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ABSTRACT

Understanding and predicting electron transport in novel materials is crucial to de-
velop practical applications and accelerate materials discovery. Electron-phonon
(e-ph) interactions are a key source of electron scattering and therefore play a
dominant role in limiting electron transport under applied external fields. These
interactions and the resulting phonon-limited charge transport can be calculated very
accurately using ab-initio methods based on the semiclassical Boltzmann transport
gquation (BTE), where electron and phonon properties are obtained using density
functional theory (DFT) and density functional perturbation theory (DFPT) tech-
niques. Despite these advances, first-principles calculations of magnetotransport are
still in their infancy, primarily due to technical challenges associated with solving
the BTE in the presence of a magnetic field. Additionally, calculations of electrical
charge transport and magnetotransport in topological materials are lacking because
of various technical challenges, including computational cost and the absence of a
unified formalism combining electron scattering and band topology in the BTE. In
this thesis, we develop a framework that incorporates these effects into the BTE to
compute charge transport, magnetotransport, and topological transport regimes in
several classes of conventional and quantum materials. Our magnetotransport calcu-
lations achieve excellent agreement with experiments, and we uncover an interplay
of strong e-ph interactions and magnetic fields in graphene through a microsopic
analysis of steady-state electron distributions. As a first step toward including band
topology, we compute e-ph interactions and charge transport in the Dirac semimetal
Na3Bi, and find that specific two-dimensional phonons control charge transport near
room temperature. These lattice vibrations induce a dynamic phase transition to
a Weyl semimetal, providing a platform for ultrafast control of dynamical phases
in NasBi. Expanding into more advanced phenomena, we incorporate the electron
Berry curvature in the BTE formalism and study topological transport effects such
as the chiral anomaly and nonlinear Hall effect (NLHE). Our calculations provide
an accurate quantitative framework and demonstrate the importance of e-ph inter-
actions in accurately describing topological transport in quantum materials. Lastly,
we compute e-ph interactions in a novel correlated metal, RuO, which has been
widely studied for its unconventional magnetism. We uncover various interesting
properties such as phonon softening, strong e-ph band renormalization, and a high

superconducting T. upon application of strain in RuO,. Finally, we show a method to
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significantly accelerate all these calculations by compressing the matrices represent-
ing e-ph interactions. In summary, this thesis expands the scope of first-principles
transport calculations to include magnetic fields and band topology. This enables

future studies of electron dynamics in broad classes of novel quantum materials.
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Chapter 1

INTRODUCTION

1.1 Overview

Transport phenomena can range from conventional charge transport in well-known
metals and semiconductors to more advanced effects such as magnetotransport,
band topology effects, and superconductivity. This physics finds applications across
diverse fields. For example, magnetotransport has applications in memory storage
and Hall sensors [1, 2], and topological materials, such as topological insulators [3]
and topological semimetals [4], have novel transport properties with applications in

quantum computing [5], thermoelectrics, and spintronics [6], among others.

These transport regimes can be described quantitatively in real materials by examin-
ing the microscopic scattering processes that govern charge transport. For instance,
the Hall effect, which refers to the appearance of a Hall voltage on application of
magnetic fields, is limited by electron scattering processes [7]. More recently, there
has been a surge in the discovery of novel topological transport regimes such as the
chiral anomaly [8] and nonlinear Hall effect (NLHE) [9]. The chiral anomaly, which
refers to charge pumping between two Weyl cones on application of parallel electric
and magnetic fields, requires a knowledge of both electron scattering processes and
band topology. Another phenomenon with a similar physical origin is the NLHE,
which leads to the generation of a nonlinear Hall voltage in materials without any
external magnetic fields or magnetization. A detailed microscopic understanding of
these phenomena requires new computational methods able to accurately describe

electrons, phonons, their coupling, and topology in complex materials.

While electronic motions near and above room temperature are limited by vari-
ous sources of scattering, these effects are governed by electrons scattering with
phonons, or thermal atomic vibrations. Electron-phonon (e-ph) interactions are
therefore key to understanding the microsopic processes governing charge transport,
and the semiclassical equation that describes electronic dynamics in the presence
of e-ph interactions is the Boltzmann transport equation (BTE). The BTE combines
the effects of external fields and electron scattering into a set of coupled transport
equations, which can be extended by adding the Berry curvature to account for non-

trivial band topology. The remarkable versatility of the BTE lies in its applicability
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for a wide variety of materials with relatively weak e-ph interactions. However, one
major limitation is the lack of closed-form solutions in the presence of scattering
processes. Much theoretical work focuses on solving the BTE by using analytical
techniques or numerically using constant relaxation times obtained empirically or
estimated computationally [7]. This prompts the use of state-of-the-art numerical

techniques for more accurate solutions.

In recent years, first-principles methods using density functional theory (DFT) [10]
and density functional perturbation theory (DFPT) [11] have enabled accurate cal-
culations of e-ph interactions and charge transport [12—-17]. These calculations
have demonstrated excellent agreement with experiments in a wide variety of ma-
terials. However, the current BTE framework is limited primarily to computation
of charge and heat transport. A more general version that incorporates external
magnetic fields, magnetism, or band topology is still missing. The primary reasons
are technical and numerical challenges associated with solving the BTE when e-ph
collisions, magnetic field, and Berry curvature are all present at once. For example,
magnetotransport calculations evaluate derivatives in electron momentum space,
and therefore typically require momentum grids much finer than a zero magnetic
field calculation. Similarly, analyzing chiral anomaly and NLHE require additional
calculations of electron Berry curvature to incorporate band topology. In turn, solv-
ing the BTE with Berry curvature is nontrivial and requires advanced techniques to
avoid or integrate out singularities in the Berry curvature and predict sensible trans-
port properties. Large unit cells and overall structural complexity of such materials

further complicate the calculations.

In this thesis, we develop first-principles methods to address this physics. With these
new tools, we study novel transport effects such as charge transport, magnetotrans-
port and topological transport in semiconductors, topological semimetals, and other
advanced quantum materials. Our primary goals are expanding the BTE frame-
work and providing a deeper microscopic understanding of the above-mentioned
effects. We derive expressions for the full BTE in the presence of magnetic field and
Berry curvature, and implement them in our open-source code PERTURBO [18].
We also develop numerical techniques such as adaptive grid refinement for chiral
anomaly calculations and finite-difference schemes for evaluating momentum-space
derivatives for magnetotransport [19]. Our calculations are compared carefully with
available experimental data. They provide a deeper insight into the interplay of e-ph

interactions, electric and magnetic fields, and band topology. Overall, this work
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advances first-principles transport calculations, showing a quantitatively accurate
framework to predict and understand magnetotransport phenomena in both conven-

tional and topological quantum materials.

1.2 Charge transport and magnetotransport

Figure 1.1: A Schematic illustration of electron (red) and hole (blue) motions under
electric and magnetic fields, E and B, respectively. The black wavy arrows represent
phonons, and 0;;(B) is the conductivity tensor. This figure has been taken from the
Editor’s suggestion image representing our work in Ref. [20].

In the semiclassical approximation, electrons are viewed as localized wavepackets
with position x and crystal momentum k. Electronic motions in a lattice comprise
two components: the drift terms due to applied electric and magnetic fields, and
the scattering processes, particularly with phonons (Fig. 1.1) and impurities. The
semiclassical equations of motion under applied electric and magnetic fields (E and
B respectively) are given by [7]

1 0enx

. hok (1.1)
k = —ﬁ[E—i-)'( X B],

x

where €, is the electron band energy for crystal momentum k and band index n,
while e and A denote the absolute value of electron’s charge and Planck’s constant
respectively. In weak electric fields, the linear current response is described by
the conductivity tensor o;;. Additionally, electrons acquire a transverse velocity on

application of a magnetic field B, which changes o;; and gives it a B dependence.

The electronic transport properties can be calculated using the BTE, which at steady-
state takes the form [7]

df nk
dt

_ afnk
- ( 8t )forces + (

afnk
ot

)e—ph = 07 (12)

where we ignore impurity and other forms of scattering. The BTE expresses the

principle of particle number conservation in a system. The changes in the electronic
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occupations f,, due to external fields and e-ph scattering processes balance out at
steady-state. One can solve for f, using Equations (1.1) and (1.2) and knowledge
of the electron collisions. Additionally, from the steady state occupations f,; (and
their deviation from thermal equilibrium), we can calculate transport properties such

as the conductivity and resistivity.

Beyond the classical picture: Berry phase and Berry curvature

While the semiclassical equations of motion (Eq. (1.1)) are sufficient to capture
transport in conventional materials, additional quantum corrections are needed for
the case of topological systems. We present a brief overview of these corrections in

this section.

A complete quantum description of electrons is given by the Bloch wavefunctions
|tnk). When external fields are applied, electrons move across the parameter space

(in this case, the momentum k(t)), and their time evolution is given by [21]

[Pn(t)) = 10 k(1)) pivn (k(t)) |¢nk(t)> . (1.3)

Here, 6,,(k(t)) is the dynamic phase acquired by the electrons:

—1
R (14

where €,/ is the energy of the Bloch state |¢,x). The non-trivial phase v, (k(t))
is called the Berry phase, which can be derived by plugging the Bloch wavefunction
into the time-dependent Schrondiger equation. As the electron moves through the
parameter space k(t), the Hamiltonian changes adiabatically as H (k(t)), and the

Schrodinger equation becomes
ih0; [ (1)) = H(K(1)) [¢n(t)) = eney [ (1)) - (1.5)

Plugging Eq. (1.3) into Eq. (1.5) and rearranging terms, we get
dﬂ)/nk

If the electron traverses a closed path in k- space from time ¢=0 to time ¢=t, one

obtains

Tu(k(t)) = / <wnk<t>|3wnk<t»dt=;§ bl o )

(1.7)
:/ds (Vi X (@/Jnkl Iwnk>)
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where we used Stokes’ theorem to convert the line integral to a surface integral in
the last step. The quantity A, = (k| 2 |thnk) is called the Berry connection, and
its curl €2, = Vi X A,y is the Berry curvature.

The Berry curvature is gauge-invariant and is a fundamental quantity with observable
consequences on electronic motions. It is key to describing band geometric and
topological properties of a material. The simultaneous presence of external electric
and magnetic fields and Berry curvature modifies the semiclassical wavepacket

dynamics. Equations (1.1) become [21, 22]

1a€nk .
X = — —k X Q,x
. R Ok (1.8)

which shows that the electrons now acquire an anomalous velocity given by kX Q.

Topological transport : Chiral anomaly and nonlinear Hall effect

The introduction of the anomalous velocity term in Equation (4.1) influences trans-
port in systems with a finite Berry curvature. Part of this thesis aims to explore
two such effects, namely the chiral anomaly and nonlinear Hall effect (NLHE). We

provide a brief overview of these two effects in this section.

Topological semimetals are characterized by band crossings with linear band dis-
persion near the Fermi level. We consider a Weyl semimetal, a class of materials
with two-fold band degeneracies near the Fermi level, commonly called Weyl nodes.
The Weyl nodes act as sources and sinks of Berry curvatures, which exhibits large
values in their vicinity [4]. Therefore, the anomalous velocity term in Equation (4.1)
becomes important and influences transport significantly in the presence of external
electric and magnetic fields. Particularly, the application of parallel electric and
magnetic fields induces a charge pumping effect between two Weyl nodes with op-
posite Berry curvatures, causing a net increase in charge carriers near one node and
a decrease near the other [8]. This phenomenon, called chiral anomaly, leads to a
net increase in electrical conductivity along the direction of the applied fields. A
related effect occurs in Dirac semimetals (materials with four-fold band degenera-
cies), where application of magnetic fields separates the Dirac nodes into pairs of

Weyl nodes in momentum space, inducing a similar charge-pumping effect.
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Let us also briefly discuss the physics of NLHE. In materials with time-reversal
symmetry, the Hall conductivity, which measures the linear response of a transverse
current to applied electric fields, is zero. A finite Hall response is achieved only
by breaking the time-reversal symmetry, typically by applying external magnetic
fields or in systems with finite magnetization. However, in time-reversal symmetric
systems with a finite Berry curvature, it is possible to obtain a Hall response as
a nonlinear effect in the applied electric field, but without any external magnetic
field or magnetization [9, 23]. This response, which originates from the anomalous
velocity term in Equation (4.1), is second-order in the electric field. The generation

of a nonlinear Hall voltage in time-reversal symmetric materials is called the NLHE.

1.3 First-principles transport calculations

Numerical solution of the first-principles BTE relies on calculations of electrons,
phonons and e-ph interactions. First-principles methods using DFT and DFPT
provide state-of-the-art accuracy in predicting these properties. DFT has become
increasingly widespread in the past three decades due to its tremendous predictive
power in computing electronic properties such as the electronic ground state, wave-
functions and band energies. Similarly, DFPT, a linear response variant of DFT,
enables accurate calculations of phonons and thermal properties in real materials.
Recent years have seen a surge in the combined use of these two methods to com-
pute e-ph interactions [12, 14, 15, 17, 24-26]. This section summarizes some of the

first-principles methods employed in this thesis.

Electrons, phonons and electron-phonon interactions

We accurately compute the electronic structure, including the Bloch wavefunctions
|nk) and band energies €, by solving the Kohn-Sham (KS) Hamiltonian in DFT
self-consistently, with the atomic positions as the only input [10]. The KS Hamil-
tonian is based on the Hohenberg-Kohn theorem, which states that the ground-state
energy of a system is a unique functional of the charge density. Therefore, DFT is,
in principle, an exact theory. However, construction of the KS Hamiltonian requires
a knowledge of the electronic correlations, particularly the exchange-correlation

terms. These terms are typically modelled using well-known approximations [27].

We implement our calculations using the QUANTUM ESPRESSO code [28, 29],
which allows us to compute the charge density, wavefunctions |¢,x), and energies
€,k On momentum grids of desired accuracy. We also calculate lattice dynamical

properties such as the phonon dispersions (w,q), displacement eigenvectors (e;),
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and perturbation potentials using QUANTUM ESPRESSO, where v and q are the

phonon mode index and momenta respectively. These calculations provide the

quantities necessary to compute e-ph coupling matrices, which are defined as [18]

gmnu(k q waq KZ Q/Jkarq‘ 8q,ﬁoz‘/ W}nk> . (19)

Here, |¢,k) and |)pic1q) represent the initial and final Bloch states, efq is the
displacement of the atom x (with mass M,,) along direction « due to a phonon
with momentum g and mode index v, and O .,V is the corresponding perturbation
potential. Therefore, g, (k, q) quantifies the amplitude of scattering between the

Bloch states |1/,,x) and |1),,x+q) by either absorption or emission of a phonon |vq).

Note that transport calculations require computing g, (k, q) on very fine k- and q-
grids, typically of order 100 X 100 x 100 or finer. However, the large computational
cost of DFPT limits the phonon grid sizes to much smaller values. Therefore, a
practical implementation involves computing these matrix elements on relatively
coarse grids of order 10 X 10 X 10, and then interpolating them to finer grids using
maximally localized Wannier functions (MLWF) [30] from WANNIER90 [19] code.
This interpolation and the full workflow are implemented in the open-source code
PERTURBO developed in our group [18], which uses electron and phonon properties
from QUANTUM ESPRESSO and MLWF from WANNIER90 as inputs to compute
9mnv (K, q) on very fine grids.

Wannier interpolation of the electronic structure

Wannier interpolation relies on the construction of MLWF |[nR.) in real space, with
band index n and unit cell R, [18],

—tkcRe

InR.)

e

Tch N Z e_lkc Re Z Umn ‘¢mkc>

N, 4o ke o
(1.10)

where Ny is the number of points in a coarse electron-grid represented by k.,
Wﬁ@} are Bloch states in the Wannier gauge, defined in the last step of Eq. (1.10),
and U,,,(k.) are unitary matrices relating the Bloch and the Wannier representa-
tions. The U,,,(k.) matrices provide a degree of freedom to construct the Wannier
functions, and are obtained by iterative solution to achieve maximum real-space

localization.
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We now construct the real-space electronic Hamiltonian H,,,, (R.) = (m0| H [nR.).
Using Eq. (1.10), we obtain

1

Hmn(Re) - m
< k.

e—ikc'ReH(W)(kc) R Z €_ikC'Re(UTH(kc)U)mnu
(1.11)

where H (k.) and H")(k.) are momentum-space Hamiltonians in the Wannier and
Bloch bases respectively.

Because the Wannier functions are localized in real-space, H,,,(R.) decays rapidly
as |R.| increases away from the center of the supercell |n0). As a result, the
Hamiltonian in the Wannier function basis can be smoothly interpolated to any

arbitrary electron momentum k, using

H™(k) =Y e*®H(R.). (1.12)

Re
In addition, #") (k) can be further diagonalized to obtain the Bloch Hamiltonian
using HW) (k) = Ut(k)H (k)U (k). The quantity H (k) is a diagonal matrix with
energies €, and the matrices U (k) are the eigenvectors of H")(k), representing

the wavefunctions ).

The e-ph coupling matrices are interpolated in a similar manner. One first con-
structs the e-ph matrix elements in Wannier basis using MLWF, and interpolates
back to arbitrary k- and q- points using their localization property. Note that since
gmnv (K, q) depends on both electron and phonon momenta, the real-space trans-
formation involves a double summation over coarse k. and q. grids, which can be

viewed as a generalized double Fourier transform.

Berry curvature using Wannier interpolation

A final component necessary to compute transport in topological materials is the
Berry curvature €2,,. We summarize the formalism developed by Wang et al. to
compute Berry curvature using MLWF [31].

We define a generalized rank-2 Berry curvature tensor with two band indices,
Q.1n.0s(k), in terms of the Berry connection A,,,;,(k) = i (k| Ok [tnk):

an,aﬁ(k) = akaAmn,B - 8k3Amn7aa (113)
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where o, are Cartesian directions. The physical Berry curvature €2, can be

expressed in terms of €,,,, »5(k) as

1
an,w = §€a579nn,o¢ﬁ(k)a (114)

where € is the Levi-Civita tensor and we assume an implied summation over repeated

indices « and £.

Using the formalism described in Ref. [31], we can compute the Berry curvature

using the relation

Qaﬁ(k) = Qaﬁ(k) - [Doé(k)v Aﬁ(k)] + [Dﬁ(k)v Aa(k)] - Z[Da(k)7 Dﬁ(k)] (1.15)
Here, Q,5(k) = UT(k)Qgg)U(k) and A, (k) = UT(k)A(aW)U(k), where (W) denotes
the Wannier gauge, and U (k) is the unitary matrix obtained when constructing the
MLWEF, as described in the previous section (Eq. (1.10)). In addition, D,,, o (k) is
defined as

Oy H i (k
Dinna(k) = (UT(K)Ok, U = ’““—()(1 — Oan). (1.16)
€nk — €mk
The four quantities need to calculate the right-hand side of Eq. (1.15) can be com-

puted in the Wannier gauge using the following relations:

mn

HOWV (k) =" ™" (0m| H [Rn)
R

O, HO) (k) =Y~ e™®iR, (0m| H [Rn)

R (1.17)
AN (k) =) e " (0m| 7, |Rn)
R

Q) 5(k) =" e*R(iR, (0m| 75 |Rn) — iRz (Om| 7o |Rn))
R

Since the WANNIER90 code allows us to calculate (0| H [Rn) and (0m| 7, |Rn),

we can compute the quantities in the Wannier gauge using Eq. (1.17), and convert

them to Bloch gauge using unitary transformations U(k). The quantities in the

Bloch gauge can be used to compute the Berry curvature using Eq. (1.15). This

formalism is exact, and can be used to obtain the Berry curvatures accurately in real

materials. We have implemented this formalism in PERTURBO.
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Electron-phonon scattering rates, Boltzmann transport equation and charge
transport

Using the semiclassical equations of motion and the steady-state BTE (Egs. (1.1)
and (1.2)), one can rewrite the linearized BTE in the presence of an external electric
field as

Vnk = 37 Z W:Smk+q nk — Frkiq), (1.18)

9 m,vq

where v, and N are the band velocities and the number of g- points used in the

summation, respectively. Here, F',,, represents the change in electronic occupations

relative to thermal equilibrium, and is defined as fru— i = — (1= foi) 1oz Fokes
while WL, | is the scattering rate from ) t0 [kt q) Calculated using Ferm1 S

golden rule. The total e-ph scattering rate for state |¢,,) can be calculated as [18]

vq
Z Wnk ;mk+q

94 m,rq

= f’gmm/a{a q)|2[5(€nk - hwl/q - 6mk+q)(1 + Nl(/)q - fa?zk+q)

+ (5<€nk + hqu - 6mk+q)(N19q + f??lk+q)]7

(1.19)

where f;), and N;, are the Fermi-Dirac and Bose-Einstein distributions in thermal
equilibrium at temperature T, respectively. The conductivity tensor o;;, defined as
a linear response to the current density (J; = ) ; 0ijL;), can be expressed in terms

of the occupation changes F,, using

7= NkaBTZfSk — frae) (V)i (Fd) - (1.20)

The addition of magnetic field and Berry curvature terms modifies Eq. (1.18). These

will be discussed in more detail in Chapters 2 and 4.

1.4 Thesis outline
In this thesis, we systematically expand the scope of the BTE calculations to include

magnetic fields and band topology.

Chapter 2 focuses on investigating magnetotransport phenomena in simple semicon-

ductors, silicon and GaAs, and a two-dimensional material, graphene. We derive
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an expression for the linearized BTE in finite magnetic fields, and iteratively solve
it to obtain the conductivity tensor and, consequently, the magnetotransport prop-
erties. Our calculations of magnetoresistance, Hall mobility, and the Hall factor
demonstrate excellent agreement with experiments in Silicon and GaAs, and our
magnetoresistance calculations in graphene predict large values, consistent with
experiments. Additionally, we uncover magnetotransport signatures of e-ph inter-
actions by analyzing steady-state occupations in graphene. This work provides a

deeper insight into the microsopic mechanisms governing magnetotransport.

In Chapter 3, as a first step into topology, we analyze e-ph interactions and transport
properties in the bulk topological semimetal (TSM) NasBi. TSMs exhibits uncon-
ventional transport properties due to their linearly dispersing bandstructures near the
Fermi level, but the nature of electronic interactions in these systems remains unex-
plored. Our calculations of e-ph interactions in NazBi show that two-dimensional
(2D) optical phonons associated with in-plane vibrations of Na atoms exhibit very
strong e-ph coupling and dominates charge transport. We perform a real-space anal-
ysis of such 2D phonons and the associated perturbation potential, which explains
the origin of strong e-ph coupling. We also find that atomic displacements along this
2D phonon induce a dynamical phase transition to a Weyl semimetal, with potential

to engineer crystal structures with different phases on ultrafast timescales.

In Chapter 4, we advance our work to explore topological transport in several materi-
als. We derive an expression for the linearized BTE using the modified semiclassical
equations of motion in Eq. (4.1). Our approach extends the existing BTE formalism
to include the Berry curvature. We perform magnetotransport calculations on the
Weyl semimetal TaAs, and identify a positive contribution to magnetoconductance
that arises from the Berry curvature terms. Additionally, our calculations of the
NLHE and Berry curvature dipole in bulk BaMnSbs, strained monolayer WSe- and
bilayer WTe, are significantly altered when e-ph interactions are taken into account,
highlighting the importance of these interactions in accurately quantifying nonlinear
Hall transport. This work significantly extends the applicability of the BTE to study
charge transport and magnetotransport in complex topological materials.

In Chapter 5, we examine the effects of e-ph interactions on novel properties beyond
charge transport, such as band renormalization and superconductivity, in the corre-
lated oxide RuO,. RuO, exhibits unconventional properties such as altermagnetism,
strain-induced superconductivity enhancement and metal-insulator transitions in

thin films. In this work, we calculate phonons and e-ph interactions in strained
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RuO,, and find significant phonon anharmonicity upon application of strain. After
including lattice anharmonicities using the temperature-dependent stochastic self-
consistent harmonic approximation, we demonstrate two signatures of strong e-ph
coupling: a kink in the bandstructure induced by e-ph corrections, and relatively
high superconducting temperature 7, that is further enhanced by doping. Our cal-
culations provide a detailed understanding of these phenomena, and show that e-ph

interactions are the dominant mechanism for superconductivity in RuOs.

In Chapter 6, we demonstrate a data-driven approach to compress e-ph interactions
using singular value decomposition (SVD). Using a constrained-SVD method, we
calculate physical properties such as mobilities, spin-relaxation times, e-ph band
renormalization and superconducting critical temperature in various materials. We
show that accurately predicting these properties requires only a small fraction of
the total singular values, revealing the low-dimensional nature of e-ph interactions
in addition to greatly accelerating the calculations. Our method opens up avenues
to study larger systems previously limited by the high computational cost of e-ph

interactions, advancing studies of quantum materials.

In Chapter 7, we briefly summarize the key achievements of this thesis, and explore

potential future directions arising from this work.
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Chapter 2

MAGNETOTRANSPORT IN SEMICONDUCTORS AND
TWO-DIMENSIONAL MATERIALS FROM FIRST-PRINCIPLES

This chapter is a slightly modified version of the manuscript: D. C. Desai, B.
Zviazhynski, J.-J. Zhou, and M. Bernardi, "Magnetotransport in semiconductors
and two-dimensional materials from first principles", Phys. Rev. B 103, L161103
(2021) (Editor’s suggestion). D.C.D participated in the conception of the project,
performed calculations, analyzed the data, and participated in the writing of the
manuscript.

2.1 Introduction

Magnetic fields can strongly influence the electrical properties of materials, with
changes quantified by magnetotransport coefficients such as the magnetoresistance
(MR), Hall mobility, and Hall factor [1, 2]. In metals and semiconductors, the
change in resistivity with magnetic field is typically small, but in certain semimetals,
magnetic heterostructures and oxides the effects can be far greater or even dramatic,
as in the case of giant and colossal MR [3, 4]. Magnetotransport is of practical
relevance for various applications, including sensors [5], magnetoresitive RAM,
and hard drives [6]. In addition, measurements of the carrier concentration and
electrical mobility require knowledge of the Hall factor. Therefore it is important
to understand the physical mechanisms governing magnetotransport and develop

methods to accurately predict the MR and Hall factor.

Experimentally, magnetotransport has been studied extensively in metals [2] and
simple semiconductors such as Si [7-12] and GaAs [13—15]. More recently, mea-
surements on two-dimensional materials have shown unconventional behaviors,
such as large non-saturating MR at high fields in graphene [16-18] and WTe, [19],
and various studies have shown an interplay between band structure topology and
magnetotransport, including the chiral anomaly and negative MR in topological
semimetals [20-22]. These developments show that magnetotransport is a rapidly

growing research arena.

Early attempts to formulate theories of magnetotransport phenomena [23] focused on
approximate solutions of the Boltzmann transport equation (BTE) in the relaxation

time approximation (RTA) [1]. Subsequent work using parametrized electronic
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band structures and electron-phonon (e-ph) interactions has shown calculations of
the Hall factor in various materials [24, 25]. Approaches beyond the RTA have
also been proposed, for example by solving BTE in polar semiconductors in terms
of infinite determinants [26] or computing the phonon-limited Hall mobility in Si
using deformation potential theory [27, 28]. These models lack analytic closed-
form solutions, and thus were implemented numerically, highlighting the need for

computational approaches to study magnetotransport.

In recent years, density functional theory (DFT) [29] and density functional pertur-
bation theory (DFPT) [30] have enabled ab initio calculations of e-ph interactions.
The resulting phonon-limited charge transport has been studied in various semicon-
ductors and 2D materials in the framework of the BTE [31-39]. First-principles
studies of magnetotransport have lagged behind—the only existing examples are two
works by Macheda et al., who investigated an insulator (diamond) [40] and very re-
cently the Hall factor in graphene [41] by solving the BTE in a magnetic field, as well
as methods employing the Fermi surface topology to investigate magnetotransport
[42]. However, first-principles calculations of magnetotransport in semiconductors

are still missing and the MR in 2D materials has not yet been computed.

Here we show calculations of the MR, Hall mobility and Hall factor, as a function
of temperature and magnetic field, in group-IV and polar semiconductors, focusing
on the prototypical cases of Si and GaAs, and in graphene. Our approach, imple-
mented in our open-source PERTURBO code [43], solves the linearized BTE in a
magnetic field using Jacobi iteration (as opposed to conjugate gradient implemented
in Ref. [40]) to obtain the conductivity tensor and from it the magnetotransport prop-
erties. The calculations employ ab initio e-ph interactions and include spin-orbit
coupling (SOC), which is particularly important for holes. We evaluate k-space
derivatives from a central finite difference approximation [44] and obtain the con-
ductivity using tetrahedron integration. To our knowledge, magnetotransport calcu-
lations employing such precise numerical techniques and correctly including SOC
have not yet been reported. Extensive comparisons with experiments demonstrate
the accuracy of our first-principles magnetotransport calculations for semiconduc-
tors. Analysis of the relative occupation changes in momentum space shows the
dominant role of backscattering due to optical phonons and the breaking of the
RTA in graphene. Taken together, our work demonstrates an accurate method to
investigate magnetotransport in semiconductors and 2D materials and clarify the

underlying microscopic mechanisms.
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2.2 Methods
Magnetotransport properties and BTE

In the presence of small electric (E) and magnetic (B) fields, the current density J

can be written as

3
Ji=Y o04(B)E; 2.1)
j=1
with the conductivity tensor o;; expanded as [1]
0i;(B) = 0 + o) By + o BBy + . (2.2)

with implied summations over repeated indices (which correspond to Cartesian
components). We write the current in terms of electronic occupations f,; and band
velocities v, (n is the band index and k the crystal momentum of the electronic
state),

—S
° Z FrkcVaes (23)

where e is the absolute value of the electrlc charge, S the spin degeneracy, Ny the
number of unit cells, and € their volume. At steady-state, the BTE in the presence
of both electric and magnetic fields reads [1]

Ofn e _

8{ kvnk -E + ﬁ(vnk X B) : kank + 1° ph[fnk] = Oa (24)
nk

where €, are electronic energies, and the last term includes e-ph collision processes

e

consisting of absorption or emission of a phonon [43]. Expanding f,x to leading
order in E, we write fuc— fii. = — (1= i) 1o - Fr, and solve for the unknown
occupation changes F,,, [43]. Factoring out —eE [, (1 — f°,)/kgT, we obtain the

linearized BTE

Vuk + %(Vnk X B)kank =
v (2.5)
Z Wnl?karq nk = ka+q)7
m,vq

where v is the phonon mode index, q the phonon wavevector, and N, the number
of q points used in the summation. Here, Wsﬁlmk L q 1s the scattering rate from
Ink) to |mk + q) and takes into account both phonon absorption and emission
processes [43]. We solve for F,, by rearranging terms in Eq. (2.5) and using the

iterative Jacobi scheme. For each iteration ¢, we get

i+1 Tnk v i
ngk )= = VpkTnk + N Z W mk—l—qu(n)k—l-q
4 mrq (2.6)

+thk(Vnk X B)kank,
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where 7,y is the relaxation time. The term containing the gradient in k, V F
is computed using the central finite difference approximation in Ref. [44]. Starting
with the RTA solution as the initial guess, F,x = v,x7.k, We evaluate the right-
hand side of Eq. (2.6) to update the solution F,y, iterating this procedure until

convergence.

Expanding f,x in Eq. (2.3), we obtain [43]

0ij = NkaBTZf,?k — f) (Vin)i (Fosd) 5. 2.7)

We can calculate the magnetotransport coeflicients from this conductivity tensor
because of its implicit dependence on B through Eq. (2.6). The MR can be obtained
from the resistivity tensor p(B) = 0~!(B) using [1]:

MR = M. (2.8)

At low fields, the MR is expected to be quadratic in the magnetic field [45].
In most materials, the MR perpendicular to B (transverse MR) is small and
positive—classically, this increase in resistivity can be viewed as a result of the

Lorentz force deviating charge carriers from their initial trajectories.

First-principles calculations typically compute the drift mobility 14 in zero magnetic
field, whereas in experiments a common practice is to obtain the mobility from Hall
measurements [46]; the resulting Hall mobility is defined as j1; = 0q Ryg, where o4 is
the drift conductivity and Ry the Hall coefficient. In Drude theory, Ry evaluates to
1/ne for a carrier concentration n [1], so puy = pq. However, when the dependence
of the relaxation time on electronic state is taken into account, Ry deviates from the
Drude value by the Hall factor = uy /f1q [24], so the Hall and drift mobilities differ
by the Hall factor. For systems with cubic symmetry and B field in the z direction,
the Hall factor is r = ne o'y / (ai?) [25].

Computational details

We apply our approach to Si, GaAs and graphene. Their ground state is computed
using DFT in the local density approximation, with a plane-wave basis set and norm-
conserving pseudopotentials, using the QUANTUM ESPRESSO package. We use
plane-wave kinetic energy cutoffs of 40 Ry for Si, 72 Ry for GaAs, and 90 Ry
for graphene and relaxed lattice parameters of 5.43 for Si, 5.56 for GaAs, and

2.44 for graphene. The phonon dispersions and e-ph perturbation potentials on
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Figure 2.1: (a) Drift and Hall mobilities, in blue and red respectively, as a function
of temperature in n-type silicon (experimental data are from Refs. [12, 50-52]).
(b) Hall factor at 300 K as a function of carrier concentration in n-type silicon.
(c) Transverse MR as a function of magnetic field in n-type silicon, compared with
experiments from Ref. [8]. (d) Drift and Hall mobilities as a function of temperature
in p-type silicon (experimental data are taken from Refs. [9, 11, 53]).

coarse g-point grids are computed with DFPT [47] and the Wannier functions are
obtained using WANNIERO90 [48]. We use coarse electron k-point and phonon
g-point grids of 8 x 8 x 8 for Si and GaAs and 36 x 36 x 1 k- and 18 x 18 x 1
q-points for graphene. We compute and interpolate the e-ph matrix elements using
our PERTURBO open source package [43]. Calculations with SOC [43, 49] employ
fully relativistic pseudopotentials. We implement the iterative solution of the BTE
in a magnetic field in PERTURBO, and use very fine, equal and uniform k- and
g-point grids (with 140% points for Si, 650° for GaAs and 18002 for graphene) to

converge the BTE solutions. The conductivity tensor is obtained via tetrahedron

integration [43].
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2.3 Results

Silicon

We compute the drift and Hall mobilities, Hall factor, and MR as a function of tem-
perature for Si, and compare the computed results with experiments. Figure 2.1(a)
shows the Hall and drift electron mobilities in n-type silicon. The agreement with
experimental data from Refs. [12, 50-52] is excellent. As expected for electron
carriers, the Hall mobility is greater than the drift mobility at all temperatures. The
computed Hall factor, » = py/puq, increases slightly with temperature, as evidenced

by higher deviations between py; and piq for higher temperatures.

The Hall factor for electrons is shown in Fig. 2.1(b) at 300 K as a function of carrier
concentration, which can be tuned in our calculations by changing the chemical
potential. At low carrier density, our computed Hall factor is very close to the ac-
cepted value of ~1.15 in n-type Si [7]. The computed Hall factor is within ~10% of
experiment at all carrier concentrations, a noteworthy result for a calculation without
adjustable parameters. We attribute the increasing deviation from experiments at
higher concentrations to scattering from ionized impurities not taken into account

in this work.

The transverse MR is a common figure of merit for various applications. In
Fig. 2.1(c), we plot the transverse MR as a function of magnetic field for electron
carriers in n-type Si. The computed MR is in very good agreement with experi-
ments from Ref. [8]. In the low field regime uyB < 1 the calculations use a strict
convergence threshold on the conductivity, with a change Ao /o < 1078 between
consecutive iterations. Calculations at higher fields (B > 2- 103 G) require relaxing
this convergence threshold to ~10~%. Remaining differences between experiment
and theory may be due to various factors, including uncertainty in the experimental
temperature and doping concentration, as well as inevitable small deviations from

experiment of the computed band structure and phonon dispersions.

Figure 2.1(d) shows the computed Hall and drift mobilities of hole carriers and
compares them with experimental data for p-type silicon. The hole mobilities are in
very good agreement with data for p-type Si [9, 11, 53]. For hole carriers, correctly,
we obtain a behavior opposite to electrons, py < pq in the entire temperature
range and thus a Hall factor » < 1. Our computed low field MR coefficient,
MR/B?, is 7.74 - 105 cm®* /V?s? for holes at 300 K, within 30% of the measured
value of 5.90 - 10° cm*/V2s? [54]. For hole carriers, we find that calculations

without SOC fail to produce an isotropic conductivity tensor, a key sanity check
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Figure 2.2: (a) Drift and Hall mobilities in GaAs as a function of temperature for an
electron concentration n = 10'® cm~3. (b) Hall factor vs temperature for electrons
in GaAs.

for Si(for electrons, SOC has only a minor effect). The spurious MR anisotropy
for calculations without SOC is due to poor numerical convergence and greater
errors in the conductivity tensor, providing further evidence that including SOC
in our band structure and e-ph calculations [43, 49] is key to obtaining accurate
magnetotransport for hole carriers. These results show that including SOC makes

accurate magnetotransport calculations possible for hole carriers in semiconductors.

Gallium arsenide

The drift mobility has been studied extensively from first principles in GaAs [31,
34, 37]. Due to its polar character, electrons in GaAs couple strongly with longi-
tudinal optical (LO) phonons through the Frohlich interaction. We have recently
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shown that the iterative solution of the linearized BTE (ITA in short) overestimates
the mobility and that including electron-two-phonon (e-2ph) scattering processes
significantly improves the result; the RTA also gives a mobility in agreement with
experiment [31], but due to compensation of errors [34]. We find that the same
trends also hold for the Hall mobility. Figure 2.2(a) shows the drift and Hall mo-
bilities for electrons in GaAs as a function of temperature. The experimental Hall
mobility shown for comparison is obtained as py = pqr with values of pq and r
from Ref. [13].

The ITA overestimates both the drift and Hall mobilities, by a factor of ~2 at 300 K,
while the RTA is in better agreement with experiments due to error compensa-
tion [34]. The Hall factor » = uy/pq for both approaches is correctly greater than
1, but the Hall factor for ITA is much closer to the measured data [Fig. 2.2(b)]. Al-
though each of the Hall and drift mobilities are overestimated in the ITA, their ratio
is predicted accurately; we cannot establish whether this result is a coincidence or
due to cancellation of effects from e-2ph processes in the ratio. Overall, these trends
show that for polar semiconductors first-principles magnetotransport calculations

have an accuracy similar to calculations without magnetic field.

Graphene

Similar to other semimetals [1], graphene exhibits a relatively large MR, with
reported values of 20—50% at room temperature and even greater at lower temper-
atures [17]. We discuss the MR in graphene for hole carriers but the MR values
for electrons are similar. The accuracy of our settings is checked by calculating
the drift mobility at 300 K; we obtain a value of ~ 160000 cm? /Vs consistent with
experiments in suspended graphene [55].

Figure 2.3(a) shows the computed MR in graphene at 300 K. We find that the MR
depends strongly on carrier concentration—a doubling of concentration from ~1.5
to 3 - 1012 cm?/Vs decreases the MR by an order of magnitude. This situation
makes comparison with experiment difficult [Fig. 2.3(b)] as the reported carrier
concentration usually does not take into account the Hall factor (we find r = 1.45
for n = 1.2 - 10'2 cm™3, consistent with recent work [41]). As by definition
n = r/(eRy), carrier concentrations from Hall measurements are inaccurate unless
the Hall factor is taken into account. In addition, most graphene samples are
measured on substrates, often causing a reduction in the mobility. Accordingly,

experimental values of the mobility and MR vary over a wide range [17, 18, 56]. This
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Figure 2.3: (a) Transverse MR in graphene vs magnetic field for various hole
carrier concentrations at 300 K. (b) Comparison of the calculated MR for a hole
concentration of p = 2.46-10'® cm~2 with experimental data for p = (2.2—4.2)-10'?
cm™~2, taken from Ref. [16].

variability in the experimental results can at least partially explain the discrepancy
between the calculated and measured MR in Fig. 2.3(b).

Analysis of the electron occupations (see below) reveals that taking into account
backscattering by iteratively solving the full BTE (as opposed to using the RTA)
is essential in graphene, and that the RTA fails to capture the correct electronic
occupations at steady state. This key role of backscattering in magnetotransport

mimics trends found for thermal transport in graphene [57].

Steady-state occupations

To conclude our analysis, we study the electron occupations at steady state, focusing
on their change due to the magnetic field for a constant electric field. We define
this relative occupation change as 0 f/ f = [fox(E, B) — fuk(E,0)]/ frx(E, 0), and
plot it in momentum space for Si and graphene. In the results for Si, shown in

Fig. 2.4(a), the occupation change projected on the k,=0 plane clearly shows the
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Figure 2.4: (a) Projection of the occupation changes ¢ f/ f onto the k, = 0 plane in
Si. (b) Occupation change § f/ f in graphene near the Dirac cone with contributions
from all phonons. (c) The same result as in (b) for graphene but with scattering from
the highest-energy optical phonon branch excluded from the transport calculation.

effect of the Lorentz force, whereby the electrons deviate in the E X B direction near
the six conduction band minima (the occupations at the zone center are projections
of the two band minima along the £, axis). As expected, the electrons are deflected
in momentum space due to the magnetic field, an important sanity check for our

numerical implementation.

The results for graphene, shown in Fig. 2.4(b), are more interesting. Similar to
Si, the occupations near the Dirac cone are also changed by the Lorentz force.
However, electrons in graphene couple strongly with LO phonons with momentum
near [' and TO phonons with momentum near K [58], which mediate intra- and
inter-valley electronic processes respectively. As a result, optical phonon absorp-
tion generates a step-like pattern in the occupation changes, with 160—200 meV
spacing equal to the LO and TO phonon energies [58]. The disappearance of the
alternating patches on removing scattering from the highest optical branch from the
transport calculation [Fig. 2.4(c)] provides concrete evidence for the dominant opti-
cal phonon backscattering in graphene. The RTA completely misses this trend and
gives occupation changes with a pattern similar to Fig. 2.4(c). While in graphene
the magnetotransport RTA results are in fairly good agreement with the full solution
of the BTE, which correctly includes backscattering, our results show that the RTA
fails to capture important features of magnetotransport in graphene.

2.4 Conclusion

We have shown calculations of magnetotransport that can accurately predict the
Hall mobility, Hall factor, and MR in Si and GaAs. Our results for graphene leave
room for improvements and call for stricter protocols for magnetotransport mea-
surements in 2D materials. Analysis of the steady state occupations in graphene

highlights a key strength of first-principles calculations—they can capture the com-
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petition between mode-dependent e-ph scattering and the effect of the Lorentz force
in momentum space, shedding light on the microscopic mechanisms governing
magnetotransport. With calculations on materials with tens of atoms in the unit cell
readily available [43], extension of these results to other semiconductors and 2D
materials appears straightforward. The current formalism can be easily extended to
include the Berry curvature, for example to study magnetotransport in topological
semimetals and shed light on the origin of their unconventional MR. Our method
is general and can be applied to a wide range of materials, including semimetals
such as bismuth and graphite with large MR and topological semimetals with strong
SOC and unconventional magnetotransport. As our approach allows us to calculate
the full resistivity tensor, it will be interesting to apply it in the future to interpret
experimental angular MR diagrams. The magnetotransport calculations shown in
this work will be made available in our PERTURBO code, thus greatly expanding
the reach of first-principles transport studies and connecting them more deeply with

transport experiments, which are often carried out in magnetic fields.
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Chapter 3

DOMINANT TWO-DIMENSIONAL ELECTRON-PHONON
INTERACTIONS IN THE BULK DIRAC SEMIMETAL Na3Bi1

This chapter is a slightly modified version of the manuscript: D. C. Desai*, J.
Park*, J.-J. Zhou, and M. Bernardi, "Dominant two-dimensional electron—phonon
interactions in the Bulk Dirac semimetal NasBi", Nano Lett., 23, 9, 3947-3953
(2023). D.C.D participated in the conception of the project, performed calculations,
analyzed the data, and participated in the writing of the manuscript.

* These authors contributed equally.

3.1 Introduction

Topological semimetals are characterized by electronic band crossings near the
Fermi energy, which result in linear band dispersions and topologically nontrivial
band structures [1]. There is a vast literature on their unusual properties, including
high mobility and magnetoresistance [2—-8], anomalous transport regimes [8—10],
surface Fermi arcs [11-14], and topological phase transitions [15, 16]. The discov-
ery of graphene—a two-dimensional Dirac semimetal (DSM)—has enabled studies
of new physics in a carbon atom sheet [17]. In contrast with graphene, three-
dimensional (bulk) DSMs are materials with rich structural and chemical complex-
ity. They present a wide range of possible crystal structures and arrangements of
Dirac cones, whose degeneracy is protected by crystal symmetry [1], which makes

bulk DSMs interesting for device applications [18, 19].

Although many properties of DSMs can be explained using model low-energy
Hamiltonians, the interactions between electrons and other degrees of freedom—such
as phonons, photons, and spin—are not simple to quantify and give rise to rich physics
in DSMs. Examples include phonon nonlinearities, unconventional nonequilibrium
dynamics, and topological phase transitions, [20-24] etc. Electron-phonon (e-ph)
interactions play a central role in this physics, but their understanding in bulk
DSMs—and more generally in topological semimetals—is rather limited and relies
mainly on phenomenological models [25, 26]. First-principles calculations of e-ph
interactions, which have now been applied to many classes of materials [27-38],

have been hindered in bulk DSMs by their complex atomic and electronic structures.

Sodium bismuthate (NagBi) is a prototypical bulk DSM [11, 39] whose Dirac
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cones have been observed by scanning tunneling spectroscopy [16, 40—42], angle-
resolved photoemission (ARPES) [12, 39], and transport measurements [8]. In
Na3Bi, first-principles calculations have examined impurity-limited transport [43],
nonequilibrium dynamics [44], and spin-orbit coupling [45]. However, a quantitative
analysis of e-ph interactions is still missing. The interplay between crystal symmetry
and electron spin, orbital, and momentum degrees of freedom suggests that NagBi
and other bulk DSMs may host unconventional e-ph interactions yet to be discovered.
We explore this direction by carrying out a detailed first-principles study of e-ph
interactions in NazBi. We use density functional theory (DFT) [46, 47] to obtain the
electronic structure, lattice vibrations, and their interactions; our calculations take
into account spin-orbit coupling (SOC) and many-body corrections to the electronic
band structure (with the GW method [48]), and employ an improved treatment of

acoustic phonons (see section 3.3).

Leveraging these accurate tools, we discover a dominant two-dimensional (2D) e-
ph interaction in NasBi associated with a 2D optical phonon with e-ph coupling
strength far greater than that of any other mode. Our analysis shows that this
2D e-ph interaction governs the scattering and transport of Dirac electrons, and
reveals its microscopic origin. Similar “killer” phonon modes with dominant e-ph
coupling controlling charge transport have been found in organic crystals [49] but
not in topological materials. We also find that the strongly-coupled 2D mode breaks
inversion symmetry in NasBi and induces a dynamical phase transition to a Weyl
semimetal (WSM). This finding points to new opportunities for ultrafast control of

topological materials [20-24, 44].

3.2 Results

The unit cell of NagBi, shown in Fig. 3.1(a), belongs to the hexagonal P63/mmc
space group. Its crystal structure alternates a layer of Bi plus Na atoms, labeled
Na(1), and two layers made up only by Na atoms, labeled Na(2). Inversion and
(s rotational symmetry result in a 4-fold band degeneracy near the Fermi energy,
with contributions from Na 3s and Bi 6p orbitals [11, 42, 50-52]. The Dirac cone
consists of two electronic bands, one with Na 3s+Bi 6p, and the other with Bi 6p,. +
6p, orbital character (the latter is denoted below as Bi-p,, band). To determine an
accurate band structure, we start from DFT and then apply a one-shot GW correction
(see section 3.3), which increases the Fermi velocity of the Na 3s + Bi 6p, band
by a factor of 1.8 and reduces the Fermi velocity of the Bi p,,-band relative to
DFT (Fig. 3.1(b),(c)). The Fermi velocity computed with GW ~300 meV above the
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Figure 3.1: (a) Crystal structure of NazBi with P63/mmc space-group symmetry.
The Bi (Na) atoms are shown with black (yellow) spheres. (b) Band structure of
Na3Bi comparing DFT (black) and GW (red) results. (c) Zoom-in of the band
structure in (b) near the Dirac point, with states color-coded according to their
orbital character. (d) Comparison of DFT and GW band structures with ARPES
experimental data [12], shown along the M—I'—M direction. The computed band

structure was shifted by £, = 0.02 A to compare with experiments [12].

Dirac node is 7.0 x 10° ms™!

, in excellent agreement with the experimental value
of 8.1 x10° ms~! [9]. Our computed GW band structure agrees well with ARPES

measurements by Liang et al. [12] (Fig. 3.1(d)).

The computed phonon dispersion in NasBi is shown in Fig. 3.2(a). The phonon
frequencies are positive for all modes (color-coded curves in Fig. 3.2(a)), indicating
a dynamically stable P63/mmec crystal structure with no soft modes or imaginary
frequencies. Fine-tuning the acoustic sum rule is crucial to obtaining this well-
behaved phonon dispersion. Our results employ an advanced acoustic sum rule
which minimally affects the inter-atomic force constants from DFPT [53]; con-
versely, a widely-used—so-called “simple”” —acoustic sum rule [54], which modifies
the inter-atomic force constants to enforce translational symmetry, leads to spurious
soft phonons near the K-point of the Brillouin zone [55] (gray curves in Fig. 3.2(a)).
While previous work predicted the existence of a more stable P3cl phase at low
temperature (< 46 K) [55], our study shows that the P63/mmc structure is dynam-
ically stable, and focuses on a temperature range (> 100 K) where the P63/mmc

crystal structure is the most stable [55].

Our settings, which combine a stable crystal structure, well-defined phonon disper-
sions, and electronic states with an accurate Fermi velocity, allow us to carry out

reliable first-principles calculations of e-ph scattering and transport in NazBi [31].
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Figure 3.2: (a) NasgBi phonon dispersion overlaid with a color map of the e-ph
coupling strength, |g,(q)|, for wave-vector q along high-symmetry lines. The
marker size is proportional to |g,(q)| and the arrows indicate the strongly-coupled
2D phonon mode. The phonon dispersion obtained with the simple acoustic sum
rule is shown for comparison using gray lines, with imaginary frequencies shown
as negative values. (b) Brillouin zone of NasBi, shown to aid the interpretation
of panel (a). The I' — M and I' — K directions are in the x-y plane, and I' — A
corresponds to the z-direction.

We compute the e-ph matrix elements g,,,, (k, ¢), which encode the e-ph coupling
between pairs of electronic states (initial state |nk) and final state |mk + q), where
n and m are band indices and k the electron crystal momentum) due to a phonon
with mode index v and wave-vector . These calculations are carried out with the
PERTURBO code [56] as described in section 3.3.

Figure 3.2 shows the phonon dispersion in NasgBi overlaid with a color map of
the e-ph coupling strength, defined as |g,(q)| = (32, [gmnw (k = 0,q)[*/N;)*/?
(here we sum over N, = 2 lowest conduction bands) [56]. We find that the e-ph
interactions are overall relatively weak in Na3Bi, with an average value |g,(q)| ~
5 meV. Yet one particular phonon mode, with ~12 meV energy and wave-vector q
in the I'=M and I'—K directions (which correspond to the crystal x-y plane; see
Fig. 3.2(b)) exhibits a much stronger e-ph coupling than any other mode, with value
|9, (q)| =~ 35 meV. This strongly-coupled 2D mode is a longitudinal optical (LO)
phonon that is infrared-active and has F, character at the zone center [57]. Its

associated atomic vibrations, shown in Fig. 3.3(a), have primary contributions from
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Na(2) atoms, which oscillate with large amplitudes in the Na-only layers of NasBi,
and have negligible contributions from the Na(1) and Bi atoms in the neighboring
layers. Because the wave-vector and atomic displacements of this strongly-coupled
2D mode are both in the x-y plane, the dominant e-ph interactions in NagBi are

inherently two-dimensional.

To understand the microscopic origin these strong 2D e-ph interactions, we analyze
their perturbation potential, whose local lattice-periodic part can be written as [47,
56] .

AV,q(r) = Z ViR e,(j’;) < OrqV (1) , (3.1)

where M, is the mass and e,%) the displacement eigenvector of atom ~ due to phonon

mode (v, q), and 0, V' (r) is the derivative of the local Kohn-Sham potential with
respect to the position of atom x [56]. We focus on the effect of the dominant Na(2)
atomic vibrations on the Bi-p,, Dirac-cone electronic states near I'. Figure 3.3 shows
the e-ph perturbation potential AV, (r) generated by Na(2) atomic vibrations and
plotted in the x-y plane containing Bi atoms. For the dominant 2D LO mode
(Fig. 3.3(a)), which has wave-vector q in the z-y plane, the Na(2) atoms move
out-of-phase within each layer, causing large perturbations at the Bi atoms. As a
result electronic states in the Bi p,,-band couple strongly with this phonon mode.
Increasing |q| in the z-y plane leads to an even greater perturbation at the Bi
site and thus stronger e-ph coupling. In contrast, for a 2D transverse optical mode
propagating in the z-direction the Na(2) atoms move uniformly in-phase in the -y
plane (Fig. 3.3(b)). In this case, AV, 4(r) has a symmetric pattern with nodes at Bi
atoms, which suppresses e-ph coupling for the Bi-p,, band. Accordingly, we find
a very weak e-ph coupling for such transverse optical modes, as shown by the dark

blue color in the ['—A direction in Fig. 3.2(a).

We analyze two important consequences of the strong 2D e-ph coupling in NasBi.
First, we find that charge transport is governed by scattering of Dirac electrons
with the strongly-coupled 2D mode, which contributes nearly half of the total e-ph
scattering rate (Fig. 3.4(a)) and resistivity (see below). Other individual phonon
modes contribute significantly less, up to 15% of the e-ph scattering rate for the
mode with the second strongest coupling. Therefore, this strongly-coupled 2D LO
mode is analogous to the “killer” phonons controlling charge transport recently

discovered in organic crystals [49].

Because of the strong 2D e-ph coupling, Dirac-cone electronic states with in-plane

momentum k, which couple to each other via phonons with in-plane momenta,
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Figure 3.3: Side view (left) and top view (right) of atomic motions and e-ph
perturbation potentials AV,(r) for two phonon modes: (a) Strongly-coupled 2D
longitudinal optical phonon with wave-vector q=(1/6,0,0) in the x-y plane, associ-
ated with a large perturbation at the Bi site leading to strong e-ph interactions; (b)
transverse optical mode with q = (0,0,1/8) along the z-axis, resulting in a negligible
e-ph coupling due to the weak perturbation at the Bi site. In both cases, we compute
AV,4(r) from Na(2) atomic vibrations and plot it in the z-y plane containing Bi
and Na(1) atoms. Red and blue colors correspond to positive and negative values of
AV,4(r), respectively.

exhibit large e-ph scattering rates (Fig. 3.4(b)). In contrast, electrons with momen-
tum k in the z-direction scatter mostly via phonons with out-of-plane q, and are
associated with smaller scattering rates. This anisotropic scattering due to 2D e-ph
coupling is evident in the entire temperature range we analyzed (77—300 K). We
have verified that the e-ph matrix elements g(k, q) possess a similar anisotropy,
such that the e-ph coupling strength |g(k, q)| is much greater for in-plane than for

out-of-plane electron momenta.

We compute the phonon-limited mobility and resistivity using these first-principles
e-ph scattering rates in the Boltzmann transport equation [56] (see section 3.3). Our
results show that the in-plane mobility for temperatures between 150—400 K is very

large (Fig. 3.4(c))—up to ~30,000 cm?/Vs at room temperature and high electron
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concentration, mainly as a result of the high Fermi velocity of the Bi p,,-band and
the overall weak e-ph coupling. This mobility limit, which applies to an ideally pure
crystal of NazBi where charge transport is impeded only by phonons, is exceptionally
high and has the same order of magnitude as the mobility in graphene [17]. To our
knowledge, such large electron mobilities have not yet been measured in Na3Bi near
room temperature; one possible reason is that NagBi samples typically contain large
concentrations of defects, particularly Na vacancies, which may make the intrinsic
phonon-limited mobility difficult to observe [40, 41]. Improvements in growth
techniques may bring the experimental mobility of NazBi closer to our predicted
theoretical limit. Note that in Cd3As,, a widely studied DSM, mobility values as
high as ~40,000 cm?/Vs at 130 K have been reported [58], which are comparable
to the ~100,000 cm?/Vs we predict in NazBi for the same temperature and carrier

concentration.

To complete our discussion on transport, Fig. 3.4(d) shows the computed in-plane
resistivity as a function of temperature for Fermi energies between 100—300 meV. In
this regime, the transport behavior is metallic, and the resistivity increases with tem-
perature following a power law. Comparison with experiments is important despite
the variability in NagBi sample quality noted above. We compare our calculations
with the measurements by Xiong et al. [9], which achieve the lowest resistivity
among available experimental data [9, 40] indicating higher sample quality. Our
computed resistivity is lower than their measured values [9] by about an order of
magnitude at 50 K and a factor of 3—5 at 250 K. The lower discrepancy at higher
temperature indicates an improved agreement between theory and experiment in the

intrinsic, phonon-limited transport regime studied in this work.

It is interesting to compare these findings with graphene, a 2D DSM. In both
Na3Bi and graphene, a 2D optical phonon has the strongest e-ph coupling [59, 60].
However, heavier atoms and weaker bonding in NagBi result in softer phonons—the
energy of the strongly-coupled 2D phonon in NasBi is only ~12 meV, and thus
much smaller than the ~200 meV energy of strongly-coupled 2D optical phonons in
graphene [60]. At room temperature, where kgl ~ 26 meV, the strongly-coupled 2D
phonons are thermally excited in NagBi, while in graphene only acoustic phonons
are present. As a result, optical modes contribute less than 15% to the resistivity
in graphene at 300 K [61], versus a dominant 50% resistivity contribution from
the strongly-coupled 2D phonon in NasBi (Fig. 3.4(d)). Note that while graphene

is a 2D material, Na3Bi is a bulk crystal where a dominant 2D e-ph interaction is
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Figure 3.4: Calculations of transport and e-ph scattering in NagBi. (a) E-ph scat-
tering rates as a function of carrier energy at 300 K and Fr=200 meV. We show
the total scattering rate (black) and the contributions from the strongly-coupled 2D
mode (red) and the longitudinal acoustic (LLA) mode with second strongest coupling
(blue). For each curve, we plot the average scattering rate with a solid line, and
show the standard deviation as a shaded region. (b) Fermi surface at Fr=200 meV
color-coded according to the total e-ph scattering rates. (c) Electron mobility as a
function of carrier concentration for temperatures between 150—400 K. (d) Tem-
perature dependent resistivity for Fermi energies between 100—300 meV above
the Dirac point, shown together with the strongly-coupled 2D-mode contribution.
Experimental results by Xiong et al. [9] are shown for comparison.

unexpected.

Finally, we find that the atomic vibrations from the strongly-coupled 2D mode
dynamically induce a phase transition to a WSM in NagBi. Due to its £y, char-
acter [57], this 2D mode dynamically breaks inversion symmetry and removes the
four-fold degeneracy at the Dirac point, splitting each Dirac cone into a pair of Weyl
cones. Figure 3.5 shows the DFT band structure in the £,-k, plane containing the
Dirac node, comparing results for the pristine structure (Fig. 3.5(a)) and for the lattice
distorted from the strongly-coupled 2D mode (Fig. 3.5(b)), which is computed with

frozen-in atomic displacements along the 2D-mode eigenvector (see section 3.3).
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Figure 3.5: Electronic band structure computed with DFT for (a) pristine and (b)
2D-mode distorted NazBi. The displacement in (b) is 3% of the in-plane lattice
constant.

The atomic displacements split each Dirac node into a pair of Weyl nodes separated
along k, by about 0.01 Afl; the system remains metallic throughout this phase tran-
sition. The Dirac degeneracy is lifted by breaking the threefold rotational symmetry.
Additionally, inversion symmetry breaking from the strongly-coupled £, mode is
crucial to obtaining the WSM phase. Therefore, phonon distortions that preserve
inversion symmetry but break the threefold rotational symmetry — for example, Es,
modes, which are however weakly coupled — are not robust against a gap opening,

and instead cause a phase transition to a topological insulator.

These results imply that 2D phonons with strong e-ph coupling can provide a versatile
knob for ultrafast control in NazBi. In particular, because the strongly-coupled
2D LO mode is infrared active [62] (but not Raman active), one could induce a
topological phase transition in Na;Bi by coherently driving this 2D mode using a THz
pulse [63] or through carrier optical excitation followed by strong e-ph coupling [63].
Interestingly, Hiibener et al. [44] have shown that a similar phase transition from
a DSM to a WSM can be achieved in Na3Bi with a different mechanism—strong
light-matter coupling, which dresses the electronic states inducing Floquet-Weyl
nodes. These predictions contribute to the thriving area of driven nonequilibrium
dynamics in topological materials, where recent experiments on bulk DSMs [22]
and WSMs [20, 21] have demonstrated nonequilibium topological phase transition

using electric fields or optical pulses.

In conclusion, we have shown that the dominant e-ph interactions in a prototypical

bulk DSM, Na;3Bi, are inherently two-dimensional and govern the scattering and
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transport of Dirac electrons. Our first-principles analysis reveals the microscopic
origin of this strong 2D e-ph coupling; it also shows that the strongly-coupled 2D
mode can induce a dynamical phase transition to a WSM, suggesting new routes for
ultrafast control of Dirac electrons in bulk DSMs. These results seed the question of
whether other bulk materials may host dominant low-dimensional e-ph interactions
governing their physical properties. For example, MgB,, a superconductor with a
relatively high critical temperature of ~40 K, has a crystal structure similar to NazBi
and has been hypothesized to host a 2D phonon with strong e-ph coupling [64, 65].
First-principles calculations such as those shown in this work can contribute to
address these questions and advance future discoveries of electronic interactions

and nonequilibrium dynamics in topological materials.

3.3 Methods

DFT, DFPT, and GW calculations

We perform DFT calculations in a plane-wave basis set using the QUANTUM
ESPRESSO [54] code. We employ the PBEsol [66] exchange-correlation functional
and fully-relativistic norm-conserving pseudopotentials from Pseudo Dojo [67].
These calculations use a coarse 12 x 12 x 8 k-point grid, a kinetic energy cutoff
of 90 Ry, and relaxed lattice constants (¢ = 5.42 A and ¢ = 9.67 A) which are in
excellent agreement with the experimental values (a = 5.45 Aandc=9.66 A) [11].
The phonon dispersions and perturbation potentials are computed using coarse grids
with 6 x 6 x 8 g-points using DFPT [47]. We employ the crystal acoustic sum rule
from Ref. [53] to compute phonon dispersions. The GW correction to the electronic
band structure is computed using the YAMBO code. [68] We employ 120 unoccupied
bands and a 10 Ry energy cutoff for the dielectric screening combined with the
Bruneval-Gonze terminator [69]; we have verified that increasing the number of

unoccupied bands to 600 and the energy cutoff to 30 Ry has a negligible effect.

Electron-phonon matrix elements and perturbation potentials
Using electronic wave functions from DFT, together with phonon and e-ph pertur-
bation potentials from DFPT, we obtain the e-ph coupling matrix elements on the

coarse k- and g-point grids given above using the PERTURBO code. The e-ph
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matrix elements ¢, (k, q) are defined as

gmnu(ka q) = <¢mk+q| A‘/VCI |77Z}nk> 5 (32)

g
where |¢,x) and [¢,,x+q) are Bloch states with momenta k and k + q, and AV, is
the lattice-periodic part of the phonon perturbation potential [56]. Since the domi-
nant contribution to g(k, q) for the 2D mode comes from Na(2) atomic vibrations,
we analyze the effect of Na(2) motions on the Bi p,, band, which is achieved by
setting el(, ) t0 0 in Eq. 3.1 for Na(1) and Bi atoms. A similar analysis can be per-
formed for Na(1) and Bi atomic motions, or using the Na s + Bi p, band, but their

contributions to g(k, q) are significantly smaller and do not affect our conclusions.

Electron-phonon scattering rates and charge transport

We interpolate the e-ph matrix elements on fine BZ grids with up to 130 x 130 x 90 k-
and g-points using maximally localized Wannier functions [70] generated with the
WANNIER90 code. [71] We then compute the e-ph scattering rates at temperature
T using [56]

2
Fnk(T’) :f Z ‘gmnu(ka q)’2

mrq
[(Nog + 1= fr7)0(Enk — €y — Mg
+ (Nog + frnga)0(Enk = €174 + )],

where e, and f, 7gare electron band energies and occupations, respectively, while

(3.3)

hw,q and N, denote phonon energies and occupations. The electron and phonon

occupations govern the temperature dependence of the e-ph scattering rates.

Using PERTURBO [56], we obtain the carrier mobility as a function of tempera-
ture and doping concentration by solving the linearized Boltzmann transport equa-
tion: [56]

Frie = VikTok + == Z Wi i qFrmicras (3.4)

m,vq
where Wnk mk+q are phonon mode-dependent e-ph scattering rates from electronic
state |nk) to |mk + q) due to phonon mode (v, q); v,k are band velocities, T,
are relaxation times, and N is the number of g-points used in the Brillouin zone
summation. Above, F,,(T') is a term proportional to the first-order deviation of the
electron occupations f,; from their equilibrium values f°, due to the electric field
E, and is defined through

cE
— [ (1= Sk)k‘B—T Fox = fux — [ (3.5)
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The conductivity tensor 0,3 1s computed using

Oup = 62/dE(—af0/aE) Yus(E,T), (3.6)

where « and 3 are Cartesian directions, and ¥,5(E, T') is the transport distribution

function at energy £ and temperature 7": [30]

1
Yos(E,T) = N > VaFn(T)(E — ene). (3.7)
nk

Here, Ny is the number of k-points in the Brillouin zone and €2 is the unit cell

volume.

Lattice-distorted band structure

We compute the lattice-distorted band structure by displacing the atoms in the
unit cell according to the q=0 atomic displacements corresponding to the strongly-
coupled 2D mode. The Na(2) atoms were displaced by 3% of the lattice constant,
and the Bi and Na(1) atoms were displaced according to the 2D mode eigenvector.
We have also verified that atomic displacements corresponding to the inversion-
symmetry preserving E,, mode (with energy ~22 meV) generate a topological
insulating phase with a band gap of 35 meV.
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Chapter 4

FIRST-PRINCIPLES MAGNETOTRANSPORT WITH BAND
TOPOLOGY FOR QUANTITATIVE MODELING OF CHIRAL
ANOMALY AND NONLINEAR HALL EFFECT

This chapter is a slightly modified version of the manuscript: D. C. Desai, J.-
J. Zhou, S. Peng, J. Park, and M. Bernardi, "First-principles magnetotransport
with band topology for quantitative modeling of chiral anomaly and nonlinear
Hall effect”, to be submitted. D.C.D participated in the conception of the project,
performed calculations, analyzed the data, and participated in the writing of the
manuscript.

4.1 Introduction

Band topology is a central theme in quantum materials and is responsible for emer-
gent features such as robust edge states [1-3], topological superconductivity [4],
spin Hall effects [5, 6], and unconventional transport [7-9]. This novel physics is
relevant for wide-ranging applications in electronics, spintronics and quantum tech-
nology [10, 11]. The theory of Berry curvature and topological invariants provides
a deeper understanding of topological phases [3]. These developments have also led
to predictions and discoveries of topological transport regimes, including the chiral
anomaly [12—-14] and nonlinear Hall effect (NLHE) [15, 16].

Although predictions of chiral anomaly in solids have a long history [17], this
effect has been observed only recently in topological Weyl semimetals in the form
of a large negative longitudinal magnetoresistance (LMR) [18-25]. The decrease
in resistance is caused by charge pumping between two Weyl cones when parallel
electric and magnetic fields are applied. Experiments on Weyl semimetals have
achieved resistivities decreasing more than 50% at large magnetic fields [18, 20].
This behavior contrasts with magnetotransport in topologically trivial materials,

where the LMR is positive and increases with magnetic field.

The NLHE is a more recent development in topological transport, and has become an
exciting research topic with measurements reported in a wide range of materials [26—
34]. Unlike the chiral anomaly, the NLHE does not require a magnetic field or
magnetization, but rather it is an intrinsic higher-order response to an electric field

resulting in a nonlinear Hall effect [15].
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Previous theoretical work used a combination of the semiclassical Boltzmann trans-
port equation (BTE) and Berry curvature to study the chiral anomaly [35, 36]
and NLHE [16]. These studies advance qualitative understanding of topological
transport, but focus on models with simplifying approximations such as constant
relaxation times and Berry curvature dipole (BCD) from band theory without inter-

actions.

First-principles calculations using density functional theory (DFT) [37] and its
linear-response variant, density functional perturbation theory (DFPT) [38], have
enabled studies of band topology and electronic Berry curvature [39, 40] and sep-
arately electron-phonon (e-ph) interactions and phonon-limited electronic trans-
port [41-50]. However, studies combining these advances are nearly absent, with
the exception of very recent calculations by Lihm et al. [51] predicting a significant
enhancement of the NLHE in GeTe due to e-ph interactions. Yet, first-principles
calculations of chiral anomaly are still missing, the NLHE has not been studied in a
wider range of materials, and a unified framework to study chiral transport and the

NLHE on the same footing is still lacking.

Here, we show first-principles calculations of resistivity and magnetotransport in
the prototypical Weyl semimetal TaAs, as well as nonlinear Hall conductivities and
interaction-renormalized BCD in bulk BaMnSb,, bilayer WTe, (BL-WTe,), and
strained monolayer WSe, (ML-WSe,). Our approach combines first-principles e-ph
interactions and Berry curvature, and allows us to access both classical (Lorentz)
and quantum (chiral) contributions to magnetotransport, and to sample electronic
momenta with large Berry curvatures using an importance-sampling technique. Our
predicted resistivity and magnetoresistance in TaAs are in very good agreement with
experiments (both within 40% of measured values) and shed light on the relative
magnitudes of classical and chiral contributions. Our calculations of nonlinear Hall
conductivities and BCD show a strong interplay between e-ph interactions and Berry
curvature in the NLHE. Taken together, this paper provides an accurate method for
studying intrinsic (e-ph limited) transport properties in the presence of nontrivial

band topology and shed light on their microscopic origin.

4.2 Methods

We describe the chiral anomaly starting from the semiclassical equations of motion
(EOM). In a material with applied electric and magnetic fields (E and B respec-
tively), the EOM for position (x) and momentum (k) are modified by the Berry
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curvature €2,k and become [52, 53]

Vak + °E X Qnx + E(Vnk - ,x)B]

= Irmeoa. TR h wh
. —e 1 e ’
k=————[E+vu XB+ —(E-B)Q,,
B s B Gy Ve X B (BB

where e is the electron charge, h is Planck’s constant, and v, is the band velocity
for a Bloch state with crystal momentum k and band index n. Using these EOMs,
we derive a modified linearized BTE that takes band topology into account. At
steady state, the BTE reads:

1 e e
—— (Vo + = (Vox - Q) B + = (v, x X B)VF,
1+%B'an(vk h<vk k) h(vk ) k k)

1 e ,
- _/\_f Z (1 + ﬁB ’ ka‘f'Q)Wnl((l,karq(Fnk - ka—‘,—q)a
q

4.2)

m7”q

where F, is proportional to the change in electronic occupations relative to equilib-
rium, fox— fh == (1= ) i Fox, with f7, the Fermi-Dirac distribution [54].
The right-hand side of Eq. (4.2) is the collision term, where W))! , . is the scat-
tering rate from state |nk) to |mk + q) due to absorption or emission of a phonon
(with wave-vector g and mode index v) as defined in [54] and Nq is the number of
g-points in the summation. The factor (1 + B - £,,,14) on the right-hand arises

from the Berry phase correction to the electron density of states [55].

Solving for F,,x gives the conductivity tensor 0,4 in the Cartesian directions o and

B [54],

625’ e
a8 = 14+ =B -25)7% (1 - f°)%x,F,(B 43
Oab Nle{ZBT %:( + A k) nk( fnk)x k( )/37 4.3)

where S, V' and N are the spin-degeneracy, unit-cell volume, and number of unit
cells respectively. The implicit dependence of o on Berry curvature gives rise to
chiral transport in Weyl semimetals. In particular, the anomalous term in Eq. (4.1)
causes the conductivity to increase with magnetic field (negative LMR), in contrast

with the usual decrease caused by the Lorentz force in simple metals [12].

The NLHE can be described with a similar formalism. We expand the expression

for current density J to second order in the applied electric field [15]:

Jo = 0aplls + Xapy B By, (4.4)



49

where we sum over repeated indices; o,z 1s defined above and its transverse (Hall)
components are zero in systems with time reversal symmetry. Therefore, the leading
order Hall response is given by the second-order term x.s,E3E,. To obtain an

expression for the third-rank conductivity tensor , we start from the current,

-5
Nk‘i Z fnkvnk (45)

Setting B=0 in Egs. (4.1) and (4.3) and plugging in the above expression for J, we
obtain

Xapy = €apslsy + €arslsp (4.6)

where €,4, is the Levi-Civita tensor and

= 63—5 0 0
Tap = NV hkpT ; fnk(l - fnk) (an)a<Fnk)/j “4.7)

This formula reduces the computation of the rank-three tensor x,s. to the compu-
tation of the rank-two tensor 7,g. In the literature, using a constant relaxation time
approximation this tensor is written as [16] T,,3 = 8255 D, where D,z is the Berry
curvature dipole defined within band theory without interactions [16]:

d%% 8f(0)
Do = | ——Qpa—mrk. 4.8
s /(27T)d k, 8/{5 ( )

We modify this expression to incorporate momentum-dependent e-ph scattering by

defining a renormalized Berry curvature dipole

) 2h? 202 (3 e S (1 = F) Tk
De ph _ L — =T, nk Jnk nk/” 1 4.9
ap BGSSTavg 6635 ( an Sk(l - T(gk) ( )

where 7, is the average relaxation time. As we show below, the e-ph renormal-

ization has a significant effect on the Berry curvature dipole and is essential to
accurately predict the NLHE.

We implement Egs. (4.2) and (4.7) in our open-source code PErRTURBO [54]. The
electronic ground state, band structure, and Berry curvature, as well as the lattice
dynamics are computed for each material using Quantum ESPRESSO [56, 57].

We use maximally localized Wannier functions [58] from the WANNIER9O code [59]
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Figure 4.1: Magnetotransport in TaAs. (a) Resistivity as a function of temperature
for Fermi energies within £35 meV of the Weyl nodes. (b) Longitudinal magne-
toresistance, p,.(B) — p..(0), versus magnetic field at 7= 100 K. Experimental
data are from Ref. [19]. (c¢) Chiral contribution, and (d) Lorentz contribution, to the
longitudinal magnetoconductance as a function of Fermi energy for different values
of magnetic field.

and employ PErRTURBO to compute and interpolate the e-ph matrix elements on fine
grids and obtain converged transport properties [54]. To compute the conductivity in
Eq. (4.3), we develop an adaptive refinement technique that generates a nonuniform
k-grid to optimally sample states with large Berry curvatures. Additional details

are provided in the Supplemental Material (SM) (section 4.5).

4.3 Results

We first discuss transport and chiral anomaly in TaAs. Figure 4.1(a) shows the
phonon-limited resistivity p,, in TaAs as a function of temperature for a range of
Fermi energies within 30 meV of the Weyl node. Our results agree with experimental
data from Ref. [19]. In particular, for temperatures above ~200 K, where transport
is usually limited by e-ph interactions, our predicted resistivity is within 30% of the
measured values. The resistivity differs from experiments by a factor of 2—3 at low
temperatures, where transport is governed by scattering with defects and impurities

not considered in this work. Figure 4.1(b) shows the classical (Lorentz) contribu-
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tion to the magnetoresistance, p,.(B) — p..(0) for magnetic fields applied along
the z-axis, which is also in quantitative agreement with experiments [19]. These
results point to a dominant role of e-ph interactions in controlling the resistivity and

magnetotransport in TaAs.

To quantify the chiral anomaly in the presence of e-ph interactions, we compute the
chiral contribution (the second term in the left-hand side of Eq. (4.2)) to the longi-
tudinal magnetoconductance, Ao, (B)/o,,. Figure 4.1(c) shows this quantity as a
function of Fermi energy for different magnetic field values at 7'=50 K. Consistent
with experimental data and previous theoretical work, the magnetoconductance is
positive and increases with magnetic field. This is a clear signature of chiral trans-
port since the classical contribution (third term in Eq. (4.2)) leads to a conductance

decreasing with magnetic field.

To better understand the trends in Fig. 4.1(c), we analyze the distribution of Berry
curvature as a function of electron energy (inset of Fig. 4.1(c)). In our calcula-
tions, TaAs exhibits 12 pairs of Weyl nodes, with 8 pairs at zero energy (labelled W2),
and 4 pairs at -10 meV (labelled W1), consistent with previous calculations [19, 60]
and angle-resolved photoemission spectroscopy (ARPES) measurements [61]. We
consider lightly n-doped systems with Fermi energy above the Weyl nodes. As
a result, the dominant contribution to magnetoconductance comes from the large
Berry curvature near the W2 nodes. As the chiral contribution is proportional to
the Berry curvature, we expect the chiral anomaly to be more pronounced for Fr
close to the W2 nodes, and to decay sharply for increasing Fermi energies. This is

precisely the behavior observed in our calculations in Fig. 4.1(c).

We additionally analyze the Lorentz contribution to the magnetoconductance (at
T'=50 K for B=0.1 T) in Fig. 4.1(d). We find that this is significantly larger than the
chiral contribution in Fig. 4.1(c), and attribute this to the Lorentz term dominating
in the semiclassical limit (see SM 4.5 for additional discussion). The divergence of
the Berry curvature near the W2 nodes leads to a breakdown of the semiclassical
limit, which restricts our calculations to Fermi energies more than 10 meV away
from the Weyl nodes. In this energy window, the chiral contribution is found
to decay rapidly with increasing Fermi energy, enhancing the transverse velocity
from the classical term. Our approach can quantify both classical and topological
contributions to the conductivity in this range of higher Fermi energies. This can
help rationalize the experimental data from Ref. [21], where the Fermi energies of

the samples are much closer to the Weyl nodes, and thus the chiral contribution
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Figure 4.2: (a) Berry curvature dipole D, . as a function of Fermi energies for dif-
ferent temperatures. (b) Hall response (x4, / (amojy)) as a function of temperature
for Fermi energies near the conduction band minimum. The response has been
normalized to one by diving the response by its peak values.

dominates magnetotransport. Transport calculations in this energy window within
a few meV of the Weyl nodes will require a quantum treatment involving Landau

levels, a topic left for future work.

We now turn to calculations of NLHE. We first discuss BaMnSb,, a bulk material
with a strong nonlinear Hall response near room temperature, as shown in recent
experiments [31]. As e-ph scattering is expected to play an important role at such

temperatures, we compute the BCD renormalized by e-ph interactions using Eq. (4.9)
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and show it in Fig. 4.2(a) as a function of Fermi energy for different temperatures.
At low temperature, the BCD exhibits a sharp characteristic peak for Ex = 30 meV,
consistent with previous calculations [31]. We find that the BCD decreases with
temperature, a trend we attribute to increasing e-ph interactions and carrier thermal

excitation near the Fermi energy, both of which smooth out the 30-meV peak.

A quantity suitable for direct comparison with experiments is the Hall response
Viyy/ L 5 where V,,, is the nonlinear Hall voltage generated along the z-direction
on application of a current [, along the y-axis. A straightforward calculation shows
that the Hall response measured in experiments is proportional to Xy, /0 s agy. We
compute this quantity in Fig. 4.2(b) and show it as a function of temperature for
Fermi energies near the BCD peak. The Hall response at /p=20 meV peaks around
200 K, consistent with the experimental observation of a response peak at high
temperature [31]. As we show in Fig. 4.2(b), small changes in Fermi energy can
alter the temperature trend significantly. Because Hall responses depend on both
the second-order conductivities X, and the linear conductivities (o,, and o),
theories of NLHE based on the BCD alone cannot predict the Hall response without
knowledge of the scattering time 7. For example, using Egs. (4.6) and (2.7), we
can show that (Xayy/0220,,) < 1/7% in the constant relaxation time approximation
(RTA). Such a strong dependence on 7 highlights the importance of accurately

including scattering effects for quantitative predictions of NLHE.

We next study the NLHE and e-ph renormalized BCD in two 2D materials, bilayer
WTe, and strained ML-WSe,, where previous work reported the existence of a finite
BCD [26, 62]. In ML-WSe,, it has been shown that breaking C3 symmetry by apply-
ing a uniaxial strain along the a-axis induces a finite BCD and Hall response [34, 62].

Accordingly, we perform our calculations on 3% strained ML-WSe,.

Figure 4.3(a) shows D¢ P" at T=50 K and T'=140 K for several different Fermi

energies in the valence band, and compares it with the original values D, , (defined

€
xz

in Eqn. (4.8)). We find that e-ph interactions significantly change the dipoles.
Additionally, while original BCD is nearly constant between 7'=50 K and 7'=140 K,
e-ph interactions induce markedly different responses at these temperatures. Note
that the increase in dipole between T=50 K and T=140 K measured by Qin et al. [34]
agrees with our calculations of D", a trend not captured by the original values
D,..

Figure 4.3(b) shows D¢_P" in BL-WTe, for calculations performed both in the RTA
approximation and using the full BTE at 7=100 K. BL-WTe, has a small band gap,
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Figure 4.3: (a) Original and e-ph normalized dipoles D, in strained ML-WSe, at
T'=50 K (red)and 7'=140 K (blue). (b) D, for original (orange), e-ph normalization
using RTA (red) and using full BTE (blue) at T=100 K in bilayer WTe,.

and placing the Fermi energy near the band edge leads to large Berry curvatures,
and thus a large dipole. A comparison of D¢,?" in the RTA approximation with the
original values(defined in Eq. (4.8)) shows a 50% enhancement near the conduction
band preak in BL-WTe,. A further enhancement is observed with a full BTE
calculation, which predicts a 2 x change compared to the original value. The changes
in dipole induced by e-ph interactions highlight their importance in quantifying
nonlinear Hall transport and correctly capturing its dependence on crucial quantities

such as temperature.
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4.4 Conclusion

In conclusion, this work demonstrates precise calculations of chiral anomaly and
NLHE in topologically nontrivial materials. We compute chiral magnetoconduc-
tance in TaAs, providing accurate values in the semiclassical limit. Our calculations
of the normalized Hall responses in BaMnSb, are consistent with experiments, and
our comparison of the intrinsic and e-ph normalized BCD in strained ML-WSe,
and BL-WTe, highlight the critical role of e-ph interactions to obtain quantitative
predictions for the NLHE. Our formalism improves on previous predictions by being
able to provide accurate estimates of topological transport. Building on the success
of first-principles calculations in predicting transport in quantum materials, this
formalism can be applied to a wide range of topological semimetals and semicon-
ductors, paving the way for a better microsopic understanding of quantum processes

in topological materials and expanding their practical applications.

4.5 Supplemental material

Computational Details

The ground state, electronic bandstructures and phonons in TaAs, BaMnSb,, mono-
layer WSe,, and bilayer WTe, are obtained using the QUANTUM ESPRESSO
code [56]. We relax the TaAs structure using PBE exchange correlation functional
and compute charge density using a coarse 12x12x12 k grid. The lattice con-
stants are a=b=3.437 Aand c=11.656 A. We use fully relativistic norm-conserving
pseudopotentials with spin-orbit coupling (SOC), an energy cutoff of 72 Ry and a
Marzari-Vanderbilt smearing scheme with smearing parameter of 0.01 Ry. The elec-
tron wavefunctions and phonon properties are computed on 8 x8x8 k and 4x4 x4
q grids respectively. We generate maximally localized Wannier functions using
the WANNIER90 code [59] to interpolate electron and phonon properties on fine
grids. For BaMnSb,, we relax the crystal structure by performing a spin-polarized
calculation without SOC using the PBEsol [63] exchange-correlation functional, an
energy cutoff of 90Ry and a Hubbard correction parameter U=5 eV for Mn atoms.
The lattice constants are a=4.539 A, b=4.497 Aand ¢=24.30 A. We use 8 x8x2 and
4x4x1 k and q grids for electron and phonon properties respectively. For mono-
layer WSe,, we relax the lattice constants using PBE exchange correlation functional
with SOC and an energy cutoff of 100Ry, obtaining 3.27 Afor the relaxed value.
We further relax the atomic positions after applying 3% strain along the x-direction.
The electron wavefunctions and phonons are computed on coarse 24 x24x1 and

12x12x1 k and q grids respectively. Finally, for bilayer WTe,, we use the HSE06
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Hybrid functional [64] with SOC to relax the crystal structure with a screening
parameter 0.4~! [26], and obtain lattice constants a=3.477 A, b=6.249 A. We use
a 16 x8x1 k k grid to compute electron wavefunctions and charge densities. Note
that while electronic properties are obtained using the HSEO6 functional, we use

PBE to compute phonons on a 4x2x1 q grid.

Berry curvature, e-ph interactions and transport

We use our in-house open-source code PERTURBO [54] to calculate Berry cur-
vature, e-ph interactions, and transport properties. We have developed routines to
calculate Berry curvature based on the formalism developed by Wang et al. [39]. We
benchmark our code by comparing Berry curvatures calculated using our routines
and using WANNIERO90. Additionally, we employ a 201x201x201 k and relax-
ation time approximation (RTA) to compute the classical contributions to charge
transport and magnetotransport (Figs. 4.1(a), 4.1(b), and 4.1(d) in the main text).
For chiral transport (Fig. 4.1(c)), we use the full BTE and a non-uniform adaptive
k grid developed in PERTURBO to sample more points near the Weyl cones. We
outline a detailed implementation of the adaptive grid in the next section. For
BaMnSb,, since the calculation of e-ph interactions for spin-polarized DFT calcula-
tions for noncollinear spins is not implemented yet, our bandstructure and phonons
have been computed without SOC. However, we calculate Berry curvature using the
SOC bandstructure and wavefunctions, and map them to our no SOC bandstructure
to get a better accuracy for the Berry curvature dipoles and nonlinear Hall trans-
port. Our calculations of BCD transport and e-ph interactions in BaMnSb,, strained
monolayer WSe, and bilayer WTe, are performed on extremely fine k and q grids
of 501x501x4, 1000x1000x 1, and 400x400x1 respectively. We have imple-
mented routines to calculate the original and e-ph normalized BCD in PERTURBO,
and have benchmarked the accuracy of our calculations with WANNIER BERRI
code [65].

Adaptive grid implementation in TaAs

TaAs has a complex Fermi surface with 24 pairs of Weyl nodes, in addition to
electron and hole pockets. As a result, uniform grids, even of the order of 2003,
are unsuccessful in capturing the Berry curvature divergence near the Weyl nodes.
Since the Weyl nodes have a small Fermi surface compared to the trivial pockets,
chiral transport requires very fine k grids of 1000 1000x 1000 or higher to achieve

convergence and sample Weyl singularities effectively. However, the computational
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Figure 4.4: Algorithm for implementing an adaptive mesh. The red points are
denoted as the points which satisfy Eqn. (4.10).

cost of e-ph coupling and transport calculations on such grids is prohibitively ex-
pensive, as the number of k points is very large (8 million) for a 1000? grid, even if

only points with energies within a narrow window of the Weyl cones are considered.

To overcome this challenge, we devise an adaptive scheme to generate a non-uniform
grid of k points based on the values of the Berry curvature at each k. We start with

a uniform k grid, and compute the Berry curvature at each point. We evaluate the

Po= > Q> > X (4.10)

for a specified threshold \;, where ¢ denotes the iteration. If P > M\, we further

quantity

split the k point into 2 = 8 finer points, and repeat the procedure again, now with
an updated threshold A = bA’. A schematic of this algorithm is shown in Fig. 4.4.

Using this technique, we sample Weyl points with a sampling rate equivalent to that
of a IM X 1M x IM k grid, although using only 200000 k points. A comparison of the
Berry curvatures between k points on a 256% and 10003 grid and an adaptive mesh
built on a 128 grid is shown in Fig. 4.5. This technique reduces the computational

cost significantly while achieving dramatic accuracy.

Note that since the grid is now non-uniform, the collision integral in the right hand
side of Boltzmann Transport Equation (Eq. (4.2) in the main text) is modified. One
can calculate the collision terms by recasting the summation over phonon momenta

q as summation over the final electronic state k' = k + q. We obtain
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where wy refers to the weight of the k’ point. We implement Eq. (4.11) in PER-
TURBO.

Breakdown of the semiclassical limit

Di Xiao et al. [55] proposed a phase space correction to the density of states arising
from Berry curvature. As a result, all integrals over electronic momentum space
are accompanied by a factor (1 + £B - €2,,), where B is the magnetic field. Based
on this correction factor, a quantitative limit to the breakdown of the semiclassical

limit can be established, particularly in Weyl semimetals.

We expect that the density of states correction is small for weak magnetic fields.
Based on the above condition, we can identify the Fermi energies in the semiclassical
limit as energy regions where #|B||Q,| < 1. Since Berry curvature diverges at
the Weyl nodes, we expect the inequality to be violated in regions close to the Weyl
nodes. The shaded area in Fig. 4.6 shows the semiclassical region at B=0.3 T,
where the BTE formalism describes electron dynamics accurately. The calculations
in Fig. 4.1(c) in the main text are performed for Fermi energies in this region.
However, for strong magnetic fields and for Fermi energies close to the Weyl node,

a more comprehensive approach involving Landau levels is required.
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Figure 4.6: £|B||Q,x| as a function of electron energies for B=0.3 T. The shaded
region represents the semiclassical limit where y-values are much smaller than 1.
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Chapter 5

ELECTRON-PHONON BAND RENORMALIZATION AND
SUPERCONDUCTIVITY IN STRAINED RUO2

This chapter is a slightly modified version of the manuscript: D. C. Desai, Y. Luo,
and M. Bernardi, "Electron-phonon band renormalization and superconductivity
in strained RuO,", to be submitted. D.C.D participated in the conception of the
project, performed calculations, analyzed the data, and participated in the writing
of the manuscript.

5.1 Introduction

Ruthenium oxide (RuO-) is one of the most promising transition metal oxide (TMO)
platforms to host high electrical conductivity and catalytic properties [1]. In recent
years, studies of RuO, have gone beyond conventional transport and observed quan-
tum behavior, including strain-enhanced superconductivity [2, 3], metal-insulator
transition [4, 5], altermagnetism [6—12], and anomalous Hall effects [8, 13]. These

properties make RuO, a very intriguing quantum material.

Experimental developments in RuO, have prompted many efforts on the computa-
tional forefront to analyze the microscopic processes governing these phenomena in
more detail. However, while the band structure and electronic properties [2, 14—17]
in RuO, have been well studied using Density Functional Theory (DFT) [18], the
effects of phonons and e-ph interactions in RuO, remain less explored. Understand-
ing e-ph interactions is crucial to explaining not only transport properties, but also
other novel effects such as superconductivity and band renormalization. To our
knowledge, only two recent works [2, 3] have computed e-ph interactions in strained

RuO; to explain superconductivity enhancement upon application of strain.

RuO; thin films grown along the [110] direction on TiO, crystals are inherently
strained, due to a large lattice mismatch with the TiO, substrates [2]. It has been
found that a compressive strain of 4.7% along [001] alters the band structure, in addi-
tion to inducing a significant phonon anharmonicity [3]. This lattice anharmonicity
poses a challenge to the calculation of e-ph interactions and superconducting T.,
causing unphysical divergences. Typically, to these avoid divergences, one imposes
a phonon frequency cutoff by excluding phonons with energies below a small value,

of the order of ~1meV. However, this approach excludes soft modes with imagi-
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nary frequencies, potentially overlooking important physics. Recent advances to
compute temperature dependent phonons using the temperature-dependent effective
potentials (TDEP) [19] or stochastic self-consistent harmonic approximation (SS-
CHA) [20] methods have provided more accurate treatments of these soft modes.
For example, previous work by Zhou et al. [21] has shown a significant improvement
in e-ph interactions and mobility in Strontium Titanate (SrTiO3) using the TDEP
method.

In this work, we calculate e-ph interactions in RuO,, taking into account Hubbard

corrections to the DFT band structure and temperature dependence of phonons using

T T AW 4
(a) 201 —— Strained
—— Unstrained
1.5

A\ A

0.5
0.0

Energy(eV)

—0.5 1 1

—-1.0 1

-15 /
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[001] R

[110] [110] r M

Figure 5.1: (a)A comparison of the band structures of strained (blue) and unstrained
(red) RuOy calculated along the high symmetry path. The arrow represents a shift
of the flat bands towards the Fermi level. (b) A schematic of the Brillouin zone of
RuQO,. The high-symmetry path and the directions of strain are shown in red.
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the SSCHA method. We further compute e-ph induced band renormalization and
superconducting T. using the isotropic Migdal-Eliashberg formalism [22]. Our
calculations of the band renormalization predict sharp kinks near the Fermi level
at low temperature, highlighting the importance of e-ph interactions in capturing
accurate band structure. Moreover, our calculations of the Eliashberg spectral
function and superconducting 7, are in good agreement with experiments, and
demonstrate that a combination of strain and doping can significantly enhance e-ph
coupling and 7. Note that our calculations also include soft modes not taken into

account previously, ensuring maximum accuracy.

5.2 Results

RuQO; phonons and e-ph coupling

Unstrained RuOs belongs to the tetragonal P4, /mnm space group. Application of
strain reduces the space group symmetry, resulting in an orthorhombic structure.
A comparison of the resulting band structure of the strained and unstrained phases
along the high-symmetry path is shown in Fig. 5.1(a). The high-symmetry path
is highlighted in red in the Brillouin zone in Fig. 5.1(b), along with the strain
directions [110] and [001]. Consistent with ARPES measurements and previous
calculations [2], there is a significant change in the band structure near the Fermi
level. Particularly, the bands along the paths in the k, plane (R-Z and A-Z) become
flat (represented by arrows in Fig. 5.1(a)), and are pushed up by 0.5 eV, resulting in
an increase in the density of states near 0 eV (as defined in Fig. 5.1(a)). These flat

bands in the k. in plane are comprised of d); orbitals [2], and contribute significantly
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40 ?§ > g 100
* / }\/
0 E —— DFPT
—— SSCHA T=14K
| |

—20

=
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Figure 5.2: (a)Phonon dispersions along the high-symmetry path for strained RuO,.
The red curve denotes the DFPT calculation, and the blue curve denotes the temper-
ature dependent SSCHA corrections at T=14 K. (b) e-ph coupling matrix elements
9,(q) for DFPT(red) and SSCHA (blue) calculations.
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Figure 5.3: E-ph corrected band structure along the I' — M direction. The Fermi
energy Er is set to 0 eV.

to changes in the physical properties of RuO,.

Figure 5.2(a) shows the phonon dispersions for strained RuO, along the high-
symmetry path. We find that a DFPT calculation (red) predicts soft modes for
phonons with momenta along the k, plane, consistent with previous works [3].
While the crystal structure for the unstrained phase is dynamically stable, significant
anharmonicity arises upon application of a large 4.7% compressive strain along
the [001] direction. We refine the DFPT calculations using SSCHA to calculate
harmonic phonons at T=14 K (blue curve in Fig. 5.2(a)). These corrections take
into account the temperature dependence and the phonon anharmonicity to stabilize

the phonon dispersions.

We compare the resulting e-ph interactions for DFPT and SSCHA corrected phonons
in Fig. 5.2(b). We plot g, (q)| = [32,., [gmmw (k110 = —0.51A7", q)[2/Ny] /%, where
9mnv (K, q) is defined in section 5.4, and N, is the number of bands in the summation.
We chose k179 = —0.51A" as the band energy of this point is at the zero of the
Fermi level. Note that the soft modes in the DFPT calculation lead to unphysical

divergences in |g,(q)|, which are removed by imposing SSCHA corrections. Using
the e-ph interactions computed with the SSCHA method, we now calculate the band

structure corrections and superconducting T..
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Figure 5.4: (a) Density of states within in strained RuO,. The vertical black lines
represent the Fermi energies at which Eliashberg spectral functions are evaluated in

(b).

Electron-phonon band renormalization and superconductivity

We compute the e-ph corrected band structure for k along the I' — M direction
(Fig. 5.2) with Er set to 0 eV. The corrections are obtained by computing the real
part of the e-ph self energy, defined in section 5.4. We find that e-ph interac-
tions significantly modify the band structure along I' — M. The band structure
displays a kink ~25 meV below the Fermi level. This kink results from strong
e-ph interactions in RuO, and can be observed using angle-resolved photoemission
spectroscopy measurements. Similar kinks have been observed and predicted in sev-
eral other materials [23—-27], and act as observable signatures of strong electronic
interactions. Taking these kinks into account while calculating physical properties
such as transport is essential, as they significantly renormalize the band structure

and velocity.

We now compute phonon-limited superconducting properties in strained RuQOs.
Since the superconducting temperature 7, depends on the density of states (DOS)
near Ep [28], we first analyze DOS in strained RuO, in Fig. 5.2(a). There is a
sharp peak at -280 meV originating from the flat d bands shown in Fig. 5.1(a). We
find that DOS decreases significantly as energy is increased, with a nearly 7x drop
at E=180 meV. Consequently, the Eliashberg spectral function aF?(w) (defined
in section 5.4) computed at Ep=—280 meV, 50 meV and 180 meV exhibits a large
variability. Fig. 5.2(b) shows that a F"%(w) is significantly greater for Ex=—280 meV,

and decreases with increasing Er up to 180 meV.

The quantity o F"*(w) is a measure of the effective e-ph coupling strength in any ma-

terial, and directly relates to its superconducting properties. The phonon-mediated
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Figure 5.5: Superconducting gap A as a function of temperature for strained RuO,
with Er = 50 meV.

superconducting 7. can be calculated using the Migdal-Eliashberg formalism out-
lined in section 5.4. To quantify the changes in the spectral function between different

Fermi energies, one can compute the average e-ph coupling strength, defined as [29]

AP = Q/dwaF2<”). (5.1)
w

We calculate \*P" to be 0.33, 0.61, and 3.40 for Er = 180 meV, 50 meV, and
-280 meV. The coupling strength at Ep=—280 meV is nearly 10x higher than at
Er=180 meV. This enhancement is attributed to the presence of flat bands and a
large DOS. The variability of \°~P! for different E- provides a potential route to
tune 7. in RuO, by doping.

Note that the weight of the spectral function for low-frequency phonons in Fig. 5.2(b)
increases significantly for Ex=—280 meV. This increased weight is attributed to
strong e-ph coupling for soft phonon modes described earlier, highlighting their
role in 7, enhancement in strained RuO,. Therefore, accurately treating these
soft phonons is crucial to converging the superconducting properties, reaffirming
the importance of applying temperature-dependent SSCHA corrections. Overall,
our calculations show that an appropriate combination of strain and doping can

significantly enhance 7, in RuOs.
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Finally, to compare our calculations with experiments, we evaluate the supercon-
ducting gap as a function of temperature at Ez=50 meV in Fig. 5.2 (details outlined
in section 5.4). The gap goes to zero at 7. = 3.2 K. This temperature is in good agree-
ment with measurements from Refs. [2] and [3], which observe an experimental 7
of 1.7 K - 2.0 K. While Fig. 5.2 shows a T, calculation for Ex=50 meV, we have
verified that varying Fermi energy within 200 meV of the zero point predicts a wide
range of 7., with the experimental measurements falling within this range. This
agreement suggests that superconductivity observed in strained RuO; is possibly

phonon-mediated, consistent with previous calculations [2, 3].

5.3 Conclusion

To conclude, we have demonstrated accurate calculations of e-ph interactions, band
structure corrections and superconducting properties in strained RuO,. Our calcu-
lations take into account Hubbard as well as temperature-dependent corrections to
electronic and phononic properties respectively. We demonstrate observable sig-
natures of strong e-ph coupling in the form of sharp kinks in the e-ph corrected
band structure. Our calculations of the Eliashberg spectral function show that
superconducting properties can be significantly enhanced by adjusting the Fermi
energy. Moreover, our computed 7. values near the zero Fermi energy are in good
quantitative agreement with experimental measurements of 7., suggesting phonon-
mediated superconductivity as a possible dominant mechanism in strained RuQs.
This work remains ongoing, and with the recent identification of RuO, as a pro-
totypical altermagnet, we plan to extend our research to investigate the impact of
magnetism on superconducting properties. Overall, our calculations shed light on
the quantum properties in RuO,, and demonstrates the importance of microsopic

e-ph interactions in governing superconductivity.

5.4 Methods

Computational Details

The electronic ground state, wavefunctions and energies are computed using the
QUANTUM ESPRESSO code [30]. We relax the atomic positions and the lattice
constant along the [110] direction, while applying a fixed 2.2% strain along the [110]
direction and -4.7% along the [001] direction. The lattice constants for strained RuO,
along [001], [110], and [110] directions are 2.95 A, 6.45 A, and 6.41 A respectively.
We use the Hubbard parameter U=2 eV to correct the electronic band structure. The

calculations employ a coarse 12x8x8 k grid.
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The phononic properties are computed using density functional perturbation theory
(DFPT) [31] as implemented in QUANTUM ESPRESSO, and are further refined
using the SSCHA code [20] to incorporate temperature dependence. The DFPT
calculations are performed on a coarse 4x4x?2 grid. For SSCHA calculations, we
use an ensemble of 750 and 500 different configurations for T=14 K and T=160 K
respectively, each composed of 4x4x2 supercell with random thermal displace-
ments. While we use the Hubbard corrections to correct the band structure and
wavefunctions, are phononic properties are computed using a plain DFT calcula-

tion.
We use the WANNIER90 [32] code to compute maximally localized Wannier func-

tions [33] to interpolate electron and phonon properties on fine grids.

Electron-phonon coupling and band renormalization

The electron-phonon coupling matrix elements are calculated using the formula

gmm/<ka q) = <d}mk+q| sz/q ’¢nk> s (52)

2Wyq

where 7 is the Planck’s constant. [¢),x) and |t,k+q) denote the initial and final
electronic states with band indices m,n and electron momenta k and k + q respec-
tively. w,q and AV, represent the phonon frequencies and perturbation potentials

for a phonon with momentum q and mode index v respectively.

Using the definition of e-ph coupling in Eq. 5.2, we can calculate the band structure
corrections using the real part of the lowest order Fan-Migdal e-ph self energy,
defined as [34, 35]

Nuq+1_fmk+q + Nuq+fmk+q
E — epkiq — g — 10 E — €pmiq + g — 11
(5.3)

Sok(E.T) = g (, Q)]

vqm

l

where N,q, fimk+q denote the phonon and electronic occupations given by the Bose-
Einstein and Fermi-Dirac distributions respectively. €,x+q, T and n represent the
electronic energies, temperature and the smearing factor respectively. The real part

of X,k evaluated on-shell gives the correction to the DFT band structure.

gnk = €pk —I— Rean(enk, T) (54)
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We compute RedJ,i at T=14 K and T=160 K for k along the I'-M direction with a

Lorentzian smearing 17 = 10 meV and 107 uniform random q points.

Isotropic Eliashberg spectral function and superconducting T,
Using the Migdal-Eliashberg theory, the isotropic Eliashberg function can be com-
puted as [22, 35]

1
’F(w) = 3 Zqu)\yqé(w — Wyq)
v (5.5)

1
S g (k. @) 26 (€nsc — €)5(emicrq — ).

Aq=
T N(er)wiq -

where N (er) is the density of states at the Fermi level (¢x). One can then solve for
the superconducting temperature T, by evaluating the gap function A and the mass

renormalization function Z

. WkBT W1
Z(iw;) =1+ " Z - 2 — AMw;j — wjr)
Iy Jwi + A2 (iw,)
A(iwj) (5:6)

Z(Z(U])A(ij) = 7Tk’BT

—— (AMw; —wjr) = pe)-

5! (,UJQ-/ + AQ (Zu}j/)
Here, w; = mkT(2j41) is the Matsubara frequency, A(w;) = [ dwa? F(w) (2w /w?+
w?) is the e-ph coupling strength and 4} is a parameter representing the screened
Coulomb potential. Using Egs. (5.5) and (5.6), one can solve for the supercon-

ducting gap A. The superconducting temperature T, is the temperature at which
A(rkpT(25 4+ 1)) =0.

We use random 400000 k and 200000 q points respectively to compute o F'(w) using
Eq. (5.5), with Gaussians of smearing 15 meV electrons and 0.2 meV to represent
the delta functions for electrons and phonons respectively. Our calculations use .,

= (.3 [2]. We then solve for the superconducting gap and obtain T, using Eq. (5.6).
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Chapter 6

DATA-DRIVEN COMPRESSION OF ELECTRON-PHONON
INTERACTIONS

This chapter is a slightly modified version of the manuscript: Y. Luo, D. Desai,
B. K. Chang, J. Park, and M. Bernardi, "Data-Driven Compression of Electron-
Phonon Interactions"”, Phys. Rev. X, 14,021023. D.D participated in the conception
of the project, performed calculations, analyzed the data, and participated in the
writing of the manuscript.

6.1 Introduction

Electrons in materials are subject to various interactions, including those with
phonons, other electrons, and defects. Modeling of these interactions follows two
main approaches—analytic treatments that qualitatively capture the main physics
with minimal models using only a few parameters, and first-principles calculations
aiming at quantitative accuracy but often requiring specialized workflows, high
computational cost, and large amounts of data. A middle ground between these
extremes would require formulating models of electron interactions that are eco-
nomical, accurate, and interpretable. Examples of efficient models exist across
domains—in quantum chemistry, low-rank approximations [ 1-3] can compress two-
electron integrals to reduce the computational cost of post-Hartree Fock calcula-
tions [4, 5] and extract the critical vibrational modes in a chemical reaction [6, 7]; in
correlated-electron physics, efficient parametrization of e-e interactions [8] enables
the solution of functional renormalization-group flow [9, 10] and the Bethe-Salpeter
equation [11, 12]. However, despite these isolated examples, it remains challenging
to formulate widely applicable approaches to represent electron interactions both

efficiently and accurately.

Focusing on electron-phonon (e-ph) interactions, analytic treatments such as defor-
mation potential for acoustic phonons [13, 14] and the Frohlich model for optical
phonons [15], which use only a few parameters to describe e-ph interactions, are
still widely utilized [16, 17]. In recent years, first-principles calculations of e-
ph interactions using density functional theory (DFT) [18] and its linear-response
variant, density functional perturbation theory (DFPT) [19], have enabled quan-
titative studies of properties ranging from transport to excited state dynamics to
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superconductivity [20-33]. Unlike the analytic models, in a typical first-principles
calculation one represents the e-ph interactions using a multi-dimensional matrix
with millions or billions of entries. This enormous number of parameters, which
are computed rather than assumed, guarantees a faithful description of microscopic
details such as the dependence on electronic states and phonon modes of e-ph inter-
actions. Yet this complexity is also a barrier toward obtaining minimal models and
tackling new physics. For example, materials with strong or correlated e-ph inter-
actions need specialized treatments to capture polaron effects [28, 30, 34, 35] and
electron correlations [36, 37]. Reducing the high dimensionality of first-principles
e-ph interactions would allow one to more efficiently describe this physics while
retaining quantitative accuracy. The development of data-driven methods to tackle
the high-dimensional Hilbert space in the many-electron problem, including neural

network states [38, 39] and tensor network methods [40—43], serve as inspiration.

Here we show a low-rank approximation of first-principles e-ph interactions which
significantly accelerates e-ph calculations while using only a small fraction (1—2%)
of the data and preserving quantitative accuracy. This is achieved by developing
SVD calculations of e-ph matrices in Wannier basis to achieve a minimal represen-
tation of e-ph coupling. We use our compressed e-ph matrices to compute a range
of properties, including charge transport, spin relaxation, band renormalization, and
superconductivity, both in metals and semiconductors. Across all benchmarks, the
highly compressed e-ph representation achieves a quantitative accuracy comparable
to the standard workflow, while also providing a deeper understanding of the domi-
nant patterns governing e-ph interactions. Principal component analysis sheds light
on the inherent compressibility of e-ph coupling matrices. Recent interesting work
on improving the efficiency of e-ph calculations [44, 45] is distinct in method and

scope from our data-driven approach.

6.2 Results

Compression of e-ph interactions

The key quantities in first-principles e-ph calculations are the e-ph matrix elements
gmnv (K, q), which represent the probability amplitude for an electron in a band
state |nk), with band index n and crystal momentum k, to scatter into a final state

|mk + q) by emitting or absorbing a phonon with mode index v, wave-vector q,
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energy fw,q, and polarization vector e, [46]:

v (K, Q) waq ; (mk + q|0qraV|nk) , 6.1)

where Oy V = Zp e'®rd, .V is the lattice-periodic e-ph perturbation potential,
given by the change in the DFT Kohn-Sham potential with respect to the position of
atom ~ (with mass M, and located in unit cell at R,) in the Cartesian direction o.
The inset in Fig. 6.1(a) shows schematically such an e-ph scattering process. We

separate the e-ph interactions into short- and long-ranged [47-53],

The long-range part g~ (k, q) includes dipole (Frohlich) and quadrupole contribu-
tions, which can be written analytically, using classical electromagnetism, in terms
of Born effective charges and dynamical quadrupoles obtained from DFPT. The
short-ranged part g (k, q) cannot be written in closed form and needs numerical
quantum mechanics to be computed, a consequence of the nearsightedness of elec-
tronic matter [54]. Because ¢ (k, q) is a smooth function of electron and phonon
momenta, it is short-ranged in a real-space representation using a localized basis set

such as atomic orbitals [55] or Wannier functions [46, 56].

The short-range e-ph coupling matrix in Wannier basis, gfj‘)‘(Re, R,), is obtained

by transforming DFPT results computed on a coarse momentum grid (k., q.) [46]:

gw *(Re,R,) Z Ze i(keRet+qcRp) (6.3)
Nkc dc mnke Qe
X ujm(kc + qC)AVTEn KOZ(kC? qC) unj(k0)7

where{{ is a unitary transformation from Bloch to Wannier basis, and AV,? (k.. q.) =
(mk + q|Oqua V¥ |nk) is the short-ranged part of the perturbation potential in Bloch
basis. To separate acoustic and optical modes, we carry out a rotation in atomic

basis:
92 (Re, R,) ZA“gw (Re,R,), (6.4)

where A}, = exp (iﬁ—i/{g) adds a relative phase to different atoms in the unit cell,
and p € (0, ..., Ny — 1) labels phonon modes (V,; is the number of atoms in the
unit cell). This way, © = 0 corresponds to the acoustic subspace, where all the

atoms in the unit cell move in phase, and i # 0 labels the optical modes. Here and
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below, we use a collective index F' = (ij, pa) to label Wannier orbital pairs ij and
phonon mode and direction pcv, simplifying the notation of the Wannier-basis e-ph

matrices to g*' (Re, R,).

When viewed as a matrix for each mode and orbital pair, g* (R., R,,) decays rapidly
with lattice vectors R, and R,, and has a typical size Ng, X Ng, ranging between
10? x 10 and 10® x 103. After carrying out SVD on g (R., R,)), we obtain

(R, R,) Z S (Ry), (6.5)

where s is the singular value (SV) with index ~, and u/ (R.) and v*”(R,,) are
the left and right singular vectors, respectively. One can interpret 35 as the cou-
pling strength between the generalized electron cloud Y p uf (Re)c! (R.)c;(0) and
phonon mode » g vl (R, ) (b.0(Rp) + bua(Ry,)), where (cf, c) are creation and
annihilation operators for electrons and (b', b) for phonons. For each channel F,
there is a total of min(/Ng,, Nr,) SVs; we keep only the NV, largest ones, resulting

in a truncated, low-rank e-ph matrix §:

gn.(Re, R,) Z s ol (Ry). (6.6)

This matrix can be conveniently transformed to momentum space using

gn.k,q) = > Rt gl (R R,)

Ry Re
Nc

~ Y sl (k) vl (a), (6.7)
y=1

where uf (k) = Y ¢*®ul(R,) and vl (q) = g ¢®rol(R,) are singular
vectors in momentum space. (Note that the long-range part of the e-ph matrix is
added after interpolation of this short-ranged part.) Eq. (6.7) provides a generic
parametrization of e-ph interactions, where by increasing the number of SVs one
can systematically tune the accuracy and computational cost. According to the
Eckart” Young—Mirsky theorem, the truncated matrix g obtained from SVD is an
optimal low-rank approximation of e-ph interactions, in the sense that it minimizes
the Frobenius-norm distance between the original and low-rank e-ph matrices [57].
From a computational viewpoint, Eq. (6.7) can greatly accelerate the calculation
of e-ph interactions and the associated material properties, with a speed up by the
inverse fraction of SVs kept in the truncated e-ph matrix. In most cases, we will
keep only 1-2% of SVs, resulting in a 50-100 times speed-up for the key step in e-ph

calculations (see Appendix 6.4 for details).
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Error and Pareto-optimal interactions
To test the accuracy of the truncated e-ph matrix and its convergence with respect
to the number of SVs (/V,.), we define a relative error for the e-ph matrix averaged

over electron bands and momenta, and phonon modes and wave-vectors:

Zmnu,kq |gmnu(k7 q) - grjziw(ka Q) |2
Zmnu,kq |gmnu <k7 q)‘Q ’

where gYe (k,q) is the low-rank (approximate) and g, (k,q) is the full first-

€g(Ne) =

(6.8)

principles e-ph matrix. Fig. 6.1(a) shows this error as a function of the fraction
of SVs, N./Nr,, kept in the approximate matrix. In the language of model se-
lection [57], the resulting curve of error versus number of parameters is the Pareto
frontier for modeling e-ph interactions. We find that the error decreases rapidly with
the number of SVs—for example, ¢, is as low as 1% when using only 2% of SVs,
which achieves a 50x compression of the original e-ph matrix. This error curve
defines a Pareto-optimal region, highlighted in Fig. 6.1(a), where e-ph calculations
are both accurate and parsimonious [57]. This region spans 1—4% of SVs in most
of our calculations—which corresponds to keeping N. ~ 10—50 SVs—and suggests
that many materials may possess only ~10 dominant elementary e-ph interaction

patterns. Accordingly, the e-ph coupling strength for each phonon mode [46, 58],

mn

Dy(a) = b \/mmMm S gk = o) /Ny (69)

(where M, is the mass of the unit cell and the band indices m and n run over N,
bands), shown in Fig. 6.1(b), can be computed accurately using just the largest 1.5%

of SVs, matching closely the results using the full e-ph matrix.

Application to transport, spin and superconductivity

We showcase the accuracy of the low-rank approximate e-ph interactions by com-
puting a wide range of material properties, including charge mobility, spin relax-
ation, phonon-assisted superconductivity, and phonon-induced band renormaliza-
tion. Figs. 6.2(a) and 6.2(b) show the electron and hole mobility in silicon for
temperatures between 100 and 400 K, obtained using the full e-ph matrix and
compared with SVD using 1.5% of the SVs (see Appendix 6.4). The mobility is
overestimated for electrons, and underestimated for hole carriers, despite the ac-
curacy of the low-rank e-ph interactions in silicon (Fig. 6.1(a)). The error comes
from the acoustic phonons, which interact weakly with electrons—and therefore are

ignored in the low-rank e-ph matrix—but carry a considerable contribution to the
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Figure 6.1: (a) Error on the compressed e-ph matrix, computed using Eq. (6.8), as
a function of the fraction of SVs used in the low-rank approximation. The Pareto-
optimal region is shown with a shaded rectangle. (b) Mode-resolved e-ph coupling
strength computed using the full e-ph matrix (blue) and the low-rank approximate
matrix (orange) for silicon. The full e-ph matrix elements are computed on a real-
space grid with size Ngr, = 1325 and Ngr, = 1325, the smallest values to achieve
convergence, setting the electron momentum to k=1I"and using the /N, = 3 highest
valence bands. In the SVD calculation, we keep 20 out of 1325 SVs, corresponding
to a ~1.5% fraction of SVs, as noted in the legend.
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Figure 6.2: (a) Mobility of electrons in silicon, and (b) mobility of hole carriers
in silicon, computed with the full e-ph matrix (Ng, = Ngr, = 1325) and compared
with standard and constrained SVD, in both cases using 1.5% of the SVs. (c)
Spin relaxation times of electrons in silicon, computed with the full e-ph matrix
(Nr, = Ngr, =1325) and using SVD with 1.5% of the SVs. Experimental data from
Refs. [59, 60] are shown for comparison. (d) Eliashberg spectral function o F'(w)
for Pb, comparing full e-ph matrix (Ng, = Nr, =279) with SVD results using 1.8%
of the SVs. (e) Superconducting gap A as a function of temperature, comparing
full e-ph matrix results with SVD using 1.8% of the SVs. The inset shows the
convergence of the critical temperature 7, with number of SVs; the darker (lighter)
colored regions indicate 5% (10%) error relative to the full calculation. (f) Band
renormalization for electronic states near the Dirac cone in graphene at 20 K,
comparing the full calculation with SVD using 1.5% of the SVs.

mobility due to their large thermal occupation. To improve the treatment of acoustic
phonons, we develop a constrained SVD (c-SVD) which preserves the deformation
potential for long-wavelength acoustic phonons in the compressed e-ph matrix (see
Appendix 6.4). When using c-SVD, the mobility computed using only 1.5% of the
SVs is nearly identical to the full-matrix result for both carriers.

We also apply the low-rank approximation to spin-dependent e-ph matrices gov-
erning spin-flip e-ph interactions; these matrices enable first-principles calculations
of spin relaxation times (SRTs) in centrosymmetric materials via the Elliot-Yafet
mechanism [61] (see Appendix 6.4). The SRTs for electrons in silicon between 150
and 400 K are shown in Fig. 6.2(c). Our results from SVD with N, = 20 (corre-
sponding to ~1.5% of the SVs) match closely the full e-ph matrix calculations and

agree with experimental results [59, 60]. Different from charge transport, standard
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SVD gives accurate SRTs in silicon because the optical phonons govern spin-flip
processes. For materials where acoustic phonons contribute to spin relaxation, our

c-SVD approach can be readily extended to the spin-dependent case.

Calculations of phonon-mediated superconductivity, presented here using lead (Pb)
as an example, can also leverage our low-rank approximation (see Appendix 6.4).
Fig. 6.2(d) compares the Eliashberg spectral function o F'(w) from full e-ph matrix
calculations with SVD results; using only the first N. = 5 SVs (here equal to
1.8% of the SVs) suffices to reproduce the full calculation. We solve the isotropic
Eliashberg equation self-consistently (see Appendix 6.4 for details) and compute
the superconducting gap A as a function of temperature (Fig. 6.2(e)) as well as the
critical temperature 7. versus number of SVs (inset of Fig. 6.2(e)). The low-rank
e-ph matrix with NV, = 5 SVs provides a gap function in good agreement with the
full-matrix calculation, which can be further improved by using a larger fraction of
SVs; the critical temperature for N. = 5 SVs is very accurate, 7, = 6.9 K which
is within 5% of the T, = 6.6 K value obtained using the full e-ph matrix. This
result implies that as few as five elementary e-ph interactions determine 7, in Pb.
Finally, we compute band renormalization from e-ph interactions [62] ] focusing
on the contribution from the Fan-Migdal e-ph self-energy (see Appendix 6.4). The
Debye-Waller term can also be added following Ref. [63]. Results for graphene
show that band renormalization near the Dirac cone can be computed keeping only
the five largest SVs; this highly compressed e-ph matrix correctly predicts the kinks
near the Dirac cone and matches full e-ph matrix results over a 2 eV energy range.
We also carry out convergence tests with respect to the fraction of SVs included
in the calculation for all the materials studied here (see the Supplemental Material
(section 6.5)). The rapid convergence with respect to the fraction of SVs guarantees
that the full e-ph matrix calculation is not needed, and one can obtain accurate
results by converging the desired property with respect to the fraction of SVs with

minimal computational overhead.

While all the examples discussed above are for materials with nonpolar bonds,
polar materials are even simpler to study with our compression method because the
long-range (Frohlich) dipole contribution is dominant and is well modeled by an
analytic formula using Born effective charges [47-49]. To illustrate this point, we
demonstrate accurate mobility calculations in GaAs and PbTiO3 using only 1% of
the SVs (see the Supplemental Material (section 6.5)).
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Figure 6.3: (a) e-ph coupling constant ) in doped monolayer MoS2 computed with
our compression method using different fractions of SV. The doping concentration
1s 0.22 electrons per formula unit. The shaded region corresponds to an accuracy
greater than 95% relative to the fully converged calculation. (b) Comparison of the
wall time for computing the e-ph coupling constant A with the full e-ph matrices
and with our SVD compression technique using 1% of the SVs. The 38x speedup
achieved by the SVD compression is indicated in red font.

Computational speedup from compression

We illustrate the computational speedup achieved by our compression method using
the e-ph coupling constant A in doped monolayer MoS2 as a case study [65].
Following Ref. [65], we employ a grid size of 2882 k- and q- points for numerical
integration and a Gaussain smearing of 0.002 Ry. We also leverage the improved
Brillouin-zone sampling technique where only electronic states in a small energy
window (0.006 Ry) near the Fermi surface are included in the calculation. In
Fig. 6.3(a), we show the convergence of A\ with respect to the fraction of SVs. The
shaded region corresponds to an accuracy greater than 95% compared to the fully
converged result. Similar to other quantities computed in this work, A converges
rapidly with the fraction of SVs; in particular, using only 1% of the SVs gives A within
2% of the converged result. Figure 6.3(b) compares the computational wall time

for the calculation employing the full e-ph matrices and for our SVD compression
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Figure 6.4: (a) Decay of the SVs in graphene and (b) decay of the SVs in silicon,
shown by plotting the SVs referenced to the largest SV. Here, s; refers to the SVs
averaged over Wannier orbitals and vibrational modes, $; = /Y .(s/)2. The
respective insets show the real part of the 2nd versus 10th principal components,
obtained from the PCA of the e-ph matrices; in parentheses we give the fraction
of explained variance [64], \; = 02/, 02, where o2 is the variance of the i-th

principal component. The red oval shows tzhe standard deviation of the corresponding
principal components, obtained by dropping feature vectors with norm smaller than
1073 x 3¢. (c) Atomic vibrations associated with the dominant e-ph interactions in
graphene, and (d) the same quantity in silicon, obtained by analyzing the phonon
singular vectors, 7(kaR,,) in Eq. (6.10), for the two largest SVs.

method with 1% SVs (note that both calculations use the same improved Brillouin-
zone sampling scheme). Our approach achieves a speedup by 38 times relative to
using the full e-ph matrices; if we count solely the time for e-ph interpolation, the
speedup is 83 times. This example illustrates the 1-2 orders of magnitude speedup
deriving from compressing the e-ph matrices with SVD. For a more detailed analysis

of computational complexity, see Appendix 6.4.

Dominant modes and principal-component analysis

To understand the inherent compressibility of the e-ph matrices, we analyze the SV
spectrum in graphene and silicon (Figs. 6.4(a) and 6.4(b)). In both materials, the
SVs decay rapidly, dropping by 1—2 orders of magnitude from the largest to the
10th largest SV. In principal component analysis (PCA) [57, 64], this decay can
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be understood as a consequence of high-variance generalized directions in the e-ph
matrix, g (R, R,), which capture the vast majority of the physics, while other
principal components can be viewed as noise and neglected [64]. We carry out
PCA by treating each row of the matrix g (R.,R,) as a feature vector, and find
that the variance of the two leading principal components is one order of magnitude
greater than for the 10th or following principal components, indicating that most
of the physical information is already captured by the first few SVs (see the insets
of Figs. 6.4(a) and 6.4(b)). This analysis reveals that only a few atomic vibrational
patterns dominate e-ph coupling. Although these dominant modes are not known
a priori, they can be learned efficiently with SVD. We also apply the PCA to lead
(see Fig. 6.8 in Supplemental Material (section 6.5)) ]) and observe a similar rapid
decay of the SVs. We remark that the dimensionality reduction is general: it occurs
in all the materials studied here, and it is associated to the rapid decay of the SVs,

which we view as a consequence of the nearsightedness of electronic interactions.

We visualize the atomic vibrations with dominant e-ph interactions by analyzing the
vibrational singular vectors. To that end, we introduce a modified SVD that includes

Wannier orbitals and phonon modes in the decomposition:
g5 (Re,Ry) = > 5,00, (ijR.) 7 (kaR,). (6.10)
g

In this global SVD, the singular vectors @ depend only on electron variables and v
only on phonon variables. This way, the phonon singular vectors @:(K@Rp) can be
interpreted as local vibrational modes (in the Wigner-Seitz cell associated with the
coarse grid [46]) and visualized to study the dominant e-ph couplings. We show
these singular vectors for the two modes with largest SVs in graphene and silicon
in Figs. 6.4(c) and 6.4(d), using arrows on each atom, with length proportional to
the singular vector o7 (kaR,,), to indicate the atomic displacements in the modes
obtained from SVD.

In graphene, where the electronic states consist of p,, orbitals centered on each carbon
atom, the dominant mode resembles a longitudinal optical phonon that brings the
p. orbitals closer together in the unit cell. The second-strongest mode is a shear
vibration resembling a transverse optical phonon, which spreads over multiple unit
cells (Fig. 6.4(c)). For the other modes, we observe that the vibrational pattern
progressively delocalizes over multiple unit cells for decreasing values of the SVs.
In silicon, where the electronic states consist of sp>-like Wannier orbitals oriented

along the chemical bond directions, the two modes with dominant e-ph coupling are
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associated with compression and stretching of the bonds (Fig. 6.4(d)). The intuition
gained from this mode analysis can aid the formulation of model Hamiltonians in
chemically and structurally complex materials, where keeping only the dominant
e-ph interactions can provide effective models of transport and polaron physics

informed by first-principles calculations [66—70].

6.3 Discussion and conclusion

The accuracy of the low-rank e-ph matrices implies that current brute-force first-
principles calculations overparametrize e-ph interactions, falling too far on the right
side of the Pareto-optimal region in Fig. 6.1(a). Conversely, textbook approaches
such as Holstein and Frohlich models, which use only a handful of e-ph couplings,
may fall short of achieving quantitative accuracy by using too few parameters.
Our SVD compression in Wannier basis (followed by interpolation) provides a
systematic route to achieve Pareto-optimal calculations. These optimal models
enhance interpretability and enable a deeper understanding because they concentrate
all the relevant e-ph physics in just a few parameters—in our case, the leading SVs

and singular vectors, which represent dominant e-ph interactions.

In summary, our results unveil the hidden low-dimensional nature of e-ph interac-
tions. While accurate, current first-principles calculations overparametrize these
interactions due to a lack of a priori knowledge of the dominant atomic vibrational
patterns governing e-ph coupling. We have shown that when this optimal represen-
tation is achieved via SVD, using only 10—20 parameters (for each orbital pair and
vibrational mode) is sufficient to obtain results with state-of-the-art accuracy. Sur-
prisingly, this is only a small fraction (1—2%) of the typical size of first-principles
e-ph matrices. Compressing e-ph interactions significantly accelerates calculations
of material properties ranging from transport to spin relaxation to superconductivity.
Future work will extend these ideas to other electronic interactions, with the goal
of advancing “precise but parsimonious” quantum many-body calculations in real

materials.

6.4 Appendix

Computational complexity analysis

From a computational viewpoint, Eq. (6.7) can greatly accelerate the calculation
of e-ph interactions and the associated material properties. The key bottleneck
in these calculations is obtaining the e-ph matrix elements on fine momentum

grids, gmn.(ky, qy), starting from the Wannier representation, with a cost scaling
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as O(NRka +Nq f) for an optimal implementation [46] (for a fixed number of
Wannier functions and atoms in the unit cell), where Ny ; and Ng , are the number
of points in the fine-momentum electron and phonon grids, with typical values of
order Ny, =~ Ny, ~ 10°. In contrast, when using SVD, this interpolation step costs
only O(N.Ni, Ny, ), with a speed up by a factor Ng, /N, the inverse fraction of SVs
kept in the truncated e-ph matrix. In most cases, we will keep only 1—2% of SVs,
resulting in a ~100 times speed-up for the key step in e-ph calculations. We show
specific timing comparisons for all the materials studied in this work in Fig. 6.5
of the Supplemental Material(section 6.5). In all cases, our algorithm achieves a
speed up close to the ideal value of Ngr,/N.. The memory improvement is also
dramatic. A converged transport calculation in silicon requires a k grid of 100 and
q grid of 503 points [46]; on these fine grids, the memory required to store the entire
e-ph matrix g, (k¢, qy) is 700 TB, while the memory needed to store the singular
vectors uf (ky) and vl'(qy) is only 128 GB when we retain 1.5% of SVs, which
guarantees accurate results as we show in Figs. 6.2(a) and 6.2(b). This efficiency

removes the key bottleneck in first-principles e-ph calculations.

Mobility calculations
The first-principles mobility calculations in silicon follows our previous work [51].
We include the quadrupole contribution analytically for silicon. The quadrupole

tensor can be written as

Qsiapy = (1) Quileas, |, 6.11)

where €,4., is the Levi-Civita tensor and the value of ()5 = 13.67 is taken from
Refs. [71, 72].

We compute the phonon-limited mobility at temperature 7" using the BTE in the
relaxation time approximation (RTA) [46]. We first obtain the e-ph scattering rate
I',x using Fermi’s golden rule, which is equivalent to using the imaginary part of

the lowest-order e-ph self-energy [73]:

2 1
Fn = = mnv k, 2
" thZIQ (k, q)]

mrq
X [(Nog + 1 = frnk+a)d(€nk — €mkrq — Aing)
+ (szq + fmk+q) 5(€nk — €mk+q + muq)]a (612)

where N is the number of q points and ¢ is the Dirac delta function. Then we

obtain the mobility from the BTE by summing over contributions from different
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electronic states and scattering processes [46]:

0
,uozB(T) n éNk /dE ( f) Z Tnk Vnkvgk(s( - 6nk)7 (613)

where (2 is the volume of the unit cell, 7, = (Fnk)*1 are relaxation times, n,. is
the carrier concentration, f is the Fermi-Dirac distribution, and Ny is the number
of k points; €, and v, are electron energies and band velocities, respectively. Our
calculations in silicon use a uniform grid with 200® k points and a uniform random
grid with 10° q points, where k and q are electron and phonon momenta respectively.

The delta function is approximated as a Gaussian with a 10 meV smearing [46].

¢-SVD algorithm
Let us briefly describe our c-SVD algorithm. Similar to the acoustic sum rule (ASR)

for the dynamical matrix [19], we formulate an ASR for the e-ph matrix elements:
g, (k,q=10) =0, (6.14)

where 4 labels the acoustic modes, and we omit band indices for simplicity. The
rationale for this e-ph ASR is that a rigid translation of the lattice will not change

the electronic band structure. The real-space version of this e-ph ASR reads

> (R, R,) Zg“ *“R,,R,) =0, (6.15)
K,Ryp
where g“ 0 “(Re, R,,) accounts for the acoustic subspace of the e-ph matrix defined
in Eq. (6.4). With this ASR, the e-ph matrix for long-wavelength acoustic phonons
can be approximated to first order in q as
1=0,« : n=0,a iqR,
lim g"~(Re,q) = lim > ¢"~"*(Re, Ry )e

q—0
P

~iq-A%Re), (6.16)

where we defined a real-space deformation potential, which in general can be
anisotropic, as
A*(R) =) Ryg""*(Re, Ry). (6.17)

Ry

In the limit of |q| — O, f]“:()’o‘(R67 q) vanishes linearly in |q|, but the phonon

occupation number diverges as therefore in the long-wavelength limit acoustic

| K
phonon scattering is often important. This acoustic phonon contribution is chal-

lenging to preserve when using the compressed e-ph matrices because standard
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SVD primarily captures large entries in the e-ph matrix. To address this point,
we compress the e-ph matrix while conserving A*(R.) by imposing the following
constraint:

> R34 (Re.R,) = A%(Re). (6.18)

RP
Satisfying this set of linear equations leads to a constrained low-rank approxima-

tion [74], a more general optimization problem.

The c-SVD is applied only to the acoustic subspace, which corresponds to F' =

(14, © = Oav), resulting in a compressed e-ph matrix of rank N..:

in. (R, R,) = gn. 3(Re, R ) (6.19)
+ Z )‘56’ (Rp)gf )

BB E(z,y,2)

where gf,c_i,,(Re, R,) is the truncated SVD of the e-ph matrix with N, — 3 singular
values (see Eq. (6.6)); 0A“ is the residual term for gf,c_:;(Re, R,), defined as

SA%(R,) ZRP IR, Ry), (6.20)

and \gg is the inverse of the overlap matrix between R,, vectors:
Z Mg Z (Rp)/a/ (Rp>5// = dppr- (6.21)
B’ Ry

Using this approach, the compressed e-ph matrix gﬁc (R, R,) gives the same defor-
mation potential as the full e-ph matrix in Eq. (6.17), and its rank is smaller than or
equal to .. This c-SVD workflow requires only a minimal computational overhead
relative to standard SVD.

Spin relaxation times
The first-principles calculation of SRTSs in silicon follows our recent work [61]. The
spin-flip relaxation time 71\, for a band electron in state |nk), accounts for the

Elliott-Yafet spin relaxation mechanism and is computed using [61, 75, 76]

_ § ( flip
ﬂlp - |gmn1/

mrq

X [(qu +1- fmk—i—q) O(€nk — €mk+q — hqu)
+ (Nyq -+ fmk+q) 5(€nk — 6mk+q + hw,,q)]. (622)
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The key ingredients in this equation are the spin-flip e-ph matrix elements,

fip (k,q) = (mk+q{ |[AV,qnk 1), (6.23)

gmm/

with || and {} denoting nearly spin-down and nearly spin-up states, respectively.
These matrix elements describe the probability amplitude to flip the spin of a band
electron due to a particular phonon mode rq. The macroscopic spin relaxation

time, 7,(7"), is a thermal average over electronic states of the spin-flip scattering

rates [61]:
-1 1 e\ Tt
(T) < 1 > an @ (_ dE ) (6.24)
Ts = o = . . .
. e (=)

Thk
The SRT calculations employ a uniform grid with up to 1403 k points and a 5 meV

Gaussian smearing for the delta functions.

Eliashberg spectral function and superconducting gap

We carry out DFT calculations on lead (Pb) using the generalized gradient approx-
imation [77] in the Quantum ESPRESSO code [78]. The ground state and electron
wave functions are computed on a 14 x 14 x 14 k-point grid with a kinetic energy
cutoff of 90 Ry, and the lattice constant is set to 4.88 A. We use DFPT to calculate
the phonon frequencies and eigenvectors, and the e-ph matrix elements ¢,,,., (k, q),
on coarse 6 X 6 x 6 k- and g-point grids. We wannierize the 4 bands near the Fermi
surface using the Wannier90 code [79], and obtain the e-ph matrices in Wannier

basis using Perturbo [46]. The Eliashberg spectral function is computed as

1
=3 Z Wig Mg 0w — Wyq),  With
Avg = s (K, 6.25
T N e 2 Z [y (&, )| (6.25)
X 0(€nk — EF)5(€mk+q —€p),
where N (er) is the density of states at the Fermi energy (¢r). The Eliashberg

function o?F(w) encodes the isotropic and retarded effective attraction between

electronic states on the Fermi surface. Using o> F(w), we obtain the gap function
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by solving the isotropic Migdal-Eliashberg Eq. [80]:

kgT i
Z(w}]) = 1 + B WJ )\(w] — wj/),
Wi T Wi+ A2 (iw;)

Z(iw;)A(iwj) = mkgT (6.26)

3’ wj% + A? (in/)
X [(Awj —wyr) — pel

where 7' is the temperature, w; = (2j + 1)nkgT is the Matsubara frequency, s
is the screened Coulomb potential, Z(iw;) is the mass renormalization function,

A(iw;) is the superconducting gap function, and A(w;) = [° dwoF (w)

2Jr21s

the isotropic e-ph coupling strength.

For the numerical integrations in Eq. (6.25), we employ a k-point grid consisting of
400,000 quasi-random Sobol points (generated using SciPy[81]) and a q-point grid
with 30,000 uniformly distributed random points; the delta functions are approxi-
mated as Gaussians with a 30 meV smearing for electrons and 0.1 meV smearing
for phonons. Using the converged o®F(w) function, we set x* = 0.1 and solve
Eq. (6.26) iteratively for a range of temperatures. The critical temperature 7 is

obtained as the temperature where A, = A(iw; = imkpT') extrapolates to zero.

Band structure renormalization

The DFT ground state calculation in graphene uses the local density approximation
with a norm-conserving pseudopotential from Pseudo DOJO[82]. We employ a 90
Ry plane-wave kinetic energy cutoff, a 60 x 60 x 1 k-point grid, and a 2.46 A lattice
constant. For the DFPT calculation, we use coarse grids with 36 x 36 x 1 k-points
for electrons and 18 x 18 x 1 g-points for phonons. The band structure renormalized
by e-ph interactions, €,y, is obtained as the DFT band structure plus the real part of

the e-ph self-energy evaluated on-shell,
gnk = €pk + Re Enk(E = €pk, T) (627)

We use the lowest-order (Fan-Migdal) e-ph self-energy,

S B, T) Z |G (k. @) (6.28)

9 vqm

% |: NVq+1_fmk+q + qu+fmk+q
E— €mk+q — hqu - iTl E — €mk+q + hqu - 7;7]
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where 7 is a Lorentzian smearing [83]. We employ 107 uniform random q-points
for the numerical integration in Eq. (6.28) and set the Lorentzian smearing to 15

meV.

For more accurate band renormalization calculations, one could use Wannier func-
tion perturbation theory (WFPT) to overcome errors resulting from finite number

of Wannier functions [84].
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Table 6.1: Mobility of electrons in GaAs.

1% SVs 2% SVs  Full
Mobility @ 300K (cm?/Vs) 7121 7126 7127
Relative error 0.084%  0.014% 0%

Table 6.2: Mobility of electrons in PbTiO3.

1% SVs = 2% SVs  Full
Mobility @ 300K (cm?/Vs)  30.69 3046 2997

Relative error 2.4% 1.6% 0%
(©) 20
100 e Full
- SVD (5.8%)
~ 80 210
% k=
E 60 <
W 2 4
E 40 5
[=]
20 «  Full =

«  SVD (5.8%)
0 1
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Figure 6.9: (a) Crystal structure of pentacene with 72 atoms in the unit cell. (b)
The imaginary part of the lowest-order e-ph self-energy in the full calculation and
in our compression method using only 5.8% of SVs for holes in pentacene. (c) The
corresponding hole mobility in a direction versus temperature.
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Chapter 7

SUMMARY AND FUTURE DIRECTIONS

In conclusion, this thesis shows a unified framework that integrates e-ph interac-
tions, magnetic fields, and Berry curvatures to calculate transport properties in a
wide range of materials, and develops a corresponding first-principles code. These
advances pave the way for studies of magnetotransport, magnetic materials, and

topological quantum materials.

Chapter 2 focuses on calculations of magnetotransport in silicon, GaAs and graphene.
Our calculations of magnetoresistance, Hall mobility, and Hall factor in silicon
achieve excellent agreement with experiments. In GaAs, we find that Hall mobilities
display an accuracy similar to charge transport calculations in zero magnetic field.
The Hall factor in GaAs computed with the iterative (ITA) approach is notably closer
to experimental values compared to the RTA Hall factor, despite the better accuracy
of RTA mobilities in polar semiconductors. We also calculate magnetoresistance in
graphene for different carrier concentrations, finding very large values, consistent
with experimental data. These results validate our approach and show its ability to
precisely predict magnetotransport in metals and semiconductors. Additionally, our
calculations of the changes in steady-state occupations due to external fields reveal
an alternating step-like pattern when plotted on the Dirac cone in graphene. This
feature is attributed to strong electron-optical phonon interactions, and is prominent
only when backscattering is taken into account. Taken together, our work enables
accurate calculations of magnetotransport properties in these materials, and also

provides a detailed understanding of these phenomena on a microscopic level.

In Chapter 3, we study e-ph interactions, phonon perturbation potentials, and the
resitivity in the Dirac semimetal NazBi. Our calculations of e-ph interactions
and scattering rates show that a two-dimensional optical phonon corresponding to
in-plane vibrations of Na atoms accounts for roughly half of the e-ph scattering
and charge transport, despite the presence of 23 other phonon modes. We further
explore the cause of this anisotropy between in-plane and out-of-plane directions
by analyzing the real-space perturbation created by the 2D phonon. We find that a
combination of out-of-phase motions of the Na atoms creates large perturbations at

Bi sites, and therefore interact with Bi p,/, orbitals, causing strong e-ph coupling.
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Our calculations further demonstrate that a distortion of Na atoms corresponding
to the 2D phonon creates a dynamic phase transition to a Weyl semimetal. While
similar "killer’ 2D modes that govern charge transport have been identified previously
in organic crystals [1], they have not been predicted or observed in topological
semimetals. Therefore, studying these phonons not only offers a potential route
for ultrafast control of phase transitions, but also serves as a crucial first step in

understanding the nature of electronic interactions in topological semimetals.

In Chapter 4, we integrate first-principles BTE and Berry curvature to compute
topological transport effects such as the chiral anomaly and nonlinear Hall effect
(NLHE). We calculate magnetotransport properties, such as magnetoconductance
and magnetoresistance, in TaAs, and analyze the classical (Lorentz) and quantum
(Berry curvature related) contributions to transport. Our calculation of the Berry
curvature contribution to the magnetoconductance demonstrates positive values with
increasing magnetic fields, consistent with experiments and previous theoretical
work. We also perform calculations of nonlinear Hall responses in bulk BaMnSb,,
strained ML-WSe,, and BL-WTe,, and obtain results consistent with experimental
data. Our calculations of the Berry curvature dipole in ML-WSe, and BL-WTe,
show a significant change when e-ph interactions are taken into account, highlighting
the interplay of electron interactions and band topology. Taken together, these
calculations accurately quantify topological effects and their role in transport, and

demonstrate a rich interplay between topology and e-ph interactions.

Chapter 5 focuses on the consequences of e-ph interactions beyond charge trans-
port. We perform extensive calculations on (un)strained RuO,, a correlated metal.
Our calculations show that straining RuO, along the c-axis leads to a significant
phonon anharmonicity and changes in the electronic structure. After correcting for
phonon anharmonicity using the stochastic self-consistent harmonic approximation
(SSCHA), we observe signatures of strong e-ph interactions, including distinctive
kinks in the bandstructure due to e-ph band renormalization, and a high super-
conducting 7,.. Our calculations achieve very good agreement with experiments,
providing concrete evidence for the accuracy of e-ph interactions and their broad
applicability beyond charge transport. We plan to extend these results by including
altermagnetism in our calculations and analyzing its effects on superconductivity in
RuO,.

In Chapter 6, we focus on compressing e-ph interactions using data-driven tech-

niques such as singular value decomposition (SVD). Using (un)constrained SVD
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method developed in our group, we compute e-ph interactions using a small fraction
of singular values and achieve very good accuracy. We further compute mobilities,
spin-relaxation times, Eliashberg spectral function, and band renormalization in a
wide varity of materials from compresed e-ph interactions, obtaining results that
closely match with those of the full e-ph matrix. This work reveals the inherent
low-dimensional nature of e-ph interactions, allowing us to extract physical insights

from such low-rank approximations, while also reducing the computational cost.

This thesis opens several research directions for future work. First, our BTE work-
flow primarily focuses on e-ph interactions and phonon-limited transport properties,
but with recent advances in computing electron interactions with defects [2] and
ionized impurities [3], it is now possible to extend these methods to study magne-
totransport and topological transport at low temperatures in regimes governed by
defects. Since the signatures of chiral transport are more prominent at low tem-
perature, including electronic interactions beyond phonons could help bridge the

accuracy gap between our calculations and experimental measurements.

Second, the current formalism to solve the BTE with magnetic fields and Berry
curvature captures the dominant effects very accurately. However, an extension of
the BTE to include inter-band velocity and Berry curvature terms is necessary to
further improve the accuracy of our framework. In principle, this can be achieved
using either density-matrix theory or many-body perturbation theory, in both cases
by including off-diagonal velocity matrix elements in band space. However, due to
several practical considerations, first-principles calculations of the coupled BTE with
inter-band transitions are missing. Recently, our group has successfully developed
and implemented an analogous formalism to compute inter-band contributions to
spin relaxation from first-principles [4, 5]. These efforts point towards the feasibility
of a more complete first-principles description of topological effects that also takes

into account such inter-band transitions.

Third, we also consider the possibility of adding quantum corrections due to mag-
netic field. In our current BTE formalism, the effects of magnetic field are taken
into account through a classical force term, which does not alter the electronic band
structure. While this approach captures magnetotransport effects very accurately at
low magnetic fields, this formalism is no longer valid at large fields, where addi-
tional corrections such as Zeeman splitting and Landau levels are needed. However,
first-principles Landau level calculations are scarce, and implementing these correc-

tions to electrons, phonons, and e-ph scattering is non-trivial. Future efforts in this
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direction will further enhance our understanding of magnetotransport properties
at high fields. For example, it has been shown theoretically that the semiclassi-
cal description of chiral anomaly breaks down in the ’ultraquantum’ limit, where
a Landau level description is needed to explain the unconventional behavior [6].
First-principles calculations that integrate magnetic field effects with e-ph interac-
tions at strong fields are essential for developing a more comprehensive theory of

magnetotransport.

Finally, our work in Chapters 4 and 6 provides a foundation to explore data-driven
compression of band topology, allowing one to extract low-rank features and offer

deeper insight into the topological properties of a material.

In conclusion, this thesis presents important advancements to the theory of first-
principles transport calculations, enabling accurate predictions of novel effects such

as magnetic fields and topology that were previously out of reach.
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