𝑐) is the Clifford bundle.
The Clifford bundle 𝐸 → 𝑀 is Z2 graded if there’s a decomposition 𝐸 = 𝐸+ ⊕ 𝐸−

such that 𝑐(𝛼) for each 𝛼 ∈ 𝑇∗𝑀 is an odd endomorphism: 𝑐(𝛼) (Γ(𝐸±)) = Γ(𝐸∓).
A vector bundle with a Clifford structure is a Clifford module bundle.

Remark 2.3.5. Note that 𝑐 : Ω1(𝑀) → Γ(End(𝐸)), and by the universal property
of Clifford algebras 𝑐 lifts to the action of the full Clifford algebra, 𝑐 : Cl(𝑀) →
Γ(End(𝐸)) because 𝑐 : 𝑇∗𝑀 → Γ(End(𝐸)) satisfies {𝑐(𝑢), 𝑐(𝑣)} = −2𝑔(𝑢, 𝑣). So
(𝑐, 𝐸) is a representation of Cl(𝑀).
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On any Riemannian manifold (𝑀, 𝑔), there exists a canonical Clifford bundle,
Cl(𝑇∗𝑀,−𝑔) := Cl(𝑀). A Clifford module bundle is any bundle that carries an
action of the Clifford bundle. A Dirac bundle 𝑆 over a (𝑀, 𝑔) is a Clifford module
bundle with a connection ∇𝑆 that is compatible with the Clifford multiplication.

• For all 𝜎𝑖 ∈ 𝑆𝑥 , 𝑒 ∈ 𝑇𝑥𝑀, ∥𝑒∥ = 1, 𝑒 acting on 𝜎𝑖 by Clifford multiplica-
tion, ⟨𝑒 · 𝜎1, 𝑒 · 𝜎2⟩ = ⟨𝜎1, 𝜎2⟩ (as 𝑒2 = −1, this yields the skew-hermiticity,
⟨𝑒 · 𝜎1, 𝜎2⟩ = −⟨𝜎1, 𝑒 · 𝜎2⟩).

• ∇𝑆 (𝜙 · 𝜎) = (∇Cl(𝑀)𝜙) · 𝜎 + 𝜙 · ∇𝑆𝜎.

For clarity it is useful to separate out the algebraic Clifford structure from the
geometric piece.

Definition 2.3.6. A Dirac bundle, (𝐸, 𝑐, ℎ,∇, 𝑀, 𝑔), is a Clifford module bundle
(𝐸, 𝑐) over (𝑀, 𝑔) with a hermitian metric ℎ on 𝐸 and Clifford connection, ∇,
compatible with ℎ such that for all 𝛼 ∈ Ω1(𝑀) the following holds:

• 𝑐(𝛼) ∈ End(𝐸) is skew-Hermitian

• For 𝑋 ∈ Γ(𝑇𝑀), 𝑢 ∈ Γ∞(𝐸),∇𝑀 the Levi-Civita connection on𝑀 ,∇𝑋 (𝑐(𝛼) (𝑢)) =
𝑐(∇𝑀

𝑋
𝛼)𝑢 + 𝑐(𝛼) (∇𝑋𝑢)

The Dirac structure is the tuple (∇, ℎ) associated to (𝐸, 𝑐).

Definition 2.3.7 (Geometric Dirac operator). A geometric Dirac operator is a Dirac
operator, /𝐷, that is associated to a (𝐸, 𝑐, ℎ,∇) Dirac structure over (𝑀, 𝑔) by

/𝐷 := 𝑐 ◦ ∇ : Γ𝐸 ∇−→ Γ(𝑇∗𝑀 ⊗ 𝐸) 𝑐−→ Γ𝐸

In local coordinates, after fixing a basis (𝑒𝑖) of 𝑇∗𝑀 and the corresponding dual
basis (𝑒𝑖), ∇𝑠 ∈ Γ(𝑆⊗𝑇∗𝑀) can be expanded in this basis as

∑
𝑖 𝑒
𝑖⊗∇𝑒𝑖 𝑠. Composed

with the clifford action this gives that the geometric Dirac operator acts by Γ(𝑆) ∋
𝜎 → ∑

𝑖 𝑒
𝑖 · ∇𝑒𝑖𝜎 ∈ Γ(𝑆). More generally, Dirac operator can be defined as a first

order partial differential operator on the sections of any left Cl(𝑀) module bundle
that squares to a laplacian.

Definition 2.3.8. (Generalized laplacians and Dirac-type operators)
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• A generalized laplacian △ is a second order differential operator on a vector
bundle 𝐸 with symbol 𝜎2(𝐿) (𝑥, 𝜉) = |𝜉 |2.

• A first-order differential operator 𝐷 on a Clifford module bundle 𝐸 with
Clifford action 𝑐 over (𝑀, 𝑔) satisfying [𝐷, 𝑓 ] = 𝑐(𝑑𝑓 ) for all 𝑓 ∈ C∞(𝑀) is
a Dirac-type operator.

Every Dirac operator 𝐷 on the vector bundle 𝐸 over 𝑀 , induces a Clifford action of
𝑇∗𝑀 on 𝐸 by 𝑐(𝑑𝑓 ) := [𝐷, 𝑓 ] for 𝑓 ∈ C∞(𝑀), and conversely, associated to any
Clifford action 𝑐, the operator satisfying [𝐷, 𝑓 ] = 𝑐(𝑑𝑓 ) is a Dirac operator (see,
for instance, [12, Prop 3.38]).

Definition 2.3.9. (Spinor module) For any oriented vector space 𝑉 , dim𝑉 = 2𝑘 ,
the spinor module is the unique Z2-graded Clifford module 𝑆 = 𝑆+ ⊕ 𝑆− with
Cl(𝑉) ⊗ C = End(𝑆).

This generalizes to bundles associated to spin structures.

Definition 2.3.10. For any vector bundle, 𝐸 → 𝑀 , with spin structure 𝜉 : Spin(𝐸) →
SO(𝐸), the real and complex spinor bundles 𝑆(𝐸), 𝑆C (𝐸) are defined by

𝑆(𝐸) = 𝑃Spin(𝐸)×𝜇, 𝑀, 𝑆C (𝐸) = 𝑃Spin(𝐸)×𝜇, 𝑀C

where 𝑃Spin(𝐸) is a Spin(𝑛)-principal bundle, 𝑛 = dim 𝐸 , and 𝜇 : Spin(𝐸) →
SO(𝐸) is the representation given by multiplication by Spin(𝑛), 𝑀, 𝑀C real and
complex Clifford modules.

For even-dimensional 𝑉 , every Z2 graded complex Cl(𝑉)-module 𝐸 is isomorphic
to 𝑊 ⊗ 𝑆 where 𝑆 is the spinor module. Given 𝐸 , 𝑊 can be recovered by 𝑊 =

HomCl(𝑉) (𝑆, 𝐸) with trivial Cl(𝑉) action, that is, the Clifford action on 𝐸 is the
Clifford action on the 𝑆 component, 𝑒 · (𝑤 ⊗ 𝑠) := 𝑤 ⊗ (𝑒 · 𝑠), and End(𝑊) �
EndCl(𝑉) (𝐸) (see, [12, prop 3.27]). Since the Clifford action is local, this also holds
for bundles.

Now for any even-dimensional oriented spin manifold 𝑀 , denote by S the unique
irreducible complex spinor bundle, then every Clifford module bundle 𝐻 over 𝑀
is a twisted bundle W ⊗ S. Working in a local trivialization, it follows from the
local version that with W � EndCl(𝑀) (S, 𝐻), End(W) � EndCl(𝑀) (𝐻) (see, for
instance, [12, Prop 3.35]).
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Additionally, on even-dimensional spin manifolds, associated to Clifford structures,
Dirac structures exist. This can be seen by working locally: since any Clifford
module bundle,𝐻, is a twisting of the bundleS,𝐻 = W⊗S, the Clifford connection
can be defined locally as the tensor product connection of the Levi-Civita connection
lifted to S and any connection on W compatible with the Clifford action. Note
that if 𝐷 := /𝐷 is the geometric Dirac operator for the Dirac structure, and Dirac
operators 𝐷0, 𝐷 give the same Clifford action, then 𝐷 − 𝐷0 = 𝐴 for some odd
endomorphism, 𝐴 ∈ Γ(End−(𝐻)). For a twisted spinor bundle 𝐻 = W ⊗ S, Dirac
operators compatible with given Clifford action are in one–one correspondence with
(super)connection on the twisting space (see, for instance, [12, Ch 3]).

The global version follows by a partition of unity argument. Dirac structures exist in
odd-diemensional case is well (see, for instance, [54, Prop 11.1.65, 12, Cor 3.41]).
The point of noting these details is that being able to recover the twisting space W
in even-dimensional case yields a characterization of almost commutative spectral
triples as endomorphism algebra bundles.

With all this at hand, the Clifford module bundle for an almost commutative spectral
triple can be given a Dirac structure. Suppose (C∞(𝑀, 𝐴), 𝐿2(𝑀, 𝐻), 𝐷0), dim𝐻 =

2𝑘 , is an almost-commutative spectral triple with generalized Dirac operator 𝐷0, 𝐻
a Clifford module bundle over compact spin manifold 𝑀 . [16, Thm 2.17] gives a
metric 𝑄 on 𝐻 which corresponds to the Clifford action associated to 𝐷0 on 𝐻. By
above, there exists a Dirac structure on 𝐻 arising from the Clifford action for 𝐷0. 𝐻
being a Clifford module bundle is a twisted spinor bundle W⊗S. Given the metric
induced from 𝑄, the connection on W can be taken to any Riemannian connection
on W. Note that if a Dirac structure on 𝐻 was already known, then the choice to
use the Riemannian connections on the twisting space and the spinor bundle is not
necessary and the given Dirac structure can be used.

2.4 The noncommutative heat semigroup
For the spinor bundle 𝑆 → 𝑀 , we want to consider the complete positivity of
semigroup generated by the heat operator 𝑒−𝑡𝐷2 on an appropriate algebra A ⊂
B(𝐿2(𝑀,End(𝑆))). The algebra A will contain the Hilbert-Schmidt operators on
𝐿2(𝑀, 𝑆), with Hilbert-Schmidt inner product ( 𝑓 , 𝑔)𝐻𝑆,

( 𝑓 , 𝑔)𝐻𝑆 := Tr𝐻𝑆 ( 𝑓 𝑔∗) =
∑︁
𝑖

⟨𝑒𝑖, 𝑓 𝑔∗𝑒𝑖⟩𝐿2 (𝑀,𝐸) =
∑︁∫

(𝑒𝑖, 𝑓 (𝑥)𝑔(𝑥)∗𝑒𝑖)𝐸,𝑥 d𝑣𝑜𝑙 (𝑀)

(2.4)
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where (𝑒𝑖) is an orthonormal system for 𝐿2(𝑀, 𝑆). Such systems are provided by
self-adjoint elliptic operators on any vector bundle 𝐸 . If 𝑃 : Γ(𝐸) → Γ(𝐸) is
self-adjoint elliptic operator, then eigenspaces of 𝑃, 𝐸𝜆 := ker(𝑃 − 𝜆1), are finite
dimensional, consist of smooth sections, and give a complete orthonormal system
for 𝐿2(𝐸), 𝐿2(𝐸) = ⊕𝜆𝐸𝜆. Additionally, for an elliptic operator 𝑃 : Γ(𝐸) → Γ(𝐸)
of order 𝑚 on vector bundle 𝐸 over compact 𝑋 , on any open set𝑈 ⊂ 𝑋, 𝑢 ∈ 𝐿2

𝑠 (𝐸)
where 𝐿2

𝑠 (𝐸), 𝑠 ∈ R is the Sobolev space, 𝑃𝑢
��
𝑈
∈ C∞ implies 𝑢

��
𝑈
∈ C∞. Now the

connection laplacian ∇∗∇ is an elliptic operator. By [6, Thm 3.7], the closure of the
connection laplacian of 𝐸 , △𝐸 is self-adjoint. Since △𝐸 restricts to △𝐸 over Γ∞(𝐸),
and the eigenspaces consist of smooth sections, we have a basis for 𝐿2(𝐸) in terms
of smooth eigensections of △𝐸 (see [49, Thm III.5.2, III.5.8, Def III.2.3]).

Tr𝐻𝑆, being lower semicontinuous and faithful is permissible in the sense of Al-
beverio and Høegh-Krohn [2]; this means we can use noncommutative Dirichlet
form theory to consider the question of generating completely positive and quantum
dynamical semigroups; we introduce this next.

Noncommutative Dirichlet forms
Recall from [2], for a C*-algebra A with a lower semicontinuous faithful trace 𝜏,
𝐿2(A, 𝜏) is the completion on the pre-Hilbert space {𝑥 : 𝜏(𝑥∗𝑥) < ∞} with inner
product ⟨𝑥, 𝑦⟩𝜏 := 𝜏(𝑦∗𝑥). Set 𝐿2

ℎ
(A, 𝜏) := {𝑥 ∈ 𝐿2(A, 𝜏) : 𝑥 = 𝑥∗}.

Definition 2.4.1 (Symmetric Markov semigroups). A strongly continuous con-
traction semigroup, (Φ𝑡), on 𝐿2(𝐴, 𝜏) is symmetric if for all 𝑥, 𝑦, ⟨Φ𝑡 (𝑥), 𝑦⟩ =

⟨𝑥,Φ𝑡 (𝑦)⟩. Further, if 0 ≤ Φ𝑡 (𝑥) ≤ 1 whenever 0 ≤ 𝑥 ≤ 1 then the semigroup is a
Markov semigroup. The semigroup is completely Markov if for all 𝑛 ∈ N, Φ𝑡 ⊗ 1𝑛
is Markov semigroup on 𝐿2(A ⊗ Mat𝑛, 𝜏 ⊗ Tr𝑛), Tr𝑛 being the unique normalized
trace on Mat𝑛.

Definition 2.4.2. Suppose E(𝑥, 𝑥) is a closed, quadratic form on 𝐿2
ℎ
(A, 𝜏), with

dense domain Dom(E) with 𝑓 (Dom(E)) = Dom(E) for 𝑓 ∈ Lip(R, 0), the Banach
space of Lipshitz continuous functions that fix zero, ∥ 𝑓 ∥lip := inf{𝑚 : | 𝑓 (𝑥) −
𝑓 (𝑦) | ≤ 𝑚 |𝑥 − 𝑦 | for all 𝑥, 𝑦 ∈ R}. Then E is a Dirichlet form if E( 𝑓 (𝑥), 𝑓 (𝑥)) ≤
∥ 𝑓 ∥2

lip E(𝑥, 𝑥). The form E is completely Dirichlet if E ⊗ 1𝑛 is Dirichlet for each
𝑛 ∈ N.

For a symmetric Markov semigroup (Φ𝑡)𝑡≥0 on 𝐿2(𝐴, 𝜏), with a positive self-adjoint
generator L on 𝐿2(𝐴, 𝜏), Φ𝑡 = 𝑒−𝑡L , the associated quadratic form[2, thm 2.7] is
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given by
EL (𝑥) := EL (𝑥, 𝑥) = ⟨L1/2𝑥,L1/2𝑥⟩ = ∥L1/2𝑥∥2

𝐿2 (A,𝜏)

Observation 2.4.3. It’s very useful to note that if L = 𝐻2, with 𝐻 closed, then
EL (𝑥, 𝑥) = ⟨𝐻𝑥, 𝐻𝑥⟩ is closed. Additionally if 𝐻 is closed then so is 𝐻 ⊗ 1K for
any Hilbert space K.

Theorem 2.4.4. ([2, Thm 2.7, 3.2]) Dirichlet forms are in one–one correspondence
with symmetric Markov semigroups: the positive quadratic form EL associated
to the positive generator L for a symmetric Markov semigroup Φ𝑡 is a Dirichlet
form. And conversely, if EL (𝑥, 𝑥) is a Dirichlet form on 𝐿2

ℎ
(𝐴, 𝜏) ⊂ 𝐿2(𝐴, 𝜏) then

L generates a Markov semigroup on 𝐿2(𝐴, 𝜏), 𝑒−𝑡L . This extends to complete
Markovity: EL is completely Dirichlet if and only if L generates a completely
Markov semigroup.

Given C*-algebra A ⊂ B(𝐻), with a faithful, lower-semicontinuous trace, 𝜏, with
𝐿2
ℎ
(A, 𝜏) ⊂ 𝐿2(A, 𝜏) denoting the hermitian elements, a Dirichlet form 𝐸 (𝑥, 𝑥) is a

positive closed quadratic form on 𝐿2
ℎ
(A, 𝜏) such that any lipschitz 𝑓 : R→ R with

𝑓 (0) = 0 satisfying 𝑓 (Dom(𝐸)) ⊂ Dom(𝐸), 𝐸 ( 𝑓 (𝑥), 𝑓 (𝑥)) ≤ ∥ 𝑓 ∥2
𝐿𝑖𝑝 𝐸 (𝑥, 𝑥).

A semigroup 𝑇𝑡 on 𝐿2(A, 𝜏) is 𝜏-symmetric if 𝜏(𝑇𝑡 (𝑥)∗𝑦) = ⟨𝑥, 𝑇𝑡 (𝑦)⟩𝐿2 (A,𝜏) .
Let L be generator of such 𝑇𝑡 with 𝐻 = L1/2, then the positive quadratic form
𝐸 (𝑥, 𝑥) := ∥𝐻𝑥∥2

2 = ∥𝐻𝑥∥2
𝐿2 (A,𝜏) is a Dirichlet form, while if 𝐸 (𝑥, 𝑥) := ∥𝐻𝑥∥2

2

is a Dirichlet form then 𝑒−𝑡𝐻
2 is a symmetric Markov semigroup on 𝐿2(A, 𝜏)

[2, Thm 2.7, 2.8]. A completely Dirichlet form is Dirichlet form 𝐸 such that∑
𝑖 𝑗∈[𝑛] 𝐸 (𝑥𝑖 𝑗 , 𝑥𝑖 𝑗 ) is a Dirichlet form on 𝐿2(A ⊗ Mat𝑛, 𝜏 ⊗ Tr) for every 𝑛 ∈ N.

By [2, Thm 3.2, 62, Prop 3.2.29], 𝜏-symmetric semigroup is completely Markov iff
the associated Dirichlet form 𝐸 is completely Dirichlet.

For a C*-algebra A, a C*-Dirichlet form is a completely Dirichlet form E such that
Dom(E) ∩ A is norm-dense in A and form-core for (E,Dom(E)). Note that the
C*-algebra A is not required to be unital. In the setting considered, A can be taken
to K(𝐻), compact operators on the given Hilbert space 𝐻; this makes checking
density hypothesis on Dom(E) ∩ A straightforward.

Now any contractive completely-positive map Ψ on A which is 𝜏-symmetric for
every 𝑎, 𝑏 ≥ 0 in A (that is, 𝜏(Ψ(𝑎)𝑏) = 𝜏(𝑎Ψ(𝑏))) extends to an 𝐿2-contraction
from 𝐿2(A, 𝜏) ∩A to 𝐿2(A, 𝜏) ∩A (see [62, § 3.2.3]). This supplies the following
correspondence between quantum dynamical semigroups and C*-Dirichlet forms
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([62, propostion 3.2.29]): if 𝑇𝑡 = 𝑒𝑡L is a quantum dynamical semigroup symmetric
with respect to 𝜏, then𝑇𝑡 viewed as a semigroup of positive contractions on 𝐿2(A, 𝜏),
with the generator given by the negative operator, L2, then E(𝑥) =



(−L2)1/2(𝑥)


2

2
with Dom(E) = Dom((−L2)1/2) is a C*-Dirichlet form, and conversely, every
C*-Dirichlet form arises from a symmetric quantum dynamical semigroup.

Therefore, any 𝜏-symmetric quantum dynamical semigroup on A = K(𝐻) is asso-
ciated to a C*-Dirichlet form and its associated contractive semigroup on 𝐿2(A).
It’s useful to think of K(𝐻) ⊂ B(𝐻), where B(𝐻) is a unital von Neumann algebra,
as continuously embedded inside algebra B(𝐿2(A, 𝜏)).

Example 2.4.5. [2, Corollary 4.4] gives a class of completely Dirichlet forms: for
any self adjoint operator 𝐻2 = 𝑀 ≥ 0, 𝑚𝑖 ∈ B(𝐻),Tr(𝑚∗

𝑖
𝑚𝑖) < ∞, 𝐸 (𝑥, 𝑥) :=

Tr(𝑥2𝑀) + ∑
𝑖 Tr( [𝑥, 𝑚𝑖]∗ [𝑥, 𝑚𝑖]) is a completely Dirichlet form iff 𝐸 (𝑥, 𝑥) is

closeable on 𝐿2(A, 𝜏). On specializing to 𝜏 = Tr on B(𝐻), 𝐿2(A,Tr) = H2(𝐻) ⊂
B(𝐻), the space of Hilbert-Schmidt operators on𝐻, and the Dirichlet form becomes

𝐸 (𝑥, 𝑥) = ∥𝐻𝑥∥2
H2 +

∑︁
𝑖

∥ [𝑥, 𝑚𝑖] ∥2
H2

Dirichlet forms are in correspondence with bimodule derivations. To make this
precise, the following abstract characterization of Dirichlet forms is needed. Note
that 𝐿2(A, 𝜏) is simply the Gelfand-Naimark-Segal (GNS) Hilbert space for 𝜏;
however, the reference to GNS is not necessary since A is already given as B(𝐻).
This is pointed out since one needs to associate to A a von Neuman algebra which
can be viewed as 𝐿∞(A, 𝜏).

For a C*-algebra A ⊂ B(𝐻), with M := A′′ ⊂ B(𝐻) the von Neumann al-
gebra with unit 1, the standard form for a von Neumann algebra M is the triple
(M, 𝐿2(A, 𝜏), 𝐿2(A, 𝜏)+), 𝐿2(A, 𝜏)+ being the positive cone induced by the in-
volution 𝐽 on M corresponding to 𝑎 → 𝑎∗. The real subspace, 𝐿2

ℎ
(A, 𝜏), is the

subspace of 𝜏-invariant elements. Let 𝑎# denote the projection of 𝑎 ∈ 𝐿2
ℎ
(A, 𝜏)

onto the 𝐿2 closure of the convex set 𝐶 = {𝑎 ∈ 𝐿2
+(A, 𝜏) : 𝑎 ≤ 1}.

Definition 2.4.6. A Dirichlet form (E,Dom(E)) on 𝐿2(A, 𝜏) is a closed, densely
defined, non-negative quadratic form satisfying

1. 𝑎 ∈ Dom(E) implies 𝐽 (𝑎) ∈ Dom(E) with E(𝐽 (𝑎)) = E(𝑎)

2. For 𝑎 ∈ Dom(E) ∩ 𝐿ℎ (A, 𝜏) := Domℎ (E), 𝑎# ∈ Dom(E), E(𝑎#) ≤ E(𝑎)
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With this, there’s the following correspondence due to [23].

Theorem 2.4.7. ([23, Theorem 8.3]) Let H be a Hilbert space carrying a A − A-
bimodule structure, 𝐽 an antilinear (conjugate-linear) involution exchanging right
and left A-actions (that is, 𝐽 (𝑎ℎ𝑏) = 𝑏∗𝐽 (ℎ)𝑎∗) , B an involutive subalgebra of
A ∩ 𝐿2(A, 𝜏) dense in both. Then if 𝜕 : B → H is a closable derivation, satisfying
𝐽𝜕𝑎 = 𝜕𝑎∗, then the closure of the quadratic form B ∋ 𝑎 → ∥𝜕𝑎∥2

H is a Dirichlet
form.

The positive generator L of the semigroup 𝑒−𝑡L associated with the Dirichlet form
is given by L = 𝜕∗𝜕 where 𝜕 is the closure of 𝜕. The correspondence is one to one:
from every Dirichlet form a bimodule and a derivation can be constructed which is
unique up to a bimodule map isometry [23, Theorem 8.2].

The noncommutative laplacian
For any Hilbert space 𝐻, let H2(𝐻) := 𝐿2(B(𝐻),Tr) be the space of Hilbert-
Schmidt operators. Note that H2(𝐻) := 𝐿2(B(𝐻),Tr) = 𝐿2(K(𝐻),Tr) where
K(𝐻) are the compact operators since Hilbert-Schmidt operators are compact with
norm-closure K(𝐻) (this is assuming A = B(𝐻), otherwise one restricts to A).
Recall some background theory:

• K(𝐻) is the largest norm-closed ideal ofB(𝐻), in particular, it’s a C*-algebra,
strongly-dense in B(𝐻), although not unital unless dim𝐻 is finite.

• The space of Hilbert-Schmidt operators in B(𝐻), H2(𝐻) := 𝐿2(B(𝐻),Tr) is
isometrically isomorphic to the Hilbert space𝐻∗⊗𝐻with ⟨𝑎1 ⊗ 𝑏1, 𝑎2 ⊗ 𝑏2⟩ =
⟨𝑎1, 𝑎2⟩⟨𝑏1, 𝑏2⟩

• For any C*-algebra A ⊂ B(𝐻), 𝐿2(A,Tr) ⊂ A is a two-sided ideal.

Let 𝐴 ∈ B(𝐻) be a self-adjoint operator, hence closed operator, with spectral
decomposition 𝐴 =

∑
𝑖 𝜆𝑖 .𝑒𝑖, 𝜆𝑖 ≤ 𝜆𝑖+1. Denote by 𝑒𝑖 𝑗 := 𝑒𝑖 ⊗ 𝑒 𝑗 , where 𝑒𝑖 = 𝑒∗

𝑖
and

can be taken as 𝑒∗
𝑖
= ⟨𝑒𝑖, ·⟩; 𝑒𝑖 𝑗 ’s form a basis for H2(𝐻) = 𝐻∗ ⊗ 𝐻.

Proposition 2.4.8. The operator 𝐴D := 𝐴 ⊗ 1− 1 ⊗ 𝐴 acting on 𝐻∗ ⊗ 𝐻 := H2(𝐻)
where 𝐴 acts on 𝐻∗ by 𝜓𝐴𝜓−1, 𝜓 : 𝐻∗ → 𝐻 the isomorphism identifying 𝑒∗

𝑖
and 𝑒𝑖.

Then

1. 𝐴D is a derivation and 𝐴D (1) = 0
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2. 𝐴D is the operator 𝑎 → [𝐴, 𝑎]

Proof. Note that 𝜆𝑖 are real. For the first, by linearity it suffices to check that it’s
a derivation on the basis 𝑒𝑖 𝑗 := 𝑒𝑖 ⊗ 𝑒 𝑗 ’s. One can assume for 𝑒𝑖 𝑗 ′ ◦ 𝑒 𝑗 𝑘 , 𝑗 = 𝑗 ′ as
otherwise AD (𝑒𝑖 𝑗 ′ ◦ 𝑒 𝑗 𝑘 ) = 0,

𝐴D (𝑒𝑖 𝑗 ◦ 𝑒 𝑗 𝑘 ) = 𝜆𝑖𝑒𝑖𝑘 − 𝜆𝑘𝑒𝑖𝑘
𝐴D (𝑒𝑖 𝑗 ) ◦ 𝑒 𝑗 𝑘 + 𝑒𝑖 𝑗 ◦ 𝐴D (𝑒 𝑗 𝑘 ) = 𝜆𝑖𝑒𝑖𝑘 − 𝜆 𝑗𝑒𝑖𝑘 + 𝜆 𝑗𝑒𝑖𝑘 − 𝜆𝑘𝑒𝑖𝑘 = 𝐴D (𝑒𝑖 𝑗 ′ ◦ 𝑒 𝑗 𝑘 )

It’s straightforward that 𝐴D (1) = 𝐴D (∑𝑖 𝑒𝑖 ⊗ 𝑒∗𝑖 ) = 0.

For second, again by linearity, it’s enough to show [𝐴, 𝑒𝑖 𝑗 ] (𝑒 𝑗 ′𝑘 ) = 𝐴D𝑒𝑖 𝑗 (𝑒 𝑗 ′𝑘 ). If
𝑗 ≠ 𝑗 ′ then

[𝐴, 𝑒𝑖 𝑗 ] (𝑒 𝑗 ′𝑘 ) = 𝐴𝑒𝑖 𝑗 (𝑒 𝑗 ′𝑘 ) − 𝑒𝑖 𝑗 𝐴𝑒 𝑗 ′𝑘 = 0 = 𝐴D𝑒𝑖 𝑗 (𝑒 𝑗 ′𝑘 )

and with 𝑗 = 𝑗 ′,

[𝐴, 𝑒𝑖 𝑗 ] (𝑒 𝑗 𝑘 ) = 𝐴𝑒𝑖 𝑗 (𝑒 𝑗 𝑘 ) − 𝑒𝑖 𝑗 𝐴𝑒 𝑗 𝑘 = 𝜆𝑖𝑒𝑖𝑘 − 𝜆 𝑗𝑒𝑖𝑘
𝐴D𝑒𝑖 𝑗 (𝑒 𝑗 𝑘 ) = (𝜆𝑖𝑒𝑖 𝑗 − 𝜆 𝑗𝑒𝑖 𝑗 )𝑒 𝑗 𝑘 = [𝐴, 𝑒𝑖 𝑗 ] (𝑒 𝑗 𝑘 )

Theorem 2.4.9. For each 𝑛, the operator −𝐴2
D,𝑛 := −𝐴2

D |𝐻𝑛
, 𝐻𝑛 = Span{𝑒𝑖 ⊗ 𝑒 𝑗 :

𝑖, 𝑗 ∈ [0 : 𝑛]} defines a completely Dirichlet form, 𝐸𝑛 (𝑥, 𝑥) :=


i𝐴D,𝑛𝑥




H2 . The

positive generator for the associated semigroup is 𝐴2
D .

Proof. Consider i𝐴D . From proposition 2.4.8, i𝐴D is a derivation on the Hilbert
space H2(𝐻). Further, the quadratic form 𝐸𝑛 (𝑥, 𝑥) = ∥i𝐴D ∥ is closed because 𝐴D

is closed as 𝐴 is self-adjoint, 𝜓 an isometry, making 𝐴 ⊗ 1, 1 ⊗ 𝐴 closed. Take
B = H2(𝐻) for theorem 2.4.7. H2(𝐻) is dense in both 𝐿2(K(𝐻),Tr),K(𝐻),
while ∗ on H2(𝐻) given by (𝛼𝑒𝑖 𝑗 )∗ = 𝛼̄𝑒 𝑗𝑖 for 𝛼 ∈ C exchanges the right and left
action of H2(𝐻) on itself. The compatibility of i𝐴D with ∗ holds since on the basis
elements

(i𝐴D𝛼𝑒𝑖 𝑗 )∗ = −i𝛼̄(𝐴D𝑒𝑖 𝑗 ) = −i𝛼̄((𝜆𝑖 − 𝜆 𝑗 )𝑒𝑖 𝑗 )∗ = i𝛼̄(𝜆 𝑗 − 𝜆𝑖)𝑒 𝑗𝑖
i𝐴D (𝛼𝑒𝑖 𝑗 )∗ = −i𝛼̄𝐴D𝑒 𝑗𝑖 = i𝛼̄(𝜆 𝑗 − 𝜆𝑖)𝑒 𝑗𝑖

therefore, theorem 2.4.7 applies and 𝐸𝑛 (𝑥, 𝑥) is a Dirichlet form. On replacing
𝐻 by 𝐻 ⊗ Mat𝑚, Tr by Tr ⊗ Tr𝑚 for the normalized trace on Tr𝑚 on Mat𝑚, the
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closability of map 𝐴𝑛,D is unaffected by tensoring the identity, therefore, 𝐸𝑛 is
completely Dirichlet. The operator −𝐴2

D is negative; 𝐴2
D is the positive generator

for the semigroup.

Recalling that for the spectral triple (A,H, 𝐷), the Connes’ differential 1-forms are
defined by

Ω1
𝐷 (A) := {

∑︁
𝑎𝑘 [𝐷, 𝑏𝑘 ] : 𝑎𝑘 , 𝑏𝑘 ∈ A} (2.5)

formally, [𝐷, [𝐷, ·]] is defined as the noncommutative laplacian, the intuition
being that with respect to the Hilbert-Schmidt inner product, ⟨𝑎, [i𝐷, 𝑏]⟩𝐻𝑆 =

−⟨[i𝐷, 𝑎], 𝑏⟩𝐻𝑆 following that the adjoint of covariant derivative (∇𝑖)∗ on a com-
pact manifold without boundary is −∇𝑖, and is the generator 𝜕∗𝜕 for the semigroup
associated to the Dirichlet form.

Remark 2.4.10. The noncommutative laplacian [𝐷, [𝐷, ·]] is agnostic of the geo-
metric content of the Dirac operator 𝐷, and only relies on the associated derivation;
the heat semigroups generated by endomorphim lapacians considered later better
capture the geometric aspect.

Proposition 2.4.8 yields that the heat semigroup canonically associated to the spec-
tral triple generated by the noncommutative laplacian is a quantum dynamical semi-
group. Additionally, the domain for the noncommutative laplacian contains an
operator system. Recall that a (not necessarily closed) subspace 𝑆 ⊂ B(H) for
any Hilbert space H is an operator system, if it is self-adjoint and unital (see [60,
definition 1.36]). The point is that completely positive maps on operator systems
extend to the containing unital C*-algebra by the Arveson’s extension theorem (see
[60, theorem 1.39]): if 𝑆, 𝑆 ⊂ M ⊂ B(K) for any Hilbert space K is an op-
erator system in the unital C*-subalgebra M, then any completely positive map
𝑢 : 𝑆 → B(K′) for any Hilbert space K′ extends to a completely positive map
𝑢 : M → B(K′) with ∥𝑢∥𝑐𝑏 = ∥𝑢(1)∥ where ∥·∥𝑐𝑏 is the completely-bounded
norm, ∥𝑢∥𝑐𝑏 = sup𝑛



𝑢 ⊗ 1Mat𝑛


.

Corollary 2.4.11. For the spectral triple (A,H, 𝐷), the noncommutative laplacian,
−𝐷2

D , 𝑎 → −[𝐷, [𝐷, 𝑎]] generates a conservative quantum dynamical semigroup
on B(H).

Proof. This is immediate from theorem 2.4.9 using 𝐴 = 𝐷 and then [𝐷, [𝐷, ·]] =
(𝐷D)2 := L, except that 𝐷D is no longer a bounded operator, and unlike the
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truncations 𝐷D,𝑛, the Dom(L) is not all of H2. However, since for every 𝑛 ∈ N,∑
𝑖, 𝑗∈[𝑛] 𝛼𝑖 𝑗𝑒𝑖 𝑗 ∈ Dom(L), Dom(L) is norm-dense in K(H), and strongly dense in

B(H). Now 𝐷D (1) = 0, the semigroup 𝑒−𝑡L is defined on the operator system 𝑆

generated by {1, 𝑒𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑛], 𝑛 ∈ Z≥0} and since the B(H) is the smallest C*-
algebra containing 𝑆, 𝑒−𝑡𝐷2

D extends to B(H) by Arveson’s extension theorem.

This will be used toward realizing spectral action from the Evans-Hudson flow, but
since the noncommutative laplacian is not geometric in the sense that while it lives
on H∗ ⊗ H = End(H), it’s not associated to a connection on the End(H). It’s useful
to consider semigroups generated by elliptic operators associated to connections on
End(H) — for the canonical spinor bundle S over 𝑀 , End(S) = Cl(𝑀), so this
is an important example; the natural operators also generate quantum dynamical
semigroups.

Example 2.4.12. (Matrix geometries and fuzzy spectral triples) A fuzzy spectral
triple, (𝐴, 𝐻, 𝐷, 𝐽, 𝛾), is the Clifford algebra, Cl𝑝,𝑞 associated toR𝑝+𝑞 with pseudo-
euclidean metric of signature (𝑝, 𝑞), along with matrix algebra Mat𝑁 (C), with 𝐴 =

Mat𝑁 (C),𝐻 = 𝑉𝑝,𝑞⊗Mat𝑁 (C) with𝑉𝑝,𝑞 a Cl𝑝,𝑞-module, ⟨𝑎, 𝑏⟩Mat𝑁 (C) = Tr(𝑎∗𝑏),
with appropriately defined grading 𝛾 and real structure 𝐽. Observe that since 𝐴 =

Mat𝑁 (C) and the action of 𝐴 is defined to be𝑉𝑝,𝑞⊗Mat𝑁 (C) ∋ (𝜙⊗𝐵) → 𝜙⊗ 𝐴𝐵,
𝐴 acts precisely like the algebra of the almost-commutative spectral triple. The Dirac
operator 𝐷 for the fuzzy spectral triple is axiomized to be self-adjoint satisfying
𝐷𝛾 = (−1)𝑞−𝑝𝛾𝐷, 𝐷𝐽 = 𝜖 ′𝐽𝐷, [[𝐷, 𝑎], 𝐽𝑏𝐽−1] = 0 for all 𝑎, 𝑏 ∈ 𝐴, 𝜖′ depending
on 𝑞 − 𝑝. Since the Cl𝑝,𝑞 ⊗Mat𝑁 (C) is finite dimensional, the Dirac operator can
be parametrized by matrices[8], and the space of all Dirac operators parameterizes
the geometries supported over the fuzzy spectral triple. The path integral over the
space of Dirac operators is the object of interest. When 𝑞 = 0, that is, signature is
euclidean, since the operators are self-adjoint and finite-dimensional the associated
flows exist, one can equivalently consider the possible spectral actions. When 𝑞 ≠ 0,
the underlying spaces are not Hilbert spaces, and the notion of a quantum dynamical
semigroups needs to be reformulated.

2.5 Quantum dynamical semigroups on spinor endomorphisms
The quadratic forms associated with the geometric laplacians and their perturba-
tions can be considered using the class of Dirichlet forms introduced earlier in
example 2.4.5.
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Note that the connection ∇∗∇ and Dirac laplacian 𝐷2 are symmetric with respect
to the innerproduct structure on spinor bundles and the symmetry of the semigroup
follows, making noncommutative Dirichlet theory applicable. As a warm-up, the
following result is in the spirit of example 2.4.5, and is obtained directly from the
Dirichlet form definition (as compared to [2] which used normal contractions on
C*-algebras). On any vector bundle 𝐸 , denote by H2(𝐿2(𝐸)) the Hilbert-Schmidt
operators acting on 𝐿2(𝐸) with Tr𝐻𝑆 inner product.

Proposition 2.5.1. If the quadratic form, E△, associated with the connection lapla-
cian △𝐸 on a vector bundle 𝐸 → 𝑋 with metric compatible connection, on
H2(𝐿2(𝐸)), △𝐸 is closed, then the form is Dirichlet and completely Dirichlet.
The result also holds if △𝐸 is replaced by the geometric Dirac laplacian, /𝐷2, for
any Dirac bundle 𝐸 , and positive operator 𝑇 = 𝑍∗𝑍 in general.

Proof. By definition 2.4.2, with E△ (𝑥, 𝑥) = Tr𝐻𝑆 (△𝑥2) = Tr𝐻𝑆 (𝑥 △ 𝑥) where 𝑥 =

𝑥∗ ∈ H2
ℎ
(𝐿2(𝐸)),Tr(𝑥2) < ∞. It needs to be checked that for 𝑓 ∈ Lip(R, 0),

𝑓 (Dom(E)) = Dom(E) and E△ ( 𝑓 (𝑥), 𝑓 (𝑥)) ≤ ∥ 𝑓 ∥2
lip E△ (𝑥, 𝑥).

The condition E△ ( 𝑓 (𝑥), 𝑓 (𝑥)) ≤ ∥ 𝑓 ∥2
lip E△ (𝑥, 𝑥) follows by noting that 𝑥 and 𝑥2 are

compact and self-adjoint and, therefore, 𝑥2 =
∑
𝑖 𝛼

2
𝑖
𝑃𝑖 where 𝑥 =

∑
𝑖 𝛼𝑖𝑃𝑖, 𝛼𝑖 ∈ R

is the representation from the spectral theorem for compact self-adjoint operators.
Note that since 𝑓 (𝛼𝑖) ∈ R,∇ 𝑓 (𝑥) = ∇∑

𝑖 𝑓 (𝛼𝑖)𝑃𝑖 =
∑
𝑖 𝑓 (𝛼𝑖)∇𝑃𝑖,

∥∇ 𝑓 (𝑥)𝑒𝑘 ∥ ≤ ∥
∑︁
𝑖

∥ 𝑓 ∥lip𝛼𝑖∇𝑃𝑖𝑒𝑘 ∥ = ∥ 𝑓 ∥lip ∥∇𝑥𝑒𝑘 ∥ (2.6)

where it was used that for 𝑟 ∈ R, 𝑓 (𝑟)/𝑟 ≤ ∥ 𝑓 ∥lip meaning 𝑓 (𝑟) ≤ ∥ 𝑓 ∥lip𝑟.
This means E△ ( 𝑓 (𝑥), 𝑓 (𝑥)) = Tr𝐻𝑆 ( 𝑓 (𝑥) △ 𝑓 (𝑥)) =

∑
𝑖 ⟨𝑒𝑖 𝑓 (𝑥),∇∗∇ 𝑓 (𝑥)𝑒𝑖⟩ =∑

𝑖 ∥∇ 𝑓 (𝑥)𝑒𝑖∥2, and as needed

E△ ( 𝑓 (𝑥), 𝑓 (𝑥)) ≤ ∥ 𝑓 ∥2
lip E△ (𝑥, 𝑥)

Since 𝑦 ∈ H2(𝐿2(𝐸)) can be written as (𝑦+𝑦∗)/2+(𝑦−𝑦∗)/2, so to show invariance
of the domain, it suffices to show 𝑓 (𝑦) ∈ Dom(E△) for self-adjoint 𝑦 ∈ Dom(△).
As 𝑦 ∈ Dom(△) means Tr𝐻𝑆 (𝑦 △ 𝑦) = ∥∇𝑦∥𝐻𝑆 < ∞, 𝑓 (𝑦) ∈ Dom(E△) follows by
the estimate in equation 2.6. Therefore, if E△ is closed, it’s Dirichlet.

Set △𝑛 = △ ⊗ 1𝑛 for 1𝑛 the identity map on Mat𝑛. Since △𝑛 = (△∗ ⊗ 1𝑛) (△ ⊗ 1𝑛),
and any self-adjoint 𝑦 ∈ Mat𝑛 is diagonalizable, the same analysis applies. As 1𝑛
is closed, E△𝑛

is closed if and only if E△ is closed. This establishes the claim. The
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same argument applies to the Dirac laplacian /𝐷2 for the spinor bundle 𝐸 acting on
𝐿2(𝑀, 𝐸) and for any 𝑇 of the specified form.

The Bochner identity for case when 𝐸 is Dirac bundle will be useful. In particular,
it will allow relating the closedness of the Dirichlet forms for the connection and
Dirac laplacians. To set it up, let 𝑅𝐸𝑣1,𝑣2 denote the curvature transformation of the
vector bundle 𝐸 with connection∇, 𝑅𝐸𝑣1,𝑣2 : Γ(𝐸) → Γ(𝐸), 𝑒 → (∇𝑣1∇𝑣2 −∇𝑣2∇𝑣1 −
∇[𝑣1,𝑣2])𝑒 ∈ Γ(𝐸).

Definition 2.5.2. [The general Bochner identity] For the connection laplacian △ =

∇∗∇ and the Dirac operator 𝐷 for any any Dirac bundle 𝑆 over 𝑀 , 𝑛 = dim𝑀 ,
with 𝑅𝑆𝑢,𝑣 the curvature transformation of 𝑆, (𝑒𝑖) the orthonormal tangent frame, the
general Bochner identity states

𝐷2 = △ +ℜ (2.7)

where ℜ(𝜙) := 1
2
∑
𝑗 ,𝑘∈[𝑛] 𝑒 𝑗 · 𝑒𝑘 · 𝑅𝑆𝑒𝑖𝑒 𝑗 (𝜙) is the curvature operator of the bundle.

Now it remains to show that the form E𝐷2 is closed on Hilbert-Schmidt operators on
𝐿2(𝐸). Note that /𝐷 is identified with the Dirac operator extended to the 𝐿2 sections,
i.e., acting distributionally, which is self-adjoint, and therefore closed. E𝐷2 is also
identified with the extended version. Then by the Bochner identity and the fact that
the curvature operator on a compact manifold is self-adjoint and bounded, and so
closed, it follows that the connection laplacian is also closed.

Theorem 2.5.3. Suppose (𝑆, ℎ) is a Dirac bundle over the compact Riemannian
manifold (𝑀, 𝑔) with 𝐷 denoting the self-adjoint extension of the Dirac operator to
𝐿2(𝑆). Let H be the Hilbert space of Hilbert-Schmidt operators, H2(𝐿2(𝑆)) with
inner product ⟨𝑥, 𝑦⟩𝐻𝑆 = Tr(𝑥∗𝑦). Then the quadratic form E𝐷2 (𝑥, 𝑦) = 𝑞(𝑥, 𝑦) :=
Tr(𝑥∗𝑦𝐷2) on H ×H is closed, and therefore, E𝐷2 Dirichlet, furthermore, is also
completely Dirichlet.

The proof is immediate by the following observation.

Observation 2.5.4. Since Hilbert-Schmidt operators are isometrically isomorphic to
𝑆∗ ⊗ 𝑆, if 𝑇 ∈ Lin(𝐿2(𝑆), 𝐿2(𝑆)) viewed as acting on H2(𝐿2(𝑆)) by composition,
then on a basis element 𝑒𝑖 𝑗 := 𝑒∗

𝑖
⊗ 𝑒 𝑗 for H2(𝐿2(𝑆)), 𝑇 (𝑒𝑖 𝑗 ) is the same as

𝑒∗
𝑖
⊗ 𝑇 (𝑒 𝑗 ) = [𝑇 ⊗ 1] (𝑒∗

𝑖
⊗ 𝑒 𝑗 ), and therefore, if 𝑇 = 𝑍∗𝑍 with 𝑍 closed, the

quadratic form E𝑇 is also closed, and therefore, Dirichlet, and by same argument
applied to tensoring with 1Mat𝑛 , completely Dirichlet.
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A second proof is included as it illustrates how Sobolev norms naturally appear
when the operator is a pseudo-differential operator. This gives intuition for the
case where Laplace-Beltrami generated diffusion on the canonical spectral triple is
analyzed.

Proof. It’s enough to show the claim for 𝑥, 𝑦 self-adjoint, so we work with 𝑞(𝑥, 𝑥) =
Tr(𝑥2𝐷2)). Let (𝑒𝑖) be a basis of 𝐿2(𝑆) consisting of smooth eigensections of the
laplacian △𝑆 = ∇∗∇ associated with the connection for 𝐷. Note that 𝑞 is semi-
bounded, since Tr(𝑥2𝐷2) = ∑

𝑖 ⟨𝐷𝑥𝑒𝑖, 𝐷𝑥𝑒𝑖⟩ = ∥𝐷𝑥∥2
𝐻𝑆 ≥ 0 where we used that 𝑥

is self-adjoint and the trace is cyclic, so Tr(𝑥2𝐷2) = Tr(𝑥𝐷2𝑥).

Now suppose (𝑥𝑛) is a Cauchy sequence in norm ∥𝑎∥+ :=
√︁
∥𝑎∥𝐻𝑆 + 𝑞(𝑎, 𝑎). So

(𝑥𝑛) is Cauchy sequence in the Hilbert space (H , ∥·∥𝐻𝑆), implying (𝑥𝑛)
𝐻𝑆−−→ 𝑥 ∈ H .

And (𝑥𝑛) being Cauchy in ∥·∥+ also gives that 𝑞(𝑥𝑛 − 𝑥𝑚, 𝑥𝑛 − 𝑥𝑚) → 0. Because
𝑞(𝑎, 𝑎) = ∥𝐷𝑎∥2

𝐻𝑆, so (𝐷𝑥𝑛) is also Cauchy in (H , ∥·∥𝐻𝑆) and therefore convergent
with lim𝑛→∞ 𝐷𝑥𝑛 = 𝑔 ∈ H .

Suppose 𝑔 = 𝐷𝑥, then it follows that 𝑞 is closed because

lim
𝑛→∞

𝑞(𝑥𝑛 − 𝑥, 𝑥𝑛 − 𝑥) = lim
𝑛→∞

∥𝐷 (𝑥𝑛 − 𝑥)∥𝐻𝑆 = lim
𝑛→∞

∥𝐷𝑥𝑛 − 𝑔∥𝐻𝑆 = 0

Now if 𝑥𝑒𝑖, 𝑥𝑛𝑒𝑖 are weakly (𝐿2) differentiable (that is, 𝑒𝑖 ∈ Dom(𝑥)∩Dom(𝐷𝑥),Dom(𝑥𝑛)∩
Dom(𝐷𝑥𝑛)), since 𝑥𝑛

𝐻𝑆−−→ 𝑥, meaning ∥𝑥𝑛 − 𝑥∥𝐻𝑆 → 0, so for all 𝑖, 𝑥𝑛𝑒𝑖 → 𝑥𝑒𝑖,
then using that 𝐷 is self-adjoint, and hence closed on 𝐿2(𝑆), yields

𝑔𝑒𝑖 = lim
𝑛→∞

(𝐷𝑥𝑛)𝑒𝑖 = lim
𝑛→∞

𝐷 (𝑥𝑛𝑒𝑖) = 𝐷 (𝑥𝑒𝑖) = (𝐷𝑥)𝑒𝑖

Since 𝐷𝑥 and 𝑔 agree on the basis (𝑒𝑖), 𝐷𝑥 = 𝑔.

Finally, the weak differentiability of 𝑥𝑛𝑒𝑖 holds since 𝑒𝑖 is smooth and ∥𝑥𝑛𝑒𝑖∥2 ≤
Tr(𝑥2

𝑛) = ∥𝑥𝑛∥2
𝐻𝑆 which is finite and similarly ∥𝐷𝑥𝑛𝑒𝑖∥2 ≤ Tr(𝑥2

𝑛𝐷
2) = ∥𝐷𝑥𝑛∥2

𝐻𝑆 <

∞, so 𝑥𝑛𝑒𝑖, 𝐷𝑥𝑛𝑒𝑖 ∈ 𝐿2(𝑆). The same applies to 𝑥𝑒𝑖, 𝐷𝑥𝑒𝑖, ∥𝑥𝑒𝑖∥ ≤ ∥𝑥∥𝐻𝑆,
lim𝑛→∞ ∥𝐷𝑥𝑒𝑖∥ ≤ ∥𝑔∥𝐻𝑆, so 𝑥𝑒𝑖 ∈ Dom(𝐷).

Note that the norm ∥𝑎∥+ :=
√︁
∥𝑎∥𝐻𝑆 + 𝑞(𝑎, 𝑎) =

√︁
∥𝑎∥𝐻𝑆 + ∥𝐷𝑎∥𝐻𝑆 is the natural

generalization of Sobolev norm to the endomorphism algebra.

Corollary 2.5.5. The form associated to laplacian, E△, on the vector bundle 𝑆 is
completely Dirichlet form on H2(𝐿2(𝑆)).
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Instead of using Bochner identity, one can also get at the result for the connection
laplacian, △𝐸 , by adjusting the same reasoning to from 𝐷 to the closure ∇ of ∇ using
the results from [6] after accounting for domain and co-domain of ∇ not being the
same Hilbert space as for 𝐷.

Similarly, the quadratic form for a positive curvature operator, ℜ𝑆 can be shown to
be completely Dirichlet.

Proposition 2.5.6. If ℜ ≥ 0 then the associated form, Eℜ, is completely Dirichlet
on 𝐿2(𝐴, 𝜏).

Proof. First note that the ℜ at each fiber is a bounded symmetric operator. To see
the symmetry, note it can immediately be checked that for any Riemannian con-
nection, the curvature transformation is skew symmetric in the sense ⟨𝑅𝑉,𝑊 𝑠, 𝑠′⟩ =
−⟨𝑠, 𝑅𝑉,𝑊 𝑠′⟩. Consider each term in ℜ at 𝑝 ∈ 𝑀 , ⟨𝑠, 𝑒𝑙 · 𝑒𝑘 · 𝑅𝑒𝑙𝑒𝑘 𝑠′⟩ for 𝑠, 𝑠′ ∈
Γ(𝐻), and in Riemann normal frame (𝑒𝑖) centered at 𝑝, since 𝑙 ≠ 𝑘 must hold
(otherwise 𝑅𝑒𝑙𝑒𝑘 = 0),

⟨𝑠, 𝑒𝑙 · 𝑒𝑘 · 𝑅𝑒𝑙𝑒𝑘 𝑠′⟩ = ⟨−𝑅𝑒𝑙𝑒𝑘𝑒𝑘 · 𝑒𝑙 · 𝑠, 𝑠′⟩ = ⟨𝑅𝑒𝑙𝑒𝑘𝑒𝑙 · 𝑒𝑘 · 𝑠, 𝑠′⟩ = ⟨𝑒𝑙 · 𝑒𝑘 · 𝑅𝑒𝑙𝑒𝑘 𝑠, 𝑠′⟩

where to commute 𝑒𝑙 , 𝑒𝑘 past ∇𝑒𝑙 ,∇𝑒𝑘 inside 𝑅𝑙𝑘 , the product rule was used with the
fact that the coordinates are Riemann normal centered at 𝑝, so covariant derivatives
vanishes at 𝑝. As ℜ𝐻 varies smoothly, and the manifold is assumed to be compact,
it’s bounded globally. Everywhere defined symmetric operators are self-adjoint
and are closed, therefore, ℜ is self-adjoint and closed. If ℜ is non-negative, ℜ1/2

exists and again being bounded is closed; therefore, it follows as before that Eℜ is
completely Dirichlet.

Remark 2.5.7. Note that in the 𝐿2(𝐴, ∥·∥𝐻𝑆) setting the complete Markovity of the
Dirac heat semigroup does not depend on the curvature unlike for C*-bundles where
for Clifford bundles it does[24].

So far H2 has been considered, but H2 is not unital which is necessary for existence
of quantum stochastic dilations; as before Arveson’s extension theorem can be used
towards this.

Theorem 2.5.8. The completely Markov semigroup 𝑒−𝑡L extends from 𝐿2(A,Tr) =
H2(𝑆) ⊂ B(𝐿2(𝑆)) to B(𝐿2(𝑆)) if and only if the 𝑒−𝑡L is completely Markov for
each 𝑡 on the operator system generated by 𝐿2(A,Tr) and 1.
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Proof. If 𝑒−𝑡L is not a completely Markov family of maps on O(𝐿2(A, 𝜏), 1)
then obviously 𝑒−𝑡L does not extend to B(𝐿2(𝑆)) ⊃ O(𝐿2(A, 𝜏), 1). If it’s a
completely Markov family, then because O(𝐿2(A, 𝜏), 1) is an operator system,
so as completely positive maps, 𝑒−𝑡L , extends to B(𝐿2(𝑆)) by Arveson’s extension
theorem . Complete Markovity follows since even though Hilbert-Schmidt operators
are not norm dense, they are strongly dense in B(𝐿2(𝐻)).

Corollary 2.5.9. SupposeL(1) = 0 then 𝑒−𝑡L is completely Markov onO(𝐿2(A, 𝜏), 1)
and, therefore, on B(𝐿2(𝑆)).

Proof. If 𝑎 ∈ O(𝐿2(A, 𝜏), 1), then 𝑎 = 𝛽1 + 𝛼 with 𝛼 ∈ 𝐿2(A, 𝜏), 𝛽 ∈ C, and
𝛽1, 𝛼 commute. 𝑒−𝑡L(𝛽1+𝛼) = 𝑒−𝑡𝛽L(1)𝑒−𝑡𝛼 = 𝑒−𝑡𝛼 which is completely Markov.
The conclusion follows from the theorem 2.5.8.

The endomorphism connection
By definition, the Evans-Hudson dilation requires that the semigroup be conserva-
tive. However, one quickly notes that acting by composition on End(𝐿2(𝑀, 𝑆)) the
laplacian △ (or the Dirac laplacian 𝐷2) cannot generate a conservative semigroup.
To see this, fix a basis (𝑒𝑖) of eigensections of △ for 𝐿2(𝑀, 𝑆) and let 𝜆𝑖 be eigen-
value for △ on 𝑒𝑖, then (𝑒𝑖 ⊗ 𝑒∗𝑗 )𝑖, 𝑗 is a basis for End(𝐻). If △ acts by composition
on End(𝐻) then it maps 𝑒𝑖 ⊗ 𝑒∗𝑗 to 𝜆𝑖𝑒𝑖 ⊗ 𝑒∗𝑗 implying △(1) = △𝐻 (∑𝑖 𝑒𝑖 ⊗ 𝑒∗𝑖 ) = 0
cannot hold. However, there’s a natural connection which defines a conservative
semigroup.

Observation 2.5.10. On the endomorphism bundle, the canonical connection∇End(𝐻) =

∇ ⊗ 1 + 1 ⊗ ∇̂, where ∇̂ is the dual connection induced on 𝐻∗, is easily seen define
a conservative semigroup and is uniquely determined from ∇ since if over (𝑈, 𝜙𝑈)
the connection acts locally by ∇(∑𝜎 𝑗𝜇 𝑗 ) =

∑
𝑗 (𝑑𝜎 𝑗 )𝜇 𝑗 +

∑
𝑗 𝜎

𝑗 𝐴𝜇 𝑗 for a matrix
of 𝑇∗𝑀-valued 1-forms 𝐴, then the dual connection acts with matrix 𝐴̂ := −𝐴𝑡 , and
∇End(𝐻) (∑𝑖 𝑗 𝜎

𝑖
𝑗
𝜇𝑖 ⊗ 𝜇 𝑗 ) is given by

∇End(𝐻)
∑︁
𝑖 𝑗

𝜎𝑖𝑗𝜇𝑖 ⊗ 𝜇 𝑗 =
∑︁
𝑖 𝑗

(𝑑𝜎𝑖𝑗 )𝜇𝑖 ⊗ 𝜇 𝑗 +
∑︁
𝑗 𝑘

[𝜎𝐴 − 𝐴𝜎] 𝑗 𝑘𝜇𝑘 ⊗ 𝜇 𝑗 (2.8)

Additionally, if 𝑆∗ carries parallel section 𝜙∗0, then an explict computation shows
that △End(𝐻) (𝜓 ⊗ 𝜙0) = [△ ⊗ 1 + 2

∑
𝑖 ∇𝑖 ⊗ ∇𝑖 + 1 ⊗ △](𝜓 ⊗ 𝜙∗0) = (△𝜓) ⊗ 𝜙∗0 so

the action of the laplacian embeds inside the action of the endomorphism laplacian.
This property of endomorphism laplacian and the fact that it acts by commutator is
reminiscent of the operator 𝐴D , and will be used for realizing spectral action.
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Note that if 𝐸 is a hermitian (or euclidean) vector bundle with connection ∇𝐸 and
𝐻 a Dirac bundle with connection ∇𝐻 over 𝑀 , then the 𝜙 · (ℎ ⊗ 𝑒) → (𝜙 · ℎ) ⊗ 𝑒 for
𝜙 ∈ Cl(𝑋) defines a Clifford action on 𝐻 ⊗ 𝐸 . The skew hermiticity of the action
is obvious and as needed the tensor product connection ∇𝐻⊗𝐸 satisfies

∇𝐻⊗𝐸 (𝜙 · (𝜎 ⊗ 𝑒)) = (∇Cl(𝑋)𝜙) · (𝜎 ⊗ 𝑒) + 𝜙 · ∇𝐻⊗𝐸𝜎 ⊗ 𝑒

Now the Dirac and Clifford structures are local as the Clifford multiplication acts on
fibres and the connections can be computed in a chart. The local structures can then
be glued to get the global structure. As a special case of tensor product bundles,
consider End(𝑆) for a Dirac bundle 𝑆. Suppose local sections 𝜇𝑖 : 𝑖 ∈ [dim𝐻])
form an orthonormal basis of 𝑆 in chart (𝑈, 𝜙𝑈), and the corresponding dual basis
(𝜇𝑖) for 𝑆∗. Over the 𝑈, End

��
𝑈
(𝑆) is just the bundle 𝑆

��
𝑈
⊗ 𝑆∗

��
𝑈

with the fibers
given by Span{𝑒𝑖 ⊗ 𝑒 𝑗 : 𝑖, 𝑗 ∈ [dim𝐻]}. This yields that if 𝑆 is a Dirac bundle,
then End(𝑆), 𝑆 ⊗ 𝐸 are Dirac bundles as well. Relevantly, there’s the following
observation.

Proposition 2.5.11. Semigroups generated by laplacians 𝐷2, △ on End(𝑆), with
respect to the endomorphism connection, are conservative.

Proof. As 1 =
∑
𝑖 𝜇𝑖⊗𝜇𝑖 in the local basis 𝜇𝑖, equation 2.8 is just the commutator with

identity, therefore, ∇(1) vanishes identically over 𝑈, making △(1) = 0. Similarly
𝐷2(1) = 0.

A calculation using this (see chapter 4) leads to the following example which is
relevant for canonical spectral triples.

Example 2.5.12. The algebra C(𝑀) acts on 𝐿2(S) by multiplication and 𝑓 ∈ C(𝑀)
can be identified with 𝑓 · 1End(S) . Then △End(S) for the Levi-Civita connection on
S acts on C(𝑀) by sending 𝑓 to △𝑀 ( 𝑓 ) · 1End(S) where △𝑀 the Laplace-Beltrami
operator on functions.

Proposition 2.5.13. The form E𝐷2 for the Dirac laplacian 𝐷2 of the bundle End(𝑆)
is closed.

Proof. This follows since the quadratic form 𝑥 → ⟨𝐷𝑥, 𝐷𝑥⟩ is closed because 𝐷 is
closd.
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Using the same arguments as before, along with proposition 2.5.11 gives the fol-
lowing.

Corollary 2.5.14. The quadratic forms for both 𝐷2 and △End(𝑆) are completely
Dirichlet, they both generate conservative quantum dynamical semigroups.

Example 2.5.15. The Clifford bundle can be viewed as the endomorphism bundle
of the spinor bundle, and the connection as an endomorphism connection. It is a
derivation on sections of the bundle, and, therefore, is zero on the identity element
of the Clifford bundle.

2.6 Spectral action
The motivating application is introduced next. For the canonical spectral triple over
Riemannian spin manifold, (𝑀, 𝑔) (𝐶∞(𝑀), 𝐿2(𝑆), 𝐷𝑀), 𝐿2(𝑆) being the Hilbert
space of square integrable sections of a spinor bundle 𝑆 → 𝑀 , and 𝐷𝑀 the Dirac
operator associated to the lift of Levi-Civita connection to the spinor bundle[66,
pg 67], the bosonic spectral action is the linear functional, 𝑆𝑀

𝑏
≡ 𝑆 𝑓 := Tr 𝑓 (𝐷/Λ)

for a choice of an even test function 𝑓 : R→ R, 𝑓 ≥ 0, which is often taken to be
𝑒−𝑥

2 and Λ a cutoff parameter[30, § 5.1, 66, § 7.1]. The parameter 𝑡 of the Dirac
heat semigroup 𝑒−𝑡𝐷

2 corresponds to 𝑡 = Λ−2. From the asymptotic expansion
limΛ→∞ 𝑆𝑀𝑏 for a Riemannian spin 4-manifold 𝑀 , the spectral action, and therefore,
the Einstein-Hilbert action, 𝑆𝐸𝐻 , can be recovered[30, § 5.3, 66, § 8.3].

From earlier, any self-adjoint operator 𝐴 on Hilbert space 𝐻, the operator 𝐴2
D :=

(𝐴 ⊗ 1 − 1 ⊗ 𝐴)2 acting on 𝐻∗ ⊗ 𝐻 = H2(𝐿2(𝑀, 𝑆)), the space of Hilbert-Schmidt
operators in B(𝐻), generates a conservative quantum dynamical semigroup, and
the same for any spectral truncation 𝐷𝑛 of 𝐷 =

∑
𝑖 𝜆𝑖𝜙

𝑖, 𝐷𝑛 :=
∑
𝑖∈[−𝑛:𝑛] 𝜆𝑖𝜙𝑖. A

simple calculation yields the following, the idea being to use 𝜙0 to kill everything
but the Dirac laplacian in the expansion for 𝐷2

D .

Lemma 2.6.1. With 𝜙𝑖0 := 𝜙𝑖 ⊗ 𝜙0 ∈ H2(𝐻), ⟨𝜙𝑖𝑒−𝑡𝐷
2
𝑛,D (𝜙𝑖0)𝜙0⟩ = 𝑒−𝑡𝜆

2
𝑖

Proof. This follows since

𝑒
−𝑡𝐷2

𝑛,D (𝜙𝑖0) =
∑︁
𝑘∈Z≥0

(−𝑡)𝑘/𝑘!(𝐷2
𝑛,D)

𝑘𝜙𝑖0 =
∑︁
𝑘∈Z≥0

(−𝑡)𝑘/𝑘!𝜆2𝑘
𝑖 𝜙𝑖0 = 𝑒−𝑡𝜆

2
𝑖 𝜙𝑖0

Therefore, ⟨𝜙𝑖𝑒−𝑡𝐷
2
𝑛,D (𝜙𝑖0)𝜙0⟩ = ⟨𝜙𝑖, 𝑒−𝑡𝜆

2
𝑖 𝜙𝑖⟩
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This means

S𝑛 := 𝑛⟨
∑︁
𝑖∈[𝑛]

𝜙𝑖/
√
𝑛, 𝑒

−𝑡𝐷2
𝑛,D (

∑︁
𝑖∈[𝑛]

𝜙𝑖0/
√
𝑛)𝜙0⟩ = ⟨𝜙𝑖, 𝑒−𝑡𝜆

2
𝑖 𝜙𝑖⟩ =

∑︁
𝑖∈[𝑛]

𝑒−𝑡𝜆
2
𝑖

lim𝑛→∞S𝑛
= 𝑆𝑀

𝑏,𝑒−𝑥2

Remark 2.6.2. The same calculations can be carried out on the Hilbert space
𝐿2(K(𝐻),Tr) using the embedding of K(𝐻) into B(𝐿2(K(𝐻),Tr)).

That is, spectral action arises as a correlation between the state corresponding to the
harmonic spinor and a uniformly random state. If 𝐷 has no harmonic spinors then
on replacing 𝐷𝑛 with 𝐷′

𝑛 := 𝐷2
𝑛 − 𝜆2 for 𝜆 = 𝜆𝑚 ∈ spec(𝐷), 𝑚 ≤ 𝑛, the following

generalization can be obtained.

Corollary 2.6.3. With 𝐷′
𝑛,D = (𝐷2

𝑛 − 𝜆2)D for any 𝜆 = 𝜆𝑚 ∈ spec(𝐷), 𝑚 ≤ 𝑛, then

lim
𝑛→∞

⟨
∑︁
𝑖∈𝑛

𝜙𝑖, 𝑒
−𝑡𝐷′2

𝑛,D (
∑︁
𝑖∈[𝑛]

𝜙𝑖0)𝜙0⟩ = 𝑆𝑀
𝑏,𝑒−(𝑥2−𝜆2 )2

The lemma 2.6.1 can be applied to the semigroup 𝑒−𝑡L ,L = △𝑀 onC∞(𝑀) ⊂ C(𝑀)
acting by multiplication on the Hilbert space of 𝐿2 functions, 𝐿2(𝑀), instead of a
vector bundle. If 𝜙𝑖’s are eigenfunctions of △𝑀 with △𝑀𝜙𝑖 = 𝜆2

𝑖
𝜙𝑖, 𝜆2

𝑖
> 0, then

since C(𝑀) has the constant function 1 as the unit, △𝑀 (1) = 0 and ⟨𝜙𝑖, 1⟩ = 0, we
immediately have:

Corollary 2.6.4. The eigenvalues for △𝑀 can be computed from the expectations of
heat semigroup:

⟨𝜙 𝑗 , 𝑒−𝑡L (𝜙𝑖)1⟩ = ⟨𝜙 𝑗 , 𝑒−𝑡𝜆
2
𝑖 𝜙𝑖1⟩ = 𝑒−𝑡𝜆

2
𝑖 𝛿𝑖 𝑗

Therefore, the heat kernel trace
∑
𝑖 𝑒

−𝑡𝜆2
𝑖 can be approximated as in 2.6.3. This

motivates interest in understanding the Dirac heat semigroup and its Evans-Hudson
dilation which yields the expectations of type ⟨𝑢, 𝑒−𝑡△(𝑥)𝑣⟩ for any 𝑢, 𝑣 in as expec-
tations of a quantum diffusion process. Because the generator 𝐷𝑛,D is bounded,
the semigroup generated is norm continuous and, therefore, existing constructions
from [11, 62] can be adapted to realize spectral action from a quantum stochastic
flow. The flow is associated to a quantum stochastic differential equation (qsde) of
Evans-Hudson type. For now the computation of the coeffients of the qsde for 𝐷𝑛,D

is deferred since it’s covered by existing theory. This leads to the following result.
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Theorem 2.6.5. Let 𝐷𝑛 be the Dirac operator, 𝐷𝑛, 𝑓 (𝑥) = 𝑒−𝑥
2
, 𝑓𝜆 (𝑥) = 𝑒−(𝑥

2−𝜆2) ,
𝜆 ∈ Spec(𝐷), the Evans-Hudson flows 𝑗𝑡 , 𝑗

′
𝑡 exists for generators 𝐷2

𝑛,D , 𝐷
′2 =

(𝐷2
𝑛,D − 𝜆2)2, and satisfies

1. If 𝐷 has a harmonic spinor 𝜙0

lim
𝑛→∞

⟨
∑︁
𝑖∈𝑛

𝜙𝑖E(0), 𝑗𝑡 (
∑︁
𝑖∈[𝑛]

𝜙𝑖0)𝜙0E(0)⟩ = 𝑆𝑀
𝑏,𝑒−𝑥2

2. For eigenspinor associated to 𝜆, 𝜙𝜆,

lim
𝑛→∞

⟨
∑︁
𝑖∈𝑛

𝜙𝑖E(0), 𝑗 ′𝑡 (
∑︁
𝑖∈[𝑛]

𝜙𝑖𝜆)𝜙𝜆E(0)⟩ = 𝑆𝑀
𝑏,𝑒−(𝑥2−𝜆2 )2

where 𝜙𝑖 𝑗 denotes 𝜙𝑖 ⊗ 𝜙∗𝑗 , E(0) the Fock vacuum for noise space.

In chapter 4, the focus is on computing the trace of the heat kernel for laplacian on
functions exactly without truncating: the existence of the flow for the unbouded gen-
erator is not apriori clear and even though the spectral action can be approximated
it’s of interest to consider the existence of the flow for the untruncated laplacian. A
growth condition on Sobolev norms of laplacian eigenfunctions on compact mani-
folds turns out to be sufficient, examples include flat and homogeneous manifolds.
This is done by adapting construction from Sinha and Goswami [62].

Note that the 𝑒−𝑡△𝑀 defines a positive semigroup on C∞(𝑀) and therefore, by
commutativity, a completely positive semigroup which is both contractive and con-
servative. In fact, the laplacian can be formally put in the form of generators
from norm continuous quantum dynamical semigroups even though the semigroup
generated is only strongly continuous.

2.7 Product and almost commutative spectral triples
The special case of product almost commutative spectral triples is addressed now.
While it can be handled with the same Dirichlet form machinery, it’s worth noting
how the two pieces in the product do not interact. Following this, a brief note is
made about C*-bundles which provides an alternative perspective on bundles of
C*-algebras bundles over Riemannian manifolds.

Complete positivity on products
For real even spectral triples, (A𝑖,H𝑖, 𝐷𝑖; 𝐽𝑖, 𝛾𝑖), 𝑖 ∈ {1, 2}, that is, the spectral
triples come with a real structure 𝐽𝑖 and a grading 𝛾𝑖 such that for all 𝑎 ∈ A𝑖, 𝛾𝑖𝑎 =
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𝑎𝛾𝑖, 𝛾𝐷𝑖 = −𝐷𝑖𝛾, the product is defined by A := A1 ⊗ A2,H = H1 ⊗ H2, 𝐷 :=
𝐷1 ⊗ 1 + 𝛾1 ⊗ 𝐷2, 𝛾 = 𝛾1 ⊗ 𝛾2, 𝐽 = 𝐽1 ⊗ 𝐽2. If the second triple is not even then the
resulting structure does not have a grading and the adjective even is dropped. Since
the first triple is even and 𝐷1, 𝛾1 anti-commute, 𝐷2 = 𝐷2

1 ⊗ 1 + 1 ⊗ 𝐷2
2. Note that

C∞(𝑀, 𝐴𝐹) = C∞(𝑀) ⊗ 𝐴𝐹 and the tensor products are Z2-graded. The algebras
A1,A2 are only pre-C*-algebras, but can be completed in the respective C*-norm;
for the canonical spectral triple, C∞(𝑀), will have C(𝑀) as the closure. For a
spectral triple, it’s not required that A𝑖 be closed, though a requirement [𝐷𝑖, 𝑎]
is bounded needed for 𝑎 ∈ A𝑖. Questions about quantum dynamical semigroups,
however, need the algebras to be norm-closed.

The product almost commutative spectral triple is the product of the canonical spec-
tral triple of a Riemannian spin manifold, 𝔄𝑀 := (C∞(𝑀), 𝐿2(𝑆), 𝐷𝑀 ; 𝐽𝑀 , 𝛾𝑀),
and a finite noncommutative space, 𝔄𝐹 := (𝐴𝐹 , 𝐻𝐹 , 𝐷𝐹 ; 𝐽𝐹 , 𝛾𝐹),

𝑀 × 𝐹 := (C∞(𝑀) ⊗ 𝐴𝐹 , 𝐿2(𝑀, 𝑆 ⊗ 𝐻𝐹)), 𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷𝐹 ; 𝐽𝑀 ⊗ 𝐽𝐹 , 𝛾𝑀 ⊗ 𝛾𝐹)

Recall that on the algebraic tensor product of C*-algebras A1 ⊗ A2, a cross-norm
is a norm satisfying ∥𝑎1 ⊗ 𝑎2∥A1⊗A2 = ∥𝑎1∥A1 ∥𝑎2∥A2 . A C*-algebra is nuclear if
any tensor product carries a unique cross-norm, and, therefore, the algebraic tensor
product has a unique norm completion. The following technical lemma will be used
implicitly. The point of this lemma is that such identifications described by it behave
well.

Lemma 2.7.1. Suppose A1,A2 are unital C*-algebras. Suppose at least one of
A1,A2 is nuclear, so there’s a unique cross-norm on A1 ⊗ A2, then the map,
𝜙 : A1 → A1 ⊗ A2, 𝑎 → 1 ⊗ 𝑎, is a completely positive, homeomorphism onto its
image.

Proof. The kernel of 𝜙 is trivial, and 𝜙 is positive as 𝑎 positive in A1 means 1 ⊗ 𝑎
is positive in A1 ⊗ A2. Additionally, 𝜙 is unital. From the R-linearity of the
tensor product, it follows the map 𝜙 preserves norms. It also follows that 𝜙 ⊗ 1𝑛
also preserves norms, so 𝜙 is a unital, completely contractive map, and hence is
completely positive. Being contractive also implies continuity. The inverse map on
the image, 𝜙−1, 1 ⊗ 𝑎 → 𝑎, is again unital and completely contractive: the same
holds for 𝜙−1 as well.

We note the following about the complete positivity of the Dirac heat semigroup for
product almost commutative spectral triples:
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Proposition 2.7.2. For the product almost-commutative triple, 𝔄𝐹 × 𝔄𝑀 ,

• The norm completion of C(𝑀) ⊗ 𝐴𝐹 is unique.

• The complete positivity of the semigroup does not depend on the order of the
product, 𝔄𝐹 × 𝔄𝑀 versus 𝔄𝑀 × 𝔄𝐹 .

Proof. If both spectral triples areZ2-graded withZ2-graded tensor product, C(𝑀)⊗
𝐴𝐹 , then since commutative C*-algebra are characterized as nuclear[26] in Z2

graded tensor product category, all cross-norms on the tensor product agree, then
there’s no ambiguity on the norm with respect to which to take the norm closure.
The independence from the order of the product is simply the symmetry of the norm
and therefore of the definition of positivity.

Theorem 2.7.3. Let 𝐷2 = 1 ⊗ 𝐷2
𝑀
+ 𝐷2

𝐹
⊗ 1 acting on 𝐴𝑀 ⊗ 𝐴𝐹 .

• If 𝑒−𝑡𝐷2
𝑀 and 𝑒−𝑡𝐷2

𝐹 are both completely positive then 𝑒−𝑡𝐷2 is as well. The
converse holds when 𝑒−𝑡𝐷2 is conservative.

• If 𝑒−𝑡𝐷2
𝑀 and 𝑒−𝑡𝐷2

𝐹 are contractive (conservative), then the composition 𝑒−𝑡𝐷2

is contractive (conservative). The converse does not hold.

Proof. Because 1⊗𝐷2
𝑀

and𝐷2
𝐹
⊗1 commute, therefore, 𝑒−𝑡𝐷2

= 𝑒−𝑡 (1⊗𝐷
2
𝑀
)𝑒−𝑡 (𝐷

2
𝐹
⊗1) =

𝑒−𝑡 (𝐷
2
𝐹
⊗1)𝑒−𝑡 (1⊗𝐷

2
𝑀
) . Now suppose 𝑒−𝑡𝐷2

𝑀 and 𝑒−𝑡𝐷2
𝐹 are completely positive. The

tensor product of completely positive maps extends to a completely positive map
with respect to the ∥·∥𝑚𝑖𝑛 (see, for instance, [59, Thm 12.3]; the standard result
is for ungraded tensor product, but it applies since commutative C*-algebras are
nuclear regardless of the grading and there’s only one cross norm across both set-
tings). Since A𝑀 is nuclear, 1 ⊗ 𝑒−𝑡𝐷

2
𝑀 , 𝑒−𝑡𝐷

2
𝐹 ⊗ 1 are completely positive on

A𝐹 ⊗ A𝑀 = A𝐹 ⊗𝑚𝑖𝑛 A𝑀 . Furthermore, 1 ⊗ 𝐷2
𝑀
, 𝐷2

𝐹
⊗ 1 commute, and 𝑒−𝑡𝐷2 is

the composition of completely positive maps and also completely positive. When
𝑒−𝑡𝐷

2 is conservative, 𝑒−𝑡𝐷2 (1 ⊗ A𝑀) = 1 ⊗ 𝑒−𝑡𝐷𝑀 (A𝑀). Since 1 ⊗ A𝑀 generates
the C*-algebra, K ⊗K A𝑀 � A𝑀 , with K = C,R depending on the underlying
Hilbert space, so 𝑒−𝑡𝐷2

𝑀 is completely positive, with symmetric argument for 𝑒−𝑡𝐷2
𝐹 .

The forward direction in the second part is clear; for the failure of the converse, if
on 1, 𝑒−𝑡𝐷2

𝑀 and 𝑒−𝑡𝐷2
𝐹 are multiplication by 𝑎 ≠ 0, 1 and 1/𝑎, their composition can

be both conservative and contractive, individually, they do not hold.
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The point of the above characterization is that the generator −𝐷2 can be decom-
posed into the bounded part −𝐷2

𝐹
and the unbounded part −𝐷2

𝑀
, the structure of

the bounded generator being completely determined work of Gorini-Kossakowski-
Sudarshan-Lindblad[4].

Example 2.7.4. On the product spectral triple, 𝑀 × 𝐹 = (C∞(𝑀) ⊗ 𝐴𝐹 , 𝐿2(𝑀, 𝑆 ⊗
𝐻𝐹), 𝐷𝑀⊗1+𝛾𝑀⊗𝐷𝐹 ; 𝐽𝑀⊗𝐽𝐹 , 𝛾𝑀⊗𝛾𝐹), it’s assumed that𝐷𝐹 does not know about
𝑀 . This can be generalized slightly following [16] to the picture where𝑀×𝐻𝐹 → 𝑀

is a trivial bundle with a trivial connection ∇𝐹 and 𝐻 = 𝑆 ⊗ (𝑀 × 𝐻𝐹) is a twisted
spinor bundle, i.e., the Clifford action takes place on 𝑆. Now the geometric Dirac
operator on 𝐻 is given by

/𝐷𝑀×𝐻𝐹
≡ /𝐷𝐻 := /𝐷𝑆 ⊗ 1 + 𝑐 ⊗ ∇𝐹 (2.9)

where 𝑐 is the Clifford action. Ćaćić [16] defines the operator 𝐷 = /𝐷𝐻 + 𝑐 ⊗ Ω𝐹

where Ω𝐹 is potential associated with 𝐷𝐹 , and as the motivating example checks
that 𝐷 is Dirac type operator on the spectral triple (C(𝑀, 𝐴), 𝐿2(𝑀, 𝐻), 𝐷) where
𝐴 := L ⊗ (𝑋 × 𝐴𝐹) for L a real, unital, trivial sub-bundle of End(𝑆) given by
L𝑥 := R1𝑆𝑥 . This also illustrates how spinor bundles arise naturally and provides an
example of a Dirac operator that is not the geometric operator,

𝐷 := /𝐷𝑆⊗1+𝑐⊗(∇𝐹+Ω𝐹), 𝐷2 := /𝐷2
𝑆⊗1+𝑐2⊗(∇𝐹+Ω𝐹)2+( /𝐷◦𝑐+𝑐◦ /𝐷)⊗(∇𝐹+Ω𝐹)

(2.10)
In the bundle 𝐻, the symmetric operator 𝐷𝐹 on the fibers (𝐻𝐹)𝑚∈𝑀 can now vary
with 𝑚 ∈ 𝑀 . Note the mixed term ( /𝐷 ◦ 𝑐 + 𝑐 ◦ /𝐷) ⊗ (∇𝐹 + Ω𝐹) that now appears
even when 𝐷𝐹 is constant. Complete positivity on such bundles is addressed in the
following sections with more geometric methods.

Heat semigroups on twisted spinor bundles
On taking tensor products, the product laplacian picks up cross terms, and the heat
semigroups on the tensor components no longer commute as the individual gener-
ators have non-trivial interaction with the cross-terms. In general, the semigroup
for the twisted laplacian L = △S⊗W , 𝑒−𝑡L necessitates using Baker-Campbell-
Hausdorff type formula to understand it in terms of the components. The conditions
on bundle connections when this may be simplified (for example, like product and
almost commutative spectral triples where the two tensor pieces will be established
to not interact) requires that the terms in expansion of the laplacian commute.

Suppose 𝐻 = S ⊗ 𝐸 , that is, 𝐻 is the spinor bundle S twisted by 𝐸 , with Dirac
laplacian, 𝐷2

𝐻
, while the associated connection laplacian is △𝐻 . Using that the
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connection laplacian △S⊗𝐸 = −Tr((𝑉,𝑉 ′) → ∇2
𝑉,𝑉 ′) where ∇2

𝑉,𝑉 ′ = ∇𝑉∇𝑉 ′ −∇∇𝑉𝑉
′

which in the Riemann normal frame becomes △S⊗𝐸 = −∑
𝑖 ∇𝑒𝑖∇𝑒𝑖 . Explicitly the

tensor connection laplacian is given by:

△S⊗𝐸𝜎 = −
∑︁
𝑖

∇S⊗𝐸
𝑒𝑖

∇S⊗𝐸
𝑒𝑖

= −
∑︁
𝑖

(
∇S
𝑖 ⊗ 1 + 1 ⊗ ∇𝐸𝑖

) (
∇S
𝑖 ⊗ 1 + 1 ⊗ ∇𝐸𝑖

)
𝜎

= −
∑︁
𝑖

(
∇S
𝑖 ∇

S
𝑖 ⊗ 1 + 2∇S

𝑖 ⊗ ∇𝐸𝑖 + 1 ⊗ ∇𝐸𝑖 ∇𝐸𝑖
)
𝜎 =

(
△S ⊗ 1 − 2

∑︁
𝑖

∇S
𝑖 ⊗ ∇𝐸𝑖 + 1 ⊗ △𝐸

)
𝜎

(2.11)

In general, it can be verified that the terms commute when the curvatures of the
bundles 𝐸 and S vanish identically.

Lemma 2.7.5. For any vector bundle, in Riemann normal coordinates centered at
𝑝 ∈ 𝑀 , the connection laplacian [−△𝑉 ,∑ 𝑗 ∇ 𝑗 ] =

∑
𝑖 𝑗 𝑅(𝑖, 𝑗)∇𝑖 +

∑
𝑖 𝑗 ∇𝑖𝑅(𝑖, 𝑗) at

𝑝.

Proof. In Riemann normal frame, (𝑒𝑖 : 𝑖 ∈ [dim𝑉]), using 𝑅(𝑖, 𝑗) = ∇𝑖∇ 𝑗 − ∇ 𝑗∇𝑖,
with shorthand 𝑅(𝑖, 𝑗) := 𝑅(𝑒𝑖, 𝑒 𝑗 )

−△𝑉
∑︁
𝑗

∇ 𝑗 =
∑︁
𝑖

∇𝑖∇𝑖
∑︁
𝑗

∇ 𝑗

=
∑︁
𝑖 𝑗

∇𝑖∇𝑖∇ 𝑗 =
∑︁
𝑖 𝑗

(∇𝑖∇ 𝑗∇𝑖 + ∇𝑖𝑅(𝑖, 𝑗)) =
∑︁
𝑖 𝑗

∇ 𝑗∇𝑖∇𝑖 +
∑︁
𝑖 𝑗

𝑅(𝑖, 𝑗)∇𝑖 +
∑︁
𝑖 𝑗

∇𝑖𝑅(𝑖, 𝑗)

That is, [−△𝑉 ,∑ 𝑗 ∇ 𝑗 ] =
∑
𝑖 𝑗 𝑅(𝑖, 𝑗)∇𝑖 +

∑
𝑖 𝑗 ∇𝑖𝑅(𝑖, 𝑗). Using 𝑅(𝑖, 𝑗) = −𝑅( 𝑗 , 𝑖)

and 𝑅(𝑖, 𝑖) = 0,∑︁
𝑖 𝑗

𝑅(𝑖, 𝑗)∇𝑖 =
∑︁
𝑖< 𝑗

(
𝑅(𝑖, 𝑗)∇𝑖 + 𝑅( 𝑗 , 𝑖)∇ 𝑗

)
+

∑︁
𝑖= 𝑗

𝑅(𝑖, 𝑗)∇𝑖

=
∑︁
𝑖< 𝑗

(
𝑅(𝑖, 𝑗)∇𝑖 + 𝑅( 𝑗 , 𝑖)∇ 𝑗

)
=

∑︁
𝑖< 𝑗

𝑅(𝑖, 𝑗)
(
∇𝑖 − ∇ 𝑗

)
By the second Bianchi identity on bundle 𝐸 [65], (∇𝑢𝑅) (𝑣, 𝑤) + (∇𝑣𝑅) (𝑤, 𝑢) +
(∇𝑤𝑅) (𝑢, 𝑣) = 0, when 𝑣 = 𝑢 = 𝑤, (∇𝑢𝑅) (𝑢, 𝑢) = 0, therefore∑︁
𝑖 𝑗

∇𝑖𝑅(𝑖, 𝑗) =
∑︁
𝑖< 𝑗

(∇𝑖𝑅(𝑖, 𝑗)+∇ 𝑗𝑅( 𝑗 , 𝑖)) =
∑︁
𝑖< 𝑗

(∇𝑖𝑅(𝑖, 𝑗)−∇ 𝑗𝑅(𝑖, 𝑗)) =
∑︁
𝑖< 𝑗

(∇𝑖−∇ 𝑗 )𝑅(𝑖, 𝑗)

This yields [−△𝑉 ,∑ 𝑗 ∇ 𝑗 ] =
∑
𝑖 𝑗 𝑅(𝑖, 𝑗)∇𝑖 +

∑
𝑖 𝑗 ∇𝑖𝑅(𝑖, 𝑗)
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Now consider almost-commutative spectral triples. Over an even dimensional Rie-
mannian manifold, (𝑀, 𝑔), the algebra for an almost commutative spectral triple,
𝐴 ⊂ End+Cl(𝑋) (𝐻), where 𝐻 is Clifford module bundle over 𝑀 (and therefore a
twisting of the complex spinor bundle S, 𝐻 = W ⊗ S) does not interact with the
S-connection.

Proposition 2.7.6. If 𝛼 ∈ 𝐴 ⊂ End+Cl(𝑋) (𝐻) then 𝛼 = 𝑤𝛼 ⊗ 1 for 𝑤𝛼 ∈ End(W)
up to multiplication by 𝑓 ∈ C(𝑋). That is, as a module over C(𝑀), 𝐶 (𝑀, 𝐴) is
generated by endomorphims of form 𝑤𝛼 ⊗ 1.

Proof. The proof is basically the observation that locally End(W) � EndCl(𝑋) (𝐻)
(see, for instance, [12, Prop 3.27]) (i.e. 𝐴 � 𝑊𝐴 ⊂ End(W)). Now End(𝐻) is the
topological closure of End(W) ⊗ End(S), where because S is the complex spinor
bundle, End(S) � Cl(𝑀) ⊗ C.

Suppose 𝛼 =
∑
𝑖 𝛼𝑤,𝑖 ⊗ 𝛼𝑠,𝑖 ∈ 𝐴 ⊂ End(W) ⊗ Cl(𝑋) ⊗ C where 𝛼𝑠,𝑖 ∈ Cl(𝑋) ⊗ C.

Consider the Clifford action, 𝑐 : Cl(𝑋) → End(𝐻), 𝑣 → 𝑐(𝑣) :=
∑
𝑖 𝑤𝑖 ⊗ 𝑠𝑖 ∈

End(𝐻) with 𝑤𝑖 ∈ End(W), 𝑠𝑖 ∈ Cl(𝑋) ⊗ C. By construction of the twisted spinor
bundle, the Clifford action on W piece is trivial so 𝑤𝑖 = 1 for all 𝑖, therefore,
𝑐(𝑣) = 1 ⊗ 𝑣𝑠 with 𝑣𝑠 ∈ Cl(𝑋) ⊗ C.

Since 𝛼 commutes with the Clifford action∑︁
𝑖

𝛼𝑤,𝑖 ⊗ 𝑣𝑠𝛼𝑠,𝑖 = (1 ⊗ 𝑣𝑠) ◦
∑︁
𝑖

𝛼𝑤,𝑖 ⊗ 𝛼𝑠,𝑖 =
∑︁
𝑖

𝛼𝑤,𝑖 ⊗ 𝛼𝑠,𝑖 ◦ (1 ⊗ 𝑣𝑠) =
∑︁
𝑖

𝛼𝑤,𝑖 ⊗ 𝛼𝑠,𝑖𝑣𝑠

In even dimensions, the canonical complex bundle S in the twisted spinor decom-
position, W ⊗ S, is irreducible Clifford module and Cl(𝑀) is a central simple
algebra; therefore, 𝑣𝑠 runs over all elements in Cl(𝑀) ⊗ C. As 𝑣𝑠 is arbitrary,
𝛼𝑠,𝑖 lie in the center of Cl(𝑀). This can be seen locally: choose a basis (𝑒𝑖) for
𝑇∗𝑋 , then the basis for Cl(𝑇∗𝑀) is (𝑒𝐼)𝐼⊂[dim𝑇∗𝑋] . Expressing 𝛼 in 𝑒𝐼’s gives∑
𝑖 𝛼𝑤,𝑖 ⊗ 𝛼𝑠,𝑖 =

∑
𝐼 𝑘 𝐼𝛼𝐼 ⊗ 𝑒𝐼 for 𝑘 𝐼 . Note that 𝑒𝑖 · 𝑒𝐼 = ±𝑒𝐼 · 𝑒𝑖 for any 𝑖. Suppose

|𝐼 | > 0. If |𝐼 | is odd, then there exists 𝑗 ∉ 𝐼, and 𝑒𝐼 · 𝑒 𝑗 = −𝑒 𝑗 · 𝑒𝐼 as it commutes
past each 𝑒𝑖 for 𝑖 ∈ 𝐼. If |𝐼 | = 2𝑘 with 𝑒𝐼 = 𝑒𝑖1 · . . . 𝑒𝑖2𝑘 , then 𝑒𝐼 · 𝑒𝑖2𝑘 = −𝑒𝑖1 . . . 𝑒𝑖2𝑘−1 ,
while 𝑒𝑖2𝑘𝑒𝐼 = 𝑒𝑖1 . . . 𝑒𝑖2𝑘−1 because there are 2𝑘 − 1 sign changes on moving across
and then a final sign change from 𝑒2

𝑖2𝑘
= −1. Therefore, |𝐼 | = 0 for 𝑒𝐼 to commute

with each 𝑒𝑖 but then 𝑒𝐼 ∈ Z(Cl(𝑇∗𝑋)). The conclusion holds on the algebraic
tensor product and also the topological completion.
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This is consistent with the case for commutative spectral triples where the algebra
C∞(𝑀) acts by multiplication on the spinor bundle 𝐿2(𝑆) and commutes with the
Clifford action.

Theorem 2.7.7. The heat semigroup generated by △W⊗S on𝐶 (𝑀, 𝐴) is isomorphic
to heat semigroup generated by △W on W, that is, the heat semigroup of an even-
dimensional spectral triple is isomorphic to the heat semigroup generated by the
laplacian for the twisting space.

Proof. By proposition 2.7.6, the laplacian of the spinor bundle S does not interact
with 𝐶 (𝑀, 𝐴). It follows from the explicit computation of the Dirac laplacian for
the twisted bundle (equation 2.11) W ⊗ S that the heat semigroup on 𝐶 (𝑀, 𝐴)
acts trivially on the S, and therefore is determined solely by action of the W
connection.

Remark 2.7.8. This is not true for the Dirac laplacian. On expanding, 𝐷2 =∑
𝑖 𝑒𝑖∇𝑖

∑
𝑗 𝑒 𝑗∇ 𝑗 for Clifford action and the connection on the twisted W ⊗ S,

𝐷2 picks up nontrivial action on S component; this is most easily seen by noting
that the curvature operator from the Bochner idenity (definition 2.5.2) does not fix
1S ⊗ 𝑤 ∈ End(W ⊗ S) unless 𝑤 = 1W as well.

C*-bundle point of view
The almost-commutative geometric perspectives works with the infinite-dimensional
Hilbert space 𝐿2(𝑀, 𝑆). An alternative perspective is to consider the bundle of finite-
dimensional C*-algebras on the fibers. While such bundles parametrize the space of
noncommutative gauge fields, after putting a 𝐿2-structure on the fiber and averaging
over the fibers, such bundles are necessarily trivial (see, for instance, [7]) and do
not see the global structure. Results on complete-positivity of Clifford C*-bundles
were obtained by [28, 24]. The results are recapped, and the difference between the
C*-bundle and noncommutative geometry setting is made precise.

Following [28], a C*-bundle, A, is a finite dimensional vector bundle over a Rie-
mannian manifold (𝑀, 𝑔), compact, without boundary, where the fibers are a finite
dimensional C*-algebra 𝐴. The structure group of the bundle is the compact Lie
group of ∗-automorphisms of A. A normalized, invariant trace is selected, 𝜏, for 𝐴
that is used for every fiber. Since fibers are finite-dimensional, the usual normalized
matrix trace, 𝜏 = Tr, is most relevant. The trace on the bundle is obtained by
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integrating over the fibers. The invariance of the trace under automorphisms of the
algebra is used as the transition functions need to be trace-preserving.

The space of smooth sections Γ∞(𝑀,A) can be completed to a C*algebra of
continuous sections, Γ0(𝑀,A) using the C*-structure on the fibers with the norm
∥ 𝑓 ∥∞ = sup𝑥∈𝑀{∥ 𝑓 (𝑥)∥} norm, and the involution defined by pointwise involution
on the fibers. The 𝐿𝑝-norm on Γ∞(𝑀,A) is defined as usual,

∥ 𝑓 ∥𝑝𝑝 =
∫
𝑀

Tr𝑥 (( 𝑓 (𝑥) 𝑓 ∗(𝑥))𝑝/2) d𝑣𝑜𝑙 𝑀 (2.12)

[28, Thm 17] shows that for any vector bundle 𝑉 with a metric connection, ∇𝑉 , over
𝑀 , the Bochner laplacian , △𝐵 = −(∇𝑉 )∗∇𝑉 , generates a completely positive semi-
group on 𝐿2(𝑀,TrCl(𝑉)

𝑥 ). [24] show that on 𝐿2(𝑀,TrCl(𝑇∗𝑀)
𝑥 ), the Dirac laplacian

/𝐷2 generates a completely Markov semigroup if and only if the curvature operator
is positive. The idea exploits the form of the curvature operator on Cl(𝑇∗𝑀) to get
it to generate a completely Dirichlet form; then using the general Bochner identity,
the complete positivity of the semigroup generated by the Bochner laplacian and the
correspondence between completely Markov semigroups and completely Dirichlet
forms gives the result[24, Thm 5.1].

Remark 2.7.9. 𝐿2(𝑀, (End(𝑆), ∥·∥𝐻𝑆)) and 𝐿2(𝑀,TrCl(𝑉)
𝑥 ) are different since the

norm structures are different. The difference in complete-positivity, i.e., the de-
pendence on the sign of the curvature operator on C*-bundles appears because the
Dirac operator is not symmetric with respect to the trace at the fibers. This differ-
ence between the two structures is best captured by noting that 1 ∈ 𝐿2(𝑀,TrCl(𝐸)

𝑥 ))
since at each fiber the normalized trace of the unit will be finite, while 1 ∉

𝐿2(𝑀, (End(𝑆), ∥·∥𝐻𝑆)) because Hilbert-Schmidt operators are compact and the
identity is not compact for the infinite dimensional 𝐿2(𝑀, (End(𝑆), ∥·∥𝐻𝑆)).
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C h a p t e r 3

MAP-VALUED QSDES

The background to quantum stochastic differential equations is introduced in this
chapter. The reference on map-valued qsde’s is Goswami and Sinha’s mono-
graph[62], while background on quantum probability and Wiener space analysis
follows [58, 52, 55]. These constructions can be done in noncommutative probabil-
ity in general (for instance, see [14] for free probability), the key idea is to replace the
𝜎-algebra of events by the possibly noncommutative algebra of R-indexed random
variables, that is, adapted stochastic processes. Note that notion of independence in
noncommutative probability is not unique and a model for noncommutative proba-
bility needs to be fixed (see [36]). The applications considered in the next chapter
deviate from this theory in one regard — the generator for the heat semigroup on
the canonical spectral triples does not induce a Frechet structure, and the usual reg-
ularity requirement of complete-smoothness (definition 4.5.3) cannot be used. The
point of this chapter is to define a more general class of integrable processes than
considered by [62]. The integrability of such processes, specifically the guaranteed
existence of the quantum stochastic integrals that arise through the Picard scheme
is noted in remark 3.2.5

3.1 The Wiener-Segal-Ito correspondence
The operator stochastic integrals are defined in analogy with the classical stochas-
tic integral, the motivating principle being identification between the (boson) Fock
space and Wiener space, so that usual Wiener integral is recovered under the iden-
tification. In this section, some aspects of this correspondence are summarized.

A remark on notation: 𝐻, 𝐾 will denote Hilbert space. The identity operator on
various space and distinguished identity vector will all be denoted by 1 when clear
from context. The 𝑛-fold symmetric tensor product is denoted by 𝐻◦𝑛, but clear
from context, ◦ will be denoted by ⊗ and symmetric Fock space Γ𝑠 (𝐻) by Γ(𝐻).
By convention, 𝐻◦0 = C. As is customary, tensor symbol in Hilbert space tensor
product will be suppressed when clear, e.g. 𝐻 ⊗ 𝐾 = 𝐻𝐾 .

Let Ω := C(R≥0,R) be the space of maps 𝑋 : R≥0 → R with 𝑋𝑡 := 𝑋 (𝑡). The
spaceΩ is given the filtration F𝑡 generated by 𝑋𝑡 , and the Wiener measure, P𝑊 which
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is the unique measure satisfying 𝑋0 = 0 a.s. and the process (𝑋𝑡) has independent
centered Gaussian increments, E [(𝑋𝑡 − 𝑋𝑠)2] = 𝑡 − 𝑠.

The symmetric (boson) Fock space over 𝐻 is the space Γ𝑠 (𝐻) := ⊕𝑛∈Z≥0𝐻
◦𝑛. The

set of exponential vectors E(𝐻) := {E(𝑣) : 𝑣 ∈ 𝐻}

𝐻 ∋ 𝑣 → E(𝑣) := 1 ⊕𝑛∈N 1√
𝑛!
𝑣◦𝑛 ∈ Γ𝑠 (𝐻)

is total in the boson Fock space and compatible with the𝐻-innerproduct, ⟨E( 𝑓 ),E(𝑔)⟩Γ(𝐻) =
𝑒⟨ 𝑓 ,ℎ⟩𝐻 . The creation and annihilation operators, 𝑎+

ℎ
, 𝑎−

ℎ
, ℎ ∈ 𝐻, are defined by

𝑎−ℎE( 𝑓 ) := ⟨ℎ, 𝑓 ⟩E( 𝑓 ) and 𝑎+𝑓E( 𝑓 ) := 𝑑
𝑑𝜖

E( 𝑓 + 𝜖ℎ)
��
𝜖=0 (3.1)

The Fock vaccumm vector 1 is 1C ⊕𝑛∈N 0, with 𝑎−
𝑓
1 = 0.

The second quantization for 𝐴 ∈ B(𝐻, 𝐾) is the operator Γ(𝐴) ∈ B(Γ(𝐻), Γ(𝐾))
defined by (◦𝑖∈[𝑛] 𝑓𝑖) = ◦𝑖∈[𝑛]𝐴 𝑓𝑖, therefore, Γ(𝐴) (E( 𝑓 )) := E(𝐴 𝑓 ). The differential
second quantization is self-adjoint generator 𝑎◦(L) := 𝑑 Γ(L) for the unitary group
Γ(𝑒𝑖𝑡L) generated by L with

𝑎◦(L)E( 𝑓 ) := 𝑎+L 𝑓E( 𝑓 )

The Wiener-Segal-Ito isomorphism between the Wiener spaceW(Ω) := (Ω, P𝑊 , F )
and Γ(𝐻) for 𝐻 = 𝐿2(R≥0) is the map

E( 𝑓 ) → 𝑒𝑀 ( 𝑓 ) , 𝑀 ( 𝑓 ) :=
∫ ∞

0
𝑓 (𝑡)𝑑𝑊𝑡 − 1

2

∫ ∞

0
𝑓 (𝑡)2𝑑𝑡

where is 𝑊𝑡 is one-dimensional Brownian motion. 𝑀 ( 𝑓 ) is the exponential mar-
tingale that is unqiue solution to sde 𝑑𝑍𝑡 = 𝑍𝑡 𝑓 (𝑡)𝑑𝑊𝑡 . The isomorphism is
realized through chaos expansions as follows. For a rectangle 𝐻 = ×𝑖∈[𝑛] (𝑎𝑖, 𝑏𝑖] in
Σ𝑛 = {(𝑠𝑖 : 𝑖 ∈ [𝑛]), 𝑠𝑖 < 𝑠𝑖+1} ⊂ R≥0𝑛 (with convention that Σ0 is {∅}, 𝐽0 maps to
constant random variables), define

𝐽𝑛 (1𝐻) :=
∫
Σ𝑛

1𝐻 (𝑠1, . . . 𝑠𝑛)𝑑𝑋𝑠1 . . . 𝑑𝑋𝑠𝑛 =
∏
𝑖

(𝑋𝑏𝑖 − 𝑋𝑎𝑖 )

as the stochastic integral with respect to Brownian motions, 𝑋𝑠𝑘 ’s. Then 𝐽𝑛 extends
to 𝐽𝑛 : 𝐿2(Σ𝑛) → 𝐿2(P𝑊 ). The 𝑛𝑡ℎ-chaos is the image 𝐶𝑛 := 𝐽𝑛 (𝐿2(Σ𝑛)) with
⊕𝑛𝐶𝑛 = 𝐿2(P𝑊 ). The order structure of R is not important for defining 𝐽𝑛: for any
symmetric function ℎ,

𝐼𝑛 (ℎ) :=
∫
R𝑛

ℎ(𝑠1, . . . 𝑠𝑛)𝑑𝑋𝑠1 . . . 𝑑𝑋𝑠𝑛 = 𝑛!𝐽𝑛 (ℎ)
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The solution 𝑒𝑀 ( 𝑓 ) to 𝑌𝑡 = 1 +
∫ 𝑡

0 𝑌𝑡 𝑓 (𝑡)𝑑𝑊𝑡 (which is sde 𝑑𝑍𝑡 = 𝑍𝑡 𝑓 (𝑡)𝑑𝑊𝑡 in
integral form) can be constructed as 𝑒𝑀 ( 𝑓 ) =

∑
𝑛

1
𝑛! 𝐼𝑛 ( 𝑓 1

◦𝑛
(0,𝑡])). Since the martingale

representation for any Fock vector gives the identification for Γ(𝐿2(R≥0)) with
W(Ω), multiplication by Brownian motion, 𝑊𝑡 , in W(Ω) can be viewed as an
operator on the Fock space, (see, for instance, [13]) and is given by

𝑊𝑡 = 𝑎
+
𝑡 + 𝑎−𝑡 where 𝑎±𝑡 := 𝑎±1[0,𝑡 ]

Because 𝑎−𝑡 1 = 0, 𝑎+𝑡 1 can be identified with Brownian motion𝑊𝑡 .

The Ito-Wiener-Segal isomorphism [55] is defined more generally than 𝐿2(R≥0).
For a separable Hilbert space H, the H-indexed family W = {𝑊 (ℎ), ℎ ∈ H} de-
fined on a complete probability space (Ω, F , P), with each 𝑊 (𝑥) ∈ W a centered
Gaussian satisfying E (𝑊 (ℎ),𝑊 (𝑔)) = ⟨ℎ, 𝑔⟩H, is called an isonormal Gaussian
process. When G is the 𝜎-field generated by 𝑤 ∈ W for an appropriate isonormal
Gaussian process W (see, for instance, [55, § 1.1]), 𝐿2(Ω,G, P) is isomorphic to
the symmetric Fock space Γ(H). Additionally, when H is the space 𝐿2(𝑇,B, 𝜇)
where 𝜇 is 𝜎-finite without atoms over a measure space (𝑇,B), 𝑊 (ℎ) can be re-
garded as stochastic integrals, with polynomials in𝑊 (ℎ) dense in 𝐿2(Ω,G, 𝜇). The
canonical example[58, Ex 19.9] is the one just considered, H := 𝐿2(R≥0) where
Γ(𝐿2(R≥0)) � 𝐿2(C(R≥0), PWiener). Through the Ito-Wiener-Segal isomorphism
between Wiener space of paths of Brownian motions on a compact manifold 𝑀 ,
𝑊 (𝑀), and the associated Fock space, the heat semigroup (as considered in exam-
ple 2.2.6) has a stochastic dilation on the Fock space. This dilation corresponds
to a flow for a Evans-Husdon type quantum stochastic differential equation (qsde)
introduced next. A process satisfying a qsde of this type is considered as a quantum
diffusion process.

3.2 Map-valued Evans-Hudson quantum sde’s
In this section the relevant theory for quantum stochastic processes is collected.
The exposition is based on the coordinates free formalism developed in [62]. [58]
contains a classical treatment, while [52] makes the relationship with Ito calculus
and commutative probability clear. Suppose A0 is a dense ∗-subalgebra inside the
C*-algebra A ⊂ B(H). Let 𝑘0 be the noise space, with 𝑘̂0 := C ⊕ 𝑘0. Set

• 𝑘 := 𝐿2(R+, 𝑘0), 𝑘𝑡 := 𝐿2( [0, 𝑡), 𝑘0), 𝑘 𝑡 := 𝐿2( [𝑡,∞), 𝑘0)

• Γ = Γ𝑠 (𝑘). Γ𝑡 := Γ(𝐿2( [0, 𝑡), 𝑘0), Γ𝑡 := Γ(𝐿2( [𝑡,∞), 𝑘0)
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• For 𝑓 ∈ 𝑘, 𝑓𝑡 := 𝑓 1[0,𝑡) , 𝑓
𝑡 : 𝑓 1[𝑡,∞) are projections onto 𝑘 𝑡 , 𝑘𝑡

Notice that the algebras B(H ⊗ Γ𝑡) form an increasing sequence of algebras and
define the analog of a filtration in classical probability.

For any map 𝐴 : H ⊗ Γ𝑡 → H ⊗ Γ𝑡 ⊗𝑘 𝑡 , the creation process is defined by

𝑎†(𝐴) (𝑢 ⊗ (𝑔𝑡)⊗𝑛) = 1√
𝑛+1

1H ⊗ Symm(𝐴𝑢(𝑔𝑡)⊗𝑛)

Intuitively, 𝑎† “creates” a new particle in after time 𝑡 using the coupling 𝐴. 𝑎† can
be interpret as a map in Lin(H ⊗ Γ,H ⊗ Γ), and this is the usual correspondence (as
in equation 3.1).

Given 𝑅 ∈ Lin(𝐷0,H⊗ 𝑘0), 𝐷0⊂denseH, if 𝑅(𝑢) := 𝑎 ⊗ 𝑏, then for Δ ⊂ (𝑡,∞), using
the mapping 𝑘0 ∋ 𝑏 → 𝑏1Δ ∈ 𝑘𝑡 , 𝑅Δ

𝑡 ∈ Lin(𝐷0 ⊗ Γ𝑡 ,H ⊗ Γ𝑡 ⊗𝑘 𝑡) is defined by

𝐷0 ⊗ Γ𝑡 ∋ 𝑢 ⊗ 𝜓 → 𝑅Δ
𝑡 (𝑢 ⊗ 𝜓) := 𝑎 ⊗ 𝜓 ⊗ (𝑏1Δ) ∈ H ⊗ Γ𝑡 ⊗𝑘 𝑡

Expressing 𝑅(𝑢) as 𝑎 ⊗ 𝑏 is not possible in general; the intuitive picture is just
clearer with this assumption. Formally, 𝑅Δ

𝑡 is defined using the canonical unitary
isomorphism Swap23 : 𝐴1 ⊗ 𝐴2 ⊗ 𝐴3 → 𝐴1 ⊗ 𝐴3 ⊗ 𝐴2, Swap23(𝑎1 ⊗ 𝑎2 ⊗ 𝑎3) =
𝑎1 ⊗ 𝑎3 ⊗ 𝑎2, 𝑅Δ

𝑡 (𝑢𝜓) = Swap23((1H ⊗ 1Δ)𝑅𝑢) ⊗ 𝜓.

The associated creation process creates 𝑘0 component of 𝑅 on interval Δ:

𝑎
†
𝑅
(Δ) := 𝑎†(𝑅Δ

𝑡 ) (3.2)

The corresponding annihilation process is defined by using 𝑘0 component of 𝑅 to
annihilate: for 𝑢𝑡 ∈ H ⊗ Γ𝑡 ,

(𝐷0 ⊗ Γ𝑡) ⊗ Γ𝑡 ∋ 𝑢𝑡E( 𝑓 𝑡) → 𝑎𝑅 (Δ) (𝑢𝑡E( 𝑓 𝑡)) =
((∫

Δ

⟨𝑅, 𝑓 (𝑠)⟩𝑑𝑠
)
𝑢𝑡

)
E( 𝑓 𝑡)

where ⟨𝑅, 𝑓 (𝑠)⟩ is the adjoint of map ⟨ 𝑓 (𝑠), 𝑅⟩ ∈ Lin(𝐷0,H) which satisfies
⟨⟨ 𝑓 (𝑠), 𝑅⟩𝑢, 𝑣⟩ = ⟨𝑅𝑢, 𝑣 ⊗ 𝑓 (𝑠)⟩. So ⟨𝑅, 𝑓 (𝑠)⟩ is viewed as an operator on H
that uses 𝑘0 component of 𝑅 to annihilate a 𝑘0 particle in Γ𝑡 component of 𝑢𝑡 .

The conservation process captures what happens on the tail [𝑡,∞) driven by a map
𝑇 ∈ Lin(𝐷0 ⊗ 𝑉0,H ⊗ 𝑘0), 𝐷0, 𝑉0 dense. 𝑇 induces a map 𝑇Δ : H ⊗ 𝑘 𝑡 → H ⊗ 𝑘 𝑡

using identification H ⊗ 𝑘 𝑡 ≡ 𝐿2( [𝑡,∞),H ⊗ 𝑘0),

𝐿2( [𝑡,∞),H ⊗ 𝑘0) ∋ 𝜂 → 1Δ(·)𝑇 ◦ 𝜂, that is, for all 𝑠 ≥ 𝑡, 𝑇Δ(𝜂) (𝑠) = 1Δ(𝑠)𝑇 (𝜂(𝑠))
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Therefore, with 𝑢 ∈ 𝐷0, 𝑔𝑡 ∈ Γ𝑡 , 𝑓
𝑡 ∈ 𝑘 𝑡 , 𝑢𝑡 = 𝑢𝑔𝑡 , the conservation process,

Λ𝑇 (Δ) : 𝐷0 ⊗ Γ → H ⊗ Γ, is the creation process driven by 𝑇Δ
· ,

H ⊗ Γ𝑡 ∋ 𝑢𝑔𝑡 → 𝑇Δ
𝑓 𝑡 (𝑢𝑔𝑡) := Swap23(𝑇Δ(𝑢 𝑓 𝑡)𝑔𝑡) ∈ H ⊗ Γ𝑡 ⊗𝑘 𝑡

Λ𝑇 (Δ) (𝑢𝑡E( 𝑓 𝑡)) := 𝑎†(𝑇Δ
𝑓 𝑡 ) (𝑢𝑡E( 𝑓

𝑡)) (3.3)

Remark 3.2.1. Writing H⊗Γ = H⊗Γ𝑡 ⊗ Γ𝑡 , for 𝑢E( 𝑓𝑡)E( 𝑓 𝑡), the component E( 𝑓 𝑡)
is the one that parametrizes 𝑇Δ: 𝑓 𝑡 is participating the conservation (or exchange)
process driven by 𝑇 . At each 𝑠 ∈ R≥0, 𝑇Δ(·) (𝑡) ∈ Lin(𝐷0 ⊗ 𝑉0,H ⊗ 𝑘0), and
𝑇Δ
𝑓 𝑡
(𝑢𝑔𝑡) (𝑠) is the map given by 𝑇 (𝑎𝑔𝑡 (𝑠) ⊗ 𝑓 𝑡 (𝑠)).

The Hudson-Parthasarathy quantum stochastic calculus on Hilbert spaces is set in the
the Schröedinger formalism for quantum dynamics considers stochastic integration
with respect to the fundamental processes 𝑎𝑅, 𝑎†𝑅, 𝑡1,Λ𝑇 . Suppose (𝐻𝑡)𝑡≥0 is a family
of linear operators on H⊗ Γ with {𝑣 𝑓 ⊗𝑛𝑡 𝜓𝑡} ⊂ Dom(𝐻𝑡) for 𝑣 ∈ 𝐷1⊂denseH, 𝑓𝑡 ∈ 𝑘𝑡 ,
𝑓𝑡 simple, right continuous and valued in 𝑉⊂dense𝑘0, 𝜓

𝑡 ∈ Γ𝑡 , which is adapted in
the sense that 𝐻𝑡 = 𝐻̂𝑡 ⊗ 1Γ𝑡 for some map 𝐻̂𝑡 : {H ⊗ E(𝑘𝑡)} ⊃ Dom(𝐻̂𝑡) → H ⊗ Γ.
And additionally, sup0≤𝑠≤𝑡 ∥𝐻𝑠 (𝑢E( 𝑓 ))∥ ≤ ∥𝑟𝑡𝑢∥ for all 𝑡, where 𝑟𝑡 depending on
𝑡, 𝑓 only is a closable map in Lin(𝐷1, 𝐻

′) for some Hilbert space 𝐻′ depending
only on 𝑓 . Such an adapted process is a regular process. Regularity is saying that
𝐻𝑡 (𝑢E( 𝑓 )) is continuous and

sup
𝑠≤𝑡

∥𝐻𝑡 (𝑢E( 𝑓 ))∥ ≤ 𝑐𝑡, 𝑓 ∥𝑢∥ (3.4)

for constant 𝑐𝑡, 𝑓 depending on 𝑡, 𝑓 , that is, the operator H𝑡 (·E( 𝑓 )) is continuous and
point-wise bounded on H.

If 𝐻𝑡 is simple, that is, 𝐻𝑡 =
∑𝑚
𝑖=0 𝐻𝑡𝑖1[𝑡𝑖 ,𝑡𝑖+1) (𝑡), 0 = 𝑡0 < . . . 𝑡𝑚 < 𝑡𝑚+1 = ∞, then

for 𝑀 as one of the fundamental processes1 𝑎𝑅, 𝑎†𝑅, 𝑡1,∫ 𝑡

0
𝐻𝑠𝑀 (𝑑𝑠) =

𝑚∑︁
0
𝐻𝑡𝑖𝑀 ( [𝑡𝑖, 𝑡𝑖+1) ∩ [0, 𝑡]) (3.5)

If 𝑋𝑡 =
∫ 𝑡

0 Λ𝑇 (𝑑𝑠) + 𝑎𝑅 (𝑑𝑠) + 𝑎†𝑆 (𝑑𝑠) + 𝐻𝑑𝑠 where 𝑅, 𝑆 ∈ Lin(𝐷0,H ⊗ 𝑘0), 𝑇 ∈
Lin(𝐷0 ⊗ V0,H ⊗ 𝑘0), 𝐷0,V0 dense in H, 𝑘0. Then for any V0-valued simple
functions 𝑓 , 𝑔 on R≥0, 𝑣, 𝑢 ∈ 𝐷0,

⟨𝑋𝑡𝑣E(𝑔), 𝑢E( 𝑓 )⟩ =
∫ 𝑡

0
⟨Ψ(𝑆, 𝑅, 𝑇, 𝑓 , 𝑔)𝑣E(𝑔), 𝑢E( 𝑓 )⟩𝑑𝑠 (3.6)

1The integral with respect to the conservation process is not treated here, but the treatment is
analogous.
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where Ψ can be explicit computed using equation 3.5. For general adapted regular
processes the integral is defined as a limit of simple processes and still satisfies the
above property the maps, if the maps

𝑠 → 𝑆(𝑠) (𝑣E(𝑔𝑠)), ⟨𝑅(𝑠), 𝜉⟩(𝑣E(𝑔𝑠)), 𝑇𝜉 (𝑣E(𝑔𝑠))

are continuous and point-wise bounded (as in equation 3.4 ) in 𝜉 ∈ 𝑘0, 𝑣 ∈ 𝐷0, 𝑔

a V0-valued simple function, and the 𝑇𝜉 is the operator defined by 𝑇𝜉 (𝑢) = 𝑇 (𝑢 ⊗
𝜉), where 𝑅, 𝑆, 𝑇 are all identified with operators they induce on the Fock space
(as in equations 3.2,3.3). This statement is the first fundamental lemma ([62,
corollary 5.2.7]).

The quantum Ito lemma extends equation 3.6 for the first fundamental lemma to
inner-product of adapted regular processes 𝑋𝑡 , 𝑋′

𝑡 , ⟨𝑋𝑡𝑣E(𝑔), 𝑋′
𝑡𝑢E( 𝑓 )⟩. The explicit

form can again be computed from the definition as for Ψ.

The Heisenberg formalism is captured by map-valued processes: for an adapted,
regular process, 𝑌 (𝑡) : A ⊗ Γ ⊃ Dom(𝑌 (𝑡)) → A ⊗ Γ, 𝑌 (𝑡) : A ⊗ 𝑘0 ⊗ Γ𝑡 ⊃
Dom(𝑌 (𝑡)) → A ⊗ Γ𝑡 ⊗𝑘0 define 𝑌 (𝑡) = (𝑌 (𝑡) ⊗ 1𝑘0)Swap23,

𝑌 (𝑠) : A ⊗ 𝑘0 ⊗ E(𝑘𝑠)
Swap23−−−−−−→ A ⊗ E(𝑘𝑠) ⊗ 𝑘0

𝑌 (𝑠)⊗1
−−−−−→ A ⊗ Γ(𝑘𝑠) ⊗ 𝑘0

A map-valued process can be viewed in the Hudson-Parthasarathy picture by using
the Hilbert space of Hilbert-Schmidt operators. The key difference is that in 𝑋𝑡 =∫ 𝑡

0 Λ𝑇 (𝑑𝑠) + 𝑎𝑅 (𝑑𝑠) + 𝑎†𝑆 (𝑑𝑠) + 𝐻𝑑𝑠, the operators 𝑆, 𝑅, 𝑇 can now depend on A;
this is what makes it possible to describe Markov processes. The dependence is
encoded in the structure matrix.

Definition 3.2.2. Given linear maps 𝛿 : A0 → A ⊗ 𝑘0, 𝜎 : A0 → A ⊗ B(𝑘0),L :
A0 → A, the structure matrix is the map

A0 ∋ 𝑓 → Θ( 𝑓 ) =
(
L( 𝑓 ) 𝛿†( 𝑓 )
𝛿( 𝑓 ) 𝜎( 𝑓 )

)
∈ B(H ⊗ (C ⊕ 𝑘0))

Notice that even if A is not unital, L(1) = 0 for 1 ∈ A′′ implies that in the von
Neumann algebra A′′, Θ (and the flow 𝑗𝑡 introduced earlier) are defined on the
operator system containing 1,A.

Remark 3.2.3. The dependence allows for “iterating” on the structure matrix, Θ.
The iteration is not by matrix multiplication: viewing Θ as a map A1 → A1 ⊗ A2,
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to iterate on it A2 component is ignored, and the A1 component is fed back to the
generator. This is a quantum random walk, e.g., see [11, definition 2.7]). Formally,

Θ0 = Θ,Θ𝑛+1 = Θ ⊗ 1 ◦ Θ𝑛 (3.7)

The structure matrix defines the following fundamental processes:

𝑎𝛿 (Δ) (
∑︁
𝑖

𝑥𝑖 ⊗ E( 𝑓𝑖))𝑢 :=
∑︁
𝑖

𝑎𝛿(𝑥∗
𝑖
) (Δ) (𝑢E( 𝑓𝑖)) (3.8)

𝑎
†
𝛿
(Δ) (

∑︁
𝑖

𝑥𝑖 ⊗ E( 𝑓𝑖))𝑢 :=
∑︁
𝑖

𝑎𝛿† (𝑥𝑖) (Δ) (𝑢E( 𝑓𝑖)) (3.9)

𝐼L (Δ) (
∑︁
𝑖

𝑥𝑖 ⊗ E( 𝑓𝑖))𝑢 :=
∑︁
𝑖

|Δ| (L(𝑥𝑖)𝑢) ⊗ E( 𝑓𝑖) (3.10)

Λ𝜎 (Δ) (
∑︁
𝑖

𝑥𝑖 ⊗ E( 𝑓𝑖))𝑢 :=
∑︁
𝑖

Λ𝜎(𝑥𝑖) (Δ) (𝑢E( 𝑓𝑖)) (3.11)

and the map-valued integrals are defined by them are as below. With 𝑢 ∈ H, 𝑓 ∈
𝐿4

loc, 𝑥 ∈ A,(∫ 𝑡

0
𝑌 (𝑠) ◦ (𝑎𝛿 + 𝐼L) (𝑑𝑠)

)
(𝑥 ⊗ E( 𝑓 ))𝑢

=

∫ 𝑡

0
𝑌 (𝑠) ((L(𝑥) + ⟨𝛿(𝑥∗), 𝑓 (𝑠)⟩ ⊗ E( 𝑓 ))𝑢 𝑑𝑠 (3.12)(∫ 𝑡

0
𝑌 (𝑠) ◦ (𝑎†

𝛿
) (𝑑𝑠)

)
(𝑥 ⊗ E( 𝑓 ))𝑢 =

(∫ 𝑡

0
𝑎
†
𝑌,𝑥

(𝑑𝑠)
)
𝑢E( 𝑓 ) (3.13)(∫ 𝑡

0
𝑌 (𝑠) ◦ (Λ𝜎) (𝑑𝑠)

)
(𝑥 ⊗ E( 𝑓 ))𝑢 =

(∫ 𝑡

0
Λ
𝑌,𝑥

(𝑑𝑠)
)
𝑢E( 𝑓 ) (3.14)

where 𝑎†
𝑌,𝑥

(𝑠) (𝑢E( 𝑓 )) = 𝑌 (𝑠) (𝛿(𝑥) ⊗ E( 𝑓𝑠))𝑢 (3.15)

Λ
𝑌,𝑥

(𝑢E( 𝑓 ) ⊗ 𝜉) = 𝑌 (𝑠) (𝜎(𝑥)𝜉 ⊗ E( 𝑓𝑠))𝑢 (3.16)

= 𝑌 (𝑠) (𝜎(𝑥) 𝑓 (𝑠) ⊗ E( 𝑓𝑠))𝑢 (3.17)

𝑓𝑠 being the projection of 𝑓 ∈ 𝑘 on 𝑘𝑠 since 𝑌 lives on A ⊗ Γ𝑠, and in going
from second to third equation in equation 3.17, 𝜉 := 𝑓 (𝑠) ∈ 𝑘0 is set following
Λ𝑇 (Δ) in equation 3.3 and remark 3.2.1, and for 𝜉 ∈ 𝑘0, 𝜎(𝑥)𝜉 ∈ Lin(H,H ⊗ 𝑘0)
𝜎(𝑥) : H ⊗ 𝑘0 → H ⊗ 𝑘0 is the map defined by 𝜎(𝑥)𝑔 (𝑢) = 𝜎(𝑥) (𝑢𝑔).

The stochastic integral 𝑍 (𝑡) =
∫ 𝑡

0 𝑌 (𝑠) ◦ (𝑎𝛿 + 𝐼L + 𝑎†(𝛿) + Λ𝜎) (𝑑𝑠) is the process∫ 𝑡

0
𝑌 (𝑠) ◦ (𝑎𝛿 + 𝐼L) (𝑑𝑠) +

∫ 𝑡

0
𝑌 (𝑠) ◦ (𝑎†(𝛿) + Λ𝜎) (𝑑𝑠)
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Let 𝐽 (0)𝑠 : A ⊗ Γ → A ⊗ Γ, 𝐽 (0)𝑠 = 1. Define 𝐽 (𝑛) (𝑡) :=
∫ 𝑡

0 𝐽
(𝑛−1) ◦ (𝑎𝛿 + 𝑎 †𝛿 +𝐼L +

Λ𝜎) (𝑑𝑠). The object of interest are the Picard iterates, 𝑆𝑁 (𝑡):

𝑆𝑁 (𝑡) =
∑︁
𝑛≤𝑁

𝐽
(𝑛)
𝑡 (𝑥 ⊗ E( 𝑓 )) (3.18)

that converge.

When the generator L for the semigroup 𝑒−𝑡L is unbounded, being able to iterate
requires the stochastic integral preserves the domain. Let A∞ be a norm-dense
algebra, and assume L(A∞) ⊂ A∞, and that there’s a norm-dense subspaces,
(𝑘0)∞ ⊂ 𝑘0, (A ⊗ 𝑘0)∞ ⊂ A ⊗ 𝑘0 (where A ⊗ 𝑘0 is normed by ∥𝑎 ⊗ 𝑘′∥2 =

∥𝑎∥2
A ∥𝑘′∥2

𝑘0
, i.e. as a Hilbert C*-module). The details are not included as the

norm-density is all that is relevant.

Now with L(A∞) ⊂ A∞, and V0 = (𝑘0)∞, define

• V𝑡 = {V0-valued simple functions in 𝑘𝑡}

• V = {V0-valued simple functions}

One defines a map-valued integrable process with respect to 𝑎𝛿, 𝑎†𝛿, 𝐼L , 𝜎 as follows:

Definition 3.2.4. An integrable map-valued process is an adapted process (𝑌 (𝑠))𝑠≥0 :
A∞ ⊗ E(V) → A ⊗ Γ(𝑘) such that:

1. For each 𝑡 ≥ 0, 𝑓 ∈ V, 𝑌 (𝑡) (𝑎 ⊗ E( 𝑓 )) ∈ (A ⊗ Γ(𝑘))∞

2. For every fixed 𝑎 ∈ A∞, 𝑓 ∈ V, 𝜉 ∈ V0, set A∞ ∋ 𝑎 → Ω𝑡, 𝑓 (𝑎) :=
𝑌 (𝑡) (𝑎 ⊗ E( 𝑓 )) ∈ (A ⊗ Γ(𝑘))∞ and for any separable Hilbert space H′ and
the ampilation Ω̃𝑡, 𝑓 := Ω𝑡, 𝑓 ⊗ 1H′ , with 𝑌 (𝑡) := Ω̃𝑡, 𝑓 define

𝑆𝑎 (𝑠) : H ⊗ E(V𝑠) ∋ 𝑢E( 𝑓𝑠) → 𝑌 (𝑠) (𝛿(𝑎) ⊗ E( 𝑓𝑠))𝑢 ∈ H ⊗ Γ𝑠 ⊗𝑘0

𝑇𝑎 (𝑠) : H ⊗ E(V𝑠) ⊗ V0 ∋ 𝑢E( 𝑓𝑠) ⊗ 𝜉 → 𝑌 (𝑠) (𝜎(𝑎)𝜉 ⊗ E( 𝑓𝑠))𝑢 ∈ H ⊗ Γ𝑠 ⊗𝑘0

then the maps 𝑠 → 𝑆𝑎 (𝑠) (𝑢E( 𝑓 )) , 𝑠 → 𝑇𝑎 (𝑠) (𝑢E( 𝑓 )), 𝑠 → 𝑌 (𝑠) ((L(𝑎)) +
⟨𝛿(𝑎∗), 𝜉⟩)) ⊗ E( 𝑓 ) are continuous.

Remark 3.2.5. For the existence of the Evans-Hudson dilation and the convergence
of Picard iterates Sinha and Goswami [62] require the boundedness of Ω̃𝑡, 𝑓 (𝑥) for
fixed 𝑓 , 𝑥; we absorb this into the existence theorem for Picard iterates as a bound on
∥Θ𝑛∥, where it’s verified given the structure maps, and mirrors the approach taken
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in [11]. For 𝑌 = 𝐽 (0) = 1, the needed continuity of Ω̃ can be directly verified as
well. They additionally require that the following map is completely smooth (see
definition 4.5.3):

A∞ ∋ 𝑎 → Ω𝑡, 𝑓 (𝑎) : 𝑌 (𝑡) (𝑎 ⊗ E( 𝑓 )) ∈ (A ⊗ Γ(𝑘))∞ (3.19)

This is because completely-smooth processes form a class where the Picard iterates
can be established to converge using the theory they develop. Complete-smoothness
is not applicable in the examples considered next, so the definition of integrable
processes needs to be adjusted. The thing to note is that the continuity requirement
in the second part of definition 3.2.4 is precisely what is needed to get the existence
of the integral (the point-wise boundedness follows from point-wise boundedness of
𝛿, 𝜎). The continuity of the maps in 𝑠 is equivalent to the (point-wise) boundedness
of process 𝑌,𝑌 on each 𝑎 ∈ A∞. For 𝐽 (𝑛+1)

𝑡 the boundedness will follow from that
of 𝐽 (𝑛)𝑡 (through lemma 4.4.3), therefore, starting with 𝐽 (0) = 1, each successive
Picard iterate is a map-valued integrable process for which the map-valued integral
exists, while bounds on Θ𝑛 will yield explicit bounds on 𝐽 (𝑛) .
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C h a p t e r 4

UNBOUNDED GENERATORS

4.1 Introduction
In this chapter, we analyze examples to show the existence of the quantum stochastic
flows associated to laplacians on spectral triples without requiring truncation. The
first example considered is the flow generated by the noncommutative laplacian.
The second example deals with geometric laplacians on Clifford and spinor bundles
over reductive homogeneous spaces. The flows generated now are covariant with
respect to the associated group action.

Organization and overview
In section 4.2, the structure matrix background and an illustrative example are con-
sidered. Section 4.3 considers the noncommutative laplacian, while section 4.4
provides details showing the existence of the untruncated flow. The existence of
flows for the derived structure matrices is established in section 4.4 by providing
estimates that can be plugged into the standard theory. In section 4.5, the existence
of Evans-Hudson flow on homogeneous vector bundles over reductive homogeneous
spaces is established. This proceeds by showing that the laplacians are completely
smooth and utilizing the construction from [62] for such generators. The connec-
tions used are not necessarily torsion-free and this needs to be taken into account.
Section 4.6 considers growth of Sobolev norms required for convergence in com-
mutative examples.

Some remarks on notation. As before, by Riemannian (𝑀, 𝑔), we mean a Rieman-
nian manifold 𝑀 with metric 𝑔. The connection on the tangent bundle of 𝑀 , 𝑇𝑀 ,
is the Levi-Civita connection unless specified otherwise. When clear from context,
the same symbol is used for the connection ∇ on a Hermitian or Riemannian bundle
𝐸 and the dual connection on dual bundle 𝐸∗. After fixing a local orthonormal
frame about any 𝑝 ∈ 𝑀 , (𝑋𝑖)𝑖∈dim𝑀 , ∇𝑋𝑖 will be used interchangeably with ∇𝑖.
By abuse of notation, 𝑔𝑎𝑏∇𝑎∇𝑏𝜙 will denote 𝑔𝑎𝑏 (∇2𝜙)𝑎𝑏 where ∇2 is the iterated
covariant derivative, and the same for ∇𝑖1 . . .∇𝑖𝑘 := (∇𝑘 )𝑖1...𝑖𝑘 and also the raise
indexed version, ∇𝑖1 . . .∇𝑖𝑘 := (∇𝑘 )𝑖1...𝑖𝑘 . This will be made explicit if not clear
from context. For local coordinates (𝑥𝑖) about any 𝑝 ∈ 𝑀 , 𝜕𝑖 will denote the coor-
dinate vector fields 𝜕

𝜕𝑥𝑖
. [𝑛] is the set {𝑖 ∈ N, 𝑖 ≤ 𝑛} where N, with convention that
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0 ∉ N. [𝑛 : 𝑚] denotes the set {𝑛, 𝑛 + 1 . . . 𝑚}. The finite linear span is denoted
by FinteLinSpan(V) := {∑𝑖∈[𝑘] 𝛼𝑖𝑎𝑖 : 𝛼𝑖 ∈ K , 𝑎𝑖 ∈ V} where K = R,C and is
dropped if is clear from context. Throughout Γ(𝐻) denotes the symmetric (boson)
Fock space over any space 𝐻, while E(𝐻) denotes the exponential vectors given by
E(𝑣) = ⊕∞

𝑛=0(𝑛!)−1/2𝑣⊗𝑛 for 𝑣 ∈ 𝐻. For a self-adjoint operator 𝐴 on 𝐻 with discrete
spectrum, denote by S𝐴, an orthonormal basis of eigenfunctions. For 𝑒𝑖, 𝑒 𝑗 ∈ S𝐴,
𝑒𝑖 𝑗 := 𝑒𝑖 ⊗ 𝑒∗𝑗 ∈ End(𝐻).

The endomorphism laplacian
To start we note the following sign conventions of the laplacians. Primarily the signs
are fixed so the Laplace-Beltrami operator has non-negative spectrum, and signs
on all other laplacians cascade from there. On Riemannian (𝑀, 𝑔), 𝑀 compact,
without boundary, Tr𝑔 denotes the trace of a covariant tensor taken after identifying
with a contravariant tensor via the metric 𝑔, Tr𝑔 (ℎ) := 𝑔𝑖 𝑗ℎ𝑖 𝑗 . Note that trace on
any contravariant tensor, e.g., vector fields, is simply the sum. For 𝑋 ∈ Γ(𝑇𝑀),
div(𝑋) = Tr(∇𝑋), with ∇ being the connection. The Laplace-Beltrami operator
is taken as the operator with non-negative spectrum, that is, −div(∇) = −Tr(∇·,·),
where ∇·,· is the second invariant derivative ∇2

𝑉,𝑊
:= ∇𝑉∇𝑊 − ∇∇𝑉𝑊 .

So far the scalar and (co)tangent bundle laplacians have been considered. More
generally let ∇ be any connection on the vector bundle 𝐸 → 𝑀 . The connection
Laplacian is ∇∗∇ where ∇∗ is adjoint of the connection ∇ : Γ(𝐸) → Γ(𝐸) ⊗ 𝑇∗𝑀

with respect to 𝐿2(Γ𝐸). Equivalently, ∇∗∇ = −Tr(∇·,·). Further, △ = −𝑔𝑖 𝑗∇𝑖∇ 𝑗 :=
−𝑔𝑖 𝑗 (∇2)𝑖 𝑗 . The connection Laplacian at 𝑝 ∈ 𝑀 , △ = ∇∗∇ in local coordinates (𝑒𝑖)
is given by △ = −(∑𝑖 ∇𝑖∇𝑖 − ∇∇𝑖𝑒𝑖 ). To evaluate △𝜙 at any 𝑝 ∈ 𝑀 and 𝜙 ∈ Γ(𝐸),
we will use Riemann normal coordinates centered at 𝑝 so ∇𝑖𝑒 𝑗 vanish, yielding
△𝜙(𝑝) = −∑

𝑖 ∇𝑖∇𝑖𝜙(𝑝).

The endomorphism connection ∇End on the bundle End(𝐸) = 𝐸 ⊗ 𝐸∗ associated
to a connection ∇ on the Riemannian (or Hermitian) vector bundle 𝐸 over the
Riemannian manifold 𝑀 is such that for 𝑋 ∈ 𝑇𝑀,∇End

𝑋
= ∇𝑋 ⊗ 1 + 1 ⊗ ∇̃𝑋 , where

∇̃ is the dual connection on 𝐸∗. The endomorphism Laplacian is defined as usual:
at 𝑝 ∈ 𝑀 in Riemann normal coordinates centered at 𝑝 (denoting ∇̃∗∇̃, ∇̃ by △,∇
again),

△End = −
∑︁
𝑖

∇End
𝑖 ∇End

𝑖 = △ ⊗ 1 − 2
∑︁
𝑖

∇𝑖 ⊗ ∇𝑖 + 1 ⊗ △ (4.1)

Note that as 𝐸 ⊗ 𝐸∗ is balanced over C(𝑀), the action of C(𝑀) on End(𝐸) can be
written as 𝑓 · 1End =

∑
𝑖 ( 𝑓 · ℎ𝑖) ⊗ ℎ∗

𝑖
; this convention is used for all computation
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with Laplacian expressed in this tensor form. It’s also very useful to note that in
any local coordinates , ∇End acts by commutator: if over chart 𝑈, the connection
has potential 𝐴, ∇ = 𝑑 + 𝐴, then for a local orthonormal frame (𝜇𝑖) and dual
frame (𝜇 𝑗 ), ∇End ∑

𝑖 𝑗 𝜎
𝑖
𝑗
𝜇𝑖 ⊗ 𝜇 𝑗 =

∑
𝑖 𝑗 (𝑑𝜎𝑖𝑗 )𝜇𝑖 ⊗ 𝜇 𝑗 +

∑
𝑗 𝑘 [𝜎𝐴 − 𝐴𝜎] 𝑗 𝑘𝜇𝑘 ⊗ 𝜇 𝑗 . In

particular, since 1End is given by the identity matrix locally, it follows (see [38]) that
∇End(1End) = 0. This implies that again in normal Riemann coordinates centered at
𝑝 yields that for any 𝑓 ∈ C∞(𝑀), △End( 𝑓 1End) (𝑝) = −∑

𝑖 ∇End
𝑖

∇End
𝑖

( 𝑓 · 1End) (𝑝) =∑
𝑖 ∇End

𝑖
(𝜕𝑖 𝑓 1End) = −∑

𝑖 𝜕𝑖𝜕𝑖 𝑓 · 1End(𝑝)

Proposition 4.1.1. For 𝑓 ∈ C∞(𝑀), △End(𝐸) ( 𝑓 · 1End) = △𝑀 ( 𝑓 ) · 1End.

Proof. Let Γ𝑘
𝑖 𝑗

be the Christoffel symbols for Levi-Civita connection, then in lo-
cal coordinates about 𝑥 ∈ 𝑀 , △𝑀 ( 𝑓 ) = −∑

𝑖 𝑗 𝑔
𝑖 𝑗 (𝑥) (𝜕𝑖𝜕𝑗 −

∑
𝑘 Γ

𝑘
𝑖 𝑗
𝜕𝑘 ) 𝑓 (see, for

instance, [12, pg 66]) and for the endomorphism Laplacian,

△End( 𝑓 · 1) = −
∑︁
𝑖 𝑗

𝑔𝑖 𝑗 (𝑥) (∇End
𝑖 ∇End

𝑗 −
∑︁
𝑘

Γ𝑘𝑖 𝑗∇End
𝑘 ) ( 𝑓 · 1End)

= −
(∑︁
𝑖 𝑗

𝑔𝑖 𝑗 (𝑥) (𝜕𝑖𝜕𝑗 −
∑︁
𝑘

Γ𝑘𝑖 𝑗𝜕𝑘 ) 𝑓
)
· 1End = △𝑀 ( 𝑓 )1

where we used ∇End(1End) = 0,∇End
𝑋

( 𝑓 ) · 1End = 𝑋 ( 𝑓 ) · 1End.

4.2 The structure matrix
From Chapter 2, the heat semigroup 𝑒−𝑡L , L = △End is a quantum dynamical
semigroup on End(𝐸) ≡ 𝐸 ⊗ 𝐸∗ with 𝑒−

1
2 𝑡△

End
(1) = 1 for all 𝑡. We will work

with the semigroup living C(𝑀) ⊂ End(𝐸). To derive the qsde associated to
the heat semigroup, we start by computing the structure matrix for the associated
Evans-Hudson flow following the standard prescription (see [62]). The first step is
to compute the kernel for the generator L = △End on the A∞ = C∞(𝑀) acting on
End(𝐸) defined by 𝐾L : 𝑋 × 𝑋 → B(𝐸 ⊗ 𝐸∗) for 𝑋 := A∞ × A∞, where 𝐾L for
any given any L : 𝑋 → 𝑋 is defined by

𝑋 × 𝑋 ∋ (( 𝑓1, 𝑓2), (𝑔1, 𝑔2)) →
L( 𝑓 ∗1 𝑓

∗
2 𝑔2𝑔1) + 𝑓 ∗1 L( 𝑓 ∗2 𝑔2)𝑔1 − L( 𝑓 ∗1 𝑓

∗
2 𝑔2)𝑔1 − 𝑓 ∗1 L( 𝑓 ∗2 𝑔2𝑔1) ∈ C(𝑀) (4.2)

and from this, using the Kolmogorov decomposition for this kernel, we will obtain
the structure matrix.
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The Kolmogorov decomposition
We recall some details on reproducing kernel Hilbert modules.

Definition 4.2.1. For any positive kernel 𝐾 : 𝑋 × 𝑋 → B(𝐻), the reproduc-
ing kernel Hilbert space 𝑅𝐾 is the space of 𝐻-valued functions on 𝑋 such that
𝑅𝐾 = LinSpan{𝐾 (·, 𝑥)𝑢 : 𝑥 ∈ 𝑋, 𝑢 ∈ 𝐻} and ⟨ 𝑓 (𝑥), 𝑢⟩ = ⟨ 𝑓 , 𝐾 (·, 𝑥)𝑢)⟩ for all
𝑓 ∈ 𝑅𝐾 , 𝑢 ∈ 𝐻. The Kolmogorov decomposition is the Hilbert space 𝑅𝐾 with
the map

𝑉 (𝑥) = 𝐾𝑥 : 𝐻 → 𝑅𝐾 , [𝐾𝑥 (𝑢)] (𝑦) = 𝐾 (𝑦, 𝑥)𝑢

Notice that ⟨𝐾 (·, 𝑎)𝑢, 𝐾 (·, 𝑏)𝑣⟩ = ⟨𝐾 (𝑏, 𝑎)𝑢, 𝑣⟩ = ⟨𝐾 (𝑢, 𝐾 (𝑎, 𝑏)𝑣⟩, 𝐾 (𝑎, 𝑏) =

𝐾 (𝑏, 𝑎)∗; the adjoint of 𝐾 (·, 𝑥) is evaluation at 𝑥.

The kernel can be computed using proposition 4.1.1. Equivalently it follows by
noting that 𝑓 · 1End =

∑
𝑖 ( 𝑓 · ℎ𝑖) ⊗ ℎ∗𝑖 for 𝑓 ∈ C∞(𝑀) and (ℎ𝑖) a basis of eigensec-

tions of △𝐸 , so in expansion of endomorphism laplacian (equation 4.1), there’s no
contribution to the kernel from 1⊗△, while the contribution for the term ∇⊗∇ term
can only come from ∇ acting on 𝑓 , but this cancels out. Computing it out yields
𝐾△ ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) := −2 (∑𝑘 𝑑𝑎1(𝑒𝑘 )𝑑𝑏1(𝑒𝑘 )) 𝑎2𝑏2.

Normalizing suppresses the extraneous factors of −2. The Kolmogorov decompo-
sition for the kernel associated with L = −1

2△
End contains the needed data for the

structure matrix:

𝐾L ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) := 𝐾 𝑝

L ((𝑎1, 𝑎2), (𝑏1, 𝑏2)) =
(∑︁
𝑘

𝑑𝑎1(𝑒𝑘 )𝑑𝑏1(𝑒𝑘 )
)
𝑎2𝑏2

(4.3)

where we are working in Riemann normal coordinates about 𝑝, and the superscript
𝑝 ∈ 𝑀 in 𝐾 𝑝

L indicates that the expression holds in local coordinates at 𝑝 ∈ 𝑀 .
The Kolmogorov decomposition can be taken to be the reproducing kernel Hilbert
module

𝑅L = LinSpan{𝐾L (·, 𝑏)𝑢 : 𝑏 ∈ 𝑋, 𝑢 ∈ 𝐸}

where 𝑋 = C∞(𝑀) × C∞(𝑀), with map 𝑉 : 𝑋 → B(E, 𝑅L) given by

𝑉 (𝑥) : 𝐸 → 𝑅L , 𝐸 ∋ 𝑢 → 𝐾L (·, 𝑥)𝑢 ∈ 𝑅L

By definition, 𝐾L (·, 𝑥)𝑢 is total in 𝑅L making the decomposition minimal. The
following explicit identification with differential forms allows for interpreting the
structure matrix obtained in a meaningful way.
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Observation 4.2.2. Note for 𝑥 = (𝑎1, 𝑎2), 𝑦 = (𝑏1, 𝑏2), in local coordinates,

[𝑉 (𝑥)𝑢] (𝑦) = 𝑎2𝑏2
∑︁
𝑘

𝑑𝑎1(𝑒𝑘 )𝑑𝑏1(𝑒𝑘 )𝑢

which can be interpreted as the form 𝑎2
∑
𝑘 𝑑𝑎1(𝑒𝑘 )𝑑𝑒𝑘 evaluated on the vector

field 𝑏2
∑
𝑘 𝑑𝑏1(𝑒𝑘 ) 𝜕

𝜕𝑒𝑘
acting by multiplication on 𝑢. Since 𝐾L (𝑥, 𝑦) ∈ C(𝑀), on

viewing 𝑥 = (𝑎1, 𝑎2) as the 1-form, 𝑎2𝑑𝑎1, 𝐾L (·, 𝑥) is viewed as dual at each point
𝑚 ∈ 𝑀 , and so is identified with vector fields Γ(𝑇𝑀), and therefore, 𝐾L (·, 𝑥)𝑢 can
be viewed as a section of 𝑇𝑀 ⊗ 𝐸 while 𝑉 (𝑥) is thought of as 1-form acting by
contracting with the 𝑇𝑀 component. Therefore, 𝑉 (𝑥), 𝑥 = ( 𝑓1, 𝑓2) is the operator
𝑢 → 𝑓2𝑑𝑓1 ⊗ 𝑢, where 𝑓2𝑑𝑓1 ⊗ 𝑢 defines an 𝐸 valued function on 𝑋 by 𝑓2𝑑𝑓1 ⊗
𝑢((𝑔1, 𝑔2)) = 𝑓2𝑔2⟨𝑑𝑓1, 𝑑𝑔1⟩𝑢.

Since 𝜕𝑘 ( 𝑓 ∗1 𝑓
∗
2 𝑔2𝑔1) + 𝑓 ∗1 𝜕𝑘 ( 𝑓

∗
2 𝑔2)𝑔1 − 𝜕𝑘 ( 𝑓 ∗1 𝑓

∗
2 𝑔2)𝑔1 − 𝑓 ∗1 𝜕𝑘 ( 𝑓

∗
2 𝑔2𝑔1) = 0, this

holds, not just in Riemann normal coordinates but in any local orthonormal frame
(𝑒𝑖) over an open set 𝑈; additionally, over 𝑈 ⟨∇ 𝑓 ,∇𝑔⟩ =

∑
𝑖 ⟨∇ 𝑓 , 𝑒𝑖⟩⟨𝑒𝑖,∇𝑔⟩ =∑

𝑖 𝑑𝑓 (𝑒𝑖)𝑑𝑔(𝑒𝑖) =
∑
𝑖 ∇𝑖 𝑓∇𝑖𝑔

Hilbert C*-modules
Recall that a Hilbert C*-module over C*-algebra A (a Hilbert A-module) is right
A-module 𝑁 with aA-linear sesquilinear map ⟨·, ·⟩ : 𝑁×𝑁 → A, ⟨𝑥, 𝑦⟩𝑎 = ⟨𝑥, 𝑦𝑎⟩
for 𝑎 ∈ A.

Definition 4.2.3. The standard Hilbert C*-module HA for Hilbert space H is the
completion of the algebraic tensor productA⊗H, which is Hilbert C*-module having
the right A-action given by (𝑎⊗ ℎ)𝑎′ = 𝑎𝑎′⊗ ℎ, with respect to the norm induced by
the A-valued inner product ⟨𝑎 ⊗ ℎ, 𝑏 ⊗ ℎ′⟩ = 𝑎∗𝑏⟨ℎ, ℎ′⟩, ∥𝑎 ⊗ ℎ∥2 = ∥𝑎∗𝑎∥ ⟨ℎ, ℎ⟩.
Taking H = ℓ2, HA is identified with (𝑎𝑖) ∈ A ⊗ ℓ2,

∑
𝑎∗
𝑖
𝑎𝑖 < ∞.

For a Hilbert space 𝑘0, it’s convenient to use A ⊗C* 𝑘0 := A ⊗ 𝑘0 for the standard
Hilbert C*-module. A Hilbert C*-module generalizes the idea of a vector bundle
𝐸 → 𝑀 , where the A = C(𝑀), the A-valued inner product given by fiberwise
contraction. When A = C(𝑋) for a compact Hausdorff space 𝑋 , then HA is the
space of H valued continuous functions. Kasparov stabilization states that for any
countably generated Hilbert C*-module 𝑁 , there’s a unitary map 𝑡′ : 𝑁⊕HA → HA .

The structure matrix is the defined by the maps (L, 𝛿, 𝜎) where L is the densely
defined generator with Dom(A) ⊂ A0, Dom(A),A0 norm-dense in A, 𝜎(𝑥) =
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𝜋(𝑥) − 𝑥 ⊗ 1 for a ∗-homomorphism 𝜋 : A0 → Lin(A ⊗C* 𝑘0), 𝛿 a 𝜋-derivation
A0 → A ⊗C* 𝑘0. These maps in addition to satisfying some structural properties
satisfy the compatibility condition

L(𝑥𝑦) − L(𝑥)𝑦 − 𝑥L(𝑦) = 𝛿†(𝑥)𝛿(𝑦) (4.4)

for 𝑥, 𝑦 ∈ A0, 𝛿†( 𝑓 ) := 𝛿( 𝑓 ∗)∗.

The structure matrix Θ is defined by

Θ(𝑥) =
(
L(𝑥) 𝛿†(𝑥)
𝛿(𝑥) 𝜎(𝑥)

)
(4.5)

Note that Θ(1) = 0, and for each fixed 𝑥, Θ(𝑥) ∈ B(𝐻 ⊗ (C ⊕ (𝑘0)∞)) where (𝑘0)∞
is norm-dense in 𝑘0. The maps 𝛿, 𝜎 are extracted from the minimal Kolmogorov
decomposition: the decomposition (𝑅L , 𝑉) induces the maps below on A∞ :=
C∞(𝑀) ⊂ C(𝑀) = A,

𝜌 : A∞ → B(𝑅L), 𝜌(𝑥) (𝑉 (·, 𝑏)𝑢) = 𝑉 (·, 𝑥𝑏)𝑢 (4.6)

𝛼 : A∞ → B(𝐸, 𝑅L), 𝛼(𝑥) = 𝑉 (𝑥, 1)

With observation 4.2.2 and equation 4.3 in mind, 𝜌( 𝑓 ), 𝑓 ∈ C∞(𝑀), is multiplica-
tion by 𝑓 on 𝑅L while 𝛼( 𝑓 ) acts by contraction with 1-form

∑
𝑘 𝑑𝑓 (𝑒𝑘 )𝑑𝑒𝑘 . The

representation 𝜌 is the identity map: 𝐶∞(𝑀) is interpreted as acting by multiplica-
tion on 𝑅L , and 𝛼 is a derivation (by Christensen-Evans theory, 𝛼 is a 𝜌-derivation,
but 𝜌 is identity).

The construction of the structure maps proceeds as in [62, Thm 6.6.1]. To start
define the Hilbert A-module 𝑁 = {𝛼(𝑥)𝑦 : 𝑥, 𝑦 ∈ A∞} where the closure is with
respect to operator norm for B(𝐸, 𝑅L). A has right action on 𝑁 by multiplication
(where the norm density of A∞ ⊂ A is utilized) and the A-valued inner product is
𝑁 × 𝑁 ∋ (𝑎, 𝑏) → ⟨𝑎, 𝑏⟩ = 𝑎∗𝑏. By Kasparov’s stabilization theorem, there’s an
isometric embedding into the standard Hilbert module, 𝑡 : 𝑁 → HA where H can
be taken to be any infinite-dimensional Hilbert space. The embedding into A ⊗ H
is needed to identify what the structure matrix acts on.

Define 𝛿(𝑥) = 𝑡 (𝛼(𝑥)). For 𝜌 note 𝜌 induces a left action 𝜌̂ on 𝑁 , 𝜌̂(𝑥) (𝛼(𝑦)) =
(𝛼(𝑥𝑦) −𝛼(𝑥)𝑦). But as 𝛼 is a 𝜌-derivation, 𝜌̂(𝑥) = 𝑥𝛼(𝑦), so 𝜌̂(𝑥) is multiplication
by 𝑥 and is again identity representation of A acting by multiplication. Set 𝜋(𝑥) =
𝑡 𝜌̂(𝑥)𝑡∗, again 𝜋 = 1 (so the explicit form of 𝑡 does not come into play).
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Given the identification with A ⊗ 𝑅L , the compatibility condition (equation 4.4),
along with 𝑓 ∗ = 𝑓 , 𝑔∗ = 𝑔 as 𝑓 , 𝑔 are R-valued yields

−1
2 (△( 𝑓 𝑔) − △( 𝑓 )𝑔 − 𝑓 △ (𝑔)) = −⟨𝑑𝑓 , 𝑑𝑔⟩ = 𝛿†( 𝑓 )𝛿(𝑔)

Therefore, with equation 4.5 in reference, we have the structure matrix summarized
in the following proposition. The embedding 𝑡 for Laplace-Beltrami operator is
described in example 4.4.10 where the remaining details are provided, however, it’s
a local variant, and given a bundle an explicit global embedding can be found, so
general form for that is not included.

Proposition 4.2.4. For any vector bundle 𝐸 → 𝑀 , the structure matrix for the
−1

2△
End(𝐸) generated flow on End(𝐸) is the map

A0 ∋ 𝑓 → Θ( 𝑓 ) =
(
−1

2 △𝑀 ( 𝑓 ) · 1 𝛿†( 𝑓 )
𝛿( 𝑓 ) 0

)
∈ B(𝐸 ⊗ (C ⊕ 𝑘0)) (4.7)

where A0 := C∞(𝑀)

• The multiplicity space 𝑘0 ⊂ 𝐿2(Ω1(𝑀))

• 𝛿 : A0 → A0 ⊗ 𝑘0, 𝛿( 𝑓 ) = 𝑡 (𝛼( 𝑓 )), 𝛿†(𝑥)𝛿(𝑦) = −⟨𝑑𝑥, 𝑑𝑦⟩.

• 𝜎 = 0 since 𝜎(𝑥) = 𝜋(𝑥) − 𝑥 ⊗ 1𝑘0 and 𝜋 : A0 → A0 ⊗ B(𝑘0) is identity

4.3 The noncommutative laplacian flow
For noncommutative laplacian 𝐷2

D acting on End(𝑆) with 𝐷 the Dirac operator and
𝑆 the spinor bundle, it’s possible to explicitly derive a form for the embedding which
is nice enough to get existence of the flow for the untruncated generator.

Consider the noncommutative laplacian L := −𝐷2
D := −[𝐷, [𝐷, ·]/2 acting on

A = B(𝑆). The kernel (equation 4.2), 𝐾L , for L is given by

𝐾L (( 𝑓1, 𝑓2), (𝑔1, 𝑔2)) := −(𝐷D 𝑓
∗
1 ) 𝑓

∗
2 𝑔2(𝐷D𝑔1) = −( 𝑓2( [𝐷, 𝑓1])∗)∗𝑔2( [𝐷, 𝑔1])

with 𝑓𝑖, 𝑔𝑖 ∈ S𝐷 = {𝜙𝑖}, 𝜙𝑖’s eigenspinors for 𝐷 forming an orthonormal basis.
This is the noncommutative analog of the original calculation (equation 4.3; the
difference in sign is due to the usual laplacian having negative spectrum). Denote
by 𝐾 (·, 𝑥) := 𝐾L ((·, ·), (𝑥, 1)), 𝐾 (𝑥, 𝑦) := 𝐾L ((𝑦, 1), (𝑥, 1)).

Notice that ( [𝐷, 𝑔1]𝑔2)∗ = −𝑔∗2 [𝐷, 𝑔
∗
1] is conjugate of the noncommutative differ-

ential form, Ω1
𝐷
(A) (recall chapter 2, equation 2.5). Therefore, as detailed in the
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following paragraphs, the reproducing kernel Hilbert module is obtained like in ob-
servation 4.2.2 and 𝛼, 𝜌, 𝛿 are defined in the same manner. The Hilbert C*-module
𝑁 can be constructed as in section 4.2, and an explicit embedding into A ⊗ 𝑅L can
be obtained (see lemma 4.3.1).

Since 𝑅L is functions on the (right) A-linear span of [𝐷, 𝑎], the map 𝑉 (𝑦)∗ ∈
B(𝑅L , 𝑆) for 𝑦 := ( 𝑓1, 𝑓2) sends 𝐾L ((·, ·), (𝑔1, 𝑔2))𝑢 → 𝐾L (( 𝑓1, 𝑓2), (𝑔1, 𝑔2))𝑢,
and so is given by evaluation on −[𝐷, 𝑓 ∗1 ] 𝑓

∗
2 . Viewing 𝑓2 [𝐷, 𝑓1] as a noncommuta-

tive differential form,𝑉 (𝑦)∗, acting by evaluation on −[𝐷, 𝑓 ∗1 ] 𝑓
∗
2 , can be interpreted

as analogous to the contraction with a vector field as in observation 4.2.2. This
description works because 𝐷 is symmetric unlike ∇∗∇ and captures how the noise
space 𝑘0 ⊂ 𝑅L relates to noncommutative differential forms.

Explicitly, for the kernel 𝐾L : (S𝐷 × S𝐷) × (S𝐷 × S𝐷) → B(𝑆), the maps 𝛼, 𝜌 are
defined by

𝛼 : 𝑥 → 𝑉 ((𝑥, 1)), 𝜌 : A → B(𝑅L), 𝜌(𝑥)𝐾L ((·, ·), (𝑎, 𝑏))𝑢 → 𝐾L ((·, ·), (𝑎, 𝑥𝑏))𝑢
(4.8)

As before the Hilbert A-module 𝑁 = {𝛼(𝑥)𝑦 : 𝑥, 𝑦 ∈ A}. The algebra F is taken
as the finite linear span

F = FinteLinSpan{𝑒𝑖 ⊗ 𝑒∗𝑗 : 𝑒𝑖, 𝑒 𝑗 ∈ S𝐷}

Lemma 4.3.1. Define the map 𝑡 by

𝑡 : 𝑁 ∋ 𝛼(
∑︁
𝑖 𝑗

𝑎𝑖 𝑗𝑒𝑖 𝑗 ) →
∑︁
𝑖 𝑗

𝑎𝑖 𝑗𝑒𝑖 𝑗 ⊗ 𝐾 (·, 𝑒𝑖 𝑗 )𝑒 𝑗 ∈ A ⊗ 𝑅L (4.9)

and then extend by A-linearity to 𝑁 . Then 𝑡 is an A-isometry.

Proof. Note that since 𝛼(𝑥) : 𝑢 → 𝐾L ((·, ·), (𝑥, 1))𝑢. Now [𝐷, 𝑒𝑖 𝑗 ]𝑒𝑘𝑙 = 0 unless
𝑗 = 𝑘 so as an operator [𝐷, 𝑒𝑖 𝑗 ] = (𝜆𝑖 −𝜆 𝑗 )𝑒𝑖 𝑗 . For 𝑥 =

∑
𝑖 𝑗 𝑎𝑖 𝑗𝑒𝑖 𝑗 , 𝑦 =

∑
𝑚𝑛 𝑏𝑚𝑛𝑒𝑚𝑛,

𝛼(𝑥) =
∑︁
𝑘

𝐾 (·, 𝑥)𝑒𝑘 ⊗ 𝑒∗𝑘 =
∑︁
𝑘

∑︁
𝑖 𝑗

𝐾 (·, 𝑎𝑖 𝑗𝑒𝑖 𝑗 )𝑒𝑘 ⊗ 𝑒∗𝑘 =
∑︁
𝑖 𝑗

𝐾 (·, 𝑎𝑖 𝑗𝑒𝑖 𝑗 )𝑒 𝑗 ⊗ 𝑒∗𝑗

and ⟨𝛼(𝑦), 𝛼(𝑥)⟩ =
∑︁
𝑖 𝑗𝑚𝑛

⟨𝐾 (·, 𝑏𝑚𝑛𝑒𝑚𝑛)𝑒𝑛 ⊗ 𝑒∗𝑛, 𝐾 (·, 𝑎𝑖 𝑗𝑒𝑖 𝑗 )𝑒 𝑗 ⊗ 𝑒∗𝑗 ⟩

=
∑︁
𝑖 𝑗𝑚𝑛

⟨𝐾 (·, 𝑏𝑚𝑛𝑒𝑚𝑛)𝑒𝑛), 𝐾 (·, 𝑎𝑖 𝑗𝑒𝑖 𝑗 )𝑒 𝑗 )⟩𝑒𝑛 ⊗ 𝑒∗𝑗

=
∑︁
𝑖 𝑗𝑚𝑛

⟨𝑒𝑛, 𝐾L ((𝑏𝑚𝑛𝑒𝑚𝑛, 1), (𝑎𝑖 𝑗𝑒𝑖 𝑗 , 1))𝑒 𝑗 )⟩𝑒𝑛 ⊗ 𝑒∗𝑗

=
∑︁
𝑖 𝑗𝑚𝑛

𝑎𝑖 𝑗 𝑏̄𝑚𝑛⟨𝑒𝑛, [𝐷, 𝑒∗𝑚𝑛] [𝐷, 𝑒𝑖 𝑗 ])𝑒 𝑗 ⟩𝑒𝑛 ⊗ 𝑒∗𝑗
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Now [𝐷, 𝑒𝑛𝑚] [𝐷, 𝑒𝑖 𝑗 ] forces 𝑚 = 𝑖 so 𝑒𝑛 ⊗ 𝑒∗𝑗 = 𝑒𝑛 ⊗ 𝑒∗𝑚 (𝑒𝑚) ⊗ 𝑒∗𝑗 . Therefore,

⟨𝛼(𝑦), 𝛼(𝑥)⟩ =
∑︁
𝑖 𝑗𝑚𝑛

1𝑚=𝑖 (𝑏𝑛𝑚𝑒𝑚𝑛)∗𝑎𝑖 𝑗𝑒𝑖 𝑗 ⟨𝐾 (·, 𝑒𝑚𝑛)𝑒𝑛, 𝐾 (·, 𝑒𝑖 𝑗 )𝑒 𝑗 ⟩

= ⟨
∑︁
𝑚𝑛

𝑏𝑚𝑛𝑒𝑚𝑛 ⊗ 𝐾 (·, 𝑒𝑚𝑛)𝑒𝑛,
∑︁
𝑖 𝑗

𝑎𝑖 𝑗𝑒𝑖 𝑗 ⊗ 𝐾 (·, 𝑒𝑖 𝑗 )𝑒 𝑗 ⟩ = ⟨𝑡 (𝛼(𝑥)), 𝑡 (𝛼(𝑦))⟩

Finally, by A-linearity of 𝑡 and the inner product

⟨𝑡 (𝛼(𝑦)), 𝑡 (𝛼(𝑥)𝑒 𝑗 𝑗 ′)⟩ = ⟨𝑡 (𝛼(𝑥)), 𝑡 (𝛼(𝑦))⟩𝑒 𝑗 𝑗 ′

= ⟨𝛼(𝑥), 𝛼(𝑦)⟩𝑒 𝑗 𝑗 ′

To define the structure map 𝜎 = 𝜋 − 1, consider the definition of 𝜌 equation 4.8.
Since 𝜋(𝑥) = 𝑡 𝜌̂(𝑥)𝑡∗, where 𝜌̂(𝑥)𝛼(𝑦) = 𝛼(𝑥𝑦) − 𝛼(𝑥)𝑦 = 𝜌(𝑥)𝛼(𝑦), since 𝛼 is a
𝜌-derivation. Therefore,

𝜋(𝑥) [𝑒𝑖 𝑗 ⊗ 𝐾L ((·, ·), (𝑎, 𝑏)] = 𝑒𝑖 𝑗 ⊗ 𝐾L ((·, ·), (𝑎, 𝑥𝑏)) (4.10)

Now FinteLinSpan{𝐾L ((·, ·), (𝑒𝑖 𝑗 , 𝑒𝑚𝑛)𝑒𝑘 )} is dense 𝑅L , and will be chosen as
(𝑘0)∞. Notice that 𝐷 being a Dirac operator was not used; so everything holds
generally. The following theorem summarizes the structure matrix,

Theorem 4.3.2. For Hilbert space 𝐻, A = B(𝐻), the structure matrix for the flow
generated by L = −(𝐴D)2 for any self-adjoint operator 𝐴 on𝐻, 𝑒𝑖’s an orthonormal
eigenbasis for 𝐴 is given by

1. 𝑘0 = 𝑅L , (𝑘0)∞ = FinteLinSpan{𝐾L ((·, ·), (𝑒𝑖 𝑗 , 𝑒𝑚𝑛)𝑒𝑘 )}

2. 𝛼(𝑒𝑖 𝑗 ) = 𝐾 (·, 𝑒𝑖 𝑗 )𝑒 𝑗⊗𝑒∗𝑗 , 𝜋(𝑥) [𝑒𝑖 𝑗⊗𝐾L ((·, ·), (𝑎, 𝑏)] = 𝑒𝑖 𝑗⊗𝐾L ((·, ·), (𝑎, 𝑥𝑏),
𝑡 : 𝛼(𝑒𝑖 𝑗 ) → 𝑒𝑖 𝑗 ⊗ 𝐾 (·, 𝑒𝑖 𝑗 )𝑒 𝑗

4.4 Quantum Picard iterates
To start, recall the following estimates for map-valued processes with 𝑎𝛿, 𝑎†𝛿, 𝐼L , 𝜎
being the fundamental processes (equations 3.9,3.10) (for background on map-
valued qsdes, refer to section 3.2):

Estimate 4.4.1. [62, Thm 5.4.7, 8.1.37] Define

• Φ1
𝑓 ,𝑠
(𝑥) := (L(𝑥) + ⟨𝛿(𝑥∗), 𝑓 (𝑠)⟩) ⊗ E( 𝑓 )
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• Φ2
𝑓 ,𝑠
(𝑥) := (𝜎 𝑓 (𝑠) (𝑥) + 𝛿(𝑥)) ⊗ E( 𝑓 )

• Φ3
𝑓 ,𝑠
(𝑥) := ⟨ 𝑓 (𝑠), 𝜎 𝑓 (𝑠) (𝑥) + 𝛿(𝑥)⟩ ⊗ E( 𝑓 ) = ⟨𝜎 𝑓 (𝑠) (𝑥) + 𝛿(𝑥), 𝑓 (𝑠)⟩∗ ⊗ E( 𝑓 )

For a map-valued integrable process 𝑌𝑠,



∫ 𝑡

0
𝑌𝑠 ◦ (𝑎𝛿 + 𝐼L) (𝑑𝑠) (𝑥 ⊗ E( 𝑓 ))𝑢





2
≤ 𝑒𝑡

∫ 𝑡

0




𝑌𝑠 (Φ1
𝑓 ,𝑠 (𝑥))𝑢




2
𝑑𝑠 (4.11)



∫ 𝑡

0
𝑌𝑠 ◦ (𝑎†

𝛿
) (𝑑𝑠) (𝑥 ⊗ E( 𝑓 ))𝑢





2
≤ 𝑒𝑡

∫ 𝑡

0

(


𝑌𝑠 (Φ2
𝑓 ,𝑠 (𝑥))𝑢




2
+




𝑌𝑠 (Φ3
𝑓 ,𝑠 (𝑥))𝑢




2
)
𝑑𝑠

(4.12)

The following proposition which is useful to bound the 𝑌 process.

Proposition 4.4.2. Let 𝑇 ∈ Lin(𝐾W , 𝐾′
W) for Hilbert space 𝐾, 𝐾′ and C*-algebras

W,W′, 𝐾W , 𝐾′
W standard Hilbert C*-modules. Then for any Hilbert space 𝐻,

∥𝑇 ⊗ 1𝐻 (𝑥 ⊗ 𝑘 ⊗ ℎ)∥ ≤ ∥𝑇 (𝑥 ⊗ 𝑘 ⊗ ℎ)∥ for any simple tensor 𝑥 ⊗ 𝑘 ⊗ ℎ.

Proof. By linearity of the tensor product, one may assume ∥ℎ∥ = 1, then

∥⟨𝑇 ⊗ 1(𝑥 ⊗ 𝑘 ⊗ ℎ), 𝑇 ⊗ 1(𝑥 ⊗ 𝑘 ⊗ ℎ)⟩∥
= ∥⟨𝑇 (𝑥 ⊗ 𝑘), 𝑇 (𝑥 ⊗ 𝑘)⟩⟨ℎ, ℎ⟩∥ = ∥(𝑇𝑥 ⊗ 𝑘)∗(𝑇𝑥 ⊗ 𝑘)∥ = ∥𝑇𝑥 ⊗ 𝑘 ∥2

There’s the following characterization for an integrable map-valued process gener-
ated by the structure maps inΘ through the Picard iteration scheme, the convergence
of which will yields the solution to the qsde needed.

Lemma 4.4.3. [62, lemma 8.1.37] Let V = {𝑑F -valued simple functions}, E(V)
the exponential vectors, and 𝐽 (0) : F ⊗ E(V) → A ⊗ Γ(𝑘0) be the identity map,
then with 𝐽 (0) = 1,

𝐽 (𝑛+1) (𝑡) =
∫ 𝑡

0
𝐽 (𝑛) (𝑠) ◦ (𝑎†

𝛿
+ 𝑎𝛿 + 𝐼L + Λ𝜎) (𝑑𝑠), 𝐽 (𝑛+1) : F ⊗ E(V) → A ⊗ Γ(𝑘0)

(4.13)
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each 𝐽𝑛 is a map-valued integrable process, Additionally, the following estimates
hold ,


𝐽 (𝑛+1)

𝑡 (𝑥 ⊗ E( 𝑓 ))𝑢



2

≤ 2

(



∫ 𝑡

0
𝐽
(𝑛)
𝑠 ◦ (𝑎𝛿 + 𝐼L) (𝑑𝑠) (𝑥 ⊗ E( 𝑓 ))𝑢





2

+




∫ 𝑡

0
𝐽
(𝑛)
𝑠 ◦ (𝑎†

𝛿
+ Λ𝜎) (𝑑𝑠) (𝑥 ⊗ E( 𝑓 ))𝑢





2
)

≤ 2𝑒𝑡
∫ 𝑡

0

(


𝐽 (𝑛)𝑠 (Φ1
𝑓 ,𝑠 (𝑥))𝑢




2
+





𝐽 (𝑛)𝑠 (Φ2
𝑓 ,𝑠 (𝑥))𝑢





2
+




𝐽 (𝑛)𝑠 (Φ3
𝑓 ,𝑠 (𝑥))𝑢




2
)
𝑑𝑠

(4.14)

Proof. The continuity requirements for existence of the integral for 𝐽 (0) are satisfied
since for each fixed E( 𝑓 ) and 𝑥 the structure maps are bounded (recall remark 3.2.5).
The inequalities follow from standard theory (for instance, [62, theorem 5.4.7]).
Iterating, one gets that each 𝐽 (𝑛) integral exists and can be bound by



𝐽 (𝑛−1)

 , and
the inequalities hold again.

By definition a map-valued process is linear, however, the processes 𝐽 (𝑛) are not
completely smooth as the flow generator has much weaker regularity. The Picard
iterates defined by

𝑆𝑁 (𝑡) =
∑︁
𝑛≤𝑁

𝐽
(𝑛)
𝑡 (𝑥 ⊗ E( 𝑓 )) (4.15)

can be shown to converge on the exponential vectors following a similar scheme as
[62, Thm 8.1.38] after plugging in the following estimates which need to be obtained
differently as Θ has much less regularity. To motivate the estimates we sketch the
convergence arguments.

Convergence for Picard iterates: examples
To establish the convergence of Picard iterates, the growth rate for ∥𝐽 (𝑛+1)

𝑡 (𝑥 ⊗
E( 𝑓 ))𝑢∥2 as function of 𝑛 for fixed 𝑥, 𝑓 needs to be controlled. The idea is to
expand ∥𝐽 (𝑛+1)

𝑡 (𝑥 ⊗ E( 𝑓 ))𝑢∥ recursively. Define Ψ𝑖
𝑓 ,𝑠
(𝑥) such that Φ𝑖

𝑓 ,𝑠
(𝑥) :=

Ψ𝑖
𝑓 ,𝑠
(𝑥) ⊗ E( 𝑓 ), factoring out E( 𝑓 ). Now suppose 𝑥 belongs to a subspace A′

such that Ψ𝑖
𝑓 ,𝑠
(A′) ⊂ A′, 𝑖 = 1, 3, 𝑃1Ψ

2
𝑓 ,𝑠
(A) = 𝑃1Swap23Φ

2
𝑓 ,𝑠
(A′) ⊂ A′ for

all 𝑥 ∈ A′, 𝑓 , 𝑠. Additionally, it’s required that if 𝑥 ∈ A′, 𝑥 ≥ 0, 𝑥 invertible,
√
𝑥 ∈ A′, however, this can be avoided if the structure matrix is sufficiently regular

(see section 4.4 for an example).
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Remark 4.4.4. Denoting any amplilation for Ψ𝑖
𝑓 ,𝑠

⊗ 1𝑚𝑘0
for 𝑚 ∈ Z≥0 again by Ψ𝑖

𝑓 ,𝑠
,

so the composition Ψ𝑖
𝑓 ,𝑠
Ψ2
𝑓 ,𝑠
(𝑥) makes sense: for example if Ψ2

𝑓 ,𝑠
(𝑥) sends 𝑥 to

𝑥′⊗𝑘′ ∈ A′⊗𝑘0 andΨ𝑖
𝑓 ,𝑠

acts onA′ component,Ψ𝑖
𝑓 ,𝑠
Ψ2
𝑓 ,𝑠
(𝑥) := Ψ𝑖

𝑓 ,𝑠
⊗1𝑘0 (Ψ2

𝑓 ,𝑠
(𝑥)).

By proposition 4.4.2, the ampilation does not affect the norm: ∥Ψ𝑖
𝑓 ,𝑠

⊗ 1(𝑥 ⊗ 𝑒)∥ =
∥Ψ𝑖

𝑓 ,𝑠
(𝑥) |, ∥𝑒∥ = 1. By linearity, when input to 𝐽 (𝑛) is a sum of simple tensors,

the bound is applied to each summand. Note that the 𝑛 nested Ψ𝑖’s that appear in
corollary 4.4.5 are the components of iterates of Θ𝑛 as defined in equation 3.7. The
ampilation in Ψ𝑖’s come from the ampilations in Θ𝑛. This yields,


𝐽 (𝑛)𝑠 (Φ2

𝑓 ,𝑠 (𝑥))𝑢



 = 


(𝐽 (𝑛)𝑠 ⊗ 1) (𝑥′ ⊗ E( 𝑓 ) ⊗ 𝑘′)𝑢





=




𝐽 (𝑛)𝑠 ⊗ 1(𝑥′ ∥𝑘′∥ ⊗ E( 𝑓 ) ⊗ 𝑘′/∥𝑘′∥)𝑢



 = 


𝐽 (𝑛)𝑠 (∥𝑘′∥ 𝑥′ ⊗ E( 𝑓 ))𝑢





Therefore, if for fixed 𝑓 , 𝑥, number of summands 𝑁 doesn’t grow too fast, and a
uniform bound holds on each, then the additional growth due to each ampilation can
be bound by a function of 𝑁 .

The terms in r.h.s. for equation 4.14, can be recursively expanded using estimate 4.4.1
till 𝐽0 = 1. Since 𝑓 is simple, | Range( 𝑓 ) | = 𝑟 < ∞, so for each 𝑠 ∈ [0, 𝑡], 𝑓 (𝑠) ∈
{𝜉𝑖𝑘 := 𝑑𝜙𝑖𝑘 , 𝜁𝑖 = 𝜙𝑖𝑘 , 𝑘 ∈ [𝑟]} ≡ Range( 𝑓 ). Therefore, all terms depending on 𝑓

in above can be uniformly bound by a constant 𝐵 := 𝐵 𝑓 , this yields


𝐽 (𝑛+1)
𝑡 (𝑥 ⊗ E 𝑓 )




2

≤ 𝐾𝑡, 𝑓
∑︁
𝑖𝑘∈[3]

∫ 𝑡

0

∫ 𝑠0

0
· · ·

∫ 𝑠𝑛−1

0




Ψ𝑖0
𝑓 ,𝑠0

(Ψ𝑖1
𝑓 ,𝑠1

(. . .Ψ𝑖𝑛−1
𝑓 ,𝑠𝑛−1

(𝑥))



 𝑑𝑠0𝑑𝑠1 . . . 𝑑𝑠𝑛−1

(4.16)

for 𝐾𝑡, 𝑓 := (2𝑒𝑡𝐵)𝑛 ∥E( 𝑓 )∥2. To get the Picard iterates to converge (eq 4.15), one
needs to show that Ψ𝑖0

𝑓 ,𝑠0
(. . .Ψ𝑖𝑛−1

𝑓 ,𝑠𝑛−1
(𝑥)) cannot growth too fast as function of 𝑛.

Corollary 4.4.5. Suppose for fixed 𝑓 , 𝑥 for any choice 𝑖𝑘 ∈ [3], 𝑘 ∈ N, there are
constants 𝐶, 𝐿𝑥 satisfying


Ψ𝑖0

𝑓 ,𝑠0
(Ψ𝑖1

𝑓 ,𝑠1
(. . .Ψ𝑖𝑛−1

𝑓 ,𝑠𝑛−1
(𝑥)))




 ≤ 𝐶𝑛𝐿𝑥

then 𝑆𝑁 (𝑡) defined by eq 4.15 converges.

Proof. In equation 4.16, by above bound,


𝐽 (𝑛+1)
𝑡 (𝑥 ⊗ E 𝑓 )




2
≤ 𝐾𝑡, 𝑓𝐶𝑛𝐿𝑥

∑︁
𝑖𝑘∈[3]

∫ 𝑡

0

∫ 𝑠0

0
· · ·

∫ 𝑠𝑛−1

0
𝑑𝑠0𝑑𝑠1 . . . 𝑑𝑠𝑛−1 ≤

𝐾′
𝑡, 𝑓
(𝐶′)𝑛

𝑛!
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so
∑
𝑛 𝐽

(𝑛)
𝑡 (𝑥 ⊗ E 𝑓 ) is bounded, giving the convergence.

Example 4.4.6 (Convergence for the noncommutative laplacian). To get the con-
vergence of Picard iterates for the noncommutative laplacian L, the above bound
is needed. Fix 𝑥 ∈ F = FinteLinSpan{𝑒𝑖 𝑗 : 𝑒𝑖 ∈ S𝐷}, so 𝑥 =

∑
𝑖, 𝑗∈[𝑁] 𝑎𝑖 𝑗𝑒𝑖⊗𝑒∗𝑗 , 𝑁 <

∞, and 𝑓 a simple function taking values in (𝑘0)∞ = FinteLinSpan{𝐾L ((·, ·), (𝑒𝑖 𝑗 , 𝑒𝑚𝑛)𝑒𝑘 )}
where as usual 𝑒𝑖 𝑗 := 𝑒𝑖 ⊗ 𝑒∗𝑗 . Define the smallest 𝑁 as the grading of 𝑥. Let T𝑥 be
all 𝑒𝑖’s that appear in 𝑥 (either as 𝑒𝑖 or as 𝑒∗

𝑖
) . Note that if 𝑥 ∈ F , 𝑥 ≥ 0 then as 𝑥

is bounded and symmetric, it’s self-adjoint, therefore,
√
𝑥 is defined by functional

calculus. Set
V𝑓 ,𝑥 := {𝐾L ((·, ·), (𝑎, 𝑏)𝑦) ∈ Range( 𝑓 )}

Note T𝑥 ,V𝑓 ,𝑥 < ∞ and T𝑥∗𝑥 ⊂ T𝑥∗ = T𝑥 . Define Span(T𝑥) = LinSpan{𝑒𝑖 𝑗 : 𝑒𝑖, 𝑒 𝑗 ∈
T𝑥}.

Proposition 4.4.7. For fixed 𝑓 , 𝑥 for any choice 𝑖𝑘 ∈ [3] there exists a constant 𝐶,


Ψ𝑖0
𝑓 ,𝑠0

(Ψ𝑖1
𝑓 ,𝑠1

(. . .Ψ𝑖𝑛−1
𝑓 ,𝑠𝑛−1

(𝑥)))



 ≤ 𝐶𝑛 ∥𝑥∥

Proof. The proof will repeatedly use theorem 4.3.2. Since 𝑥 ∈ F , there exists 𝑀𝑥

such that


L𝑘𝑥



 ≤ 𝑀 𝑘
𝑥 ∥𝑥∥; note 𝑀𝑥 ≤ sup{2𝜆𝑖 : 𝐷𝑒𝑖 = 𝜆𝑖𝑒𝑖 ∈ T𝑥} = 𝑀 . This

bound also holds for any 𝑦 ∈ Span(T𝑥). At the same time, 𝑉 𝑓 = sup𝑣∈V𝑓
∥𝑣∥ < ∞.

Notice that in Φ3,Φ2, 𝜎 = 𝜋 − 1 where 𝜋 is multiplication by 𝑥, and since 𝑥 =∑
𝑖, 𝑗∈[𝑁] 𝑎𝑖 𝑗𝑒𝑖 𝑗 , ∥𝜋(𝑥)∥ ≤ ∥𝑥∥, hence, 𝜎(𝑥) 𝑓 (𝑠) ≤ 2𝑉 𝑓 ∥𝑥∥ where theorem 4.3.2 was

used to get form for 𝜋(𝑥). Furthermore,

𝛿†(𝑥)𝛿(𝑥)

 = ∥𝛿(𝑥)∥2 =


𝛿†(𝑥)

2

= ∥L(𝑥∗𝑥) − L(𝑥∗)𝑥 − 𝑥∗L(𝑥)∥2 ≤ 3𝑀2 ∥𝑥∥2

By theorem 4.3.2, the A component of A ⊗ 𝑘0 of Φ2
𝑓 ,𝑠

∈ Span(T𝑥). Similarly,
⟨𝛿(𝑥∗), 𝑓 (𝑠)⟩, ⟨𝜎 𝑓 (𝑥), 𝑓 (𝑠)⟩, ⟨ 𝑓 (𝑠), 𝛿(𝑥)⟩L(𝑥) ∈ Span(T𝑥), and since ∥⟨𝑎′ ⊗ 𝑘′, 𝑎′′ ⊗ 𝑘′′⟩∥ ≤
|⟨𝑘′, 𝑘′′⟩| ∥𝑎′∗𝑎′′∥,

∥⟨𝛿(𝑥∗), 𝑓 (𝑠)⟩∥ ,


⟨𝜎 𝑓 (𝑥), 𝑓 (𝑠)⟩

 , ∥⟨ 𝑓 (𝑠), 𝛿(𝑥)⟩∥ ≤ max(3𝑀, 2𝑉 𝑓 ) ∥𝑥∥𝑉 𝑓

This means thatΦ1
𝑓 ,𝑠
(Span(T𝑥)) ⊂ Span(T𝑥) for= 1, 3 whileΦ2

𝑓 ,𝑠
(Span(T𝑥)⊗𝑘𝑚0 ) ⊂

Span(T𝑥) ⊗ 𝑘𝑚+1
0 (recall note 4.4.4). But all the bounds only depend on 𝑀 and V𝑓

and don’t change on iterating since Ψ𝑖’s preserve the A component to be inside
Span(T𝑥).

Now there are 𝑛-possible ampilations in nested Ψ𝑖’s. The 𝑘0 component is only
generated by 𝛿which produces simple tensor for every 𝑒𝑖 𝑗 . Since 𝑥 =

∑
𝑖, 𝑗∈[𝑁] 𝑎𝑖 𝑗𝑒𝑖 𝑗 ,
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T𝑒𝑖 𝑗 ⊂ T𝑥 and 𝑒𝑖 𝑗 are preserved by structure maps. Expanding by linearity, and using
that the above bounds hold for each of the 𝑁 summands which are simple tensors on
which by proposition 4.4.2 the ampilation does not increase the norm, the triangle
inequality on 𝑁 summands introduces a multiplicative 𝑁 factor for each ampilation.

Therefore, 𝐶 = (max(3𝑀, 2𝑉 𝑓 )𝑉 𝑓 + 4𝑀 + 2𝑉 𝑓 )𝑁 is sufficient to bound the growth.

Remark 4.4.8. Since F is norm-dense in compact operators, the flow extends to
compact operators. Each 𝑗𝑡 being a ∗-homomorphism can be extended to enveloping
von Neumann algebra as a normal ∗-homomorphism.

Example 4.4.9. This construction can be used for the existence of flow for Laplace-
Beltrami operator △𝑀 , on any compact manifold, since △𝑀 is positive, therefore, by
spectral calculus, | △ |1/2 = 𝜆𝑖𝑒𝑖 ⊗ 𝑒∗𝑖 where 𝐸 = {𝑒𝑖 : △𝑀𝑒𝑖 = 𝜆2

𝑖
} then on End(𝐸),

the construction of the flow ( | △ |1/2
D )2 converges.

Example 4.4.10 (Flow for the Laplace-Beltrami operator). Now consider the case
where △ is acting on C(𝑀) for compact Riemannian manifold (𝑀, ℎ) viewed
as operators acting on 𝐿2(𝑀). From earlier 𝛼(𝑔) : 𝑓 → ⟨·, 𝑑𝑔⟩ 𝑓 . 𝜎 = 0 as
for endomorphism laplacian. The difficulty in this example is that 𝐶 (𝑀) is not
End(𝐿2(𝑀)), so the global embedding used for noncommutative laplacian does not
work. However, a local embedding 𝑡 can be described about any 𝑝 ∈ 𝑀 and since
the flow is generated by local operator △, and C*-norm on 𝐶 (𝑀) is point-wise, this
is enough.

Let (𝑥𝑖)′𝑠 be Riemann normal coordinates about 𝑝 ∈ 𝑈 ⊂ 𝑀 . Then in the local
trivialization over 𝑈, ⟨·, 𝑑𝑓 ⟩ is described the components 𝑑𝑓 (𝜕𝑖), and with A|𝑈 =

𝐶 (𝑈), the Hilbert-A|𝑈-module is A ⊗ Rdim𝑀 . The isometry at 𝑝 (with respect to
the A-inner product) embedding is given by

𝑁 |𝑝 ∋ 𝛼( 𝑓 )𝑔 → ⟨∇ 𝑓 , 𝜕𝑖⟩𝑔 ⊗ 𝑟𝑖 ∈ A ⊗ Rdim𝑀 (4.17)

𝑟𝑖 being the standard basis for Rdim𝑀 . This is because 𝑝 is the center of Riemann
normal coordinates where the metric and Christoffel symbols are trivial, the A|𝑈-
valued inner product,

∑
𝑖 𝑑𝑔(𝜕𝑖)𝑑𝑓 (𝜕𝑖) = ⟨∇𝑔,∇ 𝑓 ⟩𝑝.

The embedding 𝑡 identifies the coordinate vector fields with the noise vector 𝑟 ∈
𝑘0, 𝑟𝑖 → 𝜕𝑖 in normal coordinates at 𝑝, so depends on the chart, and the 𝑘0 contraction
inA⊗𝑘0 with

∑
𝑖 𝑎𝑖𝑟𝑖 is

∑
𝑖 ⟨∇ 𝑓 , 𝜕𝑖⟩⊗⟨𝑟𝑖, 𝑎𝑖𝑟𝑖⟩ =

∑
𝑖 ⟨∇ 𝑓 , 𝑎𝑖𝜕𝑖⟩. The𝛼( 𝑓 ),∇𝑖 ( 𝑓 )⊗𝑟𝑖
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are the A-linear basis locally for 𝑁,A ⊗ Rdim𝑀 . Define 𝐷𝑖 𝑓 := ⟨∇ 𝑓 , 𝜕𝑖⟩. Note
that iterating on 𝐷𝑖’s introduces iterated covariant derivatives,

𝐷𝑖𝐷 𝑗 𝑓 = ⟨∇⟨∇ 𝑓 , 𝜕𝑗 ⟩, 𝜕𝑖⟩ = ⟨⟨∇2 𝑓 , 𝜕𝑗 ⟩ + ⟨∇ 𝑓 ,∇𝜕𝑗 ⟩, 𝜕𝑖⟩

and higher order expansions follow the same.

Remark 4.4.11. The isometry can be extended to 𝑈 either by using an isometric
euclidean embedding or defining 𝑡 : 𝛼( 𝑓 )𝑔(𝑞) → 𝐻

1/2
𝑞 [∇𝑖 𝑓 ]𝑞𝑔(𝑞) where 𝐻 is

the matrix representation of the metric ℎ; regardless there’s need to control one
additional piece of data which is an assumption involving derivatives of the metric.

Now taking F = FinteLinSpan
(∏

𝑖∈[𝑘] 𝜙𝑖 : 𝑘 ∈ N
)
, convergence of the Picard it-

erates follows mostly like proposition 4.4.7 when ∥O𝑘O𝑘−1 . . .O1(𝑥)∥𝑝 ≤ 𝑀 𝑘
𝑥 𝐿𝑥

where O𝑖 ∈ {△, 𝐷𝑖} for all 𝑥 ∈ F , 𝑝 ∈ 𝑀, 𝐷𝑖’s defined with respect to Riemann
normal coordinates centered at 𝑝.

Proposition 4.4.12. For fixed 𝑥 ∈ F , 𝑓 a simple function valued in Rdim𝑀 = 𝑘0,
the following holds for any choice 𝑖𝑘 ∈ [3], 𝑘 ∈ N,


Ψ𝑖0

𝑓 ,𝑠0
(Ψ𝑖1

𝑓 ,𝑠1
(. . .Ψ𝑖𝑛−1

𝑓 ,𝑠𝑛−1
(𝑥)))




 ≤ 𝐶𝑛𝐿𝑥

Proof. Fix 𝑝 ∈ 𝑀 and normal coordinates centered at 𝑝. Since 𝑥 ∈ F , there exists
𝐾 such that ∥O𝑘O𝑘−1 . . .O1(𝑥)∥ ≤ 𝐾 𝑘𝐿𝑥 . For R = Range( 𝑓 ), 𝑉 𝑓 = sup𝑣∈R ∥𝑣∥ <
∞ as R is finite. Consider the expansion of the nested application Ψ(𝑥) :=
Ψ
𝑖0
𝑓 ,𝑠0

(Ψ𝑖1
𝑓 ,𝑠1

(. . .Ψ𝑖𝑛−1
𝑓 ,𝑠𝑛−1

(𝑥))). Note 𝜎 = 0, 𝑥 = 𝑥∗, Ψ3
𝑓 ,𝑠

= ⟨ 𝑓 (𝑠), 𝛿(𝑥)⟩,Ψ2
𝑓 ,𝑠

=

𝛿(𝑥),Ψ1
𝑓 ,𝑠

= △(𝑥) + ⟨𝛿(𝑥), 𝑓 (𝑠)⟩ . Additionally, 𝛿(𝑥) = 𝐷𝑖 (𝑥) ⊗𝑟𝑖, so ⟨𝛿(𝑥), 𝑓 (𝑠)⟩ =∑
𝑖 𝑓 (𝑠)𝑖𝐷𝑖 (𝑥) with each 𝑓 (𝑠)𝑖 in R. This gives the form for the inner products,

⟨𝛿(𝑥), 𝑓 (𝑠)⟩, ⟨𝛿(𝑥∗), 𝑓 (𝑠)⟩ in Φ1,Φ3 which are contraction ofRdim𝑀 component in
A ⊗ Rdim𝑀 .

Let G0 = {𝑥}, G𝑘+1 = FinteLinSpan({△(𝑧), 𝐷𝑖 (𝑧) : 𝑧 ∈ G𝑘 }). Then by above
characterization Ψ𝑖

𝑓 ,𝑠
(𝑧) ∈ G𝑘+1 if 𝑧 ∈ G𝑘 , 𝑖 = 1, 3, while Ψ2

𝑓 ,𝑠
(𝑧) ∈ G𝑘+1 ⊗ {𝑟𝑖}.

Therefore, at every point 𝑝 ∈ 𝑀 with 𝑚 = dim𝑀 , for any 𝑧 ∈ G𝑘


Ψ2
𝑓 ,𝑠 (𝑧)




 ≤ 𝑚𝐾𝐿𝑥 ,



Ψ3

𝑓 ,𝑠 (𝑧)



 ≤ 𝑚𝐾𝐿𝑥 ∥ 𝑓 (𝑠)∥


Ψ1

𝑓 ,𝑠 (𝑧)



 ≤𝑚𝐾 ∥𝑧∥ ∥ 𝑓 (𝑠)∥ + 𝐾𝐿𝑥

To track the ampilations, again notice that the 𝛿 produces a sum of dim𝑀 simple
tensors, 𝑓 → ∑

𝑖 𝑑𝑓 (𝜕𝑖) ⊗ 𝑟𝑖. If 𝑥 has 𝑁 summands then on each application it gener-
ates at most𝑇 = 𝑁 ·dim𝑀 simple tensors, and on each the bounds hold individually,
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so breaking up in 𝑇 simple tensors each time, and applying the bounds individually
so the ampilation no longer increases the norm, adds on another multiplicative factor
of 𝑇 . Hence, Ψ𝑖

𝑓 ,𝑠
’s are bounded operators on each G𝑘 , uniformly bounded in 𝑠, 𝑘

by 𝐶 = (2𝑚𝐾)2𝑉 𝑓𝑇 which gives the growth bound.

For any eigenfunction 𝜙, bounds of type ∥O𝑘O𝑘−1 . . .O1(𝜙)∥𝑝 ≤ 𝑀 𝑘
𝜙
𝐿𝜙, require

bounds on


∇𝑘𝜙

 (see section 4.6), and



∇𝑘𝜕𝑖

, which depend on the metric. Al-
ternatively, for any multi-index 𝛽, asymptotic bounds in of type |𝜕𝛽𝜙𝜆 |𝑝 ≤ 𝑂 (𝜆2|𝛽 |)
(where 𝜆 is the associated eigenvalue) with respect to normal coordinates are
known[15], using product rule, the bound ∥O𝑘O𝑘−1 . . .O1(𝑥)∥𝑝 ≤ 𝑀 𝑘

𝑥 𝐿𝑥 is equiva-
lent to a bound on the Christoffel symbols, therefore, as a corollary when Christoffel
symbols vanish the Picard iterates converge.

Observation 4.4.13. There’s another issue that needs to be dealt with: the algebra
F is not closed under square-roots because they might not be in the finite linear
span, but is dense in an appropriate norm. This will require that for 𝜙 ∈ S△

⟨[△,∇𝑘 ]𝜙,∇𝑘𝜙⟩𝐿2 = 0 (4.18)

where △ = ∇∗∇ now. This also controls the growth of


∇𝑘𝜙

; this is considered in

section 4.6.

The extended square-root trick
It’s again part of standard theory (for instance, [62, theorem 5.4.9ii]), that for
𝑢, 𝑣 ∈ 𝐻, ℎ, 𝑓 ∈ V ⊂ 𝐿2(R+, 𝑘0) ≡ 𝑘 ,

⟨𝐽𝑡 (𝑎 ⊗ E( 𝑓 ))𝑢, 𝐽𝑡 (𝑏 ⊗ E(ℎ))𝑣⟩ = ⟨𝑢E( 𝑓 ), 𝐽𝑡 (𝑎∗𝑏 ⊗ E(ℎ))𝑣⟩ (4.19)

𝐽𝑡 (1 ⊗ E( 𝑓 ))𝑢 = 𝑢E( 𝑓 ) (4.20)

Define

𝑗𝑛𝑡 (𝑎) (𝑣E 𝑓 ) := 𝐽 (𝑛)𝑡 (𝑎 ⊗ E 𝑓 )𝑣 (4.21)

so 𝑗𝑛𝑡 is unital with the factorization property (equation 4.19), and 𝑗𝑛𝑡 (𝑎) is a linear
operator on a dense subspace K := 𝐻 ⊗ E(V) ⊂ 𝐻 ⊗ Γ(𝑘). For any 𝑣, 𝑓 , 𝑗𝑛𝑡 is
bounded pointwise on F .

Proposition 4.4.14. For all 𝑎 ∈ F there exists 𝐾 such that

∥Θ(𝑎)∥ ≤ 𝐾 ∥𝑎∥𝑊2,∞

where ∥·∥𝑊2,∞ is the Sobolev norm ∥𝑎∥𝑊2,∞ = ∥𝑎∥ + ∥∇𝑎∥ +


∇2(𝑎)
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Proof. This follows because for any 𝑎, Θ(𝑎) satisfies ∥Θ(𝑎)∥ ≤ 𝐶 (∥△(𝑎)∥ +

𝛿†(𝑎)

 + ∥𝛿(𝑎)∥) for appropriate 𝐶 where ∥△(𝑎)∥ ≤ dim𝑀


∇2(𝑎)



 , 

𝛿†(𝑎)

 =

∥𝛿(𝑎)∥ ≤ dim𝑀 ∥∇𝑎∥

Now F ⊂ 𝑊 𝑘,𝑝 (𝑀) since F ⊂ C∞(𝑀), 𝑀 compact for all 𝑝, 𝑘 . Because ∥Θ(𝑎)∥ ≤
𝐾 ∥𝑎∥𝑊2,∞ , if 𝐽 (𝑛−1)

𝑡 is bounded for each 𝑡, then 𝐽 (𝑛)𝑡 is continuous on F wit respect
to 𝑊2,2-norm topology with 𝑓 , 𝑣 held fixed. We will use this to show that if 𝐽 (𝑛−1)

𝑡

is bounded, then 𝑗
(𝑛)
𝑡 is positive on K. Then using 𝑗𝑛𝑡 is positive on K it will be

checked that for every 𝑎 ∈ F , 𝑗𝑛𝑡 (𝑎) ∈ B(K) and that it extends from B(K) to
B(𝐻 ⊗ Γ(𝑘)). The base case is 𝑗 (0)𝑡 = 1 ∈ B(K) which is obviously positive. Then
from 𝑗𝑛𝑡 : F → B(𝐻 ⊗ Γ(𝑘)), it extends to 𝑗𝑛𝑡 : C(𝑀) → B(𝐻 ⊗ Γ(𝑘)).

Lemma 4.4.15. Suppose 𝐽 (𝑛−1)
𝑡 ∈ B(K), then 𝑗𝑛𝑡 is a positive map on 𝑎 ∈ F , 𝑎 > 0.

Proof. Suppose 𝑎 ∈ F is positive. We want to show 𝑗𝑛𝑡 (𝑎) is positive as well. If
√
𝑎 ∈ F , then

⟨𝑢, 𝑗𝑛𝑡 (𝑎)𝑢⟩ = ⟨ 𝑗𝑛𝑡 (
√
𝑎)𝑢, 𝑗𝑛𝑡 (

√
𝑎)𝑢⟩ ≥ 0 (4.22)

for every 𝑢 ∈ K, hence 𝑗𝑡 (𝑎) is positive.

So assume
√
𝑎 ∉ F where 𝑎 is positive and invertible, so 𝑎(𝑚) > 0, 𝑚 ∈ 𝑀 .

Since LinSpan(F ) is dense in C(𝑀), for any 𝜖 > 0, there exists 𝑓 ∈ F such that

√𝑎 − 𝑓


 ≤ 𝑂 (𝜖) meaning



𝑎 − 𝑓 2


 ≤ 𝑂 (𝜖). Additionally, 𝑓 can be chosen so

𝑎 − 𝑓 2




𝑊2,∞ ≤ 𝑂 (𝜖), so 𝑓 2 approximates 𝑎 in Sobolev𝑊2,∞-norm as well.

To see why this is possible note that since 𝑎 > 0,
√
𝑎 ∈ 𝐶∞(𝑀), therefore,

√
𝑎 ∈

𝐿2(𝑀), additionally for each 𝑘 , ∇𝑘 (
√
𝑎) ∈ 𝐿2(𝑀), with

√
𝑎 =

∑
𝑖 𝛼𝑖𝜙𝑖, 𝛼𝑖 =

⟨𝜙𝑖,
√
𝑎⟩, then using assumption in equation 4.18 (which can be relaxed if 𝑇 in

proposition 4.6.3 in section 4.6 is independent of the eigenfunction),

∥∇𝑘
∑︁
𝑖<𝑛

𝛼𝑖𝜙𝑖∥2
𝐿2 =

∑︁
𝑖<𝑛

𝛼2
𝑖 𝜆

2𝑘
𝑖 ≤

∑︁
𝑖

𝛼2
𝑖 𝜆

2𝑘
𝑖 = ⟨∇𝑘

√︁
𝜙,∇𝑘

√
𝑎⟩𝐿2 < ∞

So the sequence (∑𝑛
𝑖=1 𝛼𝑖𝜙𝑖)𝑛∈N converging to

√
𝑎 in 𝐿2(𝑀) is a bounded in

each 𝑊 𝑘,2 with a bound depending on 𝑘 . For sufficiently large 𝑘 , the embed-
ding 𝑊 𝑘,2(𝑀) ⊂ 𝑊2,2(𝑀) is compact by the Rellich-Kondrachov theorem, that is,
(∑𝑛

𝑖=1 𝛼𝑖𝜙𝑖)𝑛 has a Cauchy, and so a convergent subsequence; wlog let this sub-
sequence be denoted by the same

∑𝑛
𝑖=1 𝛼𝑖𝜙𝑖 := 𝑎𝑛. For (𝑎𝑖) to be convergent in
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𝑊2,2(𝑀), it must also be convergent in ∥·∥𝐿2 (𝑀) , so the only possible limit is
√
𝑎.

Now suppose the tail
∑∞
𝑖=𝑛 𝛼𝑖𝜙𝑖 does not vanish in 𝑊2,∞. This means for some

𝑥 ∈ 𝑀 for some 𝑘 ∈ {0, 1, 2}, ⟨∑𝑖 𝛼𝑖∇𝑘𝜙𝑖,
∑
𝑖 𝛼𝑖∇𝑘𝜙𝑖⟩(𝑥) > 0. But then by the

following argument shows that ⟨∑𝑖 𝛼𝑖∇𝑘𝜙𝑖,
∑
𝑖 𝛼𝑖∇𝑘𝜙𝑖⟩𝐿2 (𝑈) > 0 contradicting the

convergence in𝑊2,2(𝑀). So
√
𝑎 can be approximated arbitrarily well in𝑊2,∞(𝑀).

Claim 4.4.16. Suppose 𝑎 =
∑
𝑖 𝛼𝑖𝜙𝑖 ∈ C∞(𝑀), then ⟨∇𝑘 ∑𝑖 𝛼𝑖𝜙𝑖,∇𝑘

∑
𝑖 𝛼𝑖𝜙𝑖⟩(𝑥) >

0 for some 𝑥 ∈ 𝑀 implies ⟨∇𝑘 ∑𝑖 𝛼𝑖𝜙𝑖,∇𝑘
∑
𝑖 𝛼𝑖𝜙𝑖⟩𝐿2 (𝑀) > 0. In particular, this

holds for 𝑘 = 0.

Proof. By smoothness of 𝑎, this holds for all 𝑥 ∈ 𝑈 for some open set 𝑈. Integrat-
ing against compactly supported 𝜓 on 𝑈, 1 ≥ 𝜓 ≥ 0, 𝜓 > 0 on an open 𝑉 ⊂ 𝑈,

⟨∇𝑘𝑎,∇𝑘𝑎⟩𝐿2 (𝑀) ≥
∫
𝑈
⟨𝜓∇𝑘 ∑𝑖 𝛼𝑖𝜙𝑖,∇𝑘

∑
𝑖 𝛼𝑖𝜙𝑖⟩𝑑𝑉𝑔 > 0 The 𝑘 = 0,∇𝑘 = 1 spe-

cialization is identical.

Now define

W𝑎 = {𝑎} ∪ { 𝑓 2 : 𝑓 ∈ F with


𝑎 − 𝑓 2



𝑊2,∞ ≤ 1/𝑛, 𝑛 ∈ N}

then as ∥Θ(𝑎′)∥ ≤ 𝐾 ∥𝑎′∥𝑊2,∞ and 𝐽 (𝑛−1)
𝑡 is bounded on K by hypothesis, the bound

in lemma 4.4.3, implies norm:

∥·∥ : W𝑎 → R, 𝑎′ → ∥ 𝑗𝑡 (𝑎′)∥

is continuous map with respect to ∥·∥𝑊2,∞-topology on W𝑎

If 𝑗𝑛𝑡 (𝑎) is not positive, then there exists 𝑢 ∈ K such that ⟨𝑢, 𝑗𝑛𝑡 (𝑎)𝑢⟩ < 0. Since
norm is continuous, the map 𝑎′ → ⟨𝑢, 𝑗𝑛𝑡 (𝑎′)𝑢⟩ is also continuous on W𝑎: by
Cauchy-Schwartz inequality, ⟨𝑢, 𝑗𝑛𝑡 (𝑎′)𝑢⟩ ≤ ∥𝑢∥



 𝑗𝑛𝑡 (𝑎′)𝑢

 ≤ ∥𝑢∥2 𝐾′𝐾 ∥𝑎′∥𝑊2,∞

where 𝐾′ depends on 𝑢 which we fixed and


𝐽𝑛−1
𝑡



. This continuity means
⟨𝑢, 𝑗𝑛𝑡 (·)𝑢⟩ < 0 on some neighborhood containing 𝑎 inW𝑎. However, for any neigh-
borhood𝑈 of 𝑎 in W𝑎 , 𝑤 ∈ 𝑈, 𝑤 ≠ 𝑎 implies 𝑤 = 𝑓 2, 𝑓 ∈ F , so ⟨𝑢, 𝑗𝑛𝑡 ( 𝑓 2)𝑢⟩ ≥ 0
by equation 4.22. Therefore, 𝑗𝑛𝑡 (𝑎) must be positive.

Lemma 4.4.17. If 𝑗𝑛𝑡 is a positive map on positive 𝑎, 𝑎 > 0, then


 𝑗𝑛𝑡 (𝑎)

2 ≤ ∥𝑎∥2

Proof. Let 𝑥 ∈ F so (1 + 𝜖) ∥𝑥∥ − 𝑥 ∈ F and positive for any 𝜖 > 0. Define
Φ𝜖 (𝑥) :=

√︁
(1 + 𝜖) ∥𝑥∥ 1 − 𝑥 ∈ C(𝑀). Approximate Φ𝜖 (𝑥) from below by 𝑧 ∈ F .
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Then 𝑗𝑛𝑡 (Φ𝜖 (𝑥)2 − 𝑧2) > 0 because Φ𝜖 (𝑥)2 − 𝑧2 > 0 and 𝑗𝑛𝑡 is positive. This yields
⟨𝜃, ( 𝑗𝑛𝑡 (Φ𝜖 (𝑥)2) − 𝑗𝑛𝑡 (𝑧2))𝜃⟩ ≥ 0 and we have

⟨𝜃, 𝑗𝑛𝑡 (Φ𝜖 (𝑥)2)𝜃⟩ ≥ ⟨𝜃, 𝑗𝑛𝑡 (𝑧2)𝜃⟩ ≥ 0

Now the usual square-root trick takes over: since 𝑗𝑛𝑡 is unital,

0 ≤


 𝑗𝑛𝑡 (𝑧)𝜃

2

= ⟨𝜃, 𝑗𝑛𝑡 (𝑧2)𝜃⟩ ≤ ⟨𝜃, 𝑗 (𝑛)𝑡 ((1 + 𝜖) ∥𝑥∥ 1 − 𝑥)𝜃⟩ (4.23)

⟨𝜃, 𝑗𝑛𝑡 (𝑥)𝜃⟩ ≤ ⟨𝜃, 𝑗𝑛𝑡 ((1 + 𝜖) ∥𝑥∥ 1)𝜃⟩ ≤ (1 + 𝜖) ∥𝑥∥ ⟨𝜃, 𝑗𝑛𝑡 (1)𝜃⟩ = (1 + 𝜖) ∥𝑥∥ ∥𝜃∥2

(4.24)

Since 𝜖 was arbitrary, ⟨𝜃, 𝑗𝑛𝑡 (𝑥)𝜃⟩ ≤ ∥𝑥∥ ∥𝜃∥2. Finally,

 𝑗𝑛𝑡 (𝑥)𝜃

2
= ⟨ 𝑗𝑛𝑡 (𝑥)𝜃, 𝑗𝑛𝑡 (𝑥)𝜃⟩ = ⟨𝜃, 𝑗𝑛𝑡 (𝑥∗𝑥)𝜃⟩ ≤ ∥𝑥∗𝑥∥ ∥𝜃∥2 = ∥𝑥∥2 ∥𝜃∥2 (4.25)

. So


 𝑗𝑛𝑡 (𝑥)

2 ≤ ∥𝑥∥2, and the bound on



 𝑗𝑛𝑡 

 is uniform.

Now from density of F ,V and K, each 𝑗𝑛𝑡 extends from a map 𝑗𝑛𝑡 : F → B(K)
to 𝑗𝑛𝑡 : A → B(𝐻 ⊗ Γ(𝑘)). Since 𝑆𝑁 (𝑡) =

∑
𝑛∈[𝑁] 𝐽

𝑛 converges, so does 𝑆 =

lim𝑁→∞ 𝑆𝑁 , and therefore lim𝑛→∞
∑
𝑗𝑛𝑡 is the needed flow. Precisely, we have the

following result:

Theorem 4.4.18. Following notation from section 4.2, define 𝑗𝑡 (𝑎) (𝑣1E 𝑓1) := 𝐽𝑡 (𝑎⊗
E 𝑓1)𝑣1, then

1. 𝑗𝑡 : F → B(𝐻 ⊗ E(V)) is a unital ∗-homomorphism

2. 𝑗𝑡 extends to 𝑗𝑡 : F → B(𝐻 ⊗ Γ(𝑘0))

3. 𝑗𝑡 extends to 𝑗𝑡 : A → B(𝐻 ⊗ Γ(𝑘0))

Remark 4.4.19. A remark on construction of Sinha and Goswami [62] using Frechet
structures and of Belton and Wills [11]: Proposition 4.4.14, along with the growth
bounds on ℓ(∇𝑘𝜙) suggests that convergence of the stochastic integrals can be
approached via a generalization of complete smoothness regularity. In absence of
the group action, the Frechet space structure on 𝑘0 has to be obtained differently, ∇𝑘

is the natural candidate for defining the Sobolev norms on 𝑑F ⊂ 𝑘0.

Notice that the growth condition in corollary 4.4.5 is similar to one obtained by [11].
However, the algebra is not closed under square-roots and it becomes necessary to
use the regularity of the generator with respect to Sobolev norms to push the modified
square-root trick through.
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4.5 Evans-Hudson dilation on reductive homogeneous spaces
Now a second example where the existence of a quantum stochastic flow associated
to an untruncated laplacian is considered: the spectral triple (A, 𝐿2(𝑀, 𝑆), 𝐷)
where 𝑀 is a compact reductive homogeneous space, and 𝑆 a homogeneous Clifford
module bundle with Dirac operator 𝐷, A ⊂ B(𝑆). The flow is noncommutative
and covariant with respect to the group action. Additionally, it realizes the spectral
action since the domain of the flow includes finite rank operators.

The construction from [62] uses growth bounds in terms of a family of semi-
norms rather than iterates of the structure matrix, and when the semigroup and its
generator are covariant with respect to the action of a Lie group, using the equivariant
Kasparaov’s stabilization theorem, the embedding 𝑡 can be made equivariant with
respect to the semi-norms, which allows for controlling the semi-norms even through
the 𝑡 embedding. Complete smoothness is the regularity condition on the semi-
norms that guarantees the convergence of the quantum Picard iterates. It will
now be established that both these requirements hold for the heat semigroups over
reductive homogeneous spaces.

Complete smoothness
To start, consider C*-algebra A ⊂ B(H) on the Hilbert space H, 𝐺 is a second
countable, compact Lie group with finite dimensional Lie algebra, acting by a
strongly continuous representation 𝐺 ∋ 𝑔 → 𝛼𝑔 ∈ Aut(A) on A.

Definition 4.5.1. Suppose {𝜒𝑖 : 𝑖 ∈ [𝑛]} is the basis for the Lie algebra Lie[𝐺], and
d 𝑔 the left Haar measure on 𝐺. The smooth algebra is defined by A∞ = {𝑎 : 𝑔 →
𝛼𝑔 (𝑎) is smooth for all 𝑔 ∈ 𝐺 in norm topology}.

Note that A∞ = ∩𝑘∈[𝑛] Dom(𝜕𝑘 ) where 𝜕𝑖 is closed ∗-derivation on A given by
the generator of the automorphism group (𝛼𝑡 𝜒𝑖 )𝑡∈R. A∞ can be equipped with
Sobolev-type norms,

∥𝑎∥𝑛 =
∑︁

𝑖1,𝑖2...𝑖𝑘 :𝑘≤𝑛



𝜕𝑖1 · · · 𝜕𝑖𝑘 (𝑎)

 (4.26)

with ∥𝑎∥0 = ∥𝑎∥. A∞ is a Frechet algebra. Note that the algebra A∞ is also used
in [33]; however, the norms ∥·∥𝑛 are symmetrized explicitly.

Definition 4.5.2. (Covariant quantum dynamical semigroups) Let 𝐺 be a locally
compact group acting on C*-algebra by 𝛼 : 𝐺 → Aut(A) with 𝛼𝑔 denoting 𝛼(𝑔).
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A quantum dynamical semigroup (𝑇𝑡) is covariant with respect to 𝐺 if for all
𝑡 ≥ 0, 𝑔 ∈ 𝐺, 𝑇𝑡 ◦ 𝛼𝑔 = 𝛼𝑔 ◦ 𝑇𝑡 , equivalently L ◦ 𝛼𝑔 = 𝛼𝑔 ◦ L where L generates
(𝑇𝑡).

If L is unbounded, but with L(A∞) ⊂ A∞ ⊂ Dom(L) for a dense-subalgebra A∞,
then one defines covariance for L by L(𝛼𝑔 (𝑎)) = 𝛼𝑔 (L(𝑎)) for all 𝑎 ∈ Dom(L).

Definition 4.5.3. A map between Frechet algebras M∞,N∞ with respect to actions
𝜇𝑔, 𝜂𝑔 of compact Lie group 𝐺 on C*-algebras M,N is 𝑝-smooth if there exists a
constant 𝐶 and 𝑝 ∈ Z≥0 satisfying that for 𝜉 ∈ M∞,

∥L𝜉∥𝑛 ≤ 𝐶 ∥𝜉∥𝑛+𝑝

and it’s 𝑝-completely smooth if there exists a constant 𝐶 and 𝑝 ∈ Z≥0 satisfying for
all 𝑛, 𝑁 ≥ 0 and 𝜉 ∈ M∞ ⊗ Mat𝑛,

L ⊗ 1Mat𝑁 (𝜉)




𝑛
≤ 𝐶 ∥𝜉∥𝑛+𝑝

L is called completely smooth if it’s 𝑝-completely smooth for some 𝑝.

Note that bounded operators are completely smooth since from equation (4.26),
∥·∥𝑙 ≥ ∥·∥𝑞 for all 𝑙 ≥ 𝑞.

Lemma 4.5.4. Suppose𝑊𝑖 is𝑤𝑖-completely smooth for 𝑖 ∈ [𝑁], then any polynomial
in𝑊𝑖’s is completely smooth to some order.

Proof. First, since𝑊𝑖 is 𝑤𝑖-completely smooth for 𝑖 ∈ [𝑁], let


𝑊𝑖 ⊗ 1Mat𝑁 (𝜉)




𝑛
≤

𝐶𝑖 ∥𝜉∥𝑛+𝑤𝑖
. By eq 4.26, so we can assume𝑊𝑖 are 𝑤 = max(𝑤𝑖)-completely smooth,

meaning 𝐶 = max[𝑁] 𝐶𝑖,


𝑊𝑖 ⊗ 1Mat𝑁 (𝜉)




𝑛
≤ 𝐶 ∥𝜉∥𝑛+𝑤 for all 𝑖. This gives





 ∑︁

𝑖∈[𝑁]
𝑊𝑖 ⊗ 1Mat𝑁 (𝜉)








𝑛

≤
∑︁
𝑖∈[𝑁]



𝑊𝑖 ⊗ 1Mat𝑁 (𝜉)



𝑛
≤ 𝑁𝐶 ∥𝜉∥𝑛+𝑤

For𝑊𝑖𝑊 𝑗 := 𝑊𝑖 ◦𝑊 𝑗 ,


𝑊𝑖𝑊 𝑗 ⊗ 1𝜉




𝑛
=



𝑊𝑖 ⊗ 1(𝑊 𝑗 ⊗ 1)𝜉



𝑛
≤ 𝐶𝑖



𝑊 𝑗 ⊗ 1𝜉



𝑛+𝑤𝑖

≤
𝐶𝑖𝐶 𝑗 ∥𝜉∥𝑛+𝑤𝑖+𝑤 𝑗

and the conclusion follows.

We note the following version of [62, Thm 8.1.28].

Proposition 4.5.5. Suppose Lie[𝐺] has basis 𝑋𝑖 : 𝑖 ∈ [𝑚], i.e., 𝑋𝑖’s generate one-
parameter subgroups, then the Φ[𝑋𝑖 : 𝑖 ∈ [𝑚]] be a polynomial degree 𝑝 in 𝑋𝑖’s
with coefficients in B(H), which by the Lie algebra action on A∞ defines a map
Φ : A∞ → A∞, then Φ is 𝑝-completely smooth.
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Proof. Set 𝛼 as the norm of the largest coefficient of Φ, wlog assume 𝛼 ≥ 1. For
any monomial Φ𝑖 in Φ, with 𝜉 =

∑
[𝑞] 𝑥𝑙 ⊗ 𝑚𝑙 ,Φ = Φ[𝑋𝑖 : 𝑖 ∈ [𝑚]],

∥Φ𝑖 ⊗ 1𝜉∥𝑛 =
∑︁

𝑖1...𝑖𝑘 ,𝑘≤𝑛







©­«
∏
𝑗∈[𝑘]

𝑋𝑖 𝑗 ⊗ 1ª®¬
∑︁
[𝑞]

Φ𝑖 (𝑥𝑙) ⊗ 𝑚𝑙








≤ 𝛼

∑︁
𝑖1...𝑖𝑘 ,𝑘≤𝑛+𝑝







©­«
∏
𝑗∈[𝑘]

𝑋𝑖 𝑗 ⊗ 1ª®¬
∑︁
[𝑞]
𝑥𝑙 ⊗ 𝑚𝑙







 = 𝛼 ∥Φ𝑖 ⊗ 1𝜉∥𝑛+𝑝

This yields ∥Φ ⊗ 1𝜉∥𝑛 ≤ 𝑁𝛼 ∥𝜉∥𝑛+𝑝 where Φ has 𝑁 monomials.

Example 4.5.6. Let Lie[𝐺] be a semisimple Lie algebra, with universal enveloping
algebra 𝑈 (Lie[𝐺]). The center Z(𝑈 (Lie[𝐺])) has a distinguished element, the
Casimir operator, Ω =

∑
𝑖 𝑋

2
𝑖

where 𝑋𝑖 is an orthonormal basis for Lie[𝐺] with
respect to the Killing form 𝐵. For homogeneous spaces, the Casimir operator induces
a laplacian acting on sections of homogeneous vector bundles which is covariant
with respect to the group action and completely-smooth (see observation 4.5.9).

Sinha and Goswami [62] construct the Evans-Hudson dilation for semigroups with
unbounded generators with structure maps derived from the data of the semigroup.
This proceeds like described earlier and the estimates in section 4.4 are motivated
by these calculations; complete smoothness is defined precisely to make estimates
for r.h.s. of equation 4.16 work as needed. The covariance of the flow is required
for putting a Frechet structure on the noise space.

Theorem 4.5.7. (Existence of Evans-Hudson dilation[62, Thm 8.1.38]) If (𝑇𝑡) is a
conservative quantum dynamical semigroup on a unital C*-algebra A, covariant
with respect to action of a second countable compact Lie group 𝐺, with possibly
unbounded generator L that is 𝑝-completely smooth for some 𝑝 and L(A∞) ⊂
A∞ ⊂ Dom(L), then the Evans-Hudson dilation exists.

By theorem 4.5.7, the existence of Evans-Hudson dilation requires that the semi-
group be conservative. As remarked before, this does not hold for the semigroups
𝑒−𝑡𝐿 , L = △, 𝐷2 on a spinor bundle, and one needs to pass to the endomorphism
connection, alternatively the commutator. To start, the example of the Clifford bun-
dle is considered where the connection laplacian is conservative. The commutation
of the generator with the Lie group action and complete smoothness are tied to the
Lie algebra structure. For reductive homogeneous spaces the hypothesis needed can
be checked to hold.



68

Torsion and the canonical connection laplacians
Suppose the homogeneous space 𝑀 = 𝐾/𝐻 for compact, connected, Lie group 𝐾 ,
closed Lie subgroup 𝐻 ⊂ 𝐾 is reductive with Lie[𝐾] = Lie[𝐻] ⊕ 𝔐 as a vector
space for an Ad(𝐻) invariant subspace 𝔐. 𝔐 is identified with 𝑇𝑜𝑀 where 𝑜 = 𝑒𝐻

in the coset manifold 𝐾/𝐻. The homogeneous space 𝐾/𝐻 is principal 𝐻-bundle,
𝜋 : 𝐾 → 𝐾/𝐻 and carries a 𝐾 action. Note that if the 𝐾 acts effectively on reductive
homogeneous space𝐾/𝐻 then𝐻 is isomorphic to a subgroup of GL(dim𝑀,R), and
the fiber bundle 𝜋 : 𝐾 → 𝐾/𝐻 is isomorphic to a sub-bundle of the principal frame
bundle 𝐹 (𝑀,GL(dim𝑀,R)). The 𝐾 action is assumed to be effective. The action
of 𝑘 ∈ 𝐾 on the𝑇𝑥𝑀 is given by 𝑋 → 𝑘𝑋 ∈ 𝑇𝑘𝑥𝑀 by the differential of its left action
𝐿𝑘 : 𝑀 → 𝑀 , 𝑑𝐿𝑘 (which are denoted by 𝑘, 𝑘∗). The 𝐾-action is an isomorphism
for all 𝑘 ∈ 𝐾, 𝑝 ∈ 𝐾/𝐻, that is, the tangent bundle is homogeneous, while𝐻 induces
automorphism at each fiber, meaning the fibers carry a representation of 𝐻.

Additionally, let 𝐾 be semisimple, so the Killing form 𝐵𝐾 defines a positive definite
Riemannian metric ℎ on 𝐾 and an inner product on Lie[𝐾] by −𝐵𝐾 such that the
reductive decomposition for 𝐾/𝐻 satisfies 𝔐 = Lie[𝐻]⊥ with respect to −𝐵𝐾 .
By left invariance of the Killing form, the inner product on Lie[𝐺] extends to a
Riemannian metric on 𝑀 = 𝐾/𝐻. Since the Lie group 𝐾 is compact and connected,
the Lie algebra exponential agrees with the Riemannian exponential and is surjective.
This means that Casimir laplacian commutes with action of both Lie group and the
Lie algebra.

There exists 𝐾-invariant connections on the homogeneous space 𝐾/𝐻: 𝑘 : 𝐾/𝐻 →
𝐾/𝐻 means ∇𝑘∗𝑋 (𝑘∗𝑌 ) = 𝑘∗(∇𝑋𝑌 ) for all 𝑋,𝑌 ∈ 𝑇𝑀 . There’s a unique 𝐾-
invariant connection in 𝐾 such that if 𝑓𝑡 = exp(𝑡𝑋) be the 1-parameter subgroup of
𝐾 corresponding to 𝑋 ∈ 𝔐 with a natural lift of 𝑜 to 𝑢𝑜 in the principal bundle,
then the orbit of 𝑓 (𝑢𝑜) is horizontal. The connection 1-form for the canonical
connection is Proj𝐻 ◦ Θ𝑀𝐶 where Proj𝐻 is the projection onto the Lie[𝐻], and
Θ𝑀𝐶 is the Maurer-Cartan form, 𝑣 ∈ 𝑇𝑔𝐺 → 𝐿𝑔−1𝑣 ∈ 𝑇𝑒𝐺, and the corresponding
horizontal distribution is obtained at 𝑜 by translating 𝔐 by the left 𝐾-action.

The canonical connection is a metric connection, but is not necessarily torsion-
free, instead the torsion and curvature are parallel. The canonical connection,
therefore, does not agree with the Levi-Civita connection in general; when 𝑀

is a symmetric homogeneous space, the two connections do agree. To establish
complete-smoothness and covariance, to start it needs to be checked that the homo-
geneous connection acts by the Lie algebra action on the tangent bundle and lifts to
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a 𝐾-invariant connection on the Clifford bundle Cl(𝑇𝑀).

Lemma 4.5.8. For all 𝑋 ∈ 𝔐 ⊂ Lie[𝐾], and 𝜙 given locally about 𝑜 with orthonor-
mal frame, (𝑒𝑖),

∑
𝑓𝑖𝑒𝑖 ∇𝑋𝜙 =

∑
𝑖 𝑋 ( 𝑓𝑖)𝑒𝑖.

Proof. If 𝑋𝑖’s for a basis for 𝔐, orthonormal to Lie[𝐻], then ∇𝑋𝑙𝜙 =
∑
𝑖 𝑑𝑓𝑖 (𝑋𝑙)𝑒𝑖 +∑

𝑖 𝑓𝑖∇𝑋𝑙𝑒𝑖 =
∑
𝑖 𝑑𝑓𝑖 (𝑋𝑙)𝑒𝑖 +

∑
𝑖 𝑓𝑖

∑
𝑗 𝜔

𝑗

𝑖
(𝑋𝑙) where 𝜔 the connection 1-form. Since

𝜔 is projection onto Lie[𝐻], ∇𝑋𝜙 =
∑
𝑖 𝑋 ( 𝑓𝑖)𝑒𝑖 at 𝑜 ∈ 𝑀 as needed.

Now at any 𝑝 ∈ 𝐾/𝐻, by 𝐾-invariance, with 𝑝 = 𝑘 · 𝑜, ∇𝑋 |𝑝 can be written as
𝑘∇𝐿∗

𝑘−1𝑋
|𝑒𝑘−1 since 𝔐 and the orthogonal complement are invariant under transla-

tion by 𝐾 . Note that by 𝐾-invarince, if (𝑒𝑖) is Riemann normal frame, ∇𝑒𝑖𝑒 𝑗 = 0
at 𝑥, then 𝑘∇𝑒𝑖𝑒 𝑗 = ∇𝑘𝑒𝑖 𝑘𝑒 𝑗 = 0 making (𝑘𝑒𝑖) Riemann normal frame at 𝑘𝑥. The
laplacian in at 𝑥, △𝑥 = −∑

𝑖 ∇𝑒𝑖∇𝑒𝑖 = −∑
𝑖 𝑒

2
𝑖
, and at 𝑘𝑥,

∑
𝑖 ∇𝑘𝑒𝑖∇𝑘𝑒𝑖 , meaning

△𝑘𝑥 = 𝑘△𝑥 = −𝑘 ∑
𝑖 𝑒

2
𝑖

by 𝐾-invariance.

Observation 4.5.9. Note that for homogeneous bundles, 𝐸 → 𝐾/𝐻 with the canon-
ical connection, the fibers carry a representation of 𝐻, the isotropy representation
𝜌, while bundle 𝐸 is the associated bundle to principal bundle 𝐾/𝐻 for 𝜌, 𝐾 ×𝜌 𝐸 .
There’s an induced representation of 𝐾 on Γ(𝐸). By standard theory (see [51, 19]),
△𝐸 = −𝐶2(𝐾, Γ(𝐸)) + 𝐶2(𝐻, 𝐸) where 𝐶2(𝐾, Γ(𝐸)) and 𝐶2(𝐻, 𝐸) are Casimir
operators for 𝐾 and 𝐻, the representation for 𝐾 being the induced representation
on Γ(𝐸) while the 𝐻-representation being the isotropy representation acting point-
wise. The proofs of these statements are similar to the above lemma. Therefore, the
laplacian on 𝐾/𝐻 is expressed as a Lie algebra action.

Proposition 4.5.10. The homogeneous connection lifts to a 𝐾-invariant connection
∇̂ on Cl(𝑇𝑀), with ∇̂1 = 0.

Proof. Since connections are local, working in a local trivialization over 𝑈 ⊂ 𝑀

with an orthonormal frame (𝑒𝑖) is sufficient. The Clifford bundle over 𝑈 is the
quotient of the tensor bundle T𝑇𝑀 :=

∑
C ⊕𝑛∈N 𝑇𝑀⊗𝑛 by the ideal I generated

by {𝑣 ⊗ 𝑣 + ℎ(𝑣) : 𝑣 ∈ 𝑇𝑀}. The tensor connection ∇ on 𝑇𝑀⊗𝑛, ∇𝑋 (𝑣 ⊗ 𝑢) =

∇𝑋 (𝑣) ⊗𝑢+𝑣⊗∇𝑋 (𝑢) composed with the quotient 𝜋 : T𝑇𝑀 → T𝑇𝑀/I will define
a connection ∇̂ = 𝜋∇𝜋−1 on Cl(𝑇𝑈) if it’s well-defined with respect to the quotient.
The 𝐾-invariance and being a Lie algebra action are inherited from the canonical
connection. To verify it’s well-defined one needs that if 𝜋𝑢 = 𝜋𝑢′ then ∇̂𝑢 = ∇̂𝑢′.
By linearity, it may be assumed that 𝑢 = 𝑎1 ⊗ . . . 𝑎𝑛, 𝑢′ = 𝑎1 ⊗ . . . 𝑎𝑚. Without
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loss of generality, after reordering tensor components, it may also be assumed that
𝑢′ = 𝑢 ⊗ 𝑦 for 𝑦 = 𝑝𝑖1 ⊗ 𝑝𝑖1 ⊗ 𝑝𝑖1 ⊗ 𝑝𝑖1 . . . ⊗ 𝑝𝑖𝑙 ⊗ 𝑝𝑖𝑙 , that is, the last 2𝑙 are paired.
Since the quadratic for form Cl(𝑇𝑀) is ℎ, the relation 𝑣 ⊗ 𝑣 ∼ ℎ(𝑣, 𝑣) reduces 𝑦 to
∥𝑦∥2. By C(𝑀) linearity of the tensor product, 𝑢′ = ∥𝑦∥ 𝑢. Therefore, 𝜋𝑢 = 𝜋𝑢′

means ∥𝑦∥ = 1 identically on𝑈.

Now ∇̂𝑢 ⊗ 𝑦 = (∇̂𝑢) ⊗ 𝑦 + 𝑢∇̂𝑦, so to show that 𝜋∇ is well-defined, it’s enough to
show that ∇̂𝑣 ⊗ 𝑣 = 0 for 𝑣 ∈ 𝑇𝑀 , ∥𝑣∥ = 1. Let 𝑣 =

∑
𝑓𝑖𝑒𝑖 in the local orthonormal

frame, giving that
∑
𝑓 2
𝑖
= 1 and so

∑
𝑓𝑖𝑋 ( 𝑓𝑖) = 0 for any coordinate vector field 𝑋 .

Finally,

∇𝑋 (
∑︁

𝑓𝑖𝑒𝑖 ⊗
∑︁

𝑓 𝑗𝑒 𝑗 ) =
∑︁
𝑖, 𝑗

𝑓 𝑗𝑋 ( 𝑓𝑖)𝑒𝑖 ⊗ 𝑒 𝑗 + 𝑓𝑖𝑋 ( 𝑓 𝑗 )𝑒𝑖 ⊗ 𝑒 𝑗 +
∑︁
𝑖 𝑗

𝑓𝑖 𝑓 𝑗∇𝑋 (𝑒𝑖 ⊗ 𝑒 𝑗 )

with
∑︁
𝑖, 𝑗

𝑓 𝑗𝑋 ( 𝑓𝑖)𝑒𝑖 ⊗ 𝑒 𝑗 + 𝑓𝑖𝑋 ( 𝑓 𝑗 )𝑒𝑖 ⊗ 𝑒 𝑗 =
∑︁
𝑖, 𝑗

𝑓 𝑗𝑋 ( 𝑓𝑖)𝑒𝑖 ⊗ 𝑒 𝑗 +
∑︁
𝑖, 𝑗

𝑓𝑖𝑋 ( 𝑓 𝑗 )𝑒𝑖 ⊗ 𝑒 𝑗

=
∑︁
𝑖, 𝑗

[
𝑓 𝑗𝑋 ( 𝑓𝑖)𝑒𝑖 ⊗ 𝑒 𝑗 + 𝑓 𝑗𝑋 ( 𝑓𝑖)𝑒 𝑗 ⊗ 𝑒𝑖

)
=

∑︁
𝑖, 𝑗

𝑓 𝑗𝑋 ( 𝑓𝑖)
[
𝑒𝑖 ⊗ 𝑒 𝑗 + 𝑒 𝑗 ⊗ 𝑒𝑖

]
=

∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝑓 𝑗𝑋 ( 𝑓𝑖)
[
𝑒𝑖 ⊗ 𝑒 𝑗 + 𝑒 𝑗 ⊗ 𝑒𝑖

]
+ 2

∑︁
𝑖

𝑓𝑖𝑋 ( 𝑓𝑖)𝑒𝑖 ⊗ 𝑒𝑖

Notice that 𝜋(∑𝑖 2 𝑓𝑖𝑋 ( 𝑓𝑖)𝑒𝑖⊗𝑒𝑖) = 0 because
∑
𝑖 𝑓𝑖𝑋 ( 𝑓𝑖) = 0 while 𝜋(∑𝑖, 𝑗 ,𝑖≠ 𝑗 𝑓 𝑗𝑋 ( 𝑓𝑖) [𝑒𝑖⊗

𝑒 𝑗 +𝑒 𝑗 ⊗ 𝑒𝑖]) vanishes because 𝑒𝑖, 𝑒 𝑗 anti-commute for 𝑖 ≠ 𝑗 . Then 𝜋∇𝑋 (𝑒𝑖 ⊗ 𝑒 𝑗 ) = 0
as well using the same anti-commutation and that the derivative of the Clifford re-
lation is zero:

∇(𝑒𝑖 ⊗ 𝑒𝑖) = −∇ℎ(𝑒𝑖, 𝑒𝑖) = 0 (4.27)

This yields ∇̂𝑋𝑣 ⊗ 𝑣 = 0, and also ∇̂𝑋1 = 0.

Proposition 4.5.11. The connection ∇̂ is Riemannian.

Proof. The Clifford inner product is given by ⟨𝑎, 𝑏⟩Cl = (𝑎∗𝑏)0 where (·)0 denotes
the degree 0 part and ∗ is defined through (𝑎𝑖1 ⊗ . . .⊗ 𝑎𝑖𝑘 )∗ = (−1)𝑘 (𝑎𝑖𝑘 ⊗ . . .⊗ 𝑎𝑖1).
The Clifford inner product is defined so that the anti-symmetrization map for any
vector space 𝐸 ,

ASymm : Λ(𝐸) ∋ 𝑎1 ∧ 𝑎2 · · · ∧ 𝑎𝑝 → 1
𝑝!

∑︁
𝜎∈𝑆𝑝

(−1)𝜎𝑎𝜎(1) · 𝑎𝜎(2) · · · · 𝑎𝜎(𝑝) ∈ Cl(𝐸)

(4.28)

which is an isomorphism of vector spaces is also an isometry. To show that the
connection is Riemannian note that it’s sufficient to show it for basis elements,
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𝑎 := 𝑒𝑖1 ⊗ . . . ⊗ 𝑒𝑖𝑘 , 𝑏 := 𝑒 𝑗1 ⊗ . . . ⊗ 𝑒 𝑗𝑚 , 𝑒𝑖’s being a basis for 𝑇𝑀 . First note
∇̂𝑋 (𝑎∗𝑎)0 = 0, while the terms in ((∇̂𝑋𝑎∗)𝑎 + 𝑎∗∇̂𝑋𝑎)0, can be collected to have
form 𝑦⊗∇̂(𝑒𝑖⊗𝑒𝑖) ⊗ 𝑦′ for some 𝑦, 𝑦′, giving ((∇̂𝑋𝑎∗)𝑎+𝑎∗∇̂𝑋𝑎)0 = 0 after applying
the Clifford relation.

So consider the case 𝑎 ≠ 𝑏 with 𝑘 + 𝑚 is odd. One can also assume that 𝑎, 𝑏 share
no 𝑒𝑖 as on reordering it will drop out. This means (𝑎∗𝑏)0 = 0 because 𝑎∗𝑏 cannot
land in degree zero. Thus, ∇̂𝑋 ⟨𝑎, 𝑏⟩Cl = 0. Since 𝑘 + 𝑚 is odd, and the Clifford
relation reduces degree by 2 each time it’s utilized, (𝑎∗∇̂𝑋𝑏)0 = 0 = (∇̂𝑋 (𝑎∗)𝑏)0 as
well.

The only case that remains is when 𝑘 +𝑚 is even. Without loss of generality assume
that 𝑘 = 𝑚 since one can always regroup 𝑎∗𝑏. Consider the case 𝑎 = 𝑒𝑖, 𝑏 = 𝑒 𝑗 , 𝑖 ≠ 𝑗 ,
and that 𝑋 = 𝑒𝑟 for any 𝑟. Then

2∇𝑟 (𝑒𝑖 ⊗ 𝑒 𝑗 ) = ∇𝑟 (𝑒𝑖 ⊗ 𝑒 𝑗 − 𝑒 𝑗 ⊗ 𝑒𝑖)
= Γ𝑠𝑟𝑖𝑒𝑠 ⊗ 𝑒 𝑗 + 𝑒𝑖 ⊗ Γ𝑠𝑟 𝑗𝑒𝑠 − Γ𝑠𝑟 𝑗𝑒𝑠 ⊗ 𝑒𝑖 − 𝑒 𝑗 ⊗ Γ𝑠𝑟𝑖𝑒𝑠

so, 𝜋(2∇𝑟 (𝑒𝑖 ⊗ 𝑒 𝑗 ))0 = Γ
𝑗

𝑟𝑖
𝑒 𝑗 ⊗ 𝑒 𝑗 + 𝑒𝑖 ⊗ Γ𝑖

𝑟 𝑗
𝑒𝑖 − Γ𝑖

𝑟 𝑗
𝑒𝑖 ⊗ 𝑒𝑖 − 𝑒 𝑗 ⊗ Γ

𝑗

𝑟𝑖
𝑒 𝑗 = 0 where

(𝑒𝑠 ⊗ 𝑒𝑖)0 = 0 unless 𝑠 = 𝑖 (and same for 𝑒 𝑗 ’s) was used. Now consider the case
where 𝑘 ≥ 2; since all 𝑒𝑖’s in 𝑎∗𝑏 are distinct, 𝑎, 𝑏 can be anti-symmetrized which is
exactly the isometric identification in equation 4.28, and so the claim follows from
metric compatibility of tensor connection on exterior bundle. Explicitly

𝑎 = 1
𝑝!

∑︁
𝜎∈𝑆𝑝

(−1)𝜎𝑒𝜎(𝑖1) · 𝑒𝜎(𝑖2) · · · · 𝑒𝜎(𝑖𝑘) = 𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘

𝑏 = 1
𝑝!

∑︁
𝜎∈𝑆𝑝

(−1)𝜎𝑒𝜎( 𝑗1) · 𝑒𝜎( 𝑗2) · · · · 𝑒𝜎( 𝑗𝑘) = 𝑒 𝑗1 ∧ · · · ∧ 𝑒 𝑗𝑘

(∇𝑎𝑏)0 = ⟨𝑎,∇𝑟𝑏⟩Λ + ⟨∇𝑟𝑎, 𝑏⟩Λ

Recall that ⟨𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘 , 𝑒 𝑗1 ∧ · · · ∧ 𝑒 𝑗𝑘 ⟩Λ = Det(⟨𝑒𝑠, 𝑒𝑡⟩𝑇𝑀). Now expanding
with the product rule ⟨∇𝑟𝑎, 𝑏⟩Λ =

∑
𝑞∈[𝑘] ⟨∇

𝑞
𝑟 𝑎, 𝑏⟩Λ where ∇𝑞

𝑘
denotes ∇𝑘 applied

to 𝑞 tensor component. Each

⟨∇𝑞𝑟 𝑎, 𝑏⟩Λ = ⟨𝑒𝑖1 ∧ . . .∇𝑟𝑒𝑖𝑞 · · · ∧ 𝑒𝑖𝑘 , 𝑒 𝑗1 ∧ . . . 𝑒 𝑗𝑞 · · · ∧ 𝑒 𝑗𝑘 ⟩

is still zero, since it’s a determinant of a matrix with every row zero except possibly
the 𝑞𝑡ℎ-row since 𝑒𝑖’s and 𝑒 𝑗 ’s are all distinct; this is where 𝑘 ≥ 2 comes into play.
The term ⟨𝑎,∇𝑘𝑏⟩Λ is handled similarly.
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The canonical connection is not torsion-free, i.e., symmetric. This means that for
Riemann normal coordinates 𝑥𝑖 centered at 𝑝 and coordinate fields 𝑒𝑖’s, ∇𝑖𝑒𝑖 (𝑝) = 0
but ∇𝑖𝑒 𝑗 (𝑝) ≠ 0 for 𝑖 ≠ 𝑗 . For Christoffel symbols Γ𝑘

𝑖 𝑗
defined by ∇𝑖𝑒 𝑗 = Γ𝑘

𝑖 𝑗
𝑒𝑘 ,

Γ𝑘
𝑖𝑖
= 0 and Γ𝑘

𝑖 𝑗
+ Γ𝑘

𝑗𝑖
= 0 at 𝑝 (see [46, Prop III.8.4]). Now div(𝑣)𝑝 :=

∑
𝑖 ⟨∇𝑖𝑣, 𝑒𝑖⟩,

so div(𝑒𝑘 )𝑝 :=
∑
𝑖 ⟨∇𝑖𝑒𝑘 , 𝑒𝑖⟩𝑝 = 0 if ∇ was torison-free. In presence of torsion using

Γ𝑘
𝑖 𝑗
+ Γ𝑘

𝑗𝑖
= 0 implies

div(𝑒𝑘 )𝑝 :=
∑︁
𝑖

⟨∇𝑖𝑒𝑘 , 𝑒𝑖⟩𝑝 = −
∑︁
𝑖

⟨∇𝑘𝑒𝑖, 𝑒𝑖⟩𝑝 (4.29)

The non-zero torsion is consequential, the Bochner identity needs to be corrected
and the Dirac operator picks up torsion and is no longer self-adjoint; however, it
can be corrected to an operator which reduces to the usual Dirac operator as torsion
vanishes. Precisely when the Dirac operator for canonical connection on homoge-
neous bundles is formally self-adjoint is characterized by [1, Proposition 3.1]; the
following addresses the modification to the Bochner identity.

Lemma 4.5.12 (Torsion deformed Bochner identity). Let ∇ be a connection on 𝑇𝑀
with torsion for manifold 𝑀 , then the Dirac laplacian 𝐷2 =

∑
𝑗 𝑘 𝑒 𝑗∇ 𝑗𝑒𝑘∇𝑘 associ-

ated to the Clifford bundle with connection obtained from ∇ in normal coordinates
(𝑒𝑖) centered at 𝑝, ℜ the curvature operator from the usual Bochner identity

1. With 𝑇 (𝑋,𝑌 ) = ∇𝑋𝑌 − ∇𝑌𝑋 − [𝑋,𝑌 ], 𝑋,𝑌 ∈ Γ(𝑇𝑀), the torsion tensor,
𝔗 = 1

2
∑
𝑗 𝑘 𝑒 𝑗𝑇 (𝑒 𝑗 , 𝑒𝑘 )∇𝑘

𝐷2 = ∇∗∇ +ℜ + 𝔗

2. If 𝑇 ≠ 0, 𝐷2 is not necessarily self-adjoint, the operator

D2 := ∇∗∇ + 1
2 [ℜ +ℜ∗] + 1

2 [𝔗 + 𝔗∗]

is self-adjoint

Proof. At 𝑝 𝐷2𝜙 =
∑
𝑗 𝑘 𝑒 𝑗∇ 𝑗𝑒𝑘∇𝑘𝜙 becomes

𝐷2𝜙 =
∑︁
𝑗 𝑘

𝑒 𝑗𝑒𝑘∇ 𝑗∇𝑘𝜙 + 𝑒 𝑗∇ 𝑗 (𝑒𝑘 )∇𝑘𝜙 = ∇∗∇𝜙 +ℜ𝜙 +
∑︁
𝑗 𝑘

𝑒 𝑗 [∇ 𝑗 (𝑒𝑘 ) − ∇𝑘 (𝑒 𝑗 )]∇𝑘𝜙

where [𝑒 𝑗 , 𝑒𝑘 ] = 0, Γ𝑠
𝑘 𝑗

= −Γ𝑠
𝑗 𝑘

was used to rewrite 2∇ 𝑗 (𝑒𝑘 ) = 2
∑
𝑠 Γ

𝑠
𝑗 𝑘
𝑒𝑠 =∑

𝑠 Γ
𝑠
𝑗 𝑘
𝑒𝑠 −

∑
𝑠 Γ

𝑠
𝑘 𝑗
𝑒𝑠 = ∇ 𝑗 (𝑒𝑘 ) − ∇𝑘 (𝑒 𝑗 ) = 𝑇 (𝑒 𝑗 , 𝑒𝑘 ). The Dirac laplacian fails to
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be self adjoint because ℜ can fail to symmetric if 𝑒 𝑗∇𝑘𝜙 ≠ ∇𝑘𝑒 𝑗𝜙 as a consequence
of ∇𝑘𝑒 𝑗 ≠ 0 at 𝑝 which is happens exactly when 𝑇 ≠ 0. Therefore, when 𝑇
vanishes ℜ = ℜ∗ giving back the usual Dirac laplacian. The self-adjointness of D2

is obvious.

When the 𝑇𝑀 is parallelizable, that is, there’s a global orthonormal frame (𝑒𝑖), then
explicitly, using that ⟨𝑢,∇𝑋𝑣⟩ = ⟨(−∇𝑋 − div(𝑋))𝑢, 𝑣⟩ with respect to 𝐿2 inner
product, since ⟨𝑢,∑𝑖 𝑒𝑖∇𝑖𝑣⟩𝐿2 = ⟨∑𝑖 𝑒𝑖 (∇𝑖 + div(𝑒𝑖))𝑣, 𝑢⟩, the Dirac operator is not
self adjoint, but satisfies,

𝐷∗ = 𝐷 +
∑︁
𝑘

𝑒𝑖div(𝑒𝑖), (𝐷2)∗ = (𝐷 +
∑︁

𝑒𝑖div(𝑒𝑖))2 (4.30)

For the parallelizable manifold example, the 𝐿2 adjoint for ∇𝑘 was used; the adjoint
with respect to the inner product at fiber can be computed using metric compatibility
by a straightforward calculation. Using ⟨𝜎′,∇𝑘𝜎⟩𝑝 = ∇𝑘 ⟨𝜎′, 𝜎⟩𝑝 − ⟨∇𝑘𝜎′, 𝜎⟩𝑝 =

𝑒𝑘 ⟨𝜎′, 𝜎⟩𝑝 − ⟨∇𝑘𝜎′, 𝜎⟩𝑝 along with

div(⟨𝜎′, 𝜎⟩𝑒𝑘 ) =
∑︁
𝑗

⟨∇ 𝑗 ⟨𝜎′, 𝜎⟩𝑒𝑘 , 𝑒 𝑗 ⟩ =
∑︁
𝑗

⟨𝑒 𝑗 (⟨𝜎′, 𝜎⟩)𝑒𝑘 + ⟨𝜎′, 𝜎⟩∇ 𝑗𝑒𝑘 , 𝑒 𝑗 ⟩

=
∑︁
𝑗

𝑒 𝑗 (⟨𝜎′, 𝜎⟩)(𝑝)⟨𝑒𝑘 , 𝑒 𝑗 ⟩𝑝 + ⟨𝜎′, 𝜎⟩
∑︁
𝑗

⟨∇ 𝑗𝑒𝑘 , 𝑒 𝑗 ⟩

= 𝑒𝑘 (⟨𝜎′, 𝜎⟩)𝑝 + ⟨𝜎′, 𝜎⟩𝑝div(𝑒𝑘 )𝑝

Therefore, 𝑒𝑘 (⟨𝜎′, 𝜎⟩)𝑝 = div(⟨𝜎′, 𝜎⟩𝑒𝑘 )𝑝 − ⟨𝜎′, 𝜎⟩𝑝div(𝑒𝑘 )𝑝, implying

⟨𝜎′,∇𝑘𝜎⟩𝑝 = div(⟨𝜎′, 𝜎⟩𝑒𝑘 )𝑝 − ⟨𝜎′, 𝜎⟩𝑝div(𝑒𝑘 )𝑝 − ⟨∇𝑘𝜎′, 𝜎⟩𝑝 (4.31)

From this, choosing 𝜎, 𝜎′ from an orthonormal frame gives the fiber-wise adjoint
in local basis. This calculation gives that T ,T ∗ are first order differential operators,
meaning the leading symbol of D2 agrees with the laplacian, and therefore we have
the following.

Proposition 4.5.13. The operator D2 is a generalized lapacian, formally self-
adjoint and elliptic.

Now note the 𝐾-invariance implies that the canonical connection laplacian and
curvature operator commute with group action.

Proposition 4.5.14. For any 𝜙 ∈ Γ(Cl(𝑇𝑀)),
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• 𝑘ℜ𝜙 = ℜ𝑘𝜙, 𝑘𝔗𝜙 = 𝔗𝑘𝜙.

• For the canonical connection laplacian, 𝑘 △ 𝜙 = △𝑘𝜙

Proof. Let (𝑒𝑖) be an orthonormal frame for at 𝑥 ∈ 𝑀 . Then since the metric is
bi-invariant, 𝑘𝑒𝑖 is an orthonormal frame at 𝑘𝑥, meaning the curvature operators at
𝑥, 𝑘𝑥 are

ℜ𝑥 :=
∑︁
𝑖 𝑗

𝑒𝑖 · 𝑒 𝑗 · [∇𝑒𝑖∇𝑒 𝑗 − ∇𝑒 𝑗∇𝑒𝑖 ], ℜ𝑘𝑥 :=
∑︁
𝑖 𝑗

𝑘𝑒𝑖 · 𝑘𝑒 𝑗 · [∇𝑘𝑒𝑖∇𝑘𝑒 𝑗 − ∇𝑘𝑒 𝑗∇𝑘𝑒𝑖 ]

The 𝐾-action Cl𝑥 between Cl𝑘𝑥 . Denoting Clifford multiplication at 𝑥, 𝑘𝑥, by
·Cl𝑥 , ·Cl𝑘𝑥 , since ⟨𝑘𝑢, 𝑘𝑣⟩𝑘𝑥 = ⟨𝑢, 𝑣⟩𝑥 , 𝑘 : 𝑇∗

𝑥 𝑀 → Cl(𝑇∗
𝑘𝑥
𝑀) satisfies the universal

property for Clifford algebras 𝑘𝑢 ·Cl𝑘𝑥 𝑘𝑢 = ⟨𝑢, 𝑢⟩1Cl(𝑇∗
𝑘𝑥
𝑀) , and therefore, 𝑘 induces

a Clifford algebra isomorphism. This means

𝑘ℜ𝑥𝜙 := 𝑘
∑︁
𝑖 𝑗

𝑒𝑖 · 𝑒 𝑗 · [∇𝑒𝑖∇𝑒 𝑗 − ∇𝑒 𝑗∇𝑒𝑖 ]𝜙 =
∑︁
𝑖 𝑗

𝑘𝑒𝑖 · 𝑘𝑒 𝑗 · 𝑘 [∇𝑒𝑖∇𝑒 𝑗 − ∇𝑒 𝑗∇𝑒𝑖 ]𝜙

=
∑︁
𝑖 𝑗

𝑘𝑒𝑖 · 𝑘𝑒 𝑗 · [∇𝑘𝑒𝑖∇𝑘𝑒 𝑗 − ∇𝑘𝑒 𝑗∇𝑘𝑒𝑖 ]𝑘𝜙 (by 𝐾-invariance)

= ℜ𝑘𝑥𝑘𝜙

which is as needed. The same holds for 𝔗. This works for the laplacian as well.
Now if (𝑒𝑖) is Riemann normal frame at 𝑥, then (𝑘𝑒𝑖) Riemann normal frame at 𝑘𝑥,
so the laplacian, △, at 𝑥 in Riemann normal frame at 𝑥 is −∑

𝑖 ∇𝑒𝑖∇𝑒𝑖 , and at 𝑘𝑥,∑
𝑖 ∇𝑘𝑒𝑖∇𝑘𝑒𝑖 , meaning 𝑘 △𝑥 𝜙 = △𝑘𝑥𝑘𝜙 as well.

Quantum stochastic dilation on homogeneous spinor bundles
First note some immediate results that follow from the last section.

Corollary 4.5.15. The heat semigroup generated by canonical connection laplacian
△ on Cl(𝑇𝑀) are a conservative quantum dynamical semigroup, and the generator
△ is completely smooth.

Proof. The first claim follows directly from results of chapter 2, the second is
because the ∇̂ acts through the Lie algebra; it just needs to be noted that one does
not need to change the connection based on the degree of 𝑣 in Cl(𝑇𝑈) since one can
always tensor with the identity, and apply the tensor product connection for 𝑛-fold
tensor.
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For connections with torsion, D4 generates a quantum dynamical semigroup by the
same idea. When the space is a symmetric space, the connection is torsion-free
and Dirac laplacian 𝐷2 generates a quantum dynamical semigroup; additionally, by
Bochner identity, D4, 𝐷2 are completely smooth.

Example 4.5.16. ([37]) Suppose 𝐾/𝐻 is a Riemannian symmetric space carry-
ing a homogeneous spin structure with Dirac operator /𝐷𝐾/𝐻 associated with the
Levi-Civita connection (which for a symmetric space agrees with the canonical
connection), then /𝐷2

𝐾/𝐻 = Ω𝐾 + 𝜅/8 where 𝜅 is the scalar curvature and Ω𝐾 the
Casimir operator for 𝐾 .

Example 4.5.17. Kostant’s cubic Dirac operator, 𝐷1/3, is the Dirac operator asso-
ciated to a linear combination of the canonical and Levi-Civita connection of the
reductive space 𝐾/𝐻. The laplacian, (𝐷1/3)2, can be expressed as the quadratic
Casimir operator with an additive scalar (see, for instance, [1, Thm 3.3]). By the
same argument it follows that the generated semigroup is a quantum dynamical
semigroup.

Corollary 4.5.18. For the Riemannian symmetric space 𝐾/𝐻, the spectral action
for the untruncated Dirac operator on the Clifford bundle, Cl(𝐾/𝐻), can be realized
from the Evans-Hudson flow.

Proof. This follows since 𝐷 := /𝐷𝐾/𝐻,D , is a Lie algebra action, and hence
completely-smooth and covariant since it acts though the Casimir operator which is
a quadratic element in center of the enveloping algebra for Lie[𝐾].

Example 4.5.19. For 𝐾 = 𝑆𝑈 (2), i.e. 𝑆3, 𝐻 = 𝑈 (1), i.e. 𝑆2, 𝐾/𝐻 = 𝑆2 is the Hopf
fibration. 𝑆2 is a symmetric space, so Evans-Hudson flows exists on Cl(𝑇𝑆2) and
over End(𝑆) for any homogeneous spinor bundle 𝑆 → 𝑆2 for a spin-structure.

Observation 4.5.20. More generally, the discussion applies to any finite dimensional
homogeneous vector bundles over 𝑀 = 𝐾/𝐻, that is, a vector bundle 𝐸 → 𝐾/𝐻
is such that 𝐾 acts on 𝐸 , with 𝑘𝐸𝑥 = 𝐸𝑘𝑥 , and the action 𝑘 : 𝐸𝑥 → 𝐸𝑘𝑥 is
an isomorphism for all 𝑘 ∈ 𝐾, 𝑘 ∈ 𝐾/𝐻. The most relevant setting is that of
homogeneous spinor bundle associated to a spin structure. Additionally, one needs
the tangent bundle to be homogeneous, with bi-invariant metrics and 𝐾-invariant
connection on 𝑇𝑀, 𝑆 (the homogeneity and 𝐾-invariance for 𝑇𝑀 are required for
homogeneity/invariance of the spin-structure). Because the heat semigroups on the
spinor bundle 𝑆 may not be conservative, one needs to pass to End(𝑆) and work
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with the endomorphism Dirac operator or the noncommutative laplacian; this means
the complete smoothness and covariance on 𝑆∗ needs to be wrangled. Note that
homogeneous spaces do not carry parallel spinors unless they are Ricci-flat (and so
flat) because is required for the existence of parallel spinors[35]; for spinC bundles
there are more parallel spinors[53].

4.6 Uniform Sobolev norms
Now the growth of Sobolev norms are considered. Let (𝑀, 𝑔) be a compact Rie-
mannian manifold with Levi-Civita connection ∇. On (𝑝, 𝑞)-tensors 𝑠, 𝑠′ there’s a
natural inner product by contraction with 𝑔𝑖 𝑗 , 𝑔𝑖 𝑗 , ⟨𝑠, 𝑠′⟩ = 𝑔𝑖1 𝑗1 . . . 𝑔𝑚1𝑛1𝑠

′𝑚1...
𝑖1...

𝑠
𝑛1...
𝑗1...

.
The Levi-Civita connection has a lift to the tensor bundle and an associated connec-
tion laplacian, both also denoted ∇, △. Denote by ∇𝑘𝑢 the 𝑘 𝑡ℎ-covariant derivative
and define the point-wise length with the innerproduct[42, § 2.2.1]:

ℓ(∇𝑘𝑢)2 = 𝑔𝑖1 𝑗1 . . . 𝑔𝑖𝑘 𝑗𝑘 (∇𝑘𝑢)𝑖1...𝑖𝑘 (∇𝑘𝑢) 𝑗1... 𝑗𝑘 = ⟨∇𝑘𝑢,∇𝑘𝑢⟩ (4.32)

When 𝑓 = Π𝑖∈[𝑁]𝜙𝑖 is a finite product of eigenfunctions 𝜙𝑖’s, for 𝑚 ∈ 𝑀 , since | △𝑘

𝑓 |𝑚 ≤ (dim𝑀)𝑘ℓ(∇2𝑘 𝑓 ), by product rule, this can be controlled by ⟨∇𝑘𝜙𝑖,∇𝑘𝜙𝑖⟩.
So one would like to know when a bound like ⟨∇𝑘𝜙,∇𝑘𝜙⟩𝑚 ≤ 𝐶𝜙𝑀 𝑘

𝜙
is possible. To

start assume the following, this will be relaxed in proposition 4.6.3. Spaces without
curvature provide examples satisfying this; as do some homogeneous spaces.

Assume 4.6.1. To control the growth of laplacian iterates, first assume [∇𝑘 , △]𝑢 = 0
for any laplacian eigenfunction.

One expects that


∇𝑘𝜙 𝑗

𝐿2 (𝑀) should be bounded by 𝜆2𝑘

𝑗
when △ = ∇∗∇ and ∇

almost commute. Since 𝜙 𝑗 ’s are smooth this is enough to establish a uniform
bound, but this will require leveraging the ∥·∥𝐿2 (𝑀) bound locally and the boundary
for the local chart will need to be taken into account. Recall the integration by parts
formula for tensor fields when 𝑀 does have a boundary,∫

𝑀

⟨∇𝐹, 𝐺⟩𝑑𝑉𝑔 =
∫
𝜕𝑀

⟨𝐹 ⊗ 𝑁♭, 𝐺⟩𝑑𝑉𝑔̂ −
∫
𝑀

⟨𝐹, div(𝐺)⟩𝑑𝑉𝑔 (4.33)

where 𝑔̂ is the induced metric on 𝜕𝑀, 𝑑𝑉𝑔, 𝑑𝑉𝑔̂ the associated volume forms, ·♭ the
musical isomorphism, 𝑁 the outward unit normal at 𝜕𝑀 , and 𝐹, 𝐺 tensor fields,
div(𝐺) = Tr𝑔 (∇𝐺), the trace being over the last two indices. Note if 𝐺 = ∇𝐻 then,
−div(𝐺) = △(𝐻).
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Proposition 4.6.2. Assuming [△,∇] = 0, for eigenfunction 𝑢 with eigenvalue 𝜆2,

∇𝑘𝑢

∞ ≤ 2𝜆


∇𝑘−1𝑢




∞

Proof. Set 4𝜆2


∇𝑘−1𝑢



2
∞ = 𝐾 > 0. Suppose for some 𝑥 ∈ 𝑀 , ⟨∇𝑘𝑢,∇𝑘𝑢⟩𝑥−𝐾 > 0.

Then since 𝑢 is smooth, there exists an open neighborhood 𝑈 of 𝑥 such that on 𝑈,
⟨∇𝑘𝑢,∇𝑘𝑢⟩ − 𝐾 > 0. Let 𝜓 be such that supp(𝜓) ⊂ 𝑈 is compact, 𝜓 ≥ 0 on 𝑈 and
𝜓 > 0 on open 𝑉 ⊂ 𝑈, then∫

𝑀

𝜓⟨∇𝑘𝑢,∇𝑘𝑢⟩ − 𝜓𝐾𝑑𝑉𝑔 =
∫
𝑈

⟨𝜓∇𝑘𝑢,∇𝑘𝑢⟩ − 𝜓𝐾𝑑𝑉𝑔 > 0 (4.34)

Now ⟨𝜓∇𝑘𝑢,∇𝑘𝑢⟩ = ⟨∇(𝜓∇𝑘−1𝑢),∇𝑘𝑢⟩ − ⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩, and for the first term∫
𝑈

⟨∇(𝜓∇𝑘−1𝑢),∇𝑘𝑢⟩𝑑𝑉𝑔 =
∫
𝜕𝑈

⟨·, ·⟩𝑑𝑉𝑔̂ +
∫
𝑈

⟨𝜓∇𝑘−1𝑢,−div(∇𝑘𝑢)⟩𝑑𝑉𝑔

where
∫
𝜕𝑈

⟨·, ·⟩𝑑𝑉𝑔̂ = 0 since 𝜓 = 0 on 𝜕𝑈 and outside 𝑈, while −div(∇𝑘𝑢) =

△∇𝑘−1𝑢 = ∇𝑘−1 △ 𝑢 using by assumption 4.6.1. Therefore, we have∫
𝑀

𝜓⟨∇𝑘𝑢,∇𝑘𝑢⟩ =
∫
𝑈

𝜓⟨∇𝑘−1𝑢,∇𝑘−1 △ 𝑢⟩ −
∫
𝑈

⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔

= 𝜆2
∫
𝑈

𝜓⟨∇𝑘−1𝑢,∇𝑘−1𝑢⟩ −
∫

supp(∇𝜓)
⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔

(4.35)

This yields

0 <
∫
𝑈

𝜓⟨∇𝑘𝑢,∇𝑘𝑢⟩ − 𝜓𝐾𝑑𝑉𝑔

= 𝜆2
∫
𝑈

𝜓⟨∇𝑘−1𝑢,∇𝑘−1𝑢⟩ −
∫

supp(∇𝜓)
⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔 −

∫
𝑈

𝜓𝐾𝑑𝑉𝑔

=

∫
𝑈

𝜓(𝜆2 

∇𝑘−1𝑢


2 − 𝐾)𝑑𝑉𝑔 −

∫
supp(∇𝜓)

⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔 (4.36)

Define the linear functional 𝜔(𝜓) :=
∫
supp(∇𝜓) ⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔. Note

⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩ = 𝑔𝑖1 𝑗1∇𝑖1𝜓
(
𝑔𝑖2 𝑗2 . . . 𝑔𝑖𝑘 𝑗𝑘 (∇𝑘−1𝑢)𝑖2...𝑖𝑘 (∇𝑘𝑢) 𝑗1 𝑗2... 𝑗𝑘

)
= 𝑔𝑖1 𝑗1∇𝑖1𝜓

(
𝑔𝑖2 𝑗2 . . . 𝑔𝑖𝑘 𝑗𝑘 (∇𝑖2 . . .∇𝑖𝑘𝑢) (∇ 𝑗1∇ 𝑗2 . . .∇ 𝑗𝑘𝑢)

)
= 𝑔𝑖1 𝑗1∇𝑖1𝜓𝐺 𝑗1 = ⟨∇𝜓, 𝐺 𝑗1⟩ (4.37)

where 𝐺 𝑗1 = 𝑔
𝑖2 𝑗2 . . . 𝑔𝑖𝑘 𝑗𝑘 (∇𝑖2 . . .∇𝑖𝑘𝑢) (∇ 𝑗1∇ 𝑗2 . . .∇ 𝑗𝑘𝑢).

By showing that there exists a𝜓 that makes𝜔(𝜓) ≥ 0, since𝜓(𝜆2


∇𝑘−1𝑢



2−𝐾) < 0,
it will follow that equation 4.36 cannot hold. Assume that 𝑈 is small enough to
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be covered by a Riemann normal coordinates, and consider polar coordinates on
𝑈 centered at 𝑥. Define 𝜏𝑐𝑠 on 𝑈 for 𝑐, 𝑠 ∈ R>0 such that 𝜏𝑠 (𝑥) = 𝑐 and then
decays linearly in radially outwards direction with slope −𝑠 to 0 at 𝜕𝐵𝑅 (𝑥) with 𝑐, 𝑠
such that supp(𝜏𝑐𝑠 ) ⊂ 𝑈, 𝑅 depending on 𝑐, 𝑠. Then 𝜏𝑐𝑠 is continuous, piecewise
continuously differentiable, with compact support in 𝑈, so weakly-differentiable,
and ∇𝜏𝑐𝑠 = −𝑠1B𝑅 (𝑥) (there’s enough slack to work with mollified versions of 𝜏’s,
but weak-differentiability suffices for simplicity). If for some 𝜏𝑐𝑠 , 𝜔(𝜏𝑐𝑠 ) ≥ 0 then
that 𝜓 = 𝜏𝑐𝑠 is the required 𝜓.

If not, then𝜔(𝜏𝑐𝑠 ) < 0 for all 𝑐 small enough to have support in𝑈. By rescaling wlog
assume 𝑐 = 𝑠 = 1, and set 𝜏1 := 𝜏1

1 ( otherwise the constants are messy). For such 𝜏1,
define 𝜏′1 such that 𝜏′1(𝑥) = 0, and 𝜏′1 increases linearly to 1 at 𝜕𝐵1(𝑥), and outside
of 𝐵1(𝑥), 𝜏′1 = 0. Then 𝜔(𝜏′1) = −𝜔(𝜏1) = 𝛿 > 0 since ∇𝜏′1 = −∇𝜏1 on supp(∇𝜏′1) =
supp(∇𝜏1). It remains to make 𝜏′1 continuous without changing 𝜔(𝜏′1) too much.
For this set 𝜏′′1,𝑟 = 𝜏

′
1 on 𝐵1(𝑥), 𝜏′′1,𝑟 = 0 on 𝐵1+𝑟 (𝑥)𝑐, and on 𝐵1+𝑟 (𝑥)𝑐 \ 𝐵1(𝑥), 𝜏′′1,𝑟

decays linearly to 0 on 𝜕𝐵1+𝑟 (𝑥). Finally, since for all 𝑟 > 0 small enough, 𝜏′′1,𝑟 is
piecewise continuous, continuously differentiable and compactly supported in𝑈, it
remains to check




𝜔(𝜏′1) − 𝜔(𝜏′′1,𝑟)


 ≤ 𝜖 (𝑟) with 𝜖 (𝑟) vanishing with 𝑟, and there

exists 𝑟𝜖 > 0 such that for all 𝑟 < 𝑟𝜖 ,



𝜔(𝜏′𝑠) − 𝜔(𝜏′′1,𝑟)


 ≤ 𝜖 . Note that

2



𝜔(𝜏′1) − 𝜔(𝜏′′1,𝑟)


 = ∥

∫
𝐵1+𝑟 (𝑥) (𝑥)\𝐵1 (𝑥)

⟨𝜏′′1,𝑟 ,−div(𝐺 𝑗1⟩𝑑𝑉𝑔∥ (4.38)

using equation 4.37 and that 𝜏′′ is compactly supported in 𝑈 so the boundary term
vanishes. Now because as 𝑀 is compact, −div(𝐺 𝑗1), 𝜏′′1,𝑟 are continuous (since
𝑢 ∈ C∞(𝑀)) and so bounded), the 𝜖 (𝑟) as needed exists. Notice that 𝜔(𝜏′1) ≥ 0,
meaning 𝜔(𝜏′′1,𝑟) ≥ −𝜖 (𝑟). Choosing 𝜓 := 𝜏′′1,𝑟 , since on𝑈 𝜆2



∇𝑘−1𝑢


2 − 𝐾 < 0,∫

𝑈

𝜓(𝜆2 

∇𝑘−1𝑢


2 − 𝐾)𝑑𝑉𝑔 − 𝜔(𝜓) ≤

∫
𝐵1 (𝑥)

𝜏′1(𝜆
2 

∇𝑘−1𝑢



2 − 𝐾)𝑑𝑉𝑔 + 𝜖 (𝑟) := 𝑅(𝜖)

Finally, as𝐾 = 4𝜆2


∇𝑘−1



2
∞, choose 𝑟 such that 1

4 |
∫
𝐵1 (𝑥)

𝜏′1(𝜆
2


∇𝑘−1𝑢



2−𝐾)𝑑𝑉𝑔 | >
𝜖 (𝑟) > 0. This makes 𝑅(𝜖) < 0 , yielding that equation 4.36 –

0 <
∫
𝑈

𝜓(𝜆2 

∇𝑘−1𝑢


2 − 𝐾)𝑑𝑉𝑔 −

∫
supp(∇𝜓)

⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔

cannot hold.

The only place where assumption 4.6.1 was used was equation 4.35 to commute
laplacian and covariant derivative, if instead we have that the commutator is some-
what well-behaved then a variant of proposition 4.6.2 holds. The hypothesis of
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proposition 4.6.3 is geometric, since the commutator will expand in terms of curva-
ture and its covariant derivatives.

Proposition 4.6.3. If every 𝑘 ∈ N and eigenfunction 𝑢 for △ with eigenvalue 𝜆2 and
𝑥 ∈ 𝑀 , there exists 𝑇 = 𝑇 (𝑥, 𝑢), 𝑇 ≥ 0 such that

⟨∇𝑘−1𝑢, △∇𝑘−1𝑢⟩ ≤ ⟨∇𝑘−1𝑢,∇𝑘−1 △ 𝑢⟩ + 𝑇 ⟨∇𝑘−1𝑢,∇𝑘−1𝑢⟩ = (𝜆2 + 𝑇)⟨∇𝑘−1𝑢,∇𝑘−1𝑢⟩
(4.39)

that is, for 𝑇 independent of 𝑘 , ⟨∇𝑘−1𝑢, [△,∇𝑘−1]𝑢⟩ ≤ 𝑇 ⟨∇𝑘−1𝑢,∇𝑘−1𝑢⟩, then

∇𝑘𝑢

2
∞ ≤ 2

√︁
𝜆2 + 𝑇



∇𝑘−1𝑢


2
∞

Proof. Assume not, then on some open𝑈 ⊂ 𝑀 , for all 𝑥 ∈ 𝑈, for some fixed 𝑐 > 1,
𝐾 = 4(𝜆2 + 𝑇)



∇𝑘−1𝑢


2
∞, ⟨∇𝑘𝑢,∇𝑘𝑢⟩𝑥 − 𝑐𝐾 > 0 and as in proposition 4.6.2 for

some 𝜓 ≥ 0 compactly supported in𝑈, 𝜓 > 0 on an open set, giving∫
𝑈

⟨𝜓∇𝑘𝑢(𝑥),∇𝑘𝑢(𝑥)⟩𝑑𝑉𝑔 −
∫
𝑈

𝜓𝑐𝐾𝑑𝑉𝑔 > 0 (4.40)

with
∫
𝑈

⟨𝜓∇𝑘𝑢(𝑥),∇𝑘𝑢(𝑥)⟩𝑑𝑉𝑔 =
∫
𝑈

⟨∇(𝜓∇𝑘−1𝑢(𝑥)),∇𝑘𝑢(𝑥)⟩𝑑𝑉𝑔

−
∫
𝑈

⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔∫
𝑈

⟨∇(𝜓∇𝑘−1𝑢(𝑥)),∇𝑘𝑢(𝑥)⟩𝑑𝑉𝑔 =
∫
𝑈

⟨𝜓∇𝑘−1𝑢(𝑥), △∇𝑘−1𝑢(𝑥)⟩𝑑𝑉𝑔

≤ (𝜆2 + 𝑇)
∫
𝑈

⟨𝜓∇𝑘−1𝑢(𝑥),∇𝑘−1𝑢(𝑥)⟩𝑑𝑉𝑔

Therefore, equation 4.40 yields∫
𝑈

(𝜆2 + 𝑇)⟨𝜓∇𝑘−1𝑢(𝑥),∇𝑘−1𝑢(𝑥)⟩𝑑𝑉𝑔 −
∫
𝑈

⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔 −
∫
𝑈

𝜓𝑐𝐾𝑑𝑉𝑔

=

∫
𝑈

(𝜆2 + 𝑇)⟨𝜓∇𝑘−1𝑢(𝑥),∇𝑘−1𝑢(𝑥)⟩ − 𝜓𝑐𝐾𝑑𝑉𝑔 −
∫
𝑈

⟨∇𝜓 · ∇𝑘−1𝑢,∇𝑘𝑢⟩𝑑𝑉𝑔 > 0

But choosing 𝜓 as in 4.6.2, since (𝜆2 + 𝑇)⟨∇𝑘−1𝑢(𝑥),∇𝑘−1𝑢(𝑥)⟩ − 𝑐𝐾 < 0, the last
inequality cannot hold.

If 𝑇 := 𝑇𝑘 depends on 𝑘 , then the exact behavior of 𝑇𝑘 is necessary to know for
controlling the bound.
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C h a p t e r 5

DISCRETIZATIONS AND TRUNCATIONS

5.1 Introduction
The realization of spectral action from a quantum stochastic flow illustrated the use-
fulness of truncation for establishing the existence of the flow on a general compact
Riemannian manifold. The question of how well such truncations approximate the
data of a spectral triple is considered now. A discrete version of the problem is
also the same question but from a different perspective: given a compact mani-
fold 𝑀 and a discrete set 𝑋 ⊂ 𝑀 sampled with respect to a probability measure,
how well do the Hilbert space 𝐿2(𝑋) and the operator algebra C(𝑋) approximate
𝐿2(𝑀), C(𝑀), the data of the canonical spectral triple. Similarly to the spectral
truncations, 𝐿2(𝑋), C(𝑋) are also finite dimensional. A special setting where 𝑋
is not random but the 0-skeleton Σ0 for an embedded simplicial complex Σ for 𝑀
which is regular in the sense that all 𝑘-cells have the same 𝑘-volume is independently
interesting and more can be said there.

The usual exterior derivative 𝑑 on exterior bundle Λ(𝑀) along with its adjoint
𝑑∗ defines a Dirac operator 𝑑 + 𝑑∗ on Λ(𝑀) under the (vectorspace) isomorphism
with Clifford bundle Cl(𝑀). The coboundary operator 𝛿 for simplicial complex Σ,
at least on 𝐿2(Σ0), acts approximately like the exterior derivative. We show that
this has an easy generalization to the higher-dimensional skeletons and differential
forms. The metric space Hodge theory introduced by [9] can be modified to apply
to Σ and from which a Hodge decomposition theorem for 𝛿 is inherited. When
the complex is regular, the maps between co-chains on the complex and differential
forms are isometric with respect to the natural 𝐿2-structure on co-chains coming
from 𝑘-skeletons. This 𝐿2-structure is not the usual one considered and differs from
the 𝐿2-structure used in discrete exterior calculus (see [43]), which is based on a
discretized Hodge dual.

In the setting of spectral truncations, for the algebras, compressed by spectral trunc-
taion, one does not expect to do better than approximate compact operators, although
truncated algebras will usually contain the identity making them operator systems.
However, equally relevant is the state-space on the algebra. Adapting ideas from
[40], a new class of geometries is given on which the state-space for the compressed
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algebra converges to one for the uncompressed. Further, the convergence is shown
to be with respect to the Lipschitz norm associated to the Dirac operator for the
canonical spectral triple.

To introduce some notation, let Σ𝐸 ⊂ R𝑑 be a finite simplicial complex for the
smooth compact manifold 𝑀 ⊂ R𝑑 , embedded into R𝑑 via a homeomorphism
𝜙 : Σ𝐸 → 𝑀 . Denote by Σ = 𝜙(Σ𝐸 ), that is, the simplicial complex embedded in
𝑀 . Set 𝑋 = Σ0 ⊂ 𝑀, 𝑁 = |Σ0 | for the 0-skeleton Σ0. Note that the top dimensional
skeleton is simply 𝑀 , Σdim𝑀 = Σ = 𝑀 . 𝐶𝑘 (Σ) will denote the space of 𝑘-cochains
on Σ. Since Σ is identified with 𝑀 , Ω𝑘 (Σ) = Ω𝑘 (𝑀) will denote the space of
smooth 𝑘-forms, and C∞(𝑀) = C∞(Σ), C(𝑀) = C(Σ) the space of smooth and
continuous functions.

Recall that a map 𝜙 : Σ𝐸 → 𝑀 , with Σ𝐸 ⊂ R𝑑 a polyhedron, is a piecewise
differentiable (PD) homeomorphism when there exists a triangulation Σ′

𝐸
for Σ𝐸

such that for every simplex 𝜎 in Σ′
𝐸

1. 𝜙 is a homeomorphism

2. 𝜙 restricted to 𝜎 is smooth

3. 𝐷𝜙 is injective at every 𝑥 ∈ 𝜎

A related notion is that of a piecewise-linear (PL) map: 𝜙 : 𝐾 → R𝑘 is PL for every
simplex in some triangulation Σ′

𝐸
𝜙|𝜎 is linear. Every smooth manifold is associated

to a PL-manifold by by Whitehead’s theorem: for every smooth manifold 𝑀 there
exists a PD-homeomorphism 𝜙 : 𝐾 → 𝑀 , 𝐾 a polyhedron which is piecewise
linear (PL) manifold unique up to a PL-homoemoprhism, where a PL-manifold
is a polyhedron 𝐾 such that for all 𝑥 ∈ 𝐾 there exists a neighborhood 𝑈𝑥 and a
PL-homeomorphism 𝜙𝑥 : 𝑈𝑥 → R𝑘 . The simplicial complex on 𝐾 with respect
to which Φ : 𝐾 → 𝑀 is PD, along with Φ is defined as the PL-structure for the
manifold.

Assume 5.1.1. We will assume that the embedding 𝜙 : Σ𝐸 → 𝑀 , with respect to
the simplicial structure of Σ𝐸 , is PD.

Differentials with heat kernel weights
On a finite metric space, (𝑋𝑛, 𝑑), 𝑛 = |𝑋𝑛 |, with a probability measure 𝜇, the point
cloud Laplacian can be realized as Hodge Laplacian of a (co)chain complex restricted
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to functions. This follows by observing that for a finitely supported measure 𝜈
on 𝑀 , the point cloud Laplacian on 𝑀 is an empirical estimate (via concentration
bounds) for the functional approximation to the Laplace–Beltrami operator△𝑡 𝑓 (𝑥) =∫
𝑋𝑛
( 𝑓 (𝑥) − 𝑓 (𝑦))𝐾𝑡 (𝑥, 𝑦)𝑑𝜈(𝑦). The convergence of the empirical estimate to the

Laplace-Beltrami operator then follows using the result from [10].

Consider the picture that 𝑛 point metric space 𝑋𝑛 is 𝑛 samples from 𝑀 , 𝑑 is the
distance in ambient euclidean space, 𝑑𝑀 the geodesic distance on 𝑀 , and as 𝑛
increases we have inclusions 𝑖𝑛 : 𝑋𝑛 → 𝑋𝑛+1, and 𝑋𝑛+1 \ 𝑋𝑛 is the one additional
sample from 𝑀 .

Fix 𝑋𝑛 = 𝑋 . Barthodi et al[9] consider (co)chain complexes on 𝐿2(𝑋 𝑙) using the
coboundary map, 𝛿𝑙−1 : 𝐿2(𝑋 𝑙) → 𝐿2(𝑋 𝑙+1),

[𝛿 𝑓 ] (𝑧0, 𝑧1 . . . 𝑧𝑙) =
𝑙∑︁
𝑖=0

(−1)𝑖
∏
𝑖≠ 𝑗

√︃
𝐾 (𝑧𝑖, 𝑧 𝑗 ) 𝑓 (𝑧0, . . . 𝑧𝑖 . . . 𝑧𝑙) (5.1)

where 𝑋 𝑙 =
∏
𝑖∈[𝑙] 𝑋 , 𝐿∞(𝑋2) ∋ 𝐾 : 𝑋2 → R is symmetric, nonnegative, and

measurable; 𝐾 := 𝐾𝑡 (·, ·) is taken the 𝑡𝑛 scaled heat kernel. The boundary map 𝜕𝑙 :
𝐿2(𝑋 𝑙+1) → 𝐿2(𝑋 𝑙) is defined by [𝜕𝑔] (𝑧0 . . . 𝑧𝑙−1) =

∑𝑙
𝑖=0(−1)𝑖

∫
𝑋

∏𝑙−1
𝑗=0

√︁
𝐾 (𝑠, 𝑧 𝑗 )

𝑔(𝑧0 . . . 𝑧 𝑗−1, 𝑠, 𝑧 𝑗+1 . . . 𝑧𝑙−1) 𝑑𝜇(𝑠) and satisfies 𝛿∗
𝑙−1 = 𝜕𝑙 , and the laplacian, △𝑙 =

(𝛿∗
𝑙
𝛿𝑙+𝛿𝑙−1𝛿

∗
𝑙−1) can be defined. The constructions and results also hold for 𝐿2

𝑎 (𝑋 𝑙) =
{ 𝑓 ∈ 𝐿2(𝑋 𝑙) : 𝑓 (𝑥0, . . . 𝑥𝑙) = (−1)sgn(𝜎) 𝑓 (𝜎(𝑥0), . . . 𝜎(𝑥𝑙)), 𝜎 ∈ 𝑆𝑙+1}. In [9],
they also establish that for a Riemannian manifold, (𝑋, 𝑔, 𝜇), on restricting this
construction to a suitable neighborhood of the diagonal, de Rham cohomology of
𝑋 can be recovered and a Hodge decomposition exists for each 𝐿2(𝑋 𝑙). Observing
that

△𝑡0( 𝑓 (𝑥)) =
∫
𝑋

( 𝑓 (𝑥) − 𝑓 (𝑦))𝐾𝑡 (𝑥, 𝑦)𝑑𝜇(𝑦)

i.e. △0 |𝐿2 (𝑋) is exactly the functional approximation to the Laplace-Beltrami operator
which in the large sample-small 𝑡 limit approaches the Laplace-Beltrami operator.
Since on restricting to functions, Hodge-de Rham Laplacian agrees with the Laplace-
Beltrami operator up to a sign suggests that in this limit 𝛿(𝑛) associated to the
sequence of 𝑛-point metric spaces (𝑋𝑛) must approach the usual exterior derivative
𝑑 acting on Ω0(𝑋). We give a quick intuitive argument using covariant Taylor series
(see [5]) with respect to the canonical Riemannian connection ∇.

Proposition 5.1.2. Suppose𝑈 ⊂ R𝑁 is such that 𝑀 ∩𝑈 is a normal neighborhood
of 𝑥 ∈ 𝑀 , and for any 𝑦 ∈ 𝑀 ∩ 𝑈, 𝑦 ≠ 𝑥, 𝑥(𝑡) is the unique unit speed geodesic
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joining 𝑥, 𝑦, 𝑣 := ¤𝑥(0). Then for 𝑠 = 𝑑𝑀 (𝑥, 𝑦) and 𝐾𝑡 (𝑥, 𝑦) = exp(− ∥𝑥 − 𝑦∥2
𝑁 /4𝑡),

𝑠 = 𝑡 +𝑂 (𝑡2) implies |𝛿 𝑓 (𝑥, 𝑦)/𝑡 − 𝑑𝑓𝑥 (𝑣) | = 𝑂 (𝑡).

Proof. Since 𝑥(𝑡) is unit speed geodesic with 𝑥(0) = 𝑥, so 𝑥(𝑠) = 𝑦. Expanding in
a covariant Taylor series about 𝑥(0), 𝑓 (𝑥(𝑡)) = ∑∞

𝑛=0 𝑡
𝑛/𝑛!𝑑𝑛/𝑑𝜏𝑛 𝑓 (𝑥(𝜏)) |𝜏=0, with

𝑑/𝑑𝜏 = ¤𝑥𝑖 (𝜏)∇𝑖, gives 𝑓 (𝑦) − 𝑓 (𝑥) = 𝑠 · 𝑑𝑓 (𝑣) + 𝑂 (𝑠2) since first order term is
¤𝑥𝑖 (𝜏)∇𝑖 𝑓 |𝜏=0 = 𝑠 · 𝑔(𝑣,∇ 𝑓 (𝑥)) = 𝑠 · 𝑑𝑓𝑥 (𝑣). We have 𝛿 𝑓 (𝑥, 𝑦) =

√︁
𝐾𝑡 (𝑥, 𝑦) ( 𝑓 (𝑦) −

𝑓 (𝑥)) =
√︁
𝐾𝑡 (𝑥, 𝑦)𝑠 ¤𝑑 𝑓𝑥 (𝑣) +

√︁
𝐾𝑡 (𝑥, 𝑦)𝑂 (𝑠2). For fixed 𝑥, using that there exists

𝜂 ≥ 0, such that 𝑑𝑀 (𝑥, 𝑦)2 − ∥𝑥 − 𝑦∥2
𝑁 = 𝜂(𝑦) with |𝜂(𝑦) | ≤ 𝐶𝑑𝑀 (𝑥, 𝑦)4 for a

constant 𝐶 on the normal neighborhood 𝑈, so ∥𝑥 − 𝑦∥2
𝑁 = 𝑑𝑀 (𝑥, 𝑦) − 𝜂(𝑦). Using

𝑒𝛼 = 1 + 𝑂 (𝛼𝑒𝛼) for 𝛼 > 0, 1/(1 + 𝛼) ≤ 1 + 𝑂 (𝛼) yields the following estimate
from which the result follows for 𝑠 = 𝑡 +𝑂 (𝑡2):���√︁𝐾𝑡 (𝑥, 𝑦) 𝑠

𝑡
𝑑𝑓 (𝑣) − 𝑑𝑓 (𝑣)

��� = ���(𝑒𝜂(𝑦)𝑒−𝑑𝑀 (𝑥,𝑦)2/8𝑡 𝑠

𝑡
− 1

)
𝑑𝑓 (𝑣)

���
≤

���( 𝑠
𝑡
(1 +𝑂 (𝑠2/𝑡)) (1 +𝑂 (𝑠4/𝑡)) − 1

)
𝑑𝑓 (𝑣)

���
In the large sample limit as the sampled points get closer 𝑠/𝑡 approaches identity
while 𝑠𝑘/𝑡, 𝑘 > 1 terms vanish, and the exterior derivative acting on functions is
recovered. To recover the action on differential forms, it’s simplest to work with
an appropriate discretization of forms which is provided by finite element exterior
calculus[29]. This forces adapting 𝐿2-Hodge theory to work with cochains and not
alternating functions to approximate the exterior derivative.

5.2 Approximating smooth differentials
𝐿2 structure on co-chains
For 𝐿2

𝑎 (𝑋 𝑘+1) be the space of alternating 𝐿2 functions in 𝑘 + 1 variables. No-
tice that on viewing each 𝑘 + 1 tuple as a 𝑘-simplex simplex (𝑥0, . . . 𝑥𝑘 ), every
𝑘-cochain induces a function in 𝐿2

𝑎 (𝑋 𝑘+1). However, 𝑓 ∈ 𝐿2
𝑎 (𝑋 𝑘+1) can be sup-

ported on tuples that are not simplicies in the complex. To encode the simpli-
cial structure, the idea is to modify 𝛿 slightly. Define 𝐾 : 𝑋 𝑘+1 → {0, 1} by
𝜆𝑥𝑖 (𝑥0, . . . 𝑥𝑖 . . . 𝑥𝑘 ) := 𝐾 (𝑥0, 𝑥1 . . . 𝑥𝑘 ) = 1 iff 𝜎 := (𝑥0, 𝑥1 . . . 𝑥𝑘 ) is a 𝑘-simplex in
Σ. As defined 𝜆𝑥𝑖 (𝑥0, . . . ) is symmetric in all arguments and positive. This yields
a coboundary map generalizing equation 5.1, 𝛿𝑘−1 : 𝐶𝑘−1(Σ) → 𝐶𝑘 (Σ),

[𝛿 𝑓 ] (𝑧0, 𝑧1 . . . 𝑧𝑙) =
𝑙∑︁
𝑖=0

(−1)𝑖𝜆𝑧𝑖 (𝑧0, . . . 𝑧𝑖 . . . 𝑧𝑘 ) 𝑓 (𝑧0, . . . 𝑧𝑖 . . . 𝑧𝑙) (5.2)
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where 𝐶𝑘 (Σ) is the space of 𝑘-co-chains, i.e. functions on 𝑘-chains, in particular,
on simplicies represented by 𝑘 + 1-tuples, 𝑋 𝑘+1, with 𝐶𝑘 (Σ) a subspace inside
𝐿2
𝑎 (𝑋 𝑘+1).

Observation 5.2.1. Note that 𝛿𝑘−1 is the simplicial coboundary operator: if 𝜎 :=
(𝑧0, 𝑧1, . . . , 𝑧𝑘 ) ∉ Σ𝑘 , then 𝛿 𝑓 (𝜎) = 0, and if 𝜎 ∈ Σ𝑘 , then it’s the usual simplicial
coboundary, and therefore, 𝛿2 = 𝛿𝑘𝛿𝑘−1 = 0.

Taking uniform measure 𝜇𝑋 on 𝑋 , and on 𝑋 𝑘+1 taking the measure 𝜈𝑘 = 𝑈𝑘+1𝜇
⊗(𝑘+1)
𝑋

which is scalar multiple of the product measure. With respect to 𝜇⊗(𝑘+1) , each
𝑘-simplex has measure (𝑘 + 1)!/𝑁 𝑘+1, the scalar normalization 𝑈𝑘+1 allows for
normalizing the measure so that 𝜈𝑘 (𝜎) = 1/|Σ𝑘 | for any 𝜎 ∈ Σ𝑘 , that is, 𝜈𝑘 is
the uniform probability measure on the 𝑘-simplicies, given by 𝜈𝑘 (𝜎) = 1/𝑁𝑘 ,
𝑁𝑘 = |Σ𝑘 |. 𝐶𝑘 (Σ) becomes a Hilbert space 𝐿2(𝐶𝑘 ) by innerproduct,

⟨ 𝑓 , 𝑔⟩𝐶𝑘 = 1/𝑁𝑘
∑︁
𝜎∈Σ𝑘

𝑓 (𝜎)𝑔(𝜎) = 𝑈𝑘+1

∫
𝑋 𝑘+1

𝑓 (𝑥0, . . . 𝑥𝑘 )𝑔(𝑥0, . . . 𝑥𝑘 )𝑑𝜇(𝑥0) . . . 𝜇(𝑥𝑘 )

where (𝑘 + 1)! is needed since each 𝑘 + 1 tuple gives the same 𝑘-simplex, and the
𝑓 𝑔 is invariant under changing orientation.

Observation 5.2.2. Let 𝜕𝑘 : 𝐶𝑘 → 𝐶𝑘−1 be 𝛿∗
𝑘−1, then 𝛿2 = 0 implies ⟨𝜕2𝑔, 𝜕2𝑔⟩ =

⟨𝑔, 𝛿2𝜕2𝑔⟩ = 0, and so 𝜕2 = 0. That is, 𝛿𝑘−1 : 𝐶𝑘−1(Σ) → 𝐶𝑘 (Σ), 𝜕𝑘 : 𝐶𝑘 (Σ) →
𝐶𝑘−1(Σ), form a co-chain complex.

A standard computation (e.g. [9]) allows for computing 𝜕𝑘 explicitly,

Proposition 5.2.3. With 𝑦 ∈ 𝑋 𝑘 ,

𝜕𝑘𝑔 =
𝑈𝑘+1
𝑈𝑘

𝑘+1∑︁
𝑖=0

∫
𝑋

𝜆𝑡 (𝑦)𝑔(𝑡, 𝑦)𝑑𝜇(𝑡) = 𝑈𝑘+1
𝑈𝑘

𝑘+1∑︁
𝑖=0

∫
𝑋

𝜆𝑡 (𝑦)𝑔(𝑡, 𝑦)𝑑𝜇(𝑡)

Proof. We have ⟨𝛿𝑘−1 𝑓 , 𝑔⟩

= 𝑈𝑘+1

𝑘∑︁
𝑖=0

(−1)𝑖
∫
𝑋 𝑘+1

𝑓 (𝑥0 . . . 𝑥𝑖, . . . 𝑥𝑘 )𝜆𝑥𝑖 (𝑥0 . . . 𝑥𝑖, . . . 𝑥𝑘 )𝑔(𝑥0, . . . , 𝑥𝑘 )
∏
𝑗

𝜇(𝑥 𝑗 )

Setting 𝐺𝑖 (𝑥0 . . . 𝑥𝑘 ) :=
(∫
𝑋
𝜆𝑥𝑖 (𝑥0 . . . 𝑥𝑖, . . . 𝑥𝑘 )𝑔(𝑥0, . . . , 𝑥𝑘 )𝑑𝜇(𝑥𝑖)

)
⟨𝛿𝑘−1 𝑓 , 𝑔⟩ = 𝑈𝑘+1

𝑘∑︁
𝑖=0

(−1)𝑖
∫
𝑋 𝑘

𝑓 (𝑥0 . . . 𝑥𝑖, . . . 𝑥𝑘 )𝐺𝑖 (𝑥0 . . . 𝑥𝑘 )
∏
𝑗≠𝑖

𝜇(𝑥 𝑗 )

= 𝑈𝑘

∫
𝑋 𝑘

𝑓 (𝑥0 . . . 𝑥𝑖, . . . 𝑥𝑘 )
(
𝑈𝑘+1
𝑈𝑘

𝑘∑︁
𝑖=0

(−1)𝑖𝐺𝑖 (𝑥0 . . . 𝑥𝑘 )
) ∏
𝑗≠𝑖

𝜇(𝑥 𝑗 )
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With 𝑡 = 𝑥𝑖, 𝑦 = (𝑦0, . . . , 𝑦𝑘−1) := (𝑥0, . . . 𝑥𝑖 . . . , 𝑥𝑘 ), using antisymmetry of 𝑔 to
write 𝑔(𝑥0, . . . , 𝑡, . . . , 𝑥𝑘 ) = (−1)𝑖𝑔(𝑡, 𝑦) coupled with symmetry of 𝜆,

⟨𝛿𝑘−1 𝑓 , 𝑔⟩𝐶𝑘 = 𝑈𝑘

∫
𝑋 𝑘

𝑓 (𝑦)
(
𝑈𝑘+1
𝑈𝑘

𝑘∑︁
𝑖=0

∫
𝑋

𝜆𝑡 (𝑦)𝑔(𝑡, 𝑦)𝑑𝜇(𝑡)
)
𝑑𝜇(𝑦) = ⟨ 𝑓 , 𝜕𝑘𝑔⟩𝐶𝑘−1

Taking 𝜆𝑥 (𝑦) = 1 iff 𝑥𝑦 ∈ Σ1 in equation 5.2 recovers the 𝛿0 from 5.1 with
𝜅(𝑥, 𝑦) = 𝜆𝑥 (𝑦) and the associated laplacian on functions; the family of kernels,
𝜅𝑡 = 𝑒−∥𝑥−𝑦∥

2/4𝑡 relates to the point cloud laplacian from [10], however this heat
kernel weighing is not treated at this moment.

The abstract Hodge lemma from [9] easily yields a Hodge decomposition theorem:

Lemma 5.2.4. (Abstract Hodge lemma[9, lemma 1]) Suppose the family of Hilbert
spaces 𝑉𝑘 ’s, with bounded linear operators 𝛿𝑘 , 𝛿∗𝑘 , define (co)chain complexes,
. . . 𝛿∗

𝑘−1 : 𝑉𝑘 → 𝑉𝑘−1 . . . , . . . 𝛿𝑘 : 𝑉𝑘 → 𝑉𝑘+1 . . . , with 𝛿2 = 0, 𝛿∗2 = 0, then for
△𝑙 := 𝛿∗

𝑙
𝛿𝑙 + 𝛿𝑙−1𝛿

∗
𝑙−1, the following are equivalent

• 𝛿𝑘 has closed range for all 𝑙

• 𝛿∗
𝑘

has closed range for all 𝑙

• △𝑙 has closed range for all 𝑙

and if any of the above hold then

𝑉𝑙 = Image(𝛿𝑙−1) ⊕ Image(𝛿∗𝑙 ) ⊕ Kernel(△𝑙) (5.3)

Corollary 5.2.5. The Hodge decomposition in equation 5.3 applies to the (co)chain
complex from observation 5.2.2, 𝛿𝑘−1 : 𝐶𝑘−1(Σ) → 𝐶𝑘 (Σ), 𝜕𝑘 : 𝐶𝑘 (Σ) → 𝐶𝑘−1(Σ)

Proof. The proof is simply noting that 𝐶𝑘 (Σ) ⊂ 𝐿2
𝑎 (𝑋 𝑘+1) are finite dimensional

Hilbert spaces so the images of maps 𝛿𝑘 , 𝛿∗𝑘 are closed.

Remark 5.2.6. 𝐿2 co-chains have been considered in [31], however the innerproduct
does not come from the measure on 𝑘-skeleton; instead for co-chains 𝑐, 𝑐′, ⟨𝑐, 𝑐′⟩ =
⟨W𝑐,W𝑐′⟩𝐿2 (𝑀) where W is the Whitney map into differential forms which does
not give the 𝐿2-structure for the 𝑘-skeleton.
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Remark 5.2.7. By combining equations 5.2,5.1, the coboundary operator can be
further generalized:

𝛿𝑘−1 : 𝐶𝑘−1(Σ) → 𝐶𝑘 (Σ)

[𝛿 𝑓 ] (𝑧0, 𝑧1 . . . 𝑧𝑙) =
𝑙∑︁
𝑖=0

(−1)𝑖
∏
𝑖≠ 𝑗

√︃
𝜅(𝑧𝑖, 𝑧 𝑗 )𝜆𝑧𝑖 (𝑧0, . . . 𝑧𝑖 . . . 𝑧𝑘 ) 𝑓 (𝑧0, . . . 𝑧𝑖 . . . 𝑧𝑙)

(5.4)

and it can be checked that it defines a (co)chain complex, and therefore the construc-
tions from [9] on 𝐿2

𝑎 (𝑋 𝑘+1) pass to 𝑘-cochains.

Local volume forms, de Rham and Whitney maps
Since Σ is identified with 𝑀 , it inherits a normalized volume form from 𝑀 which
gives a normalized measure on Σ. Now every 𝜎 ∈ Σ𝑘 inherits a volume form from
being embedded in 𝑀 , so it too inherits a volume measure, d𝑣𝑜𝑙 𝜎 and Vol(𝜎) is
defined. A normalized measure is induced on the 𝑘-skeleton, Σ𝑘 , scaling d𝑣𝑜𝑙 𝜎 by∑
𝜏∈Σ𝑘 Vol(𝜏), so for every 𝑘 and all𝜎 ∈ Σ𝑘 ,

∫
𝜎

d𝑣𝑜𝑙 𝜎 ≤ 1 and
∑
𝜎∈Σ𝑘

∫
𝜎

d𝑣𝑜𝑙 𝜎 = 1.

For each 𝑘-simplex 𝜎 ∈ Σ denote by d𝑣𝑜𝑙 𝜎 this normalized volume form. Now
d𝑣𝑜𝑙 𝜎 can be viewed as 𝑘-form on Σ, not necessarily smooth, by setting d𝑣𝑜𝑙 𝜎 =

1𝜎◦ d𝑣𝑜𝑙 𝜎. SetΩ𝑙𝑣 (Σ) = ⊕𝑘 LinSpan({d𝑣𝑜𝑙 𝜎 : 𝜎 ∈ Σ𝑘 }), the space of local volume
forms. Note that Ω𝑙𝑣 (Σ) ⊂ 𝐿2(Ω(𝑀)), but any 𝜔 ∈ Ω𝑘

𝑙𝑣
(Σ) is not necessarily

continuous on 𝜕Σ𝑘 ; therefore, Stokes theorem does not apply since 𝜔 ∈ Dom(𝑑)
may not hold.

Any 𝑘-form 𝜔 ∈ Ω𝑘 (𝑀) yields a 𝑓𝜔 ∈ 𝐶𝑘 (Σ) by integration over the 𝜎 :=
(𝑥0, 𝑥1 . . . 𝑥𝑝) ∈ Σ𝑘 . This is the de Rham map, R : 𝐿2(Ω(𝑀)) → 𝐶 (Σ),

𝐿2(Ω𝑘 (𝑀)) ∋ 𝜔 → R(𝜔) := 𝑓𝜔 ∈ 𝐶𝑘 (𝑋), 𝑓𝜔 (
∑︁

𝑎𝑖𝜎𝑖) =
∑︁
𝑖

𝑎𝑖

∫
𝜎𝑖

𝜔 ∈ 𝐶𝑘 (𝑋)

Note that R(𝜔) is alternating because simplicies are oriented. Because 𝛿 is the
simplicial coboundary map, R is a chain map, 𝛿R𝜔 = R𝑑𝜔 for Ω(𝑀) (see [31,
50]).

Under the following assumption the de Rham map defines an isometry between co-
chains and local volume forms which allows for passing from uniform distribution
over 𝑋 𝑘+1 for 𝐿2-structure on cochains to the uniform distribution over Σ𝑘 for
differential forms.
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Assume 5.2.8. For each 𝑘 assume the volume of each 𝑘-simplex is same, wlog
assume it’s one. Since 𝑋 carries the uniform measure, let 𝑐𝑘 be the constant such
that Vol(𝜎) :=

∫
𝜎

d𝑣𝑜𝑙 (𝜎) = 𝑐𝑘 ∥1𝜎∥𝐿2 (𝑋 𝑘+1) , 1𝜎 ∈ 𝐶𝑘 (Σ).

Lemma 5.2.9. The de Rham map R is surjective. For any 𝑓 , R−1( 𝑓 ) carries a
unique representative 𝜔 𝑓 ∈ Ω𝑙𝑣 (Σ).

Proof. Let 𝑓 ∈ 𝐶𝑘 (𝑋), then 𝜔 ∈ Ω𝑝 (𝑀), not necessarily unique, such that R(𝜔) =
𝑓 can be constructed by averaging. Let Support( 𝑓 ) = {𝜎 : 𝜎 ∈ Σ𝑝, | 𝑓 (𝜎) | > 0}.
For 𝜎 ∈ Support( 𝑓 ), if 𝜔𝜎 be any 𝑘-form such that 𝜔𝜎 vanishes outside 𝜎 and∫
𝜎
𝜔𝜎 = 1. Then 𝑓 = R(∑𝜎∈Support( 𝑓 ) 𝑓 (𝜎)𝜔𝜎).

The unique representative 𝜔 𝑓 , R(𝜔 𝑓 ) = 𝑓 , is given by

𝜔 𝑓 =
∑︁

𝜎∈Support( 𝑓 )
𝑓 (𝜎)1𝜎◦ d𝑣𝑜𝑙 𝜎/Vol(𝜎) =

∑︁
𝜎∈Support( 𝑓 )

𝑓 (𝜎) d𝑣𝑜𝑙 𝜎 (5.5)

since Vol(𝜎) = 1 was assumed. The uniqueness is obvious.

The following corollary is immediate.

Corollary 5.2.10. R restricted toΩ𝑙𝑣 (Σ), R̂ = R|Ω𝑙𝑣 (Σ) has inverse R̂−1 : ⊕𝑘𝐶𝑘 (Σ) →
⊕𝑘Ω𝑘

𝑙𝑣
(Σ).

In fact, it’s isometric up to a constant, depending on the grading.

Lemma 5.2.11. There exists a constant 𝐴𝑘 such that R′′
𝑘 : Ω𝑘

𝑙𝑣
(Σ) → 𝐶𝑘 (Σ) given

byR′′
𝑘 (𝜔) := 𝐴𝑘 R̂ (𝜔), 𝜔 ∈ Ω𝑘

𝑙𝑣
(Σ) is an isometry with respect to ∥·∥𝐿2 (Ω𝑘) , ∥·∥𝐶𝑘 (Σ) ,

and therefore, the map

R′′ := ⊕𝑘R′′
𝑘 : ⊕Ω𝑘

𝑙𝑣 (Σ) → ⊕𝑘𝐶𝑘 (Σ),R′′−1 : ⊕𝑘𝐶𝑘 (Σ) → ⊕Ω𝑘
𝑙𝑣 (Σ) (5.6)

are isometric embeddings

Proof. Note that 𝑓 = R(∑𝜎∈Support( 𝑓 ) 𝜔 𝑓 ) where 𝜔 𝑓 is the differential form that
takes the constant value 𝑓 (𝜎) on the interior of𝜎. Now ∥ 𝑓 ∥𝐿2 (𝐶𝑘) = 1/𝑁𝑘

∑
𝜎∈Σ𝑘 𝑓 (𝜎)2,

while the 𝑘-form 𝜔 𝑓 ,


𝜔 𝑓




𝐿2 (Ω𝑘) =

∑
𝜎 𝑓 (𝜎)2

∫
𝜎

d𝑣𝑜𝑙 𝜎. Recalling that by as-
sumption 5.2.8 each simplex has unit volume, 𝐴𝑘 =

√
𝑁𝑘 such that



𝜔 𝑓




𝐿2 (Ω𝑘) =

𝐴𝑘 ∥ 𝑓 ∥𝐿2 (𝐶𝑘) , that is, 𝐴𝑘 R̂ is the isometry as needed.
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The spaceΩ𝑘
𝑙𝑣
(Σ) comes with a projection. WithΣ fixed, defineΦ ≡ ΦΣ : Ω𝑘 (Σ) →

Ω𝑘
𝑙𝑣
(Σ) Φ(𝜔) =

∑
𝜎∈Σ𝑘

1
Vol(𝜎)

(∫
𝜎
𝜔

)
d𝑣𝑜𝑙 𝜎. So Φ replaces 𝜔 over simplex 𝜎 by

d𝑣𝑜𝑙 𝜎 scaled by the averaged 𝜔. The following is obvious.

Proposition 5.2.12. Φ is a projection on to Ω𝑘
𝑙𝑐
(Σ), Φ2 = Φ with RΦ(𝜔) = R(𝜔)

for all 𝜔

The local volume forms are not in domain of 𝑑, and therefore, Stokes theorem does
not apply and R is not a chain map on Ω𝑙𝑣.

Observation 5.2.13. Notice that the content of proposition 5.1.2 is encapsulated
in the chain-map property of R: for the function 𝑓 , and associated 0-cochain
R 𝑓 , [R𝑑𝑓 ] (𝜎) = [𝛿R 𝑓 ] (𝜎) for any 1-simplex 𝜎 = (𝑥0𝑥1), and proposition 5.1.2
establishes that 𝑑𝑓 , 𝛿R 𝑓 are close. However, since 𝑑𝑓 is a form and 𝛿R 𝑓 a chain,
one needs a way to identify 𝛿R 𝑓 with a form, that is, a way to evaluate it at a point
𝑥 ∈ 𝜎. In proposition 5.1.2, this is provided by the covariant Taylor series about 𝑥0;
for higher dimensional forms, higher covariant Taylor series are cumbersome, and
the Whitney forms offer a cleaner alternative (as opposed to the heuristic argument
sketched in [39]).

The Whitney map, W : 𝐶𝑘 (Σ) → Ω𝑘 (Σ), is induced by the barycentric functions,
𝜆𝑖, 𝑖 ∈ [𝑘 + 1], on a 𝑘-simplex 𝜎 = (𝑣0, 𝑣1, . . . , 𝑣𝑘 ). If 𝑘 = 0, then W𝜎 = 𝜆0, and
otherwise,

W𝜎 = 𝑘!
𝑘∑︁
𝑖=0

𝜆𝑖𝑑𝜆0 ∧ . . . 𝑑𝜆̂𝑖 · · · ∧ 𝑑𝜆𝑘

On euclidean polyhedra, the barycentric functions 𝜆𝑖 are the unique affine functions
on simplex (𝑥0𝑥1 . . . 𝑥𝑘 ) such that 𝜆𝑖 (𝑥 𝑗 ) = 𝛿𝑖 𝑗 . So 𝜆𝑖 vanishes on the face opposite
to 𝑥𝑖. The barycentric coordinates can be pulled from Σ𝐸 to Σ embedded in 𝑀

through Φ. The Whitney map W provides a right inverse to the de Rham map
satisfying (see [50, § 2, § 5], [31, corollary 3.27]):

1. W is a chain map

2. RW = 1𝐶𝑘

and additionally –

Proposition 5.2.14. W satisfies
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1. ⟨W𝜎,W𝜎⟩ = 1

2. ∥W ∑
𝜎∈Σ𝑘 𝑓𝜎𝜎∥2

𝐿2 =
∑
𝜎 𝑓

2
𝜎

3. W := ⊕𝑘 1√
𝑁𝑘
W′|𝐶𝑘 is an isometry

Proof. The condition RW = 1 implies
∫
𝜏
W𝜎 = 1𝜏=𝜎. This yields an explicit form

for W𝜎 since
∫
𝜏
W𝜎 = 1𝜏=𝜎 is equivalent to using W𝜎 = 1

Vol(𝜎) d𝑣𝑜𝑙 𝜎 where
Vol(𝜎) = 1 for all 𝜎 is assumed. The first now follows simply by

⟨W𝜎,W𝜎⟩ =
∫
𝜎

1
Vol(𝜎)2 d𝑣𝑜𝑙 𝜎 ∧★d𝑣𝑜𝑙 𝜎 =

∫
𝜎

1
Vol(𝜎)2 d𝑣𝑜𝑙 𝜎 = 1 (5.7)

where ★ denotes the Hodge dual on 𝜎 (not 𝑀). And, therefore,

∥W
∑︁
𝜎∈Σ𝑘

𝑓𝜎𝜎∥2
𝐿2 (Ω𝑘) =

∑︁
𝜎

𝑓 2
𝜎⟨W𝜎,W𝜎⟩ =

∑︁
𝜎

𝑓 2
𝜎 = 𝑁𝑘 ∥

∑︁
𝜎

𝑓𝜎𝜎∥2
𝐿2 (𝐶𝑘)

This shows that 1√
𝑁𝑘
W is the isometry on 𝐶𝑘 .

Remark 5.2.15. On normalizing the vol(𝜎) = 1/𝑁𝑘 instead, the Whitney and de
Rham maps become isometries without the rescaling.

Uniform approximation for spectral trunctaions
The chain-map property in addition to observation 5.2.13 also allows for implement-
ing 𝑑 as W𝛿R and realizing proposition 5.1.2 on 𝑝-forms in general. This requires
the approximation theorem due to Dodziuk [31] (alternatively a version due to Lohi
and Kettunen [50]).

The standard subdivision of a 𝑛-simplex (𝑝0𝑝1 . . . 𝑝𝑛) proceeds by introducing
0-cells 𝑝𝑖 𝑗 = (𝑝𝑖 + 𝑝 𝑗 )/2 for forming 2𝑛 sub-simplicies (see [67, appendeix II,
§ 4]). Let Σ(1) denote the simplicial complex generated by applying the standard
subdivision S to Σ (see [67, appendex II, § 3]), and by Σ(𝑛) = SΣ(𝑛−1) . The measure
𝜇Σ0

(𝑛)
is taken to be uniform on Σ0

𝑛, and measures on higher skeletons are defined as
before. R𝑛,W𝑛 are the de Rham and Whitney maps

⊕𝑘R𝑛 : Ω𝑘 (Σ(𝑛)) → 𝐶𝑘 (Σ(𝑛)), ⊕𝑘W𝑛 : 𝐶𝑘 (Σ(𝑛)) → Ω𝑘 (Σ(𝑛))

with R′
𝑛,W′

𝑛 associated normalized de Rham and Whitney maps.

Dodizuk’s approximation theorem ([31, theorem 3.7]) states ∥𝜔(𝑥) −W𝑛R𝑛𝜔(𝑥)∥𝑥 <
𝐾𝜔dia(Σ), 𝑥 ∈ Σ(𝑛) \ΣdimΣ−1

𝑛 , where dia(Σ) = sup𝜎∈Σ dia(𝜎) and 𝐾𝜔 the product of
a universal constant depending only on 𝑀, Σ and maximum of absolutes values of
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derivatives of components of 𝜔 ([31, Corollary 3.27]). From this the 𝐿2(Σ) version
follows using innerproduct induced by the Riemannian volume form,

⟨𝜔, 𝜔′⟩ =
∫
Σ

𝜔 ∧★𝜔′ =

∫
Σ

⟨𝜔, 𝜔′⟩ d𝑣𝑜𝑙 Σ (5.8)

On 𝑘-skeleton, Σ𝑘 , for 𝜎 ∈ Σ𝑘 , set Ω•(𝜎) to be smooth differential forms on 𝜎.
Define Ω•(Σ𝑘 ) = {𝜔1𝜎𝑜 : 𝜔 ∈ Ω•(𝜎), 𝜎 ∈ Σ𝑘 }. Note that 𝜔 ∈ Ω•(Σ𝑘 ) is smooth
on Σ𝑘 \ Σ𝑘−1. The point of introducing Ω•(Σ𝑘 ) is that if 𝜏 is a face of 𝜎, then one
does not want to consider 𝑑𝜆𝑖 on 𝜏 for barycentric functions associated to vertices
of 𝜎 not in 𝜏; when 𝜏 is a shared face for 𝜎, 𝜎′ such 𝑑𝜆𝑖’s from 𝜎 and 𝜎′ may not
agree on 𝜏.

Observation 5.2.16. The 𝐿2(Σ) structure considered is with respect to d𝑣𝑜𝑙 Σ, that
is, 𝐿2(Σdim𝑀), but the approximation theorem can be applied to each 𝑘-cell (with
Σ𝑘 , for 𝑘 < dim𝑀 is viewed as a union of its 𝑘-cells each in itself a submanifold),
and therefore holds for 𝜔 ∈ Ω(Σ𝑘 ). Let 𝑚𝑘 be the standard subdivisions required
for the 𝑘-skeleton, then since the standard subdivsion of a simplex yields standard
subdivision of all faces, on Smax𝑘{𝑚𝑘}Σ forms belonging to all skeletons can be
approximated away from a set of zero measure with respect to their volume forms.

With this, the point-wise approximation implies approximation with respect to
𝐿2(Σ𝑘 ) for 𝑘 ≤ dim𝑀 . Therefore,

∥𝜔 −WR𝜔∥𝐿2 (Σ𝑘) < 𝐾
′
𝑘,𝜔dia(Σ) (5.9)

where 𝐾′
𝑘,𝜔

= 𝐾𝜔Vol(Σ𝑘 ), 𝜔 ∈ Ω(Σ𝑘 ), and the norm coming from inner product

⟨𝜔, 𝜔′⟩𝐿2 (Ω𝑘) =
∑︁
𝜎∈Σ𝑘

∫
𝜎

⟨𝜔, 𝜔′⟩ d𝑣𝑜𝑙 𝜎 (5.10)

Remark 5.2.17. Using standard subdivisions can be avoided by using the variant
of the result from [50] which holds for euclidean polyhedra where each cell has a
lowerbound on ratio of volume to diameter. But the result can be pulled from Σ𝐸

to Σ via 𝜙 with the constant now dependent on choice of 𝜙. In both [50, 31], the
constant 𝐾𝜔 depends on partial derivatives of components of 𝜔.

The approximation property (equation 5.9) yields that 𝑑 can be implemented through
R𝑏,W𝑛 using that R𝑛 is a chain map.

∥𝑑𝜔 −W𝑛R𝑛𝑑𝜔∥𝐿2 (Ω𝑘) = ∥𝑑𝜔 −W𝑛𝛿R𝑛𝜔∥𝐿2 (Ω𝑘) < 𝐾𝑑𝜔dia(Σ(𝑛)) (5.11)
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Since on normalizing the vol(𝜎) = 1/𝑁𝑘 for 𝜎 ∈ Σ𝑘 , the de Rham map (on local
volume forms) and Whitney map are isometries, we have the following.

Theorem 5.2.18. The exterior derivative 𝑑 on Ω𝑘 (Σ) is implemented by the de
Rham and Whitney maps, R𝑛,W𝑛, in the sense that for every 𝜔 ∈ Ω𝑘 (Σ),

∥(𝑑 −W𝑛𝛿R𝑛)𝜔∥𝐿2 < 𝐾𝑑𝜔dia(Σ(𝑛))

withR𝑛,W𝑛 bounded. If the uniform 𝑘-volume assumption (assumption 5.2.8) holds
then R𝑛 |Ω𝑙𝑣 (Σ𝑛) ,W𝑛 isometries.

By the Bochner idenity, (𝑑 + 𝑑∗)2 is elliptic, and therefore, there exists an eigenbasis
(𝜔𝑖)N of smooth eigenforms for 𝐿2(Ω(Σ)) which are also eigenforms for 𝑑+𝑑∗. Let
𝐸𝑚 := FinteLinSpan{𝜔𝑖 : 𝑖 ∈ [𝑚]}, then restricted to finite dimensional subspaces
the following uniform variant holds. This realizes both 𝑑, 𝑑∗, and therefore 𝑑 + 𝑑∗,
through 𝛿,R,W.

Corollary 5.2.19. For all 𝜔 ∈ 𝐸𝑚, there exists 𝐾𝑚 independent of 𝜔 such that

∥𝑑𝜔 −W𝑛𝛿R𝑛𝜔∥ < 𝐾𝑛dia(Σ(𝑛)),


(𝑑∗ − R′′

𝑛
∗
𝛿∗W′′

𝑛
∗)𝜔




𝐿2 < 𝐾𝑛dia(Σ(𝑛))

(5.12)

Proof. On 𝐸𝑚, 𝑑,W𝑛𝛿R𝑛 are bounded operators, and since ∥(𝑑 −W𝑛𝛿R𝑛)∗∥ =

∥𝑑 −W𝑛𝛿R𝑛∥, 𝑑∗ can be approximated as well. Now the claim follows because
𝐾𝑑𝜔 in theorem 5.2.18 can be uniformly bound for𝜔 ∈ 𝐸𝑚 and there are only finitely
many of them.

Remark 5.2.20. The above result considers 𝑑 + 𝑑∗ as an operator on the Hilbert
subspace 𝐸𝑚. One is also interested in the action of 0-cochains that play the role
of C(𝑀) on 𝑘-cochains that are discretized differential forms. This is given by the
Whitney product 𝐶0(Σ) ×𝐶𝑘 (Σ) → 𝐶𝑘 (Σ) by ( 𝑓 , 𝑔) → R(W 𝑓 ∧W𝑔). Whitney
product is nonassociative and defined between 𝑘, 𝑘′-cochains.

Some comments on uniform 𝑘-volume assumption are in order. Notice that since
Dodziuk’s approximation theorem can be applied to each 𝜎 individually, so the
measure on the manifold can be rescaled to make each cell have the same volume.
Trying to normalize the maps R,W leads to failing to maintain the chain map
property, but the other properties still hold.
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Define the volume normalized de Rham map, R′,

Ω𝑘 (𝑀) ∋ 𝜔 → R′(𝜔) := 𝑓𝜔 ∈ 𝐶𝑘 (𝑋), 𝑓𝜔 (
∑︁

𝑎𝑖𝜎𝑖) =
∑︁
𝑖

𝑎𝑖
1√

Vol(𝜎𝑖)

∫
𝜎𝑖

𝜔 ∈ 𝐶 𝑝 (𝑋)

and similarly the volume normalized variant for the Whitney map, W′, which acts
on the basis simplices such thatW′R′(𝜎) = WR(𝜎), preserving the approximation
property,

W′(𝜎) :=
√︁

Vol(𝜎)W(𝜎)

Proposition 5.2.21. For the volume normalized de Rham map R′

1. 𝑘-cochain 𝑓 has canonical representative 𝜔 𝑓 ∈ Ω𝑘
𝑙𝑣
(Σ) given by 𝜔 𝑓 =∑

𝜎∈Σ𝑘 𝑓 (𝜎) 1√
Vol(𝜎)

1𝜎◦ d𝑣𝑜𝑙 𝜎

2. R′ induces an isometry on Ω𝑙𝑣, R′′ = ⊕𝑘
√
𝑁𝑘R′|Ω𝑘 , (as in equation 5.6, which

by polarization is unitary).

Proof. For the first, note thatR(𝜔 𝑓 ) = 𝑓 sinceR′(𝜔 𝑓 ) (𝜎) = 𝑓 (𝜎) 1
Vol(𝜎)

∫
𝜎

d𝑣𝑜𝑙 𝜎 =

𝑓 (𝜎). The isometry property follows by using that∫
𝜎

⟨𝜔 𝑓 , 𝜔 𝑓 ⟩ d𝑣𝑜𝑙 𝜎 = 𝑓 (𝜎)2 1
Vol(𝜎)

∫
𝜎

d𝑣𝑜𝑙 𝜎

Explicitly,


R′(𝜔 𝑓 )



2
𝐿2 (𝐶𝑘) = ∥ 𝑓 ∥2

𝐿2 (𝐶𝑘) = 1
𝑁𝑘

∑
𝜎∈Σ𝑘 𝑓 2

𝜎, and since


𝜔 𝑓



2
𝐿2 (Ω𝑘) =∑

𝜎∈Σ𝑘 𝑓 2
𝜎, therefore, R′′|Ω𝑘 =

√
𝑁𝑘R′|Ω𝑘 is the isometry.

Proposition 5.2.22. W′ satisfies ⟨W′𝜎,W′𝜎⟩ = 1, ∥W′∑
𝜎∈Σ𝑘 𝑓𝜎𝜎∥2

𝐿2 =
∑
𝜎 𝑓

2
𝜎,

and W′′ := ⊕𝑘 1√
𝑁𝑘
W′|𝐶𝑘 is an isometry

Proof. Since W𝜎 = 1
Vol(𝜎) d𝑣𝑜𝑙 𝜎, so W′(𝜎) = 1√

Vol(𝜎)
d𝑣𝑜𝑙 𝜎

⟨W′𝜎,W′𝜎⟩ =
∫
𝜎

1
Vol(𝜎) d𝑣𝑜𝑙 𝜎 ∧★d𝑣𝑜𝑙 𝜎 =

∫
𝜎

1
Vol(𝜎) d𝑣𝑜𝑙 𝜎 = 1 (5.13)

The rest follows as before.
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5.3 Reconstructing C(𝑀)
Given 𝑓 ∈ Ω0(Σ) = C∞(𝑀), the de Rham map gives a cochain, R 𝑓 ∈ 𝐶0(Σ). The
Whitney map embeds 𝐶0(𝑀) as a subspace inside C(𝑀). By observation 5.2.16,
W(𝐶0(Σ)) is dense in (C(𝑀), ∥·∥∞) as Dia(Σ) goes to zero. Therefore, W𝐶0(Σ)
as the algebra of multiplication operators acting on 𝐿2(Ω(𝑀)) approximates the
action of C(𝑀) acting on 𝐿2(Ω(𝑀)). It remains to answer how 𝐶0(Σ), C(Σ)
approximate C(𝑀) as Dia(Σ) gets smaller, and if the limit can be characterized
as an abstract C*-algebra. The answer to the last question is given through the
PL-structure 𝜙 : Σ𝐸 → 𝑀 = Σ by using the noncommutative simplicial complex
construction introduced in [27]. At the same time the map 𝜙 induces an isomorphism
of C(𝑀) and C(Σ𝐸 ). Finally, ∪𝑛W𝐶0(Σ(𝑛)) where Σ(𝑛) is an embedded simplicial
complex for 𝑀 (obtained, for example, as a subdivision of Σ𝐸 ) with Dia(Σ𝑛) ≤ 1/𝑛,
is dense in C(𝑀). In the following subsection, the noncommutative simplicical
complex construction from [27] is recapped, and the basic theory of quantum metric
spaces is introduced. The state-space over for the algebras C(Σ𝐸 ) and C(𝑀) are
then compared.

State spaces for PL-structures
Notice . . . Σ0

(𝑛) ↩→ Σ0
(𝑛1) · · · ↩→ 𝑀 is an increasing sequence of sets, and therefore,

C(𝑀) ↩→ . . . C(Σ0
(𝑛)) ↩→ C(Σ0

(𝑛−1)) . . . is an inverse system. Inverse limits of
C*-algebras are delicate since the limit may only be a pro-C*-algebra and not a C*-
algebra. An approach to question of limits of such finite algebras (which is relevant
to limits of finite spectral triples in noncommutative geometry) by [64] side-steps this
by taking a dual triangulation and rewriting it as a direct limit. However, note that
C(𝑀) can be recovered by pulling back C(Σ𝐸 ) : C(𝑀) = { 𝑓 ◦ 𝜙−1 : 𝑓 ∈ C(Σ𝐸 )}.
Since 𝜙 is PD, the action of exterior derivative can also be pulled back almost
everywhere.

Now for the polyhedron Σ𝐸 , let 𝐾 be the underlying abstract simplicial complex
on the vertex set 𝑉𝐾 := Σ0

𝐸
. Σ𝐸 is isomorphic to the geometric realization |𝐾 | for

𝐾 . Define C𝐾 the universal C∗-algebra generated by positive generators ℎ𝑖, 𝑖 ∈ 𝑉𝐾 ,
ℎ𝑖1ℎ𝑖2 . . . ℎ𝑖𝑘 = 0 whenever {𝑖 𝑗 : 𝑗 ∈ [𝑘]} ⊄ 𝐾 and for all𝑚 ∈ 𝑉Σ,

∑
𝑘∈𝑉Σ ℎ𝑚ℎ𝑘 = ℎ𝑚.

Let C𝑎𝑏
𝐾

be the abelianization of C𝐾 , so with the additional constraint ℎ𝑘ℎ𝑚 =

ℎ𝑚ℎ𝑘 . From [27], C𝑎𝑏
𝐾
� C0( |𝐾 |) = C(|𝐾 |) as 𝑀, 𝐾 are compact. The idea

is straightforward, by the commutative Gelfand-Naimark theorem, C𝑎𝑏
𝐾

= 𝐶0(𝑋)
where 𝑋 = Spec(C𝑎𝑏

𝐾
). Spec(C𝑎𝑏

𝐾
) is exactly the space of map { 𝑓 : 𝑉𝐾 → [0, 1] :∑

𝑉𝑘
𝑓 (𝑖) = 1} which, by definition, is the geometric realization |𝐾 |.
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The homeomorphism 𝜙 also allows for mapping states 𝜎 : C(Σ) → R, 𝜎 :
C(Σ𝐸 ) → R. The statespaces, S(C(Σ)),S(C(Σ𝐸 )) can be metricized so that
their Gromov-Hausdorff distance vanishes. To formalize this some background is
needed, for which we follow [40, 63] –

Definition 5.3.1. [40] Let 𝐴 be a real vector space.

• An ordered vector space is 𝐴 along with a partial order ≤ satisfying 𝑥 ≤ 𝑦, 𝑟 ∈
R≥0 implies 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 and 𝑟𝑥 ≤ 𝑟𝑦.

• An order-unit space is an ordered vector space (𝐴, ≤) with a distinguished
element 𝑒, the order-unit, such that 𝑎 ∈ 𝐴 with 𝑎 ≤ 𝑟𝑒 for all 𝑟 ∈ R≥0 implies
𝑎 ≤ 0 and for all 𝑎 ∈ 𝐴, there exists 𝑟𝑎 ∈ R with 𝑎 ≤ 𝑟𝑎𝑒. Morphisms of
order-unit spaces are linear maps preserving both 𝑒, ≤. The order-unit space
is normed by ∥𝑎∥ = inf{𝑡 > 0 : −𝑡 ≤ 𝑎 ≤ 𝑡}, and morphisms are contractive:
∥𝜙(𝑎)∥ ≤ ∥𝑎∥ for all 𝑎 ∈ 𝐴, 𝜙 order-unit morphisms.

• The state space (S(𝐴), 𝑑𝐿) for 𝐴 isS(𝐴) := { 𝑓 : 𝐴→ R 𝑓 order-unit morphism }.
S(𝐴) is compact in weak∗ topology. Any semi-norm 𝐿 on 𝐴 satisfying
𝐿 (𝑎) = 0 ⇐⇒ 𝑎 ∈ R where R is canonically embedded in 𝐴 with topology
induced by

𝑑𝐿 (𝜎, 𝜏) = sup{|𝜎(𝑎) − 𝜏(𝑎) | : 𝑎 ∈ 𝐴, 𝐿(𝑎) ≤ 1} (5.14)

on S(𝐴) the weak∗ topology is called a Lip-norm. The pair (𝐴, 𝐿) is a
quantum metric space, (S(𝐴), 𝑑𝐿) is the state-space.

Remark 5.3.2. From [61], note that the topology being weak∗ is implied by 𝑑𝐿
being bounded, 𝐿 (𝑎) = 0 iff 𝑎 ∈ R and the unit Lip-ball, B1 := {𝑎 ∈ 𝐴 : 𝐿 (𝑎) ≤
1, ∥𝑎∥ ≤ 1} being totally bounded in ∥·∥𝐴.

Example 5.3.3. For any compact Riemannian manifold (𝑀, 𝑔) with geodesic dis-
tance 𝑑 define ∥ 𝑓 ∥Lip = inf𝑘 {𝑘 > 0, | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝑘 · 𝑑 (𝑥, 𝑦)} and 𝐴 = { 𝑓 :
∥ 𝑓 ∥Lip < ∞} ⊂ C(𝑀), then (𝐴, ∥·∥Lip) is a quantum metric space and associated
state space is the state space {S(𝐴), 𝑑∥·∥Lip}. Note that as an order-unit space the
norm ∥ 𝑓 ∥ for 𝑓 ∈ C(𝑀) is the usual sup𝑥∈𝑀 | 𝑓 (𝑥) |.

The Gromov-Hausdorff distance, 𝑑𝐺𝐻 , between state spaces for two quantum metric
spaces (𝐴𝑖, 𝐿𝑖), 𝑖 ∈ [2] is characterized by the following:
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Theorem 5.3.4. [63, Theorem 5] If 𝜙𝑖 𝑗 : (𝐴𝑖, 𝐿𝑖) → (𝐴 𝑗 , 𝐿 𝑗 ), 𝑖 ≠ 𝑗 are two
morphisms such that



𝜙𝑖 𝑗 ◦ 𝜙 𝑗𝑖 (𝑎) − 𝑎

𝑖 ≤ 𝜖𝐿𝑖 (𝑎) for all 𝑎 and 𝜖 > 0 is the smallest
such 𝜖 , then the Gromov-Hausdorff 𝑑𝐺𝐻 satisfies

𝑑𝐺𝐻 ((S(𝐴1), 𝑑𝐿1), (S(𝐴2), 𝑑𝐿2)) < 𝜖

The state space over C(𝑋) for any compact metric space 𝑋 , (so 1 ∈ C(𝑋)) is the
space of Borel probability measures with Kantorovich-Rubinstein metric ([40]). So
if 𝑋,𝑌 are homoemorphic then pulling back the probability measures should yield
that their state-spaces are also close. In particular, this applies to state-spaces over
C(𝑀), C(Σ𝐸 ). This can be formalized using that PL-structure 𝜙.

Proposition 5.3.5. For quantum metric spaces, (C(Σ)Lip, ∥·∥Lip), (C(Σ𝐸 )Lip, ∥·∥Lip),

𝑑𝐺𝐻 ((S(C(Σ)Lip), 𝑑∥·∥Lip), (S(C(Σ𝐸 )Lip), 𝑑∥·∥Lip)) = 0

Proof. Setting (𝐴𝑖, 𝐿𝑖) as (C(Σ)Lip, ∥·∥Lip), (C(Σ𝐸 )Lip, ∥·∥Lip), where C(·)Lip is the
subspace of Lipschitz functions. Taking morphisms 𝜙𝑖 𝑗 , 𝜙 𝑗𝑖 as given by pullbacks
by the embedding 𝜙 : Σ𝐸 → Σ and its inverse. Because 𝜙 is a PL-diffeomorphism,
therefore, 𝜙 (along with 𝜙−1) identifies the Lipshitz functions, 𝐶 (Σ)Lip, C(Σ𝐸 )Lip,
while preserving the order and unit. Finally, since 𝜙𝑖 𝑗 , 𝜙 𝑗𝑖 are inverses, therefore,

𝜙𝑖 𝑗 ◦ 𝜙 𝑗𝑖 (𝑎) − 𝑎

𝑖 = 0 for all 𝑎 ∈ (C(Σ)Lip, (C(Σ𝐸 )Lip which yields the claim
theorem 5.3.4.

Observation 5.3.6. As noted by [40], the Lipschitz norms they consider are not
associated to any Dirac operator generally, that is, the 𝐿 in equation 5.14 is not
realizable from a Dirac operator 𝐷, 𝐿 (𝑎) = ∥ [𝐷, 𝑎] ∥. On C(𝑀), for the Dirac
operator 𝐷 := 𝑑 + 𝑑∗, for 𝑓 ∈ C1(𝑀) acting on 𝑔 ∈ C1(𝑀) ∩ 𝐿2(𝑀), [𝐷, 𝑓 ]𝑔 =

𝐷 ( 𝑓 𝑔) − ( 𝑓 𝐷)𝑔 = (𝑑𝑓 )𝑔 since 𝑑∗ 𝑓 , 𝑑∗𝑔 = 0; therefore, it’s enough to check that
the usual Lipschitz norm on 𝐶 (𝑀) agrees with the operator norm for ∥ [𝐷, 𝑓 ] ∥ and,
thus, associated to the Hodge-Dirac operator.

Recall that on R the Lipschtiz norm for differentiable function 𝐹 is same as the
sup norm for the differential. In R𝑛 this holds for convex domains where convexity
is required to be able to travel along geodesics and reduce it to one-dimensional
setting. Using normal coordinates along with geodesic completeness is enough to
check that this also holds on compact Riemannian manifolds.
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Lemma 5.3.7. Suppose 𝑓 ∈ C1(𝐻) for a compact Riemannian manifold (𝐻, 𝑔).
Then ∥ 𝑓 ∥Lip = ∥𝑑𝑓 ∥∞

Proof. Since injectivity radius 𝑟 of the compact Riemannian manifold (𝐻, 𝑔) is
positive, so for any 𝑥 ∈ 𝐻, let exp𝑝 𝐵𝑟 (0) ⊂ 𝐻 be the normal ball around 𝑥. Then
the geodesic distance 𝑑𝑔 from 𝑝 to 𝑞 = exp𝑝 (𝑡𝑣) where 𝑣 ∈ 𝑇𝑝 (𝐻), with ∥𝑣∥ ≤ 1,
is the tangent vector defining geodesic from 𝑝 to 𝑞, 𝑑𝑔 (𝑝, 𝑞) = ∥𝑡𝑣∥. Therefore,
𝑓 (𝑞) − 𝑓 (𝑝)/𝑑𝑔 (𝑝, 𝑞) = ( 𝑓 (exp𝑝 (𝑡𝑣)) − 𝑓 (exp𝑝 (0)))/∥𝑡𝑣∥. Note 𝐹 = 𝑓 ◦ exp :
[0, 𝑡] → R; this gives

∥ 𝑓 (𝑞) − 𝑓 (𝑝)∥
∥𝑡𝑣∥ ≤

∫ 𝑡

0



⟨∇𝐹, 𝑣⟩𝑠𝑣


∥𝑡𝑣∥ 𝑑𝑠 ≤ sup

𝑠∈[0,𝑡]
∥𝑑𝑓exp𝑝 (𝑠𝑣) ∥

where it was used that since the differential of the exponential map satisfies 𝑑0 exp𝑝 (𝑠𝑣) =
𝑠𝑣 and ∥𝑣∥ ≤ 1, so

sup
𝑠∈[0,𝑡]

|⟨𝑑𝐹𝑠𝑣, 𝑣⟩| ≤ sup
𝑠∈[0,𝑡]

|⟨𝑑𝑓exp𝑝 (𝑠𝑣)𝑑0 exp𝑝 (𝑠𝑣), 𝑣⟩| ≤ sup
𝑠∈[0,𝑡]

∥𝑑𝑓exp𝑝 (𝑠𝑣) ∥∥𝑠𝑣∥

Now suppose 𝑞 is not in the normal neighborhood of 𝑝. Then let 𝛾 be the geodesic
with length 𝑑𝑔 (𝑝, 𝑞). Pick 𝑝𝑖’s on 𝛾, with 𝑝0 = 𝑝, 𝑝𝑛 = 𝑞 such that 𝑝𝑖+1 is
in the normal neighnorhood of 𝑝𝑖, this is possible as injectivity radius 𝑟 > 0
on 𝐻. Now apply the same argument to each pair of points finally note that∑𝑛
𝑖=1 𝑑𝑔 (𝑝𝑖−1, 𝑝𝑖) = 𝑑𝑔 (𝑝, 𝑞), yielding ∥ 𝑓 (𝑞) − 𝑓 (𝑝)∥ ≤ sup𝑥∈𝐻 ∥𝑑𝑓𝑥 ∥ 𝑑𝑔 (𝑝, 𝑞).

Therefore, ∥ 𝑓 ∥Lip ≤ ∥𝑑𝑓 ∥∞. The other direction ∥𝑑𝑓 ∥∞ ≤ ∥ 𝑓 ∥Lip follows from
definition since 𝑑𝑓 is limit of a difference quotient.

Combinatorial finite and Hodge-de Rham spectral triples
Recall how commutative geometry is encoded in the noncommutative language.
The Hodge-de Rham spectral triple, 𝔄𝑀 , for Riemannian manifold (𝑀, 𝑔) is the
data 𝔄𝑀 := (C∞(𝑀),Ω•(𝑀), 𝑑 + 𝑑∗) where 𝑑 + 𝑑∗ is the Hodge-de Rham Dirac
operator, 𝑑 the exterior derivative on differential forms Ω•(𝑋), and 𝑑∗ the adjoint.
By Connes’ spectral characterization of manifolds[25], (𝑀, 𝑔) can be recovered
from 𝔄𝑀 .

Now the metric geometry of a finite set 𝑋 with metric 𝑑 is encoded by a finite spectral
triple 𝔄𝐹 which is the data 𝔄𝐹 := (A𝐹 , 𝐻𝐹 , 𝐷𝐹), where A𝐹 is an unital ∗-algebra
represented faithfully on a Hilbert space 𝐻𝐹 , dim𝐻𝐹 finite, and 𝐷 a symmetric
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operator on 𝐻𝐹 subject to some additional requirements, the explicit form for 𝐷
encoding the data 𝑑 (𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝑋 . The metric 𝑑 can be used to construct
a simplicial complex, for example a Rips complex, or alternatively the simplicial
complex could be part of the input geometric data.

To work with spectrally truncated Dirac operator, the definition of a spectral triple
needs to be relaxed.

Definition 5.3.8. [63] An operator system spectral triple is a triple (𝐸,H, 𝐷) where
𝐸 is a dense subspace of an operator system 𝐸 ⊂ B(H), on the Hilbert space H
and 𝐷 is a self-adjoint operator on 𝐻 with compact resolvent satisfying [𝐷,𝑇] is a
bounded operator for all 𝑇 ∈ 𝐸 .

The operator system carries a natural order-unit structute, and so unit norm positive
linear functionals, that is, states, can be considered. Now noting corollary 5.2.19,
the combinatorial Dirac operator 𝛿+𝛿∗ on the embedded simplicial complex approx-
imates the Hodge-Dirac operator 𝑑+𝑑∗ uniformly on the truncated space 𝐿2(Ω(Σ)),
𝐸𝑚. To encode this as a spectral triple, the algebra C(Σ) needs to be compressed to
act on 𝐸𝑚, however, the trunctation leads to 𝑚C(Σ)𝑚 being only an operator system
since the multiplication in 𝑚C(Σ)𝑚 will not agree with C(Σ). This motivates the
relaxed notion of operator system spectral triples. Let Λ𝑚 : 𝐿2(Ω(Σ)) → 𝐸𝑚 be the
projection, then compressed C(Σ)𝑚 = {Λ𝑚 𝑓Λ𝑚 : 𝑓 ∈ C(Σ)}. Define the truncated
Hodge-de Rham (operator system) spectral triple 𝔄𝑚 = (C(Σ)𝑚, 𝐸𝑚, 𝑚(𝑑 + 𝑑∗)𝑚).
Note that restricted to 𝐸𝑚, 𝑚(𝑑 + 𝑑∗)𝑚 = 𝑑 + 𝑑∗.

Define the combinatorial finite spectral triples 𝔄𝐹,𝑛 = (𝐶0(Σ(𝑛)), 𝐿2(𝐶 (Σ(𝑛))), 𝛿 +
𝛿∗) where, as earlier, Σ(𝑛) denotes the 𝑛-fold standard subdivison ofΣ. The combina-
torial finite triples give a finite-dimensional encoding of the finite metric space Σ0

(𝑛) ,
different from finite spectral triples. The convergence to the underlying smooth
structure can still be made explicit: from before 𝛿 + 𝛿∗ uniformly approximate
𝑑 + 𝑑∗ |𝐸𝑚

, while on identifying 𝑓 ∈ 𝐶0(Σ(𝑛)) with 𝑓 ′ ∈ 𝐿∞(𝑀) (for example, by
assigning to any 𝑘-cell the average of the vertices), the strong density of 𝐶0(Σ(𝑛))
in C(𝑀) is clear.

For the Hodge-de Rham spectral triple, 𝔄𝑀 := (C∞(𝑀),Ω•(𝑀), 𝑑 + 𝑑†) we have
the following.

Theorem 5.3.9. Let K(C(𝑀)) be the compact operators, then the statespace
S(C(𝑀)𝑚), is dense in the state spaceS(K(C(𝑀))) in the operator norm ∥·∥K(C(𝑀))→R.
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Proof. This follows after noting that the continuous dual of K(C(𝑀)) is isomet-
rically isomorphic to the space {Tr(·𝐴) : 𝐴 ∈ C(𝑀), trace-class}, which after
normalization become order-unit morphisms. If 𝑓 = [ 𝑓𝑖 𝑗 ] in basis 𝜔𝑖 for 𝐿2(Ω(Σ))
then Λ𝑚 𝑓Λ𝑚 = [( 𝑓𝑚)𝑖 𝑗 ] where ( 𝑓𝑚)𝑖 𝑗 = 0 unless 𝑖, 𝑗 ∈ [𝑚], so 𝐶 (𝑀)(𝑚) are all
finite rank operators, and as trace-class operators are compact, the norm-density
holds.

This is in the spirit of [40, proposition 15]; however, the norm on the statespaces is
not Lipschitz. Next we adapt the construction from [40] to obtain the same result
for Gromov-Hausdorff convergence of statespaces of truncations, first for bitorsors
and then for any compact manifold carrying sufficiently nice groups actions.

Spectral truncation on 𝐺-spaces
Now let 𝐻 be compact manifold on which a group 𝐺 acts continuously and transi-
tively from left and right. Let the left and right actions be 𝑅𝑔 (ℎ′) = ℎ′𝑔, 𝐿𝑔 (ℎ′) =
𝑔ℎ′, and suppose they commute, 𝐿𝑔𝑅𝑔′ (ℎ′) = 𝑔(𝑥𝑔′) = (𝑔𝑥)𝑔′ = 𝑅𝑔′𝐿𝑔 (ℎ′). Fix
ℎ ∈ 𝐻 and for every 𝑦 ∈ 𝐻, let 𝑔𝑦 be such that 𝑔𝑦ℎ = 𝑦 and 𝑔̄𝑦 be such that
ℎ𝑔̄𝑦 = 𝑦. Suppose that the geodesic distance 𝑑 is 𝐺-invariant, 𝑑 (𝑔ℎ, 𝑔ℎ′) =

𝑑 (ℎ, ℎ′) = 𝑑 (ℎ𝑔′, ℎ′𝑔′).

Observation 5.3.10. The identification 𝐻 ∋ 𝑦 → 𝑔𝑦 ∈ 𝐺 is induced by the group
action 𝜙 : 𝐺 × 𝐻 → 𝐻 as the inverse of the map 𝜙ℎ : 𝐺 × {ℎ} → 𝐻, 𝑔 → 𝑔ℎ. By
transitivity of the group action, for any 𝑦, 𝑔𝑦 exists, but is not necessarily unique
unless 𝐻 is a group. On homogeneous spaces, the assignment 𝑦 → 𝑔𝑦 can be made
continuously (smoothly if the action is smooth) over any local trivialization. The
same dicussion applies to 𝑔̄𝑦

For simplicity, assume that for the maps Ψ : 𝐻 → 𝐺,Ψ(𝑦) = 𝑔𝑦, 𝐿 : 𝐺 →
Homeo(𝐻), 𝑔 → 𝐿𝑔, the composition 𝐿 ◦ Ψ : 𝑦 → 𝐿𝑔𝑦 , is 1-Lipschitz contin-
uous with respect to metric 𝑑Homeo(𝐻) on Homeo(𝐻) where 𝑑Homeo(𝐻) (𝜙, 𝜓) =

sup𝑘∈𝐻 𝑑 (𝜙(𝑘), 𝜓(𝑘)), so 𝑑Homeo(𝐿𝑔𝑦 , 𝐿𝑔𝑧 ) ≤ 𝑑 (𝑦, 𝑧). The same for 𝑔̄𝑦.

Let 𝐴 := C(𝐻), and 𝐴𝑚 := 𝑚C(𝐻)𝑚 where 𝑚 : Ω(𝐻) → 𝐸𝑚 is the projection onto
𝐸𝑚, the subspace spanned by first𝑚 eigenforms for 𝑑+𝑑∗. The associated statespaces
are S(𝐴),S(𝐴𝑚). Notice that 𝐴𝑚 is finite dimensional as it’s a subalgebra of
endomorphisms of a finite dimensional Hilbert space. Without loss of generality it
can be assumed that 1 ∈ 𝐸𝑚 for all 𝑚, since 1 ∈ Ker(𝑑 + 𝑑∗) always holds, so this
is just a reordering of the eigenbasis.
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Now we proceed as in [40]. The map 𝑚 is an order-unit morphism and induces
𝑚∗ : S(𝐴𝑚) → S(𝐴) by 𝑚∗𝜎 = 𝜎 ◦𝑚. Any Borel measure 𝜇 on 𝐻 defines a linear
functional on 𝐴, 𝐴𝑚 by 𝐼𝜇 ( 𝑓 ) =

∫
𝐻
𝑓 𝑑𝜇 which preserves the order structure and unit

since 𝑓 ≥ 0 means 𝐼𝜇 ( 𝑓 ) ≥ 0, 𝐼𝜇 (1) = 1. Suppose 𝐼𝜇 is a state on 𝐴. The pullback
𝑚∗𝐼𝜇 is the linear functional given by

𝑚∗𝐼𝜇 ( 𝑓 ) = 𝐼𝜇 (𝑚( 𝑓 )) =
∫
𝐻

[𝑚( 𝑓 )] (𝑦)𝑑𝜇(𝑦) =
∫
𝐻

[𝑚( 𝑓 )] (𝑔𝑦ℎ)𝑑𝜇(𝑦) (5.15)

The left action of 𝐺 on 𝐴, 𝐴𝑚 is given by 𝐿𝑔 ( 𝑓 ) (ℎ′) = 𝑓 (𝐿𝑔 (ℎ′)) = 𝑓 (𝑔ℎ′), there
is also the right action 𝑅𝑔 ( 𝑓 ) (ℎ′) = 𝑓 (𝑅𝑔 (ℎ′)) = 𝑓 (ℎ′𝑔). Notice 𝐿𝑔 acts on C(𝐻)
by 𝑓 → 𝑓 ◦ 𝐿𝑔, and that 𝑚 commutes with 𝐿𝑔. These actions allow for defining the
usual Lipschitz norm on 𝐴 = C(𝐻) in terms of 𝐺 and any ℎ′ ∈ 𝐻

Lip( 𝑓 ) := ∥ 𝑓 ∥Lip = sup
𝑧,𝑦∈𝐻

𝑓 (𝑦) − 𝑓 (𝑧)
𝑑 (𝑦, 𝑧)

= sup
𝑔,𝑔′∈𝐺,𝑔ℎ′≠𝑔′ℎ′

𝐿𝑔 ( 𝑓 ) (ℎ′) − 𝐿𝑔′ ( 𝑓 ) (ℎ′)
𝑑 (𝑔ℎ′, 𝑔′ℎ′)

= sup
𝑔,𝑔′∈𝐺,ℎ′𝑔≠ℎ′𝑔′

𝑅𝑔 ( 𝑓 ) (ℎ′) − 𝑅𝑔′ ( 𝑓 ) (ℎ′)
𝑑 (ℎ′𝑔, ℎ′𝑔′)

where it was used that the actions 𝑅𝑔, 𝐿𝑔 are transitive so every (ℎ′, ℎ′′) ∈ 𝐻 × 𝐻
can be reached through the action of some 𝑔ℎ′ , 𝑔ℎ′′ . Note ℎ′ ∈ 𝐻 is arbitrary, so
ℎ′ = 𝑔ℎ′ℎ can be used. Now the following proposition follows directly by using
characterization from remark 5.3.2.

Proposition 5.3.11. The norm ∥·∥Lip restricted to 𝐴𝑚 is a lip norm, and𝑚 : 𝐴→ 𝐴𝑚

is a morphism of quantum metric spaces, (𝐴, 𝐿), (𝐴𝑚, 𝐿).

Next a morphism 𝜈 such that lemma 5.3.4 can be used with 𝜈, 𝑚 is needed. This
can be done by adjusting the construction from [40]. Let 𝜇 be a probability measure
such that 𝜇 defines a state on S(𝐴𝑚). Define 𝜈𝑚,𝜇 by

𝜈𝑚,𝜇 : 𝐴𝑚 → 𝐴, 𝜈𝑚,𝜇 ( 𝑓 ) (𝑦) := 𝐼𝜇 (𝐿𝑔𝑦 ( 𝑓 )) (5.16)

Proposition 5.3.12. The map 𝜈 := 𝜈𝑚,𝜇 a morphism of quantum metric spaces.

Proof. The only thing that needs to be checked is that it’s contractive. Note that
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𝐼𝜇 (𝐿𝑔𝑦 ( 𝑓 )) − 𝐼𝜇 (𝐿𝑔𝑧 ( 𝑓 )) = 𝐼𝜇 (𝐿𝑔𝑦 ( 𝑓 ) − 𝐿𝑔𝑧 ( 𝑓 )), and therefore,

Lip(𝜈( 𝑓 )) = sup
𝑔𝑧 ,𝑔𝑦∈𝐺,𝑔𝑧ℎ≠𝑔𝑦ℎ

1
𝑑 (𝑦, 𝑧)

∫
𝐻

( 𝑓 (𝑔𝑦𝑤) − 𝑓 (𝑔𝑧𝑤))𝑑𝜇(𝑤)

= sup
𝑔𝑧 ,𝑔𝑦∈𝐺,𝑔𝑧ℎ≠𝑔𝑦ℎ

∫
𝐻

(
𝑓 (𝑔𝑦ℎ𝑔̄𝑤) − 𝑓 (𝑔𝑧ℎ𝑔̄𝑤)
𝑑 (𝑔𝑦ℎ𝑔̄𝑤, 𝑔𝑧ℎ𝑔̄𝑤)

)
𝑑𝜇(𝑤) ≤ Lip( 𝑓 ) (5.17)

where the 𝐺-invariance was used to get 𝑑 (𝑔𝑦ℎ𝑔̄𝑤, 𝑔𝑧ℎ𝑔̄𝑤) = 𝑑 (ℎ𝑔𝑦, ℎ𝑔𝑧).

The following yields the analog of [40, proposition 14] in similar manner.

Proposition 5.3.13. For all 𝑓 ∈ 𝐴, 𝑓𝑚 ∈ 𝐴𝑚 ⊂ 𝐴,

sup
𝑧

|𝜈 ◦ 𝑚( 𝑓 ) (𝑧) − 𝑓 (𝑧) | ≤ Lip( 𝑓 )𝑚∗𝐼𝜇 (𝑑 (𝑔𝑦ℎ, ℎ))

sup
𝑧

|𝑚 ◦ 𝜈( 𝑓𝑚) (𝑧) − 𝑓 (𝑧) | ≤ Lip( 𝑓𝑚)𝑚∗𝐼𝜇 (𝑑 (𝑔𝑦ℎ, ℎ))

Proof. Consider ∥𝜈 ◦ 𝑚( 𝑓 ) − 𝑓 ∥ = sup𝑦∈𝐻 |𝜈 ◦ 𝑚( 𝑓 ) (𝑦) − 𝑓 (𝑦) |. First

(𝜈 ◦ 𝑚( 𝑓 )) (𝑧) = 𝐼𝜇 (𝐿𝑔𝑧 (𝑚( 𝑓 ))) = 𝐼𝜇𝑚(𝐿𝑔𝑧 ( 𝑓 )) =
∫
𝐻

[𝑚(𝐿𝑔𝑧 ( 𝑓 ))] (𝑦)𝜇(𝑦) = 𝑚∗𝐼𝜇 (𝐿𝑔𝑧 ( 𝑓 ))

This means

|𝜈 ◦ 𝑚( 𝑓 ) (𝑧) − 𝑓 (𝑧) | = |𝑚∗𝐼𝜇 (𝐿𝑔𝑧 ( 𝑓 )) − 𝑓 (𝑧)𝑚∗𝐼𝜇 (1) | (5.18)

= |𝑚∗𝐼𝜇 (𝐿𝑔𝑧 ( 𝑓 )) − 𝑚∗𝐼𝜇 ( 𝑓 (𝑧)1) | (5.19)

=

∫
𝐻

𝑚
(
[𝐿𝑔𝑧 ( 𝑓 )] (𝑦) − 𝑓 (𝑧)

)
𝑑𝜇(𝑦)

=

∫
𝐻

𝑚
(
𝑓 (𝑔𝑧𝑔𝑦ℎ) − 𝑓 (𝑔𝑧ℎ)

)
𝑑𝜇(𝑦)

≤ Lip( 𝑓 )
∫
𝐻

𝑚(𝑑 (𝑔𝑧𝑔𝑦ℎ, 𝑔𝑧ℎ))𝑑𝜇(𝑦)

and therefore, sup
𝑧

|𝜈 ◦ 𝑚( 𝑓 ) (𝑧) − 𝑓 (𝑧) | ≤ Lip( 𝑓 )𝑚∗𝐼𝜇 (𝑑 (𝑔𝑦ℎ, ℎ)) (5.20)

where 𝑓 (𝑧) moves inside 𝑚∗𝐼𝜇 since it’s a constant with 1 ∈ 𝐸𝑚 for all 𝑚, and in the
last line follows using the 𝐺-invariance of metric. Now for 𝑓𝑚 ∈ 𝐴𝑚,

𝑚 ◦ 𝜈( 𝑓𝑚) (𝑧) − 𝑓𝑚 (𝑧) = 𝑚
(∫
𝐻

[𝐿𝑔𝑧 ( 𝑓𝑚)] (𝑔𝑦ℎ)𝑑𝜇(𝑦) − 𝑓𝑚 (𝑧)1
)

= 𝑚

(∫
𝐻

(𝑚 [ 𝑓𝑚] (𝑔𝑧𝑔𝑦ℎ) − 𝑚 [ 𝑓𝑚] (𝑔𝑧ℎ))𝑑𝜇(𝑦)
)

≤ 𝑚
(∫
𝐻

𝑚(Lip( 𝑓𝑚)𝑑 (𝑔𝑧𝑔𝑦ℎ, 𝑔𝑧ℎ))𝑑𝜇(𝑦)
)

≤ 𝑚(Lip( 𝑓𝑚)𝑚∗𝐼𝜇 (𝑑 (𝑔𝑧𝑔𝑦ℎ, 𝑔𝑧ℎ))) = 𝑚(Lip( 𝑓𝑚)𝑚∗𝐼𝜇 (𝑑 (𝑔𝑦ℎ, ℎ)1))
≤ Lip( 𝑓𝑚)𝑚∗𝐼𝜇 (𝑑 (𝑔𝑦ℎ, ℎ))
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since 𝑚( 𝑓𝑚) = 𝑓𝑚 and in the second last line 𝐺-invariance of the metric was used,
while the last line used 𝑚(1) = 1.

Notice that the group action on left and right do not need to be the actions of the
same group, and if the group is abelian then both left and right actions can be taken
to be the same. So the analysis covers any bitorsor with compact base and invariant
metric which is a triple (𝐿, 𝐻, 𝑅), 𝐻 any compact set equipped with commuting
free and transitive groups 𝐿 and 𝑅 from left and right respectively.

The rest of the argument proceeds identically to [40]. To recap briefly, the space
of probability measures 𝜇 such that 𝑚∗𝐼𝜇 is a state on 𝐴𝑚 forms a weak∗ dense
subspace of S(𝐴). On choosing the state 𝛿ℎ, 𝛿ℎ ( 𝑓 ) = 𝑓 (ℎ), for the continuous
function 𝑓 (𝑥) = 𝑑 (𝑥, ℎ), by weak∗ convergence, there’s a 𝜇 that is approximates
𝛿ℎ well, that is,

∫
𝐻
𝑑 (𝑦, ℎ)𝜇 ≤ 𝜖 . Now note that if 𝜇 induces a state on S(𝐴𝑚),

then it also induces a state on 𝐴𝑛 for 𝑛 ≥ 𝑚, and therefore, 𝜈, 𝑚 provide the pair of
morphisms satisfying requirements for theorem 5.3.4. This allows to conclude the
following.

Theorem 5.3.14. Over any bitorsor (𝐿, 𝐻, 𝑅),𝐻 compact, the metric on𝐻 invariant
under 𝐿 and 𝑅 actions, both 1-Lipschitz continuous, and endowed with continuous
maps Ψ𝐿 : 𝐻 → 𝐿, 𝜓𝑅 : 𝐻 → 𝑅, the state spaces S(𝐴𝑛) converge to S(𝐴) in 𝑑𝐺𝐻:
for any 𝜖 > 0, 𝑑𝐺𝐻 (S(𝐴),S(𝐴𝑛)) ≤ 𝜖 for 𝑛 large enough.

Example 5.3.15. A group acting on itself from left and right is trivially a bitorsor;
theorem 5.3.14 covers the case of any quotient of the flat 𝑛-torus by a closed
subgroup.

However, needing commuting left and right transitive actions is restrictive. The
only place where the existence of a commuting right action was used was to show
that 𝜈𝜇𝑚 was an order-unit morphism (equation 5.17). Reconsidering

1
𝑑 (𝑦, 𝑧)

∫
𝐻

( 𝑓 (𝑔𝑦𝑤) − 𝑓 (𝑔𝑧𝑤))𝜇(𝑤) =
∫
𝐻

𝑓 (𝑔𝑦𝑤) − 𝑓 (𝑔𝑧𝑤)
𝑑 (𝑔𝑦𝑤, 𝑔𝑧𝑤)

𝑑 (𝑔𝑦𝑤, 𝑔𝑧𝑤)
𝑑 (𝑦, 𝑧) 𝜇(𝑤)

≤ ∥ 𝑓 ∥Lip

∫
𝐻

𝑑 (𝑔𝑦𝑤, 𝑔𝑧𝑤)
𝑑 (𝑦, 𝑧) 𝜇(𝑤) (5.21)

So 𝜈 being an order-unit morphism is implied by sup𝑤∈𝐻 𝑑 (𝑔𝑦𝑤, 𝑔𝑧𝑤) ≤ 𝑑 (𝑦, 𝑧).
Denoting the map 𝑧 → 𝑔𝑧 by Ψ : 𝐻 → Homeo(𝐻), then with respect to the metric
𝑑Homeo(𝐻) on Homeo(𝐻),

sup
𝑤∈𝐻

𝑑 (𝑔𝑦𝑤, 𝑔𝑧𝑤)
𝑑 (𝑦, 𝑧) =

𝑑Homeo(𝐻) (Ψ(𝑦),Ψ(𝑧))
𝑑 (𝑦, 𝑧) ≤ 1 (5.22)
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That is, Ψ is 1-Lipshitz continuous is equivalent to sup𝑤∈𝐻 𝑑 (𝑔𝑦𝑤, 𝑔𝑧𝑤) ≤ 𝑑 (𝑦, 𝑧).
Therefore, the existence of the right action can be replaced by Lipshitz continuity
of the left action.

Remark 5.3.16. The Lipschitz constant 1 is not necessary; any Lipschitz constant
𝐶 works becuse if ∥·∥Lip is a Lipschitz norm then so is 𝐶 ∥·∥Lip.

Remark 5.3.17. Notice that if 𝐻 is additionally a group acting on itself from left
and right, with ℎ = 𝑒, the identity, then 1-Lipschitz continuity of the right action also
yields 𝑑 (𝑧𝑎, 𝑧𝑏) ≤ 𝑑 (𝑎, 𝑏) by symmetric argument. Since in proposition 5.3.13,
only the bound 𝑑 (𝑧𝑎, 𝑧𝑏) ≤ 𝑑 (𝑎, 𝑏) is used, the invariance of the metric with respect
to left and right actions can be dropped in this setting.

Combining this with lemma 5.3.7 along with choice of 𝜈𝑚,𝜇 ( 𝑓 ) (𝑦) = 𝐼𝜇 ( 𝑓 ◦Ψ(𝑦)) for
Ψ : 𝐻 → 𝐺

𝐿−→ Homeo(𝐻) where 𝐿 denotes the action of 𝐺, 𝐿 : 𝐺 → Homeo(𝐻)
(analogous to equation 5.16 where 𝜈𝑚,𝜇 ( 𝑓 ) (𝑦) = 𝐼𝜇 ( 𝑓 ◦ 𝐿𝑔𝑦 )), and using that
propositions 5.3.12, 5.3.13 still hold because of the Lipschitz continuity assumption
on the action, yields the following result.

Theorem 5.3.18. Let 𝔄𝑚 = (C(𝐻)𝑚, 𝐸𝑚, 𝑚(𝑑 + 𝑑∗)𝑚) be the truncated Hodge-de
Rham spectral triple.

1. If 𝐻 is a compact Lie group, and the left and right actions by multiplication
of 𝐻 on itself are 1-Lipschtiz continuous

2. Or if 𝐻 is a compact Riemannian manifold which carries the action 𝐿 of a
group 𝐺, 𝐿 : 𝐺 → Homeo(𝐻), a 𝐺 invariant metric, and a map Ψ : 𝐻 → 𝐺

such that 𝐿 ◦ Ψ is 1-Lipschitz continuous, the 𝐺 action transitive

then
lim
𝑚→∞

𝑑𝐺𝐻 ((S(C(𝐻)𝑚), ∥·∥𝑑Lip), (S(C(𝐻)), ∥·∥𝑑Lip)) = 0

and for 𝑓 ∈ C1(𝐻), ∥ 𝑓 ∥𝑑Lip := ∥ [𝑑 + 𝑑∗, 𝑓 ] ∥.
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C h a p t e r 6

EPILOGUE

There are a few possible directions for the ideas developed so far.

In quantum optimal transport literature, gradient flows and noncommutative trans-
port equation have been used to study information theoretic quantities like decay
of relative entropy. A natural question is what is the information theoretic content
of the infinite-dimensional heat semigroups and how does it reflect the geometry.
The methods and vocabulary have been developed in the quantum information com-
munity, but the settings considered are finite dimensional and there isn’t a dual
differential geometric picture (although associating generalized curvature/tangent
spaces to semigroups and Markov processes has been explored). Studying the heat
semigroups with these tools and connecting with the underlying geometry is one
possibility. Additionally, there have been attempts at defining a noncommutative
Malliavin calculus; it’s interesting to consider if the variational approach will yield
something new.

The Dirichlet form machinery breaks in semi-Riemannian geometry because oper-
ator algebras over vector bundles with semi-Riemannian metrics are not operator
algebras over Hilbert spaces. This was encountered in the Cl𝑝,𝑞 example. Moving
between signature (𝑝, 1) and euclidean signature, one expects a Wick rotation to
go from a dissipative semigroup to a unitary semigroup. Formalizing this corre-
spondence will aid in understanding how to make sense of quantum dynamics in
non-euclidean signature. A more open-ended question is what it means for a stochas-
tic quantization of spectral action; fuzzy spectral triple and related noncommutative
geometric approaches to gravity provide a testing ground. Increasingly, noncom-
mutative probability has found utility in stochastic quantization, and a probabilistic
perspective on spectral action is one possible way to add geometry to the mix.
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