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ABSTRACT

Since their inception, microscopes have evolved significantly, becoming essential
tools across various fields, from pathology diagnosis to biological studies. Morpho-
logical information that cannot be otherwise observed has always been regarded as
the primary data a microscope could deliver. Yet microscopy data embodies further
valuable information worth exploring. This thesis demonstrates extracting three
types of information beyond morphology by modifying microscope systems, incor-
porating physical models, and applying image processing: 1) depth information, 2)
object size information, and 3) object developmental information.

The first part of the thesis describes an all-in-focus technique based on Fourier
Ptychographic Microscopy (FPM) for depth information extraction. It synthesizes
an all-in-focus image and depth map from an FPM-reconstructed multi-focal image
stack. This technique benefits thyroid fine needle aspiration samples, relieving
pathologists from the need to constantly adjust focal planes, enabling convenient
data transfer, and potentially aiding machine learning tasks on cytology specimens.

The second part of the thesis focuses on a non-destructive subvisible particle (SbVPs)
analyzer for estimating size and concentrations of SbVPs in drug products. This
analyzer aims to estimate the size and concentrations of SbVPs within a drug
product while keeping the sample intact. Incorporating a light-sheet microscope
with custom housings to compensate for container-induced astigmatism, it uses side-
scattered light as a size indicator based on Mie scattering theory. Its functionality
is demonstrated on polystyrene beads and biological drug products. Additionally, a
new metric named the strip density is discovered from the same microscope images,
which could serve as a more precise and robust size indicator beyond scattering
light intensity. This new size indicator is used to train a particle detection neural
network, verifying its effectiveness through good performance.

For the final part, we focus on an embryo sex classification project, aiming to
extract subtle developmental differences between male and female embryos from
early development videos taken by Embryoscope. A combined convolutional and
recurrent neural network structure is employed. While the prediction accuracy
reaches 61%, which is not high, the deep learning model outperforms both human
and random predictions, demonstrating its ability to acquire embryo developmental
information from the Embryoscope videos to some extent.
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C h a p t e r 1

INTRODUCTION

Modern optical microscopes have opened a brand-new miniature world for biol-
ogy and medicine. Since their appearance in the 17th century, they have allowed
scientists to discover micro-organs and, for the first time, define the basic unit
that makes up living organisms: the "cell." Optical microscopes have continued to
evolve, enabling countless discoveries along the way. Phase contrast microscopy
and differential interference contrast microscopy have made transparent samples
visible, fluorescent microscopy has enabled imaging of specific components such
as cell substructures and proteins, and super-resolution microscopy has broken the
diffraction resolution limit, enabling single-molecule imaging.

Morphological information has always been the primary data extracted from micro-
scope acquisitions. For instance, such information provides clues for pathologists
to make diagnoses and offers insights that lead to novel biological discoveries.
However, additional information beyond morphology can also be extracted from
microscope acquisitions by modifying microscope structures and through post-
data processing. This additional information can further enhance acquired images,
broaden the application scope of microscopy, and bring new insights to biological
research.

This chapter introduces the basic concepts essential to microscope systems and the
downstream information extraction discussed in subsequent chapters. It covers the
physics of light itself, Fourier interpretation of optical systems, image formation,
typical microscope structures, scattering, and basic machine learning concepts. With
these concepts established, three examples of extracting additional information from
microscope acquisitions will be discussed in the following chapters.

1.1 Maxwell’s equations
Maxwell’s equations [1] describe the wave-like electric and magnetic fields of light.
This set of equations consists of four electromagnetism laws: Gauss’s law, Gauss’s
law for magnetism, Faraday’s law, and Ampere’s law. The partial differential form
of the Maxwell equations can be written as:
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∇ · 𝐸 =
𝜌

𝜖0

∇ · 𝐵 = 0

∇ × 𝐸 = −𝜕𝐵

𝜕𝑡

∇ × 𝐵 = 𝜇0(𝐽 + 𝜖0
𝜕𝐸

𝜕𝑡
)

(1.1)

where 𝐸 is the electric field, 𝐵 is the magnetic field, 𝜌 is the charge density, 𝐽 is the
current density, 𝜖0 is the vacuum permittivity, and 𝜇0 is the vacuum permeability.

Under free space conditions, both charge density and current density are zero:

𝜌 = 0

𝐽 = 0.
(1.2)

To find the solutions for Maxwell’s equations, we first make use of the curl of curl
property, which is written as:

∇ × (∇ × 𝐸) = ∇(∇ · 𝐸) − ∇2𝐸. (1.3)

Then the Faraday’s law can be written as:

∇2𝐸 =
𝑛2

𝑐2
𝜕2𝐸

𝜕𝑡2
(1.4)

where n is the refractive index (RI) of the medium:

𝑛 =

√︂
𝜖

𝜖0
(1.5)

and 𝑐 is the speed of light in vacuum:

𝑐 =
1

√
𝜇0𝜖0

. (1.6)

Similarly, the magnetic field satisfies the same equation. Without loss of generality,
the electric field is discussed in the following chapters and sections. It is possible
to summarize the behavior of the components of 𝐸 and 𝐻 by a single scalar wave
equation:

∇2𝑢(r, 𝑡) = 𝑛2

𝑐2
𝜕2𝑢(r, 𝑡)

𝜕𝑡2
(1.7)

here 𝑢(r, 𝑡) represents any scalar field components with dependence on spatial
position r and time 𝑡.
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For a monochromatic wave, the scalar could be written as:

𝑢(r, 𝑡) = 𝐴(r) exp(𝑖𝜔𝑡). (1.8)

Plugging eq.1.8 into the scalar wave equation eq.1.7, the Helmholtz equation can be
obtained:

(∇2 + 𝑘2)𝐴(r) = 0 (1.9)

where 𝑘 is the wave number, expressed as:

𝑘 = 𝜔
𝑛

𝑐
=

2𝜋
𝜆
. (1.10)

Solving the Helmholtz equation, the plane wave solution can be obtained:

𝐸 (r, 𝑡) = 𝐸0 exp (𝑖(𝜔𝑡 − k · r)) (1.11)

where k is the wave factor whose modulus |k| equals the wave number 𝑘 .

1.2 Two-dimensional Fourier transform
The Fourier transform [1] of a function 𝑔 of two independent variables 𝑥 and 𝑦 is
defined by:

F {𝑔} =
∬ ∞

−∞
𝑔(𝑥, 𝑦) exp[−𝑖2𝜋( 𝑓𝑋𝑥 + 𝑓𝑌 𝑦)] 𝑑𝑥 𝑑𝑦. (1.12)

Similarlay, the inverse Fourier transform of a fuinction 𝐺 (𝐹𝑋 , 𝐹𝑌 ) is defiened by:

F −1{𝐺} =
∬ ∞

−∞
𝐺 ( 𝑓𝑋 , 𝑓𝑌 ) exp[𝑖2𝜋( 𝑓𝑋𝑥 + 𝑓𝑌 𝑦)] 𝑑𝑓𝑋 𝑑𝑓𝑌 . (1.13)

The two-dimension Fourier can be interpreted as a decomposition of the function 𝑔

into a linear combination of elementary functions with the format of 𝑒𝑥𝑝[𝑖2𝜋( 𝑓𝑋𝑥 +
𝑓𝑌 𝑦)], indicating such elementary functions are with spatial frequency of ( 𝑓𝑋 , 𝑓𝑌 ).

1.3 Light propagation
The Huygens-Fresnel principle [1] provides a model to describe and predict the
propagation of light. The principle states that every point on a wavefront serves as a
point source and emanates secondary wavelets. The sum of these secondary wavelets
forms a new wavefront. A wave propagation scheme is illustrated in Fig.1.1.
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Figure 1.1: Wave propagation geometry.

Given the propagation scenario of Fig.1.1, the Huygens-Fresnel principle can be
written as:

𝑈 (𝑥, 𝑦) = 𝑧

𝑖𝜆

∬
Σ

𝑈 (𝜉, 𝜂) exp(𝑖𝑘𝑟01)
𝑟01

𝑑𝜉 𝑑𝜂 (1.14)

where 𝑟01 is the distance between 𝑃0 and 𝑃1 defined as:

𝑟01 =

√︃
𝑧2 + (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2. (1.15)

Applying the Fresnel approximation to eq.1.15, we have:

𝑟01 ≈ 𝑧[1 + 1
2
( 𝑥 − 𝜉

𝑧
)2 + ( 𝑦 − 𝜂

𝑧
)2] . (1.16)

The resulting expression of the wave propagation then becomes:

𝑈 (𝑥, 𝑦) = 𝑒𝑖𝑘𝑧

𝑖𝜆𝑧

∬ ∞

−∞
𝑈 (𝜉, 𝜂) exp

{
𝑖
𝑘

2𝑧
[(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]

}
𝑑𝜉 𝑑𝜂. (1.17)

The Fresnel propagation expression eq.1.17 can be interpreted as the field 𝑈 (𝜉, 𝜂)
convolved with a kernel with the form of:

ℎ(𝑥, 𝑦) = 𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
exp[ 𝑖𝑘

2𝑧
(𝑥2 + 𝑦2)] . (1.18)

Applying Fourier transform to both side of eq.1.17 together with the convolution
theorem, we have the Fourier expression of the Fresnel propagation equation:

F {𝑈 (𝑥, 𝑦)} = F {𝑈 (𝜉, 𝜂)} · 𝐻 ( 𝑓𝑋 , 𝑓𝑌 ) (1.19)

where the Fourier transform of the Fresnel kernel is written as:

𝐻 ( 𝑓𝑋 , 𝑓𝑌 ) = F { 𝑒
𝑖𝑘𝑧

𝑖𝜆𝑧
exp[ 𝑖𝑘

2𝑧
(𝑥2 + 𝑦2)]}

= 𝑒𝑖𝑘𝑧 exp[−𝑖𝜋𝜆𝑧( 𝑓 2
𝑋 + 𝑓 2

𝑌 )] .
(1.20)
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1.4 Fourier transforming properties of lenses and 4-f system
A lens is an optical device made of transparent material that can focus or disperse
light through refraction. A common lenses are spherical lenses, with two surfaces
parts of the sphere surfaces. Both the radius and the sign of the curvature of both
surfaces of a lens determine the behavior of a lens. A biconvex or convex lens makes
collimated light converge to a spot, as illustrated in Fig.1.2. For a thin lens situation,
the distance between the spot and the lens is defined as the focus length 𝑓 .

Figure 1.2: Light passes through a lens.

The behavior of a lens can also be interpreted from wave optics perspective. A lens
adds phase delay to the incident wave. Combining the geometry of a lens and the
paraxial approximation [1], the phase transformation of a thin lens is written as:

𝑡𝑙 (𝑢, 𝑣) = exp[−𝑖 𝑘
2 𝑓

(𝑢2 + 𝑣2)] (1.21)

where 𝑘 is the wave number of the incident light, and 𝑓 is the focal length of the
lens.

For the situation illustrated in Fig.1.2, a monochromatic plane wave of amplitude 𝐴 is
assumed to be uniformly and normally incident on the input plane with transmission
coefficient 𝑡𝐴 (𝜉, 𝜂), in which case the field distribution at the input plane is:

𝑈𝑜 = 𝐴 · 𝑡𝐴 (𝜉, 𝜂). (1.22)

The wave propagation process can be decomposed into three steps: 1) light propa-
gates for a distance of 𝑑 from the input plane to the lens, 2) the lens applies a phase
delay to the wave, and 3) the wave exits the lens and propagates for a distance of
𝑓 to the focal plane. Considering all the propagation as Fresnel propagation and
neglecting the finite lens aperture, the final field distribution on the focal plane can
be written as:
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𝑈 𝑓 (𝑢, 𝑣) =𝐴 exp[𝑖 𝑘
2 𝑓

(1 − 𝑑

𝑓
) (𝑢2 + 𝑣2)]

×
∬ ∞

−∞
𝑡𝐴 (𝜉, 𝜂) exp[−𝑖 2𝜋

𝜆 𝑓
(𝜉𝑢 + 𝜂𝑣)]𝑑𝜉 𝑑𝜂.

(1.23)

From eq.1.23, we can find that for the special case where 𝑑 = 𝑓 , in other words,
when the input plane is right at the front focal plane of the lens, the behavior of the
lens becomes an exact Fourier transform.

Based on the Fourier properties of a lens, a coherent 4-f type imaging system in
free space can be designed whose scheme is shown in Fig.1.3. The two lenses are
placed at the exact distance such that the back focal plane of the first lens is exactly
the front focal plane of the second lens. During imaging, the sample is placed at the
front focal plane of the first lens, and the image is formed at the back focal plane of
the second lens. The spatial domain is transformed to the spatial frequency domain
by the first lens, and then the spatial frequency domain is transformed back to the
spatial domain by the second lens. By setting 𝑓2 far larger than 𝑓1, a microscope
with high magnification can be achieved, where the first lens is named the objective
lens and the second lens is named the tube lens.

Figure 1.3: A typical 4-f system, where the back focal plane of the first lens is
exactly the front focal plane of the second lens.

From the 4-f system, it is obvious that only the spatial frequency components that
can pass through the pupil plane can contribute to the final image, indicating that the
4-f system with a limited aperture is a low-pass filter in the spatial frequency domain.
From a system perspective, the 4-f system is linear in complex amplitude, and its
amplitude transfer function (object space) determined in the frequency domain is
just the pupil function, which is a circular function for the most common case with
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a circular lens:

𝐻 ( 𝑓𝑋 , 𝑓𝑌 ) = 𝑐𝑖𝑟𝑐(

√︃
𝑓 2
𝑋
+ 𝑓 2

𝑌

𝜆 sin 𝜃
) (1.24)

where 𝑤 is the radius of the pupil size, and 𝜃 is half of the maximum angle of the
cone of light that can enter the optical system, as illustrated in Fig.1.4. The cutoff
frequency can be then written as:

𝑓𝑐 =
sin 𝜃
𝜆

. (1.25)

Figure 1.4: Numerical aperture geometry, assuming the aperture limits the maxi-
mum cone of light passing through the lens.

From the transfer function of the coherent 4-f system, the concept of numerical
aperture (NA), which is widely used in microscopy research, can be connected to
the Fourier analysis of the 4-f system. The NA represents the maximum spatial
frequency component that an optical system can receive, defined as:

𝑁𝐴 = 𝑛 · sin 𝜃. (1.26)

The NA indicates the resolving power of the microscope. For a coherent imaging
situation, the resolution of the microscope is:

𝑟𝑒𝑠(𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡) = 𝜆

𝑁𝐴
. (1.27)

For systems in free space, the refractive index 𝑛 is 1. Applying the approximation
of sin 𝜃 ≈ 𝜃, the resolution of a coherent microscope is the reciprocal of the cutoff
frequency derived from eq.1.25. The NA and the frequency analysis of a coherent
4-f system converge.

Coherent imaging systems are linear in complex amplitude, while incoherent systems
are linear in intensity (the modulus squared of amplitude). Incoherent systems use
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the optical transfer function (OTF) rather than the amplitude transfer function. The
OTF, being the auto-correlation of the pupil function based on the auto-correlation
property of the Fourier transform, gives incoherent systems a cutoff frequency twice
that of coherent systems with the same pupil size. Consequently, incoherent systems
achieve twice the resolution of coherent systems:

𝑟𝑒𝑠(𝑖𝑛𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡) = 𝜆

2𝑁𝐴
. (1.28)

1.5 Mie scattering
Scattering is a type of light-particle interaction. Many phenomena are caused by
light scattering, such as the blue color of the sky, the red sky at sunset, and the
white or gray color of clouds. Maxwell’s equations are the fundamental theory
describing the behavior of light during the scattering process. The exact solution for
a particle with an arbitrary shape can be difficult to solve, but for simpler cases, such
as scattering by a homogeneous sphere, the exact solution has been well studied by
Gustav Mie, and these solutions have since been referred to as Mie scattering theory
[2].

The exact solution to Maxwell’s equations is not unique and depends on the specific
conditions of each situation. In the case of scattering by a homogeneous sphere, the
conditions applied to Maxwell’s equations are:

• The boundary conditions at the interface between the sphere and the surround-
ing medium.

• The solution is bounded at the origin.

• The asymptotic field at infinity corresponds to a diverging spherical wave in
the scattering case.

The detailed mathematical expressions for the Mie scattering solution will be dis-
cussed in Chapter III. Here, we highlight two key parameters in a scattering scenario
that influence the scattering field distribution and intensity. The first is the relative
refractive index 𝑚, defined as the ratio of the refractive index of the sphere 𝑛𝑝 to
that of the surrounding medium 𝑛𝑚:

𝑚 =
𝑛𝑝

𝑛𝑚
. (1.29)

A larger 𝑚 indicates a greater refractive index difference between the particle and
the surrounding medium, which typically results in more noticeable scattering. To
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illustrate the role of the relative RI 𝑚, consider the extreme case where the particle
and the medium have the same RI (𝑚 = 1). In this scenario, the entire system
becomes homogeneous, and as a result, light scattering no longer occurs.

The second important parameter is the size parameter 𝑥, defined as:

𝑥 =
2𝜋𝑟
𝜆

(1.30)

where 𝑟 is the radius of the scattering sphere and 𝜆 is the wavelength of the incident
light. The size parameter determines both the intensity and the distribution of
scattered light. For particles with sizes comparable to the wavelength, scattering
tends to be more uniform in all directions. However, for particles much larger than
the wavelength, forward scattering becomes dominant.

1.6 Deep learning for computer vision
Machine learning (ML) [3–6] is a field focused on developing statistical algorithms
capable of learning patterns from data, generalizing to unseen data, and performing
tasks without explicit instructions. Depending on the type of information available
to the system, ML can be divided into various paradigms, including supervised
learning, unsupervised learning, and reinforcement learning.

Supervised learning [7, 8] is one of the most widely used paradigms in machine
learning. As the name suggests, the system is trained with labeled data, where both
the input and the corresponding output are provided. The goal of training is to dis-
cover the rule that maps the inputs to the outputs. The typical process of supervised
learning includes several steps: 1) determining the type of training examples, 2)
gathering the dataset, 3) defining the input representation, 4) selecting the learning
algorithm, 5) training the model, and 6) evaluating the model’s performance.

Neural networks [9, 10] are a type of learning algorithm that inspired by the structure
of biological neurons in the brain, with artificial neurons arranged in layers and
connected across them. During training, the network adjusts these connections
through backpropagation [10], so it can generate the expected output given an input.
As research in neural networks advanced and computational hardware improved,
deep neural networks (DNNs) became increasingly common. The term "deep" refers
to the many layers in the network, which can range from hundreds to thousands.
These layers allow DNNs to recognize complex inputs and have made them highly
effective in fields like image recognition [11–16] and natural language processing
[17–19].
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In computer vision, common deep learning tasks include image classification and
object detection, both of which are illustrated in Fig.1.5. Image classification
involves the DNN identifying the class of an object in an image (e.g., recognizing
a cat), while object detection requires the DNN to locate and identify all instances
of certain objects (such as humans, buildings, or cars) within an image. Significant
progress has been made in these areas, from the creation of large datasets like
ImageNet [20] and COCO [21] to the development of powerful architectures such
as ResNet [13], EfficientNet [22], and Faster-RCNN [23].

Figure 1.5: Image classification and object detection.

1.7 Thesis outline
This thesis presents methods for extracting three types of information beyond mor-
phology by enhancing microscope systems, integrating physical models, and apply-
ing advanced image processing techniques. These include: 1) depth information, 2)
object size information, and 3) developmental information of objects.

Chapter 2 introduces a method to extract depth information using an all-in-focus
imaging technique based on Fourier Ptychographic Microscopy (FPM). By recon-
structing a multi-focal image stack, this method generates both an all-in-focus image
and a corresponding depth map. This approach is useful for thyroid fine needle aspi-
ration samples, as it minimizes the need for pathologists to constantly adjust the focal
plane, benefits data transfer, and could also support machine learning applications
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in cytology.

Chapter 3 and 4 focus on a non-destructive subvisible particle (SbVP) analyzer for
estimating the size and concentration of SbVPs in drug products. This analyzer
aims to estimate the size and concentration of SbVPs within a drug product while
keeping the sample intact. Incorporating a light-sheet microscope with custom
housings to compensate for container-induced astigmatism, it uses Mie scattering
theory to estimate the size of the particles. Its functionality is demonstrated on
polystyrene beads and biological drug products. Additionally, a new metric named
the number of fringes is discovered from the same microscope images, which could
serve as a more precise and robust size indicator beyond scattering light intensity.
This new size indicator is used to train a particle detection neural network, verifying
its effectiveness through its performance.

Chapter 5 is about an embryo sex classification project, aiming to extract subtle
developmental differences between male and female embryos from early develop-
ment videos taken by an Embryoscope. A combined convolutional and recurrent
neural network structure is employed. While the prediction accuracy reaches 61%,
which is not high, the deep learning model outperforms both human and random
predictions, demonstrating its ability to extract embryo developmental information
from the Embryoscope videos to some extent.
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C h a p t e r 2

ALL-IN-FOCUS FOURIER PTYCHOGRAPHIC MICROSCOPY
FOR FINE NEEDLE ASPIRATION BIOPSY

Cytologic preparations consist of preparations of whole cells where cells commonly
cluster and aggregate. As such, they are generally much thicker than histologic
slides, resulting in large patches of defocus when examined under the microscope,
requiring pathologists to continually manipulate the focal plane, complicating the
task of accurately assessing the entire cellular aggregate and thus in making a
diagnosis. Further, it is extremely difficult to acquire useful uniformly in-focus
digital images of cytology preparations for applications such as remote diagnostic
evaluations and artificial intelligence models. In this chapter we report a unique
imaging method that can acquire cytologic images efficiently and computationally
render highly compact all-in-focus digital images based on Fourier ptychographic
microscope (FPM). First FPM is introduced and its maximum achievable numerical
aperture and ability to extend depth of field is analyzed and experimental verified.
Then the procedure of synthesizing all-in-focus images are elaborated. Finally,
we report all-in-focus FPM results of thyroid fine needle aspiration (FNA) cytology
samples, demonstrating our method’s ability to overcome the height variance caused
by cell aggregation, and rendering images at high resolution and that are all-in-focus.

2.1 Introduction of FPM
Fourier Ptychographic Microscopy (FPM) [1, 2] is a computational microscopy
method that adapts and combines the key concepts of synthetic aperture and phase
retrieval to allow the user to synthesize a series of low resolution microscopy images
into a high resolution microscopy image. The input set of low resolution images
are acquired through a standard microscopy where the illumination light is varied
in its illumination angle for each of the raw images. In the angular spectrum space,
the information of the raw images overlaps with each other. By exploiting the
information redundancy in the overlap regions, we can then apply phase retrieval
methods [1, 3–7] to reconstruct the missing phase information and allow us to
apply synthetic aperture concept to correctly stitch the disparate raw data in the
angular spectrum space into a contiguous wide spanning and accurate angular
spectrum representation of the original microscopy sample. When transformed
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back into the spatial domain, the resulting image has improved resolution and the
original field-of-view. By this means, FPM enables the user to generate images with
superior resolution than what the native numerical aperture (NA) of the microscope
is supposed to be able to provide. As a reference point, the original FPM paper
[1] showed that an objective of NA 0.08 when used in an FPM format was able to
generate images with resolution comparable to that achieved by an objective of NA
0.5 for a standard microscope.

In addition to improving resolution, the FPM’s computational microscopy algorith-
mic approach allows the user to correct inherent physical system aberrations by
nesting the aberration correction functions in its algorithm. This ability enabled
a shift in standard microscopy design paradigm—prior to FPM’s invention, it was
generally assumed that the correction of aberration needs to be done in the physical
world by building physical microscopes with as little aberrations as possible. FPM
showed that an intrinsically imperfect microscope can still be used generate opti-
cally ‘perfect’ (aberration-free) images by mathematically correcting aberrations in
the computational image processing [7]. This substantial advantage was leveraged
in parallel microscopy implementations, where very compact but highly aberrative
microscope arrays can be used to perform high-quality parallel imaging by using
FPM to correct aberration computationally [8].

A corollary consequence of this computation aberration correction ability is that the
FPM method can also be applied to digitally refocus its rendered images as desired.
This digital refocusing ability can substantially extend the effective depth-of-field of
the microscope by several factors beyond its native depth-of-field as dictated by the
NA of the objective. In the original FPM paper, the DOF of a 2x objective (0.08NA)
was extended from ∼80 𝜇m to ∼300 𝜇m [1].

2.2 Analysis of NA upper limit, resolution and depth of field of FPM
According to the Fourier frequency model of FPM, the final range that the sam-
ple spectrum can cover, given sufficient redundancy among the sub-apertures, is
determined by both the size of the objective lens pass band and the location of
the sub-apertures, which is governed by the maximum oblique illumination angle.
Therefore, the synthetic NA of FPM, denoted as 𝑁𝐴𝑠𝑦𝑛, is expressed as eq.2.1:

𝑁𝐴𝑠𝑦𝑛 = 𝑁𝐴𝑜𝑏 𝑗 + 𝑁𝐴𝑖𝑙𝑙𝑢 (2.1)

where 𝑁𝐴𝑜𝑏 𝑗 is the NA claimed by objective lens and 𝑁𝐴𝑖𝑙𝑙𝑢 is the maximum
illumination NA (the largest illumination angle).
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As a result, a question remains to be addressed: What is the maximum numerical
aperture (NA) that a free-space FPM system can achieve? Before discussing the
all-in-focus method applied to FPM, we first aim to explore the basic properties of
FPM, including its NA limitations. Here, we report our findings on combining some
of the previously reported methods to implement an FPM system with a NAsyn of
1.9 – close to the theoretical upper limit of 2. Our experiment is aimed at studying
whether FPM is able to perform well at this high NAsyn limit, and whether any non-
obvious complications need to be addressed to achieve optimal performance. To
accomplish this task, we implemented a high-NA system with an objective of NA =
0.95 and an LED quasi-dome with illumination NA = 0.95. On the processing side,
we adapted and combined illumination correction circular edge detection (CED) [9]
and simulated annealing (SA) algorithm [10, 11] within the algorithm to generate
high quality FPM reconstruction. Our high-NA FPM implementation has a sparrow-
limit based, full pitch resolution 266 nm with 465 nm incident light when measured
on a Siemens star target. The related work, the experiment set-up, the resolution
comparison with a standard high-NA microscope, and comparison images taken
of biological samples will be elaborated.The measured depth-of-field performance
(DOF) of this high NA FPM system are additionaly reported as well.

Related work exploring NA upper limit of FPM
The twin advantages of resolution improvement and extended DOF associated with
the FPM method have been extensively studied over the past decade [7–17]. Of
particular interest within the community is the improvement in resolution which
is directly determined by the synthetic NA of FPM.As such, there are two ways
to improve the resolution of FPM: increase 𝑁𝐴𝑜𝑏 𝑗 or increase 𝑁𝐴𝑖𝑙𝑙𝑢. Under free
space condition, both 𝑁𝐴𝑜𝑏 𝑗 and 𝑁𝐴𝑖𝑙𝑙𝑢 have a theoretical upper limit of 1, resulting
in 𝑁𝐴𝑠𝑦𝑛 having a theoretical upper limit of 2. In prior research, there have been
numerous efforts aimed at increasing the synthetic NA towards this maximum limit:
flat LED array (0.75 NA) with a moderately high NA objective (0.75 NA) [18],
hemispherical LED condenser (0.95 NA) with a low NA objective (0.1 NA) [16]
and planner LED condenser (0.93 NA for dry, 1.2 NA for oil immersion) with a
moderate low NA objective (0.4 NA) [11]. The respective synthetic NA attained by
these prior works are, respectively, 1.5, 1.05, 1.33 (dry) and 1.6 (oil immersion).
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Experimentally implementing FPM with near maximum system NA
Experimental set up

Fig.2.1(a) shows the schematic of the high-NA FPM set up. We implemented an
inverted transmission FPM system for this experiment. An LED quasi-dome with
illumination NA of 0.98 [19, 20] was mounted ∼50 mm above the focal plane of a
50x/0.95 objective (Olympus MPLAPON50X), resulting a 0.53 mm-diameter field
of view. A CCD camera (Hamamatsu C11440-42U30, 6.5 𝜇m x 6.5 𝜇m) served
as our imaging camera. During the data acquisition process, we illuminated the
sample with 39 LEDs on the dome successively to generate the raw data, resulting
in an effective illumination NA of 0.95 and a total synthetic NA of 1.9. The center
wavelengths of the full-color LED were 621 nm (red), 525 nm (green), and 465 nm
(blue), and the average power of the red, green and blue LEDs were 1.6 mW, 3.5
mW and 3.4 mW, respectively. With the large range of illumination angle involved,
the collected images have a large span of intensities. To accommodate the large
dynamic range, we adopted two procedures to avoid camera saturation. First, the
camera exposure times were set separately, for low NA (≥ 0.75) illumination to be
0.3 s and for high NA (>0.75) illumination to be 5 s. Second, for each high NA
illumination, 3 images were taken and then averaged as the final raw data. The total
acquisition time for the entire sequence of raw images at one color channel added
up to about 12 mins.

The image processing procedure is summarized in Fig.2.1(b). We performed illu-
mination angle calibration prior to image reconstruction. We used one raw data set
for this procedure (described in Section 2B). This procedure accurately determines
the illumination angle associated with each LED and provides us with an accurate
determination of the Fourier frequency shifts in Fourier domain. We then employed
embedded pupil function recovery (EPRY)[7] reconstruction in a FPM iteration
loop to correct for residual aberrations and output a high-NA FPM image. In our
experiments, illumination correction was only performed once after the system has
been set up. Subsequent FPM rendering all share the same calibrated illumination
data.
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Figure 2.1: Experimental set up and general process. (a) Schematic of experimental
set up. (b) Experiment procedures: One group of raw data was used for illumination
correction first. Calibrated illumination angles were then used for FPM rendering.

Illumination correction

Accurate determination of illumination angle and corresponding Fourier frequency
shift induced by each oblique illuminating LED is essential for high quality FPM
reconstruction. Unlike flat LED array, whose simple geometry makes it straight-
forward to calculate Fourier frequency shifts, the LED quasi-dome has complicated
LED distribution, hindering direct and accurate calculation of Fourier frequency
shifts. With only rough values of the Fourier frequency shifts, FPM reconstruction
would be inaccurate, and the resulting images would appear blurry and distorted, as
showed in Fig.2.2(c1). To perform successful illumination correction, we first per-
formed pre-iteration coarse position correction, followed by iterative fine intensity
and position correction (see Fig.2.2(a-b)).

We used circular edge detection (CED) [9] as our coarse position correction method
(see Fig.2.2(a)). As the maximum illumination NA matched the objective NA in
our experiment, all raw images were bright field images. As showed in Fig.2.2(a),
the Fourier spectrum of a bright field image contains two obvious centrosymmetric
circles, for which CED has been showed in prior works [9] to be effective for coarse
position correction. By jointly considering the first and second derivation of the
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Gaussian filtered spectrum [9], both of which indicate the circle edge, CED can
estimate the position of the circle center. Fig.2.2(c1-c2) shows the FPM image
improvement in a Siemens star image when CED was used for coarse position
correction. However, we also note that while Fig.2.2(c2) (CED corrected) is visibly
sharper over Fig.2.2(c1) (no correction), there are still significant spoke distortions
(marked by yellow arrows) that indicate a need for further improvement.

For finer corrections, we next performed iterative fine intensity and position cor-
rection to further improve the FPM reconstruction quality. The fine correction was
based on simulated annealing (SA) algorithm [10] and was embedded within the em-
bedded pupil function recovery (EPRY) [7] FPM reconstruction process. Fig.2.2(e)
is a schematic of the workflow. Within one iteration, for each raw image, intensity
correction was first performed prior to the execution of the SA algorithm. The
SA algorithm then performed fine correction of the Fourier frequency shift (see
Fig.2.2(b)). The FPM algorithm then rendered an FPM image complete with phase
information. Using this rendered FPM data set and Fourier frequency shift values
used by the SA algorithm, we then generated a set of estimated oblique illumination
images that correspond to the original set of oblique illumination raw images. If we
have the correct Fourier frequency shift values, these two sets should match each
other exactly. As such we can use the mean square error of the image differences
for these two sets as a predictor of whether the correct Fourier frequency shifts have
been achieved. We continued to run this nested workflow until this mean square
error was minimized. For our setup, the final corrected illumination map is showed
in Fig.2.2(d). A corrected Siemens star image rendered through this process is
shown in Fig.2.2(c3). Compared to the prior two images, we can clearly see that it
has the sharpest appearance and the least distortions.
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Figure 2.2: Illumination correction scheme. (a) Schematic of coarse correction
algorithm: CED found the circle edge in Fourier spectrum and then determined
the circle center. (b) Schematic of fine correction: SA algorithm generated off-
set sets and selected the one that resulted in minimum mean square error. (c)
FPM reconstruction results with different extend illumination correction (scale bar:
5 𝜇m): (c1) No correction. (c2) Only coarse correction. (c3) Coarse and fine
correction. (d) Illumination scheme after whole correction. Objective NA: 0.95.
Synthetic NA: 1.9. Points: illumination angles in Fourier space (grey: angles
without corrections, yellow: angles after coarse correction only, green: angles after
whole correction). (e) Flowchart of fine illumination correction algorithm.
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Results of near maximum NA FPM and system property analysis
Resolution assessment and pupil correction

We assess the resolution performance of the high-NA FPM system and compare
it with a standard transmission (incoherent) microscope imaging under 0.95 NA
brightfield illumination. We selected these two system for comparison because
they share the same pass band in Fourier frequency domain [21]. A Siemens star
(Ready Optics, 2017_Pair) target was imaged under blue light (465 nm) with the
imaging strategy described in Section 2A to experimentally determine the resolution.
The Sparrow-limit criteria was adopted here and resolution was defined as the
smallest periodicity at which all spokes are observable (full-pitch resolution) [22–
24]. This assessment is less prone to resolution mis-reporting and can be applied
to compare resolution performance of different microscopy methods [23]. The
Siemens star target can be used to examine a large range of spatial frequencies along
all directions and verify the degree of isotropy of the imaging system. As such,
it can prevent the latent risk of reporting higher Fourier frequency that can only
be resolved along specific directions. Such risk would be an issue for targets such
as USAF target [11, 16] and two-slit target [16], as those targets generally allow
resolution characterization in only 2 directions. Siemens star target is also helpful in
revealing aberrations, as the spokes will appear distorted or blurry when imaged by
an aberrated imaging system. We performed simulation to find reliable resolution
expressions for both systems with Siemens star as a target. For completeness, the
specific process and results are reported in Supplementary document.

According to our simulation, a high-NA FPM system has a theoretical resolution
(Sparrow-limit) determined by:

𝑅𝑒𝑠ℎ𝑛𝐹𝑃𝑀 =
𝜆

𝑁𝐴𝑠𝑦𝑛

= 245𝑛𝑚. (2.2)

With the same generalized simulation, we also found that the theoretical resolution
(Sparrow-limit) of the standard transmission microscope is given by:

𝑅𝑒𝑠𝑡𝑟 = 0.57 × 𝜆

2 × 𝑁𝐴𝑜𝑏 𝑗

= 278𝑛𝑚 (2.3)

where 𝜆 is the incident wavelength.

Our imaging experiment with both the high-NA FPM and the standard transmis-
sion microscope yielded Siemens-star target images that are shown in Fig.2.3(a1)
and (b1). We additionally show the normalized intensity plots along the smallest
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circles where all spokes are resolvable for high NA FPM (green circles) and stan-
dard transmission microscope (blue circles) are included as well (Fig.2.3(a2-3) and
Fig.2.3(b2-3)). Fig.2.3(a2) shows that spoke periodicity of 266 nm is just resolvable
by our high NA FPM system, and thereby establishing its resolution to be 266 nm,
which is 9% deviated from the theoretical resolution prediction. Fig.2.3(b3) shows
that that spoke periodicity of 318 nm is just resolvable by the standard transmission
system, and thereby establishing its resolution to be 318 nm, which is 15% deviated
from the theoretical resolution prediction.

Figure 2.3: Siemens star imaging and resolution quantification. (a) Siemens star
imaged by high-NA FPM (a1) and intensity plots along green (a2) and blue (a3)
rings. (b) Siemens star imaged by standard transmission microscope (b1) and
intensity plots along green (b2) and blue (b3) rings. Scale bar: 5 𝜇m.

The fact that high NA FPM outperformed standard transmission microscope in
resolution can be attributed to 3 aspects.

First, we note that the contrast of the inner Siemens star spokes is notably higher
for the high NA FPM systems compared to the standard transmission microscope
(see Fig.2.3(a1) and Fig.2.3(b1)). This is because the high NA FPM benefits from
coherent imaging where high Fourier frequency components are less attenuated than
that in incoherent imaging.

Second, the high NA FPM system also benefits from EPRY’s ability to correct
residual aberration in conventional objectives—an ability missing from standard
transmission microscopy, which has been previously reported in literature [7].
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Third, intensity correction was adopted when high NA FPM was performed, com-
pensating the inhomogeneity of different illumination angles and reducing weak-
illumination-induced high Fourier frequency attenuation. To show that the impact
of such corrections is significant for high NA FPM, we ran a comparison experi-
ment where we did not compensate for the inhomogeneity. Fig.2.3(a) and Fig.2.4(a)
shows the FPM image with and without compensation, respectively. The resolu-
tion achieved in the uncompensated processing is 294 nm—11% poorer than for
the compensated processing. We further note that this issue is particularly acute
for high NA FPM systems, as low NA FPM systems do not have to illuminate the
sample at large grazing angles.

Figure 2.4: Experiments demonstrating the existence of illumination inhomogeneity.
(a) High NA FPM image of Siemens star without intensity correction (a1) and
intensity plots along minimum resolvable ring (a2). (b) Standard transmission
microscope image of Siemens star with intensity correction (b1) and intensity plots
along minimum resolvable ring (b2). Scale bar: 5 𝜇m.

In principle, this type of intensity correction can also be performed for standard
transmission microscopy. The illumination source would have to be designed such
that the illumination intensity is carefully scaled based on the illumination angle. In
a standard Kohler illumination scheme, a well-designed attenuation mask inserted
at the right Fourier plane may be able to accomplish this at the cost of significant net
attenuation. For our current study, we can derive the results for an equivalent inten-
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sity correction for standard transmission microscope was performed by summing up
the illumination-corrected (with method described in section 2B) raw data together
to generating a standard transmission microscope image. Intensity corrected results
of standard transmission microscope are demonstrated in Fig.2.4(b). The resulting
resolution of standard transmission microscope was improved from 318 nm (15%
deviation from simulation) to 300 nm (8% deviation from simulation). This clearly
demonstrates the utility of illumination inhomogeneity compensation for both high
NA FPM and high NA standard transmission microscopy.

Imaging biology samples

We performed color high-NA FPM imaging and color standard transmission mi-
croscope imaging on both a blood smear and a bone marrow smear (Precision for
Medicine) We repeated the imaging procedure in Section 2.2 for each color chan-
nel and then synthesized RGB color channels together as color images. Fig.2.5
shows comparison images of the blood smear sample for the high-NA FPM system
and the standard transmission microscope. In addition to the intensity images, the
high-NA FPM system is also able to generate phase images (Fig.2.5(d) and (h)) and
provide an objective aberration characterization in the form of the pupil wavefront
for different regions of interest (ROIs) (Fig.2.5(e) and (i)) via the EPRY algorithm
[7]. All reported phase images were acquired with blue light (465 nm) illumination.
Consistent with our experimental findings in Section 2.2, the high-NA FPM reveals
more detailed structures in the sample (indicated by arrows in Fig.2.5(b2), (c2), (f2)
and (g2)).

For completeness, the imaging results of a bone marrow smear sample are reported
in the Supplementary document. The results showed similar advantages for the
high-NA FPM system.
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Figure 2.5: Blood sample imaging by high-NA FPM and standard transmission
microscope. (a) Whole-frame color high-NA FPM blood smear image. (b) Color
image of region of interest (ROI) 1 from standard transmission microscope. (c)
Color image of ROI 1 from high-NA FPM. (d) Phase image reconstructed from blue
channel of ROI 1. (e) Pupil aberration at ROI 1 reconstructed by EPRY algorithm
from blue channel. (f) Color image of ROI 2 from standard transmission microscope.
(g) Color image of ROI 2 from high-NA FPM. (h) Phase image reconstructed from
blue channel of ROI 2. (i) Pupil aberration at ROI 2 reconstructed by EPRY
algorithm from blue channel. Scale bar: 10 𝜇m.

Depth of field measurement

We examined the depth of field (DoF) of both the high-NA FPM and standard
transmission microscope experimentally. A Siemens star displaced at controlled
distances (defocus distances) from the objective lens focal plane was imaged by
both high-NA FPM and standard transmission microscope with blue light (465
nm). 3-axis motorized stages (Thorlabs MLS203-1 for XY directions and Thorlabs
MZS500-E for Z direction) were adopted to control defocus distances precisely.
Digital refocusing [1, 7, 15] with light field initialization [25] was performed in
high-NA FPM experiments. Resolutions under different defocus distances were
determined with the same method as reported in Section 2.2. We varied the defocus
distances from 0 𝜇m to 5 𝜇m, with 0.5 𝜇m spacing. For both modalities, we
calculated resolution deviations at each defocus distance from their corresponding
in-focus resolution and interpolated by using piecewise cubic Hermite interpolating
polynomial (PCHIP) [26, 27] method. Both measurement points and interpolated
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curves are demonstrated in Fig.2.6(a). For completeness, the exact resolution values,
images of Siemens star under different defocus distances taken by both image systems
and corresponding resolution plots are included in the Supplementary document.

The DoF of NA-matched standard transmission microscope, denoted as 𝐷𝑜 𝑓𝑡𝑟 , is
given by

𝐷𝑜 𝑓𝑡𝑟 =
𝜆 · 𝑛
𝑁𝐴2

𝑜𝑏 𝑗

+ 𝑛

𝑀 · 𝑁𝐴𝑜𝑏 𝑗

· 𝑒 = 0.65𝜇𝑚 (2.4)

where 𝑛 is the refractive index, 𝑀 is the magnification of objective lens and 𝑒 is the
camera pixel size. Then the half DoF of high-NA FPM, denoted as 𝐷𝑜 𝑓𝐹𝑃𝑀 , was
estimated by finding the defocus distance where high-NA FPM’s resolution deviation
equals that of standard transmission microscope under half 𝐷𝑜 𝑓𝑡𝑟 . Interpolated
resolution deviation curves indicated defocusing half 𝐷𝑜 𝑓𝑡𝑟 lead to 8.2% resolution
deterioration for standard transmission microscope. To accumulate the same amount
of deterioration, the high-NA FPM system would have to be defocused by 1.8 𝜇m.
Thus, the DoF of our high-NA FPM setup was 3.6 𝜇m (double of 1.8 𝜇m) or 5.5
times longer than that of the standard transmission microscope.

It is also worth mentioning that, compared to standard transmission microscope,
high-NA FPM achieved better resolution at every defocus distance, and has a more
gradual resolution deterioration. This observation further supports the idea that
high-NA FPM has better DoF properties, with not only extended DoF, but also less
resolution deterioration when the defocus is high.
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Figure 2.6: Resolution deviation as defocus distance increasing and DoF determina-
tion. (a) Relative deviation from in-focus resolution as defocus distance increased.
Blue: standard transmission microscope. Green: high-NA FPM. Points: exper-
iment measurements. Dash lines: PCHIP interpolated curves. The insert shows
enlarged curves with defocus distance ranging from 0 𝜇m to 2 𝜇m and determination
of high-NA FPM’s DoF.

High NA FPM system property analysis

The high-NA FPM system combined both close-to-limit high-NA (0.95) objective
lens and close-to-limit high-NA (0.95) illumination. A synthetic NA of 1.9 was
achieved, resulting in 266 nm full-pitch resolution (Sparrow-criterion) with 465 nm
illumination. The DOF of the high-NA FPM was 3.6 𝜇m, 5.5 times larger than that
of a standard transmission microscope.

FPM takes advantage of oblique-illuminated data and is thus able to perform imag-
ing at a NA higher than that claimed by the objective lens. However, as FPM is a
coherent imaging method, this does not necessarily mean that its resolution would
be substantially higher than that of a standard transmission microscope operating
with the same objective. From Fourier optics’ perspective, the pass band in Fourier
frequency domain of coherent imaging is half that of incoherent imaging under
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the same system NA (synthetic NA for FPM and objective lens NA for incoherent
microscope). Therefore, to achieve the same pass band in Fourier frequency do-
main, the synthetic NA of FPM must be twice as large as the objective lens NA.
This means that the illumination NA must match the objective lens NA. When the
illumination NA exceeds the objective NA, FPM can outperform standard trans-
mission microscope in resolution as FPM’s synthetic NA is now more than double
the objective’s NA. This ability was demonstrated in the original FPM paper where
an FPM system operating with a NA = 0.08 objective was able to render images
comparable in resolution to images acquired in a standard transmission microscope
with an objective of NA = 0.5.

In our current experiment, exceeding the objective’s NA is not feasible as the ob-
jective’s NA is already close to unity. Nevertheless, when we operate our FPM
with the illumination NA matched to the objective’s NA, we can still observe an ob-
servable resolution improvement compared to a standard transmission microscope
operating with the same objective (as reported in Section 3A). These results are
consistent with previous research reporting that FPM outperforms standard trans-
mission microscope with comparable NAs [18] in resolution tests. In prior studies,
the better FPM performance was attributed to the coherent imaging nature of FPM
and FPM’s ability to correct aberrations. For high synthetic NA, we found that
the relative ease by which FPM setup can tailor and achieve illumination intensity
homogeneity also contribute to FPM’s ability to achieve better resolution than the
standard transmission microscope. While standard transmission microscopy can
only tailor illumination intensity at the hardware level, the FPM can actually correct
for intensity heterogeneity during computation—by rescaling the data accordingly.

In conclusion, the study demonstrates that the experimental implementation of a high
synthetic NA FPM can achieve resolution that is close to the theoretical predicted
limit. In combination with the substantially longer effective depth of field (5.5 times
longer) than a comparable standard transmission microscope, our study indicates
that a well-designed and well-implemented high synthetic NA FPM can be a viable
replacement for standard transmission microscope for high NA applications.

2.3 Background of fine needle aspiration and sample volumetric properties
Fine needle aspiration (FNA) biopsy is a safe, minimally invasive and widely used
procedure to obtain diagnostic cytologic material from multiple organs, including
the thyroid gland, breast, lung and pancreas [28–32]. In this procedure, the abnormal
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tissue is sampled by a thin needle, expressed onto a glass slide, stained and then
observed through a microscope. The collected sample generally contains clusters
and aggregates of whole cells, the patterns of which often contain useful diagnostic
information. Unlike histologic sections that are cut very thinly and generally have
a uniform thickness across a slide, the aggregates of whole cells in an FNA vary in
thickness. When viewed under a microscope, the cells are often distributed across
multiple different focal planes requiring the pathologist to continually manipulate
the focus to maintain a clear image. Importantly, it is extremely difficult to acquire
useful digital images of cytologic preparations such as FNAs that are needed for
remote diagnosis. Finally, cytology preparations have been very challenging to
study with machine learning techniques, as out of focus areas render large areas
unusable for analysis. Acquiring cytology images in which all planes can be seen
in focus requires complex, time consuming and expensive scanning capabilities due
to the fact that a cytology preparation can only be fully imaged by capturing images
over multiple focal planes to constitute a volumetric image data set (z stack).

It would be advantageous if an FNA sample could be captured in a 2D image in
which each of the non overlapping cells is optically in focus – an all in focus image.
The 2D plane of interest is no longer flat but is a heterogenous plane that intersects
each cell at its focal plane (Fig.2.7). Such an all in focus image is data efficient,
as it is a 2D image information dataset and not a 3D volumetric dataset. Such an
all in focus image is also highly suited to a pathologist’s workflow, as a pathologist
would be able see the vast majority of cells in focus without having to scroll through
a z stack of scanned images. To be clear, such a 2D rendering would not work
well for overlapping cells. Image information about overlapping cells can only be
capitulated in a 3D volumetric image. Our proposed 2D strategy can work with FNA
samples, because the majority of the cells are generally separated from each other
by extensive fibrin clots formed during the procedures or simply by the cytoplasmic
mass associated with the cells themselves.

To generate an all in focus image, we need to collect the phase and amplitude of the
2D wavefront emerging from the sample as this complete optical wavefront dataset
will allow us to digitally refocus the image flexibly at different spatial points. FPM
[1, 7, 33–35] provides the requisite capability to collect such 2D wavefront data. By
applying a metric based digital refocusing to the FPM data, we can in turn render
an all in focus image. We report all in focus FPM results of thyroid fine needle
aspiration (FNA) cytology samples, demonstrating our method’s ability to overcome
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the height variance of 30 𝜇m across the slide, as a result of cell aggregation, and
rendering images at high resolution and that are all in focus.

Figure 2.7: Methods to describe a FNA sample. (a) FNA sample with cells at
different planes. (b) 3D volumetric dataset. Each z-stack image has some cells in
focus while other cells out of focus (c) Heterogeneous plane which intersects with
each cell. (d) All non-overlapping cells are in focus in this heterogeneous plane.

2.4 Experimental setup and all-in-focus processing workflow
Experimental setup
Fig.2.8 shows the general process by which we accomplish all in focus FPM imaging.
First, the uneven sample is imaged with our FPM system to collect a set of raw data.
The data is then processed with the FPM algorithm to generate a stack of images
at different focal planes (refocus stack). We then move a small window (vignette)
across the image and select the corresponding image segment from the refocus stack
that is in the sharpest focus. This selection process is repeated across the entire
image and the selected segments are then fused to synthesize an all in focus image.

We implemented a transmission FPM system for this experiment. A CCD camera
(ON Semi KAI 29050, 5.5 𝜇m pixel size) served as our imaging camera. An Adafruit
LED array (product ID: 607) was mounted 𝑠𝑖𝑚 66 mm below the focal plane of
a 20x/0.40 objective (Plan N, Olympus), resulting in a 1.1 mm diameter field of
view. The spacing between adjacent LEDs was 4 mm. During the data acquisition
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process, we sequentially illuminated the sample with individual LEDs of the array.
Depending on the position of the lit LED, the illumination on the sample would have
a specific illumination incidence angle. The transmission light was then collected
through the objective and a raw image frame was recorded by the camera. In optical
information terms, the collected data contains a sample angular spectrum segment.
By collecting raw image frames for each LED in a 15x15 subsection of the LED
array, we effectively gather image data that collectively correspond to an effective
illumination NA of 0.4 and a total synthetic NA of 0.8. The central wavelengths of
the full color LED were 632.3 nm (red), 516.2 nm (green), and 471.2 nm (blue).
Average power of red, green and blue LEDs were 1.7 mW, 2.1 mW and 1.6 mW,
respectively. Exposure time was set to be 0.5 s for each raw image acquisition. Total
acquisition time for one color channel was 9 mins.

The data was then processed with the FPM algorithm. Broadly speaking, the algo-
rithm combines synthetic aperture concept and phase retrieval concept to compute
the expected optical wavefront at a chosen plane on the sample. The redundancy
in raw image data (partially shared angular spectrum information) allows the FPM
algorithm to recover phase information from the raw data that are purely intensity
measurements, and subsequently, to generate the complex valued optical wavefront
associated with the sample [1, 7, 34].

From a user’s perspective, the operation of both raw image acquisition and FPM
image processing are straightforward. The raw image acquisition procedure of our
all-in-focus FPM set up is the same as that of a traditional transmission microscope:
loading sample, finding the region of interest (ROI) and adjusting the focal plane.
The raw images under different illumination angles will be captured automatically
by the computer. Only a few inputs are required from the user to generate an
optimal all-in-focus image: the exact raw images to be processed, the z-scanning
range and the z-scanning step size. With these parameters, the user will then get the
all-in-focus image by a single click.
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Figure 2.8: General process of all-in-focus FPM. (a) Schematic of FPM set up. (b)
Raw data of FPM. (c) Refocusing stack reconstructed from raw data. (d) Focal plane
selection for each part. (e) Synthesized all-in-focus color FPM image.

Digital refocusing by FPM
We accomplished digital refocusing in this experiment by introducing a refocus
phase factor to the embedded pupil function recovery (EPRY) algorithm [1, 7] – the
component of the FPM algorithm that evaluates the imaging systems pupil function.
The refocus phase factor, equivalent to defocus aberration, is given by:

𝑒𝑥𝑝(𝜙𝑟 (𝑧𝑟)) = 𝑒𝑥𝑝(𝑖
√︁
𝑘2 − 𝑢2 − 𝑣2 · 𝑧𝑟), 𝑢2 + 𝑣2 < 𝑘2

𝑚𝑎𝑥 (2.5)

where 𝑧𝑟 is refocus distance, "𝑘 = 2𝜋/𝜆" is the wavenumber of the illumination
light in vacuum, u, v are 2D coordinates in Fourier domain, and 𝑘𝑚𝑎𝑥 = 𝑁𝐴 · 𝑘”
is the cut off frequency of the objective lens. The flowchart of a single refocusing
iteration in a subregion of the sample’s Fourier domain is showed in Fig.2.9a.
To calculate the image at the plane with distance −𝑧𝑟 from the focal plane, we
computationally refocused the sample spectrum acquired by distance 𝑧𝑟 , which is
equivalent to optically propagating the target plane to the true focal plane. We do
so by performing the EPRY iteration according to our intensity observation at the
focal plane. Finally, we refocused the sample Fourier spectrum by distance −𝑧𝑟 ,
which is equivalent to the optical propagation back to the target defocus plane, and
update the sample Fourier spectrum accordingly. In each iteration a reconstruction
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error was calculated by getting the summation of each pixel’s square error between
reconstruction intensity and captured intensity. Adaptive step size strategy was
adopted in our algorithm. Step sizes for both spectrum updating and pupil updating
began at 0.1 and reduced by one half once the reconstruction error change was less
than 5%. We terminated the iteration when the step sizes were less than 0.01.

We used both a USAF target slide (Fig.2.9 b and c) and a thyroid FNA biopsy sample
slide (Fig.2.9 d and e) to demonstrate and verify the FPM’s digital refocusing ability.
A USAF target slide 30 𝜇m below focal plane illuminated with blue LEDs (471.2
nm) was imaged by our FPM system. The reconstruction results at the original focal
plane (Fig.2.9 b) and the exact USAF slide plane (30 𝜇m below the original focal
plane) (Fig.2.9 c) demonstrate the accuracy of FPM refocusing ability.

Then we digitally refocused the FPM data from a thyroid FNA biopsy sample. RGB
channels were reconstructed and then synthesized to form color images. Two focal
planes, the original focal plane (Fig.2.9 d) and 15 𝜇m below the original focal plane
(Fig.2.9 e) were reconstructed. From the resulting images, we can clearly see that
the cells in the sample reside in multiple focal planes—neither of the focal planes
in Fig.2.9 d and Fig.2.9 e was able to place all the cells in focus simultaneously.

Figure 2.9: Digital refocusing ability of FPM. (a) Flowchart of FPM EPRY digital
refocusing. (b) Reconstruction of USAF target at original focal plane. (c) Recon-
struction of USAF target at 30 𝜇m below the original focal plane. (d) Reconstruction
of the sample at the original focal plane. (e) Reconstruction of the sample at 15 𝜇m
below the original focal plane.
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Focus Evaluation Metric
To select image segments that are in focus, so that we can synthesis all in focus
images, we next utilized normalized variance (NV) [36, 37] as a focus evaluation
metric to select the sharpest image segments from a refocused image stack. As an
image contrast based function, normalized variance is less sensitive to both noise
and changes in brightness. Normalized variance of a selected part of image, denoted
as NV, is given by:

𝑁𝑉 =
1

𝑊 · 𝐻 · 𝜇
∑︁

𝑊𝑥 = 1
∑︁

𝐻𝑦 = 1(𝐼 (𝑥, 𝑦) − 𝜇)2 (2.6)

where 𝑊 and 𝐻 are the width and height (unit: pixel) of the image, 𝐼 (𝑥, 𝑦) is the
value of each pixel in the image and 𝜇 is the mean value of all pixels.

We examined the effectiveness of NV in selecting the correct focal plane for bio-
logical samples (Fig.2.10 a and b). A sample was placed at the objective’s focal
plane and imaged with green illumination (516.2 nm). Refocus stack ranging from
20 to 10 𝜇m was created by FPM digital refocusing. Given the uneven nature of
the thyroid sample, only a 13.75x13.75 𝜇m2 (100 px x 100 px) region which can be
regard as a flat layer was cropped. The NV curve with respect to refocusing distance
is plotted in Fig.2.10 a. Corresponding images, respectively, at 5, 2.5, 0, 2.5, 5,
7.5 𝜇m away from NV peak plane are showed in Fig.2.10 b. The sharpest image
appears at the NV peak plane (Fig.2.10 b3). As image plane shifts away from the
NV peak plane, the image becomes progressively more blurred and NV value drops
correspondingly.

Then we generated depth maps of the sample by applying NV function to all RGB
refocusing FPM stacks of the thyroid sample. The refocus range is from 20 𝜇m to 10
𝜇m. Results are showed in Fig.2.10 c and d. The depth map quantitively shows the
height variance at different part of the sample. Fig.2.10 d is the exact defocus depth at
dash lined position denoted in Fig.2.10 c, representing RGB channels, respectively.
The height variance in RGB channels track each other and the residual variations can
be attributed to the chromatic aberration of the objective. By separately selecting the
correct focal plane for each channel, we can then synthesize a chromatic aberration
free image.
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Figure 2.10: Normal variance as a focus evaluation metric. (a) NV curve of a small
region of a sample. (b) Corresponding images at selected points in (a) (-5, -2.5, 0,
2.5, 5, 7.5·𝜇m away from NV peak plane, NV peak value at b3). Scale bar: 5·𝜇m.
(c) Depth maps of a sample. c1. Red channel. c2. Green channel. c3. Blue
channel. (d) RGB depth profiles at dash-lined position in (c).

Synthesizing an all in focus image
Fig.2.11 summarizes the synthesis process. We shift a vignette across the entire
image. At each location, the algorithm calculates the NV of the image within the
vignette and selects the frame with the maximum NV as the in focus image segment
to be used. To reduce seam and mosaic, we set the traverse step size to be smaller
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than the vignette side length, resulting in neighbouring segments overlapping each
other. At each location, the average across the segments is used as our final all in
focus output. In our experiment, the vignette size was 100 x 100 px2 and traverse
step size is 1/10 of the vignette side length. Color images are generated by repeating
this process for the red, green and blue channels.

Figure 2.11: Synthesizing an all-in-focus image. (a) Synthesis procedure. Green
channel images are demonstrated. A vignette is shifted across the entire image.
In focus segment at each location was selected by applying the normal variance
function. All segments were then fused together to render an all-in-focus image.

2.5 Results and evaluation of the reported all-in-focus method
Fig.2.12 shows the comparison of an image from a single focal plane (Fig.2.12 a)
compared to an FPM all in focus image (Fig.2.12 b) on a diagnostic cell cluster in
an FNA cytology preparation from a thyroid nodule. As described more fully in the
figure legend, it can be easily seen that the FPM all in focus image allows for the
precise morphologic evaluation of effectively all the cells in this diagnostic cluster,
despite the thickness (and thus multiple focal planes) of the cluster.

We note that this all in focus FPM method only works for cells that do not overlap
with other cells. In locations where cells overlap, the algorithm will still attempt to
tune the effective focal plane. This will generally put a single cell in focus, but there
is no guarantee it will converge correctly.
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Figure 2.12: Comparison between a single plane of focus image with an all-in-focus
FPM image. (a) Single-focal-plane color image reconstructed from FPM. Note the
large areas of out of focus image in the diagnostic cluster that results from the
thickness of the preparation (b) All-in-focus color image reconstructed from FPM.
Note that all non-overlapping cells in the diagnostic cluster can be seen in sharp
focus, despite the thickness of the preparation. (a1,2) Corresponding details boxed
out from single-focal-plane image (a). Note the out of focus cell in a1 (yellow
arrow). In a2, the pink arrow points to an apparently in focus cell. Scale bar: 20·𝜇m
(b1,2) Corresponding details boxed out from all-in-focus image (b). Note that the
out of focus cells in a1 can now be seen in sharp focus, with a diagnostic cell nucleus
now clearly seen (yellow arrow, b1). In b2, note that the apparently in focus cell
seen in a2 can now be seen to actually represent 2 cells (yellow arrow, b2). Scale
bar: 20 𝜇m.

A Papanicolaou-stained thyroid FNA biopsy slide was then separately scanned using
the FPM system and an Aperio system AT2 digital pathology scanner to compare
the performance of each imaging modality.

The Aperio scanner was equipped with an objective lens with NA of 0.75. In
order to match the resolution between the Aperio scanner and our FPM system, we
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switched our FPM objective to a 0.75 NA objective and adjusted the illumination
array to provide a maximum of 0.75 NA illumination. This larger NA illumination
was achieved by setting the distance between the LED array and the objective focal
plane to ∼25 mm. The number of raw FPM images acquired here is 49. The FPM’s
resolution dependency on NA differs from that of standard microscopy, the design
choices described here were made to ensure that we had comparable resolution for the
two systems. Interested readers are invited to read the Supplementary Information
document for more information. Results of one ROI is presented in the following
section. Additional five results were provided in the Supplementary document.

The acquired images from both the FPM system (Fig.2.13 a, c and e) and the Aperio
(Fig.2.13 b and d) are presented. Cells that are in focus (Fig.2.13 d1 and d2) and
out of focus (Fig.2.13 d3, d4 and d5) in the Aperio image are simultaneously in
focus in the FPM image (Fig.2.13 e). Comparatively, we can also observe that
the nuclear details are much clearer with the all in focus FPM images (Fig.2.13 e)
when compared to the images from the Aperio scanner (Fig.2.13 d). Not only are
more cells in focus for the all in focus images, the amount of cellular details is also
greater. The sharper image quality of the FPM images compared to the Aperio
images seems at odds with the fact that both systems were set up to have the same
NA. This mismatch has also been previously observed in other high resolution FPM
experiments [18] as well, and is attributable to the fact that residual presence of
aberrations in commercial microscope objectives tend to degrade their achievable
resolution and prevent these objectives from attaining NA limited resolutions. In
FPM imaging systems, these residual aberrations are readily corrected through the
use of the component EPRY sub routine in the FPM algorithm that is able to deter-
mine and correct pupil aberrations computationally [1, 7, 33]. For completeness,
we characterized the observed resolution for both systems and reported our findings
in the Supplementary Information document.
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Figure 2.13: Comparison between all-in-focus FPM and Aperio scanner. (a) All-
in-focus, whole FoV, color FPM image of a thyroid FNA biopsy sample. (b) Aperio
scanner result of the boxed-out region in (a). (c) FPM result of the boxed-out
region in (a). (d) Corresponding details boxed-out from Aperio result (b). (e)
Corresponding details boxed-out from FPM result (c). Scale bar: 20·𝜇m. Yellow
annotated figures: all-in-focus FPM results. Pink annotated figures: Aperio scanner
results.

2.6 Advantages of the all-in-focus FPM and potential further applications
We developed a method that enables all in focus FPM imaging of FNA biopsy slides.
The all in focus imaging ability is realized by incorporating digital refocusing and
focus evaluation into the original FPM image rendering process. In addition to
inheriting original FPM’s advantage of wide field and high resolution, all in focus
FPM further frees user from the constraints of shallow depth of field in high NA
high resolution microscopy. For color imaging, RGB channels are first processed
individually and then synthesized to form an RGB all in focus image. Chromatic
aberration associated defocus can thus be corrected through this procedure.
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From a pathology perspective, the all in focus image is able to bring the vast majority
of the cells on a slide into focus without sacrificing cellular detail. Cytopathologists
use multiple different components of cellular detail to aid in making a diagnosis.
These include the amount and the character of the cytoplasm, the contours of the
nuclear membrane, the texture of the chromatin and the presence or the absence of
nucleoli among others. For successful evaluation of a slide, all of these different
components need to be in focus and well visualized. As Fig.2.12 illustrates, an
all in focus image brings the vast majority of cells into focus when compared to a
single focal plane image. The cellular and the nuclear detail is clearly appreciable
in nearly all cells of the all in focus image compared to the single focal plane image
where some cells remain blurred and cannot be evaluated. The superiority of the
all in focus can also be appreciated in Fig.2.13, comparing images acquired by
conventional scanning (Aperio) vs. the FPM imaging system. Once again, not only
are almost all of the cells in focus, but they are in focus at high power, preserving
diagnostic architectural, cellular and nuclear details. The all in focus images are
both more efficient in that more cells can be visualized without the need to focus or
scan through multiple focal planes and they provide greater cellular detail which the
pathologist needs to make diagnoses.

In principle, our all in focus algorithm can also be applied to conventionally acquired
z stack images from a standard scanner. However, there are several distinct advan-
tages associated with using FPM data. First, FPM can acquire the requisite raw data
to cover the same effective z range without requiring the use of any mechanical ac-
tuation along the z axis—thereby significantly simplifying the scan system. Second,
commercial z stack images are discretized along the z axis as determined by the z
step size, while FPM is free from such conceptual limitations. For a commercial
scanner, the finer the z step size, the longer the scan duration will be and the larger
the final data size will be. This trade off necessarily constrains all z stack imaging
processes in commercial scanners. Interestingly, such trade off does not exist for
FPM. As long as the FPM is able to collect a raw image data set that allows the 2D
wavefront to be accurately determined, that data can be used to virtually generate z
stack images with arbitrarily fine z step size. From an information viewpoint, the
relative efficiency of the FPM raw data set versus the conventional scanner z stack
image set is attributable to the fact that there is simply a lot of redundancies within
adjacent commercial z stack images.

The all in focus FPM final image is a 2D dataset. In contrast, the conventional
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scanner z stack is intrinsically 3D in nature. This means that the all in focus FPM
data set is compact in comparison. The compact data size of all in focus FPM images
is a broadly useful advantage. In remote digital pathology applications, the smaller
and more efficient data file size will greatly facilitate ease of data transmission. The
comparatively smaller data file size also makes it easier to feed data into machine
learning systems where the number of input nodes is always finite and limited.

The use of FPM to digitally refocus microscope slide images has previously been
reported for a number of different applications [1, 15, 38, 39]. Results in neuronal
cells [15] demonstrated that FPM images can be digitally refocused over a range of
at least ±100 𝜇m with a synthetic NA of 0.42. In addition to light field refocusing,
a new multi slice refocusing algorithm was also proposed and 100 𝜇m thick with
10 𝜇m step spirogyra algae stack was reconstructed with a synthetic NA of 0.66
[25]. However, much of these prior works dealt with adjusting the global focus of the
images, and thus cannot be directly applied to address the issue of heterogenous focal
planes associated with FNA samples. To date, all in focus FPM imaging has only
been developed and applied to blood smears [39]. In that work, the segmentation
based method relied on prior knowledge of the morphology of both blood cells and
plasmodium parasite, which limits its application and is not a good fit with FNA
samples. Our work shows that FPM can be used to create all in focus images of
aggregates of cells on an FNA slide without restrictive assumptions or known priors.

Slides from FNA specimens were chosen for this project because of the inherent
challenges they present by their need to capture multiple focal planes. However, it
should be noted that histologic sections are never completely flat, and high power
imaging and image acquisition often results in large patchy out of focus areas.
Therefore, FPM is likely to have applications in remote diagnosis and image analysis
applications for slides prepared from surgical pathology specimens (biopsies and
resections) as well.

Looking to the future, we note that the set up reported here was not optimized for
high throughput pathology slides scanning. We expect that a high throughput whole
slide all in focus FPM is achievable by using higher power light sources, a high
speed and high pixel count camera, and other physical improvements to the system.
Such a method can potentially facilitate better and faster pathology analysis of FNA
biopsy samples.

It is also worth noting that the FPM system may have even more general applications.
When scanned at high power, even “flat” thin sections in histologic slides show
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significant focal plane variation, hindering rapid imaging, and creating significant
pitfalls for using these images in advanced applications, such as deep learning/AI,
where out of focus areas are believed to be a major impediment to AI/deep learning
on these preparations [40]. The all in focus FPM method may be an ideal solution to
this problem. Machine learning methods generally outright reject out of focus areas
from consideration, and this can lead to significantly reduced analysis coverage and
accuracy. As this all in focus FPM method can ensure that the entire image is in
focus, and therefore, it has the potential to greatly improve the performance of cell
segmentation and recognition machine learning methods. In computer vision field,
all in focus FPM images can also provide sharp edges which can greatly facilitate
edge detection based segmentation methods. Broadly speaking, the rendering of all
in focus pathology images has the high potential to solve a key challenge associated
with machine learning based digital pathology analysis – the challenge that out of
focus image segments are ill suited for machine learning processing.

2.7 Appendix
Resolution quantification for simulated high-NA FPM and standard transmis-
sion microscope
We simulated Siemens star images from both high-NA FPM and standard trans-
mission microscope. Parameters used in simulation were the same as experimental
set-up, with objective lens NA of 0.95, maximum illumination of 0.95, objective
lens magnification of 50x and camera pixel size of 6.5 𝜇m x 6.5 𝜇m.

We simulated high-NA FPM modality by first generating raw data from simulated
coherent imaging and then performing reconstruction with the FPM rendering al-
gorithm used in the experiments. For each oblique-illuminated raw data, the object
field was directly Fourier transformed to get the Fourier spectrum and then applied to
spatial-shifted coherent transfer function (CTF) with objective NA of 0.95. The shift
vector was determined by the illumination angle. Then an inverse Fourier transform
was performed to convert the Fourier spectrum back to the image field. The final
image was generated by modulus squaring the image field and then sampling by the
camera sensor array. The FPM rendering from simulated raw data is shown in Fig.
S1(a1).

For standard transmission microscope, which is an incoherent imaging modality, the
object field was modulus squared and Fourier transformed to generate the Fourier
spectrum of the object intensity. Then the optical transfer function (OTF) with
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objective NA of 0.95 was applied to the object intensity Fourier spectrum. The
final image was generated by inverse Fourier transforming the modulated frequency
spectrum followed by sampling with the camera sensor array, which was showed
in Fig.2.14(b1). We adopted Sparrow’s criterion and full pitch resolution when
claiming resolution for both systems. Under such criterion the resolution is de-
fined as the minimum periodicity where every spoke of the Siemens target can be
resolved. From simulation the simulated resolution of high-NA FPM and standard
transmission microscope are separately 245 nm and 278 nm. Simulated Siemens
star images from both systems and intensity plot along minimum circles are shown
in Fig.2.14(a2) and Fig.2.14(b2).

Figure 2.14: Simulated Siemens star imaging and resolution quantification. (a)
Siemens star imaged by simulated high-NA FPM (a1) and intensity plots along the
minimum resolvable circle (a2). (b) Siemens star imaged by simulated standard
transmission microscope (b1) and intensity plots along the minimum resolvable
circle (b2). Scale bar: 5 𝜇m.
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Imaging results of bone marrow smear sample

Figure 2.15: Bone marrow sample imaging by high-NA FPM and standard trans-
mission microscope. (a) Whole-frame color high-NA FPM bone marrow smear
image. (b) Color image and enlarged details of the region of interest (ROI) 1 from
standard transmission microscope. (c) Color image and enlarged details of the ROI 1
from high-NA FPM. (d) Phase image reconstructed from blue channel and enlarged
details of ROI 1. Scale bar: 10 𝜇m.
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Resolution quantification for high-NA FPM and standard transmission micro-
scope under defocus condition

Figure 2.16: Resolution quantification for high-NA FPM under defocus condition.
Both high-NA FPM with digital refocusing images and intensity plots along the
minimum resolvable circle are provided. Scale bar: 5 𝜇m.
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Figure 2.17: Resolution quantification for standard transmission microscope under
defocus condition. Both standard transmission microscope images and intensity
plots the along minimum resolvable circle are provided. Minimum resolvable
rings became so large that they fall out of demonstrated Siemens star images when
defocused for 4.5 𝜇m (i) and 5 𝜇m (j). Scale bar: 5 𝜇m.

FPM illumination scheme for pupil size matching between FPM and Aperio
scanner
The Aperio scanner is an incoherent imaging system. For our experiments, we
configured the scanner to perform imaging with a 0.75 NA objective under Kohler
illumination. The FPM is a coherent imaging system. From Fourier optics’ per-
spective, the pupil diameter of an incoherent imaging system is twice as much as
that of a coherent imaging system under the same numerical aperture. The pupil
diameter determines the cutoff spatial frequency of an imaging system and thus have
an influence on the resolution of the system. For our comparison experiments, we
would like to compare the performance of the two systems with the same pupil size,
which is equivalent to the same cutoff spatial frequency. As such, to match Aperio’s
scanner theoretical resolution, we need to adjust the FPM system’s synthetic NA, so
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that it is equal to 2x0.75 NA, resulting in 1.5 NA. We accomplished this by using
a 0.75 NA objective in the FPM system and an illumination geometry that provides
an illumination NA of 0.75.

The information coverage in Fourier space is showed in Fig.2.18(a). Each yellow
spot denotes the angular position of a single LED in the illumination array. The blue
circle circumscribes the information associated with the raw image data collected
with the LED whose position is denoted by the yellow spot in the center of the blue
circle. The diameter of this circle is directly proportional to the objective’s NA. The
red circle circumscribes the total information associated with the complete set of raw
data. In this figure, it can be interpreted as the sum of all the blue circles for all the
LEDs. The diameter of this circle is directly proportional to the system’s synthetic
NA. In our experiments, we used 49 LEDs for illumination. By choosing the LED
angular position appropriately, we can achieve an effective system’s synthetic NA
of 1.5. We used a USAF target as a resolution claimer in our experiment. A
simulation was performed to determine the theoretical resolution values for both
Aperio scanner and all in focus FPM, where no aberrations appeared. For Aperio
scanner, the object field was modulus squared and Fourier transformed to generate
the frequency spectrum of the object intensity. Then the optical transfer function
(OTF) was applied to the object intensity frequency spectrum. The final image
was generated by inverse Fourier transforming the modulated frequency spectrum
and then sampling by image sensor array. For FPM, the object field was directly
Fourier transformed to get the frequency spectrum of the object field. The coherent
transfer function (CTF) was applied to the object field frequency spectrum. Then
an inverse Fourier transform was performed to convert the frequency spectrum back
to image field. The final image was generated by modulus squaring the image field
and then sampling by image sensor array. We adopted Sparrow’s criterion and full
pitch resolution when claiming resolution for both systems. Under such criterion the
resolution was defined as the minimum distance between two bars where every bar
of the USAF target can be resolved. From simulation the theoretical resolution of the
Aperio scanner and our FPM system are separately 344 nm and 288 nm. Simulated
images under such conditions for both systems are demonstrated on Fig.2.18(b) and
(c).

Then a USAF target was imaged to examine the actual resolution of both systems.
The USAF was illuminated under green illumination (516.2nm). From the simu-
lation above, FPM system should be able to recognize Group 11 element 5. The
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imaging results are showed in Fig.2.18(d). Group 11 element 4 was able to be
recognized but Group 11 element 5 was not, indicating the full pitch resolution to be
a value between 308 nm and 345 nm. In our experiment we chose to underestimate
rather than overestimating the resolution of both systems, thus the resolution of FPM
was 345 nm, 1 element (20%) deviated from simulation value of 288nm.

The resolution of Aperio scanner was also examined and the green channel results
were reported here for comparison, which is showed in Fig.2.18(e). According to
the simulation above, Group 11 element 4 should be resolved by Aperio scanner.
However, only group 10 element 4 was fully resolved. This indicates that the full
pitch resolution of Aperio scanner was 690nm, 1 whole group deviating from the
simulation value of 344 nm.

Figure 2.18: Matching FPM pupil size with Aperio scanner. (a) Illumination
scheme. Objective NA: 0.75. Synthetic NA: 1.5. Yellow points: illumination
angles in Fourier space. (b) USAF target simulating result of FPM system. (b1)
Minimum USAF structure that can be resolved by FPM (b2) Simulated FPM imaging
of (b1). (b3) Line scan profiles from yellow lines in (b2). Grid size: 100 nm. (c)
USAF target simulating result of Aperio scanner. (c1) Minimum USAF structure
that can be resolved by Aperio scanner. (c2) Simulated Aperio scanner imaging of
(c1). (c3) Line scan profiles from yellow lines in (c2). Grid size: 100 nm. (d) USAF
target result from FPM. (d1) Image and enlarged details of USAF target imaged by
FPM. (d2) Line scan profiles from yellow lines in (d1). (e) USAF target result from
Aperio scanner. (e1) Image and enlarged details of USAF target imaged by Aperio
scanner. (e2) Line scan profiles from yellow lines in (e1).
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Supplementary all-in-focus FPM results (20x objective)
Two additional all-in-focus FPM images of Papanicolaou stained thyroid FNA biopsy
slides were provided together with images from the Aperio scanner as comparison
(Fig.2.19-Fig.2.20).

Figure 2.19: Additional Comparison between all in focus FPM and Aperio scanner
under 20x (0.4NA) objective (I). (a) All in focus, whole FoV, color FPM image of
a thyroid FNA biopsy sample. (b) Aperio scanner result of the boxed out region
in (a). (c) FPM result of the boxed out region in (a). Scale bar: 20 𝜇m. Yellow
annotated figures: all in focus FPM results. Pink annotated figures: Aperio scanner
results.
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Figure 2.20: Additional Comparison between all in focus FPM and Aperio scanner
under 20x (0.4NA) objective (II). (a) All in focus, whole FoV, color FPM image of
a thyroid FNA biopsy sample. (b) Aperio scanner result of the boxed out region
in (a). (c) FPM result of the boxed out region in (a). Scale bar: 20 𝜇m. Yellow
annotated figures: all in focus FPM results. Pink annotated figures: Aperio scanner
results.

Supplementary all-in-focus FPM results (40x objective)
Three additional all-in-focus FPM images of Papanicolaou stained thyroid FNA
biopsy slides were provided together with images from the Aperio scanner as com-
parison (Fig.2.21-Fig.2.23).
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Figure 2.21: Additional Comparison between all in focus FPM and Aperio scanner
under 40x (0.75NA) objective (I). (a) All in focus, whole FoV, color FPM image of
a thyroid FNA biopsy sample. (b) Aperio scanner result of the boxed out region in
(a). (c) FPM result of the boxed out region in (a). (d) Corresponding details boxed
out from Aperio result (b). (e) Corresponding details boxed out from FPM result
(c). Scale bar: 20 𝜇m. Yellow annotated figures: all in focus FPM results. Pink
annotated figures: Aperio scanner results.
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Figure 2.22: Additional Comparison between all in focus FPM and Aperio scanner
under 40x (0.75NA) objective (II). (a) All in focus, whole FoV, color FPM image of
a thyroid FNA biopsy sample. (b) Aperio scanner result of the boxed out region in
(a). (c) FPM result of the boxed out region in (a). (d) Corresponding details boxed
out from Aperio result (b). (e) Corresponding details boxed out from FPM result
(c). Scale bar: 20 𝜇m. Yellow annotated figures: all in focus FPM results. Pink
annotated figures: Aperio scanner results.
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Figure 2.23: Additional Comparison between all in focus FPM and Aperio scanner
under 40x (0.75NA) objective (III). (a) All in focus, whole FoV, color FPM image
of a thyroid FNA biopsy sample. (b) Aperio scanner result of the boxed out region
in (a). (c) FPM result of the boxed out region in (a). (d) Corresponding details
boxed out from Aperio result (b). (e) Corresponding details boxed out from FPM
result (c). Scale bar: 20 𝜇m. Yellow annotated figures: all in focus FPM results.
Pink annotated figures: Aperio scanner results.
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C h a p t e r 3

NON-DESTRUCTIVE ANALYSIS OF SUBVISIBLE PARTICLES
WITH MIE SCATTERING-BASED LIGHT SHEET

TECHNOLOGY: SYSTEM DEVELOPMENT

The characteristics of subvisible particles (SbVPs) are critical quality attributes of
injectable and ophthalmic solutions in pharmaceutical manufacturing. However,
current compendial SbVP testing methods, namely the light obstruction method
and the microscopic particle count method, are destructive and wasteful of target
samples. Here we present the development of a non-destructive SbVP analyzer
aiming to analyze SbVPs directly in drug product (DP) containers while keeping the
samples intact. Custom sample housings are developed and incorporated into the
analyzer to reduce optical aberrations introduced by the curvature of typical phar-
maceutical DP sample containers. The analyzer integrates a light-sheet microscope
structure and models the side scattering event from a particle with Mie scattering
theory with refractive indices as prior information. Equivalent spherical particle size
under assigned refractive index values is estimated, and the particle concentration is
determined based on the number of scattering events and the volume sampled by the
light sheet. The resulting analyzer’s capability and performance to non-invasively
analyze SbVPs in DP containers were evaluated using a series of polystyrene bead
suspensions in ISO 2R and 6R vials. Our results and analysis show the particle
analyzer is capable of directly detecting SbVPs from intact DP containers, sorting
SbVPs into commonly used size bins (e.g., ≥ 2 𝜇m, ≥ 5 𝜇m, ≥ 10 𝜇m, and ≥ 25
𝜇m), and reliably quantifying SbVPs in the concentration range of 4.6e2 to 5.0e5
particle/mL with a margin of ± 15% error based on a 90% confidence interval.

3.1 Background of SbVP testing and regulations
The characteristics of subvisible particles (SbVPs) in the 1 to100 𝜇m range [1–4]
are critical quality attributes in pharmaceutical industry. Common sources of SbVPs
include process and primary container-sourced particles intrinsic to the manufac-
turing process (e.g., plastic, glass), contaminants that are extrinsic to manufacturing
(e.g., metal, dust), protein aggregates and other inherent biological particles, sur-
factant degradation products, and silicone oil droplets [5–9]. It has been reported
that certain types of proteinaceous SbVPs in parental DPs may potentially trigger
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immunogenicity thus causing safety concerns [4, 10–12]. According to the stan-
dards set by United States Pharmacopeial Convention (USP) in chapters USP <787>,
USP <788>, USP <1787> and USP <1788> [13–16], and corresponding EP and JP
monographs, SbVP testing is required for all final therapeutic protein products.

The light obstruction (LO) method [4, 9, 17–20] is one of the compendial SbVP test
methods. A typical LO system has a light source facing a detector. The fluid flows
between the light source and the detector. When a particle in the fluid passes through
the light path, it obstructs part of the light and causes a decrease in the detector
signal. The particle size is then calculated from the magnitude of the detector signal
change. The microscope particle count test is the other compendial method for
SbVP test [17, 18, 20]. It requires collecting, rinsing, and drying particles ≥ 10
𝜇m on a micro-porous membrane filter. The particles on the prepared sample filter
are typically sized and counted under 100x magnification. The recent USP <1788>
[16] includes flow imaging [9, 17–25] as a complementary test to LO particle test.
Instead of a photo detector that senses the light intensity, a flow imaging system
employs a camera to capture images of the particles as they pass through the light
path. Therefore, the flow imaging method can provide morphological information
which can benefit particle classification.

These compendial and associated methods are destructive and wasteful of the target
samples. They require the liquid testing sample to be withdrawn from original
DP containers. The LO method and the flow imaging method involve flowing the
target fluid through the testing systems and into waste receptacles. The microscope
particle count requires the particles of interest to be filtered out from the liquid
sample for observation. As a result, the DP unit(s) and the liquid testing sample
itself are completely destroyed as part of the method sample preparation and testing
procedure. This results in a significant amount of waste. Applications such as
product stability trending are particularly challenging due to in-batch vial-to-vial
variability and waste. Non-destructive SbVP testing would provide clear benefits
including improved data quality and reduced resource burden. A non-destructive
testing method would be of particular benefit during drug product development re-
quiring stress evaluation and stability monitoring. Testing would become easier and
more representative of clinical settings when able to test drug solution within a pri-
mary container after application of stresses including storage, transport, freeze/thaw
cycles, etc.

In this chapter, we report the development of a non-destructive Mie-scattering-based
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light sheet (MSLS) liquid particle analyzer that is capable of directly analyzing
SbVPs in parenteral DPs. The development goal for the MSLS analyzer is that
testing with the analyzer is non-invasive and non-destructive, and after the testing
the DP units (e.g., vials or syringes) remain intact and can be reused for other
applications. To achieve this, we utilized a light sheet to illuminate the sample in
containers such as vials or syringes and collected side scattered light directly from
the SbVPs in the sample for testing. To compensate for the aberration caused by
the cylindrical geometry of the DP vials, we developed custom housings which are
compatible with ISO 2R and 6R vials and can be put on and taken off with ease.
The sizes of scattering objects in the samples are determined by a Mie theory-based
particle sizing algorithm. The concentrations of the particles detected and sized are
calculated based on the number of particles detected and the volume sampled by
the light sheet. Our goal at this stage of the development is to engineer the MSLS
analyzer and algorithm that can 1) directly detect the SbVPs in intact 2R/6R DP
vials, 2) size and sort the detected SbVPs into size bins such as ≥ 2 𝜇m, ≥ 5 𝜇m, ≥
10 𝜇m, and ≥ 25 𝜇m, and 3) calculate size-based differential or cumulative particle
concentrations. We evaluated the MSLS analyzer’s capability and performance by
analyzing polystyrene particle standards of different sizes and concentrations sealed
in 2R/6R DP vials and report our results here. The system’s strengths, limitations,
potential applications, and future development plans are also discussed.

3.2 Principle of the MSLS analyzer
System setup and general workflow
Our MSLS analyzer system functions like a light sheet microscope (see Fig.3.1(a)
for setup schematics). A cylindrical lens (Thorlabs LJ1558RM, f = 300.0 mm)
was used to generate a light sheet from a Gaussian beam produced by a 532 nm
laser (Spectra Physics). The beam travels along the z-axis and only in the x-
axis is light focused, resulting in the light sheet along the y-z (vertical) plane.
Samples in vials were placed on a three-axis scanning stage. The sample vials were
contained in housing which was designed to compensate for astigmatism introduced
by cylindrical container geometry. Forward-scattered light along the z-axis was
stopped by a beam block and the side-scattered light along x-axis from the particles
within the sample was collected through a long working distance objective lens
(Olympus LMPLFLN10X) and finally detected by an sCMOS camera (PCO edge
5.5). By using a tube lens (Thorlabs LA1433-A), we achieved a system magnification
of 8.3x and corresponding field of view of 2.0 mm x 1.7 mm. Exposure time was
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set at 20 ms for image capturing.

During light sheet image acquisition, the sample was scanned in three dimen-
sions using the programmable stage and light sheet images were produced showing
fields-of-view at different positions within the liquid sample. The scanning path is
described in more detail in the appendix section 3.6. Fig.3.1(b) is an example of
a captured light sheet image. The sample imaged was a water suspension of 3 𝜇m
polystyrene beads. Particle detection was performed on the acquired images to iden-
tify all the particles that appeared during the capturing. For each detected particle,
its side-scattered light intensity was extracted from the corresponding pixel values,
and its size was then determined by referencing a pre-calculated size-scattering in-
tensity curve. By combining the results of all detected particles and considering the
total imaging volume, a final calculation of particle size-concentration statistics of
the testing sample was generated.

Figure 3.1: MSLS analyzer set up and workflow. (a) Simplified MSLS analyzer
schematic. (b) A typical light sheet image captured by the MSLS analyzer. (c)
Data processing workflow to extract SbVP size, concentration, and size distribution.
Scale bar: 50 𝜇m.

Sample housing for astigmatism compensation
The cylindrical geometry of typical DP container (e.g., vials, syringes) produces se-
vere astigmatism which presents a major obstacle to successful non-invasive imaging
inspection. To reduce astigmatism a square sample housing was placed around the
DP container. The sample housings were made of polydimethylsiloxane elastomer



63

(PDMS; SLYGARDTM 184) which has a refractive index (RI) of 1.43. The PDMS
material was selected as it provides two significant benefits. First, PDMS is easy
to mold and generates flat surfaces. Second, compared with air-liquid combination,
PDMS-liquid combination has a smaller RI gap. This smaller gap results in lower
astigmatism. Fig.3.2(a) shows the two types of sample housing created for ISO 6R
vials (Fig.3.2(a2)) and ISO 2R vials (Fig.3.2(a4)). The detailed description of the
sample housing production procedure was included in the supplementary document.

Fig.3.2 illustrates the effectiveness of the astigmatism-compensating sample hous-
ing by simulating the optical system and performing ray tracing with the RayLab
software. The simulated system was simplified as follows: a point source was cov-
ered by a half cylinder, the light emitted from the light source was collected by a lens,
and the light was detected by a screen. Fig.3.2(b to d) shows the patterns collected
by the screen at several axial position near the focal plane (along the direction of the
optical axis) with and without sample housing. It can be observed in the simulation
results that the sample housing reduces the difference between the focal lengths of
the tangential plane and the sagittal focal plane. By applying the sample housing,
the astigmatism introduced by the cylindrical DP container is mitigated to an extent
that enables subsequent particle detection to be performed.

It should be emphasized that the MSLS analyzer still images scattering objects with
aberration when using the astigmatism-compensating sample housing. The side-
scattered light from a particle formed a wide-spread, highly distorted “imprint” on
the camera sensor whose shape was dominated by the system aberration instead
of the morphology of the particle itself. As can be seen in Fig.3.1(b), a 3 𝜇m
particle’s imprint had a size of ∼150 𝜇m, far exceeding the particle’s actual size.
However, the extent of the astigmatism of the MSLS analyzer was reduced enough
to pose no obstruction to the particle sizing task. The MSLS analyzer extracted
the side-scattering light intensity of the captured particles rather than relied on their
imprint morphology information. In addition, while the morphology of a given
particle was affected by the cylindrical aberration, the side-scattered intensity of
a particle was not affected by the presence of an aberration as long as the side-
scattered light was effectively collected by the objective lens. Furthermore, the
astigmatism observed by the MSLS analyzer actually benefits the particle sizing and
counting task. These benefits come in two ways. First, the astigmatism produces
similar scattering imprints of particles having different sizes. This outcome enables
a conventional template matching strategy to be used to robustly detect particles.



64

Second, the astigmatism helps in estimating a particle’s axial position and aiding
the determination of accurate incident light intensity for a given particle. Further
details about particle detection, sizing and counting are elaborated in subsequent
sections.

Figure 3.2: Demonstration of sample housing astigmatism compensation. (a) Vials
with and without sample housings. The patterns behind the vials were less visually
distorted after putting on sample housings. (b) Spot diagrams from RayLab software
at the tangential focal planes of (b1) ISO 6R vial without sample housing, (b2) ISO
6R vial with sample housing, (b3) ISO 2R vial without sample housing and (b4)
ISO 2R vial with sample housing. (c) Spot diagrams at positions where the image
of the simulated point source was with aspect ratio of 1 for (c1) ISO 6R vial without
sample housing, (c2) ISO 6R vial with sample housing, (c3) ISO 2R vial without
sample housing and (c4) ISO 2R vial with sample housing. (d) Spot diagrams at
the sagittal focal planes of (d1) ISO 6R vial without sample housing, (d2) ISO 6R
vial with sample housing, (d3) ISO 2R vial without sample housing and (d4) ISO
2R vial with sample housing. Unit: mm.
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Particle detection by template matching method
Template matching by means of cross correlation was used for the particle detection
task [26]. The particle imprints in a captured image could be broadly regarded
as a template imprint being translated and duplicated multiple times without size
scaling or rotation. For the MSLS analyzer, the templates (for both ISO 2R vials
and 6R vials) were manually cropped from the corresponding light sheet image sets
of PS-bead standard solutions containing 3 𝜇m polystyrene beads only.

Fig.3.3 illustrates how the MSLS analyzer image processing software performed
particle detection. First, the image that particle detection was being applied to
was labeled as the input image. Two steps of preprocessing ( 1O in Fig.3.3) were
performed before applying the normalized cross-correlation between the template
and the input image. 1) Both the template and the input image were down-sized
by a factor of 10 (for both width and height) for higher processing speed. 2)
Both the down-sized template and input image were Gaussian blurred to eliminate
multiple peaks for a single match. Normalized cross-correlation ( 2O in Fig.3.3)
was then performed between preprocessed template and input image. An example
of a correlation map is shown in Fig.3.3 where a peak indicates that a particle
imprint was detected. To localize the valid peaks in a 10x down-sized thumbnail
source image ( 3O in Fig.3.3(a) and Fig.3.3(b)), we first applied a binary threshold
(threshold = 0.3) to the correlation map, leaving only peaks with a high enough
correlation score. The remaining blobs indicating the cross-correlation peaks were
then extracted and the positions of the maximum values within each blob region
were determined. To suppress the situation where multiple peaks corresponding to
the same particle imprint were found, Matlab function pcsegdist was used to group
close peaks such that its output peaks were with minimum distance of d from each
other. The minimum distance d was determined by the template size:

𝑑 = 0.6 × 𝑚𝑖𝑛(ℎ𝑒𝑖𝑔ℎ𝑡𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, 𝑤𝑖𝑑𝑡ℎ𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒). (3.1)

The peak locations in the 10x down-sized thumbnail images could then be remapped
to the original input image. Bounding boxes centered on the peak positions in the
original input image, with the size of 1.4x that of the template, were placed to box
out the found particle imprints in the original input image ( 4O and 5O in Fig.3.3).
Based on the bounding boxes, individual particle imprints were then cropped out
for subsequent particle sizing process.
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Figure 3.3: Particle detection process. (a) The overall particle detection process.
Step 1: Down-sizing and Gaussian blurring both the template and the input image.
Step 2: Normalized cross-correlation between the template and the input image
(both are 10x down-sized thumbnails). Step 3: Peak localization. Step 4: Placing
bounding boxes around detected particle imprints. Step 5: Cropping out each indi-
vidual particle imprints. (b) Detailed flow chart of the peak localization algorithm
(Step 3). Scale bar: 50 𝜇m.

Mie-scattering based particle sizing and counting
Fig.3.4(a) illustrates the process of particle sizing for a given particle imprint.
The found particle imprints underwent astigmatism-based localization and Mie-
scattering based size calculation. The results of all the particle imprints were
aggregated together to generate the final particle statistics of the test sample.
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Figure 3.4: Particle sizing process. (a) Workflow for determining the particle size
from the particle imprint. (b) The light sheet generated by the MSLS analyzer and
the particle imprints at varied axis positions (-60, 0 and 60 𝜇m). The intensity
profile is along the dash line and its corresponding Gaussian fit are presented. The
star mark indicates the axial location of the particle. Scale bar: 100 𝜇m. (c) The
Mie scattering model scheme and the derived scattering reading curve. The star
mark indicates the scattering reading of the certain particle imprint in this figure.

Mie-scattering model

Our particle sizing method is based on Mie scattering theory [27]. Mie scattering
theory is a solution to Maxwell’s equations. It applies to all SbVPs sized within
our scope of interest. The intensity of the side - scattered light was an indicator of
the particle size. To connect the side-scattering intensity with the pixel values of a
particle imprint, a parameter referred to as scattering reading (SC) was introduced,
which was defined as the sum of all the pixel values within its corresponding
bounding box, as illustrated in Fig.3.4(a). The particle size - scattering reading
curve was calculated based on a simplified Mie scattering model demonstrated in
Fig.3.4(c). Scattering was approximated as a scenario in which a spherical particle
scatters incident plane wave light. By considering a specific solid angle range within
which the scattered light could be received by the objective lens, the scattering cross
section of a particle was calculated. From the incident light intensity and the camera
specifications, including exposure time, quantum efficiency and conversion factor,
the scattering reading for a particle with certain size was calculated. The detailed
derivation of the particle size-scattering reading curve is explained in the appendix
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section 3.6.

Illuminating light sheet cross section and sampling volume of the MSLS
analyzer

From our scattering model, accurate particle size determination relied on accurate
measurement of the incident light sheet itself. Therefore, the light sheet was ex-
amined directly using an observation camera (the imaging source DMK23UP031).
The cross-section of the light sheet is shown in Fig.3.4(b). The full width at half
maximum of the light sheet was measured to be 58.6 𝜇m. The normalized Gaussian
fitting of the light sheet profile was expressed as (unit: 𝜇m):

𝑓 = 𝑒𝑥𝑝(−( 𝑥 − 0.15
0.0035

)2). (3.2)

Combining the light sheet thickness, the pixel count and size of the camera and the
magnification of the MSLS analyzer, the sampling volume of a single frame was
determined to be 3.7e-4 mL. During one measurement, 700 frames from different
positions imaged within the container were captured, resulting in a total sampling
volume of 0.26 mL.

Astigmatism-based particle localization and particle sizing

It was clear that particles at different axial locations did not share the same incident
light intensity (as shown in Fig.3.4(b)). However, the particle size - scattering
reading curve was calculated based on a consistent incident light intensity value. In
our case, the peak intensity value of the light sheet was used, i.e., the particle size
- scattering reading curve was based on a situation where the incident light has the
intensity of our light sheet peak value. Particles that are imaged with location off
center of the light sheet exhibit incident light intensity lower than the light sheet
peak value. Therefore, directly referring to the size – scattering reading curve for
off-center particles will result in underestimation of the particle size. There are two
possible approaches for correcting such off-light-sheet-center error. The first way
is to perform particle tracking across different frames and record the corresponding
scattering readings. A particle will generate maximum scattering reading when
it is at the light sheet center. Thus, querying the scattering reading curve with a
particle’s maximum scattering reading should result in a more accurate estimation
of the particle size. The other way is to localize the particle axially and then apply
a scale factor to correct for the particle off-light-sheet-center error. The particle
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tracking method was intuitively straight-forward, but it would not be able to handle
the situation when a particle never passes the center of the light sheet. Conversely,
the particle localization method did not depend on the prerequisite that the particle
must pass the light sheet center. Moreover, considering the residual astigmatism in
our reported system, particle localization could be achieved without introducing any
additional modulation into the imaging system. Therefore, the particle localization
method was chosen as our approach, and procedural details are elaborated in the
following paragraph.

Due to the cylindrical nature of the vials and the imperfect RI matching between the
PDMS sample housings (RI: 1.43) and the contents of the DP containers (RI: 1.33 to
∼ 1.37), there was a residual amount of astigmatism in the imaging system. This was
serendipitously helpful as it caused the imprint of a particle to elongate in different
directions (either horizontally or vertically) to varying extents at different axial
locations [28–33]. We used this distortion as an axial particle location estimator.

The aspect ratio of a particle imprint was designated as the indicator to be observed,
and its variation with the axial position of the particle was recorded as a further
reference for the localization process. The relation between aspect ratio of a particle
imprint and the axial position of the particle was evaluated through experimentation.
As mentioned previously, the particle imprints were aberration dominant and particle
size insensitive. As such, the axial particle location estimator can be calibrated by
using only 3 𝜇m polystyrene beads (Polybead, 17134-15, coefficient of variance:
5%) without loss of generality. The focal plane of objective was scanned from -60
to 60 𝜇m with step size of 10 𝜇m, while the light sheet and the sample remained
stationary. For each captured image, autocorrelation was performed, and the aspect
ratio of the main autocorrelation peak was calculated. In the situation where the
particles to be imaged are of comparable size, the captured image can be expected
to contain the imprints of particles at different axial positions and the particles at the
light sheet center should always produce the strongest signals on the camera sensor
because they are illuminated by the most intense light. Thus, the main peak of the
autocorrelation was dominated by the particles at the light sheet center. As such,
one could obtain the aspect ratio of the in-center particle imprints by analyzing
the aspect ratio of the main peak of the autocorrelation of the captured image.
Linear fitting was performed between axial positions and the imprints of particles
to determine the slope (𝛽). With the fitted slope (𝛽) and the templates representing
the in-center particle imprints, the off-center distance (Δx) of a particle of interest
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could be determined by comparing its aspect ratio (𝐴𝑅𝑝) with the template’s aspect
ratio (𝐴𝑅𝑡):

Δ𝑥 = 𝛽 · (𝐴𝑅𝑝 − 𝐴𝑅𝑡). (3.3)

Both 𝐴𝑅𝑝 and 𝐴𝑅𝑡 were calculated from the corresponding autocorrelations of the
particle of interest and the template. According to our experiment the slope (𝛽) for
large vial was found to be –17 and the slope (𝛽) for small vial was found to be –21,
Details of this analysis and data are provided in the appendix section 3.6.

The scale factor C for correcting the off-center error was then determined by finding
the intensity decrease at axial position Δd compared to the maximum value from
the light sheet’s cross-section profile 𝑓 :

𝐶 =
1

𝑓 (Δ𝑥) . (3.4)

With the corrected scattering reading, the particle size was able to be determined
from the particle size – scattering reading curve and then binned into the following
categories: ≥ 2 𝜇m, ≥ 5 𝜇m, ≥ 10 𝜇m, and ≥ 25 𝜇m, consistent with USP <787>
and USP <788> [13, 14] approaches and common practices.

3.3 Results on polystyrene bead standards
Verification of Mie-scattering based particle sizing model
We compared measured scattering readings of four sizes of standard polystyrene
beads (3 𝜇m, 8 𝜇m, 15 𝜇m and 30 𝜇m, corresponding to our size bins: ≥ 2 𝜇m,
≥ 5 𝜇m, ≥ 10 𝜇m, and ≥ 25 𝜇m) with their corresponding theoretical calculations.
Samples were made by diluting polystyrene bead standards with deionized water
and filling them in both 6R and 2R vials. Each sample contained beads of a single
size. 100 frames were taken for each sample. To isolate the influence of the particle
location mentioned in the section 3.2 and possible errors from our computer vision
algorithms, we manually selected the brightest particle imprint for each frame and
obtained its scattering reading. The brightest imprint indicates that the particle was
at the center of the light sheet. Consequently, for each sample (corresponding to
one particle size and one type of container), 100 imprints were selected, and their
scattering readings were presented as a box plot.

Theoretically calculated scattering readings were also plotted. For each particle
size, the box encompassed the scattering reading values of particles within a certain
size range with its minimum being the designated particle size minus its coefficient
of variance and its maximum being the designated particle size plus its coefficient
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of variance. The scattering reading calculation followed the procedure elaborated
in section 3.2.

The comparison is shown in Fig.3.5. The results verified our Mie-scattering based
particle sizing model by demonstrating: 1) particles with larger size generated
higher scattering readings, and 2) measured scattering readings matched well with
corresponding theoretical calculations.

Figure 3.5: Scattering reading comparison between measurements and theoretical
calculation for 3 𝜇m, 8 𝜇m, 15 𝜇m and 30 𝜇m bead standards. Box plots of
the scattering reading values for given standard bead sizes were provided. The
scattering reading value ranges originated from the size distribution of each bead
standard (designated size ± coefficient of variance).

Experiments on mixed polystyrene particle standard samples
A series of samples was prepared using PS bead standard solutions to demonstrate
the functionality of the MSLS particle counter. For each type of sample solution, the
particle size statistics based on vendor provided specifications are listed in Table.3.1.
Samples were prepared in both ISO 2R vials and 6R vials. Particle size statistics of
the prepared samples were verified using a hemocytometer. The reference particle
statistical data are listed in Table 1. The MSLS measurements were repeated three
times for each sample. The total acquisition time including the exposure time and
stage scanning time for each measurement added up to 7 min. The analysis time,
including particle detection and sizing after the data acquisition, was 4 min.
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≥ 2 𝜇m ≥ 5 𝜇m ≥ 10 𝜇m ≥ 25 𝜇m
Di Water / / / /

3 𝜇m polystyrene bead 0.99e4 0 0 0
3 𝜇m + 8 𝜇m polystyrene bead 0.99e4 1.1e2 0 0

Table 3.1: Particle statistics of prepared samples

Results from analyzing the samples prepared are shown in Fig.3.6(a)-(b). Negative
control samples (distilled water, without polystyrene beads) produced near-zero re-
sults for all size ranges when analyzed by the MSLS instrument. For samples with
addition of the bead standard solution, the MSLS particle analyzer produced concen-
tration values comparable to the reference values acquired by hemocytometer, with
different error bar widths at different orders of magnitude of particle concentrations.

The importance of the relationship between the results observed and the sampling
volume scanned should be emphasized based on the learnings of this study. The
minimum concentration value that the MSLS analyzer could provide was 3.8 parti-
cles/mL – effectively equal to one particle over the total sampling volume of 0.26
mL. One can also analyze the relationship between the total imaging volume and the
target particle concentration from a perspective of statistical inference. The number
of particles captured in a single frame should follow a Poisson distribution with
a mean equal to the actual concentration multiplied by the imaging volume. One
measurement containing N frames could be regarded as sampling N times from the
Poisson distribution, and the final reported particle concentration is the mean value
among all N samples. According to the Central Limit Theorem, the reported particle
concentrations will follow a Gaussian distribution, and the standard deviation of the
reported particle concentrations depends on both the frame number N and the actual
concentration of the target particles. A larger frame number and a higher target
particle concentration will result in a smaller percentage error. This trend could be
observed in our results. For 3 𝜇m particles with a concentration of approximately
1e4 particles/mL among all 4 samples, the standard deviations of all groups of 3
measurements were less than 5%. However, for 8 𝜇m particles with a concentration
of approximately 1e2 particles/mL in two of the 3 + 8 𝜇m samples, the standard
deviations of the two groups of 3 measurements were around 17%. Based on this
observation and further derivation, it was determined that given a current frame
number of the MSLS analyzer, at a concentration of 463 particles/mL or higher, the
results can be expected to be within a margin of ± 15% error with a 90% confidence
interval, or better. A detailed derivation is provided in the appendix section 3.6.
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Fig.3.6(c) shows a typical error that the MSLS analyzer encountered during the
measurements when two particle imprints became close to or even overlapped with
each other. In such cases, particle size was overestimated because of the contribution
of extra scattered light from other particles. When particle concentration of a
sample becomes high enough that the particle imprints overlap frequently, the MSLS
analyzer would fail to provide accurate particle statistics (size and concentration).
A simulation described in the appendix section 3.6 was developed to determine an
upper concentration bound of the MSLS analyzer. When the breakdown proportion
of overlapped imprints was set to be 10%, the corresponding upper concentration
limit was found to be 5.00e5 particle/mL.

Figure 3.6: Functionality of the MSLS analyzer. (a) Results of the ISO 6R vial
samples. (b) Results of the ISO 2R vial samples. (c) Typical error (close or
overlapping imprints) encountered in the MSLS analyzer. Scale bar: 50 𝜇m.

3.4 Results on actual protein samples
To further demonstrate the functionality of the MSLS analyzer, in addition to experi-
ments on polystyrene beads, we conducted two experiments on monoclonal antibody
(mAb) drug samples. In this section, first we analyze the unique challenges presented
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by antibody molecules, then we present the experimental results.

Background scattering by protein molecules
From a scattering analysis perspective, mAb products differ from polystyrene bead
suspensions. In a polystyrene bead suspension, there’s one type of particle (the
polystyrene bead) in water. These beads fall within the submicron-to-visible particle
(SbVP) range and are the focus of MSLS analysis. In contrast, mAb products contain
two main types of particles: mAb molecules and mAb aggregates, typically in a
buffer solution like acetate buffer. The mAb molecules, about 10 nm in size, are
the intended product content. However, mAb aggregates—clusters formed by these
molecules—fall within the SbVP range and become the target of the MSLS analyzer.

The complex composition of mAb products introduces additional challenges to par-
ticle analysis. The mAb molecules themselves scatter light, creating a background
in MSLS images. This increased background signal could potentially reduce the
detectability of submicron-to-visible particles (SbVPs). To assess the detectability
of SbVPs in the presence of mAb molecules, we developed a simplified particle
model for mAb products, as illustrated in Fig.3.7.

Two factors primarily impact the detectability of SbVPs. First, the presence of
mAb molecules generates noticeable background signals (Fig.3.7(a)—(c)). Second,
when mAb aggregates become too dense, they overlap, posing difficulties for particle
detection algorithms (Fig.3.7(a) and (d)). The detailed analysis of how SbVP overlap
impacts detectability has been elaborated in Chapter 3. Therefore, we focus here on
how background scattering affects SbVP detectability.
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Figure 3.7: Particle Detectability Analysis. a) Two factors that may reduce particle
detectability. b) Simplified particle models, both without and with mAb aggregates.
c) Light sheet image of an mAb product showing sparse aggregates. d) Light sheet
image of an mAb product showing dense aggregates.

Examining the scenarios with and without mAb aggregates in Fig.3.7(b), we can
establish a condition for an mAb aggregate to be distinguishable from the back-
ground. This condition is met when the scattering intensity (reading) of the aggre-
gate (𝑆𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒) is stronger than that of the mAb molecules (𝑆𝐶𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) within
the same volume, which can be expressed as:

𝑆𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 > 𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 · 𝑆𝐶𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 (3.5)

with 𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 represents the number of mAb molecules contained within a volume
equivalent to that of the mAb aggregate.
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For simplicity, we assume that all particles, both mAb molecules and mAb ag-
gregates, are spherical and share an identical refractive index (RI), resulting in a
relative RI with the medium of 𝑚. The radius of the mAb aggregate (𝑟𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒)
ranges from 1 to 50 𝜇m, while the radius of a single mAb molecule (𝑟𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) is
5 nm. The scattering readings for an mAb aggregate (𝑆𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒) and for a single
mAb molecule (𝑆𝐶𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) are derived using the same method detailed in Section
3.6.

The particle concentration (𝑐𝑚𝐴𝑏) of mAb molecules in a product can be calculated
using the mAb’s mass concentration (𝜌𝑚𝐴𝑏) and its molecular mass (𝑚𝑚𝐴𝑏):

𝑐𝑚𝐴𝑏 =
𝜌𝑚𝐴𝑏

𝑚𝑚𝐴𝑏

· 𝑁𝐴 (3.6)

where 𝑁𝐴 is the Avogadro number.

Using the particle concentration of mAb, the number of mAb molecules within
the volume of an aggregate can be calculated, allowing us to assess whether the
aggregate stands out from the background:

𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 = 𝑐𝑚𝐴𝑏 ·
4
3
· 𝜋𝑟3

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 . (3.7)

Using the aforementioned method, we analyzed an extreme case where the aggre-
gate has the minimum SbVP size (𝑟𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 = 1, 𝜇𝑚) and the mAb has a mass
concentration typical in the drug industry (𝜌𝑚𝐴𝑏 = 140mg/ml). We varied the
relative refractive index (RI) between the mAb and the buffer from 1.0001 to 1.1,
and the corresponding scattering values, as well as whether the aggregate could be
detected, are presented in Table3.2. The results show that, except for the𝑚 = 1.0001
case, the aggregate could be detected in all other scenarios, even with background
scattering. Given that a relative RI as low as 1.0001 is uncommon in typical drug
products, we conclude that the MSLS analyzer is still effective in detecting SbVPs in
mAb drug samples. Particle sizing can be performed after an additional background
subtraction step, with the background frame obtained by averaging multiple MSLS
images.
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𝑚
𝑆𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 ·𝑆𝐶𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
Aggregate detectability

1.0001 0.15 ×
1.001 15

√

1.01 1.7e3
√

1.1 1.8e6
√

Table 3.2: Aggregate detectability across various relative refractive indices (RI)

Dilution experiment on aggregated mAb products
We began with a dilution experiment to quantitatively demonstrate the MSLS ana-
lyzer’s capability in analyzing actual mAb samples. First, we prepared an aggregate
sample with 10 mg/mL mAb agitated for 24 hours. We then performed a series
of dilutions to create samples ranging from 0.0 vol% to 1.2 vol% of the original
aggregate concentration. Each dilution was analyzed three times using the MSLS
analyzer. To maintain the mAb molecular concentration, the final formulated bulk
mAb product at 10 mg/mL was used for dilution. The experiment involved both ISO
6R and ISO 2R vials. All dilutions were performed in a single 6R vial, followed by
pipetting the diluted samples into separate 2R vials at each target concentration, as
illustrated in Fig.3.7(a).



78

Figure 3.8: MSLS performance on an mAb dilution series. a) Sample dilution
workflow. b) SbVP analysis results for ISO 6R and 2R vials, focusing on particle
size classes of ≥ 2𝜇𝑚 and ≥ 10𝜇𝑚.

The analysis results of the dilution series in both ISO 6R and ISO 2R vials are
presented in Fig.3.8(b). For particles ≥ 2𝜇𝑚, both ISO 6R and ISO 2R results
exhibit strong linearity between the dilution series and SbVP concentrations, with
the values closely aligned, demonstrating the quantitative accuracy of the MSLS
analyzer. However, for particles ≥ 10𝜇𝑚, while linearity was also observed, dis-
crepancies were noted between the results from the ISO 6R and ISO 2R vials.
These differences may be attributed to potential pipetting bias or other procedural
inconsistencies introduced during the dilution process. Overall, the MSLS ana-
lyzer has demonstrated good quantitative performance with actual mAb samples,
reinforcing its reliability for assessing particle concentrations across different size
ranges. These findings suggest that the analyzer is capable of providing robust and
consistent measurements in practical applications, particularly for smaller particle
sizes.

37◦ mAb products
To showcase the MSLS analyzer’s advantage of enabling experiments on a single
drug sample, we conducted a 37°C incubation experiment. As demonstrated in
Fig.3.9, nine 70 mg/mL mAb samples in three types of buffer were incubated at
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37°C for 18 days. The buffers used were acetate (pH 5.2), phosphate (pH 6.7), and
histidine (pH 7.6). Measurements using the MSLS analyzer were performed daily,
with each measurement repeated three times, to observe how samples changed under
high temperature and how different buffer pH levels affected sample stability.

Figure 3.9: MSLS Performance in a 37◦ Incubation Experiment. a) Experimental
process. b) SbVP tracking of the experimental samples over 18 days. Particles
≥ 2𝜇𝑚 are presented to illustrate the general trend.

The SbVP tracking results are presented in Fig.3.9(b). All samples showed growth
in SbVP particles, but to varying degrees. Histidine-buffered samples (pH 7.6)
exhibited a rapid increase in SbVP counts during the first 5 days, after which they
began to saturate the MSLS analyzer. Phosphate-buffered samples (pH 6.7) showed
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a modest increase in SbVPs throughout the incubation period. Acetate-buffered
samples (pH 5.2) demonstrated the highest stability, with the least SbVP growth.
These observations align with previous studies indicating that higher sample pH
correlates with increased SbVP growth rates [34]. Variability among samples
was also observed, which could be attributed to random impurities introduced
during sample preparation. In summary, this incubation experiment demonstrates
the MSLS analyzer’s capability to track SbVP changes over time, emphasizing its
advantage over invasive methods.

3.5 Discussion of advantages and limitations
The MSLS analyzer was developed to characterize subvisible particles in pharma-
ceutical DP containers non-destructively. The system uses light sheet microscopy
and an algorithm that models Mie scattering to directly perform particle sizing
and counting while keeping the sample solution intact inside primary containers.
Representative DP containers (ISO 2R vials and ISO 6R vials) were chosen as pri-
mary containers to test in this study. Square sample housings made of PDMS were
designed to partially compensate for the strong astigmatism inherent to cylindrical
containers. As the particle imprint of the system was still aberration dominated,
particle detection was achieved by template matching. For every detected particle
imprint, astigmatism-based particle localization was performed to determine the
corresponding incident light intensity. This information was then used to scale the
particle’s scattering reading accordingly such that the pre-calculated particle size
– scattering reading curve could be used for querying the size of the particle. By
combining the results of all the particles within the imaging volume, a calculation
of the particle concentration statistics for a sample was generated.

As an optics based SbVP analyzer, it is inevitable that the MSLS analyzer will
miss particles with the exact same refractive index as the medium because there
will be no side scattered light for the MSLS analyzer to capture. However, existing
research [35] has shown that in most cases, the refractive indices of SbVPs and
the suspension medium, although close, are not precisely identical. Under such
circumstances, side-scattered light would still be present, and the reported MSLS
analyzer could potentially detect this light by employing appropriate exposure time
settings. Limitations of the MSLS analyzer also include the dependency on the
refractive index values of the medium and the particles. Furthermore, we would
like to clarify that the MSLS analyzer could estimate the particle size range but
could not measure the exact particle size. Two factors contributed to this. 1)
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The scattering model described here makes two simplifications during the particle
sizing process. The first simplification was to assign consistent particle refractive
index to all particles even though the particles may have different compositions and
therefore refractive indices. The second simplification was to assume all particles
as spheres. In other words, our system outputs the equivalent spherical particle size
that would generate the same scattering reading as our measurement under assigned
refractive index values. 2) The scattering reading values exhibited fluctuations as
the particle size increased, as observed in Fig.3.4(c). This property resulted in
situations where a single scattering reading would indicate a range of acceptable
particle size. Therefore, even though algorithmically the MSLS analyzer could bin
the particle statistics in a finer way than the ≥ 2, 5, 10, and 25 𝜇m convention, it
would not contribute to higher sizing precision.

The main advantage of the reported MSLS analyzer was its non-invasiveness. The
only required operation involving the sample was to place it inside the sample hous-
ing. Furthermore, the sample housings were reusable and easy to produce. The
control of astigmatism was the main contributor in enabling the non-invasiveness.
Sample housings were used to mitigate strong astigmatism enough such that image
processing could be performed to deliver a clean scattering signal to the Mie scat-
tering algorithm. Additionally, residual astigmatism played a crucial role in particle
axial localization and accurate size estimation. The MSLS analyzer is expected to
be non-destructive to modern protein biologics. The analyzer light wavelength is
532 nm, the optical intensity is 3.66 mW/cm2 (2.0e7 lux), and sample exposure time
is about 7 minutes (Table.3.3). For well-formulated protein therapeutic products,
exposure to light at this wavelength and intensity is not expected to degrade the
product [36].

The MSLS analyzer could be extended to analyzing syringe DPs by creating cor-
responding sample housings. Furthermore, the sample housing could potentially
be improved by investigating materials with refractive index values closer to those
of the drug product content. Moreover, the MSLS analyzer could be utilized for
measuring bulk solution properties, such as color and turbidity. Color measure-
ment can be achieved by embedding a spectrometer module into the current system
set up. Sample turbidity could be acquired by quantitatively calibrating measured
light sheet image pixel values with turbidity standards. Further improvements to
the MSLS analyzer could include replacing mechanical sample scanning with light
sheet scanning for higher measuring speed, as well as exploring light features that



82

could serve as indicators for particle characteristics such as size, shape, or chemical
composition. In its present state, the MSLS system and its processing software
assume and assign a single refractive index value to all particles in a test sample;
articles with refractive indices different from the assigned value will result in a size
different from their true value. Therefore, the MSLS analyzer is well-suited for
monitoring the SbVP change over time (i.e., stability) in a single sample (DP unit).
If the particles are of unknown origin or multiple types [37], the MSLS analyzer will
still be able to see a change notwithstanding with compromised sizing and counting
accuracy.

3.6 Appendix
Scanning scheme of the MSLS counter
One measurement of the MSLS counter for both ISO 6R vial samples and ISO 2R
vial samples consisted of 700 frames. Fig.3.10(a) showed the scanning scheme of
an ISO 6R vial sample. The MSLS counter scanned 5 layers of an ISO 6R vial.
Each layer contained 140 frames. Similarly, for ISO 2R vial samples, the MSLS
counter scanned 10 layers and each layer contained 70 frames.
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Figure 3.10: Scanning scheme of the MSLS counter. (a) Scanning scheme for ISO
6R vials. (b) Scanning scheme for ISO 2R vials.

Fabrication of the sample housing

The sample housings used in the reported system for cylindrical aberration compen-
sation were made of polydimethylsiloxane (PDMS) elastomer (SLYGARDTM 184).
To shape the sample housing, a mold including an Amac plastic box, a target drug
container, and a 3D printed container stand was developed, as shown in Fig.3.11(a1-
2). The container stand was necessary during the fabrication for 1) keeping the drug
container at the center of the Amac box, and 2) producing a neat surface by simply
peeling off the cured PDMS instead of physically cutting the cured PDMS. The
thoroughly mixed PDMS elastomer components (10:1) were poured into the corre-
sponding molds, de-aired, cured at 65C for 24h and then demolded from the molds.
The demolded end products for ISO 6R vials and ISO 2R vials were demonstrated
in Fig.3.11(c1-2).
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Figure 3.11: Molds for sample housing fabrication. (a) Sample holder molds for
(a1) ISO 6R vials and (a2) ISO 2R vials. (b) 3D drawings of container stand for
(b1) ISO 6R vials and (b2) ISO 2R vials. (c) Demolded sample housings for (c1)
ISO 6R vials and (c2) ISO 2R vials.

Optical system diagram for ray tracing
We used RayLab to simulate the light propagation from a point source buried at the
center of a vial to the image plane. We simplified our microscope as an imaging
system with both the objective lens and the tube lens being the same, resulting in
a 1x magnification. The NA of the entire system was set to be 0.25, matching
the objective lens in our MSLS system. The vial was assumed to be filled with
water (refractive index: 1.33). The ISO 6R vial and ISO 2R vial situations are
demonstrated in Fig.3.12.

Figure 3.12: Optical path diagram used for simulation. (a) Diagram of ISO 6R vial
situations, including (a1) situation without sample housing, and (a2) situation with
sample housing. (b) Diagram of ISO 2R vial situations, including (b1) situation
without sample housing, and (b2) situation with sample housing. Unit: mm.
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Calculation of the size – scattering reading curve
The scenario of our particle scattering problem is demonstrated in Fig.3.4(c) (Section
3.2). We approximate the incident light as linear polarized monochromatic plane
wave with wavelength of 𝜆. The direction of the incident light is along 𝑧 axis,
forward direction. The scattering particle is a sphere with radius of a and refractive
index (RI) of 𝑛𝑝, surrounded by medium with refractive index of 𝑛𝑚. The detector
is on 𝑥 axis facing the particle.

We use Mie theory for our calculations [27]. For clarity, we first present the functions
and polynomials used in the calculation, including Bessel functions of the first and
second kind 𝐽𝜈 and 𝑌𝜈, spherical Bessel functions:

𝑗𝑛 (𝜌) =
√︂

𝜋

2𝜌
𝐽𝑛+ 1

2
(𝜌) (3.8)

𝑦𝑛 (𝜌) =
√︂

𝜋

2𝜌
𝑌𝑛+ 1

2
(𝜌), (3.9)

spherical Hankel functions:

ℎ
(1)
𝑛 (𝜌) = 𝑗𝑛 (𝜌) + 𝑖𝑦𝑛 (𝜌) (3.10)

ℎ
(2)
𝑛 (𝜌) = 𝑗𝑛 (𝜌) − 𝑖𝑦𝑛 (𝜌), (3.11)

Riccati-Bessel functions:
𝜓𝑛 (𝜌) = 𝜌 𝑗𝑛 (𝜌) (3.12)

𝜉𝑛 (𝜌) = 𝜌ℎ
(1)
𝑛 (𝜌), (3.13)

and associated Legendre Functions 𝑃𝑚
𝑛 .

The particle size parameter 𝑥 and the particle relative refractive index 𝑚 are defined
as follows for later use:

𝑥 =
2𝜋𝑛𝑚𝑎

𝜆
(3.14)

𝑚 =
𝑛𝑝

𝑛𝑚
. (3.15)

For convenience the angle-dependent functions are defined as follows:

𝜋𝑛 =
𝑃1
𝑛

sin 𝜃
(3.16)

𝜏𝑛 =
𝑑𝑃1

𝑛

𝑑𝜃
. (3.17)
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The relation between incident and scattered field is described as:(
𝐸∥𝑠

𝐸⊥𝑠

)
=
𝑒𝑖𝑘 (𝑟−𝑧)

−𝑖𝑘𝑟

(
𝑆2 0
0 𝑆1

) (
𝐸∥𝑖

𝐸⊥𝑖

)
(3.18)

where
( 𝐸 ∥𝑠
𝐸⊥𝑠

)
is the scattered field,

( 𝐸 ∥𝑖
𝐸⊥𝑖

)
is the incident field and 𝑆 𝑗 ( 𝑗 = 1, 2) are

elements of amplitude scattering matrix depending on the scattering angle 𝜃 and the
azimuthal angle 𝜑. Here we clarify specifically that

( 𝐸 ∥𝑠
𝐸⊥𝑠

)
and

( 𝐸 ∥𝑖
𝐸⊥𝑖

)
are based on

different sets of basis vectors
( ⃗⃗
𝑒 ∥𝑠⃗⃗
𝑒 ⊥𝑠

)
and

( ⃗⃗
𝑒 ∥𝑖⃗⃗
𝑒 ⊥𝑖

)
, which are clarified in [27].

The amplitude scattering matrix elements are given by:

𝑆1 =
∑︁
𝑛

2𝑛+1
𝑛(𝑛 + 1) (𝑎𝑛𝜋𝑛 + 𝑏𝑛𝜏𝑛) (3.19)

𝑆2 =
∑︁
𝑛

2𝑛+1
𝑛(𝑛 + 1) (𝑎𝑛𝜏𝑛 + 𝑏𝑛𝜋𝑛). (3.20)

Here 𝑎𝑛 and 𝑏𝑛 are scattering coefficients:

𝑎𝑛 =
𝑚𝜓𝑛 (𝑚𝑥)𝜓′

𝑛 (𝑥) − 𝜓𝑛 (𝑥)𝜓′
𝑛 (𝑚𝑥)

𝑚𝜓𝑛 (𝑚𝑥)𝜉′𝑛 (𝑥) − 𝜉𝑛 (𝑥)𝜓′
𝑛 (𝑚𝑥) (3.21)

𝑏𝑛 =
𝜓𝑛 (𝑚𝑥)𝜓′

𝑛 (𝑥) − 𝑚𝜓𝑛 (𝑥)𝜓′
𝑛 (𝑚𝑥)

𝜓𝑛 (𝑚𝑥)𝜉′𝑛 (𝑥) − 𝑚𝜉𝑛 (𝑥)𝜓′
𝑛 (𝑚𝑥) (3.22)

where 𝑥, 𝑚, 𝜓𝑛 and 𝜉𝑛 are size parameter, relative refractive index and Riccati-Bessel
functions clarified previously. In actual computation, the algorithm terminates after
𝑁𝑠𝑡𝑜𝑝 terms. The criterion for 𝑁𝑠𝑡𝑜𝑝 is as follows, considering both computational
efficiency and sufficient convergence [27]:

𝑁𝑠𝑡𝑜𝑝 = ⌈𝑥 + 4𝑥1/3 + 2⌉ . (3.23)

In our case only scattered energy that could reach the detector is considered when
calculating the particle scattering cross section. The receiving range of the detection,
determined by objective NA in our system, is expressed as solid angle 𝑆 in Fig.3.4(c)
(section 3.2). The particle scattering cross section is then calculated as follows:

𝐶𝑠𝑐𝑎 =

∫
𝑆

(𝑆2 cos 𝜑)2 + (𝑆1 sin 𝜑)2

(2𝜋/𝜆)2 𝑑Ω. (3.24)

The energy scattering rate𝑊𝑠𝑐𝑎 by the particle can be determined from the scattering
cross section:

𝑊𝑠𝑐𝑎 = 𝐶𝑠𝑐𝑎 𝐼𝑖 (3.25)
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where 𝐼𝑖 is the incident intensity.

The scattering reading (𝑆𝐶) of the particle can then be determined from energy
scattering rate 𝑊𝑠𝑐𝑎 and the system parameters including the camera exposure time
𝑡, the camera sensor quantum efficiency 𝑄𝐸 ,and the camera sensor conversion
factor 𝐶𝐹:

𝑆𝐶 =
𝑊𝑠𝑐𝑎𝑡

ℎ𝑐/𝜆 ×𝑄𝐸 × 𝐶𝐹 (3.26)

where ℎ is the Planck constant and 𝑐 is the speed of light in air.

The 𝑆𝐶-particle size curve in Fig.3.4(c) (section 3.2) was generated by calculating
the 𝑆𝐶 values of particles with diameter ranging from 0.8 𝜇m to 50 𝜇m. All
parameters used in actual computation were summarized in Table.3.3.

Parameter Particle RI
(𝑛𝑝)

Medium RI
(𝑛𝑚)

Objective NA Wavelength
(𝜆)

Value 1.59 1.33 0.25 532nm
Parameter Incident

intensity (𝐼𝑖)
Exposure time

(𝑡)
Quantum
Efficiency

(𝑄𝐸)

Conversion
factor (𝐶𝐹)

Value 3.66 𝑊/𝑐𝑚2 20 ms 0.6 0.46

Table 3.3: Parameters used in size – 𝑆𝐶 curve calculation.

Particle imprint aspect ratio determination
As presented in Fig.3.13, we performed normalized autocorrelation to the captured
light sheet image and the aspect ratio of the main peak of the autocorrelation map
was used to represent the aspect ratio of the particle imprints. We determined the
aspect ratio of the main autocorrelation peak as follows: 1) Binary thresholding the
normalized autocorrelation map (threshold = 0.7) and 2) Dividing the height of the
remaining blob with the width of the blob.

Figure 3.13: Particle imprint aspect ratio determination process. Scale bar: 50 𝜇m.
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Particle imprint aspect ratio – axial position curve
We measured the particle imprint aspect ratios under varied axial positions for both
ISO 6R vial and ISO 2R vial. The axial positions covered range from -60 𝜇m to
60 𝜇m with step of 10 𝜇m (along x-axis in our setup). At each axial position, 10
measurements were taken and averaged as a final data point. Both experimental
measurements and linear fitting were showed in Fig.3.14.

Figure 3.14: Particle imprint aspect ratio – axial position curve. (a) ISO 6R vial
measurements and corresponding linear fitting. (b) ISO 2R vial measurements and
corresponding linear fitting.

Sampling volume and sampling confidence level
The goal of this section is to determine the number of shots 𝑁 given the concen-
tration to be estimated 𝑐, target margin error 𝑒 and target confidence interval 𝐶𝐼.
Before delving into this problem, we define more parameters here for convenience.
Specifically, the total volume of the suspension to be tested is 𝑣𝑡𝑜𝑡𝑎𝑙, the sampled
volume during a single shot is 𝑣𝑠𝑠 and the number of particles captured in a single
shot is 𝑛𝑠𝑠.

Two assumptions are made in our calculation: 1) The probability of a particle
showing up at a certain position is uniform within the suspension to be tested. 2)
The particles are independent in the suspension to be tested.

The total number of particles within the suspension, denoted as 𝑛𝑡𝑜𝑡𝑎𝑙, is:

𝑛𝑡𝑜𝑡𝑎𝑙 = 𝑐 · 𝑣𝑡𝑜𝑡𝑎𝑙 . (3.27)

The process of a particle being recorded by a single shot is a Bernoulli event and its
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probability, denoted as 𝑝𝑠𝑠, can be expressed as follows:

𝑝𝑠𝑠 =
𝑣𝑠𝑠

𝑣𝑡𝑜𝑡𝑎𝑙
. (3.28)

Considering the above process for all particles within the suspension, when 𝑛𝑡𝑜𝑡𝑎𝑙

is large enough and 𝑝𝑠𝑠 is small enough, the number of particles captured in a single
shot, denoted as 𝑛𝑠𝑠, will follow Poisson distribution:

𝑛𝑠𝑠 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 𝑛𝑡𝑜𝑡𝑎𝑙 · 𝑝𝑠𝑠) (3.29)

and the 𝜆 of this Poisson distribution can be further written as:

𝜆 = 𝑛𝑡𝑜𝑡𝑎𝑙 ·
𝑣𝑠𝑠

𝑣𝑡𝑜𝑡𝑎𝑙
= 𝑐 · 𝑣𝑠𝑠 . (3.30)

A light-sheet microscope capturing process with𝑁 shots can be modeled as sampling
the 𝑛𝑠𝑠 for 𝑁 times. According to Central Limit Theorem, the distribution of the
mean of the 𝑛𝑠𝑠 is approximately a normal distribution:

𝑛𝑠𝑠 ∼ N(𝑐 · 𝑣𝑠𝑠,
√
𝑐 · 𝑣𝑠𝑠√
𝑁

). (3.31)

To ensure that the 𝐶𝐼 confidence interval (corresponding z score denoted as 𝑍) have
certain margin of error 𝑒, the required shot number 𝑁 can be calculated as follows:

𝑍 · √𝑐 · 𝑣𝑠𝑠√
𝑁

= 𝑒 (3.32)

𝑁 =
𝑍2

𝑒2 𝑐 · 𝑣𝑠𝑠 . (3.33)

In our particle counting application, it is reasonable to choose the confidence in-
terval to be 90% and the margin of error to be ±15% (𝑐 · 𝑣𝑠𝑠). And the volume
of the single shot can be determined based on our illumination light sheet cross
section profile, which is demonstrated in section 3.2. The required shot numbers
𝑁s of our reported system for target concentrations that typically encountered in
pharmaceutical production are listed in Table.3.4.
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Target concentration 𝑐 (particle/ml) Required shot number 𝑁
1e2 3231
5e2 646
1e3 323
5e3 65
1e4 32
5e4 6
1e5 3
5e5 1

Table 3.4: Numbers of shots required by varied target concentration.

Particle imprint overlapping simulation
The simulation was modeled as follows: each simulated image had a certain number
of particles imprints. The number of the particle imprints was determined by
multiplying the simulated particle concentration with the sampling volume of a
single frame. The shape of the particle imprints was simplified as circles with
diameter of 70 𝜇m. The positions of the particle imprints were independent between
each other and followed uniform distribution. The overlap coefficient (𝛾) was defined
as:

𝛾 =
𝑃𝑖𝑥𝑒𝑙#(𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑏𝑦𝑚𝑜𝑟𝑒𝑡ℎ𝑎𝑛𝑜𝑛𝑒𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖𝑚𝑝𝑟𝑖𝑛𝑡𝑠)

𝑃𝑖𝑥𝑒𝑙#(𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑏𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖𝑚𝑝𝑟𝑖𝑛𝑡𝑠) . (3.34)

The simulation covered concentration from 5e4 particle/ml to 5e5 particle/ml with
step of 5e4 particle/ml. For each concentration, 100 trials were performed and
averaged 𝛾 was taken. The 𝛾 – concentration plot was showed in Fig.3.15.
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Figure 3.15: Particle imprints overlapping simulation. (a) Particle concentration - 𝛾
plot. (b) An example image at concentration of 5e5 particle/ml. Scale bar: 50 𝜇m.
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C h a p t e r 4

NON-DESTRUCTIVE ANALYSIS OF SUBVISIBLE PARTICLES
WITH MIE SCATTERING-BASED LIGHT SHEET

TECHNOLOGY: NUMBER OF FRINGES AS AN ALTERNATIVE
NOVEL SIZE INDICATOR

The nondestructive Mie scattering-based Light Sheet Technology discussed in Chap-
ter 3 has proven effective in analyzing subvisible particles directly within drug
product (DP) containers while preserving sample integrity. In the reported system,
side scattering intensity (SSI) was employed as an indicator of particle size, and its
effectiveness was validated using both artificial and biological samples. However,
this side scattering intensity-based sizing method has several limitations, including
its dependence on incident light intensity and refractive indices. In this chapter, we
introduce a novel particle size indicator, the number of fringes (NoF), which can
be extracted from the same images captured by the MSLS setup. The properties
of NoF are characterized through simulation, and its effectiveness is demonstrated
in an object detection task. Both simulation and experimental results indicate that
NoF is a more robust size indicator, independent of both incident light intensity and
refractive indices.

4.1 Feasible particle size indicators from side scattering images
The Mie scattering-based Light Sheet (MSLS) technology, as a nondestructive
method for subvisible particle analysis, utilizes a light sheet microscopy structure.
By compensating the astigmatism introduced by drug containers, such as syringes
and vials, the system can capture light sheet images of sufficient quality for subse-
quent particle detection and sizing. As detailed in Chapter 3, the scattering reading,
defined as the pixel-wise summation of a particle’s imprint, is used to estimate
particle size. The workflow is illustrated in Fig.4.1.

The workflow described above uses particle side scattering intensity as an indica-
tor of particle size, as the scattering reading is proportional to the particle’s side
scattering intensity. This proportionality is determined by the camera’s quantum
efficiency, conversion factor, and exposure time. Using side scattering intensity as
a size indicator is advantageous due to its ease of calculation and its proven effec-
tiveness, as demonstrated in Chapter 3 Fig.3. However, this approach has several
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limitations: 1) Dependency on Incident Light Intensity: Accurate particle sizing
based on side scattering intensity depends on precise measurement of the incident
light intensity. 2) Dependency on Particle Axial Localization: The Gaussian pro-
file of the incident light sheet causes non-uniform illumination for particles located
at different positions within the light sheet. Therefore, determining the particle’s
axial position is essential for accurately measuring incident light intensity. 3) De-
pendency on Refractive Indices: Accurate particle sizing through side scattering
intensity requires precise knowledge of the refractive indices of both the particles
and the surrounding medium. Furthermore, the workflow described in Chapter 3
assumes a consistent refractive index for all particles, even though they may have
different compositions and, consequently, different refractive indices. This assump-
tion can lead to inaccuracies in particle sizing. 4) Inability to Handle Overlapping
Particle Imprints: When particle imprints overlap, pixel-wise summation becomes
inaccurate, resulting in errors in particle sizing.

In this chapter, we introduce a novel feature extracted from particle imprints that
serves as an alternative particle size indicator, termed the number of fringes (NoF)
(Fig.4.1). The properties of NoF are characterized through simulations, and a
deep learning-based particle detection experiment is conducted to validate its ef-
fectiveness. Both simulations and experimental results demonstrate that NoF is a
robust particle size indicator that overcomes the limitations associated with the side
scattering intensity-based method.

Figure 4.1: Two types of particle size indicators extracted from particle imprints.
The top path describes scatter intensity-based particle sizing, while the bottom path
describes NoF-based particle sizing.
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4.2 Principle and properties of number of fringes
It has been observed that spheres have scattering light intensity that oscillates an-
gularly [1, 2]. In our MSLS situation, such oscillation is manifested as alternating
bright and dark fringes in the captured particle imprints, as demonstrated in Fig.4.1.
Based on this phenomenon, we define the feature number of fringes (NoF) as the
average of the number of bright fringes (#{𝐵𝐹𝑟}) and the number of dark fringes
(#{𝐷𝐹𝑟}):

𝑁𝑜𝐹 =
#{𝐵𝐹𝑟} + #{𝐷𝐹𝑟}

2
. (4.1)

To characterize NoF’s properties as a particle size indicator, we conducted a sim-
ulation based on the scattering model described in Chapter 3. In this scenario, we
approximated the incident light as a linearly polarized monochromatic plane wave
and the scattering particle as a sphere. We used an illumination wavelength of 532
nm. The particle size parameter 𝑥 was used to describe the simulated particle size,
which is defined in Equation 3.14. In this case, the particle size parameter 𝑥 is
within the range of 15 to 390, corresponding to an actual particle size of 2 to 50 𝜇m.

Unlike Chapter 3, which calculated the scattering light intensity collected by the
objective lens, here we derived the scattering coefficient oscillation near 90 degrees
and calculated the number of fringes from this oscillation (Fig.4.2). To explore
NoF’s sensitivity to the relative RI (𝑚) determined by the particle RI (𝑛𝑝) and
surrounding medium RI (𝑛𝑚), we simulated m values from 1.02 to 1.2 with a step
size of 0.02. We grouped NoF values for each particle size under different relative
refractive index conditions into a box plot. Finally, we combined box plots for
different particle sizes to create Fig.4.2.



100

Figure 4.2: NoF characterization through simulation. (a) The simplified scattering
model and NoF definition. A monochromatic plane wave scattered by a homoge-
neous sphere was used, and the intensity oscillation near 90◦ was simulated. (b)
Simulation results for varied particle sizes and relative refractive indices (RI).

The simulation results have demonstrated that NoF increased monotonically with
particle size growth. The relatively narrow boxes in each box plot showed that NoF
is relatively robust to changes in relative refractive index. In other words, unlike
scattering intensity, the NoF value does not change drastically with relative refractive
index, relaxing the strong requirement for relative refractive index information in
scattering intensity-based sizing situations. Both properties indicate that NoF could
be a feasible particle size indicator.

An experiment was then conducted to further demonstrate NoF’s properties. Four
types of water suspensions with polystyrene beads of different sizes were prepared
and imaged by the MSLS system. The diameters of these polystyrene beads were 3
𝜇m, 8 𝜇m, 15 𝜇m, and 30 𝜇m, each falling into one category of the UPS particle size
bin: ≥ 2 𝜇m, ≥ 5 𝜇m, ≥ 10 𝜇m, ≥ 25 𝜇m. To characterize the defocus properties
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of NoF, each sample was imaged at three axial locations: -100 𝜇m, 0 𝜇m, and 100
𝜇m.

The imaging results are illustrated in Fig.4.3. As expected, the NoF values increased
as particle size increased. The corresponding NoF values for 3 𝜇m, 8 𝜇m, and 15
𝜇m polystyrene beads were 2.5, 6.5, and 12, respectively. For 30 𝜇m polystyrene
particles, the particle imprint pattern became more complicated than simple fringes,
which could be explained by more modes beginning to play a part in forming the
pattern. Under such situations, NoF is no longer valid.

The experiment also demonstrated another advantage of NoF: its robustness to
defocusing. For all situations where particle imprints still showed fringe patterns
(3 𝜇m, 8 𝜇m, 15 𝜇m beads), the fringe distribution remained unchanged across
varying axial locations. This means that with NoF as a particle size indicator, axial
localization is no longer necessary.
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Figure 4.3: NoF characterization through experiments on (a) 3 𝜇m polystyrene
beads, (b) 8 𝜇m polystyrene beads, (c) 15 𝜇m polystyrene beads, and (d) 30 𝜇m
polystyrene beads.

4.3 Verifying the functionality of NoF through deep learning
Given the properties that NoF of particle side scattering imprints differ from size to
size, and such difference is straightforward and observable directly from the light
sheet images captured by the MSLS system, we believe object detection by deep
learning could be an alternative easier solution to perform particle analyzing tasks,
including particle detection and particle sizing, from light sheet images with better
robustness. In this section, we built a dataset and trained a DNN model to perform
the particle analysis task as a proof of concept.

Unlike the method in Chapter 3 that treated the two subtasks—particle detection
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and particle sizing—separately, the deep learning object detection embedded both
particle detection and particle sizing into one neural network and both subtasks are
trained all at once. Once trained, the deep learning neural network (DNN) takes
light sheet images from the MSLS system as input, boxes out all the particle imprints
and assigns one of the four size classes: ≥ 2 𝜇𝑚, ≥ 5 𝜇𝑚, ≥ 10 𝜇𝑚, ≥ 25 𝜇𝑚, to
each detected particle.

To acquire the light sheet images for the dataset, four vials of polystyrene bead
suspensions, each representing one size class mentioned above, were prepared. The
content of each suspension is illustrated in Fig.4.4(a), and the detailed particle
concentrations, calculated from the labeled product concentrations and the dilution
factors, are listed in Table.4.1. The sample vials were imaged by the MSLS system
at different axial locations from -100 𝜇𝑚 to 100 𝜇𝑚. A log operator was applied
to the captured images to reduce their dynamic range, ensuring that particles with
both strong and weak side scattering could be visible to the DNN model.

Sample Class Particle Concentration (particle/ml)
≥ 2𝜇𝑚 3 𝜇𝑚 0.99e4

≥ 5𝜇𝑚
5 𝜇𝑚 0.99e4
8 𝜇𝑚 1.04e4
10 𝜇𝑚 1.01e4

≥ 10𝜇𝑚

12 𝜇𝑚 3.00e3
15 𝜇𝑚 2.99e3
18 𝜇𝑚 2.99e3
20 𝜇𝑚 3.01e3
24 𝜇𝑚 2.99e3

≥ 25𝜇𝑚

30 𝜇𝑚 1.00e3
50 𝜇𝑚 1.00e3
70 𝜇𝑚 1.00e3
90 𝜇𝑚 1.00e3
100 𝜇𝑚 1.00e3

Table 4.1: Table of samples representing various particle size classes.

After image acquisition, human annotations, including both marking the bounding
boxes and assigning the particle size classes, were performed (Fig.4.4(a)). The final
dataset, illustrated in Fig.4.4(b), consists of a training dataset with 4469 particles and
a test dataset with 1259 particles. Both training and testing datasets have particles
distributed relatively uniformly across all four size classes.
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Figure 4.4: Sample preparation and dataset construction. (a) The pipeline for
building the dataset, including sample preparation, data collection, and annotation.
(b) Statistical analysis of the dataset, showing the relatively balanced distribution
across all four size classes.

Region-based convolutional neural networks (R-CNN) have become popular for
object detection tasks since their invention [3–10]. An R-CNN network performs
region proposal, feature extraction, and classification and localization. As one of
the improved versions of R-CNN, Faster R-CNN [7] incorporates a region proposal
network (RPN) and classification into a single network by sharing the convolutional
features. In this way, nearly cost-free and high-quality region proposals are enabled,
and the runtime is reduced.

Here, we performed transfer learning in our particle analysis task by fine-tuning an
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aforementioned Faster R-CNN model with our custom particle dataset mentioned
above. The specific model has the backbone of ResNeXt-101 [11] pre-trained on
ImageNet [12]. The hyperparameter settings for training this network are listed in
Table.4.2.

Images per batch 4
Base learning rate 0.0005

Max iteration 2000
Test score threshold 0.4
Test NMS threshold 0.2

Table 4.2: Hyperparameter settings for training the DNN model.

The prediction results on the test dataset in Fig.4.5 showed the model’s capabil-
ity on the particle analysis task. Four examples of the model’s predictions are
shown in Fig.4.5. The predictions indicated that the model could provide reason-
able particle detections and relatively accurate particle classifications for all 4 size
classes. Furthermore, the model could handle even complicated situations such as
particles located at multiple focal planes (Fig.4.5(b)), particle imprints overlapping
(Fig.4.5(b)), and extra image background generated by either unexpected stray light
or extremely out-of-focus particle scattering (Fig.4.5(d)).

Figure 4.5: Experimental set up and general process. (a) Schematic of experimental
set up. (b) Experiment procedures: One group of raw data was used for illumination
correction first. Calibrated illumination angles were then used for FPM rendering.

COCO evaluation metrics [13] were used to quantitatively assess the particle analysis
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model’s performance. The precision-recall curve is illustrated in Fig.4.5. The
average precision (AP) for the 4 size classes (≥ 2𝜇𝑚, ≥ 5𝜇𝑚, ≥ 10𝜇𝑚, ≥ 25𝜇𝑚)
are correspondingly 0.590, 0.590, 0.592, and 0.585, showing the particle analysis
model to be a good detector from an empirical perspective.

4.4 Discussion of advantages and limitations
In this study, we discovered an alternative particle size indicator apart from side
scattering intensity, named number of fringes (NoF). Both simulations and exper-
iments were performed to characterize NoF’s properties of monotonic increasing
with particle size, robustness over relative refractive index, and robustness over
defocusing. A particle analysis deep learning experiment was conducted as a proof
of concept. The particle analysis model achieved ∼0.59 average precision for all 4
size classes, proving the effectiveness of NoF as a particle size indicator.

As an alternative particle size indicator to side scattering intensity (SSI), NoF inherits
the same non-destructive advantage. Moreover, NoF as a particle size indicator
possesses several advantages that could overcome the limitations inherent to the
SSI particle size indicator. Firstly, although SSI generally increases with particle
size, it exhibits fluctuations, as shown in Fig.3.4. These fluctuations mean that a
single particle reading could correspond to multiple particle sizes, reducing particle
sizing accuracy. In contrast, NoF values increase monotonically with particle size,
as demonstrated in Fig.4.2, making particle size determination more precise from
the particle imprints.

NoF is also independent of incident light intensity. This independence eliminates
the need for incident light intensity measurement, reducing potential sizing errors
caused by illumination fluctuations and decreasing transmission of frequently used
sample housings. Additionally, since accurate incident light intensity is no longer
required, particle localization—an essential step for obtaining accurate incident
light intensity for particles at different locations within the light sheet—becomes
unnecessary, thereby simplifying the data processing workflow.

Furthermore, independence from side scattering intensity makes particle sizing
more resilient to extreme cases such as overlapping particle imprints and those
contaminated with background stray light, both of which pose challenges to the SSI
size indicator. In contrast, NoF, which relies on imprint patterns rather than exact
pixel values, remains unaffected by these issues.

Another advantage of NoF is its robustness to relative refractive index. Compared to
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SSI, whose value can change by orders of magnitude with varying relative refractive
index, the NoF of a particle of a certain size changes by only several fringes across the
range of common particle-medium combinations encountered in the pharmaceutical
industry. Consequently, particle sizing errors due to inaccurate refractive index
estimation can be reduced.

Furthermore, NoF-based particle sizing eliminates the need for the strong assump-
tion used in SSI-based sizing that all particles have a single refractive index. Thus,
NoF allows the system to better handle situations where particles are composed of
multiple materials and, therefore, have multiple refractive indices.

It’s important to note that NoF remains a coarse size indicator with a resolution
of approximately 0.5 𝜇m. This limitation stems from two factors: the inherent
discreteness of NoF itself and its residual dependency on the relative refractive
index. Both factors constrain NoF’s ability to provide higher accuracy particle size
estimation.

Another current limitation of the NoF and DNN-based particle sizing approach is
its reliance on supervised learning. This methodology requires a large amount of
well-annotated data, which in turn demands significant human input for preparation
and labeling.

To further enhance NoF’s capabilities as a particle sizing indicator, future work
could focus on verifying performance using real protein samples, incorporating
self-supervised and unsupervised learning techniques into particle analysis, and in-
ferring particle morphology from scattering imprint patterns using machine learning
methods. These advancements could address current limitations and expand NoF’s
utility in particle sizing applications across various fields, potentially leading to
more accurate and efficient particle analysis methods.
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C h a p t e r 5

USING DEEP LEARNING TO PREDICT SEX OF HUMAN
EMBRYOS

The existence of sex differences in human pre-implantation development remains an
open question, and previous attempts to address this issue using human observations
have not reached a consensus. In this chapter, we utilize both manual annotation and
deep learning on a database of over 500 time-lapse movies, to investigate whether
birth sex influences early development. Whilst manual analysis was not able to
discern any parameters associated with developmental timing that can differentiate
male and female embryos, training and testing a deep learning model on these
videos was able to result in a statistically significant sex prediction accuracy of
61%. Importantly, we found that the period after the 8-cell stage is critical for
this prediction, indicating that minor sex differences may occur from day 3 during
human embryogenesis. The study of sex differences during pre-implantation can
help provide additional information to understand why embryos fail and sex ratios
are skewed during in vitro fertilization. Furthermore, our research paves the way for
an early, non-invasive detection tool that can be used to help address and mitigate
sex-related embryogenesis defects.

5.1 Introduction of human pre-implantation development
Human pre-implantation development comprises the period from fertilization (at
day 0) to implantation of the blastocyst into the maternal uterine wall at day 7 [1].
This process is known to involve cell fate changes and morphogenetic processes
that transform the zygote into an embryo with a central cavity and three lineages:
the trophectoderm, which will form the placenta; the epiblast, which will form the
foetus; and the hypoblast, which will give rise to the yolk sac (Fig.5.1a). Despite
our growing knowledge of mechanisms involved in early human embryogenesis,
an outstanding question remains as to whether there are any sex differences during
human pre-implantation development.

Sex differences have been widely observed in developmental biology, although there
are many different sex-related mechanisms and the system is not evolutionarily con-
served between species [2]. In the current model of sex determination during
mammalian development, the presence of the SRY gene on the Y chromosome
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activates a cascade of steps during gonadal development that promotes male gonad
and sexual characteristic specification, whilst the lack of a Y chromosome results
in female characteristics [3]. Gonadal development and SRY gene products are
generally detected after pre-implantation development, but the SRY model never-
theless remains a simplification and many other sex-related mechanisms have been
proposed [2, 3]. In fact, many studies have suggested that sex differences do exist
in mammalian pre-implantation development, with evidence from several different
species [4–6]. However, the nature and cause of these differences remains largely
unclear. In humans, it has been proposed that: male embryos develop faster than
female embryos [7]; female embryos are suspected to undergo earlier cavitation,
although this observation has not been demonstrated in a statistically significant
fashion [8]; the male embryo takes longer to develop to the blastocyst stage [9]; and
there are differences in blastocyst morphology and metabolism [10, 11]. Despite
these studies, no consensus has been reached as to whether and how pre-implantation
embryos differ based on their sex [12].

This issue of sex differences has implications for human in vitro fertilization (IVF).
Firstly, it is well known that many embryos fail during embryo transfer and less
than 30% of embryos develop to live birth [13]; sex differences have been a largely
ignored factor in understanding why many embryos do not succeed. Knowledge of
these differences during pre-implantation can shed more light on the problem, e.g.,
whether implantation transfer times are not optimized for a particular sex. Moreover,
in cases of known sex-related issues with embryonic development [14], early and
non-invasive sex detection can allow embryologists to address or mitigate potential
issues. Finally, it is also known that IVF clinics have a skewed sex ratio for live
births, biased towards male embryos, for reasons that are not fully clear despite
various studies [15–17]. Studying sex differences can help us understand why this
is the case and whether any developmental differences need to be considered during
handling to avoid a skew.

The question of whether there are sex differences in pre-implantation human devel-
opment is one that is well poised to address through artificial intelligence processing.
Artificial intelligence has previously been used on mammalian pre-implantation de-
velopment, because of its ability to detect salient features easy for humans to miss,
and because of its processing power, speed, standardisation, and non-invasiveness
[18–23]. For example, several studies have been able to grade blastocyst health and
predict which blastocysts will be able to implant successfully into the uterine wall,
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outcompeting comparative humans [18, 19, 22]. Nevertheless, artificial intelligence
has not been utilised to help understand whether there are observable differences
between male and female embryos during the earliest stages of human development.

For this study, we have acquired a database of over 500 embryoscope time-lapse
movies of human pre-implantation development from a collaborating clinic, each
labelled with birth sex (as male or female). We first attempted to investigate whether
there are any differences between male and female embryos manually by using
annotations of developmental timing. In this study, we were unable to identify
any timing-based parameters that can distinguish embryos based on sex. We next
applied deep neural network (DNN) to the same dataset, and observed a statistically
significant DNN sex prediction accuracy of 61% (statistical significance of p < 0.05)
when the videos starting from the 8-cell stage onwards were analysed. When given
the same videos, humans were unable to make meaningful predictions.

This chapter indicates that weak sex differences exist in early human embryo devel-
opment, which are possible to detect from the 8-cell stage onwards by a deep neural
network.
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Figure 5.1: Overview of study to detect sex differences from embryoscope movies.
a) Summary schematic of human pre-implantation development, from fertilisation
at day 0 to implantation of the blastocyst at day 7. b) Graphical depiction of the
study. A processed database of embryoscope videos is used for manual annotation
and artificial intelligence processing to distinguish sex differences. Both methods
are combined in deep learning that is segmented by annotated time periods, and the
final deep learning models are evaluated on the ability to predict sex from unlabelled
recordings. c) Depiction of the different time points used during manual annotation,
with corresponding embryoscope snapshot. Alt text: Graphic depiction of study
plan, including human embryo development phases.
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5.2 Developing a database of human embryoscope movies for sex prediction
Data collection and screening
To investigate potential sex differences in human pre-implantation development,
a large database of human pre-implantation movies annotated with birth sex is
needed. Embryo videos were collected from the Clinical Embryology Laboratory
at IVIRMA Valencia, whose work is approved by National Commission of Human
Reproduction (CNRHA) and complies with Spanish law on assisted reproductive
technologies (14/2006). No human embryos were manipulated specifically for
this study. We obtained more than 854 embryoscope movies from a collaborating
clinic. These movies were of fresh zygotes donated for IVF, which were eventually
transferred and resulted in a live birth with known sex. The pre-implantation period
was recorded on video for IVF selection, with bright-field vision of a single focal
plane visible using the standard embryoscope settings (Fig.5.1b) with a snapshot of
the embryo every 20 minutes. Using these videos, it is possible to conduct both
manual and artificial intelligence-based analyses to investigate sex differences, and
ultimately test these approaches using prediction on unknown videos (Fig.5.1b).
The dataset of movies was filtered for format, processing, and embryo health issues.
The entier data screening process is illustrated in Fig.5.2. From the initial set of 854
videos capturing fresh oocytes that led to live births, 580 videos were retained after
excluding those with issues related to format, processing errors, or embryo quality.
Of these, 515 videos were subsequently utilized for deep learning model training
and testing.
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Figure 5.2: Data screening of embryoscope video database. The initial dataset from
the collaborating clinic was processed before finally being used for annotation and
deep learning. Out of 854 videos initially which were from fresh oocytes transferred
and resulting in live births, 580 were left after videos with format, processing and
embryo issues were excluded. Out of these, 515 were used for deep learning training
and testing.

Data imbalance between classes, commonly seen in real-world datasets [24–27], was
also observed in our dataset (Fig.5.2), with more males than females. Oversampling
the minority class, a method established for decades, has been shown to be effective
in addressing the class imbalance issue [28–30]. Compared with its alternative
strategy, undersampling, oversampling has the advantage of avoiding data loss and
making full use of the entire dataset. In our artificial intelligence-based analyses, we
applied the same oversampling technique by randomly duplicating female videos so
that the training set included equal numbers of males and females, as elaborated in
the later sections.
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Manual annotation
The following parameters were evaluated from the embryoscope videos (please also
see corresponding images in Fig.5.1): Time reaching 2-cell: First moment where
there are two distinct cells.

Time reaching 3-cell: First moment where there are three distinct cells.

Time reaching 4-cell: First moment where there are four distinct cells.

Time reaching 5-cell: First moment where there are five distinct cells.

Time reaching 8-cell: First moment where there are eight distinct cells.

Compaction onset: First moment where a visible inter-blastomere angle begins to
increase.

Compaction completion: First moment where all the inter-blastomere angles stop
increasing.

Cavitation onset: First moment where a cavitation nucleation site (initial spot) is
visible, and later results in a formed cavity.

Early blastocyst: First moment when the blastocoel cavity takes up half of the total
embryo volume.

5.3 Manual analysis of developmental timing cannot separate male and female
embryos

The first part of this study involved manual analysis of the embryoscope recordings,
aiming to find parameters that can distinguish male and female embryos. After
filtering, 580 embryos were used for manual analysis annotation. Given the na-
ture of the embryoscope recordings, we were able to assess parameters associated
with developmental timing such as development to the 2-cell stage or the onset
of cavitation, using the criteria outlined in 5.2 (Fig.5.1c). The videos were anno-
tated sex-blind for all parameters. Then, after sorting the annotations into male
and female groups, various time periods were calculated from the annotations and
were compared for sex differences for the difference between means. The data was
analysed as follows: the fit of the data to a normal distribution was analysed with
D’Agostino’s K-squared test. If data fit a normal distribution, then for comparison
of two or multiple samples, an unpaired or paired two-tailed student’s t test (two ex-
perimental groups) or a one-way ANOVA test (more than two experimental groups)
was used to analyse statistical significance, depending on the fit of the data to the test
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assumptions. Differences in variances were accounted for by performing a Welch’s
correction where appropriate. For data that did not display a normal distribution, a
Mann–Whitney U-test (for two experimental groups) or a Kruskal–Wallis test with
a Dunn’s multiple comparison test (for more than two experimental groups) was
used to test statistical significance. To determine the influence of different groups
in multiple variants, a two-way ANOVA was performed. Statistical analyses were
performed using the Graphpad Prism software (http://www.graphpad.com).

Selected examples are graphically displayed in Fig.5.3. And the p-values for all
individual comparisons are listed in Table.5.1). We found that no period during
pre-implantation showed any strong difference in timing between male and female
embryos compared to the variability found within each group, and this was re-
flected in the p-value of all comparisons being statistically insignificant. Thus, we
concluded that manual annotation of timing parameters is not a sensitive enough
technique to elucidate sex differences between male and female embryos that may
exist.
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Figure 5.3: Manual annotation does not reveal sex differences in developmental
timing. Comparison of different annotated time periods during pre-implantation
development, between male and female embryos. Box-and-whisker plot of anno-
tated periods presented with statistical test and corresponding snapshots of start and
end of period, from embryoscope movies. a) No significant difference between male
and female embryos from the 2-cell stage to 8-cell stage during pre-implantation de-
velopment, two-tailed t-test, p>0.05. b) No significant difference between male and
female embryos from the 2-cell stage to cavitation onset, two-tailed t-test, p>0.05.
c) No significant difference between male and female embryos from compaction
onset to compaction completion during pre-implantation development, two-tailed
t-test, p>0.05. d) No significant difference between male and female embryos from
the 8-cell stage to early blastocyst, two-tailed t-test, p>0.05. Alt text: Statistical
comparison between male and female embryos for manually annotated timepoints.
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Starting Time Point
(Annotated)

Ending Time Point
(Annotated)

Unadjusted P-Value (Sex
Comparison) 𝑁

2-cell stage 4-cell stage 0.47
2-cell stage 8-cell stage 0.79
2-cell stage cavitation onset 0.09
2-cell stage early blastocyst 0.49
8-cell stage compaction completion 0.77
8-cell stage cavitation onset 0.70
8-cell stage early blastocyst 0.15

compaction onset compaction completion 0.49

Table 5.1: Table of p-value comparisons for manually annotated time periods.

5.4 Predicting embryo sex from human embryo videos using deep learning
Data preprocessing (Fig.5.4a) including cropping and time tag extraction, was first
applied before sending the data to the deep neural network. Each video underwent
frame cropping and extraction. The frames were first cropped to remove the empty
top border and then resized to 224x224 RGB images to align with the requirements
of the deep learning model. All input videos were processed such that they started
from the 1h time point, and frames 2h apart were used, with the model ultimately
using up to 60 frames as its input. Zero vectors were added for sequences shorter than
60 frames. In our deep learning experiments, one instance corresponded to a human
embryo video, including the video frames in chronological order, the corresponding
time tags, and the sex of the embryo in the video.

To leverage both morphology and temporal information during embryo development,
a hybrid architecture combining a Convolutional Neural Network (CNN) and a
Recurrent Neural Network (RNN) was adopted (see Method). The CNN functioned
as a feature extractor, transforming a time lapse video from an image sequence to
a vector sequence. The EfficientNet-B3 [31] pretrained on the ImageNet dataset
[32] was used as the CNN backbone for extracting morphology information from
the input frames. It output the feature vectors with dimensions of 1x1536. For
fine-tuning the EfficientNet-B3 backbone, an auxiliary classifier was built with
the EfficientNet-B3 backbone followed by three fully connected (FC) layers. The
auxiliary classifier was trained for embryo development stage classification with 19
separate embryo videos that were not included in the subsequent sex classification
experiments. After fine-tuning, the EfficientNet-B3 backbone was fixed during the
RNN training process.

The Recurrent Neural Network (RNN) received the sequence of feature vectors



119

extracted by the CNN backbone and was designed to capture temporal patterns
within the sequence. The RNN consisted of two gated recurrent unit (GRU) layers
[33]. The output from the RNN was fed to FC layers afterwards to generate the
probabilities indicating the likelihood of the input instance belonging to either the
male or female class. And the predicted sex of the input instance was determined
to be the class with higher probability. Gaussian noise layers were placed between
GRU layers and FC layers to mitigate overfitting.

During the prediction step, given a test embryo video, a prediction vector generated
by the model was output, which provides the probabilities of an embryo belonging
to the male or female class. The class with the larger probability value is used as
the prediction (Fig.5.4b).

Figure 5.4: Data pre-processing and sex classification process by the deep learning
model. a) Embryoscope movies undergo extraction via space and time cropping for
input into the deep learning model, as outlined in Method. b) A hybrid architecture
combining a Convolutional Neural Network (CNN) and a Recurrent Neural Network
(RNN) were adopted for the sex classification task, with further details in Method.
An embryo video (an image sequence) was converted to a feature vector sequence
by the CNN and then fed to the RNN. Ultimately, using the extracted feature vector
sequence, a probability vector is output for each class (male or female): the higher
probability class is given as the final prediction (in the example diagram, the male
class has the higher probability).

For deep learning, further screening of the evaluated dataset took place to exclude
videos with quality issues such as blurriness, blackouts and embryos out of the field
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of view (Fig.5.2). This process resulted in 515 human embryo time lapse videos,
comprising 290 male embryos and 225 female embryos (Fig.5.5a). With this dataset,
we conducted three experiments, each having varied developmental stages and labels
as input (Fig.5.5b), which are elaborated later in the text. These experiments were
conducted in a three-trial (or three-fold) manner for reliability. Specifically, in each
trial, 75 male videos and 75 female videos were randomly selected from the dataset
to comprise the testing set, whilst the remaining 215 male videos and 150 female
videos comprised the training set. To address the mild imbalance between male
class (58%) and female class (42%), we randomly duplicated 65 female videos from
the total pool of 150 female videos for each trial (Fig.5.5a). This approach ensured
a more balanced representation during model training.

We define accuracy as the number of correct predictions divided by the total number
of predictions. Our null hypothesis (𝐻0) is that the focal predictive model has no
predictive ability, or that the accuracy is 50%. The corresponding alternative
hypothesis (𝐻1) was defined as the focal model having an accuracy higher than
50%. A binominal test was performed to test whether the null hypothesis could be
rejected. We set p = 0.05 as our threshold for rejecting 𝐻0 and accepting 𝐻1.

Our deep learning study consists of three separate experiments. In the first, we used
the whole video (from zygote to video end, denoted as Z-End) as the input (Fig.5.5b).
Next, to determine whether particular stages could be critical in successful sex
prediction, we additionally partitioned the time-lapse videos into two segments
based on prior manual annotation (Fig.5.5b Experiment 2 and 3): 1) the period from
beginning (1h) to reaching the 8-cell stage (abbreviated as Z-8) (Fig.5.5b) and 2) the
period from reaching the 8-cell stage to the end (abbreviated as 8-End). We chose
the 8-cell stage as the partition point, because the 8-cell stage is a critical period
in development, involving the start of morphogenetic processes such as compaction
[1], and important cellular processes such as apical-basal polarisation and the first
cell fate decision [34, 35], as well as being clear and easy to spot.

The models trained on whole videos achieved an averaged accuracy of 57%. In
two out of the three trials, the model outperformed random predictions (p < 0.05).
However, as the model failed to reject H0 for one of the trials, we assessed this
model as failing to provide statistically significant prediction.

The models that took Z-8 videos as inputs achieved an average accuracy of 47%,
with all three p-values close to 1, indicating unsuccessful sex prediction in Z-8
video segments (Fig.5.5c and d). Conversely, the models that took 8-End videos as
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inputs reached an average accuracy of 61%, surpassing all other scenarios (Fig.5.5c).
Furthermore, all three trials showed p-values smaller than 0.05 (Fig.5.5c), indicating
for all three trials, the model outperformed random prediction. These results, which
demonstrated that the 8-End model performed better than the Z-8 model, indicate
that the developmental difference between male embryos and female embryos likely
happens only after the 8-cell stage, which might relate to zygotic genome activation
at that stage [36] and therefore the first manifestation of male gene expression.

For our final experiment, we compared the performance between deep neural net-
works and humans. To match the three-trial experiments for deep learning models,
three human subjects were recruited. Similar to the deep neural network experi-
ments, the subjects were first provided with the same videos from the 8-cell stage
to the end that were fed to the 8-End models, and then were required to perform sex
prediction on embryo videos that they haven’t met before. The average accuracy of
the three subjects were 46% (Fig.5.5c) and none of them showed statistically better
performance over random prediction (Fig.5.5d). The results further implied that the
difference between male embryos and female embryos were too subtle for humans
to distinguish, while the 8-End models could detect such a difference.

Overall, we found that both manual analysis of the timing parameters and direct hu-
man classification were not sensitive enough to find sex differences in embryoscope
videos based on developmental timing; however, deep learning models were able to
weakly, but significantly, distinguish between sexes using these same videos, with
the period from the 8-cell stage onwards appearing to be critical for the identification.
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Figure 5.5: Predicting sex from embryoscope videos using deep learning. a) Ex-
perimental format shown: three trials were conducted for each experiment, and
each trial involved a random set of 75 males and 75 females for testing, with the
remaining embryo videos for training. In the training set, 65 female videos were
randomly duplicated to ensure equal representation of male and female sets. b) Five
experiments were conducted – 1) training the model on whole videos from zygote
stage to the end (Z-End); 2) training the model on videos from zygote stage to the
8-cell stage (Z-8); 3) training the model on videos from the 8-cell stage to the end
(8-End); 4) recruiting human subjects to distinguish sex differences, provided with
videos from the 8-cell stage to the end (Human test); c) Average prediction accu-
racies on the testing dataset: Using whole videos and videos from the 8-cell stage
to the end gave accuracies above 50%, while the remaining experiments produced
accuracies of 46% and 47%; d) p-values of the hypothesis tests evaluating whether
a certain model outperformed random prediction: only the 8-End models had all
three trials surpass random prediction.

5.5 Discussion of current accuracy and limitations
In this study, we aimed to answer an important question regarding human embryo-
genesis: are there sex differences in the pre-implantation period of development
[15–17]? Previous attempts to answer this question have used crude and laborious
manual analysis, resulting in a lack of consensus as to whether such early sex differ-
ences exist [12]. Here, we also find that manual analysis of the timing parameters
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is not able to tease apart sex differences in this early stage of development. Instead,
deep learning offers a solution: our sex prediction model, specifically when trained
from the 8-cell stage onwards, can predict sex with an accuracy that is statistically
better than random prediction. However, the reported model has an accuracy of
61%, which does not qualify it as a system that can robustly classify embryo sex
based on embryoscope videos.

The accuracy of our sex prediction model could reflect that sex differences are ex-
tremely subtle in the pre-implantation stage of human development. Any differences
are not visible or detectable by human analysis, but artificial intelligence has been
shown to improve on human performance in several areas associated with embryo
grading and inspection, especially in relation to morphological parameters [20, 23,
37]. To further investigate these differences, and pinpoint exactly which features are
involved in sex differences and prediction, videos with quality and developmental
markers beyond what can be achieved by the embryoscope itself would be required.
Such videos may help open the ‘black box’ of our sex prediction model. A thorough
understanding of sex differences and a working AI-based detection system can help
provide more information on the relationship between embryo failure and sex, as
well as the issue of skewed sex ratios. It may also be used as a tool to provide
embryologists with early information to address sex-related developmental issues
during processing and transfer.

An interesting feature associated with our sex prediction model is that when trained
with the whole embryo video, the model performs worse (57%) than when trained
with videos from the 8-cell stage to the end (61%). We attributed this discrepancy
to the fact that sex differences only occur in the later part of development and
including more information (the first part of embryoscope videos) which does not
aid sex prediction instead introduces noisy data that prevents important features from
being extracted. These issues may also be solved with increased data quality and
quantity. This late sex prediction might stem from the fact that the human embryo
genome becomes activated only at the 8-cell stage [36] and therefore the presence
of Y chromosome only can start to manifest itself at that point. Nevertheless, our
sex prediction model provides objective and novel insight into the long-standing
question of sex differences in pre-implantation human development.
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5.6 Appendix
Human test information
Three volunteers (2 males, 1 female), pursuing postgraduate degrees in STEM fields,
but lacking prior exposure to mouse embryo development studies, were recruited
from the Caltech community. Prior to participation, all volunteers provided their
consent for their involvement and data utilization in the final analysis. Volunteers
received detailed instructions in person and accessed the training and testing data
on a designated lab computer. They were instructed to first familiarize themselves
with the training data, then apply their acquired knowledge to predict the sex of the
testing embryo videos and record their predicted labels in an Excel sheet. Following
completion, the volunteers’ Excel sheets were collected to compute their accuracies
and the corresponding p-values on the hypothesis test determining whether a certain
volunteer outperformed random prediction.



125

References

[1] Kathy K. Niakan et al. “Human pre-implantation embryo development.” In:
Development 139.5 (2012), pp. 829–841.

[2] Arthur P. Arnold. “A general theory of sexual differentiation.” In: Journal of
Neuroscience Research 95.1-2 (2017), pp. 291–300.

[3] Patricia Y. Fechner. “The role of SRY in mammalian sex determination.” In:
Pediatrics International 38.4 (1996), pp. 380–389.

[4] Mari-Lourdes Bernardi et al. “Transcription of Y-and X-linked genes in
preimplantation ovine embryos.” In: Molecular Reproduction and Devel-
opment: Incorporating Gamete Research 45.2 (1996), pp. 132–138.

[5] Paul S. Burgoyne. “A Y-chromosomal effect on blastocyst cell number in
mice.” In: Development 117.1 (1993), pp. 341–345.

[6] Jaana Peippo and Peter Bredbacka. “Sex-related growth rate differences in
mouse preimplantation embryos in vivo and in vitro.” In: Molecular Repro-
duction and Development 40.1 (1995), pp. 56–61.

[7] Bo Huang et al. “Is differences in embryo morphokinetic development sig-
nificantly associated with human embryo sex?” In: Biology of Reproduction
100.3 (2019), pp. 618–623.

[8] Munevver Serdarogullari et al. “Comparison of gender-specific human em-
bryo development characteristics by time-lapse technology.” In: Reproductive
BioMedicine Online 29.2 (2014), pp. 193–199.

[9] Juan J. Fraire-Zamora et al. “P–137 Male embryos take longer to develop
to the blastocysts stage.” In: Human Reproduction 36.Supplement_1 (2021),
deab130–136.

[10] Samer Alfarawati et al. “The relationship between blastocyst morphology,
chromosomal abnormality, and embryo gender.” In: Fertility and sterility
95.2 (2011), pp. 520–524.

[11] P.F. Ray et al. “Increased number of cells and metabolic activity in male
human preimplantation embryos following in vitro fertilization.” In: Repro-
duction 104.1 (1995), pp. 165–171.

[12] Juan J. Fraire-Zamora et al. “No difference in morphokinetics between
male and female preimplantation embryos from ART.” In: Reproductive
BioMedicine Online 46.6 (2023), pp. 911–916.

[13] Norbert Gleicher, Vitaly A. Kushnir, and David H. Barad. “Worldwide decline
of IVF birth rates and its probable causes.” In: Human Reproduction Open
2019.3 (2019), hoz017.

[14] Tereza Cristina Pinheiro Diogenes et al. “Gender differences in the prevalence
of congenital heart disease in Down’s syndrome: a brief meta-analysis.” In:
BMC medical genetics 18 (2017), pp. 1–5.



126

[15] John M. Csokmay et al. “Live birth sex ratios are not influenced by blastocyst-
stage embryo transfer.” In: Fertility and sterility 92.3 (2009), pp. 913–917.

[16] Juan J. Tarin, Miguel A. García-Pérez, and Antonio Cano. “Assisted re-
productive technology results: Why are live-birth percentages so low?” In:
Molecular Reproduction and Development 81.7 (2014), pp. 568–583.

[17] Juan J. Tarín et al. “Changes in sex ratio from fertilization to birth in assisted-
reproductive-treatment cycles.” In: Reproductive Biology and Endocrinology
12 (2014), pp. 1–8.

[18] Jørgen Berntsen et al. “Robust and generalizable embryo selection based on
artificial intelligence and time-lapse image sequences.” In: Plos One 17.2
(2022), e0262661.

[19] Charles L. Bormann et al. “Performance of a deep learning based neural
network in the selection of human blastocysts for implantation.” In: Elife 9
(2020), e55301.

[20] Danilo Cimadomo et al. “Towards automation in IVF: Pre-clinical validation
of a deep learning-based embryo grading system during PGT-A cycles.” In:
Journal of Clinical Medicine 12.5 (2023), p. 1806.

[21] Cheng Shen et al. “Stain-free detection of embryo polarization using deep
learning.” In: Scientific Reports 12.1 (2022), p. 2404.

[22] Dimitry Tran et al. “Deep learning as a predictive tool for fetal heart preg-
nancy following time-lapse incubation and blastocyst transfer.” In: Human
Reproduction 34.6 (2019), pp. 1011–1018.

[23] Nikica Zaninovic and Zev Rosenwaks. “Artificial intelligence in human in
vitro fertilization and embryology.” In: Fertility and Sterility 114.5 (2020),
pp. 914–920.

[24] Lisette Lockhart et al. “Multi-label classification for automatic human blas-
tocyst grading with severely imbalanced data.” In: 2019 IEEE 21st Interna-
tional Workshop on Multimedia Signal Processing (MMSP). 2019, pp. 1–6.
doi: 10.1109/MMSP.2019.8901697.

[25] Tianyu Liu, Wenhui Fan, and Cheng Wu. “A hybrid machine learning ap-
proach to cerebral stroke prediction based on imbalanced medical dataset.”
In: Artificial Intelligence in Medicine 101 (2019), p. 101723.

[26] Talha Mahboob Alam et al. “A machine learning approach for identification
of malignant mesothelioma etiological factors in an imbalanced dataset.” In:
The Computer Journal 65.7 (2022), pp. 1740–1751.

[27] Haowen Zhou et al. “AI-guided histopathology predicts brain metastasis in
lung cancer patients.” In: The Journal of Pathology 263.1 (2024), pp. 89–98.



127

[28] M. Mostafizur Rahman and Darryl N. Davis. “Addressing the class imbalance
problem in medical datasets.” In: International Journal of Machine Learning
and Computing 3.2 (2013), p. 224.

[29] Evgeny Burnaev, Pavel Erofeev, and Artem Papanov. “Influence of resampling
on accuracy of imbalanced classification.” In: Eighth International Confer-
ence on Machine Vision (ICMV 2015). Vol. 9875. SPIE. 2015, pp. 423–427.

[30] Matloob Khushi et al. “A comparative performance analysis of data re-
sampling methods on imbalance medical data.” In: IEEE Access 9 (2021),
pp. 109960–109975.

[31] Mingxing Tan. “Efficientnet: Rethinking model scaling for convolutional neu-
ral networks.” In: arXiv preprint arXiv:1905.11946 (2019).

[32] Jia Deng et al. “Imagenet: A large-scale hierarchical image database.” In:
2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
2009, pp. 248–255.

[33] Kyunghyun Cho. “Learning phrase representations using RNN encoder-
decoder for statistical machine translation.” In: arXiv preprint
arXiv:1406.1078 (2014).

[34] Claudia Gerri et al. “Initiation of a conserved trophectoderm program in
human, cow and mouse embryos.” In: Nature 587.7834 (2020), pp. 443–447.

[35] Meng Zhu et al. “Human embryo polarization requires PLC signaling to
mediate trophectoderm specification.” In: Elife 10 (2021), e65068.

[36] Peter Braude, Virginia Bolton, and Stephen Moore. “Human gene expres-
sion first occurs between the four-and eight-cell stages of preimplantation
development.” In: Nature 332.6163 (1988), pp. 459–461.

[37] Brian D. Leahy et al. “Automated measurements of key morphological fea-
tures of human embryos for IVF.” In: Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2020: 23rd International Conference,
Lima, Peru, October 4–8, 2020, Proceedings, Part V 23. Springer. 2020,
pp. 25–35.



INDEX

figures, 4–7, 10, 18, 20, 22, 23, 25, 27, 30, 32, 33, 35–37, 39, 43–46, 48–53, 62,
64, 66, 67, 71, 73, 75, 78, 79, 83, 84, 87, 88, 91, 98, 100, 102, 104, 105,
112, 114, 117, 119, 122

tables, 72, 77, 87, 90, 103, 105, 118

128


