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ABSTRACT

This thesis studies diffusion processes on spinor endomorphism algebras. The spinor
and connection laplacian generated heat semigroups are shown to quantum dynami-
cal semigroups, and after spectral truncation the existence of Evans-Hudson flows is
established. The vacuum state expectation of the process is related to spectral action
principle in noncommutative geometry. Examples where the flow is proven to exist
for untruncated laplacians are given. Convergence of finite dimensional approxima-
tions, through discretization and truncation, to spectral triples encoding Riemannian

geometry and their statespaces as quantum metric spaces is also considered.
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Chapter 1

QUANTUM DIFFUSION AND SPIN GEOMETRY

1.1 Introduction

Quantum diffusion is an operator-valued stochastic process specialized to live on the
Fock space with the noncommutative probability model fixed to quantum probability.
It’s associated with a dynamical semigroup on a C*(or a von Neumann algebra). The
initial theory was developed for norm-continuous operator semigroups describing
quantum dynamics and the form for generators of such semigroups, which are
bounded, is characterized by the work of Gorini, Kossakowski, Sudarshan, and
Lindblad. At the same time, the diffusion generated by the unbounded laplacian —
Brownian motion, and its associated heat semigroup e’ on a Riemannian manifold,

has deep interactions with the geometry.

This thesis is focused on the intersection of the two: the diffusion processes gener-
ated by unbounded elliptic noncommutative operators on endomorphism bundles,
specifically, the diffusion generated by the Dirac and connection laplacian on the
spinor bundle endomorphism algebra. The work is motivated by the spectral action
principle that underlies the spectral standard model where the trace of the spinor heat
kernel, defined as the spectral action, plays a central role. The geometry that arises
in this context is defined as the almost-commutative geometry, and more generally,
it provides an implementation of the program of quantum Riemannian geometry
toward noncommutative gauge theory. The Dirac heat kernel and diffusion are stud-
ied from this almost-commutative geometry perspective. The related question in
discrete differential/finite-noncommutative geometry of how the noncommutative

geometric perspective can be discretized is also considered.

Specialized to commutative geometry, the connection between spinor laplacian and
Einstein-Hilbert action through the spectral action is well known; the new contri-
bution is the probabilistic formulation. This approach is suggested by observing
that the trace of the spinor heat kernel for Robertson-Walker cosmologies can be
evaluated by using Brownian bridge integrals. The follow-up question is to see if
this can be carried out for almost commutative geometry in general. Because of the
noncommutative character, the process now must be a noncommutative diffusion,

with quantum probability providing a natural model set on the boson Fock space.
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The answer is in the affirmative — the spectral action can be recovered from quan-
tum stochastic flows on the underlying, possibly noncommutative, geometry. This
provides an interpretation of the spectral action as being realized by random fluctu-
ations acting on the spinor bundle; more precisely, the spectral action arises as the
solution to a quantum stochastic differential equation which can be constructed algo-
rithmically, and carries at least a superficial similarity to the stochastic quantization

program.

The epilogue to this work remarks briefly on the possibilities of operator algebraic
and geometric methods in studying stochastic dynamics on Hilbert spaces, particu-

larly in the quantum information context, and considers possible future headings.

Outline: The relevant background is introduced as needed, with chapters being self-
contained but incremental. The following chapter starts by introducing Dirac bun-
dles and examining the various heat semigroups associated with the Dirac laplacian.
The spectral action is shown to be embedded inside the action of the noncommuta-
tive laplacian on the spinor endomorphism algebra and can be approximated by the
quantum stochastic flow generated by the spectrally truncated laplacian. After this,
aspects of quantum stochastic analysis and differential equations are introduced in
chapter 3. In chapter 4 infinite dimensional examples where conditions for existence
of diffusion generated by the untruncated flow can be established. This includes
noncommutative laplacian, the Laplace-Beltrami operator generated diffusion on the
compact manifolds where laplacian eigenfunctions follow a growth condition, and
the Dirac laplacian generated diffusion in almost commutative geometry over reduc-
tive homogeneous spaces. Some tangential ideas are also explored. Finally, before
leading into the epilogue, the question of finite approximations and compressions

of canonical spectral triples is addressed in chapter 5.



Chapter 2

DIFFUSION ON SPINOR ENDOMORPHISM ALGEBRAS

2.1 Introduction

In this chapter the heat semigroups associated with endomorphism algebras of spinor
bundles are studied. These provide the natural generalization of the heat semigroup
of a smooth manifold since by Caéié [[16]’s characterization, spectral triples describ-
ing almost commutative geometry are realized as spinor endomorphism sub-bundles.
The semigroups are shown to be quantum dynamical semigroups. The existence of a
quantum stochastic flows/dilations of Evans-Hudson type is established for spectral
truncations of the generators. This question of the existence of such flows — which
can be viewed as diffusion on the spectral triple — and realizing an appropriate
expectation as a spectral action is in the same vein of results as [21} 32] where von
Neumann entropy and the average energy of the Gibbs state are expressed as spec-
tral actions; both are based on fermionic second quantization. The flows considered
here, however, live on bosonic Fock space and what they recovered from the dilation
on the Fock is the geometry itself. While only the symmetric Fock space stochastic
calculus is used here, an antisymmetric Fock space theory is known (a unified con-
struction was given by [45]) and similar constructions on full Fock space have been
studied in free probability (see, for instance, [47]], and [14] for free stochastic quan-
tization). Since the symmetric Fock space is isomorphic to Wiener spaces by the
Wiener-Ito-Segal isomorphism, this approach and the general question of a deeper
connection between noncommutative probability and noncommutative geometry, as
well as connections to the stochastic quantization program, are suggested by the
Brownian bridge integral expansions for the spectral action[20, 34]]. In Euclidean
fermionic quantum field theory context, stochastic quantization considered by [3]]
explores related ideas on Grassmann algebras; see also [22]]. As an application, the
spectral action for an arbitrary compact Riemannian spin manifold is realized from

the quantum stochastic flow for the noncommutative laplacian.

Organization
Section [2.2] introduces the quantum dynamical semigroups, dilations, and relevant
background; section introduces Caci¢’s results and gives the characterization

in terms of spinor bundles. The existence of quantum stochastic dilations and
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flows for associated gsde is considered in [2.4] The results are obtained by first
showing that the laplacians define C*-Dirichlet forms and, therefore, generates a
quantum dynamical semigroup, which can be embedded in a conservative quantum
dynamical semigroup for which dilations exist after spectral truncation. This is
enough to approximate the spectral action up to an arbitrary cutoft as considered
in[2.6] Section considers heat semigroups on the product almost-commutative
spectral triples and general almost-commutative spectral triples, and remarks on the
C"-bundles considered by [28, 24].

Some notational conventions: for Hilbert space, H, 8(H) will denote bounded
operators on H, K'(H) compact operators and 2 (H) the Hilbert-Schmidt operators.
i will denote V—1. For m,n € N, [n], [m : n] will denote {1,2...n} and {m, m +
1...n} respectively. Lie[G] will denote the Lie algebra of Lie group G. (M, g)
will denote a smooth manifold M with a Riemannian metric g. After fixing a local
orthonormal frame, e;, the connection V; will be used interchangeably for V,;. On
bundles carrying Clifford multiplication, - will denote Clifford multiplication; - will
be suppressed when Clifford multiplication is clear from context. Following [49],
by a Riemannian connection we mean a metric connection not necessarily torsion-
free; the canonical Riemannian connection is taken as the torsion-free Riemannian
connection. All manifolds will be compact spin manifolds since that is the object
in the reconstruction theorems from noncommutative geometry. The boundary is
assumed to be empty; this is needed as the Dirac operator may not be symmetric
otherwise (see, for instance, [49, eq I1.5.7]). For some specialized settings, the
assumption of even dimensionality is made. CI(E, g) will denote the Clifford
algebra (bundle) over the vector space (vector bundle) E with quadratic form q.
For Riemannian manifold (M, g), CI(M) = Uep CL((T, M), —g). IP will denote a
geometric Dirac operator, that is, Dirac operator associated to a Clifford connection,
with Ip? the associated geometric Dirac laplacian, and D will denote a Dirac-type

operator (and its lapacian D?) which may not be associated to a Clifford connection.

2.2 Quantum stochastic flows

Recall that a *-algebra is an algebra endowed with an involution *, while a C*-algebra
is a norm-closed *-algebra where the norm satisfies the C*-identity, ||la*a|| = llall?.
Note that if A is a unital C*-algebra A, then MaT,(A) = A ® MaT,(C). Working
with quantum dynamical systems requires a stronger notion of positivity: complete

positivity.



5

Definition 2.2.1. For unital C*—algebras, Ay, Ay, with positive cones denoted
(ﬂl)+’ (ﬂ2)+9

1. Alinear map T : A; — A, is positive if T((Ay)+) C (Ar)s.

2. T is completely positive if for all n € N, T, := T ® 1, : MaT,(A;)
A1 ® Mat,(C) — Ay ® Mat,(C) = MaT,(Ay), Tu([aij]) = [T(a;j)], i

positive.

IR

[
72]

Definition 2.2.2 (Quantum Dynamical Semigroups). A semigroup (7;);>o ona C" -
algebra A is strongly continuous if lim,_,;, T;x = T; x for all x, fp. The semigroup
is conservative if for all 7, T,(1) = 1; equivalently £(1) = O for the generator £
of T,. A quantum dynamical semigroup on a C"-algebra is a strongly continuous
semigroup 7; such that each 7; : A — A is contractive and completely positive.
On a von Neumann algebra M, a quantum dynamical semigroup is a semigroup 7;

of completely positive, contractive maps such that 7; is normal for each .

For a C*or von Neumann algebra, A, A” will denote the bicommutant. A” is a

von Neumann algebra.

Definition 2.2.3. A conditional expectation is a linear map, E : N — M, between
x-algebras M, N, satisfying M c N,E[1] = 1 and for any M; € M,N € N
E[M{NM,] = MiE[N]|M, .

Definition 2.2.4 (Stochastic dilation). For quantum dynamical semigroup (7;),¢ > 0
onaC" M, a (quantum) stochastic dilation is a family of *-homomorphisms,
Jjr : M — N, where N is a x-algebra with conditional expectation Ey : N — M
satistying 7; = Eo | j].

We will consider stochastic dilations on the Fock space.

Definition 2.2.5. For a Hilbert space H, the free Fock space, rf (H) is the sum of the
symmetric and antisymmetric Fock spaces, I'*(H), T%(H), I'/ (H) = T%(H) @ I"* (H),
where I (H),I'(H) are defined by @&z-0H"", o being the symmetric or tensor
product for symmetric Fock space, antisymmetric tensor product for antisymmetric

Fock space, and free tensor product for the free Fock space.

The object of interest throughout this work will be the symmetric tensor product

(denoted by ® again) unless otherwise specified; we will also denote symmetric
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Fock space I'*(H) by I'(H) when clear from the context. The symmetrization
operator defines the map from free to symmetric Fock space, IV (H) — I'*(H) by
Symm(®;c[n&i) = 1/(n — 1)! X yes, ®ic[n)&o(i)- For a subspace V. C H, E(V) C
I'*(H) denotes the C-linear span of exponential vectors E(v) = @renv¥/Vk!,v €

V. There’s an inner product on the I'(H) induced by the inner product on H,
(E(u),E(v)) = exp (u,v).

Example 2.2.6 (Feynman-Kac formula, Brownian motion and stochastic dilation).
Viewing Brownian motion on (M, g) as a diffusion generated by the Laplace-
Beltrami operator, it’s noted that the Feynman-Kac formula for a Riemannian mani-
fold[56, Thm 3.2], (M, g), for the operator H := %AC(M)+V, ueCHM),VeCM),
with Laplace-Beltrami operator, Ac (), acting on the C 2(M) gives

o) / ¢ 0’V(w(s))—1/6-KM(w(s))dsu(x)dWXl(dw)
e uj)yx) =
W(M) N(u, kp, d W3, (dw))

where d W}, (dw) denotes the Wiener measure on C(M), u € C*(M) and ky is the
scalar curvature of M and N (u, 7, d Wy, (dw)) a normalization depending on xyy, u
and d W}, (dw). This can be thought of as a stochastic dilation of heat semigroup on
C*(M) to the Wiener space, W(M), on M, the integral with respect to the Wiener

measure playing the role of the conditional expectation.

Quantum stochastic dilation of Evans-Hudson type

On a smooth manifold, M, a homogeneous flow is a smooth map ¢ : RyoxM — M,
¢ (m) := ¢(t,m), satistfying ¢(t + s,m) = ¢(s, ¢(t,m)), $(0,m) = m. The flow
induces a 1-parameter semigroup, (j;);»0 : C*(M) — C*(M), j,(f) = f o ¢!
with the infinitesimal generator £ following the differential equation[44]],

d

dt .o

d
21f) = (L(f)). with jo(f) = f. L(f) = Ji(f), feC®(M) (2.1)

The classical stochastic flow can be viewed as a stochastic process ¥, taking values
in diffeomorphism group of M which satisfies the flow property almost surely (see,
for instance, [48, Ch 3]). Now solutions to stochastic differential equations (sde)
on manifolds generate stochastic flows, the stochastic version of flow equation is

obtained by introducing Wiener process terms into eq[2.1] yields

S = LN+ Y dnby()aB;

J€ln]
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for linear maps by, and components B; of n-dimensional Brownian motion B on
M with sample space €. Algebraically, j,;, are now *-algebra homomorphisms,
Jr: B(M x Q) D C*(M) - B(M x Q) for the space of bounded measurable
functions, B(M x Q), on M x Q. Note that C*(M) is embedded in B(M X Q).

Formulated as integral equations, the quantum analog of this sde can be defined on
the Fock space. For a finite dimensional Hilbert space V, set H = L?(Rso, V) :=
L*(Rs0) ® V. H decomposes as H = H; @ H', where H, = L%([0,7)) ® V, H’
L%([t, o)) ® V. On the Fock space, I'(H) = I"(H;) ®alg ['(H'), given an “initial”
Hilbert space Hy, set

A, = Hy® T(H,), A" = Hy ® T(H), A = Hy ® T'(H)

then for a class of Rp-indexed operator families on H, A;, i,j € [0 : dimVp],
called the fundamental processes (or quantum noises, which corresponds to the
annihilation, creation, and conservation processes on the Fock space), the quantum
stochastic integral fot i Elj dAz. can be defined for processes (El.j )icR, that are
regular (i.e. the map t — (El.] ):(up ® Eu) is continuous with a growth condition on
| (El.j),(uo ®Eu)||) and each (Eij)t is adapted where a process X; : H — H is adapted
if there exists ¥; : Hyp ® E(H,;) — Ho ® I'(H,), so that X; = ¥; ® 1), that is, X;
does not look into the future — the same as the classical notion of adaptedness. For
brevity, the details of quantum stochastic integrals are deferred to in the following
chapter 3]

The stochastic calculus can be developed on operator algebras similarly to Hilbert
spaces[62, Ch 5] and the stochastic flow can be defined by extending the classical
picture: for a dense s-algebra Ay Cc A with A C B(Hp) unital, the quantum
stochastic flow (j;);>0 is a family of injective *-homomorphism, j; : Ay — B(H),
such that for all a € A, each j;(a) is an adapted process and there exists {/lj. (i, j €

[0 : dim V]}, called the structure maps, with

(a)=a®1 t (A (a))dA!
ji(a)=a® +/0 %}1(,(@) ,

Equivalently, in differential form, dj;(a) = 2; ; jt(/l; (a))dA{ with jo = 1. Flows
of this form arising as solutions to a quantum stochastic differential equation, with
J: satisfying an additional dilation property, are called Evans-Hudson flows[58,

§ 27, 28] and generalize Markov processes to operator algebrag!] In particular,

'From [57] note, any Markov chain on countable state space can be realized as Evans-Hudson
flow.
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Brownian motion on R can be realized as Evans-Hudson dilation on the Fock space
I'(L?(Rsg)) by specializing to A = L*(R) viewed as operators on H = L?>(R), V
fixed as trivial and using the Fock space-Wiener space dictionary provided by the

Wiener-Ito-Segal isomorphism (more detail in provided in the next chapter).

Definition 2.2.7. Evans-Hudson dilation[62] For a conservative quantum dynamical
semigroup (7;),s0 with generator £ on C -algebra A < B(H), a family of -
homomorphisms, (j;);s0 : A — A”QB(I'(L*(Rso)®V)) satisfying the following.

* There exist maps J; : A @ E(L?(Rx0) ® V) = A” ® B(I'(L*(Rx0) ® V)),
Ji(a®e(f))u := j(a)(ue(f)) such that for an ultra-weakly dense subalgebra
Ay € A, Dom(L) € Ay, on Ay ® L>(Rsp) ® V the Evans-Hudson flow
gsde

dJ; = Ji(as(dt) +a(dt) + Ay (dt) +12(d1)), Jo =1 (2.2)

holds, where as, ag,Aa, 1, are the structure maps (see Chapter ; J;asa

quantum stochastic process is regular and adapted.

* j; is a dilation of T; in the following sense: for all u,v € H,a € A,
(VE(0), ji (@)uE(0)) = (v, Ti(a)u) (2.3)

where E(0) denotes the Fock space vacuum.

The solution J; to Evans-Hudson flow gsde, equivalently j;, is defined as the Evans-
Hudson flow. The maps as, ag,Aa, 1, and the noise space V are obtained from
the structure theory of the generator £. The computation of structure maps for
Laplace-Beltrami operator generator flow is considered in chapter {] and follows
the same scheme generally. If the generator is bounded, for example, a spectral
truncation of an unbounded generator, then after obtaining the structure maps, the
existence (and uniqueness) of the Evans-Hudson flow follows from standard theory

(see, for instance, [[62,|11]]). The unbounded case requires more machinery.

2.3 Almost-commutative spectral triples as spinor bundles

A spectral triple is three basic pieces of data, (A, H, D), where D is symmetric
operator on the Hilbert space H, and a *-algebra of bounded operators on H, A C
B(H). The operator D is allowed to be self-adjoint and unbounded but with

[D, a] bounded for all a € A. A compact Riemannian spin manifold (M, g) can be
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characterized by the canonical spectral triple, Wp; := (C®(M), L*(S), D s Jm, Yur)

where 8 is the spinor bundle, C* (M) is the =-algebra of smooth functions interpret
as operators acting on L*(S) by multiplication, and D is the Dirac operator
associated with the Levi-Civita connection on the spinor bundle; the data of a
spectral triple has been supplemented with a Z, grading operator yy; on H and
an anti-unitary operator J : H — H, called the real structure, which makes H an
A — A bimodule from a left A-module. Such spectral triples can be characterized
abstractly; Connes reconstruction theorem recovers the Riemannian spin structure

from the abstract spectral triples[41, Thm 11.2].

A finite noncommutative space is the finite spectral triple, Wy = (Ar, Hp, DF),
with dim Hf finite. This is supplemented with a real structure and a grading,

(Jr,vr). A product almost-commutative spectral triple is the globally trivial bundle,

M X F :=(C™(M)® Ap, L>(M,S® Hp), Dy ® 1 + Yy ® D3y @ Jr, Y ® YF)

Cadi¢ [16] expands the definition of product almost-commutative spectral triples to
include non-trivial algebra bundles over the base space. This is formalized without
appeal to the explicit product structure as an abstract almost-commutative spectral
triple:

Definition 2.3.1. ([[16, Def 2.16]) A spectral triple (A, H, D), 8 C A a central,
unital =-subalgebra is an abstract almost-commutative spectral triple over the base
B if (B,H, D) is a commutative spectral triple of Dirac type[16], and for all a €
A, D, a)?* € A, additionally

1. Foralla € A,b e B, [|[D,b],a] =0.

2. Ais an even finitely generated projective 8-module and a *-subalgebra of the

algebra Endg,i5(He) Where Heo = Ngey Dom D,

From [|18| lemma 4.2.4], the requirement that the spectral triple is of Dirac type can
be dropped, since it follows from regularity conditions on the spectral triple (see

[17] for the reconstruction theorem in more generality).

The concrete realization of the abstract almost-commutative spectral triple is con-
structed by appeal to Connes’s reconstruction theorem[41, Ch 11], and the following
global analytic equivalent formulation is obtained, and this is the formulation that

we work with.
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Definition 2.3.2. [16, Def 2.3] An almost-commutative spectral triple is a spectral
triple of the form
(C*(M, A), L*(M, H), Do)

for a compact oriented Riemannian manifold M, H a self-adjoint Clifford module
bundle, A areal unital %-algebra sub-bundle of Enda( M) (H), and Dy is a symmetric
Dirac-type operator on H, where Enda( M) (H) are the even endomorphisms of H
that supercommute with the Clifford action ¢ : T*M — End(H) defined by D.

Remark 2.3.3. Recall that for a Z, graded K -algebra, A = A’ ® A!, with A’ - A/ c
A"/ the supercommutator [-,-], is the map [a’,b/]; = a'b/ — (=1)"Yb/a’ for
a' € A',b/ € B/. As the Clifford action, ¢ : T*M — End(H) and Endg,,, (H)

consisting of even endomorphisms, ¢ € End/;, M) (H) supercommute, poc—co¢p = 0.

Structure of Dirac bundles

The Clifford algebra C1(V, Q) is the algebra generated over the vector space V by the
relation v2 = Q(v)1 where Q is a quadratic form on V. It satisfies the following uni-
versal property: any linear map f : V — A, V a vector space, ‘A a unital associative
K -algebra, with f(v) - f(v) = Q(v)1 extends uniquely to a K -algebra homomor-
phism f : CI(V,Q) — A. CI(V,Q) comes with a Z, grading, y(vi---vi) =
(=1)*vy -+ vy, that yields the decomposition, CI(V, Q) = CI(V,Q)° & CI(V, Q).
Specializing to R”, fix Q, = >, xt.z, define CI} = CI(R", Q,),Cl, = C(R",-0Q,)
and CI" = CI(C", Q,) which is CI} ®gC, Cl, ®gC. The grading comes from the
chirality operator y,,; on Cl,, is given by (—i)"e| - - - e, where ¢;’s generate Cl,, and
n =2m if even and n = 2m + 1 for odd. This can be carried over to a vector bundle

as follows.

Definition 2.3.4. A Clifford structure on a vector bundle £ — M, is a bundle
morphism ¢ : T"M — End(E), {c(u),c(v)} = -2g(u,v)1l. c(v) € End(E)
denotes the “Clifford multiplication by v”, and the pair (E, c) is the Clifford bundle.
The Clifford bundle E — M is Z, graded if there’s a decomposition E = E* & E~
such that ¢(«@) for each @ € T*M is an odd endomorphism: ¢(a)(I'(E*)) =T'(E¥).

A vector bundle with a Clifford structure is a Clifford module bundle.

Remark 2.3.5. Note that ¢ : Q'(M) — I'(End(E)), and by the universal property
of Clifford algebras c lifts to the action of the full Clifford algebra, ¢ : CI(M) —
I'(End(E)) because ¢ : T*M — I'(End(E)) satisfies {c(u),c(v)} = —2g(u,v). So
(c, E) is a representation of CI(M).
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On any Riemannian manifold (M, g), there exists a canonical Clifford bundle,
C(T*M,-g) := CI(M). A Clifford module bundle is any bundle that carries an
action of the Clifford bundle. A Dirac bundle S over a (M, g) is a Clifford module

bundle with a connection V5 that is compatible with the Clifford multiplication.

* For all oy € Sy,e € TyM, ||le|| = 1, e acting on o; by Clifford multiplica-
tion, (e - o1, e - o) = (01, 0») (as e? = —1, this yields the skew-hermiticity,

(e 01,02) = (01, € 02)).
e V5(¢p-0) = (VM) .0 +¢- V0.

For clarity it is useful to separate out the algebraic Clifford structure from the

geometric piece.

Definition 2.3.6. A Dirac bundle, (E,c,h,V, M, g), is a Clifford module bundle
(E,c) over (M, g) with a hermitian metric 2 on E and Clifford connection, V,
compatible with / such that for all @ € Q! (M) the following holds:

* c(a@) € End(E) is skew-Hermitian
e ForX e I(TM),u € T (E), VM the Levi-Civita connectionon M, Vx (c(@)(u)) =
c(V?fa)u + c(a)(Vxu)
The Dirac structure is the tuple (V, &) associated to (E, c).

Definition 2.3.7 (Geometric Dirac operator). A geometric Dirac operator is a Dirac

operator, I, that is associated to a (E, ¢, h, V) Dirac structure over (M, g) by

P=coV:TEST(T"M®E)5TE

In local coordinates, after fixing a basis (e’) of T*M and the corresponding dual
basis (e;), Vs € T (S®T*M) can be expanded in this basis as }; ¢'®V,.s. Composed
with the clifford action this gives that the geometric Dirac operator acts by I'(S) >
o — Y;e V0o €T (S). More generally, Dirac operator can be defined as a first
order partial differential operator on the sections of any left C1(M) module bundle

that squares to a laplacian.

Definition 2.3.8. (Generalized laplacians and Dirac-type operators)
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* A generalized laplacian A is a second order differential operator on a vector
bundle E with symbol o»(L)(x, &) = |£|%.

* A first-order differential operator D on a Clifford module bundle E with
Clifford action ¢ over (M, g) satisfying [D, f] = c¢(df) for all f € C*(M) is

a Dirac-type operator.

Every Dirac operator D on the vector bundle E over M, induces a Clifford action of
T*M on E by c(df) := [D, f] for f € C*(M), and conversely, associated to any
Clifford action c, the operator satisfying [D, f] = c(df) is a Dirac operator (see,
for instance, [12, Prop 3.38]).

Definition 2.3.9. (Spinor module) For any oriented vector space V, dimV = 2k,
the spinor module is the unique Z;-graded Clifford module S = S* & S~ with
CI(V) ® C = End(9).

This generalizes to bundles associated to spin structures.

Definition 2.3.10. For any vector bundle, E — M, with spin structure ¢ : Spin(E) —
SO(E), the real and complex spinor bundles S(E), Sc(E) are defined by

S(E) = Pspin(E)Xy, M, Sc(E) = Pspin(E)X,, Mc

where Pspin(E) is a Spin(n)-principal bundle, n = dimE, and u : Spin(E) —
SO(E) is the representation given by multiplication by Spin(n), M, M¢ real and

complex Clifford modules.

For even-dimensional V, every Z, graded complex C1(V)-module E is isomorphic
to W ® S where S is the spinor module. Given E, W can be recovered by W =
Homgy vy (S, E) with trivial CI(V) action, that is, the Clifford action on E is the
Clifford action on the S component, ¢ - (w ® s) := w ® (e - 5), and End(W) =
Endcyv) (E) (see, [12, prop 3.27]). Since the Clifford action is local, this also holds
for bundles.

Now for any even-dimensional oriented spin manifold M, denote by S the unique
irreducible complex spinor bundle, then every Clifford module bundle H over M
is a twisted bundle ‘W ® S§. Working in a local trivialization, it follows from the
local version that with ‘W = Endcjy) (S, H), End(‘W) = Endcyy)(H) (see, for
instance, [|12, Prop 3.35]).
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Additionally, on even-dimensional spin manifolds, associated to Clifford structures,
Dirac structures exist. This can be seen by working locally: since any Clifford
module bundle, H, is a twisting of the bundle S, H = W ®S, the Clifford connection
can be defined locally as the tensor product connection of the Levi-Civita connection
lifted to § and any connection on ‘W compatible with the Clifford action. Note
that if D := Ip is the geometric Dirac operator for the Dirac structure, and Dirac
operators Do, D give the same Clifford action, then D — Dy = A for some odd
endomorphism, A € I'(End™ (H)). For a twisted spinor bundle H = ‘W ® S, Dirac
operators compatible with given Clifford action are in one—one correspondence with

(super)connection on the twisting space (see, for instance, 12, Ch 3]).

The global version follows by a partition of unity argument. Dirac structures exist in
odd-diemensional case is well (see, for instance, [54, Prop 11.1.65,|12, Cor 3.41]).
The point of noting these details is that being able to recover the twisting space ‘W
in even-dimensional case yields a characterization of almost commutative spectral

triples as endomorphism algebra bundles.

With all this at hand, the Clifford module bundle for an almost commutative spectral
triple can be given a Dirac structure. Suppose (C®(M, A), L>(M, H), D), dim H =
2k, is an almost-commutative spectral triple with generalized Dirac operator Do, H
a Clifford module bundle over compact spin manifold M. [[16, Thm 2.17] gives a
metric Q on H which corresponds to the Clifford action associated to Dy on H. By
above, there exists a Dirac structure on H arising from the Clifford action for Do. H
being a Clifford module bundle is a twisted spinor bundle W ® S. Given the metric
induced from Q, the connection on ‘W can be taken to any Riemannian connection
on ‘W. Note that if a Dirac structure on H was already known, then the choice to
use the Riemannian connections on the twisting space and the spinor bundle is not

necessary and the given Dirac structure can be used.

2.4 The noncommutative heat semigroup

For the spinor bundle S — M, we want to consider the complete positivity of
semigroup generated by the heat operator ¢~P* on an appropriate algebra A C
B(L*(M,End(S))). The algebra A will contain the Hilbert-Schmidt operators on

L*(M, S), with Hilbert-Schmidt inner product ( £, g)#s,

(f,8)us =Trus(fg") = Z (i, f8 e 2 (mE) = Z /(ei, f)g(x) ek dyor (M)
l 2.4)
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where (e;) is an orthonormal system for L?(M, S). Such systems are provided by
self-adjoint elliptic operators on any vector bundle E. If P : T'(E) — I'(E) is
self-adjoint elliptic operator, then eigenspaces of P, E, := ker(P — A1), are finite
dimensional, consist of smooth sections, and give a complete orthonormal system
for L>(E), L>(E) = @, E,. Additionally, for an elliptic operator P : I'(E) — I'(E)
of order m on vector bundle E over compact X, on any open set U C X,u € L2(E)
where L?(E), s € R is the Sobolev space, Pu|U € C* implies u|U € C*™. Now the
connection laplacian V*V is an elliptic operator. By [6, Thm 3.7], the closure of the
connection laplacian of E, ~F s self-adjoint. Since 27 restricts to AE over I'(E),
and the eigenspaces consist of smooth sections, we have a basis for L?(E) in terms
of smooth eigensections of AE (see [49, Thm I11.5.2, II1.5.8, Def I11.2.3]).

Trys, being lower semicontinuous and faithful is permissible in the sense of Al-
beverio and Hgegh-Krohn [2]; this means we can use noncommutative Dirichlet
form theory to consider the question of generating completely positive and quantum

dynamical semigroups; we introduce this next.

Noncommutative Dirichlet forms

Recall from [2], for a C"-algebra A with a lower semicontinuous faithful trace T,
L*(A, 1) is the completion on the pre-Hilbert space {x : 7(x*x) < co} with inner
product (x, y). := 7(y*x). Set L%(ﬂ, 7)i={x e L>(A,1) : x =x*}.

Definition 2.4.1 (Symmetric Markov semigroups). A strongly continuous con-
traction semigroup, (®;), on L*(A, ) is symmetric if for all x,y, (®,(x),y) =
(x,®;(y)). Further, if 0 < ®,(x) < 1 whenever 0 < x < 1 then the semigroup is a
Markov semigroup. The semigroup is completely Markov if foralln € N, &, ® 1,
is Markov semigroup on L?(A ® Mar,, T ® Tr,), Tr, being the unique normalized

trace on MAT,,.

Definition 2.4.2. Suppose &(x,x) is a closed, quadratic form on L% (A, 1), with
dense domain Dom(&) with f(Dom(&)) = Dom(&) for f € Lip(IR, 0), the Banach
space of Lipshitz continuous functions that fix zero, || f|l;p = inf{m : [f(x) -
f()| < m|x —y|forall x,y € R}. Then & is a Dirichlet form if E( f(x), f(x)) <
Ilf ||121p &E(x,x). The form & is completely Dirichlet if & ® 1, is Dirichlet for each
n e N.

For a symmetric Markov semigroup (®;);o on L?(A, ), with a positive self-adjoint

generator £ on L2(A, 7), ®; = e 'L, the associated quadratic form[2}, thm 2.7] is
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given by
Er(x) = Er(x,x) = (L2, L1x) = |ILx175 4,

Observation 2.4.3. It’s very useful to note that if £ = H?, with H closed, then
Er(x,x) = (Hx, Hx) is closed. Additionally if H is closed then so is H ® 1k for
any Hilbert space K.

Theorem 2.4.4. (/2| Thm 2.7, 3.2]) Dirichlet forms are in one—one correspondence
with symmetric Markov semigroups: the positive quadratic form & associated
to the positive generator L for a symmetric Markov semigroup ®, is a Dirichlet
form. And conversely, if & (x,x) is a Dirichlet form on L]%(A, 7) € L*(A, 7) then
L generates a Markov semigroup on L*(A,1), e™'£. This extends to complete
Markovity: &g is completely Dirichlet if and only if L generates a completely

Markov semigroup.

Given C *—algebra A c B(H), with a faithful, lower-semicontinuous trace, 7, with
L7 (A, 1) € L*(A, 1) denoting the hermitian elements, a Dirichlet form E (x, x) is a
positive closed quadratic form on L%(ﬂ, 7) such that any lipschitz f : R — R with
f(0) = 0 satisfying f(Dom(E)) € Dom(E), E(f (x), f(x)) < || fI|Z;, E (x, ).

A semigroup T; on L?(A, 1) is t-symmetric if 7(T;(x)*y) = T (V) 2 aq)-
Let £ be generator of such 7, with H = £!/2, then the positive quadratic form
E(x,x) := ||Hx|5 = ||Hx||iz(ﬂ’T) is a Dirichlet form, while if E(x,x) := ||Hx||3
is a Dirichlet form then ¢’ is a symmetric Markov semigroup on L?(A, 1)
[2, Thm 2.7, 2.8]. A completely Dirichlet form is Dirichlet form E such that
2ije[n] E (xij,xij) is a Dirichlet form on L*(A ® Mart,,, T ® Tr) for every n € IN.
By [2, Thm 3.2,|62, Prop 3.2.29], T-symmetric semigroup is completely Markov iff

the associated Dirichlet form E is completely Dirichlet.

For a C"-algebra A, a C*-Dirichlet form is a completely Dirichlet form & such that
Dom(&) N A is norm-dense in A and form-core for (&, Dom(&)). Note that the
C"-algebra A is not required to be unital. In the setting considered, A can be taken
to K(H), compact operators on the given Hilbert space H; this makes checking
density hypothesis on Dom(&) N A straightforward.

Now any contractive completely-positive map ¥ on A which is 7-symmetric for
every a,b > 0in A (that is, 7(¥(a)b) = 7(a¥(b))) extends to an L>-contraction
from L>(A, 1) N A to L>(A, ) N A (see [62, § 3.2.3]). This supplies the following
correspondence between quantum dynamical semigroups and C*-Dirichlet forms
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([62, propostion 3.2.29]): if T; = ¢'< is a quantum dynamical semigroup symmetric
with respect to 7, then 7; viewed as a semigroup of positive contractions on L*(A, 1),
with the generator given by the negative operator, £, then &(x) = ||(—£2)1/ 2 (x)||§
with Dom(&) = Dom((-L£»)'/?) is a C*-Dirichlet form, and conversely, every

C”-Dirichlet form arises from a symmetric quantum dynamical semigroup.

Therefore, any 7-symmetric quantum dynamical semigroup on A = K(H) is asso-
ciated to a C"-Dirichlet form and its associated contractive semigroup on L*(A).
It’s useful to think of K (H) c B(H), where B(H) is a unital von Neumann algebra,
as continuously embedded inside algebra B(L*(A, 7)).

Example 2.4.5. [2, Corollary 4.4] gives a class of completely Dirichlet forms: for
any self adjoint operator H> = M > 0, m; € B(H), Tr(m;m;) < oo, E(x,x) :=
Tr(x*M) + ¥, Tr([x, m;]*[x,m;]) is a completely Dirichlet form iff E(x,x) is
closeable on L?(A, 7). On specializing to 7 = Tron B(H), L*(A, Tr) = H*(H) C
B(H), the space of Hilbert-Schmidt operators on H, and the Dirichlet form becomes

E(x,x) = |Hxll5 + Y lx,milll3
i

Dirichlet forms are in correspondence with bimodule derivations. To make this
precise, the following abstract characterization of Dirichlet forms is needed. Note
that L2(A, 1) is simply the Gelfand-Naimark-Segal (GNS) Hilbert space for T;
however, the reference to GNS is not necessary since A is already given as B(H).
This is pointed out since one needs to associate to A a von Neuman algebra which

can be viewed as L™ (A, 7).

For a C*-algebra A c B(H), with M := A” c B(H) the von Neumann al-
gebra with unit 1, the standard form for a von Neumann algebra M is the triple
(M, L*(A, 1), L*(A, 1)), L*(A, 1), being the positive cone induced by the in-
volution J on M corresponding to a — a*. The real subspace, L%l(ﬂ, T), is the
subspace of T-invariant elements. Let a” denote the projection of a € Li(ﬂ, T)
onto the L? closure of the convex set C = {a € L2(A, 1) : a < 1}.

Definition 2.4.6. A Dirichlet form (&, Dom(&)) on L?(A, 1) is a closed, densely

defined, non-negative quadratic form satisfying

1. a € Dom(&) implies J(a) € Dom(&) with E(J(a)) = E(a)

2. For a € Dom(&) N Ly(A, 1) := Dom,(8), a* € Dom(8), &(a*) < E(a)
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With this, there’s the following correspondence due to [23].

Theorem 2.4.7. ([23, Theorem 8.3]) Let H be a Hilbert space carrying a A — A-
bimodule structure, J an antilinear (conjugate-linear) involution exchanging right
and left A-actions (that is, J(ahb) = b*J(h)a*), B an involutive subalgebra of
ANL*(A, 1) dense in both. Then if 6 : B — H is a closable derivation, satisfying
Joa = 0a”, then the closure of the quadratic form B > a — ||(9a||2H is a Dirichlet

form.

tL associated with the Dirichlet form

The positive generator L of the semigroup e~
is given by £ = 9% where 4 is the closure of 3. The correspondence is one to one:
from every Dirichlet form a bimodule and a derivation can be constructed which is

unique up to a bimodule map isometry [23|, Theorem 8.2].

The noncommutative laplacian

For any Hilbert space H, let H?(H) := L?>(B(H), Tr) be the space of Hilbert-
Schmidt operators. Note that H?(H) = L*>(B(H), Tr) = L*(KX(H), Tr) where
K (H) are the compact operators since Hilbert-Schmidt operators are compact with
norm-closure K'(H) (this is assuming A = B(H), otherwise one restricts to A).

Recall some background theory:

K (H) is the largest norm-closed ideal of B(H), in particular, it'’s a C"-algebra,
strongly-dense in B(H), although not unital unless dim H is finite.

* The space of Hilbert-Schmidt operators in 8(H), H*(H) := L>(B(H), Tr) is
isometrically isomorphic to the Hilbert space H*® H with (a; ® b1,a; ® by) =
(ay,a2){by,b2)

* For any C -algebra A ¢ B(H), L*(A, Tr) C A is a two-sided ideal.
Let A € B(H) be a self-adjoint operator, hence closed operator, with spectral

decomposition A = Y); 4;.¢;, 4; < A;41. Denote by e;; := ¢' ® e, where ¢’ = ¢} and
can be taken as e} = (e;, -); e;;’s form a basis for H*(H) =H* ® H.

Proposition 2.4.8. The operator Apy := A®1—1® A acting on H* ® H := H?*(H)
where A acts on H* by yAy ™', & : H* — H the isomorphism identifying e/ and e;.
Then

1. Ay is a derivation and Ap(1) =0
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2. Agp is the operator a — [A, a]

Proof. Note that A; are real. For the first, by linearity it suffices to check that it’s
a derivation on the basis ¢;; := ¢; ® e/’s. One can assume for eijroeji, j=7j as

otherwise Ap(e;j» o eji) =0,

Ap(ejjoejr) = diey — Agejx

Ap(eij) oejr +eij o Ap(ejr) = dieix — Ajeix + Ajei — Aeix = Ap(eijr o e i)
It’s straightforward that Ap (1) = Ap(X;e; ® e]) = 0.

For second, again by linearity, it’s enough to show [A, e;;](e; k) = Ape;j(eji). If
J # j’ then

[A,eij]l(ejk) = Aejj(ejir) —eijAej =0 = Ape;j(ejk)
and with j = j’,

[A,eij](eji) = Aejj(eji) — eijAejr = diey — Ajeix

Apejj(ejr) = (Aiej — Ajeij)ejr = [A, eif](ejk)
]

Theorem 2.4.9. For each n, the operator —A% PR —A%|H,,, H, = Span{e; ® e; :
i,j € [0 : n]} defines a completely Dirichlet form, E,(x,x) := ||iAz),nx||w2. The

positive generator for the associated semigroup is A%.

Proof. Consider iAp. From proposition [2.4.8] iAp is a derivation on the Hilbert
space H?*(H). Further, the quadratic form E, (x, x) = ||liAp|| is closed because Ag
is closed as A is self-adjoint, ¢ an isometry, making A ® 1,1 ® A closed. Take
B = H?*(H) for theorem H?(H) is dense in both L?>(K(H), Tr), K(H),
while * on H?(H) given by (ae;;)* = aej; for @ € C exchanges the right and left
action of H?(H) on itself. The compatibility of iAp with * holds since on the basis

elements
(iApae;;)” = —ia(Ape;j) = —ia((4; — Aj)e;;)” =i@(A; — A)e;
iAz)(ae[j)* = —ia@Apej; = ic_l’(/ij - /li)ej,-

therefore, theorem applies and E,(x,x) is a Dirichlet form. On replacing
H by H ® Mart,,, Tr by Tr ® Tr,, for the normalized trace on Tr,, on MaT,,, the
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closability of map A, p is unaffected by tensoring the identity, therefore, E, is
completely Dirichlet. The operator —A% is negative; A% is the positive generator

for the semigroup. [

Recalling that for the spectral triple (A, H, D), the Connes’ differential 1-forms are
defined by

Q) (A) ={ ) ax[D, by] : ay, by € A} (2.5)

formally, [D, [D,-]] is defined as the noncommutative laplacian, the intuition
being that with respect to the Hilbert-Schmidt inner product, (a, [iD,b])gs =
—([iD, a], b) s following that the adjoint of covariant derivative (V;)* on a com-
pact manifold without boundary is —V;, and is the generator 9*0 for the semigroup

associated to the Dirichlet form.

Remark 2.4.10. The noncommutative laplacian [D, [D, -]] is agnostic of the geo-
metric content of the Dirac operator D, and only relies on the associated derivation;
the heat semigroups generated by endomorphim lapacians considered later better

capture the geometric aspect.

Proposition [2.4.8] yields that the heat semigroup canonically associated to the spec-
tral triple generated by the noncommutative laplacian is a quantum dynamical semi-
group. Additionally, the domain for the noncommutative laplacian contains an
operator system. Recall that a (not necessarily closed) subspace S ¢ B(H) for
any Hilbert space H is an operator system, if it is self-adjoint and unital (see [60,
definition 1.36]). The point is that completely positive maps on operator systems
extend to the containing unital C"-algebra by the Arveson’s extension theorem (see
[60, theorem 1.39]): if S, § ¢ M c B(K) for any Hilbert space K is an op-
erator system in the unital C"-subalgebra M, then any completely positive map
u: S — B(K) for any Hilbert space K’ extends to a completely positive map
u: M — B(K') with ||ul|., = |lu(1)|| where ||-||., is the completely-bounded

norm, ||u||., = sup, ||u ® IMar,

Corollary 2.4.11. For the spectral triple (A, H, D), the noncommutative laplacian,

—D%, a — —[D, D, a]] generates a conservative quantum dynamical semigroup

on B(H).

Proof. This is immediate from theorem using A = D and then [D, [D,]] =
(Dp)?* := L, except that Dy is no longer a bounded operator, and unlike the
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truncations D g ,, the Dom(£) is not all of H 2. However, since for every n € IN,
2ije[n] @ijeij € Dom(L), Dom(£) is norm-dense in K(H), and strongly dense in
B(H). Now Dp(1) = 0, the semigroup e'£ is defined on the operator system S
generated by {1,¢;; : i, j € [n],n € Zxo} and since the B(H) is the smallest C'-

tD

. D2 , .
algebra containing S, e”'~2 extends to 8(H) by Arveson’s extension theorem. [

This will be used toward realizing spectral action from the Evans-Hudson flow, but
since the noncommutative laplacian is not geometric in the sense that while it lives
on H* ® H = End(H), it’s not associated to a connection on the End(H). It’s useful
to consider semigroups generated by elliptic operators associated to connections on
End(H) — for the canonical spinor bundle S over M, End(S) = CI(M), so this
is an important example; the natural operators also generate quantum dynamical

semigroups.

Example 2.4.12. (Matrix geometries and fuzzy spectral triples) A fuzzy spectral
triple, (A, H, D, J,y), is the Clifford algebra, Cl, , associated to R”*? with pseudo-
euclidean metric of signature (p, ¢), along with matrix algebra Maty (C), with A =
Maty(C), H =V, ;®Marty(C) with V, , a Cl,, ,-module, {a, b)pary () = Tr(a*b),
with appropriately defined grading vy and real structure J. Observe that since A =
MaTty (C) and the action of A is defined tobe V), , @ MaTy(C) 3 (¢®B) — ¢®AB,
A acts precisely like the algebra of the almost-commutative spectral triple. The Dirac
operator D for the fuzzy spectral triple is axiomized to be self-adjoint satisfying
Dy = (=1)?PyD,DJ = €JD,[[D,a],JbJ '] =0forall a,b € A, € depending
on g — p. Since the Cl, , ®MaTy (C) is finite dimensional, the Dirac operator can
be parametrized by matrices[8]], and the space of all Dirac operators parameterizes
the geometries supported over the fuzzy spectral triple. The path integral over the
space of Dirac operators is the object of interest. When g = 0, that is, signature is
euclidean, since the operators are self-adjoint and finite-dimensional the associated
flows exist, one can equivalently consider the possible spectral actions. When g # 0,
the underlying spaces are not Hilbert spaces, and the notion of a quantum dynamical

semigroups needs to be reformulated.

2.5 Quantum dynamical semigroups on spinor endomorphisms
The quadratic forms associated with the geometric laplacians and their perturba-
tions can be considered using the class of Dirichlet forms introduced earlier in

example [2.4.
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Note that the connection V*V and Dirac laplacian D? are symmetric with respect
to the innerproduct structure on spinor bundles and the symmetry of the semigroup
follows, making noncommutative Dirichlet theory applicable. As a warm-up, the
following result is in the spirit of example [2.4.5] and is obtained directly from the
Dirichlet form definition (as compared to [2] which used normal contractions on
C"-algebras). On any vector bundle E, denote by H?(L?(E)) the Hilbert-Schmidt
operators acting on L?(E) with Trys inner product.

Proposition 2.5.1. If the quadratic form, &, associated with the connection lapla-
cian Ag on a vector bundle E — X with metric compatible connection, on
H>(L*(E)), Ag is closed, then the form is Dirichlet and completely Dirichlet.
The result also holds if Ag is replaced by the geometric Dirac laplacian, n? Sfor

any Dirac bundle E, and positive operator T = Z*Z in general.

Proof. By definition [2.4.2] with &, (x,x) = Trys(ax?) = Trys(x A x) where x =
x* € H}(L*(E)), Tr(x*) < oo. It needs to be checked that for f € Lip(R,0),
f(Dom(8)) = Dom(8) and E5(f (x), £(x)) < [I£IIf, Eax. ).

The condition E,(f(x), f(x)) < ||f||12ip E(x, x) follows by noting that x and x? are
compact and self-adjoint and, therefore, X2 = 2 al.zP,- where x = ), a;Pj,a; € R
is the representation from the spectral theorem for compact self-adjoint operators.
Note that since f(a;) € R,Vf(x) =V, f(a)P; = 3; f(a;)VP;,

IVf(x)erll < || Z | f ipaiVPie || = || £lip [[Vxell (2.6)

This means E,(f(x), f(x)) = Tras(f(x) & f(x)) = X, {eif(x), V'V (x)e;) =
IV £ (x)e:]?, and as needed

where it was used that for r € R, f(r)/r < ||fll;, meaning f(r) < [[f]hipr.

Ea(f(x), £(x)) < I £l Ea(x, %)

Since y € H?(L*(E)) can be written as (y+y*)/2+(y—y*) /2, so to show invariance
of the domain, it suffices to show f(y) € Dom(&,) for self-adjoint y € Dom(A).
As y € Dom(a) means Trys(y A y) = ||[Vy|lgs < oo, f(y) € Dom(&E,) follows by
the estimate in equation[2.6] Therefore, if &, is closed, it’s Dirichlet.

Set A, = A ® 1, for 1,, the identity map on MaT,. Since A, = (A* ® 1,))(A ® 1,),
and any self-adjoint y € MaT, is diagonalizable, the same analysis applies. As 1,

is closed, &,,, is closed if and only if &, is closed. This establishes the claim. The
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same argument applies to the Dirac laplacian * for the spinor bundle E acting on
L?*(M, E) and for any T of the specified form. ]

The Bochner identity for case when E is Dirac bundle will be useful. In particular,
it will allow relating the closedness of the Dirichlet forms for the connection and
Dirac laplacians. To set it up, let Rﬁ,vz denote the curvature transformation of the
vector bundle E with connection V, RE . :T(E) -» T'(E),e — (Vy,V,,=V,,V,, —

V1,V2
V[vl,vz])e € F(E)

Definition 2.5.2. [The general Bochner identity] For the connection laplacian A =
V*V and the Dirac operator D for any any Dirac bundle S over M, n = dim M,
with R,f’v the curvature transformation of S, (e;) the orthonormal tangent frame, the

general Bochner identity states
D*=nr+%R 2.7)

where R(¢) := % 2jke[n] €j €k * Rf,-e, (¢) is the curvature operator of the bundle.

Now it remains to show that the form &2 is closed on Hilbert-Schmidt operators on
L*(E). Note that I} is identified with the Dirac operator extended to the L? sections,
1.e., acting distributionally, which is self-adjoint, and therefore closed. &p is also
identified with the extended version. Then by the Bochner identity and the fact that
the curvature operator on a compact manifold is self-adjoint and bounded, and so

closed, it follows that the connection laplacian is also closed.

Theorem 2.5.3. Suppose (S, h) is a Dirac bundle over the compact Riemannian
manifold (M, g) with D denoting the self-adjoint extension of the Dirac operator to
L%(S). Let H be the Hilbert space of Hilbert-Schmidt operators, H?>(L*(S)) with
inner product (x,y)ys = Tr(x*y). Then the quadratic form Ep(x,y) = q(x,y) =
Tr(x*yDz) on H x H is closed, and therefore, Ep2 Dirichlet, furthermore, is also
completely Dirichlet.

The proof is immediate by the following observation.

Observation 2.5.4. Since Hilbert-Schmidt operators are isometrically isomorphic to
S*® S, if T e Lin(L%(S), L?(S)) viewed as acting on H?(L>(S)) by composition,
then on a basis element e;; = e] ® e; for H2(L*(S)), T(e;j) is the same as
e; ®T(e;) = [T ® 1](e] ® e;), and therefore, if T = Z*Z with Z closed, the
quadratic form &g is also closed, and therefore, Dirichlet, and by same argument

applied to tensoring with 1y, , completely Dirichlet.
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A second proof is included as it illustrates how Sobolev norms naturally appear
when the operator is a pseudo-differential operator. This gives intuition for the
case where Laplace-Beltrami generated diffusion on the canonical spectral triple is

analyzed.

Proof. 1t’s enough to show the claim for x, y self-adjoint, so we work with g(x, x) =
Tr(x*D?)). Let (e;) be a basis of L?(S) consisting of smooth eigensections of the
laplacian AS = V*V associated with the connection for D. Note that ¢ is semi-
bounded, since Tr(x>D?) = ¥, (Dxe;, Dxe;) = ||Dx||12LIS > (0 where we used that x

is self-adjoint and the trace is cyclic, so Tr(x?>D?) = Tr(xD?x).

Now suppose (x,) is a Cauchy sequence in norm ||a||, := \/||a||HS +q(a,a). So
(xp,) is Cauchy sequence in the Hilbert space (‘H, ||| ys), implying (x,) m, xeH.
And (x,) being Cauchy in ||-||, also gives that g(x,, — x,;, X, — Xx,,) — 0. Because
q(a,a) = ||Da||i,s, so (Dx,) is also Cauchy in (H, ||-|| z5) and therefore convergent
with lim,, . Dx,, = g € ‘H.

Suppose g = Dx, then it follows that g is closed because
Tim g =%, % = x) = im [[D(x, = 0)lls = lim Dy gllz5 =0

Now if xe;, x,e; are weakly (L?) differentiable (thatis, ¢; € Dom(x)NDom(Dx), Dom(x,)N
Dom(Dx,)), since x, 3, x, meaning ||x, — x||gg — 0, so for all i, x,e; — xe;,

then using that D is self-adjoint, and hence closed on L?(S), yields
ge; = lim (Dx,)e; = lim D(x,e;) = D(xe;) = (Dx)e;
n—00 n—0o0

Since Dx and g agree on the basis (e;), Dx = g.

Finally, the weak differentiability of x,e; holds since e; is smooth and ||x,,,e,~||2 <
Tr(x2) = ||x,||%,¢ which is finite and similarly ||Dx,e;||* < Tr(x2D?) = || Dx,|| % <
00, SO Xpe;, Dx,e; € L*(S). The same applies to xe;, Dxe;, ||xeil| < |lx|lys

lim, 0 | Dxeil] < l1gl 5. 50 xe; € Dom(D).

]

Note that the norm ||all, := v/|la|lgs + g(a,a) = \/llallgs + [|Dallys is the natural
generalization of Sobolev norm to the endomorphism algebra.

Corollary 2.5.5. The form associated to laplacian, &E,, on the vector bundle S is
completely Dirichlet form on H*(L*(S)).
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Instead of using Bochner identity, one can also get at the result for the connection
laplacian, A, by adjusting the same reasoning to from D to the closure V of V using
the results from [|6] after accounting for domain and co-domain of V not being the

same Hilbert space as for D.

Similarly, the quadratic form for a positive curvature operator, R® can be shown to

be completely Dirichlet.

Proposition 2.5.6. If R > O then the associated form, Eg, is completely Dirichlet
on L*(A, 7).

Proof. First note that the R at each fiber is a bounded symmetric operator. To see
the symmetry, note it can immediately be checked that for any Riemannian con-
nection, the curvature transformation is skew symmetric in the sense (Ry ws, s’) =
—(s, Ry ws’). Consider each term in R at p € M, (s,e; - ek - Ree ") for 5,8 €
I'(H), and in Riemann normal frame (e;) centered at p, since [ # k must hold
(otherwise R, = 0),

<S, (N Releksl> = <_Re[€kek cer- s, S,> = <Relekel c€k S, S,> = <€[ 2 Releks, Sl)

where to commute e, e; past V,, V,, inside R, the product rule was used with the
fact that the coordinates are Riemann normal centered at p, so covariant derivatives
vanishes at p. As R’ varies smoothly, and the manifold is assumed to be compact,
it’'s bounded globally. Everywhere defined symmetric operators are self-adjoint
and are closed, therefore, R is self-adjoint and closed. If R is non-negative, R1/2
exists and again being bounded is closed; therefore, it follows as before that Eg; is

completely Dirichlet. [

Remark 2.5.7. Note that in the L>(A, ||-|| z5) setting the complete Markovity of the
Dirac heat semigroup does not depend on the curvature unlike for C*-bundles where
for Clifford bundles it does[24].

So far H? has been considered, but 2 is not unital which is necessary for existence
of quantum stochastic dilations; as before Arveson’s extension theorem can be used

towards this.

Theorem 2.5.8. The completely Markov semigroup e™'L extends from L*(A, Tr) =
H2(S) € B(L*(S)) to B(L*(S)) if and only if the e 'L is completely Markov for
each t on the operator system generated by L*(A, Tr) and 1.
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Proof. If e7'£ is not a completely Markov family of maps on O(L*(A,7),1)
then obviously e™’£ does not extend to B(L?*(S)) > O(L*(A,1),1). Ifit's a
completely Markov family, then because O(L?*(A, 1), 1) is an operator system,
so as completely positive maps, e~'£, extends to B(L?(S)) by Arveson’s extension
theorem . Complete Markovity follows since even though Hilbert-Schmidt operators

are not norm dense, they are strongly dense in 8(L%(H)). O

Corollary 2.5.9. Suppose L(1) = 0then e™'L is completely Markov on O(L*(A, ), 1)
and, therefore, on B(L*(S)).

Proof. If a € O(L*(A,1),1), then a = Bl +  with @ € L*(A, 1), B € C, and
Bl,a commute. e 'LBI+@) = ~tBLD 10 — o1 which is completely Markov.
The conclusion follows from the theorem 2.5.8] O

The endomorphism connection

By definition, the Evans-Hudson dilation requires that the semigroup be conserva-
tive. However, one quickly notes that acting by composition on End(L?(M, S)) the
laplacian A (or the Dirac laplacian D?) cannot generate a conservative semigroup.
To see this, fix a basis (e;) of eigensections of A for L?>(M, S) and let 1; be eigen-
value for A on e;, then (¢; ® e;‘.)i, ; is a basis for End(H). If A acts by composition
on End(H) then it maps ¢; ® e} to die; ® e}f implying A(1) = A7 (Y6, ®€f) =0
cannot hold. However, there’s a natural connection which defines a conservative

semigroup.

Observation 2.5.10. On the endomorphism bundle, the canonical connection VEnd(H) —
Vel+1® @, where V is the dual connection induced on H *, is easily seen define
a conservative semigroup and is uniquely determined from V since if over (U, ¢y)
the connection acts locally by V(X o~/ ;) = 3 ;(do/)uj + X o/ Ay for a matrix
of T*M-valued 1-forms A, then the dual connection acts with matrix A=A , and
VEnd(H)(Zij a;ui ® p’) is given by

VEMID N gl @ pl = Y (dopi@ pl + Y [cA - Aol @ p! - (2.8)

i ij Jjk

Additionally, if §* carries parallel section ¢, then an explict computation shows
that AN (y @ g) = [A®@ 1+23,; V@V, +1® Al(Y ® ¢%) = (AY) ® ¢}, s0
the action of the laplacian embeds inside the action of the endomorphism laplacian.
This property of endomorphism laplacian and the fact that it acts by commutator is

reminiscent of the operator Ay, and will be used for realizing spectral action.
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Note that if E is a hermitian (or euclidean) vector bundle with connection V£ and
H a Dirac bundle with connection V¥ over M, thenthe ¢ - (h® e) — (¢ - h) ® e for
¢ € CI(X) defines a Clifford action on H ® E. The skew hermiticity of the action

VH®E

is obvious and as needed the tensor product connection satisfies

VA®E (g . (c®e)) = (VIXg) - (c@e)+¢-VI®Eor®e

Now the Dirac and Clifford structures are local as the Clifford multiplication acts on
fibres and the connections can be computed in a chart. The local structures can then
be glued to get the global structure. As a special case of tensor product bundles,
consider End(S) for a Dirac bundle S. Suppose local sections y; : i € [dim H])
form an orthonormal basis of S in chart (U, ¢y/), and the corresponding dual basis
(u') for S*. Over the U, End|U(S) is just the bundle S|U ® §*|,, with the fibers
given by Span{e; ® ¢/ : i,j € [dim H]}. This yields that if S is a Dirac bundle,
then End(S), S ® E are Dirac bundles as well. Relevantly, there’s the following

observation.

Proposition 2.5.11. Semigroups generated by laplacians D*, A on End(S), with

respect to the endomorphism connection, are conservative.

Proof. As1 =3, u;®u' inthe local basis y;, equationis just the commutator with

identity, therefore, V(1) vanishes identically over U, making A(1) = 0. Similarly
D?*(1) = 0. L

A calculation using this (see chapter [)) leads to the following example which is

relevant for canonical spectral triples.

Example 2.5.12. The algebra C(M) acts on L?(S) by multiplication and f € C(M)
can be identified with f - 1gyq(s). Then AEnd(S) for the Levi-Civita connection on
S acts on C(M) by sending f to AM(f) - 1gnacs) where aM the Laplace-Beltrami

operator on functions.
Proposition 2.5.13. The form & for the Dirac laplacian D? of the bundle End(S)

is closed.

Proof. This follows since the quadratic form x — (Dx, Dx) is closed because D is
closd. [
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Using the same arguments as before, along with proposition [2.5.11] gives the fol-

lowing.

Corollary 2.5.14. The quadratic forms for both D* and ~F"¥S) are completely

Dirichlet, they both generate conservative quantum dynamical semigroups.

Example 2.5.15. The Clifford bundle can be viewed as the endomorphism bundle
of the spinor bundle, and the connection as an endomorphism connection. It is a
derivation on sections of the bundle, and, therefore, is zero on the identity element
of the Clifford bundle.

2.6 Spectral action

The motivating application is introduced next. For the canonical spectral triple over
Riemannian spin manifold, (M, g) (C®(M), L*(S), Dy), L*>(S) being the Hilbert
space of square integrable sections of a spinor bundle S — M, and D), the Dirac
operator associated to the lift of Levi-Civita connection to the spinor bundle[66,
pg 67], the bosonic spectral action is the linear functional, Sg” =Sy :=Tr f(D/A)
for a choice of an even test function f : R — R, f > 0, which is often taken to be
e~ and A a cutoff parameter[30, § 5.1, |66, § 7.1]. The parameter ¢ of the Dirac

~iD? corresponds to t = A2, From the asymptotic expansion

heat semigroup e
limp 00 Sgl for a Riemannian spin 4-manifold M, the spectral action, and therefore,

the Einstein-Hilbert action, Sg g, can be recovered|30, § 5.3,(66, § 8.3].

From earlier, any self-adjoint operator A on Hilbert space H, the operator A% =
(A®1—-1® A)? acting on H* ® H = H?>(L*(M, S)), the space of Hilbert-Schmidt
operators in B(H), generates a conservative quantum dynamical semigroup, and
the same for any spectral truncation D,, of D = Y 4;¢', D,, := Zic[-n:n]) Ai®i- A
simple calculation yields the following, the idea being to use ¢¢ to kill everything

but the Dirac laplacian in the expansion for DZ.

Lemma 2.6.1. With ¢;0 = ¢; ® do € H2(H), (i "2n0 (i) do) = e

Proof. This follows since

ePno(gio) = Y (DM KDL ) o= Y (=0F k1 g = e g

kEZZO kEZZO

Therefore, (¢ie_tDi>D(¢i0)¢0> = (i, e_mlz¢i> O
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This means
S, = n(Z di/\n, e ’D"’Z’(Z $io/Nn)go) = (pi, e ¢i) = Z e
ien] i€[n] relnd
. oM
lim, s, =S g

Remark 2.6.2. The same calculations can be carried out on the Hilbert space
L?(K(H), Tr) using the embedding of K (H) into B(L*(K(H), Tr)).

That is, spectral action arises as a correlation between the state corresponding to the
harmonic spinor and a uniformly random state. If D has no harmonic spinors then
on replacing D, with D’ := D2 — 22 for 1 = A, € spec(D),m < n, the following

generalization can be obtained.

Corollary 2.6.3. With D ,, = (D% - A%)p for any A = A,, € spec(D),m < n, then

) 2
nh_)nf}o (Z i, e 1D D ( Z bio)po) = Szle_(xz_lz)z

ien ie[n]

The lemmacan be applied to the semigroup e £, £ = AM on C* (M) c C(M)
acting by multiplication on the Hilbert space of L? functions, L*>(M), instead of a
vector bundle. If ¢;’s are eigenfunctions of AM with aAM¢; = A2¢;, 22 > 0, then
since C(M) has the constant function 1 as the unit, AM (1) = 0 and (¢;,1) = 0, we

immediately have:

Corollary 2.6.4. The eigenvalues for AM can be computed from the expectations of
heat semigroup:

2

(Bj, e L(@)T) = (¢}, e g1y = e i,

Therefore, the heat kernel trace }; e~ can be approximated as in m This
motivates interest in understanding the Dirac heat semigroup and its Evans-Hudson
dilation which yields the expectations of type (u, e "*®)v) for any u, v in as expec-
tations of a quantum diffusion process. Because the generator D, o is bounded,
the semigroup generated is norm continuous and, therefore, existing constructions
from [11}, 62] can be adapted to realize spectral action from a quantum stochastic
flow. The flow is associated to a quantum stochastic differential equation (gsde) of
Evans-Hudson type. For now the computation of the coeffients of the gsde for D, o

is deferred since it’s covered by existing theory. This leads to the following result.



29

Theorem 2.6.5. Let D, be the Dirac operator, D, f(x) = e, filx) = e~ (=20,
A € Spec(D), the Evans-Hudson flows ji, j{ exists for generators Dle,D’2 =
(Dﬁ D= A%)?, and satisfies

1. If D has a harmonic spinor ¢

Tim (3" 6E0).ji( ) $i0)$oE(O) =SV,

ien ie[n]

2. For eigenspinor associated to A, ¢,,

n]]_)ngo <Z ¢1E(0),];( Z i1)9E(0)) = Sz/,le,(xz,,lz)z

ien i€[n]

where ¢;; denotes ¢; ® g/)J*., E(0) the Fock vacuum for noise space.

In chapter 4] the focus is on computing the trace of the heat kernel for laplacian on
functions exactly without truncating: the existence of the flow for the unbouded gen-
erator is not apriori clear and even though the spectral action can be approximated
it’s of interest to consider the existence of the flow for the untruncated laplacian. A
growth condition on Sobolev norms of laplacian eigenfunctions on compact mani-
folds turns out to be sufficient, examples include flat and homogeneous manifolds.

This is done by adapting construction from Sinha and Goswami [62].

Note that the e ™" defines a positive semigroup on C*(M) and therefore, by
commutativity, a completely positive semigroup which is both contractive and con-
servative. In fact, the laplacian can be formally put in the form of generators
from norm continuous quantum dynamical semigroups even though the semigroup

generated is only strongly continuous.

2.7 Product and almost commutative spectral triples

The special case of product almost commutative spectral triples is addressed now.
While it can be handled with the same Dirichlet form machinery, it’s worth noting
how the two pieces in the product do not interact. Following this, a brief note is
made about C*-bundles which provides an alternative perspective on bundles of

C"-algebras bundles over Riemannian manifolds.

Complete positivity on products
For real even spectral triples, (\A;, H;, D;;J;, i), i € {1,2}, that is, the spectral

triples come with a real structure J; and a grading y; such that for all a € A;, y;a =
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ayi,yD; = —Dyy, the product is defined by A = A; ® A,H=H; ® Hy, D :=
D1 ®1+y®Dj),y =y ®vy,J =J; ®J,. If the second triple is not even then the
resulting structure does not have a grading and the adjective even is dropped. Since
the first triple is even and D1, y; anti-commute, D? = D% ®1+1® D%. Note that
C®(M,Ar) = C*(M) ® Ar and the tensor products are Z,-graded. The algebras
Ay, Ay are only pre-C*-algebras, but can be completed in the respective C"*-norm;
for the canonical spectral triple, C* (M), will have C(M) as the closure. For a
spectral triple, it’s not required that A; be closed, though a requirement [D;, a]
is bounded needed for a € A;. Questions about quantum dynamical semigroups,

however, need the algebras to be norm-closed.

The product almost commutative spectral triple is the product of the canonical spec-
tral triple of a Riemannian spin manifold, Wy := (C®(M), L*(S), Dy Jars Ym),

and a finite noncommutative space, Wr := (Ap, Hg, Dp; Jr, vF),

MXF :=(C®(M)®Ap, L*(M,S® HF)), Dy ® 1 + Yy ® D3 Ju ® Jr, Y ® YF)

Recall that on the algebraic tensor product of C*-algebras A; ® A», a cross-norm
is a norm satisfying [|a1 ® az2|| 4,64, = lla1ll 4, lla2lla,. A C"-algebra is nuclear if
any tensor product carries a unique cross-norm, and, therefore, the algebraic tensor
product has a unique norm completion. The following technical lemma will be used
implicitly. The point of this lemma is that such identifications described by it behave

well.

Lemma 2.7.1. Suppose A, Ay are unital C -algebras. Suppose at least one of
A1, Ay is nuclear, so there’s a unique cross-norm on A ® Ay, then the map,
¢: A - A @ Ar,a — 1 ® a, is a completely positive, homeomorphism onto its

image.

Proof. The kernel of ¢ is trivial, and ¢ is positive as a positive in A; means 1 ® a
is positive in A; @ A,. Additionally, ¢ is unital. From the R-linearity of the
tensor product, it follows the map ¢ preserves norms. It also follows that ¢ ® 1,
also preserves norms, so ¢ is a unital, completely contractive map, and hence is
completely positive. Being contractive also implies continuity. The inverse map on
the image, ¢~!, 1 ® a — a, is again unital and completely contractive: the same
holds for ¢! as well. O

We note the following about the complete positivity of the Dirac heat semigroup for

product almost commutative spectral triples:
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Proposition 2.7.2. For the product almost-commutative triple, Wr X Wyy,

® The norm completion of C(M) ® Ar is unique.

® The complete positivity of the semigroup does not depend on the order of the

product, Wr X Wpy versus Wy X Up.

Proof. Ifboth spectral triples are Z.;-graded with Z,-graded tensor product, C(M)®
Ap, then since commutative C*—algebra are characterized as nuclear[26] in Z
graded tensor product category, all cross-norms on the tensor product agree, then
there’s no ambiguity on the norm with respect to which to take the norm closure.
The independence from the order of the product is simply the symmetry of the norm

and therefore of the definition of positivity. [

Theorem 2.7.3. Let D> =1 ® D%/I + D% ® 1 acting on Ay ® Ar.

tD?

o Jfe P M and e~'PF are both completely positive then e™'" is as well. The

tD

D2 . .
converse holds when e Is conservative.

_tD? _tD2 . . oo D2
o [fe'Pu and e™'PF are contractive (conservative), then the composition e™'P

is contractive (conservative). The converse does not hold.

2 2 2
tD :e—t(1®DM —t(DE®1) _

Proof. Because 1®Dﬁ/[ and D%@l commute, therefore, e~ e

e—t(D%@l)e—t(mD?w tD? tD

). Now suppose e P and e~ F are completely positive. The

tensor product of completely positive maps extends to a completely positive map
with respect to the ||-||,,;, (see, for instance, [59, Thm 12.3]; the standard result
is for ungraded tensor product, but it applies since commutative C"-algebras are
nuclear regardless of the grading and there’s only one cross norm across both set-
’D?W,e"DZF ® 1 are completely positive on
Ar ® Ay = A @pin Ay Furthermore, 1 ® D2, D3 ® 1 commute, and e ™% s
the composition of completely positive maps and also completely positive. When
¢~'D? is conservative, e "2* (1 ® Ay) = 1 ® e~ PM (Ay,). Since 1 ® Ay generates
the C"-algebra, K ®g Ay = Ay, with K = C,R depending on the underlying

2
tD tD}.

tings). Since Ay is nuclear, 1 @ e~

. 2 . .. . .
Hilbert space, so e™'“» is completely positive, with symmetric argument for e~

The forward direction in the second part is clear; for the failure of the converse, if

tD tD

onl, e  and e~'PF are multiplication by a # 0, 1 and 1/a, their composition can

be both conservative and contractive, individually, they do not hold. O]



32

The point of the above characterization is that the generator —D? can be decom-
posed into the bounded part —D% and the unbounded part —Dﬁ/l, the structure of
the bounded generator being completely determined work of Gorini-Kossakowski-
Sudarshan-Lindblad[4].

Example 2.7.4. On the product spectral triple, M x F = (C®°(M) ® Ap, L>(M,S ®
Hp),Dy®1+yy®Dp; Ju®Jr, yu®yr),it’s assumed that D r does not know about
M. This can be generalized slightly following [16]] to the picture where M xHr — M
is a trivial bundle with a trivial connection V¥ and H = S ® (M x HF) is a twisted
spinor bundle, i.e., the Clifford action takes place on S. Now the geometric Dirac

operator on H is given by
Dyxuy =Py =DPs®1+c®VF (2.9)

where c is the Clifford action. Caéi¢ [16] defines the operator D = Dy + ¢ ® Qp
where QF is potential associated with D, and as the motivating example checks
that D is Dirac type operator on the spectral triple (C(M, A), L>(M, H), D) where
A = L® (X X Ap) for L a real, unital, trivial sub-bundle of End(S) given by
L, := R1g,. This also illustrates how spinor bundles arise naturally and provides an

example of a Dirac operator that is not the geometric operator,

D = Ds®@1+c®(VF+Qp), D? = Bi@1+2@(V +Qp) 2+ (DPoc+co D) (Y +Qp)

(2.10)
In the bundle H, the symmetric operator D on the fibers (Hf),,c); can now vary
with m € M. Note the mixed term (I} o ¢ + ¢ o Ip) ® (VI + QF) that now appears
even when D is constant. Complete positivity on such bundles is addressed in the

following sections with more geometric methods.

Heat semigroups on twisted spinor bundles

On taking tensor products, the product laplacian picks up cross terms, and the heat
semigroups on the tensor components no longer commute as the individual gener-
ators have non-trivial interaction with the cross-terms. In general, the semigroup
for the twisted laplacian £ = AS®W, ¢7L necessitates using Baker-Campbell-
Hausdorff type formula to understand it in terms of the components. The conditions
on bundle connections when this may be simplified (for example, like product and
almost commutative spectral triples where the two tensor pieces will be established

to not interact) requires that the terms in expansion of the laplacian commute.

Suppose H = S ® E, that is, H is the spinor bundle S twisted by E, with Dirac

laplacian, D2, while the associated connection laplacian is AH Using that the
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connection laplacian AS®F = — Tr((V, V') — VV ) where VV v = VyVy = Vg, p

which in the Riemann normal frame becomes AS®E = — 3, V, V... Explicitly the

tensor connection laplacian is given by:
2S2Eg = = N VSSEYSeE = % (Ve 1410 V) (Vel+1aVF)o
i i
==Y (WY e142v oV + 19 VIVF) o = (AS®1—2ZV§®V§5+1®AE)J

(2.11)

In general, it can be verified that the terms commute when the curvatures of the

bundles E and § vanish identically.

Lemma 2.7.5. For any vector bundle, in Riemann normal coordinates centered at
p € M, the connection laplacian [-AY, 2 Vil =2 R, J)Vi + 24 ViR(i, ) at
p.

Proof. In Riemann normal frame, (¢; : i € [dimV]), using R(i, j) = V;V; - V;V,,
with shorthand R(i, j) := R(e;, e;)

—AVZVJ—ZVV ZV

_Zvvv Z(vvv +ViR(, ]))_ZV V.V, +ZR(Z 7V, +ZVR(1 )

That is, [-aY,%;V;] = X;; R(i, ))Vi + X;; ViR(i, j). Using R(i, j) = —R(j, i)
and R(i,i) =0

D RG,)Vi= ) (R, )Vi+R(G,)V;) + > R(G, j)Vi

ij i<j i=j

= > (RG)Vi+R(j,)V;) = > RG, j) (Vi = V)
i<j i<j

By the second Bianchi identity on bundle E [65], (V,R)(v,w) + (V,R)(w,u) +
(VwR)(u,v) =0,whenv =u=w, (V,R)(u,u) = 0, therefore

Zv RG, j) = ) [(ViR(i, )+VR(j,D) = Y (ViR(, )=V;R(i, /) = Y (Vi=V )R, /)

i<j i<j i<j

This yields [-a", X V;] = X,;; R(i, ))Vi+ ¥;; ViR(i. ])
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Now consider almost-commutative spectral triples. Over an even dimensional Rie-
mannian manifold, (M, g), the algebra for an almost commutative spectral triple,
A C Enda(x)(H), where H is Clifford module bundle over M (and therefore a
twisting of the complex spinor bundle S, H = W ® &) does not interact with the

S-connection.

Proposition 2.7.6. If « € A C EndEI(X)(H) then @ = w, ® 1 for w, € End(‘W)
up to multiplication by f € C(X). That is, as a module over C(M), C(M,A) is

generated by endomorphims of form w, ® 1.

Proof. The proof is basically the observation that locally End(‘W) = Endcyx)(H)
(see, for instance, [|12}, Prop 3.27]) (i.e. A = W4 C End(‘W)). Now End(H) is the
topological closure of End(‘W) ® End(S), where because S is the complex spinor
bundle, End(S) = CI(M) ® C.

Suppose @ = 3}, @y ® a5; € A € End(‘W) ® C1(X) ® C where a;,; € CI(X) ® C.
Consider the Clifford action, ¢ : CI(X) — End(H), v — c(v) = 2,;w; ® s5; €
End(H) with w; € End(‘W), s; € CI(X) ® C. By construction of the twisted spinor
bundle, the Clifford action on ‘W piece is trivial so w; = 1 for all i, therefore,
c(v) =1®vgwithv, € CI(X) ® C.

Since @ commutes with the Clifford action

Z Ay i @ Vs = (1 ® Vs) © Z Qi B Uy = Z Ay ® A ; O (1 ® Vx) = Z Ay @ Qs Vs
i i i i

In even dimensions, the canonical complex bundle S in the twisted spinor decom-
position, ‘W ® 8, is irreducible Clifford module and CI(M) is a central simple
algebra; therefore, vy runs over all elements in CI(M) ® C. As vy is arbitrary,
a,; lie in the center of CI(M). This can be seen locally: choose a basis (e;) for
T*X, then the basis for CI(T*M) is (e;)ic[gim7x]- EXpressing a in e;’s gives
2w ®ag; =2 kiar ® er for kj. Note that e; - e; = +ej - ¢; for any i. Suppose
|| > 0. If |I] is odd, then there exists j ¢ I, and e; - e; = —e; - e; as it commutes
pasteache; fori € I. If |I| = 2k withe; =e;, ... ¢, ,thene;-e;,, = —e; ..., |,
while e;,,e; = e;, ... e;, , because there are 2k — 1 sign changes on moving across
and then a final sign change from el.zzk = —1. Therefore, |I| = O for e; to commute
with each e; but then e¢; € Z(CI(T*X)). The conclusion holds on the algebraic

tensor product and also the topological completion. 0
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This is consistent with the case for commutative spectral triples where the algebra
C*®(M) acts by multiplication on the spinor bundle L?(S) and commutes with the
Clifford action.

Theorem 2.7.7. The heat semigroup generated by A™®S on C(M, A) is isomorphic
to heat semigroup generated by A" on ‘W, that is, the heat semigroup of an even-
dimensional spectral triple is isomorphic to the heat semigroup generated by the

laplacian for the twisting space.

Proof. By proposition the laplacian of the spinor bundle S does not interact
with C(M, A). It follows from the explicit computation of the Dirac laplacian for
the twisted bundle (equation W ® S that the heat semigroup on C(M, A)
acts trivially on the &, and therefore is determined solely by action of the W

connection. L]

Remark 2.7.8. This is not true for the Dirac laplacian. On expanding, D? =
2ieiVi2;e;V; for Clifford action and the connection on the twisted W ® S,
D? picks up nontrivial action on S component; this is most easily seen by noting
that the curvature operator from the Bochner idenity (definition [2.5.2)) does not fix
1s ® w € End(‘W ® S) unless w = 14y as well.

C*-bundle point of view

The almost-commutative geometric perspectives works with the infinite-dimensional
Hilbert space L?(M, S). Analternative perspective is to consider the bundle of finite-
dimensional C”-algebras on the fibers. While such bundles parametrize the space of
noncommutative gauge fields, after putting a L>-structure on the fiber and averaging
over the fibers, such bundles are necessarily trivial (see, for instance, [/]]) and do
not see the global structure. Results on complete-positivity of Clifford C*-bundles
were obtained by [28], 24]]. The results are recapped, and the difference between the

C”"-bundle and noncommutative geometry setting is made precise.

Following [28], a C *_bundle, A, is a finite dimensional vector bundle over a Rie-
mannian manifold (M, g), compact, without boundary, where the fibers are a finite
dimensional C*-algebra A. The structure group of the bundle is the compact Lie
group of *-automorphisms of A. A normalized, invariant trace is selected, 7, for A
that is used for every fiber. Since fibers are finite-dimensional, the usual normalized

matrix trace, T = Tr, is most relevant. The trace on the bundle is obtained by
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integrating over the fibers. The invariance of the trace under automorphisms of the

algebra is used as the transition functions need to be trace-preserving.

The space of smooth sections I'°(M, A) can be completed to a C algebra of
continuous sections, FO(M , A) using the C*-structure on the fibers with the norm
I fllco = sSupyepr{ll.f(x)||} norm, and the involution defined by pointwise involution
on the fibers. The L”-norm on I'*(M, A) is defined as usual,

I71IE = /M Tro((F ()£ (0))P2) dyor M 2.12)

[28, Thm 17] shows that for any vector bundle V with a metric connection, VY, over
M, the Bochner laplacian , Az = —(VV)*VV, generates a completely positive semi-
group on L>(M, Trfl(v) ). [24] show that on L?(M, Trgl(T*M)), the Dirac laplacian
n* generates a completely Markov semigroup if and only if the curvature operator
is positive. The idea exploits the form of the curvature operator on C1(7*M) to get
it to generate a completely Dirichlet form; then using the general Bochner identity,
the complete positivity of the semigroup generated by the Bochner laplacian and the
correspondence between completely Markov semigroups and completely Dirichlet
forms gives the result[24, Thm 5.1].

Remark 2.7.9. L2(M, (End(S), |||l z5)) and L2(M, TrS"Y)) are different since the
norm structures are different. The difference in complete-positivity, i.e., the de-
pendence on the sign of the curvature operator on C"-bundles appears because the
Dirac operator is not symmetric with respect to the trace at the fibers. This differ-
ence between the two structures is best captured by noting that 1 € L>(M, TrSI(E)))
since at each fiber the normalized trace of the unit will be finite, while 1 ¢
L*(M, (End(S), ||-||zs)) because Hilbert-Schmidt operators are compact and the
identity is not compact for the infinite dimensional L?(M, (End(S), |||l s))-
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Chapter 3

MAP-VALUED QSDES

The background to quantum stochastic differential equations is introduced in this
chapter. The reference on map-valued gsde’s is Goswami and Sinha’s mono-
graph[62], while background on quantum probability and Wiener space analysis
follows [958} 52, 55]. These constructions can be done in noncommutative probabil-
ity in general (for instance, see [14] for free probability), the key idea is to replace the
o -algebra of events by the possibly noncommutative algebra of R-indexed random
variables, that is, adapted stochastic processes. Note that notion of independence in
noncommutative probability is not unique and a model for noncommutative proba-
bility needs to be fixed (see [36]). The applications considered in the next chapter
deviate from this theory in one regard — the generator for the heat semigroup on
the canonical spectral triples does not induce a Frechet structure, and the usual reg-
ularity requirement of complete-smoothness (definition cannot be used. The
point of this chapter is to define a more general class of integrable processes than
considered by [[62]]. The integrability of such processes, specifically the guaranteed
existence of the quantum stochastic integrals that arise through the Picard scheme
is noted in remark

3.1 The Wiener-Segal-Ito correspondence

The operator stochastic integrals are defined in analogy with the classical stochas-
tic integral, the motivating principle being identification between the (boson) Fock
space and Wiener space, so that usual Wiener integral is recovered under the iden-

tification. In this section, some aspects of this correspondence are summarized.

A remark on notation: H, K will denote Hilbert space. The identity operator on
various space and distinguished identity vector will all be denoted by 1 when clear
from context. The n-fold symmetric tensor product is denoted by H°", but clear
from context, o will be denoted by ® and symmetric Fock space I'y(H) by I'(H).
By convention, H® = C. As is customary, tensor symbol in Hilbert space tensor

product will be suppressed when clear, e.g. H ® K = HK.

Let Q := C(R=° R) be the space of maps X : R=Y — R with X; := X(¢). The

space Q is given the filtration ¥, generated by X;, and the Wiener measure, Py which
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is the unique measure satisfying Xo = 0 a.s. and the process (X;) has independent

centered Gaussian increments, E [(X; — X;)?] = ¢ — s.
The symmetric (boson) Fock space over H is the space I's(H) = @,cz.,H*". The
set of exponential vectors E(H) := {E(v) : v € H}

H>3v—E®W) :=16,en \/%v"” e I'y(H)

is total in the boson Fock space and compatible with the H-innerproduct, (E(f), E(g))r ) =

e{/"Mu_ The creation and annihilation operators, a;;, as h € H, are defined by

a,B(f) = (h, /)B(f) and aZE(f) := ZE(f +eh)| 3.1
The Fock vaccumm vector 1 is 1¢ ®,en 0, with a}l =0.

The second quantization for A € B(H, K) is the operator I'(A) € B(I'(H),I'(K))
defined by (oje(n) fi) = cie[n)Afi, therefore, I'(A)(E(f)) := E(Af). The differential
second quantization is self-adjoint generator a®( L) := d I'(£) for the unitary group
I'(e'"L) generated by £ with

a®(L)E(f) = a’ (E(f)

The Wiener-Segal-Ito isomorphism between the Wiener space W (Q) := (Q, Py, F)
and I'(H) for H = L>(R=°) is the map

E(f) — M, M(f) = /0 F()aw, - 1 /O F(0)2dr

where is W; is one-dimensional Brownian motion. M ( f) is the exponential mar-
tingale that is unqiue solution to sde dZ; = Z;f(t)dW;. The isomorphism is
realized through chaos expansions as follows. For a rectangle H = X;e[,)(a;, b;] in
Y, ={(s; 1 i € [n]),s; < s} € RZ" (with convention that X is {0}, Jo maps to
constant random variables), define

T (1g) ::/ 14(s1, ... s0)dXs, ... dX, = ﬂ(xb, ~ X.)
2 i

as the stochastic integral with respect to Brownian motions, X, ’s. Then J,, extends
to J, : L*(Z,) — L*(Pw). The n'"-chaos is the image C, := J,(L?*(%,)) with
®,C, = L?>(Py). The order structure of R is not important for defining J,,: for any

symmetric function #,

L,(h) = / h(si,...sp)dXs, . ..dXs, =nlJ,(h)
Rn
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The solution eM) to ¥, = 1 + /0’ Y, f(t)dW, (which is sde dZ, = Z,f(t)dW, in
integral form) can be constructed as (/) = 3 %I,,( f lﬁg’t])). Since the martingale
representation for any Fock vector gives the identification for I'(L?(R=")) with
W (), multiplication by Brownian motion, W;, in ‘W (Q) can be viewed as an
operator on the Fock space, (see, for instance, [[13]]) and is given by

_ ,t - +* . £
W; =a; +a, where a; = o

Because a; 1 = 0, a; 1 can be identified with Brownian motion W;.

The Ito-Wiener-Segal isomorphism [55] is defined more generally than L?(R=0).
For a separable Hilbert space H, the H-indexed family ‘W = {W(h),h € H} de-
fined on a complete probability space (Q, 7, P), with each W(x) € W a centered
Gaussian satisfying E (W (h),W(g)) = (h,g)p, is called an isonormal Gaussian
process. When G is the o-field generated by w € ‘W for an appropriate isonormal
Gaussian process ‘W (see, for instance, [55, § 1.1]), LZ(Q, G, P) is isomorphic to
the symmetric Fock space I'(H). Additionally, when H is the space L*(T, B, u)
where u is o-finite without atoms over a measure space (7, 8), W(h) can be re-
garded as stochastic integrals, with polynomials in W (%) dense in L2(Q, G, u). The
canonical example[58, Ex 19.9] is the one just considered, H := Lz(]Rzo) where
I'(L*(Rs0)) = L*(C(Rs0), Pwiener). Through the Ito-Wiener-Segal isomorphism
between Wiener space of paths of Brownian motions on a compact manifold M,
W (M), and the associated Fock space, the heat semigroup (as considered in exam-
ple 2.2.6) has a stochastic dilation on the Fock space. This dilation corresponds
to a flow for a Evans-Husdon type quantum stochastic differential equation (gqsde)
introduced next. A process satisfying a gqsde of this type is considered as a quantum

diffusion process.

3.2 Map-valued Evans-Hudson quantum sde’s

In this section the relevant theory for quantum stochastic processes is collected.
The exposition is based on the coordinates free formalism developed in [62]. [58]
contains a classical treatment, while [52] makes the relationship with Ito calculus
and commutative probability clear. Suppose Ay is a dense x-subalgebra inside the
C*-algebra A C B(H). Let kg be the noise space, with 120 =C & kg. Set

o k:=L*(Ry, ko), k; := L>([0,1), ko), k' := L>([t, o), ko)

o I'=T,(k). Ty :=T(L*([0,1), ko), T" :=T(L?*([t, ), ko)
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» For f € k, f; := fljoy), f' ¢ f11.) are projections onto k', k;

Notice that the algebras B(H ® I';) form an increasing sequence of algebras and

define the analog of a filtration in classical probability.

For any map A : H® I', —» H ® I'; ®k’, the creation process is defined by

a"(A)(u® (§)®") = 7=1n ® Symm(Au(g")®")

Intuitively, a” “creates” a new particle in after time ¢ using the coupling A. a’ can
be interpret as a map in Lin(H® I', H® I'), and this is the usual correspondence (as
in equation 3.1).

Given R € Lin(Dg,H® kg), DoCqgenseH, if R(u) := a ® b, then for A C (¢, ), using
the mapping ko > b — bl € k;, R® € Lin(Do ® ', H® I'; ®k") is defined by

Do, 2u®y - R u®y) =a®y ® (bly) e HT, ®k'

Expressing R(u) as a ® b is not possible in general; the intuitive picture is just
clearer with this assumption. Formally, R is defined using the canonical unitary
isomorphism Swap,; : A] ® A2 ® A3 — A; @ A3 ® Ay, Swapyz(a; ® ax @ a3) =
a1 ® az ® az, RM(uy) = Swap,; (14 ® 1x)Ru) ® .

The associated creation process creates ko component of R on interval A:

ah(A) :=a' (RY) (3.2)

The corresponding annihilation process is defined by using k¢ component of R to
annihilate: foru; e H® I,

(Do®TI) ®I'" 5 uE(f") — ar(A)(wE(f")) = ((/A <R,f(S)>dS) ”t) E(f")

where (R, f(s)) is the adjoint of map (f(s),R) € Lin(Dg, H) which satisfies
{f(s), Ryu,v) = (Ru,v® f(s)). So (R, f(s)) is viewed as an operator on H

that uses ko component of R to annihilate a k¢ particle in I'; component of u;.

The conservation process captures what happens on the tail [z, c0) driven by a map
T € Lin(Dy ® Vo, H ® ko), Do,V dense. T induces a map T2 H® k' > H® k'
using identification H ® k' = L?([t, ), H ® ko),

L*([t,0),H® ko) > n — 1A()T o n, thatis, forall s > ¢,7%(17)(s) = 1a(s)T (5(s))
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Therefore, with u € Dg,g, € I, f' € k', u; = ug,, the conservation process,
A7(A) : Dy ®T" — H®T, is the creation process driven by TA,

HeT; 3 ug, — Tjé, (ug;) == Swapy; (T*(uf")g,) e He I, ®k'
Ar(8) (wE(f") = a" (T3) (wE(f") (3.3)

Remark 3.2.1. Writing H®T' = H® T, @ I, for uE( f;)E(f*), the component E( f*)
is the one that parametrizes T2: f? is participating the conservation (or exchange)

process driven by T. At each s € Rso, T2(-)(r) € Lin(Dy ® Vo, H ® ko), and
Tﬁ, (ugy)(s) is the map given by T'(ag;(s) ® f'(s)).

The Hudson-Parthasarathy quantum stochastic calculus on Hilbert spaces is set in the
the Schroedinger formalism for quantum dynamics considers stochastic integration
with respect to the fundamental processes ag, a;, t1, Ar. Suppose (H;);>0 is a family
of linear operators on H® " with {v f®"y'} ¢ Dom(H,) for v € Dy CgenseH, f; € ki,
f; simple, right continuous and valued in V Cgenseko, ¥’ € I, which is adapted in
the sense that H, = H, ® 1y« for some map H; : {H® E(k,)} > Dom(H,) - H®T.
And additionally, supy,, l|Hs(uE(f))|| < ||r;u|| for all ¢, where r; depending on
t, f only is a closable map in Lin(D, H’) for some Hilbert space H’ depending
only on f. Such an adapted process is a regular process. Regularity is saying that
H;(uE(f)) is continuous and

sup [|[H; (WEC/))I < ¢ llull (3.4)

s<t

for constant ¢, y depending on ¢, f, that is, the operator H,(-E(f)) is continuous and

point-wise bounded on H.

If H; is simple, that is, H; = X" H, [, 1,,)(1), 0 = tg < ...ty < tye1 = 00, then

for M as one of the fundamental processeﬂ ag,ah, t1,

L,
[ @) = 3 Hom ) 0 0.0 (3.5)
0 0

If X, = [} Ar(ds) + ar(ds) + a}(ds) + Hds where R, S € Lin(Do,H ® ko). T €
Lin(Dg ® Vo, H ® ko), Do, Vp dense in H, kg. Then for any Vj-valued simple
functions £, g on R=°, v, u € Dy,

(X,vE(g), uE(f)) = /O (B(S.R.T. f.oVE(®).uE(/))ds  (3.6)

I'The integral with respect to the conservation process is not treated here, but the treatment is
analogous.
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where W can be explicit computed using equation For general adapted regular
processes the integral is defined as a limit of simple processes and still satisfies the

above property the maps, if the maps

s = S(s)(VE(gs)). (R(s), &) (VE(gs)). Te (VE(gy))

are continuous and point-wise bounded (as in equation [3.4]) in & € ko, v € Dy, g
a Vp-valued simple function, and the 7 is the operator defined by T¢(u) = T(u ®
£), where R, S, T are all identified with operators they induce on the Fock space
(as in equations [3.2]3.3). This statement is the first fundamental lemma ([62]
corollary 5.2.7]).

The quantum Ito lemma extends equation [3.6] for the first fundamental lemma to
inner-product of adapted regular processes X;, X;, (X;vE(g), X{uE(f)). The explicit

form can again be computed from the definition as for V.

The Heisenberg formalism is captured by map-valued processes: for an adapted,
regular process, Y(1) : A QT D> Dom(Y(t)) > AT, % CARky®I, D
Dom(m) — AT ®ko define I?E;) = (Y (1) ® 1;,)Swap,s,

— S Y 1
Y(s) : A ® ko ® E(ky) —2, A @ E(ky) ® ko ~22% A @ T(ky) @ ko

A map-valued process can be viewed in the Hudson-Parthasarathy picture by using
the Hilbert space of Hilbert-Schmidt operators. The key difference is that in X; =
fot Ar(ds) + ag(ds) + ag(ds) + Hds, the operators S, R, T can now depend on A;
this is what makes it possible to describe Markov processes. The dependence is

encoded in the structure matrix.

Definition 3.2.2. Given linear maps ¢ : Ag — A Q kg, 0 : Ay —» A B(ko), L :
Ay — A, the structure matrix is the map

L(f) (P

B(H Caok
5(f) o(p) S EHEESK)

ﬂ09f—>@(f)=(

Notice that even if (A is not unital, £(1) = 0 for 1 € A” implies that in the von
Neumann algebra A”, © (and the flow j,; introduced earlier) are defined on the

operator system containing 1, A.

Remark 3.2.3. The dependence allows for “iterating” on the structure matrix, ©.

The iteration is not by matrix multiplication: viewing ® as a map A; — A; @ Aj,
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to iterate on it A, component is ignored, and the A; component is fed back to the

generator. This is a quantum random walk, e.g., see [11, definition 2.7]). Formally,

0'=0,0""=081006" (3.7)

The structure matrix defines the following fundamental processes:

as(A) ()1 @ E(f)u = ) asier) (B) (WE()) (3.8)
a§<A)(2xi ® E(fi))u = 2a5+(x,.>(A)(uE(ﬁ)) (3.9)
IL(A)(sz ® E(f)u = Z AI(L(xi)u) ® E(f,) (3.10)
Ao <A>(le ® E(f)u := ZAU(M(A)(uE(f)) (3.11)

and the map-valued integrals are defined by them are as below. With u € H, f €
L* xedA,

loc?’

( /0 Y(s) o (as + IL)(ds>) (x ® E(/)u
- /0 Y()(L(x) + 67, £(5)) ® B(f)u ds (3.12)
(/ Y(s) o (ag)(ds)) (x @ E(f))u = (/ a;x(ds)) uE(f) (3.13)
0 0 >

(/0 Y(s)o (AU)(a’s)) x®E(f))u = (/0 A?’x(ds)) uE(f) (3.14)
where al. (s)(WB(f) =Y()(8(0) ®B(f)u  (3.15)

Ay E(f) ® €) =Y (5)(0(x)¢ ® E(fy)u (3.16)

=Y(5)(o(x) 55 ®E(f)u  (3.17)

fs being the projection of f € k on kg since Y lives on A ® Iy, and in going
from second to third equation in equation & = f(s) € ko is set following
Ar(A) in equation [3.3] and remark [3.2.1] and for £ € ko, o (x)s € Lin(H,H ® ko)
o(x) : H® kg — H ® ko is the map defined by o (x), (1) = o (x)(ug).

The stochastic integral Z(¢) = fot Y(s) o (as+ Iy +a'(8) + Ay)(ds) is the process

/ Y (8) o (a+ 1)(ds) + / Y (s) 0 (a(8) + A (ds)
0 0
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Let /" : AQL — AT, J\” = 1. Define J" (1) := [ J" Vo (a5+ats+Is+
Ay )(ds). The object of interest are the Picard iterates, Sy (7):

Sn(t) = ) " (x ® E(f) (3.18)

n<N
that converge.

When the generator £ for the semigroup e £

is unbounded, being able to iterate
requires the stochastic integral preserves the domain. Let As be a norm-dense
algebra, and assume £(As) C A, and that there’s a norm-dense subspaces,
(ko)eo C ko, (A ® ko)oo € A ® ko (where A @ ko is normed by ||a ® k’||?

IIaII% ||k’||i0, i.e. as a Hilbert C*-module). The details are not included as the

norm-density is all that is relevant.

Now with £(Aw) C A, and Vpy = (kg), define

* V, = {Vy-valued simple functions in k,}

o V = {Vp-valued simple functions}

One defines a map-valued integrable process with respect to as, ajs, Iy, o as follows:

Definition 3.2.4. Anintegrable map-valued process is an adapted process (Y (s5))s>0 :
A @ E(V) — A ®I'(k) such that:

1. Foreacht > 0,f € V,Y(1)(a ®E(f)) € (A®T(k))wo

2. For every fixed a € Aw, f € V, & € W, set Aww 2 a —  f(a) =
Y(1)(a @ E(f)) € (A ®TI'(k))s and for any separable Hilbert space H" and
the ampilation ﬁ,, =8 5 ® 1y, with 17(;) = ﬁ,, ¢ define

Sa(s) : H® E(V,) 3 uE(f,) = Y (5)(6(a) @ E(f;))u € H® Iy ®ky
T.(s) : H® E(V;) ® Vo 3 uE(f;) ® € — Y (5)(0(a)s ® E(f;))u € H® T ®kg

then the maps s — Sa(s)(E(f)) , s = Tu(s)(E(f)), s = Y(s)((L(a)) +
(6(a*),€))) @ E(f) are continuous.

Remark 3.2.5. For the existence of the Evans-Hudson dilation and the convergence
of Picard iterates Sinha and Goswami [62] require the boundedness of ﬁ,’ 7(x) for
fixed f, x; we absorb this into the existence theorem for Picard iterates as a bound on

||®"||, where it’s verified given the structure maps, and mirrors the approach taken



45

in [11]. For ¥ = J(@ = 1, the needed continuity of Q can be directly verified as

well. They additionally require that the following map is completely smooth (see

definition 4.5.3)):
Aw3a — Q p(a) : Y(t)(a®E(f)) € (AR (k))wo (3.19)

This is because completely-smooth processes form a class where the Picard iterates
can be established to converge using the theory they develop. Complete-smoothness
is not applicable in the examples considered next, so the definition of integrable
processes needs to be adjusted. The thing to note is that the continuity requirement
in the second part of definition [3.2.4]is precisely what is needed to get the existence
of the integral (the point-wise boundedness follows from point-wise boundedness of
0, o). The continuity of the maps in s is equivalent to the (point-wise) boundedness
of process ¥, Y on each a € A. For J,("+l) the boundedness will follow from that
of J[(") (through lemma , therefore, starting with J (0) = 1, each successive
Picard iterate is a map-valued integrable process for which the map-valued integral

exists, while bounds on ®" will yield explicit bounds on J™.
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Chapter 4

UNBOUNDED GENERATORS

4.1 Introduction

In this chapter, we analyze examples to show the existence of the quantum stochastic
flows associated to laplacians on spectral triples without requiring truncation. The
first example considered is the flow generated by the noncommutative laplacian.
The second example deals with geometric laplacians on Clifford and spinor bundles
over reductive homogeneous spaces. The flows generated now are covariant with

respect to the associated group action.

Organization and overview

In section the structure matrix background and an illustrative example are con-
sidered. Section {.3] considers the noncommutative laplacian, while section [4.4]
provides details showing the existence of the untruncated flow. The existence of
flows for the derived structure matrices is established in section {.4] by providing
estimates that can be plugged into the standard theory. In section{.5] the existence
of Evans-Hudson flow on homogeneous vector bundles over reductive homogeneous
spaces is established. This proceeds by showing that the laplacians are completely
smooth and utilizing the construction from [[62] for such generators. The connec-
tions used are not necessarily torsion-free and this needs to be taken into account.
Section {.6] considers growth of Sobolev norms required for convergence in com-

mutative examples.

Some remarks on notation. As before, by Riemannian (M, g), we mean a Rieman-
nian manifold M with metric g. The connection on the tangent bundle of M, TM,
is the Levi-Civita connection unless specified otherwise. When clear from context,
the same symbol is used for the connection V on a Hermitian or Riemannian bundle
E and the dual connection on dual bundle E*. After fixing a local orthonormal
frame about any p € M, (Xj)icdimm, Vx, Will be used interchangeably with V;.
By abuse of notation, g°V,V,¢ will denote g% (V?¢),, where V? is the iterated
covariant derivative, and the same for V;, ...V, = (Vk)il...ik and also the raise
indexed version, V! ... Vik := (VK)iiik  This will be made explicit if not clear
from context. For local coordinates (x;) about any p € M, 9; will denote the coor-

dinate vector fields %. [n] is the set {i € IN,i < n} where IN, with convention that
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0 ¢ IN. [n : m] denotes the set {n,n + 1...m}. The finite linear span is denoted
by FinteLinSpan(V) := {X;cxj @iai : @; € K,a; € V} where K = R,C and is
dropped if is clear from context. Throughout I'(H) denotes the symmetric (boson)
Fock space over any space H, while E(H) denotes the exponential vectors given by
E(v) = @;O:o(”!)_l/ 2y®" for v € H. For a self-adjoint operator A on H with discrete
spectrum, denote by Sy, an orthonormal basis of eigenfunctions. For e;,e; € Sy,
eij:=¢® e; € End(H).

The endomorphism laplacian

To start we note the following sign conventions of the laplacians. Primarily the signs
are fixed so the Laplace-Beltrami operator has non-negative spectrum, and signs
on all other laplacians cascade from there. On Riemannian (M, g), M compact,
without boundary, Tr, denotes the trace of a covariant tensor taken after identifying
with a contravariant tensor via the metric g, Tr,(h) = g h; ;. Note that trace on
any contravariant tensor, e.g., vector fields, is simply the sum. For X € I'(TM),
div(X) = Tr(VX), with V being the connection. The Laplace-Beltrami operator
is taken as the operator with non-negative spectrum, that is, —div(V) = —Tr(V..),

where V.. is the second invariant derivative V‘2,7W =VyVy - Vy,w.

So far the scalar and (co)tangent bundle laplacians have been considered. More
generally let V be any connection on the vector bundle E — M. The connection
Laplacian is V*V where V* is adjoint of the connection V : T'(E) —» I'(E)  T*M
with respect to L?(T'E). Equivalently, V*V = — Tr(V..). Further, A = —g"V,V; =
—g"/(V?);;. The connection Laplacian at p € M, A = V*V in local coordinates (e;)
is given by A = —(3}; V;V; — Vy,.). To evaluate A¢ atany p € M and ¢ € I['(E),
we will use Riemann normal coordinates centered at p so V;e; vanish, yielding

Ap(p) = =2, ViVig(p).

The endomorphism connection V™ on the bundle End(E) = E ® E* associated
to a connection V on the Riemannian (or Hermitian) vector bundle E over the
Riemannian manifold M is such that for X € TM, V]}E(“d =Vy®1+1® v x, Where
V is the dual connection on E*. The endomorphism Laplacian is defined as usual:
at p € M in Riemann normal coordinates centered at p (denoting V'V, V by A,V

again),

A= N yEdyEd A @123 Ve Vi+1ea (4.1)

Note that as E ® E* is balanced over C(M), the action of C(M) on End(E) can be

written as f - lgna = X;(f - hi) ® h}; this convention is used for all computation



48

with Laplacian expressed in this tensor form. It’s also very useful to note that in
any local coordinates , VE a0ts by commutator: if over chart U, the connection
has potential A, V = d + A, then for a local orthonormal frame (y;) and dual
frame (u/), VP 3 ot @ /= 3y (dot) i ® ! + 3 j[0A — Ac] jrpx @ p/ . In
particular, since 1g,q is given by the identity matrix locally, it follows (see [38]]) that
VEM (15,4) = 0. This implies that again in normal Riemann coordinates centered at
p yields that for any f € C®(M), AFY(f1gag)(p) = — 3 VENVEM( £ 15,0)(p) =
2 Vi (8 f1gna) = = X 00 f - 1ena(p)

Proposition 4.1.1. For f € C*(M), AE“E)(f . Ig.0) = AM(f) - 1gpa.

Proof. Let Fl.’j. be the Christoffel symbols for Levi-Civita connection, then in lo-
cal coordinates about x € M, AM(f) = - 2ij g7 (x)(8:0; — X Fl.kjé?k)f (see, for

instance, [[12, pg 66]) and for the endomorphism Laplacian,

AR 1) = = ) g () (VPMVEN — S TEVEM) (f - gna)
ij k
=~ 2,87 @0; = D TEAf | - Tena = &M ()1
ij k

where we used VEM (1g,q) = 0, VEM(f) - 1gng = X (f) - 1Ena- O

4.2 The structure matrix

From Chapter [2| the heat semigroup e £, £ = AP is a quantum dynamical
semigroup on End(E) = E ® E* with e_%mEnd(l) = 1 for all . We will work
with the semigroup living C(M) c End(E). To derive the gsde associated to
the heat semigroup, we start by computing the structure matrix for the associated
Evans-Hudson flow following the standard prescription (see [62]). The first step is
to compute the kernel for the generator £ = AF" on the A, = C®(M) acting on
End(FE) defined by Ky : X X X — B(E ® E*) for X := Ax X Ac, Where Ky for
any given any £ : X — X is defined by

Xx X3 ((f1. ). (g1,82)) —
L(f] fr8280) + [T L(f582)81 — L(f] [582)81 — [T L(f;8281) € C(M) (4.2)

and from this, using the Kolmogorov decomposition for this kernel, we will obtain

the structure matrix.
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The Kolmogorov decomposition

We recall some details on reproducing kernel Hilbert modules.

Definition 4.2.1. For any positive kernel K : X x X — B(H), the reproduc-
ing kernel Hilbert space Rk is the space of H-valued functions on X such that
Rk = LinSpan{K(-,x)u : x € X,u € H} and (f(x),u) = (f,K(-,x)u)) for all
f € Rk,u € H. The Kolmogorov decomposition is the Hilbert space Rx with

the map
V(x) = Ky : H— Rk, [Ke(u)](y) = K(y,x)u

Notice that (K(-,a)u, K(-,b)v) = (K(b,a)u,v) = (K(u,K(a,b)v), K(a,b) =
K (b, a)*; the adjoint of K (-, x) is evaluation at x.

The kernel can be computed using proposition B.1.1] Equivalently it follows by
noting that f - 1gna = 2;(f - i) ® h] for f € C*(M) and (h;) a basis of eigensec-
tions of A%, so in expansion of endomorphism laplacian (equation , there’s no
contribution to the kernel from 1 ® A, while the contribution for the term V® V term

can only come from V acting on f, but this cancels out. Computing it out yields
Ki((ar,a2), (b1, b2)) = =2 (X dai(er)dbi(ex)) azbs.

Normalizing suppresses the extraneous factors of —2. The Kolmogorov decompo-
sition for the kernel associated with £ = —%AEnd contains the needed data for the

structure matrix:

Kr((ar,a2), (b1, b2)) = K (a1, a2), (b1, b2)) = (Z dal(ek)dbl(ek)) azb;
K

4.3)

where we are working in Riemann normal coordinates about p, and the superscript
p € M in Ki indicates that the expression holds in local coordinates at p € M.
The Kolmogorov decomposition can be taken to be the reproducing kernel Hilbert

module

Ry =LinSpan{Ks(-,b)u : b € X,u € E}
where X = C*(M) x C*(M), withmap V : X — B(E, Ry) given by
V(X)ZE—)RL,E 3u—>K£(-,x)u €ERy

By definition, K (-, x)u is total in R, making the decomposition minimal. The
following explicit identification with differential forms allows for interpreting the

structure matrix obtained in a meaningful way.
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Observation 4.2.2. Note for x = (a;,a;),y = (b1, b2), in local coordinates,
[V(@)ul(y) = azbs ) dai(ex)dbi(ex)u
k

which can be interpreted as the form a; }; da;(ex)dey evaluated on the vector
field by ), dby (ek)a‘%k acting by multiplication on u. Since K (x,y) € C(M), on
viewing x = (ay, ay) as the 1-form, axda;, K (-, x) is viewed as dual at each point
m € M, and so is identified with vector fields I'(TM), and therefore, K s (-, x)u can
be viewed as a section of TM ® E while V(x) is thought of as 1-form acting by
contracting with the TM component. Therefore, V(x),x = (fi, f2) is the operator
u — frdf; ® u, where frdf; ® u defines an E valued function on X by fodf; ®

u((g1,82) = f2g2(df1, dg)u.

Since Ok (f] f58281) + fi 0k (f582)81 — Ok ([} f582)81 — fi0k(f;8281) = O, this
holds, not just in Riemann normal coordinates but in any local orthonormal frame

(e;) over an open set U; additionally, over U (Vf,Vg) = >;(Vf,ei){e;,Vg) =
idf(e))dg(e;) = X; VifVig

Hilbert C*-modules

Recall that a Hilbert C*-module over C"-algebra A (a Hilbert A-module) is right
A-module N with a A-linear sesquilinear map (-, -) : NXN — A, (x, y)a = {x, ya)
fora € A.

Definition 4.2.3. The standard Hilbert C*-module H for Hilbert space H is the
completion of the algebraic tensor product A®H, which is Hilbert C*-module having
the right A-action given by (a ® h)a’ = aa’ ® h, with respect to the norm induced by
the A-valued inner product (@ ® h,b ® h’) = a*b{h, h’), ||la ® h||? = |la*al| (h, h).
Taking H = £2, H is identified with (a;) € A ® (2,3, ara; < o,

For a Hilbert space ko, it’s convenient to use A ® .+ ko := A ® ko for the standard
Hilbert C*-module. A Hilbert C"-module generalizes the idea of a vector bundle
E — M, where the A = C(M), the A-valued inner product given by fiberwise
contraction. When A = C(X) for a compact Hausdorff space X, then H is the
space of H valued continuous functions. Kasparov stabilization states that for any

countably generated Hilbert C*-module N, there’s a unitary map ¢’ : N&Hz — Ha.

The structure matrix is the defined by the maps (£, d, o) where £ is the densely
defined generator with Dom(:A) c Ay, Dom(A), Ay norm-dense in A, o(x) =
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n(x) —x ® 1 for a *-homomorphism 7 : Ay — Lin(A &+ ko), ¢ a m-derivation
Ao — A Q.+ ko. These maps in addition to satisfying some structural properties

satisfy the compatibility condition
L(xy) = L)y =xL(y) = 6" (x)8(y) (4.4)

forx,y € Ag, 67 (f) := 6(f*)*.

The structure matrix ® is defined by

.
o) - (L(x) 5 <x)) .

o(x) o(x)

Note that ®(1) = 0, and for each fixed x, ©(x) € B(H ® (C & (kg))) Where (kg)wo
is norm-dense in kg. The maps ¢, o are extracted from the minimal Kolmogorov
decomposition: the decomposition (R, V) induces the maps below on Ay :=
C*(M)cC(M)=A,

P A = B(Ry), p(x)(V(-,b)u) =V(-,xb)u (4.6)
a: Ao — B(E,Ry),a(x)=V(x,1)

With observation and equation 4.3|in mind, p(f), f € C®(M), is multiplica-
tion by f on R, while a(f) acts by contraction with 1-form }; df (ex)dey. The
representation p is the identity map: C* (M) is interpreted as acting by multiplica-
tion on R, and « is a derivation (by Christensen-Evans theory, « is a p-derivation,

but p is identity).

The construction of the structure maps proceeds as in [62, Thm 6.6.1]. To start
define the Hilbert A-module N = {a(x)y : x,y € A} where the closure is with

respect to operator norm for B(E, Ry). A has right action on N by multiplication
(where the norm density of A, C A is utilized) and the A-valued inner product is
N XN > (a,b) — {a,b) = a*b. By Kasparov’s stabilization theorem, there’s an
isometric embedding into the standard Hilbert module, t : N — H# where H can
be taken to be any infinite-dimensional Hilbert space. The embedding into A ® H
is needed to identify what the structure matrix acts on.

Define 6(x) = t(a(x)). For p note p induces a left action p on N, p(x)(a(y)) =
(a(xy)—a(x)y). Butas ais a p-derivation, p(x) = xa(y), so p(x) is multiplication
by x and is again identity representation of (A acting by multiplication. Set 7(x) =

tp(x)t*, again m = 1 (so the explicit form of ¢ does not come into play).
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Given the identification with A ® R, the compatibility condition (equation [4.4)),
along with f* = f,¢* = g as f, g are R-valued yields

—3(a(f8) = a(f)g = f 1 (g)) = ~(df, dg) = 6" ()5 (g)

Therefore, with equation @] in reference, we have the structure matrix summarized
in the following proposition. The embedding ¢ for Laplace-Beltrami operator is
described in example where the remaining details are provided, however, it’s
a local variant, and given a bundle an explicit global embedding can be found, so

general form for that is not included.

Proposition 4.2.4. For any vector bundle E — M, the structure matrix for the

—%AE"""(E) generated flow on End(E) is the map

3 aM(f) -1 67(f)

A3 f—0(f) = 5(f) 0

€ B(E ® (C & ko)) 4.7)
where Ay := C*(M)

e The multiplicity space ko ¢ L>(Q'(M))
5 : Ay = Ao ® ko, 5(f) = 1(a(f)), 6" (x)6(y) = —(dx, dy).

e 0 =0since o(x) =n(x) —x® Iy, and n : Ay — Ay ® B(ko) is identity

4.3 The noncommutative laplacian flow
For noncommutative laplacian D% acting on End(S) with D the Dirac operator and
S the spinor bundle, it’s possible to explicitly derive a form for the embedding which

is nice enough to get existence of the flow for the untruncated generator.

Consider the noncommutative laplacian £ := —D% := —[D, [D,-]/2 acting on
A = B(S). The kernel (equation4.2)), K, for L is given by

Ko ((f1. 12),(g1,82)) == =(Dop f{) f82(Dpg1) = —(f2([D, fi])*) g2([D, g1])

with fi,g; € Sp = {¢i}, ¢;’s eigenspinors for D forming an orthonormal basis.
This is the noncommutative analog of the original calculation (equation 4.3} the

difference in sign is due to the usual laplacian having negative spectrum). Denote
by K(-,x) == Kz((-,-), (x, 1)), K(x,y) == Kz ((y, 1), (x, 1)).

Notice that ([D, g1]1g2)" = —g5[D, g}] is conjugate of the noncommutative differ-
ential form, QID (A) (recall chapter 2, equation . Therefore, as detailed in the
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following paragraphs, the reproducing kernel Hilbert module is obtained like in ob-
servation and a, p, 0 are defined in the same manner. The Hilbert C *-module
N can be constructed as in section 4.2} and an explicit embedding into A ® R can
be obtained (see lemma [4.3.1).

Since Ry is functions on the (right) A-linear span of [D,a], the map V(y)* €
B(Ry,S) for y == (f1, f2) sends K((-,-), (g1, 82))u — Ko ((f1, f2), (g1.82))u,
and so is given by evaluation on —[D, f'] f5. Viewing f>[D, fi] as a noncommuta-
tive differential form, V(y)*, acting by evaluation on —[D, f/'] f;, can be interpreted
as analogous to the contraction with a vector field as in observation #.2.2] This
description works because D is symmetric unlike V*V and captures how the noise

space ko C R relates to noncommutative differential forms.

Explicitly, for the kernel K : (Sp X Sp) X (Sp X Sp) — B(S), the maps «, p are
defined by

X — V((x’ 1))’/) A > B(RL),/)(X)KL((, ')’ (Cl, b))u - KL((" ')’ (Cl,)Cb))I/t
4.8)

As before the Hilbert A-module N = {a(x)y : x,y € A}. The algebra ¥ is taken
as the finite linear span

¥ = FinteLinSpan{e; ® ¢} : e;,¢; € Sp}
Lemma 4.3.1. Define the map t by

t:N> a(Z ajjejj) — Za,-je,-j ®K(-,eij)e; € A® Ry 4.9)
i i
and then extend by A-linearity to N. Then t is an A-isometry.

Proof. Note that since a(x) : u — Kz((-,-), (x,1))u. Now [D, e;;]er; = O unless

J = k soasanoperator [D, e;;] = (4;—A1;)e;;. Forx = Zij ajjeij,y = 2mn Omn€mn,

k

a(x) = ZK(-,x)ek ®e) = Z ZK(-,a,-je,-j)ek ®e; = ZK(-,aijeij)ej ® e
k ij ij

and (@ (y), @(x)) = > (K( bumemn)en ® €5, K (-, aijeij)e; @ )

ijmn

= Z (K(-s bunemn)en), K (-, aijeij)e;)yen ® €]
ijmn

= > en Ke((Bunemn, 1), (asjerj, 1)ej)en ® €
ijmn

= > aijbunlen [D, €, 1[D, eifl)ej)en @ €

ijmn

*

J
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Now [D, e, ][D, e;;] forcesm =iso e, ® e’; =e,®e,(en)® e’;. Therefore,
(a(y),a(x)) = Z lm:i(bnmemn)*aij'eij'<K(" emn)en, K (-, el’j)ej>
ijmn
= <Z bmnemn ® K('a emn)ena Z aijéijj ® K(" eij)ej> = (t(oz(x)), t(a(y))>

mn ij
Finally, by A-linearity of ¢ and the inner product

(t(a(y)), t(a(x)ejj)) = (t(a(x)), t(a(y)))e;;

= (a(x), a(y))ej)

]

To define the structure map o = 7w — 1, consider the definition of p equation
Since 7(x) = tp(x)t*, where p(x)a(y) = a(xy) — a(x)y = p(x)a(y), since a is a

p-derivation. Therefore,

7T()C) [eij ® K.E((" ')’ (a’ b)] = €jj ® K.E(('a ')9 (G,Xb)) (410)

Now FinteLinSpan{K z((-,-), (¢;j, emn)er)} is dense R, and will be chosen as
(ko). Notice that D being a Dirac operator was not used; so everything holds

generally. The following theorem summarizes the structure matrix,

Theorem 4.3.2. For Hilbert space H, A = B(H), the structure matrix for the flow
generated by L = —(Ap)? for any self-adjoint operator A on H, e;’s an orthonormal

eigenbasis for A is given by
]' kO = R.E, (kO)OO = FlnteLlnSpan{KL((a ')a (eij’ emn)ek)}
2. aleij) = K(- eij)e;j®e, m(x)[eij®K,((- ), (a,b)] = €;j@K£((-,), (a,xb),

t: a(e,-j) — €;j ® K(-,eij)ej

4.4 Quantum Picard iterates

To start, recall the following estimates for map-valued processes with as, ag, Iy, o
being the fundamental processes (equations [3.9]3.10) (for background on map-
valued gsdes, refer to section [3.2):

Estimate 4.4.1. [62, Thm 5.4.7, 8.1.37] Define

o @} (x) = (L(x) +(5(x"), f(5)) ® E(f)



55
° d)?c’s(x) = (0f(5)(x) +6(x)) ® E(f)

o @} (x) = (f(5), 07f(5)(x) +6(x)) ®E(f) = (04()(x) + 6(x), f(5))" ®E(f)

For a map-valued integrable process Y,

2 t
Se’/
0
2 t
Se’/ (
0

The following proposition which is useful to bound the Y process.

“/0 Yy o (as + 1) (ds)(x ® E(f))u Ys(d)}’s(x))uHZ ds 4.11)

(@ (o] +

H/ ¥y o (al)(ds) (x @ E(f)u Ys(q’3,s(")>”|‘2) @
0

(4.12)

Proposition 4.4.2. Let T € Lin(Kqy, K7, for Hilbert space K, K" and C*-algebras
W, W, Ky, K(/W standard Hilbert C*-modules. Then for any Hilbert space H,
IT®Ig(x®k®h)|| <||T(x®k® h)| for any simple tensor x @ k ® h.

Proof. By linearity of the tensor product, one may assume ||z|| = 1, then

IKT®1(x®k®h),T®1(x® k® h))||
= [(T(x ® k), T(x ® k)){h, )| = [|(Tx ® k)" (Tx ® k)|| = [|ITx ® k||*

]

There’s the following characterization for an integrable map-valued process gener-
ated by the structure maps in ® through the Picard iteration scheme, the convergence

of which will yields the solution to the gsde needed.

Lemma 4.4.3. /62| lemma 8.1.37] Let 'V = {dF -valued simple functions}, E(V)
the exponential vectors, and J'© : F ® E(V) — A ® ['(ko) be the identity map,
then with J© = 1,
t
JUD (1) = / TN (s) o (al +ag+ 1z +NAs)(ds), J"™D: F@E(V) — AT (ko)
0
(4.13)
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each J" is a map-valued integrable process, Additionally, the following estimates
hold ,

2
1V (x @ E(f))u

52 (H/tfs(n) o (as+1r)(ds)(x ® E(f))u
0

+

/ I o (al 4+ A (ds) (x @ E(f))u

0

|
. 2
7@ ol + |77 @2 oy + fs(”’(q’3,s<x>)””2) “

t
SZe’/
0

Proof. The continuity requirements for existence of the integral for J(?) are satisfied
since for each fixed E( f) and x the structure maps are bounded (recall remark[3.2.5).

The inequalities follow from standard theory (for instance, [62, theorem 5.4.7]).

(4.14)

Iterating, one gets that each J (n) integral exists and can be bound by ||J ("_1)” , and
the inequalities hold again. [

By definition a map-valued process is linear, however, the processes J () are not
completely smooth as the flow generator has much weaker regularity. The Picard

iterates defined by

Sn(t) = ) " (x @ E(f) (4.15)

n<N
can be shown to converge on the exponential vectors following a similar scheme as
[62, Thm 8.1.38] after plugging in the following estimates which need to be obtained
differently as ® has much less regularity. To motivate the estimates we sketch the

convergence arguments.

Convergence for Picard iterates: examples

To establish the convergence of Picard iterates, the growth rate for ||Jt(n+1)(x ®
E(f))u||*> as function of n for fixed x, f needs to be controlled. The idea is to
expand [|7"" (x ® E(f))ul| recursively. Define lI’;}’s(x) such that CD},S(x) =
‘P"f’s (x) ® E(f), factoring out E(f). Now suppose x belongs to a subspace A’
such that ‘P}’S(ﬂ’) c A,i = 1’3’P1lP)22s(ﬂ) = Plswang,d)?s(ﬂ’) c A’ for
all x € A’, f,s. Additionally, it’s required that if x € A’,x > 0,x invertible,
Vx € A’, however, this can be avoided if the structure matrix is sufficiently regular

(see section {.4] for an example).
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Remark 4.4.4. Denoting any amplilation for ‘P}J ® 12”0 for m € Z>( again by ‘P’fs
so the composition ‘P;,S‘I’]%’s (x) makes sense: for example if ‘I’j;’s (x) sends x to
x'®k" € A'®kpand \P;C,s acts on A’ component, ‘I’;.’S‘sz,’s(x) = ‘P;,s®1k0 (\I’]%’s(x)).
By proposition the ampilation does not affect the norm: ||‘P},S l(x®e)| =
k% s (x)|, |le]l = 1. By linearity, when input to J® is a sum of simple tensors,
the bound is applied to each summand. Note that the n nested ¥'’s that appear in
corollary 4.4.5]are the components of iterates of ®" as defined in equation The

ampilation in ¥¥’s come from the ampilations in ©". This yields,

T @2 | = |7 & D 0 E(f) @ K

= V" @ 1 K| @ E(f) ® K /1K IDul| = |1 (1K | ¥’ @ B(f))u

Therefore, if for fixed f,x, number of summands N doesn’t grow too fast, and a
uniform bound holds on each, then the additional growth due to each ampilation can

be bound by a function of N.

The terms in r.A.s. for equationd.14] can be recursively expanded using estimate[.4. 1|
till Jo = 1. Since f is simple, | RANGE(f)| = r < oo, so for each s € [0, ], f(s) €
{éi, =4d¢i,, i = @i, k € [r]} = RaNGE(f). Therefore, all terms depending on f

in above can be uniformly bound by a constant B := By, this yields

2
J" (x @ E f)H

<Ky Z / / / HlP?So ‘P}lsl \P?,;:l_l (x))H dsodsy ...ds,—1

(4.16)

for K; y := (2¢'B)" ||E(f)||2. To get the Picard iterates to converge (eq , one

needs to show that ‘P;? 5 (... ‘Pj?;li] (x)) cannot growth too fast as function of n.

Corollary 4.4.5. Suppose for fixed f,x for any choice iy € [3],k € N, there are
constants C, L, satisfying

l in- n
H‘PfSO J;SI(...le,s;_l(x)))” <C'L,

then Sy(t) defined by eq converges.

Proof. In equation by above bound,

(n+1) 2 ny Ki ,(C)"
J;7(x®Ef)|| <K fC'L dsods1 .dsy,—) < —

n!
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SO X, J,(") (x ® Ef) is bounded, giving the convergence. [

Example 4.4.6 (Convergence for the noncommutative laplacian). To get the con-
vergence of Picard iterates for the noncommutative laplacian £, the above bound
isneeded. Fixx € ¥ = FinteLinSpan{e;; : ¢; € Sp},sox = Zi,je[N] aijei®ej*.,N <

oo, and f asimple function taking values in (ko) = FinteLinSpan{K /((-,), (€, emn)ex)}
where as usual ¢;; 1= ¢; ® ej.. Define the smallest N as the grading of x. Let 7, be

all e;’s that appear in x (either as e; or as e;) . Note that if x € #,x > 0 then as x

is bounded and symmetric, it’s self-adjoint, therefore, y/x is defined by functional
calculus. Set

(Vf,x = {KL((’ ')’ (Cl, b))’) € Range(f)}

Note 7;, V¢ < oo and 7+, C 7+ = 7;. Define Span(7;) = LinSpan{e;; : ¢;,¢e; €
Tx}-

Proposition 4.4.7. For fixed f, x for any choice iy € [3] there exists a constant C,
ijgso(w;’sl (e (x)))” < C" x|

Proof. The proof will repeatedly use theorem Since x € ¥, there exists M,
such that ||.£kx|| < M)’f llx||; note M, < sup{24; : De; = d;e; € 7} = M. This

bound also holds for any y € Span(7y). At the same time, Vy = SUp, ey, [[v]] < oo.

Notice that in ®3, ®%, o = 7 — 1 where 7 is multiplication by x, and since x =

i je[N] dijeijs Im(x)[| < ||x[], hence, o(x) s(5) < 2V ||x|| where theorem4.3.2| was
used to get form for 7 (x). Furthermore,

6" @s@)[| = 1612 = 5" W) = 1L = L )x =" LI < 342 ]

By theorem 4.3.2] the A component of A ® ko of @ iy € Span(7). Similarly,
(6(x7), f(8)), (or(x), f(5)), (f(5),6(x)) L(x) € Span(7y),andsince [[(a’ ® k', a" ® k")|| <
k", k) Mla” a" |,

IS (x™), FNI [[orp (x), £(5))

This means that @}.’S(Span(‘i;)) c Span(7;) for= 1, 3 while CD?(.’S(Span(?;)@kOm) C
Span(7y) ® k(’)”+1 (recall note . But all the bounds only depend on M and Vy
and don’t change on iterating since W'’s preserve the A component to be inside
Span(7x).

KF(s), 6Nl < max(3M,2V) |lx]| Vy

Now there are n-possible ampilations in nested W"’s. The ko component is only

generated by 6 which produces simple tensor for every e;;. Sincex = 3; ie[n] @ijé€ijs
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Te;; C Ty and e;; are preserved by structure maps. Expanding by linearity, and using
that the above bounds hold for each of the N summands which are simple tensors on
which by proposition 4.4.2] the ampilation does not increase the norm, the triangle

inequality on N summands introduces a multiplicative N factor for each ampilation.

Therefore, C = (max(3M,2V;)Vy +4M +2V¢)N is sufficient to bound the growth.
O

Remark 4.4.8. Since ¥ is norm-dense in compact operators, the flow extends to
compact operators. Each j; being a *-homomorphism can be extended to enveloping

von Neumann algebra as a normal *-homomorphism.

Example 4.4.9. This construction can be used for the existence of flow for Laplace-
Beltrami operator AM, on any compact manifold, since A is positive, therefore, by
spectral calculus, | A |'/? = Ae; ® ef where E = {e; : AMe; = /11.2} then on End(E),

1/2
D

the construction of the flow (| A |,/”)? converges.

Example 4.4.10 (Flow for the Laplace-Beltrami operator). Now consider the case
where A is acting on C(M) for compact Riemannian manifold (M, h) viewed
as operators acting on L?>(M). From earlier a(g) : f — (-, dg)f. o = 0 as
for endomorphism laplacian. The difficulty in this example is that C(M) is not
End(L?(M)), so the global embedding used for noncommutative laplacian does not
work. However, a local embedding ¢ can be described about any p € M and since
the flow is generated by local operator A, and C"-norm on C (M) is point-wise, this

is enough.

Let (x;)’s be Riemann normal coordinates about p € U ¢ M. Then in the local
trivialization over U, (-, df) is described the components df (9;), and with A|y =
C(U), the Hilbert-A|y-module is A ® RY™M  The isometry at p (with respect to
the A-inner product) embedding is given by

N, > a(f)g — (Vf,d)g®ri € A®RIMM (4.17)

r; being the standard basis for R%™»  This is because p is the center of Riemann
normal coordinates where the metric and Christoffel symbols are trivial, the A|y-
valued inner product, 3; dg(9;)df (9;) = (Vg, V).

The embedding ¢ identifies the coordinate vector fields with the noise vector r €
ko, r; — 0; innormal coordinates at p, so depends on the chart, and the ko contraction
in ﬂ@ko with Zi a;r; is Zi <Vf, (9,'>®<I’,', am) = Zi (Vf, ai(?i). The a(f), Vj(f)@l’i
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are the A-linear basis locally for N, A ® RY™M_ Define D;f := (Vf, ;). Note

that iterating on D;’s introduces iterated covariant derivatives,
DD f = (V(Vf,8;),0) = (V> [, ;) + (Vf, V), &)
and higher order expansions follow the same.

Remark 4.4.11. The isometry can be extended to U either by using an isometric
euclidean embedding or defining 7 : a(f)g(q) — H;/Z[Vif]qg(q) where H is
the matrix representation of the metric /; regardless there’s need to control one

additional piece of data which is an assumption involving derivatives of the metric.

Now taking ¥ = FinteLinSpan (Hie[k] i ke ]N), convergence of the Picard it-
erates follows mostly like proposition when [[OxOk-1 ... O1(D)]|, < MFL,
where O; € {A,D;} forallx € ¥,p € M, D;’s defined with respect to Riemann

normal coordinates centered at p.

Proposition 4.4.12. For fixed x € F, f a simple function valued in RY™M = ko,
the following holds for any choice iy € [3],k € IN,

H f550 \P}lbl l}l’n 1 (x)))H < C'Ly

Proof. Fix p € M and normal coordinates centered at p. Since x € ¥, there exists
K such that ||OxOx_1 . ..0:1(x)|| < K¥L,. For R = Range( f), Vi =sup,eg V]
oo as R is finite. Consider the expansion of the nested application ¥(x) :=
oW (L () Note o = 0 = ', Wi = (£(5),6(x)), %2, =
5(x), P! \ = A(x)+(6(x), f(s)) . Additionally, §(x) = D;(x)®r;, so {(6(x), f(s)) =
2. f(s)iD;(x) with each f(s); in R. This gives the form for the inner products,
(6(x), £(5)),(6(x*), f(5)) in @', ®> which are contraction of RE™M component in

A @ RIMM,

A

Let Go = {x}, Gi+1 = FinteLinSpan({A(z),D;(z) : z € Gk}). Then by above
characterization ‘P}’S(z) € Gy if z € Gi,i = 1,3, while ‘szc’s(z) € Gi+1 ® {ri}.
Therefore, at every point p € M with m = dim M, for any z € Gy

H‘PZ’S(Z)H <mKL,,

(‘I’?,MH < mKL |l f ()]
H‘Pl,s(Z)H <mK ||z|[ Il f ()| + KL,

To track the ampilations, again notice that the 6 produces a sum of dim M simple
tensors, f — >; df (0;) ®r;. If x has N summands then on each application it gener-

ates at most 7 = N -dim M simple tensors, and on each the bounds hold individually,
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so breaking up in 7" simple tensors each time, and applying the bounds individually
so the ampilation no longer increases the norm, adds on another multiplicative factor
of T. Hence, LI’;.’S’s are bounded operators on each Gy, uniformly bounded in s, k
by C = (2mK)?V;T which gives the growth bound. O

For any eigenfunction ¢, bounds of type [|OxOk-1...O1(d)|, < M (’;L¢, require
bounds on ||Vk</>|| (see section , and ||Vk6i
ternatively, for any multi-index S, asymptotic bounds in of type |04 ¢, | p < O (A28

, which depend on the metric. Al-

(where A is the associated eigenvalue) with respect to normal coordinates are
known[|15]], using product rule, the bound ||OxOk—; ... O (x)|| » < Mfo is equiva-
lent to a bound on the Christoffel symbols, therefore, as a corollary when Christoftel

symbols vanish the Picard iterates converge.

Observation 4.4.13. There’s another issue that needs to be dealt with: the algebra
¥ is not closed under square-roots because they might not be in the finite linear

span, but is dense in an appropriate norm. This will require that for ¢ € S,
([6, V5], Vi) 2 =0 (4.18)
where A = V*V now. This also controls the growth of ||Vk ¢||; this is considered in

section [4.6]

The extended square-root trick
It’s again part of standard theory (for instance, [62, theorem 5.4.9ii]), that for
u,ve H, h, f eV cL*Ry, ko) =k,

(Ji(a®E(f))u,J:(b ® E(h))v) = (uE(f),J:(a"b ® E(h))v) (4.19)
Ji(1 ® E(f))u = uE(f) (4.20)

Define
JM(a)(VES) =T (a ® Ef)v 4.21)

so j7' is unital with the factorization property (equation 4.19), and j/'(a) is a linear
operator on a dense subspace K := H ® E(V) ¢ H®I'(k). For any v, f, j' is

bounded pointwise on ¥ .
Proposition 4.4.14. For all a € F there exists K such that
0]l < Kllallyze

where ||-||w2.« is the Sobolev norm ||a||y2.- = ||al| + ||Val| + ||V2(a)||
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||6T(a)|| +||6(a)||) for appropriate C where ||A(a)]| < dimM||V2(a)|| , ||6T(a)|| =
[6(a)|l < dim M [[Vall

Proof. This follows because for any a, ®(a) satisfies ||@(a)|| < C(||a(a)|| +

]

Now F ¢ WkP (M) since ¥ ¢ C*(M), M compact for all p, k. Because [|®(a)|| <
K ||a|ly2.e, if Jt("_l) is bounded for each ¢, then Jt(") is continuous on F wit respect
to W22-norm topology with f, v held fixed. We will use this to show that if Jt("_l)
is bounded, then j,(”) is positive on K. Then using j/' is positive on K it will be
checked that for every a € ¥, j/'(a) € B(K) and that it extends from B(K) to
B(H ®TI'(k)). The base case is jt(o) =1 € B(K) which is obviously positive. Then

from j' : ¥ — B(H @ I'(k)), itextends to jI' : C(M) — B(H ® I'(k)).

Lemma 4.4.15. Suppose Jt(”_l) € B(K), then j!' is a positive map ona € ¥,a > 0.

Proof. Suppose a € F is positive. We want to show j;'(a) is positive as well. If
\a € ¥, then

(u, ji' (@)uy = (j; (Na)u, j; (Va)u) = 0 (4.22)
for every u € K, hence j;(a) is positive.

So assume a ¢ ¥ where a is positive and invertible, so a(m) > 0,m € M.
Since LinSpan(¥) is dense in C(M), for any € > 0, there exists f € ¥ such that
||\/_—f|| < O(€) meaning ||a - f2|| < O(e). Additionally, f can be chosen so

||a -f 2||W2,oo < O(€), so f? approximates a in Sobolev W>*-norm as well.

To see why this is possible note that since a > 0,+ya € C®(M), therefore, \/a €
L*(M), additionally for each k, V¥(ya) € L>(M), with Va = 3;a;¢;, o =
(¢, va), then using assumption in equation (which can be relaxed if T in

proposition 4.6.3]in section §.6]is independent of the eigenfunction),

IVE Y aidill}s = ) of it < ) af = (Vg V¥Va) o < oo
i<n 1<n 1
So the sequence (X7, @;$;)ew converging to va in L*(M) is a bounded in
each W52 with a bound depending on k. For sufficiently large k, the embed-
ding W52 (M) c W??(M) is compact by the Rellich-Kondrachov theorem, that is,
(X, @i¢i), has a Cauchy, and so a convergent subsequence; wlog let this sub-

sequence be denoted by the same )" | &;¢; := a,. For (a;) to be convergent in
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W22(M), it must also be convergent in ||-|| 12(um)» SO the only possible limit is v/a.
Now suppose the tail 35> a;¢; does not vanish in W>®. This means for some
x € M for some k € {0,1,2}, (3; a,-Vk¢>,-,Zi a,-VkQS,-)(x) > 0. But then by the
following argument shows that (3, a;V¥¢;, 3 @; V¥ ¢;) 12y > 0 contradicting the
convergence in W>?(M). So va can be approximated arbitrarily well in W>*(M).

Claim 4.4.16. Suppose a = ¥; a;¢; € C°(M), then (V¥ ¥, a;;, VF 3 aipi) (x) >
0 for some x € M implies (VF Y, aj¢;, VE Y, @i$i) 2y > 0. In particular, this
holds for k = 0.

Proof. By smoothness of a, this holds for all x € U for some open set U. Integrat-
ing against compactly supported ¢y on U, 1 > ¢ > 0,4 > O on an open V C U,
(VEa,VEa) oy 2 [ (WVF 3 @ii, VE 3, aigiydVy > 0 The k = 0,V* = 1 spe-

cialization is identical. O]

Now define
W, ={a} U{f*: f e F with ||a - f?|| 2 <1/n,n €N}

then as ||®(a’)|| < K ||@’||y2~ and Jt(”_l) is bounded on K by hypothesis, the bound

in lemma.4.3] implies norm:
Il - Wa = R,a" — |lji(a)]]

is continuous map with respect to ||-||2.«-topology on W,

If j7'(a) is not positive, then there exists u € K such that (u, j/'(a)u) < 0. Since
norm is continuous, the map a’ — (u, j'(a’)u) is also continuous on W,: by
Cauchy-Schwartz inequality, (u, j(a")u) < |lull||;7(a")u|| < lull* K’K ||a’ ||y
where K’ depends on u which we fixed and ||J[”_1||. This continuity means
(u, j7(-)uy < 0 on some neighborhood containing a in ‘W,,. However, for any neigh-
borhood U of @ in W, , w € U,w # a implies w = f2, f € F, 5o {u, j*(f>)u) > 0
by equation Therefore, j'(a) must be positive. O

Lemma 4.4.17. If j!' is a positive map on positive a,a > 0, then ||jt”(a)||2 < |lall?

Proof. Let x € F so (1 +¢€) ||x]| —x € F and positive for any € > 0. Define
D (x) := \/(1 +€)|[x||1—-x € C(M). Approximate ®,(x) from below by z € 7.
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Then j"(®c(x)? - z2) > 0 because ®(x)? — z> > 0 and j" is positive. This yields
(6, (j"(®c(x)?) = j"(z%))8) > 0 and we have

(0, j1(@e(x)?)0) > (0, j(z*)6) > 0

Now the usual square-root trick takes over: since j;' is unital,

0 < |lj*@0|] = 0, i1 (0) < (0, i ((1+e) |Ix]| 1 - x)6) (4.23)
(0, j1(x)0) < (0, j/M((1+¢€) |lx]| DY < (1 +e€) [1x]| €6, 77 (1)8) = (1 +¢€) ||x]| 6]
(4.24)

Since € was arbitrary, (6, j'(x)6) < ||x|| 16]|%. Finally,
. 2 . . . * *
177 @8] = G ()8, j (x)0) = (0, ji' (x*x)8) < |lx*x|[ |6]1* = |Ix[[* 11> (4.25)

. So ||jt”(x)||2 < |Ix||, and the bound on ||J,”|| is uniform. H

Now from density of #,V and K, each j' extends from a map j;' : ¥ — B(K)
to ji : A — B(H ®TI'(k)). Since Sy(t) = X,y J" converges, so does § =
limy_,o S, and therefore lim,_,« ). ji' is the needed flow. Precisely, we have the

following result:

Theorem 4.4.18. Following notation from section4.2} define j,(a)(viEf1) := Ji(a®
Efi)vy, then

1. ji: F — B(H Q® E(V)) is a unital «x-homomorphism
2. jrextendsto j,: F — B(H ®T'(ko))
3. jrextendsto j, : A — B(H (ko))

Remark 4.4.19. A remark on construction of Sinha and Goswami [[62]] using Frechet
structures and of Belton and Wills [[11]]: Proposition 4.4.14] along with the growth
bounds on £(V*¢) suggests that convergence of the stochastic integrals can be
approached via a generalization of complete smoothness regularity. In absence of
the group action, the Frechet space structure on k has to be obtained differently, V¥

is the natural candidate for defining the Sobolev norms on d¥ C k.

Notice that the growth condition in corollary[d4.4.5|is similar to one obtained by [11]].
However, the algebra is not closed under square-roots and it becomes necessary to
use the regularity of the generator with respect to Sobolev norms to push the modified

square-root trick through.
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4.5 Evans-Hudson dilation on reductive homogeneous spaces

Now a second example where the existence of a quantum stochastic flow associated
to an untruncated laplacian is considered: the spectral triple (A, L*(M,S), D)
where M is a compact reductive homogeneous space, and S a homogeneous Clifford
module bundle with Dirac operator D, A c B(S). The flow is noncommutative
and covariant with respect to the group action. Additionally, it realizes the spectral

action since the domain of the flow includes finite rank operators.

The construction from [62] uses growth bounds in terms of a family of semi-
norms rather than iterates of the structure matrix, and when the semigroup and its
generator are covariant with respect to the action of a Lie group, using the equivariant
Kasparaov’s stabilization theorem, the embedding ¢ can be made equivariant with
respect to the semi-norms, which allows for controlling the semi-norms even through
the ¢ embedding. Complete smoothness is the regularity condition on the semi-
norms that guarantees the convergence of the quantum Picard iterates. It will
now be established that both these requirements hold for the heat semigroups over

reductive homogeneous spaces.

Complete smoothness
To start, consider C"-algebra A < B(H) on the Hilbert space H, G is a second
countable, compact Lie group with finite dimensional Lie algebra, acting by a

strongly continuous representation G 3> g — @, € Aut(A) on A.

Definition 4.5.1. Suppose {x; : i € [n]} is the basis for the Lie algebra Lig[G], and
d g the left Haar measure on G. The smooth algebra is defined by A, = {a : g —

@g(a) is smooth for all g € G in norm topology}.

Note that Ac = Niefn) Dom(dk) where 9; is closed #-derivation on A given by
the generator of the automorphism group (a;y,);er- A can be equipped with

Sobolev-type norms,
lall, = > [0 G ()] (4.26)
i1,i0...0:k<n
with ||a||y = ||a]|. A is a Frechet algebra. Note that the algebra A, is also used

in [33]]; however, the norms ||-||,, are symmetrized explicitly.

Definition 4.5.2. (Covariant quantum dynamical semigroups) Let G be a locally
compact group acting on C-algebra by @ : G — Aut(A) with @, denoting a(g).
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A quantum dynamical semigroup (7;) is covariant with respect to G if for all
t>0,8 € G, Tioag =agoT,, equivalently L o ag = @, o L where L generates
(T3).

If £ is unbounded, but with £(A) C As € Dom( L) for a dense-subalgebra A,
then one defines covariance for £ by L(ag(a)) = az(L(a)) for all a € Dom(L).

Definition 4.5.3. A map between Frechet algebras M, N With respect to actions
Mg, Mg of compact Lie group G on C*-algebras M, N is p-smooth if there exists a
constant C and p € Z=" satisfying that for & € M.,

L&, < Cliglnsp

and it’s p-completely smooth if there exists a constant C and p € Z=° satisfying for
alln, N > 0 and & € Mo, ® MAT,,

1£® tvay (O, < Cllélny
L is called completely smooth if it’s p-completely smooth for some p.
Note that bounded operators are completely smooth since from equation (4.26)),
[I-1l; = [I-ll, forall £ > g.
Lemma4.5.4. Suppose W; is w;-completely smooth fori € [ N], then any polynomial

in W;’s is completely smooth to some order.

Proof. First, since W; is w;-completely smooth fori € [N], let ||W, ® IMary (f)”n <
Ci ll€l4,- By €q , so we can assume W; are w = max(w;)-completely smooth,
Wi ® ytary (9], < ClI€l]yp for all i. This gives

meaning C = max[y] C;

D Wi O < D Wi ® Iy (O], < NC €l

i€[N] , LEIV]

For WiW; := W o W, [WW; ® 14| =|[W; @ 1(W; @ DE| < Ci|W; @14, <

n+w; —
CiC €y, +w; and the conclusion follows. O

We note the following version of [[62, Thm 8.1.28].

Proposition 4.5.5. Suppose Lie|G| has basis X; : i € [m], i.e., X;’s generate one-
parameter subgroups, then the ®[X; : i € [m]] be a polynomial degree p in X;’s
with coefficients in B(H), which by the Lie algebra action on A defines a map
O : Ay — A, then © is p-completely smooth.
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Proof. Set a as the norm of the largest coeflicient of ®, wlog assume @ > 1. For
any monomial ®@; in @, with & = 311 x; ® m;, ® = ®[X; : i € [m]],

|D; ® 1£]], = Z r Xi; ® 1 Z(Di(xl)@ml
i1...0k,k<n jE[k] [q]
< a Z nXij@)l Z)Q@ml :a”q)i@l‘f”;ﬁp
i1..d.k<n+p ||\ je[k] [4]
This yields ||® ® 1£]], < Na [|£]],,, where ® has N monomials. O

Example 4.5.6. Let Lie[G] be a semisimple Lie algebra, with universal enveloping
algebra U(LI1E[G]). The center Z(U(Lie[G])) has a distinguished element, the
Casimir operator, Q = ); Xl.2 where X; is an orthonormal basis for LIE[G] with
respect to the Killing form B. For homogeneous spaces, the Casimir operator induces
a laplacian acting on sections of homogeneous vector bundles which is covariant

with respect to the group action and completely-smooth (see observation 4.5.9).

Sinha and Goswami [62]] construct the Evans-Hudson dilation for semigroups with
unbounded generators with structure maps derived from the data of the semigroup.
This proceeds like described earlier and the estimates in section [4.4] are motivated
by these calculations; complete smoothness is defined precisely to make estimates
for r.h.s. of equation work as needed. The covariance of the flow is required
for putting a Frechet structure on the noise space.

Theorem 4.5.7. (Existence of Evans-Hudson dilation[62, Thm 8.1.38]) If (T;) is a
conservative quantum dynamical semigroup on a unital C*-algebra A, covariant
with respect to action of a second countable compact Lie group G, with possibly
unbounded generator L that is p-completely smooth for some p and L(A) C
A € Dom( L), then the Evans-Hudson dilation exists.

By theorem the existence of Evans-Hudson dilation requires that the semi-
group be conservative. As remarked before, this does not hold for the semigroups
el £ =a,D?*ona spinor bundle, and one needs to pass to the endomorphism
connection, alternatively the commutator. To start, the example of the Clifford bun-
dle is considered where the connection laplacian is conservative. The commutation
of the generator with the Lie group action and complete smoothness are tied to the
Lie algebra structure. For reductive homogeneous spaces the hypothesis needed can
be checked to hold.
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Torsion and the canonical connection laplacians

Suppose the homogeneous space M = K /H for compact, connected, Lie group K,
closed Lie subgroup H C K is reductive with Lig[K] = Lie[H] & M as a vector
space for an Ap(H) invariant subspace M. M is identified with 7, M where o = eH
in the coset manifold K/H. The homogeneous space K/H is principal H-bundle,
7 : K — K/H and carries a K action. Note that if the K acts effectively on reductive
homogeneous space K /H then H is isomorphic to a subgroup of GL(dim M, R), and
the fiber bundle 7 : K — K/H is isomorphic to a sub-bundle of the principal frame
bundle F(M,GL(dim M, R)). The K action is assumed to be effective. The action
of k € Konthe T, M is givenby X — kX € Ty, M by the differential of its left action
Ly : M — M, dL; (which are denoted by k, k..). The K-action is an isomorphism
forall k € K, p € K/H, that is, the tangent bundle is homogeneous, while H induces

automorphism at each fiber, meaning the fibers carry a representation of H.

Additionally, let K be semisimple, so the Killing form Bk defines a positive definite
Riemannian metric 4 on K and an inner product on Lie[ K| by —Bk such that the
reductive decomposition for K/H satisfies M = Lig[H]* with respect to —Bg.
By left invariance of the Killing form, the inner product on Lie[G] extends to a
Riemannian metric on M = K/H. Since the Lie group K is compact and connected,
the Lie algebra exponential agrees with the Riemannian exponential and is surjective.
This means that Casimir laplacian commutes with action of both Lie group and the

Lie algebra.

There exists K-invariant connections on the homogeneous space K/H: k : K/H —
K/H means Vi x(k.Y) = k.(VxY) for all X,Y € TM. There’s a unique K-
invariant connection in K such that if f; = exp(7X) be the 1-parameter subgroup of
K corresponding to X € M with a natural lift of o to u, in the principal bundle,
then the orbit of f (u,) is horizontal. The connection 1-form for the canonical
connection is Projg o ®y ¢ where Projy is the projection onto the Lig[H], and
Oy c is the Maurer-Cartan form, v € T,G — Lg_lv € T,G, and the corresponding

horizontal distribution is obtained at o by translating 9t by the left K-action.

The canonical connection is a metric connection, but is not necessarily torsion-
free, instead the torsion and curvature are parallel. The canonical connection,
therefore, does not agree with the Levi-Civita connection in general; when M
1s a symmetric homogeneous space, the two connections do agree. To establish
complete-smoothness and covariance, to start it needs to be checked that the homo-

geneous connection acts by the Lie algebra action on the tangent bundle and lifts to
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a K-invariant connection on the Clifford bundle C1(TM).

Lemma 4.5.8. Forall X € M C Lie[K], and ¢ given locally about o with orthonor-
mal frame, (e;), Y. fie; Vx¢ = 2; X(f)e;.

Proof. 1If X;’s for a basis for 9, orthonormal to LIE[H], then Vx,¢ = 3, dfi(X;)e; +
2i fiVxei = 2 dfi(Xei+ X fi 2 a){ (X;) where w the connection 1-form. Since
w is projection onto LIe[H], Vx¢ = 3}; X(fi)e; at 0 € M as needed. ]

Now at any p € K/H, by K-invariance, with p = k - 0, Vx|, can be written as
kV L, Xlek‘1 since I and the orthogonal complement are invariant under transla-
tion by K. Note that by K-invarince, if (e;) is Riemann normal frame, V, e ;=0
at x, then kV,.e; = Vi, ke; = 0 making (ke;) Riemann normal frame at kx. The
laplacian in at x, Ay = =2, V., V., = =3, el.z, and at kx, >; Ve, Vie,, meaning
Ay = ko, =—-k ), el.2 by K-invariance.

Observation 4.5.9. Note that for homogeneous bundles, E — K/H with the canon-
ical connection, the fibers carry a representation of H, the isotropy representation
p, while bundle E is the associated bundle to principal bundle K/H for p, K X, E.
There’s an induced representation of K on I'(E). By standard theory (see [51,(19]),
AE = —C(K,T(E)) + C2(H,E) where C»(K,T'(E)) and C,(H, E) are Casimir
operators for K and H, the representation for K being the induced representation
on I'(E) while the H-representation being the isotropy representation acting point-
wise. The proofs of these statements are similar to the above lemma. Therefore, the

laplacian on K /H is expressed as a Lie algebra action.

Proposition 4.5.10. The homogeneous connection lifts to a K-invariant connection
V on C(T M), with V1 = 0.

Proof. Since connections are local, working in a local trivialization over U ¢ M
with an orthonormal frame (e;) is sufficient. The Clifford bundle over U is the
quotient of the tensor bundle 7TM := Y, C ®,cn TM®" by the ideal 7 generated
by {v®v+h(v) : v € TM}. The tensor connection V on TM®", Vx(v ® u) =
Vx(v)®u+v®Vx(u) composed with the quotient 7 : TTM — TTM /I will define
a connection V = 7Vz~! on CI(TU) if it’s well-defined with respect to the quotient.
The K-invariance and being a Lie algebra action are inherited from the canonical
connection. To verify it’s well-defined one needs that if 7u = 7’ then Vu = Vi’

By linearity, it may be assumed that u = a1 ® ...a,,u" = a1 ® ...a,. Without
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loss of generality, after reordering tensor components, it may also be assumed that
w=u®yfory=p; ®pi ®pi ®pi ... pi ® p;, thatis, the last 2/ are paired.
Since the quadratic for form CI(T M) is h, the relation v ® v ~ h(v, v) reduces y to
lyll%. By C(M) linearity of the tensor product, u” = ||y|| u. Therefore, ru = mu’

means ||y|| = 1 identically on U.

Now Vu ® y = (Vu) ® y + uVy, so to show that 7V is well-defined, it’s enough to
show that Vv ® v =0forv € TM, ||v]| = 1. Let v = ¥, fie; in the local orthonormal
frame, giving that }; fl.2 =1 and so Y f;X(f;) = 0 for any coordinate vector field X.
Finally,

Vx(D fier® Y fiep) = Z [iX(flei®e;+ [iX(fei®ej+ Z fifiVx(ei®e;)
with fox(fi)ei ®e; :ftX(fj)ef ®ej = Z [iX(flei®e; i Z [iX(fj)ei®e;
Py -~ -
= D X (e ®ej+ fiX(flej© ) = 3 fiX(f) [er®ej+e; 9]
Py -~
.Z;t.ffx(ff) lei@ej+e;@ei +2ZfiX(fi)ei ® e
LJ,1#] i

Notice that (X, 2f; X (f;)e;®e;) = Obecause ; fi X (f;) = Owhile w(2; j ;2; fi X (fi)[ei®

ej+e;®e;]) vanishes because ¢;, e; anti-commute fori # j. Then7Vy(e;®e;) =0

as well using the same anti-commutation and that the derivative of the Clifford re-

lation is zero:
V(e;®e;)) =—-Vh(e;,e;)) =0 4.27)
This yields Vyv ® v = 0, and also Vx1 = 0. O

Proposition 4.5.11. The connection V is Riemannian.

Proof. The Clifford inner product is given by (a, b) = (a*b)o where (-)o denotes
the degree O part and * is defined through (a;, ® ... ®a;, )" = (-1)k (a;,®...®a;,).
The Clifford inner product is defined so that the anti-symmetrization map for any

vector space E,

ASymm : A(E) > a; Aay--- A ap, — l% Z (—l)”ao(l) “Ag2) " dg(p) € CI(E)

oes,

(4.28)

which is an isomorphism of vector spaces is also an isometry. To show that the

connection is Riemannian note that it’s sufficient to show it for basis elements,
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a:=e,®...0¢e,,b:=e;, ®...0Qe¢j,, e’s being a basis for TM. First note
Vx(a*a)y = 0, while the terms in ((Vxa*)a + a*Vxa)o, can be collected to have
form y®@V(e;®¢;)®y’ for some y, v/, giving ((Vxa*)a+a*Vxa)o = 0 after applying
the Clifford relation.

So consider the case a # b with k + m is odd. One can also assume that a, b share
no e; as on reordering it will drop out. This means (a*b)y = 0 because a*b cannot
land in degree zero. Thus, Vx(a,b)c = 0. Since k + m is odd, and the Clifford
relation reduces degree by 2 each time it’s utilized, (a*Vxb)o = 0 = (Vx(a*)b) as

well.

The only case that remains is when k +m is even. Without loss of generality assume
that k = m since one can always regroup a*b. Considerthe casea = e;, b = e;,i # J,

and that X = e, for any r. Then

2V,(e,-®ej) = Vr(€i®€j —€j ® e;)

N N N N
=les®ej+e® e, -1 e,@e—e; @I e

50, T(2V,(e; ®@ej))o=T"e; @ ej+e; ® Fijei — Fijei ®e;—e;®I.e; =0 where
(es ® €;)o = O unless s = i (and same for e;’s) was used. Now consider the case
where k > 2; since all ¢;’s in a*b are distinct, a, b can be anti-symmetrized which is
exactly the isometric identification in equation .28 and so the claim follows from

metric compatibility of tensor connection on exterior bundle. Explicitly

4= 1% Z (=1)7€oi) - e - o) =€ A Nei
oeS,

b= > (-D7ea(iy)  €atin) Catip) =€ M- Ay,
oes,

(Vab)o =(a,V,b), +(V,a,b),

Recall that (e; A---Aej,e; A+ ANej ), = Det({es, e)ry). Now expanding
with the product rule (V,a,b)s = X c[x] (Vla,b), where VZ denotes V; applied
to g tensor component. Each

(Via, by =(ei, A... Ve, -~ Nej,ej A...ej - Nej)

is still zero, since it’s a determinant of a matrix with every row zero except possibly
the ¢'"-row since e;’s and e ;s are all distinct; this is where k > 2 comes into play.
The term {a, Vi b) , is handled similarly. O



72

The canonical connection is not torsion-free, i.e., symmetric. This means that for
Riemann normal coordinates x; centered at p and coordinate fields e;’s, V;e;(p) =0
but Vie;(p) # 0 fori # j. For Christoffel symbols I“l.’;. defined by V;e; = I“l.’}ek,
F{; =0and Fl.’;. + F;.‘l. = 0 at p (see [46, Prop 1I1.8.4]). Now div(v), = >,;(Viv, e;),
sodiv(er), := 2; (Viek, i), = 0if V was torison-free. In presence of torsion using

k k _ . .
Fl.j + Fjl. = 0 implies

divier), = ) (Vier,ei), == > (Viei e, (4.29)

The non-zero torsion is consequential, the Bochner identity needs to be corrected
and the Dirac operator picks up torsion and is no longer self-adjoint; however, it
can be corrected to an operator which reduces to the usual Dirac operator as torsion
vanishes. Precisely when the Dirac operator for canonical connection on homoge-
neous bundles is formally self-adjoint is characterized by [1, Proposition 3.1]; the

following addresses the modification to the Bochner identity.

Lemma 4.5.12 (Torsion deformed Bochner identity). Let V be a connection on TM
with torsion for manifold M, then the Dirac laplacian D? = 2k ejVjerVy associ-
ated to the Clifford bundle with connection obtained from V in normal coordinates

(e;) centered at p, R the curvature operator from the usual Bochner identity

1. With T(X,Y) = VxY — VyX — [X,Y],X,Y € I'(TM), the torsion tensor,
T = %ij e;jT(ej,ex)Vi

D*=V'V+R+3
2. If T # 0, D? is not necessarily self-adjoint, the operator
D =VV+IR+RT]+ [T+ T
is self-adjoint
Proof. Atp D?*¢ = 2k €;Vjer V¢ becomes

D*¢ = Z ejeiViVip+e;Vi(er)Vip =V'Vp+Rep + Z ej[Vj(ex) = Vi(e;)Vio
I I

\)

where [e;,er] = O,sz = —F}.k was used to rewrite 2V;(ex) = ZZSF;kes =

D F;kes - D F,ijes = V;(ex) — Vi(e;) = T(ej, ex). The Dirac laplacian fails to
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be self adjoint because R can fail to symmetric if ¢ ; V¢ # Ve ;¢ as a consequence
of Vie; # 0 at p which is happens exactly when T # 0. Therefore, when T
vanishes R = R* giving back the usual Dirac laplacian. The self-adjointness of D?

is obvious.

When the T M is parallelizable, that is, there’s a global orthonormal frame (e;), then
explicitly, using that (u, Vyxv) = ((=Vx — div(X))u,v) with respect to L? inner
product, since (u, ),; €;V;v);2 = (3 €;(V; + div(e;))v, u), the Dirac operator is not

self adjoint, but satisfies,
D*=D+ Z eidivie;), (D¥)* = (D + Z eidiv(e;))? (4.30)
k
O

For the parallelizable manifold example, the L? adjoint for V; was used; the adjoint
with respect to the inner product at fiber can be computed using metric compatibility
by a straightforward calculation. Using (o, Vi0), = Vi(o’,0), = (Vio',0), =

ex(o’, o), — Vo', o), along with
div((c’, oYey) = Z (Vi{o',o)er, ej) = Z (e;({o’,a))er + {0/, o)V ek, e;)
J j
= D e (@ NP eren), +(@.7) Y (Vjexsej)
J J

= ek(<0-,’ 0->)p + <0-,9 O'>pdiV(€k)p
Therefore, ex ({0, 0)), = div({c”’, o)ek), — (o’, o) ,div(e),, implying
(0, Vo), =div({c’,o)er), — (o', o) div(er), — (Vio', o), (4.31)

From this, choosing o, 0’ from an orthonormal frame gives the fiber-wise adjoint
in local basis. This calculation gives that 7, 7 * are first order differential operators,
meaning the leading symbol of D? agrees with the laplacian, and therefore we have
the following.

Proposition 4.5.13. The operator D? is a generalized lapacian, formally self-
adjoint and elliptic.
Now note the K-invariance implies that the canonical connection laplacian and

curvature operator commute with group action.

Proposition 4.5.14. For any ¢ € I'(CI(TM)),
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o kRp = Rk, kT = Tko.

e [or the canonical connection laplacian, k A ¢ = Ak

Proof. Let (e;) be an orthonormal frame for at x € M. Then since the metric is
bi-invariant, ke; is an orthonormal frame at kx, meaning the curvature operators at

x, kx are

9{x = Z ej-¢ej- [Ve,-Vej - Vejve;]a 9{kx = Z kei ' kej ' [Vkeivkej - Vkejvke,-]
ij ij

The K-action Cl, between Cli,. Denoting Clifford multiplication at x, kx, by

“Clys "Clgy» SINCE (ki kv, = (U, v)y, k 2 TyM — CI(T; M) satisfies the universal

property for Clifford algebras ku -cy,, ku = (u, u) Leiry m, and therefore, k induces

a Clifford algebra isomorphism. This means
kR =k Z ei-e; [VeVe, = Vo, Vel = Z kei-kej - k[VeVe, = Vo, Vel
ij ij

= > ke - ke; - [Vie,Vie, = Vie, Vi, k¢ (by K-invariance)
ij

= Skak¢

which is as needed. The same holds for T. This works for the laplacian as well.
Now if (e;) is Riemann normal frame at x, then (ke;) Riemann normal frame at kx,
so the laplacian, A, at x in Riemann normal frame at x is — ;; V., V,,, and at kx,
22 Vie;Vie;» meaning k Ay ¢ = Mgk as well. ]

Quantum stochastic dilation on homogeneous spinor bundles

First note some immediate results that follow from the last section.

Corollary 4.5.15. The heat semigroup generated by canonical connection laplacian
A on CI(TM) are a conservative quantum dynamical semigroup, and the generator

A is completely smooth.

Proof. The first claim follows directly from results of chapter [2] the second is
because the V acts through the Lie algebra; it just needs to be noted that one does
not need to change the connection based on the degree of v in CI(7'U) since one can
always tensor with the identity, and apply the tensor product connection for n-fold

tensor. O]
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For connections with torsion, D* generates a quantum dynamical semigroup by the
same idea. When the space is a symmetric space, the connection is torsion-free
and Dirac laplacian D? generates a quantum dynamical semigroup; additionally, by

Bochner identity, D*, D? are completely smooth.

Example 4.5.16. ([37]]) Suppose K/H is a Riemannian symmetric space carry-
ing a homogeneous spin structure with Dirac operator gy associated with the
Levi-Civita connection (which for a symmetric space agrees with the canonical
connection), then lﬁi JH = Qx + k/8 where « is the scalar curvature and Qg the

Casimir operator for K.

Example 4.5.17. Kostant’s cubic Dirac operator, D'/3, is the Dirac operator asso-
ciated to a linear combination of the canonical and Levi-Civita connection of the
reductive space K/H. The laplacian, (D'/3)2, can be expressed as the quadratic
Casimir operator with an additive scalar (see, for instance, [1, Thm 3.3]). By the
same argument it follows that the generated semigroup is a quantum dynamical

semigroup.

Corollary 4.5.18. For the Riemannian symmetric space K |H, the spectral action
for the untruncated Dirac operator on the Clifford bundle, C1(K /H), can be realized

from the Evans-Hudson flow.

Proof. This follows since D := DK/H,D, is a Lie algebra action, and hence
completely-smooth and covariant since it acts though the Casimir operator which is

a quadratic element in center of the enveloping algebra for LIe[ K]. U

Example 4.5.19. For K = SU(2),i.e. S, H=U(1),i.e. S?, K/H = §? is the Hopf
fibration. S? is a symmetric space, so Evans-Hudson flows exists on C1(7'S?) and

over End(S) for any homogeneous spinor bundle § — S? for a spin-structure.

Observation 4.5.20. More generally, the discussion applies to any finite dimensional
homogeneous vector bundles over M = K/H, that is, a vector bundle £ — K/H
is such that K acts on E, with kE, = Ej,, and the action k : E, — Ej, is
an isomorphism for all k € K,k € K/H. The most relevant setting is that of
homogeneous spinor bundle associated to a spin structure. Additionally, one needs
the tangent bundle to be homogeneous, with bi-invariant metrics and K-invariant
connection on 7'M, S (the homogeneity and K-invariance for TM are required for
homogeneity/invariance of the spin-structure). Because the heat semigroups on the

spinor bundle S may not be conservative, one needs to pass to End(S) and work
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with the endomorphism Dirac operator or the noncommutative laplacian; this means
the complete smoothness and covariance on S* needs to be wrangled. Note that
homogeneous spaces do not carry parallel spinors unless they are Ricci-flat (and so
flat) because is required for the existence of parallel spinors[35]; for spin© bundles

there are more parallel spinors[353]].

4.6 Uniform Sobolev norms
Now the growth of Sobolev norms are considered. Let (M, g) be a compact Rie-

mannian manifold with Levi-Civita connection V. On (p, g)-tensors s, s there’s a

/ml...snl...
Jre"

The Levi-Civita connection has a lift to the tensor bundle and an associated connec-

natural inner product by contraction with g'/, g;;, (s, s') = g"V/' ... gmyn, S o
tion laplacian, both also denoted V, A. Denote by V*u the k'-covariant derivative

and define the point-wise length with the innerproduct[42, § 2.2.1]:

C(VRu)? = g g (VR (VR = (YR, VEu) (4.32)

When f = Il;c[n)¢; is a finite product of eigenfunctions ¢;’s, for m € M, since | Ak
flm < (dim M)K€(V?K £), by product rule, this can be controlled by (VX¢;, V¥¢,).
So one would like to know when a bound like (VX ¢, V¥ ¢),, < C4M ;f is possible. To
start assume the following, this will be relaxed in proposition[4.6.3] Spaces without

curvature provide examples satisfying this; as do some homogeneous spaces.

Assume 4.6.1. To control the growth of laplacian iterates, first assume [V, Alu = 0

for any laplacian eigenfunction.

One expects that ||Vk¢ ]|| L2001 should be bounded by /lik when A = V*V and V
almost commute. Since ¢;’s are smooth this is enough to establish a uniform
bound, but this will require leveraging the ||-|| ;25 bound locally and the boundary
for the local chart will need to be taken into account. Recall the integration by parts

formula for tensor fields when M does have a boundary,
/ (VF,G)dV, = / (F® N, G)dV; — / (F,div(G))dV, (4.33)
M oM M

where ¢ is the induced metric on M, dV,, dV; the associated volume forms, b the
musical isomorphism, N the outward unit normal at M, and F, G tensor fields,
div(G) = Trg(VG), the trace being over the last two indices. Note if G = VH then,
—div(G) = A(H).



7

Proposition 4.6.2. Assuming [A,V] = 0, for eigenfunction u with eigenvalue A2,
IV ally, < 24|V ]l

Proof. Set41? ||Vk‘1u||i = K > 0. Suppose for some x € M, (Vku, Vku) —K > 0.
Then since u is smooth, there exists an open neighborhood U of x such that on U,
(Vku, Vku) — K > 0. Let  be such that supp(¢) € U is compact, > 0 on U and
¥ > 0onopenV C U, then

/ W {(V*u, V&u) —yKdv, = / WV*u, Vu) —yKav, > 0 (4.34)
M U
Now (W V¥u, V¥u) = (V' V), Viu)y — (Vi - VE~1u, V¥u), and for the first term
/ (VW V), VFuydv, = / (-, ydVg + / WV u, —div(VFu))dv,
U ou U

where f(w (-,)dVz = 0 since = 0 on dU and outside U, while —div(Vku) =
AV =1y = VA1 A i using by assumption Therefore, we have

/w(Vku,Vku):/¢(Vk_lu,Vk_lAu)—/(Vw-Vk_lu,Vku)dVg
M U U

:AZ/w(Vk_lu,Vk_lw—/ (Vg - V5, VEuyav,
U supp(Vy)

(4.35)
This yields

0< /w(Vku,ka—l//KdVg
U
:/IZ/w(Vk_lu,Vk_lu)—/ (Vt//'Vk_lu,kadVg—/deVg
v supp(Vy) U
:/w(/12||Vk_1u||2—K)dVg—/ (Vy -V, VRayav,  (4.36)
u supp(Vy)

Define the linear functional w(y) := /S upp(V

(VY- V&lu, Vkuydv,. Note
(Vi - V¥, VRuy = gy, g (8i2j2 . ~gikj"(vk_lu)iz...z‘k(Vk”)fu‘2~-fk)
= giljl Vilgb (gizfz . e gl‘kjk(viz e Viku)(vjlvjz tee V]ku))
_ gim VoG, = (Y, G) (4.37)
where G, = g2 ... gk (V;, ... Vyu)(V; V...V u).

By showing that there exists a that makes w(y) > 0, since (1% || V4! u||2—K) <0,
it will follow that equation 4.36] cannot hold. Assume that U is small enough to
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be covered by a Riemann normal coordinates, and consider polar coordinates on
U centered at x. Define 7¢ on U for ¢,s € R, such that 75(x) = ¢ and then
decays linearly in radially outwards direction with slope —s to 0 at 9 Bg(x) with ¢, s
such that m C U, R depending on ¢, s. Then 7{ is continuous, piecewise
continuously differentiable, with compact support in U, so weakly-differentiable,
and V1 = —slg, () (there’s enough slack to work with mollified versions of 7’s,
but weak-differentiability suffices for simplicity). If for some 7¢, w(7¢) > O then
that ¢ = 7¢ is the required .

If not, then w(7¢) < O for all ¢ small enough to have supportin U. By rescaling wlog
assumec = s = 1,and set 7} := Tll ( otherwise the constants are messy). For such 7y,
define 7| such that 7{(x) = 0, and 7| increases linearly to 1 at dB;(x), and outside
of By (x), 71 = 0. Then w(7]) = —w(71) =6 > 0 since V7| = —V7; on supp(Vr|) =
supp(Vty). It remains to make 7| continuous without changing w(7{) too much.
For this set 7/, = 7{ on By (x), 7{’, = 0 on By (x)“, and on By (x)“ \ B (x), 7,
decays linearly to 0 on dB.,(x). Finally, since for all 7 > 0 small enough, 7', is
piecewise continuous, continuously differentiable and compactly supported in U, it

remains to check Hw(r{) - w(r{t)H < €(r) with €(r) vanishing with r, and there

exists 7 > 0 such that for all » < r,

‘w(Té) - w(T{’r)H < €. Note that

= || <Titr, —div(G,)dV,|| (4.38)
By (x)(X)\B1 (x)

using equation and that 7”7 is compactly supported in U so the boundary term

2 Hw(Ti) - w(t(,)

vanishes. Now because as M is compact, —div(G},), T;’r are continuous (since

u € C*(M)) and so bounded), the €(r) as needed exists. Notice that w(7{) = 0,
) ) ) 2

meaning w(7],) > —€(r). Choosing y := 7/’ , since on U A*||V*~1u||" - K <0,

/ Yy (2 ||V - K)av, - w(y) < / (2 ||VE ||’ - K)av, + e(r) = R(e)
U By (x)

1(X

. _1112 L2
Finally, as K = 412 ||Vk 1| —» choose r such that %l /Bl(x) ‘r]’(/l2 ||Vk 1u” -K)dV,| >
e(r) > 0. This makes R(e) < 0, yielding that equation [4.36]—

0< /t//(/12||v’<—1u||2 — K)dV, —/ (V- VE N, VR av,
U supp(Vy)

cannot hold. ]

The only place where assumption was used was equation to commute
laplacian and covariant derivative, if instead we have that the commutator is some-

what well-behaved then a variant of proposition #.6.2] holds. The hypothesis of
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proposition 4.6.3]is geometric, since the commutator will expand in terms of curva-

ture and its covariant derivatives.

Proposition 4.6.3. If every k € N and eigenfunction u for A with eigenvalue 1> and
x € M, there exists T =T (x,u),T > 0 such that

(V5 aVA) < (V1 VA1 A w) + T(VE 10, V1) = (2 + 1) (VF 1w, vE 1)
(4.39)

that is, for T independent of k, (V¥ u, [A, VE"u) < T(VF1u, V1), then

[V4ulll, < 232+ 7 |94

Proof. Assume not, then on some open U C M, for all x € U, for some fixed ¢ > 1,
K = 4%+ T) ||V,

some ¢ > 0 compactly supported in U, ¢ > 0 on an open set, giving

, (Vku, Vku)x — cK > 0 and as in proposition |4.6.2| for

/U WV*u(x), Vu(x))dv, - /U weKdVy > 0 (4.40)
with /U WV u(x), Vu(x))av, = /U (V@ V5 u(x)), Vu(x))av,
—/U(Vw-Vk_lu,VkuﬂlVg
/U (Vv u(x)), VEu(x))av, = /U WV u(x), sV u(x))av,
<(A2+T) /U WV u(x), V¥ u(x))dv,

Therefore, equation F-40] yields
/U (A2 +T) WV u(x), V¥ u(x))dv, - /U (Vg - V¥, VEuyav, - /U wcKdv,

= /U (2 +T) WV u(x), V¥ u(x))y — yeKdv, - /U (Vg - V¥, vEuyav, > 0

But choosing ¢ as in[4.6.2] since (1% + T)(V*~1u(x), V¥ lu(x)) — cK < 0, the last
inequality cannot hold. 0

If T := Ty depends on k, then the exact behavior of T} is necessary to know for
controlling the bound.
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Chapter 5

DISCRETIZATIONS AND TRUNCATIONS

5.1 Introduction

The realization of spectral action from a quantum stochastic flow illustrated the use-
fulness of truncation for establishing the existence of the flow on a general compact
Riemannian manifold. The question of how well such truncations approximate the
data of a spectral triple is considered now. A discrete version of the problem is
also the same question but from a different perspective: given a compact mani-
fold M and a discrete set X € M sampled with respect to a probability measure,
how well do the Hilbert space L?(X) and the operator algebra C(X) approximate
L*(M),C(M), the data of the canonical spectral triple. Similarly to the spectral
truncations, L2(X), C(X) are also finite dimensional. A special setting where X
is not random but the 0-skeleton X° for an embedded simplicial complex X for M
which is regular in the sense that all k-cells have the same k-volume is independently

interesting and more can be said there.

The usual exterior derivative d on exterior bundle A(M) along with its adjoint
d* defines a Dirac operator d + d* on A(M) under the (vectorspace) isomorphism
with Clifford bundle C1(M). The coboundary operator ¢ for simplicial complex X,
at least on L?(ZV), acts approximately like the exterior derivative. We show that
this has an easy generalization to the higher-dimensional skeletons and differential
forms. The metric space Hodge theory introduced by [9] can be modified to apply
to £ and from which a Hodge decomposition theorem for ¢ is inherited. When
the complex is regular, the maps between co-chains on the complex and differential
forms are isometric with respect to the natural L’-structure on co-chains coming
from k-skeletons. This L2-structure is not the usual one considered and differs from
the L2-structure used in discrete exterior calculus (see [43]]), which is based on a

discretized Hodge dual.

In the setting of spectral truncations, for the algebras, compressed by spectral trunc-
taion, one does not expect to do better than approximate compact operators, although
truncated algebras will usually contain the identity making them operator systems.
However, equally relevant is the state-space on the algebra. Adapting ideas from

[40]], a new class of geometries is given on which the state-space for the compressed
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algebra converges to one for the uncompressed. Further, the convergence is shown
to be with respect to the Lipschitz norm associated to the Dirac operator for the

canonical spectral triple.

To introduce some notation, let Xz ¢ R be a finite simplicial complex for the
smooth compact manifold M c R, embedded into R¢ via a homeomorphism
¢ : X — M. Denote by X = ¢(Zg), that is, the simplicial complex embedded in
M. Set X =% ¢ M, N = |Z| for the 0-skeleton X°. Note that the top dimensional
skeleton is simply M, Z4mM = 3 = . CK(Z) will denote the space of k-cochains
on X. Since ¥ is identified with M, Q¥(X) = QK(M) will denote the space of
smooth k-forms, and C*(M) = C*(X),C(M) = C(Z) the space of smooth and

continuous functions.

Recall that a map ¢ : X — M, with Xz c R¢ a polyhedron, is a piecewise
differentiable (PD) homeomorphism when there exists a triangulation X7, for Xg

. R
such that for every simplex o in X7,

1. ¢ is a homeomorphism
2. ¢ restricted to o is smooth

3. D¢ is injective at every x € o

A related notion is that of a piecewise-linear (PL) map: ¢ : K — R is PL for every
simplex in some triangulation X7, ¢|o is linear. Every smooth manifold is associated
to a PL-manifold by by Whitehead’s theorem: for every smooth manifold M there
exists a PD-homeomorphism ¢ : K — M, K a polyhedron which is piecewise
linear (PL) manifold unique up to a PL-homoemoprhism, where a PL-manifold
is a polyhedron K such that for all x € K there exists a neighborhood U" and a
PL-homeomorphism ¢, : U* — R*. The simplicial complex on K with respect
to which @ : K — M is PD, along with ® is defined as the PL-structure for the

manifold.

Assume 5.1.1. We will assume that the embedding ¢ : Xg — M, with respect to

the simplicial structure of Xg, is PD.

Differentials with heat kernel weights
On a finite metric space, (X,, d), n = |X,|, with a probability measure u, the point

cloud Laplacian can be realized as Hodge Laplacian of a (co)chain complex restricted
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to functions. This follows by observing that for a finitely supported measure v
on M, the point cloud Laplacian on M is an empirical estimate (via concentration
bounds) for the functional approximation to the Laplace—Beltrami operator A; f (x) =
an (f(x) = f(y)K;(x,y)dv(y). The convergence of the empirical estimate to the

Laplace-Beltrami operator then follows using the result from [[10].

Consider the picture that n point metric space X, is n samples from M, d is the
distance in ambient euclidean space, dj; the geodesic distance on M, and as n
increases we have inclusions i, : X,, — X1, and X,,41 \ X, is the one additional

sample from M.

Fix X, = X. Barthodi et al[9] consider (co)chain complexes on L?(X") using the
coboundary map, 6;_; : L>(X!) — L>(X"),

l
[6f1zo. 21 2) = ) (=D | [ K Gz flzo,. tiz) (5.1)
i=0 i#]

where X' = [T X, L¥(X?) 3 K : X* - R is symmetric, nonnegative, and
measurable; K := K;(-, -) is taken the 7, scaled heat kernel. The boundary map 0 :
L2(X™*!) — L2(X') is defined by [0g] (20 - .- 21-1) = Ti_o(=1)' [ TT/=6 VK (s, 2))
g(20-.-2j-1,8,Zj+1 - .- 71-1) dp(s) and satisfies 6;_; = 9;, and the laplacian, A; =
(6701+0;-10;_,) can be defined. The constructions and results also hold for Li(X h=
{f € L2(XY) 1 f(xo,...x) = (=1)¥"7 f(0(x0),...0(x1)),0 € Spar}. In [9],
they also establish that for a Riemannian manifold, (X, g, u), on restricting this
construction to a suitable neighborhood of the diagonal, de Rham cohomology of
X can be recovered and a Hodge decomposition exists for each L?(X!). Observing
that

8o(f (x)) =/X(f(X)—f(y))Kt(x,y)d/l(y)

i.e. Aolz2(x) is exactly the functional approximation to the Laplace-Beltrami operator
which in the large sample-small ¢ limit approaches the Laplace-Beltrami operator.
Since onrestricting to functions, Hodge-de Rham Laplacian agrees with the Laplace-
Beltrami operator up to a sign suggests that in this limit 6" associated to the
sequence of n-point metric spaces (X,) must approach the usual exterior derivative
d acting on Q°(X). We give a quick intuitive argument using covariant Taylor series

(see [5]])) with respect to the canonical Riemannian connection V.

Proposition 5.1.2. Suppose U ¢ RN is such that M N\ U is a normal neighborhood
of x € M, and for any y € M NU, y # x, x(t) is the unique unit speed geodesic
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Joining x,y, v := x(0). Then for s = dy(x,y) and K;(x,y) = exp(— ||x — y||12\, /4t),
s =t +0(t?) implies |6 f (x,y)/t — df.(v)| = O(¢).

Proof. Since x(t) is unit speed geodesic with x(0) = x, so x(s) = y. Expanding in
a covariant Taylor series about x(0), f(x(¢)) = X" t"/n!d" /d7" f (x(7))|r=0, With
d/dt = X(1)V;, gives f(y) — f(x) = s - df (v) + O(s?) since first order term is
H(T)Vifle=0 = 5+ g(v, V(%)) = 5+ dfie(v). Wehave 6f(x,y) = VK (x, y) (f () -
f(x)) = \/W,y)saifx(v) + WO(SZ). For fixed x, using that there exists
n > 0, such that dy(x,y)> — ||x —y||]2\, = n(y) with |[p(y)| < Cdp(x,y)* for a
constant C on the normal neighborhood U, so ||x — y||]2\, =dpy(x,y) —n(y). Using
e’ =1+0(ae®) fora > 0,1/(1+a) <1+ O(a) yields the following estimate

from which the result follows for s = ¢ + O(1?):
“/K,(x, y);df(v) _ df(v)‘ — )(eﬂ(y)e—dM(x,y)Z/Sz; _ 1) df(v)‘

< |(;(1 +0(s*/1)(1+0(s*/1)) - 1) df(v)‘
O

In the large sample limit as the sampled points get closer s/t approaches identity
while s /t,k > 1 terms vanish, and the exterior derivative acting on functions is
recovered. To recover the action on differential forms, it’s simplest to work with
an appropriate discretization of forms which is provided by finite element exterior
calculus[29]. This forces adapting L2-Hodge theory to work with cochains and not

alternating functions to approximate the exterior derivative.

5.2 Approximating smooth differentials

L? structure on co-chains

For L2(X**!) be the space of alternating L? functions in k + 1 variables. No-
tice that on viewing each k + 1 tuple as a k-simplex simplex (xo,...xg), every
k-cochain induces a function in L2(X**!). However, f € L2(X**!) can be sup-
ported on tuples that are not simplicies in the complex. To encode the simpli-
cial structure, the idea is to modify & slightly. Define K : X! — {0,1} by
Ay (X0, Xi oo xk) = K(x0,x1...x¢) = Liff 0 := (x0,x1...xg) is a k-simplex in
Y. As defined Ay, (xo, . ..) is symmetric in all arguments and positive. This yields
a coboundary map generalizing equation Sk_1 : CH1(Z) — Ch(D),

/
[6/1(z0021 - 20) = D (=120, 22 f(20s- o B ozt) (52)
i=0
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where C*(X) is the space of k-co-chains, i.e. functions on k-chains, in particular,
on simplicies represented by k + I-tuples, X**!, with C*(Z) a subspace inside
LZ (Xk+1 ) )

Observation 5.2.1. Note that d4_; is the simplicial coboundary operator: if o :=
(20,215 ---,2k) & > then 6f(oc)=0,andif o € >k then it’s the usual simplicial
coboundary, and therefore, 6% =66, = 0.

®(k+1)
X

which is scalar multiple of the product measure. With respect to u®**D each

Taking uniform measure yx on X, and on X k1 taking the measure v = Uy41 1

k-simplex has measure (k + 1)!/N**!, the scalar normalization Uy, allows for
normalizing the measure so that v; (o) = 1/|Z¥| for any o € X, that is, vy is

the uniform probability measure on the k-simplicies, given by vi(o) = 1/Ng,

N = |Z¥]. C*(Z) becomes a Hilbert space L>(C*) by innerproduct,

(f>8)ck =1/Ni Z f(0)g(o) = Upni /Xk+1 f(xo0, ... xx)g(x0, . .. xx)du(xo) . . . u(x)

oexk

where (k + 1)! is needed since each k + 1 tuple gives the same k-simplex, and the

fg is invariant under changing orientation.

Observation 5.2.2. Let 8 : C* — C*~! be 6;_, then 6 = 0 implies (9°g, 8%g) =

(g,6%0%g) =0, and so 8> = 0. That is, 6¢_; : C*1(2) = CK(Z), o : CK(Z) —
C*1(%), form a co-chain complex.

A standard computation (e.g. [9]) allows for computing 9; explicitly,

Proposition 5.2.3. With y € X¥,
k+1 k+1

e =423 J st pautn = % ). J st duty
Proof. We have (6x_1f, &)
= Uis1 Zk(;(_l)f /;;wl oo Xy xi) Ay, (X0 . Xiy oo xk) g (X0, - -+, Xk) l_[/l(.x]')
i= J
Setting G;(xg . ..xx) = (/X Ay, (x0 ... Xy .. xx) g (X0, . . . ,xk)d,u(xi))

k
(Ok-11,8) = Ui Z(—l)i /xk flxo... % ... xk)Gi(xo ... xx) nﬂ(xj)
i=0

J#

k
:Uk/ Fxo. . Riye . xk) (UUk—:Z(—I)iGi(XO...xk))n,u(xj)
Xk i=0

J#
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With t = x5,y = (o, - - -» Yk-1) = (x0,...%i...,Xxx), using antisymmetry of g to
write g(x0, .. .,%,...,x;) = (=1)g(t, y) coupled with symmetry of A,

k

(Ox-1f>8)cr = Uk /Xk JF) (UUL,TZ/Xﬂt(y)g(t,y)dﬂ(t))dﬂ(y) = (f>0k&) 1
i=0

O

Taking A,(y) = 1 iff xy € X! in equation recovers the oy from with
k(x,y) = Ax(y) and the associated laplacian on functions; the family of kernels,
Kk = e~y /4t telates to the point cloud laplacian from [10], however this heat
kernel weighing is not treated at this moment.

The abstract Hodge lemma from [9]] easily yields a Hodge decomposition theorem:

Lemma 5.2.4. (Abstract Hodge lemmal9, lemma 1]) Suppose the family of Hilbert

spaces Vi’s, with bounded linear operators 6,0y, define (co)chain complexes,
..52_1 Ve o> Ve, 00k 2 Ve > Vi ..., with (52 = 0,5*2 =0, thenfor

A :=0670; +01-10,_,, the following are equivalent

® Oy has closed range for all |

® 6, has closed range for all |

® A; has closed range for all |

and if any of the above hold then
Vi = Image(6;-1) ® Image(6;) & Kernel(;) (5.3)

Corollary 5.2.5. The Hodge decomposition in equation[5.3|applies to the (co)chain
complex from observation|5.2.2 6x_1 : C*"1(Z) = CK(Z), ok : CK(Z) — CH1(D)

Proof. The proof is simply noting that C¥(Z) c L2(X**!) are finite dimensional

Hilbert spaces so the images of maps 6y, 6 are closed. [

Remark 5.2.6. L% co-chains have been considered in [31]], however the innerproduct
does not come from the measure on k-skeleton; instead for co-chains ¢, ¢’, {c, ¢’) =
(We, Wc') 2y where W is the Whitney map into differential forms which does
not give the L?-structure for the k-skeleton.
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Remark 5.2.7. By combining equations [5.2]l5.1} the coboundary operator can be

further generalized:

Sko1: CFI(D) = k()

l
[6f]1(z0,21...27) = Z(—l)i rl Kz 2j) A (205 - Zi oo z) f(zos -2 Zie o 2a)
i=0

i#j

(5.4)

and it can be checked that it defines a (co)chain complex, and therefore the construc-

tions from [9] on L2(X**!) pass to k-cochains.

Local volume forms, de Rham and Whitney maps

Since X is identified with M, it inherits a normalized volume form from M which
gives a normalized measure on ¥. Now every o € 2* inherits a volume form from
being embedded in M, so it too inherits a volume measure, d,,; o and Vol(o) is
defined. A normalized measure is induced on the k-skeleton, XX, scaling d,,; o by
> cesk Vol(7), so for every k and all o € 2K, /(T dypro < land ) sk /{T dyoro = 1.

For each k-simplex o € X denote by d,,; o this normalized volume form. Now
d,,; o can be viewed as k-form on X, not necessarily smooth, by setting d,,; o =
1,0 d,o; 0. SetQ;,(X) = @ LinSpan({d,,; o : o € Z¥}), the space of local volume
forms. Note that Q;,(X) ¢ L*(Q(M)), but any w € Qf‘v(Z) is not necessarily
continuous on OXX; therefore, Stokes theorem does not apply since w € Dom(d)

may not hold.

Any k-form w € QF(M) yields a f, € C¥(X) by integration over the o :=
(x0,x1...xp) € ¥k. This is the de Rham map, R : L?(Q(M)) — C(X),

LAQE(M) 2 0 = R() = fiy € CE(X). ful ) aion) = ) ai / w e CH(X)

Note that R(w) is alternating because simplicies are oriented. Because ¢ is the
simplicial coboundary map, R is a chain map, 6Rw = Rdw for Q(M) (see [31,
S0)).

Under the following assumption the de Rham map defines an isometry between co-
chains and local volume forms which allows for passing from uniform distribution
over X**! for L’-structure on cochains to the uniform distribution over ¥ for

differential forms.
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Assume 5.2.8. For each k assume the volume of each k-simplex is same, wlog

assume it’s one. Since X carries the uniform measure, let cy be the constant such
that Vol(o) = L_ dyoi(0) = ¢ ||10—||L2(Xk+l), 1, € Ck(Z).

Lemma 5.2.9. The de Rham map R is surjective. For any f, R™\(f) carries a

unique representative wy € €, (XZ).

Proof. Let f € CK(X), then w € QP (M), not necessarily unique, such that R(w) =
f can be constructed by averaging. Let Support(f) = {o : o € ZP,|f(0)| > 0}.

For o € Support(f), if w, be any k-form such that w, vanishes outside o and
_/0.0)0' = 1. Then f = R(ZUeSupport(f) fo)wes).

The unique representative w s, R(wy) = f, is given by

wr= ), f@ledia/Vol(@)= ) f@)dwo  (55)

o €Support(f) o €Support(f)

since Vol(o) = 1 was assumed. The uniqueness is obvious. [

The following corollary is immediate.

Corollary 5.2.10. R restricted to Q,(X), R = Rlq,, (z) has inverse R @ CH(Z) —
D .Q.;Cv (2).

In fact, it’s isometric up to a constant, depending on the grading.

Lemma 5.2.11. There exists a constant Ay, such that R”j va(Z) — CK(X) given
by R (w) := ArR(w), w € Q;‘V(Z) is anisometry withrespectto ||| 12(qry » |l cx (z)»

and therefore, the map
R” = R : 8QF (2) - & CH(2), R 1 @ CF(Z) » 0k () (5.6)

are isometric embeddings

Proof. Note that f = R(X sesupport(f) W) Where wy is the differential form that
takes the constant value f (o) on the interior of . Now || f | ;2(cxy = 1/ Nk Zgesk f(o)?,
wf”Lz(gk) =D f(a)zf(rdvol o. Recalling that by as-
sumption [5.2.8| each simplex has unit volume, Ay = +/Nj such that ||a) f” 12

while the k-form wy,

@k ~
Ak I £l L2(cry- that is, AxR is the isometry as needed. [
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The space va (%) comes with a projection. With X fixed, define ® = @y : Q¥(Z) —
Qf‘v(Z) D(w) = Y ezt ﬁw) (fa w) dyo; 0. So @ replaces w over simplex o by
d,,; o scaled by the averaged w. The following is obvious.

Proposition 5.2.12. @ is a projection on to Q;‘C(E), ®? = @ with RP(w) = R(w)

for all w

The local volume forms are not in domain of d, and therefore, Stokes theorem does

not apply and R is not a chain map on €2,,.

Observation 5.2.13. Notice that the content of proposition is encapsulated
in the chain-map property of R: for the function f, and associated 0-cochain
Rf, [RAf](o) = [6Rf](0) for any 1-simplex o = (xox;), and proposition [5.1.2]
establishes that df, 0R f are close. However, since df is a form and 6R f a chain,
one needs a way to identify 0R f with a form, that is, a way to evaluate it at a point
x € . In proposition[5.1.2] this is provided by the covariant Taylor series about x;
for higher dimensional forms, higher covariant Taylor series are cumbersome, and
the Whitney forms offer a cleaner alternative (as opposed to the heuristic argument
sketched in [[39]]).

The Whitney map, ‘W : CK(X) — QK(X), is induced by the barycentric functions,
Ai,i € [k + 1], 0on a k-simplex o = (v, vy,...,vg). If K =0, then Wo = Ay, and

otherwise,

k
(M/O':k!ZAl-d/lo/\...dﬁ,w--/\d/lk
=0

On euclidean polyhedra, the barycentric functions A; are the unique affine functions
on simplex (xoxi ...xx) such that A;(x;) = 6;;. So A; vanishes on the face opposite
to x;. The barycentric coordinates can be pulled from X to £ embedded in M
through ®. The Whitney map ‘W provides a right inverse to the de Rham map
satisfying (see [S0, § 2, § 5], [31, corollary 3.27]):

1. ‘W is a chain map

2. R(W = lck

and additionally —

Proposition 5.2.14. ‘W satisfies



89
1. (Wo, Wo)=1

2. W Spesk frollts = S f2

3. W= @kﬁ(Wﬂck is an isometry

Proof. The condition R'W = 1 implies fT Wo =1,-. This yields an explicit form
for ‘Wo since fT Wo = 1, is equivalent to using Wo = ﬁw) d,,; o where

Vol(o) = 1 for all o is assumed. The first now follows simply by

(WO',WO'):/(dew,o'/\*dwlo':/gmdma:l (5.7)

where x denotes the Hodge dual on o (not M). And, therefore,

W . foo oy = D fHWo, Way = 3" [ =Nl D ool e

oexk o

This shows that \/N_k(W is the isometry on C*. [l

Remark 5.2.15. On normalizing the vol(o) = 1/N; instead, the Whitney and de

Rham maps become isometries without the rescaling.

Uniform approximation for spectral trunctaions

The chain-map property in addition to observation[5.2.13]also allows for implement-
ing d as WoR and realizing proposition on p-forms in general. This requires
the approximation theorem due to Dodziuk [31]] (alternatively a version due to Lohi
and Kettunen [50]).

The standard subdivision of a n-simplex (pop;...p,) proceeds by introducing
O-cells p;; = (pi + p;)/2 for forming 2" sub-simplicies (see [67, appendeix II,
§ 4]). Let 2(;) denote the simplicial complex generated by applying the standard
subdivision S to X (see [67, appendex I, § 3]), and by X,y = SZ(,,—1). The measure
Uso is taken to be uniform on XV, and measures on higher skeletons are defined as

(n)
before. R, W, are the de Rham and Whitney maps

&R, - QN (Z(n) = CH(Z(n), &Wo: CH(Zy) — QX (Z())

with R;, ‘W, associated normalized de Rham and Whitney maps.

Dodizuk’s approximation theorem ([3 1} theorem 3.7]) states ||w (x) — W, R,w(x)||, <
K,dia(L),x € Ty \Zdm="1 where dia(X) = sup, .y dia(c) and K, the product of

a universal constant depending only on M, £ and maximum of absolutes values of
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derivatives of components of w ([31, Corollary 3.27]). From this the LZ(Z) version

follows using innerproduct induced by the Riemannian volume form,

(w, ) = /a) A %0 = / (w,w ) dyr Z (5.8)
) T

On k-skeleton, =¥, for o € T, set Q*(o) to be smooth differential forms on o .
Define Q°(25) = {wlyo : w € Q°*(0), o € TF}. Note that w € Q°*(Z¥) is smooth
on ¥\ %=1 The point of introducing Q*(Z) is that if  is a face of ¢, then one
does not want to consider dA; on 7 for barycentric functions associated to vertices
of o not in 7; when 7 is a shared face for o, 0’ such dA;’s from o and o’ may not

agree on .

Observation 5.2.16. The L?(X) structure considered is with respect to d,,; X, that
is, L>(Z9mM) "but the approximation theorem can be applied to each k-cell (with
>k, for k < dim M is viewed as a union of its k-cells each in itself a submanifold),
and therefore holds for w € Q(ZX). Let my be the standard subdivisions required
for the k-skeleton, then since the standard subdivsion of a simplex yields standard
subdivision of all faces, on Spax, {m, )2 forms belonging to all skeletons can be

approximated away from a set of zero measure with respect to their volume forms.

With this, the point-wise approximation implies approximation with respect to
L?(Z*) for k < dim M. Therefore,

lw = WRo|| 1234y < K}, dia(X) (5.9)

where K ,’(,w = K, Vol(Z¥), w € Q(=*), and the norm coming from inner product

(@,0) 200 = ) / (W, ') dyor 0 (5.10)

oexk
Remark 5.2.17. Using standard subdivisions can be avoided by using the variant
of the result from [50] which holds for euclidean polyhedra where each cell has a
lowerbound on ratio of volume to diameter. But the result can be pulled from Xg
to X via ¢ with the constant now dependent on choice of ¢. In both [50, 31], the

constant K, depends on partial derivatives of components of w.

The approximation property (equation[5.9) yields that d can be implemented through
Rp, W, using that R, is a chain map.

||dw - Wandwlle(Qk) = ||da) - (Wnéﬂna)”Lz(Qk) < dedia(Z(n)) (5.11)
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Since on normalizing the vol(o) = 1/Ny for o € X, the de Rham map (on local

volume forms) and Whitney map are isometries, we have the following.

Theorem 5.2.18. The exterior derivative d on QF(X) is implemented by the de
Rham and Whitney maps, R,, W,, in the sense that for every w € Q*(%),

l(d - (Wnéﬂn)w”Lz < dedia(z(n))

with R,,, W, bounded. If the uniform k-volume assumption (assumption holds

then Ryl (x,)> Wh isometries.

By the Bochner idenity, (d +d*)? is elliptic, and therefore, there exists an eigenbasis
(w;)w of smooth eigenforms for L?(Q(X)) which are also eigenforms for d+d*. Let
E,, := FinteLinSpan{w; : i € [m]}, then restricted to finite dimensional subspaces
the following uniform variant holds. This realizes both d, d*, and therefore d + d*,
through 6, R, W.

Corollary 5.2.19. For all w € E,,, there exists K,, independent of w such that

l[dw = WyoRuwll < Kudia(Zn), ||(d* =R 6 W, o||,» < Kndia(E)
(5.12)

Proof. On E,,, d, W,6R, are bounded operators, and since ||(d — W,0R,)*| =
|d — W,0R, ||, d* can be approximated as well. Now the claim follows because
K 4., in theorem|[5.2.18|can be uniformly bound for w € E,, and there are only finitely

many of them. [

Remark 5.2.20. The above result considers d + d* as an operator on the Hilbert
subspace E,,. One is also interested in the action of 0-cochains that play the role
of C(M) on k-cochains that are discretized differential forms. This is given by the
Whitney product C(X) x C*¥(2) — CK(Z) by (f,g) — R(W f A “Wg). Whitney

product is nonassociative and defined between k, k’-cochains.

Some comments on uniform k-volume assumption are in order. Notice that since
Dodziuk’s approximation theorem can be applied to each o individually, so the
measure on the manifold can be rescaled to make each cell have the same volume.
Trying to normalize the maps R, W leads to failing to maintain the chain map

property, but the other properties still hold.
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Define the volume normalized de Rham map, R’,

QK (M) 5w — R(w) = f, € CK(X), fw(Z ao) = Zam /ai w e CP(X)

and similarly the volume normalized variant for the Whitney map, ‘W’, which acts

on the basis simplices such that WR’ (o) = WR(0), preserving the approximation
property,

W (o) := yVol(o)W (o)

Proposition 5.2.21. For the volume normalized de Rham map R’

1. k-cochain f has canonical representative wy € Q;‘V(Z) given by wy =

Zo-eEk f(O') mla" dyor o

2. R’ induces an isometry on Qp,, R” = @ VN R'|gx, (as in equation which

by polarization is unitary).

Proof. Forthe first, note that R(w ) = fsince R'(wy) (o) = f (o) ﬁw) /(T dyo; o =
f (o). The isometry property follows by using that

/<wf’0)f>dvolo':f(0-)2ﬁ@-)/dvolo'

. , 2 : 2
Explicitly, ||R (wf)”Lz(Ck) = ”f”iz(ck) = NLk Zo-eZk foz" and since ||wf||L2(Qk) =
3 sk f2, therefore, R”|qr = VNiR' |« is the isometry. O]

Proposition 5.2.22. ‘W’ satisfies (W' o, W o) =1, || W' Y esk f(TO'||i2 =Y, f2
and W := @y \/;N—k(w/lck is an isometry

1

4/ Vol(o)

Proof. Since Wo = W dyor 0,80 W (o) = dyor o

<(W’0',‘W’a'):/deola/\*dvda:/mdma:l (5.13)

The rest follows as before. ]
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5.3 Reconstructing C(M)

Given f € Q%(X) = C*(M), the de Rham map gives a cochain, Rf € C°(Z). The
Whitney map embeds CY(M) as a subspace inside C(M). By observation
W(CO(X)) is dense in (C(M), ||-|l,) as Dia(X) goes to zero. Therefore, WC(X)
as the algebra of multiplication operators acting on L?(Q(M)) approximates the
action of C(M) acting on L*>(Q(M)). It remains to answer how C°(X),C(%)
approximate C(M) as Dia(Z) gets smaller, and if the limit can be characterized
as an abstract C"-algebra. The answer to the last question is given through the
PL-structure ¢ : X — M = X by using the noncommutative simplicial complex
construction introduced in [27]. At the same time the map ¢ induces an isomorphism
of C(M) and C(Xg). Finally, U, WC O(Z(n)) where X, is an embedded simplicial
complex for M (obtained, for example, as a subdivision of g) with Dia(Z,) < 1/n,
is dense in C(M). In the following subsection, the noncommutative simplicical
complex construction from [27] is recapped, and the basic theory of quantum metric
spaces is introduced. The state-space over for the algebras C(Xg) and C(M) are
then compared.

State spaces for PL-structures
Notice . . .Z?n) — Z(()n]) .-+ < M is an increasing sequence of sets, and therefore,
CM) — ...C (Z(()n)) — C(X? )... is an inverse system. Inverse limits of

C"-algebras are delicate since thénli;r)lit may only be a pro-C"-algebra and not a C" -
algebra. An approach to question of limits of such finite algebras (which is relevant
to limits of finite spectral triples in noncommutative geometry) by [64] side-steps this
by taking a dual triangulation and rewriting it as a direct limit. However, note that
C (M) can be recovered by pulling back C(Zg) : C(M) = {fo¢™' : f € C(ZE)}.
Since ¢ is PD, the action of exterior derivative can also be pulled back almost

everywhere.

Now for the polyhedron Xg, let K be the underlying abstract simplicial complex
on the vertex set Vg := Z%. X is isomorphic to the geometric realization |K| for
K. Define Ck the universal C*-algebra generated by positive generators h;,i € Vi,
hi hi, ... hj, = 0whenever{i; : j € [k]} ¢ Kandforallm € Vs, Y cyy hnhi = hp,.
Let Cl‘éb be the abelianization of Cg, so with the additional constraint hih, =
hyhi. From [27], C,‘éb =~ Co(|K|) = C(|K|) as M,K are compact. The idea
is straightforward, by the commutative Gelfand-Naimark theorem, Cl‘éb = Co(X)
where X = Spec(CI‘;b). Spec(CI‘éb) is exactly the space of map {f : Vx — [0,1] :
2y, f(i) = 1} which, by definition, is the geometric realization |K]|.
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The homeomorphism ¢ also allows for mapping states o : C(Z) — R, o :
C(Xg) — R. The statespaces, S(C(X)), S(C(Xg)) can be metricized so that
their Gromov-Hausdorff distance vanishes. To formalize this some background is
needed, for which we follow [40) 63]] —

Definition 5.3.1. [40] Let A be a real vector space.

* An ordered vector space is A along with a partial order < satisfyingx < y,r €

Rso impliesx +z < y+zand rx < ry.

* An order-unit space is an ordered vector space (A, <) with a distinguished
element e, the order-unit, such that a € A with a < re for all r € R5( implies
a < 0 and for all a € A, there exists r, € R with a < rye. Morphisms of
order-unit spaces are linear maps preserving both e, <. The order-unit space
is normed by ||a|| = inf{r > 0 : -t < a < t}, and morphisms are contractive:

l¢(a)|| < ||la|| for all @ € A, ¢ order-unit morphisms.

* The state space (S(A),dy)forAisS(A) := {f : A > R f order-unit morphism }.

S(A) is compact in weak® topology. Any semi-norm L on A satisfying
L(a) =0 < a € R where R is canonically embedded in A with topology
induced by

dip(o,7) =sup{lo(a) —t(a)| :a € A, L(a) <1} (5.14)

on S(A) the weak™ topology is called a Lip-norm. The pair (A, L) is a
quantum metric space, (S(A), dy) is the state-space.

Remark 5.3.2. From [61]], note that the topology being weak™ is implied by d
being bounded, L(a) = 0 iff @ € R and the unit Lip-ball, B; := {a € A : L(a) <
1, |la]| < 1} being totally bounded in ||-|| 4.

Example 5.3.3. For any compact Riemannian manifold (M, g) with geodesic dis-
tance d define || f|l, = infx{k > 0,|f(x) = f(¥)| < k-d(x,y)} and A = {f :
|l fllLip < oo} € C(M), then (A, [|-||L;p) is a quantum metric space and associated
state space is the state space {S(A), d||.||Lip}. Note that as an order-unit space the
norm || f|| for f € C(M) is the usual sup,.,, | f(x)].

The Gromov-Hausdorft distance, dgy, between state spaces for two quantum metric
spaces (A;, L;),i € [2] is characterized by the following:
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Theorem 5.3.4. [63, Theorem 5] If ¢;; : (Ai,L;) — (Aj,L;),i # j are two
morphisms such that ||¢,-j o¢ji(a) - a”l. < €L;(a) forall a and € > 0 is the smallest

such €, then the Gromov-Hausdor[f dgy satisfies

dou((S(A1),dL,), (8(A2),dL,)) <€

The state space over C(X) for any compact metric space X, (so 1 € C(X)) is the
space of Borel probability measures with Kantorovich-Rubinstein metric ([40]). So
if X,Y are homoemorphic then pulling back the probability measures should yield
that their state-spaces are also close. In particular, this applies to state-spaces over
C(M),C(XZg). This can be formalized using that PL-structure ¢.

Proposition 5.3.5. For quantum metric spaces, (C(Z)Lips ||l ip)s (C(ZE)Lips Il i)
don((S(C(Z)Lip). dy,) (S(C(ZE)Lip), djy,,) =0

Proof. Setting (A7, L;) as (C(Z)wips [llLip)s (C(ZR)wips IllLip)s Where C(-)pp is the
subspace of Lipschitz functions. Taking morphisms ¢;;, ¢;; as given by pullbacks
by the embedding ¢ : X — X and its inverse. Because ¢ is a PL-diffeomorphism,
therefore, ¢ (along with ¢~!) identifies the Lipshitz functions, C (Z)Lips C(ZE)Lips
while preserving the order and unit. Finally, since ¢;;, ¢;; are inverses, therefore,
||¢ij 0 ¢ji(a) —al|, = O for all @ € (C(E)Lip, (C(ZE)Lip Which yields the claim
theorem[5.3.4 O

Observation 5.3.6. As noted by [40], the Lipschitz norms they consider are not
associated to any Dirac operator generally, that is, the L in equation [5.14] is not
realizable from a Dirac operator D, L(a) = ||[D,a]||. On C(M), for the Dirac
operator D := d + d*, for f € C'(M) acting on g € C'(M) n L>(M), [D, flg =
D(fg) — (fD)g = (df)g since d* f,d*g = 0; therefore, it’s enough to check that
the usual Lipschitz norm on C(M) agrees with the operator norm for ||[ D, f]|| and,

thus, associated to the Hodge-Dirac operator.

Recall that on R the Lipschtiz norm for differentiable function F is same as the
sup norm for the differential. In R" this holds for convex domains where convexity
is required to be able to travel along geodesics and reduce it to one-dimensional
setting. Using normal coordinates along with geodesic completeness is enough to

check that this also holds on compact Riemannian manifolds.
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Lemma 5.3.7. Suppose f € C'(H) for a compact Riemannian manifold (H, g).
Then ”f”Lip = [ldf Il o

Proof. Since injectivity radius r of the compact Riemannian manifold (H, g) is
positive, so for any x € H, let exp, B,(0) C H be the normal ball around x. Then
the geodesic distance dg from p to g = exp,,(tv) where v € T),(H), with [[v|| < 1
is the tangent vector defining geodesic from p to g, d,(p,q) = ||[tv]|. Therefore,

f(q) — f(p)/de(p,q) = (f(exp,(tv)) — f(exp,(0)))/llzv]]. Note F = f oexp :
[0,7] — R; this gives

If @ = f@I_ [ ITE ]

ds < sup ||df [|
o] o vl sefog P

where it was used that since the differential of the exponential map satisfies dg exp , (sv) =

svand |[v|| <1, s0

sup |<dFSVa V>| < sup |<dfexp (w)dOepr(sv) V>| < sup ”dfexp (w)””svll

s€[0,7] s€[0,7] s€[0,1]

Now suppose ¢ is not in the normal neighborhood of p. Then let y be the geodesic
with length d,(p,q). Pick p;’s on y, with po = p,p, = g such that p;; is
in the normal neighnorhood of p;, this is possible as injectivity radius r > 0
on H. Now apply the same argument to each pair of points finally note that
Yic1 dg(pi1,pi) = dg(p,q), yielding ||f(q) — f(P)Il < supeey lldfsll de(p. q)-
Therefore, || fllLi, < lldflle- The other direction ||df|l,, < [|fllL;, follows from
definition since df is limit of a difference quotient.

]

Combinatorial finite and Hodge-de Rham spectral triples

Recall how commutative geometry is encoded in the noncommutative language.
The Hodge-de Rham spectral triple, 2, for Riemannian manifold (M, g) is the
data Wy := (C*(M),Q*(M),d + d=) where d + dx is the Hodge-de Rham Dirac
operator, d the exterior derivative on differential forms Q°(X), and d* the adjoint.
By Connes’ spectral characterization of manifolds[25]], (M, g) can be recovered

from A y,.

Now the metric geometry of a finite set X with metric d is encoded by a finite spectral
triple Ar which is the data Ap := (Ap, Hp, DF), where Ay is an unital «-algebra
represented faithfully on a Hilbert space Hp,dim Hf finite, and D a symmetric
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operator on Hr subject to some additional requirements, the explicit form for D
encoding the data d(x,y) for x,y € X. The metric d can be used to construct
a simplicial complex, for example a Rips complex, or alternatively the simplicial

complex could be part of the input geometric data.

To work with spectrally truncated Dirac operator, the definition of a spectral triple

needs to be relaxed.

Definition 5.3.8. [[63] An operator system spectral triple is a triple (£, H, D) where
E is a dense subspace of an operator system E c $B(H), on the Hilbert space H
and D is a self-adjoint operator on H with compact resolvent satisfying [D,T] is a

bounded operator for all T € E.

The operator system carries a natural order-unit structute, and so unit norm positive
linear functionals, that is, states, can be considered. Now noting corollary [5.2.19]
the combinatorial Dirac operator 6 +0™ on the embedded simplicial complex approx-
imates the Hodge-Dirac operator d +d* uniformly on the truncated space L?(Q(X)),
E,,. To encode this as a spectral triple, the algebra C(X) needs to be compressed to
act on E,,, however, the trunctation leads to mC (X)m being only an operator system
since the multiplication in mC(X)m will not agree with C(X). This motivates the
relaxed notion of operator system spectral triples. Let A, : L>(Q(X)) — E,, be the
projection, then compressed C(X),, = {AnfAn : f € C(X)}. Define the truncated
Hodge-de Rham (operator system) spectral triple W,,, = (C(Z),, E, m(d + d*)m).
Note that restricted to E,,,, m(d + d*)m = d + d*.

Define the combinatorial finite spectral triples Ug , = (CO(Z(,L)), L*(C (Zm)), 0+

0*) where, as earlier, % (n) denotes the n-fold standard subdivison of 2. The combina-

0
(n)°
different from finite spectral triples. The convergence to the underlying smooth

torial finite triples give a finite-dimensional encoding of the finite metric space X

structure can still be made explicit: from before ¢ + ¢* uniformly approximate
d + d*|g,, while on identifying f € CO(Z(n)) with f’ € L®(M) (for example, by
assigning to any k-cell the average of the vertices), the strong density of CO(Z(,,))
in C(M) is clear.

For the Hodge-de Rham spectral triple, Wy, := (C® (M), Q* (M), d + dT) we have
the following.

Theorem 5.3.9. Let K(C(M)) be the compact operators, then the statespace
S(C(M)w), is dense inthe state space S(K(C(M))) inthe operator norm |||lgcc(my)—Rr-
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Proof. This follows after noting that the continuous dual of K(C(M)) is isomet-
rically isomorphic to the space {Tr(-A) : A € C(M), trace-class}, which after
normalization become order-unit morphisms. If f = [ f;;] in basis w; for L*(Q(X))
then Ay fAn = [(fin)ij] where (fin);j = O unless i, j € [m], so C(M)y) are all
finite rank operators, and as trace-class operators are compact, the norm-density
holds. [

This is in the spirit of [40, proposition 15]; however, the norm on the statespaces is
not Lipschitz. Next we adapt the construction from [40] to obtain the same result
for Gromov-Hausdorft convergence of statespaces of truncations, first for bitorsors

and then for any compact manifold carrying sufficiently nice groups actions.

Spectral truncation on G-spaces

Now let H be compact manifold on which a group G acts continuously and transi-
tively from left and right. Let the left and right actions be R, (h') = h'g, L,(h’) =
gh’, and suppose they commute, LyRy (h') = g(xg’) = (gx)g’ = Ry Lg(h'). Fix
h € H and for every y € H, let g, be such that g,h = y and g, be such that
hgy, = y. Suppose that the geodesic distance d is G-invariant, d(gh,gh’) =
d(h,h") =d(hg',h'g").

Observation 5.3.10. The identification H 3> y — g, € G is induced by the group
action ¢ : G X H — H as the inverse of the map ¢, : G X {h} —» H,g — gh. By
transitivity of the group action, for any y, g, exists, but is not necessarily unique
unless H is a group. On homogeneous spaces, the assignment y — g, can be made
continuously (smoothly if the action is smooth) over any local trivialization. The

same dicussion applies to g,

For simplicity, assume that for the maps ¥ : H — G,¥(y) = g, L : G —
Homeo(H),g — L, the composition L o ¥ : y — L, , is 1-Lipschitz contin-
uous with respect to metric dyomeo(rry On Homeo(H) where dyomeo() (P, ¥) =
supyep d(¢(k), ¥ (k)), s0 dgomeo(Lg,, Lg.) < d(y,z). The same for gy.

Let A := C(H),and A,, := mC(H)m where m : Q(H) — E,, is the projection onto
E,,, the subspace spanned by first m eigenforms for d+d*. The associated statespaces
are S(A),S(A,,). Notice that A, is finite dimensional as it’s a subalgebra of
endomorphisms of a finite dimensional Hilbert space. Without loss of generality it
can be assumed that 1 € E,, for all m, since 1 € Ker(d + d*) always holds, so this

is just a reordering of the eigenbasis.



99

Now we proceed as in [40]. The map m is an order-unit morphism and induces
m*: S(A,) = S(A) by m*o = 0 om. Any Borel measure u on H defines a linear
functional on A, A,, by 1,(f) = fH fdu which preserves the order structure and unit
since f > 0 means /,(f) >0, I,(1) = 1. Suppose I, is a state on A. The pullback

m*1,, is the linear functional given by
' L(f) = L,(n(f)) = /H [m ()] du(y) = /H ()] (g du(y)  (5.15)

The left action of G on A, A,, is given by Lg(f)(h') = f(Lg(h')) = f(gh’), there
is also the right action Ry (f)(h') = f(Rg(h")) = f(h'g). Notice Ly acts on C(H)
by f — foL,, and that m commutes with L. These actions allow for defining the
usual Lipschitz norm on A = C(H) in terms of G and any ' € H

Lip(f) = [1fllLip = Zsyue% d(y,z)

Lo(f)(W) = Ly (f)(R)
8.8'€G.gh’#g' W’ d(gh,’ g/h,)

Ry (f)(I') = Ry (f) ()
0.8'€G.h g#h'g’ d(hg, g’

where it was used that the actions Ry, L, are transitive so every (h',h”) € Hx H
can be reached through the action of some gj, g5». Note i’ € H is arbitrary, so
h' = gph can be used. Now the following proposition follows directly by using

characterization from remark 5.3.2]

Proposition 5.3.11. The norm |||y, restricted to Ay, is alip norm, andm : A — Ay,

is a morphism of quantum metric spaces, (A, L), (A, L).

Next a morphism v such that lemma [5.3.4] can be used with v, m is needed. This
can be done by adjusting the construction from [40]]. Let u be a probability measure
such that u defines a state on S(A,,). Define v, ;, by

Vi * Am = Ay Vi (F)(Y) = 1u(Lg, (f)) (5.16)

Proposition 5.3.12. The map v := vy, , a morphism of quantum metric spaces.

Proof. The only thing that needs to be checked is that it’s contractive. Note that
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I,u(Lgy (f)) - Iu(LgZ (f)) = I/t(Lgy (f) - ng (f)), and therefore,

Lip(v(f)) = sup ! /H(f(gyW)—f(ng))d/i(W)

82.8y€G.g h#gyh d(y, Z)

= sup / (f(gyhgw)_ - f(gfhgw)
u\  d(gyhgw,g:hgw)

where the G-invariance was used to get d(gyhgw, g:hgw) = d(hg,, hg:). ]

Jautw) < Lip(r) .17
8::8y€G g h#gyh

The following yields the analog of [40, proposition 14] in similar manner.
Proposition 5.3.13. Forall f € A, f,, € Ay C A,

sup v o m(f)(2) = f(2)| < Lip(f)m"1,(d(gyh, h))

sup [m o v(fn)(2) = f(2)| < Lip(fm)m* I, (d(gyh, h))

Proof. Consider [|v o m(f) = fIl = sup,epy [v o m(f)(y) = f (). First

(vom(f))(z) = I.(Lg,(m(f))) = Lum(Lg (f)) = /H[m(LgZ(f))](y)ﬂ(y) =m"1(Lg,(f))

This means

v om(f)(2) - f(2)] = Im L(Lg, () = f(2)m" 1, (D] (5.18)
= |m* I (Lg, (f)) —m L(f(2)D] (5.19)

_ /H m (L. (F10) = £(2) du(y)
= /Hm (f(gzgyh) - f(gzh)) dp(y)
sLip(f)/Hm(d(gzgyh’gzh))dﬂ(ﬁ

and therefore, sup [v o m(f)(z) — f(2)| < Lip(f)m*1,(d(gyh, h)) (5.20)

where f(z) moves inside m*1, since it’s a constant with 1 € E,, for all m, and in the

last line follows using the G-invariance of metric. Now for f,,, € A,
m o v(fyu)(2) = fulz) =m ( [ e hduty) - fm<z>1)
= [l - m[fm](gzh))d/l(y))
H
<m ( i m(Lip(fmm(gzgyh,gzh»du(y))
H

< m(Lip(fin)m™ 1, (d(g:8yh, g:h))) = m(Lip(fin)m™ I, (d(gyh, h)1))
< Lip(fm)m*l,u(d(gyh’ h))
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since m(f,,) = fm and in the second last line G-invariance of the metric was used,
while the last line used m (1) = 1. O

Notice that the group action on left and right do not need to be the actions of the
same group, and if the group is abelian then both left and right actions can be taken
to be the same. So the analysis covers any bitorsor with compact base and invariant
metric which is a triple (L, H, R), H any compact set equipped with commuting

free and transitive groups L and R from left and right respectively.

The rest of the argument proceeds identically to [40]. To recap briefly, the space
of probability measures y such that m*1, is a state on A,, forms a weak™ dense
subspace of S(A). On choosing the state §;,5,(f) = f(h), for the continuous
function f(x) = d(x, h), by weak™ convergence, there’s a u that is approximates
o, well, that is, fH d(y,h)u < e. Now note that if y induces a state on S(A,,),
then it also induces a state on A,, for n > m, and therefore, v, m provide the pair of
morphisms satisfying requirements for theorem [5.3.4] This allows to conclude the

following.

Theorem 5.3.14. Over any bitorsor (L, H, R), H compact, the metric on H invariant
under L and R actions, both 1-Lipschitz continuous, and endowed with continuous
maps ¥y : H — L,yg : H — R, the state spaces S(A,) converge to S(A) indgy:
forany € >0, dgy(S(A),S(A,)) < € for n large enough.

Example 5.3.15. A group acting on itself from left and right is trivially a bitorsor;
theorem [5.3.14] covers the case of any quotient of the flat n-torus by a closed

subgroup.

However, needing commuting left and right transitive actions is restrictive. The
only place where the existence of a commuting right action was used was to show
that v/, was an order-unit morphism (equation|5.17)). Reconsidering

1 B _ f(gyw) - f(g:w) d(gyw7 g:w)
e /H (Flaym) = Flgampton = [ Ze e S
d(gyw,gzw)
< [ lluip Wﬂ(w) (5.21)

So v being an order-unit morphism is implied by sup,,.y, d(g,w, g.w) < d(y,z2).
Denoting the map z — g, by ¥ : H — Homeo(H), then with respect to the metric
dHomeo(#) On Homeo (H),
d(gyw, gzw) dHomeo(H)(lP(y)’lP(Z))
sup = <
weH d(y’ Z) d(y» Z)

1 (5.22)
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That is, ¥ is 1-Lipshitz continuous is equivalent to sup,,.y d(g,w, g:w) < d(y,z).
Therefore, the existence of the right action can be replaced by Lipshitz continuity

of the left action.

Remark 5.3.16. The Lipschitz constant 1 is not necessary; any Lipschitz constant

C works becuse if [|-||jp is a Lipschitz norm then so is C ||| ;p-

Remark 5.3.17. Notice that if H is additionally a group acting on itself from left
and right, with & = e, the identity, then 1-Lipschitz continuity of the right action also
yields d(za, zb) < d(a,b) by symmetric argument. Since in proposition
only the bound d(za, zb) < d(a, b) is used, the invariance of the metric with respect

to left and right actions can be dropped in this setting.

Combining this with lemmaalong with choice of v, , (f) () = 1, (fo'¥(y)) for
Y:H—->G L Homeo(H) where L denotes the action of G, L : G — Homeo(H)
(analogous to equation m where vy, (f)(y) = 1.(f o Lg,)), and using that
propositions[5.3.12] [5.3.13|still hold because of the Lipschitz continuity assumption
on the action, yields the following result.

Theorem 5.3.18. Let N, = (C(H)m, Em, m(d + d*)m) be the truncated Hodge-de
Rham spectral triple.

1. If H is a compact Lie group, and the left and right actions by multiplication
of H on itself are 1-Lipschtiz continuous

2. Or if H is a compact Riemannian manifold which carries the action L of a
group G, L : G — Homeo(H), a G invariant metric, and amap ¥ : H —» G

such that L o V¥ is 1-Lipschitz continuous, the G action transitive

then
Jim deu((S(C(H)m): IIlay,)> (S(CH)), I 1l4,)) =0

and for f € C'(H), I flla,, = Ild +d", f1II
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Chapter 6

EPILOGUE

There are a few possible directions for the ideas developed so far.

In quantum optimal transport literature, gradient flows and noncommutative trans-
port equation have been used to study information theoretic quantities like decay
of relative entropy. A natural question is what is the information theoretic content
of the infinite-dimensional heat semigroups and how does it reflect the geometry.
The methods and vocabulary have been developed in the quantum information com-
munity, but the settings considered are finite dimensional and there isn’t a dual
differential geometric picture (although associating generalized curvature/tangent
spaces to semigroups and Markov processes has been explored). Studying the heat
semigroups with these tools and connecting with the underlying geometry is one
possibility. Additionally, there have been attempts at defining a noncommutative
Malliavin calculus; it’s interesting to consider if the variational approach will yield

something new.

The Dirichlet form machinery breaks in semi-Riemannian geometry because oper-
ator algebras over vector bundles with semi-Riemannian metrics are not operator
algebras over Hilbert spaces. This was encountered in the Cl, , example. Moving
between signature (p, 1) and euclidean signature, one expects a Wick rotation to
go from a dissipative semigroup to a unitary semigroup. Formalizing this corre-
spondence will aid in understanding how to make sense of quantum dynamics in
non-euclidean signature. A more open-ended question is what it means for a stochas-
tic quantization of spectral action; fuzzy spectral triple and related noncommutative
geometric approaches to gravity provide a testing ground. Increasingly, noncom-
mutative probability has found utility in stochastic quantization, and a probabilistic

perspective on spectral action is one possible way to add geometry to the mix.
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